
On-the-fly Synthesizer
Programming with Rule Learning

Alejandro Iván Paz Ortiz

Thesis Presented for the

PhD degree in Computing

Soft Computing Research Group at Intelligent Data Science and

Artificial Intelligence Research Center

Computer Sciences Department

Universitat Politècnica de Catalunya - BarcelonaTech

Thesis director: Àngela Nebot and Francisco Mugica

2021

Scholarship Number: 240514

Abstract

This manuscript explores automatic programming of sound synthesis algorithms within

the context of the performative artistic practice known as live coding.

Writing source code in an improvised way to create music or visuals became an

instrument the moment affordable computers were able to perform real-time sound

synthesis with languages that keep their interpreter running. Ever since, live coding

has dealt with real time programming of synthesis algorithms.

For that purpose, one possibility is an algorithm that automatically creates varia-

tions out of a few presets selected by the user. However, the need for real-time feedback

and the small size of the data sets (which can even be collected mid-performance) are

constraints that make existing automatic sound synthesizer programmers and learning

algorithms unfeasible. Also, the design of such algorithms is not oriented to create

variations of a sound but rather to find the synthesizer parameters that match a given

one.

Other approaches create representations of the space of possible sounds, allowing

the user to explore it by means of interactive evolution. Even though these systems are

exploratory-oriented, they require longer run-times.

This thesis investigates inductive rule learning for on-the-fly synthesizer program-

ming. This approach is conceptually different from those found in both synthesizer

programming and live coding literature. Rule models offer interpretability and allow

working with the parameter values of the synthesis algorithms (even with symbolic

data), making preprocessing unnecessary.

RuLer, the proposed learning algorithm, receives a dataset containing user labeled

combinations of parameter values of a synthesis algorithm. Among those combinations

sharing the same label, it analyses the patterns based on dissimilarity. These patterns

are described as an IF-THEN rule model.

The algorithm parameters provide control to define what is considered a pattern. As

patterns are the base for inducting new parameter settings, the algorithm parameters

control the degree of consistency of the inducted settings respect to the original input

data.

An algorithm (named FuzzyRuLer) able to extend IF-THEN rules to hyperrectan-

gles, which in turn are used as the cores of membership functions, is presented. The

resulting fuzzy rule model creates a map of the entire input feature space. For such a

pursuit, the algorithm generalizes the logical rules solving the contradictions by follow-

ing a maximum volume heuristics.

Across the manuscript it is discussed how, when machine learning algorithms are

used as creative tools, glitches, errors or inaccuracies produced by the resulting models

are sometimes desirable as they might offer novel, unpredictable results.

The evaluation of the algorithms follows two paths. The first focuses on user tests.

The second responds to the fact that this work was carried out within the computer

science department and is intended to provide a broader, nonspecific domain evalua-

tion of the algorithms performance using extrinsic benchmarks (i.e not belonging to a

synthesizer’s domain) for cross validation and minority oversampling. In oversampling

tasks, using imbalanced datasets, the algorithm yields state-of-the-art results. More-

over, the synthetic points produced are significantly different from those created by the

other algorithms and perform (controlled) exploration of more distant regions.

Finally, accompanying the research, various performances, concerts and an album

were produced with the algorithms and examples of this thesis. The reviews received

and collections where the album has been featured show a positive reception within the

community. Together, these evaluations suggest that rule learning is both an effective

method and a promising path for further research.

iv

Resum

Aquest manuscrit explora la programació automàtica d’algorismes de śıntesi de so dins

del context de la pràctica art́ıstica performativa coneguda com a live coding.

L’escriptura improvisada de codi font per crear música o visuals es va convertir en un

instrument en el moment en què els ordinadors assequibles van poder realitzar śıntesis

de so en temps real amb llenguatges que mantenien el seu intèrpret en funcionament.

D’aleshores ençà, el live coding comporta la programació en temps real d’algorismes de

śıntesi de so.

Per a aquest propòsit, una possibilitat és tenir un algorisme que crëı automàticament

variacions a partir d’alguns presets seleccionats. No obstant, la necessitat de retroali-

mentació en temps real i la petita mida dels conjunts de dades (que fins i tot es poden

recollir al mateix performance) són restriccions que fan que els programadors automàtics

de sintetitzadors de so i els algorismes d’aprenentatge no siguin factibles d’utilitzar. A

més, el disseny d’aquests algorismes no està orientat a crear variacions d’un so, sinó a

trobar els paràmetres del sintetitzador que aplicats a l’algorisme de śıntesi produeixen

un so determinat (target).

Altres enfocaments creen representacions de l’espai de sons possibles, per permetre

a l’usuari explorar-lo mitjançant l’evolució interactiva. Tot i que aquests sistemes estan

orientats a l’exploració, requereixen temps més llargs.

Aquesta tesi investiga l’aprenentatge inductiu de regles per a la programació on-the-

fly de sintetitzadors. Aquest enfocament és conceptualment diferent dels que es troben

a la literatura tant de programació de sintetitzadors com de live coding. Els models de

regles ofereixen interpretabilitat i permeten treballar amb els valors dels paràmetres dels

algorismes de śıntesi (fins i tot amb dades simbòliques), fent innecessari el processament

previ.

RuLer, l’algorisme d’aprenentatge proposat, rep un conjunt de dades que conté com-

binacions etiquetades per l’usuari dels valors dels paràmetres d’un algorisme de śıntesi.

A continuació, analitza els patrons, basats en la dissimilitud, entre les combinacions de

v

cada etiqueta. Aquests patrons es descriuen com un model de regles IF-THEN.

Els paràmetres de l’algorisme proporcionen el control per definir el que es considera

un patró. Llavors, com que els patrons són la base per induir nous paràmetres, els

paràmetres de l’algorisme controlen el grau de consistència dels paràmetres indüıts

respecte a les dades d’entrada originals.

A continuació, es presenta un algorisme (anomenat FuzzyRuLer) capaç d’estendre

les regles IF-THEN a hiperrectangles, que al seu torn s’utilitzen com a nuclis de funcions

de pertinença. El model de regles difuses resultant crea un mapa complet de l’espai

de la funció d’entrada. Per a aquesta recerca, l’algorisme generalitza les regles lògiques

que resolen les contradiccions seguint una heuŕıstica de volum màxim.

Al llarg del manuscrit es discuteix com, quan s’utilitzen algorismes d’aprenentatge

automàtic com a eines creatives, de vegades són desitjables glitches, errors o impreci-

sions prodüıdes pels models resultants, ja que poden oferir nous resultats imprevisibles.

L’avaluació dels algorismes segueix dos camins. El primer es centra en proves

d’usuari. El segon, que respon al fet que aquest treball es va dur a terme dins del de-

partament de ciències de la computació, pretén proporcionar una avaluació més àmplia,

no espećıfica d’un domini, del rendiment dels algorismes mitjançant benchmarks extrin-

secs utilitzats per cross-validation i minority oversampling. En tasques d’oversampling,

mitjançant imbalanced data sets, l’algorisme proporciona resultats equiparables als de

l’estat de l’art. A més, els punts sintètics prodüıts són significativament diferents als

creats pels altres algorismes i realitzen exploracions (controlades) de regions més llun-

yanes.

Finalment, acompanyant la investigació, es van produir diverses presentacions, con-

certs i un àlbum amb els algorismes i exemples d’aquesta tesi. Les ressenyes rebudes i

les col·leccions on s’ha presentat l’àlbum mostren una bona acollida de la comunitat.

Aquestes avaluacions suggereixen que l’aprenentatge de regles és alhora, un mètode

eficaç i un camı́ prometedor per a recerca futura.

vi

Resumen

Este manuscrito explora la programación automática de algoritmos de śıntesis de sonido

dentro del contexto de la práctica art́ıstica performativa conocida como live coding.

La escritura de código fuente de forma improvisada para crear música o imágenes, se

convirtió en un instrumento en el momento en que las computadoras asequibles pudieron

realizar śıntesis de sonido en tiempo real con lenguajes que mantuvieron su intérprete

en funcionamiento. Desde entonces, el live coding ha implicado la programación en

tiempo real de algoritmos de śıntesis.

Para ese propósito, una posibilidad es tener un algoritmo que cree automáticamente

variaciones a partir de unos pocos presets seleccionados. Sin embargo, la necesidad de

retroalimentación en tiempo real y el pequeño tamaño de los conjuntos de datos (que

incluso pueden recopilarse durante la misma actuación), limitan el uso de los algoritmos

existentes, tanto de programación automática de sintetizadores como de aprendizaje de

máquina. Además, el diseño de dichos algoritmos no está orientado a crear variaciones

de un sonido, sino a encontrar los parámetros del sintetizador que coincidan con un

sonido dado.

Otros enfoques crean representaciones del espacio de posibles sonidos, para permi-

tir al usuario explorarlo mediante evolución interactiva. Aunque estos sistemas están

orientados a la exploración, requieren tiempos más largos.

Esta tesis investiga el aprendizaje inductivo de reglas para la programación de sin-

tetizadores on-the-fly. Este enfoque es conceptualmente diferente de los que se en-

cuentran en la literatura, tanto de programación de sintetizadores como de live coding.

Los modelos de reglas ofrecen interpretabilidad y permiten trabajar con los valores de

los parámetros de los algoritmos de śıntesis (incluso con datos simbólicos), haciendo

innecesario el preprocesamiento.

RuLer, el algoritmo de aprendizaje propuesto, recibe un conjunto de datos que

contiene combinaciones, etiquetadas por el usuario, de valores de parámetros de un

algoritmo de śıntesis. Luego, analiza los patrones, en función de la disimilitud, entre

vii

las combinaciones de cada etiqueta. Estos patrones se describen como un modelo de

reglas lógicas IF-THEN.

Los parámetros del algoritmo proporcionan el control para definir qué se considera

un patrón. Como los patrones son la base para inducir nuevas configuraciones de

parámetros, los parámetros del algoritmo controlan también el grado de consistencia

de las configuraciones inducidas con respecto a los datos de entrada originales.

Luego, se presenta un algoritmo (llamado FuzzyRuLer) capaz de extender las reglas

lógicas tipo IF-THEN a hiperrectángulos, que a su vez se utilizan como núcleos de

funciones de pertenencia. El modelo de reglas difusas resultante crea un mapa completo

del espacio de las clases de entrada. Para tal fin, el algoritmo generaliza las reglas lógicas

resolviendo las contradicciones utilizando una heuŕıstica de máximo volumen.

A lo largo del manuscrito se analiza cómo, cuando los algoritmos de aprendizaje

automático se utilizan como herramientas creativas, los glitches, errores o inexactitudes

producidas por los modelos resultantes son a veces deseables, ya que pueden ofrecer

resultados novedosos e impredecibles.

La evaluación de los algoritmos sigue dos caminos. El primero se centra en pruebas

de usuario. El segundo, responde al hecho de que este trabajo se llevó a cabo dentro

del departamento de ciencias de la computación y está destinado a proporcionar una

evaluación más amplia, no de dominio espećıfica, del rendimiento de los algoritmos uti-

lizando beanchmarks extŕınsecos para cross-validation y oversampling. En estas últimas

pruebas, utilizando conjuntos de datos no balanceados, el algoritmo produce resulta-

dos equiparables a los del estado del arte. Además, los puntos sintéticos producidos

son significativamente diferentes de los creados por los otros algoritmos y realizan una

exploración (controlada) de regiones más distantes.

Finalmente, acompañando la investigación, realicé diversas presentaciones, concier-

tos y un álbum utilizando los algoritmos y ejemplos de esta tesis. Las cŕıticas recibidas

y las listas donde se ha presentado el álbum muestran una recepción positiva de la

comunidad. En conjunto, estas evaluaciones sugieren que el aprendizaje de reglas es al

mismo tiempo un método eficaz y un camino prometedor para futuras investigaciones.

viii

Acknowledgements

There is no such thing as thinking in solitude. Every piece of work involves a

series of experiences, exchanges and relationships that remain unreported, especially

in scientific, academic writing. True to this unwritten tradition, I mention here only

those who, in one way or another, have collaborated in the development of this work.

This of course leaves out many of whom I love, but who fortunately have no purpose in

reading this work. The text acknowledges the persons almost in order of appearance so

it also tells an implicit evolution of my ideas as being collaborating with such amazing

humans.

First, I have to mention Sam Roig, not only because I know he would love to

appear first, but also, because he is probably more aware of the potentialities of some

algorithms presented here, as we have been discussing ideas from the beginning to

the 2021 MIRLCa workshop we organized together with TOPLAP Barcelola and Anna

Xambó.

At the forefront, I thank my supervisors Àngela Nebot and Francisco Mugica, be-

cause of their special care of the technical formalism and for the freedom to direct

my creative explorations, which have allowed for me to forge this work into an equi-

librium of technical and artistic balance. I would also like to acknowledge Enrique

Romero, whose mathematical thinking was essential for the algorithm discussions. He

participated from the very beginning to the last oversampling experiments.

I thank Josep Manuel Berenguer for introducing me to the Electroacustic scene of

Barcelona. He was probably the first to listen to my sound experiments and even then,

he still encouraged me to continue.

I deeply thank the Hangar people, especially Tere Badia, who supported me during

the Artistic Research Residency that resulted in the album Visions of Space. Hangar

was also my entry point to an artistic community of free and open principles, many of

which are implicit in this work.

I thank Julian Rohrhuber, from whom I learned more from in a month watching

ix

him writing code in SuperCollider, than in the last years combined. He also taught me

a lot of critical thinking so as not to make the naive mistakes we do as scientists when

we engage in artistic practices.

My deepest thanks to Julia Mugica, who sat with me and reviewed the algorithms

in those moments (of maybe every work) in which everything seemed senseless and

gray. Through those revisions I visualized some light at the end of the tunnel. She has

always been my main sonic critic, so I knew something was right every time I saw her

smile.

I thank Francis Knights, Pablo Padilla and Dan Tidhar, for the month we spent

together in Cambridge thinking about entropy and mathematical models of music.

Pablo Padilla together with Jaime Lobato have been discussing computing, music and

mathematics with me before this work began so they are in part responsible for it.

A special acknowledgement to Lina Bautista, with whom I started the live coding

collective TOPLAP Barcelona. Living within a live coding community helps a lot when

it comes to writing about live coding. She also always reminds me that this is about

music and that tools are not necessarily artistic artifacts by themselves.

Within the extended TOPLAP community I want to thank Niklas Reppel, Hernani

Villaseñor, Roger Pibernat, Thor Magnusson, Francisco Bernardo, Chris Kiefer, and

Shelly Knotts. With them I have written code, papers, and discussed ideas about the

possibilities of machine learning within live coding, especially lately with Shelly during

our last ICLC paper.

Thanks to David McAndrews and Rebekah Breding for the proof reading of this

manuscript, for all the collaborative writing and fun.

I thank the anonymous reviewers for reading this manuscript and help to improve

it.

I thank my family Camilo and Amelia (the exception in these acknowledgments)

who have always been there.

Finally, I thank the people who participate in the on-the-fly project, especially

the Hangar team, Lluis Nacenta, Ludovica Michellin and LinaLab, and the Virtual

x

Research group, Anne Veinberg, Patrick Borgeat, Luka Frelih, Dare Pejić. Heading a

project dedicated to live coding practice and research is probably one of the results that

cannot be mentioned in a thesis, but that continually reminds us that live coding has

not only a human-machine feedback loop, but also a community one which is probably

the one that best contextualizes this practice.

xi

Contents

Abstract iii

List of Figures xiii

List of Tables xiv

1 Introduction 1

1.1 Research Context and Personal Motivation 3

1.2 Research problems . 6

1.2.1 Contribution to knowledge . 6

1.2.2 Manuscript structure . 8

2 Sound Synthesizer Programming, Live Coding and Machine Learning 9

2.1 Sound Synthesizer Programming . 9

2.1.1 Automatic sound synthesizer programmers 11

2.1.2 Non-automatic or interactive systems 17

2.1.3 Related work: on-the-fly synthesizers preset generation 20

2.1.4 What we search for . 21

2.2 Computing and Music . 22

2.2.1 Combinatorics as a creative tool 23

2.2.2 Computer Music: Between the automatic composer and the pros-

thesis . 25

2.2.3 The technological shift : On the fly-programming 27

xii

2.3 Artificial Intelligence and Music . 28

2.3.1 New instruments . 29

2.3.2 Machine learning algorithms as creative musical tools 30

2.3.3 Machine listening in live coding 31

2.4 Live Coding and Machine Learning . 32

2.4.1 CYOF . 34

2.4.2 Learning rules on-the-fly . 35

2.4.3 Learning probabilistic automata in Megra 36

2.4.4 Cibo . 37

2.4.5 Generative improvisation: exploring vast parameter spaces on-

the-fly . 37

2.4.6 Sema . 40

2.4.7 Undocumented systems . 41

2.5 Conclusion . 41

3 Rule Learning Preliminaries 45

3.1 Decision Trees . 47

3.1.1 Decision tree algorithms . 48

3.2 A Brief Overview of Rule Learning . 54

3.2.1 Rule learning v.s Decision trees 54

3.2.2 Concept learning . 55

3.2.3 Data representation . 55

3.2.4 Rule representation . 56

3.2.5 Rule models . 56

3.2.6 Input and output discretization 60

3.3 Rule Learning Process . 62

3.3.1 Learning rules as a search problem 63

3.4 Learning Rule Models . 64

3.4.1 Evaluation of the predictive accuracy of the rules 66

xiii

3.5 Inductive Rule Learning Algorithms . 67

3.5.1 AQ . 68

3.5.2 CN2 . 68

3.5.3 RIPPER . 69

3.5.4 PROGOL . 70

3.5.5 OPUS . 70

3.5.6 LR-FIR . 71

3.5.7 Mixed fuzzy rules . 76

3.6 Rule Learning Algorithms and Neural Networks 80

3.6.1 Global algorithms . 80

3.6.2 Local algorithms . 82

3.6.3 M-of-N rules . 83

3.6.4 Neuro-fuzzy systems . 84

3.7 Conclusion . 88

4 Synthesizer Programming with Rule Learning (RuLer) 90

4.1 Inductive Rule Learning for Automatic Synthesizer Programming . . . 93

4.1.1 Algorithm requirements . 93

4.1.2 RuLer: a rule learning algorithm 94

4.1.3 Dissimilarity function . 95

4.1.4 Create Rule function . 96

4.1.5 Domain specific functions . 97

4.2 Simple Rule Extraction Examples . 97

4.2.1 Example 1: setting d = 1 and ratio = 1 97

4.2.2 Example 2: using d = 2 and ratio = 3/4 99

4.2.3 RuLer characteristics . 99

4.3 Evaluation . 106

4.3.1 Evaluation of automatic synthesizer programming algorithms . . 106

4.3.2 RuLer evaluation . 107

xiv

4.3.3 Listening surveys (system-use case): creating new combinations 108

4.3.4 Live Performances and Recordings 113

4.4 Conclusion . 115

5 Oversampling Tests 118

5.1 Oversampling algorithms . 118

5.1.1 Smote . 119

5.1.2 Adasyn . 119

5.2 Datasets and experiments . 120

5.3 Results . 122

5.4 New created instances . 132

5.5 Conclusion . 137

6 FuzzyRuLer 139

6.1 FuzzyRuLer Algorithm . 140

6.1.1 Building cores . 140

6.1.2 Fuzzy rule supports . 143

6.1.3 Fuzzy classifier . 149

6.2 Evaluation . 150

6.2.1 Cross-validation . 150

6.2.2 Extracted rules . 156

6.3 Conclusions . 157

7 Conclusion and Further Research 159

8 Further Discussion 166

8.1 Algorithm design considerations and evaluation 166

8.1.1 Designing algorithms for real-time machine learning 167

8.1.2 Oversampling instances for audio engines 168

8.2 Artistic practice . 171

xv

8.2.1 Training v.s surprise trade-off 172

8.2.2 How do we relate to models? . 173

Related Publications 177

Bibliography 180

xvi

List of Figures

2.1 Genomic diagram. Sound snippets are transformed by signal process-

ing. The processing parameters are represented as 8-bits genotypes and

evolved by a GA. The resulting sounds, together with their MFCCs anal-

ysis constitute the phenotype. The fitness function compares the sim-

ilarity/dissimilarity of the obtained sound with the MFCCs descriptors

of the target. 12

2.2 Evaluation of a programmer algorithm against a member of a set test.

The programmer receives MFCCs as input and generates settings for the

synthesizer as output. The resulting sound is rendered and compared to

the input sound. Figure from (Yee-King et al., 2018). 14

3.1 Decision surface of the decision trees trained on pairs of features of the

iris dataset. 58

3.2 Shapes of different decision borders created by (a) clusters; (b) fuzzy rules

with product of membership functions; (c) fuzzy rules with trapezoidal

membership functions; (d) crisp logical rules. Figure from Duch et al.,

2004. 59

3.3 Main processes of the LR-FIR algorithm. Figure from (Castro et al., 2011). 73

3.4 Two fuzzy sets describing the membership of an x value to class A and B. 77

3.5 From left to right, approximate representation of a function, a contour

and a relationship. Image taken form (Berthold and Huber, 1999). . . . 77

xvii

3.6 Distinct layers of a Mamdani-type neuro-fuzzy system. In the Fuzzyfi-

cation layer the linguistic categories established for each variable can be

appreciated. 85

4.1 Resulting rules using data of Table ?? with their possible extensions in

a solid line and a dashed line. Left, extracted by the RuLer algorithm

with parameters d = 1 and ratio = 1. Right, extracted by using the

Hamming distance d = 1 and, whenever a pattern is found, creating a

new rule by taking the unions of the parameter values and eliminating

the component rules. 103

5.1 Average precision scores by classifier (KNN, Randomforest and SVC)

for Baseline, Smote, Adasyn and RuLer algorithms, for each dataset on

Table ??. 125

5.2 Boxplots of the average precision scores of the classifier (KNN, Random-

forest and SVC) for Baseline, Smote, Adasyn and RuLer algorithms,

considering all the dataset on Table ??. 131

5.3 Points created by Smote, Adasyn and RuLer (dissimilarity metric =

number of empty intersections among sets containing parameter values

for each variable). 133

5.4 From top left to bottom right, histograms counting the distances among

the points generated by adasyn, ruler and smote and the closest point in

the original data for the sample dataset. 134

5.5 From top left to bottom right, boxplots of the points gerated by adasyn,

ruler and smote for datasets glass-0-1-2-3-vs-4-5-6, segment0, ecoli2 and

yast-2-vs-4 (the sample dataset). 136

6.1 Rule [[2,3], [1,5], harsh] intersects rule [[1,5], [2,4], calm]. Harsh is repre-

sented by an “x” and Calm by a “.” in the plot. 142

xviii

6.2 Two possible ways of resolving the contradiction that appears in Fig-

ure ??. 142

6.3 Two fuzzy rules (scaled into [0,1]) of a hypothetical Category 1 (shown at

the top of the graph). The x-axis represents the frequency of an oscillator

and the y-axis the number of upper harmonics added to it. The mem-

bership of a point (Frequency, N harm) to Category 1 is indicated by the

membership scale at the right of the graph. 145

6.4 The space is classified by the fuzzy-rule model composed by rules: [[0.1,

0.2], [0.2, 0.3], 1], [[0.5, 0.6], [0.5, 0.6], 1], [[0.7, 0.9], [0.4], 2]. Note that

the rules describe the cores of the membership functions. Then, the cores

connect with the extremes of the intervals. The degree of membership to

each class is shown by the scale at the right of the Figure. The rules with

class “1” are shown at the top of the figure. The x-axis represents the

frequency of an oscillator and the y-axis the number of upper harmonics

added to it. The intervals are normalized to [0,1]. 146

6.5 Membership values of the space (normalized to [0,1]) classified with a

fuzzy-rule model composed by rules: [[0.2], [0.8, 0.9], A], [[0.4,0.5], [0.3,

0.75], A], [[0.7,0.9], [0.8,0.9], B]. The x-axis represents the frequency of

an oscillator and the y-axis the number of upper harmonics added to it. 147

6.6 Example of classification process for a system with two rules and two

parameters. The new combination P = (v1, v2). For the first rule µ(v1) =

d and µ(v2) = e. The minimum of these values is e. For the second rule

µ(v1) = f , µ(v2) = g and min(f, g) = g. Finally, max(e, g) = e and

therefore the class assigned to the instance is Class i. 149

6.7 Band Limited Impulse Oscillator (Blip) data set. The x-axis shows the

log of the fundamental frequency of the impulse generator. The y-axis

shows the number of upper harmonics that are added to the fundamental

frequency. The categories associated with the combinations (rhythmic,

rough or tone) are shown at the right side of the graph. 151

xix

6.8 Extracted fuzzy rules for the three categories of the blip data set. The de-

gree of membership to the class is shown at the right side of the image. 156

xx

List of Tables

3.1 Confusion matrix. 67

3.2 Values of the variables u1, u2 and y during tree δt temporal intervals.

Symbols “-” and ”+” represent mask inputs and mask outputs, respec-

tively, and “0” unused connections. Example taken from (Escobet et al.,

2008). 72

3.3 Example of the basic compaction step in LR-FIR. 73

3.4 LR-FIR compaction examples. From top to bottom: original dataset,

rule set resulting from the basic compaction, rules in the “basic com-

paction” that change with the improved compaction process using all

possible beliefs and ratio of beliefs. Examples taken from (Castro et al.,

2011). 75

4.1 Rule extraction example using d = 1 and ratio = 1. 100

4.2 Rule extraction example using d = 2 and ratio = 3/4. 101

4.3 Rules contained in rule r at the top of the Table. Rules 1 and 5 marked

with an “*” are not contained in the original ruleset of Examples 1 and 2.102

4.4 Dataset to illustrate instances that appear in more than one rule. . . . 102

4.5 Dataset to illustrate instances that appear in more than one rule. . . . 104

4.6 Presets, taken from the music work Tiempos de Aguacero, available at

(Paz, 2017a). The piece is composed of four parts (intro, main, break

and end). 109

4.7 Parameter names and ranges for synthesizers x3 and x5. 110

xxi

4.8 Parameter names and ranges for synthesizers x4 and x6. 110

4.9 Configurations of the algorithm parameters (d, ratio) and percentage of

new combinations successfully evaluated for each composer. 111

4.10 Extracted rules for different configurations of the algorithm. 112

4.11 Number of new combinations created during the rule extraction process. 113

5.1 Average precision scores for the different datasets. The algorithms used

for oversampling the data were Smote, Adasyn and RuLer. The classifiers

used were KNN, Randomforest and Support Vector Classifier SCVs with

linear kernel. IR stands for imbalanced ratio. 122

5.2 Friedman test and pairwise comparisons using Wilcox and Sign tests

for classifiers KNN, Randomforest and SVC. In the Friedman test, n is

the sample size, df are the degrees of freedom and p is the significance.

For the Wilcox and Sign tests, n1 and n2 are the sample sizes of the

respective groups, df are the degrees of freedom, p is the significance and

p.adjust are the adjusted P-values for Multiple Comparisons. Finally,

psdj.signif returns ns if there are no significant differences among groups,

or it returns either * or ** if p > 0.05 or p > 0.01, respectively, as the

convention stands. 126

5.3 Summary statistics for the average precision score of classification algo-

rithms applied to Baseline data and data oversampled by Smote, Adasyn

and RuLer. “n” is the sample size, “iqr” is the Interquartile Range, “sd”

the standard deviation, “se” stands for the standard error and “ci” for

the confidence interval. 129

xxii

5.4 One way anova test comparing the distributions of the distances to the

closest point in the original data for the oversampled points created by

algorithms Smote, Adasyn and RuLer. diff: difference between means of

the two groups. lwr, upr: lower and the upper end point of the confi-

dence interval at 95%. p adj: p-value after adjustment for the multiple

comparisons. 135

6.1 The contradiction between r1 and r2 can be resolved by “breaking”

one parameter. 141

6.2 Example of extension (E) and dimension (dim) for a set of rules. Note

that rules with different categories contribute to the global Measure. . . 144

6.3 Data sets Wine, Wine-quality-red, Glass and Ionosphere, selected from

the UCI repository (Dua and Graff, 2017). The Blip data set was ob-

tained from (Paz et al., 2017). The accuracy was calculated using 10-fold

cross validation. 153

6.4 Mean and standard deviation achieved for each classifier considering all

the datasets. 155

6.5 One-way analysis of variance of the means shown in Table ??. 155

8.1 5-folds cross validation with classification algorithms KNN k = 2, 3 and 4,

Randomforest and SVC applied to glass-0-1-2-3 vs 4-5-6 data oversam-

pled using algorithms Adasyn, RandomOverSampler, Smote, KMeansS-

MOTE, SVMSmote, RuLer and BorderlineSMOTE. 169

xxiii

Chapter 1

Introduction

This manuscript investigates the problem of automatic sound synthesizer programming

(Yee-King et al., 2018; Macret and Pasquier, 2014; Mitchell, 2012; Stoll, 2014; Tatar

et al., 2016) in the specific case where a human improvisationally writes source code in

real-time to create music1. This activity is known as Live Coding (Collins et al., 2003;

Collins, 2011b; Magnusson, 2015). In particular, this problem is approached from the

perspective of generative algorithms, that is, when algorithms are used to automatically

generate material, in this case: in interaction with a performer.

This pursuit requires investigating sound synthesizer programming, live coding and

machine learning algorithms applied to live coding systems (objects that will be de-

scribed when the time comes).

Around the start of the millennium, personal computers became capable of perform-

ing sound synthesis in real time (Dean and McLean, 2018; Collins et al., 2003). This

opened new creative and research possibilities for sound programming, which evolved

into the technique termed on-the-fly programming, live coding, or conversational pro-

gramming (Rohrhuber and De Campo, 2009). This technique incorporates the act of

programming as an essential part of the running program, as it is written or modified

while it is running. For that, the livecoder (the person who is coding) uses the text

1Although the algorithms developed are designed to be used in real-time in interaction with a

performer, offline applications were also explored.

1

as the main interface to interact with the running program, usually using interactive

programming2.

As live coding evolved, the new computing developments were incorporated into it.

This is the case with machine learning, which experienced a boom almost parallel to

live coding and is currently finding its path to integrate into the live coding practice

(As an example, see the Sema project from 2019, described in Section 2.4.6).

Generative algorithms have been used in live coding to automate material gener-

ation, freeing the performer to prepare code for the sections to follow or control the

high level evolution of the performance (Brown and Sorensen, 2009; Magnusson, 2011;

Brown and Sorensen, 2007; Collins, 2003).

Preset programming techniques have been explored since the advent of electronic

synthesizers (Schroeder, 1962; Schroeder, 1970; Strange and Mumma, 1972). The gen-

eral problem is, given a synthesizer, finding parameter settings producing desired re-

sults, e.g matching a given sound or producing completely novel but interesting results.

However, programming sound synthesizers is a complex task, given the huge size of

its parameter spaces, the nonlinear response of the sound to changes in the parameter

values, and the possible interdependencies among them (Yee-King, 2011b). It has been

addressed in literature with two main approaches: automatic and non-automatic.

Non-automatic approaches (Collins, 2002b; Collins, 2002a; Dahlstedt, 2001b; Dahlst-

edt, 2009) provide representations of the parametric space, which are used as interfaces

for its exploration. This is mainly done by interactive evolution, which can be traced

back to Dawkins’ biomorphs (Dawkins, 1986). Interactive evolution is a good approach

for searching for solutions that are not known in advance, i.e. as an exploratory tech-

nique that helps us to find interesting sounds that we might not have known existed

until we found them (Dahlstedt, 2009).

Automatic approaches (Yee-King et al., 2018; Macret and Pasquier, 2014; Mitchell,

2There are some exceptions for instance, during a live coding session held at the Barcelonian Artistic

Research Centre Hangar, at the end of May 2018, Niklas Reppel performed by iteratively modifying,

compiling and excecuting a C program.

2

2012; Stoll, 2014; Tatar et al., 2016) use feature extraction for instance, Mel-frequency

cepstral coefficients (MFCC) feature vectors, which are widely used for timbre instru-

ment recognition (Davis and Mermelstein, 1980; Bhalke et al., 2016; Chakraborty and

Parekh, 2018). Then, they use optimization algorithms such as genetic algorithms, neu-

ral networks, hill climbers or data-driven approaches, to conduct a search approaching

a target. These approaches are dominated by evolutionary computation (Yee-King,

2011b).

However, live coding constrains, such as the need for real-time feedback and the

small size of the data sets (which can even be collected mid-performance), make existent

automatic sound synthesizer programmers and learning algorithms unfeasible. In the

case of automatic approaches, its design is not oriented to create variations of a sound,

but rather to find the synthesizer parameters that match a given one. Algorithms using

interactive evolution provide an exploratory-oriented approach, however, they require

longer times to select the material3.

Writing an algorithm to automatically produce new material (ideally allowing the

control of the novelty-consistency balance), while providing real-time feedback and

being able to work with small data sets, motivated the development of the present

investigation.

1.1 Research Context and Personal Motivation

Before diving into formal descriptions, I will present here a few lines about my per-

sonal motivation since I have always found it interesting as a reader. The research

questions of this thesis emerged mainly from my experience performing as a livecoder.

I started writing code in real-time as a performative and exploratory practice in 2009.

My main programming language was (and still is) SuperCollider (McCartney, 1996),

originally designed for sound synthesis and algorithmic composition, both performed

3There have been some experiments using real time interactive evolution. They are commented in

Section 2.1.3.

3

mainly offline.4 The amount of code to be written and the restricted amount of time

constrain the performer’s possibilities. For example, in the from scratch practice, the

performer starts from a white screen -without written code- and has only nine minutes

to play (Villaseñor and Paz, 2020). Throughout the evolution of the live coding practice,

higher levels of abstraction, e.g Just in time library (Rohrhuber et al., 2005), began to

be implemented for such pursuit. Later, new programming languages, e.g Tidal Cycles

(McLean and Wiggins, 2010a), were designed specifically for live coding. Extending the

language is another possibility. See, for example, the SuperCollider classes for stochas-

tic synthesis (Collins, 2011a; Luque, 2009). This includes using generative algorithms

to automatically produce musical material (Brown and Sorensen, 2009). This process

resembles my personal path, constantly looking for tools and strategies to increase the

expressiveness of the performance by automating some tasks and reducing the amount

of code without losing its readability. For a more detailed description of the live coding

practice the reader is referred to (Collins et al., 2003; TOPLAP, 2004a).

The idea of performing through on-the-fly sound synthesizer programming came

from the following observation (which is not new, but at which I arrived through live

programming synthesizers in SuperCollider): Live coding conducts the sound by real-

time intervention of parametric devices (such as synthesizers). Coding a piece on-the-fly

requires a bridging of the cognitive gap associated with devices’ huge parameter spaces

and its possible nonlinear variations. Then, one possible approach is to have some

pre-selected parameter combinations, of which the aural result is known, as a starting

point for the performance. However, collecting or memorizing many combinations is

time consuming, and using only a few can be perceived as monotonous. The algorithms

presented in this research seek to contribute in that direction. They provide a tool that

allows the performer to start from some pre-selected material (it can be collected in the

4The possibility of real-time source code writing as an instrument, as Rohrhuber and De Campo,

2009 point out, “was not self-evident at first; for instance, the moment when the author of the Super-

Collider language decided to keep the interpreter running during sound synthesis was not specifically

mentioned in the release notes, even though he was certainly aware of the new possibilities.”

4

moment), which is explored during the performance while the piece is unfolding.

The material of the thesis is presented from the creative perspective involving and

motivating the development of the algorithms. It focuses on how the algorithms help

composers to explore new creative spaces, by learning patterns that can be used in

real-time composition and performance. It also engages with post-organic approaches

that conceive technology as an extension of the human capacities (Sibilia, 2012)5. The

text starts with a brief (not exhaustive) historical review of computer music and the use

of combinatorics for creative exploration from which the aforementioned perspectives

are introduced.6 When exploring machine learning algorithms in live coding, since it

is an emerging field, the text reviews the existing documented examples. Some of the

examples do not have as of yet published documentation and are based on personal

communications with the authors.

As it will be discussed, the use of machine learning in live coding faces difficulties

such as model training or collecting data on-the-fly. Other times, the data sets are

small, but not because of the impossibility of collecting data, but rather because they

come from a single piece, or maybe because they were collected by a single person for

a short period of time to model the composer’s personality during that period. In any

case, these restrictions challenge the use of existing machine learning algorithms.

We will see that current machine learning approaches range from using pre-trained

models (if there are available data) to systems where the learning phase takes place on

the stage (using algorithms that produce interesting and quick results for small data

sets). In regard to the data collection, the approaches range from those that capture

the data on-the-fly to those that use pre-existing databases. The implications of these

different approaches will be discussed in turn and its possibilities presented. These

5Sibilia discusses the contrasting approaches that conceive technology either as a replacement or as

extension of the human capacities.
6I chose the use of combinatorics, since, on the one hand, many of the algorithms described produce

combinations of the input material, and on the other hand, because it is an iconic example of the use

of formal methods in music and is therefore especially helpful to introduce the thesis perspective.

5

extremes contextualizing machine learning in live coding are discussed in Section 2.4.

1.2 Research problems

Problem 1: A learning algorithm for creating real-time variations in live

coding. Given a set containing labeled settings of a synthesis algorithm, to create

real-time variations controlling the novelty/consistency degree respect to the original

material. For example, being able to recover the original data without modification or

to explore more risky variations (the novelty degree is of course restricted within some

limits).

Problem 2: Small data, meaningful parameters and interpretability. To

design the algorithm that creates the new settings in such a way that works with small

datasets and be configurable by meaningful parameters. The resulting model has to be

interpretable in order to allow real-time human intervention.

Problem 3: Data types and order independence. To consider the restrictions

imposed by the input data. Concretely, the parameters can be numerical or categorical,

and it is not always clear how the parameters determine the qualities of the sound.

Therefore, the model has to produce the same output regardless of the order of the

features and the input data.

Problem 4: A system for live performance. To sketch out a system for live

performance based on inductive rule learning.

1.2.1 Contribution to knowledge

• An unexplored rule-learning approach for automatic synthesizer programming.

Automatic programmers mainly focus on subsymbolic approaches. This research

6

explores the possibilities of symbolic rule learning for synthesizer programming.

• Exploration of inductive rule learning algorithms within live coding. Machine

learning is being incorporated into the live coding practice. Nonetheless, as

with automatic synthesizer programmers, most algorithms use subsymbolic ap-

proaches. Therefore, rule learning has not only not been explored but also pro-

vides a view from a symbolic perspective.

• Application of automatic synthesizer programming within live coding. Real-time

synthesizer programmers have been implemented in the context of live coding

but only as a side product of some other research, so there are no detailed studies

around these implementations.

• Design of a system that works in an intermediate level between interactive evolu-

tion and sound matching approaches (described respectively in Sections 2.1 and

2.1.2).

• New patterns-based oversampling algorithm (Chapter 5). Oversampling algo-

rithms typically use random processes or probability distributions to calculate

synthetic instances. In this case, the patterns found in the data are the ones used

to generate new synthetic instances.

• Algorithm that extends non-dimensional IF-THEN rules to n-dimensional regions

(Chapter 6). The patterns found through the rule induction algorithm are used

to construct fuzzy regions, which offer a complete vision of space.

• Outline of a live coding system based on inductive rule learning. Finally, the

algorithms were packed in such a way that that it is possible to perform rule

extraction mid-performance (described in Section 4.3.4).

7

1.2.2 Manuscript structure

This manuscript has the following structure: Chapter 2 presents the thesis topic state-

of-the-art. It is divided in two main parts. The first part, Section 2.1, presents the

research context on synthesizer preset generation. The second part, from Section 2.2

onwards, describes the state of the art of how machine learning is being integrated into

live coding. In particular, Section 2.2 is intended to present a historical perspective

from computer music to live coding. It also describes how machine learning algorithms

are used by the artistic community. Sections 2.1.3 and 2.1.4 describe, respectively,

related work on real time preset generation (which is the topic of the thesis) and the

problems related to the impossibility of defining aesthetic concepts using mathematical

formality.

Chapter 3 leads the reader through symbolic model learning, describing rule learning

algorithms, decision trees, rule extraction algorithms from neural nets and neuro-fuzzy

systems. At the end of Section 3.5, the rule learning algorithm that inspired the first

experiments of this thesis is presented. Chapter 4 introduces the rule learning algo-

rithm (RuLer) proposed in this thesis and presents its evaluation, as well as some

possible paths for further research. Chapter 5 analyzes the usefulness of the algorithm

of Chapter 4 as an oversampling algorithm and compares it with other oversampling

algorithms. Chapter 6 presents a fuzzy extension of the models developed in Chapter 4

and introduces a new evaluation by using fuzzy classifiers. Finally, Chapter 7 presents a

general conclusion of the manuscript and discusses some paths for further research. The

document finishes with a list of the related publications, performances and recordings

developed during this research.

8

Chapter 2

Sound Synthesizer Programming,

Live Coding and Machine Learning

This Chapter presents an overview of three out of four conceptual axes of the

thesis: sound synthesizers programming, live coding and machine learning within

live coding. Throughout its description, the project perspective is also presented.

At its center lies the discussion addresing machine learning algorithms being bor-

rowed or designed for artistic practice, in particular for live coding. The missing

conceptual axis, rule learning, occupies the entirety of Chapter 3.

2.1 Sound Synthesizer Programming

The task of finding parameter settings for a device producing aural results matching

ideas in the composer’s mind has been addressed in the literature as sound matching

or synthesizer preset generation (Mitchell, 2012; Tatar et al., 2016; Yee-King et al.,

2018; Collins, 2002b; Dahlstedt, 2009). Its difficulty relates with the huge size of

devices’ parameter spaces, the possible non-linear perception of the sound, and the

unknown interdependencies among parameters (Dahlstedt, 2001b; Dahlstedt, 2007).

For example, different settings might be perceived the same, or “similar” ones perceived

9

as very distant sounds. A manual search is extremely time consuming, and, without

extensive knowledge of the internal machinery of the synthesis algorithm, it is very

difficult to form a mental image of its space.

Methodologies addressing this problem have followed two main approaches:

• Exploring parameter spaces through interactive evolution. This approach

is more oriented to find new sounds and relies on human evaluation. The systems

start from a set of sounds from which the user selects the ones that she likes.

Those selected are then processed by genetic operators and the result is evaluated

again. The process continues until the user is satisfied with the result. In this

way, the system allows the user to navigate the space of possible sounds.

• Sound matching. In this approach, the musician already has a sound that she

wants to “match” using a synthesizer. The algorithms used receive the target

sound together with a sound synthesis algorithm and search for a configuration

for the sound synthesis algorithm which causes it to emit a similar sound to the

target.

I refer to these methodologies as automatic or sound matching and non-automatic

or interactive evolution based, respectively.

Non-automatic methodologies use interactive evolution (Dawkins, 1986; Collins,

2002a; Collins, 2002b; Dahlstedt, 2009) or mapping strategies (Bencina, 2005; Marier,

2012). Essentially, they create a representation of the space of possible sounds that

allow the user to interactively explore it. They have the advantage that the output

does not have to be known in advance. These approaches are useful when the user

searches for new interesting sounds or for variations of a particular sound. Also, they

usually represent the space in terms of the parameter values of the synthesis algorithm,

which helps the user to follow the search process. However, they require carefully

listening to different options, and therefore collect only a handful of possibilities.

Automatic approaches use feature extraction techniques, for instance Mel Frequency

Cepstral Coefficients (MFCC) feature vectors (Davis and Mermelstein, 1980) which are

10

widely used for timbre instrument recognition (Bhalke et al., 2016; Chakraborty and

Parekh, 2018). Then, they use optimization algorithms (e.g genetic algorithms, neural

networks, hill climbers or data-driven approaches) to conduct a search approaching the

target. As (Yee-King, 2011b) pointed out, literature on automated sound synthesis

programming is dominated by evolutionary computation.

There are also methods that use spectral analysis (Fast Fourier Transform - FFT)

on the input, and, based on the analysis, they resynthesize the output. For example,

(Serra and Smith, 1990) reconstruct audio signals using particles and noise. It is also

worth mentioning that, although human cognition makes it hard to create mathematical

or computational representations of the human perception, there are some works on

timbre representation, for instance (Esling, Bitton, et al., 2018; Esling et al., 2019;

Tatar et al., 2020). These representations allow for the interpolation between sounds,

creating sounds perceived between them. For example (Tatar et al., 2020) uses a Deep

Learning based synthesis method that allows for interpolation or extrapolation between

the timbre of multiple sounds.

Next, some representative examples of systems belonging to sound matching and

interactive exploration approaches are described to provide some insight on how they

work.

2.1.1 Automatic sound synthesizer programmers

Genomic

Genomic (Stoll, 2014) is a system that evolves signal processing parameters (sound

treatment parameters) to produce novel results using audio samples taken from a

database. Genomic uses genetic algorithms (GAs) to evolve the parameters for the

sound treatment and the corpus-based synthesis1 (Schwarz, 2007). The phenotypes are

1Corpus-based concatenative methods for sound synthesis use a database of sound samples from

which a desired sound is built. The process is guided by a target specified either in terms of sound

descriptors or by an example sound.

11

Database
with sound
snippets

Phenotype:
Resulting sound

and MFCCs

Audio signal
processing

MFCCs

Terget Sound
MFCCs

Similarity-
dissimilarity

fitness
function

Sound
processing

parameters 8-
bit genotype

Genetic
algorithm

Figure 2.1: Genomic diagram. Sound snippets are transformed by signal processing.

The processing parameters are represented as 8-bits genotypes and evolved by a GA.

The resulting sounds, together with their MFCCs analysis constitute the phenotype.

The fitness function compares the similarity/dissimilarity of the obtained sound with

the MFCCs descriptors of the target.

the resulting audios, together with their MFCCs. The fitness function compares the

similarity of the candidate sound MFCCs with the MFCCs of the target. Figure 2.1

shows an schematic of the system.

The system was developed within the electroacoustic music context, inspired by

the transformation of sound developed in (Wishart, 1986). Genomic performs two

parallel processes: One modifies one audio sample to sound more like a target sound,

the other modifies a sample to sound dissimilar to the original unprocessed sound.

Genomic is conceived as an exploratory tool for composition rather than for “sound

matching”. As the author referred: “ While there might be a perfect solution for a

sound transforming seamlessly from source to target, the user may also be interested in

intermediate results.” Then, the system tracks the transformations as they are explored.

The system evaluation is performed by analyzing the MFCCs of the evolved popula-

tion and auditioning the results. During the tests, the author tries different options for

the fitness function, pointing out that: “If the fitness function is realized as a similarity

12

measure between population members and the target individual, there is a tendency

to find a single solution rather quickly that dominates.” Moreover, “relying on tim-

bre alone as a metric led to some development of novelty, but more often results in

sound results that are inconsistent.” To improve the system, the author uses the fol-

lowing approach: instead of considering only the similarity with the target, consider

the following three aspects as a fitness function: 1. similarity in timbre (MFCCs), 2.

similarity in amplitude envelope data and 3. dissimilarity to the average of the entire

active population’s timbre measurements.

The system is written in Python and uses SuperCollider (McCartney, 1996) as an

audio engine. The author suggests that this architecture provides opportunities for

eventual use in real time.

Sound matching using optimization algorithms

Optimization algorithms can be used to search across a solution space if the target

is known. (Yee-King et al., 2018) compared sound matching results using different

algorithms. Their working hypothesis was that the deep networks outperform other

techniques. They used Dexed (Dexed, 2019), the digital version of the DX7 classic

synthesizer. The algorithms considered were a Hill Climber, a Genetic Algorithm (GA)

and three deep neural networks: a Multi Layer Preceptron (MLP), a Long Short-Term

Memory Network (LSTM) and a bi-directional Long Short Term Memory with high-

way layers (LSTM++). To compare the algorithms, six sets of sounds with 30 members

each were created. The sounds were derived from increasingly complex configurations

of Dexed. These were built by freezing parameters of the six operators (oscillators) of

the Dexed. Then, the non-frozen parameters were sampled from a uniform distribu-

tion in the interval [0,1]. As expected, among the techniques tested, the bidirectional,

long short-term memory network with highway layers performed better than any other

technique. Considering the total errors over the sis sets, the algorithms were ordered

as follows: LTSM++, HC, GA, LSTM and MLP. It is interesting that the simplest

programmer, the HC, achieved the second lowest error. Moreover, the authors report

13

Figure 2.2: Evaluation of a programmer algorithm against a member of a set test.

The programmer receives MFCCs as input and generates settings for the synthesizer

as output. The resulting sound is rendered and compared to the input sound. Figure

from (Yee-King et al., 2018).

that, the LSTM++ was able to match sounds in near real time, once trained. The com-

parisons among the targets and the candidates were performed by using MFCCs. The

error used is the euclidean distance between the sounds. Figure 2.2 shows schematically

the evaluation process.

PresetGen

PresetGen, (Tatar et al., 2016) is a system for preset generation2 that uses the OP-

1 synthesizer (OP-1, 2020). The OP-1 is a semi-deterministic synthesizer with several

synthesis blocks. This means that the sound generated by a given preset will be slightly

different each time. It also includes effects and low frequency oscillators. For these rea-

sons, the OP-1 is a complex synthesizer not only regarding the size of its parameter

space. PresetGen uses a multi-objective Non-dominated Sorting Genetic Algorithm-

II that returns a small set of presets that approximate the target best by covering

the Pareto front of the multi-objective optimization. The evaluation is performed by

comparing the synthesis performed by three human programmers with the synthesis

of PresetGen (the comparison is made with Euclidian distance between the audio fea-

tures of candidate and target sounds and by perceptual sound similarity evaluated by

2The authors define the preset generation problem as: “the task of finding preset(s) (i.e. set(s) of

synthesizer parameters) that approximates a target sound best.”

14

humans). The authors conclude that PresetGen is human-competitive. PresetGen rep-

resents a state of the art in sound matching systems. As the sounds are made with

the OP-1 synthesizer, they can theoretically be matched perfectly if the settings can be

found. Nonetheless, the problem with using PresetGen in real time is pointed out by

(Yee-King et al., 2018), as it “takes 5 hours on a 50 core supercomputer to match a 2

second sound.”

SynthBot

SynthBoy (Yee-King and Roth, 2008) is a general purpose unsupervised software for

programming synthesizers (compatible with any Virtual Studio Technology, VST plug-

in). It is designed to find settings for a synthesis algorithm, producing a sound as

similar as possible to a given target. It works using a genetic algorithm whose fitness

function measures the similarity by the sum of the squared error of the MFCCs between

the target and the candidate sounds. The inverse sum squared error between the

target and the candidates determines the candidate fitness. The authors suggest that

MFCCs are more efficient for timbre similarity than Power Spectra (used in similar

research at that time). The system is evaluated technically “to establish its ability

to effectively search the space of possible parameter settings” and by musicians that

compete with SynthBot to see who is the most competent synthesizer programmer. For

this, a target file with random parameter settings was generated 100 times. Then, the

optimization process was run with population size of 100 individuals for 100 generations.

The authors compared the spectrograms of the target and the produced candidate to

assess the system limitations. The experimental evaluation was performed in a two

phase experiment in which expert human users competed with SynthBot. In phase

one, 10 humans programmed two sounds (using synthesizers mdajx10 and mdaDx10).

For each synthesizer, the targets were a real instrument and a sound made with the

synthesizer in turn. The SynthBot was given the same task. In phase 2, an online

evaluation was carried out. The users rated each of the sounds for similarity to their

respective target. SynthBot rated the sounds using its MFCCs error metric. After the

15

evaluation, the authors classified the system as “composer’s assistant”.

Timbre approaches

Timbre is the set of properties that allow us to distinguish between two instruments

playing the same note with the same amplitude. Some new approaches to timbre in

sound synthesis (Esling, Bitton, et al., 2018), focus on models of instruments with

“static” sound. Therefore, these approaches do not consider some elements of synthe-

sizers, such as low frequency oscillators, which produce dynamic changing sounds over

time (sometimes over several minutes).

In (Esling et al., 2019), a methodology is presented that relates the spaces of pa-

rameters and audio capabilities of a synthesizer in such a way that the mapping relat-

ing those spaces is invertible, encouraging high-level interactions with the synthesizer.

The system allows intuitive audio-based preset exploration. The mapping is built so

that “exploring the neighborhood of a preset encoded in the audio space yields similarly

sounding patches, yet with largely different parameters.” As the mapping is invertible,

the parameters of a sound found in the audio space are available to create a new preset.

The system works using a modification of variational auto-encoders (VAE) (Kingma

and Welling, 2013) to structure the information and create the mapping. By using

VAE, parametric neural networks can be used to model the encoding and decoding

distributions. Moreover, they do not need large datasets to be trained. This system

works effectively as an exploratory tool in a similar sense to interactive-evolution based

approaches. However, its interface is still oriented to sound matching and exploring

rather than to automatically producing variations (it might yet be an interesting fea-

ture though). Furthermore, the resulting encodings are difficult to interpret from a

human (especially non expert) perspective.

A deep learning based system that allows for interpolation and extrapolation be-

tween the timbre of multiple sounds is presented in (Tatar et al., 2020). Deep-learning

systems are a promising path for sound synthesis applications, although their training

times still do not allow for real-time feedback.

16

2.1.2 Non-automatic or interactive systems

MutaSynth

(Dahlstedt, 2001a; Dahlstedt, 2001b) discusses the use of generative processes, partic-

ularly interactive evolution, in composition and automatic music creation. Upon these

ideas, the author presents the implementation of MutaSynth, an evolutionary inter-

active system for composition. MutaSynth works using interactive evolution in the

following way:

1. It creates a random population of individuals.

2. The composer selects, by audition, the individuals that she “likes” the most.

3. A new population is generated based on the selected individuals with some random

variations.

4. Repeat from step 2 (until some terminal criteria is met).

A finer tuning can be obtained by using logarithmic mapping on the parameter values.

MutaSynth works with populations of nine genomes. The genetic operations used

are: mutation, mating, insemination and morphing. Mutation (controlled by mutation

probability and range) and mating (controlled by crossover probability) are the standard

GA operations. Insemination is a variation of mating where the amount of genes that

are inherited from each parent can be controlled. Morphing is a linear interpolation

between two parent sounds. Some other controls are available. For example, MutaSynth

offers the possibility of setting a “desirable gene”, which will be copied without changes

to the next generation. Also, possibilities such as saving genomes, changing genes

manually, etc. are available through the user interface.

As a motivation, the author comments on the use of formal methods for music

creation. From his perspective, they are generally used to generate content, i.e musical

material that, for instance, is used to fill a section in a predefined structure. Some other

reasons for using formal methods for music creation can be:

17

• They are tools for stepping out of what one has already created.

• They have the potential to find sounds or music that would not have existed

otherwise.

• Formal methods can be used on different levels in the compositional work. In

particular (Dahlstedt, 2001a) proposes the follow hierarchy.

1. Sound design.

2. Material generation

3. Structure generation

4. Generation of large scale form

According to the author, formal methods work best at low levels and structure gener-

ation, i.e for tasks from 1 to 3.

Similarly, in Section 4.1.2 it is discussed how “being able of stepping out or extending

what someone has already created to find new sounds” is one of the system’s goals. Also,

ideas on sound design, material generation, and structure generation will be addressed

in Section 6.2.

(Dahlstedt, 2001a) reflects on the concept of authorship in cases where algorithms

are used to create music. When a piece relies heavily on an algorithm, it is not clear

whether the artwork is the piece (an individual instance) or the algorithm (the system).

For (Dahlstedt, 2001a), if the algorithm is not published, then the artwork is the piece.

However, if the algorithm is published and used to produced several pieces, it becomes

the artwork itself. In that case: “the composition is not the piece, but a parameter

space of possible pieces”. This focus is similar to what is discussed at the end of Section

2.2.1, where some systems can be considered the artwork. Some examples that fit into

this category are presented in Section 2.4.

The parameter space of an algorithm can be huge. The non-linear response of per-

ception to changes in the parameters and the interdependencies among them disallow

18

the composer from knowing the result of every parameter setting. For (Dahlstedt,

2001a), interactivity is an interesting way to explore such a complex space. Given

that the composer has special preferences depending on her background and the spe-

cific context, human interaction, in contrast to pure chance, uses those preferences

to zoom in and explore specific “interesting” regions. However, since those prefer-

ences/preconceptions may stop the composer from exploring beyond the found regions,

combining human audition and chance is a possibility. Interactive evolution is a good

combination of human taste and chance.

For Dahlstedt, music history or the life-long learning processes of composers are

successful examples of exploration of vastly varying spaces from which amazing pieces

of music have been created.

Interactive evolution of breakbeat sequences, motifs and synthesis parame-

ters

In (Collins, 2002b), interactive evolution is applied to find successful parameter settings

for algorithmic composition routines. Specifically, for breakbeat cutting algorithms

that re-splice segments of audio drum loops. Collins also experiments with interactive

evolution of motifs (short phrases). Motifs “live” in an intermediate hierarchical level

between the blocks produced by the BBCutLibrary (Collins, 2002c) -that makes the

breakbeat cutting- and the musical phrases.

The individuals evolved are parameter settings of non-deterministic algorithms, so,

when applied, the result after running the algorithm is not always the same (as it has

some random decision making). As a consequence, during the evaluation process, the

composer listens to some of the possibilities of a particular setting. The author suggests

that a possibility would be to carry out some statistical analysis over many runs. This is

an interesting thought, as, in algorithmic composition, many algorithms do not produce

the same static output each time.

As in other cases, to provide the user with more musical affordances and to have

control of the evolution process, some functionalities are included to fix some parameter

19

values while evolving the others. This helps with “isolating behaviour”. Collins notes

that it is difficult to assess how effectively the evolution is being controlled. Especially

as he is evolving algorithms that change their output each time they run.

In (Collins, 2002a), results of exploring parameter spaces of synthesis algorithms for

sound design through interactive evolution are presented. The research conceptualizes

the perspective of algorithmic composition where generative algorithms can be more

“messy”. As in (Dahlstedt, 2001a), (Collins, 2002a) assigns a range and allowed degree

of mutation to the genes. Collins points out that this has more “musical meaning” than

just free random mutation. This idea of controlling the mutation range in evolutionary

processes will be re-covered in Section 4.1.2, where the “recombination” of the material

is controlled by the user as the possible searched patterns are defined. For Collins, “this

is a specification of the bounds of the parameter space, and the way in which variation

may occur to points in that space under the ... algorithm operations”. To provide

the user with finer control of the process, the user interface used for the experiments

allows auditioning and rating eight candidate parameter sets per generation and pro-

vides random presets for the candidates as well as possibilities for changing mutation

probabilities, weighted parenting, etc.

2.1.3 Related work: on-the-fly synthesizers preset generation

In live coding, sound synthesizers are programmed and/or modified during the per-

formance. Its parameters are the channels for live interaction (Rohrhuber and De

Campo, 2009). Possibilities for live programming sound synthesizers, using evolution-

ary systems, have been suggested in (Dahlstedt, 2009; Yee-King, 2011b). Dahlstedt

(Dahlstedt, 2009) proposes possible options for live interaction with an evolutionary

system: evolving continuous sound textures or one-shot sounds accepting unpleasant

sonic surprises as part of the performance3. Yee-King, who has extensive work on

3He also suggested that it is possible to evolve sounds using headphones and presenting the results

to the audience when ready. He calls these approaches “indeterminate cousins to live coding”

20

automatic programming methods (Yee-King and Roth, 2008; Yee-King et al., 2018;

Roth and Yee-King, 2011; Yee-King, 2011a; Yee-King, 2011b), suggests possibilities

that go from on-the-fly adjusting of the genetic algorithm parameters or the weighting

used to change its behavior to completely re-programming it on-the-fly. He proposes

“a group performance running several different algorithms simultaneously, where each

is fed from a different member of the group, then the laptop performer can choose

which algorithm(s) is heard based on which is currently displaying the most interesting

behaviour.” In (Yee-King and Peters, 2011), Yee-King uses live coding control of evo-

lutionary systems and Markov models to track saxophonist-flutist Finn Peters (Collins,

2015) and produce new material. Finally, there are approaches that, once trained, are

able to match sounds in real time, such as the bidirectional, long short-term mem-

ory network with highway layers described in (Yee-King et al., 2018). The approach

presented in this thesis was inspired by these possibilities.

2.1.4 What we search for

An important thing to clarify is what we search for when using an algorithm to create

new material. Aesthetic searches are problematic to define. This is actually one of

the things that makes it difficult to create big datasets or benchmarks. For example,

for (Yee-King et al., 2018) interesting behavior might be: “highly dynamic behaviour,

producing output which effectively adds to the current mood or highly contrasting

output which might lead the overall improvisation in a new direction.” In (Dahlstedt,

2009), Dahlstedt writes: “How does one codify what is beautiful, good, or suitable (for

the context)? Maybe some ugly music is wanted, to provide contrast, and at another

time something beautiful (whatever that means). Sometimes we do not even know

what we are looking for.” What is clear from these quotes is that what we search for is

context dependent. What is desired in a particular moment might not be in another.

Both authors agree that it is a creative search that can de directed to some extent.

Then, the algorithm accompanies the performer to navigate the space.

21

In live coding, generative algorithms are used to automatically generate material

(Brown and Sorensen, 2009). Many authors mention that providing manageable vari-

ations is a desired feature of the algorithms used in algorithmic composition or live

coding. For example, (Collins, 2001) says that “Algorithmic composition can help to

automate certain processes, and to generate subtle variations on basic beats without

breaking with the consistency of a style.” In (Sorensen et al., 2014), the authors pointed

out that, as live coding manages the musical form through formal methods, at all levels,

it requires a delicate balance of coherence and novelty in the produced material.

From this perspective, the algorithms developed, although they can be used asyn-

chronously, are conceived to be used on-the-fly, to perform an exploratory search in the

sense described above. The idea is that the performer has some material previously ex-

plored and freely classified (labeled). This material is the input of the algorithm. Then,

during the performance, the performer uses the algorithm to create new material out of

the input data by exploring its possible recombination or extension. If new, interesting

instances that are not in the input data are found during the performance, these can

be added to the data set. The parameters of the algorithm allow the performer to

manage the coherence and novelty of the produced material with respect to the original

input data. In such a way, the algorithm allows one to conduct a directed search of the

parameter space.

2.2 Computing and Music

Computing and music are inherent to humans. Computation precedes the computer.

It is an activity for which we developed machines to help us compute (McLean, 2011).

The use of formal methods to model sound phenomena dates back to ancient Egypt and

Greece, where the first studies on the relationship between the length of a string and

the produced tone are found. Music and mathematics relate across time and cultures

(Collins, 2018). Let us select, as an example, the use of combinatorics to create many

possibilities out of a small set of material, as it relates to the algorithms described

22

later. Although this is an iconic example, similar paths can be followed with emphasis

on statistical procedures, geometry, etc.

2.2.1 Combinatorics as a creative tool

Combinatorics in music can be traced back to the generative rules of Guido D’Arezzo, in

approximately year 1000 B.C. The ideas were probably present before, but, since Guido

is the oldest written reference, his Micrologus is normally considered the beginning of

generative or algorithmic music. Combinatoric patterns were also present by that time

in Maya (250 – 900 AD) architecture as well as in Indian music. The work of Ramon

Llull (1232 - 1316) is considered a central piece in combinatoric creativity. He used

combinatorics as an epistemic tool by relating different sets of rules to create new

knowledge through his “Thinking Machine”. It consisted of a complex mechanism of

geometrical shapes and symbols that combined letters and concepts to uncover universal

relationships. Being born in Mallorca, Llull was a strong connoisseur of the Arab

tradition given the social and political contexts of the moment. It is not surprising

then, that his Thinking Machine was influenced by the Arab astrological machine the

zairja, which produced answers by combining sets of concepts (Eco, 2017; Magnusson,

2019). Llull’s work inspired Leibnitz’s De arte combinatoria (1666).

Since the 13th century, combinatoric dice games were use to generate melodies and

harmonies. For that purpose, different pieces (e.g minuets) in the same key were written

and then combined by randomly taking parts to create new ones. Haydn and Mozart

have been credited with writing works using this technique, although this has been

disputed (Nierhaus, 2009).

From 1600 to 1700, combinatorics were conceived as tools to enumerate a space.

The scholar Kircher (1602-1680) developed various systems for generating and count-

ing all combinations of a finite set (some of his work is based on Llull). His methods

and diagrams are discussed in Ars Magna Sciendi, sive Combinatoria, 1669, and influ-

enced the work of the poet Juana Inés, who also researched the connections between

23

numbers, harmony and geometry. According to (Pareyon et al., 2017), Juana Inés’s

conceptions such as the use of spirals for harmonic modeling, are still powerful tools

for the conceptual study of music. Her treatise, “El Caracol”, supposedly containing a

musical method based on her conclusion that musical harmony should be conceived as

a spiral instead of a circle, was unfortunately lost. Kircher’s influence in Juana’s work

can be found in her Romance 50 (Finley, 2014):

Pues si la Combinatoria,

en que a veces kirkerizo,

en el cálculo no engaña

y no yerra en el guarismo

Translated by Finely as: “However if the combinatorial analysis,/ in which at times

I Kircherize, / does not deceive in the sum, / nor does it err in the figure”.

In Mersenne’s Harmonie universelle (1636), the possibilities of combinatorics are

seen as means to enable the composer to explore different versions of a piece within a

space of possibilities. Interestingly the focus was placed on the compositional system

rather than in the individual pieces (Magnusson, 2019). This conception is closer to

those of the systems that we will analyze later.

The described approaches were the basis for the combinatoric techniques used later

from Bach to Cage. The creative possibilities of combinatorics have continued to be

explored either from the perspective of finite group algebra, as in the case of Estrada’s

work (Estrada and Gil, 1984), or within the context of self similarity as is the case in

(Pareyon, 2011). The continuous relationship between music and mathematics across

time formed the basis of algorithmic music thinking. For a detailed review of its origins,

the reader is referred to (Collins, 2018), and, for a more general overview of algorithmic

composition, to (Roads, Strawn, et al., 1996; Loy, 2007; Nierhaus, 2009; Collins, 2010).

24

2.2.2 Computer Music: Between the automatic composer and

the prosthesis

Computer music is the genre in which the computer plays a role in the process of mak-

ing music in the composition, performance or designing of the sound (Dean, 2009).

Sometimes, the term is also applied to the technical discipline that builds tools to be

used in music production (for example audio processor design). Computer music has,

in its history, experiments that intended to use technology as a replacement of human

musicians. This has its origins in devices such as Greek water organs, eolian harps

or the musical automatas developed by Vaucanson (Collins, 2018). It is interesting

that the authors of the book that contains the first description of an automated instru-

ment (Book of Ingenious devices published in 850 in Baghdad by Banú Músà Brothers:

Ahmad, Muhammad and Hasan bin Musa ibn Shakir) worked in the same “House of

Wisdom” as the mathematician al-Khwarizmi, from whose name the word algorithm

derives (Keislar, 2009). The use of technology with the intention of replacing humans

overlaps with the vision that understands technology as a prosthesis that extends human

capabilities. We find these two intentions throughout the following different examples,

although the later conception is more present in live coding.

The first experiments in computer music were performed as soon as the first comput-

ers appeared in the early 1950s (Doornbusch, 2017). Further experiments will eventually

point out to what Ada Lovelance (1815-1852) had already visualized: the machine had

applications beyond pure calculation. Lovelance wrote the first algorithm for a mechan-

ical machine and described what could be applied to composers such as Xenakis and

Nancarrow: the composition of “scientific pieces of music of any degree of complexity”.

In 1963, Mathews published the paper “The digital computer as a musical instru-

ment”, in which digital sound synthesis is developed. Digital sound synthesis expanded

the timbric capabilities of the computers, limited until that moment to beeps and single

frequency generators. In his paper, Mathews analyzed previous works that used the

25

computer as a musical device, among them, Hiller and Isaacson pieces from 1957 the

Illiac Suite for String Quartet, which can be considered the first “proper” computer

generated composition.

The Illiac was composed by writing four different programs with different intentions

(Pearce et al., 2002). Their outputs were put together to form a single composition.

It was a research project to explore the different possibilities of computers in making

music. The first two programs were designed “to demonstrate that standard musical

techniques could be handled by computer programming”, the third “that computers

might be used by contemporary composers to extend present compositional techniques”

and the fourth “that computers might be used in highly unusual ways to produce

radically different species of music”.

(Keislar, 2009) highlights two important aspects of algorithmic composition present

in these intentions, which have been extensively developed later: 1) Emulation of tra-

ditional styles, for which an algorithm for counterpoint generation was implemented in

the Iliac suite. 2) Contemporary composition, in which the algorithms are intended to

help the composer’s aesthetic exploration.

In imitating musical styles, the most famous software is probably that of David Cope

“Experiments in musical intelligence” (1996). For all but specialized listeners, the pieces

generated by this system pass the musical Turing test (in (Ariza, 2009), and (Sturm

et al., 2019) some criticism about the validity of such tests can be found). In the second

category, it is worth mentioning the works of Xenakis, Pareyón, Luque, Morales, and

Cage (Xenakis et al., 1987; Pareyon, 2011; Luque, 2009; Soria and Morales-Manzanares,

2013; Pritchett, 1996). The degree in which the algorithms are used in the composition

vary. Sometimes complete musical sections are generated (as in the individual algo-

rithms of the Illiac Suite) or even complete musical pieces (as in the Autocousmatic

(Collins, 2012), that generates entire electroacustic works). Other times, only small

calculations, for example, the generation of low level material, are performed by the

algorithms. In “En Casa” (Paz, 2017b), randomly generated numbers are used to set

the synthesizer’s presets each time the performer changes the section. The algorithms

26

used in computer music resemble the history of artificial intelligence, going from expert

systems to subsymbolic approaches, passing by cellular automata, generative gram-

mars (Ames, 1987; Roads, Strawn, et al., 1996; Nierhaus, 2009) to machine learning

algorithms such as deep learning (Fiebrink et al., 2016).

Finally, let us discuss some useful distinctions. It is important to distinguish between

machines that play music that has been already composed by a human (expressive

performance, see for example (De Mantaras and Arcos, 2002)) and machines that create

new music, as in the examples described above. Another useful distinction is that of

sound-based versus note-based music proposed by (Landy, 2009). Note-based music

uses discrete frequencies that can be represented by symbolic notations, such as the

score or the MIDI protocol. Note-based music is normally characterized by well defined

tonal and harmonic progressions and hierarchies, as well as rhythmic patterns (Dean

and McLean, 2018). Sound-based, in contrast, relies less on discrete frequencies and

rhythm. It can use either continuous or discrete transitions in the frequency domain for

which the importance of the melodies or harmonic progressions is not in the foreground.

In contrast, the evolution of the timbre often develops the piece, therefore giving place

to deep spectral organizations ((Goldmann, 2015) :pages 22 - 47). In live coding, a

note-based example could be Study in Keith (Sorensen, 2019), while a sound based

example could be Chain Reaction (Olofsson, 2015).

2.2.3 The technological shift : On the fly-programming

Live coding (Collins et al., 2003; Collins, 2011b; Magnusson, 2015) is a performative

practice and a creative technique that explores writing computer programs, in real

time, in such a way that the process of writing is a part of the running program. The

computer programs are algorithms, i.e. sets of instructions to perform a task, that

are written and manipulated by humans in real time using interactive programming

(Goldin et al., 2006). In this way, during a live coding performance the livecoder

maintains a continuous interaction with the program (Dean and McLean, 2018). Also,

27

the code is shown in the venue, so the public can follow the programming process. Live

coding is mainly used to create sound, music and visuals, although it extends to other

activities (see for example (Sicchio, 2014)). Live coding works in all musical genres,

and, despite having preference for computational synthetic aesthetics, it allows for very

diverse sounds and visual results (some of the possibilities can be found in (TOPLAP,

2004a)).

Live coding origins can be traced back to the moment when affordable computers

were powerful enough to allow modifying programs as they run ((Rohrhuber and De

Campo, 2009)). That is, it was a technological shift that allowed exploring the machine

capacities and possibilities for creative purposes by interactively writing code. As often

happens with technological shifts, these explorations are pointing towards new means

of human expression, producing music and visuals that humans could not otherwise

have created. Also, the emphasis on aesthetics allows creative elements to contribute

to new research questions and technology development (See for example (McLean and

Wiggins, 2010b)).

2.3 Artificial Intelligence and Music

Artificial intelligence (AI) algorithms have been used for music composition since the

origins of AI. Its use resembles the development of AI methods, from expert systems

to deep learning. Even before computers, mechanical automatas, combinatorial meth-

ods, etc., also resembled the development of algorithmic thinking. These processes are

extensively documented in literature, see for example (Collins and d’Escriván, 2017;

Herremans et al., 2017; Fernández and Vico, 2013; Miranda, 2013; Roads, 1985).

Machine learning is the branch within AI focused on having machines learn from

data to perform tasks without being explicitly programmed, relying on patterns and

inference. The use of machine learning for music composition has grown since the

beginning of the millennium, and it is also extensively documented in literature. For

example, (Sturm et al., 2016) describe the use of deep learning in music modeling and

28

composition, and, in (Briot et al., 2017), a survey on Deep learning techniques for

music generation is presented. (Fiebrink et al., 2016) describes supervised learning for

composition and performance with real time human interaction, and, in (Fiebrink and

Caramiaux, n.d.) the machine learning algorithm as a creative musical tool is discussed.

In (Huang et al., 2019), the doodle for automatic harmonization of canons in the style of

bach is presented and discussed. However, little has been written about using machine

learning in live coding. Here, I present some foreseeing of potentials of the application

of machine learning to music creation. Then, in Section 2.4, I discuss some live coding

systems using machine learning from the perspective of those possibilities.

2.3.1 New instruments

An interesting potentiality of the use of machine learning in music, from the live coding

perspective, is the possibility of creating new musical (digital) instruments. An exam-

ple of this is the work of (Knotts, 2019), discussed in Section 2.4.1. As (Magnusson,

2019) points out, the nineteenth century saw acoustic instruments reach perfection; the

twentieth century saw the development of electronic instruments (from the theremin

to the modular synthesizers); and the twenty-first century is the century of digital in-

struments. It is true that digital instruments were around before the beginning of the

twenty-first century, but the first digital instruments were intended to emulate elec-

tronic ones. Think, for example, of all the Digital Audio Workstations’ synthesizers

that basically emulated analog synthesis modules. The digital instruments to which

(Magnusson, 2019) is referring are conceptually different from digital instruments that

emulate electronic ones (e.g an instrument that changes by interacting with the per-

former, see (Knotts, 2019) described in Section 2.4.1, or instruments that use deep

learning to produce non-existent sounds, such as the Nsynth). The Neural Synthesizer

“Nsynth” (Engel and Norouzi, 2017) uses deep neural networks to fuse audio sam-

ples, e.g. combining the qualities of a bass and a clarinet. However, the sounds are

not “mixed” together but rather their underlying qualities are recombined. In both

29

examples, the instruments exploit the algorithmic nature of the computers.

The development of these algorithmic instruments started on a small experimental

scale and is now being incorporated in commercial software. For example, the inclusion

of MAX patches in Live (Max for Live) (Manzo and Kuhn, 2015) allowed the use of

algorithmic patterns to control different parameters of the instruments available at the

Digital Audio Workstation.

Digital instruments combined with machine learning techniques offer possibilities

such as personalizing them through its use or, in contrast, to train them using multi-

user databases to average the users’ personalities.

Other possibilities of machine learning instruments have to do with the possibilities

of finding hidden behaviors that could result from the interaction of the user with

the algorithms, i.e surprising behaviors that no one explicitly programmed, due to for

example, non-linearities or particularities in the data acquisition or training process

(Fiebrink et al., 2016; Mudd et al., 2015).

2.3.2 Machine learning algorithms as creative musical tools

(Fiebrink et al., 2016) explored the use of machine learning algorithms in creative

musical contexts. They identify a range of different relationships with the algorithms,

from scenarios where the user collects proper data sets, train the models and validates

the results by means of accuracy measures to cases in which the musicians break the

rules and explore the system’s capabilities in unexpected ways. They suggest that, in

the latter scenarios, systems evaluations (validation or usefulness) are not necessarily

based in accuracy metrics anymore. An interesting reflection along the same line is

carried out in (Sturm et al., 2019), where it is questioned up to what point quantitative

measures, like sequence likelihoods and/or qualitative listening tests (user tests), are

useful for machine learning applied to music research. (Fiebrink et al., 2016) look at

machine learning algorithms as human-computer interfaces that can be characterized, as

in the case of other interfaces, by the way their affordances intersect with the objectives

30

of the human users. Based on these observations, they center the discussion by analyzing

the nature of the interactions between humans and machine learning algorithms from

this human-centered perspective. Among the roles of machine learning they identify:

Creating models that act as creative agents with human-like capacities (which has been

the must spread idea of machine learning in music), generating musical material in real

time (with different degrees of novelty), and augmenting human capacities. These last

objectives range from playing with the model trained as an “imperfect mirror” (Pachet,

2008) to using the algorithm to “not repeat myself” during live coding performances

((Knotts, 2019) see the CYOF system in Section 2.4.1).

2.3.3 Machine listening in live coding

Machine listening is about designing algorithms and systems to endow machines with

audio understanding. This requires: receiving the audio signals, extracting high-level

representations and analyzing them. This process is similar to human audition, which

is not only about perception but also about structuring and processing the information

(even through conceptual listening frames).

Machine listening technologies started in the 60’s. During the 80’s they were in-

cluded as tools in standard computer software (for audio analysis). Between the 90’s

and the year 2000, the increase in computer power that allowed sound synthesis in

real-time for live coding allowed personal computers to use machine listening in real

time too.

(Collins, 2015) explores machine listening possibilities in live coding. In particular,

he explores how the acquisition and analysis of the audio input can be controlled through

live coding and (what he refers as a more radical possibility) how information can control

the code being written. As in the case of machine learning, this area has received less

attention in live coding, perhaps because of its technical difficulties. While it is true that

simple tasks such as real time monophonic pitch detection are successfully solved by

existing algorithms, more complex situations, like real time polyphonic pitch tracking,

31

are still a matter of research.

Real-time machine listening allows live coding performers to interact with the cur-

rent sound, for example, detecting the pitch to respond in the same key, or detecting

the rhythm (onset detection). It is also possible to transform what is being received, for

example, resynthesizing the sound by using inverse Fast Fourier Transform. Combining

machine learning, machine listening and music information retrieval algorithms, it is

possible to analyze patterns at different hierarchical level, detect similarities comparing

the input signal with a corpus, etc.

There are still a few examples of machine listening in live coding, nonetheless, and

they suggest interesting research paths. For example, (Knotts, 2019) uses signal analysis

to assess how likely is for a livecoder to go in one direction or another, comparing

the analysis with a database. (Ocelotl, 2016) uses a system, although sometimes more

similar to an autonomous agent as it is only slightly tweaked on-the-fly, to receive a cello

signal and resynthesize it with some changes. The system is based on the SuperCollider

Music Information Retrieval library (Collins, 2011c). (Yee-King and Peters, 2011) use

live coding to control the machine listening using SuperCollider. Finally, (Collins, 2015)

discusses a feedback loop where the analysis of the input can be used to synthesize the

output and so on.

2.4 Live Coding and Machine Learning

As I write these lines, live coding systems are incorporating machine learning4. There

are few documented systems, yet, they provide an overview of the possibilities, for ex-

ample, to encourage the performer into more innovative improvisations (Knotts, 2019),

to automatically create new material for specific contexts (Paz, 2019b), or to learn

probabilistic patterns from character strings written on-the-fly (Reppel, n.d.). An in-

4Between the first and the current revision of this Chapter, I participated in the 2020 International

Conference on Live Coding (ICLC) and in the 2020 Network Music Festival. I witnessed how the

number of live coding projects using machine learning increased in comparison with the 2019 ICLC.

32

teresting approach that performs space exploration using genetic algorithms is discussed

in (Dahlstedt, 2009), who interactively evolved populations of presets, auditioning the

candidates on stage (without using code as the main interface). These live interac-

tive evolution processes are described by the author as “indeterminate cousins to live

coding”. Finally, and probably the clearest example of machine learning being inte-

grated into live coding, is “Sema”: a playground designed for prototyping live coding

mini-languages, which integrates signal synthesis, machine learning and machine listen-

ing (MIMIC, 2019b). Sema is part of the Musically Intelligent Machines Interacting

Creatively project (MIMIC5), which is a web platform for the artistic exploration of

musical machine learning and machine listening (Kiefer and Magnusson, 2019).

From a live coding perspective, a key feature characterizing these systems is the

way they allow real-time interaction with the different steps of the learning process.

To analyze where the real-time feedback occurs, we see if the data collection and the

training processes are carried out before or during the performance.

The latest version of Sema, for example, allows the performer either to write and

train algorithms in real-time including data collection or to use pre-trained models. In

the latter case, it uses TensorFlow.js (Smilkov et al., 2019), whose models are trained

over big corpus (this might take days or even weeks). In this case, the models are

used but not trained during the performance, and the livecoder does not have access

to the data collection. On the other extreme is Reppel’s approach for real-time learn-

ing of variable order Markov chains (see Reppel, n.d.), in which the data collection

and the training (statistical analysis of the data) is intended to be done during the

performance. Between these extremes is CYOF (Knotts, 2019), in which previous and

current performance data is combined. The different degrees of “liveness” offer different

creative possibilities. For example, if the system is already trained, the instrument is

“fixed”, and the user plays with it during the performance. However, as the training

can take more time, it could use bigger data sets and probably still be very accurate.

5MIMIC is a collaboration among Goldsmiths College, Durham University and the University of

Sussex.

33

If the system is trained on-the-fly, the training process becomes an integral part of the

performance. The resulting model may be clumsy, but sharing the training may result

in a more transparent performance. An excellent example of this is Marije Baalman’s

gig, presented during the MIMIC Artist Summer Workshop in Brighton 2019 (MIMIC,

2019a). Obvious limitations for the systems are: the algorithmic cost, the computa-

tional capacity of the machines (which increases continuously) and the limitations in

the size of the training sets inherent to the data collection in real time. Next, exist-

ing systems are presented, and a general conclusion regarding live coding and machine

learning can be found in Section 2.5.

2.4.1 CYOF

(Knotts, 2019) describes CYOF as an algorithmic performance system aiming to “gently

encourage the performer into more innovative improvisation”. For that, the system

analyses performer’s current and previous gigs data to infer which would be the more

novel code to write next and to suggest ideas in real time. The analysis is performed

using music information retrieval (MIR), which includes real time audio feature data

(e.g MFCCs, loudness, etc.) and text analysis tools. The degree of novelty is measured

by comparing the current code with performance’s own history. The performer can see

the current code in white (as well as the audience, as the code is projected) alongside

the most likely (in orange) and the less likely (blue) possible future code. The on-

the-fly analysis uses 10 second windows and is carried out by the SuperCollider Music

Information Retrieval Live (SCMIRLive) library (Collins, 2011c). The analysis of the

data of the past performances is used to generate a data set of likely code combinations,

audio feature combinations and performance trajectory.

The system also visualizes the audio feature data. For this, at the beginning of

the performance, a random past performance is selected and its data visualized. The

visualization uses blocks (resembling bricks) in which the features are represented by

using the gray scale. Then, the visualization is updated, as the performance goes, using

34

the current data. Future blocks on the gray scale acquire the color of the most likely

future given the present context. A performance of Knotts using the system is available

at (Knotts, Dec 2017).

CYOF is interesting because it clearly shows some machine learning possibilities

within live coding.

1. A personalized instrument that changes with time as the database is updated.

Notice, however, that if we use a past (unchanged) database, the system will be “frozen”

in time, which would be like playing guided by our “old self”.

2. The system, although is intended to encourage more novel improvisation, can be

also used to be conservative if we decide to play the most similar future code each time.

Finally, notice that the model building and the data collection occur both offline

and in real time.

2.4.2 Learning rules on-the-fly

cross-categorized-seeds (Paz, 2019b) is a live coding system that uses inductive rule

learning. It is inspired by the idea that coding a piece on-the-fly requires guiding the

sound by changing the parameter settings of the sound devices. The system uses the

“RuLer” algorithm (Paz et al., 2019) for supervised learning. To create the dataset

(the example input-output pairs), a linguistic label that describes the characteristics of

the sound (e.g. calm, harsh) or a musical context (e.g. intro, break) is assigned to each

combination (or setting). The settings are collected during an aural exploration of the

parameter space, which can be performed offline or in real-time. The RuLer generalizes

the input data with the aim of offering different degrees of variation to be used during

the performance. For this, it searches for patterns in the data, based on a dissimilarity

function. The patterns found are used to “guess” the new setting. The patterns are

expressed as IF-THEN rules. The production of rules applies crossover mutation to

the original material in a similar way to genetic algorithms. The user controls the level

of generalization of the rules through the system parameters that control the allowed

35

dissimilarity and consistency and by listening to the material on-the-fly. The RuLer

algorithm forms part of this thesis and is extensively described in Chapter 4.

During the performance, the form of the piece is created by calling the combinations

in the corresponding moments using the perceptual labels. The tensions and relaxations

created by the recombination levels of the original material can be used to shape the

inner dynamic of the sections. Hence, cross-categorized-seeds can be seen as a directed

search in a vast space of possibilities, used as a compositional tool.

If the data set is collected on stage, the exploration process becomes part of the

performance. In that case, the rule learning process is also performed in real time, for

which the user can either use algorithm parameters that search for conservative results

or embrace unpleasant surprises.

A performance using the system is available at (Paz, 2019b). An advantage of the

resulting model is that the rules are human readable entities, especially if the size of

the data set is small enough.

2.4.3 Learning probabilistic automata in Megra

Megra (Reppel, n.d.) is a mini-language to make music based on variable-order Markov

chains. Among other algorithms, it includes a simplified version of the one proposed in

(Ron et al., 1996). The algorithm learns probabilistic automatas with variable mem-

ory length from sequences. The Markov processes of variable memory length can be

described by a subclass of probabilistic finite automata (which are the resulting models

learned by the algorithm). The algorithm is efficient in terms of computing cost, and

it exhibits good accuracy. Its authors proved that the KL-divergence between the tar-

get distribution and the learned can be made small in polynomial time. In the Megra

implementation, the input is a string of characters (e.g xoxxo—-xxo) that is analyzed

in real time (the strings are written by the performer on the stage) to learn the prob-

ability of each symbol. Then, the probability of each character is mapped to specific

samples or synths. The whole process, data collection, learning and the production of

36

the output, is performed in real-time.

2.4.4 Cibo

During the fourth International conference on live coding, held in Madrid on January

2019, Cibo (Stewart and Lawson, n.d.), a machine learning algorithm trained to manip-

ulate Tidal (McLean and Wiggins, 2010a) code (i.e read, change, execute and repeat)

performed for the first time in front of an audience. Cibo was trained using code from

a database of Tidal live coding performances, without having access to any sound in-

formation (like signal descriptors). In this way, the authors explore how the changes

in the code reflect the way a human performer changes their code from their percep-

tion of sound. The second version of the agent, Cibo v2, was presented at the fifth

International Conference on Live Coding (Limerick, 2020).

2.4.5 Generative improvisation: exploring vast parameter spaces

on-the-fly

Evolutionary algorithms can be used as tools to evolve (shaping by means of prede-

fined operations, crossover and mutation being the must common) an initial randomly

selected population, until it has the desired characteristics. The initial population is

passed through a fitness function (that models the environment) that assigns a score to

each individual. Then, the individuals scoring under a specific threshold are eliminated,

and those that remain are modified by using the predefined operations. The new re-

sulting population passes again through the fitness function, and the process continues

until a terminal criteria is meet.

Evolutionary algorithms have been used by numerous composers (Dahlstedt, 2001b;

Collins, 2002a; Dahlstedt, 2009) to explore devices with vast spaces of sonic possibilities,

as in the case of modular synthesizers. As it is impossible to codify a fitness function for

what the composer is looking for, given that it changes from one situation to another,

the composer auditions the results and selects the individuals that will pass to the next

37

generation (i.e, the composer’s audition acts as the fitness function). This technique

was named interactive evolution by Richard Dawkins (Dawkins, 1986).

To clarify the context dependency of the sound, imagine that some ugly and beauti-

ful musics are wanted to create contrast between two parts (whatever ugly or beautiful

music means). While we could try to find a representation in terms of low level audio

features of the ugly and beauty categories, each representation would be different. It

would vary from person to person, and what is ugly in a context may not be in another,

even for the same person.

Furthermore, using composer’s audition to guide the evolution brings other possi-

bilities. The fitness function allows genetic algorithms to optimize the characteristics

of the population. However, optimization is not the only possibility of evolutionary

algorithms within creative applications, they can also be used as exploration tools as

will be discussed next.

Evolutionary algorithms allow one to explore spaces of possible solutions, especially

when the exact form of the solution is not known or when we do not know what we

are looking for. In such cases, exploring the unknown space is essentially a creative

act (Dahlstedt, 2009). In that scenario, the goal is not about optimization anymore

but searching for novel musical material that we do not now exists until we find it.

When interactive evolution is used in this way to direct generative processes, it can be

considered a creative tool that operates on a meta generative level.

Interactive evolution has been generally used in the studio (offline). For example,

Collins 2002 used interactive evolution for sound design for exploring parameter spaces

of reverberation algorithms, wavetable synths and synthesis of percussive sounds. Here,

the technique is used to find solutions to projects that would be difficult to solve by

simple trial and error sampling of the parameter space. (Johnson, 2003) presents an

evolutionary synthesizer that uses a graphic user interface. The artifact is intended

to provide “a middle way between the complexity of programming -the synthesizer is

implemented in CSound- and the simplicity of using preset sounds”. In the publication,

the system is applied to adjust the synthesis parameters of the granular synthesizer

38

Fonde d’Onde Formantique (FOF) algorithm (Vercoe, 1986). Again, the system is

intended the be used offline in the context of sound design.

Nonetheless, these applications are conceived as offline exploration. The interactiv-

ity of the technique suggests real time applications. These, of course, are limited by the

size of the population to be evolved and the time required to audition the examples.

Brown, who is a member of the live coding duo aa-cell together with Sorensen6, intro-

duced the term “generative improvisation” to describe the experience of live performing

using evolutionary systems (Brown, 2002). Playing with evolutionary algorithms com-

bines the feeling of being able to direct the search towards the desired results, but it

requires the composer to be able to embrace surprises. Palle Dahlstedt, who has ex-

tensively worked with evolutionary systems for sound and music creation, describes his

experience and the possibilities of using these algorithms in real time performances in

the following way:

“On stage, you can either evolve continuous sound textures or one-shot sounds

openly, in interaction with other musicians, accepting unpleasant sonic surprises as

part of the game, or the current population can be auditioned through headphones,

projecting the most fit sounds to the audience when ready. Another approach tried

by the author is to evolve whole pieces in headphones on stage while other people

perform, to be played as interludes when ready after a few minutes, as a kind of ‘action

composing’.” (Dahlstedt, 2009).

It is interesting how he visualizes the different degrees in which the evolution process

is shown to the audience, from showing nothing when the candidates are evolved using

headphones and only shown to the audience when they are completely ready to evolving

sounds openly making the evolutionary process part of the performance. In contrast

he also comments on ‘action composing’, which would be closest to offline composition

where the algorithms are compose on stage and the results shown when ready. Finally, it

6They wrote the paper Interacting with generative music through live coding (Brown and Sorensen,

2009), in which they characterize the algorithm’s properties that make them more suitable for live

coding.

39

is also interesting how the human-system interaction suggests to him that the technique

may well be considered an “indeterminate cousins to live coding”.

2.4.6 Sema

Sema is an ecosystem for prototyping live coding mini-languages that integrates sound

synthesis, machine learning and machine listening (MIMIC, 2019b; Bernardo et al.,

n.d.).

Machine listening is carried out by MMLL, a Musical Machine Listening Library

(Collins and Knotts, 2019) that offers different musical listening facilities, such as onset

detection, major/minor chord detection and beat tracking. The library has listening

capacities than operate faster than real time.

Machine learning algorithms and data collection can be either directly coded or live

coded by the user, or models from the TensorFlow.js (Smilkov et al., 2019), Rapidlib.js

(Zbyszynski et al., 2017) or Magenta.js (Roberts et al., 2018) libraries (Smilkov et al.,

2019) can be called. Each choice has its own implications with respect to how the user

is involved in the data collection and the model training.

Sema has also a real time compiler for Backus-Naur form grammars that allows one

to write or modify the live coding language. If the language is consider the instrument,

this is a clear example of an instrument that could change during the performance.

The system is part of MIMIC web platform designed for artistic exploration of

machine learning and machine listening for music creation.

The interesting things about the system are its objectives, which show a clear inten-

tion to explore the creative possibilities of machine learning and machine listening in

live coding. The system is designed to be portable (that’s why it runs in the browser)

since it is intended to popularize machine learning and machine listening tools for a

larger audience.

40

2.4.7 Undocumented systems

As this is an emerging field, there are a lot of systems currently being documented.

These incorporate machine learning for different tasks of the live coding systems. Some

of these examples were collected via personal communication with their authors during

2019.

Jason Levine is a New York based musician and live coder, that performs navi-

gating audio samples in a virtual space using the live coding language “Extempore”

(Sorensen and Gardner, 2017). The samples are organized by the t-SNE algorithm and

the resulting structure offers an interpretable space for the coder to navigate.

Pablo Riera is a live coder currently working at the Applied Artificial Intelligence

Lab of the Buenos Aires University. He has done some similar experiments using

learning algorithms to structure a database containing sounds, which are then controlled

and sent to Tidal using a MIDI controller.

These types of approaches are being currently explored, but the systems are still

undocumented. Certaintly, the following years will see derivations of these systems and

their corresponding documentation.

2.5 Conclusion

Writing source code in real time to produce sound mixes both technology and artistic

practice. Analysing live coding tools, instruments and technologies provides insight into

how they shape the way we structure sound and musical ideas. For example, the source

code becomes our notation language. It is the score of the piece, as the algorithms,

functions, etc. describe sound unfolding in time. Different languages provide different

conceptions of time. For example cyclical, in which a declared pattern repeats every

cycle, provides a different conception than say, linear, in which events are conceived

with a start, a duration and an end. A deep reflection on how technology shapes our

music making can be found in (Magnusson, 2019), which looks at the technologies of

41

material instruments, the symbolic notations of music and the signal inscriptions or

recording mediums.

The digital nature of live coding brings new algorithmic possibilities to the core of

the new instruments that are emerging alongside new technologies. These are artifacts

that change by interacting with the performer, e.g Knotts, 2019, or that are able to

perceive and adapt to their external reality by means of machine listening.

At the time of writing these lines, machine learning is being explored within live

coding. While most early live coding performances used simple sound generators and

processors, such as sine waves, filters, etc., today it is increasingly common to hear per-

formances, even those starting from scratch (Villaseñor and Paz, 2020), using machine

learning to perform specific tasks, for instance, creating clusters in a music database so

that the performer can navigate an ordered space.

The use of machine learning algorithms has implications in live coding practice. For

example, real time training v.s offline training implications can be viewed through the

lens of the live coding ManifestoDraft (TOPLAP, 2004b), which positioned live coding

within the digital arts back in 2004 and has been a reference for live coding practice.

Here is a fragment:

We demand:

• Give us access to the performer’s mind, to the whole human instrument.

• Obscurantism is dangerous. Show us your screens.

• Live coding is not about tools. Algorithms are thoughts. Chainsaws are tools.

That’s why algorithms are sometimes harder to notice than chainsaws.

We recognise continuums of interaction and profundity, but prefer:

• Insight into algorithms

• The skillful extemporisation of algorithm as an expressive/impressive display of

mental dexterity

42

Integrating machine learning into live coding raises such questions as how can ma-

chine learning algorithms be visualized within live coding? How do training times

and/or size and nature of databases influence the design and use of algorithms? To

what extent does on-the-fly machine learning exist with the current technology?

It is possible to use algorithms trained over large datasets, such as in melody gen-

eration. Sema, for example, is a playground for prototyping live coding mini-languages

that integrates signal synthesis, machine learning and machine listening. It allows the

use of models from TensorFlow (the end-to-end open source platform for machine learn-

ing). The training time of some models can take minutes, hours or days depending on

the algorithm, the dataset and the hardware. Once trained, the models can be fairly

accurate, rarely surpassed by other systems. This approach reaches philosophical lim-

its, like the one suggested by Collins, 2016 in his paper entitled: “Towards Machine

Musicians Who Have Listened to More Music Than Us”. Indeed, an algorithm can be

trained over corpora of music that would take a human years to listen through.

Some artists have eschewed such large-scale datasets. Niklas Reppel opened his

presentation at the fifth International Conference on Live Coding (Limerick 2020) with

the question: Why small data? Stating the ideas behind the design of megra, a mini-

language to make music with variable-order Markov chains (Reppel, 2020) he answered

in the following way: Small data is a defined response to the current algorithms, which

are mostly focussed on big data sets and specialized hardware, and therefore have long

training times that won’t fit into the live coding performance. megra is designed taking

into account everything you can do with tiny datasets having real time feedback.

These approaches define extreme possibilities. Each has to embrace its necessary

consequences. However, just as technologies condition our way of making music, live

coding, being a well defined practice, is shaping technological developments, design-

ing systems that learn, exploring the limits and possibilities of machine learning algo-

rithms from a creative perspective, analysing how they change through different training

datasets and writing new ones that provide desired affordances.

This is an emergent field in which I hope these lines help to conceptualize the

43

algorithms to come.

44

Chapter 3

Rule Learning Preliminaries

This Chapter presents foundations of rule learning algorithms. It begins by re-

viewing the two main strategies for building symbolic models: decision trees and

rule learning systems. For this, the main algorithms for the induction of decision

trees are reviewed. Then, after arguing that rule models are more interpretable, it

summarizes rule learning from concept learning to the covering algorithm. Then,

the Chapter goes through the main algorithms for inductive rule learning with

special focus on the LR-FIR and Mixed fuzzy rules algorithms, which inspired the

algorithms presented in Chapters 4 and 6.

Symbolic modelling represents problems in a human-readable way. This allows

manual intervention of the model or data, just as the genotype representations discussed

in the previous Chapter allow manual selection of genes. Symbolic models also provide

an insight into the relationships between labels and feature values.

In the context of this research, the extracted models aim to provide the following

things: Interpretable tools to automate the creation of new material; a human-readable

representation of the relationships between the resulting sound and the parameter set-

tings of a synthesis algorithm; and real-time learning and intervention of the model and

data.

Throughout the Chapter, the characteristics and limitations of the specific algo-

45

rithms are highlighted when they lead to the development of the algorithms described

in Chapters 4 and 6. As an example, consider the fact that linguistic variables (used in

many fuzzy systems) assume monotony in their values. Variable age, for example, can

take values such as young, mature or old. However, some synthesizers’ variables such as

waveform, which takes values such as Square, Sinusoidal and Sawtooth, do not satisfy

this property. If output values are considered, this phenomenon is more extreme, given

that the labels used to described the resulting sound can be arbitrary.

Machine learning and data miming deal with the discovery of models, patterns and

other regularities in data. Machine learning approaches can be coarsely divided in two

groups:

• Symbolic approaches that include inductive learning of symbolic models such as

rules, decision trees and other logical representations (De Raedt, 2008; Witten

and Frank, 2005).

• Statistical approaches (Sugiyama, 2015) that include statistical methods for pat-

tern recognition such as k-nearest neighbours, bayessian classifiers, neural net-

works and support vector machines.

There are, of course, mixed techniques that use elements from both approaches.

For example, there are random forest classifiers that statistically combine the results of

logical models to make a prediction (Mease and Wyner, 2008).

The algorithms developed in this research belong to the first class, producing human-

readable symbolic models mainly intended to classify and generate new data items.

From this perspective, as is pointed out by (Fürnkranz et al., 2012), they should be con-

ceived as hypothesis constructors rather than hypothesis testers1 (i.e., The algorithms

1This idea differentiates the intentions of classic statistical methods and machine learning or data

mining algorithms. Statistical methods assume a hypothesis, which is accepted or rejected after

analysing the data. Machine learning or data mining algorithms search for patters without assuming

a specific structure, and the resulting model can be conceived as a hypothesis that explains the data.

46

are intended to generate possible explanations of the data rather than confirming or

rejecting a hypothesis). The explanations built (hypothesised) aim to extract implicit,

unknown and interesting information contained in the data.

Next, the common predictive data mining symbolic algorithms (decision tree and

rule set learners) are reviwed.

3.1 Decision Trees

Decision tree learning starts from a dataset of observations, in which each datum is

composed by a set of attributes, labeled with an associated class. A decision tree can

be seen as an algorithm composed by conditional statements that evaluate the attribute

values and separate the data in accordance with the results. Each conditional statement

or test is a node of the tree and is labeled with an input feature. For example, let us

assume that we have a dataset with observations composed by different attributes and

a class label that tells us if a person is a vampire or not2. Assuming attribute “eats

garlic” and the test “‘does the person eat garlic?”, with possible answers Yes and No,

then this node will separate the data into two subsets containing those that do eat garlic

and those that do not. When successive nodes are combined, the branches represent the

conjunctions of the features of the branch (e.g “eats garlic” = Yes AND “has shadow”

= Yes).

Trees take its name from its structure that resembles an inverted tree. At the top

is the root node, which is the attribute whose test produces the partition into more

“homogeneous” sets among all the nodes (i.e, the partition that produces the sets

containing as many elements of the same class as possible in each set). When a set

resulting of a partition has observations of only one class, it is considered a leaf. Once

the root node is selected, the same criteria is used to select the subsequent (internal)

nodes until all the leafs of the tree have been created. In this way, decision trees perform

recursive partitions of the space to divide the data. To select the attribute producing

2This example is taken from MIT OpenCourseWare https://youtu.be/SXBG3RGr Rc

47

the mots homogeneous partition, information theory is used to measure the “degree of

disorder” of each created set3. The selected attribute is the one producing the most

“ordered” sets after the test.

Decision trees are constructed in a top-down fashion, selecting the most general tree

(the root node) and refining it into a more specific tree structure.

The key process during the induction of the tree is selecting the “right generality

level”, as if we construct a lief node for every instance it would overfit the data. This is

the role of the functions: to measure the disorder or “purity” of the partitions created

by the nodes (i.e, to find the degree in which the resulting sets contains examples of a

single class). The objective is to construct a complex tree, able to classify the data and

general enough to be interpretable and to avoid overfitting.

Finally, it is worth mentioning that many decision tree algorithms have a post

processing part to prevent overfitting due to the recursive partitioning of the data during

the tree construction. The recursive partitioning produces fewer and fewer examples

ending up at each node, and the consequent complex subtrees explain the data but do

not generalize well. Common post processing strategies prune the branches near the

leaves, replace the interior nodes with new leaves (removing subtrees rooted at that

node) and assign to that leaf the label of its most frequent class.

3.1.1 Decision tree algorithms

Decision tree induction algorithms can be classified by their splitting criteria. For ex-

ample: Impurity-based, Information gain, Gini index, Likelihood ratio, Chi-squared

statistics, DKM, Normalized Impurity, Gain ratio, Distance Measure, Kolmogorov-

Smirnov, etc. A general review of the different splitting criteria and algorithms can

be found in (Rokach and Maimon, 2008; Priyanka and Kumar, 2020). Here, I present

algorithms C4.5, CART, CHAID and QUEST, as their splitting criteria provide a gen-

3In a simple two class problem the first approach would be Disorder(set) = − P
N log2(P/N) −

N
T log2(N/T) where T is the total number of examples to test, N are the Negative and P the posi-

tive. Negative and Positive refer to whether or not the example has the tested characteristic.

48

eral perspective of the different possibilities. These algorithms use univariate splitting

criteria, which splits the internal nodes of the trees according to the value of a single

attribute. Then, the inducer searches for the best attribute upon which to split.

Notation

To describe the splitting criteria I will use the selection operator of relational algebra

(σ)4. In a batch schema the input dataset has the form B(A ∪ y). The input data has

n attributes A = {a1, ..., ai, ..., an}. Attribute ai has domain values denoted dom(ai) =

{vi,1, vi,2, ..., vi,j, ..., vi,|dom(ai)|}, where |dom(ai)| has a finite cardinality. Similarly, the

target attribute is dom(yi) = {c1, ..., c|dom(y)|}.

Then, the set of all possible examples is X = dom(a1) x dom(a2) x . . . x dom(an),

and the Labeled instances space is U = X x dom(y). With these definitions, the training

set is: S(B) = (< x1, y1 >, < xm, ym >) such that xq ∈ X and yq ∈ dom(y).

C4.5

The C4.5 algorithm (Quinlan, 2014), a modified version of the ID3 algorithm (Quinlan,

1986), uses as splitting criterion the normalized information gain or relative entropy5.

The attribute with the highest normalized information gain is chosen to make the

decision.

The algorithm uses these base cases to avoid getting stuck:

4In relational algebra, the unary operator Selection describes the subset of a dataset,

σφ(S), where φ is a propositional formula consisting of atoms and logical operators. For in-

stance, selecting live coding music produced using SuperCollider in a music database can be

σlive coding = True AND language SuperCollider = True(musicDatabase), which would result in a relation con-

taining every attribute of every unique record where live coding = True and language SuperCollider

= True.
5The relative entropy, or Kullback–Leibler divergence, is a measure of how one probability distri-

bution differs from another “apriori probability”. For discrete probability distributions p, q, defined

on the same probability space, X, the Kullback–Leibler divergence from q to p, being p the apriori

probability, is: DKL(p|q) = −
∑

x∈X p(x) log
(

q(x)
p(x)

)

49

1. If all the observations in the list belong to the same class, then create a leaf node

that assigns every observation to that class.

2. If none of the features provide any information gain, then create a decision node

higher up the tree using the expected value of the class.

3. If an instance of a previously-unseen class is encountered, then create a decision

node higher up the tree with the expected value of the class.

The general structure of the algorithm is as follows:

1. Check if any of the base cases hold.

2. For each attribute a, calculate the normalized information gain ratio resulting

from splitting on a.

3. If a∗ is the attribute with the highest normalized information gain.

4. Create a decision node splitting on a∗.

5. Use recursion on the sublists obtained by selecting a∗ to split, and add those

nodes as children of node.

The trees extracted by the C4.5 can be used for classification. As such, this algorithm

is also considered a statistical classifier. To understand the calculus of the information

gain, let us first analyze the impurity measure, the probability of the target value and

the impurity criteria.

Impurity measure: Let x be a random variable with k discrete values with prob-

ability P = (p1, p2, ..., pk). An impurity measure is a function: ϕ : [0, 1]k → R such

that:

• ϕ(P) ≥ 0

• ϕ(P) is minimum if ∃ i · ∋ · p(i) = 1

50

• ϕ(P) is maximum if ∀ i 1 ≤ i ≤ k, p = 1/k

• ϕ(P) is symmetric with respect to components of P

• ϕ(P) is differentiable in all its range

Probability of the target value: Given a training set S, the probability of the

target attribute is defined as in (3.1):

Py(S) =

(
|σy=c1S|
|S|

, ...,
|σy=c|dom(y)|S|

|S|

)
(3.1)

This means that the probability of a particular target value is given by the amount of

examples having that value divided by the cardinality of S.

Impurity criteria: The impurity-based criteria or “quality” of a split due to the

discrete attribute ai is defined as the reduction in impurity of the target given by

partitioning S using the values i, j for vi,j ∈ dom(ai), which is defined as in (3.2) using

an impurity measure ϕ.

∆ϕ(ai, S) = ϕ(Py(S))−
|dom(ai)|∑

j=1

|σai=vi,jS|
|S|

· ϕ(Py(σai=vi,jS)) (3.2)

Information gain

Information gain measures the impurity using entropy. It is defined in (3.3):

Information gain(ai, S) = Entropy(y, S)−
∑

vi,j∈dom(ai)

|σai=vi,jS|
|S|

· Entropy(y, σai=vi,jS)

(3.3)

where the entropy is defined as in Equation (3.4)

Entropy(y, S) =
∑

cj∈dom(y)

−
|σy=cjS|
|S|

· log2
|σy=cjS|
|S|

(3.4)

51

CART

Classification and regression trees (CART) (Breiman et al., 1984) is an algorithm for

learning binary trees. In a binary tree, each node has only two outgoing edges. To

select the splits, the Twoing criterion is used, and the obtained trees are pruned by

using complexity cost measures. CART is able to learn regression tress (which have the

capacity to predict not classes but numbers).

Binary criteria divide the input attribute domain into two subdomains. This can be

represented as β(ai, dom1(ai), dom2(ai), S), where, for attribute ai, the sample S is split

into dom1 and dom2. The optimal division produces a value that is used to compare

attributes: β∗(ai, S) =
max

∀ dom1(ai); dom2(ai)
β(ai, dom1(ai), dom2(ai), S)

The binary Twoing criterion is defined as in Equation (3.5):

twoing(ai, dom1(ai), dom2(ai), S) = 0.25 ·
|σai∈dom1(ai)S|

|S|
·

|σai∈dom2(ai)S|
|S|

·

 ∑
ci∈dom(y)

∣∣∣∣ |σai∈dom1(ai)ANDy=ciS|
|σai∈dom1(ai)S|

−
|σai∈dom2(ai)ANDy=ciS|
|σai∈dom2(ai)S|

∣∣∣∣
2 (3.5)

CHAID

Chi-squared-automatic-interaction-detection (CHAID) uses chi-squared statistics to iden-

tify the optimal splits. It works as follows:

1. The algorithm tries to break in every attribute and finds the attribute and the

breaking point producing the biggest intergroup distance between the class (de-

pendent variable) measured by chi-squared.

2. Step 1 is repeated for the two resulting groups. One of these groups is split in

the same way, yielding 3 groups.

3. Recurse until a minimum chi-squared value is reached.

The likelihood-ratio Chi-squared is defined as: G2(ai, S) = 2·ln(2)·|S|·InformationGain(ai, S)

and measures the statistical significance of the information gain criterion (Equation

52

(3.3)). The null hypothesis is that the input and target attributes are conditionally in-

dependent. If this hypothesis holds, the test statistic is distributed as χ2, with degrees

of freedom given by (dom(ai)− 1) · (dom(y)− 1).

QUEST

Quick, unbiased, efficient, statistical tree (QUEST) compares the association between

the attribute and the target, to create each split. For that, it uses ANOVA F-Test or

Levene’s test, for continual attributes, and Pearson’s chi-square, for nominal attributes.

It operates as follows:

1. For each attribute compute an ANOVA F-statistic. To split the attribute (if it is

an ordered variable), proceed as follows: Let X be the selected attribute to split

node t. Divide the Ct classes into two superclasses A and B by using the 2-means

clustering algorithm with the two most extreme sample means as initial cluster

centers. If the sample means are identical, let A contain the most populous class

and B contain the other classes.

2. If the largest F-statistic is greater than a established threshold, the attribute with

largest F-value is selected to split the node.

3. Else, compute for each attribute the Levene’s test for unequal variances. Again,

if the largest Levene’s statistic value is greater than a established value, then the

attribute with largest Levene value is used to split the node.

4. Else, split the node using the attribute with largest ANOVA F-value.

The QUEST algorithm uses 10-fold cross validation to prune the trees. For multi-

modal target attributes, two-means is used to create two clusters, each representing a

super class. Then, the attribute with highest association is selected to split the node

by using discriminant analysis to select the breaking point within the attribute.

53

3.2 A Brief Overview of Rule Learning

Rule models for classification are sets of “IF-THEN” rules. A rule is a conjunction of

attribute values located in the conditional “IF” part and a class label in the consequent

“THEN” part.

Propositional IF-THEN rule learners solve the problem of: given a set of training

examples, to find a set of rules that can be used for prediction or classification of new

instances. Algorithms such as CN2 (Clark and Boswell, 1991), RIPPER (Cohen, 1995)

and PRIM (Friedman and Fisher, 1999) are representatives of this class of learners.

The extracted “IF-THEN” rules are implications of the form:

Condition → class.

3.2.1 Rule learning v.s Decision trees

Rule sets are normally simpler and more understandable than decision trees. The

general ideas in rule-learning are similar to those used in decision trees. Nonetheless,

there is a subtle difference. Decision trees create recursive partitions of the space by

considering all nodes and optimizing the purity to select the one to split. This strategy is

commonly termed “Divide and conquer”. Rule learning can be pictured as “expanding

one single successor node at a time”, by learning a rule that covers some examples in the

data and removing them from the training set once the rule is learned. This strategy

is referred by (Fürnkranz et al., 2012) as “Separate and conquer”.

(Rivest, 1987) showed that ordered rule sets with, at most, k conditions per rule are

more expressive than decision trees of depth k.

(Cendrowska, 1987) showed that the minimal decision tree for the concept X, defined

as:

IF A = 3 AND B = 3 THEN X

IF C = 3 AND D = 3 THEN X

54

Has 10 interior nodes and 21 leafs assuming that attributes A to D have three different

values.

3.2.2 Concept learning

Most rule learning algorithms aim to learn a target concept, c (sometimes denoted by

the symbol ⊕), from training information consisting of positive and negative examples.

A complete hypothesis (model) is one that covers all positive examples, and the model

is consistent if it covers no negative examples.

Single-concept learning constructs a theory for a single class, and all the instances

that are not covered by the learned rules are classified as negative. For multiclass

learning, single concept learning can be iteratively applied. However, searching for

complete and consistent models in the presence of noisy data (which contains errors in

the instance descriptors and in the class labels) can lead to overfit of the data, as the

rules will explain the errors as well. Another problem is when classes are not completely

disjointed. In such cases, the rule construction processes are guided by heuristics, such

as the high-predictive accuracy or the coverage of the extracted rules, rather than

searching for completeness and consistency. This separates “theoretical” learners from

algorithms design to handle “real live” data.

3.2.3 Data representation

The input of a rule learner is a set of training examples. Each example contains a set of

values with an associated class label. Examples are represented in the following form:

ν1,j, . . . νn−1,j, cj

Element νi,j represents the value that attribute Ai has for the example in the position

j of the set of training examples. Attributes can be of several types (e.g. discrete or

continuous). Every attribute Ai can have a different number of possible values. Finally,

55

cj ∈ {c1, ...cc} are the possible classes for the examples. A set of examples is organized

in a table. The attributes represent the columns and the examples the rows.

3.2.4 Rule representation

Learned rules have the form:

IF f1 AND f2 . . . AND fL THEN Class = ci

The conditional part contains a logical conjunction and the consequent part contains the

class of the rule. L is the rule length. Each fk is a test that verifies if the entrance k of

an example being compared with the rule has a specific property or not. One possible

test, for instance: is the entrance k of the example a subset of {1, 2, 3}? Another

possibility could be: does the entrance k of the example = 2?

All the examples that satisfy the conditional part will be classified as ci by the rule.

3.2.5 Rule models

A set of logical rules can be interpreted as a classification model that provides an

approach to the posterior probability p(Ck|X;M) where X is an input vector and M

is the model. This is the probability of the input vector X having class Ck considering

the model M .

In this interpretation, the conditional part of the rule is a conjunction of predicate

functions. A predicate function Lj is defined as Lj : X→ {T, F}. In most of the cases,

the tests functions operate on a single attribute. Two examples of a test could be:

Li,j(Xi) = T if Xi ∈ a subset of values

or

Li,j(Xi) = F if Xi /∈ [Xi,j− , Xi,j+] (some interval).

In these cases, the index j enumerates the values or intervals for attribute Xi associated

with test Li,j.

56

The conjunctions of conditions define the areas (for example hyperrectangular) in

the feature space where the rule is true. For example, if the predicate functions consider

conditions Li,j(Xi) = F if Xi /∈ [Xi,j− , Xi,j+], the rule:

L1j1(X1) ∧ L2j2(X2) ... THEN Class(X) = Ck (3.6)

will assign class Ck to all instances located at the intersection of the intervals. Note

that subindexes of j, for instance j1, indicate that, for each variable i in the conditional

part of the rule, the interval considered can be different.

There are rule learning algorithms that can produce hyperrectangles that overlap.

There are also different ways to solve the created conflicts at the time of assigning a

class, such as selecting rules with the lowest false positive rate.

Algorithms such as decision trees avoid overlapping. Most decision trees use tests

like Li,j < Ti,j. Then, if the variables are ordered, the test defines a hyperplane perpen-

dicular to Xi and intersecting the axis at threshold Ti,j. This constitutes the recursive

partitioning of decision trees. Figure 3.1 shows the decision surface of the decision trees

trained on pairs of features of the Iris dataset (Fisher, 1936).

In fuzzy set theory (Zadeh, 1965), if Si,j is the j fuzzy set on attribute i, then

Xi ∈ Si,j to a degree determined by the membership function Li,j(Xi). In the rule

conditions, instead of input crisp values for Xi, fuzzy sets are used. In such a way,

fuzzy sets provide more flexible decision boundaries, removing the discontinuities of

the crisp logical rules, which jump from one interval to the adjacent one. Figure 3.2

illustrates the shapes of different decision borders created by (a) clusters; (b) fuzzy rules

with product of membership functions; (c) fuzzy rules with trapezoidal membership

functions; (d) crisp logical rules.

Different forms of expressing rules

The most common form for expressing rules is using conjunctions. However, there are

other possibilities that are worth reviewing. For instance, M out of N rules, in which,

for the rule to be considered true, only M out of N tests on the attributes need to be

57

Figure 3.1: Decision surface of the decision trees trained on pairs of features of the

iris dataset.

58

Figure 3.2: Shapes of different decision borders created by (a) clusters; (b) fuzzy

rules with product of membership functions; (c) fuzzy rules with trapezoidal mem-

bership functions; (d) crisp logical rules. Figure from Duch et al., 2004.

fulfilled. These types of rules can be expressed (in a simple form) by using predicate

functions that return values 0 or 1 as:

IF
N∑
i

Li,j(Xi) ≥ M THEN Class(X) = Ck (3.7)

where i denotes the feature or attribute and j = j(i) the corresponding test of the

attribute. M is a threshold value, so these rules can be represented using a threshold

function Θ in the following way:

Θ(W ·X−M)

where Xi is binary, Wi = 1 ∀i and Θ(x) = 0 for x < 0 or Θ(x) = 1 for x ≥ 0 (note that

Θ(x) is a general function).

This representation connects rule systems with neural nets, as, in the way it is

expressed, the threshold function is a logical neuron. Moreover, if Xi,Wi ∈ R and Θ is

replaced by a sigmoid, we obtain a perceptron.

59

As discussed previously, propositional rules can be expressed by using predicate

functions Lj(X) that compare several attributes of X. In that case, the expression

∥X−R∥ < Θ(R) measures the distance between X and the prototype R.

Fuzzy logic uses operators named T-norms, which combine the degrees of mem-

bership given by membership functions Li(Xi), Lj(Xj). For instance, if Li(Xi) = A,

Lj(Xj) = B and A,B are continuous in [0, 1], then A · B = min(A,B). In this way,

in fuzzy rules, the logic operator ∧ is usually replaced by the T-norm that takes the

minimum of the membership values of the attributes. Then, a rule R is satisfied to a

degree LR(X) where:

LR(X) =
∏

(i,j)∈R

Li,j(Xi) (3.8)

For a class k, calculating the sum of fulfillment, we get an approach to the class

classification probability:

p(Ck|X;M) =

∑
R(k)LR(k)(X)∑

R LR(X)

This process is analogous to the cases where fuzzy systems use gaussian or sigmoid

functions (that create circles or ovals as decision borders). That is, all the network

outputs (rules) corresponding to class Ck are added and normalized by dividing the

result by the sum of all the outputs (considering all classes). Also, if the structure of

the output or target is known, the class can be generalized to real values (Ck ∈ [0, 1]),

creating general mappings from the feature space (X) to the class labels C. These

mappings create more flexible decision regions, although they require predefined fuzzy

sets for the input and the output.

3.2.6 Input and output discretization

Some rule extraction algorithms discretize the input space (in case it is continuous) into

linguistic variables. There are several ways to do that, ranging from using homogeneous

discretization for all the attributes to feature-dependent partitions. There are many al-

gorithms to automatically learn the best partition (for example in (Lavangnananda and

60

Chattanachot, 2017) a study of discretization methods in classification is presented).

In fuzzy logic, for example, linguistic variables are used to create the partitions of

the features. For this, expert knowledge is used to define the membership functions

of the input and output. In this way, the exponential growth produced by considering

the same partition for all the features is avoided. For example, if sixteen features are

present in the data, and each of them is divided in eleven membership functions, the

resulting IF-THEN rules can be hard to interpret.

If expert knowledge is available, creating a coarse division of the space can lead

to simple, expressive and accurate models. Assume, for example, that X1 contains

frequency values (freq) of a Saw wave, and X2 describes the cut frequency (cutFreq) of

a Low pass filter that cuts the upper harmonics of the Saw wave.

The SuperCollider implementation of this experiment is:

Ndef(\x,{arg freq, cutFreq;

var sig;

sig = Saw.ar(freq);

sig = LPF.ar(sig, cutFreq)

})

As it is a two parameters synth, a couple of knobs allow anyone to explore the space

and propose linguistic descriptors to divide the features into intervals, for instance:

L1,1(X1) = low iff 0 < X1 ≤ 30; L1,2(X1) = high iff 30 < X1

L1,3(X2) = low iff 0 < X2 ≤ 50; L2,2(X2) = high iff 50 < X2

Using these intervals, an aural exploration can lead to formulation of some simple rules,

for example:

IF (L1,1(X1) = low) THEN C = beats

IF (L1,1(X1) = high ∧ L2,1(X2) = low) THEN C = soft tone

IF (L1,1(X1) = high ∧ L2,2(X2) = high) THEN C = harsh tone

61

These simple rules provide a compact description mapping the input and output spaces

(in this case for the one who created the linguistic labels).

However, the feature space is not always explorable. Our example with two param-

eters is a toy example, but adding a third and a fourth . . . A good analogy might

be the three-body problem of physics. Here, adding an extra parameter or making the

relationship between parameters more complex can create a problem that can not be

exhaustively solved anymore.

Furthermore, using membership functions to describe an attribute assumes monotony

in the linguistic variables. In our example, in {low, high} it is assumed that low pre-

cedes high. As discussed in Chapter 2, although variables such as frequency can be

divided with respect to our perceptual windows, when they are used to modulate other

parameters the resulting behavior does not vary monotonously. Moreover, when label-

ing the aural results of a synthesizer we could associate as category the “part of the

piece” the setting is intended to be used on (e.g intro, break, break2, main, transition,

end). Although it may appear that there is an order between these parts, one does not

necessarily precede the other. So once again, relying on experts to discretize the space

is not an option. In Section 3.5.7, automatic discretization of the features and output

based on the information provided by the data is explored.

3.3 Rule Learning Process

Rule learning has three conceptual processes:

• Feature construction, which prepares the object descriptors.

• Rule construction, which constructs individual rules, each covering a fraction of

the examples. This is normally done by fixing a class and heuristically searching

for the conjunction of features most predictive of the selected class.

• Hypothesis or model construction, in which the model consisting of a set of rules

describing the data is built. In propositional rule learning, model construction

62

iteratively learns single rules until no new rules can be learned or some other

terminal criteria is reached.

Section 3.2.6 has briefly discussed Feature construction. Sections 3.3.1 and 3.4

describe, respectively, the processes of learning a single rule and iteratively learning

rules to build a model.

3.3.1 Learning rules as a search problem

According to Mitchell, 1982, “learning is the ability to generalize: to take into account a

large number of specific observations, then to extract and retain the important common

features that characterize classes of these observation”. For him, the generalization

problem is essentially a search problem. This conception engages with the perspective of

the thesis on generalization by searching within a space of possible solutions. However,

in the context of this work, as discussed in Section 2.1.4, we have to keep in mind that

what we search for (i.e what is a solution for a problem, is both context and subject

dependent). With this in mind, the problem can be formalized in the following way.

To state a search problem we define:

• a search space

• a search strategy

• a quality function that determines to what degree a rule is a solution of what is

being search.

The search space constitutes all possible expressions that can be formed with the

hypothesis language. In this work, the search space is formed by all the possible com-

binations that a particular synthesis algorithm allows.

Search strategies include top-down and bottom-up. The first starts from the most

general rule, making it more specific, so it covers only examples of the given class.

Bottom-up strategies start from a specific rule (e.g the empty rule covering no examples

63

or a rule covering a single instance) and generalize it until it can not be generalized

without covering negative examples. Normally, top-down searches obtain more general

rules. Top-down search is useful for working with noisy data, as it can be guided by

heuristics that make big inductive leaps.

Bottom-up search is “better suited for cases where fewer examples are available and

for interactive and incremental processing” (Fürnkranz et al., 2012). These algorithms,

however, might have problems dealing with noisy data. This approach is the one used

by the algorithms of this work, as the application domain allows interactive and incre-

mental processing. Also, as the data is collected by the composers, it can be assumed

to be less noisy (or noisy examples are included on purpose), or the unwanted examples

can be removed or added by the composers. Fuzzy rule learning, explored in Chapter

6, is a recurrent strategy for dealing with noisy data.

Finally, a quality function that determines to what degree a rule is a solution of

what is being searched has two parts: One that is developed in Sections 4.1.3 and 4.1.4

establishes that a new rule has to fulfill the conditions of not generating contradictions

with the input data and to contain a specific percentage of the original data established

by the user. The second part cannot be formalized, as the solutions are context and

subject dependent. This means that no matter what formal requirements the rule

fulfills, human perception within a context will always be the final judge.

3.4 Learning Rule Models

Algorithms that learn sets of rules iteratively learn one rule that covers part of the

examples until a terminal criteria is met or no more examples remain.

This general idea can be traced back to the covering algorithm (Bagallo and Haus-

sler, 1990). The strategy, termed separate-and-conquer, has two main processes: learn

a rule that covers part of the examples and eliminate them from the training set (the

separate part), and recursively learn the rest of the examples (the conquer part).

64

Definition: COVERED Given r1 and r2, r1 is more general that r2 (denoted

r2 ⊆ r1) if and only if r1 and r2 have the same consequent and COVERED(r2,ε) ⊆

COVERED(r1,ε), where COVERED(r,ε) denotes the subset of examples e ∈ ε covered

by r.

Algorithms 1 and 2 show the Covering algorithm and an algorithm to learn rule sets

of multi-class problems.

Algorithm 1 Learn set of rules

1: function Learn set of rules(ci, Pi, Ni)

Require: ci: a class value

Require: Pi positive examples with class ci

Require: Ni negative examples for ci Ni = ϵ \ Pi

Require: ϵ is the set containing all the examples

2: P cur
i := Pi, N

cur
i := Ni Ri := ∅

3: repeat

4: r := LearnOneRule(ci,P
cur
i ,N cur

i)

5: Ri := Ri ∪ {r}

6: P cur
i := P cur

i \ Covered(r, P cur
i)

7: N cur
i := N cur

i \ Covered(r,N cur
i)

8: stops if terminal condition is met (e.g P cur
i = ∅)

9: return Ri

10: end function

Algorithm 1 requires a class ci, positive Pi and negative Ni examples for that class.

Then, it iteratively learns a rule and removes, either from Pi or Ni, the examples covered

by the learned rule. The iterations finish when a terminal condition is met.

Algorithm 2 learns a rule base for each class Ri and creates the rule base as R = ∪iRi

(this strategy is called one-against all, as one class is considered positive while all the

others negative during the iterations of the algorithm). The algorithm presented in

Chapter 4 has this general structure.

65

Algorithm 2 Learn rule base

1: function Learn rule base(ϵ R)

Require: ϵ training set

Require: R := ∅

2: for each ci do

3: Pi := {subset of examples ∈ ϵ with class ci}

4: Ni := {subset of examples ∈ ϵ with class ci}

5: Ri := LearnSetOfRules(ci,Pi,Ni)

6: R := R ∪Ri

7: end for

8: R := R∪ {default rule that assigns examples to the majority class}.

9: return R

10: end function

Algorithms 1 and 2, together with a LearnOneRule function, are the general struc-

ture for learning a rule model. The LearnOneRule function can start from the most

general rule and then build refinements of it by analyzing the examples “cutting the

rule” (top-bottom), or start from a single example (bottom-up) and “extend” the rule,

as long no contradictions appear, until it covers the greatest amount of examples.

3.4.1 Evaluation of the predictive accuracy of the rules

There are many measures in the machine learning/data mining fields developed for

rule evaluation, including precision (based on the confusion matrix), information gain,

m-estimate, etc. For example, a coverage-consistency trade off, as a multi-optimization

problem, searches for general rules to maximize the coverage but minimize the number

of negative examples covered. The covered and not covered examples are expressed in

the confusion matrix, shown in Table 3.1. The coverage-consistency test can be used as

a criterion to select among rules. In this way, the rules extracted by a procedure (e.g

66

LearnOneRule) can be compared and the best one selected.

Table 3.1: Confusion matrix.

Examples Covered Not Covered Total = P + N

Positive true positives false negatives P (all positives)

Negative false positives true negatives N (all negatives)

The classification accuracy of a rule set is defined as the percentage of the total

number of correctly classified examples in all classes relative to the total number of

examples.

k-fold cross-validation can be used to estimate a model’s accuracy (Fürnkranz et al.,

2012). In Section 6.2.1, cross-validation is used to estimate the average accuracy of the

resulting models.

Once again, it is important to mention that, no matter how good the accuracy results

are, unless the scoring metric is the human ear, these do not indicate with certainty

how the results will be perceived. Therefore, from now on I will make the distinction

between user tests, in which we are interested in providing a subjective evaluation, and

accuracy results, which are intended to provide a general evaluation of the model.

3.5 Inductive Rule Learning Algorithms

This Section provides an overview of important covering algorithms. Throughout the

section, advantages, disadvantages and ideas taken for the development of the algo-

rithms presented in Chapters 4 and 6 are commented on, from the point of view of this

research.

67

3.5.1 AQ

The Algorithm Quasi-optimal (AQ) was introduced in the late sixties (Michalski, n.d.;

Cervone et al., 2010). Its name derives from its basis on an algorithm for determining

quasi-optimal solutions for the general covering problem. In fact, it shares many of the

functions and features with the covering algorithm described in Section 3.4.

It learns patterns form labeled data and handles multiclasses by considering, in turn,

each class as positive and all other classes as negative.

The algorithm has two operation modes, theory formation, and pattern discovery,

that guide the coverage-consistency of the extracted rules. For theory formation the

algorithm searches for rules that cover all the positive examples and do not cover any

of the negative. In its other mode, the algorithm accepts trading coverage to gain

simplicity of pattern. Also, the generated rules go through an optimization process

that generalizes and/or specializes the learned rules to simplify the patterns.

The AQ algorithm works with the so-called “star generation”, which selects a pos-

itive example (seed) from which to generalize. This process is repeated until all the

positive events are covered.

Newer versions of the algorithm use a top-down beam search to find the best rule

set. For multiclass problems, first, for each class, a seed sample is selected. Then,

for each example the most general rules covering it (and other examples with the same

class) are built. Then, the algorithm uses an evaluation function (that may consider, for

example, rule precision, number of false positives, etc) that evaluates the constructed

rules, selecting the one with the highest function value. As in the covering algorithm,

the examples covered by the selected rules are eliminated and the algorithm iterates

this process until the final criteria are met.

3.5.2 CN2

The CN2 algorithm was developed by (Clark and Niblett, 1989) and afterwards ex-

tended by (Clark and Boswell, 1991). The general idea was to combine the capacities

68

of the decision tree algorithm ID3 to avoid overfitting with those of the AQ algorithm

for rule induction. To combine a decision tree with a rule learning algorithm, the au-

thors observed that learning a rule is like learning a single branch of the tree. In order

to not overfit the induced concept, it is necessary to relax the constraint of classifying

the data perfectly.

The ID3 can manage noisy data because of its top-down approach. The AQ function

for refining rules is also general-to-specific. It only considers specializations that exclude

some covered negative examples, i.e, it only searches for refinements that are completely

consistent with the training data. With this in mind, they modified the AQ to remove

its dependence on specific examples and to enlarge the space of rules searched.

The search strategy in the CN2 is top-down. It starts with a rule that assigns all the

training data to a class (IF True THEN Class = C). Then, it performs a beam search

to refine the rule. For this, the algorithm can use measures such as the precision of the

rule or entropy measures. To relax the search, together with the training data, a set of

conditions is also used. These conditions guide the refinements, and the algorithm is

able to obtain more general and interpretable rules. The CN2 has the merit of being

the first rule learning algorithm to consider overfiting.

Other algorithms followed the idea of evaluating the resulting quality of refining a

rule by different means. For example, Foil is a relational learning algorithm (Quinlan,

1990) that uses information gain to evaluate how much a rule improves when refining

it.

3.5.3 RIPPER

Even though the algorithms mentioned focussed on overfitting, either their methods

were inefficient (for example the stopping criteria), or the size of the theory learned

grew with the size of the training set. RIPPER effectively countered overfitting. One

of the key ideas of this algorithm was to include a post-processing phase for optimizing

a rule considering other rules. For this, one rule, from a previous set learned during the

69

iterations, is removed, and the algorithm tries to relearn it again in the context of the

previous rules and the subsequent ones.

This algorithm (Cohen, 1995) creates logical conjunctive rules in a similar way as

decision trees do, i.e splitting the data using information gain. A rule is developed until

it covers examples of a single class. Then, the algorithm uses “incremental reduced error

pruning”. For this, the algorithm removes the last added conditions until the number

of correctly covered cases minus the number of incorrectly covered cases divided by the

number of covered cases is maximized. Once a rule is learned, the examples covered

are removed from the training set.

By using these strategies, the learned rules are more likely to represent strong pat-

terns rather than random occurrences.

3.5.4 PROGOL

PROGOL is an inductive logic programming system that mixes ideas of inductive pro-

gramming and the Algorithm Quasi-optimal. Considering a maximum inference depth,

it selects an example and computes a minimal generalization with respect to the avail-

able background knowledge. The resulting rule is then used for constraining the search

space in a top-down search that looks for the best generalization. Therefore, the algo-

rithm contrasts bottom information with a general-to-specific search. To find the best

generalization, the algorithm uses a variant of the best-first search. This is possible

given that the restriction of the space makes it manageable.

The idea of restricting the generalization using a threshold is also implemented in

the algorithm presented in Chapter 4

3.5.5 OPUS

Optimizing pruning for unordered search (OPUS) is a learning system that made fea-

sible the performance of an exhaustive search, trying all possible rule bodies to find

the one that maximizes a condition given by some heuristic. For that, the algorithm

70

uses an ordered search to avoid generating a rule more than once. For this, from the

l! possible orders of the l-conditions of a rule, only one can be used by the learner to

build the rule. In addition, OPUS prunes parts of the space to make it even smaller.

Given its capabilities to perform exhaustive search, this algorithm is especially popular

for association rules.

A similar idea of performing an exhaustive search in a restricted space is also applied

in the algorithm presented in Chapter 6. In that case, the search space is restricted

to analysis of only the parts of the space where rules of different classes intersect each

other. Then, to solve the contradictions, for a rule of length l, it is sufficient to try

l-possible partitions. Finally, to decide which partition to select, a heuristic (in this

case maximum space coverage) is used.

3.5.6 LR-FIR

The Linguistic Rules in a Fuzzy Inductive Reasoning Methodology (LR-FIR) (Castro et

al., 2011) is a rule extraction algorithm able to derive linguistic rules from the models

created by the Fuzzy Inductive Reasoning Methodology FIR (Escobet et al., 2008;

Escobet Canal et al., 2015).

This methodology performs two steps, fuzzification and qualitative modeling, to

produce the model from which the LR-FIR starts.

Fuzzification converts qualitative data into qualitative fuzzy data. For this, the

user defines the fuzzy sets (number and shape), which are used to convert the numeric

values into fuzzy descriptors. The FIR uses triplets that allow it to not lose information

containing the class, membership value and side of the membership function to which

the original data belongs.

Once the data is fuzzyfied, the qualitative modeling module looks for the model

that best predicts the future behavior of the studied system. The model’s structure in

the FIR methodology is called a mask. The model looks for relationships among the

variables that best determine the output of the system. The data is represented in the

71

following way:

Table 3.2: Values of the variables u1, u2 and y during tree δt temporal intervals.

Symbols “-” and ”+” represent mask inputs and mask outputs, respectively, and

“0” unused connections. Example taken from (Escobet et al., 2008).

Time u1 u2 y

t - 2δt −1 0 −2

t - δt 0 −3 0

t −4 0 +1

A mask denotes a dynamic relationship among variables. A mask considers a certain

number of rows, which represent the temporal domain that influence the output (in a

similar way to Markov chains of n-order). Table 3.2 shows an example of a mask.

The FIR methodology considers the ensemble of all possible masks, from which the

best is then chosen by exhaustive search (although genetic and tree algorithms are also

available). The system searches for masks of depth two, then three and so on until

the maximum depth is reached. The optimality of a mask is evaluated with respect to

its ability to forecast quantified by the Shannon entropy. The behavior of the system

is stored in a pattern rule-base, which contains registers of the values of the variables

together with their output. The LR-FIR uses the set of patterns as input.

The LR-FIR algorithm is important as it served, among other algorithms, as inspi-

ration for the algorithms developed in this manuscript (See for example (Mugica et al.,

2015)). The main processes performed by LR-FIR are shown in Figure 3.3.

First, LR-FIR removes the few represented behaviors. These patterns are eliminated

either by a threshold or by user inspection. Then, it performs basic compaction, in

which, for every premise, it looks for subsets of rules that can be compacted under the

following criteria: When all premises except one (called Pa) and the conclusion have

the same values, and all the seen values of Pa are represented in the subset, then the

72

Figure 3.3: Main processes of the LR-FIR algorithm. Figure from (Castro et al.,

2011).

rule can be compacted. In that case, LR-FIR places a “-1” to indicate that Pa “is not

important” in this case and that the set of rules can be compacted in a unique rule.

An example of this process is shown in Table 3.3. The example assumes that premise

Pa has only three different values in the training data.

Table 3.3: Example of the basic compaction step in LR-FIR.

Premises Consequent

Rule ID Pa P2 P3 consequent

1 1 2 2 2

2 2 2 2 2

3 3 2 2 2

Compacted Rule -1 2 2 2

In the basic compaction step, premises are reviewed from left to right. If, during the

basic compaction, more than a “-1” is going to be placed in a pattern, the algorithm

expands the rule to all its possible valid cases in which the premises have a “-1” and

73

checks for contradictions in the original rule base. Contradictions are considered when

two rules have the same values in all their premises but different value in the consequent.

If no contradictions are found, the compaction proceed.

One of the objectives of the LR-FIR is to provide a set of rules that is as compact

as possible. After the basic compaction, the algorithm has two possible processes to

improve compaction: All possible believes and ratio of believes.

In both cases, for each premise, the algorithm replaces it with a “-1”, creates all

the single rules that would be contained in the candidate rule (considering the “-1”)

and looks into the original rule base. If all possible beliefs is selected, it is sufficient

to be free of inconsistencies (contradictions) for the candidate rule (with the -1) to be

accepted. If the option ratio of beliefs is selected, for a rule to be accepted a ratio of

the instances contained in a rule have to be present in the original rule base.

Example of improving compaction

Consider, for example, Rule ID 6 = [2, 2, 1, 2] in the Basic compaction set of Table

3.4. Further down in the Table, the results of applying all possible beliefs and ratio of

beliefs to Rule ID 6 are shown. Lets focus on P2. The observed values for P2 are {1,2

3}.

Applying all possible beliefs to Rule ID 6, when substituting “-1” in P2, for the

“-1” to be accepted, it requires that no contradictions with rules: [2, 1, 1, 2], [2, 2, 1,

2][2, 3, 1, 2] exist. As this condition is fulfilled, 6-All-Possible-Beliefs [2, -1, -1, 2] has

a -1 in P2.

Applying ratio of beliefs to Rule ID 6, when substituting “-1” in P2, for the “-1” to

be accepted, it requires that no contradictions with rules: [2, 1, 1, 2], [2, 2, 1, 2][2, 3, 1,

2] exist and that a ratio of them exists in the original data. As only rule [2, 2, 1, 2] is

present in the original data, assuming, for example, a ratio of 2/3, the candidate rule

is not accepted, and 6-Ratio-of-Beliefs = [2, 2, -1, 2]. This contrasts with P3. When

substituting the “-1” in P3, either in all possible or ratio of beliefs, rules [2, 2, 1, 2] and

[2, 2, 2, 2] are in the original data, so the “-1” is accepted in both cases.

74

Table 3.4: LR-FIR compaction examples. From top to bottom: original dataset,

rule set resulting from the basic compaction, rules in the “basic compaction” that

change with the improved compaction process using all possible beliefs and ratio of

beliefs. Examples taken from (Castro et al., 2011).

Original data

Rule ID P1 P2 P3 consequent

1 1 1 2 1

2 1 2 1 1

3 1 2 2 2

4 1 3 1 2

5 1 3 2 2

6 2 2 1 2

7 2 3 2 2

8 2 2 2 2

Basic compaction

1 1 1 2 1

2 1 2 1 1

3-8 -1 2 2 2

4-5-7 -1 3 -1 2

6 2 2 1 2

Improve compaction all possible beliefs

1-All-Possible-Beliefs -1 1 -1 1

6-All-Possible-Beliefs 2 -1 -1 2

Improve compaction ratio of beliefs

6-Ratio-of-Beliefs 2 2 -1 2

75

After the improve compaction step, the LR-FIR algorithm has modules to remove

duplicated and conflicting rules. Conflicting rules are created in the context of the

LR-FIR as a consequence of the discretization of the space. After the conflicting rules

are removed, there is a module for unifying similar rules. This module follows the

design criteria of the LR-FIR, intended to produce a compact representation of the

data. Finally, a filtering process that eliminates “bad quality” rules is applied to the

rule set.

3.5.7 Mixed fuzzy rules

(Berthold, 2003) presents an induction algorithm that learns fuzzy rules directly from

examples, without the need of predefine fuzzy partitions for the class and attributes.

This algorithm is influenced by the ideas behind fuzzy graphs. According to (Zadeh,

1999), fuzzy graphs are a way to represent “imprecisely” defined dependencies among

variables. The general idea is to use fuzzy sets to represent the relationships among

variables (e.g among sets of attribute values and their labels).

When working with labeled datasets, fuzzy sets allow one to extend the crisp in-

formation to regions. For example, if only one point of class A is given, it represents

all of the known space. A model of this single observation will only contain that point

with its associated class. Let us suppose that another instance of class B “arrives”.

The ground truth that we have now is that one point in the space has class A and the

other class B. We do not know anything about the space between (or beyond) those

points. However, if we assume that the classes are continuous throughout the space

(other possibilities can also be considered but this is probably the most intuitive), it is

possible to use fuzzy sets to model how the transition between the classes occurs. For

example, we can assume that the membership to each class decreases as we move away

from those points whose class is known and vice versa. Figure 3.4 shows how the values

of a hypothetical attribute x relate with membership to classes A and B.

Using fuzzy sets, it is possible to approximate functions, contours and relationships;

76

Figure 3.4: Two fuzzy sets describing the membership of an x value to class A and

B.

Figure 3.5: From left to right, approximate representation of a function, a contour

and a relationship. Image taken form (Berthold and Huber, 1999).

77

this is shown with rectangular shapes in Figure 3.5. Although neural nets have proven

to be very good approximators, algorithms that create fuzzy graphs from examples have

lower complexity and the capacity to produce more interpretable outputs without the

need of algorithms to extract fuzzy rules out of neural nets (briefly described in Section

3.6).

Many algorithms for learning fuzzy rules directly from examples have been pro-

posed (Mordeson and Nair, 2012). They use different approaches either to simplify

the input variables or to learn its structure. However, these approaches either produce

complicated rule sets or need to adjust an apriori grid to the classes and attributes. To

create these grids we need to know in advance into how many fuzzy sets or classes each

parameter is divided. This task requires one to analyze the input data to infer and

adjust the membership functions, increasing the complexity of the algorithms. Other

algorithms consider equipartitions of the input space, then optimize the “right” number

of partitions for each parameter.

In (Berthold, 2003), the general idea is to learn from the examples as they arrive,

adjusting the existing model to the new evidence. A software implementation of the

algorithm is available at (Berthold et al., 2013). The algorithm uses trapezoidal mem-

bership functions for the rules. Each membership function has a core and a support.

The core of a membership function for a fuzzy set A is defined as that region of universe

satisfying that: µA(x) = 1 (i.e, all elements x ∈ X that have a complete membership

to the set A). The support of a membership function for a fuzzy set A is composed by

those elements x of the universe, such that µA(x) > 0 (i.e, all elements with non-zero

membership to the fuzzy set A).

Let us suppose that we have three attributes with respective hypothetical dimen-

sions:

D1 = [−10, 100]

D2 = {µlow, µhigh} with µlow(x) = 1 for x < 10 µhigh = 1− µlow

D3 = {red, black, blue}

78

Then, a possible rule within that space could have Supports : Csupp
1 = [35, 41), Csupp

2 =

true, and Csupp
3 = {red, black}. And Cores : Ccore

1 = [40, 41), Ccore
2 = {µlow}, and Ccore

3 =

{black}. When the support of any attribute equals true (e.g Csupp
2 = true), it indicates

that there is no evidence restricting that dimension.

The algorithm works incrementally; every time a new datum is included, the rules

are analyzed and modified accordingly. The algorithm keeps two parameters for inter-

nal use: w, which counts how many patterns are explained by a rule, and
−→
λ , which

remembers the training example that created the rule. The algorithm has three cases

that allow modification of the rule set each time a new example (−→x , class) arrives.

• Covered. If the new pattern is covered by a rule with the same class and does

not lie in the core, the core of the rule is extended. The extension covers the old

core together with the contribution of the instance. Also, the w of the rule is

increased.

• Commit. If no rule of the same class covers the pattern, a new rule is created.

The new rule is created as follows: Csupp
i = true, ∀ i and the core of the rule

equals −→x . The parameter
−→
λ equals −→x and w = 1.

• Shrink. If the new pattern touches a rule with a different class, there are two

possibilities:

1. If the new pattern lies in the support but not in the core, only the support

is shrunk.

2. If the pattern lies in the core, we have to shrink both core and support. For

this, we analyze all features, and we shrink the one causing the minimum

volume loss.

The algorithm runs several epochs. After presenting all the patterns, the rules are reset

in the following way: for each rule, core =
−→
λ , w = 0 and its supports are kept. With

this configuration, a new epoch starts. The model’s train finishes when, throughout

the epochs, the rule base does not change further.

79

The “Mixed fuzzy rules” algorithm is able to manage different data types and small

data as well. Its incremental nature, in the way it adds new information by adjusting

the existing rule set, inspired the algorithm presented in Chapter 6. However, it has

two characteristics that limit its use from the perspective of the tasks addressed in

this manuscript. First, the algorithm has no parameters to configure. This offers

simplicity but makes the algorithm a “one task tool”, which does not provide the

user with the opportunity to try different induction levels by controlling algorithm

parameters. Second, the result of the algorithm depends on the order of the attributes

of the input data. Therefore, the level of generalization for a given attribute might be

different according to its position. This forces the user to have apriori knowledge of the

attributes functionalities, to decide in which of these to seek more generalization.

3.6 Rule Learning Algorithms and Neural Networks

Models built by neural networks have great performance but are hard to interpret. This

has driven research in algorithms to construct symbolic rules out of trained neural nets

(Hailesilassie, 2016; Murdoch and Szlam, 2017). The neural network creates a model

from which the rule extraction algorithm derives a symbolic model. Another approach

that connects neural nets and rule learning consists of training an inference system

using a neural net, as is the case of Adaptive-Network-based Fuzzy Inference System

(ANFIS, Jang, 1993). Below, the general ideas behind these algorithms are presented.

Although the combined use of neural nets and rule extraction algorithms still does not

allow real-time feedback, reviewing its basics provides context of their possibilities.

3.6.1 Global algorithms

Consider the most general case, a binary classification in which all attributes take binary

values. Then, the space of possible inputs is given by the set of different combinations

that we can have where the attributes and the class take values 0 or 1. In such a case,

80

the performance of any trained network (having weights 0 or 1) would be equivalent to

a set of logical rules found by searching the space of attributes and class combinations.

To simplify this search, it is possible to use heuristics, such as restricting the number

of considered antecedents, the number of attributes that can take value of 0, etc.

An extension of this general approach that is able to handle intervals and continu-

ous inputs is the Validity Interval Analysis (VIA, Thrun, 1993). It extracts symbolic

if-then rules by analyzing the input output behavior of feedforward neural networks.

VIA searches for intervals with maximum activation range for each input, optimizing

the intervals by using linear programming. Then, these intervals (which can be con-

sidered rule-like knowledge) are propagated throughout the network (either forward or

backward).

VIA relies on a rule refinement algorithm that works on these created rules with the

form “if the input of the neural network is in the region Ri, then its output is in the

region R0”. The created regions are axis-parallel hypercubes defined by the intervals.

The refinement algorithm iteratively checks rules for inconsistency until it obtains a

final set. This process can be computationally expensive, so the extraction of the rules

requires time.

Neural network inversion methods seek to find one or more input values that produce

a desired output response given a fixed set of weights. The general ideas on inverting

feedfoward networks for symbolic rule extraction are clearly presented in (Jensen et al.,

1999). In (Hernández-Espinosa et al., 2003), an algorithm based on interval arithmetic

that works for particular target outputs is presented. It can create rules with N-

dimensional intervals in the input space.

The algorithm works on trained neural nets in the following way:

1. Select a point and calculate its output for the neural network.

2. Select an interval vector (target) that agrees with the classification class of the

output of the neural network.

3. Apply the inversion algorithm and extract a rule.

81

4. Select a new point (not included in the rules already obtained) and calculate the

neural network output for this new point.

5. Select a target that agrees with the output of the neural network.

6. Apply the inversion algorithm and extract a new rule.

7. Repeat from 4 until the input space is covered.

Generally speaking, neural network inversion algorithms can be broadly classified within

three categories: 1) exhaustive search 2) single-element search; and 3) population-based

evolutionary methods that operate on a population of potential solutions. They have

pros and cons. For example, exhaustive search is feasible when both the input dimension

and the range of the input variables are small. In single-element search, one search point

explores the space defined for fixed weights as a function of the inputs. The search can

be performed, for example, using gradient descent error backpropagation. Evolutionary

methods seek to minimize the objective function using populations of points, resulting

in numerous solutions. These approaches, depending on the search space, can also be

computationally expensive.

In general, the algorithms for rule extraction differ in the type of extracted rules and

the searching strategy. However, they have a common problem, their computational cost

increases exponentially with the number of parameters in the neural network (weights

or neurons). So, it is common to apply pruning algorithms to reduce the size of the

network before the application of the rule extraction method. Pruning algorithms might

create a coarse representation of the space, discard some weights, etc.

3.6.2 Local algorithms

Local algorithms do not analyze the whole network but parts of it, normally a single

hidden neuron. The general idea is to consider the inputs of the analyzed node and to

understand how the other neurons contribute to its activation. These actions are then

translated into rules.

82

To understand the idea behind these algorithms, consider the simplest case: using

step functions such that the output of each neuron is binary. Then, we aggregate the

contributions reaching a neuron using a sigmoidal function. As sigmoidal functions

preserve (or reverse) the order of the input-output values, and its range equals [0, 1],

the contributions to the neuron only depend on the sign of the weights. In this way, the

contribution of the network nodes to the single neuron can be estimated. Analyzing

the network for rules with these conditions is equivalent to considering the 2n possible

combinations of activation or non-activation of the neurons. Once again, there is a need

to restrict the search. For example, the weights can limit the search tree by identifying

the nodes that contribute more to the rule antecedents. Some approaches analyze the

largest weights and whether they provide a sufficient explanation for the activation of

the selected, hidden neuron. Variations of these algorithms can be found in the litera-

ture of local searches, see for example (Chorowski and Zurada, 2011).

Some general considerations regarding global and local algorithms are: 1) Before

applying any algorithm the neural net has to be trained. 2) They simplify the input

output space to offer interpretable and compact representations. As is discussed in

Chapters 2 and 4, live coding has different requirements (e.g real-time feedback or being

able to work directly with the synthesizer parameter values) although these design

considerations are useful in some application domains. In (Bell, Dec. 9, 2014; Paz,

April 3, 2020), the synthesizer parameter values are shown to the audience both as an

aesthetic artifact and to communicate the decisions made during the performance.

3.6.3 M-of-N rules

M-of-N rules are naturally implemented by analyzing network nodes and estimating

which are the more influential links for a particular neuron (discarding or simplifying

the others). To do this, the network is simplified. Some algorithms, for example, group

similar weights and replace them by their mean. Groups that have little influence can

83

be eliminated. In such a way, the network is simplified and more simple rules can be

extracted by the network analysis. One of the algorithms using this technique is the

Knowledge-Based Neural Network algorithm (Towell et al., 1990). Another possibility

is simplifying the neural net via regularization. This can be applied either in the

cost function or in the sum of the absolute values of the weights. For example, if only

weights smaller than a certain threshold are allowed, the hidden units become inactive or

completely active. See for example (Géczy and Usui, 1999). In the MLP2NL algorithm,

the weights of an MLP hidden layer are forced to be {-1,0,1}.

Incremental algorithms, such as “Rule extraction as learning” (Craven and Shavlik,

1994) and RULENEG (Andrews et al., 1995), create one cunjunctive rule for each input

pattern (adding it to R). Then, each time a new training input is not correctly classified

by an existing rule in R, a new rule is created and possible contradictions adjusted.

Other rule-based approaches, (e.g Tickle et al., 1994; Craven and Shavlik, 1996) use

the trained network as a predictor to compare variations of the training set in order to

find the minimal information necessary in a pattern for it to be distinguished by the

network.

3.6.4 Neuro-fuzzy systems

Neuro fuzzy systems are fuzzy systems that are trained with Neural Networks Algo-

rithms. For example, a fuzzy controller can be represented using the structure of a

neural net and then trained using algorithms such as backpropagation or genetic. In

the Mamdani approach, the Neuro-fuzzy system has the following components: Input

layer, Fuzzification, AND operation, Fuzzy inference and Defuzzification. These layers

can be seen in Figure 3.6, which describes a control system for an intelligent autonomous

robot in (Pratihar and Pratihar, 2017).

Neuro-fuzzy systems were developed to overcome concerns about the computational

speed and complexity required for building interpretable predictive models. The most

used inference system is the Takagi-Sugeno-Kang (TSK), which is capable of mod-

84

Figure 3.6: Distinct layers of a Mamdani-type neuro-fuzzy system. In the Fuzzyfica-

tion layer the linguistic categories established for each variable can be appreciated.

elling non linear dynamic systems by combining sublinear models. For instance, the

Adaptive neuro fuzzy inference system (ANFIS) uses TSK. It defines parameter sets

for premises and consequences and then uses the inference system to define the fuzzy

if-then rules that relate the sets. A complete survey of Neuro-fuzzy systems is pre-

sented in (Shihabudheen and Pillai, 2018). The authors classify the techniques in five

general categories based on their learning algorithm. These are: Gradient, Hybrid,

Population-based, Extreme learning machine based and SVM based.

Gradient descendent

Gradient descendent neuro-fuzzy systems employ either TSK or Mamdani inference

models, training their parameters by means of backpropagtion (or variations of the

algorithm). For example, it is possible to learn all the parameters of the membership

functions, consequents and feedback structure of a recurrent neural net using ordered

85

derivative back-propagation. Many neuro-fuzzy systems are used for control. For exam-

ple, from all the systems using backpropagation in (Shihabudheen and Pillai, 2018) only

(Chakraborty and Pal, 2004) is used for classification. It allows the performance of fea-

ture selection and learning a classifier. The architecture uses a four-layered feed-forward

network to build a fuzzy rule-based classifier, training the network with backpropaga-

tion in three phases of learning and pruning.

Gradient descendent-based methods are generally very slow, because they normally

have improper learning steps. For example, in (Chakraborty and Pal, 2004), for the

first step the network, learns the important features, and then it is pruned. Also, they

can easily get trapped in local minima, for which iterative learning steps are required.

Hybrid neuro-fuzzy systems

Hybrid neuro-fuzzy systems use two or more learning techniques to find the parameters

of the network, fuzzy sets, etc. Most of the systems are self-organizing neuro-fuzzy

systems. These methods, although capable of easily escaping local minima, require

time to be properly trained. In (Karaboga and Kaya, 2019), a survey on approaches to

Adaptive network-based fuzzy inference system training is presented.

Population based neuro-fuzzy systems

When backpropagation is used to train the network, the algorithms can fall into local

minima. These algorithms are also hard to apply when the derivative is hard to obtain.

In such cases, population based neuro-fuzzy system are an alternative. Among popula-

tion based systems, architectures are basically all types of evolutionary algorithms (e.g

genetic algorithms, differential evolution, ant colony optimization, artificial bee colony

and particle swarm optimization). These algorithms are used to optimize the network

and the parameters of the membership functions. An extensive survey on these systems

is presented in (Shihabudheen and Pillai, 2018).

86

Suport vector neuro-fuzzy systems

Support vector machines gained a great deal of attention given their powerful classi-

fication capacities. The main difference between them and other classifiers is, instead

of minimizing the squared error, they search for vector points that define the decision

boundary. To do that, they look for a decision border that maximizes the separation

boundary, while, at the same time, minimizing the number of misclassified points (this

process is controlled by the regularization parameter). SVM can be also used for re-

gression problems by means of the ϵ-insensitive loss function, which is required to solve

a quadratic programming problem normally involving a great number of parameters to

optimize. Different proposals to simplify this problem have been presented. In par-

ticular, in Fuzzy support vector machines, a fuzzy membership function is assigned to

each input point. The fuzzy nature implies that different input points, with distinct

memberships, contribute in a different way to the decision surface. As an example of

support vector machines and neuro-fuzzy systems, see (Miranian and Abdollahzade,

2012). Therein, a local neuro-fuzzy approach based on the architecture of least-squares

support vector machines is proposed for the analysis of chaotic time series.

Neuro-fuzzy systems based on extreme learning machines

In extreme learning machines (ELM), the parameters of hidden networks are selected

randomly while the parameters of the input output neurons are analyzed using mini-

mum norm least-squares estimation. This choice, reduces the computational time (in

comparison with feedforward networks). ELM seek to obtain the smallest training error

together with the smallest norm of the output weights. If conventional networks are

replaced by ELM, we obtain an ELM based neuro-fuzzy approach. In the majority of

the ELM neuro-fuzzy systems, the membership function of the fuzzy system can be

tuned by ELMs reducing the tuning time required to tune the membership functions

in other approaches. (Shihabudheen et al., 2018) present a system based on parti-

cle swarm optimization for extreme learning neuro-fuzzy systems (tested for regression

87

and classification), and (Pillai et al., 2014) present extreme learning ANFIS for control

applications.

3.7 Conclusion

Symbolic rules provide high-level (human-readable) descriptions of systems behavior.

Inductive algorithms are able to build general models out of label observations. In the

context of this research, single parameter combinations labeled by the user provide the

type of data needed for inductive learning. The most common algorithms for inductive

learning of symbolic descriptors are decision trees and symbolic rule learners. However,

decision trees are more complex to understand than rule learning algorithms.

In a live coding context, we seek interpretable models, built through a generaliza-

tion process that allows real time feedback and is controllable by means of meaningful

parameters. Therefore, allowing us to build different models mid-performance, while

exploring different degrees of variation of the input data.

Many rule learning algorithms have been proposed. However, the tasks for which

they are designed, to automatically build a general compact model of the system under

study, make these algorithms not directly applicable to the tasks addressed here.

Many rule learning algorithms require coarse partitions of the input and output

spaces to be defined by the user. This requires knowledge of the input/output variables.

Other systems learn these partitions, but they have to iteratively optimize them, which

is time consuming and real time feedback is lost. Most of the algorithms seek to create

as few rules as possible (normally selecting the more general ones by pruning) as they

are designed to process big data sets. In such cases, general patterns are preserved but

variability might be lost within the process.

Algorithms for extracting symbolic rules out of trained neural nets have been pro-

posed. Neural networks are great function approximators. However, most algorithms

required the input data to be continuous given the numerical way the neural nets op-

erate. Some algorithms only operate with binary data, while others have to discretize

88

the inputs before processing them. Once again, the objective of the algorithms is to

simplify the underlying neural model by approximating it by logical rules. For that, a

great part of the algorithm focusses on finding good linguistic variables that translate

the underlying network into symbolic rules.

Neuro-fuzzy systems are versatile but hard to apply in in real time. In addition,

many of the systems assume that the number and shape of the membership functions

is known in advance. Whenever the shape and number of the membership functions is

not known in advance, these can be learned or adjusted (e.g Alcalá-Fdez et al., 2009).

This, on the other hand, increases the computational cost as well as the complexity for

the operation of the algorithms.

Moreover, even knowing the right number of membership functions some continuity

in the parameters is assumed, i.e low, medium, high. Synthesizers’ parameters do

not always satisfy this property. For instance, a parameter describing the wave form

can take values: Sinusoidal, Sawtooth, Triangular or Square. Furthermore, if clustering

algorithms are used to infer the membership functions, such clusters can rapidly change

with the introduction of new data.

Generally speaking, the training times and the software complexities of the neuro-

fuzzy systems are so big that there is ongoing research looking for hardware implemen-

tations. See, for example, the work by (Bosque et al., 2014), which presents a historical

review of hardware implementation and platforms for fuzzy systems, neural networks

and neuro-fuzzy systems.

Considering the restrictions imposed by on-the-fly artistic programming, symbolic

rule learning algorithms that do not assume previous knowledge of the variables and

that allow control of the induction process inspired the algorithms of Chapters 4 and

6. These algorithms are described in (Berthold, 2003; Castro et al., 2011). Essentially,

two things were sought. First, the algorithm needed to allow for control of the amount

of induction to be carried out on the input data. Second, the user must not need prior

knowledge of the system under study (although it is OK if she does!).

89

Chapter 4

Synthesizer Programming with

Rule Learning (RuLer)

This Chapter introduces the rule learning algorithm “RuLer”, proposed in this

manuscript for on-the-fly synthesizer programming. The Chapter starts by dis-

cussing the use of inductive rule learning for synthesizer programming and the

algorithm requirements from the live coding perspective. Then, the algorithm is

presented alongside basic rule extraction examples to give the reader a taste of

its possibilities. The Chapter finishes with the algorithm evaluation, including

two parts: the first focuses on subjective perception and includes user tests, in

which experienced livecoders evaluate the new generated instances, as well as a

section describing the performances, recordings and criticisms received. The sec-

ond part focuses on numerical analysis of the RuLer inductive capacities, by using

it for oversampling tasks. This part is presented, given its extension, in Chapter 5.

The phrase “live coding” implies programming sound synthesis algorithms in real time.

To do this, one possibility is to have an algorithm that automatically creates variations

out of a few presets1. However, the need for real-time feedback and the small size of the

1A preset is a configuration of a sound synthesis algorithm together with a label describing the

resulting sound selected by the user (Paz, 2019b).

90

data sets, which can even be collected mid-performance, act as constraints that make

existing automatic synthesizer programmers and other learning algorithms unfeasible

to use. Furthermore, the design of such algorithms is not oriented to create variations

of a sound but to find the synthesizer parameters that match a given one.

Inductive learning of symbolic rules allows one to build general models from single

labeled observations. Nonetheless, the restrictions imposed by the live coding practice

suggest the need for algorithms that do not assume previous knowledge of the variables,

provide real-time feedback and allow control of the induction process. This Chapter

builds the proposal of a symbolic rule learning algorithm upon these restrictions.

Experienced live coding practitioners will of course notice that it is possible to

modify the synthesizer on-the-fly, which is basically modifying the instrument during

the performance. In this case, the synthesizer’s parameters or its function may change.

This can always be done and, as some authors point out, the performer must be willing

to welcome surprises both good and bad. Nonetheless, for the purposes of this study,

and as all synthesizer programming literature does, we will assume that the instrument

does not change.
As an example of how an algorithm can be rewritten, consider the following three

modifications of a SuperCollider node proxy named “\x” that contains a synthesis al-
gorithm:

Ndef(\x,{

arg freq, freq1, amp;

var sig = SinOsc.ar([freq, freq + 1, freq1, freq1 - 2],0, amp);

})

Ndef(\x,{

arg freq, freq1, amp, mix, room, damp;

var sig = SinOsc.ar([freq, freq + 1, freq1, freq1 - 2],0, amp);

sig = FreeVerb.ar(sig, mix, room, damp)

})

91

Ndef(\x,{

arg freq, freq1, amp, mix, room, damp;

var sig = Saw.ar([freq, freq + 1, freq1, freq1 - 2], amp);

sig = FreeVerb.ar(sig, SinOsc.kr(mix), SinOsc.kr(room), SinOsc.kr(damp))

})

The first Ndef has parameters freq, freq1, which control two sinusoidal oscillators,

and amp, which controls their amplitudes. In the second Ndef, a reverb “FreeVerb”

with parameters mix, room and damp is added. Finally, in the third Ndef, parameters

mix, room and damp control sinusoidal oscillators that modulate the parameters mix,

room and damp of the FreeVerb. In addition, the sound wave is not sinusoidal but

sawtooth.

By tweaking parameters, the live coder explores, categorizes and selects the ap-

propriate combinations for different musical contexts. Thus, a piece can be seen as a

succession of combinations creating its own spatial and temporal structures. From this

perspective, coding a piece on-the-fly requires guiding the sound by changing the pa-

rameter settings. Such a task, as discussed in Section 2.1, imposes cognitive challenges

due to the huge size of devices’ parameter spaces and due to the possibility of non-linear

sound variation built-in within them (Dahlstedt, 2001b). Therefore, one possibility is

to have some pre-selected parameter combinations, of which the aural result is known

as a starting point for the performance. However, when only a few combinations are

used, the performance can quickly become repetitive and boring for the listener, and

again, remembering many combinations imposes practical challenges. Generative algo-

rithms (McLean and Dean, 2018) have been used to address this problem by automating

the production of low-level material, while the coder works on guiding the high-level

evolution of the piece.

This section introduces “RuLer”, a rule learning algorithm that inductively gener-

alizes labeled combinations of parameters. The labels are linguistic descriptors for the

perceptual characteristics of the sound, the intended musical context for each combina-

tion, etc. The algorithm produces different degrees of variations of the input material

92

controlled by the algorithm parameters. For that, the algorithm searches for patterns

based on a dissimilarity function and constructs new rules that generalize the input

data. The production of rules (given the “create rule” function used in Section 4.1.4)

performs crossover mutations of the original material in a similar way as genetic al-

gorithms do. The tensions and relaxations created by the recombination levels of the

material can be used to conduct the dynamicity of the sound. From this perspective,

the algorithm accompanies a directed search in a vast space of possibilities, which can

be used as a compositional tool.

4.1 Inductive Rule Learning for Automatic Synthe-

sizer Programming

4.1.1 Algorithm requirements

As discussed previously, the context for which the algorithm was developed imposes

specific requirements:

• Capacity to work with different data types, e.g numerical, categorical, etc. This is

because sound synthesizer parameters can be of different types. For instance, the

frequency of an oscillator is numerical, while the waveform selection is categorical

(e.g sinusoidal, sawtooth, triangular, or square).

• Production of good results for small datasets. If the parameter combinations are

selected by a human, the bottleneck is given by its capacities to collect data.

Besides, there are occasions when we want to extend a set of combinations that

already exists (as is the case in the example presented in Table 4.6, which has

only thirteen presets). In this case, the problem is not the inability to gather

more data but that the data sets are small by nature.

• Order independence. If the output depends on the order of the input data, the

level of generalization might not be the same for all the variables. For example, if

93

pattern-seeking comparisons are performed by pairs, and the compaction process

eliminates information to simplify the rule, there might be patterns that will

be lost in this process. As devices parameters modify the sound with different

degrees of expressiveness2, the user would need to have the musical knowledge (of

the parameters and their interactions) to sort the data accordingly and get the

“best model”.

• Control of the induction process. As the algorithm is intended to be, in the

sense described in (Magnusson, 2019), an extension of our expressive capacities,

its parameters have to provide the user with simple and interpretable controls of

the induction process. Specifically, to define how much new material is included

in the resulting rules and how dissimilar two presets can be to be used for the

induction process.

• Production of an interpretable output since it is a tool to support the composition

and analysis of music.

• Allowing of real-time feedback.

4.1.2 RuLer: a rule learning algorithm

RuLer is an inductive rule learning algorithm designed in the context of live coding for

automatic synthesizers programming (Paz, 2019b). It takes as input a set of labeled

presets (e.g “intro” for the introduction of a piece or “harsh” as a linguistic label).

Then, from those presets, a set of IF-THEN rules generalizing them is obtained. The

generalization process is based on the patterns found through the iterative comparison

of the presets. To compare the presets, a dissimilarity function receives a pair of them

and returns True whenever they are similar enough according to the specific form of

the function and a given threshold. The dissimilarity threshold (d ∈ N) is established

by the user. The algorithm works as follows:

2Think, for example, of the parameters controlling the amplitude and the frequency of an oscillator.

94

• Each preset is considered an IF-THEN rule and represented as an array of size N .

Its first N − 1 entries (the rule antecedents) correspond to one parameter of the

synthesis algorithm, and the last entry to the label is assigned to the combination

(rule consequent). For example, a rule r = [{3}, {5}, intro] is read in the following

way: “if the first parameter takes a value of 3 and the second a value of 5, then

the preset label is intro”. A rule r = [{1,2,3}, {7}, . . . , {3}, intro] is read as:

IF r [1] = 1 OR 2 OR 3 AND r [2] = 7 AND . . . AND r [N−1] = 3 THEN, label

= intro. The rules are stored in a list, so they can be accessed by its index.

The algorithm iterates as follows, until no new rules can be created:

1. Take the first rule from the rule set (list).

2. Compare the selected rule with the other rules using the dissimilarity func-

tion (Section 4.1.3). If a pattern is found, (i.e. the rules have the same class

and the dissimilarity between them is less than or equal to the threshold

d established by the user), create a new rule using the create rule function

(Section 4.1.4).

3. Eliminate the redundant rules from the current set. A rule r1 is redundant

with respect to a rule r2 (of the same class) if ∀ i ∈ {0, . . . N−1}, r1[i] ⊂

r2[i]. Note that other definitions of redundancy can be used.

• Append the created rules to the end of the rule set.

4.1.3 Dissimilarity function

The dissimilarity function receives two rules (r1, r2) together with a threshold d ∈ N

and returns True if the rules have the same category and dissimilarity(r1, r2) ≤ d. It

returns False otherwise. The parameter d is an input parameter of the algorithm.

The dissimilarity function, currently implemented in the RuLer algorithm, counts

the number of empty intersections between the sets of the corresponding entries in

95

the rules. For example, if r1 = [{1}, {3,5}, intro] and r2 = [{1,3}, {7,11}, intro], dis-

similarity(r1,r2) = 1. If r1 = [{1}, {3,5,7}, intro] and r2 = [{1,3}, {7,11}, intro],

dissimilarity(r1,r2) = 0.

4.1.4 Create Rule function

This functions receives pairs of rules r1, r2, satisfying that dissimilarity(r1, r2) ≤ d.

Then, it creates a new rule according to the way it is defined. The function currently

used creates a new rule by taking the unions of the corresponding sets of the rules

received. For example, if r1 = [{1}, {3,5,7}, intro] and r2 = [{1,3}, {7,11}, intro],

then r1,2 = [{1,3}, {3,5,7,11}, intro]. The candidate rule is accepted if the following

conditions are met:

1. No contradictions (i.e., rules with the same parameter values but different label)

are found during the generalization process.

2. From all the possible presets contained in the candidate rule, the percentage of

them contained in the original data are greater than or equal to a ratio ∈ [0,1].

This number is also an input parameter of the algorithm defined by the user. A

ratio = 1 implies that 100% of the instances contained in a candidate rule have

to be present in the input data for the rule to be accepted, while a ratio = 0.5

needs 50% of the instances, etc. For example, for the previous candidate rule r1,2

= [{1,3}, {3,5,7,11}, intro] all the possible presets contained in r1,2 are: [{1},

{3}, intro], [{1}, {5}, intro], [{1}, {7}, intro], [{1}, {11}, intro], [{3}, {3},

intro], [{3}, {5}, intro], [{3}, {7}, intro], [{3}, {11}, intro]. If a ratio = 1

is defined, all eight combinations should exist in the input data for the rule to be

accepted. If ratio = 0.5, half of them should be present in the original presets.

96

4.1.5 Domain specific functions

Note that the dissimilarity and create rule functions can be changed according to the

objects being compared and the desired generalization. For example, for harmonic

objects, we probably want a dissimilarity that looks at harmonic content, while for

rhythms, temporal factors need to be addressed. See (Toussaint, 2004), for a comparison

of rhythmic similarity measures.

The pseudocode for the rule extraction process is shown in Algorithm 3.

4.2 Simple Rule Extraction Examples

4.2.1 Example 1: setting d = 1 and ratio = 1

Given r1, r2, d = 1 and ratio = 1, the algorithm creates a new rule if:

1. The dissimilarity between r1 and r2 ≤ 1.

2. All the instances contained in the new rule are present in the original input data.

Table 4.1 shows a rule extraction example for this setting, using a set of combinations,

all categorized as intro, with only two parameters.

The original dataset is composed of four rules numbered r1, ... r4. The algorithm

starts by comparing r1 with r2, r3 and r4. Then, it compares r2 with r3 and r4, and

so on. The created rules are appended (in order) at the end of the rule set. Their

subindexes represent the rules from which they where created. When the last two rules

of the current rule set have been compared (in this case r3 and r4), the redundant

rules are eliminated. The rule set, located after eliminating the redundant rules of

the first iteration, contains the original rules plus those that have been created during

the iteration. In this case, the first created rule is r1,3, as r1,2 cannot be created as

dissimilarity(r1,r2)= 2.

After deleting the redundant rules, a second iteration, now using r1,3, r1,4, r2,4 and

r3,4, is performed. Comparing the first two rules, r1,3 and r1,4, rule r1,3,4 is created.

97

Algorithm 3 Rule extraction process

1: function rule extraction algorithm(rules, d, ratio)

Require: rules, d:∈ N, ratio ∈ [0, 1]

2: newRules ← []

3: for i← 0 to size of rules do

4: r1 = rules[i]

5: for j ← i+ 1 to size of rules do

6: r2 = rules[j]

7: pattern = dissimilarity(r1, r2, d)

8: if pattern then

9: rule = create rule(r1, r2, ratio, rules)

10: if rule then

11: newRules.append(rule)

12: end if

13: end if

14: end for

15: end for

16: rules.append(newRules)

17: rules = delete redundant(rules)

18: return rules

19: end function

98

Next, comparing rules r1,3 with r2,4, rule r1,2,3,4 = [{1,2,3}, {1,2}, intro] is created.

However, as ratio = 1, all the rules contained in the new rule must be present in

the original input, which is not the case for [{3}, {1}, intro], so the rule is rejected.

Comparing the rest of the rules, no new rules are created. By eliminating the redundant

rules after the second iteration, we get the final rule set. When comparing the two final

rules, no new rules are created, so the algorithm ends. Note that in this example no

generalization is produced.

4.2.2 Example 2: using d = 2 and ratio = 3/4

Table 4.2 shows a rule extraction example using d = 2 and ratio = 3/4 on the same

data set of the example presented in Table 4.1.

In the first iteration, all the created rules are accepted. In the second iteration,

comparing any two rules, the rule r = [{1,2,3}, {1,2}, intro] is created, as in the

previous example. This rule contains the instances shown in Table 4.3. Instances 1 and

5, marked with an “*”, are not present in the original dataset. Since 4
6
< 3

4
, the rule

is rejected; therefore, no new rules are created, and the algorithm ends. However, note

that in this case a generalization is produced, since the combinations [{1}, {1}, intro]

and [{3}, {2}, intro] that appear in the final rule set do not appear in the original rule

set.

4.2.3 RuLer characteristics

The RuLer algorithm is designed to return all existing patterns, as its main intention

is to offer all possibilities for creating new instances, expressing as rules those pairs

of instances satisfying dissimilarity(r1, r2) ≤ d. Therefore, it is possible for a single

instance, let us call it r2, to be included in more than one valid rule if r1, r2 and r3

are single rules that satisfy: dissimilarity(r1, r2) ≤ d, dissimilarity(r2, r3) ≤ d and

dissimilarity(r1, r3) > d.

To illustrate this case, consider the dataset of Table 4.4.

99

Table 4.1: Rule extraction example using d = 1 and ratio = 1.

Original Parameter values and category

Rule set p1 p2 category

r1 {1} {2} intro

r2 {2} {1} intro

r3 {3} {2} intro

r4 {2} {2} intro

First Parameter values and category

Iteration p1 p2 category

r1 {1} {2} intro

r2 {2} {1} intro

r3 {3} {2} intro

r4 {2} {2} intro

r1,3 {1,3} {2} intro

r1,4 {1,2} {2} intro

r2,4 {2} {1,2} intro

r3,4 {3,2} {2} intro

Delete redundant rules after first iteration

Input for Parameter values and category

Second iteration p1 p2 category

r1,3 {1,3} {2} intro

r1,4 {1,2} {2} intro

r2,4 {2} {1,2} intro

r3,4 {3,2} {2} intro

Second Parameter values and category

Iteration p1 p2 category

r1,3 {1,3} {2} intro

r1,4 {1,2} {2} intro

r2,4 {2} {1,2} intro

r3,4 {3,2} {2} intro

r1,3,4 {1,2,3} {2} intro

Delete redundant rules after second iteration

Final Parameter values and category

Rule set p1 p2 category

r2,4 {2} {1,2} intro

r1,3,4 {1,2,3} {2} intro

100

Table 4.2: Rule extraction example using d = 2 and ratio = 3/4.

Original Parameter values and category

Rule set p1 p2 category

r1 {1} {2} intro

r2 {2} {1} intro

r3 {3} {2} intro

r4 {2} {2} intro

First Parameter values and category

Iteration p1 p2 category

r1 {1} {2} intro

r2 {2} {1} intro

r3 {3} {2} intro

r4 {2} {2} intro

r1,2 {1,2} {1,2} intro

r1,3 {1,3} {2} intro

r1,4 {1,2} {2} intro

r2,3 {2,3} {1,2} intro

r2,4 {2} {1,2} intro

r3,4 {3,2} {2} intro

Delete redundant rules after first iteration

Input for Parameter values and category

Second iteration p1 p2 category

r1,2 {1,2} {1,2} intro

r1,3 {1,3} {2} intro

r2,3 {2,3} {1,2} intro

Final Parameter values and category

Rule set p1 p2 category

r1,2 {1,2} {1,2} intro

r1,3 {1,3} {2} intro

r2,3 {2,3} {1,2} intro

101

Table 4.3: Rules contained in rule r at the top of the Table. Rules 1 and 5 marked

with an “*” are not contained in the original ruleset of Examples 1 and 2.

Rules contained Parameter values and category

in rule r p1 p2 category

r {1,2,3} {1,2} intro

1 * {1} {1} intro

2 {1} {2} intro

3 {2} {1} intro

4 {2} {2} intro

5 * {3} {1} intro

6 {3} {2} intro

Table 4.4: Dataset to illustrate instances that appear in more than one rule.

Rule Parameter1 Parameter2 Class

r1 {3} {2} intro

r2 {2} {2} intro

r3 {1} {2} intro

r4 {2} {1} intro

The RuLer algorithm with parameters d = 1 and ratio = 1 produces the rules:

[{2}, {1, 2}, ’intro’], [{1, 2, 3}, {2}, ’intro’]. These rules are shown, with their possible

extensions in a solid line and a dashed line respectively, at the left of Figure 4.1.

102

0 1 2 3 4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

All existing patterns expressed

PARAMETER 1

PA
R

A
M

E
T

E
R

 2

0 1 2 3 4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Uncomplete existing patterns

PARAMETER 1

PA
R

A
M

E
T

E
R

 2
Figure 4.1: Resulting rules using data of Table 4.4 with their possible extensions

in a solid line and a dashed line. Left, extracted by the RuLer algorithm with

parameters d = 1 and ratio = 1. Right, extracted by using the Hamming distance

d = 1 and, whenever a pattern is found, creating a new rule by taking the unions of

the parameter values and eliminating the component rules.

Notice that the combination [{2},{2},’intro’] is present in both rules. As mentioned,

if this were not the case, one of the patterns might fail to return to the user. To illustrate

this, consider the same dataset and let us use the Hamming distance (d = 1) as the

similarity function. Then, suppose that the create rule function, whenever a pattern is

found, creates a rule by taking the unions of the parameters of the respective rules and

eliminating the component rules after producing the new one. With these conditions,

comparing r1 and r2 produces the rule r1,2 = [{2,3},{2},’intro’]. This rule will not

produce another rule when compared with the remaining data: r3 = [{1},{2},’intro’] and

r4 = [{2},{1},’intro’]. Therefore, the resulting rule set is: r1,2 = [{2,3}{2},’intro’], r3 =

[{1},{2},’intro’] and r4 = [{2},{1},’intro’]. This is shown at the right of Figure 4.1. The

resulting rule set does not express the existing patterns between [{2},{1},’intro’] and

[{2},{2},’intro’] nor between [{1},{2},’intro’] and [{2},{2},’intro’] or [{3},{2},’intro’].

To avoid this, the create rule and the dissimilarity function were conceived to return

103

all patterns found in the data.

Regarding how d and ratio work, consider the simple set of individual rules presented

in Table 4.5.

Table 4.5: Dataset to illustrate instances that appear in more than one rule.

Original presets

{1} {4} {6} ‘a’

{2} {5} {6} ‘a’

{3} {6} {6} ‘a’

Rule set extracted with d = 2 ratio = 1/4

{1, 2, 3} {4, 5, 6} {6} ‘a’

Rule set extracted with d = 2 ratio = 1/2

{1, 2} {4, 5} {6} ‘a’

{1, 3} {4, 6} {6} ‘a’

{2, 3} {5, 6} {6} ‘a’

If d = 2 and ratio = 1/4, the single rule that models the dataset is in the middle

section of Table 4.5. The number of allowed empty intersections among the single rules

at the top of the Table is two. Then, every pair of rules can be compacted into a new

rule during the process. As the ratio of single rules that have to be contained in the

original data for any created rule is 1/4, the rule in the middle section can be created

as it contains all the instances in the original data, which is 1/3 of the number of single

instances of the rule (nine). Note that this is true if all seen values are: for the first

attribute: 1, 2 and 3; for the second attribute: 4, 5 and 6; for the third attribute: 6.

If d = 2 and ratio = 1/2, the rule model extracted by the algorithm is presented

at the bottom of Table 4.5. In this case, half of the instances contained in any created

rule must be in the original data, and the rule at the middle of Table 4.5 cannot be

created.

The parameter ratio is constant during the extraction process because it defines the

104

level of generalization that the user of the algorithm wants to explore. The ratio allows

for the extension of the knowledge base to cases that have not been previously used to

build the model. If the user is more conservative, the ratio should be closer to 1. If the

goal is to be more exploratory, lower ratios are needed.

The algorithm complexity serves to estimate its performance. If m is the size of

input data, the algorithm complexity is O(m ∗ (m − 1)). This complexity considers

the dissimilarity and create rule functions described. This complexity is better than

the previous versions of the algorithm presented in (Paz et al., 2016; Paz et al., 2017),

given by O(2m − 1).

To create a rule, the algorithm presented in (Paz et al., 2016) compares the input

data using the Hamming distance and requires that all the observed values of a param-

eter are present in the candidate instances to be compacted. For example, the following

input data set: [1, 1, harsh], [1, 2, harsh], [1, 3, harsh], [1, 11, harsh] with d = 1, will

produce the rule: IF the first parameter has a value of 1, THEN the class is harsh.

But if the set is: [1, 1, harsh], [1, 2, harsh], [1, 3, harsh], [1, 11, soft], it cannot be

compacted by this algorithm (as there exist the combination [1, 11] with class soft).

The algorithm described in (Paz et al., 2017) overcomes this limitation by requiring

the user to define compaction intervals. This algorithm uses the Hamming distance

and, for each interval, requires that all the observed values of a parameter are present

in the candidate instances to be compacted.

For example, the input data set of [1, 1, harsh], [1, 2, harsh], [1, 3, harsh], [1, 11,

soft] with the intervals [1-10], (10-20] for the second parameter and d = 1 would create

the rules: IF the first parameter has a value of 1, THEN the class is harsh; and IF

the first parameter has a value of 11, THEN the class is soft. That is, the algorithm

compacts the instances only if the intervals selected by the user separate the classes

harsh and soft. If, otherwise, the intervals do not separate the classes (e.g using interval

[1-20] for the second parameter), the algorithm does not produce any rules.

105

4.3 Evaluation

4.3.1 Evaluation of automatic synthesizer programming algo-

rithms

Automatic synthesizer programming algorithms are usually evaluated by listener sur-

veys (in the sense described by Ariza, 2009) or by estimating the error between a target

sound and the algorithm output. Some authors have performed empirical evaluations,

based on the John Henry Test (Ariza, 2009), in which human sound designers compete

with the programming algorithms. Examples can be found, respectively, in (Mitchell,

2010; Yee-King et al., 2018; Mitchell, 2012).

Let us consider the unsupervised software synthesis programmer “SynthBot” (Yee-

King and Roth, 2008), which uses a genetic algorithm to search for a target sound.

The search is guided by measuring the similarity of the current candidate and the target,

using the sum of squared errors between their MFCCs. The system was evaluated

“technically to establish its ability to effectively search the space of possible parameter

settings”. Then, musicians competed with SynthBot to see who was the most competent

sound synthesizer programmer. The sounds proposed by SynthBot and the musicians

were compared with the target by using sound similarity measures.

In (Yee-King et al., 2018), a hill climber, a genetic algorithm and three deep neural

networks are used for sound matching. The results are evaluated by calculating the

error score associated with the euclidean distance between the MFCCs of the proposed

sound and the MFCCs of the target.

In PresetGen (Tatar et al., 2016), the authors evaluated the system using compu-

tational and perceptual sound similarities.

(Ariza, 2009) proposes two general categories encompassing the motivations of gen-

erative musical systems: “Creative tools” and “Compositional models”. Furthermore,

Ariza suggests that, besides its design motivations, as proposed by (Pearce et al., 2002),

the systems have to be evaluated in the context of use-case application.

106

4.3.2 RuLer evaluation

The evaluation of the rule model includes:

1. Listening surveys, where composers used the system with the same dataset and

commented on the new created instances (Section 4.3.3).

2. Performances where the project has been presented, recordings performed using

the algorithms and lists where the compositions made with the algorithm (Section

4.3.4).

3. Resampling tests (minority-oversampling), comparing the results with those ob-

tained by state-of-the-art algorithms using extrinsic-benchmarks (Chapter 5).

In this way, both subjective and “numerical” evaluations are considered. Resam-

pling algorithms were selected as they perform a process “similar” to the objectives

pursued by the RuLer algorithm. Namely, they receive labeled input data and create

new data classified by the model as belonging to the categories of the data used to

create them. Although the new data being classified as expected by a classifi-

cation algorithm does not imply that it will be perceived by a composer as

consistent with the classes, contrasting this evaluation with the listening surveys

offers a better overview of the algorithm’s possibilities and limitations. The RuLer

algorithm was designed to create on-the-fly variations out of an initial set of labeled

examples. This task differs from sound matching, as the expected sound does not seek

to replicate the examples but to produce different degrees of variation. Therefore, error

scores are not suitable to evaluate the algorithm, as spectral differences are expected.

Human vs machine tests (such as the John Henry Test) are difficult to apply as there

are no clear criteria to select the winner. Survey tests usually compare computer gen-

erated vs human generated outputs (Tatar et al., 2016; Yee-King and Roth, 2008), or

the computer generated outputs are rated by humans.

Under these considerations, to evaluate the RuLer, we perform user experience tests

as suggested by (Ariza, 2009). As mentioned, since the task performed for the algorithm

107

is similar to re-sampling processes, where new instances consistent with a class are

produced from labeled data, re-sampling tests (accuracy scores) were also performed.

This evaluation needs to be framed within the limits discussed by (Holland, 2000),

who points out that music composition, as other open-ended domains, are “problem

seeking” rather than “problem solving”. From this perspective, there are no criteria

to test correct answers. Therefore, as (Ariza, 2009) concludes, when used as creative

systems, generative music systems can be best evaluated by studies of user interaction

and experience, as well as through analysis and presentation. Also, limitations discussed

in (Sturm et al., 2019) about evaluating machine learning tools for music generation

using quantitative measures apply to the accuracies obtained. The discussed system-

use case is within the problem-seeking domain, and the presented evaluation intends

to contribute to the analysis of its possibilities rather than providing a quantitative

validation.

4.3.3 Listening surveys (system-use case): creating new com-

binations

As a system-use case, we extend a set of existent presets, shown in Table 4.6, taken from

the music work Tiempos de Aguacero, available at (Paz, 2017a). The piece is composed

of four parts: intro, main, break and end. To build the data set, each preset was labeled

with the name of the part in which it is used. The objective of the experiment is to

extract a set of new presets intended to create variations within the respective parts.

The presets control the parameters of four synthesizers named x3, x4, x5 and x6. The

architecture of the synthesizer x3 = x5 and synthesizer x4 = x6.

Synthesizers

Synthesizers x3 and x5 perform additive synthesis of sawtooth waves. There are four

wave generators with frequencies, freq1, freq2, freq1 - 1 and freq2 - 1, all in Hz. The

output is controlled by a general normalized amplitude. The parameter ranges are

108

T
ab

le
4.
6:

P
re
se
ts
,
ta
ke
n
fr
om

th
e
m
u
si
c
w
or
k
T
ie
m
po
s
de

A
gu
ac
er
o,

av
ai
la
b
le

at

(P
az
,
20
17
a)
.
T
h
e
p
ie
ce

is
co
m
p
os
ed

of
fo
u
r
p
ar
ts

(i
n
tr
o,

m
ai
n
,
b
re
ak

an
d
en
d
).

p
re

se
t

x
3

fr
e
q
1

x
3

fr
e
q
2

x
3

a
m
p

x
4

fr
e
q
1

x
4

w
id

th
1

x
4

fr
e
q
2

x
4

w
id

th
2

x
4

a
m
p

x
5

fr
e
q
1

x
5

fr
e
q
2

x
5

a
m
p

x
6

fr
e
q
1

x
6

w
it
h
1

x
6

fr
e
q
2

x
6

w
id

th
2

x
6

a
m
p

p
a
rt

1
{2

0
0
}

{1
5
9
}

{0
.2

}
{1

6
1
}

{0
.4
}

{1
6
0
}

{0
.5
}

{0
.2
7
}

{2
0
0
}

{1
5
9
}

{0
.0
1
}

{1
5
0
}

{0
.3
}

{1
6
1
}

{0
.5
}

{0
.0
0
1
}

’i
n
tr
o
’

2
{2

0
0
}

{1
5
0
}

{0
.2
3
}

{1
5
0
}

{0
.3
}

{1
6
0
}

{0
.5
}

{0
.3

}
{2

0
0
}

{1
5
0
}

{0
.0
1
}

{1
5
0
}

{0
.3
}

{1
6
0
}

{0
.5
}

{0
.0
1
}

’i
n
tr
o
’

3
{2

0
0
}

{1
5
0
}

{0
.2
6
}

{1
5
0
}

{0
.3
}

{1
6
0
}

{0
.4
}

{0
.3
6
}

{2
0
0
}

{1
5
0
}

{0
.0
0
1
}

{1
5
0
}

{0
.3
}

{1
6
0
}

{0
.4
}

{0
.0
1
}

’i
n
tr
o
’

4
{2

0
0
}

{1
5
9
}

{0
.2

}
{1

5
0
}

{0
.3
}

{1
6
1
}

{0
.5
}

{0
.3

}
{2

0
0
}

{1
5
9
}

{0
.0
1
}

{1
5
0
}

{0
.3
}

{1
6
1
}

{0
.5
}

{0
.0
0
1
}

’i
n
tr
o
’

5
{2

0
}

{1
5
0
}

{0
.2
5
}

{1
0
1
}

{0
.3
}

{1
0
2
}

{0
.5
}

{0
.3
3
}

{2
0

}
{1

5
0
}

{0
.0
1
}

{1
0
1
}

{0
.3
}

{1
0
2
}

{0
.5
}

{0
.0
1
}

’m
a
in

’

6
{2

0
0
}

{1
5
0
}

{0
.2
8
}

{1
5
0
}

{0
.6
}

{1
6
0
}

{0
.4
}

{0
.3
8
}

{2
0
0
}

{1
5
0
}

{0
.0
1
}

{1
5
0
}

{0
.6
}

{1
6
0
}

{0
.4
}

{0
.0
1
}

’m
a
in

’

7
{1

0
0
}

{1
0
0
}

{0
.2
5
}

{1
0
0
}

{0
.6
}

{1
0
2
}

{0
.4
}

{0
.3
3
}

{1
0
0
}

{1
0
0
}

{0
.2
5
}

{1
0
0
}

{0
.6
}

{1
0
2
}

{0
.4
}

{0
.3
3
}

’m
a
in

’

8
{1

0
0
}

{1
0
0
}

{0
.2
5
}

{1
0
0
}

{0
.6
}

{1
0
2
}

{0
.4
}

{0
.2
8
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

’b
re

a
k
’

9
{4

4
0
}

{8
8
0
}

{0
.2

}
{6

6
0
}

{0
.3
}

{6
6
1
}

{0
.5
}

{0
.2
5
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

’b
re

a
k
’

1
0

{4
4
0
}

{6
6
0
}

{0
.2

}
{4

4
1
}

{0
.3
}

{6
6
1
}

{0
.4
}

{0
.2
2
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

’e
n
d
’

1
1

{2
2
0
}

{4
4
0
}

{0
.2

}
{6

6
0
}

{0
.3
}

{2
2
1
}

{0
.5
}

{0
.2
3
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

’e
n
d
’

1
2

{1
1
0
}

{2
4
0
}

{0
.2

}
{3

3
0
}

{0
.3
}

{2
2
1
}

{0
.5
}

{0
.2
3
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

’e
n
d
’

1
3

{4
4
0
}

{6
6
0
}

{0
.2

}
{1

6
5
}

{0
.3
}

{2
2
1
}

{0
.5
}

{0
.2
3
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

’e
n
d
’

109

Table 4.7: Parameter names and ranges for synthesizers x3 and x5.

Parameter name Range

frequency 1 (x3 freq1, x5 freq1) 0 - 16,000 Hz

frequency 2 (x3 freq2, x5 freq2) 0 - 16,000 Hz

amplitude (x3 amp, x5 amp) 0 - 1

Table 4.8: Parameter names and ranges for synthesizers x4 and x6.

Parameter name Range

frequency 1 (x4 freq1, x6 freq1) 0 - 16,000 Hz

pulse ratio 1 (x4 width1, x6 width1) 0 - 1

frequency 2 (x4 freq2, x6 freq2) 0 - 16,000 Hz

pulse ratio 2 (x4 width2, x6 width2) 0 - 1

amplitude (x4 amp, x6 amp) 0 - 1

summarized in Table 4.7.

Synthesizers x4 and x6 perform additive synthesis using band limited pulse waves.

There are two pulse generators controlled by parameters frequency 1 and 2 (in Hz)

and width pulse ratios3 1 and 2, varying from 0 to 1 (where 0.5 makes a square wave).

The two pulse generators share a common normalized amplitude. Table 4.8 shows the

parameter names and their valid ranges.

Rule extraction and user survey

For the user tests, three live coders were asked to use the system in real time. First, the

presets of Table 4.6 were introduced, so the live coders could become familiar with the

material. Then, each of them used the algorithm to extend the original set while going

through the different parts. Table 4.9 shows different configurations of the algorithm

and the percentages of new combinations evaluated as satisfactory by the composers

3The ratio between the pulse duration and the period.

110

Table 4.9: Configurations of the algorithm parameters (d, ratio) and percentage of

new combinations successfully evaluated for each composer.

Parameters d, ratio: 1,1 3, 1/8 6, 1/8 9, 1/16 12, 1/16

Composer 1 - 100% 100% 90% 80%

Composer 2 - 100% 100% 90% 85%

Composer 3 - 95 % 90% 80% 70%

for different dissimilarities, d’s.

To visualize the algorithm performance, rules for different combinations of d and

ratio are shown in Table 4.10. Each set is discussed in turn in the following section.

Extracted rules

Table 4.10 shows three sets of extracted rules for parameter combinations: d = 6, ratio

= 1/8; d = 12, ratio = 1/16 and d = 15, ratio = 0. The order in which the rules appear

is the order of the algorithm’s output. Table 4.11 shows the number of new rules (new

single instances) created for each pair (d, ratio) of Table 4.10.

It is difficult to grasp, beyond the limit cases, how the output of an algorithm de-

pends on the input data. However, this is an illustrative example, as it shows contrasting

behavior between parts intro and break with parts main and end.

The number of individual instances contained in the rules (termed cardinality) de-

scribing parts ‘intro’ and ‘break’ increases gradually as d increases and ratio decreases.

For ‘intro’, setting d = 6 and ratio = 1/8, 14 new combinations are created. With

d = 12 and ratio = 1/16, this number reaches 44. Finally, if d = 15 and ratio = 0,

9208 possible combinations can be formed with the input data! This is due to, in the

original data, the individual rules having many common values.

For the ‘end’ category, at the top of Table 4.10, rules 9 to 12 describe parameter

combinations with d = 6 and ratio = 1/6. These rules were generated from presets 10

to 13 of Table 4.6. Calculating its cardinality, the total number of combinations is 40,

111

T
ab

le
4.
10
:
E
x
tr
ac
te
d
ru
le
s
fo
r
d
iff
er
en
t
co
n
fi
gu

ra
ti
on

s
of

th
e
al
go
ri
th
m
.

p
re

se
t

x
3

fr
e
q
1

x
3

fr
e
q
2

x
3

a
m
p

x
4

fr
e
q
1

x
4

w
id

th
1
x
4

fr
e
q
2

x
4

w
id

th
2

x
4

a
m
p

x
5

fr
e
q
1

x
5

fr
e
q
2

x
5

a
m
p

x
6

fr
e
q
1

x
6

w
it
h
1

x
6

fr
e
q
2

x
6

w
id

th
2

x
6

a
m
p

p
a
rt

R
u
le

s
e
x
t
r
a
c
t
e
d

w
it
h

d
=

6
,
r
a
t
io

=
1
/
8
.

1
{2

0
0
}

{1
5
0
}

{0
.2
3
}

{1
5
0
}

{0
.3
}

{1
6
0
}

{0
.5
}

{0
.3
}

{2
0
0
}

{1
5
0
}

{0
.0
1
}

{1
5
0
}

{0
.3
}

{1
6
0
}

{0
.5
}

{0
.0
1
}

’i
n
tr
o
’

2
{2

0
0
}

{1
5
0
}

{0
.2
6
}

{1
5
0
}

{0
.3
}

{1
6
0
}

{0
.4
}

{0
.3
6
}

{2
0
0
}

{1
5
0
}

{0
.0
0
1
}

{1
5
0
}

{0
.3
}

{1
6
0
}

{0
.4
}

{0
.0
1
}

’i
n
tr
o
’

3
{2

0
0
}

{1
5
9
}

{0
.2
}

{1
6
1
,

1
5
0
}

{0
.4
,

0
.3
}

{1
6
0
,

1
6
1
}

{0
.5
}

{0
.2
7
,

0
.3
}

{2
0
0
}

{1
5
9
}

{0
.0
1
}

{1
5
0
}

{0
.3
}

{1
6
1
}

{0
.5
}

{0
.0
0
1
}

’i
n
tr
o
’

4
{1

0
0
}

{1
0
0
}

{0
.2
5
}

{1
0
0
}

{0
.6
}

{1
0
2
}

{0
.4
}

{0
.2
8
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

’b
re

a
k
’

5
{4

4
0
}

{8
8
0
}

{0
.2
}

{6
6
0
}

{0
.3
}

{6
6
1
}

{0
.5
}

{0
.2
5
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

’b
re

a
k
’

6
{2

0
}

{1
5
0
}

{0
.2
5
}

{1
0
1
}

{0
.3
}

{1
0
2
}

{0
.5
}

{0
.3
3
}

{2
0
}

{1
5
0
}

{0
.0
1
}

{1
0
1
}

{0
.3
}

{1
0
2
}

{0
.5
}

{0
.0
1
}

’m
a
in

’

7
{2

0
0
}

{1
5
0
}

{0
.2
8
}

{1
5
0
}

{0
.6
}

{1
6
0
}

{0
.4
}

{0
.3
8
}

{2
0
0
}

{1
5
0
}

{0
.0
1
}

{1
5
0
}

{0
.6
}

{1
6
0
}

{0
.4
}

{0
.0
1
}

’m
a
in

’

8
{1

0
0
}

{1
0
0
}

{0
.2
5
}

{1
0
0
}

{0
.6
}

{1
0
2
}

{0
.4
}

{0
.3
3
}

{1
0
0
}

{1
0
0
}

{0
.2
5
}

{1
0
0
}

{0
.6
}

{1
0
2
}

{0
.4
}

{0
.3
3
}

’m
a
in

’

9
{4

4
0
}

{6
6
0
}

{0
.2
}

{4
4
1
,

1
6
5
}

{0
.3
}

{2
2
1
,

6
6
1
}

{0
.4
,
0
.5
}

{0
.2
2
,

0
.2
3
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

’e
n
d
’

1
0

{2
2
0
,

1
1
0
}

{4
4
0
,

2
4
0
}

{0
.2
}

{3
3
0
,

6
6
0
}

{0
.3
}

{2
2
1
}

{0
.5
}

{0
.2
3
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

’e
n
d
’

1
1

{4
4
0
,

2
2
0
}

{4
4
0
,

6
6
0
}

{0
.2
}

{6
6
0
,

1
6
5
}

{0
.3
}

{2
2
1
}

{0
.5
}

{0
.2
3
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

’e
n
d
’

1
2

{4
4
0
,

1
1
0
}

{2
4
0
,

6
6
0
}

{0
.2
}

{3
3
0
,

1
6
5
}

{0
.3
}

{2
2
1
}

{0
.5
}

{0
.2
3
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

’e
n
d
’

R
u
le

s
e
x
t
r
a
c
t
e
d

w
it
h

d
=

1
2
,
r
a
t
io

=
1
/
1
6
.

1
{2

0
}

{1
5
0
}

{0
.2
5
}

{1
0
1
}

{0
.3
}

{1
0
2
}

{0
.5
}

{0
.3
3
}

{2
0
}

{1
5
0
}

{0
.0
1
}

{1
0
1
}

{0
.3
}

{1
0
2
}

{0
.5
}

{0
.0
1
}

’m
a
in

’

2
{2

0
0
}

{1
5
0
}

{0
.2
8
}

{1
5
0
}

{0
.6
}

{1
6
0
}

{0
.4
}

{0
.3
8
}

{2
0
0
}

{1
5
0
}

{0
.0
1
}

{1
5
0
}

{0
.6
}

{1
6
0
}

{0
.4
}

{0
.0
1
}

’m
a
in

’

3
{1

0
0
}

{1
0
0
}

{0
.2
5
}

{1
0
0
}

{0
.6
}

{1
0
2
}

{0
.4
}

{0
.3
3
}

{1
0
0
}

{1
0
0
}

{0
.2
5
}

{1
0
0
}

{0
.6
}

{1
0
2
}

{0
.4
}

{0
.3
3
}

’m
a
in

’

4
{1

0
0
}

{1
0
0
}

{0
.2
5
}

{1
0
0
}

{0
.6
}

{1
0
2
}

{0
.4
}

{0
.2
8
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

’b
re

a
k
’

5
{4

4
0
}

{8
8
0
}

{0
.2
}

{6
6
0
}

{0
.3
}

{6
6
1
}

{0
.5
}

{0
.2
5
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

’b
re

a
k
’

6
{4

4
0
}

{6
6
0
}

{0
.2
}

{4
4
1
,

1
6
5
}

{0
.3
}

{2
2
1
,

6
6
1
}

{0
.4
,
0
.5
}

{0
.2
2
,

0
.2
3
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

’e
n
d
’

7
{4

4
0
,

2
2
0
,

1
1
0
}

{4
4
0
,

2
4
0
,

6
6
0
}

{0
.2
}

{3
3
0
,

6
6
0
,

1
6
5
}

{0
.3
}

{2
2
1
}

{0
.5
}

{0
.2
3
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

’e
n
d
’

8
{2

0
0
}

{1
5
9
}

{0
.2
}

{1
6
1
,

1
5
0
}

{0
.4
,

0
.3
}

{1
6
0
,

1
6
1
}

{0
.5
}

{0
.2
7
,

0
.3
}

{2
0
0
}

{1
5
9
}

{0
.0
1
}

{1
5
0
}

{0
.3
}

{1
6
1
}

{0
.5
}

{0
.0
0
1
}

’i
n
tr
o
’

9
{2

0
0
}

{1
5
0
}

{0
.2
3
,

0
.2
6
}

{1
5
0
}

{0
.3
}

{1
6
0
}

{0
.5
,
0
.4
}

{0
.3
,

0
.3
6
}

{2
0
0
}

{1
5
0
}

{0
.0
1
,
0
.0
0
1
}

{1
5
0
}

{0
.3
}

{1
6
0
}

{0
.5
,
0
.4
}

{0
.0
1
}

’i
n
tr
o
’

R
u
le

s
e
x
t
r
a
c
t
e
d

w
it
h

d
=

1
5
,
r
a
t
io

=
0
.

1
{4

4
0
,

2
2
0
,

1
1
0
}

{4
4
0
,

2
4
0
,

6
6
0
}

{0
.2
}

{4
4
1
,

3
3
0
,

6
6
0
,

1
6
5
}

{0
.3
}

{2
2
1
,

6
6
1
}

{0
.4
,
0
.5
}

{0
.2
2
,

0
.2
3
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

’e
n
d
’

2
{2

0
0
,

1
0
0
,

2
0
}

{1
0
0
,

1
5
0
}

{0
.2
5
,

0
.2
8
}

{1
0
0
,

1
0
1
,

1
5
0
}

{0
.3
,

0
.6
}

{1
6
0
,

1
0
2
}

{0
.5
,
0
.4
}

{0
.3
3
,

0
.3
8
}

{2
0
0
,

1
0
0
,

2
0
}

{1
0
0
,
1
5
0
}

{0
.2
5
,
0
.0
1
}

{1
0
0
,

1
0
1
,

1
5
0
}

{0
.3
,
0
.6
}

{1
6
0
,
1
0
2
}

{0
.5
,
0
.4
}

{0
.3
3
,
0
.0
1
}

’m
a
in

’

3
{2

0
0
}

{1
5
0
,

1
5
9
}

{0
.2
,

0
.2
6
,

0
.2
3
}

{1
6
1
,

1
5
0
}

{0
.4
,

0
.3
}

{1
6
0
,

1
6
1
}

{0
.5
,
0
.4
}

{0
.2
7
,

0
.3
6
,

0
.3
}

{2
0
0
}

{1
5
0
,
1
5
9
}

{0
.0
1
,
0
.0
0
1
}

{1
5
0
}

{0
.3
}

{1
6
0
,
1
6
1
}

{0
.5
,
0
.4
}

{0
.0
1
,
0
.0
0
1
}

’i
n
tr
o
’

4
{4

4
0
,

1
0
0
}

{8
8
0
,

1
0
0
}

{0
.2
5
,

0
.2
}

{1
0
0
,

6
6
0
}

{0
.6
,

0
.3
}

{6
6
1
,

1
0
2
}

{0
.4
,
0
.5
}

{0
.2
8
,

0
.2
5
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

{0
}

’b
re

a
k
’

112

Table 4.11: Number of new combinations created during the rule extraction process.

Part d = 6, ratio = 1/8 d = 12, ratio = 1/16 d = 15, ratio = 0

intro 14 44 9208

main 0 0 331773

break 0 0 254

end 36 39 284

of which 36 are unique. The set of rules extracted when d = 12 and ratio = 1/16 (rules

6 and 7 at the middle of Table 4.10) produces 39 unique combinations. Finally, when

d = 15 and ratio = 0 (rule 1 at the bottom of Table 4.10), there are 284 new settings.

Analyzing the extracted rules for classes ‘main’ and ‘break’ as d increases in Table

4.10, it can be seen that no new rules are created either for d = 6 or 12. This is because

the differences between the original presets are bigger than the allowed dissimilarities.

Then, when d = 15 and ratio = 0, we obtain rules 2 and 4 of Table 4.10, which give all

the possible combinations between the values of the parameters.

This example shows how the input data, in combination with the algorithm param-

eters, can produce extreme results.

Audio examples of the ‘main’ part, with and without RuLer, can be found in (Paz,

2018). In (Paz, 2019a), from minute 9:00 to 19:43, the system with presets of Table 4.6

was used in real-time during the First Live Coding Music seminar held at the Institute

for Pure and Applied Mathematics of Rio de Janeiro (where I was invited to give a

Keynote and perform). In both examples, the algorithm adds variability to the original

material. In the second, the algorithm allows one to extend the piece from its original

duration, 03:42 (Paz, 2017a), to 10:34 minutes.

4.3.4 Live Performances and Recordings

A series of live coding performances and recordings have accompanied the design and

testing of the algorithm. These have been developed in different contexts and venues

113

including universities, artistic research centers, theatres, online streaming, smoky bars,

etc.

They allow for the evaluation of:

1. The algorithm’s affordances and capacity to produce “interesting variations” over

the input data during the performance.

2. How the community receives the music generated using the algorithms.

A more extensive list of performances, recordings, mentions and lists where music

composed with the algorithms or ideas developed in this thesis can be found in Section

Related Publications.

The first ideas of the project, explored in Multiparametric representation space as

a perceptual exploration interface (Paz, 2016), were presented at the end of May 2016

with a performance at the Artistic Research Center of Barcelona Hangar.

The EP studio albumVisions of Space (Paz, Iván, 2017a), featured by the Berliner

record label Bohemian drips, applied IF-THEN rules to generate sections of tracks 4

(Visions of Space) and 5 (En Casa). It was recorded at Zuhause and released in a

concert at the legendary Schrippe Hawaii (Neukölln, Berlin, Paz, Iván, 2017b).

During the third International Conference on Live Coding, held at the Centro Mex-

icano de la Música y las Artes Sonoras (Morelia, Mexico 2017), the performance “Live

Coding through Perceptual Spots on the Parametric Space” was included in the open-

ing concert. For the performance, I used IF-THEN rules to generate in real-time the

material of different sections of the piece.

In 2018, Bandcamp Daily featured the album Visions of the Space together

with nine other albums released in 2017, under the list Meet the Artists Using Coding,

AI, and Machine Language to Make Music (Chandler, 2018).

The live performance presented during the live coding => music; seminar (Paz,

2019c), held at the Instituto Nacional de Matemática Pura e Aplicada (National In-

stitute for Pure and Applied Mathematics) of Rio de Janeiro, is presented in (Paz,

2019a).

114

A multichannel (34 speakers) version of (Paz, 2017b) was presented at the Electroa-

custic Musical Festival Zeppelin of Barcelona during October (Zeppelin, 2019).

Visions of Space tracks 2 (Tiempos de Aguacero) and 5 (En Casa) were included in

the track-list of the a-Musik Radio (Köln) and DubLab Barcelona broadcasts (Brauneis,

2019; Cassamajó, 2019).

The online performance presented during the EulerRoom Equinox 2020, which

featured 72 hours of live coding performances around the world (20–22 March), is

available in (Paz, 2020).

A performance using rules extracted with the RuLer algorithm was presented as part

of 8:08 La Hora del Live Coder a set of performances in which, during the Barcelona

lockdown of March 2020, every night one member of the TOPLAP-Barcelona collective

performed online live at 8:08pm (Paz, April 3, 2020). A similar approach was used,

using Sema (described in Section 2.4.6), during the Network Music Festival in July 2020

(Paz, 16th July, 2020).

Although a subjective appreciation, the algorithm has shown effective capacities

to produce new interesting material on-the-fly. The current version allows for the

preloading of data before the performance and/or the saving of new instances as they

are found. If all the instances are captured in real time, the space exploration process

becomes part of the performance. The current implementation does not overwrite the

input data with the extracted model, so the performer can extract different sets using

different combinations of d and ratio while conducting the piece.

4.4 Conclusion

Symbolic rule learning offers an interesting approach for real-time sound synthesizer

programming, specifically, the task of producing different degrees of variation from an

input material. This idea is built on the observation that, as in other improvisation

practices, live coders either have some preselected material or select combinations mid-

performance. These are the “sweet spots” of the synthesis algorithm from which the

115

performance unfolds. Each selection is a combination of parameter values in the syn-

thesis parameter space. Finally, to create labeled data set, in order to use inductive

learning, a linguistic category or class is assigned to each combination.

The presented algorithm searches for patterns among the examples of the same

class using a dissimilarity function and obtains new unheard combinations based on

the patterns found. In the current implementation, the new examples are created by

recombining the material of those combinations that exhibit a pattern. The algorithm

parameters control the degree of dissimilarity among the combinations with the same

class that can be use for the induction process and the amount of new settings that

can be produced. The proposed algorithm creates human-readable models which are

independent of the order of the input data. It also allows working with different data

types (numeric, categorical, etc.) and small data sets.

The algorithm can be included within bigger systems allowing, for example, addition

or elimination of new instances on-the fly.

The parameters of the algorithm allow one to control the induction process and

intuit, from a musical perspective, the novelty or consistency with the input data of

the new generated combinations. The evaluation presented in this chapter is intended

to provide a perceptual evaluation.

The user surveys point out that the algorithm can be effectively used in real time to

extend an input data set. As it operates right now, once the input data set is given, the

possible rules for the (d, ratio) pairs are determined. The user only explores the system

in real time, playing with the material as can be seen in (Paz, 2019a). Note, however,

that the possibilities depend on the perceptual topology of the synthesis algorithm and

the context (i.e FM synthesis is not additive). These limitations were already pointed

out by (Yee-King, 2011b; Dahlstedt, 2009).

The user-surveys should be taken carefully. They intend to provide an overview

of the system capacities in real world examples, rather than to provide a conclusive

evaluation of the system. Remember that music’s creative pursuit is more a problem-

seeking than problem-solving activity (Holland, 2000).

116

The venues to which the music composed has been invited, including four physical

geographies, suggest a good reception of the results by the community. In his review,

(Chandler, 2018) writes: “The album’s droning yet often harsh electronic soundscapes

were put together using musical algorithms whose parameters Paz varies sequentially

through time, in much the same way that the parameters controlling an artificial in-

telligence are altered by the process of learning. Yes, this is all too abstract to express

sufficiently in a single paragraph, but the unnerving, sinister power of the dystopian

title track alone”(the track Tiempos de Aguacero)“is enough to prove it’s an effective

method.”

117

Chapter 5

Oversampling Tests

This chapter evaluates the extracted rule model by comparing its capacity to

generate synthetic instances with that of other oversampling algorithms. Thus,

continuing the evaluation presented in Section 4.3 and putting both evaluations

together, we have subjective and numerical assessments. By its nature, the RuLer

algorithm can deal with the problems derived from having unbalanced data in clas-

sification and regression problems, generating new values just as the oversampling

algorithms that can be found in the literature do. That is, taking a set of labeled

data, analyzing the instances of a class and creating new ones that could be cat-

aloged as (variations) belonging to such class.

5.1 Oversampling algorithms

The RuLer algorithm identifies patterns based on its dissimilarity function. When

two examples exhibit a pattern and the restriction imposed by the ratio is met, it

creates a rule. The rule contains the examples and can also recombine or extend its

material. In the latter case, the resulting rule contains new inducted combinations

of values, intended to be consistent (up to certain degree) with the category of the

rule. This process is similar to that performed by oversampling algorithms such as

118

Smote: Synthetic Minority Over-sampling Technique (Chawla et al., 2002) or Adasyn:

addaptive synthetic sampling (He et al., 2008), which produce new instances in a data

set expected to be consistent with a specific class.

Nonetheless, there are other oversampling algorithms (Amin et al., 2016). Here we

only deal with the referred two as they are the most used as well as the basis of other

modern algorithms (either to improve them or to compensate for their flaws, see for

example, Zheng et al., 2016; Basgall et al., 2018; Wei et al., 2020).

5.1.1 Smote

Smote is an oversampling algorithm in which, unlike simple approaches that randomly

select and duplicate examples from the minority class (with or without replacement),

“synthetic” examples are produced by applying certain operations to real data1. To

oversample a dataset, the Smote algorithm takes an example and considers its k nearest

neighbors in the feature space. Then, to create the synthetic points, it takes the vector

between one of the neighbors and the current point and multiplies it by a random

number between 0 and 1. Generating synthetic points in this way forces the decision

region of the minority class to become more general.

Finally, depending on the amount of over-sampling required, neighbors from the

k nearest neighbors are randomly chosen. For example, if 200% of oversampling is

required, and k=5, only two neighbors from the five nearest neighbors are chosen, and

one sample is generated in each direction.

5.1.2 Adasyn

Adasyn is a modified version of Smote that uses a density distribution for different

minority class examples, according to their level of difficulty in learning, and generates

more synthetic data for the minority class examples that are harder to learn. This is

1The idea was inspired by oversampling techniques for image recognition, in which operations such

as rotation, reflection, etc, are used to extend the dataset.

119

done in the following way: For each example xxxi, the number of examples that need to

be generated is defined as:

gi = r̂i x G (5.1)

Where G is the number of synthetic examples that need to be generated according

to the desired balance degree2, and r̂i is a density distribution built in the following

way:

r̂i = ri/
ms∑
i=1

ri (5.2)

Where ms is the number of samples of the minority class, and ri = ∆i/k, k being the

selected number of nearest neighbors, and ∆i is the number of minority class examples

in the k nearest neighbors of xxxi.

Once gi is calculated, then, for i = 1 to gi, the algorithm creates a synthetic sample

in the following way:

sssi = xxxi + (xxxzi − xxxi) ∗ λ (5.3)

Where xxxzi is a randomly chosen point from the minority class out of the k nearest

neighbors of xxxi; (xxxzi − xxxi) is the vector difference; and λ ∈ [0, 1] is a random number.

5.2 Datasets and experiments

Oversampling tests were performed using the benchmarks available at the KEEL-

dataset repository for imbalance datasets (Keel, 2010). The selected datasets were:

glass-0-1-2-3 vs 4-5-6, page-blocks0, ecoli3, yeast3, segment0, ecoli2, yeast-2 vs 4, glass0,

glass1, vehicle3, and new-thyroid1. The characteristics of each dataset (number of at-

tributes, instances, and imbalance ratio) are shown in Table 5.1. They have two classes

2If ms,ml are the minority and majority class examples, respectively. Then, G = (ms −ml) ∗ β,

where β ∈ [0, 1] determines the balance degree. β = 1 is a full balance.

120

positive and negative, positive being the minority. The number of instances they have

ranges between 214 and 5472, and the imbalance ratio is between 1.82 and 9.08.

For the tests, the Smote, Adasyn and RuLer algorithms were used to oversampling

the minority class, introducing for each set the number of synthetic instances needed to

balanced the classes (50% positive - 50% negative). Then, classification algorithms were

run over each dataset. A baseline dataset (original data without oversampling) was also

used for comparison. The classification algorithms used were K-Nearest Neighbours,

Randomforest and a Support Vector classifier with a linear kernel.

The K-Nearest Neighbours does not require a training period (these types of algo-

rithms are known as instance based learners). It stores the training data and learns

from it (analyzing the data) as it performs real-time predictions. While this has some

disadvantages (it is sensitive to outliers, for example), it also makes the algorithm much

faster than those that require training, such as SVM. By assigning the classes only by

looking at the neighbors, new data can be added with little impact to its accuracy.

These characteristics make KNN very easy to implement and to interpret (only two

parameters are required: the value of K and the distance function).

The Random forest classifier was selected, as decision trees are the natural alterna-

tive to rule-based classifiers as discussed in Section 3.1.

Support Vector Classifiers (SVCs) create high accuracy models and have great gen-

eralization capacities, as they allow regularization that prevents over-fitting. They can

also handle non-linear data using the kernel trick. Moreover, these algorithms build

stable hyperplane models that are not affected by small changes in the data. However,

SVCs require long training time and produce models that are difficult to interpret by

humans. The support vectors are stored in the memory (and its number grows quickly

with the training dataset size), for which SVCs have high algorithmic complexity and

memory requirements. They can also be complex to operate, as selecting an appropriate

kernel function (for non-linear data) is not a simple task.

121

5.3 Results

The results of the average precision scores3 for the KNN, Randomforest and SVC al-

gorithms applied to the datasets are shown in Table 5.1. The scores were calculated

using 70% - 30% of the data for training and testing, respectively.

Table 5.1: Average precision scores for the different datasets. The algorithms used

for oversampling the data were Smote, Adasyn and RuLer. The classifiers used

were KNN, Randomforest and Support Vector Classifier SCVs with linear kernel.

IR stands for imbalanced ratio.

Dataset: glass-0-1-2-3 vs 4-5-6 attributes:9 instances:214 IR:3.2

Algorithm KNN k = 2 randomforest trees = 10 SVC linear kernel

Baseline 0.809 0.931 0.949

Smote 0.796 0.902 0.966

Adasyn 0.796 0.878 0.957

RuLer 0.842 0.947 0.944

Dataset: page-blocks0 attributes:10 instances:5472 IR:8.79

Algorithm KNN k = 3 randomforest trees = 10 SVC linear kernel

Baseline 0.744 0.908 0.727

Smote 0.711 0.900 0.687

Adasyn 0.685 0.886 0.657

RuLer 0.715 0.983 0.735

Dataset: ecoli3 attributes:7 instances:336 IR:8.6

Algorithm KNN k = 4 randomforest trees = 10 SVC linear kernel

Baseline 0.633 0.685 0.732

Smote 0.615 0.695 0.608

Adasyn 0.534 0.680 0.600

3The Average Precision Score (AP) summarizes the precision-recall curve as follows: AP =∑
n(Rn −Rn−1) ∗ Pn, where Pn and Rn are the precision and recall at the nth step.

122

RuLer 0.774 0.951 0.748

Dataset: yeast3 attributes:8 instances:1484 IR:8.1

Algorithm KNN k = 4 randomforest trees = 10 SVC linear kernel

Baseline 0.709 0.751 0.816

Smote 0.606 0.719 0.802

Adasyn 0.561 0.703 0.793

RuLer 0.719 0.917 0.803

Dataset: segment0 attributes:19 instances:2308 IR:6.02

Algorithm KNN k = 4 randomforest trees = 10 SVC linear kernel

Baseline 0.986 0.999 0.997

Smote 0.950 0.998 0.999

Adasyn 0.924 0.999 0.998

RuLer 1.0 0.999 0.999

Dataset: ecoli2 attributes:7 instances:336 IR:5.46

Algorithm KNN k = 4 randomforest trees = 10 SVC linear kernel

Baseline 0.926 0.872 0.864

Smote 0.881 0.881 0.875

Adasyn 0.793 0.913 0.913

RuLer 0.906 0.963 0.868

Dataset: yeast-2 vs 4 attributes:8 instances:514 IR:9.08

Algorithm KNN k = 4 randomforest trees = 10 SVC linear kernel

Baseline 0.697 0.782 0.796

Smote 0.677 0.785 0.813

Adasyn 0.698 0.813 0.802

RuLer 0.847 0.975 0.834

Dataset: glass0 attributes:9 instances:214 IR:2.06

Algorithm KNN k = 3 randomforest trees = 10 SVC linear kernel

Baseline 0.768 0.841 0.596

123

Smote 0.802 0.864 0.730

Adasyn 0.788 0.850 0.681

RuLer 0.831 0.934 0.745

Dataset: glass1 attributes:9 instances:214 IR:1.82

Algorithm KNN k = 4 randomforest trees = 10 SVC linear kernel

Baseline 0.827 0.824 0.443

Smote 0.853 0.852 0.495

Adasyn 0.805 0.846 0.442

RuLer 0.875 0.938 0.604

Dataset: vehicle3 attributes:18 instances:846 IR:2.99

Algorithm KNN k = 2 randomforest trees = 10 SVC linear kernel

Baseline 0.415 0.655 0.689

Smote 0.401 0.639 0.680

Adasyn 0.372 0.612 0.681

RuLer 0.603 0.942 0.720

Dataset: new-thyroid1 attributes:5 instances:215 IR:5.14

Algorithm KNN k = 2 randomforest trees = 10 SVC linear kernel

Baseline 1.0 0.994 1.0

Smote 1.0 0.997 1.0

Adasyn 1.0 1.0 1.0

RuLer 1.0 1.0 1.0

Table 5.1 shows that the average precision scores obtained by the classification

algorithms using data oversampled with the RuLer are comparable and in most cases

even better than those oversampled with Smote and Adasyn. A visual representation

of Table 5.1 is shown in Figure 5.1.

To assess whether there are statistically significant differences between the distri-

butions of the paired groups, a Friedman test was used. As we have more than two

groups, the Friedman test identifies if there is a significant difference between groups,

124

Figure 5.1: Average precision scores by classifier (KNN, Randomforest and SVC)

for Baseline, Smote, Adasyn and RuLer algorithms, for each dataset on Table 5.1.

125

but we do not know which pairs are different. Therefore, pairwise comparisons were

performed using Wilcox and Sign tests (comparing their two results). The Friedman

tests and the pairwise comparisons using Wilcox and Sign tests are shown for each

classifier (Table 5.2). For the KNN classifier there are significant differences between

the RuLer algorithm and both Adasyn and Smote. In the case of the RandomForest,

there are significant differences among the RuLer algorithm with Smotote, Adasyn and

the Baseline. In the case of the SVC, there are not significant differences among the

groups.

Table 5.2: Friedman test and pairwise comparisons using Wilcox and Sign tests for

classifiers KNN, Randomforest and SVC. In the Friedman test, n is the sample size,

df are the degrees of freedom and p is the significance. For the Wilcox and Sign

tests, n1 and n2 are the sample sizes of the respective groups, df are the degrees of

freedom, p is the significance and p.adjust are the adjusted P-values for Multiple

Comparisons. Finally, psdj.signif returns ns if there are no significant differences

among groups, or it returns either * or ** if p > 0.05 or p > 0.01, respectively, as

the convention stands.

KNN Friedman test

n statistic df p method

11 20.0 3 0.000167 Friedman test

Pairwise comparisons Wilcox test

group1 group2 n1 n2 statistic p p.adj p.adj.signif

Adasyn Baseline 11 11 4 0.019 0.115 ns

Adasyn RuLer 11 11 0 0.006 0.036 *

Adasyn Smote 11 11 2 0.018 0.106 ns

Baseline RuLer 11 11 7 0.042 0.249 ns

Baseline Smote 11 11 43 0.126 0.756 ns

RuLer Smote 11 11 55 0.006 0.036 *

126

Pairwise comparisons using Sign test

group1 group2 n1 n2 statistic df p p.adj p.adj.signif

Adasyn Baseline 11 11 2 10 0.109 0.654 ns

Adasyn RuLer 11 11 0 10 0.002 0.012 *

Adasyn Smote 11 11 1 9 0.039 0.235 ns

Baseline RuLer 11 11 2 10 0.109 0.654 ns

Baseline Smote 11 11 8 10 0.109 0.654 ns

RuLer Smote 11 11 10 10 0.002 0.012 *

Randomforest Friedman test

n statistic df p method

11 17.3 3 0.000601 Friedman test

Pairwise comparisons Wilcox text

group1 group2 n1 n2 statistic p p.adj p.adj.signif

Adasyn Baseline 11 11 22.5 0.646 1 ns

Adasyn RuLer 11 11 0 0.009 0.055 ns

Adasyn Smote 11 11 24 0.45 1 ns

Baseline RuLer 11 11 0 0.006 0.036 *

Baseline Smote 11 11 33 1 1 ns

RuLer Smote 11 11 66 0.000977 0.006 **

Pairwise comparisons using Sign test

group1 group2 n1 n2 statistic df p p.adj p.adj.signif

Adasyn Baseline 11 11 5 10 1.00e+0 1 ns

Adasyn RuLer 11 11 0 9 4.00e-3 0.023 *

Adasyn Smote 11 11 4 11 5.49e-1 1 ns

Baseline RuLer 11 11 0 10 2.00e-3 0.012 *

Baseline Smote 11 11 5 11 1.00e+0 1 ns

RuLer Smote 11 11 11 11 9.77e-4 0.006 **

127

SVC Friedman test

n statistic df p method

11 7.67 3 0.0534 Friedman test

Pairwise comparisons using Wilcox test

group1 group2 n1 n2 statistic p p.adj p.adj.signif

Adasyn Baseline 11 11 25.5 0.878 1 ns

Adasyn RuLer 11 11 9 0.066 0.399 ns

Adasyn Smote 11 11 9.5 0.074 0.445 ns

Baseline RuLer 11 11 8 0.053 0.317 ns

Baseline Smote 11 11 22 0.61 1 ns

RuLer Smote 11 11 38 0.076 0.454 ns

Pairwise comparisons using Sign test

group1 group2 n1 n2 statistic df p p.adj p.adj.signif

Adasyn Baseline 11 11 5 10 1 1 ns

Adasyn RuLer 11 11 2 10 0.109 0.654 ns

Adasyn Smote 11 11 2 10 0.109 0.654 ns

Baseline RuLer 11 11 2 10 0.109 0.654 ns

Baseline Smote 11 11 4 10 0.754 1 ns

RuLer Smote 11 11 7 9 0.18 1 ns

Figure 5.2 shows the average precision-score box-plots for classification algorithms

(KNN, Randomforest and SVC) using Baseline, Smote, Adasyn and RuLer algorithms,

considering the eleven datasets. The Friedman tests are shown for each classifier at

the top of its corresponding graph. In Figure 5.2, the RuLer algorithm is the one with

both the highest median for KNN and RandomForest classifiers and the most compact

quartiles for all classification algorithms. The pairwise comparisons using Sign test

with p.adjust Bonferroni appear marked with “*” or “**” when there are significant

differences among groups, as in Table 5.2. For the Wilcox and Sign tests n1 and n2

128

are the sample sizes of the respective groups, df are the degrees of freedom, p is the

significance, p.adjust is the adjust P-values for Multiple Comparisons and psdj.signif

returns ns if there are no significant differences among groups or either * or **, if p >

0.05 or p > 0.01, respectively, as the convention stands.

The Friedman test yields statistically significant differences between the distribu-

tions for KNN and Randomforest algorithms. The summary statistics for each classifier

is available in Table 5.3.

To understand why there are no significant differences in the case of the SVC, the

means and standard deviations for its average precision are analyzed (Table 5.3). The

difference between the lower (Adasyn, 0.775) and the higher (RuLer, 0.818) means is

only 0.042. Also, the average precision has low sd (the max being 0.181 for Adasyn).

This explains why SVC algorithms do not have significant differences among the over-

sampling algorithms.

Table 5.3: Summary statistics for the average precision score of classification al-

gorithms applied to Baseline data and data oversampled by Smote, Adasyn and

RuLer. “n” is the sample size, “iqr” is the Interquartile Range, “sd” the standard

deviation, “se” stands for the standard error and “ci” for the confidence interval.

KNN Average precision

Algorithm n min max median iqr mean sd se ci

Adasyn 11 0.372 1 0.788 0.178 0.723 0.18 0.054 0.121

Baseline 11 0.415 1 0.768 0.174 0.774 0.168 0.051 0.113

RuLer 11 0.603 1 0.842 0.144 0.828 0.121 0.036 0.081

Smote 11 0.401 1 0.796 0.221 0.754 0.174 0.052 0.117

Randomforest Average precision

Algorithm n min max median iqr mean sd se ci

Adasyn 11 0.612 1 0.85 0.141 0.835 0.125 0.038 0.084

Baseline 11 0.655 0.999 0.841 0.153 0.84 0.115 0.035 0.077

RuLer 11 0.917 1 0.951 0.039 0.959 0.027 0.008 0.018

129

Smote 11 0.639 0.998 0.864 0.149 0.839 0.118 0.035 0.079

SVC Average precision

Algorithm n min max median iqr mean sd se ci

Adasyn 11 0.442 1 0.793 0.266 0.775 0.181 0.054 0.121

Baseline 11 0.443 1 0.796 0.198 0.783 0.171 0.052 0.115

RuLer 11 0.604 1 0.803 0.166 0.818 0.125 0.038 0.084

Smote 11 0.495 1 0.802 0.237 0.787 0.165 0.05 0.111

The pairwise comparisons using Wilcox and Sign tests, for the results of the KNN

classifier, show significant differences between groups Adasyn - RuLer and RuLer -

Smote. However, they do no yield significant differences between groups Baseline and

RuLer. Looking at Table 5.3, although the RuLer algorithm (mean 0.828) outperforms

the Baseline (mean 0.774), the difference is not enough to yield a consistent difference.

For the Randomforest classifier, the pairwise comparisons for the Wilcox and Sign

test yield, respectively, significant differences between RuLer - Baseline and RuLer -

Smote, as well as between RuLer - Adasyn and Baseline - Smote. This would be

expected from the summary of Table 5.3, where the differences with Baseline, Smote

and Adasyn are equal to or greater than 0.119.

These results show that the RuLer algorithm behaves either similar to Smote and

Adasyn algorithms or better.

Moreover, considering all the classifiers, the mean accuracy of the RuLer surpasses

the other classifiers.

Precision and new instances

While oversampling applications are mainly focused on improving the precision of the

classifiers trained with the resampled data, this research has special interest in newly

generated instances. In other words, it is important to have instances that, when used

to train the models, not only improve their prediction capacities but also produce a

number of new instances that add variability or possibilities to the existing material.

130

Figure 5.2: Boxplots of the average precision scores of the classifier (KNN, Random-

forest and SVC) for Baseline, Smote, Adasyn and RuLer algorithms, considering all

the dataset on Table 5.1.

131

Therefore, although the precision does not improve much in some particular cases, or

it might even be slightly less, the new instances obtained fulfill the objective sought.

I cite a couple of these examples. The page-blocks0 dataset has 5472 original in-

stances from which 4914 are negative. The RuLer algorithm oversampled 6293 positive

instances, from which some were randomly selected to balance the dataset. The preci-

sion score obtained using the SVC improved from 0.72 in the Baseline case to 0.73 using

the RuLer. However, the number of instances available after the oversampling would

provide the performer with around 3000 new instances of a particular class to explore.

Another example is the data set segment0 which originally had 230 positive instances

and 1384 negative ones. The synthetic data produced by the RuLer algorithm achieved

2241 positive instances.

5.4 New created instances

The best results are reached when the random forest classifier is applied to the data

oversampled with the RuLer algorithm. Further work derived from this research will be

focused on analyzing this result. A possible hypothesis is that the patterns identified by

the ruler with the dissimilarity function used, together with the new instances created

by the create rule function, reinforce the way in which decision trees cut the space,

following hyperplanes in the feature domain.

Figure 5.3 shows the original points for a tiny artificial, two-class example (positive

and negative), together with the synthetic points extracted by Smote, Adasyn and

RuLer algorithms. The RuLer algorithm creates new points by combining the values

of the existing ones. This is because the way the create rule function works. The new

points share at least one value with an original one.

Ruler appears to be the boldest algorithm with respect to space exploration (i.e, the

points created by the RuLer algorithm are the most distant ones from the original data).

To verify this, one analyzes the distributions of the euclidian distances connecting the

points created by Smote, Adasyn and RuLer, with respect to their closest point in the

132

Figure 5.3: Points created by Smote, Adasyn and RuLer (dissimilarity metric =

number of empty intersections among sets containing parameter values for each

variable).

original data. This is done for the sample dataset composed of datasets: glass-0-1-2-

3-vs-4-5-6, segment0, ecoli2 and yast-2-vs-4. In other words, for each point created by

an oversampling algorithm, its distance to the closest point in the original data was

calculated.

Figure 5.4 shows the histograms of the euclidian distances among the points gen-

erated by Adasyn, RuLer and Smote and its closest point in the original data for the

sample dataset. Some of the points created by the RuLer are farther from the origi-

nal data than points created by Smote or Adasyn. For example, in the first graph of

Figure 5.4, showing the histogram of distances for glass-0-1-2-3-vs-4-5-6 dataset, points

are seen beyond 4. Note that the euclidian distances respect the original values of the

data.

To analyse the results shown in Figure 5.4, the pairwise comparisons among the

frequency distributions of such distances (for the sample dataset) were compared using

a one way anova test. The results are shown in Table 5.4.

133

Figure 5.4: From top left to bottom right, histograms counting the distances among

the points generated by adasyn, ruler and smote and the closest point in the original

data for the sample dataset.

134

Table 5.4: One way anova test comparing the distributions of the distances to the

closest point in the original data for the oversampled points created by algorithms

Smote, Adasyn and RuLer. diff: difference between means of the two groups. lwr,

upr: lower and the upper end point of the confidence interval at 95%. p adj: p-value

after adjustment for the multiple comparisons.

dataset:glass-0-1-2-3 vs 4-5-6 attributes:9 instances:214 IR:3.2

algorithm diff lwr upr p adj

ruler-adasyn 0.575498836 0.2451193 0.9058783 0.0001623

smote-adasyn -0.007475601 -0.3378551 0.3229039 0.9984308

smote-ruler -0.582974437 -0.9133539 -0.2525949 0.0001309

dataset:segment0 attributes:19 instances:2308 IR:6.02

algorithm diff lwr upr p adj

ruler-adasyn 2.9185273 2.017582 3.819472 0.0000000

smote-adasyn -0.7278831 -1.628828 0.173062 0.1393161

smote-ruler -3.6464104 -4.547356 -2.745465 0.0000000

dataset:ecoli2 attributes:7 instances:336 IR:5.46

algorithm diff lwr upr p adj

ruler-adasyn 0.03319504 0.01986541 0.046524677 0.0000000

smote-adasyn -0.01854278 -0.03187242 -0.005213148 0.0033288

smote-ruler -0.05173782 -0.06506746 -0.038408189 0.0000000

dataset:yeast-2 vs 4 attributes:8 instances:514 IR:9.08

algorithm diff lwr upr p adj

ruler-adasyn 0.101482430 0.08879263 0.114172231 0.0000000

smote-adasyn -0.005198103 -0.01788790 0.007491698 0.6011233

smote-ruler -0.106680534 -0.11937033 -0.093990732 0.0000000

In Table 5.4, the distributions are significantly different among RuLer-Smote and

RuLer-Adasyn, as the p adj values of Table 5.4 show. On the contrary, the results

135

Figure 5.5: From top left to bottom right, boxplots of the points gerated by adasyn,

ruler and smote for datasets glass-0-1-2-3-vs-4-5-6, segment0, ecoli2 and yast-2-vs-4

(the sample dataset).

comparing Smote-Adasyn show, as might be expected given that Adasyn is a modified

version of Smote, that the resulting differences in the created data are not statistically

significant.

The box-plots visualizing the distributions of the minimum distances from the cre-

ated points to its closest one in the original data, presented in Figure 5.4 for each

algorithm, are shown in Figure 5.5. The standard deviation of the data oversam-

pled with the RuLer algorithm is greater than the standard deviations of the datasets

oversampled using Smote or Adasyn. These results suggest that the RuLer algorithm

explores different points from those sampled by Smote and Adasyn, yet the accuracy

obtained by the classifiers trained by using the synthetic instances is comparable. An

interesting possibility for further exploration would be to combine the algorithms in

136

order to obtain a variety of points.

5.5 Conclusion

The evaluation of the algorithm presented in this Chapter is intended to complement

the perceptual evaluation carried out in Chapter 4. Perceptual evaluation provides

human feedback on the capacities of the newly generated instances being used within

live performance, as well as on the affordances of the algorithm. However, the tests

presented in this chapter provide a numerical evaluation on the algorithm’s capacities

for producing new instances that “behave”, in principle, as the instances of a selected

class. Strictly speaking, it is to what extent, when used for training, the classification

algorithms improve their precision. In addition, we can look at the characteristics of

the newly produced instances (e.g its capacity to explore the space).

The re-sampling tests yield remarkable state-of-the-art results. With instances ap-

pearing as significantly different from those produced by the Smote and Adasyn al-

gorithms, which are the most widely used oversampling algorithms. In addition, the

number of produced instances allowed balancing of the different datasets. Therefore,

even in those cases in which the improvement in precision is not high, from the research

perspective, the number of produced instances provide the live coder with new material

to explore. Furthermore, this material explores wider regions of the space compared to

Smote and Adasyn algorithms.

Oversampling algorithms perform the task most similar to the RuLer algorithm (i.e.

extending a labeled data set searching for new data consistent with the classes). Strictly

speaking, RuLer is intended to produce variations of the material with different degrees

of “similarity” to the original data. But, up to certain limits, the idea of creating new

data by analyzing the properties of the existent is shared.

Although these results do not intend to be conclusive (see the critic for the evaluation

of musical systems presented in the text: Machine Learning Research that Matters for

Music Creation: A Case Study (Sturm et al., 2019)), they provide an estimation of the

137

algorithm capacities.

138

Chapter 6

FuzzyRuLer

This Chapter introduces FuzzyRuLer, an algorithm that extends the IF-THEN

rules extracted by the RuLer algorithm, described in Chapter 4, to fuzzy rules

that cover the whole feature space. The algorithm builds the cores of the fuzzy

membership functions by avoiding contradictions during the induction process.

The fuzzy model is evaluated by using cross validation, for which data collected

during user tests together with extrinsic benchmarks (i.e datasets not belonging

to the sound domain) were used. This numerical evaluation produces the best

results for the data collected by users, and, for the external datasets, though it

does not imply anything about the semantic perception of the instances, it does

yield state-of-the-art results.

RuLer is an algorithm, designed for live coding performance, that receives a set

of labeled presets and creates real time variations out of them (Paz, 2019b). It also

allows for the addition of new input presets in real time and starts working with only

two presets. The algorithm searches for regularities in the input data from which it

induces a set of IF-THEN rules that generalize it. However, these rules only describe

points that do not cover the whole feature space, providing little insight into how the

preset labels are distributed. This Chapter introduces FuzzyRuLer (Paz et al., 2020),

an algorithm able to extend IF-THEN rules to hyperrectangles, which in turn are

139

used as the cores of membership functions to create a map of the input feature space.

For such a pursuit, the algorithm generalizes the logical rules, solving the contradictions

by following a maximum volume heuristic. The user controls the induction process

through the parameters of the RuLer algorithm, designed to provide the affordances to

control the balance between novelty and consistency in respect to the input data. The

algorithm was evaluated both in live performances and by means of a classifier using

cross-validation. In the latter case, as there are no datasets, we used a dataset collected

during user tests and extrinsic standard benchmarks. The latter, although they do not

provide musical information, do provide general validation of the algorithm.

Even though this is a purely aesthetic pursuit that seeks to create aesthetically

engaging artifacts, it is interesting and relevant that the accuracy of the models reaches

state-of-the-art results. This, together with the positive criticism that the performances

and recordings received (see Section 4.3.4), suggests that rule learning is a promising

approach, able to build models from few observations of complex systems.

6.1 FuzzyRuLer Algorithm

The FuzzyRuLer algorithm constructs a fuzzy rule set of trapezoidal membership func-

tions out of logical IF-THEN rules. For that, it builds hyperrectangles (Section 6.1.1),

which are the cores of the trapezoidal membership functions and, in turn, are used to

fit the supports (Section 6.1.2).

6.1.1 Building cores

To build the cores, the algorithm extends the sets contained at the entries of the

logical IF-THEN rules to intervals between their respective minimum and maximum

values. For example, r1 = [{1,4}, {3,5}, intro] is extended to r1 = [[1,4], [3,5], intro],

including all the values in between 1 and 4 as well as between 3 and 5. Then, instead

of four values, we have a region to choose from! Next, the contradictions that might

140

appear between the created intervals are resolved. A contradiction appears when two

rules with different labels or classes intersect each other. Two rules r1 and r2 intersect

if, for all i (i.e., parameter placed at position i in the antecedent of the rule), there

exists x in r1[i] such that y1 ≤ x ≤ y2 with y1, y2 ∈ r2[i]. If two rules with different

classes intersect, it is enough to “break” one parameter to resolve the contradiction.

For example, the contradiction between the rules r1 and r2 (at the top of Table 6.1 and

depicted in Figure 6.1) can be resolved either as shown on the left or on the right of

Figure 6.2.

Table 6.1: The contradiction between r1 and r2 can be resolved by “breaking”

one parameter.

Rule Parameter1 Parameter2 Class

r1 [1,5] [2,4] calm

r2 [2,3] [1,5] harsh

First, partition

r1a [1] [2,4] calm

r2 [2,3] [1,5] harsh

r1b [5] [2,4] calm

Second partition

r1 [1,5] [2,4] calm

r2a [2,3] [1] harsh

r2b [2,3] [5] calm

141

0 1 2 3 4 5 6

0
1

2
3

4
5

6

Rule set with two connected components

PARAMETER 1

PA
R

A
M

E
T

E
R

 2

●

●

●

●

x

x

x

x

Figure 6.1: Rule [[2,3], [1,5], harsh] intersects rule [[1,5], [2,4], calm]. Harsh is

represented by an “x” and Calm by a “.” in the plot.

0 1 2 3 4 5 6

0
1

2
3

4
5

6

Rule set with two connected components

PARAMETER 1

PA
R

A
M

E
T

E
R

 2

●

●

●

●

x

x

x

x

0 1 2 3 4 5 6

0
1

2
3

4
5

6

Rule set with two connected components

PARAMETER 1

PA
R

A
M

E
T

E
R

 2

●

●

●

●

x

x

x

x

Figure 6.2: Two possible ways of resolving the contradiction that appears in Fig-

ure 6.1.

To select the partition, the Measure of each set of rules is calculated, and the one

142

with maximum value is selected. The set with maximum Measure value is selected as it

is the one that covers a wider region of the feature space. While the inductive process

of the RuLer algorithm is intended to create new points, the generalization process of

the FuzzyRuLer covers the entire observed space. Therefore, maximum coverage is the

goal. The Measure of a single rule has components: Extension (E) and dimension,

defined in Equation (6.1):

E =
N−1∑
i=0

Ei, where Ei = |maxi −mini|

dimension = Number of Ei such that Ei ̸= 0.

(6.1)

In Equation (6.1), for each parameter i in the rules, Ei is the absolute value between its

maximum and minimum values. For example, if r[i] = {11,13,15}, then Ei = 4, which

is |15− 11|. If r[i] = {3}, then Ei = 0.

The Measure of a set of rules collects the individual measures of the rules, adding

those who have the same dimension. It is expressed as an array containing the extension

for each dimension. When two measures are compared, the greatest dimension wins.

For example, (Extension = 1, dimension = 2) > (Extension = 4, dimension = 1).

In the same way, (Extension = 1, dimension = 3) > (Extension = 100, dimension = 2;

Extension = 100, dimension = 1). Table 6.2 presents an example.

6.1.2 Fuzzy rule supports

Once the cores are known, there are many possibilities for building the supports of

trapezoidal membership functions. Here, as the algorithm is designed for real perfor-

mance, we construct the supports using the minimum and maximum values observed

for each variable. In this way, the slopes of each trapezoidal membership function are

defined automatically by how close the core is to the respective minimums and maxi-

mums. Thus, each rule covers the whole observed space and the supports are defined

automatically by the cores, avoiding costly procedures that iteratively adjust the sup-

ports while the information is processed. This is done in the following way: For each

143

parameter, the minimum and maximum values observed are calculated. If the param-

eter values are normalized, these values are 0 and 1. Then, the algorithm connects

the extremes of each core with the respective minimum and maximum values of each

parameter. See Figure 6.3 for an example.

Table 6.2: Example of extension (E) and dimension (dim) for a set of rules. Note

that rules with different categories contribute to the global Measure.

Rules and Parameter Values and Category

Measures Parameter 1 Parameter 2 Category

rule r1a [1] [2,4] calm

Measure r1a E1 = 0 E2 = 2 E = 2, dim = 1

rule r2 [2,3] [1,5] harsh

Measure r2 E1 = 1 E2 = 4 E = 5, dim = 2

rule r1b [5] [2,4] calm

Measure r1b E1 = 0 E2 = 2 E = 2, dim = 1

Measure: E=5, dim=2; E=4, dim=1

rule r1 [1,5] [2,4] calm

Measure r1 E1 = 4 E2 = 2 E = 6, dim = 2

rule r2a [2,3] [1] harsh

Measure r2a E1 = 1 E2 = 0 E = 1, dim = 1

rule r2b [2,3] [5] harsh

Measure r2b E1 = 1 E2 = 0 E = 1, dim = 1

Measure: E = 6, dim = 2; E=2, dim = 1

144

Figure 6.3: Two fuzzy rules (scaled into [0,1]) of a hypothetical Category 1 (shown

at the top of the graph). The x-axis represents the frequency of an oscillator and

the y-axis the number of upper harmonics added to it. The membership of a point

(Frequency, N harm) to Category 1 is indicated by the membership scale at the

right of the graph.

In Figure 6.4, the fuzzy-rule model composed by rules: [[0.1, 0.2], [0.2, 0.3], 1], [[0.5,

0.6], [0.5, 0.6], 1], [[0.7, 0.9], [0.4], 2] is shown. Note that these rules describe the cores

of the membership functions from which the supports are build. In the Figure, each

point in the space is assigned to its maximum membership. The points with class “1”

are shown at the top of the Figure; the cores of the rules appear with membership 1.

The x-axis represents the frequency of an oscillator and the y-axis the number of upper

harmonics added to it. The intervals are normalized, as in the previous example, to

[0,1]. A similar example is shown in Figure 6.5.

145

2

1

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Frequency

N
_h

ar
m

0.00

0.25

0.50

0.75

1.00
Membership

Figure 6.4: The space is classified by the fuzzy-rule model composed by rules: [[0.1,

0.2], [0.2, 0.3], 1], [[0.5, 0.6], [0.5, 0.6], 1], [[0.7, 0.9], [0.4], 2]. Note that the rules

describe the cores of the membership functions. Then, the cores connect with the

extremes of the intervals. The degree of membership to each class is shown by the

scale at the right of the Figure. The rules with class “1” are shown at the top of

the figure. The x-axis represents the frequency of an oscillator and the y-axis the

number of upper harmonics added to it. The intervals are normalized to [0,1].

146

Figure 6.5: Membership values of the space (normalized to [0,1]) classified with a

fuzzy-rule model composed by rules: [[0.2], [0.8, 0.9], A], [[0.4,0.5], [0.3, 0.75], A],

[[0.7,0.9], [0.8,0.9], B]. The x-axis represents the frequency of an oscillator and the

y-axis the number of upper harmonics added to it.

The process to build the supports out of the cores can be formally described as

follows: Each rule r ∈ R has the form r = r1, r2, ..., rn−1, ci where each ri is an interval

and ci ∈ C is one of the possible categories. For example, R = {r1, r2}, where r1 = [

[1,3], [1], A] and r2 = [[5,7], [3,5], A].

Let r∗ be the set defined in Equation 6.2:

r∗ = {r∗1, ..., r∗n−1| ∀ ri in r ∈ R, ri ⊂ r∗i } (6.2)

In our example r∗ = {r∗1, r∗2} = {{1, 3, 5, 7}, {1, 3, 5}}. r∗i is a set containing all

the values for each of the i parameters of the current set of rules. Then, Algorithm 4

describes how to build the membership functions that create the fuzzy rules.

147

Algorithm 4 Fuzzy rules with trapezoidal membership functions

1: function Fuzzy-rules-with-trapezoidal-membership-functions(R)

Require: set of rules

2: create r∗ as in Equation (6.2)

3: Fuzzy-Rules = list

4: for j ← 0 to size of R do

5: r = R[j]

6: fuzzy-r = list

7: for i← 1 to n− 1 do

8: a = min(r∗i)

9: b = min(ri)

10: c = max(ri)

11: d = max(r∗i) (As the rules are normalized a = 0 and d = 1).

12: append list [a,b,c,d] to fuzzy-rule

13: end for

14: append r[n] to fuzzy-r and save fuzzy-r in Fuzzy-Rules

15: end for

16: Return Fuzzy-Rules

17: end function

148

6.1.3 Fuzzy classifier

To classify a new preset P = (v1, . . . ,vN−1), proceed as follows: For each rule

rk, calculate the membership of each feature value i.e., µk,i(vi). Then, calculate its

firing strength τk(P), which measures the degree to which the rule matches the input

parameters. It is defined as the minimum of all the membership values obtained for the

parameters (see Equation (6.3)).

τk(P) = min {µk,i(vi) } (6.3)

Once the firing strength has been calculated for all rules, the assigned class will be

equal to the class of the rule with maximum firing strength, as in Equation (6.4):

Class(P) = Class of Rc where C = arg max
k

{τk(P)} (6.4)

An example of the classification process for a hypothetical system with two rules each

with two parameters is shown in Figure 6.6.

Figure 6.6: Example of classification process for a system with two rules and two

parameters. The new combination P = (v1, v2). For the first rule µ(v1) = d and

µ(v2) = e. The minimum of these values is e. For the second rule µ(v1) = f ,

µ(v2) = g and min(f, g) = g. Finally, max(e, g) = e and therefore the class assigned

to the instance is Class i.

149

6.2 Evaluation

Evaluation of automatic synthesizer programmers has followed two main approaches:

user tests, in which expert musicians are interviewed after using the algorithm; And,

similarity measures, in sound matching tasks, where candidate sounds are compared

with the target are used.

In our case, the evaluation includes:

1. The analysis of how the model generalizes a user test dataset. This evaluation is

reinforced by other extrinsic benchmarks (Section 6.2.1).

2. Analysis of the extracted rules (Section 6.2.2).

3. The evaluation of the performances where the project has been presented and

the lists where the compositions made with the algorithms have been included

(Section 4.3.4).

As one of the objectives of the FuzzyRuLer algorithm is to provide new presets

classified with the same labels of the input data, the generalization using the user-

labeled data are evaluated by cross-validation. The classifier used for that purpose was

presented in Section 6.1.3 . When new instances are classified, the classifier assigns to

them the label that it will assign to the same combinations if the rule model is used

to produce new presets. In addition, cross-validation allows for the assessment of the

performance of the algorithm using benchmarks in a task for which datasets might

not exist, as it is the case of live coding.

6.2.1 Cross-validation

To test how the algorithm models the feature space of a synthesis algorithm, we used

the data set described in (Paz et al., 2017). This dataset was generated by user tests,

in which different configurations of a Band Limited Impulse Oscillator (Blip, 2019)

were programmed by users and tagged either as rhythmic, rough or pure tone. For

150

this, the users tweaked the device parameters of the synthesis algorithm: fundamen-

tal frequency and number of upper harmonics (which are added to the fundamental

frequency). Then, the parameter combinations that produced any of the searched cat-

egories were saved together with the corresponding label. The data set is shown in

Figure 6.7.

Figure 6.7: Band Limited Impulse Oscillator (Blip) data set. The x-axis shows the

log of the fundamental frequency of the impulse generator. The y-axis shows the

number of upper harmonics that are added to the fundamental frequency. The cat-

egories associated with the combinations (rhythmic, rough or tone) are shown at the

right side of the graph.

In addition, four datasets from the UCI repository (Dua and Graff, 2017) were

selected. As they belong to diverse domains and have different unbalanced degrees,

they provide a general idea of how the algorithm behaves.

The results of the fuzzy classifier of Section 6.1.3 were compared with K-Nearest

Neighbours, Support Vector Machine (with kernels linear, polynomial degree 2 and rbf)

and Random forest classifiers.

The K-Nearest Neighbours classifier is described in Section 5.2. The Support Vector

Machine (SVM) is an algorithm with good generalization capabilities and nonlinear data

handling using the kernel trick. In addition, small changes in the data do not affect

151

its hyperplane. However, choosing an appropriate Kernel function is difficult and the

algorithmic complexity and memory requirements are very high. As a consequence, it

has long training times. In addition, the resulting model is difficult to interpret.

The Random Forest (RF) is based on the bagging algorithm and uses an Ensemble

Learning technique. It creates many trees and combines their outputs. In this way,

it reduces both the overfitting problem of decision trees and the variance, improving

the accuracy. It handles nonlinear parameters efficiently. However, as it creates lots

of trees, it requires computational power and resources. Using the RF to compare is

interesting because these algorithms are normally considered the alternative to rule

learning. However, while an RF algorithm might indeed perform as easily and quickly

as the FuzzyRuler, its only parameter, the number of trees, is not as expressive and

interpretable for the user as parameters d and ratio for controlling the induction process.

Together, these algorithms provide a spectrum to compare the classifier against.

For each dataset, the model parameters producing the highest 10-fold (70% training

and 30% test) cross-validation accuracy were selected. For the SVM, tested parameter

values for C and gamma were respectively [0.01, 0.1, 1, 10, 100, 1000] and [1, 0.1, 0.01,

0.001, 0.00001, 0.000001, 10]. For KNN, the tested N values were [1, 2, 3, 4, 5, 6, 7, 8,

9, 10] and for the Random forest [1, 10, 100, 500,1000] trees were considered. In the

case of the FuzzyRuLer, d was explored from 1 to half the number of features in the

dataset and ratio with [0.9, 0.8, 0.7, 0.6, 0.5] values. Table 6.3 presents for each model

the parameter selected and the accuracy obtained.

152

Table 6.3: Data sets Wine, Wine-quality-red, Glass and Ionosphere, selected from

the UCI repository (Dua and Graff, 2017). The Blip data set was obtained from (Paz

et al., 2017). The accuracy was calculated using 10-fold cross validation.

Data Algorithm Parameters Mean Accuracy 10-fcv

Wine

SVM linear kernel best C = 0.1 0.9717

KNN neighbors = 1 0.7514

RANDOM FOREST trees = 100 0.9830

FuzzyRuLer d = 9; ratio = 0.7 0.9554

SVM poly 2 C = 0.01; gamma = 1 0.9717

SVM rbf C = 1000; gamma = 1 * 10−5 0.9378

Wine-quality-red

SVM linear kernel C = 100 0.6

KNN neighbors = 9 0.5475

RANDOM FOREST trees = 10 0.59

FuzzyRuLer d = 1; ratio = 0.5 0.6204

SVM poly 2 C = 0.01; gamma = 0.001 0.64

SVM rbf C = 1; gamma = 0.1 0.66

Glass

SVM linear kernel C = 1000 0.6384

KNN neighbors = 6 0.6760

RANDOM FOREST trees = 1000 0.6572

FuzzyRuLer d = 6; ratio = 0.8 0.6636

SVM poly 2 C = 0.1; gamma = 1 0.6666

SVM rbf C = 10; gamma = 0.1 0.6854

Ionosphere

SVM linear kernel C = 10 0.8857

KNN neighbors = 1 0.86

RANDOM FOREST trees = 1000 0.9342

FuzzyRuLer d = 6; ratio = 0.5 0.9033

SVM poly 2 C = 0.1; gamma = 1 0.92

SVM rbf C = 10; gamma = 0.1 0.9485

Blip

SVM linear kernel C = 1 0.8097

KNN neighbors = 4 0.8195

RANDOM FOREST trees = 500 0.8585

FuzzyRuLer d = 2; ratio = 0.8 0.8690

SVM poly 2 C = 0.1; gamma = 0.1 0.89

SVM rbf C = 1; gamma = 0.1 0.775

153

Table 6.3 shows the cross-validation mean accuracy results obtained for each clas-

sifier and dataset. Table 6.4 presents the general mean and standard deviation for

each classifier. These results show that the FuzzyRuLer yields similar results to those

achieved by state-of-the-art classification algorithms. There exists abundant literature

applying different machine learning algorithms to the UCI datasets; see, for instance,

(Khan et al., 2018). However, the algorithms are used for a variety of purposes and un-

der different conditions. For example, their evaluations use different partition schemes

or sometimes are performed using techniques that trade execution time to gain accu-

racy (e.g., leave-one-out). Here, some references intended to frame the obtained results

are presented. However, the reader has to keep in mind that these experiments are not

completely comparable.

For the Wine dataset, according to (Dua and Graff, 2017), the classes are separable,

though only Regularized Discriminant Analysis (RDA) has achieved 100% correct classi-

fication. The reported results are RDA : 10 0%, quadratic discriminant analysis (QDA)

99.4%, linear discriminant analysis (LDA) 98.9%, 1NN classifier 96.1% (z-transformed

data). In all cases, the results have been obtained using the leave-one-out technique.

In (Cortez et al., 2009), using the Wine-quality-red dataset with a tolerance of 0.5

between the predicted and the actual class, the SVM best accuracies for this dataset

were around 57.7% to 67.5%.

For the Glass dataset, (Khan et al., 2018) report the following accuracy results:

KNN 0.6744, SVM 0.7442 and Large Margin Nearest Neighbors (LMNN) 0.9956.

Finally, for the Ionosphere dataset, in (Ding et al., 2015), Deep Extreme Learning

Machines (DELM) were used for classification. According to the report, the multilayer

extreme learning machine reaches an average test accuracy of 0.9447 ± 0.0216, while

the DELM reaches an average test accuracy of 0.9474± 0.0292. In (Khan et al., 2018),

they report the following results KNN 0.8, SVM 0.8286, LMNN 0.9971.

154

Table 6.4: Mean and standard deviation achieved for each classifier considering all

the datasets.

Classifier mean sd

FuzzyRuLer 0.802 0.150

KNN 0.731 0.124

Random-forest 0.805 0.173

SVM-linear-kernel 0.781 0.159

SVM-poly-2 0.818 0.153

SVM-rbf 0.801 0.136

To compare if mean accuracies are significantly different between algorithms, we

performed a statistical test. As the predictor variables are categorical and their out-

comes are quantitative, we performed a comparison of means test. As there are more

than two groups being compared, but there is only one outcome variable, the statistical

test is the one-way-ANOVA.

Table 6.5 shows that the p-value of the one-way analysis of variance is greater

than the significance level 0.05, from which we conclude that there are not significant

differences between the groups. The Tukey multiple comparisons of means yields 95%

family-wise confidence level. Together, these results suggest that the fuzzy model could

be used to generate new instances.

Table 6.5: One-way analysis of variance of the means shown in Table 6.4.

Df Sum Mean Sq Fvalue Pr (>F)

Classifier 5 0.0242 0.004832 0.214 0.953

Residuals 24 0.5408 0.022532

155

6.2.2 Extracted rules

Figure 6.8 shows the fuzzy rules obtained for the three categories of the “Blip” data set

(shown in Figure 6.7) by using the FuzzyRuLer algorithm.

Although the Blip is a simple data set, it provides insight into the algorithm capac-

ities for identifying the underlying structures that codify the categories. In Figure 6.8,

it can be seen that the ranges in the frequency that separate the categories are consis-

tent with the perception thresholds described in (Roads, 2001). These are: from 0 Hz

to approximately 20 Hz the category is rhythmic no matter the number of harmonics

added. From 20 Hz depending on the number of harmonics added, the sensation is

rough until approximately 250 Hz. If the frequency is greater than 20 Hz and there

are no harmonics added, or if the frequency is greater than approximately 250 Hz,

the sensation is pure tone.

Figure 6.8: Extracted fuzzy rules for the three categories of the blip data set. The de-

gree of membership to the class is shown at the right side of the image.

156

6.3 Conclusions

Real-time synthesizer programming in live coding imposes challenges to the intended

use of learning algorithms, which provide numerous well-chosen examples, and has

processes for data cleaning, learning and testing before selecting the final model.

Here, on the contrary, the examples are collected in real time, sometimes including

musician mistakes that have to be managed as glitches and integrated into the perfor-

mance. In cases when the data are pre-selected, the size of the datasets may be small.

In other words, in this artistic practice, although it is also possible to include already

trained models, the artists focus on having real-time feedback, creating the dataset

mid-performance. Then, real-time algorithms that operate with small noisy data are

also needed.

Inductive rule learning has offered interesting results within this context. However,

the number of inducted instances is reduced, and the resulting IF-THEN rules provide

a poor visualization of the space. The fuzzy rule learning algorithm presented in this

Chapter is able to build fuzzy rule models of the feature space out of a set of IF-THEN

rules. The resulting set provides an image of the class distribution in the feature space

that helps musicians to have a quick insight into the inner workings of the synthesis

algorithm. As the new examples only modify the rules that they “touch”, the general

model can manage outliers, integrating them into the model. The model has been

evaluated during live performances and recordings that have been well-received by the

community. The performances and reviews are available as part of the references (See

references 1, 2 and 3 in Related publications/Press, critical reviews and performances).

Finally, the model was also evaluated using cross-validation, comparing its results with

those obtained by KNN, SVM (linear, polynomial degree 2 and rbf) and Random

Forest classifiers. The one-way analysis of variance shows that there exist no significant

differences among the algorithms. These results together suggest that the algorithm is

a promising approach to be used in contexts, such as live coding, where the focus is not

necessarily placed in model accuracy but, for example, in having real-time feedback of

157

the algorithmic process.

158

Chapter 7

Conclusion and Further Research

This manuscript explores algorithmic processes for automatic programming of sound

synthesis algorithms in the context of the performative artistic practice known as live

coding (Collins et al., 2003; Magnusson, 2015). Specifically, it explores symbolic rule

learning, given that its output is human-readable, and inductive methodologies allow

one to create material as generative algorithms do.

Live coding implies conducting sound by real-time intervention of synthesis algo-

rithm parameters. Coding a piece on-the-fly requires one to bridge the cognitive gap

associated with devices’ huge parameter spaces and the possible nonlinear sound vari-

ations built-in within them.

One possible approach is to have some pre-selected parameter combinations, of

which the aural result is known, as a starting point for the performance. Another

possibility is to search for combinations mid-performance embracing the risk, either way,

the performance unfolds from these settings, creating variations that develop the piece.

Automatic production of variations is a task that has occupied generative algorithms

for a long time.

The algorithm proposed, named RuLer, operates on a set of labeled parameter

combinations, from which it can produce new material with different degrees of variation

by analyzing the existent regularities in the input data. The degree of variation is

159

controlled by the performer who can then navigate a spectrum from recovering the

original input material to producing strong recombinations.

This task is different from those addressed either by preset generation approaches

centered in sound matching or by interactive evolution systems used for space explo-

ration. Yet the conceptualization of the system shares similarities with both of them.

For example, its exploratory nature resembles interactive evolution systems, and hav-

ing initial information, from which to conduct a search, resembles automatic preset

programmers.

During the performance, the live coder runs the algorithm iteratively and listens

to/reviews the results, adjusting its parameters while unfolding the piece. The different

degrees of variation provide the material for its development. The data collection

process can be incremental, so the system can start with only a few examples, and

new data can be collected during the performance or even over several performances.

This can be done by allowing the user to save/delete settings on-the-fly and updating

a database.

The algorithm design responds to the specific restrictions imposed by the application

domain, namely: small data sets and/or data being collected mid-performance, needing

real-time feedback and interpretable models.

RuLer performs inductive rule learning with a bottom-up strategy in a separate-and-

conquer fashion. Iteratively, each example in the input data is selected and compared

with the other instances, searching for patterns. These are defined based on a dis-

similarity function that analyses the regularities in the conjunctions of rules with the

same label. The live coder selects the allowed degree of dissimilarity among two rules

necessary for them to exhibit a pattern. When patterns are found generalization is per-

formed, the system avoids contradictions, and the “inductive leap” is controlled by the

user. The user then defines an allowed “ratio” of the original instances that need to be

contained in a candidate rule for it to be accepted. This limits the level of generalization

and, therefore, the variations allowed.

The RuLer algorithm outputs an IF-THEN rule model. It produces outputs inde-

160

pendent of the order of the input data, accepts multiple data types and returns all the

regularities found expressed as rules. This last characteristic was selected because the

intention of the model is to offer the performer as many variations as possible. Thus,

no high-level routine to reduce the number of rules (e.g by pruning them) was imple-

mented. However, in further implementations, for example, if the system keeps learning

over various performances, that functionality might be useful.

The evaluation of the extracted rule model was performed by user surveys and

by comparing the algorithm with state-of-the-art oversampling algorithms (Smote and

Adasyn). In this way, subjective and numerical evaluations were considered, providing

a general view of the algorithm’s capacities and limitations.

Oversampling algorithms were selected as they perform a process similar to the

objectives pursued by the RuLer. That is, oversampling algorithms receive labeled data

and create new instances consistent (intended to be classified) with the data labels of

the input.

Although the data being correctly classified (or the classifier accuracy improving by

using synthetic data) does not imply that the new instances will be perceived by a user

as consistent with a class or even as interesting variations, contrasting this evaluation

with the user surveys offers a better overview of the algorithm.

The oversampling tests yield remarkable state-of-the-art results. The classifiers

trained with data created by the RuLer, surpassed those trained with data oversam-

pled using Smote and Adasyn. The comparisons were performed by using the average

precision scores for three classifiers: KNN, SVC and Random Forest. The extrinsic,

selected data sets have different numbers of instances (214 to 5472), attributes (5 to

19), imbalance degrees (1.82 to 9.08) and have binary labels. The best results, using

the RuLer algorithm, were obtained by the Random Forest classifier, which reached the

highest score for every data set. A possible explanation is that decision trees divide the

space using planes, in a similar way in which RuLer builds new examples.

To analyze the results statistically, pairwise comparisons using Wilcox and Sign

tests were performed. These tests considered the three classifiers for the eleven data

161

sets used. Their results showed significant differences between groups Adasyn - RuLer

and RuLer - Smote. Moreover, the synthetic instances produced by the RuLer explored

more distant places (measured in Euclidean distance) than those produced by the other

algorithms. To test this hypothesis, a one-way-ANOVA test among groups was per-

formed. The results showed that instances created by the RuLer algorithm are indeed

significantly different from those produced by Smote and Adasyn. In addition, the num-

ber of produced instances allowed one to balance the different data sets even in cases

with a high imbalance ratio. Therefore, even in those cases in which the improvement

of the classifier when trained with balanced data was not considerable the number of

produced instances provide the live coder with new material to explore. Furthermore,

as shown by the one-way-ANOVA, this material explores wider regions of the space

than Smote and Adasyn algorithms do.

Accompanying oversampling tests, listening surveys with live coders were carried

out. These used a specific data set taken from a musical piece, from which variations

were produced using the RuLer algorithm. The perceived changes in the new data

depend on the topology of the chosen synthesizer and, therefore, might vary from one

algorithm to another. Despite that, the results of the user test show that, as the level of

generalization allowed increases, the number of new combinations successfully evaluated

decreases, though not more than 25%. Furthermore, it allowed recombination in 12 out

of 16 attributes! This was to be expected; the greater the level of generalization, the

more instances can be perceived as “randomly”generated. However, the fact that this

decrease is not so drastic suggests that the generated instances maintain part of their

original quality. Again, this depends on the topology of the synthesis algorithm, but, as

the generalization level can be controlled by the live coder, if the topology is non-linear,

then low generalization levels can be used if no harsh variations are sought.

Both evaluations (surveys performed on a set of given presets and oversampling

algorithms using imbalanced data benchmarks) point in the same direction. Namely,

the instances created by the inductive algorithm in both experiments are, respectively,

perceived as suitable variations and classified within the data labels in most cases.

162

IF-THEN rules only describe points that do not cover the whole feature space,

providing little insight into how the preset labels are distributed. Thus, FuzzyRuLer

is presented. It is an algorithm able to extend IF-THEN rules to hyper-rectangles,

which in turn are used as the cores of membership functions to create a map of the

input feature space. For such a pursuit, the algorithm generalizes the logical rules

solving the contradictions by following a maximum volume heuristic. Such a heuristic

calculates the maximum hyper-rectangles that produce no contradictions. To reduce

the search space: First, the sets of rules that would intersect during the generalization

process are calculated. Then, for each set, all the possible partitions are built and their

measures compared. By identifying the sets of rules that can produce contradictions and

treating them separately, the algorithm actually calculates all the possible extensions

and returns the optimal solution. The resulting rule set constitutes the cores of the

fuzzy rules. Their supports are built such that the resulting rules cover the entire space.

The evaluation of the fuzzy rule model was carried out by means of cross-validation,

comparing the results with state-of-the-art classifiers (SVM, Random Forest and KNN).

For that propose, a simple fuzzy classifier was built on top of the extracted fuzzy-model.

For the tests, extrinsic benchmarks were used together with a data set collected by

users using a simple sound synthesis algorithm. The cross-validation tests yield results

similar to those reached by state-of-the-art classifiers. Although, in these tests, the

FuzzyRuLer did not produce the highest scores for all datasets, it did for the data set

collected during user tests. That is, it performed better than the other classifiers with

data belonging to its intended application domain.

Again, we used a one-way-ANOVA to test whether significant differences were found

between the different algorithms considering all data sets. On this occasion, the com-

parisons suggest that no significant differences among the results of the classifiers exist.

That is, the FuzzyRuler does not consistently appear lower or higher than the other

algorithms. These are promising results, suggesting that the created n-dimensional

regions based on the points contained in the IF-THEN rules do contain instances be-

163

longing to the labels of the rules. Moreover, the dataset collected via user tests suggest

that, in that specific case and for the instances in the test-set, the regions described

by the rules effectively produce instances within the corresponding perceptual labels.

Furthermore, the regions in space covered by the cores of the rules provide the live

coder with more points from which to choose new possible instances.

Obtaining the best results using these algorithms requires listening to the new in-

stances produced and adjusting the desired level of generalization according to the data

set. This is possible thanks to the algorithm parameters’ that allow this operation to

be carried out. If the perception varies strongly as a function of the space, the live

coder can choose a minimum induction or no induction at all.

Some interesting future research would be to explore how the results vary for dif-

ferent sound synthesis algorithms or when using a greater variety of dissimilarity and

creating rule functions. It is quite possible that many of the algorithm’s limitations,

given that the dissimilarity function and the rule creation function are domain agnostic,

could be overcome using functions that provide more musical information. However,

from the point of view of the live coder, who observes the parameters while program-

ming, it is possible that some readability is lost if, instead of frequencies, amplitudes,

and cutoffs, one manipulates harmonic contents, MFCCs, etc.

Finally, a series of live coding performances and recordings have accompanied the

design and testing of the algorithm. These have been developed in different contexts

and venues including universities, artistic research centers, theatres, online streaming,

smoky bars, etc. References regarding performances are available in Chapter 4, Section

4.3.4. Some of the lists, programs and places where the works are featured are also

included there.

The community and public feedback have been extremely enriching, sparking con-

versations that range from the possibility of including various similarity measures (some

of them less human-readable in the live coding context such as spectral), the limits of

the algorithm or even symbolic learning vs subsymbolic approaches, to the consequences

of real-time machine learning. All of these might draw no conclusive results, but this

164

only reinforces the idea that this is an open field of research.

165

Chapter 8

Further Discussion

This Chapter extends the discussion presented in Chapter 7 with consideration of the

comments received from the anonymous reviewers. Primarily, this chapter serves as an

extension of the discussion, and further focuses the artistic possibilities of the algorithms

presented and its designed criteria. Ideas including systems evaluation and references

to recent performances using the RuLer and FuzzyRuLer algorithms are also included.

The Chapter is divided in two Section the first one discusses the design ideas, techni-

cal considerations and evaluation of the RuLer and FuzzyRuLer algorithms, the second

discusses its artistic possibilities and contextualizes the research within the current

machine learning applications within live coding.

8.1 Algorithm design considerations and evaluation

In (Knotts and Paz, 2021) a general discussion is presented regarding the implications

resulting from using machine learning within live coding. At the outermost level of the

discussion, we can observe that one facet of machine learning encompasses computer

algorithms, which are able to learn through experience and by using data, with the

primary aim of optimizing automation processes.

Live coding, is a creativity technique and a performative practice, centering on

the expressive possibilities of algorithms. Therefore, with the integration of machine

166

learning (ML) and live coding, some components are to be considered, such as: which

elements to optimize; which processes to automate; what is the role of the performer;

and how to present ML algorithms to an audience. These factors are regarded (whether

implicitly or explicitly as discussed below) in accordance with the intended uses of the

machine learning algorithms within live coding, which then actualize distinct aesthetic

decisions, relationships with the algorithms and technical consequences. Therefore,

most often the evaluation of the systems cannot provide information beyond the user

tests. As an example, consider the report of the users experience of the Music In-

formation Retrieval Live Coding Agent MIRLCa (Xambó, 2021), which is based on

interviewing live coders after using the agent.

In the cases of the RuLer and FuzzyRuLer algorithms, the evaluation also relies on

the subjective evaluation of the users within the user tests. It is directly associated with

the musical experience (and expertise) of the individuals and can only be considered

within that specific context. The Sawtooth and Pulse Waveforms were purposefully

selected for the user tests, due to their clearly separated perceptual regions and few

parameters. Having clearly separated perceptual regions and few parameters makes

these architectures well-suited for a case study with “highly subjective results”. The

same ideas apply to the Blip and its well-studied perceptual regions. The questionnaire

presented during the evaluations is available at Paz, 2017c.

8.1.1 Designing algorithms for real-time machine learning

When designing learning algorithms within live coding, an important element to con-

sider is the technical restrictions of using machine learning within real-time. Real-time

machine learning has technical implications relative to the size of the datasets given the

computational complexity of the algorithms. For example, the training complexity of

nonlinear Support Vector Machines, although depending on several factors, generally

lies between O(n2) and O(n3), with n being the amount of training instances (Abdi-

ansah and Wardoyo, 2015). Also, some algorithms have many parameters which make

167

it challenging to configure in real-time (even with default settings). For example, the

Multi Layer Perceptron Classifier in Python (for a live coding system using sklearn

library see Diapoulis, 2017) has 23 parameters. While it is not necessary to change

all the parameters each time, without a proper mapping or expertise, the relationship

between the parameter values and the aesthetic result is not immediately clear. In con-

trast, let us consider the Multi Layer Perceptron Classifier of Flucoma. The Flucoma

(Tremblay et al., 2019) project, aims to provide “potent algorithms with a suitable level

of modularity within the main coding environments used by the creative researchers”.

Flucoma’s implementation of the FluidMLPClassifier has just 8 parameters to config-

ure. Scaling back the parameter space allows the classifier more flexibility to run at

performance time and reduces the complexity of mapping. Although Flucoma is ori-

ented to audio analysis, its algorithm is designed with a workflow closer to creative

tasks such as live coding performance. However, there still exists a time constraint of

needing to find a proper mapping of the parameters providing the best affordances for

creative use, which makes these algorithms difficult to use within a real-time context

1. From this perspective, the proposed algorithms consider, first, that real-time rule

learning has not been explored within live coding and further, second, that its symbolic

nature helps to produce interpretable models. Moreover, the algorithms intentionally

have only two parameters with which to facilitate its use during a performance. Fi-

nally, these parameters are intended to provide expressiveness by allowing the user to

recover the exact data contained in the dataset v.s. something that is completely wild

by changing a couple of parameters.

8.1.2 Oversampling instances for audio engines

Among the tasks in a live coding performance, one is to create new instances with

specific characteristics, sometimes taking care of the consistency-novelty trade-off. This

is similar to the definition of an oversampling problem that looks for data to adjust the

1Text included in Knotts and Paz, 2021.

168

class distribution of a data set.

To compare the RuLer with oversampling algorithms Smote and Adasyn were se-

lected as they represent basic ideas from which further modifications/extensions have

been proposed (see for example Tang et al., 2008; Wang et al., 2017). To oversample a

dataset, the Smote algorithm takes an example and considers its k nearest neighbors in

the feature space. Then, to create the synthetic points, it takes the vector between one

of the neighbors and the current point and multiplies it by a random number between

0 and 1. Adasyn is a modified version of Smote that uses a weighted distribution for

different minority class examples according to their level of difficulty in learning, and

generates more synthetic data for minority class examples, which are more challenging

to learn. Modern algorithms follow the same principles. Some of my current research is

comparing the RuLer results with modern Smote-derived algorithms, which has yielded

similar results as those reported in Chapter Oversampling Tests. For example, the

following 8.1 shows the 5-folds cross-validation over the glass-0-1-2-3 vs 4-5-6 dataset

mentioned in Chapter 5, using oversampling algorithms RandomOverSampler, Smote,

KMeansSMOTE, SVMSmote and BorderlineSMOTE with the classification algorithms

KNN k = 2, 3 and 4, Randomforest and SVC. Nonetheless, this further research also

takes into account that when considering creative pursuits accuracy does not necessarily

imply better engagement, interaction or perceptual results.

Table 8.1: 5-folds cross validation with classification algorithms KNN k = 2, 3 and

4, Randomforest and SVC applied to glass-0-1-2-3 vs 4-5-6 data oversampled us-

ing algorithms Adasyn, RandomOverSampler, Smote, KMeansSMOTE, SVMSmote,

RuLer and BorderlineSMOTE.

Oversampling Algorithm Classification Algorithm APS.mean APS.sd

Adasyn knn k=2 0.85 0.074

Adasyn knn k=3 0.89 0.058

Adasyn knn k=4 0.88 0.057

Adasyn rforest 0.93 0.045

169

Adasyn svc 0.92 0.020

Baseline knn k=2 0.84 0.062

Baseline knn k=3 0.87 0.073

Baseline knn k=4 0.90 0.046

Baseline rforest 0.91 0.035

Baseline svc 0.92 0.019

BorderlineSMOTE knn k=2 0.80 0.110

BorderlineSMOTE knn k=3 0.84 0.098

BorderlineSMOTE knn k=4 0.84 0.097

BorderlineSMOTE rforest 0.92 0.079

BorderlineSMOTE svc 0.92 0.023

KMeansSMOTE knn k=2 0.81 0.093

KMeansSMOTE knn k=3 0.85 0.059

KMeansSMOTE knn k=4 0.86 0.046

KMeansSMOTE rforest 0.91 0.073

KMeansSMOTE svc 0.88 0.094

RandomOverSampler knn k=2 0.82 0.084

RandomOverSampler knn k=3 0.85 0.077

RandomOverSampler knn k=4 0.86 0.070

RandomOverSampler rforest 0.91 0.082

RandomOverSampler svc 0.93 0.023

Ruler knn k=2 0.99 0.004

Ruler knn k=3 0.99 0.013

Ruler knn k=4 0.98 0.014

Ruler rforest 1 0

Ruler svc 0.93 0.021

Smote knn k=2 0.85 0.066

Smote knn k=3 0.86 0.083

170

Smote knn k=4 0.87 0.063

Smote rforest 0.87 0.049

Smote svc 0.93 0.023

SVMSmote knn k=2 0.82 0.123

SVMSmote knn k=3 0.88 0.065

SVMSmote knn k=4 0.87 0.076

SVMSmote rforest 0.94 0.035

SVMSmote svc 0.91 0.038

There are two primary reasons to further extend the RuLer algorithm by using fuzzy

sets. First, the RuLer algorithm creates only some points which are derived from the

combinations of the existing data under the restrictions imposed by the algorithm pa-

rameter values, but it cannot infer beyond that. Using fuzzy rules allows the algorithm

to produce unseen values (parameter values that are not present in the dataset) thus

using the rules as information to infer new instances.

Furthermore, in music and sound, the perception of the material is strongly depen-

dent on the context. Moreover, the perception can hardly be categorized as a two-class

problem where something clearly belongs to one class or another. This can be under-

stood from Figure 6.7 where the perceptual regions of the different persons overlap.

These considerations lead to the FuzzyRuler algorithm presented in Chapter 6.

8.2 Artistic practice

Sound synthesis is the process of using electronic hardware or software to produce

sound from scratch. There are several methods of sound synthesis, such as subtractive

synthesis, additive synthesis, frequency modulation synthesis, phase distortion synthe-

sis, wavetable synthesis, sample-based synthesis, vector synthesis, granular synthesis

and physical modelling synthesis. These types of synthesis vary in the manner in which

sounds are sourced, generated, and modulated. Live coding provides explicit constraints

171

that push creativity in unexpected directions. This impacts all sorts of algorithms used,

including sound synthesis. For example, Roma, 2016, describes a constrained environ-

ment aimed at exploring the creation and modification of sound synthesis and processing

networks in real-time. These ideas can be traced back to those expressed in the timbre

space conception of (Wessel, 1979) and (McAdams, 2013). The algorithms of this work

were conceived to operate over Audio Engines (mainly sound synthesizers). Next, I dis-

cuss some general ideas about the different relationships that live coders have with the

algorithms to contextualize the possibilities of the algorithms presented in this work.

8.2.1 Training v.s surprise trade-off

Anna Xambó’s MIRCLa (Music Information Retrieval Live Coding Agent (Xambó,

2021), aims to explore big collections of sounds within live coding performance using

machine learning, the Freesound.org database and music information retrieval algo-

rithms. MIRLCa allows training a perceptron to recognize similar sounds from a set

of given examples selected (using SuperCollider) during the training process. Once

trained, MIRLCa retrieves similar sounds during the performance which are then pro-

cessed or sequenced on-the-fly. Although the performers are able to control the level of

training of the agent, which gives creative scope for the performers to explore aspects

of surprise and risk, the agents can produce unpleasant surprises that the performer

has to embrace and control on-the-fly as part of the performance. Therefore, there is

not a ’perfect’ training, and thus there is a trade-off between unexpected surprises and

having ‘predictable’ models.

In contrast, it is possible to integrate algorithms pre-trained over large datasets

into live coding systems. The trained algorithms are many times used for low level

tasks such as in melody generation. SeMA (Bernardo et al., 2020), for example, is a

playground for prototyping live coding mini-languages that integrates signal synthesis

and ML. It facilitates the use of models from TensorFlow (Abadi et al., 2016), with

live coded mapping of inputs and outputs. The training time of some models can take

172

minutes, hours or days depending on the algorithm, the dataset, and the hardware.

Once trained, the models can be fairly accurate, and are rarely surpassed by other

systems. This approach reaches philosophical limits like the one suggested by Collins,

2016. An algorithm can be trained over a corpora of music that would take a human

years to listen through.

8.2.2 How do we relate to models?

As mentioned at the beginning of this Chapter, how machine learning is used within

live coding implies specific relationships with the algorithms, as well as aesthetic and

technical decisions.

When it comes to using machine learning within live coding, machine learning mod-

els are used from different conceptual approaches. While most early live coding per-

formances focused on low level tasks such as simple sound generators, processors, and

pattern writing, today it is increasingly common to hear performances (see Villaseñor

and Paz, 2020) using ML to perform specific tasks. Here I mention some iconic ap-

proaches where live coding and ML find the most confluence. These are identified in

Knotts and Paz, 2021 by the artistic exploration they allow, however, this is by no

means a comprehensive list of the current possibilities. Nonetheless, the categories dis-

cussed in Knotts and Paz, 2021 help to contextualize the algorithms presented in this

work. Some of these systems are described in Section 2.4. The identified approaches

are models used as: collaborators, autonomous systems, performative training, and

Pre-labelled Data for Audio Engines.

Collaborators

When machine learning algorithms are used as collaborators, they automate some as-

pects (normally the repetitive ones) of live-coding, allowing the performer to engage

with other elements such as the high-level conduction of the sound, without being overly

concerned with minor details. In Conductive Bell, 2013, the performer acts as a conduc-

173

tor of the high-level decisions, such as rhythmic density, by turning automatic players

on and off manually. In MIRLCa the live coder trains a virtual agent that can manage

tasks, such as retrieving similar sounds, during the performance. MIRLCa researches

agency and negotiability during the performance between the live coder, the agent and

the audience. In Megra,the learned Markov processes act as autonomous collaborators

which are controlled by the live coder during the performance.

Autonomous live coding systems

Autonomous systems use machine learning algorithms to create models able to play

autonomously, either in collaboration with human live coders or alone in front of an

audience. Cibo (Stewart et al., 2020) is an autonomous performer that uses neural net-

works trained on sequential code blocks captured from TidalCycles humans performers.

One trained, Cibo is able to perform a live coding set autonomously. Cacharpo (Navarro

and Ogborn, 2017) is a neural net trained for automatic music making in the Cumbia

Sondiera style. The autonomous performer uses Music Information Retrieval algo-

rithms to listen to the human performer and generates code to produce complementary

patterns and instruments.

Training process as a performative practice

Live coding is about interacting with algorithms in real-time as a performative practice.

Thus, despite the technical challenges, it offers opportunities to explore ML from a

performative perspective. This approach is necessarily more focused on exploring the

algorithm parameters and changing the mappings of the model, rather than in the

optimization processes as occurs within the training processes executed offline. The

latter approach is used in most of the applications of ML within musical contexts.

Many live coding performances using ML use pre-trained models, however, there are

approaches which explore the whole learning process (data collections, training and

testing) as a performance, such as in Baalman’s GeCoLa Baalman, 2020. GeCoLa

174

presents a performative human-algorithm interaction. The algorithm is a neural net,

trained to recognize physical movements and respond with specific sounds. The piece

highlights the laborious, repetitive and error prone process of training the algorithms.

The performance explores the creative possibilities that appear within the training

process by exposing human workloads and real-time decision making.

Pre-labelled Data for Audio Engines

For models that use this approach, the user collects data (typically a small dataset)

and classifies it for a specific audio engine (the classes represent high-level descriptors

of the data). The categories of the data are intended to allow the performer to conduct

the sound through these high-level categories. Once trained, the algorithms are able

to create real-time variations (for example tensions) with different degrees of similarity

with respect to the original dataset.

Alo Allik’s (Allik, n.d.) Evolver is a system based on evolutive algorithms, that

allows the live recombination of preselected material. The system uses the Gene Ex-

pression Synthesis (Allik, 2014) to allow the performer to make informed selections

of evolving outputs of sound synthesizers. According to Alo, one of the performance

strategies involves selecting 2 chromosomes from the database to serve as source mate-

rial for on-stage experiments.

Preselecting material balances the risk of exploring from scratch audio engines on

stage, allowing the performer to conduct the sound by using high-level information.

The RuLer and FuzzyRuLer algorithms use pre-labelled data for audio engines (specifi-

cally sound synthesizers), allowing to play with the expressive possibilities of exploring

recombinations starting from a preselected dataset.

The sonic possibilities of the algorithm can be auditioned in the following refer-

ences: ProxySpace (ProxySpace, 2021), a live coding session co-organized by MUTEK

ES and the on-the-fly European project. TROBADA 3/4 (TOPLAP, 2020), organized

by the TOPLAP community of Barcelona at the artistic research center Hangar. AL-

GOMA, a concert organized within the Gaudeamus Festival in Utrecht in collaboration

175

with the live coding collective of the Netherlands nl cl and Creative Coding Utrecht

(Gaudeamus, 2021). The ideas of exploring parameter spaces used within the RuLer

and FuzzyRuLer algorithms were applied within the design of the system for timbre

recognition and real-time interaction used during the opening concert of the AI-Music

festival held at the Auditori of Barcelona on October 2021 (AI-Music-Festival, 2021).

Additionally, the RuLer algorithm (and preliminary versions) have been integrated

into several workshops held at the Artistic research center Hangar in Barcelona as well

as the National Center of the Arts in Mexico city (Paz, 2015), where the participants

experimented with the algorithms, collected small datasets auditioning the synthesizers

and were are able to produce small performances, typically in the nine minutes from

scratch style.

176

Related Publications

Journal

1. Paz, I., Nebot, À., Mugica, F., & Romero, E. (2020). On-The-Fly Syntheziser

Programming with Fuzzy Rule Learning. Entropy, 22(9), 969.

https://doi.org/10.3390/e22090969, JCR Q2

2. Paz, I., Nebot, À., Mugica, F., & Romero, E. (2018). Modeling perceptual cate-

gories of parametric musical systems. Pattern Recognition Letters, 105, 217-225.

https://doi.org/10.1016/j.patrec.2017.07.005, JCR Q2

Conference

1. Villaseñor, H,. Paz, I. (2020) ”Live coding from scratch: the cases of practice in

Mexico City and Barcelona” Proceedings of the 2020 International Conference on

Live Coding (ICLC2020), University of Limerick, Limerick, Ireland, pp. 59-68.

DOI:10.5281/zenodo.3939206 ISBN: 978-1-911620-23-5.

2. Paz, I., Nebot, À., Romero, E., & Mugica, F. (2019, June). Charting Perceptual

Spaces with Fuzzy Rules, Proceedings of the 2019 IEEE International Conference

on Fuzzy Systems (FUZZ-IEEE), New Orleans, USA, 2019, pp. 1578-1583, DOI:

10.1109/FUZZ-IEEE.2019.8859008. ISBN: 978-1-5386-1728-1.

3. Paz, I., Roig, S. (2019). Tweaking Parameters, Charting Perceptual Spaces. Pro-

ceedings of the Fourth International Conference on Live Coding, Medialab Prado,

Madrid, Spain, pp. 353. DOI: 10.5281/zenodo.3946281. ISBN: 978-84-18299-08-

7.

177

4. Paz, I. (2019) cross-categorized-seeds. Proceedings of the Live Coding Music

Seminar. Luiz Velho, Vitor Rolla, Eds.- 1. ed. Rio de Janeiro: IMPA, 38 p.

ISBN 978-85-244-0466-5.

5. Paz, I., Nebot, À., Romero, E., Mugica, F., & Vellido, A. (2016, July). A method-

ological approach for algorithmic composition systems’ parameter spaces aesthetic

exploration. 2016 Proceedings of the IEEE World Congress on Evolutionary

Computation, Vancouver B.C. pp. 1317-1323. DOI: 10.1109/CEC.2016.7743940.

ISBN: 978-1-5090-0623-6.

6. Paz, I. (2016) MuSE: a geometric representation for multi-parameter spaces ex-

ploration. Interface Politics 1st International conference. pp. 201. ISBN: 978-84-

617-5132-7.

Book chapter

1. Paz, I., Nebot, À., Mugica, F., & Romero, E. (2017). A fuzzy rule model for

high level musical features on automated composition systems. In The Musical-

Mathematical Mind (pp. 243-251). Springer, Cham.

2. , Paz, I., Nebot, À., Romero, E., & Mugica, F. (2016, September). A rule-

extraction algorithm for describing perceptual parametric subspaces in algorith-

mic composition systems. Artificial Intelligence Research and Development: Fron-

tiers in Artificial Intelligence and Applications (19th International Conference of

the Catalan Association for Artificial Intelligence). Àngela Nebot, Xavier Binefa,

Ramon López de Mántaras Eds. Volume: 288 pp: 213-220. DOI:/10.3233/978-1-

61499-696-5-213. ISBN:/978-1-61499-695-8.

3. Paz, I., Mugica, F., Nebot., A., & Romero, E. (2016). Classifying and gen-

eralizing successful parameter combinations for sound design. Artificial Intelli-

gence Research and Development - Current Challenges, New Trends and Appli-

cations, (CCIA) 2018, 21st International Conference of the Catalan Association

178

for Artificial Intelligence, Alt Empordà, Catalonia, Spain, 8-10th October 2018,

Zoe Falomir, Karina Gibert, Enric Plaza Eds. Volume 308 pp. 256-265. DOI:

10.3233/978-1-61499-918-8-256. ISBN: 978-1-61499-917-1.

Other (Digital/Visual Media)

1. Album Visions of Space. Label Bohemian drips. Berlin Germany. Release: May

26th 2017. url = http://bohemiandrips.de/product/bd007-ivan-paz-visions-of-

space/

Visions of Space Release. Schrippe Hawaii, Neuköln, Berlin.

url = https://youtu.be/sGf2nBJJx9g

Press, critical reviews and performances

1. TROBADA 3/4 Iván Paz + QBRNTSS. Hangar Artistic research center, Barcelona

2020.

url = https://youtu.be/27ASshnNHOA?t=1764

2. a-Musik Radio w. Wolfgang Brauneis. 2019. Minute 59:00

url = https://dublab.de/broadcast/a-musik-radio-wolfgang-brauneis-april-2019/

3. DubLab Ramón Cassamajó. 2019. Minute:48:48

url = http://dublab.es/pargueland/programa-21

4. Zeppelin HyperExperimental Electroacoustic and Sound Art Festival. Centre de

Cultura Contemporània de Barcelona. 2019.

url = http://sonoscop.net/zeppelin2019/

url = https://www.cccb.org/en/activities/file/zeppelin-2019-hyperexperimental/232026

5. Live Coding Music - Cross-categorized-seeds - Iván Paz 2019. Instituto de Matemática

Pura e Aplicada. Brasil. Live Coding Music Seminar.

url = https://youtu.be/zjTL0DOCNBo?list=PLo4jXE-LdDTQ44x3PYBvVJuzG2EJX z8o

179

6. Bandcamp Daily. Simon Chandler. 2018. “Meet the Artists Using Coding, AI,

and Machine Language to Make Music”.

url = https://daily.bandcamp.com/2018/01/25/music-ai-coding-algorithms/

7. Opening concert IV International Conference on Live Coding. 2017. Centro

Mexicano para la Música y las Artes Sonoras (CMMAS). Iván Paz & Ian Medina:

Live Coding through Perceptual Spots on the Parametric Space.

url = https://iclc.livecodenetwork.org/2017/en/schedule.html

Journals in revision

1. Paz, I. & Nebot, À. A rule-learning approach for minority oversampling. In

process of submission to the Journal of Applied Soft Computing. ISSN: 1568-

4946.

180

Bibliography

Abadi, Mart́ın et al. (2016). “Tensorflow: A system for large-scale machine learning”. In:

12th USENIX symposium on operating systems design and implementation (OSDI

16), pp. 265–283.

Abdiansah, Abdiansah and Retantyo Wardoyo (2015). “Time complexity analysis of

support vector machines (SVM) in LibSVM”. In: International journal computer

and application 128.3, pp. 28–34.

AI-Music-Festival (2021). AI-Music Festival. https://youtu.be/dHh4vP5T6VM. Ac-

cessed: 2021-11-25.

Alcalá-Fdez, Jesús et al. (2009). “Learning the membership function contexts for mining

fuzzy association rules by using genetic algorithms”. In: Fuzzy Sets and Systems

160.7, pp. 905–921.

Allik, Alo (n.d.). evolver: an audiovisual live coding performance.

— (2014). “Gene expression synthesis”. In: ICMC.

Ames, Charles (1987). “Automated composition in retrospect: 1956-1986”. In: Leonardo,

pp. 169–185.

Amin, Adnan et al. (2016). “Comparing oversampling techniques to handle the class

imbalance problem: A customer churn prediction case study”. In: IEEE Access 4,

pp. 7940–7957.

Andrews, Robert, Joachim Diederich, and Alan B Tickle (1995). “Survey and cri-

tique of techniques for extracting rules from trained artificial neural networks”.

In: Knowledge-based systems 8.6, pp. 373–389.

181

Ariza, Christopher (2009). “The interrogator as critic: The turing test and the evalua-

tion of generative music systems”. In: Computer Music Journal 33.2, pp. 48–70.

Baalman, Marije (2020). the machine is learning, International Conference on Live

Interfaces.

Bagallo, Giulia and David Haussler (1990). “Boolean feature discovery in empirical

learning”. In: Machine learning 5.1, pp. 71–99.

Basgall, Maŕıa José et al. (2018). “SMOTE-BD: An exact and scalable oversampling

method for imbalanced classification in big data”. In: VI Jornadas de Cloud Com-

puting & Big Data (JCC&BD)(La Plata, 2018).

Bell, Renick (2013). “An approach to live algorithmic composition using conductive”.

In: Proceedings of LAC. Vol. 2013.

— (Dec. 9, 2014). Live coding screencast test in an experimental drum and bass algorave

style. url: https://youtu.be/d-_J2zLtbtg.

Bencina, Ross (2005). “The metasurface: applying natural neighbour interpolation to

two-to-many mapping”. In: Proceedings of the 2005 conference on New interfaces

for musical expression. National University of Singapore, pp. 101–104.

Bernardo, Francisco, Chris Kiefer, and Thor Magnusson (n.d.). “Designing for a plu-

ralist and user-friendly live code language ecosystem with Sema”. In: International

Conference on Live Coding.

— (2020). “A Signal Engine for a Live Coding Language Ecosystem”. In: Journal of

the Audio Engineering Society 68.10, pp. 756–766.

Berthold, Michael R (2003). “Mixed fuzzy rule formation”. In: International journal of

approximate reasoning 32.2-3, pp. 67–84.

Berthold, Michael R and Klaus-Peter Huber (1999). “Constructing fuzzy graphs from

examples”. In: Intelligent Data Analysis 3.1, pp. 37–53.

Berthold, Michael R, Bernd Wiswedel, and Thomas R Gabriel (2013). “Fuzzy logic in

knime–modules for approximate reasoning–”. In: International Journal of Compu-

tational Intelligence Systems 6.sup1, pp. 34–45.

182

Bhalke, DG, CB Rama Rao, and Dattatraya S Bormane (2016). “Automatic musical

instrument classification using fractional fourier transform based-MFCC features

and counter propagation neural network”. In: Journal of Intelligent Information

Systems 46.3, pp. 425–446.

Blip (2019). Blip. http://doc.sccode.org/Classes/Blip.html. Accessed: 2019-06-

23.

Bosque, Guillermo, Inés del Campo, and Javier Echanobe (2014). “Fuzzy systems, neu-

ral networks and neuro-fuzzy systems: A vision on their hardware implementation

and platforms over two decades”. In: Engineering Applications of Artificial Intelli-

gence 32, pp. 283–331.

Brauneis, Wolfgang (2019). a-Musik Radio w. url: url=https://dublab.de/broadcast/

a-musik-radio-wolfgang-brauneis-april-2019/.

Breiman, Leo et al. (1984). Classification and regression trees. CRC press.

Briot, Jean-Pierre, Gaëtan Hadjeres, and François Pachet (2017). “Deep learning tech-

niques for music generation-a survey”. In: arXiv preprint arXiv:1709.01620.

Brown, Andrew R (2002). “Opportunities for evolutionary music composition”. In.

Brown, Andrew R and Andrew Sorensen (2009). “Interacting with Generative Music

through Live Coding”. In: Contemp. Music Rev. 28.1, pp. 17–29.

Brown, Andrew R and Andrew C Sorensen (2007). “aa-cell in practice: An approach to

musical live coding”. In: Proceedings of the International Computer Music Confer-

ence. International Computer Music Association, pp. 292–299.

Cassamajó, Ramón (2019). DubLab Barcelona. url: http://dublab.es/pargueland/

programa-21.

Castro, Félix, Àngela Nebot, and Francisco Mugica (2011). “On the extraction of de-

cision support rules from fuzzy predictive models”. In: Appl. Soft Comput. J. 11.4,

pp. 3463–3475. issn: 15684946.

Cendrowska, Jadzia (1987). “PRISM: An algorithm for inducing modular rules”. In:

International Journal of Man-Machine Studies 27.4, pp. 349–370.

183

Cervone, Guido, Pasquale Franzese, and Allen PK Keesee (2010). “Algorithm quasi-

optimal (AQ) learning”. In: Wiley Interdisciplinary Reviews: Computational Statis-

tics 2.2, pp. 218–236.

Chakraborty, Debrup and Nikhil R Pal (2004). “A neuro-fuzzy scheme for simultane-

ous feature selection and fuzzy rule-based classification”. In: IEEE Transactions on

Neural Networks 15.1, pp. 110–123.

Chakraborty, Shruti Sarika and Ranjan Parekh (2018). “Improved Musical Instrument

Classification Using Cepstral Coefficients and Neural Networks”. In: Methodologies

and Application Issues of Contemporary Computing Framework. Springer, pp. 123–

138.

Chandler, Simon (2018). Meet the Artists Using Coding, AI, and Machine Language

to Make Music. url: https://daily.bandcamp.com/2018/01/25/music-ai-

coding-algorithms/.

Chawla, Nitesh V et al. (2002). “SMOTE: synthetic minority over-sampling technique”.

In: Journal of artificial intelligence research 16, pp. 321–357.

Chorowski, Jan and Jacek M Zurada (2011). “Extracting rules from neural networks

as decision diagrams”. In: IEEE Transactions on Neural Networks 22.12, pp. 2435–

2446.

Clark, Peter and Robin Boswell (1991). “Rule induction with CN2: Some recent im-

provements”. In: European Working Session on Learning. Springer, pp. 151–163.

Clark, Peter and Tim Niblett (1989). “The CN2 induction algorithm”. In: Machine

learning 3.4, pp. 261–283.

Cohen, William W (1995). “Fast effective rule induction”. In: Machine learning pro-

ceedings 1995. Elsevier, pp. 115–123.

Collins, Nick (2001). “Algorithmic composition methods for breakbeat science”. In:

Proceedings of Music Without Walls, pp. 21–23.

— (2002a). “Experiments with a new customisable interactive evolution framework”.

In: Organised Sound 7.3, p. 267.

184

— (2002b). “Interactive evolution of breakbeat cut sequences”. In: Proc. Cybersonics.

Ed. by Institute of Contemporary Arts.

— (2002c). “The BBCut Library.” In: ICMC. Citeseer.

— (2003). “Generative music and laptop performance”. In: Contemporary Music Re-

view 22.4, pp. 67–79.

— (2010). Introduction to computer music. John Wiley & Sons.

— (2011a). “Implementing stochastic synthesis for SuperCollider and iPhone”. In:

Proc. Xenakis International Symposium.

— (2011b). “Live coding of consequence”. In: Leonardo 44.3, pp. 207–211.

Collins, Nick (2011c). “SCMIR: A SuperCollider music information retrieval library”.

In: ICMC.

— (2012). “Automatic composition of electroacoustic art music utilizing machine lis-

tening”. In: Computer Music Journal 36.3, pp. 8–23.

— (2015). “Live Coding and Machine Listening”. In: Proceedings of the International

Conference on Live Coding, pp. 4–11.

— (2016). “Towards machine musicians who have listened to more music than us:

Audio database-led algorithmic criticism for automatic composition and live concert

systems”. In: Computers in Entertainment (CIE) 14.3, pp. 1–14.

— (2018). “Origins of Algorithmic Thinking in Music”. In: The Oxford Handbook of

Algorithmic Music, p. 67.

Collins, Nick and Julio d’Escriván (2017). The Cambridge companion to electronic mu-

sic. Cambridge University Press.

Collins, Nick and Shelly Knotts (2019). “A Javascript Musical Machine Listening Li-

brary”. In: Michigan Publishing.

Collins, Nick et al. (2003). “Live coding in laptop performance”. In: Organised sound

8.3, pp. 321–330.

Cortez, Paulo et al. (2009). “Modeling wine preferences by data mining from physico-

chemical properties”. In: Decision Support Systems 47.4, pp. 547–553.

185

Craven, Mark and Jude W Shavlik (1996). “Extracting tree-structured representations

of trained networks”. In: Advances in neural information processing systems, pp. 24–

30.

Craven, Mark W and Jude W Shavlik (1994). “Using sampling and queries to extract

rules from trained neural networks”. In:Machine learning proceedings 1994. Elsevier,

pp. 37–45.

Dahlstedt, Palle (2001a). “A MutaSynth in parameter space: interactive composition

through evolution”. In: Organised Sound 6.2, pp. 121–124.

— (2001b). “Creating and Exploring Huge Parameter Spaces: Interactive Evolution as

a Tool for Sound Generation.” In: ICMC.

Dahlstedt, Palle (2007). “Evolutionary Computer Music”. In: ed. by Biles J.A. (eds)

Miranda E.R. Springer, London. Chap. Evolution in Creative Sound Design, pp. 79–

99.

— (2009). “Thoughts on creative evolution: A meta-generative approach to composi-

tion”. In: Contemporary Music Review 28.1, pp. 43–55.

Davis, Steven and Paul Mermelstein (1980). “Comparison of parametric representa-

tions for monosyllabic word recognition in continuously spoken sentences”. In: IEEE

transactions on acoustics, speech, and signalprocessing 28.4, pp. 357–366.

Dawkins, Richard (1986). The blind watchmaker: Why the evidence of evolution reveals

a universe without design. WW Norton & Company.

De Mantaras, Ramon Lopez and Josep Lluis Arcos (2002). “AI and music: From com-

position to expressive performance”. In: AI magazine 23.3, pp. 43–43.

De Raedt, Luc (2008). Logical and relational learning. Springer Science & Business

Media.

Dean, R T (2009). The Oxford Handbook of Computer Music. Oxford Handbooks. Ox-

ford University Press. isbn: 9780199887132.

Dean, Roger T and Alex McLean (2018). The Oxford Handbook of Algorithmic Music.

Oxford University Press.

Dexed (2019). Dexter. https://github.com/asb2m10/dexed. Accessed: 02-02-2020.

186

Diapoulis, Georgios (2017). Live coding using SC3 and scikit-learn. url: http : / /

gewhere.github.io/blog/2017/10/13/live-coding-using-sc3-and-scikit-

learn/.

Ding, Shifei et al. (2015). “Deep extreme learning machine and its application in EEG

classification”. In: Mathematical Problems in Engineering 2015.

Doornbusch, Paul (2017). “Early Computer Music Experiments in Australia and Eng-

land”. In: Organised Sound 22.2, pp. 297–307.

Dua, Dheeru and Casey Graff (2017). UCI Machine Learning Repository. url: http:

//archive.ics.uci.edu/ml.

Duch, Wlodzislaw, Rudy Setiono, and Jacek M Zurada (2004). “Computational intel-

ligence methods for rule-based data understanding”. In: Proceedings of the IEEE

92.5, pp. 771–805.

Eco, Umberto (2017). “The Ars Magna by Ramon Llull”. In: Contributions to science,

pp. 47–50.

Engel J., Resnick C. Roberts A. Dieleman S. Eck D. Simonyan K. and M Norouzi

(2017). Neural audio synthesis of musical notes with wavenet autoencoders. url:

https://arxiv.org/pdf/1704.01279.pdf.

Escobet, Antoni, Àngela Nebot, and François E Cellier (2008). “Visual-FIR: A tool for

model identification and prediction of dynamical complex systems”. In: Simulation

Modelling Practice and Theory 16.1, pp. 76–92.

Escobet Canal, Antoni et al. (2015). “Visual-FIR”. In.

Esling, Philippe, Adrien Bitton, et al. (2018). “Generative timbre spaces: regularizing

variational auto-encoders with perceptual metrics”. In: arXiv preprint arXiv:1805.08501.

Esling, Philippe et al. (2019). “Universal audio synthesizer control with normalizing

flows”. In: arXiv preprint arXiv:1907.00971.

Estrada, Julio and Jorge Gil (1984). Música y teoŕıa de grupos finitos (3 variables

booleanas). 519.4 EST.

187

Fernández, Jose D and Francisco Vico (2013). “AI methods in algorithmic composition:

A comprehensive survey”. In: Journal of Artificial Intelligence Research 48, pp. 513–

582.

Fiebrink, Rebecca and Baptiste Caramiaux (n.d.). “The machine learning algorithm as

creative musical tool, November 2016”. In: arXiv preprint arXiv:1611.00379 ().

Fiebrink, Rebecca et al. (2016). The machine learning algorithm as creative musical

tool. Oxford University Press.

Finley, Sarah E (2014). “Acoustic Epistemologies and Aurality in Sor Juana Inés de la

Cruz”. In.

Fisher, Ronald A (1936). “The use of multiple measurements in taxonomic problems”.

In: Annals of eugenics 7.2, pp. 179–188.

Friedman, Jerome H and Nicholas I Fisher (1999). “Bump hunting in high-dimensional

data”. In: Statistics and Computing 9.2, pp. 123–143.

Fürnkranz, Johannes, Dragan Gamberger, and Nada Lavrač (2012). Foundations of rule

learning. Springer Science & Business Media.

Gaudeamus, Festival (2021). Gaudeamus Festival Utrecht 2021 organized by on-the-

fly Project in Collaboration with the Live coding community of the Netherlands.

https://youtu.be/KHpEvDZoqZc?list=PLMBIpibV-wQLKi8gwYosuz1K5lWEPbzoa.

Accessed: 2021-11-25.

Géczy, Peter and Shiro Usui (1999). “Rule Extraction from Trained Artifical Neural

Networks”. In: Behaviormetrika 26.1, pp. 89–106.

Goldin, Dina, Scott A Smolka, and Peter Wegner (2006). Interactive computation.

Springer.

Goldmann, S (2015). Presets - Digital shortcuts to sound. The Bookworm, an imprint

of The Tapeworm.

Hailesilassie, Tameru (2016). “Rule extraction algorithm for deep neural networks: A

review”. In: arXiv preprint arXiv:1610.05267.

188

He, Haibo et al. (2008). “ADASYN: Adaptive synthetic sampling approach for imbal-

anced learning”. In: 2008 IEEE International Joint Conference on Neural Networks

(IEEE World Congress on Computational Intelligence). IEEE, pp. 1322–1328.

Hernández-Espinosa, Carlos, Mercedes Fernández-Redondo, and Mamen Ortiz-Gómez

(2003). “Inversion of a neural network via interval arithmetic for rule extraction”. In:

Artificial Neural Networks and Neural Information Processing—ICANN/ICONIP

2003. Springer, pp. 670–677.

Herremans, Dorien, Ching-Hua Chuan, and Elaine Chew (2017). “A Functional Tax-

onomy of Music Generation Systems”. In: ACM Computing Surveys (CSUR) 50.5,

p. 69.

Holland, Simon (2000). Artificial Intelligence in Music Education: A Critical Review.

Huang, Cheng-Zhi Anna et al. (2019). “The Bach Doodle: Approachable music compo-

sition with machine learning at scale”. In: arXiv preprint arXiv:1907.06637.

Jang, J-SR (1993). “ANFIS: adaptive-network-based fuzzy inference system”. In: IEEE

transactions on systems, man, and cybernetics 23.3, pp. 665–685.

Jensen, Craig A et al. (1999). “Inversion of feedforward neural networks: algorithms

and applications”. In: Proceedings of the IEEE 87.9, pp. 1536–1549.

Johnson, Colin G (2003). “Exploring sound-space with interactive genetic algorithms”.

In: Leonardo 36.1, pp. 51–54.

Karaboga, Dervis and Ebubekir Kaya (2019). “Adaptive network based fuzzy infer-

ence system (ANFIS) training approaches: a comprehensive survey”. In: Artificial

Intelligence Review 52.4, pp. 2263–2293.

Keel (2010). Knowledge extraction based on evolutionary learning. url: https : / /

sci2s.ugr.es/keel/imbalanced.php?order=irR#sub60.

Keislar, Douglas (2009). A historical view of computer music technology. na.

Khan, Mohammad Mahmudur Rahman et al. (2018). “Study and observation of the

variation of accuracies of KNN, SVM, LMNN, ENN algorithms on eleven different

datasets from UCI machine learning repository”. In: 2018 4th International Con-

189

ference on Electrical Engineering and Information & Communication Technology

(iCEEiCT). IEEE, pp. 124–129.

Kiefer, Chris and Thor Magnusson (2019). “Live coding machine learning and machine

listening: a survey on the design of languages and environments for live coding”. In:

Proceedings of the International Conference on Live Coding, Media Lab, Madrid,

Espagne.

Kingma, Diederik P and Max Welling (2013). “Auto-encoding variational bayes”. In:

arXiv preprint arXiv:1312.6114.

Knotts, Shelly (2019). “Interactively evolving compositional sound synthesis networks”.

In: Proceedings of the Live Coding Music Seminar. IMPA, pp. 29–31.

Knotts, Shelly (Dec 2017). CYOF. url: https://vimeo.com/264561088.

Knotts, Shelly and Iván Paz (2021). Live Coding and Machine Learning is Dangerous:

Show us your Algorithms. In revision 2021 International Conference on Live Coding.

Landy, Leigh (2009). Sound-based music 4 all. Oxford University Press.

Lavangnananda, K and S Chattanachot (2017). “Study of discretization methods in

classification”. In: 2017 9th International Conference on Knowledge and Smart Tech-

nology (KST). IEEE, pp. 50–55.

Loy Gareth, Vol (2007). 2: The Mathematical Foundations of Music.

Luque, Sergio (2009). “The stochastic synthesis of iannis xenakis”. In: Leonardo Music

Journal, pp. 77–84.

Macret, Matthieu and Philippe Pasquier (2014). “Automatic design of sound synthe-

sizers as pure data patches using coevolutionary mixed-typed cartesian genetic pro-

gramming”. In: Proceedings of the 2014 Annual Conference on Genetic and Evolu-

tionary Computation. ACM, pp. 309–316.

Magnusson, Thor (2011). “Algorithms as scores: Coding live music”. In: Leonardo Music

Journal, pp. 19–23.

— (2015). “Herding cats: Observing live coding in the wild”. In: Comput. Music J.

38.1, pp. 8–16. issn: 1531-5169.

190

— (2019). Sonic writing: technologies of material, symbolic, and signal inscriptions.

Bloomsbury Academic.

Manzo, VJ and Will Kuhn (2015). Interactive composition: Strategies using Ableton live

and max for live. Oxford University Press, USA.

Marier, Martin (2012). “Designing Mappings for Musical Interfaces Using Preset Inter-

polation.” In: NIME.

McAdams, Stephen (2013). “Musical timbre perception”. In: The psychology of music,

pp. 35–67.

McCartney, J. (1996). “SuperCollider: a New Real Time Synthesis Language”. In: Proc.

Int. Comput. Music Conf. International Computer Music Association, pp. 257–258.

McLean, Alex and Roger T Dean (2018). The Oxford handbook of algorithmic music.

Oxford University Press.

McLean, Alex and Geraint Wiggins (2010a). “Tidal–pattern language for the live coding

of music”. In: Proceedings of the 7th sound and music computing conference.

McLean, Alex and Geraint A Wiggins (2010b). “Live Coding Towards Computational

Creativity.” In: ICCC, pp. 175–179.

McLean, Christopher Alex (2011). “Artist-programmers and programming languages

for the arts”. PhD thesis. Goldsmiths, University of London.

Mease, David and Abraham Wyner (2008). “Evidence contrary to the statistical view

of boosting”. In: Journal of Machine Learning Research 9.Feb, pp. 131–156.

Michalski, RS (n.d.). “On the quasi-optimal solution of the general covering problem”.

In: Proceedings of the V International Symposium on Information Processing (FCIP

69), pp. 125–128.

MIMIC (2019a). MIMIC Artist Summer Workshop in Brighton. url: http://www.

emutelab.org/blog/summerworkshop.

— (2019b). Sema. url: https://github.com/mimic-sussex/sema.

Miranda, Eduardo Reck (2013). Readings in music and artificial intelligence. Routledge.

Miranian, Arash and Majid Abdollahzade (2012). “Developing a local least-squares

support vector machines-based neuro-fuzzy model for nonlinear and chaotic time

191

series prediction”. In: IEEE Transactions on Neural Networks and Learning Systems

24.2, pp. 207–218.

Mitchell, Thomas (2012). “Automated evolutionary synthesis matching”. In: Soft Com-

puting 16.12, pp. 2057–2070.

Mitchell, Thomas J (2010). “An exploration of evolutionary computation applied to fre-

quency modulation audio synthesis parameter optimisation”. PhD thesis. University

of the West of England.

Mitchell, Tom M (1982). “Generalization as search”. In: Artificial intelligence 18.2,

pp. 203–226.

Mordeson, John N and Premchand S Nair (2012). Fuzzy graphs and fuzzy hypergraphs.

Vol. 46. Physica.

Mudd, Tom et al. (2015). “Investigating the effects of introducing nonlinear dynamical

processes into digital musical interfaces”. In.

Mugica, Francisco et al. (2015). “A Fuzzy Inductive approach for rule-based modelling

of high level structures in algorithmic composition systems”. In: 2015 IEEE Inter-

national Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, pp. 1–8.

Murdoch, W James and Arthur Szlam (2017). “Automatic rule extraction from long

short term memory networks”. In: arXiv preprint arXiv:1702.02540.

Navarro, Luis and David Ogborn (2017). “Cacharpo: Co-performing Cumbia Sonidera

with Deep Abstractions”. In: Proceedings of the International Conference on Live

Coding.

Nierhaus, G (2009). Algorithmic composition: paradigms of automated music generation.

Springer Science & Business Media.

Ocelotl, Emilio (2016). Altamisa. url: http://andamio.in/prod/altamisa.

Olofsson, Fredrik (2015). Chain Reaction. url: https://youtu.be/qbyLWpXKog8.

OP-1 (2020). OP-1 Synthesizer. url: https://en.wikipedia.org/wiki/Teenage_

Engineering_OP-1.

Pachet, François (2008). “The future of content is in ourselves.” In: Computers in

Entertainment 6.3, pp. 31–1.

192

Pareyon, Gabriel (2011). On Musical Self-Similarity: Intersemiosis as Synecdoche and

Analogy. Gabriel Pareyon.

Pareyon, Gabriel et al. (2017). The Musical-Mathematical Mind: Patterns and Trans-

formations. Springer.

Paz, I (2017a). Tiempos de Aguacero. url: https://bohemiandrips.bandcamp.com/

track/a2-tiempos-de-aguacero.

— (2018). Examples using RuLer. url: https : / / soundcloud . com / automated -

composition/sets/experiments-with-a-rule-learning-algorithm.

— (2019a). cross-categorized-seeds Live coding music seminar. Institute for pure and

applied mathematics. Rio de Janeiro, Brasil. url: https://youtu.be/zjTL0DOCNBo.

Paz, I et al. (2017). “Modeling perceptual categories of parametric musical systems”.

In: Pattern Recognition Letters.

— (2019). “Generalyzing successful parameter combinations”. In revision.

Paz, Iván (2017b). En Casa. url: https://bohemiandrips.bandcamp.com/track/b2-

en-casa.

Paz, Ivan (2019b). “cross-categoryzed-seeds”. In: Proceedings of the Live Coding Music

Seminar. IMPA, pp. 12–15.

Paz, Iv’an (2019c). Live Code Music Seminal. url: http://w3.impa.br/~vitorgr/

livecode2019/conference.html.

— (2020). EulerRoom Equinox. url: https://youtu.be/xhvYl4__u8I?t=8966.

Paz, Iván et al. (2016). “A methodological approach for algorithmic composition sys-

tems’ parameter spaces aesthetic exploration”. In: 2016 IEEE Congress on Evolu-

tionary Computation (CEC). IEEE, pp. 1317–1323.

Paz, Iván et al. (2020). “On-The-Fly Syntheziser Programming with Fuzzy Rule Learn-

ing”. In: Entropy 22.9, p. 969.

Paz, Iván (16th July, 2020). Paramix Network Music Festival. url: https://networkmusicfestival.

org/programme/performances/ivan-paz-paramix/.

193

— (2015). Construcción de algoritmos para sistemas de composición e improvisación.

Centro Nacional de las Artes Ciudad de México Taller de Audio. http://cmm.

cenart.gob.mx/cursos/anteriores.html. Accessed: 2021-11-25.

— (2016). Multiparametric representation space as a perceptual exploration interface.

url: https://www.gridspinoza.net/en/projects/multiparametric-representation-

space-perceptual-exploration-interface.

— (2017c). Parametric Perceptual Exploration. https://github.com/ivan- paz/

parametric-perceptual-exploration.

Paz, Iván (April 3, 2020). 8:08pm La hora del LIVECODER. url: https://youtu.

be/wPVwCAXsnvU?list=PLDvUWb-gizILT4qFLpRpd-kRgfoZUfzZt.

Paz, Iván (2017a). Visions of Space. https://bohemiandrips.bandcamp.com/album/

visions-of-space. Accessed: 2020-06-26.

— (2017b). Visions of Space release. https://youtu.be/sGf2nBJJx9g. Accessed:

2020-11-5.

Pearce, M, D Meredith, and G Wiggins (2002). “Motivations and Methodologies for

Automation of the Compositional Process”. In: Music. Sci. 6, pp. 119–147.

Pillai, GN, Jagtap Pushpak, and M Germin Nisha (2014). “Extreme learning ANFIS

for control applications”. In: 2014 IEEE Symposium on Computational Intelligence

in Control and Automation (CICA). IEEE, pp. 1–8.

Pratihar, Dilip Kumar and Bitan Pratihar (2017). “A review on applications of soft

computing in design and development of intelligent autonomous robots”. In: Inter-

national Journal of Hybrid Intelligent Systems 14.1-2, pp. 49–65.

Pritchett, James (1996). The Music of John Cage. Vol. 5. Cambridge University Press.

Priyanka and Dharmender Kumar (2020). “Decision tree classifier: a detailed survey”.

In: International Journal of Information and Decision Sciences 12.3, pp. 246–269.

ProxySpace (2021). Iván Paz & Julia Múgica - Live at ”Proxyspace” organized by

Mutek and on-the-fly. https : / / youtu . be / FXKoRDZu8pY ? list = PLMBIpibV -

wQLKi8gwYosuz1K5lWEPbzoa. Accessed: 2021-11-25.

194

Quinlan, J. Ross (1986). “Induction of decision trees”. In: Machine learning 1.1, pp. 81–

106.

— (1990). “Learning logical definitions from relations”. In:Machine learning 5.3, pp. 239–

266.

Quinlan, J Ross (2014). C4.5: programs for machine learning. Elsevier.

Reppel, Niklas (n.d.). Megra.

— (2020). Megra International Conference on Live Coding. url: https://youtu.be/

6dhvNrwQTRU?t=3839.

Rivest, Ronald L (1987). “Learning decision lists”. In: Machine learning 2.3, pp. 229–

246.

Roads, C (2001). “Sound Composition with Pulsars”. In: J. Audio Eng. Soc 49, pp. 134–

147.

Roads, Curtis (1985). “Research in music and artificial intelligence”. In: ACM Comput-

ing Surveys (CSUR) 17.2, pp. 163–190.

Roads, Curtis, John Strawn, et al. (1996). The computer music tutorial. MIT press.

Roberts, Adam, Curtis Hawthorne, and Ian Simon (2018). “Magenta. js: A javascript

api for augmenting creativity with deep learning”. In.

Rohrhuber, Julian, Alberto de Campo, and Renate Wieser (2005). “Algorithms today

notes on language design for just in time programming”. In: International Computer

Music Conference, p. 291.

Rohrhuber, Julian and Alberto De Campo (2009). “Improvising Formalisation: Con-

versational Programming and Live Coding”. In: New Computational Paradigms for

Computer Music. Delatour France/Ircam-Centre Pompidou.

Rokach, Lior and Oded Z Maimon (2008). Data mining with decision trees: theory and

applications. Vol. 69. World scientific.

Roma, Gerard (2016). ““Colliding: a supercollider environment for synthesis-oriented

live coding”. In: Proceedings of the 2016 International Conference on Live Interfaces.

195

Ron, Dana, Yoram Singer, and Naftali Tishby (1996). “The power of amnesia: Learning

probabilistic automata with variable memory length”. In: Machine learning 25.2-3,

pp. 117–149.

Roth, Martin and Matthew Yee-King (2011). “A comparison of parametric optimization

techniques for musical instrument tone matching”. In: Audio Engineering Society

Convention 130. Audio Engineering Society.

Schroeder, Manfred R (1962). “Natural sounding artificial reverberation”. In: Journal

of the Audio Engineering Society 10.3, pp. 219–223.

Schroeder, Manfred R (1970). “Digital simulation of sound transmission in reverberant

spaces”. In: The Journal of the acoustical society of america 47.2A, pp. 424–431.

Schwarz, Diemo (2007). “Corpus-based concatenative synthesis”. In: IEEE signal pro-

cessing magazine 24.2, pp. 92–104.

Serra, Xavier and Julius Smith (1990). “Spectral modeling synthesis: A sound analy-

sis/synthesis system based on a deterministic plus stochastic decomposition”. In:

Computer Music Journal 14.4, pp. 12–24.

Shihabudheen, KV, M Mahesh, and GN Pillai (2018). “Particle swarm optimization

based extreme learning neuro-fuzzy system for regression and classification”. In:

Expert Systems with Applications 92, pp. 474–484.

Shihabudheen, KV and Gopinatha N Pillai (2018). “Recent advances in neuro-fuzzy

system: A survey”. In: Knowledge-Based Systems 152, pp. 136–162.

Sibilia, Paula (2012). El hombre postorgánico: cuerpo, subjetividad y tecnoloǵıas digi-

tales. Fondo de cultura económica.

Sicchio, Kate (2014). “Hacking choreography: Dance and live coding”. In: Computer

Music Journal 38.1, pp. 31–39.

Smilkov, Daniel et al. (2019). “Tensorflow. js: Machine learning for the web and be-

yond”. In: arXiv preprint arXiv:1901.05350.

Sorensen, Andrew (2019). Study in Keith. url: https://en.wikipedia.org/wiki/

File:Study_in_keith.ogv.

196

Sorensen, Andrew and Henry Gardner (2017). “Systems level liveness with extempore”.

In: Proceedings of the 2017 ACM SIGPLAN International Symposium on New Ideas,

New Paradigms, and Reflections on Programming and Software, pp. 214–228.

Sorensen, Andrew, Ben Swift, and Alistair Riddell (2014). “The many meanings of live

coding”. In: Computer Music Journal 38.1, pp. 65–76.

Soria, Edmar and Roberto Morales-Manzanares (2013). “Multidimensional sound spa-

tialization by means of chaotic dynamical systems.” In: NIME. Vol. 13, pp. 79–83.

Stewart, Jeremy and Shawn Lawson (n.d.). “Cibo: An Autonomous TidalCyles Per-

former”. In: ().

Stewart, Jeremy et al. (2020). “Cibo v2: Realtime Livecoding AI Agent”. In: Proceedings

of the 2020 International Conference on Live Coding (ICLC2020), pp. 20–31.

Stoll, Thomas M (2014). “Genomic: evolving sound treatments using genetic algo-

rithms”. In: International Conference on Evolutionary and Biologically Inspired Mu-

sic and Art. Springer, pp. 107–118.

Strange, Allen and Gordon Mumma (1972). Electronic music: systems, techniques, and

controls. WC Brown Company.

Sturm, Bob L et al. (2016). “Music transcription modelling and composition using deep

learning”. In: arXiv preprint arXiv:1604.08723.

Sturm, Bob L et al. (2019). “Machine learning research that matters for music creation:

A case study”. In: Journal of New Music Research 48.1, pp. 36–55.

Sugiyama, Masashi (2015). Introduction to statistical machine learning. Morgan Kauf-

mann.

Tang, Yuchun et al. (2008). “SVMs modeling for highly imbalanced classification”. In:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 39.1,

pp. 281–288.

Tatar, Kıvanç, Daniel Bisig, and Philippe Pasquier (2020). “Introducing Latent Timbre

Synthesis”. In: arXiv preprint arXiv:2006.00408.

197

Tatar, Kıvanç, Matthieu Macret, and Philippe Pasquier (2016). “Automatic synthe-

sizer preset generation with PresetGen”. In: Journal of New Music Research 45.2,

pp. 124–144.

Thrun, Sebastian (1993). Extracting provably correct rules from artificial neural net-

works. Citeseer.

Tickle, Alan B, Marian Orlowski, and Joachim Diederich (1994). “DEDEC: decision

detection by rule extraction from neural networks”. In: QUT NRC.

TOPLAP (2004a). Temporal Organization for the Promotion of Art Programming. url:

https://toplap.org.

— (2004b). TOPLAP Manifesto Draft. url: https://toplap.org/wiki/ManifestoDraft.

TOPLAP, Barcelona (2020). TROBADA 3/4 Iván Paz + QBRNTSS. https://www.

youtube.com/watch?v=27ASshnNHOA\&t=2024s. Accessed: 2021-11-25.

Toussaint, Godfried T (2004). “A Comparison of Rhythmic Similarity Measures.” In:

ISMIR.

Towell, Geoffrey G, Jude W Shavlik, and Michiel O Noordewier (1990). “Refinement of

approximate domain theories by knowledge-based neural networks”. In: Proceedings

of the eighth National conference on Artificial intelligence. Vol. 861866. Boston, MA.

Tremblay, Pierre Alexandre et al. (2019). “From collections to corpora: Exploring

sounds through fluid decomposition”. In: International Computer Music Confer-

ence and New York City Electroacoustic Music Festival. International Computer

Music Association, pp. 223–228.

Vercoe, Barry (1986). Csound: A manual for the audio processing system and supporting

programs with tutorials. Massachusetts Institute of Technology.

Villaseñor, Hernani and Iván Paz (2020). “”Live coding from scratch: the cases of

practice in Mexico City and Barcelona””. In: V International Conference on Live

Coding.

Wang, Qi et al. (2017). “A novel ensemble method for imbalanced data learning: bagging

of extrapolation-SMOTE SVM”. In: Computational intelligence and neuroscience

2017.

198

Wei, Jianan et al. (2020). “NI-MWMOTE: An Improving Noise-immunity Majority

Weighted Minority Oversampling Technique for Imbalanced Classification Prob-

lems”. In: Expert Systems with Applications, p. 113504.

Wessel, David L (1979). “Timbre space as a musical control structure”. In: Computer

music journal, pp. 45–52.

Wishart, Trevor (1986). “Sound symbols and landscapes”. In: The language of electroa-

coustic music. Springer, pp. 41–60.

Witten, Ian H and Eibe Frank (2005). “Data Mining: Practical machine learning tools

and techniques 2nd edition”. In: Morgan Kaufmann, San Francisco.

Xambó, Anna (2021). Music Information Retrieval Live Coding Agent. url: https:

//mirlca.dmu.ac.uk/.

Xenakis, Iannis, Roberta Brown, and John Rahn (1987). “Xenakis on Xenakis”. In:

Perspectives of New Music, pp. 16–63.

Yee-King and Peters (2011). Livecoding SuperCollider and alto flute 22nd March 2011.

url: https://youtu.be/H5IceNlC69w.

Yee-King, Matthew and Martin Roth (2008). “Synthbot: an Unsupervised Software

synthesizer Programmer.” In: ICMC.

Yee-King, Matthew John (2011a). “An autonomous timbre matching improviser”. In:

ICMC.

— (2011b). “Automatic sound synthesizer programming: techniques and applications”.

PhD thesis. University of Sussex.

Yee-King, Matthew John, Leon Fedden, and Mark d’Inverno (2018). “Automatic Pro-

gramming of VST Sound Synthesizers Using Deep Networks and Other Techniques”.

In: IEEE Transactions on Emerging Topics in Computational Intelligence 2.2, pp. 150–

159.

Zadeh, Lotfi A (1965). “Fuzzy sets”. In: Information and control 8.3, pp. 338–353.

— (1999). “Fuzzy logic and the calculi of fuzzy rules, fuzzy graphs, and fuzzy proba-

bilities”. In: Computers & Mathematics with Applications 37.11-12, p. 35.

199

Zbyszynski, Michael, Mick Grierson, Matthew Yee-King, et al. (2017). “Rapid proto-

typing of new instruments with codecircle”. In.

Zeppelin, Festival (2019). on-the-fly Live Coding Concert; Festival Zeppelin 2019 HIPER-

EXPERIMENTAL. https://youtu.be/sGf2nBJJx9g. Accessed: 2020-11-5.

Zheng, Zhuoyuan, Yunpeng Cai, and Ye Li (2016). “Oversampling method for imbal-

anced classification”. In: Computing and Informatics 34.5, pp. 1017–1037.

200

