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Summary 

17 

One of the biggest challenges of this century is to develop strategies that satisfy the 

increasing demand for animal protein resulting from the rapidly growing world 

population. Such strategies must focus on producing more protein-rich food while 

using fewer inputs and minimizing environmental impact. Feed efficiency is a crucial 

phenotype to address this challenge since food expenses represent the most 

significant proportion of the total costs in the meat rabbit industry. 

 

The articles included in the present thesis have generated knowledge about the 

meat rabbit intestinal microbiota: a new phenotype related to individual variation in 

feed efficiency. The study of the influence of different environmental factors and the 

genetic determinism of this phenotype has allowed investigating its role in the host’s 

feed efficiency, unraveling its underlying biological processes, and exploring the 

possibility of predicting and improving such a complex phenotype. 

 

In the first study, an assessment of the microbial populations inhabiting the rabbit 

cecum and hard feces of 21 young specimens subjected to two different feeding 

regimes was performed through sequencing of 16S rRNA gene amplicons. The 

results of such analysis revealed a predominant presence of bacterial phyla 

Firmicutes (76%), Tenericutes (8%), and Bacteroidetes (7%). Although no variations 

in terms of microbial richness and diversity were found between both sampling 

origins, compositional differences for the relative abundance of a large number of 

taxa were revealed. 

 

The second study evaluated the influence of the environment offered by two 

different facilities, the administration of antibiotics and the level of feeding on the 

cecal microbial diversity and composition of 425 kits. Although results determined 

that the farm environment exerted the largest impact, the other analyzed factors 

shaped the relative abundances of certain microorganisms. This study highlights the 

importance of offering a controlled breeding environment that minimizes cecal 

microbiota alterations that could potentially affect animal performance. 
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In the third study, original approaches based on the traditional animal mixed model 

and alternative definitions and expansions of the microbial relationship matrix were 

proposed. Such approaches enabled us to determine that an important proportion 

of the phenotypic variance of traits related to feed efficiency is attributable to cecal 

microbiota. Moreover, the inclusion of microbial information significantly increased 

the predictive capacity of the models, even for cage-average phenotypes on which 

cecal microbiota had not been characterized in all the individuals involved in the 

record. 

 

In the fourth study, the use of the Bayes factor as a measure of statistical relevance 

demonstrated that rabbit cecal microbiota is under host genetic control. The 

evidence of such control was decisive for genera Bacteroides, Parabacteroides, 

Dehalobacterium, and Butyricimonas for which heritability estimates were 0.27-

0.35. 

 

In the last study, a simulation highlighted the limited statistical power of the available 

data (412 kits) to detect genomic regions responsible for the variation of rabbit cecal 

microbiota through genome-wide association studies. Despite these limitations, 

more than 300 variants spread across 10 chromosomes were cautiously declared 

to be associated with the variation of 19 microbial traits. Given their implication in 

metabolic and immunological processes, 44 genes within these regions were 

proposed as candidates for the modulation of cecal microbiota. 

 

These findings demonstrate the contribution of the holobiont system (host-gut 

microbiota-environment) to rabbit feed efficiency and lay the foundations for a new 

line of research of scientific and practical interest for the meat rabbit industry. 
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Uno de los mayores desafíos del presente siglo es el desarrollo de estrategias que 

permitan satisfacer la creciente demanda de proteína animal derivada del acelerado 

crecimiento de la población mundial. Dichas estrategias deben enfocarse en la 

producción de mayor cantidad de proteína minimizando los insumos y el impacto 

ambiental. La eficiencia alimentaria es un fenotipo fundamental para abordar este 

desafío dado que los gastos de alimentación suponen el porcentaje más importante 

de los costos totales de la producción cunícola. 

 

Los trabajos incluidos en la presente tesis han generado conocimiento sobre la 

microbiota intestinal del conejo de carne: un nuevo fenotipo relacionado con la 

variación individual de la eficiencia alimentaria. El estudio de la influencia de 

diferentes factores ambientales y de la base genética de este fenotipo ha permitido, 

además de explorar su papel en la eficiencia alimentaria del hospedador, ahondar 

en la comprensión de sus mecanismos biológicos subyacentes y explorar la 

posibilidad de predecir y/o mejorar este fenotipo tan complejo. 

 

En el primer trabajo, mediante la amplificación y secuenciación del gen 16S rRNA, 

se caracterizaron las comunidades microbianas presentes en el ciego y las heces 

de 21 gazapos sometidos a dos regímenes alimentarios diferentes. Dicho análisis 

reveló la predominancia de los filos bacterianos Firmicutes (76%), Tenericutes (8%) 

y Bacteroidetes (7%). Aunque no se hallaron variaciones en términos de riqueza ni 

diversidad microbianas entre ambos orígenes muestrales, sí se encontraron 

diferencias composicionales en un elevado número de taxones microbianos.  

 

En el segundo trabajo se evaluó la influencia del ambiente ofrecido por dos granjas 

distintas, la administración de antibióticos y el nivel de ingesta sobre la composición 

y diversidad de las comunidades microbianas cecales de 425 gazapos. Aunque los 

resultados determinaron que el mayor impacto es ejercido por el entorno ambiental, 

se evidenciaron diferencias composicionales en la abundancia de ciertos 

microorganismos debidas al efecto de los otros factores estudiados. Este estudio 

destaca la importancia de ofrecer un ambiente controlado que minimice 

alteraciones en la microbiota cecal que potencialmente pudieran afectar el 

rendimiento productivo. 
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En el tercer trabajo se plantearon nuevos enfoques basados en el modelo animal y 

definiciones originales de la matriz de parecido basada en relaciones microbianas 

que permitieron determinar que una proporción importante de la varianza fenotípica 

de distintos caracteres relacionados con la eficiencia alimentaria es atribuible a la 

microbiota cecal. Además, considerar la información microbiana supuso una mejora 

significativa de la capacidad predictiva de los modelos, incluso para fenotipos 

colectivos en los que la microbiota cecal no había sido caracterizada en todos los 

individuos implicados en el registro. 

 

En el cuarto trabajo se evidenció, usando el factor de Bayes como una medida de 

relevancia estadística, que la microbiota cecal del conejo está bajo control genético 

del hospedador. La evidencia de dicho control fue decisiva para los géneros 

Bacteroides, Parabacteroides, Dehalobacterium y Butyricimonas para los que se 

estimaron heredabilidades de 0,27-0,35. 

 

En el último trabajo se recurrió a un estudio de simulación que evidenció el limitado 

poder estadístico de los datos disponibles (412 gazapos) para la detección de 

regiones genómicas implicadas en la variación de la microbiota cecal del conejo 

usando estudios de asociación de genoma completo. Pese a estas limitaciones, 

cautamente se declararon más de 300 variantes distribuidas a lo largo de 10 

cromosomas como asociadas con la variación de 19 caracteres microbianos. Se 

propusieron, dada su implicación en procesos metabólicos e inmunológicos, 44 

genes dentro de estas regiones como candidatos en la modulación de la microbiota 

cecal. 

 

Estos hallazgos demuestran la contribución del sistema hospedador-microbiota-

ambiente sobre la eficiencia alimentaria y sientan las bases de una novedosa línea 

de investigación de interés científico y práctico para la industria cunícola. 
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Un dels majors reptes del segle present és el desenvolupament d’estratègies que 

permetin satisfer la creixent demanda de proteïna animal derivada de l’accelerat 

creixement de la població mundial. Aquestes estratègies han d’enfocar-se en la 

producció de major quantitat de proteïna minimitzant els inputs i l’impacte 

ambiental. L’eficiència alimentària és un fenotip fonamental per abordar aquest 

repte donat que les despeses de l’alimentació suposen el percentatge més 

important dels costos totals de la producció cunícola. 

 

Els treballs inclosos en la present tesi han generat coneixement sobre la microbiota 

intestinal del conill de carn: un nou fenotip relacionat amb la variació individual de 

l’eficiència alimentària. L’estudi de la influència de diferents factors ambientals i de 

la base genètica d’aquest fenotip ha permès, a més d’explorar el paper de 

l’eficiència alimentària de l’hoste, aprofundir en la compressió dels seus 

mecanismes biològics subjacents i explorar la possibilitat de predir i/o millorar 

aquest fenotip tan complex. 

 

En el primer treball, mitjançant l’amplificació i seqüenciació del gen 16S rRNA, es 

van caracteritzar les comunitats microbianes presents en el cec i les femtes de 21 

llorigons sotmesos a dos règims alimentaris diferents. Aquesta anàlisi va revelar la 

predominança dels fílums bacterians Firmicutes (76%), Tenericutes (8%) i 

Bacteroidetes (7%). Malgrat no es van trobar variacions en termes de riquesa ni 

diversitat microbiana entre ambdós orígens mostrals, si es van trobar diferències 

composicionals en un elevat nombre de taxons microbians. 

 

En el segon treball es va avaluar la influència de l’ambient ofert per dues granges 

diferents, l’administració d’antibiòtics i el nivell d’ingesta sobre la composició i 

diversitat de les comunitats microbianes cecals de 425 llorigons. Tot i que els 

resultats van determinar que el major impacte és exercit per l’entorn ambiental, es 

van evidenciar diferències composicionals en l’abundància de certs 

microorganismes degut a l’efecte dels altres factors estudiats. Aquest estudi 

destaca la importància d’oferir un ambient controlat que minimitzi alteracions en la 

microbiota cecal que potencialment poguessin afectar el rendiment productiu. 
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En el tercer treball es van plantejar nous enfocaments basats en el model animal i 

definicions originals de la matriu de semblança basada en relacions microbianes 

que van permetre determinar que una proporció important de la variància fenotípica 

de diferents caràcters relacionats amb l’eficiència alimentària és atribuïble a la 

microbiota cecal. A més a més, considerar la informació microbiana va suposar una 

millora significativa de la capacitat predictiva dels models, inclús per a fenotips 

col·lectius en els que la microbiota cecal no havia estat caracteritzada en tots els 

individus implicats en el registre. 

 

En el quart treball es va evidenciar, utilitzant el factor de Bayes com a mesura de 

rellevància estadística, que la microbiota cecal del conill està sota control genètic 

de l’hoste. L’evidència d’aquest control fou decisiva pels gèneres Bacteroides, 

Parabacteroides, Dehalobacterium i Butyricimonas per als que es van estimar 

heretabilitats de 0,27-0,35. 

 

En l’últim treball es va recórrer a un estudi de simulació que va evidenciar el limitat 

poder estadístic de les dades disponibles (412 llorigons) per a la detecció de regions 

genòmiques implicades en la variació de la microbiota cecal del conill emprant 

estudis d’associació de genoma complet. Malgrat aquestes limitacions, cautament 

es van declarar més de 300 variants distribuïdes al llarg de 10 cromosomes com 

associades a la variació de 19 caràcters microbians. Es van proposar, donada la 

seva implicació en processos metabòlics i immunològics, 44 gens dins d’aquestes 

regions com a candidats en la modulació de la microbiota cecal. 

 

Aquestes troballes demostren la contribució del sistema hoste-microbiota-ambient 

sobre l’eficiència alimentària i estableixen les bases d’una nova línia d’investigació 

d’interès científic i pràctic per a la indústria cunícola. 
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1.1. Evolution of rabbit meat production and consumption 

Cuniculture can be defined as the agricultural practice of domestic rabbits breeding 

for their meat, fur, or wool. In Europe, this practice dates back to at least the 5th 

century A.D., when complete domestication of the wild Oryctolagus cuniculus 

probably took place in the French medieval monasteries (Sandford, 1992). Rabbits 

were typically kept as part of the household livestock and husbandry fell to the 

children. They were principally bred for their meat, but their fur also added an 

important economic value. European sailors took domestic rabbits to different ports 

around the world and brought new varieties back to Europe with them. Their 

international commercial use started in the late 18th century together with the rise of 

scientific animal breeding (Dunlop and Williams, 1996). These principles were also 

applied in rabbits whose reproductive cycle allowed for fast selection progress in a 

short period of time. Thus, individuals, cooperatives, and national breeding centers 

developed different rabbit breeds. 

 

The New Zealand and the Californian, along with crossbreds, are the meat breeds 

more frequently used for commercial purposes that have given rise to specialized 

lines. A three-line crossbreeding system is widely used: two lines are selected for 

litter size obtaining crossbred does, and another line is selected for growth rate. The 

crossbred females, which have a good reproduction ability, are mated with a male 

of the third line. Therefore, their offspring will have a high growth rate transmitted by 

the sire line (Baselga and Blasco, 1989). Rabbits have been raised for their meat in 

a wide range of places around the world, but their large-scale commercialization has 

been focused on Asia and Europe over the last three decades (Figure 1.1).  

 

 

Figure 1.1| Average worldwide production of rabbit meat by region from 1993 to 2019 (FAOSTAT, 2021). 
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Intensive rabbit breeding for meat production was developed in Europe during the 

1970s (Lebas et al., 1997). Together with Italy and France, Spain is one of the 

European Union’s leading rabbit meat producers (Figure 1.2). Spanish cuniculture 

has experienced significant economic and productive changes in recent years. A 

decline in local production, a fall in the number of farms, and the professionalization 

of rabbit breeding have conditioned the productive evolution of the sector. The 

difficulties the rabbit industry is facing are compounded by a progressive reduction 

in consumption, and raising criticism related to animal welfare and ethical concerns. 

 

 

Figure 1.2| Evolution of production of rabbit meat by European leading rabbit meat producers from 1961 to 
2017 (FAOSTAT, 2021). 

 

Rabbit meat is not popular worldwide; however, it is considered a traditional meat 

species in Mediterranean countries like Spain. Although rabbit meat is the fifth type 

of meat most popular in Spain, its consumption has been reduced by 28% over the 

last five years (Montero-De Vicente and López-Navarro, 2020). The number of meat 

rabbits has also been reduced by 12% during that period except in some 

autonomous communities like País Vasco and Castilla y León whose number of 

meat rabbits increased by 49% and 29%, respectively (Montero-De Vicente and 

López-Navarro, 2020). 
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Castilla y León, followed by Cataluña, is the current leader in the Spanish market 

concerning the concentration of production. But in these regions, and also at the 

national level, the number of farms and the production of rabbit meat have both 

experienced a significant reduction. 

 

There is no denying that cuniculture is facing a challenging period characterized by 

a reduction in production and consumption in Spain and the rest of Europe. It will 

therefore be necessary to develop sustainable and welfare production systems to 

ensure the survival of the industry. Keeping concerns of traditional consumers in 

mind together with the development of new rabbit meat products and commercial 

strategies to attract new potential consumers. 

 

1.2. Feed efficiency in rabbit as a monogastric livestock species 

Feed conversion ratio (FCR) is a measure of the efficiency with which the body 

transforms feed into the desired animal output (e.g., eggs or meat). Depending on 

the investment costs, food expenses can represent up to 70% of the total cost of 

main monogastric livestock production species (e.g., poultry, pork, or rabbit) in 

current intensive systems (Cartuche et al., 2014; Whittemore and Kyriazakis, 2006). 

For this reason, feed efficiency (FE) is a key trait in the rabbit meat industry that 

breeders have always been trying to improve to enhance profitability and the 

environmental sustainability of the farm. 

 

In this context, a reduction of the feeding costs is of vital importance to optimize FE. 

In rabbit meat production, FCR is the measure most often used to study FE and can 

be defined as the ratio between the kilograms of feed consumed and the kilograms 

of weight gain. From a productive perspective, this ratio is defined at the farm level 

for given periods of time (e.g., years). The current European intensive production 

systems have a farm FCR of 3.63 in Spain (Rosell and González, 2009), 3.60 in 

France (Lebas, 2007), and 3.82 in Italy (Xiccato et al., 2007). These studies highlight 

a large variation in FCR among farms in the three countries, but a clear improvement 

tendency of this ratio over the past few years.  
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In rabbit farms, depending on weaning date and slaughter weight, about 50-60% of 

the feed is consumed in the fattening unit and 40-50% in the reproduction unit 

(Maertens, 2009). Both units may strongly influence the overall farm FCR, so 

appropriate actions to reduce FCR must be taken for both does and fatteners. Farm 

FCR is influenced by several factors on which actions are possible to reduce such 

ratio. These factors are discussed below and can be classified into three main 

pillars: farm management, nutrition, and genetics. 

 

The number of rabbits weaned per doe and the FCR of the reproduction unit are 

highly influenced by fertility rate, litter size, and pre-weaning mortality. Gidenne et 

al. (2017) reported farm FCR variations according to productivity rate and slaughter 

weights. At a slaughter weight of 2.50 kg, they calculated a farm FCR > 4.00 when 

the number of rabbits weaned per doe in a year is lower than 40. However, with 50 

rabbits weaned per doe, the farm FCR decreased 0.64 points. On the other hand, 

at smaller slaughter weight, they estimated a farm FCR drop of 0.39 points with 40 

rabbits weaned per doe at a slaughter weight of 2.00 kg in comparison with the 

same number of rabbits weaned per doe but at a slaughter weight of 2.50 kg. This 

is because maintenance requirements raise gradually with age and a rapid increase 

in the FCR of fatteners is observed above 2.00 kg of live weight. With regard to the 

sex, Trocino et al. (2015) did not report significant differences in FCR between 

males and females before reaching the common slaughter weight. However, after 

this age, a higher adipose tissue deposition in females results in a worse FCR. 

 

The farm FCR is also highly influenced by the health status of the animals. Both 

mortality and morbidity impact on FCR of fatteners, either by feed consumption 

without a final meat production output or by a deterioration of the animal 

performance. The effect of increasing mortality and the stage in which the loss 

occurs was studied by Maertens (2010). As would be expected, mortalities in late 

fattening stages have the worst effect on the farm FCR. For example, a mortality 

rate of 20% was estimated to increase the FCR at the end of the growing period by 

26%, while a mortality rate of 10% would increase FCR by 11%. It is important to 

note that mortalities during the fattening period also impact the FCR of the 

reproduction unit since these animals consumed feed before weaning and the 
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consumption of the mother is consequently divided over less weaned kits. 

Fortunately, several actions related to management or nutrition can be carried out 

to curb mortality in rabbits. These strategies are discussed in detail in section 1.3. 

of this general introduction. 

 

Nutrition is another major pillar for FE of the growing rabbit closely linked to the 

dietary digestible energy (DE) content of the feed (Lebas, 1975). Animals regulate 

the amount of food consumed to control their DE intake. Blood sugar levels are 

fundamental to the regulation of feed intake (FI) in monogastric species. Given that 

rabbits are monogastric herbivores, Gidenne and Lebas (2006) hypothesized that 

the blood glucose level is probably the principal blood component that regulates the 

FI. However, FCR is more correlated with the acid detergent fiber (ADF) than with 

the DE. Energy-dense diets can improve FCR, but the rabbit cannot ingest enough 

DE to keep an optimal growth rate above 25% dietary ADF. The energy content of 

rabbit diets is lower than that for pigs or chickens because of fiber requirements 

(Gidenne, 2003). Low fiber rabbit diets, although maintain or improve FCR, increase 

the risk of digestive disorders and diarrheas (Gidenne et al., 2000; Bennegadi et al., 

2001). De Blas et al. (1995) pointed that a dietary concentration of 16 to 17% of 

non-digestible fibers led to an optimal FCR. 

 

Furthermore, high-energy diets can be an interesting alternative since a 

replacement of starch by lipids in the feed, which contain more than twice DE, 

suppose an increase of the rabbits’ DE intake to the same FI. The administration of 

such diets could be especially beneficial during the finishing phase, when most of 

the feed is consumed and the risk of the emergence of enteric disorders has fallen 

(Corrent et al., 2007). After weaning, feed restriction or high-fiber diets are often 

administrated to curb mortality caused by digestive diseases. In this regard, the 

application of feed restriction for two or three weeks after weaning followed by a 

period of ad libitum FI reduces the risk of enteric disorders at the same time as FCR 

improves (Gidenne et al., 2009; Romero et al., 2010; Gidenne et al., 2012). 

 

Genetics is another major pillar on which actions can be taken to improve FE. This 

action is particularly focused on the growing kits’ FCR (i.e., the efficiency of the 
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transforming energy and nutrients in the feed into meat in the slaughter animals). It 

was first indirectly improved by selection for growth rate (Larzul and De 

Rochambeau, 2004; Orengo et al., 2009). Unfortunately, however, such indirect 

selection is sub-optimal since Piles et al. (2004) demonstrated that the genetic 

correlation between FE and rabbits’ growth is lower than initially expected. Another 

criterion that allows an improvement of FE is the residual FI (RFI) that represents 

the fraction of total FI that is not explained by maintenance requirements or growth. 

RFI is computed as the residual of multiple regression of the FI on metabolic weight 

and on the average daily gain (ADG).  

 

Some recent studies have reported heritability estimates for growth and FE traits. 

Heritability estimates for ADG recorded in animals fed ad libitum (ADGAL) were 

moderate and ranged from 0.21 (Piles and Sánchez, 2019) to 0.31 (Piles and 

Blasco, 2003). However, Piles and Sánchez (2019) reported a lower heritability 

estimate for ADG recorded in animals fed under restriction (ADGR), which implies 

difficulties in achieving a response to selection for growth or indirectly for FE. 

Heritability estimate for RFI was 0.16 (Drouilhet et al., 2013), and ranged from 0.19 

(Drouilhet et al., 2013) to 0.48 (Moura et al., 1997) for FCR. 

 

At present, selection of rabbits for FE improvements is being conducted in France 

(Drouilhet et al., 2013) and Spain (Piles and Sánchez, 2019). Two principal selection 

strategies are followed to improve FCR. The first strategy aims at increasing ADG 

for the same amount of FI, thus, selecting those animals that express the highest 

growth capacity. The application of feed restriction is necessary to ensure that all 

the animals have the same FI and guarantee that the difference in growth is a 

consequence of a difference in FE. The second strategy aims at reducing the FI for 

the same body weight, thus, selecting animals based on their RFI. Selection for ADG 

would lead to heavier animals without a decrease in food expenses, while selection 

for RFI would lead to lower feed costs (Drouilhet et al., 2016). 

 

It is worth stressing that improving FE is essential to increase the competitiveness 

of the rabbit industry but also to reduce animal excretion and decrease the 

environmental impact of the production. In this regard, Gidenne et al. (2017) 
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reported that selection for FE reduced by 13% nitrogen excretion. Therefore, 

selecting for FE through a lower FI seems an appropriate strategy to reduce the 

environmental impact. Nevertheless, private breeding companies only select for 

growth rate because the measurement of individual FI is difficult, especially when 

animals are group-raised.  

 

In summary, although literature is still scarce, rabbit production has a large potential 

to improve FE and reduce the environmental impact. The Feed-a-Gene European 

project enabled the exploration of this potential. 

 

1.2.1. Rabbit within the Feed-a-Gene project 

The development of the present thesis has been framed within the Feed-a-Gene 

European project (Horizon 2020, grant agreement no: 633531, https://www.feed-a-

gene.eu/). The global and main objective of the project was to better adapt different 

components of monogastric livestock species (i.e., rabbit, pig, and chicken) to 

improve the overall FE and reduce the environmental impact. It involved the 

development of new and alternative feed resources and feed technologies, the 

identification and selection of robust animals that are better adapted to fluctuating 

conditions, and the development of feeding techniques that allow optimizing the 

potential of the feed and the animal. The search for these new solutions is necessary 

to increase the efficiency and sustainability of livestock production systems, but also 

to face new challenges related to animal health and welfare, product quality and 

security, or environmental impact. 

 

This project worked with the three main species used in monogastric livestock 

production, which are responsible for about 13% of nitrogen excretion and 18% of 

phosphate excretion from livestock in Europe (Velthof et al., 2015). Moreover, the 

production of these species is highly concentrated, and major concentrations of 

such excretions in water are found in main monogastric livestock production areas 

(the North-West of France, Denmark, the Netherlands, or the North-East of Spain). 

The existing diversity in the current livestock production systems, together with the 

emerging new real-time phenotyping of animals (i.e., precision feeding and high-
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throughput molecular technologies), offer a high potential for an efficiency 

improvement through a better adaptation of the nutrient supply to the individual or 

group animal requirements. 

 

The Feed-a-Gene project had a duration of 60 months and was composed of eight 

work packages that shared common experiments and facilities among project 

partners allowing to limit animal experimentation. Rabbit trials have mainly involved 

different tasks encompassed by work packages one, two, and five. 

 

The aim of work package one was to develop novel high-quality European-based 

feed protein ingredients and develop methodologies for characterization of chemical 

and nutritional properties of feed in real-time. The objective of one task of this work 

package that involved growing rabbits was to study the impact of residual biomass 

pulp obtained after the extraction of protein from green biomass on the nutritional 

value of conventional and upgraded rapeseed meals for growth performance, FI, 

FCR, and digestibility. This trial revealed a strong affection in nutrient digestibility by 

the type and the level of inclusion, but no effect on rabbit growth and FE 

performances (from Deliverable D1.5 of Feed-a-Gene project, 2019). 

 

Work package two aimed at exploring and identifying new traits related to individual 

animal’s response variation to FE under different environmental conditions. One of 

the tasks encompassed by this work package was focused on the individual FI and 

feeding behavior in rabbits as new phenotypes to improve FE. To this aim, a feeding 

device (Figure 1.3) for the control of individual FI of rabbits raised in collective cages 

was developed by the Institute of Agrifood Research and Technology (IRTA) in 

collaboration with the technology-driven company CLAITEC. The development of 

this device was inspired by the necessity of having individual measurements of FI 

in rabbits raised in groups on commercial farms. Such records are of vital 

importance for selection strategies using individual information since the genetic 

correlation between FE and rabbits’ growth is relatively low (Piles et al., 2004). 
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Figure 1.3| Feeding devices installed in the rabbit experimental farm at Torre Marimon, Caldes de Montbui 
(from Juan Pablo Sánchez Serrano, 2020). 

 

These feeding devices work as scanners that send the status of all the sensors to a 

server each second. Thus, an internal software and a website interface that allow 

the interaction with the device were developed for appropriate management and 

records storage. Apart from this software, a second one was created for the daily 

automatic processing of FI records (from Deliverable D2.2 of Feed-a-Gene project, 

2019). 

 

The use of feeding devices is a promising strategy to improve animal nutrition, 

management, FE, and the overall sustainability of rabbit production. Moreover, their 

use allowed the definition of new phenotypes (i.e., daily FI, feeding rate, daily 

feeding duration, number of visits to the feeder, or the duration of the visits) whose 

potential as new selection criteria was investigated in work package 5 of the project 

(from Deliverable 2.3 of Feed-a-Gene project, 2019).  

 

Despite the aforementioned advantages offered by feeding devices, their use 

modified animal performances compared to conventional feeders. A large number 

of animals per feeder or the presence of a tunnel to access the food could be 

responsible for these modifications (Sánchez et al., 2018). Further research is 

needed to disentangle the nature of the interaction of the rabbits with the electronic 

feeding device and to improve its use. 
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Finally, work package five benefited from the knowledge and data generated in other 

work packages to explore new traits and models for estimating breeding values for 

FE. Its main aim was to identify new strategies to select animals within breeding 

programs without impairing product quality, welfare, and robustness by considering 

the diversity of production environments and feed resources in the European Union 

and anticipating the effects of climate change on production systems. One of the 

tasks encompassed by this work package was focused on new traits to select for 

FE. It is driven by concern over FE recording and its associated costs and difficulties 

of FI measuring in rabbit farms that still rely on measurements made in individual 

cages. The problem is that this type of measurement is questioned in terms of 

welfare, but even more importantly, it is not representative of the performance of 

animals raised in groups. Thus, direct measurements of FI and FE recorded with 

electronic feeders developed in work package two were tested for genetic designs. 

These records were used to compute heritability estimates for individual average 

daily feed intake (ADFI; h2 = 0.29) and ADG (h2 = 0.47), which open the doors to a 

breeding program directly considering both traits to improve FE (from Deliverable 

2.3 of Feed-a-Gene project, 2019).  

 

A further aim of this task was to identify biological markers associated with FE that 

can be potentially measured on a large number of individuals at production farms 

and improve selection accuracy. Hence, genome-wide association studies (GWAS) 

were conducted with the Affymetrix Axiom Orcun SNP Array (Thermo Fisher 

Scientific), which includes 199,692 variants, to find single nucleotide polymorphisms 

(SNPs) associated with phenotypes related to FE in rabbits. Such GWAS are the 

first association studies reported in this species, and they were performed with two 

experimental designs. The first experimental design was performed at the French 

National Institute for Agricultural Research (INRA) and involved about 300 animals 

from a line selected for low RFI and 300 more from a non-selected line. A linear 

mixed model including the SNP effect as a regression on the allelic dose was applied 

to different traits related to FE. Some significant signals were found at a 

chromosome-wide level for all the traits analyzed (Table 1.1). However, no clear 

candidate gene was encompassed by quantitative trait locus (QTL) regions, so that 

further research will be necessary to identify causative variants. 
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Table 1.1| QTL regions and candidate genes detected for ADG, FI, RFI and FCR. 

Trait Chromosome N of SNPs Candidate genes 

ADG 5 17 
PLA2G15, SLC7A6, PRMT7, SMPD3, ZFP90, 

CDH3, DH1, HAS3, UTP4, SNTB2, IP7, 
NFAT5NQO1, NOB1, WP2, PSMD7 

FCR 7 3 
CCDC192, SLC12A, FBN2, SLC27A6, ISOC1, 

ADAMTS19, MINAR2 

FCR 18 1 - 

FI 6 2 

OTX2, ZP3, SSC4D, YWHAG, MDH2, 
STYXL1, POlow, RFIRHBDD2, EPHB4, ZAN, 

EPO, GNB2, GIGYF1, FBXO24, 
POP7, ACTL6B, TFR2, SAP25, LRCH4, 

AGFG2, NYAP1, TSC22D4, PPPR35, MEPCE, 
ZCWPW1, STAG3 

RFI 18 20 

HPSE2, CNNM1, GOT1, ABCC2, ANTPD7, 
COX15, PKD2L1, DNMPB, CPN1, ERLIN1, 

CHUK, BLOC1S2, WINT8B, SEC31B, 1F1AN, 
PAX2 

(Adapted  from Deliverable 2.3 of Feed-a-Gene project, 2019). 
 

The second experimental design was performed at the Institute of Agrifood 

Research and Technology (IRTA) by Sánchez et al. (2020) and involved 438 

animals from the Caldes line (Gómez et al., 2002) under two feeding regimes. An 

animal model including the SNP effect as a regression on the allelic dose was 

applied for ADGAL and ADGR, and a two-trait animal model that jointly fitted the 

performance trait and the SNP allele content was implemented for FE traits collected 

from cage groups. One hundred and eighty-nine significant signals were found at 

the chromosome-wide level for all the traits analyzed. Twenty candidate genes 

located in twelve different QTL regions were proposed to explain the variation of the 

analyzed growth and FE traits (Table 1.2). FTO, NDUFAF6, and CEBPA genes 

were previously reported as associated with the phenotypes of interest in 

monogastric species. 
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Table 1.2| QTL regions and candidate genes detected for ADG, FI, RFI and FCR. 

Trait 
Chromosom

e 
N of SNPs Candidate genes 

ADGAL 3 3 CA2 

ADGAL 3 11 - 

ADGAL 3 1 - 

ADGAL 3 111 NDUFAF6, TP53INP1 

ADGAL 3 1 - 

ADGAL 5 1 FTO, AKTIP 

ADGAL 5 2 - 

ADGAL, RFI 21 96 ATXN2, ACAD10, TRAFD1, PTPN11 

ADGR 9 66 FEZF2, PTPRG 

ADGR 12 0 - 

ADGR 13 90 RC3H1, TNFSF18 

ADGR 17 29 LGALS3, TMEM260 

FCR 6 16 SIK1B 

FCR 16 16 PLA2G4A 

FI 5 13 CEBPA, KCTD15 

RFI 21 26 SELENOM 

(Adapted from Sánchez et al., 2020). 
 

No QTL regions were found in common between GWAS conducted with the two 

different experimental designs. This is a clear indication of the lack of statistical 

power of both experiments. Indeed, the sample sizes used for these studies only 

allow for the proper detection of strong effects (see Chapter seven). Nevertheless, 

these are the first GWAS for growth and FE traits performed in rabbits with a dense 

SNP chip panel. In addition, Sánchez et al. (2020) proposed a new modeling 

approach that allows GWAS for the traits recorded as group averages and even 

when genotypes are not available for all the individuals. 

 

Another task of this work package was largely conducted to develop statistical 

models and procedures for selection on FE that account for indirect genetic and 

social interaction effects. Such effects are the ones that an individual exerts on the 

phenotype of its group mates on animal welfare, productivity, and health. Response 

to selection depends on the genetic parameter for both direct and social genetic 

effects, so ignoring these latter for traits that could be affected by the interactions 
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between cage mates could lead to wrong estimates. The importance of social effects 

in rabbits was evaluated within the Feed-a-Gene project with the development and 

implementation of models for estimating genetic and environmental parameters of 

direct and social effects. Piles et al. (2017) suggested that the selection of rabbits 

for ADGAL might fail to improve ADGR in rabbits that are fed under restriction since 

the contribution of social effects to the estimation of total breeding values of rabbits 

under restriction is important, but not for that estimation of rabbits fed ad libitum. 

Moreover, the genetic correlation between direct and social genetic effects for 

animals is negative and moderate on restricted feeding but null on ad libitum 

feeding. It is, therefore, of great importance that selection for ADG is performed 

under production conditions regarding the feeding regime and accounting for social 

effects when feed restriction is applied. Besides these aspects, David et al. (2018) 

investigated the variation of social effects for ADGR over time with structured 

antedependence models. The main conclusion of this research was that social 

effects are larger after mixing animals at weaning than later in the growing period, 

probably because of the establishment of social hierarchy that is generally observed 

at that time. Therefore, accounting for social effects in the selection criterion 

maximizes genetic progress. 

 

Finally, the key task as concerns the present thesis was the one which aimed at 

evaluating the effect of genetics and different environmental factors (i.e., maternal 

transmission, feeding regime, breeding farm, or administration of antibiotics) on 

rabbit gut microbiota and at proposing new methodologies to explode gut microbial 

variability as a heritable phenotype affecting growth and FE. Microbial diversity and 

composition of rabbits from experiments above described were characterized 

through Illumina sequencing of 16S rRNA gene amplicons in a MiSeq platform. No 

more details about the results of this task are presented in this section since they all 

were objectives of the present thesis and will be developed in the following chapters. 
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1.3. Management strategies to curb mortality in rabbits 

The implementation of appropriate management strategies is vital to curb mortality 

and morbidity in rabbits since, as previously mentioned in section 1.2. of this general 

introduction, the health status of the animals is of great relevance for the farm FE 

from a productive and economic point of view (Rosell and González, 2009). The 

emergence of different diseases that affect meat rabbits is handled with progress 

and knowledge in the fields of nutrition, genetics but also animal management 

(Morton et al., 2005).  

 

Mortality may depend on the genotype of the animal and aspects related to the 

mother’s performance like litter size, birth weight, order of parturition (Harris et al., 

1982), but also on the farm management and environmental factors. Therefore, it is 

crucial to know about and study those external factors affecting mortality to enhance 

prevention and reduce it through adequate management strategies. Comprehensive 

published compilations on rabbit diagnostic cases are scarce, but Rosell and de la 

Fuente (2016) described the principal causes of mortality in breeding rabbits on 

Spanish commercial farms, which were respiratory diseases and digestive 

disorders. A more recent study carried out in 2019 indicates that parasitic diseases, 

particularly those causing digestive disorders and affecting young animals, were the 

principal cause of rabbit mortality in northern Spain between 2000 and 2018 

(Espinosa et al., 2020). The prevalence of digestive diseases such as coccidiosis or 

encephalitozoonosis was higher in animals raised in traditionally managed farms 

with poor hygienic-sanitary conditions, inadequate management systems, and poor 

health prophylactic protocols. These inadequate farm conditions together with 

immature immune systems of young rabbits may easily promote digestive disease 

outbreaks (Gomez-Bautista et al., 1987; Pakandl, 2013). Early detection of 

encephalitozoonosis outbreaks is vital from a clinical and public health point of view 

because of its zoonotic potential (Mathis et al., 2005). 

 

Epizootic rabbit enteropathy (ERE) is a severe digestive disorder that appeared in 

France in 1996 and spread very rapidly to the rest of Europe, becoming the main 

cause of mortality in rabbit breeding. This pathology mainly affects young rabbits 
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after weaning and can be responsible for very high mortality rates up to 80%. It is 

characterized by a distended abdomen, emissions of small quantities of watery 

diarrhea, and a decrease in FI (Licois et al., 2005). The etiology of ERE is still 

unknown, but a pathogenic agent is thought to be involved since it is contagious and 

the administration of antimicrobials prevents its emergence (Maertens et al., 2005). 

At present, management strategies that guarantee proper environmental hygiene 

minimizing the proliferation of pathogens, feed restriction, or the administration of 

antibiotics are employed to prevent the emergence of ERE and other pathologies.  

 

Therefore, management strategies related to housing, feeding, and the use of 

antimicrobials to improve breeding rabbit health are presented in the following sub-

sections. 

 

1.3.1. Biosecurity of the breeding farm 

The term biosecurity refers to those management strategies and measures that aim 

at preventing the introduction and/or spread in the farm of harmful microorganisms 

to minimize the risk of transmission of infectious diseases (World Health 

Organization, 2006). In a rabbit facility, attention to biosecurity is the most effective 

tool to reduce and prevent the introduction of diseases since an incident from just 

one animal could have adverse effects on the entire farm. Failure to implement 

biosecurity strategies and practices involves a greater risk of disease introduction 

and the consequent facing the accompanying economic losses. 

 

Potential sources of health threats to a rabbit farm are physical transference from 

visitors, mechanical transference from equipment or supplies brought and, what is 

thought to be the major cause of biosecurity problems on farms, biological 

transference from the introduction of new and sick animals into the facility (Waage 

and Mumford, 2008). The best way to prevent these health threats is to implement 

a health management program based on three key management principles (i.e., 

farm visitors access, animal health, and operation) discussed below (Kylie et al., 

2017). 
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Access management refers to farm visitors as well as their movement between 

areas and access to other animal species. External visitors can potentially harbor 

pathogens on or under their shoes, hands, clothing, or hair. Thus, it is important to 

ensure visitors wear protective clothing and foot and hair covering. It is also highly 

recommended to limit traffic near rabbit facilities and keep visitor vehicles out of the 

areas accessible to the animals. Vehicles used for animal transportations between 

farms and/or the slaughterhouse must always be clean and corrected disinfected.  

 

Animal health management implies the monitoring and treatment of diseases and 

the establishment of protocols for animal movement and quarantines. New animals 

introduced into the farm should be kept in a separate area during a quarantine period 

to facilitate the monitoring of their health status and prevent the spread of potential 

diseases, especially those without the exhibition of clinical signs, to the other 

animals. The facility must always meet the minimum standards for animal cages and 

dispose of an isolation area for sick animals. Cared should be provided for the 

quarantined animals after having handled the rest, and workers should never wear 

clothing that has been used in the isolation facility. Animals should be monitored 

every day for signs of illness to isolate those displaying disease symptoms. 

Regarding viral diseases (i.e., rabbit hemorrhagic disease and myxomatosis), the 

establishment of vaccination programs is extremely effective against the emergence 

and spread of these pathologies on the farm (Dalton et al., 2012; Bertagnoli and 

Marchandeau, 2015). 

 

Finally, operation management includes measures to correctly store and process 

food and water and keep facilities clean and in good repair. It includes the practice 

of routine cleaning, disinfection, and preventative maintenance of nests, cages, 

watering, and feeding devices. It is important to encourage employees to wash their 

hands before and after working with the animals, to frequently wash the farm tools 

and equipment, and to take special care of young animals which are more 

susceptible to diseases because of the immaturity of their immune system. On the 

other hand, the facility should be maintained under good ventilation conditions and 

ensure that other animal species which can be carriers of diseases never enter the 
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farm and remove any standing water that could turn into a breeding ground for 

mosquitoes. 

 

A biosecurity program can be accomplished in all rabbit farms if common sense and 

science are employed. An effective biosecurity protocol can prevent significant 

economic losses and ensure that final products are safe for human consumption. 

 

1.3.2. Feed restriction 

The reduction of the quantity of food administrated to the animal (i.e., feed 

restriction) decreases the incidence of digestive disorders affecting rabbits 

described above (Gidenne et al., 2012). Moreover, Gidenne et al. (2009) showed 

that the application of feed restriction improves rabbit FE during the whole growing 

period if, after a restricted period, animals are fed ad libitum. Other studies (Boisot 

et al., 2003; Bovera et al., 2013) also observed a reduction in mortality and morbidity 

without impacting the slaughter weight when growing rabbits received a restricted 

diet (Meo et al., 2007). This latter faster growth observed when rabbits are fed again 

ad libitum does not occur at the expense of food overconsumption, so a positive 

impact on FE is reached. Such compensatory growth after a period of feed 

restriction has been reported by Ledin (1984) and Romero et al. (2010). Feed 

restriction is a widely applied commercial practice (Tudela, 2008) to improve FE 

while reducing mortality due to enteric diseases. This practice is common in France 

since their larger commercial weight allows a longer fattening period so that there is 

room for both phases: restricted feeding until 63-70 days of age and one extra week 

under full feeding before slaughtering. 

 

The underlying mechanisms of the benefits (i.e., mortality reduction and FE 

improvement) achieved with feed restriction are still unclear. Gidenne (2003) 

reported a lower mortality rate and a higher transit speed of particles and liquids in 

rabbits fed with diets rich in fiber. It has been hypothesized that the speed of transit 

of food could affect the digestive health of young rabbits, but this theory was 

discarded because the mean retention time increases in restricted rabbits. However, 

this greater retention of food in the gastrointestinal tract (GIT) of restricted animals 
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could be responsible for a greater nutrient digestibility reported by Ledin (1984) and 

Xicatto et al. (1992). This fact could explain the FE improvement also sometimes 

observed during the restriction period, although it is also highly dependent on the 

diet (Gidenne et al., 2012). 

 

Regarding disease tolerance, Gidenne and Feugier (2009) demonstrated that feed 

restriction modifies ingestion and food fermentation patterns producing an acidity 

peak in the cecum that could confer protection to the animal against digestive 

diseases by impairing the growth of pathogenic microorganisms (Boisot et al., 

2003). This peak of acidity disappears when the animals are fed again ad libitum, 

which would imply the loss of the protective effect against enteropathies (Gidenne 

et al., 2009; Birolo et al., 2020). 

 

Another hypothesis is that feed restriction could reduce mortality rate and improve 

FE by shaping the gut microbial composition and fermentative activity. This 

assumption would be supported by the major role that microbial communities that 

inhabit the GIT have on the host’s immunity (Belkaid and Hand, 2014; Mazmanian 

et al., 2008) and nutrient absorption (Hooper et al., 2001). Drouilhet et al. (2016) 

found different fermentation patterns and microbial phylotypes between rabbits 

selected for RFI and non-selected animals, suggesting a key role of intestinal 

microorganisms in FE. The fast development of sequencing techniques and the 

reduction of their costs allow studying the contribution of gastrointestinal microbiota 

to rabbit FE, which is one of the main objectives of the present thesis. 

 

1.3.3. Administration of antimicrobials 

An antimicrobial is an agent that kills microorganisms or impairs their growth. These 

agents can be grouped according to the microorganisms they act primarily against 

(e.g., antibiotics and antifungals are used against bacteria and fungi, respectively) 

or according to their function (e.g., microbicides kill microorganisms while 

bacteriostatic only inhibit the growth of bacteria).  

 



 
Chapter 1: General introduction 

57 

Different antimicrobial molecules have been widely administered in rabbit meat 

production, especially after weaning, to curb mortality peaks caused by the onset of 

gastrointestinal symptoms (Gidenne et al., 2010). It has raised a global concern for 

the emergence of antibiotic-resistant bacteria, and European Union needed to ban 

the use of antibiotics in animal feeds as growth promoters in 2006 (EC 1831/2003).  

At the time the experiments for the present thesis were conducted, from 2014 to 

2016, the administration of a mix of up to four antibiotics was permitted to prevent 

or treat the emergence of potential infectious diseases on farms. Nonetheless, 

nowadays, only one antibiotic molecule can be administered, and substantial efforts 

are being conducted towards searching for efficient alternatives which allow for a 

complete withdrawal of antimicrobials in animal feeds. Furthermore, a withdrawal 

period is required from the time antibiotics are administered until slaughter allowing, 

time for removing residues from the animal's system. 

 

Multiple studies have shown alterations caused in rabbit gut microbiota by the 

administration of antibiotics in the feed (Abecia et al., 2007; Eshar and Weese, 2014; 

Zou et al., 2016). Some antibiotics can adversely affect the intestinal microbiota of 

growing rabbits, killing beneficial bacteria, and allowing pathogens to grow. Thus, it 

is important to restrict its use to avoid altering the normal development of the animal 

gut microbiota.  

 

1.4. Microbial communities inhabiting the gastrointestinal tract 

The field of microbiome research has experienced rapid growth over the past two 

decades becoming a topic of great scientific and public interest. So much so that 

the mammal microbiome is considered to be the “last organ” (Baquero and 

Nombela, 2012). The fast development of next-generation sequencing (NGS) 

technologies (Rogers and Venter, 2005) has significantly reduced the time and cost 

of studying the microbiome. Nevertheless, despite the rapid growth in microbiome 

research interest from a wide range of research fields, there is a lack of consensus 

on the definition of the term microbiome (Marchesi and Ravel, 2015) and on other 

related terms employed to describe different aspects of microbial communities and 

the environments they inhabit. In this editorial article published in the journal 
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Microbiome, Marchesi and Ravel proposed clear definitions of each of these terms 

to avoid misunderstanding of results provided by the scientific community. 

 

Konopka (2009) defined microbial communities as multi-species assemblages in 

which organisms live together in a contiguous environment and interact between 

them. The word microbiome is of Ancient Greek origin: “micro” (μικρος) means small 

and “biome” is derived from the Greek word “bíos” (βιος, life). The first definition for 

this term was proposed by Whipps et al., (1988), who described it as a characteristic 

microbial community in a reasonably well-defined habitat that has distinct 

physicochemical properties as their “theatre of activity” (i.e., the whole spectrum of 

molecules produced by the microorganisms) (Figure 1.4). But during the last few 

decades, many other definitions for the term microbiome have been published 

(Lederberg and McCray, 2001; Prosser et al., 2007). Nevertheless, some of these 

definitions only describe the terms as encompassing the genomes of 

microorganisms. Thus, the complexity of the diverse hierarchies of interactions 

established between microorganisms with one another and with their host biotic and 

abiotic environments is not completely captured (Berg et al., 2020). This variety of 

definitions for the term microbiome were discussed by a panel of international 

experts from diverse microbiome fields within the European MicrobiomeSupport 

project (www.microbiomesupport.eu/), concluding that the first definition (Whipps et 

al., 1988) is nowadays still the most comprehensive one.  

 

The term microbiota is also of Ancient Greek origin. It is the combination of the words 

“micro” (μικρος, small) and “biota” (βιοτα, the living organisms of an ecosystem). 

The first definition for this term was proposed in a study that emphasized the 

importance of the microorganisms inhabiting the human body in healthy and sick 

individuals (Lederberg and McCray, 2001). The microbiota encompasses all living 

members forming the microbiome (i.e., bacteria, archaea, fungi, algae, and small 

protists). The inclusion of phages, viruses, plasmids, and mobile genetic elements 

is controversial. And so is relic DNA (i.e., extracellular DNA derived from dead cells), 

which can comprise up to 40% of the sequenced microbial DNA in soil (Carini et al., 

2016). Interestingly enough, despite the abundance of relic DNA, it has a minimal 

effect on taxonomic and phylogenetic diversity estimates (Lennon et al., 2018). 



 
Chapter 1: General introduction 

59 

 

Figure 1.4| Scheme of the term microbiome containing the microbiota (community of microorganisms) and their 
structural elements, metabolites, and the surrounding environment (Berg et al., 2020). 

 

As mentioned in the previous paragraph, the term microbiota is defined as the 

assemblage of living microorganisms inhabiting a specific environment. Given that 

phages, viruses, plasmids, mobile genetic elements, and free DNA are usually not 

considered living organisms (Dupré and O’Malley, 2013), they would not form part 

of the microbiota. Nevertheless, the term microbiome proposed by Whipps et al., 

(1988) encompassed the community of the microorganisms (i.e., microbiota), but 

also their “theatre of activity” that involves all the molecules generated by the 

microorganisms, their host and structured by the surrounding environment (Figure 

1.4). This is the reason why all mobile genetic elements and relic DNA should be 

encompassed by the term microbiome but not by the microbiota. 

 

It is noteworthy to mention that the term microbiome is frequently confused with the 

term metagenome, which is the collection of genomes and genes from the members 

of a microbiota (Marchesi and Ravel, 2015). Such collection is obtained and 

characterized through shotgun sequencing of DNA (i.e., metagenomics). 
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The microbes that inhabit a specific niche interact between them affecting fitness, 

functional capacities, and dynamics of the microbiome (Banerjee et al., 2018). The 

stability of the ecosystem relies on these interactions that can be positive, negative, 

or neutral (Figure 1.5). Mutualism is the best-studied interaction in the microbiology 

field in which all members of the community benefit from the others’ activity. The 

host-mammals gut microbiome interaction is a good example of beneficial 

mutualism in which the host obtains energy from short-chain fatty acids produced 

by bacteria through fermentation of the glycans provided by the host (Backhed et 

al., 2005).  

 

 

Figure 1.5| Interactions between microorganisms (Zuñiga et al., 2017). 

 

Commensalism is another positive type of interaction in which only one member 

benefits without affecting the rest, such as happens in nitrification or 

methanogenesis processes (Allison et al., 1993). Neutralism occurs when 

microorganisms have no significant effect on each other. In an interaction of 

amensalism, one member is negatively affected while the rest neither benefit nor 

are harmed. However, the interaction that occurs when one member is 
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disadvantaged and another obtains benefits is named parasitism. Finally, 

competition is the interaction in which all members are negatively affected by the 

presence of the rest. An example of this type of interaction is the one established 

between autotrophic and heterotrophic bacterial populations competing for the 

oxygen of the environment (Tsuno et al., 2002). 

 

In the following sub-section, the reader will find a historical overview of the evolution 

experienced by the microbiome research field from its microbiology origins until its 

establishment as a discipline itself. 

 

1.4.1. Evolution of microbial profiling technologies 

The study of microbial communities has largely evolved along with the development 

of new technologies and inventions that boosted their research (Figure 1.6). The 

first report of microorganisms by Antonie Leeuwenhoek dates back to 1676. Thanks 

to the development of the first microscopes, he investigated unknown bacteria, 

fungi, and protozoa from water, mud, and oral samples (Hamarneh, 1960). Antonie 

Leeuwenhoek is considered the “Father of Microbiology” and he also described the 

first interaction between microorganisms within complex communities with the 

discovery of biofilms (Høiby, 2017). 

 

 

Figure 1.6| The evolution of microbiome research from the 17th and 21st centuries (Berg et al., 2020). 
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In 1884, Robert Kochs’ postulates of the origin of animal diseases caused by 

microbial infections laid the foundation for the pathogenicity concept. This also 

shifted the focus of the microbiology research on the role of microorganisms as 

pathogenic agents that should be eliminated (Evans, 1976). However, posterior 

research demonstrated that only some microorganisms are responsible for animal 

disease while the presence and role of most microbes are necessary for ecosystem 

homeostasis.  

 

The new field of microbial ecology emerged with the study by Sergei Winogradsky 

on bacterial nitrification in 1888, who is considered the founder of modern 

microbiology (Dworkin and Gutnick, 2012). Winogradsky isolated the first pure 

cultures of nitrifying bacteria and confirmed these bacteria carry out the steps of 

conversion of ammonia to nitrite and of nitrite to nitrate. This discovery led to the 

concept of the cycles of sulfur and nitrogen in nature, resulting in another paradigm 

shift: microbiologists became aware of the microorganisms’ ubiquity in all natural 

environments (Podolsky, 2012), and that their interactions with hosts are vital for 

population dynamics (Bassler, 2002). 

 

During the 17th and 19th centuries, the study of microorganisms was limited to the 

study of their morphological characteristics (i.e., those which were visible through a 

microscope) and cultivation-based approaches. But large and rapid advances 

started with the discovery of DNA as the hereditary material (Avery et al., 1944), the 

development of PCR (Mullis et al., 1986), and sequencing technologies that made 

possible the investigation of microbial communities with cultivation-independent 

approaches. Another significant milestone for the analysis of microbial communities 

was the use of phylogenetic markers (e.g., 16S and 18S rRNA genes, or internal 

transcribed spacer regions) introduced by Woese and Fox in 1977 (Woese and Fox, 

1977) that allow to barcode bacteria, archaea, fungi, algae, and protists. At this 

historical turning point, it is meaningful to introduce the 16S ribosomal gene, in the 

analysis of which has been based on the study of microbial communities inhabiting 

the cecum of rabbits involved in this thesis. 
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National Institutes of Health (NIH) defines ribosomes as cellular particles made of 

RNA and protein that serve as the site for protein synthesis in the cell. The ribosome 

reads the sequence of the messenger RNA (mRNA) and, using the genetic code, 

translates the sequence of RNA bases into a sequence of amino acids. In bacteria, 

ribosomes are scattered throughout the cytoplasm, and their sedimentation velocity 

in an ultracentrifuge is 70S. These structures can dissociate into big (50S) and small 

(30S) subunits. In turn, the 50S subunit is primarily compound by 31 different 

proteins and two small molecules of ribosomal RNA (rRNA 23S and rRNA 5S), while 

the 30S subunit is primarily compound by 21 different proteins and the 16S rRNA 

(Figure 1.7). These molecules of rRNA are ubiquitous and easy to detect since they 

are present in a high number of copies. 

 

 

Figure 1.7| Schema of a ribosome and the 16S rRNA gene. The white and grey boxes indicate conserved 
regions and hypervariable regions (V1-V9), respectively (Fukuda et al., 2016). 

 

The 16S rRNA gene encodes a rRNA molecule of the 30S ribosomal subunit present 

in all prokaryotic cells, including bacteria and archaea. This gene is commonly used 

for identifying bacteria and is preferable over 5S and 23S genes for several reasons 

(Clarridge, 2004; Rajendhran and Gunasekaran, 2011). The first is that it is a 

relatively short gene of approximately 1,500 base pairs (bp). The second reason is 

that the 16S rRNA is composed of ten regions that are common among most 

bacteria (conserved regions) and are combined with nine hypervariable regions 

(Figure 1.7). This combination of conserved and hypervariable regions is optimal 

for the design of primers for the conserved regions (Lane, 1991) while the diversity 

of the hypervariable ones allows for phylogenetic assignment (Gray et al., 1984). 

Thus, due to its extensive usage, the number of 16S rRNA gene sequences stored 
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in public databases is constantly increasing, facilitating the identification and 

classification of microorganisms. 

 

The principal molecular approaches targeting the 16S rRNA gene can be grouped 

in quantitative PCR (qPCR), hybridization of probes, fingerprinting, and sequencing. 

A brief overview of them is presented below (Figure 1.8). 

 

 

Figure 1.8| Workflow of molecular methods targeting 16S rRNA gene (Fukuda et al., 2016). 

 

The qPCR allows measuring the abundance of the 16S rRNA genes of a target 

bacteria (Bustin et al., 2005). The accumulation of amplicons is measured in real-

time during each cycle of the PCR by using fluorescent dyes (e.g., SYBR Green) or 

fluorescent probes. Methods based on the hybridization probes use short 

monocatenary sequences of oligonucleotides that are complementary to specific 

sequences of microbial DNA, thus allowing the phylogenetic identification and 

quantification of specific microbial species present in a sample (Amann et al., 1995). 

Fluorescence in situ hybridization (FISH) enables phylogenetic identification by the 



 
Chapter 1: General introduction 

65 

hybridization of fluorescence-labeled oligonucleotide probes. FISH requires neither 

a previous PCR process nor the extraction of DNA, thus avoiding the bias 

associated with the amplification of DNA. However, this approach does not allow 

the identification of unknown species, and it has a low resolution to identify different 

phylogenetic groups present in a sample. 

 

Fingerprinting techniques allow separating mixed 16S rRNA genes even though 

they have the same size. This is possible because the differences between their 

sequences lead to different molecular weights that will generate different patterns in 

a gel subjected to electrophoresis. Terminal restriction fragment length 

polymorphism (T-RFLP) is based on variations present in the sequence of 

amplicons of 16S rRNA genes (Kitts, 2001). In T-RFLP, amplicons labeled with a 

fluorescent primer in their terminal region are fragmented using restriction enzymes 

that are separated into different fragment patterns whose size and peak height are 

analyzed by high-performance liquid chromatography (HPLC) or a DNA sequencer. 

Thus, T-RFLP is useful to quickly measure the microbial diversity of a sample, but 

it does not allow for phylogenetic identification. Another fingerprinting approach is 

denaturing-gradient gel electrophoresis (DGGE), in which PCR amplicons of 16S 

rRNA gene are loaded in a polyacrylamide gel containing a linear gradient of DNA 

denaturant and subjected to electrophoresis (Muyzer et al., 1993). The melting 

behavior is determined by variations present in the sequence of amplicons that end 

their migration in the gel at different positions. DGGE is a rapid semi-quantitative 

approach, but like T-RFLP, it has the bias associated with the PCR process and the 

impossibility of direct phylogenetic identification.  

 

The clone library analysis involves the cloning of PCR amplicons of the 16S rRNA 

gene into Escherichia coli using a plasmid vector. Then, the transformed clones are 

sequenced using the Sanger method (Sanger et al., 1977), and the sequences are 

compared to 16S rRNA gene sequences stored in databases by the basic local 

alignment search tool (BLAST) algorithm. Given the high quality of the sequences 

achieved with these methods, clone libraries of 16S rRNA genes are appropriate for 

the identification of unknown species. Sanger sequencing method was widely used 

until the 1990s when rapid development of NGS began. 
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NGS technologies filled the Sanger method’s gaps providing their high-throughput, 

low-cost, and rapid DNA sequencing (Metzker, 2010). The principal sequencers are 

454 GS FLX (Roche), MiSeq/HiSeq (Illumina), and Ion PGM (Ion Torrent), which 

can sequence millions of DNA fragments in a few days. Like the clone library 

analysis, NGS technologies also require the previous amplification of the 16S rRNA 

gene but not the construction of a clone library using Escherichia coli. Moreover, the 

number of reads obtained with any of the NGS technologies is much larger than the 

achieved with the Sanger sequencing method. These technologies are powerful and 

have allowed the discovery of novel microbes and the exploration of new 

environments. In the 454 GS FLX technology, after individually fixing each amplicon 

to a microbead, the DNA fragments are amplified in an emulsion PCR. The resulting 

beads are put into a microwell that is filled with a sequencing reaction mixture. This 

technology is based on pyrosequencing chemistry. Therefore, when an 

oligonucleotide is added during PCR, pyrophosphate is released and a burst of light 

is detected by the system, and this information is translated to nucleotide sequences 

with an associated base quality value (Ronaghi et al., 1998). This technology 

provides a higher yield than Sanger sequencing at a lower cost but with shorter read 

lengths. 

 

The Ion PGM is a small potentiometer that detects the changes in hydrogen 

potential generated by the release of a proton when a nucleotide is added in a 

sequencing reaction (Rothberg et al., 2011). The yield and cost of this technology 

outperform the 454 GS FLX technology, although reads generated by Ion PGM are 

shorter (Whiteley et al., 2012). Nonetheless, this reduction of length reads implies 

higher sequencing error rates making it necessary to sequence with higher 

coverage. In this regard, MiSeq and HiSeq Illumina platforms have become very 

popular technologies due to their high yield at low cost. The foundation of Illumina 

technologies is the reversible termination sequencing by synthesis with nucleotides 

fluorescently labeled. When these nucleotides are incorporated in the sequencing 

reaction, the fluorescence is registered, and the fluorophore is removed and allows 

the incorporation of the next nucleotide (Bentley et al., 2008). 
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These technologies are currently the most used for microbiome research, but new 

sequencing approaches (e.g., PacBio RS from Pacific Bioscience or Oxford 

Nanopore) are being developed to reduce costs, fill the gaps, and improve the yield 

of the existing ones. Reads obtained from NGS technologies have demanding 

computational requirements for their storage and bioinformatics analysis. Finally, to 

taxonomically annotate the reads generated with these approaches, they must be 

compared against a database such as The Ribosomal Database Project (Wang et 

al., 2014), Silva (Quast et al., 2012), or Greengenes (DeSantis et al., 2006), that 

store sequences specific of different ribosomal genes belonging to a growing 

number of microorganisms.  

 

It is also worth mentioning that the metabolic potential of a microbial community can 

be deciphered by a whole metagenome approach where the total DNA from all 

microorganisms is extracted to prepare and sequence whole shotgun libraries 

(Tyson et al., 2004; Venter et al., 2004). This approach is the most advanced 

technology to describe microbial variability of samples as well as its physiological 

potential. The sequencing is performed from little fragments of DNA, randomly 

obtained with restriction enzymes, that will finally be assembled to reconstruct the 

original sequence using a reference. A first reference gene catalog of the rabbit gut 

microbiome through a whole metagenome shotgun sequencing approach is being 

constructed (Achard et al., 2016). 

 

The rapid development of the sequencing technologies described in this sub-section 

and the increasing number of microbial ecology studies during this century have 

revolutionized the field and highlighted the ubiquity of microbial communities in 

association with a higher organism and their fundamental role in mammals 

physiological and immunological processes (Belkaid and Hand, 2014). The analysis 

of genomes and metagenomes in a high-throughput way opens the doors to 

characterize and unravel the functional potential of individual microorganisms and 

the whole community within their host. The present thesis, which aims at describing 

the microbial communities inhabiting the meat rabbit cecum and their potential role 

in FE, is a practical example of this. 
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1.4.2. Anatomy and functions of the rabbit gastrointestinal tract 

It is important to make a brief overview of the anatomy and the particularities of the 

rabbit GIT that make it an ideal setting for the growth of certain microorganisms. As 

a monogastric herbivore, the rabbit GIT is adapted to process large amounts of fiber-

rich feed, including specific adaptations, from teeth to an enlarged hindgut for 

fermentation, and the separation of cecal digesta particles allowing for cecotrophy 

(Fortun-Lamothe and Gidenne, 2006). 

 

The total length of the adult rabbit GIT is 4.5-5 m (Lebas et al., 1997). The 

organization and principal characteristics of the different segments that comprise 

the rabbit GIT are shown in Figure 1.9. Rabbits have 28 teeth (2/1 0/0 3/2 3/3) that 

grow continuously during their whole life. Salivary glands produce saliva with low 

amylase concentration, and the esophagus is short merely to transport food from 

the mouth to the stomach. Thus, feed eaten by the rabbit quickly reaches the 

stomach that, contrary to other mammals, is characterized by a very acid (1.5 to 2.0) 

pH that varies along the day mainly in the fundus (i.e., the blind part) in relation to 

the storage of soft feces (Lebas et al., 1997). The glands included in the stomach 

wall secrete hydrochloric acid, pepsin, and some minerals (Ca, K, Mg, and Na). The 

feed remains in the rabbit's stomach for 2-4 hours, and then it is gradually moved 

through the pylorus into the small intestine (Lebas et al., 1997).  

 

The length of rabbit's small intestine is about 3 m and 0.8-1 cm in diameter, and it 

is divided into three parts: duodenum, jejunum, and ileum. As the contents reach 

the upper part, whose pH is slightly basic (7.2-7.5), they are diluted by the flow of 

bile and the first intestinal secretions. The pH of the rabbit ileum is more acidic (6.2-

6.5) at the end of the small intestine, where enzymes of the pancreatic juice break 

down the feed contents and, as occur in other monogastric species, pass through 

the intestinal wall to be transported to the cells through the blood (Lebas et al., 

1997).  
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Figure 1.9| The gastrointestinal tract of a rabbit. Numerical values are those observed in the New Zealand breed 
fed ad libitum with a pelleted feed at twelve weeks of age (adapted from Lebas et al., 1997). 

 

The cecum starts in the ileocaecal valve (sacculus rotundus), and it stores about 

40% of the whole digestive content. Its length is about 40-45 cm and its diameter of 

3-4 cm. The pH of this segment of the rabbit GIT varies, depending on microbial 

activity and feeding pattern, around 6.0. The feed particles that are not broken down 

enter the cecum, where they remain for 2 to 18 h under the action of bacterial 

enzymes (Lebas et al., 1997). During this period, cecal bacteria break down the 

remaining particles that are freed and pass through the GIT walls into the 

bloodstream. Finally, the cecal content is evacuated into the colon. 

 

The cecal appendix is located at the end of the cecum, and its walls are composed 

of lymphoid tissues. The colon begins at the base of the cecum and lengths 1.5 m. 

This segment is divided into two parts: proximal (50 cm long, 2-3 cm of diameter) 

and distal colon (1 m, 1 cm of diameter) that end with the rectum and the anus 

(Lebas et al., 1997). The peculiarities of rabbits, and the rest of Lagomorpha, rely 
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on the dual function of the proximal colon. If the cecal content reaches the colon in 

the early morning, it undergoes a few biochemical changes: its wall secretes mucus 

that envelops the soft pellets (i.e., cecotrophes) generated by the wall contractions. 

However, if the cecal content enters the colon at any other time of the day, the 

proximal colon activity is completely different: successive waves of contractions in 

alternating directions begin. The first wave acts to evacuate the content while the 

second one pushes it back into the cecum. Under the varying pressure and rhythm 

of these contractions, the contents are squeezed. Most of the liquid part, containing 

soluble products and small particles of less than 0.1 mm, is forced back into the 

cecum (Björnhag, 1972). The solid part, containing mainly large particles over 0.3 

mm, forms hard feces that are then expelled through the anus. Therefore, this dual 

action results in the generation of two types of excrement by the colon: the hard 

feces and the cecotrophes.  

 

Cecotrophy is a particular herbivorous nutritional strategy to benefit from the 

microbial protein and to obtain vitamins necessary for the rabbit. Rabbit cecotrophes 

are rich in protein (half of bacterial origin and half of imperfectly broken-down feed 

particles and intestinal secretions) and water-soluble vitamins B and C. As opposed 

to the hard feces that are excreted, the cecotrophes are ingested back by the rabbit 

directly after being expelled through the anus. Then, these soft pellets stay in the 

stomach for 4-6 h, where their envelope structure is broken, and follow the same 

digestive process as normal feed.  

 

The rabbit GIT is not only involved in nutrient digestion but protects against 

pathogens. After birth, it experiences a gradual maturation influenced by ontogenic 

factors (i.e., related to the age and the growth of the individual), diet, and interactions 

between microorganisms. The final anatomy of the GIT is stabilized at nine weeks 

of age, except the cecal appendix that does not finish its maturation until eleven 

weeks. The composition of the rabbit GIT mucosa is shown in Figure 1.10. The 

morphology of the intestinal epithelium experiences deep changes during the weeks 

after birth. The intestinal villa, which were thin and lengthened, become broader (Yu 

and Chiou, 1997), and the crypts deepened. The maturation of the intestinal mucosa 

follows a proximo-distal gradient (Toofanian and Targowski, 1982) and does not 
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complete until day 20 of age. Ridges begin to emerge in the walls of cecal and colon 

mucosa from day 16 of age (Yu and Chiou, 1997), together with the establishment 

of intestinal microbiota. 

 

 

Figure 1.10| Composition of the rabbit gastrointestinal mucosa, including the digestive epithelium (enterocytes, 
Goblet cells and Paneth cells) and the gut-associated lymphoid tissue (Fortun-Lamothe and Gidenne, 2006). 

 

As mentioned in previous paragraphs, nutrient digestion takes place in the stomach 

and small intestine under the action of enzymes secreted by the rabbit, but also of 

bacterial enzymes that hydrolyze those nutrients escaping the intestinal absorption. 

While the development of the rabbit enzymatic system depends mainly on ontogenic 

factors (Gallois et al., 2005), the development of the bacterial enzymatic activity 

depends mainly on the nutrients arriving the cecum and diet digestibility (Gidenne 

and Fortun-Lamothe, 2002). Nutrient degradation by microorganisms in the cecum 

results in the production of volatile fatty acids (VFA), ammonia, carbon dioxide, 

methane, and hydrogen. The cecal fibrolytic activity is not detectable in young 

rabbits until they reach two weeks of age. Bellier et al. (1995) demonstrated that the 

fermentation pattern changes with age by decreasing ammonia concentration (and 

the pH as a result) and increasing VFA (Gidenne and Fortun-Lamothe, 2002). 
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At the same time that the maturation of the digestive function takes place, the 

digestive immune system develops to ensure the defense of the host gut mucosa 

against pathogens. However, gut mucosa also has non-immunological mechanisms 

(e.g., peristalsis, permanent renewal of digestive epithelium, bacteriolytic and 

bacteriostatic capacity of mucus). The immune system is activated when these 

mechanisms cannot eliminate the pathogenic agent. The digestive mucosa is 

associated with the gut-associated lymphoid tissue (GALT) that neutralizes 

pathogens and protects mucosa by controlling the inflammatory response. The 

rabbit lymphoid system is similar to that of other mammals except because it 

possesses the sacculus rotundus, an additional structure located at the ileocecal 

junction (Mage, 1998).  

 

Another very important function of the GIT is its role in the immune response. The 

innate primary immune response occurs along the GIT and is the first line of 

defense, while the adaptive immune response acts against a specific foreign 

element in the GIT. The latter is played by the induction sites that identify the agent 

and activate the cell reaction against antigens, and the effector sites that eliminate 

the foreign agent (Drouet-Viard and Fortun-Lamothe, 2002). In the rabbit, the 

induction sites are plenty of lymphoid organized in ten Peyers’ patches along the 

small intestine (Mage, 1998) that are composed of many dome-follicles that extend 

into the lumen (Figure 1.10). The dome-follicles contain B cells producing IgM, 

macrophages, and CD4-T cells (Ermak et al., 1994), and the interfollicular regions 

contain T cells (Hein, 1999). The antibody repertoire of the rabbit is generated in 

three stages (Knight and Crane, 1994). Before three weeks of age, the neonatal 

antibody repertoire is established by B cells generated during B lymphopoiesis. 

Between four and eight weeks of age, the primary antibody repertoire develops in 

the GALT and provides the unique reservoir of B cells for the whole life of the rabbit. 

After that, this repertoire is modified during antigen-specific immune responses 

during adulthood, thus generating the secondary repertoire under the influence of 

GIT microbiota. 

 

The previous anatomical description has introduced the regions hosting the 

microbial populations inhabiting the GIT. In this respect, the rabbit GIT microbiota 
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consists of about 100 to 1000 billion microorganisms per gram of digesta (Savage, 

1987) and harbors a complex and diverse community. In rabbits, an abundant 

microbiota (1010 to 1012 bacteria / g) is present throughout the cecum-colon and in 

hard and soft feces and has also been studied in the ileum where its abundance 

(106 to 108 bacteria / g) is lower (Combes et al., 2012). Despite the demonstrated 

existence of active microbial populations in proximal and distal segments of rabbit 

GIT, the cecum is the main fermenter organ. Thus, it is not surprising that it hosts 

the richest and the most diverse microbial community of its GIT (Gouet and Fonty, 

1979). Kingdom Bacteria dominate the rabbit GIT (Gouet and Fonty, 1979; Forsythe 

and Parker, 1985), while the archaeal population is estimated at 107 archaea per g 

of content (Combes et al., 2011). Regarding eukaryotes, the rabbit GIT seems to 

lack anaerobic fungi and protozoa (Bennegadi et al., 2003), except in animals 

affected by coccidiosis (Lelkes and Chang, 1987). 

 

According to the first studies that aimed at characterizing the taxonomic composition 

of microbial communities inhabiting the growing rabbit intestinal microbiota using 

16S rRNA, most of the bacteria belong to phylum Firmicutes (90%) and only 4% of 

the species to phylum Bacteroidetes, followed by phyla Actinobacteria and 

Proteobacteria (Abecia et al., 2005; Monteils et al., 2008; Massip et al., 2012). 

Within phylum Firmicutes, Clostridia is the predominant class, and the principal 

families are Ruminococcaceae and Lachnospiraceae (Massip et al., 2012; Zou et 

al., 2016). According to Zou et al. (2016), the most abundant genera in rabbit cecum 

are Ruminococcus, Oscillospira, Coprococcus, and Bacteroides. 

 

Despite the bacteria predominance, an archaeal population dominated by genus 

Methanobrevibacter (Kušar and Avguštin, 2010) also inhabits the rabbit cecum (107 

archaea / g). A particular interest linked to environmental impact has been focused 

in recent years on the strictly anaerobic methanogenic Archaea residing in the GIT. 

These species are integrated at the end of the food chain and allow the elimination 

of hydrogen from fermentation to provide methane (Jones et al., 1987), which is a 

greenhouse gas that represents a loss of 7% of the energy and carbon ingested by 

the animal (Boadi et al., 2004).  
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One of the principal objectives of the present thesis has been the characterization 

of the microbial composition of hard feces and cecum content of growing meat 

rabbits (see Chapter three). Although rabbit microbiota is very homogenous 

between adult individuals (Combes et al., 2011), external factors can disturb this 

stability and modify the overall microbial diversity or the relative abundances of 

specific taxa. The potential effect on GIT microbial communities of external factors 

will be discussed in the following sub-section. 

 

1.4.3. External factors shaping microbial diversity and composition 

An overview of biological intrinsic (i.e., those related to the host) and environmental 

factors potentially influencing rabbit microbiota described in the literature is shown 

in Figure 1.11.  

 

 

Figure 1.11| Host (solid lines) and external (dashed lines) factors that affect the rabbit gut microbiota. 



 
Chapter 1: General introduction 

75 

Jiménez et al. (2008) demonstrated that mammals’ GIT is not completely sterile in 

utero. Nonetheless, it is considered that microbial colonization starts at birth when 

the individual passes through the birth canal and enters in contact with the 

immediate environment (Berg, 1996). From this moment on, an organized 

colonization is produced by the introduction of ecological succession of species. 

This gradual establishment of an increasingly diverse community reaches its climax 

at 70 days of age (Combes et al., 2011). During the first weeks of the rabbit life, its 

cecal microbiota is composed of the same proportions of strict anaerobes and 

facultative anaerobes microorganisms. But later, the abundance of the latter falls 

and disappears in some individuals after weaning (Gouet and Fonty, 1979). A recent 

study investigated the dynamic distribution of gut microbiota in commercial meat 

rabbits from weaning to finishing (28-72 days of age) through 16S rRNA gene 

sequencing (Fang et al., 2020a). This study observed significant differences in gut 

microbial structure and increased microbial richness and diversity with age. These 

findings are in complete agreement with those of Combes et al. (2011) outlined 

above. 

 

The genetic background of the host has been recognized as a factor that could 

influence GIT microbial composition in humans (Benson et al., 2010), mice (Org et 

al., 2015), chickens (Schokker et al., 2015), or pigs (Xiao et al., 2017). In meat 

rabbits, few studies have investigated the effects of host breed on the GIT 

microbiota. Recently research by Ye et al. (2021) evaluated whether breed factors 

could alter the gut microbial community structure by comparing two commercial 

meat rabbit breeds. These authors found that host breeds exerted a greater effect 

on gut microbial diversity structure than age. Different breeds or lines of the same 

animal species could have their own GIT microbial composition originated by 

differences in intestinal physiology and immune system development. The role of 

the host’s genetic on GIT microbiota will be further discussed in the following sub-

section since the main objective of the present thesis is to study this relationship. 

 

Cecotrophy is a particular behavior of rabbits and an important intrinsic factor 

affecting cecal microbiota. As previously explained, rabbits produce two types of 

excrements: soft feces covered with a layer of mucus (i.e., cecotrophes) and hard 
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feces. The fecal pellets left by the doe are eaten by the kits during nursing, being 

one of the first reservoirs for colonization of their GIT (Moncombe et al., 2004). Thus, 

this cecotrophagic behavior has an essential contribution to the early implantation 

of the microbiota in offspring (Combes et al., 2012). The impairment of this behavior 

reduced growth, altered lipid metabolism (Wang et al., 2019), and delayed the 

implantation of Bacteroides (Kovács et al., 2006). Combes et al. (2014) confirmed 

that preventing kits from ingesting doe’s feces delayed the microbial ecological 

succession, especially of families Bacteroidaceae and Ruminococcaceae. 

 

The rabbit GIT regions consist of the stomach, duodenum, jejunum, ileum, caecum, 

and colon. These regions have different functions that impact the dynamics of the 

harboring microbial communities, so it should be considered when choosing the 

sampling protocol. Given that cecum is the principal site for bacterial fermentation 

of indigestible dietary fibers and the production of VFA in rabbits, it is not surprising 

that most of the microbiome studies focused on characterizing rabbit cecal and fecal 

microbial communities (Monteils et al., 2008; Kušar and Avguštin, 2010; Zeng et al., 

2015). Indeed, this has been one of the main objectives of the present thesis (see 

Chapter three). There is evidence that fecal samples are pretty similar regarding the 

large intestine microbiota, but their adequacy for other GIT regions is doubtful (Fang 

et al., 2019). Cotozzolo et al. (2020) characterized the microbial composition and 

diversity across the GIT in New Zealand White rabbits. In this study, four clusters 

were identified: stomach, small intestine (duodenum and jejunum), ileum, and large 

intestine (cecum and colon). The differences in the microbial composition across the 

GIT could be explained by the anatomy, the environmental conditions (pH 1.5-2 in 

the stomach and 7.5 and 6.5 in the small and large intestine, respectively), and the 

different physiological functions in the digestion of feed. These existing differences 

across sections of the rabbit GIT suggest different requirements for the types of 

microbial communities that need to be present in each part. Cotozzolo et al. (2020) 

reported an increased microbial diversity towards the foregut and the large intestine. 

The cecum showed the highest microbial complexity and is mainly colonized by 

anaerobic microorganisms, which is linked to cecotrophy and its fermentative 

function. Thus, the rabbit GIT is composed of four microbial niches characterized by 

different physicochemical conditions that force the adaptation of microorganisms 
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suggesting a co-evolution of microbiota and the GIT of the host. Consequently, to 

avoid misinterpretation of results comparisons between different groups or studies, 

the section from which the intestinal samples are collected must be taken into 

account. 

 

The health status of the animal is another intrinsic factor that clearly influences the 

composition and diversity of microbial communities inhabiting the GIT. ERE, a 

severe disease of unknown etiology that mainly affects post-weaning animals, is a 

good illustration of this in rabbits. Given the severity of this disease, large efforts 

have been made to unravel its etiology, and bacterial involvement is now accepted 

since antibiotic treatments are effective in ERE prevention (Licois et al., 2005). 

Nevertheless, although clostridial species and coliforms are frequently present in 

sick animals, the specific microorganisms involved in its onset have not been 

identified (Lelkes and Chang, 1987; Huybens et al., 2009). Bäuerl et al. (2014) 

compared the cecal microbiota of healthy rabbits and rabbits affected by ERE. This 

study revealed that a remarkable dysbiosis accompanied by a reduced microbial 

diversity was the most relevant feature of ERE rabbits cecal microbiota. It is, 

however, noteworthy that dysbiosis may not be the cause of ERE but rather a 

consequence of the disease. While cecal microbiota of healthy animals contains 

high proportions of Ruminococcus, ERE rabbits cecal microbiota is rich in 

opportunistic and pathogen bacteria such as Akkermansia muciniphila, Clostridium, 

Lysinibacillus, Bacteroides, or Escherichia species (Bäuerl et al., 2014). A more 

recent study that examined the microbial variations caused by ERE in the stomach, 

small intestine, and cecum confirmed the reduced microbial richness in affected 

animals accompanied by a decrease in the abundances of phylum Firmicutes and 

an increase of phylum Proteobacteria in the stomach and cecum, and also of phyla 

Bacteroidetes and Verrucomicrobia in the small intestine (Jin et al., 2018). Hence, 

opportunistic pathogens are often found in the cecal microbiota of affected animals, 

although it may not be the origin of ERE or other diseases but notably contribute to 

dysbiosis. 
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On the other hand, a growing number of studies have analyzed the impact of 

different environmental factors on rabbit GIT microbiota. Nutrition is one of the most 

studied since food is a key factor affecting the balance of GIT microbial communities 

since it conditions their supply of nutrients and energy. In rabbits, the transition to 

solid food is gradual while the proportion of doe’s milk ingested decreases. Weaning 

has beneficial effects on the maturation of the cecum and colon: increase of the 

organs (Gallois et al., 2005), fermentation activity stimulation (Kovács et al., 2012), 

and maturation of GALT (Carabaño et al., 2010). By contrast, the development of 

cecum is slower when rabbits are prevented from eating solid food (Combes et al., 

2008), and the colonization by cellulolytic bacteria is delayed (Padilha et al., 1999). 

Read et al. (2019) observed a large shift in the structure and composition of cecal 

microbial communities at weaning mainly characterized by an increase in diversity 

and a decline of facultative anaerobes. However, consistent interactions between 

different species do not occur until the solid feed intake is well established. 

Moreover, the alteration of the microbiota at the onset of solid food ingestion is 

associated with a major shift in the production of bacterial metabolites, especially 

butyrate, coinciding with the transcriptomic regulation of key components of both, 

the immune and physical gut barrier (Beaumont et al., 2020). 

 

A few weeks after weaning, when microbial communities inhabiting the rabbit GIT 

are stable, the dietary composition can still alter this microbial fitness. A glaring 

example of this is the fiber-deficient diets that lead to changes in the microbial 

composition and alterations in the fermentation profile (Michelland et al., 2011), 

which often results in a higher incidence of enteropathy (Gidenne et al., 2004). On 

the other hand, the administration of dehydrated alfalfa could improve the health 

status by favoring an appropriate digestive microbiota (Mattioli et al., 2019). 

Moreover, the alfalfa particle size affects methane production. A finer particle size 

favors the growth of the methane-producer genus Methanobrevibacter and the 

growth performance of rabbits (Liu et al., 2018). Besides, the protein concentration 

of the food has an important effect on rabbit GIT health (Carabaño et al., 2009). 

Nutritional studies have shown that a reduction of protein content (Chamorro et al., 

2007) and arginine supplementation (Chamorro et al., 2010) reduced mortality and 

the abundance of Helicobacter and Clostridium species. 
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The use of diets supplemented with antibiotics has generated substantial 

controversy in recent years because of the risks associated with the presence of 

residues in animal products. On one hand, the presence of antibiotics in the animal 

GIT could select resistant bacteria, which could be transferred to other animals or 

even humans (Barton, 2000). On the other hand, the administration of antibiotics 

before eight weeks of age may alter the rabbit GIT and the normal development of 

its immune system. As different studies reported, the effect of antibiotics on rabbit 

microbiota depends on the molecule used. The administration of bacitracin reduced 

the fermentation activity of the lactating female (Abecia et al., 2007), while the 

administration of apramycin and tylosin reduced mortality of rabbits after weaning, 

but also their microbial diversity (Chamorro et al., 2007). The administration of 

deoxynivalenol also reduced the microbial diversity of ileum, cecum, and colon in 

weaned rabbits (Wang et al., 2020). 

 

As it has been already indicated, feed restriction is an effective way to protect the 

rabbit against enteropathy as an alternative to antibiotics. Other non-drug options 

include the use of prebiotics and/or probiotics. A prebiotic is a non-digestible food 

ingredient that positively affects the host by selectively stimulating the growth and/or 

activity of one or a limited number of intestinal bacteria (Gibson and Roberfroid, 

1995). Most prebiotics are short-chain carbohydrates that cannot be hydrolyzed in 

the small intestine. Prebiotics are a fermentable substrate that led to the production 

of lactic acid and VFA by different modes of action: i) stimulating the growth of 

beneficial bacteria for the host, ii) masking the binding sites of pathogens to the 

mucosa, or iii) binding to pathogens (Combes et al., 2012). Studies assessing the 

influence of prebiotics in rabbits often show contradictory results for the same 

prebiotics (Falcão-e-Cunha et al., 2007).  

 

The Food and Agriculture Organization of the United Nations defines a probiotic as 

a living microorganism that, when administered in adequate amounts, confers a 

health benefit on the host. The effect of probiotics on rabbit microbiota depends on 

the microorganism strains used and their capacity to maintain their metabolic activity 

in the GIT (Fonty and Gouet, 1989). The administration of Lactobacillus acidophilus 

(Amber et al., 2004) and Clostridium butyricum (Liu et al., 2019) increases the 
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abundance of cellulolytic bacteria. Dietary supplementation with Bacillus subtilis 

may improve rabbit growth, intestinal homeostasis, and strength innate immune 

response by enhancing the expression of β-defensin (Guo et al., 2017). 

 

Finally, extreme housing hygiene conditions are suspected to be a risk factor for 

animal health (Madec et al., 1998) due to a delayed exposure to microorganisms 

(Bailey, 2010). Studies conducted in pigs have revealed that high hygiene 

environments have a negative effect on the normal succession of the GIT microbiota 

and immune system (Mulder et al., 2011; Inman et al., 2010; Le Floc’h et al., 2014). 

Conversely, low hygiene conditions failed to induce an inflammatory response in 

rabbits and affected their cecal microbiota, particularly genera belonging to family 

Ruminococcaceae (Combes et al., 2017). In spite of this, keeping a certain degree 

of cleanness in the barns is mandatory to keep a high biosecurity level (Kylie et al., 

2017). 

 

Chapter four explores the effect of the production environment and different 

management practices on the cecal microbiota of growing rabbits. 

 

1.4.4. Genetic determinism of gastrointestinal microbiota 

Heritability is the extent to which the total phenotypic variation for a trait is 

attributable to genetic rather than environmental factors. A fundamental question is 

how strongly the microbiota is genetically inherited as opposed to being shaped by 

the environment. In the previous sub-section, the large role played by environmental 

factors on GIT microbial composition and diversity has been proved. However, the 

role of host genetics is still a source of debate since several studies have reported 

evidence of a certain effect of host genetics on the observed variation of the humans 

and mice microbiomes. Other studies, however, did not report such host genetic 

effects on the variation of the microbiomes (Turnbaugh et al., 2009; Yatsunenko et 

al., 2012). However, it is worth mentioning the low sample sizes of these studies 

and the fact that they considered broad microbial measures instead of individual 

taxa. 
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More recent studies have attempted to estimate the heritability for microbiomes of 

different species and in different sampling regions of the GIT using different 

methods. Goodrich et al. (2014) estimated heritabilities for individual taxa using fecal 

samples from more than 400 pairs of monozygotic and dizygotic human twins, 

demonstrating that the overall microbial composition was more similar between 

monozygotic twins than dizygotic twins. Moreover, many taxa mainly belonging to 

phylum Firmicutes were heritable. Another study conducted in the Hutterites, which 

are a human religious population that lives in North America and eats communally, 

identified 15 heritable taxa mainly encompassed by phyla Firmicutes and 

Proteobacteria (Davenport et al., 2015). Most of these taxa were common to those 

reported as heritable in the twins study previously conducted by Goodrich et al. 

(2014), demonstrating that certain taxa are consistently heritable irrespective of 

cultural and environmental differences between human populations (Davenport, 

2016). A more recent re-analysis of the twins study with a larger number of 

individuals reported average heritabilities for bacterial taxa ranging between 0.02 

and 0.08 (Rothschild et al., 2018). These results suggest that although certain taxa 

would be under host genetic control, the overall microbiota heritability is relatively 

low. 

 

Some studies have also attempted to estimate the microbiota heritability in livestock. 

In dairy cattle, Sasson et al. (2017) suggested that certain taxa inhabiting the rumen 

would be highly heritable. Further, Roehe et al. (2016) reported that the archaeal 

abundance in ruminal digesta would also be under host genetic control. 

Nevertheless, Difford et al. (2018) indicated that host genetics influencing the rumen 

microbiota and methane emission would be independent of each other, so breeding 

for low methane emitting cows is unlikely to result in unfavorable changes in the 

rumen microbiome. In pigs, few studies have reported heritabilities for different 

microbial taxa with estimates ranging from low to moderate (Camarinha‐Silva et al., 

2017; Yang et al., 2016), suggesting a partial genetic control of the microbial 

populations inhabiting the pig gut. A more recent study attempted to summarize the 

overall microbial composition of individuals through alpha-diversity indexes (Lu et 

al., 2018). This study reported moderate heritability estimates for alpha diversity 

(0.10-0.40). In rabbits, the influence of host genetics on microbial diversity and 
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specific microbial taxa remains unknown, so the present thesis has aimed at 

shedding light on this regard (see Chapter six).  

 

Once the heritability of a trait is reported, the genuine next step is to identify the 

genomic regions and candidate genes involved in the variation of the phenotype. In 

this regard, several GWAS studies have been conducted to identify host genetic 

variants associated with gut microbiota. The first GWAS with this aim were 

conducted in mice and identified several QTLs associated with the abundances of 

certain taxa present in the stool (Benson et al., 2010; Leamy et al., 2014; Org et al., 

2015). It is worth mentioning that genera for which these studies reported significant 

associations were taxa reported as heritable (e.g., members of phylum Firmicutes) 

by human gut microbiota studies (Goodrich et al., 2014; Davenport et al., 2015). In 

humans, the first microbial GWAS of the microbiota from 15 different body sites 

(Blekhman et al., 2015) reported associations with genes involved in immune and 

signaling functions. This suggests that cellular mechanisms, such as immune 

response and cell-to-cell signaling, may play a role in the heritability of gut 

microbiota. In pigs, Cheng et al. (2018) reported two QTL regions that could 

potentially control the abundance of particular taxa, while Crespo-Piazuelo et al. 

(2019) identified 17 genomic regions associated with the abundance of genera 

CF231, Phascolarctobacterium, Prevotella, Streptococcus, Akkermansia, and 

SMB53. 

 

In rabbits, no GWAS to identify the genomic regions involved in the host genetic 

control of gut microbiota has been reported in the literature to this day. The first 

microbial GWAS of the cecal rabbit microbiota is presented in this thesis (see 

Chapter seven) thanks to the current availability of an array commercialized by 

Affymetrix that contains almost 200,000 SNPs and an improved version of the 

OryCun2.0 reference assembly of the rabbit genome (Carneiro et al., 2014). 

Besides that, microbial GWAS are also being conducted at INRA using rabbits from 

a factorial design aiming at disentangling the maternal transmission of gut 

microbiota from the direct genetic effect of the animal in a cross-fostering trial 

between and within rabbit lines selected or not for FE. 
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1.4.5. Relationship between microbiota and feed efficiency 

The existing link between GIT microbiota and complex phenotypes, principally 

related to health, has a rich body of literature in humans (Cho and Blaser, 2012; 

Clemente et al., 2012; Henry et al., 2021). In the field of livestock production, a 

growing number of studies have hypothesized that the GIT microbiota could be 

associated with growth, complex traits related to FE, immunocompetence, or 

methane, nitrogen, and phosphorous emissions. 

 

In ruminants, recent findings have emphasized the association of the composition 

and function of the rumen microbiome with traits of economic interest such as 

methane emission and FE. Methane is an outstanding greenhouse gut associated 

with ruminant production involved in global warming (Wallace et al., 2017). Besides 

its negative environmental impact, methanogenesis implies a loss of 2-12% of 

dietary energy responsible for a reduction of the host FE (Johnson and Johnson, 

1995). Given the close link between methanogenesis and cattle rumen, research on 

their microbial communities has been conducted for the last years to improve cattle 

FE and reduce environmental impact (Myer et al., 2015). One can imagine that the 

rumen microbiome may have an important role in FE since rumen microorganisms 

actively participate in the conversion of feed into energy. In fact, recent studies in 

dairy and beef cattle reported lower rumen microbial diversity and richness in 

efficient animals (Shabat et al., 2016; Li and Guan, 2017). On the other hand, 

bacterial families Lachnospiraceae and Veillonellaceae (Li and Guan, 2017; Myer 

et al., 2015) and archaeal taxa like Methanomassiliicoccale and Methanobrevibacter 

(Carberry et al., 2014a; Carberry et al., 2014b) have been reported to be associated 

with FE. However, some inconsistencies have been reported between studies that 

may be due to the influence of dietary composition (Durunna et al., 2011). These 

inconsistencies suggest that the association between the rumen microbiota and host 

FE may be partially driven by diet. Nevertheless, other studies reported diet-

independent effects of the rumen microbiota on FE (Hernandez-Sanabria et al., 

2012; Ellison et al., 2017; Carberry et al., 2012). Thus, it could be hypothesized that 

core microorganisms would be associated with variation in FE irrespective of diet. 
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With regard to monogastric species, the main interest lies in growth and phenotypes 

related to FE. It is reasonable to suggest that GIT microbiota is likely to impact these 

traits. If it was the case, potential manipulation of microbiota to improve animal 

growth and FE could have economic and environmental benefits. In pigs, recent 

studies have investigated the early establishment of gut microbial communities 

(Mach et al., 2015) and identified enterotypes related to growth (Ramayo-Caldas et 

al., 2016). Moreover, Lu et al. (2018) reported an association between growth and 

specific microbial taxa as well as alpha-diversity. Despite, the challenges in 

identifying reliable associations, several studies reported an association of genera 

Treponema, Methanobrevibacter, and Lactobacillus with FE (Yang et al., 2016; 

Valeriano et al., 2017; Bergamaschi et al., 2020; McCormack et al., 2017; Quan et 

al., 2018). With regard to rabbits, recent studies reported associations of gut 

microbiota with growth (Zeng et al., 2015; Fang et al., 2020b) and FE (Drouilhet et 

al., 2016). 

 

In this context, some studies have gone one step further by exploring the 

contribution of microbiota to the phenotypic variation of complex traits. In this regard, 

Difford et al. (2018) introduced the concept of microbiability to account for the overall 

microbial composition as part of phenotypic variation. To model the microbial effect 

with a linear mixed model is necessary to define a microbial relationship matrix. 

Briefly, Difford et al. (2018) proposed a variance-covariance matrix as 𝐌 =
𝐗𝐗′

n
, 

where X is the matrix of the log-transformed microbial relative abundance for all 

animals and n is the number of taxa within the population. Thus, the predictions of 

individual effects would represent the overall microbial effect for each animal, and 

the ratio of variance explained by the microbial effect over the total phenotypic 

variance is the microbiability of the trait. It is nevertheless important to bear in mind 

that microbiability reflects an environmental component of the total phenotypic 

variation of a trait, so it does not have a genetic interpretation. Motivated by Difford 

et al. (2018), other studies have estimated microbiabilities for traits related to growth 

and FE traits in pigs (Camarinha-Silva et al., 2017) and Japanese quails (Vollmar et 

al., 2020). The microbiability estimates for growth and FE traits reported by these 

studies ranged from 0.09 to 0.28. 
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Furthermore, the microbiota can be seen as a potential source of information of 

animal performance. The literature on the power of microbial information to predict 

complex phenotypes in livestock is scarce and non-existent in rabbits. The role and 

the predictive value of rabbit cecal microbiota on growth and FE are discussed in 

Chapter five. 

 

1.4.6. Microbiome data peculiarities and analytics challenges 

It is undeniable that the possibility of analyzing the microbiome of diverse organisms 

and environments offered by NGS techniques has enhanced the understanding of 

the metabolic and physiological roles of microorganisms. Such advances have 

transformed the scientific capacity to investigate the composition and diversity of 

complex microbial communities that inhabit mammals GIT. It has resulted in a boom 

of studies, but the interpretation across studies is hindered by the lack of 

standardization in the laboratory protocols, bioinformatics, and statistical 

procedures followed by different research groups. This lack of a standardized 

analytical approach has led to concerns about reproducibility and reliable 

comparisons across studies. 

 

16S rRNA gene amplicon sequencing has been the technique most used to study 

complex microbiomes. This approach relies on PCR amplification, and it is 

necessary to consider that this step can introduce bias related to the pair of primers 

(Klindworth et al., 2013), target region (Woo et al., 2008; Yu et al., 2008), GC content 

(Aird et al., 2011; Benjamini and Speed, 2012), or the input DNA concentration 

(Rintala et al., 2017). Despite the enormous advancements in sequencing and 

computational analyses, many factors can origin biases and errors. This section 

shows an overview of experimental, sequencing, computational, and analytics 

challenges in the microbiome field. 

 

An appropriate study design could help to reduce confounding effects and to 

improve data processing. A rationalized study implies a sufficiently large sample 

size, the use of controls to identify real signals, and the generation of complete 

metadata containing details of all the samples used for the experiment (Martin et al., 
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2018). On the other hand, the handling of samples once collected is also important 

because it can become a confounding factor that might affect the results and 

interpretations of the study (Thomas et al., 2012). In this regard, it is very important 

to avoid external contaminations during sample collection using aseptic laboratory 

tools (Salter et al., 2014). It is crucial to freeze the sample immediately after its 

collection to preserve the quantity and quality of microbial DNA (Cuthbertson et al., 

2014) and maintain proper storage conditions (Choo et al., 2015; Tap et al., 2019). 

The choice of the method for DNA extraction is crucial to capture the largest number 

of different microorganisms. In this regard, mechanical lysis (i.e., bead beating) 

leads to better yields, so its application is recommendable before standard 

extraction (Albertsen et al., 2015). Amplicon-based NGS approaches rely on 

amplification with barcode primer pairs, purification, and generation of libraries 

before sequencing. Naturally, these steps are also potential sources of variation and 

bias. Furthermore, the different sequencers used for microbiome studies display 

different kinds of sequencing errors (Minoche et al., 2011) that, for instance, can 

lead to the underrepresentation or absence of some bacteria. The use of a positive 

control could help to prevent this issue. 

 

The bioinformatic pipeline employed to process the sequencing data can impact the 

characterization of microbial diversity and composition. There are no agreed 

standards for raw reads processing, and the default parameters of sequence 

analysis software often need to be tuned. One of the main sequencing challenges 

is to discriminate between sequencing errors from real sequences. Two principal 

methods are used for this purpose: operational taxonomic unit (OTU)-based tools 

such as QIIME or Mothur (Caporaso et al., 2010; Schloss et al., 2009), and amplicon 

sequence variant (ASV)-based tools such as DADA2 (Callahan et al., 2016). The 

first strategy resolves sequencing errors by clustering the reads based on a 

similarity threshold, commonly 97%, into OTUs (Westcott and Schloss, 2015), while 

the ASV-based method uses a denoising approach that exploits the predictable 

structure of certain error types to attempt to reassign or eliminate noisy reads 

(Tikhonov et al., 2015). A comparative study between both approaches pointed out 

that OTUs provide lower taxonomic resolution (Callahan et al., 2017). During the 

development of the present thesis, both strategies were applied to rabbit 
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microbiome data. The comparison of results obtained with both approaches showed 

that the OTU-based method worked better for this data, which might be due to high 

variability in the number of reads between samples. Another issue regarding the 

taxonomic assignment is the errors, including contaminants, contained in the 

reference sequence databases (Sheik et al., 2018). 

 

The particularities of microbiome data raise serious challenges for statistical 

analysis. For instance, the large inter-individual variability, heteroscedastic variation 

(i.e., variance increasing with mean abundance), and large biological and technical 

variations are often not properly approximated by classical Gaussian or log-normal 

models, requiring customized analytical approaches (Moreno-Indias et al., 2021). 

Microbiome data are skewed and sparse (i.e., only a few taxa are common to most 

samples, whereas the rest of taxa are rare, and zeros dominate all other values). 

But there is an additional challenge to distinguish whether these zeros are structural 

(i.e., the microorganism is absent in most samples) or sampling (i.e., the 

microorganism is present, but the sequencing depth is insufficient to detect it). In 

many cases, zero inflation can entail biased estimates for some available statistical 

methods and modeling approaches. Appropriate modeling of high proportions of 

zeros is an active area of research since it plays an important role concerning 

sensitivity, specificity, and accuracy of differential abundance analysis depending 

on normalization and statistical methods (Pan, 2021). 

 

A critical issue inherent to microbiome data is that sequencing read depths are not 

uniform across samples due to the experimental and sequencing factors above 

mentioned (Nayfach and Pollard, 2016). In order to be able to conduct meaningful 

comparisons across samples and studies, accounting for such sequencing 

differences through a proper normalization is essential (Badri et al., 2020). Hence, 

the purpose of the normalization is to correct for sampling bias and library size 

variability. Total sum scaling (TSS) is a user-friendly normalization for count data 

consisting of dividing each read count by the total number of reads, transforming the 

counts into proportions. The problem is that this transformation produces relative 

abundances that are compositional and, thus, subsequent statistical analysis can 

lead to spurious results and interpretations (Silverman et al., 2017). Another widely 
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used normalization strategy is rarefaction that consists of a random subsampling so 

that all samples have the same number of reads (Hughes and Hellmann, 2005). The 

main problem of this approximation is the loss of valid information due to the need 

to discard valid reads to standardize the library to a constant size across samples 

(McMurdie and Holmes, 2014). In this case, although the records are numerical 

counts, all sum up to a defined constant. Thus, rarefaction does not solve the 

compositional problem either. On the other hand, cumulative sum scaling (CSS) is 

a normalization method based on the division of raw counts by the cumulative sum 

of counts up to a given percentile determined by a data-driven approach (Paulson 

et al., 2013). CSS was designed specifically for microbiome sequencing data. 

However, the determination of the percentiles can fail due to the high-count 

variability, so normalization techniques that are robust to sparsity need to be 

explored.  

 

Other transformations like the centered log-ratio (CLR) seem to be more appropriate 

to deal with compositional data (Aitchison, 1982). However, the large sparsity of 

microbiome data prevents the log transformation of zero denominators. A trick to 

perform log transformation is to replace the zeros by an arbitrary pseudo-count (i.e., 

a small value), but this means assuming that all zeros are caused by undersampling 

(McMurdie and Holmes, 2014). Moreover, the choice of the pseudo-count is not 

based on any rigorous statistical foundation, and several studies have shown that 

this strategy introduces substantial biases and that different pseudo-counts can 

generate very different results (Silverman et al., 2020; Costea et al., 2014). Another 

issue related to these transformations is that the interpretation of the results could 

be difficult if they must be linked to the original scales. 

 

In summary, recent advances in sequencing technologies to explore microbiome 

data have motivated the development of new methods, algorithms, and 

computational tools. Nevertheless, the complexities inherent to microbiome data 

together with the lack of standardized experimental, sequencing, and analytical 

approaches hampers the interpretation and comparison between results from 

different studies. There is an imperative need for comprehensive discussion among 

the scientific community to standardize sample collection, storage, processing, 
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sequencing, and data analyses protocols. The statistical treatment of microbiome 

data throughout the whole thesis has intended to be as rigorous as possible. 
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1.6. List of abbreviations 

ADF  acid detergent fiber 

ADFI  individual average daily feed intake 

ADG  average daily gain 

ADGAL average daily gain recorded in animals fed ad libitum 

ADGR  average daily gain recorded in animals fed under restriction 

ASV  amplicon sequence variant 

BLAST basic local alignment search tool 

bp  base pair 

CSS  cumulative sum scaling 

CLR  centered log-ratio 

DE  digestible energy 

DGGE denaturing-gradient gel electrophoresis 

ERE  epizootic rabbit enteropathy 

FCR  feed conversion ratio 

FE  feed efficiency 

FI  feed intake 

FISH  fluorescence in situ hybridization 

GALT  gut-associated lymphoid tissue 

GIT  gastrointestinal tract 

GWAS genome-wide association study 

HPLC  high-performance liquid chromatography 

NGS  next-generation sequencing 

OTU  operational taxonomic unit 

qPCR  quantitative polymerase chain reaction 

QTL  quantitative trait locus 

RFI  residual feed intake 

SNP  single nucleotide polymorphism 

T-RFLP  terminal restriction fragment length polymorphism 

TSS  total sum scaling 

VFA  volatile fatty acids 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 



 
Chapter 2: Objectives 

121 

The main objective of this PhD thesis was to generate knowledge about the 

influence of meat rabbit cecal microbiota on the host’s feed efficiency and unravel 

the environmental and genetic bases of composition and diversity of microbial 

communities inhabiting the rabbit cecum. The specific aims were: 

 

I. To characterize and compare the microbial diversity and composition of 

hard feces and cecum content of individuals from a paternal rabbit line fed 

with different intake levels. 

 

II. To describe the influence of environmental factors (i.e., breeding farm, 

level of feeding, and administration of antibiotics) on diversity and 

composition of rabbit cecal microbial communities. 

 

III. To gain insight into the role of rabbit cecal microbiota on complex 

phenotypes of economic interest and to assess its value to predict cage 

feed efficiency and individual growth performances.  

 

IV. To evaluate the influence of genetic, litter, and cage effects on different 

microbial traits representing rabbit cecal microbiota at different levels of 

depth using Bayesian linear and zero-inflated Poisson mixed models. 

 

V. To identify the host genomic regions involved in the control of rabbit cecal 

microbial composition and diversity. 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Explanatory note 

 

This article is somehow related to the Master’s thesis “Caracterización del 

microbioma digestivo de una línea de conejo sometida a dos tratamientos 

alimentarios diferentes” developed by María Velasco Galilea during 2016 

(http://hdl.handle.net/10251/74486) since the main objective of both was the 

characterization of the microbial communities of the rabbit cecum and feces. 

 

There are, however, clear and important differences between them. In the Master's 

thesis, differences regarding the animals categorized by the combination of sample 

origin (i.e., feces or cecum) and feeding regime were studied through alpha-diversity 

indexes and principal coordinate analysis. Thus, a preliminary study of the effect of 

the level of feeding and the origin of the samples on the rabbit microbiota was 

conducted. Moreover, the work developed during the Master's thesis was useful to 

fine-tune the MiSeq technology and a bioinformatics pipeline for sequence 

processing. 

 

In the article presented in this chapter, the bioinformatics pipeline tuned during the 

Master's thesis was used to characterize the microbiota of feces and cecum from 

21 rabbits, but the statistics and methodology behind this study are very different. 

On one hand, paired analyses of variance (i.e., to account for the paired structure 

of the data given two types of samples were collected from each individual) with 

bootstrap were conducted at different taxonomic levels to detect differences in 

taxonomic compositions between sample origins. 

 

On the other hand, different multivariate techniques (PCA, PCoA, and sPLS-DA) 

were explored to assess the existence of differences between cecal and fecal 

microbial communities as a whole, taking into account the dependency between 

taxa. 
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3.1. Abstract 

To gain insight into the importance of carefully selecting the sampling area for 

intestinal microbiota studies, cecal and fecal microbial communities of Caldes meat 

rabbit were characterized. The animals involved in the study were divided in two 

groups according to the feed intake level they received during the fattening period; 

ad libitum (n = 10) or restricted to 75% of ad libitum intake (n = 11). Cecum and 

internal hard feces were sampled from sacrificed animals. Assessment of bacterial 

and archaeal populations was performed by means of Illumina sequencing of 16S 

rRNA gene amplicons in a MiSeq platform.  A total of 596 OTUs were detected using 

QIIME software. Taxonomic assignment revealed that microbial diversity was 

dominated by phyla Firmicutes (76.42%), Tenericutes (7.83%) and Bacteroidetes 

(7.42%); kingdom Archaea was presented at low percentage (0.61‰). No significant 

differences were detected between sampling origins in microbial diversity or 

richness assessed using two alpha-diversity indexes: Shannon and the observed 

number of OTUs. However, the analysis of variance at genus level revealed a higher 

presence of genera Clostridium, Anaerofustis, Blautia, Akkermansia, rc4-4 and 

Bacteroides in cecal samples. By contrast, genera Oscillospira and Coprococcus 

were found to be overrepresented in feces, suggesting that bacterial species of 

these genera would act as fermenters at the end of feed digestion process. At the 

lowest taxonomic level, 83 and 97 OTUs in feces and cecum, respectively, were 

differentially represented. Multivariate statistical assessment revealed that sparse 

partial least squares discriminant analysis (sPLS-DA) was the best approach for this 

purpose. Interestingly, the majority of the most discriminative OTUs selected by 

sPLS-DA were found to be differentially represented between sampling origins in 

univariate analysis. Our study provides evidence that the choice of intestinal 

sampling area is relevant due to important differences in some taxa’s relative 

abundance that have been revealed between rabbits’ cecal and fecal microbiota. An 

appropriate sampling intestinal area should be chosen in each microbiota 

assessment. 

 

Keywords: gut microbiota, fecal microbiota, cecal microbiota, feed restriction, meat 

rabbit, paired analysis, multivariate approaches, 16S Illumina sequencing. 
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3.2. Introduction 

Microbial populations that inhabit animals’ gastrointestinal tract constitute their 

microbiota: a complex ecosystem, able to autoregulate its own homeostasis. It is 

well known that a mammal’s intestinal microbiome plays a very important role in 

metabolic, nutritional, physiological and immunological processes (Flint et al., 2012) 

but also in farm animal’s productivity (Heinrichs and Lesmeister, 2005; Drouilhet et 

al., 2016). A symbiotic relationship is therefore established between the host and its 

intestinal microbiota. The emergence of next generation sequencing (NGS) 

techniques together with an increasing reliability of reference taxonomic databases 

such as SILVA (Yilmaz et al., 2013), RDP (Wang et al., 2007) or Greengenes 

(McDonald et al., 2012) have allowed a deeper knowledge of the influence that 

intestinal microbiome exerts on host animals. 

 

In the case of the rabbit, the physicochemical properties of its gastrointestinal tract 

(near neutral pH, high humidity and stable temperature around 35-40 ºC) promote 

the rapid growth of mutualistic microbiota while the animal gets the bacterial 

fermentation end-products of some materials that cannot be degraded by the host 

on its own (Mackie, 2002). In these conditions, rabbit intestinal microbiota contains 

100-1000 billions of microorganisms per gram covering over 1000 different species, 

predominating kingdom Bacteria over archaeal populations (Combes et al., 2011). 

Despite the demonstrated existence of active microbial populations in proximal and 

distal segments of rabbit gastrointestinal tract (Gouet and Fonty, 1979), cecum is 

the main fermenter organ. For this reason, most studies that aimed to study rabbit’s 

intestinal microbiota have been focused on the characterization of cecal microbial 

communities (Abecia et al., 2005; Bäuerl et al., 2014; Kušar and Avguštin 2010). 

Cecal microbiota of rabbit and other lagomorph species is dominated by phylum 

Firmicutes while cecal microbiota of rodents, a relatively close mammalian order, is 

dominated by phylum Bacteroidetes (Li et al., 2017).  

 

In other monogastric livestock species, such as chicken and pig, previous studies 

have characterized the differences between their cecal and fecal microbiotas 

(Oakley and Kogut, 2016; Fang et al., 2017; He et al., 2016). Crowley et al. (2017) 
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compared the microbial composition from different organs of the digestive tract 

(stomach, jejunum, cecum, appendicular cecum, proximal colon, distal colon and 

rectum) in wild rabbits and they found that the different physicochemical properties 

of each compartment restrict or promote the growth of specific microbial 

populations. However, little is known about the differences in the composition of the 

microbial communities that inhabit the domesticated rabbit cecum and feces.  

 

The objective of this study was to characterize and compare the microbial 

communities of hard feces and cecum content collected from two groups of animals 

from a meat rabbit line fed with different intake levels. Our results will help establish 

whether feces could be considered a proxy indicator to assess composition and 

diversity of intestinal microbiota. This will be particularly important for those studies 

that require a monitoring of the microbiota over time in order to avoid the 

manipulation of the animal’s gastrointestinal tract that could alter its microbial 

composition.  

 

3.3. Materials and Methods 

3.3.1. Experimental design and sampling 

The sampling materials from animals used in this work came from an experiment 

conducted at the Institute for Food and Agriculture Research and Technology (IRTA) 

between July 2012 and July 2014. This experiment was developed to estimate the 

effect of the interaction between the genotype and the feeding regime on growth, 

feed efficiency, carcass characteristics and health status of the animals. Towards 

this aim, 7,864 animals from Caldes line (Gómez et al., 2002), selected since the 

1980’s to increase the average daily gain during the fattening period (32-66 days of 

age), were controlled since weaning. Animals were housed in 969 collective cages, 

with a surface of 0.38 m2, containing eight rabbits each one. All animals in this 

experiment were bred under the same management conditions and fed with the 

same standard pellet diet supplemented with antibiotics (oxytetracycline, valnemulin 

and colistin), except during the last fattening week, when an antibiotic free food was 

provided. During the 5 weeks that the fattening period lasted, food was supplied 
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once per day in a feeder with three places. Details of food composition can be found 

in Table 3.1. Water was also provided ad libitum during the whole fattening period. 

 

Table 3.1| Feed composition on a wet basis. 

Component Amount 

Crude fiber (%) 18.70 

Crude protein (%) 15.02 

Ashes (%) 8.97 

Ether extract (%) 3.28 

Oxytetracycline (mg/kg) 400 

Valnemulin (mg/kg) 30 

Colistin (mg/kg) 100 

The average daily feed intake in one ad libitum cage was 0.17 kg/day/rabbit which implies 66.48 mg/rabbit of 
oxytetracycline, 4.99 mg/rabbit of valnemulin and 16.62 mg/rabbit of colistin. The average daily feed intake in 
one restricted cage was 0.13 kg/day/rabbit which implies 49.86 mg/rabbit of oxytetracycline, 3.74 mg/rabbit of 
valnemulin and 12.47 mg/rabbit of colistin.   

 

The animals were under two different feeding regimes: 1) ad libitum (V) or 2) 

restricted (R) feeding to 75% of the ad libitum feed intake. The amount of food 

provided to the animals under R feeding regime in a given week for each batch was 

obtained as 0.75 times the average feed intake of kits on V from the same batch 

during the previous week, plus 10% corresponding to the estimated increase of feed 

intake as the animal grows. 

 

Kits were randomly assigned to one of these two feeding regimes after weaning (32 

days of age). They were categorized into two groups according to their size (“big” if 

body weight at weaning was greater than 700 g or “small” otherwise) in order to 

obtain homogenous groups regarding animal size within each feeding regime. A 

maximum of two kits of the same litter were assigned to the same cage, aiming to 

remove the possible association between cage and maternal effects on animal 

growth during the fattening period. For this particular study 23 rabbits from the 

aforementioned experiment were randomly selected. Their distribution across the 

different levels of factors is shown in Table 3.2. 
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Table 3.2| Distribution of animals in groups according to feeding regime and size. 

Feeding regime aSize Number of animals 

Restricted 
Small 4 

Big 9 

Ad libitum 
Small 1 

Big 9 
aAnimals classified according to their size at weaning: “big” if body weight was greater than 700 g or “small” 
otherwise. 

 

At slaughtering (66 days of age) hard feces and cecum samples were collected from 

each animal, kept cold in the laboratory (4ºC) and immediately stored at -80°C until 

total genomic DNA extraction. 

 

3.3.2. DNA extraction, library generation and sequencing 

The extraction of total genomic DNA was performed by means of a bead-beating 

protocol (kit ZR Soil Microbe DNA MiniPrepTM-ZymoResearch, Freiburg, Germany) 

following manufacturer’s recommendations. A total of 250 mg of each cecal and 

fecal samples was submitted to a mechanical lysis in a FastPrep-24™ Homogenizer 

(MP Biomedicals, LLC, Santa Ana, USA) at a speed of 1x6 m/s for 60 seconds 

allowing an efficient lysis of archaea and Gram-positive and negative bacteria 

species. Purity and integrity of total DNA from each sample was checked in a 

Nanodrop ND-1000 spectrophotometer equipment (NanoDrop products; 

Wilmington, USA) following the protocol described by Desjardins and Conklin 

(2010). All extracts had a proper purity (> 1.6, according to absorbance ratio 260 

nm/280 nm) to avoid polymerase chain reaction (PCR) inhibition issues during 

downstream PCR and sequencing steps.  

 

The V4-V5 hypervariable region of total genomic DNA was amplified with specific 

primers and then re-amplified in a limited-cycle PCR reaction to add sequencing 

adaptors and 8 nt dual-indexed barcodes of multiplex Nextera® XT kit (Illumina, Inc., 

San Diego CA, USA) according to manufacturer’s instructions. The initial PCR 

reactions were performed for each sample (23 cecal and 23 fecal) using 12.5 µl of 

2x KAPA HiFi HotStart Ready Mix, 5 µl of each PCR primer: forward universal primer 
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515Y (5’-GTGYCAGCMGCCGCGGTAA-3’) and reverse universal primer 926: (5’-

CCGYCAATTYMTTTRAGTTT-3’) (Parada et al., 2016) and 2.5 µl of microbial DNA 

(5 ng/µl). The initial thermal cycling procedure consisted of an initial denaturation 

step at 95ºC for 3 min, followed by 25 cycles of 95ºC for 30 s, 55ºC for 30 s and 

72ºC for 30 s, and a final extension of 72ºC for 5 min. The second thermal cycling 

procedure added the indexes and sequencing adaptors to both ends of the amplified 

regions by using 25 µl of 2x KAPA HiFi HotStart Ready Mix, 5 µl of each index (i7 

and i5), 10 µl of PCR Grade water and 5 µl of the first PCR product. The procedure 

consisted of an initial denaturation step at 95ºC for 3 min, followed by 8 cycles of 

95ºC for 30 s, 55ºC for 30 s and 72ºC for 30 s, and a final extension of 72ºC for 5 

min. Final libraries were cleaned up with AMPure XP beads, validated by running 1 

µl of a 1:50 dilution on a Bioanalyzer DNA 1000 chip (Agilent Technologies, Inc., 

Santa Clara CA, USA) to verify its size, quantified by fluorometry with PicoGreen 

dsDNA quantification kit (Invitrogen, Life Technologies, Carlsbad, CA, USA), pooled 

at equimolar concentrations and paired-end sequenced in parallel in a MiSeq 

Illumina 2x250 platform at the Genomics and Bioinformatics Service (SGB) of the 

Autonomous University of Barcelona. 

  

3.3.3. Bioinformatics - sequence processing 

The resulting paired-ended V4-V5 16S rRNA gene reads were assembled into 

contigs with the python script multiple_join_paired_ends.py by using QIIME 

software (version 1.9.0) (Caporaso et al., 2010). Then the contigs were curated 

using the QIIME script split_libraries.py with default parameters in order to assign 

contigs to samples and to remove low-quality (minimum quality score < Q19) 

contigs. UCHIME algorithm (Edgar et al., 2011) was used to remove chimeric 

sequences generated during the process of DNA amplification. The totality of filtered 

contigs were clustered into operational taxonomic units (OTUs) with a 97% similarity 

threshold using the QIIME script pick_open_reference_otus.py with default 

parameters (Rideout et al., 2014) that grouped, through UCLUST algorithm (Edgar, 

2010), sequences against Greengenes reference database (version gg_13_5_otus) 

and also made a de novo clustering of those that did not match the database. The 

generated OTU table was filtered at: 1) sample level by discarding samples with 



 
Chapter 3: Rabbit microbiota changes throughout the intestinal tract 

135 

less than 5,000 final contigs and at 2) OTU level by removing OTUs with less than 

0.01% counts across samples. Finally, OTU table was normalized using the 

Cumulative Sum Scaling (CSS) method proposed by Paulson et al. (2013) yielding 

the normalized abundances of 596 OTUs for 43 samples. Note that three samples 

(cecal and fecal collected from one rabbit of size class “big” fed under restriction 

and cecal from another rabbit also of size class “big” and fed under restriction) did 

not pass the established threshold defined during the edition and quality control 

processes. In addition to this, in order to always keep parity between samples, i.e., 

for each animal to have both cecal and fecal samples, one fecal sample (from a 

rabbit of size class “big” fed under restriction) passing quality control was finally 

discarded for the next statistical analyses. Therefore, final analyses comprised of 

both types of samples (hard feces and cecum) from 21 animals.  Taxonomic 

assignment of representative sequences of each OTU defined (596) was conducted 

by mapping them to the Greengenes reference database gg_13_5_otus with the 

UCLUST consensus taxonomy assigner (QIIME default parameters).  The raw 

sequence data were deposited in the sequence read archive of NCBI under 

accession no (SRP149070). 

 

3.3.4. Statistical analysis 

3.3.4.1. Alpha-diversity and univariate statistical analysis 

In order to compare diversity and richness between fecal and cecal communities, 

the Shannon and the observed number of OTUs (the count of unique OTUs found 

in a sample) indexes were computed after OTUs normalization at 15,000 contigs. 

The statistical method used for the communities’ comparison was a paired samples 

analysis of variance that included the following factors: sampling origin 

(feces/cecum), feeding regime (ad libitum/restricted), the interaction between them 

and the animal from which the samples were collected. The significance threshold 

was set at 0.05 type I error.  

 

Differences in OTUs composition between cecal and fecal samples were estimated 

for those OTUs detected in at least 5% of the samples. For this purpose, analyses 

of variance were implemented by fitting a model defined by the factors sampling 
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origin (feces/cecum), feeding regime (ad libitum/restricted) and the animal from 

which the samples were collected. Consideration of the animal effect into the model 

allowed for accounting for the paired structure of the data. The effect of the sampling 

origin was assessed as the differences between the expected OTUs counts in both 

cecum and feces. Significance of the sampling origin was based on the F statistic, 

but instead of defining the threshold for declaring significance based on the 

theoretical F distribution, empirical bootstrap p-values were computed after 1,000 

resamples. The use of bootstrapping allowed inferences to be made from the results 

obtained without the need for assuming that data are normally distributed. In this 

case, the p-value was defined as the proportion of bootstrap rounds showing an F 

statistic value equal or greater than that obtained with the original data set. P-values 

were corrected defining a false discovery rate (FDR) of 0.05 (Benjamini and 

Hochberg, 1995).  

 

This bootstrap analysis of variance approach was also implemented to study the 

effect of the sampling origin on the relative abundance of bacteria at phylum and 

genus levels. 

 

3.3.4.2. Multivariate statistical analysis 

In addition to the univariate paired analysis of variance, three multivariate analyses 

were performed to assess whether there were differences between cecal and fecal 

communities as a whole, taking into account the dependency between OTUs. The 

first one was a descriptive analysis using principal coordinate analysis (PCoA) 

(Gower, 1966) on weighted Unifrac phylogenetic distance matrix (Lozupone and 

Knight, 2005). The second analysis was also a descriptive technique, principal 

component analysis (PCA) (Hotelling, 1933), but it was performed considering the 

paired structure of the data (Liquet et al., 2012). This was achieved by subtracting 

from the OTU count of a given sample the mean of the two samples belonging to 

the animal from which they were taken. The last multivariate method implemented 

was the sparse partial least squares discriminant analysis (sPLS-DA) which is a 

method based on partial least squares regression applied for classification. PLS 

consists in a multivariate regression which allows for the correlation of the 



 
Chapter 3: Rabbit microbiota changes throughout the intestinal tract 

137 

information contained in a predicting matrix to the information contained in a 

response matrix or vector (Burnham et al., 1996). In this case, the response was a 

vector which encoded the sampling origin that we aimed to predict from OTUs 

content. Moreover, sPLS includes a LASSO penalization to select the most 

informative predictors. sPLS-DA can simultaneously find, by maximizing the 

covariance between the predicting and the response matrices, the combination of 

OTUs which best discriminate samples according to their sampling origin and 

integrate both data sets in a one-step procedure (Lê Cao et al., 2008). In order to 

account for individual variation in the data, OTUs content was defined as deviations 

from individual means, as it was done for PCA. Unlike PCoA or PCA, sPLS-DA is 

not only a descriptive approach since it can infer which OTUs should be selected to 

perform the best discrimination of samples according to a given factor; the sampling 

origin in this study.  

 

R packages “phyloseq”, “mixOmics” and “ggplot2” were employed for statistical 

analysis and plotting as elsewhere described (McMurdie and Holmes, 2013; Lê Cao 

et al., 2018; Wickham, 2010). 

 

3.4. Results 

3.4.1.  Sequencing and processing 

The sequencing process generated a total of 5,337,066 reads which, after different 

filtering steps and chimera removal, resulted in a total of 1,707,620 valid contigs. 

These final sequences were clustered into 596 non-singleton containing OTUs. 

Each sample had on average 40,657 final contigs (range: 16415-68080) and 482 

OTUs (range: 411-541) (Table 3.S1). 

 

3.4.2. Differences in diversity and richness between sampling origins 

In this study, we found an average of 428 observed OTUs in cecum samples and 

433 in feces samples. The estimated Shannon indexes were 4.66 and 4.67 in cecum 

and feces samples respectively (Table 3.3). The comparison of alpha diversities 

between fecal and cecal samples did not reveal any significant difference in 
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microbial diversity or richness at 15,000 contigs normalization (Figure 3.1A, P > 

0.05) nor when both sampling origins were compared within feeding regime (Figure 

3.1B, Table 3.3, P > 0.05). In contrast, the observed number of OTUs index showed 

significant differences between feeding regimes as the means estimated were 425 

in restricted animals and 437 in ad libitum animals (Table 3.3, P = 0.03, p-value is 

not shown in table nor figures).  

 

 

Figure 3.1| Microbial richness and diversity between cecum and feces samples. The intestinal microbial 
richness was estimated by the observed number of OTUs index, and the microbial diversity was studied by 
Shannon index. (A) Significant differences in microbial richness and diversity between cecum and feces 
samples were not identified (P > 0.05; paired samples analysis of variance). (B) Significant differences in 
microbial richness and diversity between cecum and feces samples in ad libitum or restricted rabbits were not 
identified (P > 0.05; paired samples analysis of variance). 
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Table 3.3| Estimated mean and standard deviation of observed number of OTUs 

and Shannon α-diversity indexes calculated in cecum and feces samples. 

Feeding Regime Index Cecum samples Feces samples P 

Restricted 

Observed OTUs 423.91 (27.40) 427.91 (27.19) 0.73 

Shannon 4.67 (0.16) 4.69 (0.17) 0.70 

Ad libitum 

Observed OTUs 433.90 (35.08) 440.40 (30.25) 0.66 

Shannon 4.65 (0.15) 4.64 (0.16) 0.93 

Average 

Observed OTUs 428.67 (30.91) 433.86 (28.67) 0.58 

Shannon 4.66 (0.15) 4.67 (0.16) 0.81 

 

3.4.3. Taxonomic characterization of cecum and feces microbial 

communities  

The final OTU table encompassed 596 OTUs of which 307 were annotated in 

Greengenes database gg_13_5_otus and 289 corresponded to new reference 

OTUs constructed from a random sampling of sequences that did not map against 

the reference. 580 out of the 596 declared OTUs could be taxonomically assigned 

at kingdom level. All of them could be assigned at phylum and class levels, 

belonging to 8 and 12 different taxa, respectively. 577 OTUs could be assigned at 

order level to 13 different taxa. At family level, 308 OTUs could be assigned to 22 

different taxa. 118 OTUs could be assigned at genus level to 23 different taxa while 

only 10 OTUs were taxonomically assigned at species level. It is important to stress 

that resolution of MiSeq technology in this study impaired taxonomic assignment 

capacity at family level since it was only possible in 51% of OTUs and, more 

drastically, at genus level allowing the assignment of only 20% of them. 

Nevertheless, given the large importance of functional roles played by bacteria that 

can be assigned at genus level, the analysis of differential representation of genera 

between the two sampling origins was conducted for those in which taxonomic 

assignment at this level was possible. 
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The two types of samples showed similar relative abundances for taxa and the 

predominant phyla were, in both cases, Firmicutes (present in an average 

percentage of 76.28 in feces and 76.55 in cecum), followed by Tenericutes (8.17 in 

feces and 7.48 in cecum) and Bacteroidetes (7.37 in feces and 7.46 in cecum) 

(Table 3.4). In spite of the small magnitude of the differences they reached 

significance in some cases (P < 0.05). As it can be observed in Table 3.4, phyla 

Actinobacteria and Verrumicrobia were found to be overrepresented in cecum 

samples, while Cyanobacteria and Tenericutes were overrepresented in feces. The 

only phylum belonging to kingdom Archaea that could be identified was 

Euryarchaeota which was presented in an average percentage of 0.61‰ in both 

sampling origins. All species of this phylum were taxonomically assigned to the 

methanogenic genus Methanobrevibacter. 

 

Table 3.4| Microbial composition at phylum level in cecum and feces. 

 
Phylum 

Mean relative 
abundance in 

cecum (%) (SD) 

Mean relative 
abundance in 
feces (%) (SD) 

Difference 
Cecum-Feces ± 

SE 

 
PFDR 

Actinobacteria 0.729 (0.097) 0.617 (0.119) 
0.110 ± 0.023 0.000 

Bacteroidetes 7.458 (1.243) 7.367 (1.263) 
0.092 ± 0.090 0.473 

Cyanobacteria 0.873 (0.440) 1.399 (0.670) 
-0.514 ± 0.072 0.000 

Euryarchaeota 0.061 (0.096) 0.062 (0.095) 
-0.001 ± 0.011 0.928 

Firmicutes 76.546 (1.733) 76.276 (1.809) 
0.253 ± 0.170 0.215 

Proteobacteria 1.613 (0.363) 1.634 (0.312) 
-0.016 ± 0.043 0.783 

Tenericutes 7.484 (0.899) 8.172 (1.057) 
-0.681 ± 0.169 0.000 

Verrucomicrobia 1.810 (0.378) 1.651 (0.300) 
0.158 ± 0.034 0.000 

Unknown 3.427 (0.433) 2.822 (0.674) 
0.599 ± 0.092 0.000 

 

The predominant classes in both sampling origins were Clostridia (76.14%), 

Mollicutes (7.54%) and Bacteroidia (7.41%). At family level, the predominant taxa 

were Ruminococcaceae (44.37%) and Lachnospiraceae (36.51%), both belonging 

to phylum Firmicutes. Finally, results contained in Table 3.5 show that predominant 

genera were Ruminococcus (5.13%), Oscillospira (2.47%), Bacteroides (2.36%) 

and Blautia (2.10%). Paired samples analysis of variance implemented to study the 

effect of the sampling origin on the relative abundance of species at genus level 

revealed that 8 genera, out of the 23 in which taxonomic assignment was possible, 
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were differentially represented between feces and cecum. Genera Clostridium, 

Anaerofustis, Blautia, Akkermansia, rc4-4 and Bacteroides were overrepresented in 

cecum while feces showed a higher relative abundance of genera Oscillospira and 

Coprococcus (Table 3.5). Genera Anaerofustis and rc4-4 showed the smallest 

relative abundances (0.14 and 0.19% respectively) while the rest of the genera 

ranged between 1.21 and 2.48 %. 

 

Paired bootstrap analysis of variance revealed that 180 OTUs showed abundances 

significantly different between sampling origins: 83 and 97 OTUs were 

overrepresented in fecal and cecal samples, respectively (Table 3.S2 and Table 

3.6, this last shows the 10 OTUs showing the strongest overrepresentation). In fecal 

samples these 83 overrepresented OTUs were assigned, at the lowest taxonomic 

level, to the candidate species Eutactus (1 OTU) and Flavefaciens (2 OTUs); 

candidate genera Coprococcus (3 OTUs), Oscillospira (7 OTUs) and Ruminococcus 

(3 OTUs); candidate families Ruminococcaceae (10 OTUs) and S24-7 (4 OTUs); 

candidate orders Clostridiales (34 OTUs), RF32 (1 OTU), RF39 (10 OTUs) and YS2 

(7 OTUs); and candidate class Alphaproteobacteria (1 OTU). On the other hand, the 

97 OTUs overrepresented in cecal samples were assigned to the candidate genera 

Akkermansia (4 OTUs), Anaerofustis (1 OTUs), Blautia (10 OTUs), Clostridium (4 

OTUs), Oscillospira (1 OTU), Phascolarctobacterium (1 OTU) and Ruminococcus 

(2 OTUs); candidate families Mogibacteriaceae (2 OTUs), Christensenellaceae (1 

OTU), Clostridiaceae (1 OTU), Coriobacteriaceae (2 OTUs), Lachnospiraceae (16 

OTUs), Rikenellaceae (1 OTU) and Ruminococcaceae (8 OTUs); candidate orders 

Bacteroidales (1 OTU), Clostridiales (30 OTUs) and ML615J-28 (1 OTU); and 

candidate class Betaproteobacteria (1 OTU) while 10 OTUs could not be assigned 

to any taxonomic level. These results at OTU level show remarkable coincidences 

with the analyses directly performed on the relative abundance of taxa at phylum 

and genera levels. This is consistent with two possibilities: a case of phylum 

encompassing one or a reduced number of genera, (like Verrucomicrobia and 

Akkermansia) or when all the OTUs in a given taxa show an effect on the same 

direction (for example an overrepresentation of the 10 OTUs assigned to genus 

Blautia in cecal samples). 
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3.4.4. Clusterization of samples according to their origin with different 

multivariate methods 

First, a principal coordinate analyses (PCoA) from weighted Unifrac phylogenetic 

distance matrix calculated from the final OTU table was performed. In Figure 3.2, 

each sample is located in a specific position of a bidimensional chart in function of 

its microbiota composition. No clear pattern of separation of samples by their 

sampling origin could be appreciated. 

 

 

Figure 3.2| Principal coordinate analysis of weighted Unifrac phylogenetic distance matrix. Cecal and fecal 
samples are blue and orange colored, respectively. 
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The paired principal component analysis (PCA) was implemented in order to take 

into account the fact that each pair of cecal and fecal samples which belonged to 

the same rabbit showed a better separation pattern than PCoA. Components 1 and 

2 explained 18% and 17% of variance respectively (Figure 3.3A).  

 

But the multivariate method that best clustered the samples according to their 

sampling origin was the paired sparse partial least squares discriminant analysis 

(sPLS-DA) which took into account the fact that two different samples were collected 

from the same animal and indeed it was only conducted with the OTUs that best 

discriminated samples by their sampling origin (70 and 50 for components 1 and 2, 

respectively) (Figure 3.3B). The seventy OTUs that were part of the component 1 

explained 17% of total variance. Forty of them were found to be overrepresented in 

cecum and 30 in feces (Figure 3.4). It should be noted that 66 OTUs declared as 

differentially represented between cecum and feces by sPLS-DA were also declared 

as differentially represented between sampling origins by the univariate bootstrap 

analyses of variance previously performed. The 10 OTUs most differentially 

represented between sampling origins (according to univariate analyses of 

variance) can be found in Table 3.6 with an indication of whether the OTU belonged 

to the first component of the sPLS-DA analysis. The representative sequences of 

these OTUs are showed in 3.S3. 
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Figure 3.3| (A) Paired samples principal component analysis (B) Paired samples sparse partial least squares 
discriminant analysis representing 21 cecum (blue) and 21 feces (orange) samples. 
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Figure 3.4| Contribution of each OTU, on component 1 of sPLS-DA, to the discrimination of samples regarding 
to their sampling origin: cecum (blue) or feces (orange). 
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3.5. Discussion 

In this study, we aimed to evaluate the importance of selecting a proper sampling 

intestinal area for rabbit microbiota studies. To give an answer to this question, 16S 

rRNA gene amplicons from cecal and fecal samples collected from 21 meat rabbits 

randomly distributed in two feeding groups with different intake levels were 

sequenced in an Illumina MiSeq platform. 

 

Similar to our work, sequencing results from other studies performed on 

gastrointestinal microbial populations of caecotrophagic animals (rabbit and guinea 

pig) (Zeng et al., 2015; Crowley et al., 2017), hare and pika (which, like rabbit, are 

members of the clade Glires) (Li et al., 2017), other livestock species like broiler 

chicken (Han et al., 2016) and on other environments, such as goats’ rumen (Wang 

et al., 2016) or sheeps’ lung (Glendinning et al., 2016), showed variable results in 

the average number of final contigs per samples. Our results are in accordance with 

the well-known fact that sequencing of the 16S rRNA gene could be strongly 

influenced by different factors like the storage of the sample, the method used for 

DNA extraction and library generation or the sequencing platform (Pollock et al., 

2018). In addition, the variance found in the average final number of contigs and 

OTUs per sample can be accentuated by the software used, the parameters chosen 

for sequence filtering or the strategy followed for OTU picking (Allali et al., 2017). 

As in the present study in which the number of final contigs per sample ranged from 

16,415 to 68,080, the study performed by Correa-Fiz et al. (2016) also showed a 

large variation (ranging from a minimum of 7,338 to a maximum of 844,521 final 

contigs per sample). On the other hand, the fact that some studies (Zeng et al., 

2015, Wang et al., 2016) presented a larger number of OTUs per sample (range: 

1,600-6,900) than the present one (range: 411-541) would be due to the fact that 

they used a different strategy for OTU picking by including an additional de 

novo clusterization step of sequences which did not match against the reference 

database. 

 

Our estimates of alpha-diversity with Shannon and the observed number of OTUs 

indexes did not reveal significant differences between sampling origins. The fact that 
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fecal samples were collected directly from rectum at slaughter could reduce the 

chances of environmental contamination, which contributed to reduce differences in 

terms of diversity or richness between sampling origins. Similarly, Zeng et al. (2015) 

who characterized the cecal and fecal microbiota of two groups of rex rabbits with 

high or low body weight did not observe differences either in diversity or richness 

when they compared alpha-diversity indexes between both sampling origins. 

However, in the study performed by He et al. (2016) in which they compared 

microbial diversity and richness between cecum and feces samples collected from 

pigs, they found that fecal samples had a significantly higher alpha-diversity than 

cecal samples. 

 

With regard to the taxonomic characterization of microbial diversity of cecum and 

feces, our results are consistent with previous studies on growing rabbit intestinal 

microbiota (Massip et al., 2012; Monteils et al., 2008; Combes et al., 2017). 

Nevertheless, relative abundances of the main phyla were different between 

studies. A quantitative comparison of our study with the first two, shows that they 

found a higher percentage of Firmicutes (90%) and approximately half the amount 

of Bacteroidetes (4%). Differences between these phyla could be related to sample 

storage conditions, as Bahl et al. (2012) demonstrated their importance in 

Firmicutes to Bacteroidetes 16S rRNA ratio in human fecal samples. Another 

putative explanation for these discrepancies could be related to updates and 

changes to the reference databases. For example, it is noteworthy that the presence 

of phylum Tenericutes  was revealed in our study, which had not been reported in 

previous studies in rabbits. The fact that the only class that phylum Tenericutes 

contains, Mollicutes, was previously classified within phylum Firmicutes is the most 

plausible hypothesis to explain the differences in the relative abundance of phylum 

Firmicutes found between our study and previous ones (Massip et al., 2012; 

Monteils et al., 2008; Combes et al., 2017). The relative abundance of this phylum 

in our study was situated in the same range as phylum Bacteroidetes. In previous 

studies it was usual to find phylum Actinobacteria as the third most abundant. Other 

putative reason for explaining differences could be due to the fact that different 16S 

rRNA gene regions were sequenced: V3-V4 hypervariable regions in Massip et al. 

(2012) and Combes et al. (2016), the whole gene in Monteils’ study and V4-V5 
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hypervariable regions in our study. Another hypothesis could be that the pair of 

primers employed in our study hybridized better for the sequences belonging to this 

phylum than primers used in previous studies. 

 

Similar to the cecal microbial characterization at class level of rex rabbits performed 

by Zou et al. (2016), our results revealed that the predominant class was Clostridia. 

But in contrast, they found Bacteroidia as the second predominant class while it was 

the third, followed by Mollicutes, according to our results. Our study revealed that 

the predominant families within phylum Firmicutes were Ruminococcaceae and 

Lachnospiroceae in agreement with the results of Massip et al. (2012). As with cecal 

microbial characterization at genus level of rex rabbits performed by Zou et al. 

(2016), our results revealed that the predominant genera were Ruminococcus and 

Oscillospira. But in contrast, we found Bacteroides and Blautia to be the following 

predominant genera while they reported that Coprococcus and Bacteroides were 

the next more abundant. 

 

Note that all Archaea species detected in our study belonged to genus 

Methanobrevibacter which encompasses different hydrogenotrophic methane-

producing species. The presence of this genus in rumen microbial communities is 

well known (Henderson et al., 2013; Patra et al., 2017). Moreover, previous studies 

have also described its presence in the gastrointestinal tract of humans (Thomas et 

al., 2017) and monogastric animals (Luo et al., 2017; Hou et al., 2016); including 

rabbit as Kušar and Avguštin (2010) reported in their study. Nonetheless, Mi et al. 

(2018) revealed the low presence of methanogenic archaea compared to Bacteria 

domain in rabbit cecum, due to its acidic pH ( 5.8) which does not favor 

methanogenic archaea. It is noteworthy to mention that Mi et al. (2018) found  

Methanobrevibacter as the main archaeal population. The small ratio between 

archaea/bacteria of cecal and fecal samples affected the archea sequence 

detection, resulting in the archaeal biodiversity being very low. 

 

Although we observed similar microbial diversity and richness between feces and 

cecum samples, both multivariate and bootstrap univariate analysis revealed that 

community structures were significantly different in both types of samples. Our 
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results revealed an enrichment of 6 known genera in cecal samples and 2 genera 

in fecal samples considered in detail below. 

 

Despite the fact that the overall relative abundance of phylum Firmicutes did not 

show differences between sampling origins, most of the genera differentially 

represented in both type of samples belong to this phylum. This is not surprising 

because three quarters of bacteria belong to this phylum, which encompasses a 

large number of lower taxonomic groups. All genera differentially represented within 

this phylum belong to different families of class Clostridia. Genus Clostridium 

(family Clostridiaceae) is an anaerobic Gram-positive bacteria whose presence in 

intestinal microbiota has been reported in human (Lloyd-Price et al., 2016) and 

many animal species like mouse (Uebanso et al., 2017), chicken (Han et al., 2016; 

Oakley et al., 2016) or pig (Fang et al., 2017). Bäuerl et al. (2014) reported a greater 

presence of this genus in cecal microbiota of rabbits affected by epizootic rabbit 

enteropathy (ERE) than in healthy animals. But not all Clostridium species are 

pathogenic and it is possible to find this genus in normal microbiota as Oakley et al. 

(2016) reported its presence in the cecum of 6-week healthy broiler chickens. 

Probably, the majoritiy of Clostridum species that inhabit rabbit cecum are cellulose- 

degrading symbiotic microorganisms that help the host in digestion of plant 

materials. Little is known about the presence of Anaerofustis (family 

Eubacteriaceae) in intestinal communities. Arrazuria et al. (2016) found an 

association between the presence of this genus in cecal samples collected from 

female rabbits and Mycobacterium avium paratuberculosis infection. Some 

Anaerofustis species could be involved in the fermentation of carbohydrates and 

glucose metabolism in the cecum (Lawson, 2015), which could be compatible with 

the overrepresentation we observed for this genus in cecum which is well known to 

be the main fermenting organ in rabbits. Within Ruminococcaceae, the most 

abundant family of phylum Firmicutes, the genus Oscillospira was overrepresented 

in fecal samples. This genus has been proved to be one of the core genera of some 

herbivore’s rumen microbiota like cattle or sheep (Mackie et al., 2003) and horse’s 

fecal microbiota (O’ Donnell et al., 2013). It is a non-cultured anaerobic bacteria but 

now, thanks to next generation sequencing, we can detect it. Zeng et al. (2015) also 

reported an overrepresentation of Oscillospira in soft feces, which indicates that 
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species of this genus could be involved in fermentation processes as Gophna et al. 

(2017) inferred that some Oscillospira species are butyrate producers. Within the 

second most abundant family, Lachnospiraceae, we found an overrepresentation of 

genera Blautia and Coprococus in cecum and feces, respectively. Blautia is an 

important member of animal intestinal microbiota, especially after weaning as Chen 

et al. (2017) reported in their study with piglets during the weaning transition. Park 

et al. (2012 & 2013) isolated two Blautia species in human feces able to ferment 

carbohydrates and degrade glucose producing acetate and lactate. Consistent with 

these previous studies and with the one done by Zeng et al. (2015) in which they 

found a higher representation of Blautia in soft feces than in hard feces, the relative 

enrichment of this genus in cecum versus feces observed in our study could imply 

that it plays an important role in carbohydrate and glucose digestion in rabbit cecum. 

On the other hand, Coprococcus is an anaerobic Gram-positive bacteria that 

actively ferments carbohydrates, producing butyric and acetic acids with formic or 

propionic acids (Holdeman and Moore, 1974). Some studies have previously 

described the presence of this genus in human (Canani et al., 2016) and horse 

(Mach et al., 2017) feces. An overrepresentation of Coprococcus in rabbit feces 

could be due to the fact that members of this genus actively participate in 

fermentation processes in the cecum and after having played their role they cannot 

be fixed to intestinal walls again and they are expelled with the feces. It is thought 

that these bacteria found in the final product of feed digestion could be dead bacteria 

(Fu et al., 2018). 

 

Within the phylum Bacteroidetes, the only genus differentially represented between 

sampling origins was Bacteroides (family Bacteroidaceae). Bacteroides is an 

anaerobic Gram-negative bacteria that constitutes an important portion of the 

mammalian gastrointestinal microbiota (Jandhyala et al., 2015; Rodríguez et al., 

2015). This genus has an important role in the degradation of vegetal 

polysaccharides (Fang et al., 2017) and in amino acid fermentation (Dai et al., 2011) 

which could be the reason for its overrepresentation in cecum where it is supposed 

to play an active role. 
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Finally, Akkermansia is also a well-known genus of phylum Verrumicrobia that 

inhabits intestinal microbiota of mammals (Derrien et al., 2004; Borton et al., 2017) 

and recently found in reptiles (Rawski et al., 2016; Ouwerkerk et al., 2017). Several 

studies have demonstrated that some Akkermansia species are mucin degraders 

(Belzer and De Vos, 2012) related with gut inflammation. However, current studies 

have elucidated that these species also contribute to the reparation of mucosal 

wounds (Alam et al., 2016) and they could be employed as probiotics (Gómez-

Gallego et al., 2016). Previous studies that have characterized microbial 

communities of different sections across rabbit and chicken gastrointestinal tracts 

have also found a significant overrepresentation of this genus in cecum with respect 

to other sections (Zeng et al., 2015; Han et al., 2016). Moreover, Borton et al. (2017) 

reported an increase in the relative abundance of these bacteria in mouse gut as a 

consequence of low levels of inflammation. For all of this, we hypothesize that the 

presence of Akkermansia species in cecum could be involved in the formation of a 

protective mucosa layer that would help rabbits to deal with inflammatory processes. 

 

It is important to note that different studies have identified genera Bacteroides, 

Akkermansia and Oscillospira as obesity-associated intestinal microbial species 

(Zhang et al., 2017; Zhao et al., 2017; de la Cuesta-Zuluaga et al., 2017) as well as 

Tan et al. (2018) have found an association between particular species of genera 

Akkermansia and Clostridium with psoriasis in humans. We think that careful 

consideration of the sampling area in this kind of studies is important to ensure 

reliable detection of these genera. Monitoring these genera as plausible obesity 

indicators could be considered in future association studies in order to link intestinal 

microbiota and particular production traits, such as growth or feed efficiency in 

livestock animals. 

 

Furthermore, in this study different multivariate approaches to group samples by 

their origin were performed and different results were obtained due to the fact that 

the principles on which they are based are different. PCA transformed the 596 

potentially correlated variables (OTUs) into a smaller number of uncorrelated 

variables, or principal components, so that the first component captured as much of 

the existing variability in the data set. On the contrary, PCoA was based on the 
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Unifrac dissimilarity matrix containing distances between samples in function of their 

microbiota composition in order to represent these phylogenetic distances, with the 

lowest possible dimensional coordinates. The paired PCA, although it captures the 

maximum possible variability, did not necessarily capture the part that explains the 

most important variation according to the categorical variable for which we wanted 

to classify our samples; the sampling origin in this case (James et al., 2013). 

According to our results, the approach that best discriminated samples according to 

their sampling origin was the paired sPLS-DA. It took into account the complex 

structure of the experimental design in which two different samples were collected 

from two different “compartments” of the same individual at the same time. This 

multivariate method allowed for the capture of the sampling origin effect within the 

animal separately from the variation between animals. Decomposing the within 

variance from the between variance (Liquet et al., 2012) enables the finding of those 

OTUs differentially represented between origins which best discriminate both type 

of samples. 

 

The results of our study show that, overall, the microbial structures of rabbit feces 

and cecum are similar in terms of richness and diversity, since it should be 

remembered that we have compared biological samples belonging to locations 

closely situated throughout the animal intestinal tract that share similar 

physicochemical conditions. Furthermore, fecal samples were collected from the 

rectum avoiding the contact of microorganisms with the natural environment and, 

consequently, with the oxygen that would cause oxidative stress and more drastic 

changes in some bacterial populations. Nevertheless, it is important to bear in mind 

the existence of compositional differences in the relative abundance of an important 

number of taxa and OTUs. Both sampling origins contained the same 8 phyla but 

the relative abundances of half of them were differentially represented between 

origins. Similarly, at genus level, we found an overrepresentation of some genera 

such as Blautia or Akkermansia in cecal samples which would be involved in 

carbohydrate digestion and in immune protection against inflammation. On the other 

hand, an overrepresentation of genera Oscillospira and Coprococcus in fecal 

samples could indicate an active participation of these bacteria in fermentation at 

the end of the feed digestion process or correspond to dead species that were 
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excreted once they have played their main role in the cecum. Finally, at OTU level 

we found, with both univariate and multivariate approaches, 66 were differentially 

represented between origins in all analyses performed. According to our results, we 

propose the collection of feces in those studies aiming for a shallow characterization 

of the intestinal microbiota. On the contrary, for those studies interested in a specific 

characterization of the composition of microbial communities, it is necessary to 

consider the fact that important differences in the relative abundance of some taxa, 

even at phylum level, between cecum and feces have been reported. The decision 

as to which area of the intestinal tract should be sampled will therefore depend on 

the objectives of each study. 

 

To sum up, the existence of diversity and compositional differences between rabbit 

cecum content and internal hard feces microbial communities has been revealed in 

the present study. In future studies, cecal microbiota of a larger number of rabbits 

bred under different management conditions, such as feeding regime or the 

presence of antibiotics in the feed, need to be analyzed to gain insight into the effect 

of these conditions on rabbit intestinal microbiota and the effect of microbial diversity 

and composition on animal performance. 
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4.1. Abstract 

Background: the effect of the production environment and different management 

practices in rabbit cecal microbiota remains poorly understood. While previous 

studies have proved the impact of the age or the feed composition, research in the 

breeding farm and other animal management aspects, such as the presence of 

antibiotics in the feed or the level of feeding, is still needed. Characterization of 

microbial diversity and composition of growing rabbits raised under different 

conditions could help better understand the role these practices play in cecal 

microbial communities and how it may result in different animal performance. 

Results: four hundred twenty-five meat rabbits raised in two different facilities, fed 

under two feeding regimes (ad libitum or restricted) with feed supplemented or free 

of antibiotics, were selected for this study. A 16S rRNA gene-based assessment 

through the MiSeq Illumina sequencing platform was performed on cecal samples 

collected from these individuals at slaughter. Different univariate and multivariate 

approaches were conducted to unravel the influence of the different factors on 

microbial alpha diversity and composition at phylum, genus and OTU taxonomic 

levels. The animals raised in the facility harboring the most stable environmental 

conditions had greater, and less variable, microbial richness and diversity. Bootstrap 

univariate analyses of variance and sparse partial least squares-discriminant 

analyses endorsed that farm conditions exerted an important influence on rabbit 

microbiota since the relative abundances of many taxa were found differentially 

represented between both facilities at all taxonomic levels characterized. 

Furthermore, only five OTUs were needed to achieve a perfect classification of 

samples according to the facility where animals were raised. The level of feeding 

and the presence of antibiotics did not modify the global alpha diversity but had an 

impact on some bacteria relative abundances, albeit in a small number of taxa 

compared with farm, which is consistent with the lower sample classification power 

according to these factors achieved using microbial information. Conclusions: this 

study reveals that factors associated with the farm effect and other management 

factors, such as the presence of antibiotics in the diet or the feeding level, modify 

cecal microbial communities. It highlights the importance of offering a controlled 

breeding environment that reduces differences in microbial cecal composition that 

could be responsible for different animal performance. 
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4.2. Background 

Microbial communities that inhabit the gastrointestinal tract (GIT) of animals 

constitute a complex ecosystem whose members constantly interact between 

themselves and with their host (Gaskins, 1997). These interactions ensure 

homeostatic balance maintenance since GIT ecosystem components are involved 

in many physiological and immunological processes (Belkaid and Hand, 2014). In 

the case of the domestic meat rabbit (Oryctolagus cuniculus), a small herbivorous 

mammalian belonging to the family Leporidae, cecum is the main organ for microbial 

fermentation. Thus, it is not surprising that the rabbit cecum hosts the richest and 

the most diverse microbial community of its GIT (Gouet and Fonty, 1979). For this 

reason, the cecum has been the organ preferably chosen in previous rabbit gut 

microbiota assessments (Abecia et al., 2007; Zou et al., 2016; Zhu et al., 2017; 

Chen et al., 2019).  

 

Thanks to the development of next generation sequencing (NGS) technologies, and 

their rapidly decreasing costs, it is currently possible to characterize the gut 

microbiota of a large number of animals. This characterization allows a deeper 

comprehension of the differences between animals concerning their microbial 

composition and diversity. It is hypothesized that the production environment could 

partially mediate these differences. Our general aim is to provide further evidence 

of the effect of different management and environmental factors on cecal microbial 

composition and diversity. In relation to this topic, there is a certain amount of 

information already published. A growing number of studies have revealed changes 

in rabbit cecal microbial communities exerted by age (Combes et al., 2011) or the 

type of feed provided to the kits after weaning (Zhu et al., 2017; Chen et al., 2019). 

Another factor that causes variation is the administration of antibiotics in the feed. 

Different molecules have been widely administered in rabbit meat production, 

especially after weaning, to curb mortality peaks (sometimes over 20%) as a result 
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of the onset of gastrointestinal symptoms (Gidenne et al., 2010). Multiple studies 

have shown alterations caused in gut microbiota by the administration of antibiotics 

in the feed (Zou et al., 2016; Eshar and Weese, 2014). Despite the European Union 

having banned the use of antibiotics in animal feeds as growth promoters since 2006 

(EC 1831/2003), at the time this experiment was conducted, the administration of a 

mix of up to four antibiotics was permitted to prevent or treat the emergence of 

potential infectious diseases on farms. Nowadays, the administration of only one 

antibiotic molecule is allowed and substantial efforts are being made towards 

searching for efficient alternatives which allow for a complete withdrawal of 

antibiotics in animal feeds. In this context, the application of feed restriction during 

the growing period was proposed as an interesting alternative to the use of 

antibiotics. Quantitative feed restriction is a widely applied commercial practice 

which consists of reducing the amount of feed the animal would consume by a 

certain percentage when the food is provided ad libitum. Gidenne et al. (2009) 

demonstrated that feed restriction, despite penalizing animal growth, improves feed 

efficiency and reduces mortality due to enteric disorders. It is hypothesized that 

these positive effects could be partially explained by changes in gut microbial 

composition or activity originated by the application of feed restriction. However, 

techniques used so far to study this possible association have found no evidence of 

it (Gidenne et al., 2009).  

 

This study, which comprises a large number of animals in an experimental design 

involving different management and environmental factors, is intended to unravel 

changes in diversity and composition of rabbit cecal microbial communities 

associated with these factors. It will allow for a better understanding of how the farm 

where the animal was raised, the presence of antibiotics in the feed, and feed 

restriction shape the cecal microbiota of growing rabbits. 
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4.3. Results 

4.3.1. Sequence processing 

After the removal of doubletons and samples with low sequence counts, 425 rabbit 

cecal samples (Additional file 4.1) were represented on 14,928,203 sequence 

counts clustered into 963 different OTUs. Each sample had on average 35,125 final 

sequences (range: 10,157-678,798) and 677 OTUs (range: 197-841) (Additional 

files 4.2 and 4.3). Figure 4.1 shows two histograms representing the sample 

richness and the proportion of OTUs present across samples. Most of the samples 

had more than 700 different OTUs (mode = 748) and nearly 140 OTUs were present 

in all the samples.  

 

 

Figure 4.1| Sample richness and presence of CSS-normalized OTUs across samples. 
 

Taxonomic assignment of representative OTUs against the Greengenes reference 

database gg_13_5_otus (Additional file 4.4) revealed the presence of 8 different 

known phyla with an average of 8 phyla per sample (range: 7-8) (Additional file 

4.5), and 28 different known genera with an average of 24 genera per sample 

(range: 17-28) (Additional file 4.6).  
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4.3.2. Animal management and farm environment shaping cecal 

microbial alpha diversity 

The study of alpha diversity was performed after rarefying the prefiltered and 

unnormalized OTU table to 10,000 sequences per sample. Rarefaction generated 

a table which contained the sequence counts of 963 different OTUs for 425 samples. 

The average (standard deviation) number of observed OTUs within animal was 

560.52 (75.03) and the average Shannon index within animal was 5.09 (0.26). The 

comparison of alpha diversities revealed that the group of animals raised in farm B 

had greater alpha diversity than the group of animals raised in farm A (estimated 

differences of 40.20 (9.83) observed OTUs and 0.17 (0.03) Shannon indexes; PFDR 

< 0.001). Furthermore, larger variability in both indexes was observed in farm A than 

in farm B. No significant differences for the two alpha diversity indexes were found 

between feeding regimes within both farms (Figure 4.2, PFDR > 0.05), nor between 

the presence and the absence of antibiotics in the feed within farm B (Figure 4.2, 

PFDR > 0.05). 

 

 

Figure 4.2| Microbial richness and diversity between samples grouped according to management that animals 
received. The cecal microbial richness and diversity were estimated by the observed number of different OTUs 
and the Shannon indexes, respectively. 
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4.3.3. Animal management and farm environment shaping cecal 

microbial composition 

According to the taxonomic assignment of representative sequences (Additional 

file 4.4) performed with the UCLUST consensus taxonomy assigner on the 

Greengenes reference database gg_13_5_otus, Firmicutes (76.74%), Tenericutes 

(7.22%) and Bacteroidetes (6.26%) were the predominant phyla, accounting for 

more than 90% of the microbial diversity, in the rabbit cecal samples studied (Figure 

4.3).  

 

 

Figure 4.3| Phyla relative abundances of samples grouped according to farm, level of feeding and presence of 
antibiotics in the feed. 
 

4.3.3.1. Differential growth and cecal microbial composition across farms 

The facility where the animals were raised affected their growth performance. 

Animals raised in farm B exhibited a faster growth (47.11 grams/day) than those 

raised in farm A (44.19 grams/day). The estimated average daily gain difference 

between farm B and farm A was 2.92 ± 0.94 grams per day (P < 0.05). Cecal 
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samples of rabbits raised in farm A showed an overrepresentation of phyla 

Bacteroidetes, Proteobacteria and Verrucomicrobia while phyla Euryarchaeota, 

Cyanobacteria and Firmicutes were found to be overrepresented in cecal samples 

of rabbits raised in farm B (Table 4.1).  

 

Table 4.1| Microbial composition at phylum level in cecal samples of rabbits grouped 

by farm. 

 

Genera Ruminococcus (4.32%), Blautia (2.96%) and Oscillospira (2.37%) 

dominated the meat rabbit cecal microbiota. Most of the relative abundance 

differences at genus level were found differentially represented between animals 

raised in the different farms: genera Bacteroides, Parabacteroides, Rikenella, 

Anaerofustis, Anaerostipes, Clostridium, Coprobacillus, Anaeroplasma and 

Akkermansia were overrepresented in cecal samples of rabbits raised in farm A 

while genera Adlercreutzia, Butyricimonas, Odoribacter, Methanobrevibacter, 

Blautia, Butyrivibrio, Coprococcus, Dehalobacterium, Dorea, Oscillospira, rc4-4 and 

Oxalabacter were overrepresented in cecal samples of rabbits raised in farm B. 

Interestingly, genera Epulopiscium, p-75-a5, Phascolarctobacterium, 

Campylobacter and Desulfovibrio were only found in samples collected from farm A 

(Table 4.2).  

 

 

 

Phylum 
  

Mean relative 
abundance in 

farm A (%) (SD) 

Mean relative 
abundance in 

farm B (%) (SD) 

Estimated 
difference farm 
A - farm B ± SE 

PFDR 

  

Actinobacteria 1.62 (0.67) 1.84 (0.33) -0.14 ± 0.08 0.09 

Bacteroidetes 6.84 (1.81) 4.03 (0.70) 2.74 ± 0.22 0.00 

Cyanobacteria 0.77 (0.40) 1.05 (0.36) -0.39 ± 0.05 0.00 

Euryarchaeota 0.13 (0.19) 0.44 (0.17) -0.28 ± 0.02 0.00 

Firmicutes 75.83 (3.34) 79.66 (1.53) -3.78 ± 0.41 0.00 

Proteobacteria 1.83 (0.62) 0.66 (0.12) 1.14 ± 0.07 0.00 

Tenericutes 7.21 (1.47) 7.25 (0.93) 0.00 ± 0.18 0.99 

Verrucomicrobia 1.62 (0.45) 0.91 (0.24) 0.68 ± 0.05 0.00 
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Table 4.2| Relative abundances of genera, grouped by phylum, differentially 

represented between farms (PFDR < 0.05). 

Genus 
Mean relative 
abundance in 

farm A (%) (SD) 

Mean relative 
abundance in 

farm B (%) (SD) 

Estimated 
difference farm 
A - farm B ± SE 

Actinobacteria    
  Adlercreutzia 0.89 (0.47) 1.14 (0.23) -0.19 ± 0.06 
Bacteroidetes    
  Bacteroides 1.88 (0.67) 0.80 (0.35) 1.10 ± 0.08 
  Butyricimonas 0.16 (0.19) 0.35 (0.17) -0.19 ± 0.02 
  Odoribacter 0.23 (0.21) 0.44 (0.20) -0.21 ± 0.03 
  Parabacteroides 0.25 (0.18) 0.07 (0.07) 0.18 ± 0.02 

  Rikenella 0.39 (0.24) 0.18 (0.13) 0.25 ± 0.03 
Euryarchaeota    
  Methanobrevibacter 0.13 (0.19) 0.44 (0.17) -0.28 ± 0.02 
Firmicutes    
  Anaerofustis 0.12 (0.08) 0.08 (0.04) 0.03 ± 0.01 
  Anaerostipes 0.17 (0.08) 0.12 (0.04) 0.06 ± 0.01 
  Blautia 2.86 (0.67) 3.22 (0.46) -0.36 ± 0.08 
  Butyrivibrio 0.10 (0.07) 0.13 (0.06) -0.03 ± 0.01 
  Clostridium 1.09 (0.26) 0.87 (0.13) 0.21 ± 0.03 
  Coprobacillus 0.20 (0.27) 0.14 (0.08) 0.08 ± 0.03 
  Coprococcus 1.96 (0.42) 2.26 (0.29) -0.28 ± 0.05 
  Dehalobacterium 0.05 (0.08) 0.18 (0.03) -0.13 ± 0.01 

  Dorea 0.46 (0.12) 0.51 (0.09) -0.05 ± 0.02 
  Epulopiscium 0.14 (0.11) 0.00 (0.00) 0.15 ± 0.01 
  Oscillospira 2.11 (0.53) 2.85 (0.31) -0.79 ± 0.07 
  p-75-a5 0.13 (0.06) 0.00 (0.00) 0.13 ± 0.01 
  Phascolarctobacterium 0.27 (0.24) 0.00 (0.00) 0.26 ± 0.03 
  rc4-4 0.13 (0.06) 0.23 (0.03) -0.10 ± 0.01 
Proteobacteria    
  Campylobacter 0.08 (0.08) 0.00 (0.00) 0.08 ± 0.01 
  Desulfovibrio 0.58 (0.22) 0.00 (0.00) 0.57 ± 0.03 
  Oxalabacter 0.10 (0.06) 0.13 (0.03) -0.03 ± 0.01 
Tenericutes    
  Anaeroplasma 0.23 (0.18) 0.10 (0.09) 0.12 ± 0.02 

Verrucomicrobia    
  Akkermansia 1.62 (0.45) 0.91 (0.23) 0.68 ± 0.05 

 

The analyses on the CSS-normalized OTUs revealed that 648 out of the 946 OTUs 

showed signatures significantly different between farms. Out of these, 276 were 

overrepresented in farm A, while 372 were overrepresented in farm B. Table 4.S1 

shows the estimated difference between farms for these OTUs, their sequences and 

their assignment at the lowest taxonomic level. Only 9 of them could be assigned at 

species level and 129 were assigned to known genera.  
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These results showed remarkable coincidences with those obtained from the 

analyses directly performed on the relative abundance of taxa at phylum and genera 

levels. An example that illustrates this match is the overrepresentation of genus 

Akkermansia in farm A. This genus is encompassed by phylum Verrucomicrobia 

that was also overrepresented in rabbits raised in farm A, as well as 6 out of the 7 

OTUs assigned to this phylum. 

 

4.3.3.2. Differential growth and cecal microbial composition across feeding 

regimes 

The feeding regime affected the rabbits’ growth performance in both facilities. 

Animals fed AL had a higher growth (48.74 and 55.77 grams/day in farms A and B, 

respectively) than those fed R (38.95 and 38.65 grams/day in farms A and B, 

respectively). The estimated average daily gain difference between AL and R 

groups was 9.79 ± 0.58 and 17.12 ± 1.08 grams per day in farms A and B, 

respectively (P < 0.001). An overrepresentation of phyla Cyanobacteria (estimated 

difference R - AL = 0.11 ± 0.04; PFDR = 0.04) and Verrucomicrobia (estimated 

difference R - AL = 0.11 ± 0.05; PFDR = 0.04) was found in cecal samples of rabbits 

fed R and raised in farm A. On the other hand, phylum Euryarchaeota was 

overrepresented in animals fed R and raised in farm B (estimated difference R - AL 

= 0.14 ± 0.04; PFDR < 0.001). At genus level, the only significant contrast was 

observed for rc4-4 which resulted overrepresented in samples from animals fed AL 

in farm A (estimated difference R - AL = -0.03 ± 0.01; PFDR < 0.001) while in farm B 

none of the genera resulted differentially represented (PFDR > 0.05) between feeding 

regimes. The contrasts based on the CSS-normalized OTUs revealed 51 and 9 

OTUs differentially represented between feeding regimes within farms A and B, 

respectively. Within farm A, 32 OTUs were overrepresented in cecal samples of 

rabbits that were fed AL and 19 OTUs in the samples from rabbits fed R. Within farm 

B, 7 OTUs were overrepresented in cecal samples of rabbits that were fed AL and 

2 OTUs were overrepresented in rabbits that were fed R. Table 4.S2 shows the 

estimated difference between feeding regime within farm of these OTUs, their 

sequences and their assignment at the lowest taxonomic level. The analyses based 

on the CSS-normalized OTUs within farm A were in full accordance with the 
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analyses performed at genus level given that all OTUs assigned to genus rc4-4 

(phylum Firmicutes) were overrepresented in cecal samples of rabbits fed AL. 

 

4.3.3.3. Effect of the presence of antibiotics in the feed 

The effect of the presence of antibiotics in the feed could only be assessed within 

farm B given that all rabbits raised in farm A received feed supplemented with 

antibiotics. Animals that received antibiotics had a slightly higher growth (47.29 

grams/day)  than those that did not (46.59 grams/day). The estimated average daily 

gain difference between groups was not significant (0.69 ± 2.43 grams per day; P = 

0.78). Cecal samples of rabbits that received feed free of antibiotics showed an 

overrepresentation of phyla Cyanobacteria compared to those that received feed 

supplemented with antibiotics (estimated difference without antibiotics - with 

antibiotics = 0.49 ± 0.09; PFDR < 0.001). In addition, the analyses on the CSS-

normalized OTUs revealed an overrepresentation of 15 and 29 OTUs in cecal 

samples of rabbits that received a feed supplemented or free of antibiotics; 

respectively. Table 4.S3 shows the estimated difference between the presence and 

the absence of antibiotics in the feed for the OTUs in which the differences reached 

the significance threshold. The OTU sequences as well as their assignment at the 

lowest taxonomic level are also shown in Table 4.S3. Only 1 of these OTUs could 

be assigned at species level (Bacteroides fragilis) and 2 OTUs at genus level 

(Oscillospira and Coprococcus). 

 

4.3.4. Microbial information as a classifier of cecal samples according 

to farm environment and animal management  

Sparse partial least squares-discriminant analyses (sPLS-DA) on the CSS-

normalized OTUs were conducted to discriminate samples according to the factors 

considered in this study (i.e., the farm where the animal was raised, the presence 

or the absence of antibiotics in the feed and the feeding regime). The tuning process 

of the sPLS-DA conducted to discriminate samples according to the farm where the 

rabbits were raised selected 5 OTUs for component 1 and 1 OTU for component 2 

(Figure 4.4). Component 1 explained 7.00% of the total variance while component 
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2 explained 0.67%. The classification performance of this sPLS-DA could be said to 

be perfect since its overall and balanced error rate (BER) per class across 1000 

replicates of 5-folds cross-validation runs was 0.00 (0.00). Furthermore, two OTUs 

of component 1 had a stability higher than 0.9. 

 

 

Figure 4.4| Sparse partial least squares discriminant analysis representing cecal samples of rabbits raised in 
farm A (blue) and in farm B (orange). 
 

The sPLS-DA performed to discriminate samples across feeding regimes within 

farm A selected 70 OTUs for component 1 and 65 OTUs for component 2 (Figure 

4.5). Component 1 explained 2.34% of the total variance while component 2 

explained 5.58%. The cross-validation assessment of the classification performance 

of this sPLS-DA showed an overall and BER per class of 0.27 (0.02). The stability 

of 18 and 5 OTUs selected in components 1 and 2, respectively, across the different 

cross-validation folds was higher than 0.9.  
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Figure 4.5| Sparse partial least squares discriminant analysis representing cecal samples of rabbits raised in 
farm A and fed R (blue) or AL (orange). 
 

Finally, the sPLS-DA conducted to discriminate samples of animals raised within 

farm B according to the combination of the presence or not of antibiotics in the feed 

and the feeding regime selected 9 OTUs for component 1 and 70 OTUs for 

component 2 (Figure 4.6). Component 1 explained 3.05% of total variance and 

defined the discrimination between samples from animals fed with antibiotics and 

those fed without antibiotics.  On the other hand, component 2 explained 3.05% of 

total variance and defined the discrimination between samples from animals fed R 

and those belonging to animals fed AL. The cross-validation assessment of the 

classification performance of this sPLS-DA showed an overall BER of 0.32 (0.15). 

The BER per class was 0.34 (0.12) for samples fed R without antibiotics, 0.46 (0.14) 

for samples fed AL without antibiotics, 0.29 (0.11) for samples fed R with antibiotics, 

and 0.20 (0.07) for samples fed AL with antibiotics. The stability of 3 and 11 OTUs 

selected in components 1 and 2, respectively, across the different cross-validation 

folds was higher than 0.9.  
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Figure 4.6| Sparse partial least squares discriminant analysis representing cecal samples of rabbits raised in 
farm B and fed R without antibiotics (blue), fed AL without antibiotics (orange), fed R with antibiotics (gray), and 
fed AL with antibiotics (green). 
 

4.4. Discussion 

The influence of farm environment and common commercial practices of animal 

management on their gut microbiota are not yet well known in many livestock 

species. In this study, we have aimed to disentangle potential changes in microbial 

diversity and composition of meat rabbit cecal communities as a result of being 

raised in different farms and subjected to different handling during their growing 

period. To shed light on this matter, we conducted a microbiota comparison of a 

large number of rabbits raised in different farms, feeding regimes, and fed with feed 

supplemented or free of antibiotics.  
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4.4.1.  16S rRNA gene-based characterization of meat rabbit cecal 

microbiota 

The Illumina MiSeq sequence processing of samples collected from these animals 

revealed that phyla Firmicutes, Tenericutes and Bacteroidetes dominate the 

growing meat rabbit cecal ecosystem representing more than 90% of its entire 

microbial composition. This fact is in accordance with previous studies that have 

characterized the rabbit cecal microbiota (Zou et al., 2016; Chen et al., 2019; 

Velasco-Galilea et al., 2018) and reported Firmicutes as the predominant phylum. 

However, there are discrepancies between studies in establishing which other phyla 

are also prevalent in this ecosystem. Whereas we found phyla Tenericutes and 

Bacteroidetes representing 7.22% and 5.93% of the cecal microbial composition, 

respectively, Chen et al. 2019 and Zou et al. (2016) reported Bacteroidetes as the 

second predominant phylum representing 18% and 20% of New Zealand White and 

Rex rabbit cecal microbial composition, respectively. Conversely, other studies that 

have previously characterized meat rabbit fecal microbiota identified higher relative 

abundances of phyla Proteobacteria and Verrucomicrobia (Kylie et al., 2018; Eshar 

and Weese, 2014). Velasco-Galilea et al. (2018) reported Firmicutes (76.42%), 

Tenericutes (7.83%) and Bacteroidetes (7.42%) as the predominant phyla of meat 

rabbit fecal and cecal microbial communities. These discrepancies found across 

studies could be attributed to technical issues (e.g., pair of primers, sequencing 

platform, bioinformatic pipeline employed to process raw sequences or reference 

database used for the taxonomic assignment of the representative sequences) or 

to purely biological reasons (e.g., breed, age or section of the GIT sampled). 

Nonetheless, Kylie et al. (2018) depicted that the relative increase in less beneficial 

phyla, such as Proteobacteria, could be related to seasonal climate changes that 

directly impact rabbits' health. This impact affects the susceptibility to enteritis and 

possibly feed conversion efficiency. In any case, this phylum was more prevalent in 

farm A where the animals were more exposed to changes in climate conditions. 
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4.4.2. Farm environment modify alpha diversity 

Regarding the alpha diversity assessment, Shannon and the observed number of 

OTUs indexes revealed the existence of significant differences between the 

experimental farm where the rabbits were raised. Cecal samples collected from 

rabbits raised in farm B had greater richness and diversity than those belonging to 

animals raised in farm A. This could be explained by more stable environmental 

conditions in farm B (i.e., facility better insulated) than in farm A. It has been already 

shown that intestinal health is positively associated with microbial diversity (Larsen 

and Claassen, 2018). In our case, this better health could be said to be granted by 

the more stable environmental conditions offered by farm B. The most exposed 

environmental conditions of farm A, combined with the fact that samples of animals 

raised in this facility were collected from rabbits produced in 4 different batches, 

could also explain the larger variability in both indexes observed in this farm (Kylie 

et al., 2018). Despite not having observed significant differences between the 

presence or not of antibiotic in the feed, nor between feeding regimes, it is 

noteworthy to mention that samples collected from animals fed AL in both farms had 

a greater, although not significant, richness than those fed R. This fact is consistent 

with previous studies in mice that observed a lower alpha diversity in animals with 

a restricted level of feeding (O’Neil et al., 2017; Chen et al., 2016; Zarrinpar et al., 

2014). Surprisingly, but in agreement with our results, studies performed in pigs 

(Soler et al., 2018), chicken (Kumar et al., 2018) and Rex rabbits (Zou et al., 2016) 

also did not show clear significant differences on alpha diversity indexes between 

animals fed on diets with antibiotics with respect to those on diets free of antibiotics. 

Nevertheless, these studies were able to detect differences in the relative 

abundances of some specific species between diets. For example, Kumar et al. 

(2018) found that the inclusion of bacitracin in the feed did not affect the chicken 

bacterial phyla. However, they observed differences between the control and the 

bacitracin-fed group in the ileal and cecal bacterial populations at lower taxonomic 

levels. It is worth noting that the antibiotic withdrawal at the beginning of the last 

week of the rabbits’ lives equalized the diets of both groups and possibly their 

microbial populations, which may explain some lack of differences between them. 

 



 
Genetic determinism of meat rabbit cecal microbiota and its role in the host's feed efficiency  

186 

4.4.3. Farm environment has a large impact on rabbit cecal microbiota 

Despite the lack of differences in microbial diversity and richness across 

management factors; univariate studies revealed differential microbial composition 

across the studied factors. In addition, the performed multivariate analysis 

evidenced a certain classification power of the samples on the different levels of 

management and environment factors based on the microbial composition of the 

samples. 

 

As it might be expected, analyses of variance confirmed that the breeding farm 

strongly impacts meat rabbit cecal microbial composition. Our results revealed that 

the relative abundances of 6 out of 8 phyla are differentially represented between 

both farms. At genus level, we detected significant differences in the relative 

abundances of almost all of them. Genera Bacteroides, Parabacteroides, Rikenella, 

Anaerofustis, Anaerostipes, Clostridium, Coprobacillus, Anaeroplasma and 

Akkermansia were enriched in cecal samples of rabbits housed in farm A. The first 

three belong to phylum Bacteroidetes and genus Bacteroides is the most abundant 

of them in meat rabbit cecum. Species of this genus are anaerobic Gram-negative 

members of the family Bacteroidaceae that play an important role in the degradation 

of vegetal polysaccharides and amino acid fermentation in the mammal GIT (Fang 

et al., 2017; Dai et al., 2011). Moreover, this genus is involved in propionic acid and 

lactate formation depending on nitrogen organic availability. Nonetheless, some 

authors showed that great amounts of Bacteroides could predict obesity tendency. 

Parabacteroides is also an anaerobic Gram-negative bacterium (family 

Porphyromonadaceae) involved in amino acid transport and metabolism, energy 

production and conversion, lipid transport and metabolism, recombination and 

repair, cell cycle control, cell division, and cell motility in the intestinal microbiota of 

the growing rabbit (Sun et al., 2020). This genus was specifically found in the cecal 

microbiota of mice raised in conventional conditions and absent in those raised in 

pathogen-free facilities in a study performed under different housing conditions 

(Müller et al., 2016).  

 

Within the phylum Firmicutes, genus Clostridium (family Clostridiaceae) is an 

anaerobic Gram-positive bacterium that inhabits the GIT of many mammals where 
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it acts by degrading cellulose. However, some Clostridium species (e.g., C. 

perfringens and C. difficile) are pathogenic, and an enrichment of this genus has 

previously been described in rabbits affected by epizootic rabbit enteropathy (Bäuerl 

et al., 2014). This genus, together with genus Bacteroides, was found enriched in 

the cecal microbiota of mice housed in open cages compared with those kept in 

individual ventilated cages (Thoene-Reineke et al., 2014). Both genera have been 

associated with an exacerbation of the intestinal inflammatory response in mammals 

(Terán-Ventura et al., 2010). Genus Anaerofustis (family Eubacteriaceae) has been 

found enriched in cecal samples of rabbits affected by paratuberculosis infection 

(Mycobacterium avium) (Arrazuria et al., 2016).  

 

Within the phylum Verrucomicrobia, genus Akkermansia is an anaerobic Gram-

negative bacterium that encompasses mucin degrader species (Belzer and De Vos, 

2012). In the cecum, a proper enrichment of this genus could maintain a suitable 

mucosal turn-over, thus exerting a protective effect that could help the animal to 

deal with inflammatory processes.  

 

It is worth mentioning that we have detected genera Epulopiscium, p-75-a5, 

Phascolarctobacterium, Campylobacter and Desulfovibrio only in the cecal samples 

of rabbits housed in farm A. The first three are encompassed within the phylum 

Firmicutes. Genus Epulopiscium is a large size Gram-positive bacterium that has a 

nutritional symbiotic relationship with surgeonfish that eats algae and detritus. This 

bacterium is physically similar to the phylogenetically related Metabacterium 

polyspora which is an endospore-producing bacterium isolated from the cecum of 

guinea pigs (Angert et al., 1996). On the other hand, genera Campylobacter and 

Desulfovibrio are Gram-negative bacteria that belong to phylum Proteobacteria. 

Some species of these genera are pathogens responsible for infections and 

diarrheas in mammals. The exclusive presence of these genera in farm A could 

indicate the existence of a potential dysbiosis of the animals raised in that facility 

that could affect their sanitary status and growth. While farm A was a semi-open-air 

facility, farm B was artificially ventilated and offered more controlled environmental 

conditions that favor animal growth. Moreover, the presence of sulfate-reducing 

bacteria (SRB) such as Desulfovibrio could be enhanced by sulfate-secreting 
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bacteria (SSB) such as Rikenella in farm A where this genus is significantly more 

predominant. It is noteworthy to mention that SRB could also obtain sulfate via 

cross-feeding mediated by Bacteroides-encoded sulfatases (Rey et al., 2013), and 

interestingly, this phylum is more prevalent in farm A. 

 

Regarding sample classification based on the sPLS-DA study, given the important 

differences in gut microbial composition found between farms, a perfect 

classification of the samples can be achieved with only 5 OTUs. One of these 5 

OTUs was overrepresented in farm B and belonged to family S24-

7 (phylum Bacteroidetes). The remaining 4 were overrepresented in farm A and 

belonged to family Barnesiellaceae (phylum Bacteroidetes), order Bacteroidales 

(phylum Bacteroidetes), and genera Desulfovibrio (phylum Proteobacteria) and 

Bacteroides (phylum Bacteroidetes). It is worth mentioning that these 5 OTUs were 

also declared as differentially represented between farms by the univariate 

analyses. 

 

4.4.4. Administration of antibiotics impact on some taxa relative 

abundances 

Within farm B, the effect of the presence of antibiotics in the feed was assessed by 

comparing the microbial cecal composition of rabbits fed with antibiotics with that of 

some animals that received feed without antibiotics. As stated above, we did not 

detect significant differences in alpha diversity, nor in genera relative abundances, 

between both groups. However, some significant differences were observed at 

phylum and OTU levels. An overrepresentation of phylum Cyanobacteria was found 

in rabbits fed without antibiotics. The detection of this bacterial phylotype, commonly 

assigned to photosynthetic activity, in the rabbit cecum could suggest contamination 

during the GIT sampling. However, Zeng et al. (2015) previously reported its 

presence in rabbit feces. In the present study, all OTUs taxonomically assigned to 

phylum Cyanobacteria are as well encompassed in the order YS2. Interestingly, it 

was demonstrated that this order does not really have photosynthetic capacity and 

it is currently classified within the candidate phylum Melainabacteria (Di Rienzi et 

al., 2013). The non-photosynthetic cyanobacteria YS2, now named 
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Gastranaerophilales, is a fermenter gut-associated order present in humans and 

other animals such as squirrels, where its exact role is unknown but it has the 

capacity to produce hydrogen, fix nitrogen and synthesize vitamins B and K (Di 

Rienzi et al., 2013; Monchamp et al., 2019; Liu et al., 2020). Our results, in 

accordance with Kylie et al. (2018), revealed that rabbits fed without antibiotics 

exhibited higher abundances of OTUs assigned to phylum Bacteroidetes than those 

fed with antibiotics. In addition, samples of rabbits that received antibiotics had a 

significant increase of an OTU taxonomically assigned to genus Coprococcus. 

Interestingly, a study that evaluated the differences in bacterial communities of Rex 

rabbits fed with different antibiotics also found an overrepresentation of this 

bacterium in animals treated with zinc bacitracin (Zou et al., 2016). Coprococcus is 

an anaerobic bacterium that may protect against colon cancer in humans by 

producing butyric acid (Ai et al., 2019). We hypothesized that the administration of 

antibiotics could modulate the abundance of some Coprococcus species to provide 

intestinal protection on meat rabbits. However, it is important to recognize that the 

reduced sample size of the group of rabbits fed without antibiotics may have limited 

the statistical power to detect microbial composition differences associated with this 

factor. 

 

4.4.5. Feed restriction modifies Euryarchaeota and some bacteria 

relative abundances 

Within farm B, the effect of the feeding regime in microbial composition was also 

assessed by comparing samples of animals fed R with those fed AL. The main 

difference found was for phylum Euryarchaeota which was overrepresented in 

animals fed R in farm B. All Euryarchaeota species found in the rabbit cecum belong 

to genus Methanobrevibacter that encompasses different hydrogenotrophic 

methane-producing species. Previous studies in humans (Shen and Maitin, 2015) 

and cattle (McCabe et al., 2015; McGovern et al., 2017) found an overrepresentation 

of Methanobrevibacter species in individuals submitted to feed restriction and a 

negative correlation between the abundance of this bacterium and body mass index. 

A prevalence of Methanobrevibacter species could be a positive indicator of a 

healthy microbiota since restricted animals showed an overrepresentation of this 
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genus. The main purpose of applying feed restriction is to improve intestinal health, 

reducing weaning mortality. The growth of Methanobrevibacter is supported by 

fermenters such as Gastranaerophilales and butyrate-producing bacteria such as 

Anaereostipes via interspecies formate/hydrogen transfer (Bui et al., 2019). A study 

in mice determined that Methanobrevibacter smithii facilitates Bacteroides 

thetaiotaomicron capacity to digest glycans resulting in increased production of 

short-chain fatty acids (Samuel and Gordon, 2006). The same study defined M. 

smithii as a “power broker” that regulates polysaccharide fermentation efficiency that 

influences the fat stores. The lower prevalence of methanogenic archaea in farm A 

could be explained by the high presence of SRB that outcompete with methanogens 

for hydrogen consumption. This fact could favor hydrogen sulfide production and 

compromise the rabbits’ health.  

 

Regarding the sample classification based on the sPLS-DA study conducted within 

farm B, component 1 and component 2 discriminated between animals that did or 

did not received antibiotics in the feed and between feeding regimes, respectively. 

It is worth mentioning that 8 out of 9 OTUs selected in component 1 were also 

declared as differentially represented between the presence or the absence of 

antibiotics in the feed by the univariate analyses. Within farm A, an sPLS-DA was 

also performed to classify samples according to the feeding regime using microbial 

information. Although a large number of OTUs were selected as classifier variables 

in the tuning process of this sPLS-DA, the classification error rate was high. It 

implied a poor discrimination capacity of samples according to the feeding regime 

the animal received. Nevertheless, bootstrap univariate analyses of variance 

detected some significant differences at all taxonomic levels analyzed between 

feeding regimes within farm A. At genus level, rc4-4 was overrepresented in animals 

fed AL. This genus belongs to phylum Firmicutes and it is known as an obesity-

associated bacterium (Ziętak et al., 2016) and as a pathogenic candidate identified 

in mice with multiple sclerosis (Gandy et al., 2019). A potential pro-inflammatory role 

has been proposed for this genus (Gandy et al., 2019) what could be related to a 

reduced incidence of enteric disorders when feed restriction is applied. It is worth 

mentioning that family Peptococcaceae, which encompasses genus rc4-4, is 

strongly related to total rabbit weight gain from weaning to 12-week-old (North et al., 
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2019). Although in our study this genus was prevalent in animals fed AL, its 

association with weight gain is not clear since the greater growth exhibited by these 

animals was consequence of higher feed intake.  

 

4.4.6. Rabbit cecal microbiota is shaped by farm environment and 

animal management  

Different approaches have been applied in this study to evaluate the effect of 

different environments and management practices, commonly used in rabbit 

production, in their cecal microbial composition and diversity. Those animals raised 

in the best insulated facility (farm B) appear to have a microbiota characteristic of 

healthier animals than those raised in the open-air facility (farm A). It is worth 

mentioning that the rabbits were housed in cages interspersed with feeding regime. 

This fact could make possible the exchange of microorganisms between animals of 

different feeding regimes and therefore have reduced the differences observed 

between regimes. However, the joint consideration of 70 OTUs in the sPLS-DA 

made possible a certain discrimination power of samples according to the level of 

feeding received by each animal raised in farm A. It implies the existence of cecal 

microbiota content patterns characteristic of each regime which could be revealed 

thanks to the univariate analyses conducted at different taxonomic levels. Similarly, 

the sPLS-DA performed within farm B also involved the consideration of 70 OTUs 

to discriminate samples according to the amount of feed consumed. Within this farm, 

the classification of samples regarding the presence or the absence of antibiotics in 

the feed needed a smaller number of OTUs than the feeding regime but greater than 

the farm. This suggests that the effect of the presence of antibiotic in feed is stronger 

than the feeding level. The lack of a group of samples collected from animals that 

did not receive antibiotics precluded the evaluation of the magnitude of importance 

of this effect over the feeding level on the cecal microbiota of animals raised in farm 

A. It might have been possible that the magnitude of the effect of the presence of 

antibiotics in the feed was larger in farm A than that observed in farm B. The 

experimental design of this study prevented the comparison of the effect of antibiotic 

treatments across farms on rabbits’ microbial communities. The implication of the 

discussed microbial composition and diversity differences originated by the studied 
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management and environmental factors on the animals’ performance still needs to 

be investigated. In future studies the role of specific groups of bacteria in rabbit 

growth and feed efficiency will be analyzed. 

 

4.5. Conclusions 

The analysis of a large number of animals from a paternal rabbit line has allowed a 

deeper comprehension of the role played by different management and 

environmental factors shaping the composition and diversity of cecal microbial 

communities. It reveals that the farm environment offered to the rabbits during their 

growth play a key role that can result in different microbial alpha diversity and 

composition of almost all species that inhabit the rabbit GIT. This highlights the 

importance that a stable and controlled environment could have in the intestinal 

health and, consequently, in animal performance. It seems clear that the better 

insulated conditions of farm B favored the presence of a gut microbiota 

characteristic of healthier animals. Although the level of feeding and the presence 

of antibiotics in the feed did not modify the global diversity of cecal microbial 

communities, these factors can increase or decrease the prevalence of specific 

bacteria which could lead to a microbial composition potentially beneficial for the 

animal or, at the other extreme, to an origin of future intestinal dysbiosis. 

 

4.6. Methods  

4.6.1.  Animals and experimental design 

All biological samples used in the study were collected from animals of an 

experiment conducted at the Institute of Agrifood Research and Technology (IRTA) 

in different periods and involving two different farms. The objective of that 

experiment was to estimate the effect of the interaction between the genotype and 

the feeding regime (i.e., the amount of feed provided during fattening) on growth, 

feed efficiency, carcass characteristics, and health status of the animals (Piles and 

Sánchez, 2019). For this particular study, 425 meat rabbits from Caldes line (Gómez 

et al., 2002) of that experiment were randomly selected. Most of them (336) were 

raised in 4 different batches in a semi-open-air facility (farm A). The remaining 
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animals (89) were produced in a single batch in another facility under better 

controlled environmental conditions (farm B). Rabbits raised in farm A were housed 

in collective cages containing 8 kits each one while those raised in farm B were 

housed in cages with 6 kits each one. All animals were raised under the same 

management conditions and received the same standard pelleted diet. Twenty-

three rabbits raised in farm B received a diet free of antibiotics and the remaining 

sixty-six received the same diet but supplemented with antibiotics. Those raised in 

farm A received oxytetracycline, valnemulin, and colistin while those in farm B 

received oxytetracycline, valnemulin and neomycin. At the time this experiment was 

conducted, it was possible to use up to four types of molecules to prevent or treat 

the emergence of potential infectious diseases on farms. However, nowadays, only 

one antibiotic molecule is allowed. During the last fattening week all the animals 

received an antibiotic free diet. Feed was supplied once per day in a feeder with 

three places for the 4-5 weeks that the fattening lasted. Water was provided ad 

libitum during the whole fattening period. The animals were under two different 

feeding regimes: (1) ad libitum (AL) or (2) restricted (R) to 75% of the AL feed intake. 

The amount of feed supplied to the animals under R feeding regime in a given week 

for each batch was computed as 0.75 times the average feed intake of kits on AL 

from the same batch during the previous week, plus 10% to account for a feed intake 

increase as the animal grows. Kits were randomly assigned to one of these two 

feeding regimes after weaning (32 days of age). They were categorized into two 

groups according to their size at weaning (big if their body weight was greater than 

700 g or small otherwise) aiming to obtain homogenous groups regarding animal 

size within feeding regime. A maximum of two kits of the same litter were assigned 

to the same cage in order to remove the possible association between cage and 

maternal effects on animal growth during the fattening period. The distribution of 

these animals across the different levels of management factors is shown in Table 

4.3. The body weight of each animal was weekly recorded. The individual average 

daily gain was computed as the slope of the within animal regression of all body 

weight measurements recorded during the growing period. 
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Table 4.3| Distribution of rabbits in groups according to different management 

factors. 

Farm Batch Feed Feeding regime Number of rabbits 

A 1 With antibiotics Ad libitum 27 

A 1 With antibiotics Restricted 30 

A 2 With antibiotics Ad libitum 35 

A 2 With antibiotics Restricted 41 

A 3 With antibiotics Ad libitum 61 

A 3 With antibiotics Restricted 53 

A 4 With antibiotics Ad libitum 57 

A 4 With antibiotics Restricted 32 

B 5 With antibiotics Ad libitum 32 

B 5 With antibiotics Restricted 34 

B 5 Without antibiotics Ad libitum 12 

B 5 Without antibiotics Restricted 11 

 

4.6.2. Sample processing, DNA extraction and sequencing  

Animals were slaughtered (at 66 and 60 days of age in farm A and farm B, 

respectively) and cecal samples of each rabbit were collected in a sterile tube, kept 

cold in the laboratory (4ºC) and stored at -80ºC. DNA extraction, amplification, 

Illumina library preparation and sequencing followed methods described previously 

(Velasco-Galilea et al., 2018). Whole genomic DNA was extracted from 250 mg of 

each cecal sample using ZR Soil Microbe DNA MiniPrepTM kit (ZymoResearch, 

Freiburg, Germany) according to manufacturer’s instructions with the following 

modification: cecal samples were mechanically lysed in a FastPrep-24TM 

Homogenizer (MP Biomedicals, LLC, Santa Ana, CA, United States) at a speed of 

1 x 6 m/s for 60 s facilitating an efficient lysis of archaea and bacteria species. 

Integrity and purity of DNA extracts were measured with Nanodrop ND-1000 

spectrophotometer equipment (NanoDrop products; Wilmington, DE, United States) 

according to Desjardins and Conklin’s protocol (Desjardins and Conklin, 2010). All 

DNA extracts had adequate integrity and purity (absorbance ratio 260 nm/280 nm > 

1.6) to avoid PCR inhibition issues. 
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A fragment of the 16S rRNA gene including the V4-V5 hypervariable regions was 

amplified with F515Y/R926 primer combination (5’-GTGYCAGCMGCCGCGGTAA-

3’, 5’-CCGYCAATTYMTTTRAGTTT-3’) (Parada et al., 2016) and then re-amplified 

in a limited-cycle PCR reaction to add sequencing adaptors and 8 nucleotide dual-

indexed barcodes of multiplex Nextera® XT kit (Illumina, Inc., San Diego CA, United 

States) following manufacturer’s instructions. The initial PCR reactions were 

performed for each sample using 12.5 µl 2x KAPA HiFi HotStart Ready Mix, 5 µl 

forward primer, 5 µl reverse primer and 2.5 µl template DNA (5 ng/ µl). The initial 

PCR conditions were as follows: initial denaturation for 3 minutes at 95 ºC, 25 cycles 

of 30 seconds at 95 ºC, 30 seconds at 55 ºC and 30 seconds at 72 ºC; and final 

extension for 2 minutes at 72 ºC. The addition of indexes and sequencing adaptors 

to both ends of the amplified regions took place in a second PCR by using 25 µl 2x 

KAPA HiFi HotStart Ready Mix, 5 µl index i7, 5 µl index i5, 10 µl PCR Grade water 

and 5 µl concentrated amplicons of initial PCR. The second PCR conditions were 

as follows: initial denaturation for 3 minutes at 95 ºC, 8 cycles of 30 seconds at 95 

ºC, 30 seconds at 55 ºC and 30 seconds at 72 ºC; and final extension for 5 minutes 

at 72 ºC. Final libraries were cleaned up with AMPure XP beads, validated by 

running 1 µl of a 1:50 dilution on a Bioanalyzer DNA 1000 chip (Agilent 

Technologies, Inc., Santa Clara, CA, United States) to verify their size, quantified by 

fluorometry with PicoGreen dsDNA quantification kit (Invitrogen, Life Technologies, 

Carlsbad, CA, United States), pooled at equimolar concentrations and paired-end 

sequenced in 5 parallel plates in an Illumina MiSeq 2 x 250 platform at the Genomics 

and Bioinformatics Service (SGB) of the Autonomous University of Barcelona 

(UAB). 

 

4.6.3. Bioinformatic pipeline for OTU calling 

Sequence processing was performed using QIIME software (version 1.9.0) 

(Caporaso et al., 2010). In a first step, the resulting paired-ended V4-V5 16S rRNA 

gene reads were assembled into contigs with the python script 

multiple_join_paired_ends.py. Then the contigs were curated using the script 

split_libraries.py with default parameters in order to assign them to samples and to 

discard those with a low-quality (Q19 was the minimum acceptable quality score). 
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Chimeric sequences generated during the process of DNA amplification were 

detected with a UCHIME algorithm (Edgar et al., 2011) and removed. The totality of 

filtered contigs were clustered into operational taxonomic units (OTUs) with a 97% 

similarity threshold using the script pick_open_reference_otus.py with default 

parameters (Rideout et al., 2014) that grouped, through a UCLUST algorithm 

(Edgar, 2010), the sequences against Greengenes reference database (version 

gg_13_5_otus) and also made a de novo clustering of those that did not match the 

database. The generated OTU table was filtered at: (1) sample level: by discarding 

samples with less than 5,000 final sequence counts and at (2) OTU level: by 

removing the doubleton ones. The filtered OTU table contained the sequence 

counts of 963 OTUs for 425 samples. Taxonomic assignment of representative 

sequences of each OTU defined (963) was conducted by mapping them to the 

Greengenes reference database gg_13_5_otus with the UCLUST consensus 

taxonomy assigner (QIIME default parameters). The raw sequence data were 

deposited in the sequence read archive of NCBI under the BioProject accession 

number PRJNA524130. Metadata, the prefiltered and normalized OTU tables, and 

corresponding taxonomic classifications are also included as Additional files 4.1, 

4.2, 4.3 and 4.4, respectively. 

 

4.6.4. Models and statistical methods 

In order to study differences in diversity and richness between rabbits grouped 

according to farm environment and management that they received, two alpha 

diversity indexes (Shannon and the observed number of OTUs) were computed 

from the OTU table rarified to 10,000 sequences per sample with “phyloseq” R 

package (McMurdie and Holmes, 2013). The statistical method chosen to assess 

alpha diversity differences between these groups of animals was an analysis of 

variance that included a factor resulting from the combination of four factors (the 

farm where the animal was raised, the batch, the presence or the absence of 

antibiotics in the feed and the feeding regime). The significance threshold was set 

at 0.05 for type I error.  
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Different approaches were considered to assess the influence of the environments 

and management factors on microbial composition. A bootstrap analysis of variance 

was individually implemented for each OTU to test whether it was differentially 

represented between the different categories of the factors studied. This univariate 

analysis was conducted by normalizing the OTU table with the cumulative sum 

scaling (CSS) method (Paulson et al., 2013) and only for those OTUs which were 

detected in at least 5% of the samples and had a sum of its counts resulting in a 

frequency greater than 0.01% of the total sum of all OTUs counts across all samples.  

It was implemented by fitting a model defined by the combination of the four 

aforementioned factors by using lm() function in R (R Development Core Team, 

2010). Then, the differences between the CSS-normalized OTUs counts in the 

different levels of the studied factors were tested. The significance between the 

levels of the main factors: farm, presence of antibiotics in the feed and feeding 

regime was assessed using an F statistic. When the involved interaction terms were 

significant, the contrasts of interest were studied nested within the levels of other 

interacting factors, i.e., feeding regime was studied within farm levels. When the 

interaction terms were not significant, the effects of the different levels were 

averaged, i.e., the effects of the levels of the batches within farm A were averaged 

to present the effect associated with this farm. In the performed F tests, instead of 

relying on the theoretical distribution of the statistic under the null hypothesis to 

define the p-values, they were empirically computed using bootstrap after 1,000 

permutations of the dependent variable with respect to the design matrix of factors 

in the model. The use of bootstrapping enabled the hypothesis test to be done 

without the necessity of assuming that data are normally distributed, which is an 

assumption that fails for OTUs counts. P-value was defined as the proportion of 

bootstrap rounds having an F statistic value equal to or greater than that obtained 

with the original dataset. P-values were corrected defining a false discovery rate 

(FDR) of 0.05 (Benjamini and Hochberg, 1995). This bootstrap analysis of variance 

approach was also implemented in order to study the effect of the management 

factors on the relative abundance of bacteria at phylum and genus levels. 

 

The value of the microbial information to classify samples into the three factors 

considered in our study was explored using multivariate techniques. In particular, 
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sparse partial least squares-discriminant analysis (sPLS-DA) (Lê Cao et al., 2008) 

was used to find the combination of OTUs that allowed the best classification of 

cecal samples according to: (1) the farm where the animals were raised, (2) the 

feeding regime within farm A and (3) the combination of feeding regime and the 

presence or absence of antibiotics in the feed for the animals raised in farm B. This 

approach was implemented through the R package “mixOmics” (Rohart et al., 

2017). In a first step, the function tune.splsda() was used to select the optimal 

sparsity parameters of the sPLS-DA model: the number of components and the 

number of variables (OTUs) per component. For the tuning process, a 5-fold cross-

validation repeated 10 times was performed one component at a time, with a 

maximum of 4 components, on an input grid of values that indicate the number of 

variables to select on each component. The sparsity parameters were defined, 

based on the BER and centroids distance, and then included in the final sPLS-DA 

model. Samples were represented on the first two components and colored 

according to their class (e.g., R or AL in the case of the feeding regime) in a sample 

plot with the function plotIndiv(). The performance of the sPLS-DA model was 

assessed with a 5-fold cross-validation repeated 1,000 times that randomly split the 

data in training and validation sets. In this data partition, it was ensured that 20% of 

the samples within each level of the discriminant factor were assigned to the 

validation set. Five different partitions were performed for each replicate to 

guarantee a different sample distribution in each validation set. The sPLS-DA model 

with the sparsity parameters previously defined was adjusted in the training set and 

its classification performance was assessed in the validation set using the overall 

and BER per class as criteria. The stability of the OTUs selected on each component 

was also assessed in the cross-validation by computing the selection frequency of 

each variable across the replicates. 

 

4.7. List of abbreviations 

AL  ad libitum 

BER  balanced error rate 

CSS  cumulative sum scaling 

FDR  false discovery rate 
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GIT  gastrointestinal tract 

NGS  next generation sequencing 

OTU  operational taxonomic unit 

PCR  polymerase chain reaction 

R  restricted 

sPLS-DA sparse partial least squares-discriminant analysis  

SRB  sulfate-reducing bacteria (SRB)  

SSB  sulfate-secreting bacteria (SRB)  
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5.1. Abstract 

Gut microbiota plays an important role in nutrient absorption and could impact rabbit 

feed efficiency. This study aims at investigating such impact by evaluating the value 

added by microbial information for predicting individual growth and cage phenotypes 

related to feed efficiency. The dataset comprised individual average daily gain and 

cage-average daily feed intake from 425 meat rabbits, in which cecal microbiota 

was assessed, and their cage mates. Despite microbiota was not measured in all 

animals, consideration of pedigree relationships with mixed models allowed the 

study of cage-average traits. The inclusion of microbial information into certain 

mixed models increased their predictive ability up to 20% and 46% for cage-average 

feed efficiency and individual growth traits, respectively. These gains were 

associated with large microbiability estimates and with reductions in the heritability 

estimates. However, large microbiabililty estimates were also obtained with certain 

models but without any improvement in their predictive ability. A large proportion of 

OTUs seems to be responsible for the prediction improvement in growth and feed 

efficiency traits, although specific OTUs taxonomically assigned to 5 different phyla 

have a higher weight. Rabbit growth and feed efficiency are influenced by host cecal 

microbiota, thus considering microbial information in models improves the prediction 

of these complex phenotypes. 

 

5.2. Introduction 

Feed efficiency (FE) is a fundamental trait in rabbit breeding since food expenses 

often represent up to 70% of the production costs (Cartuche et al., 2014). The 

difficulties entailed in measuring the individual animals’ feed intake (FI) are the main 

reason why most programs do not perform a direct selection for FE. An alternative 

commonly used to improve FE is the indirect selection for average daily gain (ADG) 

or body weight (BW) at the end of the growing period (Estany et al., 1992). 

Nevertheless, the genetic correlation between these growth traits and FE may be 

not high enough to result in an optimal selection response (Piles et al., 2004). 

Therefore, it would be worth exploring new traits allowing alternative selection 

strategies such as FE definitions based on cage-average FI records. In this regard, 
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the present study uses cage-average records of FI and individual records of BW 

collected from animals raised in groups, thus reflecting the reality of commercial 

farms where animals are raised in groups. 

 

The cecum is the main organ harboring the microbial fermentation processes in the 

domestic meat rabbit, Oryctolagus cuniculus. This organ hosts a complex microbial 

ecosystem dominated by bacterial phyla Firmicutes, Tenericutes, and Bacteroidetes 

(Velasco-Galilea et al., 2018a). The interactions that are continuously taking place 

between bacteria and their host ensure the homeostatic balance maintenance of the 

cecum ecosystem. Previous studies revealed that relative abundances of these, and 

other less abundant taxa, vary between individuals and are affected by external 

factors such as the breeding farm, the level of feeding, or the administration of 

antibiotics (Velasco-Galilea et al., 2020). 

 

In the field of livestock production, certain studies have hypothesized that the rabbit 

gut microbiota could be associated with growth (Zeng et al., 2015) and FE (Drouilhet 

et al., 2016). Furthermore, a recent study has identified several operational 

taxonomic units (OTUs) and KEEG pathways associated with ADG in commercial 

meat rabbits (Fang et al., 2020a). Nonetheless, a fact that should not be overlooked 

is the strong impact on the animals’ growth and FE exerted by the breeding 

environment or common rabbit breeding strategies such as feed restriction (Gidenne 

et al., 2012), thus when considering the role of gut microbiota on performance traits 

these management and environmental effects must not be ignored. Studies are 

necessary to investigate the connection between the gut microbiota and animal 

performance together with these external factors that also affect growth and FE 

while shaping microbial communities (Velasco-Galilea et al., 2020). Moreover, the 

existing collinearity between microbiota and management effects difficult the finding 

of real associations of the animal growth with specific taxa abundances. 

 

This study aims at understanding the role of microbial communities inhabiting the 

cecum on the FE and the growth of rabbits raised in collective cages under different 

feeding regimes. The use of sparse partial least squares regression (sPLSR) and 

mixed models in cross-validation schema will allow unraveling the value of cecal 
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microbiota to predict cage FE and individual growth performances in a rabbit line 

selected for post-weaning growth. 

 

5.3. Results 

5.3.1. Influence of genetics and cecal microbiota on rabbit growth and 

FE 

Table 5.1 includes statistics of marginal posterior distributions for heritabilities (h2), 

microbiabilities (m2), and phenotypic variances for individually recorded traits 

(ADGAL and ADGR) obtained with the dataset including only records of animals in 

which microbiota was assessed (mDataset). Similarly, Table 5.2 and Table 5.3 

include estimates for the same parameters referring both to individual growth and 

cage-average traits (ADFI̅̅ ̅̅ ̅̅ ̅
AL, ADRFI̅̅ ̅̅ ̅̅ ̅̅ ̅

AL and ADFCR̅̅ ̅̅ ̅̅ ̅̅ ̅
AL). In these latter two cases, the 

estimates were computed with the dataset including records of animals in which 

microbiota was assessed as well as of their cage mates (fullDataset). Statistics were 

obtained with the model not including the microbial effect (M1) and with the models 

fitting the microbial effect (M2) by considering different prior assumptions. Trace 

plots and histograms of Markov chains from the posterior distribution of the 

parameters of these models using different prior assumptions and datasets are 

included as Additional file 5.4. 

 

The heritabilities (h2) obtained with M1 and the mDataset were 0.21 and 0.29 for 

ADGAL and ADGR, respectively (Table 5.1). The posterior means of h2 obtained with 

M1 and the fullDataset were markedly lower, 0.15 and 0.09 for ADGAL and ADGR, 

respectively (Table 5.2 and Table 5.3). However, estimates cannot be considered 

significantly different between datasets. The h2 estimates with M2 models including 

the microbial effect ranged, depending on the prior assumption for the microbial 

effects and the dataset used for the analysis, from 0.05 to 0.15 for ADGAL and from 

0.07 to 0.09 for ADGR. These ranges for m2 varied from 0.00 to 0.79 for ADGAL and 

from 0.00 to 0.77 for ADGR. In general, it was observed that the higher the 

magnitude of m2, the higher the changes in the h2 estimates from M1 to M2. It is 

important to note that the lowest estimates of m2 for both traits were obtained in the 
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analyses in which all the individual records were considered for the study and the 

elements of the covariance matrices for animals without microbial composition were 

generated considering cage-average CSS OTU counts (𝐌𝐎̅, 𝐌𝐁̅ or 𝐌𝐔̅) (Table 5.3). 

The posterior means of m2 for both traits were almost null for nearly all the cases 

studied with these covariance matrices, except for ADGAL when the covariance 

matrix was defined from the Bray-Curtis distance matrix (𝐌𝐁̅) and for ADGR when 

the covariance matrix was defined from the weighted Unifrac distance matrix (𝐌𝐔̅) . 

Note that large estimation errors were observed in both cases. These errors can 

also be linked with the poor mixing of the sampling processes that are evidenced in 

the trace plots provided in the Additional file 5.4.  

 

Regarding cage-average traits, the posterior means of h2 obtained with M1 were 

medium-high ranging from 0.26 (ADFI̅̅ ̅̅ ̅̅ ̅
AL) to 0.49 (ADRFI̅̅ ̅̅ ̅̅ ̅̅ ̅

AL) (Table 5.2 and Table 

5.3). When the microbial effect was included, these posterior means tended to 

decrease. The h2 obtained with M2 models ranged, depending on the prior 

assumption for the microbial effects, from 0.11 to 0.24 for ADFI̅̅ ̅̅ ̅̅ ̅
AL, from 0.12 to 0.44 

for ADRFI̅̅ ̅̅ ̅̅ ̅̅ ̅
AL, and from 0.08 to 0.30 for ADFCR̅̅ ̅̅ ̅̅ ̅̅ ̅

AL. The posterior means of m2 ranged 

from 0.03 to 0.58 for ADFI̅̅ ̅̅ ̅̅ ̅
AL, from 0.10 to 0.76 for ADRFI̅̅ ̅̅ ̅̅ ̅̅ ̅

AL, and from 0.16 to 0.78 

for ADFCR̅̅ ̅̅ ̅̅ ̅̅ ̅
AL. Note that for all cage-average traits the highest posterior mean of h2 

and the lowest posterior mean of m2 were obtained when the microbial covariance 

matrix was expanded using cage-average CSS OTU counts and then computing 

their cross-product (𝐌𝐎̅). The lowest posterior means of h2 and the highest posterior 

means of m2 were obtained with the microbial covariance matrix 𝐌𝐔̅ (i.e., expanding 

the OTU table using cage-average CSS OTU counts and then computing the 

weighted Unifrac distance matrix). It is worth mentioning that, similarly to growth 

traits, the posterior means of the parameters obtained with M2 models based on 

expanding the CSS OTU table by cage-average before computing the respective 

distance matrices (𝐌𝐎̅, 𝐌𝐁̅ or 𝐌𝐔̅) (Table 5.3) are associated with large posterior 

standard errors. For these analyses, poor mixing was also observed (Additional 

file 5.4). Given our dataset size, the covariance structure generated with this 

expansion procedure seems not suitable to properly identify the covariance between 

animals due to sharing cecal microbial composition. The posterior means of h2 and 

m2 for these traits seem to be more consistent when they were obtained with the M2 
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models based on the expansion of the microbial relationship matrices that just 

included ones in the diagonal and zeros outside the diagonal for the animals without 

microbial information (Table 5.2). In this case, a similar pattern was obtained with 

𝐌𝐎,𝟎, 𝐌𝐁,𝟎 and 𝐌𝐔,𝟎: h2 decrease from 0.26 (M1) to 0.19 for ADFI̅̅ ̅̅ ̅̅ ̅
AL, from 0.49 (M1) 

to 0.32 for ADRFI̅̅ ̅̅ ̅̅ ̅̅ ̅
AL, and from 0.34 (M1) to 0.21 for ADFCR̅̅ ̅̅ ̅̅ ̅̅ ̅

AL while m2 ranged from 

0.45 to 0.49 for ADFI̅̅ ̅̅ ̅̅ ̅
AL, from 0.38 to 0.42 for ADRFI̅̅ ̅̅ ̅̅ ̅̅ ̅

AL, and from 0.45 to 0.49 for 

ADFCR̅̅ ̅̅ ̅̅ ̅̅ ̅
AL. 

 

Table 5.1| Means (SD) of marginal posterior distributions of the heritability (h2), 

microbiability (m2) and phenotypic variance (Phe. Var.) for ADGAL and ADGR 

obtained with the mDataset. 

Parameter Model Microbial matrix ADGAL ADGR 

h2  M1 -- 0.21(0.14) 0.29(0.19) 

Phe. Var.  M1 -- 41.20(4.37) 32.80(3.93) 

h2  M2 𝐌𝐎 0.07(0.07) 0.13(0.09) 

m2  M2 𝐌𝐎 0.67(0.15) 0.56(0.12) 

Phe. Var.  M2 𝐌𝐎 93.08(26.03) 57.90(12.51) 

h2  M2 𝐌𝐁 0.05(0.05) 0.07(0.06) 

m2  M2 𝐌𝐁 0.79(0.12) 0.77(0.10) 

Phe. Var.  M2 𝐌𝐁 193.85(83.54) 129.08(46.78) 

h2  M2 𝐌𝐔 0.08(0.09) 0.14(0.13) 

m2  M2 𝐌𝐔 0.60(0.26) 0.49(0.26) 

Phe. Var.  M2 𝐌𝐔 174.85(168.52) 91.03(72.38) 

ADGAL: average daily gain in rabbits fed ad libitum; ADGR: average daily gain in rabbits fed under restriction; 
SD: standard deviation; M1: model without microbial effects; M2: model fitting the microbial effects;  𝐌𝐎: 

microbial relationship covariance matrix defined from CSS normalized OTU counts,  𝐌𝐁: microbial relationship 

covariance matrix defined from Bray-Curtis distance matrix; 𝐌𝐔: microbial relationship covariance matrix defined 
from weighted Unifrac distance matrix. 

 

 

 

 

 



 
Genetic determinism of meat rabbit cecal microbiota and its role in the host's feed efficiency  

218 

 

 T
a

b
le

 5
.2

| 
M

e
a
n

s
 (

S
D

) 
o

f 
m

a
rg

in
a

l 
p

o
s
te

ri
o

r 
d

is
tr

ib
u

ti
o
n

s
 o

f 
th

e
 h

e
ri
ta

b
ili

ty
 (

h
2
),

 m
ic

ro
b

ia
b

ili
ty

 (
m

2
) 

a
n

d
 p

h
e

n
o
ty

p
ic

 

v
a

ri
a

n
c
e

 (
P

h
e

. 
V

a
r.

) 
fo

r 
in

d
iv

id
u

a
l 
tr

a
it
s
 (

A
D

G
A

L
 a

n
d

 A
D

G
R
) 

a
n
d

 c
a
g
e

-a
v
e

ra
g
e

 t
ra

it
s
 (

𝐀
𝐃

𝐅
𝐈

̅̅
̅̅

̅̅
̅ 𝐀

𝐋
, 

𝐀
𝐃

𝐑
𝐅

𝐈
̅̅

̅̅
̅̅

̅̅
̅ 𝐀

𝐋
 a

n
d
 𝐀

𝐃
𝐅

𝐂
𝐑

𝐈
̅̅

̅̅
̅̅

̅̅
̅̅

̅ 𝐀
𝐋
) 

o
b

ta
in

e
d
 w

it
h

 t
h

e
 f

u
llD

a
ta

s
e
t 

b
y
 e

x
p
a

n
d

in
g

 t
h

e
 c

o
rr

e
s
p

o
n
d

in
g
 m

ic
ro

b
ia

l 
re

la
ti
o

n
s
h

ip
 m

a
tr

ix
 w

it
h

 o
n

e
s
 i

n
 t

h
e

 d
ia

g
o

n
a

l 

a
n

d
 z

e
ro

s
 o

u
ts

id
e

. 

P
a
ra

m
e
te

r 
M

o
d

e
l 

M
ic

ro
b

ia
l 
m

a
tr

ix
1
 

A
D

G
A

L
 

A
D

G
R
 

𝐀
𝐃

𝐅
𝐈

̅̅
̅̅

̅̅
̅ 𝐀

𝐋
 

𝐀
𝐃

𝐑
𝐅

𝐈
̅̅

̅̅
̅̅

̅̅
̅ 𝐀

𝐋
 

𝐀
𝐃

𝐅
𝐂

𝐑
̅̅

̅̅
̅̅

̅̅
̅̅

𝐀
𝐋
 

h
2
  

M
1
 

--
 

0
.1

5
(0

.0
9
) 

0
.0

9
(0

.0
7
) 

0
.2

6
(0

.1
8
) 

0
.4

9
(0

.2
0
) 

0
.3

4
(0

.2
0
) 

P
h

e
. 

V
a

r.
  

M
1
 

--
 

7
9
.7

9
(4

.6
7
) 

5
7
.0

2
(3

.4
0
) 

6
3
5

.1
4
(1

0
2
.9

9
) 

2
0
6

.5
9
(3

3
.0

6
) 

0
.2

0
(0

.0
3
) 

h
2
  

M
2
 

𝐌
𝐎

,𝟎
 

0
.1

1
(0

.0
6
) 

0
.0

8
(0

.0
5
) 

0
.1

9
(0

.1
3
) 

0
.3

3
(0

.1
5
) 

0
.2

2
(0

.1
4
) 

m
2
  

M
2
 

𝐌
𝐎

,𝟎
 

0
.6

3
(0

.0
6
) 

0
.6

6
(0

.0
5
) 

0
.4

8
(0

.1
8
) 

0
.3

8
(0

.1
7
) 

0
.4

7
(0

.1
8
) 

P
h

e
. 

V
a

r.
  

M
2
 

𝐌
𝐎

,𝟎
 

9
0
.5

4
(5

.4
7
) 

6
6
.5

0
(4

.1
3
) 

6
7
6

.5
5
(1

1
8
.2

9
) 

2
1
9

.4
7
(3

7
.7

7
) 

0
.2

1
(0

.0
4
) 

h
2
  

M
2
 

𝐌
𝐁

,𝟎
 

0
.1

2
(0

.0
7
) 

0
.0

7
(0

.0
6
) 

0
.1

9
(0

.1
3
) 

0
.3

1
(0

.1
5
) 

0
.2

2
(0

.1
4
) 

m
2
  

M
2
 

𝐌
𝐁

,𝟎
 

0
.5

6
(0

.0
6
) 

0
.6

1
(0

.0
5
) 

0
.4

9
(0

.1
8
) 

0
.4

2
(0

.1
7
) 

0
.4

9
(0

.1
7
) 

P
h

e
. 

V
a

r.
  

M
2
 

𝐌
𝐁

,𝟎
 

9
2
.0

4
(5

.6
7
) 

6
8
.1

3
(4

.3
8
) 

7
1
1

.5
5
(1

2
8
.3

1
) 

2
2
7

.8
8
(4

0
.0

4
) 

0
.2

2
(0

.0
4
) 

h
2
  

M
2
 

𝐌
𝐔

,𝟎
 

0
.1

3
(0

.0
7
) 

0
.0

7
(0

.0
6
) 

0
.1

9
(0

.1
3
) 

0
.3

2
(0

.1
5
) 

0
.2

2
(0

.1
5
) 

m
2
  

M
2
 

𝐌
𝐔

,𝟎
 

0
.5

2
(0

.0
6
) 

0
.5

8
(0

.0
5
) 

0
.4

5
(0

.1
9
) 

0
.4

0
(0

.1
7
) 

0
.4

5
(0

.1
8
) 

P
h

e
. 

V
a

r.
  

M
2
 

𝐌
𝐔

,𝟎
 

9
2
.1

1
(5

.7
8
) 

6
8
.2

6
(4

.4
3
) 

7
1
1

.4
2
(1

2
8
.0

1
) 

2
2
6

.6
8
(3

9
.5

8
) 

0
.2

2
(0

.0
4
) 

A
D

G
A

L
: 

a
v
e

ra
g

e
 d

a
ily

 g
a
in

 i
n
 r

a
b

b
it
s
 f

e
d
 a

d
 l
ib

it
u

m
; 

A
D

G
R
: 

a
v
e

ra
g
e

 d
a

ily
 g

a
in

 i
n
 r

a
b

b
it
s
 f

e
d

 u
n
d

e
r 

re
s
tr

ic
ti
o
n

; 
A

D
F

I
̅̅

̅̅
̅̅

̅ A
L
: 

a
v
e

ra
g

e
 d

a
ily

 f
e

e
d
 i
n

ta
k
e

 i
n
 r

a
b

b
it
s
 f

e
d
 

a
d

 l
ib

it
u

m
; 

A
D

R
F

I
̅̅

̅̅
̅̅

̅̅
̅ A

L
: 

a
v
e

ra
g

e
 d

a
ily

 r
e

s
id

u
a

l 
fe

e
d

 i
n
ta

k
e

 i
n

 r
a

b
b

it
s
 f

e
d
 a

d
 l

ib
it
u

m
; 

A
D

F
C

R
̅̅

̅̅
̅̅

̅̅
̅ A

L
: 

a
v
e

ra
g

e
 d

a
ily

 f
e

e
d

 c
o

n
v
e

rs
io

n
 r

a
ti
o

 i
n

 r
a

b
b
it
s
 f

e
d

 a
d

 l
ib

it
u

m
; 

S
D

: 

s
ta

n
d

a
rd

 d
e

v
ia

ti
o

n
; 
M

1
: 
m

o
d

e
l 
w

it
h

o
u
t 

m
ic

ro
b

ia
l 
e

ff
e

c
ts

; 
M

2
: 
m

o
d

e
l 
fi
tt

in
g

 t
h

e
 m

ic
ro

b
ia

l 
e

ff
e
c
ts

. 
1
T

h
e

 e
x
p

a
n

s
io

n
 o

f 
th

e
 m

ic
ro

b
ia

l 
re

la
ti
o
n

s
h
ip

 m
a

tr
ix

 (
𝐌

𝐎
,𝐌

𝐁
 o

r 
𝐌

𝐔
) 

w
a

s
 d

o
n

e
 b

y
 i
n

c
lu

d
in

g
 o

n
e
s
 i
n

 t
h

e
 d

ia
g

o
n

a
l 
a

n
d

 z
e

ro
s
 o

u
ts

id
e

 t
h
e

 d
ia

g
o

n
a
l 
fo

r 
th

e
 a

n
im

a
ls

 
w

it
h

o
u

t 
m

ic
ro

b
ia

l 
in

fo
rm

a
ti
o
n

. 

 



Chapter 5: The value of gut microbiota to predict  
feed efficiency and growth of rabbits under different feeding regimes 

219 

 

T
a

b
le

 5
.3

| 
M

e
a

n
s
 (

S
D

) 
o

f 
m

a
rg

in
a

l 
p

o
s
te

ri
o

r 
d

is
tr

ib
u
ti
o

n
s
 o

f 
th

e
 h

e
ri
ta

b
ili

ty
 (

h
2
),

 m
ic

ro
b
ia

b
ili

ty
 (

m
2
) 

a
n
d

 p
h

e
n
o

ty
p

ic
 

v
a

ri
a

n
c
e
 (

P
h

e
. 

V
a

r.
) 

fo
r 

in
d

iv
id

u
a

l 
tr

a
it
s
 (

A
D

G
A

L
 a

n
d
 A

D
G

R
) 

a
n

d
 c

a
g
e

-a
v
e

ra
g
e

 t
ra

it
s
 (

A
D

F
I

̅̅
̅̅

̅̅
̅ A

L
, 

A
D

R
F

I
̅̅

̅̅
̅̅

̅̅
̅ A

L
 a

n
d
 A

D
F

C
R

I
̅̅

̅̅
̅̅

̅̅
̅̅

A
L
) 

o
b

ta
in

e
d

 w
it
h

 t
h
e

 f
u

llD
a
ta

s
e
t 

b
y
 e

x
p
a

n
d

in
g

 t
h
e

 O
T

U
 m

a
tr

ix
 w

it
h

 t
h

e
 c

a
g

e
-a

v
e

ra
g

e
 c

o
u
n

ts
. 

P
a

ra
m

e
te

r 
M

o
d

e
l 

M
ic

ro
b

ia
l 

m
a

tr
ix

1
 

A
D

G
A

L
 

A
D

G
R
 

𝐀
𝐃

𝐅
𝐈

̅̅
̅̅

̅̅
̅ 𝐀

𝐋
 

𝐀
𝐃

𝐑
𝐅

𝐈
̅̅

̅̅
̅̅

̅̅
̅ 𝐀

𝐋
 

𝐀
𝐃

𝐅
𝐂

𝐑
̅̅

̅̅
̅̅

̅̅
̅̅

𝐀
𝐋
 

h
2
  

M
1
 

--
 

0
.1

5
(0

.0
9
) 

0
.0

9
(0

.0
7
) 

0
.2

6
(0

.1
8
) 

0
.4

9
(0

.2
0
) 

0
.3

4
(0

.2
0
) 

P
h

e
. 

V
a

r.
  

M
1
 

--
 

7
9
.7

9
(4

.6
7
) 

5
7
.0

2
(3

.4
0
) 

6
3
5

.1
4
(1

0
2
.9

9
) 

2
0
6

.5
9
(3

3
.0

6
) 

0
.2

0
(0

.0
3
) 

h
2
  

M
2
 

𝐌
𝐎
 

0
.1

4
(0

.0
9
) 

0
.0

9
(0

.0
7
) 

0
.2

4
(0

.1
7
) 

0
.4

4
(0

.1
9
) 

0
.3

0
(0

.1
8
) 

m
2
  

M
2
 

𝐌
𝐎
 

0
.0

8
(0

.0
5
) 

0
.0

0
(0

.0
0
) 

0
.0

3
(0

.0
6
) 

0
.1

0
(0

.1
2
) 

0
.1

6
(0

.0
9
) 

P
h

e
. 

V
a

r.
  

M
2
 

𝐌
𝐎
 

8
5
.7

1
(6

.4
2
) 

5
7
.0

8
(3

.4
0
) 

6
3
5

.5
2
(1

0
2
.2

8
) 

2
0
9

.3
0
(3

4
.4

6
) 

0
.2

1
(0

.0
3
) 

h
2
  

M
2
 

𝐌
𝐁
 

0
.0

9
(0

.0
6
) 

0
.0

9
(0

.0
7
) 

0
.1

6
(0

.1
2
) 

0
.2

3
(0

.1
3
) 

0
.2

0
(0

.1
4
) 

m
2
  

M
2
 

𝐌
𝐁
 

0
.3

9
(0

.1
3
) 

0
.0

6
(0

.0
3
) 

0
.4

4
(0

.1
9
) 

0
.5

6
(0

.1
7
) 

0
.4

4
(0

.1
6
) 

P
h

e
. 

V
a

r.
  

M
2
 

𝐌
𝐁
 

1
3
3

.3
1
(3

2
.3

6
) 

6
1
.0

0
(6

.5
7
) 

1
0
5

9
.8

8
(3

5
9
.1

5
) 

4
0
7

.6
8
(1

3
5
.5

9
) 

0
.3

2
(0

.0
9
) 

h
2
  

M
2
 

𝐌
𝐔
 

0
.1

5
(0

.0
9
) 

0
.0

7
(0

.0
6
) 

0
.1

1
(0

.1
0
) 

0
.1

2
(0

.1
2
) 

0
.0

8
(0

.0
8
) 

m
2
  

M
2
 

𝐌
𝐔
 

0
.0

0
(0

.0
0
) 

0
.2

5
(0

.2
3
) 

0
.5

8
(0

.2
4
) 

0
.7

6
(0

.2
0
) 

0
.7

8
(0

.1
7
) 

P
h

e
. 

V
a

r.
  

M
2
 

𝐌
𝐔
 

7
9
.8

3
(4

.6
7
) 

8
8
.3

3
(4

3
.1

5
) 

2
1
0

6
.3

3
(1

6
2

2
.3

1
) 

1
2
8

4
.2

9
(9

4
8
.1

4
) 

1
.2

0
(0

.8
0
) 

A
D

G
A

L
: 

a
v
e

ra
g
e

 d
a
ily

 g
a

in
 i
n

 r
a

b
b

it
s
 f

e
d

 a
d

 l
ib

it
u

m
; 

A
D

G
R
: 

a
v
e

ra
g
e

 d
a
ily

 g
a
in

 i
n

 r
a

b
b

it
s
 f

e
d

 u
n

d
e

r 
re

s
tr

ic
ti
o
n

; 
A

D
F

I
̅̅

̅̅
̅̅

̅ A
L
: 

a
v
e

ra
g

e
 d

a
ily

 f
e
e

d
 i
n

ta
k
e

 i
n

 r
a

b
b

it
s
 f

e
d
 

a
d

 l
ib

it
u

m
; 

A
D

R
F

I
̅̅

̅̅
̅̅

̅̅
̅ A

L
: 

a
v
e

ra
g

e
 d

a
ily

 r
e
s
id

u
a

l 
fe

e
d
 i

n
ta

k
e

 i
n
 r

a
b
b

it
s
 f

e
d
 a

d
 l

ib
it
u

m
; 

A
D

F
C

R
̅̅

̅̅
̅̅

̅̅
̅ A

L
: 

a
v
e

ra
g

e
 d

a
ily

 f
e
e

d
 c

o
n

v
e

rs
io

n
 r

a
ti
o
 i

n
 r

a
b

b
it
s
 f

e
d

 a
d

 l
ib

it
u

m
; 

S
D

: 

s
ta

n
d

a
rd

 d
e

v
ia

ti
o

n
; 
M

1
: 
m

o
d

e
l 
w

it
h

o
u
t 

m
ic

ro
b

ia
l 
e

ff
e

c
ts

; 
M

2
: 
m

o
d

e
l 
fi
tt

in
g

 t
h

e
 m

ic
ro

b
ia

l 
e

ff
e
c
ts

. 
1
T

h
e

 e
x
p

a
n
s
io

n
 o

f 
th

e
 m

ic
ro

b
ia

l 
re

la
ti
o

n
s
h

ip
 m

a
tr

ix
 (

𝐌
𝐎

,𝐌
𝐁

 o
r 

𝐌
𝐔
) 

w
a
s
 d

o
n

e
 b

e
fo

re
 c

o
m

p
u
ti
n
g

 t
h

e
 r

e
s
p

e
c
ti
v
e

 d
is

ta
n

c
e

 m
a

tr
ic

e
s
, 

a
s
s
ig

n
in

g
 t

o
 t

h
e

 a
n

im
a

ls
 

w
it
h

o
u

t 
m

ic
ro

b
ia

l 
in

fo
rm

a
ti
o
n

 t
h

e
 c

a
g

e
-a

v
e

ra
g

e
 o

f 
th

e
 C

S
S

 n
o

rm
a

liz
e

d
 O

T
U

 c
o

u
n

ts
. 



 
Genetic determinism of meat rabbit cecal microbiota and its role in the host's feed efficiency  

220 

5.3.2. Predictive ability of individual growth and cage FE from microbial 

information 

Table 5.4 shows the correlation coefficient between observed and predicted records 

of individual traits (ADGAL and ADGR) in the validation set reached with the different 

tested models and the mDataset. It was observed that the consideration of microbial 

information resulted in a significant prediction improvement of the individually 

measured growth traits only when 𝐌𝐎 or 𝐌𝐁 were used as covariance matrix 

between individual microbial effects. The consideration of microbial information in 

M2 models improved the predictive capacity of ADGAL and ADGR by 25% and 46%, 

respectively.  

 

Table 5.4| Across 100 replicates average (SD) correlation coefficient between 

observed and predicted ADGAL and ADGR records with sPLSR and mixed models 

using the mDataset. 

Model Microbial matrix ADGAL ADGR 

M1 -- 0.30(0.15) 0.39(013) 
M2 𝐌𝐎 0.36(0.13)*a 0.56(0.11)*a 

M2 𝐌𝐁 0.38(0.13)*a 0.57(0.12)*a 

M2 𝐌𝐔 0.30(0.14) 0.39(0.13) 

sPLSR1 -- 0.50(0.11) 0.28(0.14) 

sPLSR2 -- 0.51(0.11) 0.19(0.16) 
ADGAL: average daily gain in rabbits fed ad libitum; ADGR: average daily gain in rabbits fed under restriction; 
SD: standard deviation; M1: mixed model without microbial effects; M2: mixed model fitting the microbial effects;  

𝐌𝐎: microbial relationship covariance matrix defined from CSS normalized OTU counts, 𝐌𝐁: microbial 

relationship covariance matrix defined from Bray-Curtis distance matrix; 𝐌𝐔: microbial relationship covariance 
matrix defined from  weighted Unifrac distance matrix; sPLS1: sparse Partial Least Squares Regression model 
with systematic effects as predictors; sPLS2: sparse Partial Least Squares Regression model with systematic 
effects and CSS OTU counts as predictors. 
*M2 or sPLSR2 correlation between observed and predicted records significantly higher (bootstrapped paired t 
test) than M1 or sPLSR1 correlation after Bonferroni correction for multiple testing at the P < 0.05 level.  
aM2 or sPLSR2 correlation between observed and predicted records higher than M1 or sPLSR1 correlation in 
at least 80% of the replicates. 

 

When 𝐌𝐔 was used as covariance matrix between individual microbial effects no 

improvement of the predictive capacity was observed for any trait. The same was 

observed when microbial information was included in sPLSR2 models fitting 

systematic effects and CSS OTU counts. sPLSR2 models did not exhibit better 

predictive ability than those models just fitting the systematic effects (sPLSR1).  

 



Chapter 5: The value of gut microbiota to predict  
feed efficiency and growth of rabbits under different feeding regimes 

221 

Table 5.5 shows the correlation coefficient between observed and predicted records 

of individual growth traits (ADGAL and ADGR) in the validation set when different 

mixed models and microbial covariance matrices were used. In this case, the 

analyses were conducted using the fullDataset. Here the correlation coefficient 

between observed and predicted records of each trait in the validation set was 

computed separately for the animals with microbial information and for the animals 

without this information. The only consistent improvement in the predictive ability 

was observed on animals in which cecal microbiota was assessed for ADGR using 

M2 models based on the expansion of the microbial relationship matrices including 

ones in the diagonal and zeros outside the diagonal. The predictive capacity of 

ADGR with these M2 models increased by 17% with respect to M1.  

 

Finally, Table 5.6 shows the correlation coefficient between observed and predicted 

records of cage-average traits (ADFI̅̅ ̅̅ ̅̅ ̅
AL, ADRFI̅̅ ̅̅ ̅̅ ̅̅ ̅

AL and ADFCR̅̅ ̅̅ ̅̅ ̅̅ ̅
AL) in the validation set 

reached with the different mixed and sPLSR models under study using the 

fullDataset. 
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Table 5.6| Across 100 replicates average (SD) correlation coefficient between 

observed and predicted individual cage-average 𝐀𝐃𝐅𝐈̅̅ ̅̅ ̅̅ ̅
𝐀𝐋, 𝐀𝐃𝐑𝐅𝐈̅̅ ̅̅ ̅̅ ̅̅ ̅

𝐀𝐋 and 𝐀𝐃𝐅𝐂𝐑𝐈̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝐀𝐋 

records with sPLSR and mixed models using the fullDataset. 

Model Microbial matrix 𝐀𝐃𝐅𝐈̅̅ ̅̅ ̅̅ ̅
𝐀𝐋 𝐀𝐃𝐑𝐅𝐈̅̅ ̅̅ ̅̅ ̅̅ ̅

𝐀𝐋 𝐀𝐃𝐅𝐂𝐑̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝐀𝐋 

M1 -- 0.79(0.11) 0.42(0.21) 0.61(0.16) 

M2 𝐌𝐎,𝟎
1 0.83(0.08)*a 0.50(0.19)*a 0.69(0.12)*a 

M2 𝐌𝐁,𝟎
1 0.83(0.08)*a 0.50(0.19)*a 0.69(0.12)*a 

M2 𝐌𝐔,𝟎
1 0.82(0.08)*a 0.50(0.18)*a 0.69(0.12)*a 

M2 𝐌𝐎̅
2 0.79(0.11) 0.41(0.21) 0.61(0.16) 

M2 𝐌𝐁̅
2 0.79(0.11) 0.41(0.21) 0.61(0.16) 

M2 𝐌𝐔̅
2 0.79(0.11) 0.42(0.21) 0.61(0.15) 

sPLSR1 -- 0.79(0.08) -0.31(0.14) 0.65(0.15) 

sPLSR2 -- 0.73(0.09) 0.17(0.21)*a 0.39(0.18) 

ADFI̅̅ ̅̅ ̅̅ ̅
AL: average daily feed intake in rabbits fed ad libitum; ADRFI̅̅ ̅̅ ̅̅ ̅̅ ̅

AL: average daily residual feed intake in rabbits 

fed ad libitum; ADFCR̅̅ ̅̅ ̅̅ ̅̅ ̅
AL: average daily feed conversion ratio in rabbits fed ad libitum; SD: standard deviation; 

M1: mixed model without microbial effects; M2: mixed model fitting the microbial effects; 𝐌𝐎: microbial 

relationship covariance matrix defined from CSS normalized OTU counts,  𝐌𝐁: microbial relationship covariance 

matrix defined from Bray-Curtis distance matrix; 𝐌𝐔: microbial relationship covariance matrix defined from  
weighted Unifrac distance matrix; sPLS1: sparse Partial Least Squares Regression model with systematic 
effects as predictors; sPLS2: sparse Partial Least Squares Regression model with systematic effects and cage-
average CSS OTU counts as predictors. 
1The expansion of the microbial relationship matrix (𝐌𝐎, 𝐌𝐁 or 𝐌𝐔) was done by including ones in the diagonal 
and zeros outside the diagonal for the animals without microbial information. 
2The expansion of the microbial relationship matrix (𝐌𝐎, 𝐌𝐁 or 𝐌𝐔) was done before computing the respective 
distance matrices, assigning to the animals without microbial information the cage-average of the CSS 
normalized OTU counts. 
*M2 or sPLSR2 correlation between observed and predicted records significantly higher (bootstrapped paired t 
test) than M1 or sPLSR1 correlation after Bonferroni correction for multiple testing at the P < 0.05 level. 
aM2 or sPLSR2 correlation between observed and predicted records higher than M1 or sPLSR1 correlation in 
at least 80% of the replicates. 

 

The M2 mixed models in which the elements of the covariance matrices for animals 

without microbial information were generated from cage-average CSS OTU counts 

did not add any predictive value for any trait. On the contrary, the consideration of 

microbial information resulted in a significant improvement of the predictive ability 

of all traits with all M2 mixed models based on microbial relationship matrices 

expanded with ones in the diagonal and zeros outside the diagonal for the animals 

without microbial information. When these models are used, the predictive ability 

increased by 5%, 20% and 14% for ADFI̅̅ ̅̅ ̅̅ ̅
AL, ADRFI̅̅ ̅̅ ̅̅ ̅̅ ̅

AL and ADFCR̅̅ ̅̅ ̅̅ ̅̅ ̅
AL, respectively, 

over M1. These improvements were nearly the same irrespectively the covariance 

matrix considered: 𝐌𝐎,𝟎, 𝐌𝐁,𝟎 or 𝐌𝐔,𝟎. 

 

Regarding the sPLSR multivariate approach, the correlation coefficient between 

observed and predicted records reached in the validation set with the model that 
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only included the systematic effects as predictors (sPLSR1) was pretty high and in 

most cases better than that achieved with the sPLSR2 models (i.e., also including 

the cage-average CSS OTU counts as predictors). The only exception was 

observed for ADRFI̅̅ ̅̅ ̅̅ ̅̅ ̅
AL what could be said to be expected since a correction by batch 

effect is implicit in its definition. Thus, the systematic effects considered do not play 

any role in the prediction of the observations, indeed, an average negative 

correlation associated with large dispersion was observed. This average correlation 

turned positive (although of low magnitude: 0.17) when CSS OTU counts were 

considered, resulting in a significant improvement of the predictive capacity of the 

model for this cage-average phenotype.  

 

5.3.3. Identification of relevant OTUs for the prediction of rabbit growth and 

FE  

The observed improvement in the predictive ability of the sPLSR2 model for 

ADRFI̅̅ ̅̅ ̅̅ ̅̅ ̅
AL could be explained by the systematic selection of 7 OTUs in more than 80 

out of the 100 replicates conducted. Table 5.7 shows the taxonomic assignment 

with the RDP classifier of the selected OTUs, and their representative sequences 

can be found in Additional file 5.5. Out of these OTUs, 5 belong to family 

Lachnospiraceae and 2 are unclassified bacteria. The Pearson’s correlations 

between these OTUs and ADRFI̅̅ ̅̅ ̅̅ ̅̅ ̅
AL were computed to quantify the degree of 

association. These correlations ranged from -0.33 to 0.31 (Table 5.7). 

 

Table 5.7| Taxonomic assignment of the OTUs selected in the sPLSR analysis for 

ADRFI̅̅ ̅̅ ̅̅ ̅̅ ̅
AL. 

OTU ID and taxonomical assignment Pearson’s correlation 

874627 Unclassified Bacteria 
 

0.31* 

NR1922 Unclassified Lachnospiraceae -0.27* 

NR2153 Unclassified Lachnospiraceae 0.31* 

NR3628 Unclassified Lachnospiraceae -0.33* 

NR381 Unclassified Lachnospiraceae -0.31* 

NR4083 Unclassified Lachnospiraceae 0.32* 

NR768 Unclassified Bacteria -0.27* 
ADRFI̅̅ ̅̅ ̅̅ ̅̅ ̅

AL: average daily residual feed intake in rabbits fed ad libitum. 

*P for Pearson’s correlation t-test between the relevant OTU and ADRFI̅̅ ̅̅ ̅̅ ̅̅ ̅
AL lower than 0.05. 
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On the other hand, sPLSR models were used to fit the posterior means of the 

individual microbial effects predicted for growth and FE traits with M2 models and 

microbial covariance matrices 𝐌𝐎,𝟎, 𝐌𝐁,𝟎 or 𝐌𝐔,𝟎 to identify the most relevant OTUs 

for the prediction of such phenotypes. Table 5.8 shows, for each trait and 

covariance matrix, the number of OTUs selected from a total of 946 in at least 80 

out of the 100 replicates conducted. 

 

Table 5.8| Number of OTUs selected in at least 80 out of the 100 sPLSR replicates 

conducted for microbial effects predicted with covariance matrices 𝐌𝐎,𝟎, 𝐌𝐁,𝟎 𝐚𝐧𝐝 

𝐌𝐔,𝟎 for growth and FE traits. 

Trait 𝐌𝐎,𝟎 𝐌𝐁,𝟎 𝐌𝐔,𝟎 Most relevant1 

ADGAL 911 931 673 16 

ADGR 887 874 621 13 

ADFI̅̅ ̅̅ ̅̅ ̅
AL 850 785 490 25 

ADRFI̅̅ ̅̅ ̅̅ ̅̅ ̅
AL 600 793 480 16 

ADFCR̅̅ ̅̅ ̅̅ ̅̅ ̅
AL 824 832 877 13 

ADGAL: average daily gain in rabbits fed ad libitum; ADGR: average daily gain in rabbits fed under restriction; 

ADFI̅̅ ̅̅ ̅̅ ̅
AL: average daily feed intake in rabbits fed ad libitum; ADRFI̅̅ ̅̅ ̅̅ ̅̅ ̅

AL: average daily residual feed intake in rabbits 

fed ad libitum; ADFCR̅̅ ̅̅ ̅̅ ̅̅ ̅
AL: average daily feed conversion ratio in rabbits fed ad libitum; 𝐌𝐎,𝟎: microbial relationship 

covariance matrix defined from CSS normalized OTU counts and expanded by including ones in the diagonal 
and zeros outside the diagonal for the animals without microbial information, 𝐌𝐁,𝟎: microbial relationship 

covariance matrix defined from Bray-Curtis distance matrix and expanded by including ones in the diagonal and 
zeros outside the diagonal for the animals without microbial information; 𝐌𝐔,𝟎: microbial relationship covariance 

matrix defined from  weighted Unifrac distance matrix and expanded by including ones in the diagonal and zeros 
outside the diagonal for the animals without microbial information.  
1The most relevant OTUs were those with the greatest loading weights and that were selected with 

𝐌𝐎,𝟎, 𝐌𝐁,𝟎 and 𝐌𝐔,𝟎. 

 

Additionally, Table 5.S1 shows the taxonomy of the most relevant OTUs (i.e., those 

having the greatest loading weights and selected with the three M2 models) for the 

prediction of growth and FE traits based on the individual microbial effects predicted 

with the linear mixed models. The Pearson’s correlations between each OTU and 

the traits are also shown in Table 5.S1 while their representative sequences can be 

found in Additional file 5.7. Sixteen OTUs seemed to have an important weight for 

the prediction improvement of ADGAL. Ten of them belong to phylum Firmicutes, 2 

to phylum Euryarchaeota, and 4 OTUs are unclassified Bacteria. Thirteen OTUs 

were found to be relevant to improve the predictive ability of mixed models for ADGR. 

Of these OTUs, 10 belong to phylum Firmicutes, 2 to phylum Euryarchaeota and 1 



 
Genetic determinism of meat rabbit cecal microbiota and its role in the host's feed efficiency  

226 

to phylum Bacteroidetes. Twenty-five OTUs were found to be involved in the 

improvement of the predictive ability of mixed models for ADFI̅̅ ̅̅ ̅̅ ̅
AL. Most of them (20 

OTUs) belong to phylum Firmicutes, 1 to phylum Bacteroidetes, 1 to phylum 

Actinobacteria, 1 to phylum Proteobacteria, and 2 OTUs are unclassified Bacteria. 

Sixteen OTUs were found to be relevant to improve the predictive ability of mixed 

models for ADRFI̅̅ ̅̅ ̅̅ ̅̅ ̅
AL. Out of these OTUs, 8 belong to phylum Firmicutes, 3 to phylum 

Bacteroidetes, 1 to phylum Proteobacteria, and 4 OTUs are unclassified Bacteria. 

Finally, 13 OTUs were responsible for the prediction improvement of ADFCR̅̅ ̅̅ ̅̅ ̅̅ ̅
AL when 

microbial information was fitted in the proposed mixed models. Most of them (8 

OTUs) belong to phylum Firmicutes, 2 to phylum Bacteroidetes, and 3 OTUs are 

unclassified Bacteria. It is worth mentioning that some OTUs were found to be 

relevant for the prediction of more than one trait. In this regard, two OTUs belonging 

to genus Methanobrevibacter and one to order Clostridiales were found to be 

relevant for the prediction of both growth traits, i.e., ADGR and ADGAL. One OTU 

taxonomically assigned to family Lachnospiraceae was found to be relevant for the 

prediction of both ADGAL and ADFI̅̅ ̅̅ ̅̅ ̅
AL. Seven OTUs (2 belonging to genus 

Eisenbergiella, 1 to class Alphaproteobacteria, 1 to genus Longibaculum, 1 to family 

Erysipelotrichaceae, 1 to family Lachnospiraceae, and 1 unclassified Bacteria) were 

found to be relevant for the prediction of both ADFI̅̅ ̅̅ ̅̅ ̅
AL and ADRFI̅̅ ̅̅ ̅̅ ̅̅ ̅

AL. Three OTUs (1 

belonging to genus Ruminococcus, 1 to genus Blautia, and 1 to family 

Lachnospiraceae) were found to be relevant for the prediction of both ADGR and 

ADFI̅̅ ̅̅ ̅̅ ̅
AL. Two OTUs (1 belonging to genus Butyricimonas, and 1 unclassified 

Bacteria) were found to be relevant for the prediction of both ADRFI̅̅ ̅̅ ̅̅ ̅̅ ̅
AL and ADFCR̅̅ ̅̅ ̅̅ ̅̅ ̅

AL. 

One OTU belonging to genus Butyricicoccus was found to be relevant for the 

prediction of ADGR, ADGAL and ADFI̅̅ ̅̅ ̅̅ ̅
AL. Finally, one OTU belonging to family 

Lachnospiraceae was found to be relevant for the prediction of ADGR, ADFI̅̅ ̅̅ ̅̅ ̅
AL and 

ADRFI̅̅ ̅̅ ̅̅ ̅̅ ̅
AL (Table 5.S1). In Figure 5.1, a Venn diagram shows the degree of overlap 

between traits regarding the most relevant OTUs for their prediction. In general, this 

degree of overlap was small, but it responds to the nature of traits. For example, 

ADFCR̅̅ ̅̅ ̅̅ ̅̅ ̅
AL has only relevant OTUs in common with ADRFI̅̅ ̅̅ ̅̅ ̅̅ ̅

AL, being both feed 

efficiency traits. On the other hand, ADFI̅̅ ̅̅ ̅̅ ̅
AL has the largest amount of OTUs in 
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common with other traits: ADRFI̅̅ ̅̅ ̅̅ ̅̅ ̅
AL and both growth traits (i.e., ADGR and ADGAL) 

that are strongly influenced by the animal’s intake. 

 

 
Figure 5.1| Venn diagram showing the numbers and overlap of most relevant OTUs for the prediction of the 5 
traits analyzed. ADGAL: average daily gain in rabbits fed ad libitum; ADGR: average daily gain in rabbits fed 
under restriction; ADFIAL: average daily feed intake in rabbits fed ad libitum; ADRFIAL: average daily residual 
feed intake in rabbits fed ad libitum; ADFCRAL: average daily feed conversion ratio in rabbits fed ad libitum. 
 

5.4. Discussion 

The role of microbial communities inhabiting the rabbit cecum on key breeding traits 

related to FE remains unknown. To shed light on this matter, we have reported 

heritabilities and microbiabilities of ADG under different feeding regimes commonly 

used in meat rabbit commercial farms. We have also computed such ratios for cage-

average traits related to FI and FE in animals fed AL. Dealing with such cage-

average performances, while having only measured cecal microbial information in a 

few animals per cage, is a statistical modeling challenge. We have faced it using 

different approaches, with the final objective of evaluating the predictive value of 

microbial information for both individual growth and cage-average FE phenotypes.  

 

The study of ADG has particular significance for rabbit breeding programs since this 

trait is commonly selected to indirectly improve FE. Apart from that, the commercial 

application of feed restriction (i.e., a reduction in the amount of the feed provided to 
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the animal) is common since it improves FE and reduces mortality and morbidity 

caused by enteric disorders (Gidenne et al., 2009). Piles and Sánchez (2019) 

estimated a low genetic correlation between ADGAL and ADGR, and the genome-

wide association study conducted by Sánchez et al. (2020) identified different QTL 

regions for both traits. Such findings support the existence of different genetic 

backgrounds for these traits. Thus, in this study, we reported the posterior means 

of the heritability (h2) for ADGAL and ADGR separately. In line with previous results 

(Piles and Sánchez, 2019), we have found a lower h2 for ADGR, which implies 

difficulties to achieve a response to selection for growth or indirectly for FE.  

 

In this context, one can understand the relevance of exploring whether microbiota 

explains a significant percentage of the phenotypic variance of these traits as well 

as the value of microbial information to predict such complex traits as tools to define 

the degree of influence of microbial information on the traits of interest. A clear effect 

of microbial composition on the traits of interest would open the door to search and 

select for taxa positively associated with them. Ross et al. (2013), motivated by the 

existence of numerous exploratory studies in humans and other animals aiming at 

relating the microbiome to a complex trait, tested a method to predict body mass 

index in humans and methane production phenotypes in cattle. Their results showed 

that microbial information could be useful to predict complex host phenotypes, and 

even suggested that it could exceed prediction accuracies based on the host 

genome for traits largely influenced by the gut microbiota. Following that study, 

others have been conducted in an attempt to evaluate the utility of microbial 

information to predict complex phenotypes in different livestock species. However, 

to date, there is a lack of knowledge about the value of microbial information to 

predict phenotypes related to growth in rabbits. This is the first study to assess the 

value of cecal microbiota to predict individual growth traits in meat rabbits using 

different modeling approaches. What is more, this is the first time that the predictive 

value of microbial information is evaluated when this information has not been 

measured in all the individuals contributing to the phenotype. The first challenge we 

faced was to properly define a between-animals relationship matrix due to microbial 

effects (M). Thus, we replicated each analysis with three alternative definitions of M: 

one defined from CSS normalized OTU counts (𝐌𝐎) and two defined from two 
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classical measures of distance; Bray-Curtis (𝐌𝐁) and weighted Unifrac (𝐌𝐔). A 

second challenge was to define an appropriate way to expand M for those animals 

in which cecal microbiota was not assessed. These developments are strongly 

linked with several prediction tools based on kernel methods already proposed 

(Ramon et al, 2021). In our study, we have derived kernel matrices by implementing 

an ad-hoc solution to transform distance matrices into proper covariance matrices, 

while Ramon et al. (2021) directly derived the kernel matrices associated with 

distance metrics from raw information. Not having microbial information for all the 

animals under study would request, anyhow, some heuristics to generate valid 

covariance matrices to be included in the mixed models. 

 

Despite the difficulties mentioned above and the fact that, in general, a low 

predictive ability for growth traits was observed (the correlation coefficient between 

observed and predicted records in the validation set with M1 was not higher than 

0.4), we have been able to detect a certain predictive ability improvement by 

considering microbial information. Such consideration improved the predictive 

capacity of mixed models for ADGAL and ADGR by 25% and 46%, respectively, in 

the dataset comprised of only the rabbits in which cecal microbiota was assessed 

(mDataset). When the role of the microbial information was assessed by inspecting 

the percentage of phenotypic variance explained by the bacterial effect, a large 

proportion was attributed to the bacterial effect, being this large proportion of the 

phenotypic variance accompanied by a sharp reduction of the h2 which is probably 

related to a certain degree of association between cecal microbiota and host 

genotype. This was even observed for the case in which the definition of the M 

covariance matrix was based on the weighted Unifrac distance matrix. However, for 

this particular case, we did not see any improvement when considering microbial 

information for predicting ADGAL or ADGR. This result highlights the need to 

accompany any assessment of the proportion of the phenotypic variance attributed 

to the microbial effect (i.e., microbiability) by validation of its actual predictive value. 

 

The predictive value of models not including the microbial effect for growth traits 

was slightly higher (up to 0.46-0.48) with the fullDataset (i.e., that comprised of 

records from rabbits in which cecal microbiota was assessed and from their cage 
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mates without such microbial information) than with the mDataset. In this case, 

however, the predictive value added by microbial information was more limited, 

being only significant for ADGR of animals in which microbiota was assessed, and 

exclusively when the expansion of M for those animals without microbial information 

was based on the identity matrix. Despite this limited predictive value of the 

microbial information when the fullDataset was studied, and similar to that observed 

in some cases when the mDataset was considered, a very large percentage of the 

phenotypic variation of ADGAL was estimated to be explained by cecal microbiota 

when the covariance matrix M was expanded using the identity matrix. The large 

estimates of m2 for this trait can be said to be artifacts given that they are not 

accompanied by an improvement in the predictive capacity of the model, and they 

seem to be associated with an increase of the phenotypic variance estimates 

regarding M1. Such increase could be associated with an increment of the residual 

variance in the model, probably linked with the existence of a certain degree of 

collinearity between the covariance matrices of the different factors in the model. In 

this regard, the results obtained using covariance matrixes M expanded with cage-

average CSS OTU counts could be said to be more coherent, since the null 

microbiability estimates are associated with a null improvement of the prediction of 

both growth traits (ADGAL or ADGR). 

 

Fang et al. (2020b) found that only 10% of the phenotypic variance of finishing 

weight in commercial meat rabbits was explained by the gut microbiome. Besides 

that, previous studies in Japanese quails (Vollmar et al., 2020) and pigs 

(Camarinha-Silva et al., 2017) estimated m2 for body weight gain of 0.18 and 0.28, 

respectively. These large differences between our current results for growth traits 

and the previous ones could be simply due to the study of different definitions of 

these traits in different species or to the use of different approaches and definitions 

of M to estimate m2. We report a predictive value of cecal microbiota for ADGAL, in 

line with that reported for daily gain in pigs by Camarinha‐Silva et al. (2017) applying 

microbial best linear unbiased prediction (M-BLUP) and by Maltecca et al. (2019) 

using Bayesian models, machine learning approaches and semi-parametric kernel 

model. In our study, another important point to note is that the predictive value of 

cecal microbiota was higher for ADGR than for ADGAL. This result suggests that 
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ADGR is more strongly influenced by gut microbial composition than ADGAL, which 

is more affected by host genetics as Piles and Sánchez (2019) previously 

evidenced. 

 

Regarding the study of cage-average phenotypes, the current difficulties in 

individually recording FI of rabbits bred in group suppose the major limitation to 

conduct a direct selection for FE. Therefore, definitions of FE in this study rely on 

group records of FI and individual records of growth. In addition to this constraint, in 

the current study, we have also faced the challenge that supposes not having 

microbial information for all the individuals of a cage. Our modeling approaches 

allow including the phenotypic information of cage mates on which cecal microbiota 

was not assessed. Thus, we present the first study to predict cage-average FI and 

FE traits in a rabbit sire line with a mixed model approach using microbial information 

although it was only measured in approximately 30% of the individuals within cage. 

To deal with this limitation, we tested two different expansions of three microbial 

covariance matrices for the animals in which microbiota was not assessed to be 

able to consider the contributions of all individuals to the cage performance traits.  

 

Our modeling approaches exhibited moderate predictive abilities for the cage-

average phenotypes, higher than those obtained for the individually measured 

growth traits. This result was not surprising since the prediction of individual 

measures is more challenging than averages. Moreover, the inclusion of microbial 

information increased the predictive ability of mixed models by 5%, for ADFI̅̅ ̅̅ ̅̅ ̅
AL, 20% 

for ADRFI̅̅ ̅̅ ̅̅ ̅̅ ̅
AL and 14% ADFCR̅̅ ̅̅ ̅̅ ̅̅ ̅

AL over the model not considering a microbial effect. It 

is worth mentioning that this improvement was only achieved when the expansion 

of the microbial relationship matrix for those animals without microbial information 

was based on the identity matrix (i.e., for those animals without microbial information 

the diagonal elements of the covariance matrix were set to one and elements 

outside the diagonal were fixed to zero). These improvements in the prediction were 

accompanied by large microbiability estimates, which in turn were associated with 

a reduction of heritability estimates. Clear evidence of ill-conditioned models was 

observed for those cases in which the expansion of the covariance matrices was 

based on cage-average CSS OTU counts given that large microbiabilities were 
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estimated but they were not associated with improvements in the prediction, but with 

increased phenotypic variance estimates. The consideration of cage-average CSS 

counts to expand the covariance matrix could have increased the collinearity 

between the individual microbial and the cage effects, deteriorated the parameters 

identification, and altered convergence properties (Additional file 5.4).  

 

Previous studies have evaluated the value of gut microbiota to predict complex traits 

related to FE in other livestock species. In cattle, Delgado et al. (2019) found a set 

of microbial contigs obtained from a de novo metagenome assembly that allowed 

high classification power for samples with extreme values of FE and FI traits. They 

found that these microbial contigs had a certain predictive ability for such traits in an 

independent cattle population. In pigs, Camarinha‐Silva et al. (2017) achieved 

higher prediction accuracies for FI and feed conversion with M-BLUP method than 

with the same method but employing the genomic relationship matrix (G-BLUP). 

They quantified that 21% of the phenotypic variance of feed conversion in pigs is 

explained by the gut microbiome. In Japanese quails (Vollmar et al., 2020) and pigs 

(Camarinha-Silva et al., 2017), 9% and 16% of the phenotypic variance of FI, 

respectively, seem to be explained by the gut microbiome. In line with these studies 

estimating microbiabilities of traits related to FI and FE, we have also reported that 

a large percentage of the phenotypic variance of these phenotypes can be explained 

by the cecal microbiota. Such percentage was, in most cases, larger than that 

explained by the additive genetic effects. Nonetheless, as we have previously 

indicated, large microbiability estimates are not always associated with 

improvements in the predictive capacity of the models. Thus, such estimates should 

be interpreted with caution. 

 

What seems clear from our results is that in those cases in which an improvement 

in the predictive ability of the model was evidenced, the estimated high microbiability 

was accompanied by a reduction in the heritability estimates with respect to those 

obtained in models not fitting the microbial effect. We interpret this as indirect 

evidence of certain host genetic control over the gut microbial composition. Several 

studies have already reported the existence of moderate heritability for certain 

microbial taxa and diversity indexes in humans (Goodrich et al., 2014; Goodrich et 
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al., 2016), pigs (Lu et al., 2018; Cheng et al., 2018; Crespo-Piazuelo et al., 2018; 

Reverter et al., 2021) or cattle (Sasson et al., 2017). A preliminary study in the same 

meat rabbit population used in the current study has also directly shown that cecal 

microbiota is under genetic control (Velasco-Galilea et al., 2018b). These results 

are relevant from a biological perspective to better understand the symbiotic 

relationship between host and gut microbial communities, but also from an applied 

perspective. In the case we confirm that relevant OTUs (i.e., associated with 

performance traits of interest) have a clear host genetic control, selective breeding 

could be considered as an additional tool to promote the presence of such favorable 

microbial taxa in the gut of a given livestock population.  

 

The predictive ability of multivariate sPLSR models for the traits under study did not 

improve by considering microbial information, except for ADRFI̅̅ ̅̅ ̅̅ ̅̅ ̅
AL. This result was 

discouraging since with this approach we had hoped to identify the group of OTUs 

responsible of an improvement in the predictive ability. The unique case in which 

we identified a group of OTUs that appears to confer a predictive value was for 

ADRFI̅̅ ̅̅ ̅̅ ̅̅ ̅
AL. We detected some unclassified OTUs belonging to family 

Lachnospiraceae moderately correlated with this trait, some of them positively and 

others negatively. This is not surprising given this is a big family encompassing 

numerous different genera. Siegerstetter et al. (2017) found different 

Lachnospiraceae genera enriched in both low or high residual feed intake chickens 

and suggested that these bacteria could promote the host FE by stimulating fatty 

acid, amino acid, and vitamin synthesis. In short, with sPLSR we have not been able 

to detect the improvement in the predictive ability observed with mixed models, 

suggesting the existence of an added value of microbial information that cannot be 

captured by all predictive machineries when the amount of data and microbial 

information are limited. 

 

Our implemented mixed model approach integrates all the available pedigree 

information in the analysis. Such information is particularly relevant for the analysis 

of cage-average traits since it allows to share information between cages according 

to the additive genetic relationships. This way, predictions of individual phenotypes 
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include variability between cage mates. However, the same cage-average 

measurement was assigned to all cage mates in the sPLSR model approach.  

 

We have thus tried an alternative application of sPLSR models by fitting the 

posterior means of individual microbial effects estimated with M2 mixed models for 

each trait to identify the most relevant OTUs contributing to the improvement of the 

model predictive ability. This approximation has allowed us to identify for each trait 

a number of OTUs that are systematically chosen by the sPLSR models fitted with 

the three different matrices based on the identity matrix (i.e., those that we have 

found associated with gains in the predictive ability of the model) having the greatest 

loading weights.  

 

We have detected four unclassified OTUs belonging to family Lachnospiraceae 

moderately correlated with growth traits: one positively and other negatively with 

ADGR, and two positively with ADGAL. This is not surprising given this is a big family 

encompassing numerous different genera. Fang et al. (2020b) identified a positive 

association between members of this family and ADG of commercial meat rabbits. 

Another study in the same population of rabbits reported a positive association 

between members of family Lachnospiraceae and finishing BW (Fang et al., 2020a). 

Interestingly, we have found two different OTUs belonging to genus 

Methanobrevibacter positively associated with ADGAL and negatively with ADGR. 

Kušar and Avguštin (2010) suggested that methanogenic microorganisms inhabiting 

the rabbit cecum are predominantly Methanobrevibacter species. This result was 

supported by the study conducted by Velasco-Galilea et al. (2018a) in which all 

archaeal species identified in the rabbit cecum and feces belonged to such 

methanogenic genus that encompasses different hydrogenotrophic methane-

producing species. Conversely, McGovern et al. (2017) and McCabe et al. (2015) 

reported a negative correlation between the abundance of this genus and body 

mass index, as well as an overrepresentation of this genus in cattle under fed 

restriction. 

 

We have identified a positive association between an unclassified member of family 

Ruminococcaceae and ADGR. This result is in agreement with the above-mentioned 
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studies in meat rabbits that also identified a positive association of this family with 

ADG and finishing BW (Fang et al., 2020a; Fang et al., 2020b). Interestingly, we 

have found a negative association between genus Bacteroides and ADGR and 

ADFI̅̅ ̅̅ ̅̅ ̅
AL, as well as between genus Butyricicoccus and ADGR. Genus Bacteroides 

has been associated with obesity in humans (de la Cuesta-Zuluaga et al., 2018). 

However, it is worth mentioning that this genus encompasses pathogenic species, 

such as Bacteroides fragilis (Yekani et al., 2020), that could lead to a diversion of 

nutrients from growth towards immune response. Previous studies have 

hypothetized that an overgrowth of Bacteroides species in the rabbit gut could lead 

to a decrease of butyrate yield and, consequently, to the incidence of epizootic rabbit 

enteropathy (Jin et al., 2018). Several studies have demonstrated that the 

application of feed restriction after weaning reduces the risk of enteric disorders in 

rabbits (Gidenne et al., 2009; Romero et al., 2010; Gidenne et al., 2012). In this 

regard, a lighter presence of genus Bacteroides in restricted animals could be 

associated with the benefits conferred by this feeding strategy. Previous studies, 

indeed, have found a negative correlation between this genus and pig BW (Mach et 

al., 2015; Yang et al., 2016). 

 

It is also noteworthy that we have identified three different OTUs taxonomically 

assigned to genus Neglecta that are negatively associated with ADFI̅̅ ̅̅ ̅̅ ̅
AL. This genus 

encompasses pathogenic bacterial species, and it has been associated positively 

with pig ADG in a previous study conducted by Tran et al. (2018). On the other hand, 

we have identified two and five unclassified OTUs belonging to family 

Lachnospiraceae positively correlated with ADRFI̅̅ ̅̅ ̅̅ ̅̅ ̅
AL and ADFI̅̅ ̅̅ ̅̅ ̅

AL, respectively. In 

cattle, in accordance with our results, Li and Guan (2017) and Shabat et al. (2016) 

found an overrepresentation of family Lachnospiraceae in less efficient animals 

(greater RFI). High relative abundances of members belonging to this family could 

suggest a more active cecum fermentation, which leads to increased butyrate short-

chain fatty acid that is a nutrient for the gut of the animal. Besides that, we have 

found one OTU taxonomically assigned to genus Olsenella that seems to be 

relevant for the prediction of ADRFI̅̅ ̅̅ ̅̅ ̅̅ ̅
AL, and that is positively associated with this trait. 

Members of this genus ferment starch and glycogen substrates to produce lactic, 

acetic, and formic acid (Göker et al., 2010). In line with our results, Ellison et al. 
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(2017) and Kubasova et al. (2018) reported higher abundances of Olsenella in the 

rumen of low feed efficient lambs and piglets, respectively. 

 

On another note, we have found several OTUs relevant for the prediction of traits 

related to FE analyzed in this study, i.e., ADRFI̅̅ ̅̅ ̅̅ ̅̅ ̅
AL and ADFCR̅̅ ̅̅ ̅̅ ̅̅ ̅

AL. Two OTUs 

taxonomically assigned to genus Paramuribaculum were found negatively 

correlated with ADRFI̅̅ ̅̅ ̅̅ ̅̅ ̅
AL. Members of this genus are involved in the metabolism of 

carbohydrates, lipids, vitamins, and amino acids as well as in glycan biosynthesis 

(Lagkouvardos et al., 2019). On the other hand, we have identified OTUs belonging 

to class Acidaminococcaceae and genus Negativibacillus positively correlated with 

ADFCR̅̅ ̅̅ ̅̅ ̅̅ ̅
AL. Zhang et al. (2021) suggested a role of genus Negativibacillus in sheep 

feed efficiency throughout the fermentation of complex carbohydrates. Conversely, 

Elolimy et al. (2020) identified an enrichment of class Acidaminococcaceae and 

genus Negativibacillus in the most efficient Holstein heifer calves. 

 

Finally, we want to highlight that, in line with previous studies, we have observed 

that bacterial members assigned to the same taxonomic group can either be 

positively or negatively associated with a given phenotype. The observed 

heterogeneity in this study includes members of family Lachnospiraceae and genera 

Rumminoccocus, Butyricicoccus, and Bacteroides. This suggests that these OTUs 

belong to functionally and/or physiologically different species encompassed within 

the same taxa. Our experimental design faithfully represents rearing conditions of 

most commercial farms in which kits are bred in collective cages, however, it does 

not grant the optimal statistical power to unravel the foundations behind these 

biological processes. For future studies with this purpose, an experimental design 

based on individual measures could be, although costly, more appropriate. 

 

5.5. Conclusions 

Significant improvements in the prediction of individual growth and cage-average 

traits related to FE were observed when cecal microbial information was fitted into 

the models. However, these improvements are not general and depend to a large 

extent on the prediction method used as well as on the prior information considered 
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to define the covariance matrix between animals due to their cecal microbial effect. 

We have introduced a novel modeling approach based on the traditional mixed 

animal model that, relying on the pedigree information, enables the estimation of 

variance components and the evaluation of the predictive value of microbial 

information for cage-average performances even when microbiota was not 

assessed in all individuals of the cage. Caution must be taken, however, to interpret 

the magnitude of the proportion of the phenotypic variance explained by the 

individual gut microbial effect since large microbiabilities estimates are not 

necessarily associated with gains in the predictive ability of the model. In general, a 

certain drop in heritability estimates was observed when both additive genetic and 

individual microbial effects were fitted at the time. This suggests that part of the 

effect associated with the prediction improvement by considering cecal microbial 

information partially has a genetic origin. We are in the process of assessing this 

host genetic determinism. Cecal microbiota seems to have a polibacterial role in 

growth and FE traits since, although we have identified certain OTUs with a relevant 

weight, a large proportion of OTUs are responsible for the prediction improvement 

achieved with mixed models. 

 

5.6. Methods  

5.6.1.  Animals 

All animals involved in the study were raised at the rabbit facilities of the Institute of 

Agrifood Research and Technology (IRTA) in two different periods. The animals 

come from the Caldes line (Gómez et al., 2002) that has been selected for post-

weaning growth since 1983, and it is commonly used as a terminal sire line within 

the three-ways crossbreeding schema for rabbit meat production in Spain. The 

animals used in this study were randomly selected from 5 batches of a larger 

experiment conducted to estimate the effect of the interaction between the genotype 

and the feeding regime on growth, feed efficiency, carcass characteristics, and 

health status of the animals (Piles and Sánchez, 2019).  

 

Most of the animals were produced in 4 batches in a semi-open-air facility during 

the first semester of 2014, and the remaining were produced in a single batch in 
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another facility under better controlled environmental conditions in spring 2016. The 

animals bred in the first facility were housed in collective cages, containing 8 kits 

each one, from weaning (32 days of age) until the end of the fattening period (66 

days of age). On the other hand, the kits raised in the second facility were housed 

in cages of 6 kits each one and their growing period was slightly shorter (32 - 60 

days of age).  

 

Beyond these differences, all animals received the same management and were fed 

with a standard pelleted diet. Water was provided ad libitum and feed was supplied 

once per day in a feeder with three places for the 4-5 weeks that the fattening lasted. 

At weaning, the animals were randomly assigned to one of the two different feeding 

regimes under assessment: (1) ad libitum (AL) or (2) restricted (R) to 75% of the AL 

FI. The amount of feed supplied to the animals under R in each week for each batch 

was computed as 0.75 times the average FI of kits on AL from the same batch during 

the previous week, plus 10% to account for a FI increase as the animals grow. Kits 

under both feeding regimes were categorized into two groups according to their BW 

at weaning (big if their BW was greater than 700 g or small otherwise) to generate 

homogeneous groups regarding animal size within feeding regime. A maximum of 

two kits from the same litter were assigned to a single cage to avoid confounding 

between cage and maternal effects. 

 

The individual BW was weekly recorded for all animals in both feeding regimes, and 

the cage FI was also weekly recorded in AL cages. From BW raw records, individual 

ADG was computed as the slope of the within animal regression of all BW 

measurements on their respective ages in days. This trait was individually computed 

for each feeding regime, thus obtaining ADG on AL (ADGAL) or under R (ADGR). For 

the AL cages, three additional traits were computed. The individual average daily 

feed intake (ADFI̅̅ ̅̅ ̅̅ ̅
AL) was computed as the total FI of the cage during the whole 

growing period divided by the number of days and the number of kits that each cage 

contained. The individual average daily residual feed intake (ADRFI̅̅ ̅̅ ̅̅ ̅̅ ̅
AL) was obtained 

as the residual of a batch-nested multiple regression of ADFI̅̅ ̅̅ ̅̅ ̅
AL on the ADG̅̅ ̅̅ ̅̅

AL and 

the cage-average mid-growing-period day metabolic weight (MW̅̅ ̅̅
A̅L). Finally, the 
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individual average daily feed conversion ratio (ADFCR̅̅ ̅̅ ̅̅ ̅̅ ̅
AL) was computed as the ratio 

between ADFI̅̅ ̅̅ ̅̅ ̅
AL and the ADGAL cage-average (ADG̅̅ ̅̅ ̅̅

AL). 

 

Two different datasets were considered for the analyses performed in this study. 

The mDataset was represented by the 425 kits from which cecal samples were 

collected at the end of their growing period for microbiota assessment, and the 

fullDataset included these 425 kits and their cage mates. On average, cecal 

microbiota was assessed in 2 kits by cage. The number of animals and cages within 

feeding regime and batch are shown in Table 5.9, and the descriptive statistics of 

the traits under study are presented in Table 5.10. 

 

Table 5.9| Number of individual and cages within feeding regime and batch. Animals 

with microbiota assessed and non-assessed are distinguished for the individual 

records. 

 Individuals Cages 

 With microbiota W/o microbiota  

Batch R AL R AL R AL 

1 45 44 51 52 16 16 

2 30 27 66 61 12 11 

3 41 35 103 84 18 15 

4 53 61 195 211 31 34 

5 32 57 96 126 16 23 
R: Animals under restriction; AL: animals fed ad libitum. 

 

Table 5.10| Descriptive statistics of growth and FE traits. 

Trait Dataset N Mean SD IQR 

ADGAL (g/day)1 mDataset 224 55.12 6.52 7.30 

ADGAL (g/day)1 fullDataset 758 53.21 9.42 8.49 

ADGR (g/day)1 mDataset 201 36.35 5.85 7.56 

ADGR (g/day)1 fullDataset 712 35.35 7.99 8.27 

ADFIAL (g/day)2 fullDataset 99 151.37 17.01 20.93 

ADRFIAL (g/day)2 fullDataset 99 0.00 5.92 6.66 

ADFCRAL (g/day)2 fullDataset 99 2.84 0.24 0.33 
ADGAL: average daily gain in rabbits fed ad libitum; ADGR: average daily gain in rabbits fed under restriction; 

ADFI̅̅ ̅̅ ̅̅ ̅
AL: average daily feed intake in rabbits fed ad libitum; ADRFI̅̅ ̅̅ ̅̅ ̅̅ ̅

AL: average daily residual feed intake in rabbits 

fed ad libitum; ADFCR̅̅ ̅̅ ̅̅ ̅̅ ̅
AL: average daily feed conversion ratio in rabbits fed ad libitum; SD: standard deviation; 

IQR: interquartile range; mDataset: dataset including only records of animals in which microbiota was assessed; 
fullDataset: dataset including records of animals in which microbiota was assessed as well as of their cage 
mates. 
1Refers to individual traits. 
2Refers to cage traits. 
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5.6.2. Sample processing, DNA extraction and sequencing  

Animals were slaughtered at morning after fasting (at 66 and 60 days of age in first 

and second facility, respectively) and cecal samples of 425 rabbits were collected 

in a sterile tube, kept cold in the laboratory (4ºC), and stored at -80ºC. DNA 

extraction, amplification, Illumina library preparation and sequencing followed 

methods described in previous studies (Velasco-Galilea et al., 2018a; Velasco-

Galilea et al., 2020). Whole genomic DNA was extracted from 250 mg of each 

biological sample according to manufacturer’s instructions of kit ZR Soil Microbe 

DNA MiniPrep Kit (Zymo Research, Freiburg, Germany). Cecal samples were 

mechanically lysed in a FastPrep-24 homogenizer (MP Biomedicals, LLC, Santa 

Ana, CA, United States) at a speed of 6 m/s for 60 s, thus facilitating an efficient 

lysis of archaeal and bacterial species. Integrity and purity of DNA extracts were 

measured with NanoDrop ND-1000 spectrophotometer equipment (NanoDrop 

products; Wilmington, DE, United States) following Desjardins and Conklin’s 

protocol (Desjardins and Conklin, 2010). All DNA extracts showed adequate 

integrity and purity (absorbance ratio 260 nm/280 nm > 1.6) to avoid PCR inhibition 

issues. A fragment of the 16S rRNA gene that included the V4-V5 hypervariable 

regions was amplified with the F515Y/R926 pair of primers (5’-

GTGYCAGCMGCCGCGGTAA-3’, 5’-CCGYCAATTYMTTTRAGTTT-3’) (Parada et 

al., 2016). The initial polymerase chain reaction (PCR) was conducted for each 

sample using 12.5 µl 2x KAPA HiFi HotStart Ready Mix, 5 µl forward primer, 5 µl 

reverse primer and 2.5 µl template DNA (5 ng/ µl). The PCR conditions were the 

following: initial denaturation for 3 minutes at 95 ºC, 25 cycles of 30 seconds at 95 

ºC, 30 seconds at 55 ºC and 30 seconds at 72 ºC; and final extension for 2 minutes 

at 72 ºC. The fragment was then re-amplified in a limited-cycle PCR reaction to add 

sequencing adaptors and 8 nucleotide dual-indexed barcodes of the multiplex 

Nextera XT kit (Illumina, Inc., San Diego CA, United States) according to 

manufacturer’s instructions. The adaptors and barcodes were added to both ends 

of the fragment in a second PCR by using 25 µl 2x KAPA HiFi HotStart Ready Mix, 

5 µl index i7, 5 µl index i5, 10 µl PCR Grade water and 5 µl concentrated amplicons 

of the initial PCR. The second PCR conditions were the following: initial denaturation 

for 3 minutes at 95 ºC, 8 cycles of 30 seconds at 95 ºC, 30 seconds at 55 ºC and 30 

seconds at 72 ºC; and final extension for 5 minutes at 72 ºC. Final libraries were 
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cleaned up with AMPure XP beads, validated by running 1 µl of a 1:50 dilution on a 

Bioanalyzer DNA 1000 chip (Agilent Technologies, Inc., Santa Clara, CA, United 

States) to verify their size, quantified by fluorometry with PicoGreen dsDNA 

quantification kit (Invitrogen, Life Technologies, Carlsbad, CA, United States), 

pooled at equimolar concentrations and paired-end sequenced in 5 parallel plates 

in an Illumina MiSeq 2 x 250 platform at the Genomics and Bioinformatics Service 

(SGB) of the Autonomous University of Barcelona (UAB). 

 

5.6.3. Bioinformatic pipeline for OTU calling 

Sequence processing was performed using QIIME software version 1.9.0 

(https://github.com/biocore/qiime/releases/tag/1.9.0) (Caporaso et al., 2010) as 

described in Velasco-Galilea et al. (2020). The first step consists of assembling the 

paired-ended V4-V5 16S rRNA gene reads into contigs with the python script 

multiple_join_paired_ends.py. The resulting contigs were filtered (those with a 

quality score smaller than Q19 were discarded) and assigned to samples using the 

python script split_libraries.py with default parameters. Chimeric sequences 

generated in the PCR were detected with UCHIME algorithm (Edgar et al., 2011) 

and removed. The filtered contigs were clustered into operational taxonomic units 

(OTUs) with a 97% similarity threshold using the script 

pick_open_reference_otus.py with default parameters (Rideout et al., 2014). This 

script uses the UCLUST algorithm (Edgar, 2010), to first align the sequences 

against Greengenes reference database (version gg_13_5_otus) (McDonald et al., 

2012), and then to make a de novo clustering of those contigs that did not match 

the database. After doubletons removal, the filtered OTU table contained the 

sequence counts of 963 OTUs for 425 samples. Finally, the OTU table was 

normalized with the cumulative sum scaling (CSS) method (Paulson et al., 2013). 

Figure 5.2 provides a graphical summary of the present experimental design and 

the phenotypes analyzed together with microbiota assessment of cecal samples and 

the bioinformatic pipeline used for OTU calling. Taxonomic assignment of 

representative sequences of each OTU was conducted with the QIIME default 

parameters of the UCLUST consensus taxonomy assigner by mapping the 

sequences against the Greengenes reference database gg_13_5_otus. The raw 
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sequence data were deposited in the sequence read archive of NCBI under the 

BioProject accession number PRJNA524130. Metadata, OTU table, and 

corresponding taxonomic assignments are also included as Additional files 5.1, 

5.2 and 5.3, respectively. In summary, after executing the bioinformatic processing, 

14,928,203 filtered sequences clustered into 963 different OTUs were obtained for 

425 cecal rabbit samples. Most of these OTUs were assigned to phyla Firmicutes 

(76.74%), Tenericutes (7.22%) and Bacteroidetes (6.26%). Details on the 

taxonomic assignment can be found at Velasco-Galilea et al. (2020). 

 

 

Figure 5.2| Graphical summary of the experimental design, phenotypes analyzed, microbiota assessment of 
cecal samples and bioinformatic pipeline for OTU calling. 

 

5.6.4. Statistical analyses: mixed models 

5.6.4.1. Parameter estimation 

The following univariate microbial mixed linear model was fitted to estimate the 

marginal posterior distributions of additive, litter, cage, and microbial effects of the 

individual growth traits ADGAL and ADGR with the mDataset: 

 

y = Xβ + ZAa + ZLl + ZCc + ZMm + e, 
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where y is a vector containing the phenotypes (ADGAL or ADGR); β is a vector of the 

systematic effects of batch (5 levels) and of BW at weaning (2 levels: big and small) 

with its corresponding incidence matrix X; a is a vector including the additive genetic 

effects with the corresponding incidence matrix ZA; l is a vector with litter birth effects 

with the corresponding incidence matrix ZL; c is a vector including cage effects with 

the corresponding incidence matrix ZC; m is a vector having the animal microbial 

effects with the corresponding incidence matrix ZM; finally e is a vector of residuals. 

The mDataset used in these analyses included phenotypic information of 425 

rabbits born from 318 litters and housed in 192 cages, while the pedigree included 

relationships of 2,547 individuals. 

 

The fullDataset was used to estimate the marginal posterior distributions of additive, 

litter, and microbial effects of ADFCR̅̅ ̅̅ ̅̅ ̅̅ ̅
AL, ADFI̅̅ ̅̅ ̅̅ ̅

AL and ADRFI̅̅ ̅̅ ̅̅ ̅̅ ̅
AL from records on the 99 

AL cages available. The following univariate microbial mixed linear was fitted: 

 

y = Xβ + ZAa + ZLl + ZMm + e, 

 

where y is a vector containing cage trait phenotypes (ADFCR̅̅ ̅̅ ̅̅ ̅̅ ̅
AL, ADFI̅̅ ̅̅ ̅̅ ̅

AL or ADRFI̅̅ ̅̅ ̅̅ ̅̅ ̅
AL); 

β is a vector including the systematic effects of batch (5 levels) and of BW at 

weaning (2 levels: big and small) with its corresponding incidence matrix X. As 

described above, vectors a, l, m and e correspond to additive genetic, litter birth, 

animal microbial and residual effects, respectively. However, the corresponding 

incidence matrices ZA, ZL and ZM are not composed by zeros and ones but by real 

numbers representing the proportions of the different levels of the factor contributing 

to the cage-average.  

 

In both models, the same sets of prior distributions were considered for the different 

factors. The systematic effects (β) were a priori assumed to follow uniform 

distributions. The assumed prior distribution for the additive genetic effects was a ~ 

NMV (0, AσA
2 ), with A being the numerator relationship matrix (Henderson, 1973) 

and σA
2  being the additive genetic variance. The prior distribution assumed for the 

litter effects was l ~ NMV (0, IσL
2), with I being an identity matrix of appropriate 

dimension, and σL
2 being the litter birth variance. The prior distribution for the cage 
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effects was c ~ NMV (0, IσC
2), with I also being an identity matrix of appropriate 

dimension, and σ𝐶
2  being the cage variance. In different analyses, alternative prior 

distributions were assumed for the vector of animal-specific microbial effects, being 

its general form m ~ NMV (0, MσM
2 ), with M being a between-animals relationship 

matrix due to microbial effects, and σM
2  being the animal microbial variance. Three 

alternative definitions of M were considered in three separate analyses: i) 𝐌𝐎 = 𝐎𝐎′, 

with O being the row-normalized CSS OTU count matrix, [n (animals) x m (OTUs)]; 

the O matrix was row-wise normalized by dividing the row vector elements by the 

row norms ensuring that 𝐌𝐎 had ones in its diagonal (this definition is fairly similar 

to that previously proposed by Difford et al. (2018); ii) 𝐌𝐁 = 1 −
𝐁𝟐

2
; with B being the 

Bray-Curtis distance matrix (Bray and Curtis, 1957) computed from the CSS OTU 

count matrix; and iii) 𝐌𝐔 = 1 −
𝐔𝟐

2
; with U being the weighted Unifrac distance matrix 

(Lozupone and Knight, 2005) computed from the CSS OTU count matrix. Both 

distance matrices (B and U) were computed using the “phyloseq” R package 

(McMurdie and Holmes, 2013).  

 

To deal with the fact that microbial information was only available for some of the 

rabbits within a cage, it was necessary to generate the rows and columns of the 

between-animal covariance matrices due to the cecal microbial content for the 

animals not having microbial information assessed. This approach allows to 

consider the contributions of all individuals to the cage-average performance traits. 

Two different expansion strategies were adopted: i) assigning to the animals without 

microbial information the within cage-average of each CSS OTU count, and then 

computing 𝐌𝐎̅, 𝐌𝐁̅ and 𝐌𝐔̅ between the 1,470 animals under study (425 having 

microbial information plus their cage mates without microbial information); ii) first 

computing 𝐌𝐎, 𝐌𝐁 and 𝐌𝐔 from the 425 animals with microbial information and then 

expanding with ones in the diagonal and zeros out of the diagonal the rows and 

columns corresponding to animals not having microbial information, thus obtaining 

𝐌𝐎,𝟎, 𝐌𝐁,𝟎 and 𝐌𝐔,𝟎. The resulting covariance matrices were forced to be positive 

definite by conducting an eigen-value decomposition, saving all the positive eigen-

values and their associated eigen-vectors, and finally reconstructing the covariance 

matrices from these elements. Note that the original (obtained between the 425 
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animals having microbial composition) Bray-Curtis or unweighted Unifrac distance 

matrices could be undefined matrices, i.e., mixing positive and negative eigen 

values, since distance matrices are pairwise constructed. Thus, certain incongruities 

could exist when the distances are studied beyond pairs of individuals, which 

translate into non-positive definition of the whole distance matrix. These 

incongruities must be corrected if the distance matrix is going to be used as a 

covariance matrix. 

 

The MCMC Bayesian estimation procedure was conducted using gibbsf90test 

program (Misztal et al., 2015). Chains of 2,000,000 samples were run discarding the 

first 500,000 to allow the algorithm to reach convergence to the marginal posterior 

distributions. Finally, one in every 10 samples was saved. Trace plots and 

histograms of Markov chains from the posterior distribution of the parameters of 

Bayesian models fitted for the individual growth traits and for the cage FE traits are 

included as Additional file 5.4. 

 

The fractions of the phenotypic variance of ADGAL and ADGR explained by σA
2  

(heritability), σL
2 (litter variance ratio), σC

2 (cage variance ratio), and σM
2  (microbiability; 

Difford et al., 2018) were calculated as: 

h2 =  
σA

2

σP
2 ;  l2 =  

σL
2

σP
2;  c2 =  

σC
2

σP
2;  m2 =  

σM
2

σP
2 , 

where σP
2 =  σA

2 +  σL
2 +  σC

2 +  σM
2 + σe

2 is the phenotypic variance. 

 

Similarly, for the cage traits (ADFCR̅̅ ̅̅ ̅̅ ̅̅ ̅
AL, ADFI̅̅ ̅̅ ̅̅ ̅

AL and ADRFI̅̅ ̅̅ ̅̅ ̅̅ ̅
AL), the fractions of the 

phenotypic variance explained by σA
2  (heritability), σL

2 (litter variance ratio), and σM
2  

(microbiability) were calculated as: 

h2 =  
σA

2

σP
2 ;  l2 =  

σL
2

σP
2;   m2 =  

σM
2

σP
2 , 

where σP
2 =  σA

2 +  σL
2 +  σM

2 + 7σe
2 is the phenotypic variance. Given that σe

2 

represents the cage residual mean, it is necessary to multiply it by 7 (the average 

number of animals within cage in this study), thus obtaining an individual residual 

variance estimate referred to individual records. Note that l2 and c2 were defined 

but related results are not presented in this study. 
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5.6.4.2. Predictive ability assessment 

For each trait, two cross-validations assessments were conducted to evaluate 

whether including microbial information in the model improves its predictive ability. 

The first one was based on the above-described mixed model whose predictive 

performance was compared with that of the same model but without considering the 

microbial effect. Cross-validations were replicated 100 times. In each of them, the 

dataset for the individually measured traits (ADGAL and ADGR) was randomly split 

into training and validation sets with probabilities 0.9 and 0.1, respectively. This 

partition was done in a manner that ensured all litters and cages of the animals in 

the validation set were also represented in the training set. For the cage traits 

(ADFCR̅̅ ̅̅ ̅̅ ̅̅ ̅
AL, ADFI̅̅ ̅̅ ̅̅ ̅

AL and ADRFI̅̅ ̅̅ ̅̅ ̅̅ ̅
AL), the dataset was randomly split in a way that cages 

within a given batch were assigned to the training or the testing set with probabilities 

0.8 and 0.2, respectively. The predictive ability of each model was defined as the 

average, across 100 replicates, correlation coefficient between predicted and 

observed phenotypes in the validation set. In this cross-validation assessment, the 

training step of the model was conducted using the expectation-maximization 

residual maximum likelihood (EM-REML) algorithm as implemented in the program 

remlf90 (Misztal et al., 2015). Paired t test (R Development Core Team, 2010) was 

applied to compare the across replicates mean correlations obtained with the model 

considering microbial effect to that from the model that ignored this information. The 

tests were assumed paired because the same dataset was used in each replicate 

of both analyses (i.e., with and without bacterial effect). Empirical bootstrap p-values 

for the paired t test were computed after generating 1,000 bootstrap samples under 

the null hypothesis of the correlation coefficients from both models across the 100 

replicates. The bootstrap p-value was defined as the proportion of bootstrap rounds 

having an estimated difference equal to or greater than that obtained with the 

original dataset. A p-value lower than 0.05, after Bonferroni correction (Bonferroni, 

1936), was considered to support the rejection of the hypothesis of both models 

having the same predictive ability. In those cases where the null hypothesis was 

rejected, the percentage of times across the 100 replicates that the correlation 

coefficient obtained with the model considering microbial information was higher 

than that obtained with the model that ignored such information was computed. 
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5.6.5. Statistical analyses: multivariate models 

5.6.5.1. Predictive ability assessment 

Another predictive performance assessment was conducted using a multivariate 

approach. Individual (ADGAL and ADGR) and cage traits (ADFCR̅̅ ̅̅ ̅̅ ̅̅ ̅
𝐴𝐿, ADFI̅̅ ̅̅ ̅̅ ̅

𝐴𝐿  and 

ADRFI̅̅ ̅̅ ̅̅ ̅̅ ̅
𝐴𝐿) were fitted with sparse Partial Least Squares Regression (sPLSR) models. 

The predictors of the first sPLSR model where the columns of the design matrix 

obtained with the model.matrix() R function (R Development Core Team, 2010) after 

fitting for each trait a linear model defined by the same systematic effects as those 

used in the mixed model approach (i.e., batch and body size at weaning). The 

second sPLSR model fitted for each trait include as predictors the abovementioned 

systematic effects together with the 946 CSS OTU counts which were detected in 

at least 5% of the samples and had a sum of its counts resulting in a frequency 

greater than 0.01% of the total sum of all OTUs counts across all samples. CSS 

OTU counts on the 425 rabbits having measures of gut microbial composition were 

directly used for the analysis of the individual growth records. For the cage-average 

traits, it was needed to associate these cage-average performances to the cage-

average CSS OTU counts. For each trait, the corresponding dataset was randomly 

divided into 5 folds, 4 of which constituted the learning dataset, and the remaining 

was used as the validation dataset. Before fitting the sPLSR on the learning dataset, 

optimal tuning parameters sparsity and number of latent components were chosen 

by an internal 5-fold cross-validation using cv.spls() function of the “spls” R package 

(Chung et al., 2019) within ranges (0.01-0.99) and (1-20) for sparsity and number of 

latent components, respectively. With the tuning parameters returned by the 

cv.spls() function, the combination that resulted in the minimum mean squared 

prediction error (MSPE) was used to finally fit the sPLSR to the learning dataset by 

the function spls(). Then, the fitted sPLSR model was used to predict the host trait 

performances of the validation dataset. This process was replicated 20 times with 

different seeds, thus obtaining 100 replicates for each trait and model tested. The 

predictive ability of each model was defined as the average, across 100 replicates, 

correlation coefficient between predicted and observed host trait phenotypes in the 

validation dataset. The significance of the differences in the correlation coefficient 

between observed and predicted records across these 100 replicates was tested 
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using the bootstrap paired t tests previously described for the mixed model analysis. 

In this case, the comparison involved the correlations between observed and 

predicted records obtained with a model just fitting the systematic effects and with 

other model fitting both systematic effects and CSS OTU counts. Additionally, when 

the predictive ability of the model including the microbial information was declared 

as better than that obtained with that of the model only including the systematic 

effects as predictors, the taxonomy of those OTUs selected in more than 80% of the 

sPLSR replicates was studied with the reference taxonomic database RDP (Wang 

et al., 2007). Finally, the Pearson’s correlation was computed to quantify the degree 

of association between selected OTUs and the trait of interest. 

 

5.6.5.2. Identification of relevant OTUs 

Multivariate sPLSR models were also used to fit the posterior means of the 

individual microbial effects predicted with the univariate microbial mixed linear 

models that led to a significant prediction improvement of growth and FE traits. This 

approach was conducted in an attempt to identify the most relevant OTUs for the 

prediction of such phenotypes. In each case, the microbial composition records 

associated with the animals that conformed the mDataset were randomly divided 

into 5 folds (1 and 4 folds constituted the validation and the learning dataset, 

respectively). Before fitting the sPLSR on the learning dataset, optimal tuning 

parameters sparsity and number of latent components were chosen by an internal 

5-fold cross-validation using cv.spls() function of the “spls” R package as described 

above. A sPLSR model was then fitted to the learning dataset by the function spls() 

with the tuning parameters returned by the cv.spls() function using the 946 CSS 

OTU counts as predictors. This process was replicated 20 times with different seeds 

for each trait and model tested to select those OTUs chosen in at least 80 out of the 

100 replicates conducted. The OTUs considered as relevant for the prediction of a 

given trait were those having the greatest loading weights (i.e., below 5th and above 

95th percentile values) and that were selected with all the models tested. The 

taxonomy of the relevant OTUs was studied with the reference taxonomic database 

RDP and the Pearson’s correlation was computed to quantify the degree of 

association between each OTU and the trait of interest. 
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5.7. Additional information 

The Additional information for this article can be found in the Annexes section. 
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5.9. List of abbreviations 

𝐀𝐃𝐅𝐂𝐑̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝐀𝐋 average daily feed conversion ratio on ad libitum feeding regime 

𝐀𝐃𝐅𝐈̅̅ ̅̅ ̅̅ ̅
𝐀𝐋 average daily feed intake on ad libitum feeding regime 

ADG  average daily gain 

ADGAL average daily gain on ad libitum feeding regime 

𝐀𝐃𝐆̅̅ ̅̅ ̅̅
𝐀𝐋 cage-average daily gain on ad libitum feeding regime  

ADGR  average daily gain on restricted feeding regime 

𝐀𝐃𝐑𝐅𝐈̅̅ ̅̅ ̅̅ ̅̅ ̅
𝐀𝐋 average daily residual feed intake on ad libitum feeding regime 

AL  ad libitum feeding regime 

BW  body weight 

CSS  cumulative sum scaling 
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FE  feed efficiency 

FI  feed intake 

fullDataset dataset including records of animals in which microbiota was assessed 

as well as of their cage mates  

mDataset dataset including only records of animals in which microbiota was 

assessed  

M-BLUP microbial best linear unbiased prediction 

MSPE  mean squared prediction error 

𝐌𝐖̅̅ ̅̅ ̅̅
𝐀𝐋  cage-average mid growing period day metabolic weight (BW0.75) 

OTU  operational taxonomic unit 

PCR  polymerase chain reaction 

R  restricted feeding regime 

EM-REML expectation-maximization residual maximum likelihood  

sPLSR sparse partial least squares regression  

 

Author contributions 

JS and MP conceived the experimental design. JS, MP and MVG collected 

biological samples. MVG and MP processed the samples in the laboratory. MVG 

processed and analyzed the sequencing data, interpreted data, prepared figures 

and tables, and wrote the manuscript. JS and YRC helped analyzing the sequencing 

data. JS, MP and YRC helped interpreting the data, and revised the manuscript. All 

authors read and approved the final manuscript. 

 

Acknowledgements 

We would like to thank Oscar Perucho, Josep Ramon and Carmen Requena (staff 

of Unitat de Cunicultura, IRTA) for their contribution to data recording and animal 

care during the experiment. We also want to thank Oriol Rafel, Marc Viñas, Miriam 

Guivernau and Olga González for their help collecting and processing the biological 

samples. We acknowledge Armand Sánchez, Nicolas Boulanger and Joana Ribes 

(Genomics and NGS Unit, CRAG) for their assistance in massive libraries 

preparation.  



 
Genetic determinism of meat rabbit cecal microbiota and its role in the host's feed efficiency  

258 

Declarations 

Ethics approval and consent to participate 

This study was carried out in compliance with the ARRIVE guidelines. This study 

was carried out in accordance with the relevant guidelines and regulations of the 

animal care and use committee of the Institute for Food and Agriculture Research 

and Technology (IRTA) which adopts “The European Code of Conduct for Research 

Integrity”. The protocol was approved by the committee of the Institute for Food and 

Agriculture Research and Technology (IRTA).  

 

Availability of data and materials 

The raw sequence data were deposited in the sequence read archive of NCBI under 

the accession number SRP186982 (BioProject PRJNA524130). Metadata, the 

filtered and CSS-normalized OTU table and corresponding taxonomic assignments 

have all been included as Additional files 5.1, 5.2 and 5.3, respectively.  

 

Competing interests 

The authors declare that they have no competing interests. 

 

Funding 

The experimental design of this work was conducted thanks to funding from INIA 

project RTA2011-00064-00-00. This study was part of the Feed-a-Gene project that 

received funding from the European Union’s H2020 program under grant agreement 

no. 633531, and the Spanish project RTI2018-097610R-I00. MVG is a recipient of 

a “Formación de Personal Investigador (FPI)” pre-doctoral fellowship from INIA, 

associated with the research project RTA2014-00015-C2-01. YRC is recipient of a 

Ramon y Cajal post-doctoral fellowship (RYC2019-027244-I) from the Spanish 

Ministry of Science and Innovation. 

 

  

https://microbiomejournal.biomedcentral.com/articles/10.1186/2049-2618-2-7#MOESM2
https://microbiomejournal.biomedcentral.com/articles/10.1186/2049-2618-2-7#MOESM4


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
 
 
 
 
 
 
 
 

Article IV 
 
 
 
 

Bayes factor for elucidating the influence of host genetics, litter 

and cage effects on rabbit cecal microbiota through linear and 

zero-inflated Poisson mixed models 

 

 

María Velasco-Galilea, Miriam Piles, Yuliaxis Ramayo-Caldas, Luis Varona and 

Juan P. Sánchez 

 

 

Genetics Selection Evolution (under review) 

 

 

 

 

 

 

 

 



 

 

Bayes factor for elucidating the influence of host 

genetics, litter and cage effects on rabbit cecal 

microbiota through linear and zero-inflated Poisson 

mixed models 

 

María Velasco-Galilea1*, Miriam Piles1, Yuliaxis Ramayo-Caldas1, Luis Varona2 

and Juan P. Sánchez1 

 

1Institute of Agrifood Research and Technology (IRTA) - Animal Breeding and Genetics, 

E08140 Caldes de Montbui, Barcelona, Spain 

 

2Veterinary Faculty, University of Zaragoza, Zaragoza, Spain 

 

 

*Corresponding author: 

María Velasco-Galilea 

maria.velasco@irta.es 

 

 

mailto:maria.velasco@irta.es


Chapter 6: Bayes factor for elucidating the influence of host genetics, litter and  
cage effects on rabbit cecal microbiota through linear and zero-inflated Poisson mixed models 

263 

6.1. Abstract 

Background 

Rabbit cecum hosts and interacts with a complex microbial ecosystem that 

contributes to the variation of traits of economic interest. Although the influence of 

host genetics on microbial diversity and specific microbial taxa has been studied in 

humans, pigs, or cattle, it remains unknown in rabbit. This study aims to disentangle 

through a Bayes factor approach the relevance of genetic, litter and cage effects on 

a set of 989 microbial traits representative of rabbit cecal microbiota.  

 

Results 

Sequence processing of 16S rRNA-based analysis of the cecal microbiota of 425 

rabbits resulted in the relative abundances of 29 genera, 951 OTUs, four microbial 

alpha-diversity indexes, and the first five principal components calculated from the 

OTU table. Each microbial trait was adjusted with mixed linear and zero-inflated 

Poisson (ZIP) models. All models included additive genetic, litter and cage effects, 

as well as body weight at weaning and batch as systematic factors. The marginal 

posterior distributions of model parameters were estimated using MCMC Bayesian 

procedures. Deviance information criterion was used for model comparison 

concerning the statistical distribution of the data (Normal or ZIP), while the Bayes 

factor was computed as a measure of the strength of evidence in favor of the 

genetic, litter, and cage influence on microbial traits. All microbial traits were better 

adjusted with the linear model except all OTUs present in less than 10% of the 

animals, and 25 out of 43 whose frequency of presence ranged between 10 and 

25%. On a global scale, there is substantial evidence of genetic control for three 

principal components, number of OTUs observed and Shannon indexes. At the 

taxa-specific level, a significant proportion of OTUs and genera relative abundances 

are influenced by additive genetics, litter, and cage effects. An important influence 

of host genetics and the nursing environment has been found for members of 

genera Bacteroides and Parabacteroides, while family S24-7 and genus 

Ruminococcus are highly influenced by cage effects. 
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Conclusions 

This study demonstrates that host genetics shapes the overall rabbit cecal microbial 

diversity and that a significant proportion of taxa are either influenced by genetics 

and environmental factors like litter and/or cage.  

 

6.2. Background 

The bacterial communities that inhabit rabbits' gastrointestinal tract play a key role 

in animal metabolism, nutrition, and state of the immune system (Flint et al., 2012). 

In the particular case of this herbivorous mammalian, the richest and the most 

diverse microbial community lies in its cecum (Gouet and Fonty, 1979). Rabbit cecal 

microbial composition and diversity evolve from a simple and unstable community 

at birth into a complex and more homogeneous one in adult individuals (Combes et 

al., 2011). Despite this stability reached in the adulthood, previous studies have 

revealed the effect of external factors, such as feed composition (Zhu et al., 2017; 

Chen et al., 2019), level of feeding (Abecia et al., 2007; Velasco-Galilea et al., 2020) 

or the administration of antibiotics (Abecia et al., 2007; Zou et al., 2016; Velasco-

Galilea et al., 2020), to shape gut microbial composition and diversity.  

 

Beside the aforementioned influence of environmental factors on rabbit cecal 

microbiota, host genetics could also potentially play an important role. Several 

studies in humans (Goodrich et al., 2017; Cahana and Iraqi, 2020), cattle (Difford et 

al., 2018; Wallace et al., 2019; Li et al., 2019; Saborío‐Montero et al., 2020; Zhang 

et al., 2020), pigs (Camarinha-Silva et al., 2017; Chen et al., 2018; Lu et al., 2018; 

Ramayo-Caldas et al., 2020) or mice (Campbell et al., 2012) have investigated the 

role of host genetics on gut microbiota and have reported moderate heritabilities for 

certain microbial taxa and diversity indexes. Thus, the interest in the interplay 

between host genetics and the gut microbiota with an impact on many complex traits 

like human diseases, feed efficiency, or methane emissions in cattle is steadily 

growing. 

 

In rabbit breeding, feed efficiency and growth are key productive traits for economic 

profit (Cartuche et al., 2014). Studies that attempt to unravel the existence of a 
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potential link between those traits, host genetics and microbiota are of great 

relevance for the rabbit industry to define effective genetic selection and production 

strategies leading to sustainable production and animal well-being. In this respect, 

previous studies have reported association between gut microbiota and growth 

(Zeng et al., 2015) or feed efficiency in rabbits (Drouilhet et al., 2016). What is more, 

an important percentage of phenotypic variance of growth, feed intake and feed 

efficiency in growing rabbits has been attributed to cecal microbiota (Velasco-

Galilea et al., 2021). However, there is still a need to disentangle the genetic 

background of rabbit cecal microbiota, which might open the doors for selective 

breeding for the presence of microbial taxa positively associated with relevant traits. 

In this regard, Velasco-Galilea et al. (2021) provided some indirect evidence of host 

genetic control over rabbit cecal microbiota since part of the predictive value of 

microbial information for feed efficiency and other performance traits can be partially 

explained by the host additive genetic effect. Nonetheless, it is necessary to 

explicitly assess whether it exists an overall host genetic control over microbiota or 

whether, on the contrary, only certain taxa or operational taxonomic units (OTUs) 

are influenced by genetic effects. Moreover, to design effective breeding programs 

based on microbial information, it would be necessary to know whether the heritable 

taxa are associated with relevant production traits. 

 

Many OTUs are only present in a small percentage of the samples, which implies 

overdispersion due to an excessive number of zero counts that are not appropriately 

adjusted with linear model. Thus, a zero-inflated Poisson (ZIP) model could be 

suitable to estimate heritability for these traits (Xu et al., 2015). In a ZIP model, a 

given OTU is not observed (zero count) with probability p or it is observed with a 

number of counts coming from a Poisson distribution with parameter λ (the mean 

number of observations) with probability 1 – p. 

 

Therefore, the objective of the present study was to unravel the influence of genetic, 

litter and cage effects on a set of 989 microbial traits (i.e., the relative abundances 

of 29 genera, 951 normalized OTUs, four microbial alpha-diversity indexes, and five 

principal components) in a meat rabbit population raised under standard commercial 

conditions. These traits were analyzed using Bayesian linear and ZIP mixed models, 
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and the statistical relevance of ratios of the different variance components to the 

phenotypic variance estimates was evaluated through Bayes factor (BF). 

 

6.3. Methods 

6.3.1.  Animals 

Four hundred twenty-five meat rabbits from the Caldes line (Gómez et al., 2002) 

were involved in this study conducted at the Institute of Agrifood Research and 

Technology (IRTA). Three hundred thirty-six were produced in four batches and 

housed in collective cages, each containing eight kits, in a semi-open-air facility 

during the first semester of 2014. Additionally, eighty-nine were produced in a single 

batch and housed in collective cages, each containing six kits, in another facility 

under better controlled environmental conditions in spring 2016. Since weaning (32 

days of age), all the animals received the same management and were fed with a 

standard pelleted diet supplemented with antibiotics except twenty-three rabbits 

raised in the second facility which received a diet free of antibiotics. The fattening 

period lasted five and four weeks for the animals raised in the first and the second 

facility, respectively, and during the last fattening week all the animals received an 

antibiotic free diet. Water was supplied ad libitum and feed once per day in a feeder 

with three places. After weaning, kits were classified into two groups according to 

their size (“big” if their body weight was greater than 700 g or “small” otherwise) and 

randomly assigned to feeding regime ad libitum (AL) or restricted (R) to 75% of the 

AL feed intake. The amount of feed supplied to the animals under R in each week 

for each batch was computed as 0.75 times the average feed intake of kits on AL 

from the same batch during the previous week, plus 10% to account for a feed intake 

increase as the animal grows. To prevent from a possible association between cage 

and maternal effects, a maximum of two kits belonging to the same litter were 

assigned to the same cage.  

 

6.3.2. Sample collection, DNA extraction and sequencing 

Cecal samples were collected from each animal on slaughter in a sterile tube, kept 

cold in the laboratory (4ºC), and stored at -80ºC. Extraction and amplification of 
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DNA, Illumina library preparation and sequencing were described in Velasco-Galilea 

et al., 2020. To facilitate an efficient lysis, two hundred fifty mg of each sample were 

mechanically lysed in a FastPrep-24TM Homogenizer (MP Biomedicals, LLC, Santa 

Ana, CA, United States) at a speed of 6 m/s for 60 s. Kit ZR Soil Microbe DNA 

MiniPrepTM (ZymoResearch, Freiburg, Germany) was used to extract the whole 

genomic DNA. The integrity and purity of the DNA were measured with Nanodrop 

ND-1000 spectrophotometer equipment (NanoDrop products; Wilmington, DE, 

United States) following Desjardins and Conklin’s protocol (Desjardins and Conklin, 

2010). The F515Y/R926 pair of primers (5’-GTGYCAGCMGCCGCGGTAA-3’, 5’-

CCGYCAATTYMTTTRAGTTT-3’) (Parada et al., 2016) was used to amplify a 

fragment of the 16S rRNA gene that included the V4-V5 hypervariable regions. An 

initial polymerase chain reaction (PCR) was conducted for each sample with 12.5 µl 

2x KAPA HiFi HotStart Ready Mix, 5 µl forward primer, 5 µl reverse primer and 2.5 

µl template DNA (5 ng/ µl) under the following conditions: initial denaturation for 3 

minutes at 95 ºC, 25 cycles of 30 seconds at 95 ºC, 30 seconds at 55 ºC and 30 

seconds at 72 ºC; and final extension for 2 minutes at 72 ºC. Afterwards, sequencing 

adaptors and eight nucleotide dual-indexed barcodes of the multiplex Nextera® XT 

kit (Illumina, Inc., San Diego CA, United States) were added in a second PCR 

reaction with 25 µl 2x KAPA HiFi HotStart Ready Mix, 5 µl index i7, 5 µl index i5, 10 

µl PCR Grade water and 5 µl concentrated amplicons of the initial PCR. The 

conditions applied during this second reaction were the following: initial denaturation 

for 3 minutes at 95 ºC, 8 cycles of 30 seconds at 95 ºC, 30 seconds at 55 ºC and 30 

seconds at 72 ºC; and final extension for 5 minutes at 72 ºC. The libraries obtained 

were cleaned up with AMPure XP beads, and then validated by running 1 µl of a 

1:50 dilution on a Bioanalyzer DNA 1000 chip (Agilent Technologies, Inc., Santa 

Clara, CA, United States) to verify their size, quantified by fluorometry with 

PicoGreen dsDNA quantification kit (Invitrogen, Life Technologies, Carlsbad, CA, 

United States). After size verification, libraries were pooled at equimolar 

concentrations and paired-end sequenced in 5 parallel plates in an Illumina MiSeq 

2 x 250 platform at the Genomics and Bioinformatics Service of the Autonomous 

University of Barcelona. 
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6.3.3. Bioinformatics processing of microbial traits 

A detailed description of the QIIME software (version 1.9.0) (Caporaso et al., 2010) 

pipeline followed for sequence processing can be found at Velasco-Galilea et al., 

2020. Briefly, paired-ended reads were assembled into contigs using the python 

script multiple_join_paired_ends.py with default parameters. Then those contigs 

with a quality score smaller than Q19 were discarded, and the remaining ones were 

assigned to samples using the python script split_libraries.py with default 

parameters. The UCHIME algorithm (Edgar et al., 2011) was used to detect and 

remove the chimeric sequences generated during the PCR reactions. The filtered 

contigs were clustered into OTUs with a 97% similarity threshold using the script 

pick_open_reference_otus.py with default parameters (Rideout et al., 2014) and 

Greengenes reference database (version gg_13_5_otus) (McDonald et al., 2012). 

The OTU table obtained was normalized with the cumulative sum scaling (CSS) 

method (Paulson et al., 2013). Finally, the UCLUST consensus taxonomy assigner 

was used to conduct the taxonomic assignment of representative sequences of 

each OTU by mapping the sequences against the Greengenes reference database 

gg_13_5_otus. The raw sequence data were deposited in the sequence read 

archive of NCBI under the BioProject accession number PRJNA524130. Metadata, 

OTU table, and corresponding taxonomic assignments can be found at Additional 

files 6.1, 6.2 and 6.3, respectively. After the bioinformatic processing, 989 

representative traits of the rabbit intestinal microbiota were defined and analyzed in 

the present study. These microbial traits can be categorized into four different 

groups: the relative abundances of 29 genera, 951 CSS-normalized OTUs, four 

microbial alpha-diversity indexes computed at 10,000 contigs (total number of OTUs 

observed, Chao1, Shannon and Simpson's inverse), and the first five principal 

components (PC) computed from the OTU table. Genera relative abundances, 

microbial alpha-diversity indexes and PCs were standardized subtracting their mean 

and dividing by their standard deviation. Finally, these standardized microbial traits 

and CSS-normalized OTUs were multiplied by 100 and subsequently rounded to the 

nearest integer. 
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6.3.4. Statistical models 

6.3.4.1. Zero-Inflated Poisson (ZIP) mixed model 

Let 𝐲 = (y1, y2, … , yn)′ be the vector of records of some specific microbial trait on n 

individuals. For each record, the probability of having a zero count under the ZIP 

model is p(yi = 0) = p + (1 − p)e−λi, and it happens with probability p in the sample 

set. Therefore, p is a population parameter. On the other hand, the probability of 

having k counts ( k = 1, 2, …, ∞) in the sample set is p(yi = k) =
(1−p)e−λiλi

k

k!
 . It occurs 

with probability (1 − p), and it is the probability function of a Poisson distribution with 

parameter λi, with p as defined before. This λi is a specific parameter of the 

individual. Conditioning on both p and 𝛌, the vector including all individuals λi, the 

likelihood function can be expressed as follows.  

 

p(𝐲|𝛌, p) = ∏[p + (1 − p)e−λi] ∏ [
(1 − p)e−λiλi

yi

yi!
]

yi>0yi=0

 

 

Considering these two re-parameterizations: 

 

λi
∗ = log(λi) 

p∗ = log (
p

1 − p
) 

 

The previous conditional likelihood can be expressed as: 

 

p(𝐲|𝛌∗, p∗) = ∏ [(
1

(1 + ep∗)
) [ep∗

+ e−exp(λi
∗)]] ∏ [(

1

(1 +  ep∗)
)

e−exp(λi
∗)+λi

∗yi

yi!
]

yi>0yi=0

 

 

since λi = exp(λi
∗) and p =

exp(p∗)

1+exp(p∗)
. 

 

In a subsequent hierarchical level, different factors can be included as a linear model 

to explain the vector 𝛌∗, thus, the assumed distribution for 𝛌∗ was the following 

normal density: 
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p(𝛌∗|𝐕, 𝛃)~MVN(𝐗𝛃, 𝐕), 

 

where 𝛃 is a vector of systematic factors including the effects of the different 

categories of the combination between breeding farm, diet, and feeding regime (6 

levels), of the batch (5 levels) and of the body weight at weaning (2 levels). 𝐗 is a 

design matrix that relates the observations to the systematic effects, and 𝐕 is the 

covariance matrix between the elements of 𝛌∗. The structure of 𝐕 was not diagonal, 

and it was defined as follows: 

 

𝐕 = σP
2[𝐙𝐀𝐀 𝐙𝐀

′ h2 + 𝐙𝐋𝐙𝐋
′ l2 + 𝐙𝐂𝐙𝐂

′ c2 + 𝐈(1 − h2 − l2 − c2)], 

 

where σP
2 is the phenotypic variance and the scalars h2, l2 and c2 represent the 

ratios of additive genetic, litter and cage variances over the phenotypic variance. 

The assumed prior distribution of these ratios was uniform in the space [0,1], with 

the constraint that the sum of them must be lower than one: 

 

p(h2) = p(l2) = p(c2) = U(0,1), and h2 + l2 + c2 ∈ [0, 1].  

 

Similarly, a uniform distribution along the positive real numbers was assumed for 

σP
2. 𝐙𝐀, 𝐙𝐋 and 𝐙𝐂, are design matrices relating the observations with animals in the 

pedigree, litters and cages, respectively; and matrix 𝐀 is the numerator relationship 

matrix (Henderson, 1973). Uniform priors were also assumed for the elements of 𝛃 

and p∗, in this last case bounded between -5 and +5. 

 

The posterior density can be written as: 

 

p(𝛌∗, p∗, 𝐕, 𝛃|𝐲)  ∝ p(𝐲|𝛌∗, p∗)p(𝛌∗|𝐕, 𝛃)p(p∗)p(𝐕)p(𝛃) 

 

p(𝛌∗, p∗, 𝐕, 𝛃|𝐲) ∝ ∏ [(
1

(1+ ep∗
)
) [ep∗

+ e−exp(λi
∗)]] ∏ [(

1

(1+ ep∗
)
)

e−exp(λi
∗)+λi

∗yi

yi!
]yi>0yi=0 ×

|𝐕|n/2exp {−
1

2
(𝛌∗ − 𝐗𝛃)′(𝐕𝐈)−1(𝛌∗ − 𝐗𝛃)}  



Chapter 6: Bayes factor for elucidating the influence of host genetics, litter and  
cage effects on rabbit cecal microbiota through linear and zero-inflated Poisson mixed models 

271 

This model specification is pretty similar to that previously proposed for studying 

mastitis cases in dairy cows (Rodrigues-Motta et al., 2007). The differences 

introduced in this study refer to the specifications for 𝛌∗: we assume a model in 

which a number of factors have been absorbed into the residual, while in the study 

by Rodrigues-Motta et al. (2007), these factors are explicitly fitted into the model 

being part of the vector of means. The two models are equivalent (beyond 

differences on the prior assumptions) but, the parameterization used here is the one 

that allows the computation of the BF for the ratio of variances in a parametric space 

defined between zero and one, including both limits (Varona et al., 2001). 

 

This parameterization has, however, much higher computational demands than that 

of Rodrigues-Motta et al. (2007). First, because 𝐕 must be updated and inverted 

repeatedly; and second because Metropolis-Hasting steps are needed to update the 

conditional posterior distribution of the ratios. In contrast to the case when the 

effects are explicitly considered into the model (Rodrigues-Motta et al., 2007), the 

BF can be computed for testing whether the additive genetic, litter, and cage effects 

are null or not since this model parameterization allows a null value of the ratio. The 

derivation of the conditional posterior distributions can be followed in the studies in 

which our model is based on: Rodrigues-Motta et al. (2007) and Varona et al. (2001).  

 

6.3.4.2. Linear mixed model (LMM) 

This model can be considered a simplification of the previous one since the 

generation process assumed for all data was the same as that assumed for the 

logarithm of the vector of λ parameters of the individual Poisson distributions (𝛌∗) 

corresponding to those records with non-zero counts for each trait (transformed 

CSS-normalized OTU counts, transformed relative abundances of genera, 

transformed PCs, and transformed alpha-diversity indexes). Thus, the distribution 

of the data given the model parameters can be written as: 

 

p(𝐲|𝐕, 𝛃)~MVN(𝐗𝛃, 𝐕). 
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Accordingly, same model specifications including both the structure of 𝐕 and the 

prior definitions, were defined. For the implementation, we used the conditional 

posterior distributions of this LMM derived by Varona et al. (2001), since we 

assumed the same prior distributions as they did. 

 

6.3.4.3. Criteria for model comparison 

Two model choice criteria were applied for each of the 989 microbial traits analyzed 

in this study. First, it was evaluated whether the trait was better adjusted with the 

LMM or the ZIP model. For this purpose, we used the deviance information criterion 

(DIC) that favored that model with the lowest value (Spiegelhalter et al., 2002). The 

statistical relevance of additive genetic, litter and cage effects was evaluated in both 

cases (LMM and ZIP model) using the BF. Thus, for each model (LMM and ZIP), 

three BFs were computed to assess the null hypotheses of whether additive genetic, 

litter or cage effects have null effect versus the alternative hypothesis that assumed 

that these factors have a non-null effect. These three hypotheses were 

independently tested by computing the BFs of h2 = 0 against h2 ≠ 0 (BFh2), l2 = 0  

against l2 ≠ 0  (BFl2), and c2 = 0 against c2 ≠ 0 (BFc2). 

 

BFh2 =
3

p(h2=0 |𝐲)
, BFl2 =

3

p(l2=0 |𝐲)
, and BFc2 =

3

p(c2=0 |𝐲)
 

 

The derivations of these definitions of the BF can be found in Varona et al. (2001). 

The evaluation of the marginal posterior of the ratios at zero implies, since these 

marginal posterior are only defined up to a proportionally constant, the computation 

of this proportionality constant: ∫ p(h2 |𝐲) × ∂h2h2=1

h2=0
. This integral can be solved 

numerically in each iteration. The different BFs can be computed as follows from the 

Markov chain Monte Carlo (MCMC) output: 

 

BFh2 =
3

∑
p(h2 = 0 |𝐲)j

N
N
j=1
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Where N is the number of MCMC iterations and p(h2 = 0 |𝐲)j is the evaluation of the 

marginal posterior density of h2 at zero at each iteration j of the sampling procedure, 

which is computed as stated above:  

 

p(h2 = 0 |𝐲)j

∫ p(h2 |𝐲)j × ∂h2h2=1

h2=0

 

 

All the operations were done on the logarithmic scale and after having saved the 

evaluations of the marginal posterior at zero along the MCMC chain to avoid 

numerical instabilities during their computation. In this way, it was possible to adjust 

the evaluations of the marginal posterior at zero for their maximum, thus reducing 

the needed numerical accuracy: 

 

∑
p(h2 = 0 |𝐲)j

N

N

j=1

= exp {log (
∑ exp{log(p(h2 = 0 |𝐲)j) − m}N

j=1

N
) + m} 

 

Where m is the maximum value of the vector composed of the N evaluations of 

p(h2 = 0 |𝐲) on the logarithmic scale. See Sorensen and Gianola (2002) for further 

details.  

 

BF values were classified according to four levels of evidence (Jeffreys, 1922): BF 

< 3.2: denominator model supported; 3.2 <= BF < 10: substantial evidence favoring 

the numerator model; 10 <= BF < 100: strong evidence favoring the numerator 

model; and BF >= 100: decisive evidence favoring the numerator model. 

 

6.3.4.4. MCMC Bayesian implementation 

MCMC Bayesian procedures were used to obtain samples from the marginal 

posterior distributions. This algorithm was implemented in a Fortran 90 software 

which is available in our GitHub repository (https://github.com/juanpablo-

sanchez/BF-ZIP). For both, LMM and ZIP model, chains of 10,000 samples were 

run discarding the first 1,000 to allow the algorithm to reach convergence to the 

https://github.com/juanpablo-sanchez/BF-ZIP
https://github.com/juanpablo-sanchez/BF-ZIP
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marginal posterior distributions. Convergence diagnostics of the Markov chains was 

performed by the Geweke test function with coda R package (Plummer et al., 2006). 

Although the parameterization on the variance ratios has high computational 

demand, it allows for a good mixing. Thus, a reduced number of iterations is needed 

to properly reach convergence and characterize the marginal posterior distributions. 

 

6.4. Results 

6.4.1. Cecal microbial composition and diversity 

After bioinformatic sequence processing we identified 951 different OTUs present 

in at least 5% of the animals. Table 6.1 shows OTUs’ frequency of presence across 

rabbit samples.  

 

Table 6.1| OTUs’ frequency of presence across rabbit cecal samples. 

Frequency of presence (%) Number of OTUs 

≥ 5 to ≤ 10 13 

> 10 to ≤ 25 43 

> 25 to ≤ 50 121 

> 50 to ≤ 75 277 

> 75 to ≤ 100 497 

 

In Figure 6.1, an iris plot illustrates the composition of the 425 samples analyzed. 

The taxonomic assignment of representative sequences of such OTUs against the 

Greengenes reference database gg_13_5_otus (see Additional file 6.3) revealed 

the presence of 29 different known genera. Of them, 4 were present in 50-75% of 

the rabbit samples and 25 in a minimum of 75% of the animals. Table 2 shows a 

phenotypic summary of the 29 genera relative abundances together with the four 

microbial alpha-diversity indexes and the first five principal components retained 

from the OTU table. 
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Table 6.2| Phenotypic summary of genera, alpha diversity indexes and first five 

principal components. 

SD: standard deviation. 

 

Trait Mean SD 

Genus Methanobrevibacter, % 0.19 0.23 

Genus Adlercreutzia, % 0.95 0.43 

Genus Bacteroides, % 1.65 0.76 

Genus Parabacteroides, % 0.21 0.18 

Genus Rikenella, % 0.35 0.24 

Genus Butyricimonas, % 0.20 0.19 

Genus Odoribacter, % 0.27 0.22 

Genus Clostridium, % 1.05 0.26 

Genus Dehalobacterium, % 0.08 0.09 

Genus Anaerofustis, % 0.11 0.07 

Genus Anaerostipes, % 0.16 0.08 

Genus Blautia, % 2.94 0.65 

Genus Butyrivibrio, % 0.11 0.07 

Genus Coprococcus, % 2.02 0.42 

Genus Dorea, % 0.47 0.12 

Genus Epulopiscium, % 0.11 0.11 

Genus Ruminococcus, % 0.16 0.07 

Genus rc4-4, % 0.15 0.07 

Genus Faecalibacterium, % 0.20 0.05 

Genus Oscillospira, % 2.26 0.58 

Genus Phascolarctobacterium, % 0.21 0.24 

Genus Coprobacillus, % 0.19 0.24 

Genus p-75-a5, % 0.10 0.07 

Genus Oxalobacter, % 0.11 0.06 

Genus Desulfovibrio, % 0.46 0.31 

Genus Campylobacter, % 0.07 0.08 

Genus Ruminococcus, % 4.32 0.85 

Genus Anaeroplasma, % 0.20 0.17 

Genus Akkermansia, % 1.47 0.50 

Principal component 1 0.00 17.08 

Principal component 2 0.00 15.68 

Principal component 3 0.00 9.33 

Principal component 4 0.00 7.15 

Principal component 5 0.00 6.63 

Number of OTUs observed 551.05 91.94 

Shannon 5.07 0.30 

Simpson 0.98 0.01 

Simpson’s inverse 71.01 20.20 
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Figure 6.1| Iris plot illustrating the composition of the 425 samples analyzed. 

 

6.4.2. LMM versus ZIP model adjustment of microbial traits 

The adjustment of all genera, microbial alpha-diversity indexes, and principal 

components analyzed was better with the LMM (lower DIC values) than with the ZIP 

model. Regarding the 951 CSS-normalized OTUs also analyzed in this study, those 

having a frequency of presence > 25% were better adjusted with the LMM while all 

those with a frequency of presence < 10% were better adjusted with the ZIP model. 

Of the 43 OTUs having a frequency of presence between [10-25%), 18 and 25 OTUs 

were better adjusted with the LMM and the ZIP model, respectively. 
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6.4.3. Influence of genetic, litter and cage effects on rabbit cecal 

microbiota 

Box and whisker plots of estimated marginal posterior means of the heritability, and 

litter and cage variance ratios for those OTUs that, according to DIC, are better 

adjusted with the LMM, and for those for which the ZIP model is preferable are 

shown in Figure 6.2 and Figure 6.3, respectively. Same plots corresponding to 

genera relative abundances, microbial alpha-diversity indexes and the first five 

principal components are shown in Figure 6.4, Figure 6.5 and Figure 6.6, 

respectively. In all of them, microbial traits are categorized by their frequency of 

presence across rabbit samples and by BFs’ levels of evidence favoring the model 

that included additive genetic (a), litter (b), or cage (c) effects. The results 

summarized in these five figures are insightfully presented in the following 

paragraphs of the Results section. Generally speaking, these figures show that the 

BF did not provide evidence of genetic, litter, or cage effects for an important 

percentage of the microbial traits analyzed. However, for those traits declared to be 

affected for the host genetics, the litter or the cage, the magnitude of variance ratios 

estimates was moderate to high with minimum values of 0.15-0.20. 
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6.4.3.1. Microbial traits under genetic control 

Table 6.S1 includes BFs, marginal posterior means, and standard deviations of 

heritability for OTUs for which the BF declared to be influenced by genetic effects 

together with the associated probability of these estimates being greater than 0.10. 

The taxonomic assignment of the representative sequences of such OTUs and their 

frequency of presence are also shown in Table 6.S1. Table 6.3 summarizes 

marginal posterior means of heritability for OTUs, categorized by frequency of 

presence, better adjusted with the normal LMM and for which the BF evidenced 

genetic control. Similarly, Table 6.4 summarizes marginal posterior means of 

heritability for OTUs, categorized by frequency of presence, better adjusted with the 

ZIP model and for which the BF evidenced genetic control. The BF provided some 

type of evidence of genetic control for 154 OTUs out of 951 total OTUs analyzed. 

The BFs between models with and without additive genetic effect evidenced a 

substantial (BFh2 >= 3.2) genetic control for 108 and 10 OTUs better adjusted with 

the normal LMM and the ZIP model, respectively. A strong (10 <= BFh2 < 100) 

genetic control evidence was found for 33 and one OTUs better adjusted with the 

normal LMM and the ZIP model, respectively. Finally, a decisive (BFh2 >= 100) 

evidence of genetic control was found for two OTUs that were better adjusted with 

the normal LMM. The taxonomic assignment of these two OTUs revealed that one 

of them belongs to genus Bacteroides and the other to genus Parabacteroides, and 

their marginal posterior means (standard deviations) of heritability were 0.16 (0.07) 

and 0.22 (0.08), respectively (see Table 6.S1). Overall, estimates of heritability for 

these OTUs reflected medium values (from 0.12 to 0.40). It should be, however, 

recognized that such estimates are accompanied by large standard deviations as a 

consequence of our limited sample size. Nevertheless, it is worth stressing that 51 

out of the 154 OTUs identified as being under genetic control had a probability equal 

or greater than 0.80 that their heritability has a value greater than 0.10. 

 

The genetic determinism of the 38 remaining microbial traits (genera relative 

abundances, alpha-diversity indexes and principal components computed from the 

OTU table) was also assessed. The BF provided some type of evidence, which 

reached a decisive level in some cases, of genetic control for the relative 
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abundances of 10 genera, 3 principal components, and number of OTUs observed 

and Shannon indexes. Marginal posterior means and standard deviations of 

heritability, together with the associated probability of these estimates being greater 

than 0.10, of these traits are shown in Table 6.5. 

 

The BF evidenced a substantial (BFh2 >= 3.2) genetic control for genera 

Dehalobacterium, Epulopiscium, Methanobrevibacter, Butyricimonas, Odoribacter, 

Blautia and Oxalobacter. A strong (10 <= BFh2 < 100) genetic control evidence was 

found for genera Phascolarctobacteirum, Bacteroides and Parabacteroides. The 

estimates (marginal posterior means) of the heritability for these genera ranged from 

0.17 to 0.35. The greatest heritability estimates, accompanied by high BF values, 

were found for genera Bacteroides, Parabacteroides and Dehalobacterium. These 

three genera had a probability greater than 0.80 that their heritabilities are greater 

than 0.10. Although a strong evidence of genetic control was reached for genus 

Phascolarctobacterium, its heritability (0.19) estimate was not one of the highest 

(P(h2 > 0.1) = 0.73). On the other hand, 1/BFh2 values were greater than 3.2 only for 

ten OTUs and genus Coprococcus, which are clearly not heritable.  

 

Finally, regarding traits that globally integrate rabbit cecal microbiota, a substantial 

evidence of genetic control was found for the number of OTUs observed and 

Shannon indexes, and for principal components two and five. The highest heritability 

estimates and BF values were reached for the number of OTUs observed index (h2 

= 0.28; BFh2 = 7.30) and the principal component 4 (h2 = 0.41; BFh2 = 143.80). The 

additive genetic background for both traits was clearly demonstrated with a 

probability greater than 0.80 that their heritabilities are greater than 0.10 
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Table 6.5| Bayes factors, marginal posterior means (standard deviations) of 

heritability for genera, principal components and alpha-diversity indexes influenced 

by genetic effects. 

Trait Mean (SD) h2 P(h2 > 0.1) 𝐁𝐅𝐡𝟐 

Genus Methanobrevibacter 0.21 (0.13) 0.79 7.75 

Genus Butyricimonas 0.27 (0.19) 0.79 4.39 

Genus Odoribacter 0.19 (0.13) 0.71 3.50 

Genus Bacteroides 0.29 (0.17) 0.87 13.88 

Genus Parabacteroides 0.35 (0.17) 0.91 31.15 

Genus Dehalobacterium 0.29 (0.19) 0.83 8.62 

Genus Blautia 0.20 (0.12) 0.78 7.01 

Genus Epulopiscium 0.17 (0.11) 0.70 5.85 

Genus Phascolarctobacterium 0.19 (0.12) 0.73 10.22 

Genus Oxalobacter 0.21 (0.13) 0.78 6.12 

Principal component 2 0.20 (0.14) 0.73 3.78 

Principal component 4 0.41 (0.17) 0.97 143.80 

Principal component 5 0.19 (0.13) 0.71 3.37 

Number of OTUs observed 0.28 (0.17) 0.84 7.30 

Shannon 0.18 (0.13) 0.70 3.41 
SD: standard deviation; BFh2: Bayes factor of the model with additive genetic effects against the same model 
without additive genetic effects. 

 

6.4.3.2. Microbial traits influenced by the litter 

Table 6.S2 includes BFs, marginal posterior means and standard deviations of litter 

variance ratio for those OTUs the BF declared to be influenced by litter effects 

together with the associated probability of these ratios being greater than 0.10. The 

taxonomic assignment of the representative sequences of such OTUs and their 

frequency of presence are also shown in Table 6.S2. Marginal posterior means of 

litter variance ratio for OTUs, categorized by frequency of presence, better adjusted 

with the normal LMM and for which the BF evidenced litter influence are summarized 

in Table 6.6. Additionally, the same information for OTUs better adjusted with the 

ZIP model and for which the BF evidenced litter influence is shown in Table 6.7. 

 

The BF provided some type of evidence of litter effect for 215 OTUs out of 951 total 

OTUs analyzed. Six of them showed a better adjustment with the ZIP model and the 

remaining 209 were better adjusted with the LMM. BF values between models with 

and without litter effects evidenced a substantial (BFl2 >= 3.2) litter influence for 81 

and three OTUs better adjusted with the normal LMM and the ZIP model, 
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respectively. A strong (10 <= BFl2 < 100) litter influence evidence was found for 63 

and three OTUs better adjusted with the normal LMM and the ZIP model, 

respectively. Finally, a decisive (BFl2 >= 100) evidence of litter influence was found 

for 65 OTUs that were better adjusted with the normal LMM. The taxonomic 

assignment of these OTUs revealed that most of them belong to genera 

Parabacteroides, Phascolarctobacterium, and species eggerthii and fragilis of 

genus Bacteroides. Overall, marginal posterior means of the litter variance ratio 

ranged from 0.12 to 0.19 (Table 6.6 and Table 6.7), but litter variance ratio 

estimates reached values from 0.37 to 0.54 for the aforementioned OTUs for which 

large BF values were observed (see Table 6.S2). Eighty-nine OTUs of the 215 

declared to be influenced by litter effects had a probability equal or greater than 0.80 

that their litter variance ratio is greater than 0.10. It is noteworthy that marginal 

posterior means of litter variance ratio were greater than 0.50 for 12 OTUs of which 

six belong to genus Bacteroides, four to genus Phascolarctobacterium, one to genus 

Parabacteroides and the other to genus Rikenella (see Table 6.S2). It should be 

mentioned that 1/BFl2 values were greater than 3.2 for 107 OTUs, which are not 

influenced by litter.  

 

Marginal posterior means of litter variance ratio, together with the associated 

probability of these ratios being greater than 0.10, for genera relative abundances 

and the traits defined in an attempt to globally integrate rabbit cecal microbiota can 

be found in Table 6.8. Evidence of litter influence was revealed for ten genera, four 

principal components and number of OTUs observed. An undeniable litter influence 

was shown for genera Butyricimonas (l2 = 0.28), Bacteroides (l2 = 0.27), 

Parabacteroides (l2 = 0.47), Rikenella(l2 = 0.32), Dehalobacterium (l2 = 0.37) and 

Phascolarctobacterium (l2 = 0.66) with decisive BF values (BFl2  >= 100) and P(l2 > 

0.1) = 0.96. On the other hand, genera Coprococcus, rc4-4 and Faecalibacterium 

are not influenced by litter (1/BFl2 > 3.2).  

 

Finally, the number of OTUs observed and all the principal components, except the 

third one, were found to be influenced by litter effects, with marginal posterior means 

of litter variance ratio between 0.14 and 0.17 (Table 6.8). 
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Table 6.8| Bayes factors, marginal posterior means (standard deviations) of litter 

variance ratio for genera, principal components and alpha-diversity indexes 

influenced by litter effects. 

Trait Mean (SD) l2 P(l2 > 0.1) 𝐁𝐅𝐥𝟐 

Genus Butyricimonas 0.28 (0.10) 0.96 728.23 

Genus Odoribacter 0.14 (0.08) 0.64 7.21 

Genus Bacteroides 0.27 (0.09) 0.97 809.53 

Genus Parabacteroides 0.47 (0.10) 1.00 1.50E11 

Genus Rikenella 0.32 (0.08) 1.00 3.67E4 

Genus Dehalobacterium 0.37 (0.10) 1.00 9.66E4 

Genus Anaerofustis 0.15 (0.08) 0.68 8.80 

Genus Epulopiscium 0.12 (0.07) 0.58 4.52 

Genus Phascolarctobacterium 0.66 (0.07) 1.00 ∞ 

Genus Desulfovibrio 0.17 (0.09) 0.78 16.53 

Genus Campylobacter 0.16 (0.08) 0.73 11.91 

Principal component 1 0.17 (0.08) 0.77 16.98 

Principal component 2 0.14 (0.08) 0.65 6.33 

Principal component 4 0.17 (0.09) 0.73 24.47 

Principal component 5 0.15 (0.08) 0.68 9.62 

Number of OTUs observed 0.17 (0.09) 0.75 15.55 
SD: standard deviation; BFl2: Bayes factor of the model with litter effects against the same model without litter 

effects. 

 

6.4.3.3. Microbial traits influenced by the cage 

Table 6.S3 includes BFs, marginal posterior means and standard deviations of cage 

variance ratio for those OTUs the BF declared to be influenced by cage effects 

together with the probability of these parameters being greater than 0.10. The 

taxonomic assignment of the representative sequences of such OTUs and their 

frequency of presence are also shown in this file. Table 6.9 shows the marginal 

posterior means of cage variance ratio for OTUs, categorized by frequency of 

presence, better adjusted with the normal LMM and for which BF evidenced cage 

influence. Similarly, Table 6.10 includes the same information for OTUs better 

adjusted with the ZIP model and for which BF declared cage influence.  

 

Cage effect was found for 143 OTUs better adjusted with the normal LMM of which 

79, 47 and 17 showed substantial, strong and decisive, respectively, evidence. 

While four and one OTUs better adjusted with the ZIP model showed substantial 

and strong, respectively, evidence of cage effect. The taxonomic assignment of 

these OTUs revealed that many of them belong to families S24-7 and 
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Ruminococcaceae (see Table 6.S3). Overall, marginal posterior mean cage 

variance ratio ranged from 0.11 to 0.24 (Table 6.9 and Table 6.10), but three OTUs 

for which large BF values were calculated reached cage variance estimates up to 

0.46 (see Table 6.S3). Two of these OTUs were assigned to family S24-7 (see 

Table 6.S3). It should be noted that 1/BFc2 values were greater than 3.2 for 130 

OTUs, which are not influenced by cage.  

 

Finally, marginal posterior means of cage variance ratio, together with the 

associated probability of this ratio being greater than 0.10, for genera relative 

abundances and the traits defined to globally integrate rabbit cecal microbiota can 

be found in Table 6.11. Evidence of cage influence was revealed for three genera 

and principal component four whose marginal posterior means of cage variance 

ratio ranged from 0.11 to 0.22. Although these estimates are accompanied by large 

standard deviations as a consequence of our limited sample size, a patent cage 

influence was demonstrated for genus Ruminococcus (c2 = 0.22; BF = 648.80; P(c2 

> 0.1) = 0.95). 
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Table 6.11| Bayes factors, marginal posterior means (standard deviations) of cage 

variance ratio for genera, principal components and alpha-diversity indexes 

influenced by cage effects. 

Trait Mean (SD) c2 P(c2 > 0.1) 𝐁𝐅𝐜𝟐 

Genus Ruminococcus 0.22 (0.07) 0.95 648.80 

Genus Dorea 0.11 (0.07) 0.52 3.23 

Genus Faecalibacterium 0.11 (0.06) 0.50 3.31 

Principal component 4 0.12 (0.06) 0.58 19.69 
SD: standard deviation; BFc2: Bayes factor of the model with cage effects against the same model without cage 

effects. 

 

6.5. Discussion 

The influence of many external factors on rabbit cecal microbial composition and 

diversity is unquestionable (Abecia et al., 2007; Zou et al., 2016; Zhu et al., 2017; 

Chen et al., 2019; Velasco-Galilea et al., 2020). However, the potential existence of 

host genetic determinism remains unknown in this species. To shed light on this 

matter, we have reported heritabilities, together with litter and cage variance ratios 

estimates, for microbial traits on which a LMM and ZIP mixed models were fitted. 

Moreover, in this study, we have assessed the statistical relevance of such 

estimates through BF. 

 

Previous studies in humans and different livestock species have pointed out the 

existence of host genetic determinism of gut microbiota, but there is no study in 

rabbits. For the first time, we have evaluated the host genetics, litter, and cage 

effects on the microbial composition of the cecum, which is the organ that contains 

the greatest microbial diversity and complexity (Goeut and Fonty, 1979). In this 

study, we have defined a set of 989 microbial traits that claim to represent cecal 

microbial composition and diversity with different levels of complexity. The CSS-

normalized abundances of 951 OTUs can be considered the most specific level of 

defining a microbial community. Such traits show the particular feature of having a 

very variable frequency of presence across samples. This means that while some 

OTUs are present in all or almost all the animals (core OTUs), others are only 

detected in some animals. The distribution of those OTUs which are only present in 

a small percentage of the animals analyzed is clearly far from normality and, not 
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surprisingly, are better adjusted with the ZIP model. Despite this, all the microbial 

traits analyzed in this study whose frequency of presence was higher than 25% were 

better adjusted with the normal LMM model according to DIC. For those traits 

showing a clear excess of zeros (i.e., having a frequency of presence across 

samples lower than 15%) DIC clearly favored the ZIP model. Previous microbiome 

studies have also modeled microbiome data with the ZIP model to account for the 

excess of zeros of many taxa that are rare and only detected in a small proportion 

of samples (Lee et al., 2020). Such studies argue that the application of a 

conventional linear model is inappropriate for zero-inflated data. However, in this 

study, the ZIP model only overcame the LMM for those microbial traits with a very 

marked excess of zeros. 

 

The BF evidenced genetic control for 34% and 16% of the genera and OTUs, 

respectively, analyzed in this study that inhabit the rabbit cecum. These results are 

in line with the heritability analysis conducted by Goodrich et al. (2014) in humans 

that found evidence of genetic control for 10% of the 945 taxa identified in that study, 

and with an assessment of the host genetics influence on the rumen microbiota (Li 

et al., 2019) which found that 34% of the microbial taxa analyzed (from genus to 

phylum levels) were heritable. Our heritability estimates for the relative abundances 

of those genera and OTUs declared to be under host genetic control by the BF 

reflected medium values. This is also in agreement with earlier studies in humans 

and other livestock species. However, it is noteworthy that these studies suggested 

that the main heritable bacteria belong to phylum Firmicutes, whereas taxa 

encompassed by phylum Bacteroidetes are generally not heritable (Goodrich et al., 

2016; Li et al., 2019). A discussion of the results regarding the influence of the host 

genetics, litter, and cage effects on taxa encompassed by phyla Bacteroidetes and 

Firmicutes will be presented below. After that, the influence of such effects on 

microbial alpha-diversity indexes and principal components will be also debated. 

 

In our study, according to the BF, the strongest evidence of genetic control was 

found for two OTUs taxonomically assigned to genera Bacteroides and 

Parabacteroides which are both encompassed by phylum Bacteroidetes. Moreover, 

the greatest heritability estimates were found for these two genera (h2 
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Parabacteroides = 0.35; h2 Bacteroides = 0.29). Chen et al. (2018) and 

Bergamaschi et al. (2020) also reported some heritable taxa encompassed by 

phylum Bacteroidetes in pigs. Species belonging to genera Bacteroides and 

Parabacteroides are anaerobic Gram-negative bacterium involved in the 

degradation of vegetal polysaccharides and amino acid fermentation, amino acid 

transport, and cell motility in the gastrointestinal microbiota of the growing rabbit 

(Dai et al., 2011; Sun et al., 2020). Although the BF and our heritability estimates 

for genera Bacteroides and Parabacteroides clearly reveal the existence of host 

genetic determinism, the environmental effect of litter has a profound impact on the 

relative abundances of both genera (l2 Parabacteroides = 0.47; l2 Bacteroides = 

0.27). The nursing environment provided by the mother and siblings also has an 

important impact on the relative abundance of genus Rikenella (l2 Rikenella = 0.32) 

which is also encompassed by phylum Bacteroidetes. Litter effects play an important 

role on phenotypic traits related to rabbit growth and feed efficiency (Piles and 

Sánchez, 2019). Microbial colonization of rabbits and mammals’ gastrointestinal 

tract is considered to occur immediately after birth when newborns acquired their 

immature microbiota from a combination of maternal and external microbes 

(Combes et al., 2011; de Agüero et al., 2016). The impact of the nursing 

environment on the relative abundances of these genera still prevails at the 

slaughter age when cecal samples were collected from animals analyzed in this 

study. Remarkably, the ratio of phenotypic variance due to litter effects overcomes 

the value of 0.50 for six OTUs belonging to genus Bacteroides and for one OTU 

taxonomically assigned to genus Parabacteroides. It is also worth noting that the 

cage seems to play an important effect in the relative abundances of members of 

family S24-7. Bacteria within this family, encompassed by the order Bacteroidales, 

are dominant in the mouse gut microbiota and have been detected in the 

gastrointestinal tract of different mammals. The classification of this family was 

ambiguous because it had not been cultured, but the functional analysis conducted 

by Lagkouvardos et al. (2019) renamed it as family Muribaculaceae. In a recent 

study on mice, members of the family Muribaculaceae were shown to be major 

mucin monosaccharide foragers in the gut (Pererira et al., 2020). 
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High heritability values, accompanied by a strong evidence of genetic determinism 

provided by the BF, were also estimated for genera Dehalobacterium (h2 = 0.29) 

and Butyricimonas (h2 = 0.27). Both genera belong to phylum Firmicutes and have 

been previously reported as heritable in humans (Goodrich et al., 2014; Goodrich et 

al., 2016). Such studies reported a module of co-occurring heritable families within 

which family Christensenellaceae was the hub (i.e., the node connected to most 

other nodes) connected to heritable families Methanobacteriaceae and 

Dehalobacteriaceae. Interestingly, we have also found substantial evidence of 

genetic control for genus Methanobrevibacter which is encompassed by family 

Methanobacteriaceae. Genus Methanobrevibacter is the single genus belonging to 

phylum Euryarchaeota detected in rabbit cecum. It encompasses different 

hydrogenotrophic methane-producing species whose abundance has been 

associated with single-nucleotide polymorphisms located within a long noncoding 

RNA, however, this link remains uncertain (Bonder et al., 2016). Besides, taxa 

belonging to family Methanobacteriaceae were reported to have heritability 

estimates greater than 0.50 in a beef cattle population (Abbas et al., 2020). It is 

worth emphasizing that our results also show heritability estimates statistically 

greater than zero for genera Blautia and Odoribacter, which is consistent with 

previous results in humans (Le Roy et al., 2018; Xu et al., 2020). 

 

Our results also revealed an important impact of the litter effects on the relative 

abundances of genera Butyricimonas (l2 = 0.28), Dehalobacterium (l2 = 0.37) and 

Phascolarctobacterium (l2 = 0.66). BF and heritability estimates also suggested a 

genetic determinism for these three genera, but the effect exerted by the nursing 

environment seems to be of greater magnitude. On the other hand, the role played 

by cage environmental effects was found to be strong for some species 

encompassed by genus Ruminococcus. Genetic and litter effects, in the contrary, 

do not seem to have any relevant influence on such genus. However, La Reau et 

al. (2016) and Li et al. (2019) found that the abundance of genus Ruminococcus 

was influenced by host genetics. Remarkably, this genus displays large diversity 

and, in this study, we have reported four OTUs taxonomically assigned as 

Ruminococcus that showed a clear genetic determinism. 
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On a global scale, our results suggest that a substantial part of the cecal microbial 

variability is under host genetic control since the BF pointed out evidence of genetic 

determinism for three principal components, number of OTUs observed and 

Shannon indexes. We have found a clear genetic background for number of OTUs 

observed index (h2 = 0.28) and principal component 4 (h2 = 0.41) this is in line with 

previous heritability assessments of alpha-diversity in pigs (Lu et al., 2018; 

Bergamaschi et al., 2020), humans (Goodrich et al., 2016), and in the study 

conducted by Saborío-Montero et al. (2021) in cattle that overall estimated the 

heritability of rumen microbiota by the aggregation of the OTU table into principal 

components. Microbial complexity can be summarized into principal component and 

alpha-diversity indexes, which are heritable traits that could be incorporated into 

breeding programs. Nonetheless, it is important to bear in mind that alpha-diversity 

at weaning might not be an accurate predictor of diversity at later stages in rabbit 

life. Rabbit cecum hosts a rich and complex microbial ecosystem that is shaped by 

many non-genetic factors, however, a significant proportion of the microbial traits 

analyzed in this study showed moderate heritabilities. Although cecal samples 

analyzed in the present study were collected from nearly adult rabbits, these 

estimates should be interpreted with caution since microbial composition varies over 

time and does not stabilize until the animal reaches adulthood. As we have stated, 

recent studies in different livestock species have attempted to disentangle the 

genetic determinism of gut microbiota but had not paid enough attention to non-

genetic factors, such as litter or cage effects, whose influence is even more relevant 

than the additive genetic effects.  

 

For the first time, in this study, we have evaluated the role played by host genetics, 

litter and cage effects on a set of traits that attempt to represent rabbit cecal 

microbiota at different levels of depth. We think that understanding the effect of host 

genetics, litter or cage found for certain microbial traits could be more relevant from 

a biological knowledge perspective than from a practical point of view. An example 

of this would be the genus Methanobrevibacter which is clearly heritable and seems 

to be linked to methane emissions. The genetic determinism in the host for methane 

emissions and the relative abundance of this genus would offer the possibility to 

alter microbial composition through selection and to breed for rabbits that reduce 
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climate impact. Although a selection to reduce this genus could be postulated, it 

would only account for a certain part of such emissions. Moreover, members of this 

genus could be beneficial for other relevant traits, thus selecting a given trait through 

microbiota might be risky since negative responses for the other traits of interest 

could be also obtained. In addition, a direct selection somehow guarantees a 

balanced modification of all the elements involved in the metabolic pathway of the 

trait.  

 

Finally, we want to highlight that subjacent mechanisms involved in host genetic 

determinism on cecal microbiota remain still unknown. Future genome-wide 

association studies with large datasets are necessary to identify the host genomic 

regions involved in the control of overall microbial diversity and abundances of 

specific taxa. 

 

6.6. Conclusions 

The Bayesian analysis of a set of 989 microbial traits conducted in this study with 

LMM and ZIP mixed models has allowed disentangling the influence of additive 

genetic, litter and cage effects on different levels of complexity of rabbit cecal 

microbiota through BF. Fitting these microbial traits with a LMM model was 

preferable except for the analyses of CSS-normalized abundances of rare OTUs 

characterized by a marked excess of zeros that led to a better adjustment with the 

ZIP model. The calculation of BF as an assessment tool of the statistical relevance 

of heritability, litter and cage variance ratios estimates has allowed us to unravel 

different levels of influence of such effects on global cecal microbial composition 

and on an important proportion of OTUs and genera relative abundances. It is worth 

mentioning the important influence of host genetics and the nursing environment 

found for members of genera Bacteroides and Parabacteroides, while family S24-7 

and genus Ruminococcus are highly affected by cage effects. The findings of this 

study support that host genetics, cage and nursing environment contribute to the 

variation of rabbit cecal microbial composition, but functional and genome-wide 

association studies are needed to advance knowledge of the underlying 

mechanisms. 
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6.7. List of abbreviations 

AL  ad libitum feeding regime 

BF  Bayes factor 

CSS  cumulative sum scaling 

DIC  deviance information criterion 

LMM  linear mixed model 

MCMC Markov chain Monte Carlo 

OTU  operational taxonomic unit 

PCR  polymerase chain reaction 

R  restricted feeding regime 

ZIP  zero-inflated Poisson 
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7.1. Abstract 

Background 

The present study intends to identify genomic regions involved in the host genetic 

control of cecal microbiota by performing a genome-wide association study (GWAS) 

using 412 rabbits genotyped with a high-density chip containing almost 200,000 

single nucleotide polymorphisms (SNPs) and an improved version of the OryCun2.0 

reference assembly of the rabbit genome. For this purpose, the cecal microbial 

community of these 412 animals was phenotyped by sampling and characterizing 

the V4-V5 hypervariable regions of the 16S rRNA gene and defining a set of 

microbial traits representative of the cecal microbiota at different levels of depth. 

Two different approaches were applied to identify host genomic regions associated 

with the microbial traits under study: mixed model regression at each SNP position 

(MIX-GWAS) and BayesC. A simulation study was also conducted to assess the 

statistical power of both approaches to identify host genomic regions associated 

with a simulated normally distributed phenotype under alternative heritabilities 

scenarios. 

 

Results 

Our simulation assessment clearly showed the rather limited power of the data 

structure and sample size regardless of the analysis method considered. A power 

of detection greater than 75% was only achieved for those windows containing a 

QTN with a strong effect that explained at least 50% of the phenotypic variance. 

Moreover, the simulation assessment revealed that the positive predictive value rate 

of MIX-GWAS was about one-third of that of BayesC. Despite this limited statistical 

power, the MIX-GWAS analysis declared 334 signals spread across 10 

chromosomes as significantly associated with 19 microbial traits. Our previous 

knowledge about the genetic background of these traits accompanied by a deep 

analysis of the genes annotated on the regions harboring these signals led us to 

prudently propose QTL regions on OCCs 1, 6, 8, 15, and 19 involved in the host 

genetic control of the rabbit gut microbiome. These regions include genes like 

SLC12A9, ABCA5, ADH4, DLAT, CSF2, GNB2, GABRA1, or TNFSF13B implicated 

in homeostatic, metabolic, or immune system processes.  
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Conclusions 

Despite the limited statistical power of our data structure, we have identified different 

genomic regions in ten chromosomes that we prudently declare as associated with 

the variation of rabbit cecal microbiota, particularly one on OCC 12 that is associated 

with the variation of one OTU assigned to genus Butyricimonas. Nonetheless, this 

knowledge has more relevance from a biological perspective than from an applied 

point of view, given that the link between this genetic control and that for traits of 

interest, such as growth or diseases resistance, is not evident. 

 

7.2. Background 

The rabbit gastrointestinal tract (GIT) harbors a complex and diverse microbial 

community of about 100 to 1,000 billion microorganisms per gram of digesta 

(Savage, 1987), covering over 1,000 different species, predominating the kingdom 

Bacteria over archaeal populations (Combes et al., 2011). The cecum is the main 

organ for microbial fermentation in the domestic meat rabbit (Oryctolagus 

cuniculus). Therefore, despite the presence of active microbial populations 

throughout the whole GIT, the cecum hosts the most diverse and richest microbial 

community (Gouet and Fonty, 1979). A symbiotic relationship is established 

between the host and its GIT microbiota (Gaskins, 1997). Such a relationship has 

co-evolved promoting the growth of mutualistic microorganisms that facilitate the 

degradation of nutrients and ensure proper homeostatic balance maintenance (Flint 

et al., 2012). The composition of this complex microbial community is shaped by the 

dynamically changing physical and chemical conditions within the cecum. At the 

same time, the bacterial and archaeal communities contribute to the cecal 

environmental conditions and the host’s nutrient availability (Mackie, 2002). 

 

A growing number of studies have characterized the microbial communities 

inhabiting the rabbit GIT, especially those present in the cecum (Abecia et al., 2007; 

Zou et al., 2016; Zhu et al., 2017; Chen et al., 2017). The establishment of a 

homogeneous and stable cecal microbiota is achieved when the rabbit reaches 

adulthood (Combes et al., 2011). However, such stability may be altered over the 

life of the animal by multiple factors, including the diet (Gidenne et al., 2004; 
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Carabaño et al., 2009; Chamorro et al., 2010), level of feeding (Abecia et al., 2007; 

Velasco-Galilea et al., 2020), and the administration of antibiotics (Abecia et al., 

2007; Zou et al., 2016; Velasco-Galilea et al., 2020).  

 

Indeed, as reported by previous studies, the cecal microbiota is closely related to 

growth and feed efficiency in rabbits (Zeng et al., 2015; Drouilhet et al., 2016; Fang 

et al., 2020, Velasco-Galilea et al., 2021a). Unfortunately, the potential association 

between host genetics and gut microbiota in such traits of economic interest is 

relatively unexplored. Unraveling such potential association is highly recommended 

to know whether host genetics influences the relative abundances of specific taxa 

related to traits of economic interest, identify host genetic markers involved in this 

control, and potentially manipulate gut microbiota through selection. In this 

connection, Li et al. (2019) and Wen et al. (2021) have identified some heritable 

microorganisms in the cattle rumen and the chicken gut, respectively, that are in 

addition associated with feed efficiency. A partial genetic control has been 

suggested for the pig gut microbiota by low to moderate heritability estimates 

reported for different microbial taxa and alpha-diversity (Camarinha‐Silva et al., 

2017; Yang et al., 2016; Lu et al., 2018; Ramayo-Caldas et al., 2020). In rabbits, 

Velasco-Galilea et al. (2021b, see Chapter six of the present thesis) reported non-

null heritability estimates for a large proportion of microbial traits, and Ye et al. 

(2021) also evidenced variability across breeds for their microbial gut composition. 

 

Once the heritability of microbial taxa is reported, the genuine next step is to identify 

the genomic regions and candidate genes involved in their variation. Likewise, 

genome-wide association studies (GWAS) have identified host genetic variants 

associated with mice (Benson et al., 2010; Org et al., 2015), humans (Goodrich et 

al., 2014; Blekhman et al., 2015; Davenport et al., 2015), cattle (Li et al., 2019), pigs 

(Cheng et al., 2018; Crespo-Piazuelo et al., 2019; Bergamaschi et al., 2020), or 

chickens (Wen et al., 2021) gut microbiota.  

 

The present study intends to identify rabbit genomic regions involved in the host 

genetic control of cecal microbiota at different levels of depth using two approaches: 

mixed model regression at each SNP position (MIX-GWAS) and BayesC. Although 
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many GWAS have successfully detected QTL regions associated with microbial 

traits, these studies are very underpowered due to sample size limitations (Klein, 

2007; Hong and Park, 2012). For this reason, we accompanied ours with a 

simulation assessment of the statistical power of the two different approaches to 

identify host genomic regions associated with a normally distributed phenotype 

simulated given the available pedigree and data structure, as well as a sample of 

the recorded genotypes that was assigned to the base population. 

 

7.3.  Methods 

7.3.1. Animals 

The present study was conducted at the Institute of Agrifood Research and 

Technology (IRTA) and involved 412 rabbits from a paternal line (the Caldes line, 

Gómez et al., 2002). Three hundred twenty-four of these were raised in four batches 

and housed in collective cages, each containing eight kits, in a semi-open-air facility 

during the first semester of 2014. In addition, eighty-eight kits were raised in another 

facility under better controlled environmental conditions in spring 2016. These kits 

were produced in a single batch and housed in collective cages, each containing six 

kits. All the animals received the same management and were fed with a standard 

pelleted food supplemented with antibiotics, except 23 kits raised in the second 

facility that received an antibiotic-free diet. Rabbits were weaned at the age of 32 

days. The fattening period lasted five weeks for the animals raised in the first facility 

and four weeks for those raised in the second facility. All the animals received food 

free of antibiotics during their last fattening week. The feed was supplied once per 

day in a feeder with three places, and water was provided ad libitum. Kits were 

classified into two groups according to their size (“big” if their body weight was 

greater than 700 g or “small” otherwise), and they were randomly assigned to 

feeding regime ad libitum (AL) or restricted (R) to 75% of the AL feed intake after 

weaning. The amount of feed supplied to the animals under R in each week for each 

batch was computed as 0.75 times the average feed intake of kits on AL from the 

same batch during the previous week, plus 10% to account for a feed intake 

increase as the animal grows. A maximum of two kits belonging to the same litter 
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was assigned to the same cage to prevent a possible association between the cage 

and maternal effects.  

 

7.3.2. Collection of cecal samples, microbial DNA extraction and 16rRNA 

gene sequencing 

At slaughter, cecal samples from each animal were collected in a sterile tube. The 

samples were kept cold in the laboratory at 4ºC and were stored at -80ºC. Details 

of the processes regarding DNA extraction and amplification, Illumina library 

preparation, and sequencing can be found at Velasco-Galilea et al., 2020. Briefly, 

250 mg of each cecal sample were mechanically lysed in a FastPrep-24TM 

Homogenizer (MP Biomedicals, LLC, Santa Ana, CA, United States) at a speed of 

6 m/s for 60 s. Genomic DNA was extracted with kit ZR Soil Microbe DNA 

MiniPrepTM (ZymoResearch, Freiburg, Germany), and then, its integrity and purity 

were measured with Nanodrop ND-1000 spectrophotometer equipment (NanoDrop 

products; Wilmington, DE, United States) following Desjardins and Conklin’s 

protocol (Desjardins and Conklin, 2010). The pair of primers F515Y/R926 (5’-

GTGYCAGCMGCCGCGGTAA-3’, 5’-CCGYCAATTYMTTTRAGTTT-3’) (Parada et 

al., 2016) was used to amplify a fragment of the 16S rRNA gene including the V4-

V5 hypervariable regions. For each cecal sample, an initial polymerase chain 

reaction (PCR) was carried out with 12.5 µl 2x KAPA HiFi HotStart Ready Mix, 5 µl 

forward primer, 5 µl reverse primer, and 2.5 µl template DNA (5 ng/ µl) under the 

following conditions: initial denaturation for 3 minutes at 95 ºC, 25 cycles of 30 

seconds at 95 ºC, 30 seconds at 55 ºC and 30 seconds at 72 ºC; and final extension 

for 2 minutes at 72 ºC. Then, sequencing adaptors and 8 nucleotide dual-indexed 

barcodes of the multiplex Nextera® XT kit (Illumina, Inc., San Diego CA, United 

States) were added in a second PCR with 25 µl 2x KAPA HiFi HotStart Ready Mix, 

5 µl index i7, 5 µl index i5, 10 µl PCR Grade water and 5 µl concentrated amplicons 

of the first PCR under the following conditions: initial denaturation for 3 minutes at 

95 ºC, 8 cycles of 30 seconds at 95 ºC, 30 seconds at 55 ºC and 30 seconds at 72 

ºC; and final extension for 5 minutes at 72 ºC. The libraries obtained were cleaned 

up with AMPure XP beads. The final libraries were validated by running 1 µl of a 

1:50 dilution on a Bioanalyzer DNA 1000 chip (Agilent Technologies, Inc., Santa 
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Clara, CA, United States) to verify their size, quantified by fluorometry with the 

PicoGreen dsDNA quantification kit (Invitrogen, Life Technologies, Carlsbad, CA, 

United States). Finally, libraries were pooled at equimolar concentrations and 

paired-end sequenced in five parallel plates in an Illumina MiSeq 2 x 250 platform 

at the Genomics and Bioinformatics Service of the Autonomous University of 

Barcelona. 

 

7.3.3. Bioinformatics processing of microbial traits 

Bioinformatics processing of the raw reads obtained from MiSeq sequencer was 

performed with the QIIME software (version 1.9.0) (Caporaso et al., 2010). Details 

of the pipeline followed for sequence processing can be found at Velasco-Galilea et 

al., 2020. Briefly, the python script multiple_join_paired_ends.py with default 

parameters was used to assemble the paired-end reads into contigs. The python 

script split_libraries.py with default parameters was applied to assign the resulting 

contigs to their samples and to discard those contigs with a quality score smaller 

than Q19. The UCHIME algorithm (Edgar et al., 2011) was used to detect and 

remove the chimeric sequences associated with PCR amplification. The python 

script pick_open_reference_otus.py with default parameters (Rideout et al., 2014) 

and the Greengenes reference database (version gg_13_5_otus) (McDonald et al., 

2012) were used to cluster the filtered contigs into Operational Taxonomic Units 

(OTUs) with a 97% similarity threshold. The resulting OTU table was normalized 

with the cumulative sum scaling (CSS) method (Paulson et al., 2013). The 

taxonomic assignment of the representative sequences of each OTU was performed 

using the UCLUST consensus taxonomy assigner by mapping the sequences 

against the Greengenes reference database gg_13_5_otus. The raw sequence data 

were deposited in the sequence read archive of NCBI under the BioProject 

accession number PRJNA524130. Metadata, OTU table, and corresponding 

taxonomic assignments can be found at Additional files 7.1, 7.2 and 7.3, 

respectively. After bioinformatic sequence processing, 951 different OTUs present 

in at least 5% of the animals were identified. Further details on the bacterial and 

archaeal populations present within the cecum of this rabbit population can be found 

at Velasco-Galilea et al. (2020). On the basis of these 951 OTUs, a set of microbial 



                                       Chapter 7: Identification of genomic regions involved in the genetic 
control of the meat rabbit cecal microbiota and assessment of microbial GWAS detection power 

321 

traits representative of the rabbit cecal microbiota were defined and analyzed in this 

study: the relative abundances of 8 phyla and 29 genera, 951 CSS-normalized 

OTUs, four microbial alpha-diversity indexes computed at 10,000 contigs (total 

number of OTUs observed, Chao1, Shannon and Simpson's inverse), and the first 

five principal components (PC) computed from the OTU table. Phyla and genera 

relative abundances, microbial alpha-diversity indexes, and PCs were standardized 

subtracting their mean and dividing by their standard deviation. Finally, these 

standardized microbial traits and CSS-normalized OTUs were multiplied by 100 and 

subsequently rounded to the nearest integer. 

 

7.3.4. Collection of liver samples, host DNA extraction and SNP 

genotyping 

Rabbit genomic DNA was extracted from liver samples collected at slaughter with 

the kit MN Nucleospin Tissue (Macherey-Nagel, Germany). Afterward, the DNA 

integrity and purity were measured with Nanodrop ND-1000 spectrophotometer 

equipment (NanoDrop products; Wilmington, DE, United States) following 

Desjardins and Conklin’s protocol (Desjardins and Conklin, 2010). Four hundred 

twelve rabbits were genotyped with the Affymetrix Axiom OrcunSNP Array 

(Affymetrix, Inc. Santa Clara, CA, USA), which includes 199,692 SNPs. Of these 

variants, 161,830 were segregating in the rabbit population involved in the present 

study (Sánchez et al., 2020). Quality control of the SNPs was performed with the 

PLINK software (version 1.9) (Chang et al., 2015) and included the following criteria: 

(i) individual call rate > 0.90; (ii) SNP call rate > 0.95; (iii) SNP minor allele frequency 

(MAF) > 0.05; (iv) and only autosomal SNPs with known positions in the OryCun2.0 

assembly (Carneiro et al., 2014) were used. The final dataset consisted of 114,604 

genotyped SNPs from 412 rabbits. 
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7.3.5. Statistical analyses 

7.3.5.1. Simulation assessment of the statistical power of the data structure   

available 

As an initial step, a simulation study using the SBVB program (Pérez-Enciso et al., 

2017) was conducted to assess the statistical power of the real data structure 

employed in this study. A set of phased genotypes for the animals in the base 

population of the pedigree animals for which we aim to simulate the genotypes is 

requested as input by SBVB. Such genotypes of the base population are dropped 

down throughout the pedigree generating genotype information for all the 

descendants. In addition, the program requests a list containing the positions and 

effects of the QTNs responsible for the variation of the trait to be simulated. Finally, 

a heritability value must be provided to scale the actual SNPs effects so that the 

normally distributed resulting trait has the desired heritability. In our pedigree, 82 

animals constituted the base population. The phased genotypes for these animals 

were sampled from the 412 real genotypes analyzed for this study. Phasing was 

done using the Phasebook package (Druet and Georges, 2010), and only 

considering the first 14 chromosomes to simplify the calculations in the simulation 

assessment. The same set of 20 SNPs positions and effects were assumed across 

50 replicates. The positions and respective effects of these QTNs are shown in 

(Table 7.1). As output, the program generates the genotypes and breeding values 

for all the animals in the pedigree, and a vector of phenotypes compatible with the 

initially desired heritability. In a second step of the simulation, the generated 

breeding values of the 412 individuals with actual microbial information were 

retained and standardized to have a variance of 1 (𝐚𝟎). These values were used for 

the generation of the phenotypic records using the following model: 

 

yijkhl = Bk + Sh + ll + cj + ai + eijkhl 

 

Where yijkhl corresponds to the phenotype of the i-th individual, born in the l-th litter, 

and raised in the j-th cage, during the k-th batch (5 levels), and belonging to the h-

th class of size at weaning (2 levels: above or below the average). Thus, the 

phenotypes are explained by the sum of the respective levels of the fixed factors 
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associated with batch (𝐁) and size at weaning (𝐒), and those of the random factors 

associated with litter (𝐥), cage (𝐜) and additive genetic (𝐚) effects. During the data 

generation, the fixed effect vectors were arbitrarily set to  𝐁′ =

[4.5 4.5 5.5 3.5 4.0] and 𝐒′ = [0.0 1.0]. The litter and cage effects were 

sampled from the following normal distributions: 

 

𝐥 ~ MVN(𝟎, 𝐈σl
2) 

  

𝐜 ~ MVN(𝟎, 𝐈σc
2) 

 

Similarly, the residual terms were sampled from the following normal distribution:  

 

𝐞 ~ MVN(𝟎, 𝐈σe
2) 

 

As previously stated, the vector containing the additive genetic effects (𝐚) will be a 

function of the vector (𝐚𝟎)  previously generated with SBVB program. 

 

The same phenotypic variance was assumed for the three heritability scenarios 

assessed: 

σP
2 = σl

2 + σc
2 + σa

2 + σe
2 = 10 

 

The magnitude of the litter and cage effects was also assumed to be always the 

same. Thus, the ratios of their variances over the phenotypic variance were 0.10 

and 0.15 for the litter and the cage effects, respectively:    

 

l2 =
σl

2

σP
2 = 0.10 

 

c2 =
σc

2

σP
2 = 0.15 
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The three scenarios under study were characterized by heritabilities equal to 0.10, 

0.30 and 0.50. Therefore, √1
2

, √3
2

 and √5
2

 factors were applied to the vector 

containing the standardized breeding values (𝐚𝟎) to obtain the breeding value that 

will be used for data generation in each scenario (i.e., heritabilities of 0.10, 0.30 and 

0.50). For the data generation process, the same structure as that of the real data 

was considered regarding the design of the pedigree, and fixed and random factors. 

The output of each simulation was a vector containing the phenotypes, the design 

matrices (that were constant across replicates), and the genotype matrix. Note that 

the 20 SNPs declared to be responsible for the genetic variation of the simulated 

trait were removed from the genotype matrix. 

 

Fifty replicates were conducted for each of the three scenarios. For each replicate, 

the two methods considered for the analysis of the real data (MIX-GWAS and 

BayesC, see below) were used to detect the simulated QTL regions. The same fixed 

effects that were used for the simulation were considered in both models, however, 

litter and cage effects were only considered in the analysis using the BayesC 

approach. These two factors were not considered in the analysis with the MIX-

GWAS model, but a polygenic effect was considered for this approach. In each 

approach, the SNPs effects were considered in different ways: fitting a mixed model 

regression at each SNP position in the MIX-GWAS and fitting all the SNPs at a time 

in the BayesC (see below for further details). 

 

As the positions and effects of the SNPs were constant across all the replicates of 

each scenario, the number of times that 1 Mb window containing a QTN is declared 

as a QTL region out of the total number of replicates can be counted. Similarly, the 

number of times that QTLs are declared within 1 Mb window that does not contain 

the actual SNPs responsible for the genetic variation of the trait (i.e., false positive) 

can also be counted. For the BayesC analysis, a given 1 Mb window was declared 

to be a QTL region when its window posterior probability of association (WPPA) was 

greater than 0.90. In the case of MIX-GWAS analysis, a 1 Mb window was 

considered to be a QTL region when at least one SNP encompassed by this window 

was declared to be associated with the trait after a genome-wide adjustment of the 

P-value to a false discovery rate (FDR) of 0.05.  
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7.3.5.2. Real data analysis 

Two alternative statistical methods were used in order to identity host genomic 

regions associated with the microbial traits under study.  

 

7.3.5.2.1. Mixed model regression at each SNP position (MIX-GWAS) 

This procedure relies on the consideration of a mixed linear model at each position 

of the genome to be tested. The software GCTA (Yang et al., 2011), which allows 

fitting this type of model, was used. For each tested position (p), the model was the 

following: 

yikht = Bk + Sh + xpiap + ui + eikht 

 

Where yikhj corresponds to the t-th microbial phenotype, recorded on the i-th animal, 

with genotype vector 𝐱𝐢, raised in the k-th batch and belonging to the h-th class of 

size at weaning (below or above the average weaning weight of the batch). Bk and 

Sh correspond to the effects of the k-th batch (5 levels) and the h-th class of size at 

weaning (2 levels). ui is the random additive genetic effect of the i-th individual. The 

assumed distribution of the vector of additive genetic effects was the following 

multivariate normal distribution: 𝐮 ~ MVN(𝟎, 𝐆σu
2),  where σu

2 is the additive genetic 

variance and 𝐆 is the genomic relationship matrix calculated using the filtered 

autosomal SNPs based on the methodology of Yang et al. (2011). The SNP effect 

at the p-th genomic position was fitted as the linear regression (ap) of the trait of 

interest on the allele count in that particular position (xpi) coded as 0, 1 or 2. 

 

The statistical significance of the regression coefficient on the allele count in a given 

position is assessed with GCTA using a chi-squared test, assuming that the ratio 

𝑎𝑝̂

𝜎𝑎𝑝̂̂

 (i.e., the estimated effect of the SNP over its standard error) follows under the 

null hypothesis a chi-squared distribution with one degree of freedom. Afterward, 

the raw P-values associated with the different chi-squared tests were genome-wide 

adjusted to a FDR of 0.05.  
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7.3.5.2.2. BayesC for genome signal detection 

This procedure fits all the SNP genotypes at a time, and it was originally proposed 

as a genomic selection tool (Habier et al., 2011). As a consequence of the assumed 

prior distribution for the SNPs effects, it allows for variable selection and has also 

been used as a method to pinpoint the genomic regions harboring genes involved 

in the control of the traits of interest (Fernando and Garrick, 2013). An important 

advantage of these methods is their Bayesian nature, meaning that uncertainty is 

expressed in probabilistic terms, and further corrections for multiple tests are not 

needed (Fernando et al., 2017). 

  

The BayesC model employed was the following:  

 

yijkhlt = Bk + Sh + ll + cj + ∑ xpiap

NSNPs

p=1

+ eijkhlt 

 

All the terms of this model equation have been previously described either in the 

model equation used for the simulation or in the model equation describing the MIX-

GWAS analysis approach. Nonetheless, as for BayesC a full Bayesian approach is 

adopted, it is needed to specify the prior assumptions for each term. In this regard, 

uniform priors were considered for the systematic effects of batch (Bk) and size at 

weaning (Sh). For litter (ll), cage (cj) and residual terms (eijkhlt), multivariate normal 

distributions were considered: 

 

𝐥 ~ MVN(𝟎, 𝐈σl
2) , 𝐜 ~ MVN(𝟎, 𝐈σc

2), and 𝐞 ~ MVN(𝟎, 𝐈σe
2) 

 

The assumed prior distribution for the SNPs effects (ap) was a mixture with the 

following specifications: 

 

ap|π, σp
2 = {

0 , with probability  π

~ N(0, σp
2), with probability (1 − π) 

}  
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In a second hierarchical level, the prior distribution for the variance hyperparameters 

must be specified. In our implementation, they were assumed to follow unbounded 

uniform distributions along the positive values. The mixture parameter π was 

assumed to be known and equal to 0.01, meaning that only about 1,146 SNPs were 

allowed to have a non-null effect. π has been estimated in other implementations, 

yielding the method known as BayesCπ. 

   

In the present study, this model was implemented with the program GS3 (Legarra 

et al., 2014). Given that the Fortran code of this software is publicly available, it was 

possible to include the possibility of fitting zero-inflated Poisson (ZIP) records in the 

code. The Bayesian derivation by Rodrigues-Motta et al. (2007) for this type of 

models was implemented. Under this derivation, the same assumptions about the 

BayesC model described above are valid for the random variable representing the 

logarithm of the individual’s Poisson distribution parameters. The criterion to declare 

regions as associated with the microbial traits of interest was a WPPA greater than 

0.90 (Fernando et al., 2017) in both implementations of the BayesC model, either 

assuming ZIP or normally distributed records. In this study, the windows were 

defined by non-overlapping regions of 1 million base pairs. Following the definition 

by Fernando et al. (2017), the WPPA was the proportion of times, along the Gibbs 

sampling algorithm, that at least one SNP within that particular window was declared 

to have a non-null effect on the trait of interest.  

 

7.3.6. Gene annotation and functional prediction 

Windows containing a significantly associated QTN were annotated ±1 Mb around. 

This cut-off was set in accordance with the linkage disequilibrium (LD) pattern decay 

described by Sánchez et al. (2020). Gene annotations were retrieved from the 

Ensembl Genes 104 Database with the BIOMART software (Smedley et al., 2015) 

using the OryCun2.0 reference assembly. Functional classification and pathway 

analyses of the annotated candidate genes were carried out using ClueGO version 

2.5.8 plug-in of Cytoscape (Bindea et al., 2009). Orthologous human gene names 

were retrieved from the Ensembl Genes 104 Database for functional categorization 

when a rabbit gene name was not assigned to the gene stable id. 
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7.4. Results 

7.4.1. Power of MIX-GWAS and BayesC approaches for detecting causal 

variants 

The statistical power of MIX-GWAS and BayesC approaches for the data structure 

employed in this study to identify host genomic regions associated with the 

composition and diversity of cecal microbial communities was evaluated through a 

simulation. The simulation consisted of 50 replicates for each of the three scenarios 

of heritability for the simulated microbial trait (i.e., h2 = 0.10, h2 = 0.30, and h2 = 

0.50). The same set of 20 SNPs positions and effects was used across the different 

replicates in the three scenarios. Table 7.1 shows the positions of these simulated 

quantitative trait nucleotides (QTNs) and their respective effects. 

 

Table 7.1| Simulated QTNs. 

QTN OCC1 Position (Mb) Window 
Effect2  

(h2 = 0.10) 
Effect2  

(h2 = 0.30) 
Effect2  

(h2 = 0.50) 

1 1 14.85 12 -0.06 -0.10 -0.12 

2 2 19.17 61 0.27 0.46 0.59 

3 2 86.59 123 0.05 0.09 0.12 

4 3 49.26 168 -0.21 -0.37 -0.48 

5 3 77.63 195 -0.17 -0.29 -0.37 

6 4 0.17 225 -0.10 -0.17 -0.22 

7 4 24.45 246 0.05 0.09 0.12 

8 4 36.91 256 -0.04 -0.07 -0.09 

9 5 39.90 339 0.04 0.08 0.10 

10 5 42.17 342 0.27 0.47 0.61 

11 6 34.13 412 0.07 0.11 0.15 

12 8 3.84 499 -0.01 -0.01 -0.01 

13 9 14.68 539 -0.27 -0.47 -0.61 

14 10 55.62 592 -0.06 -0.10 -0.12 

15 13 35.59 715 0.08 0.14 0.18 

16 13 75.02 750 0.08 0.14 0.19 

17 13 77.15 752 -0.18 -0.31 -0.40 

18 14 61.92 843 -0.10 -0.18 -0.23 

19 14 77.69 857 -0.08 -0.14 -0.18 

20 14 91.62 870 0.17 0.29 0.37 
1Oryctolagus cuniculus chromosome. 
2QTN effect expressed relative to phenotypic standard deviations of the trait (√10

2
). 

 

Table 7.2 shows the statistical power of both approaches under three scenarios of 

heritability to declare the windows containing the 20 simulated QTNs as significantly 
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associated with the simulated microbial phenotype. This power of detection is 

expressed as the percentage of times across 50 replicates that a given 1 Mb window 

was declared to contain a SNP significantly associated with the simulated trait by a 

WPPA greater than 0.90 (BayesC) or a genome-wide PFDR lower than 0.05 (MIX-

GWAS). QTNs in Table 7.2 are placed in descending order according to their 

absolute value of effect expressed relative to the raw phenotypic standard deviations 

of the trait. 

 

Table 7.2| Statistical power of MIX-GWAS and BayesC to detect simulated QTNs 

under different scenarios of heritability. 

QTN Window 

h2 = 0.10 h2 = 0.30 h2 = 0.50 

BayesC1 
MIX-

GWAS2 
BayesC1 

MIX-
GWAS2 

BayesC1 
MIX-

GWAS2 

10 342 0.00 0.02 0.08 0.44 0.78 0.94 

13 539 0.00 0.02 0.10 0.46 0.80 0.88 

2 61 0.00 0.00 0.12 0.42 0.78 0.84 

4 168 0.00 0.00 0.00 0.06 0.22 0.44 

17 752 0.00 0.00 0.00 0.06 0.06 0.10 

20 870 0.00 0.00 0.00 0.08 0.14 0.24 

5 195 0.00 0.00 0.00 0.00 0.00 0.10 

18 843 0.00 0.00 0.00 0.00 0.02 0.02 

6 225 0.00 0.00 0.00 0.02 0.06 0.10 

16 750 0.00 0.00 0.00 0.00 0.02 0.02 

19 857 0.00 0.00 0.00 0.00 0.00 0.02 

15 715 0.00 0.00 0.00 0.00 0.00 0.00 

11 412 0.00 0.00 0.00 0.00 0.00 0.02 

14 592 0.00 0.00 0.00 0.00 0.00 0.00 

1 12 0.00 0.00 0.00 0.00 0.00 0.00 

3 123 0.00 0.00 0.00 0.00 0.00 0.00 

7 246 0.00 0.00 0.00 0.00 0.00 0.00 

9 339 0.00 0.00 0.00 0.00 0.00 0.08 

8 256 0.00 0.00 0.00 0.00 0.00 0.00 

12 499 0.00 0.00 0.00 0.00 0.00 0.00 
1BayesC threshold for declaring a QTN within a given 1 Mb window was WPPA >0.90. 
2MIX-GWAS threshold for declaring a QTN within a given 1 Mb window was PFDR < 0.05. 

 

The simulation study revealed that the MIX-GWAS approach has a greater power 

of detection to declare a QTL region than BayesC. Though perhaps not surprising 

given the limited sample size and data structure, power of detection greater than 
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75% was only achieved when h2 was 0.50, and only for those windows containing a 

QTN with an effect greater than 0.59 phenotypic standard deviations (Table 7.2). 

For these three windows containing the QTNs with the strongest effect (10, 13, and 

2), the MIX-GWAS returned strongly up-biased estimates (up to 50%) of the most 

strongly associated SNPs within these windows. 

 

Table 7.3 shows a comparison of detection statistics for 20 windows containing a 

QTN of a total of 894 windows between MIX-GWAS and BayesC approaches under 

three simulated scenarios of heritability. A false positive (FP) is an outcome where 

the method incorrectly declares a window as containing a QTN, while a false 

negative (FN) is an outcome where the method does not declare as significantly 

associated with the phenotype a window that actually contains a true QTN. In this 

regard, the MIX-GWAS approach overcame BayesC since it exhibited lower values 

of FNs across all three scenarios. A decrease in the number of FNs was observed 

for both methods as the heritability of the phenotype increased. On the other hand, 

the BayesC approach had a lower number of FPs values than MIX-GWAS. It is, 

however, noteworthy that an important percentage of FPs was declared for windows 

adjacent to another window that contained a QTN.  

 

A true positive (TP) is an outcome where the approach correctly detects a window 

that contains a QTN. Similarly, a true negative (TN) is an outcome where the method 

does not declare that a given window contains a QTN when it does not contain a 

real signal. In accordance with the statistical power of both methods to detect 

simulated QTNs under different scenarios of heritability (Table 7.2), greater number 

of TPs were found for both methods as the heritability increased. Although the MIX-

GWAS approach overcame BayesC at detecting windows containing a QTN across 

the three scenarios, these values were pretty low. Regarding the number of TNs, 

both methods exhibited high values, although those for the BayesC were slightly 

better. 
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These detection statistics are accompanied by the sensibility, specificity, positive 

predictive value (PPV), and negative predictive value (NPV) of both methods (Table 

7.4). In this case, the sensitivity (i.e., true positive rate) would reflect the ability to 

correctly identify those windows containing a QTN of each method, whereas the 

specificity (i.e., true negative rate) corresponds to the capacity of the method to do 

not declare a window as containing a QTN when any real signal is present within 

this window. Both approaches showed high specificity rates, although the BayesC 

approach slightly overcame MIX-GWAS. Nevertheless, low sensitivity rates were 

reported for both approaches, especially for BayesC. 

 

Table 7.4| Sensibility, specificity, and positive and negative predictive values of MIX-

GWAS and BayesC to detect simulated QTNs under different scenarios of 

heritability. 

  h2 = 0.10 h2 = 0.30 h2 = 0.50 
 BayesC MIX-GWAS BayesC MIX-GWAS BayesC MIX-GWAS 

Sensitivity1 0.00% 10.00% 15.00% 35.00% 45.00% 65.00% 

Specifity2 100.00% 99.89% 99.89% 97.48% 99.43% 94.28% 

PPV3 - 66.67% 75.00% 24.14% 64.29% 20.63% 

NPV4 97.76% 97.98% 98.09% 98.50% 98.75% 99.16% 
1Sensitivity = TP / (TP + FN) 
2Specifity = TN / (TN + FP) 
3Positive predictive value (PPV) = TP / (TP + FP) 
4Negative predictive value (NPV) = TN (TN + FN) 

 

The PPV reflects the probability that a window with a positive test truly contains a 

QTN (i.e., the proportion of true positive cases among all the positive cases declared 

by the test). Similarly, the NPV captures the probability that a window with a negative 

test truly does not contain any QTN (i.e., the proportion of true negative cases 

among all the negative cases declared by the test). Both approaches declared 

accurately (NPV rates > 97%) that a window truly did not contain any SNP. However, 

windows declared by the BayesC to contain a SNP significantly associated with the 

phenotype were really true positives in a percentage three times greater than the 

MIX-GWAS approach.  
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7.4.2. Host genomic regions involved in the control of composition and 

diversity of cecal microbial communities 

In the light of the results obtained in the simulation study, the sample size and data 

structure available to conduct microbial GWAS (mGWAS) with the real phenotypes 

would only allow us to detect some QTNs with an effect of at least 0.60 phenotypic 

standard deviations. Indeed, estimates of such effects must be interpreted with 

caution since an overestimation of them is expected with the MIX-GWAS approach. 

Without forgetting the reality of this latter, we proceed to detail the significant 

associations found for the microbial traits analyzed and discuss the potential 

biological bases underneath these signals. 

 

No significant association was returned by the BayesC (WPPA > 0.90) approach for 

any of the microbial traits analyzed since the maximum WPPA estimated value was 

0.70 in a window located on Oryctolagus cuniculus chromosome (OCC) 19 for an 

OTU taxonomically assigned to genus Phascolarctobacterium with the analysis that 

assumed a normal distribution of the phenotypic records. Nor was a clear 

association declared when the analysis based on BayesC assumed a ZIP 

distribution for the phenotypic records. In this case, the maximum WPPA was 0.67, 

and it was associated with a window located on OCC 12 for an OTU taxonomically 

assigned to order Bacteroidales. 

 

Despite the negative results obtained with the BayesC approach, and although the 

statistical power of our data seems rather limited, the MIX-GWAS approach 

declared 334 SNPs (Table 7.S1) located on 10 OCCs as significantly associated 

with 19 microbial traits. Table 7.5 summarizes the windows significantly associated 

with the traits of interest after multiple testing correction at the genome-wide level. 

Graphical representation of the results obtained is presented in Manhattan plots for 

the 19 microbial traits (Figure 7.S1).  
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One window (639: 25.49-26.49 Mb) located on OCC 6 was declared to contain 4 

and 3 SNPs significantly associated with the relative abundance of phylum 

Actinobacteria and PC2, respectively. The estimated effects, expressed as raw 

phenotypic standard deviations, of the SNPs with the strongest association within 

this window were 0.53 and -0.34 for the relative abundance of phylum Actinobacteria 

and PC2, respectively (Table 7.5).  

 

The remaining 17 microbial traits, for which the MIX-GWAS approach declared 

some SNP significantly associated with, correspond to CSS-normalized OTUs. 

Fifteen of them were taxonomically assigned to phylum Firmicutes and the 

remaining two to phylum Bacteroidetes (Table 7.5). 

 

Within the phylum Firmicutes, two OTUs belong to genus Ruminococcus, two to 

family Ruminococcaceae, three to family Lachnospiraceae, one to family 

Clostridiaceae, and the remaining seven to order Clostridiales. OTUs NR2269 and 

NR2745, belonging to genus Ruminococcus, showed significant associations with 

52 and 11 SNPs encompassed by 4 and 1 windows, respectively, located on OCC 

3 (Table 7.S1). The estimated effects of the SNPs with the strongest association 

within each window ranged from 0.35 (for a SNP on the window 388: 38.53-39.53 

Mb) to 0.50 (for a SNP on the window 394: 44.57-45.56 Mb) raw phenotypic 

standard deviations (Table 7.5).  

 

One window located on OCC 8 contained 4 SNPs significantly associated with one 

OTU taxonomically assigned to family Ruminococcaceae (NR3356). Within this 

window, AX-147161100, the SNP with the strongest association had an estimated 

effect of 0.40 phenotypic standard deviations. Another OTU also assigned to this 

family (NR1121) showed significant associations with 14 and 4 SNPs encompassed 

by two adjacent windows of OCC 19. The estimated effect of the SNP showing the 

strongest association within these windows was 0.35 phenotypic standard 

deviations (Table 7.5). Sixteen SNPs located in four windows (639: 2 SNPs, 1034: 

2 SNPs, 156: 9 SNPs, and 1264: 2 SNPs) were declared to be significantly 

associated with any of the three OTUs taxonomically assigned to family 

Lachnospiraceae (578960, NR1391, and NR4269). As noted above, window 639 
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(OCC 6) also contained SNPs significantly associated with the relative abundance 

of phylum Actinobacteria and PC2. The estimated effects of the SNPs with the 

strongest association within each window ranged from 0.41 (for a SNP on the 

window 1264: 134.41-135.41 Mb) to 0.55 (for a SNP on the window 156: 162.97-

163.97 Mb) raw phenotypic standard deviations (Table 7.5). One window located 

on OCC 1 contained 9 SNPs significantly associated with one OTU taxonomically 

assigned to family Clostridiaceae (524842). Within this window, AX-147110928, the 

SNP with the strongest association had an estimated effect of 0.45 phenotypic 

standard deviations (Table 7.5).  

 

One hundred eighty-one SNPs located in 22 windows located on OCCs 1, 3, 4, 8, 

12 and 16, were declared as significantly associated with any of the seven OTUs 

taxonomically assigned to order Clostridiales (157802, 314029, 346794, NR1794, 

NR2147, NR276 and NR741). AX-147140420 was the SNP (OCC 1, window 109: 

113.69-114.69 Mb) most strongly associated with NR1794, and its estimated effect 

was 0.81 phenotypic standard deviations (Table 7.5). The SNP most strongly 

associated with OTU 314029 had an estimated effect of 0.38 phenotypic standard 

deviations. This SNP is encompassed by window 117 located on OCC 1. On OCC 

3, four windows (478, 483, 484, and 485) encompassed SNPs significantly 

associated with OTUs 157802 and NR276. The estimated effects of the SNPs with 

the strongest association within each window ranged from 0.32 phenotypic standard 

deviations (for a SNP on 139282325 bp significantly associated with OTU NR276) 

to 0.68 phenotypic standard deviations (for a SNP on 133998414 bp significantly 

associated with OTU 157802) (Table 7.5; Table 7.S1). The OTU NR276 was also 

significantly associated with 22 SNPs encompassed by four windows located on 

OCC 16. Within this OCC, the estimated SNP effect having the strongest 

association with OTU NR276 was 0.54 phenotypic standard deviations (Table 7.5). 

346794 showed significant associations with 5 and 2 SNPs encompassed by two 

adjacent windows of OCC 8. One of these windows (907) also contained SNPs 

significantly associated with OTU NR3356 (assigned to family Ruminococcaceae) 

(Table 7.5). One window (569: 75.58-76.57 Mb) located on OCC 4 was declared to 

contain 4 SNPs significantly associated with OTU NR2147 (Table 7.5). The 

estimated effect of the SNP showing the strongest association within this window 
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was -0.79 phenotypic standard deviations. A single SNP in 137077726 bp on OCC 

12 was significantly associated with OTU NR741, and it showed an estimated effect 

of 0.44 phenotypic standard deviations (Table 7.5; Table 7.S1). 

 

Within the phylum Bacteroidetes, two SNPs encompassed by window 370 located 

on OCC 3 were declared to be significantly associated with OTU NR2723 that 

belongs to order Bacteroidales. The estimated SNP having the strongest 

association was 0.52 phenotypic standard deviations (Table 7.5). Finally, five 

windows located on OCCs 1, 12 and 15, contained 40 SNPs declared to be 

associated with an OTU taxonomically assigned to genus Butyricimonas (124470). 

The estimated effects of the SNPs with the strongest association within each 

window ranged from -0.20 (for a SNP on the window 1619 of OCC 15: 49.45-50.45 

Mb) to -0.29 (for a SNP on the window 172 of OCC 1: 180.09-181.09 Mb) phenotypic 

standard deviations (Table 7.5).   

 

7.4.3. Candidate genes and pathways associated with rabbit cecal 

microbiota 

A total of 426 protein-coding, 32 snRNA, 20 snoRNA, 3 miRNAs, 1 miscRNA, and 

1 vault RNA were annotated ± 1 Mb around the windows that MIX-GWAS declared 

to contain SNPs significantly associated with any of 19 microbial traits at the 

genome-wide level (Table 7.S2). After a detailed exploration of the annotated genes 

functions, 44 candidate genes located on 6 OCCs were proposed to explain the 

phenotypic variation of 11 microbial traits (Table 7.6).   

 

On OCC 1, genes related to the pyruvate metabolism (DLAT), collagen degradation 

(MMP1, MMP3, MMP7, MMP8, MMP10, MMP12, MMP13, and MMP20), and the 

immune system (IL18, BIRC2, BIRC3, and RACK1) were annotated within the 

chromosomal interval 103.53-120.31 Mb (windows 99-114, Table 7.6). MIX-GWAS 

declared that 62 variants within this interval are significantly associated with an OTU 

belonging to order Clostridiales (NR1794, Table 7.5).  
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Nine variants within the chromosomal interval 193.23-194.21 Mb (window 185), also 

located on OCC 1, were declared to be significantly associated with the phenotypic 

variation of an OTU belonging to family Clostridiaceae (524842, Table 7.5). Genes 

related to the immune system were annotated within this interval (FOLS1 and 

MS4A2, Table 7.6).  

 

On OCC 3, genes related to fatty acid degradation (CSF2) and the immune system 

(CSF2, IL4, IL5, and IL13) were annotated within the chromosomal interval 193.23-

194.21 Mb (window 364, Table 7.6). MIX-GWAS declared that this chromosomal 

interval contains eleven variants significantly associated with an OTU belonging to 

genus Ruminococcus (NR2745, Table 7.5). Fifty-one variants located on OCC 3 

(42.56-45.56 Mb, windows 392-394) were declared to be significantly associated 

with the phenotypic variation of another OTU also belonging to genus 

Ruminococcus (NR2269, Table 7.5). Genes annotated within this interval are 

related to the activation of gamma aminobutyric acid (GABA) receptors (GABRA1, 

GABRA6, GABRB2, GABRG2).  

 

On OCC 6, three variants within the interval 25.49-56.49 Mb (window 639) were 

significantly associated with the variation of three different microbial traits (PC2, 

phylum Actinobacteria, and OTU 578960 taxonomically assigned to family 

Lachnospiraceae, Table 7.5). Genes related to the immune system (CCL24), 

metabolism (MDH2, GPC2, SIK1, SIK1B, and POR), GABA receptors (GNB2), and 

homeostasis (SLC12A9 and EPO) were annotated within this chromosomal interval 

(Table 7.6).  

 

On OCC 8, within the interval 109.91-110.89 Mb (window 907), four variants were 

significantly associated with the variation of OTU NR3356 belonging to family 

Ruminococcaceae. Within the same chromosomal interval, two variants were 

associated with OTU 346794 belonging to order Clostridiales (Table 7.5). The tumor 

necrosis factor ligand superfamily member 13B protein coding gene (TNFSF13B) 

related to immune functions was annotated within this chromosomal interval.  
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On OCC 15, genes related to the pyruvate metabolism (ADH4, ADH5, and ADH6), 

were annotated within the chromosomal interval 49.45-50.45Mb (window 1619, 

Table 7.6). Within this interval, the MIX-GWAS declared the existence of two 

variants significantly associated with an OTU belonging to genus Butyricimonas 

(124470, Table 7.5).  

 

Finally, on OCC 19, eighteen variants within the interval 52.01-54.00 Mb (windows 

1944-1945) were significantly associated with the variation of an OTU taxonomically 

assigned to family Ruminococcaceae (NR1121, Table 7.5). Genes related to lipid 

homeostasis (ABCA5, ABCA6, and ABCA9), activation of GABA receptors (KCNJ2 

and KCNJ16), and signaling (MAP2K6) were annotated within this chromosomal 

interval (Table 7.6). 

 

7.5. Discussion 

The present study provides the first mGWAS conducted in a rabbit population using 

a highly dense SNP array for a set of microbial traits representative of the cecal 

microbiota at different levels of depth. In addition, our study is accompanied by a 

simulation assessment that has allowed us to get an overview of the statistical 

power of our dataset to identify the positions on the genome and effects of the SNPs 

associated with the variation of the microbial traits studied. 

 

Recent studies in humans (Goodrich et al., 2014; Davenport et al., 2015; Rothschild 

et al., 2018), mice (Campbell et al., 2012), chickens (Wen et al., 2021), or pigs 

(Cheng et al., 2018; Bergamaschi et al., 2020; Ramayo-Caldas et al., 2020) 

suggested that the gut microbial composition and diversity is partially heritable. Our 

recent study in rabbits also suggested that some microbial taxa are under host 

genetic control (Velasco-Galilea et al., 2021b). Despite all these studies point out to 

low heritability of the overall gut microbiota, the fact that some microbial taxa seem 

to be under a clear host genetic control has motivated the investigation of 

microbiome-host genome associations through mGWAS. This kind of analysis has 

attempted to not only identify heritable taxa but also to find the host genetic variants 

that underlie such heritability, with the final aim of, for example, conducting a 
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genomic or marked assisted selection aiming to breed animals with an optimal gut 

microbial composition regarding the traits of interest. 

 

In this study, we have applied two alternative approaches to identify host genomic 

regions and propose candidate genes associated with rabbit cecal microbiome: 

MIX-GWAS and BayesC. The first approach tests each marker for association with 

the phenotype of interest, whereas the Bayesian GWAS simultaneously fits all 

markers; being able to account for most of the genetic variance (Fernando and 

Garrick, 2013). Before applying and comparing both methodologies we challenged 

ourselves with the following question: how powerful are our data to accurately detect 

a QTL region containing a SNP responsible for the variation of a microbial trait? 

 

Our simulation assessment has allowed us to test the ability of both approaches to 

detect a set of simulated QTNs spread across the genome with different effects on 

a simulated microbial phenotype normally distributed. We found that both methods 

only declared three of the twenty windows containing a QTN as QTL regions in the 

maximum heritability scenario. The average power of detection of the MIX-GWAS 

was slightly better and overcame that of BayesC by 12%. The statistical power to 

detect associations between SNP variants and a phenotype largely depends on the 

experimental sample size or the distribution of effect sizes of causal genetic variants 

that are segregating in the population (Visscher et al., 2017). Therefore, the low 

detection power of both approaches is not surprising given our limited sample size 

and confirmed that we will only be able to detect strong signals for QTNs responsible 

for an important part of the variation of our microbial phenotypes. In addition, in the 

MIX-GWAS case, we confirmed strongly up-biased estimates of the SNPs effects 

with the simulation performed. The inflated estimates of QTL effect sizes were also 

expected since this issue has already been reported in the literature (Göring et al., 

2001). This issue is probably due to the Beavis effect (Beavis, 1994), which is a 

well-known phenomenon by which overestimated QTL effect sizes tend to reach 

statistical significance. Its main consequence is that we can expect an upward bias 

in the estimated effects of the QTNs declared by the MIX-GWAS approach. 
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But to what extent can we expect that our signals detected will be FPs or real QTNs 

with inflated effects? Our simulation study has shed some light on the severity of 

this matter. The MIX-GWAS returned a larger number of FPs than BayesC. 

However, the Bayesian approach detected a lower number of windows containing 

a simulated QTN (i.e., this method is associated with a larger number of FNs). 

Indeed, as indicated above, both methods presented low sensitivity rates since 

repeatedly declared as QTLs only those windows containing SNPs with relatively 

large effect sizes. Thus, although a QTL with a small effect is present in our 

population, it will be rarely detected with our limited sample size. 

 

In summary, for our purpose, both approaches have their own advantages and 

weaknesses. The MIX-GWAS presents a greater capacity to effectively declare true 

associations between SNP variants and the trait of interest than BayesC. 

Nevertheless, the probability that a QTL region declared by the Bayesian approach 

really contains a SNP variant associated with the phenotype is greater. Therefore, 

a BayesC signal will be more reliable than one declared by the MIX-GWAS. 

However, with this latter we expect to catch more real variants but also false signals 

even if a multiple testing correction at the genome-wide level is applied. Hence 

further biological analysis of the QTL regions declared by any GWAS approach is 

fundamental to discriminate FPs from true associations and identify candidate 

genes associated with the phenotypic variation of the traits of interest. 

 

From this point, we will proceed to discuss the results obtained by the mGWAS 

conducted on the real genotypes and microbial traits. The Bayesian approaches did 

not return any significant association. We want to highlight a very important point 

that has not been mentioned in the discussion, and it is the fact that the litter and 

cage effects were not adjusted with the MIX-GWAS. Not including such effects 

implies ignoring the existing data covariance between records belonging to animals 

of the same litter or cage. Adequately considering such covariance means 

recognizing that our data will be less informative than other datasets including all 

animals from different litters and cages. This covariance structure has been properly 

modeled with BayesC but not with MIX-GWAS, which may have important 

consequences on reaching statistical significance. 
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Conversely, the MIX-GWAS revealed more than 300 variants spread across 10 

OCCs associated at genome-wide level with 19 microbial traits. Before discussing 

these genetic variants, we have to highlight that multiple testing correction has been 

applied accounting for the number of tested SNPs, but not by the number of tested 

traits. That is not strictly speaking a proper correction since it should have been 

applied to the number of tested hypotheses (i.e., the number of tested SNPs x the 

number of tested microbial traits). We should like to add here that we calculated the 

effective number of independent tests by principal components decomposition of 

the whole dataset including the centered and scaled microbial traits, and 355 

independent traits were suggested to explain the 98% of the whole microbial 

variation. Thus, the suggestive genome-wide significance was set at 1.41 x 10-4 

(0.05/355). After this strict correction, only six variants located on OCC 12 were 

declared as significantly associated with the variation of OTU 124470 (genus 

Butyricimonas). Velasco-Galilea et al. (2021b, see Chapter six of the present thesis) 

reported substantial evidence of genetic control for this trait. Given the lower 

frequency of presence of this OTU in the rabbits’ cecum (this trait was only detected 

in 20% of the animals), it was better adjusted with a ZIP model and its heritability 

estimate was 0.26. Therefore, we hypothesized that a variant in this chromosome 

could favor the presence of genus Butyricimonas in the rabbit cecum. We have, 

however, deliberately limited the correction at the genome-wide level within the trait 

to allow greater signal detection. We are aware that an important number of these 

300 variants and their estimated effects could be spurious and up-biased. However, 

we consider it highly relevant to analyze their biological foundations and propose 

several candidate genes. These candidates may be confirmed in the future if the 

same variants are consistently reported by other GWAS in different populations. 

 

Given the current state of the art, the diversity and composition of gut microbial 

communities are predominantly shaped by external factors. The overall genetic 

determinism is low, except for certain microbial taxa whose variation is associated 

with different regions spread across the host genome. In this regard, we previously 

observed substantial evidence of a non-null heritability (Velasco-Galilea et al., 

2021b, see Chapter six of this thesis) for three traits that the MIX-GWAS has 

declared to be associated with certain genomic regions. It is particularly relevant to 
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highlight the above-mentioned OTU 124470, whose heritability estimate was 0.26, 

which seems to be associated with different variants spread across regions located 

on OCCs 1, 12, and 15. Similarly, the heritability estimates for PC2 and OTU 346974 

(order Clostridiales) were 0.20 and 0.23, respectively, and seem to be associated 

with genomic regions on OCC 6 and OCC 8, respectively. It is, however, equally 

important to note that no previous evidence of genetic determinism was reported for 

the remaining 16 microbial traits for which the MIX-GWAS declared to be associated 

with different genomic regions. We interpret this lack of consistency as a piece of 

evidence pointing to many of the signals detected by the MIX-GWAS are FPs. 

 

Despite a growing number of studies in humans and livestock having started to 

conduct mGWAS to pinpoint the host genomic regions that may be involved in the 

determination of microbial diversity and composition, all of them are very 

underpowered (Davenport et al., 2015). Consequently, most findings do not reach 

statistical significance after multiple testing correction. Rothschild et al. (2018) 

demonstrated that there is almost no overlap between the QTL regions reported in 

different studies, even when allowing associations with different microbial taxa to be 

considered as an overlap. It is, however, worth mentioning that different mGWAS 

signals reported in this and previous studies are close to host genes involved in 

immune-related, signaling and metabolic pathways (Benson et al., 2010; Goodrich 

et al., 2014; Leamy et al., 2014; Blekhman et al., 2015; Davenport et al., 2015; Org 

et al., 2015; Cheng et al., 2018; Crespo-Piazuelo et al., 2019; Bergamaschi et al., 

2020). Genes involved in these pathways deserve a particular focus since 

microorganisms inhabiting the mammals’ gut confers benefits to the host regarding 

digestion of complex polysaccharides or preventing the growth of pathogens (Flint 

et al., 2012). Similarly, the host immune response could modulate the microbial 

composition to keep a proper homeostatic balance (Belkaid and Hand, 2014). 

 

As an overall point to address, we can indicate that all mGWAS approaches will 

require several orders of magnitude larger sample sizes to confidently declare 

underpin variants. It goes without saying that independent mGWAS in different 

populations will be crucial to discriminate between FPs and signals which are 

biologically meaningful. 
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7.6. Conclusions 

The simulation assessment has revealed that the sample size and structure of our 

dataset are underpowered to confidently identify host genomic regions linked to the 

variation of rabbit cecal microbiota through mGWAS. Despite such limited statistical 

power, we have been able to identify some QTL regions spread across ten 

chromosomes that, of course, prudently, can be declared as associated with the 

variation of rabbit cecal microbiota. Remarkably, we have proposed genes involved 

in homeostatic, metabolic, or immune system processes as candidates for the 

variation of different microbial traits. Our results lay an important foundation for 

future mGWAS, which will hopefully be conducted with larger sample sizes in other 

populations, to validate these genes and their underlying biological role. 

 

7.7. List of abbreviations 

AL   ad libitum 

CSS  cumulative sum scaling 

FDR  false discovery rate 

FN  false negative 

FP  false positive 

GIT  gastrointestinal tract 

GWAS genome-wide association study 

LD  linkage disequilibrium  

MAF  minor allele frequency 

mGWAS microbial genome-wide association study 

NPV  negative predictive value 

OTU  operational taxonomic unit 

QTL  quantitative trait loci 

QTN   quantitative trait nucleotide 

OCC  Oryctolagus cuniculus chromosome 

PC  principal component 

PCR  polymerase chain reaction 

PPV  positive predictive value 
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R  restricted 

SNP  single nucleotide polymorphism 

TN  true negative 

TP  true positive 

WPPA window posterior probability of association 

ZIP  zero-inflated Poisson 
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The steady global population growth experienced in recent decades has resulted in 

the apparition of a new challenge for the livestock industry: to meet the increased 

demand for animal protein. This challenge implies searching for efficient methods 

to produce more food while using fewer inputs and minimizing environmental 

impact. Feed efficiency (FE) is a crucial phenotype for the meat rabbit industry since 

food expenses can represent up to 70% of the total costs (Cartuche et al., 2014). 

Therefore, a reduction of feeding costs is key to optimizing FE and reducing the 

environmental impact. In recent years, large efforts have been made to improve the 

ratio between the kilograms of feed consumed and the kilograms of weight gain in 

the current European intensive production systems through farm management, 

nutrition, and genetics selection (Gidenne et al., 2017). Given the difficulties of 

individually measuring feed intake (FI) of rabbits raised in groups, breeding 

programs have traditionally improved FE through indirect selection for growth rate 

or body weight at slaughter (Estany et al., 1992), which are highly heritable 

phenotypes moderately correlated with direct measures of FE that can easily be 

measured individually. 

 

The identification of new traits related to individual animal variation in FE, together 

with the understanding of its underlying biological processes, could help in 

improving this complex phenotype in rabbits. In this respect, the present thesis has 

aimed at exploring the effect of host genetics and different environmental factors on 

rabbit gut microbiota as a potential new phenotype affecting growth and FE 

performances. The main results obtained in the previous chapters will be discussed 

in this section, highlighting the contribution of gut microbiota to rabbit FE and the 

potential of this new phenotype to be included in a selection index. 

 

The rabbit gastrointestinal tract (GIT) harbors a complex ecosystem of 

microorganisms whose members are constantly interacting between them and the 

immediate environment (Gouet and Fonty, 1979). Thus, the presence of different 

bacterial and archaeal species is conditioned by these interactions and the 

physicochemical conditions of the environment that force their adaptation (Whipps 

et al., 1988). The starting point was the characterization of microbial communities 

present in the cecum and hard feces of the meat rabbit population studied in the 
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present thesis (Chapter three). The assessment of bacterial and archaeal 

populations by means of 16S rRNA gene amplicons in an Illumina MiSeq platform 

revealed that the rabbit cecum, as well as expelled hard feces, are dominated by 

three bacterial phyla: Firmicutes (76%), Tenericutes (8%), and Bacteroidetes (7%, 

Velasco-Galilea et al., 2018). This finding is in agreement with previous studies that 

also reported an overwhelming presence of phylum Firmicutes in the cecum 

microbiome of growing meat rabbits (Massip et al., 2012; Combes et al., 2017; 

Monteils et al., 2008). It is noteworthy that our study, for the first time, reported the 

presence of phylum Tenericutes in the rabbit gut. A plausible explanation for the 

absence of this phylum in previous research is that it encompasses class Mollicutes, 

which was previously classified within phylum Firmicutes (Brown et al., 2007). 

Subsequent studies have also reported these bacteria phyla in different sections of 

the GIT in rabbits (Cotozzolo et al., 2020; Hu et al., 2021). Kingdom Archaea is also 

present in cecum and hard feces, but in a very low percentage (0.61‰) and limited 

to genus Methanobrevibacter. The low prevalence of methanogenic archaea can be 

explained by an acidic pH that hinders their growth (Mi et al., 2018). 

 

The most recent research confirms that the cecum, which is the main organ for 

microbial fermentation, is the richest and most diverse section along the GIT 

(Cotozzolo et al., 2020; Hu et al., 2021). No significant differences in microbial 

richness and diversity were found between the cecum and hard feces in our study. 

However, univariate and multivariate analytical approaches revealed compositional 

differences in the relative abundance of an important number of taxa, even at the 

phylum level, between sampling origins. These differences suggest different 

requirements for the types of microbial communities that need to be present in each 

part. For instance, a higher presence of genera Blautia or Akkermansia in cecal 

samples is explained by their implication in the degradation of glucose and 

carbohydrates or immune protection against inflammatory processes, respectively. 

Whereas an overrepresentation of genera Oscillospira and Coprococcus in the hard 

feces would explain their active participation in fermentation at the end of the feed 

digestion process. Therefore, it is necessary to carefully consider the existence of 

these differences when deciding the area of the GIT to be sampled according to the 

objectives and possibilities of each study.  
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Once the microbial communities inhabiting the meat rabbit cecum were 

taxonomically identified, the next step was to study the influence of environmental 

and host-associated factors on their composition and diversity. Microbial 

colonization is considered to begin at birth when the animal passes through the birth 

canal and enters in contact with the immediate environment (Berg, 1996). From this 

moment on, a gradual and organized colonization by different species takes place 

until stability of the ecosystem is reached at 70 days of age in rabbits (Combes et 

al., 2011). Despite this stability reached in adulthood, previous studies provided 

undeniable evidence of external factors, such as diet, hygiene conditions, or the 

administration of antimicrobials, shaping the composition and diversity of rabbit 

cecal microbial communities at different extents (Abecia et al., 2007; Zou et al., 

2016; Zhu et al., 2017; Chen et al., 2019). 

 

The experimental design of the dataset employed for the research work of the 

present thesis motivated the study of potential changes in diversity and composition 

of rabbit cecal microbial communities exerted by the breeding farm, the level of 

feeding, and the administration of antibiotics (Chapter four). The different 

approaches applied to evaluate the impact of these factors revealed a large effect 

of the farm environment offered to the rabbits during their growth on microbial 

diversity and composition at all taxonomic levels analyzed. Such strong impact was 

confirmed by significant differences found between breeding farms in the relative 

abundances of almost all phyla and genera. Moreover, the exclusive presence of 

genera Campylobacter and Desulfovibrio in the semi-open-air facility, both 

belonging to phylum Proteobacteria and encompassing different pathogenic species 

responsible for infections and diarrheas in mammals, suggested signs of a possible 

dysbiosis in these animals. These bacteria could be considered biomarkers of a 

potential GIT dysbiosis, highlighting the importance of offering a close and controlled 

breeding environment to ensure adequate animal growth and intestinal health. 

 

Despite the results of this study did not point to overall modifications of the cecal 

microbial diversity by the level of feeding or the administration of antibiotics, these 

factors can impact the relative abundances of certain microorganisms. Particularly, 

and in accordance with a previous study in rabbits (Kylie et al., 2018), the animals 
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that did not receive antibiotics showed higher abundances of taxa belonging to 

phylum Bacteroidetes. On the other hand, the administration of antibiotics led to an 

increase of genus Coprococcus. Such bacterium was also found to be 

overrepresented in a previous study in which Rex rabbits received different 

molecules of antibiotics (Zou et al., 2016). Therefore, the administration of 

antibiotics could modulate the abundance of some Coprococcus species and offer 

intestinal protection. 

 

Regarding feed restriction, which is a management strategy commonly applied in 

commercial facilities to prevent the onset of intestinal disorders, we found that a 

prevalence of Methanobrevibacter species may be a positive indicator of a healthy 

gut microbiota since restricted animals showed an overrepresentation of this genus. 

Furthermore, a lower prevalence of methanogenic archaea in the cecum of animals 

raised in the semi-open-air facility could be explained by a high presence of sulfate-

reducing bacteria like Desulfovibrio that outcompete with methanogens for 

hydrogen consumption. This competition could favor the production of hydrogen 

sulfide, compromising the rabbits’ intestinal health. This is a good example of how 

an external factor can increase or decrease the prevalence of specific species and 

lead to a dysbiosis or, by contrast, to a microbial composition potentially beneficial 

for the health status of the animal. 

 

The relationship between gut microbiota and complex phenotypes, mainly related 

to health, has been deeply explored in humans (Cho and Blaser, 2012; Clemente et 

al., 2012; Henry et al., 2021). The field of livestock production is still developing its 

knowledge of the interplay between the gut microbiome and host performance. 

Some studies in other monogastric species (i.e., pigs and chickens) have reported 

an association between growth and specific microbial taxa as well as alpha-diversity 

indexes (Lu et al., 2018; Siegerstetter et al., 2017). In rabbits, fewer studies have 

attempted to characterize the association of cecal microbiota with growth (Zeng et 

al., 2015; Fang et al., 2020) and FE (Drouilhet et al., 2016) performances.  

 

In this regard, some studies have started to explore the contribution of microbial 

composition to the phenotypic variances of complex traits (i.e., microbiability) as well 
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as the predictive power of the overall microbial profile in different livestock species 

(Camarinha-Silva et al., 2017; Maltecca et al., 2018; Difford et al., 2018; Delgado et 

al., 2019; Vollmar et al., 2020). The literature on the role and the phenotypic 

predictive power of microbial information for growth and FE performances in rabbits 

is virtually non-existent. Chapter five of the present thesis has aimed to address this 

gap of knowledge. 

 

In this study, we reported heritabilities and microbiabilities for average daily gain 

(ADG) under different feeding regimes and cage-average traits related to FI and FE. 

Moreover, original approaches based on the traditional animal mixed model and 

alternative definitions of expansion of the microbial relationship matrix were 

proposed to deal with cage-average records and the fact that cecal microbial 

information was only available in a few animals within a cage. In line with previous 

estimates for rabbit ADG under different feeding regimes, we found a lower 

heritability for ADG under restriction (Piles and Sánchez, 2019). However, a large 

proportion of the phenotypic variance of both growth traits was attributed to the 

bacterial effect and including microbial information significantly increased the model 

predictive ability, especially for ADG under restriction. This result suggests that this 

trait is more strongly influenced by gut microbiota than ADG of animals fed ad 

libitum. 

 

Similarly, large microbiability estimates associated with reduced heritabilities were 

found for cage-average phenotypes related to FI and FE. Our modeling approaches 

exhibited moderate predictive abilities for these phenotypes, which significantly 

improved with the inclusion of microbial information when the expansion of the 

microbial relationship matrix for animals without such information was based on the 

identity matrix. Therefore, an important take-home message is that large 

microbiability estimates must be interpreted with caution since they are not always 

translated into improvements in the predictive capacity of the models. 

 

All in all, results presented in Chapter five led us to conclude that a certain degree 

of association exists between the rabbit cecal microbiota and host genotype since 

a large proportion of the phenotypic variance accompanied by a sharp reduction of 
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the heritability was found for growth, FI and traits related to FE when microbial 

information was accounted in the models. In addition, a large proportion of 

microorganisms seems to be responsible for the prediction improvement observed 

in growth and FE traits, suggesting a polibacterial role of cecal microbiota in these 

complex phenotypes. Selective breeding for operational taxonomic units (OTUs) 

associated with FE phenotypes could only be considered as an additional tool to 

promote the presence of certain microorganisms in the gut of a rabbit populations if 

those relevant OTUs are under genetic control. In this connection, the further 

evaluation of the genetic determinism of the OTUs most relevant for the prediction 

of growth and FE traits revealed that about one third of them would be under host 

genetic control (Table 8.1). 

 

Table 8.1| Mean (standard deviation) of heritability estimates for the most relevant 

OTUs for the prediction of individual traits (ADGAL and ADGR) and cage-average 

traits (ADFI̅̅ ̅̅ ̅̅ ̅
AL, ADRFI̅̅ ̅̅ ̅̅ ̅̅ ̅

AL and ADFCR̅̅ ̅̅ ̅̅ ̅̅ ̅
AL) declared to be under genetic control. 

OTU ID and taxonomical assignment Trait h2 

NR768 Unclassified Bacteria ADFCR̅̅ ̅̅ ̅̅ ̅̅ ̅
AL 0.16 (0.10) 

NR2626 Unclassified Bacteria 
ADFCR̅̅ ̅̅ ̅̅ ̅̅ ̅

AL 

ADRFI̅̅ ̅̅ ̅̅ ̅̅ ̅
AL 

0.27 (0.16) 

988375 Genus Butyricimonas 
ADRFI̅̅ ̅̅ ̅̅ ̅̅ ̅

AL 

ADFCR̅̅ ̅̅ ̅̅ ̅̅ ̅
AL 

0.25 (0.19) 

NR570 Unclassified Acidaminococcaceae ADFCR̅̅ ̅̅ ̅̅ ̅̅ ̅
AL 0.19 (0.10) 

356011 Genus Ruminococcus 
ADGR 

ADFI̅̅ ̅̅ ̅̅ ̅
AL 

0.23 (0.17) 

NR3985 Unclassified Bacteria ADRFI̅̅ ̅̅ ̅̅ ̅̅ ̅
AL 0.21 (0.14) 

332732 Genus Bacteroides ADFI̅̅ ̅̅ ̅̅ ̅
AL 0.22 (0.14) 

NR4624 Genus Butyricicoccus 

ADGR 

ADFI̅̅ ̅̅ ̅̅ ̅
AL 

ADGAL 

0.25 (0.16) 

798164 Unclassified Firmicutes ADRFI̅̅ ̅̅ ̅̅ ̅̅ ̅
AL 0.23 (0.13) 

NR2377 Unclassified Bacteria ADRFI̅̅ ̅̅ ̅̅ ̅̅ ̅
AL 0.25 (0.17) 
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NR669 Genus Methanobrevibacter 
ADGR 
ADGAL 

0.17 (0.11) 

NR2465 Genus Coprobacter ADFCR̅̅ ̅̅ ̅̅ ̅̅ ̅
AL 0.18 (0.13) 

NR733 Genus Paramuribaculum ADRFI̅̅ ̅̅ ̅̅ ̅̅ ̅
AL 0.18 (0.12) 

339013 Genus Bacteroides ADGR 0.26 (0.16) 

849440 Genus Methanobrevibacter 
ADGR 
ADGAL 

0.25 (0.14) 

NR2019 Genus Neglecta ADFI̅̅ ̅̅ ̅̅ ̅
AL 0.21 (0.13) 

1110378 Unclassified Ruminococcaceae ADFCR̅̅ ̅̅ ̅̅ ̅̅ ̅
AL 0.19 (0.12) 

NR2545 Genus Neglecta ADFI̅̅ ̅̅ ̅̅ ̅
AL 0.22 (0.15) 

NR3011 Unclassified Bacteria ADGAL 0.21 (0.16) 

4299126 Unclassified Alphaproteobacteria 
ADFI̅̅ ̅̅ ̅̅ ̅

AL 

ADRFI̅̅ ̅̅ ̅̅ ̅̅ ̅
AL 

0.23 (0.14) 

581388 Unclassified Bacteria ADGAL 0.16 (0.10) 

297503 Unclassified Bacteria ADGAL 0.26 (0.17) 

ADGAL: average daily gain in rabbits fed ad libitum; ADGR: average daily gain in rabbits fed under restriction; 

ADFI̅̅ ̅̅ ̅̅ ̅
AL: average daily feed intake in rabbits fed ad libitum; ADRFI̅̅ ̅̅ ̅̅ ̅̅ ̅

AL: average daily residual feed intake in rabbits 

fed ad libitum; ADFCR̅̅ ̅̅ ̅̅ ̅̅ ̅
AL: average daily feed conversion ratio in rabbits fed ad libitum. 

 

While the influence of external factors on mammals’ gut microbiota is undeniable, 

the existence of a host genetic background responsible for gut microbial variations 

is still a source of debate. Chapters six and seven of the present thesis have aimed 

to shed light on this matter. In Chapter six, Bayesian linear and zero-inflated Poisson 

(ZIP) mixed models were used to assess through Bayes factor (BF) the statistical 

relevance of host genetics, litter, and cage effects for a set of microbial traits 

representative of the cecal microbiota at different levels of depth. All the microbial 

traits analyzed were better adjusted with a linear mixed model except those OTUs 

whose frequency of presence across samples was lower than 15%. Therefore, the 

ZIP model only overcame the linear mixed model for the adjustment of traits with a 

very marked excess of zeros. 

 

The findings of this study revealed different levels of influence of host genetics, litter, 

and cage effects on global cecal microbial composition and an important proportion 

of OTUs and genera relative abundances. In line with the existing literature in 
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humans and cattle (Goodrich et al., 2014; Li et al., 2019), our study evidenced 

genetic control for 34% and 16% of the genera and OTUs inhabiting the rabbit 

cecum, respectively. The heritability estimates for such traits were moderate, 

ranging from 0.12 to 0.40, strongly suggesting a genetic control of the rabbit cecal 

microbiota. Such affirmation can be further corroborated by the clear genetic 

determinism observed for global microbial traits (number of observed OTUs and one 

principal component), which is also in line with previous heritability assessments of 

alpha-diversity in humans (Goodrich et al., 2016), pigs (Lu et al., 2018; Bergamaschi 

et al., 2020), and cattle (Saborío-Montero et al., 2021). 

 

Contrary to previous studies that suggested bacteria encompassed by phylum 

Firmicutes are the most heritable (Goodrich et al., 2016; Li et al., 2019), the 

strongest evidence of genetic determinism was found for two OTUs taxonomically 

assigned to genera Bacteroides and Parabacteroides (phylum Bacteroidetes) 

present in the cecum of the rabbit population analyzed. This evidence of genetic 

control was supported by the fact that the greatest heritability estimates at the genus 

level were found for these two genera (h2 Parabacteroides = 0.35; h2 Bacteroides = 

0.29), which are involved in the degradation of vegetal polysaccharides and amino 

acid fermentation, amino acid transport, and cell motility in the gastrointestinal 

microbiota of the growing rabbit (Dai et al., 2011; Sun et al., 2020). It is worth 

mentioning that the nursing environment also seems to exert an important influence 

on members belonging to these two genera. The impact of the nursing environment, 

evaluated as the litter effect, on the relative abundances of genera Bacteroides and 

Parabacteroides still prevails at the slaughter age when cecal samples were 

collected. 

 

Within Firmicutes, the predominant phylum of rabbit cecum microbiome, our results 

also provided strong evidence of genetic determinism for genera Dehalobacterium 

(h2 = 0.29) and Butyricimonas (h2 = 0.27), which had been previously reported as 

heritable in humans (Goodrich et al., 2014; Goodrich et al., 2016). Nevertheless, the 

environmental effect of litter also seems to have a profound impact on the relative 

abundances of both genera (l2 Dehalobacterium = 0.37; l2 Butyricimonas = 0.28). 
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Finally, the cage seems to play an important effect in the relative abundance of 

members of family S24-7 and genus Ruminococcus.  

 

The findings presented in Chapter six support that host genetics, cage, and nursing 

environment contribute to the variation of rabbit cecal microbial composition. 

Regarding the number of traits influenced by such factors, the nursing environment 

would have a significant effect on a higher number of traits (231 microbial traits) 

than host genetics (169 microbial traits) and cage (147 microbial traits). The next 

and final step consisted of an attempt to identify the genomic regions and candidate 

genes involved in the variation of rabbit cecal microbiota using genome-wide 

association studies (GWAS). 

 

In Chapter seven, we have presented the results of the first microbial GWAS 

(mGWAS) conducted using two alternative approaches (i.e., MIX-GWAS and 

BayesC) in a rabbit population using a highly dense SNP array for a set of microbial 

traits representative of the cecal microbiota at different levels of depth. Moreover, 

our study was accompanied by a simulation assessment that allowed us to get an 

overview of the statistical power of our dataset to identify the positions on the 

genome and effects of the SNPs associated with the variation of the microbial traits 

analyzed. Unfortunately, with this simulation, we confirmed the limited power of both 

approaches to detect QTL regions given our data structure and limited sample size. 

Therefore, we could only expect to capture strong signals related to QTNs 

responsible for an important part of the variation of our microbial phenotypes. The 

probability of capturing a signal corresponding to a real QTN is higher with the MIX-

GWAS. However, the rate of false positive signals is also higher with this approach. 

On the contrary, the detection power of BayesC is lower, but the probability that a 

QTL region declared by this approach really contains a SNP variant associated with 

the phenotype is greater. This underlines the necessity to perform further biological 

analyses of the QTL regions declared by any GWAS approach that helps to 

discriminate false positives from true associations and identify candidate genes 

associated with the phenotypic variation of the traits of interest. 
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A growing number of studies have attempted to identify genomic regions controlling 

microbial composition through GWAS on relatively small populations in humans, 

mice, or pigs (Benson et al., 2010; Goodrich et al., 2014; Leamy et al., 2014; 

Blekhman et al., 2015; Davenport et al., 2015; Org et al., 2015; Cheng et al., 2018; 

Crespo-Piazuelo et al., 2019; Bergamaschi et al., 2020). The limited sample sizes 

employed in such studies translated into a lack of statistical significance after 

multiple testing correction. Thus, these studies tended to be less strict in these 

corrections to allow for some signal detection (e.g., most mGWAS applied 

chromosome-wide multiple testing correction instead of genome-wide). The final 

consequence of this loose significance threshold definition is that, even though QTL 

regions and candidate genes have been proposed, there is almost no overlap 

between them (Rothschild et al., 2018). Therefore, it confirms the necessity of 

several orders of magnitude larger sample sizes to confidently declare QTLs regions 

with mGWAS. 

 

In our study, the MIX-GWAS declared more than 300 variants spread across ten 

chromosomes associated with 19 microbial traits at the genome-wide level. After a 

more stringent correction by the effective number of independent tests, only six 

variants located on chromosome 12 were declared as significantly associated with 

the variation of an OTU taxonomically assigned to genus Butyricimonas. 

Interestingly, the Bayes factor declared substantial evidence of genetic control for 

this trait (Chapter six), and its heritability estimate was 0.26. Butyricimonas is a 

butyrate-producing bacteria with anti-inflammatory properties that help maintain a 

healthy gut (Yang et al., 2017). Butyrate is a major source of energy for cells that 

cover the epithelial surface of the large intestine (Honda and Littman, 2012), which 

suggests that a variant on chromosome 12 could favor the presence of genus 

Butyricimonas in the rabbit cecum that will help restore the epithelial barrier in times 

of challenge and inflammation (Hamilton et al., 2015). 

 

The other variants associated with different microbial traits were less powerful, so 

we prudently propose several QTL regions on different chromosomes involved in 

the host genetic control of the rabbit cecal microbiota. These regions include genes 

involved in homeostatic, metabolic, or immune system processes that will deserve 
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special attention in future studies that need to be conducted in independent 

populations with larger sample sizes. 

 

The studies included in the present thesis have characterized, as rigorously as 

possible, the influence of meat rabbit cecal microbiota on the host’s feed efficiency 

and unraveled the environmental and genetic bases of composition and diversity of 

microbial communities inhabiting the rabbit cecum. Nevertheless, to increase the 

sample size of studies, design well-balanced experiments, standardize the analyses 

protocols, and improve the quality of datasets are imperative necessities to unravel 

and establish causal relationships among the holobiont system (host-gut microbiota-

environment). In Figure 8.1, the direct effect of G on P (α) determines the proportion 

of phenotypic variability attributable to the host (heritability). The effect of G on M 

(β) determines what can then be interpreted as the heritable portion of M. The joint 

effect of G on M and P represent the genetic correlation between the microbiome 

composition and the phenotype. The effect of M on P (γ) determines the 

microbiability. Finally, the effect of E on P (εp) and the effect of E on M (εm) can be 

considered external effects such as management and diet, respectively. 

 

 

Figure 8.1| Graphic picturing the potential interplay between the host genotype (G), the gut microbiome (M), 
the environmental components (Ep and Em), and the phenotype (P) in an animal breeding context (Maltecca et 
al., 2019). 
 

Future multivariate models that allow considering host-gut microbiota-environment 

relationships as a whole are paramount to inference causality and globally interpret 

the contribution of microbiota and host genetics to complex phenotypes related to 

FE. On the other hand, in the light of recent results and ours, understanding this 

interplay seems more relevant from a biological knowledge perspective than from a 

practical breeding point of view. Moreover, selecting for FE through microbiota might 

be risky since negative responses could consequently be obtained for other traits of 
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interest. In addition, direct selection for the phenotype of interest somehow 

guarantees a balanced modification of all the elements involved in its metabolic 

pathway, being the gut microbiota one of them that might be affected.  

 

8.1. List of abbreviations 

ADG  average daily gain 

BF  Bayes factor 

FE  feed efficiency 

FI  feed intake 

GIT  gastrointestinal tract 

GWAS genome-wide association study 

mGWAS microbial genome-wide association study 

OTU  operational taxonomic unit 

ZIP  zero-inflated Poisson 
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I. The assessment of bacterial and archaeal populations inhabiting the meat 

rabbit cecum and expelled hard feces through 16S rRNA gene amplicon 

sequencing revealed a predominant presence of phylum Firmicutes, followed 

by phyla Tenericutes and Bacteroidetes, accounting these three bacterial 

phyla for 90% of the total microbial composition. Acidic pH could hinder the 

growth of archaeal species whose presence was one order of magnitude 

lower than Bacteria and limited to the genus Methanobrevibacter. 

 

II. Although no significant differences in microbial richness and diversity were 

found between the cecum and hard feces, univariate and multivariate 

analytical approaches revealed compositional differences in the relative 

abundance of a large number of taxa, even at the phylum level. These 

findings suggest different functional requirements for the specific microbial 

communities that need to be present in each section of the rabbit 

gastrointestinal tract. 

 

III. The stability of cecal microbial communities reached in adulthood is shaped, 

at different extents, by the breeding farm and commonly applied 

management practices. Different analytical approaches determined that the 

farm environment offered to the growing rabbits exerts the largest impact on 

their cecal microbial diversity and composition. The exclusive presence of 

potentially pathogenic Campylobacter and Desulfovibrio species in the facility 

most exposed to changes in climate conditions is a prospective biomarker for 

the risk of future gastrointestinal dysbiosis outbreaks. 

 

IV. The high prevalence of Methanobrevibacter species in the cecum of rabbits 

submitted to feed restriction can be interpreted as an indicator of good 

intestinal health since it is a management strategy commonly applied in 

commercial farms as an alternative to antimicrobials given its proven 

preventive effectiveness against the onset of intestinal disorders. Further 

research is needed to confirm this finding, but it supports the hypothesis that 

the benefits of applying feed restriction may be due to changes in gut 

microbial composition and activity. 
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V. Original approaches based on the traditional animal mixed model and 

alternative definitions and expansions of the microbial relationship matrix 

have been proposed to deal with cage-average feed intake records and the 

lack of microbial information for most animals within cages. Such approaches 

have enabled to determining that a large proportion of the phenotypic 

variance of complex traits related to growth and feed efficiency is attributable 

to microbial effect. Furthermore, sharp reductions of the heritability observed 

for all traits when including the microbial effect in the model hint at the 

existence of some degree of association between the rabbit cecal microbiota 

and the host genotype. 

 

VI. The inclusion of microbial information through certain microbial relationship 

matrixes significantly increased the capacity of the models to predict animal 

performances. A polibacterial role of cecal microbiota in these complex traits 

is suggested by the large proportion of microorganisms that seem to be 

responsible for these predictive improvements. Nevertheless, the 

interpretation of microbiability must be taken with care since large estimates 

are not always translated into improvements in the predictive ability of the 

models. 

 

VII. The statistical relevance of host genetics on microbial traits representative of 

rabbit cecal microbiota, assessed through the Bayes factor, confirmed an 

overall genetic determinism. Particularly, clear genetic control was evidenced 

for approximately one-fifth of the operational taxonomic units and one-third 

of the genera present in the rabbit cecum. Moderate heritabilities, ranging 

from 0.12 to 0.40, were estimated for these traits and the most heritable taxa 

belong to genera Bacteroides, Parabacteroides, Dehalobacterium, and 

Butyricimonas. Additionally, a profound impact of the nursing environment 

was also found on the relative abundances of the latter two genera. However, 

members of family S24-7 and genus Ruminococcus are highly influenced by 

cage effects. 
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VIII. Simulation assessment has revealed a very limited power of our data, given 

its structure and limited sample size, to detect quantitative trait loci regions 

responsible for the variation of rabbit cecal microbiota through genome-wide 

association studies. Only strong signals related to variants responsible for an 

important variation of the microbial trait are expected to be captured. 

Furthermore, biological analyses of the regions declared to be associated 

with the phenotype of interest by this approach are mandatory to discriminate 

between false positives and true associations. 

 

IX. Despite the mentioned limitations of our data, the MIX-GWAS approach 

declared more than 300 variants, spread across ten Oryctolagus cuniculus 

chromosomes, associated with 19 microbial traits at the genome-wide level. 

The annotation of the regions containing these variants led us to carefully 

propose 44 candidate genes involved in homeostatic, metabolic, and immune 

system processes. Future research, desirably conducted with larger sample 

sizes in independent populations, will be needed to confirm these candidates 

proposed to explain the variation of the meat rabbit cecal microbiota. 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 



 
Annexes 

385 

Supplementary material of chapter 3 

Table 3.S1| Summary of metadata and OTU tables. 

Rabbit ID 
Feeding 

regime 
Origin 

Number initial 

sequences 

Number final 

sequences 

OTU 

number 

113061 Ad libitum Cecum 189,825 66,886 458 

113061 Ad libitum Feces 159,674 58,402 471 

113101 Ad libitum Cecum 173,618 58,805 517 

113101 Ad libitum Feces 120,847 41,672 507 

113064 Restricted Cecum 65 274 22,024 459 

113064 Restricted Feces 110,027 38,949 482 

113087 Restricted Cecum 119,866 38,489 514 

113087 Restricted Feces 189,836 68,080 523 

115804 Restricted Cecum 89,808 30,558 451 

115804 Restricted Feces 110,928 38,186 462 

115231 Restricted Cecum 80,883 25,563 411 

115231 Restricted Feces 157,615 41,635 422 

115263 Restricted Cecum 62 ,14 20,347 414 

115263 Restricted Feces 79,270 28,610 433 

113210 Restricted Cecum 54,571 16,415 462 

113210 Restricted Feces 73,208 25,905 482 

115040 Ad libitum Cecum 125,282 42,774 485 

115040 Ad libitum Feces 143,182 50,473 482 

115776 Restricted Cecum 62,347 22,035 445 

115776 Restricted Feces 113,805 32,274 469 

113133 Ad libitum Cecum 79,711 24,641 417 

113133 Ad libitum Feces 106,305 31,062 424 

113150 Ad libitum Cecum 91,105 28,390 500 

113150 Ad libitum Feces 85,920 27,021 489 

115240 Restricted Cecum 91,364 22,548 468 

115240 Restricted Feces 65,777 23,168 469 

115162 Restricted Cecum 192,857 60,444 507 

115162 Restricted Feces 78,863 24,470 485 

115124 Ad libitum Cecum 159,913 49,757 488 

115124 Ad libitum Feces 98,913 32,880 486 

115279 Ad libitum Cecum 195,975 60,580 498 

115279 Ad libitum Feces 156,229 50,705 510 

115280 Ad libitum Cecum 174,784 56,390 506 

115280 Ad libitum Feces 148,880 47,751 523 

115379 Ad libitum Cecum 240,333 66,847 532 

115379 Ad libitum Feces 201,265 57,850 541 

113238 Ad libitum Cecum 217,076 67,179 532 

113238 Ad libitum Feces 186,912 60,045 526 

113115 Restricted Cecum 156,466 43,654 479 

113115 Restricted Feces 117,032 40,182 487 

113198 Restricted Cecum 102,019 29,623 525 

113198 Restricted Feces 106,587 34,351 519 
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Table 3.S2| OTUs differentially represented between fecal and cecal samples 

(PFDR < 0.05). 
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Supplementary material 3.S3| Representative sequences of the 10 OTUs most 

differentially represented between fecal and cecal samples. 

 

>NR57  

GTGTCAGCCGCCGCGGTAATACGTAGGGAGCGAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGTGT

AGGCGGGACTGTAAGTCAGATGTGAAATGTAGGGGCTCAACCCCTGCCCTGCATTTGAAACTGTAGTTCT

TGAGTGAAGTAGAGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACATCA

GTGGCGAAGGCGGCTTACTGGGCTTTTACTGACGCTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATT

AGATACCCTGGTAGTCCACGCTGTAAACGATGATCACTAGGTGTGGGGGGACTGACCCCTTCCGTGCCG

CAGTTAACACAATAAGTGATCCACCTGGGGAGTACGGCCGCAAGGCTGAAACTCAAAGAAATTGACGG  

 

>NR60 

GTGTCAGCAGCCGCGGTAATACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTA

GGTGGCGGTGCAAGTCAGAAGTGAAATGCCGGGGCTCAACCCCGGAGCTGCTTTTGTAACTGCACAGCT

GGAGTGCAGGAGGGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCG

GTGGCGAAGGCGGCTTACTGGACTGTAACTGACACTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATT

AGATACCCTGGTAGTCCACGCCGTAAACGATGAATACTAGGTGTCGGGGAGCATCAGCTCTTCGGTGCC

GCAGCCAACGCAATAAGTATTCCACCTGGGGAGTACGTTCGCAAGAATGAAACTCAAATGAATTGGCGG  

 

>581388 

GTGTCAGCAGCCGCGGTAATACGGGGGGTGCAAGCGTTGTCCGGAATCATTGGGCGTAAAGCGTTCGT

AGGCGGCATGCCAAGTCTGGTGTTAAATCCCGGGGCTCAACTCCGGTCAAGCATTGGATACTGGTAAGC

TAGAATGTGGTAGAGGTTAAGGGAATTCCTGGTGTAGCGGTGAAATGCGTAGATATCAGGAGGAACACC

GGTGGCGTAAGCGCTTAACTGGGCCATAATTGACGCTGAGGAACGAAAGCCGGGGTAGCAAATGGGATT

AGATACCCCAGTAGTCCCGGCTGTAAACGATGGATACTAGGTGTTGCGGGTATCGACCCCTGCAGTGCC

GCAGCCAACGCGATAAGTATCCCGCCTGGGGAGTACGCACGCAAGTGTGAAACTCAAAGAAATTGACGG  

 

>NR28  

GTGTCAGCAGCCGCGGTAATACGTAGGGAGCGAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGCGT

AGGCGGGGTTGCAAGTCAGATGTGAAAAGTAGGGGCTTAACCCCTGAACTGCATTTGAAACTGTAATTCT

TGAGTGAAGTAGAGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACATCA

GTGGCGAAGGCGGCTTACTGGGCTTTAACTGACGCTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATT

AGATACCCTGGTAGTCCACGCTGTAAACGATGATCACTAGGTGTGGGGGGATAAGGACCCTTCCGTGCC

GCAGTTAACACAATAAGTGATCCACCTGGGGAGTACGGTCGCAAGGCTGAAACTCAAATAAATTGACGG  

 

>550894  

GTGTCAGCAGCCGCGGTAATACGGGGGGTGCAAGCGTTGTCCGGAATCATTGGGCGTAAAGCGTTCGT

AGGCGGCATGCCAAGTCTGGTGTTAAATCCCGGGGCTCAACTCCGGTCAAGCATTGGATACTGGTAAGC

TAGAATGTGGTAGAGGTTAAGGGAATTCCTGGTGTAGCGGTGAAATGCGTAGATATCAGGAGGAACACC

GGTGGCGTAAGCGCTTAACTGGGCCATAATTGACGCTGAGGAACGAAAGCCGGGGTAGCAAATGGGATT

AGATACCCCAGTAGTCCCGGCTGTAAACGATGGATACTAGGTGTTGCGGGTATCGACCCCTGCAGTGCC

GCAGCCAACGCGATAAGTATCCCGCCTGGGGAGTACGCACGCAAGTGTGAAACTCAAATAAATTGACGG  
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>NR12  

GTGTCAGCAGCCGCGGTAATACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAATGGGAGCGCA

GGCGGCGATGCAAGCCAGAAGTGAAAACCCGGGGCCCAACCCCGCGGATTGCTTTTGGAACTGTGTTG

CTGGAGTGCAGGAGAGGCAAGCGGAATTCCTGGTGTAGCGGTGAAATGCGTAGATATCAGGAGGAACA

CCGGTGGTGAAGGCGGCTTGCTGGACTGTAACTGACGCTGAGGCTCGAAAGCGTGGGGAGCAAACAGG

ATTAGATACCCTGGTAGTCCACGCGGTAAACGATGAATACTAGGTGTCGGTGTGCAAAGCGCATCGGTG

CCGCAGCTAACGCAGTAAGTATTCCACCTGGGGAGTACGTTCGCAAGAATGAAACTCAAATAAATTGACG

G  

 

>589410 

GTGTCAGCAGCCGCGGTAATACGGGGGGTGCAAGCGTTGTCCGGAATCATTGGGCGTAAAGCGTTCGT

AGGCGGTATGTCAAGTCTGGTGTTAAATCCCGGGGCTTAACTCCGGTCCAGCATTGGATACTGGCAAACT

AGAATGTGGTAGAGGTAAAGGGAATTCCTGGTGTAGCGGTGAAATGCGTAGATATCAGGAGGAACACCG

GTGGCGTAAGCGCTTTACTGGGCCATAATTGACGCTGAGGAACGAAAGCCGGGGGAGCAAATGGGATTA

GATACCCCAGTAGTCCCGGCCGTAAACGATGGATACTAGGTGTTGCGGGTATCGACCCCTGCAGTGCCG

CAGCCAACGCGATAAGTATCCCGCCTGGGGAGTACGCACGCAAGTGTGAAACTCAAAGAAATTGACGG  

 

>542830 

GTGTCAGCAGCCGCGGTAATACGGGGGGTGCAAGCGTTGTCCGGAATCATTGGGCGTAAAGCGTTCGT

AGGCGGCATGCCAAGTCTGGTGTTAAATCCCGGGGCTCAACTCCGGTCAAGCATTGGATACTGGTAAGC

TAGAATGTGGTAGAGGTTAAGGGAATTCCTGGTGTAGCGGTGAAATGCGTAGATATCAGGAGGAACACC

GGTGGCGTAAGCGCTTAACTGGGCCATAATTGACGCTGAGGAACGAAAGCCGGGGTAGCAAATGGGATT

AGATCCCCCAGTAGTCCCGGCTGTAAACGATGGATACTAGGTGTTGCGGGTATCGACCCCTGCAGTGCC

GCAGCCAACGCGATAAGTATCCCGCCTGGGGAGTACGCACGCAAGTGTGAAACTCAAATAAATTGGCGG  

 

>NR411  

GTGCCAGCAGCCGCGGTAATACGAAGGGTGCGAGCGTTGTTCGGAATTACTGGGCGTAAAGGGTGAGT

AGGCGGTTTAGTAAGATAGCGGTGAAATGCCAGAGCTTAACTTTGGAATTGCCGTTATAACTATTAAGCTA

GAGTGACAGAGAGGATATTGGAATACCCAGTGTAGAGGTGAAATTCGTAGATATTGGGTAGAACACCGGT

GGCGAAGGCGAGTATCTGGCTGTAGACTGACGCTGAGGCACGAAAGCATGGGGATCAAACAGGATTAG

ATACCCTGGTAGTCCATGCTGTAAACGATGAATGCTAGTTGTTGGTAGGGATCAGTGACGAAGCAAACGC

GATAAGCATTCCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAAATAAATTGACGG  

 

>197832 

GTGTCAGCAGCCGCGGTAATACGTATGGTGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGTGCGTA

GGTGGTGAGACAAGTCTGAAGTGAAAATCCGGGGCTCAACCCCGGAACTGCTTTGGAAACTGCCTGACT

GGAGTACAGGAGAGGTAAGTGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCA

GTGGCGAAGGCGACTTACTGGACTGTAACTGACACTGAGGCACGAAAGCGTGGGGAGCAAACAGGATTA

GATACCCTGGTAGTCCACGCCGTAAACGATGAATACTAGGTGTCGGGGCCCAAAGGGCTTCGGTGCCGC

AGCAAACGCAATAAGTATTCCACCTGGGGAGTACGTTCGCAAGAATGAAACTCAAAGAAATTGACGG 
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Supplementary material of chapter 4 

Additional file 4.1| Metadata associated with the 425 rabbit cecal samples 

analyzed in this study. Open access file available in: 

<https://static-content.springer.com/esm/art%3A10.1186%2Fs42523-020-00059-

z/MediaObjects/42523_2020_59_MOESM1_ESM.txt> 

 

Additional file 4.2| Prefiltered and unnormalized OTU table used for statistical 

analyses in this study. Open access file available in: 

<https://static-content.springer.com/esm/art%3A10.1186%2Fs42523-020-00059-

z/MediaObjects/42523_2020_59_MOESM2_ESM.txt> 

 

Additional file 4.3| Filtered and CSS-normalized OTU table used for statistical 

analyses in this study. Open access file available in: 

<https://static-content.springer.com/esm/art%3A10.1186%2Fs42523-020-00059-

z/MediaObjects/42523_2020_59_MOESM3_ESM.txt> 

 

Additional file 4.4| Taxonomic assignments for all OTUs in Additional file 4.2. 

Open access file available in: 

<https://static-content.springer.com/esm/art%3A10.1186%2Fs42523-020-00059-

z/MediaObjects/42523_2020_59_MOESM4_ESM.txt> 

 

Additional file 4.5| Relative abundances phyla table built from the collapse of the 

filtered and CSS-normalized OTU table at phylum level. Open access file available 

in: 

<https://static-content.springer.com/esm/art%3A10.1186%2Fs42523-020-00059-

z/MediaObjects/42523_2020_59_MOESM5_ESM.txt> 

 

Additional file 4.6| Relative abundances genera table built from the collapse of the 

filtered and CSS-normalized OTU table at genus level. Open access file available 

in: 

<https://static-content.springer.com/esm/art%3A10.1186%2Fs42523-020-00059-

z/MediaObjects/42523_2020_59_MOESM6_ESM.txt> 

https://static-content.springer.com/esm/art%3A10.1186%2Fs42523-020-00059-z/MediaObjects/42523_2020_59_MOESM1_ESM.txt
https://static-content.springer.com/esm/art%3A10.1186%2Fs42523-020-00059-z/MediaObjects/42523_2020_59_MOESM1_ESM.txt
https://static-content.springer.com/esm/art%3A10.1186%2Fs42523-020-00059-z/MediaObjects/42523_2020_59_MOESM2_ESM.txt
https://static-content.springer.com/esm/art%3A10.1186%2Fs42523-020-00059-z/MediaObjects/42523_2020_59_MOESM2_ESM.txt
https://static-content.springer.com/esm/art%3A10.1186%2Fs42523-020-00059-z/MediaObjects/42523_2020_59_MOESM3_ESM.txt
https://static-content.springer.com/esm/art%3A10.1186%2Fs42523-020-00059-z/MediaObjects/42523_2020_59_MOESM3_ESM.txt
https://static-content.springer.com/esm/art%3A10.1186%2Fs42523-020-00059-z/MediaObjects/42523_2020_59_MOESM4_ESM.txt
https://static-content.springer.com/esm/art%3A10.1186%2Fs42523-020-00059-z/MediaObjects/42523_2020_59_MOESM4_ESM.txt
https://static-content.springer.com/esm/art%3A10.1186%2Fs42523-020-00059-z/MediaObjects/42523_2020_59_MOESM5_ESM.txt
https://static-content.springer.com/esm/art%3A10.1186%2Fs42523-020-00059-z/MediaObjects/42523_2020_59_MOESM5_ESM.txt
https://static-content.springer.com/esm/art%3A10.1186%2Fs42523-020-00059-z/MediaObjects/42523_2020_59_MOESM6_ESM.txt
https://static-content.springer.com/esm/art%3A10.1186%2Fs42523-020-00059-z/MediaObjects/42523_2020_59_MOESM6_ESM.txt
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Additional file 4.7: Table 4.S1| OTUs differentially represented between farms. 

Open access file available in: 

<https://static-content.springer.com/esm/art%3A10.1186%2Fs42523-020-00059-

z/MediaObjects/42523_2020_59_MOESM7_ESM.xlsx> 

 

 

Additional file 4.8: Table 4.S2| OTUs differentially represented between feeding 

regimes within farms. Open access file available in: 

<https://static-content.springer.com/esm/art%3A10.1186%2Fs42523-020-00059-

z/MediaObjects/42523_2020_59_MOESM8_ESM.xlsx> 

 

 

Additional file 4.9: Table 4.S3| OTUs differentially represented between the 

presence and the absence of antibiotics in the feed within farm B. Open access file 

available in: 

<https://static-content.springer.com/esm/art%3A10.1186%2Fs42523-020-00059-

z/MediaObjects/42523_2020_59_MOESM9_ESM.xlsx> 

 

 

 

Supplementary material of chapter 5 

Additional file 5.1| Metadata associated with the 425 rabbit cecal samples 

analyzed in this study. Open access file available in: 

<https://assets.researchsquare.com/files/rs-

441480/v2/81c124f00fef556f3e406320.txt> 

 

Additional file 5.2| Filtered and CSS-normalized OTU table used for statistical 

analyses in this study. Open access file available in: 

<https://assets.researchsquare.com/files/rs-

441480/v2/f309430619736a45512248e4.txt> 

 

https://static-content.springer.com/esm/art%3A10.1186%2Fs42523-020-00059-z/MediaObjects/42523_2020_59_MOESM7_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1186%2Fs42523-020-00059-z/MediaObjects/42523_2020_59_MOESM7_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1186%2Fs42523-020-00059-z/MediaObjects/42523_2020_59_MOESM8_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1186%2Fs42523-020-00059-z/MediaObjects/42523_2020_59_MOESM8_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1186%2Fs42523-020-00059-z/MediaObjects/42523_2020_59_MOESM9_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1186%2Fs42523-020-00059-z/MediaObjects/42523_2020_59_MOESM9_ESM.xlsx
https://assets.researchsquare.com/files/rs-441480/v2/81c124f00fef556f3e406320.txt
https://assets.researchsquare.com/files/rs-441480/v2/81c124f00fef556f3e406320.txt
https://assets.researchsquare.com/files/rs-441480/v2/f309430619736a45512248e4.txt
https://assets.researchsquare.com/files/rs-441480/v2/f309430619736a45512248e4.txt


 
Genetic determinism of meat rabbit cecal microbiota and its role in the host's feed efficiency  

396 

Additional file 5.3| Taxonomic assignments for all OTUs in Additional file 5.2. 

Open access file available in: 

<https://assets.researchsquare.com/files/rs-

441480/v2/a1652edb8b43b05687e633a3.txt> 

 

Additional file 5.4| Trace plots and histograms of Markov chains from the posterior 

distribution of the parameters of Bayesian models. Open access file available in: 

<https://assets.researchsquare.com/files/rs-

441480/v2/65b733c3435e47d6a382835b.rar> 

 

Additional file 5.5| Representative sequences of the OTUs selected in the sPLSR 

analysis for ADRFI̅̅ ̅̅ ̅̅ ̅̅ ̅
AL. Open access file available in: 

<https://assets.researchsquare.com/files/rs-

441480/v2/7d9ff4471e5f333b41caa905.txt> 

 

Additional file 5.6: Table 5.S1| Relevant OTUs for the prediction of individual traits 

(ADGAL and ADGR) and cage-average traits (ADFI̅̅ ̅̅ ̅̅ ̅
AL, ADRFI̅̅ ̅̅ ̅̅ ̅̅ ̅

AL and ADFCRI̅̅ ̅̅ ̅̅ ̅̅ ̅̅
AL). Open 

access file available in: 

<https://assets.researchsquare.com/files/rs-

441480/v2/c32a6505951c3f305e5c12e7.docx> 

 

Additional file 5.7| Representative sequences of the OTUs relevant OTUs for the 

prediction of individual traits (ADGAL and ADGR) and cage-average traits (ADFI̅̅ ̅̅ ̅̅ ̅
AL, 

ADRFI̅̅ ̅̅ ̅̅ ̅̅ ̅
AL and ADFCRI̅̅ ̅̅ ̅̅ ̅̅ ̅̅

AL) in Additional file 5.6. Open access file available in: 

<https://assets.researchsquare.com/files/rs-

441480/v2/31214be05c28cbb66d9bca89.txt> 

 

 

 

 

 

 

 

https://assets.researchsquare.com/files/rs-441480/v2/a1652edb8b43b05687e633a3.txt
https://assets.researchsquare.com/files/rs-441480/v2/a1652edb8b43b05687e633a3.txt
https://assets.researchsquare.com/files/rs-441480/v2/65b733c3435e47d6a382835b.rar
https://assets.researchsquare.com/files/rs-441480/v2/65b733c3435e47d6a382835b.rar
https://assets.researchsquare.com/files/rs-441480/v2/7d9ff4471e5f333b41caa905.txt
https://assets.researchsquare.com/files/rs-441480/v2/7d9ff4471e5f333b41caa905.txt
https://assets.researchsquare.com/files/rs-441480/v2/c32a6505951c3f305e5c12e7.docx
https://assets.researchsquare.com/files/rs-441480/v2/c32a6505951c3f305e5c12e7.docx
https://assets.researchsquare.com/files/rs-441480/v2/31214be05c28cbb66d9bca89.txt
https://assets.researchsquare.com/files/rs-441480/v2/31214be05c28cbb66d9bca89.txt


 
Annexes 

397 

Supplementary material of chapter 6 

Additional file 6.1| Metadata associated with the 425 rabbit cecal samples 

analyzed in this study. Open access file available in: 

<https://assets.researchsquare.com/files/rs-

441480/v2/81c124f00fef556f3e406320.txt> 

 

Additional file 6.2| Filtered and CSS-normalized OTU table. Open access file 

available in: 

<https://assets.researchsquare.com/files/rs-

441480/v2/f309430619736a45512248e4.txt> 

 

Additional file 6.3| Taxonomic assignment of representative sequences of each 

OTU in Additional file 6.2. Open access file available in: 

<https://assets.researchsquare.com/files/rs-

441480/v2/a1652edb8b43b05687e633a3.txt> 

 

Additional file 6.4: Table 6.S1| Bayes factors, marginal posterior means and 

standard deviations of heritability for OTUs under genetic control together with the 

associated probability of these estimates being greater than 0.10.  

 

Adjusted with the ZIP model 

 

 

 

 

 

 

 

 

OTU ID Mean h
2

Standard deviation h
2

P(h
2 

> 0.1) Bayes factor
1

Frequency of presence (%) Kingdom Phylum Class Order Family Genus Species

278912 0.24 0.18 0.76 3.21 11 Bacteria Bacteroidetes Bacteroidia Bacteroidales S24-7

356011 0.23 0.17 0.74 3.30 7 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus

339336 0.24 0.17 0.74 3.43 6 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU4438 0.24 0.18 0.75 3.49 6 Bacteria Bacteroidetes Bacteroidia Bacteroidales S24-7

190844 0.25 0.18 0.76 3.50 11 Bacteria Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae

New.ReferenceOTU3820 0.25 0.18 0.76 3.67 6 Bacteria Firmicutes Clostridia Clostridiales

278675 0.25 0.18 0.76 4.19 10 Bacteria Bacteroidetes Bacteroidia Bacteroidales S24-7

1517779 0.28 0.19 0.79 4.88 16 Bacteria Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae

New.ReferenceOTU1306 0.12 0.10 0.47 7.45 22 Bacteria Bacteroidetes Bacteroidia Bacteroidales S24-7

124470 0.26 0.18 0.79 7.81 20 Bacteria Bacteroidetes Bacteroidia Bacteroidales Odoribacteraceae Butyricimonas

1105984 0.18 0.15 0.65 11.37 7 Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides
1
Bayes factor of the model with additive genetic effects against the same model without additive genetic effects.

https://assets.researchsquare.com/files/rs-441480/v2/81c124f00fef556f3e406320.txt
https://assets.researchsquare.com/files/rs-441480/v2/81c124f00fef556f3e406320.txt
https://assets.researchsquare.com/files/rs-441480/v2/f309430619736a45512248e4.txt
https://assets.researchsquare.com/files/rs-441480/v2/f309430619736a45512248e4.txt
https://assets.researchsquare.com/files/rs-441480/v2/a1652edb8b43b05687e633a3.txt
https://assets.researchsquare.com/files/rs-441480/v2/a1652edb8b43b05687e633a3.txt
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Adjusted with the LMM model 

 

OTU ID Mean h
2

Standard deviation h
2

P(h
2 

> 0.1) Bayes factor
1

Frequency of presence (%) Kingdom Phylum Class Order Family Genus Species

New.ReferenceOTU501 0.16 0.11 0.65 3.23 42 Unassigned

New.ReferenceOTU2836 0.16 0.11 0.66 3.25 85 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU782 0.18 0.12 0.69 3.26 53 Unassigned

204542 0.21 0.15 0.72 3.26 22 Bacteria Firmicutes Clostridia Clostridiales

361679 0.19 0.14 0.71 3.28 60 Bacteria Firmicutes Clostridia Clostridiales

351253 0.19 0.13 0.70 3.28 89 Bacteria Firmicutes Clostridia Clostridiales

207713 0.17 0.12 0.66 3.37 66 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU1282 0.19 0.13 0.71 3.37 48 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia

291090 0.21 0.15 0.74 3.43 60 Bacteria Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Parabacteroides distasonis

New.ReferenceOTU1848 0.19 0.13 0.71 3.51 97 Unassigned

New.ReferenceOTU4284 0.19 0.14 0.70 3.54 83 Bacteria Firmicutes Clostridia Clostridiales

349892 0.16 0.11 0.66 3.54 84 Bacteria Tenericutes Mollicutes RF39

New.ReferenceOTU2040 0.15 0.10 0.64 3.58 78 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae

352533 0.18 0.12 0.71 3.59 51 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU1251 0.15 0.09 0.64 3.60 53 Bacteria Firmicutes Clostridia Clostridiales

328083 0.20 0.14 0.71 3.64 98 Bacteria Firmicutes Clostridia Clostridiales Clostridiaceae Clostridium

192364 0.20 0.14 0.73 3.67 53 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae

New.ReferenceOTU3211 0.19 0.13 0.72 3.69 88 Unassigned

New.ReferenceOTU3011 0.21 0.16 0.72 3.70 46 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU696 0.16 0.10 0.66 3.71 90 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU3003 0.13 0.08 0.59 3.76 92 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae

New.ReferenceOTU1474 0.15 0.09 0.64 3.79 75 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia

New.ReferenceOTU1727 0.18 0.12 0.71 3.80 97 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia

New.ReferenceOTU4513 0.21 0.14 0.74 3.81 56 Bacteria Verrucomicrobia Verrucomicrobiae Verrucomicrobiales Verrucomicrobiaceae Akkermansia

New.ReferenceOTU2138 0.18 0.13 0.70 3.82 94 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae

577562 0.20 0.14 0.72 3.89 94 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU2476 0.16 0.11 0.66 3.92 46 Bacteria Tenericutes Mollicutes RF39

New.ReferenceOTU733 0.18 0.12 0.69 3.97 64 Bacteria Bacteroidetes Bacteroidia Bacteroidales S24-7

449833 0.19 0.13 0.72 4.03 72 Bacteria Bacteroidetes Bacteroidia Bacteroidales S24-7

988375 0.25 0.19 0.74 4.04 60 Bacteria Bacteroidetes Bacteroidia Bacteroidales Odoribacteraceae Butyricimonas

New.ReferenceOTU2545 0.22 0.15 0.77 4.05 60 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus

New.ReferenceOTU1309 0.22 0.14 0.76 4.10 39 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia

New.ReferenceOTU3985 0.21 0.14 0.73 4.12 55 Unassigned

New.ReferenceOTU146 0.23 0.15 0.78 4.13 43 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU4073 0.23 0.16 0.75 4.16 69 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU2650 0.18 0.12 0.72 4.17 44 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae

348602 0.21 0.14 0.74 4.18 44 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU2932 0.18 0.11 0.71 4.27 24 Bacteria Firmicutes Clostridia Clostridiales

720944 0.17 0.11 0.70 4.28 72 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Oscillospira

New.ReferenceOTU2465 0.18 0.13 0.68 4.36 54 Bacteria Bacteroidetes Bacteroidia Bacteroidales Barnesiellaceae

New.ReferenceOTU1405 0.21 0.14 0.75 4.40 25 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae

New.ReferenceOTU3430 0.20 0.13 0.74 4.43 31 Bacteria Firmicutes Clostridia Clostridiales

332732 0.22 0.14 0.76 4.52 66 Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides

New.ReferenceOTU606 0.22 0.15 0.76 4.53 65 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Oscillospira

1110378 0.19 0.12 0.73 4.59 93 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Oscillospira

874627 0.18 0.12 0.72 4.60 80 Bacteria Tenericutes Mollicutes RF39

New.ReferenceOTU1396 0.18 0.11 0.71 4.70 91 Unassigned

New.ReferenceOTU768 0.16 0.10 0.67 4.71 79 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU4565 0.20 0.13 0.76 4.72 84 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae

New.ReferenceOTU3530 0.24 0.15 0.79 4.78 70 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU1836 0.22 0.14 0.78 4.84 53 Bacteria Firmicutes Clostridia Clostridiales Mogibacteriaceae

105659 0.19 0.12 0.74 4.97 85 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae

569030 0.23 0.16 0.74 4.98 49 Bacteria Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae Rikenella

New.ReferenceOTU3424 0.16 0.10 0.67 4.99 68 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Epulopiscium

589277 0.14 0.11 0.57 5.03 37 Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides

New.ReferenceOTU2377 0.25 0.17 0.80 5.15 96 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU4593 0.23 0.16 0.75 5.21 25 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU4338 0.23 0.16 0.75 5.29 48 Bacteria Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae Rikenella

575041 0.23 0.16 0.77 5.30 74 Bacteria Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae

New.ReferenceOTU370 0.22 0.14 0.77 5.34 98 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU4624 0.25 0.16 0.80 5.37 33 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae

New.ReferenceOTU2439 0.20 0.13 0.76 5.44 94 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae

New.ReferenceOTU331 0.18 0.11 0.71 5.45 55 Bacteria Proteobacteria Alphaproteobacteria

New.ReferenceOTU4158 0.21 0.15 0.72 5.46 30 Bacteria Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae Rikenella

New.ReferenceOTU2607 0.19 0.12 0.74 5.54 93 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae

New.ReferenceOTU3465 0.23 0.14 0.78 5.56 47 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU2285 0.20 0.12 0.75 5.61 61 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae

533198 0.20 0.13 0.76 5.63 94 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae Oxalobacter

New.ReferenceOTU669 0.17 0.11 0.70 5.74 43 Archaea Euryarchaeota Methanobacteria Methanobacteriales Methanobacteriaceae Methanobrevibacter

208479 0.28 0.19 0.79 5.75 57 Bacteria Bacteroidetes Bacteroidia Bacteroidales Odoribacteraceae Butyricimonas

New.ReferenceOTU1425 0.20 0.12 0.76 5.76 99 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae

New.ReferenceOTU4299 0.21 0.13 0.76 5.76 75 Bacteria Firmicutes Clostridia Clostridiales

581388 0.16 0.10 0.69 5.77 91 Bacteria Cyanobacteria 4C0d-2 YS2

New.ReferenceOTU2816 0.18 0.11 0.72 5.77 83 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU1951 0.20 0.12 0.76 5.80 75 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU4080 0.18 0.11 0.72 5.86 85 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae

New.ReferenceOTU761 0.23 0.15 0.79 5.91 50 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus

New.ReferenceOTU3591 0.21 0.15 0.72 5.95 63 Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides

449353 0.25 0.17 0.78 6.08 51 Bacteria Firmicutes Clostridia Clostridiales Dehalobacteriaceae Dehalobacterium

New.ReferenceOTU2222 0.23 0.15 0.79 6.28 54 Unassigned

157017 0.19 0.12 0.75 6.29 49 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU1618 0.24 0.16 0.76 6.36 20 Unassigned

New.ReferenceOTU2019 0.21 0.13 0.77 6.54 81 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus

351272 0.21 0.14 0.74 6.57 75 Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides

524318 0.20 0.13 0.73 6.63 32 Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides

New.ReferenceOTU1639 0.17 0.11 0.71 6.71 22 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae

216710 0.21 0.13 0.77 6.81 98 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae

New.ReferenceOTU3176 0.29 0.18 0.83 6.89 92 Unassigned

297503 0.26 0.17 0.80 6.94 79 Bacteria Firmicutes Clostridia Clostridiales

288379 0.27 0.16 0.83 6.97 62 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU381 0.30 0.19 0.84 7.03 52 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae

556126 0.21 0.14 0.74 7.13 66 Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides

New.ReferenceOTU465 0.25 0.15 0.82 7.16 75 Bacteria Firmicutes Erysipelotrichi Erysipelotrichales Erysipelotrichaceae

364179 0.26 0.17 0.80 7.33 84 Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides

New.ReferenceOTU181 0.30 0.19 0.84 7.41 52 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU2839 0.24 0.15 0.81 7.48 65 Bacteria Proteobacteria Deltaproteobacteria Desulfovibrionales Desulfovibrionaceae

342182 0.24 0.15 0.81 7.52 60 Bacteria Firmicutes Clostridia Clostridiales

4299126 0.23 0.14 0.80 7.56 34 Bacteria Proteobacteria Alphaproteobacteria RF32

New.ReferenceOTU719 0.21 0.13 0.79 7.65 62 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU1081 0.23 0.14 0.81 7.97 43 Unassigned

New.ReferenceOTU1033 0.17 0.10 0.73 8.09 81 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia

293097 0.18 0.11 0.76 8.38 70 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU447 0.21 0.13 0.80 8.62 60 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU1725 0.20 0.12 0.78 8.94 64 Bacteria Tenericutes Mollicutes RF39

New.ReferenceOTU2626 0.27 0.16 0.84 8.98 56 Unassigned

New.ReferenceOTU1922 0.18 0.11 0.76 9.16 77 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae

351231 0.26 0.17 0.81 9.57 31 Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides fragilis

234488 0.26 0.17 0.81 9.62 49 Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides

New.ReferenceOTU4137 0.23 0.14 0.81 10.05 35 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU2893 0.26 0.15 0.84 10.14 96 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU4373 0.32 0.20 0.85 10.20 61 Unassigned

New.ReferenceOTU2585 0.21 0.12 0.80 11.57 92 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae

New.ReferenceOTU1611 0.27 0.16 0.82 11.62 20 Unassigned

New.ReferenceOTU3833 0.25 0.14 0.85 11.73 91 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae

339013 0.26 0.16 0.84 12.44 63 Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides

208769 0.23 0.13 0.83 12.56 100 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae

New.ReferenceOTU787 0.24 0.13 0.84 12.63 61 Bacteria Proteobacteria Alphaproteobacteria RF32

New.ReferenceOTU1514 0.23 0.13 0.84 14.27 90 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus

849440 0.25 0.14 0.85 14.79 63 Archaea Euryarchaeota Methanobacteria Methanobacteriales Methanobacteriaceae Methanobrevibacter

New.ReferenceOTU3868 0.21 0.11 0.81 15.33 96 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae

346794 0.23 0.12 0.84 16.61 80 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU369 0.31 0.18 0.89 16.67 66 Bacteria Proteobacteria Deltaproteobacteria Desulfovibrionales Desulfovibrionaceae Desulfovibrio

New.ReferenceOTU3327 0.24 0.13 0.85 16.97 28 Bacteria Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae

New.ReferenceOTU1353 0.26 0.14 0.86 17.80 67 Unassigned

New.ReferenceOTU3047 0.26 0.14 0.86 17.82 63 Bacteria Bacteroidetes Bacteroidia Bacteroidales S24-7

New.ReferenceOTU3335 0.25 0.14 0.87 19.11 66 Bacteria Firmicutes Erysipelotrichi Erysipelotrichales Erysipelotrichaceae

798164 0.23 0.13 0.84 19.83 73 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU570 0.19 0.10 0.77 21.33 41 Bacteria Firmicutes Clostridia Clostridiales Veillonellaceae Phascolarctobacterium

385545 0.24 0.13 0.86 22.63 39 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU866 0.24 0.12 0.88 23.55 91 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU1234 0.39 0.20 0.93 25.84 80 Bacteria Firmicutes Clostridia Clostridiales

334383 0.22 0.11 0.82 26.21 16 Bacteria Firmicutes Clostridia Clostridiales Veillonellaceae Phascolarctobacterium

585989 0.21 0.10 0.82 27.62 17 Bacteria Firmicutes Clostridia Clostridiales Veillonellaceae Phascolarctobacterium

New.ReferenceOTU2680 0.33 0.17 0.91 27.88 74 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae

New.ReferenceOTU3143 0.24 0.12 0.88 28.65 71 Bacteria Firmicutes Clostridia Clostridiales

305608 0.24 0.11 0.87 42.21 16 Bacteria Firmicutes Clostridia Clostridiales Veillonellaceae Phascolarctobacterium

New.ReferenceOTU1774 0.35 0.17 0.94 42.42 83 Unassigned

New.ReferenceOTU1188 0.27 0.13 0.90 51.88 33 Unassigned

953855 0.34 0.16 0.94 56.02 99 Bacteria Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae

New.ReferenceOTU1150 0.40 0.18 0.95 56.93 68 Bacteria Proteobacteria Deltaproteobacteria Desulfovibrionales Desulfovibrionaceae

349809 0.32 0.13 0.94 94.09 29 Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides eggerthii

851323 0.22 0.08 0.92 148.58 54 Bacteria Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Parabacteroides

577377 0.16 0.07 0.83 170.18 23 Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides
1
Bayes factor of the model with additive genetic effects against the same model without additive genetic effects.
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Additional file 6.5: Table 6.S2| Bayes factors, marginal posterior means and 

standard deviations of litter variance ratio for OTUs influenced by litter effects 

together with the associated probability of these estimates being greater than 0.10.  

 

Adjusted with the ZIP model 

 

 

Adjusted with the LMM model 
 

 

OTU ID Mean l
2

Standard deviation l
2

P(l
2 

> 0.1) Bayes factor
1

Frequency of presence (%) Kingdom Phylum Class Order Family Genus Species

New.ReferenceOTU4438 0.18 0.14 0.66 3.35 6 Bacteria Bacteroidetes Bacteroidia Bacteroidales S24-7

1517779 0.19 0.14 0.69 3.70 16 Bacteria Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae

278675 0.19 0.13 0.69 4.26 10 Bacteria Bacteroidetes Bacteroidia Bacteroidales S24-7

New.ReferenceOTU1306 0.35 0.27 0.73 12.07 22 Bacteria Bacteroidetes Bacteroidia Bacteroidales S24-7

124470 0.42 0.19 0.94 38.95 20 Bacteria Bacteroidetes Bacteroidia Bacteroidales Odoribacteraceae Butyricimonas

1105984 0.62 0.23 0.97 59.05 7 Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides
1
Bayes factor of the model with litter effects against the same model without litter effects.

OTU ID Mean l
2

Standard deviation l
2

P(l
2 

> 0.1) Bayes factor
1

Frequency of presence (%) Kingdom Phylum Class Order Family Genus Species

New.ReferenceOTU4214 0.12 0.07 0.55 3.21 53 Bacteria Firmicutes Clostridia Clostridiales

297502 0.11 0.07 0.49 3.21 65 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae

New.ReferenceOTU1350 0.11 0.07 0.51 3.22 97 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU945 0.11 0.07 0.48 3.23 35 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU3714 0.12 0.07 0.55 3.25 78 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia

754283 0.11 0.07 0.52 3.27 83 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU3370 0.11 0.07 0.49 3.34 97 Bacteria Tenericutes Mollicutes RF39

New.ReferenceOTU1848 0.12 0.08 0.55 3.37 97 Unassigned

New.ReferenceOTU2864 0.12 0.07 0.54 3.39 66 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU1188 0.11 0.07 0.51 3.42 33 Unassigned

New.ReferenceOTU3047 0.10 0.06 0.42 3.48 63 Bacteria Bacteroidetes Bacteroidia Bacteroidales S24-7

New.ReferenceOTU4121 0.11 0.07 0.52 3.49 88 Unassigned

New.ReferenceOTU1907 0.12 0.07 0.55 3.51 21 Bacteria Firmicutes Clostridia Clostridiales

531052 0.11 0.07 0.51 3.59 84 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Coprococcus

New.ReferenceOTU4276 0.11 0.07 0.52 3.60 77 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Coprococcus

New.ReferenceOTU2545 0.13 0.08 0.58 3.62 60 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus

New.ReferenceOTU328 0.12 0.07 0.55 3.73 67 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU1282 0.11 0.07 0.52 3.75 48 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia

New.ReferenceOTU1336 0.12 0.07 0.56 3.77 80 Bacteria Tenericutes Mollicutes Anaeroplasmatales Anaeroplasmataceae Anaeroplasma

New.ReferenceOTU4083 0.11 0.07 0.52 3.78 65 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae

299422 0.12 0.07 0.56 3.79 88 Bacteria Verrucomicrobia Verrucomicrobiae Verrucomicrobiales Verrucomicrobiaceae Akkermansia

346794 0.12 0.08 0.56 3.86 80 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU2285 0.12 0.07 0.56 3.87 61 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae

279340 0.12 0.07 0.58 3.90 36 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU2264 0.10 0.06 0.49 3.93 74 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae

New.ReferenceOTU2035 0.12 0.07 0.55 4.01 96 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU951 0.12 0.07 0.57 4.03 87 Bacteria Firmicutes Clostridia Clostridiales

4331760 0.12 0.07 0.54 4.06 75 Bacteria Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae

New.ReferenceOTU2893 0.11 0.07 0.51 4.07 96 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU1631 0.11 0.07 0.53 4.15 60 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus

585480 0.13 0.07 0.59 4.26 90 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Anaerostipes

New.ReferenceOTU241 0.12 0.07 0.57 4.31 93 Unassigned

New.ReferenceOTU362 0.12 0.07 0.54 4.46 55 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae

New.ReferenceOTU3245 0.12 0.07 0.55 4.47 47 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus

New.ReferenceOTU799 0.11 0.06 0.52 4.50 27 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU1266 0.12 0.07 0.55 4.50 80 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae

New.ReferenceOTU1309 0.13 0.07 0.59 4.51 39 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia

New.ReferenceOTU2943 0.12 0.07 0.57 4.64 22 Bacteria Firmicutes Clostridia Clostridiales

590015 0.12 0.07 0.56 4.66 92 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU4255 0.11 0.07 0.53 4.69 86 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae

New.ReferenceOTU3530 0.12 0.08 0.57 4.77 70 Bacteria Firmicutes Clostridia Clostridiales

575101 0.13 0.08 0.60 4.83 88 Bacteria Firmicutes Clostridia Clostridiales Dehalobacteriaceae

New.ReferenceOTU1557 0.12 0.07 0.59 4.83 94 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus

New.ReferenceOTU1646 0.12 0.07 0.58 4.94 93 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU4534 0.13 0.08 0.60 4.94 95 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae

New.ReferenceOTU95 0.12 0.07 0.57 4.94 65 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus

New.ReferenceOTU2683 0.12 0.07 0.56 5.07 56 Bacteria Actinobacteria Coriobacteriia Coriobacteriales Coriobacteriaceae Adlercreutzia

563490 0.13 0.07 0.60 5.10 99 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae

New.ReferenceOTU2797 0.13 0.07 0.60 5.15 54 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU4290 0.12 0.07 0.59 5.25 59 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Oscillospira

New.ReferenceOTU2303 0.12 0.07 0.57 5.29 41 Bacteria Firmicutes Clostridia Clostridiales

210867 0.12 0.07 0.59 5.37 26 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU501 0.13 0.07 0.61 5.60 42 Unassigned

New.ReferenceOTU3810 0.12 0.07 0.56 5.95 49 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Oscillospira

New.ReferenceOTU3424 0.12 0.07 0.59 6.02 68 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Epulopiscium

New.ReferenceOTU3628 0.13 0.07 0.61 6.12 82 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU1081 0.13 0.08 0.61 6.14 43 Unassigned

New.ReferenceOTU4465 0.14 0.08 0.66 6.25 84 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae

New.ReferenceOTU276 0.12 0.06 0.56 6.25 39 Bacteria Firmicutes Clostridia Clostridiales

352533 0.14 0.08 0.65 6.32 51 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU747 0.12 0.07 0.59 6.37 88 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia

336627 0.13 0.07 0.61 6.62 80 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU1100 0.13 0.07 0.62 6.78 77 Bacteria Firmicutes Clostridia Clostridiales

527988 0.14 0.08 0.64 7.02 93 Bacteria Firmicutes Clostridia Clostridiales Eubacteriaceae Anaerofustis

New.ReferenceOTU1883 0.13 0.08 0.62 7.05 37 Unassigned

New.ReferenceOTU352 0.13 0.07 0.62 7.16 61 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae

New.ReferenceOTU4513 0.14 0.08 0.65 7.23 56 Bacteria Verrucomicrobia Verrucomicrobiae Verrucomicrobiales Verrucomicrobiaceae Akkermansia

291090 0.14 0.08 0.65 7.31 60 Bacteria Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Parabacteroides distasonis

New.ReferenceOTU2138 0.14 0.08 0.66 7.55 94 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae

New.ReferenceOTU107 0.13 0.07 0.64 7.65 74 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae

New.ReferenceOTU2222 0.13 0.07 0.61 7.70 54 Unassigned

New.ReferenceOTU4299 0.14 0.08 0.65 8.02 75 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU1597 0.14 0.07 0.65 8.28 81 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Butyrivibrio

537219 0.14 0.08 0.67 8.28 78 Bacteria Firmicutes Clostridia Clostridiales

292871 0.14 0.08 0.66 8.55 76 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU2233 0.14 0.07 0.64 8.58 68 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia

New.ReferenceOTU369 0.15 0.09 0.68 8.68 66 Bacteria Proteobacteria Deltaproteobacteria Desulfovibrionales Desulfovibrionaceae Desulfovibrio

New.ReferenceOTU3332 0.14 0.07 0.66 8.71 35 Bacteria Bacteroidetes Bacteroidia Bacteroidales S24-7

304037 0.14 0.07 0.65 9.05 73 Bacteria Firmicutes Clostridia Clostridiales
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214031 0.15 0.08 0.70 9.12 38 Bacteria Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae

New.ReferenceOTU3728 0.14 0.08 0.67 9.74 87 Unassigned

New.ReferenceOTU3368 0.14 0.07 0.66 10.09 21 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU761 0.15 0.08 0.69 10.20 50 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus

299902 0.15 0.08 0.70 10.38 89 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia

New.ReferenceOTU432 0.15 0.08 0.71 10.62 97 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Coprococcus

288379 0.17 0.09 0.73 11.50 62 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU4349 0.14 0.07 0.67 11.52 43 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU3465 0.16 0.09 0.71 11.69 47 Bacteria Firmicutes Clostridia Clostridiales

328083 0.15 0.08 0.72 11.72 98 Bacteria Firmicutes Clostridia Clostridiales Clostridiaceae Clostridium

New.ReferenceOTU2377 0.16 0.09 0.71 11.96 96 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU4651 0.16 0.08 0.74 12.55 38 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus

New.ReferenceOTU763 0.13 0.07 0.64 12.81 52 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Oscillospira

New.ReferenceOTU1695 0.16 0.08 0.73 12.85 80 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU344 0.16 0.08 0.73 12.92 74 Bacteria Firmicutes Clostridia Clostridiales

524842 0.15 0.07 0.72 13.62 73 Bacteria Firmicutes Clostridia Clostridiales Clostridiaceae

450576 0.14 0.07 0.71 13.78 72 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae

New.ReferenceOTU3316 0.15 0.08 0.73 14.17 81 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae

348609 0.15 0.08 0.72 14.30 61 Bacteria Firmicutes Clostridia Clostridiales Christensenellaceae

New.ReferenceOTU892 0.16 0.08 0.76 14.31 76 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU4624 0.16 0.08 0.74 14.74 33 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae

321135 0.15 0.08 0.73 14.78 87 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae

New.ReferenceOTU1678 0.16 0.08 0.75 15.05 97 Unassigned

342182 0.16 0.08 0.75 15.24 60 Bacteria Firmicutes Clostridia Clostridiales

348602 0.16 0.08 0.76 15.62 44 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU3054 0.16 0.08 0.73 15.96 91 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae

New.ReferenceOTU3444 0.14 0.07 0.69 16.05 72 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU1383 0.16 0.08 0.76 16.17 98 Unassigned

953855 0.15 0.08 0.70 16.45 99 Bacteria Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae

New.ReferenceOTU2121 0.16 0.08 0.74 16.59 60 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU2626 0.17 0.09 0.75 16.68 56 Unassigned

New.ReferenceOTU3063 0.16 0.08 0.74 16.78 50 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU1836 0.16 0.08 0.74 16.98 53 Bacteria Firmicutes Clostridia Clostridiales Mogibacteriaceae

73753 0.16 0.08 0.75 17.03 86 Bacteria Bacteroidetes Bacteroidia Bacteroidales Odoribacteraceae Odoribacter

New.ReferenceOTU3739 0.17 0.08 0.78 17.54 72 Bacteria Firmicutes Clostridia Clostridiales

3579707 0.16 0.08 0.76 19.93 69 Bacteria Bacteroidetes Bacteroidia Bacteroidales Odoribacteraceae Odoribacter

346669 0.16 0.08 0.77 20.00 97 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae

New.ReferenceOTU1490 0.16 0.08 0.76 20.98 91 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae

New.ReferenceOTU146 0.18 0.09 0.80 21.63 43 Bacteria Firmicutes Clostridia Clostridiales

351253 0.17 0.08 0.78 24.18 89 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU4661 0.16 0.08 0.77 24.64 83 Bacteria Firmicutes Clostridia Clostridiales

207340 0.17 0.08 0.80 27.99 77 Bacteria Firmicutes Clostridia Clostridiales Mogibacteriaceae

New.ReferenceOTU605 0.17 0.08 0.78 28.39 59 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae

New.ReferenceOTU1979 0.18 0.09 0.82 28.89 78 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae

New.ReferenceOTU2627 0.18 0.08 0.81 29.65 42 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU3932 0.18 0.08 0.83 33.22 55 Bacteria Verrucomicrobia Verrucomicrobiae Verrucomicrobiales Verrucomicrobiaceae Akkermansia

New.ReferenceOTU3326 0.18 0.08 0.82 33.96 46 Bacteria Proteobacteria Deltaproteobacteria Desulfovibrionales Desulfovibrionaceae Desulfovibrio

New.ReferenceOTU1428 0.16 0.07 0.79 34.20 78 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae

New.ReferenceOTU3176 0.20 0.09 0.83 34.79 92 Unassigned

New.ReferenceOTU1824 0.16 0.07 0.78 34.87 84 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU3993 0.18 0.08 0.84 37.86 40 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae

355312 0.17 0.07 0.81 42.24 68 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU2693 0.20 0.09 0.86 46.43 47 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU1234 0.19 0.10 0.79 49.03 80 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU1411 0.19 0.08 0.86 49.97 86 Bacteria Firmicutes Clostridia Clostridiales

268538 0.19 0.08 0.86 54.61 67 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae

301464 0.19 0.08 0.86 57.98 64 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU3555 0.20 0.09 0.86 65.39 36 Bacteria Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae Rikenella

New.ReferenceOTU4514 0.20 0.08 0.88 66.98 53 Unassigned

192364 0.20 0.08 0.87 72.78 53 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae

New.ReferenceOTU465 0.19 0.08 0.86 73.02 75 Bacteria Firmicutes Erysipelotrichi Erysipelotrichales Erysipelotrichaceae

361679 0.21 0.09 0.89 87.47 60 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU2839 0.22 0.09 0.91 88.01 65 Bacteria Proteobacteria Deltaproteobacteria Desulfovibrionales Desulfovibrionaceae

577562 0.20 0.08 0.89 90.55 94 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU1343 0.19 0.08 0.88 93.62 99 Bacteria Verrucomicrobia Verrucomicrobiae Verrucomicrobiales Verrucomicrobiaceae Akkermansia

New.ReferenceOTU703 0.21 0.08 0.90 105.89 61 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU1363 0.20 0.08 0.90 123.25 59 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae

New.ReferenceOTU1196 0.23 0.09 0.93 139.96 90 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU1009 0.20 0.08 0.90 152.77 97 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae

New.ReferenceOTU606 0.22 0.09 0.92 160.32 65 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Oscillospira

New.ReferenceOTU277 0.22 0.08 0.93 182.09 44 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU4073 0.23 0.09 0.93 192.17 69 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU3581 0.20 0.07 0.92 224.04 80 Bacteria Firmicutes Clostridia Clostridiales

337724 0.22 0.08 0.94 243.63 40 Bacteria Bacteroidetes Bacteroidia Bacteroidales S24-7

204542 0.23 0.08 0.94 260.10 22 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU1986 0.23 0.08 0.95 294.76 79 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae

New.ReferenceOTU381 0.25 0.10 0.94 356.92 52 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae

350277 0.25 0.08 0.96 426.54 97 Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides uniformis

New.ReferenceOTU1154 0.23 0.08 0.95 479.56 81 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae

New.ReferenceOTU181 0.25 0.09 0.94 489.48 52 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU4269 0.25 0.08 0.96 528.02 72 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae

New.ReferenceOTU1182 0.26 0.08 0.97 621.62 56 Bacteria Proteobacteria Deltaproteobacteria Desulfovibrionales Desulfovibrionaceae Desulfovibrio

New.ReferenceOTU2680 0.25 0.09 0.95 724.90 74 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae

207713 0.25 0.08 0.97 1066.11 66 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU162 0.27 0.08 0.98 1269.21 48 Bacteria Bacteroidetes Bacteroidia Bacteroidales S24-7

New.ReferenceOTU4284 0.27 0.09 0.98 1320.53 83 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU3252 0.30 0.09 0.98 1402.68 75 Bacteria Bacteroidetes Bacteroidia Bacteroidales

New.ReferenceOTU3985 0.26 0.08 0.97 1697.22 55 Unassigned

New.ReferenceOTU2875 0.30 0.09 0.99 1880.47 26 Bacteria Firmicutes Clostridia Clostridiales

339013 0.28 0.09 0.98 2492.78 63 Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides

New.ReferenceOTU3837 0.28 0.08 0.99 2537.51 66 Bacteria Firmicutes Clostridia Clostridiales Clostridiaceae

213671 0.32 0.09 1.00 5164.61 44 Bacteria Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae

295427 0.29 0.08 0.99 7374.08 66 Bacteria Firmicutes Clostridia Clostridiales

364179 0.31 0.09 0.99 7998.31 84 Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides

New.ReferenceOTU3468 0.27 0.08 0.99 8706.89 59 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae

New.ReferenceOTU3891 0.32 0.09 1.00 9251.03 34 Bacteria Firmicutes Clostridia Clostridiales

575041 0.31 0.09 0.99 9290.98 74 Bacteria Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae

New.ReferenceOTU3011 0.34 0.09 1.00 19552.73 46 Bacteria Firmicutes Clostridia Clostridiales

208479 0.36 0.10 1.00 34701.55 57 Bacteria Bacteroidetes Bacteroidia Bacteroidales Odoribacteraceae Butyricimonas

988375 0.36 0.10 0.99 40595.52 60 Bacteria Bacteroidetes Bacteroidia Bacteroidales Odoribacteraceae Butyricimonas

297503 0.35 0.09 1.00 43638.28 79 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU4373 0.36 0.10 1.00 52325.23 61 Unassigned

New.ReferenceOTU3880 0.34 0.08 1.00 62039.17 46 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU2892 0.30 0.08 1.00 76476.60 50 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU4338 0.38 0.09 1.00 455667.50 48 Bacteria Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae Rikenella

857827 0.39 0.08 1.00 742899.04 78 Bacteria Bacteroidetes Bacteroidia Bacteroidales

569030 0.39 0.09 1.00 942970.28 49 Bacteria Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae Rikenella

New.ReferenceOTU4130 0.38 0.08 1.00 1516668.39 26 Bacteria Firmicutes Clostridia Clostridiales Christensenellaceae

New.ReferenceOTU4593 0.38 0.09 1.00 2669459.42 25 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU2465 0.43 0.08 1.00 10673931.54 54 Bacteria Bacteroidetes Bacteroidia Bacteroidales Barnesiellaceae

New.ReferenceOTU1150 0.40 0.10 1.00 33650498.63 68 Bacteria Proteobacteria Deltaproteobacteria Desulfovibrionales Desulfovibrionaceae

449353 0.45 0.10 1.00 144504396.64 51 Bacteria Firmicutes Clostridia Clostridiales Dehalobacteriaceae Dehalobacterium

524318 0.42 0.08 1.00 463294561.76 32 Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides

351231 0.44 0.09 1.00 1100850370 31 Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides fragilis

New.ReferenceOTU1611 0.48 0.09 1.00 3127524825 20 Unassigned

234488 0.47 0.09 1.00 15425354140 49 Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides

New.ReferenceOTU1618 0.49 0.09 1.00 1.34807E+11 20 Unassigned

351272 0.48 0.08 1.00 3.16289E+11 75 Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides

556126 0.49 0.08 1.00 4.51264E+11 66 Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides

New.ReferenceOTU4158 0.52 0.08 1.00 2.30769E+13 30 Bacteria Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae Rikenella

New.ReferenceOTU3591 0.53 0.08 1.00 2E+14 63 Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides

349809 0.50 0.08 1.00 1E+15 29 Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides eggerthii

198530 0.53 0.08 1.00 ∞ 18 Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides

305608 0.66 0.07 1.00 ∞ 16 Bacteria Firmicutes Clostridia Clostridiales Veillonellaceae Phascolarctobacterium

334383 0.67 0.07 1.00 ∞ 16 Bacteria Firmicutes Clostridia Clostridiales Veillonellaceae Phascolarctobacterium

577377 0.73 0.05 1.00 ∞ 23 Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides

585989 0.69 0.07 1.00 ∞ 17 Bacteria Firmicutes Clostridia Clostridiales Veillonellaceae Phascolarctobacterium

589277 0.69 0.06 1.00 ∞ 37 Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides

851323 0.71 0.06 1.00 ∞ 54 Bacteria Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Parabacteroides

New.ReferenceOTU570 0.72 0.06 1.00 ∞ 41 Bacteria Firmicutes Clostridia Clostridiales Veillonellaceae Phascolarctobacterium
1
Bayes factor of the model with litter effects against the same model without litter effects.
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Additional file 6.6: Table 6.S3| Bayes factors, marginal posterior means and 

standard deviations of cage variance ratio for OTUs influenced by cage effects 

together with the associated probability of these estimates being greater than 0.10. 

 

Adjusted with the ZIP model 

 

 

Adjusted with the LMM model 

 

 

OTU ID Mean c
2

Standard deviation c
2

P(c
2 

> 0.1) Bayes factor
1

Frequency of presence (%) Kingdom Phylum Class Order Family Genus Species

1517779 0.16 0.12 0.63 3.21 16 Bacteria Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae

New.ReferenceOTU4059 0.18 0.12 0.70 3.44 13 Bacteria Bacteroidetes Bacteroidia Bacteroidales S24-7

1105984 0.08 0.09 0.29 4.50 7 Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides

278675 0.20 0.14 0.71 4.55 10 Bacteria Bacteroidetes Bacteroidia Bacteroidales S24-7

New.ReferenceOTU1306 0.46 0.30 0.83 37.39 22 Bacteria Bacteroidetes Bacteroidia Bacteroidales S24-7
1
Bayes factor of the model with cage effects against the same model without cage effects.

OTU ID Mean c
2

Standard deviation c
2

P(c
2 

> 0.1) Bayes factor
1

Frequency of presence (%) Kingdom Phylum Class Order Family Genus Species

349892 0.11 0.07 0.52 3.25 84 Bacteria Tenericutes Mollicutes RF39

New.ReferenceOTU3032 0.10 0.06 0.48 3.33 95 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Oscillospira

New.ReferenceOTU1639 0.11 0.07 0.53 3.34 22 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae

New.ReferenceOTU1056 0.11 0.06 0.50 3.35 52 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU3632 0.11 0.06 0.50 3.35 85 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU2010 0.11 0.07 0.54 3.38 95 Bacteria Tenericutes Mollicutes RF39

4402042 0.11 0.07 0.53 3.41 70 Bacteria Firmicutes Clostridia Clostridiales

208479 0.07 0.04 0.20 3.46 57 Bacteria Bacteroidetes Bacteroidia Bacteroidales Odoribacteraceae Butyricimonas

New.ReferenceOTU1263 0.11 0.06 0.50 3.53 80 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Oscillospira

New.ReferenceOTU575 0.10 0.06 0.45 3.56 58 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia

48899 0.10 0.06 0.47 3.57 27 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU3393 0.10 0.06 0.44 3.60 93 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae

New.ReferenceOTU4513 0.10 0.06 0.49 3.66 56 Bacteria Verrucomicrobia Verrucomicrobiae Verrucomicrobiales Verrucomicrobiaceae Akkermansia

565357 0.11 0.06 0.50 3.71 70 Bacteria Firmicutes Clostridia Clostridiales

210945 0.10 0.06 0.47 3.72 96 Bacteria Firmicutes Clostridia Clostridiales Clostridiaceae

New.ReferenceOTU4209 0.11 0.06 0.51 3.74 70 Bacteria Firmicutes Clostridia Clostridiales

1110378 0.10 0.06 0.45 3.78 93 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Oscillospira

New.ReferenceOTU3362 0.11 0.07 0.54 3.85 80 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae

New.ReferenceOTU1673 0.12 0.07 0.56 3.86 85 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU1554 0.10 0.06 0.48 3.92 99 Bacteria Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae

New.ReferenceOTU1281 0.10 0.06 0.49 3.99 83 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae

New.ReferenceOTU2520 0.11 0.07 0.54 4.03 91 Bacteria Firmicutes Clostridia Clostridiales Mogibacteriaceae

205846 0.12 0.07 0.55 4.07 98 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU3465 0.10 0.06 0.47 4.22 47 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU1379 0.11 0.06 0.52 4.22 81 Bacteria Tenericutes Mollicutes RF39

New.ReferenceOTU4080 0.11 0.06 0.52 4.26 85 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae

New.ReferenceOTU708 0.11 0.06 0.53 4.40 64 Bacteria Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae

New.ReferenceOTU1824 0.11 0.06 0.53 4.44 84 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU1730 0.11 0.06 0.55 4.62 73 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia

New.ReferenceOTU2996 0.10 0.06 0.47 4.64 42 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU2509 0.12 0.07 0.58 4.81 95 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU2864 0.13 0.07 0.60 4.81 66 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU4349 0.11 0.06 0.50 4.82 43 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU2264 0.11 0.06 0.54 4.86 74 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae

New.ReferenceOTU4130 0.08 0.05 0.34 4.87 26 Bacteria Firmicutes Clostridia Clostridiales Christensenellaceae

New.ReferenceOTU4073 0.10 0.06 0.46 5.17 69 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU4439 0.11 0.06 0.54 5.22 76 Bacteria Firmicutes Clostridia Clostridiales

355534 0.11 0.06 0.52 5.26 41 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU370 0.12 0.07 0.54 5.32 98 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU3728 0.10 0.06 0.49 5.34 87 Unassigned

New.ReferenceOTU4516 0.12 0.07 0.56 5.40 82 Bacteria Tenericutes Mollicutes RF39

New.ReferenceOTU3153 0.11 0.06 0.52 5.42 76 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae

New.ReferenceOTU591 0.12 0.07 0.58 5.60 92 Bacteria Firmicutes Clostridia Clostridiales Peptococcaceae rc4-4

New.ReferenceOTU3467 0.11 0.06 0.54 5.63 59 Bacteria Tenericutes RF3 ML615J-28

New.ReferenceOTU1188 0.11 0.07 0.53 5.75 33 Unassigned

New.ReferenceOTU3699 0.12 0.07 0.58 5.77 98 Bacteria Tenericutes Mollicutes RF39

295339 0.13 0.07 0.61 5.99 99 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus

New.ReferenceOTU1289 0.13 0.07 0.63 6.08 94 Bacteria Firmicutes Clostridia Clostridiales Clostridiaceae Clostridium

New.ReferenceOTU4284 0.10 0.06 0.45 6.09 83 Bacteria Firmicutes Clostridia Clostridiales

350438 0.12 0.06 0.58 6.13 98 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU501 0.11 0.06 0.51 6.17 42 Unassigned

New.ReferenceOTU4057 0.13 0.07 0.62 6.36 32 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU3436 0.12 0.07 0.59 6.39 100 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae

New.ReferenceOTU3301 0.10 0.06 0.48 6.40 88 Bacteria Actinobacteria Coriobacteriia Coriobacteriales Coriobacteriaceae Adlercreutzia

511724 0.12 0.06 0.58 6.44 74 Bacteria Tenericutes Mollicutes RF39

New.ReferenceOTU3517 0.13 0.07 0.61 6.52 37 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU2277 0.13 0.07 0.62 6.55 74 Bacteria Firmicutes Clostridia Clostridiales

613697 0.12 0.07 0.58 6.58 90 Bacteria Tenericutes Mollicutes RF39

337724 0.10 0.06 0.48 6.68 40 Bacteria Bacteroidetes Bacteroidia Bacteroidales S24-7
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New.ReferenceOTU1917 0.11 0.06 0.55 6.76 41 Bacteria Tenericutes Mollicutes RF39

New.ReferenceOTU2776 0.13 0.07 0.61 6.86 60 Bacteria Firmicutes Erysipelotrichi Erysipelotrichales Erysipelotrichaceae

New.ReferenceOTU747 0.11 0.06 0.55 6.98 88 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia

294923 0.11 0.06 0.56 6.98 98 Bacteria Verrucomicrobia Verrucomicrobiae Verrucomicrobiales Verrucomicrobiaceae Akkermansia

New.ReferenceOTU3633 0.12 0.06 0.58 7.05 89 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU1698 0.12 0.07 0.60 7.21 57 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU669 0.12 0.06 0.57 7.53 43 Archaea Euryarchaeota Methanobacteria Methanobacteriales Methanobacteriaceae Methanobrevibacter

New.ReferenceOTU4395 0.11 0.06 0.56 8.18 55 Bacteria Firmicutes Clostridia Clostridiales

349809 0.05 0.03 0.09 8.33 29 Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides eggerthii

New.ReferenceOTU1762 0.13 0.07 0.65 8.69 90 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae

New.ReferenceOTU1449 0.14 0.07 0.66 8.76 76 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU3869 0.13 0.07 0.62 8.84 64 Bacteria Proteobacteria Deltaproteobacteria Desulfovibrionales Desulfovibrionaceae

New.ReferenceOTU3422 0.13 0.07 0.64 9.04 93 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU1234 0.10 0.06 0.49 9.32 80 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU4255 0.13 0.07 0.62 9.46 86 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae

New.ReferenceOTU3581 0.11 0.06 0.56 9.51 80 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU1239 0.13 0.07 0.63 9.53 94 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae

New.ReferenceOTU3985 0.10 0.06 0.48 9.57 55 Unassigned

New.ReferenceOTU2836 0.12 0.07 0.61 9.69 85 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU3999 0.13 0.07 0.63 9.94 62 Bacteria Firmicutes Clostridia Clostridiales

301109 0.12 0.06 0.58 10.05 57 Bacteria Tenericutes Mollicutes RF39

New.ReferenceOTU605 0.13 0.07 0.61 10.14 59 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae

New.ReferenceOTU1966 0.13 0.07 0.64 10.20 74 Bacteria Firmicutes Clostridia Clostridiales

422283 0.13 0.07 0.64 10.36 100 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Oscillospira

720944 0.12 0.06 0.59 10.39 72 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Oscillospira

New.ReferenceOTU940 0.13 0.07 0.67 10.47 72 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU733 0.14 0.07 0.67 10.49 64 Bacteria Bacteroidetes Bacteroidia Bacteroidales S24-7

798164 0.12 0.06 0.59 10.66 73 Bacteria Firmicutes Clostridia Clostridiales

361679 0.11 0.06 0.56 10.96 60 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU1771 0.13 0.07 0.64 11.44 76 Bacteria Tenericutes Mollicutes RF39

799034 0.13 0.07 0.63 12.38 97 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU3555 0.14 0.07 0.68 12.70 36 Bacteria Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae Rikenella

550894 0.14 0.07 0.66 12.80 92 Bacteria Cyanobacteria 4C0d-2 YS2

New.ReferenceOTU4152 0.13 0.07 0.65 12.92 70 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae

New.ReferenceOTU741 0.12 0.06 0.62 13.16 87 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU1521 0.14 0.07 0.68 13.42 93 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae

New.ReferenceOTU1231 0.14 0.07 0.70 13.47 91 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae

New.ReferenceOTU2745 0.14 0.07 0.68 13.51 99 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus

New.ReferenceOTU352 0.13 0.06 0.63 14.67 61 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae

593733 0.14 0.07 0.70 14.79 22 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU4280 0.15 0.07 0.72 17.25 97 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Ruminococcus gnavus

New.ReferenceOTU4135 0.14 0.07 0.71 18.18 97 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU2222 0.14 0.07 0.69 18.54 54 Unassigned

661055 0.14 0.07 0.72 18.95 92 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU3855 0.14 0.07 0.72 21.32 66 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU4525 0.16 0.08 0.77 21.57 81 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU6 0.15 0.07 0.73 21.97 82 Bacteria Firmicutes Clostridia Clostridiales

347523 0.16 0.08 0.77 22.77 100 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU2121 0.17 0.08 0.79 24.42 60 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU2402 0.12 0.06 0.59 24.81 31 Bacteria Firmicutes Clostridia Clostridiales

4359749 0.15 0.07 0.73 26.26 81 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU3327 0.14 0.07 0.70 27.87 28 Bacteria Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae

561607 0.17 0.08 0.80 30.12 38 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae

New.ReferenceOTU4291 0.15 0.07 0.74 31.43 86 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU69 0.16 0.07 0.77 33.43 85 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae

New.ReferenceOTU4338 0.11 0.05 0.52 37.65 48 Bacteria Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae Rikenella

837859 0.16 0.07 0.78 40.70 94 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae

New.ReferenceOTU2476 0.16 0.07 0.78 42.28 46 Bacteria Tenericutes Mollicutes RF39

1108356 0.15 0.07 0.75 43.77 97 Bacteria Tenericutes Mollicutes RF39

New.ReferenceOTU763 0.15 0.07 0.76 46.49 52 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Oscillospira

356180 0.16 0.07 0.79 48.05 58 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU3104 0.17 0.07 0.81 48.65 68 Bacteria Bacteroidetes Bacteroidia Bacteroidales S24-7

New.ReferenceOTU4661 0.16 0.07 0.79 63.40 83 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU4546 0.17 0.07 0.82 75.84 89 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae

569030 0.11 0.05 0.58 83.39 49 Bacteria Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae Rikenella

New.ReferenceOTU4449 0.18 0.08 0.85 86.43 53 Bacteria Bacteroidetes Bacteroidia Bacteroidales S24-7

New.ReferenceOTU1266 0.16 0.07 0.80 97.64 80 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae

New.ReferenceOTU276 0.15 0.06 0.79 111.80 39 Bacteria Firmicutes Clostridia Clostridiales

821538 0.19 0.07 0.87 122.03 57 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus

New.ReferenceOTU4137 0.18 0.08 0.86 129.64 35 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU2893 0.16 0.06 0.82 148.24 96 Bacteria Firmicutes Clostridia Clostridiales

359950 0.18 0.07 0.87 227.61 51 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus

449833 0.20 0.07 0.91 330.32 72 Bacteria Bacteroidetes Bacteroidia Bacteroidales S24-7

587510 0.19 0.07 0.90 332.26 86 Bacteria Tenericutes Mollicutes RF39

New.ReferenceOTU1689 0.20 0.07 0.92 361.18 77 Bacteria Tenericutes RF3 ML615J-28

New.ReferenceOTU331 0.21 0.08 0.93 378.04 55 Bacteria Proteobacteria Alphaproteobacteria

577377 0.08 0.04 0.25 497.12 23 Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides

New.ReferenceOTU1063 0.21 0.07 0.94 819.23 77 Bacteria Firmicutes Clostridia Clostridiales

New.ReferenceOTU759 0.22 0.07 0.96 1841.76 97 Unassigned

New.ReferenceOTU46 0.26 0.08 0.98 2132.76 30 Bacteria Bacteroidetes Bacteroidia Bacteroidales S24-7

New.ReferenceOTU1883 0.22 0.07 0.97 3833.23 37 Unassigned

New.ReferenceOTU3047 0.23 0.07 0.97 6423.64 63 Bacteria Bacteroidetes Bacteroidia Bacteroidales S24-7

New.ReferenceOTU3355 0.33 0.07 1.00 16239091.39 57 Unassigned

1108422 0.40 0.07 1.00 1161041934.51 33 Bacteria Bacteroidetes Bacteroidia Bacteroidales S24-7
1
Bayes factor of the model with cage effects against the same model without cage effects.
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Supplementary material of chapter 7 

Additional file 7.1| Metadata associated with the 425 rabbit cecal samples 

analyzed in this study. Open access file available in: 

<https://assets.researchsquare.com/files/rs-

441480/v2/81c124f00fef556f3e406320.txt> 

 

Additional file 7.2| Filtered and CSS-normalized OTU table. Open access file 

available in: 

<https://assets.researchsquare.com/files/rs-

441480/v2/f309430619736a45512248e4.txt> 

 

Additional file 7.3| Taxonomic assignment of representative sequences of each 

OTU in Additional file 7.2. Open access file available in: 

<https://assets.researchsquare.com/files/rs-

441480/v2/a1652edb8b43b05687e633a3.txt> 

 

Additional file 7.4: Table 7.S1| Genetic variants declared significantly associated 

with the variation of 19 microbial traits by the MIX-GWAS after multiple testing 

correction at the genome-wide level. 
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Additional file 7.5: Figure 7.S1| Manhattan plots for 19 microbial traits. 
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Additional file 7.6: Table 7.S2| Genes annotated around the windows that the MIX-

GWAS declared to contain variants significantly associated with any of 19 microbial 

traits at the genome-wide level. 

 

OCC
1 Gene start (bp) Gene end (bp) Gene stable ID Gene name Gene type Human Gene name

1 103076973 103403200 ENSOCUG00000006190 NCAM1 protein_coding NCAM1

1 104116161 104127484 ENSOCUG00000009672 protein_coding PLET1

1 104144624 104151577 ENSOCUG00000007360 PTS protein_coding PTS

1 104153714 104288640 ENSOCUG00000009662 BCO2 protein_coding BCO2

1 104208433 104234438 ENSOCUG00000005255 protein_coding IL18

1 104276207 104276335 ENSOCUG00000025177 snoRNA SNORA11

1 104288605 104290455 ENSOCUG00000017358 TIMM8B protein_coding TIMM8B

1 104291152 104306137 ENSOCUG00000017354 NKAPD1 protein_coding NKAPD1

1 104308328 104316435 ENSOCUG00000028144 PIH1D2 protein_coding PIH1D2

1 104315403 104353713 ENSOCUG00000015590 DLAT protein_coding DLAT

1 104359957 104448028 ENSOCUG00000012919 DIXDC1 protein_coding DIXDC1

1 104450633 104456800 ENSOCUG00000012977 C11orf52 protein_coding C11orf52

1 104460634 104461649 ENSOCUG00000012976 protein_coding HSPB2

1 104460634 104461649 ENSOCUG00000012976 protein_coding HSPB2-C11orf52

1 104462664 104465787 ENSOCUG00000012972 CRYAB protein_coding CRYAB

1 104470817 104475531 ENSOCUG00000029240 C11orf1 protein_coding C11orf1

1 104475628 104480018 ENSOCUG00000034621 FDXACB1 protein_coding FDXACB1

1 104481916 104645120 ENSOCUG00000012930 PPP2R1B protein_coding PPP2R1B

1 104646449 104793737 ENSOCUG00000012915 SIK2 protein_coding SIK2

1 104844504 104864855 ENSOCUG00000012904 LAYN protein_coding LAYN

1 104868697 104892936 ENSOCUG00000012891 HOATZ protein_coding HOATZ

1 104894553 104921531 ENSOCUG00000027498 protein_coding BTG4

1 105028595 105052636 ENSOCUG00000012566 POU2AF1 protein_coding POU2AF1

1 105100758 105110386 ENSOCUG00000022422 COLCA2 protein_coding COLCA2

1 105119303 105157796 ENSOCUG00000009285 C11orf53 protein_coding C11orf53

1 105325533 105326573 ENSOCUG00000017811 protein_coding CTDSP2

1 105411910 105413162 ENSOCUG00000039274 protein_coding PSMC4

1 105770187 105902069 ENSOCUG00000013948 ARHGAP20 protein_coding ARHGAP20

1 106089401 106158812 ENSOCUG00000017826 protein_coding FDX1

1 108746324 108761554 ENSOCUG00000011878 SLC35F2 protein_coding SLC35F2

1 108870382 108938953 ENSOCUG00000011869 ELMOD1 protein_coding ELMOD1

1 108966739 109370463 ENSOCUG00000025398 CWF19L2 protein_coding CWF19L2

1 109064046 109064825 ENSOCUG00000038405 protein_coding PPIL4

1 109603363 109941502 ENSOCUG00000004490 GUCY1A2 protein_coding GUCY1A2

1 110542467 110543042 ENSOCUG00000023190 protein_coding AKIRIN1

1 110573411 110597042 ENSOCUG00000000231 AASDHPPT protein_coding AASDHPPT

1 110611744 110617578 ENSOCUG00000000230 KBTBD3 protein_coding KBTBD3

1 110661783 110664201 ENSOCUG00000022457 MSANTD4 protein_coding MSANTD4

1 110680552 111068515 ENSOCUG00000001089 GRIA4 protein_coding GRIA4

1 112364735 112638071 ENSOCUG00000015312 PDGFD protein_coding PDGFD

1 113097790 113452044 ENSOCUG00000016257 DYNC2H1 protein_coding DYNC2H1

1 113476884 113507326 ENSOCUG00000006512 DCUN1D5 protein_coding DCUN1D5

1 113615791 113627810 ENSOCUG00000002481 MMP13 protein_coding MMP13

1 113650782 113651306 ENSOCUG00000011333 protein_coding MED8

1 113690209 113701868 ENSOCUG00000008303 MMP12 protein_coding MMP12

1 113716113 113724650 ENSOCUG00000029337 MMP3 protein_coding MMP3

1 113747022 113756573 ENSOCUG00000017958 MMP1 protein_coding MMP1

1 113775354 113786608 ENSOCUG00000021775 MMP10 protein_coding MMP10

1 113830200 113840288 ENSOCUG00000001092 MMP8 protein_coding MMP8

1 113845924 113859713 ENSOCUG00000001090 MMP27 protein_coding MMP27

1 113919165 113966036 ENSOCUG00000002930 MMP20 protein_coding MMP20

1 114001318 114012696 ENSOCUG00000015329 MMP7 protein_coding MMP7

1 114085284 114180830 ENSOCUG00000006165 protein_coding TMEM123

1 114161365 114183218 ENSOCUG00000013890 BIRC2 protein_coding BIRC2

1 114183955 114210053 ENSOCUG00000010109 BIRC3 protein_coding BIRC3

1 114274384 114276187 ENSOCUG00000034499 protein_coding SIK1B

1 114274384 114276187 ENSOCUG00000034499 protein_coding SIK1

1 114492471 114492577 ENSOCUG00000024406 U6 snRNA RNU6-983P

1 114547352 114692292 ENSOCUG00000025834 YAP1 protein_coding YAP1
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1 114711356 114745251 ENSOCUG00000006104 CFAP300 protein_coding CFAP300

1 114732830 114733093 ENSOCUG00000034665 protein_coding MT-ATP6

1 114734361 114734657 ENSOCUG00000035862 protein_coding MT-ND4L

1 114784412 114892730 ENSOCUG00000000342 CEP126 protein_coding CEP126

1 114893812 114893922 ENSOCUG00000028894 U2 snRNA RNU2-38P

1 114897411 114912402 ENSOCUG00000029200 ANGPTL5 protein_coding ANGPTL5

1 115005605 115006961 ENSOCUG00000026522 protein_coding RGS19

1 115173391 115311739 ENSOCUG00000017832 TRPC6 protein_coding TRPC6

1 115601359 115672617 ENSOCUG00000014693 PGR protein_coding PGR

1 115716354 116020191 ENSOCUG00000006927 ARHGAP42 protein_coding ARHGAP42

1 116108943 116109045 ENSOCUG00000024451 Vault vault_RNA VTRNA1-1

1 116342857 117128194 ENSOCUG00000015047 CNTN5 protein_coding CNTN5

1 116666921 116667033 ENSOCUG00000020328 U2 snRNA U2

1 117357429 117357573 ENSOCUG00000030649 U2 snRNA U2

1 119788902 119789008 ENSOCUG00000026620 U6 snRNA RNU6-86P

1 119873354 119874262 ENSOCUG00000026047 protein_coding RACK1

1 120385369 120386943 ENSOCUG00000024211 JRKL protein_coding JRKL

1 120397369 120437458 ENSOCUG00000007312 CCDC82 protein_coding CCDC82

1 120444237 120817155 ENSOCUG00000010820 MAML2 protein_coding MAML2

1 121624473 121710677 ENSOCUG00000026640 SESN3 protein_coding SESN3

1 121748371 121799205 ENSOCUG00000014040 ENDOD1 protein_coding ENDOD1

1 121826338 121828614 ENSOCUG00000038702 protein_coding KDM4D

1 121836191 121838602 ENSOCUG00000035381 protein_coding KDM4D

1 121842034 121844469 ENSOCUG00000031183 protein_coding KDM4D

1 121856602 121859891 ENSOCUG00000032220 protein_coding KDM4D

1 121868368 121869852 ENSOCUG00000001631 protein_coding KDM4D

1 121904820 121918615 ENSOCUG00000001629 CWC15 protein_coding CWC15

1 121989693 122169562 ENSOCUG00000001078 AMOTL1 protein_coding AMOTL1

1 122255495 122322730 ENSOCUG00000002860 PIWIL4 protein_coding PIWIL4

1 122320980 122322352 ENSOCUG00000014204 FUT4 protein_coding FUT4

1 122334463 122355258 ENSOCUG00000034472 C11orf97 protein_coding C11orf97

1 122375716 122377685 ENSOCUG00000014912 ANKRD49 protein_coding ANKRD49

1 122380603 122462103 ENSOCUG00000014899 MRE11 protein_coding MRE11

1 122479098 122491139 ENSOCUG00000015502 GPR83 protein_coding GPR83

1 122542062 122545546 ENSOCUG00000013431 IZUMO1R protein_coding IZUMO1R

1 122739267 122790959 ENSOCUG00000009473 PANX1 protein_coding PANX1

1 122790845 122873124 ENSOCUG00000009466 HEPHL1 protein_coding HEPHL1

1 122834615 122835099 ENSOCUG00000029520 protein_coding UBE2I

1 123084924 123115553 ENSOCUG00000026554 VSTM5 protein_coding VSTM5

1 123122562 123146995 ENSOCUG00000012818 protein_coding

1 123122562 123146995 ENSOCUG00000012818 protein_coding MED17

1 123155483 123174270 ENSOCUG00000012810 C11orf54 protein_coding C11orf54

1 123182085 123183767 ENSOCUG00000001096 protein_coding TAF1D

1 123187721 123187852 ENSOCUG00000019024 snoRNA SNORA18

1 123187998 123188070 ENSOCUG00000023335 snoRNA SNORD5

1 123188669 123188807 ENSOCUG00000018616 snoRNA

1 123188669 123188807 ENSOCUG00000018616 snoRNA SNORA8

1 123188669 123188807 ENSOCUG00000018616 snoRNA

1 123188669 123188807 ENSOCUG00000018616 snoRNA

1 123189544 123189616 ENSOCUG00000018187 snoRNA SNORD6

1 123190358 123248675 ENSOCUG00000029678 CEP295 protein_coding CEP295

1 123202169 123202238 ENSOCUG00000025554 snoRNA

1 123202436 123202516 ENSOCUG00000025409 snoRNA

1 123202436 123202516 ENSOCUG00000025409 snoRNA

1 123202436 123202516 ENSOCUG00000025409 snoRNA

1 123202436 123202516 ENSOCUG00000025409 snoRNA

1 123448210 123560885 ENSOCUG00000000199 DEUP1 protein_coding DEUP1

1 123723183 123786844 ENSOCUG00000000649 SLC36A4 protein_coding SLC36A4

1 163455024 163456054 ENSOCUG00000028087 protein_coding TAF9B

1 163681593 164228640 ENSOCUG00000026462 LUZP2 protein_coding LUZP2

1 180046179 180046325 ENSOCUG00000033509 U2 snRNA U2

1 181040738 181041079 ENSOCUG00000027982 protein_coding MRPS14

1 181107743 181108069 ENSOCUG00000022894 protein_coding ATP5PF

1 181466694 181466855 ENSOCUG00000037141 U2 snRNA U2

1 192759737 192769432 ENSOCUG00000039555 OOSP4A protein_coding OOSP4A

1 192804408 192813908 ENSOCUG00000035279 OOSP4B protein_coding OOSP4B

1 192825924 192833226 ENSOCUG00000002420 MS4A3 protein_coding MS4A3

1 192840013 192846803 ENSOCUG00000009077 MS4A2 protein_coding MS4A2

1 192879178 192888794 ENSOCUG00000009084 protein_coding MS4A6A

1 192879178 192888794 ENSOCUG00000009084 protein_coding MS4A6E

1 192904458 193017292 ENSOCUG00000010079 protein_coding MS4A4E
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1 192904458 193017292 ENSOCUG00000010079 protein_coding MS4A4A

1 192964382 192992566 ENSOCUG00000012559 protein_coding MS4A14

1 193022391 193037127 ENSOCUG00000033235 MS4A5 protein_coding MS4A5

1 193048544 193054455 ENSOCUG00000007941 MS4A1 protein_coding MS4A1

1 193072961 193092144 ENSOCUG00000007947 MS4A12 protein_coding MS4A12

1 193107065 193130760 ENSOCUG00000015915 MS4A13 protein_coding MS4A13

1 193315453 193327931 ENSOCUG00000000079 MS4A8 protein_coding MS4A8

1 193412807 193430923 ENSOCUG00000026537 protein_coding MS4A18

1 193435444 193446667 ENSOCUG00000013273 MS4A15 protein_coding MS4A15

1 193455420 193462267 ENSOCUG00000015310 protein_coding MS4A10

1 193487131 193491041 ENSOCUG00000026432 protein_coding CCDC86

1 193492255 193495917 ENSOCUG00000025455 PTGDR2 protein_coding PTGDR2

1 193505780 193512590 ENSOCUG00000015673 ZP1 protein_coding ZP1

1 193523793 193533396 ENSOCUG00000015689 PRPF19 protein_coding PRPF19

1 193539339 193549353 ENSOCUG00000015708 TMEM109 protein_coding TMEM109

1 193550488 193561477 ENSOCUG00000015713 TMEM132A protein_coding TMEM132A

1 193560546 193575083 ENSOCUG00000015723 SLC15A3 protein_coding SLC15A3

1 193592727 193631909 ENSOCUG00000012464 CD6 protein_coding CD6

1 193696883 193703300 ENSOCUG00000011143 FOSL1 protein_coding FOSL1

1 193718930 193724033 ENSOCUG00000020976 protein_coding DRAP1

1 193719308 193720721 ENSOCUG00000010947 C11orf68 protein_coding C11orf68

1 193772735 193774646 ENSOCUG00000021968 EIF1AD protein_coding EIF1AD

1 193776718 193777943 ENSOCUG00000015741 protein_coding BANF1

1 193784733 193827889 ENSOCUG00000015722 SF3B2 protein_coding SF3B2

1 193788022 193794059 ENSOCUG00000016490 protein_coding CATSPER1

1 193799472 193803646 ENSOCUG00000015102 GAL3ST3 protein_coding GAL3ST3

1 193828403 193983871 ENSOCUG00000025097 PACS1 protein_coding PACS1

1 194032136 194032242 ENSOCUG00000025475 U6 snRNA RNU6-329P

1 194060913 194067063 ENSOCUG00000000905 NPAS4 protein_coding NPAS4

1 194078352 194080481 ENSOCUG00000020926 MRPL11 protein_coding MRPL11

1 194101623 194134151 ENSOCUG00000010915 DPP3 protein_coding DPP3

1 194101623 194109424 ENSOCUG00000010911 PELI3 protein_coding PELI3

1 194134304 194143072 ENSOCUG00000027758 protein_coding

1 194134304 194143072 ENSOCUG00000027758 protein_coding BBS1

1 194144761 194150464 ENSOCUG00000039117 protein_coding

1 194144761 194150464 ENSOCUG00000039117 protein_coding BBS1

1 194167898 194180590 ENSOCUG00000023317 ACTN3 protein_coding ACTN3

1 194180781 194185579 ENSOCUG00000013700 CTSF protein_coding CTSF

1 194197173 194199758 ENSOCUG00000022515 CCDC87 protein_coding CCDC87

1 194200010 194209291 ENSOCUG00000013823 CCS protein_coding CCS

1 194227852 194235841 ENSOCUG00000022838 protein_coding RBM14

1 194244876 194278252 ENSOCUG00000004731 RBM4 protein_coding RBM4

1 194277710 194328817 ENSOCUG00000014485 SPTBN2 protein_coding SPTBN2

1 194340816 194444031 ENSOCUG00000009821 RCE1 protein_coding RCE1

1 194414706 194438187 ENSOCUG00000003485 protein_coding C11orf80

1 194422395 194422525 ENSOCUG00000024662 SNORA63 snoRNA SNORA63

1 194422395 194422525 ENSOCUG00000024662 SNORA63 snoRNA SNORA63C

1 194599865 194731670 ENSOCUG00000009988 KDM2A protein_coding KDM2A

1 194743802 194746827 ENSOCUG00000038516 protein_coding GRK2

1 194754486 194756335 ENSOCUG00000029982 protein_coding ANKRD13D

1 194758430 194759825 ENSOCUG00000006388 protein_coding ANKRD13D

1 194761747 194767569 ENSOCUG00000006393 SSH3 protein_coding SSH3

1 194770434 194835787 ENSOCUG00000024015 RAD9A protein_coding RAD9A

1 194802505 194804152 ENSOCUG00000004005 protein_coding POLD4

1 194802505 194804152 ENSOCUG00000004005 protein_coding

1 194811735 194819288 ENSOCUG00000003943 CLCF1 protein_coding CLCF1

1 194835165 194837449 ENSOCUG00000027936 PPP1CA protein_coding PPP1CA

1 194839289 194843634 ENSOCUG00000007702 TBC1D10C protein_coding TBC1D10C

3 13348977 13620338 ENSOCUG00000003824 CHSY3 protein_coding CHSY3

3 13998551 13998657 ENSOCUG00000020281 U6 snRNA RNU6-708P

3 13998551 13998657 ENSOCUG00000020281 U6 snRNA RNU6-17P

3 13998551 13998657 ENSOCUG00000020281 U6 snRNA RNU6-18P

3 13998551 13998657 ENSOCUG00000020281 U6 snRNA RNU6-13P

3 13998551 13998657 ENSOCUG00000020281 U6 snRNA RNU6-12P

3 13998551 13998657 ENSOCUG00000020281 U6 snRNA RNU6-32P

3 14082048 14082153 ENSOCUG00000018309 U5 snRNA RNU5E-8P

3 14082048 14082153 ENSOCUG00000018309 U5 snRNA RNU5E-10P

3 14082048 14082153 ENSOCUG00000018309 U5 snRNA RNU5E-9P

3 14082048 14082153 ENSOCUG00000018309 U5 snRNA RNU5F-1

3 14082048 14082153 ENSOCUG00000018309 U5 snRNA RNU5E-6P

3 14380902 14393488 ENSOCUG00000006607 protein_coding HINT1
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3 14399882 14423644 ENSOCUG00000000166 LYRM7 protein_coding LYRM7

3 14503201 14572136 ENSOCUG00000003842 CDC42SE2 protein_coding CDC42SE2

3 14591772 14790284 ENSOCUG00000003847 protein_coding

3 14591772 14790284 ENSOCUG00000003847 protein_coding RAPGEF6

3 14797746 14928623 ENSOCUG00000024304 FNIP1 protein_coding FNIP1

3 14940026 15026594 ENSOCUG00000029222 MEIKIN protein_coding MEIKIN

3 15033887 15092849 ENSOCUG00000013062 ACSL6 protein_coding

3 15033887 15092849 ENSOCUG00000013062 ACSL6 protein_coding ACSL6

3 15144158 15146030 ENSOCUG00000003433 CSF2 protein_coding CSF2

3 15256646 15305094 ENSOCUG00000008966 P4HA2 protein_coding P4HA2

3 15322522 15336779 ENSOCUG00000023147 PDLIM4 protein_coding PDLIM4

3 15351327 15442156 ENSOCUG00000004158 SLC22A5 protein_coding SLC22A5

3 15531526 15536131 ENSOCUG00000004165 IRF1 protein_coding IRF1

3 15573697 15575837 ENSOCUG00000004171 IL5 protein_coding IL5

3 15593649 15672969 ENSOCUG00000025001 protein_coding RAD50

3 15593649 15672969 ENSOCUG00000025001 protein_coding

3 15690430 15692138 ENSOCUG00000000154 IL13 protein_coding IL13

3 15702738 15711514 ENSOCUG00000011943 IL-4 protein_coding IL4

3 15713102 15713221 ENSOCUG00000020212 snoRNA

3 15722727 15804489 ENSOCUG00000011761 KIF3A protein_coding KIF3A

3 19338232 19824470 ENSOCUG00000009843 SPOCK1 protein_coding SPOCK1

3 19929843 20086686 ENSOCUG00000007560 KLHL3 protein_coding KLHL3

3 19951768 19951827 ENSOCUG00000019996 ocu-mir-874 miRNA MIR874

3 20189716 20227222 ENSOCUG00000014414 MYOT protein_coding MYOT

3 20229453 20271062 ENSOCUG00000014419 PKD2L2 protein_coding PKD2L2

3 20272381 20338593 ENSOCUG00000014431 FAM13B protein_coding FAM13B

3 20391489 20396619 ENSOCUG00000005191 WNT8A protein_coding WNT8A

3 20412976 20439137 ENSOCUG00000023232 NME5 protein_coding NME5

3 20438715 20476648 ENSOCUG00000008362 BRD8 protein_coding BRD8

3 20477190 20485828 ENSOCUG00000015790 KIF20A protein_coding KIF20A

3 20486702 20513737 ENSOCUG00000008382 CDC23 protein_coding CDC23

3 20538736 20555487 ENSOCUG00000008391 GFRA3 protein_coding GFRA3

3 20579803 20612804 ENSOCUG00000008399 CDC25C protein_coding CDC25C

3 20622105 20628617 ENSOCUG00000008410 FAM53C protein_coding FAM53C

3 20633646 20717771 ENSOCUG00000008421 KDM3B protein_coding KDM3B

3 20719556 20724776 ENSOCUG00000008433 REEP2 protein_coding REEP2

3 20738524 20741362 ENSOCUG00000008439 EGR1 protein_coding EGR1

3 20770475 20803894 ENSOCUG00000006650 ETF1 protein_coding ETF1

3 20812819 20831385 ENSOCUG00000006655 HSPA9 protein_coding HSPA9

3 20818048 20818122 ENSOCUG00000019434 SNORD63 snoRNA SNORD63

3 20876951 21173275 ENSOCUG00000007744 CTNNA1 protein_coding CTNNA1

3 21121140 21123018 ENSOCUG00000007751 LRRTM2 protein_coding LRRTM2

3 21169006 21456118 ENSOCUG00000007752 SIL1 protein_coding SIL1

3 21481750 21481908 ENSOCUG00000019330 U1 snRNA RNVU1-4

3 21481750 21481908 ENSOCUG00000019330 U1 snRNA RNVU1-3

3 21481750 21481908 ENSOCUG00000019330 U1 snRNA RNVU1-30

3 21543198 21543399 ENSOCUG00000019393 SNORA74 snoRNA SNORA74A

3 21550215 21581826 ENSOCUG00000026311 protein_coding MATR3

3 21550215 21581826 ENSOCUG00000026311 protein_coding MATR3

3 21593574 21619608 ENSOCUG00000006932 PAIP2 protein_coding PAIP2

3 21622315 21632165 ENSOCUG00000006934 SLC23A1 protein_coding SLC23A1

3 21632426 21634352 ENSOCUG00000006942 MZB1 protein_coding MZB1

3 21636159 21639200 ENSOCUG00000006947 PROB1 protein_coding PROB1

3 21640852 21647584 ENSOCUG00000006952 SPATA24 protein_coding SPATA24

3 21657088 21683033 ENSOCUG00000006955 DNAJC18 protein_coding DNAJC18

3 21690379 21702175 ENSOCUG00000023976 protein_coding

3 21690379 21702175 ENSOCUG00000023976 protein_coding ECSCR

3 37839069 38236239 ENSOCUG00000002000 SGCD protein_coding SGCD

3 38409832 38454696 ENSOCUG00000011915 TIMD4 protein_coding TIMD4

3 38520056 38609318 ENSOCUG00000000575 protein_coding HAVCR1

3 38629480 38632741 ENSOCUG00000002365 FAM71B protein_coding FAM71B

3 38648074 38713129 ENSOCUG00000002369 ITK protein_coding ITK

3 38752689 38856653 ENSOCUG00000011780 CYFIP2 protein_coding CYFIP2

3 38812026 38812703 ENSOCUG00000025063 protein_coding

3 38812026 38812703 ENSOCUG00000025063 protein_coding FNDC9

3 38856000 38913494 ENSOCUG00000001234 NIPAL4 protein_coding NIPAL4

3 38918211 39113810 ENSOCUG00000001235 ADAM19 protein_coding ADAM19

3 39140001 39147379 ENSOCUG00000001053 THG1L protein_coding THG1L

3 39155253 39158162 ENSOCUG00000011672 LSM11 protein_coding LSM11

3 39191568 39260318 ENSOCUG00000014232 CLINT1 protein_coding CLINT1

3 39216523 39216628 ENSOCUG00000028257 U6 snRNA RNU6-835P
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3 42027802 42318730 ENSOCUG00000006800 ATP10B protein_coding ATP10B

3 42698620 42996012 ENSOCUG00000010098 GABRB2 protein_coding GABRB2

3 43123963 43146818 ENSOCUG00000014884 GABRA6 protein_coding GABRA6

3 43282583 43336936 ENSOCUG00000016109 GABRA1 protein_coding GABRA1

3 43463208 43564143 ENSOCUG00000016742 GABRG2 protein_coding GABRG2

3 44665155 44671337 ENSOCUG00000002129 protein_coding CCNG1

3 44683151 44689533 ENSOCUG00000005783 NUDCD2 protein_coding NUDCD2

3 44689554 44723956 ENSOCUG00000022126 HMMR protein_coding HMMR

3 44737303 44755320 ENSOCUG00000008074 MAT2B protein_coding MAT2B

3 45430711 45432261 ENSOCUG00000031379 protein_coding GLA

3 133295358 133322238 ENSOCUG00000011890 MED30 protein_coding MED30

3 133351189 133351812 ENSOCUG00000038310 protein_coding RAB7A

3 133644809 133954815 ENSOCUG00000015191 EXT1 protein_coding EXT1

3 134047653 134535595 ENSOCUG00000009066 SAMD12 protein_coding SAMD12

3 134829082 134858124 ENSOCUG00000011150 TNFRSF11B protein_coding TNFRSF11B

3 134967647 135021503 ENSOCUG00000024595 COLEC10 protein_coding COLEC10

3 138395252 138395415 ENSOCUG00000023261 U1 snRNA RNU1-77P

3 138395252 138395415 ENSOCUG00000023261 U1 snRNA RNVU1-32

3 138826966 138829517 ENSOCUG00000008550 ZHX2 protein_coding ZHX2

3 138874995 138910831 ENSOCUG00000009112 DERL1 protein_coding DERL1

3 138933561 138995376 ENSOCUG00000009119 TBC1D31 protein_coding TBC1D31

3 139011170 139028867 ENSOCUG00000015368 FAM83A protein_coding FAM83A

3 139038174 139062857 ENSOCUG00000009772 protein_coding ZHX1-C8orf76

3 139038174 139062857 ENSOCUG00000009772 protein_coding C8orf76

3 139078878 139081502 ENSOCUG00000009776 ZHX1 protein_coding ZHX1

3 139210581 139238252 ENSOCUG00000014201 protein_coding NTAQ1

3 139306981 139358152 ENSOCUG00000005112 FBXO32 protein_coding FBXO32

3 139445409 139452352 ENSOCUG00000011785 KLHL38 protein_coding KLHL38

3 139477693 139540254 ENSOCUG00000011787 ANXA13 protein_coding ANXA13

3 139571237 139618661 ENSOCUG00000011804 FAM91A1 protein_coding FAM91A1

3 139710979 139904183 ENSOCUG00000026113 FER1L6 protein_coding FER1L6

3 140194108 140198725 ENSOCUG00000026379 TRMT12 protein_coding TRMT12

3 140215774 140229652 ENSOCUG00000017399 RNF139 protein_coding RNF139

3 140230199 140275934 ENSOCUG00000017403 TATDN1 protein_coding TATDN1

3 140273518 140279290 ENSOCUG00000025074 NDUFB9 protein_coding NDUFB9

3 140280678 140448335 ENSOCUG00000008102 MTSS1 protein_coding MTSS1

3 140549025 140549152 ENSOCUG00000020979 snoRNA SNORA31

3 140689416 140695085 ENSOCUG00000039324 ZNF572 protein_coding ZNF572

3 140710644 140735727 ENSOCUG00000015771 SQLE protein_coding SQLE

3 140737573 140805745 ENSOCUG00000015785 WASHC5 protein_coding WASHC5

3 140811891 141088037 ENSOCUG00000008539 NSMCE2 protein_coding NSMCE2

3 140891744 140891986 ENSOCUG00000030414 protein_coding COX7B

3 141104856 141105154 ENSOCUG00000038943 Metazoa_SRP misc_RNA RN7SL178P

3 141117788 141122075 ENSOCUG00000024295 TRIB1 protein_coding TRIB1

3 141610868 141610972 ENSOCUG00000021693 U6 snRNA RNU6-365P

4 75069167 75121504 ENSOCUG00000010931 CCDC38 protein_coding CCDC38

4 75137656 75163689 ENSOCUG00000005523 AMDHD1 protein_coding AMDHD1

4 75167385 75193674 ENSOCUG00000005528 HAL protein_coding HAL

4 75201595 75245579 ENSOCUG00000005535 LTA4H protein_coding LTA4H

4 75371042 75464437 ENSOCUG00000034370 ELK3 protein_coding ELK3

4 75474542 75511662 ENSOCUG00000013583 CDK17 protein_coding CDK17

4 75661682 76016541 ENSOCUG00000013917 CFAP54 protein_coding CFAP54

4 76053626 76094569 ENSOCUG00000010944 NEDD1 protein_coding NEDD1

4 76103176 76103282 ENSOCUG00000025761 U6 snRNA U6

4 76714478 76714578 ENSOCUG00000020134 miRNA MIR1251

4 76791364 76791463 ENSOCUG00000018977 miRNA MIR135A2

6 26473329 26473730 ENSOCUG00000032548 protein_coding SZRD1

6 26611331 26615730 ENSOCUG00000012402 UPK3B protein_coding UPK3B

6 26618144 26650582 ENSOCUG00000000565 DTX2 protein_coding DTX2

6 26662111 26671566 ENSOCUG00000015762 protein_coding ZP3

6 26662111 26671566 ENSOCUG00000015762 protein_coding POMZP3

6 26668043 26687303 ENSOCUG00000016629 SSC4D protein_coding SSC4D

6 26713722 26738069 ENSOCUG00000008521 YWHAG protein_coding YWHAG

6 26753104 26754383 ENSOCUG00000012690 HSPB1 protein_coding HSPB1

6 26791443 26855912 ENSOCUG00000014322 MDH2 protein_coding MDH2

6 26847287 26894306 ENSOCUG00000027186 STYXL1 protein_coding STYXL1

6 26900350 26913491 ENSOCUG00000021696 POR protein_coding POR

6 26962102 26971780 ENSOCUG00000013803 RHBDD2 protein_coding RHBDD2

6 26989695 26992144 ENSOCUG00000025061 protein_coding CCL24

6 26994696 26995939 ENSOCUG00000027199 protein_coding SIK1B

6 26994696 26995939 ENSOCUG00000027199 protein_coding SIK1
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6 27001595 27010068 ENSOCUG00000000382 SLC12A9 protein_coding SLC12A9

6 27012763 27181342 ENSOCUG00000016902 EPHB4 protein_coding EPHB4

6 27045103 27084325 ENSOCUG00000005589 ZAN protein_coding ZAN

6 27102172 27105135 ENSOCUG00000005399 EPO protein_coding EPO

6 27121461 27121883 ENSOCUG00000007818 POP7 protein_coding POP7

6 27132958 27143372 ENSOCUG00000002663 GIGYF1 protein_coding GIGYF1

6 27144075 27147121 ENSOCUG00000002657 GNB2 protein_coding GNB2

6 27158292 27170777 ENSOCUG00000014727 ACTL6B protein_coding ACTL6B

6 27184381 27186764 ENSOCUG00000005694 protein_coding MOSPD3

6 27188476 27193370 ENSOCUG00000031409 PCOLCE protein_coding PCOLCE

6 27194545 27203106 ENSOCUG00000022861 FBXO24 protein_coding FBXO24

6 27203015 27216747 ENSOCUG00000002528 LRCH4 protein_coding LRCH4

6 27217841 27218847 ENSOCUG00000027938 protein_coding SAP25

6 27226410 27248928 ENSOCUG00000008631 AGFG2 protein_coding AGFG2

6 27292276 27292908 ENSOCUG00000025881 protein_coding APOO

6 27300464 27308085 ENSOCUG00000003810 NYAP1 protein_coding NYAP1

6 27317232 27325789 ENSOCUG00000021916 TSC22D4 protein_coding TSC22D4

6 27327603 27331787 ENSOCUG00000024411 C7orf61 protein_coding C7orf61

6 27356172 27357426 ENSOCUG00000025401 PPP1R35 protein_coding PPP1R35

6 27358469 27364084 ENSOCUG00000029324 MEPCE protein_coding MEPCE

6 27371673 27396772 ENSOCUG00000014388 ZCWPW1 protein_coding ZCWPW1

6 27470609 27498626 ENSOCUG00000013531 STAG3 protein_coding STAG3

6 27499999 27502385 ENSOCUG00000017594 protein_coding GPC2

8 108850027 108851052 ENSOCUG00000026894 protein_coding RAMACL

8 108850027 108851052 ENSOCUG00000026894 protein_coding RAMAC

8 109650039 109692581 ENSOCUG00000009763 FAM155A protein_coding FAM155A

8 109976266 109979001 ENSOCUG00000015734 LIG4 protein_coding LIG4

8 109997646 109998659 ENSOCUG00000015739 ABHD13 protein_coding ABHD13

8 110029565 110062140 ENSOCUG00000012271 TNLG7A protein_coding TNFSF13B

8 110241791 110790467 ENSOCUG00000034453 protein_coding MYO16

10 21247907 21270997 ENSOCUG00000015882 EPDR1 protein_coding EPDR1

10 21444902 21465126 ENSOCUG00000008939 STARD3NL protein_coding STARD3NL

10 21517642 21519191 ENSOCUG00000039334 protein_coding TRGV4

10 21517642 21519191 ENSOCUG00000039334 protein_coding TRGV2

10 21517642 21519191 ENSOCUG00000039334 protein_coding TRGV8

10 21517642 21519191 ENSOCUG00000039334 protein_coding TRGV5

10 21521543 21522132 ENSOCUG00000025628 protein_coding TRGV3

10 21521543 21522132 ENSOCUG00000025628 protein_coding TRGV1

10 21525490 21525991 ENSOCUG00000031806 protein_coding TRGV4

10 21525490 21525991 ENSOCUG00000031806 protein_coding TRGV2

10 21525490 21525991 ENSOCUG00000031806 protein_coding TRGV8

10 21525490 21525991 ENSOCUG00000031806 protein_coding TRGV5

10 21532549 21533136 ENSOCUG00000032571 protein_coding TRGV4

10 21532549 21533136 ENSOCUG00000032571 protein_coding TRGV2

10 21532549 21533136 ENSOCUG00000032571 protein_coding TRGV8

10 21532549 21533136 ENSOCUG00000032571 protein_coding TRGV5

10 21545417 21669110 ENSOCUG00000002244 AMPH protein_coding AMPH

10 21833127 22021136 ENSOCUG00000000676 VPS41 protein_coding VPS41

10 22075563 22571587 ENSOCUG00000013896 POU6F2 protein_coding POU6F2

10 22714677 22720791 ENSOCUG00000011496 YAE1 protein_coding YAE1

10 22812538 22845149 ENSOCUG00000016581 protein_coding RALA

10 22955775 23667786 ENSOCUG00000016583 protein_coding CDK13

10 23081093 23083417 ENSOCUG00000003189 MPLKIP protein_coding MPLKIP

10 23083417 23874940 ENSOCUG00000003191 SUGCT protein_coding SUGCT

12 7279646 7304216 ENSOCUG00000007245 SIRT5 protein_coding SIRT5

12 7310898 7409156 ENSOCUG00000007255 RANBP9 protein_coding RANBP9

12 7469893 7485001 ENSOCUG00000007261 MCUR1 protein_coding MCUR1

12 7654520 7655263 ENSOCUG00000003841 RNF182 protein_coding RNF182

12 7726245 7820986 ENSOCUG00000003303 CD83 protein_coding CD83

12 8847136 9102849 ENSOCUG00000009755 JARID2 protein_coding JARID2

12 9024833 9024941 ENSOCUG00000019819 U6 snRNA RNU6-716P

12 9103934 9247152 ENSOCUG00000009767 DTNBP1 protein_coding DTNBP1

12 9267478 9388134 ENSOCUG00000033525 protein_coding ANKRD62

12 9303819 9335406 ENSOCUG00000024832 protein_coding ASNSD1

12 9303819 9335406 ENSOCUG00000024832 protein_coding

12 9667772 9669668 ENSOCUG00000033985 protein_coding OR2B3

12 9787294 9788253 ENSOCUG00000022638 protein_coding OR2W1

12 133666032 134003397 ENSOCUG00000003607 AIG1 protein_coding AIG1

12 134133999 134150196 ENSOCUG00000008925 ADAT2 protein_coding ADAT2

12 134150217 134191359 ENSOCUG00000008931 PEX3 protein_coding PEX3

12 134212085 134264062 ENSOCUG00000033709 FUCA2 protein_coding FUCA2
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12 134263354 134581457 ENSOCUG00000009614 PHACTR2 protein_coding PHACTR2

12 134595377 134678738 ENSOCUG00000009623 protein_coding

12 134595377 134678738 ENSOCUG00000009623 protein_coding LTV1

12 134682475 134709723 ENSOCUG00000009505 PLAGL1 protein_coding PLAGL1

12 134817249 134817509 ENSOCUG00000008752 SF3B5 protein_coding SF3B5

12 134906249 134907109 ENSOCUG00000022748 STX11 protein_coding STX11

12 134984662 135600002 ENSOCUG00000015080 UTRN protein_coding UTRN

12 136485519 136698573 ENSOCUG00000010589 FBXO30 protein_coding FBXO30

12 136799075 136883132 ENSOCUG00000010978 SHPRH protein_coding SHPRH

12 136958118 137396799 ENSOCUG00000006898 GRM1 protein_coding GRM1

12 137499957 137514737 ENSOCUG00000026403 protein_coding RAB32

12 137583429 137796723 ENSOCUG00000021202 ADGB protein_coding ADGB

15 49347866 49458652 ENSOCUG00000007231 EMCN protein_coding EMCN

15 49644147 49646977 ENSOCUG00000016259 DDIT4L protein_coding DDIT4L

15 49913458 49915074 ENSOCUG00000001888 protein_coding H2AZ1

15 49916485 49967946 ENSOCUG00000006552 DNAJB14 protein_coding DNAJB14

15 49977243 49993809 ENSOCUG00000001152 LAMTOR3 protein_coding LAMTOR3

15 50001714 50057743 ENSOCUG00000001151 DAPP1 protein_coding DAPP1

15 50176043 50192203 ENSOCUG00000033265 C4orf54 protein_coding C4orf54

15 50209672 50271910 ENSOCUG00000013288 MTTP protein_coding MTTP

15 50283885 50302041 ENSOCUG00000015213 protein_coding TRMT10A

15 50312406 50334125 ENSOCUG00000005979 C4orf17 protein_coding C4orf17

15 50425785 50592158 ENSOCUG00000033073 ADH6 protein_coding ADH6

15 50651157 50749123 ENSOCUG00000023401 ADH4 protein_coding ADH4

15 50798231 50813150 ENSOCUG00000004263 ADH5 protein_coding ADH5

15 50824472 50875940 ENSOCUG00000004258 METAP1 protein_coding METAP1

15 51118531 51119782 ENSOCUG00000011845 protein_coding MOSPD3

15 51172355 51172825 ENSOCUG00000014372 protein_coding NCBP2

15 56065344 56066423 ENSOCUG00000013154 ATOH1 protein_coding ATOH1

15 56125675 57692564 ENSOCUG00000011440 GRID2 protein_coding GRID2

15 57621100 57621255 ENSOCUG00000038538 protein_coding RPL39

16 55321885 55628418 ENSOCUG00000014523 SPATA17 protein_coding SPATA17

16 55398040 55398175 ENSOCUG00000026785 snoRNA

16 55628243 55821665 ENSOCUG00000014512 GPATCH2 protein_coding GPATCH2

16 56371207 56371306 ENSOCUG00000020572 U6 snRNA RNU6-169P

16 56423452 56747063 ENSOCUG00000000984 ESRRG protein_coding ESRRG

16 56773722 57100615 ENSOCUG00000014710 protein_coding USH2A

16 56988591 56988761 ENSOCUG00000023834 U1 snRNA RNU1-132P

16 70169506 70277901 ENSOCUG00000021242 PKP1 protein_coding PKP1

16 70293168 70308113 ENSOCUG00000005561 TMEM9 protein_coding TMEM9

16 70324757 70381515 ENSOCUG00000003619 CACNA1S protein_coding CACNA1S

16 70396858 70440912 ENSOCUG00000003606 KIF21B protein_coding KIF21B

16 70468773 70484695 ENSOCUG00000021508 INAVA protein_coding INAVA

16 70524011 70640878 ENSOCUG00000007754 CAMSAP2 protein_coding CAMSAP2

16 70719761 70739784 ENSOCUG00000016514 DDX59 protein_coding DDX59

16 70760848 70828467 ENSOCUG00000016491 KIF14 protein_coding KIF14

16 70948498 70950219 ENSOCUG00000010120 ZNF281 protein_coding ZNF281

16 71151805 71278604 ENSOCUG00000006240 protein_coding NR5A2

16 74392390 74850110 ENSOCUG00000013965 KCNT2 protein_coding KCNT2

16 74844044 74844179 ENSOCUG00000032066 U2 snRNA RNU2-35P

16 74844044 74844179 ENSOCUG00000032066 U2 snRNA RNU2-16P

19 51109794 51659246 ENSOCUG00000008454 CEP112 protein_coding CEP112

19 51719224 51747920 ENSOCUG00000012115 AXIN2 protein_coding AXIN2

19 51999202 52088717 ENSOCUG00000003079 RGS9 protein_coding RGS9

19 52119221 52160069 ENSOCUG00000007640 GNA13 protein_coding GNA13

19 52193781 52203777 ENSOCUG00000014789 AMZ2 protein_coding AMZ2

19 52215848 52227671 ENSOCUG00000001594 SLC16A6 protein_coding SLC16A6

19 52250502 52337251 ENSOCUG00000017402 ARSG protein_coding ARSG

19 52338689 52375375 ENSOCUG00000017409 WIPI1 protein_coding WIPI1

19 52421754 52436752 ENSOCUG00000017419 PRKAR1A protein_coding PRKAR1A

19 52443755 52497803 ENSOCUG00000013725 FAM20A protein_coding FAM20A

19 52754375 52828097 ENSOCUG00000008011 ABCA8 protein_coding ABCA8

19 52910594 52915597 ENSOCUG00000033508 protein_coding ABCA9

19 52930414 52999575 ENSOCUG00000014380 ABCA6 protein_coding ABCA6

19 53049593 53144677 ENSOCUG00000014338 ABCA5 protein_coding ABCA5

19 53155605 53155991 ENSOCUG00000021439 protein_coding RPL22

19 53200639 53328302 ENSOCUG00000007606 MAP2K6 protein_coding MAP2K6

19 53882319 53883578 ENSOCUG00000026552 KCNJ16 protein_coding KCNJ16

19 53916674 53923901 ENSOCUG00000010416 KCNJ2 protein_coding KCNJ2
1
Oryctolagus cuniculus  chromosome.
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