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ABSTRACT

The existence of black holes that go beyond the mass typically assigned to them by their
stellar origin has been known for some time. The situation has changed however with
the realisation that a subset of primordial black holes (PBHs) could form all of the dark
matter with individually very low masses of up to 10−11M⊙. On the opposite mass range
Super Massive Black holes (SMBHs) have been found at very early redshifts, and their
influence on the universe as a whole is still being discussed. Using both numerical models
and instrumental techniques, we study the observational consequences of both of these
extreme black holes and analyze their importance.

We start our work by studying all current existing ways there are that would result
in observational evidence from PBHs being all the dark matter. Despite their varied ori-
gins, the standard PBH formation path comes from the collapse of perturbations after
inflation, which permits the use of the CMB to constrain certain scales. We also make a
in depth look at microlensing, which makes up the largest constraints on PBHs as dark
matter, and conclude that despite its usefulness the method will not improve the con-
straints for lower mass ranges. We make similar analyses of gravitational waves and PBH
evaporation, with the former having a lot of potential but requiring the next generation
of experiments to make useful constraints, and the later being a simple case where it is
unlikely further constraints will come up. We make a small aside to detail the differences
between monochromatic and extended mass distributions for PBHs, before finally zeroing
in the last remaining window for PBHs to be all the dark matter, concretely on its upper
limits around 10−12M⊙.

The PBHs in this mass range would leave very few observational results, being both
too small to detect through lensing and too big to be affected by evaporation. A possible
way to constrain them would be through their interaction with stars. As stars form in
the very early universe in z ∼ 20, the adiabatic contraction as the protostar is born will
accrue a large dark matter density gravitational bound to the star, due to the high density
and low velocity dispersion common in high redshifts. If PBHs were all the dark matter,
they will orbit the star, following a flat eccentricity distribution. There is a chance some
of the orbits of the PBHs naturally cross the star. While the dynamical friction of a main
sequence star on the PBH is usually negligible on short time frames, it is enough to bring
the PBH to the core of the star within the Hubble time, capturing it. Once at the center,
the PBH will accrete the star within 109 years resulting in a black hole the mass of the
star. This should result in a subsolar mass black hole that could not have had a stellar
origin.
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We compute the capture rate of a number of stars with differing masses for 10−12M⊙
PBHs. We use stellar models from MENSA ranging from 0.3 to 1M⊙ for the stars,
compute the dynamical friction numerically using two different types and take into account
the effect of perturbations coming from the rest of the galaxy to set a maximum radius
beyond which capture is uncertain. The result, which we call Ξ, is generic and can be
used to compute the capture rate for any dark matter density and velocity dispersion. We
apply Ξ to the case z ∼ 20, and our models tells us that we expect all stars represented
on our stellar models that are within ∼ 0.005RV ir of the center of their galaxies to end
capturing a PBH and being accreted in turn. The capture rate lowers with distance, but
it is still relevant up to R = 0.1RV ir. In even the worst of cases this should result in a
wealth of subsolar mass black holes that would survive to this day and could be observed.

We finally study the case of quasi stellar objects (QSOs), SMBHs with very high lumi-
nosity and whose contribution to reionization is still uncertain. The presence of a Lyman
α nebulae surrounding them is relevant to this matter, as the we do not know whereas it
is present for every QSO and we only see the brightest of them or if they are unique cases.
A good way to solve this issue is through the technique called stacking. This allows the
use of multiple images of the same type of object to reach depths otherwise impossible.
For stacking QSOs, the upcoming survey J-PAS and its predecessor J-PLUS are the most
promising, containing a number of narrow filters, acceptable limiting magnitude and very
large footprint. While J-PAS is only starting, we use stacking in J-PLUS for a total of
∼ 1, 550 QSOs and more than 3 hundred thousand stars, the later to obtain an accurate
recreation of the points spread function and so to avoid mistaking it for the signal we
are seeking. We find that J-PLUS does not have enough depth to reach the magnitude
needed with our number of quasars, but we reach very high depths for the star stack very
much inline to our projections, showing a high degree of promise for stacking. We fully
expect to be able to reach the magnitude to constrain the existence of the diffuse Lyman
α signal with J-PAS.
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RESUM

Aquesta tesi doctoral és un estudi de forats negres amb massa extrema, i les possibles
consequències observacionals que podrien comportar, enfocat des de la perspectiva de
forats negres primordials [1], forats negres que no serien d’origen estel·lar sinó que haurien
nascut al principi del univers [2].

En el Capítol 1 es fa una breu introducció a la cosmologia, la branca de la física que
agrupa l’estudi del univers com un tot a través de models parametritzats per variables
físiques. Un breu repàs històric passa a un sumari del model cosmològic actual, l’anomenat
ΛCDM, incloent les part no confirmades del model, la matèria i energia fosca. Un cop
situat el context, es passa a detallar la motivació física pel cas dels forats negres primor-
dials. És fa una breu ullada a un altre forat negre extrem, els de massa supermasssiva i
les seves diferents qualitats. Finalment s’acaba el capítol amb un petit anàlisi dels medis
actuals observacionals que poden aportar informació sobre els dos forats negres extrems.

En el Capítol 2 es fa un estudi a profunditat del cas en que forats negres primordials
serien tota la matèria fosca. Primer es descriu com seria el procés de la seva formació i
les particularitats que això els comporta. Després s’exposa la idea de restringir el rang de
masses en que els forats negres podrien ser la matèria fosca a partir dels efectes observa-
cionals que tindria la seva existència i s’ensenya les restriccions actuals de massa que hi
ha en aquests.

Es continua el capítol 2 amb un estudi en detall dels métodes més rellevants i que
produeixen la majoria de restriccions pels forats negres primordials que són la matèria
fosca. El primer és l’anomenat microlensing, del que es decsriu en detall la base teòrica
però també s’utilitza aquesta per justificar les limitacions actuals i futures del microlensing
que fan que certs rangs de massa de forats negres primordials siguin inabastables. Es
descriu també en detall el cas l’evaporació per radiacid́e Hawking, però de forma similar
es conclou que és difícl per les restriccions ja imposades de millorar. Finalment es parla
de les ones gravitatòries, i de com són de forma clara el futur que pot resoldre la qüestió,
però també com els observatoris actuals són força limitades i es depén de futurs projectes
que trigaran com a mínim 10 anys.

Després s’analitza l’estàndard que s’utilitza per restringir possibles masses on els forats
negres serien tota la matèria fosca i les seves limitacions. Finalment s’acaba el capítol
estudiant la única finestra que quedaria pel cas més estàndar on forats negres primordials
podrien ser tota la matèria fosca, forats negres de la massa d’asteroides entre 10−16 i
10−11 M⊙.

En el Capítol 3 mirem en detall un possible métode en el que la part superior d’aquesta
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última finestra, 10−12 M⊙ deixaria un resultat observacional clar. Aquest métode seria la
captura d’un dels forats negres primordials per part d’una d’estrella de sequència principal
a alts redshifts, en que un forat negre acabaria al centre d’un estel per fricció dinàmica i
després l’acretaria completament. Primer s’introdueix el métode en detall, conjuntament
amb la literatura prèvia que existeix i les difèrencies principals que introdueix aquesta
tesi per millorar els resultats.

Un cop introduït es proceedeix en detall a la descripció en clau matemàtica i física
del processos del qual es comprén, descrivint en detall l’origen de totes les equacions i
aproximacions utilitzades. En particular es millora sobre la literatura anterior en l’ús de
dos tipus diferents de fricció dinàmica per analitzar possibles difèrencies, càlcul numèric
la fricció dinàmica amb l’ús de models estel·lars en comptes d’aproximacions i la creació
d’un métode per estimar l’efecte que pertubacions per part de la resta de la galàxia podria
tenir sobre el nostre sistema de forat negre primordial i estel. Per acabar aquesta part
introduim el paràmetre Ξ per descriure els nostres resultats de captura. Mentre la mitjana
de captures sempre dependrà dels parametres de la posició de la estrella i la galàxia en
la que està, la Ξ en canvi és un resultat quasi completament genèric, que es pot aplicar a
qualsevol redshift o galàxia imaginable.

Després es proceedeix a la descripció dels resultats obtinguts en cada pas i a propor-
cionar gràfiques amb tots els detalls necessaris per a la seva comprensió. Concloem que tot
i que en petites escales tenen difèrencies importants, els dos métodes per calcular la fricció
dinàmica son equivalents pel cas que estem estudiant. En comparació, tenir en compte
possibles interferències de la resta de la galàxia és extremadament important, afectant el
nostre resultat final per més d’un ordre de magnitud. S’ofereix una taula amb el valor de
Ξ calculats per les diferents estrelles per ús en qualsevol model, però aplicats al nostre
cas particular d’una galàxia en el temps de les primeres estrelles es determina que una
gran part de les estrelles similars als nostres models acabarien capturant un forat negre
primodrial. Prop del centre de la galàixia quasi totes les estrelles haurien de capturar-ne
un, però fins i tot en posicions similars a les del nostre Sol la proproció seria notable, de
més del 1%. Finalment es conclou amb el tipus de resultats observacionals que es poden
extreure d’aquest fet, i com es podrien intentar distingir per resoldre la qüestió de forats
negres primordials de 10−12 M⊙ sent tota la matèria fosca.

El Capítol 4 es mou cap a l’altre extrem dels forats negres, el cas dels forats negres
supermassius. Es comença amb una petita introducció, incloent explicacions sobre el seu
possible origen, i com en una teoria exòtica els forats negres primordials podien haver
jugat part. Després es procedeix a detallar el cas particular dels quàsars, un subtipus
dels forats negre supermassius. També s’estudia la importància de la radiació Lyman α, i
com combinada amb els forats negres supermassius podria donar lloc a nebuloses brillants
de forma difusa al voltant de quàsars. Aquestes nebuloses contenen informació rellevant
sobre els forats negres que les generen i són una conseqüència observacional del efecte que
tenen els quàsars en el seu medi, que podria tenir implicacions molt importants per la
reionització del univers.

Per estudiar questes nebuloses, introduim l’stacking, una tècnica observacional que
consisteix en sumar diverses imatges del mateix tipus. En sumar les imatges, la incertesa
pel soroll tèrmic, anomenat Poissonià, baixa permitint-nos arribar a fluxos de llum molt
més baixos. La dificultat està en que també amplifiquem senyals sistemàtics que no
són aleatoris, com la Funció d’Espargiment Puntual (Point Spread Function, PSF) de la
imatge. Es detalla el significat de la PSF i com es pensa estimar-la, mitjançant un stacking
independent d’estrelles. També s’introdueix J-PLUS i J-PAS, campanyes fotomètriques
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d’observació des del observatori de Javalambre que tenen característiques que encaixen
molt bé amb el procés del stacking, una quasi finalitzada i l’altra a punt de començar
respectivament.

Utilitzant totes les tècniques introduides fins ara es fa una estimació del efecte d’un
possible stacking de quasars en J-PLUS per trobar la llum difusa Lyman α al seu voltant.
Es troba que amb J-PLUS no hi ha prou però que J-PAS és molt més prometedor. Donat
que la majoria de característiques de J-PLUS són compartides a J-PAS, es procedeix a
fer un stacking per demostrar la eficacia del procés i testejar el control de sistemàtics. El
resultat és que com s’esperava, amb el stacking de quàsars no hi ha prou per visulaitzar res,
però un stacking molt numerós d’estrelles arriba a la profunditat necessària per testejar
la lluminositat de la radiació difusa Lyman α, demostrant així que el procés és molt
prometedor i que per tant futura aplicació a J-PAS podria resoldre el cas de la llum
difusa al voltant de quàsars.

Finalments, es fa un resum de tots els segments de la tesi en el capítol 5. Es conclous
amb les perspectives de futur sobre els forats negres primordials i el cas dels quàsars.
Pels primers la solució més prometedora son els futurs observatoris d’ones gravitacionals,
especialment el satèl·lit LISA, que tot i estar com a mínim a 15 anys dels llançament
promet resoldre la gran majoria de les qüestions remanents. Pel cas dels quàsars la solució
es molt més propera. En el pròxim any J-PAS huaria de començar a prendre dades, i els
primers data releases no haurien d’estar gaire lluny. Donat que es pot traspassar la
majoria de la feina fet a J-PLUS per J-PAS, en només 2 o 3 anys es podrien millorar els
resultats de la literatura.

També s’adjunten un parell d’Appendixs, A explicant en detall un procés tècnic refer-
ent a un canvi de variable utilitzat en el Capítol 3 i l’altre B una justificació d’un criteri
també utilitzat en el Capítol 3.
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CHAPTER 1

INTRODUCTION

We are currently living in years that most likely will be referred in the future as a golden
age of Cosmology. For the uninitiated, cosmology as we know it today refers to the
study of the Universe as whole, bringing varied fields from astrophysics to particle physics
together, with the aim of creating a model of the Universe that accurately reproduces
the one we live in. That is just a broad definition, but regardless of specifics cosmology
has had an important role both enabling or helping a lot of the scientific successes in
the last years. The LIGO detection of gravitational waves has resulted on the birth of
multi-messenger astronomy, opening a new door for the future. Astronomical surveys are
cataloguing our skies with increasing accuracy, each star and bright point in them being
measures, both with ground based telescopes like SLOAN to space based ones like Planck.

However, looking at only the last years is perhaps reductionist, for in a way Cosmology
has always been in a golden age, perhaps since its beginning. Assigning the field a year of
birth is a complex endeavour though. To start, one cannot help but perhaps to think of
Einstein’s special relativity. Establishing the space-time as more than a background, an
entity with a metric that also was affected by gravity, and setting the speed of light as a
maximum velocity and a universal constant. But while special relativity is undoubtedly
the foundation of almost any theoretical modelling of the universe, its first solution were
used for a static unchanging universe that was forced a priori. It was not until Fried-
mann worked on his solution 6 years later that this assumption was relaxed, reaching the
following form [4]:

ä

a
=

−4πG

3

(
ρ+

3p

c

)
+

Λc2

3
, (1.1)

where a is the dimensionless scale factor, which measures the universe’s expansion or
contraction. To define a we make it so the distance between two places d0, at a reference
time t0 where a(t0) = 1, is related to the current distance by d(t) = a(t)d0. Its double
derivative measures whereas this expansion is accelerating or not and in which direction
(expansion or contraction). This depends on the energy density ρ and pressure p of the
universe, for in special relativity mass and energy are interchangeable, and on a possible
cosmological constant Λ. From this equation expansion or contraction, with differing
speeds and accelerations, all depended on parameters of the universe rather than being
set a priori, a simplistic but undeniable first modelling of the universe.
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Chapter 1

But it is also true that Friedmann equations were mostly ignored. The favoured theory
of the time kept being of a static universe, neglecting the possibility of a expanding
one. Lemaitre found a similar solution to Friedmann independently 5 years later, and
elaborated on it by reaching a possible observational result in a very simple way [5]. If
we assume that the expansion of the universe dominates over any other type of velocity,
then we can relate the velocity we will see the objects moving at directly with the scale
factor:

v =
ȧ(t)

a(t)
d(t) . (1.2)

This equation follows quickly from d(t) = a(t)d0, you just need to derive by time on
both sides and assume the velocity due to expansion is far larger than any other, which
we expect to happen for far off objects like galaxies.

We can measure the velocity of far away galaxies by finding the Doppler shift of their
major emission lines: if a galaxy or star moves while emitting then from our point of view
will see the wave stretched or shortened, that is the Doppler shift. Because almost all
galaxies were found to be receding from Earth, this resulted in the wavelength of their
emission lines lengthening, shifting them to the red part of the spectrum. Thus this
measure of a galaxy speed became commonly referred as redshift velocity.

Yet even Lemaitre was also initially ignored together with the implications of finding
mostly receding galaxies until in 1931 Hubble published his rather famous law [6]. Based
on observations he did as an amateur astronomer and previous observations, he found
the redshift velocity of stars had a linear relation with their distance, just as equation 1.2
implied. The only difference with equation was that he changed the scale factor division
ȧ(t)/a(t) by a parameter, the Hubble parameter, and measured it for our current time.
H(tnow) =

ȧ(tnow)
a(tnow)

∼ 70km/sMpc1.
Backed by observations, the until then controversial expanding universe was finally

accepted. Redshift became a standalone measure of an object’s distance to us in an
expanding universe rather than tied only to velocity. While there was a lot of previous
theoretical work, it was observational evidence that tipped the balance. Some put the
birth of cosmology here, when the expanding universe was adopted as the standard,
perhaps a good reminder that in the end science should not only seek beautiful models
but rather value observational evidence above all.

Yet the entire debate was not settled. Lemaitre continued his work and brought the
idea of a expanding universe to its ultimate conclusion, a Universe that started from
nothing, a Big Bang. Others believed in a steady state universe, where constant matter
creation was the source of the expansion but the rest of the universe was static and eternal.
The issue kept on for more than thirty years, but it was again observational evidence that
solved the divide with the frankly lucky discovery of the cosmic microwave background
radiation by Alpher and Herman in 1964.

A radiation coming from all sides with almost completely homogeneous and with a
perfect black body spectrum. A black body is an idealized object which is both completely
opaque and has no reflections, which makes a perfect model for understanding how a
purely thermal emission by a very simple source would look like. In comparison stars and

1Due to several cosmic calibration mistakes, Hubble initially measured a Hubble parameter far above
the current measurement of ∼ 70. Nonetheless, him proving the linear relation between distance and
redshift velocity was what mattered to settle the expanding universe issue
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Figure 1.1: Released image of the CMB from the Planck mission, freely acessible at
www.esa.int. The anysotropies are clearly visible, though we remind that their relative
scale is extremely small. Credit to ESA and the Planck Collaboration

other astronomical object emit in more complex ways, as they are composite objects made
of multiple layers and elements and are reflective and only partially opaque. The black
body emission found gave a measure of the effective temperature of the Universe, but
could not come from stars or other similar objects. However the black body emission fit
perfectly with the CMB being the first light of the universe, the moment where protons
and electrons first joined into atoms and light was allowed to roam freely through the
universe.

Following this, in 1966 there were the first detailed calculations of primordial nucle-
osynthesis [7], which used details of the CMB and the first Big Bang models to compute
the abundances of basic elements. While the exact birth of cosmology is subject to debate,
what is commonly known as modern cosmology undoubtedly started with the CMB and
nucleosynthesis, and there has been almost constant progress since.

A good illustration of this is perhaps the CMB itself. The initial detection settled
the debate about the origin of the universe, but even 30 years after work on the small
anysotropies present on the CMB is still improving our understanding of the early universe:
it is expected that due to interactions in the early universe between matter and radiation
the CMB is not completely homogeneous, but rather has perturbations on a relative scale
of ∼ 10−5. This inhomogeneities can be seen on figure 1.1, with the redder colour being
very slightly hotter and bluer very slightly cooler.

While very small in comparison to the temperature itself, of the order of microkelvin,
the nature and shape of these perturbations are not random. Rather, the distance be-
tween various patches of cool and hot inhomogeneities can be analysed through their
power spectrum. In figure 1.2 we show the results from Planck in 2013, a mission from
the European Space Agency with help from NASA and other space agencies, where the
fluctuations are shown versus their distance between them on the sky on degrees, called
angular scale. The shape and peaks can inform our understanding of the early universe,
including estimating parameters as specific as baryon density or the curvature of the
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Figure 1.2: Released image of the Power spectrum of temperature fluctuations in the
Cosmic Microwave Background from the Planck mission in 2013. Freely acessible at
www.esa.int. While the shape differs a lot depending on the angular scale a set of clear
peaks and tails can be appreciated. Credit to ESA and the Planck Collaboration

universe. Even today, the power spectrum of the CMB is still a focal point, every new
experiment improving the accuracy or trying to shed light on poorly constrained angular
scales.

All of this data has to be understood and interpreted through the current and well
established standard cosmological model, ΛCDM. While there are a few tensions with
observations, the latest results coming from the spacecraft Planck gave us among other
things both the images in figures 1.1 1.2 and very strong support to ΛCDM. Since its
conception ΛCDM has managed to tie seemingly disparate and separate issues to explain
what we see.

Its name is a good example, as it comes from its two main constituents, Λ standing
for Dark Energy and CDM for cold dark matter. Both are the main components of our
Universe (95% according to Planck) and both have ’dark’ in the name, meaning we are
unable to see them, but they share little else.

Dark energy emerged from observations of supernova in 1998 [8]. Following from
equation 1.2 we can estimate the Hubble parameter from observations, which can give us
the scale factor and the change of the scale factor. There is another subtlety however, as
light from very distant places takes quite a while to reach us, what we see is that place
of the universe as it was when the light was emitted. This means very far off signals do
not tell us the current scale factor, but the scale factor and its time derivative of when
they were emitted. Observation of distant supernova showed that, contrary to what we
expected, the expansion of the universe was accelerating. The scale factor a has increased
compared to past times.

Recovering equation 1.1, the acceleration of the scale factor ä depends on the energy
and matter content in the universe. But, if we hold matter and energy conservation, all
factors in the first term would get lower as the universe expands and both matter and
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energy dilute. For ä to increase the expansion of the universe means there is a non-zero Λ,
a cosmological constant that comes to dominate the universe eventually as the expansion
keeps on.

This is the nature of dark energy, which according to the last measurements forms
up 68% of the current universe density2. Dark energy can be conceptualized as an anti
gravitational force, but its nature is still being discussed. Even to this day any kind of
observation beyond its effect on the scale factor remains elusive, and numerous models
describing dark energy exist but there is little consensus about them. Potential experi-
ments to try to ascertain more are currently too far off to even entertain, and would likely
require venturing outside the Milky Way.

Dark matter is a decidedly different issue however. Dark Matter is self descriptive, a
form of matter that barely if at all interacts with light, and so to us appears completely
dark. The adjective cold comes from a description of its speed in the early universe,
which is relatively slow. While simple velocity might appear trivial, this has far reaching
impact on the structure of the entire universe. Unlike dark energy, we know dark matter
surrounds us, its gravitational effects changing the Milky Way and allowing the galaxy to
be born as we know it. Indeed, looking to our galaxy and further beyond 50 years ago
illustrated the need for an unseen matter in order for the gravitational forces we observed
to make sense. With the passage of time, more and more evidence for its existence has
piled up, being outright needed for the ΛCDM model to explain structure formation
and the power spectrum on figure 1.2. Is this precisely what has allowed us to say dark
matter is cold and constrain most of its characteristics, and so exclude or include objects
as candidates to being the dark matter. As a matter of fact, we do know a lot about dark
matter even if we are still in the dark about its true identity.

That is perhaps why this lack of a confirmation of its identity has frustrated the
scientific community for the last years. Near the change of the century the hopes of
the community were focused on a series of particles called WIMP, standing for weakly
interacting massive particles.

As the name said, WIMPs were fairly massive particles roughly around a 100 times
the mass of the proton, though it depended on the model and could be hundreds of times
above or below that. They only interact with the rest of the universe through a force
with the strength of the weak interaction and gravity. While not a part of the standard
model, they are a natural byproduct of what at the time were expected extensions of the
standard model, like supersymmetry.

WIMP was the focus for the search of dark matter due to what was called the WIMP
miracle. To put it simply, if there existed a particle with a mass roughly a 100 times of
the proton and a coupling very close to that of the electroweak force, we would expect
the universe to produce it thermally to the expected density of dark matter in our current
universe. That would come purely from high energy scattering processes, like all current
baryonic particles in the universe, without any need for special creation models and the
only extension of the standard model needed being the ones that let the particle exist in
the first place. Seemed like a natural fit.

However, the expected mass for that WIMP miracle was within the range of the
hadronic accelerator at CERN. The LHC has failed to find them, together with multiple

2Note that this has not always been true. As mentioned, both matter and radiation density go down as
the universe keeps expanding. In the earliest times of the universe Λ was completely negligible. However
Λ is not affected by the expansion of the universe, thus it eventually dominates over all other forms of
density and will keep doing so after that.
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other direct detection experiments. While theoretically still possible, interactions are
very much constrained and other masses become motivated, including outside the WIMP
paradigm. The general attitude across the community has slowly shifted from hope to
a more jaded skepticism, and the search for alternatives has become a hotly contested
debate.

The axion is perhaps one of the more interesting ones. They were initially conceived
as a byproduct of a mechanism used to solve a puzzling issue within the current standard
model. The strong interaction, mostly known as being the basis of quantum chromody-
namics (QCD), is symmetric under both charge conjugation and parity. This means that
its interactions do not vary if you both flip a spatial coordinate3 or change all particles
for their antiparticle equivalent. The issue being the current standard model of particle
physics, while tremendously successful, does not explain how this symmetry came to be.
The strong interaction a priori should be able to ignore these symmetries. A mecha-
nism was proposed to solve this issue, the Peccei-Quinn mechanism [9]4, which almost
inadvertently results in the creation of a new type of particle, the axion [10,11].

This axion is commonly referred as the QCD axion, and remains a very good candidate
for dark matter. While the exact mass remains unknown all axion models give very light
particles, of the order of less than a tenth of an electron mass. At the same time, the QCD
axion itself does not have any special reason to fit the abundance and density required for
dark matter. There exists a variety of experiments that are successfully constraining the
parameters of the QCD axion [12], through both laboratory and astronomical searches,
but its existence remains unconfirmed.

Set of particles with similar characteristics to the axion can be generated in other
extension the Standard Model, like string theory. This whole class of particles are named
axion like particles (ALP) after the first of their kind, but can theoretically have very
different properties. Finding one that fits our cold dark matter is easy for multiple models
[13]. At the same time it is hard to find extensions of the standard model as well motivated
as the QCD axion, and so they remain a secondary, though interesting, candidate for dark
matter.

One could try to reject the need for completely new theoretical particles, as none of
the properties of the dark matter are so unique as to require it. Needing to invent a
particle when standard physics might be enough is contrary to the classic Occam’s razor
and standard scientific thinking after all. However, in practice, primordial nucleosynthesis
and the CMB strongly constrain the amount of baryonic matter within the universe.

Another possibility is to focus less on theoretical origins and more of the shape such
DM could take. One of the line of thoughts was that the dark matter could be found
in massive astrophysical compact halo objects (MACHOs). MACHOs would be compact
objects that would not be bright enough to be observable from Earth. An example could
be objects formed of standard baryonic matter like brown dwarfs to planets, as long as
they are any kind of compact object whose emission is far below the scale of a main
sequence star. Of course, if they were to be the dark matter there had to be more exotic
objects of non-baryonic matter to fit the nucelosysnthesis constraints. The search for
these objects was one of the main aims the astrophysical community 30 to 20 years ago,
giving raise to the "MACHO Project" [14] from 1993 to roughly 2000 [15]. The findings
looked conclusive; MACHOs, could not be the majority of the dark matter. This meant

3Basically the equivalent of moving the particles to where their reflections in a mirror would be
4The original form of the Peccei-Quinn mechanism described in the paper was ruled out by experiment,

but more modern forms exist and are almost identical in mechanism and purpose
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the dark matter was expected to be composed of flocks of particles rather than more
massive groupings.

These last years another candidate has risen, one that was part of those MACHOs if
in more unique way: black holes (BHs). They are extreme astrophysical objects and one
of the most surprising consequences of Einstein’s special relativity. Accepting that mass
distorts the space-time and affects everything within it including light also results in the
logical consequence that a big enough concentration of mass would be able to trap the
light, and everything else, within its radius:

rS =
2GM

c2
, (1.3)

where M is the mass, G the gravitational constant and c the speed of light. The above
can be reached just by requiring an object to have an escape velocity of the speed of light
using Newtonian gravity. As special relativity sets the speed of light c as the maximum
achievable, this automatically traps all the objects within, including light.

Being brought to light first by Schwarzschild [16], this solution was initially highly
contentious within the community. However, experimental results that are clearly in
support of such, or at least very similar and factually identical objects, have constantly
appeared. While black holes do not emit or reflect any kind of radiation in a substantial
way, and thus cannot be observed in theory, we can measure the effect of their gravitational
forces on nearby objects and see the accretion disks of matter falling into the black hole
that surround them. The former warp the orbit of surrounding objects to the extent that
only a mass too big to be just a planet or asteroids could be responsible. Accretion disks
meanwhile shine as the matter within it heats, due to viscosity and collision within the
disk. As the matter of the accrettion disk slows its orbit to fall towards the black hole
proper, the energy lost heats other parts of the disk and the matter also emits a portion
of its energy in the infall. This means not only the disk is visible, but also the emission
of matter infalling being different from the symmetrical disk makes it a very directional
and peculiar signal.

Historically a good example is Sagittarius A*, the black hole at the center of our own
Milky Way. Initially catalogued as radio source, Sagittarius A* was identified as a bright
and compact object in 1974 [17]. The possibility of it being a black hole was recognized in
the 80s, but it was not until 1994 that the size and mass could be measured [18]. Further
observations reached the conclusion that no other object but a black hole could be of that
size and that mass. Similar things have happened with other black holes: with time the
evidence has piled and currently their existence is as well established as that of stars and
galaxies, but only at the end of eliminating all other possibilities.

This has changed however, with one of the greatest triumphs of cosmology we shared
before, the detection of gravitational waves. Gravitational waves can be thought as quite
literally aftershocks from strong gravitational events. If the space-time is a net affected
by the mass of objects, then gravitational waves are the ripples left when something on
the net moves. On 2015, LIGO detected gravitational waves for the first time in history, a
merger of 2 objects of roughly ∼ 30 and ∼ 35M⊙ [19]. While the merger is the source of
most of the gravitational waves, in the last moments of the infall, before the two objects
collide, smaller gravitational waves are emitted which contain details of the individual
objects. Those waves coincided exactly with simulations of black hole mergers, which
together with the lack of a luminous signal to accompany the merger of two such massive
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objects made it clear they were black holes. Black holes, while still not seen, were finally
confirmed to exist beyond the realm of doubt.

The characteristics of black holes as being invisible to our eyes recall those of dark
matter, so a connection seems natural at first. While the dark appearance is because
of gravity rather than an intrinsic property, they neither emit or reflect other radiation
enough for us to detect it, and they also easily fulfill the cold criteria, their speed being
dependent only on gravitational interactions. It also takes advantage of them being known
physics, instead of requiring introducing a whole new set of particles. However, we knew
of only way for a black hole to be created, and that is being born from a giant star that
has gone supernova.

This sets a priori rather strict limits on their mass and location. The collapse into
a black hole requires a star to go supernova, and for the remnant to be above the
Tolman−Oppenheimer−Volkoff limit of ∼ 2.3M⊙ [20–22]. There is also the issue of
place, as star formation has a number of requirements, especially for stars as big as to
eventually become black holes. Their big masses in the numbers required for dark mat-
ter would be very apparent in common star formation sites, which have both plenty of
objects and matter to be affected. This conclusion became only strengthened by recent
and improved analyses of primordial nucleosynthesis, which set rather tight constraints
on the baryonic matter that existed in our universe at the very early times [23]. All these
reasons make it understandable why black holes had been almost rejected as dark matter
candidates.

Black Holes however are more complex than their original astrophysical context im-
plies. From a purely theoretical point of view they are fascinating objects whose internal
dynamic is completely inaccessible and even when there is a clear consensus on a partic-
ular aspect it is very hard to prove experimentally. They are effectively a black box of
which we can only theorize its inner workings based on fundamental laws. A great exam-
ple is Hawking radiation [24], named after the late Stephen Hawking, which is a result of
the presumptive quantum nature of black holes and the only radiation they emit.

Hawking radiation will be explained in more detail in section 2.3, but is a result of
the horizon of a black hole having an effective temperature from the point of view of
an observer, which also means the observer will preemptively see a black body emission
corresponding to such temperature. We use presumptive because despite our best efforts,
the scale of Hawking radiation is currently just too small for any kind of detection on
known black holes.

Another example can be its mass. From a theoretical point of view there is nothing
stopping black holes from having a certain mass or another, rather they depend mostly
on density. For any value of mass there is a correspondent Schwarzschild radius, as seen
in equation 1.3, below which the mass will collapse unto a black hole if compressed. In
practice, the black hole will only have the range of masses that the processes that can
generate such extreme density value can create.

However, unlike other theoretical aspects the mass of the black hole is accessible to us
both before and after the collapse. Thus, asking if stars are the only possible way to form
black holes is a question that belongs to cosmology and astrophysics, and one we might be
able to find observational proof rather than just ponder. While stars undoubtedly provide
a way for black holes to form, there is a lot we do not know about the universe, especially
in the very early times. They say the proof is in the pudding, and the easiest way to
prove this alternative origin for black holes would be to find a black hole that could not
form from a star. While the Tolman−Oppenheimer−Volkoff limit has some variability, a
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black hole below 2 solar masses will just not form from a star.
Similarly, extremely massive black holes could exist from mergers of smaller black

holes or accreting enough mass, but we normally would expect them to be much rarer
than common black holes. Indeed, this is not simply hypothesizing as there already exist
many examples of the so called super massive black holes (SMBHs). If there is nothing
stopping black holes from being of any mass, perhaps a look at the extremes is warranted.

1.1 Super massive black holes
Super Massive Black Holes (SMBHs) are, as the name implies, extremely massive black
holes, from the order of millions to even 109 solar masses, located at the center of galaxies.
A good example is the previously mentioned Sgtr A* in our own Milky Way, with a size
of 3 · 106M⊙. While it is hard to say for certain, every standard and larger sized galaxies
seems to have one at its core.

This however brings a question, and it is how we have been able to identify them so
readily. For Sgtr A* we have been observing it since 1974 and only 20 years later there
was strong evidence that it truly was black hole. For much farther black holes identifying
them should be incredibly hard, as we cannot measure the change in orbit of objects
nearby to the black hole compared to what we see. We can only see the galaxy as a
whole.

The answer comes from their brightness. The SMBHs are in fact the reason why we
are able to see some far off galaxies, as only incredibly massive objects are able to have
such high luminosity. Because of both their mass and their position, they can accrete a lot
of matter. A portion of the energy lost by the matter as it falls within SMBH is emitted
as radiation, and because their massive size the emission reaches brightness several orders
of magnitude above even the brightest stars. Our understanding of SMBHs is also helped
by the fact we can estimate the mass of such extremely bright objects.

While mostly negligible at human scale, light has associated a radiation pressure,
coming from photons colliding with objects. Despite having no mass, photons carry
momentum and they impart a portion of it on any object they interact with. Knowing
the momentum of a single photon is p = E

c
we can derive the force for unit of time. We

do not measure radiation in individual photons though, but in luminosity as the energy
of the emission per unit of time and also sometimes in flux as their energy per unit of
time and area.

For almost all objects we expect the radiation to be perfectly isotropic and spherical,
equal in all direction, so we expect that for a single point in space and time, the emission
will carry the following momentum:

p =
L

4πR2c
, (1.4)

where R is the radius of the point from the source of the emission, and L the luminosity
of the source. This follows purely from applying the momentum of the photon to the
luminosity of the source divided by area.

How much of that momentum will be transmitted at any body however will depend
on what we call the opacity of an object. This measures how much of the momentum
carried by the photon is transferred, and depends a lot on the atomic characteristics of the
object. For the particular case of our extremely bright source we do not know the exact
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composition of their surroundings, but we do know that hydrogen is the most abundant
element in our universe. Because we also expect these sources to have been emitting for
a while before reaching this point, we can also safely assume that most of this hydrogen
will have been ionized by that previous radiation, meaning most of the particles falling
surrounding the source will be either free electrons or free protons. Knowing that, we
can approximate the opacity using the Thomson scattering cross section of the electron
σT . As the force is the change of momentum per unit of time, and the object will receive
emission continuously, following from equation 1.4 we get:

Frad =
L

4πR2c
σT . (1.5)

This radiation force, and the pressure it causes will continuously affect all that receive
the luminosity coming from the source. This applies to all kind of objects, the emission
coming from a star or fainter objects, but it is most powerful for black holes, as their
own accretion disks are also the source of the emission. Every individual particle within
accretion disk would receive two opposing forces, the gravitational one coming from the
black hole and the radiation pressure pushing them outwards. For some cases the radiation
pressure wins, stopping matter from falling into the disk. The lack of accretion means the
system stops emitting however, which stops the radiation force, which means matter again
falls to the black hole until its own light stops it again, etc. Therefore, for any source
that is accreting we can set a minimum mass, or for any known black holes a maximum
luminosity, the Eddington luminosity. It is very straightforward to obtain, we just take
equation 1.5 and compare it with the gravitational force from Newton:

L

4πR2c
σT =

GMBHmp

R2
−→ LEdd =

4πGMmpc

σT
, (1.6)

where we use the proton mass mp to assume the average mass of the object affected5

Using the Eddington luminosity we can easily estimate both the mass and accretion
of SMBHs despite their distance, which helps a lot establishing relation with their host
galaxies. We in fact call SMBHs that we can see Active Galactic Nuclei, as their scale
is such that from the outside it looks as if the activity comes from the entire core of the
galaxy.

Some among the AGNs containing these SMBHs are named quasars, from Quasi Stellar
Objects (QSO), because their host galaxies are so far off they look point-like, similar to
stars. Without the brightness from the SMBHs seeing this kind of objects would be
extremely hard and a window in the far off universe would be shut down. Even more,
because the speed of light is finite and the distances so large, this window is not only to
large distances but also to a very young universe.

With their luminosity we can estimate their mass, and the relatively standard emis-
sion spectra of quasars also allows us to estimate the distance. While most quasars were
initially found at around redshifts 1-2, current instruments have found SMBHs of even
higher mass at redshift 7.5 where the universe is less than 109 years old [25]. Further
searches have continued to find SMBHs at similar redshifts 6 − 7. A controversial topic
is if there would be enough time for such SMBHs to form from stellar black holes. [26]

5Sometimes a mean molecular weight is used, taking into account other elements like helium into the
ionized soup. This can have a minor effect, but for the sake of simplicity we will not introduce it here
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postulated that we would need super-Eddington luminosity, in other words ignoring equa-
tion 1.6 to achieve high enough masses, but this requires a large set of assumptions and
knowledge of the formation of those SMBHs we currently do not have.

1.2 Primordial black holes
If there is this another way to produce black holes then the topic goes full circle, as smaller
black holes could form the majority of the dark matter. Lower mass black holes could
avoid previous searches for MACHOs and other existing restrictions.

So with that aim, are there really any alternate ways to form black holes? The answer
lies at the beginning of the Universe. A period of which we know little, but there are a
number of ideas with strong support from both theoretical and observational points of
view. One of these is cosmological inflation, a period where just after the Big Bang the
early universe expanded at exponential rate, basically enlarging and smoothing out the
universe. While a very abstract and hard to grasp concept, it has grown into another
strong core of the ΛCDM model, and the experimental evidence, as scant as it is with
such early epochs, continues to support it. Inflation brings with it also a set of new
possibilities: as inflation expands the space-time fabric itself, there is a chance quantum
perturbations, inherent to everything, could escape their usual scale and grow to solar
and galactic scales. Indeed, the small variability we see within the CMB in figure 1.1
is believed to correspond to a set of these perturbations and that would be extremely
hard to understand without inflation. If some of the density fluctuations formed a very
high peak, then the perturbations could grow enough for them to collapse into a black
hole a while after inflation ended. In the case of standard gaussian fluctuations that are
commonly assumed these kind of peaks would be extremely rare, but both non-gaussian
and non-standard perturbations exist in a lot of the more complex inflation models.

Even assuming those the process is still not simple, as the fluctuation first has to
do what we call as reentering the horizon. While the perturbation might have grown
enough to collapse, because inflation expands faster than light just after it the enhanced
perturbation will not be casually connected. Rather, it has to effectively wait for the
universe to catch up in this process of reentering the horizon, after which the now causally
connected fluctuation will finally start to collapse. As easily seen from this description,
this a highly non-linear and complex process. Another layer of complexity is added in that
this process happens in the radiation dominated era of the universe, so the collapse will be
very unlike that of star. By special relativity matter and energy have an equivalence, so
the lack of standard physical matter should not be an impediment and if the perturbation
had enough energy that it would be equivalent to a mass below its Schwarzschild radius
then it will collapse into a black hole nonetheless. But the accretion and collapse are
still described differently than in our current matter and Λ dominated era. All of this
results in that to describe this process highly complex numerical simulations are needed,
and even then they have very few generalities even among superficially similar inflation
models.

Still, this whole process would give birth to a group of black holes shortly after the
Big Bang, a set of primordial black holes (PBHs). These PBHs would be practically as
old as the universe, and because of the multiple variables in their formation they could de
facto have any size we could imagine. In fact, it is not hard to theorize that they could
not only give birth to a set of smaller or medium sized black holes, but also to giant seeds
for the previously discussed SMBHS. While this opens a lot of possibilities, a word of
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care should also be given to not just dream of infinite black holes. There are alternative
models that generate PBHs, some using new fields that result in domain walls [27] or
exotic phase transitions with new vacua [28], but all have in common that they make use
of inflation. While very useful, as it allows the formation of PBHs with almost any mass
just by fiddling with a couple of parameters, it also means adding layers of complexity to
an already hard to understand epoch. Most of this complexity is also outside the standard
model of physics. This is in part undeniably exciting, as finding these PBHs is one of
the very few ways of probing the physics of inflation, but also should beget some caution.
Creating PBHs that can explain almost everything should be subordinate to trying find
what observational traces of them we can.

1.3 Detection
Of course, while finding black holes is not easy there has been a lot of progress these
last 10 years. Perhaps the most visually impressive is the image obtained by the Event
Horizon telescope [29], seen in fig 1.3. An image that literally required observatories from
the entire world, and looked at the SMBH closest to us besides the one in our Milky
Way. While very impressive, this a feat only possible because of the close proximity of
the galaxy M87 and the massive scale of the black hole. For the less massive and more
distant brothers of M87 there are other ways, but the most novel and promising are the
gravitational wave observatories like LIGO [19,30]. These detectors open an entirely new
window and mark the beginning of multi-messenger astronomy, so called because for the
first time light will not be our only messenger but another set of waves will join it.

As LIGO is only a first generation detector it is only able to catch near and relatively
massive, at least for stars, mergers. However, the amount of high mass black holes detected
initially took the community by surprise, as that was region of masses where very few
stars were expected, and the expected numbers of mergers could fit a possible black hole
dark matter in those mass ranges, despite existing constraints from MACHOs. Since then,
LIGO has currently ended its third observing run and the number of mergers does not
fit the one expected by a pure black hole dark matter. Still, statistical analysis conclude
that a portion of the mergers likely come from a population different than that of stellar
black holes [31]. This however has to take into account that black holes resulting from
multiple (stellar origin) mergers are hard to model, and none of the individual events are
hard to describe using stellar origin black holes. LIGO may have detected PBHs, but if
so needs a lot more statistics and events to be sure.

Current first generation gravitational wave detectors, as much of an accomplishment
as they are, are not perfect however, or even that good at picking up signals from possible
PBHs. Earth detectors have limited sensibility, so they require the targets to be both
close and massive. The seeds of SMBHs if they are PBHs would be rare and likely far off,
while black holes from below one solar mass would need to be very close to be picked up,
and even then assume they have mass of at least around 0.5M⊙. Masses below that are
simply not detectable. Future next generation GW detectors would improve the situation
a lot, especially LISA [32]. However, current plans put all these project at least 10 years
away, and given how novel the technologies in use still are, further delays are not unlikely.

Fortunately we are not limited to gravitational waves to try to detect or know more
about these abnormal PBHs. For SMBHs, the brightness of QSOs is an excellent way
to understand their properties and further detections at even higher redshifts will only
increase our knowledge. Even if there is not much progress on its possible origin as
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Figure 1.3: Figure 3 from [29]: EHT image of M87*, on the various observation days.
It is an average of three different imaging methods after convolving each with a circular
Gaussian kernel to give matched resolutions, and it is in in units of brightness temperature.
For technical details check the reference.
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SMBHs, just a better understanding of the early universe will indirectly help a lot, as
both possible non-PBH seeds and the PBHs themselves form very early and thus depend
a lot on these early epochs. While there exists a lot of theoretical work about the first
stars and galaxies there is still a lot of uncertainty due to our very scant observational
evidence of those times. Finding any more pieces to our puzzle will only help.

On smaller PBHs, the situation is both more promising but also much more complex.
While black holes not of massive sizes are very hard to detect, the sheer scale of the
dark matter means that if PBHS were the majority of it, then there would be a lot of
them. LIGO despite its flaws is still enough to set harsh constraints on masses close to
a bit bigger than stellar black holes. Bigger masses would have galactic consequences
that we could notice [33]. For low mass PBHs however, there are a lot of issues that
complicate their detection, the simplest of which that they are very hard to distinguish
from planetoids or even asteroids. A number of methods have been proposed to try and
help at least decide if they could be an important fraction of the dark matter, but it is
still an open issue.

On chapter 2 of this thesis, we move to describe this issue in greater detail. In
particular there are a lot of so called constraints, resulting from the fact that if PBHs
of a certain mass were all the DM we would have noticed it in some already existing
observations. Most of these constraints come from microlensing, the idea that if there
were so many smaller black holes within our galaxy some would have modified the light
coming from stars on their way to us. While among the most important constraints
we have, very accurate estimates of both the number of stars and the type of black
holes is needed for constraints on the most dubious ranges where we would only see a
couple of lensing events. Another big portion of the constraints comes from Hawking
radiation. While undetectable for stellar mass black holes, for the much smaller masses
that PBHs can be and in the quantities needed for dark matter the Hawking radiation
would produce a noticeable bump of background radiation at various frequencies we do
not see. Of course, this assumes Hawking radiation exists, but on practice the models
used for PBH generation already make that assumption. The question about a black hole
without Hawking radiation is one worth asking, but not one suited to PBHs.

Even with all these constraints there still remain issues. In particular, most of these
simply assume PBH to be of a single mass and in a very standard grouping, but as
the ways for PBH to form can be very different both of these can be equally varied.
Particularly the way an extended mass range (i.e. 0.1 to 1 solar masses rather than just
1 solar mass PBHs) would afect the constraints is rather complex [34], and can be used
to both lighten [35] or harshen constraints [36]. Even beyond that, the clustering of these
PBHs is also important. While not expected in the standard formation scenario that we
described it is not uncommon in alternative ones that depend on domain walls or phase
transitions. If the PBHs are very clustered together, then not only previous constraints
disappear but new ones also appear [37]. It is a very nuanced topic, and while very useful,
a simple constraints graph is not enough to describe the situation.

On chapter 3 we describe an observational consequence that would result if PBH of
around 10−12M⊙ were most of the dark matter. These PBH are too small to be detected
even by microlensing [38], and are currently one of the last windows in which PBH could
be the whole of the dark matter [39]. However, they are also extremely common due to
being so small, so they would be constantly interacting with standard objects like stars.
This would result in a lot of them crossing the stars, either free or during their orbit.
While uncommon, there is a chance they are slowed enough by this crossing that they
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just remain in the star, and slowly fall to the center. At the center they would accrete the
star until there is no more star and the PBH now has a mass that we can detect. Previous
work has been done on this idea with both neutron stars [40] and main sequence stars [41],
but that was focused on globular clusters. We follow on that work by creating a model
in the early redshifts, just after the first stars. While simple, we compute numerically
the slowing with 2 different methods to ensure its reliability. We also add an estimate to
account for third party perturbations on our system, something which has been lacking
in previous works.

There are caveats to our model, but with a few exceptions it is generic and even
extensible to later redshifts. This means our results are not only applicable to cases
where PBHs are all the dark matter at very early epochs, but also one where they are
only a small fraction and the star forms at medium redshift.

On chapter 4 we put a focus on SMBHs, concretely on a way to gain more information
about their surroundings. Quasars as mentioned are very bright, but one of the biggest
incognitas is how much they contributed to the reionization of the universe. Currently a
mostly minor contribution is expected, but any variation on this has massive repercussions
for our understanding of QSOs and then MSBHs as a collective. A related question is
about the nebulaes that commonly accompany the brightest quasars, showing at least
the individual contribution to their surrounding, but that we cannot appreciate for their
fainter siblings. However, quantity has a quality of its own. With a technique called
stacking, which we describe in detail, we can improve our sensitivity for the fainter quasars.
We also bring attention to J-PLUS and J-PAS, Spanish surveys very close near that are
ideally suited for this kind of work. We expect that once J-PAS is completed stacking will
allow much improvement over the current results. While this is still ways off, we showcase
a proof of concept with J-PLUS and workarounds the multiple issues that exist.

We finally summarize our work and present our conclusions on chapter 5. We accom-
pany this thesis with a number of appendices. The Appendix includes technical details
omitted in various sections for the sake of succinctness, and is divided in the first explain-
ing in detail a change of coordinates we did in Chapter 3 and the second also justifying a
simplification we use in Chapter 3.
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CHAPTER 2

PRIMORDIAL BLACK HOLES AS DARK MATTER

Primordial black holes (PBHs) are one of the current most interesting candidates to be
the dark matter. Not only they fulfill the basic criteria needed for dark matter, they do
so without the need to invoke a new set of existing particles. While this might make them
look ideal, their formation is not so simple and often requires some form of new physics
too. As this chapter’s main purpose is to detail the existing observational constraints on
PBHs as dark matter, we will thus keep explanation on PBHs possible origin brief. For a
more extensive review we direct the reader to [42].

The most common origin for PBHs is in the very early Universe, during radiation
domination, where large curvature perturbations generated during inflation could have
undergone gravitational collapse. As we are dealing with radiation domination, we are
working with an energy density rather than matter density, so we will call it µ. For the
case of Planck units, which take G = c = 1, we can simplify the Schwarzschild radius in
equation 1.3 enormously, reaching rS = 2M .

It is also obvious that the total mass within any spherical symmetric perturbation in
Planck units would be M ∼ 4

3
π µr3, as c = 1. Using that with the simplified Schwarzschild

radius definition means the condition for the perturbations to collapse is [2]:

rS = 2
4π

3
r3Sµ −→ µr2 ≳ 1 , (2.1)

where we drop the constants on the right term. While this condition might appear strange,
it is in fact very close to the Jeans length for oscillations, which in natural units would

be λJ ∼
(

π
µ

)1/2
. Another possibility is simply to remember that in radiation dominated

universe the radiation pressure is p = µ
3
. Matching it with the gravitational potential to

see when the latter wins out and the region will collapse ends giving the same result as
above.

We can introduce then a density contrast, which compares the energy density of a
point µ with the background density µ0. We will call this contrast δ and use the following
definition:

δ =
µ− µ0

µ0

. (2.2)

This allows us to measure how overdense or underdense a certain region is, and so
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the strength of the perturbation. In an homogeneous, isotropic and flat universe, given
condition 2.1, we require δ ≳ 1 for the perturbations to collapse [43].

This condition is the threshold: if δ fulfills it by being greater than the threshold, the
perturbation will collapse and form a PBH. If it is lower the pressure of radiation will win
out, resulting in the perturbation continuing its spread maybe even until today, though
it will so be heavily redshifted as to be extremely hard to detect.

This is all for a very idealized case though, as δ is in fact an average and not a uniform
value like we assume. The density contrast will in fact be a function that we expect to
peak at a certain point but also be much closer to the background on others. Numerical
simulations even for symmetrical homogeneous cases have found the threshold does not
depend only on the maximum of the perturbation, but also on the shape of the δ function.
This is also all for the radiation dominated epoch too, an unexpected matter dominated
time would result in needing an entirely different set of assumptions and change some
of the equations above. All of these examples can radically change the threshold, which
makes computing the collapse in any kind of generalized form very difficult.

Another way is to change our definitions a bit and use a new type of condition.
Called the critical threshold δc, it is not a direct measure of the over-density like δ but
rather of the mass excess per a unit of volume, the so called compaction function. While
mathematically much more complex, this critical threshold can have a very good analytical
approximation with parameters describing shape and space-time [44], which simplifies
simulations enormously.

Despite this, however there is another major complication. The current power spec-
trum we predict for our universe and the scales we can detect from the CMB have fluctu-
ation of the order of microkelvin, δ ∼ 10−5. Therefore, we normally would not expect the
collapse of perturbations into PBHs. There are two different solutions to this conundrum.

First some kind of enhancement of the perturbations could have happened. There are
in fact lots of ways to get this kind of enhancement, from slightly modified inflation models
to new physics coming from string theory, but all have in common that they are outside
the standard model. The most common way is to have a modified inflation potential, the
so called ultra-slow roll potential, which results in perturbations at a certain scale being
enhanced up to δ ∼ 1 while remaining the usual value at other scales.

Another possibility is that the spectrum of fluctuations is non-gaussian. The fluctu-
ations we find are δ ∼ 10−5 for the average, which is too far from δ ∼ 1 for any kind of
noticeable PBHs to form if the fluctuations follow a gaussian spectrum. We do expect
a gaussian spectrum in the standard model. But if fluctuations do not follow that gaus-
sian spectrum because we have new physics, then there could be a tail of extreme results
with δ ∼ 1 without altering the average perturbation we expect. This could result in an
important number of PBHs forming.

Something necessary to understand is that even if we are using the former way of
enhancing fluctuations to obtain PBHs, non-gaussianities can still be relevant. Because
PBHs are very sensitive to the values of δ, any kind of higher than expected value, like
the ones that would come from an unaccounted tail of fluctuations, would affect the
abundance of PBHs. Currently, in the CMB we have not detected any type of non-
gaussian fluctuations, so this is why a lot of models do not contemplate them, but caution
is still needed.

Even after all that, that is but the first step of PBH formation. As mentioned before,
collapse does not happen immediately, it is not until the perturbation crosses the horizon
that it collapses. While this might look like just a timing issue it has enormous conse-
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quences. After all, the perturbation will collapse in the horizon in which it has reentered.
The lower the scale, the bigger the horizon and the higher the mass it will have. We can
estimate the mass within the horizon with [35]:

Mh ∼ c t3

G
∼ 1015

[
t

10−23s

]
g , (2.3)

from the Planck time (10−43s) to much later in the universe’s life, this is what gives PBHs
such enormous mass ranges. A perturbation generated in first instants of inflation can
create tiny black holes that could could explain the whole of the dark matter. Pertur-
bations generated later can result in massive PBHs bigger than any current stellar black
holes that could be the seeds of SMBHs.

Of course, we do not expect the perturbations that make PBHs to come from the same
exact instant. This will naturally result in a spread of masses for our PBHs. For the case
of enhanced perturbations we do expect the enhancement to only happen at certain scales,
so while PBHs will have an extended mass distribution, if there are enough for them to
be a noticeable part of our universe we also anticipate them to be around a certain peak.
Even then this is not a completely hard rule, as there can be extreme cases like double
inflation models [45] and also models where PBH form in a completely different way that
results in a more even spread [46], not to speak of the already mentioned non-gaussian
cases.

Another expectation would be that they would form with spin 0 or very close, as they
form in the radiation dominated epoch where the combined fluid of radiation and matter
sheds angular momentum almost instantly. This can be a clear difference from stellar
origin black holes, which will inherit at least a fraction of the spin of their forming star1,
though again in more exotic formation paths there could be PBHs with noticeable spin.
A good example is the case where PBHs would form in a matter dominated epoch, which
should result in PBH having all very high spin instead of close to 0 [49].

Something similar applies to how close or far from each other we expect these PBHs to
form. In the simplest case we expect the PBHs to follow the standard poissonian matter
distribution, as the perturbations they form from should also come from a homogeneous
universe and the enhancement should not a priori have any specific spatial distribution.
Exotic models exist however where this is not the case, in particular for alternative ori-
gins like the previously mentioned domain walls or when adding non-gaussianities to the
perturbations. This adds still another layer of complexity to the whole issue.

Still, as mentioned, if PBHs are formed through perturbation collapse, then the per-
turbations will also be reflected on the CMB, concretely its temperature angular power
spectrum. Only a number of perturbations will collapse, so the rest will transmit and
appear like the other CMB fluctuations. Unfortunately, either through Planck [50] or
other measurements [51], we can only constrain the power spectrum on the lower scales,
equivalent to the highest masses of PBHs. Currently, no non-gaussian nor enhanced fluc-
tuation has been found, limiting these lower scales, but only the lower scales. Saying it
in another way, anything below 103M⊙ is possible.

1How much is a point of contention, with very efficient angular moment transport models positing very
low spin [47] while others using medium efficiency average notable spin black holes [48]. Observations
of X-ray binaries always have a very high spin, but they are subset of black holes and so there could an
intrinsic bias too.
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Figure 2.1: Plot with current existing strong monochromatic PBH constraints, with each
color and name corresponding to a different type. The abundance on the left axis is which
fraction of the dark matter they could be, while mass is given in both M⊙ and grams.
Obtained from [52], where other bounds and plotting codes are available.

2.1 Monochromatic constraints

PBHs could be the dark matter, but as mentioned before the properties of these PBHs
could be drastically different. 103M⊙ black holes would warp any star or planet that is
close to them, while much more smaller 10−10M⊙ black holes could cross the Solar system
millions of times and we would not notice them.

This means it makes a lot of sense to divide the types of PBH by mass. As mentioned
above while we expect extended mass distribution we also expect the enhancement of the
perturbations to result in a particular mass range with a peak. Something that helps a lot
with setting constraints is taking the peak of that mass distribution and making as if all
the PBHs in it had that mass. This simplifies the physics in most cases enormously, as we
can avoid integrals through all the masses and make a back of the envelope calculation to
see if it is even worth to pursue certain constraints. And while the final result is in practice
only approximate we expect to not be it so far from the extended mass distribution as we
are working with its peak after all.

The end result are monochromatic PBH bounds, which we show in figure 2.1. After
a large number of such experiment we can fill an entire plot with constraints using this
simplification. Of note is that the graph is logarithmic and covers more than 22 orders
of magnitude. In this way it is only thanks to that approximation that we can get even
close to covering all these possible ranges with different types of constraints.
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Figure 2.2: Example of the geometry of an Einstein ring. θ1 is the Einstein radius. From
Wikimedia Commons, the free media repository

There are as varied constraints as there are mass ranges, but as seen above there are
4 that dominate. The first are the dynamical and accretion constraints that were used on
MACHOs before, as they work very well on very massive black holes. There are multiple
sources for these constraints, but they all share that they focus on the large mass of these
black holes and how they would have a large effect on their surrounding we would notice.
The other three however, microlensing, black holes evaporation and GWs are more unique,
so we will dedicate a section to each.

2.2 Microlensing

Microlensing is the name given to gravitational lensing on a very small scale. Gravitational
lensing itself is what happens when a body projects a strong enough gravitational force
so that any light that passes by nearby is distorted. In typical optical parlance, the
gravity of the body acts as a lens to the light coming from behind it towards us. The
most illustrative case is that the Einstein ring, which is shown in figure 2.2. There a
source emits light and it typically goes through the lens. For the sake of simplicity we
shall assume the lens is a black hole: then the light in the direct line of sight will not
go through the black hole, but as seen in the figure two other light rays will be affected
by gravity, reaching us. This will results in the viewer seeing two sources equidistant to
where the source actually is (in the 3 dimensional case, a ring surrounding the source,
thus the name).

The Einstein ring is an ideal case, in practice there are a lot more complications. One
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is where the object and lens are so far away, or small, that our resolution is unable to
separate the two images. This is the particular case of microlensing, where the lensed
image appears all on the same pixel rather than as two different images. As we cannot
perceive a position shift the typical measurements of angles cannot be done, and it can
be hard to even detect that image has been lensed.

However, the presence of more ray beams than expected in a single pixel also means
that the image will appear brighter than normal. Going from the figure above, as all
rays have similar brightness receiving two will make it appear at a higher luminosity than
a single one. Because all stars and galaxies appear to move for an observer on Earth,
a combination of both their intrinsic orbits and the Earth’s own movement, the lensing
event will only happen for the short period of time that both source and lens are aligned.
We can then compare the increased luminosity with the normal measured just before,
noticing these kind of changes and recording them as lensing events.

To compute the expect magnification of light, a first approximation is to treat gravi-
tational lensing similar to optic lenses, using what is called geometric optics. First of all
we can get the deflection angle α, which would be how much the ray is deflected from its
path :

α =
4GM

bc2
, (2.4)

where b is the impact parameter, the shortest distance between the point-like lens and
the ray it is deflecting, M is the mass of the lens, G the gravitational constant and c the
speed of light.

This is the small angle approximation, which works for small α. It comes from general
relativity but the result is a very simple term that reminds of newtonian gravity so it is
also referred as Newtonian approximation. In fact, we can get exactly half the value of the
angle just by assuming Newtonian gravity and that light is a particle with mass. Another
comparison can be with the Schwarzschild radius we described in 1.3, being α = 2rs/b.

Another parameter of interest is the the Einstein angular radius θ1, which is the angle
at which we would see the previously mentioned Einstein ring. Using trigonometry, we
can compute θ1 from the figure above and 2.4:

θ1 =

(
4GM

c2
DLS

DsDl

)1/2

, (2.5)

where we have implicitly assumed sinθ1 ∼ θ1. In standard lensing this can troubling, but
in microlensing where the angles are so small it always applies.

This would be all for the case where the source is perfectly aligned with us. In practice,
these kind of cases will be rare, and we will have the source with an angle respect to the
observer θS, and the images would appear if we could see them at an angle θ that is now
different from θ1. This is a more general case, an example of which can be seen on figure
2.3. As θ1 is defined through the Einstein ring and not any particular image, 2.5 still
works but now we do not know the angle θ at which the image will appear. However, we
can still relate them by applying the lens equation of geometric optics to our case [54]:

θ − θS =
θ21
θ
. (2.6)
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Figure 2.3: Schematics of a lensing event for a more general case. Taken from [53] Figure
1, αs is the same as our α

As θS is a single value, it is easy to see we would have two solutions for θ, two images.
In the case of microlensing we are unable to distinguish them, but we will be able to
distinguish the increasing flux, the magnification of the source they will cause.

We can relate the two images to the flux by understanding that the flux (f [erg/sec])
results from integrating the surface brightness of the object (S [erg/sec/sr]) for a particular
solid angle Ω, the width of the beam so to speak. This solid angle depends on the angle it
reaches the observer. Because we are working with very small angles, we can approximate
this integral as a simple multiplication f = SdΩ, and compare with the case where there
would be no lensing:

A =
fobs
f0

=
SdΩ(θ)

SdΩ(θS)
=

dΩ(θ)

dΩ(θS)
=

θdθ

θSdθS
. (2.7)

Computing the magnification then is relatively straightforward if we remember the
lens equation again 2.6, until we get:

A =

(
θS
θ1

)2
+ 2

2
(

θS
θ1

)2√(
θS
θ1

)2
+ 4

± 1

2
. (2.8)

Searching for this moment of greater emission we can thus detect if a source has
been lensed or not. Despite the previous complications, the final equation as seen above
depends only on the source angle and the Einstein angle. If we detect a magnification of
light coming from a source we can thus elucidate many details.
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This makes microlensing a very attractive prospect for DM constraints. We know the
mass we want to constrain and we can use the DM galaxy mass distribution to estimate
the likely places where the PBHs would be. With this you can estimate the expected
magnification and if it is within the sensitivity of scientific instruments. The birth of
dedicated surveys like Subaru [55] has allowed to map a mass range of 10 orders of
magnitude with constraints, as they have found few or none gravitational lensing events,
whereas if those PBHs were the dark matter we would have expected many more.

But despite all these successes, microlensing might have ran its course. This comes
from a lot of the approximations used previously. First of all, we have used standard
geometric optics, but that requires light rays to work classically, thus if any wave properties
are relevant during the lensing this whole scheme breaks down. Indeed, as the PBHs we
are interested in are extreme objects, their Schwarzschild radius is very small and can
become of the order of the wavelength of the light we are observing, triggering wave-like
effects from the light we need to account for.

Fortunately even with the lack of such ideal case we can still get some information.
As we do not expect the rays to be perfectly symmetrical, the rays very likely traverse
different distance to reach the viewer, there will be a time delay between them. This time
delay will also result on the beams not reaching on the same phase of the wave. The time
delay is much more complex to compute, but an analytic expression is still possible [56]:

∆t =
1

c

DLDS

DLS

(1 + zs)

(
|θ − θs|2

2
−Ψ(θ)

)
, (2.9)

where all parameters are the same as previously, zs is the redshift of the source and Ψ is
the lensing potential. This lensing potential is related to the density of the lens by the
Poisson equation, and can be thought as projection of the density through the plane of
the lens. For point like sources, like our black hole, we can resolve Ψ(θ) = θ21logθ

2.
Due to wave nature of light, this time delay and the phase difference it causes between

various rays will result in both destructive and positive interference. This interference
fringes will make the magnification equation to grows similarly complex:

A =

(
W

2πi

∫
d2xeiω∆t(x,θS)

)2

. (2.10)

We can no longer avoid an integral, and even need to use imaginary numbers. W is
a dimensionless frequency, related to the frequency of the light ω and the time delay ∆t.
For more details on the complete derivation of A we refer to [56].

While these changes might appear minor and too cumbersome, they are relevant be-
cause this mistake did in fact happen with Subaru, where an early prepublication version
of the paper did not take this into account as noted in [45]. Even with the extra com-
plications, the amplification in equation 2.10 can still be computed to get the corrected
constraints as they were finally were present in figure 2.1. The integral makes it harder
to compute, but the magnification is still there.

It is much more problematic however when we start finding finite source effects. These
come when cannot just take the source as point-like: if the source is big in respect to the

2The lensing potential is the result of integrating the density through the entire plane of the lens and
includes an indeterminate constant. This is normally not an issue as the time delay is used to compare
with the time delay from other rays, but it will not help in computing absolute time delays for a path.
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lens, emission from different points of the source will be lensed differently. This can
come from the source not being small enough or far enough as to be treated as point-
like, resulting in different time delays between even close by or symmetrical rays and
the interference fringes being washed out the larger the effect is. The end result is that
the lensing effect disappears, there being no difference with the normal luminosity. In
summary, if the condition:

θS
θ1

=
Rs/Ds

RE/DL

<< 1 , (2.11)

is not fulfilled, then the microlensing effects will start disappearing.
Small PBHs have very small Schwarzschild radius. This means in effect that standard

sources from lensing, stars from the Milky Way or neighbouring galaxies, are simply too
big to reliably produce any constraints for PBHs below 10−11M⊙. [56] estimated that
we would need Gamma Ray Burts (GRB), with very distant sources and very small
wavelengths, to reliably constrain this mass range but also admitted that currently GRB
detection is too rare for this to be done. [57] proposed to use Pulsars, which are very far
off and also smaller than stars, for this kind of purpose, but also reached the conclusion
it would take a future and very ambitious observatory to reach mass ranges which are
not already constrained currently. Microlensing can still remain useful for PBHs of high
mass, but the much lower number of PBH means much lower expected number of events,
increasing the observation time required for adequate constraints, on top of low mass PBHs
being much more interesting for the purpose of dark matter as figure 2.1 illustrates.

In summary, while extremely useful, microlensing seems to have reached the limit in
what it can constraint, or at least reached very diminishing results. While planet mass
PBHs cannot be all of the dark matter, asteroid mass PBHs are free from such constraints.

2.3 Black hole evaporation

PBH evaporation is a process resulting from Hawking radiation. As mentioned in the
introduction, Hawking radiation is the conclusion of applying quantum effects to a Black
Hole’s horizon and results in the emission, mostly in terms of particles, of an energy de-
pending on the effective temperature of the Black Hole. This emitted radiation would
have an almost thermal black body spectrum of the corresponding temperature, and this
temperature depends mostly on the mass. The smaller the black hole is, the higher the
temperature and viceversa. Of note is that while extremely useful due their analogous
relation, temperature should not be taken literally and more understood as something
emerging from possible quantum gravity effects and our lack of understanding of singu-
larities.

The derivation of this temperature comes from the boundary conditions of the horizon.
Assuming an observer just outside the horizon, this observer has to have an acceleration
in order to not fall into the black hole. This accelerated frame of reference will see a
thermal radiation by the Unruh effect, where acceleration results in a thermal bath of
particles. However, this accelerated frame of reference is at local equilibrium with the
horizon of the black hole, which means the horizon shares that same thermal bath. This
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results in that observer seeing the black hole horizon at following temperature:

Tobs =
1

4π
√

2Mbhr
(
1− 2Mbh

r

) , (2.12)

where r is the position of the observer. This comes straight from the black hole metric,
which we have assumed to be a standard Schwarzschild black hole, and the observers
position. The equation is in Plank units too.

This temperature the horizon observer sees can be redshifted to infinity, to understand
how a far off inertial observer like one from Earth would see the horizon. We reach:

Tbh =
1

8πMbh

−→ Tbh =
hc3

16πGMbhσ
∼ 10−7 M⊙

M
, (2.13)

where we have returned to SI units from Planck ones on the right term: h is the Planck
constant, σ the Stefan-Boltzmann constant, c the speed of light and G the gravitational
constant. Of note is that this is for non-rotating (0 spin) non-charged black hole. While
charged black holes are not expected to exist, as their charge will simply attract opposite
charges until the black holes becomes neutral again, rotating black holes are expected in
both stellar black holes and some versions of PBHs.

From the temperature we can obtain its emission, which can only come from the black
hole’s own energy. Therefore the black hole will evaporate when it emits all of its energy,
the majority of that energy being the one stored in the black hole’s own mass. For massive
black holes this is extremely unlikely, not only because their temperature is much lower,
but because their mass means they are constantly accreting matter unless completely
isolated. For smaller black holes however, their emission might surpass their accretion,
especially when not in dense environments like the usual void between stars.

This permits us to define the lifetime of a black hole as the time it will take for it
to evaporate through Hawking radiation. This is only an approximation, because it does
not take into account accretion. However, because as the mass goes lower it evaporates
even faster and the accretion lowers, it is very hard for a black hole with a non-ridiculous
lifetime (i.e. smaller than the lifetime of the universe) to jump out of it purely through
accretion. A good estimate of the lifetime is [58]:

τ(M) ∼ 1064yr

(
M

M⊙

)3

. (2.14)

The lifetime of PBHs sets the strongest constraints, they can not be the DM if they
do not exist after all, but τ is not the only possible constraint. While black holes bigger
than 1015g would survive to today, the ones closer to that range would still emit a fair bit
of Hawking radiation. If they are the DM this could bump the extra-galactic background
light up by a noticeable amount at certain frequencies, but there is no such bump in
current observations [59]. This helps set further constraints.

There are hopes for even tighter constraints in the future by improving our detectors
[60], but there are vastly diminishing results. One small issue that becomes relevant is that
spin now is non-negligible, as the emission and its spectra depend on if the PBH rotates
or not. In practice this change is expected to be less than an order of magnitude in the
mass ranges constrained, but that makes those mass ranges close to the constraints more
dubious, as they might be covered or on the opposite way ranges we think are currently
impossible might be where PBHs are hidden.
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That might not be it all however, as one of the more curious byproducts of this
evaporation might be Planck relics. They are theorized particles of Planck mass (∼ 10−6g)
left after a black hole evaporates [61]. They would be completely new physics, resulting
from quantum gravity and their existence is contentious. Nonetheless, if they existed they
could be the DM in the case a massive quantity of PBHs with very small mass evaporates
in the early universe and leaves them behind. Due to their extremely low mass and
unknown properties, it is likely if that was the case we would not be able to detect them
in any way, at least not in the close future.

2.4 Gravitational waves detectors
As mentioned, LIGO opens a new window in astronomy, the possibility of using gravita-
tional waves to detect black holes. The singular events that emit most gravitational waves
are binary mergers: 2 massive objects orbiting one another that slowly inspiral until they
end up colliding and fusing into a single object.

Gravitational waves are not only emitted in the merger itself. Rather, they are the
reason the merger itself happens. As 2 massive objects orbit one another they will emit
gravitational waves from their movement, as two massive objects perturbing the local
space-time with their moving gravitational potential. These are very small and initially
undetectable, but similar to radiation the emission of gravitational waves costs energy to
the source. The energy stored in the orbit is slowly emitted, causing the energy to lower
and so for the orbit to become similarly smaller. As the orbit decays however the tidal
forces coming from the other object perturb the source further, causing more emission of
GWs and further decay. This happens of course too equally for the other object. In a
perfectly symmetrical case the inpiralling binaries would meet in the middle, colliding and
merging despite being otherwise completely isolated. The GWs emission is what turns
the initially stable binary into a future merger.

While the GWs emission peaks during the merger, LIGO has enough resolution to see
the waves from just before the merger, which can give individual information from the
objects. It can be used for example to constrain a neutron star equation of state. There
is an important caveat however: while it can get some information of the individual
members of the binary, a lot of it is degenerate with other parameters. It is also still very
hard to distinguish between a neutron star and a PBH without also an electromagnetic
counterpart, with currently all neutron star detections without a visible counterpart being
based on mass.

This, together with the already mentioned first generation sensitivity of LIGO, limits
its usefulness for PBHs in particular. Detecting PBHs or placing strong constraints on
them as dark matter is very hard if you cannot detect black hole merger events with light
masses. Current constraints in the mass range of LIGO exist from the fact that if PBHs
were the dark matter there would be so many of them the merger rate would be much
higher than the one we observe.

There are still other ways in which GW detectors can be helpful however. While LIGO
cannot get any information on the individual spin of an object, it can obtain what is called
as the effective spin of a Binary Black Hole [62]:

χeff ≡ (m1χ1 +m2χ2)

M
=

c

GM

(
S⃗1

m1

+
S⃗2

m2

)
, (2.15)
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where χi is a dimensionless spin parameter project over the z axis, but which can be
related to the angular momentum spin of the star S⃗i as shown in the rightmost term
above. mi is the mass of each object and M the total mass of the merger.

As can be seen, the effective spin is degenerate with individual value of each spin, and
worsened by the fact that the spin can easily be negative as two black holes rotate in
opposite directions. Thus, χeff ∼ 0 could mean low spins in both black holes or a very
highly counter-rotating duo.

Currently LIGO has showed the GW events it detects have a preference for a smaller
effective spin, very close to averaging 0, than expected [63], but the uncertainty is still
too high and there have been individual events with indications of at least one of the
members of the binaries having non-negligible spìn value. For now results on this front
are ambiguous.

Another option to help distinguish PBHs are more statistical arguments: for stellar
origin black holes we expect their number of mergers to peak with star formation, as they
form from stars that are very massive with very short lives. This peak would be situated
at z ∼ 1 [64], while in contrast PBHs would peak at much higher redshifts and slowly
decay afterwards. Unfortunately, current detectors are incapable of distinguishing stellar
origin from non-DM PBHs this way. Even for the most massive binaries LIGO does not
have enough resolution to resolve mergers at redshift 1 [65], so trying to see where mergers
would peak in a redshift distribution is not viable.

The solution is to wait for more powerful next generation detectors, particularly LISA
[66],but even with the improved resolution there is no guarantee of much better odds,
particularly if we are searching for lower mass PBHs.

An interesting alternative is not searching for individual events, but for their added
effect. Just how like multiple sources we cannot identify individually contribute to a
background in radiation, the same applies for gravitational waves. Mergers we do not
have resolution to identify are still there, and joined will create a non-zero background for
our detectors. This commonly identified as the Stochastic Gravitational Wave Background
(SGWB). While it is extremely hard to obtain individual values from the background,
it is the addition of a lot of unidentified mergers after all, the background follows the
same statistics as the mergers. This means, the SGWB will peak similar to mergers
mentioned before, which could be used to put improved constraint on subsolar PBHs in
the future [67].

This gravitational wave background will not only come from unidentified mergers
though. As mentioned, gravitational waves are quite literally aftershocks in space-time.
This does not extend only to massive objects, but also to perturbations, like the ones
creating the PBHs. As the perturbations reenter the horizon and either dissipate or start
the collapse, there is an emission of gravitational waves [68]. The combination of all
that GW emission would result in another background that could give information about
the PBH generation and abundance. Of note is that while perturbations require new
physics to be produced in large enough quantities to produce PBHs, this background
would depend only on the perturbations themselves and thus requires no knowledge of
the specific model or physisc to simulate.

While LIGO’s limitations still apply [69], this makes the future LISA mission even
more interesting. Particularly, the range of LISA would cover the GW background that
perturbations that would result in 10−12M⊙ PBHs would make [70]. Considering this is
one of the few windows remaining for PBHs to be all the dark matters, as can be seen in
figure 2.1, this is a very exciting possibility. Unfortunately, all projections for the LISA
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mission predict launch in 2037 or later.

2.5 Non-monochromatic constraints

With the main sources of PBH constraints discussed, it is now perhaps time to ask why
monochromatic constraints have remained so popular without taking into account ex-
tended mass distributions. As can be seen directly with equations 2.8 and 2.14, adding
multiple masses would likewise end up adding multiple constraints in a fairly simple way.
Those mass ranges could be considered constrained by just assuming a monochromatic
mass of less abundance, but using an extended mass distribution would be both more ac-
curate and likely increase the strength of the constraints as constraints in adjacent mass
ranges could contribute too.

Unfortunately, while the cases for microlensing and PBH evaporation work very well,
this is because their constraints come from effects that have a direct relation with mass.
Both equations 2.8 and 2.14 are analytic expressions that contain the mass (through the
Einstein angle 2.5 in the microlensing case). In other constraints the effect can be more
indirect, a good example being gravitational waves: we would not only see the PBHs of
a certain mass, but their abundance and spread would directly affect how many mergers
we expect to see if they are the dark matter. Another good example can be simulations
of dynamic effects the PBHs would have. While technically possible to account for an
extended mass distribution, the time and computational cost make it an impossibility.
Even in cases different to those two, if no direct analytical relation exist between the
constraint and mass it is much harder to deal with, as it would require integrating over
different masses all the process rather than just one equation.

[34] studied the issue in a thorough way, and reached a similar conclusion. To convert
a monochromatic constraint into one for an extended mass function you would need to
compute:

g(Meq, pj) =

∫
dM

dΦEMD

dM
g(M, pj) , (2.16)

where g is a function that encloses the details of the underlying physics of the particular
constraint and depends on the PBH mass M and a set of astrophysical parameters pj.
ΦEMD is the shape of the extended function. Meq is the result we seek, the equivalent
mass. It is defined as the individual mass in the monochromatic constraint that the
extended function is effectively equivalent to. In summary, if an extended distribution has
a Meq = 10−6M⊙, it would constrain the abundance of PBHs of the extended distribution
to the same degree as M = 10−6M⊙ is in the monochromatic constraints.

g must be determined individually for each different constraint, and should enclose
both the physics of the constraints and the way the observations were taken (for more
details we refer to [34]). Again, for some constraints g will be an analytic expression we
know and there will not be any major issues resolving the integral above and finding Meq.
But for other constraints g is much, much harder to determine

Something else to note is that while this allows us to find constraints for extended
mass distributions through only the monochromatic constraint, this does not work with 2
different set of constraints. Indeed, because the physics differ between 2 sets of constraints,
that is where the extended mass functions causes more issues. For purely monochromatic
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constraints this is no problem, as there is no addition of different types of constraints, the
bigger one is the one we apply, simple as that.

However, for extended mass distributions the extremes of one could touch two different
sets of constraints, so there is a temptation to just fit the extended mass distribution in
the monochromatic graph above. This is a mistake however, as we should rather compute
the extended constraint from each individual type and take the more stringent one, similar
to the monochromatic case. Besides the one described above, other methods exist [36] to
translate monochromatic constraints into extended ones, but have similar difficulties.

The type of extended function we expect is also open to debate. A lognormal mass
function is the one commonly believed to be a good approximation for the standard PBH
formation path of fluctuation collapse [71]:

ψ(M) =
fPBH√
2πσM

exp

(
− log

2(M/Mc)

2σ2

)
, (2.17)

where Mc is the mass of the peak, the one we commonly associate with the monochro-
matic constraint, and σ is the width of the distribution. The value of these parameters
depends directly of the model used. However, as keeps repeating, particular models can
result in particular mass functions, including power functions and even very sharp mass
distributions that are very close to a purely monochromatic one.

Overall, extended mass distributions seem to create more stringent constraints than
monochromatic ones, but it is not possible to generalize for all cases and graphs have
to be individualized for each type of distribution. In comparison, the monochromatic
constraints figure is generic and much easier to produce. This is the main reason it keeps
being used.

While different, something similar happens with clustered distributions. These come
from models where for some reason the PBHs form in a more dense distribution rather than
the typical more homogeneous spread. Like before, the change in signals and constraints
must be treated individually for each mass range in question. Care has to be given
though, because while clustering can decrease the constraints for some mass ranges, on
some cases it can also introduce new signals that should not be overlooked. A good
example are binary mergers: clustering significantly decreases the constraints of LIGO, as
most mergers would have occurred in the early universe due to PBHs being closer to each
other, but those previous mergers also create a very significant stochastic GW background
that would be within the LIGO/VIRGO sensitivity [37].

2.6 Existing windows
Among all the discussed constraints for smaller PBHs that could be all the dark mat-
ter, there still remains a sizable window between 10−16 and 10−11M⊙. This window is
extremely hard to probe with usual methods, as they are PBHs too small for either gravi-
tational waves or microlensing events to leave a big enough signal for our current detectors,
but also are too big to be affected by evaporation. Their mass, roughly corresponding to
the one of an asteroid, also makes it exceedingly hard to detect them through conventional
methods in big enough numbers to say anything about their abundance even if somehow
a few could be found.

There have been a number of attempts to constrain them, but they have run into
impediments. A good review of all attempts can be found in [72], but to summarize
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most have been trying to detect the effect of such PBHs onto more standard objects like
stars. One of the most noticeable would be their interaction with neutron stars. Being
extremely dense objects too, their friction with the PBH’s horizon would be big enough
for there to be a chance for a PBH that is crossing a neutron star to be captured by it
and fall towards their core. Despite the extreme high density of the core, the PBH itself
would be unaffected, rather due to such high density it would accrete the entire neutron
star very quickly, almost instantly for galactic and cosmological time scales. The survival
of neutron stars could then be used to put a constraint on PBHs, as if PBHs are all the
dark matter then those events could very common making neutron stars very rare. The
possible masses in the window are both small enough so there are plentiful of PBHs to
collide with, but also big enough they could accrete the neutron star sufficiently fast.

As mentioned in the review however this has run into a couple of issues. The simplest
one is that even with PBHs being all the dark matter such captures would be relatively
rare, as neutron stars are both uncommon and also small size wise, meaning collision is
unlikely in teh first place. The second, which compounds with the first, is that there is
a high degree of uncertainty on the DM density of globular clusters. Globular clusters
are expected to have very low velocity dispersions, which would make the type of capture
we are discussing much more likely together with high DM density. But that very high
density dark matter, which the initial studies expected to have and depended upon, is
very reliant on the on globular cluster’s possible origin, which is currently uncertain. As
such regions were the only ones from which non-negligible constraints could be extracted,
any results from those initial assumptions are severely undermined.

This means that despite this rather novel idea, 10−12M⊙ PBHs remain one of the
very few windows where PBHs could provide all the dark matter. There exists more
exotic models that avoid most of the other constraints, but if using standard inflation
perturbation collapse with as few extra elements as possible they remain as one of the
last possibilities. Thus, any kind of physical event that could leave a lasting effect based
on such window and therefore result in observational consequences of some kind, that
could lead to either constraints or evidence in favour, is of the utmost priority and worth
studying.
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PRIMORDIAL BLACK HOLE CAPTURE BY STARS

Following directly from last chapter, 10−12M⊙ black holes are one of the last windows
where PBHs could be all the dark matter. However, part of the reason they remain
possible is they are very hard to detect in any meaningful way. While finding a single
10−12M⊙ black hole would be huge, as one case alone would be enough to instantly prove
the existence of PBHs, a single detection alone would not say to us much about their
abundance throughout the universe, meaning the dark matter question would remain
open.

Thus if possible we do want to search for ways which would help us constrain that.
A possible way was the one mentioned previously, where stars would capture those small
PBHs. In this chapter we aim to look again at what that means and improve upon
that method to obtain a way in which 10−12M⊙ PBHs finally leave an observational
consequence we can look for.

3.1 Capture: what it is
One of the very few ways to constrain the 10−12M⊙ PBH mass range is their interaction
with neutron stars [40], concretely their capture. A more advanced way of looking at
it also took into account their interactions with the progenitors of such neutrons stars,
which at the time would be common, if big, main sequence stars [41, 73]. As mentioned
before, such attempts at constraints fail in part because the expected high DM densities
at the chosen environments were not supported by evidence. But what exactly are we
talking about when we use capture, what would the specifics of the method be?

If PBHs are all the dark matter then we expect them to share the characteristics of
dark matter. This means mostly density but also includes velocity. The end result is that
PBHs are not static, but rather they move through the dark matter halo they inhabit.

Those movements mean there is a chance they get near and then interact with other
objects within the halo, like stars for example. We even expect stars to have a surrounding
density of dark matter that is bound to them, as stars are much more massive objects in
comparison. Just like stars gravitationally bind baryonic matter in the form of asteroids
and planets, they would similarly bind dark matter. Until now nothing unusual.

However, if PBHs are the dark matter there are a range of new possibilities emerging
from this. The most basic case is the one with the neutron star. If PBHs are moving
through the halo, there is a chance they might cross a neutron star. Because the neutron
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star is very dense, the act of crossing it would cause enough dynamical friction to affect
the PBH.

As a small aside, standard dynamical friction is collisionless and comes from purely
gravitational interactions [74], thus it does not matter that the object crossing is a black
hole or any kind of exotic matter, they will still be slowed down in equal measure.

The end result is that if the PBH is not going very fast, then the further slowing from
the dynamical friction might be enough for the PBH to become gravitationally bound to
the star, and even further fall down towards the center of the neutron star and stop there.
The later is what we call capture. At the center of the neutron star the density is so high
that the PBH would be able to accrete it entirely in a very short time, resulting in a PBH
the mass of the neutron star but no neutron star left.

The idea of [40] was that then we could use the survival of neutron stars as a proof
that these kind of 10−12M⊙ PBHs do not exist, for if they would exist then almost all
neutron stars would have been eaten in globular clusters. As we do see some neutron
stars in globulal clusters we can set up corresponding constraints on those mass ranges.

This was later expanded for main sequence stars [41]. Main sequence stars are not
dense enough to stop a PBH from a single crossing, and even then the star’s core does
not have the high density that would result in a PBH accreting them instantly. But a
subsection of those stars will end up forming neutron stars, thus previous interaction with
the star can affect what happens later with the PBH and the neutron star.

This becomes more interesting because we expect most of stars to have set density of
dark matter already bound to them without any initial need for dynamical friction. The
bound dark matter comes from just before the start of the star’s main sequence, as the
progenitor molecular cloud collapses into a protostar. While complex, we can approximate
this process as an adiabatic contraction, and the resulting changes in the gravitational
potential from the cloud becoming more compact will naturally gravitationally bind mat-
ter that is close by and slow enough. This extends of course to dark matter, in our case
PBHs.

The end result is there are a number of PBHs already orbiting the star as the main
sequence starts. The orbit these PBHs will have are random, but due to this we can
expect them to have what we call a flat eccentricity distribution, where for a fixed energy
all possible orbits are equally probable. Some of these orbits can by chance cross the star,
similar to the previous case. Stars are less dense, so a single crossing will not be enough,
but for a stable orbit there will be many crossings until the end of the main sequence.
The effect will be gradual, but as the PBH loses energy the orbit will also naturally end
closer to the center of the star, speeding the process with both shorter orbits and higher
density.

Then, once the star ends the main sequence a number of PBHs could be lodged at
the center or very close. When the star becomes a neutron star, the PBHs will already
be at the center and accrete the resulting neutron star just after its birth. This can give
constraints in a very similar way to the previous neutron star case exposed above. While
simplified, this is the method both [41,73] were using to set improved constraints over the
basic neutron star case.

As mentioned before there were issues however. Capture is very reliant in both high
density and low velocity PBHs (DM). High velocity means high energy which means they
will need a lot of dynamical friction before they are bound to the star. Even for the main
sequence star case, high energy means larger orbits that have both lower chance to cross
the star and will take longer doing so, resulting in fewer captures. Globular clusters were
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the only current examples of high density and low velocity dark matter environments,
that could set non-negligible constraints on the mass range. Once the high dark matter
density of globular clusters became dubious, this rather interesting way to constraint low
mass PBHs lacked a setting where its effects would be noticeable.

However, such circumstances of high density and low velocity are not unique to globulal
clusters. High DM density are hard to achieve in our current universe, but we do not
require going to globular clusters as we have high density in early redshifts. The early
universe was more dense than the current one, with the highest the earlier we go, even
up to the first stars at z ∼ 20− 30. Not only that, while not as low we also expect very
low dispersion velocities in the early DM haloes that form at such redshifts.

A simple counter-proposition is that the attempt to constrain came from the survival
of neutron stars. If the process was applied to early redshifts, then we would need to
observe old neutron star for constraints to be valid. This is not only a problem because
we would need reliable methods to determine the age of a neutron star, but also because
we would expect relatively few of these old neutron stars to be in the Milky Way which
means very low chance we have one nearby. Observing far off neutron stars would be
extremely hard, as they are compact objects of slightly lower mass to black holes. While
very bright neutron stars exist, mass is the usual way to distinguish the non-emitting ones
from black holes. For distant neutron stars almost all of them we would not see, so we
could not distinguish the neutron star from the PBH that might have eaten it.

Such second issue however can be settled by focusing on main sequence stars regardless
of if they form neutron stars. As described above even with normal stars we expect the
PBH to eventually be captured at the center (or very close) of the star. While the accretion
process would not be close to instantaneous, like neutron stars, because we are talking
about the early universe there is much more time for the PBH to devour the star so we
can observe it currently. We also expect the majority of such stars to be low mass stars,
below 1M⊙.

The end result would be sub-solar mass black holes, that can only come from PBHs.
Not only that, the number of objects would expand as we expect there to be a lot more low
mass stars in comparison to neutron stars. This would mean a small number reaching the
Milky Way would not be unexpected, and give a very easy to understand observational
consequence. While the whole process of capture and accretion would take far longer, if
we set the initial interactions at the early universe we would have ∼ 1010 years. Using
low mass stars will also avoid issues with the end of the main sequence, such as supernova
kicks possibly altering the whole process.

Using this method as a base, we will try to improve on previous results by using our
own model. We will attempt to compute this PBH capture in a conservative way, so we
should obtain at least a minimum to how common the process is and if we should see any
sub-solar black holes at all.

We set our model in the early universe, and also look to majorly expand on a number
of issues not accounted on previous papers. While our modeling of the star and the PBH
is as simple as the ones before, we resolve the dynamical friction that slows the PBH
numerically using low metallicity stellar simulations to avoid approximations as much
as possible. We also attempt to use different types of dynamical friction to measure if
there is any difference. Finally we make an attempt to compute the degree of expected
perturbations outside the system that could interfere in our model and perturb the result.
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3.2 Our model

3.2.1 Dark matter density profile around first stars

The first step is to find the parameters that will characterize our model of the star and
PBH at early redshifts.

We start by attempting to determine ρ̄DM around a certain star as determined by its
position and redshift, and more specifically its profile depending on the radius to the star
itself. While the main assumption is this DM is majorly composed of small PBHs, the
profiles themselves should not differ in any major way from other types of Dark Matter,
and can thus be computed similarly.

As mentioned before, we want an epoch with both high DM density and low velocity
dispersion, but also where stars have already started appearing. The most common
estimate for the formation of first stars is z ∼ 30− 20, so we will take the lower bound of
z = 20 and start there.

For any cosmological model we can obtain the critical density ρc at a redshift, and
from it the virial radius and density for a halo of any given mass. Taking this mass to be
MV ir = 107M⊙ we can find:

Rvir =Mx ≈ 200 pc , (3.1)
ρvir = ρc∆c ≈ 1.8 · 108 M⊙/kpc

3 , (3.2)

where ∆c is the critical overdensity needed for the halo reform, related to the δ threshold
we described earlier, which depends on the redshift.

we assume the halo has a standard Navarro-Frenk-White profile, which depends on
two parameters c and ρ0, the first measuring the concentration, how clumped up the halo
is, and the second a characteristic density. To obtain the average density at any R we will
need to fix at least one parameter. We introduce a simplification Rs = Rvir/c to end up
with:

ρ̄DM(R) =
ρ0

R
Rs

(
1 + R

Rs

)2 . (3.3)

We decide on a conservative approach and take c such that the density at a R = 0.1Rvir

is 10 times the Virial density as seen in (3.2). This corresponds to a c = 10, and compares
favourably with observations of high redshift haloes. We can simplify further by using
s = R/Rvir and by using the universal formula definition of ρ0 [75]:

ρ0 =
ρcrit∆cc

2

3s(1 + cs)2 [ln(1 + c)− c/(1 + c)]
. (3.4)

Combining with (3.3), this results in:

ρ̄DM(R) ≈ 103ρvir

44.7s (1 + 10s)2
=

4.03

s (1 + 10s)2
M⊙/pc

3 , (3.5)

where all the variables are the same as before.
With this we have the ρ̄DM at any position of the halo where a star could form. How-

ever, during the star formation process this average density will be perturbed, particularly
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near the future star. As the initial molecular cloud collapses into various clumps previous
to a protostar, the surrounding DM will contract adiabatically with it.

We work with the most simplistic case, in which we suppose the clump is mostly
isolated and will form a single star. The PBHs will have a starting density ρ̄DM(R) ,
and some of them will be bounded to the baryonic cloud if their speed is low enough.
As the baryonic matter collapses, the bounded PBHs will adiabatically contract with it,
changing the shape of the distribution.

Through Liouville’s theorem we can estimate the final shape of this distribution using
the phase space density. For this we have to assume the phase space density is still
completely full, and also approximate the final speed as the one corresponding to a circular
orbit for the bound density. While this might look overly simplistic, [73] found that even
while using numerical simulations the end result had a shape ∼ r−3/2 equivalent to the
one found through Liouville.

The initial maximum phase space density Qmax (before the contraction) corresponds
to v = 0 for a maxwellian distribution, but it does not strictly require it, only that the
velocity distribution is flat near the 0 [41]. Comparing with the phase space after the
contraction:

Qmax =

(
3

2π

)3/2
ρ̄DM(R)

m4
DMσ

3
=

(
3

2π

)3/2
ρDM,bound

m4
DM (GM∗/r)

3/2
, (3.6)

where r is the radius to the center of the star/proto-stellar object, mDM the dark matter
mass, M∗ the mass of the star and σ the dispersion velocity. We stress the difference
of r with R; R tracks the distance from the system to the center of the halo (and thus
galaxy), and is a parameter that is constant for all the orbits, while r is the distance of
the PBH to the star, depends on the orbit and will thus change with it. By continuining
from equation (3.6) we eventually get:

ρDM,bound =
(GM∗/r)

3/2 ρ̄DM(R)

σ3
. (3.7)

As it represents the good number of PBHs tightly bound to the star from the beginning,
ρDM,bound itself will only be affected by extremely powerful external events or outside
perturbers, which we try to quantify in section 3.2.5, but will otherwise not change once
the main sequence starts. This means that even if the process of falling to the star is
lengthy, the ρDM,bound of the star system is uniquely determined by the initial conditions
of the star system within the DM halo.

Together with equation (3.5) for ρ̄DM(R), we can thus find the profile around our star.
The only remaining unknown variable is σ(R), for which we will take the analytic estimate
from [76], which contains both a symmetric case and one with velocity anisotropy that
more closely resembles known galaxies.

3.2.2 Stellar models

With the conditions around our star set, it is perhaps time to ask about the stars them-
selves.

While the reasoning for why we would aim our model at high redshift is sound, there
are still issues around it. One of it is stars. The first stars, completely metal free stars
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with metallicity Z = 0 as they would form before supernova release metals on the void,
are poorly understood [77]. They would appear in small DM haloes of 105 − 106M⊙ at
z ∼ 30− 20, where a massive star would form at the center. This should in theory work
against our simplistic case. Fragmentation that generates low mass stars is possible [78,79]
and common, but the process is still poorly understood.

It is this lack of understanding combined with a rapid shift towards standard star
formation that gives us confidence to pursue our model. While we expect metal free stars
to form as they are normally expected, simulations also show that just giving the system a
bit of metallicity, Z ∼ 10−4, starts to shift their properties closer to current stars. Current
observation also expect that shift from metal free to standard star formation be very fast.
Our aim is for this transition period, where we still are at very high redshifts with very
dense environments and very metal poor stars, but star and galaxy formation are closer
to the standard with many low mass stars, thus the lower end of the first star epoch in
z ∼ 20.

In this study we use stellar models of differing masses, which were graciously computed
at our discretion using the open-source software instrument Modules for Experiments in
Stellar Astrophysics (MESA) [80]. These models are given to us for various ages, from
108 years to exceeding the lifetime of the universe. For each age given we can obtain the
density, temperature, speed of sound, mean atomic weight and pressure at all radii of the
star, allowing us to directly apply all the methods we will describe after.

All the models are extremely metal poor Z ∼ 10−4 stars, to represent a star at that
very high redshift. Of note is that lower metallicity stars are less compact and so less
dense, so even if we move our model to start at lower redshift our results should still work
as a minimum estimate for PBH capture.

Evolving the star together with the PBH orbit from its formation and ending at 1010

years would give the most strictly accurate results. In practice, the difference between the
youngest models just after starting their main sequence and those at 1010 years has little
effect on our final results and is not worth the extra computational cost. Thus a fixed
age depending on their lifetime and flags given by MESA is chosen for each stellar model,
aiming for both a similar evolution stage between the various stars and one which would
closely resemble all the various stages the singular star would live through 1010 years.

A marked exception to this are our 2 lightest stars, with 0.4 and 0.32M⊙. Even
within 1010 years both the stars would have just started their main sequence and have
their evolution at a very early stage compared to the heavier models, with density and
temperature lowering with age rather than the opposite, which we expect later in their
life. As our final aim is to set our results as conservative as possible, we choose the 1010

years model, which also results in them having among the lowest central density of all
stars, contrary to expectations. Comparing our final results in these 2 stars with ones
acquired using older, 1012 years old versions of their models show the differences still being
rather small, thus we are optimistic that none of these factors has any major effect on
our conclusions. Similarly, we believe changing our models for completely standard solar
metallicity stars similar to our Sun would also change little.

An example of density against radius for all the stellar models chosen can be seen
in Figure 3.1, while we show the temperature versus radius graph on Figure 3.2. The
stellar ages chosen are 1.5, 3.2, 1.3, 1.3, 10, 10 Gyrs for 1, 0.79, 0.63, 0.5, 0.4, 0.32 M⊙
stars respectively, with stability of the model put as first priority and similar stellar age
between models as second.
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Figure 3.1: Mass density profile for our stellar models of different masses. We have chosen
stellar ages that suited our objectives: 1.5, 3.2, 1.3, 1.3, 10, 10 Gyrs for 1, 0.79, 0.63, 0.5,
0.4, 0.32 M⊙ respectively. In practice, as long as nuclear reactions have started in the
core, variation in time of the profile is negligible to our results.
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Figure 3.2: The temperature on each radius for our various stellar models. Applies the
same as above for our stellar models age.
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3.2.3 Black hole capture: dynamical friction inside the star

Now we can move to the main aim of this chapter, estimating the capture rate of 10−12M⊙
PBHs by stars. Finding the profile and stellar models were only the first steps, the follow
up is to quantify the process in which the PBH ends up in the core of the star.

The main mechanism by which the PBH might fall towards the core the star is dy-
namical friction, where the PBH crosses the surface of the star and gravitational and
more complex interactions result in an energy loss. We will assume that friction by any
other objects besides the star, or any other form of energy loss, is negligible for the most
conservative approach. This is accurate for our simple model with only a star and its
DM profile, but even with other possible objects the star should remain the most mas-
sive by far and our estimate reasonable. There is the possibility of capture through tidal
interactions, but both [73] and [72] agree that its effect is overall negligible.

The dynamical friction depends on a number of variables. The star must be modelled
accurately too. For this, we have used stellar models described previously, from which we
obtain the density, temperature, speed of sound, mean atomic weight and pressure at all
radii of the star.

We also need to give the PBHs both an initial energy and angular momentum, but
once both are set we can evolve the system self-consistently, both in the case the PBH
is in an stable orbit or the case it is just a non-bounded object passing by. We do know
the effects of single cross will be extremely small (look to our results in section 3.3.1 or
previous calculations by [81]), so we can ascertain that its effects on the current orbit will
be negligible. Thus we assume a standard Keplerian orbit when it is not within the radius
of the star, and that both the energy and the angular momentum will remain constant
for that single orbit; we can thus compute the dynamical friction as ’kicks’ to a orbit that
result in loss of energy and angular momentum.

l = b · v∞ =
√
GM∗ (1− e2) a =

√
( e2 − 1) (GM∗)

2

2u
(3.8)

u =
−GM∗

2a
=

( e2 − 1) (GM∗)
2

2 l2
=

1

2
v2 + Φ , (3.9)

where e is the eccentricity, a the semimajor axis, b the impact parameter and v∞ is the
speed the PBH had at infinity. We also use the specific version of energy u and angular
momentum l which result from dividing both by mass for simplicity.

When in orbit, the angular momentum depends on both eccentricity and energy, while
the energy depends on angular momentum and eccentricity too. This means fixing l and
e also effectively fixes the eccentricity.

With the orbit set, we want to compute the energy loss of the PBH as it crosses the
star. The dynamical friction itself can be computed through Chandrasekhar’s collisonsless
formula [74], or through Ostriker’s variation [82] which takes into account collisional effects
from the gas. For Ostriker’s case in particular we will use an improved analytic estimate
by [83], obtained from numeric simulations and much better suited to extreme cases like
ours.

adf =
d ṽBH

dt
=

−4πG2ρMbh

v2BH

I (3.10)
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IChandrasekhar =

[
erf

(
vBH√
2Σ

)
− 2 vBH√

2πΣ
e−

v2BH
2Σ2

]
ln Λ (3.11)

IThun = ln

(
Rmax

RSO

)
= ln

[
Rmax

(
1

2

Mach2

Mach2 − 1

2GMbh

v2

)−1
]
, (3.12)

where erf is the error function, Σ =
√

3kT
µmh

, Mach is the Mach number, Λ =
(

Rmax

Rmin

)
.

Rmax and Rmin are respectively the maximum and minimum impact parameter for the
interaction, while T is the temperature, mh the Hydrogen mass, k the Boltzmann constant
and µ the mean atomic weight. We take the radius of the star for Rmax as is standard,
while for Rmin both the Bondi accretion radius and the PBH’s Schwarzschild radius can
work, with only a small factor of difference. We have also assumed supersonic velocities
and an adiabatic index of 5/3. Given that the escape velocities at the surface is already
greater than speed of the sound at the core of the star, we foresee no problems for the
first case. Still, we checked for all our models and we did not find a single case where
Mach < 1 (any such cases are most likely already captured deep within the star). For
the second assumption, at most it would add a factor 2 to the dynamical friction for the
most extreme and unlikely values, so we opt for the most conservative approach.

With adf , it is possible to find the energy lost. As the ∆v in a single transit is very
small, we can take an approximation to make it even easier:

∆u =
( v + ∆v)2

2
− v2

2
= v∆v + 2∆v2 ≃ v∆v = v adf dt . (3.13)

This result can then be integrated to obtain the total energy loss in a single transit.
For details see Appendix A.

3.2.4 Average number of captured black holes

While the friction from a single pass is likely negligible [81], the time scale of the orbits
compared to the lifetime of a star makes it possible for it to have an effect on the orbit
of the PBH. Concretely, we will define a black hole is captured, as opposed to just grav-
itationally bound, when its apoapsis is below the star’s radius and so the orbit is fully
inside the star; it is straightforward to prove that the PBH will end up completely in
the core within t ≤ 108yrs once this happens, which we show on the Appendix B. This
limit is also the same used in [72], where they establish it using phase space arguments
instead. We can then define an eccentricity by which the PBH will end up captured in
t = 1010yrs, which we will call the critical eccentricity ec(r). All eccentricities above
ec(r) will have smaller or tighter orbits, meaning they will cross closer to the center of the
star with higher densities and so higher dynamical friction. This will result in the PBHs
being captured in a shorter time than the t = 1010yrs established, and thus might leave
observable consequences.

With the energy loss, studying the evolution of the PBH orbit is straightforward.
With its energy and eccentricity (angular momentum) we can determine the orbit and its
period with which we can compute the energy loss for each orbit. With the energy loss
we can also obtain the change in angular momentum:{

d l
dt

= |F |
m
r · sinα

l = v · r · sinα −→ d l

l
=

|F|
mv

dt (3.14)
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d l =
|F| · l
m v

dt =
a · l
v

dt =
d v

dt
dt

l

v
=

d v

v
l −→ ∆ l ∼ l

∆ v

v
. (3.15)

We can estimate the period for each orbit using Kepler’s law, T = 2π
√
a3/GM, to get

the total time spent 1. Evolving each orbit, we can find the time it takes for it to fall in
the center of the star, and by finding the orbit in which t = 1010yrs for different energies
we also find the critical eccentricity.

As mentioned before, the PBH’s orbit is determined by its angular momentum and
energy, both of which can be expressed as eccentricity and semimajor axis. This means
even if we fix the critical eccentricity, there will still be a degree of freedom. In other
words, the critical eccentricity will be different for each starting semimajor axis. While
not exactly the same, for our model we can equiparate the semimajor axis of the starting
orbit to the initial radius the PBH would have, making comparing with the bound density
and integrating for different radius much easier2 Using ec(r), the density distribution we
found in equation 3.7 and assuming a Jeans-Ambartsumian eccentricity distribution (also
known as a flat thermal eccentricity distribution) we can obtain the average number of
PBHs that should be captured by the star in 1010yrs.

N(e > ec) =
(
1− e2c(r)

)
N (3.16)

MDM =

∫ r0

R∗

(
1− e2c(r)

) (
GM∗r

−1
)3/2 ρ̄DM

σ3
r2dr . (3.17)

As e2c(r) is not an analytic function, we will have to compute its integral numerically
together with a factor r1/2. We identify this numerical result with a parameter we will
call Ξ, which we decide to make dimensionless and express in terms of both limits of the
integral:

MDM =
(GM∗)

3/2 ρ̄DMρ̄DMR∗r
1/2
0

σ3

∫ r0

R∗

(1− e2c(r)) r
1/2dr

R∗r
1/2
0

(3.18)

MDM =
(GM∗)

3/2 ρ̄DMR∗r
1/2
0

σ3Ξ
, (3.19)

where R∗ is the radius of the star, and r0 is the maximum radius from the PBH to the star,
both constants. As all other variables do not depend on r, we can leave them out without
worries (we again stress to not confuse r with R). This also means we can generalize the
result:

M̄DM = 1.65 · 10−26M⊙

[
ρ̄DM

10M⊙/pc3

][
R∗r

1/2
0

km3/2

][
1

Ξ

] [
10km/s

σ

]3 [
M∗

M⊙

]3/2

N̄PBH = 1.65 · 10−14

[
ρ̄DM

10M⊙/pc3

][
R∗r

1/2
0

km3/2

][
1

Ξ

] [
10km/s

σ

]3 [
M∗

M⊙

]3/2
. (3.20)

1As the periapsis for our complex case rmin is bigger than the periapsis for its Kepler orbit rmin Kepler,
Tkepler ≥ Treal, so taking the Kepler period is both the simpler and more conservative approach to get
at least the minimum capture rate.

2We use the semimajor axis for all computations of the orbit during the capture, this is simply to
avoid having to compute the initial orbit average radius we would need when integrating by radius to the
star
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1 0.79 0.63 0.50 0.40 0.32 M⊙

rmp
22.5 25.0 25.4 24.7 23.7 22.1 1012km
29.8 28.8 27.4 25.7 24.1 22.3 1012km

Table 3.1: Values of the maximum semimajor axis that can result in a capture in 1010 years
if the system was completely isolated. We are using a PBH of 10−12M⊙ with eccentricity
1. The upper row is from colisionless friction, while the one below assumes a gaseous
medium.

Besides the critical eccentricity, the capture rate also depends on r0 both explicitly and
also as the upper limit of the integral for Ξ. A priori r0 is only defined as the maximum
radius at which a PBH could be captured. From a set of simple assumptions, we expect
that (1− e2c(r)) ∝ 1/a:

rmin = a(1− ec) −→ 1− e2c ≃ 1−
(
1− rmin

a

)2
=

2rmin

a
− r2min

a2

a >> rmin −→ 1− e2c ≃
2rmin

a
∝ 1/a , (3.21)

where rmin is the periapsis of the orbit, the point closest to the center of the star. The
periapsis needed to capture the PBH within 1010yrs will obviously decrease for larger a,
but the rate of change will be much smaller, so the semimajor axis term will dominate.
So we have the numeric integral will roughly go as ∝ a1/2, meaning the capture rate
will also raise significantly with an increasing radius. This is the reason we put the r0
term explicit through the definition of Ξ, but also makes defining the upper limit r0 very
important. However, we can use this same relation for it. As mentioned, the rate of
change of the periapsis will be much slower than the rate of change in the semimajor axis,
as the former changes from the surface to the core of the star as the medium gets more
dense, while the later spans from tens of thousands of kilometers to tens of thousands of
Astronomical Units. This will hold until we reach such distances that the periapsis cannot
be lowered more for we are already in the center of the star, at which point the relation
above will quickly decay to 0. The quick decay comes from being impossible to capture
PBHs farther away within the 1010yrs given, but also gives us a very good estimation of
r0: the semimajor axis such that its orbit with eccentricity 1, crossing exactly the center
of the star, will take 1010 years to be captured.

We showcase these maximum semimajor axis for a variety of cases in table 3.1. How-
ever, we can see that they raise up to almost a parsec, at which point perturbation by
objects outside the stellar system on the PBH would be expected and our entire reasoning
for ρ̄PBH would become void, making the overall result not valid. To account for this, we
need to approximate the global effect of outside perturbations on PBHs.

3.2.5 Maximum radius for black hole capture: perturbation by
third objects

In our simplistic model we have assumed that we have a single star and negligible planet
formation. However, we can still have perturbations on the system by objects from outside
the system (third objects). Modelling in detail possible subhaloes and other stellar systems
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lies outside the scope of this chapter, but we can approximate their total effect by looking
at the tidal forces between the stellar system and the DM halo as a whole.

We take the orbit as the variation of position to compute the tidal force acting on
the PBH. The angular momentum generated by that force can in turn deviate the orbit
of the object, to the point that the PBH no longer crosses the star. Of course, the tidal
force competes with the stellar system’s gravitational potential, so as expected the farther
objects will be much more affected. We start by estimating this competition:

∆ l

lcirc
=

aTidal

aGravitational

=
GMhalo(R)r

GM∗

r2

R3
=

Mhalo(Rh)

M∗

( r

R

)3
, (3.22)

where lcirc is the angular momentum of the equivalent circular orbit. Something to note
however is that the effect of the tidal forces will not be for a single orbit, but rather
during all capture process. The change in both the angular momentum and orbit during
the capture process is quite extreme, but we can take a first order approximation by
computing the total effect it would have on the PBH if the orbit was not changed by the
capture process, as that initial orbit would be the one with the highest radius and so the
one the effect of perturbations will be higher.

When the change on the momentum caused by the perturbations is enough to deviate
the PBH with initial ec from the orbit that crosses the star, the semimajor axis of the
starting orbit will be set rmax, as the effect of perturbations would be higher on farther
orbits. If perturbations are enough to perturb the orbit with ec at that radius, we expect
orbits at higher radius will be even more perturbed and so not valid on our model. This
is a very conservative approximation, but it suits the aim of our work. Assuming the
changes in the orbit are stochastic, the total variance will then be:

∆ l = ∆ lorbit
√
norb , (3.23)

where norb is the number of orbits. This comes from assuming there will be a random
perturbation from tidal forces during each orbit.

Using the definition of angular momentum in equation 3.8 and for circular orbits and
that the changes in both the eccentricity and angular momentum are very small, we can
derive to relate the increments of angular momentum with the increment in eccentricity:

l

lcirc
=

√
1− e2 −→

d
(

l
lcirc

)
d( e)

=
d
(√

1− e2
)

d( e)
(3.24)

d l

lcirc
=

−2 e

2
√
1− e2

d( e) −→ ∆ l

lcirc
=

− e∆ e√
1− e2

. (3.25)

As the tidal forces will only meaningfully affect the furthest PBHs, the critical ec-
centricity will be very close to 1. This means even very small absolute changes in the
eccentricity can deviate the orbit from capture. We therefore approximate the maximum
change allowed using ∆e < −(1− e) 3 and apply it to equation (3.25):

∆ l

lcirc
<

− e [−(1− e)]√
1− e2

≃ e(1− e)√
2(1− e)

=
e√
2

√
1− e , (3.26)

3We specify the sign as positive changes to the eccentricity will only make capture more likely
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where we have simply used that for e ≃ 1,
√
1− e2 ≃

√
2(1− e). Similarly, due to e ≃ 1

we can neglect the lineal dependency on eccentricity above, as the square root term will
always dominate near 1, leaving:√

1− e

2
>

∆ l

lcirc
=

Mhalo(R)

M∗

( r

R

)3√
Norb , (3.27)

where we have recovered the rightmost term from equation 3.22
This can be simplified even further. First, at the large distances which concern our

case, we can approximate the critical eccentricity as the one needed in order to just enter
the star within the orbit:

e ≃ 1− R∗

r
−→ 1− e

2
≃ R∗

2r
. (3.28)

Similarly, because of the large eccentricities, the energy loss per orbit plateaus, some-
thing that will be seen clearly in our results. We can then take ∆Eorb ≃ ct. It is
straightforward to show that if we derive equation 3.9 and equal it to a constant, we can
then estimate the orbits decaying as ∆r ∝ r2Norb, where Norb is simply the number of
orbits and so the number of times ∆Eorb was applied. We can easily absorb the other
constants into a parameter we will call a1 and which we choose to define as the distance
such that single orbit will see its semimajor axis fall by half ∆r = r/2, leaving:

∆r =
r2

2a1
Norb −→ Norb =

2a1
r
, (3.29)

where we have used that, as we are talking about possible captures with at least initial
ec, ∆r = r. Applying both of these changes to equation (3.27):√

R∗

2r
>

Mhalo(R)

M∗

( r

R

)3√2a1
r

(3.30)

r3max =
Mhalo(R)

2M∗

√
R∗

a1
R3 . (3.31)

As seen in the equation above, the rmax we are searching for is cubed and both the
number of orbits and eccentricity terms have square roots, so even in the worst case we
expect these simplifications to not have any major effect while making the estimation
much simpler.

From this we obtain a rmax after which the condition above will stop being fulfilled and
perturbations from the galaxy would interfere in the capture process. We showcase the
results for R = 1/10RV irial in table 3.2. We can compare it with the maximum possible
radius of capture, discussed in the previous section, which are in table 3.1. It can be easily
seen that the rmax obtained from perturbation effects are as expected much lower than
the maximum capture radius. To be sure, we computed it for various R and found that
even at very large distances from the halo like R = RV irial the same happened. We can
thus conclude that perturbations are the main effect limiting the PBH capture, and so
should always be taken into account, even in a simplified matter. [73] for example obtained
constraints by integrating up to a radius of 5, 000 AU, but, as we have showcased, for a lot
of stellar systems such orbits would be perturbed far before the PBH could be captured.
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1 0.79 0.63 0.50 0.40 0.32 M⊙
rmax 0.142 0.133 0.124 0.115 0.110 0.104 1012km

Table 3.2: Values of the maximum semimajor axis taking into account perturbations
coming from the galaxy/halo (but not planet formation or binaries). It only depends on
the halo mass, and the radius to both the center of the halo and the star of the system.
In this table here we assume R = 0.1Rvir.

A final caveat is that, from equation (3.31) it can be easily understood that rmax will
evolve with time, as both Mhalo and R will increase while the stellar parameters remain
constant. In this work we neglect this effect: while change in rmax can be important, the
total effect of this evolution is more mild, as the perturbations need a large number of
orbits to start having an effect, and so the changed perturbations will only have an effect
a bit< after the change itself. This means that only the orbits surviving to that point
will be affected, not affecting the PBHs that have already been captured. From equation
(3.31) it is obvious that rmax will only increase with time, thus the main effect will be
orbits stopping being perturbed. How to treat these half-perturbed orbits is a difficult
question, and in this work we are aiming for conservative and stringent lower bounds on
capture rate. If we implemented the evolution of rmax, we would also need to divide the
capture time in various bins, and integrate (3.17) for each of them in turn, making the
whole process much more complex and expensive computationally wise for only a dubious
increase in accuracy. Overall setting a constant rmax allows us to simplify the process,
meaning we only need the initial conditions, and gives a minimum value of the capture
rate.

3.2.6 Black hole growth after capture

A reasonable doubt about all this process is if such a small PBHs with m = 10−12M⊙
can really have an effect on a star of ∼ 1M⊙, maybe even accreting it whole. This
computation was done previously in [72, 84, 85], and [86] looked in detail at how the
parameters of the star could change the type of accretion and its emission. Here we
will reproduce it, but with very conservative approximations: we assume the PBH will
start accreting only once it has settled in the core of the star and an Eddington limit
with a radiative efficiency of ηrad ∼ 0.1, the standard for astrophysical settings. We note
that this is overly conservative, as accretion luminosity inside a star could also be carried
primarily by convection in very optically thick stellar cores, bypassing the Eddington limit
and avoiding the creation of torus-like accretion disk. Indeed, that was the conclusion
of [86] for a wide range of masses, including our initial mass 10−12M⊙ and any mass
above 10−2M⊙. This would result in a standard Bondi accretion, which as seen both
below and in the previous references would be much faster. Nevertheless, we keep on with
this calculation to show its robustness, even in a worst case scenario:

ṀBondi ≈
π (GMBH)

2 ρ∗
c3s

(3.32)

ṀBondi ≈ 8.75 · 108
[
MBH

M⊙

]2 [
ρ∗

1g/cm3

] [
cs

10km/s

]−3

M⊙/yr (3.33)
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ṀEdd =
4πGmp

c ηrad σT
MBH ≈ 2.2 · 10−8

[
MBH

M⊙

]
M⊙/yr . (3.34)

Looking at our typical case, with MBH = 10−12M⊙, taking the ensity of the star’s core
as ρ∗ ∼ 100g/cm3 and speed of sound cs ∼ 500km/s:

Ṁ0 Bondi ≈ 7 · 10−19M⊙/yr

Ṁ0 Edd ≈ 2.2 · 10−20M⊙/yr .

If the Eddington limit applies, the accretion is limited from the start. With a squared
dependence on the mass in comparison to the linear Eddington dependence, the Bondi
accretion will increase more than the Eddington limited as the PBH accretes, and thus
if the Eddington limit applies at the beginning the resulting accretion will always be
Eddington limited. Therefore we can just integrate the Eddindton limited accretion rate:

dM

dt
=

4πGmp

c ηrad σT
MBH −→ dM

MBH

=
4πGmp

c ηrad σT
dt (3.35)

∫ 1

10−12

dM

MBH

=

∫ t

t0

4πGmp

c ηrad σT
dt = ln

(
1

10−12

)
=

4πGmp

c ηrad σT
∆t (3.36)

∆t =
c ηrad σT
4πGmp

ln

(
1

10−12

)
≈ 1.25 · 109yrs , (3.37)

where we have used that most of the parameters are not affected by the PBH’s growth,
and thus we can take them out of the integral.

There are 2 important factors to note about this result. The first is that the exact final
value of the mass is not relevant. The logarithm suppresses both increase and decrease,
so even if we changed the mass of the star to 0.1M⊙ or 3M⊙, the total time would only
change by ∼ 10%. The second is the possible change of the parameters that affect the two
types of accretion rates during the accretion process. In particular, the Bondi accretion
rate depends on the sound speed and density of the core, both of which will be heavily
affected as the PBH grows larger. However, this worries are unnecessary. A look at the
starting accretion rates clearly shows the lengthiest process are the first steps, as the
exponential nature of the equation means it will take around the same time to double
its mass at 10−12M⊙ and at 0.5M⊙, despite the later being 5 · 1011 times more massive.
The change of parameters will only start mattering when the PBH’s mass is comparable
to that of the core, at which point the accretion rate is already large enough that even
a suppression around a factor 10 would not alter the final result. While some amount
of ejecta escaping could affect the final mass of the PBH, by similar reasoning it would
only occur right at the end, when the PBH’s mass is already of the order of the star,
and ejecta escaping would only lower the final mass of the PBH, not interfering with our
observational result of a subsolar mass PBH at all.

Indeed, [86] concluded that the star would only start being dynamically affected by
the black hole inside it at maximum 6 days before being completely accreted. [29] studied
in depth a similar case but with a neutron star, and reached even more strict results:
besides a transient electromagnetic pulse and gravitational wave emission there would
be no other observational remain or result of the process outside the PBH, including no
ejecta. Extending this study to main sequence stars is the obvious step forward, but lies
outside the scope of this thesis.
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Figure 3.3: Energy loss of a 10−12M⊙ PBH when crossing our model 1M⊙ star, as a
function of the orbital angular momentum. Each curve is for a different value of the
specific energy of the initial orbit (positive for unbound orbits and negative for bound
orbits). The Chandrasekhar dynamical friction formula for collisionless matter is used.

3.3 Results for six stellar models

To compute the various results we have created a set of unique programs using the previous
equations and stellar models. We now describe the steps it takes, together with its
immediate results.

3.3.1 Energy loss by dynamical friction

Following equations (3.10) and (3.13), we integrate numerically to find the loss of energy
over a single pass depending on the PBH’s energy and angular momentum, for both the
collisionless (3.11) and gaseous (3.12) cases, and for a variety of energies including both
bound PBHs and free ones that just collided by chance. The results for a star of 1M⊙
are shown in Figures 3.3 and 3.4.

While the energy loss increases the more tightly bound the PBHs are, for a single
pass it is negligible as expected. The difference between the different types of dynamical
friction is quite mild too. However, the value is still enough that the accumulated effect
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Figure 3.4: Same as Figure 3.3, but for the hydrodynamic formula based on [83] and [82]
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after a number of orbits could force a bound PBH deep into the core of the star. We
take our simplistic model, in which the PBHs orbits a single star and effects by individual
distant bodies are mostly neglected. We estimate the global effect perturbations by tidal
forces could have by establishing an upper radius rmax above which we assume orbits will
not contribute to the capture rate (for more details, see section 3.2.5), but besides that
the PBH is unperturbed. These assumptions can be optimistic, especially in very dense
environments and the more common binary systems. However, in more isolated cases our
simplistic model gives a very good approximation, and thus is ideal to establish a base
case upon which to later improve upon. Further work on studying the effects of these
perturbers would also benefit from establishing accurate models of inner system objects
like planets or binary stars.

3.3.2 Critical eccentricity for capture

Following this model we can compute a ’time of capture’ for a set energy depending on
the eccentricity/angular momentum. We follow the evolution of the PBH orbit using
equation (3.15) and the energy loss, computing the energy loss per orbit again after any
of the parameters changes by at least 1%, and use the criterion described in section
3.2.3 and in the Appendix B to determine when the PBH has been captured. The more
eccentric the orbit the quicker the PBH will be captured and below a certain eccentricity
the orbit will simply not cross the star so the time of capture will be infinite. Above a
certain eccentricity, meaning lower angular momentum, we also expect the capture time
to plateau, reflecting the behaviour seen in figures 3.3 and 3.4. As mentioned in the
previous sections, we define the critical eccentricity as the eccentricity by which the PBH
will be captured in 1010 yrs. Thus, any eccentricity equal or above the critical eccentricity
will result in the PBH being captured by the Star (and in turn, accreting it) within the
lifetime of the Universe.

Assuming a flat thermal eccentricity distribution we can convert the critical eccen-
tricity into how many of the PBHs at that SMA will end up being captured, which we
showcase multiplied by semimajor axis in Figure 3.5 for our various stellar models. As
from this point onward all the differences between the two types of dynamical frictions
we are working with become negligible, all results shown below are using the gaseous case
(3.12). The SMA also gives us a very good approximation of the radius to the star, which
we can use to compare with the density distribution as we did in equation (3.17) to get
the total mass accreted. As discussed in section 3.2.3, the maximum radius of integration
(rmax) is perhaps the most important parameter in that integral. Figure 3.6 illustrates its
importance; it represents the average number of PBHs captured against the maximum
radius of integration. While not exact, there is a rough M ∝ r

1/2
0 relation, especially at

larger radii, originating from the relation between the semimajor axis and the critical
eccentricity showcased in equation (3.21). As mentioned before, we use equation (3.31)
for the maximum radius, which depends on the position of the system within the halo, R.
Of course, ρ̄DM will also depend on that, so R will be one of the major factors deciding
the capture rate. The rmax we found for our particular DM halo can be seen on Figure
3.7 for various stellar masses and R.

Finally, we use the analytic estimate of σ from equations (13) and (19) of [76]. As can
be seen in equation (3.17), σ is cubed, so the final result is very sensitive to its possible
changes. To appreciate these differences, we use the two different models mentioned
above, one being an idealized case with completely isotropic velocity dispersion, and the
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Figure 3.5: Probability for a randomly captured PBH of 10−12M⊙ to have the critical
eccentricity or above for all semimajor axis and various stellar models. For visibility
we have multiplied the probability by the semimajor axis. Following equation (3.21) we
should expect the value to be roughly constant until close to the maximum semimajor
axis, something which fits the figure above.
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Figure 3.6: Average PBHs captured by the star up to that radius. While at some point
the density distribution will naturally go to 0, our simplistic model (which assumes no
interactions by third objects) breaks down much earlier, and so the choice of the maximum
radius of integration is an important one. The star is situated at R = 0.1RV irial of the
center of our DM halo.
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Figure 3.7: The upper limit of the integral we found according to equation (3.31) for the
case of our particular DM halo and the various stellar models we are working with.
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Figure 3.8: Average PBHs captured by the star depending on the distance of the system
from the center of the DM halo with purely isotropic dispersion velocities.

other a more realistic approach with a variable anisotropy parameter4. We showcase
the final results depending on the position of the star within the DM halo with these
two dispersion velocity models on Figures 3.8 and 3.9 respectively and for all our stellar
models. Interestingly, while the capture rate peaks near the center as expected, where we
would average 30 PBHs per system being captured and accreting the whole star, even at
larger distances, in the more isolated systems which more closely resemble our idealized
model, the capture rate is still notable, having an average of 1 in 100 systems capturing
a PBH at distamces R ∼ 0.1Rvirial.

3.3.3 Results for captured primordial black holes

While we have been talking about the early universe, as that is the most interesting case,
a single glance at equation (3.20) shows that the Ξ that we compute is generic, completely
separate from ρ̄DM and σ. This comes from the fact that our model first works around
the capture process, and then adjusts the final number based on the number of available
PBHs. Thus, our results are not only extendable to other redshifts but also to cases where

4In observations, the anisotropy parameter is very close to 0 in the center but grows with distance up
to 0.5 near the virial radius [87]
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Figure 3.9: Average PBHs captured by the star depending on the distance of the system
from the center of the DM halo with anisotropic velocity dispersion.
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PBHs are only a minority of the DM.
An important caveat is that the upper limit of the integral, rmax, does affect Ξ and

is also explicit on the average number of PBHs captured, and that depends on the DM
halo itself. As can be seen on equation (3.31), at lower redshifts rmax should raise and
capture rate with it. Similarly, even more dense regions would indirectly result in a lower
capture rate as perturbations affect objects earlier. Unlike the mean density and velocity
dispersion, of which we only need the initial conditions, rmax can also evolve, though in
this work we have neglected the evolution for reasons explained in section 3.2.5.

Therefore, rather than just use the rmax we have computed, we are showing Ξ for
various rmax and stellar models in table 3.3, which should allow anybody interested to
find the value suited to their particular case.

3.4 Observational consequences
If all the DM is composed of PBHs there is only a small range of masses that are not
constrained by current observations. However, on the bigger side of this range, 10−12M⊙,
interactions between these PBHs and stars could have an observational result, with PBHs
falling into and later accreting the much larger objects [81].

In our study we have made use of the primordial nature of the PBHs, which would
interact with the star since the moment of its formation and could fall into orbits that
cross the star. The strength of the dynamical friction would usally be negligible, but
within 1010 years it ends up being enough for the PBH to end up in the core of the star.
There we have shown the PBH can accrete the star in less than 109 years, for a grand
total of 11 gigayears in comparison to a an age of 13 gigayears from z ∼ 20 to our current
universe. We therefore expect the process to be easily completed by now, even leaving a
few gigayears to spare for safety.

We made an in depth analysis of the main elements contributing to the possibility of
PBH capture, reaching a generic solution for a simplified model that can compute the
average number of PBHs captured by a star from a set of parameters and a numeric
integral. While the type of dynamical friction used can vary the energy loss of a single
orbit a substantial amount (see figures 3.3 and 3.4), it has only a very small effect on the
critical eccentricity and a negligible one on the capture rate. This is due to the extreme
eccentricities we are already starting with for most orbits to cross the star, as even big
differences in energy loss will only translate to very small critical eccentricity changes

However, following the limitations of our model we also reached the conclusion that
external perturbers will easily affect the outer layers of the system. This outer layer is
where PBHs are more numerous, due to their density scaling as r−3/2 meaning their total
number scales as r3/2. We showed that the effect of external perturbations is important
for our final results, as there are PBHs with an orbit that would result in them being
captured but that are instead perturbed by the tidal forces of the DM halo. This is
something that has not been taken into account in previous studies [40,73] but that is of
major importance, changing our results by an order of magnitude.

Once taken into account, our main results are the average PBHs captured by a star
depending on its position within a 107M⊙ DM halo at z ∼ 20, shown in figure 3.9. As
can be seen in the figure, our final conclusions are very exciting. According to our model
almost all the stars within the central part of the galaxy would eventually capture a PBH
and be accreted by it within the Hubble time. If 10−12M⊙ PBHs are all the dark matter,
this should result in an abundance of black holes with mPBH < 1M⊙ but still big enough

57



58 CHAPTER 3. PRIMORDIAL BLACK HOLE CAPTURE BY STARS

M∗(M⊙) 1 0.79 0.63 0.50 0.40 0.32 M⊙
R∗(km) 634134 528054 395880 296642 231579 196870 km
rmax(km) Ξ
7 · 106 0.53 0.44 0.42 0,41 0.40 0.40
9 · 106 0.49 0.41 0.39 0.38 0.38 0.37
107 0.48 0.40 0.38 0.37 0.37 0.36
3 · 107 0.38 0.32 0.31 0.30 0.30 0.30
5 · 107 0.38 0.33 0.30 0.29 0.30 0.29
7 · 107 0.36 0.30 0.29 0.29 0.29 0.29
9 · 107 0.36 0.31 0.29 0.28 0.28 0.28
108 0.36 0.31 0.29 0.28 0.28 0.28
3 · 108 0.35 0.30 0.27 0.26 0.26 0.26
5 · 108 0.35 0.30 0.27 0.27 0.27 0.26
7 · 108 0.36 0.30 0.27 0.27 0.27 0.26
9 · 108 0.36 0.31 0.27 0.27 0.26 0.26
109 0.36 0.31 0.27 0.27 0.26 0.26
3 · 109 0.36 0.31 0.27 0.26 0.26 0.25
5 · 109 0.37 0.32 0.27 0.26 0.26 0.25
7 · 109 0.38 0.32 0.28 0.26 0.26 0.26
9 · 109 0.38 0.33 0.28 0.27 0.26 0.26
1010 0.38 0.33 0.28 0.26 0.26 0.26
3 · 1010 0.40 0.34 0.28 0.26 0.26 0.25
5 · 1010 0.41 0.36 0.29 0.27 0.26 0.26
7 · 1010 0.42 0.36 0.30 0.27 0.27 0.26
9 · 1010 0.43 0.37 0.30 0.27 0.27 0.26
1011 0.43 0.37 0.30 0.27 0.27 0.26
3 · 1011 0.46 0.40 0.32 0.28 0.27 0.26
5 · 1011 0.48 0.42 0.33 0.28 0.27 0.27
7 · 1011 0.50 0.43 0.34 0.29 0.28 0.27
9 · 1011 0.51 0.44 0.34 0.29 0.28 0.27
1012 0.52 0.44 0.35 0.29 0.28 0.27
3 · 1012 0.60 0.51 0.39 0.32 0.29 0.29
5 · 1012 6.39 5.34 4.18 3.33 2.99 2.92
7 · 1012 6.74 5.70 4.36 3.44 3.09 3.01
9 · 1012 6.97 6.39 4.48 3.52 3.39 3.28

Table 3.3: Values of Ξ for 10−12M⊙ PBHs for various rmax and stellar models. Note
that Ξ is roughly constant for a sane stellar model until the larger rmax where it starts
decaying. This comes in part from the relation originating from equation 3.21, as Xi is
defined by dividing the numeric integral of the critical eccentricity and r1/2 by r1/2max and
R∗, heavily reducing the dependence on rmax until that relation falls off.
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to be detected with our current means, and a noticeable lack of old stars. This lack of old
stars does fit with the current lack of very old very low metallicity stars on observations,
though we stress large uncertainties in both the measurement and the expected number
of extremely metal poor low mass stars make it still an open and contentious issue.
Furthermore, because the capture itself only depends on the initial conditions just before
star formation, the stellar system of star and black hole could also migrate freely from
the DM halo or maybe even survive galaxy mergers, meaning the resulting subsolar black
hole end up in younger galaxies, such as our Milky Way.

There are caveats to the result. First of all, our model is very simple and does not
take into account binary stars or multiple systems. The existence of another star would
complicate our model massively. We a priori expect the results for binary stars to be in
a similar order of magnitude if not higher capture rate, but the need to account for much
more complex combined potentials and orbits makes saying anything more without an
specialized simulation very uncertain. Similarly, our model does not take into account
possible planet formation or specific outside perturbers beyond tidal forces, like the men-
tioned galaxy mergers. More work on how to model these kind of perturbations is the
simplest way to improve on our results.

We have also assumed that there would exist this low mass stars just after the first
stars, something we have discussed more in detail in section 3.2.2. We however remark
that shifting our results to further generation stars would not change them by much, and
that the Ξ we give at Table 3.3 is universal, and so can be used for any redshift.

While at lowers redshifts we expect our results to not be as spectacular, considering
the large number of stars in galaxies this should still end up as a noticeable amount of
subsolar black holes that similarly to the previous case could also end in our Milky Way.

The most evident observational result of the captures would be that, an abundance
of PBHs under the Chandrasekhar mass. This alone would prove the existence of black
holes with a primordial origin. Unlike primordial black holes that are formed directly with
0.1M⊙ < mPBH < 1M⊙ as result of perturbation collapse, the results of the capture would
also take the star’s position and momentum, leaving PBHs with very close properties to
black holes of astrophysical origin but with masses below the Chandrasekhar mass.

Observing sub Chandrasekhar mass black holes could challenging, especially if they
are alone. Any non-luminous object with low mass can be confused with a cold white
dwarf. Lensing would be an option, as would be binary systems where we we could see
the black hole tidally stripping a fellow star. The biggest difficulty however would be
differentiating our PBH that started as a 10−12M⊙ from other 0.1− 1M⊙ PBHs.

The are a few ways they could be differentiated from these other low mass PBHs. The
spin would be the easiest, as our resulting black hole would inherit at least portion of the
angular momentum from the star they have just accreted and we expect PBHs resulting
from perturbation collapse to have negligible spin. This is not a hard rule though, as
mentioned previously in Chapter 2. Another, if harder way to differentiate them would
be by their statistics. If we detect enough their statistical values should be much closer
to the stellar population they have replaced in contrast to PBHs, and there would be no
GW background from mergers of subsolar PBHs.

Another possibility comes from binary systems. Depending on the final stages of
accretion and interaction with multiple systems, we might also have binary systems of
a star with one such small black hole, or planets surrounding it. Primordial black holes
of 0.1 − 1M⊙ can pair with a star to create a binary system, but they will not share an
origin and so are likely to perturb any planet formation on the system in the process of
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pairing up. We also expect the occurrence of close pairs to be small. In contrast, because
our PBH start as very small they will not perturb any surrounding disks of material, and
they will simply take the place of one of the stars of the system, making close pair binaries
more common than in the directly primordial case.

In all cases our black holes could still explain all the dark matter through their
10−12M⊙ progenitors, unlike the 0.1 − 1M⊙ PBHs. On the contrary, if such black holes
are not found then it places a very strong constraint on 10−12M⊙ PBHs of any origin,
because our results show there should be many of them. Finding them or not can thus
close these PBHs being all the Dark Matter, one of the very last windows still remaining.
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DIFFUSE LYMAN α EMISSION BY MATTER AROUND
SUPER MASSIVE BLACK HOLES

Some of the brightest objects currently known to men are active galactic nuclei(AGN),
which are galaxy cores so luminous they outshine the rest of their host galaxy combined.
This massive luminosity allows us to measure far off galaxies that otherwise would be
too faint to be detected with current instruments, and so are an extremely useful tool
to explore the early universe. While today they may appear well established objects, it
has only been 30 years since the Active Galactic Nuclei unified model, which joined a set
of extra-galactic objects of unknown origins in differing wavelengths as coming from the
same type of object, an AGN just seen at different orientations. A showcase of this can
be seen on figure 4.1.

This unified model could be theorized in the first place because AGN themselves were
expected to be the result of active super massive black holes, as only massive accretion
could justify the luminosities measured and the various frequencies and phenomena seen
depending on the orientation. Super massive black holes themselves are, as the name
implies, massive individual black holes found at the center of galaxies, going from 106

to 109M⊙. While their specifics depend on their host galaxy, SMBHs were from the
beginning understood as the natural solution to the AGN’s high luminosity [89].

As the center of the core has the highest density present in the galaxy, any possible
object more massive than their surroundings would constantly accrete matter. Even if the
objects radiating the AGN started as only a dense star clusters or a single super massive
star, the high density environment would continually feed mass to that object, starting
a runaway process where more mass would result in increased gravitational potential,
increased accretion and so increased mass again. This is compounded because we also
expect dynamical friction to play a significant paper in the core. In a very analogous
process tp the one detailed in section 3.2.3, we expect friction to push any massive object
to the core of the galaxy. The friction rises as the mass of the object rises too, so the
increased mass not only will increase accretion, but also friction.

The difference is that massive object need not to start as a black hole. As long as it is
massive enough, it will end up on the center of the galaxy, the place of hightest density,
and it will eventually become so massive that it can only collapse gravitationally into a
black hole1. After that, either by normal accretion or by other similar massive objects

1After a certain mass threshold, stars are expected to be so unstable that they collapse directly,
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Figure 4.1: The AGN unified model. Extracted from figure 5 of [88]
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that also fall to the core by friction, the black hole will eventually reach the size of our
SMBHs.

We can in fact estimate this process by recovering the Eddington luminosities and
accretion rates we showed before. As we defined in equation 3.34, the Eddington limited
accretion rate depends on the mass of the object and a radiative efficiency. This radiative
efficiency measures how much of the accretion results in emission, and is highly uncertain
as it depends a lot on the geometry of the accretion: if there is an accretion disk, if its
spherical and symmetric, etc. The standard for astrophysical processes is ηrad ∼ 0.1,
which also works as a conservative approximation. By assuming that and that we are
starting with an object of Mseed we have an initial accretion rate of:

ṀEdd =
4πGmp

c ηrad σT
Mseed ≈ 2.2 · 10−8

[
Mseed

M⊙

]
M⊙/yr . (4.1)

Integrating in a process analogous to that in section 3.2.6 we end with a total time:

∆t =
c ηrad σT
4πGmp

ln

(
MSMBH

Mseed

)
≈ 4.5 · 107 ln

(
MSMBH

Mseed

)
yrs . (4.2)

If we input a seed mass of ∼ 100M⊙, even for the highest expected mass of our SMBHs
(109M⊙) we would get total times below 1 gigayear. This would leave plenty of time for
SMBHs to form even with pure accretion without needing to input multiple or larger
seeds. While constant Eddington limited accretion rate can seem a big assumption, the
high densities of the galactic core make it reasonable. We also only need one SMBH per
galaxy, so the process do not need to be common, just feasible.

The biggest uncertainty is how much it would take for the object to reach the core.
This is however easily solved as star formation can happen close to the core. Because the
most massive stars will also leave the most massive black holes, the SMBHs being the
result of these first big black holes is the simplest solution, with other objects feeding into
it later.

There has been some controversy recently, as SMBHs as massive as 109M⊙ have
been found at redshift 7.5 [25]. This could leave the timeline above a bit strained, with
some models having difficulty reproducing SMBHs [26]. This is however very far from
conclusive. Not only the timeline above comes from assuming ηrad ∼ 0.1, but this also
depends on the formation and death of the first stars which are still poorly understood.
Even within these limits, we are also assuming constant Eddington limited accretion,
while even within this model we would also expect plenty of other black holes to fall down
to the galaxy core, where they would merge in a shorter more violent events not affected
by the Eddington limit.

Still, one of the alternatives are PBHs, which could form the seed of SMBHs both
earlier than the first stars and more massive up to a 1, 000M⊙. While monochromatic
constraints bar them from being all the dark matter, only a very small abundance would
be needed to act as seeds. Because of their low abundance the only way to constrain
them however would be to improve our understanding of AGNs and SMBHs and solve
their origin, as they would be otherwise too rare.

One of the objects within AGNs are Quasi stellar Objects (QSO). As mentioned pre-
viously, when matter falls in the black hole, it loses energy in the form of radiation.

skipping even the supernova
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Depending on the angle and dust obscuring it we can see in different forms from Earth, as
seen in figure 4.1. A Quasar is one of them, in which we see a very bright emission across
the optic and ultraviolet spectrum coming from a point like source within a host galaxy.
Overall quasars are rare, but because of their high luminosity we can observe them at
medium to high redshifts (z ∼ 5), in which they are a great tool to understand the early
universe.

One of the most important contributions of quasars is to the reionization of the Uni-
verse, a process around z ∼ 7 − 8 that saw the intergalactic medium shift from cold
molecular gas to heated ions. It is commonly expected that star forming galaxies should
dominate and provide the grand majority of the contribution, but quasars can be bright
enough to contribute a portion. This is relevant, because due to both their rarity and the
bias in observations, where we only see the brightest among them, there is a fair degree
of uncertainty on their more generic statistical properties.

This issue is also compounded by the relation of QSOs with Lyman α emission, a
type of ionizing radiation. Not only is very easy to confuse QSOs with Lyman α emitting
galaxies, but among the brightest quasars it is very common they have a bright Lyman α
nebula surrounding them [90]. A higher than expected brightness of this diffuse emission
implies more active AGNs and higher contribution to ionization and other processes. Sim-
ilarly, a missing nebula where it is expected also carries its own set of implications on both
the luminosity of the AGN and the density of the intergalactic galactic medium (IGM).
An overall better understanding of the nebulae would help with deepen our knowledge of
both AGNs and their surroundings.

4.1 Lyman α emission

4.1.1 Lyman α line

The Lyman α line is a spectral line of hydrogen in the Lyman series of 1215.67 angstroms
of wavelength. It is emitted when the atomic electron transitions from its second orbital
to the first orbital, the ground state. As the first excited state of Hydrogen, is thus a very
important marker of the most common atom in our universe.

Technically it is a doublet, as there are two quantum states depending on the projection
of the electron’s spin angular momentum along the z-axis that change the wavelength of
the emission very slightly. However, in practice the width of the line we see in the spectrum
is large enough that we are not able to differentiate them in our instruments.

This width of the line, commonly measured through the equivalent width, results
from the source’s own movement and temperature. While we can measure the expected
wavelength we will see a line from Earth through the redshift, λobs = (1 + z)λem, this
does not take into account that beyond the expansion of the universe the source might
have their own peculiar velocity. With extended sources different parts can have different
velocities, and temperature will mean even within the same region of the source particles
will also have differing speeds. Each differing speed will mean different Doppler shift to
that particular ray. As our instruments do not have infinite resolution, we will see all those
differing spectra as coming from the same source, and rather than multiple sets of sharp
lines we will see a broad line with wings, the size depending on the intensity of the emission.
The wings also combine with the adjacent continuum, the normal spectra (usually close
to a black body) we expect purely from the temperature without individual spectral lines.
The overall effect is what looks like a broadening of the line. This broadening can carry
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its own advantages though, as the wings can give us information on the dynamical state
of the system, but also results in the doublet being treated as a single line in almost every
case.

There is another question referent to the Lyman α line however. The one we described
corresponds to the decay of second orbital (n=2), but also concretely the non-zero orbital
angular momentum (l=1), commonly called quantum state p. The second orbital has
another state with l=0, s. However, this second orbital cannot simply decay to the
ground state, as both share the same orbital angular momentum. Such decay would
require emitting a photon with 0 angular momentum with respect the hydrogen atom,
which is not possible. A possibility is instead emitting two photons, which would allow
for a net zero angular momentum. This would result in two different lines that can differ
for each each individual case of 2 photon emission, meaning in practice they would be
contributions to the continuum rather than a set spectral line and thus be much harder
to measure. However, two photon emissions are also less likely to happen [91] than more
simple one photon decays. Therefore, the Lyman α line dominates the transition from
the second orbital, the most common excited state for the electron, to the ground state
of the Hydrogen atom.

Being the most common emission of the most abundant atom in the universe, Lyman
α lines are a good reference line in most spectra. Also they are a typical tracer of star
formation, as the line is on the ultraviolet spectra which is also strongly present in young
big stars. There is another degree of value however, as we can see Lyman α lines not only
in emission, but also in absorption spectrum. Radiation equally or even more energetic
than the Lyman α is still light and will interact with the objects that it crosses. As there
is plentiful of atomic Hydrogen in most systems, this atomic Hydrogen has good chance
of absorbing the radiation, moving their electrons from the ground state to the second
orbital, the same transition as the Lyman α line but in reverse. Having been absorbed, this
Lyman α emission will not be on our spectra. However, because radiation gets redshifted
as it travels, the emission that was for the system equivalent to their Lyman α we will
see at different wavelengths than the original Lyman α line of the source, in effect leaving
clear gaps in our spectra at different wavelengths. Thus we can not only get information
on the Lyman α emission, but also on objects between us and the source, the foreground.

Absorption lines are then very commonly used as a sign of baryonic matter presence.
Because of the abundance of Hydrogen, any kind of non-ionized matter that receives
strong enough radiation will absorb the Lyman α line with the higher density resulting
in a higher degree of absorption. An example of spectra that focuses on the foreground is
the Lyman α forest, which is called so because the multiple absorption lines in a row look
like trees in a forest. The Lyman α forest is not only a measure of the density of various
objects, but also of the ionization state of matter at various redshifts, as only atomic
Hydrogen will leave a Lyman α absorption line. There are more layers of complexity
to the Lyman α forest too, as similar to in emission lines there can also be wings on
absorption spectra, coming from differing peculiar velocities and also radiation damping
helping give more information about the foreground.

On the intersection of both these phenomena there is another interesting case. Emis-
sion is in most cases isotropic and spherical, therefore surrounding objects not on our line
of sight will receive radiation that would not normally reach the Earth. This includes
Lyman α and more energetic wavelengths, resulting in the surrounding matter absorbing
it in a similar case to the Lyman α forest, but without any kind of observational sign
reaching us. A natural consequence of that however is that the now excited Hydrogen
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will eventually decay, re-emitting the line. This reemission will be similarly spherical and
isotropic, the hydrogen surrounding the source shining with this same line. This results
in a diffuse emission with increasing intensity the higher the density of hydrogen is with a
maximum set by the brightness of the central source. Characterizing and understanding
this emission gives useful complementary information to the main object, giving us infor-
mation on the surroundings of the source we were initially missing. If the spectra gives
us information about the emitting object and the foreground it goes through towards us,
the diffuse emission gives information about the surroundings of the object.

In this simplistic case of diffuse emission by recombination radiation, radiative re-
combination cascades (emssion from the electron decaying) are the main reason for the
emission of Lyman α. The Lyman α emissivity will be simply proportional to the hy-
drogen recombination rate times the ionized hydrogen density squared. The Hydrogen
recombination rate depends in a mild way of the temperature [90], and the Lyman α we
see will also depend on how many of the cascades to the ground state produce Lyman α
photons instead of more energetic emission or the two photon case. While exact modelling
is complex, a good approximation is to take ∼ 0.65 Lyman α photons per recombination
for temperatures between 104 and 105 K [92]. This method can most of the times repro-
duce the luminosities we observe in Lyman α nebulae, but require densities several times
higher than in common haloes, of the order of ∼ 1 atom per cm3.

That is only an ideal case however, as there are other possible ways for the matter to
emit Lyman α photons and contribute to the diffuse emission. One of the ways is through
scattering. Rather than being ionised and then decaying, reemitting the photon, in this
case the surroundings scatter another photon that originated from the central source
towards Earth. Another name for it is continuum pumping, as the matter scatters photons
increasing or reducing their wavelength, thus pumping photons that were originally in the
continuum on the Lyman α line.

One important difference from recombination is that the scattering is with neutral
hydrogen rather than ionized, and it depends only linearly on the column density of
neutral hydrogen. This is because we are working with Lyman α optical depth rather
than recombination rates, the optical depth being a dimensionless measure of the energy
loss after crossing a specific medium. For our case it is roughly equivalent to the rate of
interaction with the medium, said interaction being the scattering. Therefore the optical
depth also depends logically on the distance from the source, as more material to cross will
result in a higher rate of loss. As the Lyman α optical depth gets closer to 1, we expect
the scattering to start giving an important contribution to diffuse emission. Simulations
however have shown that the requirements for this to happen are steep [93], and scattering
is expected to contribute only in a minor way. The scattering process itself also affects
the polarization of the light however, so it remains a useful way to explain one off nebulae
with strange polarization profiles.

Another factor which can contribute to the diffuse emission is simple cooling. As the
temperature increases, collisions excite electrons to higher orbitals. If the temperature is
very high, the atoms will directly ionize and then decay later in a recombination cascade,
thus contributing to the first case. If the temperature is not so high however, the collisions
will not be enough, only exciting the electrons to jump one or two orbitals. This is the
collisional excitation case. For Hydrogen, the temperatures are between 2− 5 · 105 K [90],
which is very close to the temperatures we expect to see in the intergalactic medium.
While re-emitting the Lyman α line will cool the matter, if there is a heating source like the
original source of the Lyman α nearby, an equilibrium can be reached, allowing collisional
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excitation to contribute to the diffuse emission. An exact value of this contribution is
however unknown, as unlike the previous cases cooling has few analytic simplifications
and mostly requires either simulations or specialized numeric models

Overall, we expect recombination, also sometimes called fluorescence, to be able to
explain almost all cases of diffuse emission, but care has to be given as cooling can add
a significant degree of uncertainty on the densities derived and scattering can have an
undue effect on the polarization of the light.

4.1.2 Diffuse emission observations

However, this understanding does not change that diffuse emission is very hard to observe.
Galaxies are surrounded by dense filaments of matter and can be very bright, but their
emission is not even, with the dust in the galaxy itself obscuring a lot of the ultraviolet
radiation. This problem gets even worse at higher redshifts, so only the surroundings of
exceptionally bright or unobscured galaxies can be seen. Standard point-like objects are
also generally not bright enough to power a surrounding nebula, though highly energetic
transients are possible but still very hard to observe due to their fleetingness.

The most common example of diffuse emission can be found near the center of clusters
of galaxies. The very dense environment is grouped with a number of very high luminosity
objects which allows the Lyman α emission between the galaxies to be observable.

Another good example are the already mentioned quasars. Most discovered nebulae
surrounding quasars are on the brightest most massive ones. However there has been
doubt if nebulae could be a generic feature of quasars, where their brightness combined
with their dense surroundings would result in all quasars having some form of diffuse
emission. Such emission would be just too faint to be seen in most quasars due to
distance. As more and more quasars are discovered with nebulae and without it, this
idea of studying them and their diffuse emission statistically rather than looking for each
nebula individually has gained weight.

One of the strongest ways to do so is through stacking, which we will explain in detail
in the following section. This seems to have worked in fact too well, as [96] found that the
Lyman α emission surrounding quasars at large distances was several order of magnitude
above the expected, indicating either clustering above the expected or a much higher
emission. A follow up study [95] found a degree of systematic effects had bumped up this
result above the reasonable, but it still found that surface brightness to be on the higher
end.

This can be appreciated on the lower image of figure 4.2. Note that the solid lines are
the Lyman α emission coming form individual giant nebulaes, which we expected to be
significantly brighter than the average one. For comparison the upper figure is from [94],
who stacked 15 quasars without an apparent nebula and achieved some if very uncertain
results. The difference in both surface brightness between both is notable.

While the very large scales of [95] are extremely hard to prove, stacking the lower
distances could improve on the work of [94] and prove the presence or absence of these
generic nebulae, before moving onto larger scales.

4.2 Stacking
Imaging in astronomy was revolutionised by the invention of CCD cameras, and the
current state of the art is only possible thanks to them. These devices are able to detect
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(a) Battaia et al.

(b) Croft et al.

Figure 4.2: Comparison of figure 7 from [94] and figure 4 from [95]. Despite different
nomenclature the y axis use the same units. Note a small difference in the x axis however,
as the figure below uses h, meaning the axis has to be multiplied by ∼ 0.7 to compare.
Despite this, significant discrepancy can be easily seen.
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the movement of charges within their pixels, and can convert it to a digital value. With
a semiconductor layer that converts any incoming photons into a moving electron and
thus a moving charge, these devices allow a direct conversion from photons to a numerical
value, bypassing a most of the problems of photographic imaging.

One of the aspects where it has proven remarkably useful is to obtain deep images.
Saturation of a pixel however remains a problem, as charges spill on other pixels and thus
affect the whole image, but long exposures are needed to ascertain the characteristic of
the faintest objects. There exists alternatives though, like the stacking of images.

Stacking consists on adding one image on top of the other, adjusting for differences
in position and calibration. On paper it is very similar to just having an image with an
exposition time twice of the previous one, but there are some important differences.

The first is that we avoid the problem of saturation: a bright emission that would sat-
urate the pixel in a long exposure would appear as normal and not affect the surrounding
pixels in the 2 individual images. The second is about the type of uncertainty we are
working with. In a long exposure, the shot/Poisson noise is less relevant as the number of
photons we are working with increases, but the thermal noise (ambient photons getting
mistaken for signal photons) increases with time. Thus the thermal noise, which is a
systematic very hard to model, becomes dominant. With stacking, the sources of error
of a single image remain. This means the Poisson noise dominates, and while it is more
important than in a long exposition, we can use statistics to model it pretty well.

SNR =
Nimages

σ
SNRimage =

Nimages√
N

SNRimage =
1√
N
SNRimage , (4.3)

where SNR is the signal to noise ratio of the stack, the one with the subindex being the
signal to noise ratio of an individual image, and Nimages the number of images we are
stacking.

Thus, for a stacked image our uncertainty goes as the square root of the number of
images we are stacking. This allows us to study very faint objects below the nominal limit
of the telescope we are working with.

It is relevant to also ask about the scientific purpose of stacking. Its basis is to improve
the images we have of fainter objects when we stack that same object, which besides minor
differences shares the same purpose as longer exposures. However, its uses are not limited
to this. We can stack different images of different objects.

This can seem absurd, as joining 2 different images distorts them. If we join enough
random images we would end with a mess of random pixels following a gaussian distri-
bution. But following that same property, if the images are not random and they share
some characteristics the resulting image would enhance these shared properties while the
rest of the image would end a random distribution.

How it would work is that pixels outside the shared characteristic would follow a
random distribution, as the same pixel in different images could hold a bright object, a
faint star, complete void, etc. By the central limit theorem, this would end as a Gaussian
distribution. Pixels affected by the shared characteristic however would add up with each
other, maintaining their original distribution as they are not random. This happens even
if this shared characteristic is below the noise threshold of one of the original images.
The relation between this signal and the rest of the image, which now is effectively noise,
follows the signal to noise ratio equation mentioned before; the normal distribution noise
raises as square of the number of images, but the signal (if there is any) improves linearly,
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which results in an overall square root of the number of images enhancement of the original
signal2.

Thus, if we stack a high enough number of images we believe to be similar in an aspect
but cannot confirm individually, the resulting stack would end with that aspect clear to
see while everything else that could detract or overshadow it in individual images would
fade out in the long run of stacks.

This properties of stacking can be very useful for a relatively new field in astrophysics,
intensity mapping. In intensity mapping we do not care only for an astrophysical object
and its emission spectra, but also from the emission coming from its surroundings (thus
the term mapping), even when this emission is diffuse enough that we cannot associate any
object to it. This diffuse emission can have many origins, be it a background light coming
from extremely far objects to fluorescence from gas in the surrounding to diffraction and
even gravitational lensing.

Normally distinguishing between these possible origins or even types of existence for
this emission is extremely hard. As this diffuse emission is faint the degree of uncertainty
is large and the characteristics and parameters we assign to them uncertain. Very high
and careful exposures can be done for particular objects to resolve these issues, but are
impracticable for large surveys where we want to observe as many of a certain subtype of
object as possible.

In those cases stacking can be extremely useful. If the diffuse emission is characteristic
of the type of objects whose surroundings we are looking at, then the stacking will give
a much more accurate image of it. This would allow improved physical insights on its
origin and a better grasp of how much of the original signal was noise for future survey
strategies. Even in the case where such emission could not be found in the stacking, we
could assign it a maximum magnitude much more stringent than in the initial survey.
Even this would also result in a better understanding of how much of the diffuse emission
from the images are random backgrounds and inform future endeavours.

4.2.1 Point spread function

It is important to take into account that even as we aim to stack hundreds of images,
these images share similar origins and instrument. All typical defects present in CCD
cameras will be shared among all the images, and thus survive through the stacking.
Even if different cameras and telescopes were to be used, as the systematic errors would
be similar they would not simply create a normal distribution as the rest of the image.

One particular defect present in any kind of light instrument is the Point Spread
Function (PSF). This describes the shape that appears on the camera when the telescope
observes a single point of light. As the mirrors and instrument are not perfect, those
defects would result in this single point appearing spread out on the camera, thus the
name. Modern instrument attempt to minimize this effect as much as possible, but its
presence is unavoidable and accepted in all types of surveys.

This is double for observatories on Earth. While the intrinsic PSF of an instrument
comes from the mentioned optical inperfections, the fact we are observing objects through
the Earth’s atmosphere, the sky, adds up to the problem. As the light comes from
the source to the telescope, it crosses patches of the sky that are in constant change,

2If the signal to noise ratio of the original images used in the stack differs between them this improve-
ment becomes much harder to compute. Fortunately, modern surveys take care to keep the signal to
noise consistent and put warnings on images when external factors do not allow it
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minute differences in temperature and velocity occurring continuously. Each of these
small changes brings its own small change on how the light refracts in the atmosphere.
While stacking allows for shorter exposition times, a minimum is still needed to reach
at least a perfunctory depth. In this minimum time countless of these changes have
happened, the same patch of the sky refracting photons in different ways. As a result,
even without taking into account the instrument, we would see the image as blurry. This
effect is what we call the seeing of the sky.

As the seeing comes from countless minute but independent small changes3, we can
apply the central limit theorem in turn. Therefore the seeing can overall be approximated
as a gaussian, but the parameters of the gaussian will depend on the region, altitude and
even the particular day. The seeing overall dominates the PSF of Earth telescopes and it
is one of the major reasons even optic telescopes like the Hubble have a major advantage
from being being space-borne.

On Earth or space regardless, the PSF is unlike the thermal noise in that it works by
distorting a source, rather than just being a flat background. The uncertainty is thus a
percentage of brightness of the central source rather than just a limiting magnitude.

The PSF is thus rather troublesome for any kind of intensity mapping or work in
diffuse backgrounds. Long exposures will increase the brightness of the central source
and thus the magnitude of the effect, resulting in the PSF overshadowing the diffuse
emission in its surroundings. As the PSF is a systematic effect stacking will also not erase
it, rather, similarly to the long exposure, magnify it.

The only real way to deal with the PSF is to compute it and subtract it from images.
As the PSF depends mostly on the instrument and the seeing can be approximated as
a gaussian, once modelled it can be subtracted from the image of that instrument no
matter the central object we are observing. Modelling the PSF can be done through both
previous work with the instrument or directly through the images. In fact, a stacking is
perhaps one of the easiest and more pragmatic way to obtain it.

As mentioned before, continuous stacking results in the enhancement of the shared
characteristics of images and the dilution of everything else. The PSF always will come
through when stacking, and it is a major limitation of the technique. But conversely,
if we stack images of objects that we know do not have any extra diffuse radiation or
similar non-instrument systematics around them, then the final stack will contain only
the purest form of the PSF. This model of the PSF would also have the advantage of
being the one on the image directly rather than theoretical, and so would automatically
take into account any possible change in the systematics of the instrument.

Of course, in practice things are not as simple. A more extended object will have a
different PSF than a point source by definition, and strictly the PSF also depends in a
lesser way on a variety of other factors, like the pixel position within the CCD. The seeing
changing for each day will also carry a minimum dispersion we cannot avoid. The type
of objects which fulfill the requirements needed, mostly being as point-like as possible,
also tend to be limited to stars, and the stacking improves with numbers of images so
we will want as many of them as is possible. Even then, some level of systematics will
always be present around all objects, which would limit our uncertainty even with infinite
images. Still, at our usual numbers (thousands of images) and limiting magnitudes, the
level of uncertainty will roughly follow the initial relation of square root of the number

3Patches in the sky are very distant from each other despite looking adjacent. Even relatively close
by sections of the sky will have countless changes on the span of a small exposure, with the distance
between being larger than their sound speed, thus ensuring they are dynamically disconnected.
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of images. Therefore, as long as both modelling and subtraction are done properly, the
initial limiting magnitude of the images can be greatly lowered, keeping the advantages
of stacking.

4.2.2 Potential issues

Even without the PSF, stacking is not a trivial process and problems commonly arise that
must be solved or worked with:

Position Stacking requires for the objects of the various images to be perfectly centered on
each other. This goes even beyond stacking the adequate pixels: If for example an
object is nearer the limit towards the left of the pixel, then even if their nebula is
perfectly symmetrical stacking various of them with other properly centered objects
will result in an abnormally strong left side and a weaker right for the final stacked
image. This bipolar signal would come only from systematic effects that could easily
mislead us. Even if we assume that the emission is circular and try to average the
signal at each radius, there will be mismatch coming from the emission at differing
distances being averaged as being from the same one. This would at best increase
the deviation and lower the validity of the results. Obviously, this is not an issue
that can be completely resolved, however from the brightness distribution and the
shape of the PSF an approximation of the position of the object within the pixel
can be obtained in the process of photometric reduction. Using these, we can try
to adjust the various images so that they add precisely where the objects center
each other, but we would need to go below the pixel resolution. For this, an easy
workaround is to interpolate the images, but this brings its own set of new issues.

Interpolation The easiest way to adjust the positions of the objects so they align even below the
resolution of a pixel is interpolating. It does complicate things in other ways how-
ever. From the start, we are interpolating in a single image, where the uncertainty
and the dispersion of the values is relatively high. The end result could be fuzzier
than we hoped. The major problem however is again the Point Spread Function
(PSF) of the objects. Accurately resolving the PSF is an important step in deter-
mining the characteristics of faint objects, especially when we want to find emission
surrounding them. However, as the PSF of faint objects can be of the same order as
the dispersion in the image, they become entangled when interpolating. This means
there is a good chance of the interpolation changing or altering in a minor way
the shape of the PSF. While we can model the average PSF through the methods
mentioned previously, if we use interpolation to obtain the PSF through stacking
then our model PSF will be affected by this too. The differences between real and
the changed PSFs could induce systematic errors of the order of the PSF in the final
image, that would put in question any results. There are ways to interpolate points
between pixels while maintaining the shape of the PSF, the most famous of which
is drizzling, but all require the use of weight maps in addition to the images, which
adds another layer of complexity. Another alternative is to just avoid interpolat-
ing. Using nearest neighbour for pixels will most likely result in a higher degree of
error due to the position issue mentioned above, but another possibility is just to
abandon the pixels and use real distances. Instead of trying to make a standard
stacked image, we relate the values in the pixels with their distance to the central
object, which can include decimals thus avoiding the position issue. We bin these
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values within various ranges, ensuring that each bin has the same amount of values
that would normally correspond to our stacking, and then do the median in each
bin. This method makes the assumption that the PSF’s shape is radial, which is
not completely true for minor details, thus some degree of extra care is needed when
analyzing non-radial results. However, for diffuse emission which is expected to be
so, it is a much simpler and easier way that allows us to use a higher number of
images that otherwise would require excessive computational cost.

Artifacts While the central objects might be perfectly aligned, the surroundings might not.
This can happen because we are stacking different examples of the same type of
object to find generic properties, but these same type of objects can have wildly
different surrounding third objects. If all the cases are very isolated and we only
care about the object in itself then we do not need to worry, but in most cases we will
have numerous other objects in our field and we will also want information about
diffuse haloes or other extensive effects. If we just stacked without doing anything
else, those third objects would end up as part of the normal distribution surrounding
the central object but also increasing its average, creating artifacts that are not part
of the signal we are searching and increasing the dispersion. To avoid those third
objects biasing the final stacked image, some kind of masking is required to remove
those pixels from the stacking. However, depending on the number of images we
are working with manual masking can be impractical. Some kind of automatized
masking is helpful but not perfect, and will still result in some smaller artifacts. The
easiest solution to all this conundrum is using the median instead of the mean when
stacking. This would also remove other unknown singular effects and systematics
affecting only a fraction of the images that might slip through. While overall using
some form of masking is still preferable, working with the median lowers the risk
and effects of any third object interfering with our signal.

4.3 J-PLUS

The Javalambre-Photometric Local Universe Survey [97], known as J-PLUS, is a wide area
survey of the sky from the Observatorio Astrofísico de Javalambre, in Aragon, Spain.
Using an 80 cm telescope it is planned to observe up to 8, 500deg2 with a set of 12
different optical filters. One of the main characteristics of the survey is the large field of
view (FOV), each image being 2 deg2 and thus containing a lot of astrophysical objects
in it. The limiting magnitude is modest, but the resolution pairs very well with the wide
FOV, each pixel being 0.55′′.

It is a survey very well suited to projects that require working with large amount of
objects, both within an image and on the broader sky. The set of 12 different filters also
allows for the use of pseudo-spectral methods, as it contains a good number of narrow
and intermediate bands among the typical 5 broadbands. We showcase the various set of
bands in figure 4.3

Each filter only catches the radiation within a wavelength range, separating the magni-
tudes found in each different filter to their respective wavelengths. This allows an estimate
of the spectra of the observed object. While very low resolution, this is enough to capture
the most common and bright emission lines, like Lyman α or Hα. This information can
be extremely valuable for unknown objects, and a lot of work has been put into using
this information to create a set of reliable photometric redshift estimates for all observed
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Figure 4.3: Set of filters used in J-PLUS. From [97], but similar information available at
http://www.j-plus.es. On the y axis is the efficiency in terms of light absorbed by the
filter, and x is the wavelength in amstrongs.

Filter mJ−PLUS
lim mEDR

lim mDR1
lim

u 20.5 21.1 20.8
J0378 20.5 21.1 20.7
J0395 20.5 21.0 20.7
J0410 20.7 21.0 20.9
J0430 20.7 21.0 20.9
g 21.5 21.7 21.7
J0515 20.7 21.0 20.9
r 21.5 21.4 21.6
J0660 20.7 20.8 20.9
i 21.2 20.3 21.1
J0861 20.0 20.2 20.2
z 20.2 20.0 20.3

Table 4.1: Planned limiting magnitudes of J-PLUS for point-like sources in a circular
aperture of 3 arcsec and SNR > 5 for each filter in J-PLUS, together with the averaged
limiting magnitudes obtained in the Early Data Release (ERL) and Data Release 1 (DR1).
Reproduced from table 4 in [97] .

http://www.j-plus.es
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Figure 4.4: Set of filters used in J-PAS. From http://www.j-pas.org. On the y axis is
the efficiency in terms of light absorbed by the filter, and x is the wavelength in amstrongs.

objects.
The worth of these filters is equally high when observing already known objects though.

With a known redshift, the exact emission lines that fall within each filter can be easily
computed for much better understanding and a more accurate pseudo-spectra. At first
glance this might seem trivial, as for already known objects specialized spectroscopy will
give all this information and more with better accuracy. Finding spectra for objects
however is time costly, and spectral surveys that cover a large part of the sky, like SDSS
[98], are very complex and thus very rare and expensive. If we have objects from which
we have a reliable redshift but only a few broadbands, objects from GAIA for example,
J-PLUS can give us good estimates of some emission lines without needing a spectra for
each. Due to the aforementioned wide area of the survey, J-PLUS excels working with
these kind of more common objects and using statistical methods on them.

The limiting magnitude for each filter is shown in Table 4.1, obtained from [97]. While
they differ for various filters, especially the wider broadbands, the narrow bands do have
very similar limiting magnitudes making the pseudo-spectra we are discussing feasible.
The variability of the limiting magnitude between various observation campaigns also
serves as a good estimate of the uncertainty.

Another advantage of J-PLUS is that it is meant to work as calibration for J-PAS [99].
The Javalambre Physics of the Accelerating Universe Astrophysical Survey surveys the
same 8, 500deg2, using an improved 255cm telescope in the same observatory, and also
featuring an improved camera and a set of 59 narrow filters. We show the bands in figure
4.4. While they cover a similar frequency range, the improved spectral resolution and
limiting magnitudes are a marked improvement.

This makes all the pseudo-spectral methods mentioned before much more powerful.
Because this survey is seen as a natural continuation to J-PLUS, all the photometric
reduction and data handling methods will have continuity. This allows any kind of work
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started in J-PLUS to have a natural and much more powerful continuation with J-PAS.
For our concrete case of stacking, the wide area and number of filters are very helpful.

With such a big fraction of the sky covered there are a very high number of objects,
which make stacking more accurate and robust. The number of filters also allows for
useful checks; we do not expect the PSF to change much if at all for different filters.

Even the size of the images are helpful, as the high resolution means we have luxury of
avoiding borders of images or other positions which can be unreliable due to subtler effects
and still have a high number of objects. Furthermore, as J-PAS is expected to have a very
similar PSF to J-PLUS due to sharing the observatory (and so the sky and portion of the
instruments), almost all our work can be similarly applied to the later survey. Indeed,
with the improved limiting magnitude and a much higher number of filters, stacking with
J-PAS will be an even more powerful tool than with J-PLUS.

4.3.1 Calibration

In order for the stacking to be meaningful, a minimum accuracy on the single images is
needed. Thus, it is necessary to have a good understanding of the possible biases and
correlations present in the calibration of J-PLUS’ photometry [100]. There are various
possible ways for these kind of large scale surveys to be calibrated. Here we make a brief
summary of each of them, but for detailed analysis we refer to [100,101].

The first and simplest would be through standard stars. Ideally, J-PLUS would use
known and catalogued spectro-photometric standard stars (SSSs) to calibrate every single
tile and filter, allowing for an independent measure of the absolute flux in each of them.
However, there were several problems. First is that a major proportion of those stars
could appear saturated in a normal exposure. Another would be that calibration could
only be performed in perfect photometric nights, with a stable and clear sky through all
the observations, and even then the number of reference stars would be low compared to
the wide area surveyed by J-PLUS. Similarly, calibrating by comparing with SDSS and
Pan-STARSS 1 photometry also runs into shortcomings, as neither covers fully the 12
different filters used by J-PLUS, and the SDSS spectroscopy does not reach the redder
bands either. Instead, other type of methods are needed.

An alternative is using stellar locus regression (SLR). This was indeed the initial
calibration method used on DR1. Rather than using a single calibration type, the SLR
depends on both an initial calibration through other ways and statistics. First, a reference
filter is calibrated using one of the previously mentioned methods, mostly a combination of
SDSS/PS1 photometry and spectroscopy. Then, using that reference filter (the i band was
the one that gave the best results), a median stellar locus is constructed in all 2145 possible
colour-colour combinations using all the stars in that image. The stellar locus is structure
in color-color diagrams, similar in a way to how susbsets of stars appear grouped in more
standard Hertzsprung–Russell diagrams. The calibration is obtained from an iterative
process that minimizes the distance of the 2145 stellar locii to the median locii. This type
of calibration still has a few shortcomings, not only it needs an initial method to calibrate
at least one band, but also does not include corrections of the reddening due to the Milky
Way’s dust, which would affect all the colours of the locii including the median.

To try to correct this issue, a third calibration way is the stellar white dwarf locii
(SWDL). The SWDL calibration will be set as the default calibration procedure in subse-
quent J-PLUS data releases and is present as corrections in DR1 [101]. First high quality
stars in the pointing using Gaia information are defined. Using these pointings, the images
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are de-reddened using Milky Way dust maps of Bayestar17 [102] and the extinction law
by [103]. Then the gri broad bands are calibrated with PS1 photometry. This includes
a plane correction depending on the position of the pixels: this position-dependent effect
impacts the photometry of the sources at the 2% level. Moreover, this gradient is not
universal and depends on the pointing, and so the paramters change for each image. The
origin of this gradient is still unclear and is under investigation, but possibilities include
the differential variation of the airmass across the observation, the presence of scattered
light in the focal plane, or the change of the effective filter curves with position. Then, the
instrumental stellar locus can be computed, a step very similar to the SLR, but allowing
for offsets between different pointings/tiles.

Finally, another correction comes from White Dwarf locii. The emission of white dwarf
(WD) can be modelled at the ∼ 1 % flux level from parameters easily obtained through
their spectra. One for one calibration is both too time consuming and depends heavily
on having already catalogued WDs on the images. However, we can use previous white
dwarves from [104] and [105], modeling various colour-colour diagrams and comparing
with the observed WDs locii. Because the models give absolute (and not relative) flux
levels, this resolves any further ambiguity about the locii being displaced by reddening and
transforms instrumental magnitudes to calibrated AB magnitudes outside the atmosphere.

For our stacking we use DR1 data, but after helpful conversation with the author
of [101] we were able to manually add the SWDL corrections, meaning our photometry
should match the expected J-PLUS specifications.

4.4 Stacking with J-PLUS
Knowing the issues we will face, we can proceed. But first of all, is it even feasible to see
anything with J-PLUS?

Fortunately it is not hard to make such calculus, as long as we take some approxima-
tions. First of all J-PLUS usual depth is AB ∼ 21.25 mag [97], and we have it for each
filter in Table 4.1. Then we can use figure 4.2 to approximate the surface brightness we
should see at a radius. The images would be in pixels, which in J-PLUS each correspond to
0.55", same in J-PAS. At redshift ∼ 2, an arcsecond corresponds to ∼ 8.5kpc. This means
70 kpc already are close to 8 arseconds or 15 pixels, and given the presence of near objects
and imperfect masking we do not expect anything beyond 20 pixels to be useful, so it is
a good initial value. For 70 kpc [94] would give a value of ∼ 2 · 10−19erg/(s cm2 arcsec2).
The values around 70 kpc cited in [95] are found in giant Ly α nebulaes in very bright
QSOs rather than averages, so they serve as maximum value.

With all this, we can compute:

mAB ∼ 20.5 −→ fλ =
10−0.4(mAB+48.6)

3.3[λ]2 · 10−19
−→ f ∼ fλ · 30 ∼ 10−15erg/(s cm2) , (4.4)

where we have taken the wavelength of the band where we expect Lyman α emission
coming from z ∼ 2 to fall, roughly around 3, 950 Å, and so the characteristics of J395
narrow band, both its amplitude and the limiting magnitude of 20.5 for SNR=5. The
efficiency of the filter varies, but it averages at ∼ 0.3 for FWHM of 100 Å, so the integral
would be roughly equivalent to multiplying by 30. As we are only looking for an estimate
we drop decimals and do not bother with more extensive calculations, 10−15erg/(s cm2)
works for us. Now, this was for an aperture of 3 arcseconds, which corresponds to an area
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A = πr2 = (1.5)2π ≈ 7arcsec2. Then we only have to remember equation 4.3 and the
diffuse value we are aiming for:

2 · 10−19erg/(s cm2 arcsec2) · 7arcsec2 −→
√
N =

10−15

1.4 · 10−18
−→ N ∼ 5 · 105 . (4.5)

An important subtlety however is that we are dealing with the surface brightness at
a certain radius. In an image, each pixel will only stack with ones corresponding to the
same exact position. However, the surface brightness at a certain radius measures all
the pixels that are at that radius. Therefore, multiple pixels will contribute per image.
At farther radius therefore the number of pixels that will contribute will be more than
the initial circumference of 3 arcseconds of diameter. If we take N to include also a
factor coming from that added area, this could reduce the number of images we need to
work with by a lot. Making the simplest of assumptions, the surface brightness comes
from a circumference at that radius with a width of 1 pixel, we can simply apply A ∼
2πR · 0.55 and compare it to the initial area of 7arcsec2. For the 70 kpc, this gives
roughly ∼ 28arcsec2 pixels for each QSO image, meaning we could need as low as N =
(5 · 105) · (7/28) ∼ 1.25 · 105 images.

This is fairly optimistic however, as we would be assuming adjacent pixels and areas are
completely independent. The power of stacking comes from independent images lowering
the Poissonian noise, but for pixels of the same image they are in fact correlated and
therefore the signal to noise ratio would not exactly follow equation 4.3. We expect the
contribution of larger areas per image to the surface brightness to help in some way, the
result being between the optimist projection of 105 and the pessimistic of 5 · 105 images,
but we cannot rely on just taking an assumption and will need an independent way to
check the final error.

Unfortunately, both the pessimistic or the optimistic projection still require hundreds
of thousand quasars and are completely impracticable for J-PLUS. Candidate QSO cata-
logues have reached millions, but reliably confirmed quasars are harder, some of the last
catalogues having more than 3 ·105 [106], but those are still spread over the entire sky and
multiple redshifts. J-PLUS does neither cover a large enough footprint nor enough wave-
lengths, on top of the existence of uncertainties and systematics resulting from stacking
images on different filters that could worsen the noise.

For J-PAS in comparison the situation vastly improves. With an expected average
depth of mAB ∼ 24:

mAB ∼ 24 −→ f =
10−0.4(mAB+48.6)

3.3 [λ]2 · 10−19
· 30 ∼ 5 · 10−17erg/(s cm2) (4.6)

1.4 · 10−18erg/(s cm2) −→
√
N =

5 · 10−17

1.4 · 10−18
−→ N ∼ 1275 . (4.7)

This ends up being around 300 quasars for the optimistic projection, both much more
feasible numbers. It is fairly easier to find quasars too given J-PAS also has a much higher
number of filters covering multiple redshifts. Therefore with J-PAS we expect to be able
improve on current results of Lyman α diffuse emission fairly easily. This however also
means we must absolutely make as sure as possible that our main uncertainty comes from
the thermal noise, so we will need to have a lot of care for systematics that could worsen
that uncertainty. Given the wide range between cases an independent way to estimate our

78



Chapter 4 4.4. STACKING WITH J-PLUS

dispersion is also extremely important. While we will have to wait for J-PAS, stacking
shows promise.

4.4.1 Error control

While our aims are now set, there remains a few issues to still solve. The first about how
we will be able to determine our grade of error independently of our previous estimation.

As mentioned, despite its use and overall usefulness, stacking bring its own share of
problems that can raise the overall uncertainty of our final result above the Poisson noise
we expect. While trying to apply the various workarounds that exist we always want
a way to check the final result, to avoid the worst case scenario of finding misleading
signals that were only artifacts of the stacking. There exists various way of trying to find
the standard deviation of our final stacked image, but one of the biggest advantages of
stacking is that it gives us access to statistical methods and thus to one of the most robust
ways of estimating our error, resampling.

Resampling is a broad definition of various methods, including the more famous boot-
straping and jackknife estimator, used to estimate the uncertainty on the statistical pa-
rameters of a distribution, like our collection of images. Resampling consists on shuffling a
number of the individual values, in our case single images, with other either estimated or
repeated from the same distribution, and then calculating the parameter we are interested
in again. The idea is that if one the images is significantly biasing our final value, then we
will see a big jump in some of the resampled results, as the parameter of the distribution
not having that particular image will change greatly.

If all the individual values behave as expected, then the result of changing a few will
only result in a variation within the standard deviation of the distribution. We can repeat
this method as many times as variations within the distribution are possible, meaning we
can do resampling thousands of times with thousands of individual values. This way we
can both catch the offending singular image by looking for the odd value but also get a
very robust estimate of the standard deviation of our distribution.

For our stacking, we use resampling through substituting random images with a re-
peated but also random image, though a jackknife estimator would work equally well.
The biggest advantages of this method, shared with other resampling types, is that it
gives both the variance while also catching problems with individual images that could
otherwise escape our attention. We are working with a collection of roughly 450 very
wide images, which we will subdivide in many more as we look for individual objects, so
this a great help, especially as the process is almost completely automated. Furthermore,
we can estimate the Poisson noise to a certain point from our stacking as mentioned in
the previous section, so any value significantly higher is a strong warning that there is an
issue, be it a lot of troublesome images or some subtler systematic error that we had not
though of.

While these kind of estimators are not perfect, the biggest issue with resampling are
systematic effects present in all images, which would be completely ignored as the images
simply switch with themselves. However our computation of the PSF will catch all these
systematics that are present in all images, as the same stacking that obtains the PSF will
also naturally give us this type of ever present systematic, allowing us to take them into
account. Thus resampling complements very well our overall approach.

Our method is to use the resampling first with our PSF stack. As we only need some
of surroundings of the star (in our case maximum of 50 pixel radius) we will actually have
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a lot of adequate stars per image. Indeed, while we are working with hundreds of images,
the numbers of stars we have access to for the PSF is in the hundreds of thousands.
With this number we can not only obtain a great final result but also do thousands of
resamplings to make our results very robust. As mentioned, all ever present systematics
including the PSF, will not influence the standard deviation, thus after resampling we
will have both the median value of these systematics and the standard deviation of them,
all of which will inform our final Quasar stack.

We will also use resampling on this Quasar stack, but the much lower number of
QSOs compared to all other objects means we do not expect the method to provide much
additional information besides the standard deviation. In contrast, it is likely that the
standard deviation of our PSF stack will gives us the variation within these systematic
and thus the maximum accuracy we could achieve through stacking. After all, even if we
subtract the PSF correctly we expect the variance within the PSF we have found to be
higher than the Poisson noise of our final PSF stack. That is because the PSF has minor
variation even within the same instrument due to differences in the night sky, very small
physical changes of the telescope between the taking 2 different images and even the pixel
position4. In summary, the resampling in our QSO stack will only give us an estimate of
the Poissonian noise within the stack while the error bars in our PSF will show us how
well behaved the overall PSF is and if it is feasible to reach high depths with the stacking.

4.4.2 Methods

For the stacking we have made a custom program, one for the stars and one for the
quasars. While they share most of the code, there are several differences to to account
for both numbers of the object and accuracy.

We start by cross-mapping which of the SDSS quasars would be present on J-PLUS
and in which filter would their Lyman α emission fall on, if at all. With the help of various
members of Centro de Estudio de Física del Cosmos de Aragon (CEFCA), who man the
unit of data management of J-PLUS, we end with a list of 1539 quasars in Data Release
1 for the J0395 band filter spread in roughly 450 images.

We also need a list with the images, in a FITS format, the program needs to access for
the QSOs and a catalogue with all the data of J-PLUS objects. Note that this catalogue
is not the one associated with each image, as it contains all objects in all the images used
in one place and has been especially compiled using the data services given by CEFCA.
This is because the act of accessing the catalogue of each image and later replacing it
adds up, and it was both more efficient and easier to work with a single big catalogue.
The information on the unified catalogue is the same as the dual type catalogues for
each image, and uses the r-band (RSDSS) of J-PLUS for object identification, as it is the
deeper one. For more information on the specifics of how to access and format of J-PLUS
catalogues we defer to the data access manual in http://www.j-plus.es.

The program starts by opening the image, and from its header obtain all the necessary
data to identify it. The name is used to crossmatch with a tile catalogue, that contains
all the parameters pertinent to the image overall, like the zero points needed to calibrate
each image. The units of the image are Analog Digital Units (ADU), something that
scales with photon counts but needs to be properly calibrated to be turned into proper
photometric flux units. As DR1 uses by defect only Stellar Locus regression, we also

4The pixel position has in fact to be taken into account for the calibration, so we expect that the PSF
will differ in a similar way.
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add the extra corrections given Stellar White Dwarf Locii, the additional parameters of
which also in the catalogue. With all the information, we then convert ADU into flux
units (concretely erg/(scm2Hz) as they are a more straightforward conversion into AB
magnitudes) for the whole image.

As we expect few QSO for images we make a cut of a 200x200 pixels with the QSO
exactly at the center for the following parts. This also involves interpolating the image so
the QSO falls exactly at the center. By waiting until after the cut for the interpolation we
get more than enough scale for our purposes and also save a lot of computational time.

Then we identify objects within the cut that are not the quasar and mask them.
The mask consists on a number of pixels within a set radius forcefully put to 0, the
radius depending on the Kron radius parameter of the catalogue and if it is a point-like or
extended object as determined by the CLASS_ STAR parameter, which we will explain in
detail later. We tried other methods, included making the mask scale with the brightness
of the object, but as the Kron radius already includes an indirect measure of the flux
of the object they did not help and were worse in a a number of ways. While at first
glance setting the mask to 0 might look like it biases towards lower values, poissonian
noise already causes there to be negative ADU values, and in practice masking should
only barely affect the image, as our selection includes flags for objects that are too close.
An improvement would be to use weight maps and change the weight of those mask to 0,
but that is an added layer of complexity not required for our current aims.

Once all this is done, the cut image with the quasar is saved and subsequently stacked
with each new cut until the program has gone through all the images, though we are careful
to save a copy of each individual cut for both savekeeping and later bootstrapping.

The stacking for the stars is slightly different. First, rather than start with a list
of QSOs we simply look at all the objects within the image once we opened it. Of
course, we must use the same images we used for QSOs for consistency’s sake, though
admittedly when using such a large fraction of DR1’s image we expect the difference to
be minimum. Each object is classified using the CLASS_ STAR parameter given by
the SExtractor software [107], used in the photometric reduction of the image. CLASS_
STAR is multilayer feed-forward neural network trained using supervised learning, it
estimates the a posteriori probability for a detected object to be a point source or an
extended object.

More details on CLASS_ STAR are present in [107], but while not perfect it works
well when using large statistics. CLASS_ STAR ranks the probability of an object being a
point source or extended on a 0 to 1. We choose a 0.96 cut as it works well while still giving
a large amount of objects. Tests using 0.97 and 0.95 did not reveal any large changes,
but also not marked improvements. After this first selection, we make a magnitude cut
and we take only objects between 18.3 and 20.3 AB magnitude. This is because we want
objects bright enough to be properly catalogued and so we can see the PSF clearly, but
we do not want too bright objects that would bias the PSF, as most of the QSOs we are
working with are faint. Indeed, the average brightness of our QSOs falls near mAB ∼ 20,
which works well enough for our aims.

After those selections, we calibrate and mask the whole image. Unlike with quasars,
the number of stars taken by image is big, so it is more computationally efficient to mask
every not selected star this way at the beginning, as cuts will likely overlap between
them. Of note is we avoid the interpolation, as it both could affect the PSF and it is
too computationally expensive. Rather, as mentioned in section 4.2.2 we simply take the
2D profile for each star, as we do not expect any asymmetry from stars and it simplifies
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Figure 4.5: Stack of ∼ 300, 000 stars in J-PLUS. The logarithm scale makes the gaussian
attributes of the PSF difficult to appreciate, but we can see the error bars are very low,
far below the level of flux we want to reach.

things a lot. This also means we do not save individual images from stars, rather just a
2D profile, but using this process also saves a lot of memory.

In total, we found roughly 320, 590 stars in the J0395 filter band that fulfilled all our
conditions. We also added a number of flags to the program to make biased selections
in case we want to check for systematic issues, an example being one that only took the
brightest (mAB < 18.6) or faintest (mAB > 20) stars for our selection, with 41, 249 and
66, 487 stars respectively for the J0395 band.

4.4.3 Results

We proceed to the stacking. First we start by stacking around 300, 000 stars to obtain a
good estimate of the PSF and the level of dispersion we can reach with a great number
of objects. The stack with background subtracted is shown in figure 4.5. While hard
to appreciate in the current log scale, the PSF follows a smooth gaussian curve. As
expected with the great number of stars we found we can get a very good determination
of the PSF. Furthermore, the error bars of the star stack are very small, showing the
PSF to be very well behaved, the final uncertainty being very close to the one expected
from only the Poissonian noise. Indeed, remembering section 4.4 the number of stars
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we are using is pretty in between the pessimistic and optimistic projections: error bars
∼ 10−21erg/(sÅcm2 arcsec2) correspond roughly to ∼ 3 ·10−20erg/(s cm2 arcsec2), which is
almost ten times more depth than the signal we are aiming for, 2·10−19erg/(s cm2 arcsec2),
fitting with high SNR at that flux level. Overall the PSF seems to have little variance
and can be very well determined.

Also interesting perhaps are the negative values at the scales of 5-15 arcseconds. They
are very small (< 10−21erg/(sÅ cm2 arcsec2)) and have the highest degree of uncertainty,
so we do not assign physical meaning to those negative fluxes, but it could be some
kind of systematic effect. Could indicate either the background is overvalued for some
reason or also that the PSF has some strange properties at those ranges maybe moving
a small portion of the flux that at medium scale to long scales, thus overestimating the
background and underestimating emission at 5−15 arcseconds. Another possibility is the
masking having undue effects on closer distances, as masking sets the pixels to 0 which
when subtracted the background would bias the pixels towards negative. This effects
should be in theory spread evenly, but we might have subestimated the importance of
clustering which could bias closer ranges more.

As a safety check we compare the total stack with two subpopulations of stars within
it, the brightest and the faintest ones, as seen in figure 4.6, both around ∼ 50, 000 stars.
The gaussian nature of the PSF is much more clearly seen once normalised, but can also
be appreciated in the surface brightness case. The negative values remain for the faint
stars, though the new scaling makes it hard to see for the graph in erg/(sÅ cm2 arcsec2),
showing how small the deviation is in fact.

Even then, a more interesting part is that the negative values of the PSF are more
relevant for fainter stars while they are absent on brighter ones, as can be easily seen in
the normalised case. In part this is expected, because the background will not depend on
the star but for the stack of brighter stars the PSF will also naturally be brighter, thus
a smaller chance of negative results once the background is subtracted. Overall, that the
effect is gone or lessened with higher magnitudes is helpful but does not help differentiate
between any of its possible origins.

We do try to go for another safety check using an entirely new filter. The r broadband
is considered the standard in J-PLUS, as it has the best depth (see Table 4.1) and also
corresponds to the same r-band as in SDSS, which makes double-checking calibration
issues or weird objects much easier. Taking into account the increased depth of the band
we can we go for a slightly different magnitude spread in our selection with 19.3 < mAB <
21.3, otherwise following the exact same selection process for stars as in the J0395 filter.
The selection ends up with 316, 615 stars, only slightly less than J0395

We show the results of the stack in figure 4.7. Having only slightly less stars than
the stack with the J0395 filter the PSF is similarly well behaved, though the negative
values seem more prominent relative to the error bars. This seems to confirm the relation
with the brightness of the source, as the median brightness of this stack is lower, though
again makes hard to guess the proper origin. It however looks undeniable that there is a
systematic effect making the medium ranges a bit smaller or the background brighter

However, an advantage of stacking is that we were able to find this systematic effect
directly on our PSF. As the effect seems to depend on the magnitude, we expect our quasar
stack to have the systematic on a similar degree as same magnitude stars, if probably with
much higher dispersion due to the much lower number of quasars.

Finishing our determination of the PSF, we can move on the quasars. We use a cross
match list to find ∼ 1, 550 quasars both on SDSS and J-PLUS catalogues. We showcase
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(a) Comparison between stacks of stars of differing brightness

(b) Comparison between stacks of stars normalised

Figure 4.6: Comparison of the stack of ∼ 300.000 stars with smaller subsets of ∼ 40.000
and ∼ 66.000 stars with 18.3 < m < 18.6 and 20 < m < 20.3 respectively. Above is the
plot in astronomic units, while below we have normalized their surface brightness by their
integrated flux within 10 arcseconds. The gausssian nature of the PSF can be very easily
appreciated.
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Figure 4.7: Stack of ∼ 300, 000 stars in J-PLUS for the r band. We see a very similar case
as in the PSF of J0395, though the negative values are slightly more prominent. Note
that as the units used on the y axis contain information of the wavelength, they are not
directly comparable to previous graphs, though the relative changes within the flux are.
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Figure 4.8: Stack of 1,550 QSOs in J-PLUS. As expected, we are unable to see any
extended emission, and even some assymetry still remains. Units are erg/(scm2Hz).
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the resulting stacked QSO image in figure 4.8. As expected, it is extremely hard to see
any kind of extended emission. Even the PSF is very faint at single glance. In this image
we have not yet subtracted the background for clarity, nor changed the units yet, but the
relative differences are clear to see.

A more useful comparison of the surface brightness of the quasar stack with the PSF
coming from the star stack is shown in figure 4.9, with the background subtracted for both
spectral surface brightness units and a normalised case, same as before. All extended
emission in the quasar stack seems to correspond to the PSF, with any possible slight
excess more than compensated by the large error bars.

The lack of signal was expected in J-PLUS, taking into account that the stack is
too small to be accurate for this kind surface brightness. Overall, on the flux we see a
variability of roughly ∼ 5 · 10−21erg/(s cm2 Å, arcsec2), so it would roughly correspond to
1.5 · 10−19erg/(s cm2 arcsec2), making very hard to discern the 2 · 10−19erg/(s cm2 arcsec2)
signal. It is however encouraging that the degree of the undervalue systematic seems to
be almost exactly the same for PSF, as expected and showing that whatever origin we
can account for it.

The large error bars themselves come from the difference in number of objects stacked.
To compare with figure 4.2 we make figure 4.10, where again we have approximated the
integration of the filter by multiplying for 30. This suits our purposes, as we only want
to check the order of magnitude we reach for the error bars in each of the cases. With
N in the star stack reaching 300, 000, it is on the same level as the projection of images
we needed to reach the 10−19erg/(s cm2 arcsec2), and indeed we can see that on the star
stack we do reach that level of flux, even if for stars we do not expect any signal. For the
number of quasars we stacked, we expect error bars roughly 15-20 times bigger than for
the star case, which is also similar to what we get.

Overall, despite the issues with possible uncertainties, the levels of flux reached for
both quasar and star stacks are satisfactory and fit our expectations. In particular the
error bars are very small for the star case, so this means PSF can be obtained very re-
liably, and despite the larger dispersion the quasar stack also acts like we expected. In
J-PAS, following these same methods, the PSF can be computed well enough so that
it does not interfere with the signal of the expected extended emission. Given the sys-
tematic effect we see also seems to depend on the magnitude of the central object, we
expect the increased depth of J-PAS will also help with more accurate luminosities and
improved background accuracy, though even in the worst case it is also shown that the
PSF replicatesthe systematic so we can subtract it anyway.

4.5 Discussion and future prospects:
We have stacked up to 1,550 QSOs and more than 300,000 stars in J-PLUS. As expected,
with only 1,550 QSOs is not enough to distinguish any kind of diffuse emission beyond the
PSF. The expected value of 2·10−19erg/(s cm2 arcsec2) is roughly the same size of the error
bars of our quasar stack, making saying anything about the signal we seek impossible.

It is also remarkable that we appear to have found some sort of systematic within
our stack. Star and quasars stacks share similar magnitudes and a similar undervalue,
but using biased star selections we found the systematic appaers to be smaller for higher
magnitude stars despite a lower number of stacks, but also not depend on the filter. This
undervalue could have various possible origins. One is that the mask we use biases the flux
we see towards lower values, and due to clustering this is felt closer to the star. Another
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(a) Comparison of QSO and star stack

(b) Comparison of both stacks normalised

Figure 4.9: Comparison of the extended emission of the stack of 1,550 QSOs with a
stack of 300,000 stars in the same filter. The error bars of the stars are remarkably low,
showing that the stack in itself is effective and we find the PSF with high accuracy, while
the systematic we saw before is also matched by the quasars. Note that the background
has been subtracted from both in this graph.
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Figure 4.10: Stack of 1,550 QSOs in J-PLUS compared with the star stack of 300,000
stars using the same units as Figure 4.2. We again remark that this is a result of an
approximation, and so its purpose is orientative, to show the depths were reaching with
each of the stacks.
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is that is simply a peculiarity of the PSF in the bigger scales. The last is that we are
overvaluing the background in some unknown way.

While the systematic is worrying the PSF reproduces it, and so we can eventually
subtract it from our quasar stack. Overall, as the systematic effect seems to become less
important with higher luminosities too, we also expect that the improved depth of J-PAS
will help, at least ensuring more accurate background. Rather, the dispersion is the main
issue for the quasar stack, due to the low number of quasars compared to images. This is
still as expected, as from the beginning J-PLUS did not have the limiting magnitudes to
reach the depths the signal we are looking at is.

The error bars in the star stack in comparison are very well behaved. It is partly
as expected, as it is the result of a selection of stars within certain magnitude bins and
that do not trigger any other flag. Nonetheless the depth we reach and the small size of
the error bars even there fit with our expectations of Poissonian noise, which means the
dispersion due to the PSF itself is negligible for the magnitudes we are interested in. This
is fantastic, as it means we can stack without major worries.

Even more encouraging is that for the star stack we reached depths even further that
the the signal of 10−19erg/(s cm2 arcsec2) we are looking for. Because our number of stars
fit the projection we made for J-PLUS to reach those depths, this means that as long as
J-PAS maintains its supposed characteristics our projection for J-PAS is similarly valid.
Stacking the number of QSOs we have in J-PLUS (∼ 1, 550) in J-PAS should be more
than enough to reach the depths the signal we are looking for. Overall the PSFs obtained
are all an excellent showing of the power of stacking, and give us a lot of hope for J-PAS.

In conclusion, while with J-PLUS we are unable to improve on the extended Lyman
α emission of quasars, we have showcased that our methods to both achieve lower fluxes
and obtain the PSF with stacking work. Given the many similarities between J-PLUS
and J-PAS we expect applying our current methods to the later should work smoothly,
even recycling parts of the programs used, and would finally allow us to easily reach the
flux levels we wanted and at least improve bounds on Lyman α diffuse emission around
quasars.
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SUMMARY AND CONCLUSIONS

This thesis main work is focused on looking for observational signatures of the most ex-
treme of Black holes, in both big and small mass ranges. A main portion of these extremes
would come from primordial black holes (PBHs), and would give the very interesting pos-
sibility of being the majority or all of the dark matter (DM).

In Chapter 2 we have explored the idea of PBHs being the dark matter. We have
summarized their main formation path, where primordial quantum fluctuations would be
enhanced during inflation to the point where they would naturally form black holes [42].
The exponential expansion of inflation would mean that the black hole would not form
immediately, but rather have to wait until the fluctuations cross the horizon again. The
PBH would form with a mass roughly the one in the horizon when that happens, resulting
in PBHs being able to form with almost any mass. This opens a lot of windows where
PBHs escape the current MACHO constraints.

We have then analyzed the further constraints that have emerged since, and vari-
ous methods. The biggest contribution comes from microlensing, which looks for small
fluctuations in a star’s brightness as a compact object crosses our line of sight and their
gravitational force affects the light beams slightly deflecting them. While helping in creat-
ing constraints of more than 10 orders of magnitude in mass (see Figure 2.1), microlensing
seems to have reached its limit as finite source effects make it extremely hard to constraint
lighter masses [56]. PBH evaporation is in a similar state. Hawking radiation is incredibly
important for low mass PBHs, assuring us that any PBH smaller than 1015 grams would
have evaporated by today, and giving strong bounds on 1016−17 grams PBHs through the
expected increase in extra-galactic background light we should see. But larger masses
are almost completely unaffected by it, and its dependence on spin means the weaker
constrains are uncertain. Finally, gravitational waves (GW) are incredibly promising, but
current LIGO and Virgo sensitivity is only capable of detecting events of 1 − 100M⊙
mergers and closer than z ∼ 1. While those are very valuable for confirming PBHs, a
lot of constraints for the 1 − 100M⊙ mass range already exist forcing them to be below
even a small part of the DM. There is hope that next generation detectors, like LISA
might be able to detect the stochastic GW background that the formation of PBHs as
DM would cause [70], but those are at least 15 years away and subject to the uncertainty
of formation models.

Of importance also is remembering that almost all the constraints assume that PBHs
will come from a single mass rather than an extended mass distribution. As taking into
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account the later is extremely complex [34] and we expect a peak in the mass distribution,
this a good approximation, but one that has to be taken with caution for fringe cases.
Similarly, the possibility that PBHs could be born with a greater degree of clustering than
the standard matter distribution exists, and is a prominent part of more exotic formation
models of PBHs. This degree of clustering changes all known constraints and also creates
new ones.

Throughout this, a known window remains where PBH could be the majority of the
DM, centered around 10−14M⊙. The upper end of this window, 10−12M⊙ is particularly
interesting, as they are big enough they could be probed by their interactions with common
objects, like stars. They are massive enough that they would accrete a solar mass star if
they fall to their core, even faster if the core was that of an ultradense neutron star. There
was previous work on these ideas [40, 41], but their constraints suffer from uncertainties
in the environments they work with. On Chapter 3 we improve on this work through our
own model, set in the early universe.

We work around z ∼ 20, with extremely poor metal stars but just after the formation
of the very first stars and in a more common 107M⊙ DM halo. In those high redshifts the
DM density of the universe is very high and standard velocity dispersion fairly low, so if
they were the DM then PBHs of 10−12M⊙ would be interacting a lot with other objects.
As a proto-star forms from a gas cloud, the adiabatic contraction that accompanies it
would end up bounding a lot of these PBHs to the just born star. These PBHs would
have random orbits, and there is a chance some cross the star outright. Assuming the
star has a mass lower than 1M⊙ and so survives for a long time then the PBH could go
through this orbit to this day.

Despite their weird properties, the PBH would still be affected by dynamical friction.
The collisionless variant is purely gravitational [74], while gaseous friction depends more
on the medium its crossing [82,83]. In this thesis we study both and compare the results
for this particular case. While gaseous friction is slightly stronger, both are very weak and
the difference is negligible for statistical results. Despite the weakness of the friction, as
the orbit of the PBH starts being affected then it will drop closer to the center of the star,
meaning shorter orbits, higher density and stronger friction. We have studied carefully
the evolution of the bound orbits, and we have determined a starting critical eccentricity
for each radius. Above this critical eccentricty, we expect the PBH to fall to the core of
the star within 1010 years.

Despite being so small, once it falls to the core the PBH has no problem accreting
the entire star within 109 years. We however also take into account that the galaxy could
interfere with the process, as because of the high eccentricity some of the orbits could be
extremely long closing even to the parsec. Without need for third objects, tidal forces
of the galaxy alone would be enough to perturb these orbits, so we use them to set a
maximum radius beyond which the orbits will not contribute to the PBH capture rate.
We then integrate all the orbits with high enough eccentricity up to this maximum radius,
and we parametrize the result of the numeric integral with a new dimensionless variable
we call Ξ.

Knowing this, we can relate this whole process with the galaxy dark matter density
and velocity dispersion to estimate the average number of stars who will suffer this fate.
Further, Ξ contains all the information about the orbits, but not about the Dark matter
density. This means that with a few caveats Ξ can be used for computing this process for
any redshift, we just need to shift the DM density and velocity dispersion accordingly, as
can be seen in equation 3.20. We provide a table with all the values of Ξ we computed
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for a variety of rmax and stellar models in table 3.3.
Working with z ∼ 20 as we started gives surprising results. If 10−12M⊙ PBHs were

all the DM we would expect extremely few low mass stars to survive in the center of the
galaxy. As can be seen in figure 3.9, the average lowers with distance from the centers,
but even at 0.1RVirial we would expect between 10 to 1 % of the stars to end as black
holes. If PBHs of 10−12M⊙ are all the dark matter, not only could they help explain the
lack of detections of low mass extremely metal poor stars, but also we would expect there
to be many sub solar mass black holes, but still big enough for us to detect, awaiting to
be discovered.

While distinguishing sub solar mass black holes as being from 10−12M⊙ PBHs will be
hard, just that we expect their existence could help constrain that window as being all of
the dark matter. In contrast, the detection of subsolar mass black holes would definitely
prove PBHs existence, but our mechanism is one of the few ways in which those sub solar
mass black holes could exist and they would still explain all the dark mater.

Having worked this window, we moved on to the other extreme in Chapter 4. SMBHs
despite being more familiar are still full of uncertainties. One in particular is the emission
of Lyman α by QSOs, especially the creation of giant nebulae of such radiation. This
diffuse emission could be powered by different ways, but recombination cascades should
be the most common, allowing us to relate directly the brightness of the nebula with the
density of ionized Hydrogen.

The brightest quasars seem to have Lyman α diffuse emission almost invariably [90],
but we can not detect them for fainter ones. As one of the other uncertainties of quasars
are also their contribution to the reionization of the universe, and Lyman α emission is
one of the most important sources helping that contribution. On top of that of nebulae
also help us understand the depth of the process through the ionized density, making
studying these Lyman α nebulae a fairly relevant matter.

A way to solve this could be through stacking, but earlier work presents differing
results [94,95]. Stacking itself is a a method that relies on joining images of the same type
of objects. By taking advantage that Poissonian noise of each image is independent but
the rest of the signal is not, the signal to noise ratio improves that of the original image
by

√
N , N being the number of images used. Stacking is very well suited to working with

diffuse emission, and in a lot of ways it is one of the very few way to work with such
faint radiation. Stacking also carries its own share of issues, particularly that the Point
Spread Function (PSF) of the images will be similarly magnified, and that systematic
uncertainties will remain.

A survey that could make very good use of stacking is J-PAS and its predecessor
J-PLUS. A very wide survey with a fairly big footprint, but also importantly a good
number of narrowband filters for J-PLUS, and an incredibly good number of filters for J-
PAS. Filter bands are important because the Lyman α emission of the QSOs is redshifted,
meaning even if we know a lot of quasars we cannot do anything if their emission is not
covered by a filter. While we expect only J-PAS to have enough depth to improve the
current results on Lyman α emission, J-PLUS shares many of its characteristics so we can
use it as a proof of concept to check for the PSF and other systematic issues.

We do that, and the results are satisfactory. While the QSO stacked image does not
reach enough depth to appreciate any kind of extended emission in figure 4.8, and we
have an overall undervalue that appears to be a systematic, the former was something
expected and the later can be accounted for as is also present in the PSF. In comparison
the star stack does give the PSF very reliably and with very low uncertainty in figure 4.5,
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one that matches the one we would need for our computation with QSOs.
Indeed, in Figure 4.10 we show that the start stack reaches the flux level the Lyman

α signal should be, and with a number that matches our projection for J-PLUS. Given
that our projection for J-PAS is we would need even less QSO images than the ones we
have used for J-PLUS, just applying this same chapter to J-PAS with no changes should
already give at least improved results in the Lyman α surface brightness surrounding
quasars. Once J-PAS starts releasing data all, we are confident it should be easy to apply
all the previous work done in this thesis.

Overall, our aim in this thesis has been to seek possible observational consequences
for what normally are very theoretical and abstract objects, both extremes of the mass
range for black holes. For PBHs we achieved a surprising observational result that could
help either confirm or deny their existence as the dark matter, while for quasars we have
done a proof of concept and all the previous work needed so that when future surveys are
ready we can improve on current observational results of Lyman α nebulae.

To conclude, there a number of exciting prospect in the future:

J-PAS: The most immediate, J-PAS is expected to start this same year, and to begin re-
leasing data in another year or two. Our expectations are that with as maybe as
low as ∼ 1, 000 quasars it could be enough to improve current values of extended
Lyman α emission. Considering our proof of concept stack alone had more than
1,500 QSOs, the expectation would be to be able to improve upon them by a lot.
With a lot of the work already done in J-PLUS and familiarity with its systematics,
we expect the transition of the work to J-PAS should be smooth.

LIGO: GWs are one of the most novel detectors we have, and while its novelty means it still
does not reach all the ranges we want, it also means each new discovery improves our
understanding by leaps and bounds. Further detection of BHs in the supposed mass
gap could make stellar origin only black holes models unable to explain mergers for
example. While unlikely, the discovery of subsolar mass black hole merger would
be the final proof of the existence of PBHs too. Even simple merger events with
nothing out of the oridinary improves our statistics and can help set out constraints.

LISA: While LIGO is already a big success, LISA is a realistic hope to discover PBHs. The
improved detection already makes it so it could catch a subsolar merger more easily,
but LISA can also prove or disprove the existence of a stochastic GW background.
While in this thesis our focus has been on 10−12M⊙ PBHs, which if produced the
standard way should leave a similar bakcground for LISA to detect, other low mass
PBHs are also expected to contribute this background if they exist, meaning con-
straints will improve over all the mas ranges. Overall LISA should resolve a lot of
the current doubts within the community.
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CHANGE OF VARIABLES

With the dynamical friction, we can find the lost energy. However, just computing the
change in the speed and from it the energy will not work: the potential of the star acts
on the velocity of the PBH during its crossing, meaning the change in velocity would be
increased by the change in gravitational potential the same way the velocity of the PBH
is. Thus, if computed this way, the change in energy would depend on where we modify
the PBH’s speed, which is obviously false. By computing the energy loss directly we can
avoid this conundrum. We can also make a change of variables so we integrate for the
radius rather than time, simplifying the problem.

∆u =

∫ t2

t1

adf vdt = 2

∫ R∗

rmin

adf vdr
dt

dr

Where rmin is the smallest radius the PBH will reach during its orbit. As the Keplerian
orbit breaks down when the PBH enters the star, as the potential becomes non-linear
inside the star, an alternative way to obtain the pericenter is needed. It can be found
both through energy and angular momentum, but we focus on the later.

sinθ =
l

vr
−→ sin

(π
2

)
=

l

vrmin

−→ l = rmin v(rmin)

Returning to the energy:
dt

dr
=

dt

dλ

dλ

dr
=

1

v

1

cos θ
=

1

v

1√
1− l2

r2 v2

∆u = 2

∫ R∗

rmin

adf v
1√

1− l2

r2 v2

1

v
dr = 2

∫ R∗

rmin

adf√
1− l2

r2 v2

dr

By assuming the modification to the angular momentum of a single pass is negligible,
we have l = rminv(rmin), as only rmax and rmin will be completely perpendicular to the
trajectory (the radial velocity will be 0). However, this means that the integral above will
diverge for r → rmin, which is its lower limit. A change of variables is required if we want
to compute it. Recovering the θ we used for rmin:

sinθ =
l

vr
−→ r =

l

v(r) sin θ
, θ = arcsin

(
l

v(r)r

)
−→ cos θ(rmin) = 0
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v(r)2r2

)(
v(r) + r

d v

dr

)
dr = cos θdθ

∆u = 2

∫ θ(R∗)

θ(rmin)

cos θadf(θ)

cos θ
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l

)(
r
d v

dr
+ v(θ)
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∫ θ(R∗)

π
2

adf(θ) l

sin2(θ)

(
l
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d v

dr
(θ) + v(θ)

)−1

dθ

Which despite looking more complex, it is not particularly harder to compute. rmin

can be found iteratively for each energy and angular momentum, and we can compute
every other variable from the stellar model.
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FALLING INTO THE CORE OF THE STAR

It is straightforward to see that once the PBH orbits within the star, it will eventually
settle into the core even with the most conservative approximations:

atarget ∼ 10, 000 km −→ utarget =
−GM

2a
∼ −7 · 106km2/s2

uloss > 10−5km2/s2 · orbit.

A look at both Figures 3.4 and 3.3 shows the energy loss is if anything and underestima-
tion. Even keeping it like this:

Torbit = 2π

√
a3

GM
∼ 2π

√
(500, 000km)3

GM⊙
≈ 2 · 10−4yrs

utarget

uloss

= 7 · 1011orbits −→ t = 7 · 1011 · 2 · 10−4 ∼ 108 yrs.

Where we have approximated the whole of the mass being in the core (which is overall
conservative, reducing the orbital period but affecting the etarget even more), taken a much
lower limit of the eloss (which should increase even more by the core) and used a single
orbital period from when the PBH has just been captured (while we expect the orbital
period would get smaller as it gets closer to the core).
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