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Abstract

Single image super-resolution (SISR) is an important task in image processing,
which aims to enhance the resolution of imaging systems. Recently, SISR has
witnessed great strides with the rapid development of deep learning. Recent ad-
vances on SISR are mostly devoted to designing deeper and wider networks to
enhance their representation learning capacity. However, as the depth of networks
increases, deep learning-based methods are faced with the challenge of compu-
tational complexity in practice. Moreover, most existing methods rarely leverage
the intermediate features and also do not discriminate the computation of features
by their frequencial components, thereby achieving relatively low performance.
Aside from the aforementioned problems, another desired ability is to upsample
images to arbitrary scales using a single model. Most current SISR methods train a
dedicated model for each target resolution, losing generality and increasing mem-
ory requirements. In this thesis, we address the aforementioned issues and devise
solutions in each chapter: i) We present a novel frequency-based enhancement
block which treats different frequencies in a heterogeneous way and also models
inter-channel dependencies, which consequently enrich the output feature. Thus
it helps the network generate more discriminative representations by explicitly
recovering finer details. ii) We introduce OverNet which contains two main parts: a
lightweight feature extractor that follows a novel recursive framework of skip and
dense connections to reduce low-level feature degradation, and an overscaling
module that generates accurate SR image by internally constructing an overscaled
intermediate representation of the output features. Then, to solve the problem of
reconstruction at arbitrary scale factors, we introduce a novel multi-scale loss, that
allows the simultaneous training of all scale factors using a single model. iii) We
propose a directional variance attention network which leverages a novel attention
mechanism to enhance features in different channels and spatial regions. More-
over, we introduce a novel procedure for using attention mechanisms together with
residual blocks to facilitate the preservation of finer details. Finally, we demon-
strate that our approaches achieve considerably better performance than previous
state-of-the-art methods, in terms of both quantitative and visual quality.

Key words: Single image super-resolution, deep learning, image processing
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Resumen

El Análisis Super-Resolución de Imágenes (SISR) es una de las tareas más impor-
tantes en procesamiento de imágenes, ya que su objetivo es, entre otros generar
imágenes de alta fidelidad usando imágenes de muy baja resolución. Reciente-
mente, y como en otros tantos campos, SISR ha sido testigo de grandes avances
con el rápido desarrollo de nuevos métodos de aprendizaje profundo. Los avances
recientes se han dedicado principalmente al diseño de redes más profundas y am-
plias para mejorar su capacidad de aprendizaje de representación. Sin embargo, a
medida que aumenta la profundidad de las redes, los métodos basados en aprendi-
zaje profundo se enfrentan al desafío de la complejidad computacional. Además,
la mayoría de los métodos existentes rara vez aprovechan las características que
se generan en las capas intermedias, y tampoco discriminan el cálculo de carac-
terísticas por sus componentes frecuenciales, por lo que logran un rendimiento
relativamente bajo. En esta Tesis, se abordan los problemas mencionados ante-
riormente: i) Presentamos un nuevo método de mejora basado en la frecuencia y
dependencias entre canales, lo que en consecuencia enriquece la función de salida
y, por tanto, ayuda a la red poder generar representaciones más discriminatorias
y ser capaces de recuperar explícitamente detalles más finos. ii) Presentamos una
nueva estructura de red llamada OverNet, que contiene dos partes principales: un
extractor de características que sigue un nuevo esquema recursivo de conexiones
densas y de salto para reducir la degradación de características de bajo nivel, y un
módulo de sobreescala que genera una imagen super-resaolución precisa mediante
la construcción interna de una representación intermedia sobreescala a partir de las
características de la salida de la red. Posteriormente, para resolver el problema de la
reconstrucción a factores de escala arbitrarios, introducimos una nueva función
de pérdida multiescala, que permite el entrenamiento simultáneo de múltiples
factores de escala utilizando un único modelo. Y iii) proponemos una nueva arqitec-
tura de red de variación direccional que saca provecho de un nuevo mecanismo de
atención para mejorar las características en diferentes canales y regiones espaciales.
Además, presentamos un nuevo procedimiento para usar dichos mecanismos de
atención junto con bloques residuales para facilitar la preservación de los detalles
más finos. Finalmente, demostramos que nuestros enfoques logran un rendimiento
considerablemente mejor que los métodos del estado del arte más actuales, en
términos de calidad cuantitativa y visual.

Palabras clave: Superresolución de imágenes, aprendizaje profundo, procesa-
miento de imágenes
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Resum

L’Anàlisi Super-Resolució d’Imatges (SISR) és una de les tasques més importants
en processament d’imatges, ja que el seu objectiu és, entre d’altres, generar imat-
ges d’alta fidelitat usant imatges de resolució molt baixa. Recentment, i com en
altres camps, SISR ha estat testimoni de grans avenços amb el ràpid desenvolupa-
ment de nous mètodes d’aprenentatge profund. Els avenços recents s’han dedicat
principalment al disseny de xarxes més profundes i àmplies per millorar-ne la
capacitat d’aprenentatge de representació. Tot i això, a mesura que augmenta la
profunditat de les xarxes, els mètodes basats en aprenentatge profund s’enfronten
al desafiament de la complexitat computacional. A més, la majoria dels mètodes
existents poques vegades aprofiten les característiques que es generen a les capes
intermèdies, i tampoc discriminen el càlcul de característiques pels seus compo-
nents freqüencials, per la qual cosa aconsegueixen un rendiment relativament baix.
En aquesta Tesi, s’aborden els problemes esmentats anteriorment: i) Presentem
un nou mètode de millora basat en la freqüència i dependències entre canals, cosa
que en conseqüència enriqueix la funció de sortida i, per tant, ajuda a la xarxa
poder generar representacions més discriminatòries i ser capaços de recuperar
explícitament detalls més fins. ii) Presentem una nova estructura de xarxa anome-
nada OverNet, que conté dues parts principals: un extractor de característiques
que segueix un nou esquema recursiu de connexions denses i de salt per reduir
la degradació de característiques de baix nivell, i un mòdul de sobreescala que
genera una imatge superresolució precisa mitjançant la construcció interna d’una
representació intermèdia sobreescala a partir de les característiques de la sortida
de la xarxa. Posteriorment, per resoldre el problema de la reconstrucció a factors d
escala arbitraris, introduïm una nova funció de pèrdua multiescala, que permet l
entrenament simultani de múltiples factors d”escala utilitzant un únic model. I iii)
proposem una nova arquitectura de xarxa de variació direccional que treu profit
d’un nou mecanisme d’atenció per millorar les característiques a diferents canals
i regions espacials. A més, presentem un nou procediment per fer servir aquests
mecanismes d’atenció juntament amb blocs residuals per facilitar la preservació
dels detalls més fins. Finalment, demostrem que els nostres enfocaments aconse-
gueixen un rendiment considerablement millor que els mètodes de l estat de l art
més actuals, en termes de qualitat quantitativa i visual.

Paraules clau: Superresolució d’imatges, aprenentatge profund, processament
d’imatges
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1 Introduction

Over the past decades, digital images have become ubiquitous in our daily lives.
Artistic photography, computer vision, remote sensing, astronomy, medical imag-
ing, and microscopy are just a few of the numerous uses for images. In each case,
the captured images produce a source from which we can observe or understand an
object or a scene. Therefore, the demands for images with higher resolution have
dramatically increased.

The resolution of a digital imaging system can be classified in four different
ways: spatial resolution, spectral resolution, radiometric resolution, and temporal
resolution, in which spatial resolution is of the greatest challenge. The spatial
resolution of a digital imaging system is primarily defined by the pixel density in
the image space, which is measured in pixels per unit area. Spatial resolution in the
object space represents the level of spatial detail that can be discerned in an image;
the higher the resolution, the more image details. For instance, a medical doctor in
the neurology area can achieve better diagnosis by using higher-resolution Magnetic
Resonance Imaging (MRI) images [92]. However, the high-resolution images cannot
be obtained in many scenes because of the poor imaging sensor or acquisition
device as well as the unsuitable environment. As a result, the images and scenes
captured by such equipment are typically low resolutions, with sensor noise and
unexpected artifacts.

There are several ways of increasing the spatial resolution of an image. From a
hardware perspective, the direct method is to reduce the pixel size and thereby fit
more pixel sensors onto the chip area. A reduced pixel size means that a reduced
number of photons will hit the sensor element and that shot noise will occur result-
ing in degraded quality. Hence, there is a physical limit to reducing the size of the
image sensor [90]. It would also be possible to make larger image sensors, but that
would lead to larger and more expensive cameras, which might not be desirable.
Other solutions would be increasing the size of the sensor chip at the cost of the
increased capacitance of the system, which will result in a slower transfer rate or
increasing the focal length of the camera lens, which would also result in larger
and heavier cameras. Therefore, it is preferable to apply an algorithmic approach
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Figure 1.1 – The taxonomy of existing super-resolution techniques [17].

toward the increasing spatial resolution that doesn’t depend on the development of
new sensors and allows for the use of already existing image capture systems.

An alternative approach to hardware-based solutions for spatial resolution
enhancement is to apply signal processing techniques to recover fine image details
degraded or almost lost during image capture. These approaches are often referred
to as super-resolution (SR) image reconstruction techniques. The field of super-
resolution was established in the 80s and initial work was done in the frequency
domain, using several under-sampled low-resolution images to reduce aliasing in
fused high-resolution images. SR techniques attempt to recover high-resolution
(HR) images from low-resolution (LR) images which remains an important yet
challenging topic in image processing.

In general, as presented in Figure 1.1, existing SR techniques can be grouped
into two categories according to the LR input and the reconstructed HR output,
i.e., video super-resolution (VSR) and image super-resolution (ISR). On the whole,
VSR aims to improve the spatial resolution (known as spatial VSR) [114] or the
frame rate (known as temporal VSR) [76] of the observed video. ISR can be further
classified into multi-frame image super-resolution (MISR) [56, 74] and single image
super-resolution (SISR) [6, 86]. MISR refers to reconstructing an HR image via
fusing the complementary information in a series of correlated images of the same
scene, while SISR generates an HR image from one LR observation. In terms of
application scenarios, SISR is more practical than MISR and VSR because it is much
less demanding on the input, which is one reason why SISR attracts wider attention.
In this thesis, we particularly focus on the SISR problem which is further detailed in
the next section.

2
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(a) High-resolution (HR) (b)  Low-resolution (LR)

Figure 1.2 – Example of a low-resolution image compared to a high-resolution
sample of the same scene.

1.1 Single Image Super-Resolution via Deep Learning

The basic principle of single image super-resolution (SISR) is to use one LR image
of a scene, in order to create an image with a higher spatial resolution that conveys
finer detail or content with higher frequencies than the LR image (see Figure 1.2).
This offers an opportunity for overcoming resolution limitations in various com-
puter vision and image understanding tasks, such as computer graphics [52, 112],
medical imaging [4, 5, 28, 33, 44, 51, 113], security and surveillance [61, 102, 143].
Super-resolution techniques not only improve image perceptual quality but also
help to improve the final accuracy of many computer vision tasks such as detec-
tion [3, 35, 101] and recognition [8, 97, 129], which shows the importance of this
topic.

The problem of SISR is a highly ill-posed procedure since there are multiple
different HR images with slight variations in camera angle, color, brightness, and
other variables that may correspond to an identical LR image. Furthermore, there
are fundamental uncertainties among the LR and HR data since the downsampling
of different HR images may lead to a similar LR image, making this conversion a
many-to-one process. To address this problem, a variety of classical SR methods
have been proposed, such as reconstruction-based [15, 64, 108], example-based [45,
46], sparse representation [63, 68], and regression-based approaches [94, 142].

Since the great success at the Imagenet Large Scale Visual Recognition Compe-
tition (ILSVRC12) [55], Convolutional Neural Networks (CNNs) have become the
main workhorse for most computer vision tasks such as motion analysis [26], image
generation [31], and 3D recognition [78]. The powerful feature representation and
end-to-end training paradigm of CNNs make them a promising approach to SISR.

The SISR task can generally be divided into three stages depicted in Figure 1.3:
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Figure 1.3 – Example of single image super-resolution (SISR) pipeline.

feature extraction and representation, non-linear mapping, and image reconstruc-
tion [23]. In classical models, it is time-consuming and inefficient to design an
algorithm satisfying all these processes. On the contrary, CNNs can transfer the SISR
task to an almost end-to-end framework incorporating all these three processes,
which can greatly decrease manual and computing expenses [25]. Additionally,
given the ill-posed nature of SISR which can lead to unstable and hard convergence
on the results, CNNs can alleviate this issue through efficient network architectures
and loss functions design. Moreover, modern GPU enables deeper and more com-
plex CNN-based SR models to train fast, which shows greater representation power
than traditional models. Therefore, Dong et al. [23] pioneered the field of SISR
with neural networks, proposing Super-Resolution Convolutional Neural Network
(SRCNN), a three-layer CNN to learn an end-to-end mapping function from an
interpolated LR input to its corresponding HR output, which outperformed clas-
sical SR algorithms. Since SRCNN successfully applied CNN to SISR task, a great
number of CNN-based SR methods have been proposed and shown promising
results [6, 83, 84, 85, 86].

1.2 Objectives

Single image super-resolution is a notoriously challenging ill-posed problem which
aims at restoring the lost structures and textures from LR images. The main objec-
tive of this thesis is to produce algorithms for modeling the process of SISR that
can obtain images with resolution beyond the limit of imaging systems, thereby
benefiting the subsequent analysis and understanding tasks such as detection and
recognition.

Recently, with the rapid development of deep learning techniques, CNNs have
been widely explored in SISR and obtained significant performance. Despite their
remarkable performance, most existing CNN-based SR methods still have some
drawbacks. Throughout this thesis, we develop different algorithms to tackle the
following problems:
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• High-frequency enhacement. The output feature maps of a convolutional
layer can be seen as a mixture of information at lower and higher frequencies
each of which contains structures and textures of different complexity. For
example, the lower frequency information is composed of global structures
and textures that can directly be forwarded to the final HR output without
substantial computations. The higher frequency information consists of fine
details where more complex restoring functions are expected. At this point,
most existing CNN-based SR methods overlook the fact that most of the
low-frequency information is already contained in the LR input. As a result,
these models spend the same amount of computation treating low- and high-
frequency information and lack flexible modulation ability in dealing with
them, which ends up the representational ability of the network.

• Feature degradation and model complexity. Thanks to the increase in ca-
pacity of CNNs in depth and width, their performance has greatly improved.
The increase of depth brings benefits in terms of representation power, but
at the same time may result in a loss of low-level feature information, since
the features gradually disappear as the network depth increases. Although
authors in [145] introduce various skip connections and concatenation oper-
ations between intermediate layers and deep layers to fuse different levels of
features, the extreme connectivity pattern in their network not only hinders
their scalability when using large widths or depths but also increases compu-
tational demands and memory consumption dramatically, hence limiting the
use of modern architectures in real-world scenarios. Therefore, it is of cru-
cial importance to design a lightweight network architecture that effectively
computes multi-level feature representations for restoring high-quality HR
images within the network.

• Scale arbitrary SISR. SISR has seen its applications in diverse real-life sce-
narios and users. Therefore, it is necessary to develop a flexible and universal
scale arbitrary SR model that can be adapted to any scale, including non-
integer scale factors. Currently, most CNN-based SR models can only be
applied to one or a limited number of upsampling factors. Although a few
scales arbitrary SR methods have been proposed, they tend to lack the flex-
ibility to be used and the simplicity to be implemented. Thus, exploring
a CNN-based accurate scale arbitrary SR model as simple and flexible as
bicubic is crucial to the spread of SISR technology.

• Attention mechanism. Attention mechanisms have demonstrated great ben-
efits at improving the performance of deep models for computer vision tasks.
Recently, researchers have devoted great efforts to expand the application

5



Chapter 1. Introduction

of attention mechanisms to SISR. Taking efficiency into account, the most
popular attention mechanism for SR networks is squeeze-and-excitation (SE)
attention [41] used for high-level vision problems. It computes channel at-
tention with the help of 2D global pooling and provides notable performance
gains at a considerably low computational cost. However, the SE attention
only considers encoding inter-channel information but neglects the impor-
tance of spatial information, which is essential for enhancing image details in
low-level vision tasks.

1.3 Thesis Outline and Contributions

In this thesis, we analyze various exiting CNN-based SR methods, identifying issues
that hinder their performance, and propose new solutions to them in each chapter.
Hence, each chapter corresponds to an article either published or submitted in a
journal or conference:

• Chapter 2: Background. In this chapter, we first give the problem defini-
tion and review the mainstream datasets and evaluation metrics used for
performance comparison in this thesis. Then, we provide a literature review
including state-of-the-art models related to the proposed methods.

• Chapter 3: Frequency-based Enhancement Network for Efficient Super-
Resolution. In this chapter, we focus on high-frequency enhancement. Specif-
ically, we introduce a novel frequency-based enhancement block (FEB) which
is able to separate features into low and high frequencies while also enabling
efficient communication among them. Since low frequencies are preserved
by downsampling operations and thus can be recovered directly from the in-
put, FEB assigns more computational capacity to high frequencies, resulting
in more accurate features that improve reconstruction quality. The proposed
block design is simple and generic and can be used as a direct replacement
of commonly used SR blocks with no need to change network architectures.
We experimentally show that when replacing SR blocks with the FEB we
consistently improve the reconstruction error, while reducing the number
of parameters in the model. Moreover, we propose a lightweight SR model
named frequency-based enhancement network based on FEB that performs
favorably against the state-of-the-art SR algorithms in terms of visual quality,
memory footprint, and inference time.
This work has been submitted to IEEE Access (Parichehr Behjati, Pau Rodriguez,
Carles Fernandez, Armin Mehri, F. Xavier Roca, Seiichi Ozawa, and Jordi Gon-
zalez, 2022)
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• Chapter 4: OverNet: Lightweight Multi-Scale Super-Resolution with Over-
scaling Network. In this chapter, we introduce OverNet, a deep but lightweight
convolutional network to solve SISR at arbitrary scale factors with a single
model. OverNet consists of two main parts: a lightweight feature extractor
and an overscaling module for reconstruction. The feature extractor follows a
novel recursive framework of skip and dense connections to reduce low-level
feature degradation. The overscaling module is a new inductive bias that
generates an accurate SR image by internally constructing an overscaled inter-
mediate representation of the output features. Finally, to solve the problem
of reconstruction at arbitrary scale factors, we introduce a novel multi-scale
loss by downsampling the output at multiple super-resolution factors and we
minimize the reconstruction error in all of them. Experiments show that our
proposal outperforms previous state-of-the-art approaches while maintain-
ing relatively low computation and memory requirements.
This work has been published at WACV (Parichehr Behjati, Pau Rodriguez,
Armin Mehri, Carles Fernandez, Isabelle Hupont, and Jordi Gonzalez, 2021)

• Chapter 5: Single Image Super-Resolution Based on Directional Variance
Attention Networks. This chapter presents a directional variance attention
network, a computationally efficient yet accurate network for SISR. This net-
work leverages a novel directional variance attention specifically optimized
for SR, to enhance features in different channels and spatial regions. Such a
mechanism allows the network to focus on more informative features and im-
prove discriminative capabilities. Moreover, we introduce a novel procedure
for using attention mechanisms together with residual blocks, following two
independent but parallel computational paths. The idea is to hierarchically
aggregate their respective contributions across the network to facilitate the
preservation of finer details. Extensive experiments on a variety of public
datasets demonstrate the superiority of the proposed architecture over state-
of-the-art models, in terms of both quantitative and visual quality.
This work has been submitted to Pattern Recognition (Parichehr Behjati, Pau
Rodriguez, Carles Fernandez, Isabelle Hupont, Armin Mehri, and Jordi Gonza-
lez, 2022)

• Chapter 6: Conclusion. The last chapter concludes the work developed in
this thesis and proposes further directions for research in SISR problem.
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2 Background

This thesis mainly focuses on addressing and solving single image super-resolution
problem with deep learning. In this chapter, we first detail the problem definition.
Next, we introduce some related works, including benchmark datasets, assessment
methods, SISR frameworks, upsampling methods, and optimization objectives.
Then, we provide a literature review including state-of-the-art methods related to
the proposed methods.

2.1 Problem Definition

Single image super-resolution refers to the process of reconstructing an HR image
from its LR version. Generally, the LR image Ix is modeled as the output of the
following degradation:

Ix =D(Iy ;δ), (2.1)

where D denotes a degradation mapping function, Iy is the corresponding HR
image and δ is the parameters of the degradation process (e.g., the scaling factor or
noise). In practice, the degradation process (i.e., D and δ) is unknown and only LR
images are provided. In this case, we are required to recover an HR approximation
Îy of the ground truth HR image Iy from the LR image Ix , following:

Îy =F (Ix ;θ), (2.2)

where F is the super-resolution model and θ denotes the parameters of F .
Although the degradation process is unknown and can be affected by various

factors (e.g., compression artifacts, anisotropic degradations, sensor noise, and
speckle noise), we are trying to model the degradation mapping. Most works
directly model the degradation as a single downsampling operation, as follows:

D(Iy ;δ) = (Iy ) ↓s , {s} ⊂ δ, (2.3)
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SISR try to recover HR from its LR counterpart

Figure 2.1 – Downsampling and upsampling in super-resolution. Noise is added to
simulate realistic degradation within an image.

where ↓s , {s} is a downsampling operation with the scaling factor s. As a matter
of fact, most datasets for generic SR are built based on this pattern, and the most
commonly used downsampling operation is bicubic interpolation with antialiasing.
However, there are other works [145] modeling the degradation as a combination of
several operations:

D(Iy ;δ) = (Iy ⊗κ) ↓s +nζ, {κ, s,ζ} ⊂ δ, (2.4)

where Iy⊗κ represents the convolution between a blur kernelκ and the HR image Iy ,
and nζ is some additive white gaussian noise with standard deviation ζ. Compared
to the naive definition of equation 2.3, the combinative degradation pattern defined
in equation 2.4 and Figure 2.1 is closer to real-world cases and has been shown to
be more beneficial for SR. To this end, the objective of SR is as follows:

θ̂ = argminθL (Îy , Iy )+λΦ(θ), (2.5)

where L (Îy , Iy ) represents the loss function between the generated HR image Îy

and the ground truth image Iy ,Φ(θ) is the regularization term and λ is the trade-off
parameter.

2.2 Benchmark Datasets

Data is always essential for data-driven models, especially the deep learning-based
SR models, to achieve promising reconstruction performance. Nowadays, industry
and academia have launched several available datasets for SISR.
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Figure 2.2 – Representative test images from six super-resolution datasets used for
comparing and evaluating algorithms.

2.2.1 Training and Test Datasets

Today there are a variety of datasets available for image SR, which greatly differ
in image amounts, quality, resolution, diversity, etc. Among them, DIV2K [117] is
the most widely used dataset for model training, which is a high-quality dataset
that contains 800 training images, 100 validation images, and 100 test images.
Meanwhile, there are also many test datasets than can be used to effectively test
the performance of the models. The representative image from all the datasets is
shown in Figure 2.2.

• Set5 [9] is a classical dataset and only contains five test images of a baby, bird,
butterfly, head, and a woman.

• Set14 [138] consists of more categories as compared to Set5. however, the
number of images are still low i.e. 14 test images.

• B100 [2] is another classical dataset having 100 test images. The dataset is
composed of a large variety of images ranging from natural images to object-
specific such as plants, people, food, etc.

• Urban100 [45] is a relatively more recent dataset. The number of images is
the same as B100. however, the composition is entirely different. The focus of
the photographs is on human-made structures i.e. urban scenes.
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• Manga109 [82] is the latest addition for evaluating super-resolution algo-
rithms. The dataset is a collection of 109 test images of a manga volume.
These mangas were professionally drawn by Japanese artists and were avail-
able only for commercial use between the 1970s and 2010s.

2.3 Assessment Methods

The image quality assessment (IQA) can be generally divided into objective methods
and subjective methods. Objective methods commonly use a specific formulation
to compute the results, which are simple and fair, thus becoming the mainstream
assessment method in SISR. However, they can only reflect the recovery of image
pixels from a numerical point of view and are difficult to accurately measure the
true visual effect of the image. In contrast, subjective methods are always based on
human subjective judgments and more related to evaluating the perceptual quality
of the image. Based on the pros and cons of the two types of methods mentioned
above, several assessment methods are briefly introduced in the following with
respect to the aspects of image reconstruction accuracy, image perceptual quality,
and reconstruction efficiency.

2.3.1 Image Reconstruction Accuracy

The assessment methods applied to evaluate image reconstruction accuracy are also
called Distortion measures, which are full-reference. Specifically, given a distorted
image x̂ and a ground-truth reference image x, full-reference distortion quantifies
the quality of x̂ by measuring its discrepancy to x using different algorithms.

Peak Signal-to-Noise Ratio

Peak Signal-to-Noise Ratio (PSNR) [126] is the most widely used IQA method in the
SISR field, which can be easily defined via the mean squared error (MSE) between
the ground truth image Iy ∈RH×W and the reconstructed image Îy ∈RH×W :

MSE = 1

HW

H−1∑
i=0

W −1∑
j=0

(Iy (i , j )− Îy (i , j ))2, (2.6)

PSN R = 10 · log10(
M AX 2

MSE
), (2.7)

where M AX is the maximum possible pixel of the image. Since PSNR is highly
related to MSE, a model trained with the MSE loss will be expected to have high
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PSNR scores. Although higher PSNR generally indicates that the construction is of
higher quality, it just considers the per pixel MSE, which makes it fails to capture
the perceptual differences [125].

Structural Similarity Index Measure

Structural Similarity Index Measure (SSIM) [126] is another popular assessment
method that measures the similarity between two images on perceptual basis,
including structures, luminance, and contrast. Different from PSNR, which cal-
culates absolute errors on the pixel-level, SSIM suggests that there exists strong
inter-dependencies among the pixels that are spatially close. These dependencies
carry important information related to the structures perceptually. Thus the SSIM
can be expressed as a weighted combination of three comparative measures:

SSI M(Îy , Iy ) = (l (Îy , Iy ))α · c(Îy , Iy ))β · s(Îy , Iy ))γ

=
(2µÎy

µIy + c1)(2σÎy Iy
+ c2)

(µ2
Îy
+µ2

Iy
+ c1)(σ2

Îy
+σ2

Iy
+ c1)

,
(2.8)

where l , c, and s represents luminance, contrast, and structure between Îy and
Iy , respectively, µÎy

, µIy , σ2
Îy

, σ2
Iy

, and σÎy Iy
are the average(µ) / variance (σ2) /

covariance (σ) of the corresponding items. A higher SSIM indicates higher similarity
between two images, which has been widely used due to its convenience and stable
performance on evaluating the perceptual quality.

2.3.2 Image Perceptual Quality

Since the visual system of humans is complex and concerns many aspects to judge
the differences between two images, i.e., the textures and flow inside the images,
methods which pursue absolutely similarity differences (PSNR/SSIM) will not al-
ways perform well. Although distortion measures have been widely used, the
improvement in reconstruction accuracy is not always accompanied by an im-
provement in visual quality. In fact, researchers have shown that the distortion
and perceptual quality are at odds with each other in some cases [10]. The image
perceptual quality of an image x̂ is defined as the degree to which it looks like a
natural image, which has nothing to do with its similarity to any reference image.

Natural Image Quality Evaluator

Natural Image Quality Evaluator (NIQE) [87] is a completely blind image quality
assessment method. Without the requirement of knowledge about anticipated
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distortions in the form of training examples and corresponding human opinion
scores, NIQE only makes use of measurable deviations from statistical regularities
observed in natural images. It extracts a set of local (quality-aware) features from
images based on a natural scene statistic (NSS) model, then fits the feature vectors to
a multivariate Gaussian (MVG) model. The quality of a test image is then predicted
by the distance between its MVG model and the MVG model learned from a natural
image:

D(v1, v2,
∑

1
,
∑

2
) =

√
((v1 − v2)T (

∑
1+

∑
2

2
)−1(v1 − v2)), (2.9)

where v1, v2 and
∑

1,
∑

2 are the mean vectors and covariance matrices of the HR
and SR image’s MVG model. Notice that, a higher NQIE index indicates lower image
perceptual quality.

Ma

Ma et al. [79] proposed a learning-based no-reference image quality assessment.
It is designed to focus on SR images, while other learning-based methods are ap-
plied to images degraded by noise, compression, or fast fading rather than SR. It
learns from perceptual scores based on human subject studies involving a large
number of SR images. And then it quantifies the SR artifacts through three types
of statistical properties, i.e., local/global frequency variations and spatial disconti-
nuity. Then these features are modeled by three independent learnable regression
forests respectively to fit the perceptual scores of SR images, ŷn(n = 1,2,3). The final
predicted quality score is ŷn =∑

n λn · ŷn , and the weight λ is learned by minimizing
λ∗ = ar g mi ny (

∑
n λn · ŷn − y)2.

Ma performs well on matching the perceptual scores of SR images, but it is still
limited compared with other learning-based no-reference methods since it can only
assess the quality degradation arising from the distortion types on which they have
been trained.

Perceptual Index

In the 2018 PIRM Challenge on Perceptual Image Super-Resolution [11], perception
index (PI) is first proposed to evaluate the perceptual quality. It is a combination of
the no-reference image quality measures Ma and NIQE:

PI = 1

2
((10−M a)+N IQE). (2.10)
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A lower PI indicates better perceptual quality. This is a new image quality evalu-
ation standard, which has been greatly promoted and used in recent years.

2.3.3 Reconstruction Efficiency

Although designing deeper networks is the easiest way to obtain better reconstruc-
tion performance, it cannot be ignored that these models will also bring more
parameters, execution time, and computational costs. In order to broaden the
practical application of SISR, we need to consider the trade-off between the model
performance and model complexity. Therefore, it is important to evaluate the
reconstruction efficiency by the following basic assessments.

• Model size: The model size is related to the storage that the devices need to
store the data. A model containing more parameters is harder for the device
with limited hardware to run it. Therefore, building lightweight models is
conducive to the promotion and application of the algorithm. Among all the
indicators, the parameter quantity of the model is the most intuitive indicator
to measure the model size.

• Execution Time: Usually, a lightweight model tends to require a short exe-
cution time, but the emergence of complex strategies such as the attention
mechanism has broken this balance. In other words, when some complex
operations are introduced into the model, a lightweight network may also
require a long execution time. Therefore, it is critically important to evaluate
the execution time of the model.

• Multi-Adds: The number of multiply-accumulate operations, or Multi-Adds,
is always used to measure the model computation since operations in the
CNN model are mainly multiplications and additions. The value of Mult-Adds
is related to the speed or the time needed to run the model. In summary, the
trade-off between the model performance and model complexity is still need
to be concerned.

2.4 Super-resolution Frameworks

Since image super-resolution is an ill-posed problem, how to perform upsampling
(i.e., generating HR output from LR input) is the key problem. Although the ar-
chitectures of existing models vary widely, they can be attributed to four model
frameworks (as depicted in Figure 2.3), based on the employed upsampling opera-
tions and their locations in the model.
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(c) Progressive upsampling SR (d) Iterative up-and-down Sampling SR

Figure 2.3 – Super-resolution model frameworks based on deep learning. The cube
size represents the output size. The gray ones denote predefined upsampling, while
the green,yellow and blue ones indicate learnable upsampling, downsampling
and convolutional layers, respectively. And the blocks enclosed by dashed boxes
represent stackable modules [127].

2.4.1 Pre-upsampling Super-resolution

On account of the difficulty of directly learning the mapping from low-dimensional
space to high-dimensional space, utilizing traditional upsampling algorithms to
obtain higher-resolution images and then refining them using deep neural networks
is a straightforward solution. Thus, Dong et al. [23] firstly adopt the pre-upsampling
SR framework (as Figure 2.3(a) shows) and proposed SRCNN to learn an end-to-end
mapping from interpolated LR images to HR images. Specifically, the LR images
are upsampled to coarse HR images with the desired size using traditional meth-
ods (e.g., bicubic interpolation), then deep CNNs are applied on these images for
reconstructing high-quality details.

Since the most difficult upsampling operation has been completed, CNNs only
need to refine the coarse images, which significantly reduces the learning difficulty.
In addition, these models can take interpolated images with arbitrary sizes and
scaling factors as input, and give refined results with comparable performance
to single-scale SR models [52]. Thus it has gradually become one of the most
popular frameworks [53, 105, 110, 111]. However, the predefined upsampling often
introduces side effects (e.g., noise amplification and blurring), and since most
operations are performed in high-dimensional space, the cost of time and space is
much higher than other frameworks [24].
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2.4. Super-resolution Frameworks

2.4.2 Post-upsampling Super-resolution

In order to improve the computational efficiency and make full use of deep learn-
ing technology to increase resolution automatically, researchers proposed to per-
form most computation in low-dimensional space by replacing the predefined
upsampling with end-to-end learnable layers integrated at the end of the mod-
els. In the pioneer works [24, 104] of this framework (see Figure 2.3(b)), namely
post-upsampling, the LR input images are fed into deep CNNs without increasing
resolution, and end-to-end learnable upsampling layers are applied at the end of
the network.

Since the feature extraction process with huge computational cost only occurs
in low-dimensional space and the resolution increases only at the end, the compu-
tation and spatial complexity are much reduced. Therefore, this framework also has
become one of the most mainstream frameworks [60, 71, 118]. These models differ
mainly in the learnable upsampling layers, CNN structures, learning strategies, etc.

2.4.3 Progressive Upsampling Super-resolution

Although the post-upsampling SR framework has immensely reduced the compu-
tational cost, it still has some shortcomings. On the one hand, the upsampling
is performed in only one step, which greatly increases the learning difficulty for
large scaling factors. On the other hand, each scaling factor requires training an
individual SR model, which cannot cope with the need for multi-scale SR. To ad-
dress these drawbacks, a progressive upsampling framework is adopted by the
Laplacian pyramid SR network (LapSRN) [57](see Figure 2.3(c)). Specifically, the
models under this framework are based on a cascade of CNNs and progressively
reconstruct higher-resolution images. At each stage, the images are upsampled to
higher resolution and refined by CNNs. Other works such as MS-LapSRN [58] and
progressive SR (ProSR) [124] also adopt this framework and achieve relatively high
performance. In contrast to the LapSRN and MS-LapSRN using the intermediate
reconstructed images as the base images for subsequent modules, the ProSR keeps
the main information stream and reconstructs intermediate-resolution images by
individual heads.

By decomposing a difficult task into simple tasks, the models under this frame-
work greatly reduce the learning difficulty, especially with large factors, and also
cope with the multi-scale SR without introducing overmuch spatial and temporal
cost. However, the models under this framework also encounter some problems
such as complicated model designing for multiple stages and the training stability.
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2.4.4 Up-and-down Sampling Super-resolution

In order to better capture the mutual dependency of LR-HR image pairs, an efficient
iterative procedure named back-projection [48] is incorporated into SISR [116].
This SR framework, namely iterative up-and-down sampling SR (depicted in Fig-
ure 2.3(d)), tries to iteratively apply back-projection refinement, i.e., computing the
reconstruction error then fusing it back to tune the HR image intensity. Specifically,
Haris et al. [34] exploit iterative up-and-down sampling layers and propose DBPN,
which connects upsampling and downsampling layers alternately and reconstructs
the final HR result using all of the intermediate reconstructions. Similarly, the
SRFBN [69] employs an iterative up-and-down sampling feedback block with more
dense skip connections and learns better representations.

The models under this framework can better exploit the deep relationships
between LR-HR image pairs and thus provide higher-quality reconstruction results.
Nevertheless, the design criteria of the back-projection modules are still unclear.
Since this mechanism has just been introduced into deep learning-based SR, the
framework has great potential and needs further exploration.

2.5 Upsampling Methods

In addition to the upsampling positions in the model, how to perform upsam-
pling is of great importance. Although there have been various traditional upsam-
pling methods [115, 132], making use of CNNs to learn end-to-end upsampling
has gradually become a trend. In this section, we will introduce some traditional
interpolation-based algorithms and deep learning-based upsampling layers.

2.5.1 Interpolation-based Upsampling

Image interpolation, a.k.a. image scaling, refers to resizing digital images and is
widely used by image-related applications. The traditional interpolation methods
include nearest-neighbor interpolation, bilinear, bicubic interpolation, etc. Since
these methods are interpretable and easy to implement, some of them are still
widely used in CNN-based SR models.

• Nearest-neighbor interpolation: The nearest-neighbor interpolation is a
simple and intuitive algorithm. It selects the value of the nearest pixel for
each position to be interpolated regardless of any other pixels. Thus, this
method is very fast but usually produces blocky results of low quality.

• Bilinear interpolation: The bilinear interpolation first performs linear in-
terpolation on one axis of the image and then performs on the other axis.
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(a) Starting (b) Expanding (c) Convolution

Figure 2.4 – Transposed convolution layer. The blue boxes denote the input, and
the green boxes indicate the kernel and the convolution output.

Since it results in a quadratic interpolation with a receptive field-sized 2×2, it
shows better performance than nearest-neighbor interpolation while keeping
a relatively fast speed.

• Bicubic interpolation: Similarly, the bicubic interpolation performs cubic
interpolation on each of the two axes. Compared to bilinear interpolation, the
bicubic interpolation takes 4×4 pixels into account and results in smoother
results with fewer artifacts but much lower speed. In fact, the bicubic interpo-
lation with anti-aliasing is the mainstream method for building SR datasets
(i.e., degrading HR images to LR images), and is also widely used in the pre-
upsampling SISR framework.

As a matter of fact, the interpolation-based upsampling methods improve the
image resolution only based on its own image signals, without bringing any more
information. Instead, they often introduce some side effects, such as computational
complexity, noise amplification, blurring results. Therefore, the current trend is to
replace the interpolation-based methods with learnable upsampling layers.

2.5.2 Learning-based Upsampling

In order to overcome the shortcomings of interpolation-based methods and learn
upsampling in an end-to-end manner, transposed convolution layer, and sub-pixel
layer are introduced into the SISR field.

Transposed Convolutional Layers

Transposed convolution layer, a.k.a. deconvolution layer [136, 137], tries to perform
transformation opposite a normal convolution, i.e., predicting the possible input
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Figure 2.5 – Sub-pixel layer. The blue boxes denote the input, and the boxes with
other colors indicate different convolution operations and different output feature
maps.

based on feature maps sized like convolution output. Specifically, it increases
the image resolution by expanding the image by inserting zeros and performing
convolution. Taking ×2 SR with 3×3 kernel as an example as depicted in Figure 2.4,
the input is firstly expanded twice the original size, where the added pixel values
are set to 0 (Figure 2.4(b)). Then a convolution with kernel sized 3×3, stride 1,
and padding 1 is applied (Figure 2.4(c)). In this way, the input is upsampled by a
factor of 2, in which case the receptive field is at most 2×2. Since the transposed
convolution enlarges the image size in an end-to-end manner while maintaining a
connectivity pattern compatible with vanilla convolution, it is widely used as an
upsampling layer in SR models [34, 80, 118]. However, this layer can easily cause
uneven overlapping on each axis [89], and the multiplied results on both axes further
create a checkerboard-like pattern of varying magnitudes and thus hurt the SISR
performance.

Sub-Pixel Layer

The sub-pixel layer [104], another end-to-end learnable upsampling layer, performs
upsampling by generating a plurality of channels by convolution and then reshap-
ing them, as depicted in Figure 2.5. Within this layer, a convolution is firstly applied
for producing outputs with s2 times channels, where s is the scaling factor (Fig-
ure 2.5(b)). Assuming the input size is h ×w ×c, the output size will be h ×w × s2c.
After that, the reshaping operation (a.k.a. shuffle [104]) is performed to produce
outputs with size sh × sw × c (Figure 2.5(c)). In this case, the receptive field can be
up to 3×3. Due to the end-to-end upsampling manner, this layer is also widely used
by SR models [1, 6, 60]. Compared with transposed convolution layer, the sub-pixel
layer has a larger receptive field, which provides more contextual information to
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(a) Projection

(c) Convolution
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(Offset and scale) (b) Prediction ℝk x k x c
   

 x c

(Convolution weights)
in out

Figure 2.6 – Meta upscale module. The blue boxes denote the projection patch,
and the green boxes and lines indicate the convolution operation with predicted
weights.

help generate more realistic details. However, since the distribution of the receptive
fields is uneven and blocky regions actually share the same receptive field, it may
result in some artifacts near the boundaries of different blocks. On the other hand,
independently predicting adjacent pixels in a blocky region may cause unsmooth
outputs.

Meta Upscale Module

The previous methods need to predefine the scaling factors, i.e., training different
upsampling modules for different factors, which is inefficient and not in line with
real needs. Thus Hu et al. [42] propose meta upscale module (Figure 2.6), which
firstly solves SR of arbitrary scaling factors based on meta-learning. Specifically,
for each target position on the HR images, this module projects to a small patch
on the LR feature maps (i.e., k ×k × ci n), predicts convolution weights (i.e., k ×k ×
ci n ×cout ) according to the projection offsets and the scaling factor by dense layers
and perform convolution. In this way, the meta upscale module can continuously
zoom in it with arbitrary factors by a single model. And due to the large amount of
training data (multiple factors are simultaneously trained), the module can exhibit
comparable or even better performance on fixed factors. Although this module
needs to predict weights during inference, the execution time of the upsampling
module only accounts for about 1% of the time of feature extraction [42]. However,
this method predicts a large number of convolution weights for each target pixel
based on several values independent of the image contents, so the prediction result
may be unstable and less efficient when faced with larger magnifications.

To summarize, these learning-based layers have become the most widely used
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upsampling methods. Especially in the post-upsampling framework, these layers
are usually used in the final upsampling phase for reconstructing HR images based
on high-level representations extracted in low-dimensional space, and thus achieve
end-to-end SR while avoiding overwhelming operations in high-dimensional space.

2.6 Optimization Objective

Evaluation and parameter up-gradation are the important steps in all deep learning-
based models. In this section, we will introduce the necessary procedures during
the model training.

2.6.1 Learning Strategy

According to different strategies, the deep learning-based SR models can be mainly
divided into supervised learning methods and unsupervised learning methods.

Supervised Learning

In supervised learning SISR, researchers compute the reconstruction error between
the ground-truth image Iy and the reconstructed image Îy :

θ̂F = ar g mi nF L (Îy , Iy ). (2.11)

Alternatively, researchers may sometimes search for a mapping φ, such as a
pre-trained neural network, to transform the images or image feature maps to some
other space and then compute the error:

θ̂F = ar g mi nF L (Φ(Îy ,φ(Iy ))). (2.12)

Among them, L is the loss function which is used to minimize the gap between
the reconstructed image and ground-truth image. According to different loss func-
tions, the model can achieve different performances. Therefore, an effective loss
function is also crucial for SISR.

Unsupervised Learning

In unsupervised learning SISR, the way of evaluation and parameter up-gradation
is changing by different unsupervised learning algorithms. For example, ZSSR[105]
uses the test image and its downscaling images with the data augmentation meth-
ods to build the training dataset and then applies the loss function to optimize
the model. In CinCGAN[135], a model consists of two CycleGAN [149], where pa-
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rameters are upgraded through optimizing the generator-adversarial loss, the cycle
consistency loss, the identity loss, and the total variation loss together in each cycle.

2.6.2 Loss Functions

The loss function plays a critical role in the model’s performance. Choosing the
correct loss function for the problem in question helps the model learn the right set
of features for optimal and faster convergence. Various loss functions have been
proposed in the SISR problem, each targeting a specific problem and penalize a
different aspect for the purpose of enhancing the resolution of image results. Deep
learning models often use a weighted sum of more than one loss function to help
the model focus on the different problems contributed by multiple loss functions
simultaneously. In this section, we’ll take a closer look at the loss functions used
widely.

Pixel Loss

Pixel loss is the simplest and most popular type among loss functions in SISR, which
aims to measure the difference between two images on pixel basis so that these two
images can converge as close as possible. It mainly includes the L1 loss (i.e., mean
absolute error) and L2 loss (i.e., mean square error):

LL1(Îy , Iy ) = 1

hwc

∑
i , j ,k

∣∣∣Î i , j ,k
y − I i , j ,k

y

∣∣∣ , (2.13)

LL2(Îy , Iy ) = 1

hwc

∑
i , j ,k

(
Î i , j ,k

y − I i , j ,k
y

)2
, (2.14)

where h, w and c are the height, width, and the number of channels of the image.
While L2 loss favors a high PSNR, L1 loss is believed to be more robust against

outliers. Also, LAPSRN [57] used Charbonnier Loss as a loss function rather than
L2 loss which deals better with outliers. It produced better and sharper images
compared to images created with L2 loss, which generally have blur effects.

Content Loss

In order to evaluate the perceptual quality of images, the content loss is introduced
into SR [50]. Specifically, it measures the semantic differences between images
using a pre-trained image classification network. Denoting this network as φ and
the extracted high-level representations on l-th layer as φ(l )(I ) , the content loss
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is indicated as the Euclidean distance between high-level representations of two
images, as follows:

Lcontent = (Iy , Îy ;φ, l ) = 1

hl wl cl

√ ∑
i , j ,k

(φ(l )
i , j ,k (Îy )−φ(l )

i , j ,k (Iy ))2, (2.15)

where hl , wl and cl are the height, width and number of channels of the representa-
tions on layer l , respectively.

Essentially the content loss transfers the learned knowledge of hierarchical
image features from the classification network φ to the SR network. In contrast to
the pixel loss, the content loss encourages the output image Îy to be perceptually
similar to the target image Iy instead of forcing them to match pixels exactly. Thus
it produces visually more perceptible results and is also widely used in this field [12,
50, 60, 101, 122], where the VGG [106] and ResNet [38] are the most commonly used
pre-trained CNNs.

Texture Los

Texture loss is introduced by Gatys et al. [30] as an improvement over the content
loss to capture the image style for the purpose of image style transfer. The texture
loss helps to generate images that have the same style (e.g., texture, color, contrast)
as the desired HR image. It can be defined as the spatial correlation between
different feature maps extracted from a pre-trained network φ. The correlation
between the feature maps is represented by the Gram matrix, which is obtained
by calculating the inner product of the vectorized feature maps. The Gram matrix
captures the tendency of features to co-occur in different spatial locations of the
image.

Adversarial Loss

In recent years, due to their powerful learning ability, the GANs [31] receive more
and more attention and are introduced to various vision tasks. To be concrete,
the GAN consists of a generator performing generation (e.g., text generation, im-
age transformation), and a discriminator which takes the generated results and
instances sampled from the target distribution as input and discriminates whether
each input comes from the target distribution. During training, two steps are
alternately performed: (a) fix the generator and train the discriminator to better dis-
criminate, (b) fix the discriminator and train the generator to fool the discriminator.
Through adequate iterative adversarial training, the resulting generator can pro-
duce outputs consistent with the distribution of real data, while the discriminator
cannot distinguish between the generated data and real data.
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In terms of super-resolution, it is straightforward to adopt adversarial learning,
in which case we only need to treat the SR model as a generator and define an extra
discriminator to judge whether the input image is generated or not. Therefore,
Ledig et al. [60] firstly propose SRGAN using adversarial loss based on cross-entropy,
as follows:

Lg an_ce_g (Îy ;D) =−log D(Îy ), (2.16)

Lg an_ce_d (Îy , Is ;D) =− logD(Is )− log(1−D(Îy )), (2.17)

where Lg an_ce_g and Lg an_ce_d denote the adversarial loss of the generator (i.e., the
SR model) and the discriminator D (i.e., a binary classifier), respectively, and Is

represents images randomly sampled from the ground truths. Besides, Sajjadi et al.
[101] also adopts the similar adversarial loss in Enhancenet.

Furthermore, Wang et al. [124] and Yuan et al. [135] use adversarial loss based
on least square error for more stable training process and higher quality results [81],
given by:

Lg an_l s_g (Îy ;D) = (D(Îy )−1)2, (2.18)

Lg an_l s_d (Îy , Is ;D) = (D(Îy ))2 + (D(Is )−1)2. (2.19)

2.6.3 Other Improvements

In addition to the learning strategies, there are other techniques further improving
SR models such as:

• Context-wise network fusion. Context-wise network fusion (CNF) [98] refers
to a stacking technique fusing predictions from multiple SR networks. To be
concrete, they train individual SR models with different architectures sepa-
rately, feed the prediction of each model into individual convolutional layers,
and finally sum the outputs up to be the final prediction result. Within this
CNF framework, the final model constructed by the lightweight SRCNN [23]
achieves comparable performance with state-of-the-art models with accept-
able efficiency [98].

• Data augmentation. Data augmentation is one of the most widely used
techniques for boosting performance with deep learning. For image super-
resolution, some useful augmentation options include cropping, flipping,
scaling, rotation and color jittering [6, 57, 71, 84, 110]. In addition, Bei et al.
[7] also randomly shuffle RGB channels, which not only augments data but
also alleviates color bias caused by the dataset with color unbalance.
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• Network interpolation. PSNR-based models produce images closer to ground
truths but introduce blurring problems, while GAN-based models bring bet-
ter perceptual quality but introduce unpleasant artifacts (e.g., meaningless
noise-making images more realistic). In order to better balance the distortion
and perception, Wang et al. [123] propose a network interpolation strategy.
Specifically, they train a PSNR-based model and train a GAN-based model
by fine-tuning, then interpolate all the corresponding parameters of both
networks to derive intermediate models. By tuning the interpolation weights
without retraining networks, they produce meaningful results with much
fewer artifacts.

• Self-ensemble. Self-ensemble, a.k.a. enhanced prediction [116], is an infer-
ence technique commonly used by SR models. Specifically, rotations with
different angles (0◦,90◦,180◦,270◦) and horizontal flipping are applied on
the LR images to get a set of 8 images. Then these images are fed into the
SR model and the corresponding inverse transformation is applied to the
reconstructed HR images to get the outputs. The final prediction result is con-
ducted by the mean [71, 116, 124, 144] or the median [105] of these outputs.
In this way, these models further improve performance.

2.7 Most Related CNN-based Frameworks for SISR

In recent years, image super-resolution models based on deep learning have re-
ceived more and more attention and achieved state-of-the-art performance. In
previous sections, we decompose SR models into specific components, including
model frameworks (Section 2.4), upsampling methods (Section 2.5), and optimiza-
tion objective (Section 2.6). As a matter of fact, most of the state-of-the-art SR
models today can basically be attributed to a combination of multiple strategies we
summarize above. Here, we focus our discussion on the deep learning-based SR
approaches that are most related to our works.

2.7.1 Evolution of Architectures

Recently, CNN-based methods have been extensively studied in image SR, due
to their strong nonlinear representational power. Generally, such methods cast
SR as an image-to-image regression problem, and learn an end-to-end mapping
from LR to HR directly. Dong et al. [23] pioneered the field of SISR with neural
networks, proposing SRCNN, a three-layer CNN which outperformed traditional
algorithms. In SRCNN, researchers found that better reconstruction performance
can be obtained by adding more convolutional layers to increase the receptive field.
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However, directly stacking the layers will cause vanishing/exploding gradients and
degradation problem [36].

In ResNet, He et al. [38] proposed a residual learning framework, where a resid-
ual mapping is desired instead of fitting the whole underlying mapping. In SISR,
as LR image and HR image share most of the same information, it is easy to ex-
plicitly model the residual image between LR and HR images. Residual learning
enables deeper networks and remits the problem of gradient vanishing and degra-
dation. With the help of residual learning, Kim et al. [52] first pushed the depth of
SR network to 20, outperforming SRCNN by a large margin. For the convenience
of network design, the residual block [38] has gradually become the basic unit in
the network structure. Therefore, Ledig et al. [60] employed residual blocks to con-
struct a deeper network (SRResNet) for image SR, which was further improved by
EDSR [71] and MDSR [71] by removing unnecessary modules (e.g., batch normal-
ization) from the residual blocks. By using effective building modules, image SR
networks became deeper and yielded better performance. Among them, Zhang
et al. [144] proposed a residual in residual structure to form a very deep network
(over 400 convolutional layers), and achieved state-of-the-art performance. Later, in
order to employ hierarchical features from all the convolutional layers in deep net-
works, dense blocks started being employed in several SR architectures [111, 118].
More recently, Zhang et al. [145] and Liu et al. [72] also used dense and residual
connections in RDN and RFANet to utilize information from the whole feature
hierarchy. Although these existing deep learning-based approaches have made con-
siderable progress to improve SISR performance, they demand substantial memory
and computational resources. This makes modern architectures less applicable in
practice.

Numerous lightweight models have been proposed to alleviate the aforemen-
tioned computational burden. For example, DRCN [53] was the first to apply re-
cursive algorithm to SISR to reduce the number of parameters by reusing them
multiple times. Tai et al. [110] and Ahn et al. [1] improved DRCN by combining the
recursive and residual network schemes in order to achieve better performance
with even fewer parameters. Likewise, Behjati et al. [6] and Jiang et al. [49] also
joined residual connections and recursive layers to reduce the computational cost.
On the other hand, LapSRN [57] employed a pyramidal framework to increase the
image size gradually. By doing so, LapSRN effectively performed SISR on extremely
low-resolution cases. Chu et al. [20] introduced Neural Architecture Search (NAS)
strategies to automatically build an SR model given certain constraints. Mean-
while, Hui et al. [47] proposed an information multi-distillation block that extracted
features at a granular level with the channel splitting strategy which was further
improved in [72]. More recently, Luo et al. [77] proposed lattice blocks that applied
so-called butterfly structures to combine residual blocks.Later, Xuehui Wang and
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Chen. [130] proposed an attentive feature block to utilize auxiliary features of previ-
ous layers for facilitating features learning of the current layer. Li et al. [67] proposed
a linearly-assembled pixel-adaptive regression network, which casts the direct LR
to HR mapping learning into a linear coefficient regression task. Recently, to sim-
plify the challenges of directly super-resolving details, some authors adopted the
progressive structure to reconstruct HR images in a stage-by-stage upscaling man-
ner [70, 148]. Although all the aforementioned works demonstrate that lightweight
SR networks are capable of providing good trade-offs between performance and
number of parameters, there is still room for improvement in terms of performance.

2.7.2 Frequency-based Networks

It is well-known that high-frequency information (e.g. textures, edges) is signifi-
cant for SISR. Although significant progress has been made, texture details of the
LR images often tend to be smoothed in the super-resolved results since most
existing CNN-based SR methods do not pay enough attention to the limited high-
frequency information in the LR images. In SISR, the LR inputs and extracted
features contain different types of information across channels, spaces, and layers,
such as low- and high-frequency information each of which with different complex-
ity. Lower-frequency information is composed of simpler structures and textures
where simpler functions are required for reconstruction; higher-frequency infor-
mation consists of complex structures and textures where more complex restoring
functions are expected. At this point, most existing CNN-based SR methods spend
the same amount of computation treating low- and high-frequency information
and lack flexible modulation ability in dealing with them, which ends up the repre-
sentational ability of the network as well as leads to blurry super-resolved results.
To address this problem, Li et al. [69] proposed a feedback network (SRFBN) based
on a recurrent architecture design, in which the LR input is recursively refined to
obtain a corresponding HR output. The main architecture is based on a feedback
block that consists of several projection groups. Each projection group first finds
high-resolution features (via deconvolution) and then generates low-resolution fea-
tures (via convolution). Later, Haris et al. [34] proposed dense deep back-projection
network (D-DBPN) that iteratively perform back-projections to learn the feedback
error signal between LR and HR images. The motivation is that only a feed-forward
approach is not optimal for modeling the mapping from LR to HR images, and a
feedback mechanism can greatly help in achieving better results. For this purpose,
the proposed architecture comprised of a series of up and downsampling layers
that are densely connected with each other to combine HR images from multiple
depths in the network. Recently, Qiu et al. [96] and Yang and Lu [131] proposed
multi-branch architectures. In these methods, one branch is responsible for cap-

28



2.7. Most Related CNN-based Frameworks for SISR

turing high-frequency features such as texture and edge, and another is dedicated
to learn low-frequency features such as image outline and contour. Similarly, Li
et al. [66] introduced the octave convolution to image SR which uses two branches
to perform information update and frequency communication between low- and
high-frequency features. Although these methods delivered impressive results, they
tend to increase the amount of computation on high-frequency information by
increasing the overall number of operations of the model, without paying attention
to model complexity. The increase in complexity due to the independent treatment
of multiple frequencies is a key issue that limits the performance of these deep
CNN-based SR methods. Therefore, the efficient reconstruction of high-frequency
details in SISR is still a challenge today.

2.7.3 Attention Mechanisms

The aim of introducing attention mechanisms to neural networks is to re-calibrate
the feature responses towards the most informative and important components
of the inputs [41]. Attention mechanisms have been successfully applied to deep
CNN-based image enhancement methods and, more particularly, to SISR. Zhang
et al. [144] first incorporated an existing squeeze-and-excitation (SE) channel atten-
tion mechanism [41] into SISR and proposed RCAN, which markedly improved the
representation ability of the model and SISR performance. In the SE block, each
input channel is squeezed into a channel descriptor (i.e., a constant) using global
average pooling, then these descriptors are fed into two dense layers to produce
channel-wise scaling factors for input channels. Hu et al. [43] combined the SE
attention and a spatial attention mechanism to adaptively recalibrate the feature re-
sponses by explicitly modeling channel-wise and spatial feature interdependencies.
More recent works extend this idea by either adopting different spatial attention
mechanisms or designing advanced attention blocks [84, 88]. Meanwhile, Liu et al.
[73] further proposed a second-order channel attention (SOCA) module to better
learn the feature correlations. The SOCA adaptively rescales the channel-wise fea-
tures by using second-order feature statistics instead of global average pooling, and
enables extracting more informative and discriminative representations.

Non-local or self-attention modules are also popular due to their capability of
building spatial or channel-wise attention. When CNN-based methods conduct
convolution in a local receptive field, the contextual information outside this field
is ignored, while the features in distant regions may have a high correlation and
can provide effective information. Given this issue, non-local attention has been
proposed as a filtering algorithm to compute a weighted mean of all pixels of an
image. In this way, distant pixels can also contribute to the response of a position
in concern. For example, Mei et al. [85] proposed local and non-local attention
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blocks to extract features that capture the long-range dependencies between pixels
and pay attention to more challenging parts. Similarly NLSA [86] and NAAN [121]
exploit non-local attention mechanisms to capture long-distance spatial contextual
information. In CSNLN [85], a cross-scale non-local attention module is proposed
to mine long-range dependencies between LR features and large-scale HR patches
within the same feature map. Nevertheless, these methods notoriously consume
large amounts of memory to compute large affinity matrices at each spatial position
and are often adopted only in large models, thus not being suitable for real-world
scenarios.

2.7.4 Reconstruction Methods

One of the most important stages of SISR is reconstruction, which consists of gen-
erating HR images based on high-level features extracted from a low-dimensional
space. Interpolation is a commonly used method in SR networks, such as SR-
CNN [23], VDSR [52] and DRRN [110], to resize the LR image to the target size as the
input of a CNN model for SR reconstruction. However, computational operations
are greatly increased due to the large input image size. Thus, FSRCNN [24] and
SRDenseNet [60] directly adopted the LR image as input, in which a transposed con-
volution layer was added to implement the final upsampling reconstruction [118].
This method greatly reduces unnecessary computational overhead. Furthermore,
EPSCN [104] proposed a method called sub-pixel layer to overcome the problem of
the checkerboard effect in transposed convolution. Sub-pixel layer has been widely
used in recent SR models, such as EDSR [71], WDSR [134] and RCAN [144]. However,
these methods cannot manage multi-scale training.

Few works tackle SISR at different scale factors, and those that do treat the
problem as independent tasks, i.e. a model is trained for each scale. Lim et al. [71]
proposed the first multi-scale SR model, which has different image processing
blocks and upsampling modules for each integer scale factor. Later, Li et al. [65]
proposed a multi-scale residual network. They use multi-path convolution layers
with different kernel sizes to extract multi-scale spatial features. Later, Grm et al. [32]
proposed to upsample the image progressively by ×2 using a series of so-called SR
modules and compute the loss of generated SR results by each module. Thus, these
methods require vast amounts of computational resources. Recently, Meta-SR [42]
introduced an upsampling module based on meta-learning to solve SR at arbitrary
scale factors with a single model through a weight prediction technique. However,
this method must predict a large number of convolution weights for each target
pixel, the prediction is inefficient, and the results may be unstable [127].
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2.8 Summary

In this chapter, we firstly detailed the problem definition. Then, we presented
some related works, including benchmark datasets, assessment methods, SISR
frameworks, upsampling methods, and optimization objectives. Finally, we briefly
introduced the different aspects of the image SR problems that will be treated in
this thesis.
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3 Frequency-based Enhancement Network for
Efficient Super-Resolution

Single image super resolution (SISR) has witnessed great strides with the rapid
development of deep learning. Recent advances on SISR are mostly devoted to
designing deeper and wider networks to enhance their representation learning
capacity. However, as the networks increase in depth and width, deep learning
SR methods are faced with the challenge of computational complexity in prac-
tice. A promising and under-explored solution is to adapt the amount of com-
putation based on the different frequency bands of the input. To this end, we
present a novel frequency-based enhancement block (FEB) which explicitly en-
hances the information of high frequencies while forwarding low-frequencies to
the output. In particular, this block efficiently decomposes features into low- and
high-frequency and assigns more computation to high-frequency ones. Thus, it
can help the network generate more discriminative representations by explicitly
recovering finer details. Our FEB design is simple and generic and can be used
as a direct replacement of commonly used SR blocks with no need to change net-
work architectures. It is also orthogonal and complementary to attention-based
SR methods. We experimentally show that when replacing SR blocks with FEB
we consistently improve the reconstruction error, while reducing the number
of parameters in the model. Moreover, we propose a lightweight SR model —
Frequency-based Enhancement Network (FENet) — based on FEB that matches
the performance of larger models. Extensive experiments demonstrate that our
proposal performs favorably against the state-of-the-art SR algorithms in terms
of visual quality, memory footprint, and inference time.

3.1 Motivation

Convolutional neural networks (CNNs) have recently achieved unprecedented
success in various problems [38, 128]. The powerful feature representation and
end-to-end training paradigm of CNNs make them a promising approach to single
image super-resolution (SISR). Recently, most CNN-based SR methods focus on
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elaborate architecture designs such as residual learning [1, 6, 60, 65] and dense
connections [49, 145]. Although significant progress has been made, as discussed
in [43, 96], texture details of the LR images often tend to be smoothed in the super-
resolved results since most existing CNN-based SR methods do not pay enough
attention to the limited high-frequency information in the LR images. In natural
images, information is conveyed at different frequencies. The output feature maps
of a convolutional layer can also be seen as a mixture of information at lower
and higher frequencies. The lower frequency information is composed of global
structures and textures that can directly be forwarded to the final HR output without
substantial computations. The higher frequency information consists of fine details
where more complex restoring functions are expected. At this point, leading CNN-
based methods such as EDSR [71] and RDN [145] overlook the fact that most of
the low-frequency information is already contained in the input. As a result, these
models spend the same amount of computation treating low- and high-frequency
information and lack flexible modulation ability in dealing with them, which ends
up the representational ability of the network.

Previous works address this problem by incorporating attention mechanisms [18,
133, 144] into the networks to model interdependencies among spatial locations,
channels, or both. The common idea behind attention-based SR methods is to
adjust network architectures so that they produce rich feature representations.
However, as SR networks are so diverse, the attention module is usually designed
solely for a specific network structure [120]. Recently, various SR methods such as
multi-branch networks [66, 131] and progressive reconstruction methods [69, 148]
mainly focus on refining the high-frequency texture details. Although these meth-
ods delivered impressive results, they tend to increase the amount of computation
on high-frequency information by increasing the overall number of operations of
the model, without paying attention to model complexity. The increase in com-
plexity due to the independent treatment of multiple frequencies is a key issue that
limits the performance of these deep CNN-based methods. Therefore, the efficient
reconstruction of high-frequency details in SISR is still a challenge today.

In this paper, we address the aforementioned problems from a different perspec-
tive. Instead of designing deep and complex networks or adding various shortcut
connections to strengthen feature representations, we introduce a novel frequency-
based enahcement block (FEB) which is able to separate features into low and
high frequencies while also enabling efficient communication among them. Since
low frequencies are preserved by downsampling operations and thus can be re-
covered directly from the input, FEB assigns more computational capacity to high
frequencies. The proposed FEB gradually and iteratively enhances high-frequency
feature maps during training while preserving low-frequency information, resulting
in more accurate features that improve reconstruction quality.
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HR LR

Img_096 Urban100 EDSR EDSR-FEB

Figure 3.1 – The visual comparison of SR results by the networks with different
building modules for scale factor ×4. The residual block is used as building module
for EDSR. In EDSR-FEB, we replace residual block with proposed FEB.

The proposed FEB offers the following advantages. First, it is generic and can
be easily applied to existing SR models without the need of modifying network
architectures or requiring hyper-parameters tuning. Second, FEB reduces model
parameters in the baseline SR models while simultaneously obtaining better SR
performance. In Figure 3.1, we provide an example of visual quality of EDSR [71],
which uses residual blocks [38] as its building module. It can be observed that,
when we replace residual blocks with our blocks (EDSR-FEB), the network obtains
better visual quality while reducing the number of parameters.

Based on FEB, we build a lightweight SR network named frequency-based en-
hancement network (FENet). Our network leads to significant improvements for
single image SR, surpassing SR networks with complicated skip connections and
concatenations. Furthermore, to demonstrate the effectiveness of the proposed
FEB, we take current state-of-the-art SR methods as baselines, and replace their
building blocks with our proposed block. Extensive experiments conducted on
SR benchmark datasets demonstrate that such baseline results can be greatly im-
proved by using the proposed FEB, which additionally reduces model parameters
and computational complexity.

3.2 Frequency-based Enhancement Network

In this section, we first describe the overall network architecture. Next, we detail
the proposed frequency-based enhancement block (FEB). Finally, we discuss the
differences between the proposed method and similar related works.
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Figure 3.2 – Proposed frequency-based enhancement network (FENet) for SISR,
which consists of non-linear mapping and reconstruction modules.

3.2.1 Network overview

As shown in Figure 3.2, the overall network architecture of frequency-based en-
hancement network (FENet) consists of a non-linear mapping module and a re-
construction module. Let’s denote as ILR and ISR the input and output of FENet,
respectively. We apply only one 3×3 convolutional layer (H ) to extract the initial
features H0 from the LR input image:

H0 =H (ILR ). (3.1)

It is worth noting that only one convolutional layer is used here for lightweight
design.

Then, we use the non-linear mapping module, which consists of several stacked
FEBs to generate new powerful representations, which can be formulated as

Hk =Bk (Hk−1), k = 1, ..., M , (3.2)

where Bk denotes mapping function of the k-th FEB. Hk−1 represents the features
from the previous adjacent FEB, and M is the total number of FEBs.

Inspired by [65], we apply a feature fusion strategy to integrate the features from
all the FEB, which helps to extract more hierarchical contextual information. The
fusion operation is formulated as

H =F ([H1, H2, ..., HM ]) (3.3)

where [H1, H2, ..., HM ] refers to the concatenation of feature maps produced by FEBs
and F is a 1×1 convolutional operation.
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Finally, we utilize the reconstruction module that contains convolutional layers
and pixelshuffle layers [104] to upsample the features to the HR size. In addition,
we incorporate a global connection path to grant access to the original LR informa-
tion and facilitate the back-propagation of the gradients, in which only a bicubic
interpolation is applied to the input ILR . Therefore, we obtain:

ISR =R(H)+Bicubic↑(ILR ) (3.4)

where R is the reconstruction module, and ISR is the final output of the network.
To optimize the network parameters, we adopt L1 loss as a cost function for

training. Given a training set with N pairs of LR images and HR counterparts,
denoted by {I i

LR , I i
HR }N

i=1, the network is optimized to minimize the L1 loss function:

L1(θ) = 1

N

N∑
i=1

‖ISR − IHR‖1 , (3.5)

where θ denotes the parameter set.

3.2.2 Frequency-based Enhancement Block (FEB)

A natural image can be decomposed into a low frequency component that describes
smoothly changing structures and a high-frequency component that describes
the rapidly changing fine details [14, 100]. Similarly, we argue that the output
feature maps of a convolutional layer can also be decomposed into features of dif-
ferent frequencies, and propose an efficient frequency-based enhancement block
(FEB) which naturally decomposes low and high frequencies at feature level. The
high-frequency information part is processed by higher-complexity operations (in
number of parameters and non-linearities), whereas the lower-frequency part is
processed by lower-complexity operations to compensate for the increase of com-
putation. As a result, the proposed approach learns discriminative representations
in order to efficiently achieve more accurate reconstructions.

As demonstrated in Figure 3.3, the proposed FEB contains two pathways, each
of which is responsible for a different functionality. Each pathway has a 1 × 1
convolutional layer at the beginning. Given the input X ∈RC×H×W , where C denotes
the number of channels and H ×W the spatial dimensions, we have

X1 =F
′
spl i t (X) (3.6)

X2 =F
′′
spl i t (X) (3.7)

where {X1,X2} only have half of the channel number of X. F
′
spl i t and F

′′
spl i t are two
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Figure 3.3 – Schematic illustration of the proposed Frequency-based Enhancement
Network (FEB). As it can be seen, the original filters are separated into two process-
ing lines, each of which is in charge of a different functionality.

1×1 convolutional operations, respectively. Then, the described operations are
separately sent into a dedicated pathway for collecting different types of information
(i.e. low- and high-frequency information). The first pathway targets at retaining
the original information (low-frequency). To save computation, we perform only a
simple 3×3 convolutional operation to capture the global layout and coarse details
as follows:

Y1 =F1(X1), (3.8)

where Y1 is the output of the 3×3 convolutional layer (F1).
In the second pathway, we first apply an average pooling layer upon X2, yielding

T1:

T1 = AvgPool↓(X2,k), (3.9)

where k denotes the kernel size of the pooling layer and the size of the intermedi-
ate feature map T1 is C

2 × H
k × W

k . Each value in T1 can be viewed as the average
intensity of each specified small area of X2. After that, T1 is upsampled via a bicubic
interpolation operator to produce a new tensor T2 of the same size as X2

T2 = Bicubic↑(T1,k), (3.10)

where T2 contains averaged information and it can be regarded as a smoother
version of the original X2. Then, in order to obtain the high-frequency information,
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LR X2 T2 T3

Figure 3.4 – Visual activation feature maps of input X2,T2, and obtained high-
frequency information (T3).

T2 is element-wise subtracted from X2:

T3 = X2 −T2, (3.11)

The visual activation maps of X2, T2 and high-frequency information (T3) are
also shown in Figure 3.4. It can be observed that T2 is smoother than X2 as it is the
average information of X2. Meanwhile, T3 retains the details and edges. Now, the
high-frequency enhancement operation can be formulated as follows:

Y
′
2 =σ(F2(T3)+X2) ·F3(X2), (3.12)

where σ is the sigmoid function, and F2 and F3 are two 3×3 convolutional layers,
respectively. As shown in Equation 3.12, we use X2 as residuals to form the weights,
which is found beneficial. Then the output of the second pathway can be written as

Y2 =F4(Y
′
2), (3.13)

where F4 is a 3×3 convolutional operation. Finally, both intermediate outputs
of the first and second pathways {Y1,Y2} are concatenated together as the output
Y ∈RC×H×W to obtain a rich feature representation.

Compared to other works such as [66, 131], which require a considerably large
amount of computations for decomposing features of different frequencies, FEB
can separate the low- and high-frequency feature representations in an efficient
way and focus on reconstructing the high-frequency ones.

3.2.3 Discussion

Difference to prominent SR blocks. Prominent SR blocks such as residual blocks [71]
or dense blocks [118] process low- and high-frequency information simultaneously

39



Chapter 3. Frequency-based Enhancement Network for Efficient Super-Resolution

by the same convolution operations and do not discriminate the computation of fea-
tures by their frequencial components. Therefore, some local details of LR images
cannot be effectively utilized for HR reconstruction, leading to blurry super-resolved
results [66]. In contrast, our proposal treats different frequencies in a heterogeneous
way and also models inter-channel dependencies, which consequently enrich the
output feature. Moreover, FEB benefits SR approaches by reducing the number of
parameters while achieving superior SR performance.

Difference to attention-based methods. Our work is quite different from existing
methods such as [21, 43, 84, 144] which rely on supplementary attention blocks
and require additional learnable parameters. In contrast our approach internally
changes the way of exploiting convolutional filters of convolutional layers, and
hence require no additional learnable parameters. In the following experiment
section, we will demonstrate without any extra learnable parameters, FEB can yield
significant improvements over baselines and other attention-based SR approaches.
Moreover, it is complementary to attention mechanisms, and also benefit from their
inclusion into the pipeline.

3.3 Experimental Results

In this section, we first conduct an ablation study to validate the effectiveness of the
proposed FEB. Then, we systematically compare FENet with state-of-the-art SISR
algorithms on five commonly used benchmark datasets.

3.3.1 Settings

Datasets and metrics. Following [18], we use 800 high-quality images from the
DIV2K dataset [117] for training. We evaluate our models on several benchmark
datasets: Set5 [9], Set14 [138], B100 [2], and Urban100 [45], and, Manga109 [82],
each with diverse characteristics. All results are evaluated with two commonly used
metrics: PSNR and SSIM. To keep the consistency with previous works, quantitative
results are evaluated on the luminance channel (Y). Furthermore, we adopt the
Perceptual Index (PI) [11], which can avoid the situation where over-smoothed
images may present a higher PSNR or SSIM when the performances of two methods
are similar.

Degradation models. To comprehensively illustrate the efficacy of the proposed
method, three degradation models are used to simulate LR images, following [145].
The first one, denoted by BI, consists of generating LR images by bicubic downsam-
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pling ground truth HR images with ×2, ×3, ×4. The second one, denoted by BD,
first performs bicubic downsampling on HR images with ×3, and then blurs the
images with a Gaussian kernel of size 7×7 and standard deviation 1.6. Finally, we
further produce LR images in a third challenging way, denoted by DN, by carrying
out bicubic downsampling followed by additive Gaussian noise, with noise level
of 30.

Implementation details. During training, data augmentation is carried out by
means of random horizontal flips and 90◦ rotation. At each training mini-batch,
64 LR RGB patches of size 64×64 are provided as inputs. We train FENet using an
ADAM optimizer with learning rate 10−3. The learning rate is halved every 2×105

iterations. We set the number of FEB to 12 in our FENet. Our network has been
implemented using PyTorch, and trained on a NVIDIA RTX 3090 GPU.

3.3.2 Ablation Study

Comparing Pooling Methods

In this section, we investigate the influence of different pooling types on the perfor-
mance. In our experiments, we use FENet as the basic network and then replace
average pooling operators (Avg) in all FEBs with maximum pooling operators (Max).

As shown in Table 3.1, using the average pooling operator while keeping the
rest of configurations unchanged yields a performance increase of about 0.07dB in
average. We argue that this may be due to the fact that, unlike maximum pooling,
average pooling builds connections among locations within the whole pooling
window, which can better capture local contextual information.

Table 3.1 – Average PSNR obtained when FEB using different pooling methods on
five benchmark datasets for scale factor ×4.

Scale Dataset + Max + Avg

Set5 32.17 32.24(+0.07dB)

Set14 28.53 28.61(+0.08dB)

×4 B100 27.54 27.61(+0.07dB)

Urban100 26.09 26.15(+0.06dB)

Manga109 30.38 30.43(+0.05dB)

41



Chapter 3. Frequency-based Enhancement Network for Efficient Super-Resolution

Table 3.2 – Average PSNR to show the effect of downsampling rate on the perfor-
mance on Set5 dataset. We record the results in 10×104 iterations.

Downsampling
Rate

Scales

×2 ×3 ×4

2 37.89 34.22 32.08
3 37.91 34.24 32.10
4 37.94 34.29 32.14
5 37.95 34.31 32.15

The Effect of Downsampling Rate

We also investigate how the downsampling rate in FEB influences the image SR per-
formance. In Table 3.2, we show the performance with different downsampling rates
used in FEB. It can be observed that as the downsampling rate increases, slightly
better performance is achieved. However, we do not use larger downsampling rates
due to two reasons: (1) the resolution of the input features is already very small; (2)
higher downsampling rates lead to performance improvements at the expense of
more computations due to bicubic operation. Therefore, for the rest of experiments,
we set the downsampling rate to 4 for all scale factors, as it still provides significant
improvements with a lower computational cost than ×5.

The Effect of Increasing the Number of FEBs

As discussed in [71], increasing the depth of the network can effectively improve the
performance. In this work, adding the number of FEBs is the simplest way to gain
excellent results. For better balancing the model size and performance, we compare
the proposed model with the different numbers of FEBs, i.e., 6, 8, 10, and 12.

Table 3.3 – Average PSNR obtained with FENet when using different number of FEBs
on five benchmark datasets for scale factor ×4.

Blocks 6 8 10 12

Params 379K 477K 572K 675k

Set5 31.98 32.15 32.19 32.24
Set14 28.44 28.54 28.57 28.61
B100 27.42 27.54 27.58 27.61
Urban100 25.90 25.97 26.05 26.15
Manga109 30.07 30.20 30.35 30.43
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Table 3.4 – Average PSNR obtained with FENet when using different SR blocks on
five benchmark datasets for scale factor ×4.

Name + RB + DB + IMDB + MSRB + FEB

Params 707K 714K 727K 739K 675K

Set5 32.02 32.06 32.07 32.10 32.24
Set14 28.46 28.53 28.53 28.57 28.61
B100 27.42 27.51 27.54 27.55 27.61
Urban100 25.84 25.87 25.89 25.97 26.15
Manga109 30.12 32.20 30.21 30.17 30.43

LR RB DB

Img_024 Urban100 IMDB MSRB FEB

Figure 3.5 – Visual comparisons of SR results using FENet with different SR blocks
for scale factor ×4.

As shown in Table 3.3, our FENet performance improves rapidly with the growth
in number of FEBs. Although the performance of the network would further improve
by using more FEBs, we found it leads to diminishing returns with respect to the
number of parameters. Therefore, we use 12 FEBs in our experiments.

The Effectiveness of FEBs

To demonstrate the effectiveness of our proposed FEB scheme, we use FENet as
the basic network. To keep the number of parameters similar, we replace the 12
FEBs with 8 residual blocks (RB) [71], 5 dense blocks (DB) [118], 6 information
multi-distillation blocks (IMDB) [47], or 4 multi-scale residual blocks (MSRB) [65].
In Table 3.4, we compare the number of parameters and the performance in PSNR
for all methods for scale factor ×4.

As reported in Table 3.4, method with FEB outperforms all the methods with
different SR blocks with fewer number of parameters. These experiments justify
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that the proposed FEB results are more helpful for image SR. Moreover, we provide
visual comparisons (Figure 3.5) of FENet using different SR blocks for scale factor
×4. It can be observed that the FENet using FEB obtains better visual quality and
represents more diverse structure patterns.

Attention mechanisms vs FEB

To further verify the effectiveness of FEB, we use a ResNet architecture, i.e., a reg-
ular architecture composed of 8 stacked residual blocks. Then, we integrate two
commonly used attention mechanism namely CA [144] (ResNet-CA) and CSAR [43]
(ResNet-CSAR) into residual blocks as done in [144], respectively. Furthermore, we
replace 8 residual blocks with 12 FEBs (FENet) and integrated the two mentioned
attention mechanisms into FEBs and named them as FENet-CA and FENet-CSAR.

As reported in Table 3.5, ResNet-CSAR and ResNet-CA obtain better perfor-
mance than ResNet but they require additional learnable parameters. Quite dif-
ferently, FENet does not rely on any extra learnable parameters since it heteroge-
neously exploits the convolutional filters and thus achieves better performance
than ResNet-CSAR and ResNet-CA. It should also be mentioned that the proposed
FEB is also compatible with the above mentioned attention mechanisms. For exam-
ple, when adding CA blocks to each FEB of FENet (FENet-CA), we can further gain
another 0.07dB in average. This also indicates that our approach is orthogonal to
this kind of supplementary attention modules.

Table 3.5 – Average PSNR obtained with FENet when using different attention
mechanisms on five benchmark datasets scale factor ×4.

Methods Params Set14 B100 Urban100

ResNet 707K 28.46 27.42 25.84
ResNet-CA 733k 28.50 27.46 25.89
ResNet-CSAR 782k 28.53 2750 25.93
FENet 675K 28.61 27.61 26.18
FENet-CA 701k 28.68 27.69 26.25
FENet-CSAR 750k 28.70 27.72 26.28

Generalization ability

To demonstrate the generalization ability of the proposed structure, we select
two state-of-the-art SR networks with different model sizes, called EDSR [71] and
RCAN [144]. The EDSR contains 32 stacked residual blocks with 256×256 filters. The
RCAN consists of 200 residual channel attention blocks with 64×64 filter sizes. We
replace their building blocks with FEBs. The corresponding networks with FEB are
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Table 3.6 – Average PSNR obtained with state-of-the-art SR methods when using
FEB on five benchmark datasets for scale factor ×4.

Name EDSR EDSR-FEB RCAN RCAN-FEB

Params 43M 28M 16M 9M

Set5 32.50 32.58(+0.08dB) 32.63 32.70(+0.07dB)
Set14 28.72 28.80(+0.08dB) 28.87 28.96(+0.06dB)
B100 27.72 27.81(+0.09dB) 27.77 27.85(+0.08dB)
Urban100 26.67 26.76(+0.09dB) 26.82 26.89(+0.07dB)
Manga109 31.02 31.09(+0.07dB) 31.22 31.30(+0.08dB)

HR LR

Img_054 Urban100 RCAN RCAN-FEB

Figure 3.6 – The visual comparison of SR results by the networks with different
building modules for ×4 scale factor. The residual blocks followed by channel
attentions are used as building modules for RCAN. In RCAN-FEB, we replace its
blocks with proposed FEBs.

named as EDSR-FEB and RCAN-FEB, respectively. For fair comparison, all networks
are trained on their default settings.

As shown in Table 3.6, EDSR-FEB has an improvement of 0.08dB in average
with almost ×2 fewer number of parameters (parameters: 28M) compared to the
original EDSR (parameters: 43M). Moreover, the improvement by RCAN-FEB is
also higher than RCAN with approximately half amount of parameters. From these
comparisons, we can easily find that (1) the proposed FEB performs much better
than channel attention, (2) for deeper networks, a similar phenomenon can also
be observed, (3) FEB reduces the number of parameters by half while achieving
better performance. Figure 3.1 and 3.6 additionally show visual comparisons for
scale factor ×4. It can be observed that EDSR-FEB and RCAN-FEB can reconstruct
sharper and more natural-looking images. This is mainly because FEB can extract
high-frequency features and use them for reconstruction.
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3.3.3 Comparison With state-of-the-art Methods

In this section, FENet is compared to other light- and heavy-weight state-of-the-art
SR methods. A self-ensemble method [116] is also used to further improve the
performance of the FENet (denoted as FENet+).

Results with BI degradation models

In this section, we compare the proposed FENet and FENet+ with state-of-the-
art lightweight models: VDSR [52], DRCN [53], SRDenseNet [118], SEINet [19],
SRResNet [60], CARN [1], IMDN [47], SRFBN-S [69], A2F-S [130], CBPN [148], LAPAR-
A [67], MADNet [59], FALSR-A [20], DPN [70], HDRN [49], and OISR-RK2 [40].

Table 3.7 shows quantitative results when evaluating PSNR and SSIM on five
benchmark dataset with different algorithms for scale factors ×2, ×3, and ×4. For
a more informative comparison, the number of parameters is also given. From
Table 3.7, we find that FENet only has less than 0.7M parameters but performs
favorably against other compared approaches on most datasets. For example, in
comparison with SRDenseNet [118] and OISR-RK2 [40], FENet achieves better or
competitive results, while only needing 30% and 40% of their parameters, respec-
tively. On the other hand, thanks to the FEB, FENet achieves competitive or better
results when compared to the large SR methods. Specifically, FENet outperforms
FSN [66] by a large margin at all scales in all datasets with 18× fewer parameters.
Furthermore, it can be seen that FENet+ achieves further improvements through
the use of self-ensembles [116] and it is the best performing one, at all scales and in
all datasets.

In Figure 3.7, we present some qualitative visual comparisons for the ×4 scale
factor. It can be observed that SR images reconstructed by FENet have more refined
details, especially in the edges and lines. This further validates the effectiveness of
the proposed FEB.

Results with BD and DN degradation models

Following [145], we also show the SR results with BD degradation model and further
introduce DN degradation model. The proposed FENet and FENet+ are compared
with state-of-the-art methods including SPMSR [93], SRCNN [23], FSRCNN [24],
VDSR [52], IRCNN_G [140], IRCNN_C [140], and SRMD(NF) [141]. We included the
RDN [145] high-capacity model for reference.

As shown in Table 3.8, our methods perform the best on all datasets with BD
and DN degradation models. The significantly better results of FENet and FENet+
indicate that our methods adapt well to scenarios with multiple degradation models.
Moreover, our methods achieve comparable results to the RDN. It is worth noting
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Table 3.7 – Average PSNR/SSIM values for models with the same order of magnitude
of parameters. Performance is shown for scale factors ×2, ×3 and ×4 with BI
degradation model. The best and second best results are highlighted in red and
blue respectively.

Scale Method Params Set5 Set14 B100 Urban100 Manga109
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

VDSR [52] 0.7M 37.53 0.9587 33.03 0.9124 31.90 0.8960 30.76 0.9140 37.22 0.9729
DRCN [53] 1.8M 37.53 0.9587 33.03 0.9124 31.90 0.8960 30.76 0.9140 37.63 0.9723
SEINet [19] 1M 37.89 0.9598 33.61 0.9160 32.08 0.8984 – – – –
CARN [1] 1.6M 37.76 0.9590 33.52 0.9166 32.09 0.8978 31.92 0.9256 38.36 0.9765
SRFBN-S [69] 0.3M 37.78 0.9597 33.35 0.9156 32.00 0.8970 31.41 0.9207 38.06 0.9757
A2F-S [130] 0.3M 37.79 0.9597 33.32 0.9152 31.99 0.8972 31.44 0.9211 38.11 0.9757
CBPN [148] 1M 37.90 0.9590 33.60 0.9171 32.17 0.8989 32.14 0.9279 – –

×2 MADNet [59] 0.9M 37.94 0.9604 33.46 0.9167 32.10 0.8988 31.74 0.9246 – –
FALSR-A[20] 1M 37.82 0.9595 33.55 0.9168 32.12 0.8987 31.93 0.9256 – –
HDRN [49] 0.9M 37.75 0.9590 33.49 0.9150 32.03 0.8980 31.87 0.9250 38.07 0.9770
DPN [70] 0.8M 37.52 0.9586 33.08 0.9129 31.89 0.8958 30.82 0.9144 – –
LAPAR-A [67] 0.5M 38.01 0.9605 33.62 0.9183 32.19 0.8999 32.10 0.9283 38.67 0.9772
IMDN [47] 0.7M 38.00 0.9605 33.63 0.9177 32.19 0.8996 32.17 0.9283 38.88 0.9774
OISR-RK2 [40] 1.4M 38.02 0.9605 33.62 0.9178 32.20 0.9000 32.21 0.9290 – –
FENet 0.6M 38.08 0.9608 33.70 0.9184 32.20 0.9001 32.18 0.9287 38.89 0.9775
FENet+ 0.6M 38.14 0.9610 33.77 0.9190 32.27 0.9006 32.24 0.9292 38.94 0.9779

EDSR [71] 43M 38.11 0.9602 33.92 0.9195 32.32 0.9013 32.93 0.9351 39.10 0.9773
CASGCN [133] 14M 38.26 0.9615 34.02 0.9213 32.36 0.9020 33.17 0.9377 39.41 0.9785
FSN [66] 7.3M 37.68 0.9605 33.51 0.9180 32.09 0.9015 31.68 0.9248 – –

VDSR [52] 0.7M 33.66 0.9213 29.77 0.8314 28.82 0.7976 27.14 0.8279 37.22 0.9750
DRCN [53] 1.7M 33.82 0.9226 29.76 0.8311 28.80 0.7963 27.15 0.8276 32.24 0.9343
CARN [1] 1.6M 34.29 0.9255 30.29 0.8407 29.06 0.8034 28.06 0.8493 33.50 0.9440
SRFBN-S [69] 0.4M 34.20 0.9255 30.10 0.8372 28.96 0.8010 27.66 0.8415 33.02 0.9404
A2F-S [130] 0.3M 34.06 0.9241 30.08 0.8370 28.92 0.8006 27.57 0.8392 32.86 0.9394

×3 MADNet [59] 0.9M 34.26 0.9262 30.29 0.8410 29.04 0.8033 27.91 0.8464 – –
HDRN [49] 0.9M 34.24 0.9240 30.23 0.8400 28.96 0.8040 27.93 0.8490 33.17 0.9420
DPN [70] 0.8M 33.71 0.9222 29.80 0.8320 28.84 0.7981 27.17 0.8282 – –
LAPAR-A [67] 0.5M 34.36 0.9267 30.34 0.8421 29.11 0.8054 28.15 0.8523 33.51 0.9441
IMDN [47] 0.7M 34.36 0.9270 30.32 0.8417 29.09 0.8046 28.17 0.8519 33.61 0.9445
OISR-RK2 [40] 1.6M 34.39 0.9272 30.35 0.8420 29.11 0.8058 28.24 0.8544 – –
FENet 0.6M 34.40 0.9273 30.36 0.8422 29.12 0.8060 28.20 0.8539 33.57 0.9444
FENet+ 0.6M 34.47 0.9279 30.41 0.8426 29.17 0.8065 28.28 0.8545 33.63 0.9450

EDSR [71] 43M 34.65 0.9280 30.52 0.8462 29.25 0.8093 28.80 0.8653 34.17 0.9476
CASGCN [133] 14M 34.75 0.9300 30.59 0.8476 29.33 0.8114 28.93 0.8671 34.36 0.9494

VDSR [52] 0.7M 31.35 0.8838 28.01 0.7674 27.29 0.7251 25.18 0.7524 28.83 0.8809
DRCN [53] 1.8M 31.54 0.8850 29.19 0.7720 27.32 0.7280 25.12 0.7560 29.09 0.8845
SEINet [19] 1.4M 32.05 0.8934 28.49 0.7783 27.44 0.7325 – – – –
SRDenseNet [118] 2M 32.00 0.8931 28.50 0.7782 27.53 0.7337 26.05 0.7819 30.41 0.9071
SRResNet [60] 1.5M 32.05 0.8910 28.53 0.7804 27.57 0.7354 26.07 0.7839 – –
CARN [1] 1.6M 32.13 0.8937 28.60 0.7806 27.58 0.7349 26.07 0.7837 30.47 0.9084
SRFBN-S [69] 0.5M 31.98 0.8923 28.45 0.7779 27.44 0.7313 25.71 0.7719 29.91 0.9008
A2F-S [130] 0.3M 31.87 0.8900 28.36 0.7760 27.41 0.7305 25.58 0.7685 29.77 0.8987

×4 CBPN [148] 1.2M 32.21 0.8944 28.63 0.7813 27.58 0.7356 26.14 0.7869 – –
MADNet [59] 1M 32.11 0.8939 28.52 0.7799 27.52 0.7340 25.89 0.7782 – –
HDRN [49] 0.9M 32.23 0.8960 28.58 0.7810 27.53 0.7370 26.09 0.7870 30.43 0.9080
DPN [70] 0.8M 31.42 0.8849 28.07 0.7688 27.30 0.7256 25.25 0.7546 – –
LAPAR-A [67] 0.7M 32.15 0.8944 28.61 0.7818 27.61 0.7366 26.14 0.7871 30.42 0.9074
IMDN [47] 0.7M 32.21 0.8948 28.58 0.7811 27.56 0.7353 26.04 0.7838 30.45 0.9075
OISR-RK2 [40] 1.5M 32.14 0.8947 28.63 0.7819 27.60 0.7369 26.17 0.7888 – –
FENet 0.6M 32.24 0.8961 28.61 0.7818 27.63 0.7371 26.20 0.7890 30.46 0.9083
FENet+ 0.6M 32.29 0.8966 28.67 0.7823 27.69 0.7377 26.28 0.7898 30.52 0.9089

EDSR [71] 43M 32.46 0.8968 28.80 0.7876 27.71 0.7420 26.64 0.8033 31.02 0.9148
CASGCN [133] 14M 32.60 0.9002 28.88 0.7890 27.70 0.7416 26.79 0.8086 31.18 0.9169
FSN [66] 8M 32.10 0.8959 28.57 0.7874 27.53 0.7438 25.76 0.7817 – –
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HR Bicubic MemNet SRFBN-S

Img_095 B100 IMDN CARN OISR-RK2 FENet

HR Bicubic MemNet SRFBN-S

Img_046 Urban100 IMDN CARN OISR-RK2 FENet

HR Bicubic MemNet SRFBN-S

Img_095 B100 IMDN CARN OISR-RK2 FENet

HR Bicubic MemNet SRFBN-S

Img_046 Urban100 IMDN CARN OISR-RK2 FENet

Figure 3.7 – Visual results of BI degradation model (×4).
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Table 3.8 – Quantitative results with BD and DN degradation models. The best and
second best results are highlighted in red and blue respectively.

Methods Degrad.
Set5 Set14 B100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic
BD 28.78 0.8308 26.38 0.7271 26.33 0.6918 23.52 0.6862 25.46 0.8149
DN 24.01 0.5369 22.87 0.4724 22.92 0.4449 21.63 46.87 23.01 0.5381

SPMSR [93]
BD 32.21 0.9001 28.89 0.8105 28.13 0.7740 25.84 0.7856 29.64 0.9003
DN – – – – – – – – – –

SRCNN [23]
BD 32.05 0.8944 28.80 0.8074 28.13 0.7736 25.70 0.7770 29.47 0.8924
DN 25.01 0.6950 23.78 0.5898 23.76 0.5538 21.19 0.5737 23.75 0.7148

FSRCNN [24]
BD 26.23 0.8124 24.44 0.7106 24.86 0.6832 22.04 0.6745 23.04 0.7927
DN 24.18 0.6932 32.02 0.5856 23.41 0.5556 21.15 0.5682 22.39 0.7111

VDSR [52]
BD 33.25 0.9150 29.46 0.8244 28.57 0.7893 26.61 0.8136 31.06 0.9234
DN 25.20 0.7183 24.00 0.6112 24.00 0.5749 22.22 0.6096 24.20 0.7525

IRCNN_G [140]
BD 33.38 0.9182 29.63 0.8281 28.65 0.7922 26.77 0.8154 31.15 0.9245
DN 25.70 0.7379 24.45 0.6305 24.28 0.5900 22.90 0.6429 24.88 0.7765

IRCNN_C [140]
BD 29.55 0.8246 27.33 0.7135 26.46 0.6572 24.89 0.7172 28.68 0.7701
DN 26.18 0.7430 24.68 0.6300 24.52 0.5850 22.63 0.6205 24.74 0.7701

SRMD(NF) [141]
BD 34.09 0.9242 30.11 0.8364 28.98 0.8009 27.50 0.8370 32.97 0.9391
DN 27.74 0.8026 26.13 0.6924 25.64 0.6495 24.28 0.7092 26.72 0.8590

FENet
BD 34.46 0.9265 30.42 0.8423 29.14 0.8050 28.29 0.8532 33.93 0.9453
DN 28.40 0.8150 26.17 0.6930 25.82 0.6597 24.71 0.7347 27.73 0.8599

FENet+
BD 34.52 0.9270 30.50 0.8429 29.20 0.8056 28.36 0.8539 33.99 0.9459
DN 28.47 0.8157 26.24 0.6937 25.89 0.6602 24.78 0.7353 27.80 0.8606

RDN [145]
BD 34.57 0.9280 30.53 0.8447 29.23 0.8079 28.46 0.8581 33.97 0.9465
DN 28.46 0.8151 26.60 0.7101 25.96 0.6573 24.92 0.7362 28.00 0.8590

HR Bicubic FSRCNN VDSR

Img_028 B100 (BD) IRCNN_G IRCNN_C SRMD(NF) FENet

Figure 3.8 – Visual results of BD degradation model (×3).

49



Chapter 3. Frequency-based Enhancement Network for Efficient Super-Resolution

HR Bicubic FSRCNN VDSR

Img_076 Urban100 (DN) IRCNN_G IRCNN_C SRMDNF FENet

Figure 3.9 – Visual results of DN degradation model (×3).

that while RDN has 22M parameters, OverNet only has 0.9M parameters.
In Figure 3.8 and 3.9, we show two sets of visual results with BD and DN degrada-

tion models from the standard benchmark datasets. For BD degradation model, the
proposed FENet suppresses the blurring artifacts and recovers sharper edges. For
DN degradation model, FENet can not only handle the noise efficiently, but also re-
cover details more accurately. These comparisons further showcase the robustness
and effectiveness of our method in handling BD and DN degradation models.

Model complexity analysis

In this section, we compare the trade-off between performance, number of pa-
rameters and the number of multiplications and additions (Multi-Adds) for our
methods (FENet and FENet+) and existing lightweight SR networks. The Multi-Adds
are calculated corresponding to a 1280 × 720 HR image.

Figure 3.10 shows the PSNR performances of several existing lightweight mod-
els, namely VDSR [52], DRCN [53], SRDenseNet [118], SEINet [19], SRResNet [60],
CARN [1], IMDN [47], SRFBN-S [69], A2F-S [130], CBPN [148], LAPAR-A [67], MAD-
Net [59], FALSR-A [20], DPN [70], HDRN [49], and OISR-RK2 [40] versus the number
of parameters and Multi-Adds with results evaluated on Urban100 for scale factor
×4. As shown in Figure 3.10, our models achieve state-of-the-art results with less pa-
rameters and Multi-Adds operations. This demonstrates that our proposals achieve
a better trade-off between model size and reconstruction performance.

Memory Complexity and running time analysis

Table 3.9 illustrates the superiority of the proposed FENet in terms of Inference Time
(s) and Memory Consumption (MB), when compared to recent light- and heavy-
weight state-of-the-art approaches on Urban100 for ×4. For a fair comparison, we
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Figure 3.10 – Comparing capacity vs performance for lightweight state-of-the-art
SISR models on Urban100 (×4). Circle sizes are set proportional to the number of
multiplications and additions (Multi-Adds).

Table 3.9 – Average running time (s) and memory consumption (MB) comparison
on Urban100 for ×4 scale factor.

Methods Params Memory
Running
Time(s)

PSNR

CARN [1] 1.5M 1,116 0.032 26.07
SRFBN-S [69] 0.5M 2,154 0.102 25.71
SRDenseNet [118] 2M 5,531 0.221 26.05
IMDN [47] 0.7M 871 0.028 26.04
A2F-S [130] 0.3M 915 0.032 25.58
LAPAR-A [67] 0.7M 1,240 0.053 26.14
MSRN [65] 8M 2,731 0.070 26.04
RCAN [144] 16M 1,531 0.087 26.82
EDSR [71] 43M 2,731 0.035 26.64
FENet 0.6M 850 0.009 26.20

use a single NVIDIA RTX 3090 GPU for evaluation, and their official source code im-
plementations. It can be observed that our model achieves dominant performance
in terms of memory usage and time consumption, reflecting its efficiency.

51



Chapter 3. Frequency-based Enhancement Network for Efficient Super-Resolution

Perceptual Metrics

Perceptual metrics better reflect the human judgment of image quality. In this
paper, Perceptual Index (PI) [11] is chosen as the perceptual metric. Table 3.10
shows the PI for those works with publicly available source code, and the same
order of magnitude in terms of parameters. We observe that our proposed model
obtains better results than all the compared baselines. This demonstrates the ability
of the proposed FENet for generating realistic images.

Table 3.10 – Perceptual index comparison of the proposed method with recent
lightweight state-of-the-art methods on five datasets for ×4. The lower is better. All
of the output SR images are provided officially.

Methods Params Set5 Set14 B100 Urban100 Manga109

DRCN [53] 1.7M 6.451 5.945 5.897 5.791 5.563
CARN [1] 1.5M 6.297 5.775 5.700 5.540 5.132
SRFBN-S [52] 0.6M 6.451 5.775 5.702 5.549 5.010
SRDenseNet [118] 2M 6.128 5.615 5.653 5.526 4.762
IMDN [47] 0.7M 6.124 5.644 5.659 5.531 4.810
LAPAR-A [67] 0.7M 6.084 5.499 5.532 5.179 4.771
FENet 0.6M 5.598 5.495 5.447 5.175 4.761

3.4 Summary

In this chapter, we have presented a lightweight network for accurate image SR.
Specifically, we have proposed a frequency-based enhancement block (FEB) which
efficiently decomposes features into low and high frequencies and treats them
differently. The proposed FEB allows the network to explicitly allocate more com-
putational capacity to high-frequency features hence improving discriminative
capabilities of the network. Experimental results on several benchmark datasets
demonstrate that our method can achieve superior performance with a low number
of parameters. We proved that the FEB can be flexibly embedded into other SR
models by simply replacing their building modules, thus improving their original
performance while reducing the number of parameters. The provided evidence
suggests that the proposed FEB may help with other low-level image restoration
tasks, such as denoising and dehazing.
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4 Lightweight Multi-Scale Super-Resolution
with Overscaling Network

Single image super-resolution (SISR) has achieved great success due to the de-
velopment of deep convolutional neural networks (CNNs). However, as the depth
and width of the networks increase, CNN-based SR methods have been faced with
the challenge of computational complexity in practice. Moreover, most SR meth-
ods train a dedicated model for each target resolution, losing generality and in-
creasing memory requirements. To address these limitations, we introduce Over-
Net, a deep but lightweight convolutional network to solve SISR at arbitrary scale
factors with a single model. We make the following contributions: first, we intro-
duce a lightweight feature extractor that enforces efficient reuse of information
through a novel recursive structure of skip and dense connections. Second, to
maximize the performance of the feature extractor, we propose a model agnos-
tic reconstruction module that generates accurate high-resolution images from
overscaled feature maps obtained from any SR architecture. Third, we intro-
duce a multi-scale loss function to achieve generalization across scales. Experi-
ments show that our proposal outperforms previous state-of-the-art approaches
in standard benchmarks while maintaining relatively low computation and mem-
ory requirements.

4.1 Motivation

Single image super-resolution (SISR) is the task of reconstructing an HR from its
LR version. As obtaining an HR image from LR is an ill-posed problem, the model
needs to learn the original data distribution to produce the most likely solutions.

Convolutional neural networks (CNNs) have recently become the main work-
horse to tackle SISR [23]. Thanks to the increase in capacity of CNNs in depth
and width [71], their performance has greatly improved. Despite their remarkable
performance, most deep networks still have some drawbacks. Firstly, increase in
depth and width has also raised computational demands and memory consump-
tion. This makes modern architectures less applicable in practice, such as in mobile
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and embedded applications. Secondly, as the network depth increases, low-level
feature information gradually disappears in the successive non-linear operations to
produce the output. However, these low-level features are crucial for the network to
reconstruct high-quality images.

Aside from the aforementioned problems, another desired ability is to upsample
images to arbitrary scales using a single model. Current state-of-the-art SISR models
such as RDN [145], ESPCNN [104] and EDSR [71], only consider SR at certain integer
scale factors (×2,×3,×4) and treat each super-resolution scale as an independent
task. They then train a different specialized model for each, which is not practical
for mobile applications.

To address these problems, we propose overscaling network (OverNet), a novel
lightweight method for SISR. OverNet consists of two main parts: a lightweight
feature extractor and an overscaling module (OSM) for reconstruction. The feature
extractor follows a novel recursive framework of skip and dense connections to
reduce low-level feature degradation. The OSM is a new inductive bias which
generates accurate SR images by internally constructing an overscaled intermediate
representation of the output features. Finally, to solve the problem of reconstruction
at arbitrary scale factors, we introduce a novel multi-scale loss by downsampling
the output at multiple super-resolution factors and we minimize the reconstruction
error in all of them. Our main contributions can be summarized as follows:

• A lightweight recursive feature extractor, which results in improved perfor-
mance over state-of-the-art models, even those having an order of magnitude
more parameters.

• An overscaling module (OSM) that generates overscaled maps from which
HR images can be accurately recovered at arbitrary scales. This module
boosts the reconstruction accuracy efficiently with respect to its number of
parameters. Additionally, we demonstrate that integrating this module into
existing state-of-the-art models improves their original performance.

• A novel multi-scale loss function for SISR, that allows the simultaneous train-
ing of all scale factors using a single model. As a result, the model is able to
maintain accurate reconstruction results across scales.

4.2 Proposed Overscaling Network

This section describes the main components of our architecture as shown in Fig-
ure 4.1, and the novel loss function.
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4.2. Proposed Overscaling Network

Algorithm 1 Overscaling network forward step. Given an LR image and a set of
output scales, OverNet produces an HR reconstruction for each scale. Learnable
parameters are omitted to improve readability.

function OVERNET(LR image I LR , target scales S)
# Compute features with the CNN
h =H (I LR )
# Overscaling module
Î HR =O (h)
# Output
for s in S do

Î HR
s = bicubic↓(Î HR , scale = s)

end for
return {Î HR

s , s ∈ S}
end function

Problem formulation. Algorithm 1 formulates the main pipeline steps. Given a
set of HR images and their downscaled versions {I HR , I LR }, the goal of SISR is to
find a function F : LR → HR that maps LR images to their original HR version. The
problem is ill-posed since there are multiple possible HR images corresponding to
a single LR image. However, it is possible to learn the most likely reconstruction
by parametrizing F over a set of parameters θ, and finding the most likely θ given
some criterion L :

θ∗ = ar g min
θ

∑
L (F (I LR ,θ), I HR ) (4.1)

We choose L to be the L1 distance, since we empirically obtained superior
PSNR results compared to L2. In this work F is composed of two parts: (i) a feature
extractor H :

h =H (I LR ,θh) (4.2)

with parameters θh , and (ii) the overscaling module O :

Î HR =O (h,θo) (4.3)

with θo the parameters used in this operation, and Î HR the reconstructed image.
These two parts are described next.
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Figure 4.1 – Demonstration of our proposed overscaling network with short and
long skip connections. As the maximum scale factor in this particular example is
set to N = 4, the required overscaling is ×5.

4.2.1 Feature Extractor

The feature extractor computes useful representations of the LR patch in order to
infer its HR version. Concretely, we propose a recursive structure based on residual
blocks (RBs) assembled into local dense groups (LDGs) and LDGs into global dense
group (GDG), see Figure 4.1.

Residual blocks. We use a modified version of WDSR [134] with wide low-rank
convolutions instead of using standard residual blocks [145]. These convolutions
widen the activation space before the non-linearity to let more information pass
through it and loose less detail while using the same amount of computation as
standard 3×3 residual blocks. In order to make the network focus on more infor-
mative features, we exploit the inter-dependencies among feature channels using
squeeze-and-excitation (SE ) operations [41] after these convolutions, see Figure 4.1.

Inspired by [109], the model learns a scalar multiplier λ to balance the amount
of information that should be carried by the identity and activation operations
within the residual blocks (RBs) of the network.

Let xi and xo be the input and output vectors of the k-th RB, and W A the wide
activation operation [134]. Then, the RB proceeds as:

xo =λoSE(W A(xi ))+λi xi . (4.4)

Local and global dense groups. RBs are grouped into the so-called local dense
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groups (LDGs). The input of an RB is concatenated with the output of all the
previous RBs in the group and merged with a 1×1 convolution. This recursion is
repeated for all RBs within the LDG. In this way, we gather all local information
progressively by 1×1 convolution layers.

To increase the network capacity, a similar recursion is applied to the global
dense group (GDG), but this time incorporating skip connections between LDGs.
We repeat this procedure while integrating the recursive concatenations through
the LDGs into a single output. The output of each LDG is concatenated to the
input of the next one. In order to facilitate access to local information, the final
output of the network receives the concatenation of the outputs of all the LDGs.
Therefore, the model incorporates features from multiple layers. This strategy
makes information propagation efficient due to the multi-level representation and
many shortcut connections. Inspired by MemNet [111], we then introduce a 1×1
convolutional layer to adaptively merge the output information, as directly using
these concatenated features would greatly increase computational complexity. The
output of these hierarchical features can be formulated as

fD = conv1×1([f0, ..., fD−1]), (4.5)

where [f0, ..., fD−1] refers to the concatenation of feature maps produced by LDGs.
To make sure that no information is lost before the reconstruction step, we

incorporate a long-range skip connection to grant access to the original informa-
tion and encourage back-propagation of gradients from the output of the feature
extractor to the first 3×3 convolution layer. We also include a global average pooling
followed by a 1×1 convolution, to fully capture channel-wise dependencies from
the aggregated information. The final output before the reconstruction step is then,

h =λ0fD +λ1σ(conv1×1(GAP(conv3×3(I LR )))), (4.6)

where σ denotes the ReLU activation, GAP denotes global average pooling, and λ0

and λ1 are learned parameters.

4.2.2 Overscaling Module

In this work, we introduce a new inductive bias in SISR architectures so as to
generate images that are more accurate and present fewer artifacts. We hypothesize
that, since overscaling produces multiple values for the same pixel, these values act
as an ensemble of predictions thus reducing noise when combined to produce the
final image.
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Let us consider N the maximum scale factor addressed by the network. We first
generate an intermediate representation of the final image consisting of overscaled
maps HOHR , with an overscale factor (N +1) times larger. Thus, given the features
h extracted from I LR , we use a 3×3 convolutional layer followed by the strided
sub-pixel convolutional layer proposed in [104] to upscale the features h to HOHR :

HOHR = pixelshuffle(conv3×3(h)). (4.7)

To obtain the final output of the overscaling module, we further include a
second long-range skip connection from the original I LR image. The final HR image
is obtained by adjusting the overscaled maps and incorporating them into the naïve
upscaling of the original LR image:

Î HR = bicubic↓(conv3×3(HOHR ))+bicubic↑(I LR ). (4.8)

Hence, we could think of the whole network as learning how to refine or correct
a naïve bicubic upscaling of the low-resolution input, in order to bring it closer to
the actual high-resolution counterpart. Since the final Î HR images are obtained
with an efficient non-parametric interpolation, we are able to produce multiple
scales with negligible computational cost, and only using differentiable operations.

4.2.3 Multi-Scale Loss

We propose the minimization of a multi-scale loss to optimize the network. We
choose a finite set of scale factors S = {s1 . . . sn}, all within the interval of scales
targeted by the network. The training process is conducted as follows: Once the
network has reconstructed the HR image, images at the target scales are obtained
through a bank of bicubic interpolators, Î HR

s = bicubic↓(Î HR , s). Then, we minimize
the following loss function:

L = ∑
s∈S

|Î HR
s −bicubic↓(I HR , s)|. (4.9)

Training with this multi-scale loss at different target scales simultaneously pro-
vides additional supervision to the model, compared to a single-scale training. As a
result, the model is enforced to learn how to generate highly representative over-
scaled maps, from which HR images at arbitrary scales can be recovered accurately,
hence enforcing the generalization capability of the network across scales.
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4.2.4 Difference with Other SR Methods

Difference with MemNet. MemNet stands for the very deep persistent memory
network proposed in [111]. The most crucial part of MemNet is the stacked memory
blocks. Inside the memory blocks of MemNet, the output features of each recursive
unit are concatenated at the end of the network and then fused with a 1×1 convolu-
tion. The motivation of MemNet and ours is similar. The key difference is that we
fuse the features at every possible point inside the local and global dense groups
(LDGs, GDG), which boosts the representation power via the additional convolution
layers and non-linearity. On the other hand, MemNet takes upsampled images as
input. Hence, the number of multi-adds of MemNet is larger than ours. The input
of our model is an LR image and we upsample it at the end of the network in order
to achieve computational efficiency.

Difference with SRDenseNet. SRDenseNet [60] adopts dense blocks and skip con-
nections. In this method, all feature levels are combined at the end of the final
dense block. Differently, we connect all the RBs at the end of each local dense group
(LDG) and do the same strategy inside the global dense group (GDG). Therefore, the
model incorporates features from multiple layers. This strategy makes information
propagation efficient due to the multi-level representation and facilitates the model
to restore the details and context of the image simultaneously. Moreover, we gather
local information progressively with the 1×1 convolution layer, but SRDenseNet
preserves these dense block features via concatenation operations.

4.3 Experimental Results

In this section, we evaluate the performance of our models on series of standard
benchmark datasets. In addition, we provide comparison with state-of-the-art
algorithms.

4.3.1 Settings

Datasets and metrics. We use the high-quality DIV2K dataset for training. Several
benchmark datasets are used for testing, namely Set5 [9], Set14 [138], B100 [2],
Urban100 [45] and Manga109 [82]. SR results are evaluated with two commonly
used metrics: PSNR and SSIM, on the Y channel of the YCbCr space. Furthermore,
we adopt the Perceptual Index (PI) [11], which can avoid the situation where over-
smoothed images may present a higher PSNR or SSIM when the performances of
two methods are similar.
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Degradation models. To comprehensively illustrate the efficacy of the proposed
method, three degradation models are used to simulate LR images, following [145].
The first one, denoted by BI, consists of generating LR images by bicubic down-
sampling ground truth HR images with ×2, ×3, ×4. The second one, denoted by
BD, first performs bicubic downsampling on HR images with ×3 and then blurs the
images with a Gaussian kernel of size 7×7 and standard deviation 1.6. Finally, we
further produce LR images in a third challenging way, denoted by DN, by carrying
out bicubic downsampling followed by additive Gaussian noise, with the noise level
of 30.

Implementation details. We denote our original model as OverNet and further
introduce OverNet w/o OSM (OverNet without overscaling module). We used 64×64
RGB input patches from the LR images for training. LR patches were sampled
randomly and augmented with random horizontal flips and 90◦ rotation. The
number of LDGs and RBs was set to 3 in all experiments. We trained our models
with the ADAM optimizer [54]. The mini-batch size was set to 64, and the learning
rate to the maximum convergent value 10−3, applying weight normalization in all
convolutional layers [134]. The learning rate was decreased by half every 2×105

back-propagation iterations. We implemented our networks using the PyTorch
framework [91] and trained them on a NVIDIA RTX 3090 GPU.

4.3.2 Ablation Studies

To further investigate the performance behavior of the proposed methods, we
analyze their effect on model training via an ablation study. We first show how
skip connections inside the proposed local and global dense groups affect the
performance of OverNet. Next, we conduct an ablation experiment to analyze the
effect of OSM and the multi-scale loss.

Feature Extractor Ablation

In this section, we investigate the effect of skip connections (SCs) inside the local
and global dense groups (LDG, GDG). In this work, SCs contain concatenation
and 1×1 convolutions. The small changes in the number of parameters between
columns are due to the removal of SCs with 1×1 convolutions. Table 4.1 presents
the results of experiments conducted on Urban100 dataset at scale ×3.

It can be observed that the model which used SCs only in GDG attains better
performance than the one without SCs (config 1 which is ResNet+OSM) because the
short connections inside the GDG effectively carry the information from interme-
diate to higher layers. Furthermore, by gathering all features before the upscaling
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Table 4.1 – Effects of skip connections (SCs) in local and global dense groups (LDG,
GDG) measured on Urban100 with ×3. The best result is highlighted.

Configurations 1 2 3 4

SCs in LDGs × X × X

SCs in GDG × × X X

#Params 695K 806K 732K 943K

PSNR 28.20 28.19 28.24 28.29

module, the model can better leverage multi-level representations.
On the other hand, as discussed in [39], multiplicative manipulations such

as 1×1 convolutions on the shortcut connection can hamper information propa-
gation, and complicate optimization. Similarly, SCs in LDGs behave as shortcut
connections inside the residual blocks. Thus, it is natural to expect performance
degradation when the global SCs are deactivated. This is because the global SCs
ease the information propagation while the local connections are being learned.
Therefore, when OverNet uses SCs in both LDGs and GDG, it outperforms all the
three models.

In detail, information propagates globally via SCs used in GDG, and information
flows in the LDGs are fused with the ones that come through global connections.
By doing so, information is transmitted by multiple shortcuts and thus mitigates
the vanishing gradient problem: the advantage of multi-level representation is
leveraged by the SCs in GDG, which help the information to propagate to higher
layers.

Effect of the OSM Across Scales

Here we analyze the benefits of incorporating the OSM module and also explore
the influence of different interpolation methods on the reconstruction. We run
the following experiments: (i) directly using pixelshuffle to generate the images
without overscaling feature maps, followed by a bicubic interpolation to downscale
to arbitrary scales; (ii) downscaling with bilinear interpolation the overscaled fea-
ture maps produced by pixelshuffle and (iii) doing the same as (ii) with bicubic
interpolation. As shown in Table 4.2, superior results are achieved by a large margin
when the proposed overscaling method is applied. These experiments suggest that,
contrary to common practice in the field, the addition of overscaling strongly in-
creases reconstruction accuracy. Best results are achieved using OSM with bicubic
interpolation, which in turn yields better results than bilinear.
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Table 4.2 – PSNR results of different OSM upscaling methods trained for arbi-
trary scales. The test dataset is B100. Best results are highlighted, second best
underlined.

Experiment
Scale

×1.1 ×1.2 ×1.3 ×1.4 ×1.5 ×1.6 ×1.7 ×1.8 ×1.9 ×2.0

Pixelshuffle 42.40 39.71 38.10 36.75 35.60 34.70 33.96 33.30 33.65 32.22

OSM-bilinear 42.63 39.89 38.15 36.83 35.70 34.78 34.05 33.37 32.76 32.31

OSM-bicubic 42.74 39.95 38.19 36.87 35.74 34.80 34.10 33.42 32.81 32.34

Meta-RDN 42.82 40.40 38.28 36.95 35.86 34.90 34.13 33.45 32.86 32.35

OSM-RDN 42.93 40.48 38.42 37.06 36.01 35.02 34.25 35.53 32.95 32.46

×2.1 ×2.2 ×2.3 ×2.4 ×2.5 ×2.6 ×2.7 ×2.8 ×2.9 ×3.0

Pixelshuffle 31.60 31.22 30.75 30.50 30.27 29.95 29.73 29.42 29.17 29.14

OSM-bilinear 31.71 31.29 30.84 30.55 30.37 30.02 29.77 29.52 29.30 29.26

OSM-bicubic 31.75 31.34 30.86 30.65 30.42 30.11 29.83 29.64 29.36 29.30

Meta-RDN 31.82 31.41 31.06 30.62 30.45 30.13 29.82 29.67 29.40 29.30

RDN-OSM 31.75 31.46 31.10 30.60 30.48 30.15 29.79 29.71 29.35 29.38

×3.1 ×3.2 ×3.3 ×3.4 ×3.5 ×3.6 ×3.7 ×3.8 ×3.9 ×4.0

Pixelshuffle 28.78 28.70 28.50 28.30 28.14 28.10 28.72 27.74 27.60 27.65

OSM-bilinear 28.81 28.77 28.62 28.49 28.23 28.22 28.90 27.82 27.79 27.75

OSM-bicubic 28.90 28.81 28.66 28.51 28.26 28.25 28.96 27.84 27.83 27.80

Meta-RDN 28.87 28.79 28.68 28.54 28.32 28.27 28.04 27.92 27.82 27.75

RDN-OSM 28.96 28.70 28.80 28.64 28.41 28.23 28.00 27.97 27.89 27.83

In addition, we compare our results with Meta-RDN [42], the only method
in the literature (to our knowledge) able to carry out SISR at non-integer scales.
Meta-RDN is a heavier state-of-the-art model with 22M parameters. For a fair
comparison, we trained Meta-RDN by replacing its meta-upscale module with OSM
(RDN-OSM), while applying their original training settings. RDN-OSM achieves
better or comparable performance.

OSM Across Architectures

The aim of this section is to demonstrate the benefits of our OSM hold across
architectures. To this end, we use state-of-the-art networks including CARN [1],
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Table 4.3 – Average PSNR of state-of-the-art methods using OSM instead of their
typical upsampling module. The best results are highlighted.

Dataset Scale CARN
CARN-

OSM
EDSR

EDSR-

OSM
RDN

Meta-

RDN

RDN-

OSM
RCAN

RCAN-

OSM

Set5

×2

×3

×4

37.76

34.29

32.13

37.81

34.35

32.15

38.20

34.76

32.62

38.26

34.80

32.66

38.24

34.71

32.47

-

-

-

38.31

34.77

32.58

38.27

34.74

32.63

38.36

34.81

32.70

Set14

×2

×3

×4

33.52

30.29

28.60

33.60

30.36

28.68

34.02

30.66

28.94

34.08

30.71

29.01

34.01

30.57

28.81

34.04

30.55

28.84

34.11

30.63

28.91

34.12

30.65

28.87

34.19

30.74

28.93

Urban100

×2

×3

×4

31.92

28.06

26.07

32.01

28.12

26.13

33.10

29.02

26.86

33.15

29.09

26.91

32.89

28.80

26.61

-

-

-

32.96

28.91

26.70

33.34

29.09

26.82

33.40

29.15

26.90

EDSR[71], RDN[145], Meta-RDN [42], and RCAN[144] as references. We replaced
their typical upsample modules with our overscaling module (CARN-OSM, EDSR-
OSM, RDN-OSM, and RCAN-OSM in Table 4.3) and trained them on DIV2K for all
scale factors while applying their original training settings.

The results of this experiment are listed in Table 4.3. It can be observed that
all the methods with OSM have higher PSNR than the corresponding baselines at
all scale factors. This indicates that OSM is robust and orthogonal to the feature
extractor chosen, and it moderately improves the SR performance (PSNR: +0.07dB
in average).

Generalization Across Scales

By construction, the overscaling factor in our architecture is always (N +1) when
targeting a maximum scale of N , c.f. Section 4.2.2. The following experiments
investigate the generalization capability of models that target a maximum scale
N across lower scales M ≤ N . To this end, we trained models for N ∈ {2,3,4} and
evaluated them across scales. Table 4.4 illustrates the experimental results. It can
be observed that models trained to target larger scales yield better PSNR scores for
all scale factors. This demonstrates the generalization capabilities of the proposed
architecture across scales, as it is not necessary to train a dedicated model for each
scale. Instead, training a larger scale seems to be always beneficial for lower scales.
Moreover, the cost to pay in terms of additional parameters is low. Note that ×4 and
×8 are composed of multiple consecutive ×2 operations, thus introducing fewer

63



Chapter 4. Lightweight Multi-Scale Super-Resolution with Overscaling Network

Table 4.4 – Average PSNR to show the performance of OverNet across scales. The
test dataset is Set5. Best results are highlighted.

Overscaling

factor
Parameters

Scales

×2 ×3 ×4

×3 927K 38.11 – –

×4 943K 38.12 (+0.01dB) 34.49 –

×5 1079K 38.14 (+0.03dB) 34.51 (+0.02dB) 32.32

×8 955K 38.15 (+0.04dB) 34.52 (+0.03dB) 32.36(+0.04dB)

parameters. Overscaling to higher scales slightly improves the PSNR at the expense
of more computation. For the rest of the experiments, we overscale to N +1 since it
still provides significant improvement at a slightly higher computational cost.

Effect of Multi-Scale Loss

Multi-scale learning can process multiple scales with a single trained model, while
most state-of-the-art algorithms require training separate models for each sup-
ported scale. This property targets real-world applications, where the output size is
usually fixed but the input LR scale can vary. Moreover, the multi-scale loss acts as a
regularizer, enforcing the generalization of the network across scales and improving
performance. As a result, the model is able to maintain accurate reconstruction
results across scales. Table 4.5 shows experimental results, where the model trained
with multi-scale loss achieves better performance with a large margin.

Table 4.5 – Effect of multi-scale loss. OverNet-S uses single-scale loss, OverNet-M
multi-scale loss. Best results are highlighted.

Methods Scale Set5 B100 Urban100

×2 38.11 32.23 32.39

OverNet-S ×3 34.49 29.13 28.29

×4 32.32 27.59 26.23

×2 38.19 (+0.08dB) 32.34 (+0.11dB) 32.47 (+0.08dB)

OverNet-M ×3 34.56 (+0.07dB) 29.26 (+0.13dB) 28.36 (+0.07dB)

×4 32.40 (+0.08dB) 27.66 (+0.07dB) 26.30 (+0.07dB)
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4.3.3 Comparison with State-of-the-art Methods

In this section, OverNet w/o OSM and OverNet are compared to other lightweight
and heavy state-of-the-art SR methods. A self-ensemble method [116] is also used
to further improve the performance of the OverNet (denoted as OverNet+).

Results with BI Degradation Models

We compare the proposed OverNet and OverNet+ with several lightweight state-
of-the-art SR methods: VDSR [52], DRCN [53], SRDenseNet [118], SEINet [19],
SRResNet [60], CARN [1], IMDN [47], SRFBN-S [69], A2F-S [130], CBPN [148], LAPAR-
A [67], MADNet [59], FALSR-A [20], DPN [70], HDRN [49], and OISR-RK2 [40]. We
also train OverNet by replacing its OSM with the typical pixelshuffle upsampling
(OverNet w/o OSM). For fair comparison, we train our models individually for each
scale factor, including ×2, ×3 and ×4. We test our models on different benchmarks
with PSNR and SSIM.

Table 4.6 shows quantitative evaluation results, including the number of param-
eters and the number of multiplications and additions (Multi-Adds), for a more
informative comparison. Multi-Adds were calculated with 1280×720 SR images
at all scales. Note that, in this table, we only compare models that have a roughly
similar number of parameters as ours. OverNet and OverNet+ exceeds all the previ-
ous methods on numerous benchmark datasets. OverNet w/o OSM also achieves
comparable or better results. Results show that both OSM and the proposed feature
extractor independently increase PSNR when compared to other SR methods. Fi-
nally, combining the proposed feature extractor and OSM together further increases
performance.

In addition, we present qualitative results in Figure 4.2. It can be observed that
most of the compared methods would produce noticeable artifacts and produce
blurred edges. In contrast, our method can recover sharper and clearer edges, more
faithful to the ground truth. For example in images Img_073 and Img_099, we see
that, unlike OverNet, most of the compared methods fail to recover the definition
and orientation of the lines of the blue buildings. For image Img_076, the texture
of the predicted SR images for all compared methods contains blur or aliasing.
In contrast, our proposal partially recovers the brick pattern, resulting in a more
faithful SR image.

Results with BD and DN Degradation Models

Following [145], we show the results obtained after applying BD and DN degradation
models, and compare to eight SR methods: Bicubic, SPMSR [93], SRCNN [23],
FSRCNN [24], VDSR [52], IRCNN_G [140], IRCNN_C [140], and SRMD(NF) [141].
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Table 4.6 – Average PSNR/SSIM values for models with the same order of magnitude
of parameters. Performance is shown for scale factors ×2, ×3 and ×4 with BI
degradation model. The best and second best results are highlighted in red and
blue respectively.

Scale Method Params Multi-Adds
Set5 Set14 B100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

VDSR [52] 0.7M 613G 37.53 0.9587 33.03 0.9124 31.90 0.8960 30.76 0.9140 37.22 0.9729
DRCN [53] 1.8M 17,974G 37.53 0.9587 33.03 0.9124 31.90 0.8960 30.76 0.9140 37.63 0.9723
SEINet [19] 1M 226G 37.89 0.9598 33.61 0.9160 32.08 0.8984 – – – –
CARN [1] 1.6M 223G 37.76 0.9590 33.52 0.9166 32.09 0.8978 31.92 0.9256 38.36 0.9765
SRFBN-S [69] 0.3M 680G 37.78 0.9597 33.35 0.9156 32.00 0.8970 31.41 0.9207 38.06 0.9757
A2F-S [130] 0.3M 306.1G 37.79 0.9597 33.32 0.9152 31.99 0.8972 31.44 0.9211 38.11 0.9757
CBPN [148] 1M 240.7G 37.90 0.9590 33.60 0.9171 32.17 0.8989 32.14 0.9279 – –

×2 MADNet [59] 0.9M 187.1G 37.94 0.9604 33.46 0.9167 32.10 0.8988 31.74 0.9246 – –
FALSR-A[20] 1M 234.7G 37.82 0.9595 33.55 0.9168 32.12 0.8987 31.93 0.9256 – –
HDRN [49] 0.9M 316.2G 37.75 0.9590 33.49 0.9150 32.03 0.8980 31.87 0.9250 38.07 0.9770
DPN [70] 0.8M 140G 37.52 0.9586 33.08 0.9129 31.89 0.8958 30.82 0.9144 – –
LAPAR-A [67] 0.5M 171G 38.01 0.9605 33.62 0.9183 32.19 0.8999 32.10 0.9283 38.67 0.9772
IMDN [47] 0.7M 158.8G 38.00 0.9605 33.63 0.9177 32.19 0.8996 32.17 0.9283 38.88 0.9774
OISR-RK2 [40] 1.4M 316.2G 38.02 0.9605 33.62 0.9178 32.20 0.9000 32.21 0.9290 – –
OverNet w/o OSM 0.9M 180G 38.08 0.9607 33.69 0.9179 32.18 0.8999 32.35 0.9305 38.91 0.9779
OverNet 0.9M 189G 38.11 0.9609 33.73 0.9186 32.23 0.9004 32.39 0.9309 38.95 0.9781
OverNet+ 0.9M 189G 38.17 0.9613 33.79 0.9190 32.29 0.9009 32.46 0.9315 38.99 0.9787

VDSR [52] 0.7M 613G 33.66 0.9213 29.77 0.8314 28.82 0.7976 27.14 0.8279 37.22 0.9750
DRCN [53] 1.7M 17,974G 33.82 0.9226 29.76 0.8311 28.80 0.7963 27.15 0.8276 32.24 0.9343
CARN [1] 1.6M 119G 34.29 0.9255 30.29 0.8407 29.06 0.8034 28.06 0.8493 33.50 0.9440
SRFBN-S [69] 0.4M 832G 34.20 0.9255 30.10 0.8372 28.96 0.8010 27.66 0.8415 33.02 0.9404
A2F-S [130] 0.3M 136.1G 34.06 0.9241 30.08 0.8370 28.92 0.8006 27.57 00.8392 32.86 0.9394
MADNet [59] 0.9M 88.4G 34.26 0.9262 30.29 0.8410 29.04 0.8033 27.91 0.8464 – –

×3 HDRN [49] 0.9M 187.1G 34.24 0.9240 30.23 0.8400 28.96 0.8040 27.93 0.8490 33.17 0.9420
DPN [70] 0.8M 114.2G 33.71 0.9222 29.80 0.8320 28.84 0.7981 27.17 0.8282 – –
LAPAR-A [67] 0.5M 114G 34.36 0.9267 30.34 0.8421 29.11 0.8054 28.15 0.8523 33.51 0.9441
IMDN [47] 0.7M 71.5G 34.36 0.9270 30.32 0.8417 29.09 0.8046 28.17 0.8519 33.61 0.9445
OISR-RK2 [40] 1.6M 160.1G 34.39 0.9272 30.35 0.8420 29.11 0.8058 28.24 0.8544 – –
OverNet w/o OSM 0.9M 111.5G 34.45 0.9277 30.39 0.8431 29.12 0.8059 28.24 0.8544 33.74 0.9446
OverNet 0.9M 118.8G 34.49 0.9279 30.43 0.8436 29.15 0.8063 28.29 0.8546 33.78 0.9451
OverNet+ 0.9M 118.8G 34.54 0.9284 30.49 0.8442 29.21 0.8069 28.35 0.8552 33.84 0.9456

VDSR [52] 0.7M 613G 31.35 0.8838 28.01 0.7674 27.29 0.7251 25.18 0.7524 28.83 0.8809
DRCN [53] 1.8M 17,974G 31.54 0.8850 29.19 0.7720 27.32 0.7280 25.12 0.7560 29.09 0.8845
SEINet [19] 1.4M 83G 32.05 0.8934 28.49 0.7783 27.44 0.7325 – – – –
SRDenseNet [118] 2M 390G 32.00 0.8931 28.50 0.7782 27.53 0.7337 26.05 0.7819 30.41 0.9071
SRResNet [60] 1.5M 32.05 0.8910 28.53 0.7804 27.57 0.7354 26.07 0.7839 – –
CARN [1] 1.6M 91G 32.13 0.8937 28.60 0.7806 27.58 0.7349 26.07 0.7837 30.47 0.9084
SRFBN-S [69] 0.5M 1,037G 31.98 0.8923 28.45 0.7779 27.44 0.7313 25.71 0.7719 29.91 0.9008
A2F-S [130] 0.3M 77.2G 31.87 0.8900 28.36 0.7760 27.41 0.7305 25.58 0.7685 29.77 0.8987

×4 CBPN [148] 1.2M 97.9G 32.21 0.8944 28.63 0.7813 27.58 0.7356 26.14 0.7869 – –
MADNet [59] 1M 54.1G 32.11 0.8939 28.52 0.7799 27.52 0.7340 25.89 0.7782 – –
HDRN [49] 0.9M 316.2G 32.23 0.8960 28.58 0.7810 27.53 0.7370 26.09 0.7870 30.43 0.9080
DPN [70] 0.8M 140G 31.42 0.8849 28.07 0.7688 27.30 0.7256 25.25 0.7546 – –
LAPAR-A [67] 0.7M 94G 32.15 0.8944 28.61 0.7818 27.61 0.7366 26.14 0.7871 30.42 0.9074
IMDN [47] 0.7M 40.9G 32.21 0.8948 28.58 0.7811 27.56 0.7353 26.04 0.7838 30.45 0.9075
OISR-RK2 [40] 1.5M 114.2G 32.14 0.8947 28.63 0.7819 27.60 0.7369 26.17 0.7888 – –
OverNet w/o OSM 0.9M 82.3G 32.28 0.8963 28.64 0.9729 27.64 0.7372 26.21 0.7891 30.48 0.9106
OverNet 0.9M 89G 32.32 0.8965 28.69 0.9733 27.69 0.7374 26.23 0.7895 30.53 0.9110
OverNet+ 0.9M 89G 32.38 0.8970 28.75 0.9739 27.76 0.7380 26.28 0.7901 30.59 0.9115
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HR Bicubic VDSR MemNet

Img_073 Urban100 DRCN SRFBN-S CARN OverNet

HR Bicubic VDSR MemNet

img_076 Urban100 DRCN SRFBN-S CARN OverNet

HR Bicubic VDSR MemNet

Img_083 Urban100 DRCN SRFBN-S CARN OverNet

HR Bicubic VDSR MemNet

Img_099 Urban100 DRCN SRFBN-S CARN OverNet

Figure 4.2 – Visual results of BI degradation model for scale factor ×4.
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Table 4.7 – Quantitative results with BD and DN degradation models. The best and
second best results are highlighted in red and blue respectively.

Methods Degrad.
Set5 Set14 B100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic
BD 28.78 0.8308 26.38 0.7271 26.33 0.6918 23.52 0.6862 25.46 0.8149
DN 24.01 0.5369 22.87 0.4724 22.92 0.4449 21.63 46.87 23.01 0.5381

SPMSR [93]
BD 32.21 0.9001 28.89 0.8105 28.13 0.7740 25.84 0.7856 29.64 0.9003
DN – – – – – – – – – –

SRCNN [23]
BD 32.05 0.8944 28.80 0.8074 28.13 0.7736 25.70 0.7770 29.47 0.8924
DN 25.01 0.6950 23.78 0.5898 23.76 0.5538 21.19 0.5737 23.75 0.7148

FSRCNN [24]
BD 26.23 0.8124 24.44 0.7106 24.86 0.6832 22.04 0.6745 23.04 0.7927
DN 24.18 0.6932 32.02 0.5856 23.41 0.5556 21.15 0.5682 22.39 0.7111

VDSR [52]
BD 33.25 0.9150 29.46 0.8244 28.57 0.7893 26.61 0.8136 31.06 0.9234
DN 25.20 0.7183 24.00 0.6112 24.00 0.5749 22.22 0.6096 24.20 0.7525

IRCNN_G [140]
BD 33.38 0.9182 29.63 0.8281 28.65 0.7922 26.77 0.8154 31.15 0.9245
DN 25.70 0.7379 24.45 0.6305 24.28 0.5900 22.90 0.6429 24.88 0.7765

IRCNN_C [140]
BD 29.55 0.8246 27.33 0.7135 26.46 0.6572 24.89 0.7172 28.68 0.7701
DN 26.18 0.7430 24.68 0.6300 24.52 0.5850 22.63 0.6205 24.74 0.7701

SRMDNF [141]
BD 34.09 0.9242 30.11 0.8364 28.98 0.8009 27.50 0.8370 32.97 0.9391
DN 27.74 0.8026 26.13 0.6924 25.64 0.6495 24.28 0.7092 26.72 0.8590

OverNet w/o OSM
BD 34.45 0.9274 30.40 0.8432 29.02 0.8068 28.19 0.8537 33.99 0.9460
DN 28.41 0.8145 26.54 0.6933 25.87 0.7069 24.88 0.7356 27.88 0.8573

OverNet
BD 34.59 0.9281 30.46 0.8441 29.13 0.8074 28.24 0.8543 34.04 0.9467
DN 28.49 0.8153 26.62 0.7106 25.95 0.6578 24.93 0.7365 28.04 0.8593

OverNet+
BD 34.65 0.9287 30.52 0.8446 29.19 0.8080 28.30 0.8549 34.10 0.9472
DN 28.55 0.8159 26.69 0.7111 26.01 0.6585 24.98 0.7371 28.10 0.8599

RDN [145]
BD 34.58 0.9280 30.53 0.8447 29.23 0.8079 28.46 0.8582 33.97 0.9465
DN 28.47 0.8151 26.60 0.7101 25.93 0.6573 24.92 0.7364 28.00 0.8590

We also included the RDN [145] high-capacity model for reference.
As shown in Table 4.7, our models achieve the best PSNR and SSIM scores over

other SR methods with similar capacity. It can be observed that RDN performs
slightly better in some BD datasets but not in DN datasets. Thanks to OSM, OverNet
is able to reduce the DN degradation to obtain better results when compared to
RDN. It is worth noting that while RDN has 22M parameters, OverNet only has
0.9M parameters. The performance gains over other state-of-the-art methods are
consistent with the visual results in Figure 4.3 and 4.4.

For BD degradation model (Figure 4.3), other methods were unable to remove
blurring artifacts. In contrast, OverNet could suppress the blurring artifacts, recover
sharper edges, and generate more accurate details in the SR images. Regarding
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HR Bicubic SRCNN FSCRNN

Img_010 Urban100 VDSR IRCNN_G SRMD(NF) OverNet

HR Bicubic SRCNN FSCRNN

Img_095 B100 VDSR IRCNN_G SRMD(NF) OverNet

Figure 4.3 – Visual results of BD degradation model for scale factor ×3.

HR Bicubic SRCNN VDSR

Img_063 B100 IRCNN SRMD(NF) RDN OverNet

HR Bicubic SRCNN VDSR

Img_011 Set14 IRCNN SRMD(NF) RDN OverNet

Figure 4.4 – Visual results of DN degradation models for scale factor ×3.
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Figure 4.5 – Comparative capacity and performance of state-of-the-art SISR models.
The red stars represents our methods.

DN degradation model (Figure 4.4), we observe that the noised details are difficult
to recover by other methods. However, OverNet can not only handle the noise
efficiently but also recover more details. This comparison indicates that OverNet
is applicable for jointly image denoising and SR. These results with BD and DN
degradation models demonstrate the effectiveness and robustness of our proposal.

Memory Complexity and Running Time Analysis

In Figure 4.5, we compare OverNet and OverNet+ against various benchmark algo-
rithms in terms of network parameters and reconstruction PSNR, using the B100
dataset with a scale of ×4. Our methods achieve the best SR results among all the
lightweight SR networks with fewer parameters. In comparison with the networks
with a large number of parameters, the proposed OverNet and OverNet+ achieve
better or competitive results. This demonstrates our method can well balance the
number of parameters and the reconstruction performance. We also replace the
original upsample modules from different SR methods with OSM: RDN, EDSR, and
RCAN (RDN+OSM, EDSR+OSM, and RCAN+OSM). It can be observed that all the
methods with OSM have higher PSNR than the corresponding baselines.

We compare the running time of OverNet with recent light- and heavy-weight
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Table 4.8 – Average running time (s) and memory consumption (MB) comparison
on Urban100 for ×4 scale factor.

Methods Params Memory
Running
Time(s)

PSNR

CARN [1] 1.5M 1,116 0.032 26.07
SRFBN-S [69] 0.5M 2,154 0.102 25.71
SRDenseNet [118] 2M 5,531 0.221 26.05
LAPAR-A [67] 0.7M 1,240 0.053 26.14
MSRN [65] 8M 2,731 0.070 26.04
RCAN [144] 16M 1,531 0.087 26.82
EDSR [71] 43M 2,731 0.035 26.64
RDN [145] 22M 2.480 1.268 26.61
D-DBPN [34] 10M 3,241 1.595 26.38
Meta-RDN [42] 22M 3,350 2.579 26.65
OverNet 0.9M 914 0.043 26.23

state-of-the-art approaches on Urban100, using a scale factor ×4. The running time
of each network is evaluated using its official code, on the same machine with an
NVIDIA RTX 3090 GPU. OverNet is the fastest (see Table 4.8), reflecting its efficiency.

Perceptual Metrics

Perceptual metrics better reflect the human judgment of image quality. In this
paper, Perceptual Index (PI) [11] is chosen as the perceptual metric. Table 4.9 shows
the PI for those works with publicly available source code, and the same order of
magnitude in terms of parameters. We observe that our proposed model obtains

Table 4.9 – Perceptual index comparison of the proposed method with recent
lightweight state-of-the-art methods on five datasets for ×4. The lower is better. All
of the output SR images are provided officially.

Methods Params Set5 Set14 B100 Urban100 Manga109

DRCN [53] 1.7M 6.451 5.945 5.897 5.791 5.563
CARN [1] 1.5M 6.297 5.775 5.700 5.540 5.132
SRFBN-S [52] 0.6M 6.451 5.775 5.702 5.549 5.010
SRDenseNet [118] 2M 6.128 5.615 5.653 5.526 4.762
IMDN [47] 0.7M 6.124 5.644 5.659 5.531 4.810
LAPAR-A [67] 0.7M 6.084 5.499 5.532 5.179 4.771
OverNet 0.9M 5.610 5.513 5.459 5.187 4.766
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better results than all the compared baselines. This demonstrates the ability of the
proposed OverNet for generating realistic images.

4.4 Summary

In this chapter, we have introduced OverNet, a novel efficient architecture for
image super-resolution at arbitrary scales using a single model. OverNet consists
of: (i) a lightweight feature extractor that enhances the flow of information to
preserve details; (ii) an overscaling module that helps to generate accurate SR
images at different scaling factors, and (iii) a multi-scale loss that improves training
compared to dedicated single-scale models. Thanks to the OSM, we can train a
single model for super-resolution at arbitrary scale factors. We have proved that
the overscaling head can be flexibly applied to other SR models by simply replacing
their upsampling module, thus improving their original performance. OverNet
outperforms state-of-the-art algorithms with a reduced number of parameters
and low computational requirements. The provided evidence suggests that the
proposed overscaling method may help with other low-level image restoration
tasks, such as denoising and dehazing.
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5 Directional Variance Attention Networks

Recent advances in single-image super-resolution (SISR) explore the power of
deep convolutional neural networks (CNNs) to achieve better performance. How-
ever, most of the progress has been made by scaling CNN architectures, which
usually raise computational demands and memory consumption. This makes
modern architectures less applicable in practice. In addition, most CNN-based
SR methods rarely leverage the intermediate features that are helpful for final
image recovery. In order to address these issues, we propose directional variance
attention network (DiVANet), a computationally efficient yet accurate network
for SISR. DiVANet leverages a novel directional variance attention (DiVA) to cap-
ture long-range spatial dependencies and exploit inter-channel dependencies si-
multaneously. Additionally, in order to make an efficient use of features in early
layers, these are hierarchically aggregated into feature banks for posterior use at
the network output. In parallel, DiVA extracts most relevant features from the
network into attention banks for improving the final output and preventing in-
formation loss along with the successive operations inside the network. The pro-
cessing is split into two independent paths of computation that can be simultane-
ously carried out, resulting in a highly efficient model for reconstructing fine de-
tails. Experimental results demonstrate the superiority of DiVANet over the state
of the art in several datasets while maintaining a relatively low computation and
memory footprint.

5.1 Motivation

Recently, convolutional neural networks (CNNs) have achieved great success for
single image super-resolution (SISR). From SRCNN [23] (with only three convo-
lutional layers) to MDSR [71] (with more than 160), network depth and overall
performance have been dramatically growing over time. The increase of depth
brings benefits in terms of representation power [43], but at the same time does not
take into account the hierarchy of features and their interrelations across the whole
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Figure 5.1 – (a) Basic residual block without attention mechanisms. (b) Residual
channel attention block proposed in previous works. (c) Our proposed directional
variance attention (DiVA), which has its own dedicated computational path.

architecture. Although SRDenseNet [118] and RDN [145] employ residual dense
blocks to fuse different levels of features, the extreme connectivity pattern in their
networks not only hinders their scalability when using large widths or depths but
also increases computational demands and memory consumption dramatically,
hence limiting the use of modern architectures in real-world scenarios. To tackle
this issue, some SISR methods focus on lightweight architecture designs such as
recursive operations with weight sharing [1, 6] and neural architecture search [20]
in order to reduce the number of network parameters. Although these methods
achieve good performance at moderate sizes, they do not fully utilize the features
in early layers, which limits their performance. Therefore, it is of crucial impor-
tance to design a good lightweight network architecture which effectively computes
multi-level feature representations for restoring high-quality HR images within the
network, yet this remains to be explored.

Attention mechanisms have demonstrated great benefits at improving the per-
formance of deep models for computer vision tasks. Recently, researchers have
devoted great efforts to expand the application of attention mechanisms to SISR.
Taking efficiency into account, the most popular attention mechanism for SR net-
works is squeeze-and-excitation (SE) attention [41] used for high-level vision prob-
lems. It provides notable performance gains at a considerably low computational
cost. However, the SE attention encodes the whole feature map to a single value
and hence ignores the spatial relationship between features, which is essential
for capturing spatial structures in low-level vision tasks. Moreover, all the previ-
ous attention-based approaches performed in-place attention within the residual
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blocks, as in Figure 5.1 (b). To the best of our knowledge, this work is the first to
identify that such in-place attention mechanisms may discard relevant details that
will no longer be available at deeper levels of the architecture.

To address the problem of feature degradation, we propose the use of a collec-
tion of stacked residual blocks which outputs are linearly fused at different stages of
the feature hierarchy, to minimize the information loss during processing through
the network and ease the gradient flow for optimization. Under this design, the
network can aggregate more representative features, thus generating more accurate
SR results. Moreover, we present the concept of directional variance pooling, which
enables the network to attend to larger regions and facilitates capturing longer-
range dependencies. Based on the directional variance pooling, we propose a novel
and efficient directional variance attention mechanism (DiVA) specifically related
to low-level vision tasks. DiVA leverages spatial relationships between features by
exploiting higher-order feature statistics, in order to enhance features in different
channels and spatial regions without incurring significant computation overhead.
Furthermore, in order to alleviate the loss of information caused by commonly
used in-place attention mechanisms, we propose to combine DiVA modules with
residual blocks by keeping a dedicated computational path for attention modules.
Figure 5.1(c) illustrates our approach, where attention modules are independent of
the purely residual path and parallel to it.

To verify the effectiveness of the proposed approaches, we build a deep but
lightweight architecture for SISR named directional variance attention network
(DiVANet), illustrated in Figure 5.2. In summary, these are the main contributions
of the paper:

• We propose a lightweight and efficient directional variance attention network
(DiVANet) for high-quality image SR. Extensive experiments on a variety of
public datasets demonstrate the superiority of the proposed architecture over
state-of-the-art models, in terms of both quantitative and visual quality.

• We propose a directional variance attention mechanism (DiVA), specifically
optimized for SR, to enhance features in different channels and spatial regions.
Such a mechanism allows the network to focus on more informative features
and improve discriminative capabilities.

• We introduce a novel procedure for using attention mechanisms together
with residual blocks, following two independent but parallel computational
paths. The idea is to hierarchically aggregate their respective contributions
across the network to facilitate the preservation of finer details.
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Figure 5.2 – Top: Proposed directional variance attention network (DiVANet) ar-
chitecture for SISR. Bottom: residual attention feature group (RAFG), containing
residual blocks (RB) and the proposed directional variance attention (DiVA).

5.2 Directional Variance Attention Network (DiVANet)

In this section, we first provide an overview of the proposed directional variance
attention network (DiVANet) for SISR. Then, we present the detailed configuration
of its two main components: the directional variance attention blocks (DiVA) and
the residual attention feature groups (RAFGs).

5.2.1 Network Overview

As shown in Figure 5.2, the overall architecture of DiVANet consists of a non-linear
mapping module and a final reconstruction module. Let’s denote ILR and ISR the
input and output of DiVANet, respectively. As recommended in [71], we apply only
one 3×3 convolutional layer to extract the initial features F0 from the LR input
image:

F0 = Conv3×3(ILR ). (5.1)

Next, extracted features F0 are sent to the non-linear mapping module (NLM)
which computes useful representations of the LR patch in order to infer its HR
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version:

F = HN LM (F0), (5.2)

where F is the output of the non-linear mapping module HN LM (further detailed in
Section 5.2.3), containing high resolution features.

Finally, a reconstruction module with two convolutional layers and a pixel-
shuffle layer upsamples the features to the HR size. In addition, we incorporate a
global connection path HU P to grant access to the original LR information and fa-
cilitate the back-propagation of the gradients, in which only a bicubic interpolation
is applied to the input ILR . Therefore, we obtain:

ISR = HREC (F )+HU P (ILR ). (5.3)

where HREC (.) is the reconstruction module, and ISR is the final output of the
network.

To optimize DiVANet, we adopt L1 loss as a cost function for training. Given a
training set with N pairs of LR images and HR counterparts, denoted by {I i

LR , I i
HR }N

i=1,
the network is optimized to minimize the L1 loss function:

L1(θ) = 1

N

N∑
i=1

‖ISR − IHR‖1 , (5.4)

where θ denotes the parameter set.

5.2.2 Directional Variance Attention (DiVA)

To provide a clear description of the proposed DiVA mechanism, we first revisit the
SE attention, which is widely used in SR networks.

Background: Squeeze-and-Excitation Attention

The well-known Squeeze-and-Excitation attention mechanism (SE) is employed
in many image classification tasks. Structurally, an SE block is divided into two
processes: Squeeze is designed to embed global information, and excitation aims at
adaptive recalibration of channel relationships. Let X = [x1,x2, ...,xC] ∈RC×H×W be
an input. Then, the squeeze step for the c-th channel can be formulated as follows:

zc = 1

H ×W

H∑
i=1

W∑
j=1

xc (i , j ), (5.5)
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where xc (i , j ) is the value at position (i , j ) of the c-th channel, and zc is the value
obtained for channel c after average pooling. The main purpose of the squeeze
operation is to extract and condense global information per channel.

The second step, excitation, aims to leverage inter-channel dependencies to
enhance or decrease the response of individual channels. This operation can be
formulated as:

X̂ = X ·σ(ẑ), (5.6)

where · refers to channel-wise multiplication, σ is the sigmoid function, and ẑ is the
result generated by a transformation function, which is formulated as follows:

ẑ = W2(δ(W1(z))). (5.7)

Here, δ denotes the ReLU function. W1 and W2 are fully connected layers that
set the channel dimension of features to C

r and C , respectively.
The SE block has been widely used in various SR networks [59, 77, 144], and

proven to be a key component for achieving state-of-the-art performance. However,
SE attention generally suffers from two basic problems, both stemming from the
global average pooling operation. First, it re-weights the importance of each chan-
nel by only modeling channel relationships, but neglects spatial information which
would be advantageous to enhance image details. Second, it only exploits channel-
wise statistics of features by global average pooling, while ignoring higher-order
statistics of channels, thus hindering the discriminative ability of the network [21].

Inspired by the above observations, we propose the use of directional variance
attention (DiVA) module that captures not only cross-channel but also spatial
information, while considering higher-order feature statistics.

Directional Variance Attention Block

Figure 5.2 (bottom) depicts the proposed DiVA block. In order to encourage at-
tention blocks to capture long-range interactions spatially while keeping a low
computational footprint, we factorize two-dimensional global average pooling as
formulated in Equation (5.5) into a pair of 1D feature encoding operations. We
first feed X into two parallel pathways, to encode each channel along either the
horizontal or the vertical dimension. We define the horizontal directional average
pooling D Ah of the c-th channel at height h as:

zh
c = D Ah(xc ) = 1

W

∑
0<i≤W

xc (i ,h) (5.8)
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Similarly, the vertical directional average pooling D Aw of the c-th channel at
width w is defined as:

zw
c = D Aw (xc ) = 1

H

∑
0< j≤H

xc (w, j ) (5.9)

The described operations process features along two spatial directions individ-
ually. This is different from the squeeze operation in channel attention methods
(Eq. 5.5), which produces a single feature vector and dismissing the spatial relation-
ship between features. These two transformations also enable the attention block
to build relationships among multiple spatial positions within the input feature.
However, since image SR ultimately aims at restoring high-frequency components
of images, it is important to extract statistics that can effectively represent the char-
acteristics of each channel. To this end, we replace directional average pooling with
directional variance pooling, a higher-order feature statistic. Thus, we define the
horizontal directional variance pooling DV h of the c-th channel at height h as:

zh
c = DV h(xc ) = 1

W

∑
0≤i<W

(xc (i ,h)−D Ah(xc ))2
(5.10)

Similarly, the vertical directional variance pooling DV w of the c-th channel at
width w is defined as:

zw
c = DV w (xc ) = 1

H

∑
0≤ j<H

(xc (w, j )−D Aw (xc ))2
(5.11)

As described above, Equations 5.10 and 5.11 facilitate a global receptive field
and encode spatial information by exploiting directional variance pooling. These
two feature maps with spatial information are then separately encoded into two
attention maps that can be complementarily applied to the input feature map to
enhance features in different channels and spatial regions.

Specifically, given the aggregated feature maps produced by Equations 5.10
and 5.11, two 1×1 convolutional Fh and Fw are utilized to separately transform zh

and zw , yielding:

ah =σ(Fh(zh)), (5.12)

aw =σ(Fw (zw)). (5.13)

Recall that σ is the sigmoid function. ah ∈ RC×H and aw ∈ RC×W are used as
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attention weights, respectively. Finally, the recalibrated output can be written as:

yc (i , j ) = xc (i , j ) · yh
c (i ) · y w

c ( j ). (5.14)

Compared to other works like [86, 121], which require a considerably large
amount of computation to build relationships between each pair of locations, DiVA
is substantially lightweight and can capture long-range spatial dependencies and
exploit inter-channel dependencies simultaneously. Furthermore, unlike SE, which
relies on global average pooling to exploit first-order statistics, the proposed at-
tention mechanism adaptively learns feature inter-dependencies by exploiting
higher-order statistics that represent the characteristics of each channel. The DiVA
mechanism helps to emphasize informative representations and improve discrim-
inative learning ability. Section 5.3.2 provides a more detailed analysis on the
performance of our approach against existing attention-based methods.

5.2.3 Residual Attention Feature Group (RAFG)

The residual attention feature group (RAFG) is the core of the non-linear mapping
module. It is designed to attend and preserve higher frequency details across the en-
tire network. As shown in Figure 5.2, it is composed of two dedicated computational
paths: (i) residual path and (ii) attention path. We detail each of these below.

Residual Path

It has been demonstrated that stacked residual blocks can be useful to construct
deep CNNs [71]. However, in image SR, very deep networks built in such a way
would suffer from training difficulty and hardly gain performance [21]. This is
because the residual features from initial blocks need to traverse a long path to
propagate until the final blocks, as these features are repeatedly merged with iden-
tity features to form more complex ones during transmission. Therefore, highly
representative features are mostly computed locally and lost in residuals during
network propagation.

In this work, we address this issue from a different perspective. Instead of
designing a complex architecture with various skip and dense connections, we
propose to linearly combine the residual features at a feature bank which is built
by aggregating all the features from previous blocks. Figure 5.2 (bottom) shows
the details of the proposed RAFG. It contains three residual blocks, the output of
which are respectively sent to the end of the RAFG, and then concatenated together.
However, aggregating residual features from different residual blocks directly by
systematic concatenation is problematic. Thus, we incorporate a 1×1 convolu-
tional layer to project them into a common space after feature aggregation. In this
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way, information from preceding residual blocks can be hierarchically propagated
bottom-up without degradations or interference, leading to a more discriminative
feature representation.

Using hierarchical feature banks enables us to exploit residual features non-
locally. In other words, these feature banks capture detailed information from fea-
tures across the whole architecture, thus reducing feature degradation and boosting
the network’s overall representational ability.

Attention Path

The features extracted by a deep neural network contain different types of infor-
mation at each channel. If we are able to increase the network’s sensitivity to
specific channels that contain useful information for image reconstruction, the
performance of the network will be improved.

Previous approaches performed channel attention in-place within the residual
blocks to further boost the representational ability of the network [41]. This usually
implied an element-wise product between the attention output and the residual
block output. However, such in-place channel attention may discard relevant
details which will no longer be available at deeper levels of the architecture, so we
propose to keep a separate computational path to aggregate computations resulting
of attention operations, independent from the aggregation of residual features, and
parallel to it.

As shown in Figure 5.2 (bottom), the output of each residual block is directly sent
to a DiVA block before element-wise addition. Specifically, the attention outputs are
then aggregated to an attention bank followed by a 1×1 convolutional layer. Finally,
the outputs of feature and attention banks are combined together, so that they are
able to attend to relevant features while preserving higher frequency details across
the whole network, further improving the representational ability.

5.3 Experimental Results

In this section, we first conduct an ablation study to validate the effectiveness
of each proposed component. Then, we systematically compare DiVANet with
state-of-the-art SISR algorithms on five commonly used benchmark datasets.

5.3.1 Settings

Datasets and metrics. Following [18], we use 800 high-quality images from the
DIV2K dataset [117] for training. We evaluate our models on several benchmark
datasets: Set5 [9], Set14 [138], B100 [2], and Urban100 [45], and, Manga109 [82],
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each with diverse characteristics. All results are evaluated with two commonly used
metrics: PSNR and SSIM. To keep the consistency with previous works, quantitative
results are evaluated on the luminance channel (Y). Furthermore, we also adopt
the Perceptual Index (PI) [11], which can avoid the situation where over-smoothed
images may present a higher PSNR or SSIM when the performances of two methods
are similar.

Degradation models. To fairly compare against existing works, we adopt bicubic
downsampling (denoted as BI) as our standard degradation model for generating
LR images from ground truth HR images at ×2, ×3 and ×4 scales. Moreover, to
comprehensively illustrate the efficacy of the proposed method, we further adopt
two other multi-degradation models as in [145]. We define BD as a degradation
model that performs bicubic downsampling on HR images at ×3 scale, and then
blurs them with a Gaussian kernel of size 7×7 and standard deviation 1.6. Addi-
tionally, we further produce LR images in a more challenging way: we first bicubic
downsample HR images with scaling factor ×3 and then add Gaussian noise with
noise level 30 (denoted as DN).

Implementation details. During training, data augmentation is carried out by
means of random horizontal flips and 90◦ rotation. At each training mini-batch, 64
LR RGB patches of size 64×64 are provided as inputs. We train our models using
an ADAM optimizer with learning rate 10−3. The learning rate is decreased by half
every 2×105 iterations. Our network has been implemented using PyTorch, and
trained on a NVIDIA RTX 3090 GPU. We implement two lightweight models in this
paper, namely DiVANet and DiVANet-S. DiVANet consists of 3 RAFGs, each with
three residual blocks and three DiVA modules. In this implementation of DiVANet,
all convolutional layers have 64 filters with kernel size 3×3, except for the 1×1
convolutional layers in the feature and attention banks. DiVANet-S has a similar
structure as DiVANet, except the parameters of the residual blocks within each
RAFG are shared.

5.3.2 Ablation Study

To further investigate the behavior of the proposed methods, we analyze their effect
on model training via an ablation study. We first demonstrate the effectiveness of
the proposed DiVA mechanism. Then, we conduct an ablation experiment to study
the effect of the essential components of our architecture.
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Comparing Pooling Methods

To demonstrate the advantages of the proposed directional variance pooling (D-Var)
over other pooling methods, we attempt to replace it with: global average pooling
(Avg), global variance pooling (Var), and directional average pooling (D-Avg). We
do not employ maximum pooling in this experiment, since Mehri et al. [84] already
demonstrated that it degrades SR performance. Additionally, we will also compare
to a baseline implementation, identical to the proposed method except for the
absence of the attention path (Baseline).

The results of this experiment are listed in Table 5.1. It can be seen that exploiting
higher-order statistics (global variance pooling) is more effective than first-order
ones (global average pooling). Furthermore, when we change from global average
pooling to directional average pooling the performance increases by up to +0.14dB
in average, with a negligible increase in the number of parameters. This is mainly
because the proposed attention with directional average pooling simultaneously
captures longer-range spatial interactions and exploits inter-channel dependencies,
further improving the representational ability of the network. However, it only
leverages first-order statistics of the features. Finally, when directional variance
pooling is applied, the attention mechanism enhances features in different channel
and spatial regions by exploiting higher-order feature statistics and attains the best
performance in all datasets (PSNR: +0.20dB in average). This improvement is more
prominent for the B100 and Urban100 datasets. Since B100 and Urban100 present
contents with higher structural complexity, it can be interpreted that the attention
with directional variance pooling can help the network to exploit more informative
features and enhance its discriminative learning ability. These results demonstrate
the superiority of using directional variance pooling over other pooling strategies.

Table 5.1 – Effect of different pooling methods for DiVA. Average PSNR on five
benchmark datasets with scale factor ×4 are shown.

Settings Baseline 1st 2nd 3rd
Methods Baseline + Avg + Variance + D-Avg + D-Var

Params 815K 902K 902K 939K 939K

Set5 32.18 32.33(+0.15dB) 32.35(+0.17dB) 32.37(+0.19dB) 32.41(+0.23dB)
Set14 28.59 28.62(+0.03dB) 28.64(+0.05dB) 28.66(+0.07dB) 28.70(+0.11dB)
B100 27.56 27.59(+0.03dB) 27.60(+0.04dB) 27.61(+0.05dB) 27.65(+0.09dB)
Urban100 26.09 26.30(+0.11dB) 26.34(+0.15dB) 26.35(+0.26dB) 26.42(+0.33dB)
Manga109 30.50 30.60(+0.10dB) 30.63(+0.13dB) 30.65(+0.15dB) 30.73(+0.23dB)

83



Chapter 5. Directional Variance Attention Networks

Table 5.2 – Average PSNR obtained with DiVANet when using different attention
mechanisms on five benchmark datasets (scale factor ×4).

Name Baseline + SE + SA + CSAR + DiVA

Params 815K 902K 902K 940K 939K

Set5 32.18 32.33 32.29 32.35(+0.17dB) 32.41(+0.23dB)
Set14 28.59 28.63 38.60 28.66(+0.07dB) 28.70(+0.11dB)
B100 27.56 27.58 27.56 27.60(+0.04dB) 27.63(+0.07dB)
Urban120 26.09 26.31 26.30 26.33(+0.24dB) 26.42(+0.33dB)
Manga109 30.50 30.62 30.60 30.64(+0.14dB) 30.73(+0.23dB)

SE SA CSAR DiVA

Figure 5.3 – Visual comparison of SR results using DiVANet with different attention
mechanisms (×4 scale factor).

Comparing Attention Schemes

To demonstrate the effectiveness of our proposed attention mechanism, we use
DiVANet as the basic network, and then replace our attention scheme with Squeeze-
and-Excitation channel attention (SE) [41], spatial attention (SA) [43] and channel-
wise spatial attention residual (CSAR) [43]. Note that we only compare the DiVA
scheme with equally lightweight attention mechanisms. As shown in Figure 5.1 (c),
the channel attention module feeds from the residual block but splits out from it
through a dedicated computational path; we have trained all the aforementioned
variations using this same architectural pattern.

Table 5.2 compares the performance of these attention methods in terms of
PSNR. We see that all the methods with an attention mechanism obtain better
performance than the one without it (Baseline). This indicates that attention con-
tributes importantly in terms of performance. As reported in Table 5.2, integrating
SE or SA attention into DiVANet moderately improves the SR performance. More-
over, when CSAR [43] is utilized the performance is further boosted (+0.13dB in
average), demonstrating the effectiveness of combining channel-wise and spatial
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attention. On the other hand, the model using the proposed DiVA yields the best
performance (PSNR: +0.20dB in average). Compared to CSAR, DiVA efficiently en-
codes both cross-channel and spatial information, attaining better performance
with fewer parameters. These experiments justify that with comparable learnable
parameters, the proposed DiVA attention is more helpful for image SR. Figure 5.3
shows a visual comparison of networks with different attention mechanisms. It
can be observed that the network with our proposed attention obtains better visual
quality and restores more image details than other methods.

Influence of Model Size

We also investigate the effectiveness of DiVA attention in networks with differ-
ent model sizes. For comparison, we select two state-of-the-art networks, SR-
DenseNet [118] and RCAN [144], whose number of parameters are 2,015K and
15,592K, respectively. Then, DiVA is performed in-place, either at the end of the
SRDenseNet blocks (SRDenseNet+DiVA) or replacing RCAN’s channel attention
(RCAN+DiVA). For fair comparison, all networks are trained on their default settings.
Table 5.3 shows the results of experiments conducted on five datasets at scale ×4.
It can be observed that SRDenseNet+DiVA and RCAN+DiVA respectively achieve
better performance than the original SRDenseNet and RCAN networks. These ex-
perimental results indicate that DiVA is also effective in heavier models, increasing
the performance by 0.07dB in average.

Table 5.3 – The results of adding DiVA in different networks. Average PSNR on five
benchmark datasets with scale factor ×4 are shown.

Methods SRDensNet SRDensNet+DiVA RCAN RCAN+DiVA

Multi-Adds 390G 392G 916.9G 964.1G
Params 2,015K 2,250 15,592K 16,410K

Set5 32.02 32.08(+0.06dB) 32.68 32.76(+0.08dB)
Set14 28.50 28.57(+0.07dB) 28.95 29.01(+0.06dB)
B100 27.53 27.59(+0.06dB) 27.55 27.61(+0.06dB)
Urban100 26.05 26.13(+0.08dB) 27.05 27.11(+0.06dB)
Manga109 30.41 30.52(+0.11dB) 31.62 31.66(+0.04dB)

Effect of the RAFG

This section discusses the effect of each of the two dedicated computational paths
in the proposed RAFG: residual path and attention path.
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Table 5.4 – Average PSNR for a regular ResNet architecture (Baseline) vs one using
the proposed feature banks on five benchmark dataset with ×4 scale factor.

Methods Baseline Baseline+FB SRDenseNet [118]

Multi-Adds 50G 54G 390G
Params 749K 815K 2,015K

Set5 31.85 32.18(+0.33dB) 32.02
Set14 32.36 32.59(+0.23dB) 28.50
B100 27.30 27.55(+0.22dB) 27.53
Urban100 25.73 26.09(+0.36dB) 26.05
Manga109 30.29 30.49(+0.20dB) 30.41

Residual path. In this experiment, we use a ResNet architecture (Baseline) without
the RAFG computational path, i.e., a regular architecture composed of several
stacked residual blocks. Then, we add hierarchical feature banks to this baseline,
denoting it as Baseline+FB. Table 5.4 shows the results of the experiments conducted
on the five datasets with scale ×4. The small change in number of parameters
between Baseline and Baseline+FB is due to adding feature banks, which contain
1×1 convolutions.

As reported in Table 5.4, the PSNR of Baseline is 25.73dB on Urban100, which is
a strong baseline for lightweight SISR methods. When deploying our hierarchical
bank of residuals, the PSNR increases to 26.09dB. In addition, we compare our
method with SRDenseNet [118]. This model combines residual skip connections
with dense connections to utilize all the hierarchical features from all the convolu-
tional layers, hence being very computationally intensive due to this dense feature
fusion strategy. In contrast, we preserve the local information progressively by
placing a 1×1 convolution every three residual blocks. From Table 5.4, we find that
our network achieves better performance with significantly lower computational
cost and number of parameters. We attribute this considerable improvement to
the effectiveness of the proposed connectivity pattern, where the features in each
residual block can be better utilized by the network.

Attention path. Previous SISR approaches perform channel attention in-place
within the residual blocks, whereas this work takes the attention out of the main
computational path, and computes it in parallel. To verify the effectiveness of this
approach, in this experiment, we use a baseline which is identical to the proposed
method except for the absence of the attention path (Baseline). We then place the
DiVA attention mechanism both inside (Baseline_in) and outside (Baseline_out) of
the residual blocks, comparing their performance in Table 5.5. As can be observed,
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Table 5.5 – Average PSNR obtained on the ResNet baseline network, when placing
the DiVA attention mechanism within (Baseline_in) or outside (Baseline_out) the
residual blocks. Results are shown on five benchmark datasets and with a ×4 scale
factor.

Methods Baseline Baseline_in Baseline_out

Params 815K 890K 939K

Set5 32.18 32.32(+0.14dB) 32.41(+0.23dB)
Set14 28.59 28.64(+0.05dB) 28.70(+0.11dB)
B100 27.55 27.58(+0.03dB) 27.65(+0.10dB)
Urban100 26.09 26.31(+0.02dB) 26.41(+0.12dB)
Manga109 30.49 30.65(+0.16dB) 30.73(+0.24dB)

RB 1 RB 2 RB 3 Output

Figure 5.4 – Average feature maps of residual blocks (RBs). Top: Attention is applied
within the residual (classic approach). Bottom: Attention is applied outside the
residual (our approach).

Baseline_out leads to performance improvement, having just a few more parameters
due to the aggregation operation inside the attention feature bank. These results
prove that moving attention operations outside of the residual blocks is beneficial
to prevent the loss of information caused by commonly used in-place attention.
This justifies our choice for keeping a separate computational path to aggregate
computations coming from attention operations.

Figure 5.4 additionally shows average feature maps in residual blocks, when
attention mechanisms are applied inside (in-place, top row) or outside (as in our
RAFG, bottom row). This visualization shows how RAFGs are able to learn sharper
representations than those obtained with in-place attention. In essence, each RAFG
directs computations towards edges and details, thus obtaining a more defined
representation at the output. In contrast, when using in-place attention, feature
maps vary significantly from the first residual block to the last. As a result, edges
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and contours are outlined at the first layer, and smooth areas within the original
image become suppressed at subsequent blocks.

5.3.3 Comparison with State-of-the-art Lightweight Methods

In this section, DiVANet and DiVANet-S are compared to other lightweight state-of-
the-art SR methods. A self-ensemble method [116] is also used to further improve
the performance of the DiVANet (denoted as DiVANet+).

Results with BI Degradation Model

Simulating LR images with the BI degradation model is widely used in the context
of image SR. For the BI degradation model, we compare our proposed DiVANet-S,
DiVANet and DiVANet+ with state-of-the-art SR frameworks, including VDSR [52],
DRCN [53], SRDenseNet [118], CARN [1], SRFBN-S [69], CBPN [148], FALSR-A[20],
SRMDNF [141], LAPAR-A [67], MAFFSRN [88], LatticeNet [77], MPRNet [84], RFDN-
L [72], MADNet [59], HDRN [49], DPN [70], and A2F-L [130].

Table 5.6 shows quantitative results when evaluating PSNR and SSIM on five
benchmark datasets with different algorithms. For a more informative compari-
son, the number of parameters and the number of multiplications and additions
(Multi-Adds) are also given. It can be observed that the proposed DiVANet-S has
only less than 500K parameters, but its performance is superior to many state-of-
the-art methods. For example, in comparison with CARN and CBPN, DiVANet-S
attains significantly better performance while only needing 30% and 40% of their
parameters, respectively. Furthermore, DiVANet is the best performing one, at all
scales and in all datasets. Especially on the challenging dataset Urban100, which
contains rich structural contents, the proposed DiVANet advances the state-of-the-
art with improvement margins of 0.14dB, 0.18dB and 0.10dB for scale factors ×2,
×3 and ×4, respectively. In addition, more significant improvements are shown
in the Manga109 dataset, where the proposed DiVANet model outperforms A2F-L
(with the highest performance amongst the aforementioned methods), by PSNR
gains of 0.13dB and 0.11dB for ×2 and ×3 enlargement. The advantage of our
method can also be verified via SSIM scores. The SSIM score focuses on the visible
structures in the image. The proposed DiVANet also achieves the best SSIM score,
which indicates that DiVANet can better recover visible structures. These results
validate the superiority of the proposed method, particularly on super-resolving the
images with fine structures such as those in Urban100 and Manga109. Furthermore,
it can be seen that DiVANet+ achieves further improvements through the use of
self-ensembles [116].

In Figure 5.5, we present some qualitative visual comparisons for the ×4 scale
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Table 5.6 – Average PSNR/SSIM values for models with the same order of magnitude
of parameters. Performance is shown for scale factors ×2, ×3 and ×4 with BI
degradation model. The Multi-Adds is calculated corresponding to a 1280 × 720 HR
image. The best and second best results are highlighted in red and blue respectively.

Scale Method Params Multi-Adds
Set5 Set14 B100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

VDSR [52] 665K 613G 37.53 0.9587 33.03 0.9124 31.90 0.8960 30.76 0.9140 37.22 0.9729
DRCN [53] 1,774K 17,974G 37.53 0.9587 33.03 0.9124 31.90 0.8960 30.76 0.9140 37.63 0.9723
CARN [1] 1,592K 223G 37.76 0.9590 33.52 0.9166 32.09 0.8978 31.92 0.9256 38.36 0.9765
SRFBN-S [69] 282K 680G 37.78 0.9597 33.35 0.9156 32.00 0.8970 31.41 0.9207 38.06 0.9757
CBPN [148] 1,036K 240.7G 37.90 0.9590 33.60 0.9171 32.17 0.8989 32.14 0.9279 – –
FALSR-A[20] 1,021K 234.7G 37.82 0.9595 33.55 0.9168 32.12 0.8987 31.93 0.9256 – –
SRMDNF [141] 1,513K 348G 37.79 0.9600 33.32 0.9150 32.05 0.8980 31.33 0.9200 – –
LAPAR-A [67] 548K 171G 38.01 0.9605 33.62 0.9183 32.19 0.8999 32.10 0.9283 38.67 0.9772
MAFFSRN [88] 790K 154.4G 38.07 0.9607 33.59 0.9177 32.23 0.9005 32.38 0.9308 – –

×2 LatticeNet [77] 756K 169.5G 38.15 0.9610 33.78 0.9193 32.25 0.9005 32.24 0.9302 – –
MPRNet [84] 538K 163.3G 38.08 0.9608 33.79 0.9196 32.25 0.9004 32.25 0.9317 – –
RFDN-L [72] 626K 38G 38.08 0.9606 33.67 0.9190 32.18 0.8996 32.24 0.9290 38.95 0.9773
MADNet [59] 878K 187.1G 37.94 0.9604 33.46 0.9167 32.10 0.8988 31.74 0.9246 – –
HDRN [49] 878K 316.2G 37.75 0.9590 33.49 0.9150 32.03 0.8980 31.87 0.9250 38.07 0.9770
DPN [70] 832K 140G 37.52 0.9586 33.08 0.9129 31.89 0.8958 30.82 0.9144 – –
A2F-L [130] 1,363K 306.1G 38.09 0.9607 33.78 0.9192 32.23 0.9002 32.46 0.9313 38.95 0.9772
DiVANet-S 405K 75G 38.10 0.9605 33.76 0.9189 32.22 0.8999 32.40 0.9305 38.88 0.9771
DiVANet 902K 189G 38.16 0.9612 33.80 0.9195 32.29 0.9008 32.60 0.9325 39.08 0.9755
DiVANet+ 902K 189G 38.23 0.9618 33.88 0.9201 32.36 0.9011 32.67 0.9330 39.15 0.9790

VDSR [52] 665K 613G 33.66 0.9213 29.77 0.8314 28.82 0.7976 27.14 0.8279 37.22 0.9750
DRCN [53] 1,774K 17,974G 33.82 0.9226 29.76 0.8311 28.80 0.7963 27.15 0.8276 32.24 0.9343
CARN [1] 1,592K 119G 34.29 0.9255 30.29 0.8407 29.06 0.8034 28.06 0.8493 33.50 0.9440
SRFBN-S [69] 376K 832G 34.20 0.9255 30.10 0.8372 28.96 0.8010 27.66 0.8415 33.02 0.9404
SRMDNF [141] 1,530K 156G 34.12 0.9250 30.04 0.8370 28.97 0.8030 27.57 0.8400 – –
LAPAR-A [67] 544K 114G 34.36 0.9267 30.34 0.8421 29.11 0.8054 28.15 0.8523 33.51 0.9441
MAFFSRN [88] 807K 68.5G 34.45 0.9277 30.40 0.8432 29.13 0.8061 28.26 0.8552 – –
LatticeNet [77] 765K 76.3G 34.53 0.9281 30.39 0.8424 29.15 0.8059 28.33 0.8538 – –

×3 MPRNet [84] 538K 63.1G 34.57 0.9285 30.42 0.8441 29.17 0.8073 28.42 0.8578 – –
RFDN-L [72] 633K 38G 34.47 0.9280 30.35 0.8421 29.11 0.8053 28.32 0.8547 33.78 0.9458
MADNet [59] 930K 88.4G 34.26 0.9262 30.29 0.8410 29.04 0.8033 27.91 0.8464 – –
HDRN [49] 878K 187.1G 34.24 0.9240 30.23 0.8400 28.96 0.8040 27.93 0.8490 33.17 0.9420
DPN [70] 832K 114.2G 33.71 0.9222 29.80 0.8320 28.84 0.7981 27.17 0.8282 – –
A2F-L [130] 1,367K 136.1G 34.54 0.9283 30.41 0.8436 29.14 0.8062 28.40 0.8574 33.83 0.9463
DiVANet-S 451K 38G 34.48 0.9275 30.43 0.8431 29.13 0.8055 28.42 0.8568 33.80 0.9455
DiVANet 949K 89G 34.60 0.9285 30.47 0.8447 29.19 0.8073 28.58 0.8603 33.94 0.9468
DiVANet+ 949K 89G 34.66 0.9289 30.53 0.8452 29.26 0.8077 28.66 0.8610 34.02 0.9473

VDSR [52] 665K 613G 31.35 0.8838 28.01 0.7674 27.29 0.7251 25.18 0.7524 28.83 0.8809
DRCN [53] 1,774K 17,974G 31.54 0.8850 29.19 0.7720 27.32 0.7280 25.12 0.7560 29.09 0.8845
SRDenseNet [118] 2,015K 390G 32.00 0.8931 28.50 0.7782 27.53 0.7337 26.05 0.7819 30.41 0.9071
CARN [1] 1,592K 91G 32.13 0.8937 28.60 0.7806 27.58 0.7349 26.07 0.7837 30.47 0.9084
SRFBN-S [69] 483K 1,037G 31.98 0.8923 28.45 0.7779 27.44 0.7313 25.71 0.7719 29.91 0.9008
CBPN [148] 1,197K 97.9G 32.21 0.8944 28.63 0.7813 27.58 0.7356 26.14 0.7869 – –
SRMDNF [141] 1,555K 89G 31.96 0.8930 28.35 0.7770 27.49 0.7340 25.68 0.7730 – –
LAPAR-A [67] 659K 94G 32.15 0.8944 28.61 0.7818 27.61 0.7366 26.14 0.7871 30.42 0.9074
MAFFSRN [88] 830K 38.6G 32.20 0.8953 28.62 0.7822 27.59 0.7370 26.16 0.7887 – –

×4 LatticeNet [77] 777K 43.6G 32.30 0.8962 28.68 0.7830 27.62 0.7367 26.25 0.7873 – –
MPRNet [84] 538K 31.3G 32.38 0.8969 28.69 0.7841 27.63 0.7385 26.31 0.7921 – –
RFDN-L [72] 643K 38G 32.28 0.8957 28.61 0.7818 27.58 0.7363 26.20 0.7883 30.61 0.9096
MADNet [59] 1,002K 54.1G 32.11 0.8939 28.52 0.7799 27.52 0.7340 25.89 0.7782 – –
HDRN [49] 867K 316.2G 32.23 0.8960 28.58 0.7810 27.53 0.7370 26.09 0.7870 30.43 0.9080
DPN [70] 832K 140G 31.42 0.8849 28.07 0.7688 27.30 0.7256 25.25 0.7546 – –
A2F-L [130] 1,374K 77.2G 32.32 0.8964 28.67 0.7839 27.62 0.7379 26.32 0.7931 30.72 0.9115
DiVANet-S 442K 28G 32.32 0.8958 28.63 0.7827 27.61 0.7377 26.35 0.7926 30.68 0.9105
DiVANet 939K 57G 32.41 0.8973 28.70 0.7844 27.65 0.7388 26.42 0.7958 30.73 0.9119
DiVANet+ 939K 57G 32.48 0.8978 28.78 0.7848 27.73 0.7390 26.49 0.7963 30.78 0.9124
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HR Bicubic MemNet CARN

Img_013 Set14 RFDN_L AF2_L DiVAENet-S DiVAENet

HR Bicubic MemNet CARN

Img_073 Urban100 RFDN_L AF2_L DiVAENet-S DiVAENet

HR Bicubic MemNet CARN

Img_019 Urban100 RFDN_L AF2_L DiVAENet-S DiVAENet

HR Bicubic MemNet CARN

Img_108 Manga109 RFDN_L AF2_L DiVAENet-S DiVAENet

Figure 5.5 – Visual results of BI degradation model for ×4 scale factor.
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Table 5.7 – Quantitative results with BD and DN degradation models. Performance
is shown for scale factor ×3. The best and second best results are highlighted in red
and blue respectively.

Methods Degrad.
Set5 Set14 B100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SRCNN [23]
BD 32.05 0.8944 28.80 0.8074 28.13 0.7736 25.70 0.7770 29.47 0.8924
DN 25.01 0.6950 23.78 0.5898 23.76 0.5538 21.19 0.5737 23.75 0.7148

VDSR [52]
BD 33.25 0.9150 29.46 0.8244 28.57 0.7893 26.61 0.8136 31.06 0.9234
DN 25.20 0.7183 24.00 0.6112 24.00 0.5749 22.22 0.6096 24.20 0.7525

IRCNN_G [140]
BD 33.38 0.9182 29.63 0.8281 28.65 0.7922 26.77 0.8154 31.15 0.9245
DN 25.70 0.7379 24.45 0.6305 24.28 0.5900 22.90 0.6429 24.88 0.7765

IRCNN_C [140]
BD 29.55 0.8246 27.33 0.7135 26.46 0.6572 24.89 0.7172 28.68 0.7701
DN 26.18 0.7430 24.68 0.6300 24.52 0.5850 22.63 0.6205 24.74 0.7701

SRMDNF [141]
BD 34.09 0.9242 30.11 0.8364 28.98 0.8009 27.50 0.8370 32.97 0.9391
DN 27.74 0.8026 26.13 0.6924 25.64 0.6495 24.28 0.7092 26.72 0.8590

RDN [145]
BD 34.57 0.9280 30.53 0.8447 29.23 0.8079 28.46 0.8581 33.97 0.9465
DN 28.46 0.8151 26.60 0.7101 25.96 0.6573 24.92 0.7362 28.00 0.8590

CASGCN [133]
BD 34.62 0.9283 30.60 0.8458 29.30 0.8196 28.68 0.8611 34.27 0.9476
DN – – – – – – – – – –

DiVANet-S
BD 34.45 0.9263 30.40 0.8420 29.11 0.8048 28.26 0.8529 33.90 0.9448
DN 28.41 0.8154 26.16 0.6933 25.87 0.6599 24.88 0.7356 28.13 0.8600

DiVANet
BD 34.64 0.9286 30.63 0.8460 29.31 0.8198 28.70 0.8613 34.30 0.9479
DN 28.49 0.8159 26.22 0.6939 25.93 0.6605 24.94 0.7361 28.18 0.8605

DiVANet+
BD 34.70 0.9291 30.69 0.8469 29.39 0.82.06 28.78 0.8621 34.38 0.9486
DN 28.57 0.8164 26.29 0.6945 26.01 0.6611 24.99 0.7369 28.26 0.8611

factor. It can be observed that DiVANet-S and DiVANet prevent distortions, sup-
press artifacts and generate more faithful results. These visual comparisons also
demonstrate the powerful representational ability of our methods.

Results with BD and DN Degradation Models

Following [69, 145], we also provide the results after applying BD and DN degra-
dation models. The proposed DiVANet-S, DiVANet, and DiVANet+ are compared
with state-of-the-art methods including SRCNN [23], VDSR [52], IRCNN_G [140],
IRCNN_C [140], SRMDNF [141], RDN [145], and CASGCN [133]. As shown in Ta-
ble 5.7, our methods achieve better PSNR and SSIM scores compared to other SR
methods, in all datasets. The consistently better results of our methods indicate
that they adapt well to scenarios with multiple degradation models.

In Figures 5.6 and 5.7 we provide some visual results for the BD and DN degra-
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HR Bicubic VDSR IRCNN_G

Img_021 B100 SRMDNF RDN DiVAENet-S DiVAENet

HR Bicubic VDSR IRCNN_G

Img_028 Urban100 SRMDNF RDN DiVAENet-S DiVAENet

HR Bicubic VDSR IRCNN_G

Img_096 Urban100 SRMDNF RDN DiVAENet-S DiVAENet

HR Bicubic VDSR IRCNN_G

Img_098 Urban100 SRMDNF RDN DiVAENet-S DiVAENet

Figure 5.6 – Visual results of BD degradation model for ×3 scale factor.
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HR Bicubic VDSR IRCNN_G

Img_002 Set14 SRMDNF RDN DiVAENet-S DiVAENet

HR Bicubic VDSR IRCNN_G

Img_095 B100 SRMDNF RDN DiVAENet-S DiVAENet

HR Bicubic VDSR IRCNN_G

Img_044 Urban100 SRMDNF RDN DiVAENet-S DiVAENet

HR Bicubic VDSR IRCNN_G

Img_099 Manga109 SRMDNF RDN DiVAENet-S DiVAENet

Figure 5.7 – Visual results of DN degradation model for ×3 scale factor.
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Figure 5.8 – Comparing capacity vs performance for lightweight state-of-the-art
SISR models on Urban100 (×4). Circle sizes are set proportional to the number of
multiplications and additions (Multi-Adds).

dation models for ×4 scale factor from the standard benchmark datasets. For BD
degradation, other methods were unable to remove blurring artifacts. In contrast,
DiVANet-S and DiVANet are able to recover structured details that were missing
in the LR image, by efficiently exploiting the feature hierarchy. Regarding the
DN degradation, we observe that recovering details becomes difficult with other
methods. However, ours deliver good results by removing additional noise and
enhancing the details. From these comparisons, we further indicate the robustness
and effectiveness of our methods in handling BD and DN degradation models.

Model Complexity Analysis

In this section, we compare the trade-off between performance and number of
parameters for our methods (DiVANet-S, DiVANet and DiVANet+) and existing
lightweight networks. Figure 5.8 shows the PSNR performances of several lightweight
models, namely VDSR [52], DRCN [53], SRDenseNet [118], CARN [1], SRFBN-S [69],
CBPN [148], SRMDNF [141], LAPAR-A [67], MAFFSRN [88], LatticeNet [77], MPR-
Net [84], RFDN-L [72], MADNet [59], HDRN [49], DPN [70], and A2F-L [130]. versus
their number of parameters, with results evaluated on Urban100 for ×4. As shown
in Figure 5.8, our models achieve state-of-the-art results with less parameters and
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Figure 5.9 – Comparing capacity vs performance for non-lightweight state-of-the-
art SISR models in the B100 dataset (×4). The red stars represent our proposed
methods.

Multi-Add operations. This demonstrates that our proposals achieve a better trade-
off between model size and reconstruction performance.

In addition, we compare our models with large networks such as EDSR [71],
MDSR [71], MSRN [65], RDN [145], RCAN [144], SRFBN [69], CSFM [43], RFANet [72],
S2TSR-NAAN [121], S2TSR-RRDB [121], and CASGCN [133]. The results are given in
Figure 5.9 in terms of network parameters and reconstruction effects (PSNR). For
example, S2TSR-RRDB, CASGCN, and RFANet respectively have parameters/PSNR
ratios of 16M/27.63dB, 14M/27.70dB, and 12M/27.76, under ×4 setting on the B100
dataset. On the other hand, the proposed DiVANet (0.9M/27.65) and DiVANet+
(0.9M/27.73) achieve competitive or better results, while only needing the 5%, 6%
and 7% parameters of S2TSR-NAAN, S2TSR-RRDB and CASGCN, respectively. The
DiVANet-S model also shows comparable results to the heavy models. In particular,
the DiVANet-S model outperforms MSRN by a large margin of 0.10dB. It is worth
noting that while MSRN has 8M parameters, DiVANet-S only has 0.4M parameters.
Thus, the proposed networks are lightweight and more efficient than other state-of-
the-art methods.
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Memory Complexity and Running Time Analysis

Table 5.8 illustrates the superiority of the proposed DiVANet-S and DiVANet ar-
chitectures in terms of Inference Time (s) and Memory Consumption (MB), when
compared to recent light- and heavy-weight state-of-the-art approaches on Ur-
ban100 ×4. For a fair comparison, we use a single NVIDIA RTX 3090 GPU for
evaluation, and their official source code implementations. It can be observed that
our models have the fastest running time, while also using the least memory per
image. Especially, our networks are highly efficient than RCAN [144], EDSR[71],
RFANet [72], and RDN [145] which are 16×, 5×, 12×, and 10× slower than DiVANet,
respectively. These networks mainly leverage much deeper network designs to
achieve more accurate SR results. This comparison demonstrates that our methods
effectively balance performance and running time.

Table 5.8 – Average running time (s) and memory consumption (MB) comparison
on Urban100 for ×4.

Methods Params Memory
Running
Time(s)

PSNR

CARN[1] 1.5M 1,116 0.032 26.07
SRFBN-S[69] 0.5M 2,154 0.031 25.71
SRDenseNet[118] 2M 5,531 0.221 26.05
RFDN-L[72] 0.6M 3,015 0.033 26.22
IMDN [47] 0.7M 1,113 0.028 26.04
A2F-L[130] 1.3M 3,015 0.032 26.32
RCAN[144] 16M 1,531 0.297 26.82
EDSR[71] 43M 2,731 0.085 26.64
SAN[69] 16M 3,015 0.224 26.79
RDN[145] 23M 5,015 0.172 26.82
DiVANet-S 0.4M 671 0.004 26.35
DiVANet 0.9M 875 0.007 26.42

Perceptual Metrics

Perceptual metrics better reflect the human judgment of image quality. In this
paper, Perceptual Index (PI) [11] is chosen as the perceptual metric. Table 5.9 shows
the PI for those works with publicly available source code, and the same order of
magnitude in terms of parameters. We observe that our proposed models obtains
better results than all the compared baselines. This demonstrates the ability of the
proposed DiVANet and DiVANet-S for generating realistic images.
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Table 5.9 – Perceptual index comparison of the proposed methods with recent
lightweight state-of-the-art methods on five datasets for ×4. The lower is better. All
of the output SR images are provided officially.

Methods Params Set5 Set14 B100 Urban100 Manga109

CARN[1] 1.5M 6.297 5.775 5.700 5.540 5.132
SRFBN-S[52] 0.6M 6.451 5.775 5.702 5.549 5.010
SRDenseNet[118] 2M 6.128 5.615 5.653 5.526 4.762
RFDN_L[72] 0.6M 6.124 5.644 5.659 5.531 4.810
A2F_L[130] 1.3M 6.084 5.499 5.532 5.179 4.771
DiVANet-S 0.4M 5.550 5.490 5.430 5.168 4.676
DiVANet 0.9M 5.511 5.361 5.163 5.149 4.480

5.4 Summary

In this chapter, we have proposed a novel and efficient architecture called direc-
tional variance attention network (DiVANet) for modeling the process of single
image super-resolution. We propose a directional variance attention mechanism
(DiVA), specifically related to SR, which encodes spatial and inter-channel infor-
mation simultaneously by considering higher-order feature statistics. Moreover,
we present a novel residual attention feature group (RAFG) which combines an
efficient connectivity pattern with a DiVA module that is processed in parallel to
the main residual computational path. Through a series of ablation experiments,
we have demonstrated the effectiveness of the proposed DiVA and RAFG schemes.
We use the same DiVANet structure to handle three degradation models. We have
empirically shown that our proposal attains better PSNR, SSIM, and perceptual
scores than previous lightweight state-of-the-art models on all benchmarks while
having a similar or fewer amount of parameters.
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6 Conclusions and Future work

6.1 Conclusions

Single image super-resolution (SISR) is a classical problem that is still a challenging
and open research problem in computer vision. The intention behind studying and
developing methods for SISR, is to obtain images with resolution beyond the limit
of imaging systems. In the last two decades, SISR has witnessed great strides with
the rapid development of deep learning. Although considerable progress has been
made, existing deep learning-based SR methods still face some limitations.

In this thesis, we studied various challenging problems in SISR and proposed
solutions to them in each chapter. In chapter 3, we have focused on the high-
frequency enhancement since most current SR networks do not discriminate the
computation of features by their frequencial components. Therefore, we have pro-
posed a novel frequency-based enhancement block (FEB) which is able to separate
features into low and high frequencies and explicitly allocates computation to high-
frequency features, thus improving the discriminative capabilities of the network.
Unlike prominent SR blocks, FEB treats different frequencies in a heterogeneous
way and also models inter-channel dependencies, which consequently enrich the
output feature. We have proved that the proposed block can be flexibly embedded
into other SR models by simply replacing their building modules, thus improving
their original performance (PSNR: +0.08dB in average) while reducing the number
of parameters by half. Furthermore, based on FEB, we have built a lightweight
SR network by simply stacking several FEBs which leads to significant improve-
ments for single image SR, surpassing deep SR networks with complicated skip
connections and concatenations.

In chapter 4, we have introduced an overscaling module and multi-scale loss to
solve SISR at arbitrary scale factors. Overscaling module helps to generate accurate
SR images at different scaling factors while multi-scale loss allows the simultaneous
training of all scale factors using a single model. Furthermore, in order to reduce
low-level feature degradation, we have proposed a lightweight recursive feature
extractor. We have shown that both overscaling module and the proposed feature ex-
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tractor independently increase PSNR when compared to other SR methods. Finally,
combining the proposed feature extractor and overscaling module together (Over-
Net) further increases performance. Moreover, we have experimentally shown that
OverNet outperforms previous state-of-the-art approaches in standard benchmarks
while maintaining relatively low computation and memory requirements.

Finally, In chapter 5, we have presented the concept of directional variance
pooling. Based on the directional variance pooling, we have proposed a novel and
efficient directional variance attention mechanism specifically related to low-level
vision tasks. This mechanism leverages spatial relationships between features by
exploiting higher-order feature statistics, in order to enhance features in different
channels and spatial regions. Moreover, we have proved that moving attention
operations outside of the residual blocks is beneficial to prevent the loss of informa-
tion caused by commonly used in-place attention. Therefore, we have proposed
to keep a dedicated computational path for attention mechanisms to aggregate
computations coming from attention operations. Finally, to verify the effectiveness
of the proposed approaches, we have built a computationally efficient yet accurate
network for SISR. The proposed network outperforms all state-of-the-art SR models
that have less than 5M parameters in terms of both quantitative and visual quality.

The take-home message from this work is that by using effective building mod-
ules and loss functions, we are able to design fast, accurate, and lightweight SR
networks which can be easily applied to real-world applications. We hope that
the idea of decomposing low- and high-frequency information at feature level for
adaptive computation can provide the computer vision community with a differ-
ent perspective on network architecture design. We believe that the proposed
approaches would have an important impact on the practical deployment of SISR.

6.2 Future Perspective

Despite the great success achieved by CNN-based models in the SISR problem,
there are still many unsolved problems. Thus in this section, we will point out
some of these problems explicitly and introduce some promising trends for future
evolution.

• Towards real-world scenarios. Image SR is greatly limited in real-world sce-
narios since real-world images tend to suffer degradation like blurring, addi-
tive noise, and compression artifacts. Thus the models trained on datasets
conducted manually often perform poorly in real-world scenes. Therefore,
it is important to improve the SR quality of natural images by using the new
datasets obtained by different resolution cameras with real-world scenarios.
Moreover, SR cannot only be used in domain-specific data and scenes directly
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but can also help other vision tasks greatly. Therefore, it is also a promising
direction to apply SR to more specific domains, such as video surveillance,
object tracking, medical imaging, and scene rendering.

• Evaluation metrics. Evaluation metrics are one of the most fundamental
components for machine learning. If the performance cannot be measured
accurately, researchers will have great difficulty verifying improvements.
Nowadays the PSNR and SSIM have been the most widely used metrics for
SR. However, the PSNR tends to result in excessive smoothness and the re-
sults can vary wildly between almost indistinguishable images. The SSIM
performs evaluation in terms of brightness, contrast and structure, but still
cannot measure perceptual quality accurately. Although researchers have
proposed various metrics, but currently there is no unified and admitted
evaluation metrics for SR quality. Thus more accurate metrics for evaluating
reconstruction quality are urgently needed.

• Mutual promotion with high-level tasks. As we all know, high-level com-
puter vision tasks (e.g., image classification, image segmentation, and image
analysis) are highly dependent on the quality of the input image, so SISR
technology is usually used for pre-processing. Meanwhile, the quality of the
SR images will greatly affect the accuracy of these tasks. Therefore, we recom-
mend using the accuracy of high-level computer vision tasks as an evaluation
indicator to measure the quality of the SR image. For the time being, we can
design some loss functions related to high-level tasks, thus we can combine
the feedback from other tasks to further improve the quality of SR images.

6.3 Scientific Articles

This dissertation has led to the following publications:

6.3.1 Submitted Journals

• Parichehr Behjati, Pau Rodriguez, Carles Fernández, Isabelle Hupont, Armin
Mehri, and Jordi Gonzàlez. Single Image Super-Resolution Based on Direc-
tional Variance Attention Networks. Pattern Recognition, 2022

• Parichehr Behjati, Pau Rodriguez, Carles Fernández, Armin Mehri, F. Xavier
Roca, Seiichi Ozawa, and Jordi Gonzàlez. Frequency-based Enhancement
Network for Efficient Super-Resolution. IEEE ACCESS, 2022

• Armin Mehri, Parichehr Behjati, and Angel D.Sappa. SRFormer: Efficient
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super-resolution based network for single image super resolution. IEEE Trans-
actions on Image Processing, 2022.

6.3.2 International Conferences and Workshops

• Parichehr Behjati, David Vazquez, Josep M. Gonfaus, Josep M. Gonfaus, Pau
Rodriguez, and Jordi Gonzalez. Catastrophic interference in Disguised Face
Recognition. In IbPRIA, pages 64-75, 2019

• Parichehr Behjati, Pau rodriguez, Carles Fernandez Tena, Isabelle Hupont,
Armin Mehri, and Jordi Gonzalez. OverNet: Lightweight multi-scale super-
resolution with overscaling network. In WACV, pages 2704–2713, 2021.

• Armin Mehri, Parichehr Behjati, and Angel D.Sappa. MPRNet: Multi-path
residual network for lightweight image super resolution. In WACV, pages
2704–2713, 2021.

• Armin Mehri, Parichehr Behjati, and Angel D.Sappa. Linet: A lightweight
network for image super resolution. In ICPR, pages 7196–7202, 2021.

6.4 Contributed Code

• OverNet: code to reproduce the results presented in [6] within the PyTorch
framework. https://github.com/pbehjatii/OverNet

• DiVANet: code to reproduce the results presented in chapter 4 using PyTorch.
https://github.com/pbehjatii/DiVANet

• FENet: code to reproduce the results presented in chapter 5 within the Py-
Torch framework. https://github.com/pbehjatii/FENet
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A Experiments on Other Image Enhancement
Tasks

Image enhancement technology has become one of the most important applica-
tions in computer vision and computer graphics and attracted increasing attention
in the field of digital image processing, such as image dehazing, image super-
resolution, image deblurring, and image denoising.

In this thesis, we have presented a novel set of lightweight CNN-based algo-
rithms to generate state-of-the-art (both in terms of performance and inference
time) super-resolution proposals. We have shown the robustness and effectivenss
of our methods in handling three degradation models (BI, BD, and DN) and the pro-
vided evidence suggests that the proposed methods (FENet, OverNet, and DiVANet)
may help with other image enhancement tasks.

In this chapter, in order to comprehensively illustrate the efficacy of the pro-
posed methods, we further apply our methods to other image enhancement tasks.
We show that the proposed algorithms presented in chapter 3, 4, and 5, and can
also achieve state-of-the-art performance on:

• Image dehazing. Almost every visible light photon reflects from surfaces and
is captured by the camera, but with the presence of aerosols such as dust,
mist, and fumes, the light reflected in the matter is scattered and deviated
from its original propagation path before it reaches the camera sensor. This
has a substantial effect on the captured image and creates a so-called haze
phenomenon, which reduces visibility of the scene content. A hazy image is
a degraded image with poor contrast and faint surface color intensity (see
Figure A.1(b)), therefore, estimating these values is of great interest in getting
enhanced quality haze-free images. Image dehazing aims to recover the
clean image from the corrupted input which is needed in many real-world
applications when a high-quality image is required and also in areas where
fog and haze are very common (e.g., satellite imaging, archaeology, and traffic
detection) [75].

• Image compression artifacts reduction. With the rapid development of con-
sumer devices (e.g., digital cameras and smartphones) and wireless network,
the number of images and videos has achieved explosive growth, which has
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(a) High-resolution (b)  Hazy Image (c)  JPEG-compressed image

Figure A.1 – (a): High-resolution image (HR). (b): hazy image. (c): the JPEG-
compressed image, where we could see blocking artifacts, ringing effects and blur-
ring on the eyes, abrupt intensity changes on the face.

brought more pressure and challenges to storage and transmission systems.
To save the storage capacity and transmission bandwidth, captured images
and videos are usually compressed to reduce information redundancy. Lossy
compression algorithms, e.g., Joint Photographic Experts Group (JPEG) [119]
and High Efficiency Video Coding (HEVC) [107], have been widely explored
to achieve this goal. However, due to the inevitable signal loss during com-
pression, these compression algorithms usually generate visually unpleasing
compression artifacts. These artifacts not only decrease the visual quality,
but also degrade the performance of downstream computer vision systems,
especially at high compression ratios. Therefore, removing compression arti-
facts is an important postprocessing task and has attracted more attention in
recent years (e.g. Figure A.1(c)).

In the next sections, we systematically compare the proposed methods in chap-
ter 3, 4, and 5 (FENet, OverNet, and DiVANet) with state-of-the-art image dehazing
and JPEG compression artifact reduction methods respectively.

A.1 Experimental Settings

Datasets and metrics. For image dehazing, we used RESIDE dataset, which con-
tains synthetic hazy images in both indoor and outdoor scenarios. The Indoor
training set of RESIDE contains 1399 clean image and 13990 hazy images generated
by corresponding clean images. The global atmosphere light ranges from 0.8 to 1.0,
the scatter parameters change from 0.04 to 0.2. We evaluate our models on SOTS
dataset, which contains 500 indoor images and 500 outdoors ones. We also evaluate
our methods on realistic hazy images. For image compression artifacts reduction,
we use DIV2K dataset for training. We evaluate our methods on two benchmark
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datasets (LIVE1 [103] and Classic5 [29]) for JPEG quality factors 10, 20, 30, and 40.
All results are evaluated with a commonly used metric: PSNR and SSIM.

Implementation details. During training, data augmentation is carried out by
means of random horizontal flips and 90◦ rotation. At each training mini-batch,
64 RGB patches of size 64×64 are provided as inputs. We train our models using
an ADAM optimizer with learning rate 10−3. The learning rate is decreased by half
every 2×105 iterations. Our networks have been implemented using PyTorch, and
trained on a NVIDIA RTX 3090 GPU.

A.2 Results on Image Dehazing

In this section, we will compare the proposed FENet, OverNet, and DiVANet meth-
ods with previous state-of-the-art image dehazing algorithms both quantitatively
and qualitatively including DCP [37], AODNet [62], DehazeNet [13], GFN [99],
GCANet [16], and FFA-Net [95].

As shown in Table A.1, it can be observed that our proposed models outperform
all state-of-the-art methods by a large margin. In Figure A.2, A.3, and A.4 , we
additionally provide some visual results. From the indoor and outdoor results
(Figure A.2 and A.3), it can be observed that our methods prevent distortions,
supress artifacts and generate more faithful results. Moreover, our networks are
clearly superior in the realistic performance of image details and color fidelity
(Figure A.4).

Table A.1 – Quantitative comparisons (average PSNR and SSIM) on SOTS for dif-
ferent methods. Best and second best performance are in red and blue colors,
respectively.

Methods Indoor Outdoor
PSNR SSIM PSNR SSIM

DCP [37] 16.62 0.8179 19.13 0.8148

AOD-Net [139] 19.06 0.8504 320.29 0.8765

DehazeNet [139] 21.14 0.8472 22.46 0.8514

GFN [99] 22.30 0.8800 21.55 0.8444

GCANet [139] 30.23 0.9800 – –

FFA-Net [95] 36.39 0.9886 33.57 0.9840

FENet (Ours) 36.45 0.9892 33.64 0.9849

OverNet (Ours) 36.56 0.9899 33.72 0.9855

DiVANet (Ours) 36.61 0.9906 33.82 0.9860
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Hazy inputs DehazeNet FFA-Net FENet OverNet DiVANet HR

Hazy inputs DehazeNet FFA-Net FENet OverNet DiVANet HR

Hazy inputs DehazeNet FFA-Net FENet OverNet DiVANet HR

Figure A.2 – Qualitative comparisons on SOTS dataset (indoor).

Hazy inputs DehazeNet FFA-Net FENet OverNet DiVANet HR

Hazy inputs DehazeNet FFA-Net FENet OverNet DiVANet HR

Hazy inputs DehazeNet FFA-Net FENet OverNet DiVANet HR

Figure A.3 – Qualitative comparisons on SOTS dataset (outdoor).
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Hazy inputs DehazeNet FFA-Net FENet OverNet DiVANet

Hazy inputs DehazeNet FFA-Net FENet OverNet DiVANet

Hazy inputs DehazeNet FFA-Net FENet OverNet DiVANet

Hazy inputs DehazeNet FFA-Net FENet OverNet DiVANet

Figure A.4 – Qualitative comparisons on realistic hazy images.

A.3 Results on JPEG Compression Artifacts Reduction

In this section, we further apply the proposed methods to reduce image compres-
sion reduction. We compare our methods with state-of-the-art methods, including
ARCNN [22], DnCNN-3 [139], QGAC [27], RNAN [146], and RDN [147].

As shown in Table A.2, our methods achieves the best performance on LIVE1
and Classic5 with all JPEG qualities. Besides, compared with the previous best
model such as RDN, our methods have only less than 1M parameters, while RDN is
a large model that has 22M parameters.

In Figure A.5, we provide some visual comparisons for JPEG compression arti-
facts reduction. The blocking artifacts can be removed to some degree, but RDN
would also suffers from over-smoothness, and cannot recover rich textures. By con-
trast, our methods can remove heavy noise corruption and preserve high-frequency
image details, resulting in sharper edges and more natural textures.
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Table A.2 – Quantitative comparisons (average PSNR and SSIM) with state-of-the-
art methods for JPEG compression artifact reduction on benchmark datasets. Best
and second best performance are in red and blue colors, respectively.

Methods σ
Classic5 LIVE1

PSNR SSIM PSNR SSIM

ARCNN [22]

10 29.03 0.7929 28.96 0.8076
20 31.15 0.8517 31.29 .8733
30 32.51 0.8806 32.67 0.9043
40 33.32 0.8953 33.63 0.9198

DnCNN-3 [139]

10 29.40 0.8026 29.19 0.8123
20 31.63 0.8610 31.59 0.8802
30 32.91 0.8861 32.98 0.9090
40 33.77 0.9003 33.96 0.9247

QGAC [27]

10 29.84 0.8370 29.53 0.8400
20 31.98 0.8850 31.86 0.9010
30 33.22 0.9070 33.23 0.9250
40 – – – –

RNAN[146]

10 29.96 0.8178 29.63 0.8239
20 32.11 0.8693 32.03 0.8877
30 33.38 0.8924 33.45 0.9149
40 34.27 0.9061 34.47 0.9299

RDN [147]

10 30.00 0.8188 29.67 0.8247
20 32.15 0.8699 32.07 0.8882
30 33.43 0.8930 33.51 0.9153
40 34.27 0.9061 34.51 0.9302

FENet (Ours)

10 30.16 0.8234 29.79 0.8278
20 32.39 0.8734 32.17 0.8899
30 33.59 0.8949 33.59 0.9166
40 34.41 0.9075 34.58 0.9312

OverNet (Ours)

10 30.20 0.8245 29.83 0.8284
20 32.43 0.8744 32.24 0.8903
30 33.65 0.8966 33.63 0.9170
40 34.46 0.9079 34.64 0.9314

DiVANet (Ours)

10 30.23 0.8249 29.86 0.8287
20 32.47 0.8748 32.26 0.8909
30 33.67 0.8961 33.67 0.9174
40 34.50 0.9082 34.69 0.9317
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LIVE1: sailing1 HR JPEG (σ=10) RDN FENet OverNet DiVANet

LIVE1: paintedhouse HR JPEG (σ=10) RDN FENet OverNet DiVANet

LIVE1: sailing3 HR JPEG (σ=10) RDN FENet OverNet DiVANet

LIVE1: womanhat HR JPEG (σ=10) RDN FENet OverNet DiVANet

LIVE1: building HR JPEG (σ=10) RDN FENet OverNet DiVANet

LIVE1: boat HR JPEG (σ=10) RDN FENet OverNet DiVANet

Figure A.5 – Image compression artifacts reduction results with JPEG quality σ = 10.
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A.4 Summary

In this thesis, we have demonstrated that the proposed methods (FENet, OverNet,
and DiVANet) achieve state-of-the-art performance on five image restoration tasks:
lightweight image SR, image denoising, image deblurring, image dehazing, and
JPEG compression artifact reduction, which demonstrates the effectiveness and
generalizability of the proposed methods. In the future, we will extend the proposed
methods to other restoration tasks such as image inpainting and deraining.
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[51] J. Jurek, M. Kociński, A. Materka, M. Elgalal, and A. Majos. Cnn-based super-
resolution reconstruction of 3d mr images using thick-slice scans. Biocyber-
netics and Biomedical Engineering, 40(1):111–125, 2020.

115



Bibliography

[52] J. Kim, J. K. Lee, and K. M. Lee. Accurate image super-resolution using very
deep convolutional networks. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 1646–1654, 2016.

[53] J. Kim, J. K. Lee, and K. M. Lee. Deeply-recursive convolutional network for
image super-resolution. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1637–1645, 2016.

[54] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[55] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. Advances in neural information processing
systems, 25:1097–1105, 2012.

[56] A. Laghrib, A. Hadri, A. Hakim, and S. Raghay. A new multiframe super-
resolution based on nonlinear registration and a spatially weighted regular-
ization. Information Sciences, 493:34–56, 2019.

[57] W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang. Deep laplacian pyramid
networks for fast and accurate super-resolution. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 624–632, 2017.

[58] W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang. Fast and accurate image
super-resolution with deep laplacian pyramid networks. IEEE transactions
on pattern analysis and machine intelligence, 41(11):2599–2613, 2018.

[59] R. Lan, L. Sun, Z. Liu, H. Lu, C. Pang, and X. Luo. Madnet: A fast and
lightweight network for single-image super resolution. IEEE transactions
on cybernetics, 51(3):1443–1453, 2020.

[60] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken,
A. Tejani, J. Totz, Z. Wang, et al. Photo-realistic single image super-resolution
using a generative adversarial network. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 4681–4690, 2017.

[61] S. Lee, J.-H. Kim, and J.-P. Heo. Super-resolution of license plate images via
character-based perceptual loss. In 2020 IEEE International Conference on
Big Data and Smart Computing (BigComp), pages 560–563. IEEE, 2020.

[62] B. Li, X. Peng, Z. Wang, J. Xu, and D. Feng. Aod-net: All-in-one dehazing
network. In Proceedings of the IEEE international conference on computer
vision, pages 4770–4778, 2017.

116



Bibliography

[63] B. Li, Y. Zhou, Y. Zhang, and A. Wang. Depth image super-resolution based
on joint sparse coding. Pattern Recognition Letters, 130:21–29, 2020.

[64] J. Li and W. Guan. Adaptive lq-norm constrained general nonlocal self-
similarity regularizer based sparse representation for single image super-
resolution. Information Fusion, 53:88–102, 2020.

[65] J. Li, F. Fang, K. Mei, and G. Zhang. Multi-scale residual network for image
super-resolution. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 517–532, 2018.

[66] S. Li, Q. Cai, H. Li, J. Cao, L. Wang, and Z. Li. Frequency separation network
for image super-resolution. IEEE Access, 8:33768–33777, 2020.

[67] W. Li, K. Zhou, L. Qi, N. Jiang, J. Lu, and J. Jia. Lapar: Linearly-assembled pixel-
adaptive regression network for single image super-resolution and beyond.
Advances in Neural Information Processing Systems, 33, 2020.

[68] X. Li, G. Cao, Y. Zhang, A. Shafique, and P. Fu. Combining synthesis sparse
with analysis sparse for single image super-resolution. Signal Processing:
Image Communication, 83:115805, 2020.

[69] Z. Li, J. Yang, Z. Liu, X. Yang, G. Jeon, and W. Wu. Feedback network for image
super-resolution. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 3867–3876, 2019.

[70] Y. Liang, R. Timofte, J. Wang, S. Zhou, Y. Gong, and N. Zheng. Single-image
super-resolution-when model adaptation matters. Pattern Recognition, 116:
107931, 2021.

[71] B. Lim, S. Son, H. Kim, S. Nah, and K. Mu Lee. Enhanced deep residual net-
works for single image super-resolution. In Proceedings of the IEEE conference
on computer vision and pattern recognition workshops, pages 136–144, 2017.

[72] J. Liu, W. Zhang, Y. Tang, J. Tang, and G. Wu. Residual feature aggregation net-
work for image super-resolution. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 2359–2368, 2020.

[73] R. Liu, Z. Su, G. Lin, and F. Zhou. Second-order attention network for
magnification-arbitrary single image super-resolution. In 2020 8th Inter-
national Conference on Digital Home (ICDH), pages 127–134. IEEE, 2020.

117



Bibliography

[74] X. Liu, L. Chen, W. Wang, and J. Zhao. Robust multi-frame super-resolution
based on spatially weighted half-quadratic estimation and adaptive btv regu-
larization. IEEE Transactions on Image Processing, 27(10):4971–4986, 2018.

[75] Y. Liu, J. Pan, J. Ren, and Z. Su. Learning deep priors for image dehazing. In
Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 2492–2500, 2019.

[76] A. Lucas, S. Lopez-Tapia, R. Molina, and A. K. Katsaggelos. Generative ad-
versarial networks and perceptual losses for video super-resolution. IEEE
Transactions on Image Processing, 28(7):3312–3327, 2019.

[77] X. Luo, Y. Xie, Y. Zhang, Y. Qu, C. Li, and Y. Fu. Latticenet: Towards lightweight
image super-resolution with lattice block. In Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part XXII 16, pages 272–289. Springer, 2020.

[78] H. Lyu, N. Sha, S. Qin, M. Yan, Y. Xie, and R. Wang. Advances in neural
information processing systems. Advances in neural information processing
systems, 32, 2019.

[79] C. Ma, C.-Y. Yang, X. Yang, and M.-H. Yang. Learning a no-reference qual-
ity metric for single-image super-resolution. Computer Vision and Image
Understanding, 158:1–16, 2017.

[80] X. Mao, C. Shen, and Y.-B. Yang. Image restoration using very deep convolu-
tional encoder-decoder networks with symmetric skip connections. Advances
in neural information processing systems, 29:2802–2810, 2016.

[81] X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. Paul Smolley. Least squares
generative adversarial networks. In Proceedings of the IEEE international
conference on computer vision, pages 2794–2802, 2017.

[82] Y. Matsui, K. Ito, Y. Aramaki, A. Fujimoto, T. Ogawa, T. Yamasaki, and K. Aizawa.
Sketch-based manga retrieval using manga109 dataset. Multimedia Tools
and Applications, 76(20):21811–21838, 2017.

[83] A. Mehri, P. B. Ardakani, and A. D. Sappa. Linet: A lightweight network for
image super resolution. In 2020 25th International Conference on Pattern
Recognition (ICPR), pages 7196–7202. IEEE, 2021.

[84] A. Mehri, P. B. Ardakani, and A. D. Sappa. Mprnet: Multi-path residual network
for lightweight image super resolution. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pages 2704–2713, 2021.

118



Bibliography

[85] Y. Mei, Y. Fan, Y. Zhou, L. Huang, T. S. Huang, and H. Shi. Image super-
resolution with cross-scale non-local attention and exhaustive self-exemplars
mining. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 5690–5699, 2020.

[86] Y. Mei, Y. Fan, and Y. Zhou. Image super-resolution with non-local sparse
attention. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 3517–3526, 2021.

[87] A. Mittal, R. Soundararajan, and A. C. Bovik. Making a “completely blind”
image quality analyzer. IEEE Signal processing letters, 20(3):209–212, 2012.

[88] A. Muqeet, J. Hwang, S. Yang, J. Kang, Y. Kim, and S.-H. Bae. Multi-attention
based ultra lightweight image super-resolution. In European Conference on
Computer Vision, pages 103–118. Springer, 2020.

[89] A. Odena, V. Dumoulin, and C. Olah. Deconvolution and checkerboard
artifacts. Distill, 1(10):e3, 2016.

[90] S. C. Park, M. K. Park, and M. G. Kang. Super-resolution image reconstruction:
a technical overview. IEEE signal processing magazine, 20(3):21–36, 2003.

[91] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Des-
maison, L. Antiga, and A. Lerer. Automatic differentiation in pytorch. 2017.

[92] S. Peled and Y. Yeshurun. Superresolution in mri: application to human
white matter fiber tract visualization by diffusion tensor imaging. Magnetic
Resonance in Medicine: An Official Journal of the International Society for
Magnetic Resonance in Medicine, 45(1):29–35, 2001.

[93] T. Peleg and M. Elad. A statistical prediction model based on sparse repre-
sentations for single image super-resolution. IEEE transactions on image
processing, 23(6):2569–2582, 2014.

[94] E. Pérez-Pellitero, J. Salvador, J. Ruiz-Hidalgo, and B. Rosenhahn. Antipodally
invariant metrics for fast regression-based super-resolution. IEEE Transac-
tions on Image Processing, 25(6):2456–2468, 2016.

[95] X. Qin, Z. Wang, Y. Bai, X. Xie, and H. Jia. Ffa-net: Feature fusion attention
network for single image dehazing. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 11908–11915, 2020.

119



Bibliography

[96] Y. Qiu, R. Wang, D. Tao, and J. Cheng. Embedded block residual network: A
recursive restoration model for single-image super-resolution. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 4180–
4189, 2019.

[97] M. Rajnoha, A. Mezina, and R. Burget. Multi-frame labeled faces database: To-
wards face super-resolution from realistic video sequences. Applied Sciences,
10(20):7213, 2020.

[98] H. Ren, M. El-Khamy, and J. Lee. Image super resolution based on fusing
multiple convolution neural networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition workshops, pages 54–61, 2017.

[99] W. Ren, L. Ma, J. Zhang, J. Pan, X. Cao, W. Liu, and M.-H. Yang. Gated fusion
network for single image dehazing. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 3253–3261, 2018.

[100] L. Russell. De valois and karen k. de valois. Spatial Vision, (14), 1988.

[101] M. S. Sajjadi, B. Scholkopf, and M. Hirsch. Enhancenet: Single image super-
resolution through automated texture synthesis. In Proceedings of the IEEE
international conference on computer vision, pages 4491–4500, 2017.

[102] P. Shamsolmoali, M. Zareapoor, D. K. Jain, V. K. Jain, and J. Yang. Deep
convolution network for surveillance records super-resolution. Multimedia
Tools and Applications, 78(17):23815–23829, 2019.

[103] H. Sheikh. Live image quality assessment database release 2. http://live. ece.
utexas. edu/research/quality, 2005.

[104] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, and
Z. Wang. Real-time single image and video super-resolution using an efficient
sub-pixel convolutional neural network. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 1874–1883, 2016.

[105] A. Shocher, N. Cohen, and M. Irani. “zero-shot” super-resolution using deep
internal learning. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 3118–3126, 2018.

[106] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

120



Bibliography

[107] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand. Overview of the high
efficiency video coding (hevc) standard. IEEE Transactions on circuits and
systems for video technology, 22(12):1649–1668, 2012.

[108] J. Sun, Z. Xu, and H.-Y. Shum. Image super-resolution using gradient profile
prior. In 2008 IEEE Conference on Computer Vision and Pattern Recognition,
pages 1–8. IEEE, 2008.

[109] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi. Inception-v4, inception-
resnet and the impact of residual connections on learning. In Thirty-first
AAAI conference on artificial intelligence, 2017.

[110] Y. Tai, J. Yang, and X. Liu. Image super-resolution via deep recursive residual
network. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 3147–3155, 2017.

[111] Y. Tai, J. Yang, X. Liu, and C. Xu. Memnet: A persistent memory network for
image restoration. In Proceedings of the IEEE international conference on
computer vision, pages 4539–4547, 2017.

[112] X. Tao, H. Gao, R. Liao, J. Wang, and J. Jia. Detail-revealing deep video super-
resolution. In Proceedings of the IEEE International Conference on Computer
Vision, pages 4472–4480, 2017.

[113] I. Teh, D. McClymont, E. Carruth, J. Omens, A. McCulloch, and J. E. Schneider.
Improved compressed sensing and super-resolution of cardiac diffusion mri
with structure-guided total variation. Magnetic resonance in medicine, 84(4):
1868–1880, 2020.

[114] Y. Tian, Y. Zhang, Y. Fu, and C. Xu. Tdan: Temporally-deformable alignment
network for video super-resolution. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3360–3369, 2020.

[115] R. Timofte, V. De Smet, and L. Van Gool. A+: Adjusted anchored neighborhood
regression for fast super-resolution. In Asian conference on computer vision,
pages 111–126. Springer, 2014.

[116] R. Timofte, R. Rothe, and L. Van Gool. Seven ways to improve example-based
single image super resolution. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1865–1873, 2016.

[117] R. Timofte, E. Agustsson, L. Van Gool, M.-H. Yang, and L. Zhang. Ntire
2017 challenge on single image super-resolution: Methods and results. In

121



Bibliography

Proceedings of the IEEE conference on computer vision and pattern recognition
workshops, pages 114–125, 2017.

[118] T. Tong, G. Li, X. Liu, and Q. Gao. Image super-resolution using dense skip
connections. In Proceedings of the IEEE International Conference on Computer
Vision, pages 4799–4807, 2017.

[119] G. K. Wallace. The jpeg still picture compression standard. IEEE transactions
on consumer electronics, 38(1):xviii–xxxiv, 1992.

[120] F. Wang, H. Hu, and C. Shen. Bam: A lightweight and efficient balanced
attention mechanism for single image super resolution. arXiv preprint
arXiv:2104.07566, 2021.

[121] L. Wang and K.-J. Yoon. Semi-supervised student-teacher learning for single
image super-resolution. Pattern Recognition, 121:108206, 2022.

[122] X. Wang, K. Yu, C. Dong, and C. C. Loy. Recovering realistic texture in image
super-resolution by deep spatial feature transform. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 606–615, 2018.

[123] X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, Y. Qiao, and C. Change Loy. Esrgan:
Enhanced super-resolution generative adversarial networks. In Proceedings
of the European conference on computer vision (ECCV) workshops, pages 0–0,
2018.

[124] Y. Wang, F. Perazzi, B. McWilliams, A. Sorkine-Hornung, O. Sorkine-Hornung,
and C. Schroers. A fully progressive approach to single-image super-
resolution. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pages 864–873, 2018.

[125] Z. Wang and A. C. Bovik. Mean squared error: Love it or leave it? a new look at
signal fidelity measures. IEEE signal processing magazine, 26(1):98–117, 2009.

[126] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assess-
ment: from error visibility to structural similarity. IEEE transactions on image
processing, 13(4):600–612, 2004.

[127] Z. Wang, J. Chen, and S. C. Hoi. Deep learning for image super-resolution: A
survey. IEEE transactions on pattern analysis and machine intelligence, 2020.

[128] S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon. Cbam: Convolutional block attention
module. In Proceedings of the European conference on computer vision (ECCV),
pages 3–19, 2018.

122



Bibliography

[129] L.-Y. Xu and Z. Gajic. Improved network for face recognition based on feature
super resolution method. International Journal of Automation and Comput-
ing, 18(6):915–925, 2021.

[130] Y. Z. J. Y. L. F. Xuehui Wang, Qing Wang and L. Chen. Lightweight single-image
super-resolution network with attentive auxiliary feature learning. 2020.

[131] C. Yang and G. Lu. Deeply recursive low-and high-frequency fusing networks
for single image super-resolution. Sensors, 20(24):7268, 2020.

[132] J. Yang, J. Wright, T. S. Huang, and Y. Ma. Image super-resolution via sparse
representation. IEEE transactions on image processing, 19(11):2861–2873,
2010.

[133] Y. Yang and Y. Qi. Image super-resolution via channel attention and spatial
graph convolutional network. Pattern Recognition, 112:107798, 2021.

[134] J. Yu, Y. Fan, J. Yang, N. Xu, Z. Wang, X. Wang, and T. Huang. Wide acti-
vation for efficient and accurate image super-resolution. arXiv preprint
arXiv:1808.08718, 2018.

[135] Y. Yuan, S. Liu, J. Zhang, Y. Zhang, C. Dong, and L. Lin. Unsupervised image
super-resolution using cycle-in-cycle generative adversarial networks. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, pages 701–710, 2018.

[136] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional net-
works. In European conference on computer vision, pages 818–833. Springer,
2014.

[137] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus. Deconvolutional
networks. In 2010 IEEE Computer Society Conference on computer vision and
pattern recognition, pages 2528–2535. IEEE, 2010.

[138] R. Zeyde, M. Elad, and M. Protter. On single image scale-up using sparse-
representations. In International conference on curves and surfaces, pages
711–730. Springer, 2010.

[139] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang. Beyond a gaussian denoiser:
Residual learning of deep cnn for image denoising. IEEE transactions on
image processing, 26(7):3142–3155, 2017.

123



Bibliography

[140] K. Zhang, W. Zuo, S. Gu, and L. Zhang. Learning deep cnn denoiser prior for
image restoration. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 3929–3938, 2017.

[141] K. Zhang, W. Zuo, and L. Zhang. Learning a single convolutional super-
resolution network for multiple degradations. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 3262–3271,
2018.

[142] K. Zhang, Z. Wang, J. Li, X. Gao, and Z. Xiong. Learning recurrent residual
regressors for single image super-resolution. Signal Processing, 154:324–337,
2019.

[143] L. Zhang, H. Zhang, H. Shen, and P. Li. A super-resolution reconstruction
algorithm for surveillance images. Signal Processing, 90(3):848–859, 2010.

[144] Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu. Image super-resolution
using very deep residual channel attention networks. In Proceedings of the
European conference on computer vision (ECCV), pages 286–301, 2018.

[145] Y. Zhang, Y. Tian, Y. Kong, B. Zhong, and Y. Fu. Residual dense network for
image super-resolution. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2472–2481, 2018.

[146] Y. Zhang, K. Li, K. Li, B. Zhong, and Y. Fu. Residual non-local attention
networks for image restoration. arXiv preprint arXiv:1903.10082, 2019.

[147] Y. Zhang, Y. Tian, Y. Kong, B. Zhong, and Y. Fu. Residual dense network
for image restoration. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 43(7):2480–2495, 2020.

[148] F. Zhu and Q. Zhao. Efficient single image super-resolution via hybrid residual
feature learning with compact back-projection network. In Proceedings of
the IEEE/CVF International Conference on Computer Vision Workshops, pages
0–0, 2019.

[149] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image transla-
tion using cycle-consistent adversarial networks. In Proceedings of the IEEE
international conference on computer vision, pages 2223–2232, 2017.

124


	Abstract (English/Spanish/Catalan)
	List of figures
	List of tables
	Introduction
	Single Image Super-Resolution via Deep Learning
	Objectives
	Thesis Outline and Contributions

	Background
	Problem Definition
	Benchmark Datasets
	Training and Test Datasets

	Assessment Methods
	Image Reconstruction Accuracy
	Image Perceptual Quality
	Reconstruction Efficiency

	Super-resolution Frameworks
	Pre-upsampling Super-resolution
	Post-upsampling Super-resolution
	Progressive Upsampling Super-resolution
	Up-and-down Sampling Super-resolution

	Upsampling Methods
	Interpolation-based Upsampling
	Learning-based Upsampling

	Optimization Objective
	Learning Strategy
	Loss Functions
	Other Improvements

	Most Related CNN-based Frameworks for SISR
	Evolution of Architectures
	Frequency-based Networks
	Attention Mechanisms
	Reconstruction Methods

	Summary

	Frequency-based Enhancement Network for Efficient Super-Resolution
	Motivation
	Frequency-based Enhancement Network
	Network overview
	Frequency-based Enhancement Block (FEB)
	Discussion

	Experimental Results
	Settings
	Ablation Study
	Comparison With state-of-the-art Methods

	Summary

	Lightweight Multi-Scale Super-Resolution with Overscaling Network
	Motivation
	Proposed Overscaling Network
	Feature Extractor
	Overscaling Module
	Multi-Scale Loss
	Difference with Other SR Methods

	Experimental Results
	Settings
	Ablation Studies
	Comparison with State-of-the-art Methods

	Summary

	Directional Variance Attention Networks
	Motivation
	Directional Variance Attention Network (DiVANet)
	Network Overview
	Directional Variance Attention (DiVA)
	Residual Attention Feature Group (RAFG)

	Experimental Results
	Settings
	Ablation Study
	Comparison with State-of-the-art Lightweight Methods

	Summary

	Conclusions and Future work
	Conclusions
	Future Perspective
	Scientific Articles
	Submitted Journals
	International Conferences and Workshops

	Contributed Code

	Experiments on Other Image Enhancement Tasks
	Experimental Settings
	Results on Image Dehazing
	Results on JPEG Compression Artifacts Reduction
	Summary

	Bibliography

	Títol de la tesi: Towards Efficient and RobustConvolutional Neural Networks forSingle Image Super-Resolution
	Nom autor/a: Parichehr Behjati


