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Abstract
Quantum optics experiments are currently the most advanced techniques to under-

stand, verify and simulate quantum phenomena. However, to access all the perfor-

mance available in quantum states of light, one needs to address fundamental opera-

tional limits. In quantum mechanics, the measurement strategy affects the quantum

state; therefore, to access all the degrees of freedom available in the quantum states,

one must implement the optimal feasible measurement. In this thesis, I investigate

how to perform more precise measurements in optics, namely slit-interference and

image resolution, by exploiting the quantum mechanical nature of light.

A complete description of multi-slit interference must include nonclassical paths, Feyn-

man paths that goes through two or more slits. Prior work with atomic interference

in the double-slit experiment with cavities as which-way detectors, has shown these

paths to be experimentally inaccessible. In this thesis I show how such a setup can

detect nonclassical paths with 1% probability, if different nonclassical paths are in-

cluded. I also show how this setup can be used to erase and restore the coherence of

the nonclassical paths. In the same chapter I demonstrate how the same setup could

implement an exact measure of Born-rule violation. And in the last part I debate

about the figures of merit in the literature to test the Born-rule.

During more than one century, there was a fundamental limit on image resolution;

due to diffraction effects in finite detectors apertures, one cannot resolve two incoher-

ent sources very close to each other, e.g. stars. In the last decade, the formalism of

quantum information allowed new proposals for sub-diffraction limited resolution or

super-resolving measurements. Nevertheless, these measurements are susceptible to

misalignment. In this thesis, I suggest alternative measurement strategies to incorpo-

rate misalignment in super-resolution imaging, showing that sub-diffraction limited

resolution is still possible. The proposed measurements can be implemented using

linear optical transformations and offer an advantage in the case of estimation and

discrimination of two incoherent point sources allowing one to quantify the mitigat-

ing effects of misalignment. Moreover, I propose a collective measurement strategy,

on two or more photons, that estimates the separation between two incoherent point

sources and is oblivious to misalignment.

In an optics experiment, the quantum state verification relies on tomography measure-

ments on copies of the prepared state. The error in tomography experiments is called

confidence region, and it defines the region in which the quantum state is found with

the desired probability. There are different methods to compute confidence regions;

in this thesis, I analyze the capability of the known methods by resolving two nearby

quantum states using a finite amount of measurement data.
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Chapter 1

Introduction

The rapid growth of interest in Quantum Optics and Quantum Metrology in the

latest years shows the impact of this field on the current technologies. The obser-

vation of quantum effects in different scenarios gave room to interesting fields in

physics. Moreover, in order to understand, verify and simulate quantum effects,

optics setups are the most advanced within the current technology. However,

there are still fundamental challenges in optics which require thorough analysis.

In this thesis, I will tackle the limitations in slit-interference and image resolu-

tion, proposing novel measurements exploiting the quantum mechanical nature

of light.

In 1879, Lord Rayleigh defined a fundamental limit in resolving incoherent

sources [4], due to diffraction effects two sources very close to each other can-

not be resolved. In 1901, Planck postulated the energy quantization based on

the black-body radiation [5]. This phenomena demonstrated the need for devel-

oping a mathematical formalism suitable to describe the quantum phenomena.

For this quantum theory was solidified including results from statistics [6] and

generalization of classical effects [7, 8].

In 1973, Helstrom reformulated the problem of two sources resolution from

the point of view of parameter estimation [9], incorporating the laws of quantum

theory. However, this derivation resulted in unfeasible measurement strategies,

and the Rayleigh’s criteria or Rayleigh’s curse resulted in being a limitation in

optics resolution for over a century. Nevertheless, the pursue for a more complete

theory for parameter estimation in quantum states remained [10, 11].

Later with the advances in the fields of quantum information [12] and quan-

tum metrology [13] it was possible to revisit the limits in the field of quantum

optics, in the attempt to overcome fundamental limits. In 2016, Tsang et.al. [2]

used quantum theory to propose feasible experimental methods to resolve two
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incoherent point sources bellow the Rayleigh limit. The results of Tsang, solve

the multi-parameter estimation issue for the separation and centroid of two point

sources. This work resulted in a plethora of theoretical [14–25] as well experi-

mental [26–33] results.

However, the measurement strategy derived to estimate the separation es-

timation depends on placing the measurement device on the exact centroid of

the distribution. In Chap. 4 of this thesis, I quantify the effects of misalign-

ment of the measurement device in estimating the two sources separation, and

propose a linear optical implementation capable of mitigating the misalignment

effects [34]. In addition, I propose an alternative measurement strategy which

does not require knowledge of the centroid of the distribution.

On a different topic, after the success of experimentally implementing quan-

tum entangled states [35–37], the task of estimating a quantum state using to-

mography measurements became fundamental [38, 39]. The error in tomography

measurements depends not only on the experimental uncertainty, but also on the

state estimation methods. The error in the estimation methods is called con-

fidence region, and it defines a region in the state’s space where the quantum

state can be found with the desired confidence. There are different methods to

compute confidence regions in the literature [3, 40–44]. These methods depend

on the number of experimental repetitions (prepare-and-measure settings) and

on the chosen measurement strategies. After analyzing all the methods in the

literature for computing confidence regions, I choose two of the most relevant

to do a comparative study for fixed (non-adaptive) measurement strategies in

Chap. 5.

Regarding fundamentals of quantum mechanics, Yabuki questioned the agree-

ment between the solution to optical slits experiments, as for example, the double

-slit experiment [45] with the quantum theory in 1986 [46]. In this work, the au-

thor argues that a consistent theory should include nonclassical paths1, which

would affect the intensity in slits interference. It was not until 2010 an attempt

to include the nonclassical paths in optical slits experiments [47], leading to more

precise interference measurements [48, 49]. In Chap. 3 I discuss a experimental

setup with atoms and cavities, capable of detecting the nonclassical paths with

1% probability; I also show how this setup can be used to erase and restore the

coherence of the nonclassical paths, discussing how the same setup can measure

the Born-rule violation [50].

1Feynman paths going through more than one slit.
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Chapter 2

Preliminaries

The light-matter interaction has been vastly studied in the last 400 years. To

detect the oscillatory behavior of light or matter in space requires monitoring

the incoming radiation using photodetectors with shaped apertures or observing

interference patterns after the interaction with objects or slits.

The most general phenomena to describe the interaction between waves and

obstacles is diffraction. It can be interpreted qualitatively using the Huygens

principle, in which each point in the light source emits a spherical wave, and

each point in this wave emits a secondary spherical wave. There is a general

solution that quantifies the Huygens principle and the diffraction effects [52],

which captures how waves transform in the presence of obstacles of any shape,

for example, around apertures or slits.

In diffraction effects, it is common to come across fundamental limits due to

destructive interference or approximations that do not include the full description

of the physical systems. With the advances in quantum mechanics and quantum

information theory, these limits must be reconsidered including a complete de-

scription of the phenomena.

In this thesis I will explore these limitations and discuss methods to per-

form more precise measurements, either in image resolution or in interference

experiments.

In this chapter I will present the basic principles to understand the topics of

this thesis. In the first section I introduce the diffraction limits on resolution and

in double-slit interference, in the second section I discuss the basic principles of

quantum mechanics and quantum state tomography and in the last I present the

basic concepts of statistical inference.
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2.1 Diffraction limited optical resolution and double-

slit interference

This section will discuss two fundamental issues in optics, for the topics of interest

in this thesis. In the first one, I discuss the limits in spatial resolution of sources in

the far-field regime, and in the second, I discuss the limitations in the double-slit

experiment.

To resolve the image of one or more light sources1 far away from the detection

apparatus has a fundamental limit that was quantified by Rayleigh in 1879 [4].

This limitation is due to destructive interference of the source’s diffracted image

through the detector’s aperture. This limit, know as Rayleigh criteria or diffrac-

tion limit depends on the source-detector distance, on the shape of the detection

aperture and on the source’s wavelength.

In the double-slit experiment, the effects of the slits alter the spherical wave-

front from the source, causing interference between each slit wavefront. Intu-

itively, the intensity pattern after the double-slit is the sum of the field in each

slit, squared. Even though this is a very good approximation [46], a complete

description requires to include paths crossing both slits as I discuss in 2.1.2 [53].

The limits on spatial resolution and double-slit interference are due to different

technical limitations; in the next section, I will explain the diffraction limit in

optical imaging.

2.1.1 Diffraction limit in optical imaging

To image light sources far away from the detection setup requires a set of lenses

and apertures that allow for processing the spatial profile of the emitters. In

this regime, the paraxial approximation holds, and the light from the sources

is diffracted through the detection aperture, changing the transverse intensity

profile.

To model the general problem of a point source emitter diffracted through an

aperture and observed in an apparatus, one can calculate the electric field solving

the Fresnel-Kirchhoff integral in the paraxial regime. In this regime, the source

is far from the detector, and the Fraunhofer approximation holds; therefore, the

wavefront can be considered as a plane wave, and the field is [52]

U =
1

2π

∫ ∫
eik.rdA, (2.1)

where k is the wavenumber vector, r is the propagation length vector and dA
is the aperture’s area element. The intensity of the distribution as a function of

1a better image resolution means more image detail.
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the position of an apparatus distant from the aperture is I = |U |2.

Under these conditions, the minimal spatial resolution of an emitter in the

image plane is fundamentally limited due to diffraction effects. Here I analyze

the diffraction limit on the angular resolution, the angle between the propagation

direction, and point of observation φ, for different apertures shapes, represented

in Fig. 2.1.

Using Eq. 2.1 one can find the general expression for the electric field, in-

cluding the presence of the slits and objects; in calculating the field transmitted

through an aperture, we can obtain the detected intensity.

In case of a uni-dimensional aperture the field as a function of the angle φ is

U(φ) =
1√
2π

∫ ∞
−∞

eiky sinφf(y)dy (2.2)

where k = 2π/λ, λ is the source wavelength and f(y) is the aperture’s spatial

distribution.

y

L
-a
2

a
2

y y
D

Figure 2.1: Scheme for diffraction through apertures, rectangular of size L.a

and circular of diameter D.

In the simplest example of a single-slit square aperture of length a and width

L, the area element is f(y) dy = Ldy to be integrated in the interval [−a/2, a/2],

therefore Eq. (2.2) reads

U(φ) =
1√
2π

(
2L sin

(
1
2ka sinφ

)
k sinφ

)
∝ sinc

(
1

2
ka sinφ

)
, (2.3)
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with the respective intensity

I(φ) ≈ I0 sinc

(
1

2
ka sinφ

)2

. (2.4)

In this case the first diffraction minimum occurs for 1
2ka sinφ = π. Assuming

φ small, the first minima of intensity occurs for φ ≈ λ
D . This is the minimal

resolution for the square aperture.

Alternatively, a circular aperture with diameter D, has the area element

f(y) dy =
√
D2 − 4y2 dy integrated in the interval φ [−D/2, D/2]. The elec-

tric field as a function of the angular resolution is

U(φ) =

(
πDJ1

(
kD
2 sinφ

)
k sinφ

)
, (2.5)

where J1(x) is the Bessel function. The intensity is

I(φ) ≈ I0

(
J1

(
kD
2 sinφ

)
kD
2 sinφ

)2

. (2.6)

The first zero for the Bessel function, occurs at J1(3.8317), which means the

minimal angular resolution for circular aperture is φ ≈ 1.22 λD , this result sets the

Rayleigh limit to optical resolution of telescopes, microscopes and human eye.

2.1.2 Young’s experiment

The double-slit experiment is the foundational experiment first realized by Young

in 1801 (scheme presented in Fig. 2.2a), that showed the wave nature of light.

In the original experiment, sunlight was used, but any bright source would work.

Light passes through a pinhole, illuminates a double-slit, and is observed in a

detection screen.

The intensity pattern observed in the detection screen is typically calculated

based on the superposition of the field in each slit as

Ψ(r) = ΨA(r) + ΨB(r), (2.7)

where each Ψi(r) = ei(k.ri−ωt)

ri
, where k is the wavenumber vector and r is the

vector from the slit to the point of observation. The relative phase between ΨA(r)

and ΨB(r) is proportional to the path difference from the slits to the detection

screen

k(rA − rB) = ±2nπ. (2.8)
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Even though this result roughly reproduces the interference pattern detected,

it is only an approximation as ΨA(r) is the solution to Maxwell’s equations

without the presence of slit B, and vice-versa, as represented in Fig. 2.2b and c.

A more thorough solution to this problem takes into account the Feynman

path integral formulation, where all possible paths from the source to the detec-

tion screen are relevant [54]; it includes not only of the direct paths from the

source to the detection screen, but also of other possible paths crossing both

slits [46]. This topic is discussed in detail in Chap. 3

Source

Detection
screen

A

B

a)

Source Source

A

x
z

B

b) c)

Figure 2.2: a) Double-slit set up with two slits open. b) Single-slit set up, with

slit A open. c) Single-slit set up, with slit B open.

The double-slit experiment was also repeated in 1928 by Davisson and Ger-

mer [55] with a source of electron-beam, demonstrating electrons have the same

wave behaviour, this was later extended to atoms and molecules [56–58], con-

firming De Broglie’s hypothesis [59] of wave-particle duality a key prediction of

the quantum theory which I now outline.
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2.2 Introduction to quantum formalism

In this section, I plan to define the basic concepts of quantum mechanics necessary

to understand the results in this thesis. I first define the basic axioms of quantum

mechanics, then I introduce basic operations with quantum states as well as

quantum state tomography.

In quantum mechanics, the mathematical objects contain all the information

on the physical system; these objects are called quantum states, and a projec-

tive measurement can extract a physical quantity from such a state. The basic

postulates for quantum mechanics are [6]

• At each instant, the state of the system can be represented as a vector in the

Hilbert space2, which in the Dirac notation is |Ψ〉 ∈ H. As a consequence a

superposition of two states is again a state of the system, i.e. if |Ψ〉, |φ〉 ∈ H
then α|Ψ〉+ β|φ〉 ∈ H for α, β ∈ C and |α|2 + |β|2 = 1.

• Every observable attribute of a physical system is described by an operator

that acts on the states describing the system. Â : |Ψ〉 → |Ψ′〉 = Â|Ψ〉,
every operator has eigenstates Â|a〉 = a|a〉.

• The only possible measurement outcome of an observable A is one of the

eigenvalues of the corresponding operator Â; this implies the operators are

Hermitian with orthogonal eigenstates forming a basis.

• When a measurement of an observable A is made on state |Ψ〉, the prob-

ability of obtaining an eigenvalue an is given by the square of the inner

product of |Ψ〉 with the eigenstate |an〉, | 〈an|Ψ〉 |2, a direct consequence of

this is the Born rule.

• Immediately after the measurement of an observable A has yielded a value

an, the state of the system is the normalized eigenstate |an〉.

• The time evolution of a quantum system preserves the normalization of the

associated state. The time evolution of a state is described by |Ψ(t)〉 =

Û(t− t0)|Ψ(t0)〉; this requires the state to obey the Schrödinger’s equation

i~∂|Ψ(t)〉
∂t = Ĥ|Ψ(t)〉, for Ĥ the Hamiltonian operator.

The probability density associated with a quantum state is called the density

matrix, and it’s the product of the state with its conjugate transpose ρ = |Ψ〉〈Ψ|;
this matrix must be positive semi-definite, hermitian, and of trace one. However,

not all density matrices can be fully described with one state (pure states); it

2a complex vector space equipped with an inner product complete in its norm.
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might be the case a linear combination of density matrices is required to fully

describe a system (mixed states)

ρ =
∑
i

qiρi. (2.9)

2.2.1 Operations with quantum states

In this thesis, our analysis is restricted to a particular type of measurement

strategies and quantum states, which I now review.

A particular type of measurement is the Positive Operator-Valued Measure-

ment (POVM), an hermitian, positive semi-definite operator. The simplest POVM

is a projective measurement a set of operators that sum to identity

n∑
i=1

Ei = 1l. (2.10)

A key consequence of the postulates of quantum mechanics is the Born rule,

which can be defined as the probability outcome of a projective measurement

strategy

pi := Tr (Ei|Ψ〉〈Ψ|) (2.11)

An example of the Born rule is the projective measurement in the position

representation |x〉〈x|, yielding

p(x) := Tr (|x〉〈x||Ψ〉〈Ψ|) = |Ψ(x)|2 (2.12)

In case the quantum state is a superposition of two other states |Ψ〉 = |Ψ1〉+|Ψ2〉,
the probability distribution is therefore |Ψ1(x) + Ψ2(x)|2. This shows that re-

gardless of the number of states |Ψ〉 is superposed in, the Born rule will guarantee

pairwise interference only. In Chapter 3 we discuss different methods that at-

tempted to test the Born rule questioning the pairwise interference in systems

with two and more slits.

A important class of states relevant in this thesis are

|Ψ0〉 =

∫ ∞
−∞

Ψ0(x)|x〉dx, (2.13)

where Ψ0(x) = 1
4√

2π σ2
e−

x2

4σ2 is the Gaussian distribution. This is the fundamental

state solution of the harmonic oscillator.
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2.2.2 Quantum state tomography

Quantum state tomography3 is the task of fully characterizing a quantum state

based on the result of projective measurements. Although, the result of a sin-

gle measurement is often not enough to reconstruct a state and it perturbs the

state being measured. Therefore, quantum state tomography is the task of re-

constructing a quantum state by performing different projective measurements

on copies of the unknown quantum state.

Formally it consists of preparing copies of the same d-dimensional state ρ (ρ

is a element of the set S(Hd) of density operators in a d-dimensional Hilbert

space) and measuring with m different feasible POVM measurement strategies,

Ei, with i = 1, ...,m. After N prepare-and-measurement rounds the frequency of

each outcome is

fi =
ni
N

for i ∈ [m] , (2.14)

where ni is the number of times outcome i is observed. As a matter of fact, if

the experiment is repeated many times the probabilities of each outcome can be

empirically estimated based on the frequency lim
N→∞

fi = pi.

There are different methods to estimate a quantum state based on the data

outcomes of an experiment [60–62]. Often the experimental results for state esti-

mation are presented without error bars, or the error depends on the features of

the designed setup. Although, the state estimation methods have intrinsic uncer-

tainties due to statistical errors arising from the finiteness of the data size. There

are different methods to compute this uncertainty or confidence regions [63].

The goal is to compare quantum state tomography procedures, based on the

data set n = (n1, ..., nm), which gives a region Γ(n) in which the unknown

quantum state ρ can be found with a desired confidence 1− δ

Pr [ρ ∈ Γ(n)] ≥ 1− δ, (2.15)

where Pr[·] the probability over all outcomes n, δ is usually small and between

0 ≤ δ ≤ 1.

In the last part of this thesis, I will compare the different methods in the

literature to calculate confidence regions and present the current work in progress;

meanwhile, in the next subsection I present how to estimate latent parameter

based on a data set.

3In analogy to the reconstruction of a three-dimensional image based on a series of two-

dimensional projections.
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2.3 Limits of latent parameters

The main question that statisticians have addressed is how to efficiently infer

a latent parameter from a probabilistic data set. More specifically, to investi-

gate if one or more global parameters, change the probability distribution of a

measurement outcome.

Figure 2.3: Ilustration of a eletromagnetic sensor

This theory applies to many systems; it has been the object of study to build

sensors and estimate an object’s position. For example, to estimate the position

of an aircraft based on a transmitted electromagnetic pulse, reflected by the

aircraft and absorbed by the antenna seconds later. We can use the probability

of detecting the electromagnetic pulse after a given time interval to estimate the

aircraft position based on the pulse velocity and intensity information [13].

In our problem, we have a data set, from which each output depends on the

unknown parameter λ. Our goal is to determine λ based on the data set, or to

build an estimate λ̃, function of this data set, which is as close as possible to the

true value λ.

In this section, I build the mathematical formulation for estimating multiple

parameters from a data set for classical and quantum probability distributions.
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2.3.1 Parameter estimation

Suppose an experimental realization gives anN -point data set y = {y1, y2, ..., yN},
corresponding to the number of times the experiment is repeated. Each output

yi, i = 1, ..., N is a random variable independently and identically distributed

(i.i.d.) according to the same probability distribution, p(y|λ), conditioned on the

latent parameter λ. Here I explain how to build an estimate4, λ̃(y), of the latent

parameter λ based on the data set.

There are two approaches to the parameter estimation problem, the Bayesian

and the Frequentist. The Bayesian approach, assumes the estimated parameters

to be a random variable, and it relies on optimizing the estimator over a range

of values the parameter may take, taking into account any information on the

parameter before obtaining the data set.

The Frequentist approach, assumes the estimator is a deterministic variable,

and the relative frequency of an event measures the probability of that event to

happen. In this thesis, I use only the Frequentist approach, which I now explain

in detail.

In order to build a well representative estimate of the true parameter, we

impose conditions on a function of the estimate, such as the limits in which it

should yield the true value of the parameter. The estimator is unbiased if on

average it yields the true value of the parameter [64]

〈λ̃(y)− λ〉 =

∫
(λ̃(y)− λ)p(y|λ)dy = 0 (2.16)

Typically the data sample probability distribution is known, and the most

common example is the Gaussian distribution centered around the latent param-

eter

p(yi|λ) =
1√

2πσ2
exp

(
− 1√

2σ2
(yi − λ)2

)
. (2.17)

The measurement strategy is efficient if the probability p(y|λ) of outcome

y is strongly affected by the variable λ [65]. The estimator is accurate if the

probability is centered around the true value of the parameter, and is precise if

the probability has a small variance with around its mean value.

In order to ensure the measurement is efficient, the maximum Likelihood (mL)

function selects those values of the parameter that maximize the probability dis-

tribution function, or more conveniently, the natural logarithm of the probability

distribution, as the logarithm is a monotonic function, the maximum occurs for

the same values of the parameter λ.

λ̃mL(y) = arg max
λ

ln p(y|λ), (2.18)

4“to guess or calculate the cost, size, value, etc. of something”-Cambridge dictionary
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Figure 2.4: Graph illustrating examples of accurate and precise distributions.

The estimator is accurate if the distribution is centered around the true value of

the parameter (center of the cross), the estimator is precise if the variance of the

distribution is small.

this is also called the Log-Likelihood function. Consequently, this ensures the

estimator is precise, as we now see in detail.

Assuming the Log-Likelihood function is regular with the parameter, it will

have zero first moment,

E

[
∂lnp(y|λ)

∂λ

]
=

∫ (
∂p(y|λ)

∂λ

)
dy =

∂

∂λ

∫
p(y|λ)dy = 0. (2.19)

The second moment is a measure of the curvature or variance of the parameter

F [λ] = −E
[
∂2lnp(y|λ)

∂λ2

]
=

∫
1

p(y|λ)

(
∂p(y|λ)

∂λ

)2

dy. (2.20)

The quantity in Eq. (2.20) is also called the Fisher information, and it quantifies

the amount of information the probability carries on the parameter λ [66], it scales

with the increase in the number of repetitions N , such that FN [λ] = N F [λ].

In order to find the bound on the variance of the estimator Var[λ̃(y)], we can

derive the unbiasedness condition

∂

∂λ

∫
(λ̃(y)− λ)p(y|λ)dy = 0,

−
∫
p(y|λ)dy +

∫
(λ̃(y)− λ)

∂p(y|λ)

∂λ
dy = 0,∫

(λ̃(y)− λ)
∂p(y|λ)

∂λ
dy = 1.

(2.21)

Writing the derivative as the logarithmic function, ∂lnp(y|λ)
∂λ = 1

p(y|λ)
∂p(y|λ)
∂λ , Eq. (2.21)
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becomes ∫
(λ̃(y)− λ)p(y|λ)

∂lnp(y|λ)

∂λ
dy = 1. (2.22)

Squaring the integral, and using the Cauchy–Schwarz inequality one obtains(∫ (
(λ̃(y)− λ)

√
p(y|λ)

)(√
p(y|λ)

∂lnp(y|λ)

∂λ
dy

))2

≤∫
(λ̃(y)− λ)2p(y|λ)dy

∫
p(y|λ)

(
∂lnp(y|λ)

∂λ

)2

dy.

(2.23)

Using the result in Eq. 2.22 we finally get

1 ≤
∫

(λ̃(y)− λ)2p(y|λ)dy

∫
p(y|λ)

(
∂lnp(y|λ)

∂λ

)2

dy

1 ≤ Var(λ̃(y))F [λ].

(2.24)

Thus, the bound on the variance of any unbiased estimator is

Var(λ̃(y)) ≥ F [λ]−1, (2.25)

Including the scaling of the Fisher information with the number of experi-

mental repetitions, we arrive at the Cramér-Rao bound [67, 68]

Var(λ̃N (y)) ≥ F [λ]−1

N
, (2.26)

which is always achievable in the limit of infinite repetitions.

In order to estimate more than one latent parameter in the probability dis-

tribution p(y|λ), with λ = λ1, λ2, ..., λk, the corresponding multivariate Cramér-

Rao bound, follows analogously as λ̃ = λ̃1, λ̃2, ..., λ̃k as

Cov(λ̃− 〈λ̃〉, λ̃− 〈λ̃〉) ≥ F [λ]−1

N
. (2.27)

where F [λ] is a kxk matrix defined as

F [λ]ij =

∫
1

p(y|λ)

(
∂p(y|λ)

∂λi

)(
∂p(y|λ)

∂λj

)
dy (2.28)

The maximum Likelihood estimate always saturates the Cramér-Rao bound in

the limit of large N, for both single or multi-parameter estimation scenarios.

All the theory to this point defines the bound on the precision estimation

for a given measurement strategy. In quantum mechanics, we must maximize

the Fisher information [69] over all possible measurement strategies, for this we

define the Born rule in the operator form

p(y|λ) := Tr (Eyρ(λ)) (2.29)
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where {Ey} are any set of POVM measurements.

The Quantum Fisher information is thus

F(ρ(λ)) := max
Ey≥0

F (p(y|ρ(λ)) , (2.30)

where an optimal measurement strategy Lm, also called Symmetric Logarith-

mic Derivative (SLD), can be obtained solving the following equation

∂ρ(λ)

∂λm
= Lmρ(λ) + ρ(λ)Lm

Lm =2
∑
α,β

ρα+ρβ 6=0

〈Ψα|∂mρ|Ψβ〉
ρα + ρβ

|Ψα〉〈Ψβ |
(2.31)

where |Ψγ〉〈Ψγ | is the eigenbasis of ρ =
∑
γ ργ |Ψγ〉〈Ψγ |. The Quantum Fisher

information can then be written as

F [λ]ij = Re [Tr [Li(ρ)Lj(ρ)ρ]] . (2.32)

Moreover, similarly to the Classical Fisher Information, the Quantum Fisher

information can be interpreted as an information measure [70], it can be explicitly

written in the eigenbasis of the density matrix as

F [λ] =
∑
γ

ργ 6=0

ρ̇γ(λ)2

ργ(λ)
+ 2

∑
α,β

ρα+ρβ 6=0

(ρα(λ)− ρβ(λ))
2

ρα(λ) + ρβ(λ)
|〈Ψ̇α|Ψβ〉|2 (2.33)

where the ż = ∂z
∂λi

represents the derivative with respect to each parameter λ,

this equation is demonstrated in details in [71]. As we can see, the Quantum

Fisher information can be divided in two parts, the first sum or classical part,

quantifies the information encoded in the eigenvalues of ρ, whereas the second

sum or quantum part, quantifies how the eigenvectors change with the parameter.

The Quantum Cramér-Rao bound is

Var(λ̃(y)) ≥ F [λ]−1

N
≥ F [λ]−1

N
. (2.34)

For a single parameter, the Quantum Fisher information upper bounds the

corresponding Classical Fisher information, i.e. F [λ] ≥ F [λ] and there always

exists a projective measurement defined in the basis of the SLD, for which the

Quantum Cramér-Rao bound is saturated [69].

In multi parameter estimation, however the Fisher information bounds the

covariance of every two parameters

Cov(λ̃− 〈λ̃〉, λ̃− 〈λ̃〉) ≥ F [λ]−1

N
≥ F [λ]−1

N
, (2.35)



30 Preliminaries

Figure 2.5: Illustration of single measurement and collective measurement.Left

scheme: each copy of the initial state is measured with a projective measurement

yielding an outcome yi. Right scheme: All copies of the initial state are measured

globally yielding one outcome that can be a N dimensional vector.

and is only saturable if the SLDs of all pairs of parameters commute or iff their

trace with the initial state is zero, Tr
(
ρ(λ)[Lλi ,Lλj ]

)
= 0 [72].

These results imply a difference in the single-vs-multi parameter scenarios. In

the single parameter case, the optimal measurement operator, or the projector

onto eigenvectors of the SLD that allows F [λ] ≥ F [λ], is iid, i.e. identical on

each of the N copies (represented in the left scheme of Fig. 2.5). In contrast

to the multiparameter case, where the scheme can only be optimal if the initial

states are pure [72]. In the case of initial mixed states, the optimal measurement

strategy, requires a collective measurement on all N copies of the initial state

(obtained the N experimental repetitions), this alternative is represented in the

right scheme of Fig. 2.5.

2.3.2 Decision Theory - State discrimination

Decision theory is a post-processing method to analyze an experimental data set

and decide among two or more distributions that best describe this data set. For

example it can be used to compare detected signals and decide if it contains noise

or not.The first models to this theory are in [73–77].

The hypothesis testing procedure relies on monitoring the system and as-

signing a hypotheses to each different probability distributions the data set may

have. To decide the most suitable hypothesis I will follow the Neyman–Pearson

approach, where the decision is based on the comparison between the probability

distributions [78].

The simplest scenario is binary hypothesis testing, where there are only two

possible hypotheses H1 and H2, and the goal is to determine with minimum error

probability the truthful hypothesis based on the data set y = {y1, y2, ..., yn}.
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The data set can be independent and identically distributed (i.i.d.) according to

two probability distributions p(y|Hi is True), i = 1, 2, each representing a true

hypothesis. The decision-making process is to choose one of the two hypothesis

based on the data set, represented by the function f(y) = Hi, i = 1, 2.

The total error probability is the sum of mistaking hypothesis two for one

p (f(y) = H2|H1) (type-1), and mistaking hypothesis one for two p (f(y) = H1|H2)

(type-2). Any prior knowledge on the hypothesis can be included in its respective

weights, Πi, i = 1, 2 [77, 79] so that the average probability of error is

Perr = Π1 p (f(y) = H2|H1) + Π2 p (f(y) = H1|H2) , (2.36)

for equally likely hypothesis Π1 = Π2 = 1
2 .

We can choose the most likely hypothesis by comparing the following proba-

bility distributions5

f(y) =


H1 if Π1 p (y|H1) > Π2 p (y|H2) ,

H2 if Π2 p (y|H2) > Π1 p (y|H1) ,

any if Π1 p (y|H1) = Π2 p (y|H2) ,

(2.37)

with this strategy, the the average probability of error becomes

Perr =
∑
y

min {Π1 p (y|H1) ,Π2 p (y|H2)} . (2.38)

One way to obtain better statistics for the error probability, is repeating the

experimental setting N times before making a guess. This will give a set of

data sets y(N) = {y(1),y(2), ...,y(N)}, distributed according to p
(
y(N)|Hi

)
=

p
(
y(1)|Hi

)
p
(
y(2)|Hi

)
. . . p

(
y(N)|Hi

)
, where i = 1, 2.

With these tools in hand and the condition on the minimum between any two

positive numbers a and b, min {a, b} ≤ asb1−s, for s ∈ [0, 1], Chernoff derived a

bound on the error probability [80] for N experimental repetitions

Perr =
∑
y(N)

min
{

Π1 p
(
y(N)|H1

)
,Π2 p

(
y(N)|H2

)}

≤Πs
1Π1−s

2

∑
y(N)

(
N∏
k=1

p(y(k)|H1)sp(y(k)|H2)1−s

)

=Πs
1Π1−s

2

(
yn∑
y=y1

p(y|H1)sp(y|H2)1−s

)N

Perr ≤ min
0≤s≤1

Πs
1Π1−s

2

(
yn∑
y=y1

p(y|H1)sp(y|H2)1−s

)N
.

(2.39)

5this is called the maximum likelihood estimate
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This bound is interesting because it is always attainable in the asymptotic

limit of N →∞, and it decays exponentially with the number of repetitions as

lim
N→∞

Perr ∼ e−Nξ, where

ξ := − log min
0≤s≤1

(
yn∑
y=y1

p(y|H1)sp(y|H2)1−s

)
.

(2.40)

where ξ is the Chernof number.

The Chernoff bound sets the exponent that minimizes the error probability,

and it allows to compare probability distributions based on their distinguishabil-

ity6.

In quantum hypothesis testing, the goal is to apply decision theory to de-

cide which of the two quantum states ρ(1) or ρ(2), is the true state. The prob-

ability of testing a hypothesis in state ρ(i) is the trace of the corresponding

POVM measurement {Ey} = {E1, E2}, E1 +E2 = I, with the state to be tested,

p (y|Hi) = Tr
(
Ey ρ

(i)
)
. The error probability is therefore

Perr =Π1Tr
[
E2 ρ

(1)
]

+ Π2Tr
[
E1 ρ

(2)
]

=Π2 − Tr
[
E2

(
Π2 ρ

(2) −Π1 ρ
(1)
)]

= Π1 − Tr
[
E1

(
Π1 ρ

(1) −Π2 ρ
(2)
)]
(2.41)

where a simpler form can be derived taking the average between the two forms

of the error probability in Eq. 2.41, where the prior probabilities to sum to one,

Π1 + Π2 = 1.

In contrast with the classical case, in quantum binary hypothesis testing we

are free to choose among the measurement strategies the one that yields the small-

est error probability. The optimal measurement was derived by Helstrom [77]

and corresponds to a two outcome measurement on the positive and negative

eigenspaces of the following operator

Γ := Π2 ρ
(2) −Π1 ρ

(1). (2.42)

The minimum error probability in discriminating two states ρ(1) and ρ(2) is thus

Perr =
1

2

(
1−

∥∥∥Π2 ρ
(2) −Π1 ρ

(1)
∥∥∥

1

)
, (2.43)

where ‖Γ‖1 = Tr |Γ| is the trace norm of operator Γ.

6For example, to divide N PhD students into two groups balanced according to a given

feature or parameter.
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Similarly, givenN copies of the initial state the optimal measurement strategy,

or collective Helstrom measurement is Γ⊗N = 1
2

(
ρ(2)⊗N − ρ(1)⊗N), and the error

probability scales with the number of copies as [81]

lim
N→∞

Perr ∼ e−Nξ
(QM)

, where

ξ ≤ ξ(QM) := − log min
0≤s≤1

Tr

{(
ρ(1)

)s (
ρ(2)

)1−s
}
.

(2.44)

Observe that the Quantum bound is independent of the measurement strat-

egy and its attainability points out the optimal measurement strategy, which in

general may be a collective measurement strategy.
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Chapter 3

Measuring nonclassical

paths with atoms and

cavities in the double-slit

experiment

In this chapter I discuss the double-slit experiment including the nonclassical

paths, Feynman paths that go through both slits. Prior work with atomic in-

terference in the double-slit experiment and cavities as which-way detectors, has

shown these paths to be experimentally inaccessible. In this chapter, I show how

such a setup can indeed detect nonclassical paths with 1% probability, if different

nonclassical paths are included. I also show how this setup can be used to erase

and restore the coherence of the nonclassical paths. Finally, I discuss how atom

cavities may be used to implement exact measure of Born-rule violation using

the Quach parameter [1], which up until now has only been a formal construct.

In the last section of this chapter I discuss results which question the use of the

Sorkin parameter to test the presence of nonclassical paths.

This chapter is based on:

Significant nonclassical paths with atoms and cavities in the double-slit experiment

J.O. de Almeida, M. Lewenstein and J.Q. Quach, Physical Review A 102, 042225 (2020)
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The double-slit experiment is the foundation of studies in interference ef-

fects [6, 8, 82] and reveals the wave nature of matter [56, 57, 83, 84]. Typically

the nodes (or anti-nodes) are calculated as the result of the path difference aris-

ing out of the distance from the slits to the detection screen. This, however,

is only an approximation, as first pointed out by Yabuki [46]. In the Feynman

path integral formulation of quantum mechanics [53], all possible paths between

points contribute to the wave function. The direct or classical paths from the slits

to the detection screen are just one set of an infinite number of possible paths.

Higher-order, exoctic or nonclassical paths include paths which enter both slits

before reaching the detector, as shown in Fig. 3.1. Typically, these nonclassical

paths are much less probable than the direct or classical paths; nevertheless, it

has been shown that in regimes where the wavelength is large compared to the

slit-spacing, these nonclassical paths can be significant [85].

The nonclassical path contributions to the interference pattern is not uniquely

a quantum mechanical effect. There have been evidence of such contributions to

the interference pattern arising also out of Maxwell’s equations, as shown with

finite-difference time-domain (FDTD) simulations [86]. The simulations using

this method have shown to partially agree with the triple-slit experiment [87, 88].

      Source

Detection
screen

A

B

x

z

classical

non-classical

Figure 3.1: A schematic of the double-slit experiment. The bluedashed line

depicts one the many possible classical paths. The red-solid and green-dotted-

dashed lines depicts two types of non-classical paths.

In the double-slit experiment, the particle nature of matter is revealed if

one knows which slit the particle went through [89]. In 1991, Scully et al. [90]

FDTD is a numerical method to solve Maxwell’s equations in infinitesimal time and distance

steps.
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introduced cavities into the slits as a means to mark which slit the particle

went through, thereby acting as which-way detectors. They showed how the

setup could implement the delayed-choice quantum erasure experiment using the

atomic transition due to atom-light interaction [91–96]. In this setup energy is

necessarily exchanged to reveal which-way information. In 2017, de Oliveira et

al. [97] showed how the setup proposed by Scully can be used to isolate nonclas-

sical paths. Their work consisted of modeling looped trajectories of Rubidium

Rydberg atoms in the double-slit experiment, with the result that the probability

of detection of these nonclassical paths were too small to be feasible.

The Born rule states that if a quantum object is represented by a wave func-

tion ψ(r, t), then the probability density of detecting it at position r and time t

is given by the absolute square of the wave function [98],

P (r, t) = ψ∗(r, t)ψ(r, t) = |ψ(r, t)|2 . (3.1)

Despite being a cornerstone of quantum mechanics, a direct test of the Born

rule was not attempted until 2010 by Sinha et al. [47]. The test was a measure of

the Sorkin parameter [99], which quantifies nonpairwise interference, in a triple-

slit experiment [100]. Since the exponent of the Born rule only allows for pairwise

interference, a nonzero Sorkin parameter would suggest violation of the Born rule.

Shortly after this experiment, it was pointed out that a nonzero Sorkin parameter

would not necessarily indicate Born-rule violation [101]; instead it could be a

signature of nonclassical paths. Most recently, Quach [1] proposed an alternative

parameter, using the double-slit experiment with which-way detectors, as a more

accurate measure of Born-rule violation. However, the Quach’s parameter up

until now, has only been a formal construct.

In this chapter, I first describe the classical and nonclassical paths using

Feynman path integral formulation, then I discuss an experimental setup that

allows to measure the nonclassical paths with 1% probability. In the following

section I analyze the subtleties of this setup and use it to test the Born-rule

violation with the Quach parameter as a criteria [50], lastly I discuss why the

Sorkin parameter is not a good measure of nonclassical paths an the issues with

the results in the literature.

3.1 Classical and nonclassical paths

In the Feynman path integral formulation the probability amplitude is based on

the state evolution according to Schrödinger’s equation, one of the postulates

of quantum mechanics; in this formulation the probability amplitude transition

defines the state evolution, and is the sum over all possible trajectories between



38 Measuring nonclassical paths with atoms and cavities in the double-slit experiment

the initial (x0, t0) and the endpoint (x′, t′). In this section, I analyze the different

trajectories from the source to the detection screen, specifically the ones defined

in Fig. 3.1 using the Feynman propagator.

Using quantum mechanics, following the argument in Sec. 2.1.2, the wave-

function corresponding to the double-slit experiment, represented in Fig. 2.2a

is typically calculated as the sum of each individual slit wavefunction Ψ(x) =

ΨA(x) + ΨB(x). However, ΨA and ΨB are solutions of the Shrödinger equation

with different boundary conditions, therefore, correspond to different Hilbert

spaces [46].

Assuming the slits are infinite in the y direction (perpendicular to the figure

plane), and the slit plane extends infinitely in the x direction, allows us to reduce

the system to a one-dimensional problem in the x direction. The source is an

atom with wave packet

ψ0 (x, t = 0) =
1√
σ0
√
π

exp

[
−x2

2σ0
2

]
, (3.2)

and width σ0. The atom wave function at a later time is the weighted sum of all

possible paths,

ψ(xf , tf , ti) =

∞∫
−∞

K(xf , tf ;xi, ti)ψ0(xi, ti)dxi , (3.3)

where K(xf , tf ;xi, ti) is the free propagator for a particle with mass m > 0 from

point (xi, ti) to (xf , tf ):

K (xf , tf ;xi, ti) =

√
m

2πi~ (tf − ti)
exp

[
im (xf − xi)2

2~ (tf − ti)

]
. (3.4)

The presence of the slit-plane reduces the number of possible paths between the

source and the detection screen. I will use this propagator to derive the classical

and non-classical paths in this Chapter.

Although this is the most general propagator, there are other propagators

that satisfy the conditions to this problem. For example, assuming the detection

screen integrates the probability over the complete duration of the experiment,

the interference is a stationary process and the propagator [101] is the solution

to the Helmholtz equation [102]

K (~r;~r ′) =
k

2πi

1

|~r − ~r ′|
ei k|~r−~r

′|, (3.5)

for source with wavenumber k, as I will comment in the last Section of this

Chapter.
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First I derive the classical paths using the general free particle Feynman

propagator (Eq. (3.3)), then I expand the analysis to the nonclassical paths,

showing the contribution from the different trajectories looping around both slits

before reaching the detection screen.

3.1.1 Classical paths

The classical paths incorporate all possible paths connecting the source and the

detection screen, whenever a single slit, A or B, is open as depicted in Fig. 2.2b

and c. The wave function resulting from the summation of all paths that go

through slit A only is

ψA(x, t) =

+∞x

−∞
K(x, t;x′, t′)T (x′ + d/2)K(x′, t′;x0, 0)ψ0(x0) dx′ dx0 , (3.6)

where

T (x) = exp

[
− (x)

2

2β2

]
. (3.7)

In Eq. (3.6), K(x′, t′;x0, 0) is the free propagator from the source to the slit plane,

and K(x, t;x′, t′) is the free propagator from the slit plane to the detection screen.

T (x′) is the slit transmission function, which we take to be a Gaussian function

of slit-width β [97, 103, 104]. Performing the integral, yields the following form,

ψA (x) = Γc exp [c2x
2 + c1x+ c0] , (3.8)

where the explicit expression for the constants (Γc, c2, c1, c0) are given in Ap-

pendix A.1. The wave function resulting from the summation of classical paths

that go through slit B is similarly calculated,

ψB(x, t) =

+∞x

−∞
K(x, t;x′, t′)T (x′ − d/2)K(x′, t′;x0, 0)ψ0(x0) dx′ dx0

= Γc exp [c2x
2 − c1x+ c0] .

In the next subsection, we will use this formalism to calculate the nonclassical

path that goes through two slits before reaching the detection screen.

3.1.2 Nonclassical paths

There are an infinite number of nonclassical paths that enter both slits. Nonclas-

sical paths that loop through both slits were considered in the literature [46, 97].

An example of such a path is depicted by the green dotted line in Fig. 3.1: the
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particle enters slit A, then slit B, then slit A again, before traveling to the detec-

tion screen. We will focus on nonclassical paths entering each slit only once, first

considered in [101]. An example of such path is depicted by the red solid line

in Fig. 3.1: the particle enters slit A, then slit B, then travels to the detection

screen. The wave function resulting from the summation of such nonclassical

paths is

ψAB(x, t, τ) =

+∞y

−∞
K(x, t̃+ τ ;x′2, t̃)T (x′2 −

d

2
)K(x′2, t+ ε;x′1, t)

T (x′1 +
d

2
)K(x′1, t;x0, 0)ψ0(x0) dx′1 dx

′
2 dx0

= Γnc exp [c′2x2 + c′1x+ c′0] ,

(3.9)

with constants given in Appendix A.1. Similarly, the wave function resulting

from the summation of nonclassical paths that go through slit B then A is

ψBA(x, t, τ) =

+∞y

−∞
K(x, t̃+ τ ;x′2, t̃)T (x′2 +

d

2
)K(x′2, t+ ε;x′1, t)

T (x′1 −
d

2
)K(x′1, t;x0, 0)ψ0(x0) dx′1 dx

′
2 dx0

= Γnc exp [c′2x2 − c′1x+ c′0] ,

(3.10)

The difference between ψAB(x, t, τ) and ψBA(x, t, τ) lies in the sign of ±c′1.

Using the same formalism, other nonclassical paths can also be calculated.

For example, the looped trajectory (green dotted line in Fig. 3.1), requires an

additional transmission through the slits, and therefore has the wave function

ψBAB(x, t, τ) =

∫
x′1,x

′
2,x
′
3,x0

K(x, t′ + τ ;x′3, t
′)T (x′3 −

d

2
)K(x′3, t̃+ ε;x′2, t̃)T (x′2 +

d

2
)

K(x′2, t+ ε;x′1, t)T (x′1 −
d

2
)K(x′1, t;x0, 0)ψ0(x0) .

(3.11)

In general, each additional slit transmission attenuates the wave function.

I computed the attenuation factor a, normalizing the wavefunction after each

slit transmission for every path considered, and used the constants defined in

appendix A.1. The wavefunction scales as |ψ(x, t)|2 ≈ |amψ0(x, 0)|2, where a ≈
0.1 is the attenuation factor and m is the number of times the atom traverses

a slit. For classical paths m = 1, minimal nonclassical paths m = 2, and single

looped paths m = 3. The probability of detecting minimal nonclassical paths is

1% and loop paths is 0.01%, relative to the classical paths. In the next section,

I will use these results to show how one may indeed detect minimal nonclassical

paths.
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3.2 Measuring nonclassical paths in the double-

slit experiment

Our setup consists of placing a cavity into each of the slits as depicted in Fig. 3.2.

The source is a two-level Rydberg atom with ground and excited states |g〉 or

|e〉. The transition frequency between the two states is resonant with the cavity

mode Ω. The initial configuration is such that the atom is in the excited state,

and there is one photon in each of the cavities,

|ψ0〉 = |e〉|1〉A|1〉B . (3.12)

The speed of the atom is tuned so that the interaction time with the cavity

is

τ =
π√

n+ 1Ω
, (3.13)

where n+1 is the number of excitation in the cavity. This interaction time affects

a π pulse on the atom [105]. Here we are interested in the case where n = 1, to

ensure that the transition between |e〉|1〉i and |g〉|2〉i (i = A,B) occurs with unit

probability. Therefore our interaction time is set to τ = π√
2Ω

.

3.2.1 Atom-cavity interaction

Initially the atom is in the excited state and there is a single photon in each cavity.

If the atom follows the classical path, it enters a single cavity once; in this case

the transition |e〉|1〉i → |g〉|2〉i will occur. If the atom follows the nonclassical

path it will enter both cavities. Upon leaving the first cavity the atom emits

a photon |e〉|1〉i → |g〉|2〉i, and on leaving the second cavity, the atom absorbs

a photon |g〉|1〉i′ → |e〉|0〉i′ (i 6= i′). As such, the system state just before the

detection screen is

|ψ〉 =
1√
N2

[|g〉 (|2〉A|1〉B |ψA〉+ |1〉A|2〉B |ψB〉) +

+|e〉 (|2〉A|0〉B |ψAB〉+ |0〉A|2〉B |ψBA〉)] ,
(3.14)

where Ni is the overall normalization factor, which in general will be dependent

on the number of slits (i) present. The first term represents the state of the

system when the atom’s (classical) path traverses though slit-A only: here the

atom emits a photon into cavity A. Similarly, the second term represents the state

of the system when the atom’s (classical) path traverses through slit-B only. The

third term represents the state of the system when the atom’s (nonclassical) path

traverses first through slit-A then slit-B: here the atom emits a photon into cavity

A and absorbs a photon in cavity B. Similarly, the fourth term represents the
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Figure 3.2: Scheme of atom and double-slit with photonic cavities in each slit.

The blue and green box in between the double slit contains the shutters and pho-

todetection scheme. The inset (bottom right) shows a magnified view of the pro-

cess of photodetection, it describes in detail one possible implementation to detect

the cavity photons. In this example, with the opening of the shutters, the cavity

photons go through a 50:50 beam splitter before its detection.
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state of the system when the atom’s (nonclassical) path traverses first through

slit-B then slit-A.

Defining the following symmetric and anti-symmetric basis states,

|ψ±c 〉 =
1√
2

(|ψA〉 ± |ψB〉) , (3.15)

|ψ±nc〉 =
1√
2

(|ψAB〉 ± |ψBA〉) , (3.16)

|µ±〉 =
1√
2

(|2〉A|1〉B ± |1〉A|2〉B) , (3.17)

|ν±〉 =
1√
2

(|2〉A|0〉B ± |0〉A|2〉B) , (3.18)

we can rewrite the state of the system before the detection screen [Eq. (3.14)] as

|ψ′f 〉 =
1√
N2

[
|g〉
(
|ψ+
c 〉|µ+〉+ |ψ−c 〉|µ−〉

)
+

+|e〉
(
|ψ+
nc〉|ν+〉+ |ψ−nc〉|ν−〉

)]
.

(3.19)

Equation (3.19) shows that by measuring the state of the atom, we can isolate

the classical and nonclassical paths. Keeping count only when an excited atom

is detected gives the probability distribution of the nonclassical paths:

Pe(x) =
1

N2

(
|ψ+
nc(x)|2 + |ψ−nc(x)|2

)
=

1

N2

(
|ψAB(x)|2 + |ψBA(x)|2

)
.

(3.20)

Conversely, keeping count only when a grounded atom is detected, gives the

probability distribution of the classical paths,

Pg(x) =
1

N2

(
|ψ+
c (x)|2 + |ψ−c (x)|2

)
=

1

N2

(
|ψA(x)|2 + |ψB(x)|2

)
.

(3.21)

From Eqs. (3.20) and (3.21) and the wave functions calculated in previous sec-

tion, we plot in Fig. 3.3 the nonclassical path probability distribution, normalized

to the central maximum of the double-slit classical probability distribution, i.e.

Pe(x)/Pg(0).

Figure 3.3 shows the spatial distribution of the atoms in the detection screen;

the nonclassical paths account for about 1% of the classical paths detection

events. The absence of an interference pattern is the result of the distinguishable
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Figure 3.3: Probability of detecting nonclassical paths normalized by the classi-

cal paths. The parameters are defined in Appendix A.1.

cavity Fock states that mark the atoms paths. Specifically, from Eq. (3.14) we see

that the presence of two photons in cavity A, reveals that the atom went through

slit A then B; conversely, when two photons are in cavity B, the atom went

through slit B then A. In the next subsection we will show how this which-way

information can be erased by introducing shutters and intracavity photodetec-

tors. We will show that erasing this information will retrieve the interference

pattern between nonclassical paths.

3.2.2 Erasing which-way information with cavity photode-

tection

An interesting feature of the atom-cavity implementation of the which-way de-

tectors is that one can partially erase the which-way information and restore

coherent interference, even after the atom has been detected. To partially erase

the which-way information, we add a beam splitter and photodetectors between

the two cavities (Fig. 3.2). Shutters are positioned in each cavity. When the

shutters are open, the photons are mixed in a beam splitter device and pho-

todetectors are placed at each output port; the photodetectors act as a reservoir

and in the limit of long detection time, all photons present in the cavities are

absorbed. This procedure allows to mix the photons from both cavities loosing

the which-slit information, retrieving interference.

The shutters opening and photon detection occurs after the passage of each

single atom. The statistics is obtained in the limit of infinite repetitions of this

procedure. The beam splitter action on the intracavity photons, corresponds to
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the following transformation of the A,B input modes:

â†±|0〉 =
(aA ± aB)

†
√

2
|0〉, (3.22)

for example in the new basis, the state |ν−〉 = |1〉+|1〉−. At each output port

+,−, there is a photodetector, we shall refer to their probability distributions as

P+ and P−, respectively.

I modeled the detection statistics, following the Markovian view of photon

absorption [106]. This strategy predicts photon counts of one, two and three

photons in a time interval. The density matrix time evolution contains the de-

tection probabilities at each photon absorption. At time t = 0 the density matrix

is:

ρ(0) := |ψ′f 〉〈ψ′f | , (3.23)

|ψ′f 〉 was defined in Eq. (3.19), with photon number in the +/− basis [Eq. (3.22)].

The procedure to calculate ρ(t) and the probability distributions are described in

Appendix A.2 [107]. Here we will discuss the most relevant results, and analyze

the probabilities in the limits of zero and infinite detection time.

At zero interaction time, no photons are absorbed, the statistics recover the

results of Sec. 3.2.1. Moreover, for infinite detection time, all photons are ab-

sorbed and the number of photons in the cavities is conditioned to the atomic

state, as we can see in Eq. (3.19). If the atom is detected in the ground state,

there are three photons in the cavities, whereas if detected in the excited state,

only two photons are in the cavities.

The probability of measuring the atom in the excited state with two photon

counts in the same output photodetector, P
(kk)
e , or one photon in each output,

P
(kj)
e , k = +/−, j = +/− with k 6= j. In the regime of long detection time one

gets

P (kk/kj)
e (x) =

1

2N2

(
|ψ(+/−)
nc (x)|2

)
. (3.24)

It represents the retrieval of interference, between nonclassical paths AB and

BA, due to detection of the cavity photons. This is implemented keeping count

of the excited atoms, only when two photons trigger the same (P (kk)) or different

(P (kj)) detectors.

Similarly, the probability of measuring the atom in the ground state and

detecting three photons in the same detector, P (kkk), and two photons in one

detector and one in the other, P (kjk) (over all permutations of kjk), in the

regime of long detection time is:

P (kkk)
g (x) =

1

N2

(
3

4

)(
|ψ(k)
c (x)|2

)
, (3.25)
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P (kjk)
g (x) =

1

N2

(
1

12

)(
|ψ(j)
c (x)|2

)
. (3.26)

The total probability of atoms in the ground state is given by:

Pg(x) =
∑

k,j=+,−
k 6=j

P (kkk)
g (x) + 3P (kjk)

g (x). (3.27)

This result recovers Eq. (3.20), as expected. This is implemented keeping count

of the grounded atoms, only when three photons trigger the same or different

detectors, respectively.

-40 -20 20 40

0.01

0.00
0
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Figure 3.4: Probability of detecting nonclassical paths in comparison with the

classical paths. The red solid curve illustrates the nonclassical paths fringes pat-

tern, it is the total probability of interfering and measuring in a single detector

the intra-cavity photons after measuring the atom in the excited state, P
(kk)
e (x).

The blue dashed curve, shows the anti-fringes pattern, it indicates probability dis-

tribution of interfering and measuring the photons in both detectors, P
(kj)
e (x)

The magnitude of the nonclassical paths is presented in Fig. 3.4, the inter-

ference pattern is recovered, due to the opening of the shutters, which allows for

the photons interference and detection. The red solid curve illustrates the non-

classical paths fringes pattern, showing it contributes with up to 1% of the total

probability distribution; it is the total probability of interfering and measuring

in a single detector the intra-cavity photons, P
(kk)
e (x). The blue dashed curve,

shows the anti-fringes pattern, it indicates probability distribution of interfering

and measuring one photon in each detector, P
(kj)
e (x).

Intriguingly, at the time at which the atoms were detected, the decision to

open or keep closed the photodetector shutter actually had not been made.
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Whether the atom exhibited coherent interference or not, was determined the

time after its detection; we therefore have a manifestation of the delayed-choice

quantum erasure experiment. Only when the which-way information is erased by

opening the shutters, the atomic inference pattern is retrieved.

In the next subsection, we will discuss how cavities which-way detectors can

be used to implement the Quach’s parameter and test the Born rule.

3.2.3 The Quach parameter as a Born rule test

The Quach parameter tests the Born rule in the double slit using which-way

detectors [1]. By taking into account the non-classical paths, it allows to perform

a more precise measurement of the Born rule. It involves comparing probability

distributions with and without which-way detectors

IAB ≡ PAB − PDA − PDB − PDAB + 2PDADB , (3.28)

where,

PDA(x) = |ψA(x) + ψAB(x) + ψBA(x)|2 + |ψB(x)|2 , (3.29)

PDB (x) = |ψA(x)|2 + |ψAB(x) + ψBA(x) + ψB(x)|2 , (3.30)

PDADB (x) = |ψA(x)|2 + |ψB(x)|2 + |ψAB(x) + ψBA(x)|2 , (3.31)

PDAB (x) = |ψA(x) + ψB(x)|2 + |ψAB(x) + ψBA(x)|2 . (3.32)

Figure 3.5: A schematic of the different configurations of which-way detectors

to test the Quach parameter in the double-slit. Figure from [1].

PDA(x) corresponds to a which-way detector in slit A, it is represented in

3.5b ( 3.29). The which-way detector in slit A has no distinction between the

non-classical paths

PDA(x) and PDB (x) are the probability distributions when there is a which-

way detector in slit A or B, respectively. PDADB (x) and PDAB (x) are the proba-

bility distributions of distinguishable and indistinguishable which-way detectors
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in both slits, respectively. Distinguishable which-way detectors identify whether

a particle went through slit A or B, indistinguishable which-way detectors knows

that a particle went through the slits, but does not know which one. ψAB(x)

consists of Feynman paths that go through slit A first then slit B, and vice versa

for ψBA(x).

Quach’s parameter has the advantage that IAB = 0 if the Born rule is not

violated, even in the presence of high-order paths and it applies to the double-

slit setup. However, up until now Quach’s parameter has only been a formal

construct. Here we propose how Quach’s parameter could be implemented using

atom-cavities.

To implement the Quach parameter we follow the reasoning of Sec. 3.2 using

the cavity as which-way detectors. We also write the parameter in terms of the

normalized probability distributions (Pi), as this is what is actually measured:

IAB = N0PAB −N1 (PDA + PDB )−N2 (PDAB − 2PDADB ) , (3.33)

whereNi are normalization factors that satisfy
∫∞
−∞

1
N0
PAB(x)dx = 1

N1

∫∞
−∞ PDA(x)dx =

1
N2

∫∞
−∞ PDAB (x) = 1.

To calculate each of these probabilities a different initial setup is required, as

it is summarized in Table 3.1.

Setup

Probability

distribution
Atom Slit A Slit B

PAB - -

PDA |g〉 |1〉 -

PDB - |1〉
PDAB
PDADB

|e〉 |1〉 |1〉

Table 3.1: Initial setup of the system, to obtain the respective probability dis-

tributions. The atom is either intialized in the ground |g〉 or excited |e〉 state.

|1〉 represent a slit-cavity initialized with a single photon. The sign - represents

a empty slit, i.e. without cavity.

To implement the single-slit which-way detector, a cavity is placed in one

slit only, leaving the remaining slit empty. To obtain, for example, PDA(x) the

setup has a cavity in slit A only, and the atom is initially in the ground state
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|g〉|1〉A|0〉B . The evolved state of the system before the detection screen is

|ψDA〉 =
1√
N1

[|g〉|1〉A|0〉B |ψB〉+

+|e〉|0〉A|0〉B(|ψA〉+ |ψAB〉+ |ψBA〉)] .
(3.34)

The first term represents the state of the system when the atom traverses slit

B only. The second term represents the state of the system whenever the atom

traversed slit A. In all three cases, the atom absorbed the intracavity photon and

transitioned to the excited atomic state |e〉.
Tracing out the cavity states (Trc) and projecting on to the position basis,

one can retrieve PDA(x):

PDA(x) =〈x|Trc [(|e〉〈e|+ |g〉〈g|) |ψDA〉〈ψDA |] |x〉

=
1

N1

(
|ψA(x) + ψAB(x) + ψBA(x)|2 + |ψB(x)|2

)
.

(3.35)

In other words, selecting the atoms in the ground and excited state at the de-

tection screen, allows one to obtain the probability of adding a which-way de-

tector in a single slit PDA(x). PDB (x) is similarly obtained with the initial state

|g〉|0〉A|1〉B . We plot PDA(x) in Fig. 3.6(c) using the wave functions analytically

calculated in Sec. 3.1. PDB (x) has a similar pattern.

To obtain PDAB (x) and PDADB (x) we use the analysis developed in Sec. 3.2,

i.e. the system is initially |e〉|1〉A|1〉B , with the cavity photodetector shut-

ters open. The probability distribution of distinguishable which-way detectors,

PDADB (x) is

PDADB (x) =Pg + 2P (kk)
e

=
1

N2

(
|ψA(x)|2 + |ψB(x)|2+

+|ψAB(x) + ψBA(x)|2
)
.

(3.36)

where P
(kk)
e is defined in Eq. (3.24); the factor of 2 accounts for k = +, and

k = −. Pg is the sum defined in Eq. (3.27).

By counting all atoms in the ground state, while the ones in the excited

state are kept only when two photons trigger the same cavity photodetector, the

grounded atoms at each x-position give the first term, and the excited atoms give

the second term of the probability distribution. I plot PDADB (x) in Fig. 3.6(b).

To calculate the probability distribution of indistinguishable which-way de-

tectors, PDAB (x), described in detail in Appendix A.2, based on which one can

define the required detection strategy. The implementation requires us to keep

count of the atoms in the ground state whenever three photons arrive in detector
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Figure 3.6: Probability distributions for the different configurations of which-

way detectors: a) absence of which-way detectors. b) distinguishable which-way

detectors in both slits. c) which-way detector in slit A. d) indistinguishable which-

way detectors in both slits. Summing the probabilities according to Quach’s pa-

rameter, one obtains exactly zero.

“P+”, and when one photon arrives in “P+” and two in “P−”. It also requires

one to keep count of atoms in the excited state only when two photons reach the

same detector,

PDAB (x) =P+++
g + P+−−

g + P−+−
g + P−−+

g + P++
e + P−−e

=
1

N2

(
3

4
|ψ+
c (x)|2 + 3

(
1

12
|ψ+
c (x)|2

)
+ |ψ+

nc(x)|2
)

=
1

N2

(
|ψA(x) + ψB(x)|2 + |ψAB(x) + ψBA(x)|2

)
.

(3.37)

I plot PDAB (x) in Fig. 3.6(d).

With all these probabilities in hand, I calculate IAB(x) = 0. Obviously,

as our theoretical description assumed the Born rule, this result is expected.

However, I propose a detailed practical description to test Quach’s parameter.

In an experiment, IAB(x) 6= 0, would implicate a Born-rule violation.
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3.3 Disconecting the Sorkin parameter from the

nonclassical paths

The Sorkin parameter is a mathematical construct to quantify non-pairwise inter-

ference using the triple-slit setup [99], this result was later applied to experimental

settings [47, 85, 108]. It involves associating Ij in Eq. 3.38 with the number of

slits open, claiming a non-zero I3 would indicate a violation of the Born rule.

S3 = IABC − IAB − IAC − IBC + IA + IB + IC (3.38)

where IABC is the outcome for 3 slits open, IAB is the outcome for two slits A

and B open, and so on.

In an experimental setting each slit configuration is associated with a re-

spective sum of wavefunctions, for example, IABC = |ΨA + ΨB + ΨC |2 and

IAB = |ΨA + ΨB |2, results in S3 = 0.

y

z

Source

Detection
screen

A

C

B

Figure 3.7: A schematic of the triple-slit experiment.

Despite the extensive use of the Sorkin parameter in the last decade experi-

mentally and theoretically, it still lacks a consistent explanation of its non-zero

value. There has been attempts on associating it with the Born rule violation

and to the difference in boundary conditions (for the settings of slits open and

closed) using FDTD simulation considerations [87, 88], although, it only showed

there is more than just on reason for its non-zero value [109]. There have also

been attempts to connect the Sorking parameter to the nonclassical paths us-

ing Feynman path integral formulation [101]. In this Section I show the Sorkin
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parameter is not a good measure of the nonclassical paths because it can yield

non-zero value even in the absence of nonclassical paths.

In the work of Sawant et al. [101] the authors describe a triple-slit experiment

to measure the Sorking parameter. The values of Ij in Eq. 3.38 are then associ-

ated with probability distributions in the detection screen when 1, 2 and 3 slits

are open. In their work the probability distributions are equal to the Feynman

path integral propagator defined in Eq. (3.5) squared as

ε = |KABC |2 − |KAB |2 − |KAC |2 − |KBC |2 + |KA|2 + |KB |2 + |KC |2 (3.39)

As each propagator correspond to different experimental settings, a fair com-

parison should include adequate normalization factors. Therefore, I proposed the

following

ε′ = NABC |KABC |2−NAB |KAB |2 −NAC |KAC |2 −NBC |KBC |2

+NA|KA|2 +NB |KB |2 +NC |KC |2 ,
(3.40)

where Ni are the normalisation constants that need to satisfy the physical con-

straints of probability conservation,

Nβ

∫ ∞
−∞
|Kβ(y)|2dy = 2Nα

∫ ∞
−∞
|Kα(y)|2dy . (3.41)

Nγ

∫ ∞
−∞
|Kγ(y)|2dy = 3Nα

∫ ∞
−∞
|Kα(y)|2dy (3.42)

where α = {A,B,C}, β = {AB,AC,BC}, and γ = ABC. In other words, the

probability of a photon passing through a plane with n slits, should be n/m times

the probability of a photon passing through a plane with m slits.

For example, consider the scenario without non-classical paths i.e. Knc =

0. Substituting the definitions in Ref. [101], into Eq. (3.42) and (3.41), shows

that Nα = Nβ = Nγ when different single-slit wavefunctions Kα satisfy the

orthogonality condition, ∫ ∞
−∞

Kα∗Kα′dy = 0 . (3.43)

In this case ε = ε′ = 0 when there are no non-classical paths. However, Kα’s are

only orthogonal in the regime kd sin θ = 0, for wavenumber k and slit separation

d. This makes ε′ 6= 0 for kd sin θ 6= 0, therefore a non-zero ε can be a sign of

the non-orthogonality of the single-slit wavefunction instead of the nonclassical

paths.
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Chapter 4

Discrimination and

estimation of incoherent

sources

In this chapter I analyse methods to improve the spatial resolution of two inco-

herent point sources whose separation is well below the diffraction limit dictated

by classical optics. I discuss the issues of estimation of the sources position as

well as discriminating if there is one source or two with half the power, very close

to each other. The results in the literature show these tasks can be achieved de-

composing the incoming radiation into orthogonal and transverse modes. Such

a demultiplexing procedure, however, must be perfectly calibrated to the trans-

verse profile of the incoming light as any misalignment in the mode decomposition

effectively restores the diffraction limit for small source separations.

Here I show by how much can one mitigate such misalignment effect in the mea-

surement which, after being imperfectly demultiplexed due to inevitable mis-

alignment, may still be partially corrected by linearly transforming the relevant

dominating transverse modes. I consider two complementary tasks: the estima-

tion of the separation between the two sources and the discrimination between

one and two incoherent point sources. I show that, although one cannot fully re-

store superresolution even for perfectly known misalignment, its negative impact

on the ultimate sensitivity can be significantly reduced. In the case of estimation

I determine analytically the exact relation between the minimal resolvable sep-

aration as a function of misalignment. Whereas for discrimination, I determine

analytically the relation between misalignment and the probability of error, as

well as numerically determine how the latter scales in the limit of long interro-

gation times.
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Even further, I study alternative collective measurement strategies capable of su-

perresolving two sources separation, without previous knowledge of their trans-

verse profile exact centroid. This measurement exploits the symmetry under

exchange of N bosonic systems and is equivalent to determining the spectrum of

their density operator.

This chapter is based on:

Discrimination and estimation of incoherent sources under misalignment

J. O. de Almeida, J. Ko lodyński, C. Hirche, M. Lewenstein, and M. Skotiniotis, Physical Review

A 103, 022406 (2021) and Collective super-resolving measurements for mixed bosonic states

J. O. de Almeida, M. Lewenstein, and M. Skotiniotis, arXiv, 2110.00986 (2021)
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In 1879, Lord Rayleigh proposed a criterion for resolving incoherent sources [4]:

two sources very close to each other cannot be resolved, as their image gets blurred

due to diffraction effects. Whereas Rayleigh’s criteria is a rough idea on reso-

lution limits, and more precise measurements could in principle give a better

resolution [110], it resulted in being a limitation in optics for over a century, even

called sometimes Rayleigh’s curse.

More precise measurements in optics require a thorough analysis of the signal-

to-noise ratio, which can be incorporated using statistical inference methods [111].

These methods allow defining resolution as parameter estimation [112] or hy-

pothesis testing [113]. A complete estimate requires knowledge of the source’s

separation, centroid, and relative intensity, whereas, the discrimination requires

distinction between two hypothesis, two-vs-one source.

c

I

I

RL

Hypothesis 2

0
Hypothesis 1

I1

I2

Figure 4.1: Illustration of the problems in question; the one-vs-two hypothesis

testing, one source (I0) with the power of two sources (I1 and I2), where I0 =

I1+I2 and the two sources multi-parameter estimation, of intensity q and position

of maxima (xR and xL), or centroid (xC) and separation (ε).

All these issues have been posed by Helstrom since 1969 [9, 114] with Rayleigh’s

criteria as a limitation. It was not until 1994, the advances in quantum op-

tics [115] allowed breakthroughs of resolution measurements in microscopy. By

using stimulated emission and fluorescence of typical fluorophores, it was possi-

ble to perform superresolution, i.e. to resolve two light sources with a separation

smaller than dictated by Rayleigh’s criterion.

These techniques allowed significant new advances in microscopy, as a bet-
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ter resolution of single molecules and proteins [116–118]. However, despite the

immense utility of these methods for superresolution in microscopy, there is no

analogous technique in astronomy and remote sensing.

In the attempt to find an optimal measurement strategy to perform superres-

olution of any two incoherent sources with equal brightness, M. Tsang et. al. [2]

formulated this problem using methods for estimating the centroid and separa-

tion parameters. In this work, they derive a fundamental limit to the precision in

estimating the two sources separation, in the form of the quantum Cramér-Rao

bound [69, 77].

The measurement strategy proposed in [2] involves performing spatial mode

demultiplexing (SPADE), and it can always yield a measure of the separation

even bellow the diffraction limit, under the assumption the measurement device

is placed exactly at the centroid position, xc. Although, the exact two source

localization is a multiparameter estimation problem, it requires perfect knowledge

of the distribution centroid.

The only way to perform simultaneous estimation of the centroid and sepa-

ration is making use of collective measurements [72]. This requires a quantum

memory with long enough coherence time and ability to manipulate and inter-

fere the photons stored. A proof-of-principle of this collective measurement was

demonstrated in [30]. In this experiment, the spatial distribution of two inco-

herent sources was simulated in a single photon; interfering two copies of this

photon in a Hong-Ou-Mandel experiment [119], which corresponds to perform a

two copies (N = 2) collective measurement, allows for simultaneous estimation

of both the centroid and the separation. Moreover, an estimate of the separa-

tion between two incoherent point sources was obtained from the bunching and

coincidence counts—due to Hong-Ou-Mandel interference—of two such bosons

incident on a 50-50 beamsplitter; this measurement is equivalent to the so-called

SWAP test [120].

In this chapter I follow this approach and generalize the experimental realiza-

tion [30] to propose an alternative, collective measurement strategy for estimating

the separation between two incoherent point sources, it provides provide more

precise estimates of the overlap as compared to the SWAP test [121, 122]. Here I

will discuss its super-resolving power. However, its implementation requires the

storage of the collective state of N bosons in a quantum memory [123–127].

When Helstrom [9] first addressed the problem of discriminating one-vs-two

incoherent point sources using tools from hypothesis testing, not only the mea-

surement strategy derived lacked a physical realisation, but also required knowl-

edge of the two sources separation.

It was not until 2016, Krovi et al. [128] derived the optimal quantum mechan-

ical measurement that achieves the quantum Chernoff bound for the case where
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the separation of the two point sources is known and discussed possible imple-

mentations. Shortly after, [19] showed the measurement strategies derived for

parameter estimation [2], achieves the quantum Chernoff bound for one-vs-two

sources of arbitrary separation. However, just like in the estimation case, the

centre of the single source, as well as the centroid of the two source hypothesis,

must be perfectly aligned with the demultiplexing measurements.

In this chapter I will address both problems of estimation and discrimina-

tion of incoherent light sources. In the first part I define the assumptions and

parameters used, in the second part I discuss discrimination and estimation of

light sources for a measurement device misaligned with the centroid of the distri-

bution and in the last part I discuss collective measurements for estimating the

separation between two incoherent sources.

4.1 Quantum description of light sources

In the ideal case, one can assume the sources are quasimonochromatic and are

in the paraxial wave approximation, in one dimension. For a thermal source,

it is standard to assume [129, 130] within a coherence time interval the average

number of photons χ� 1. Therefore, the density operator for the light fields in

the image plane can be written as:

σ(i) = (1− χ)σ0 + χρ
(i)
1 +O(χ2). (4.1)

where σ0 = |vac〉〈vac| is the zero-photon state, ρ1 is a one-photon state (the

superscript index i = 1, 2 is labeling the case where the photon is due to one or

two point sources) and O(χ2) denotes the order of χ2.

The state of a single photon emanating from a single source in the far-field

regime cetered around x0 is

ρ
(1)
1 ≈ |Ψ0〉〈Ψ0|, (4.2)

the subscript denotes the position around which the wavefunction is centered

|Ψ0〉 =

∫ ∞
−∞

dxΨ(x− x0)|x〉, (4.3)

where the spatial distribution Ψ(x−xi) is the Fourier transform of the detection

aperture, derived in Sec. 2.1.11 .

1 Ψ(x − xi) is equivalent to U(φ) in Eq. (2.2), as in the far field regime, φ is small and

sin(φ) ≈ φ.
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Whereas a photon coming from two incoherent point sources with relative

intensities q and 1− q, centered around xL and xR can be approximated as [2]

ρ
(2)
1 ≈ q|ΨL〉〈ΨL|+ (1− q)|ΨR〉〈ΨR|, (4.4)

with |ΨL(R)〉 =
∫∞
−∞ dxΨ(x − xL(R))|x〉. The creation of a photon in a position

in the image plane is |x〉 = a†(x)|0〉, where a†(x), a(x) are the creation and

annihilation operators satisfying the commutation relation [a(x), a†(y)] = δ(x −
y) [131]. Which in the special case of sources with equal intensities is

ρ
(2)
1

∣∣∣∣
q= 1

2

≈ 1

2
|ΨL〉〈ΨL|+

1

2
|ΨR〉〈ΨR|, (4.5)

Parametrizing the problem as a function of the separation and centroid of the

distribution. The intensity centroid is

xc = q xL + (1− q)xR, (4.6)

which reduces to xc = xR+xL
2 for sources with equal intensity, and separation

d =
|xR − xL|

2
=
ε

2
(4.7)

If the two sources separation is larger than the standard deviation of the Gaus-

sian distribution (d � σ), all the parameters can be effectively estimated, and

the distinction between two-vs-one hypothesis is easily done with direct imag-

ing [132]. However, I will focus in the regime where their separation is very

small (d� σ)–Fig.4.1– and the two sources cannot be resolved due to Rayleigh’s

diffraction limit [4].

4.2 Discrimination and estimation of incoherent

sources under misalignment

The advances in quantum information and quantum metrology [69, 72] allowed [2]

to look for applications in astronomy. The new techniques proposed [22], and the

rapid theoretical and experimental advances show possible enhancement in the

resolution beyond the limits of direct imaging. In [2], the sources were assumed

to have equal brightness, and the centroid and separation are the two parameters

to be estimated.

To demonstrate superresolution is possible, Tsang [2] used the quantum sta-

tistical inference, and specifically the quantum Cramer-Rao bound, to derive a

lower bound on the error in estimating the two sources separation. This result



60 Discrimination and estimation of incoherent sources

shows the ultimate bound in estimating the separation is inversely proportional

to a constant, in contrast to the case of direct imaging where the error scales

with the separation.

In order to compute the Cramér-Rao bound, the initial density matrix (Eq. (4.5))

must be diagonalized in an orthonormal basis spanning the space of ρ
(2)
1 and its

derivative. Hence, the resulting optimal measurement strategy will be in the

same basis, and this is the intuition behind the proposal of spatial-mode demul-

tiplexing (SPADE).

In optics when dealing with Gaussian states, the spatial modes can be inter-

preted as the energy eigenstates of the quantum mechanical harmonic oscillator,

i.e., the Hermite-Gauss (HG) modes:

|Φn(xD)〉 =
1√

2n n!

1
4
√

2π σ2
×
∫ ∞
−∞

e−
(x−xD)2

4σ2 Hn

(
x− xD√

2σ

)
|x〉dx, (4.8)

where Hn(x) are the Hermite polynomials, and xD is the position around which

the spatial modes are centered, or in case of performing the SPADE measurement,

the detector’s position.

To implement SPADE there are two main challenges, the first is to detect

and distinguish the different HG modes and the second is to know exactly the

position of the centroid. To solve the first issue, Tsang proposed an alternative

measurement, binary SPADE (B-SPADE), in which only the zeroth mode (n = 0

in Eq. (4.8)) should be distinguished from the higher order modes (n > 0) and it

can be implemented with single and multi-mode optical fibers, and it can resolve

the two point sources separation no matter how close they are on the image plane

so long as the detector is at the centroid position.

Moreover, even if the centroid is known sufficiently well, the detector still

must be perfectly aligned with the measurement device for the spatial mode de-

multiplex, i.e., setting xD = xc.A proposal on how best to accomplish this using

a finite number of observations was proposed by Grace et al. [133]. There the

authors show how to combine direct imaging and SPADE techniques, in a two-

stage procedure; the former uses part of the incoming radiation to adjust the

exact position of the latter via a servo feedback mechanism in order to gradu-

ally reduce the misalignment, δ := xc − xD, which is a priori not known. One

therefore sacrifices a portion of the samples in order to estimate the centroid (its

precision scales ∝ N−1/2) either directly, or by more resource efficient adaptive

strategies [133].

Similarly to the estimation problem, in discriminating one-vs-two sources, the

B-SPADE measurement achieves the quantum Chernoff bound [19] if the detector

is aligned with the centre both hypothesis, i.e. xD = xc. In this work, I analyse

the scenario where the detector is misaligned with the centre of the single source,
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as well as with the centroid of the two source hypothesis, xD 6= xc.

In this part of the thesis I assume the measurement device is misaligned with

the centroid of the distribution and determine analytically the theoretical limits

imposed by such misalignment in both estimation and discrimination tasks. To

do so I assume the detector is a mode demultiplexer and any postprocessing of the

detected radiation is allowed. Specifically, these results show how the complete

knowledge of the value of the misalignment allow to propose a linear-optical signal

postprocessing, as well as its effects on estimation precision and on the minimal

resolvable distance. To do so I make use of an approximation of the state of the

incoming radiation known as the qubit model [134], which I now review.

4.2.1 The qubit model

The qubit model is an approximation of the point spread function (PSF) in

presence of misalignment [134]. It can be understood as performing the projective

measurement of Eq. (4.8) about some reference position xD 6= xi for i ∈ (0, R, L).

Assuming that this misalignment is small, i.e., xD ≈ xi, and Taylor expanding

the probability amplitudes of each source, Ψ(x − xi), i ∈ {1, 2}, about xD as

follows:

|Ψ(xi)〉 ≈
∫ ∞
−∞

dxΨ(x− xD) |x〉+ (xi − xD)

∫ ∞
−∞

dx
dΨ(x− xi)

dxi

∣∣∣∣
xi=xD

|x〉

=: |0〉 − (xi − xD)
√
N|1〉,

(4.9)

and identify a qubit subspace with |0〉 := |Ψ(xD)〉 and

|1〉 :=
−1√
N

∫ ∞
−∞

dx
dΨ(x− xi)

dxi

∣∣∣∣
xi=xD

|x〉 (4.10)

an orthonormal basis. Here, N is an appropriate normalisation factor which for

the Gaussian and Sinc PSFs reads

NG =
1

4σ2
, NS =

π2

3σ2
, (4.11)

respectively.

The state of the incoming radiation can now be described, to a very good

approximation, by the following qubit density operators, for one and two sources,

respectively:

ρ(1) ≈ 1

1 + (σθ)2N

(
1 −σθ

√
N

−σθ
√
N (σθ)2N

)
ρ(2) ≈ 1

1 + σ2(θ2 + η2)N

(
1 −σθ

√
N

−σθ
√
N σ2(θ2 + η2)N

)
, (4.12)
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where I now introduced dimensionless parameters for misalignment and separa-

tion:

θ :=
δ

σ
=
xc − xD

σ
and η :=

d

σ
=

ε

2σ
, (4.13)

respectively. The qubit model allows us to visualise the effects of misalignment

on a given PSF in terms of the Bloch representation of qubit density matrices,

i.e.,

ρ :=
1l + r · σ

2
, (4.14)

where r ∈ R3, has elements ri = Tr(σiρ) and σ := (σ1, σ2, σ3)T is the vector

of Pauli matrices σi. For the Gaussian and Sinc PSFs the corresponding Bloch

vectors read

r
(1)
G =

1

1 + θ2

4

 −θ
0

1− θ2

4

 , r
(2)
G =

1

1 + θ2+η2

4

 −θ
0

1− θ2+η2

4


r

(1)
S ≈ 1

1 + θ2

3

 −
2θ√

3

0

1− θ2

3

 , r
(2)
S ≈ 1

1 + θ2+η2

3

 − 2θ√
3

0

1− θ2+η2

3

 , (4.15)

respectively. Using the approximations

1

1 + x2
≈ 1− x2

1− (θ2 + η2)

2
≈ (1− θ2

2
)(1− η2

2
) ≈ cos θ

(
1− η2

2

)
,

(4.16)

and keeping terms up to second order, O(θiηj) with i+ j = 2, the Bloch vectors

in Eq. (4.15) can be further approximated by

r
(1)
G ≈

− sin θ

0

cos θ

 , r
(2)
G ≈

(
1− η2

2

)− sin θ

0

cos θ



r
(1)
S ≈

− sin 2θ√
3

0

cos 2θ√
3

 , r
(2)
S ≈

(
1− η2

2

)− sin 2θ√
3

0

cos 2θ√
3

 . (4.17)

Consequently the misalignment, θ, can be understood as an infinitesimal rotation

about the y-axis in the Bloch-sphere picture, whereas the separation, η, between

the centres of the two incoherent point sources affects the purity of the state [134].

Here the aim is to use the qubit model to study the effects of misalignment,

both in the estimation of the separation between two point sources, as well as in

the task of discriminating between the single and two source hypotheses. I will

begin first discriminating one-vs-two light sources.
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4.2.2 Discrimination one-vs-two incoherent sources under

misalignment

In this section I use the qubit model to find the optimal measurement strategy

to discriminate between one-vs-two sources, for the case when the two sources

have equal intensities.

Hypothesis 1

0

Hypothesis 2

I

0.5

1

D c=

2

Figure 4.2: Hypothesis testing scenario, one-vs-two sources hypothesis. One

source with twice the power centered in x0, or two sources very close together

with separation 2d and centroid xc. Discrimination task for a two sources centroid

aligned with the one source center xc = x0, and a detector misaligned with this

position xD 6= xc = x0.

I compare the optimal measurement given by the qubit model, with the results

of Lu et. al. [19], where they analyze the behavior of the Chernoff exponent of

B-SPADE, direct imaging and the Quantum Chernoff bound, in the asymptotic

limit of infinite repetitions.

The optimal measurement strategy for distinguishing the two hypothesis ac-

cording to the qubit model, is the Helstrom measurement. The density matrix

in the qubit representation, using Eq. (4.17) is

ρ
(1)
G ≈ 1

4

(
2 + 2 cos θ0 −2 sin θ0

−2 sin θ0 2− 2 cos θ0

)
ρ

(2)
G ≈ 1

4

(
2− (η2 − 2) cos θc (η2 − 2) sin θc

(η2 − 2) sin θc 2 + (η2 − 2) cos θc

)
, (4.18)

where θ0 = x0−xD
σ is the misalignment relative to the center of a single source,

and θc = xc−xD
σ is the misalignment relative to the centroid, xc, of the two
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Figure 4.3: Spatial representation of the ROTADE operators for aligned (solid

line, θ = 0) and misaligned (dot- dashed, θ = 0.4) measurement. The plots are

given for d
σ = 0.25. |ψα(θ)〉 is defined in Eq. (4.21).

sources, and η is defined as in Eq. (4.13).

The Helstrom matrix (according to Eq. (2.42)) is therefore

Γ =
1

4

− cos θ0 − 1
2 cos θc(η

2 − 2) sin θ0 + 1
2 sin θc(η

2 − 2)

sin θ0 + 1
2 sin θc(η

2 − 2) cos θ0 + 1
2 cos θc(η

2 − 2)

 , (4.19)

In principle, the center of a single source need not coincide with the centroid

of two sources, nor with the position of the demultiplexing measurement, x0 6=
xc 6= xD (θ0 6= θc). Nonetheless, hereafter I shall restrict my analysis to the

case where only the demultiplexing measurements are misaligned, hence I define:

θ := θ0 = θc. (4.20)

In this regime, the eigenbasis of the Helstrom measurement is independent of

separation and I shall refer to this measurement as the rotated mode demultiplexer

(ROTADE), i.e. the detection scheme depicted schematically in Fig. 4.3 with the

rotation R(δ) adequately adjusted to δ = θσ.

|ψ1(θ)〉 = sin
θ

2
|0〉+ cos

θ

2
|1〉

|ψ2(θ)〉 =− cos
θ

2
|0〉+ sin

θ

2
|1〉,

(4.21)

this measurement is a θ rotation on the zero-th and first modes of the harmonic

oscillator.

For a detector aligned with the centroid position θ = 0, ROTADE is only

the projection onto the zeroth and first HG modes. I call this measurement
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as SPADE01, in order to distinguish it from B-SPADE which projects only on

the zeroth mode. I remark that all measurement strategies reach the quantum

bound for zero misalignment. The main advantages of SPADE01 for aligned

measurement device are: it is independent of the two-sources separation, the

need to count photons only in the first two HG modes (photons coupling to

higher modes correspond to no-clicks and are insignificant to the measurement

statistics), and the unambiguous two-source discrimination whenever a photon is

detected in the first HG mode.

The error probability can be obtained writing the measurement strategy pro-

jector in the spatial representation, and computing the overlap with the initial

state ρ(i), this procedure is explained in the Appendix B.1.

10-4

10-3

0.2 0.3 0.4 0.5 0.60.1

SPADE01

Quantum bound

B-SPADE

ROTADE

10-2

10-1

Figure 4.4: Numerical optimisation of the Chernoff exponent under misalign-

ment as a function of the separation in log− log plot, for xD = 0.4 and σ = 1.

Table 4.1 shows how the error probability scales as a function of the mis-

alignment for the first non-trivial order of the Taylor expansion around θ = 0.

Notice that for ROTADE, the type − 1 error, responsible for the unambiguous

determination of the two-source hypothesis, is four orders of magnitude smaller

compared to that of SPADE01 and B-SPADE. Hence in the single-shot scenario

ROTADE significantly outperforms both these measurements.

The Chernoff exponent of the SPADE01 measurement under misalignment

behaves similarly to that of B-SPADE, the asymptotic results of all measure-

ment strategies under misalignment as function of separation are represented in

Fig. 4.4. However, in contrast with the aligned scenario, for θ 6= 0 the probabil-

ity of detecting photons into higher HG modes is non-negligible, and corresponds

to the no-click probability. This probability represents the intrinsic error of the

qubit model and it increases with misalignment (for details see Appendix B.4).

Fig. 4.5 presents a numerical optimisation for the Chernoff exponent as a func-
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Measurement p(f(y) = H(2)|H(1)) p(f(y) = H(1)|H(2))

ROTADE θ6

576σ6 exp
(
− d2

4σ2

)(
1− d2θ2

16σ4

)
SPADE01 θ2

4σ2 exp
(
− d2

4σ2

)(
1 + (d2−2σ2)θ2

8σ4

)
B-SPADE

d2θ2csch
(
d2

4σ2

)
16σ4 exp

(
− d2

4σ2

)(
1 + (d2−2σ2)θ2

8σ4

)

Table 4.1: Taylor expansion to the first non-trivial order in θ for the type − 1

(second column) and type − 2 (third column) error probabilities for ROTADE,

SPADE01 and B-SPADE.

tion of the misalignment. For all θ > 0 ROTADE outperforms both SPADE01

and B-SPADE, which is to be expected as ROTADE includes the knowledge on

the amount of misalignment. Nonetheless, for exactly θ = 0 all the correspond-

ing Chernoff exponents coincide with the quantum bound, what manifests their

discontinuity as θ → 0+.

SPADE01

Quantum bound
B-SPADE

ROTADE

�

�

�

0.012

0.013

0.014

0.015

0.016

5×10-7 10-5 10-4

10-410-510-6 10-3 10-2 10-1

�

5x10-4

10-3

5x10-3

10-2

Figure 4.5: Numerical determination of the Chernoff exponent as a function

of the misalignment, for separation η = 0.25 between a pair of sources with

σ = 1. The inset shows how the Chernoff exponent varies for the three relevant

measurement strategies for θ ≈ 0.

4.2.3 Separation estimation of two incoherent sources un-

der misalignment

In this section I analyze the optimal measurement strategy to estimate the two

sources separation, in the case they have equal intensities. The optimal mea-

surement is equal to the Helstrom measurement derived for one-vs-two sources
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discrimination, ROTADE.

D
c

2

Figure 4.6: Separation estimation 2d of two incoherent sources with equal in-

tensities, with centroid xc, misaligned with the detector device xD.

Assuming the separation between the incoherent sources to be small—as as-

sured in the super-resolution regime—I use the qubit model in order to construct

the optimal measurement for separation estimation. The optimal measurement

for the Gaussian PSF is in the basis of the eigenvectors of ρ
(2)
G (Eq. (4.18)).

These eigenvectors are the same as in the Helstrom measurement presented in

Eq. (4.21), with eigenvalues

µ1(η) =
η2

4

µ2(η) =1− µ1(η)

(4.22)

Using Eq. (2.31) the corresponding SLD operators are, in the eigenbasis of RO-

TADE:

Lθ =

(
1− η2

2

)
σx, Lη =

(
2
η 0

0 2η
η2−4

)
. (4.23)

Observe that [Lθ,Lη] 6= 0, meaning that the optimal measurements for each

of these parameters are incompatible. However, Tr
(
ρ

(2)
G [Lθ,Lη]

)
= 0, which

implies that there exists a possibly joint measurement on all N photons that

saturates the quantum Cramér-Rao bound given by

〈(θ̂ − θ, η̂ − η)T (θ̂ − θ, η̂ − η)〉 ≥ 1

N

(
1

1−η2 0

0 1

1+ η2

4

)
. (4.24)
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Figure 4.7: Quantum Fisher information, FλN , attained in [2] (dashed lines)

and classical Fisher information associated to the ROTADE measurement Fλ
N

(solid lines), for separation η (black) and misalignment θ (blue) parameters for

perfect alignment θ = 0, as a function of 2η. As the POVM Eq. (4.26) is derived

based on the qubit model, it ceases to be optimal with increasing separation of the

sources (here for η . 0.1).

The eigenvectors of the SLD operators (Eq. (4.23)) are given by

|θ±〉 =
1√
2

((
sin

θ

2
± cos

θ

2

)
|0〉+

(
sin

θ

2
∓ cos

θ

2

)
|1〉
)
, (4.25)

|ηα〉 = |ψα(θ)〉 with α ∈ {1, 2}, (4.26)

respectively. As Lη is a diagonal operator, the optimal measurement in Eq. (4.26)

for estimating the re-scaled separation 2η between the two sources according to

the qubit model is simply given by a projective measurement in the eigenbasis of

Eq. (4.21).

In order to compare the quality of the ROTADE measurement, I use Eq. (4.9)

to map the measurement operators into their position-based representation. The

latter are shown in Fig. 4.3. One can then explicitly determine the probability

distribution arising from these measurements and hence the corresponding Fisher

information using Eq. (2.28). The results are shown in Fig. 4.7, where I compare

the performance of ROTADE with the quantum Fisher information [2] for θ = 0,

i.e. without misalignment. Up to separations η = d
σ . 0.5 the Fisher information

of ROTADE drops to ≈ 90% of the optimal value. On the other hand, up to

η = d
σ . 0.1 ROTADE maintains its optimality, emphasising that the qubit

model approximates well the super-resolution problem in this regime. Hence, in

the limit where the qubit model holds, counting photons only in the first two HG

modes suffices to estimate the separation.

A simpler measurement that also achieves the quantum bound (Fig. 4.7) is
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Figure 4.8: B-SPADE Fisher information attained in [2] (dashed lines) and

ROTADE Fisher information (solid lines) for separation estimation under mis-

alignment,
Fηη
N , as a function of the separation.

B-SPADE [2]. This is a coarse grained version of SPADE where only photons

in the fundamental HG mode of SPADE are counted, while lumping all other

modes to produce a single photon-count outcome. As the probability of detecting

the zeroth HG mode occurs regardless of the separation, d, B-SPADE is more

experimentally friendly, but suffers in the same manner as SPADE from the

misalignment problem. In Fig. 4.8 I compare the performance of ROTADE with

B-SPADE in estimating the separation under a misalignment θ ≤ 0.5.

In order to capture the difference between the aforementioned measurements

I compare the Taylor expansions of their corresponding Fisher information up to

first non-trivial order, for small separation η. These are given by

F (R)
ηη (η) ≈ η2C(R)(θ)

F (B)
ηη (η) ≈ η2C(B)(θ),

(4.27)

where C(R)(θ), C(B)(θ) are coefficients pertaining to the measurements them-

selves and depend only on the misalignment θ (they are independent of N and

η). The behaviour of these coefficients governs the precise minimal resolvable

distance for each measurement as I now explain.

The signal-to-noise-ratio η/∆η can be expressed as

η

√
NF

(#)
ηη (η) ≥ 1, (4.28)

where # ∈ (R,B). The minimal resolvable separation, η
(#)
min(θ), for each mea-

surement is defined as that η in Eq. (4.28) for which equality holds. Using the
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approximations of Eq. (4.27) one obtains

η
(#)
min(θ) =

1
4
√
NC(#)(θ)

. (4.29)

Taylor expanding the functions C(#)(θ)−1 to first non-trivial order in θ one ob-

tains

C(R)(θ)−1 ≈ θ6

122

C(B)(θ)−1 ≈ θ2.

(4.30)

It follows that

η
(R)
min(θ) ≈ 1

4
√
N

θ
3
2

√
12

η
(B)
min(θ) ≈

√
θ

4
√
N
,

(4.31)

where ηmin(θ) ∝ N−
1
4 is a consequence of Fηη ∝ η2 in Eq. (4.27). In contrast,

observe that in the ideal case of no misalignment, for which Fηη ∝ 1, the minimal

resolvable distance scales as ηmin(0) ∝ N− 1
2 .

The quadratic increase in the scaling of ηmin for both ROTADE and B-SPADE

due to misalignment mimicks closely the behaviour of cross-talk between the

measurement modes addressed by Guessner et al. [135] in 2020. As our qubit

approximation requires to monitor only the first two HG modes, and misalign-

ment corresponds to a unitary rotation of the same two modes, it follows that

this unitary rotation can be interpreted as the cross-talk matrix of [135]. As the

cross-talk probability between the two modes is proportional to sin2 θ ≈ θ2, η
(B)
min

of Eq. (4.31) follows precisely the analytical model for uniform cross-talk of [135].

Our results show that super-resolution is impossible if the initial demulti-

plexing of the incoming radiation suffers any misalignment, even if the latter is

known. Nevertheless, cross-modulation techniques between the two primary HG

modes can help in significantly reducing the minimum resolvable distance. This

procedure is presented in Fig. 4.9.

In Appendix B.2 I obtain the optimal measurement under misalignment for

the Sinc PSF, as well as the minimum resolvable distance. Our results confirm

the efficacy of the qubit model; for whatever PSF the first two modes are the

most relevant ones in estimating the position of light sources with separation well

below the diffraction limit.
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Figure 4.9: Super-resolving the separation between incoherent sources under the

misalignment of the demultiplexing apparatus. Two incoherent point-like sources

of light are imaged with an optical system exhibiting a Gaussian point spread

function of width σ in a way that their separation, 2d, can be most accurately

resolved. For this to be possible beyond the diffraction limit, a spatial mode de-

multiplexing technique is employed—which ideally allows the incoming light to be

decomposed into orthogonal transverse modes, whose photon-occupation is sub-

sequently measured. In this work, I study the ultimate limits on the resolution

in the presence of misalignment of the imaging system, δ = xc − xR � σ, by

applying appropriate linear optical post processing operations R(δ) is applied on

the two dominant modes of the demultiplexing measurement.

4.3 Collective measurements on mixed bosonic

states

Even though superresolution had large advance both theoretically [14–25] as well

experimentally [26–33] the current measurement strategies, e.g. SPADE [2] re-

quire exact knowledge of the centroid of the distribution. Any misalignment of

the measurement device with respect to the centroid’s position causes superres-

olution loss, although it is still better than performing direct imaging [34, 135].

If more parameters are to be inferred—such as separation, relative intensity, and

centroid—it is known that no fixed measurement strategy, extracting informa-

tion from each boson separately, can achieve the ultimate precision for all relevant

parameters [18].

Here I propose an alternative, collective measurement strategy for estimating

the separation between two incoherent point sources, with equal intensities or

with known relative intensity without recourse to additional nuisance parame-

ters. In this collective measurement strategy I analyze the symmetries under

exchange of N bosonic systems [136, 137] possessing either finite or infinite di-

mensional degrees of freedom, and achieving linear scaling with sample size for
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separation estimation between two sources of arbitrary brightness. For reasons

that will become clear later, I shall refer to this measurement as the spectrum

measurement [138].

I

q

1-q

Figure 4.10: Illustration of two sources with arbitrary intensities for separation

estimation.

In this section I first explain the collective measurement for estimating the

separation in N = 2 copies of the two incoherent point sources based on the

bunching and coincidence counts in the Hong-Ou-Mandel interference and I dis-

cuss how this measurement is equivalent to the SWAP test. Later I generalize

this approach to the estimation in N copies of the two point sources state.

4.3.1 The SWAP test and the Hong-Ou-Mandel effect

In this section I describe the SWAP test whose measurement statistics provide an

estimate of the overlap between two quantum states (Sec. 4.3.1) [120], as well as,

the implementation of this measurement using the Hong-Ou-Mandel interference

effect [119] and the application of this approach in super-resolution [30].

Let |Ψ1〉, |Ψ2〉 be two states and consider the task of estimating their overlap

|〈Ψ1|Ψ2〉|. One circuit that achieves this is shown in Fig. 4.11, where H is the

Hadamard transformation

H|0〉 =
|0〉+ |1〉√

2
H|1〉 =

|0〉 − |1〉√
2

(4.32)

and the unitary gate U corresponds to the controlled SWAP operator

U |Ψ1〉|Ψ2〉 = |Ψ2〉|Ψ1〉. (4.33)
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H

U

H

Figure 4.11: Quantum circuit for the SWAP test used to estimate the overlap

between states |Ψ1〉, |Ψ2〉. An ancillary system is used to provide the control

for the controlled unitary gate U which implements the SWAP. Discarding the

last two registers, a measurement in the computational basis of the ancilla has

measurement statistics that directly depend on the overlap between the two states

(see Eq. (4.35))

.

The state of the circuit after the second Hadamard is given by

|Ω〉 =
1√
2

(
|0〉 ⊗ |Ψ1〉|Ψ2〉+ |Ψ2〉|Ψ1〉√

2

+|1〉 ⊗ |Ψ1〉|Ψ2〉 − |Ψ2〉|Ψ1〉√
2

)
. (4.34)

The SWAP test is performing a measurement on the symmetric and antisym-

metric spaces of the bipartite state |Ψ1〉|Ψ2〉 such that the probabilities for each

measurement outcome are given by

P0 =
1 + | 〈Ψ1|Ψ2〉 |2

2
P1 =

1− | 〈Ψ1|Ψ2〉 |2

2
, (4.35)

where P0 is the probability of measuring state |0〉 after the circuit, and P1 is the

probability of detecting |1〉 after the circuit.

Hence, by repeating this measurement on several copies of the states |Ψ1〉, |Ψ2〉,
one can extract an estimate of their overlap from the statistical distribution over

the measurement outcomes.

Bunching Anti-bunching

Figure 4.12: Image depicting the photons path in entering a 50:50 beam splitter

simultaneously, as in the Houng-Ou-Mandel interference experiment.
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The SWAP test has been used as a measure of how much two states dif-

fer [139], the more similar the states, the larger is the symmetric probability or

bunching in the beam splitter, and the more different two states are, the larger

the antisymmetric probability or anti-bunching probability.

In a more fundamental approach, the SWAP test quantifies the overlap or in-

terference between quantum states [140, 141], in the simple example of a product

state ρ = ρ1 ⊗ ρ2 = |Ψ1〉〈Ψ1| ⊗ |Ψ2〉〈Ψ2|, the SWAP test of ρ is

α = Tr [Uρ1 ⊗ ρ2] = Tr [ρ1.ρ2] = | 〈Ψ1|Ψ2〉 |2, (4.36)

this can be implemented in a circuit similar to Fig. 4.11 with input ρ1 and ρ2,

giving the symmetric and antisymmetric probabilities as a function of the overlap

PS =
1 + α

2
PA =

1− α
2

. (4.37)

Applying the SWAP test in two copies of the two photon state defined in

Eq. (4.5), i.e. ρ1 = ρ2 = ρ
(2)
1 gives the following overlap

α = Tr
[
Uρ

(2)
1 ⊗ ρ

(2)
1

]
= Tr

[(
ρ

(2)
1

)2
]

=1− 2q(1− q)
(
1− | 〈ΨL|ΨR〉 |2

)
,

α

∣∣∣∣
q= 1

2

=
1

2

(
1 + | 〈ΨL|ΨR〉 |2

) (4.38)

The SWAP test was implemented for superresolution exploiting the Hong-

Ou-Mandel effect [30]. There, the state of Eq. (4.5) is simulated in a single pho-

ton using the polarization degree of freedom with q = 1/2. Two such photons

are sent through a perfectly balanced 50-50 beam splitter and are subsequently

subjected to spatially resolving detectors at the output. The bunching and co-

incidence counts—which correspond to measuring the total angular momentum

of the polarization degree of freedom of the two photons respectively—allow for

superresolution of the separation ε, whereas the position of the photons in the

detector allows for precise estimation of the centroid.

In the next section I discuss a generalization of the SWAP test to process N

particles collectively. Such measurement strategies are known to outperform the

SWAP test in overlap estimation [121, 122]. I now introduce this measurement,

which relies on the concept of Schur-Weyl duality [142].

4.3.2 Spectrum Measurements

Consider then, the case of N bosons each prepared in rank-d state ρ ∈ B(H) [143],

given by

ρ =

d∑
k=1

λk |λk〉〈λk|. (4.39)
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where λk are the eigenvalues and |λk〉 the eigenvectors.

Without loss of generality the spectrum of ρ in non-increasing order so that

λ ∈ [0, 1]d, λk ≥ λk+1. In this scenario, d = 2 but we can assume the general

case of d ≥ 2. Observe that ρ⊗N is invariant under any permutation, σ ∈ SN ,

of the N bosons, i.e., [ρ⊗N , Tσ] = 0, ∀σ ∈ SN where T : SN → U(H⊗N ) is a

homomorphism of the permutation group to a set of unitary operators on H⊗N .

It follows that

ρ⊗N =
1

N !

∑
σ∈SN

Tσ ρ
⊗N T †σ

:= GSN [ρ⊗N ],

(4.40)

where I have defined the completely positive, trace-preserving map GSN : B(H⊗N )→
B(H⊗N ). Eq. (4.40) tells us that including permutation symmetry, the state of

our N photons obtains a special form determined fully by the representation T

of SN .

Specifically, the Hilbert space associated to the relevant degrees of freedom of

the N bosons, H⊗N , carries two natural representations; that of SN introduced

above, and that of the special unitary group, U⊗N : SU(d)→ U(H⊗N ). Observe

that the two representations commute, which is crucial, since then by Schur-

Weyl duality [142] and Schur’s lemmas [144], there exists a particular choice of

orthonormal basis in which H⊗N assumes the block diagonal form

H⊗N ∼=
⊕
Y

UY ⊗ PY . (4.41)

The set Y are known as Young frames; an arrangement of N boxes into at

most d rows with the restriction that the number of boxes in any row cannot

exceed those above it (see Fig. 4.13),

Y :=

{
(Y1, . . . , Yd) | Y1 ≥ Y2 ≥ Y3 ≥ . . . ≥ Yd,

d∑
k=1

Yk = N

}
. (4.42)

The subspaces UY , PY carry the irreducible representations U (Y ) : SU(d) →
U(UY ) and T (Y ) : SN → U(PY ) of the special unitary and permutation groups

respectively. The fact that both irreducible representations are labelled by the

same Young frame is a consequence of the commutativity of the two representa-

tions. Particularly, U⊗N and T decompose as

U⊗Ng
∼=
⊕
Y

U (Y )
g ⊗ 1l, ∀ g ∈ SU(d)

Tσ ∼=
⊕
Y

1l⊗ T (Y )
σ , ∀σ ∈ SN .

(4.43)
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Figure 4.13: The Young frames of partitioning 5 into at most two parts. The

vectors λ̂ ∈ (0, 1)2; λ̂ = Y
N are the corresponding estimates of the eigenvalues of

ρ ∈ B(H3).

In this basis decomposition, the state in Eq. (4.40) takes the particularly simple

form (see Supplemental document)

ρ⊗N =
⊕
Y

p(Y )ω(Y ) ⊗ 1l

|PY |
, (4.44)

where |PY | denotes the dimension of space PY , ω(Y ) ∈ B(UY ) and p(Y ) =

Tr(EY ρ
⊗N ), where {EY } are given by

EY =

|UY |∑
M=1

|PY |∑
α=1

|Y,M,α〉〈Y,M,α|, (4.45)

with |Y,M,α〉 ∈ UY ⊗ PY an orthonormal basis.

Define the set

ΣN :=

{
Y

N
∈ [0, 1]d | Y1 ≥ Y2 ≥ . . . ≥ Yd ≥ 0,

1

N

d∑
k=1

Yk = 1

}
,

(4.46)

and observe that Y
N are multinomial distributions with λk = Yk/N, k ∈ (1, . . . , d).

More abstractly, they are measures on [0, 1]d. For example the set of possible

measures for N = 5, d = 2 are shown in Fig. 4.13. As N increases the set ΣN
becomes denser and denser and in the limit N → ∞ the set Σ := limN→∞ΣN
becomes the full set of measures on [0, 1]d.

Now, consider a subset ∆ ⊆ ΣN . The probability that the spectrum of ρ

belongs in this subset is given by

pN (λ ∈ ∆) = tr
(
EN (∆)ρ⊗N

)
(4.47)
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Keyl and Werner [138] proved that

lim
N→∞

∑
Y

f

(
Y

N

)
tr
(
EN (Y )ρ⊗N

)
= f(λ), (4.48)

for any continuous function f : ΣN → R. Thus, in the limit of large N , the

integral over the set of measures ΣN is dominated by a single spectrum, that of

ρ. Specifically, the probability that the absolute error Y
N −λ is greater than some

δ > 0 is given by the Chernoff-Hoeffding bound

pN

(∣∣∣∣ YN − λ
∣∣∣∣ > δ

)
≤ e−ND( YN ||λ), (4.49)

and in the limit of large N the probability of making an error in estimating

the true spectrum λ using the estimator Y
N and the statistics of the POVM of

Eq. (4.45) decays exponentially with the relative entropy between the two spectra.

For d = 2, corresponding to bosons with a polarization degree of freedom,

the integer partitions are in one-to-one correspondence with the total angular

momentum of N spin-1/2 systems

J(Y ) =
N

2
− n2, (4.50)

and the corresponding measurement operators are given by

EJ =

J∑
M=−J

|PY |∑
α=1

|J,M,α〉〈J,M,α|, (4.51)

with M the quantum number associated with the projection of angular momen-

tum along some reference ẑ-direction. In our case this direction can be chosen

to be the projection in the spatial modes that diagonalize the density matrix of

Eq. (4.5).

This measurement has been used extensively in quantum information the-

ory [121, 122, 145–147], it is often referred to as the weak Schur sampling measure-

ment. The relevant transformation is the Schur transform—the unitary transfor-

mation that maps the uncoupled product basis to the total angular momentum

basis.

In the next section I study the performance of the spectrum measurement in

terms of its resolving power.
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4.3.3 Precision estimation using the spectrum measure-

ment

The state ρ of Eq. (4.5) is of rank-2 with eigenvalues given by

λk =
1 + (−1)kr

2
, (4.52)

where r =

√
1− 4q(1− q)(1− |〈ΨL|ΨR〉|2) is the state’s purity. Defining the

eigenbasis of ρ as our z-axis, the conditional state and probability distribution

ω(J), p(J) in Eq. (4.44) for a given total angular momentum value are given

by [148]

p(J) =

(
1− r2

4

)N
2
(

N
N
2 − J

)
2J + 1

N
2 + J + 1

ZJ

ZJ =

J∑
M=−J

RJ =
RJ+1 −R−J

R− 1

R =
1 + r

1− r

ω(J) =
1

ZJ

J∑
k=−J

Rk|J, k〉〈J, k|.

(4.53)

With this in hand we can compute the Fisher information, F (p(J)), for es-

timating the separation of two incoherent bosonic sources with known relative

intensity, using the spectrum measurement. As F(ρ⊗N ) = NF(ρ), I compare

the Fisher information per boson of this measurement to the QFI finding

lim
N→∞

F (p(J))

N
= 4q(1− q)1

4
= WF(ρ), (4.54)

where W = 4q(1− q).
In Fig. 4.14 I plot the Fisher information of the spectrum measurement as a

function of the separation, ε, between the two sources. For q = 1/2 the Fisher

information per boson for separation estimation approaches the QFI for all values

of ε, demonstrating the super resolving power of the spectrum measurement.

Notice that for N = 2 the spectrum measurement is equivalent to the SWAP test

and I recover the Fisher information of [30]. One observes how the addition of just

one more boson increases the Fisher information from
(

1
8 + 5

128ε
2
)

to
(

1
6 −

ε2

24

)
.

4.3.4 Collective measurement implementation

To optimally estimate two incoherent point sources is a measure of their overlap

in the desired degree of freedom. As discussed in the last section, this is a mea-
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Figure 4.14: Fisher Information as a function of the separation ε, of the spec-

trum measurement strategy for different number of bosons. I analyse the results

for equal relative intensities q = 0.5. The blue results are the FI of ε for different

number of bosons. The solid line is the QFI. The inset shows the scaling of the

FI as a function of the number of copies for ε = 0.2.

sure of the symmetry under exchange of particles or the N bosons total angular

momentum. This measurement is very important due to its non-destructive char-

acteristic, i.e. it does not require particle absorption, allowing post-processing

of the bosonic radiation, this is a key feature in estimating multiple parameters.

The most efficient method to process N bosons are using quantum memories [149]

and multi-core fiber optical fibers (or integrated circuits) [150, 151].

The general state ρ⊗N does not live in the bosonic symmetric subspace. It

describes the semi-classical state of N bosons multiplexed in different modes

(spatial, temporal, polarization or frequency). Depending on which mode the

state is multiplexed, different quantum memories are optimal for the task. For

example, spatial temporal and polarization modes can be stored faithfully using

electron spins [124, 152–157] or atomic ensembles [125–127, 158], whereas fre-

quency modes can be mapped into NV centers [159] or trapped ions [160, 161].

From the existing techniques, super-resolution has been measured in the

time/frequency degrees of freedom, using non-collective measurements. The

atomic ensemble of Rydberg atoms placed in a gradient magnetic field can achieve
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spectral/temporal multiplexing, allowing for projective measurements in super-

positions of the spectral modes [158].

To estimate the separation between two photons in the spatial degree of free-

dom the cold atoms memories are the most promising technique, as this type

of quantum memories is able to store the photons with its respective spatial

modes. The spatial modes can be multiplexed in ensembles of atoms sequentially

separated. After the storage, a collective measurements of the total J2 angular

momentum on all photons stored must be implemented [162]. With the chal-

lenges in storage-retrieval times probably up to four photons can be store with

the current technology.

Alternatively, this collective measurement could be implemented with multi-

port beam splitters, optical devices capable of measuring the photons distin-

guishability. In this setting, each copy of state ρ is input simultaneously in the

multi-port beam splitter, based on the probability outputs of the device, the

two sources separation is estimated based on the photons distinguishability. The

simplest example of a multi-port beam splitter is a tritter [163–165], it consists

of a three mode interference, it has been implemented with different optical se-

tups [166, 167]. Other types of multi-port beam splitters rely on the fabrication

of specially designed multi-core fibers, in which the choice of cladding controls

the number of spatial modes allowed. In experimental setup, N separated fibers

are bended together in a middle point, in which the interference of the spatial

modes occurs. Then the photons are detected in N separated outputs. As these

devices are extensions of the Hong-Ou-Mandel effect for more than two photons,

the combinations of detectors clicking measures the photons distinguishability

probability, therefore the two sources separation. The multi-port beam-splitters

were implemented in [150, 151].

In parallel with this work, I have been working on multiparameter estimation

using angular momentum measurements. More specifically, to estimate both the

relative intensity, as well as the separation of the two incoherent point sources.

The preliminary results indicate a post-measurement procedure is required to

estimate relative intensity, projecting into superpositions of the spatial modes as

in [168]. This measurement strategy corresponds to a collective measure of the

total angular momentum J2 and along a direction n̂ of the angular momentum

Jn̂.

Note: In the results presented in [51] I describe the collective measurement

of the total angular momentum J2, as optimal for simultaneously estimation

of both the separation and relative intensity, although, as the non-diagonal ele-

ments of the multiparameter Fisher matrix for this measurement are non-zero,

this measurement is only optimal for estimating the separation for fixed relative

intensity.



Chapter 5

A comparative study of

estimation methods in

quantum state tomography

In quantum state tomography, the prepared quantum state is reconstructed based

on the measurement experimental outcomes. The error in the tomography de-

pends not only on the experimental features, but also on the state estimation

method, this error is called confidence region. I this chapter I compare different

methods for computing the confidence regions for Least squares estimator.
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Within the current technologies quantum entangled states can be successfully

prepared [35–37], as a consequence, it is necessary to build a reliable procedure for

state tomography[38, 39], state estimation based on the measurement outcomes

of an experimental setting. There are different methods to compute confidence

regions [3, 40–44]. These depend on the number of state prepare-and-measure

rounds and on the chosen measurement strategies. They differ in the loss func-

tions mean errors, on the asymptotic probabilities, and on the estimators low

rank behaviour. Hence, truthful error bars, based not only on the experimental

uncertainty, but also on the state estimations methods. The error in tomography

procedures is called confidence region.

There are different methods for state estimation, for example, the Maximum

Likelihood estimator [60, 169]. The error in this method is available only for

mixed states [170], more specifically in the regime where local asymptotic nor-

mality holds. I will focus on comparing the confidence regions for the Least

squares estimator.

As shown in Sec. 2.2 it is possible to extract the frequency of a measurement

outcome from the data sampled, which yields the corresponding probability in

the limit the experiment is repeated many times. If the quantum state is known

this probability results from Born rule as pi = Tr[Eiρ], for each measurement

operator Ei. One way to estimate the quantum state is by minimizing the dif-

ference between the frequency of a measurement outcome and its corresponding

probability distribution. For example, using the Least squares minimization [171]

ρ̂ = argmin
ρ∈Hd

m∑
i=1

(fi − Tr(Eiρ))
2
. (5.1)

where fi is the frequency of outcome i, Ei is the POVM measurement and ρ

is the state over which the minimization will occur, under the conditions for a

physical state, i.e. positive semi-definiteness ρ ≥ 0 and Tr[ρ] = 1.

Eq. (5.1) has a explicit solution based on properties of the Born rule. It is

an injective linear map T : Hd → Rm, such that [T (ρ)]i = Tr[Eiρ], then the

estimator is [40]

ρ̂ =
(
T †T

)−1 (T †(f)
)
, (5.2)

this is called the Least squares estimator, and f is the vector of frequencies of

measurement outcomes, defined in Eq. (2.14).

This shows the estimator depends directly on the measurements performed.

I will focus on the most common measurement implemented in an experimental

The sequence of independent and identically prepared quantum states approaches a normal

(gaussian) distribution



Confidence Region 83

setup; the Pauli basis measurement. In this strategy each qubit is measured

locally in the Pauli basis.

σx =

(
0 1

1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0

0 −1

)
(5.3)

For a single qubit, there is a cartesian view of the measurement process using

the Bloch sphere, in which the Pauli basis measurements are projection operators

on the Bloch sphere axis.

Figure 5.1: Bloch representation of Pauli measurements for a single qubit.

The tomography scheme is general for k qubits, the Pauli basis measurement

strategy, corresponds to projections in tensor products of the Pauli matrices, such

that there are 3k combinations of measurement operators. Each measurement set-

ting is the tensor product of k pauli matrices s ∈ {σx, σy, σz}k with 2k outcomes

o ∈ {±1}k, and it can be written as the measurement operatorWk = |wso〉〈wso|.

5.1 Confidence Region

A confidence region is the region in the state’s space in which the quantum state

can be found with high probability. Before discussing the different methods to

compute this region I first define the quantum state in the Bloch representation.

For one qubit, this vector is a tri-dimensional vector in the Bloch sphere, whereas,

for k qubits it is a vector of d2 − 1 components with d = 2k, and the density

matrix is

ρ =
1

d

(
1 +

√
d(d− 1)

2
r ·W ′

k

)
(5.4)
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where r belongs to the Euclidean metric of Rd2−1 representing the state in the

Hilbert-Schmidt metric S(Hd). Here I denote W ′
k as the observables of the

quantum state, which for multiple qubits must include also the identity s′ =

{1, σx, σy, σz}k, here I assume any projection with W ′
k can be obtained tracing

out elements of projections with Wk. Similarly, each measurement strategy Ei
is a function of a {d2 − 1} dimensional vector ηi as

Ei =
1

mi

(
1 +

√
d(d− 1)

2
ηi ·W ′

)
, (5.5)

where mi is the weight of each outcome, in case all measurements have equal

weights mi = m = 2k.3k.

There are different methods to compute the confidence regions, the optimal

figure of merit for confidence regions comparison is still under investigation. Here

I choose two of the the most relevant methods for building confidence regions.

5.1.1 Polytope regions

In the method of Wang et. al. [3], each measurement strategy defines a half-plane

and the enclosed region inside the intersection between all the half planes defines

the confidence region. The region is based on the POVM element Ei and on the

measured frequency fi = ni
N of the corresponding outcome, the intersection of all

half-spaces, for all the measurement POVM elements, then defines the confidence

region.

Γi(ni) =

{
σ ∈ S(Hd) : tr (Eiσ) ≤ ni

N
+ εN

(
ni,

δ

m

)}
, (5.6)

where m is the total number of measurements and 1−δ is the desired confidence.

Γi(ni) sets the polytope plane, and the confidence region is Γ(n) =
⋂

Γi(ni).

Here εN
(
ni,

δ
m

)
is the positive root solution of the relative entropy equation

D(x||y) = x log(x/y) + (1− x) log[(1− x)/(1− y)] with parameters

D
(ni
N

∣∣∣∣∣∣ni
N

+ εN

)
= − 1

N
log

[
δ

m

]
. (5.7)

Taylor expanding Eq. 5.7 for εN ≈ 0 gives the following expression for the

positive root

εN '

√
2 log

[
δ

m

]
(ni −N)ni

N3
(5.8)

For example in the measurement strategy chosen for comparison the half-

spaces form a polygon. In the single qubit scenario, the confidence region is a

cube in the Bloch sphere.
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Figure 5.2: Bloch representation one qubit estimation in z direction with poly-

tope confidence region of [3] performing Pauli basis measurement.

In this work, the authors relate this method of computing confidence regions

with the Clopper-Pearson confidence intervals, a method for calculating binomial

confidence intervals1 based on the cumulative probability of the binomial distri-

bution. This comparison ensures this region is in the chosen confidence level, as

this confidence intervals never result in an overestimation of the confidence level.

5.1.2 Least squares confidence region

In the work of M Guţă et. al. [40], the authors derived the error bound in

estimating a state using the least squares estimator and projected least squares

estimator2 . The bound states the probability of finding an estimate within a

region is not larger than δ (δ = 1 − confidence). This sets a length in the trace

norm of the difference between the estimated state and the true state. For the

Least squares estimate this bound is

Pr [‖ρ̂LS − ρ‖∞ ≥ τ ] ≤ de−
−3Nτ2

8d1.6 τ ∈ [0, 1] , (5.9)

where ‖·‖∞ it is the operator norm which corresponds to the largest eigenvalue,

d = 2k and N total number of measurements, as in the last subsection. The

desired confidence 1 − δ is imposed by solving for τ the r.h.s. of Eq. (5.9) as

de−
−3Nτ2

8d1.6 = δ.

1. is a confidence interval for the probability of success [80] based on the outcomes of a

series of success–failure experiments
2. I will restrict my analysis to the Least squares estimate, as the projected Least squares

estimator requires a number of copies of the initial state larger than the scope of this thesis
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This method relies on minimizing the least squares function, as in the example

of Eq. 5.1, defining the measurement strategies as local Pauli basis measurements.

The solution to Eq. 5.2 has a closed form expression [40]

ρ̂LS =
1

3k

∑
s,o

fs,o

k⊗
i=1

(3Wk − 1) . (5.10)

where the frequency fsi,oj of a measurement setting si and output oj ,
nsi,oj
N .

In this method with Pauli basis measurement, the confidence region is an

ellipsoid, with principal axis related to the norm ‖ρ̂LS − ρ‖∞. For one qubit this

corresponds to an ellipsoid around the least squares point estimate in the bloch

sphere.

5.2 A comparative study

In this section I propose a comparison method for the confidence regions de-

scribed. This methods is general for confidence regions comparison, and it was

implemented by means of numerical simulations.

5.2.1 Non-intersecting regions

In this method I estimate two states ρ̂1 and ρ̂2 and find the confidence region

of each of them, Cρ̂1 and Cρ̂2 . For small data size N the confidence region for

each state can be as large as the state space and the probability of finding an

arbitrary state ρ̂f in the intersection Cρ̂1
⋂
Cρ̂2 is always 1. However, increasing

the data size sampling N , reduces the size of the confidence region, such that

this probability slowly decays to zero, I will define such probability as κ

κN = Pr

[
ρ̂f ∈

2⋂
i=1

Cρ̂i

]
. (5.11)

The state ρ̂f results of a convex optimization, using semi-definite programming.

The probability κ is the the frequency ρ̂f is found in the intersecting regions,

after large number of repetitions the two-states estimation for a fixed data size

N .

Here I add a scheme after a simulation of this procedure for the method of

polytope regions. It is the estimation of two one-qubit state, ρ1 = |z〉〈z| and

ρ2 = 1.

In comparing confidence regions, it is very important not to overestimate

the region for a desired confidence. This is the basis of the intersecting regions



A comparative study 87

Figure 5.3: Bloch representation two one-qubit state estimation ρ1 = |z〉〈z| and

ρ2 = 1. For N = 104 and confidence 0.99, the regions do not intersect.

method. After repeating the simulations with different states; I observe the

following behaviour for a single qubit. The polytope regions method gives a

tighter region, as the regions stop intersecting for a smaller value. Whereas for

two or more qubits the Least squares confidence region is tighter, an example of

this result is presented in Fig 5.4.

In this section I have presented a novel method to compare confidence re-

gions, which showed different methods are optimal depending on the number of

qubits. For a single-qubit tomography procedure, the confidence region must

be computed using the polytope method, whereas, for two or more qubits the

confidence region must be computed using the Least-squares confidence region

method.
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Figure 5.4: a) Polytope intersection for single-qubit states ρ1 = |z〉〈z| and

ρ2 = 1 with confidence 0.9. b) Polytope intersection for two-qubit states, Bell

state ρ1 = |Φ+〉〈Φ+| and ρ2 = 1 with confidence 0.9. c) b) Polytope intersection

for three-qubit states ρ1 = GHZ and ρ2 = 1 with confidence 0.9.



Chapter 6

Conclusions and Outlook

In this thesis I approach fundamental limits in optics, showing how quantum me-

chanics is a useful resource to find measurement strategies capable of transpassing

the classical limits in resolution and interference. In Chap. 3 and 4 I discuss how

to apply the theoretical results to design more precise experiments. In Chap. 5 I

discuss fundamental definition for the error in quantum state tomography.

In this section I discuss how some of the results in this thesis will be useful

in future projects.

On interference experiments, in Chap. 3 I discussed a measurement strategy

capable of measuring nonclassical paths in the double-slit experiment. Moreover,

to study the behaviour of nonclassical paths in different setups would provide

a unified framework for this results. For example analyzing the nonclassical

paths in the Mach-Zehnder interferometer, as this two setups have similar prop-

erties [172–174] this results could provide a more complete description of the

nonclassical paths.

In Chap. 4 of this thesis, I discuss measurements capable of resolving the

separation of two incoherent sources bellow the Raylegh criteria. I analyse the

spatial mode demultiplexing (SPADE) measurements and its dependence on the

exact knowledge of the centroid of the distribution. I propose the ROTADE

measurement, which depend only on the zeroth and first demultiplexing modes,

and I show how to mitigate misalignment in demultiplexing measurements. In

addition, I exploit the symmetry of the two-sources quantum state to estimate

their separation using collective measurements strategies of the total angular

momentum. The natural follow-up of the last project, is currently a work in

progress of solving the general problem in which the two source relative intensity

is not know beforehand. As the results in the literature show, it is not possible

to find a measurement strategy capable of simultaneously estimating the two
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sources separation and intensity, this indicates the spectrum measurement due

to its collective and non-destructive properties, followed by a post-measurement

strategy would suit for estimation of both parameters. Moreover, an outlook of

this project is to analyse if the limit of asymptotic number of copies of the initial

two photons state behaves as coherent states.

In the last topic of this thesis, I discussed how to derive the error in quantum

state tomography called the confidence regions. The method used showed differ-

ent methods are optimal depending on the number of qubits. As a follow-up of

this results a comparison of the quantile of the distribution could give a different

figure of merit for confidence regions comparison.



Appendix A

Appendix Measuring

nonclassical paths with

atoms in the double slit

experiment

A.1 Nonclassical paths wave function

In this appendix we define the constants used in Eq.( 3.8-3.10):

Γc = − imβ

π1/4
√
−imσ0 + t~

σ0

.

× 1√
−im2β2σ2

0+m(tβ2+(β2+σ2
0)τ)~+itτ~2

mσ2
0+it~

(A.1)

c0 = − m(d2mσ2
0 + id2(t+ τ)~)

8m2β2σ2
0 + 8im(tβ2 + (β2 + σ2

0)τ)~− 8tτ~2
(A.2)

c1 =
m(4dmσ2

0 + 4idt~)

8m2β2σ2
0 + 8im(tβ2 + (β2 + σ2

0)τ)~− 8tτ~2
(A.3)

c2 = − m(4m(β2 + σ2
0) + 4it~)

8m2β2σ2
0 + 8im(tβ2 + (β2 + σ2

0)τ)~− 8tτ~2
(A.4)
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Γnc = −
m3/2β2

(
− 1
π

)1/4√
−imσ0 + t~

σ0

1√
−im2β2σ2

0+m(tβ2+ε(β2+σ2
0))~+itε~2

mσ2
0+it~

. (A.5)

× 1√
−im3β4σ2

0+m2β2(tβ2+β2(ε+τ)+σ2
0(ε+2τ))~+im(ε(β2+σ2

0)τ+tβ2(ε+2τ))~2−tετ~3

m2β2σ2
0+im(tβ2+ε(β2+σ2

0))~−tε~2

c′0 = − m(2d2m2β2σ2
0 + id2m(2tβ2 + 2β2(ε+ τ) + σ2

0(ε+ 4τ))~− d2(ετ + t(ε+ 4τ))~2)

8(m3β4σ2
0 + im2β2(tβ2 + β2(ε+ τ) + σ2

0(ε+ 2τ))~−m(ε(β2 + σ2
0)τ + tβ2(ε+ 2τ))~2 − itετ~3)

(A.6)

c′1 = − m(4idmε(β2 + σ2
0)~− 4dtε~2)

8(m3β4σ2
0 + im2β2(tβ2 + β2(ε+ τ) + σ2

0(ε+ 2τ))~−m(ε(β2 + σ2
0)τ + tβ2(ε+ 2τ))~2 − itετ~3)

(A.7)

c′2 = − m(4m2β2(β2 + 2σ2
0) + 4im(2tβ2 + ε(β2 + σ2

0))~− 4tε~2)

8(m3β4σ2
0 + im2β2(tβ2 + β2(ε+ τ) + σ2

0(ε+ 2τ))~−m(ε(β2 + σ2
0)τ + tβ2(ε+ 2τ))~2 − itετ~3)

(A.8)

The parameter constants used are

m = 1.44.10−25kg, d = 5µm, σ0 = β = 0.3µm,

t = τ = 5ms, and ε = 2.9ms.
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A.2 Probability distribution including intra-cavity

photodetection

The time evolution of the density matrix [state in Eq. (3.19)], setup with cavities

in both slits including the beam splitter and intracavity photodetectors P+ and

P−, where the photodetection occurs at individual time intervals, such that the

density matrix is calculated solving:

ρ(t) = e−ΓNtρ(0)e−ΓNt + 2Γ
∑

s=−,+

∫ t
0
dt′e−ΓN(t−t′)ase

−ΓNt′ρ(0)e−ΓNt′a†se
−ΓN(t−t′)+

+(2Γ)2
∑

s,s′=−,+

∫ t
0
dt′
∫ t′

0
dt′′e−ΓN(t−t′)ase

−ΓN(t′−t′′)as′e
−ΓNt′′ρ(0)e−ΓNt′′a†s′e

−ΓN(t′−t′′)a†se
−ΓN(t−t′)+

+(2Γ)3
∑

s,s′,s′′=−,+

∫ t
0
dt′
∫ t′

0
dt′′
∫ t′′

0
dt′′′e−ΓN(t−t′)ase

−ΓN(t′−t′′)as′e
−ΓN(t′′−t′′′)as′′e

−ΓN(t′′′)ρ(0)e−ΓNt′′′a†s′′e
−ΓN(t′′−t′′′)a†s′e

−ΓN(t′−t′′)a†se
−ΓN(t−t′)

where N is the number of photons operator and Γ is the cavity width. Equa-

tion (A.2) is obtained under the assumption photodetection is a stochastic jump

process [175–177]. The first term corresponds to the probability of zero photon

absorption, the second term corresponds to the probability of a single photon

absorption, the third is the two photon absorption and the last is three photon

absorption.

In the limit of long interaction time, Γt→∞, both 1
6

(
e2Γt − 1

)3
and 1

2

(
e2Γt − 1

)2
tend to 1.
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Table A.1: Probability distribution at each single photodetection, the order of

+ and − signs correspond to the temporal order of the photodetection.
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Appendix Discrimination

and estimation of incoherent

sources

B.1 Error probability - Hypothesis Testing

In this section I explain some details of the discrimination scenario of one-vs-two

sources. The first step is to write ROTADE measurement vectors (Eq. 4.21) in

the spatial representation as

E1(x, y) = 〈x|Ψ1(θ)〉〈Ψ1(θ)|y〉 =

(
sin

θ

2
Ψ(x− xD) + cos

θ

2

(
−Ψ̇(x− xi)√

N

∣∣∣∣
xi=xD

))
.(

sin
θ

2
Ψ(y − xD) + cos

θ

2

(
−Ψ̇(x− xi)√

N

∣∣∣∣
xi=xD

))

E2(x, y) = 〈x|Ψ2(θ)〉〈Ψ2(θ)|y〉 =

(
− cos

θ

2
Ψ(x− xD) + sin

θ

2

(
−Ψ̇(x− xi)√

N

∣∣∣∣
xi=xD

))
.(

− cos
θ

2
Ψ(y − xD) + sin

θ

2

(
−Ψ̇(x− xi)√

N

∣∣∣∣
xi=xD

))
(B.1)

where Ψ̇(x − xi) = ∂Ψ(x−xi)
∂xi

, E1(x, y) is the spatial representation of the nega-

tive projector of the Helstrom measurement |Ψ1(θ)〉〈Ψ1(θ)|, and E2(x, y) is the

spatial representation of the positive projector of the Helstrom measurement

|Ψ2(θ)〉〈Ψ2(θ)|.
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The density matrix projected in the spatial representation is

ρ(1)(x, y) =〈x|ρ(1)|y〉 = Ψ(x− x0)Ψ(y − x0)

ρ(2)(x, y) =〈x|ρ(2)|y〉 =
1

2
Ψ(x− xL)Ψ(y − xL) +

1

2
Ψ(x− xR)Ψ(y − xR) (B.2)

And error probability is therefore the integral of x and y in the interval

[−∞,∞]

p(f(y) = H(j)|H(i)) =

∫
dy

∫
dxEj(x, y)ρi(x, y) (B.3)

with j 6= i.

To obtain the Chernoff exponent (Eq. 2.44) requires a numerical minimisation

of the s exponent, explicitly dependent on the parameter θ.
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B.2 Estimating the separation between Sinc-Bessel

modes under misalignment

In this appendix section, we present the results of estimating the separation

between two incoherent point sources imaged by a system with a rectangular

aperture. The PSF of such a system is given by the Sinc function (see Eq. (2.3)).
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Figure B.1: Rectangular aperture: Fεεn for the equivalent to ROTADE mea-

surement, as a function of separation for a rectangular aperture with σ = 1 for

different misalignments.

Repeating the calculation in Section 4.2.3 the eigenvalues and corresponding

eigenvectors of ρ
(2)
S are:

µ1(ε) =
ε2

3
, |ψ1(θ)〉 = sin

θ√
3
|0〉+ cos

θ√
3
|1〉

µ2(ε) = 1− µ1(ε), |ψ2(θ)〉 = − cos
θ√
3
|0〉+ sin

θ√
3
|1〉,

(B.4)

and using Eq. (2.31) the corresponding SLD operators are, in the eigenbasis of

{|ψ1(θ)〉, |ψ2(θ)〉} are given by

Lθ =

(
6− 4ε2

3
√

3

)
σx

Lε =
2

ε

(
1 0

0 ε2

ε2−3

)
. (B.5)
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The eigenvectors of the SLD operators can now easily be computed to be:

|θ±〉 =
1√
2

((
sec

2θ√
3
± tan

2θ√
3

)√
1∓ sin

2θ√
3

)|0〉+

+

√
1∓ sin

2θ√
3

)|1〉

)
(B.6)

|εα〉 =|ψα(θ)〉, (B.7)

The optimal measurement to detect the separation for known misalignment is

analogous to ROTADE with angle θ√
3
.

In the case of no misalignment the optimal measurement is given by the

first two Sinc-Bessel modes [178]. In the presence of misalignment the optimal

measurements furnished by the qubit model are unitarily related to the same two

Sinc-Bessel modes. The Fisher information for various values of misalignment for

the Sinc PSF are shown in Figure B.1. Similar to Sec. 4.2.3 we can analyse the

minimal resolvable distance under misalignment to estimate the separation of

Sinc PSF ε
(RSinc)
min (θ) ≈ θ3/2

4
√
n
√

5
√

33
, this is an improvement in contrast with the

minimal resolvable distance of SPADE01 ε
(01Sinc)
min (θ) ≈

4√3
√
θ√

2
.
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B.3 Discrimination of Sinc-Bessel modes

In this appendix, we present the results of discriminating one from two incoherent

point sources imaged by a system with a rectangular aperture. The PSF of such

a system is given by the Sinc function (see Eq. (2.3)). We compare the measure-

ment strategies of ROTADE and SPADE01 with the quantum Chernoff bound

in function of the misalignment, as presented in Figure B.2 and the separation,

in Figure B.3.
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Figure B.2: Chernoff exponent for Sinc PSF in function of the separation, with

misalignment 0.25, σ = 1.
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Figure B.3: Chernoff exponent for Sinc PSF in function of the misalignment,

for fixed separation 0.25, σ = 1.

Similarly to the results in the main text, we verify in the limit asymptotic

limit, ROTADE performs better than SPADE01.
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B.4 Performance of ROTADE in discrimination

Here we analyse the performance of ROTADE for the task of discriminating one

and two light sources. As ROTADE involves only thee two-dimensional subspace

spanned by the zeroth and first HG modes, an intrinsic error probability arises

when the incoming radiation couples into higher HG modes. This probability is

useful for defining the regime of validity of the qubit model.
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�

Figure B.4: Error (solid) and success (dashed) probability in function of the ref-

erence position, using ROTADE for distinguishing between one and two sources,

for different separations between the two sources.

For example Figure B.4 presents the error and success probabilities in the

regime where the centre of each distribution are aligned θ = 0. We observe

that ROTADE has constant value (less than 4% variation), e.g., at θ = 0 the

error probability has value Perr = 1
2 (Perr1 + Perr2) = 1

2

(
0 + e

−d2

4σ2

)
, and the

success probability Psuc = 1
2 (Psuc1 + Psuc2) = 1

2

(
1 + d2

4σ2 e
−d2

4σ2

)
. As d increases,

the likelihood that photons couple to higher HG modes increases and hence the

error (success) probability move further away from the priors, 0.5. This is a

consequence of the intrinsic error of the qubit model.

The intrinsic error is the distance between the sum of the error and success

probabilities from unity. It dictates until which separation and reference position

the qubit model—and consequently ROTADE—are adequate. For |θ| < 1
2 , or

when the separation between the sources is comparable to σ, ε < 1
2 , this error is

negligible. This features are presented in Figure B.5 and B.6, respectively.

In Figure B.5 we present the intrinsic error in function of the misalignment

θ. For a range of misalignments, |θ| < 1
2 , ROTADE has negligible intrinsic error.
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Figure B.5: Intrinsic error of the qubit model (PI) in function of the misalign-

ment θ, for different separations d between the sources.

Figure B.6 shows the intrinsic error in function of the two source separation ε, for

misaligned source distributions, i.e., the centroid of the two sources is different

from the center of one source (xc 6= x0). We observe, that the qubit model is

adequate when placing the measurement in between the distribution centroids

xc ≤ xR ≤ x0 (in between red and orange lines) and the intrinsic error of the

model is minimum when θ0 = θc, i.e., when the centres of the two distributions

coincide. Notice that when the centroids of the two distributions do not coincide

the ROTADE measurement will, in general, depend on the separation of the

two-source hypothesis.
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Figure B.6: Intrinsic error of the qubit model (PI) in function of the separation

ε, for different values of the misalignment for the case where the center of one

source is not equal with the two-source centroid (θc 6= θ0).
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[34] J. O. de Almeida, J. Ko lodyński, C. Hirche, M. Lewenstein, and M. Sko-

tiniotis, “Discrimination and estimation of incoherent sources under mis-

alignment,” Phys. Rev. A, vol. 103, p. 022406, Feb 2021. — p.14, 15,

71.
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