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Introduction

This thesis focuses on systemic risk. According to Wikipedia this risk is defined
as “financial system instability, potentially catastrophic, caused or exacerbated by
idiosyncratic events or conditions in financial intermediaries”. Over a number of
decades, the financial system has suffered various situations that can be classified
as systemic risk. This thesis analyses the most recent financial crises since 2008,
with the bankruptcy of Lehman Brothers, until the 2020s, with the COVID-19 Pan-
demic which also affected the financial markets. The main objective is to study the
financial market linkages using spatial dependence statistics and upper tail depen-
dence deduced from a new non-parametric estimator of copulas.

In general, this thesis proposes alternative procedures for finding the relationship
between systemic risk and spatial dependence between market returns, losses or
alternative financial risk measures. Furthermore, the last chapter proposes a new
inference using copulas which allows us to test the positive dependence between
the most extreme positive losses between different financial markets, i.e., the upper
tail dependence.

In the first chapter the feasibility and benefits of using neighbourhood relations be-
tween stock markets based on time criteria are analysed, such as the time differences
between country capitals where each financial market operates and the simultane-
ous opening hours between these markets. These criteria are compared with the
distance in kilometres between country capitals. The objective is to find clusters
between neighbouring stock indices that are associated with dependent financial
markets. We apply the idea of spatial dependence between markets and use the
Moran’s I statistic proposed by Moran (1950), calculated monthly for the period
between January 2000 and December 2015, in order to analyse the spatial depen-
dencies between market log-returns. The results show that the criterion based on
simultaneous opening hours provides more relationships between neighbourhood
markets. In addition, particularly between European markets, neighbourly relations
were more intense during the 2008 financial crisis generated by the fall of Lehman
Brothers. As a result of the events that occurred during this financial crisis, financial
institutions were anxious to detect possible neighbour relationships between mar-
kets for systemic reasons in order to identify possible new sources of risk based on
spatial dependence between indices. A Spanish version of this chapter was pub-
lished in Acuña et al. (2018), with the title “Análisis de la dependencia espacial



entre índices bursátiles”.

In Chapter 2 of this thesis the period analysed is extended until March 2021, in-
corporating Brexit and the COVID-19 pandemic in the study. This same period
between January 2000 and March 2021 is also used in Chapters 3 and 4.

Chapter 2 analyses two new dynamic distance criteria applied to stock markets
based on exogenous criteria; the well-known World Uncertainty Index (WUI) and
the proposed Google Trends Uncertainty Index (GTUI). The chapter discusses the
feasibility and benefits of these dynamic distances compared to alternative hour-
based criteria. Using the new distance criterion to obtain the Moran’s Index, the
spatial dependence between the financial indices losses of 46 stock markets is anal-
ysed.

Specifically, Chapter 2 focuses on learning more about the possible relation between
systemic risk and spatial dependence. This systemic risk is related to the most
important financial crises of the last 17 years: the bankruptcy of Lehman Brothers,
the sub-prime mortgage crisis, the crisis of European debt, Brexit and the COVID-
19 pandemic, the latter also affecting the financial markets. This second chapter
was published in Acuña et al. (2021), with the title “Dynamic distances between
stock markets: use of uncertainty indices measures”.

The aim of Chapter 3 is to study the spatial dependence between the risk measures
associated with the financial indices losses, specifically the variance (volatility) and
the Value-at-Risk (VaR). The distribution associated with these risk measures has a
strong right skewness, i.e., a long and heavy right tail, so it is important to analyse
how this can affect the inference based on the asymptotic normality of the global and
local dependency tests based on Moran’s statistic. With this aim in mind, in Chap-
ter 3, the finite sample properties of inference based on global and local Moran’s I
statistics are analysed through a simulation study that assumes that the data are gen-
erated from distributions with different shapes (symmetric, asymmetric and heavy
tailed distributions). Furthermore, we propose an alternative bootstrap based infer-
ence that improves Type I and Type II errors of asymptotic inference.

The spatial dependency between stock market risks has been discussed by using
the definition of neighbour based on exogenous criterion derived from the Google
Trends Dynamic Uncertainty Index (GTUI) proposed in Chapter 2. We show the
impact of systemic risk on spatial dependency between risk measures related to the
most significant financial crises since 2005: the Lehman Brothers bankruptcy, the

2



INTRODUCTION

sub-prime mortgage crisis, the European debt crisis, Brexit and the COVID-19 pan-
demic, the latter also affecting the market economy. The risks are measured using
the monthly variance or volatility and the monthly VaR of the filtered losses asso-
ciated with the analysed stock indices. Specifically, the global spatial dependence
between the risk measures of 46 stock markets and the local spatial dependence for
10 world reference stock markets are analysed. Chapter 3 was published in Bolancé
et al. (2022), with the title “Non-Normal market losses and spatial dependence using
uncertainty indices”.

Chapter 4 focuses on the use of a proposed new kernel estimator of the copula to
analyse the upper tail dependence between stock indices losses. A copula is a multi-
variate cumulative distribution function with marginal distributions Uniform(0,1).
This fact means that a classical kernel estimator does not work and this estimator
must be corrected at bounds, which increases the difficulty of the estimation and,
in practice, the bias correction limit may not provide the desired improvement. A
quantile transformation of marginals is a way of improving the classical kernel ap-
proach. A first study using the standard normal quantile transformation was pre-
sented by Omelka et al. (2009). The objective in the development of this chapter
lies in showing that a Beta quantile transformation is optimal, and a kernel estimator
based on this transformation is analysed. In addition, the basic properties that al-
low the new estimator to be used for inference on extreme value copulas are tested.
The results of a simulation study show how the new nonparametric estimator im-
proves the alternative kernel estimators of copulas. We illustrate our proposal with
an analysis of financial data. The application shows the Spanish index (IBEX 35)
has upper tail dependence with European neighbour markets as well as with other
markets such as those in UK, USA and Hong Kong. Chapter 4 was published in
Bolancé and Acuña (2021), with the title “A new kernel estimator of copulas based
on Beta quantile transformations”.

In general, this thesis analyses the dependence between the financial stocks indices
from different perspectives, taking into account the spatial dependence between
financial returns, financial losses and financial risk measures. Finally, the thesis
presents an innovative analysis of upper tail dependence between Spanish financial
index losses against the losses of other market indices which are more or less close.
Taken together, all this indicates that strong dependence is related to certain sys-
temic risks caused by particular financial crises, but the intensity of the dependency
changes from one financial crisis to another. Throughout the period analysed, the
sub-prime crisis is revealed as the one with the greatest spatial dependence between
financial markets. With regard to the other crises, the results depend on the analysed

3



variable, loss or risk measure. When the focus is on the risk measures, Brexit is re-
vealed as a source of dependency between financial markets. If we analyse losses,
it is the European debt crisis that reflects a strong spatial dependency between mar-
kets.

In addition to the four chapters described above, this thesis contains a final section
of conclusions and an Appendix. The latter includes some complementary results
in the form of tables and figures, the results of a procedure linked to the calculation
of the statistic proposed in Chapter 4, and the R programs used to obtain the results
of Chapters 3 and 4, in which the main methodological contributions of this thesis
are presented.
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Chapter 1

Analysis of spatial dependence between stock market
indices

1.1 Introduction

The bankruptcy of Lehman Brothers in 2008 generated a global financial crisis,
prompting the financial and/or insurance entities to seek to improve their under-
standing of the different types of relationships between markets, in order to be able
to create more efficient strategies of investment from the perspective of the assumed
risk. In practice, if managers have indices in their portfolios whose behaviour is af-
fected by the crisis or by any other circumstance, knowing the spatial relationships,
in addition to the temporary dependence, would help detect the level of contagion
between neighbouring markets. This type of information would enable the gener-
ation of better portfolios than those obtained from the classic Mean-Variance per-
spective, i.e., with higher average earnings and lower risk.

However, as this chapter goes on to analyse, the concept of proximity between
financial markets does not have to be linked to a geographical distance. Here, we
focus on spatial relationships by comparing different ways of measuring proximity
or distance between stock markets, with the aim of analysing which is the most
appropriate measure to detect the spatial relationships between financial markets.
Both types of measures, distance and similarity, can be used interchangeably and
both are related, i.e., Dij =1−Sij , where Dij and Sij are, respectively, the distance
and similarity between two financial markets i and j.

In the literature, geographical distance has been the most used measure to analyse
spatial dependence between regions. However, this type of relationship loses valid-
ity when the aim is to analyse the simultaneous behaviour of stock indices, because
they are not linked to a geographical point but rather to an hourly behaviour related
to the opening and closing moment of the stock exchanges in each market. In this



chapter, we propose relationships between indices based on hourly criteria, such as
the number of common opening hours of the financial markets associated with the
different stock indices or the time differences between countries.

To infer the spatial dependence significance in the behaviour of different regions,
spatial econometrics offers alternative statistics, among which is the global Moran’s
I statistic (see Moran, 1950) and its local version proposed by Anselin (1995). These
statistics are based on the design of a spatial weight matrix which is created from
the distances or similarities between the regions, in our case between the analysed
stock markets. Spatial dependence analysis has more commonly been carried out
for regional or urban studies; in contrast, their use in the financial field is scarce.
However, this type of tool in the financial field helps detect if there are linkages
between the different market clusters and when these linkages are produced.

The global Moran’s I statistic indicates whether a variable is distributed com-
pletely randomly over the space or, conversely, whether there is a significant associ-
ation of similar values between neighbouring regions. This statistic is characterized
by contrasting the presence of a spatial joint dependency scheme, but it is not able
to detect the existence of clusters of regions or stock markets with similar values.
With this aim in mind, the use of a local Moran’s I statistic is proposed that, as its
name suggests, is used to infer stock market by stock market the spatial dependence
each has with its neighbours.

The study of the relationships between stock indices has been approached in the
literature from alternative perspectives. Some papers have focused on analysing
possible interactions between stock indices, by implementing models that are based
on the representation of the correlation matrix between indices without taking
into account the distance between markets (see, for example, Hamao et al., 1990;
Karolyi and Stulz, 1996; Longin and Solnik, 1995; Asgharian and Bengtsson, 2006;
Martin and Dungey, 2007; Asgharian and Nossman, 2011). Alternatively, geo-
graphic and economic relationships are factors that have been used to explain the
joint movements of the stock markets. For example, using gravity models, observed
that geographic distances served to establish relationships between equity markets.
However, using a function that describes the spatial correlation between the re-
gions in an observed point pattern, called the “mark correlated function”, Eckel
et al. (2011) found that geographic proximity is irrelevant and does not influence
the correlations of stock returns when distances go beyond 50 miles. From the
semi-variogram, which helps to reflect the maximum distance of a variable in a re-
gion in the form of a point and the way this variable influences another point at
different distances, Avilés et al. (2012) concluded that the dependencies between
market returns are not related to geographic proximity but are strongly linked to
foreign direct investment. Fernandez (2011) explored the notion of spatial depen-
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1.1 Introduction

dence by formulating a spatial version of the capital asset price model (S-CAPM),
which allows alternative measures of distance between companies to be considered,
such as those based on market capitalization. The results show that there are spatial
effects between the markets. Asgharian et al. (2013) used a Durbin spatial model
to investigate the extent to which countries’ economic and geographic relationships
affect their co-movements in their stock markets: here bilateral trade turns out to be
the most adequate to capture co-variations in the returns. Arnold et al. (2013) mod-
ified the autoregressive spatial models and adapted them to the analysis of financial
returns in order to compare three different types of spatial dependency: global de-
pendencies, dependencies within industrial branches and local dependencies. Their
results show that their approach can lead to more accurate forecasts for risk mea-
sures than standard approaches based on factoring the matrix of variances and co-
variances.

Recently, Weng and Gong (2016) propose a new approach, which is based on
the use of copulas to define the matrix of spatial weights. Their model collects the
spatiotemporal dependencies and, in addition, they show how conditional volatility
is an important factor in determining the returns of the shares.

In a similar way to Avilés et al. (2012) and Asgharian et al. (2013), in this study
we use spatial statistic methods to analyse how the links of stock indices depend
on their relative distance or closeness. We compare two alternative distance mea-
sures and a similarity measure: the geographical distance between country capitals,
the time difference between country capitals and the number of hours that two fi-
nancial markets are open jointly. Specifically, in this chapter we analyse how the
distance between markets should be measured to detect possible spatial relation-
ships between a country and its closest neighbours. One of the alternative criteria
to geographic distance is the number of common opening hours of the financial
markets, which is a proximity measure. It is a measure of trade synchronization
and it has already been used by Flavin et al. (2002) as a proxy to measure the
ease of trade between two markets, interpreting that the greater the overlap in the
opening hours of the markets, the greater their relationships. Alternatively, we pro-
pose a second measure of distance between markets that consists of calculating the
time differences between the country capitals that host the analysed stock markets.
This difference is based on time zones. A time zone is a region that shares a uni-
form standard time for legal, business and social purposes. Time in any world time
zone can be expressed as a difference from Coordinated Universal Time (UTC). Fi-
nally, it should be noted that the three relationships used in this paper are exogenous
to stock market indices, thus avoiding endogeneity problems that are presented in
other relationships proposed in the literature, which are based on macroeconomic
variables.
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Chapter 1 is organised as follows. In Section 1.2 we define three types of relation-
ship between indices: the geographical distance based on the kilometres between
capitals, the time difference between cities and, lastly, the number of common open-
ing hours in the markets; we then define the global and local Moran’s I statistics. In
Section 1.3 we describe the data and the results of the analysis carried out. Finally,
Section 1.4 summarises the main conclusions of this chapter.

1.2 Methodology

1.2.1 Relationships between stock market indices

With the aim of capturing the interrelationship between stock indices, we use three
criteria: two of distances and one of similarity between financial markets. These
are formally defined as:

• D1
ij = Geographical distance between the cities i and j to which the stock

market indices belong.

• D2
ij = Time distance (in hours) between the cities i and j to which the stock

market indices belong.

• Sij = Similarity measured as common opening hours in stock markets i and
j.

By depending on a georeferenced location, the distances D1
ij and D2

ij are consid-
ered physical variables. In contrast, the similarity Sij is a relationship that does not
depend on a geographical location. It is evident that the number of hours of joint
opening in the stock markets is a measure of the commercial synchronicity, so that
the greater Sij the greater the proximity between the markets.

Once the distances or similarities relationships are defined, we obtain three
N ×N matrices, where N is the total number of stock markets analysed. When
different units of measurement are used -hours and kilometres- it is necessary to
use a transformation that makes them comparable and rescales them on the interval
[0,1]. Asgharian et al. (2013) propose a transformation that lies in the construc-
tion of contiguity matrices, that are denoted as Ck

ij , where (k = 1,2), and whose
elements are defined as:

• Let Sij be a similarity relationship, the elements of C1
ij are obtained as:

C1
ij = 1−

maxjSij −Sij

maxjSij −minjSij
∀ i 6= j. (1.1)
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1.2 Methodology

• Let Dij be a distance relationship, the elements of C2
ij are obtained as:

C2
ij = 1−

Dij −minjDij

maxjDij −minjDij
∀ i 6= j. (1.2)

This contiguity matrix ensures that the relationships between markets are be-
tween [0,1], such that, if Ck

ij is close or equal to 1 the markets i and j are close and
if Ck

ij is close or equal to 0 the markets i and j are distant. It is important to mention
that the contiguity matrix is not symmetrical, i.e., market i may be close (distant)
to market j, but this does not necessarily imply that market j is close (distant) to
market i.

1.2.2 Spatial dependency

We describe the statistics used to test whether there is spatial dependence between
financial markets; specifically, between the logarithm of the returns (log-returns)
of the stock market indices. Spatial dependency or spatial autocorrelation is the
functional relationship between a point in space and what happens in other nearby
points. In other words, the value of a variable in one area is not only explained by
its internal condition but also by what occurs in neighbouring areas. This type of
behaviour can be positive or negative, that is, if the studied phenomenon that affects
an area occurs in the rest of the surrounding areas, generating a grouping, we have
positive spatial dependence; on the other hand, negative spatial dependence occurs
when the phenomenon studied in one region is presented in the opposite way in
its neighbouring areas. In our case, when dealing with equity markets, we work
with returns or losses, therefore, positive spatial dependence will imply that if a
country has a stock market index that makes profits, the indexes of its neighbouring
countries will also obtain profits, and the same is true of losses. Negative spatial
dependence will imply greater diversification between neighbouring countries and,
therefore, the losses of some will be offset by the benefits of others. To test the
statistical significance of the spatial dependence, Moran (1950) proposes a statistic
called Moran’s I.

Let Pi,t be the closing price of market i at period t and let ri,t = log
(

Pi,t

Pi,t−1

)
be

the corresponding log-returns, the Moran’s I statistic at period t is:

It =
N

S0

∑N
i=1∑N

i ̸=jWij(ri,t− r̄t)(rj,t− r̄t)

∑N
i=1(ri,t− r̄t)2

∀ i 6= j. (1.3)

where N is the number of stock indices, Wij is the element in row i and column j
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of the spatial weights matrix W . This matrix is defined by standardizing the rows of
the contiguity matrix Ck, k=1,2 , i.e., the sum of each row of Ck is 1; S0 is the sum
of all the elements of W and r̄t is the mean of the log-returns at time t. In this chap-
ter, the It defined in (1.3) is used to test the null hypothesis of spatial independence
versus the alternative hypothesis of positive spatial dependence. Asymptotically,
the Moran’s I statistic follows a Normal distribution with known mean and variance
(see Moran, 1950). This implies that the inference based on Normal distribution
works when N is large.

Although global spatial dependence was observed for the entire sample of size
N, it is difficult to deduce results that help reach a clear decision. For this reason,
it is essential to locate which indices cause the existence of the global spatial de-
pendence. With this aim in mind, Anselin (1995) defines the local Moran’s index
that allows us to carry out the individual analysis for each stock index i. The local
spatial dependence index is:

Ii,t =
(ri,t− r̄t)∑N

i ̸=jWi,j(rj,t− r̄t)
2

∑N
j=1(rj,t− r̄t)2/N

. (1.4)

In the same way as the global index, the asymptotic distribution of the local
index is Normal and, therefore, we are able to perform the contrast defined above
individually for each stock index. 1

The inference made from the global and local Moran’s I statistics is based on the
assumption that the data are independent and identically distributed (iid) as a Nor-
mal. However, in many analyses, such as the one proposed in this paper, the data
is not normally distributed. Therefore, analysis of the effect of the non-normality
of the data on the inference based on Moran’s I is essential. Regarding this as-
pect, Griffith (2010) concludes that the assumption of normality is not essential for
asymptotic inference based on Normal distribution. 2

1.3 Empirical analysis

1.3.1 The data

In the analysis of spatial dependence between financial markets, which we show
below, we study the stock market behaviour around the world before and during the

1In Chapter 3 we delve into the expressions of the mean and variance of the spatial dependence
indices.

2In Chapter 3 we carry out the analysis of finite sample based inference with alternative distri-
butions very different to the Normal.
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1.3 Empirical analysis

2008 financial crisis. To carry out this analysis, we use monthly information on the
returns for 46 stock market indices, between January 2000 and December 2015. We
establish the beginning of the crisis as being in September 2008, coinciding with
the collapse of Lehman Brothers3. Therefore, we have information on log-returns
for the two sub-periods that comprise a total of 104 months before the crisis (B.C.)
and a total of 88 months during the crisis (D.C.). We analyse 46 indices that are
distributed in five geographical areas: America, Europe, Asia, Oceania and North
Africa.4

To calculate the monthly log-returns ri,t = log
(

Pi,t

Pi,t−1

)
we use the closing price

on the last day of each month (Pi,t) and compare it with the same price of the
previous month (Pi,t−1). The Table 1 of Section A-1 of the Appendix at the end
of this thesis shows the maximum, minimum and average of each index for the two
sub-periods analysed, i.e., before and during the Lehman Brothers financial crisis.

Although, as is justified at the end of Section 1.2, the normality of the data is not
fundamental to guaranteeing the properties of the inference by using the Moran’s I
statistic, we have estimated skewness and kurtosis in order to have more information
about the behaviour of our data and we have made individual normality tests for the
log-returns of each country before and after the last financial crisis. We used the
Shapiro-Wilk normality test and the results are shown in Table 2 of Section A-1 of
the Appendix at the end of this thesis. In all cases we conclude that the analysed
log-returns are not normally distributed. Using the Jarque - Bera statistic for testing
the null hypothesis of skewness equal to zero and kurtosis equal to three, which are
those of the Normal distribution, the results also reject this null hypothesis.

1.3.2 Distances and similarities between stock indices

In Section 1.2 the spatial dependence is defined as the correlation between stock
markets indices taking into account the distances between the financial markets.
Therefore, the definition and calculation of these distances is essential for the esti-
mation of the Moran’s I statistics for the spatial dependency test. In Figures 1.1, 1.2
and 1.3, we represent in gray scale the three weight matrices W obtained from the
three criteria that we analyse in this study: distances in kilometres, time distance
in hours and number of hours with common opening. Comparing the three criteria
we see how the results in Figure 1.3 show a better separation between groups of
stock markets, in contrast to Figures 1.1 and 1.2 where the gray scale tends to be

3The results do not change when the beginning of the crisis is established in August 2007, when
the governments and central banks of some countries responded to the collapse of the economy with
unprecedented fiscal stimuli, the expansion of monetary policy and institutional bailouts.

4The data have been extracted from Datastream, Yahoo Finance and Investing.
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more progressive. Therefore, this first analysis shows us how the criterion based on
the common opening hours of the markets is the one that most clearly defines the
neighbourhood groups.

Figure 1.1: Weights between stock markets obtained from distances in kilometres.

We carried out a hierarchical cluster analysis for each of the three weight matri-
ces represented in Figures 1.1, 1.2 and 1.3. As expected, with the criteria based on
distances, whether they are hourly or in kilometres, a clear grouping of countries
according to their neighbourhood is not obtained. The criterion based on common
opening hours between markets provides a clear grouping of countries into three
groups of neighbours. The resulting dendrogram is shown in Figure 1.4 (the den-
drograms obtained using kilometre and hour distances are shown in Figures 1 and 2
of Section A-2 of the Appendix at the end of this thesis). Table 1.1 shows the neigh-
bourhood groups obtained. The first group contains, almost entirely, countries on
the European continent, along with Israel, Egypt and Turkey. In the second group
are the countries of the American continent and, finally, in the third group are the
Asian countries along with Oceania.
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1.3 Empirical analysis

Figure 1.2: Weights between stock markets obtained from distances in hours.

1.3.3 Spatial dependency analysis

We show the results of the spatial dependence analysis between stock markets. For
this purpose, we use the weights obtained from the common opening hours between
markets criterion. We focus on positive spatial dependence, although the analysis
could also be extended to cases where the dependence is negative.

The global Moran’s I statistic is calculated for each month, the results of the
inference at 5% significance level are shown in Figure 1.5. Analysing the results
by month, June tends to accumulate more years with statistically significant spatial
dependence, followed by February, July, August and November. If we compare

Table 1.1: Neighbour groups obtained from the dendrogram in Figure 1.4.

Germany, Austria, Belgium, Denmark, Egypt, Slovakia, Spain, Finland, France,
GROUP 1 Greece, Holland, Hungary, Ireland, Iceland, Israel, Italy, Norway, Poland, Portugal,

United Kingdom, Czech Republic, Russia, Sweden, Switzerland, Turkey

GROUP 2 Argentina, Brazil, Canada, Chile, United States (DJ), United States (SP),
United Kingdom, Czech Republic, Russia, Sweden, Switzerland, Turkey
Mexico, Peru

GROUP 3 Australia, South Korea, Philippines, Hong Kong, India, Indonesia, Japan,
Malaysia, New Zealand, Pakistan, Singapore, Thailand, Taiwan
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Figure 1.3: Weights between stock markets obtained from the common opening
hours between markets.

the results annually, 2010 is the year with the most months with significant global
spatial dependence. Also, at first glance, it seems that during the crisis (from 2008)
the number of periods with spatial dependence increases significantly.

Analysis of global spatial dependence has given us an initial idea of the situation
regarding the joint movements of the markets over time. However, in order to detect
where these movements occur, local analysis of spatial dependence is necessary.
With this in mind, for each index and each month, the local Moran’s I statistic
is calculated, which allows us to infer the spatial dependence between each stock
index and its closest neighbours. Table 1.2 shows some results obtained from the
local analysis. Specifically, we have estimated the linear correlation between each
monthly local spatial index and global index, the number of months with positive
spatial dependence and relative frequency of these months. Furthermore, in the
last column of Table 1.2 we have included the p-value associated with the test of
difference between proportions, with the aim of testing if before the crisis (B.C.) and
during the crisis (D.C.) the proportion of months with positive spatial dependence
is the same. The rows corresponding to the financial markets where it is concluded
that there are statistically significant differences between proportions at 5% and 10%

significance level are indicated in bold and italics, respectively. This result indicates
that the frequency of times in which the Moran’s I statistic showed statistically
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1.3 Empirical analysis

Figure 1.4: Dendogram from the weight matrix obtained from the criterion of com-
mon opening hours between markets.

significant positive spatial dependence was low in all the countries analysed.5

The first column after the country name in Table 1.2 corresponds to the Pearson
correlation coefficient between the local and global Moran’s I statistics. The highest
correlation occurs between the local index for Italy and the global index, followed
by the Philippines and France local indices, in all three cases a value of the Pearson
correlation coefficient greater than 0.5 is obtained. The following columns of Table
1.2 summarise the results of local spatial inference. For the two sub-periods anal-
ysed - before and during the last financial crisis - the number of months in which the
local Moran’s I statistic indicates that spatial dependence is statistically significant
at 5% before and during the crisis is counted. In general, the number of periods
in which the local test concludes that the positive spatial dependence is statistically
significant is not very high and, as observed in Figure 1.5, it tends to coincide with
the central months of the year (June, July and August).

For a general analysis of the results, the relative frequencies, with respect to the
total months in both periods, where the positive spatial dependence is not rejected
are shown. Furthermore, the p-value associated with the test of differences between

5The same results were also obtained using the two weight matrices obtained from the criteria
of distances in kilometres and hours. In general, from the results the same is deduced as described
below, but less apparent.
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Figure 1.5: Global spatial dependency. The months in which the statistic is signifi-
cant at 5% are shown in black.

proportions of month before and during the crisis appears in the last column of Table
1.2. In general, from the results of Table 1.2 it is the first group, basically formed
by the countries of the European continent, where there are more rows indicating
differences between the behaviours of the financial markets before and during the
crisis. In this first group, in those cases in which the difference between proportions
is statistically significant (13 markets out of the 25), with the exception of Sweden, it
can be concluded that spatial dependence is stronger during the crisis. The countries
where these frequencies are highest during the crisis are Greece, Italy and Portugal
(in that order). However, in the second and third groups, the cases in which there
are significant differences between proportions before and after the crisis are less
in relative terms and, furthermore, when this occurs, the highest proportion occurs
before the crisis.

The possible differences in the temporal behaviour of the spatial dependence
found between the different groups of neighbours, together with the evolution of
the log-returns, both on average and in variance, should be taken into account in
short and medium-term investment decisions.
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1.3 Empirical analysis

Table 1.2: Results of the frequency of months with local spatial dependence be-
tween stock market log-returns. The rows corresponding to the financial
markets. Where it can be concluded that there are statistically significant
differences between proportions at 5% and 10% significance level are in-
dicated in bold and italics, respectively.

Correlation Relative Relative p-value of the
Countries with Months B.C frequency Months D.C frequency test of differences

global Moran’s I B.C. D.C. between proportions

GROUP 1

Austria 0.189 2 0.019 9 0.103 0.006
Belgium 0.305 6 0.057 6 0.069 0.367
Czech Rep. 0.361 8 0.076 11 0.126 0.123
Denmark 0.224 1 0.010 6 0.069 0.014
Egypt 0.313 5 0.048 9 0.103 0.069
Finland 0.282 6 0.057 5 0.058 0.495
France 0.523 4 0.038 8 0.092 0.062
Germany 0.295 7 0.067 5 0.058 0.397
Greece 0.362 5 0.048 20 0.230 0.000
Hungary 0.356 2 0.019 11 0.126 0.002
Iceland -0.001 7 0.067 4 0.046 0.270
Ireland 0.344 3 0.029 10 0.115 0.009
Israel -0.095 3 0.029 1 0.012 0.204
Italy 0.551 4 0.038 17 0.195 0.000
Netherlands 0.359 6 0.057 2 0.023 0.120
Norway 0.097 2 0.019 4 0.046 0.142
Poland 0.188 4 0.038 7 0.081 0.104
Portugal 0.401 6 0.057 12 0.138 0.028
Russia 0.161 4 0.038 10 0.115 0.021
Slovakia -0.042 6 0.057 8 0.092 0.177
Spain 0.313 3 0.029 10 0.115 0.009
Sweden 0.040 11 0.105 3 0.035 0.031
Swiss 0.121 4 0.038 6 0.069 0.169
Turkey 0.113 8 0.076 6 0.069 0.424
UK 0.191 1 0.010 5 0.058 0.029

GROUP 2

Argentina 0.340 7 0.067 9 0.103 0.180
Brazil 0.172 4 0.038 5 0.058 0.263
Canada 0.182 0 0.000 1 0.012 0.135
Chile -0.039 6 0.057 0 0.000 0.012
Mexico 0.222 1 0.010 4 0.046 0.057
Peru 0.206 3 0.029 6 0.069 0.094
USA (DJ) 0.194 3 0.029 3 0.035 0.408
USA (SP) 0.261 3 0.029 3 0.035 0.408

GROUP 3

Australia 0.375 1 0.010 5 0.058 0.029
Hong Kong 0.418 5 0.048 8 0.092 0.111
India 0.362 14 0.133 5 0.058 0.040
Indonesia 0.473 13 0.124 8 0.092 0.241
Japan 0.141 4 0.038 2 0.023 0.275
Malaysia 0.411 7 0.067 5 0.058 0.397
New Zealand 0.198 4 0.038 7 0.081 0.104
Pakistan 0.248 8 0.076 7 0.081 0.456
Philippines 0.549 9 0.086 10 0.115 0.250
Singapore 0.465 5 0.048 7 0.081 0.174
South Korea 0.352 5 0.048 4 0.046 0.479
Taiwan 0.257 8 0.076 4 0.046 0.195
Thailand 0.457 13 0.124 9 0.103 0.329

Note: B.C. (before the crisis) and D.C. (during the crisis)
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1.4 Conclusions

In this chapter we have shown the importance of the neighbourhood criterion when
analysing the spatial dependence between stock markets. Compared with the cri-
terion based on kilometric distances, widely used in other research areas, and with
the hourly distances criterion, the similarity criterion obtained from accounting for
common opening hours between markets provides much more visible and obvious
neighbourhood relationships. This can be translated into an improvement of the
inference of the existence of spatial dependence between the stock returns of neigh-
bouring countries.

The results on spatial dependence show clear differences between the behaviour
of European countries and the remaining countries. Specifically, European countries
showed a stronger relationship during the crisis than before, which is not seen in the
other countries. In other words, in a hypothetical portfolio made up of European
market indices the systematic risk may be greater and reduces the risk reduction
capacity that comes with diversification.
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Chapter 2

Dynamic distances between stock markets: Use of
uncertainty indices measures

2.1 Introduction

We propose a monthly Uncertainty Index for stock markets using the Google Trends
tool, that is called Google Trend Uncertainty Index (GTUI). We use this index to
calculate dynamic distances between stock markets and analyse the spatial depen-
dence with the global Moran’s I statistic proposed by Moran (1950). Our aim is to
analyse, in different financial crisis periods, if systemic risk is reflected in an in-
crease in the spatial dependence between market losses calculated as the negative
logarithm of stock returns. Market losses were calculated based on the loss function
defined in McNeil et al. (2015).6

Historically, geographical distances have been the most widely used measure for
calculating the spatial dependence between regions but, as shown in Chapter 1 (see
also Acuña et al., 2018), these distances are not valid for analysing spatial depen-
dence between stock markets. An alternative method as proposed by Flavin et al.
(2002) as a proxy for the ease of trading was to use the number of overlapping oper-
ating hours of stock markets as a measure of trading synchronisation. These authors
found that the more hours of common trading, the greater the degree of equity price
co-movement. The Chapter 1 of this thesis showed that overlapping operating hours
criterion improves the spatial dependence results obtained using geographical and
time distances.

Uncertainty Indexes have been used recently in the literature because they re-
flect, either through official reports or internet searches, the concerns of economic
and financial agents as well as the general public about events that affect the be-
haviour of a country’s economy. Ahir et al. (2019) obtained a quarterly index of

6In Chapter 4 we will show an example of analysis using extreme value dependence with copulas
that was published in Bolancé and Acuña (2021).



uncertainty, called World Economic Uncertainty Index (WUI), which was based on
counting the number of times that the word “uncertainty” and its variants appeared
in the Economist Intelligence Unit (EIU, https://www.eiu.com/n/) for 143 countries.
These authors concluded that the level of uncertainty is significantly higher in devel-
oping countries, is positively associated with economic policy uncertainty and stock
market volatility and negatively with GDP growth. Baker et al. (2016) calculated a
monthly index of Global Economic Policy Uncertainty (GEPU) that was based on
the raw count of terms in three categories (economy, policy and uncertainty) divided
by the total number of articles in the newspapers of 16 countries that included these
terms, the searches being done in the respective native language. Using a similar
process, Ghirelli et al. (2019) obtained their specific Uncertainty Index for Spain.
By using Google Trends tool, Weinberg (2020) proposed an Economic Policy Un-
certainty Index for the largest economies in the European Union (Germany, France,
Italy and Spain). Previously, Castelnuovo and Tran (2017) obtained an economic
Google Trend Uncertainty Index for the United States and Australia.

In this chapter, the period of analysis is extended to March 2021. Now, based on
the WUI and our proposed GTUI, we first calculate two types of dynamic distances
between stock markets and analyse their evolution over the last 17 years; specifi-
cally, we study how these distances change in the financial crisis periods as systemic
risk proxy. Secondly, we use the Global Moran’s I statistic to analyse the changes of
spatial dependence between international stock markets that have been induced by
the various global financial crises over the last 17 years. We identify the month with
significant spatial dependence throughout the analysed period and study if during
the financial crisis periods of the Lehman Brothers bankruptcy, the sub-prime mort-
gage crisis, the European debt crisis, Brexit and the COVID-19 pandemic, spatial
dependence was more frequent compared to non-crisis periods.

The remainder of the chapter is organised as follows. Section 2.2 presents our
distance measures and spatial dependence test. In Section 2.3 it is described the
data and empirical analysis of uncertainty indices and global spatial dependence.
Section 2.4 offers the conclusions.

2.2 Dynamic distances and spatial dependence

We propose the calculation of two alternative distances between countries based on
two uncertainty indices: the WUI and the GTUI. The former is a quarterly index
that is calculated for 143 countries by counting the number of times the words “un-
certain”, “uncertainty” and “uncertainties” are mentioned in the EIU country reports
(see Ahir et al., 2019). The latter is a monthly index that is specifically designed for
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our study.
The EIU reports discuss the main political and economic developments in each of

the 143 countries analysed, together with an analysis of the political and economic
conditions. A team of analysts from each country and a central editorial team of
the EIU are employed to do this. For the WUI to be comparable between different
countries, the frequency of words by country and quarterly report is divided by the
total number of words in this report and multiplied by 1000.

The highest peaks of the WUI coincide with the following events: the second
Gulf war (2003), the attacks of September 11 (2011), the European debt crisis
(2009), the referendum of the United Kingdom in favour of Brexit and the presi-
dential election in the United States (2016), the border control crisis in Europe and
the ARS-CoV-2 outbreak (2019) and with the weather phenomenon El Niño. These
peaks of uncertainty tend to be more synchronised between developed economies
and between economies whose countries have closer commercial and financial ties.
Furthermore, a lower uncertainty has been observed in developed economies.

In our financial context, the WUI has some limitations. Firstly, we only have
quarterly information. Secondly, this index only works with the word “uncertainty”
and some variants of it. Using the Google Trends tool, we propose an alternative
index that can be obtained monthly and, in addition to the word “uncertainty” used
in the WUI, it includes other relevant words related to the financial markets trends.

2.2.1 Google Trends Uncertainty Index

The Google Trends is a Google Labs tool that shows the most popular searched
terms using the Google search engine. This tool gives information related to the
frequency with which a search for a particular term is carried out in various regions
of the world and in various languages. The available data range from 2004 to date.

The Google Trends Uncertainty Index (GTUI) is based on the idea that economic
agents, represented by internet users, search for information online when they are
not sure. This implies that the frequency of searching for terms that may be associ-
ated with future and possible bad events is high when the level of uncertainty is high.
To obtain the specific index for each country, we select a broad set of keywords that
are often cited in the Federal Reserve Beige Book for the U.S. and the Reserve
Bank Statement on Monetary Policy. English is chosen as the common language
since it is the mostly widely used language in the world. The words of interest that
are selected, related to financial markets and the crisis events that have occurred
in recent years, are the following: “austerity”, “bankruptcy”, “dollar”, “financial
crisis”, “recession”, “risk”, “stock exchange”, “share price”, “stock market” and
“uncertainty”. The Google Trends tool enables us to find out the percentage search
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frequency of each of these words by country and period. In our study, 45 countries
and 46 stock indices (2 for USA) are analysed monthly. These countries and stock
indices are listed, among others, in the Table 4 of the Section A-1 of the Appendix
at the end of this thesis. Each country is labelled using the two first digits notation.
The frequency of words per country and period are added to obtain our proposed
monthly GTUI, i.e, the monthly GTUI is the sum of the frequencies of words in
each country i at month t.7

2.2.2 Global Moran’s I statistic

Since this study focuses on spatial dependence measures to analyse how markets are
interconnected, the specification of the linkages matrices for each period t between
stock markets is important; these matrices are called Wt and in our case are 46×46.
For calculating the elements of Wt we use the criteria defined by Asgharian et al.
(2013) based on constructing a contiguity matrix Ct between markets. Each element
of this matrix (Cijt) indicates how contiguous is each market j to each market i,
∀i 6= j, at period t, according to a measure of distance (or similarity) between both
countries. We then define the matrix Ct using distance criteria as proposed in this
study.

Let Dijt be a measure of distance between countries i and j at period t, the
elements Cijt in Ct are given by:

Cijt = 1−
Dijt−minjDijt

maxjDijt−minjDijt
∀ i 6= j t= 1, ...,T.

This definition of contiguity ensures that all elements of Ct lie between zero and
one, if Cijt is near 1 the longest distance is from country i to country j and Cijt is
near 0 if the shortest distance is between country i and country j. Moreover, Cijt is
not necessarily symmetric, it can be occur that country j is an important neighbor
for country i (i.e., Cijt is close to zero) but country i may be unimportant for country
j (i.e., Cijt is close to one). The linkages matrix or spatial weights in the matrices
Wt are obtained from Cijt through row standardization such that, for each row i,
∑jWijt = 1.

Through the GTUI we can obtain a monthly distance matrix between countries.
Let GTUIit, i = 1, ...,46 be the value of the uncertainty index for the stock market
i in the period t, the distances distances between pairs of stock markets are defined
as:

Dijt = |GTUIit−GTUIjt|, ∀i 6= j t= 1, ...,T. (2.1)

7In Chapter 3 the GTUI will be described with more detail.
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2.3 Empirical Analysis

Alternatively, the WUI can also be used to calculate distances between stock mar-
kets. However, this uncertainty index is available quarterly and to calculate monthly
spatial weights we assume that the WUI is constant throughout the three months of
each quarter.

The Moran’s I statistic at period t is defined as Moran (1950):

It =
N

S0t

∑N
i=1∑N

j=1Wijt

(
lit− l̄t

)(
ljt− l̄t

)
∑N
i=1

(
lit− l̄t

)2 , (2.2)

where N = 46, S0t is the sum of all the spatial weights Wijt, ∀i 6= j and lit is
the loss of the index i in period t, that are equal to negative log-returns, i.e.,
lit = −log

(
Pi,t+1

Pi,t

)
, where Pi,t is the value of stock index i in period t. In al-

ternative studies the spatial weights matrix is discretised, only those areas whose
continuity coefficients are greater than the mean or median of all these coefficients
are considered neighbors (see Asgharian et al., 2013). In this paper, taking into
account that financial markets have a global behavior and that systemic risk has
global effect, we decided to use continuous weights matrix, that give more weight
to those more similar markets, according to the distance criterion. In addition to
global index defined in expression (2.2), we have obtained the results for analysing
local spatial dependence index defined in Chapter 1 for log-returns. In this case, the
results that we obtained with continuous matrices of weight were hardly statistically
significant.8

The asymptotic distribution of It is Normal with mean and variance known
(Moran, 1950) and we can therefore perform the test of positive global spatial de-
pendence for each period t.

The inference suggested by the global Moran’s I statistic is based on the assump-
tion that the data are independent and identically distributed (iid). Regarding non-
normality, Griffith (2010) concludes that the assumption of normality is not essen-
tial for the asymptotic properties of the Moran’s I statistic.

2.3 Empirical Analysis

We analyse the spatial dependence between monthly losses of 46 stock indices of
45 countries, which are listed and described in Table 3 of the Section A-1 of the
Appendix at the end of this thesis, and which shows that USA is the only anal-
ysed country with two stock indices. The data cover the period from January 2004
to March 2021 and take into account different events that carried a systemic risk:

8The discretised matrix will be used in Chapter 3 for global and local positive spatial dependence
analysis.
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Lehman Brothers bankruptcy in September 2008, the sub-prime mortgage crisis be-
tween 2007 and 2009, the European debt crisis (Euro debt) since the end of 2009
until mid 2014, Brexit in June of 2016 and the COVID-19 pandemic since March
2020. In Table 2.1 we show the beginning and end of these crisis periods. Similarly
to Chapter 1 but for a longer period, for calculated the monthly losses we use the
closing price on the last day of months t and t−1.

Table 2.1: Crisis periods.
Sub-prime Euro-debt Brexit COVID-19

Beginning 31/08/2007 30/06/2010 30/06/2016 29/02/2020
End 30/06/2009 30/06/2014 31/01/2020 31/03/2021

Figure 2.1: Values of the Google Trend Uncertainty Index for each country (at top) -
the darker the shading, the higher the value - and plot of the mean index
(at bottom). The box-plots of the GTUI for each country are shown on
the right.

Before beginning the analysis, we plotted the uncertainty index GTUI in Figure
2.1, the plot of the WUI is shown in Figure 3 of Section A-2 of the Appendix at the
end of this thesis. The top part of both figures represents the values of the indices;
the darker the shading, the higher the value. In the bottom part of both figures the
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2.3 Empirical Analysis

mean of the index for all countries is plotted and the box-plots of the Uncertainty
Index for each country are shown on the right. For the WUI we only have data
up to the last quarter of 2020 and we assume that for each observed quarter the
index value is constant overall three months. At first glance, it is evident that both
indices behave differently. We compare the GTUI in Figure 2.1 with the filtered
series of losses using the ARMA-GARCH models shown in Table 4 of Section A-1
of the Appendix at the end of this thesis. The filtered series are free of the temporal
component, i.e. they take independent values, which guarantees the properties of the
inference that is presented at the end of this section and compares different periods.
For each month, we test the spatial dependence between the random components of
the series, this dependence implies a greater systemic risk.

The filtered series are plotted in Figure 2.2 and, comparing with Figure 2.1 and
Figure 3 of Section A-2 of the Appendix at the end of this thesis, it can be seen that
our GTUI captures market uncertainty better than the WUI. In Figure 2.3 we plot
the GTUI for each country with the overall mean of its confidence interval at 95%
confidence level, showing a similar behavior in all analyzed countries, especially in
the periods of most uncertainty.

Figure 2.2: Filtered losses for the 46 stock indices.
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Figure 2.3: GTUI for the 45 countries, mean (the thickest line) and 95% confidence
intervals of the mean (dashed lines).

Focusing on the right part of Figure 2.1, it can be seen that the countries that
reached highest GTUI values are Japan followed by Australia. The periods showing
the highest GTUI values are at the time of the sub-prime mortgage crisis and the
COVID-19 pandemic.

With the aim of analyzing how these distances change in the different crisis pe-
riods we carry out a hierarchical cluster using complete linkage with the distance
matrix obtained at the beginning and end of each crisis period; the dendograms are
shown it Section A-2 of the Appendix at the end of this thesis (Figures 4, 5, 6 and 7).
We see that, in all cases, using a “Height” between 0.10 and 0.20, three groups can
be formed that change at different moments of time. The summary of the groups
is shown in Table 2.2. At the beginning of the sub-prime mortgage and Euro debt
crises Japan was isolated from the other countries. The same situation occurred for
United Kingdom at the beginning of the Brexit period. At the end of the Brexit
period and in the last month analyzed during the COVID-19 pandemic the isolated
countries were Russia and Netherlands.
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2.3 Empirical Analysis

Table 2.2: Groups of countries obtained with hierarchical cluster with distances
based on GTUI.

Sub-prime Euro debt Brexit COVID-19
Beginning of crisis period

Group 1 HU,EG,RU,CZ IS,BR,EG,HU AR,BR,CL,CZ GR,IS,ID,RU
SK,PE,TR ID,PK,PE,RU GR,HU,IN,MY SK,TR

TR MX,PE,KR,TW
TH

Group 2 AR,AT,BE,BR AU,AT,CA,DK EG,ID,PK,RU AU,CA,DK,DE
CA,CL,DK,FI FR,UK,DE,NL SK,TR NL,SE,UK,US
FR,GR,IS,ID NZ,NO,SG,SP
IE,IL,IT,JP TW,US
MY,MX,NL,NZ
NO,PK,PL,PT
RU,KR,SP,SE
TW,TH

Group 3 AU,DE,HK,IN AR,BE,CH,CL AU,AT,BE,CA AR,AT,BE,BR
PH,SG,CH,UK CZ,FI,GR,HK DK,FI,FR,DE CL,CZ,EG,FI
US IN,IE,IL,IT HK,IS,IE,IL FR,HK,HU,IN

MY,MX,PH,PL IT,JP,NL,NZ IE,IL,IT,JP
PT,SK,KR,SE NO,PH,PL,PT MY,MX,NZ,NO
CH,TH SG,SP,SE,CH PK,PE,PH,PL

US PT,SG,KR,SP
CH,TW,TH

No Group JP JP UK
End of crisis period

Group 1 AU,IN,JP,NL AR,DE,EG,GR AU,BE,CA,DK BR,CL,CZ,EG
US IS,MX,NL,PE FI,FR,DE,NL GR,IS,ID,PE

PK,RU,TH PH,SP,SE,CH SK,TR
TH,UK,US

Group 2 AR,BE,CA,DK AT,AU,BE,CA AR,AT,BR,CL AR,SP,HU,IL
FI,FR,GR,HK FI,FR,UK,NZ EG,HK,HU,IN IT,IE,PL,TH
NZ,PK,PH,SG SE,US IE,IL,IT,JP TW,JP,MY,KR
KR,SP,SE,CH MY,MX,NZ,NO MX,PK
UK PK,PE,PL,PT

Group 3 AT,BR,CL,CZ BR,CH,CL,CZ CZ,GR,IS,ID AT,AU,BE,CA
DK,EG,HU,ID DK,SP,HK,HU SK,TR CH,DE,DK,FI
IE,IL,IT,IS IE,IL,IN,IT FR,UK,HK,IN
MY,MX,NO,PE JP,KR,MY,NO NO,NZ,PH,PT
PL,PT,RU,SK PH,PL,PT,SG SE,SG,US
TW,TH,TR SK,TW

No Group RU NL,RU

Based on GTUI we calculate a dynamic distance between countries using expres-
sion (2.1) to estimate spatial dependence. In the Figure 2.4 we show the monthly
time series of the Moran’s I statistic for spatial dependency, that was defined in
expression (2.2). This index detects greater spatial dependence throughout the cri-
sis periods (see Table 2.1), that are also associated with the most similar behavior
between markets according to the GTUI.

In Figure 2.5 we summaries the results of the monthly Moran’s I test of spatial
dependence based on GTUI distances. We compare the crisis periods (in grey and
framed with a thick black line) and non-crisis periods (in white). For each crisis and
non-crisis period the months with significant spatial dependence at 10% significance
level are marked in black. The same figures using WUI distances and overlapping
hours criterion are shown in Section A-2 of the Appendix at the end of this thesis
(Figures 8 and 9). These figures shows that spatial dependence is more significant
using the GTUI distances.
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Using GTUI distances, in Table 2.3 we compare the proportions of months with
spatial dependence in crisis and non-crisis periods and test if these proportions are
larger for a crisis period than for a non-crisis period. The last column in Table 2.3
shows the p-values associated with the statistic for testing equality of the propor-
tions in crisis and non-crisis periods against the alternative - that in a crisis period
this proportion is greater than in a non-crisis period. The results shows that, taking
into account all crises periods, spatial dependence tends to increase (p-value=0.08).
The sub-prime is the crisis period with the most spatial dependence, i.e., in these
periods there was more contagion between markets and, therefore, the systemic risk
increases.

Figure 2.4: Moran’s I statistic for spatial dependency.
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2.3 Empirical Analysis

Figure 2.5: Monthly results for Moran’s I test of spatial dependence with GTUI
distances. The crisis period is in gray, the non-crisis period in white and
significant spatial dependence at 10% level in black (the months outside
the analyzed period are marked with x).

Table 2.3: Frequencies and proportion of month with spatial dependence and p-
values associated with the test of equality of proportion against greater
proportion in crisis periods.

Frequency Proportion p-value
Sub-prime 17 0.65 0.03
Euro debt 28 0.57 0.09
Brexit 21 0.48 0.37
COVID-19 7 0.50 0.35

Total crisis 73 0.55 0.08

Total non-crisis 33 0.45
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2.4 Conclusions

We have shown that our proposed Google Trend Uncertainty Index is a good indica-
tor of financial instability. Periods with higher values of GTUI are associated with
financial crisis periods and with higher losses. Dynamic distances based on GTUI
allow us to improve the statistical significance of the Moran’s I statistic for testing
spatial dependence. We observe how events related to systemic risk increase the
global spatial dependence between the analysed 46 stock markets, i.e., the depen-
dence is stronger between stock markets with similar GTUI than between markets
with different GTUI and, furthermore, this dependence increases in crisis periods
when the values of the GTUI are higher. This behaviour cannot be detected with
the WUI based distances neither with hours overlapping criterion.
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Chapter 3

Non-Normal Market Losses and Spatial Dependence
using Uncertainty Indices

3.1 Introduction

Our aim in this chapter is to analyse if systemic risk is reflected in an increase in
the spatial dependence between market risks, i.e., whether the detrimental and/or
favourable effects of systemic risk are similar between markets with certain neigh-
bourhood characteristics related to similar economic uncertainty. In our analysis,
the market risk is approximated by the variance (volatility) and by the metric given
by the Value-at-Risk (VaR) associated with the potential losses of stock markets.
The losses are calculated from the negative logarithm of stock returns (hereinafter
log-returns) (based on the loss function defined in McNeil et al., 2015). The differ-
ences between the volatility and the VaR as measures of risk is that the former takes
into account both tails of the distributions, i.e., losses at right tail and profits at left
tail, while the latter focuses on the right tail of the distribution, i.e., on the losses.

The Global Moran’s I statistic Moran (1950) and its local version proposed by
Anselin (1995) allow us to carry out inference on global and local spatial depen-
dence, respectively. Both statistics are based on the assumption that the data are
normal, independent and identically distributed and they have a known asymptotic
normal distribution that is used to test the positive statistical significance of the
spatial dependence, understood in our case as having similar behaviour between
financial markets. Regarding non-normality, Griffith (2010) concludes that the as-
sumption of normality is not essential for the asymptotic properties of the global
Moran’s I statistic. However, for the local statistic, the non-normality of the data
causes errors in the inference based on the normal distribution. Given that our risk
data clearly have of non-normal distribution, they are right skewed and have ex-
treme values, a simulation study is carried out to check how the global and local



inference on spatial dependence is affected. The simulation study provides new re-
sults regarding the global Moran’s I test based on normal distribution when the data
have heavy-tailed distribution, i.e. the study proves as spatial econometrics can be
applied to the special nature of financial data.

Various studies have used bootstrap inference for testing global spatial depen-
dence. In relation to the analysis that we present here, we highlight some papers
that give robustness to our results. For example, in a regression context Yang (2015)
studied the consistency of the inference through a set of LM (Lagrange Multiplier)
statistics using the residual-based bootstrap methods for testing spatial dependence,
a special case being the global Moran’s I statistic used in this paper. This author
proves the consistency theoretically as well as through a simulation study where
results are obtained for normal, normal mixture and log-normal. Jin and Lee (2015)
also analysed the consistency of bootstrap inference of global Moran’s I statistic in
the spatial econometric model context, and carried out a simulation study for nor-
mal and chi-square distributions. Focusing on local spatial dependence, Mei et al.
(2020) proposed a bootstrap method to approximate the distribution under the null
hypothesis of the local Moran statistic proposed by Anselin (1995). These authors
demonstrate that the asymptotic normal approximation sometimes fails.

Another important consideration of this paper is the definition of neighbourhood
between financial markets. Geographical distances have been the most widely used
measure for calculating the spatial dependence between regions but, as shown by
Acuña et al. (2018), this criterion is not valid for determining the neighbours of each
stock market. An alternative criterion consists of using the number of overlapping
operating hours of stock markets as a measure of trading synchronisation, as pro-
posed by Flavin et al. (2002) as a proxy for the ease of trading. Acuña et al. (2018)
showed that overlapping operating hours criterion improves the spatial dependence
results obtained using geographical distances. However, the latter is a static crite-
rion and it is conceivable that, when the evolution of financial markets is analysed,
the neighbours may change over time depending on the expectations and on the
positioning of investors. For this reason, we propose the use of uncertainty indices
that are exogenous to the markets themselves to give dynamism to our analysis.

Uncertainty indices have been used recently in the literature because, either
through official reports or internet searches, they reflect the concerns of economic
and financial agents as well as the general public about events that affect the be-
haviour of the country’s economy. Ahir et al. (2019) obtained a quarterly index
of uncertainty, called the World Economic Uncertainty Index (WUI), which was
based on counting the number of times that the words “uncertainty” and its vari-
ants appeared in the Economist Intelligence Unit (EIU, https://www.eiu.com/n/) for
143 countries. These authors concluded that the level of uncertainty is significantly

32



3.1 Introduction

higher in developing countries, and it is positively associated with economic pol-
icy uncertainty and stock market volatility and negatively with GDP growth. Baker
et al. (2016) calculated a monthly index of Global Economic Policy Uncertainty
(GEPU) that was based on the raw count of terms in three categories (economy,
policy and uncertainty) divided by the total number of articles in the newspapers of
16 countries that included these terms, the searches being done in the respective na-
tive language. Using a similar process, Ghirelli et al. (2019) obtained their specific
Uncertainty Index for Spain. By using the Google Trends tool, Weinberg (2020)
proposed an Economic Policy Uncertainty Index for the largest economies in the
European Union (Germany, France, Italy and Spain). Previously, Castelnuovo and
Tran (2017) obtained an economic Google Trend Uncertainty Index for the United
States and Australia.

In this paper, we use an ad-hoc Google Trend Uncertainty Index (GTUI) to select
the monthly neighbours of the 46 stock indices and to carry out the spatial depen-
dence analysis. First, we use the Global Moran’s I statistic to analyse the changes
of spatial dependence between stock markets. Second, we carry out a local spatial
dependence, focusing on the following countries: Spain, Germany, France, Italy,
UK, US, Argentina, Brazil, Japan and Hong Kong. In both analyses we identify
the months with significant spatial dependence throughout the analysed period and
study if during the financial crisis periods of the Lehman Brothers bankruptcy, the
US sub-prime mortgage crisis, the European debt crisis, Brexit and the COVID-19
pandemic spatial dependence was more frequent compared to non-crisis periods.
The proposed global spatial dependence index is an indicator of market linkages;
taking this into account, our analysis answers the following three questions:

1. Are months with risk positive spatial dependence during financial crisis peri-
ods more frequent than during the non-financial crisis period?

2. Is positive spatial dependence just as common in all periods of crisis?

3. Are there differences between volatilities with positive spatial dependence
and VaRs with positive spatial dependence?

Furthermore, the analysis of local spatial dependence allows one to determine which
countries have more weight in contagions during the analysed period and, therefore,
which countries are the causes of them.

There are many studies that analyse market linkages, in terms of contagion effects
between markets, during crisis periods and using different statistic methodologies.
Below, we summarise some examples in relation to the markets that are studied in
this paper. Related to the global financial crisis, Dimitriou et al. (2013) used a mul-
tivariate time series model for the mean, variance and correlation of log-returns
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called "Multivariate AR(1)-FIAPARCH-DCC process" (FIAPARCH-fractionally
integrated asymmetric power ARCH and DCC-dynamic conditional correlation) to
investigate the contagion effects between the five largest emerging equity markets,
Brazil, Russia, India, China and South Africa (BRICS) and the US, through differ-
ent phases of the crisis, and they conclude that this contagion is increased from early
2009 onwards and is greater during bull periods. In Lien et al. (2018) the indirect
effects of volatility between the stock markets of the US and eight East Asian coun-
tries were analysed before and during the Asian currency crisis and the sub-prime
credit crisis. Among other results, these authors show how the US market is the
transmitter and its volatility spills over to other markets during both crisis periods.
However, between the East Asian countries, Japan and Hong Kong are markets in
which volatility spills over from multiple markets during the sub-prime credit crisis
period, but not during the Asian currency crisis. Mohti et al. (2019) used copula
models that were fitted to the ARMA-GARCH filtered log-returns to investigate the
contagion effects of the sub-prime financial crisis in 18 frontier markets: in relation
to countries analysed in this paper these authors found that for the US and Argentina
the effects were more pronounced during booms than during busts. Tilfani et al.
(2021), using log-returns, analysed the time cross-correlations between the US and
eight other stock markets (the rest of the G7 plus China and Russia) before, during
and after the financial crisis (2007-2008) and found, among other results, that in
the period immediately before the crisis the levels of correlation with the US stock
market increased, which could be understood as an overheating of the markets or
perhaps an increase in contagion due to systemic risk. After the crisis the results
point to a contagion effect. The effect of the European debt crisis on different stock
markets around the word was analysed by Samarakoon (2017), and showed that the
Asian markets do not present pervasive evidence of contagion from the European
debt crisis Samitas and Tsakalos (see 2013, for an analysis on European economy).

In relation to the impact of Brexit, Breinlich et al. (2018) used the abnormal
returns to analyse the stock market reaction to the outcome of the 2016 UK referen-
dum on EU membership, and showed that the impact would depend on the nature
of post-Brexit UK-EU relations. Alternatively, using the log-returns data, Ameur
and Louhichi (2021) analysed the impact of Brexit on the dependency between UK,
France and Germany stock markets and found that volatility and the total spillover
effects increased in line with Brexit press releases regarding negotiations on the fu-
ture relationship between the EU and the UK. A similar analysis is presented in Li
(2020) in which Italy, Poland and Ireland are also included. Burdekin et al. (2018)
presented an extended analysis of the Brexit effect, worldwide, using an economet-
ric model based on log-return and abnormal log-returns to quantify the negative
impact of Brexit on different stock markets. Their results showed that the Eurozone
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was the hardest hit, and the impact was felt the most by the so-called PIIGS group
(Portugal, Ireland, Italy, Greece and Spain) due to their poor fiscal positions. On the
contrary, the BRICS nations (Brazil, Russia, India, China and South Africa) fared
much better than average, experiencing positive abnormal returns despite negative
gross returns. In addition to these studies, it is clear that the subsequent COVID-19
pandemic has affected the development of events and has made it difficult to analyse
the final effect of Brexit on financial markets.

More recently, various studies have analysed the impact of the COVID-19 pan-
demic on financial markets. For example, Chopra and Mehta (2022) used a multi-
variate DCC-GARCH model of log-returns to compare the presence of contagion
for the Asian stock markets during the four main financial crises; the Asian finan-
cial crisis, the US sub-prime crisis, the Eurozone debt crisis and the COVID-19
pandemic. The results showed that the US sub-prime crisis was the most conta-
gious for the Asian stock markets, while the impact of the COVID-19 pandemic
was the least contagious. Li et al. (2020) investigated whether the uncertainty in-
dex proposed by Baker et al. (2020), referred to as IDEMV (Infectious Disease
Equity Market Volatility), had additional predictive power for stock market volatil-
ity in France, Germany and the UK during the COVID-19 pandemic. The results
showed that the IDEMV had stronger predictive power for French and UK stock
market volatility during the COVID-19 pandemic; however, the VIX (Volatility In-
dex) had superior predictive power for the three European stock markets. Using a
VARMA(1,1)-DCC-GARCH model for the log-return, Akhtaruzzaman et al. (2021)
analysed the financial contagion between China and the G7 countries. The results
showed that China and Japan appeared to be transmitters during the COVID-19
pandemic.

In general, the studies that have analysed the contagion between financial mar-
kets used alternative multivariate time series models with log-returns series. In this
study, we present an alternative analysis focused on the risk and use spatial depen-
dence statistics to analyse linkages between the financial markets volatility and its
VaR metric, considering distances between the markets uncertainty levels measured
by the GTUI instead of geographical distances.

The remainder of the paper is organised as follows. Section 3.2 presents the pro-
cedure to test global and spatial dependence using asymptotic normal distribution
and bootstrap method. In Section 3.3 the results of a simulation study are presented
that compare the asymptotic inference with bootstrap inference carried out with the
global Moran’s I statistic and local Moran statistic and assuming different distribu-
tions. In Section 3.4 we describe the data and the spatial dependence results. In
Section 3.5 we summarise the main conclusions.
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3.2 The Spatial Dependence Model and Statistics for
Testing

Let Yt = (Y1t, ...,Ynt)
′ be a vector with data of n countries at period t = 1, ...,T .

It is assumed that Y1, ...,YT are independent and identically distributed (iid). The
spatial autoregressive (SAR) model at period t is defined as:

Yt = µt+ρtWtYt+ ϵt, (3.1)

where µt is a vector with deterministic means that can be estimated separately, ρt is
the spatial autocorrelation at period t and ϵt is a vector with n Normal iid errors with
mean 0 and variance σ2ϵt . The weights matrix at period t, Wt, is n×n and identifies
the neighbours for each i= 1, ...,n. In financial analysis, a fundamental component
of the model defined in (3.1) is the weights matrix Wt, given that the geographical
distance criterion does not work. So, a specific dynamic criteria based on internet
searches from economic agents is defined.

3.2.1 Google Trends Uncertainty Index

Google Trends is a Google Lab that uses the Google search engine to find infor-
mation related to the frequency with which a search for a particular term is carried
out in various regions of the world and in various languages. The available monthly
data range is from 2004 to present.

The GTUI is based on the idea that economic agents, represented by internet
users, search for information online when they are not sure. This implies that the
frequency of searching for terms that may be associated with future and possible
bad events is high when the level of uncertainty is high. To obtain the specific
index for each country, we select a broad set of keywords that are often cited in
the Federal Reserve Beige Book for the US and the Reserve Bank Statement on
Monetary Policy. English is chosen as the common language since it is the mostly
widely used in the world. A total of 10 economic terms of interest are selected:
“austerity”, “bankruptcy”, “dollar”, “financial crisis”, “recession”, “risk”, “stock
exchange”, “share price”, “stock market” and “uncertainty”. These terms are related
to financial markets and the crisis events that have occurred in recent years and the
Google Trends tool enables us to find the frequency of searches using each of them
by country and month.

We selected the 10 economic terms mentioned above based on the dictionary pro-
posed by Castelnuovo and Tran (2017). Others studies that used similar indices are
Weinberg (2020) and Baker et al. (2016). The selected words are the most com-
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mon among the dictionaries proposed for each measure of uncertainty mentioned
by the previous authors, since these are the words that best reflect the interest of the
internet users in response to an important economic world event.

Let fhit be the frequency of terms h in country i at period t, so the uncertainty
index is defined as:

GTUIit =
10

∑
h=1

fhit. (3.2)

It must be remembered that the vocabulary determines the construction of the un-
certainty index.

3.2.2 Weights Matrix Definition

To calculate the elements of Wt we use the criteria defined by Asgharian et al.
(2013) based on constructing a contiguity matrix Ct between markets. This matrix
indicates how contiguous market i to market j is at period t, according to a measure
of distance (or similarity) between both countries. We then define the matrix Ct

using the following distance criterion between uncertainty index values:

Dijt = |GTUIit−GTUIjt|, ∀i 6= j t= 1, ...,T. (3.3)

Let Cijt be the element of Ct that is the contiguity measure between country i

(row) and country j (column), which is given by:

Cijt = 1−
Dijt−minjDijt

maxjDijt−minjDijt
∀ i 6= j t= 1, ...,T.

This definition of contiguity ensures that all elements of Ct lie between 0 and 1;
if Cijt is near 0 the longest distance is from country i to country j and if Cijt is near
1 the shortest distance is between country i and country j. Moreover, Cijt is not
necessarily symmetric (i.e. Cijt 6= Cjit); it could be that country j is an important
neighbour for country i (i.e., Cijt is close to 1) but country i may be unimportant
for country j (i.e., Cijt is close to 0). The linkages matrix or spatial weights in the
matrices Wt are obtained from Cijt through row standardisation. By construction,
there are zeros on the diagonal of Wt; a market can not be a neighbour to itself.
Then:

Wijt =
Cijt

∑n
j=1Cijt

, ∀i 6= j t= 1, ...,T, (3.4)

such that, for each row i, ∑n
j=1Wijt = 1.

In order to determine with more precision which markets are neighbours, the
continuity matrix is discretised, i.e. values 0 or 1 are assigned based on whether
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two elements are considered neighbours or not. The criterion can be based on a
value c of the continuity matrix C, for example, c can be equal to the median or to
a quantile. Let C∗

t be the discretised continuity matrix, so C∗
ijt = 1 if Cijt ≥ c and

C∗
ijt = 0 to the contrary. In practice, the weight matrix is obtained from the row

standardisation of C∗
t .

Taking into account that the sum of the rows of C∗
t is the number of neighbours

nit for each market, each row in the weight matrix has element equal to 1
nit

or 0.
Considering the SAR model defined in (3.1), the coefficients associated with the
neighbors of the market i are ρt

1
nit

. Therefore, the larger the number of neighbors
is, the weaker the spatial dependency relation between markets.

3.2.3 Global Moran’s I Statistic

The Moran’s I statistic at period t is defined as Moran (see 1950):

It =
n

S0t

∑n
i=1∑n

j=1Wijt

(
Yit− Ȳt

)(
Yjt− Ȳt

)
∑n
i=1

(
Yit− Ȳt

)2 , (3.5)

where Ȳt is the sample mean and S0t = ∑n
i=1∑n

j=1Wijt. Note that for standardised
row weight matrix S0t = n. Hereafter, the sub-index t is eliminated to simplify
notation. Using matrix notation:

I =
n

S0t

Ỹ′W Ỹ

Ỹ′Ỹ
, (3.6)

where Ỹ = Y− Ȳ 1n is a column vector with the n centred data, where 1n is a
column vector with n ones. The asymptotic distribution of Moran’s I statistic is
Normal. Under the no spatial autocorrelation null hypothesis the expectation is:

E(I) =− 1

n−1
. (3.7)

The variance can be calculated under normality assumption and under unknown
distribution. For the former the result is:

VN (I) =
1

(n−1)(n+1)S2
0

(
n2S1−nS2+3S2

0

)
− (E(I))2 (3.8)

and for the latter it is:

V (I) =
n
[(
n2−3n+3

)
S1−nS2+3S2

0

]
−k

[(
n2−n

)
S1−2nS2+6S2

0

]
(n−1)(3)S2

0

− (E(I))2 , (3.9)
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3.2 The Spatial Dependence Model and Statistics for Testing

where k is the sample kurtosis coefficient, S1 =
1
2 ∑n

i=1∑n
j=1 (Wij +Wji)

2,

S2 =
1

2

n

∑
i=1

n

∑
j=1

(
n

∑
j=1

Wij +
n

∑
j=1

Wji

)2

and (A)(b) = A(A−1)...(A− b+1).
The inference suggested by the global Moran’s I statistic is based on the assump-

tion that the data are independent and identically distributed (iid).
Inference on positive global spatial dependence can be based on the statistic ZI =

I−E(I)
V (I) ∼ Normal(0,1), for a given significance level p, which is a value near 0,

the null hypothesis of no spatial dependence is rejected if P (Z > ZI)≤ p, where Z
is a standard normal random variable.

Regarding non-normality, Griffith (2010) concluded that this is not essential for
the asymptotic properties of the Moran’s I statistic. So, the inference based on the
asymptotic normal distribution of the global Moran’s I statistic works. We analyse
to what extent this property is true by comparing normal based inference with the
non-parametric inference based on bootstrap samples.

Let Ỹ∗
(1), ...,Ỹ

∗
(nB) be a set of nB bootstrap random samples of size n that are

selected with replacement. For each bootstrap sample the Moran’s I statistic is
calculated as:

I∗(l) =
n

S0

Ỹ∗′
(l)W Ỹ∗

(l)

Ỹ∗′
(l)
Ỹ∗

(l)

, l = 1, ...,nB. (3.10)

The inference on positive global spatial dependence can be based on the empirical
distribution of bootstrap samples; the null hypothesis of no spatial dependence is

rejected if
∑
nB
l=1 i

(
I∗(l)>I

)
nB

≤ p, where i(a) = 1 if condition a between parentheses is
true. Jin and Lee (2015) proved the consistency of bootstrap inference based on
Moran’s I statistic.

3.2.4 Testing Local Spatial Dependence

The global spatial dependence analysis indicates whether there are linkages between
all markets, or not, but it does not allow us to identify which markets are linked or
which have spatial dependence with their neighbours and, therefore, links in terms
of similar risk. With the aim of analysing the local spatial dependence we use the
local Moran test proposed by Anselin (1995), defined as:

Ii =
n
(
Yi− Ȳ

)
∑n
i=1

(
Yi− Ȳ

)2 n

∑
j=1

Wij

(
Yj − Ȳ

)
. (3.11)
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Note that I = ∑n
i=1 Ii. The expectation of local Moran statistic is:

E(Ii) =− Wi

n−1
, (3.12)

where Wi = ∑n
j=1Wij . The variance is:

V (Ii) =
W

(2)
i (n−k)

n−1
+

2W
(hm)
i (2k−n)

(n−1)(n−2)
− (E(Ii))

2 , (3.13)

where W
(2)
i = ∑i ̸=jW

2
ij and 2W

(hm)
i = ∑h ̸=i∑m ̸=iWihWim. Although, asymp-

totically the distribution of Ii is normal, in practice the exact distribution of this
statistic is unknown and normal based inference does not work. Furthermore, given
that local inference implies carrying out multiple tests using the same sample we
will need to modify the significance level, for example, using Bonferroni correc-
tion. For a given significance level p, if the number of multiple tests are r the true
significance level will be p/r. Similarly to the global Moran’s I test, we compare
normal inference with bootstrap inference using the nB bootstrap samples defined
above. Mei et al. (2020) proved the consistency of bootstrap inference for local
Moran statistic.

3.3 Simulation Study

In this section we analyse the results of the inference based on the global Moran’s
I and the local Moran statistics in finite sample. We simulate the values Cij of the
continuity matrix to obtain the weight matrix W , and we also simulate the values of
the random variable Y in the SAR model defined in (3.1). We obtain 1,000 samples
of sizes n= 50 and n= 200, respectively. To simulate the values in W , we analyse
the behaviour of the Cijt used in the application presented in this paper and we see
that these values have a behaviour similar to a random variable with distribution
Beta(4.7,3). To simulate the values of the random variable Y we use the following
results from the SAR model:

Y = (In−ρW )−1 (µµµ+ ϵϵϵ) , (3.14)

where In is the identity matrix of order n. To generate data from (3.14) we as-
sume µµµ= 0 and the value of ϵϵϵ are generated following alternative distributions that
have different shapes and tail behaviour. These distributions are: normal with pa-
rameters µ = 0 and σ = 0.25; a Student’s t with 3 degree of freedom, µ = 0 and
σ = 0.25√

3
; a log-normal with µ = 0 and variance 0.5; and a log-logistic with µ = 0
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3.3 Simulation Study

and variance 0.5. Note that these distributions have alternative shapes that can be
found when risk variables are analysed.The normal and the Student’s t are symmet-
ric, the second having heavier tails than the first. The log-normal and log-logistic
are right skewed and the second has a heavier right tail than the first. Furthermore,
log-logistic distribution is asymptotically Pareto-type right-tailed distribution. For
each distribution the values ρ= 0.9,0.5,0.1 are used.

In addition to the alternative distributions, the simulation study also analyses the
effect on the test results depending on the number of neighbours. With this aim the
continuity matrix is discretised using different criteria for obtaining c (remember
C∗
ij = 1 if Cij > c and C∗

ij = 0 on the contrary): the median (second quartile) of the
values Cij , their quantile at 75% confidence level (third quartile) and their quantile
at 90% confidence level. Note that the higher the quantile the smaller the number
of neighbours. So, spatial dependence is stronger as ρ increases and the number of
neighbours decreases.

In Table 3.1 the results of inference at 5% significance level using the global
Moran’s I statistic are shown. On the 1,000 replicates of each sample, we calculate
the percentage of rejection of the null hypothesis of spatial independence from the
alternative hypothesis of positive spatial dependence. For every replicate, the test
is carried out using asymptotic inference based on normal distribution (N) and with
the finite inference based on 1,000 bootstrap random samples (B) with replacement
and the same size of the original samples. For normal distributions, Student’s t
and log-normal, the results with N and B are similar in all cases. When the spatial
dependence is clear, i.e. ρ = 0.9 and the neighbourhood criterion is based on the
quantile at 90% confidence level the percentage of rejections is practically equal to
1 in all cases. When the number of neighbours increases this percentage decreases
and similarly when the value ρ decreases. For the log-logistic distribution, again,
the results for N and B are very similar when the neighbourhood criterion is based
on the quantile at 90% confidence level and ρ= 0.9 or ρ= 0.5. However, when the
number of neighbours is at its highest and ρ < 0.9 the percentage of rejection with
N is greater than that obtained with B. Compared with the alternative distributions,
for the log-logistic, that is Pareto tailed, the asymptotic inference based on Normal
distribution will have larger type I error, i.e. the null hypothesis could be rejected
with more probability when this is true.
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Tables 3.2, 3.3 and 3.4 show the results for local spatial inference using the local
Moran statistic. The results for three observations with different number of neigh-
bours (maximum, median and minimum) are, respectively, analysed. In general, as
expected, the results of local inference indicate that the percentage of rejections of
the null hypothesis of spatial independence is much lower than in the global test,
this finding having already been presented by Anselin (1995). However, in our
simulation study we find some novel results, described below.

In the same way as for the global Moran’s I, with the local Moran statistic we
also observe that as the number of neighbours increases the null hypothesis is not
rejected with more frequency. Furthermore, as Table 3.2 shows, concerning the
results for the case with the maximum number of neighbours with each criterion,
by using asymptotic inference (N) we obtain a higher percentage of rejection than
with bootstrap (B). In contrast, in Tables 3.3 and 3.4, where the cases with median
and minimum neighbours are analysed, respectively, the percentage of rejection
tends to be the highest with B, i.e. bootstrap inference has clearly more power than
asymptotic inference based on normal distribution. In other words, fewer errors are
made when rejecting the null hypothesis of independence.

Analysing the results of local inference for alternative distributions, we observe
that the differences between N and B are the lowest for normal and Student’s t
distributions. For log-normal and log-logistic distributions the asymptotic inference
barely detects spatial dependence in those cases where it could be stronger, i.e.
minimum number of neighbours with neighbourhood criteria based on the quantile
at 90% confidence level and with ρ = 0.9. In these cases the bootstrap inference
considerably improves normal based inference.
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3.3 Simulation Study

Table 3.1: Simulation results for global Moran’s I statistic using asymptotic infer-
ence (N) and bootstrap inference (B), both at 5% significance level.

α= 0.1 Normal Student’s t Log-normal Log-logistic
n Quantile ρ N B N B N B N B

0.9 0.461 0.456 0.543 0.527 0.536 0.520 0.728 0.663
50 0.5 0.268 0.275 0.306 0.290 0.298 0.275 0.495 0.299

0.1 0.126 0.121 0.133 0.127 0.116 0.108 0.176 0.094
0.9 0.806 0.808 0.879 0.874 0.877 0.868 0.956 0.952

50 75 0.5 0.456 0.457 0.521 0.507 0.504 0.474 0.737 0.635
0.1 0.133 0.131 0.155 0.149 0.151 0.140 0.228 0.108
0.9 0.999 0.999 0.996 0.996 0.997 0.997 1.000 0.999

90 0.5 0.815 0.813 0.850 0.846 0.858 0.844 0.957 0.936
0.1 0.198 0.206 0.193 0.186 0.196 0.183 0.293 0.156

0.9 0.498 0.503 0.498 0.507 0.536 0.528 0.710 0.665
50 0.5 0.285 0.286 0.298 0.297 0.300 0.297 0.501 0.347

0.1 0.134 0.133 0.131 0.126 0.145 0.140 0.203 0.100
0.9 0.838 0.840 0.833 0.830 0.858 0.857 0.951 0.937

200 75 0.5 0.495 0.502 0.496 0.483 0.504 0.488 0.684 0.596
0.1 0.141 0.143 0.160 0.154 0.162 0.157 0.222 0.104
0.9 0.993 0.993 0.998 0.998 0.998 0.998 1.000 1.000

90 0.5 0.842 0.844 0.818 0.814 0.829 0.820 0.961 0.952
0.1 0.191 0.192 0.211 0.203 0.209 0.200 0.294 0.149

α= 0.05 Normal Student’s t Log-normal Log-logistic
n Quantile ρ N B N B N B N B

0.9 0.341 0.341 0.402 0.384 0.403 0.368 0.640 0.482
50 0.5 0.168 0.172 0.189 0.183 0.187 0.163 0.381 0.174

0.1 0.069 0.069 0.067 0.067 0.061 0.058 0.109 0.048
0.9 0.705 0.704 0.776 0.765 0.790 0.759 0.923 0.900

50 75 0.5 0.318 0.316 0.361 0.344 0.383 0.319 0.611 0.354
0.1 0.075 0.077 0.087 0.078 0.093 0.074 0.161 0.050
0.9 0.993 0.991 0.992 0.992 0.994 0.993 0.999 0.999

90 0.5 0.711 0.708 0.760 0.740 0.758 0.705 0.887 0.787
0.1 0.109 0.108 0.118 0.116 0.116 0.095 0.222 0.073

0.9 0.353 0.355 0.380 0.375 0.410 0.394 0.610 0.525
50 0.5 0.182 0.192 0.178 0.178 0.209 0.201 0.393 0.202

0.1 0.068 0.068 0.072 0.069 0.067 0.060 0.108 0.036
0.9 0.726 0.724 0.708 0.710 0.752 0.748 0.901 0.867

200 75 0.5 0.350 0.342 0.350 0.344 0.370 0.349 0.569 0.336
0.1 0.086 0.087 0.084 0.085 0.096 0.088 0.158 0.052
0.9 0.987 0.986 0.993 0.993 0.995 0.994 1.000 1.000

90 0.5 0.987 0.986 0.709 0.700 0.750 0.728 0.892 0.817
0.1 0.100 0.099 0.127 0.121 0.121 0.112 0.215 0.063
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Table 3.2: Simulation results for local Moran’s I statistic with maximum number of
neighbours using asymptotic inference (N) and bootstrap inference (B),
both at 10% significance level.

α= 0.1 Normal Student’s t Log-normal Log-logistic
n Quantile ρ N B N B N B N B

0.9 0.144 0.143 0.152 0.153 0.141 0.153 0.204 0.148
50 0.5 0.119 0.119 0.124 0.124 0.120 0.123 0.184 0.129

0.1 0.099 0.099 0.105 0.097 0.098 0.101 0.161 0.098
0.9 0.181 0.186 0.217 0.204 0.190 0.193 0.229 0.175

50 75 0.5 0.132 0.140 0.157 0.156 0.137 0.139 0.141 0.139
0.1 0.091 0.100 0.127 0.107 0.092 0.087 0.083 0.080
0.9 0.304 0.289 0.318 0.275 0.309 0.282 0.272 0.155

90 0.5 0.203 0.197 0.200 0.203 0.192 0.195 0.181 0.173
0.1 0.132 0.122 0.112 0.109 0.085 0.105 0.063 0.080

0.9 0.114 0.108 0.110 0.120 0.110 0.092 0.126 0.141
50 0.5 0.103 0.101 0.102 0.112 0.097 0.079 0.116 0.113

0.1 0.097 0.088 0.094 0.096 0.089 0.073 0.119 0.099
0.9 0.134 0.131 0.132 0.137 0.122 0.136 0.163 0.137

200 75 0.5 0.114 0.108 0.113 0.117 0.100 0.115 0.102 0.116
0.1 0.096 0.087 0.099 0.094 0.085 0.086 0.081 0.081
0.9 0.186 0.190 0.171 0.187 0.175 0.183 0.185 0.193

90 0.5 0.137 0.154 0.131 0.132 0.132 0.140 0.127 0.130
0.1 0.102 0.118 0.099 0.096 0.098 0.101 0.053 0.060

α= 0.05 Normal Student’s t Log-normal Log-logistic
n Quantile ρ N B N B N B N B

0.9 0.071 0.076 0.077 0.084 0.079 0.089 0.103 0.078
50 0.5 0.051 0.064 0.064 0.065 0.061 0.065 0.087 0.065

0.1 0.040 0.048 0.054 0.045 0.052 0.051 0.071 0.041
0.9 0.108 0.111 0.125 0.116 0.101 0.109 0.106 0.102

50 75 0.5 0.059 0.078 0.089 0.078 0.064 0.065 0.062 0.070
0.1 0.040 0.049 0.060 0.057 0.040 0.040 0.033 0.036
0.9 0.205 0.195 0.210 0.183 0.208 0.178 0.191 0.155

90 0.5 0.125 0.127 0.110 0.112 0.103 0.107 0.120 0.077
0.1 0.074 0.067 0.050 0.064 0.029 0.046 0.032 0.033

0.9 0.054 0.053 0.048 0.071 0.054 0.050 0.054 0.071
50 0.5 0.049 0.049 0.044 0.065 0.046 0.045 0.048 0.056

0.1 0.049 0.042 0.043 0.058 0.041 0.039 0.049 0.043
0.9 0.066 0.075 0.066 0.075 0.072 0.081 0.062 0.069

200 75 0.5 0.054 0.060 0.060 0.061 0.053 0.067 0.039 0.055
0.1 0.048 0.045 0.054 0.050 0.045 0.049 0.030 0.039
0.9 0.096 0.121 0.095 0.098 0.102 0.101 0.126 0.107

90 0.5 0.071 0.093 0.067 0.068 0.066 0.075 0.087 0.054
0.1 0.057 0.062 0.040 0.047 0.042 0.045 0.022 0.030
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3.3 Simulation Study

Table 3.3: Simulation results for local Moran’s I statistic with medium number of
neighbours using asymptotic inference (N) and bootstrap inference (B),
both at 10% significance level.

α= 0.1 Normal Student’s t Log-normal Log-logistic
n Quantile ρ N B N B N B N B

0.9 0.148 0.170 0.166 0.161 0.153 0.161 0.169 0.160
50 0.5 0.123 0.129 0.139 0.130 0.123 0.122 0.133 0.126

0.1 0.103 0.098 0.114 0.106 0.100 0.090 0.099 0.084
0.9 0.177 0.186 0.161 0.188 0.182 0.207 0.212 0.174

50 75 0.5 0.139 0.144 0.144 0.137 0.129 0.151 0.130 0.117
0.1 0.110 0.111 0.117 0.094 0.102 0.103 0.057 0.073
0.9 0.277 0.286 0.254 0.290 0.267 0.293 0.206 0.275

90 0.5 0.203 0.201 0.164 0.199 0.162 0.194 0.143 0.190
0.1 0.128 0.132 0.099 0.101 0.083 0.121 0.051 0.069

0.9 0.118 0.128 0.105 0.112 0.128 0.139 0.112 0.129
50 0.5 0.114 0.117 0.096 0.106 0.118 0.118 0.104 0.108

0.1 0.105 0.105 0.092 0.092 0.113 0.105 0.104 0.078
0.9 0.119 0.121 0.135 0.155 0.127 0.150 0.149 0.120

200 75 0.5 0.108 0.109 0.110 0.125 0.107 0.129 0.094 0.087
0.1 0.095 0.082 0.088 0.102 0.093 0.093 0.049 0.048
0.9 0.171 0.190 0.154 0.171 0.161 0.180 0.131 0.187

90 0.5 0.141 0.147 0.136 0.137 0.118 0.148 0.095 0.126
0.1 0.112 0.119 0.099 0.107 0.084 0.103 0.027 0.048

α= 0.05 Normal Student’s t Log-normal Log-logistic
n Quantile ρ N B N B N B N B

0.9 0.081 0.095 0.091 0.091 0.083 0.087 0.070 0.090
50 0.5 0.064 0.066 0.073 0.071 0.059 0.064 0.048 0.066

0.1 0.048 0.051 0.055 0.051 0.041 0.050 0.034 0.042
0.9 0.101 0.114 0.100 0.101 0.112 0.113 0.108 0.084

50 75 0.5 0.075 0.085 0.081 0.077 0.069 0.081 0.066 0.063
0.1 0.052 0.053 0.057 0.049 0.046 0.052 0.021 0.037
0.9 0.167 0.189 0.151 0.192 0.154 0.198 0.137 0.169

90 0.5 0.107 0.124 0.101 0.111 0.093 0.117 0.113 0.121
0.1 0.066 0.073 0.059 0.050 0.050 0.059 0.033 0.040

0.9 0.064 0.063 0.047 0.057 0.064 0.070 0.046 0.070
50 0.5 0.059 0.056 0.044 0.051 0.061 0.064 0.042 0.054

0.1 0.053 0.045 0.042 0.043 0.059 0.048 0.037 0.034
0.9 0.056 0.064 0.071 0.080 0.053 0.084 0.091 0.056

200 75 0.5 0.048 0.056 0.056 0.065 0.048 0.056 0.054 0.040
0.1 0.039 0.041 0.047 0.049 0.037 0.036 0.021 0.026
0.9 0.091 0.110 0.093 0.104 0.093 0.115 0.091 0.111

90 0.5 0.077 0.087 0.068 0.076 0.060 0.088 0.076 0.072
0.1 0.059 0.066 0.045 0.053 0.037 0.057 0.017 0.025
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Table 3.4: Simulation results for local Moran’s I statistic with minimum number of
neighbours using asymptotic inference (N) and bootstrap inference (B),
both at 10% significance level.

α= 0.1 Normal Student’s t Log-normal Log-logistic
n Quantile ρ N B N B N B N B

0.9 0.168 0.180 0.173 0.173 0.176 0.198 0.195 0.180
50 0.5 0.133 0.152 0.139 0.139 0.141 0.152 0.111 0.123

0.1 0.106 0.125 0.113 0.108 0.116 0.120 0.081 0.069
0.9 0.184 0.212 0.210 0.246 0.172 0.228 0.167 0.237

50 75 0.5 0.130 0.161 0.161 0.182 0.121 0.164 0.119 0.164
0.1 0.094 0.110 0.121 0.110 0.075 0.107 0.041 0.056
0.9 0.212 0.309 0.147 0.300 0.099 0.313 0.066 0.252

90 0.5 0.175 0.224 0.125 0.209 0.078 0.222 0.064 0.156
0.1 0.123 0.111 0.086 0.118 0.046 0.116 0.043 0.062

0.9 0.122 0.141 0.147 0.119 0.125 0.153 0.127 0.143
50 0.5 0.110 0.126 0.129 0.107 0.119 0.132 0.095 0.114

0.1 0.099 0.114 0.111 0.091 0.107 0.112 0.085 0.080
0.9 0.131 0.160 0.120 0.135 0.147 0.180 0.139 0.180

200 75 0.5 0.119 0.139 0.104 0.115 0.130 0.145 0.088 0.110
0.1 0.105 0.122 0.091 0.094 0.110 0.114 0.033 0.055
0.9 0.179 0.193 0.163 0.183 0.141 0.227 0.095 0.203

90 0.5 0.145 0.155 0.128 0.138 0.100 0.162 0.077 0.141
0.1 0.114 0.118 0.100 0.093 0.071 0.105 0.023 0.044

α= 0.05 Normal Student’s t Log-normal Log-logistic
n Quantile ρ N B N B N B N B

0.9 0.097 0.123 0.102 0.101 0.101 0.123 0.069 0.091
50 0.5 0.077 0.090 0.085 0.077 0.059 0.094 0.044 0.052

0.1 0.052 0.064 0.065 0.056 0.049 0.066 0.026 0.032
0.9 0.099 0.142 0.125 0.165 0.081 0.134 0.120 0.152

50 75 0.5 0.064 0.096 0.092 0.106 0.052 0.092 0.102 0.088
0.1 0.043 0.062 0.068 0.067 0.033 0.050 0.028 0.029
0.9 0.115 0.220 0.077 0.176 0.058 0.181 0.058 0.142

90 0.5 0.082 0.134 0.077 0.134 0.055 0.124 0.053 0.088
0.1 0.059 0.064 0.056 0.058 0.033 0.058 0.038 0.045

0.9 0.062 0.071 0.073 0.065 0.055 0.089 0.040 0.072
50 0.5 0.055 0.065 0.059 0.057 0.048 0.077 0.025 0.048

0.1 0.052 0.058 0.051 0.052 0.044 0.060 0.022 0.024
0.9 0.066 0.102 0.067 0.077 0.081 0.115 0.106 0.088

200 75 0.5 0.055 0.086 0.055 0.059 0.068 0.092 0.070 0.047
0.1 0.045 0.071 0.052 0.046 0.055 0.072 0.016 0.026
0.9 0.092 0.123 0.106 0.102 0.086 0.140 0.074 0.119

90 0.5 0.072 0.088 0.076 0.076 0.054 0.083 0.068 0.085
0.1 0.048 0.057 0.058 0.054 0.031 0.046 0.021 0.019
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3.4 Data Analysis

3.4 Data Analysis

In our study, 45 countries and 46 stock indices (USA has two: Standard & Poor’s
500 and Dow Jones) are analysed monthly. These countries and stock indices are
listed in Table 3 of Section A-1 of the Appendix at the end of this Thesis. Each
country is labelled using the two digits notation. The frequencies of words per
country and month were added to obtain our proposed GTUI. The period analysed is
from January 2004 to March 2021. The four sub-periods distinguished, containing
the most important financial crises in the 21st century to date, are as follows: the
US sub-prime period between 31 August, 2007 and 30 June, 2009; the Euro debt
crisis between 30 June, 2010 and 30 June, 2014; Brexit between 30 June, 2016
and 31 January, 2020; and the COVID-19 pandemic between 29 February, 2020
and 31 March, 2021. To obtain the results of spatial dependence the criterion for
defining the neighbours was the median. The criteria based on the most extreme
quantiles used in the simulation study of Section 3.3 lead to a very small number of
neighbours, possibly even equal to zero, in some periods which causes difficulties
in calculating the statistics for testing spatial dependency.

The initial data are the monthly value of market indices MIti, t = 1, ...,207 and
i = 1, ...,46. We used monthly data because the information from Google Trends
necessary for the construction of the uncertainty index is available monthly. The
monthly losses are lti = −log

(
MIti

MI(t−1)i

)
, where for t = 1 we obtain the value of

t− 1 = 0. In total we have 46 series of losses, described in Table 3 of Section
A-1 of the Appendix at the end of this Thesis. The Shapiro-Wilk test for small
samples and the Kolmogorov-Smirnov test for large samples are used to study the
normality of the risk series, for all the series the normality assumption is rejected.
For each monthly loss series, we study its stationarity in mean and variance and
filter the series with the fitted ARMA-GARCH models that are shown in Table 4 of
Section A-1 of the Appendix. The series of losses called lti and the standardised
residuals rti of ARMA-GARCH models, called filtered series, are plotted in Figure
3.1. Three main positive peaks are prominent in the plot on the left. The first
corresponds to October 2010 in the middle of the Euro debt crisis, where Iceland
reached losses of more than 50%, followed by Peru, Argentina and Russia, whose
indices lost 20% of their value. The second peak is in August 2019 and corresponds
to the economic crisis in Argentina, a country whose stock index lost more than
23% of its value. The third is in March 2020, coinciding with the health crisis of
the COVID-19 pandemic which has affected the whole world and during which, for
example, Austria, Spain, Italy and Greece in the Eurozone lost more than 10% of
their stock index value. In the plot on the right, showing the standardised residuals
of ARMA-GARCH fitted model, the four crisis periods are reflected with greater
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instability in the series.

Figure 3.1: Losses (left) and standardised residuals of filtered losses (right) for the
46 stock indices.

With the filtered data we estimate the monthly risk with two alternative measures,
the volatility and the VaR at 99% confidence level, using the rolling method with a
window of 12 months. This window is selected considering that we work with long
monthly series and, in addition to the volatility, where a window of 6 is very com-
mon, we must estimate the VaR at 99%, in this case a window of 12 provides less
sensitive results. The first year of data was not available, leaving us with informa-
tion for 195 months, from January 2005 to March 2021. Let rit be the standardised
residual of stock market i and month t, the volatility is estimated with the known

formula for the variance, σ̂2it =
∑t
s=t−12(ris−r̄it)

2

12 , where r̄it =
∑t
s=t−12 ris

12 . The VaR is
estimated using the formula that takes into account the deviations from the normal
distribution, i.e the modified VaR MVaR). Due to the non-normality of the data and
the diversity of the 46 analysed series, parametric and Monte Carlo approaches do
not make sense, the MVaR is the most consistent estimation in our case, and it is:

MV aRit = l̄it+ZCF × σ̂it.

In the MVaR formula the term

ZCF = Zα+

(
Z2
α−1

)
S

6
+

(
Z3
α−3Zα

)
K

24
−
(
2Z3

α−5Zα

)
S2

36

is the Cornish Fisher approximation of the α quantile, where S and K = k− 3

refer to skewness and the excess of kurtosis of the data. Our variable, therefore,
in formulas (3.5) and (3.11) for global and local Moran statistics are Yit = σ̂2it and
Yit = MV aRit. In Figure 3.2 both risk measures for the 46 indices are plotted,
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3.4 Data Analysis

including their means (magenta long dashed line) and medians (yellow short dashed
line) throughout the analysed period. In all the figures that are shown in this section,
the crisis periods are shaded.

Figure 3.2 shows that throughout the analysed period the mean of the risk vari-
able is greater than its median, which reflects the skewness of the data due to the
presence of extreme risks, especially during the sub-prime period. In the exercise of
simulation of Section 3.3, Table 3.1 shows that in these cases, when spatial depen-
dence is not significant, normal inference tends to reject the null hypothesis more
frequently than bootstrap inference, i.e. normality assumption increases the error
type I. This result is reflected in our analysis in Figure 3.3 where, along with the
value of the global Moran’s I statistic, its upper limits at 95% confidence level are
plotted, estimated with normal distribution (thin dashed line) and bootstrap (thick
dashed line), with the former always below the latter.

Figure 3.2: Volatility (left) and MVaR at 99% confidence level. The crisis periods
are shaded. Mean values plotted in magenta long dashed line and me-
dian in yellow short dashed line .
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In Figure 3.3, we observe that positive spatial dependence for volatility is more
frequent than for MVaR. This is justified given that the former takes into account
both tails of the loss distribution and the latter is focused on the right tail. So, on the
right we plot positive spatial dependence between extreme losses. For the volatility,
the period with more positive spatial dependence is the sub-prime crisis, followed
by the Euro debt crisis; however, for the MVaR, the sub-prime period remains the
one that causes the greatest positive spatial dependence between extreme losses, but
is followed by Brexit. Similar results on US sub-prime crisis have been obtained in
recent work by Chopra and Mehta (2022), these authors showed that the sub-prime
crisis was the most contagious for the Asian stock markets. In addition, previous
works also showed the contagion of this crisis in different financial markets around
the world Lien et al. (2018); Mohti et al. (2019).

To complete the results of Figure 3.3, in Table 3.5 we show the test of differences
of proportions of months with significant positive spatial dependence between each
crisis period and the non-crisis period. The results of Table 3.5 allow us to answer
the 3 questions posed in the Introduction of this paper. For volatility, in the four cri-
sis periods the proportion of the months with positive spatial dependence is greater
than for the non-crisis period. However, the differences are significant for the sub-
prime and Euro debt crises. In contrast, for the spatial dependence estimate with
the MVaR the proportion of months for Euro debt crisis is lower than that for the
non-crisis period, although the difference is not significant at 5% significance level.
In this case, the Brexit period reflects a stronger spatial dependence than the Euro
debt period. In relation to the COVID-19 pandemic the results with volatility and
MVaR do not show significant differences compared to the non-crisis period. In
response to the first question, we can affirm that the volatility spatial dependence,
that takes into account the two tails of the distribution (losses and profits), is clearly
more frequent in periods of crisis, i.e. spatial dependence occurs in boom and bust
periods. Regarding the questions second and third, we observe that there are clear
differences between the spatial dependence detected in the different periods of crisis
and between spatial dependence criteria (volatility and MVaR).
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Figure 3.3: Global Moran’s I statistic for Volatility (left) and for MVaR at 99% con-
fidence level (right). The crisis periods are shaded. Upper limits at 95%
confidence level that have been estimated with normal distribution (thin
dashed line) and bootstrap (thick dashed line).

Table 3.5: Frequencies and proportion of months with significant positive global
spatial dependence and test at 5% significance level of difference between
proportion of months with significant positive spatial dependence in each
crisis period with respect to the non-crisis period.

Volatility MVaR
Volatility Frequency Proportion p-value Frequency Proportion p-value
Sub-prime 22 0.957 0.001 13 0.565 0.010
Euro Debit 42 0.857 0.002 12 0.245 0.287
Brexit 30 0.682 0.239 22 0.500 0.014
COVID-19 6 0.429 0.901 5 0.357 0.316
Total crisis 100 0.769 0.012 52 0.400 0.070

Total no crisis 40 0.615 19 0.292

Next, we analyse the local spatial dependency for the market indices of the fol-
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lowing countries: Spain, Germany, France, Italy, UK, US, Argentina, Brazil, Japan
and Hong Kong, in total 11 indices given that the US has two. The upper confidence
limits are carried out with Bonferroni correction for multiple null hypothesis (11 in
our case). In Figure 3.4 the monthly number of neighbours for different groups of
countries is plotted. It is in Japan and Hong Kong where the trend shows an in-
crease. In the EU, Italy has the greatest number of neighbours throughout almost
all of the period, followed by Spain, while Germany is the EU country with the
fewest neighbours of uncertainty. Argentina is below Brazil and the UK has a more
unstable behaviour in terms of number of neighbours than the US.

Figure 3.4: Monthly number of neighbours.

The figures from the 3.5 to the 3.9 plot the local spatial dependence statistics
(solid line) and the bootstrap upper limits at 95% confidence level (dashed line)
for testing significant positive local spatial dependence. These figures are obtained
focusing on right tail of the loss distribution, i.e. using MVaR for the 11 indices.
Specifically, Figure 3.5 shows the results for Argentina and Brazil, Figure 3.6 for
the four the EU markets, Figure 3.7 for UK, Figure 3.8 for US and, finally, the local
spatial dependence results for Japan and Hong Kong are shown in Figure 3.9. The
results obtained with the volatility are omitted; similar to global spatial dependence,
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3.4 Data Analysis

these show a somewhat stronger dependence. A significant local spatial dependence
implies that the country spreads its situation of extreme losses to its neighbouring
countries, i.e., neighbours with similar uncertainty. These linkages between stock
market losses are apparent for some countries and for certain specific periods. Fig-
ure 3.5 shows a significant local positive spatial dependence for Argentina just be-
fore the Brexit referendum and at the end of this period. With regard to the EU
countries, Figure 3.6 shows that it is the French stock market that shows a signif-
icant spatial dependence before and during the sub-prime period, as well as some
months with strong local dependency during the Brexit and COVID-19 period. The
UK shows similar results to France, although the period of strong local spatial de-
pendence before and after the Brexit referendum is particularly prominent. The US
indices are those that show more frequent local spatial dependence in all the crisis
periods apart from during the COVID-19 pandemic. Finally, the two Asian stock
markets have significant local spatial dependence in the sub-prime period, and more
so in Japan.

Figure 3.5: Local Moran’s I statistic for MVaR at 99% confidence level (solid line)
and bootstrap upper limits at 95% confidence level (dashed line). The
crisis periods are shaded. Results for Argentine and Brazil stock indices.
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Figure 3.6: Local Moran’s I statistic for MVaR at 99% confidence level (solid line)
and bootstrap upper limits at 95% confidence level (dashed line). The
crisis periods are shaded. Results for EU stock indices.
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Figure 3.7: Local Moran’s I statistic for MVaR at 99% confidence level (solid line)
and bootstrap upper limits at 95% confidence level (dashed line). The
crisis periods are shaded. Results for UK stock index.

Figure 3.8: Local Moran’s I statistic for MVaR at 99% confidence level (solid line)
and bootstrap upper limits at 95% confidence level (dashed line). The
crisis periods are shaded. Results for US stock indices.
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Figure 3.9: Local Moran’s I statistic for MVaR at 99% confidence level (solid line)
and bootstrap upper limits at 95% confidence level (dashed line). The
crisis periods are shaded. Results for Japan and Hong Kong stock in-
dices.

We observe that between non-EU countries, Argentina has a certain level of con-
tagion both in the sub-prime crisis and due to Brexit, but it is relatively lower com-
pared to the EU countries analysed. It is interesting to note that countries such as
Germany and Spain have financial markets relatively isolated from the others, since
they do not have relevant spatial correlation.

With respect to the other countries analysed, there are certain relevant impulses:
the US indices clearly felt an impact from the Brexit crisis due to their interconnec-
tion with the UK economy; France, curiously, has connections for all crises except
Brexit, since it has somehow benefited from it.

With regard to the possibility of detecting crises in advance, through relevant
impacts on the spatial correlation, we see that the Euro debt crisis does not show
any sign of impact, nor does Brexit, but the sub-prime crisis does show in almost all
countries an increase in the relevant spatial correlation. We could perhaps consider
that the type of crisis can influence contagion before or during it and that the markets
adjust their expectations differently depending on what they are like.
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3.5 Conclusions

This chapter presents a complete study of the analysis of global and local spatial
dependence with global and local Moran’s I statistics in the context of financial
markets and their uncertainty.

A simulation study is presented which shows how, when there are extreme values
in the right tail of the distribution, the inference with global and local Moran’s I
statistics based on the normal distribution increases the type I error. The same tests
are also done based on the bootstrap resampling technique.

Following the analysis of the data, there are some interesting findings. The period
of the global financial crisis of the sub-prime is the one that caused more linkages
between the extreme losses of the analysed stock indices. We can therefore conclude
that systemic risk in this period caused more losses than in the others periods. The
Euro debt period is the one with less global spatial dependence between extreme
losses, followed by the COVID-19 pandemic period. Between the 10 countries
whose local spatial dependences were analysed, those that were contagious for their
neighbours of uncertainty in certain months were Argentina, France, the US, the
UK, Japan and Hong Kong.

The impact of the financial crisis of the sub-prime is the most visible in our
study such that it presents a greater presence of joint or systemic risk, where the
most extreme losses are greater. However, the opposite is seen in two other crises
analysed, Euro debt and COVID-19. We consider that a possible justification for
this comes from the fact that their impact was more indirect on the markets and
more adequate management tools were created. With regard to Brexit, which was
consolidated little by little, we see that there are no signs of contagion before it,
but there are during it in the countries with more interconnected economies: the
US, Hong Kong, Japan and, of course, the UK. Finally, we would like to mention a
degree of isolation of certain countries in terms of contagion -Germany, Spain, Italy
and Brazil- this may because these countries have different structures than those that
are more closely related. The greater variability of the local Moran indicator itself
could be an early indicator of the crises themselves, and detecting which markets
are more sensitive to them could be a way of preparing the latter for any adjustments
needed.
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Chapter 4

A new kernel estimator of copulas based on Beta
quantile transformations

4.1 Introduction

Based on the kernel method and transformations, we present a new nonparametric
estimator of a multivariate copula that improves the empirical copula and the most
prominent kernel estimators (see Omelka et al., 2009, for a detailed review). We
use the new estimator to analyse and test the extreme value dependence between
the losses in the Spanish stock market index and different stock market indices of
Europe, USA and China.

The copula model allows us to represent the dependence structure of a multivari-
ate random vector of continuous variables X= (X1, ...,XJ)

′, which combines with
marginal distributions to give the multivariate distribution. This idea was estab-
lished in the fundamental theorem proposed by Sklar (1959). This theorem shows
that a multivariate cumulative distribution function (cdf) H of the random vector X,
with marginal distributions functions F1, ...,FJ , has associated a copula C, so that:

H (x1, ...,xJ) = C (F1(x1), ...,FJ(xJ)) . (4.1)

In practice, the dependence structure and marginal distributions are unknown
and both will need to be fitted. We assume that marginal cdfs can be easily adjusted
using parametric distributions or nonparametric methods and we focus on the fitting
of dependence structure using a copula. It is often difficult by visualizing the data to
select the appropriate dependency structure and, therefore, the right copula model.
Alternatively, a nonparametric estimation of a copula can be obtained whose results
can be used for estimating joint probabilities or for testing the adequacy of a copula
family, for example, the extreme value copula family. In this paper, these two aims
of our new nonparametric estimator are analysed through a simulation study.



Because there are a lot of dependence structures represented by different copulas
families, specific tests for choosing the best copula are useful. The approach for
developing a test for the adequacy of copulas takes its lead from, for example, the
proposal of Genest and Rivest (1993) for bivariate Archimedean copulas; the test of
Scaillet (2005) on inference for the positive quadrant dependence hypothesis; the
test for equality between two copulas of Rémillard and Scaillet (2009) or the test of
symmetry for bivariate copulas of Genest et al. (2012).

On inference for extreme value copulas, alternative types of tests have been pro-
posed, among which the most well known are the test of Genest et al. (2011) based
on a Cramér-von Mises statistic, the test analysed by Ghorbal et al. (2009) based on
an U -statistic and the test of Kojadinovic et al. (2011) that uses the max− stable

property and is also based on a Cramér-von Mises statistic (see also Bahraoui et al.,
2014, for complete properties of the test based on max− stable property).

The test proposed by Kojadinovic et al. (2011) is based on the empirical cop-
ula that is equivalent to the multivariate empirical distribution. However, the em-
pirical copula is inefficient for certain shapes of distribution, for example, when
the marginal cdfs are associated with extreme value distributions. Alternatively,
Omelka et al. (2009) analyse how testing extreme value copula can be based on dif-
ferent kernel estimators. The main difficulty of a classical kernel estimator is its bias
on the boundaries when the function values at these points are positive. Based on
this concern, Chen and Huang (2007) analyse the kernel copula estimator with lo-
cal linear boundary correction which the authors proved reduces bias and variance.
Alternatively, Omelka et al. (2009) propose the transformation of a kernel copula
estimator based on standard normal inverse distribution function transformations,
which is very easy to implement and has the same weak convergence properties as
the previous proposal. In this paper, an improved transformed kernel estimator is
proposed that has the same weak convergence properties and is useful for the infer-
ence on extreme value copulas. The theoretical results are shown for the bivariate
case, but they are easily extrapolated to the multivariate case.

In Section 4.2, we present the background on kernel estimation of copulas, the
new estimator and its theoretical asymptotic properties for testing the max-stable
property of extreme value copulas. The Section 4.3 presents the simulation re-
sults that allow us to analyse finite sample properties and inference errors Type 1
and Type 2. As an illustration, in Section 4.4, a financial risk analysis is carried
out where the extreme value copula family hypothesis between the Spanish stock
market index and different neighbouring and non-neighbouring countries is tested.
Finally, we conclude in Section 4.5.
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4.2 Kernel estimation of copulas

Let (Xi1,Xi2)
′, ∀ i = 1, ...,n, be a sample of n independent and identically dis-

tributed (i.i.d.) bivariate data, the product kernel estimator of the bivariate cdf can
be expressed as:

Ĥ(x1,x2) =
1

n

n

∑
i=1

K

(
x1−Xi1

b1

)
K

(
x2−Xi2

b2

)
, (4.2)

where K is the cdf associated with the kernel function k, that is a bounded or asymp-
totically bounded and symmetric probability density function (pdf) (see Liu and
Yang, 2008; Wang et al., 2013, for a review on kernel estimation of the multivari-
ate distribution function). Examples of such functions are the Epanechnikov and
the Gaussian kernels Silverman (1986). The parameters b1 > 0 and b2 > 0, known
as the bandwidths or smoothing parameters, control the smoothness of the estima-
tion. Thus, the larger the value of b1 and b2, the smoother the resulting function.
Their values depend on the sample size n - the biggest sample size n, the lower the
smoothing parameters - but obtaining optimal values for these smoothing parame-
ters is one of the greatest difficulties posed by the kernel estimation.

Based on Slark’s theorem, from (4.2) we specify the kernel estimator of copula
as:

C̃
(
F̂1(x1), F̂2(x2)

)
=

1

n

n

∑
i=1

K

(
x1−Xi1

b1

)
K

(
x2−Xi2

b2

)
, (4.3)

where F̂j(xj), j = 1,2, are estimators of the marginal cdfs that, in practice, can
be obtained based on a parametric distribution or with a non-parametric estimator.
Given that the copulas allow us to separate dependence structure from marginal
distribution, we focus on estimating the first; so, the aim is to estimate a multivariate
cdf with Uniform(0,1) marginal distributions, whose kernel estimator for bivariate
case is expressed as:

C̃ (u1,u2) =
1

n

n

∑
i=1

K

(
u1−Ui1

b

)
K

(
u2−Ui2

b

)
, (4.4)

where, unlike (4.2), given that the marginal distributions are Uniform(0,1), we
assume b1 = b2 = b and b → 0 as n → ∞, taking into account the relationship
between b and n, hereinafter we denote it as bn. In practice, we need to de-
fine observations (Ui1,Ui2)

′, ∀ i = 1, ...,n, the values of the marginal empiri-
cal distributions Uij =

1
n ∑n

k=1 I
(
Xkj ≤Xij

)
, j = 1,2 and i = 1, ...,n, are a nat-

ural choice. However, it is known that empirical distribution takes value 1 at
the maximum value observed and most of the commonly used copulas (Gumbel,
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Clayton, Gaussian and Student’s t) are not finite derivatives (copula density val-
ues) at corners (0,0),(1,1),(1,0),(1,1); then, these empirical distributions are re-
placed by corrected versions that are known as pseudo-data and that can be de-
fined as: Ûij =

1
n+1 ∑n

k=1 I
(
Xkj ≤Xij

)
or, as Chen and Huang (2007) suggested,

Ûij =
1
n ∑n

k=1 I
(
Xkj ≤Xij

)
− 1

2n . So, the kernel estimator of a copula is defined
as:

Ĉ (u1,u2) =
1

n

n

∑
i=1

K

(
u1− Ûi1

bn

)
K

(
u2− Ûi2

bn

)
. (4.5)

To obtain the estimator defined in (4.5) a kernel function, K, needs to be selected
that will have minimal effect on the results obtained, and to calculate the band-
width bn, whose value will have an important effect on the estimated copula. The
bandwidth bn can be calculated using some cross-validation or plug-in method or
using the rule-of-thumb proposed by Silverman (1986) for the kernel estimator of
pdf adapted to the kernel estimator of cdf Hill (1985); Liu and Yang (2008).

The properties of a kernel estimator depend on some smoothness characteristics
of the cdf; in our context in particular, it is a requirement that the first two deriva-
tives take finite values different from zero. Furthermore, when the distribution has
a bounded domain and the density at boundary takes positive values, as in the case
of the bivariate copula with domain on [0,1]2, the estimator defined in (4.4) has
boundary bias. This means that the kernel estimator at boundary is not consistent
(see Wand and Jones, 1995, pp. 46 and 47, for a clear description in the kernel
density estimator context). This is problematic since our aim is to test if our data
is generated by an extreme value copula. There are three alternative proposals to
achieve consistency at boundary of a kernel estimator of a copula. Boundary ker-
nel methods are the most common techniques proposed in the context of kernel
regression and density estimation Gasser and Müller (1979); Gasser et al. (1985),
the main difficulty with the use of this type of kernel being that it does not integrate
one which, in practice, could be inconvenient. Chen and Huang (2007) proposed a
kernel estimator of copulas with linear boundary correction, the weakness of their
method is that for many common families of copulas (e.g., Clayton, Gumbel, Gaus-
sian and Student’s t) the bias at some of the corners of the unit square is only of
order O(bn), versus the O(b2n) that is reached in the central values of the domain,
where O(·) is the asymptotic order operator. Another way to correct boundary bias
is using the mirror-reflection kernel estimator, this method being proposed by Gij-
bels and Mielniczuk (1990) to estimate the density of the copula. In all cases, the
main difficulty of a kernel estimator with or without boundary bias is calculating
the smoothing parameter whose value will greatly affect the results.

An alternative strategy to avoid boundary bias and to calculate the smoothing pa-

62



4.2 Kernel estimation of copulas

rameter easily is to transform Uniform(0,1) marginal distributions of the copula
so that the kernel estimator of the new marginal distributions does not have bound-
ary bias and their shapes allow us to minimise the bias of the kernel estimator. This
idea also addresses the problems of the estimator defined in (4.3) based on the orig-
inal scale of the data. On the one hand, although the marginal distributions are not
uniform, they can have shapes that could also be subject to inconsistency at the
boundaries, i.e. the distribution could have bounded domain on one or both sides
with positive density. On the other hand, the problems associated with the kernel
estimator defined in (4.3) are widely known when the distribution to estimate has
one or two long tails (see Buch-Larsen et al., 2005; Alemany et al., 2013; Bolancé
and Guillen, 2021).

The transformed estimator of the copula is based on the equality:

C (u1,u2) = CT (T (u1),T (u2)) ,

i.e., the values of the copula function C evaluated on original Uniform(0,1) scale
are equal to the values of function CT evaluated on transformed scale. So, the
transformed kernel estimator (TKE) of a copula is defined as:

ĈT (u1,u2) =
1

n

n

∑
i=1

K

(
T (u1)−T (Ûi1)

bn

)
K

(
T (u2)−T (Ûi2)

bn

)
=

̂̂
C (u1,u2) , (4.6)

where T (·) is a transformation which is equal to the inverse of a given continuous
cdf. The estimator defined in (4.6) has a fundamental advantage over the kernel
estimator defined in (4.5) and its versions that incorporate boundary bias reduction;
given that the function T (·) is the inverse of a given cdf, we know the marginal dis-
tributions of CT and the bandwidth can be calculated based on these distributions.

Omelka et al. (2009) proposed that T = Φ−1, where Φ is the cdf of the standard
normal distribution. This standard normal transformation is based on the idea that
the normal distribution does not have boundary bias problems and it can be esti-
mated easily using a classical kernel estimator. This transformed estimator is called
Gaussian transformed kernel estimator and is defined as:

ĈG (u1,u2) =
1

n

n

∑
i=1

K

(
Φ−1(u1)−Φ−1(Ûi1)

bn

)
K

(
Φ−1(u2)−Φ−1(Ûi2)

bn

)
.

(4.7)
In practice, in this case the value of bandwidth can be calculated using the idea of
rule-of-thumb of Silverman (1986) applied to the standard normal marginal cdfs,
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that is bn = 3.572n−
1
3 . In the simulation study presented in Section 4.3, we show

the difference between the mean integrated squared error of a copula, MISE =∫ 1
0

∫ 1
0

[
Ĉ(u1,u2)−C(u1,u2)

]2
du1du2, using optimal bn and using the proposed

rule-of-thumb.

We propose an alternative estimator to the one defined in (4.7) using a trans-
formation T that is better than Φ−1. Our proposal is based on the second-order
approximation properties of univariate kernel estimator of marginal distributions.
When bn → 0 as n→∞, f is a continuous pdf and the first derivative f ′ exists, the
bias and variance of kernel estimator of cdf are (see Reiss, 1981; Azzalini, 1981;
Hill, 1985):

E
[
F̂ (y)

]
−F (y) =

1

2
b2f ′ (y)

∫ 1

−1
t2k (t)dt+o

(
b2
)

(4.8)

and

V
[
F̂ (y)

]
=

F (y) [1−F (y)]

n
−f (y)

b

n

∫ 1

−1
K (t) [1−K (t)]dt+o

(
b

n

)
. (4.9)

By addition of the integrated variance and the integrated squared bias, we can ap-
proximate the MISE of the kernel estimation of marginal distributions as:

MISE
[
F̂ (y)

]
=

∫
F (y) [1−F (y)]

n
dy− b

n

∫ 1

−1
K (t) [1−K (t)]dt

+
1

4
b4
∫ [

f ′ (y)
]2
dy

(∫ 1

−1
t2k (t)dt

)2

+ o
(
b4
)
+o

(
b

n

)
, (4.10)

where the integral limits are given by the domain of argument variable Y . From
expression (4.10) it is easy to deduce that the distribution that minimises MISE also
minimises the functional

∫
[f ′ (y)]

2
dt=

∫
[F ′′ (y)]

2
dt. Terrell (1990) found the pdf

family that minimises the functionals of type
∫ [

f (p) (y)
]2

dy, where p is the order
of the derivative. This principle was applied to cdf and quantile kernel estimation
by Alemany et al. (2013), who showed how the Beta(3,3), whose pdf and cdf are:

m(t) =
15

16

(
1− t2

)2
,−1≤ t≤ 1 and

M (t) =
3

16
t5− 5

8
t3+

15

16
t+

1

2
, (4.11)

minimises the functional
∫ [

F ′′
j (tj)

]2
dtj , j = 1,2, and therefore minimises the in-
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4.2 Kernel estimation of copulas

tegrated bias of the classical kernel estimator of a cdf. Subsection 4.2.1 includes
the theoretical results on testing extreme value copulas, and Theorem 4.1 shows as
the cdf M has the properties that allow us to conclude that the kernel estimator of
Beta(3,3) does not have boundary bias (see Omelka et al., 2009). So, the Beta
transformed kernel estimator of a copula is:

ĈB (u1,u2) =

=
1

n

n

∑
i=1

K

(
M−1(u1)−M−1(Ûi1)

bn

)
K

(
M−1(u2)−M−1(Ûi2)

bn

)
,(4.12)

where bn can be calculated using rule-of-thumb applied to the Beta(3,3) marginal
distributions, that is bn = 3

1
3n−

1
3 . In the simulation study shown in Section 4.3, the

MISE calculated with this bandwidth is compared to the one that minimises MISE.
Next, we present some theoretical results related to the weak convergence to a

Gaussian process G of the estimator defined in (4.12) and the max-stable property
for testing extreme value copulas.

4.2.1 Theoretical results

We use the result from Fermanian et al. (2004) for the weak convergence of the
kernel estimator of a copula defined in (4.5) to a Gaussian process G in the space of
all bounded real-valued functions on [0,1]2, i.e. l∞([0,1]2), which is expressed as
follows:

√
n
(
Ĉ (u1,u2))−C(u1,u2)

)
7−→G(u1,u2) =

= B(u1,u2)−∂1C(u1,u2)B(u1,1)−∂2C(u1,u2)B(1,u2), (4.13)

where ∂jC(u1,u2), j =1,2, are the partial derivatives of the function C with respect
to uj , 7−→ indicates weak convergence and B is a Brownian bridge on [0,1]2 with
covariance function:

E[B(u1,u2)B(u′1,u′2)] = C(u1∧u′1,u2∧u′2)−C(u1,u2)C(u′1,u
′
2),

where ∧ is the minimum.
The weak convergence defined in (4.13) requires that the copula has continuous

partial derivatives. Furthermore, Omelka et al. (2009) proved the weak conver-
gence of local linear, mirror reflection and Gaussian transformed kernel estimators
of copula. These authors remark that it is sufficient to assume that the first partial
derivatives are continuous on (0,1)2, i.e. we can eliminate the corners. This is an
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important result, given that most of the commonly used copulas (Clayton, Gumbel,
Normal and Student’s t) do not have finite partial derivatives at the corners.

The weak convergence of our Beta transformed kernel estimator is defined in the
following theorem.

Theorem 4.1. Let us suppose a continuous copula C, with continuous first or-
der partial derivatives and bounded second order partial derivatives on (0,1)2

that satisfies the following asymptotic properties: ∂21C(u1,u2) = O
(

1
u1(1−u1)

)
,

∂22C(u1,u2) = O
(

1
u2(1−u2)

)
and ∂1∂2C(u1,u2) = O

(
1√

u1u2(1−u1)(1−u2)

)
. If

bn = O
(
n−

1
3

)
the Beta transformed kernel estimator ĈB meets the weak conver-

gence defined in (4.13).

Proof. Proof of Theorem 4.1
Let J(t) = T−1(t) be the inverse transformation function in ĈT , the proof of

Theorem 4.1 comes directly from the results of Theorem 2 in Omelka et al. (2009),

who proved that, if the first derivative J ′(t) and [J ′(t)]
2

J(t) are bounded, then ĈT con-

verge weakly to the Gaussian process G. For ĈB we have that J(t) = M(t) =

3
16t

5− 5
8t

3+ 15
16t+

1
2 , J ′(t) = m(t) = 15

16(1− t2)2 and (M ′(t))
2

M(t) =
( 1516 (1−t2)2)

2

3
16 t

5− 5
8 t

3+ 15
16 t+

1
2

,

|t| < 1. Directly, we know that the pdf m of the Beta(3,3) is bounded. More-

over, if the quotient (
M ′(t))

2

M(t) is analysed, the maximum is approximately found at
t≈−0.45332.

The weak convergence of Theorem 4.1 allows us to use ĈB for the inference
on copulas. We focus on an extreme value copula test based on the proposal of
Kojadinovic et al. (2011), that analyses the max− stable property associated with
this family of copulas (see, for example, Segers, 2012). A copula is max− stable

if ∀r > 0 and ∀u1,u2 in [0,1] the null hypothesis Hr
0 : C(u1,u2) = Cr(u

1/r
1 ,u

1/r
2 )

is not rejected from the alternative Hr
1 : C(u1,u2) 6= Cr(u

1/r
1 ,u

1/r
2 ). In practice, we

test the max−stable hypothesis using some values of r≥ 1 (see Kojadinovic et al.,
2011),

H0 :
⋂
r≥1H

r
0

H1 :
⋃
r≥1H

r
1 .

To test the previous hypotheses we propose estimating Dr(u1,u2) =
√
n
(
C(u1,u2)−Cr

(
u
1/r
1 ,u

1/r
2

))
using the Beta transformed kernel estimator of

the copula, i.e. D̂r(u1,u2) =
√
n
(
ĈB(u1,u2)− ĈBr

(
u
1/r
1 ,u

1/r
2

))
.
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4.2 Kernel estimation of copulas

Proposition 4.2. If the partial derivatives of the copula C(u1,u2) are continuous
then for any r > 0 we have:

D̂r(u1,u2)−Dr(u1,u2) 7−→ Cr(u1,u2) =

rCr−1(u
1/r
1 ,u

1/r
2 )G(u

1/r
1 ,u

1/r
2 )−G(u1,u2), (4.14)

in l∞([0,1]2).

Proof. Proof of Proposition 4.2
The result in Proposition 4.2 is obtained from:

D̂r(u1,u2)−Dr(u1,u2) =
√
n
[(

ĈB(u1,u2)−C(u1,u2)
)
−
(
ĈBr

(u
1/r
1 ,u

1/r
2 )−Cr(u

1/r
1 ,u

1/r
2 )
)]

.

Using the convergence of Theorem 4.1:

√
n
(
ĈB(u1,u2)−C(u1,u2)

)
7−→G(u1,u2).

We now need to prove the weak convergence of√
n
(
ĈBr

(u
1/r
1 ,u

1/r
2 )−Cr(u

1/r
1 ,u

1/r
2 )
)

. To this end, we use the result of Kojadi-
novic et al. (2011), that proved the weak convergence of this difference for empirical
copula (see also Bahraoui et al., 2014). In general, this result can be directly ex-
trapolated to the kernel estimator and, in particular, to the Beta transformed kernel

estimator, considering that ̂̂
C

r(
u
1/r
1 ,u

1/r
2

)
= ĈBr

(
M−1(u

1/r
1 ),M−1(u

1/r
2 )
)

.

Then, under H0, Dr(u1,u2) = 0, D̂r(u1,u2) it weakly converges to process
(4.14).

For hypothesis testing given a fixed r, we use a Cramér-von Mises statistic:

Ŝr =
∫ 1

0

∫ 1

0

(
D̂r(u1,u2)

)2
du1du2 (4.15)

and for a range of values r1, ..., rt, the following statistic can be considered:

Ŝr1,...,rt =
t

∑
i=1

Ŝri . (4.16)

For implementing the test based on Ŝr1,...,rt , we use the numerical approximation
proposed by Kojadinovic et al. (2011), replacing the empirical copula by a Beta
transformed kernel estimator of the copula. The procedure is as follows:

67



1. The statistics Ŝrl are approximated using a uniformly spaced grid (uj1,uj2),

j = 1, ...,m, of points on (0,1)2, i.e. Ŝrl ≈ 1
m ∑m

j=1

(
D̂rl(uj1,uj2)

)2
.

2. R independent copies of D̂rl , D̂rl,(1), . . . , D̂rl(R) are generated, such that(
D̂rl , D̂rl,(1), . . . D̂rl,(R)

)
7−→

(
Drl ,Drl,(1), . . .Drl,(R)

)
,

where Drl,(1), . . . ,Drl,(R) are independent copies of Drl . The process of ob-
taining these independent copies of D̂rl is described in Section A-3 of the
Appendix at the end of this Thesis.

3. To calculate the copies of Ŝrl as Ŝrl,(k) = 1
m ∑m

j=1 D̂rl,(k)(uj1,uj2) and to
obtain the p-value of the statistics as:

1

R

R

∑
s=1

I(Ŝrl,(s) ≥ Ŝrl).

4.3 Simulation Study

We summarise the results of our simulation study, we aim to evaluate the finite
sample properties of our Beta transformed kernel estimator in (4.12), and compare
it with the empirical copula, with the classical kernel estimator in (4.5) and with the
Gaussian transformed kernel estimator in (4.7). We also obtain some results using
boundary kernel, but the computational times are longer and in our simulation study
we do not achieve better results than those obtained with classical kernel.

We show two types of results; in the former, the errors between the estimations
and true copulas are compared and, in the latter, the differences between the extreme
value copula tests obtained with the empirical copula and with the Beta transformed
kernel estimator are analysed.

4.3.1 Analysing the errors of kernel estimators

To carry out the study, we simulate 500 samples of size n = 50 and n = 500 from
different family and parameters of copulas that are indicated in the tables with the
simulation results shown in this section. The alternative estimators are compared

approximating the MISE =
∫ 1
0

∫ 1
0

[
Ĉ(u1,u2)−C(u1,u2)

]2
du1du2 using a grid

uniformly spaced in 99× 99 points on (0,1)2. The Epanechnikov kernel is used
in all cases. Furthermore, bandwidth bn needs to be calculated, its value has an
important impact on the results. Sometimes, the calculation of bn requires long op-
timization processes based on leave-one out estimators (see Wand and Jones, 1995,
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4.3 Simulation Study

for a review on kernel density estimation). Alternatively, the rule-of-thumb similar
to the proposal of Silverman (1986) can be used; however, to calculate the rule-of-
thumb smoothing parameter we would need to use a parametric copula with a given
parameter. A direct alternative, based on the product kernel estimator, consists of
using the rule-of-thumb based on independent marginal reference distribution. The

difficulty with Uniform(0,1) marginal is that
∫ [

F ′′
j (t)

]2
dt = 0, j = 1,2, and the

rule-of-thumb smoothing parameter based on the proposal of Silverman (1986) can
not be calculated. In this case, to use the standard normal bandwidth is an easy so-
lution (see Buch-Larsen et al., 2005, for an example on kernel density estimation of
Uniform(0,1) transformed data). In our simulation study, two types of results are
shown, on the one hand, the obtained with the rule-of-thumb bandwidth based on
standard normal distribution for kernel and Gaussian transformed kernel estimator
and based on Beta(3,3) for Beta transformed kernel estimator. On the other hand,
the obtained optimizing the approximate MISE on a grid the values for bn.

To facilitate the interpretation of the results, we calculate the quotient between
the MISE obtained for each kernel estimator and the one obtained using the empir-
ical copula. The reference values of MISE for the empirical copula are shown in
Table 5 in Section A-1 of the Appendix at the end of this Thesis. Tables 4.1 and 4.2
contain, respectively, the quotients for the analysed elliptical and archimedean cop-
ulas. These results show how, using the adequate smoothing parameter, the analysed
kernel estimators improve the empirical copula. Focusing on archimedean copulas
in Table 4.2, it can be seen that, if the optimal smoothing parameter is used, in all
cases the best results are obtained with the Beta transformed kernel estimator (ĈB).
With the optimal bandwidth, the Gaussian transformed kernel estimator (ĈG) only
slightly improves the classical kernel estimator (Ĉ) for Gumbel with dependence
parameter equal to 3 and 4, i.e. for the most extreme value dependence copulas. In
Table 4.1, for elliptical copulas, the results with optimal smoothing parameter are
similar, ĈB is the best and ĈG improves Ĉ when the data is generated by the most
extreme value copulas, the Student’s t with dependence parameter equal to 0.9.

In practice, we will not know what the optimal smoothing parameter is, and hav-
ing estimators that allow this parameter to be obtained in a direct and simple way
is essential. As shown in Tables 4.1 and 4.2, ĈB and ĈG have this characteristic;
in both cases the results with the rule-of-thumb smoothing parameter are near the
optimal results and the lowest MISEs are obtained with ĈB .
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Table 4.1: Quotient between the approximate MISE of kernel estimators of the cop-
ula (numerator) and approximate MISE of the empirical copula (denom-
inator) for elliptical copulas (* indicates optimal bandwidth).

n= 50

Copula Parameter ĈB ĈB* ĈG ĈG* Ĉ Ĉ*
Gaussian 0.9 0.7727 0.6910 0.7861 0.7423 3.8676 0.7079

0.5 0.6649 0.5879 0.6795 0.6993 2.7843 0.6108
0.3 0.6394 0.5889 0.6553 0.6572 2.5860 0.6046

Student’s t 0.9 0.8186 0.6516 0.8350 0.7120 3.8347 0.6626
(d.f.=1) 0.5 0.7211 0.6294 0.7368 0.6734 2.9403 0.6679

0.3 0.7005 0.6793 0.7176 0.7254 2.9272 0.6467
Student’s t 0.9 0.7907 0.6405 0.8055 0.6769 3.6564 0.6650
(d.f.=2) 0.5 0.7022 0.6338 0.7163 0.6569 2.8777 0.6432

0.3 0.6592 0.6676 0.6746 0.7255 2.8678 0.6519
Student’s t 0.9 0.7962 0.6671 0.8112 0.6782 3.8211 0.7376
(d.f.=3) 0.5 0.6912 0.6354 0.7083 0.6506 2.8528 0.5949

0.3 0.6626 0.6243 0.6790 0.6636 2.6940 0.6084

n= 500

Copula Parameter ĈB ĈB* ĈG ĈG* Ĉ Ĉ*
Gaussian 0.9 0.9099 0.8032 0.9199 0.8347 6.3718 0.8162

0.5 0.8445 0.7300 0.8532 0.7915 3.8651 0.7603
0.3 0.8298 0.7316 0.8388 0.7905 3.4954 0.7757

Student’s t 0.9 0.9232 0.8285 0.9337 0.8479 6.0640 0.8557
(d.f.=1) 0.5 0.8513 0.7903 0.8602 0.8267 4.1395 0.8244

0.3 0.8361 0.7852 0.8454 0.8201 3.8260 0.8224
Student’s t 0.9 0.9129 0.8110 0.9231 0.8371 6.1449 0.8448
(d.f.=2) 0.5 0.8445 0.7733 0.8532 0.8229 3.8651 0.8109

0.3 0.8298 0.7710 0.8388 0.8172 3.4954 0.8123
Student’s t 0.9 0.9289 0.8202 0.9389 0.8438 6.2509 0.8560
(d.f.=3) 0.5 0.8529 0.7772 0.8619 0.8286 3.8559 0.8145

0.3 0.8384 0.7748 0.8479 0.8243 3.4502 0.8147
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4.3 Simulation Study

Table 4.2: Quotient between the approximate MISE of kernel estimators of the cop-
ula (numerator) and approximate MISE of the empirical copula (denom-
inator) for archimedean copulas (* indicates optimal bandwidth).

n=50
Copula Parameter ĈB ĈB* ĈG ĈG* Ĉ Ĉ*
Frank 1 0.6469 0.1641 0.6620 0.5961 2.3603 0.5979

2 0.6710 0.5689 0.6858 0.6412 2.5716 0.5896
3 0.6784 0.5684 0.6925 0.6099 2.5097 0.5584

Clayton 1 0.6859 0.5703 0.7012 0.7032 2.4038 0.6370
2 0.7645 0.5924 0.7803 0.7263 2.8428 0.5983
3 0.7839 0.6616 0.7968 0.7124 3.1101 0.6493

Gumbel 2 0.6531 0.2448 0.6645 0.2707 2.3911 0.2469
3 0.7739 0.5976 0.7862 0.6517 3.6354 0.5600
4 0.7781 0.6332 0.7959 0.6510 3.8202 0.6145

n=500
Copula Parameter ĈB ĈB* ĈG ĈG* Ĉ Ĉ*
Frank 1 0.8117 0.7460 0.8216 0.8067 3.0013 0.7950

2 0.8204 0.7417 0.8304 0.8096 3.1943 0.7854
3 0.8298 0.7596 0.8401 0.8117 3.5081 0.7807

Clayton 1 0.8393 0.7561 0.8484 0.8253 3.3645 0.8131
2 0.8640 0.7674 0.8724 0.8291 4.3028 0.8225
3 0.8844 0.7811 0.8934 0.8303 5.0583 0.8290

Gumbel 2 0.8577 0.7698 0.8662 0.8180 4.8203 0.8009
3 0.8996 0.7982 0.9102 0.8286 6.1713 0.8298
4 0.9294 0.8148 0.9421 0.8357 6.9994 0.8444

4.3.2 Test for extreme value copula

We show the results of a reduced simulation study (to avoid long computing peri-
ods) that allows us to compare Type 1 and Type 2 errors of the extreme value cop-
ula test on smaller-sized samples, calculated from the empirical copula (proposed
by Kojadinovic et al., 2011) and from the Beta transformed kernel estimator (ĈB)
proposed in this paper, where the optimal bandwidth is used. For this experiment,
we use 100 samples of size n = 50. Both tests are implemented using a uniformly
spaced 99× 99 points on (0,1)2 for calculating Ŝr and with K = 100 estimated
copies of Drl,(k), k = 1, ...,100. The results for type 1 errors are shown in Table
4.3 for theoretical extreme value copulas with which H0 is true. Table 4.4 shows
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the type 2 errors for copulas with non-dependence in extreme. They indicate that
using ĈB we reduce Type 1 error at the cost of increasing Type 2 error, although
for n = 50 this error is already high for the test based on the empirical copula. In
general, a larger-size sample is required for reducing Type 2 error.

The results in Table 4.3 imply that, if the data is generated by an extreme value
copula, ĈB based test practically ensures a correct result. This is fundamental in the
context of risk quantification, given that the consequences of not detecting extreme
dependency could be more serious than those of not detecting the opposite, i.e.
non-dependence in extreme.

Table 4.3: Error Type 1 calculated with different significant levels α.
Empirical Copula

Gumbel Student’s t Student’s t Student’s t
(d.f.=1) (d.f.=2) (d.f.=3)

Parameter 2 4 0.9 0.3 0.9 0.3 0.9 0.3
α= 0.10 0.08 0.02 0.25 0.38 0.59 0.86 0.70 0.56
α= 0.05 0.01 0.00 0.16 0.22 0.39 0.71 0.48 0.36
α= 0.01 0.00 0.00 0.03 0.07 0.14 0.39 0.23 0.13

ĈB

Gumbel Student’s t (d.f.=1) Student’s t (d.f.=2) Student’s t (d.f.=3)
Parameter 2 4 0.9 0.3 0.9 0.3 0.9 0.3
α= 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
α= 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
α= 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 4.4: Error Type 2 calculated with different significant levels α.
Empirical Copula

Gaussian Frank Clayton
Parameter 0.9 0.3 1 3 1 3
α= 0.10 0.50 0.18 0.34 0.32 0.70 0.69
α= 0.05 0.61 0.37 0.54 0.53 0.80 0.87
α= 0.01 0.81 0.63 0.73 0.79 0.98 0.95

ĈB

Gaussian Frank Clayton
Parameter 0.9 0.3 1 3 1 3
α= 0.10 0.67 0.50 0.6 0.62 0.80 0.81
α= 0.05 0.85 0.77 0.80 0.79 0.95 0.98
α= 0.01 0.92 0.90 0.82 0.78 1.00 1.00

72



4.4 Data Analysis

4.4 Data Analysis

For illustrating the usefulness of our proposed estimator ĈB , we analyse the depen-
dence between the Spanish stock market index (IBEX35) and the stock market in-
dexes of some neighbouring European countries, namely Germany (DAX) , France
(CAC40), Italy (FTSE MIB), Portugal (PSI20) and United Kingdom (FTSE100)
as well as the two principal stock market indexes of the USA (DOWJONES and
S&P500) and the Hong Kong stock market index (HANG SENG) (see Hussain and
Li, 2018, for an analysis of extreme dependence between markets).

Two types of results are shown:

1. The fit of non parametric copulas to estimate the probability that the observed
losses of two stock market indexes together exceed some percentiles, i.e. we
estimate the value of 1−C(q,q), q = 0.9,0.95,0.99,0.995, with the analysed
kernels estimators.

2. The test to analyse if the data is generated by an extreme value copula.

To carry out the analysis we use a database of the monthly losses of the stock
market indexes from January 2000 to March 2021. These losses are calculated
from the quotes of the analysed indexes that are public and can be downloaded, for
example, from Investing.com. Throughout the period analysed, three major events
influenced market performance leading to higher losses than in periods of stability:
the Lehman Brothers crisis that began in September 2008, the referendum on Brexit
on June 23, 2016, and the ongoing COVID-19 crisis which started in March 2020.
The three events are considered systemic risks that affect all markets and, if this
effect is simultaneous, the data should be generated by an extreme value copula.
In Table 4.5, the main descriptive statistics of the losses in percentage are shown.
Furthermore, normality tests and a positive skewness test are carried out and, in all
cases, normality hypothesis is rejected and skewness greater than zero can not be
rejected, i.e., in absolute value, positive losses are bigger that negative ones.
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Table 4.5: Descriptive statistics of monthly losses in percentage: Means, Standard
Deviation (STD), Minimum (Min), First Quantile (Q25), Median, Third
Quantile (Q75), Maximum (Mas), Skewness and Kurtosis.

Means STD Min Q25 Median Q75 Max Skewness Kurtosis
Spain 0.0565 2.5931 -9.7537 -1.3088 -0.2354 1.3759 10.9100 0.3025 2.0327
Germany -0.1196 2.6469 -8.4139 -1.7341 -0.3275 1.1770 12.7390 0.8978 2.9100
France 0.0043 2.2675 -7.9611 -1.3871 -0.3142 1.2895 8.3501 0.5444 1.4149
Italy 0.1044 2.6915 -8.9727 -1.5668 -0.2481 1.5654 11.0363 0.4579 1.5547
Portugal 0.1564 2.3768 -7.2752 -1.2973 0.0391 1.4856 10.1398 0.5301 1.6257
UK 0.0080 1.7670 -5.0582 -1.1605 -0.3326 0.9555 6.4533 0.6996 1.1175
USA (DJ) -0.1711 1.8644 -4.8586 -1.2329 -0.3472 0.7277 6.5807 0.6714 1.3456
USA (SP) -0.1650 1.9120 -5.1864 -1.2883 -0.4313 0.7868 8.0621 0.7009 1.4097
Hong Kong -0.0919 2.6021 -6.8459 -1.6894 -0.4514 1.2787 11.0508 0.5713 1.1150

The losses of the Spanish stock market index are plotted together with the indexes
of the countries listed for comparison. In Figure 4.1, we compare Spain (in blue)
with four countries that also currently belong to the European Union (in black) and,
Figure 4.2, the comparison is made with the other countries (in black).
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Figure 4.1: Losses of Spanish stock market index (dashed line in blue) and stock
market indexes of four countries in the European Union (solid line in
black).
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Figure 4.2: Losses of Spanish stock market index (dashed line in blue) and stock
market indexes of four countries outside of the European Union (solid
line in black).

To obtain the Beta transformed kernel estimator we need the data to be i.i.d. so,
with this in mind, we analyse if the the monthly losses of the stock market indexes
have some kind of time dependence on the mean or on the variance. The simple and
partial autocorrelation functions of the series and the square series allows us to find
the ARMA(p,q)−GARCH(P,Q) model used to filter series and to get i.i.d. data
(see, for example, Francq and Zakoïan, 2004). The filter models used are shown in
the Table 4 of Section A-1 of Appendix at the end of this Thesis.

In Table 4.6, we show the results of 1−C(q,q) for q = 0.9,0.95,0.99,0.999 es-
timated with ĈB , i.e. the probability of jointly exceeding a given extreme quantile.

The upper tail dependence can be approximated as ĈB(q,q)
q . In Table 5 of Section

A-1 of Appendix at the end of this Thesis, we show that the results obtained with
the empirical copula and ĈG provide lower values than ĈB . It should be noted
that the empirical copula tends to underestimate the probability of the tail when ex-
treme values exist. Furthermore, in the simulation study ĈB improves ĈG for all
the compared copulas.
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Table 4.6: Values of 1− ĈB(q,q) for Spain and the countries analysed.
q 0.9 0.95 0.99 0.995
Germany 0.1533 0.0848 0.0246 0.0151
France 0.1500 0.0853 0.0244 0.0150
Italy 0.1497 0.0827 0.0234 0.0143
Portugal 0.1583 0.0858 0.0234 0.0145
UK 0.1585 0.0879 0.0253 0.0155
USA (DJ) 0.1583 0.0862 0.0242 0.0149
USA (SP) 0.1579 0.0880 0.0246 0.0149
Hong Kong 0.1662 0.0928 0.0255 0.0155
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Figure 4.3: Pseudo-data for each bivariate copula between Spain and Germany,
Italy, France and Portugal.

We obtain the results of the extreme value copula test of Kojadinovic et al. (2011)
based on the empirical copula, and the same test based on the Beta transformed
kernel estimator that is analysed in this paper, using the asymptotically optimal
smoothing parameter bn = 3

1
3n−

1
3 and a grid of 4 values around it. As expected, all

the results indicate that all the analysed bivariate data have a dependence structure
generated by an extreme value copula. This behaviour has been accentuated by the
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4.5 Conclusions

COVID-19 crisis, which has led to greater losses and a systemic risk that lasts over
time (see Ashraf, 2020; Zhang et al., 2020, for a review on effect of COVID-19
on markets returns and volatility). In Figures 4.3 and 4.4, pairs of pseudo-data are
plotted; in all cases some accumulation of points is detected near the corner [1,1],
which is an indicator of extreme value dependence.
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Figure 4.4: Pseudo-data for each bivariate copula between Spain and UK, USA (DJ
and SP) and Hong Kong.

4.5 Conclusions

A new kernel estimator of a copula based on a transformation is analysed. The
asymptotic theoretical properties that allow it to be used for inference are proved.
A simulation study shows that the proposed estimator improves the alternative esti-
mator in the most common copulas.

The new estimator allows us to reduce the Type 1 error associated with the ex-
treme value copula test, while the Type 2 error increases slightly. A future line of
work would be to investigate how to reduce the Type 2 error with a small sample
size of the tests based on the max− stable property.

The financial data analysis shows that the new estimator is useful for the risk
analysis linked to the upper tail dependence between stock markets.
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General Conclusions

In this thesis we addressed three very important issues related to systemic risk and
linkages between stock markets. Firstly, we analysed alternative distances and sim-
ilarities between the stock markets using alternative static criteria (distances in kilo-
metres and hours and similarity of overlapping operating hours between financial
markets) and dynamic criteria (distances between the comments of the economic
and financial agents). Secondly, the spatial dependence between financial markets
was analysed by using global and local Moran’s I statistics; both are tools widely
used in the field of spatial econometrics. In our case, we used them in a novel way,
with the aim of studying the relation between the periods with significant spatial
dependence between financial markets and those considered as periods of systemic
risk that are related to the main most recent financial crises: the Lehman Broth-
ers bankruptcy, the sub-prime mortgage crisis, the European debt crisis, Brexit and
the COVID-19 pandemic, the latter also affecting the financial markets. Finally, a
new Kernel estimator of a copula is proposed to analyse the upper tail dependence
between market losses.

Throughout the thesis, the analyses were carried out using different financial vari-
ables: log-returns, losses, volatility and Value-at-Risk, all of them calculated from
the stock market indices associated with the stock markets that were included in
the studies. Using different financial variables has enabled us to achieve different
results, depending on the type of variable used. For example, using log-return or
losses the greatest spatial dependence occurs during the sub-prime and Euro debt
periods; however, using Value-at-Risk, the same result is seen for sub-prime and
Brexit periods and not for Euro debt.

Specifically, in Chapter 1, a comparison was made between static distance criteria
between financial markets. We compared the classical distances in kilometres and
in hours with a criterion of similarity based on common opening hours between
markets, which is interpreted as a measure of synchronisation between financial
markets. We concluded that this synchronisation measure shows a greater reflec-
tion of the stock market linkages, given that neighbourhoods between markets are
detected with more visibility.

Chapter 1 focused on the Lehman Brothers bankruptcy. By using the common open-
ing hours similarity criterion, analysis of the results obtained with global Moran’s



I statistic showed a greater spatial dependency between the log-returns of the stock
indices in the European financial markets, specially in the financial crisis period.
These results can help financial actors, such as banks, insurance companies or in-
vestors, to create their portfolios taking into account the effect of systemic risk on
stock market linkages.

The local spatial dependence analysis that was carried out in Chapter 1 showed
less obvious results. showed less obvious results. However, it did show that the
European markets were those with the most intensive links during the financial crisis
caused by the Lehman Brothers bankruptcy. Most markets in this group showed
greater dependence intensity during the crisis.

In Chapter 2 we presented the spatial dependence results using a dynamic distance.
In this case, the spatial dependence between the losses of the stock markets indices
was analysed. With this aim in mind, we used dynamic weight matrices calculated
monthly for estimating the monthly global Moran’s I statistic. The monthly weight
matrices are obtained from the distance matrices between financial stock markets
based on the differences between the values of the monthly Google Trend Uncer-
tainty Indices (GTUI) by country. Focusing on the GTUI, its greater values are
given in periods of financial crises. In concordance with these greater values, the
global Moran’s I statistic indicates greater spatial dependence between markets with
similar GTUI and this occurs during periods of crisis where the GTUI has high val-
ues, especially during the period of the sub-prime mortgage crisis and the European
debt crisis. We concluded that the distances based on GTUI better reflect the be-
haviour of the stock markets and the possible approximations between them, given
that the GTUI is an index that takes into account the interests of financial actors.

Chapter 3 presents a similar analysis to Chapter 2 but, instead of between losses,
it focuses on spatial dependence between alternative monthly risk measures as the
variance (volatility) and the Value-at-Risk calculated on the losses. In the presence
of extreme values in the risk measures, the distribution in finite sample of the global
and local Moran’s I statistics was analysed and showed that inference based on
asymptotic normality does not work. Alternative bootstrap inference improved the
Type 1 and Type 2 errors of the tests on global and local spatial dependence.

In the analysis of the impact of the great crises between 2004 and 2021 on the stock
markets, a greater presence of systemic risk was observed during the the sub-prime
mortgage crisis, where the risk was at its most extreme. However, this systemic
risk, linked to a greater spatial dependence between market risks, was not so evident
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GENERAL CONCLUSIONS

during the European debt crisis and the COVID-19 pandemic. In the case of Brexit,
as was expected, before this period there were no signs of contagion between stock
markets but significant signs were observed during the rollout of Brexit. In general,
the analysis gives us a useful tool, not only to detect possible crises, but also to
detect which markets may be more sensitive to these possible crises.

Finally, in Chapter 4 we analysed the upper tail dependence between the losses of
the Spanish stock market index (IBEX35) and the same losses of five benchmark
stock market indices in European continent: Germany (DAX), France (CAC40),
Italy (FTSE MIB), Portugal (PSI20) and United Kingdom (FTSE100), as well as
the two principal stock market indices of the USA (DOWJONES and S&P500) and
the Hong Kong stock market index (HANG SENG). Between the eight benchmark
indices we included four neighbouring European stock indices and four more distant
financial markets. To carry out the study we proposed a new kernel estimator of
copula based on the inverse Beta cumulative distribution function transformation
and deduced a new statistic for testing the positive upper tail dependence. In this
way, we observed how the proposed test statistic based on the transformed kernel
estimator reduces the Type 1 error. We conclude that all the bivariate losses between
those of the Spanish index and each of the eight analysed indices are generated by
an extreme value copula, i.e., there is significant upper tail dependence in all cases
and the larger dependences are given between Spain with Hong Kong followed by
UK. The significant positive upper tail dependence implies that in loss periods we
observe linkages between the Spanish index and the market indices compared with
it.

The thesis presents an extensive study of the dependence between financial markets
from different points of view. This has given us a variety of results that can be useful
for making investment decisions based on different financial indicators, whether
they are returns, losses or risks of losses in the financial markets.
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A-1 Complementary Tables

Table 1: Descriptive statistics of the monthly log-returns analysed during the two
sub-periods.

B.C. D. C.

Country Label Index Min Media Max Min Media Max

Argentina AR Merval -0.1184 0.0044 0.1723 -0.1990 0.0099 0.1066
Australia AU S&P-ASX200 -0.0476 0.0015 0.0318 -0.0469 0.0008 0.0301
Austria AT ATX -0.1158 0.0035 0.0540 -0.1416 -0.0007 0.0588
Belgium BE BEL20 -0.0798 -0.0009 0.0587 -0.1046 0.0016 0.0481
Brazil BR BOVESPA -0.0818 0.0044 0.0716 -0.1238 -0.0007 0.0628
Canada CA S&PTSX -0.0688 0.0014 0.0422 -0.0806 0.0005 0.0461
Chile CL IPSA -0.0633 0.0037 0.0620 -0.0437 0.0015 0.0648
Denmark DK OMX -0.0820 0.0013 0.0526 -0.0904 0.0053 0.0804
Egypt EG EGX 30 -0.1001 0.0074 0.1467 -0.1505 0.0000 0.1083
Finland FI OMXH25 -0.0938 -0.0020 0.0782 -0.0585 0.0026 0.0986
France FR CAC40 -0.0835 -0.0016 0.0547 -0.0631 0.0007 0.0514
Germany DE DAX -0.1274 -0.0007 0.0841 -0.0926 0.0031 0.0673
Greece GR ATH -0.0937 -0.0027 0.0858 -0.1419 -0.0075 0.0862
Hong Kong HK HANG SENG -0.0740 0.0003 0.0626 -0.1105 0.0010 0.0685
Hungary HU BUX -0.0735 0.0032 0.0726 -0.1452 0.0012 0.0654
Iceland IS ICEX -0.0828 0.0031 0.0574 -0.5453 -0.0044 0.0714
India IN BSE Sensex 30 -0.0862 0.0039 0.0635 -0.1186 0.0035 0.1081
Indonesia ID IDX -0.0726 0.0041 0.0615 -0.1638 0.0046 0.0797
Ireland IE ISEQ 20 -0.1024 -0.0014 0.0429 -0.0768 0.0032 0.0774
Israel IL TA100 -0.0843 0.0021 0.0609 -0.0809 0.0025 0.0602
Italy IT FTSE MIB -0.0795 -0.0021 0.0679 -0.0773 -0.0009 0.0821
Japan JP NIKKEI 225 -0.0648 -0.0022 0.0437 -0.1182 0.0026 0.0525
Malaysia MY KLCI -0.0479 0.0009 0.0551 -0.0717 0.0025 0.0552
Mexico MX IPC -0.0674 0.0052 0.0666 -0.0854 0.0027 0.0476
Netherland NL AEX -0.0982 -0.0029 0.0633 -0.0928 0.0014 0.0460
New Zealand NZ S&PNZX10 -0.0559 0.0032 0.0563 -0.0413 0.0036 0.0329
Norway NO OSEAX -0.1188 0.0031 0.0499 -0.1052 0.0027 0.0609
Pakistan PK KARACHI100 -0.0957 0.0078 0.1047 -0.1949 0.0064 0.0784
Peru PE IGBVL -0.0750 0.0075 0.0815 -0.2026 -0.0007 0.1413
Philippines PH PSEI -0.0834 0.0008 0.0667 -0.1196 0.0050 0.0606
Poland PL WIG20 -0.0752 0.0012 0.0885 -0.1159 -0.0012 0.0754
Portugal PT PSI20 -0.0786 -0.0017 0.0728 -0.1014 -0.0021 0.0437
Rep. Czech CZ PX -0.0933 0.0037 0.0672 -0.1374 -0.0012 0.0743
Russia RU RTSI -0.1330 0.0080 0.1324 -0.1951 -0.0024 0.1159
Singapore SG STI -0.0810 -0.0003 0.0492 -0.1188 0.0008 0.0838
Slovakia SK SAX -0.0427 0.0073 0.1263 -0.0889 -0.0022 0.0549
South Korea KR KOSPI200 -0.0763 0.0014 0.0880 -0.1143 0.0015 0.0551
Spain SP IBEX35 -0.0745 -0.0002 0.0675 -0.0800 -0.0007 0.0702
Sweden SE OMXS30 -0.0719 -0.0018 0.0698 -0.0802 0.0032 0.0681
Swiss CH SMI -0.0610 -0.0005 0.0461 -0.0522 0.0014 0.0419
Taiwan TW TWII -0.0934 -0.0016 0.0974 -0.0698 0.0019 0.0607
Thailand TH SET -0.1058 0.0009 0.0921 -0.1560 0.0042 0.0568
Turkey TR BIST100 -0.1897 0.0036 0.1880 -0.1124 0.0034 0.0894
UK UK FTSE100 -0.0606 -0.0014 0.0361 -0.0492 0.0012 0.0352
USA US-DJ DOWJONES -0.0573 -0.0002 0.0438 -0.0658 0.0024 0.0396
USA US-SP S&P 500 -0.0506 -0.0010 0.0401 -0.0806 0.0028 0.0444

Note: B.C. (before the crisis) and D.C. (during the crisis).



Table 2: Normality tests and shape measures of the distribution of log-returns.
B.C. D.C.
Shapiro-
Wilk

p-value Kurtosis Skewness Shapiro-
Wilk

p-value Kurtosis Skewness

DE 0.9576 0.0020 3.2713 -0.9971 0.9401 0.0006 2.0824 -0.7381
AR 0.9499 0.0006 2.5180 0.5705 0.9519 0.0027 2.7224 -0.8454
AU 0.9549 0.0013 0.8223 -0.8365 0.9494 0.0019 -0.2953 -0.4856
AT 0.9507 0.0007 5.2294 -1.4799 0.9375 0.0004 4.9409 -1.2813
BE 0.9509 0.0007 3.0205 -1.4216 0.9487 0.0017 5.6482 -1.5042
BR 0.9538 0.0011 -0.4236 -0.3198 0.9438 0.0009 3.3814 -0.7920
CA 0.9439 0.0002 1.7018 -1.0347 0.9492 0.0019 5.0198 -1.1947
CL 0.9421 0.0002 0.8446 -0.2952 0.9551 0.0043 0.6040 0.3630
KR 0.9555 0.0014 -0.2170 -0.1807 0.9392 0.0005 6.8118 -1.2957
DK 0.9476 0.0004 1.1702 -0.8278 0.9525 0.0029 3.3909 -0.6845
US-DJ 0.9458 0.0003 0.9779 -0.4476 0.9561 0.0049 1.6993 -0.8725
US.SP 0.9478 0.0004 0.3079 -0.4328 0.9557 0.0047 2.4913 -1.0242
EG 0.9499 0.0006 0.8486 0.2173 0.9531 0.0032 1.6098 -0.5648
SK 0.9433 0.0002 5.0367 1.5182 0.9553 0.0044 3.3027 -0.8743
SP 0.9586 0.0024 1.0510 -0.3983 0.9382 0.0004 0.5774 -0.1924
PH 0.9370 0.0001 -0.0365 -0.2064 0.9608 0.0099 7.5716 -1.5079
FI 0.9453 0.0003 1.1449 -0.3646 0.9427 0.0008 1.7190 0.2174
FR 0.9505 0.0006 1.5357 -0.8102 0.9533 0.0033 -0.2724 -0.3429
GR 0.9647 0.0068 0.5327 -0.4436 0.9256 0.0001 0.2355 -0.4019
NL 0.9474 0.0004 2.1926 -1.0827 0.9468 0.0013 2.4998 -0.8380
HK 0.9434 0.0002 0.0438 -0.4350 0.9411 0.0006 2.6283 -0.7180
HU 0.9536 0.0011 -0.0928 -0.3664 0.9480 0.0016 4.2610 -1.0179
IN 0.9508 0.0007 -0.0303 -0.6241 0.9481 0.0016 5.1530 -0.2549
ID 0.9577 0.0020 -0.4293 -0.3256 0.9417 0.0007 12.9596 -2.1595
IE 0.9297 0.0000 2.0141 -1.1876 0.9707 0.0456 1.9123 -0.6827
IS 0.9600 0.0030 0.9163 -0.6570 0.9390 0.0005 54.4042 -6.8424
IL 0.9523 0.0008 0.7061 -0.4537 0.9496 0.0020 2.1036 -0.4647
IT 0.9623 0.0044 1.6352 -0.6329 0.9283 0.0001 0.1563 -0.2597
JP 0.9528 0.0009 -0.4607 -0.3617 0.9375 0.0004 3.5214 -1.1571
MY 0.9389 0.0001 -0.0373 -0.1997 0.9459 0.0012 7.3785 -0.9563
MX 0.9261 0.0000 -0.0513 -0.3817 0.9634 0.0146 3.2187 -0.7942
NO 0.9329 0.0001 2.8666 -1.2418 0.9659 0.0215 5.2470 -1.1854
NZ 0.9395 0.0001 1.2163 -0.5159 0.9549 0.0042 1.9973 -0.8922
PK 0.9360 0.0001 0.4982 -0.0751 0.9579 0.0065 18.3701 -3.0105
PE 0.9290 0.0000 0.2372 -0.1851 0.9595 0.0081 8.0159 -0.5263
PL 0.9554 0.0014 0.1819 0.0597 0.9350 0.0003 3.3268 -0.6374
PT 0.9557 0.0015 1.7170 -0.4837 0.9437 0.0009 1.4706 -0.7192
UK 0.9542 0.0012 1.2166 -0.9628 0.9385 0.0004 -0.1230 -0.3474
CZ 0.9555 0.0014 1.6585 -0.8533 0.9461 0.0012 6.2766 -1.0760
RU 0.9570 0.0018 0.6968 -0.5025 0.9403 0.0006 2.8577 -0.6337
SG 0.9453 0.0003 1.5370 -1.0137 0.9449 0.0010 7.1591 -0.8638
SE 0.9485 0.0005 0.4866 -0.3267 0.9543 0.0038 2.9475 -0.5981
CH 0.9450 0.0003 0.6987 -0.8130 0.9515 0.0026 0.5769 -0.4330
TH 0.9424 0.0002 1.2456 -0.4204 0.9533 0.0033 11.7078 -2.2853
TW 0.9553 0.0014 0.9149 -0.0168 0.9483 0.0017 0.8398 -0.0692
TR 0.9476 0.0004 1.5144 -0.1442 0.9485 0.0017 0.9018 -0.2765
Note: B.C. (before the crisis) and D.C. (during the crisis).
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Table 3: Descriptive statistics of stock market losses.
Country Label Index Mean STD Min Median Max Skew Kurtosis
Argentina AR MERVAL -0.80% 4.66% -10.66% -0.58% 23.28% 0.952 3.988
Australia AU S&P-ASX200 -0.15% 1.76% -4.12% -0.46% 10.34% 1.467 5.467
Austria AT ATX -0.15% 2.96% -9.44% -0.47% 14.38% 1.420 5.567
Belgium BE BEL20 -0.11% 2.14% -8.10% -0.47% 10.46% 1.155 4.372
Brazil BR BOVESPA -0.34% 2.95% -6.81% -0.35% 15.43% 1.009 4.153
Canada CA S&PTSX -0.17% 1.70% -4.61% -0.38% 8.48% 1.480 6.016
Chile CL IPSA -0.24% 2.05% -6.48% -0.18% 7.27% 0.043 0.727
Czech Rep CZ PX -0.10% 2.62% -7.43% -0.28% 13.74% 1.276 5.344
Denmark DK OMX -0.37% 2.09% -8.04% -0.48% 9.04% 0.819 3.385
Egypt EG EGX 30 -0.48% 3.96% -13.54% -0.47% 15.05% 0.281 1.842
Finland FI OMXH25 -0.24% 2.27% -9.86% -0.47% 8.10% 0.413 2.400
France FR CAC40 -0.10% 2.10% -7.96% -0.38% 8.20% 0.535 1.768
Germany DE DAX -0.27% 2.27% -6.73% -0.57% 9.25% 0.822 2.233
Greece GR ATH 0.21% 3.91% -11.19% -0.21% 14.19% 0.661 1.242
Hong Kong HK HANG SENG -0.18% 2.54% -6.85% -0.52% 11.05% 0.687 1.855
Hungary HU BUX -0.33% 2.83% -7.97% -0.52% 14.52% 0.871 3.816
Iceland IC ICEX 0.00% 4.64% -7.14% -0.43% 54.52% 8.187 90.454
India IN BSE SENSEX 30 -0.45% 2.82% -10.81% -0.50% 12.92% 0.957 4.191
Indonecia ID IDX -0.47% 2.53% -7.97% -0.73% 16.38% 1.655 9.189
Ireland IE ISEQ 20 -0.09% 2.48% -7.74% -0.37% 10.24% 1.099 2.886
Israel IL TA35 -0.24% 2.04% -4.74% -0.47% 8.72% 0.985 2.479
Italy IT FTSE MIB 0.03% 2.63% -8.97% -0.32% 11.04% 0.500 1.908
Japan JP NIKKEI 225 -0.21% 2.39% -6.09% -0.48% 11.82% 0.902 2.505
Malaysia MY KLCI -0.14% 1.51% -5.52% -0.28% 7.17% 0.513 2.941
Mexico MX IPC -0.35% 2.09% -5.38% -0.39% 8.54% 0.718 2.012
Netherlands NL AEX -0.14% 2.12% -5.50% -0.49% 9.54% 1.192 3.654
New Zeland NZ S&PNZX10 -0.34% 1.48% -3.64% -0.46% 6.05% 1.088 2.725
Norway NO OSEAX -0.37% 2.42% -6.09% -0.60% 11.88% 1.432 5.196
Pakistan PK KARACHI100 -0.49% 3.09% -8.78% -0.79% 19.49% 1.707 8.665
Peru PE IGBVL -0.47% 3.57% -14.13% -0.43% 20.26% 0.597 6.057
Philippines PH PSEI -0.33% 2.33% -6.06% -0.57% 11.96% 1.192 4.825
Poland PL WIG20 -0.05% 2.64% -8.18% -0.21% 11.59% 0.455 1.706
Portugal PT PSI20 0.07% 2.32% -6.71% -0.14% 10.14% 0.714 1.893
Russia RU RTSI -0.20% 4.08% -11.59% -0.41% 19.51% 0.815 2.730
Singapore SG STI -0.11% 2.18% -8.38% -0.39% 11.88% 1.019 5.996
Slovakia SK SAX -0.15% 2.16% -12.63% -0.22% 8.89% -0.685 6.303
South Korea KR KOSPI200 -0.28% 2.29% -5.80% -0.39% 11.43% 0.743 3.155
Spain SP IBEX35 -0.02% 2.49% -9.75% -0.31% 10.91% 0.395 2.892
Sweden SE OMXS30 -0.25% 2.00% -6.81% -0.37% 8.02% 0.817 2.266
Swiss CH SMI -0.14% 1.54% -4.19% -0.38% 5.22% 0.536 0.560
Taiwan TW TWII -0.21% 2.24% -6.07% -0.42% 9.06% 0.689 1.876
Thailand TH SET -0.14% 2.50% -7.13% -0.41% 15.60% 1.384 7.275
Turkey TR BIST100 -0.44% 3.31% -8.94% -0.75% 11.42% 0.417 0.500
UK UK FTSE100 -0.08% 1.68% -5.06% -0.35% 6.45% 0.730 1.604
USA US DOWJONES -0.23% 1.76% -4.86% -0.36% 6.58% 0.806 2.064
USA US S&P 500 -0.26% 1.82% -5.19% -0.52% 8.06% 0.892 2.487
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Table 4: Fitted ARMA-GARCH models to the monthly losses series.
Country Label Index Model
Argentina AR MERVAL ARMA(0, 0) - GARCH(1. 1)
Australia AU S & P-ASX200 ARMA(0, 0) - GARCH(1, 1)
Austria AT ATX ARMA(1, 0) - GARCH(0, 0)
Belgium BE BEL20 ARMA(1, 0) - GARCH(0, 0)
Brazil BR BOVESPA ARMA(0, 0) - GARCH(0, 0)
Canada CA S&PTSX ARMA(0, 0) - GARCH(1, 1)
Chile CL IPSA ARMA(0, 0) - GARCH(1, 1)
Czech Rep CZ PX ARMA(1, 0) - GARCH(0, 0)
Denmark DK OMX ARMA(1, 0) - GARCH(0, 0)
Egypt EG EGX30 ARMA(1, 0) - GARCH(0, 0)
Finland FI OMXH25 ARMA(1, 0) - GARCH(0, 0)
France FR CAC40 ARMA(0, 0) - GARCH(1, 1)
Germany DE DAX ARMA(0, 0) - GARCH(0, 0)
Greece GR ATH ARMA(1, 0) - GARCH(0, 0)
Hong Kong HK HANG SENG ARMA(0, 0) - GARCH(1, 1)
Hungary HU BUX ARMA(1, 0) - GARCH(0, 0)
Iceland IS ICEX ARMA(1, 0) - GARCH(0, 0)
India IN BSE SENSEX30 ARMA(0, 0) - GARCH(1, 1)
Indonecia ID IDX ARMA(1, 0) - GARCH(0, 0)
Ireland IE ISEQ20 ARMA(1, 0) - GARCH(0, 0)
Israel IL TA35 ARMA(0, 0) - GARCH(1, 1)
Italy IT FTSE MIB ARMA(0, 0) - GARCH(0, 0)
Japan JP NIKKEI225 ARMA(0, 0) - GARCH(1, 1)
Malaysia MY KLCI ARMA(0, 0) - GARCH(0, 0)
Mexico MX IPC ARMA(0, 0) - GARCH(0, 0)
Netherlands NL AEX ARMA(0, 0) - GARCH(1, 1)
New Zeland NZ S&PNZX10 ARMA(0, 0) - GARCH(0, 0)
Norway NO OSEAX ARMA(1, 0) - GARCH(0, 0)
Pakistan PK KARACHI100 ARMA(0, 0) - GARCH(0, 0)
Peru PE IGBVL ARMA(1, 0) - GARCH(0, 0)
Philippines PH PSEI ARMA(0, 0) - GARCH(0, 0)
Poland PL WIG20 ARMA(0, 0) - GARCH(1, 1)
Portugal PT PSI20 ARMA(1, 0) - GARCH(0, 0)
Russia RU RTSI ARMA(1, 0) - GARCH(0, 0)
Singapore SG STI ARMA(0, 0) - GARCH(0, 0)
Slovakia SK SAX ARMA(1, 0) - GARCH(0, 0)
South Korea KR KOSPI200 ARMA(0, 0) - GARCH(0. 0)
Spain SP IBEX35 ARMA(0, 0) - GARCH(0, 0)
Sweden SE OMXS30 ARMA(0, 0) - GARCH(0, 0)
Swiss CH SMI ARMA(0, 0) - GARCH(1, 1)
Taiwan TW TWII ARMA(1, 0) - GARCH(0, 0)
Thailand TH SET ARMA(1, 0) - GARCH(0, 0)
Turkey TR BIST100 ARMA(0, 0) - GARCH(0, 0)
UK UK FTSE100 ARMA(0, 0) - GARCH(1, 1)
USA US DOWJONES ARMA(0, 0) - GARCH(1, 1)
USA US S&P 500 ARMA(0, 0) - GARCH(1, 1)
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A-1 Complementary Tables

Results of simulation study of Chapter 4. Table 5 shows the MISE estimated with
the empirical copula.

Table 5: Approximate MISE for the empirical copula ×1,000 (d.f. indicates degree
of freedom).

Copula Gaussian Student’s t (d.f.=1) Student’s t (d.f.=2) Student’s t (d.f.=3)
Parameter 0.9 0.5 0.3 0.9 0.5 0.3 0.9 0.5 0.3 0.9 0.5 0.3
n=50 3.2473 3.0454 2.9277 3.3064 3.1751 2.9481 3.4585 3.1341 2.8430 3.3167 3.0923 2.9834
n=500 0.3152 0.3104 0.2984 0.3356 0.3101 0.2967 0.3272 0.3104 0.2984 0.3276 0.3098 0.2971
Copula Frank Clayton Gumbel
Parameter 1 2 3 1 2 3 2 3 4
n=50 3.1141 3.0819 3.3664 3.2126 3.3294 3.4487 7.8489 3.4600 3.4147
n=500 0.2873 0.2966 0.3040 0.3089 0.3201 0.3238 0.3081 0.3058 0.3029

Table 6: Values of 1−C(q,q) for Spain and th countriese analysed, estimated with
the empirical copula and Gaussian transformed kernel estimator.

Empirical Copula ĈG

q 0.9 0.95 0.99 0.995 0.9 0.95 0.99 0.995
Germany 0.1294 0.0706 0.0157 0.0078 0.1490 0.0794 0.0176 0.0081
France 0.1339 0.0709 0.0118 0.0079 0.1469 0.0807 0.0171 0.0077
Italy 0.1294 0.0667 0.0118 0.0067 0.1464 0.0774 0.0150 0.0039
Portugal 0.1417 0.0669 0.0118 0.0079 0.1566 0.0797 0.0162 0.0076
UK 0.1378 0.0709 0.0157 0.0079 0.1549 0.0820 0.0184 0.0082
USA (DJ) 0.1417 0.0630 0.0118 0.0079 0.1546 0.0807 0.0169 0.0078
USA (SP) 0.1378 0.0709 0.0118 0.0079 0.1538 0.0836 0.0165 0.0075
Hong Kong 0.1378 0.0709 0.0118 0.0079 0.1538 0.0836 0.0179 0.0075
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A-2 Complementary Figures

G
R IE IS P
T

B
E

S
K AT N
L

S
E IL C
H

D
K

D
E

C
Z

G
B

R
U

E
G FI P
L

FR E
S IT H
U

N
O TR AU N
Z

A
R C
L

M
X

B
R P
E

C
A

U
S

P
K IN K
R TH S
G

TW ID JP M
Y

H
K

P
H

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

Figure 1: Dendrogram obtained from the weight matrix obtained from the criterion
of kilometres distance between markets.
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Figure 2: Dendrogram obtained from the weight matrix obtained from the criterion
of hours distance between markets.
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Figure 3: Values of the World Uncertainty Index (at top) - the darker the shading, the
higher the value - and plot of the mean index (at bottom). The box-plots
of the WUI for each country are shown on the right.
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A-2 Complementary Figures

Figure 4: Dendogram at beginning of sub-prime mortgage crisis (left) and end of
sub-prime mortgage crisis (right).

Figure 5: Dendogram at beginning of Euro debt (left) and end of Euro debt (right).
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Figure 6: Dendogram at beginning of Brexit (left) and end of Brexit (right).

Figure 7: Dendogram at beginning of COVID-19 (left) and end of COVID-19
(right).

92



A-2 Complementary Figures

Figure 8: Monthly results for Moran’s I test of spatial dependence with WUI dis-
tance. The crisis period is in gray, the non-crisis period in white and
significant spatial dependence at 10% level in black (the months outside
the analyzed period are marked with x).
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Figure 9: Monthly results for Moran’s I test of spatial dependence with hours over-
lapping criterion. The crisis period is in gray, the non-crisis period in
white and significant spatial dependence at 10% level in black (the months
outside the analyzed period are marked with x).
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A-3 Procedures

A-3 Procedures

Procedure to obtain independent copies

To generate independent copies of D̂rl we use the result of Proposition 4.2 and under
H0 we define D̂r(u1,u2) 7−→ rCr−1(u

1/r
1 ,u

1/r
2 )G(u

1/r
1 ,u

1/r
2 )−G(u1,u2). Follow-

ing Kojadinovic et al. (2011), replacing the empirical copula by a Beta transformed
kernel estimator of copula, the Gaussian process is estimated as:

Ĝ(s)(u1,u2) = α̂(s)(u1,u2)−
∂ĈB(u1,u2)

∂u1
α̂(s)(u1,1)−

∂ĈB(u1,u2)

∂u2
α̂(s)(1,u2),

(A-1)
where s = 1, ...R is a large number of copies.
In expression (A-1) we have that α̂(s)(u1,u2) =
1√
n ∑n

i=1

(
Z
(s)
i − Z̄(s)

)
K
(
M−1(u1)−M−1(Ûi1)

bn

)
K
(
M−1(u2)−M−1(Ûi2)

bn

)
, where

Z
(s)
i are i.i.d. random variables with mean 0 and variance 1, so that∫∞
0 Pr

(
|Z(s)

i |> t
)
dt < ∞, Pr(·) is the probability function. Finally, we

obtain the copies of the statistic for the extreme value copula test as:

D̂rl,(s) = rl

{
ĈB(u1,u2)

}rl−1
Ĝ(s)(u

1
rl
1 ,u

1
rl
2 )− Ĝ(s)(u1,u2). (A-2)
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A-4 R programs

A-4.1 Inference with asymptotic and bootstrap global Moran’s I
statistic distribution

# Load packages (install them if it is necessary)

library(spdep) ### Moran’s I
library(sp) ###
library(MASS)

#####################################################
##### Read GTUI data. ####
##### The first column indicates period and the rest
##### stock market indices
#####################################################

dat<-read.csv(file="GTUI.csv", header=T, dec=",", sep=";")

#####################################
# Contiguity matrices #
#####################################

nt<-195 ### Number of periods
# We have 46 stock markets
Dall<-array(0,dim = c(46,46,nt))
colnames(dat[2:47])->colnames(Dall)

for(j in 1:nt)
{

D<-dat[dat$X==j,]
data<-D[,c(2:47)]

comb<-combn(data,2,simplify=FALSE)

diff1<-vector("list")
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A-4 R programs

for (i in 1:length(comb))
{

frame<-as.data.frame(comb[i])
diff1[[i]]<-abs(frame[,1]-frame[,2])

}

diff1<-as.data.frame(diff1)

td<-t(colSums(diff1))
t<-as.vector(td)

### A symmetric matrix
SIMTRICA<-vec2mat(data=t,nrow=46)

HASGARIAN<-apply(SIMTRICA, MARGIN = 2,
FUN = function(X)(1-(X-min(X))/(max(X)-min(X))))

diag(HASGARIAN) <- 0

EST<-(HASGARIAN)
Dall[,,j]<-EST

}

# Read financial data: filtered returns or losses
# or risks measures.
# First column is market label, second the month, third
# the numbered index and
# the forth the financial value to analyse
dades<-read.table(file="fd.csv", header=TRUE, dec=",",
sep=";")

n=46 # number of markets
nb=1000
nrep<-195 # numbers of periods

# For boostrap values
Igbot<-matrix(0,nb,nrep)
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# For test results
test<-matrix(0,nrep,9)

for(r in 1:nrep){
C<- Dall[,,r]

m1<- C+(max(C)+10)*diag(diag(matrix(1,n,n)))

vec<-as.vector(c(m1))

vec<-vec[(vec<(max(C)+10))]

# medi<-mean(vec)
# medi<-median(vec)
# medi<-quantile(vec,0.75)
medi<-quantile(vec,0.90)

C<-matrix(as.numeric(C>=medi),n,n)

W<-C/rowSums(C)

which(is.na(W))
W[is.na(W)] <- 0

rowSums(C)
neib<- mat2listw(W,style="M")

Y<-dades[dades$X==r,]$Vol
# Y<-dades[dades$X==r,]$Mod.VaR95
# Y<-dades[dades$X==r,]$Mod.VaR99

# Global Moran’s statistic for original data
Ig<-moran.test(Y, neib, zero.policy=TRUE)

test[r,1]<-Ig$estimate[1] #valor estadarizado
# sin estandarizar
test[r,2]<-Ig$estimate[2]-qnorm(0.95)*sqrt(Ig$estimate[3])
test[r,3]<-Ig$estimate[2]+qnorm(0.95)*sqrt(Ig$estimate[3])
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A-4 R programs

# sin estandarizar
test[r,4]<-Ig$estimate[2]-qnorm(0.90)*sqrt(Ig$estimate[3])
test[r,5]<-Ig$estimate[2]+qnorm(0.90)*sqrt(Ig$estimate[3])

# Bootstrap samples
set.seed(123456)

for(i in 1:nb){
Yb<-sample(Y,n,replace = T)
Yb<-as.vector(Yb)
# Global Moran’s statistic for bootstrap sample
g<-moran.test(Yb, neib, zero.policy=TRUE)
Igbot[i,r]<-g$estimate[1]

}

Igb<-as.vector(unlist(Igbot[,r], use.names=FALSE))
test[r,6]<-quantile(Igb,0.05)
test[r,7]<-quantile(Igb,0.95)
test[r,8]<-quantile(Igb,0.10)
test[r,9]<-quantile(Igb,0.90)
print(r)
}

write.table(test, file="Global_Vol_cuantil90.csv",
sep=";",dec=",")

A-4.2 Inference with asymptotic and bootstrap local Moran’s I
statistic distribution

# We analyse 11 indices

# For boostrap values
Igbot<-array(0,dim = c(nb,nrep,11))
# For test results
test<-array(0,dim = c(nrep,5,11))
# For the number of neighbors
Cm<-matrix(0,nrep,10)

# The number labels of the analysed indices
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nneigh<-matrix(0,nrep,11)
i1=1
i2=2
i3=6
i4=12
i5=13
i6=14
i7=18
i8=20
i9=28
i10=29
i11=46

indneign<-c(i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11)
tini<-Sys.time()
for(r in 1:nrep){
C<- Dall[,,r]

m1<- C+(max(C)+10)*diag(diag(matrix(1,n,n)))

vec<-as.vector(c(m1))

vec<-vec[(vec<(max(C)+10))]

# Change the median for quantiles...
medi<-median(vec)

# medi<-quantile(vec,0.75)
# medi<-quantile(vec,0.90)

C<-matrix(as.numeric(C>=medi),n,n)

W<-C/rowSums(C)
sumrC<-rowSums(C)
nneigh[r,]<-sumrC[indneign]

neib<- mat2listw(W,style="M")

Y<-dades[dades$X==r,]$Vol
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A-4 R programs

Ig<-localmoran(Y, neib, zero.policy=NULL, na.action=na.fail,
conditional=TRUE,alternative = "greater",
p.adjust.method="none", mlvar=TRUE,
spChk=NULL, adjust.x=FALSE)

test[r,1,1]<-Ig[i1,1]
test[r,2,1]<-Ig[i1,2]+qnorm(0.99)*sqrt(Ig[i1,3])
test[r,3,1]<-Ig[i1,2]+qnorm(0.95)*sqrt(Ig[i1,3])
test[r,1,2]<-Ig[i2,1]
test[r,2,2]<-Ig[i2,2]+qnorm(0.99)*sqrt(Ig[i2,3])
test[r,3,2]<-Ig[i2,2]+qnorm(0.95)*sqrt(Ig[i2,3])
test[r,1,3]<-Ig[i3,1]
test[r,2,3]<-Ig[i3,2]+qnorm(0.99)*sqrt(Ig[i3,3])
test[r,3,3]<-Ig[i3,2]+qnorm(0.95)*sqrt(Ig[i3,3])
#
test[r,1,4]<-Ig[i4,1]
test[r,2,4]<-Ig[i4,2]+qnorm(0.99)*sqrt(Ig[i4,3])
test[r,3,4]<-Ig[i4,2]+qnorm(0.95)*sqrt(Ig[i4,3])
test[r,1,5]<-Ig[i5,1]
test[r,2,5]<-Ig[i5,2]+qnorm(0.99)*sqrt(Ig[i5,3])
test[r,3,5]<-Ig[i5,2]+qnorm(0.95)*sqrt(Ig[i5,3])
test[r,1,6]<-Ig[i6,1]
test[r,2,6]<-Ig[i6,2]+qnorm(0.99)*sqrt(Ig[i6,3])
test[r,3,6]<-Ig[i6,2]+qnorm(0.95)*sqrt(Ig[i6,3])
#
test[r,1,7]<-Ig[i7,1]
test[r,2,7]<-Ig[i7,2]+qnorm(0.99)*sqrt(Ig[i7,3])
test[r,3,7]<-Ig[i7,2]+qnorm(0.95)*sqrt(Ig[i7,3])
test[r,1,8]<-Ig[i8,1]
test[r,2,8]<-Ig[i8,2]+qnorm(0.99)*sqrt(Ig[i8,3])
test[r,3,8]<-Ig[i8,2]+qnorm(0.95)*sqrt(Ig[i8,3])
test[r,1,9]<-Ig[i9,1]
test[r,2,9]<-Ig[i9,2]+qnorm(0.99)*sqrt(Ig[i9,3])
test[r,3,9]<-Ig[i9,2]+qnorm(0.95)*sqrt(Ig[i9,3])
#
test[r,1,10]<-Ig[i10,1]
test[r,2,10]<-Ig[i10,2]+qnorm(0.99)*sqrt(Ig[i10,3])
test[r,3,10]<-Ig[i10,2]+qnorm(0.95)*sqrt(Ig[i10,3])
test[r,1,11]<-Ig[i11,1]
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test[r,2,11]<-Ig[i11,2]+qnorm(0.99)*sqrt(Ig[i11,3])
test[r,3,11]<-Ig[i11,2]+qnorm(0.95)*sqrt(Ig[i11,3])

for(i in 1:nb){
Yb<-sample(Y,n,replace = T)
Yb<-as.vector(Yb)

g<-localmoran(Yb, neib, zero.policy=NULL,
na.action=na.fail, conditional=TRUE,
alternative = "greater", p.adjust.method="none",
mlvar=TRUE,spChk=NULL, adjust.x=FALSE)

Igbot[i,r,1]<-g[i1,1]
Igbot[i,r,2]<-g[i2,1]
Igbot[i,r,3]<-g[i3,1]

Igbot[i,r,4]<-g[i4,1]
Igbot[i,r,5]<-g[i5,1]
Igbot[i,r,6]<-g[i6,1]

Igbot[i,r,7]<-g[i7,1]
Igbot[i,r,8]<-g[i8,1]
Igbot[i,r,9]<-g[i9,1]

Igbot[i,r,10]<-g[i10,1]
Igbot[i,r,11]<-g[i11,1]
}

test[r,4,1]<-quantile(Igbot[,r,1],0.99)
test[r,5,1]<-quantile(Igbot[,r,1],0.95)

test[r,4,2]<-quantile(Igbot[,r,2],0.99)
test[r,5,2]<-quantile(Igbot[,r,2],0.95)

test[r,4,3]<-quantile(Igbot[,r,3],0.99)
test[r,5,3]<-quantile(Igbot[,r,3],0.95)

test[r,4,4]<-quantile(Igbot[,r,4],0.99)
test[r,5,4]<-quantile(Igbot[,r,4],0.95)
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test[r,4,5]<-quantile(Igbot[,r,5],0.99)
test[r,5,5]<-quantile(Igbot[,r,5],0.95)

test[r,4,6]<-quantile(Igbot[,r,6],0.99)
test[r,5,6]<-quantile(Igbot[,r,6],0.95)

test[r,4,7]<-quantile(Igbot[,r,7],0.99)
test[r,5,7]<-quantile(Igbot[,r,7],0.95)

test[r,4,8]<-quantile(Igbot[,r,8],0.99)
test[r,5,8]<-quantile(Igbot[,r,8],0.95)

test[r,4,9]<-quantile(Igbot[,r,9],0.99)
test[r,5,9]<-quantile(Igbot[,r,9],0.95)

test[r,4,10]<-quantile(Igbot[,r,10],0.99)
test[r,5,10]<-quantile(Igbot[,r,10],0.95)
test[r,4,11]<-quantile(Igbot[,r,11],0.99)
test[r,5,11]<-quantile(Igbot[,r,11],0.95)

print(r)
}
write.table(test, file="Local_ModVaR99_Median.csv",
sep=";",dec=".")

A-4.3 Testing extreme value copulas

library(rugarch)
library(qrmtools)
library(copula)
library(timeSeries)

loss<-read.csv("losses.csv")
nr<-nrow(loss)
nr
mcopa<-loss[,c("Alemania","España")]
mcopi<-loss[,c("España","Italia")]
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mcopf<-loss[,c("España","resFr")]
mcopp<-loss[,c("España","resPor")]
mcopu1<-loss[,c("España","resUK")]
mcopu2<-loss[,c("España","resUSADJ")]
mcopu3<-loss[,c("España","resUSASP")]
mcoph<-loss[,c("España","resHK")]

mcop<-pobs(mcopa)

plot(mcop[,1],mcop[,2])

summary(mcop)

ini<-Sys.time()
r<-c(3,4,5)
###FUNCTIONS
## pdf beta(3,3)
dbeta33 = function(x){

rr<-((15/16)*(1-x^2)^2)*(abs(x)<=1)
return(rr)

}

## cdf of beta(3,3)
pbeta33 = function(x){

if((abs(x)<=1)){
rr<-(3/16)*x^5-(5/8)*x^3+(15/16)*x+0.5}

if((x<=-1)){
rr<-0}

if((x>=1)){
rr<-1}

return(rr)
}

## cdf for quantile estimation beta(3,3)
pbeta33_p = function(x){

if((abs(x)<=1)){
rr<-(3/16)*x^5-(5/8)*x^3+(15/16)*x+0.5-p}

if((x<=-1)){
rr<-0-p}

104



A-4 R programs

if((x>=1)){
rr<-1-p}

return(rr)
}

m2<-mcop
for(i in 1:nr){

p <- m2[i,1]
m2[i,1] <- uniroot(pbeta33_p,c(-1,1))$root
p <- m2[i,2]
m2[i,2] <- uniroot(pbeta33_p,c(-1,1))$root

}
tmcop<-m2

rej <- matrix(seq(0.001,0.999,0.005), 2, 200,
byrow = TRUE)

rej2 <- matrix(seq(0.001,0.999,0.005), 2, 200,
byrow = TRUE)

rej<-t(rej)
rej2<-t(rej2)

rej2_r<-cbind(rej2,rej2,rej2)
ngrid<-nrow(rej) # number of poing the the grid

# Transformed grid

for (i in 1:ngrid){
p <- rej2[i,1]
rej2[i,1] <- uniroot(pbeta33_p,c(-1,1))$root
p <- rej2[i,2]
rej2[i,2] <- uniroot(pbeta33_p,c(-1,1))$root
for(ri in 1:3){

p <- rej2_r[i,2*(ri-1)+1]**(1/r[ri])
rej2_r[i,2*(ri-1)+1] <- uniroot(pbeta33_p,c(-1,1))$root
p <- rej2_r[i,2*(ri-1)+2]**(1/r[ri])
rej2_r[i,2*(ri-1)+2] <- uniroot(pbeta33_p,c(-1,1))$root

}
}
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## pdf Kernel Epanecnikov
kintd<-function(u){

rr <- 0.75*(1-u**2)
}

## cdf Kernel Epanecnikov
Kintd<-function(u){

rr<--0.25*((1+u)**2)*(u-2);
return (rr)}

## call pdf kernel
pdfhatz<-function(z,v,nr,b){

u = (z-v)/b
#z is a scalar, v is a scalar
rr<-kintd(u)
return(rr)}

## call cdf kernel
cdfhatz<-function(z,v,nr,b){

u = (z-v)/b
#z is a scalar, v is a scalar
rr<-Kintd(u)
return(rr)}

Dif_Inv<- function(res){
if(abs(res)<=1){

rr <- (15/16)*(1-(res)^2)^2
}else{

rr <- 0
}
return(1/rr)

}

###kernel estimation of cdf and derivatives

FUN_x<- function(z){
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ind12n<-((z[1]-v[,1])/b<=(-1))*((z[2]-v[,2])/b<=(-1))
suma0<-ind12n*0
ind12p<-((abs(z[1]-v[,1])/b<1)*(abs(z[2]-v[,2])/b<1))
suma1<-(1/nr)*cdfhatz(z[1],v[,1],nr,b)*
cdfhatz(z[2],v[,2],nr,b)*ind12p
ind1n2p<-((z[1]-v[,1])/b>=1)*((z[2]-v[,2])/b<1)
suma2=((1/nr)*cdfhatz(z[2],v[,2],nr,b))*ind1n2p
ind1p2n<-((z[1]-v[,1])/b<1)*((z[2]-v[,2])/b>=1)
suma3<-cdfhatz(z[1],v[,1],nr,b)*(1/nr)*ind1p2n
ind1n2n<-((z[1]-v[,1])/b>=1)*((z[2]-v[,2])/b>=1)
suma4<-(1/nr)*ind1n2n
rr=sum(suma0)+sum(suma1)+sum(suma2)+sum(suma3)+sum(suma4)
return(rr)

}

FUNd1_x<- function(z){
#z es un vector de dim 2, v es una matriz
ind12n<-((z[1]-v[,1])/b<=(-1))*((z[2]-v[,2])/b<=(-1))
suma0<-ind12n*0
ind12p<-((abs(z[1]-v[,1])/b<1)*(abs(z[2]-v[,2])/b<1))
suma1<-(1/(nr*b*dbeta33(z[1])))*pdfhatz(z[1],v[,1],nr,b)*
cdfhatz(z[2],v[,2],nr,b)*ind12p
ind1n2p<-((z[1]-v[,1])/b>=1)*((z[2]-v[,2])/b<1)
suma2=ind1n2p*0
ind1p2n<-((z[1]-v[,1])/b<1)*((z[2]-v[,2])/b>=1)
suma3<-(1/(nr*b*dbeta33(z[1])))*pdfhatz(z[1],v[,1],nr,b)*
ind1p2n
ind1n2n<-((z[1]-v[,1])/b>=1)*((z[2]-v[,2])/b>=1)
suma4<-ind1n2n*0
rr=sum(suma0)+sum(suma1)+sum(suma2)+sum(suma3)+sum(suma4)
return(rr)

}

FUNd2_x<- function(z){
ind12n<-((z[1]-v[,1])/b<=(-1))*((z[2]-v[,2])/b<=(-1))
suma0<-ind12n*0
ind12p<-((abs(z[1]-v[,1])/b<1)*(abs(z[2]-v[,2])/b<1))
suma1<-(1/(nr*b*dbeta33(z[2])))*cdfhatz(z[1],v[,1],nr,b)*
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pdfhatz(z[2],v[,2],nr,b)*ind12p
ind1n2p<-((z[1]-v[,1])/b>=1)*((z[2]-v[,2])/b<1)
suma2=(1/(nr*b*dbeta33(z[2])))*pdfhatz(z[2],v[,2],nr,b)*
ind1n2p
ind1p2n<-((z[1]-v[,1])/b<1)*((z[2]-v[,2])/b>=1)
suma3<-ind1p2n*0
ind1n2n<-((z[1]-v[,1])/b>=1)*((z[2]-v[,2])/b>=1)
suma4<-ind1n2n*0
rr=sum(suma0)+sum(suma1)+sum(suma2)+sum(suma3)+sum(suma4)
return(rr)

}

CKernelBeta<-array(0, dim=c(ngrid,ngrid))
CKernelBeta_r<-array(0, dim=c(ngrid,ngrid,3))
dCKernelBeta_r<-array(0, dim=c(ngrid,ngrid,3))
d1CKernelBeta<-array(0, dim=c(ngrid,ngrid))
d2CKernelBeta<-array(0, dim=c(ngrid,ngrid))
d1CKernelBeta_r<-array(0, dim=c(ngrid,ngrid,3))
d2CKernelBeta_r<-array(0, dim=c(ngrid,ngrid,3))

## Tail dependence Emprirical copula

rej1<-c(0.99,0.99)
AUX1 <- mcop[,1]<=rej1[1]
AUX2 <- mcop[,2]<=rej1[2]
CEmpirica<-sum(AUX1 == TRUE & AUX2 == TRUE)/nr
res_Emp<-1-CEmpirica
res_Emp

## Tail dependence classical kernel copula

# Definimos la ventana optima para este caso
b <- 3.572*nr^(-1/3)
v <- mcop

CKernelClasico <- FUN_x(c(rej1[1],rej1[2]))
res_ker<-1-CKernelClasico
res_ker
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## Tail dependence transformed Gaussian kernel copula
m2<-mcop
for(i in 1:nr){

p <- m2[i,1]
m2[i,1] <- qnorm(p)
p <- m2[i,2]
m2[i,2] <- qnorm(p)}

rej31<-rej1
p<-rej1[1]
rej31[1]<-qnorm(p)
p<-rej1[2]
rej31[2]<-qnorm(p)

b <- 3.572*nr^(-1/3)
v <- m2
CKernelNormal<- FUN_x(c(rej31[1],rej31[2]))
res_Gtker<-1-CKernelNormal
res_Gtker

## Tail dependence transformed beta kernel copula
m1<-mcop
for(i in 1:nr){

p <- m1[i,1]
m1[i,1] <- uniroot(pbeta33_p,c(-1,1))$root
p <- m1[i,2]
m1[i,2] <- uniroot(pbeta33_p,c(-1,1))$root}

rej21<-rej1
p<-rej1[1]
rej21[1]<-uniroot(pbeta33_p,c(-1,1))$root
p<-rej1[2]
rej21[2]<-uniroot(pbeta33_p,c(-1,1))$root

b <- (3)^(1/3)*nr^(-1/3)
v <- m1
CKernelBeta<- FUN_x(c(rej21[1],rej21[2]))
res_Btker<-1-CKernelBeta
res_Btker

109



# Test with empirical copula
evTestC(mcop)

# Test with beta transformed kernel copula

# Dn<-matrix(0,ngrid,ngrid)
Sr<-matrix(0,1,3)
b <- 3**(1/3)*nr^(-1/3)

v <- tmcop
for(i in 1:ngrid){

for(j in 1:ngrid){
CKernelBeta[i,j]<- FUN_x(c(rej2[i,1],rej2[j,2]))
d1CKernelBeta[i,j]<-FUNd1_x(c(rej2[i,1],rej2[j,2]))
d2CKernelBeta[i,j]<-FUNd2_x(c(rej2[i,1],rej2[j,2]))
for(ri in 1:3){

# v <- tmcopr[,(2*(k-1)+1):(2*k),ri]
CKernelBeta_r[i,j,ri]<-FUN_x(c(rej2_r[i,2*
(ri-1)+1],rej2_r[i,2*(ri-1)+2]))**(r[ri])
dCKernelBeta_r[i,j,ri]<-r[ri]*FUN_x(c(rej2_r[i,2*
(ri-1)+1],rej2_r[i,2*(ri-1)+2]))**(r[ri]-1)
d1CKernelBeta_r[i,j,ri]<-FUNd1_x(c(rej2_r[i,2*
(ri-1)+1],rej2_r[i,2*(ri-1)+2]))*((1/r[ri])*
rej[i,1]**((1-r[ri])/r[ri]))
d2CKernelBeta_r[i,j,ri]<-FUNd2_x(c(rej2_r[i,2*
(ri-1)+1],rej2_r[i,2*(ri-1)+2]))*((1/r[ri])*
rej[j,2]**((1-r[ri])/r[ri]))
Sr[1,ri]<-(nr/(ngrid*ngrid))*
sum((CKernelBeta_r[,,ri]-CKernelBeta)**2)

}
}

}

Sr345<-rowSums(Sr)
Sr345
###WE CAN USE BOOTSTRAP TO CALCULATE P-VALUE,
###THE PREDURE OF THE TEST IS LONG AND THE RESULTS
###ARE SIMILAR TO EMPIRICAL COPULA
fin<-Sys.time()
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