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Abstract

Continuous enhancement in hardware technologies enables scientific computing to
advance incessantly and reach further aims. Since the start of the global race for
exascale high-performance computing (HPC), massively-parallel devices of various
architectures have been incorporated into the newest supercomputers, leading to an
increasing hybridization of HPC systems. In this context of accelerated innovation,
software portability and efficiency become crucial.

Traditionally, scientific computing software development is based on calculations in
iterative stencil loops over a discretized geometry—the mesh. Despite being intuitive
and versatile, the interdependency between algorithms and their computational imple-
mentations in stencil applications usually results in a large number of subroutines and
introduces an inevitable complexity when it comes to portability and sustainability.
An alternative is to break the interdependency between algorithm and implementation
to cast the calculations into a minimalist set of kernels.

The portable implementation model that is the object of this thesis is not restricted
to a particular numerical method or problem. However, owing to the CTTC’s long
tradition in computational fluid dynamics (CFD) and without loss of generality, this
work is targeted to solve transient CFD simulations. By casting discrete operators and
mesh functions into (sparse) matrices and vectors, it is shown that all the calculations
in a typical CFD algorithm boil down to the following basic linear algebra subroutines:
the sparse matrix-vector product, the linear combination of vectors, and the dot
product.

The proposed formulation eases the deployment of scientific computing software in
massively parallel hybrid computing systems and is demonstrated in the large-scale,
direct numerical simulation of transient turbulent flows.

vii
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1

Introduction

Physics is the natural science that involves the study of matter and its motion through
space and time. Engineering is the application of mathematics, empirical evidence,
and scientific knowledge to research, improve or invent things. To describe a system
or a phenomenon, scientists and engineers design and use mathematical models that
are eventually solved on massively parallel supercomputers.

1.1 Brief historical review

This thesis is devoted to the modern computational challenges of solving complex fluid
motion phenomena. Yet let me guide a journey through the history of the study of
fluids first.

Mankind has been eager to understand nature since the dawn of civilization. For
centuries, sometimes out of curiosity, sometimes out of necessity, people have observed
the universe bumping into the questions and answers that build knowledge and science
as we comprehend it today. Albeit many breakthroughs have recognized authorship,
we must acknowledge that all understanding arises from a constantly evolving socio-
cultural context, a stream of wisdom in which all humanity is involved, a flow of
knowledge.

Panta rhei, or everything flows. This aphorism is credited to the ancient Greek
philosopher Heraclitus of Ephesus (c. 535 BC – c. 475 BC). It characterizes his
thoughts about the changing nature of things with the flow of time. Heraclitus

1



2 Chapter 1. Introduction

opposed the idea of a changeless being—a principle of his contemporary philosopher
Parmenides of Elea (c. 515 BC – c. 470 BC)—claiming,

No man ever steps in the same river twice, for it’s not the same river and
he’s not the same man.

This duality between becoming and being influenced Plato (c. 427 BC – c. 347 BC) in
formulating his theory of Forms. He distinguished two worlds or realms, the visible and
the intelligible. In this way, Forms, or ideas, are the non-physical, absolute essences
of things, the basis of science that must allow describing the world as we perceive it,
which is subject to constant change.

Among many others, the great philosophers aforementioned founded the principles
of thinking. However, their contributions were not recognized in a practical or scientific
way. Plato’s theory of Forms was harshly criticized by his student Aristotle (c. 384
BC – c. 322 BC). Contrary to Platonism, Aristotle developed an empirical philosophy
where the experience was the source of knowledge and introduced the Aristotelian
physics that would reign for eighteen centuries until the rise of Classical physics.
Meanwhile, Archimedes of Syracuse (c. 287 BC – c. 212 BC)—considered the greatest
mathematician of ancient history—introduced the field of hydrostatics and the notion
of pressure. Legend has it that King Hiero II of Syracuse asked him to determine
whether his golden crown was made of pure gold or alloyed with some other metal.
Eureka! The question gave rise to discovering the principle of buoyancy and a method
for determining the volume of an object with an irregular shape.

Centuries later, during the Renaissance, the formal ideas of fluid dynamics would
be revisited in detail, ushered in the hand of Leonardo da Vinci (1452 – 1519). Albeit
da Vinci did not conduct any remarkable mathematical studies on paper (probably
due to a lack of analytical tools yet to come), he observed, studied, and comprehended
fluid flow phenomena. Da Vinci experimented with and accurately illustrated waves,
jets, or eddies. He was presumably the first to introduce the term turbolenza in a
scientific sense describing two types of motion.

Observe the motion of the surface of the water, which resembles that of
hair, which has two motions, of which one is caused by the weight of the
hair, the other by the direction of the curls; thus, the water has eddying
motions, one part of which is due to the principal current, the other to the
random and reverse motion.
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Figure 1.1: Leonardo da Vinci’s illustration of the swirling water flow. Credit: Leonardo da
Vinci, Studies of Turbulent Water, RCIN 912660, Royal Collection Trust / © Her Majesty
Queen Elizabeth II 2022.

Following the great scientists of the Renaissance, Sir Isaac Newton (1643 – 1727)
culminated the scientific revolution with the publication of his work Principia [1]. His
contributions, including the conservation of momentum, F = ma, or the concept of
viscous flow, laid the foundation for the theoretical description of fluid flows and paved
the way for the next two centuries. While Daniel Bernoulli (1700 – 1782) established a
relationship between pressure and velocity based on simple energy principles, Leonhard
Euler (1707 – 1783) formulated the equations of inviscid fluid flow, the Euler equations.
Indeed, he is sometimes considered the father of fluid dynamics as a mathematical
discipline.

Our journey ends with the Frenchman Claude Louis Marie Henry Navier (1785
– 1836) and the Irishman George Gabriel Stokes (1819 – 1903). They introduced
the viscous terms in the nowadays well-known Navier–Stokes equations. These two-
hundred-year-old differential equations, which include expressions for the conservation
of mass, momentum, energy, or species, are the basis of the contemporary compu-
tational fluid dynamics (CFD) disciplines, that is, is the branch of fluid mechanics
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that aims to solve fluid flow problems using numerical analysis. Indeed, Navier–Stokes
equations are so difficult to solve—it is designated one of the seven Millenium Prize
Problems, and its solution is worth 1 million dollars—that solutions for real flow
problems were not feasible until the advent of modern digital computers.

1.2 Evolution of (high-performance) computer systems

Many engineering studies lead to mathematical models whose analytical resolution
is unknown. The need to provide a practical solution to these problems promotes
the research and development of numerical methods. Numerical analysis is the study
of algorithms or numerical methods to obtain an approximate solution to complex
mathematical models. The fact that numerical methods calculate an approximate
solution to the problem implies that there is always an associated error. The two
main factors related to the quality of the numerical analysis results are accuracy and
precision. On the one hand, better accuracy is obtained using a better mathematical
model. On the other hand, better precision is obtained using a better numerical
method.

Interest in numerical analysis grew close together with the advent of computers.
Nowadays, it is obvious what a computer looks like; however, before the emergence of
digital computers, the term could refer to computer machines as devices used to aid
computations or even to people who carried out calculations.

Lewis Fry Richardson (1881 – 1953), an English mathematician, physicist, and
pacifist, was an early advocate of the approach to solving large-scale computing
problems. He developed the first numerical weather prediction system based on
dividing the physical domain into grid cells. His attempt to simulate weather for a
single eight-hour period took six weeks of work and resulted in a dismal failure. Not
deterred, Richardson described a fantasy weather forecast “factory” of 64,000 human
computers working in “a large hall like a theatre” calculating the world’s weather
forecasts from meteorological data supplied by weather balloons spaced two hundred
kilometers apart around the globe [2]. Using colored signal lights and telegraph
communication, a leader in the center would coordinate the forecast.

Perhaps some day in the dim future it will be possible to advance the
computations faster than the weather advances at a cost less than the
saving to mankind due to the information gained. But that is a dream.
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Figure 1.2: Illustration from “Weather Prediction by Numerical Process” by Lewis Fry
Richardson, published in 1922 [2].

However, Richardson was proposing a very rudimentary CFD calculation. Along
the same line, A. Thom reported the numerical solution to the flow past circular
cylinders at low speeds in 1933 [3]. It is also worth mentioning the work by M.
Kawaguti [4], who numerically solved the flow around a circular cylinder at Re = 40,
working 20 hours per week for 18 months. It is clear that our colleagues from the
early 19th century could hardly imagine that the use of digital computers would be so
widespread a few years later. Nowadays, a smartphone would have solved Kawaguti’s
simulation in a fraction of a second.

The 1950s decade set a turning point in computer science after the development of
the first computer languages, COBOL (1953) and FORTRAN (1954), the release of
the first mass-produced computer in the world, IBM 650 (1954), or the Nobel Prize
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worth unveiling of the integrated circuit (1958), among others events. Ever since, the
interest in numerical disciplines such as CFD has increased exponentially.

Indeed, the emergence of digital computers capable of performing millions of simple
binary operations per second boosted the use and development of numerical methods
because together, they allow to quickly perform massive mathematical calculations.
Computers reduce the need for analytical calculations or experimental results in
the development of engineering projects such as thermal loads, fluid motion, and
structural or financial calculations, among others. Moreover, such computations are
increasingly fast and accurate thanks to the constant evolution of computers and
numerical methods.

Gordon Moore, a co-founder of Intel, predicted in 1965 [5] that the number of
transistors inside processors would double every year. Later on, this prediction was
called Moore’s Law by Caltech professor Carver Mead and became a self-fulfilled
prophecy. For decades, frequency scaling and processor’s core complexity were the
dominant basis for progress in computer performance which, at that time, was the main
bottleneck. Namely, an increase in frequency decreased the runtime of compute-bound
programs. If this was insufficient, raw parallelism was used to engage multiple (equal)
processors to solve a problem.

The main drawback of this constant growth is the energetic cost, which increases
almost the same magnitude and constrains numerical calculations. Before a project is
carried out, it is necessary to decide the mathematical model and numerical method
depending on the desired accuracy and precision and assess whether the costs are worth
it. Therefore, the efficiency of the code implemented for carrying out the simulation
plays a key role: it is the only remaining factor to minimize the energetic cost of the
computation.

The publication of Suhas V. Patankar’s book [6] in 1980 was another key event
in the CFD industry. It is probably the most influential book on CFD to date and
the one that spawned most CFD codes. Hand in hand with the numerical studies
and methods aforementioned, and recalling the compute-centric evolution in hardware
and software technologies (it was considered the most precious resource on computer
systems), the implementation of numerical simulation tools was naturally based on
iterative stencil loops (ISL) over discretized geometries. In this way, complex codes
and algorithms were designed to minimize the number of computations. However, the
energy efficiency of data movement did not improve as fast as floating-point operations
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(flop)’s energy efficiency [7].

Therein lies the problem with our overvaluation of preserving flops, because
data movement is the dominant factor.

To finish it off, a divergence in hardware architectures started back in 2004 when
the increase in core’s complexity and clock speeds reached a plateau, and therefore
the demands for more computing power had to be met by other means. Rapidly,
systems based on multicore processors or multi-socket configurations seized the top
supercomputers list, adding additional levels of parallelism. The default message-
passing interface (MPI) parallel models assuming data equidistance between processes
ceased to be valid. Hybrid approaches combining MPI and open multi-processing
(OpenMP) appeared in response, although they could easily end up delivering even
worse performance on complex non-uniform memory access (NUMA) configurations.
The divergence intensified in 2008 when devices of various architectures introducing
completely different parallel paradigms came into play, such as many integrated cores
(MICs) or graphics processing units (GPUs). Ever since the scientific computing
community has been facing significant challenges.

1.3 Enabling scientific computing on modern supercomputers

Continuous enhancement in hardware technologies enables scientific computing to
advance incessantly and reach further aims. Nowadays, the use of high-performance
computing (HPC) systems is rather common in the solution of both industrial and
academic scale problems. Many algorithms employed in scientific computing have a
very low arithmetic intensity (AI), which is the ratio of computing work in flop to
memory traffic in bytes. Hence numerical simulation codes are usually memory-
bounded, making processors suffer from severe data starvation [7–9]. To top it off,
the calculations often result in irregular, non-coalescing memory access patterns,
reducing the memory access efficiency. Ironically, the memory bandwidth of computing
hardware grows much slower than its peak performance, aggravating the problem. All
this motivates the introduction of new parallel architectures with faster and more
complex memory configurations into HPC systems.

To take advantage of the increasing variety of hardware architectures and the
hybridization of HPC systems, the computing subroutines that form the algorithms, the
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so-called kernels, must be adapted to complex paradigms such as distributed-memory
(DM) and shared-memory (SM) multiple instruction, multiple data (MIMD) parallelism,
and stream processing (SP). This encourages the demand for portable and sustainable
implementations of scientific simulation codes [10]. While portability is an intangible
characteristic of software (it cannot be measured nor qualified), it may be easy for
a developer to know how difficult it is to rewrite, debug and verify a specific code
on its adaptation to a new architecture. On the other hand, sustainability refers to
developing reusable and resilient codes that last for long periods of time. The way a
code is conceived at its inception enormously determines the degree to which both
properties can be attained.

The use of GPUs in scientific computing is nowadays rather mature, and there are
many successful examples in the literature [11–14]. For instance, the early GPU imple-
mentations in [15], extended in [16], proved to be two orders of magnitude faster than
its central processing unit (CPU) counterpart. Moreover, the solution of two-phase
flows on multi-GPU systems [17] was not only faster but also more energy-efficient. An
example of a GPU porting of an open-source Navier–Stokes solver, the AFiD code, is
found in [18]. Further examples of multi-GPU simulations of supersonic and hypersonic
flows can be found in [19]. One of the most impressive GPU-based simulations is found
in [20], after [21], on the solution of turbulent flows, reporting a sustained performance
of 13.7Pflop/s.

Traditionally, scientific computing software development is based on calculations
in ISL over a discretized geometry—the mesh. In this work, this implementation
approach is referred to as stencil or stencil-based. Despite being intuitive and versatile,
the interdependency between algorithms and their computational implementations in
stencil applications usually results in a large number of subroutines and introduces an
inevitable complexity when it comes to portability and sustainability [22].

The complexity of stencil applications motivates the adoption of conservative
porting strategies, which consist of porting (rewriting) the most time-consuming part
of an existing code, or even the entire code, to a new architecture but minimizing
the structural modifications. In other words, it leads to a partial or complete reim-
plementation of an existing code. These strategies were common during the rise of
general-purpose computing on GPUs because they allow for direct comparison studies
of both numerical and performance results versus the legacy versions. Well-known
commercial CFD codes and open-source platforms offer GPU extensions for solvers



1.3 Enabling scientific computing on modern supercomputers 9

of systems of linear algebra equations (SLAE), which represent a significant part of
the overall computing time. This provides substantial acceleration with compactly
localized changes in the code. Such an example can be found in [23], where the authors
coupled a GPU-accelerated library for solving large sparse SLAE with the OpenFOAM
platform and demonstrated performance on up to 128 nodes of a GPU-based cluster.

Implementing new physics or numerical methods in a stencil-based framework or
its specialization for different mesh types usually requires the design of new computing
subroutines and data structures. This is the main drawback of such an approach
because the effort is not necessarily accumulative and thus reduces the software’s
sustainability. Some authors propose domain-specific tools to address this, generalizing
the stencil computations for specific fields. For instance, a framework that automat-
ically translates stencil functions written in C++ to both CPU and GPU codes is
proposed in [24]. However, these generalizations are still heavily restricted by the
shape of the stencil they target.

An alternative to stencil implementations is to break the aforementioned interde-
pendency between algorithm and implementation so that the calculations are cast
into a minimalist set of universal kernels. In other words, the idea is to use the
classical ISL just for data building and leave the calculations to a reduced set of
basic operations; in this way, legacy codes can be used and maintained indefinitely as
preprocessing tools, and the calculation engines become easy to port and optimize.

By casting discrete operators and mesh functions into sparse matrices and vectors,
it is shown that all the calculations in a typical CFD algorithm for the direct numerical
simulation (DNS) and large-eddy simulation (LES) of incompressible turbulent flows
boil down to the following basic linear algebra subroutines: sparse matrix-vector
product (SpMV), linear combination of vectors (axpy) and dot product (dot) [25–28].
From now on, we refer to this implementation based on algebraic subroutines as
algebraic or algebra-based. In this algebraic approach, the kernel code shrinks to dozens
of lines; the portability becomes natural, and maintaining OpenMP, open computing
language (OpenCL), or compute unified device architecture (CUDA) implementations
takes minor effort. Besides, standard libraries optimized for particular architectures
(e.g., cuSPARSE [29], clSPARSE [30]) can be easily linked in addition to specialized
in-house implementations. A similar approach is found in PyFR [21], where the
majority of operations are cast in terms of matrix-matrix multiplications linking with
appropriate BLAS libraries. In the context of the DNS, the preconditioned conjugate
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gradient (CG) method following such an algebraic approach was implemented in [31],
and its potential was exploited in [32] to perform petascale CFD simulations. Using an
algebra-based formulation provided robust, portable, and optimized implementations in
all cases. Consequently, the design of algebra-based algorithms for its use in massively
parallel architectures seems a smart strategy for the efficient solution of both industrial
and academic scale problems.

The rest of the work is organized as follows. Chapter 2 reviews the symmetry-
preserving discretization of the Navier–Stokes equations to provide some context, and
outlines an algebra-based algorithm for solving the governing equations. Chapter
3 describes the implementation model of the hierarchical parallel code for high-
performance computing (HPC2) framework in detail. Chapter 4 presents an exhaustive
study of performance of the algebraic kernels implemented in HPC2 on different
computer systems. Chapter 5 demonstrates the capabilities of HPC2 in dealing with
large-scale CFD simulations. Finally, the conclusions and future work are outlined in
Chapter 6.
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2

Mathematical framework

This chapter aims to describe the mathematical framework underlying the implemen-
tation of the HPC2 framework. Although it is not restricted to a particular numerical
method or physical problem, owing to the Centre Tecnològic de Transferència de Calor
(CTTC)’s long tradition in CFD, and without loss of generality, this work is targeted
to solve transient CFD simulations. By casting discrete operators and mesh functions
into (sparse) matrices and vectors, it is shown that all the calculations in a typical
CFD algorithm boil down to the following basic linear algebra subroutines: the sparse
matrix-vector product, the linear combination of vectors, and the dot product. From
now on, we refer to this implementation based on basic linear algebra subroutines as
algebraic or algebra-based.

2.1 Algebraic formulation of discrete Navier–Stokes equations

Let us consider the numerical simulation of turbulent, incompressible flows of Newto-
nian fluids in the absence of external forces. Assuming constant physical properties,
the dimensionless governing equations in primitive variables read

∂u

∂t
+ (u · ∇)u =

1

Re
∇2u−∇p, (2.1a)

∇ · u = 0, (2.1b)

15
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where Re is the dimensionless Reynolds number. The non-linear convective term is
given by (u · ∇)φ = C(u, φ).

The essence of turbulence are the smallest scales of motion. They result from a
subtle balance between convective transport and diffusive dissipation. Mathematically,
these terms are governed by two differential operators differing in symmetry: the
convective operator is skew-symmetric, (φ1, C(u, φ2)) = − (φ2, C(u, φ1)), whereas
the diffusive is symmetric and positive-definite, i.e.,

(
φ1,∇2φ2

)
=
(
φ2,∇2φ1

)
and(

φ,∇2φ
)
≤ 0,∀φ. Here, the inner-product of functions is defined in the usual way:

(a, b) =
∫

Ω
a · bdΩ. On the other hand, accuracy and stability need to be reconciled for

numerical simulations of turbulent flows around complex configurations.
In this section, we review the well-know conservative, symmetry-preserving, finite-

volume discretization of Navier–Stokes equations on unstructured grids introduced
by Trias et al. in [1], and introduce an algebra-based algorithm for the numerical
simulation of turbulent flows. Thus, this work intends to lead to a generalization of
Verstappen and Veldman [2] on unstructured grids. As it is shown, the algorithm
relies on only three basic linear algebra subroutines. The underlying algebra-based
formulation fits perfectly in the numerical simulation framework presented later, in
Chapter 3.

2.1.1 Symmetry-preserving discretization on collocated grids

A collocated arrangement (see Figure 2.1) is preferred over staggered due to its more
straightforward form for unstructured grids despite the intrinsic errors due to improper
pressure gradient formulation [3–5]. Thus, both the pressure and velocities are stored
at the center of the control volume, whereas a secondary, face-centered velocity field is
defined to enforce mass conservation in the cells.

In a matrix-vector notation, the finite-volume discretization of the Navier–Stokes
and continuity equations on an arbitrary collocated mesh reads:

Ω3d
c

duc
dt

+ C3d
c (us)uc + D3d

c uc + Ω3d
c Gcpc = 0c, (2.2a)

Mus = 0c, (2.2b)

where the pc ∈ Rn and uc ∈ R3n are the cell-centered pressure and velocity fields. For
simplicity, uc is defined as a column vector and arranged as uc = (u1,u2,u3)T , where
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p u1

u2

p u1

u2

Figure 2.1: Variable arrangement for a collocated-mesh scheme.

ui = ((ui)1, (ui)2, . . . , (ui)n)T are the vectors containing the velocity components
corresponding to the xi-spatial direction. The auxiliary discrete staggered velocity
us = ((us)1, (us)2, . . . , (us)m)T ∈ Rm is related to the centered velocity field via a
linear interpolation Γc→s ∈ Rm×3n, us ≡ Γc→suc. The dimensions of these vectors, n
and m, are the number of control volumes and faces on the computational domain,
respectively. The sub-indices c and s refer to whether the variables are cell-centered
or staggered at the faces. The matrices Ω3d

c ∈ R3n×3n, C3d
c (us) ∈ R3n×3n and

D3d
c ∈ R3n×3n are block diagonal matrices given by

Ω3d
c = I3 ⊗ Ωc, C3d

c (us) = I3 ⊗ Cc (us) , D3d
c = I3 ⊗ Dc,

where I3 ∈ R3×3 is the identity matrix and Ωc ∈ Rn×n is a diagonal matrix with
the cell-centered control volumes. Cc (us) ∈ Rn×n and Dc ∈ Rn×n are the collocated
convective and diffusive operators, respectively. Note the us-dependence of the
convective operator (non-linear operator). Finally, Gc ∈ R3n×n represents the discrete
gradient operator and the matrix M ∈ Rn×m is the face-to-center discrete divergence
operator.

The conservative nature of the Navier–Stokes equations is intimately tied up with
the symmetries of the differential operators (see [2, 6], for instance). This section
reviews that retaining such symmetries leads to spatial discretizations that exactly
conserve the total kinetic energy for inviscid flows. The forthcoming analysis does not
consider the effect of external sources and is restricted to impervious or periodical
boundary conditions. Following the same criterion as in [2], the discrete inner-product
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reads
(vc,uc) = vTc Ω3d

c uc, (2.3)

then, the global discrete kinetic energy is given by ||uc||2 ≡ uTc Ω3d
c uc and its temporal

evolution equation can be obtained by left-multiplying Equation 2.2a by uTc and
summing the resulting expression with its transpose:

d

dt
||uc||2 = −uTc

(
C3d
c (us) + (C3d

c (us))
T
)
uc − uTc

(
D3d
c + (D3d

c )T
)
uc

−uTc Ω3d
c Gcpc − pTc GTc (Ω3d

c )Tuc. (2.4)

In absence of diffusion, that is D = 0, the global kinetic energy ||uc||2 is conserved if
both, the convective and pressure terms, vanish (for any uc, Muc = 0c) in the discrete
kinetic energy equation,

uTc
(
C3d
c (us) + (C3d

c (us))
T
)
uc = 0, (2.5a)

uTc Ω3d
c Gcpc − pTc GTc (Ω3d

c )Tuc = 0. (2.5b)

The first equality is held if the discrete convective operator is skew-symmetric, whereas
defining the negative transpose of the discrete gradient operator to be exactly equal
to the divergence operator, i.e.,

C3d
c (us) = −(C3d

c (us))
T , (2.6a)

−
(
Ω3d
c Gc

)T
= MΓc→s, (2.6b)

guarantees that the contribution of the pressure term also vanishes. In this way, the
skew-symmetry of the continuous operators is preserved.

A classical fractional step projection method [7–9] is used to solve the velocity-
pressure coupling. For the staggered velocity field, us, this projection is naturally
derived from the Helmholtz-Hodge vector decomposition theorem [10], whereby a
velocity ups can be uniquely decomposed into a solenoidal vector, un+1

s , and a curl-free
vector, expressed as the gradient of a scalar field, Gp̃c

′. This decomposition is written
as

ups = un+1
s + Gp̃c

′, (2.7)

where G ∈ Rm×n is the center-to-face staggered gradient operator, which is related to
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the divergence operator via
G ≡ −Ω−1

s MT , (2.8)

where Ωs ∈ Rm×m is a diagonal matrix with the staggered control volumes. Then,
taking the divergence of Equation (2.7) yields a discrete Poisson equation for p̃c′

Mups = Mun+1
s + MGp̃c

′ −→ MGp̃c
′ = Mups . (2.9)

Finally, using the definition of G given in Equation (2.8) the previous equation becomes

Lp̃c
′ = Mups with L ≡ −MΩ−1

s MT , (2.10)

where the discrete Laplacian operator L ∈ Rn×n is, by construction, a symmetric
negative-definite matrix.

2.1.2 Constructing the discrete operators

The discretization of the operators preserving the global properties is outlined in this
section (for a more detailed description of the spatial discretization and the operator
properties, the reader is referred to [1]).

In general, the constraints imposed by the operator (skew-)symmetries strongly
restrict the form of the local approximations limiting, in some cases, the local truncation
error.

To prepare for the finite volume symmetry-preserving discretization, we recall the
Reynolds transport theorem for a smooth function φ:

d

dt

∫
[Ωc]k,k

φdV =

∫
[Ωc]k,k

∂φ

∂t
dV +

∫
∂[Ωc]k,k

φu · ndS, (2.11)

on an arbitrary centered cell k of volume [Ωc]k,k. Note that the function φ can have
several physical meanings depending on what is being transported.
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Collocated convective operator

The second term of the right-hand side (RHS) of Equation (2.11) can be exactly
expressed as ∫

∂[Ωc]k,k

φu · ndS =
∑

f∈Ff (k)

∫
Sf

φu · ndS, (2.12)

where Ff (k) is the set of faces bordering the cell k. Assuming that the discrete normal
velocities, [us]f ≈ uf · nf , are located at the centroid of the face, then a second-order
discretization of the integral (2.12) is given by∫

∂[Ωc]k,k

φu · ndS ≈
∑

f∈Ff (k)

φf [us]fAf , (2.13)

where Af is the area of the face f . Hence, the collocated convective operator is defined
by its action on an arbitrary cell-centered scalar field φc ∈ Rn at some cell k as

[Cc (us)φc]k =
∑

f∈Ff (k)

φf [us]fAf . (2.14)

The convective contribution to the global kinetic energy vanishes if the convective
operator is skew-symmetric (Equation 2.6a). Such a condition is easily verified in
two steps [2]. Firstly, we consider the off-diagonal elements. The matrix Cc (us) −
diag (Cc (us)) is skew-symmetric if the interpolation weights of the adjacent discrete
variables are taken equal to 1/2, hence independent of their spatial coordinates:

φf ≈ [Πc→sφc]f =
φc1 + φc2

2
, (2.15)

where c1 and c2 are the cells adjacent to the face f (see Figure 2.2, left) and Πc→s ∈
Rm×n is the interpolation operator that interpolates a cell-centered scalar field to the
faces. Then, for the skew-symmetry of the collocated convective operator, Cc (us), the
diagonal elements must be zero:

[Cc (us)]k,k =
1

2

∑
f∈Ff (k)

[us]fAf = 0. (2.16)

In conclusion, the collocated convective operator Cc (us) is skew-symmetric if the
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Figure 2.2: Left: face normal and neighbor labeling criteria. Right: definition of the
volumes of the face-normal velocity cell.

discrete centered variable φ is interpolated to the faces of the control volumes using
the rule defined in Equation (2.15), and the Equation (2.16) is accomplished. The
following section shows that the latter condition holds if the divergence operator, M,
is consistently defined.

Gradient, divergence and Laplacian operators

Integrating the continuity equation (2.1b) over an arbitrary centered cell k of volume
[Ωc]k,k yields ∫

[Ωc]k,k

∇ · udV =

∫
∂[Ωc]k,k

u · ndS =
∑

f∈Ff (k)

∫
Sf

u · ndS. (2.17)

Note that taking φ equal to the unity, the Reynolds transport theorem (2.11) also gives
the continuity equation in integral form. Therefore, Equation (2.13) is particularized
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to define the properly integrated divergence operator,

[Mus]k =
∑

f∈Ff (k)

[us]fAf = 0. (2.18)

Doing so, we are forcing the diagonal elements of the collocated convective operator
to be equal to zero (see Equation 2.16). At this stage, it must be noted that the
collocated convective operator defined in Equation (2.14) can be rewritten by using
more basic operators as follows:

Cc (us)φc = M (diag (Πc→sφc)us) . (2.19)

In Section 2.1.1, we have defined (see Equation 2.8) the integrated pressure gradient
operator, ΩsG, to be equal to the negative transpose of the divergence operator , −MT .
Hence, the discretization of the pressure gradient at the face f follows from Equation
(2.18),

[ΩsGpc]f = (pc1 − pc2)Af , (2.20)

where c1 and c2 are the cells adjacent to the face f (see Figure 2.2, left). The order of
accuracy of the discretization of the gradient operator defined in Equation (2.20) is,
in general, O (1). Since the role of the pressure gradient is to project the velocity field
into a divergence-free space for incompressible flows, this lack of accuracy becomes
irrelevant in this context. Also, note that because the discrete gradient inherits the
boundary conditions from the discrete divergence operator, we need not specify the
pressure’s boundary conditions. Finally, we compute the pressure from a Poisson
equation, which arises from the incompressibility constraint. The Laplacian operator
is approximated by the matrix

L = −MΩ−1
s MT , (2.21)

which is symmetric and negative-definite, like the continuous Laplacian operator,
∇2 ≡ ∇ · ∇.
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Diffusive operator

Again, a diffusive operator is easily constructed on a collocated mesh. The same
method for the discretization of the Laplacian operator is also applied. The diffusive
operator as the product of two first-derivative-based operators: the divergence, M, of
a gradient, G,

Dc = − 1

Re
MG =

1

Re
MΩ−1

s MT . (2.22)

The Reynolds number has been introduced in order to simplify the forthcoming
notation. Note that the collocated diffusive operator is, by definition (see Equation
2.22), symmetric and positive-definite, and its action on a cell-centered variable is
given by

[Dcφc]k =
1

Re

∑
f∈Ff (k)

(φc2 − φc1)Af
δnf

, (2.23)

where the length δnf is an approximation of the distance between the centroids of
the cells c1 and c2 given by δnf = |nf · −−→c1c2|. Then, the volume of the face-normal
velocity cell at the face f is defined as (Ωs)f = δnfAf (see Figure 2.2, right).

Interpolation operators

In a collocated formulation, the actual velocity is uc and, therefore, linear interpolation
operators are needed to relate the cell-centered velocity fields to the staggered ones
and vice versa. Namely, the linear interpolation operator, Γc→s ∈ Rm×3n, transforms
a cell-centered velocity field into a staggered one:

us = Γc→suc, (2.24)

whereas the cell-centered fields are related to the staggered ones via the linear interpo-
lation Γs→c ∈ R3n×m,

uc = Γs→cus. (2.25)

Notice that, in general, Γs→cΓc→s = I holds only approximately, i.e., uc ≈ Γs→cΓc→suc.
More importantly, recalling the definition for the staggered gradient operator given in
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Equation 2.8, the cell-centered discrete gradient operator results in

Gc = −Γs→cΩ
−1
s MT , (2.26)

and, therefore, the face-to-cell interpolation operator Γs→c is restricted by Equation
2.6b: (

Ω3d
c Γs→cΩ

−1
s MT

)T
= MΓc→s −→ Γs→c = (Ω3d

c )−1ΓTc→sΩs, (2.27)

to force that the pressure gradient contribution to the global kinetic energy exactly
vanishes.

The linear interpolation, Γc→s ∈ Rm×3n, is given by

[Γc→suc]f = [Ns (Πuc)]f =
1

2
([uc]c1 + [uc]c2) · nf , (2.28)

where matrices Ns ∈ Rm×3m and Π ∈ R3m×3n are respectively given by

Ns =
(

Ns,1 Ns,2 Ns,3

)
and Π = I3 ⊗Πc→s, (2.29)

where Ns,i ∈ Rm×m are diagonal matrices containing the xi-spatial components of the
face normal vectors, and Πc→s ∈ Rm×n is the operator that interpolates a cell-centered
scalar field to the faces defined in Equation (2.15). Finally, face-to-cell interpolation,
Γs→c ∈ R3n×m, follows straightforwardly from Equation (2.27).

2.1.3 Algebra-based algorithm for the solution of Navier–Stokes equations

The algorithm to solve one time-integration step is outlined in Algorithm 1. Note
that the particular choice of the time-integration scheme is not relevant to this
chapter’s scope. Here, for the sake of simplicity, we have adopted a second-order
Adams-Bashforth (step 2 in Algorithm 1) although depending on the balance between
convection and diffusion, schemes with a more appropriate stability region may be
required [11]. Similarly, the particular choice of the Poisson solver will eventually
depend on many factors such as the size of the problem, the computational architecture,
the presence of periodic direction(s), or mesh symmetries [12]. Nevertheless, most
existing sparse linear solvers algorithms rely on basic linear algebraic operations.

At this point, it is noted that except for the non-linear convective term, C3d
c (uns )unc ,
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Algorithm 1 Algorithm to solve one time-integration step of Navier–Stokes equations.
1: Compute the convective and the diffusive terms of momentum Equation (2.2a):

R (uns ,u
n
c ) ≡ −C3d

c (uns )unc − D3d
c u

n
c

2: Compute the predictor velocity:
upc = unc + ∆t

{
3
2 R (uns ,u

n
c )− 1

2 R
(
un−1
s ,un−1

c

)}
3: Solve the Poisson equation given in Equation (2.9):

Lp̃n+1
c = Mups where ups = Γc→su

p
c

4: Correct the staggered velocity field:
un+1
s = ups − Gp̃n+1

c where G = −Ω−1
s MT

5: Correct the cell centered velocity field:
un+1
c = upc − Gcp̃

n+1
c where Gc = −Γs→cΩ

−1
s MT

all the operations directly correspond to linear maps, most of them sharing the same
matrix portrait. Regarding the convection (steps 1 in Algorithm 1), it can be reduced to
an SpMV operation by simply noticing that the coefficients of the convective operator,
Cc (uns ), must be recomputed accordingly to the adopted numerical schemes [1].
However, it is rather common for many CFD applications to use different numerical
schemes (e.g., central difference, upwind or hybrid schemes, among others) for each
transport equation. In this case, different convective operators, Cc (us), need to be
recomputed at each time-step. Alternatively, the convective operator, Cc (us), can be
represented using more basic operators. Namely,

Cc (us) = MUΠc→s, (2.30)

where U ≡ diag(us) ∈ Rm×m is the diagonal arrangement of the face velocities, us,
and Πc→s is the above-mentioned cell-to-face scalar field interpolation. Computing
the convective term using this form seems inefficient since three consecutive SpMV are
required. However, this naive approach can be easily improved by noticing that MU can
be precomputed since U is a diagonal matrix (that changes every time-step); therefore,
the product MU is simply a re-scaling of columns. Moreover, this new matrix is shared
by all the convective operators regardless of the quantity being advected. Finally, the
cell-to-face interpolation operator, Πc→s, will depend on the particular choice for the
spatial numerical scheme.

In summary, the method is based on only five basic (linear) operators: the cell-
centered and staggered control volumes, Ωc and Ωs, the matrix containing the face
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normal vectors, Ns, the cell-to-face scalar field interpolation, Πc→s and the divergence
operator, M. Once these operators are constructed, all the calculations in a typical
CFD algorithm boil down to the following basic linear algebra subroutines: the sparse
matrix-vector product (SpMV), the linear combination of vectors (axpy), and the dot
product (dot).

Hereafter, we adopt an algebraic implementation approach for the sake of code
portability. Namely, the traditional stencil data structures and sweeps are replaced by
algebraic data structures and kernels, and the discrete operators and mesh functions
are then stored as sparse matrices and vectors, respectively.
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3

The HPC2 framework

This chapter aims to describe the implementation model of the HPC2, the fully-portable
framework object of this thesis, designed to efficiently execute numerical simulations
on hybrid supercomputers. Although it is committed to the algebraic formulation and
computation of transient CFD simulations, the implementation model described here
is not limited to these numerical methods. A hierarchical parallel implementation
combined with a communication hiding approach is proposed to minimize the overhead
of data exchanges in DM parallelism. A NUMA-aware SM parallelization is proposed
to properly engage all cores in multi-socket configurations. Finally, two rather simple
generalizations of the kernels that improve the capabilities the code are described.

3.1 Motivation

Let us assume there is a framework that provides us with discrete differential operators
(matrices) and fields (vectors), without going into detail about the numerical method
used to discretize. Matrices are provided in standard compressed sparse row (CSR) for-
mat, while vectors are given as one-dimensional arrays. No workload distribution or
partitioning is regarded yet. Following the nomenclature introduced in Chapter 2,
consider, for instance, the evaluation of the heat flux as

qs = −kGTc. (3.1)

29
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Presuming that the discrete gradient operator and temperature field are given and,
therefore, the size of both the input and output vector spaces are known, we want to
write Equation 3.1 in our computer program as

1 q = - k*G*T;

where T is the discrete temperature field, built as an element of the vector space the
gradient maps from, G is the discrete gradient operator, k is the thermal conductivity
and q is the discrete heat flux, built as an element of the vector space the gradient
maps to.

The HPC2 project aims at computing any algebra-based model on, say, both a
laptop and a hybrid supercomputer without changing any line of the code. Namely,
it would be interesting for a research laboratory to execute a large-scale DNS of
turbulent flow on a massively parallel supercomputer (e.g., via a PRACE project on
MareNostrum 4) and then to compute multiple overnight industrial simulations on
different GPU-accelerated nodes. Thus, such a framework must rely on data structures
and kernels that are appropriately managed at a lower-level code block, a black box
that is simply configured through command-line parameters.

3.2 Abstract modeling of hybrid supercomputers

Before entering into detail, hybrid supercomputers’ configuration and parameters
that will directly impact code development and performance will be discussed from
an abstract point of view. Thus, such systems will be considered black-boxes capa-
ble of performing the required calculations, regardless of the internal operations or
instructions at a very hardware level.

3.2.1 Overview of hybrid supercomputers

In solving major challenges, scientific computing relies on HPC systems, also known
as supercomputers. A quick look at the world’s fastest supercomputers today [1]
reveals the huge variety of hardware architectures and system configurations competing
in the race for exascale computing.

In general, hybrid supercomputers consist of multiple nodes interconnected via
a high-bandwidth network (see Figure 3.1). An efficient DM MIMD parallelization
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Figure 3.1: Example of a hybrid supercomputer consisting of two six-core CPUs and four
GPUs.

capable of hiding the inter-node communication overhead is required to engage the
nodes of an HPC system. The MPI standard is typically used at this level. In
turn, hybrid nodes combine several computing units of various architectures that
feature different parallel paradigms. Indeed, there are still many powerful traditional
supercomputers based on single-processor nodes. However, these are considered just a
particular case of the more general hybrid nodes described from now on.

The CPU, the so-called host , consists of a pool of cores packed into NUMA nodes:
different CPU sockets, even groups of cores within sockets, with separate memory
banks and controllers. The non-uniform memory access allows for faster access to local
memory at the expense of slower access to remote memory. A fine-tuned, NUMA-
aware SM MIMD parallelization is required to engage all the CPU cores, ensuring
thread affinity and local memory access. Moreover, modern manycore CPUs integrate
dozens of cores and allow for simultaneous multithreading (SMT), from two threads
per core in Intel CPUs up to eight in IBM ones. In most cases, SMT is intended



32 Chapter 3. The HPC2 framework

for hiding memory latency, thus increasing the throughput delivered per core. The
OpenMP interface is a common choice for multithreaded programming on CPUs,
despite that it offers very little facility to express information about data locality or
data movement. Special emphasis is also given to the increasingly larger vector registers
such as advanced vector extensions (AVX), which introduce the single instruction,
multiple data (SIMD) paradigm.

On the other hand, massively-parallel coprocessors, also known as accelerators,
integrate an on-chip memory space separated from the host. Such devices are indepen-
dent processors in their own right, although they are not intended for general-purpose
programming. Indeed, coprocessors usually feature a limited instruction set focused on
accelerating specific tasks and thus have to be driven by the host processor. For this
reason, it is common to find the terms master and slave in the literature referring to
such a workflow. Nowadays, the GPU is the most common accelerator, and algorithms
must be compatible with the SP paradigm to deal with such processors efficiently.
There are two common choices for implementing SP algorithms: the vendor-locked
platform from NVIDIA, CUDA, and the open-source application programming inter-
face (API) developed by Khronos, OpenCL. While the latter is a highly portable option
compatible with virtually any hardware device, CUDA is geared towards NVIDIA
GPUs only. However, in NVIDIA environments, it is usually preferred because it is
easier to master and, in most cases, delivers higher performance.

Supercomputers’ topology, the way computing units and nodes are interconnected,
is also paramount in code development and decision making. In computer architecture,
any communication system that transfers data between components inside a node or
between nodes is called a bus. Different buses are used depending on which components
connect, and their specifications can vary in orders of magnitude. Complex topologies
introduce an important non-uniform input-output access (NUIOA) factor because I/O
devices and accelerators are directly connected to single processor sockets, and hence
accessing such devices from remote sockets results slower.

In conclusion, the system depicted in Figure 3.1 is, therefore, nothing but an
example of a hybrid supercomputer. The number of computing units per node, their
architecture, or the bus types used varies from one system to another, making the
development and optimization of numerical simulation codes terribly cumbersome.
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3.2.2 System parametrization

Broadly speaking, three hardware specifications are relevant in the performance analysis
of numerical simulations: the maximum speed of calculations or peak performance,
π, expressed in flop/s, the memory bandwidth, β, in bytes per second, and memory
latency, λ, in seconds. Either could be the bottleneck of a numerical simulation,
depending on the computational nature of the algorithm.

The peak performance is unique for every computing unit. It is obtained as the
product of other primary specifications: the processor’s clock speed, in Hertz, its
number of physical cores, floating-point units (FPUs) per core and operations per unit,
and the width of the vector units, in bits, divided by the size of the data, also in bits:

Hz · cores ·
units

core
·

flop

unit
·

bits

bits
= flop/s.

However, peak performance is not absolute but must be considered along with the
algorithm that is executed. For instance, an algorithm performing only additions
is, by nature, unable to use the fused multiply-add (FMA) unit that performs both
operations simultaneously, and hence its maximum achievable performance is directly
divided by two. Similarly, some algorithms cannot be vectorized and hence cannot
use vector extensions such as AVX. Therefore, developers must be aware of the actual
limits of an application to evaluate its efficiency on a specific computing unit properly.

In contrast, memory bandwidth and latency are not unique but depend on who is
accessing which data, and how. For instance, to move a data set from a GPU to another
computing node, data must travel from the source GPU to the source host, then the
send buffer is processed by the host, and finally sent through the network. At best, all
data traffic is directed through the shortest and fastest path or bus. However, it may
happen that data is unnecessarily transferred through less efficient channels, especially
in implementations that do not take NUMA and NUIOA factors into account.

3.2.3 Performance estimation

On the software side, three parameters are evaluated to estimate the maximum
achievable performance of an algorithm: the number of operations, W , in flops, the
memory traffic, Q, in bytes, and the data exchanges, S and R, in bytes also. In
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DM parallel programming, the latter are lists of message sizes that must be sent to
and received from every computing unit participating in the execution. For instance,

Su = (S1, ..., SU )

is the list of message sizes that computing unit u must send to all other computing
units.

Scientific software developers long for well-balanced HPC systems to leverage
hardware specifications for their applications. The harsh reality is that the achievable
performance by most numerical algorithms or linear solvers is usually reduced to a tiny
fraction of the peak performance, as evidenced by the HPCG benchmark [2]. Namely,
the AI of a CFD code is typically in the order of 0.2 flop/byte, while the π/β ratio in
current computing units is in the order of 5 flop/byte. Ironically, this ratio has been
growing since decades ago; and still grows.

At this point, we want to introduce some expressions that estimate the behavior
of a hybrid computing system when dealing with a given algorithm or subroutine.
Before doing so, let us outline some assumptions that are relevant for our developments
hereinafter:

Assumption 1. Kernels perform a vast number of independent operations, and
therefore can be parallelized, vectorized and pipelined taking advantage of vector registers
and instruction level parallelism (ILP).

Assumption 2. Kernels perform a vast number of independent, direct and unit-strided
memory requests which can be parallelized and pipelined, and therefore memory latency
can be neglected.

Assumption 3. The problem size is large enough to ignore the effects of temporal
locality in cache memory, and therefore calculations require continuously accessing the
computing unit’s main memory.

Assumption 4. The implementation grants that all memory traffic (Q) required for
computations is directed through the fastest path between a computing unit and its
main memory, hence NUMA is not an issue.

Assumption 5. The implementation grants that all data exchanges (S and R) required
in parallel executions are directed through the fastest path between different computing
units and nodes, hence NUIOA is not an issue.
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Single device studies

Under these assumptions, the elapsed time of a kernel running on a single computing
unit is estimated as follows:

tk = min

(
Wk

πu
,
Qk

βu

)
, (3.2)

where πu is the unit’s peak performance, βu its main memory bandwidth, and Wk

and Qk are the kernel’s work and memory traffic, respectively.
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Figure 3.2: Example of a roofline model for an Intel Xeon 8160 processor.

Sometimes efficiency is more relevant than elapsed time itself in performance
evaluation. In this regard, the roofline model [3] is used to estimate the maximum
achievable performance of an algorithm running on single computing units as follows:

πk = min(πu, AIkβu), (3.3)

where AIk is the kernel’s arithmetic intensity, that is, the ratio of work to memory
traffic: AIk = Wk/Qk.

The roofline is shown in Figure 3.2. It allows to visually identify the bottleneck of
an algorithm and easily evaluate its efficiency by dividing the measured performance
by the maximum achievable, πk. It is straightly observed that algebraic kernels are



36 Chapter 3. The HPC2 framework

strongly memory-bound (and hence Equation 3.2 reduces to tk = Qk/βu). However, it
does not provide any information regarding DM parallelization.

Multiple device studies

Given a hybrid supercomputer consisting of N compute nodes and U computing units
or devices, the following expression evaluates the overhead in seconds introduced by
data exchanges in DM configurations (per device):

tx =
∑
u′∈U

(
Su,u′

βu,h
+ 3

Su,u′

βh
+
Ru,u′

βx
+ 3

Ru,u′

βh
+
Ru,u′

βh,u

)
, (3.4)

where u and u′ are the source and destination computing units, respectively. There
are five distinct terms in Equation 3.4. The first term evaluates the time required
for copying the data in u to be sent to u′, Su,u′ , through a device-to-host link of
bandwidth βu,h. The second term estimates the time required for packing the sending
buffer by means of a memory mapping or reordering. This reordering is handled by
the host processor and implies reading and writing the entire buffer and a pair of
integer lists or a map; hence its weight is 3. Next, the time required for receiving the
data in u′ required by u through the network of bandwidth βx. Finally, the fourth
and fifth terms are equivalent to the second and first (unpacking receive buffers on
host and copying to device), respectively.

Equation 3.4 applies to all kinds of data exchanges. However, in each particular
case, some terms might be canceled. For instance, in a CPU-based supercomputer, the
first and fifth terms are canceled because Su,u′ and Ru,u′ are already located in the
appropriate memory space. On the other hand, intra-node data exchanges within a
node with multiple accelerators do not involve the third and fourth terms. It is noted
that the intra-node packing of sending buffer results in the unpacked receiving buffer
and can be directly copied to the accelerator.

In CFD simulations, it is common that halo, or data exchanges, are symmetric:
Su,u′ = Ru,u′ = Xu,u′ . Then, let Un be the subset of units in node n, thus Xi

u =∑
u′∈Un

Xu,u′ and Xe
u =

∑
u′∈U\Un

Xu,u′ are the aggregated number of bytes that
computing unit u exchanges with intra- and inter-node computing units u′, respectively.
Considering that device-to-host link buses are also symmetric, βu,h = βh,u, Equation
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3.4 is rewritten as follows:

tx = Xi
u

(
2

βu,h
+

3

βh

)
+Xe

u

(
2

βu,h
+

6

βh
+

1

βx

)
. (3.5)

Now, we define Xu = Xi
u +Xe

u as the total number of bytes that computing unit u
exchanges, and χu = Xe

u/Xu as the ratio of inter-node to total data exchanges, and
reformulate:

tx = Xu

(
2

βu,h
+

3 + 3χu

βh
+
χu

βx

)
. (3.6)

In DM parallelization, Equation 3.6 allows estimating the overhead introduced by
data exchanges and predicting the behavior of an application in a parallel environment.
More precisely, the theoretical parallel efficiency is estimated as the ratio tk/(tk + tx)

and, in the particular case where an application can handle kernel execution and data
exchanges simultaneously, as tk/max(tk, tx). It is worth formulating an expression
that estimates some theoretical maximum ratio of computing to communicating work
that allows an adequate overlap dividing the memory-bound form of Equation 3.2 by
3.6:

tk

tx
=
Qk

Xu
·

1

βu

2

βu,h
+

3 + 3χu

βh
+
χu

βx

≥ 1. (3.7)

All expressions above evaluate the behavior of parallel processes handling single
computing units. In our approach, we are also interested in the overall behavior of
hybrid nodes in parallel environments. Considering a memory-bound application, the
kernel execution time per node becomes:

tk =
Qk

βn
, (3.8)

where βn =
∑
u∈Un

βu represents the aggregated (main) memory bandwidth per node.
It is noted that having each computing unit its own main memory, resources are
independent and can be directly aggregated. However, buses might be shared by
multiple devices during node data exchanges or accessed differently. Moreover, the
parameter χu may vary between computing units. It is noted that in most cases,
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all computing units will feature similar βu,h and χu (e.g., this occurs in fat nodes
with multiple equal devices; moreover, in CPU-based clusters, βu,h =∞ and χu = 1).
Indeed, only in hybrid systems will these parameters vary significantly. In that
case, the workload assigned to accelerators is larger than that of the host (due to
workload balancing). Therefore, let us define an effective aggregated device-to-host
link bandwidth, βl =

∑
u∈Un\h βu,hXn/Xu (note that its value results slightly higher

than the sum of device-to-host links if there are data exchanges in the host side), and
an average ratio of inter-node exchanges, χ̄ =

∑
u∈Un

χuXu/Xn. Now, the overhead
introduced by data exchanges in hybrid nodes reads

tx = Xn

(
2

βl
+

3 + 3χ̄u

βh
+
χ̄u

βx

)
. (3.9)

Finally, we generalize Equation 3.7 to obtain the theoretical maximum ratio of
computing to communicating work per node:

tk

tx
=
Qk

Xn
·

1

βn

2

βl
+

3 + 3χ̄u

βh
+

χ̄

βx

≥ 1, (3.10)

The conclusions of this section allow estimating the theoretical parallel behavior of
a hybrid node during the execution of a specific application given the set of Xi

u and
Xe
u per computing unit, and the memory traffic requirements, Qk.

3.3 Multilevel workload distribution

To execute a numerical simulation on a hybrid HPC system as in Figure 3.1, the
workload distribution is addressed by a multilevel approach, a distribution technique
very suitable for hierarchical parallel implementations [4, 5]. Essentially, it aims at
decomposing the computational load in two levels at least. First, to assign the load
per computing node; second, the load per computing unit. Further levels are required
to target, for instance, processors with complex NUMA configurations [6] ensuring
thread affinity and local memory access.

In mesh methods, the computational domain arises from the spatial discretization
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of a physical domain. Given whatever space of interest, Ω, we can equip it with a
partition of unity, namely a mesh M , by bounding the set of cells, C, with faces, F ;
those with the set of edges, E, and finally those with the set of vertices, V . Such
a mesh can be represented with graphs, which are discrete mathematical structures
representing pairwise relations between objects. In turn, graphs can be represented
with adjacency and incidence matrices.

The HPC2 library deals with vectors and matrices representing discrete variables
and operators, respectively. In this context, the workload distribution consists in
distributing vector elements and matrix rows into subvectors and submatrices assigned
to different computing units. Besides, it is not restricted to mesh methods but graphs
in general. Indeed, any matrix is a graph. Therefore, let us make it simpler and
consider whatever pair of sets, U and V. The adjacency matrices, AU and AV , are
square matrices representing the connectivity between adjacent elements of the same
set. Whenever there is a non-zero entry in (AU )ij , then ith and jth elements of U
are adjacent. The incidence matrices, EU→V and EV→U , represent the relationship
between elements of different sets. Similarly, a non-zero entry in (EU→V )ij represents
an incidence relation between the ith element of V and the jth element of U.

Figure 3.3 illustrates two different multilevel workload distributions of a mesh
(left), and the resulting cell-adjacency matrices (right) are also decomposed. The
upper partitioning minimizes the number of edge cuts (i.e., the couplings between
elements located in different subdomains), while the lower one isolates some partitions
from inter-node data exchanges.

The first-level decomposition is represented in Figure 3.3 by a gray division. The
initial workload is distributed among computing nodes (i.e., labeled in Figure 3.3
from 0 to 22 and from 23 to 45) using a parallel graph partitioning tool, such as the
ParMETIS [7] library that fulfills the requested load balancing and minimizes the
number of couplings between partitions.

The second-level partitioning is represented in Figure 3.3 by colored divisions and
shadings. The local workload of each hybrid node is distributed among the available
computing units by either using a graph partitioning tool again or switching to a
custom tool that isolates accelerators from inter-node exchanges. The latter approach
is particularly useful in heterogeneous computing, because accelerators introduce a
larger overhead at inter-node parallelization (recall Equation 3.6). It is noted that
the second-level partitioning must conform to the actual performance of the available
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Figure 3.3: Representation of a row-major, multilevel workload distribution. Vector elements
and matrix rows are divided into two first-level chunks for two compute nodes, represented
by gray divisions, which are further divided into second-level chunks, represented by colored
divisions, for two computing units. Some of the second-level chunks are implicitly organized
into third-level intervals represented by a dashed division.

computing units for the sake of load balancing.
The third-level partitioning is represented in Figure 3.3 by dashed contours. This

third-level applies to units with NUMA memory configurations where the local memory
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access rate is faster than remote. In this case, a rather simple arrangement of the
second-level partition among computing threads is made such that a pair of integers,
offset and size, define the data intervals for each thread. In contrast with the first-
and second-level decomposition in which data is explicitly distributed, this implicit
third-level arrangement exploits NUMA configurations at its best. Threads are bound
to NUMA groups using thread affinity. The data is initialized through a predictive
first-touch policy so that each third-level interval resides in the thread’s local memory
bank. A similar approach is found, for instance, in [8]. Thus, this approach still
benefits from SM parallelism.

Note that the HPC2 is designed to work with any number of sets and perform
coherent multilevel decompositions of each set given the corresponding adjacency or
incidence matrices. Roughly, an initial set is decomposed using either its adjacency
matrix or any incidence. Then, given any incidence matrix between an already
partitioned set and another blank, the blank set is coherently decomposed following a
rather simple heuristic: an element from the blank set will belong to the same partition
as its incident element with the smallest index. In other words, if un is incident to vi,
vj and vk, and i < j < k, then un will be assigned to vi’s partition.

Compared to other implementations, which assign an MPI rank to each comput-
ing unit [9–12], this approach minimizes the number of processes participating in
MPI exchanges, as well as the global size of the messages. It takes full advantage of
the intra-node topology and the shared-memory parallel processors and minimizes
inter-node communications. Moreover, this advantage will only strengthen as the
memory hierarchies of modern supercomputers become more complex, increasing the
number of accelerators and NUMA groups per node.

3.4 Communication hiding strategies

In the multilevel decomposition approach, partitions may be identified by a pair of
integers (p, q), that is, their first- and second-level partition IDs. The elements in (p, q)

partition become a set of contiguous indices, the own set of (p, q). By the same token,
non-own elements become the outer set of (p, q).

Any non-zero entry, [A]ij , represents a coupling between the ith element in V

and the jth element in U . There is no guarantee that the ith and jth elements of
vector spaces V and U are located in the same memory space in distributed parallel
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processing. Hence, parallel routines such as SpMV induce data exchanges between
processes. For instance, the fifth row in Figure 3.3, located in (p0, q0), is coupled with
an element of (p0, q1) and an element of (p1, q1). The communication stage affects
the performance and limits the scalability of the operation, so necessary in large-scale
applications. Therefore, the DM MIMD parallelisation of the SpMV must minimize
the communication overhead.

It is noted that some elements in the own set have no couplings with any outer ele-
ment. Therefore, the own set is further organized into inner and interface categories.
The inner set consists of those elements of the own set, which are coupled with
own elements only. Conversely, interface set consists of those elements coupled with an
element of the outer set. The outer elements of U required by the interface couplings
are denoted as halo.

local vector

own halo

inner interface halo

inner interface h0 h1 ... hN

Figure 3.4: Ordering of vector elements according to their role in the parallel execution.

Given that the inner calculations are independent of the halo, this allows computing
the calculations of inner elements simultaneously with data exchanges, required by the
interface elements only. In this regard, elements are reordered locally as follows: first
the inner set, then the interface set, and finally the halo (cf. Figure 3.4). The halo set
is further reordered in ascending order of the owning subdomain numbers (computing
units) to simplify the processing of communications.

Recalling the performance estimation developments in Section 3.2, the execution
time in a synchronous implementation is estimated as follows:

tsyn = tk + tx, (3.11)

where tk and tx are the kernel and data exchange times (Equations 3.8 and 3.9). In
contrast, the time in an overlapping implementation reads

tovl = max(tinnk , tx) + tifck . (3.12)
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Also, considering the partitioning described in Figure 3.3’s bottom, which isolates the
accelerators from inter-node exchanges, a double overlap is possible by exchanging the
intra- and inter-node halo simultaneously. This double overlapping is estimated as
follows:

tdov = max(tinnk ,max(tix, t
e
x)) + tifck , (3.13)

where tix and tex correspond to the times of intra- and inter-node exchanges, respectively.
More precisely, in reference to Equation 3.5:

tex = Xe
h

(
6

βh
+

1

βx

)
, (3.14)

tix = tx − tex. (3.15)

But a word of caution: this type of partition enlarges the size of the internal halo, Xi;
therefore, the implementation must ensure that tix is kept smaller than the original tx
of the optimal decomposition minimizing the number of couplings.

Figure 3.5 illustrates the NUMA-aware execution diagram enabling simple and
double overlapping. The diagram boxes are described in Table 3.1. A flat, fixed-size
OpenMP region is initialized before the kernel in the diagram. OpenMP threads are
assigned different roles, either computing threads or management threads. Computing
threads are properly bound to NUMA nodes, and data locality is granted by the
first-touch rule at the initialization stage since the data set of each thread now remains
constant. The workload is coherently distributed among CPU cores using third-level
mesh partitioning (see Section 3.3) instead of loop parallelism. The management
subgroup, which can be implemented via OpenMP tasking or nested multithreading,
handles data exchanges and accelerator queues in a hybrid node. This NUMA-aware
parallelization has significantly improved performance on multiprocessor nodes.

Namely, in our previous implementation [13], we used nested OpenMP regions for
distributing roles between groups of threads: device management threads, communi-
cation processing threads, computing threads. For instance, the computing thread
spawned a nested region to compute in parallel CPU’s workload. There were parallel
dynamically scheduled loops inside those nested OpenMP computing regions. For that
reason, firstly, there were problems with affinity because of the nested regions, and,
secondly, we could not force the data locality due to dynamic scheduling.
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Figure 3.5: Execution diagram for the overlap mode using a flat OpenMP region (dashed
boxes denote non-blocking calls).

Considering the workload distribution in Figure 3.3’s top, the single overlap is
fulfilled straightforward. Firstly, management threads wait at a synchronization barrier
while one thread per accelerator enqueues the inner computations and device-to-host
data copies. Then, management threads pack the MPI send buffer and perform the
intra-node data exchanges (SWAP). Meanwhile, master thread enqueues the MPI non-
blocking send and receive messages and joins the others in swapping. After swapping,
management threads pause at a synchronization barrier while the master thread waits
MPI messages to finish, and then all together unpack the receive buffers. Finally,
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Table 3.1: Stages of the distributed memory, parallel SpMV execution (per computing unit).

Stage Description Time
INN Kernel execution for the inner subset Qinn

k /βu
DTH Transfer the interface subset data from devices to host Xu/βu,h
PACK Put the external interface elements of devices into MPI send buffers 3Xe

u/βh
MPI-I Initialize the MPI communications with non-blocking calls –
SWAP Copy the internal interface elements into halo buffers of devices 3Xi

u/βh
MPI-W Wait for MPI communications to finish Xe

u/βx
PICK Get the external halo elements of devices from MPI receive buffers 3Xe

u/βh
HTD Transfer the halo subset from host to devices Xu/βu,h
IFC Kernel execution for the interface subset Qifc

k /βu

management threads assigned to accelerators enqueue host-to-device copies and, after
a global OpenMP barrier, the interface computations are processed.

The double overlap concerning Figure 3.3’s bottom partition is achieved by splitting
the PACK, SWAP, and PICK boxes, and the synchronization points, by the vertical
dashed line as shown in Figure 3.5. More precisely, the group of inter-node management
threads will be in charge of packing, sending, and unpacking MPI messages while
intra-node management threads enqueue kernels, perform device-to-host copies, and
swap intra-node data.

3.5 Portable implementation model

In a nutshell, our portable implementation model introduces three types of objects:
actuator, container and shaper. A shaper is some sort of instructions manual that
allows transforming any initial sequential input into a set of hierarchical partitions
enabled for parallel processing. Containers are the data storage objects that stock such
hierarchical partitions. Finally, the actuator is the object that provides with methods
and functions to firstly create shapes and then manipulate and operate containers.
This portable implementation model will be described throughout the section.

The solution we propose is depicted in Figure 3.6. Namely, there are four objects
conceived for developers and four for users. The set of objects intended for users
are nothing but high-level handlers or wrappers that contain lists of their low-level
counterparts. Recall that the hierarchical parallel implementation of HPC2 is designed
to work with multilevel partitions as described in Section 3.3. Therefore, each high-level
object operates with the required number of nth-level partitions on the backs of the
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hpc2lib

user layer

developer layer

vector matrix

unit

domain

OpenCLOpenMP CUDANew Arch

 vector *v;  matrix *m;

 unit *u;

 domain *d;

VECTOR MATRIX

DOMAIN

NODE

Figure 3.6: Diagram of classes in our pure virtual approach for managing platform portabil-
ity.

users. In other words, no specification of the parallel environment or configuration is
required in deploying an algorithm using HPC2 library (the user can use HPC2 objects
in a way as simple as std::vector). This is illustrated in Listing 3.1 following the
example in Equation 3.1.

Listing 3.1: Heat flux computation using hpc2lib.

1 #include "hpc2lib.h"

2

3 /* NODE object is a singleton and is accessed through a pointer */

4 NODE *Node;

5

6 int main(int argc, char** argv){

7 /* initialize MPI stuff */

8 int prov, req = MPI_THREAD_MULTIPLE;

9 MPI_Init_thread(&argc, &argv, req, &prov);

10

11 /* initialize NODE with command line arguments */
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12 Node->Init(&argc, &argv);

13

14 /* initialize HPC2 objects using plain sequential data in binary files */

15 DOMAIN Cells, Faces;

16 Node->CreateDomain(Cells, Faces, "input_G.bin");

17

18 VECTOR q = Node->BuildVector(Faces, 0.0);

19 VECTOR T = Node->BuildVector(Cells, "input_T.bin");

20 MATRIX G = Node->BuildMatrix(Cells, Faces, "input_G.bin");

21

22 /* compute the gradient */

23 double k = 0.598;

24 Node->SpMV(G, T, q, -k);

25

26 MPI_Finalize();

27 }

The code in the example above (Listing 3.1) can be compiled and executed on
virtually any modern computing environment. By way of example, Listing 3.2 shows
three command-line configurations to execute the simulation on: 1) 200 nodes with 48
cores each, 2) a fat node with 4 NVIDIA GPUs, 3) two hybrid nodes with one 14-core
CPU and one AMD GPU each.

Listing 3.2: Execution of .

1 mpirun -np 200 ./heat -devices=1 -imp=openmp -thr=48

2 mpirun -np 1 ./heat -devices=4 -imp=cuda,cuda,cuda,cuda

3 mpirun -np 2 ./heat -devices=2 -imp=openmp,opencl -thr=13,1 -wgt=68,288

The parameter devices determines the number of virtual devices to be used, that
is, the number of second-level partitions. We specify virtual devices to highlight that
a physical computing unit or device can be assigned to multiple virtual devices and,
therefore, to multiple second-level partitions. This is particularly interesting in units
with device queues such as GPUs. Then, at least one processor thread is assigned to
each virtual device. It is possible to assign multiple threads to a virtual device using the
parameter thr, which is particularly necessary in multi-core units. To deal with load
balancing, the parameter wgt determines the relative workload for each virtual device.
Last, but not least, the parameter imp determines the implementation, or backend,
assigned to a virtual device. In this portable implementation, all architecture-specific
implementations is encapsulated in a single, pure virtual class (the actuator).
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Unit and node

The node is the actuator provided to the user. As a singleton class, only one instance
exists during the execution; and it always exist [14]. Node must be initialized at the
beginning of the program using command-line parameters (line 3 of Listing 3.1) to
determine the number of virtual devices, their implementation and relative weight, or
the number of threads that operate. Then, if the user wants to create a domain, he
uses the node (line 16 of Listing 3.1); if he wants to build vectors or matrices using
plain binary files, he uses the node (lines 18–20 of Listing 3.1); if he wants to execute
kernel, he uses the node (line 24 of Listing 3.1). At a glance it may seem a sequential
application, but a powerful hierarchical parallel implementation is managed in the
background.

In this approach, all the architecture-specific implementation is encapsulated in
a single low-level, pure virtual class, the virtual unit, which can be specialized for
different architectures. Currently, there are three different implementations of virtual
unit: OpenMP, OpenCL, and CUDA. Each implementation is designed to allocate
and operate second-level partitions of vectors and matrices. In each execution, the
node will generate as many derived instances of virtual units as requested by the
parameters, one per second-level partition. If a new architecture or parallel paradigm
comes into play, the implementation of a new virtual unit is sufficient to port the
entire numerical simulation framework.

Vector and matrix

This pair of objects are containers used to store discrete mesh functions and operators.
Vectors must be bound to a domain so that the user-given plain data, the input binary
file, is transformed and distributed accordingly among the required compute nodes
and units. Moreover, matrices are bound to two domains representing the input and
output vector spaces. The former is used to renumber column indices, while the latter
is used to transform and distribute matrix rows among the hardware.

There are multiple sparse matrix storage formats deployed (e.g., the diagonal
format, the standard CSR, or the ELLPACK [15] and its variants [16]), and more can
be added easily.
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Domain

This object describes a (computational) vector space, and contains the information
required to transform such space from the user-given plain or sequential form, the
input binary file, into the HPC2-based multilevel form. It is required for allocating
and operating containers, which are vector and matrix. Therefore, the domain is the
shaper that describes the size of second- and third- level partitions of the vector space
and the size and offset of its subsets. Besides, it contains maps to reorder the data
back and forth, and to perform the required data exchanges in DM parallelization.

3.6 Challenges and opportunities

The fully-portable, algebra-based implementation model proposed in this chapter is
promising, but also challenging. In this section, we outline some of the challenges we
face and propose valid solutions and opportunities.

3.6.1 Exploiting the Kronecker product

SpMV is the most computationally expensive routine in many large-scale simulations
relying on iterative methods. Namely, it is a strongly memory-bound kernel with a
very low AI, which is the ratio of computing work in flop to memory traffic in bytes
(its value is around 1:8 flop per byte), and requires irregular memory accessing to
the input vector harming the memory access efficiency. To top it off, in distributed-
memory parallel processing, vector elements and matrix rows are distributed among
a group of processes inducing data exchanges between them. Therefore, the efficient
execution of SpMV requires a fine-tuning process (e.g., right choice of the sparse
matrix storage format, proper workload balancing, reordering of unknowns to reduce
matrix bandwidth, optimizing memory access to minimize cache misses).

Significant effort is devoted to studying and optimizing SpMV for different ap-
plications and state-of-the-art computing environments. The introduction of the
GPUs into HPC systems motivated the research of new sparse matrix storage formats
and SpMV implementations, as reviewed by Filippone et al. in [16]. The continuous
evolution of CPUs also motivates the research for efficient SpMV kernels on such
architectures [17, 18]. However, the AI still limits all these efforts as discussed in
Section 3.2.
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In some cases, a sparse matrix is to be multiplied by a set of vectors. For instance,
in the evaluation of the diffusive term in collocated formulation as in Section 2.1.1:

D3d
c uc = − (νI3 ⊗ L)uc =

−


ν 0 0

0 ν 0

0 0 ν

⊗ L

uc = −

νL 0 0

0 νL 0

0 0 νL

uc. (3.16)

where, recall, uc ∈ R3n is the cell-centered velocity field defined as a column vector and
arranged as uc = (u1,u2,u3)T , D3d

c ∈ R3n×3n is the block diagonal diffusive matrix
and L ∈ Rn×n the discrete Laplacian operator. Moreover, in some cases it could be
interesting to execute two simultaneous simulations with different parameters [19], ν1

and ν2. Then:(
(D3d

c )1 0

0 (D3d
c )2

)(
(uc)1

(uc)2

)
=

−



ν1L 0 0 0 0 0

0 ν1L 0 0 0

0 0 ν1L 0 0 0

0 0 0 ν2L 0 0

0 0 0 0 ν2L 0

0 0 0 0 0 ν2L


(

(uc)1

(uc)2

)
. (3.17)

Such formulation applies to several scenarios in numerical algorithm implementations
that are increasingly common. Examples are symmetric grids [20], parallel in time
methods [21], multiple transport equations or multiple parameter simulations [19],
among others. The nested combination of this approaches in a single framework can
be expressed as follows:

y = (diag(c1)⊗ ...⊗ diag(cn)⊗ A)x, (3.18)

where A ∈ Rm×n is a sparse matrix, diag(ci) ∈ Rdi×di is a diagonal matrix containing
the entries in ci ∈ Rdi , and y ∈ RDm and x ∈ RDn are sets of vectors withD =

∏n
i=1 di

elements each.
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In this context, the sparse matrix-matrix product (SpMM) kernel is described in
Algorithm 2. It represents the product of a sparse matrix by a set of dense vectors. It
results in significantly greater data reuse: in line 5, the coefficients of the sparse matrix
are reused as many times as blocks are in the input vector. Needless to say, SpMM is
applicable to matrices factored as the Kronecker product of a diagonal matrix times
another as in Equation 3.18.

Algorithm 2 SpMM implementation using the standard CSR matrix format.
Require: A, x, c
Ensure: y
1: for i← 1 to m do
2: s← zeros(d)
3: for j ← A.ptr[i] to A.ptr[i+ 1] do
4: for k ← 1 to d do
5: s[k]← s[k] +A.val[j] · x[A.idx[j]][k]

6: for k ← 1 to d do
7: y[i][k]← c[k] · s[k]

According to Algorithm 2, and considering double-precision, standard CSR sparse
matrix format, and ideal temporal locality, the AI of the SpMM reads:

AISpMM(d) =
(2nnz(A) + 1) · d

8nnz(A) + 4nnz(A) + 4(m+ 1) + (8m+ 8n+ 8) · d
. (3.19)

where nnz(A), m and n are the number of non-zero elements, rows and columns in
the matrix, respectively, and d is the number of vectors. Consequently, the maximum
speed-up achievable by replacing d recursive SpMV calls with a single SpMM equals
AISpMV(d)/AISpMM(1). This upper-bound is plotted in Figure 3.7. The lower-bound
is also given considering zero temporal locality (i.e., accounting for the total number
of memory accesses to the input vector, 8nnz(A) ·d, instead of 8n ·d). It is noteworthy
that, being the upper-bound proportional to the average number of non-zeros per row,
nnz(A)/m, the use of high order schemes may strengthen the benefits of the SpMM.
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Figure 3.7: Different data layouts for sets of vectors.

3.6.2 Implementation of non-linear terms

From the formulation and algorithm implementation in Section 2.1.3, it is easily
observed that non-linear terms are not efficiently introduced. Moreover, it may
seem that it is not possible to introduce more complex non-linear terms such as
high-resolution schemes or flux limiters.

Nevertheless, instead of being an inconvenience, this encouraged us to demonstrate
the high potential of our algebraic strategy again. In our previous work [22], we
proposed the generalization of the linear combination of vectors via the introduction
of a generalized binary operator (kbin) that performs any given pointwise arithmetic
calculation such that:

yi ← yi ◦ f(xi). (3.20)

This binary operator can easily map to the required non-linear kernels by defining ◦
and f(xi) as outlined in Table 3.2. Similarly, the dot product kernel can be turned
into a generalized reduction operator (kred),

r ← r ◦ f(xi), (3.21)

which can easily represent any required reduction operation such as the calculation of
the norm of a vector or the Courant–Friedrichs–Lewy (CFL) condition.
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Table 3.2: Particularizations of the operator ◦ and pointwise function f(xi) to represent
various kernels using the generalized binary operator described in Equation 3.20. The
superbeexty corresponds to the SUPERBEE flux limiter [23].

◦ f(xi) AI Resulting Kernel
+ axi 1/12 axpy
× axi 1/12 axty
/ axi 1/12 axdy
× xi > 0? + 1 : −1 1/12 signxty
× 0.5(max(0,max(min(1, 2xi),min(xi, 2)))− 1) 7/24 superbeexty

From a computational point of view, this kernel generalization does not alter the
implementation of the original axpy: it still performs simple, pointwise arithmetic
operations over the vector elements and provides uniform, aligned and coalescing
memory accesses which suits the SIMD and SP paradigms perfectly. Therefore, having
already efficient implementations of axpy for different architectures, the implementation
of kbin is straightforward (e.g., consider the use of function pointers, templates, macros,
among others). Indeed, the calculation of the convective term in Equation 5.5 can
be computed using the axty form of kbin, avoiding to waste time on building the
U matrix at each time-step.

On the other hand, the arithmetic intensity of this new kernel is not a fixed value
anymore, as shown in Table 3.2. While the AI of the axpy is 1/12 flop per byte (one
product and one addition per three double-precision values), that of the kbin depends
on the specific arithmetic calculations involved in the function f(xi). This allows us to
significantly increase the AI in our calls by means of kernel fusion, reduce the number
of intermediate results, and thus reduce the time-to-solution.

The application of this approach to a canonical case, a three-dimensional deforma-
tion problem, has been validated and its performance studied in detail in Appendix
A.
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4

Performance analysis

This chapter studies the performance of the three types of algebraic kernels implemented
in HPC2 (cf. Chapter 3), which are the basis of our DNS algorithms (cf. Chapter
2), in different computing environments. Specifically, the study covers the sparse
matrix multiplication (SpMV), the pointwise binary operator (axpy), and the reduction
operator (dot).

4.1 Introduction

Namely, several HPC clusters, which are listed below, have been used during the
development of the HPC2 framework:

• JFF third-generation cluster at Heat and Mass Transfer Technological Cen-
ter. 40 compute nodes with two AMD Opteron 6272 (16 cores, 2.1 GHz, 4
DDR3-1600 memory channels, 51.2 GB/s memory bandwidth, 16 MB L3 cache),
interconnected via QDR Infiniband (32 Gb/s).

• JFF fourth-generation cluster at Heat and Mass Transfer Technological
Center. 21 compute nodes with two Intel Xeon 6230 (20 cores, 2.1 GHz, 6
DDR4-2933 memory channels, 140.8 GB/s memory bandwidth, 27.5 MB L3
cache), interconnected via FDR Infiniband (56 Gb/s).

• MareNostrum 3 supercomputer at Barcelona Supercomputing Center. 3,056
compute nodes with two Intel Xeon E5-2670 (8 cores, 2.6 GHz, 4 DDR3-1600
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memory channels, 51.2 GB/s memory bandwidth, 20 MB L3 cache), intercon-
nected via FDR10 Infiniband (40 Gb/s).

• MareNostrum 4 supercomputer at Barcelona Supercomputing Center. 3,456
compute nodes with two Intel Xeon 8160 (24 cores, 2.1 GHz, 6 DDR4-2666 mem-
ory channels, 128 GB/s memory bandwidth, 33 MB L3 cache), interconnected
via Intel Omni-Path (100 Gb/s).

• MinoTauro cluster at Barcelona Supercomputing Center. 64 compute nodes
with two Intel Xeon E5649 (6 cores, 2.53 GHz, 3 DDR3-1333 memory channels, 32
GB/s memory bandwidth), two NVIDIA M2090 (666.1 Gflop/s peak performance,
6 GB GDDR5 memory, 177.4 GB/s memory bandwidth, PCIe 3.0 x16 at 16
GB/s), interconnected with QDR Infiniband (40 Gb/s).

• Lomonosov 2 supercomputer at Moscow State University. 1,696 compute nodes
with one Intel Xeon E5-2697 v3 (14 cores, 2.6 GHz, 4 DDR4-2133 memory chan-
nels, 68 GB/s memory bandwidth, 35 MB L3 cache), one NVIDIA Tesla K40M
GPU (1.43 Tflop/s peak performance, 12 GB of GDDR5 memory, 288 GB/s
memory bandwidth, PCIe 3.0 x16 at 16 GB/s), interconnected via InfiniBand
FDR network (56 Gb/s).

• K60 cluster at Keldysh Institute of Applied Mathematics. 10 compute nodes
with two Intel Xeon 6142 (16 cores, 2.6 GHz, 6 DDR4-2666 memory channels, 128
GB/s memory bandwidth, 22 MB L3 cache), eight NVIDIA V100 (7 Tflop/s peak
performance, 32 GB HBM2 memory, PCIe 3.0 x16 at 16 GB/s), interconnected
via two FDR Infiniband (56 Gb/s).

• Titan supercomputer at Oak Ridge National Laboratory. 18,688 compute nodes
with one AMD Opteron 6274 (16 cores, 2.2 GHz, 4 DDR3-1600 memory channels,
51.2 GB/s memory bandwidth, 16 MB L3 cache), one NVIDIA K20X (1.31
Tflop/s peak performance, 6 GB DDR5 memory, 250 GB/s memory bandwidth,
PCIe 3.0 x16 at 16 GB/s), interconnected via Cray Gemini 3D-Torus (51.2
Gb/s).

• Mira supercomputer at Argonne National Laboratory. 49,152 compute nodes
with one IBM PowerPC A2 (16 cores, 1.6 GHz, 4 DDR3-1333 memory channels,
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42.6 GB/s memory bandwidth, 32 MB L2 cache), interconnected via IBM
5D-Torus (320 Gb/s).

• Cori supercomputer at National Energy Research Scientific Computing Center.
9,688 compute nodes with one Intel Xeon Phi KNL 7250 (68 cores, 1.4 GHz,
6 DDR4-2400 memory channels, 115.2 GB/s memory bandwidth, 34 MB L2
cache), interconnected via Cray Aries (42 Gb/s).

• TSUBAME3.0 supercomputer at Tokyo Institute of Technology. 540 compute
nodes with two Intel Xeon E5-2680 v4 (14 cores, 2.4 GHz, 4 DDR4-2400 memory
channels, 77 GB/s memory bandwidth, 35 MB L3 cache), four NVIDIA P100 (5.3
Tflop/s peak performance, 16 GB HBM2 memory, 732 GB/s memory bandwidth,
PCIe 3.0 x16 at 16 GB/s), interconnected via four Intel Omni-Path (100 Gb/s).

• Marconi100 supercomputer at Common Infrastructure for National Cohorts
in Europe, Canada, and Africa. 980 compute nodes with two IBM Power9
AC922 (16 cores, 2.6 GHz, 8 DDR4-2666 memory channels, 170.6 GB/s memory
bandwidth, 160 MB L3 cache), four NVIDIA V100 (7.8 Tflop/s peak performance,
16 GB HBM2 memory, 900 GB/s memory bandwidth, NVLINK 2.0 at 300 GB/s),
interconnected via InfiniBand EDR (100 Gb/s).

The author thankfully acknowledge all the institutions for the computational
resources and technical support given.

By way of introduction, Figure 4.1 shows the results of a preliminary performance
study that was carried out prior to the large-scale DNS presented in Chapter 5.
Briefly, the results evidence the performance-portability of the HPC2 framework,
although its most recent version has further improved. For instance, the former
SpMV performed deficiently in both dual-socket nodes (first and second histograms)
due to the NUMA factor not being taken into account, while the current NUMA-aware
implementation does not suffer anymore in such configurations.

Testing conditions

For the sake of clarity, the performance study shown in this chapter targets only three
of the systems mentioned above. MareNostrum 4 and TSUBAME3.0 are chosen for
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Figure 4.1: Preliminary performance study on multiple devices of different architectures.
The discrete Laplacian operator resulting from the symmetry-preserving discretization [1]
on an unstructured hex-dominant grid of 1M mesh cells is used. The ELLPACK sparse
storage format and its block-transposed variant are used in CPU and GPU computations,
respectively.

CPU- and GPU-only analysis, respectively, and Lomonosov 2 for the heterogeneous
CPU + GPU performance study. The three systems are shown in Figure 4.2.

Time measurements are repeated in a loop one thousand times for each kernel
to average the results. All tests are carried out using double-precision floating-point
values. In single-node studies, the size of the problem is chosen large enough to avoid
disturbances caused by temporal locality in CPU cache or low occupancy in GPUs (for
a detailed performance study with smaller loads, the reader is referred to the author’s
master thesis [2]).

The sparse matrices arise from the symmetry-preserving discretization [1] of the
Laplacian operator on unstructured hex-dominant meshes. Therefore, the majority of
rows contain seven non-zero coefficients. The ELLPACK sparse storage format and
its block-transposed variant are used for CPU and GPU computations, respectively
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Figure 4.2: Pictures of the three supercomputers used in this chapter’s performance study.
From left to right: MareNostrum 4, TSUBAME3.0, Lomonosov 2.

(see [3] for details). This formats provide uniform, unit-stride memory access with
optimal coalescence of memory transactions.

As discussed in Chapter 3, the algebraic kernels are strongly memory-bound. In
this regard, the theoretically achievable performance is estimated as πk = AIk × βd,
where AIk and βd refer to the kernel’s arithmetic intensity and device’s memory
bandwidth, respectively. The arithmetic intensities of SpMV, axpy, and dot, are 0.15,
0.125, and 0.125, respectively.

In the DM parallel execution of SpMV, two parallel modes are evaluated, which are
overlapping and synchronous (cf. Chapter 3). Recall that the latter is to measure the
time of communications and computations separately, while the overlapping measures
both subroutines executed simultaneously.

At this point, it is worth specializing Equation 3.10 into an expression that estimates
the theoretical maximum ratio of halo to inner mesh elements, ρ = Nhal/N inn, that
allow an adequate overlap in SpMV. For each mesh element, the exchanges of
SpMV involve 8 bytes, while computations require accessing twelve bytes per non-zero
element as well as reading both x and y and writing y, hence the memory traffic per
element is 12nnz + 24 bytes. Thus, considering seven non-zeros per row, we replace
Qk = 108N inn and Xu = 8Nhal

u :

ρ ≤
108

8

1

βn

(
2

βl
+

3 + χ̄

βh
+

1

βx

). (4.1)
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This expression is used in this chapter’s multi-node studies to discuss the results of
strong and weak scaling.

4.2 MareNostrum 4

MareNostrum 4 is a CPU-based supercomputer at the Barcelona Supercomputing
Center [4] consisting of 3,456 compute nodes and providing 10.30 Pflop/s of theoretical
peak performance. Its dual-socket nodes with two Intel Xeon 8160 CPUs (24 cores,
2.1 GHz, 6 DDR4-2666 memory channels, 128 GB/s memory bandwidth, 33 MB L3
cache) are interconnected via the Intel Omni-Path network (100 Gb/s). There are 216
nodes with 384 GB of memory (8 GB/core) and 3,240 with 96 GB (2 GB/core). The
system architecture is illustrated in Figure 4.4.
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Figure 4.4: Topology and configuration of MareNostrum 4 supercomputer (3,456 compute
nodes) at Barcelona Supercomputing Center (BSC).

Dual-socket configurations introduce an important NUMA factor. In this work,
the performance on such configurations is enhanced through a NUMA-aware OpenMP
multithreaded implementation that allows assigning a single MPI process per node
while taking care of data locality according to the first-touch rule and thread affinity,
preventing migration of threads between NUMA nodes, as detailed in Chapter 3.
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4.2.1 Single-node study

The single-node performance of SpMV (left), axpy (middle), and dot (right) in different
parallel execution modes on a mesh of 17 million cells are shown in Figure 4.5. Green
horizontal lines represent the theoretically achievable performance. Also, the most
relevant results are detailed in Table 4.1.
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Figure 4.5: Single-node performance of HPC2 kernels in different parallel execution modes
on a mesh of 17 million cells, on MareNostrum 4. Both Static and Dynamic keywords refer
to OpenMP multithreaded implementations.

In line with the preliminary results in Figure 4.1, the former implementation
(labeled as Dynamic in Figure 4.5), lacking a NUMA-aware OpenMP implementation
taking thread affinity and data locality into account, performs deficiently, especially
with SpMV.

Both the MPI mode and the NUMA-aware OpenMP implementation with spread
thread binding (i.e., assigning threads to sockets or NUMA nodes equitably) perform
similarly, rapidly achieving a high fraction of the theoretically achievable performance.
The MPI mode, which leads to the most compact data placement, slightly outperforms
OpenMP with axpy and dot but falls behind with SpMV. While axpy and dot are
pure element-wise kernels that do not require heavy synchronization points on a single
node, the SpMV introduces a noticeable overhead in DM parallel execution because
processes must communicate and synchronize in addition to computing.

The NUMA-aware implementation without spread thread binding, Static (close),
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Table 4.1: Detailed single-node performance of HPC2 kernels versus number of cores in
different parallel execution modes on a mesh of 17 million cells, on MareNostrum 4.

Kernel 4 8 12 16 20 24 28 32 36 40 44 48
NUMA-aware OpenMP static (spread)

SpMV 6.64 12.73 18.26 22.93 25.72 26.78 28.55 29.10 29.72 29.84 29.72 29.33
axpy 8.80 15.78 19.68 21.51 23.43 23.75 24.08 24.59 25.29 25.97 25.85 25.26
dot 6.55 11.52 16.31 19.81 23.00 24.35 25.82 27.15 27.73 27.55 27.67 27.21

MPI
SpMV 5.53 10.60 15.32 19.62 20.41 23.87 25.01 27.41 27.82 27.93 26.31 27.91
axpy 9.45 17.89 22.82 25.20 25.88 27.94 28.42 28.64 28.48 28.72 28.51 28.22
dot 6.84 12.82 18.30 23.01 23.90 28.80 29.88 30.53 30.71 30.44 30.36 29.28

reveals the importance of choosing a correct thread affinity policy. In this mode, the
first 24 threads are placed into one socket, and the second 24 threads into the another.
This leads to unbalanced use of memory resources and reduces the benefits of using
the second socket into a linear expression, as shown in the plot.

4.2.2 Multi-node study

While the NUMA-aware implementation does not improve performance on a single
node compared to the MPI-only (both implementations achieve a high fraction of
the theoretically achievable performance), it positively impacts parallel efficiency and
scalability. Here, we study the behavior of SpMV, axpy, and dot kernels in large
DM parallel environments.

Firstly, Figure 4.6 shows the increase in halo to inner mesh elements ratio, ρ, as the
number of compute nodes grows on initial meshes of 17 and 134 million cells. A blue
line of value 0.5098 shows the theoretical maximum ratio estimated after Equation
3.10.

Strong scaling of SpMV (left), axpy (middle), and dot (right) from 48 to 9,600
cores (1 to 200 dual-socket nodes) on meshes of 17 and 134 million cells in different
parallel execution modes are shown in Figure 4.7. The NUMA-aware, hybrid MPI +
OpenMP implementation with spread thread binding clearly outperforms the MPI only.
Indeed, the quasi ideal SpMV results on the mesh of 134 million cells demonstrate
that the HPC2’s SpMV scales on 200 nodes (9,600 cores) with a parallel efficiency of
96.5%, obtaining an effective speed up of ×193.

A superlinear scaling behavior is observed in all cases starting at around 100,000
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Figure 4.6: Halo to inner mesh elements ratio, ρ, versus number of compute nodes engaged
in different parallel execution modes on MareNostrum 4.
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mesh cells per core due to the increase of temporal locality (cache reuse). Remark
that axpy is a purely element-wise operation that does not require any involvement in
parallel computing, and hence this superlinear scaling holds up indefinitely. However,
this behavior degrades in SpMV and dot as the workload becomes smaller because
the data exchange and synchronization overheads become unavoidable.

1
7
 m

il
li

o
n
 c

el
ls

Nodes (48 cores) Nodes (48 cores) Nodes (48 cores)

G
fl

o
p
/s

 0

10

5

15

20

25

30

35

40

81 27 64 125 20081 27 64 125 200 81 27 64 125 200

axpy dotSpMV

MPIHybrid (overlap) Hybrid (synchro)

Figure 4.8: Weak scaling of HPC2 kernels in different parallel execution modes on a mesh
of 17 million cells, on MareNostrum 4. The Hybrid keyword refers to the NUMA-aware
OpenMP implementation with spread thread binding.

Weak scaling of SpMV (left), axpy (middle), and dot (right) from 48 to 9,600
cores (1 to 200 dual-socket nodes) in different parallel execution modes are shown
in Figure 4.8. A fixed workload per node of 17 million mesh cells is chosen as in
single-node studies. Again, the NUMA-aware, hybrid MPI + OpenMP implementation
outperforms the MPI-only with SpMV and dot because of the smaller number of
MPI processes participating in reductions and data exchanges but performs similarly
with axpy as expected.

The results indicate that the NUMA-aware implementation might be able to
execute large-scale simulations on CPU-based supercomputers sustaining a parallel
efficiency near 100%. Hybrid implementations are parallel-efficient due to the hierar-
chical parallelization, which allows exploiting both distributed- and shared-memory
parallelism to minimize the number of processes participating in reductions or data
exchanges and the number and size of the messages required for DM parallelization.
It is noted that the NUMA-aware hybrid implementation allows engaging 9,600 cores
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with 200 MPI processes, while the MPI-only approach requires 9,600 MPI processes
to achieve the same level of parallelism.

4.3 Lomonosov 2

Lomonosov 2 is a hybrid supercomputer at Moscow State University [5] consisting
of 1,696 compute nodes and providing 4.95 Pflop/s of theoretical peak performance.
Its hybrid nodes are equipped with one Intel Xeon E5-2697 v3 (14 cores, 2.6 GHz, 4
DDR4-2133 memory channels, 68 GB/s memory bandwidth, 35 MB L3 cache) and one
NVIDIA Tesla K40M GPU (1.43 Tflop/s peak performance, 12 GB of GDDR5 memory,
288 GB/s memory bandwidth, PCIe 3.0 x16 at 16 GB/s), and are interconnected via
InfiniBand FDR network (56 Gb/s). The system architecture is illustrated in Figure
4.9.

Infiniband FDR
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DDR5

NIC
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Figure 4.9: Topology and configuration of Lomonosov 2 supercomputer (1,696 compute
nodes) at Moscow State University.

Hybrid nodes long for codes capable of heterogeneous computing that efficiently
engage the variety of computing hardware. More precisely, a heterogeneous application
targeting Lomonosov 2 must be able to combine CPU and GPU implementations
simultaneously. The GPU to CPU memory bandwidth ratio in Lomonosov 2, which is
4.2, allows heterogeneous applications to benefit from a theoretical gain of ×1.24 with
respect to GPU-only implementations. In doing so, a proper intra-node load balancing
is required because different devices feature different performance specifications. In this
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work, the performance on such a configuration is approached through a hierarchical
parallel implementation that allows assigning a single MPI process per node, further
distributing the computational workload among multiple devices at lower parallelization
levels, as detailed in Chapter 3.

4.3.1 Single-node study

The single-node performance of SpMV (left), axpy (middle), and dot (right) in different
parallel execution modes on meshes of 2 and 17 million cells are shown in Figure 4.10.
In single-device results, sheer green boxes on the bars represent the theoretically
achievable performance. Also, the most relevant results are detailed in Table 4.2.
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Figure 4.10: Single-node performance of HPC2 kernels in different parallel execution modes
on meshes of 2 and 17 million cells, on Lomonosov 2.

In line with the preliminary results in Figure 4.1, the single-device performance
achieves a rather high fraction of the peak performance. On the CPU side, slightly
better performance is obtained on the 2 million cells mesh due to the increase in
temporal locality (in this case, the problem size was insufficient to avoid cache reuse).
In contrast, the GPU improves on the 17 million cells mesh due to higher occupancy,
hiding memory latency overheads.

The results of the heterogeneous co-execution mode demonstrate the capabilities
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Table 4.2: Detailed single-node performance of HPC2 kernels in different parallel execution
modes on Lomonosov 2.

Kernel CPU GPU Het/ovl Het/syn Sum Gain Efficiency
2 million mesh cells

SpMV 6,89 20,25 26,02 22,20 27,14 1,28 0,96
axpy 9,56 21,89 28,70 — 31,45 1,31 0,91
dot 8,87 19,51 24,12 — 28,38 1,24 0,85

17 million mesh cells
SpMV 7,85 22,48 29,76 27,25 30,33 1,32 0,98
axpy 7,18 22,90 28,30 — 30,08 1,24 0,94
dot 7,88 22,18 22,18 — 30,07 1,29 0,95

of HPC2 on hybrid systems. In the heterogeneous histograms, sheer red boxes on top
of the bars represent the performance lost compared to the sum of CPU- and GPU-
only results. In contrast with the single-node study on MareNostrum 4, intra-node
communications appear in this case due to the presence of different virtual memory
spaces. Hence, two results of heterogeneous SpMV execution are given: overlapping
and synchronous parallel modes. The heterogeneous efficiency is above 90% in all
cases, and SpMV achieves the best result. This is because the workload is balanced
considering the ratio of SpMV performances.

The benefits of collaborating CPU and GPU in Lomonosov 2 nodes are evident:
the performance gain obtained is around ×1.3 in all cases. This gain is even higher
than the theoretical because, in this case, the CPU implementation performs more
efficiently than its GPU counterpart.

4.3.2 Multi-node study

Firstly, Figure 4.11 shows the increase in the halo to inner mesh elements ratio, ρ, as
the number of compute nodes grows on initial meshes of 17 and 134 million cells. Three
blue lines of values 0.8591, 0.1316, and 0.1226 show the theoretical maximum ratio
estimated after Equation 3.10 for CPU-only, GPU-only, and heterogeneous execution
modes, respectively.

Strong scaling of SpMV (left), axpy (middle), and dot (right) from 1 to 64 hybrid
nodes on a mesh of 17 million cells in different parallel execution modes are shown in
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Figure 4.11: Halo to inner mesh elements ratio, ρ, versus number of compute nodes engaged
in different parallel execution modes on Lomonosov 2.
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Figure 4.12: Strong scaling of HPC2 kernels in different parallel execution modes on
Lomonosov 2.

Like MareNostrum 4, the CPU-only mode results in a superlinear behavior starting
at around 150,000 mesh cells per core. This superlinear speed up does not vanish in
the range from 1 to 64 nodes. It is noted that the network to CPU’s main memory
bandwidth ratio is very similar in both systems (near 0.10) and that Lomonosov
2’s CPU features a larger L3 cache per core. In contrast, the GPU-only mode
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presents increased difficulties. While CPUs perform better on smaller loads due to
the temporal locality (i.e., lower cache miss ratio), GPU devices worsen due to the
lower occupancy not allowing stream multiprocessors to hide memory latency overhead
through hardware multi-threading. To top it off, the lower network to GPU’s memory
bandwidth ratio (near 0.025) limits the scalability of overlapping SpMV to a smaller
number of processes or partitions.

Apart from the GPU’s performance decay, the heterogeneous mode also suffers from
increased complexity in data exchanges. In this mode, the intra-node communications
(i.e., data exchanges between devices on the same compute node) resulting from the
second-level domain decomposition come into play and have to be handled simulta-
neously with inter-node exchanges and computations. Therefore, the heterogeneous
computing mode is the least scaling mode in terms of number of nodes. However, given
the correct operational conditions, which are found at 27 nodes, the heterogeneous
mode allows to speed up the execution by a factor of ×25 while taking advantage
of all the computing hardware available, gaining an additional factor of ×1.3 with
respect to the GPU-only execution.
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Figure 4.13: Weak scaling of HPC2 kernels in different parallel execution modes on
Lomonosov 2.

Weak scaling of SpMV (left), axpy (middle), and dot (right) from 1 to 64 hybrid
nodes in different parallel execution modes are shown in Figure 4.13. A fixed workload
per node of 2 million mesh cells is chosen as in single-node studies. After the occurrence
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of inter-node data exchanges, the parallel efficiency decays in all modes. However,
keeping the problem size constant also keeps the parallelization overheads constant.
Therefore, the results indicate that the HPC2 might be able to execute large-scale
simulations on such hybrid supercomputers obtaining a parallel efficiency above 90%.

4.4 TSUBAME3.0

TSUBAME3.0 is a GPU-based supercomputer at Tokyo Institute of Technology [6]
consisting of 540 compute nodes and providing 12.13 Pflop/s of theoretical peak
performance. Its nodes are equipped with two Intel Xeon E5-2680 v4 (14 cores, 2.4
GHz, 4 DDR4-2400 memory channels, 77 GB/s memory bandwidth, 35 MB L3 cache)
and four NVIDIA P100 (5.3 Tflop/s peak performance, 16 GB HBM2 memory, 732
GB/s memory bandwidth, PCIe 3.0 x16 at 16 GB/s), and are interconnected via four
Intel Omni-Path networks (100 Gb/s). The system architecture is illustrated in Figure
4.14.

The extremely large ratio of aggregated GPU to CPU memory bandwidth per node
in TSUBAME3.0, which is above 19, leaves no space for heterogeneous computing: the
theoretical gain is ×1.05 in this case, while the intra-node communications are even
more complex than in Lomonosov 2 (there are 6 devices per node). Also the ratio of
network to GPU’s memory bandwidth is the lowest amongst our test machines, 0.017,
posing a great challenge to achieving reasonable multi-node scalability.

4.4.1 Single-node study

The single-node performance of the HPC2 kernels in different execution modes is
shown in Figure 4.15 and detailed in Table 4.3 on a mesh of 17 million cells.

In line with the preliminary results in Figure 4.1, the single-device performance
achieves a rather high fraction of the peak performance above 60% with SpMVand
near 75% with axpy and dot. Again, intra-node communications appear in this case
due to the presence of different virtual memory spaces (one per device).

Even in a single node (with four GPU devices), the synchronous execution struggles
in achieving a reasonable throughput due to the GPUs’ extremely high memory
bandwidth, and achieves a parallel efficiency of only 50%. In other words, the time
required for intra-node data exchanges is already equivalent to that of computations,
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and hence it will be even higher in multi-node executions preventing an adequate
overlap.

4.4.2 Multi-node study

Firstly, Figure 4.16 shows the increase in the halo to inner mesh elements ratio, ρ,
as the number of compute nodes grows on initial meshes of 17 and 134 million cells.
A blue line of values 0.0444 shows the theoretical maximum ratio estimated after
Equation 3.10.

Strong scaling of SpMV (left), axpy (middle), and dot (right) from 4 to 256 GPUs
(1 to 64 nodes) on a mesh of 134 million cells in different parallel execution modes are
shown in Figure 4.17. At first glance, the results reveal that high-bandwidth memory
(HBM) is a double-edged sword: computations execute so fast that any other overhead
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Table 4.3: Detailed single-node performance of HPC2 kernels versus number of GPUs in
different parallel execution modes on a mesh of 17 million cells, on TSUBAME3.0.

Kernel 1 2 3 4
SpMV/ovl 72.571 139.532 200.915 272.928
SpMV/syn 72.493 109.597 127.775 135.283

axpy 69.290 137.903 205.583 273.241
dot 70.983 137.410 204.391 266.333

becomes visibly heavier. For instance, the performance of both element-wise kernels,
axpy and dot, decays faster than in Lomonosov 2. Even worse is the overlapping
SpMV, which does not reach a parallel efficiency of 15%.

However, the results obtained are worse than expected. Considering the system’s
ρ, 0.0444, the SpMV should scale well on 8 nodes and reasonably well on 27, as
the curve labeled as GPU (predicted) indicates. Therefore, the results suggest that
our current implementation suffers from additional penalties not taken into account,
such as NUIOA. It is noted that the specifications of other supercomputers such as
MareNostrum 4 or Lomonosov 2 did not expose this issue, and hence it was not yet
studied.

Weak scaling of SpMV (left), axpy (middle), and dot (right) from 1 to 64 hybrid
nodes in different parallel execution modes are shown in Figure 4.18. A fixed workload
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per node of 17 million mesh cells is chosen, as in single-node studies. In this case, the
element-wise kernels scale properly, but the SpMV still struggles and hardly sustains a
55% parallel efficiency. Again, considering the system’s ρ, the GPU (predicted) curve
shows the performance that the HPC2 could attain with an optimized data exchange
protocol. The prediction indicates that the HPC2 might be able to execute large-scale
simulations on such GPU-based supercomputers obtaining a parallel efficiency above
90%.
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5

Direct numerical simulation of
buoyancy-driven turbulent flows

This chapter demonstrates the capabilities of HPC2 in dealing with large-scale transient
CFD simulations.

5.1 Air-filled differentially heated cavity at Rayleigh 1.2× 1011

Main contents of this section are published in [1].

A DNS of a turbulent air-filled differentially heated cavity (DHC) is chosen to
demonstrate the capabilities of the HPC2 framework in dealing with large-scale
CFD simulations. Firstly, the case description in conjunction with the numerical
methods is detailed. Then, the DHC results are briefly presented.

5.1.1 Mathematical model and numerical method

Consider a cavity of height H, width L, and depth D filled with an incompressible
Newtonian viscous fluid of kinematic viscosity ν, thermal diffusivity α, and density
ρ. The geometry of the problem is displayed in Figure 5.1 (left). The Boussinesq
approximation is used to account for the density variations. Thermal radiation is
neglected. Under these assumptions, the velocity, u, and the temperature, θ, are

77
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governed by the following set of dimensionless partial differential equations (PDEs):

∂tu+ (u · ∇)u = PrRa−1/2∇2u−∇p+ f , (5.1)

∂tθ + (u · ∇)θ = Ra−1/2∇2θ, (5.2)

where Pr = ν/α, Ra = (gβ∆θH3)/(να), and f = (0, P rθ, 0) (Boussinesq approxima-
tion) are the Prandtl and Rayleigh number (based on the cavity height), and the body
force vector, respectively. Notice that with the reference quantities, Lref = H and
tref = (H2/α)Ra−1/2, the vertical buoyant velocity, Pr1/2, and the characteristic di-
mensionless Brunt-Väisälä frequency, N , are independent of the Ra. The configuration
considered here resembles the experimental set-up performed by D. Saury et al. [2] and
P. Belleoud et al. [3]: the height, H/L, and depth, D/L, aspect ratios are 3.84 and
0.86, whereas the Rayleigh and Prandtl numbers are Ra = 1.2× 1011 and Pr = 0.71

(air), respectively. The cavity is subjected to a temperature difference ∆θ across the
vertical isothermal walls (θ(0, y, z) = 0.5, θ(L/H, y, z) = −0.5). The temperature at
the rest of the walls is given by the “fully realistic” boundary conditions proposed
in [4]. They are time-independent analytical functions that fit the experimental data
of J. Salat et al. [5]. The no-slip boundary condition is imposed on the walls.

The governing equations (5.1) and (5.2) are discretized using a symmetry-preserving
discretization [6]. Shortly, the temporal evolution of the spatially discrete velocity
vector, uc, is governed by the following operator-based finite-volume discretization of
Eqs. (5.1):

Ω3d
c

duc
dt

+ C3d
c (us)uc + D3d

c uc + Ω3d
c Gcpc = fc, Mus = 0c,

where pc ∈ Rn and uc ∈ R3n are the cell-centered pressure and velocity fields. For
simplicity, uc is defined as a column vector and arranged as uc = (u1,u2,u3)T , where
ui = ((ui)1, (ui)2, . . . , (ui)n)T are the vectors containing the velocity components
corresponding to the xi-spatial direction. The auxiliary discrete staggered velocity
us = ((us)1, (us)2, . . . , (us)m)T ∈ Rm is related to the centered velocity field via
a linear shift transformation (interpolation) Γc→s ∈ Rm×3n, us ≡ Γc→suc. The
dimensions of these vectors, n and m, are the number of control volumes and faces
in the computational domain, respectively. The subindices c and s refer to whether
the variables are cell-centered or staggered at the faces. The matrices Ω3d

c ∈ R3n×3n,
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Figure 5.1: From left to right: DHC schema, instantaneous schlieren-like snapshot from the
DNS and the averaged temperature field at the cavity mid-depth (the isotherms are uniformly
distributed between −0.5 and 0.5), the airflow map in the upper part of the cavity.

C3d
c (us) ∈ R3n×3n and D3d

c ∈ R3n×3n are block diagonal matrices given by

Ω3d
c = I3 ⊗ Ωc, C3d

c (us) = I3 ⊗ Cc (us) , D3d
c = I3 ⊗ Dc,

where I3 ∈ R3×3 is the identity matrix. Cc (us) ∈ Rn×n and Dc ∈ Rn×n are the
collocated convective and diffusive operators, respectively. The temporal evolution
of the discrete temperature θc ∈ Rn (see Eq. 5.2) is discretized in the same vein.
For a detailed explanation of the spatial discretization, the reader is referred to [6].
Regarding the temporal discretization, a second-order explicit one-leg scheme is used
for both the convective and the diffusive terms [7]. Finally, the pressure-velocity
coupling is solved by means of a classical fractional step projection method [8]: a
predictor velocity, ups , is explicitly evaluated without considering the contribution of
the pressure gradient. Then, imposing the incompressibility constraint, Mun+1

s = 0c,
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leads to a Poisson equation for p̃n+1
c to be solved once each time-step,

Lp̃n+1
c = Mups with L = −MΩ−1

s MT , (5.4)

where p̃c = ∆tpc and the discrete Laplacian operator, L, is represented by a symmetric
negative semi-definite matrix.

In summary, the method is based on only five basic (linear) operators: the cell-
centered and staggered control volumes, Ωc and Ωs, the matrix containing the face
normal vectors, Ns, the cell-to-face scalar field interpolation, Πc→s and the divergence
operator, M. Once these operators are constructed, the rest follows straightforwardly.

The algorithm to solve one time-integration step is outlined in Algorithm 3. Re-
garding the time-integration scheme (steps 2 and 7 in Algorithm 3), and without loss
of generality, a second-order Adams–Bashforth has been adopted here. Since it is
a fully explicit scheme, a CFL condition-like condition is required in order to keep
the numerical scheme inside the stability region [7]. This necessarily leads to rather
small time-steps, ∆t, and subsequently to a good initial guess for the Poisson equation
justifying the use of a relatively simple linear solver for the Poisson equation (step 3 in
Algorithm 3) to maintain the norm of the divergence of the velocity field, Mun+1

s , at
a low enough level [9]. Furthermore, since the matrix, −L, is symmetric and positive-
definite, a preconditioned CG is used with a simple SpMV-based preconditioner (either
the Jacobi or the approximate inverse). In conclusion, the overall Algorithm 3 relies
on the set of three basic linear algebra operations: SpMV, axpy, and dot.

At this point, it is noted that except for the non-linear convective term, C3d
c (uns )unc ,

all the operations directly correspond to linear maps, most of them sharing the same
matrix portrait. Regarding the convection (steps 1 in Algorithm 3), it can be reduced to
an SpMV operation by simply noticing that the coefficients of the convective operator,
Cc (uns ), must be recomputed accordingly to the adopted numerical schemes [6].
However, it is rather common for many CFD applications to use different numerical
schemes (e.g., central difference, upwind or hybrid schemes, among others) for each
transport equation. In this case, different convective operators, Cc (us), need to be
recomputed at each time-step. Alternatively, the convective operator, Cc (us), can be
represented using more basic operators. Namely,

Cc (us) = MUΠc→s, (5.5)
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Algorithm 3 Time-integration step
1: Compute the convective, the diffusive and the source term of momentum Eq.(5.1):

R (uns ,u
n
c ,θ

n
c ) ≡ −C3d

c (uns )unc − D3d
c u

n
c + fc(θ

n
c )

2: Compute the predictor velocity:
upc = unc + ∆t

{
3
2 R (uns ,u

n
c )− 1

2 R
(
un−1
s ,un−1

c

)}
3: Solve the Poisson equation given in Eq.(5.4):

Lp̃n+1
c = Mups where ups = Γc→su

p
c

4: Correct the staggered velocity field:
un+1
s = ups − Gp̃n+1

c where G = −Ω−1
s MT

5: Correct the cell centered velocity field:
un+1
c = upc − Gcp̃

n+1
c where Gc = −Γs→cΩ

−1
s MT

6: Compute the convective and the diffusive terms in temperature transport Eq.(5.2):
Rθ (uns ,θ

n
c ) ≡ −Cc (uns )θnc − Pr−1Dcθ

n
c

7: Compute temperature at the next time-step:
θn+1
c = θnc + ∆t

{
3
2 Rθ (uns ,θ

n
c )− 1

2 Rθ
(
un−1
s n,θn−1

c

)}

where U ≡ diag(us) ∈ Rm×m is the diagonal arrangement of the face velocities, us,
and Πc→s is the above-mentioned cell-to-face scalar field interpolation. Computing
the convective term using this form seems inefficient since three consecutive SpMV are
required. However, this naive approach can be easily improved by noticing that MU can
be precomputed since U is a diagonal matrix (that changes every time-step); therefore,
the product MU is simply a re-scaling of columns. Moreover, this new matrix is shared
by all the convective operators regardless of the quantity being advected. Finally, the
cell-to-face interpolation operator, Πc→s, will depend on the particular choice for the
spatial numerical scheme.

Table 5.1 sums up the number of times that each kernel is called at the different
steps of Algorithm 3.

5.1.2 Execution of a large-scale simulation

Since no subgrid-scale model is used in the computation, the grid resolution and the
time-step, ∆t, have to be fine enough to resolve all the relevant turbulence scales.
Furthermore, the starting time for averaging, t0, and the time-integration period, ∆tavg,
must also be long enough to properly evaluate the flow statistics. The procedure
followed to verify the simulation results is analogous to our previous DNS work [10,11].
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Table 5.1: Number of times that each basic operation is performed in the numerical
algorithm.

Step of Algorithm 3 SpMV axpy dot
1. Compute the convective–difusive terms 12 0 0
2. Predictor velocity 0 6 0
3. Poisson equation (r.h.s) 4 2 0
*. Poisson equation (per iteration) 2 3 2
4. Velocity correction (staggered) 1 1 0
5. Velocity correction (centred) 3 3 0
6. Compute the convective–difusive terms 4 0 0
7. Compute temperature at next time step 0 2 0
Total outside Poisson solver 24 14 2

In this case, the averages over the three statistically invariant transformations (time,
mid-depth plane and central point symmetry) have been carried out for all fields and
the grid points in the three wall-normal directions are distributed using a hyperbolic-
tangent function, i.e. for the x-direction xi = 1

2

(
1 + tanh{γx(2(i−1)/Nx−1)}

tanh γx

)
. For

details about the physical and numerical parameters see Table 5.2. Hereafter, the
angular brackets operator 〈·〉 denotes averaged variables.

Table 5.2: Physical and numerical simulation parameters of the DNS of the turbulent
DHC displayed in Figure 5.1. From left to right: number of control volumes and concentration
factors for each spatial direction, the size of the first off-wall control volume in the x-direction
(also in wall-units), the non-dimensional time-step, the starting time for averaging and the
time-integration period.

Nx Ny Nz γx γy γz (∆x)min (∆x)+
min ∆t t0 ∆tavg

450 900 256 2 1 1 4.28× 10−5 . 0.5 3.65× 10−4 ≈ 300 ≈ 300

The described algorithm has been implemented into the HPC2 framework using only
three basic linear algebraic kernels: sparse matrix-vector product, linear combination
of vectors, and dot product. Prior to the execution of such a large simulation, a
performance study has been conducted on MareNostrum 4 supercomputer at Barcelona
Supercomputing Center (BSC). Specifically, a strong scaling analysis from 1 to 200
nodes consisting of measuring 40 time-steps only. It is noted that the entire study
requires less than 100 core hours. Figure 5.2 shows the results of the analysis and
indicates that the optimal number of nodes is 120. In this conditions, the superlinear
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behavior is still observed and allows the HPC2 to sustain 3.24 Tflop/s, and to achieve
an effective ×129 speed up.

axpySpMV copy othersdot
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Figure 5.3: Relative time spent per kernel and time-step inside the Poisson solver (left)
and outside it (right)

The simulation has been successfully executed on 120 nodes (5,760 Intel Xeon 8160
cores). The average elapsed time per time-step is 0.07175s, thus the total simulation
requires around 27 hours to finish (1,369,864 time-steps), or 155,520 core hours. Figure
5.3 shows the relative time spent in each operation and time-step (Algorithm 3), and
confirms that the overall computing cost is only depending on three algebraic kernels.
Hence, the cost and efficiency estimation for large-scale simulations on virtually any
modern supercomputer can be directly extrapolated from the performance studies
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in our previous works [1, 12, 13], or in Chapter 4. This allows avoiding nonsense
waste of computational resources in repetitive performance studies. Our fully-portable,
algebra-based framework for heterogeneous computing has demonstrated its great
potential for the simulation of turbulent flows on virtually any modern supercomputer.

5.1.3 Results and discussion

Instantaneous flow fields displayed in Figure 5.1 illustrate the inherent flow complexity
of this configuration. Namely, the vertical boundary layers remain laminar only in their
upstream part up to the point where the waves traveling downstream grow up enough
to disrupt the boundary layers ejecting large unsteady eddies. An accurate prediction
of the flow structure in the cavity lies on the ability to correctly locate the transition
to turbulence while the high sensitivity of the thermal boundary layer to external
disturbances makes it difficult to predict (see results for a similar DHC configuration
in [14] and [11], for instance). In this case, the transition occurs around y ≈ 0.2

(see the peak of the averaged local Nusselt number displayed in the right part of
Figure 5.1).

The average temperature field and the airflow map are displayed in Figure 5.1
(right). The cavity is almost uniformly stratified with a dimensionless stratification
of S ≈ 0.45 (see Figure 5.4, left). This value is in a rather good agreement with the
experimental results obtained by D. Saury et al. [2] (S = 0.44± 0.03 with ε = 0.1 and
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Figure 5.5: Time evolution of the Nusselt number at the vertical mid-plane (left) and its
normalized density power spectrum (right).

S = 0.57± 0.03 with ε = 0.6, where ε is the wall emissivity). The averaged Nusselt
number at the cavity mid-depth is displayed in Figure 5.4 (right). The profile is again
rather similar to the experimental results obtained by D. Saury et al. [2]. In this
case, the transition point occurs at a slightly more upstream position. The peak of
the averaged local Nusselt number is located at y ≈ 0.2 whereas in the experimental
results this point is at y ≈ 0.3. Integrating the averaged local Nusselt number over the
y-direction, the overall Nusselt is determined. In this case, 〈Nu〉 = 259.2, a slightly
higher value that the one obtained by D. Saury et al. [2], i.e., 〈Nu〉 = 231± 30 but
very similar to the value obtained by means of LES, i.e., 〈Nu〉 = 254 (see Figure 11
in [2]).

Another important feature of this kind of configuration is the presence of internal
waves. Although in the cavity core the averaged velocity (and its fluctuations) are much
smaller compared with those observed in the vertical boundary layers, simulations
show that in this region isotherms oscillate around the mean horizontal profile. As
mentioned-above, the cavity core remains well stratified (see Figure 5.1 and Figure 5.4,
left); therefore, this phenomenon can be attributed to internal waves. This can be
confirmed by analyzing the Nusselt number through the vertical mid-plane, Nuc. The
time evolution and the normalized density power spectrum are respectively displayed
in Figures 5.5. The peak in the spectrum is located at 0.096 which is in a good
agreement with the dimensionless Brunt-Väisälä frequency, N = (SPr)0.5/(2π), where
S is the dimensionless stratification of the time-averaged temperature, i.e. N ≈ 0.09.
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Both values are very similar confirming that internal waves are permanently excited
by the eddies ejected form the vertical boundary layer. Detailed results including
turbulent statistics can be downloaded in the following link [15].

5.2 Towards exascale simulations of the ultimate regime

Buoyancy-driven flows have always been an important subject of scientific studies
with numerous applications in environment and technology. The most famous example
thereof is the thermally driven flow developed in a fluid layer heated from below
and cooled from above, i.e. the Rayleigh-Bénard convection (RBC). It constitutes a
canonical flow configuration that resembles many natural and industrial processes,
such as solar thermal power plants, indoor space heating and cooling, flows in nuclear
reactors, electronic devices, and convection in the atmosphere, oceans and the deep
mantle.

In the last decades significant efforts, both numerically and experimentally, have
been directed at investigating the mechanisms and the detailed scaling behavior of the
Nusselt numbers as a function of Ra and Pr in the general form Nu ∝ RaγPrβ . In
this regard, Figure 5.6 shows the predictions of the Nu-number based on the classical
Grossmann-Lohse (GL) theory [16] and its subsequent corrections [17, 18] where
different scaling regimes, characterized by their corresponding exponents γ and β, are
identified. Assuming this power-law scalings and following the same reasonings as in
Ref. [19] leads to the estimations for the number of grid points shown in Figure 5.7 (top).
This corresponds to mesh resolution requirements for DNS and clearly explain why
nowadays DNS of RBC is still limited to relatively low Ra-numbers. However, many of
the above-mentioned applications are governed by much higher Ra numbers, located
in the region of the {Ra, Pr} phase space where the thermal boundary layer becomes
turbulent (see the black dash-dotted line in Figure 5.7). This region corresponds to
the so-called asymptotic Kraichnan or ultimate regime of turbulence, with γ = 1/2.
Experimentally, power-law dependencies of heat flux with exponents between 1/4 and
1/3 have been measured; however, despite the great efforts devoted, no clear evidence
of the Kraichnan regime has been observed yet. Reaching such Ra-numbers while
keeping the basic assumptions (Boussinesq approximation, adibaticity of the closing
walls, isothermal horizontal walls, perfectly smooth surfaces...) is a very hard task. To
that end, experimental set-ups using cryogenic helium gas as the working have been
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Figure 5.6: Estimation of the Nusselt number of a RBC in the {Ra, Pr} phase space given
by the classical GL theory [16] and its subsequent corrections [17]. Green solid isolines
represent the log10 of the Nusselt. Three dashed horizontal lines correspond to three different
working fluids: water (Pr = 7), air (Pr = 0.7) and liquid sodium (Pr = 0.005). Black
dash-dotted line is an estimation for the onset of turbulence in the thermal boundary layer.

conducted. However, despite the great effort devoted their conclusions are unclear due
to the highly scattered results [17,18].

In this context, we may turn to large-eddy simulation (LES) to predict the large-
scale behavior of incompressible turbulent flows driven by buoyancy at very high
Ra-numbers. In LES, the large-scale motions are explicitly computed, whereas the
effects of small-scale motions are modeled. Since the advent of CFD, many subgrid-
scale (SGS) models have been proposed and successfully applied to a wide range
of flows. However, there still exits inherent difficulties in the proper modelization
of the SGS heat flux. This was analyzed in detail in the PRACE project entitled
"Exploring new frontiers in Rayleigh-Bénard convection" (33.1 millions of CPU hours
on MareNostrum4 in 2018-2019), where DNS simulations of air-filled (Pr = 0.7) RBC
up to Ra = 1011 were carried out using meshes up to 5.6× 109 grid points (see dots
displayed in Figure 5.7, top). These results shed light into the flow topology and
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Figure 5.7: Estimation of the mesh sizes for DNS (top) and LES (bottom) simulations
of RBC in the {Ra, Pr} phase space. Estimations for LES assume that thermal scales are
fully resolved, i.e. no SGS heat flux model is needed. Green solid isolines represent the
log10 of the total number of grid points. Three dashed horizontal lines correspond to three
different working fluids: water (Pr = 7), air (Pr = 0.7) and liquid sodium (Pr = 0.005). Dots
displayed on top of these lines correspond to the DNS simulations carried out in previous
studies [19–21]. Black dash-dotted line is an estimation for the onset of turbulence in the
thermal boundary layer.
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the small-scale dynamics which are crucial in constructing the turbulent wind and
energy budgets [20]. Moreover, it also provided new insights into the preferential
alignments of the SGS and its dependence with the Ra-numbers [21], highlighting
that the modelization of the SGS heat flux is the main difficulty that (still) precludes
reliable LES of buoyancy-driven flows at (very) high Ra-numbers. This inherent
difficulty can be by-passed by carrying out simulations at low-Prandtl numbers. In
this case, the ratio between the Kolmogorov length scale and the Obukhov-Corrsin
length scale (the smallest scale for the temperature field) is given by Pr3/4; therefore,
for instance, at Pr = 0.005 (liquid sodium) we have a separation of more than one
decade. Hence, it is possible to combine an LES simulation for the velocity field
(momentum equation) with the numerical resolution of all the relevant scales of the
thermal field. Results obtained in Ref. [21] suggest that accurate predictions of the
overall Nu can be obtained with meshes significantly coarser than for DNS (e.g. in
practice for Pr = 0.005 we can expect mesh reductions in the range 102-103 for the
total number of grid points). This can be clearly observed in Figure 5.7 (bottom),
where mesh resolution for LES is given with the assumption that thermal scales are
fully resolved. In conclusion, in the near future, we plan to carry out LES simulations
at low-Pr with the final goal to hit the ultimate regime of turbulence with meshes in
the range from 1010 to 1011 using the HPC2 framework developed in the context of
this thesis.
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6

Conclusions

Inspired by the formulation reviewed in Chapter 2, an algebra-based implementation
model for numerical simulation frameworks is presented. By casting discrete operators
and mesh functions into sparse matrices and vectors, it has been shown that all the cal-
culations in a typical CFD algorithm for the DNS and LES of incompressible turbulent
flows boil down to the following basic linear algebra subroutines: SpMV, axpy, and dot.
In this algebraic approach, the kernel code shrinks to dozens of lines; the portability
becomes natural, and maintaining OpenMP, OpenCL, or CUDA implementations
takes minor effort.

The DNS conducted in Chapter 5 has validated the approach and demonstrated the
computational capabilities of the framework. Using HPC2 library, the implementation
of Algorithm 3 is reduced to a few lines of code that could seem similar to the friendly
style of MATLAB, but internally these are capable of massively parallel heterogeneous
computing. It is noted that the particular choice of the time-integration scheme or
the SLAE solver is not relevant to the scope of this thesis. Indeed, the HPC2 is not
a particular CFD solver but a framework designed for implementing algorithms and
solvers.

During the design and development process, we have faced some challenges and
obstacles to overcome—namely, the low arithmetic intensity of algebraic kernels and
the problem of implementing non-linear terms. After relatively simple generalizations,
we have surpassed the challenges giving rise to a much more competitive numerical
simulation framework for heterogeneous (super)computing that applies to many fields
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of computational physics and mathematics.

Implementation model

At first, an abstract model of hybrid supercomputers has been presented. This model
has taken five assumptions that apply to most scientific computing codes to simplify
the parametrization. As a result, handy expressions to estimate the parallel behavior
of numerical applications on hybrid supercomputers have been derived (see Equations
3.8 and 3.9) following reasoning similar to the classical roofline. The implementation
highlights are outlined below:

• A hierarchical parallel implementation has been proposed to deal with hybrid
supercomputers. In this approach, the multilevel workload distribution described
in Section 3.3 minimizes the number of processes participating in MPI exchanges
and the global size of the messages, taking full advantage of the intra-node
topology and the shared-memory parallel processors. Moreover, this advantage
will only strengthen as the memory hierarchies of modern supercomputers become
more complex.

• Single and double overlapping execution schemes have been described in detail
in Section 3.4. These execution schemes allow for processing kernel execution
and halo exchanges in DM parallelization simultaneously.

• A portable implementation model has been proposed in Section 3.5. It is based on
three types of objects: actuator, container, and shaper. In this approach, all the
architecture-specific implementation is encapsulated in a single low-level, pure
virtual class, the virtual unit, which can be specialized for different architectures.
It has been shown that implementing a new virtual unit is sufficient to port the
entire numerical simulation framework.

• A novel approach based on exploiting nested Kronecker products using the
SpMM kernel has been proposed in Section 3.6.1. Given a sufficient number of
vectors, theoretical speed-ups up to ×15 are expected from using the SpMM in-
stead of SpMV, as shown in Figure 3.7.

• A rather simple but effective generalization of the axpy and dot kernels has
been proposed to enable the implementation of non-linear terms as shown in
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Section 3.6.2. The application of this approach to a canonical case, a three-
dimensional deformation problem, has been validated and its performance studied
in detail in Appendix A.

Performance study

An in-depth performance study on several modern supercomputers has been conducted
in Chapter 4. Recall that any algorithm based on HPC2 relies only on three types
of algebraic routines: SpMV, kbin (the generalization of axpy), and kred (the gen-
eralization of dot). The roofline model has been proven accurate in predicting the
performance of such algebraic routines, in contrast to the expression to evaluate the
maximum ratio of halo to inner mesh elements (cf. Equation 4.1). While there have
been no cases in which good performance exceeding the theoretical maximum has
been obtained, which is fine, the parallel efficiency in some cases has been much lower
than expected. Probably, this is due to poor implementation of the data exchange
protocol and is left for future work. The performance highlights are listed below:

• MareNostrum 4 has been found the best performing supercomputer among the
three we have studied. The new NUMA-aware implementation with proper
thread binding and NUMA-placement of data has increased the performance
about ×1.8 times compared to the previous implementation with dynamic
scheduling. The hierarchical parallel implementation has demonstrated the best
parallel efficiency in both strong and weak scaling tests. It allows exploiting
both distributed- and shared-memory parallelism to minimize the number of
processes participating in reductions or data exchanges and the number and size
of the messages required for DM parallelization.

• On Lomonosov 2, the heterogeneous co-execution mode has demonstrated nearly
100% heterogeneous performance on single-node tests. The benefits of collab-
orating CPU and GPU in Lomonosov 2 nodes are evident: the performance
gain obtained is around ×1.3 in all cases. Besides, weak scaling results for 2
million cells per node suggest that our framework is able to execute extreme-scale
simulations on such hybrid supercomputers sustaining a parallel efficiency above
90%. However, the heterogeneous mode struggles in strong scaling tests. On
the one hand, the CPU is more involved in data exchanges than in CPU-only
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modes. On the other hand, the performance of GPUs on smaller loads decreases
due to lower occupancy.

• TSUBAME3.0 has been erected as the Achilles heel of algebraic implementations.
Its fat nodes feature the largest ratio of aggregated GPU to CPU memory
bandwidth per node, 19, and also the lowest ratio of network to GPU’s memory
bandwidth, 0.017, posing a great challenge to achieving reasonable multi-node
scalability. Our predictions after Equation 4.1 indicate that the SpMV might
be able to sustain rather good performance in weak scaling tests, suggesting
that our current implementation suffers from additional penalties not taken into
account, such as NUIOA

This thesis is has been conducted in the CTTC laboratory, at the Technical
University of Catalonia. Owing to CTTC’s acknowledged tradition in CFD, and
without loss of generality, most of this work has been targeted to solve large-scale
transient CFD simulations of incompressible turbulent flows. In this regard, the
lines of future work are clear: to enable larger and faster simulations by means of
code optimization. First, we want to explore in depth the use of Kronecker-based
formulations (see Section 3.6.1) applied to mesh symmetries, parallel-in-time methods,
or multiple transport equations, among others. Then, we want to revisit the data
exchange protocol in HPC2 and design a new one that exploits all the buses efficiently
while taking care of the NUIOA-factor. We believe that the upcoming HPC systems
will feature even more complex memory configurations. Finally, we have to prepare
the code for dealing efficiently with different types of discretizations and meshes,
integrating more sparse matrix storage formats and reordering methods.



Appendix A

Implementation flux limiters in HPC2

Main contents of this appendix are published in [1].

This appendix extends the implementation of non-linear terms introduced in Section
3.6.2 detailing the implementation of a flux limiter scheme in HPC2 and studying its
computational performance on different supercomputers to demonstrate its portability.

A.1 Algebraic implementation of flux limiters

Flux limited schemes can be stated in the following form [2]:

θf =
θC + θD

2
+

Ψ(r)− 1

2
(θD − θC) , (A.1)

where θC and θD stand for the centered and downwind values of θ according to the
velocity field u, Ψ(r) is the flux limiter function, and r is the discontinuity sensor,
which, following the nomenclature in Figure A.1, is defined as follows [2]:

rf =
∆Uθ

∆uθ
=
θC − θU
θD − θC

, (A.2)

where ∆Uθ is the gradient of θ at the upwind face and ∆uθ the gradient at the face of
interest. Both differences are taken as positive in the flow direction, defined by the
sign of the velocity field u.
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u

f

DU C

Figure A.1: Classical stencil for the computation of the gradient ratio at face f . U , C and
D correspond to the upstream, centered and downstream nodes.

The discretization of Equation A.1 may benefit from the adoption of an algebraic
approach. In this regard, it can be easily extended to the whole computational domain
as:

θs = (Πc→s + F(rs)Q(us)∆c→s)θc, (A.3)

where θs ∈ Rm and θc ∈ Rn are the vectors holding all the values of θf and θc,
Πc→s ∈ Rm×n is the cell-to-face interpolation defined in Equation 2.15, F(rs) ∈ Rm×m

is the diagonal matrix absorbing the artificial diffusion introduced in Equation A.1,
Q(us) ∈ Rm×m is the diagonal matrix taking the proper sign of the velocity at the
faces, [diag (Q(us))]f = sign([us]f ), and ∆c→s ∈ Rm×n takes the difference across
the face following the nomenclature in Figure 2.2, left.

The construction of the gradient ratio will proceed first by the separate calculation
of both the numerator (∆Uθ) and the denominator (∆uθ) of Equation A.2, then
computed as:

[rs]f =
[dUθs]f
[duθs]f

=
[(Q(us)Sc→s + Tc→s)θc]f

[Q(us)∆c→sθc]f
, (A.4)

where we introduce the new matrices Sc→s = 1
2 Ns

(
Id ⊗ ADs

)
NTs Ec→s and Tc→s =

1
2 Ns (Id ⊗ As) NTs Ec→s, where ADs and As are the face adjacency and directed adjacency
matrices following Figure A.2 and Ec→s is the cell-to-face incidence (cf. see [1]). It is
noted that Sc→s and Tc→s can be precomputed at the beginning of the simulation.

In this way, the final algorithm for the deployment of a flux limiter in the recon-
struction of the variable at faces, θf , within our algebra-based framework is described
in Algorithm 4.
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Figure A.2: Upstream (red) and downstream (blue) adjacent faces for face 1 with respect
to a positive component of velocity. The selection of the right ones in As will ultimately
depend on Q(us).

Algorithm 4 Algorithm for reconstruction of a scalar field at faces, θs, using the
algebraic implementation of a flux limiter.
Require: θc, us, ∆c→s, Sc→s, Tc→s, Πc→s
Ensure: θs
1: duθs ← ∆c→sθc . SpMV
2: duθs ← Q(us)duθs . signxty
3: rs ← Sc→sθc . SpMV
4: rs ← Q(us)rs . signxty
5: rs ← rs + Tc→sθc . SpMV
6: rs ← rs/duθs . axdy
7: θs ← Fduθs . superbeexty
8: θs ← θs + Πc→sθc . SpMV

A.2 Computational comparison with stencil-based approaches

From a purely computational point of view, the algebraic approach seems inefficient. On
the one hand, all three types of generalized algebraic kernels (i.e., SpMV, kbin and kred)
presented in Section 3.6.2 feature a very low AI, and this restricts their performance
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to small fractions of the peak performance (this is further discussed in Chapters 3 and
4). On the other hand, this approach requires a higher number of simpler kernel calls,
which results in producing more intermediate results. For instance, four independent
kernel calls are required to compute rs in lines 3 to 6 in Algorithm 4.

Therefore, the algebraic implementation for the appropriate reconstruction of the
variables at faces, θs, is compared with classical, stencil-based approaches. This
comparison is conducted from a theoretical point of view, assessing the minimum
number of flop and memory traffic (in bytes) required in different scenarios. Note
that the actual number of memory accesses during kernel execution depends not only
on the algorithm but also on hardware and software features. Therefore, regarding
the memory traffic, two different values are estimated considering the full-hit and
full-miss caseloads. The former refers to the best scenario with an ideal temporal
locality: multiple accesses to a particular data element are so close in time that its
value is always reused from cache. Conversely, the latter considers the worst scenario
with a null temporal locality so that every repeated access results in cache-miss and
requires a memory load from memory. Thus, these two values result in the interval of
effective AI of each kernel.

For the sake of clarity, in this comparison we only consider k-regular, periodic
meshes composed of convex polygons which accomplish the following equality:

m ≈ k

2
n, (A.5)

where n and m represent the number of cells and faces, respectively, and k is the
degree of the mesh elements (i.e., the number of neighboring cells). The resulting
requirements are listed in Table A.1, which is described throughout the section.

ci−1 ci+2ci+1ci

ui

UD C

δi

ci−1 ci+2ci+1ci

ui

δi

DU C

Figure A.3: Example of stencils in a one-dimensional Cartesian grid according to the
classical flux limiter approach. The stencil topology varies according to the sign of the
velocity field, v.
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Table A.1: Minimum number of flop and memory traffic (in bytes) required per mesh cell
for computing the variable at the faces in different scenarios: stencil- and algebra-based
implementations on uniform, non-uniform and unstructured one-dimensional (k = 2) and
three-dimensional (k = 6) meshes.

k Approach FLOP Bytes AI
full-hit full-miss full-hit full-miss

2 Uniform 11 32 48 0.344 0.229
2 Non-uniform 13 40 56 0.325 0.232
2 Unstructured 20 84 132 0.238 0.152
2 Algebraic 28 288 352 0.097 0.080
6 Uniform 33 80 240 0.413 0.138
6 Non-uniform 39 104 360 0.375 0.108
6 Unstructured 168 228 1020 0.737 0.165
6 Algebraic 180 1408 1984 0.128 0.091

Let us start from the analysis of the simplest case: the stencil-based calculation
of θf in a one-dimensional Cartesian grid, depicted in Figure A.3 and described in
Algorithm 5. Every ith face is surrounded by two cells, cf and ci+1. For each ith
face in m, the sign of the velocity determines the upstream, centered and downstream
values of θ, as well as the centered and upstream distances. Following the algorithm,
5m flop are required for computing the gradient ratio in line 8, 1m for computing the
limiter function in line 9 (this value may vary depending on the limiter function; in
this example we have considered the superbee limiter [2]), and 7m for computing the
value at the face in line 10. In the algorithm, three discrete fields are required for the
computations: the initial scalar field, θc ∈ Rn, the velocity field, us ∈ Rm and the
distances between cells, ds ∈ Rm. Besides, the algorithm ensures the calculation of the
discrete scalar field at faces, θs ∈ Rm. Thus, considering double-precision values, and
given that the number of faces is equal to the number of cells in the one-dimensional
case (k = 2→ m = n), the minimum flop and bytes required are 5m+ 1m+ 7m = 13n

and 8(n+m+m+m) = 32n, respectively. The total memory traffic in the full-miss
caseload would rise to 48n because two different values of ds and θc are accessed for
every face. Note that this values are slightly reduced in the particular case of uniform
meshes: neither the distances array nor its quotient are required, thus omitting 2m

flop in line 8 and the access to ds. On the other hand, the generalization of Algorithm
5 for three-dimensional Cartesian grids (k = 6 → m = 3n) is straightforward and
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rises the computational requirements to 39n flop and 80–336n bytes for non-uniform
meshes, or 33n flop and 56–216n bytes in the uniform case.

Algorithm 5 Stencil-based calculation of θf in a one-dimensional Cartesian grid.
Require: θc, us, ds . 8C + 8F + 8F bytes
Ensure: θs . 8F bytes
1: for i← 1 to m do
2: if us[i] > 0 then
3: θC = θc[i], θU = θc[i− 1], θD = θc[i+ 1]
4: di = ds[i], dU = ds[i− 1]
5: else
6: θC = θc[i+ 1], θU = θc[i], θD = θc[i+ 2]
7: di = ds[i], dU = ds[i+ 1]

8: ri ← (di/dU )(θC − θU )/(θD − θC) . 5F flops
9: Ψi ← limiter(rf ) . 1F flops

10: θs[i]← (θC + θD)/2 + (Ψi − 1)(θD − θC)/2 . 7F flops

A generalization of the stencil calculation for unstructured meshes is outlined in
Algorithm 6. In contrast with the structured algorithm, the indices of neighboring
nodes are not predictable, so the incidence graphs are required. For each ith face
in m, the sign of the velocity determines the indices of the centred and downstream
cells, cC and cD, according to the cell-to-face incidence graph. Then, for each jth
face incident to cC (except fi), its contribution to the upstream gradient, projected
over the normal of fi, is accumulated, accounting for 5(k − 1)m and 4(k − 1)m flop in
lines 18 and 19, respectively. The calculation of θf in lines 20 to 22 follows similarly
as in Algorithm 5, and adds 13m operations. In this case, six discrete fields, one
integer list and two incidence graphs are required for the computations. The specific
requirements for two k-regular unstructured meshes, k = 2 (one-dimensional mesh)
and k = 6 (three-dimensional hexaedral mesh), are listed in Table A.1.

Finally, in the algebraic implementation outlined in Algorithm 4, it can be observed
how it is completely independent of the mesh type and the numerical method: these
characteristics only affect the matrices. The number of calls to SpMV and kbin kernels
is readily deduced from the algorithm: 4 times each. Four matrices are required
for the computations: the differences at faces, ∆c→s, with 2m non-zero elements,
the oriented and unoriented differences, Sc→s and Tc→s, with 2km each, and the
cell-to-face interpolation, Πc→s, with 2m. In this example, we consider the use of the
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Algorithm 6 Stencil-based calculation of θf in a generic unstructured grid based on
incidence graphs.
Require: θc, us, ds, nxs, nys, nzs, . 8C + 40F bytes

kc, ∆c→s, Ec→s . 4C + 8F + 8F bytes
Ensure: θs . 8F bytes
1: for i← 1 to m do
2: if us[i] > 0 then
3: cC = ∆c→s[i][0]
4: cD = ∆c→s[i][1]
5: else
6: cC = ∆c→s[i][1]
7: cD = ∆c→s[i][0]

8: ∆U = 0
9: for k ← 1 to kc[cC ] do

10: j = Ec→s[cC ][k]
11: if j 6= i then
12: if ∆c→s[j][0] 6= cC then
13: cU = ∆c→s[j][0]
14: else
15: cU = ∆c→s[j][1]

16: dj = ds[j]
17: θU = θc[cU ]
18: nk ← nxs[i]nxs[j] + nys[i]nys[j] + nzs[i]nzs[j] . 5(k-1)F flops
19: ∆U ← ∆U + nk(θC − θU )/dj . 4(k-1)F flops
20: ri ← ∆U/((θD − θC)/di) . 3F flops
21: Ψi ← superbee(ri) . 1F flops
22: θs[i]← (θC + θD)/2 + (Ψi − 1)(θD − θC)/2 . 7F flops

ELLPACK format [3] in which each non-zero element accounts for 12 bytes (i.e., 8
bytes for the coefficient and 4 bytes for the column index). The specific requirements
for two k-regular meshes are listed in Table A.1.

A.3 Three-dimensional deformation problem

The algebraic implementation of a flux limiter in HPC2 is applied to a canonical
benchmark. In particular, the deformation (advection) of a sharp profile, which has
been tested on three-dimensional hexahedral meshes of 723, 1443, 2883, 4323 and
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5763 cells following Algorithm 7, where M ∈ Rn×m is the divergence operator and
U(us) ∈ Rm×m is a diagonal matrix containing the velocities at faces (cf. Section
2.1.1). Recall we evaluate the products by diagonal matrices by means of kbin calls
(cf. Section 3.6.2).

Algorithm 7 Algorithm for the advection of a scalar field with a 1st order Euler
method, using the algebraic implementation of a flux limiter. The nomenclature and
algorithm formulation follows that of Chapter 2.
Require: θnc , us, dt, ∆c→s, Sc→s, Tc→s, Πc→s, M
Ensure: θn+1

c

1: duθs← Q(us)∆c→sθ
n
c

2: rs ← (Q(us)Sc→s + Tc→s)θ
n
c /duθs

3: θs ← Πc→sθ
n
c + F(rs)duθs

4: θn+1
c ← θnc + dtMU(us)θs

The sharp profile is initialized in a physical domain of [0, 1] × [0, 1] × [0, 1] as a
sphere of radius r = 0.15, located at (0.35, 0.35, 0.35), and subject to a divergence-free
velocity field:

u = 2sin2(πx)sin(2πy)sin(2πz)cos(πt/T ), (A.6)

v = −sin(2πx)sin2(πy)sin(2πz)cos(πt/T ), (A.7)

w = −sin(2πx)sin(2πy)sin2(πz)cos(πt/T ), (A.8)

during 3.0 time-units, T [4].
The results of the profile on meshes of 723, 1443, 2883, 4323 and 5763 cells are

shown in Figure A.4 for the slices in x = 0.35, y = 0.35 and z = 0.35 planes. Also, the
three-dimensional temporal evolution of the sphere on a mesh of 5763 cells is shown in
Figure A.5. As in [4], the resulting shapes after the deformation are satisfactory, and
mass is precisely conserved.

This benchmark has been deployed in the HPC2. To demostrate its portability,
the simulations have been run on different supercomputers. Before going into details,
we recall from Section 3.2 the theoretically achievable performance, πk, which reads

πk = min(πu, AIkβu),

where πu is the peak performance of the computing device in double-precision, βu is
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Figure A.4: Contours for θ = 0.5 in x = 0.35, y = 0.35 and z = 0.35 planes after 3.0
time-units for meshes of 723, 1443, 2883, 4323 and 5763 cells.

 t=3.0 t=1.5 t=0.75 t=0.25 t=0.0

Figure A.5: Time evolution of the θ = 0.5 contour for t = 0, 0.25, 0.75, 1.5, 2.25, 2.75 and
3.0 time-units for mesh of 5763 cells.

the peak memory bandwidth and AIk is the maximum AI of the kernel, taking the
full-hit scenario as described in Section A.2. Then, we define the performance and
memory efficiencies as the ratio of measured performance to πk and measured memory
traffic to full-hit, respectively.

The simulations on meshes of 723–4323 cells have been executed on up to 64 nodes
(3,072 cores) of the CPU-based MareNostrum 4 supercomputer at the Barcelona
Supercomputing Center. Its nodes are equipped with two Intel Xeon 8160 CPUs (24
cores, 2.1 GHz, 6 DDR4-2666 memory channels, 128 GB/s memory bandwidth, 33 MB
L3 cache), interconnected through the Intel Omni-Path network (12.5 GB/s). The
application achieved a sustained performance of up to 1.6 Tflop/s, corresponding to
nearly 0.8 of performance efficiency.

The simulation on a mesh of 5763 cells has been executed on 27 nodes of the
Lomonosov-2 hybrid supercomputer at Lomonosov Moscow State University. Its
hybrid nodes are equipped with one Intel Xeon E5-2697 v3 CPU (14 cores, 2.6 GHz, 4
DDR4-2133 memory channels, 68 GB/s memory bandwidth, 35 MB L3 cache) and
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one NVIDIA Tesla K40M GPU (12 GB of GDDR5 memory, 288 GB/s, PCIe 3.0 x16
– 16GB/s), interconnected via InfiniBand FDR network (7 GB/s). The application
achieved a sustained performance of 0.9 Tflop/s, corresponding to nearly 0.75 of
performance efficiency and 98.5% of the heterogeneous efficiency (i.e., the ratio of the
heterogeneous performance to the sum of CPU-only and GPU-only performances).

Finally, we aim at completing the performance analysis, and the theoretical com-
parison in Section A.2, by comparing the actual performance of the algebraic and
stencil approaches. Following Algorithm 6, a stencil kernel has also been implemented
in HPC2. The tests have been carried out on the CPU-based JFF fourth-generation
cluster at the Heat and Mass Transfer Technological Center. Its nodes are equipped
with two Intel Xeon Gold 6230 CPUs (20 cores, 2.1 GHz, 6 DDR4-2933 memory
channels, 140 GB/s memory bandwidth, 27.5 MB L3 cache). Considering that the
DM parallelization is equivalent in both approaches since the data exchanges are the
same, only single-node comparisons have been conducted.

The results are shown in a roofline plot [5] in Figure A.6 for both single- and
dual-socket executions using a NUMA-aware, SM parallelization on meshes of 1443

(A) and 2883 (B) cells. We have discarded the smallest mesh of 723 to ensure a
memory-bounded behavior and the biggest meshes of 4323 and 5763 because they do
not fit in a single node. In the plot, two vertical lines represent the minimum and
maximum values of the AI for each kernel as estimated in Section A.2 and outlined in
Table A.1. Then, the roofline curve is calculated as follows:

Πu(πu, βu) = min(πu, AIβu).

In this particular test, βu and πu are 140 GB/s and 1344 Gflop/s per socket, respectively.
The real number of memory accesses to main memory have been measured using a
profiling tool to calculate the effective AI of each execution.

In single-socket execution, the stencil kernel performs nearly twice faster than the
algebraic one (stencil: 33.02 (A) and 24.52 (B) Gflop/s, algebraic: 13.89 (A) and 13.54
(B) Gflop/s), even though its lower performance efficiency (stencil: 0.32 and 0.24,
algebraic: 0.78 and 0.76). However, this gap is reduced to approximately ×1.35 in the
dual-socket case (stencil: 37.01 and 33.82 Gflop/s, algebraic: 27.16 and 25.17 Gflop/s).
The algebraic kernels feature a regular unit-strided memory access everywhere except
the input vector in SpMV. In contrast, the stencil kernel leads to irregular accesses
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Figure A.6: Roofline models representing the ranges of achievable performance for the stencil-
and algebra-based implementations of the flux limiter on three-dimensional unstructured
meshes. Results on Intel Xeon Gold 6230 are shown for meshes of 1443 (A) and 2883 (B).

to Es→c, ∆c→s, ds, θc and n, resulting in higher cache miss rates and reducing the
memory efficiency, especially in dual-socket configurations (stencil: 0.36 and 0.33,
algebraic: 0.96 and 0.94). Therefore, the actual performance gap is far from the ×5.75

of the (worst) theoretical scenario.
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