Chapter 5

Filtering & Segmentation

5.1 Objectives

Our purpose in this chapter is to show that hierarchical region based representations are

suitable for filtering and segmentation purposes.

To that end, first, a review on segmentation techniques and connected operators is done.
It is discussed that both techniques are based on merging techniques and that a hierarchical
region based representation can be useful for the implementation of either segmentation or
connected operators. Both strategies can be implemented using pruning techniques, and thus
we may take advantage of the fixed tree structure to design complex and at the same time

efficient analysis techniques.

The approach taken to analyze and prune the tree is then discussed. The problem of
the lack of robustness of non-increasing criteria is analyzed and a solution based on dynamic
programming is proposed. Futhermore, the particularities associated to pruning each of the

presented trees are also studied.

Finally, several pruning examples are presented. They range from the classical area filter-

ing to motion filtering or rate-distortion based segmentation.

5.1.1 Segmentation Algorithms

The process of spatial partitioning of an image into mutually exclusive connected image
regions is known as image segmentation. Each region is expected to be homogeneous with
respect to a defined property. Typically, image segmentation is carried out in the early
stages of a vision system to facilitate image representation and interpretation. A broad
range of approaches to segment an image are actually available, each one has its advantages
and drawbacks. A review of the available techniques may be found in [26] land [51]. The

first article reviews segmentation techniques based on thresholding, classification and region

74 Filtering & Segmentation

growing techniques. The second one reviews the available techniques based on probabilistic
approaches: relaxation techniques, fuzzy logic, classification with Markov models and neuron

networks.

In this work we focus on region based segmentation techniques. The classical approach
consists in, first, defining a set of initial regions and, second, in progressively merging re-
gions to create a partition of the image. For instance, in the Split & Merge [28] algorithm,
the set of initial regions is defined by the split process and the merging is then performed
between the initial regions depending on a homogeneity criterion. The Region Growing [11]
is another example: it is based on the merging of the set of initial regions with individual
neighboring pixels that belong to an uncertainty area. Finally, the classical morphological
tool for segmentation is the watershed [37, 95, 17]. It is also based on a merging strategy: the
initial regions are the regional minima of the gradient of the image which are progressively
expanded by merging of neighboring pixels in an order defined by the gradient value. Finally,
the coding-oriented segmentation presented in [32, 31] also follows this basic merging strategy

taking into account the coding cost of the resulting segmentation.

In [21] these merging techniques are studied in a general framework. The associated
merging algorithm is studied in Sec. 4.2: to completely specify a region merging algorithm
one has to specify three notions: the merging order (the order in which links are processed),
the merging criterion (each time a link is processed, the merging criterion decides if the
merging has to be done or not), and the region model (when two regions are merged, the
model defines how to represent their union). In the case of a region growing algorithm, the
merging order is defined by a similarity measure between two regions (for example color or
gray-level distance), the merging criterion states that the pair of most similar regions have to
be merged until a termination criterion is reached (for instance a given number of regions) and
the region model is usually the mean of the pixels gray-levels or color values of the associated
region.

Note that in the case of region growing the merging order (similarity between neighboring
regions) is quite flexible and allows the definition of complex homogeneity models. By con-
trast, the merging criterion is very simple and crude: it states that the pair of most similar
regions have always to be merged until the termination criterion is reached. As will be seen in
the sequel, the use of trees allows us to increase the flexibility of the merging criterion. That
is, more complex techniques may be applied to the nodes of the tree to select which nodes
have to be pruned. By contrast, the tree structure is fixed and therefore the merging order

cannot be changed “on the fly” just as one can do with a region merging algorithm.

5.1.2 Connected operators

Connected operators [76, 81, 16] are filtering techniques derived from mathematical morphol-

ogy that eliminate part of the image content while preserving the contours of the remaining

5.1 Objectives 75

parts of the image. In short, these operators do not remove frequency components like lin-
ear filters, or some shapes like median filters or morphological opening and closing with a

structuring element. They remove and merge flat zones.

Connected operators for sets

The definition of connected operator for a set is done via the notion of connected component.

We assume that the classical connectivity (see Sec. 2.1) is used for that purpose.

Definition 5.1 (Connected operators for sets) An operator 1 working on sets is said to
be connected when for any set A, the symmetrical difference A\ ¢ (A) is exclusively composed

of connected components of A or its complement AC.

This means that the operator acts only by preserving or removing connected components.
In other words, a connected operator can only remove connected components of the sets or

fill connected components of the background.

The operator may satisfy the following properties: the operator ¢ is said to be increasing
if VX, Y € E such that X CY = ¢(X) C (YY), and idempotent if (1(X)) = ¥(X) (that

is, applying the operator twice or more does not change the result).

Connected operators for functions

The extension of the definition of connected operator for sets to functions is done via the
notion of flat zones and their associated partitions (see Sec. 2.1). The set of flat zones of an

image f creates a partition P (f) = U; Fz;, being Fz; a flat zone of the image f.

Definition 5.2 (Connected operator) An operator ¥ applied on a function f, g = VU(f),
is connected if the partition of flat zones of its input, P¥*(f), and the partition of flat zones
of its output, PT*(U(f)), satisfy PF#(V(f)) C PFZ(f).

If p and ¢ are neighbors such that f(p) = f(q) (that is, they belong to the same flat zone), a
connected operator acts on f such that g(p) = g(q). The latter condition can be reformulated
in an equivalent manner as: if g(p) # g(q), then f(p) # f(q). Thus, a connected operator,
also called a planning in [35], operates on the partition of flat zones by merging its flat zones.
Connected operators are attractive because they simplify an image without introducing any
new contour or blurring as would be the case of low pass filters. This property make these

filters attractive in segmentation applications.

The dual operator, U*, is defined via the complementary of f, —f: ¥*(f) = —¥(—f). In
the digital image processing framework, the complementary of f is usually obtained as NG — f,

where NG is the highest possible gray-level value of an image (usually NG = 255). Thus,
U*(f) = NG — U(NG — f). Moreover, an operator is said to be self-dual if U(f) = ¥*(f).

76 Filtering & Segmentation

There are several ways of creating connected operators for functions. The simplest one
consists in extending a connected operator acting on sets [76, 27]: any operator ¢ acting on
sets can generate an operator ¥ acting on functions. For that purpose, first, the upper level
sets X, (f) are generated for each possible gray-level value h (0 < h < NG). Then, each
binary image X, (f) is processed (independently) with the operator ¢ acting on sets. Finally,
the gray-level image g = ¥(f) is reconstructed using the filtered binary images (X (f)) by

means of a technique called “stacking”. The classical approach consist in

9(p) = ¥(f)(p) = \/{V4,h > j > Olp € ¥(X;)} (5.1)
h

If the binary connected operator v is increasing, the previous equation can be simplified:
9p) = ¥(£)(p) = \/ {hlp € ¥(Xn)}
h

In the case of non-increasing binary operators, the use of Eq. 5.1 leads to non robust operators.

This issue is further described and analyzed in Sec. 5.4.

The gray-level operator is said to be increasing if W(f) < U(g) when f < g, idempotent
if U(U(f)) = ¥(f), anti-extensive if U(f) < f and extensive if U(f) > f. An opening is
an increasing, idempotent and anti-extensive operator, whereas a closing is an increasing,

idempotent and extensive operator.

Note that the approach of the extension of binary to gray-level connected operator pre-
sented previously is closely related to the Max-Tree representation. In the Max-Tree, each
node is associated to a connected component that results from thresholding the image at
all possible gray-levels (see Sec. 3.1). These nodes are structured according to their inclu-
sion relationship between different gray-levels. Thus, the Max-Tree enables us to implement

connected operators on functions by means of this extension mechanism.

As examples, let us briefly recall the opening by reconstruction, the area opening and the
A-mazx operator. The first two operators can deal with binary as well as gray-level images,

whereas the last one is devoted to gray-level images only.

e Opening by reconstruction [94, 76, 16]: On a set, the binary opening by reconstruction
1) preserves all connected components that are not totally removed by a binary erosion
by a structuring element of size N x N. The extension to the case of gray-level images
is straightforward. The resulting opening has a size simplification effect: it removes the
bright components that are completely included in the structuring element. By duality,
a closing by reconstruction can be defined. It simplification effect is similar to that of

the opening but on dark components.

o Gray-level area opening [93]: This filter is similar to the previous one except that it

preserves the connected components that have a number of pixels larger that a limit A.

5.1 Objectives 77

It also is an opening which has a size-oriented simplification effect, but the notion of
size is different from the one used in opening by reconstruction [93]. By duality an area

closing can be defined.

e)\-mazx operator: The criterion here is to preserve a connected component of the level
set X if and only if this connected component hits a connected component of the level
set X;,). This is an example where the criterion involves two sets obtained at two
different threshold values. The simplification effect of this operator is contrast oriented

in the sense that it eliminates image components with a contrast lower than .

In [9, 10] an attribute based approach to openings is presented. It is intended to be an
extension of the area opening presented in [93] to a more general framework. The approach
they present is based on the extension of binary connected operators to gray-level operators
by means of stacking. The extension includes increasing and non-increasing criteria. However,

the problem of lack of robustness of the non-increasing criteria is not discussed.

In [54] it is discussed that region adjacency graphs may be used to implement connected
operators. Connected operators act on the function by merging its associated flat zones and
thus merging techniques on region adjacency graphs are suitable to create connected opera-
tors. The reader may also refer to [21, 70] for a discussion of the implementation of connected
operators using the General Merging Algorithm presented in Sec. 4.2. In particular, it dis-
cusses the differences (from a region based merging strategy point of view) of segmentation
algorithms and connected operators. Moreover, the paper analyzes how self-dual connected

operators are created using the region based merging approach.

In [35] a classification of the connected operators is proposed. Classical connected oper-
ators have been implemented by means of the opening by reconstruction. These filters are
a subclass of connected operators and are characterized by the fact that they never create
a regional minimum and thus are suitable to create a segmentation pyramid. However, in a
general case, a connected operator may create new regional extrema. The paper [35] studies
two subclasses of connected operators which do not create new extrema: the flattenings and

the monotone planings.

Definition 5.3 (Flattening) An image g is a flattening of the image f if and only if for
any pair of neighboring pizels (p, q)

f(p) = g(p) and g(q) > f(q)
glp) >9(q) = or
f(@) > g(p) and g(q) > f(p)

Basically the previous definition means that any transition in the destination image g is
characterized by a larger variation in the source image f. Flattenings introduce a coupling

between the values of the function f and the function g, whereas simple planings have no such

78 Filtering & Segmentation

coupling. The monotone planings introduce a coupling in the sense of variation and ignore

the coupling of values.

Definition 5.4 (Monotone planning) An image g is a monotone planning of the image f

if and only if for any pair of neighboring pizels
9(q) > g(q) = f(p) > f(q)

Note that the dynamic range between g(p) and g(p) may be greater than between f(p) and

f(q). The intersection of the two previous subclasses form the levelings [35, 36].

Definition 5.5 (Leveling) An image g is a leveling of the image f if and only if for any
pair of neighboring pizels (p, q)

9(p) > g(q) = f(p) > g(p) and g(p) > f(q)

The properties of levelings are studied in [36]. A construction technique based on the com-
bination of geodesic dilation and erosion is proposed. The degree of simplification at each
region of the original image f can be controlled by means of the marker function. Moreover,
if the marker is self-dual the resulting leveling is self-dual. The extension to a color image is
discussed in [23].

However, levelings are not able to deal with the transition zones, that is, the set of pixels
that are between the regional extremum. The same issue appears on classical connected
operators, and as a consequence for the Max-Tree, since it only acts on the regional maximum
of the image. It will be seen that Binary Partition Trees allow to act on all the flat zones of

the image.

This chapter demonstrates that hierarchical region based representations, and in partic-
ular, the Max-Tree and the Binary Partition Tree, may be used to implement connected

operators. The work presented in this chapter has been partially published in [74, 69, 68, 67].

5.1.3 Discussion

As has been discussed, both segmentation algorithms and connected operators act on the
image by merging regions. As will be seen, both techniques may be implemented using
pruning techniques. Thus, the question that may arise now is what are the differences between
a segmentation and a connected operator implemented using pruning techniques on trees. The
purpose of a filter is usually to remove some details of the image which do not fulfill a certain
criterion, whereas segmentation algorithms are usually used to partition the image into a set

of meaningful regions by means of a homogeneity criterion.

The difference between both approaches is rather subtle. Consider, for instance, a filter

that removes from a sequence of frames those objects that do not follow a certain motion.

5.2 Tree processing strategy 79

The output of the filtering would show us the sequence of images from which some objects
have been removed, whereas the residue between the original and filtered sequence would
show us the objects that have been removed. The binary masks associated to the region of
support of the residue may be interpreted as a segmentation: we may say that objects have
been classified according to a motion criterion. Thus, filtering and segmentation seem to be
closely related. In our work, we will talk of “segmentation” if the pixel based representation
of the output resulting from pruning the tree is a partition (that is, a label image). On the
other hand, we will talk of “filtering” if the output is the original image from which some

elements have been removed.

5.2 Tree processing strategy

In this section we discuss the particular issues related to processing the Max-Tree and the
Binary Partition Tree. We assume that the analysis algorithm applied on the tree defines a

valid pruning strategy (see Sec. 2.2.3 on page 15).

5.2.1 Pruning
Max-Tree

In Sec. 2.2.3 we emphasized on the fact that the pruning of the tree depends on what the
tree represents itself. The Max-Tree nodes represent the set of connected components that
arise from thresholding the image at all possible gray-levels (see Sec. 3.1). Assuming that a
valid pruning strategy has been defined, pruning a subtree of the Max-Tree is associated to
merge the nodes to be pruned with its first non pruned ancestor. The pruning operation can
be seen in an equivalent manner as to remove from the image the connected components of
the nodes to be pruned (see Fig. 5.1). Thus, it can be seen that no particular restriction has

to be applied when pruning the tree.

Binary Partition Tree

In this case more attention should be paid when pruning the nodes, since the tree represents a
set of hierarchical partitions. A pruning operation on this tree should lead to a tree represent-
ing a partition hierarchy. As discussed in Sec. 2.2.3 “pruning” a subtree is done by merging

the corresponding nodes into a node which is the child of the first non-pruned ancestor.

Fig. 5.2 shows an example of Binary Partition Tree pruning. The set of original hierarchical
partitions and its associated tree are shown on the left. In this particular case, the analysis
algorithm decides to removed nodes R;, Ry and Rg. The pruning consists in merging the

corresponding nodes and creating a new node at the position of Rg, representing the region

80 Filtering & Segmentation

(ATTR AN
I

L2AAR2AL

Nodes to prune

Tree construction
Image construction

Tree representation Filtered tree

Figure 5.1: Example of Max-Tree processing.

of support associated to Rg. This procedure ensures us that pruning the tree results in a tree
that represents a partition hierarchy. The resulting tree and its associated partition hierarchy
is shown on the right of Fig. 5.2. Note that if R’ is not created partition P;’mned would not

be a partition since pixels of R’ would not be classified as belonging to a determined region.

5.2.2 Reconstruction

Once the tree has been pruned, a pixel based representation of the associated tree is obtained.

Max-Tree

The Max-Tree represents the connected components resulting from thresholding the image
at all possible gray-levels. The pruned tree can therefore be considered to be a structured
representation of the connected components resulting from thresholding the filtered image
at all possible gray-levels. The reconstruction is therefore done by stacking the connected

components that make up the pruned tree.
Mathematically, the reconstructed image (see Fig. 5.1) is

g(p) = \/ {h:3k|p € UpCCt} (5.2)
h

where g represents the resulting image and UpCC];; denotes a node of the Max-Tree we would
like to reconstruct whose associated gray-level is h (see Sec. 3.1).
In the case of the Min-Tree, we may reconstruct the associated image with

9() = \{n:3k|p € Lowcct}
h

5.2 Tree processing strategy

81

Ry

Partition P°

Rg RG
R
Partition P Partition P’
R, R, R,
R,

Partition P° Partition P*

Tree construction

Ry

Partition Pounes

Rg Re

R

Partition Phunes Partition Paunes

R R5

.

Partition ,Pp?;uned

Reconstruction

Rg R7
Pruning

R: R R, R,

Figure 5.2: Example of Binary Partition Tree processing.

82 Filtering & Segmentation

where DownCC} represents a node of the Min-Tree.

In the case of the Max-Tree the resulting operator is anti-ertensive, that is, g < f.
Moreover, the reconstructed function g is a leveling of f since ¢ < f and for each pair of

neighboring pixels (p, q) the following condition holds: g(p) > g(q) = g(q) = f(q).

On the other hand, processing with the Min-Tree results in extensive operators, g > f.

The resulting function g is a leveling of f, since g > f and for each pair of neighboring pixels
(p.a) if g(p) > g(a) = g(p) = f(p).

Binary Partition Tree

The partition associated to the leaves of the pruned tree may be constructed by simply la-
belling the region of support of each leaf node on the image. In some cases we may be
interested in obtaining a color representation of the image. For that purpose, several ap-
proaches may be taken. One may fill each region R; of the obtained partition with a certain
color value. This color value may be extracted, for instance, by computing the mean color
value associated to the region support R; on the original image. If not stated otherwise, the
latter approach is the one that it is used to present results in this chapter. The resulting
operator is self-dual, W(f) = ¥*(f), if the tree has been created in a self-dual manner (see

Sec. 4.4) and a self-dual model is used to fill each of the regions of the image.

5.3 Pruning strategy

Once the tree representation has been created, the analysis step analyzes each node N by
measuring a specific criterion, M(Ny), on each of the associated regions and takes a decision

on the elimination or preservation of the node.

In this work the usual approach that we have taken is, first, to measure a numerical value
M(Ny,) at the region Ry of each node Ny, usually based on some region descriptor and second,
on using a threshold A to decide if the node Nj should be removed. If the criterion value

M(Ny,) is above (resp. strictly below) the threshold, the node is preserved (resp. removed).
Node is removed if M(Ng) < A (5.3)

The tree together with the set of decisions taken on each node is called decision tree (the
term should not be mistaken with the decision tree used for classification). Note that Eq. 5.3
does not necessarily define a valid pruning strategy. As will be seen, this depends on the
properties of the criterion applied on the nodes of the tree. This issue is discussed in Sec. 5.4

and a robust solution based on dynamic programming is proposed in Sec. 5.5.

In order to allow a fast implementation of the analysis step the criterion should be com-

puted in a recursive manner. In this work, “recursive” means that the criterion associated

5.4 Increasing and Non-Increasing Criteria 83

Max-Tree Binary Partition Tree

Figure 5.3: Example of recursive implementation of a criterion: size. See text.

to a node should be computed from the criteria measured on the children nodes. Fig. 5.3
shows an example for the size criterion (number of pixels). The size of a region R = UR;
is equal to the sum of the sizes of the regions R; it composes. In the case of the Binary
Partition Tree, each node represents the union of its two children nodes. Thus, the size of
a region Ry of a Binary Partition Tree is equal to the sum of the sizes of its two children
nodes: for instance, An,, = Anys + ANy OF ANy, = ANy, + ANgs- A similar approach may
be taken for the case of the Max-Tree: the purpose in this case is to measure the size in
pixels Ap, of the connected component associated to the node NNj of the tree. The latter
criterion can be computed in a recursive way using the relationship between the flat zones
and connected components discussed in Sec. 3.1 (and Sec. 2.1). In particular, we discussed
that the Max-Tree may be seen as a structured representation of the flat zones the image is
composed of. Let us denote with Aﬁi the number of pixels associated to the flat zones of the
connected component of Ny (see Sec. 2.1). The size associated to a connected component Ry
of a Max-Tree, Ay, , can be assessed by summing the contribution of the sizes associated to
the connected components of its children and the term Aﬁi . For instance, An,, = Any, —|—A§f} o
and AN04 = AN07 + ANOS + AZ}\%‘I.

It can be seen that a recursive implementation of the criterion reduces the computational
complexity of the analysis algorithm. With a non-recursive implementation of a criterion, the
nodes of the tree are analyzed, for instance, by accessing for each node to the list of pixels

associated to it. This results in a higher computational complexity.

5.4 Increasing and Non-Increasing Criteria

Mathematically, a criterion M assessed on a region R is said to be increasing if the following

property holds:
VR1 C Ry = M<R1> < M(RQ) (5.4)

84 Filtering & Segmentation

a) b) c)

d)

7)
e) f) g) h)
Figure 5.4: Examples illustrating increasing (a—d) and non-increasing (e-h) criteria [10]. a)
The length of the diagonal of the minimum rectangle in a given direction that encloses the
region R. b) The radius, diameter, or area of the largest circle that can fit into the region.
¢) The area or perimeter of the convex hull of the region. d) The radius, diameter or area of
the smallest circle that encloses the region. e) The maximum geodesic distance in the region.
f) The geodesic distance for a superset of the previous region. g) The length of the minimal
skeleton of the connected region. h) The major and minor axes of the ellipse that best fits

in the region.

In Fig. 5.4a—d several examples of increasing criteria that may be measured on a region R are

shown. If region R satisfies M(R) > X then all supersets of R also satisfy this criterion.

On the tree, an increasing criterion is interpreted as follows: assume that all nodes cor-
responding to regions where the criterion value is lower than a given threshold should be
removed. The increasingness of the criterion and the hierarchical structure of the tree guar-
antees that if a node has to be removed all its descendants have also to be removed. Thus, an
increasing criterion defines a valid pruning strategy. An example of a decision tree resulting

from applying an increasing criterion is shown in Fig. 5.5.

However, there are many criteria that are non-increasing. Fig. 5.4e—f illustrates some
examples. In Fig. 5.4e the maximum geodesic distance [87] of the connected region is de-
picted. The geodesic distance may decrease if the connected region increases in size, as
shown in Fig. 5.4f. There are many more non-increasing criteria associated which a region.
Indeed, on closer inspection, its seems that any attribute which is associated to shape is non-
increasing [10]. Shape is inherently non-dimensional and hence independent of size. Examples

of strict shape attributes include compactness and eccentricity. In contrast, the majority of

5.4 Increasing and Non-Increasing Criteria 85

[] []
[]] [] Q
[] 1O | [] [] Qo
[[] [] [] BEEEOOQO
MO\ OMA [] [] Q QO
momomEm@EOnA O N [] QO QO
[] Q mooomoOom|E@mOoOo ONO)
MmO OO0O /O B @O O
[O [O
[O [O
[O O @
[O
[Q
1O O O
[] Q
om[|mo o

Figure 5.5: Example of increasing criterion. The pruning strategy is straightforward since
the increasingness of the criterion guarantees that if a node has to be removed all its descen-
dants have also to be removed. Gray squares: nodes to be preserved, white circles: nodes to

be removed.

sizing criteria, such as the ones illustrated in Fig. 5.4a-d, are increasing.

If the criterion is not increasing, the pruning strategy is not straightforward since the
descendants of a node to be removed have not necessarily to be removed. Fig. 5.6 illustrates
this case. As before, a criterion has been assessed on each of the nodes of the tree and
then a decision, remove or preserve, has been taken based on a threshold. The nodes to be
preserved (resp. removed) are depicted with a gray square (resp. white circle). Note that if
we follow either Path A or Path B in Fig. 5.6, we see that there are some oscillations of the

remove/preserve decisions.

Let us analyze several approaches that may be taken in the case of a non-increasing
criterion on the decision process. For that purpose, consider a leaf node of the tree and
the set of nodes constituting the path from this leaf to the root node. In the example of
Fig. 5.7, if we select Ny, the path to the root N3 is {IN1, N2, N3}. Consider now the sequence
of the criterion values M(N}) associated to the previous path. In the example of Fig. 5.7,
the criterion sequence is M(k) = {M(N1), M(N2), M(N3)]} and is represented as a curve
(function of k) on the right side of Fig. 5.7.

If the criterion is increasing, the criterion sequence M(k) is a monotonic function and thus
the pruning strategy is straightforward independently of the threshold value A that is used.
If the criterion is non-increasing, the criterion sequence M (k) may fluctuate around the A
value and the definition of the set of nodes to remove is less straightforward. Several different
rules have been reported in the literature [27, 76, 74] for connected operators in order to deal

with the non-increasing case. These rules impose additional conditions to Eq. 5.3 so that the

Filtering & Segmentation

- e
‘ @)
MO O 4‘5 O Qo
S N ReNeReNole
JAORMOH K A o offe
oo-oloooo h Qo ofe)
F el o HOOOQROQKROGOO)¢}
SR80 mo O0d0O
=R Bo
M O [O
M O O O
5O
g
OO
Sm oo

Figure 5.6: Example of non-increasing criterion. The pruning strategy is not straightforward
since the criterion does not guarantee that if a node has to be removed all of its descendants
have also to be removed (see decisions along path A or B). Gray squares: nodes to be

preserved, white circles: nodes to be removed.

Tree representation Criterion sequence Criterion sequence
Increasing criterion Nonincreasing criterion
e N A
Criterion Criterion

OO«
S 7 o4)

nodes to node to node 6 nodes to
remove preserve remove preserve

Figure 5.7: Criterion sequence for each local maximum.

5.5 Optimization for Non-Increasing Criteria 87

resulting tree results in a decision tree which defines valid pruning strategies.

1. Minimum decision: A node Ny is preserved if M(Ny) > A and if all its ancestors
also satisfy this condition. The node is removed otherwise. This rule is illustrated in
Fig. 5.8a. The original decision tree, shown in Fig. 5.6, has been transformed into a

decision tree in which a valid pruning strategy is defined.

2. Maximum decision: This rule is the dual of the previous one: a node is removed if
M(Ng) < X and if all its descendant nodes satisfy the same relation. The node Ny, is
preserved otherwise (see Fig. 5.8b).

The previous minimum and maximum rules define a valid pruning strategy. However,
from our practical experience, the minimum and maximum rules are not robust enough. For
instance, similar images may produce quite different results, or small modifications of the
criterion threshold involves drastic changes on the output. The effect is particular noticeable
in video sequences, in which the threshold is fixed and a particular object should be removed
through the video sequence. In [73], an improvement of the decision robustness is proposed.
It consists in filtering the decision sequence, for example, with a median filter. This solution
actually provides more robustness, however, in the following, a different solution is proposed.
It turns out to be much more robust than any of the previous ones. It relies on a formulation of

the decision process as an optimization problem. The approach has been published in [74, 67].

5.5 Optimization for Non-Increasing Criteria

The proposed solution consists in the formulation of the decision process as an optimization
problem. The optimization should create a valid pruning strategy while preserving as much
as possible the decisions defined by the criterion (see Eq. 5.3). This problem may be viewed

as a dynamic programming issue that can be efficiently solved with a Viterbi algorithm [96].

The objective of the optimization algorithm is to change the minimum number of decisions
taken with Eq. 5.3 so that a valid pruning strategy is defined (see Sec. 2.2.3). For that purpose
a trellis is used. By applying the Viterbi algorithm on such trellis the set of nodes whose

decisions have to be changed can be obtained.

An example of the trellis on which the Viterbi algorithm is applied is illustrated in Fig. 5.9.
It has the same structure as the tree that has to be pruned except that each node Ny of the
tree has associated two trellis states: preserve N,f and remove NkR. The two states of each
child node are connected to the two states of its parent. However, in order to avoid non-
increasing decisions, the preserve state of a child is not connected to the remove state of its
parent. As a result, the trellis structure guarantees that if a node has to be removed its

children have also to be removed. Furthermore, a cost is assigned to each state of Ng: this

88 Filtering & Segmentation

(@)
Q Q Q
O O Q Q ON@)
R Q COO0ORO Criterion
ON@) O Q Q Q ON®)
QO O (CHONONO Q QO QO
Q Q O0O0OQQOHOOO O O
QOO0 @) (O ONONGO)
Q O O
(ON©) O
Q O O
Q O
Q Q
QO 0O O
ole! nodes to preserve
ONONONG)

a) Mininum decision

Criterion

—
e

nodes to preserve

b) Maximum decision

Figure 5.8: Illustration of various decision rules in the case of non-increasing criterion for

the Fig. 5.6. a) Minimum decision. b) Maximum decision.

5.5 Optimization for Non-Increasing Criteria 89

Remove Preserve
N2 Cost:0 N2 Cost:1

Remove Preserve Remove Preserve
N4 Cost:1 N4 Cost:0 Ns Cost:1 Ns Cost:0

Figure 5.9: Example of non-increasing decision tree and associated trellis structure for the
Viterbi algorithm. On the left, nodes to be preserved (resp. removed) are depicted with a
square (resp. circle). In each of the possible states of the trellis state (right), the associated
cost is indicated.

cost should be associated to the cost of taking a preserve or remove decision for the node Ng.
In this work we use the following approach to compute the cost associated to a state: if the
criterion value states that the node of the tree has to be removed (according to Eq. 5.3), the
cost associated to the remove state is equal to zero (no modification) and the cost associated
to the preserve state is equal to one (one modification). Similarly, if the criterion value states
that the node has to be preserved, the cost of the remove state is equal to one and the cost
of the preserve state is equal to zero. Although some modifications may be much more severe
than others, the cost choice has no strong effect on the final result. This issue of cost selection
is similar to the hard versus soft decision of the Viterbi algorithm in the context of digital

communications [96].

The cost associated to each state of the trellis is used to take a decision on each node of
the tree, remove or preserve, such that a valid pruning strategy is defined. The goal of the

Viterbi algorithm is to define the set of decisions such that:

Min Z Cost(Ng) such that a valid pruning strategy is defined (5.5)
k

To find the optimum set of decisions the associated trellis is used. Note that the trellis defines
a set of paths going from all leaf nodes to the root node. For each node, the path can go
through either the preserve or the remove state of the trellis. The cost of a path is equal to
the sum of the costs of its individual state nodes it goes through. The Viterbi algorithm is
used to find the paths that minimize the global cost at the root node. The optimization is
achieved in a bottom-up iterative fashion. For each node, it is possible to define the optimum

paths ending at the preserve state and at the remove state.

Let us first discuss the case of a node of the tree having one child node, see example of

90 Filtering & Segmentation

[P [

! e !
-

| - |
-

! L

|
| Pathiy Path,

Remove Preserve
Ny, Ny,

YR
py)
<
D

____/

/R
Y

z 8
Z
<
D
____/

Figure 5.10: Trellis construction for the decision in the case of a single branch tree.

Fig. 5.10. Between nodes Nj, and Ny, there are three allowed transitions in its associated
trellis: Nki — N,ﬁ, N,g — N,ﬁ and N,ﬁ — N,ﬁ. Assume now that the two optimum paths
(lowest cost) starting from a leaf node and ending at NIZ and N,g are known. Let us call
Pathkp2 and PathkR2 , respectively, these two optimum paths. The definition of the optimum
paths ending at N,ﬁ and N,ﬁ can be easily defined by a local decision. The optimum path
ending in N, ,ﬁ , that is Pathkp1 , is defined by the following rule:

If (Cost(Pathy,) + Cost(N[')) < (Cost(Patht) + Cost(N[))
then
Pathp1 = Pathf2 U(N,g — N,ﬁ)
Cost(PathkPl) = Cost(Pathé) + Cost(N,g — N,ﬁ)
else
Pathy, = Pathf |J(NE — N[)
Cost(Pathfl) = Cost(Patth) + Cost(N,f; — N,ﬁ)

This rule simply states that the optimum path ending at state IV ,ﬁ has to go through either
state NV ,g or NV, ,g and that the best path is the one leading to the lowest additive cost.

A similar decision rule can be defined for the best path ending at state N ,ﬁ. As already
discussed, the transition N,g — N]ﬁ is not allowed since it would lead to a non-increasing
decision tree. Therefore, the optimum path (path of lowest cost) ending at IV, lﬁ comes always

from the remove state of NVg,, that is N,g:
Patth = Path/,f“2 U(ng — N,ﬁ)
Cost(Pathfl) = Cost(Path,i) + Cost(N,g — N,ﬁ)

This rather simple procedure has to be extended to deal with trees with various branches.

The extension is depicted in Fig. 5.11 in the case of the junction of two branches, but the

5.5 Optimization for Non-Increasing Criteria 91

Remove Preserve Remove Preserve
N k1 N k1 N ka2 N ko

Branch 1 Branch 2

Figure 5.11: Trellis construction for the decision tree in the case of multiple branches.

procedure is general and can deal with an arbitrary number of branches. In our case there
is not one but two optimum paths ending at each node Nj. One branch comes from branch
1 whereas another one comes from branch 2. These paths are independent from each other.
As a result, we have to define independently these two paths. Let us first analyze the case of
the trellis node N,f.

The path starting from a leaf node and ending at state NV, k,P , Path? ., is composed of two
sub-paths: the first one, Pathf’l, comes from the branch 1 and the second one, PathkP’Q, from
the branch 2 (see Fig. 5.11). In both cases, the path can emerge either from the preserve or
from the remowve state of the child nodes. Assume that the optimum paths ending at nodes
Ni, and nodes Nj, are known. The possible paths ending at state IV, ,f coming from the left

and right branch are:

Path,' = Pathf \J (NE — NF) or Pathf | (NL — NF)
Path?? = Path® |) (NE = NFP) or Path? |) (NP — NP
k ko ko k ko ko k

The Viterbi algorithm should select, among each of the two possible paths of Pathkp’1 and
Pathf’2 the one of lowest cost. The path ending at node N is the union of the optimum

paths coming from each of the branches
Pathl’ = Pathf’l U Pathkp’2

Therefore, the optimum path (path of lower cost) for each child can be easily selected. For

the first branch the optimum path is

If Cost(Pathfl) < Cost(Pathle)
then
Path;* = Pathf J(N] — NF)
C’ost(Pathf’l) = C’ost(Pathfl)
else
Pathy! = Pathfi J(NE — NT)
Cost(Pathf’l) = Cost(Pathle)

92 Filtering & Segmentation

For the second branch the optimum path is

If Cost(PathkPQ) < C’ost(PathkRQ)
then
Pathy* = Path}, | J(N}, — N[)
Cost(PathkP’2) = Cost(Patth)
else
Pathy* = Pathft | J(N}* — N[)
Cost(PathkP’Q) = C’ost(PathkRQ)

The total cost of the path ending at N, ,f is
Cost(Pathl) = Cost(PathkP’l) + Cost(Pathf’z) + Cost(N])

In the case of the remove state, IV, ,f‘, the two sub-paths can only come from the remove states

of the children. So, no selection has to be done. The path and its cost are constructed as

follows:
Path[™! = Pathfl |J (N} — N[
Path;"? = Pathfi |J (N} — NJF)
Pathf? = Path,"'|J Path;”
Cost(Path) = Cost(Pathle) + Cost(PathkRz) + Cost(NE)

The presented optimization algorithm is initialized at the leaf nodes Nj by setting the cost of
its associated path to the cost of its associated trellis node, that is, Cost(Pathl) = Cost(N?)
and Cost(Pathlt) = Cost(N['). The optimization procedure is then iterated in a bottom-up
fashion until the root node is reached. One path of minimum cost ends at the preserve state of
the root node and another path ends at the remove state of the root node. Among these two
paths, the one of minimum cost is selected. This path connects the root node to all leaves and
the states it goes through define the final decisions. By construction, these decisions define a

valid pruning strategy and they are as close as possible to the original decisions with Eq. 5.3.

A complete example of optimization is shown in Fig. 5.12. The original tree involves 5
nodes. As before, the preserve decisions are depicted by a square whereas the remove decisions
are indicated by a circle. As can be seen, the original tree does not correspond to a set of
increasing decisions because N3 should be removed but Ny and N5 should be preserved. The
algorithm is initialized by creating the trellis (see Fig. 5.12) and by populating the states by
their respective cost. The first step of the algorithm consists in selecting the lowest cost paths
that go from states Nf, Nf, Ngf%, Ngj to states Nf, Nf. The corresponding trellis is shown
in the upper part of Fig. 5.12 together with the corresponding costs of the four surviving
paths which are depicted with a solid line. Paths to be removed are depicted with a dotted
line. The second step iterates the procedure between states NQR, N2P , NI, Nf and states

5.5 Optimization for Non-Increasing Criteria 93

e B\
Viterbi algorithm: first step

Preserve
N, Cost:0

Remove
N, Cost:1

CQQ:Z
Remove Preserve Remove Preserve
N,, Cost:0 N,, Cost:1 N, Cost:0 N, Cost:1

Rembve Preserve Remove Preserve
N,, Cost:1 N,, Cost:0 Ns, Cost:1 Ns, Cost:0
Origina Tree - /
e . ; ™
Cost:3 Cost:1 Viterbi algorithm: second step
Remove Preserve
N, Cost:1 N,, Cost:0
Remove Pr&eérve Remove Preserve
N,, Cost:0 N,, Cost:1 N, Cost:0 N, Cost:1
Remove Preserve Remove Preserve
N,, Cost:1 N,, Cost:0 Ns, Cost:1 Ns, Cost:0
N v
s N
Viterbi algorithm: third step
Remove Preserve
N, Cost:1 N,, Cost:0
Remove Preserve Rémove
N,, Cost:0 N,, Cost:1 N, Cost:0
v~
Rerﬁove Preserve Rerﬁove Preserve
N,, Cost:1 N,, Cost:0 Ns, Cost:1 Ns, Cost:0
N /

Final Tree

Figure 5.12: Definition of the optimum decisions by the Viterbi algorithm. On the right,
the different steps for the Viterbi algorithm on the trellis structure of Fig. 5.9 are shown.
At each iteration, the paths to be discarded are depicted with a dotted line, whereas the
optimum paths are depicted with a solid line. On the left, the initial and final decision tree

are shown.

94 Filtering & Segmentation

Figure 5.13: Set of increasing decisions resulting from the use of the Viterbi algorithm on
the original tree of Fig. 5.6. Five decisions along path A and one decision along path B have

been modified. Gray squares: nodes to be preserved, white circles: nodes to be removed.

NlR, Nlp . Here again, only four paths survive. They are indicated in the central diagram of
Fig. 5.12. Finally, the last step consists in selecting the path of lowest cost that terminates at
the root states. In the example of Fig. 5.12, the path ending at the remove state of the root
node (N{?) has a cost of 3, whereas the path ending at the preserve state (N{’) has a cost of
1. This last path is taken since it corresponds to the lowest cost path. In order to find the
optimum increasing decisions, one has to track back the selected path from the root to all
leaves. In our example, we see that the paths hit the following states: N, NI, N:f , NP and
NEfD . Note that a valid pruning strategy is defined and just one modification of the original
decisions as given by Eq. 5.3 is involved. The diagram at the bottom of Fig. 5.12 shows the
final path together with the modified tree. As can be seen, the only modification has been to

change the decision of node N3 and the resulting set of decisions is increasing.

A complete example of decisions modification is shown in Fig. 5.13. The original decision
tree is shown in Fig. 5.6. The Viterbi algorithm has to modify 5 decisions along path A and
one decision along path B (see Fig. 5.13) to get the optimum pruning strategy.

To summarize this section, let us say that the pruning strategy can be applied directly on
the tree if the decision criterion is increasing (size is a typical example). In the case of a non-
increasing criterion such as the perimeter, the Viterbi algorithm can be used to modify the
smallest number of decisions so that increasingness is obtained. These modifications define a
valid pruning strategy. If not stated otherwise, it is assumed that the optimization algorithm

is applied on the tree when a non-increasing criterion is used.

5.6 Discussion 95

5.6 Discussion

Let us discuss now the relationship of the optimization algorithm with the minimum and
maximum restitution presented previously. For that purpose, we are going to analyze the
number of nodes that are preserved and removed for a fixed branch of the tree for the three

types of decision.

Let us denote with PNz, (M(k),A) the number of nodes that are preserved when a
minimum decision is applied on a fixed criterion sequence M (k) of a tree (see page 85)
using threshold A. Similarly, we denote with PNje;(M(k), A) (resp. PNopt(M(k),A)) the
number of nodes that are preserved using a maximum (resp. optimum) decision. The following

relationship is fulfilled
PNppin(M(k), A) < PNopi(M(k),) < PNpgp(M(K), A) (5.6)

This is a rather interesting result, since it states that the optimization algorithm performs a
decision that is “between” the minimum and the maximum decision. Compare, for instance,
Fig. 5.6, Fig. 5.8 and Fig. 5.13.

The reason is rather intuitive. Given a criterion sequence M(k), denote with Ny,
(resp. Ng,,,.) the node associated to the criterion sequence such that its proper ancestors
are preserved and its descendants removed when a minimum (resp. maximum) decision is
applied on the tree. When the optimization algorithm is applied to the branch associated to
the criterion sequence M(R), for the set of paths ending at a descendant node Ny, of Ny, , it
is satisfied that Cost(Pathl) < Cost(Pathf). Thus, the optimization algorithm states that
at least all descendants of Ny, are removed. On the other hand, for any proper ancestor Ny
of Ni,,..., it is satisfied that Cost(Pathl) < Cost(Pathf). Thus, all the proper ancestors of
Ny

i Rave to be preserved.

On the Max-Tree, Eq. 5.6 is translated to the following property

fMin < fOpt < fMax

where fasin, fopt and faaz represent, respectively, the reconstructed function (see Eq. 5.2 on
page 80) when a minimum, optimum or maximum decision is used, respectively. Furthermore,
the partition of flat zones associated to the minimum (P4Z), optimum (Pg;t) and maximum
(PIZ.) decision are related by

Pitin € Popt © Phias

whereas for the Binary Partition Tree
PMz'n - POpt - PMaa:

where Pigin, Popt and P correspond to the partition associated to the leaves of the tree

when a minimum, optimum or maximum decision is used.

96 Filtering & Segmentation

The previous equations state that applying a minimum decision results in an image with
the smallest number of regions (with respect to the optimum or maximum decision). Thus,
the minimum decision is the decision that most “simplifies” the image. On the other hand,
the maximum decision results in an image with the highest number of regions (with respect
to the minimum or optimum decision), being thus the method that least “simplifies” the
image. The optimum decision results in a simplification of the image that is in between of

both minimum and maximum decision.

Finally, note that the equality is held in the previous equations if the criterion is increasing.

5.7 Examples

This section shows several filtering and segmentation examples that have been applied in our
work to the two types of trees we have discussed: the Max-Tree and the Binary Partition

Tree.

5.7.1 Marker & Propagation Segmentation

The watershed [37] is the classical tool that has been used in Mathematical Morphology
for image segmentation (see also Sec. 2.3.3). However, except for a few simple cases the
watershed cannot be applied directly since it usually produces a severe over-segmentation,
which is difficult to overcome. The classical reguralization process uses markers: the strategy
consists, first, in “marking” (defining with markers) the interior of the regions to be segmented
and, second, in performing a propagation of these markers to eventually define the regions
contours. This second step can be viewed as the definition of the zone of influence of each
marker. Let us mention, that depending on the application, the markers can be computed

automatically [37, 66] or manually.

Propagation processes based on similarity between neighboring regions can be easily im-
plemented using tree structures. In this case, the descriptors to attach to the nodes are the
markers, and the pruning is done according to the zone of influence of each marker. The zone

of influence of each marker is obtained using the links defined by the tree structure.

Max-Tree

Let us first describe this propagation on a simple example using the Max-Tree structure.
Fig. 5.14 shows on the left a simple image made of six flat zones. The associated Max-Tree
is made up of six regions. Consider now two markers, A and B, that have to be propagated
by merging with neighboring regions. Let us first mark the two corresponding nodes on the
tree (see Fig. 5.14b). Propagation is performed on the tree using a bottom-up approach. By

construction of the Max-Tree, the most similar neighboring region with respect to a given node

5.7 Examples 97

A B—\

» [GHSEETET

Original Image Marker Image Propagation Propagation Final Image

ALAL AR A

J -~ ®
& W ®, ® ®
® ® ® ®

a) Max-Tree b) Markers c) Bottom-up d) Bottom-up e) Top—down
propagation propagation propagation

Figure 5.14: Propagation process on the Max-Tree. a) Original image and its associated
Max-Tree are shown, b) Marked image and tree, c-d) Bottom-Up propagation through Max-

Tree, e) Top-Down propagation and final segmentation.

is represented by its parent. Therefore, the marker A associated to node Ng is propagated
to its parent node Nj5. The result is depicted in Fig. 5.14c. The propagation then continues
by marking the neighboring region which is most similar to region 5, that is node N3s. The
result is shown in Fig. 5.14d. The next step would be based on propagating both markers
A (node N3) and B (node N3). Of course this propagation can only be done if the siblings
of each of the marked nodes is not in conflict with the marker itself, that is if none of the
siblings’ descendants has been assigned to a different marker. In the example of Fig. 5.14d,
the node N is in conflict with the markers A and B and thus propagation stops here. Finally,
a top-down propagation of markers is done so that children nodes have the same label as their

parents. The resulting segmentation is shown in Fig. 5.14e.

Binary Partition Tree

The same approach can be taken for the Binary Partition Tree. An example is shown in
Fig. 5.15. The image is made up of four flat zones. The Binary Partition Tree shown in
Fig. 5.15a indicates that regions R; and Ry are the most similar. Once merged, their closest
region is R3. Finally, region R4 is the most dissimilar. As can be seen in Fig. 5.15, the
gray-level value associated to region Ry is quite different from the values of other regions. Let

us consider, as before, two markers A and B that have to be propagated by merging with

98 Filtering & Segmentation

1
B Pa : \
\ S A
3
Original image Node remaining

without Iabel

Conflict between ‘
) O

(7)
OO
(5 © (A ®
© @ O ® & ®

a) Binary Partition Tree b) Markers c) Bottom—-up propagation d) Top—down propagation

Figure 5.15: Propagation process on the Binary Partition Tree.

neighboring regions. Let us mark the two corresponding nodes on the tree (see Fig. 5.15b). By
construction of the Binary Partition Tree, the most similar neighboring region with respect
to a given marker is represented by its sibling and the result of the merging is represented
by the parent. Therefore, the marker associated to a node is propagated to its parent. As
before, this propagation can only be done if the sibling is not in conflict with the marker,
that is if none of the siblings’ descendants has been assigned to a different marker. In our
case propagation stops at node Ng because there is a conflict between the marker of node Nj
(marker A) and the marker of node N3 (marker B).

Discussion

The propagation approach presented here for the Max-Tree is very similar to the watershed
algorithm with the marker and propagation strategy. In the latter case the image is interpreted
as a topographic surface and once the markers have been defined, these are flooded. As already
pointed out in Sec. 2.3.3, a practical way of defining such flooding is based on the so known
“immersion”: assume that we pierce holes at each of the markers, and then slowly immerse
the surface into a lake. The water will progressively fill up the different catchment basins of
the image f. A “dam” is constructed at each pixel where the water coming from different
markers would merge. Fig. 5.16 shows an example that compares the approach taken on the
Min-Tree with the watershed algorithm'. Note that the Min-Tree associated to the 1D signal
has the same structure as the one of Fig. 5.14. The evolution of the immersion algorithm

as it floods the topographic surface is depicted in Fig. 5.16a through Fig. 5.16d. Note that

n this particular case we take the Min-Tree since this tree is oriented towards the minima (as shown in

Fig. 5.16) and thus it is easier to explain the behavior of the watershed algorithm.

5.7 Examples 99

L

o

oy

IR
O

€

!

T

¢) Propagation d) Final segmentation

Figure 5.16: Comparison of the classical watershed algorithm with the propagation ap-

proach presented in Sec. 5.7.1.

propagation stops on the Min-Tree as soon as the corresponding watershed flooding algorithm
reaches the gray-level where both lakes would meet, that is, the gray-level where a “dam”
would begin to be constructed. On the Min-Tree this is indicated by marking the associated
node as being in “conflict” with its children. In conclusion, we may say that the difference
between a marker & propagation strategy with the watershed and the Min-Tree is rather
subtle: the only difference resides in the fact that those regions that are in “conflict” in the

Min-Tree correspond to the regions where the “dam” would be constructed.

Algorithm and examples

Fig. 5.17 precisely describes the algorithm performing the propagation on the tree structure.
For that purpose, let ND4 be the set of nodes whose depth is d (see Sec. 2.2.1). We denote with
Parent(Ny) the function that returns the parent of node Ny, whereas Label(Ny) denotes the
label (marker) that is assigned to the node Ni. The possible values that may take Label(Ny)
are: “none”, if no label is assigned to the node, “conflict” if the node is in conflict with
several labels, or a positive value indicating the label number associated to the node. The
algorithm works in three main steps: first, assignment of markers to leaf nodes (lines 01-04),
second, bottom-up propagation of the markers to parents locating conflicts between labels
(lines 05-18) and third, top-down propagation of labels so that children nodes have the same
label as their parents (lines 19-24).

A complete set of examples are shown in Fig. 5.18- 5.20. In all cases we assume that

100 Filtering & Segmentation

01 // Initialization of markers

02 for each node N}, in the tree

03 Label(N})«none

04 assign a label to the nodes that overlap with a marker
05 // Bottom up propagation of markers
06 for(d«max-depth; d > 0; d—d-1)

07 for each node Ni in NDy

08 N; « Parent(Ny)

09 if (Label(N%) = none)

10 continue

11 if (Label(Ng) = conflict)

12 Label(N;)«—conflict

13 continue

14 if (Label(N;) = none)

15 Label(N;)«Label(Ny)

16 else

17 if not (Label(N;) = Label(Ny))
18 Label(N;)«—conflict
19 // Propagate label to children

20 for(d«0; d< max-depth; d«d+1)

21 for each node Ni, in ND,

22 N; —Parent(Ny)

23 if (Label(Ny) = none)

24 Label(Ny)«Label(N;)

Figure 5.17: Algorithm for the marker propagation in the tree structure.

a user has defined two markers (dark and gray). The first step is to assign a marker to
the nodes of the tree if it overlaps to a certain degree with its associated pixels. Then, the
propagation process creates three connected components. Rather than pruning the tree, we

show the region of support of the subtrees that have to be pruned.

Propagation processes on the Max-Tree can be used to extract bright objects with respect
the background. In the case of Fig. 5.18, the head, shoulders and the screen on its right
constitute bright objects and have been extracted by the propagation process. Note that dark
objects can be segmented from the image by using the Min-Tree representation. Fig. 5.19
shows a second example of propagation on a Max-Tree: the gray marker is a connected
component but the result of the propagation shows several connected components as region
of influence of the gray marker. This is due to the fact that several markers (in this case

gray and dark) have been set on the original image, and that the region of influence of some

5.7 Examples 101

of the initially marked result as being in conflict with two (or more) markers. That is, some
of the markers nodes have descendants that have been marked with a different marker, see
Fig. 5.19a. The application of algorithm of Fig. 5.17 sets these nodes as in conflict removing

thus the marker that was previously assigned to it, see Fig. 5.19.

In Fig. 5.20, an example using the Binary Partition Tree is shown. As before, a user has
defined two markers (dark and gray). The first step consists in assigning the markers to the
nodes in the tree. Note that in this case, by construction of the Binary Partition Tree, only the
corresponding leaf nodes have to be marked (Fig. 5.20 on top). Then, the propagation process
creates three connected components (Fig. 5.20 on bottom). The two first ones correspond to
the zones of influence of the markers whereas the last one remains without label because it is
judged as being “too different”. As can be seen, the face and shoulder regions defined by the
markers have been properly segmented and the background has not been merged with any of

these regions.

Conflictive nodes

The propagation strategy presented in this section process does not assign a label to all regions
of the image. In the example of Fig. 5.15, node N4 remains without label. This situation
means that the similarity between regions defined by markers A and B is higher than any
combination with region R4. As said above, region R, is indeed the most dissimilar. The
propagation process is controlled in the sense that the algorithm does not blindly assign all
regions to a marker. This type of control is attractive in most cases. However, for some
specific applications, one would like to use a propagation algorithm that actually creates as

many regions as markers.

In the case of the Max-Tree, there seems to be no solution leading to valid pruning strategy.
The problem is due to the fact that the region of support of a node Nj in a Max-Tree is the
union of the region of support of its children nodes plus a set of flat zones associated to the
connected component of node Nj (see Sec. 2.1). In order to assign a label to all regions (i.e.
flat zones) of the image the flooding algorithm should perform the propagation until the root
node. A valid pruning strategy can be obtained only if one marker is initially placed on the

tree.

In the case of the Binary Partition Tree a similar approach is taken. In this case the
problem is to merge unassigned regions to one of the closest neighboring region that has
been reached by a marker during the propagation. This task is easily solved with the help
of the Binary Partition Tree. Indeed, consider an unassigned region Rj that has a sibling
in conflict (regionn Ry in Fig. 5.15). Its closest (in terms of the connectivity defined by
the Binary Partition Tree) neighboring region that has been reached by a marker is one of
the descendants of its sibling. Indeed, the set of sibling descendants is the set of closest

homogeneous regions with respect to Rj. Furthermore, at least one of the descendants has

102 Filtering & Segmentation

(3 © O
= %

(3 O
@) ? © O Q

? © O O

(3 O

?

7

Figure 5.18: Example of a propagation process on the Max-Tree. Left, the nodes of the
tree are marked according to the region the user has marked on the image. Right, result of

propagation.

5.7 Examples 103

\
O<O<O<C
\

S

Figure 5.19: Example of a propagation process on the Max-Tree. Left, the nodes of the
tree are marked according to the region the user has marked on the image. Right, result of
propagation. Several disconnected components may be obtained even if the original marker

is connected. See text for discussion.

104 Filtering & Segmentation

o}
c D
a a3 D
@) a 0 G D a3 @)
".‘4 a o) A o) A A Q o)
‘Mf“ (ﬁ d n Q000N Q QO Q0 Q @) QOOO0Q® QO
Original image a6 4 n A0 dbA0 Smidmdo § hdd & 5 A
d H a9 O Q0dg Hoo Qo T Q) QOO0 ole) oo
ooooooooooo e}e) e}e) QO QO
QO QO A O - A O QO
a Q QO O O O O QO
Q0O OO0 oX 3
QO QO N XS
qgooo Pl e 0000
QO
QO
A O
[e)e)
@) D
a3 D - -
@ @) a3 N
@ N Q0 g o) QO

ONONONONONONONONOCHONONONONGC (ON©)
QO O0O0QO QO

Q Q QO O O

QOO OO0

0.

e g 0

Segmentation result

Figure 5.20: Example of a propagation process on the Binary Partition Tree. Top, the
(leaf) nodes of the tree are marked according to the regions the user has marked. Bottom,

result of propagation.

5.7 Examples 105

been assigned to a marker. Otherwise the propagation process could not have been stopped
before reaching the sibling of Ry. Therefore, starting from the sibling of Ry, one simply has
to scan all the descendants until one region that is, at the same time, neighbor of R, and
assigned to a marker, is found. Note that in some cases, several regions fulfill this criterion.
This situation is illustrated in Fig. 5.15 where region R4 was unassigned and two regions are
at the same time neighbor of region R4 and assigned to a marker: R’ = Ry U Ry (assigned to
marker A) and R” = Rj3 (assigned to marker B). In this situation, the most simple solution
consists in arbitrarily selecting one of these regions. Of course, if necessary, specific rules
based on similarity or geometrical criteria can be designed. In this work, the unassigned

region is assigned to the region that shares with it the highest perimeter.

5.7.2 Area Filtering

A simple criterion that can be used to prune the tree is based on measuring the size in pixels
associated to each node. The criterion is defined to be M(Nj) = Ag, , where Ap, is the area
(in pixels) of the region Ry. The pruning then removes all nodes whose size is (strictly) below
a threshold A. The resulting filter has a size-oriented simplification effect. Note that the
proposed criterion is increasing, and thus a valid pruning strategy is defined when applying
the threshold.

Max-Tree

In the case of the Max-Tree, the effect of the filter is to remove all bright connected components
whose size is below a threshold . The resulting filter is the well known area opening with
parameter A [93]. Filtering based on an area criterion results in an increasing, idempotent

and anti-extensive filter.

Fig. 5.21 shows an example of area filtering. The area opening removes bright and small
sized components of the image whereas the area closing removes dark and small sized com-

ponents.

Note that the operator ¥(f) only acts on the regional maxima of the image. Once the
regional maxima have been modified to fulfill the merging criterion, the operator does not
modify the flat zones below this level. In the case of the area opening, all regional maxima
of the filtered image have an area larger than the threshold. However, regional minima or
transition areas can be of any size. Fig. 5.21b illustrates this situation: in the filtered image,
a large number of flat zones (minima or transition regions) have a size smaller than 50. We

will find a similar issue with the Binary Partition Tree in the next section.

106 Filtering & Segmentation

MPEG

a) Original image b) Area opening U(f)

¢) Area closing U*(f) d) Area open-close U*(¥(f))

Figure 5.21: Example of area opening and closing of size A = 50 applied on the Max and
Min-Tree structure.

a) b)

Figure 5.22: Example of size-oriented simplification (size threshold to 50 pixels). a) Simple
size simplification, b) Size simplification with propagation strategy

5.7 Examples 107

" Nodeswithout label

Zones of influence
of the markers

" Size markers

Figure 5.23: Size-oriented simplification. Left, Binary Partition Tree with size criterion.
The black squares indicate the size markers. Right, definition of the zones of influence of the

size markers.

Binary Partition Tree

A first example of size-oriented simplification is shown in Fig. 5.22a. The size threshold
has been set to A = 50 pixels. This result may be surprising because a large number of
regions smaller than 50 pixels are still visible in the filtered image (the texture of the fish
for example). To understand this result, let us analyze the example of Binary Partition
Tree shown on the left side of Fig. 5.23 (note that this tree is presented here as a simple
illustration. It is not the tree used to generate the example of Fig. 5.22). In this tree, one can
see a large number of configurations where one node has to be removed whereas its sibling
has to be preserved. Note that since the criterion is increasing, the parent of these two nodes
has to be preserved. In terms of regions, this configuration means that one of the siblings
as well as the parent correspond to large regions whereas the other sibling is of small size.
Fig. 5.24 illustrates this issue on a very simple example: nodes N7 and Ns should be preserved
because its associated area is large, whereas the size associated to node N3 is small. As it
has already been discussed, pruning a subtree (in our case N3) on a Binary Partition Tree is
done by merging its corresponding descendants. Pruning node N3 results in a tree in which
a new node appears at the position of N3 and whose region of support is R3. Thus, when
reconstructing its associated partition a region Rj3 is made visible on the partition image (see
Fig. 5.24).

For certain applications, it may be necessary to force the operator to produce an output
image where all flat zones are guaranteed to fulfill the simplification criterion. This mod-
ification can easily be implemented using the propagation process explained in Sec. 5.7.1
(page 96). The idea is explained in Fig. 5.23. The first step consists in defining the markers.

These markers are all preserve leaves as well as preserve nodes that have two remove children.

108 Filtering & Segmentation

Regionsof
largesizes”

Region of
small size

Y

SR

Figure 5.24: Illustration of decisions where a node has to be preserved whereas it’s sibling
has to be removed.

In the example of Fig. 5.23, there are five markers. The second step defines the filtered parti-
tion by propagating these markers as in the case of the segmentation described in Sec. 5.7.1.

The result of the propagation is shown on the right of Fig. 5.23.

Note however, that the present maker and propagation strategy may lead to regions that
remain without label (see Fig. 5.23). The associated nodes are in conflict: nodes for which
the descendants of it sibling are assigned to different markers. In this kind of applications
(filtering) we are interested in obtaining a partition with the same number of regions as the
number of markers that have been set. As explained in Sec. 5.7.1, the approach that has been
taken in our work is based on scanning the siblings descendants of the unassigned node for

regions that have a label and are at the same time neighbor of the unassigned regions.

Fig. 5.22 right shows the result of this strategy on the Binary Partition Tree. A size-
oriented simplification of the Bream image using this strategy is presented in Fig. 5.22b. All

regions of size smaller than 50 pixels have been removed.

If not stated otherwise, the present technique (marker & propagation with resolution of
possible nodes in conflict) is used in our work to filter a Binary Partition Tree after the

analysis and decision process.

The present marker and propagation strategy is not useful for the Max-Tree. The reason
is due the way the tree is defined and interpreted. Although each node represents a connected
component from a level set, the problem has its origin in the flat zones. When the tree is
reconstructed to a pixel based representation, the stacking of the connected components shows
up the individual flat zones the image is made of (see Sec. 2.1). Flat zones are usually of small
size (in most cases made up of one or two pixels). And by definition of the Max-Tree we are
not able to control independently the gray-level value of each of the flat zones a connected
component is made of. Thus, if we want all the flat zones to have a size greater than, for

instance, 50 pixels, the whole tree — until the root — would be pruned in most cases.

5.7.3 Contrast Filtering

An operator widely used in the field of mathematical morphology is the so called contrast

filter, also known as A-max extraction. It is based on taking the image f, subtract a constant

5.7 Examples 109

Max-Tree Binary Partition Tree

Figure 5.25: Example of contrast filtering applied on the Max-Tree (left) and Binary Par-
tition Tree (right). At each node its associated height is indicated. Threshold is set to A = 1.
Nodes to be preserved (resp. removed) are depicted with squares (resp. circles). For the

Binary Partition Tree, the black squares indicate the zone of influence of markers, see text.

A to f, and proceed to reconstruct f by using f — A as marker [94]. The idea behind this
operator is to extract the domes of high A of the function f. A dome R of high)\ is a
connected component of pixels such that each neighboring pixel ¢ of R (with g ¢ R) satisfies

fl@) < A{f(p)lp € R}; and \/ {f(p)lp € R} — AN{f(p)lp € R} < \.

Max-Tree

By relating the structure of the Max-Tree and the implementation of the contrast filter via
reconstruction we see that connected component Ry, of the level set associated to gray-level h
should be preserved if A {f(p)|p € Rx} —h > A, and removed otherwise. The criterion that

is to be used on the Max-Tree for a node IV, is

M(Ny) = N{f(®)lp € Rk} — I (5.7)

where R is the region of support of Vi, and h is the gray-level of the connected component
associated to the node Nj. The resulting operator is anti-extensive, increasing but not idem-
potent. In this case the “empty nodes”, discussed in Sec. 3.1, have to be taken into account
if we want the result of the Max-Tree filter to be equal to the A-max filter. Note that the
criterion of Eq. 5.7 is equivalent to measure the height of each node: leaf nodes have zero

height, its parents have height one, and so on. The maximum height is associated to the root
node Nroot, M(Nroot) = V{f(p)lp € E} = A{f(p)lp € E}.
An example of contrast filter is shown in Fig. 5.25 (left) for the Max-Tree. At each node,

its associated height is indicated. Nodes to be removed are depicted with a circle, whereas

110 Filtering & Segmentation

Original image

Operator ¥, A = 30 Dual operator *¥, A = 30

Operator ¥, A =3 Operator ¥, A =8

Figure 5.26: Example of contrast filtering. Original image shown on top, filtering with the
Max-Tree and Binary Partition Tree are shown in the middle and bottom respectively.

those to be preserved are shown with a square. When pruning the tree, the nodes to be
removed are merged with the first non removed ancestor. In Fig. 5.26 a second example is
shown. The original image is shown on top. The result of the filtering is shown in the middle
of Fig. 5.26. The ¥ operator extracts all bright domes of height 30: the effect is visible in
homogeneous regions such as the face or the jacket of the woman. The dual operator ¥*
extracts from the previous filtered image all dark domes of height 30. The contrast has been
modified at the hair or the eyes of the woman. The results that are obtained via Max-Tree
contrast filtering are exactly the same as the ones obtained with the reconstruction of f using

f — X\ as marker.

5.7 Examples 111

Binary Partition Tree

The previous idea can be taken to the Binary Partition Tree structure. The criterion to be
measured on each of the nodes is its associated height (see Sec. 2.2.1), and we then decide
the pruning based on a threshold A. The effect of the filter is equivalent to discard nodes
associated to the mergings performed between the initial regions of the partition as the Binary
Partition Tree is created. That is, if the Binary Partition Tree has been created using a color
homogeneity criterion this filter discards some of the mergings performed by the merging
algorithm. The resulting effect is thus to keep high contrasted (with respect its neighbors)

regions. As before, the resulting filter is not idempotent.

Fig. 5.25 (right) shows the corresponding example of contrast filtering on a Binary Par-
tition Tree. After deciding which nodes have to be removed or preserved, the marker &
propagation strategy discussed in the previous section is applied. The resulting zones of
influence are depicted with black squares. Pruning consists in merging its associated descen-
dants. Fig. 5.26 (bottom) a second example. The original image is shown on top. This image
is first partitioned into 500 regions. The Binary Partition Tree is created using a color ho-
mogeneity criterion (see Sec. 4.3.2). The result of applying the filter to the Binary Partition
Tree is shown on the bottom for thresholds A = 3 and A = 8.

Discussion

By comparing the result with the one obtained with the Max-Tree, we see that — as for the area
filtering — the Binary Partition Tree acts on bright and dark regions, whereas the Max-Tree
acts only on bright objects: all other objects remain unchanged. As a result, the contours
of the objects present in the filtered image with the Max-Tree are smooth in comparison to

those of the image filtered with the Binary Partition Tree.

It should be noted that similar numerical values for the threshold do not necessarily pro-
vide similar simplification effects for the filter applied on the Max-Tree and Binary Partition
Tree, respectively. In fact, the reason is twofold: first, the Binary Partition Tree is created us-
ing an initial partition to define the support of its leaf nodes. Thus, depending on the number
of regions of the initial partition the resulting number of nodes of the Binary Partition Tree
is different. The height of the tree (see Sec. 2.2.1) depends on the initial partition. Second,
the Binary Partition Tree and Max-Tree have different definitions and interpretations: for
the same image, both structures are generally dissimilar. Even if the Binary partition Tree is
created from the partition of flat zones of the original image (which is the level of detail used

to create the Max-Tree, see Sec. 3.1), both structures are not comparable.

Moreover, for the case of the Max-Tree one can distinguish small details in the resulting
filtered image even if the threshold is rather high. For instance, the eyes or the microphone

of the woman are visible in the filtered images of Fig. 5.26 (middle). This is due to the fact

112 Filtering & Segmentation

that the eyes (or the microphone) are a high contrasted region with respect to its neighboring
regions. Formally, we may say that the numerical value of the dynamics [34] of these minima
is high and thus a high threshold is needed to remove the latter regions from the image
(A =~ 120).

On the other hand, in the case of the Binary Partition Tree, the small high contrasted
details are removed for low A. In fact, when the Binary Partition Tree is created using the
merging algorithm, the region of support associated to the microphone is rapidly defined
since it is small and its associated regions of the initial partition are homogeneous in color.
The height associated to the subtree associated to the region of support of the microphone
is rather low and thus it can be removed with a low threshold. Notice that the eyes of the
woman are smaller in size than the microphone: in the Binary Partition Tree, the height
associated to the subtree of the eye of the woman is smaller than the one associated to the
microphone. As a result, the minimum threshold A\ needed to remove the eyes is lower than
the threshold needed to remove the microphone (see Fig. 5.26). This is not the case for the
Max-Tree: the eyes and the microphone have different sizes, but its dynamics [34] is similar

(both regions are completely removed from the image for A ~ 120).

As can be seen, the contrast filter applied on the Max-Tree has a contrast simplification
effect which is “independent” of the size of of the regions. On the other hand, the contrast
filter applied on the Binary Partition Tree also leads to a contrast simplification effect but is
highly dependent on the area: small regions are always removed first “independently” of its

contrast with its neighboring regions.

5.7.4 Complexity Filtering

The complexity of an object is an example of non increasing geometrical criterion combin-
ing size and shape criterion. The idea behind this operator is to remove complex objects.
Intuitively, it can be seen that if a region R has a small area but a very long perimeter,
it corresponds to a complex object. To this end, simplification criteria relying on the ratio
between the area Ar and the perimeter OR can be used. For a region R

OR AR

Complexity(R) = Simplicity(R) = R

T (5.8)

Note that this criterion is not the compactness [24] defined as the ratio between the area and
the square of the perimeter. Interest in the simplicity criterion can be seen in segmentation
based coding applications (for which it was designed). Indeed, in segmentation based coding,
one has often to decide if a specific area of the image has to be segmented or not. In the
first case, the contours of the region are sent to the receiver, and part of the coding cost is
proportional to the length of the contour to code, that is the perimeter. In the second case,

the area is considered as texture information, and its coding cost is generally proportional to

5.7 Examples 113

MPEG .-

Dual operator W*W¥, A =1.1

Operator ¥, A =1.1 Operator ¥, A =1.5

Figure 5.27: Example of filtering with the simplicity operator. Top, original image. Middle,
filtering using the Max-Tree. Bottom, filtering using the Binary Partition Tree.

its area. As can be seen, the simplicity operator allows the classification of objects following

a contour/texture cost.

In the following, we will use the simplicity criterion, M(Ny) = Simplicity(Ry), because
it agrees with the node removal criterion of Eq. 5.3 (page 82): remove all the nodes whose
simplicity is low (i.e. high complexity). After deciding which nodes are removed and which
preserved, the optimization algorithm described in Sec. 5.5 is applied to obtain a valid pruning

strategy.

Max-Tree

On the Max-Tree, the simplicity operator removes complex and bright objects from the orig-
inal image. As usual, a dual operator dealing with dark objects can be defined. An example
of processing can be seen in Fig. 5.27. The original image is composed of various objects with

different complexity. In particular, the text and the texture of the fish can be considered

114 Filtering & Segmentation

as being complex in comparison with the shape of the fish and the books on the lower right
corner. Fig. 5.27 (middle) shows the output of simplicity operator and its dual. The global
processing can be considered as an alternated operator. As illustrated on this example, the
simplicity operators efficiently remove complex image components (text and texture of fish)
while preserving the contours of the objects that have not been eliminated. Note that the
simplification effect is not size-oriented, because the filters have removed large objects (the
letters “MPEG”) as well as small objects (the texture of the fish). The simplification is not
contrast-oriented as can be seen by the difference in contrast between “Welcome to” and
“MPEG” which have been jointly removed.

Binary Partition Tree

An example of processing with the Binary Partition Tree can be found in Fig. 5.27. The
Binary Partition Tree has been created using a color homogeneity criterion and an initial
partition made up of 500 regions. As in the case of the Max-Tree, the operator is able to
remove efficiently complex objects of the image, such as the texture of the fish and the text

on top. The “G” has not been completely removed since it is connected to the background.

Discussion

For both tree structures, the filter removes complex objects independent of their size. The
criterion is, in fact, a non-increasing criterion. However, note that the application of the
optimization criterion does not ensure that all preserved nodes have a simplicity higher than
the specified threshold.

As for the contrast filter, note that the result obtained with the Binary Partition Tree
leads to images with highly contrasted contours between regions: each region of the associated
partition has been filled with its mean gray-value. On the other hand, filtering with the Max-
Tree produces smooth contour transitions between the objects present in the image. This

produces smooth textures in the resulting filtered image.

As opposed to the case of the contrast filter, in this case the threshold value can be used
to compare the simplification effect for the Max-Tree and the Binary Partition Tree. This
is due to the fact that the criterion depends on the support of the region rather than on
the structure of the tree. From our experimental results, similar thresholds produce similar

simplification effects in both cases.

The resulting operator is (for both Max-Tree and Binary Partition Tree) not increasing,
due to the non-increasing criterion, and not idempotent, due to the optimization algorithm:
the result of the optimization depends on the decisions taken for all nodes in the branch that
is being analyzed. An image and its filtered version have different tree structures. Thus, it is
not possible to ensure that U(WU(f)) = ¥(f).

5.7 Examples 115

5.7.5 Motion filtering

In this section, the criterion deals with the motion information in image sequences. Denote
by fi(p) an image sequence where p = (p,, p,) represents the coordinate of a pixel and ¢ the
time instant. Our objective now is to define a filter able to eliminate the image regions R
that do not undergo a given motion. The first step is therefore to define the motion model
giving, for example, the displacement field at each position A(p) = {Az(Pa, Py)s Ay(Pe, Py)}-
The field can be constant A(p) = {Az, Ay} if one wants to extract all objects following a
translation, but in general the displacement can depend on the spatial position (p;,py) to

deal with more complex motion models such as affine or quadratic models.

The sequence processing is performed as follows: each frame is transformed into its cor-
responding tree representation and each node Ny is analyzed. To check whether or not
the pixels contained in a given node N, are moving in accordance to the motion field
A(p) = {Az(pz,py), Ay(pz,py)} a simple solution consists in considering the region asso-
ciated to N, Ry, and to compute (the opposite of) the Mean Displaced Frame Difference,
DFD, of this region with the previous frame. Note that the opposite of the mean DFD is used
so that the criterion value for a region that has to be preserved is higher than the correspond-
ing value when the region has to be removed (see Eq. 5.3). The criterion can be expressed
as [73]:

DFD;Z’l(R) _ = > per | ft(p) — fiei(p — A(p))|

Agr

In practice, however, it is not very reliable to state on the motion of part of the image on

(5.9)

the basis of only two frames. The criterion should have a reasonable memory of the past
decisions. This idea can be easily introduced in the criterion by adding a recursive term. Two
mean DFDs are measured: one between the current frame f; and the previous frame f;_1
and a second one between the current frame and the previous filtered frame W(f;_1), where

U denotes the filter. The motion criterion is finally defined as:
A ERft ==7Y(ft—1)
M(R) = a DFDY}, (R) + (1 —a)DFDy, (R) (5.10)

where 0 < o < 1. If « is equal to 1, the criterion is memoryless, whereas low values of «
allow the introduction of an important recursive component in the decision process. In a way
similar to all recursive filtering schemes, the selection of a proper value for o depends on the
application: if one wants to detect very rapidly any changes in motion, the criterion should
be mainly memoryless (a ~ 1), whereas if a more reliable decision involving the observation
of a larger number of frames is necessary, then the system should rely heavily on the recursive
part (0 <a < 1).

The motion criterion described by Eqgs. 5.9 and 5.10 deals with a particular set of motion
parameters. Objects that do not follow the given motion are removed. For some applications,

it may be useful to preserve objects that are within a given range of motion (notion of

116 Filtering & Segmentation

[
|

Error measure

;
>
m
m
=
o
-
3
@D
QD
(%]
c
-
@D
(o4
=z,
I
T

ft—l

e

Gray level
Gray level

y

Figure 5.28: Motion bandwidth concept illustration. Left, criterion for one motion param-
eter (zero bandwidth). Right, criterion for a range of motion (bandwidth > 0). The error
measure associated to the use of a motion bandwidth is lower than the error associated to
the null motion bandwidth.

“motion bandwidth”). To this end, the criterion of Eq. 5.9 can be modified by introducing
an erosion €4 and a dilation d4 of the previous frame, where A represents the structuring
function. The difference |f;(p) — fi—1(p — A(p))| in the DFD of Eq. 5.9 is replaced at each
point p either by f; —da(fi—1) if ft > 0a(fi—1), or by ea(fi—1) — fi if fe < €a(fi—1), or by
0if d4(fi—1) < fi < €ea(fi—1). This approach is illustrated in Fig. 5.28. As can be seen, the
erosion and the dilation of f;_; create a “tube” in which the function f; can remain without
contributing to the DFD. The size of the structuring function used in the dilation and the
erosion defines the motion “bandwidth”. Note that in Eq. 5.10 the motion “bandwidth” is
created for fi_1 and U(fi_1).

Max-Tree

A first motion filtering example with the Max-Tree is shown in Fig. 5.29-5.32. The objective
of the operator is to remove all moving objects. The motion model is defined by: (A;, A,) =
(0,0). In this sequence, all objects are still except the ballerina behind the two speakers and
the speaker on the left side who is speaking. The application of the connected operator ¥(f)
described previously removes all bright moving objects (Fig. 5.30). The application of the
dual operator U*(f) removes all dark moving objects (Fig. 5.31). The residue (that is the
difference with the original image) presented in Fig. 5.32 shows what has been removed by
the operator. As can be seen, the operator has very precisely extracted the ballerina and
the (moving) details of the speaker’s face. Moreover, the results are robust in front of slight

changes of the threshold.

The residue for the case from filtering the sequence using the maximum decision using the
same filtering parameters is very similar to the result obtained with the optimum decision.
This means that the Viterbi algorithm has resulted in most of the cases in a decision tree

similar to the decision obtained with the maximum decision (see also Sec. 5.6).

5.7 Examples

117

MPEG4
WORLD

WORLD

MPEG4
WORLD

Frame #OO

MPEG4 \
WORLD AL

Frame #098

Frame #106

MPEG4
WORLD

Frame #114

|
MPEG4
WORLD .

MPEG4
WORLD

WORLD

MPEG4
WORLD

MPEG4
WORLD

MPEG4
WORLD

MPEG4
WORLD

Frame #108

Frame #116

MPEG4 l
WORLD !] WORLD

MPEG4 N
WORLD ,

MPEG4
WORLD

Frame #086

W .
MPEG4 l ’
WORLD

Frame #094 Frame #09

4

T . 7
MPEG4 AP MPEG4 \
WORLD - / WORLD

Frame #10 Frame #104

MPEG4
WORLD

MPEG4
WORLD

.\II’I-H E;
WORLD
Frame #110 Frame #112

MPEG4 - MPEG4
WORLD WORLD

Frame #118 Frame #120

Figure 5.29: Original sequence for the motion filtering.

118 Filtering & Segmentation

MPEGH | MPEG4
WORLD % MY WORLD

MPEG4
WORLD

MPEG4
WORLD

Frame #076

MPEG4
WORLD

MPEG4
WORLD

MPEG4
WORLD

MPEG4 |
WORLD

Frame #64 Frame #66

MPEG4
WORLD

MPEG4
WORLD

MPEG4
WORLD

—
MPEG4 \
WORLD 3

Frame #094

MPEG4
WORLD

MPEG4
WORLD

MPEG4 4 MPEG4
WORLD R WORLD

Frame #09 Frame #100 Frame #102 Frame #10

MPEG4 MPEG4 L' g MPEG4 L'
WORLD] WORLD WORLD]

Frame #108 Frame #10 Frame #112

MPEG4
WORLD .

Frame #106

MPEG4 i gl
WORLD \

MPEG4 b
WORLD 8 |

Frame #114 Frame #116 Frame #18 Frame #120

MPEG4 b
WORLD

MPEG4 B
WORLD .

Figure 5.30: Example of motion filtering preserving fixed objects applied on the Max-Tree.
Motion filter W(f).

5.7 Examples

119

MPEG4
WORLD WORLD

Frame #078

MPEG4
WORLD

Frame #074 Frame #076

MPEG4 | MPEG4
WORLD - WORLD

MPEG4 E h
WORLD N

Frame #082

MPEG4 i MPEG4 MPEG4
WORLD '- WORLD 1} WORLD

MPEG4 / MPEG4
WORLD A WORLD

Frame #098

Frame #100

MPEG4 e MPEG4
WORLD ho 2 WORLD

Frame #106 Frame #108

MPEGH i
WORLD)

Frame #1 10

MPEGA -) MPEG4
WORLD | WORLD

Frame #114 Frame #116 Frame #118

Frame #094

MPEG4 4 \ {
WORLD P)

Frame #102

MPEG4 L g
WORLD |

MPEGH sl |
WORLD .

MPEG4
WORLD

MPEG4 i
WORLD

Frame #OéS

MPEG4
WORLD

Frame #096

MPEG4
WORLD

Frame #104

Frame #1 12

MPEG4 ®
WORLD .

Frame #120

Figure 5.31: Example of motion filtering preserving fixed objects applied on the Min-Tree.

Motion dual operator ¥*(U(f)).

120 Filtering & Segmentation

Frame #076 Frame #078 Frame #080

Frame #086

Frame #090

-

Frame #098

Frame #094 Frame #096

Frame #102 Frame #104

Frame #106 Frame #108 Frame #110
2 1_.
H
Frame #114 Frame #116 Frame #118 Frame #120

Figure 5.32: Example of motion filtering preserving fixed objects, see Fig. 5.31. Residue
f=v (/).

5.7 Examples 121

Frame #074 Frame #076 Frame #078 Frame #080

Frame #082 Frame #084 Frame #086 Frame #088

x

Frame #094 Frame #096

S g

MPEG4 MPEG4 i MPEG4

Frame #090

MPEG4 MPEG4 MPEG4

Frame #098 Frame #102 Frame #104

MPEG4

Frame #108

MPEG4 MPEG4 MPEG4 MPEG4

Frame #114 Frame #116 Frame #118 Frame #120

Figure 5.33: Example of motion connected operator preserving fixed objects. Residue
f—=9*(¥(f)) if minimum decision is used for operators ¥ and ¥*.

122 Filtering & Segmentation

Frame #026 Frame #028

Original sequence

Frame #014

e ——

Frame #016 Frame #018 Frame #020 Frame #022

Frame #024 Frame #026 Frame #028 Frame #030

Motion filter U*W

Figure 5.34: Example of a decomposition of a sequence into three sequences. Top, original
sequence. Bottom, objects following the dominant motion (A,,A,) = (2,0) are extracted.
See also Fig. 5.35.

5.7 Examples 123

Frame #008 Frame #010 Frame #012 Frame #014
Frame #016 Frame #018 Frame #020 Frame #022
Frame #024 Frame #026 Frame #028 Frame #030

Extraction of non moving objects

Frame #008 Frame #010 Frame #012 Frame #014

Frame #016 Frame #018 Frame #020

Frame #024 Frame #026 Frame #028 Frame #030

Remaining objects

Figure 5.35: Example of a decomposition of a sequence into three sequences. Top, extrac-
tion of non moving objects from the residue of the sequences shown in Fig. 5.34. Bottom,

remaining objects.

124 Filtering & Segmentation

MPEG4
WORLD

Frame #076

MPEG4
WORLD

.
Frame #078

MPEG4
WORLD

A
MPEG4 .
WORLD

Frame #074

MPEG4
WORLD

MPEG4
WORLD

MPEG4

WORLD WORLD

MPEG4 h {

2

Frame #082 Frame #084 Frame #086

MPEG4

’ MPEG4
WORLD

WORLD

MPEG4
WORLD

Frame 090 Frame 4092 Frame #094 Frame 096

M I‘F.!:! ‘I\ f]

WORLD

MPEG4
WORLD

MPEG4 MPEG4 J MPEG4 i
WORLD WORLD WORLD

Frame #098 Frame #100 Frame #102 Frame #10

MPEG4
WORLD

MPEG4 MPEG4 MPEG4
WORLD J WORLD WORLD

Frame #106 Frame #108 Frame #110 Frame #112

MPEG4
WORLD

MPEG4 ‘i
WORLD X

N i
MPEGA b (e
WORLD i \ i

Frame #114 Frame #116 Frame #118 Frame #10

MPEG4 i | #
WORLD i

Figure 5.36: Example of motion connected operator preserving fixed objects. Filter using
Binary Partition Tree.

5.7 Examples 125

Frame #074 Frame #076 Frame #078 Frame #080

Frame #082

Frame #092 Frame #094 Frame #096

Frame #100 Frame #102 Frame #104

Frame #106

Frame #114 Frame #116 Frame #118 Frame #120

Figure 5.37: Example of motion connected operator preserving fixed objects. Residue
between the original (Fig. 5.36) and filtered (Fig. 5.29) sequence.

126 Filtering & Segmentation

For the case of the minimum decision the resulting images are black if filtering parameters
remain unchanged with respect to the ones used for the optimum case. This result is due to the
fact that some nodes near the root have a motion criterion below the threshold: in this case,
all the descendants of such nodes are removed producing thus black images. Additionally,
slight changes in the threshold result in drastic changes on the output. Thus, in order to use
the minimum decision the filtering parameters have to be adequately set. In Fig. 5.33 the
residue from filtering the sequence using a minimum decision is shown. As before, first the
motion operator is applied and on the result the dual motion operator is computed. Note
that a lot of regions appear in frames #90-#94. The reason is due to the shot transition that
the sequence performs from frame #89 to frame #90. As a result, when the motion filter
is applied, some nodes near the root are set to be removed and thus the residue shows the
whole image. Note that the letters “MPEG4” and the shirt of the news reader appear on the
residue through the remaining frames. This is due to the memory of the filter: these regions
are removed since they were removed in previous images. The memory of the filter may also
produce this type of effects in the case of the optimum decision. In fact, this problem may
appear with a sudden movement or scene change in the sequence. A simple solution to avoid
the mentioned effects could be based, for instance, on an adaptive value of a: when a scene
change or sudden movement is detected, its value is set to a low value. Otherwise, « is set to

the desired value.

The example illustrated in Fig. 5.34 and 5.35 shows a decomposition of the original se-
quence into three sequences. The original sequence shows two boats on a river. The camera
is following the black boat in the center. Therefore, the river and the background have an
apparent motion (called the dominant motion), whereas the black boat is still. First the dom-
inant translation is estimated giving the following motion model (A, Ay) = (2,0). Objects
following this translation are obtained by application of the motion operator followed by its
dual. As can be seen in Fig. 5.34 bottom, the background and the river regions are obtained.
Then, the difference between the original frame and the filtered frame is computed. This
difference involves only the two boats. On this residue still objects (Az, Ay) = (0,0) are ex-
tracted. As shown in Fig. 5.35 top, the black boat has been extracted. Finally, the remaining
components are shown in Fig. 5.35 bottom. This is a decomposition in the sense that the
sum of the three sequences restores the original sequence. As can be seen, the filtering has

separated the background and the two boats moving in two different directions.

Binary Partition Tree

Fig. 5.36 shows a motion filtering example using the Binary Partition Tree. The original
sequence is shown in Fig. 5.29: each image has been partitioned into 500 regions and the
Binary Partition Tree has been created with a color homogeneity criterion. The regions

associated to the leaves of the tree provide fine details of the image and thus the operator

5.7 Examples 127

u
[] [Conflictive node
] u [M
[] N ,/ N
moOOo0M @) n
] N N ol ecNeNol B
) o moQgdoQooOMmE
ull NuReXeNeNe o
O Q QO
A \\ o0 h /o9
NN e B e We
NN BTG Re

Zones of influence
of the markers

Figure 5.38: Example to show the strategy used to reconstruct the pixel based represen-
tation associated to the Binary Partition Tree for the motion filter. The figure shows the
definition of the zones of influence after applying the maker & propagation strategy for the
motion criterion. Nodes to be preserved (resp. removed) are depicted with a gray square
(resp. white circle). Black squares indicate zones of influence of markers. See text for

discussion.

will be able to detect small moving details.

As in the case of the Max-Tree, the purpose is to extract all moving objects from the
sequence. For that purpose, the criterion is assessed on each node and the optimization
algorithm is applied to obtain a valid pruning strategy. For the case of the motion filter,
in this case the marker & propagation strategy is applied without resolving the conflicts
(see Sec. 5.7.2). The pruning is then applied (see Sec. 5.2.1), and the color pixel based
representation is reconstructed as follows (see Fig. 5.38): the regions associated to the zones
of influence of the markers are filled up with the mean color of its region of support, otherwise
the region is reconstructed using the mean color associated to the region of support of its

parent. In the latter case the regions correspond to nodes that are in conflict.

This technique has been used since, from our experimental results, the use of the marker
& propagation strategy with conflict resolution does not provide good visual results. Our
purpose is to obtain an image in which the filtered regions are clearly visible. If conflict
resolution is used, regions associated to conflictive nodes would be merged with neighboring
regions and thus it would not be possible to distinguish exactly which are the moving regions.
An example is shown in Fig. 5.39. On top, reconstruction using conflict resolution is shown.
In this case, the ballerina corresponds to a conflictive node. With the conflict resolution, this
region would be merged with a neighboring region. Note that the contours of the removed

object (the ballerina) are not visible.

128 Filtering & Segmentation

MPEG4
WORLD

MPEG4
WORLD

MPEG4
WORLD !

MPEG4 h
WORLD |
Frame #94 Frame #96

Frame #90 Frame #92

MPEG4 MPEG4
WORLD ! WORLD

MPEG4
WORLD

MPEG4
WORLD

Frame #90 Frame #92. Frame #94 Frame #96

Figure 5.39: Example illustrating visually non desired results for different types of pixel
based reconstruction strategies. Top: reconstruction with conflict resolution, each region is
filled up with its mean color. Bottom: Reconstruction without conflict resolution and filling

each region with its mean color (instead of using parent color for the conflictive regions).

The reason of using the mean color of the support of the parent to reconstruct some of the
nodes is due to the fact that with this strategy the nodes that have been pruned are visually
“more” visible. For instance, let us take the ballerina (which is a subtree to be pruned): if
the region of support of the ballerina is reconstructed using its associated mean color, the
visual effect would be a bright colored region. In the resulting image it would be difficult to
recognize immediately that the ballerina has been removed (see Fig. 5.39 on bottom). Thus,

in other to produce a better visual effect, the previously described approach has been used.

Fig. 5.37 shows the residue between the original and filtered sequence. It indicates the
regions that have been removed by the operator. As in the case of the Max-Tree, moving
objects have been precisely extracted. The results shown in Fig. 5.37 are quite similar to
those presented in Fig. 5.32 for the Max-Tree. This is due to the fact that in this case the
moving objects are mostly bright or dark with respect its background. These objects are
represented as a node in both the Max-Tree and the Binary Partition Tree (since they are
easily to segment using color homogeneity criterion). The application of the motion filter

results thus in similar results.

Discussion

The motion operator can potentially be used for a large set of applications. In particular,
it opens the door to different ways of handling the motion information. Indeed, generally,

motion information is measured without knowing anything about the image structure. The

5.7 Examples 129

filter takes a different viewpoint by making decisions on the basis of the analysis of a set of
meaningful regions of the image. By using motion connected operators, we can “inverse” the
classical approach to motion and, for example, analyze simplified sequences where objects
are following a known motion. In [75], a robust background motion estimation strategy is
presented. The approach is based on an iterative process. First, a region based motion
estimation [18, 78] is performed between two frames using (at the beginning of iteration) the
whole image support. An approximation of the dominant motion is obtained: the estimation
is influenced by the motion of objects that do not follow the dominant motion. The motion
filter is then used to filter out all objects that do not follow the estimated dominant motion.
As a result, a mask of the outliers (regions not following dominant motion) is obtained. The
whole process is iterated by estimating the motion taking into account the information of the

outliers.

5.7.6 Rate & Distortion Browsing

The previous sections involves the evaluation and the optimization of a local criterion inde-
pendently on each region of the tree. By contrast, the following browsing example discusses

an approach where the optimization is global on the entire tree structure.

Browsing is an important functionality for information retrieval. Most of the time, the
user would like to have a rough idea on the query results. The goal is not to visualize a high
quality image, but simply to be able to discard or not the query result. This issue is not trivial
if the transmission channel between the client and the server has a reduced bandwidth. The
Binary Partition Tree is a very attractive representation to deal with such a functionality.
Indeed, as shown in [72], partition trees in general are appropriate for defining optimum
pruning strategies in the rate/distortion sense with restriction on the rate to be transmitted

or the distortion of the coded image. Let us discuss this approach.

Assume that the visual information is transmitted by selecting some regions described
by the Binary Partition Tree and by sending their contours plus a constant color value per
region. The definition of the coding strategy consists in finding the best partition created by
regions, R;, contained in the tree such that the global distortion, D, is minimized and the rate
or coding cost, R (in bits), is lower than a given budget. Note that in this section, we assume
that the goal is to minimize the distortion under a rate constraint. It is also possible to
minimize the rate under a distortion constraint. The only modification would be to exchange
the roles of D and R.

As discussed in [72], the first step consists in analyzing the rate R(R;) and distortion
D(R;) associated to each region R; in the tree. The computation of the distortion is rather

straightforward and the Squared Error between the original and coded frames can be used:

D(R) =Y (1 0) — ME) +a (")~ ME)* + () - ME)*) (5.11)
PER;

130 Filtering & Segmentation

where fY(p), fU(p) and fV(p) denote the luminance and chrominance components of the
image f at pixel position p whereas Mgi, M]% and M}{i represent the components of the
region model. The parameter « is used to balance the luminance and the chrominance
distortion. In order to simplify the approach, we assume that each color component of the

region is modeled with a constant value.

The situation is more complex for the computation of the rate R(R;). Indeed the rate
associated to a region is composed of 24 bits for the color information (or 8 in the case of a
gray-level image) plus a certain number of bits for the shape information. In this work we
assume that the contour of each region is coded independently with respect to its neighboring
regions. We have used the following approximation of the contour rate: an average number
of bits necessary to encode a contour point has been estimated. This number is denoted by
BPCP (Bits Per Contour Point). We have assumed that the contour rate assigned to a region
is equal to this average figure multiplied by the region perimeter, OR;. As a result, the rate
per region is given by:

R(R;) =24+ BPCP x OR; (5.12)

The rate/distortion optimization itself relies on the technique discussed in [49, 58, 59]. The
problem can be formulated as finding a partition P = {R;} such that the distortion D =
>_r, D(R;) of the associated image is minimized with the restriction that the total rate
R =) g, R(R;) is below a given budget Ro. Note that both the rate and the distortion have
to be additive over the regions. It is well known that this problem can be reformulated as
the minimization of the Lagrangian: D + SR where 3 is the so-called Lagrange parameter.
Both problems have the same solution if we find §* such that R is equal (or very close) to
the budget. Therefore, the problem consists in using the Binary Partition Tree to find a set

of regions creating a partition such that:
Min {D + "R} , with 8* such that R ~ Ry (5.13)

Assume, in a first step, that the optimum [* is known. The definition of the best partition
can be done by a bottom-up analysis of the Binary Partition Tree. To initialize the process,
all the leaves of the Binary Partition Tree are assumed to belong to the optimum solution.
Then, one checks if it is better to code the area represented by two sibling nodes as two
independent regions { R1, Ro} or as a single region Rj 2 (the common parent node of R; and
Ry). The selection of the best choice is done by comparing the Lagrangian of Rz with the

sum of the Lagrangians of Ry and Ra:
If D(R1u2) + B*R(Ryu2) < '212D(Ri) + B*R(R;)

=1,
then, encode R 2 as a single region (5.14)
{ else, encode R; and Ry as two independent regions

The best encoding strategy (encode Rj 2 as itself or as the union of its children) is stored in

Riu9 together with the corresponding Lagrangian value. The procedure is iterated up to the

5.7 Examples

131

01 function BottomUpAnalysis(Input: 8, Output: R, D)

02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

for(d«—max-depth; d > 0; d«d-1)
for each node Ni in ND,
Lag(Ny) < R(Ny) + 8*D(Nk)
if is-leaf-node(Ny,)
Encode(Ny) < true
else // Selection of nodes to code
if Lag(NVy,) <
Lag(Child1(N)) + Lag(Child2(Ny))
then
Encode(Ng) « true
Encode(Child1(Ny)) « false
Encode(Child2(Ny)) « false
else
Lag(Ny) < Lag(Child1(Ny)) 4+ Lag(Child2(Ny))
for(d«-0; d < max-depth; d—d+1) // Clean up decisions
for each node Ni in ND,4
if Encode(Ng) = true
for each proper descendant N; of N
Encode(N;) « false
R«—0;,D—0 // Assess overall distortion and coding rate
for each node N, in the tree
if Encode(Ng) = true
R «— R + R(Ng)
D « D+ D(Ny)

26 function end

Figure 5.40: Pseudo-code of the bottom-up analysis performed used to find the best coding

strategy given [.

root node and defines the best coding strategy. In Fig. 5.40 the associated algorithm used

to perform the bottom-up analysis is shown. The algorithm finds the best coding strategy

(according to Eq. 5.14) given a certain (3. Lag(/Ny) denotes the Lagrangian associated to node

N, Encode(Ny) is a boolean variable that indicates if node Ny belongs to the best encoding
strategy, and Child1(N) and Child2(NNy) denote the first and second child, respectively, of

node Ny.

In practice, of course, the optimum [* parameter is not known and the previous bottom-

up analysis of the Binary Partition Tree is embedded in a loop that searches for the best

0 parameter. The computation of the optimum [parameter can be done with a gradient

132 Filtering & Segmentation

01 B« 0; // Compute D and R for a very low (3
02 BottomUpAnalysis(Input: §;, Output: R, D);

03 if R < Ro then { no solution; exit;}

04 Ry —R; D — D;

05 fp «— 10%0; // Compute D and R for a very high 3
06 BottomUpAnalysis(Input: G, Output: R, D);

07 if R < Rp then { no solution; exit;}

08 Ry «— R; Dy «— D;

09 do // Find the optimum B value
10 B — (D;—Dr)/(Rn — Ry);

11 BottomUpAnalysis(Input: 3, Output: R, D);
12 if R < Rg then

13 Ry < R;Dy, — D;

14 else

15 Rl — R; Dl — D;

16 until (R = Ro)

Figure 5.41: Pseudo-code for the rate-distortion optimization. The algorithm finds the
optimum value of 3 such that R ~ Ry.

search algorithm. The algorithm starts with a very high value 3, (10%°) and a very low value
B (0) of . For each value of 3, the bottom-up optimization procedure described above is
performed. For 3, (resp. (), the optimum resulting partition should be the one associated to
the root node (resp. leaf nodes). The partitions correspond to rates Rj and R;, and should
be below and above the budget respectively. If none of these rates is close enough to the
budget, a new Lagrange parameter is defined as 5 = (D; — D) /(Rr — R;). The procedure is
iterated until the rate gets close enough to the budget. The pseudo-code of the algorithm is
described in Fig. 5.41. In practice, the optimum [* parameter is found with few iterations,
typically less than ten iterations. The bottom-up analysis itself is not expensive in terms of
computation since the algorithm has simply to perform the comparison of equation 5.14 for

all nodes of the tree.

Fig. 5.42 shows a Binary Partition Tree corresponding to an initial partition involving 100
regions. If this original image would have to be transmitted for browsing, and assuming that
a coding strategy involving the coding of the contours with chain code and of a constant color
value for each region is used, the cost in terms of bits would be approximately equal to 12898
bits (see Fig. 5.42). With respect to the original image in QCIF format, this strategy already
provides a reasonable compression factor: the original image involves 176 x 144 x 8 = 202752

bits and the corresponding compression factor is equal to 15.7. However, for visualization

5.8 Performance 133

Q
0
Q Q Q
Q Q Q Q
0Q Q Q Q Q Q Q Q
0QoO Q Q0 Q QO 0N Q 0QO0QOO0 Q Q Q
000 0QOQ Q Q 00O Q0N 0QOQOO 0Q 0Q
0Q 0Q ONONONO) BON N0 00000Q 0000 0QO0Q 0Q
0 Q 0 Q 00 Q 00 0QO00NQ O
O& Q Q oqQn 0Q 0QO0O0
000 Q 0 Q Q Q 0Q
0QOO0 0Q 0QO0 0Q
00 00 00 0Q
0 Q
00

i
\

W

Original image 12898 hits, 31.27dB 5890 hits, 27.71dB 3078 hits, 24.57 dB
(leaf nodes) (black squares) (gray rhombus)

Figure 5.42: Examples of pruning for visualization: Black squares (gray rhombus) in the
tree define the optimum solution in the rate-distortion sense for 11000 bits (3000 bits).

purposes, this strategy is not optimum. We show in Fig. 5.42 two more examples of coded
images at 5890 and 3078 bits. These images have a higher compression factor and can be
used in the case of a low transmission rate. At the same time, they allow the user to have
an idea about the image content. The coding strategy with 12898 bits is associated to code
the leaf nodes of the tree (the initial partition), whereas the one with 5890 bits (resp. 3078
bits) is associated to the nodes depicted with a black square (resp. gray rhombus). As can
be seen, for low bit rates, the algorithm selects regions close to the root of the tree. For
higher bit rates, a large number of small regions providing details about the image content
can be transmitted. Finally, Fig. 5.43 gives the complete rate/distortion curve. One can see

the evolution of the visual quality as a function of rate associated to the image.

5.8 Performance

Let us discuss the issues related to the memory and computational cost associated to the
processing of images via Max-Tree or Binary Partition Tree. For simplicity purposes, we will

restrict ourselves to compare both for the case of gray-level images.

The construction of the tree, as already discussed in Chap. 3 and Chap. 4, is generally

much faster for the Max-Tree than the Binary Partition Tree. The Max-Tree construction

134

Filtering & Segmentation

32 T

12898 hits, 31.26 dB
T

28

i

26

241

PSNR distortion (dB)

20

18

16

14

3916 bits 25.65 dB

5860 bits 27.71 dB

1916 hits :

21.80dB

7996 bits 29.62 dB

| N

9728 bits 30.38 dB

0 2000

4000

6000

8000
Ratein hits

10000

12000 14000

Figure 5.43: Rate/distortion curve for the partition tree of Fig. 5.42

algorithm has been designed for a particular type of input data: binary or gray-level images.

The number of possible gray-levels is limited and thus its associated functions (such as the

hierarchical queue) can be targeted for this particular set of data. As a result, the memory

cost associated to the construction of the Max-Tree can be kept to reasonably low levels.

On the contrary, the construction of the Binary Partition Tree is much more expensive

in terms of time.

The bottleneck in the construction process is the computation of the

initial partition that defines the leaf nodes of the tree. In our work the initial partition is

constructed using the general merging algorithm starting from a graph made up of single

pixels. If the initial partition is computed starting from a graph with a lower number of

regions the computation time can be reduced considerably (see Sec. sec:BptPerformance).

5.9 Conclusions 135

For the case of a gray-level image, one may take the watershed of minima to reduce the
number of regions of the graph. The construction of the tree structure, given the initial
partition, depends mainly on the number of regions of the initial partition. However, the
tree creation is generally fast in terms of time. From our experimental results, for an initial
partition sized 176 x 144 pixels made up of 500 regions, the construction of the tree using
color homogeneity takes about 0.1 seconds on a Pentium IT 400MHz Linux based computer

(this value includes graph construction from initial partition and merging algorithm).

In terms of memory cost, when constructing the Binary Partition Tree, the bottleneck is
again at the computation of the initial partition. Performing the merging of regions starting
from the pixel level results in a high memory consumption. As before, starting the merging
algorithm from a lower number of regions reduces the memory cost: the lower the number of

regions the lower the memory consumption.

The tree processing is very fast on both the Max-Tree and Binary Partition Tree: both are
tree structures, and thus the tree analysis and pruning can be done in a fast way. Note that in
the case of the Binary Partition Tree there may be an additional computational and memory
cost in the analysis algorithm, with respect the Max-Tree, due to the marker & propagation

with conflict resolution algorithm.

5.9 Conclusions

In this chapter the usefulness of region based representations for filtering and segmentation
applications has been discussed. Both applications can be implemented using pruning algo-
rithms. The pruning strategy is based on analyzing each node of the tree by measuring a
specific criterion on each of the associated regions. Then, a decision on the elimination or
preservation is taken on each node using usually a simple threshold on the criterion value.
The non-increasingness of the criterion has been studied and a robust strategy based on an

optimization algorithm has been presented.

The Max-Tree (resp. Min-Tree) is a tree oriented towards the maxima of the image. Thus,
this representation is suitable for removing bright (resp. dark) objects. Furthermore, the so
called transition zones remain unchanged. This produces smooth contours in the filtered

image (as seen, for instance, in Fig. 5.21 and Fig. 5.26, pages 106 and 110 respectively).

On the contrary, the Binary Partition Tree is a structure that represents the regions that
result from a region based merging algorithm. Thus, as opposed to the Max-Tree, the Binary
Partition Tree is able to represent multi-component images. The resulting filtered images are
characterized by having sharp contours. However, it should be noted that this effect is due
to the simple model (mean color) used to fill up each of the regions of the partition. More

complex models may result in smoother contours.

As a result, the image or video sequence associated to the pruned tree has been either

136 Filtering & Segmentation

filtered or segmented with respect the original image according to the selected criterion.

	Filtering & Segmentation
	Objectives
	Segmentation Algorithms
	Connected operators
	Discussion

	Tree processing strategy
	Pruning
	Reconstruction

	Pruning strategy
	Increasing and Non-Increasing Criteria
	Optimization for Non-Increasing Criteria
	Discussion
	Examples
	Marker & Propagation Segmentation
	Area Filtering
	Contrast Filtering
	Complexity Filtering
	Motion filtering
	Rate & Distortion Browsing

	Performance
	Conclusions

