UNB

Universitat Autonoma de Barcelona

Compact data structures
for
remote sensing data

Kevin Chow

ADVERTIMENT. L’accés als continguts d’aquesta tesi queda condicionat a I'acceptacié de les condicions d’Us
establertes per la seglent lliceéncia Creative Commons: http://cat.creativecommons.org/?page_id=184

ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptacion de las condiciones de uso
establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/

WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set

by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en

Universitat Autonoma de Barcelona

Departament d’Enginyeria de la Informacio i
de les Comunicacions

COMPACT DATA STRUCTURES
FOR
REMOTE SENSING DATA

SUBMITTED TO UNIVERSITAT AUTONOMA DE BARCELONA
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

by Kevin Chow
Bellaterra, July 2022

Supervisors:
Dr. Joan Serra-Sagrista

Dr. Ian Blanes

© Copyright 2022 by Kevin Chow

I certify that I have read this thesis and that in my
opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Bellaterra, July 2022

Dr. Joan Serra-Sagrista

Dr. Ian Blanes

Committee:
Dr. Joan Bartrina-Rapesta
Dr. Fernando Silva Coira
Dr. Cecilia Hernandez Rivas
(substitute) Dr. Guillermo Navarro
(substitute) Dr. Nieves Rodriguez Brisaboa
(substitute) Dr. José Fuentes-Septulveda

i

Abstract

In this digital era, an enormous amount of data are being generated and processed daily. They
accumulate to such an extent that it is necessary and imperative to use data compression to reduce
the data size so that they can take up as little space as possible. Among the many data compression
schemes, there is one known as compact data structures, and it will be the focus of this thesis. These
structures store data efficiently while also providing real-time access to the data in the compressed
domain, i.e., to query an individual element, it is not necessary to decompress the whole structure.
Compact data structures also provide lossless compression, thus ensuring no information loss during

the compression process.

Remote sensing hyperspectral scenes are image data that are transmitted from sensors located
in aircraft or in satellites orbiting the Earth to receivers at ground stations. Due to the size of the
data, they need to be compressed in such a way that they can be transmitted more quickly and when
they reach the ground stations, they can be stored in an efficient manner to save space. Therefore,

data compression is necessary for faster transmission and reduced storage space.

This thesis sets out to explore several distinct ways of using compact data structures to provide
better performance with regard to compression ratio and access time for remote sensing hyperspec-
tral data. First, we describe a predictive method and a differential method designed to work with a
compact data structure and evaluate the improvements made. Then we present a study of different
variable-length codes that can be used in tandem with compact data structures to achieve higher
compression gains. Next, we analyze the tree structure of the raster matrix so that only nodes that
contain relevant data are saved, thus making the structure more compact. Finally, we investigate a
recently proposed compact data structure and examine how its performance stacks up against the
others.

Experiments have shown that these proposed methods produce results that remain competitive

with the traditional techniques and methods that have been in use.

1ii

v

Acknowledgements

First, let me express my utmost gratitude to Dr. Joan Serra-Sagrista and Dr. Ian Blanes for their
patient and tireless guidance and for always providing me with their invaluable inputs and helpful
advice. Their support has made this Ph.D. dissertation possible and an eventual reality, and I ap-

preciate very much their time and commitment.

I am immensely grateful to Dr. Diego Seco for giving me the opportunity to collaborate with
him during my virtual research stay. His insights into the subject of compact data structures will

be relished forever.

The love and support afforded me by my dearest parents and Lena, my favorite and only sister,

just goes to show that there are things in life that you cannot put a price tag on.

Thanks to all my friends and relatives around the world in Hong Kong, Spain, Canada, China,
and Taiwan. Special thanks go to Wah, Sin Chuk, Lim, Jo, Cousin Chiu, and Kwok Shuen.

Finally, thanks go to all those who work in my department, DEIC, for making my research

endeavor and my teaching job a little less hectic and a more enjoyable experience.

vi

Contents

Abstract iii
Acknowledgements v

1 Introduction
1.1 Compact data structures L.
1.1.1 KZ?tree structure
1.1.2 KZ%raster structure
1.1.3 T—k?raster structure,
1.1.4 Rank and select functions
1.2 Remote sensing datao
1.3 Variable-length encoding
1.4 Contributions to the thesis,

© 00 N ot ot N N = -

1.5 Organization of the thesis 10

2 Using predictive and differential methods with k?-raster compact

data structure for hyperspectral image lossless compression 13

3 Analysis of variable-length codes for integer encoding in hyperspec-

tral data compression with the k?-raster compact data structure 39

4 Performance improvement on k?-raster compact data structure for

hyperspectral scenes 57

vii

5 A compact data structure for hyperspectral scenes based on raster

time series

6 Results summary
6.1 Use of different k-values
6.1.1 Storagesize
6.1.2 Accesstime
6.2 Predictive and differential methods
6.2.1 Storagesize
6.2.2 Accesstime
6.2.3 Groupsize
6.3 Integer encoders
6.3.1 Storagesize
6.3.2 Accesstime
6.4 Padding versus unpadding oo
6.4.1 Storagesize
6.4.2 Accesstime
6.5 T-K2raster structure.
6.5.1 Storagesize
6.5.2 Accesstime
7 Conclusion
7.1 Summary
7.2 Futurework

viil

63

69
69
71
71
72
73
73
74
74
74
75
75
I0)
76
76
77
78

Chapter 1

Introduction

1.1 Compact data structures

Compact data structures [1] are losslessly compressed structures that provide efficient
storage and random data access. They have evolved from the 1990s after the work
of Guy Jacobson [2, 3] who proposed the use of the rank and select functions as
their main primitive operations to locate the elements of a structure. This makes it
possible to avoid using pointers, which usually occupy a lot of space in the structure.

The second advantage is the structure’s ability to offer random access to individual
elements without full decompression. In that respect, it stands apart from data
compressed by other popular compression techniques such as Gzip or specialized
algorithms such as CCSDS 123.0-B-2 [4].

The third advantage is that the smaller size of the structure allows it to fit into
memory and cache, making it less likely to be swapped out to disk, resulting in faster
queries. Compact data structures also provide lossless compression which means the
original data can be restored and rebuilt from the compressed data and the quality
stays the same.

In this thesis, several compact data structures are studied and investigated in-
cluding k*-tree [5], k*-raster [6], and T—k?raster [7]. They will be discussed in greater
detail in Chapter 2 through Chapter 5, but a brief description of these structures and

some related information are given below.

2 CHAPTER 1. INTRODUCTION

1.1.1 K2-tree structure

K2-tree was originally proposed to be used in Web graphs, social networks, etc.
It is built from a binary adjacency matrix (with values 0 or 1) based on graphs.
Fig. 1.1 illustrates how a k2-tree is built from an 8 x 8 binary adjacency matrix which
corresponds to a graph with eight nodes.

K?-tree is built by recursively partitioning the matrix into square submatrices of
equal size until each submatrix reaches a size of k x k and k£ >2. When the matrix
is being partitioned into submatrices, if at least one cell in the submatrix is found
to have a value of 1, then the node of the tree will be set to 1. Otherwise, the node
will be set to 0, which means that it is now a leaf node and does not have any chil-

dren. In this case, the partitioning stops in this submatrix and will not go any further.

1.1.2 KZ2-raster structure

K?-raster (or k*raster) was proposed based on the work done in k?-tree. The tree
structure is built from a matrix with integer values. Therefore, the nodes of the tree
also contain integers. Fig. 1.2 shows how a k*-raster is built from an 8 x 8 matrix
and how the values are stored in the tree nodes.

K?-raster consists of several basic elements: a bitmap (7'), two integer arrays
(Lmaz, Lmin), a variable-length encoder, and a k*-ary tree. The raster matrix is
recursively partitioned until each submatrix reaches a size of k x k. However, if all
the elements in the submatrix have the same value, the partitioning will stop, and
the corresponding tree node becomes a leaf node without any children. A T bitmap
which is generated from all the nodes at all levels except for the root and the last
level indicates which nodes contain child nodes (1) and which ones do not (0). This
bitmap is used by the rank function in query to find the element among the tree
nodes.

Unlike k2-tree, at each tree level, the maximum and minimum values of each

COMPACT DATA STRUCTURES

1.1.

M12345678

1/0|0[0J0|0]0O]O0O
0[1][0|0]JO[0|0O]O
0|0[0|0]JO[0O|0O]O
0{0[1]/1]0[0]0]0
0{0[0|0]J1[1]0]0

0|0[0|0]JO[0O|0O]O
0|0]|0|0]JO[0O|O]O
0{0][0|0]J1]|1]0]O

111/0]0]|0]0|0]|0]O0O
2|0[1|/0]|0]|0]0]|0]O0O
3]0/0|0]|0]|0]0O]|0O]O

5]0[0|0]|0[1]1]0]0
6]0[0|/0]|0]|0]0O]|0O]O
710/0/0]|0]|0]0]|0]O0
810/0(0]|0[1]1]0]0

410]0]1|1/0]|0j0|O0O

Level 1

Level 0 (Root)

110J0|0]0]0|0]|0
0]/1]0/0/0|0|0|O0O
0/0j0jojoj0|0|0
0/0]1§1]0/0]/0|0
0/0]0|0}f1]1]jO|O0

0/0]0|0j0]OJO|O
0/0]0]0j0]OJO|O0O
0]0]0]0J1]1]O|O0

1/0]0[0|0|0]0O]O0O
0[1j0/0][0[0]0]0
0|0jojo]Jo[o0j0O]0
0|0fj1/1]0{0]0]0
0|0[0|0]J1[1]O]O

0|0[0|0]JO|O]JO]O
0|0[0|0]JO[0]JO]O
0{0[0|0O]J1[|1]O]0

Level 3

Level 2

«— Level 0

Root

«— Level 1

00

«— Level 2
«— Level 3

1
AN
0011

Figure 1.1: (Top) A graph with 8 nodes. (Middle) The corresponding 8 x 8 binary adjacency
matrix at various stages of recursive partitioning. (Bottom) A k2-tree (k = 2) constructed

from the matrix.

CHAPTER 1. INTRODUCTION

slele|e|s|al3]3] [8]e]|e]e]ls]|a|3]3] [s]e|e]e]s]a]3]3] [8]e]|s]|e]ls]4]3]3
7lele|s|s|al3]3] [7]e]|e|s]s]a|3]3] [7]ele]5]s]4]3]3] [7]e]|e]|s]5]4]3]3
slals|s|3|3]2]|2]| |s]|4]s5]s]3]3|2]2] [s5]4]5]5]3]3]2]2] [s]4]lsls]3]3]|2]2
slalaals|s]2]|2]| |s[a|ala]s]3]|2]2] [5]4a|a]4]3]3]2]2] [s]4]4]4]3]3]|2]2
alafal2]2]2]2|2] [4|3]4a]2]2]2]2]2] [4]3]4a|2]2]2]2]2] [4]3]4]2]2]z2]2]2
3l2]3f2|2]2|2]2]| [3|2]3]2]2]2]|2]2]| [3|2]3|2]2]2]2|2| [3]2]3]2]2]2]2]2
sls]3]3|2|2]2]2]| [|3]3]3]3]2]2|2]2]| [3]3]|3]3]2]2]2]2] [3]3]3]3]2]2]|2]2
2(2]3]3]2]2]2]2]| [2]2]3]s]2]2]2]2] [2]2]3]3]2]2]2]2] [2]2]3]3]2]2]2]2
Level 0 (Root) Level 1 Level 2 Level 3

8-4 5-2 4-2 2-2 ¢« Level 1

8-6 6-5 5-4 5-4 54 3-3 3-3 22 4-2 4-2 32 33 «— Level 2

86766665545455445454 433242323322 < Level 3

0-2

0-2 2-1

3-0

3-0

<— Level 0

6-0 <— Level 1

T
02 212130 00 0-0 10 1-1 — Tevel 2

AN AN NP ZAN NP ZANNIZAN
02120001010100110101

RANPZANNPZAN
011202120011

Element | Base | Tree Level | Node Data
Level 0 8
Lo 10 Level 1 0346
Level 2 0233 0223 0011
Level 3 0212 0001 0101 0011 0101 0112 0212 0011
Level 0 2
Lin 10 Level 1 200
Level 2 2100 2 000
T Bitmap | 2 11110 1111 1000 1110

<— Level 3

Figure 1.2: (Top) An 8 x 8 matrix (My) showing recursive partitioning. (Middle) The
upper tree is a k2-raster (k = 2) tree constructed from the matrix and the lower tree takes
into account the differences between the parent and child nodes. Except for the last level,
maximum and minimum values in each node are separated by a hyphen. (Bottom) A table
showing the elements of the k%-raster.

1.1. COMPACT DATA STRUCTURES 5

submatrix are stored in each tree node and these values go into two arrays which
are called V,,q. and V,,;, respectively. To further improve compression, at each tree
node, the differences of the maximum and minimum values between the parent and
child nodes are taken and they will replace the values stored in the child nodes.
With smaller values in each node, a better compression can be achieved with the
variable-length encoder.

The root’s maximum (rMaz) and minimum (rMin) are integer values that remain
uncompressed and become the first element of an L,,,, and an L,,;, array respectively.
The V4. arrays at the other levels are then concatenated to the L,,,, array while the
Vinin arrays at the other levels (except the last level) are concatenated to the Ly,

array.

1.1.3 T-k’raster structure

T-k?raster is for 3D rasters such as hyperspectral data where the third dimension
specifies the range of wavelengths or the spectral band or component. It is composed
of two kinds of k?-rasters: a snapshot matrix and a log matrix. The snapshot matrix
is a normal k2-raster while the log matrix contains the differences taken between the
corresponding elements in this matrix and the ones in the snapshot matrix. However,
we should note that a bit unlike a normal k2-raster, when the log matrix is in the
process of being partitioned recursively, the partitioning of the submatrix will stop if
the differences of all the elements in the submatrix are the same (zero or otherwise)
or the values of all the elements in the submatrix are the same. Fig. 1.3 shows how a
T-k?raster is built from an 8 x 8 matrix and how, after taking the differences between
this log matrix (M,,1) and the snapshot matrix in Figure 1.2 (M), the values are

stored in the tree nodes.

1.1.4 Rank and select functions

In compact data structures, there are many uses of the rank and select functions. For
example, in k%-raster, the rank function is used for finding the location of the nodes

in the tree structure. Section 2.2 “LOUDS” in Chapter 2 will provide more details

6 CHAPTER 1. INTRODUCTION

9|7]|6|6|5[|4]|3(3 9|7]|6|6|5|4]|3]|3 9|7|6|6|5|4|3]|3 9|7|6|6|5|4|3](3
871665433 8|(7/6(6|5(4|3|3 871665433 871665433
5455|3322 5415513322 5415513322 514553322
5(5(414(3(|3]|2](2 554143322 551443322 51514143322
413141412222 413141412222 4131414122122 413|414 12]12]2]2
312433222 312433222 31214 (3[3[2]2]2 31214133]12]2]2
3333|2222 313[3|3|2|2(2(2 31313|3|2(2]12(2 31313132222
2121332222 21213312222 21213 (312(2]2(2 21213(3|2(2(|2(2
Level 0 (Root) Level 1 Level 2 Level 3
1-0 0-0 0-0 1-0 «— Level 1
1-1 0-1 0-0 0-0 0-0 0-1 0-0 0-0 1-0 0-0 0-0 0-0 <— Level 2
0001 0211 0010 < Level 3
Element Base | Tree Level | Node Data
Level 0 1
Lnas 10 Level 1 1001
Level 2 1000 0000 1000
Level 3 0001 0211 0010
Level 0 0
Liin 10 Level 1 000
Level 2 010
T Bitmap 2 11011 0010 0100 1000
eqB Bitmap | 2 1101 110 000

Figure 1.3: (Top) A non-snapshot matrix (M) showing recursive partitioning. (Middle) a
T-k?raster (k = 2) tree constructed from the differences between the matrix (Mgy1) at the
top of this figure and the matrix in Fig. 1.2 (Mg). Except for the last level, all nodes show
the maximum and minimum values separated by a hyphen. (Bottom) A table showing the
elements of the T-k?raster.

1.2. REMOTE SENSING DATA 7

on these functions.

rank,(m) returns the number of bits with a value of b starting from
the first position up to and including the position m in the

bitmap (b is 0 or 1).

selecty(7) returns the position of the i-th bit that has a value of b in
the bitmap (bis 0 or 1).

By default, b is 1, i.e., rank(m) = rank; (m). These operations are inverses of each

other, i.e., rank,(select,(m)) = select,(rank,(m)) = m.

1.2 Remote sensing data

Remote sensing data refer to the information received from satellites in outer space or
from aircraft. These data are obtained by measuring the reflected and emitted radi-
ation of a certain area on Earth and are composed of multiple bands spanning across
the electromagnetic spectrum. The data in a range of bands in this spectrum help us
look for objects that we are interested in, for example, minerals [8], oil fields [9], and
agriculture [10]. They also help us with applications such as wildfire soil studies [11]
and weather prediction [12]. Hyperspectral scenes, which are a type of remote sens-
ing data, are the focus of this thesis. They are captured by sensors in real missions
from aircraft such as Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), or
from satellites such as Atmospheric Infrared Sounder (AIRS), Compact Reconnais-
sance Imaging Spectrometer for Mars (CRISM), Hyperion, and Infrared Atmospheric
Sounding Interferometer (IASI). These sensors are instruments from the National
Aeronautics and Space Administration (NASA) except for IASI which is from the
European Space Agency (ESA).

It should be noted that hyperspectral data are 3D data. For example, given the
sizes x, y and z, x and y are the width and height of the raster matrix respectively,

and z is the spectral range of wavelengths. When compressing hyperspectral data,

8 CHAPTER 1. INTRODUCTION

we can take advantage of two aspects of the data: spatial and spectral correlations.
Spatial correlation is related to the similarities or redundancies of the data within
the raster matrix whereas spectral correlation is related to the similarities or redun-
dancies of the corresponding elements in two different spectral bands. In general, for
spectral correlation, the closer two spectral bands are to each other, the higher the

redundancies are.

1.3 Variable-length encoding

In order to compress a compact data structure, variable-length encoders are needed.
These encoders allow compact data structures to compress the data so that access to
the individual elements can be accomplished with a minimal degree of decompression.
In the original paper on k?-raster, a variable-length encoder or integer encoder known
as Directly Addressable Codes (DACs) [13] was used to compress an array of data
from the tree nodes in the structure so that the resulting data occupy less space.
However, in our research, other integer encoders have also shown similar or even more
competitive results when compared with DACs. We have explored a few of them,
including Rice codes [14], Simple-9 [15], Simple-16 [16], and PForDelta codes [17],
among others, and they are briefly described below beginning with the simple unary

codes:

e Unary codes are bit-aligned codes for small integers. If = is a non-negative
integer and |x| is the minimum bit length to express z (|z| = |log, 2| 4+ 1), then
unary codes are defined as:

u(z) =01, (1.1)

where the superscript « indicates the number of consecutive 0 bits in the code.

« Rice codes are bit-aligned codes. If x is an integer value in the sequence and
y = |2/2'], with [being a non-negative integer parameter, the Rice codes for

this parameter are defined as:

Ry(x) = uly +1) [z]; - (1.2)

1.4. CONTRIBUTIONS TO THE THESIS 9

In Section 2.4 “Rice Codes” of Chapter 3, a more detailed discussion of Rice

codes will be presented.

e DACs are a variable-length encoding scheme for direct access to encoded integer
sequences. It does not require a sampling function. In Section 2.6 “Directly
Addressable Codes” of Chapter 3, a more detailed discussion of DACs will be

presented.

e Simple-9 is a word-aligned encoding scheme where a 32-bit word is split into
two parts: a 28-bit part containing a variable number of integers being encoded

and a 4-bit part which is a selector with a value ranging from 0 to 8.

e Simple-16 is similar to Simple-9. It uses all the 16 combinations in the selector

with values ranging from 0 to 15.

e PForDelta is another word-aligned encoding scheme. It encodes a fixed group
of 32, 64, 128 or 256 integers so that they can fit into a certain number of bytes.
A percentage of those integers that are larger than the others are encoded

separately and are placed after the smaller integers or in another location.

For Simple-9, Simple-16 and PForDelta, please refer to Section 2.5 in Chapter 3

for a more comprehensive review of these codes.

1.4 Contributions to the thesis

o Kevin Chow, Dion Eustathios Olivier Tzamarias, Ian Blanes, and Joan Serra-
Sagrista, “Using Predictive and Differential Methods with k2-raster
Compact Data Structure for Hyperspectral Image Lossless Compres-
sion,” MDPI Remote Sensing, vol. 11, no. 11, 2019.

DOI: 10.3390/rs11212461. [18] (IF: 4.509, Q2)

o Kevin Chow, Dion Eustathios Olivier Tzamarias, Miguel Hernandez-Cabronero,

[an Blanes, and Joan Serra-Sagrista, “Analysis of Variable-Length Codes

http://dx.doi.org/10.3390/rs11212461

10 CHAPTER 1. INTRODUCTION

for Integer Encoding in Hyperspectral Data Compression with the k-
raster Compact Data Structure,” MDPI Remote Sensing, vol. 12, no. 12,
2020. DOI: 10.3390/rs12121983. [19] (IF: 4.848, Q1)

« Kevin Chow, Dion Eustathios Olivier Tzamarias, Miguel Hernandez-Cabronero,
Ian Blanes, and Joan Serra-Sagrista, “Performance Improvement on k-
raster Compact Data Structure for Hyperspectral Scenes,” I[EEFE Geo-
science and Remote Sensing Letters, vol. 19, pp. 1-5, 2021.

DOI: 10.1109/LGRS.2021.3084065. [20] (IF: 3.966, Q1)

o Kevin Chow, Dion Eustathios Olivier Tzamarias, Miguel Hernandez-Cabronero,
lan Blanes, and Joan Serra-Sagrista, “A Compact Data Structure for Hy-
perspectral Scenes Based on Raster Time Series,” SUBMITTED in April
2022 to IEEE Geoscience and Remote Sensing Letters. (IF: 3.966, Q1)

1.5 Organization of the thesis

The rest of the thesis is organized as follows:

Chapter 2 presents our publication [18] where a lossless coder is proposed for
compression and real-time processing of hyperspectral data. A predictor or a differ-
ential encoder is applied to a collection of raster matrices to reduce their bit rates by
exploiting the similarities in pixel values between corresponding elements in neigh-
boring bands. The encoder then uses k%-raster to further reduce the bit rates and

attains a better compression ratio.

Chapter 3 presents our paper [19] in which we study a number of variable-length
encoders that encode integer data in a k2-raster for hyperspectral scenes. For a com-

petitive performance, choosing the right integer encoder is important for the com-

http://dx.doi.org/10.3390/rs12121983
http://dx.doi.org/10.1109/LGRS.2021.3084065

1.5. ORGANIZATION OF THE THESIS 11

pression ratio and access time. In this chapter various integer encoders are discussed
including Rice, Simple-9, Simple-16, PForDelta codes, and DACs. This chapter also
describes a heuristic method to compute an optimal k-value that can be used to build

a k2-raster that produces the best performance.

Chapter 4 presents our publication [20] where we continue to explore ways of
improving data size and access time for k%-raster. We study the raster matrix without
any padding, i.e., an unpadded matrix and determine whether we can still compress
the structure and access the data, and how it fares compared with a padded matrix.
Next, we examine some integer encoders that are word-aligned codes, specifically the
Simple family and PForDelta and discuss how well their random element access is. A

comparison with that of DACs is presented.

Chapter 5 presents our latest manuscript which was submitted to IEEE Geo-
science and Remote Sensing Letters (GRSL) journal in April 2022. It examines
T-k?raster, a compact data structure that was recently proposed based on k2-raster.
This structure is a combination of k?-raster and a modified version of k?-raster, both
of which are k2-ary tree data structures that provide efficient storage and real-time
processing. T-k?raster, which in earlier research produced favorable results for raster
time series, is now being studied for remote sensing data. The structure can be used
to minimize redundancies in hyperspectral data resulting from the spectral correla-

tion between elements in adjacent bands.

Chapter 6 presents our analysis of the results from experiments that have been
performed by the different methods described in chapter 2 through 5 using compact

data structures.

Chapter 7 concludes this thesis with a summary as well as several interesting

ideas for projects that we can pursue in the future.

12

CHAPTER 1.

INTRODUCTION

Chapter 2

Using predictive and differential
methods with k*-raster compact
data structure for hyperspectral

image lossless compression

13

CHAPTER 2. USING PREDICTIVE AND DIFFERENTIAL METHODS WITH
K?-RASTER COMPACT DATA STRUCTURE FOR HYPERSPECTRAL IMAGE
14 LOSSLESS COMPRESSION

remote sensin N
EJ & bpy

Article

Using Predictive and Differential Methods with
K2-Raster Compact Data Structure for Hyperspectral
Image Lossless Compression *

Kevin Chow *, Dion Eustathios Olivier Tzamarias, Ian Blanes and Joan Serra-Sagrista

Department of Information and Communications Engineering, Universitat Autonoma de Barcelona,

08193 Cerdanyola del Valles, Barcelona, Spain; dion.tzamarias@uab.cat (D.E.O.T.); ian.blanes@uab.cat (I.B.);

joan.serra@uab.cat (J.S.-S.)

* Correspondence: kevin.chow@uab.cat

t This paper is an extended version of our paper published in the 6th ESA /CNES International Workshop on
On-Board Payload Data Compression Proceedings.

check for
Received: 31 August 2019; Accepted: 17 October 2019; Published: 23 October 2019 updates

Abstract: This paper proposes a lossless coder for real-time processing and compression of
hyperspectral images. After applying either a predictor or a differential encoder to reduce the
bit rate of an image by exploiting the close similarity in pixels between neighboring bands, it uses a
compact data structure called k?-raster to further reduce the bit rate. The advantage of using such a
data structure is its compactness, with a size that is comparable to that produced by some classical
compression algorithms and yet still providing direct access to its content for query without any need
for full decompression. Experiments show that using k?-raster alone already achieves much lower
rates (up to 55% reduction), and with preprocessing, the rates are further reduced up to 64%. Finally,
we provide experimental results that show that the predictor is able to produce higher rates reduction
than differential encoding.

Keywords: compact data structure; quadtree; k%-tree; k?-raster; DACs; 3D-CALIC; M-CALIC;
hyperspectral images

1. Introduction

Compact data structures [1] are examined in this paper as they can provide real-time processing
and compression of remote sensing images. These structures are stored in reduced space in a compact
form. Functions can be used to access and query each datum or groups of data directly in an efficient
manner without an initial full decompression. This compact data should also have a size which is
close to the information-theoretic minimum. The idea was explored and examined by Guy Jacobson in
his doctoral thesis in 1988 [2] and in a paper published by him a year later [3]. Prior to this, works
had been done to express similar ideas. However, Jacobson’s paper is often considered the starting
point of this topic. Since then it has gained more attention and a number of research papers have
been published. Research on algorithms such as FM-index [4,5] and Burrows-Wheeler transform [6]
were proposed and applications were released, notable examples of which include bzip2 (https:
//linux.die.net/man/1/bzip2), Bowtie [7] and SOAP2 [8]. One of the advantages of using compact
data structures is that the compressed data form can be loaded into main memory and accessed
directly. The smaller compressed size also helps data move through communication channels faster.
The other advantage is that there is no need to compress and decompress the data as is the case
with data compressed by a classical compression algorithm such as gzip or bzip2, or by a specialized
algorithm such as CCSDS 123.0-B-1 [9] or KLT+JPEG 2000 [10,11]. The resulting image will have the
same quality as the original.

Remote Sens. 2019, 11, 2461; d0i:10.3390/rs11212461 www.mdpi.com/journal /remotesensing

Remote Sens. 2019, 11, 2461 20f24

Hyperspectral images are image data that contain a multiple number of bands from across the
electromagnetic spectrum. They are usually taken by hyperspectral satellite and airborne sensors. Data
are extracted from certain bands in the spectrum to help us find the objects that we are specifically
looking for, such as oil fields and minerals. However, due to their large sizes and the huge amount of
data that have been collected, hyperspectral images are normally compressed by lossy and lossless
algorithms to save space. In the past several decades, a lot of research studies have gone into keeping
the storage sizes to a minimum. However, to retrieve the data, it is still necessary to decompress
all the data. With our approach using compact data structures, we can query the data without fully
decompressing them in the first place, and this is the main motivation for this work.

Prediction is one of the schemes used in lossless compression. CALIC (Context Adaptive Lossless
Image Compression) [12,13] and 3D-CALIC [14] belong to this class of scheme. In 1994, Wu et al.
introduced CALIC, which uses both context and prediction of the pixel values. In 2000, the same
authors proposed a related scheme called 3D-CALIC in which the predictor was extended to the pixels
between bands. Later in 2004, Magli et al. [15] proposed M-CALIC whose algorithm is related to
3D-CALIC. All these methods take advantage of the fact that in a hyperspectral image, neighboring
pixels in the same band (spatial correlation) are usually close to each other and even more so for
neighboring pixels of two neighboring bands (spectral correlation).

Differential encoding is another way of encoding an image by taking the difference between
neighboring pixels and in this work, it is a special case of the predictive method. It only takes advantage
of the spectral correlation. However, this correlation between the pixels in the bands will become
smaller as the distance between the bands are further apart and therefore, its effectiveness is expected
to decrease when the bands are far from each other.

The latest studies on hyperspectral image compression, both lossy and lossless, are focused
on CCSDS 123.0, vector quantization, Principal Component Analysis (PCA), JPEG2000, and Lossy
Compression Algorithm for Hyperspectral Image Systems (HyperLCA), among many others. Some of
these research works are listed in [16-19]. In this work, however, we investigate lossless compression of
hyperspectral images through the proposed k?-raster for 3D images, which is a compact data structure
that can provide bit-rate reduction as well as direct access to the data without full decompression.
We also explore the use of a predictor and a differential encoder as preprocessing on the compact
data structure to see if it can provide us with further bit-rate reduction. The predictive method
and the differential method are also compared. The flow chart shown in Figure 1 depicts how the
encoding/decoding of this proposal works.

This paper is organized as follows: In Section 2, we present the k?-raster and discuss it in detail,
beginning with quadtree, followed by k?-tree and k?-raster. Later in the same section, details of the
predictive method and the differential method are discussed. Section 3 shows the experimental results
on how the two methods fare using k?-raster on hyperspectral images, and more results on how some
other factors such as using different k-values can affect the bit rates. Finally, we present our conclusions
in Section 4.

Remote Sens. 2019, 11, 2461 3o0f24

Predictive 2 Predictive
Encoding k*-raster Decoding
Original Reconstructed
Hyperspectral Hyperspectral
Image Image
Differential 2 Differential
Encoding k*-raster Decoding

Figure 1. A flow chart showing the encoding and decoding of this coder.

2. Materials and Methods

One way to build a structure that is small and compact is to make use of a tree structure and do
it without using pointers. Pointers usually take up a large amount of space, with each one having a
size in the order of 32 or 64 bits for most modern-day machines or programs. A tree structure with n
pointers will have a storage complexity of O(nlogn) whereas a pointer-less tree only occupies O(n).
For pointer-less trees, to get at the elements of the structure, rank and select functions [3] are used,
and that only requires simple arithmetic to find the parent’s and child’s positions. This is the premise
that compact data structures are based on. In this work, we will use k?-raster from Ladra et al. [20],
a concept which was developed from k?-tree, also a type of compact data structure, as well as the idea
of using recursive decomposition of quadtrees. The results of k*>-raster were quite favorable for the
data sets that were used. Therefore, we are extending their approach for hyperspectral images and
investigate whether it would be possible to use that structure for 3D hyperspectral images. The Results
section will show us that the results are quite competitive compared to other commonly-used classical
compression techniques. There is a bit-rate reduction of up to 55% for the testing images. Upon more
experimentation with predictive and differential preprocessing, a further bit-rate reduction of up to
64% can be attained. For that reason, we are proposing in this paper our encoder using the predictor
or differential method on k2-raster for hyperspectral images.

2.1. Quadtrees

Quadtree structures [21], which have been used in many kinds of data representations such
as image processing and computer graphics, are based on the principle of recursive decomposition.
As there are many variants of quadtree, we will describe the one that is pertinent to our discussion:
region quadtree. Basically, a quadtree is a tree structure where each internal node has 4 children. Given
a 2D square matrix, it is partitioned recursively into four equal subquadrants. If a tree is built to
represent this, it will have a root node at level 0 with 4 children nodes at level 1, each child representing
a node and a subquadrant. Next, if the subquadrant has a size larger than 22, then each of these
subquadrants will be partitioned to give 4 more children and a new level 2 is added to the tree. Note
that the tree nodes are traversed in a left to right order.

Considering a matrix of size n X n where n is a power of 2, it is recursively divided until each
subquadrant has a size of 22. For example, if the size of the matrix is 8 x 8, after the recursive division
of matrix, (8%)/(2%) = 16 subquadrants are obtained. It should be noted that the value of # in the image
matrix needs to be a power of 2. Otherwise, the matrix has to be enlarged widthwise and heightwise to

Remote Sens. 2019, 11, 2461 4 0f 24

a value which is the next power of 2, and these additional pixels will be padded with zeros. As k*-trees
are based on quadtrees, the division and the resulting tree of a quadtree are very similar to those of a
k?-tree. Figure 2 illustrates how a quadtree’s recursive partitioning works.

&%@é

M123 456738
1]1]0|0(0|0f0O|0O|O 110|]0(0j0|0(f0|O0O 110(0|0j0|0]|0|0 1{0j0jojoj0|0]|0
2]10[{1]{0f{1]{0|0|0]|O 0[1[0[1]J0[0|0]0 0l1fJ0[1]J0|0|0]|0O 0j1]oj1jJ0|{0|0]|0
3]0|/0|1]|0|0|0|0O]|O ojof1(ojojojo|o0 oj{0j1{ojojo|0|0O o(oj1]jojojo|o]|o0
410(0|1(1{0|0|0]|O0 0{0f[1[1J0|0|0]|O0 0(ofj1(1jJ0j0(0]0 ojofj1f1J0j0f0|0
510/0{0]|0|1]|1|0]|0 0(0[0|0OfJ1[1]0]0 0(0[0]|O0fJ1]|1]0]0 0|0fj0|0f1]1]0]|0
6]0|(0|0|0|1|1|0]|0O ojofjofofj1|{1]0|0 0oj{o0fjo0jo]1|1]0]|0 o(ojojoj1j1jojo
710]0|0(0|0f0O|0O|O 0({0f0[0J0|0|0O]O o(ofofojojofojo ojofofojojofofo
810/0[{0[0][0]|0|0O]O 0[{0l0|0]JO]0O]O]|O 0[{0|/0[0]|0|0|O|O 0/0(0]|0]|0|0|O]|O
Level 0 (Root) Level 1 Level 2 Level 3

Root <— Level0

/\ 00 /]N <— Levell

1 1 0 1 1 000 <«— Level 2

10010001 1011 1111 «— Level3

Figure 2. A graph of 6 nodes (top) with its 8 x 8 binary adjacency matrix at various stages of recursive
partitioning. At the bottom, a k2-trees (k=2) is constructed from the matrix.

2.2. LOUDS

k?-tree is based on unary encoding and LOUDS, which is a compact data structure introduced by
Guy Jacobson in his paper and thesis [2,3]. A bit string is formed by a breadth-first traversal (going
from left to right) of an ordinal (rooted, ordered) tree structure. Each parent node is encoded with a
string of 1" bits whose length indicates the number of children it has and each string ends with a ‘0
bit. If the parent node has no children, only a single ‘0’ bit suffices.

The parent and child relationship can be computed by two cornerstone functions for compact
data structures: rank and select. These functions give us information about the node’s first-child,
next-sibling(s), and parent, without the need of using pointers. They are described below:

ranky(m) returns the number of bits which are set to b, left of position m (inclusive) in the
bitmap where bis 0 or 1.
selecty(i) returns the position of the i-th b bit in the bitmap where b is 0 or 1.

By default, b is 1, i.e., rank(m) = rank; (m). These operations are inverses of each other. In other
words, rank(select(m)) = select(rank(m)) = m. Since a linear scan is required to process the rank and
select functions, the worst-case time complexity will be O(n).

To clarify how these functions work, consider the binary trees depicted in Figure 3 where the one
on the left shows the values and the one on the right shows the numbering of the same tree. If the
node has two children, it will be set to 1. Otherwise, it is set to 0. The values of this tree are put in a bit
string shown in Figure 4. Figure 5 shows how the position of the left child, right child or parent of a
certain node m is computed with the rank and select functions. An example follows:

Remote Sens. 2019, 11, 2461 5 of 24

To find the left child of node 8, we first need to compute rank(8), which is the total number of 1’s
from node 1 up to and including node 8 and the answer is 7. Therefore, the left child is located in
2*rank(8) = 2*7 = 14 and the right child is in 2*rank(8)+1 = 2*7+1 = 15. The parent of node 8 can be
found by computing select(|8/2]) or select(|4]). The answer can be arrived at by counting the total
number of bits starting from node 1, skipping the ones with ‘0’ bits. When we get to node 4 which
gives us a total bit count of 4, we then know that node 4 is where the parent of node 8 is.

1 1

/\ A

1 1 2 3
N N N N
1 1 1 0 4 5 6 7

/\ A NEVAN
1 0 0 0 1 0 8 9 10 11 12 13
/\
0 0 0 0 14 15 16 17

Figure 3. A binary tree example for LOUDs. The one on the left shows the values of the nodes and the
one on the right shows the same tree with the numbering of the nodes in a left-to-right order. In this
case the numbering starts with 1 at the root.

m | 1234|567 |8|9|10|11 |12 |13 | 14| 15| 16 |17
bit | 1|11 |1|1|1]0|1]|0 0| 0] 0] O

j=]
(==}
—_
(==}

Figure 4. A bit string with the values from the binary tree in Figure 3.

m 112(3|4] 5 6 8 | 12
Left child(m) = 2 - rank(im) 2146|810 12]14] 16
Right child(m) =2 -rank(m)+1 | 3 | 5| 7 | 9 | 11 | 13 | 15 | 17
Parent(m) = select(|m/2]) -1 |12 2|3 |46

Figure 5. With the rank and select functions listed in the first column, we can navigate the binary tree
in Figure 3 and compute the position node for the left child, right child or parent of the node.

In the next section, we will explain how the rank function can be used to determine the children’s
positions in a k?-tree, thus enabling us to query the values of the cells.

2.3. k?-Tree

Originally proposed for compressing Web graphs, k*-tree is a LOUDS variant compact data
structure [22]. The tree represents a binary adjacency matrix of a graph (see Figure 2). It is constructed
by recursively partitioning the matrix into square submatrices of equal size until each submatrix
reaches a size of k x k where k >2. During the process of partitioning, if there is at least one cell in the
submatrix that has a value of 1, the node in the tree will be set to 1. Otherwise, it will be set to 0 (i.e., it
is a leaf and has no children) and this particular submatrix will not be partitioned any further. Figure 2
illustrates an example of a graph of 6 nodes, its 8 x 8 binary adjacency matrix at various stages of
recursive partitioning, and the k-tree that is constructed from the matrix.

The values of k*-trees are basically stored in two bitmaps denoted by T (tree) and L (leaves).
The values are traversed in a breadth-first fashion starting with the first level. The T bitmap stores
the bits at all levels except the last one where its bits will be stored in the L bitmap. Note that the bit
values of T which are either 0 or 1 will be stored as a bit vector. To illustrate this with an example, we
again make use of the binary matrix in Figure 2. The T bitmap contains all the bits from levels 1 and 2.
Thus the T bitmap has the following bits: 1001 1101 1000 (see Figure 6). The bits from the last level,
level 3, will be stored in the L bitmap with the following bits: 1001 0001 1011 1111.

Consider a set S with elements from 1 to n, to find the child’s or the parent’s position of a certain
node m in a k-tree, we perform the following operations:

Remote Sens. 2019, 11, 2461 6 of 24

first-child(m) < rank(m) - K where 1 < m < ||S||
parent(m) < select(|m/k?|) where 1 < m < ||S]|

Once again using the k?-tree in Figure 2 as an example, with the T bitmap (Figure 6) and the rank
and select functions, we can navigate the tree and obtain the positions of the first child and the parent.
Figure 7 shows how the nodes of the k?-tree are numbered.

Ex. Locate the first child of node 8:
rank;(8) *4=6*4=24
(There are 6 one bits in the T bitmap starting from node 0 up to and including node 8.)
Ex. Locate the parent of node 11:
selecty(|11/4]) = select;(2) =3
(Start counting from node 0, skipping all nodes with ‘0" bits, and node 3 is the first node that
gives a total number of 1-bit count of 2. Therefore, node 3 is the parent.

Node |0 |1|2|3|4|5|6|7|8|9]|10]11
Bit |1|0(0|1|1|1]|0|1|1]|0| 01O

Figure 6. A T bitmap with the first node labeled as 0.

Root

4 5 6 7 8 9 10 11

AN NP A A AN

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Figure 7. An example showing how the rank function is computed to obtain the children’s position on
a k?-tree node (k=2) based on the tree in Figure 2. It starts with 0 on the first child of the root (first level)
and the numbering traverses from left to right and from top to bottom.

It was shown that k?-tree gave the best performance when the matrix was sparse with large
clusters of 0’s or 1's [20].

2.4. DACs

This section describes DACs which is used in k?-raster to directly access variable-length codes.
Based on the concept of compact data structures, DACs were proposed in the papers published by
Brisaboa et al. in 2009 and 2013 [23,24] and the structure was proven to yield good compression ratios
for variable-length integer sequences. By means of the rank function, it gains fast direct access to any
position of the sequence in a very compact space. The original authors also asserted that it was better
suited for a sequence of integers with a skewed frequency distribution toward smaller integer values.

Different types of encoding are used for DACs and the one that we are interested in for k*-raster
is called Vbyte coding. Consider a sequence of integers x. Each integer, which is represented by
|logax;| + 1 bits, is broken into blocks of bits of size S. Each block is stored as a chunk of S + 1 bits.
The chunk that holds the most significant bits has the highest bit set to 0 while the other chunks have
their highest bit set to 1. For example, if we have an integer 20 (10100,) which is 5 bits long and if the
block size is S = 3, then we can have 2 chunks denoted by the following: 0010 1100.

To show how the chunks are organized and stored, we again illustrate it with an example. If we
have 3 integers of variable length 20 (10100;), 6 (1103), 73 (1001001;) and each block size is 3, then the
three integers have the following representations.

20 00101100 (B12A12 By 1A11)
6 0110 (Br1A21)
73 00011001 1001 (B33A3,3 B32A32 B3 1A31)

Remote Sens. 2019, 11, 2461 7 of 24

We will store them in three chunks of arrays A and bitmaps B. This is depicted in Figure 8.
To retrieve the values in the arrays A, we make use of the corresponding bitmaps B with the
rank function.

More information on DACs and the software code can be found in the papers [23,24].

C A1 | 100 (Aq7) | 110 (Agq) | 001 (Asq)
By 1(B1,1) 0(Bz1) 1(Bsy)
C, Ay | 010 (Aqp) | 001 (Azp)
B, 0(By,2) 1(Bsp)

Az | 001 (A3/3)
Bs 0 (B33)

GCs

Figure 8. Organization of 3 Directly Addressable Codes (DACs) clusters.
2.5. k*>-Raster

k?-raster is a compact data structure that allows us to store raster pixels in reduced space.
It consists of several basic components: bitmaps, DACs and LOUDS. Similar to a k*-tree, the image
matrix is partitioned recursively until each subquadrant is of size k?. The resulting LOUDS tree
topology contains the bitmap T where the elements are accessed with the rank function. Unlike
k2-tree, at each tree level, the maximum and minimum values of each subquadrant are stored in
two bitmaps which are respectively called Vmax and Vmin. However, to compress the structure
further, the maximum and minimum values of each level are compared with the corresponding values
of the parent and their differences will replace the stored values in the Vmax and Vmin bitmaps.
The rationale behind all this is to obtain smaller values for each node so as to get a better compression
with DACs. An example of a simple 8 x 8 matrix is given to illustrate this point in Figure 9. A k*-raster
is constructed from this matrix with maximum and minimum values stored in each node in Figure 10.
The structure is further modified, according to the above discussion, to form a tree with smaller
maximum and minimum values and this is shown in Figure 11.

Next, with the exception of the root node at the top level, the Vinax and Vmin bitmaps at all levels
are concatenated to form Lmax and Lmin bitmaps. The root’s maximum (rMax) and minimum (rMin)
values are integer values and will remain uncompressed.

For an image of size n x n with n bands, the time complexity to build all the k*-rasters is
O(n3) [22]. To query a cell from the structure, which has a tree height of at most [log; 1] levels, the
time complexity to extract a codeword at a single Lmax level is O(log 1), and this is the worst-case
time to traverse from the root node to the last level of the structure. The number of levels, £, in Lmax
can be obtained from the maxinum integer in the sequence and with this, we can compute the time
complexity for a cell query, which is O(log n - £) [23,25].

To sum up, a k?-raster structure is composed of a bitmap T, a maximum bitmap Lmax, a minimum
bitmap Lmin, a root maximum rMax integer value and a root minimum rMin integer value.

Remote Sens. 2019, 11, 2461 8 of 24

N[O Q| W [
== N W] W
[y N N FIT SIS

ks alala
SN F3CH IV VNG NS [N S 1)L YN
[y U FOVY TN IV) (N (TS
NI I R
=== ===
=l |slslalala
= QO s W s [OT]
AN B EES
[y JEN P AR I NI TSNS
el i DR ESS R RS A SS
NI I
=== == ===
S B B ke kel kel
i B B R
i S B B
[ury JEN RS 1Y) PNI TS
el il Bl DR RS SRS
=R
NI I
—lwle|sls]lalualya
—lowle | slslesloals
A EFY B B R B
RN W W W |
jury puy N N Y SIS S
= === === =
el N TS N S e Fe

1]1]1
Level 0 (Root) Level

Figure 9. An example of an 8 x 8 matrix for k?-raster. The matrix is recursively partitioned into square
subquadrants of equal size. During the process, unless all the cells in a subquadrant have the same
value, the partitioning will continue. Otherwise the partitioning of this particular subquadrant will

end at this point.
o1 «— Level 0
W
53 41 41 11 «— Level 1
5-4 44 5-4 43 43 1-1 32 1-1 44 42 3-1 1-1 «— Level 2

Figure 10. A k?-raster (k = 2) tree storing the maximum and mininum values for each quadrant of
every recursive subdivision of the matrix in Figure 9. Every node contains the maximum and minimum
values of the subquadrant, separated by a dash. On the last level, only one value is shown as each
subquadrant contains only one cell.

51 «— Level 0
W

0-2 1-0 1-0 40 — LeVel 1

0-1 1-1 0-1 1-0 0-2 30 1-1 30 0-3 0-1 1-0 30 «— Level 2

(40\0 (41\1(40\1(41\1 (41\1 01120022 — Level 3

Figure 11. Based on the tree in Figure 10, the maximum value of each node is subtracted from that of
its parent while the minimum value of the parent is subtracted from the node’s minimum value. These
differences will replace their corresponding values in the node. The maximum and minimum values of
the root remain the same.

2.6. Predictive Method

As mentioned in the Introduction, an interband predictor called 3D-CALIC was proposed by
Wau et al. in 2000 and another predictor called M-CALIC by Magli et al. in 2004. Our predictor is based
on the idea of least squares method and the use of reference bands that were discussed in both the
3D-CALIC [14] and M-CALIC [15] papers. Consider two neighboring or close neighboring bands of the
same hyperspectral image. These bands can be represented by two vectors X = (x1, X2, X3, ..., X1, X»)
and Y = (y1,Y¥2,Y3, .., Yu—1,Yn) Where x; and y; are two pixels that are located at the same spatial
position but in different bands, and n is the number of pixels in each band. We can then employ
the close similarity between the bands to predict the pixel value in the current band Y using the
corresponding pixel value in band X, which we designate as the reference band.

A predictor for a particular band can be built from the linear equation:

\A{:acX-i-ﬁ 1)

Remote Sens. 2019, 11, 2461 9of 24

so as to minimize ||Y — Y||2 where Y is the predicted value and Y is the actual value of the current
band. The optimal values for « and 8 should minimize the prediction error of the current pixel and
can be obtained by using the least squares solution:

nY g xiyi — L XiYiqYi 2

&:
”Z?:N‘% - (X x)? '

B: ”12?21 i — 5‘2?:1 Xi
n

where 7 is the size of each band, i.e., the height multiplied by the width, & the optimal value of a and j3
the optimal value of B.

€)

The difference between the actual and predicted pixel values of a band is known as the residual
value or the prediction error. When all the pixel values in the current band are calculated, these
prediction residuals will be saved in a vector, which will later be used as input to a k2-raster.

In other words, for a particular pixel in the current band and the corresponding pixel in the
reference band, ; being the residual value, y; the actual value of the current band, and x; the value of
the reference band, to encode, the following equation is used:

S =yi— (&-x+p). (4)
To decode, the following equation is used:
Yi=0i+ (& xi+p). (5)

The distance from the reference band affects the residual values. The closer the current band is to
the reference band, the smaller the residual values would tend to be. We can arrange the bands into
groups. For example, the first band can be chosen as the reference and the second, third and fourth
bands will have their residual values calculated with respect to the first band. And the next group
starts with the fifth band as the reference band, etc.

For this coding method, the group size (stored as a 2-byte short integer) as well as the & and j
values for each band (stored as 8-byte double’s) will need to be saved for use in both the encoder and
the decoder. Note that the size of these extra data is insignificant - which generally comes to around
3.5 kB - compared to the overall size of the structure.

2.7. Differential Method

In the differential encoding, which is a special case of the predictor where « = 1 and g = 0,
the residual value is obtained by simply taking the difference between the reference band and the
current band. For a particular pixel in the current band and the corresponding pixel in the reference
band, §; being the residual value, y; the actual value of the current band, and x; the value of the
reference band, to encode, the following equation is used:

O =Yi— X (6)
To decode, the following equation is used:
yi=0i+x;. 7)

Like the predictor, we can use the first band as the reference band and the next several bands can
use this reference band to find the residual values. Again, the grouping is repeated up to the last band.
For this coding method, only the group size (stored as a 2-byte short integer) needs to be saved.

Remote Sens. 2019, 11, 2461 10 of 24

2.8. Related Work

Since the publication of the proposals on k*-tree and k2-raster, more research has been done to
extend the capabilities of the structures to 3D where the first and second dimensions represent the
spatial element and the third dimension the time element.

Based on their previous research of k?-raster, Silva-Coira et al. [26] proposed a structure called
Temporal k?-raster (T — kraster) which represents a time-series of rasters. It takes advantage of the fact
that in a time-series, the values in a matrix M; are very close to, if not the same as, the next matrix Mp
or even the one after that, M3, along the timeline. The matrices can then be grouped into 7 time instants
where the values of the elements of the first matrix in the group is subtracted from the corresponding
ones in the current matrix. The result will be smaller integer values that would help form a more
compact tree as there are likely to be more zeros in the tree than before. Their experimental results bear
this out. When the 7 value is small (T = 4), the sizes are small. However, as would be expected, the
results are not as favorable when the T value becomes larger (T = 50). Akin to the Temporal k?-raster,
the differential encoding on k?-raster that we are proposing in this paper also exploits the similarity
between neighboring matrices or bands in a hyperspectral image to form a more compact structure.

Another study on compact representation of raster images in a time-series was proposed earlier
this year by Cruces et al. in [27]. This method is based on the 3D to 2D mapping of a raster where 3D
tuples <x,y, z> are mapped into a 2D binary grid. That is, a raster of size w x h with values in a certain
range, between 0 and v inclusive will have a binary matrix of w x h columns and v+1 rows. All the
rasters will then be concatenated into a 3D cube and stored as a k>-tree.

3. Results

In this section we describe some of the experiments that were performed to show the use of
compact data structures, prediction and differential encoding for real-time processing and compression.
First, we show the results with other compression algorithms and techniques that are currently in use
such as gzip, bzip2, xz, M-CALIC [15] and CCSDS 123.0-B-1 [9]. Then we compare the build time and
the data access time for k?-raster with and without prediction and differential encoding. Next, we show
the results of different rates in k?-raster that are produced as different k-values are applied. Similarly,
the results of different group sizes for prediction and differential encoding are shown. Finally, the
predictive method and the differential method are compared.

Experiments were conducted using hyperspectral images from different sensors: Atmospheric
Infrared Sounder (AIRS), Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), Compact
Reconnaissance Imaging Spectrometer for Mars (CRISM), Hyperion, and Infrared Atmospheric
Sounding Interferometer (IASI). Except for IASI, all of them are publicly available for download (http:
//cwe.ccsds.org/sls/docs/sls-dc/123.0-B-Info/TestData). Table 1 gives more detailed information
on these images. The table also shows the bit-rate reduction for using k*-raster with and without
prediction. Performance in terms of bit rate and entropy is evaluated for them.

For best results in k?-raster for the testing images, we used the optimal k-value, and also in the
case of the predictor and the differential encoder, the optimal group size for each image was used.
The effects of using different k-values and different group sizes will be discussed and tested in two of
the subsections below.

To build the structure of k*-raster and the cell query functions, a program in C was written.
The algorithms presented in the paper by Ladra et al. [20] were the basis and reference for writing
the code. The DACs software that was used in conjunction with our program is available at the
Universidade da Coruiia’s Database Laboratory (Laboratorio de Bases de Datos) website (http:/ /Ibd.
udc.es/research/DACS/). The package is called “DACs, optimization with no further restrictions”.
As for the predictive and differential methods, another C program was written to perform the tasks
needed to give us the results that we will discuss below. All the code was compiled using gcc or g++
5.4.0 20160609 with -Ofast optimization.

Remote Sens. 2019, 11, 2461 11 of 24

Table 1. Hyperspectral images used in our experiments. It also shows the bit rate and bit rate reduction using k?-raster with and without the predictor. x is the image
width, y the image height and z the number of spectral bands. The unit bpppb stands for bits per pixel per band.

2 2
Original Bit Optimal k2-Raster k2-Raster kp;l{;is::or : kp;ggisct:::
Sensor | Name C/U* Acronym Dimensions Depth kli/ 1 Bit Rate Bit-Rate . .
bpppb) © VA€ (bpppb) Reduction (%) Dt Rate Bit-Rate
e xy x2) (bppp PPP (bpppb) Reduction (%)
9 U AG9 90 x 135 x 1501 12 6 9.49 21% 6.76 44%
16 U AG16 90 x 135 x 1501 12 6 9.12 24% 6.63 45%
60 U AG60 90 x 135 x 1501 12 6 9.81 18% 7.06 41%
AIRS 126 U AGI126 90 x 135 x 1501 12 6 9.61 20% 7.05 41%
129 U AG129 90 x 135 x 1501 12 6 8.65 28% 6.47 46%
151 U AG151 90 x 135 x 1501 12 6 9.53 21% 7.02 41%
182 U AG182 90 x 135 x 1501 12 6 9.68 19% 7.19 40%
193 U AG193 90 x 135 x 1501 12 6 9.44 21% 7.06 41%
Yellowstone sc. 00 C ACY00 677 x 512 x 224 16 6 9.61 40% 6.87 57%
Yellowstone sc. 03 C ACY03 677 x 512 x 224 16 6 9.42 41% 6.72 58%
Yellowstone sc. 10 C ACY10 677 x 512 x 224 16 4 7.57 53% 5.84 64%
Yellowstone sc. 11 C ACY11 677 x 512 x 224 16 6 8.81 45% 6.52 59%
AVIRIS Yellowstone sc. 18 C ACY18 677 x 512 x 224 16 6 9.78 39% 7.04 56%
Yellowstone sc. 00 U AUY00 680 x 512 x 224 16 9 11.92 25% 9.04 44%
Yellowstone sc. 03 U AUY03 680 x 512 x 224 16 9 11.74 27% 8.87 45%
Yellowstone sc. 10 8] AUY10 680 x 512 x 224 16 9 9.99 38% 8.00 50%
Yellowstone sc. 11 U AUY11 680 x 512 x 224 16 9 11.27 30% 8.77 45%
Yellowstone sc. 18 U AUY18 680 x 512 x 224 16 9 12.15 24% 9.29 42%
frt000065e6_07_sc164 U Cl64 640 x 420 x 545 12 6 10.08 16% 10.02 16%
frt00008849_07_sc165 U C165 640 x 450 x 545 12 6 10.37 14% 10.33 14%
CRISM frt0001077d_07_sc166 U C166 640 x 480 x 545 12 6 11.05 8% 11.08 8%
hrl00004£38_07_sc181 U C181 320 x 420 x 545 12 5 9.97 17% 9.52 21%
hrl0000648f_07_sc182 U C182 320 x 450 x 545 12 5 10.11 16% 9.84 18%
hrl0000ba9¢_07_sc183 U C183 320 x 480 x 545 12 5 10.65 11% 10.59 12%

Remote Sens. 2019, 11, 2461

Table 1. Cont.

12 of 24

2 2
Original Bit Optimal k?-raster k?-Raster kp;ggiitte(: : kp;fc.laisctte::
Sensor Name C/U* Acronym Dimensions Depth Bit Rate Bit-Rate . .
(x Xy Xz (bpppb) k-Value (bpppb) Reduction (%) Bit Rate Bit-Rate
(bpppb) Reduction (%)
Agricultural 2905 * C HCA1 256 x 2905 x 242 12 8 8.20 32% 7.47 38%
Agricultural 3129 * C HCA2 256 x 3129 x 242 12 8 8.08 33% 7.50 37%
Coral Reef C HCC 256 x 3127 x 242 12 8 7.38 39% 7.41 38%
Urban * C HCU 256 x 2905 x 242 12 8 8.59 28% 7.83 35%
Hyperion | Filtered Erta Ale * U HFUEA 256 x 3187 x 242 12 8 6.84 43% 5.99 50%
Filtered Lake Monona * U HFULM 256 x 3176 x 242 12 8 6.79 43% 6.06 49%
Filtered Mt. St. Helena * U HFUMS 256 x 3242 x 242 12 8 6.78 43% 5.88 51%
Erta Ale t U HUEA 256 x 3187 x 242 12 8 7.57 37% 6.99 42%
Lake Monona * U HULM 256 x 3176 x 242 12 8 7.52 37% 7.08 41%
Mt. St. Helena * U HUMS 256 x 3242 x 242 12 8 7.49 38% 6.93 42%
Level 017 U 101 60 x 1528 x 8359 12 4 5.93 51% 4.69 61%
IASI Level 02 % U 102 60 x 1528 x 8359 12 4 5.90 51% 4.75 60%
Level 03 % U 103 60 x 1528 x 8359 12 4 542 55% 4.58 62%
Level 04 % U 104 60 x 1528 x 8359 12 4 6.23 48% 4.90 59%

*: Calibrated or Uncalibrated; t: Cropped to 256 x 512 x 242; }: Cropped to 60 x 256 x 8359.

Remote Sens. 2019, 11, 2461 13 of 24

The machine that these experiments ran on has an Intel Core 2 Duo CPU E7400 @2.80GHz
with 3072KB of cache and 3GB of RAM. The operating system is Ubuntu 16.04.5 LTS with kernel
4.15.0-47-generic (64 bits).

To ensure that there was no loss of information, the image was reconstructed by reverse
transformation and verified to be identical to the original image in the case of predictive and differential
methods. For k2-raster, after saving the structure to disk, we made sure that the original image could
be reconstructed from the saved data.

3.1. Comparison with Other Compression Algorithms

Both k?-raster with and without predictive and differential encoding were compared to other
commonly-used compression algorithms such as gzip, bzip2, xz, and specialized algorithms such as
M-CALIC and CCSDS 123.0-B-1. The results for the comparison are shown in Table 2 and depicted in
Figure 12.

It can be seen that k?-raster alone already performed better than gzip. When it was used
with the predictor, it produced a bit rate that was basically on a par with and sometimes better
than other compression algorithms such as xz or bzip2. However, it could not attain the bit-rate
level done by CCSDS 123.0-B-1 or M-CALIC. This was to be expected as both are specialized
compression techniques, and CCSDS 123.0-B-1 is considered a baseline against which all compression
algorithms for hyperspectral images are measured. Nevertheless, k*>-raster provides direct access to
the elements without full decompression, and this is undoubtedly the major advantage it has over all
the aforementioned compression algorithms.

T T T T T T T T T T T T T T
K2-RASTER ==t—
K2-RASTER+PREDICTOR, ===
GZIP
BZIP2
Xz
M-CALIC —&—
CC5Ds —o—

Rate (bpppb)
=]
T

AGY AGle ACYDD ACYO3 AUYDD AUYD3 HCA1 HCU HFUEAHFULM 101 102 Cle4 C165
Hyperspectral image

Figure 12. A rate (bpppb) comparison with other compression techniques.

Remote Sens. 2019, 11, 2461 14 of 24

Table 2. A rate (bpppb) comparison with other compression techniques. The optimal values for all compression algorithms (except for M-CALIC, CCSDS 123.0-B-1)
are highlighted in red. Results for CCSDS 123.0-B-1 are from [28].

Compression Technique (bpppb)
2 2
Sensor | Name C/U* Acronym k2-Raster kP-rI:;iSctte;:]I;i;i{eise:tri:l gzip bzip2 Xz M-CALIC 12?3_[];_51
9 U AGY 9.49 6.76 7.52 1016 742 790 4.19 4.21
16 8] AG16 9.12 6.63 7.29 9.82 7.15 7.66 4.19 4.18
60 8] AG60 9.81 7.06 7.82 1053 7.71 8.23 4.41 4.36
AIRS 126 U AG126 9.61 7.05 7.78 1033 764 810 4.39 4.38
129 8] AG129 8.65 6.47 6.96 9.50 6.68 7.22 4.08 4.12
151 8] AG151 9.53 7.02 7.74 10.31 7.43 7.97 4.39 4.41
182 8] AG182 9.68 7.19 7.94 1064 779 833 4.45 4.42
193 U AG193 9.44 7.06 7.77 1015 747 794 4.42 4.42
Yellowstone sc. 00 C ACY00 9.61 6.87 7.79 1012 751 8.04 4.12 3.95
Yellowstone sc. 03 C ACY03 9.42 6.72 7.65 9.59 7.10 7.62 3.95 3.82
Yellowstone sc. 10 C ACY10 7.57 5.84 6.26 7.41 530 573 3.31 3.36
Yellowstone sc. 11 C ACY11 8.81 6.52 6.85 9.04 665 707 3.71 3.63
AVIRIS Yellowstone sc. 18 C ACY18 9.78 7.04 7.53 10.00 7.45 7.95 4.09 3.90
Yellowstone sc. 00 U AUY00 11.92 9.04 10.04 1239 999 10.61 6.32 6.20
Yellowstone sc. 03 8] AUY03 11.74 8.87 991 1198 954 10.23 6.14 6.07
Yellowstone sc. 10 8] AUY10 9.99 8.00 8.57 1017 771 8.40 5.53 5.58
Yellowstone sc. 11 U AUY11 11.27 8.77 9.21 1149 9.08 9.66 591 5.84
Yellowstone sc. 18 U AUY18 12.15 9.29 9.92 1229 9.90 10.58 6.33 6.21
frt000065e6_07_sc164 U Cle4 10.08 10.02 10.06 1098 8.42 7.15 7.34 4.86
frt00008849_07_sc165 8] C165 10.37 10.33 10.37 11.03 868 751 7.73 491
CRISM frt0001077d_07_sc166 U C166 11.05 11.08 11.14 1120 9.04 7.64 8.44 5.44
hrl00004f38_07_sc181 U C181 9.97 9.52 9.52 1077 828 820 7.09 4.27
hrl0000648f_07_sc182 8] C182 10.11 9.84 9.86 1090 8.53 7.90 7.28 4.49
hrl0000ba9¢c_07_sc183 U C183 10.65 10.59 10.64 10.87 852 728 7.91 4.96

Remote Sens. 2019, 11, 2461

Table 2. Cont.

Compression Technique (bpppb)
k*>-Raster + k2-Raster + CCSDS
* 2] . . ~
Sensor Name C/u Acronym k*-Raster Predictor Differential SZ1P bzip2 xz M-CALIC 123.0-B-1
Agricultural 2905 * C HCA1 8.20 7.47 7.47 8.90 7.07 740 5.39 -
Agricultural 3129 * C HCA2 8.08 7.50 7.50 884 704 735 5.28 5.70
Coral Reef C HCC 7.38 7.41 741 7.45 574 590 4.59 5.42
Urban * C HCU 8.59 7.83 7.83 9.24 746 7.83 525 5.71
Hyperion | Filtered Erta Ale * 8) HFUEA 6.84 5.99 6.15 7.63 555 6.00 419 4.32
Filtered Lake Monona * U HFULM 6.79 6.06 6.18 761 550 594 4.21 4.45
Filtered Mt. St. Helena * 8) HFUMS 6.78 5.88 6.15 7.18 544 574 411 4.35
Erta Ale t U HUEA 7.57 6.99 7.06 8.69 641 673 4.87 4.32
Lake Monona * 8] HULM 7.52 7.08 713 8.69 6.46 6.74 4.94 4.45
Mt. St. Helena * U HUMS 7.49 6.93 7.04 826 628 648 4.82 4.36
Level01% 8] 101 5.93 4.69 5.01 5.90 448 3.98 294 2.89
TASI Level 02 % U 102 5.90 4.75 5.03 5.96 444 401 292 2.88
Level 03 % U 103 542 4.58 4.79 525 394 375 292 2.88
Level 04 % U 104 6.23 4.90 520 6.30 4.71 4.24 297 2.90

*: Calibrated or Uncalibrated; +: Cropped to 256 x 512 x 242 except for CCSDS 123.0; : Cropped to 60 x 256 x 8359 except for CCSDS 123.0.

15 of 24

Remote Sens. 2019, 11, 2461 16 of 24

3.2. Build Time

Both the time to build the k*-raster only and the time to build k-raster with predictive and
differential preprocessing were measured. They were then compared against the time to compress
the data with gzip. The results are presented in Table 3. We can see that the build time for k?-raster
only took half as long as with gzip. Comparing the predictive and the differential methods, the time
difference is small although it generally took longer to build the former than the latter due to the
additional time needed to compute the values of & and . Both, however, still took less time to build
than gzip compression.

Table 3. A comparison of build time (in seconds) using k?-raster only and k?-raster with predictive and
differential methods.

Build Time (s) .
Hyperspectral > > Gzip
Image I2-Raster k-Raster + k*“-Raster + Compression (s)
Predictor = Differential
AGY9 1.86 2.23 212 3.18
AGl6 1.78 222 2.09 3.49
ACY00 8.32 10.11 9.49 15.01
ACY03 8.26 10.00 9.47 15.32
AUY00 5.56 7.39 6.84 12.10
AUY03 5.59 7.38 6.76 12.68
Cle4 17.84 21.32 21.59 27.94
C165 17.89 22.83 22.92 30.83
HCA1 1.98 2.67 2.47 5.59
HCA2 1.98 2.64 2.42 5.80
HFUEA 2.38 3.01 3.05 7.59
HFULM 2.41 3.04 2.87 7.57
HFUMS 2.33 2.95 2.76 8.26
101 14.58 18.62 16.56 31.59
102 14.66 17.49 16.66 29.64

3.3. Access Time

Several tests were conducted to see what the access time was like to query the cells in each image
and we found that the time for a random cell access took longer for a predictor compared to just using
the k?-raster. This was expected but we should bear in mind that the bit rates are reduced when a
predictor is used, thus decreasing storage size and transmission rate. Note that the last column also
lists the time to decompress a gzip image file and it took at least 4 or 5 times longer than using a
predictor to randomly access the data 10° times. Table 4 shows the results of access time in milliseconds
for 100,000 iterations of random cell query done by getCell(), a function which was described in the
paper from Ladra et al. [20] for accessing pixel values in a k?-raster.

Remote Sens. 2019, 11, 2461 17 of 24

Table 4. A comparison of access time (in milliseconds) using k?-raster only and k?-raster with predictive
and differential encoders.

100,000 Iterations of Random Access (ms) .

Hyperspectral > 2 Gzip
Image I2-Raster k--Raster + k--Raster + Decompression (ms)
Predictor Differential

AG9 920 125 92 474
AG16 85 121 85 459
ACY00 275 485 426 1949
ACY03 269 474 424 1912
AUY00 151 489 402 1941
AUY03 151 485 402 1957
Cl64 273 400 381 4048
C165 301 420 397 4382
HCA1 77 131 127 735
HCA2 76 121 118 737
HFUEA 93 150 129 684
HFULM 92 148 129 680
HFUMS 91 146 134 670
101 155 222 244 2517
102 168 236 255 2396

3.4. Use of Different k-Values

With k?-raster, we found that different k-values used in the structure would produce different bit
rates and different access time. In general, for most of our testing images the k-value is at its optimal
bit-rate level when it is between 4 and 9. The reason is that as the k-value increases, the height of the
constructed tree becomes smaller. Therefore, the number of nodes in the tree will decrease and so will
the size of the bitmaps Lmax and Lmin that need to be stored in the structure. Table 5 shows the bit
rates of some of the testing images between k = 2 and k = 20. Additionally, experiments show that
as the k-value becomes higher, the access time also becomes shorter, as can be seen in Table 6. As the
k-value gets larger, the tree becomes shorter, thus making it faster to traverse from the top level to a
lower level when searching for a particular node in the tree. As there is a trade-off between storage
size and access time, for the experiments, the k-value that produces the lowest bit rate for the image
was used.

For those who would like to know which k-value would give the best or close to the best rate,
we recommend them to use a value of 6 as a general rule. This can be seen from Table 5 where the
difference in the rate produced by this value and the one by the optimal k-value averages out to be
only about 0.19 bpppb.

3.5. Use of Different Group Sizes

Tests were performed to see how the group size affects the predictive and differential methods.
The group sizes were 2, 4, 8,12, 16, 20, 24, 28 and 32. The results in Table 7 and Figure 13 show that
for most images, they are at their optimal bit rates when the size is 4 or 8. The best bit-rate values
are highlighted in red. For the range of group size tested, we can also see that except for the CRISM
scenes (which consist of pixels with low spatial correlation, thus leading to inaccurate prediction), the
bit rates for the predictor are always lower than the ones for differential encoding, irrespective of the
group size.

For users who are interested in knowing which group size is the best to apply to the predictive and
differential methods, a size of 4 is recommended for general use as the difference in bit rate produced
by this group size and the one by the optimal group size averages out to be about 0.06 bpppb.

For the rest of the experiments, the optimal group size for each image was used to obtain the
bit rate.

Remote Sens. 2019, 11, 2461 18 of 24
Table 5. Rates (bpppb) for different k-values for some of the testing images. The k-value with the lowest rate is in red.
Hyperspectral | _, 3 4 5 6 7 8 9 0 1 12 13 14 15 16 17 18 19 20
Image

AGY 13.06 10.11 10.03 1047 949 998 10.68 9.89 10.65 - 1123 1033 1129 953 1157 11.72 1078 1252 1213
AG16 1272 9.78 9.66 1011 9.12 957 1032 951 10.29 - 1082 998 1086 9.17 11.11 11.28 10.32 12.07 11.68
ACY00 1234 1020 976 - 9.61 991 - 9.69 9.83 9.87 995 1024 10.20 - - - - - -
ACY03 11.81 987 956 - 9.42 971 - 950 9.65 970 976 1001 998 - - - - - -
AUY00 1531 1293 1220 - 1208 12.35 - 11.92 1211 1213 1217 1252 1243 - - - - - -
AUY03 15.03 12.60 12.00 - 1190 1220 - 11.74 1193 11.94 1200 1234 1225 - - - - - -
Cle4 12.60 1042 10.17 - 10.08 - - 10.34 1020 10.76 1048 - - - - - - - -
C165 12.84 10.67 1048 - 10.37 - - 1054 1051 10.79 11.03 - - - - - - - -
HCA1 10.79 941 8.85 845 874 936 820 8.51 8.68 8.85 8.88 892 921 - - - - - -
HCC 9.43 8.12 7.79 7.41 7.75 8.40 7.38 7.67 7.85 8.06 8.12 8.26 8.56 - - - - - -
HFUEA 8.82 7.80 7.30 7.24 7.41 8.07 6.84 7.25 7.43 7.66 7.68 7.71 8.07 - - - - - -
HFULM 8.69 7.70 7.20 713 7.33 8.02 6.79 7.21 7.40 7.64 7.66 7.68 8.05 - - - - - -
101 8.03 - 5.93 - - 6.45 - - - - - - - - 659 7.79 830 873 6.36
102 8.02 - 5.90 - - 6.48 - - - - - - - - 6.64 792 846 897 645

Remote Sens. 2019, 11, 2461

Table 6. Access time (ms) for different k-values for some of the testing images. The best access time is in red.

Hyperspectral Access Time (ms)

Image k=2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
AGY 345 167 130 114 91 84 83 8 82 - 60 59 56 56 55 52 60 51 47
AG16 33 152 114 108 8 79 78 80 75 - 55 54 53 53 59 51 58 48 45
ACY00 3553 1085 573 - 291 225 - 152 133 125 114 110 104 - - - - - -
ACY03 3521 1112 572 - 277 223 - 149 131 122 112 120 102 - - - - - -
AUY00 3569 1135 592 - 292 228 - 153 133 126 115 113 106 - - - - - -
AUY03 3559 1123 585 - 279 221 - 152 133 124 115 109 103 - - - - - -
Cle64 2924 964 606 - 272 - - 159 161 138 131 - - - - - - - -
C165 3754 1017 555 - 290 - - 178 156 152 145 - - - - - - - -
HCA1 1179 384 213 154 124 106 80 78 69 71 62 61 62 - - - - - -
HCC 1203 406 233 172 139 123 95 94 8 8 8 79 79 - - - - - -
HFUEA 1409 465 262 184 148 127 93 95 89 84 77 76 76 - - - - - -
HFULM 1427 467 262 193 155 130 94 9% 8 90 79 81 80 - - - - - -
101 999 - 779 - - 679 - - - - - - - - 610 709 715 728 450
102 1047 - 759 - - 698 - - - - - - - - 651 746 746 730 472

19 of 24

Remote Sens. 2019, 11, 2461

14

12

10

Rate (bpppb)

T T
AGY-PRED —+—
- AGS-DIFF ——
ACYO0-PRED
ACY00-DIFF
AUYO0-PRED
AUYOD-DIFF —=—
C164-PRED —&—
C164-DIFF ——
- HCA1-PRED —&—

B
HCA1-DIFF —=— T~
HFUEA-FRED e)
HFUEA-DIFF -
101-FRED e
I01-DIFF —&— e
o P S 2
.,_0____---"

T s e s e 50
| | | | | | 1 | |
2 4 8 12 16 20 24 28 32

Group size

Figure 13. A rate (bpppb) comparison of different group sizes.

20 of 24

Table 7. A rate (bpppb) comparison of different group sizes using the predictive and the differential

methods. The optimal values are highlighted in red.

Hyperspectral Group Size
Image 2 4 8 12 16 20 24 28 32

AGY9-Pred 803 741 719 713 716 715 717 717 725
AGI-Diff 811 760 751 752 763 758 774 773 8.00
ACY00-Pred 774 705 703 736 755 778 781 818 818
ACY00-Diff 803 758 779 818 840 873 9.09 948 9.13
AUY00-Pred 994 922 918 953 970 10.03 10.02 10.53 10.34
AUY00-Diff 1033 991 10.18 1049 1071 11.14 1132 1191 11.36
C164-Pred 10.08 10.11 10.17 1020 10.23 1020 1031 1024 10.24
C164-Diff 10.06 10.08 10.13 10.16 10.18 10.20 10.31 10.22 10.17
HCA1-Pred 751 730 731 751 765 815 831 809 816
HCAI1-Diff 757 747 768 766 800 834 895 884 847
HFUEA-Pred 6.07 601 605 613 625 633 641 621 655
HFUEA-Diff 611 615 630 644 675 663 681 670 7.07
101-Pred 522 491 478 475 473 474 469 473 471
101-Diff 532 510 501 504 501 506 502 505 506

3.6. Predictive and Differential Methods

The proposed differential and predictive methods were used to transform these images into
data with lower bit rates. They were then used as input to k?-raster to further reduce their bit rates.
Their performance was compared together with Reversible Haar Transform at levels 1 and 5, and
the results are presented in Table 8. Figure 14 shows the entropy comparison of Yellowstone(03 using
differential and predictive methods while Figure 15 shows the bit rate comparison between the two

Remote Sens. 2019, 11, 2461 21 of 24

methods. Both show us that the proposed algorithm has brought benefits by lowering the entropy and
the bit rates. The data for reference bands are left out of the plots so that the reader can have a clearer
overall picture of the bit rate comparison.

Compared to other methods, the predictive method outperforms others, with the exception
of Reversible Haar Transform level 5. However, it should be noted that while the predictive and
differential methods require only two pixels (reference pixel and current pixel) to perform the reverse
transformation, it would be a much more involved process to decode data using Reversible Haar
Transform at a higher level. The experiments show that for all the testing images, the predictive
method in almost all bands perform better than the differential method. This can be explained by the
fact that in predictive encoding the values of « and 8 in Equation (1) take into account not only the
spectral correlation, but also the spatial correlation between the pixels in the bands when determining
the prediction values. This is not the case with differential encoding whose values are only taken from
the spectral correlation.

AVIRIS Uncalibrated Yellowstone03 (AUY03)

ENTROPY (ORIGINAL I‘MAGE) —
ENTROPY (PREDICTOR GROUP SIZE 8) ——
//«\A/\\ENTROPY (DIFFERENTIAL GROUP SIZE 4)

/ \\ 1V

"\
\,\#\

Bit-rate (bpp)

0 50 100 150 200

Spectral band

Figure 14. An entropy comparison of Yellowstone03 using differential and predictive methods. Data
for reference bands are not included.

AVIRIS Uncalibrated Yellowstone03 (AUY03)

BIT-RATE K2-RASTER (ORIGINAL I‘MAGE)
BIT-RATE K2-RASTER (PREDICTOR GROUP SIZE 8) ——

—

—~ /,“"rﬂ \ L BIT-RATE K2-RASTER (DIFFERENTIAL GROUP SIZE 4)
JER /f/ l \ .“f \ “‘/ S

/

Bit-rate (bpp)

0 50 100 150 200

Spectral band

Figure 15. A bit rate comparison of Yellowstone03 using differential and predictive methods on
k?-raster. Data for reference bands are not included.

Remote Sens. 2019, 11, 2461 22 of 24

Table 8. A rate (bpppb) comparison using different transformed methods: predictor, differential,
reversible Haar level 1 and reversible Haar level 5 on k*-raster. The optimal values are

highlighted in red.
Transformation Type

Hyperspectral Without Reversible Reversible

Image Trans forr(;lzl tion Predictor Differential Haar Haar

(Level 1) (Level 5)

AG9 9.49 6.76 7.52 8.10 6.83
AGl6 9.12 6.63 7.29 7.81 6.60
ACY00 9.63 6.87 7.79 8.01 7.00
ACY03 9.44 6.72 7.65 7.86 6.87
AUY00 11.92 9.04 10.04 10.33 9.35
AUY03 11.74 8.87 9.91 10.18 9.23
Cle4 10.08 10.02 10.06 10.01 9.83
C165 10.37 10.33 10.37 10.33 10.16
HCA1 8.20 7.47 7.47 7.37 7.05
HCC 7.38 7.50 7.50 6.71 6.54
HFUEA 6.84 5.99 6.15 7.12 6.75
HFULM 6.79 6.06 6.18 7.14 6.83
101 5.93 4.69 5.01 5.26 4.54
102 5.90 4.75 5.03 5.26 4.57

4. Conclusions

In this work, we have shown that using k?-raster structure can help reduce the bit rates of a
hyperspectral image. It also provides easy access to its elements without the need for initial full
decompression. The predictive and differential methods can be applied to further reduce the rates.
We performed experiments that showed that if the image data are first converted by either a predictive
method or a differential method, we can gain more reduction in bit rates, thus making the storage
capacity or the transmission volume of the data even smaller. The results of the experiments verified
that the predictor indeed gives a better reduction in bit rates than the differential encoder and is
preferred to be used for hyperspectral images.

For future work, we are interested in exploring the possibility of modifying the elements in a
k?-raster. This investigation is based on the dynamic structure, dk>-tree, as discussed in the papers by
de Bernardo et al. [29,30]. Additionally, we would like to improve on the variable-length encoding
which is currently in use with k?-raster, and hope to further reduce the size of the structure [23,24].

Author Contributions: Conceptualization, K.C., D.E.O.T,, LB. and].S.-S.; methodology, K.C., D.E.O.T., I.B. and
].S.-S.; software, K.C.; validation, K.C., I.B. and].S.-S.; formal analysis, K.C., D.E.O.T,, I B. and].S.-S.; investigation,
K.C.,, D.E.O.T, LB. and].S.-S.; resources, K.C., D.E.O.T., I.B. and].S.-S.; data curation, K.C., I.B. and J.S.-S.;
writing—original draft preparation, K.C., LB. and].S.-S.; writing—review and editing, K.C., I.B. and J.S.-S.;
visualization, K.C., I.B. and].S.-S.; supervision, L.B. and].S.-S.; project administration, I.B. and J.S.-S.; funding
acquisition, I.B. and J.S.-S.

Funding: This research was funded by the Spanish Ministry of Economy and Competitiveness and the European
Regional Development Fund under grants RT12018-095287-B-100 and TIN2015-71126-R (MINECO/FEDER, UE)
and BES-2016-078369 (Programa Formacién de Personal Investigador), and by the Catalan Government under
grant 2017SGR-463.

Acknowledgments: The authors would like to thank Magli et al. for the M-CALIC software that they provided
us in order to perform some of the experiments in this research work.

Conflicts of Interest: The authors declare no conflict of interest.

Remote Sens. 2019, 11, 2461 23 of 24

Abbreviations

The following abbreviations are used in this manuscript:

AIRS Atmospheric Infrared Sounder

AVIRIS Airborne Visible InfraRed Imaging Spectrometer

CALIC Context Adaptive Lossless Image Compression

CCSDs Consultative Committee for Space Data Systems

CRISM Compact Reconnaissance Imaging Spectrometer for Mars
DACs Directly Addressable Codes

IASI Infrared Atmospheric Sounding Interferometer

JPEG 2000 Joint Photographic Experts Group 2000

KLT Karhunen-Loéve Theorem

LOUDS Level-Order Unary Degree Sequence

MDPI Multidisciplinary Digital Publishing Institute

PCA Principal Component Analysis

SOAP Short Oligonucleotide Analysis Package

References

1. Navarro, G. Compact Data Structures: A Practical Approach; Cambridge University Press: Cambridge, UK, 2016.

2. Jacobson, G. Succinct Static Data Structures. Ph.D. Thesis, Carnegie-Mellon, Pittsburgh, PA, USA, 1988.

3. Jacobson, G. Space-efficient static trees and graphs. In Proceedings of the Annual Symposium on Foundations
of Computer Science (FOCS), Research Triangle Park, NC, USA, 30 October—-1 November 1989; pp. 549-554.

4. Grossi, R.; Gupta, A.; Vitter,].S. High-order entropy-compressed text indexes. In Proceedings of the
14th Annual ACM-SIAM Symposium on Discrete Algorithms, Baltimore, MD, USA, 12-14 January 2003;
Volume 72, pp. 841-850.

5. Ferragina, P.; Manzini, G. Opportunistic data structures with applications. In Proceedings of the 41st Annual
Symposium on Foundations of Computer Science, Redondo Beach, CA, USA, 12-14 November 2000; p. 390.

6. Burrows, M.; Wheeler, D. A Block Sorting Lossless Data Compression Algorithm; Technical Report; Digital
Equipment Corporation: Maynard, MA, USA, 1994.

7. Langmead, B.; Trapnell, C.; Pop, M; Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA
sequences to the human genome. Genome Biol. 2009, 10, R25. [CrossRef] [PubMed]

8. Li, R; Yu, C; Li, Y; Lam, T, Yiu, S.; Kristiansen, K.; Wang, J]. SOAP2: an improved ultrafast tool for short
read alignment. Bioinformatics 2009, 25, 1966-1967. [CrossRef] [PubMed]

9. Consultative Committee for Space Data Systems (CCSDS). Image Data Compression CCSDS 123.0-B-1;
Blue Book; CCSDS: Washington, DC, USA, 2012.

10. Jolliffe, L.T. Principal Component Analysis; Springer: Berlin, Germany, 2002; p. 487.

11. Taubman, D.S.; Marcellin, M.W. JPEG 2000: Image Compression Fundamentals, Standards and Practice; Kluwer
Academic Publishers: Boston, MA, USA, 2001.

12. Wu, X.; Memon, N. CALIC—A context based adaptive lossless image CODEC. In Proceedings of the 1996
IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings, Atlanta,
GA, USA, 9 May 1996.

13. Wu, X,; Memon, N. Context-based adaptive, lossless image coding. IEEE Trans. Commun. 1997, 45, 437-444.
[CrossRef]

14. Wu, X,; Memon, N. Context-based lossless interband compression—Extending CALIC. IEEE Trans.
Image Process. 2000, 9, 994-1001. [PubMed]

15. Magli, E.; Olmo, G.; Quacchio, E. Optimized onboard lossless and near-lossless compression of hyperspectral
data using CALIC. IEEE Geosci. Remote Sens. Lett. 2004, 1, 21-25. [CrossRef]

16. Kiely, A.; Klimesh, M.; Blanes, I; Ligo,].; Magli, E.; Aranki, N.; Burl, M.; Camarero, R.; Cheng, M.; Dolinar, S.;

etal. The new CCSDS standard for low-complexity lossless and near-lossless multispectral and hyperspectral
image compression. In Proceedings of the 6th International WS on On-Board Payload Data Compression
(OBPDC), ESA /CNES, Matera, Italy, 20-21 September 2018.

Remote Sens. 2019, 11, 2461 24 of 24

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Fjeldtvedyt, J.; Orlandi¢, M.; Johansen, T.A. An efficient real-time FPGA implementation of the CCSDS-123
compression standard for hyperspectral images. IEEE]. Sel. Top. Appl. Earth Obs. Remote Sens. 2018,
11, 3841-3852. [CrossRef]

Béscones, D.; Gonzélez, C.; Mozos, D. Hyperspectral image compression using vector quantization, PCA
and JPEG2000. Remote Sens. 2018, 10, 907. [CrossRef]

Guerra, R.; Barrios, Y.; Diaz, M.; Santos, L.; Lopez, S.; Sarmiento, R. A new algorithm for the on-board
compression of hyperspectral images. Remote Sens. 2018, 10, 428. [CrossRef]

Ladra, S.; Param4, J.R,; Silva-Coira, F. Scalable and queryable compressed storage structure for raster data.
Inf. Syst. 2017, 72, 179-204. [CrossRef]

Samet, H. The Quadtree and related hierarchical data structures. ACM Comput. Surv. (CSUR) 1984,
16, 187-260. [CrossRef]

Brisaboa, N.R.; Ladra, S.; Navarro, G. k2-trees for compact web graph representation. In International
Symposium on String Processing and Information Retrieval; Springer: Berlin/Heidelberg, Germany, 2009;
pp- 18-30.

Brisaboa, N.R.; Ladra, S.; Navarro, G. DACs: Bringing direct access to variable-length codes. Inf. Process
Manag. 2013, 49, 392-404. [CrossRef]

Brisaboa, N.R.; Ladra, S.; Navarro, G. Directly addressable variable-length codes. In International Symposium
on String Processing and Information Retrieval; Springer: Berlin/Heidelberg, Germany, 2009; pp. 122-130.
Silva-Coira, F. Compact Data Structures for Large and Complex Datasets. Ph.D. Thesis, Universidade da
Corufia, A Corufia, Spain, 2017.

Cerdeira-Pena, A.; de Bernardo, G.; Farifia, A.; Param4,].R; Silva-Coira, F. Towards a compact representation
of temporal rasters. In String Processing and Information Retrieval; SPIRE 2018; Lecture Notes in Computer
Science; Springer: Cham, Switzerland, 2018; Volume 11147.

Cruces, N.; Seco, D.; Gutiérrez, G. A compact representation of raster time series. In Proceedings of the Data
Compression Conference (DCC) 2019, Snowbird, UT, USA, 26-29 March 2019; pp. 103-111.

Alvarez Cortés, S.; Serra-Sagrista, J.; Bartrina-Rapesta, J.; Marcellin, M. Regression Wavelet Analysis for
Near-Lossless Remote Sensing Data Compression. IEEE Trans. Geosci. Remote Sens. 2019. [CrossRef]

De Bernardo, G.; Alvarez Garcia, S.; Brisaboa, N.R.; Navarro, G.; Pedreira, O. Compact querieable
representations of raster data. In International Symposium on String Processing and Information Retrieval;
Springer: Cham, Switzerland, 2013; pp. 96-108.

Brisaboa, N.R.; De Bernardo, G.; Navarro, G. Compressed dynamic binary relations. In Proceedings of the
2012 Data Compression Conference, Snowbird, UT, USA, 10-12 April 2012; pp. 52-61.

@ (© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

Chapter 3

Analysis of variable-length codes
for integer encoding in
hyperspectral data compression
with the k“-raster compact data

structure

39

remote sensin N
EJ & bpy

Article

Analysis of Variable-Length Codes for Integer
Encoding in Hyperspectral Data Compression with
the k2-Raster Compact Data Structure

Kevin Chow *©, Dion Eustathios Olivier Tzamarias, Miguel Herndndez-Cabronero'”, Ian Blanes
and Joan Serra-Sagrista

Department of Information and Communications Engineering, Universitat Autonoma de Barcelona,
08193 Cerdanyola del Valles, Barcelona, Spain; dion.tzamarias@uab.cat (D.E.O.T.);

miguel hernandez@uab.cat (M.H.-C.); ian.blanes@uab.cat (I.B.); joan.serra@uab.cat (J.S.-S.)

* Correspondence: kevin.chow@uab.cat

check for
Received: 19 May 2020; Accepted: 18 June 2020; Published: 20 June 2020 updates

Abstract: This paper examines the various variable-length encoders that provide integer encoding to
hyperspectral scene data within a k?>-raster compact data structure. This compact data structure leads
to a compression ratio similar to that produced by some of the classical compression techniques. This
compact data structure also provides direct access for query to its data elements without requiring any
decompression. The selection of the integer encoder is critical for obtaining a competitive performance
considering both the compression ratio and access time. In this research, we show experimental
results of different integer encoders such as Rice, Simple9, Simple16, PForDelta codes, and DACs.
Further, a method to determine an appropriate k value for building a k?-raster compact data structure
with competitive performance is discussed.

Keywords: compact data structure; k%-raster; DACs; Elias codes; Simple9; Simplel6; PForDelta; Rice
codes; hyperspectral scenes

1. Introduction

Hyperspectral scenes [1-10] are data taken from the air by sensors such as AVIRIS (Airborne
Visible/Infrared Imaging Spectrometer) or by satellite instruments such as Hyperion and IASI (Infrared
Atmospheric Sounding Interferometer). These scenes are made up of multiple bands from across the
electromagnetic spectrum, and data extracted from certain bands are helpful in finding objects such as
oil fields [11] or minerals [12]. Other applications include weather prediction [13] and wildfire soil
studies [14], to name a few. Due to their sizes, hyperspectral scenes are usually compressed to facilitate
their transmission and reduce storage size.

Compact data structures [15] are a type of data structure where data are stored efficiently while at
the same time providing real-time processing and compression of the data. They can be loaded
into main memory and accessed directly by means of the rank and select functions [16] in the
structures. Compressed data provide reduced space usage and query time, i.e., they allow more
efficient transmission through limited communication channels, as well as faster data access. There is
no need to decompress a large portion of the structure to access and query individual data as is the case
with data compressed by classical compression algorithms such as gzip or bzip2 and by specialized
algorithms such as CCSDS123.0-B-1 [17] or KLT+JPEG 2000 [18,19]. In this paper, we are interested in
lossless compression of hyperspectral scenes through compact data structures. Therefore, reconstructed
scenes should be identical to the originals before compression. Any deterministic analysis process will
necessarily yield the same results. Figure 1 shows several images from our datasets.

Remote Sens. 2020, 12, 1983; d0i:10.3390/rs12121983 www.mdpi.com/journal /remotesensing

Remote Sens. 2020, 12, 1983 20f17

Yellowstone 00 (uncal.) (Band 128)

(a)

. e () =(1020) ——
L (xy) = (400,200) —
ﬁ%‘if #
|

Digital Number
.

e
o

Spectral Band

(d) AIRS Gran 6 (Band 1256) ~ (€) AIRS Gran 120 (Band 256) (f) Yellowstone 00 (uncal.)

Figure 1. Several hyperspectral scenes used in this paper. The original and the decompressed scenes
discussed in this paper are numerically identical. Depicted also are two spectral signatures for AVIRIS
Yellowstone 00 (uncal.). The AVIRIS images in this figure are courtesy of NASA /JPL-Caltech.

The compact data structure used in this paper is called k?-raster. It is a tree structure developed
from another compact data structure called k>-tree. k>-raster is built from a raster matrix with its
pixel cells filled with integer values, while k?-tree is from a bitmap matrix with zero and one values.
During the construction of the k?-raster tree, if the neighboring pixels have equal values such as
clusters (spatial correlation), the number of nodes in the tree that need to be saved is reduced. If the
values are similar, as discussed later in this paper, the values will be made even smaller. They are then
compressed or packed in a more compact form by the integer encoders, and with these small integers,
the compression results are even better. Moreover, when it comes to querying cells, a tree structure
speeds up the search, saving access time. Another added advantage of some of the integer encoders is
that they provide direct random access to the cells without any need for full decompression.

Currently, huge amounts of remote sensing data have been produced, transmitted, and archived,
and we can foresee that in the future, the amount of larger datasets is expected to keep growing at
a fast rate. The need for their compression is becoming more pressing and critical. In view of this
trend, we take on the task of remote sensing compression and make it as one of our main objectives.
In this research work, we reduce hyperspectral data sizes by using compact data structures to produce
lossless compression. Early on, we began by examining the possibility of taking advantage of the
spatial correlation and spectral correlation in the data. In our previous paper [20], we presented a
predictive method and a differential method that made use of these correlations in hyperspectral
data with favorable results. However, in this paper, we would like to focus on selecting a suitable
integer encoder that is employed in the k?-raster compact data structure, as that is also a major factor
in providing competitive compression ratios.

Compression of integer data in the most effective and efficient way, in relation to compact data
structures, has been the focus of many studies over the past several decades. Some include Elias [21-23],
Rice [24-26], PForDelta [27-29], and Directly Addressable Codes (DACs) [30-32]. In our case, we
need to store non-negative, typically small integers in the k?-raster structure. This structure is a tree
built in such a way that the nodes are not connected by pointers, but can still be reached with the
use of a compact data structure linear rank function. When the data are saved, no pointers need to
be stored, thus keeping the size of the structure small. Additionally, we use a fixed code ([15], §2.7)

Remote Sens. 2020, 12, 1983 30f17

to help us save even more space. In what follows, we investigate the effectiveness of some of these
integer encoders.

The rest of the paper is organized as follows: In Section 2, we describe the k*-raster structure,
followed by the various variable-length integer encoders such as Elias, Rice, PForDelta, and DACs.
Section 3 presents experimental results for finding the best and optimal values for k and exploring
the different integer encoders for k?-raster. This is done in comparison with classical compression
techniques. Lastly, some conclusions and final thoughts on future work are put forth in Section 4.

2. Materials and Methods

In this section, we describe k2-raster [33] and the integer encoders Elias, Rice, Simple9, Simplel6,
PForDelta codes, and DACs. This is followed by a discussion on how to obtain the best value of k and
two related works on raster compression: heuristic k?-raster [33] and 3D-2D mapping [34].

2.1. K2-Raster

The k?-tree structure was originally proposed by Ladra et al. [35] as a compact representation of
the adjacency matrix of a directed graph. Its applications include web graphs and social networks.
Based on k2-tree, the same authors also proposed k2-raster [33], which is specifically designed for raster
data including images. A k?-raster is built from a matrix of width w and height k. If the matrix can be
partitioned into k? square subquadrants of equal size, it can be used directly. Otherwise, it is necessary
to enlarge the matrix to size s x s, where s is computed as:

5 = k [ogy max(w, h)]’ (1)

setting the new elements to 0. This extended matrix is then recursively partitioned into k* submatrices
of identical size, referred to as quadrants. This process is repeated until all cells in a quadrant have the
same value, or until the submatrix has size 1 x 1 and cannot be further subdivided. This partitioning
induces a tree topology, which is represented in a bitmap T. Elements can then be accessed via a
rank function. At each tree level, the maximum and minimum values of each quadrant are computed.
These are then compared with the corresponding maximum and minimum values of the parent,
and the differences are stored in the Vmax and Vmin arrays of each level. Saving the differences instead
of the original values results in lower values for each node, which in turn allows a better compression with
DAC S or other integer encoders such as Simple9, PForDelta, etc. An example of a simple 8 x 8 matrix
is given in Figure 2 to illustrate this process. A k?-raster is constructed from this matrix with maximum
and minimum values as given in Figure 3. Differences from the parents’ extrema are then computed
as explained above, resulting in the structure shown in Figure 4. Next, with the exception of the root
node at the top level, the Vmax and Vmin arrays at all levels are concatenated to form Lmax and Lmin,
respectively. Both arrays are then compressed by an integer encoder such as DACs. The root’s maximum
(rMax) and minimum (rMin) values remain uncompressed. The resulting elements, which fully describe
this k?-raster structure, are given in Table 1.

2.2. Unary Codes and Notation

We denote x as a non-negative integer. The expression |x| gives the minimum bit length needed
to express x, i.e., |x| = [log, x| + 1.
Unary codes are generally used for small integers. Unary codes have the following form:

u(x) =01, 2)

where the superscript x indicates the number of consecutive 0 bits in the code. For example, u(1;) =
0! 1=01,, u(64) = 0° 1 =0000001,, u(94) = 0° 1 = 0000000001, Here, bits are denoted by a subscript b
and decimal numbers by a subscript d. Furthermore, when codes are composed of two parts, they are
spaced apart for readability purposes. In general, the notation used in [15] is adopted in this paper.

Remote Sens. 2020, 12, 1983 40f17

8|16(5(4(4(3(2]|2 8165414 (3(2]|2 865414322 8l6]5]4)14)1312]2
716(514(3[3(2(2 7161514133 (2(2 716151413322 7161514131322
7154413222 715144131222 715144131222 7151414132122
6|5(4(3(12(2(2]2 6|5|4(3]12|2(2]|2 6(5)14(3)12(2]2]2 6151431212122
41413(2(2(2|2]2 414132122122 41413212222 414131212(2|2]2
413(3[2(2(2(2]|2 413(3[2]12(2(2]2 41313[2)12(2(2]2 413131212(2(2]|2
31313212222 313(3[2]12(2(2]|2 31313[212(2(2]2 313131212222
202(2(2(2(2(2]|2 202(2(2)12(2(2]|2 21212(2)12(2(2]2 212121212222
Level 0 (Root) Level 1 Level 2 Level 3
Figure 2. Subdivision of an example 8 x 8 matrix for k2-raster (k = 2).
N&ZV < Level 0
83 42 42 22 « Level 1
8-6 5-4 7-5 4-3 43 2-2 3-2 22 43 3-2 3-2 3-2 «— Level 2
867654547565 44434333 3222 4443323233223222 «— Level 3

Figure 3. A k?-raster (k = 2) tree storing the maximum and minimum values for each quadrant of
every recursive subdivision of the matrix in Figure 2. Every node contains the maximum and minimum
values of the subquadrant, separated by a dash. On the last level, only one value is shown as each
subquadrant contains only one cell.

82 «— Level 0
W
01 40 40 60 «— Level 1
T 7
0-3 3-1 12 40 0-1 2-0 1-0 2-0 0-1 1-0 1-0 1-0 «— Level 2
0212010102120001[41\1 0/1\11 0/0\01010100110111 «— Level 3

Figure 4. Based on the tree in Figure 3, the maximum value of each node is subtracted from that of its
parent while the minimum value of the parent is subtracted from the node’s minimum value. These
differences then replace their corresponding values in the node. The maximum and minimum values
of the root remain the same.

Table 1. An example of the elements of a k?-raster based on Figures 2—4.

T Bitmap binary 11101111 1010 1111
Level1l 0446
Lmax decimal
Level 2 0314 02120111
Level 3 02120101 0212 0001 0111 0111 0001 0101 0011 0111
Lmin decimal Levell 100
Level2 3120 10 1000
rMax decimal 8
rMin decimal 2

2.3. Elias Codes

Elias codes include Gamma () codes and Delta () codes. They were developed by Peter Elias [21]
to encode natural numbers, and in general, they work well with sequences of small numbers.
Gamma codes have the following form:

(%) = 0F171 [x] gy = u(lx] = 1) [x]jy1 ®)

Remote Sens. 2020, 12, 1983 50f17

where [x]; represents the I least significant bits of x. For example, v(1,) = v(1,) = 13, v(44) = 7(100;)
= 001 00y, 7(64) = 7(110,) = 001 10;, 7(94) = 7(1001,) = 0001 001, 7 (144) = (1110;) = 0001 110},
Delta codes have the following form:

o(x) = ([x |) [x g1 - (4)

For values that are larger than 31, Delta codes produce shorter codewords than Gamma codes.
This is due to the use of Gamma codes in forming the first part of their codes, which provides a shorter
code length for Delta codes as the number becomes larger. Some examples are: 6(1;) = §(1,) =1,
3(64) = 0(110,) =011 10p, 6(9,) = 6(1001,) = 00100 0014, 6(14,) = 6(1110,) = 00100 110p.

2.4. Rice Codes

Rice codes [25] are a special case of Golomb codes. Let x be an integer value in the sequence, and
lety = |x/2'|, where | is a non-negative integer parameter. The Rice codes for this parameter are
defined as:

Ri(x) =u(y+1) [x]; . (5)

Some examples are shown for different values of [in Table 2.

Table 2. Some examples of Rice codes.

Value v Rice Code R;(v)
Decimal Binary I=1 I=2 =3 [=4
Ly Ly Iy Ly Ly Iy
6; 110, 00010, 0110, 110, 110,
9, 1001, 000011, 00101, 01001, 1001,

14, 1110, 00000001 0, 0001 10, 01110, 11104

To obtain optimal performance among Rice codes, I should be selected to be close to the expected
value of the input integers. In general, Rice codes give better compression performance than Elias vy
and 4§ codes.

2.5. Simple9, Simple16, and PForDelta

Apart from Elias codes and Rice codes, the codes in this section store the integers in single or
multiple word-sized elements to achieve data compression. They have been shown to have good
compression ratios [30].

Simple9 [36] assigns a maximum possible number of a certain bit length to a 28-bit segment or
packing space of a 32-bit word. The other 4 bits contain a selector that has a value ranging from 0 to 8.
Each selector has information that indicates how the integers are stored, and that includes the number
of these integers and the maximum number of bits that each integer is allowed in this packing space.
For example, Selector O tests to see if the first 28 integers in the data have a value of O or 1, i.e., a bit
length of 1. If they do, then they are stored in this 28-bit segment. Otherwise, Selector 1 tests to see if it
can pack 14 integers into the segment with a maximum bit length of 2 bits for each. If this still does
not work, Selector 2 tests to see if 9 integers can each be packed into a maximum bit length of 3 bits.
This testing goes on until the right number of data are found that can be stored in these 28 bits. Table 3
shows the 9 different ways of using 28 bits in a word of 32 bits in Simple9.

Simplel6 [37] is a variant of Simple9 and uses all 16 combinations in the selector bits. Their values
range from 0 to 15. Table 4 shows the 16 different ways of packing integers into the 28-bit segment
in Simplel6.

PForDelta [27] is also similar to both Simple9 and Simplel6, but encodes a fixed group of numbers
at a time. To do so, 128- or 256-bit words are used.

Remote Sens. 2020, 12, 1983 60of 17

Due to its relative simplicity, Simple9 is used here as an example to illustrate how an integer
sequence is stored in the encoders described in this section. This sequence <3591 25 13 121512 11
26208138971310120 10>, is taken from the Lmax array of one of our data scenes AG9, and the
bit-packing is shown in Table 5. There are 19 integers in the sequence. Assuming the integer is 16 bits
each, the sequence has a total size of 38 bytes. After packing into the array, the sequence occupies only
16 bytes.

Table 3. Nine different ways of encoding numbers in the 28-bit packing space in Simple9.

Selector Number of Integers # Width of Integers |28/n| (Bits) Wasted Bits

0 28 1 0
1 14 2 0
2 9 3 1
3 7 4 0
4 5 5 3
5 4 7 0
6 3 9 1
7 2 14 0
8 1 28 0

Table 4. Sixteen different ways of encoding numbers in the 28-bit packing space in Simple16. There are
no wasted bits in any of the selectors.

Selector Number of Integers Width of Integers (Bits)
0 28 28 x 1 bit
1 21 7 x 2 bits, 14 x 1 bit
2 21 7 x 1 bit, 7 x 2 bits, 7 x 1 bit
3 21 14 x 1 bit, 7 X 2 bits
4 14 14 x 2 bits
5 9 1 x 4 bits, 8 x 3 bits
6 8 1 x 3 bits, 4 x 4 bits, 3 x 3 bits
7 7 7 X 4 bits
8 6 4 x 5 bits, 2 x 4 bits
9 6 2 x 4 bits, 4 x 5 bits
10 5 3 x 6 bits, 2 x 5 bits
11 5 2 x 5 bits, 3 X 6 bits
12 4 4 x 7 bits
13 3 1 x 10 bits, 2 x 9 bits
14 2 2 x 14 bits
15 1 1 x 28 bits

Table 5. Example to show how the integer sequence <3591 2513 1215121126208 138971310120
10> is stored with Simple9.

Number of Integers Stored Integers Stored
Element Selector . .
Integers (Decimal) (Binary)
0 74 (01115) 2 3591 25 00111000000111 00000000011001
1 4, (0100p) 5 13121512 11 01101 01100 01111 01100 01011
2 4, (0100,) 5 2620 8 13 8 11010 10100 01000 01101 01000
3 3, (0011;) 7 9713 10 12 0 10 1001 0111 1101 1010 1100 0000 1010

2.6. Directly Addressable Codes

Directly Addressable Codes (DACs) can be used to compress k?-raster and provide access to
variable-length codes. Based on the concept of compact data structures, DACs were proposed in the
papers published by Brisaboa et al. in 2009 [30] and 2013 [31]. This structure is proven to yield good
compression ratios for variable-length integer sequences. By means of the rank function, it gains fast
direct access to any position of the sequence in a very compact space. The original authors also asserted
that it was best suited for a sequence of integers with a skewed frequency distribution toward smaller
integer values.

Remote Sens. 2020, 12, 1983 7 of 17

Different types of encoding are used for DACs, and the one that we are interested in for k’-raster
is called VBytecoding. Consider a sequence of integers x. Each integer x;, which is represented by
|log, x;| + 1 bits, is broken into chunks of bits of size Cs. Each chunk is stored in a block of size Cs + 1
with the additional bit used as a control bit. The chunk occupies the lower bits in the block and the
control bit the highest bit. The block that holds the most significant bits of the integer has its control
bit set to 0, while the others have it set to 1. For example, if we have an integer 41, (101001;), which
is 6 bits long, and if the chunk size is Cg = 3, then we have 2 blocks: 0101 1001;. The control bit in
each block is shown underlined. To show how the blocks are organized and stored, we again illustrate
it with an example. Given five integers of variable length: 7; (111;), 41, (101001;), 100, (11001004),
63, (111111;), 427, (110101011,), and a chunk size of 3 (the block size is 4), their representations are
listed in Table 6.

Table 6. Example of an integer sequence and the corresponding DACs blocks of the integers.

Decimal Binary DACs Blocks
74 0111, (B1,1A1,1)

414 0101 1001, (B22A22 B 1A21)

100, 000111001100, (B33As3 B32A32B31A31)

63,4 0111 1111, (BypAgp By1Agn)

427; 011011011011, (Bs3As53 BspAs2 Bs1A51)

We store them in three blocks of arrays A and control bitmaps B. This is depicted in Figure 5.
To retrieve the values in the arrays A, we make use of the corresponding bitmaps B with the rank
function. This function returns the number of bits, which are set to 1 from the beginning position to the
one being queried in the control bitmap B;. An example of how the function is used follows: If we want
to access the third integer (100,) in the sequence in Figure 5, we start looking for the third element in
the array A; in Block; and find A3 ; with its corresponding control bitmap B3 ;. The function rank(B3 ;)
then gives a result of 2, which means that the second element A3, in the array A, in Block, contains
the next block. With the control bit in B3>, we compute the function rank(B3 7) and obtain a result of
1. This means the next block in Blocks can be found in the first element A3 3. Since its corresponding
control bitmap Bj 3 is set to 0, the search ends here. All the blocks found are finally concatenated to
form the third integer in the sequence.

More information on DACs and the software code can be found in the papers [30,31] by Ladra et al.

Ap | 111 (A1) | 001 (Agy) | 100 (As7) | 111 (A1) | 011 (Asy) |

| Block, |

| B | o) | 1) | 1B | 1B | 15y |
| Block, | A2 | 101 (A22) | 100 (As2) | 111 (As) | 101 A5 |

| | By | 0B | 10| 0B | 1(sy |

| Blocks | As | 001 (Asg) | 110(As) |

| |

B3 ‘ 0 (Bz3) ‘ 0 (Bs3) ‘

Figure 5. Organization of 3 DACs blocks.

2.7. Selection of the k Value

Following the description of Subsection 2.1, using different k values leads to the creation of Lmax
and Lmin arrays of different lengths. This, in turn, affects the final results of the size of k*-raster.
With this in mind, we present a heuristic approach that can be used to determine the best k value for
obtaining the smallest storage size. First, we compute the sizes of the extended matrix for different
values of k within a suitable range using Equation (1). Then, we find the k value that corresponds to

Remote Sens. 2020, 12, 1983 8of 17

the matrix with the smallest size, and the result can be considered as the best k value. Before the start
of the k?-raster building process, the program can find the best k value and use it as the default.

2.8. Heuristic k-Raster

In the k?-raster paper by Ladra et al. [33], a variant of this structure was also proposed whereby
the elements at the last level of the tree structure are stored by using an entropy-based heuristic
approach. This is denoted by k?;-raster. For example, for k = 2, each set of the 4 nodes that are from the
same parent forms a codeword. It is possible that at this same level of the tree, these codewords may
be repeated, and their frequencies of occurrences can be computed. These sets of codewords and their
frequencies are then compressed and saved. In effect, the more these codewords are repeated, the less
storage space they take up. An example of codeword frequency based on the k?-raster discussed in
Section 2.1 is shown in Table 7. According to experiments conducted by the authors of [33], it saves
space in the final representation.

Table 7. Codeword frequency in Level 3 of the Lmax bitmap in the k?-raster structure in Figure 1.

Codeword Frequency

0111
0212
0101
0001
0011

NN W

2.9. 3D-2D Mapping

A study on compact representation of raster images in a time-series was proposed by Cruces et al.
in [34]. This method is based on the 3D to 2D mapping of a raster where 3D tuples <x, y, z> are mapped
into a 2D binary grid. That is, a raster of size w x h with values in a certain range, between 0 and v
inclusive, has a binary matrix of w x I columns and v+1 rows. All the rasters are then concatenated
into a 3D matrix and stored as a 3D-k>-tree.

3. Experimental Results

In this section, we present an exhaustive comparison of the different integer encoders for use with
k?-raster. First, though, we report results from experiments for finding the best k value. Reported also
are the experimental results to find out if the heuristic k>-raster and 3D-2D mapping would give better
storage sizes. All storage sizes in this section are expressed as bits per pixel per band (bpppb).

The hyperspectral scenes were captured by different sensors: Atmospheric Infrared Sounder
(AIRS), AVIRIS, Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), Hyperion, and IASI.
Except for IAS], all of them are publicly available for download (http:/ /cwe.ccsds.org/sls/docs/sls-
dc/123.0-B-Info/TestData). The hyperspectral scenes used are listed in Table 8.

The implementations for k*-raster and k%,-raster were based on the algorithms presented in
the paper by Ladra et al. [33]. The sdsl-lite implementation of k*>-tree by Simon Gog [38] (https:
//github.com/simongog/sdsl-lite/blob/master/include/sdsl/k2_tree hpp) was used for testing
3D-2D mapping described in the paper by Cruces et al. [34]. The DACs software was downloaded
from a package called “DACs, optimization with no further restrictions” at the Universidade da
Coruna’s Database Laboratory website (http:/ /lIbd.udc.es/research/DACS/). The programming code
for the Rice, PForDelta, Simple9, and Simplel6 codes was written by the programmers Diego Caro,
Michael Dipperstein, and Christopher Hoobin and was downloaded from these authors” GitHub
web pages. Slight modifications to the code were made to meet our requirements to perform the
experiments. All programs for this paper were written in C and C++ and compiled with gnu g++
5.4.0 20160609 with -Ofast optimization. The experiments were carried out on an Intel Core 2 Duo

Remote Sens. 2020, 12, 1983 90f17

CPU E7400 @2.80GHz with 3072KB of cache and 3GB of RAM. The operating system was Ubuntu
16.04.5 LTS with kernel 4.15.0-47-generic (64 bits). The software code is available at http:/ /gici.uab.
cat/GiciWebPage /downloads.php.

Table 8. Hyperspectral scenes used in our experiments. Also shown are the bit rate and bit rate
reduction using k2-raster. x is the scene width, y the scene height, and z the number of spectral bands.
bpppb, bits per pixel per band; CRISM, Compact Reconnaissance Imaging Spectrometer for Mars; IASI,
Infrared Atmospheric Sounding Interferometer.

Original Bit Best k?-raster k?-raster
Sensor Name C/U* Acronym Dimensions Depth & Value Bit Rate Bit-Rate
(x Xy Xxz) (bpppb) (bpppb) Reduction (%)
9 U AGY 90 x 135 x 1501 12 6 9.49 21%
16 U AG16 90 x 135 x 1501 12 6 9.12 24%
60 U AG60 90 x 135 x 1501 12 15 9.72 19%
AIRS 126 U AGI126 90 x 135 x 1501 12 6 9.61 20%
129 U AG129 90 x 135 x 1501 12 6 8.65 28%
151 U AGI151 90 x 135 x 1501 12 6 9.53 21%
182 U AG182 90 x 135 x 1501 12 6 9.68 19%
193 U AG193 90 x 135 x 1501 12 15 9.30 23%
Yellowstone sc. 00 C ACY00 677 x 512 x 224 16 6 9.61 40%
Yellowstone sc. 03 C ACY03 677 x 512 x 224 16 6 9.42 41%
Yellowstone sc. 10 C ACY10 677 x 512 x 224 16 6 7.62 52%
Yellowstone sc. 11 C ACY11 677 x 512 x 224 16 6 8.81 45%
AVIRIS Yellowstone sc. 18 C ACY18 677 x 512 x 224 16 6 9.78 39%
Yellowstone sc. 00 U AUY00 680 x 512 x 224 16 9 11.92 25%
Yellowstone sc. 03 U AUY03 680 x 512 x 224 16 9 11.74 27%
Yellowstone sc. 10 U AUY10 680 x 512 x 224 16 9 9.99 38%
Yellowstone sc. 11 U AUY11 680 x 512 x 224 16 9 11.27 30%
Yellowstone sc. 18 U AUY18 680 x 512 x 224 16 9 12.15 24%
frt000065e6_07_sc164 U Cl64 640 x 420 x 545 12 6 10.08 16%
frt00008849_07_sc165 U C165 640 x 450 x 545 12 6 10.37 14%
CRISM frt0001077d_07_sc166 U C166 640 x 480 x 545 12 6 11.05 8%
hrl00004£38_07_sc181 U C181 320 x 420 x 545 12 5 9.97 17%
hrl0000648f_07_sc182 U C182 320 x 450 x 545 12 5 10.11 16%
hrl0000ba9¢c_07_sc183 U C183 320 x 480 x 545 12 5 10.65 11%
Agricultural C HCA 256 x 3129 x 242 12 16 8.52 29%
Coral Reef C HCC 256 x 3127 x 242 12 8 7.62 36%
. Urban C HCU 256 x 2905 x 242 12 16 8.85 26%
Hyperion
Erta Ale U HUEA 256 x 3187 x 242 12 8 7.76 35%
Lake Monona U HULM 256 x 3176 x 242 12 8 7.82 35%
Mt. St. Helena U HUMS 256 x 3242 x 242 12 8 791 34%
Level 01 U 101 60 x 1528 x 8359 12 12 6.32 47%
IASI Level 02 U 102 60 x 1528 x 8359 12 12 6.38 47%
Level 03 U 103 60 x 1528 x 8359 12 12 6.31 47%
Level 04 U 104 60 x 1528 x 8359 12 12 6.43 46%

*: Calibrated (C) or Uncalibrated (U).

3.1. Best k Value Selection

From our previous research [20], the selection of the k value when building a k?-raster was shown
to have a great effect on the resulting size of the structure, as well as the access time to query its
elements. In order to further investigate this idea, we extended our research to finding ways of
choosing the best k value. One way was to build the k?-raster structure with different k values for
scene data from each sensor to see how the matrix size affected the choice of the k value. Additionally,
we measured the time it took to build the k*-raster and the size of the structure. The results are shown
in Table 9. For most tested data, the k value leading to the smallest extended matrix size (attribute S in
the table) usually provided the fastest build time and the smallest storage size. With these results, we
could say that, in general, when k = 2, the compressed data size was large, sometimes even larger than
the size of the original scene. As the value of k became larger, beginning with k = 3, the compressed
data size was reduced. As far as the compressed size was concerned, the best value was in the range
from three to 10 for matrices with a small raster size (i.e., if both the original width and original height
were less than 1000) such as the ones for the AIRS Granule or AVIRIS Yellowstone scenes. If at least
one dimension was larger than 1000 such as Hyperion calibrated or uncalibrated scenes, a larger range,
typically between three and 20, needed to be considered.

Remote Sens. 2020, 12, 1983

100f 17

Table 9. Results for different k values using the scene data from each sensor for the following attributes: (S) the extended matrix Size (pixels), (C) the k?-raster

Compressed storage data rate (bpppb), and (B) the time to Build the k>-raster (seconds). The original scene width and height are shown in the first column. The best

results are highlighted in blue.

Scene Data k=2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20
(W x h)*
AGH S 25 243 25 625 216 343 512 729 1000 1331 144 169 196 225 256 289 324 361 400
@0 x135 C 1306 1011 1003 1047 949 995 1068 989 1065 1298 1123 1033 1129 953 115 172 1078 1252 1213
B 53 32 41 109 42 109 126 107 175 296 29 41 30 43 46 6.6 68 19 73
Acyoo S 1024 729 1024 3125 1296 2401 409 729 1000 1331 1728 2197 2744 3375 4096 4913 5832 6859 8000
@7 x5 C 123 1020 976 1070 961 991 1026 969 983 98 995 1024 1020 1051 1024 1055 1061 1049 1073
B 195 107 108 307 105 193 420 88 93 15 132 171 232 291 455 558 726 1011 1310
AUy S 1024 729 1024 3125 1296 2401 409 729 1000 1331 1728 2197 2744 3375 409 4913 5832 6859 8000
@0x512) C 1931 1293 1220 1306 1208 1235 1247 1192 1211 1213 1217 1252 1243 128 1244 1283 1287 1269 129
) B 184 107 101 307 114 209 414 77 85 109 127 171 229 293 443 558 730 1010 130.6
Clod S 1024 729 1024 3125 1296 2401 409 729 1000 1331 1728 2197 2744 3375 409 4913 5832 6859 8000
(M0 x40 C 1260 1042 1017 1135 1008 1046 1112 1034 1020 1076 1048 109 1066 1077 1119 1118 115 1180 1130
B 471 288 279 743 277 473 986 193 211 248 297 387 494 696 962 1333 1793 2311 3149
HeA S 4096 6561 4096 15625 7776 16807 409 6561 10000 14641 20736 28561 38416 3375 409 4913 5832 6859 8000
@56 xs129) C 172 1564 979 - 1047 - 854 913 97 - - - - 865 852 875 916 907 892
B 1219 1836 687 - 1866 - 552 1156 2389 - - - - 443 567 706 919 1218 1566
HUEs S 409 6561 409 15625 7776 16807 4096 6561 10000 14641 20736 28561 38416 3375 409 4913 5832 6859 8000
@56 x 31y C 1602 1463 889 - 9.68 - 776 846 9.00 - - - - 850 780 869 868 846 827
B 1311 1890 744 -3 - 603 1208 2453 - - - - 495 604 757 953 1233 1594
o1 S 2048 2187 4096 3125 7776 2401 409 6561 10000 14641 1728 2197 2744 3375 409 4913 5832 6859 8000
@x1ms C 2199 1259 1798 1025 2460 771 933 1223 1697 2649 632 728 828 680 764 854 944 1043 825
B 10211 7805 17287 9865 51675 6356 14267 39386 78707 179739 3397 4743 6589 9440 14981 18266 27898 35432 48103

*

: w = scene width; h = scene height.

Remote Sens. 2020, 12, 1983

11 0f 17

The above experiments were repeated to compare the access time for the different k values.
For each scene, the average time over 100,000 consecutive queries is reported. Results are shown in
Table 10, and Figure 6 shows how the access time and the size varied depending on the k value. As can
be observed, access time became smaller and smaller as the value of k became larger. The plotted data
suggested that there was a trade-off between access time and size with respect to the k value. We
considered the optimal k value to be the one that created a relatively small size with a minimal access
time. For example in AG9, when comparing the results between k = 6 and k = 15, the difference in
bits per pixel per band for storage size was not very significant, but the reduction in access time was.

Therefore, for this scene, k = 15 was considered an optimal value.

ACCESS TIME —— |, _ ACCESS TIME ——
1 SIZE 15 SIZE
13
12.5
2
12
12 § .
_g- 3 _g-ll.S
g & 8
a 15 - aQ
o =3 o 11
e S
o = Hos
a I\
1 10 \
10 \
\ D 9.5
O\’_M 0.5 o
9
T4 6 5 10 17 17 1o 15 20 T 4 6 5 10 1 11 16 15 20
k value k value
(a) AIRS Granule 9 (b) Yellowstone 00 (cal.)
16
wuf ACCESS TIME —— ACCESS TIME ——
1 SIZE y

i

Size (bpppb)

10: \RW

(srl) swn ssedoy

b \ SIZE

IS = o

Size (bpppb)

)

2 4 6 8 10 12 14 16
k value

(d) CRISM 164

18 20

2 4 6 8 10 12 14 16 18 20

k value

(e) Hyperion Agricultural

» ACCESS TIME ——

SIZE

Size (bpppb)

o)

\H_\‘V—'-_/

2 a 6 8 10 12 14 16 18 20
k value

(g) IASI Level 01

(srl) aw1y ssadoy

(srl) awiy ssedoy

(srl) awy ssedoy

Size (bpppb)
©
O

ACCESS TIME —+—

| SIZE

\g_

2 4 6 8 10 12 14 16
k value

18 20

(c) Yellowstone 00 (uncal.)

=

Size (bpppb)
5

o

o

ACCESS TIME —+—
SIZE

AN

e

2

4 6 8 10 12 14 16 18 20
k value

(f) Hyperion Erta Ale

Figure 6. A comparison of the storage size (bpppb) and access time (us) for different k values of

k2-raster built from scenes in our datasets. Access time is the average time of 100,000 consecutive
queries. For AIRS Granule 9, the best value is marked with a red circle, and the optimal value is marked

with a blue square.

(srl) swn ssed0y

(srl) swn ssedoy

Remote Sens. 2020, 12, 1983

12 0f17

Table 10. Access time (us) for a random cell query with different kvalues. Each result is the average time over 100,000 consecutive queries. The best results are

highlighted in blue.
SceneData , _, 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

W x h)

AG9
©0x 13 245 120 091 082 070 065 061 064 061 057 047 047 048 047 045 042 046 043 043

ACY00
1510 495 289 207 160 133 113 101 089 088 079 076 074 073 069 067 068 066 0.64

(677 x 512)

AUY00
1707 570 303 219 166 140 120 105 094 088 085 083 080 077 072 077 072 070 072

(680 x 512)
Clos 1466 509 284 212 167 148 134 110 1.08 101 095 093 088 083 081 081 079 074 074

(640 x 420)
HCA 034 02 019 - 019 - 018 018 016 - - - - 017 014 015 015 016 0.16
256 x 3129) O))))))))))))

HUEA
@56 x 3187y 159 1009 524 - 311 - 187 181 160 - - - - 122 102 101 101 100 1.01
fo1 613 335 248 224 213 194 182 176 174 172 162 156 148 155 154 154 141 140 153

(60 x 1528)

*: w = scene width; h = scene height.

Remote Sens. 2020, 12, 1983 13 of 17

3.2. Heuristic k2-Raster

In this section, we present the results of the experiments using the heuristic k?-raster proposed by
Ladra et al. [33] on some of our datasets. Table 11 reports results for two hyperspectral scene datasets:
AIRS Granule and AVIRIS Uncalibrated Yellowstone. In the experiments, we found that only when
k = 2 would there be enough repeated sets of codewords in the last level of nodes to help us save
space. When k > 3, there were no repeated sets of codewords. From the table, it can be seen that
there was not much size reduction with k2;,-raster in most cases. However, if we built a k?-raster using
the best or optimal k value, the size was considerably smaller. Therefore, we can see that k?,-raster
structure did not produce a better size.

Table 11. Comparison of the structure size (bpppb) built from k?-raster and k%_l-raster where k = 2.
The sizes for k?-raster using the best k value and the optimal k value are also shown. The best results

are highlighted in blue.
AIRS k2-Raster (k = 6) k2-Raster (k = 15)

Granule (Best) (Optimal) k2-Raster (k =2) k3;-Raster (k = 2)
AGY 9.49 9.53 13.06 13.22
AGl6 9.12 9.17 12.72 12.85
AG60 9.81 9.72 13.65 13.86

AG126 9.61 9.72 13.42 13.59
AGI129 8.65 8.72 11.98 11.95
AGI151 9.53 9.56 13.19 13.35
AG182 9.68 9.71 13.32 13.47
AG193 9.44 9.30 13.29 13.43

2_ — 2_ —
AVIRIS k*-Raster (k =9) k*-Raster (k = 9) K>-Raster (k =2) k%-Raster (k = 2)

Uncalibrated (Best) (Optimal)
AUY00 11.92 11.92 15.31 15.19
AUY03 11.74 11.74 15.03 14.74
AUY10 9.99 9.99 12.85 11.86
AUY11 11.27 11.27 14.27 14.08
AUY18 12.15 12.15 15.36 15.25

3.3. 3D-2D Mapping

As discussed earlier, Cruces et al. [34] proposed a 3D to 2D mapping of raster images using k*-tree
as an alternative to achieve a better compression ratio. We used the k*-tree implementation in sdsl-lite
software to obtain the sizes for one of our datasets (AG9) from k = 2 to k = 4. Note that similar to
k?-raster, if the 2D binary matrix cannot be partitioned into square subquadrants of equal size, it needs
to be expanded using Equation (1), and the extra elements are set to zero. The results are presented in
Table 12. The sizes for a range of bands from 1481 to 1500 of the scene are also given for comparison.

From the results for AG9, we can see that the 3D-2D mapping did not make the size smaller.
Instead, it became larger when the k value increased, and therefore, the method did not produce
competitive results.

3.4. Comparison of Integer Encoders for k>-Raster

Experiments were conducted to determine whether other variable-length encoders of integers
might serve as a better substitute for DACs, which were the original choice in the k?-raster structure
initially proposed by Ladra et al. [33]. The performance of DACs was compared to that of other
encoders such as Rice, Simple9, PForDelta, Simplel6 codes, and gzip. In these experiments, the Lmax
and Lmin arrays were encoded using these codes, and the results are shown in Table 13. For Rice
codes, the | value, as explained in Section 2.4, produced different results depending on the mean of the
raster’s elements, and only the ones with the best | value are shown.

Remote Sens. 2020, 12, 1983 14 of 17

Table 12. The sizes of AIRS Granule (AG9) produced by 3D to 2D mapping from k = 2 to k = 4.
The individual band sizes ranging from 1481 to 1500 are also shown. Sizes for individual bands are in
bits per pixel (bpp), while the ones for all bands are in bits per pixel per band (bpppb).

Original k2-Tree k>-Tree Kk>-Tree

Band Size k=2 k=3 k=4
Allbands 16 1653 2057 2657
1481 16 1756 2200 2845
1482 16 1727 2154 27.84
1483 16 1719 2147 27.67
1484 16 1745 2181 2818
1485 16 1693 2110 2729
1486 16 1700 2127 27.50
1487 16 1682 2106 27.02
1488 16 1701 2121 27.34
1489 16 1723 2151 2778
1490 16 1694 2110 27.20
1491 16 1680 2086 2696
1492 16 1656 2064 2651
1493 16 1680 2091 26.89
1494 16 1684 2093 2698
1495 16 1669 2088 2672
1496 16 1666 2075 2666
1497 16 1670 2087 2673
1498 16 1661 2070 2658
1499 16 1667 2073 2678
1500 16 1639 2040 2618

Table 13. A comparison of the storage size (in bpppb) using different integer encoders on Lmax and
Lmin from the k?-raster built from our datasets. The combined entropies for Lmax and Lmin are listed
as a reference. The [value that was used in Rice codes is enclosed in brackets. The best and optimal k
values for DACs are also enclosed in brackets. Except for the entropy, the best rates for each scene’s
data are highlighted in blue.

Hyperspectral Entro Rice . . DACs DACs .

P scone (Lmax 4 Lovin) (I Valu) SUmpled PForDelta Simplels oo} (Optimal k) 84P
AGY 8.29 1010(7) 10.06 9.88 969 949(6) 9.53(15) 1245
AG16 7.92 988(7) 9.64 9.55 930 912(6) 9.17(15) 11.96
AG60 8.58 1031(7) 10.50 10.19 1012 972(15) 981(6) 1279
AG126 8.42 1034(7) 1025 9.98 981 961(6) 9.72(15) 1255
AG129 7.47 966(7) 9.01 9.01 861 865(6) 872(15) 1121
AG151 8.36 1039(7) 9.9 9.79 954 953(6) 9.56(15) 12.39
AG182 8.44 1058(7) 1044 10.09 1001 9.68(6) 971(15) 1271
AG193 8.25 1026(7) 10.06 9.93 965 930(15) 944(6) 1233
ACY00 8.81 989 (7) 1037 9.80 1011 961(6) 9.69(9) 1256
ACY03 8.48 970(7) 9.80 9.40 957 942(6) 9.50(9) 11.98
ACY10 6.88 918(7) 734 7.43 718 7.62(6) 774(9) 932
ACY11 8.12 945(7) 9.32 9.02 909 881(6) 9.00(9) 116l
ACY18 8.96 1058(7) 10.52 9.84 1028 9.78(6) 9.88(9) 12.66
AUY00 11.16 1759(7) 1401 11.93 1379 1192(9) 11.92(9) 15.13
AUY03 10.83 1659(7) 13.54 1156 1329 1174(9) 11.74(9) 1459
AUY10 9.26 1287(7) 10.90 9.61 1054 999(9) 9.99(9) 12.29
AUY11 10.60 1516(7) 13.12 1124 1289 11.27(9) 1127(9) 1447
AUYI18 1138 2070(7) 1419 12.10 1401 1215(9) 1215(9) 1553
Cl64 9.18 1033(7) 1135 10.44 1114 10.08(6) 10.08(6) 12.85
C165 9.48 1091(7) 1178 10.69 1157 1037(6) 1037(6) 13.17
C166 10.02 1283(7) 12.99 11.41 1274 11.05(6) 11.05(6) 13.61
C181 9.16 9.96(7) 1093 10.53 1072 997(5) 997(5) 1337
C182 9.27 1017(7) 1124 10.67 1099 1011(5) 1011(5) 1326
C183 9.60 1115(7) 12.33 1121 1205 1065(5) 10.65(5) 13.32

Remote Sens. 2020, 12, 1983 150f 17

Table 13. Cont.

Hyperspectral Entropy Rice . . DACs DACs .
Scene (Lmax + Lmin) (I Value) Simple9 PForDelta Simplel6 (Best k) (Optimal k) &z1p
HCA 7.59 8.94 (7) 9.79 8.80 9.56 8.52 (16) 8.54 (8) 11.20
HCC 6.75 8.20 (7) 8.28 7.60 7.93 7.62(8) 7.71 (16) 9.51
HCU 7.87 9.78 (7) 10.30 8.91 10.04 8.85 (16) 8.86 (8) 11.35

HUEA 6.66 7.67 (5) 8.30 7.99 8.00 7.76 (8) 7.80 (16) 9.85
HULM 6.71 7.66 (5) 8.38 8.11 8.10 7.82(8) 7.88(16) 10.13
HUMS 6.77 7.90 (5) 8.48 8.14 8.20 7.91(8) 794(16) 10.12
101 5.39 6.51 (4) 6.26 6.54 5.94 6.32(12) 6.80 (15) 7.46
102 5.46 6.56 (4) 6.27 6.55 5.96 6.38 (12) 6.84 (15) 7.51
103 5.42 6.51 (4) 6.19 6.48 5.89 6.31(12) 6.79 (15) 7.39
104 5.51 6.62 (4) 6.37 6.65 6.04 6.43 (12) 6.90 (15) 7.63

The results showed that, in most cases, DACs still provided the best storage size compared
to other encoders for our datasets. They also had the added advantage of direct random access to
individual elements of the matrix whilst the other encoders would need to decompress each raster
in order to retrieve the element, thus requiring much longer access time. When DACs did not yield
the best performance, DACs results were usually only less than 0.1 bpppb worse. In the worst cases,
DAC:s results lagged behind by, at most, 0.4 bpppb.

4. Conclusions

In this research, we examined the possibility of using different integer coding methods for k?-raster
and concluded that this compact data structure worked best when it was used in tandem with DACs
encoding. The other variable-length encoders, though having competitive compression ratios, lacked
the ability to provide users with direct access to the data. We also studied a method whereby we could
obtain a k value that gave a competitive storage size and, in most cases, also a suitable access time.

For future work, we are interested in investigating the feasibility of modifying elements in a
k?-raster structure, facilitating data replacements without having to go through cycles of decompression
and compression for the entire compact data structure.

Author Contributions: Conceptualization, K.C., D.E.O.T.,, M.H.-C,, I.B., and].S.-S.; methodology, K.C., D.E.O.T.,
M.H.-C,, I.B,, and].S.-S.; software, K.C.; validation, K.C., L.B., and].S.-S.; formal analysis, K.C., D.E.O.T., M.H.,
I.B., and J.5.-S; investigation, K.C., D.E.O.T.,, M.H.-C,, L B., and].S.-S.; resources, K.C., D.E.O.T.,, M.H.-C., I.B., and
J.S.-S.; data curation, K.C., LB., and].S.-S.; writing, original draft preparation, K.C., LB., and].S.-S.; writing, review
and editing, K.C.,, M.H.-C,, I.B., and].S.-S.; visualization, K.C., I.B., and].S.-S.; supervision, I.B. and].S.-S.; project
administration, I.B. and J.S.-S.; funding acquisition, M.H.-C., I.B., and].S.-S. All authors read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Spanish Ministry of Economy and Competitiveness and the European
Regional Development Fund under Grants RTI2018-095287-B-100 and TIN2015-71126-R (MINECO/FEDER, UE)
and BES-2016-078369 (Programa Formacién de Personal Investigador), by the Catalan Government under Grant
2017SGR-463, by the postdoctoral fellowship program Beatriu de Pinds, Reference 2018-BP-00008, funded by the
Secretary of Universities and Research (Government of Catalonia), and by the Horizon 2020 program of research
and innovation of the European Union under the Marie Sktodowska-Curie Grant Agreement #801370.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Clark, R.N.; Roush, T.L. Reflectance spectroscopy: Quantitative analysis techniques for remote sensing
applications. J. Geophys. Res. Solid Earth 1984, 89, 6329-6340. [CrossRef]

2. Goetz, A.F; Vane, G.; Solomon, J.E.; Rock, B.N. Imaging spectrometry for earth remote sensing. Science 1985,
228, 1147-1153. [CrossRef] [PubMed]

3. Kruse, FA,; Lefkoff, A.; Boardman, J.; Heidebrecht, K.; Shapiro, A.; Barloon, P.; Goetz, A. The spectral image
processing system (SIPS)-interactive visualization and analysis of imaging spectrometer data. AIP Conf. Proc.
1993, 283, 192-201.

Remote Sens. 2020, 12, 1983 16 of 17

10.

11.

12.

13.

14.

15.
16.

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Joseph, W. Automated spectral analysis: A geologic example using AVIRIS data, north Grapevine Mountains,
Nevada. In Proceedings of the Tenth Thematic Conference on Geologic Remote Sensing, Environmental
Research Institute of Michigan, San Antonio, TX, USA, 9-12 May 1994; pp. 1407-1418.

Asner, G.P. Biophysical and biochemical sources of variability in canopy reflectance. Remote Sens. Environ.
1998, 64, 234-253. [CrossRef]

Parente, M.; Kerekes, J.; Heylen, R. A Special Issue on Hyperspectral Imaging [From the Guest Editors].
IEEE Geosci. Remote Sens. Mag. 2019, 7, 6-7. [CrossRef]

Ientilucci, E.J.; Adler-Golden, S. Atmospheric Compensation of Hyperspectral Data: An Overview and
Review of In-Scene and Physics-Based Approaches. IEEE Geosci. Remote Sens. Mag. 2019, 7, 31-50. [CrossRef]
Khan, M.J.; Khan, H.S.; Yousaf, A.; Khurshid, K.; Abbas, A. Modern trends in hyperspectral image analysis:
A review. IEEE Access 2018, 6, 14118-14129. [CrossRef]

Theiler, J.; Ziemann, A.; Matteoli, S.; Diani, M. Spectral Variability of Remotely Sensed Target Materials:
Causes, Models, and Strategies for Mitigation and Robust Exploitation. IEEE Geosci. Remote Sens. Mag. 2019,
7, 8-30. [CrossRef]

Sun, W.; Du, Q. Hyperspectral band selection: A review. IEEE Geosci. Remote Sens. Mag. 2019, 7, 118-139.
[CrossRef]

Scafutto, R.D.M.; de Souza Filho, C.R.; de Oliveira, W.]. Hyperspectral remote sensing detection of petroleum
hydrocarbons in mixtures with mineral substrates: Implications for onshore exploration and monitoring.
ISPRS |. Photogramm. Remote Sens. 2017, 128, 146-157. [CrossRef]

Bishop, C.A,; Liu,].G.; Mason, PJ. Hyperspectral remote sensing for mineral exploration in Pulang, Yunnan
Province, China. Int. J. Remote Sens. 2011, 32, 2409-2426. [CrossRef]

Le Marshall, J.; Jung, J.; Zapotocny, T.; Derber, J.; Treadon, R.; Lord, S.; Goldberg, M.; Wolf, W. The application
of AIRS radiances in numerical weather prediction. Aust. Meteorol. Mag. 2006, 55, 213-217.

Robichaud, PR.; Lewis, S.A.; Laes, D.Y.; Hudak, A.T.; Kokaly, R.F; Zamudio,].A. Postfire soil burn severity
mapping with hyperspectral image unmixing. Remote Sens. Environ. 2007, 108, 467-480. [CrossRef]
Navarro, G. Compact Data Structures: A Practical Approach; Cambridge University Press: Cambridge, UK, 2016.
Jacobson, G. Space-efficient static trees and graphs. In Proceedings of the 30th Annual Symposium on Foundations
of Computer Science, Research Triangle Park, NC, USA, 30 October-1 November 1989; pp. 549-554.
Consultative Committee for Space Data Systems (CCSDS). Image Data Compression CCSDS 123.0-B-1; Blue Book;
CCSDS: Washington, DC, USA, 2012.

Jolliffe, I.T. Principal Component Analysis; Springer: Berlin, Germany, 2002; p. 487.

Taubman, D.S.; Marcellin, M.W. JPEG 2000: Image Compression Fundamentals, Standards and Practice; Kluwer
Academic Publishers: Boston, MA, USA, 2001.

Chow, K.; Tzamarias, D.E.O.; Blanes, I.; Serra-Sagrista,]. Using Predictive and Differential Methods with
K2-Raster Compact Data Structure for Hyperspectral Image Lossless Compression. Remote Sens. 2019, 11,
2461. [CrossRef]

Elias, P. Efficient storage and retrieval by content and address of static files.]. ACM (JACM) 1974, 21, 246-260.
[CrossRef]

Ottaviano, G.; Venturini, R. Partitioned Elias-Fano indexes. In Proceedings of the 37th International ACM
SIGIR Conference on Research & Development in Information Retrieval, Gold Coast, Australia, 6-11 July
2014; pp. 273-282.

Pibiri, G.E. Dynamic Elias-Fano Encoding. Master’s Thesis, University of Pisa, Pisa, Italy, 2014.

Sugiura, R.; Kamamoto, Y.; Harada, N.; Moriya, T. Optimal Golomb-Rice Code Extension for Lossless Coding
of Low-Entropy Exponentially Distributed Sources. IEEE Trans. Inf. Theory 2018, 64, 3153-3161. [CrossRef]
Rice, R,; Plaunt, J. Adaptive variable-length coding for efficient compression of spacecraft television data.
IEEE Trans. Commun. Technol. 1971, 19, 889-897. [CrossRef]

Rojals,].S.; Karczewicz, M.; Joshi, R.L. Rice Parameter Update for Coefficient Level Coding in Video Coding
Process. U.S. Patent 9,936,200, 3 April 2018.

Zukowski, M.; Heman, S.; Nes, N.; Boncz, P. Super-scalar RAM-CPU cache compression. In Proceedings
of the 22nd International Conference on Data Engineering (ICDE’06), Atlanta, GA, USA, 3-7 April 2006;
pp- 59-59.

Silva-Coira, F. Compact Data Structures for Large and Complex Datasets. Ph.D. Thesis, Universidade da
Corufia, A Corufia, Spain, 2017.

Remote Sens. 2020, 12, 1983 17 of 17

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Al Hasib, A.; Cebrian,].M.; Natvig, L. V-PFORDelta: Data compression for energy efficient computation of
time series. In Proceedings of the 2015 IEEE 22nd International Conference on High Performance Computing
(HiPC), Bengaluru, India, 16-19 December 2015; pp. 416-425.

Brisaboa, N.R.; Ladra, S.; Navarro, G. DACs: Bringing direct access to variable-length codes. Inf. Process. Manag.
2013, 49, 392-404. [CrossRef]

Brisaboa, N.R.; Ladra, S.; Navarro, G. Directly addressable variable-length codes. In Proceedings of the
International Symposium on String Processing and Information Retrieval, Saariselkd, Finland, 25-27 August
2009; pp- 122-130.

Baruch, G.; Klein, S.T; Shapira, D. A space efficient direct access data structure. . Discret. Algorithms 2017,
43,26-37. [CrossRef]

Ladra, S.; Paramd, J.R.; Silva-Coira, F. Scalable and queryable compressed storage structure for raster data.
Inf. Syst. 2017, 72, 179-204. [CrossRef]

Cruces, N.; Seco, D.; Gutiérrez, G. A compact representation of raster time series. In Proceedings of the Data
Compression Conference (DCC), Snowbird, UT, USA, 26-29 March 2019; pp. 103-111.

Brisaboa, N.R.; Ladra, S.; Navarro, G. k 2-trees for compact web graph representation. In Proceedings of the
International Symposium on String Processing and Information Retrieval, Saariselkd, Finland, 25-27 August
2009; pp. 18-30.

Anh, VN.; Moffat, A. Inverted index compression using word-aligned binary codes. Inf. Retr. 2005, 8, 151-166.
[CrossRef]

Zhang,].; Long, X; Suel, T. Performance of compressed inverted list caching in search engines. In Proceedings
of the 17th International Conference on World Wide Web, Beijing, China, 21-25 April 2008; pp. 387-396.
Gog, S.; Beller, T.; Moffat, A.; Petri, M. From theory to practice: Plug and play with succinct data structures.
In Proceedings of the International Symposium on Experimental Algorithms, Copenhagen, Denmark,
29 June-1 July 2014; pp. 326-337.

® (© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

Chapter 4

Performance improvement on
k%-raster compact data structure

for hyperspectral scenes

57

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS

Performance Improvement on k>-Raster Compact
Data Structure for Hyperspectral Scenes

Kevin Chow ™, Dion Eustathios Olivier Tzarmarias, Miguel Hernandez-Cabronero ™,
lan Blanes™, Senior Member, IEEE, and Joan Serra-Sagrista™, Senior Member, IEEE

Abstract— This letter proposes methods to improve data size
and access time for k’-raster, a losslessly compressed data
structure that provides efficient storage and real-time process-
ing. Hyperspectral scenes from real missions are used as our
testing data. In previous studies, with k?-raster, the size of the
hyperspectral data was reduced by up to 52% compared with
the uncompressed data. In this letter, we continue to explore
novel ways of further reducing the data size and access time.
First, we examine the possibility of using the raster matrix of
hyperspectral data without any padding (unpadded matrix) while
still being able to compress the structure and access the data.
Second, we examine some integer encoders, more specifically
the Simple family. We discuss their ability to provide random
element access and compare them with directly addressable codes
(DAC:s), the integer encoder used in the original description for
k?-raster. Experiments show that the use of unpadded matrices
has improved the storage size up to 6% while the use of a different
integer encoder reduces the storage size up to 6% and element
access time up to 20%.

Index Terms— Directly addressable codes (DACs), image com-
pression, lossless hyperspectral imaging, PForDelta, remote sens-
ing, Simple-9, Simple-16.

I. INTRODUCTION

YPERSPECTRAL scenes are data taken from the air
by sensors, such as airborne visible/infrared imaging
spectrometer (AVIRIS), or from space by satellite instru-
ments such as Hyperion and infrared atmospheric sounding
interferometer (IASI). These scenes are made up of multiple
bands from across the electromagnetic spectrum, and data
extracted from certain bands have many practical applications,
such as oil field exploration and mineral exploration. Due to
their relatively large sizes, hyperspectral scenes are usually
compressed to increase transmission throughput and reduce
data volumes.
Compact data structures can store data efficiently and
provide real-time data compression and access to the

Manuscript received January 15, 2021; revised April 29, 2021; accepted
May 17, 2021. This work was supported in part by the Spanish Ministry
of Economy and Competitiveness and the European Regional Develop-
ment Fund (Programa Formacién de Personal Investigador) under Grant
RTI2018-095287-B-100 and Grant BES-2016-078369, in part by the Catalan
Government under Grant 2017SGR-463, in part by the Postdoctoral Fel-
lowship Program Beatriu de Pinds funded by the Secretary of Universities
and Research (Government of Catalonia) under Grant 2018-BP-00008, and
in part by the Horizon 2020 Program of Research and Innovation of the
European Union under the Marie Skfodowska-Curie Grant Agreement 801370.
(Corresponding author: Kevin Chow.)

The authors are with the Department of Information and Communications
Engineering, Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain
(e-mail: kevin.chow @uab.cat).

Color versions of one or more figures in this letter are available at
https://doi.org/10.1109/LGRS.2021.3084065.

Digital Object Identifier 10.1109/LGRS.2021.3084065

original data [1]. They can be loaded into main memory, and
operations to access data are often carried out by means of
the rank and select functions [2]. Compact data structures
provide reduced space usage and query time. There is no need
to decompress a large portion of the structure to access and
query individual data as it is the case with data compressed by
classical compression algorithms such as gzip and specialized
algorithms such as CCSDS 123.0-B-2 [3].

In this work, we reduce the hyperspectral data size using
k?-raster, a compact data structure, to produce lossless com-
pression. In our previous letter [4], we presented a predictive
method and a differential method that made use of spatial
and spectral correlations in hyperspectral data with favorable
results. Nevertheless, due to the nature of these methods, only
random access to individual cells can be done, whereas other
operations such as query on a region cannot be performed.
In this letter, we focus on investigating whether unpadded
matrices and variable-length integer encoders other than
directly addressable codes (DACs) [5] can provide competitive
compression ratios as well while improving random and query
access time. In our case, we need to store non-negative
small integers in the k2-raster tree structure, which is built
in such a way that the nodes are not connected by pointers
but can still be reached with the use of a compact data
structure’s linear rank function. Fig. 1 depicts a global picture
of the interrelations between the elements discussed above.
The compact data structures that we have been working on
are still at the research stage when applied to hyperspectral
scenes, but with the encouraging results that we have obtained
so far, we can extrapolate their practical use in applications of
remote sensing and geographic information systems [6]-[10].

The letter is organized as follows. Section II provides back-
ground information on k>-raster built from a padded matrix
and the various integer encoders. Section III describes the
proposed method of using an unpadded matrix to build the
structure and introduces the different variable-length integer
encoders. Section IV presents some experimental results. Sec-
tion V sums up the key points of our discussion.

II. BACKGROUND

Ladra et al. [11] proposed k*-raster, a tree structure specif-
ically designed for raster data including images. It is built
from a matrix of width w and height 4, and an integer k > 2.
If the matrix can be partitioned into k> square quadrants of
equal size, it can be used directly. Otherwise, it is necessary to
enlarge the matrix to size s x s, where s = k[0 max(w. M1 "anq
the number of subdivisions is log,(s). The padding elements
are equal to zero. This extended (padded) matrix is then
recursively partitioned into k” square submatrices of identical
size, hereafter referred to as quadrants. This process is repeated

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Simple-16

PForDelta

Fig. 1. Construction of k>-raster. A k>-ary tree is first built from a raster
matrix. Compression and random access are achieved when tree node data
are encoded by an integer encoder, such as DACs, Simple-9, Simple-16,
or PForDelta, resulting in a k’-raster structure.

until all cells in a quadrant have the same value, or until the
submatrix has size 1 x 1 and cannot be further subdivided.
This partitioning produces the nodes for a k>-ary tree topology
where the data in the nodes are stored in the following data
structures.

1) At each tree level ¢, the maximum and minimum values
of each quadrant are computed. These are then compared
with the corresponding maximum and minimum values
in the parent node, and the differences are stored in
the Vimax, and Vi, arrays of each level. Saving the
differences instead of the original values results in
smaller values for each node, which in turn allows a
better compression with an integer encoder. Next, with
the exception of the root node at the top level, the Vinax,
and Vi, arrays at all the levels are concatenated to
form Ly, and Ly, respectively. Both arrays are then
compressed by an integer encoder.

2) The root’s maximum (rMax) and minimum (rMin)
values are stored as uncompressed integers.

3) A bitmap array T is generated from all the nodes except
the ones at the root and at the last level, each node
indicating whether it has child nodes or not. This bitmap
serves to locate the tree nodes when cell queries are
performed by means of a rank function [2].

In Fig. 2, an example of a 5 x 5 matrix is shown to illustrate
this process. The elements which fully describe the resulting
k*-raster structure are shown at the bottom of Fig. 2. Please
refer to [12] for a more comprehensive description of k>-raster.

DACs were proposed by Brisaboa et al. [5]. Consider a
sequence of integers x. Each integer x;, which is represented
by |log, x; | + 1 bits, is broken into chunks of bits of size Cs.
Each chunk is stored in a block of size Cg + 1 with the
additional (highest) bit used as a control bit (0 for most
significant bits, 1 otherwise). More information on DACs
and software implementation can be found in the paper by
Brisaboa et al. [5].

Simple-9 word-aligned encoding [13] is another approach to
compression. Each 32-bit word is split into two parts: a 28-bit
part where a variable number of integers are encoded and a
4-bit part which is a selector with a value ranging from 0 to
8. For example, selector O signals that the first 28 integers in
the data have a value of 0 or 1. Selector 1 signals that it can
pack 14 integers into the segment with a maximum bit length
of 2 bits for each. Beginning with selector 0, each selector is
tested until the most efficient one is found. Simple-16 [14] is
a variant of Simple-9 and uses all the 16 combinations in the
selector bits. Their values range from 0 to 15. PForDelta [15]
is also similar to both Simple-9 and Simple-16 but encodes a
fixed group of 32, 64, 128, or 256 integers in a varying number
of bytes. A predetermined percentage of those numbers that
are larger than the others are encoded separately after the
smaller numbers or in another location.

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS

8[6]5]4[2]0]0]0] [EBTels5121201010] BTelE1l2o]o[0] BIeEI=I=]oo o
716[514[3[ofofo] I7lel5]2l3]0ololo] [Zlel5«l310]0ol0o] [FIel5lZ3Tolo]o
705443 ofofo] I7[5]4]2]3]ololo] [ZI51%#120]olo] [FISIEl=3To]o] 0
6[5]4|3]2]ofofo] [el5lal3]2l0l0olo] [el5la3]2T0]olo] [EIEEE2lolo]0
4la]3]2]2]ofo]o] [ETE31202T0 0o 0] [ET#I3212T0]olo] [Elzl312T2To]o 0
ofofofololofo[o] [ofofo[ofolololo] [olofolofolo]olo] [oTofolofofo]o o
olofofofofofo[o] [ofofo[ofololo]o] [0]ojolo[o[0]ojo] [0]0]ojo]o]o]o]o0
olololololololo] [olololofolololo] [ofoJolo[o[o]olo] [oo]o]olo]o]0]0
Level 0 (Root) Level 1 Level 2 Level 3

/ﬁ\ <L
8-6 5-4 7-5 4-3 40 00 3-0 00 40 30 0000 20 0-00-000 ¢«L2
86765454756544434030 3020 44003200 2000 < L3
/ﬁ\ < Lo
03 4-0 40 6-0 <« Ll
0-3 3-1 1-2 4-0 0-0 40 10 40 0-0 1-0 4040 00 202020 «L2
02120101021200010414 0313 00440133 0222 < L3
Element Bin/Dec | Tree Level | Node Data
Level 1 0446
Limaz Decimal | 1 ovel o 0314 0414 0144 0222
Level 3 0212 0101 0212 0001 0414 0313 0044 0133 0222
Lonin Decimal Level 1 3000
Level 2 3120 00 00 0
rMax Decimal 8
rMin Decimal 0
T Bitmap | Binary 1111 1111 1010 1100 1000
Fig. 2. Top: A 5 x 5 matrix example showing recursive partitioning.

Middle: The upper tree is a k>-raster (k = 2) tree constructed from the
matrix and the lower tree takes into account the differences between the parent
and child nodes. Bottom: A table showing the elements of the k>-raster with
padding.

ITI. PROPOSAL
A. Proposed Building k’-Raster Without Padding

As mentioned in Section II, given a k value, a matrix with a
size that is not a power of k? needs to be extended according
to the equation for computing s in that section. The values
of the new cells are set to zero. This is necessary because the
search from the root down to its leaves requires the knowledge
of its child node location using the rank function, which is a
function of the number of child nodes each parent node has.
Adding new cells, however, also means that the nodes that are
outside the matrix have to be saved, and this leads to a larger
structure.

To illustrate the above point, we construct a tree based
on the elements within the bounds of the original matrix
where k = 2. This matrix together with its corresponding
k2-raster tree are shown in Fig. 3. This is done without padding
and is therefore not a full quaternary tree (a full quaternary tree
is one where each node has either O or 4 child nodes). In this
case, the parent does not know how many children it has, so it
is not possible to use the rank function to get to the correct
child nodes without including them in the 7 bitmap. On the
other hand, with padding, as explained earlier in Section II,
it is a full quaternary tree. Fig. 2 shows the padded matrix and
the tree that is built from it. Comparing it with Fig. 3, we can
see that the k’-raster tree from the unpadded matrix can save
fewer elements.

To build a non-full quaternary tree, we modify the original
function for building the tree and prune the values that are
located outside the bounds of the original matrix. This reduces
the number of L. and L, values that need to be saved.
However, when forming the T bitmap, the full-quaternary tree
is still used to ensure that the parent nodes can reach their
child nodes, with the corresponding bit value of the node that

CHOW et al.: PERFORMANCE IMPROVEMENT ON k>-RASTER COMPACT DATA STRUCTURE FOR HYPERSPECTRAL SCENES 3

4-2 4-] 22 «— L1

>f

86 54 7-5 43 43 324l 32 — L2

ZAN AN A

\
86765454756544434v3“3v2‘ 32 «— L3

>
>

82 — L0
0-1 4-0 40 6-0 — L1
/\ /”\ A»
r\ .
0-3 3-1 1-2 4-0 0-1 ’ 10 02 10 ° — L2
Y s “
02120101021200010 1 01° 0 1'% — L3
. Tree
81615414 Element Bin/Dec Level Node Data
716(5(4]3 B N
715121213 T Bitmap | Binary 1110 1111 1010 0100
5514132 Level 1 | 0446
414(3]2]2 Lmaw Decimal Level 2 0314 01 01
Level 3 0212 0101 0212 0001 01 01 01
Lonin Decimal Level | 100
Matix 5 x 5 Level 2 | 3120100
rMax Decimal 8
rMin Decimal 2

Fig. 3. Top: A non-full quaternary tree constructed from a 5 x 5 matrix
without padding. The second and third parent nodes at Level 1 have only
two child nodes each. All nodes that are outside the bounds are connected by
dashed lines and will not be saved, and the corresponding value in 7' bitmap
is set to zero. Bottom: The 5 x 5 matrix and a table showing the elements
of the k2-raster without padding.

is outside the bounds being set to zero. This facilitates the
search path through the full quaternary tree when cell queries
are performed using the rank function. Note that the 7 bitmap
does not have to store the location information of the nodes
of the last level because we can compute the location of the
values from the original matrix size and the s value in the
expanded matrix.

The algorithms for building k?-raster with and without
padding are listed in Algorithm 1. What this build function
does is it excludes elements that are outside the bounds of
the original matrix and save only the actual data. This helps
reduce the size of the structure. To compute the theoretical
storage reduction, we can count how many symbols 0 we are
sparing in the encoding with the unpadded matrix: sparedO.
Since the actual reduction in storage depends on the entropy
encoding, we could estimate the saving to be spared0 X
log, (Probability(spared0)). Another way to estimate space
saving is to calculate the size of the original raster matrix
originalDim compared with that of the expanded matrix
expandedDim. The maximum saving can be estimated to
be ((expandedDim — originalDim)/expandedDim) x 100% but
the saving is, in general, less, due to factors such as the k
value, tree height, and k3-raster saving such as nodes at a
higher level that become leaves. For example, in Figs. 2 and 3,
the estimated maximum saving is ((64 —25)/64) x 100% =
61% and the L,x nodes’ saving is actually ((56 — 34)/56) x
100% = 39%. Hence, there is a relationship between the
image dimensions and the storage saving.

B. Random Access for Integer Encoders

In saving the Lp.x and Ly, arrays, the authors of
k*-raster made use of DACs as an integer encoder for random
access to its elements. In this research, we have investigated
other word-aligned integer encoders from the Simple family:
Simple-9 and Simple-16, and the PForDelta variant, which
also allow random access due to their structure.

Algorithm 1: Algorithm for Constructing
T, Vmax, Vmin for a Padded Matrix and an Unpadded
Matrix. With the “+” Lines Removed, the Pseudocode Is
for the Function Build(n, nx,ny,[,r, c,0;) for Building
From an Unpadded Matrix M. With the “—” Lines
Removed From the Code and the “+” Lines Re-Added,
It Becomes One for the Function Build(#, [, r, ¢) From a
Padded Matrix M

maxval < 0

minval < 0o
- outcount < 0

fori < 0...k—1do
for j < 0...k—1do
if n = k then /* last level */
- if (r +i) <nx and (c + j) < ny then
- | o[pmax;] < 0
- else
- | ol pmax;] < 1
- outcount <— outcount + o[pmax;]
maxval < max(maxval, My ;)
minval < min(minval, My)
Vmax|[pmax;] <= Myyicyj
pmax; < pmax; + 1
else /* in-between level */
. if (r+i-(n/k)) <nxand (c+j-(n/k)) <ny
then
- | o/l pmax;] < 0
- else
- | o/l pmax;] < 1
- outcount <— outcount + o[pmax;]
- (childmax, childmin, childoutcount) <
Build(n/k, nx,ny,l + 1,r+i-(n/k),c+ j-
(n/k),01)
+ (childmax, childmin) <«

Build(n/k, [+ 1,r +i-(n/k),c+j-(n/k))
Vmax[pmax;] < childmax
Vmini[pmin;] <— childmin
- if
childoutcount = k* or childmax = childmin
then

+ if childmax = childmin then
| Ti[pmax;] <0
else
| Tilpmax;] <1
pmax; < pmax; + 1
pmin; <— pmin; + 1
maxval < max(maxval, childmax)
minval < min(minval, childmin)
if maxval = minval then
pmax; < pmax; — k>
pmin; < pmin; — k?
+ return (maxval, minval)
- return (maxval, minval, outcount)

+ o+ o+

The use of partial sums and sampling described in
[1, §3.3 and §4.2] can be used in the Simple family of
codes to expedite the search process in the compressed array.
We incorporate such strategies by sampling these arrays at

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS

TABLE I

TESTING SCENE DATA USED AND A COMPARISON OF k2-RASTER STORAGE

S1ZE WITH PADDED MATRIX AND UNPADDED MATRIX. SIZE REDUCTIONS

(%) FROM PADDED MATRIX TO UNPADDED MATRIX ARE ENCLOSED IN PARENTHESES. IN THE DIMENSIONS COLUMN x IS THE IMAGE WIDTH,
y THE IMAGE HEIGHT, AND z THE NUMBER OF SPECTRAL BANDS. THE BEST RESULTS ARE HIGHLIGHTED.

s N Acro- DOn‘ginal gzip Ble(sc Padded Matrix (bppph) Unpadded Matrix (bpppb)
ensor ame imensions ate "D* PFD* PFD* PFD* D" D~ D~ D~
of AGY 90x 135% 1501 10.16] 6 949 1006 9.69 988 959 9.59 9.82| 894 (58) 944 (6.1) 9.08 (63) 928 (6.1) 894 (68) 890 (72) 9.07 (7.6)
16 AGI6 | 90x135x 1501 982 6 9.12 964 930 955 920 915 944 | 860 (5.7) 902 (64) 868 (67) 895 (62) 855 (7.0) 845 (17) 853 (9.6)
601 AG60 | 90x 1351501 1053 6 9.81 1050 10.12 1019 9.82 975 10.00 | 928 (5.4) 989 (5.7) 951 (59) 965 (53) 922 (6.1) 910 (67) 9.19 (8.1
126t AGI26 | 90x135x1501 1033 6 961 1025 9.81 998 961 953 984 | 907 (5.6) 965 (59) 921 (62) 941 (37) 900 (64) 885 (7.1) 9.0l (84)
AIRS 1291 AG129 | 90x135x 1501 950 6 865 901 861 901 869 867 895| 810 (63) 839 (7.0) 798 (7.3) 839 (69 801 (7.8) 792 (87 798 (109
1511 AGISI | 90x 1351501 1031 6 953 999 9.54 979 943 941 979 | 897 (58) 939 (60) 894 (63) 9.16 (64) 878 (69 871 (74) 884 (9.7)
1821 AGI82 | 90x135x 1501 1064 6 9.68 1044 10.01 1009 979 977 1008 | 9.14 (5.6) 986 (5.6) 942 (59) 953 (56) 920 (6.1) 911 (68) 921 (86)
193 AG193 | 90x135x 1501 1015] 6 9.44 1006 9.65 993 956 946 974 | 890 (5.7) 945 (6.1) 9.03 (64) 933 (60) 889 (7.0) 872 (7.8) 880 (9.7)
Average 10.18 942 999 959 980 946 942 971 | 888 (5.7) 939 (6.1) 898 (64) 921 (60) 882 (67) 872 (14) 883 (9.1
Yellowstone sc. 00¢ ACO0 | 677x512x224 10.12] 6 961 1037 1011 980 941 935 940 | 947 (1.5 1020 (1.6) 995 (1.6) 967 (13) 928 (14) 921 (15) 926 (1.5
Yellowstone sc. 03 ACO3 | 677x512x224 959 6 942 980 9.57 940 9.03 899 907 | 929 (14) 965 (1.6) 942 (1.6) 928 (13) 892 (12) 886 (14) 894 (1.4)
Yellowstone sc. 10¥ ACI0 | 677x512x224 741 6 762 734 708 744 706 704 714 | 749 (18) 720 (20) 7.04 20) 731 (17) 694 (1.6) 690 (19) 7.02 (L.7)
Yellowstone sc. 11% ACIL | 677x512x224 9204 6 881 932 909 902 865 862 872| 867 (1.7) 917 (16) 894 (I.7) 890 (13) 852 (1.5 849 (15 859 (15
Yellowstone sc. 18* ACI8 | 677x512x224 1000] 6 978 1052 10.28 984 947 942 950 | 965 (1.3) 1037 (14) 1014 (14) 973 (L1) 935 (12) 930 (13) 938 (1.3)
AVIRIS | Average 923 9.05 947 925 9.10 872 868 876 | 891 (1.5 932 (1.6) 9.10 (1.6) 898 (13) 860 (14) 855 (15 863 (15
Yellowstone sc. 007 AUO0 | 680x512x224 1239] 9 1192 1401 1379 1193 11.54 1144 1155 | 1175 (14) 1383 (12) 1362 (1.2) 1175 (1.6) 1133 (1.8) 1122 (1.9) 1130 (22)
Yellowstone sc. 03F AUO3 | 680x512x224 1198 9 1174 1354 1329 1156 1115 1108 1122 | 11.58 (14) 1337 (1.3) 1312 (1.3) 1137 (1.6) 1095 (1.8) 1087 (20) 1097 (2.2)
Yellowstone sc. 107 AUI0 | 680x512x224 1017] 9 999 1090 10.54 961 920 910 926 | 982 (17) 1072 (1.6) 1036 (1.7) 942 (20) 898 (24) 887 (26) 899 (2.9)
Yellowstone sc. 111 AUIL | 680x512x224 1149 9 1127 13.02 1289 1124 10.85 10.77 1094 | 11.08 (1.7) 1294 (14) 1271 (1.4) 1105 (1.7) 1064 (1.9) 10.56 (20) 1069 (2.2)
Yellowstone sc. 187 AUIS | 680x512x224 1229 9 12,15 14.19 1401 12,10 1170 1163 1175 | 1199 (13) 1401 (1.2) 1384 (1.3) 1191 (1.6) 1150 (1.8) 1141 (1.9) 1150 (2.1)
Average 11.66 1142 13.05 1291 1129 10.89 1080 10.94 | 11.24 (1.5) 1298 (1.3) 1273 (I4) 1110 (1.7) 1068 (1.9) 1058 (2.0) 1069 (2.3)
r1000065¢6_07_sc1641 | CRI 640x420x 545 1098] 6 1008 1135 1114 1044 1022 1037 10.54 | 1000 (0.8) 1109 (22) 1089 (23) 1036 (0.7) 10.14 (0.8) 1029 (0.8) 1045 (0.9
£rt00008849_07_sc165! | CR2 640x450x 545 11.03| 6 1037 1178 1157 10.69 1049 10.65 10.84 | 1029 (0.8) 11.69 (0.8) 1148 (0.8) 1062 (0.7) 1042 (0.7) 1057 (0.7) 1076 (0.7)
£rt0001077d_07_sc1661 | CR3 640480545 1120 6 1105 1299 1274 1141 1122 1135 1149 | 1097 (0.7) 1289 (0.8) 1264 (0.8) 1135 (05) 1LIS (0.7) 1127 (07) 1139 (0.8)
CRISM | hrl00004f38_07_sc1817 | CR4 320x420x 545 1077] 5 9.97 1093 10.72 1053 1030 10.37 1034 | 990 (0.7) 1088 (0.4) 10.67 (0.5) 1048 (04) 1024 (0.6) 1031 (0.6) 1028 (0.6)
hrl0000648f_07_sc1821 | CRS 320x450x 545 1090 5 1011 11.24 10.99 10.67 1047 10.53 10.50 | 10.06 (0.5) 1121 (02) 1097 (0.3) 1064 (03) 1043 (04) 1049 (04) 1046 (04)
hrl0000ba9c_07_sc1831 | CR6 320x480x 545 1087 5 10.65 1233 1205 1121 1101 11.04 1099 | 1057 (0.7) 1227 (0.4) 1199 (0.5) 1LI5 (05) 1095 (0.5) 1097 (0.7) 1092 (0.7)
Average 10.96 1037 11.77 1154 1082 10.62 1072 1078 | 1030 (0.7) 11.67 (0.8) 1144 (0.8) 1077 (05) 1056 (0.6) 10.65 (0.7) 1071 (0.7)
Agriculwral HC1 256x3129%x242 884 8 854 979 956 880 842 835 837 852 (03) 977 (02) 954 (0.2) 886 (0.7) 849 (09 836 (-02) 836 (0.
Coral Reef* HC2 256x3127x242 745 8 762 828 793 760 7.8 7.08 710 | 762 (0.1) 828 (0.1) 7.93 (0.1) 767 (:08) 729 (-15) 7.5 (L) 715 (0.7)
Urban* HC3 2562905 %242 885| 8 8.86 10.30 1004 891 851 846 850 | 883 (0.3) 1028 (02) 1002 (0.2) 893 (-02) 851 (0.0) 844 (03) 848 (03)
Hyperion | Average 8.38 834 946 9.18 844 804 796 799 | 832 (02) 944 (02) 9.16 (02) 849 (-06) 810 (-0.7) 799 (-03) 800 (-0.)
Erta Alef HUI 256x3187x242 869 8 776 830 800 799 747 732 733 | 773 (0.5 827 (04) 797 (04 805 (0.7) 756 (-12) 737 (0.6) 732 (0.2)
Lake Montana® HU2 | 256x3176x242 869| 8 782 838 810 811 7.60 746 747 | 780 (0.2) 837 (0.1) 808 (0.1) 819 (-1.0) 771 (-13) TS5 (0.7) 750 (0.3)
Mt. St. Helenal HU3 | 256x3242x242 826 8 791 848 820 814 7.63 7.50 753 | 7.87 (0.5) 844 (0.4) 817 (05) 820 (-0.7) 774 (14) 755 (0.6) 752 (0.1)
Average 8.55 783 838 810 808 7.57 743 745 | 780 (04) 836 (0.3) 807 (03) 815 (08) 7.67 ((13) 747 (0.6) 744 (0.0)
Level 0 17 IASIL | 60 1528x8359 50 12 632 626 594 654 610 595 595| 614 (28) 608 (28 576 (29) 641 (20) 596 (23) 580 (24) 580 (2.4)
Level 0 27 IASI2 | 60 1528x8359 59| 12 638 627 596 655 611 597 598 | 621 27) 610 28) 579 29 643 (19) 598 (22) 583 (24) 585 (2.3)
1ASI Level 0 37 IASI3 | 6015288359 525 12 631 619 589 648 604 590 591 | 614 27) 601 (29) 571 3.0) 635 (20) 591 (22) 576 (23) 577 (23)
Level 0 47 IASI4 | 60 1528x8359 630 12 643 637 604 665 620 606 607 | 625 (29) 619 28 587 (29 652 (20) 607 (22) 592 (23) 591 (2.6
Average 5.85 636627 596 656 611 597 598 | 619 (2.8) 609 (2.8) 578 (29) 643 (20) 598 (22) 583 _(24) 583 (24)

T: Uncalibrated (U). ¥: Calibrated (C). *: S9: Simple-9, S16: Simple-16, PFD: PForDelta.

a fixed interval, and at each interval, the partial sums of
the number of integers are computed. With these strategies,
random cell access can be done in constant time. Note that,
however, it may incur some overhead and this should be taken
into consideration when used in a real-time application.

IV. EXPERIMENTAL RESULTS

In this section, we present the results for storing hyper-
spectral data with a k>-raster structure, incorporating the
aforementioned improvements in padding storage and integer
encoding strategies.

The hyperspectral scenes were captured by different sen-
sors in real remote-sensing missions: Atmospheric Infrared
Sounder (AIRS), AVIRIS, Compact Reconnaissance Imag-
ing Spectrometer for Mars (CRISM), Hyperion, and TASIL
These images are often used in the remote sensing data
compression literature. All of them, save for IASI, are publicly
available for download (http://cwe.ccsds.org/sls/docs/sls-dc/
123.0-B-Info/TestData). The tested hyperspectral scenes are
listed in Table 1. Note that the storage size for hyperspectral
scenes is measured in bits per pixel per band (bpppb).

We extended the algorithms presented in the paper by
Ladra et al. [11], and our k2-raster implementation was based
on these new extended algorithms. The DACs’ software was
downloaded from the Universidade da Corufa’s Database
Laboratory website (http://Ibd.udc.es/research/DACS/).
The original implementations for Simple-9, Simple-16,
and PForDelta can be found on the website for the
Poly-IR-Toolkit (https://code.google.com/archive/p/poly-
ir-toolkit/source/default/source). However, to incorporate

the random access
and extended.
Programs for the experiments were written in C and C++
and compiled by GNU g++ 6.3.0 20170516 with -O3 opti-
mization. The testing computer had an Intel(R) Xeon(R) 4-core
CPU E3-1230 V2 @ 3.30 GHz with 8192 KB of cache and
32 GB of RAM. The operating system was Debian GNU/Linux
9 with kernel Linux 4.9.0-8-amd64. The software code is
available at http://gici.uab.cat/GiciWebPage/downloads.php.

function, the code was also modified

A. Storage Size With and Without Padding

In this section, we show how storage sizes fare among
the different encoders using padded and unpadded matrices.
The results are presented in Table I. It can be seen that
k2-raster produces smaller storage sizes than gzip. The table
also shows that the sizes for unpadded matrices are less than
the padded matrices with up to 6% in savings. PForDelta
using 128-integer blocks has the best results for the majority
of padded and unpadded matrices, followed by DACs and
Simple-16 encoders. Overall, the storage size has been reduced
for most data except for Hyperion scenes using PForDelta,
where PForDelta-128 codes for padded matrices produce sim-
ilar results for PForDelta-256 codes for unpadded matrices.
Both are almost equal, and the difference is not significant. If
we examine Table I, it can be seen that the use of an unpadded
matrix with PForDelta-128 compared with a padded matrix
with DACs results in a reduction for storage for almost all the
test files except for CRISM. We believe the experiments have
shown us that using an unpadded matrix together with one
of integer encoders, in particular PForDelta, can help improve
the storage size.

CHOW et al.: PERFORMANCE IMPROVEMENT ON k>-RASTER COMPACT DATA STRUCTURE FOR HYPERSPECTRAL SCENES 5

TABLE I

COMPARISON OF RANDOM ACCESS TIME (us) BETWEEN DIFFERENT
INTEGER ENCODERS FOR PADDED AND UNPADDED MATRICES. THE
BEST RESULTS ARE HIGHLIGHTED. THE ABBREVIATIONS FOR THE
INTEGER ENCODERS ARE THE SAME AS IN TABLE I .

S Padded Matrix (us) Ui dded Matrix (us)
cene

PFD PFD PFD PFD PFD PFD PFD PFD
Data DACs S9 S16 32 64 128 256 DACs S9 S16 32 64 128 256
AGY 0.65 0.65 0.65 0.62 0.59 0.56 0.66 0.58 0.67 0.66 0.60 0.62 0.62 0.70
AG16 0.58 0.67 0.60 0.57 0.56 0.57 0.60 0.55 0.64 0.65 0.58 0.61 0.63 0.71
AG60 0.63 0.67 0.69 0.56 0.61 0.61 0.67 0.55 0.64 0.67 059 0.60 0.65 0.73
AGI126 0.51 0.69 0.64 059 0.50 049 0.62 0.60 0.65 0.64 0.62 0.63 0.66 0.73
AG129 0.67 0.67 0.69 0.57 0.58 0.57 0.63 0.58 0.63 0.62 059 0.59 0.61 0.70
AG151 0.68 0.64 0.67 0.54 0.57 0.60 0.68 0.60 0.65 0.65 0.61 0.62 0.63 0.72
AG182 0.69 0.67 0.72 0.55 0.61 0.57 0.78 0.67 0.67 0.68 0.75 0.74 0.80 0.89
AG193 0.57 0.65 0.68 0.58 0.57 0.56 0.69 0.55 0.65 0.64 0.60 0.60 0.65 0.70
Average 0.62 0.66 0.67 0.57 0.57 0.56 0.67 0.58 0.65 0.65 0.62 0.63 0.66 0.73
ACO00 1.59 1.63 1.63 147 151 1.67 1.67 0.71 0.77 077 0.70 0.71 0.73 0.79
ACO03 1.54 158 1.62 145 137 147 158 0.69 0.77 077 0.71 0.71 0.73 0.79
ACI0 191 1.63 165 1.62 159 134 151 0.89 0.76 0.76 0.68 0.68 0.69 0.76
ACI1 1.83 1.64 163 136 152 149 148 0.86 0.77 077 0.70 0.71 0.71 0.76
ACI8 1.59 1.62 1.64 144 153 145 159 0.72 0.78 077 0.70 0.70 0.73 0.78
Average 1.69 1.62 1.64 147 150 148 1.56 0.78 0.77 077 0.70 0.70 0.72 0.78
AU00 093 1.05 1.05 099 091 1.01 092 0.60 0.65 0.66 0.59 0.59 0.61 0.66
AUO03 092 1.05 1.04 0.84 089 099 0.92 0.59 0.65 0.65 059 059 059 0.62
AU10 1.24 1.05 1.06 092 097 087 1.01 0.78 0.64 0.64 0.57 0.57 0.57 0.65
AU11L 1.13 1.05 1.02 095 094 0.87 1.05 0.73 0.66 0.65 0.57 0.57 0.58 0.60
AU18 0.99 1.10 1.10 0.88 0.99 0.99 0.98 0.61 0.66 0.66 0.59 0.58 0.59 0.62
Average 1.04 1.06 1.05 091 094 094 0.98 0.66 0.65 0.65 0.58 0.58 0.59 0.63
CR1 1.66 1.64 1.62 143 152 156 1.60 0.82 0.88 0.89 0.78 0.78 0.80 0.87
CR2 171 1.60 1.74 1.50 141 1.65 151 0.85 0.89 0.90 0.81 0.80 0.81 0.89
CR3 159 1.72 1.73 151 149 152 1.53 0.80 0.92 091 081 0.81 081 0.87
CR4 143 149 142 122 120 126 137 0.82 0.81 0.81 0.74 0.73 0.75 0.83
CR5 148 1.51 154 1.22 126 1.27 142 0.84 0.82 0.81 0.73 0.74 0.75 0.84
CR6 1.44 150 1.53 132 1.29 132 144 0.77 0.82 0.82 0.73 0.73 0.76 0.83
Average 1.55 1.58 1.60 1.37 136 143 148 0.82 0.86 0.86 0.77 0.76 0.78 0.85
HC1 1.52 1.64 1.63 153 144 149 1.65 0.62 0.71 071 0.64 0.65 0.67 0.72
HC2 1.63 1.56 149 1.47 149 148 1.68 0.71 0.70 0.70 0.64 0.63 0.65 0.69
HC3 1.38 147 1.50 140 140 147 1.36 0.63 070 0.70 0.64 0.64 0.65 0.70
Average 1.51 1.56 1.54 147 144 148 1.56 0.65 0.70 0.70 0.64 0.64 0.65 0.70
HU1 191 2.02 202 170 1.72 161 1.76 0.79 0.88 0.89 0.79 0.79 0.80 0.84
HU2 1.82 2.01 200 1.76 1.68 182 1.85 0.78 0.89 0.88 0.79 0.79 081 0.87
HU3 1.82 2.02 205 1.82 183 177 187 0.76 0.89 0.89 0.79 0.78 0.80 0.85
Average 1.85 2.02 202 1.76 1.74 173 1.83 0.78 0.89 0.89 0.79 0.79 0.80 0.85
1ASI1 134 124 130 110 1.02 1.05 1.09 125 146 132 127 131 138 144
TASI2 134 1.29 127 112 112 112 112 1.25 147 130 1.33 130 139 143
IASI3 135 1.31 129 L11 112 1.02 1.13 1.29 142 130 1.31 131 140 145
1ASI4 138 1.32 124 111 1.06 1.09 1.14 127 143 134 132 133 135 145
Average 135 1.29 128 1.11 1.08 1.07 1.12 1.27 145 132 131 131 138 1.44

B. Random Query With and Without Padding

In this section, we test the time it takes to query elements.
Random access to elements in each tested scene is performed
in 100000 iterations with and without padding. The GetCell
function in the paper by Ladra et al. [11] is modified using
partial sums and sampling to optimize random cell access time
in an unpadded matrix. To ensure more accurate results, we use
the same set of coordinates and bands generated randomly for
each scene for all the different encoders and matrices. The
program is repeated 20 times for each scene and the average
time is taken. The results are shown in Table II. It shows that
the best access time is to use the 32-, 64-, and 128-integer
PForDelta encoders for padded matrices and DACs, and
64- and 32-integer PForDelta encoders for unpadded matrices.
What is more notable is that the access times are cut almost in
half (49%) for most of the unpadded matrices, whereas AIRS
Granules and TASI data have more or less the same access
times for both types of matrices, possibly due to the similar
tree data built from the padded and unpadded matrices. Other
factors influencing execution times are the effectiveness of
the partial sums and sampling optimization, and the relatively
small spatial sizes of AIRS and IASI matrices (e.g., AIRS has
90 x 135 = 12 150 pixels) compared with others (e.g., AVIRIS
Yellowstone has 680 x 512 = 348 160 pixels). Thus, the effects
are less noticeable. Also, we should note that for access times
in unpadded matrices, the way the tree is traversed is greatly
boosted using the partial sums and sampling, which help
access elements faster.

These experiments prove that the storage space and random
access to elements in the k>-raster structure produce competi-
tive results not only for DACs but also for the Simple family
of word-aligned integer encoders.

V. CONCLUSION

In this research, we propose a new no-padding method
to reduce the storage space by saving only the elements in
the nodes of a k’-raster that are within the bounds of the
original matrix, and our experiments have shown that it saves
space up to 6%. The access time has also been reduced by
half for most of the data when using unpadded matrices.
Furthermore, the use of other random access integer encoders,
such as Simple-9, Simple-16, and PForDelta, has proven to
be competitive compared with DACs, the encoder originally
used by the authors of k2-raster. In particular, we can see that
for most hyperspectral data, PForDelta performs better than
DACs with up to 6% reduction in storage size and up to 20%
reduction in random access time to elements. The experiments
also show that the Simple family of integer encoders can also
be used as a good alternative to DACs for random access to
integer sequences.

REFERENCES

[1]1 G. Navarro, Compact Data Structures: A Practical Approach. Cam-
bridge, U.K.: Cambridge Univ. Press, 2016.

[2] G. Jacobson, “Space-efficient static trees and graphs,” in Proc. 30th
Annu. Symp. Found. Comput. Sci., Oct. 1989, pp. 549-554.

[3] Low-Complexity Lossless and Near-Lossless ~ Multispectral
and Hyperspectral Image Compression. Blue Book. Issue 2,
Consultative Committee for Space Data Systems (CCSDS),
Standard CCSDS 123.0-B-2, Feb. 2019. [Online]. Available:
https://public.ccsds.org/Pubs/123x0b2¢3.pdf

[4] K. Chow, D. Tzamarias, I. Blanes, and J. Serra-Sagrista, “Using pre-
dictive and differential methods with K2-raster compact data structure
for hyperspectral image lossless compression,” Remote Sens., vol. 11,
no. 21, p. 2461, Oct. 2019.

[5] N. R. Brisaboa, S. Ladra, and G. Navarro, “DACs: Bringing direct
access to variable-length codes,” Inf. Process. Manage., vol. 49, no. 1,
pp. 392-404, Jan. 2013.

[6] N. R. Brisaboa, M. R. Luaces, G. Navarro, and D. Seco, “A fun
application of compact data structures to indexing geographic data,” in
Proc. Int. Conf. Fun With Algorithms. Berlin, Germany: Springer, 2010,
pp. 77-88.

[7]1 N. Brisaboa, A. Farifia, G. Navarro, and J. Paramd, “Dynamic light-
weight text compression,” ACM Trans. Inf. Syst., vol. 28, no. 3, pp. 1-32,
Jun. 2010.

[8] N. R. Brisaboa, S. Ladra, and G. Navarro, “Compact representation of
Web graphs with extended functionality,” Inf. Syst., vol. 39, pp. 152-174,
Jan. 2014.

[91 N. R. Brisaboa, M. A. Rodriguez, D. Seco, and R. A. Troncoso,

“Rank-based strategies for cleaning inconsistent spatial databases,” Int.

J. Geograph. Inf. Sci., vol. 29, no. 2, pp. 280-304, Feb. 2015.

F. Silva-Coira, “Compact data structures for large and complex datasets,”

Ph.D. dissertation, Facultade de Informética Universidade da Coruifia, A

Coruna, Spain, 2017.

S. Ladra, J. R. Paramd, and F. Silva-Coira, “Scalable and queryable com-

pressed storage structure for raster data,” Inf. Syst., vol. 72, pp. 179-204,

Dec. 2017.

K. Chow, D. E. O. Tzamarias, M. Hernandez-Cabronero, I. Blanes,

and J. Serra-Sagrista, “Analysis of variable-length codes for integer

encoding in hyperspectral data compression with the k>-raster compact

data structure,” Remote Sens., vol. 12, no. 12, p. 1983, Jun. 2020.

V. N. Anh and A. Moffat, “Inverted index compression using word-

aligned binary codes,” Inf. Retr., vol. 8, no. 1, pp. 151-166, Jan. 2005.

J. Zhang, X. Long, and T. Suel, “Performance of compressed inverted

list caching in search engines,” in Proc. 17th Int. Conf. World Wide Web

(WWW), 2008, pp. 387-396.

M. Zukowski, S. Heman, N. Nes, and P. Boncz, “Super-scalar RAM-

CPU cache compression,” in Proc. 22nd Int. Conf. Data Eng. (ICDE),

Apr. 2006, p. 59.

[10]

[11]

[12]

[13]

[14]

[15]

Chapter 5

A compact data structure for
hyperspectral scenes based on

raster time series

63

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. XX, NO. X, APRIL 2022

A Compact Data Structure for Hyperspectral Scenes
Based on Raster Time Series

Kevin Chow, Dion Eustathios Olivier Tzarmarias, Miguel Herndndez-Cabronero, Ian Blanes, Diego Seco
and Joan Serra-Sagrista, Senior Member, IEEE

Abstract—In this letter, the state-of-the-art T-k’raster, a
compact data structure, is examined for lossless hyperspec-
tral data compression. This structure is a combination of
K’raster and a modified version of k’raster, both of which
are k2-ary tree data structures that provide efficient storage
and real-time processing. T-k’raster, which in earlier research
produced favorable results for raster time series, is now being
studied for remote sensing data. The structure can be used to
minimize redundancies in hyperspectral data resulting from
the spectral correlation between elements in adjacent bands.
In this research, T-k>raster has been used with hyperspectral
scenes obtained from real missions to determine whether it
can provide favorable compression ratios and random element
access. In previous experiments, k’raster helped reduce the
hyperspectral data up to 52% compared to the uncompressed
data. In this work, it is shown that compression with T-k’raster
provides further size reduction for our test data, with up to
19% decrease in size compared to k’raster or 61% compared
to the uncompressed data. The data access time is faster in
most cases, with up to 25% of speedup.

Index Terms—Ilossless image compression, hyperspectral
imaging, remote sensing, compact data structures, k°raster,
T-Kk’raster, directly addressable codes.

I. INTRODUCTION

YPERSPECTRAL scenes are image data composed of
various numbers of bands from across the electromag-
netic spectrum. They are taken by airborne sensors such as
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),
or satellites in space such as Hyperion or Infrared Atmo-
spheric Sounding Interferometer (IASI). The hyperspectral
scenes need to be compressed to allow for effective trans-
mission under the constraining limits of data links and for
minimizing storage space [1].
Compact data structures (CDS) are structures that store
data efficiently (i.e., data compression is actually achieved)
while providing real-time access to data in the compressed

K. Chow, D.E.O. Tzamarias, M. Hernindez-Cabronero, I. Blanes, and
J. Serra-Sagrista are with the Department of Information and Communi-
cations Engineering, Universitat Autonoma de Barcelona, Cerdanyola del
Valles, 08193 Spain (e-mail: kevin.chow @uab.cat).

D. Seco is with the Department of Computer Science and Information
Technologies, Universidade de A Coruiia, Spain.

This research was funded by the Spanish Ministry of Economy and Com-
petitiveness, the Spanish Ministry of Science and Innovation, and the Eu-
ropean Regional Development Fund under Grants RTI2018-095287-B-100,
PID2021-1252580B-100 and BES-2016-078369 (Programa Formacién
de Personal Investigador), by the Catalan Government under Grant
2017SGR-463, by the postdoctoral fellowship program Beatriu de Pinds,
Reference 2018-BP-00008, funded by the Secretary of Universities and
Research (Government of Catalonia), and by the Horizon 2020 program
of research and innovation of the European Union under the Marie
Sklodowska-Curie Grant Agreement #801370.

domain [2]. They are usually loaded into memory and with
the rank and select functions [3] as their main primitive
operations, they can perform operations such as random
access to elements. The most notable advantage of using
a CDS is that, in order to access or query individual data,
there is no need to decompress the whole CDS structure.
By contrast, data compressed by classical compression al-
gorithms such as Gzip, and specialized algorithms such as
CCSDS 123.0-B-2 [4], [5] need to be fully decompressed
before data can be accessed and used. Besides image com-
pression, CDS can also be used for text compression such as
FM-Index [6] and the Burrows-Wheeler Transform [7]. They
are used in different areas such as sequence alignment [§]
and medical imaging [9]. A CDS proposed by researchers
at the Universidade da Corufia known as k2-tree [10] is
used in compressing web graph representation that takes
advantage of large empty areas of adjacency matrix of the
graph. k?-tree built from web graphs contains nodes which
are binary bits.

In previous works, we have made use of a CDS called
k2raster [11], which is similar to k*-tree but has nodes
that hold integer values instead of binary bits. Predictive
and differential methods for k®raster were developed to
take advantage of the high redundancies between spectral
bands in hyperspectral data, and these two methods produced
favorable results [12]. The downside of using them, however,
is that they only provide random access to individual cells
while other operations such as query on a region cannot
be done. Another research work was conducted to analyze
the performance gains of using different integer encoders
such as Rice codes [13], Simple-9 [14], Simple-16 [15] and
PForDelta [16] instead of the Directly Addressable Codes
(DAC:s), originally used by K?raster. In [17] and [18], it was
shown that these encoders provided competitive results.

Raster time series or temporal rasters are collections of
rasters covering the same region at consecutive timestamps.
A new space-efficient representation of raster time series,
T-k?raster, based on CDS was proposed by Silva-Coira
et al. [11]. This structure takes advantage of the temporal
regularities between consecutive rasters in a time series.
It uses a strategy of snapshots and logs to represent the
data. There are two versions, one using regular sampling of
timestamps and the other being based on a heuristic where
the sampling is irregular.

In this work, instead of raster time series, hyperspectral
data is used in our study of T-k’raster in order to take
advantage of the spectral correlation between neighboring

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. XX, NO. X, APRIL 2022

Snapshot
Raster
Matrix

k?-ary Integer Normal
Tree Encoder k>raster

Modified
Integer

K2raster

(k?raster’)
Fig. 1: Construction of T-k?raster. A k2-ary tree is first built from a
snapshot raster matrix and/or log raster matrix. Compression and random
access are achieved when tree node data are encoded by an integer encoder
such as DACs, Simple-16, or PForDelta, producing a k2raster or a k2raster’
structure. Finally, these two structures are combined to form a T-k2raster
structure.

T-k’raster

Log
Raster
Matrix

bands. We carry out experiments for the two versions
of T-k?raster with the purpose of quantifying the storage
size and access time improvements for hyperspectral image
compression. Fig. 1 shows the interrelations between the
different elements in forming the T-k?raster structure.

The rest of the paper is organized as follows: Section II
provides background information on k?raster and T-k?raster.
Section III discusses in detail how T-k?raster and heuristic
T-k?raster work. In section IV, experimental results are
reported and analyzed. Finally, we conclude with a summary
in Section V.

II. BACKGROUND

Ladra et al. proposed k?raster, a tree structure specifically
designed for raster data including images [19]. It is built
from a matrix of width w and height h, and an integer
k > 2. If the matrix can be partitioned into k2 square
quadrants of equal size, it can be used directly. Otherwise,
it is necessary to enlarge the matrix to size s X s, where
s = klogrmaz(w, M1 and the number of subdivisions
is log,(s). The padding elements are equal to zero. This
extended matrix is then recursively partitioned into k2
square submatrices of identical size, hereafter referred to
as quadrants. This process is repeated until all cells in
a quadrant have the same value, or until the submatrix
has size 1 x 1. This partitioning produces the nodes for a
k2-ary tree topology where the data in the nodes is stored
in the following data structures: First, at each tree level /,
the maximum and minimum values of each quadrant are
computed. These are then compared with the corresponding
maximum and minimum values in the parent node, and the
differences are stored in the V4, and V,,;,, arrays of
each level. Saving the differences instead of the original
values results in smaller values for each node, which in
turn allows a better compression with an integer encoder.
Therefore, k?raster helps reduce the size of hyperspectral
data by taking advantage of its spatial correlation. Next, with
the exception of the root node at the top level, the V44,
and V,,;,, arrays at all the levels are concatenated to form
the L,,qr and L,,;, arrays, respectively. Both arrays are
then compressed by an integer encoder. Second, the root’s
maximum and minimum values are stored as uncompressed
integers. They become the first element of, respectively,
Lz and Ly, ;p. Third, a bitmap array T is generated from
all the nodes except the ones at the root and at the last level,

s[7]6]6[s[5]2]t] [s8][7]efefs[5[2]t] [8][7helels][s]2][1] [8Bl7]ele]s5]5]2]t
6[6]e6]6[s]s]2]2] [ele]ele]s]5][2]2] Lslehslelsls]2]2] [els]s[s]5[5]2]2
s[ss]s[2]2]2]2) Is[s]s]s]2]2]2]2) I5]505]502]2]2]2] [sls)s05]2]2]2]2
4lals[s|2]2]2]2) Lalals[sl2(2]2[2] [alals]sf2l2]2]2] [a]4]s5]5[2]2]2]2
3[afala]3]3]3]3]) [3]a]4[4]3[3[3]3] [3[404[4]3[3]3][3] [Bl4]«[4][3][3]3]3
22]4]4]3]3]3]3] [2]2]4]4]3[3[3]3] L2l204[4]3[3[3[3] [2]2]«l4]3][3]3]3
2[2]2]4]3]3]3]3) [2]2]2]4]3]3[3]3] [2[202[4]3[3[3][3] [2]2]2]4]3[3]3]3
3[3121313131313) [3131213]3]3[3]3] 3[3M2[3]3[3[3]3] [BI3]2I3]3[3]3]3
Level 0 (Root) Level 1 Level 2 Level 3
o sm e
”8&66”5&5—5 55 ”2&272:2”42&474”372& % < Level 2
8766 5544 2122 3422 22332423 < Level 3
[e
/n-zxz.z/z-&z-umjn\}-l 31 /0.&0.2/1-& % 4 Level 2
0122 0011 0100 022 11002021 4 Level 3
Element Base | Tree Level | Node Data
Level 0 8
Lmaax 10 Level 1 0345
Level 2 0233 0333 0010
Level 3 0122 0011 0100 1022 1100 2021
Level 0 1
Lomin 10 [Level 1 301
Level 2 20 0 000
T Bitmap 2 11110 1010 0100 1011

Fig. 2: (Top) A snapshot matrix (M) showing recursive partitioning.
(Middle) The upper tree is a k2raster (k = 2) tree constructed from
the matrix and the lower tree takes into account the differences between
the parent and child nodes. Maximum and minimum values in each node
are separated by a hyphen. (Bottom) A table showing the elements of the
kZraster.

each node indicating whether it has child nodes or not. This
bitmap serves to locate the tree nodes when cell queries
are performed by means of a rank function [3]. In Fig. 2, an
example of an 88 matrix is shown to illustrate this process.
The elements which fully describe the resulting kZraster
structure are shown at the bottom of Fig. 2. Please refer
to [18] for a more comprehensive description of k’raster.

The Directly Addressable Codes (DACs) were used as
the integer encoder for the compression of L4, and L,in
in the original paper for k’raster. For the experiments in
this research, DACs and other integer encoders such as
PForDelta and Simple-16 were used. For more information
on DACs, please refer to the paper by Ladra et al. [20].
For a discussion of how k?raster performs in tandem with
different integer encoders, interested readers can refer to our
previous papers [17], [18].

III. PROPOSED T-K?RASTER AND HEURISTIC
T-K2?RASTER

A. T-K’raster

The raster time series T-k?raster was proposed by Silva-
Coira et al. [11] and was originally designed to take ad-
vantage of the temporal regularities between consecutive
rasters in a time series. This can also be extended to other
3-D data such as remote sensing data where raster elements
in each band are likely to have high redundancies with
the corresponding ones in the neighboring spectral bands.
The T—k?raster structure is built by regularly grouping the
raster matrices that contain a combination of snapshots and
logs, where the group size is denoted by ¢s and ts > 2.

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. XX, NO. X, APRIL 2022

817]1616]616]313) [8]7]6]6[6]61313] [8[7]6]6[6]6]3]3] [8]7]6]6]6]6]3]3
6lo6l6]6l6]3[3] [6]clel6]6l6]3[3] [elcle]elel6]3]3] [6]6]6]6l6]6]3]3
s 5532 22) G553 222 G522 G555 BTz]2
4l4]s]s]2]2]2]2) [alalslsMal2l2[2] [alals[sM2l20202] [4]4[5]502]2]2]2
slalala33E06) BB EEE BB 31444303133
22 4]a[3]3]3]3) [2]2]4]4l3]3]3]3] 2lalsalal3l3]3]3] [2]2]4al43]3]3]3
2B]al4 33 R BEEE] RRBTEEREE RRBTEETEE B
30313313 31313) BBEEEEEE BEEEEEERE BREEEEEE
Level 0 (Root) Level 1 Level 2 Level 3
/ﬁ-IN 4 Level 0
e N o ot

1-11-2 1-0 00000000 01 0000 10 0-0 < Level 2

1000 1010 1000 < Level 3
Element Base | Tree Level | Node Data
Level 0 0
Limaz 10 | Level | 0101
Level 2 1110 0000 0010
Level 3 1000 1010 1000
Level 0 1
Lmin 101 Level 1 100
Level 2 010
T Bitmap 2 10111 0010 0001 0010
eqB Bitmap | 2 1.000 101 0100 000

Fig. 3: (Top) A non-snapshot matrix (Ms41) showing recursive partitioning.
(Middle) a T-k?raster (k = 2) tree constructed from the differences
between the matrix (Mg41) at the top of this figure and the matrix in
Fig. 2 (Ms). Except for the last level, all nodes show the maximum and
minimum values separated by a hyphen. (Bottom) A table showing the
elements of the T-kraster.

This means that in each group, the first raster (M) is the
snapshot raster and subsequent rasters (M;;) are the log
rasters. Elements in these log rasters (M,y,;) are compared
to those corresponding elements in the first raster (M) and
the differences are taken, and as a result a modified k2raster’
is created. For ease of discussion, a k2raster-built band is
denoted by S and a kZraster’-built band by P. A sequence
lists the type of bands, S or P, that make up the T-k>raster
structure from the first band to the last.

At the top of both Figs. 2 and 3, a snapshot raster matrix
(M,) and a log raster matrix (M,41) in the next band are
shown respectively. To build a T-k?raster from M, , the
values of the nodes in the tree in the middle of Fig. 3 are
computed by taking the spectral differences between these
two rasters. This means that in the process of recursive
partitioning of M1, the elements in each submatrix is
compared to the corresponding elements in M. If they
are the same, the partitioning process will stop and this
particular node becomes a leaf in the tree structure for M.
Doing so will save space by minimizing the redundancies
that exist between the snapshot and log raster matrices.
To better understand, one can compare this with k2raster
where spatial correlation between neighboring elements is
exploited by taking the differences between the parent and
child tree nodes in the same band. However, this regularity
may not necessarily provide the best compression and further
improvement in size can be made by building some or all
of these log matrices as normal k2rasters. In other words, in
each group, the first raster will always be an S band while
the rest could be an S or P band.

12 GZIP

K?RASTER —#—
T-K?RASTER —#—

11 TH-K?RASTER

Size (bpppb)

AIRS AC AU CRISM HC HU IASI
Sensors

Fig. 4: A bit-rate (bpppb) comparison of storage size between different
compression structures for 7 different datasets with DACs as integer
encoder.

B. Heuristic T-k*raster

A heuristic approach to T-k?raster (or Ty—k>raster) where
further improvement can be made is discussed in [11]. The
data is analyzed one band at a time. To illustrate with an
example, we start off by building the first band as a normal
k?raster and the band sequence begins thus: (S). Then the
second band is built either as an S band or as a P band
with respect to the first band. The one with a smaller size
will be used, resulting in either (S, S) or (S, P). For this
example, we assume the second band is a P band and the
sequence is (S, P). For the third band, the same procedure
is repeated so that whether to use an S band or a P band is
based upon the size produced. If having an .S band produces
a smaller size, then it will be used and the sequence becomes
(S, P, S). Otherwise, a P band (built with respect to the
first S band) is used and the sequence becomes (S, P, P).
At this point, there is one more testing that can be performed
for even more improvement. That is, we can look back at
the second band and rebuild this band as k?raster and then
rebuild the third band as kZraster’ with respect to this new
k?raster structure in the second band. If these two structures
combined together produce a smaller size, then they will be
used instead and the resulting sequence will be (S, S, P).
This process aimed at achieving smaller sizes is repeated
for each band until it reaches the last one. In this heuristic
approach, the grouping of the bands will be irregular and
ts > 1. In the experimental results section, we can see that
this approach has proven to produce the best storage size
for all our test data.

For a more detailed discussion on T-k’raster and
Ty-k>raster, please refer to the original paper where the
algorithms for building these structures (build(-)) and for
accessing elements in these structures (getCell(-)) can be
found [11].

IV. EXPERIMENTAL RESULTS

This section presents some of the experimental results that
were conducted using k?raster, T-k?raster, and Ty—k?raster.

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. XX, NO. X, APRIL 2022

TABLE I: Testing scene data used and a comparison of k2raster storage size and random access time with those of T-kZraster. Storage size reductions (%)
from kZraster to Ty—k?raster for different integer encoders are enclosed in parentheses in the Ty—k?raster column. Similarly, changes in random access time
(%) are also enclosed in parenthesis. In the dimensions column, « is the image width, y the image height and z the number of spectral bands. The best results
are highlighted and underscored.

ero. Original Best _ Storage size (bpppb) Random access time
Semsor | Name hero Dimensions k DACs Simple-16 PForDelta-128 DACs
Y (xXyxz) | Value B N N N 2
» 5 T-k>raster 5 5 T-k2raster 5 5 T-k2raster 5 k2raster T-kZraster
Gzip | kZraster s =2 Tu-K’raster | K’raster 1 = 2) Ty-Kraster | K’raster b2 Ty—k2raster 9 9
of AGY 90x135x 1501 6 10.16 9.42 8.75 8.18 (13.2) 9.63 8.89 8.22 (14.6) 9.53 8.71 8.04 (15.6) 0.53 048 (9.3)
167 AGI16 90x 135x 1501 6 9.82 9.05 8.43 790 (12.7) 9.24 8.57 7.90 (14.5) 9.09 8.38 7.77 (14.5) 0.50 049 (2.6)
60t AG60 90x135x 1501 6 10.53 9.74 9.08 8.56 (12.1) 10.05 9.32 8.65 (13.9) 9.68 8.93 8.30 (14.3) 0.52 048 (6.7)
126" AGI126 90x 135%x 1501 6 10.33 9.54 8.93 8.46 (11.3) 9.75 9.11 8.55 (12.3) 9.47 8.80 8.23 (13.1) 0.57 048 (15.1)
AIRS 1291 AGI29 | 90x135x1501 6 950 858 8.13 772 (10.0) 8.55 8.11 766 (10.4) 8.61 8.06 759 (11.8) 056 051 (1.7)
1511 AGI151 90x 135%x 1501 6 10.31 9.46 8.98 8.58 (9.3) 9.48 9.01 8.58 (9.5) 935 8.78 830 (11.2) 0.59 054 (7.9
1821 AG182 90x 135x 1501 6 10.64 9.62 9.10 8.64 (10.2) 9.95 931 8.73 (12.3) 9.70 9.01 8.44 (13.0) 0.59 0.58 (2.0)
1931 AG193 90x 135x 1501 6 10.15 9.37 8.80 8.34 (11.0) 9.59 8.98 8.46 (11.8) 9.39 8.73 8.19 (12.8) 0.53 052 (2.1)
Average 10.18 9.35 8.78 830 (11.2) 9.53 8.91 8.34 (12.4) 9.35 8.68 8.11 (13.3) 0.55 0.51 (6.7)
Yellowstone sc. 00% AC00 677x512x224 6 10.12 9.81 8.86 8.22 (16.2) 10.67 9.34 8.38 (21.5) 9.75 8.67 8.02 (17.7) 1.36 0.99 (27.3)
Yellowstone sc. 03% ACO03 677x512x224 6 9.59 9.92 8.80 8.07 (18.6) 10.82 9.31 8.34 (22.9) 9.81 8.74 8.13 (17.1) 1.34 1.00 (25.2)
Yellowstone sc. 10% ACI10 677x512x224 6 7.41 9.00 7.93 7.26 (19.3) 10.31 8.69 7.69 (25.4) 8.97 8.19 771 (14.0) 1.58 125 (21.1)
Yellowstone sc. 11% ACI1 677x512x224 6 9.04 922 8.17 750 (18.7) 10.09 8.70 764 (24.3) 9.23 823 7.54 (18.3) 161 118 (26.3)
Yellowstone sc. 18% ACI18 677x512x224 6 10.00 10.04 8.74 8.06 (19.7) 10.99 9.31 8.34 (24.1) 9.90 8.67 7.99 (19.3) 1.33 0.97 (26.8)
AVIRIS Average 9.23 9.60 8.50 7.82 (18.5) 10.58 9.07 8.08 (23.6) 9.53 8.50 7.88 (17.4) 1.44 1.08 (25.3)
Yellowstone sc. 00T AUOD | 680x512x224 9 1239 11.92 10.97 1045 (123) 13.79 1244 1167 (154) 11.44 10.45 9.99 (12.7) 083 0.61 (26.1)
Yellowstone sc. 037 AU03 680x512x224 9 11.98 11.74 10.72 10.18 (13.2) 13.29 11.94 11.16 (16.0) 11.08 10.12 9.66 (12.8) 0.81 0.60 (26.7)
Yellowstone sc. 10 AU10 680x512x224 9 10.17 9.98 9.36 9.01 (9.7 10.53 9.78 930 (11.7) 9.10 8.60 834 (84 1.10 0.90 (18.2)
Yellowstone sc. 11T AUl 680x512x224 9 11.49 11.27 10.22 9.65 (14.4) 12.89 11.48 10.61 (17.7) 10.77 9.79 9.30 (13.6) 1.02 0.86 (16.0)
Yellowstone sc. 187 AUI8 680x512x224 9 12.29 12.15 10.88 1029 (15.3) 14.01 1231 1146 (18.2) 11.62 10.43 9.96 (14.3) 0.92 0.61 (26.5)
Average 11.66 11.41 10.43 9.92 (13.1) 12.90 11.59 10.84 (16.0) 10.80 9.88 945 (12.5) 0.92 072 (22.1)
frll){l(l()ﬁSet‘L()77.<c]64T CRI1 640x420x 545 6 10.98 9.93 9.80 9.74 (1.9 11.00 10.98 1097 (0.3) 10.23 10.22 1022 (0.1) 1.34 1.07 (20.3)
rt00008849_07_sc165T CR2 640x450x545 6 11.03 10.23 10.11 10.04 (1.9) 11.44 11.42 1139 (0.4) 10.52 10.51 10.51 (0.1) 1.32 0.96 (27.1)
frt0001077d_07_sc166t | CR3 640x480% 545 6 11.20 10.93 10.77 1071 (2.0) 12.62 12.56 1250 (1.0) 11.23 11.22 1122 (0.1) 124 0.80 (35.1)
CRISM | 1r10000438_07_sc181T | CR4 320x420x 545 5 10.77 9.89 9.61 9.46 (4.3) 10.64 10.48 1039 (23) 10.29 10.15 1006 (2.2) 115 100 (12.5)
hrl0000648f_07_sc182f CR5 320x450% 545 5 10.90 10.04 9.86 9.76 (2.8) 10.92 10.87 10.83 (0.8) 10.47 10.42 1038 (0.8) 1.22 1.04 (14.6)
hrl0000ba9¢_07_sc183F CR6 320x480x 545 5 10.87 10.59 10.51 1046 (1.2) 11.99 11.97 1195 (0.3) 10.98 10.97 1096 (0.2) 1.17 0.98 (16.2)
Average 10.96 10.27 10.11 10.03 (2.3 11.44 11.38 1134 (0.8) 10.62 10.58 1056 (0.6) 1.24 0.98 (21.0)
Agricultural? HCI1 256x3129%242 8 8.84 8.64 7.92 7.69 (11.0) 10.47 9.28 (15.1) 8.81 8.20 802 (9.0) 137 108 (21.2)
Coral Reeft HC2 256x3127x242 8 7.45 10.03 8.45 825 (17.7) 14.95 11.57 (25.8) 10.53 10.04 10.00 (5.0 1.31 (28.5)
Urban® HC3 256x2905x242 8 8.85 9.37 8.34 8.10 (13.6) 12.05 10.15 (20.0) 9.44 8.70 853 (9.7 1.29 (21.0)
Hyperion | Average 8.38 9.35 8.24 8.01 (143) 12.49 1033 (20.9) 9.59 8.98 8.85 (1.7) 1.32 (23.5)
Erta Alef HU1 256x3187x242 8 8.69 745 7.39 729 (2.1) 7.69 7.63 (2.3) 7.03 6.98 691 (1.7) 1.55 (13.5)
Lake Montana® HU2 256x3176x242 8 8.69 7.50 745 7.38 (1.6) 7.78 7.73 (1.6) 7.16 7.12 707 (1.3) 1.49 (11.6)
Mt. St. Helena® HU3 256%3242x242 8 8.26 7.60 7.50 732 (3.7) 7.90 7.81 (3.7) 7.21 7.13 700 (29 1.50 (18.0)
Average 8.55 7.52 745 733 (2.5) 7.79 7.72 (2.5) 7.13 7.08 699 (2.0) 1.51 130 (144)
Level 0 1F IASII | 60x1528x8359 | 12 5.90 6.11 5.50 503 (17.7) 573 5.17 (17.1) 574 523 487 (15.2) (-7.1)
Level 0 2 TASI2 60x 1528 8359 12 5.96 6.18 5.50 5.00 (19.1) 5.76 5.15 (18.2) 577 522 5.00 (13.3) (-6.5)
IASI Level 0 31 TASI3 60x 1528 8359 12 525 6.11 5.48 499 (18.3) 5.68 5.12 (17.1) 5.69 5.19 499 (12.3) (-8.8)
Level 0 4 TASI4 60x 1528 x8359 12 6.30 6.22 5.58 5.10 (18.0) 5.84 525 (17.6) 5.85 5.32 5.10 (12.8) 5 (-7.4)
Average 5.85 6.16 5.52 5.03 (18.3) 5.75 5.17 4.75 (17.5) 5.76 5.24 499 (13.4) (-7.5)
f: Uncalibrated. ¥: Calibrated.
16 TR — Written in C and C++, our implementations of building
2 : 2
k“raster and the two versions of T-k“raster are based,
L4 respectively, on the algorithms presented in the paper
N\ by Ladra et al. [19] and by Silva-Coira et al. [11].
~1.2
&l So is the GetCell(-) function for timing random cell
i . . .
E access in both structures. Our software is available
1
g on the following website: https://gici.uab.cat/GiciWebPage/
<
os downloads.php#tk2-raster. The DACs software can be found
. . -,
on the Universidade da Corufia’s Database Laboratory
06 website (http://Ibd.udc.es/research/DACS/). The sources for
Simple-16, and PForDelta are available for download from
AIRS AC AU CRISM HC HU IASI 3 - .
Snsm the website for the Poly-IR-Toolkit (https://code.google.

Fig. 5: Access time to element (us) comparison between k’raster and

com/archive/p/poly-ir-toolkit/source/default/source).
Tu—k>raster for 7 different datasets with DACs as integer encoder.

The computer used for testing had an Intel(R) Xeon(R)
8-core CPU E3-1230 V2 @ 3.30GHz with 8§ MB of cache
and 32GB of RAM. The operating system was Ubuntu 20.04

The hyperspectral scenes captured by different sensors in LTS with kernel Linux 5.4.0-26-generic.

real missions were used. They include: Atmospheric Infrared
Sounder (AIRS), AVIRIS, Compact Reconnaissance Imag-

ing Spectrometer for Mars (CRISM), Hyperion, and TASIL. A. Storage size

They are often used in remote sensing data compression
literature and are publicly available (http://cwe.ccsds.org/sls/
docs/sls-dc/123.0-B-Info/TestData) except for IASI data'.
These testing data are listed in Table 1. Note that the storage
size is measured in terms of bits per pixel per band (bpppb).

! Available to members of the Consultative Committee for Space Data
Systems (CCSDS) only.

For the performance with respect to storage size, we first
tested all the data with T-k?raster for regular groupings. In
other words, the bands were divided into groups of size
ts, and each group consists of the first band being built
with k?raster and the second band with either k2raster or
k2raster’, whichever producing a smaller storage size. The
results are listed in Table I under the column T—kZraster.
Since similar storage sizes were obtained with ts; > 2 and

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. XX, NO. X, APRIL 2022

sizes get larger with higher ts values, only ts = 2 is shown in
the results. Next, we tested the data using Ty—k?raster. The
groupings in this method are irregular. The results are shown
under the column Ty—kZraster in Table 1. DACs, Simple-16
and PForDelta-128, the integer encoders that produced the
best results in our previous paper have been used in k’raster,
T-Kk2raster, and Ty—k>raster.

From Table I and the chart in Fig. 4, it can be seen
that Ty-k’raster gives the best results for all the data,
followed by T-k?raster and then k’raster. Gzip is shown
here for comparison and in general has the largest (worst)
compressed sizes compared to the other three structures. For
Tu—k?raster, the best results for most data are produced by
using DACs or PForDelta-128, while Simple-16 gives the
best results when used with IASI data. These experiments
have shown that because both T-k2raster and Ty—kZraster
can make a choice between spatial differences and spectral
differences when building the structure, it will provide better
compression for each raster band. For that reason, T-k?raster
will always perform better than k2raster, which only exploits
the spatial redundancy.

B. Access time

We compared the time to access an element in the
hyperspectral data between kZraster and Ty—kZ?raster using
DACS as the integer encoder. For each tested scene, data
access to a million randomly selected element locations is
performed. The average time it takes to access an individual
data (in ps) using both structures is shown in Table I and
depicted in the chart in Fig. 5.

The results show that there is some improvement in access
time to elements, despite the process to access them actually
becoming a bit more complicated. This can be explained
by the fact that the overall structure in Ty—k’raster has
become smaller, thus making it faster to query elements
from the DACs-compressed data. For IASI data, results for
Tu—k>raster are only 0.1 ps slower than for kZraster.

V. CONCLUSIONS

In this research work, we examined the recently proposed
T—kZraster, which is a combination of k2raster and a mod-
ified form of k2raster that provides both good compression
ratios and access time for hyperspectral data. There are
two versions for T-k2raster, one being a normal version,
where the bands are regularly grouped, and the other being
a heuristic one, where the bands are irregularly grouped.

The experiments show that the storage size in Ty—k?raster
has always improved across the board in our hyperspectral
data, up to 19% from k2raster. PForDelta-128 and DACs
produced the best results when used as the integer encoder
for this structure. When considering the random access time,
Tua—k>raster has improved as compared with kZraster for
most of the sensors by an amount of up to 25%.

For future work, the following ideas can be considered.
Firstly, unlike raster time series where the order of the bands
is fixed because of the temporal dimension, in hyperspectral
data, it is not common to perform queries that expand more

than one raster. Hence, we could reorder the rasters to obtain
better performance. To find the optimal order of the rasters is
an open problem. Secondly, Ty—k>raster can be formalized
as an optimization problem and better heuristics may be
found to improve the compression ratio.

REFERENCES

[1] 1. Blanes, E. Magli, and J. Serra-Sagrista, “A tutorial on image
compression for optical space imaging systems,” IEEE Geoscience
and Remote Sensing Magazine, vol. 2, no. 3, pp. 8-26, 2014.

[2] G. Navarro, Compact data structures: A practical approach. Cam-
bridge University Press, 2016.

[3] G. Jacobson, “Space-efficient static trees and graphs,” in 30th Annual
Symposium on Foundations of Computer Science. IEEE, 1989, pp.
549-554.

[4] Low-Complexity Lossless and Near-Lossless Multispectral and
Hyperspectral Image Compression. Blue Book. Issue 2, Consultative
Committee for Space Data Systems (CCSDS) Std. CCSDS 123.0-
B-2, Feb. 2019. [Online]. Available: https://public.ccsds.org/Pubs/
123x0b2c3.pdf

[5] M. Hernandez-Cabronero, A. B. Kiely, M. Klimesh, I. Blanes,
J. Ligo, E. Magli, and J. Serra-Sagrista, “The CCSDS 123.0-B-2 low-
complexity lossless and near-lossless multispectral and hyperspectral
image compression standard: A comprehensive review,” IEEE Geo-
science and Remote Sensing Magazine, 2021.

[6] P. Ferragina and G. Manzini, “Opportunistic data structures with
applications,” in Proceedings 41st annual symposium on foundations
of computer science. 1EEE, 2000, pp. 390-398.

[7]1 M. Burrows and D. Wheeler, “A block-sorting lossless data compres-
sion algorithm,” in Digital SRC Research Report. Citeseer, 1994.

[8] J. R. Wang, J. Holt, L. McMillan, and C. D. Jones, “Fmlrc: Hybrid
long read error correction using an fm-index,” BMC bioinformatics,
vol. 19, no. 1, pp. 1-11, 2018.

[9] C. Preston, Z. Arnavut, and B. Koc, “Lossless compression of medical
images using burrows-wheeler transformation with inversion coder,”
in 2015 37th annual international conference of the IEEE engineering
in medicine and biology society (EMBC). 1EEE, 2015, pp. 2956—
2959.

[10] N. R. Brisaboa, S. Ladra, and G. Navarro, “k2-trees for compact
web graph representation,” in International Symposium on String
Processing and Information Retrieval. Springer, 2009, pp. 18-30.

[11] F. Silva-Coira, J. R. Parama, G. de Bernardo, and D. Seco, “Space-
efficient representations of raster time series,” Information Sciences,
vol. 566, pp. 300-325, 2021.

[12] K. Chow, D. E. O. Tzamarias, 1. Blanes, and J. Serra-Sagrista,
“Using predictive and differential methods with k2-raster compact
data structure for hyperspectral image lossless compression,” Remote
Sensing, vol. 11, no. 21, p. 2461, 2019.

[13] R. Rice and J. Plaunt, “Adaptive variable-length coding for efficient
compression of spacecraft television data,” IEEE Transactions on
Communication Technology, vol. 19, no. 6, pp. 889-897, 1971.

[14] V. N. Anh and A. Moffat, “Inverted index compression using word-
aligned binary codes,” Information Retrieval, vol. 8, no. 1, pp. 151-
166, 2005.

[15] J. Zhang, X. Long, and T. Suel, “Performance of compressed inverted
list caching in search engines,” in Proceedings of the 17th interna-
tional conference on World Wide Web, 2008, pp. 387-396.

[16] M. Zukowski, S. Heman, N. Nes, and P. Boncz, “Super-scalar RAM-
CPU cache compression,” in 22nd International Conference on Data
Engineering (ICDE’06). 1EEE, 2006, pp. 59-59.

[17] K. Chow, D. E. O. Tzarmarias, M. Hernandez-Cabronero, I. Blanes,
and J. Serra-Sagristd, “Performance improvement on k2-raster com-
pact data structure for hyperspectral scenes,” IEEE Geoscience and
Remote Sensing Letters, vol. 19, pp. 1-5, 2022.

[18] K. Chow, D. E. O. Tzamarias, M. Hernandez-Cabronero, 1. Blanes,
and J. Serra-Sagrista, “Analysis of variable-length codes for integer
encoding in hyperspectral data compression with the k2-raster com-
pact data structure,” Remote Sensing, vol. 12, no. 12, p. 1983, 2020.

[19] S. Ladra, J. R. Paramd, and F. Silva-Coira, “Scalable and queryable
compressed storage structure for raster data,” Information Systems,
vol. 72, pp. 179-204, December 2017.

[20] N. R. Brisaboa, S. Ladra, and G. Navarro, “DACs: Bringing direct
access to variable-length codes,” Information processing & manage-
ment, vol. 49, no. 1, pp. 392-404, 2013.

Chapter 6
Results summary

In this section, a general overview of the experimental results and a collection of
all the thoughts and ideas that were in all the previous chapters are presented here.
Most of the experiments were performed using seven datasets of hyperspectral data
that are listed in Table 6.1. We carried out experiments to test each of the distinct
methods that make use of compact data structures to attain better performance in
terms of storage size and access time. The results are analyzed to determine if these
methods can provide a better compression ratio and random element access when
compared with other compression techniques.

Note that to evaluate access time, the getCell function in the original paper of
k%-raster is implemented [6]. The storage size of compressed hyperspectral data is

measured as bits per pixel per band (bpppb).

6.1 Use of different k-values

From experiments in Chapter 3, we found that if different k-values were used for
k2-raster, different bit rates and different access times would be produced. The sizes
for L. and L,y,;, are usually not the same for each k-value, and therefore, the overall
size of the structure will not be the same either. In Chapter 3, a heuristic method has
been designed to determine the best k-value for obtaining the smallest storage size.

We calculate the sizes (s x s) of the extended matrix for different k-values within a

69

70 CHAPTER 6. RESULTS SUMMARY

Table 6.1: Testing datasets used. In the “Original Sizes” column,
the image height and z the number of spectral bands.

x is the image width, y

Original Best
Sensor | Name Data type | Acronym Sizes Bit depth
k-value
(x Xy Xz)
9 Uncalibrated AG9 90x135x1501 12 6
16 Uncalibrated AG16 90x 135x 1501 12 6
60 Uncalibrated AG60 90x 135x 1501 12 6
AIRS 126 Uncalibrated AGI126 90x 135x 1501 12 6
129 Uncalibrated AGI129 90x135x 1501 12 6
151 Uncalibrated AGI151 90x135x 1501 12 6
182 Uncalibrated AG182 90x135x1501 12 6
193 Uncalibrated AG193 90x135x1501 12 6
Yellowstone sc. 00 Calibrated ACO00 677x512x224 16 6
Yellowstone sc. 03 Calibrated AC03 677x512%x224 16 6
Yellowstone sc. 10 Calibrated AC10 677x512x224 16 6
Yellowstone sc. 11 Calibrated ACl11 677x512x224 16 6
Yellowstone sc. 18 Calibrated AC18 677x512x224 16 6
AVIRIS ['Yellowstone sc. 00 Uncalibrated AU00 680x512x224 16 9
Yellowstone sc. 03 Uncalibrated AUO03 680x512x224 16 9
Yellowstone sc. 10 Uncalibrated AU10 680x512x224 16 9
Yellowstone sc. 11 Uncalibrated AU11 680x512x224 16 9
Yellowstone sc. 18 Uncalibrated AU18 680x512x224 16 9
frt000065e6_ 07 scl64 | Uncalibrated CR1 640x420x 545 12 6
frt00008849 07 scl165 | Uncalibrated CR2 640x450% 545 12 6
CRISM frt0001077d_ 07 scl66 | Uncalibrated CR3 640x480x 545 12 6
hrl00004£38 07 sc181 | Uncalibrated CR4 320%x420x 545 12 5
hrl0000648f 07 sc182 | Uncalibrated CR5 320x450x 545 12 5
hrl0000ba9¢_ 07 _sc183 | Uncalibrated CR6 320x480x 545 12 5
Agricultural Calibrated HC1 256x3129%242 12 8
Coral Reef Calibrated HC2 256x3127x242 12 8
Urban Calibrated HC3 256 %2905 x 242 12 8
Hyperion | Erta Ale Uncalibrated HU1 256x 3187 x 242 12 8
Lake Montana Uncalibrated HU2 256 % 3176242 12 8
Mt. St. Helena Uncalibrated HU3 256x 3242 %242 12 8
Level 0 1 Uncalibrated | TASIT | 60x1528x8359 12 12
TASI Level 0 2 Uncalibrated TIASI2 60x 1528 x 8359 12 12
Level 0 3 Uncalibrated TASI3 60x 1528 %8359 12 12
Level 0 4 Uncalibrated TASI4 60x 1528 x8359 12 12

suitable range using the following equation:

s = kDng mazx(w, h)]’

(6.1)

where w is the width and A the height of the original matrix.

Then, we find the k-value that corresponds to the matrix with the smallest size,

6.1. USE OF DIFFERENT K-VALUES 71

and the result can be considered as the best k-value.

6.1.1 Storage size

Our testing suggests that in order to get the smallest storage size, we should look for
a k-value that produces the smallest or almost smallest extended matrix size. Note
that, in a few cases, when k = 2, the compressed data size turns out to be larger,
or sometimes it is even larger than the original data. But starting from k = 3, the
compressed data size usually gets smaller as the k-value becomes larger.

By examining Table 9 in Chapter 3, we can choose the best k-value computed by
the heuristic method. However, when the testing data are run through a range of
k-values, the one that produces the smallest storage size is not necessarily the same as
that shown in Table 9. For example, for ACY00 (AVIRIS Yellowstone 00), the storage
size was found to be the smallest when & = 6. However, the heuristic approach gives
the best storage size when k£ = 3 or k£ = 9. In this case, if we use k£ = 9 instead of
k = 6, the compressed size is only slightly larger (9.69 - 9.61 = 0.08 bpppb), and the

difference is rather insignificant. Hence, the suggested k-value can be used.

6.1.2 Access time

When it comes to access time, for almost all of our hyperspectral data, access time
gets smaller when the k-value becomes larger, and this can be seen in Figure 6 of
Chapter 3. There is a trade-off between access time and size with respect to the
k-value. In the case where we are looking for an optimal k-value, we might select one
that produces a comparatively small storage size but with a minimal access time. For
example, in AIRS Granule 9, although there is not much difference in storage size
for most k-values, there is a larger decrease in access time when the k-value becomes
larger. Therefore, for AIRS Granule 9, we can consider £ = 15 as an optimal value.
Note that the optimal value that we are discussing in this section is different from
the best k-value in the previous subsection, as it takes into account the storage size

only.

72 CHAPTER 6. RESULTS SUMMARY

Predictive 2 Predictive
—_— L
Encoding O Decoding

Original
Hyperspectral
Raster
Matrix

Reconstructed
Hyperspectral
Raster
Matrix

Differential 2 Differential
Encoding k*-raster Decoding

Figure 6.1: A chart showing how the predictive and differential encoders are used with
k2-raster.

6.2 Predictive and differential methods

To take advantage of the spectral redundancies between corresponding elements in
neighboring bands in a hyperspectral image, a predictor or a differential encoder can
be designed and used to help reduce the bit rate. The resulting data bit rate can be
further reduced by using a compact data structure such as k*-raster. Figure 6.1 shows

the interconnection between the predictive and differential encoders, and k2-raster.

The predictive encoder in this thesis is based on three similar compression schemes,
the first being Context Adaptive Lossless Image Compression (CALIC) [21] published
in 1994, the second 3D-CALIC [22] in 2000 and the third M-CALIC [23] in 2004. The
first two were proposed by Wu et al. and the last one by Magli et al. The predictive
method takes advantage of the fact that neighboring pixels in the same band (spatial
correlation) typically have similar data values and the values of the corresponding

elements in neighboring bands can be even closer (spectral correlation).

On the other hand, the differential encoder, being a special case of the predictive
encoder, only takes the difference between the corresponding elements in neighboring
bands. Therefore, it only takes advantage of the spectral redundancies. It should be
noted that the correlation between corresponding pixels in the bands become higher

as the bands are closer to each other.

6.2. PREDICTIVE AND DIFFERENTIAL METHODS 73

6.2.1 Storage size

Experiments were carried out to compare the performance of k-raster with other
popularly used algorithms such as Guzip, bzip2, and xz, and with specialized algo-
rithms such as M-CALIC and CCSDS 123.0-B-1. These experiments were repeated
for k%-raster with the predictor and the differential encoder. The results show that

using k2-raster by itself already performs better than Gzip.

With the predictor added, it produces similar or better results when compared
with other compression techniques such as bzip2 and xz. We should note that the
differential encoder is a special case of the predictor and does not always give optimal
results. Therefore, the predictor is generally expected to perform better than the

differential encoder.

The results also indicate that the performance of CCSDS 123.0-B-1 and M-CALIC
is better than that of the others as these two schemes are compression techniques
that are rather specialized, and, in particular, CCSDS 123.0-B-1 is used as a baseline

against which all compression algorithms for hyperspectral images are compared.

6.2.2 Access time

As for access time, it takes longer to access a cell in a k*-raster structure with a
predictor than without one. This is to be expected although we need to realize that
the advantage of a predictor is that it reduces the bit rates which make the storage
size smaller and the transmission faster. Also, if we look at Table 4 in Chapter 2, the
Gzip decompression times generally take at least four or five times more than when

a predictor is used to randomly access the data using the getCell function.

The predictive and differential methods are compared to Reversible Haar Trans-
form at levels 1 and 5. The predictive method performs better than others except for
Reversible Haar Transform level 5. The reason is that for reverse transformation, only
two pixels (reference and current pixels) are needed for the predictive and differen-
tial methods while Reversible Haar Transform at level 5 requires a more complicated

process for decoding.

74 CHAPTER 6. RESULTS SUMMARY

PForDelta

Hyperspectral
Raster k2-ary tree
Matrix

k2-raster

Figure 6.2: Construction of k?-raster. A k?-ary tree is first built from a raster matrix.
Compression and random access are achieved when tree node data are encoded by an
integer encoder, such as DACs, Simple-9, Simple-16, or PForDelta, resulting in a k?-raster
structure.

6.2.3 Group size

The predictor and the differential encoder that use different group sizes produce
different bit rates. For our testing, different group sizes were used: 2, 4 and multiples
of 4 up to 32. We found that for most test data, the bit rates are at their optimum
when the group size is either 4 or 8. However, we should note that the predictor
always produces lower bit rates than the differential encoder does, regardless of what
the group size is. From the experiments, we suggest that a group size of 4 should be

used for most general cases.

6.3 Integer encoders

For compression and random access to work well in a compact data structure such
as k2-raster, a variable-length encoder or integer encoder is needed. Some of them
include DACs, Rice, Simple-9, Simple-16, and PForDelta codes. Figure 6.2 shows
how the k2-raster is built with different integer encoders from a raster matrix.

Experiments that were performed for integer encoders can be found in Chapters 3
and 4.

6.3.1 Storage size

In Table I of Chapter 4, under the “Padded Matrix” column, we can see that PForDelta
using 128-integer blocks has the best results for most of the test data. DACs works

6.4. PADDING VERSUS UNPADDING 75

best with CRSIM data and Simple-16 with TASI data.

6.3.2 Access time

Similar to storage size, experiments for hyperspectral data show that PForDelta per-
forms better than DACs with respect to random access. In Table IT of Chapter 4,
under the “Padded Matrix” column, the best access time is to use the 32-; 64-; and

128-integer PForDelta encoders.

6.4 Padding versus unpadding

Given a k-value, if the dimensions (width (w) x height (h)) of the original raster
matrix are not a power of k, then this matrix needs to be extended to size s X s,
where s is computed according to the Equation 6.1 in Section 6.1.

All the new cells will be set to zero, and the new matrix is called a padded matrix.
The reason is because to arrive at a particular location starting from the root down
to its leaves, the search requires that we find its child node location by using the rank
function and if the number of child nodes is not equal to k2, the search path will
not be correct. Adding new cells also means the nodes that are outside the original
matrix have to be saved, which may lead to a larger structure. To reduce the storing
of redundant data, we propose using an unpadded matrix which means only nodes
that are inside the original matrix will be saved.

Experiments that were performed for padded and unpadded matrices can be found
in Chapter 4.

6.4.1 Storage size

From our experiments, it can be shown that there are up to 6% in savings if unpadded
matrices are used instead of padded ones. For most padded and unpadded matrices,
PForDelta-128 produces the best results followed by DACs and Simple-16. Overall,
the storage size has improved if an unpadded matrix is used with one of the integer

encoders, especially PForDelta.

76 CHAPTER 6. RESULTS SUMMARY

S?{Zizst k*-ary 4’{ Integer | | Normal
Matrix Tree Encoder k2-raster
o S T-k’raster
Log > Modified
Raster k*-ary ‘—»{ énte%e L k2-raster
Matrix e neocer (k%-raster’)

Figure 6.3: Construction of T-k?raster. A k2-ary tree is first built from a snapshot raster
matrix and/or log raster matrix. Compression and random access are achieved when tree
node data are encoded by an integer encoder such as DACs, Simple-16, or PForDelta,
producing a k?-raster or a k?-raster’ structure. Finally, these two structures are combined
to form a T-k?raster structure.

6.4.2 Access time

To optimize random cell access in an unpadded matrix, access times are made faster
when the getCell function are modified with partial sums and sampling functions [1,
§3.3 and §4.2]. However, we should caution that the use of these functions might
introduce overhead and more memory usage. Access times are reduced almost in half
for most of the unpadded matrices. The exceptions are AIRS and ITASI data which
have more or less the same access times for both kinds of matrices. This might be
the result of padded and unpadded matrices having similar tree data. Overall, for
padded matrices, PForDelta is most definitely the winner for best access time while
for unpadded matrices, PForDelta shares it with DACs.

6.5 T-k’raster structure

T-k?raster is a recently proposed compact data structure that was designed to exploit
the temporal regularities between consecutive rasters in a time series [7]. Raster time
series or temporal rasters are raster images that cover the same region at consecutive
timestamps. The research group that proposed this structure has produced some
favorable results for raster time series data. In this thesis, we study the use of
this structure for hyperspectral data. The T—k?raster structure is built by regularly
grouping the raster matrices that contain a combination of snapshots and logs, where

the group size is denoted by t5 and t5 > 2. In other words, the consecutive bands

6.5. T-K*RASTER STRUCTURE 7

are divided into groups of two or more. In each group, the first raster (M;) is the
snapshot raster and subsequent rasters (Ms,,) are the log rasters. Elements in these
log rasters (Ms,;) are compared to the corresponding elements in the first raster (M)
and the differences are taken, and as a result a modified k?-raster’ is created.

To optimize this structure, in each group, we will build the first band as a k2-raster
while the others could be built as either a k?-raster or k%-raster’, depending on the size
of the structure that is produced. This means that it takes advantage of the spatial
redundancies or the spectral redundancies, whichever resulting in a better storage
size. The grouping of bands is still considered as regular. Figure 6.3 shows how to
construct a T—k?raster.

The heuristic version Ty k?raster goes even one better than the above optimized
version. It analyzes the bands starting from the first one and decides whether the
band that follows should be built as a k*-raster or k%raster’, depending on the size
produced. As we are moving along down the bands, if one band is built as a k?-raster’
and its previous band is a k%-raster’, we could transform this previous band into a
k2-raster and the current band could be rebuilt as a k2-raster’ with respect to the new
previous k2-raster band. The choice is made by evaluating whether the old or the new
combination can provide better improvement. Therefore, Ty k?raster again strives
to get the best compression by choosing between spatial correlation and spectral
correlation for building the bands, and it may change the previous band whenever it
is deemed appropriate. As the results show, Ty—k%raster has the best overall storage

sizes for all our datasets. The grouping of bands in this heuristic version is irregular.

6.5.1 Storage size

Ty—k?raster gives the best results for most datasets when it is used with DACs or
PForDelta-128, while the IASI dataset performs best with Simple-16. Ty k*raster
is shown to reduce our hyperspectral test data up to 19% compared to k2-raster or
up to 61% compared to the uncompressed data. For storage size, due to the nature
of Ty k?raster, it always performs better than T-k?raster, which in turn, performs

better than k2-raster alone.

78 CHAPTER 6. RESULTS SUMMARY

6.5.2 Access time

For access time, with Ty k?raster, there is some improvement in access time to
data elements even though the process to access them is actually becoming a bit
more complicated. This can be explained by the fact that the overall structure in
Ty k?raster has become smaller, thereby making it faster to query elements in the
DACs-compressed data. For IASI data, results for Ty—k?raster are only 0.1 us slower

than k2-raster.

Chapter 7

Conclusion

Since the dawn of computers, a huge amount of digital data have been produced by
individual users, the business world, and users in other domains such as government,
science, health care, engineering etc., and they are accumulating and growing at an
exponential rate. It is estimated that the compound growth rate of these data is
currently at 23% and by 2025 the amount of data will possibly reach 181 zettabytes
(1 zettabyte = 10*' bytes). Therefore, their transmission and storage are some of
the challenges that we are now facing. It is incumbent upon us to find some ways to

tackle them, and one of the solutions to save space is to use data compression.

Like any other digital data, hyperspectral data, with their large sizes, need to be
compressed for faster transmission and smaller storage size. As mentioned earlier,
these data are useful for extracting information to be used in diverse applications
such as weather prediction, wildfire soil studies, oil field exploration and even tea leaf
cultivation. In this thesis, compact data structures such as k2-raster and T—k?raster
have been used to compress these data, with the additional benefit of random data
access without having to be fully decompressed. The experimental results that we
have conducted have shown that they are competitive when it comes to performances

such as storage sizes and random cell access.

79

80 CHAPTER 7. CONCLUSION

7.1 Summary

This section summarizes the research that has been carried out in this thesis and the
contributions that have been made in the field of compact data structures. Addition-
ally, a few thoughts on things that I have learned and discovered along the way are

included.

« In Chapter 2, it can be seen that k*raster can reduce the bit rates of hyper-
spectral data. If the data is applied with the predictive or differential method,
the rates can be further reduced significantly. The predictor produces a better
reduction in bit rates than the differential encoder and is preferred to be used
for hyperspectral data. Although the access time turns out to be a little slower
with these methods, we should understand that the elements in the raster ma-
trix can be accessed without having to go through any kind of decompression
and that is a big plus for using k?-raster alone or using k2-raster with either pre-
dictive method or differential method. For decompressing data done by other
compression techniques such as Gzip, the process would take 4 or 5 times much

longer.

o In Chapters 3 and 4, several variable-length encoders or integer encoders have
been tested in this thesis such as Rice codes, the Simple family and PForDelta
and have been found to perform favorably compared with DACs. We should
add that the DACs version that we have used in our experiments are optimized.
For the Simple family codes, we try to optimize them by adding partial sums
and sampling functions in our implementations. When sampling is used, the
search on the compressed array with n elements has changed from O(n) to O(1)
which means the time performance changes from linear to constant. Also, this
gives us some new ideas of designing codes with integrated sampling function in
future projects, and this will be explained further in the next subsection “Future

work”.

« In Chapter 4, experiments using unpadded matrices turned out to be quite com-

petitive compared with padded matrices. Similar to integer encoders, sampling

7.2. FUTURE WORK 81

codes must be added to the element access code for it to work well and well
enough to even outperform that of DACs. As mentioned previously, this adds
memory overhead and users need to take this into account when using unpadded

madtrices.

o In Chapter 5, we have examined the recently proposed T—k?raster, which is a
combination of k*-raster and a modified form of k*-raster (or k*-raster’). There
are two versions for k2-raster, one being a normal version, where the bands
are regularly grouped, and the other being a heuristic one, where the bands are
irregularly grouped. The experimental results with T—k?raster and Ty—k?raster
in Chapter 5 have shown that both structures can improve the compression ratio
when, building the structure, each spectral band is given a choice of taking the
spatial differences or the spectral differences. The one that provides a better
compression ratio will be used. Ty—k?raster is simply a more optimized version
of T-k?raster. Hence, Ty—k?raster will always perform better than T—k?raster,
which, in turn, performs better than k%-raster, a structure that only exploits
spatial redundancies. As for random access, T—k?raster also performs better
than k2?-raster. Previously T—k?raster worked well with raster time series, and
in this thesis, this structure, especially the heuristic version, has proven to work
equally well with hyperspectral data. It is fair to say that the structure can be
generalized to work with 3D raster data and should produce favorable results

compared to k*-raster.

o The software in this thesis was written in C and C++4. They are compiled pro-
grams and generally produce faster executables. The programs can be found on

our department website: https://gici.uab.cat/GiciWebPage/downloads.
php.

7.2 Future work

In this section, we describe a number of plans or projects that we think should be

interesting to pursue in the future:

https://gici.uab.cat/GiciWebPage/downloads.php
https://gici.uab.cat/GiciWebPage/downloads.php

CHAPTER 7. CONCLUSION

o We can assess the possibility of modifying elements in a k*-raster structure for
hyperspectral data. Up to this moment, only randomly reading or querying of
data from the structure is possible. But modifying or replacing elements in the
structure is still an area that is largely unexplored, and it will be worthwhile
looking into. If this can be achieved, then we can replace elements without the
need to decompress and compress the whole structure. This research line is
based on the discussion on using a dynamic structure called dk?-tree, proposed
by de Bernardo et al. [24, 25], and on a chapter entitled “Dynamic k*-Trees”
from the book “Compact Data Structures” by Navarro [1, §12.5.2].

o There were a number of compact data structures that we would have liked to
work on from the outset of our research. But due to time constraints, we have
only been able to focus on k2-raster and its variants, and the favorable results
that we have been getting has motivated us to keep on going in this direction
of research. However, we can go in a different direction now and explore other
compact data structures to be used for hyperspectral data. One of them is
called balanced sequence of parentheses can be used to build trees in a more
succinct manner so that the resulting structure can be more compact. This idea
is based on a paper “Fully Functional Static and Dynamic Succinct Trees” by
Navarro and Sadakane [26], and on a chapter on this data structure entitled
“Parenthesis” from the book “Compact Data Structures” by Navarro [1, §7].
Other compact data structures that are of interest are wavelet trees and dy-

namic structures, to name a few.

o For T-k’raster, we can consider reordering the rasters in the different bands of
the hyperspectral data to achieve better performance. Additionally, Ty—k?raster
can be treated as an optimization problem and better heuristics can be found

to improve the compression ratio.

e The Simple-9, Simple-16 and PForDelta encoders that have been studied in this

7.2. FUTURE WORK 83

thesis do not have any built-in sampling functions. It would be interesting to
design an encoder with the same functionalities but also with intrinsic sampling
capabilities. This would help reduce the additional memory allocated for sam-

pling when queries are performed.

84

CHAPTER 7. CONCLUSION

Bibliography

1]

G. Navarro, Compact data structures: A practical approach. Cambridge Uni-

versity Press, 2016.

G. J. Jacobson, “Succinct static data structures,” Ph.D. dissertation, Carnegie
Mellon University, 1988.

G. Jacobson, “Space-efficient static trees and graphs,” in 30th Annual Symposium
on Foundations of Computer Science. TEEE, 1989, pp. 549-554.

Low-Complexity Lossless and Near-Lossless Multispectral and Hyperspectral
Image Compression. Blue Book. Issue 2, Consultative Committee for Space
Data Systems (CCSDS) Std. CCSDS 123.0-B-2, Feb. 2019. [Online|. Available:
https://public.ccsds.org/Pubs/123x0b2¢3.pdf

N. R. Brisaboa, S. Ladra, and G. Navarro, “k>-trees for compact web graph rep-
resentation,” in International Symposium on String Processing and Information
Retrieval. Springer, 2009, pp. 18-30.

S. Ladra, J. R. Paramé, and F. Silva-Coira, “Scalable and queryable compressed
storage structure for raster data,” Information Systems, vol. 72, pp. 179-204,
December 2017.

F. Silva-Coira, J. R. Parama, G. de Bernardo, and D. Seco, “Space-efficient
representations of raster time series,” Information Sciences, vol. 566, pp. 300—
325, 2021.

85

https://public.ccsds.org/Pubs/123x0b2c3.pdf

86

8]

[10]

[11]

[12]

[13]

[14]

[15]

BIBLIOGRAPHY

F. F. Sabins, “Remote sensing for mineral exploration,” Ore geology reviews,
vol. 14, no. 3-4, pp. 157183, 1999.

R. D. M. Scafutto, C. R. de Souza Filho, and W. J. de Oliveira, “Hyperspectral
remote sensing detection of petroleum hydrocarbons in mixtures with mineral
substrates: Implications for onshore exploration and monitoring,” ISPRS Jour-
nal of Photogrammetry and Remote Sensing, vol. 128, pp. 146-157, 2017.

Y. Huang, W. Dong, A. Sanaeifar, X. Wang, W. Luo, B. Zhan, X. Liu, R. Li,
H. Zhang, and X. Li, “Development of simple identification models for four main
catechins and caffeine in fresh green tea leaf based on visible and near-infrared

spectroscopy,” Computers and Electronics in Agriculture, vol. 173, p. 105388,
2020.

P. R. Robichaud, S. A. Lewis, D. Y. Laes, A. T. Hudak, R. F. Kokaly, and
J. A. Zamudio, “Postfire soil burn severity mapping with hyperspectral image

unmixing,” Remote Sensing of Environment, vol. 108, no. 4, pp. 467-480, 2007.

J. Le Marshall, J. Jung, T. Zapotocny, J. Derber, R. Treadon, S. Lord, M. Gold-
berg, and W. Wolf, “The application of AIRS radiances in numerical weather
prediction,” Australian Meteorological Magazine, vol. 55, no. 3, pp. 213-217,
2006.

N. R. Brisaboa, S. Ladra, and G. Navarro, “DACs: Bringing direct access to
variable-length codes,” Information processing € management, vol. 49, no. 1,
pp- 392-404, 2013.

R. Rice and J. Plaunt, “Adaptive variable-length coding for efficient compression
of spacecraft television data,” IEEE Transactions on Communication Technol-
ogy, vol. 19, no. 6, pp. 889-897, 1971.

V. N. Anh and A. Moffat, “Inverted index compression using word-aligned binary

codes,” Information Retrieval, vol. 8, no. 1, pp. 151-166, 2005.

BIBLIOGRAPHY 87

[16]

[17]

[18]

[19]

[20]

22]

23]

J. Zhang, X. Long, and T. Suel, “Performance of compressed inverted list caching
in search engines,” in Proceedings of the 17th international conference on World
Wide Web, 2008, pp. 387-396.

M. Zukowski, S. Heman, N. Nes, and P. Boncz, “Super-scalar RAM-CPU cache
compression,” in 22nd International Conference on Data Engineering (ICDE’06).
IEEE, 2006, pp. 59-59.

K. Chow, D. E. O. Tzamarias, [. Blanes, and J. Serra-Sagrista, “Using
predictive and differential methods with k%-raster compact data structure for

hyperspectral image lossless compression,” Remote Sensing, vol. 11, no. 21,
2019. [Online|. Available: http://dx.doi.org/10.3390/rs11212461

K. Chow, D. E. O. Tzamarias, M. Herndndez-Cabronero, 1. Blanes, and J. Serra-
Sagrista, “Analysis of variable-length codes for integer encoding in hyperspectral
data compression with the k*-raster compact data structure,” Remote Sensing,
vol. 12, no. 12, 2020. [Online]. Available: http://dx.doi.org/10.3390/rs12121983

K. Chow, D. E. O. Tzarmarias, M. Hernandez-Cabronero, I. Blanes, and J. Serra-
Sagrista, “Performance improvement on k*-raster compact data structure for

hyperspectral scenes,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp.
1-5, 2022. [Online]. Available: http://dx.doi.org/10.1109/LGRS.2021.3084065

X. Wu and N. Memon, “CALIC - a context based adaptive lossless image
CODEC,” in 1996 IEEE International Conference on Acoustics, Speech, and
Signal Processing Conference Proceedings, 1996.

——, “Context-based lossless interband compression - extending CALIC,” IFEE
Transactions on Image Processing, vol. 9, no. 6, pp. 994-1001, 2000.

E. Magli, G. Olmo, and E. Quacchio, “Optimized onboard lossless and near-
lossless compression of hyperspectral data using CALIC,” IEEE Geoscience and
remote sensing letters, vol. 1, no. 1, pp. 21-25, 2004.

http://dx.doi.org/10.3390/rs11212461
http://dx.doi.org/10.3390/rs12121983
http://dx.doi.org/10.1109/LGRS.2021.3084065

88

[24]

BIBLIOGRAPHY

G. de Bernardo, S. Alvarez Garcia, N. R. Brisaboa, G. Navarro, and O. Pedreira,
“Compact querieable representations of raster data,” in International Symposium

on String Processing and Information Retrieval. Springer, Cham, October 2013,
pp. 96-108.

N. R. Brisaboa, G. de Bernardo, and G. Navarro, “Compressed dynamic binary
relations,” in 2012 Data Compression Conference. ITEEE, April 2012, pp. 52—61.

G. Navarro and K. Sadakane, “Fully functional static and dynamic succinct
trees,” ACM Transactions on Algorithms (TALG), vol. 10, no. 3, pp. 1-39, 2014.

	Abstract
	Acknowledgements
	Introduction
	Compact data structures
	K2-tree structure
	K2-raster structure
	T–k2raster structure
	Rank and select functions

	Remote sensing data
	Variable-length encoding
	Contributions to the thesis
	Organization of the thesis

	Using predictive and differential methods with k2-raster compact data structure for hyperspectral image lossless compression
	Analysis of variable-length codes for integer encoding in hyperspectral data compression with the k2-raster compact data structure
	Performance improvement on k2-raster compact data structure for hyperspectral scenes
	A compact data structure for hyperspectral scenes based on raster time series
	Results summary
	Use of different k-values
	Storage size
	Access time

	Predictive and differential methods
	Storage size
	Access time
	Group size

	Integer encoders
	Storage size
	Access time

	Padding versus unpadding
	Storage size
	Access time

	T-k2raster structure
	Storage size
	Access time

	Conclusion
	Summary
	Future work

	Títol de la tesi: Compact data structures
for
remote sensing data
	Nom autor/a: Kevin Chow

