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Abstract 
 
Major depression (MD) is the leading cause of impairment worldwide. 
The lack of understanding of its biological underpinnings hampers the 
development of better diagnostic tools and treatments. Thanks to the 
advances in genetic association studies, multiple genetic variants 
significantly associated with MD have been identified. In this thesis, we 
aim to leverage this knowledge to advance in the understanding of MD 
and unravel its molecular mechanisms. For that, we developed curation 
guidelines to evaluate available genetic association data on MD of 
diverse nature, and created an expert-curated database of genetic 
variants associated with MD. Then, we leveraged these data and 
functional genomic tools to unravel the role of these variants in disease 
pathogenesis and propose mechanistic hypotheses. In light of the 
plethora of tools available to perform such analyses, we conducted a 
benchmarking analysis to evaluate their performance and compare their 
outcomes; highlighting the need for guidelines for method selection and 
evaluation. Overall, this thesis contributes to filling the gap regarding 
the quality assessment of genetic studies on MD, and to advance in 
discovering the functional role of MD-associated variants by using in 
silico approaches. 
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Resum 
 
La depressió major (DM) és la principal causa d'incapacitat en tot el 
món. La falta de comprensió dels seus fonaments biològics dificulta el 
desenvolupament de millors diagnòstics i tractaments. Gràcies als 
avanços en estudis d'associació genètica, s'han identificat múltiples 
variants genètiques significativament associades a la DM. En aquesta 
tesi, volem aprofitar aquests coneixements per avançar en la 
comprensió de la DM i descobrir els seus mecanismes moleculars. Per 
a això, hem desenvolupat unes directrius de curació per avaluar l'ampli 
ventall de dades d'associació genètica disponibles sobre la DM i hem 
creat una base de dades de variants genètiques associades a la DM que 
ha estat curada per experts. Un cop finalitzada, vam aprofitar aquestes 
dades i diverses eines de genòmica funcional per entendre el paper 
d'aquestes variants en la patogènesi de la malaltia i proposar hipòtesis 
mecanístiques. Davant de la plètora d'eines disponibles, vam dur a terme 
una anàlisi de referència per avaluar el seu funcionament i comparar els 
seus resultats, on destaquem la necessitat de directrius per seleccionar I 
avaluar els mètodes. Globalment, aquesta tesi contribueix a omplir el 
buit que existeix pel que fa a l'avaluació de la qualitat dels estudis 
genètics sobre la DM, I avançar en el descobriment del paper functional 
de les variants associades a la DM mitjçant l’ús de mètodes in silico.  
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Preface 

 
Major depression (MD) is the most common disabling disorder 
worldwide. MD diagnosis is based on its symptomatology, and its 
treatment is based on psychotherapy and pharmacology. However, 
these are not effective in 50% of cases. The lack of better treatments 
and the absence of biomarkers that could aid in its diagnosis or 
treatment reflects the need to better understand MD biological 
underpinnings.  
 
Huge advances have been made thanks to genetic association studies on 
MD, which have identified genetic variants (GVs) significantly 
associated with the disease. However, to the best of our knowledge, no 
guidelines exist to evaluate multiple evidences from different types of 
studies in the context of MD or complex disease in general. Therefore, 
in this thesis, we have developed curation guidelines to evaluate 
associations of diverse nature and have created an expert-curated 
database of GVs associated with MD. 
 
As a complex disease, MD arises from the interaction of multiple 
environmental and genetic factors. The latter have been attributed to 
multiple GVs with minor effects and mostly lying in non-coding 
regions. These GVs do not usually have a direct link to their target genes 
but are expected to impact disease by altering regulatory mechanisms. 
Therefore, posterior functional analyses are required to elucidate how 
these GVs ultimately impact disease pathogenesis. 
 
In this context, we have contributed to the development of a 
bioinformatics pipeline that leverages genome-wide association studies 
(GWAS) data, several bioinformatic tools and genomic annotation data 
of diverse nature. The application of this pipeline has enabled the 
identification of GVs potentially relevant for MD as well as the proposal 
of mechanistic hypotheses on how these GVs impact MD pathogenesis.  
 
Currently, there is a plethora of methods and tools available for the 
analysis of GWAS data. These have adapted to data accessibility 
constraints, being the most commonly available data type summary 
statistics, followed by full genome summary statistics. However, there 
is no available criteria to aid in their selection or validation. In searching 
for tools that could help identify GVs’ underlying biological 
mechanisms, we have developed a workflow that systematically 



 xviii 

compares different tools’ outcomes. This comparison also considers the 
results' biological impact, illustrating a high divergence between their 
outcomes. Overall, these findings revealed an important issue when 
implementing post-GWAS analysis to unveil disease pathophysiological 
mechanisms for drug prioritisation or biomarker research. 
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1. INTRODUCTION 

1.1 Major Depression 

Major depression (MD) is one of the most common psychiatric 
disorders worldwide. Its prevalence varies by region and country, being 
6.9% in the EU1, 6.7% in the USA2 and between 1-2% in Japan3. MD 
has the highest morbidity burden in low- and middle-income countries, 
but it affects all countries regardless of their gross domestic product4. 
According to the World Health Organization (WHO), MD affects 350 
million people worldwide and is expected to be the leading cause of 
disease burden by 20304. 
 
MD is a complex disease caused by the interaction of multiple genetic 
and environmental factors, with an estimated heritability from twins of 
37%5. Environmental factors can vary in their nature as well as in their 
timing in life. MD polygenicity results from the interaction of multiple 
genetic variants (GVs)6, where multiple single nucleotide 
polymorphisms (SNPs) with minor individual effects have been 
identified7,8. In contrast, the role of structural variants in MD has been 
debated. While rare copy number variants (CNVs) may not play a 
significant role in MD compared to other psychiatric disorders9, short 
deletions are more common in MD patients and most likely alter gene 
expression regulation10. 
 
The diagnosis of MD is based on symptomatology, grouping different 
etiologies, severity levels and treatment responses under the same 
diagnosis. The diagnostic criteria provided by the American Psychiatric 
Association’s Diagnostic and Statistical Manual of Mental Disorders - 
5th Edition (DSM-5) characterises MD by symptoms of depressed 
mood or anhedonia (loss of interest or pleasure) (Table 1). These must 
be accompanied by at least four of the following symptoms: appetite or 
weight changes, fatigue or loss of energy, difficulty concentrating, 
psychomotor agitation or retardation, feelings of worthlessness or guilt 
and suicidality11. This diagnostic system highly overlaps with the one 
from the WHO’s International Classification of Diseases (ICD)12 (Table 
1). Both require the symptoms to be present most of the time for over 
two weeks and not be better explained by other conditions. Because of 
this symptomatic and diagnostic heterogeneity, the Psychiatric 
Genomics Consortium (PGC) decided to use the term “Major 
Depression” to cover a broader phenotype. This term includes both 
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lifetime major depressive disorder and depressive symptoms, which a 
practitioner has diagnosed according to diagnostic criteria or 
correspond to minimally phenotyped cases (e.g., self-reported MD). We 
use this terminology throughout this thesis to encompass all these 
phenotypes. 
 

DSM-5 ICD-10 

Five or more symptoms, at least one of 
which must come from the ‘‘A’’ criteria: 
 
‘‘A’’ criteria 
1. Depressed mood 
2. Markedly diminished interest or 
pleasure in almost all activities 
 
‘‘B’’ criteria 
1. Significant weight loss/gain or 
decrease/increase in appetite 
2. Insomnia or excessive sleep 
3. Psychomotor agitation or retardation 
4. Fatigue or loss of energy 
5. Feelings of worthlessness or 
excessive/inappropriate guilt 
6. Diminished concentration or 
indecisiveness 
7. Recurrent thoughts of death, suicidal 
ideation, plans or an attempt 

Six or more symptoms, including two 
from the following:  
1. Depressed mood 
2. Loss of interest and enjoyment 
3. Reduced energy leading to increased 
fatigability and 
diminished activity 
 
Three or more typical symptoms from 
the following: 
1. Reduced concentration and attention 
2. Reduced self-esteem and self-
confidence 
3. Ideas of guilt and unworthiness (even 
in mild type of episode) 
4. Bleak and pessimistic views of the 
future 
5. Ideas or acts of self-harm or suicide 
6. Disturbed sleep 
7. Diminished appetite 

 
Table 1. Diagnostic criteria for major depressive disorder. American Psychiatric 
Association’s Diagnostic and Statistical Manual of Mental Disorders - 5th Edition 
(DSM-5) and International Classification of Diseases (ICD)-10 diagnostic criteria for 
major depressive disorder. Adapted from McIntosh AM, Sullivan PF, Lewis CM. 
Uncovering the Genetic Architecture of Major Depression. Neuron. 2019 Apr 
3;102(1):91-103. doi: 10.1016/j.neuron.2019.03.022. 

 
Significant genetic overlap between MD and other psychiatric disorders, 
such as schizophrenia or anxiety, point to pleiotropic GVs13,14. 
Moreover, MD is frequently comorbid with chronic diseases, including 
cancer and cardiovascular, metabolic, inflammatory or neurological 
disorders15. These co-occurrences could be due to direct mechanisms 
such as biological processes (e.g., higher cortisol in MD contributing to 
metabolic diseases) or indirect mechanisms such as treatment-induced 
(e.g., immunotherapy in cancer), psychosocial factors (e.g., childhood 
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maltreatment), or behavioural reasons (e.g., smoking or physical 
activity) 15.  
 
According to the WHO, the MD burden is 50% higher for females than 
males4. However, we are still in the early stages of understanding sex 
differences in neural circuits and how they relate to observed 
differences in disease prevalence between males and females16. In 
addition, progress toward a more inclusive data collection system that 
disambiguates data by gender is required before closing the knowledge 
gap.  
 
The main treatment strategies for MD are psychotherapy and 
pharmacological therapy17. The latter takes a long time to become 
effective, and 50% of patients do not fully respond18. These can also 
have adverse effects, ranging from headache, insomnia, and diarrhoea 
to somnolence and constipation19. Identifying objective clinical 
measurements could help clinicians diagnose MD and make informed 
treatment decisions20. All in all, the absence of more effective MD 
treatments reflects the lack of understanding of MD physiopathology 
and the need for biological markers21. 
 
Biomarkers for MD are still at the research stage20,22, which is the reason 
why significant efforts have been made to better understand the 
physiopathological mechanisms of MD by leveraging genetic 
information. Diverse genetic study designs, such as candidate gene 
studies (CGS) or genome-wide association studies (GWAS), have been 
used to identify GVs that play a potential role in disease pathogenesis. 
These studies, along with clinical observations of pharmacological 
response in patients with MD and other diseases, have resulted in the 
development of diverse MD theories to explain its physiopathology.  

1.1.1. Neurobiological hypothesis 

The complexity of MD pathogenesis motivates the integration of 
different theories that consider the interaction between diverse 
neurobiological mechanisms. 

1.1.1.1. Monoamine theory 

This was the first proposed theory back in the 1960s. It was based on 
the therapeutical effect of monoamine oxidase inhibitors and tricyclic 
antidepressants23,24. It was hypothesised that a deficit of monoamine 
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neuromediators (i.e., serotonin, norepinephrine and dopamine) in the 
central nervous system (CNS) could contribute to the development of 
MD25. Indeed, current first-line treatments for MD include selective 
serotonin reuptake inhibitors and norepinephrine reuptake inhibitors. 
However, the underlying pathology goes beyond the deficit of 
monoamine neuromediators, as reflected by the lack of response for 30-
60% of MD patients26. 

1.1.1.2. Stress and HPA axis 

Early stressful life events and chronic stress have been linked to the 
onset of MD, as well as other diseases such as heart disease or obesity27. 
A dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, 
which responds to and adapts to environmental changes, promotes the 
release of different hormones, including cortisol, adrenocorticotropic 
hormone, corticotropin-releasing hormone and vasopressin. The 
abnormal functioning of the HPA axis is a common feature in MD 
patients, resulting in higher cortisol levels28,29, which have been linked 
to disease severity, particularly in melancholic depression30. 
Unfortunately, treatments that regulate the HPA axis have not been 
very effective31. 

1.1.1.3. Glutamate signalling pathway 

The main excitatory neurotransmitter is glutamate, and increased levels 
have been reported in the blood and brain of MD patients. Stress 
factors can increase glutamate, which binds to ionotropic glutamate 
receptors, including N-methyl-D-aspartate receptors (NMDARs) and 

ɑ-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors 
(AMPARs)6. NMDAR antagonists have proven antidepressant effects, 
whereas traditional antagonists reduced glutamate release, esketamine 
changed the paradigm32. This effective fast-acting antidepressant 
increases transient prefrontal glutamate for rapid restoration of synaptic 
connectivity, which is reduced in MD32,33. Nonetheless, this 
antidepressant lacks retrospective studies due to the recentness of its 
approval in clinical practice and is not exempt from side effects such as 
nausea or headache32. 

1.1.1.4. Gamma-Aminobutyric Acid (GABA) 

The main inhibitory neurotransmitter is gamma-Aminobutyric Acid 
(GABA). Contrary to glutamate, MD patients show lower GABA levels, 
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and it has been proposed that a functional imbalance of both systems 
influences the pathophysiology of MD 34. 

1.1.1.5. Disturbance of Neurogenesis and 
Neuroplasticity 

A wealth of studies supports the disruption of brain neurogenesis and 
neuroplasticity in MD. Neurotrophic factor disturbances, primarily 
lower brain-derived neurotrophic factor (BDNF) levels, are thought to 
cause neuronal atrophy, decreased neurogenesis, and glia support 
destruction35. BDNF has been linked to serotoninergic neuron 
function, maintaining their differentiation and survivability, and has 
been tagged as a promising synaptic regulator35,36. 

1.1.1.6. Neuroinflammation and cytokine theory  

The immune-inflammation hypothesis focuses on the interaction 
between increased cytokine production, which activates the HPA axis, 
altering neurotransmitters’ synthesis and metabolism37. This, in turn, 
affects neuronal apoptosis, neurogenesis, and 
neuroplasticity. Furthermore, the gut microbiota, which interacts with 
the CNS and the immune system, can produce neuroactive substances 
that mimic host-signalling molecules, which may contribute to MD 
development38. 

1.1.1.7. Others 

The pathophysiology of MD is also associated with alterations of other 
mechanisms and biological pathways as well as their interaction. For 
instance, oxidant-antioxidant imbalance39, mitochondrial dysfunction40, 
circadian rhythm disturbances41, or gut microbiome alterations42.  

1.2. Unravelling the genetic basis of MD 

The polygenic nature of MD and its interaction with environmental 
factors have challenged the identification of genes and GVs that 
increase disease susceptibility6. In recent years, great advances in 
molecular genetic research have been made thanks to more affordable 
genotyping tools and a better understanding of human genetic variation. 
Initially, candidate genes thought to be involved in MD neurobiology 
were identified and evaluated by linkage and CGS. However, these were 
generally conducted on small samples, usually leading to ineffective or 
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unreplicable findings43. As a result, there was a shift toward GWAS 
studies, which examine millions of common GVs in an unbiased and 
hypothesis-free manner. 

1.2.1. Candidate gene studies (CGS) 

CGS evaluate the effects of GVs on genes that may contribute to 
disease susceptibility by affecting their protein product or gene 
expression regulation (Box 1). CGS were first introduced in 1995 and 
had been running since then, but their popularity dropped around 
200544. Despite the benefit of prioritising potentially relevant genes, 
CGS are intrinsically biased toward genes and biological pathways that 
researchers select based on prior knowledge. Furthermore, their validity 
has been questioned due to the lack of reproducibility and the typically 
small sample size used in these studies, which generally ranged between 
tens and hundreds of individuals43,45. For instance, due to the 
widespread use of serotonin reuptake inhibitors in MD treatment, the 
gene SLC6A4, which encodes for the serotonin transporter in charge of 
its reuptake, has been extensively examined46. Some studies have 
associated a polymorphism in its promoter region with lower serotonin 
reuptake and an increased risk of MD47,48, while other meta-analyses 
have reported no significant association49. Also derived from the 
monoamine theory, the catechol-O-methyltransferase (COMT) 
Val158Met polymorphism has been evaluated. COMT degrades 
catecholamines such as dopamine, and both Val and Met alleles have 
been associated with MD risk, raising conflicting findings50,51. In 
contrast, other analyses have even failed to detect a significant 
association52,53. Another frequently studied polymorphism is Val66Met, 
which is associated with decreased BDNF activity and higher MD risk 
with contradictory findings54.  
 
Recently, Border et al. re-evaluated the association of 18 historical 
candidate genes with MD in samples ranging from 62,138 to 443,264 
individuals43. The genes under evaluation included those mentioned 
above and others which have been reported to have large genetic effects 
in much smaller samples via CGS. However, the authors could not 
replicate the original findings, failing to identify the large effect GVs in 
sample sizes orders of magnitude larger; and hypothesising that those 
were potential false positive results43. Similarly, historical candidate 
genes for schizophrenia have been reported as controversial55. Based on 
genetic association findings for MD and other psychiatric disorders, 
Duncan et al. address the distribution of GVs across the entire genome, 
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with many of them falling in poorly understood regions of the genome, 
which had not previously been examined by CGS45. The genetic and 
non-genetic heterogeneity of MD, as well as the typically small sample 
size of CGS, undermine their validity56. It has been estimated that at 
least 1,000 cases and controls would be required to identify GVs with a 
1.5 odds ratio57. According to the National Institute of Mental Health, 
CGS should be left in the past and move towards more reproducible 
and statistically rigorous studies, especially when considering psychiatric 
disorders58. 
 

Box 1. Candidate gene studies (CGS) 

• CGS are hypothesis-driven and focus on a particular gene in the genome 

(candidate gene) to evaluate its association with disease. 

• Candidate genes are chosen based on an a priori hypothesis about their 

role in the disease. These may be biologically relevant, given underlying 

physiopathological mechanisms or pharmacological evidence. 

• CGS examine the association between a gene’s specific allele (or set of 

alleles) and the disease. These GVs are common in the population. 

• CGS generally follow a case-control design, testing the gene in randomly 

selected subjects with and without the disease. 

• CGS compare the allelic frequencies of selected GVs between cases and 

controls. 

1.2.2. Genome-wide association studies (GWAS) 

GWAS have supported the widely accepted premise that MD is a 
complex polygenic disorder in which multiple common GVs contribute 
to disease susceptibility. Generally, these GVs are in non-coding regions 
of the genome, each playing a minor role (odds ratio around 1.3)59 (Box 
2). There are two types of GWAS studies, the ones that use SNP arrays 
followed by imputation and those based on whole-genome sequencing 
(WGS). In the former, imputation estimates the effects of GVs that 
have not been directly genotyped before assessing the association 
between GVs and the trait under investigation60. It requires summary 
statistics data and linkage disequilibrium (LD) information from 
reference population data, such as the 1000 Genomes Project, which 
can differ between ethnic groups. Altogether, imputation increases the 
power of downstream analyses61. Regarding WGS, several studies have 
been performed on MD62,63, with a focus on pharmacogenomics as 
well64. However, these studies are not a common practice yet, because 
large sample sizes (i.e., 1,000,000) are required to produce reliable 
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results, as evidenced by other complex disorders such as 
schizophrenia65. Furthermore, WGS, compared to SNP arrays, are more 
expensive66. This thesis focuses on GWAS that employ SNP arrays and 
imputation. 
 
The first GWAS on MD dates back to 2009 and included 1,738 patients 
and 1,802 controls67. Even with sample sizes comparable to other 
psychiatric disorders, initial research was fruitless, with SNPs failing to 
pass genome-wide significance (i.e., p-value 5x10-8)68. Since then, the 
GWAS success rate raised thanks to: 1) an increase in sample size due 
to larger study cohorts and meta-analysis; and 2) a reduction in 
phenotype heterogeneity69. Due to the minor contribution of numerous 
SNPs to MD overall risk, estimates on the required GWAS sample size 
range from 3,000 to 75,000 to identify multiple MD associations70,71. 
These numbers may vary depending on the expected number of GVs 
identified and their effect size.  
 

Box 2. Genome-wide association studies (GWAS) 

• GWAS evaluate common GVs, which are present in at least 5% of the 

population.  

• GWAS test the association to disease of one million or more common 

GVs known as single nucleotide polymorphisms (SNPs).  

• GWAS are unlikely to detect rare variants and cannot identify CNVs.  

• GWAS are typically case-control studies that compare the allele 

frequencies of cases with the disease to controls without. 

• To account for the million independent tests conducted, the GWAS 

significance threshold is 5x10-8. This threshold could be considered overly 

conservative since SNPs are, to some extent, correlated due to linkage 

disequilibrium (LD) (i.e., the nonrandom association of alleles). 

• GWAS require large sample sizes, in the thousands, to reach enough 

power to detect significant associations.  

 
Adapted from Dunn, E. C., Wang, M.-J. & Perlis, R. H. A Summary of Recent Updates 
on the Genetic Determinants of Depression. in Major Depressive Disorder 1–27 
(Elsevier, 2020). doi:10.1016/B978-0-323-58131-8.00001-X. 

 
Regarding sample size, on the one hand, GWAS meta-analyses combine 
multiple GWAS from different studies to assess the relationship 
between SNPs and a trait or disease. These have contributed to the 
discovery of most of the recently identified GVs associated with MD. 
Nonetheless, they are not exempt from challenges such as phenotype 
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or ancestry heterogeneity, data availability or statistical approaches 
diversity72. On the other hand, initiatives such as the PGC, a consortium 
from over 20 countries, and the CONVERGE consortium (China, 
Oxford and Virginia Commonwealth University Experimental 
Research on Genetic Epidemiology), the biggest Han Chinese 
population sequencing cohort, have encouraged a community effort 
toward the collection of large cohorts73,74. Additionally, companies such 
as 23andMe, based on self-reported surveys, have also contributed with 
large amounts of individual data.  
 
Additionally, MD phenotype heterogeneity poses a challenge to GWAS, 
where two different approaches can be adopted: very large sample sizes 
with minimal phenotyping (as assessed through patients’ self-reports) 
or smaller but more fine-grained and rigorously phenotyped samples (as 
assessed by clinical practitioners)46. There have been reported 
differences in heritabilities, being higher for strict DSM-5 criteria 
compared to minimal phenotyping75. Another criticism stems from a 
lack of phenotype specificity, in which shared genetic liability with other 
psychiatric disorders is greater for minimal phenotyping, potentially due 
to misdiagnosis75. However, both could be complementary; while the 
first benefits from increased power to identify more GVs, the second 
can identify subphenotype and more severe phenotype differences44,46.  
 
Recent findings from GWAS on MD include 44 risk loci identified by 
Wray et al. in 135,458 cases and 344,901 controls7. This study and others 
were included in a meta-analysis from Howard et al. in which 102 
independent GVs were associated with MD8. More recently, a GWAS 
on >1.2 million individuals, including data from the Million Veteran 
Program, reported 178 MD genomic risk loci76. Nevertheless, the GVs 
from this study, the largest GWAS on MD, explained only 11.2% of the 
MD GV heritability76. GVs with minor effects and rare variants are 
expected to explain the missing heritability once whole-genome 
sequencing becomes more affordable and sample sizes increase 
significantly69. It is estimated that millions of individuals would be 
needed to detect such small effects (i.e., odds ratio ≤ 1.1), given that the 
relationship between effect size and the sample size is non-linear among 
common GVs. Interestingly, CGS findings do not overlap with current 
GWAS results on MD55,77.  
 
The interpretation of GWAS findings, though, is challenging. It 
involves the identification of the gene or regulatory mechanism being 
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affected by GWAS SNPs, followed by the determination of their 
biological function and how this impacts the disease. Therefore, 
additional analysis and data are required to shed light on how the 
identified SNPs ultimately lead to the disease phenotype.  

1.2.3. Preclinical studies 

Preclinical models have been used for many years to study the aetiology 
and the pathophysiological mechanisms of MD as well as the effects of 
antidepressants. Among preclinical models, we can find cellular and 
animal models that mimic features of MD78. Neuronal cells are the most 
widely employed cellular model due to the effects of stress on neurons 
and neuronal brain networks, with a particular emphasis on cultures 
from the cortex and hippocampus. Additionally, glial cell cultures have 
been used because of their importance in maintaining synaptic 
connections and supplying nutrients to neurons. It has also been 
reported that the abnormal functioning of glial cells may contribute to 
MD. In recent years, patient-derived induced pluripotent stem cells 
have become popular as a strategy to gain insights into MD mechanisms 
and drug research79. In general, cellular models are combined with other 
studies to identify cell-specific mechanisms or confirm observations 
from human subjects and/or animal models. Although the 
physiological relevance of cellular models has been debated, when an 
antidepressant’s mechanism of action is known, such models can be 
helpful as a first screening platform to identify toxic or side effects78. 
 
Animal models must show a similar disease phenotype, pharmacological 
sensitivity and pathophysiological mechanisms to be useful for studying 
neuropsychiatric disorders80. The latter may differ from human MD 
because multiple factors trigger the disease, and the exact mechanisms 
are not fully understood. In addition, rodents exhibit what’s called a 
“depressive-like behaviour”, which is determined by behavioural 
observation. A variety of tests have been designed to assess features of 
depressive-like behaviour, such as despair by creating an unescapable 
situation or anhedonia by evaluating the pleasure of previously pleasant 
things81. Animal models for MD are based on environmental, genetic, 
or pharmacological influences82. Environmentally induced models are 
based on the dysregulation of stress hormones in MD by applying stress 
factors at different time points (e.g., maternal separation in early life or 
chronic social defeat stress exposure in adulthood)82. Genetically based 
models can either arise from selective breeding or genetic manipulation 
via knockout or transgenesis81,82. Pharmacological models use a drug or 
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treatment to induce a depressive-like behaviour, although these may 
produce other alterations not present in human MD81,82. Additionally, 
the surgical ablation of the olfactory bulbs in rodents results in a chronic 
psychomotor agitated MD with significant cognitive impairment, 
mimicking a limited number of MD cases 81,82. 
 
These models have contributed to a better understanding of the 
abnormal functioning of brain circuits in MD via identifying cellular and 
molecular changes associated with MD81. Although there is not a single 
animal model that perfectly replicates the complexity and heterogeneity 
of human MD in all its aspects (e.g., aetiology and treatment response), 
these mimic most features81,82. Additionally, it is common practice the 
use of several animal models to combine strengths and address 
weaknesses in order to gain insights into various disease pathogenesis 
aspects82. 

1.3. Assessing the validity of genetic associations for 
complex diseases 

Almost 600 GVs have been identified as significantly associated with 
MD thanks to GWAS83. Despite such advances, few studies have sought 
to validate GWAS findings84. It has been argued that rather than more 
discovery studies, there is a critical need for their functional follow-up 
to better understand their role in disease pathogenesis85. Understanding 
the biological mechanisms by which GVs influence disease phenotype 
is critical to promote better diagnosis and treatment85. The challenge in 
complex diseases in general, and MD in particular, is that most of the 
identified GVs are common, lie in non-coding regions of the genome 
and lack mechanistic characterisation on how they are involved in 
disease pathogenesis. In order to leverage the use of genetic associations 
to support drug target identification or precision medicine applications, 
the validity of the association between the GVs and the disease must be 
assessed. 
 
Several curation consortia have been created to support a standard 
procedure for assessing the validity of gene-disease and GV-disease 
associations. These curation criteria may serve different purposes: 
development of knowledge bases, drug research and discovery (e.g., 
identifying drug targets or developing new treatments), or clinical 
genomics (e.g., diagnostic gene panels, functional interpretation or 
genetic counselling); where different levels of evidence to assess the 
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association validity would be required accordingly. In a clinical setting, 
for instance, the validity criteria may differ depending on whether we 
are conducting a predictive test for a healthy individual, a diagnostic test 
for a disease patient, or a treatment response test86. 
 
Initiatives like the Gene Curation Coalition (GenCC) include several 
organisations from around the world that collect gene-disease 
association data with a focus on highly penetrant monogenic forms of 
disease, that is Mendelian and rare diseases87. GenCC has developed a 
unified validity system that promotes data-sharing and data consistency 
by utilising standard terminologies and a clinical validity classification 
system. The harmonised validity terms for gene-disease associations 
include: Definitive (repeatedly reported in both research and clinical 
diagnostic contexts, upheld over time and with no convincing 
contradictory evidence - the highest validity level); Strong (very similar 
to definitive), Moderate (lacks a large body of evidence), Limited (little 
evidence, where not all has been disproven- could be false positives), 
Dispute (equally weighted evidence supporting and refuting 
association), Animal Model Only (very little or inexisting evidence in 
humans but convincing evidence in animal models), Refuted Evidence 
(existence of association but with new evidence refuting it), and No 
Known Disease Relationship (no claim has been ever made). 
 
Among GenCC organisations, the Clinical Genome Resource 
(ClinGen) focuses on clinically relevant genes and variants across 
Mendelian diseases88–90. Regarding gene-disease associations, ClinGen 
performs a semi-quantitative assessment of the strength of genetic and 
experimental evidence. It reviews molecular mechanisms, phenotypic 
variability and mode of inheritance to support or refute the existence of 
an association89. ClinGen gene-disease validity curation follows the 
GenCC classification system. As for variant-association data, ClinGen 
Variant Curation Interface (VCI) supports germline variant 
classification according to the American College of Medical Genetics 
and Genomics (ACMG) and the Association for Molecular Pathology 
(AMP) guidelines90,91: pathogenic, likely pathogenic, uncertain 
significance, likely benign and benign. The focus is GV classification 
considering the variant data model, which involves population, 
experimental and computational data, as well as disease and mode of 
inheritance data models. Estimated variant pathogenicity is provided by 
biocurators’ evaluations of the evidence criteria. The Online Mendelian 
Inheritance in Man (OMIM) is also under the GenCC umbrella. OMIM 
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platform collects genes and genetic phenotype association data, curating 
evidence from the literature92. Association data is extensively linked to 
other genomic resources and additional references to facilitate posterior 
annotation and analytical efforts. 
 
Regarding rare diseases, Orphanet has developed a procedure for the 
selection, quality evaluation and dissemination of clinical practice 
guidelines93. Orphanet aims to assist in healthcare decisions by 
providing accurate and specific recommendations to doctors and 
patients. Their quality criteria are based on the Appraisal of Guidelines, 
REsearch and Evaluation (AGREE II) Instrument, which curates 
clinical practice guidelines examining scope and purpose, clarity and 
applicability, among other features93. In addition, Genomics England 
PanelApp has compiled a list of clinically and scientifically validated 
genes and variants with clear evidence of disease causation, referred to 
as gene panels94. It is based on integrating knowledge from diverse 
panels to reach a consensus. It uses a traffic-light system: green (3-4 
sources - highest confidence level); amber (2 sources); or red (1 source 
- lower confidence level). 
 
These curation guidelines are intended for gene-disease and GV-disease 
validity assessment in Mendelian and rare diseases. Therefore, they 
cannot be applied to diseases with different genetic architectures, such 
as complex diseases (Figure 1). Complex diseases involve multiple 
common GVs, where natural selection has favoured the removal of 
GVs with large effects, becoming rare and thus, making common GVs 
extremely unlikely to have large effects on disease95. A further limitation 
in gene and GV-disease validity assessment in complex diseases is the 
functional interpretation of the GVs’ role in disease pathogenesis. Most 
of the associated GVs lie in non-coding regions of the genome with no 
clear target gene or gene expression regulatory mechanism. The greatest 
effects can be expected from GVs in or near protein-coding regions, 
affecting all or most cell types85. In comparison, GVs in non-coding 
regions are subject to weaker selection and may affect gene regulation 
in a cell-type-specific manner96. Many common GVs have been 
identified thanks to GWAS, but further research into their biological 
mechanisms is required to assess their role in disease pathogenesis. 
 
There is a lack of curation guidelines for GV-disease associations that 
consider multiple evidences and study types in complex diseases, except 
for cancer. Available resources for cancer, which is primarily caused by 
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somatic GVs, include Clinical Interpretation of Variants in Cancer97 or 
Cancer Genome Interpreter98. Both annotate GVs with clinical 
relevance and their effect on treatment response, promoting data 
normalisation and interoperability. As for other complex diseases in 
general, several publicly available repositories focus on GV-disease 
associations, particularly from GWAS. The databases GWAS Catalog, 
GWASdb or GWAS Central all collect and curate genetic association 
data from GWAS studies83,99,100. ClinVar accepts third-party submissions 
on GVs and their clinical significance in disease. Still, while GVs 
associated with Mendelian disorders should follow ACMG/AMP and 
ClinGen recommendations (e.g., benign or pathogenic), GWAS data is 
reported under “association”101. When focusing on psychiatric 
disorders, Psychiatric disorders Gene association NETwork 
(PsyGeNET) has developed curation guidelines for gene-disease 
associations extracted from the literature by text mining (TM). These 
guidelines evaluate the association of a gene to a disease per publication 
and annotate them using standard terminologies102. 

 

Figure 1. GVs and disease severity. The relationship between the GVs' effect size 
and severity, as well as the typical study type. Adapted from Manolio, T. A. et al. 
Finding the missing heritability of complex diseases. Nature 2009 461:7265 461, 747–
753 (2009). 

Overall, there is a clear need of guidelines for assessing gene and 
variant-disease associations in complex diseases to support downstream 
applications. These would help determine the GVs’ role in disease 
pathogenesis and eventually translate this knowledge for its use in 
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clinical applications, precision medicine, and research. These guidelines 
should consider current experimental methodologies used to uncover 
gene and GV-disease associations in complex diseases; for instance, 
GWAS involving SNP arrays or WGS, post-GWAS functional analysis 
using different omics, as well as animal and cellular models. These 
should also include recommendations for evaluating evidence obtained 
by previous approaches, such as candidate gene studies. 

1.4. From genome association to disease mechanisms 

The main goal of genetic association studies in MD is to understand 
disease biology, support the identification of disease biomarkers and 
propose new therapeutic strategies. Instead of encouraging larger 
GWAS, which would produce GVs with smaller and smaller impacts, it 
has been suggested that the focus should be on downstream functional 
analysis of significant well-replicated GWAS GVs96,104. Genetic 
association studies on MD face several challenges in making biological 
inferences on causal mechanisms and prioritising GVs and target genes. 
First, multiple GVs are involved in disease pathogenesis, which may 
also interplay. Because of LD, identified associated GVs may not be the 
causal ones (i.e., influencing disease risk) but point to regions in the 
genome that are involved in disease pathogenesis. Furthermore, these 
GVs are usually in non-coding regions of the genome, and their target 
genes or regulatory mechanisms cannot always be straightforwardly 
determined. Coding GVs may have no effect or directly disrupt a 
protein function. In contrast, non-coding GVs are thought to influence 
gene function through diverse regulatory mechanisms, such as altering 
gene expression regulation by affecting promoter and enhancer activity 
or disrupting transcription factor (TF) binding sites.  
 
To overcome these challenges, different strategies for performing an 
accurate functional analysis have been developed, which may shed some 
light on the role of disease-associated GVs (Figure 2). To that end, the 
availability of summary statistics of genetic studies (i.e., the list of 
genome-wide significant GVs and their effect size) is key to promoting 
open-access research that allows follow-up studies. Additionally, 
genomic annotation data such as regulatory elements or chromatin 
states’ is required to assess these GVs’ role in gene expression 
regulation. As a result, integrating these GVs with genomics data is 
critical for identifying their target genes and ultimately deciphering the 
underlying regulatory mechanisms. Currently, different bioinformatics 
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analyses have been developed to address this challenge and prioritise 
causal GVs and target genes. 

 

Figure 2. Summary of post-GWAS analyses. Starting with GWAS findings, an 
overview of post-GWAS analyses incorporating diverse genomic association data and 
conducting different statistical analyses to answer multiple questions. 

Fine-mapping 

The identified GWAS SNPs are not necessarily the causal ones but 
rather tag genomic regions of interest. SNPs in microarrays, also known 
as tag SNPs, are in high LD with neighbouring SNPs, serving as 
surrogates for large genomic regions that contain unmeasured SNPs105. 
Therefore, the most-significant SNPs or lead SNPs (p-value < 5× 10−8) 
may be in high LD with the true causal SNP60. Fine-mapping aims to 
identify the GVs that have a biological effect (i.e., are causal) given 
association data and the assumption that at least one causal GV exists106. 
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Fine-mapping is limited by the experimental sample size, the LD 
structure, the number of causal SNPs per region, their effect sizes, and 
SNP density106. The former can be increased by pooling different 
studies or performing meta-analyses. As for the LD structure, patterns 
among SNPs can be complex and are influenced by recombination, 
mutation rates, natural selection, population subdivision and 
bottlenecks107. For instance, small LD blocks in certain populations, 
such as Africans, may reduce the number of candidate causal GVs and 
lead to statistical heterogeneity around lead SNPs108. Another 
controllable factor critical to capture causal GVs is SNP density, which 
can be increased by DNA sequencing, genotype imputation or 
additional genotyping106. 
 
Identifying causal GVs by fine-mapping approaches is done by 
integrating GWAS results with LD reference patterns. Heuristic fine-
mapping considers pairwise correlation data to either retain potentially 
causal SNPs based on a set threshold or perform hierarchical clustering. 
However, caution should be taken because these methods do not 
account for SNPs’ joint effects and do not provide an objective measure 
of the confidence that an SNP is causal but rely on arbitrary 
thresholds106. 
 
Bayesian methods consider predefined windows of SNPs and compute 
the posterior probability of a hypothesis or model conditional on 
observed data (trait and SNPs) and assumed prior distribution. Prior 
probabilities assumptions can be varied by treating GVs as independent 
and either likely to be causal or as a fixed number109. The resulting 
posterior probability can be used to compute each SNP’s posterior 
inclusion probability (PIP), that is the sum of posteriors over different 
models that consider the SNP a causal GV. Alternatively, by PIP 
ranking and calculating the cumulative sum, posterior probabilities can 
be used to determine credible sets, that is, sets that capture likely causal 
SNPs. In this sense, Bayesian methods are advantageous because SNPs 
probabilities can be directly compared, unlike p-values. Furthermore, 
because these models are based on the combined effect of SNPs, they 
control for SNPs with high effects while increasing the power to detect 
those with small effects106. 

Colocalisation analysis 

The integration of GWAS and functional annotations can shed some 
light on the underlying biological mechanisms of these GVs, which may 
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exert phenotypic effects through different molecular mechanisms. 
Multiple molecular quantitative traits loci (QTLs) datasets can be 
leveraged to evaluate the role of GVs in gene expression (eQTLs), 
protein expression (pQTLs), exon splicing (sQTLs), DNA methylation 
(mQTLs), and chromatin accessibility (caQTLs). These datasets on 
molecular quantitative traits associated with GVs (e.g., eQTL), along 
with GWAS GVs, can be used in colocalisation analysis to assess 
whether a GV is both associated with a disease phenotype and a 
molecular trait. 
 
For instance, the application of colocalisation methods on GWAS and 
eQTL data enables the identification of genes whose expression is 
affected by the GVs associated with the disease phenotype. Indeed, 
SNPs associated with complex traits are more likely to be eQTL110. 
Nonetheless, overlapping eQTL and GWAS signals can be due to: 1) 
linkage, where two independent causal SNPs are in LD; 2) causality, 
where a single causal SNP modifies the expression of a gene to influence 
the trait; or 3) pleiotropy, where a single causal SNP has independent 
effects on gene expression and the trait. To correctly interpret GWAS 
results, it is essential to distinguish between these settings. Furthermore, 
because one cis eQTL has been identified for almost all known human 
genes, these overlaps are likely to occur by chance111; some 
colocalisation methods consider these probabilities while others do not. 

Mendelian randomisation 

Mendelian randomisation, or MR, is another approach to determine 
whether a single causal SNP influences gene expression and a disease 
or trait. MR uses GVs as instrumental variables to infer causality and 
exclude pleiotropy by considering the relationship between modifiable 
risk factors or exposures (e.g., protein levels) and an outcome (e.g., 
depression)112. MR is based on the following assumptions: 1) GVs are 
significantly associated with the risk factors; 2) GVs must not be 
associated with confounders of exposure and outcome association; and 
3) GVs impact the outcome only by influencing the exposure and not 
by any other pathway. It is not easy to demonstrate the latter two 
assumptions, and new methods have been developed that are less reliant 
on them. MR results should be accompanied by other sources of 
evidence for their correct interpretation for clinical decisions113. For 
instance, whether the risk is cumulative or has an acute effect or 
whether there are more relevant lifetime periods. 
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Polygenic risk score 

Polygenic risk scores (PRS) predict an individual’s disease risk. It is 
computed based on the number of risk alleles in an individual’s 
genotype multiplied by the GVs’ estimated effects (i.e., GWAS odds 
ratio multiplied by its direction104. The association with the disease is 
tested in a linear (continuous trait) or logistic (binary trait) regression 
adjusting for covariates (e.g., sex or age). PRS can provide insights into 
how GVs affect disease subtypes as well as determine the genetic 
overlap between disorders or stratify individuals for a more effective 
clinical intervention13. However, PRS are not yet suitable for healthy 
individuals but rather for distinguishing risk groups13. The frequently 
low predictive power of PRS has led to some scepticism about its 
clinical utility114. However, it is expected that PRS could benefit from 
larger GWAS sample sizes as well as more accurate clinical 
phenotyping44,114. 

SNP enrichment 

SNP enrichment techniques aim to prioritise disease-relevant cell types, 
accelerating the challenging functional validation of GWAS GVs. The 
premise underlying SNP enrichment techniques is that GWAS GVs are 
overrepresented in genomic areas that are particularly active in the 
pathogenic cell types104. These approaches combine GWAS and 
genomic annotation data (e.g., cell type-specific gene expression or 
chromatin annotations) to identify cell types with associated GVs that 
overlap annotations more frequently than would be anticipated by 
chance. However, GWAS GVs are typically found in genomic regions 
with a high gene density and, therefore, a higher density of chromatin 
regulatory elements, which can confound enrichment estimates if not 
considered104. Additionally, when considering gene expression data, 
there is a required balance between failing to account for multiple causal 
genes and including many genes not relevant to the disease115. It is 
expected that when additional expression and chromatin data for more 
cell types and states become available, enrichment estimates will get 
more precise in identifying cell types causally involved in disease. 
 
TWAS 
Transcriptome-wide association studies (TWAS) are a gene-based 
strategy that examines the association between gene expression 
genetically regulated by GVs and disease risk116,117. TWAS first combine 
genotype data with the regulatory effects of eQTLs to impute 
genetically regulated gene expression levels116. Then, they examine the 
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association between the imputed expression levels and disease risk. The 
result is an interpretable transcription hypothesis between a gene and a 
disease. TWAS have some advantages over other variant-based 
approaches like colocalisation with eQTLs, such as providing a 
functional understanding of disease mechanisms, independent steps for 
predicting gene expression levels and its association with disease, and 
reduced multiple testing116. However, results may require further 
processing since TWAS signals may not all be independent and 
biologically relevant117. 

1.4.1. Integration with genomic annotation data 

GVs can be further assessed and prioritised according to their genetic 
regulatory functions by leveraging publicly available genomic 
annotations to arrange posterior more expensive and time-consuming 
functional laboratory research. Disease-associated GVs are enriched in 
cis-regulatory elements (CREs), where cis means that the effects are 
caused by GVs in the same DNA molecule as the target gene. Thus, 
these GVs are likely to influence disease risk by altering the genetic 
regulation of one or more target genes118. Among the approaches for 
assessing these GVs’ regulatory activity, these can be overlapped with 
accessible chromatin regions, TF binding sites, or histone marks. The 
latter can be used to determine the type or regulatory element (e.g., 
promoter or enhancer) and advise posterior functional assays. 
 
Several publicly available resources characterise epigenetic marks, for 
instance, the Encyclopedia of DNA Elements (ENCODE)119, NIH 
Roadmap Epigenomics120 or FANTOM121. These include CREs 
annotations and chromatin states in hundreds of cell types and tissues. 
Indeed, tissue type selection is critical when studying complex diseases 
since several tissues might be dysregulated, and gene expression varies 
across tissues. The Genotype-Tissue Expression project (GTEx) is one 
of the most comprehensive eQTL resources, with samples from 54 
non-diseased tissues collected from over 1000 people122. While cis-
eQTLs contribute to expression heritability, the largest amount of 
variance is estimated to regulate via trans mechanisms (i.e., effects are 
due to GVs affecting diffusible elements such as TF)123. However, 
identifying trans regulatory mechanisms is much more complex, 
requiring tens or hundreds of thousands of individuals111. 
 
Furthermore, GVs within TF binding site (TFBS) play a central role in 
complex traits in general and major depression in particular124. These 
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GVs change the affinity of TFs, resulting in the creation or disruption 
of a binding site. Experimental approaches include chromatin 
immunoprecipitation assay with sequencing (ChIP-Seq) and 
electrophoretic mobility shift assays (EMSAs). However, ChIP-Seq, 
identifies regions of 100-1000 base pairs (bp), whereas the actual TFBS 
is a shorter region. (9-15pbs)125. EMSA has some limitations too, 
because it may identify non-specific binding proteins126. Several 
resources that scan the DNA sequence with a position-specific scoring 
matrix for a TF of interest have been developed to predict the TFBS 125. 
Common approaches are based on pattern-matching and machine 
learning. The latter integrates functional annotation, epigenomics and 
transcriptomics data.  
 
Although there are many GVs that overlap genomic regulatory regions, 
not all of them are necessarily functionally relevant. The advancement 
of bioinformatics has encouraged the development of functional 
prediction algorithms, which can also guide GV prioritisation127,128. 
These algorithms predict the likelihood of a GV influencing regulatory 
functions and causing disease using sequencing data as well as 
evolutionary and genomic annotation data. Generally, prediction 
validation is done by comparing against datasets that include both true 
pathogenic and non-pathogenic GVs. Prediction results are typically in 
the form of scores, which quantify how likely these GVs are to be 
deleterious or pathogenic. These results can be used to increase the 
power of posterior analyses. Still, available resources may use different 
data, each with its own set of strengths and weaknesses, resulting in a 
variety of outcomes. As a result, it has been proposed to reach a 
consensus by combining the findings of various algorithms to produce 
a more accurate prediction129.  
 
Focusing on non-coding GVs, popular tools are the Combined 
Annotation Dependent Depletion (CADD)127 and the Deleterious 
Annotation of genetic variants using Neural Networks tool (DANN)130. 
CADD considers annotations mostly coming from ENCODE and 
computes a C-score via a machine-learning model that uses annotated 
and simulated GVs to measure their effects. On the other hand, DANN 
employs a Deep Neural Network algorithm capable of capturing linear 
and non-linear relationships between annotations. 
 
Overall, the limitations of genomic annotation data integration are 
inherent in existing epigenomic and eQTL data, which are context and 
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tissue-specific, making some cases more challenging to assess. 
Nonetheless, the real bottleneck is the lack of disease-focused 
functional biological studies downstream of GWAS to aid in our 
understanding of the trait. 

1.4.2. Experimental evaluation of GVs functions 

Once GVs have been prioritised, the focus shifts to evaluating their 
function. Among the most common experimental approaches, we 
highlight cell culture-based reporter assay and genome editing131. Cell 
culture-based reporter assays allow the comparison of reference and 
alternative alleles when cloned to reporter genes and transfected into 
relevant cell types. Additionally, thousands of GVs can be tested using 
massively parallel reporter assays (MPRAs), a practical approach since 
several GVs in LD may impact multiple enhancers and cooperatively 
affect gene expression132,133. Limitations may be found when the context 
is inappropriate (e.g., not relevant cell type or environmental 
conditions) or there is transcriptional noise, resulting in false positive 
results. Finally, genome editing is a more physiologically relevant 
method that allows for specific changes not only in the DNA sequence 
but also in the epigenetic state. Available techniques are zinc finger 
nucleases (ZFNs), transcription activator-like effector nucleases 
(TALENs) and clustered regularly interspaced short palindromic repeat 
(CRISPR)-based systems134. 
 
The physical interaction of transcriptional elements (promoters, 
enhancers, and distal regulatory elements) may prove the potential 
regulatory function of these GVs and how these influence their target 
genes135. High-throughput sequencing and 3D chromosome structure 
have shed some light on the genome’s long-distance contacts even 
across time136. However, because these technologies are still in the early 
stages of development, validation and annotation rules are still 
required137. 

1.4.3. From gene regulatory mechanisms to disease 

But how do these GVs and genes ultimately impact disease phenotype? 
Despite the vast amount of genomic annotation data available for 
identifying regulatory GVs and understanding their functions, little is 
known about how these affect disease risk. Approaches considering 
expression differences (for example, overexpression or knockout) are 
hampered by a lack of eQTL effect sizes and technical difficulties in 
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addressing these expression changes. Correlation studies between gene 
expression and trait have been proposed to aid in this matter. Genome 
editing, on the other hand, is a better approach because it allows a more 
physiologically relevant assessment and causal association. Moreover, 
when molecular, cellular, and organismal phenotypes are tailored to 
each disease, disease-specific knowledge will be obtained131. 
 
In the meantime, biological networks and gene ontologies may shed 
some light on prioritised genes and their role in complex diseases. 
Instead of being the result of one gene’s effect, complex diseases are 
frequently caused by gene interaction. Network approaches are based 
on biomolecular knowledge and gene-based association test that can 
capture biological interactions between different molecules. These 
networks could reveal pathways of interest for disease phenotype by 
highlighting regulatory, metabolic and signalling processes138. Gene 
ontologies can also provide information about relevant biological 
processes, molecular functions, and cellular components. 
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2. OBJECTIVES 
 
MD poses a significant burden on society, mainly due to our lack of 
understanding of its pathogenesis involving the interaction between 
genetics and environmental factors. Several hypotheses about its origin 
have been proposed, and GVs significantly associated with MD have 
been identified. However, these GVs usually lie in non-coding regions 
of the genome, and functional analyses are required to uncover their 
role in disease pathogenesis. Thus, the primary goal of this thesis is to 
gain insights into the role that GVs play in the pathogenesis of MD by 
applying bioinformatic approaches and leveraging publicly available 
genetic association data and post-GWAS functional analysis resources.  
 
The following objectives were established to achieve our goal:  

1. To develop curation guidelines for evaluating the quality of MD 
genetic association data.  

2. To create a database of GVs associated with MD following the 
developed guidelines. 

3. To uncover potential regulatory mechanisms by which GVs 
associated with MD may contribute to disease pathogenesis 
using GWAS summary statistics. 

4. To benchmark post-GWAS analysis tools by systematically 
evaluating their performance using full genome summary 
statistics and selecting the most suitable ones for the 
interpretation of GWAS findings on MD.  

 
The first objective was addressed by evaluating existing curation criteria 
for other diseases as well as considering the genetic architecture of MD 
and types of genetic association studies performed (Chapter 3.1). The 
second objective was achieved by applying the developed guidelines on 
publicly available genetic association data on MD scattered throughout 
the literature and databases (Chapter 3.1). The third goal was 
accomplished by conducting diverse functional analyses, including fine-
mapping, colocalisation, and transcription factor binding site analysis, 
to determine the role of GVs in MD (Chapters 3.2 and 3.3). Finally, 
the fourth goal was addressed by developing and implementing a 
workflow that compared the outcomes of different post-GWAS 
analysis tools and their biological implications (Chapter 3.3).  
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3. RESULTS 

3.1. Building a data curation pipeline for complex 
diseases: the case of major depression 

The complexity of the genetic architecture of MD fades the huge 
progress of genetic association studies on MD. Multiple GVs with a 
minor role have been identified, which mainly lie in non-coding regions 
of the genome. Compared to Mendelian and rare disorders, these 
features challenge the development of curation guidelines for clinical 
and research applications of these data. In this chapter, we review 
available guidelines and evaluate the diversity of genetic association 
study types and designs. Then, we develop and apply expert curation 
guidelines for genetic association data, focusing on the specific case of 
MD. Finally, we functionally analyse these data and rank GVs according 
to supporting evidence.   
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Abstract 
 
Major depression (MD) is the leading cause of impairment worldwide, 
and despite huge efforts put into understanding its biological 
underpinnings, these are not yet fully understood. Genetic association 
studies have made great progress in the last years identifying multiple 
genetic variants associated with different traits and disease risks. 
Evaluating gene-disease association is key for enabling the identification 
of disease biomarkers, assisting patients’ diagnosis, or supporting drug 
development efforts. While curation criteria for assessing the validity of 
gene-disease associations for Mendelian and rare disorders have been 
established, there is a need for comparable assessment criteria for 
complex diseases. The fact that multiple genetic variants influence 
disease risk, which mainly lie in non-coding regions with unclear target 
genes or regulatory mechanisms, challenges complex diseases’ 
understanding. Here, we review existing protocols and propose curation 
guidelines tailored to MD where we consider different types of 
experimental evidence and their study design. The result of their 
application is an expert-curated database of genetic variants associated 
with MD collected from various repositories and the literature. We then 
conducted a functional enrichment analysis to unravel their potential 
role in MD pathogenesis. The proposed curation guidelines could be 
applied to other diseases with similar genetic architecture. 
 
Keywords: major depression, curation, variant-disease association, 
GWAS, candidate gene studies. 
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1. Introduction 

Major Depression (MD) is a highly frequent mental disorder and the 
leading cause of disability worldwide1,2. It is caused by the interaction of 
multiple genetic and environmental factors and is characterised by a 
wide range of clinical traits and features such as sleep disturbance or 
thoughts of guilt2. Despite the numerous genetic association studies 
conducted on MD, it is still unclear how identified genetic variants 
(GVs) affect disease risk. Twin studies estimate that GVs can explain 
almost 40% of MD3. However, no biomarker has been identified to aid 
in diagnosis or treatment, with pharmacological treatments being 

ineffective in 40% of patients2,4. A better understanding of both MD 
genetic architecture and the role that GVs play in disease pathogenesis 
will lead to new developments to improve the care of patients. Different 
databases collect GVs associated with MD5,6, and multiple methods 
have been developed for their functional analysis7–9. However, no 
curation guidelines that combine multiple evidences from diverse study 
types (e.g., human and animal models) exist to validate genetic 
association data on MD or complex diseases in general.  
 
Several curation consortiums have been established in the last few years 
to promote systematic methods for evaluating the validity of gene-
disease and GV-disease associations. Their purposes can range from 
creating a knowledge resource to supporting pharmacological research 
and clinical genomics, all of which call for evidence of varying strengths. 
For instance, the Gene Curation Coalition (GenCC) focuses on 
Mendelian and rare diseases and has developed a standard clinical 
validity classification system to promote interoperability10. GenCC 
considers evidences from diverse study types as well as contradictory 
evidences to assign association data to the established categories. 
Regarding Mendelian diseases, it comprises the Clinical Genome 
Resource (GlinGen) and the Online Mendelian Inheritance in Man 
(OMIM), among others. ClinGen focuses on clinically relevant genes 
and GVs and performs both gene-disease and GV-disease association 
validity11–13. The former is a semi-quantitative evaluation of the weight 
of genetic and experimental data11 and the latter considers data models 
for the variant, disease and mode of inheritance13. OMIM curates gene 
and phenotype association data from the literature and cross-references 
it with external resources to aid annotation and analytical efforts14. As 
for rare diseases, Orphanet focuses on clinical practice guidelines, 
selecting, qualitatively evaluating, and disseminating them to assist in 
healthcare decisions15. Furthermore, the Genomics England PanelApp 
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has compiled and integrated a consensus list of clinically and 
scientifically validated genes and variants with evidence of disease 
causation, known as gene panels16.  
 
To the best of our knowledge, there are no well-established curation 
protocols to validate GV-disease association data for complex diseases 
that consider different evidences and study types (e.g., human and 
animal models). The curation guidelines presented above are intended 
for highly penetrant monogenetic disorders. These are characterised by 
a small number of altered genes, with GVs having large effects on 
disease and mostly lying in coding regions of the genome. In contrast, 
complex diseases involve multiple common GVs, each with a small 
effect on disease risk17. Additionally, most GVs identified as associated 
with complex diseases lie in non-coding regions of the genome, 
challenging the interpretation of the GVs’ impact on gene function and, 
ultimately, disease pathogenesis.  
 
Cancer could be the exception to the absence of this type of curation 
protocols for complex disease with guidelines to annotate clinically 
relevant GVs with an effect on treatment response18,19. Another 
example of available guidelines for complex disorders are the ones 
developed for PsyGeNET (Psychiatric disorders Gene association 
NETwork)20. This resource offers curated gene-disease association data, 
which has been automatically extracted from the literature using text 
mining (TM) by annotating it to standard terminologies and expert-
reviewing the existence of an association in text snippets. 
 
The evolution of genetic association studies and technological 
advancements has promoted the identification of GVs associated with 
MD via candidate gene studies (CGS) and genome-wide association 
studies (GWAS). CGS have been running for more than two decades 
and analyse genes hypothesised to be involved in MD neurobiology. 
These are based-on proposed theories, such as the monoamine or 
serotonergic theories2,21. However, due to the polygenic nature of MD 
and the small sample size of most CGS, their findings have been 
criticised for their lack of replicability22,23. GWAS on MD were 
introduced in the mid-2000 and consist of arrays of hundreds of 
thousands of GVs. Thanks to international research consortia and an 
increase in sample size, common GVs significantly associated with MD 
have been identified24,25. However, these GVs' target genes or the 
regulatory mechanisms they influence cannot always be 
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straightforwardly determined, requiring a comprehensive genomic 
analysis to understand how they influence disease risk26.  
 
Several gene-environment (GxE) interaction and treatment response 
(TR) studies on MD have been conducted27,28. Both approaches have 
been primarily based on CGS, missing the complexity of MD and 
conducted on small samples, which has resulted in inconsistent and 
unreplicable outcomes23,29,30. It is expected that as genome-wide 
environment interaction studies approaches are performed for MD, 
more reliable findings will arise29. Similarly, pharmacogenomic studies 
on MD are expected to boost with the increment of sample size and the 
analysis of more homogeneous groups30,31.  
 
In addition to approaches to identifying the contribution of genetic 
variability to MD risk, a variety of cellular and animal models have been 
proposed to shed light on different aspects of MD pathogenesis. For 
instance, animal models for MD allow researchers to study “depression-
like” behaviour in genetically modified and environmentally or 
pharmacologically influenced rodents32,33. These models, however, are 
best suited to assessing the role of coding GVs with a clear effect on 
gene function34. Currently, there is no one-size-fits-all model for MD, 
and while symptoms like anhedonia and social interaction can be 
modelled, others like guilt and suicidal thoughts cannot be captured in 
such models32,33. As for in vitro MD modelling, it has progressed from 
tumour-derived cells to immortalised cell lines and patient-derived 
neural cells35. These are adequate pre-screening methods to test the 
toxic and side effects of antidepressants with known mechanisms of 
action36. The challenge is to capture both environmental and genetic 
variability effects, as well as to determine cell type relevance35. 
 
Here, we propose a set of curation guidelines to evalute GVs associated 
with MD taking into account evidences from different types of 
experimental approaches. We built an expert-curated database of GVs 
associated with MD, and characterised the MD-associated GVs in terms 
of genomic and functional features. Finally, we made the database 
available to the research community. 
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2. Methods 

2.1. Data collection 

We obtained a list of terms representing different types of major 
depression (MD) (e.g., major depression, single episode) and their 
phenotypes (e.g., anhedonia) from PsyGeNET20. Then, using the 
Unified Medical Language System (UMLS v.2021AA)37, we expanded 
this list by searching for semantically similar terms that an expert 
ultimately curated. 

 
We used this list to collect genetic variants (GVs) associated with MD 
from different resources. We collected these data from genome-wide 
association studies (GWAS) publicly available from the repositories 
GWAS Catalog and GWASdb (Supplementary Table S1), as well as 
from the scientific using text-mined associations from DisGeNET. A 
publication reference (e.g., a PMID identifier or equivalent document 
identifiers) was required for association data to allow its evaluation in 
the publication context. Likewise, a dbSNP identifier for the GVs was 
required to facilitate their subsequent functional analysis.  
 

2.2. Data analysis and validation 

2.2.1. Functional analysis 

We identified the genes that overlapped or were nearby the curated set 
of GVs using the Variant Effect Predictor tool through the SNPNexus 
platform38. Then, we performed a functional analysis of the genes using 
the R package gprofiler239. It integrates several resources and annotates 
significantly enriched biological and cellular processes, molecular 
functions, pathways, miRNAs and phenotypic features. We applied a 
term size filter to the resulting terms (terms with <1500 genes) to 
eliminate more general terms. 

2.2.2. Data scoring 

We have developed a score to rank the GVs associated with MD 
considering the study type and the number of publications reporting the 
association. The score (S) ranges from 0-1 and it is computed using the 
following formula. 
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S = ST + P + AT 
where ST is study type, P is publication and AT is association type 

 

ST  

 

= 

0.25 if NST = 1 

0.50 if NST = 2 

0.75 if NST = 3 

 
where NST is the number of study types (i.e., GWAS, CGS or preclinical 

models) supporting the association 

 

P  

 

= 

0.1 if NPUBS > 1 

0 Otherwise 

 
where NPUBS is the number of publications supporting the association 

 

AT  

 

= 

0.15 if NAT > 1 

0 Otherwise 

 
where NAT is the number of association types (i.e., VDA, TR, E) 

supporting the association 

3. Results 

We have developed curation guidelines for assessing the quality of 
genetic association data from diverse study types, focusing on the 
particular case of MD. By following these guidelines, we analysed over 
2000 publications and obtained a curated dataset of 709 GVs associated 
with MD. We present the analysis of these GVs in terms of the 
evidences that support them, as well as their genomic and functional 
implications. The resulting database is made available for the research 
community to support future applications in precision medicine for 
MD. 
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3.1. Data collection 

We recovered 37 major depression or MD-related terms from 
PsyGeNET, which became 104 terms after semantic expansion. This 
list was expert-curated, with 96 terms kept to retrieve GVs associated 
with MD from various resources (Supplementary Table S2). 

 
A thousand and fourteen GVs were collected from 2026 publications 
(DisGeNET: 1651 GVs from 994 publications, GWASdb: 72 GVs 
from 22 publications; GWAS Catalog: 873 GVS from 39 publications). 
These led to 2911 GV-publication pairs recovered from the literature 
and genome-wide association studies (GWAS) repositories that have 
undergone the data curation.  
 

3.2. Data curation 

 

 

Figure 1. Implemented pipeline and guidelines. Schema of the pipeline followed and 
the developed guidelines. MD: major depression; UMLS: Unified Medical Language 
System; GWAS: genome-wide association studies; GV: genetic variants; QC: quality 
control. 
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3.2.1. Guidelines 

1. Characterisation of MD context 

MD is a complex disease in which genetic, social and environmental 
factors play an important role. It is characterised by a loss of interest 
and symptoms such as sleep difficulties, low energy or fatigue, appetite 
changes, feelings of worthlessness and even suicidality3. MD is also a 
common comorbidity in chronic diseases such as cancer and 
neurological disorders40. Therefore, the association of GVs with MD 
might be studied in the context of the assessment of environmental 
factors or other comorbid conditions2. In addition, the mention of MD 
does not always imply that it is being studied or involved in the 
association, but it could be background information for another disease 
setting. Thus, all captured associations were reviewed for their true 
association with MD and classified according to their context (Table 2 
and Supplementary Table S3). Regular expressions were used to capture 
and tag evidences containing words such as “bipolar”, “schizo”, “life”, 
“suicide” or “environment”. Nevertheless, all of them were individually 
reviewed by an expert.  
 

MD The R allele of PON1 Q192R was associated with 
depression: per-allele odds ratio 1.22 (95% confidence 
interval: 1.05 to 1.41) in this population. (PMID: 
17183021) 

Features/Traits Relationship between G1287A of the NET Gene 
Polymorphisms and Brain Volume in Major 
Depressive Disorder: A Voxel-Based MRI Study. 
(PMID: 26960194) 

Environmental 
factors (E) 

The present study suggests that the combined effect 
of rs2242446 and rs5569 in the NET gene could 
modify the response to the negative life events in 
triggering MD. (PMID: 18779921) 

Comorbidities Association analysis of the 5-HT6 receptor 
polymorphism C267T with depression in patients 
with Alzheimer’s disease. (PMID: 11442897) 

No MD-related From among this cohort, we studied the chloride 
currents generated by G190S (associated with 
pronounced transitory depression), F167L (little or no 
transitory depression), and A531V (variable transitory 
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depression) hClC-1 mutants in transfected HEK293 
cells using patch-clamp. (PMID: 23933576) 

Table 2. MD context classification system. Sentences showcasing different MD 
contexts used in the developed classification system. MD: major depression. 

 
The main focus of this research paper is on GVs that are strictly 
associated with MD. Thus, studies involving comorbidities or 
evaluating specific features that may be present in MD were not further 
assessed here but were set aside for future projects. 
 

2. Evaluation of publication 

The first step of the publication evaluation was to remove reviews 
because we would be unable to assess the study quality design in the 
subsequent curation steps. Then, we checked the dbSNP normalisation 
process so that the normalised variant matched the reported in the 
association. Erroneous and multiple normalisations are evaluated and 
corrected or removed accordingly. Some examples of these types of 
publications are in Table 3. 
 

Reviews In this review, we bridge evidence from neuroimaging, 
behavioural and clinical studies that have examined the role 
of COMT variants on depression-relevant phenotypes. 
(PMID: 23792050) [from abstract] 

Incorrect 
variants 

However, dimensional analyses showed significant 
associations of the HADS depression severity scores with 
Gln460Arg (rs2230912) and Ala348Thr (rs1718119) in the 
depressed and diabetic patient groups. [identified as: 
rs755302767] (PMID: 30664971) 

Table 3. Publication abstract evaluation. Sentences capturing the type of publication 
abstract and dbSNP normalisation process assessment.  

 

3. Classification of the association type 

There are different types of studies that report GVs associated with 
MD. We have classified them accordingly: variant-disease association 
(VDA), treatment response (TR), environmental (E) or combinations 
(Table 4 and Supplementary Table S3). 
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Variant-disease 
association 

(VDA) 

Genome-wide association analyses identify 44 risk 
variants and refine the genetic architecture of major 
depression. (PMID: 29700475) 

OR 

Genetic variants from two previously unreported loci 
(rs10457592 on 6q16.2 and rs2004910 on 12q24.31) 
showed significant associations with MDD (P < 5 × 
10-8) in a total of 336,753 subjects. (PMID: 29728651) 

Treatment 
response (TR) 

Genome-wide pharmacogenetics of antidepressant 
response in the GENDEP project. (PMID: 
20360315) 

Environmental 

(E) 

The Val1483Ile polymorphism in the FASN was 
associated with depressive symptoms under the 
influence of psychological stress. (PMID: 21641044) 

Table 4. Association type classification system. Examples of different types of 
associations. 

 

4. Characterisation of the study type 

VDAs captured by DisGeNET can come from a variety of studies, 
including preclinical models (including cell and animal models), 
candidate gene studies (CGS), and GWAS. We classified them 
accordingly. Note that we removed from DisGeNET the publications 
already captured by GWAS Catalog or GWASdb because the latter 
provides the summary statistics from the GWAS (i.e., all GVs 
significantly associated with MD) as opposed to retrieving only the GVs 
mentioned in the abstract. Some examples are shown in Table 5. 

 

Preclinical 
studies- 

cell culture 

We show that 5-HT3AB(Y129S) receptors exhibit a 
substantially increased maximal response to serotonin 
compared with WT receptors in two fluorescence-
based cellular assays … inversely correlated to the 
incidence of major depression… (PMID: 18184810) 

Candidate gene 
studies (CGS) 

Three SNPs (rs10008257, rs2433320 and rs2452600) 
were identified in the PDLIM5 gene and genotyped in 
patients diagnosed with recurrent MDD and in 
matched control subjects. (PMID: 18197271) 
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Genome-Wide 
Association 

Studies (GWAS) 

Genome-wide association study of depression 
phenotypes in UK Biobank identifies variants in 
excitatory synaptic pathways (PMID: 29662059) 

Table 5. Study type characterisation. Examples of different types of studies that were 
retrieved. 

 

5. Quality control of the study design of CGS and GWAS 

One of the big reasons behind the lack of CGS replication can be 
attributed to the sample size23,41. Several articles on GWAS for MD have 
also been published in that regard, and it is clear that the larger the 
sample size, the greater the number of significantly identified GVs. 
Based on different sample size estimations considering study type, GVs 
and effect size expected to be identified, a sample size cut-off 
compromise was reached for the particular case of MD41–43 (Table 6). In 
addition, we filtered out non-significant associations. The established p-
value cut-off was 0.05 for CGS and 5x10-8 for GWAS to account for the 
greater number of GVs tested44. Note this filter was applied to GWAS 
repositories at the moment of data collection thanks to its availability 
via the summary statistics.  
 

Study design Case-Control Case-only 

Study type CGS GWAS CGS 

GV 1 20 500K 1 20 

Sample size 1500 3000 3000 1000 2000 

Table 6. Sample size cut-off. The minimum sample size number considered for 
evidence evaluation. This number varies depending on whether the analysis is a case-
control or a case-only study, and in the former case, whether it is a CGS or a GWAS. 
Furthermore, the number of GVs is ultimately considered in each case to set the 
sample size cut-off. CGS: Candidate gene studies; GWAS: genome-wide association 
studies; GV: genetic variants. 

 
These guidelines are also available as a standalone document (see  
Supplementary Material). 
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3.2.2. Curation results 

Following the described guidelines, we conducted an expert curation 
process. From an initial set of 1014 GVs from 2026 publications, we 
built a database of 709 GVs associated with MD supported by 65 
publications, corresponding to 784 GV-publication pairs 
(Supplementary Table S4). Table 7 shows the curated GV-publication 
pairs resulting from each curation step, along with the number of GVs. 
Additional results can be found in Supplementary Table S5. Note that 
numbers may not add up because there can be pairs involving 
combinations of association and study types. The 22% (546) of 
DisGeNET associations were related to MD comorbidities, for GWAS 
Catalog was 33.4% (334) and 30.6% (22) for GWASdb. The 50% (1232) 
of association pairs in DisGENET were VDAs, but 45% (558) and 16% 
(200) were removed because these did not meet the sample size and 
significance criteria, respectively. Similarly, 23.6% (17/72) of GWAsdb 
association pairs were VDAs, and 64.7% (11) did not pass study design 
QC. In contrast, GWAS Catalog VDAs were 65.3% (653/1000), and 
only 1.4% (9) did not meet the sample size criteria. As for associations 
involving TR (317), only 4% (12) of associations from DisGeNET and 
17% (1) from GWAS Catalog passed the curation criteria. Regarding 
those involving environmental factors (188), the associations passing 
curation criteria corresponded to 12% (21) of DisGeNET and 83% (5) 
of GWAS Catalog associations. 
 
Regarding the curated GVs (709), there is a surprisingly low overlap 
between GWAS Catalog and GWASdb (2) and a much higher overlap 
with GWAS Catalog and DisGeNET (364) (Supplementary Figure S1). 
Additionally, the overlap across association studies was very small, 
VDA-TR: rs5569, VDA-E: rs3800373; and TR-E: rs6265. When 
evaluating the study type of these GVs, 6 were supported by preclinical 
models, 32 by CGS and 672 by GWAS (Figure 2). Only rs3101339 and 
rs17759843 were common to more than one study type. Specifically, 
rs3101339 was reported by Li S et al., who conducted a GWAS and a 
CRISPR gene editing experiment45; while rs17759843 was reported 
from a transcriptomic and genomic analysis conducted in both humans 
and mice46. Moreover, the different study types reporting GVs 
associated with MD passing the QC criteria were not far apart in time 
(2007 for preclinical, 2008 for CGS and 2010 for GWAS) (Figure 3). 
On the other hand, the mean number of GVs reported per publication 
varies by study type and ranges from 1 to 117, with a general trend 
toward an increase over time. 



 

 44 

 DisGeNET GWAS Catalog GWASdb 

 

Initial dataset 

1014 GV (2026 P): 2911 GV-P 

1651 (994): 2449 873 (39): 1000 72 (22): 72 

MD 
characterisation 

1249 (699): 1767 611 (26): 665 49 (12): 49 

Publication 
evaluation 

1211 (667): 1680 611 (26): 665 49 (12): 49 

Association type 

VDA –  

TR –  

E –  

 

985 (4231): 1232 

219 (149): 317 

122 (122): 188 
 

 

599 (21): 653 

6 (2): 6 

6 (3): 6 

 

17 (6): 17 

28 (4): 28 

6 (3): 6 
 

Study design QC 

VDA – 

TR – 

E – 

 

448 (39): 474 

12 (7): 12 

20 (15): 21 
 

 

590 (17): 644 

1 (1): 1 

5 (2): 5 
 

 

6 (3): 6 
 

Final 
477 (60): 506 596 (20): 650 6 (3): 6 

709 (65): 784 

Table 7. Summary of curated GVs and publications. Number of GVs that advanced 
through the curation process in each step, along with the number of publications 
reporting the evidence for association in parenthesis, followed by the number of GVs-
publications pairs. GV: genetic variant; P: publication; MD: major depression; VDA: 
variant-disease association; TR: treatment response; E: environmental; QC: quality 
control.  

 

Figure 2. Curated set of GVs. Overlap of curated GVs associated with MD by study 
type (i.e., GCS, GWAS or Preclinical). CGS: candidate gene studies; GWAS: genome-
wide association studies. 
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Figure 3. Chronology of publications per study type. Maximum number of GVs associated with MD per year per study type. The mean and standard 
deviation of GVs identified yearly are on top of each dot. The dot size is proportional to each publication’s mean number of genetic variants. The 
mean is written above, with the standard deviation in parentheses. 
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Despite the broad set of MD-related terms available, reflecting different 
manifestations of the disease, almost 60% of these associations were 
referred to “Major depressive disorder”. We could see a usage tendency 
of a narrow set of 13 terms to refer to MD from the 96 considered 
(Figure 4). 
 

 

Figure 4. MD terminology. Relative frequency of the genetic variants (bars) and 
publications (dots) associated with each MD-related term divided by study type. 

 

3.3. Data analysis and validation 

3.3.1. Functional analysis 

We assigned the curated set of GVs to 563 genes based on their 
proximity to the closest gene. Four genes were shared between CGS 
and GWAS (LINC02210-CRHR1, MAPT-AS1, RPL12P8, ESR1) and 
4 between GWAS and preclinical studies (RPL31P12 and NEGR1) 
(Figure 5). Most GVs reported by CGS and preclinical studies were in 
coding regions of the genome, compared to GVs reported by GWAS 
(Figure 6). 
 
The functional analysis of these genes revealed their role in neuron 
development and differentiation as well as synapse assembly, central 
nervous system and brain development (Supplementary Table S6). Also, 
there are genes related to immune and inflammatory responses. 
Phenotypic traits such as behaviour, stress and sleep disturbances are 
also associated with these genes. 
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Figure 5. Gene overlap between study types. 

 
 

 

Figure 6. Consequence type of GVs. Consequence type of the curated set of 
GVs. Note that a GV can have multiple consequence types; thus, the number of 
consequence types may not necessarily match the total number of GVs. GV: genetic 
variant; UTR: untranslated region. 

3.3.2. Evaluation of GVs from CGS 

We reviewed the evidences involving GVs reported in a recent 
publication by Border et al.23 (Table 1) as potential false positives 
because they were identified by CGS and could not be replicated by 
larger studies. Almost 13% (316/2449) of GV-publications pairs 
captured by DisGeNET involved these GVs, 59% (187) of which did 
not meet the sample size curation criteria. As for the GVs, 31% (5/16) 
did not reach the significance level. Three GVs from this set (rs1801133, 
rs6265 and rs4680) remained in the final curated set, all evidenced by 
different CGS. 
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3.3.3. Data scoring 

We ranked the GVs associated with MD according to the study types 
and publications reporting the association (Supplementary Table S7). 
Most GVs (642/709) are reported in a single publication, by a single 
association, and in a single study, getting a score of 0.25. Only 9% of 
GVs (64) were reported by more than one publication, particularly 3 
GVs (rs1021363, rs11135349 and rs12967855) by up to 4 publications. 
One GV, rs5569, reaches 0.4 by being reported by more than one 
association type. And 4 GVs reach 0.5 by either being reported by more 
than one study type or more than one publication and association type. 

4. Discussion 

Currently, there are publicly available repositories that collect genetic 
variants (GVs) associated with major depression (MD). Nonetheless, 
despite the development of several curation guidelines for gene-disease 
and GV-disease association, their scope is limited to Mendelian and rare 
diseases with a particular focus on clinical relevance. To the best of our 
knowledge, no standards exist for assessing multiple evidences for GV-
disease associations from different study types in the context of 
complex disorders. Here, we have developed curation guidelines based 
on current literature on MD, other diseases’ curation guidelines and the 
collected association data. Ultimately, we have built an expert-curated 
dataset of GVs associated with MD that could help us understand the 
complex genetic regulation of MD. 

 
MD is clinically variable with phenotype heterogeneity, which results in 
a broad terminology used for referring to MD, adding up to 96 UMLS 
terms. This terminology includes semantically similar terms, MD 
subtypes and characterising features (e.g., major depression, unipolar 
depression and anhedonia) (Supplementary Table S2). All these terms 
were considered for association data collection from DisGeNET and 
GWAS repositories (i.e., GWAS Catalog and GWASdb).  
 
Our focus for these guidelines are GVs associated with MD. Thus, 
different features that could influence the study perspective and 
outcome were considered in the curation steps. Firstly, since MD may 
be described by different features or traits and is comorbid with many 
diseases, which would influence the association study design, MD 
context was characterised (Supplementary Table S3)29,40. In parallel, 
associations wrongly captured by text mining (TM) and that had no 
relationship with MD were removed. Secondly, the publication 
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reporting the association was evaluated to keep only those original 
studies conducted on MD patients, which reported correctly captured 
GVs. Thirdly, MD can be studied in a particular environmental context 
(E) or in association with treatment response (TR), so we characterised 
the association type. Fourthly, the study type was characterised to assess 
its design quality regarding the minimum sample size requirements and 
significance threshold. 
 
The developed guidelines are intended for a semi-automatic curation 
process (Figure 1). The curation can be programmatically boosted by 
setting up revision flags using regular expressions to capture 
comorbidities, negations or preclinical models, among others. However, 
it requires a manual inspection of the publication’s full text, especially 
for evidences extracted from the literature, to determine the number of 
GVs tested, the sample size and significance.  
 
Only 27% of collected GV-publications pairs made it through the 
curation process, corresponding to 3% of publications and 70% of GVs 
(Table 7 and Supplementary Table S5). These numbers reflect that GVs 
that were tested under different contexts or without a large enough 
sample size were recovered by other publications. Most CGS did not 
pass the quality control filters, which is consistent with previous 
criticisms of CGS’s lack of replicability due to small sample sizes22,23. 
Nonetheless, 18 CGS passed the curation criteria meeting quality 
control requirements reporting significant associations. The relatively 
small overlap between resources emphasises the importance of 
combining all of these data sources to develop a comprehensive 
database of MD-associated GVs (Supplementary Figure S1). The small 
overlap between GWAS repositories could be because GVs identified 
by GWAS may not be the ones impacting the disease phenotype, but 
these could be in linkage disequilibrium (i.e., correlated association 
between nearby variants). There is also a small overlap between 
association types (i.e., VDA, TR or E), which could be due to different 
GVs impacting different aspects of the diseases.  
 
Regarding TR evidences, the evaluated treatments target different 
neurotransmitters (e.g., dopamine or serotonine) and also include 
electroconvulsive therapy. As for the environmental factors considered, 
these involve diverse types of stress as well as traumatic experiences. 
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The evaluation of GVs according to study type revealed that two GVs 
were reported by more than one (Figure 2). Li S. et al. identified 
rs3101339 in a GWAS study and further validated the potential effects 
of its disruption in the transcription factor binding site of NEGR1 with 
CRISPR-Cas9-mediated genome editing45. Meanwhile, rs17759843 was 
reported in both human and mice via transcriptomic and genomic 
analysis46. No CGS finding was replicated in GWAS, emphasising the 
lack of power of CGS, which were generally conducted on samples of 
tens to hundreds of individuals, and thus supporting these findings 
being potentially false positives22,23. Additionally, this could also be 
explained because CGS generally target genes and GVs in coding 
regions compared to GWAS, which tend to identify GVs in non-coding 
regions with potential regulatory roles (Figure 6). Furthermore, the first 
CGS performed dates back to 1999, but no study conducted before 
2008 passed our curation criteria. Unlike preclinical and CGS, the 
number of GVs identified by GWAS increased over time, probably due 
to better sequencing technologies and bigger sample sizes (Figure 3)3. 
 
Despite the broad terminology characterising MD, only a small set of 
terms (13.5%) is used in the curated association data (Figure 4). We 
believe that one reason could be the normalisation process conducted 
by GWAS repositories, which we have observed generally tends to 
homogenise towards a set of broader terms5,6. Although this broader 
phenotype annotation and phenotyping process may facilitate access to 
larger sample sizes it may preclude GVs associated with more fine-
granular phenotypic descriptions47. Thus, a balance between both 
approaches is required. 
 
The GVs-to-gene mapping identified 563 genes potentially associated 
with MD (Figure 5). ESR1 or estrogen receptor α, common to CGS and 
GWAS GVs, has been associated with MD risk as estrogens influence 
neurotransmitters turnover and regulate serotonergic neuron activity48. 
LINC02210-CRHR1 encodes a protein involved in the hypothalamic-
pituitary-adrenal axis, which is associated with MD pathophysiology49. 
Regarding the GVs’ mapped genes common between GWAS and 
preclinical models, NEGR1 controls the neurological development of 
neurons50. As expected, most GVs reported by GWAS were in non-
coding regions of the genome. Therefore, additional analyses of these 
GVs, such as expression, colocalisation or fine-mapping, are required 
to assess their role in disease pathogenesis. Additionally, the functional 
enrichment analysis of these genes showed their role in neuron 
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development as well as immune and inflammatory responses; all in all, 
features altered or that characterise MD2. 
 
The revision of association data, considering the list of GVs published 
by Border et al.23 as potentially unsupported by larger studies, revealed 
only one GV that remained in the final curated set. These analyses also 
revealed that most of the studies involving these GVs were not properly 
designed in terms of sample size or did not reach significance when 
passing the QC, which is consistent with Border et al. findings23. 
However, as before-mentioned, some studies (7/305) did pass the 
curation criteria yielding valid associations. Despite the criticism levelled 
at CGS, if properly designed and supported by high-quality prior 
knowledge, this approach could still be applied to identify the 
association of particular GVs with MD. 

 
The GVs ranking is based on the number of studies and publications 
reporting the association (Supplementary Table S7). The results reveal 
a poor replication of findings across different study types, as seen by 
GVs overlap evaluation. They also show that only the association with 
MD of 9% of GVs is supported by more than one publication. In more 
detail, 3 of these GVs are replicated across up to 4 GWAS on MD 
publications, and 2 of these are shared by the three GVs. These results 
are an example of GWAS’s replicative power compared to CGS. 
 
Overall, to advance the knowledge of MD genetic architecture, we have 
developed curation guidelines that consider both features of the disease 
and different experimental approaches. We have applied these 
guidelines and created an expert-curated database of GVs associated 
with MD. The MD-associated GVs are mapped to genes involved in 
processes related to MD pathogenesis The developed dataset is 
provided for the community to facilitate downstream analysis of MD-
associated GVs by bioinformatic approaches. We believe the developed 
curation guidelines could be useful for other psychiatric and complex 
diseases with a similar genetic architecture. 
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3.2. Functional genomics analysis to disentangle the 
role of genetic variants in major depression 

Our knowledge of GVs associated with MD has largely increased thanks 
to GWAS. However, most of these GVs lie in non-coding regions of 
the genome, and functional genomics analyses are required to further 
understand the underlying biological mechanisms. In this chapter, we 
aim to gain insights into how MD-associated GVs influence disease 
pathogenesis. We develop a bioinformatics pipeline that overcomes the 
limitations of some current GWAS datasets, for which full genome 
summary statistics are unavailable. Then, we apply this pipeline to a 
recent GWAS meta-analysis on MD to prioritise putative causal GVs 
either altering gene expression (i.e., eQTLs) or TFBS. Finally, we 
propose mechanistic hypotheses for these GVs in MD. 
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Abstract 
Understanding the molecular basis of major depression is critical for 
identifying new potential biomarkers and drug targets to alleviate its 
burden on society. Leveraging available GWAS data and functional 
genomic tools to assess regulatory variation could help explain the role 
of major depression-associated genetic variants in disease pathogenesis. 
We have conducted a fine-mapping analysis of genetic variants 
associated with major depression and applied a pipeline focused on gene 
expression regulation by using two complementary approaches: cis-
eQTL colocalization analysis and alteration of transcription factor 
binding sites. The fine-mapping process uncovered putative causally 
associated variants whose proximal genes were linked with major 
depression pathophysiology. Four colocalizing genetic variants altered 
the expression of five genes, highlighting the role of SLC12A5 in 
neuronal chlorine homeostasis and MYRF in nervous system 
myelination and oligodendrocyte differentiation. The transcription 
factor binding analysis revealed the potential role of rs62259947 in 
modulating P4HTM expression by altering the YY1 binding site, 
altogether regulating hypoxia response. Overall, our pipeline could 
prioritize putative causal genetic variants in major depression. More 
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importantly, it can be applied when only index genetic variants are 
available. Finally, the presented approach enabled the proposal of 
mechanistic hypotheses of these genetic variants and their role in 
disease pathogenesis.  
 
Keywords: major depression; genetic variants; eQTL; colocalization 
analysis; transcription factors; genetic regulation. 

1. Introduction 

Major Depression (MD) is the leading cause of impairment around the 
world [1]. It is mainly treated with both psychotherapy and drugs, but 
the latter is only effective in 40% of the patients [2]. Currently, there are 
no available biomarkers or tests that can aid in either MD diagnosis or 
personalized treatment. As a complex disease, multiple genetic variants 
(GVs) have been associated with MD in Genome-Wide Association 
Studies (GWAS), most of them falling within non-coding regions of the 
genome [3,4].  
 
Functional follow-up studies to unravel the regulatory mechanisms by 
which these GVs play a role in the disease are key to understanding the 
molecular underpinnings of the disease and identifying biomarkers or 
new drug targets. Some authors propose that the efforts should be 
centered on the interpretation of GWAS signals to identify the causal 
GVs, meaning those with a biological effect on a disease, and their 
regulatory potential, instead of pursuing more GWAS [5].  
 
In this study, we have focused on the GWAS meta-analysis on MD 
performed in 2019 by Howard et al. [3]. Full-genome summary statistics 
are not publicly available for this GWAS, so we have leveraged available 
data on index GVs. Ninety-seven loci were identified as significantly 
associated with MD, and these underwent the classic post-GWAS 
analysis: a gene-set enrichment analysis, the computation of polygenic 
risk score, and genetic correlation with other traits, as well as drug-gene 
interaction analysis. In line with previous GWAS findings, most GVs 
lie in non-coding regions, thus having no obvious direct effect on a 
gene.  
 
A necessary step forward to disentangle the role of GVs identified in 
GWAS requires the evaluation of functional regulatory variation. Here, 
we have pursued two complementary analytical approaches geared 
toward the use of index GVs: (1) identification of candidate 
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susceptibility genes using expression quantitative trait loci in cis (cis-
eQTLs), which are enriched among disease-associated loci [6], and (2) 
characterization of transcription factor (TF) binding sites modified by 
GVs, which are key to understanding their potential impact on 
regulatory mechanisms [6–8].  
 
In the present study, we aim to advance the understanding of MD 
molecular underpinnings. We have designed and applied a regulatory 
variation analysis pipeline and conducted a functional enrichment 
analysis of the GVs, either acting as eQTLs or altering the transcription 
factor binding site (TFBS), along with the proximal (pGenes) and 
regulated genes (eGenes). Our findings provide biological insights into 
the functional role of MD GVs and enable the proposal of mechanistic 
hypotheses. 

2. Materials and methods 

2.1. MD GWAS Dataset and LD expansion 

In order to obtain a comprehensive and reliable set of genetic variants 
(GVs) associated with major depression (MD), we focused our analysis 
on the GWAS meta-analysis from Howard et al. [3]. This meta-analysis 
evaluated 807,553 European individuals (246,363 cases and 561,190 
controls) and identified 102 genetic variants (GVs) associated with MD. 
We retrieved these data from the summary statistics available at GWAS 
Catalog [9] (Accession Study: GCST007342, note that the full-genome 
summary statistics for this GWAS were not publicly available; 
downloaded in December 2020). We filtered the GVs by genome-wide 
significance (p-value  ≤ 5 × 10-8 and proceeded with the analysis with 
this set. We then fine-mapped MD-associated GVs to prioritize the 
causal ones using the Probabilistic Identification of Causal SNPs (PICS) 
algorithm [10]. In brief, PICS takes the most significant variant per 
association locus and performs LD expansion using the 1000 Genomes 
Project linkage disequilibrium (LD) information data for the study 
population and then identifies the GVs more likely to be causal (PICS 
probabilities). Using the PICS2 Data portal, we downloaded the 
precomputed PICS GVs for this study. This data constituted our full 
dataset of GVs. 
 

2.2. GVs Annotation: VEP, CADD and ENCODE 

We annotated the full set of GVs with Variant Effect Predictor (VEP) 
[11] and Combined Annotation Dependent Depletion (CADD) [12]. 
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VEP annotates GVs’ consequence type using the Sequence Ontology, 
its allele frequency from the 1000 Genomes Project Phase 3 along with 
the genomic coordinates, chromosome, and mapped gene at ±5000 bp 
distance (from now on pGenes). Combined Annotation Dependent 
Depletion (CADD) assesses GVs’ potential pathogenicity by evaluating 
the PHRED-like scaled C-score; the recommended cut-off ≥ 15 was set 
to identify potentially pathogenic variants.  
 
We analyzed the GVs with the Encyclopedia of DNA Elements 
(ENCODE) [13] to identify those potentially lying in transcription 
factor binding sites (TFBS). ENCODE data analysis was performed 
using SNPNexus [14], an online platform that allows a comprehensive 
annotation of GVs by integrating multiple tools. 
 

2.3. Fine-Mapping and Colocalization of GWAS and cis-eQTLs 

PICS2, in addition to GWAS PICS GVs, has precomputed PICS GVs 
for all Genotype- Tissue Expression (GTEx) V8 best eQTLs per gene, 
per tissue type. We overlapped the extracted GWAS PICS for MD GVs 
with GTEx cis-eQTL PICS GVs, filtering both sets by a PICS 
probability greater than 10% to narrow down the set to the most likely 
causal GVs without being overly permissive, as previous applications of 
this method have done [15]. We performed a Fisher test to assess the 
enrichment of GVs in eQTL regions. Finally, to identify colocalizing 
GWAS and eQTL GVs, we computed the products of PICS 
probabilities following the colocalization posterior probability (CLPP) 
method, which assumes independence of causal probabilities for 
GWAS and eQTL GVs [16]. The genes regulated by these eQTLs from 
now on will be referred to as eGenes. 
 

2.4. TF Binding Analysis with RSAT Variation Tools 

We predicted those GVs affecting the TFBS using the Regulatory 
Sequence Analysis Tools (RSAT) suite, which evaluates cis-regulatory 
elements. First, we used ENCODE ChIP-seq data to keep only the GVs 
lying in TFBS and, therefore, have a more biologically relevant set of 
GVs and reduce the number of tests. However, ChIP-seq data retrieve 
regions of around 100–1000 bp, but the actual binding site corresponds 
to 9–15 bp [17,18]. Thus, we proceeded with the RSAT analysis for a 
more robust and accurate assessment of the GVs potentially altering the 
TFBS. RSAT provides tools that evaluate cis-regulatory elements to 
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predict GVs affecting the TFBS by modifying the transcription factor 
(TF) binding affinity.  
 
RSAT modular structure allowed the concatenation and independent 
execution of programs, each with a different goal. Before scanning the 
GVs and in order to account for their different nucleotide composition, 
we created four sets of background models according to the GV’s 
functional impact obtained with VEP (i.e., intergenic and UTR, 
intronic, regulatory, and non-coding GVs). The subsequent steps were 
performed for each set separately. The module create-background-model 
was executed using the sequences obtained with fetch-sequences-from-
UCSC, with the peak regions retrieved by ENCODE as input. In 
parallel, the module retrieve-variation-sequence was used to obtain the 
flanking sequence (30 bp per side) of the GVs of interest, using the 
dbSNP, genomic coordinates, reference, and alternative allele.  
 
To assess the TFBS alterations, position weight matrices (PSSM) for 
TFs expressed in brain tissues (filtering them using GTEx expression 
data, ≥2 transcripts per million (TPM)) [19] were retrieved from the 
following databases: JASPAR [20], ENCODE, HOCOMOCO [21], 
footprintDB [22], and hPDI [23]. In all cases, the non-redundant Homo 
sapiens database version was used.  
 
Finally, the module variation-scan was run with the previously built 
background Markov models (order 2 to account for CpGs without 
overfitting), the PSSM matrices, the GVs with their flanking sequences 
(see above), and the following parameters: weight of predicted sites 
(>1), weight difference between variants (>1), p-value of predicted sites 
(<1 e-3), and p-value ratio between variants (>10). The weight 
represents the binding affinity and the p-value of a score is the 
probability of observing a score of at least weight given a background 
model.  
 
In addition, two control datasets, one randomizing TF motifs and one 
randomizing GVs, were built to validate the results obtained running 
RSAT with the GVs of interest. On the one hand, the TF’s PSSMs 
matrices were permuted using permute-matrix -perm 5 to get 
randomized matrices with the same nucleotide composition and 
information content. On the other hand, a control set of GVs (1:10) 
was built using vSampler [24] with the following parameters: distance 
to closest transcription start site (TSS) deviation (±5000), gene density 
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deviation (±5 in 100 kbp), number of variants in LD (±50 and r2 = 0.1), 
controlling for coding/non-coding match and variant type specificity, 
excluding for input GVs and sampling across the chromosome. Both 
controls were analyzed with the described RSAT pipeline.  
 
We compared our set of GV-TF motif pair p-value ratios against the 
distribution of p-value ratios for the given motif in both control 
datasets. A Wilcox test was used to evaluate the results obtained from 
the controls because normality of p-value ratio distribution could not 
be assumed for most motifs after running a Shapiro–Wilk test. The 
alternative hypothesis tested was “greater”.  
 
In addition, to further confirm statistically significant GVs, a larger 
negative control dataset of GVs (1:1000) was generated. Again, 
vSampler was used with relaxed parameters to get a bigger control set 
(i.e., controlling for coding/non-coding match and variant type 
specificity, excluding for input SNPs, and sampling across 
chromosomes). The same non-parametric test was used to evaluate the 
results. 
 

2.5. Identification of TF Active Regions with ChromHMM 

We used chromatin state annotations from ChromHMM [25,26], 
available from ENCODE (v3), to evaluate whether GVs significantly 
altering the TFBS were lying in active transcription sites of brain 
regions. Under a 18-state ChromHMM model, we consider the 
following states annotations as active regulatory regions [26]: TssA, 
TssFlnk, TssFlnkU, TssFlnkD, Tx, TxWk, EnhG1, EnhG2, EnhA1, 
EnhA2, EnhWk, ZNF/Rpts. The available brain regions and cell types 
were: Brain Angular Gyrus, Brain Inferior Temporal Lobe, Brain 
Cingulate Gyrus, Brain Anterior Caudate, Brain Substantia Nigra, Brain 
Dorsolateral Prefrontal Cortex, Brain Hippocampus Middle, and 
Astrocytes. Additionally, the resulting TFs whose binding was altered 
were filtered by their expression in the specific brain region using GTEx 
matched data when available; otherwise, data for all brain regions were 
considered. 
 

2.6. Retrieval of Regulation Evidence 

We looked for evidence of gene expression regulation of TFs by 
matching GVs-TFs pairs from the TF binding analysis using RSAT with 
eQTL PICS GVs. We further explored the hTFtarget database [27] to 
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identify specific mechanistic regulation evidence of those TFs whose 
binding is altered by our set of GVs to regulate the expression of the 
target eGenes. The hTFtarget database contains associations of TFs and 
their targets from chromatin immunoprecipitation sequencing (ChIP-
seq) in a specific tissue. We considered evidences for mechanistic 
regulation when eQTL and ChIP-seq data tissues matched. 
 

2.7. pGenes, eGenes, and GVs Characterization 

We conducted a gene-set enrichment analysis using the tool g:Profiler 
via the R package gprofiler2 [28], which integrates different resources 
and annotates enriched terms at the following levels: (1) biological 
processes, molecular functions, and cellular processes annotated with 
the Gene Ontology (GO); (2) pathways from Reactome (REAC) and 
WikiPathways; (3) miRNA annotations from MIRNA; (4) phenotypic 
features associated to disease from Human Phenotype, which is mainly 
focused on rare Mendelian disorders. In addition, we included 
DISGENET plus [29,30] association data (v16) in this analysis to 
evaluate the annotation of complex diseases and phenotypic traits; note 
that the study by Howard et al. was removed from this dataset to avoid 
circularity. Variant-set functional enrichment analysis was performed 
using variant association data from DISGENET Plus. We considered 
the set of known genes as the domain scope for the analysis. 
Furthermore, we characterized tissue expression using GTEx gene 
expression data (v8).  
 
We performed these analyses for the following two gene-sets: (1) genes 
mapped to by MD-associated GVs (pGenes) and (2) genes regulated by 
cis-eQTLs (eGenes), and two variant-sets: (1) causal GVs and (2) 
colocalizing GVs. 

3. Results 

3.1. Major Depression Associated Genetic Variants Lie in Non-
Coding Regions of the Genome 

The GWAS study by Howard et al., 2019, reported 102 risk loci 
associated with major depression (MD), 97 with a p-value ≤ 5 × 10-8, 
which were the starting point of our analysis. After LD expansion, we 
obtained a set of 5723 potentially causal genetic variants (GVs) 
(Supplementary Scheme S1 and Table S1). We annotated these GVs 
with VEP [11] and CADD [12] (Supplementary Figure S1). The 
identification of probable causal GVs using PICS fine-mapping GWAS 
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data [10] revealed 172 GVs (PICS>10%) in LD with the 97 GWAS risk 
loci (Supplementary Table S2). These GVs are located in different 
regions of the genome, but most of them are in non-coding regions, 
being mainly annotated as intronic (30%), intergenic (30%), or located 
in non-coding transcript regions (17%) (Figure 1A). Only two GVs lie 
in exonic regions (i.e., synonymous and nonsynonymous consequence 
types). The median allele frequency of these GVs was 0.364 (with more 
deleterious consequence types having lower allele frequencies) (Figure 
1B). Only 4% (7) of the GVs were predicted by CADD as potentially 
pathogenic (Figure 1C). The fine-mapped GVs were assigned to 95 
proximal genes (5000 bps), from now on referred to as pGenes. pGenes 
were classified based on their expression across tissues based on GTEx 
gene expression data [19]. Using hierarchical clustering, genes were 
divided into three roughly equally distributed clusters that seem to 
correspond to constitutively, lowly expressed in all tissues, and highly 
expressed in brain tissues (Supplementary Figure S2). 

 

Figure 1. MD GVs are mostly non-coding, common, and potentially not 
pathogenic. GVs distributed along the genome according to their consequence type 
predicted with VEP. (B) Allele frequency density, according to GV’s consequence 
type, also predicted with VEP. (C) Pathogenicity score (predicted by CADD) density 
per consequence type. Please note that a GV can have multiple consequence types; 
thus, the number of consequence types may not necessarily match the total number 
of GVs. MD: major depression; GV: genetic variant; VEP: Variant Effect Predictor; 
CADD: Combined Annotation Dependent Depletion; SNP: single nucleotide 
polymorphism; UTR: untranslated region; NMD: nonsense- mediated decay. 

 
The pGenes are functionally enriched in GO terms related to nervous 
system development, neuron differentiation, synaptic signaling, and 
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different cellular components of the neuron such as dendrite, axon, or 
synapse (Supplementary Table S3); these biological processes and 
molecular functions are involved in the pathophysiology of MD [31]. 
pGenes are associated with an abnormal nervous system morphology 
and physiology according to the Human Phenotype ontology. Disease 
enrichment analysis shows enrichment for the association of both 
pGenes and causal GVs with major depressive disorder and other 
related mental disorders such as schizophrenia or bipolar disorder 
(Figure 2 and Supplementary Table S4). pGenes are also associated with 
comorbid phenotypes and conditions in MD, such as smoking 
behavior, body mass index, and duration of sleep [32]. Notably, 37% of 
pGenes and 42% of GVs have no previous evidence of association with 
depression or other mental disorders. 

 

Figure 2. pGenes are associated with mental disorders. Result of the disease 
enrichment analysis. The ratio corresponds to the number of pGenes associated with 
each disease relative to all pGenes. Dot size is proportional to the number of pGenes 
associated with each disease. Gene enrichment analysis was performed using g:Profiler 
and the DISGENET plus database. pGenes: proximal genes. 
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Some of the pGenes are associated with processes related to MD 
pathogenesis, such as TLR4, involved in immune response [33], ESR2, 
a regulator of estrogen response [34], TCF4, with a role in nervous 
system development [35], DCC, in charge of axon guidance and 
neuronal connectivity [36], PAX5, which interferes in mouse neural 
stem cells proliferation and migration [37,38], and CYP7B1, that 
participates in the metabolism of the neurosteroids DHEA and 
pregnenolone [39]. Among the potentially pathogenic GVs, according 
to CADD, there are 3 intronic GVs lying in ZNF536, a gene involved 
in the negative regulation of neuron differentiation [40], a relevant 
process in MD pathogenesis and treatment [41]. rs1021362 lies in 
SORCS3, a gene previously associated with stress response associated 
with MD [37,42], rs3793577 lies in ELAVL2, whose silencing in animal 
models is associated with reduced behavioral despair [43]; the remaining 
GVs have been previously associated with major depression by several 
PheWAS studies [15] 
 

3.2. Major Depression Causal Genetic Variants Regulate the 
Expression of Genes in Cis 

The 172 fine-mapped GWAS GVs overlap with 13 GTEx PICS GVs 
(Scheme 1), revealing an enrichment of MD causal GVs in eQTLS (p-
value = 7.392 × 10-10). The colocalization analysis to identify GVs 
associated with both MD GWAS and cis-eQTLs resulted in 5 GV– 
eGenes pairs (i.e., genes whose expression is regulated by these GVs; 
rs10149470—BAG5, rs10149470—RP11-894P9.2 
[ENSG00000258851.1], rs12624433—SLC12A5, rs198457—MYRF, 
rs301799—RP5-1115A15.1 [ENSG00000232912.5]), with a 
colocalization probability greater than 10% (Table 1). BAG5 and 
SLC12A5 are involved in neuron projection [44,45] and MYRF in 
central nervous system myelination [46]. In addition, all eQTLs have 
been previously associated with MD and other mental disorders 
according to DISGENET plus [30,47,48] (Supplementary Table S5). 
The eGenes BAG5, SLC12A5, and MYRF show higher expression 
levels in brain regions according to GTEx (Supplementary Figure S3). 
Little is known about the function of the long non-coding RNAs RP11-
894P9.2 and RP5-1115A15.1. 
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Scheme 1. Fine-mapping and colocalization analysis of MD GVs. MD GWAS 
GVs have been fine-mapped using PICS and overlapped with GTEx PICS GVs to 
ultimately perform a colocalization analysis identifying 4 colocalizing GVs affecting 
the expression of 5 eGenes. MD: major depression; GV: genetic variant; GWAS: 
genome-wide association studies; PICS: Probabilistic Identification of Causal SNPs; 
GTEx: Genotype-Tissue Expression; eGenes: genes regulated by expression 
quantitative trait loci; CLPP: colocalization posterior probability. 

 

3.3. MD Associated GVs Affect the TFBS in Regulatory Regions 
of Genes Relevant for the Disease 

The initial set of 5723 GVs associated with MD was first mapped to 
transcription factor binding sites (TFBS) using Chip-Seq data from 
ENCODE. A total of 955 GVs were identified as potentially altering 
the TFBS of 155 TFs (Scheme 2). The GVs’ functional impact was 



 

 70 

assessed with VEP, and 4 sets were created: (a) intergenic and UTR 
GVs (333), (b) intronic GVs (562), (c) regulatory GVs (303), and (d) 
non-coding GVs (389). In addition, we further selected those 
transcription factors (TFs) that were expressed in brain tissues (≥2 
TPM), which left 115 TFs. 
Using a pattern matching approach (variation-scan) [49], we identified 
GVs likely affecting TFBS. As negative controls, we permuted TF 
motifs and randomly selected variants matching GVs properties (see 
Methods). Using permuted motifs and randomly selected variants (1:10) 
as negative controls, we obtained a total of 306 GVs significantly 
altering the TFBS of 102 TFs (considering the 4 sets together). 
Ultimately, 289 GVs and 101 TFs passed the statistical analysis using 
randomly selected variants (1:1000) as negative control. From this final 
set, 171 GVs are predicted to disrupt the TFBS of 89 TFs, whereas 143 
GVs are predicted to create a TFBS for 82 TFs (Supplementary Table 
S6). Most of these GVs were not characterized as potentially pathogenic 
by CADD except for 11 GVs (score ≥ 15).  
 
A total of 270 GVs lie in active regulatory regions of the genome of 
brain-related tissues and cell types according to the epigenome 
annotation from the ENCODE project based on ChromHMM data 
(Supplementary Table S7) [25,26]. We then looked for evidence of their 
impact on gene expression regulation by evaluating their annotation to 
GTEx eQTLs fine-mapped via PICS. The only GV in this dataset of 
270 GVs that also fulfills the criteria of being causal and overlapping 
GWAS and eQTL PICs in the brain with a probability greater than 10% 
was rs12624433, which is an eQTL for the gene SLC12A5. This GV is 
predicted to significantly alter the TFBS of USF1, USF2, and MYC. 
Both rs12624433 and SLC12A5 have been previously associated with 
major depression disorder and other mental disorders such as bipolar 
disorder or schizophrenia [48].  
 
In addition, we also inspected the hTFtarget database [27], looking for 
evidence of a mechanistic association between the eGenes, considered 
the targets, and the TFs whose binding site is being altered by the GVs. 
Focusing on brain regions, we have evidence for two GV-TF-
eGene/target associations (rs11227217: RAD21 -> ZNRD2-DT 
[ENSG00000260233.3]; rs62259947: YY1 -> P4HTM).  
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Table 1. GWAS-eQTL Colocalizing GVs in MD. MD associated GVs colocalizing with eQTLs. GWAS: genome-wide association studies; eQTL: 
expression quantitative trait loci; GV: Genetic variant; MD: major depression; eGene: gene regulated by eQTL; PICS: Probabilistic Identification of 
Causal SNPs.
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Scheme 2. Identification of altered TFBS using RSAT. Pipeline followed to 
identify GVs associated with MD that significantly alter TFBS. Methodologies are 
referred to in bold and along with them are the resources used. Highlighted in grey 
are the control datasets. TFBS: transcription factor binding site; RSAT: Regulatory 
Sequence Analysis Tools; GV: genetic variant; MD: major depression; LD: linkage 
disequilibrium; ENCODE: Encyclopedia of DNA Elements; VEP: Variant Effect 
Predictor; Ctrl: control; UTR: untranslated region; TF: transcription factor; GTEx: 
Genotype-Tissue Expression; PSSM: position weight matrix; PICS: Probabilistic 
Identification of Causal SNPs. 

 
The GV rs62259947 has been annotated as an eQTL downregulating 
the expression of P4HTM in the Brain Cerebellar Hemisphere. We 
propose this effect is likely being mediated by the GV significantly 
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changing the affinity for YY1 binding (weight difference = 14.98 and 
p-value ratio = 5058.82) (see Methods), a TF known to participate in 
gene regulation though looping of the DNA [50]. The eGene P4HTM 
has been associated with the hypoxia-inducible factor HIF1α mediating 
calcium signaling [51], and its null mutation reduces behavioral despair 
[52] (Figure 3). 

 

Figure 3. The GV rs62259947 might disrupt the binding of YY1, thus affecting 
the expression of P4HTM and resulting in behavioral alterations. rs62259947 is 
an eQTL downregulating the expression of P4HTM and is predicted to disrupt the 
binding of the TF YY1. This is represented by the sequence logo of the binding site 
with the nucleotide change highlighted in grey. YY1 is involved in neurogenesis and, 
in turn, controls the expression of P4HTM, which is mediated by HIF1α regulates 
calcium signaling and is also associated with behavior. GV: genetic variant; eQTL: 
expression quantitative trait loci; TF: transcription factor; KO: knockout. 

4. Discussion 

Despite the large volume of genetic information available, the 
pathogenesis and etiology of MD are not yet fully understood, probably 
because most GVs lie in non-coding regions with no obvious direct 
effect on a gene or function. In this context, leveraging multiple omics 
data is key for moving forward in the understanding of the influence of 
genomic variants in MD disease development. On top of that, full-
genome summary statistics are not readily available due to study sharing 
policies (especially for private–public research partnerships) hampering 
the usage of most post-GWAS data analysis tools. This study aims to 
unravel the role of MD GVs in genetic regulation by focusing on 
regulatory variation following two complementary approaches: cis-
eQTLs and TF binding alterations. Both are key to identifying 
potentially causal genes and understanding gene expression regulation 
[6,8], as reported by supporting evidence for its association with other 
mental disorders [53,54,55] and with MD in particular [56,57,58]. The 
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regulatory variation analysis pipelines we have implemented involve 
fine-mapping, cis-eQTL colocalization, transcription factor binding 
analysis, and chromatin accessibility data, specially designed to perform 
well when full-genome summary statistics are not available [59]. These 
pipelines are in line with other approaches that leverage available omics 
data, and as such, they could be applied to other complex disorders with 
a similar genetic architecture and similar data access issues [53,60,61]. 
 
Multiple GVs have been associated with MD, most of them 
characterized as not potentially pathogenic in addition to being 
common and mostly in non-coding regions of the genome according to 
CADD and VEP, respectively (Figure 1). The fine-mapping of MD 
GVs identified 172 causal GVs and 95 pGenes (Supplementary Table 
S2). The functional enrichment analysis of pGenes stands along with 
hypotheses of MD pathogenesis such as alterations in neurogenesis and 
neuroplasticity or the circadian rhythm theory [31]. Additionally, these 
are also enriched for other phenotypes frequently co-occurring with 
MD, such as alterations of body mass index or smoking [32]. While 
most pGenes (63%) and GVs (58%) have previous evidence for 
association with MD, our study pinpoints novel pGenes and GVs 
(Supplementary Table S3 and S4). Additionally, existing literature 
supports the role of pGenes in processes related to MD pathogenesis, 
such as immune response, nervous system development, response to 
stress, or behavioral despair.  
 
MD causally associated GVs are those most likely to be causal and 
functioning as eQTLs and, indeed, proved to be significantly enriched 
in cis-eQTLs from GTEx, in line with previous findings on MD and 
other psychiatric disorders [53,62]. The colocalizing eGenes are 
involved in processes relevant to MD, such as neuron projection [63], 
and have been associated with MD and related phenotypes according 
to DISGENET plus [47,48]. BAG5 is constitutively expressed in all 
tissues, while MYRF and SLC12A5 show higher levels in brain tissues 
(Supplementary Figure S2). BAG5 has been previously identified as 
associated with MD [64]. We characterize SLC12A5, involved in 
chloride homeostasis in neurons, as a pGene, also, and its 
downregulation has been described as an effect of stress leading to the 
activation of the hypothalamic–pituitary–adrenal axis, which ultimately 
can lead to MD-like symptoms [31,65]. However, rs12624433 is an 
eQTL in the Brain Putamen basal ganglia associated with the 
upregulation of SLC12A5. Thus, more research is needed to unravel the 
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exact mechanism by which rs12624433 exerts its role in the regulation 
of the expression of SLC12A5. This eGene has been described as a 
potential drug target for mental disorders, but considerations should be 
taken given its important role in brain development; besides, it is highly 
influenced by exercise and environmental factors [65]. rs198457 
mediates the downregulation of MYRF expression, which plays a role 
in myelination and oligodendrocyte differentiation [46]. These, in turn, 
require thyroid hormones for their differentiation and maturation [66]. 
Furthermore, oligodendrocytes have been stated as crucial for 
psychological functions likely involved in mental disorders such as MD 
[67].  
 
The analysis of TF regulation with RSAT enabled a precise prediction 
of TF binding alterations. Although TF expression is not highly tissue-
specific [7,68], for this type of analysis, it is key to pick meaningful sets 
of TFs and GVs [69]. We focused on TF expressed in brain-related 
tissues as it has been previously reported that genes involved in 
depression are highly expressed in brain regions [4,32,37,47]. Our 
analysis resulted in the prediction of 270 GVs lying in active regulatory 
regions of the genome of brain-related tissues based on chromatin 
accessibility data. These GVs alter the binding of 101 TFs, roughly 
equally distributed as disrupting or creating a binding site. The activating 
or repressing role of these TFs is hard to interpret since it will always 
depend on the sequence context and the cofactors involved [68]. Thus, 
further analysis is required to elucidate the impact of these GVs on gene 
expression regulation. Our pipeline enabled us to filter and prioritize 
the large number of candidate GVs by combining different omics data 
and ultimately propose mechanistic hypotheses.  
 
By using eQTL data, we were able to identify the GV rs12624433, which 
regulates the expression of SLC12A5. This GV, previously referred to 
as colocalizing, is predicted to alter the binding of the TFs USF1, USF2, 
and MYC; these belong to the bHLH family involved in neural 
development [70]. USF1 and USF2 generally exert activating effects 
[71], with USF1 being a risk gene for Alzheimer’s disease and relevant 
for brain cholesterol metabolism involving its transport from astrocytes 
to neurons [72].  
 
Additionally, we found mechanistic evidence for 2 GV-TF-
eGene/target associations (rs11227217: RAD21 → ZNRD2-DT; 
rs62259947: YY1 → P4HTM) when combining pattern matching 
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results, chromatin accessibility data, GTEx eQTLs PICS, and hTFtarget 
data. Variant rs11227217 is more than 20 kbp away from ZNRD2-DT, 
but RAD21 is a member of the cohesion complex, which enables genes 
and enhancers to interact via loop formation [73,74]. NRD2-DT is a 
lncRNA, and interestingly, our findings include several IncRNAs in the 
set of pGenes as well as related with regulatory variations, either 
colocalizing with cis-eQTLS (RP11-894P9.2 and RP5-1115A15.1) or 
with mechanistic evidence for its association with gene expression 
regulation (ZNRD2-DT). Although not their exact role in MD 
pathophysiology is not clear, ncRNAs have been described as promising 
biomarkers and drug targets for MD [75,76].  
 
Regarding the association rs62259947: YY1 → P4HTM, P4HTM has 
been related to neurological disorders and social behavior (Figure 3) 
[51,52]. It is involved in Ca2+ signaling mediated by the hypoxia-
inducible factor HIF1α altering astrocytes gliotransmission [51]. Indeed, 
hypoxia has been associated with mental disorders in general and MD 
in particular [77,78,79,80]. In addition, P4HTM null mutation results in 
a reduction in fear and depression [52]. In turn, rs62259947 
downregulates the expression of P4HTM and changes the binding 
affinity of YY1 in the Brain Cerebellar Hemisphere. Additionally, YY1 
regulates transcription by forming loops, although its specific role as 
activator or repressor is not yet fully understood [50]. Furthermore, 
P4HTM and HIF1α have been reported as potential drug targets for 
MD [52,81]. rs11227217 and RAD21 are associated with red blood cell 
and reticulocyte count, respectively, by PheWAS [15]. Indeed, red blood 
cell parameters have been described as altered in patients with mental 
disorders [82]. 

5. Conclusions 

Overall, we have successfully developed and applied a regulatory 
variation analysis pipeline including fine-mapping, colocalization, TF 
regulation analysis, and chromatin accessibility data, which overcomes 
the limitation of the lack of full-genome summary statistics. We have 
identified causal GVs, pGenes, and eGenes and proposed hypotheses 
for their role in MD pathogenesis, highlighting the role of chloride 
homeostasis and myelination. We also found mechanistic evidence 
involving hypoxia response mediated by altered TF binding. Our 
findings include GVs and genes supported by the literature on MD and 
mental disorders, as well as novel molecular mechanisms underlying 
MD pathogenesis. 
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MD; Table S3: pGenes functional and disease enrichment analysis; 
Table S4: Fine-mapped MD causal GVs disease enrichment analysis; 
Table S5: Colocalizing GWAS-eQTLs association to disease; Table S6: 
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3.3. Benchmarking post-GWAS analysis tools: 
challenges and implications 

Despite the numerous tools available for uncovering the role of GVs in 
disease pathogenesis, there is no guidelines for method selection or 
validation. In this chapter, we design and apply a workflow using a MD 
GWAS dataset and eQTL data to compare the outcomes of different 
fine-mapping and colocalisation tools and their biological implications. 
We identify fine-mapping as a key step in the post-GWAS analysis, with 
implications for subsequent steps, which result in different causal GVs 
and eGenes involved in various biological processes. We also evaluate 
the assumptions of fine-mapping and colocalisation methods in the 
context of the results obtained. Finally, we highlight the need for an 
objective and unbiased assessment of post-GWAS analysis tools to 
leverage GWAS data to support precision medicine applications.   
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Abstract 
Our knowledge of complex disorders has increased in the last years 
thanks to the identification of genetic variants (GVs) significantly 
associated with disease phenotypes by genome-wide association studies 
(GWAS). However, we do not understand yet how these GVs 
functionally impact disease pathogenesis or their underlying biological 
mechanisms. Among the multiple post-GWAS methods available, fine-
mapping and colocalization approaches are commonly used to identify 
causal GVs, meaning those with a biological effect on the trait, and their 
functional effects. Despite the variety of post-GWAS tools available, 
there is no guideline for method eligibility or validity, even though these 
methods work under different assumptions when accounting for 
linkage disequilibrium and integrating molecular annotation data. 
Moreover, there is no benchmarking of the available tools. In this 
context, we have applied two different fine-mapping and colocalization 
methods to the same GWAS on major depression (MD) and expression 
quantitative trait loci (eQTL) datasets. Our goal is to perform a 
systematic comparison of the results obtained by the different tools. To 
that end, we have evaluated their results at different levels: fine-mapped 
and colocalizing GVs, their target genes and tissue specificity according 
to gene expression information, as well as the biological processes in 
which they are involved. Our findings highlight the importance of fine-
mapping as a key step for subsequent analysis. Notably, the colocalizing 
variants, altered genes and targeted tissues differed between methods, 
even regarding their biological implications. This contribution illustrates 
an important issue in post-GWAS analysis with relevant consequences 
on the use of GWAS results for elucidation of disease pathobiology, 
drug target prioritization and biomarker discovery. 
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1. Introduction 

More than 207,400 genetic variants (GVs) have been associated with 
complex diseases since the introduction of genome-wide association 
studies (GWAS) (Dehghan, 2018; Buniello et al., 2019). The vast 
majority of identified GVs lie in non-coding regions of the genome with 
no clear impact on gene function and disease pathogenesis (Brandes et 
al., 2022), posing challenges in interpreting the association of the GV 
with the disease phenotype. Furthermore, these GVs may not be the 
causal ones but may be in linkage disequilibrium (LD) with the true 
causal GVs (Visscher et al., 2017; Brandes et al., 2022). We refer to 
causal GVs to those with a biological impact. A variety of approaches 
are available to unravel the functional role of GVs identified by GWAS 
(Kichaev et al., 2014; Amlie-Wolf et al., 2018; Wallace, 2021; Gazal et 
al., 2022). In addition, there are a plethora of different tools available 
that serve the same purpose but work with different types of data (e.g., 
genotype data versus full genome summary statistics), under different 
assumptions (e.g., one causal GV or more), and with diverse outcomes 
(e.g., causal GVs or relevant gene-cell type combination) (Cano-Gamez 
and Trynka, 2020; Adebiyi et al., 2021). There is, however, no guideline 
for determining which tool is best to use for each approach nor a gold 
standard for evaluating the validity of the results. Furthermore, in 
contrast to other areas where benchmarking evaluations of methods are 
in place, such as for protein structure prediction (Protein Structure 
Prediction Center, 2020) or disease module identification (Dream 
Challenges, 2022), among others, methods for GWAS data analysis 
have not been objectively benchmarked. Selecting the right tool is 
critical in post-GWAS analysis, to properly unravel the functional 
mechanisms by which the GVs lead to disease, and where different 
performances can lead to different results (Wen et al., 2017; Rüeger et 
al., 2018; LaPierre et al., 2021). 
 
There is an absence of a benchmark dataset to assess the performance 
of post-GWAS analysis tools. Therefore, we propose a systematic and 
objective comparison of the results obtained by different tools when 
applied to the same datasets. We designed a fine-mapping and 
colocalization workflow with different tools running alternatively. Fine-
mapping analysis identifies the causal GVs and is a necessary step in 
most post-GWAS analyses. We used the tools Probabilistic 
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Identification of Causal SNPs (PICS) (Taylor et al., 2021) and TORUS 
(Wen, 2016) as alternative tools for fine-mapping. Colocalization 
methods pinpoint the GVs causally associated with a phenotype and a 
molecular trait of interest, such as expression or methylation. We 
focused our analysis on expression quantitative trait loci (eQTL), to 
identify GVs with an effect on the expression of genes, from now on 
referred to as eGenes. We applied two methods for colocalization 
analysis: the Colocalization Posterior Probability (CLPP) approach 
(Hormozdiari et al., 2016) and the Fast Enrichment Estimation Aided 
Colocalization analysis (fastENLOC) (Pividori et al., 2020; Hukku et al., 
2021). We applied the fine-mapping and colocalization workflow to the 
same GWAS on major depression (MD) and eQTL datasets (Figure 1). 
The results obtained with each combination of tools were evaluated in 
terms of fine-mapped and colocalizing GVs, the retrieved eGenes, the 
tissues in which this regulation of gene expression might take place, as 
well as the biological processes in which these genes are involved. 
 

 

Figure 1. Overview of the study workflow. Schematic representation of the entire 
analysis workflow: 1) SSimp Imputation; 2) Alternative fine-mapping with PICS and 
TORUS; 3) Alternative colocalization analysis with CLPP and fastENLOC to both 
PICS and TORUS fine-mapping results; and 4) Functional analysis of the GVs and 
eGenes obtained at the end of the workflow. SSimp, Summary Statistics Imputation 
software; GWAS, genome-wide association studies; PICS, Probabilistic Identification 
of Causal SNPs; CLPP, Colocalization Posterior Probability; fastENLOC, Fast 
Enrichment Estimation Aided Colocalization Analysis; GVs, genetic variants; eGenes, 
genes regulated by expression quantitative trait loci. 

 
The results of the workflow reveal divergence across tools, pinpointing 
a relevant issue in post-GWAS analysis derived from the lack of method 
benchmarking. Our findings demonstrate how critical is the fine-
mapping step to subsequent analysis and how colocalization outcomes 
are in turn highly impacted by the assumptions of each tool. As a 
consequence, the causal GVs and eGenes identified are different and 
are involved in different biological processes. Overall, given the lack of 
agreement among tools, we highlight the need for an objective and 
unbiased assessment of post-GWAS analysis methods and tools to 
properly leverage GWAS data. 
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2. Materials and methods 

Among the plethora of available methods for post-GWAS analysis and 
which have been reviewed elsewhere (Cano-Gamez and Trynka, 2020; 
Adebiyi et al., 2021), we focused on fine-mapping and colocalization. 
Then, we conducted a tool selection based on: workability with full-
genome summary statistics, documentation quality, software maturity 
and developer support availability. 
 
The workflow we describe in this manuscript applies alternative tools 
for post-GWAS analysis to compare their outcomes (Figure 1). We 
begin with an imputation step, followed by a fine-mapping and 
colocalization analysis using two different tools for each of these 
processes, and finish with a functional analysis of the results obtained 
using different tools and databases. We present below a more detailed 
explanation of each step. 
 

2.1. GWAS dataset and imputation 

We have selected the latest genome-wide association study (GWAS) on 
major depression (MD) with publicly available full-genome summary 
statistics (GCST005902) (Howard et al., 2018). This GWAS evaluated 
7,666,894 genetic variants (GVs) in 322,580 European participants 
(113,769 cases and 208,811 controls). We used the harmonized version 
of this GWAS dataset. This implies the genomic position is reported 
against the latest genome build (GRCh38) and the orientation is 
checked by flipping the effect allele (ie., the allele that confers the risk, 
which is not always the minor allele) and other alleles whenever 
appropriate. The beta and 95% confidence interval is also inverted 
accordingly [downloaded from: 
http://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST0
05001-GCST006000/GCST005902/harmonised/29662059-
GCST005902-EFO_0003761.h.tsv.gz]. 
 
The Genotype-Tissue Expression (GTEx) expression quantitative trait 
loci (eQTL) dataset contains single-tissue cis-eQTL data with eGene, 
meaning genes regulated by eQTL, and significant variant-gene 
associations for 49 tissues [downloaded from: 
https://www.gtexportal.org/home/datasets] (Genotype-Tissue 
Expression, 2017). 
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To match the GTEx eQTL panel, we imputed not genotyped GVs in 
the MD dataset with the Summary Statistics Imputation software 
(SSimp) (Rüeger et al., 2018). The parameters we used were GWAS full-
genome summary statistics GVs with their matching z-scores, reference 
and effect alleles along with the European 1,000 genomes linkage 
disequilibrium (LD) reference panel [downloaded from: 
http://hgdownload.cse.ucsc.edu/gbdb/hg19/1000Genomes/phase3/
]. We computed the z-scores by dividing GVs’ effect size, understood 
as the effect of the risk allele relative to the reference allele, over the 
standard error (Shi, 2017). We then assessed the imputation quality 
returned by the SSimp software using the r2. pred parameter, which 
ranges between 0 -bad quality- and 1 -good quality-. Note that we only 
considered single nucleotide polymorphisms (SNPs) for this analysis. 
 

2.2. Fine-mapping with PICS and TORUS 

Before applying the Probabilistic Identification of Causal SNPs (PICS) 
and TORUS fine-mapping tools, we matched GWAS GVs and eQTLs 
to their corresponding LD blocks using the European 1,000 Genomes 
LD reference panel (Berisa and Pickrell, 2016). 
 
We run PICS by programmatically accessing its web application form. 
We used LD-based PICS (https://pics2.ucsf.edu/pics2-LD.html), 
which performs LD expansion and fine-mapping. In brief, PICS takes 
the most significant GV per association locus along with its associated 
p-value, performs LD expansion and then computes the probabilities 
by performing empirical permutations per GV. For GWAS, we 
submitted the data and obtained the computed PICS probabilities for 
the input GVs and those in LD, from now on linked GVs. As for 
eQTLs, we downloaded precomputed LD-based PICS for all GTEx 
best eQTLs per gene per tissue type [downloaded from: 
https://pics2.ucsf.edu/Downloads/GTEx/]. 
 
We executed TORUS software package using the parameters “-
load_zval -dump_pip”. TORUS accepts full-genome summary statistics 
data, meaning all GVs analysed in the study, and their associated z-
scores. Then it computes the causal probabilities using an expectation-
maximization algorithm which assumes there is only one causal GV per 
locus. We obtained these probabilities for all GWAS GVs and GTEx 
eQTLs (v8) [downloaded from: 
https://storage.googleapis.com/gtex_analysis_v8/single_tissue_qtl_d
ata/GTEx_Analysis_v8_eQTL.tar], per tissue. 
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The major histocompatibility complex region (chr6: 28,510,120–
33,480,577, GRCh38) was excluded from all datasets for the analysis 
due to the complex LD structure of GVs, which may lead to inaccurate 
results (Ghoussaini et al., 2020). 
 

2.3. Colocalization analysis via CLPP and fastENLOC 

For the colocalization analysis, we implemented two different 
approaches in the workflow: the Colocalization Posterior Probability 
(CLPP) approach and the Fast Enrichment Estimation Aided 
Colocalization Analysis (fastENLOC). We applied these two methods 
to the fine-mapping results obtained with both PICS and TORUS to 
identify the genes regulated by causal GVs, also known as eGenes. Both 
tools consider that there can be more than one causal GV per 
association locus. CLPP assumes independence between GWAS and 
eQTL data while fastENLOC does not and computes the enrichment 
of GWAS on eQTL data using an embedded function. In addition, 
fastENLOC not only computes SNP colocalization probabilities (SCP) 
but also regional colocalization probabilities (RCP) to overcome the 
inability to narrow down to a single causal SNP, common to all tools. 
Please note that the tools were run following the guidelines and 
parameters recommended by the authors. We conducted a CLPP 
approach by computing the product of PICS probabilities for GWAS 
and eQTL overlapping linked GVs. Based on previous experience in 
post-GWAS data analysis, we narrowed down the results to the most 
likely causal GVs (Farh et al., 2015; Ghoussaini et al., 2020; Pérez-
Granado et al., 2022) by filtering GWAS GVs and eQTLs PICS 
probabilities, as well as their product by >10%. We run fastENLOC 
with fine-mapped GWAS GVs and eQTLs per tissue using the 
following parameters: default shrinkage 1) and total variants (7,666,894). 
We filtered the results by RCP >0.5 and SCP >0.001 (Wen et al., 2017). 
 

2.4. Proximal genes 

Common gene mapping practices involve looking at the GVs’ 
overlapping or nearest downstream and upstream genes, also known as 
proximal genes or pGenes. We retrieved this genetic information using 
Ensembl via SNPnexus (Oscanoa et al., 2020). 
 
We first identified pGenes associated with GVs from PICS and TORUS 
fine-mapping results and performed gene-set enrichment analysis on 
both sets. 
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Then, for each fine-mapping and colocalization combination of tools, 
we obtained the pGenes to which the GVs mapped and compared them 
to the corresponding set of eGenes. We also evaluated each pGenes-
eGenes set for their association with disease and performed a gene-set 
enrichment analysis. 
 

2.5. Functional analysis 

For the evaluation of association to disease, we followed two different 
approaches. When evaluating GVs from fine-mapping results, we used 
variant association data from DISGENET plus (Piñero et al., 2019; 
DISGENET plus, 2022). Note that the GWAS under evaluation 
(Howard et al., 2018) and a meta-analysis that it is a part of (Howard et 
al., 2019) were removed from DISGENET plus datasets to avoid 
circularity. As for genes, we used the R package disgenetplus2r 
(disgenetplus2r, 2022), which contains gene-disease association data, 
and considered Medical Subject Headings (MeSH) disease classes 
system for disease grouping. 
 
We performed the gene-set enrichment analysis using g:Profiler via the 
R package gprofiler2 (Raudvere et al., 2019) and the following 
databases: 1) Gene Ontology (GO) biological processes, molecular 
functions and cellular processes; 2) Reactome and WikiPathways 
pathways; 3) miRNA annotations; 4) Human Phenotype Ontology, 
which focuses on rare Mendelian disorders, and has phenotypic features 
associated with disease; and 5) DISGENET plus, which has genes’ 
association data to disease and phenotypic traits (v19). The whole set of 
known human genes was used as domain scope for the analysis and 
electronic GO annotations were not considered. Furthermore, to make 
the functional enrichment analysis more meaningful, we filtered the 
terms by their specificity using their term size (<1,500 genes), which 
corresponds to the number of genes associated with that term. 
 
In addition, we applied a guilt-by-association approach to overcome the 
lack of functional information for some genes and assign the function 
of better-characterized neighbours in the interactome. Thus, we used 
molecular interaction data from IntAct (Orchard et al., 2014) clustered 
with MONET (Tomasoni et al., 2020) to evaluate whether different 
eGenes retrieved from the workflow could belong to the same cluster 
and thus affect the same molecular pathway. We performed a gene-set 
enrichment analysis of the retrieved clusters filtering by an eGene-
cluster genes ratio of 1:50. 
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We evaluated the fine-mapping and colocalization results at different 
levels: the tissue specificity, colocalizing causal GVs, their target genes 
(eGenes) and their biological implications. We examined the results 
individually and then compared them across tools, with classic 
approaches (pGenes) and with the results reported in the original 
publication. 

3. Results 

This study evaluates and compares the outcomes of different fine-
mapping and colocalization tools (Figure 1). To accomplish this, we 
have run our analysis using the same genome-wide association study 
(GWAS) on major depression (MD) and expression quantitative trait 
loci (eQTL) datasets. In addition, and in line with our goal, we address 
the results of each analytical step individually before getting into their 
biological implications. The workflow begins with an imputation phase 
(SSimp) to predict the genotypes not directly assayed in the original 
GWAS. Then, a fine-mapping step with Probabilistic Identification of 
Causal SNPs (PICS) and TORUS to identify the most likely causal 
genetic variants (GVs), meaning those likely to have a biological effect 
on the trait, and compute their causal probabilities. Next, a 
colocalization analysis using the Colocalization Posterior Probability 
(CLPP) approach and the fast enrichment estimation aided 
colocalization (fastENLOC) software, to identify the GVs causally 
associated with both MD and a change in expression of a target gene. 
Finally, the functional analysis, leveraging a diversity of databases, aims 
to decipher the impact of the identified GVs and eGenes, meaning 
genes regulated by eQTLs. 
 

3.1. GWAS dataset imputation 

The original genome-wide association study (GWAS) consisted of 
7,624,931 harmonised genetic variants (GVs) and after imputation to 
predict missing Genotype-Tissue expression (GTEx) eQTLs, we 
obtained 7,947,219 GVs (ie. a total of 554,824 imputed GVs). The 
estimated imputation quality provided by SSimp was generally good for 
all chromosomes (r2. pred >0.8) except for chromosome 17. 
 

3.2. Fine-mapping with PICS and TORUS 

We run linkage disequilibrium (LD)-based PICS by inputting the most 
significant GWAS GVs per LD block (1,707 GVs) along with their p-
values (Figure 2). After PICS LD expansion and fine-mapping, we 
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obtained 54,649 GVs with their corresponding PICS probabilities. As 
for the GTEx eQTLs, we downloaded the precomputed LD-based 
PICS per tissue from the data portal. In parallel, we computed the z-
scores for all GWAS GVs and GTEx eQTLs and along with the LD 
block specification, we used them as input for TORUS. 
 

 

Figure 2. Results of PICS and TORUS fine-mapping analysis. Comparison of 
PICS and TORUS fine-mapping outcomes at GV and LD block level for both GWAS 
and eQTL datasets. PICS, Probabilistic Identification of Casual SNPs; GVs, genetic 
variants; LD, linkage disequilibrium; GWAS, genome-wide association studies; 
eQTLs, quantitative trait loci. 

 
We compared PICS and TORUS initial fine-mapping results 
(Supplementary Figure S1) and then filtered GVs by a probability >10% 
to keep the most likely causal GVs. Because each tool has its own 
assumptions and different GVs could be identified, but these may be in 
LD, the comparison was done considering the probabilities per LD 
block. In addition, we examined the distribution of PICS and TORUS 
sum of probabilities for all LD blocks with likely causal GVs (GWAS: 
1,367 and 56, respectively; GTEx: 1,209 and 334, respectively) 
(Supplementary Figure S1A) as well as the common ones (44 and 287, 
respectively) (Figure 3A). PICS probabilities for GWAS GVs are biased 
towards higher values in all cases, with 74% of GWAS LD blocks 
having a probability greater than 50%. Meanwhile, TORUS probability 
distribution is skewed towards lower values with only 21% of LD blocks 
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surpassing the 50% probability. Regarding GTEx eQTLs, PICS and 
TORUS results generally follow a more similar distribution with 
probabilities biased towards higher values, especially when only GVs 
with probabilities greater than 10% are considered (Figure 3B and 
Supplementary Figure S1B; note that we focused on Brain Frontal 
Cortex region because it is relevant to MD and for illustrative purposes). 
 

 

Figure 3. PICS and TORUS fine-mapping probabilities have different 
distributions. Scatter plot and distribution of PICS and TORUS probabilities for LD 
blocks containing GVs with PICS and TORUS probabilities >10%. (A) MD GWAS 
and (B) Brain Frontal Cortex LD block. PICS, Probabilistic Identification of Causal 
SNPs; LD, linkage disequilibrium; GVs, genetic variants; MD, major depression; 
GWAS, genome-wide association studies. 

 
The analysis of PICS and TORUS most likely causal GVs (probability 
>10%) revealed that both sets are enriched in GVs associated with MD, 
bipolar disorder and other psychiatric disorders (Supplementary Tables 
S1, S2). PICS causal GVs are also enriched in metabolic-related traits 
such as triglycerides measurement. 
 
Additionally, we applied classic gene-mapping approaches to PICS and 
TORUS fine-mapping results, yielding 1,277 and 1,248 proximal genes 
or pGenes, respectively. Both sets were enriched in genes associated 
with neurogenesis as well as neuron differentiation and development 
(Supplementary Tables S3, S4). 
 

3.3. Colocalization analysis via CLPP and fastENLOC 

The colocalization results from CLPP approach using PICS fine-
mapping results yielded 44 GVs and 43 genes regulated by eQTLS, also 
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known as eGenes, affecting 28 tissues (Supplementary Table S5), 
whereas no results were obtained when using TORUS causal GVs. In 
parallel, fastENLOC applied to causal GVs identified by PICS resulted 
in 24 GVs and 17 eGenes across 13 tissues (Supplementary Table S6), 
while when applied on TORUS probabilities yielded 10 GVs and 3 
eGenes in 2 tissues (Supplementary Table S7). 
 
When comparing methods, the use of different colocalization tools after 
fine-mapping with PICS yields the most similar results. When using 
PICS, all tissues and eGenes identified by fastENLOC are also obtained 
by CLPP, with differences found at the GV level, and CLPP retrieving 
additional eGenes compared to fastENLOC (Supplementary Table S8 
and Figure 4). Meanwhile, when comparing the use of PICS or TORUS 
fine-mapping probabilities followed by fastENLOC, we only identified 
one common tissue but with different eGenes and GVs. Similarly, 
PICS+CLPP and TORUS+fastENLOC yielded common findings only 
at the tissue level. Among the tissues with causal GVs and eGenes 
retrieved when using PICS and either colocalization tools, we can find 
diverse brain regions like the frontal cortex or hypothalamus. 
 

 

Figure 4. Results of CLPP and fastENLOC colocalization analysis. Comparison 
of CLPP and fastENLOC colocalization outcomes according to the prior fine-
mapping tool used. CLPP, Colocalization Posterior Probability; fastENLOC, Fast 
Enrichment Estimation Aided Colocalization Analysis; GVs, genetic variants; eGenes, 
genes regulated by an expression quantitative trait loci. 

 

3.4. Proximal genes and functional analysis 

We compared eGenes from fine-mapping and colocalization workflow 
to pGenes from PICS and TORUS fine-mapping results. Only 3 genes 
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overlapped between pGenes from PICS fine-mapping and 
PICS+CLPP eGenes (KTN1, PXMP4 and ESYT2) and one with 
PICS+fastENLOC (KTN1). There was no overlap with pGenes when 
comparing to TORUS. The eGenes from PICS+CLPP are enriched in 
their association with miRNAs and the eGenes from 
PICS+fastENLOC in RNA Polymerase I Promoter Escape 
(Supplementary Table S9). Considering all eGenes together (46), these 
are functionally enriched in terms related to transcription factor 
regulation and miRNA. We also assessed the distribution of the eGenes 
in a clusterized human interactome. The three sets of eGenes (i.e., 
PICS+CLPP, PICS+fastENLOC and TORUS+fastENLOC) 
belonged to different clusters, except for eGenes shared across tools 
results (ie. 17 shared eGenes which are located in 10 clusters). Some of 
these clusters were associated with transcription factor regulation, 
inflammation or neurogenesis (Supplementary Tables S10, S11). No 
clusters identified for TORUS+fastENLOC passed the functional 
analysis filters, that is a ratio of eGenes over cluster genes higher than 
1:50 and enriched term size <1,500 genes. 
 
When we applied traditional gene mapping approaches to the GVs that 
were found to regulate the expression of those eGenes, we discovered 
a total of 74 pGenes. The vast majority of eGenes identified do not 
match pGenes, which holds true across all workflows (Table 1). In 
addition, most matches derive from GVs lying in an intronic region of 
the genome (Supplementary Table S12). Nonetheless, all sets of pGenes 
and eGenes are associated with mental disorders, behaviour and 
behaviour mechanisms as well as psychological phenomena and 
processes and nervous system disease (Supplementary Figures S2, S3). 
Additionally, pGenes are enriched in GO terms associated with diverse 
signalling pathways (Supplementary Table S13). 
 
Furthermore, we compared the results obtained with the original 
publication where 14 GVs and 7 pGenes were reported. The latter are 
functionally associated with synapsis (Supplementary Table S13) and 6 
of them have a prior association with mental disorders (Supplementary 
Figure S4). Only 5 fine-mapped GVs from PICS and 7 GVs from 
TORUS overlapped with the GVs reported in the original publication, 
and 1 pGene (SGIP1), which is in both sets of fine-mapped pGenes. 
However, none of the GVs and pGenes obtained by colocalization with 
any combination of tools evaluated in our pipeline overlapped with the 
GVs and pGenes reported in the original publication. 
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 eGenes pGenes Matches 

PICS + CLPP 43 64 10 

PICS + fastENLOC 17 31 3 

TORUS + fastENLOC 3 8 0 

Table 1. Identified eGenes differ from classic gene mapping (pGenes). The number 
of eGenes, also known as genes regulated by eQTLs, retrieved from the fine-mapping 
and colocalization analysis; the number of pGenes or proximal genes, that is 
overlapping or nearest upstream and downstream genes; and matches between 
eGenes and pGenes. The information is shown for each combination of fine-mapping 
and colocalization tools used. eGenes: genes regulated by expression quantitative trait 
loci; pGenes: proximal genes; PICS: Probabilistic Identification of Causal SNPs; 
CLPP: Colocalization Posterior Probability; fastENLOC: fast enrichment estimation 
aided colocalization analysis. 

4. Discussion 

Currently, there are a plethora of strategies available for post-GWAS 
analysis (Cano-Gamez and Trynka, 2020; Adebiyi et al., 2021). Here, we 
have focused on two main approaches: fine-mapping, which aims to 
identify the likely causal GVs, and colocalization, aimed at identifying 
which genes are regulated by the GVs at the expression level (eGenes). 
Furthermore, while many tools address the same goal, there is no 
standard set of causal GVs that have been experimentally validated for 
benchmarking to determine and compare which one is the most 
adequate (Brandes et al., 2022). Thus, we have designed an evaluation 
exercise to assess the outcome of different fine-mapping and 
colocalization tools using the same MD GWAS and eQTL dataset. To 
the best of our knowledge, no study goes beyond the comparison of the 
different tool’s assumptions and thus the evaluation of the biological 
implications of their findings (Wen et al., 2017; Cano-Gamez and 
Trynka, 2020). 
 
Our main premise throughout this analysis has been to use each tool as 
it was intended by following developers’ recommendations and 
guidelines as closely as possible. This way we could get the most out of 
them and compare their optimised outcomes. Furthermore, one of the 
primary reasons behind the tools’ selection was their ability to work with 
full-genome summary statistics instead of individual genotype data, 
which can be difficult to obtain due to privacy concerns. Other criteria 
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for tool selection included the quality of documentation, the maturity 
of the software, and the availability of developer support. 
 
Prior to post-GWAS analysis, the imputation process using SSimp 
yielded very good quality results except for chromosome 17. One 
possible explanation is that SSimp provides hg19 1000Genomes phase3 
as the reference panel. This version of the genome has some gaps, most 
of which are found in telomeres and centromeres, having a strong 
impact on chromosome 17 (Rashid-Kolvear et al., 2007; Genome 
Reference Consortium, 2022). We then proceeded with the fine-
mapping and colocalization workflow, keeping the previously 
mentioned issue in mind when evaluating their results. 
 
Fine-mapping is significantly influenced by LD patterns and the used 
tools, PICS and TORUS, which work under different assumptions (see 
Methods). Therefore, to have comparable results we considered the 
probabilities obtained at the LD block level, because the most likely 
causal GVs may differ or not be discernible due to high LD between 
GVs. In addition, to account for the difference in the number of GVs 
which could be driving the observed inverse distribution of probabilities 
between tools (Supplementary Figure S1), only the most likely causal 
GVs were considered in the comparison (Figure 2). In general, TORUS 
retrieves GVs with lower probabilities compared to PICS. This could 
be explained by the algorithm’s conservative nature and its assumption 
of one causal GV per association locus, with probabilities biased 
towards zero when the locus contains multiple causal GVs (Wen, 2016). 
Indeed, the one causal GV assumption has been debated, with multiple 
GVs acting together resulting in a more reasonable theory (Burgess, 
2022). Nonetheless, both PICS and TORUS most likely causal GVs are 
enriched in their association with MD, bipolar disorder and other 
psychiatric disorders (Supplementary Tables S1, S2). This suggests that 
both fine-mapping approaches identify likely causal GVs associated 
with MD. GVs fine-mapped by PICS are also enriched in diseases and 
traits usually comorbid with MD such as alcohol consumption (Gémes 
et al., 2019) and metabolic traits like serum total cholesterol 
measurement (Gold et al., 2020). Classic gene mapping of PICS and 
TORUS fine-mapping results (2,556 GVs and 79 GVs respectively, 
common- 58 GVs) (Figure 2), yielded 1,277 and 1,248 pGenes, 
respectively, with all TORUS pGenes included in PICS. These results 
could be explained because, compared to TORUS, PICS computes 
higher probability values and may retrieve more than one likely causal 
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GV per locus. But provided the set probability threshold, some of these 
GVs may be in LD and therefore mapping to the same genes. Both sets 
of pGenes are enriched in genes associated with neurogenesis, highly 
affected in MD (Li Z. et al., 2021). All in all, fine-mapping is a critical 
step in post-GWAS analysis, with high divergence observed between 
different methods, particularly at the level of GVs and their associated 
probabilities, which will highly impact subsequent colocalization 
analysis. 
 
CLPP and fastENLOC colocalization approaches were applied to both 
fine-mapping results from PICS and TORUS. Following the same logic, 
given that TORUS computed lower probability values, PICS yielded 
more colocalization findings (Supplementary Tables S5–S7). 
Furthermore, we have similar results under CLPP assumption of 
independence between GWAS and eQTLs compared to fastENLOC 
built-in function to compute their enrichment, with fastENLOC being 
more stringent as previously described (Hukku et al., 2021). 
Interestingly, when focusing on a single tissue, the results do not match 
at the GV level but do so at the eGene level (Supplementary Table S8). 
This suggests that there might be different GVs that have an effect on 
the expression of the same eGenes. It also highlights the importance of 
the identification of eGenes to determine how GVs may ultimately 
impact the disease phenotype. 
 
The overlap between eGenes and pGenes from PICS and TORUS fine-
mapping was very small, with 3 genes in total. Among them, KTN1 has 
also been associated with MD (Dall’Aglio et al., 2021) and ESYT2 is 
involved in neurodevelopmental pathways and may be associated with 
suicidal behaviour trends in MDD although more research is needed 
(Calabrò et al., 2018). eGenes from PICS+CLPP were functionally 
enriched with miRNAs. These have been recently reported as relevant 
in MD pathogenesis and treatment (Dwivedi, 2014). Specifically, hsa-
miR-23a-3p has repeatedly been associated with duloxetine treatment 
response assessment in MD (Kim et al., 2019). Moreover, the eGene 
GMPPB identified from TORUS+fastENLOC has already been 
associated with MD pathogenesis in proteome-wide association studies 
(Wingo et al., 2021). GMPPB is involved in glycosylation, which has 
been reported as relevant and even hypothesized as a potential 
biomarker for MD (Yamagata and Nakagawa, 2020). Considering all 
eGenes together, they are enriched in their association with 
transcription factor regulation (Supplementary Table S9), which has 
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already been related to MD (Zhong et al., 2019; Li X. et al., 2021; Pérez-
Granado et al., 2022). The mapping of eGenes to protein interaction 
clusters indicated that the three sets of genes (i.e., PICS+CLPP, 
PICS+fasENLOC and TORUS+fastENLOC) belonged to distinct 
clusters and are thus likely to be involved in different biological 
processes. Nevertheless, PICS+CLPP and PICS+fastENLOC 
associated sets of clusters were enriched with genes associated with 
processes involving TF regulation as well as inflammation or 
neurogenesis (Supplementary Tables S10, S11). All these processes are 
associated with MD pathogenesis (Shadrina et al., 2018; Zhong et al., 
2019; Li X. et al., 2021, Li et al., 2021 Z.; Pérez-Granado et al., 2022). 
In general, the identified eGenes are poorly characterized yet the cluster 
analysis shades some light on their potential molecular associations. 
 
Fine-mapping and colocalization analysis successfully identified eGenes 
associated with mental disorders (Supplementary Figures S2–S4) that 
differed from the set of pGenes, particularly when focusing on non-
coding regions of the genome (Table 1 and Supplementary Table S12). 
Accordingly, pGenes are enriched in their association with pathways 
that have been reported as disrupted in MD such as MAPK (Wang et 
al., 2020), ErbB (Ledonne and Mercuri, 2020), PI3K/AKT (Matsuda et 
al., 2019) and ERK (Wang and Mao, 2019) signalling pathways 
(Supplementary Table S13); as well as MD potential causes like stress or 
inflammation (Shadrina et al., 2018; Li Z. et al., 2021). When comparing 
the results from our workflow to the original manuscript, there were 
only matches when considering the fine-mapped PICS and TORUS 
results but not after colocalization analysis. The common pGene 
between the three datasets was SGIP1, which has been involved in 
mood regulation (Dvorakova et al., 2021). 
 
Brain regions are of particular interest in MD and as such, we focused 
the evaluation of our results on them. The brain frontal cortex, 
hypothalamus, pituitary and brain cerebellar hemisphere have common 
findings between PICS and both colocalization tools. MD and 
myclonus-dystonia are usually comorbid, and their association has 
typically been studied in relation to SGCE mutation and its potential 
pleiotropic effect (Peall et al., 2013; Kim et al., 2017; Cazurro-Gutiérrez 
et al., 2021). However, whether SGCE plays a role in MD manifestation 
has been debated. On the one hand, animal studies have shown that 
knocking out this gene causes myoclonus, motor coordination deficits, 
and depression-like behaviour (Cazurro-Gutiérrez et al., 2021) which is 



 

 107 

consistent with the lower expression levels reported by GTEx. On the 
other hand, a similar frequency of MD has been reported in SCGE 
mutated and wild-type myoclonus dystonia patients (Kim et al., 2017). 
Focusing on the hypothalamus, one of the most common causes of MD 
is stress, which affects the hypothalamic-pituitary-adrenal axis by 
increasing glucocorticoid levels (Karger et al., 2018; Oliva et al., 2018). 
These have an impact on various signalling pathways, including the Wnt 
pathway, in which FZD5 plays a role, and neurogenesis (Karger et al., 
2018). However, the changes in gene expression caused by rs77678807 
reported by GTEx are the inverse of what we would expect (Genotype-
Tissue Expression, 2017). PCOLCE2 is highly expressed in the pituitary 
and there is evidence of reduced levels in depression-like behaviours in 
mice (Yamawaki et al., 2018), consistent with rs9757063 effect. Indeed, 
it has already been associated with psychiatric disorders by GWAS 
studies (Martínez-Magaña et al., 2021). However, how exactly they play 
a role in MD pathogenesis is still unknown. Little is known about the 
eGenes and GVs identified in the brain cerebellar hemisphere. 
Additionally, in the brain frontal cortex and hypothalamus, two 
different lncRNAs have been identified, LINC01159 and RP11-
838N2.5 respectively. Even though little is known about them, 
lncRNAs seem to play a relevant role in MD pathogenesis and 
therapeutics (Shi et al., 2021; Hao et al., 2022). PICS+CLPP identified 
rs1480432 as upregulating the expression of DTNA, which is associated 
with neurogenesis and underregulating the maturation and stability of 
postsynaptic density (Chen et al., 2022). MAO B has been found to be 
overexpressed in postmortem brain tissue from MD patients, while 
DTNA is found to be underexpressed in MAO B knockout mice. The 
colon is another tissue whose associations with MD have produced 
intriguing results. ACTL8 is both associated with the microbiome 
composition and MD, but it is still unclear whether and/or which role 
the gut microbiome may have in a person’s susceptibility to MD 
(Martins-Silva et al., 2021). 
 
In general, both classic gene mapping approaches and colocalization 
analysis identified genes associated with MD or associated relevant 
processes. Colocalization analysis can provide insights about the effect 
of GVs located in non-coding regions of the genome, pinpointing the 
genes they regulate and the relevant tissues. As it has previously been 
reported the closest gene may not always be the causal one (Brodie et 
al., 2016; Zhu et al., 2016). These results would need further evaluation 
with other types of functional genomics data and ultimately 
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experimental validation to verify the role of these regulatory 
mechanisms in disease pathogenesis (Dehghan, 2018). 
 
Our goal was to illustrate the impact of the lack of standards on the 
selection of the most adequate post-GWAS analysis method using a 
fine-mapping and colocalization workflow that compared different 
tools. The results revealed a high divergence between fine-mapping 
methods due to their assumptions, which in turn highly impacted the 
next steps. TORUS one causal variant assumption may tip the balance 
in favour of PICS considering fine-mapping and posterior analytical 
steps. Colocalization results seem to diverge in the amount of GVs and 
eGenes identified, with fastENLOC being more stringent by 
considering the enrichment of GWAS on eQTLs. All in all, despite the 
potential of combining GWAS data with molecular profiling datasets to 
guide in the interpretation of the functional impact of GVs located in 
non-coding regions of the genome, the results of our analysis revealed 
shortcomings related with the analytic tools. We propose that objective 
evaluation and benchmarking of post-GWAS analysis tools is required 
in order to fully leverage GWAS data for precision medicine and drug 
R&D applications. 
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4. DISCUSSION 

4.1 Available genetic association data on MD 

Current status of curation guidelines  

Advances in genetic association studies have encouraged the 
development of curation guidelines and the use of standard 
terminologies to ensure a systematic and accurate data annotation 
process, as well as resource interoperability87,89,93. However, curation 
criteria for complex diseases in general, and MD in particular, do not 
consider multiple evidences or further assess study type and design. 
Instead, their association evaluation remains at the individual 
publication level. Therefore, the first objective of this thesis was to 
develop curation guidelines for evaluating the validity of MD genetic 
association data. The second one was to create a database of GVs 
associated with MD following the developed guidelines.  
 
Compared to Mendelian and rare disorders, which have gene-disease 
and GV-disease guidelines for association validity, complex diseases 
pose additional challenges to the creation of such guidelines. Multiple 
GVs contribute to disease risk, most of which are found in non-coding 
regions of the genome and have no clear link to a target gene or 
regulatory mechanism95,96. Thus, guidelines designed for Mendelian or 
rare disorders cannot be directly translated into complex diseases, and 
such features should be considered. 
 
The current understanding of MD is based on a variety of genetic 
association studies, highlighting CGS and GWAS, which have identified 
GVs and genes significantly associated with MD8,76,139. These data are 
scattered across multiple resources and in the literature. On top of that, 
the complexity of MD has led to its study from various angles, such as 
the environment or treatment response aspect. Overall, there is a critical 
need for the follow-up and validation of such findings to better 
understand their role in disease pathogenesis. 

Proposal of curation guidelines 

A curated knowledge base is required to promote an accurate posterior 
analysis. In this thesis, we have developed curation guidelines for 
assessing MD-associated GVs combining different resources and 
evidences from diverse association and study types; we have evaluated 
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their contexts and conducted a quality control. Ultimately, we have 
created a knowledge resource that takes into account all MD aspects 
mentioned above (Chapter 3.1).  
 
In the absence of curation guidelines that evaluate genetic association 
data for MD, we developed ours based on current literature, other 
diseases’ curation guidelines, and an accurate inspection of collected 
association data. The four main steps of the curation guidelines address 
a critical aspect of MD genetic association data, given its complexity and 
heterogeneity. In this thesis, we have focused on the particular case of 
MD. However, we think an adapted version of the developed curation 
guidelines could be used for other complex diseases with a comparable 
genetic architecture.  

The outcomes and limitations of the curation process 

The conducted curation process has been a semi-automatic approach 
which enabled the creation of an expert-curated database. Aided by 
bioinformatic tools for data collection and curation, we have extracted 
and evaluated more than 2000 publications that resulted in 709 GVs 
and 65 publications. For that, we believe that a comprehensive manual 
curation process is required for an appropriate evaluation of the 
evidences and to identify false associations.  
 
Data from different types of genetic association studies (i.e., VDA, TR 
and E) and from diverse nature (i.e., studies in human and animal 
models) were collected by inspecting different resources. The small 
overlap between types of association studies can be due to different 
GVs affecting different aspects of the disease. Regarding study type, 
whereas GWAS repositories only contain GWAS data, TM can capture 
associations from CGS, GWAS and preclinical models. Given the small 
overlap between resources and study types, data integration from 
various resources resulted in a more representative dataset. The small 
overlap between CGS and GWAS, combined with the fact that many 
CGS were discarded during the quality control step, highlights CGS's 
lack of replicative power attributed to the small sample size typically 
used in such designs. Indeed, we could observe that no CGS conducted 
before 2008 passed our curation criteria. In addition, CGS are 
hypothesis-driven and generally evaluate GVs in coding regions of the 
genome. In contrast, GWAS are hypothesis-free and identify GVs 
mostly in non-coding regions, with potential regulatory roles in gene 
expression. Nonetheless, it should be considered that the GVs 
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identified by GWAS may not be the ones with a role in disease 
pathogenesis, but these may be in LD with the true causal ones. All in 
all, the principles underlying CGS and GWAS, as well as their 
limitations, led to a small overlap between the genes these GVs mapped 
to. 
 
The criticism against CGS is based on the reported large effects from 
GVs identified using small sample sizes and their lack of replicative 
power43,44. In addition, CGS focus on a single or small set of GVs and 
genes, while MD is a complex disease in which many GVs, each with a 
minor effect, are expected to play a role. Nonetheless, we found CGS 
evidences passing the curation pipeline quality control. And, although it 
has been argued that CGS should be abandoned58, if their study design 
is properly performed, these could still aid in understanding MD 
pathogenesis. Specifically, it has been proposed that best-informed 
decisions could be made by considering all available information, 
especially in the case of psychiatric disorders140. 
 
Cellular and animal models of MD are very diverse and mimic different 
aspects of the disease phenotype with no one-fits-all model78,80. As a 
result, their quality control may include the characterisation and 
evaluation of factors other than sample size and significance. For 
instance, how the model was generated, how it resembles MD 
phenotype and which tests are employed. Furthermore, the 
compromise reached in the sample size cut-off for GWAS and CGS 
could be further fine-tuned depending on the scope and number of 
GVs expected to be identified, as well as their effects57,70,141. Future work 
in defining the quality control criteria for cellular and animal models will 
enable the objective assessment of evidences provided by these type of 
studies. 
 
The GVs in the curated dataset were mostly lying in non-coding regions 
of the genome with no clear effect on MD pathogenesis95. These 
findings require a posterior functional analysis to elucidate the causal 
GVs and understand how these influence disease risk; this is 
emphasised by the single GV that overlapped across study types. These 
results along with the GVs’ minor effects have led to some criticism 
towards GWAS clinical utility142. However, in other complex diseases, 
GVs identified by GWAS are being applied for disease risk assessment, 
disease classification, therapeutic development, and drug selection, 
offering some promise142. To promote an accurate diagnosis and 
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accelerate treatment options, larger sample sizes and more specific 
phenotyping, as well as advances in posterior functional analyses of 
these GVs, will be critical.  

4.2. Limitations, challenges and future steps in the post-
GWAS era 

Post-GWAS studies: available data and analyses 

Multiple genetic association studies on MD have been carried out; 
however, despite this wealth of information, there is still much to learn 
about MD pathophysiological mechanisms. Therefore, the third 
objective of the thesis was to uncover potential regulatory mechanisms 
by which GVs associated with MD may contribute to disease 
pathogenesis. Having considered that objective, the fourth one came 
naturally: to benchmark post-GWAS analysis tools by systematically 
evaluating their performance and selecting the most suitable ones for 
the interpretation of GWAS findings on MD. 
 
Thanks to the advances in the different omics fields (i.e., genomics, 
transcriptomics, proteomics, metabolomics and epigenomics), we can 
reach molecular-level characterisation of disease mechanisms. As a 
result, integrating omics data with GWAS findings has become key to 
advance in our understanding of complex diseases pathogenesis and, 
thus, MD143.  
 
Despite a large amount of genetic association data available, privacy 
constraints relating to the exploitation of individual data limit the use of 
full genotype data. Recent efforts to increase sample sizes have 
encouraged private and public sector collaborations, which has led to 
stringent data-sharing policies regarding full genome summary statistics 
(i.e., association results of all GVs tested). As a result, several post-
GWAS analysis tools have adapted to using summary statistics (i.e., the 
most significant GVs) as an alternative when full genome summary 
statistics are unavailable144,145.  
 
Numerous post-GWAS analysis tools are available for analysing GWAS 
findings for various purposes. Although different tools with the same 
goal exist (e.g., for fine-mapping or for colocalization), their data 
requirements, assumptions, and results may differ104,146,147. There is 
currently no protocol or standard procedure to address which tool 



 

 125 

would be the best in each case, and maybe their combination would be 
the best approach as it has been suggested in other contexts129. Some 
method comparisons have been made, but these have remained at the 
mathematical level rather than delving into the biological implications 
of their findings104,147. Additionally, there is no benchmark dataset to 
assist in the evaluation of the performance of post-GWAS tools. A set 
of manually curated genes with moderate to high confidence evidence 
of their functional role has been proposed to aid in prioritising causal 
genes at GWAS loci148. But, to reduce potential biases on this type of 
datasets, high-quality gold-standard GWAS datasets that represent a 
wide range of molecular mechanisms and genetic architectures are 
required. 
 
In this context, we have conducted diverse functional genomics 
analyses, including fine-mapping, colocalization and transcription factor 
binding site analysis to determine the role of GVs in MD (Chapters 3.2 
and 3.3). We have also developed and implemented a workflow that 
compares the outcomes of different post-GWAS analysis tools, focused 
on fine-mapping and colocalization, and their biological implications 
(Chapter 3.3).  

Finding the causal ones 

Fine-mapping methods help unravel which are the most likely causal 
GVs144. These do not necessarily correspond to the most significant 
GWAS findings but may be in LD, with LD patterns significantly 
influencing this type of analysis. First, since these patterns are 
population specific, the LD reference panel and the GWAS dataset 
population should match. Another layer of complexity is added when 
GVs are in high LD to distinguish between individual GVs’ effects149. 
 
The common assumption that only a single causal GV exists per loci 
has been questioned, and it has been argued that the phenotype may be 
driven by the interaction of multiple GVs within the same locus149. 
Differences resulting from either considering it or not were 
demonstrated by comparing the fine-mapping tools TORUS150 and 
Probabilistic Identification of Causal SNPs (PICS)144. Given TORUS 
one causal variant assumption, its application yielded probabilities 
biased towards zero when multiple causal GVs were present in that 
locus. In contrast, PICS retrieved more potentially causal GVs with 
higher estimated causal probabilities. As a result, fine-mapping proved 
to be a critical step, especially since it is often required before 
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performing other post-GWAS analyses. Nonetheless, both sets of GVs 
were enriched in their association with MD or its comorbidities, and the 
genes they mapped to were associated with neurogenesis, suggesting 
that the results of both tools were valid. 

Translating into functional elements  

In contrast to fine-mapping methods’ comparison, colocalization using 
Colocalization Posterior Probability (CLPP)151 and Fast Enrichment 
Estimation Aided Colocalization Analysis (fastENLOC)152,153 yielded 
more similar results; especially when PICS outcomes, which had higher 
probability values, were considered. FastENLOC may be more 
stringent because it computes the enrichment of GWAS on eQTLs 
rather than assuming their independence153. Although colocalizing GVs 
(i.e., GV causal for both the disease and the molecular trait) may not 
match, when looking at the genes these GVs regulate, the overlap is 
higher, highlighting the relevance of identifying the genes impacting 
disease phenotype.  
 
The extension of the performed comparisons would be of interest. We 
did apply the developed benchmarking workflow to a GWAS dataset 
on height154, which also has a complex genetic architecture, and 
obtained similar results. Nevertheless, evaluating additional post-
GWAS analyses with different assumptions and goals would be 
interesting in order to further explore their strengths and weaknesses. 
It would be interesting to undergo colocalization and TWAS analyses 
to compare the resulting sets of genes being functionally regulated by 
the causal GVs. Indeed, it has been proposed that their combination 
could enhance the identification of biologically relevant genes117. 
Likewise, colocalization and Mendelian randomisation have also been 
proposed as complementary approaches. While in colocalization the 
GVs may be associated with both the disease and the molecular trait, 
and causal effects may occur or not; in Mendelian randomisation, the 
GVs would be directly associated with risk and outcome only via the 
risk155. 
 
Overall, the lack of objective standards for method selection, evaluation 
and benchmarking challenges the potential use of GWAS data for 
downstream application in drug research and precision medicine. The 
plethora of tools available for the same purpose diverge not only in 
findings (i.e., GVs or genes) but also in their biological impacts, 
ultimately influencing subsequent functional analysis steps. Despite 
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that, they all contribute to a better understanding of the functional 
impact of GVs in non-coding regions of the genome.  
 
Leveraging different data types increases the capability to filter and 
prioritise relevant GVs and genes. Regarding transcription factor 
binding analysis, we have combined data from: ChIP-seq, gene 
expression, TFs’ position specific-score matrices, epigenome 
annotation, eQTLs and TF-target pairs; to identify evidence for 
regulatory and mechanistic effects. Further experimental validation 
would be of interest to determine the role of the identified TF whose 
binding site is being altered, i.e., activator or repressor, and 
consequently support the GV’s impact on gene expression. 
 
The diverse functional analysis, reinforced with genomic annotation 
data, enabled the identification of GVs potentially causal of MD, their 
proximal genes, as well as genes these GVs could be regulating or whose 
TFBS are altering. Besides their identification and the proposal of a 
mechanistic hypothesis for the latter, their characterisation via gene-set 
and variant-set enrichment analyses revealed their relevance in MD. The 
identified functional elements were enriched in their association with 
brain networks, neurogenesis, synapsis, and neurons. Additionally, 
pathways disrupted in MD or associated with its triggers, such as stress 
or inflammation, were also identified. As a result, further functional 
evaluation and, eventually, experimental validation of such findings 
would be required to determine the exact regulatory mechanism by 
which these GVs ultimately impact MD pathogenesis84,156,157. 
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5. CONCLUSIONS 
 

• We developed curation guidelines for assessing genetic 
association data for the specific case of MD, considering its 
genetic architecture and the diversity of methodologies used to 
study it.  

• Implementing such guidelines proved critical for developing an 
expert-curated database of 709 GVs associated with MD. 

• The curation guidelines could be applied to other complex 
disorders with similar genetic architecture. 

• We implemented bioinformatic pipelines to evaluate GWAS 
findings, leveraging a variety of post-GWAS techniques and 
omics data, enabling the prioritisation of GVs and the 
formulation of mechanistic hypotheses by which these impact 
disease pathogenesis.  

• Our pipelines are able to exploit either summary statistics or full 
genome summary statistics, adapting to their availability. 

• The use of fine-mapping techniques to identify potential causal 
GVs and posterior colocalization analysis to identify the genes 
regulated by these GVs revealed the importance of chloride 
homeostasis and myelination in the pathobiology of MD. 

• The integration of GWAS with diverse genomic annotation data 
(including ChIP-seq, gene expression, TFs’ position specific-
score matrices, chromatin accessibility data, eQTLs and TF-
target pairs) revealed a potential role of hypoxia response in MD 
mediated by altered TF binding. 

• The benchmarking of post-GWAS analysis tools highlighted 
important differences in the results obtained with different tools 
at both genetic and biological levels, which may impact 
downstream analytical steps and, ultimately, biological 
interpretation. Nonetheless, it revealed that different tools 
could lead to biologically plausible findings. 
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• The benchmarking workflow has proven the need for 
community-accepted guidelines for the selection and objective 
evaluation of the most suitable post-GWAS analysis methods 
among all the available ones to fully leverage GWAS data for 
drug research and precision medicine.  
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