

C h a p t e r 4

IV. PROPOSED MODEL

Section IV.1 - Introduction

In the previous chapters we have given an overview of the thesis background.
First, we have presented the motivations of the thesis. Then we focused the
work by presenting the concrete problem we are facing and particularly those
aspects of more interest for us. In addition, we have reviewed the
requirements we expected from the solution of the problem. We have also
described several research initiatives that have already explored similar fields
and that have proposed solutions from different points of view.

Along this chapter, we present the design of the solution we are proposing.
More specifically, we conceive a policy-based management framework for the
management of heterogeneous active, programmable and passive networks
where policies will be expressed in XML [W3C00]. The reason for choosing
XML is that it is becoming a de-facto standard for structured documents as
policies. Moreover, XML has numerous advantages in the specific case of
network and systems management. The possibility of using freely available
validators for checking XML policies against XML Schemas before parsing is
a powerful tool. Moreover, this facility might also be used for delegating
management functionality. Furthermore, the separation of information
represented in XML from the presentation, transmission and storage it makes
it a flexible solution for the specification of policies. Finally, the use of XML
eases the fulfilment of the portability and interworking requirements of the
framework.

In this thesis, we have based the model description in the Unified Modelling
Language (UML) diagrams [OMG01] accompanied with the necessary
explanatory text to ease the comprehension of these diagrams. Accordingly,
the overall functionality of the framework will be initially described with a
group of supported use cases. Each use case will be afterwards further
described with sequence and activity diagrams. Finally, we will provide
detailed class models for each of the framework components and explain how
such models develop the tasks expected from the component. The reason for
choosing UML for the description of the proposed framework is that the
UML has become the standard for system’s description and specification.
Thereby, its diagrams are widely used and understood. Hopefully, this will
ease the readability and comprehension of the proposed framework.

 53

CHAPTER 4 – PROPOSED MODEL

The chapter is structured in four sections. After this introduction, we will
provide an overview of our proposal to cope with the requirements and we
will detail the functionality supported by the framework through the
definition and description of several use cases. In the third section we will go
into details in the description of the solution. Particularly, we will present in
depth each framework component, its expected functionality, its interfaces
and its interrelations with other components. The chapter is concluded with a
summary outlining the solution.

Section IV.2 - Use cases description

After the definition of the system goals and requirements, we have already a
clear idea of the expected functionality. In this section we suggest a general
solution and describe, through use cases, how it copes with the functionality
specified.

The solution is presented as a set of interacting components realising the
system’s functionality. A different set of components structured in a different
way could have also served our purposes as long as they fulfilled the same
functionality. Nevertheless, the components presented enclose the system’s
functionality in a structured and logical way. These components can be seen
in Figure 4 - 1. The Policy Editor component contains all policy reception
and edition functionality. The main policy-processing functionality is enclosed
within the Policy Consumer Manager component that carries it out with the
support of its surrounding components. These components are the
Authorisation Check, the Policy Conflict Check, the Traffic Engineering
Manager, the Decision-making Monitoring system, the Database and finally,
the device-dependant components like the Policy Consumer, the Monitoring
Meter and the SigDemux.

The Authorisation Check Component will verify that the user introducing the
policy has the necessary access rights to realise that action. The Policy
Conflict Check component has the responsibility of assuring the consistency
of all policies introduced in the system and that two or more policies never
request the same resources at the same time. For this reason, the Traffic
Engineering Manager that will organise and assign network-wide resources to
policy requests will be deeply interrelated with the Policy Conflict Check
component. Decisions about when policies must be enforced are closely
linked with policy condition monitoring that will be co-ordinated by the
Decision-making Monitoring system component. The device-dependant
components (Policy Consumer, Monitoring Meter and SigDemux) will carry
out the policy enforcement, policy condition monitoring and signalling
requests processing tasks over the underlying devices respectively. Finally, the
Database component will give support to all others by storing Information
Model Objects (IMOs) that will provide a picture of the system’s status at any
time.

 54

Section IV.2 – Use cases description

Policy Editor

TE Manager

Policy Consumer
Manager

Authorisation Check
Component

DB

Decision-making
Monitoring syst...

Monitoring
Meters

Policy
Consumers

Policy Conflict
Check

SigDemux

Figure 4 - 1. MANBoP framework

The behaviour of our management framework can be described with three
main working modes or use cases. These three modes are started by different
triggers. In short, the main use cases of the framework are policy-triggered,
signalling-triggered or event-triggered. In addition to the use cases that
describe these three working modes, the framework offers other capabilities
and functionalities represented in three additional use cases, i.e. the
bootstrapping, the add node and the remove node use cases. The use case
diagram below shows these use cases and their relation with the framework
environment.

 55

CHAPTER 4 – PROPOSED MODEL

Signalling-triggered

event-triggered

Managed node

Policy Group ProcessingPolicy-triggered

<<refine>>

add/remove node

bootstrap

Administrator/
user

Figure 4 - 2. MANBoP Use case diagram

Each of these use cases will be described in detail in the following sub-
sections. Nevertheless, before proceeding to their exhaustive description it is
worth explaining when the three mentioned working modes apply.

In case the MANBoP management framework is working as an element-level
management station, the three working modes can potentially coexist. The
same applies if the framework is working as a network level management
station, or sub-network management station, directly over the managed
devices (without element level stations). The situation is not the same when
the framework is working as a network-level management station with other
lower-level management stations (i.e. sub-network or element). In such a case,
the signalling-triggered working mode would not apply.

Note that an additional use case appears in the diagram. This is the Policy
Group Processing use case consisting of a specialisation of the Policy-
triggered use case. As such, it will be described within the Policy-triggered use
case sub-section.

The use cases description covers only the basic functionality of the
framework and its components. However, there are many other smaller tasks
that, though important, would only be described inside the section of the
component that realises them.

 56

Section IV.2 – Use cases description

1st Policy-triggered Use Case

The working mode described in this use case is the most common of the
three. Using IETF terminology for policy-based management [Westerinen01]
it would coincide with the “provisioned policy” model.

Although the “provisioned policy” concept is similar to the ideas in the
policy-triggered use case, they are not exactly the same. They have in
common the fact that both cover the tasks that deal with policy processing
(e.g. decision-making, policy enforcement…). The difference is that the
“provisioned policy” approach from the IETF only covers the policy
processing of those policies that will result in a managed device configuration
when the conditions of the policy match. In contrast, the policy-triggered use
case covers the policy processing of all policies in the framework, even if they
are oriented to decide on signalling requests received afterwards. Hence, both
the signalling-triggered and the event-triggered use cases need that the
involved policies (i.e. those determining the signalling decisions to be taken,
or those containing event-based conditions) are previously introduced in the
framework through the policy-triggered use case.

To ease the description of the main tasks of this use case we provide below a
high-level activity diagram.

 57

CHAPTER 4 – PROPOSED MODEL

wait for info

build XML policy
with info

receive XML policy
from Policy editor

authenticate
user

FAILED

SUCCESSFUL

authorise policy
for this user

FAILED

does PCC support the
policy domain?

download&install
last PCC version

NO

check for policy
conflicts

YES

are there any?

YES

register conditions
to be monitored

are there conditions
to be monitored?

NO

YES

are the necessary
meters installed?

install meters
NO

configure
meters

YES

monitor
resources

trigger policy
enforcement

NO

do the conditions
match?

is the needed policy
consumer installed?

download & install
policy consumer

NO

enforce policy

YES

any?

check for dynamic
conflicts

YES

NO

NO

YES

Figure 4 - 3. Policy-triggered activity diagram

 58

Section IV.2 – Use cases description

The description of the activity diagram is split into four parts, namely the
Policy Introduction, Policy Checking, Decision-making and Policy
Enforcement.

Policy Introduction
In the activity diagram above, the policy information is introduced through a
Graphical User Interface (GUI) within the Policy Editor. Nevertheless, the
policy-triggered use case can also be initiated by the arrival of a policy within
an active packet or from a higher-level management application.

The possibility of deploying policies using active packets adds more flexibility
in the capabilities for the distribution of policies. It permits fast distribution of
policies to the nodes where they should be enforced and even to link the
distribution of policies with the network or node status. Additionally, it makes
unnecessary to have a detailed knowledge of the network topology to
distribute policies. The framework here presented should configure the
managed devices to receive these policies, via active packets, correctly. The
code that receives these active packets and forwards their policies to the
management framework is not covered in this thesis.

Also service-level management applications according to the TMN layered
structure [ITU00b], can introduce policies, or policy information, through an
API given by the Policy Editor component. This allows the framework to be
part of a complete management stack of applications.

Once the information is introduced, the first task realised by the framework is
to authenticate1 the user who is accessing the framework. The authentication
task is realised by a special object within the Policy Editor component. Such
an object-oriented approach allows the substitution of an obsolete
authentication object with a new version.

The next step is to build an XML policy making use of the received
information. Again, this task is developed within the Policy Editor
component.

Policy Checking
The XML policy is then sent to the Policy Consumer Manager (PCM), which
acts as core and coordinator of the tasks carried out within the framework.
First, the XML policy is checked against the access rights of the user who is
introducing the policy. That is, the policy information is compared against
‘what management actions’, and ‘with which parameters’ statements
specifying the user rights. These authorisation checks are realised by the
Authorisation Check Component (ACC) within the framework. For carrying
out such tests, the Authorisation Check Component takes into account user
information previously introduced in the framework.

1 This thesis is not oriented to study the concrete security mechanisms; hence, they will only be

introduced.

 59

CHAPTER 4 – PROPOSED MODEL

After the authorisation checks, and only in case they have been successful, the
next step is looking for possible conflicts between the policy introduced and
the rest of policies in the system. The first thing to be done within this step is
to check whether the version of the component responsible for this task, the
Policy Conflict Check (PCC) component, supports the new policy. Since the
system is dynamically extensible with new functionality, it might be the case
that the current version of the PCC component installed in the system cannot
process the new policy. In that case, the Policy Consumer Manager will
request to the Code Installing Application (CIA) 2 the installation of the
newest version of PCC component. Such version should support the new
incoming policy. Once we know that the Policy Conflict Check component is
capable of realising the checks, the policy is forwarded to it. If any conflict
arises, the PCC component will try to solve it based on mechanisms such as
policy priorities. When the conflict cannot be solved, an exception is raised, in
any other case the processing of the policy goes on.

Decision-making
The next task carried out by the Policy Consumer Manager is to check
whether there are conditions that must be monitored to decide about the
policy enforcement. If there are no conditions to be monitored the Policy
Consumer Manager starts the enforcement process. If there are one or more
conditions to be monitored, they will be registered by the PCM component in
the Decision-making Monitoring system (DmMs). When the conditions are
fulfilled, the DmMs contacts the Policy Consumer Manager to request the
enforcement of the corresponding policy.

The Decision-making Monitoring system looks for the meters needed to
monitor the registered conditions. If these Meter components are not
installed, it requests their installation to the CIA. Each Meter informs the
Decision-making Monitoring system when one of the conditions matches its
value. Only when all the conditions of a policy are fulfilled the DmMs
contacts the Policy Consumer Manager.

Policy enforcement
The Policy Consumer Manager prior to the policy enforcement does two
tasks. The first one is requesting to the Policy Conflict Check a dynamic
conflict check between the policy that will be enforced and policies currently
enforced in the managed device. Unless a conflict is found, the PCM will
proceed to the second task. In this one, the Policy Consumer Manager looks
for the Policy Consumer that should enforce the policy. In case it is not
already installed, it contacts the CIA to request its downloading and
installation.

2 The CIA is considered within this thesis as an external system.

 60

Section IV.2 – Use cases description

Finally, the policy is forwarded to the Policy Consumer that enforces it on the
managed device.

To ease the comprehension of what happens in the framework when
developing these tasks, a sequence diagram containing the main interactions is
given below:

Managed
device

Policy Editor PCM ACC PCC TE Manager DmMs DB Meter Policy
Consumer

getInfo

dispatch

authorise

check Confl

get policies

reg Cond

trigger Enf

set Policy

monitor Cond

get Policies

enforceP

group proc

check Dyn
get Policies

where?

configuration commands

Figure 4 - 4. Policy-triggered sequence diagram

In the context of the sequence diagram of figure 4.4 is worthy to consider in
detail the Traffic engineering manager activity and the Policy Group
Processing task.

 61

CHAPTER 4 – PROPOSED MODEL

A Traffic-engineering

The sequence diagram of figure 4 – 4 shows a call to the TEManager
component: “where?”. Such a call would only be realised by the Policy
Conflict Check (PCC) component running at the network level. Using this
method the PCC component asks the TEManager where in the network the
processed policy can be enforced, based on the requested resources, network
status, topology and other variables that will be described in more detail in the
section describing the TEManager component functionality. The PCC uses
this information to achieve efficient conflict checking at network level.

The routing information obtained is stored in the Database (DB) component
together with the policy. When the policy must be enforced, this information,
together with the policy, is forwarded to the corresponding Policy Consumer,
so that it only configures the appropriate managed entities (or sub-
network/element management stations responsible of them).

The reason for being the Policy Conflict Check the component making this
call to the TEManager, instead of the Policy Consumer Manager component,
is because the PCC is able to extract the information needed by the
TEManager from the policies. The Policy Consumer Manager cannot develop
such a task since it treats the policies as abstract entities; in other words, it is
not capable of extracting information from conditions or actions of a policy.

Another possible candidate to call to TEManager would be the Policy
Consumer. The problem in this case is that we would not be able to detect
any resource conflict between policies until the policy is being enforced. This
would degrade the system performance since someone introducing a policy in
the management framework would not know if it is applicable until the policy
enforcement time.

Nevertheless, it might happen that the PCC component need not to contact
the TEManager when receiving the policy for the first time, but only when
that policy should be enforced. This happens in policies with unpredictable
conditions, such as policies based on alarms or performance degradations.
These policies require some route calculation based on the available resources
at their enforcement time. For example, the policy: if ‘congestion’ then ‘re-
route flow X’ may never be enforced, since the condition might never be
fulfilled. Moreover, if the conditions are ever fulfilled the new route should be
calculated taking into account the network status at enforcement time.

Sometimes, these kind of policies aim to provide a backup route for a flow, to
guarantee the bandwidth in case the main route falls. Such backup route could
be pre-calculated upon policy arrival to the management framework or
calculated only when the conditions are met. Each alternative has its
advantages and drawbacks:

♦ Pre-calculated route: The advantage of this alternative is that it might,
in theory, guarantee that the requested resources would be available

 62

Section IV.2 – Use cases description

for the backup route. The main drawbacks are that the scheduling of
resources would be inefficient, since there may be resources reserved
for situations that might never occur; and that in congestion situations
the guarantee might not be enough to assure resources in the pre-
calculated route.

♦ Route calculated at enforcement time: The advantage of this approach
is that it assures that it will find the optimum route for that flow at
enforcement time. On the other hand, it might happen that at
enforcement time there are no resources for the new route.

The management framework suggested in this thesis supports both
alternatives, each of them being represented by policies from different
functional domains. Additionally, the framework includes a conflict solution
mechanism based on priorities. In consequence, in those cases when the
TEManager component is not able to find a route with enough resources, it
returns the minimum cost route based in a particular criterion (e.g. less
number of hops, more bandwidth available…). Taking into account this
information, the conflict solution algorithm inside the PCC component
detects how many policies conflict with the new one in that route and solves
these conflicts allocating the resources to the request with the highest priority.
Obviously, the users whose requests have been removed will be reported
immediately.

The MANBoP framework gives to the network operators more flexibility to
specify the desired behaviour of the network, and to specify in the network
the quality of service negotiated with its customers. It is the responsibility of
the network operator to provide the agreed level of quality of service to each
customer, setting and controlling the policies within the framework.

In conclusion, the Policy Conflict Check component needs to be smart
enough to know when does it need to contact the TEManager and how to
deal with the information it returns.

B Policy group processing

Also in the sequence diagram, we notice the presence of another task within
the Policy Consumer Manager component: ‘group Proc’. This name stands
for the Policy Group Processing task.

An special situation within the policy-triggered working mode occurs when
processing policy groups. A policy group as already stated is a set of policies
that need to be processed in a concrete manner: atomically, sequentially, the
first successful, etc.

The MANBoP management framework has been designed to enable the
processing of policy groups. This capability adds more flexibility to the
specification and deployment of policies and allows better determining the
expected behaviour of managed entities. For example, a service provider
might require several node resources in order to offer an active service to its

 63

CHAPTER 4 – PROPOSED MODEL

customers. These resources should be reserved in several policies that would
form a policy group. Such a policy group should be enforced atomically
because a single unreserved resource disables the service thus making
unnecessary the reservation of the other resources.

The activity diagram that follows includes the tasks that cope with the policy
group processing functionality.

 64

Section IV.2 – Use cases description

wait for
info

build XML
policy with info

 policy
er

detect policy 'position'
within the group

is it a policy
from a group?

YES

detect forwarding
method

foward policy according
to forwarding method

is the policy group
processing finished

wait for
enforcement result

NO

YES

receive XML policy
from Policy editor

authenticat
e user

FAILED

SUCCESSFUL

authorise
for this us

FAILED

does PCC support
the policy domain?

SUCCESSFUL

download&install
last PCC version

NO

check for policy
conflicts

YES

are there
any?

YES

register conditions to
be monitored

are there conditions to
be monitored?YES

NO

are the necessary
meters installed?install

meters

NO

configure
meters

YES

monitor
resources

trigger policy
enforcement

NO

do the conditions
match?

is the needed policy
consumer installed?

download & install
policy consumer

NO

enforce
policy

YES

NO

?

any?

check for dynamic
conflicts

YES

NO

NO

YES

Figure 4 - 5. Policy Group Processing Activity diagram

The tasks enclosed within the square are those specific for policy group
processing.

 65

CHAPTER 4 – PROPOSED MODEL

First of all, the system must detect whether the received policy is part of a
policy group or it is an individual policy. When the latter, the policy would be
processed as explained in the previous sub-section. Otherwise, we should
identify the policy group, the processing status of that policy group, and the
‘position’ of that policy within the policy group. With ‘position’ we refer to
the logical placement of the policy taking into account the forwarding method
used. For example, in case it is a ‘sequentially’ forwarding method, the policy
position value will determine the particular enforcement order of the policies
within the group. Based on this information, the corresponding policy is
processed as explained in the previous sub-section. The policy enforcement
result will be used as feedback information to control the forwarding process.

Sometimes the impossibility of enforcing one of the policies of the group
causes that others previously enforced should be now removed. When this
happens, the system uninstalls these policies removing all configuration
actions that might have been carried out as result of their enforcement.

Since all group processing functionality is realised within the Policy Consumer
Manager component, we do not include the sequence diagram for this ‘sub-
use case’.
2nd Signalling-triggered Use Case

The working mode covered in this use case is the equivalent to the
“outsourced policy” model using IETF terminology.

In this working mode, the management station acts as an access control
entity. It mainly allows or denies resource reservation requests coming from
the managed entity based on the policies available on the network at that
time. The most common example for the outsourced policy approach is the
usage of policies together with the Common Open Policy Service (COPS)
[Durham00a] protocol and RSVP [Braden97] (Resource ReSerVation
Protocol) described in RCF 2749 [Durham00b].

The framework supports this outsourced policy model, or signalling-triggered
working mode, re-using as much as possible the functionality and tasks
already developed for the policy-triggered use case. The objective is to make
the framework as lightweight as possible and avoid duplicating functionality
unnecessarily.

As in the previous use case description, we will base the explanation of the
signalling-triggered working mode in its activity diagram shown below.

 66

Section IV.2 – Use cases description

find appropriate
PC

wait for signalling
request

format signalling information

authenticate user

authentication
successful?

is it installed? download and install
PC

no

build XML
policy

check access
rigths

success?

enforce decision to
signalling request

forward formatted info
to Policy Editor

forward request to
Policy Consumer

receive XML signalling
policy from Policy Editor

check for dynamic
conflicts

yes

no

yes

no

yes

Figure 4 - 6. Signalling-triggered use case Activity Diagram

 67

CHAPTER 4 – PROPOSED MODEL

As above-mentioned, in this working mode the management framework
receives the requests from the managed device. The component that receives
the request is the SigDemux. When the request is received, the first task that
must be realised by the SigDemux is to find the most appropriate Policy
Consumer component to process that request. Each Policy Consumer will be
able to process signalling requests of a particular functional type (e.g. COPS,
proprietary…). The SigDemux should be able to detect which type is needed
and, eventually, request the downloading and installation of the
corresponding Policy Consumer.

The Policy Consumer receives the information in the request itself. Then, it
formats this information before its introduction it in the Policy Editor. At this
point, the process is quite similar to the policy-triggered use case except for
two particularities. These are, that there are no conditions to monitor, since
the decision has to be made immediately, and that the Policy Consumer is
already installed. Hence, the tasks carried out are: first of all, the
authentication of the user on whose behalf the request has been made.
Immediately afterwards, if the authentication has been successful, an XML
policy is built based on the information coming in the request and forwarded
to the Authorisation Check component.

At this stage the access control is carried out; that is, the signalling request
information is checked against the access rights information3 of the user on
whose behalf the request has been raised. Unless the authorisation check fails,
since there are no conditions to be registered and the Policy Consumer is
already running, the final decision over the request is only pending on the
dynamic conflict checks. These checks are realised by the Policy Conflict
Check against all other policies currently enforced in the system. If this final
check is also successful, the Policy Consumer is asked to enforce the request.

Obviously, if any of the checks along the process fails, the Policy Consumer
involved is notified and the request is rejected.

To bring more light into the whole process an explanatory sequence diagram
is given below.

3 The access rights information is introduced in the system by means of delegation policies as will be

seen later on this document.

 68

Section IV.2 – Use cases description

Policy Editor PCM ACC PCC TE Manager DmMs DB Meter Policy

Consumer
Managed

node
SigDemux

requestsig Request
policy Info

dispatch SigP

authorise

check Dyn

enforce SigP

set Policy

get Info

get Policies

decision

Figure 4 - 7. Signalling-triggered use case Sequence Diagram

3rd Event-triggered Use Case

The event-triggered use case presents the main tasks within this working
mode. The event-triggered working mode is not explicitly foreseen in the
IETF Policy framework.

The reason for including event-triggered functionality within our framework
is to explicitly support automatic changes of the behaviour of the managed
entity based on faults or performance events. This allows for a faster reaction
to problems and a more autonomous management. In this way, when a fault
or performance degradation occurs, we can determine and control which
corrective actions should be taken in the managed entities.

These tasks can also be developed by continuously polling the appropriated
variables, but it would result in a less efficient approach. The reason is that it
would require more management traffic and the delay until the problem
detection would be bigger.

This working mode can be seen as a special case within the policy-triggered
working mode because the only difference resides in the type of monitoring
information needed (pooled values or events), or to be more accurate, in the
nature of the information to be monitored in that way. Faults and
performance degradation are unexpected, infrequent and more suitable for
event-based monitoring. On the other hand, configuration and security
information happens to be more suitable for pooling.

 69

CHAPTER 4 – PROPOSED MODEL

Although the tasks expected for this use case are the same as those described
within the policy-triggered use case after the conditions are met, we have
included it as a separate use case to particularly highlight this capability of the
framework. Nevertheless, to avoid redounding in the same information again,
we will simply refer to the activity and sequence diagrams, and their
description, given in the policy-triggered use case section.
4th Bootstrap Use Case

The bootstrap use case presents the tasks developed by the framework to
initiate its main components with the appropriate initial parameters. These
parameters are those needed by the components of the framework for
identifying the functionality expected from them and for requesting the
installation of other components when necessary. It is also important the
information about the managed resources that allows framework components
to make appropriate decisions as for example managed nodes, link capacities,
node capabilities, etc.

The processes involved in the appropriate introduction and use of this
information are those described in this use case.

The activity diagram shown below introduces the main tasks.

start PCM component with info: magement level, managed
topology and underlying managers or node interfaces info

start PE with
management level info.

start
TEManager

start DmMs with level info

adapt managed topology info to
framework components necessities

is the instance working at
the element level? no

yes

apply routing algorithm over
the managed topology

Figure 4 - 8. Bootstrap use case activity diagram

 70

Section IV.2 – Use cases description

As can be seen in the activity diagram of figure 4 – 8, the core component in
the bootstrapping of the framework is the Policy Consumer Manager. It is the
responsible of receiving the initial information, creating the object instances
that reflect the managed topology and starting other components.

The information received by the PCM is:

♦

♦

♦

The management level at which the instance is acting: This data specifies the
management level at which the instance will be working [ITU00b],
and thus, the expected behaviour of that instance. Hence, the
information is used to select the most appropriate component
modules to be installed when required. Possible values for this
parameter are: network level, element level, network over element
level and network over subnetwork level4.

Managed topology information: This information is mostly needed by the
traffic engineering algorithm running inside the TEManager, when
running at the network or sub-network levels, and by the Policy
Conflict Check component. In the first case, the information is used
to calculate routes with the requested resources. The route
information is used by the Policy Conflict Check component as input.
On the other hand, the Policy Conflict Check component uses the
managed topology information to find, and if necessary resolve, the
resource conflicts that might exist. The given information must be all
that is needed by the TEManager and PCC components for realising
their respective tasks. For example: IP address, node identifier, link
capacity…

Underlying managers or node interfaces info: The last information introduced
at the bootstrapping of the framework is related with the underlying
devices. It can be either information about MANBoP instances
running under the current instance in the management infrastructure
or information about device interfaces directly managed by the
instance being booted. Obviously, the type of information supplied
depends on whether this instance will run directly over managed
devices or instead, over other lower-level MANBoP instances. The
underlying devices information is used by both the DmMs and the
PCM for requesting the installation of the most appropriate
Monitoring Meter or Policy Consumer respectively.

The Policy Consumer Manager component, after the correct reception of the
booting information, instantiates the corresponding Information Model
Objects (IMOs) based on the received information. These instances are
stored in the database from where they can be retrieved by other

4 A subnetwork instance of the MANBoP framework will be instantiated as network, network over

element or network over subnetwork. Since its expected behaviour will be the same as for a network
instance, though just over a subset of the managed topology.

 71

CHAPTER 4 – PROPOSED MODEL

components. A detailed description of these objects will be given in the
Information Model section. After creating the appropriate instances, the PCM
initiates the rest of the framework with the corresponding data. In particular,
it will start the Policy Editor component with the “management level”
information, so that it can be extended appropriately to receive new policy
information at that level. In addition, the DmMs will be started with the
“management level” information which is kept in an attribute of this
component. As already mentioned, this information, together with the
underlying topology information obtained from the IMOs stored in the
database, is used for the correct election of the Monitoring Meters to be
installed and for the registration of Notification Services as explained below.
Finally, the TEManager is only started if the MANBoP instance being booted
works at the network or subnetwork levels.

Afterwards, other components of the framework such as the Authorisation
Check Component or the Database will be equally started, although they do
not need any initial data.

All nodes in the management infrastructure will be booted in the same way.
The management infrastructure should be instantiated starting from the lower
levels and ending with the upper ones. At the bootstrapping a simple
synchronisation process (which is out of the scope of this thesis) with the
lower-level MANBoP instance would be advisable. Additionally, the
Notification Service included as part of the Decision-making Monitoring
system, should register as event consumer on the Notification Services of the
lower-level instances at bootstrap. For that reason, when started, the DmMs
takes into account the management level at which it is acting so as to retrieve
from the database, when working over other MANBoP instances, the
underlying managers location.

At the time when the first policy is introduced in the management
infrastructure, all MANBoP instances should be up and running, since the
different interactions for the decision and enforcement of a policy will occur
between them.
5th Add/Remove node Use Case

I have grouped these two use cases into a single section because they have
obvious common aspects. Indeed, the tasks that should be done in the Add
node use case should be undone in the Remove node one.

The interest of these capabilities in the framework is justified by the most
likely progressive deployment of active nodes inside legacy IP networks.
Thus, in order to avoid the need of changing or re-initiating the whole
management infrastructure every time a node is added or removed in the
network, the framework includes the capability to add or remove nodes
dynamically to the managed topology.

 72

Section IV.2 – Use cases description

Nonetheless, to keep the whole process feasible, certain conditions should be
taken into account:

♦

♦

♦

♦

If the addition of a new node requires a new MANBoP instance for
its management (e.g. an element manager) then the new instance will
be booted, as described in the previous use case, by the network
administrator.

The same applies if the removal of a node leaves one MANBoP
instance unused.

A node can only be removed as long as there are no policies, or
reservations, applicable to that node.

In case there are one or more framework components (e.g. Policy
Consumer or Monitoring Meter) that were installed in the
management station exclusively for the removed node, they will be
removed dynamically via the default lifecycle logic for these
components.

Figures 4 – 9 and 4 – 10 show the activity diagrams for the addition and
removal of a node to the managed topology:

notify new underlying managers or
node interfaces info to the DmMs

receive updated topology
information

adapt managed topology info to
framework components necessities

request the appliance of the routing
algorithm over the managed topology

Figure 4 - 9. Add node activity diagram

 73

CHAPTER 4 – PROPOSED MODEL

notify new underlying managers or
node interfaces info to the DmMs

are there policies
applicable to that node?

refuse removal

receive updated
topology information

adapt managed topology info to
framework components necessities

request the appliance of the routing
algorithm over the managed topology

Figure 4 - 10. Remove node activity diagram

As can be seen in the activity diagrams both use cases need the realisation of
the same activities, although in opposite sense. The only change is that in the
remove node use case, before any removal task is done, a check is executed to
verify that there is no policy applied, or that should be applied now or in the
future in that node. This check is realised by the Policy Consumer Manager
accessing the information stored in the Database component.

The rest of tasks are also controlled by the PCM, which requests the different
activities to the corresponding components. In particular, it first maps the
managed topology information to the IMOs that will be accessed by the
framework components. Then, it requests to the TEManager to run the
routing algorithm over the new managed topology to establish the paths and
their costs.

Finally, the PCM component will also contact the DmMs to notify the
addition or removal of a new node. Then, the DmMs when working over
other MANBoP instances will request to the Notification Service to register,
or unregister as event consumer in the new underlying MANBoP instance.
6th Summary of components and tasks

In order to summarise the ideas described above, and organise the tasks
described in components of the management framework, we provide below a
table mapping tasks with components and interfaces. This table pretends to
be useful both as a fast checkpoint of the framework functionality as well as a
preliminary guide to the component description of the next section.

 74

Section IV.2 – Use cases description

Requested Task To By Interface used

Policy-triggered
Wait for Info user GUI

Authenticate user Policy Editor Internal interface
Build XML Policy with

Info

Policy Editor

 Policy Editor Internal interface

Authorise policy Authorisation Check
Component

Policy Consumer
Manager authorise()

Check for dynamic
conflicts

Policy Consumer
Manager checkConfl()

Check for Policy Conflicts
Policy Conflict Check Policy Consumer

Manager checkDyn()

Receive XML Policy from
Policy Editor Policy Editor dispatch()

Does PCC support the
policy domain?

Policy Consumer
Manager Internal interface

Are these conditions to be
monitored?

Policy Consumer
Manager Internal interface

Is the needed Policy
Consumer installed?

Policy Consumer
Manager Internal interface

Trigger policy
enforcement

Policy Consumer
Manager

Decision-making
Monitoring system triggerEnf()

Register conditions to be
monitored

Policy Consumer
Manager regCond()

Are the meters installed? Decision-making
Monitoring system Internal Interface

Do the conditions match?

Decision-making
Monitoring system

Decision-making
Monitoring system Internal interface

Configure Meters Decision-making
Monitoring system monIS()

Monitor resources
Meter

Meter Internal interface
Download and install last

PCC version
Policy Consumer

Manager dwCode()

Download and install
meters

Decision-making
Monitoring system dwCode()

Download and install
Policy Consumer

Code Installing
Application

Policy Consumer
Manager dwCode()

Enforce Policy Policy Consumer Policy Consumer
Manager enforceP()

Policy Group
processing

Is it a policy from a group?
Detect policy ‘position’

within the group
Detect forwarding method
Forward policy according

to forwarding method
Is the policy group
processing finished?

Policy Consumer
Manager Internal interfaces

Wait for enforcement
result

Policy Consumer
Manager

Policy Consumer event

Signalling
Wait for Signalling request Managed device event

Find appropriate Policy
Consumer

Is it installed?

SigDemux SigDemux Internal interfaces

Download and install
Policy Consumer

Code Installing
Application SigDemux dwCode()

 75

CHAPTER 4 – PROPOSED MODEL

Send formatted info to
Policy Editor Policy Consumer policyInfo()

Authenticate user
Build XML policy

Policy Editor
Policy Editor Internal interfaces

Receive XML Signalling
policy from Policy Editor

Policy Consumer
Manager Policy Editor dispatch()

Check Access Rights Authorisation Check
component

Policy Consumer
Manager authorise()

Check for dynamic
conflicts Policy Conflict Check Policy Consumer

Manager checkDyn()

Forward request to Policy
Consumer SigDemux sigRequest()

Format signalling info Policy Consumer Internal interface
Enforce decision to
signalling request

Policy Consumer
Policy Consumer

Manager enforceP()

Bootstrapping
Start PCM component

with info
Policy Consumer

Manager Network Administrator main()

Start PE with management
level info

Is the instance working at
the element level?
Start TEManager

Start DmMs with level
info

Adapt managed topology
info to framework

component necessities

Policy Consumer
Manager

Policy Consumer
Manager Internal Interface

Apply Routing algorithm
over the managed

topology
TEManager TEManager Internal Interface

Add/Remove node
Receive updated topology

information Network administrator addN()

Adapt managed topology
info to framework

component necessities

Policy Consumer
Manager Policy Consumer

Manager Internal Interface

Request the appliance of
the routing algorithm over

the managed topology
TEManager Policy Consumer

Manager updateTop()

Notify new underlying
managers info or node
interfaces info to the

DmMs

Decision-making
Monitoring system

Policy Consumer
Manager upUnI()

Remove node5
Receive updated topology

information Network administrator removeN()

Are there policies
applicable to that node?

Refuse removal

Policy Consumer
Manager Policy Consumer

Manager Internal Interface

Table 4 - 1. Table of components and interfaces

5 Only the additional tasks in relation with the Add Node use case are included in the table.

 76

Section IV.3 – Description of the MANBoP components

Section IV.3 – Description of the MANBoP components

1st Policy Editor

A Component Behaviour

From the previous sub-section we can extract and summarise the tasks and
interfaces that the Policy Editor must offer. Namely, the tasks previously
listed for this component are:

♦

♦

♦

♦

Wait for info: Provide a GUI that can be utilised by a user (e.g. a
network operator or service provider) to introduce policies for
managing his resources. The interface for this task is the GUI itself.

Authenticate user: The Policy Editor should authenticate all users that
try to enter the system, either by means of the GUI or by any other
means that we will comment later on this sub-section. Since
authentication is an internal task of the Policy Editor component, the
interface is not accessible from the outside.

Build XML Policy with info: Also, the Policy Editor must format the
received information, in case it is not already received with the correct
format 6 to be forwarded appropriately to the Policy Consumer
Manager component. As in the previous case the corresponding
interface is not accessible from the outside.

Send formatted info to Policy Editor: This task of the signalling-triggered
use case describes another behaviour to receive information by the
Policy Editor component; that is, from Policy Consumers dealing
with a signalling request. The information received will start the
decision-taking processes. The interface offered by the Policy Editor
component for such cases is the policyInfo() interface. The concrete
parameters of the interface and their justification will be provided
along this sub-section.

Besides the above tasks obtained directly from the tasks enumerated in the
use cases descriptions, there are other tasks and interfaces that the Policy
Editor must offer and that have not been yet explicitly commented.

The first one is the possibility of receiving XML policies. Such policies should
only be authenticated before being forwarded to the Policy Consumer
Manager. This capability will be provided through the recvXPolicy() interface.
Such an interface will allow the framework to receive XML policies from
higher-level management applications (e.g. an element level policy coming
from a network manager) or policies deployed by means of active packets.

6 The Policy Editor can also receive XML policies.

 77

CHAPTER 4 – PROPOSED MODEL

There are many other tasks defining the properties and capabilities of the
Policy Editor, however, they are all internal tasks of the component. Hence,
they determine the behaviour of the component but they do not modify the
external interfaces offered by this component. These functionalities are
dictated by the requirements imposed both to the Policy Editor (i.e. receive,
authenticate and format information to be understood by the framework) and
to the framework as a whole (e.g. support of dynamic extensibility of
functionality, flexible management infrastructure…).

We will show the expected behaviour of the framework components using
UML activity diagrams. Specifically, for the Policy Editor three activity
diagrams will be provided, one for each external interface offered by the
component (i.e. GUI, policyInfo() and recvXPolicy()). Each activity diagram
will be described in a separate sub-section, namely GUI, Signalling and XML.

 78

Section IV.3 – Description of the MANBoP components

a GUI

The GUI shows the
start service webpage

The user starts the service introducing
its username and password

Authenticate the user based on
its login and password

succeds?

throw
exception

no

Obtain the policy services that
user can access

yes

the policy service list for that
SP is shown in the GUI

the user picks
one or more

are the needed GUI
modules available?

request its download and
installation to the CIA

no

the user introduces the
information

the modules prepare the
information to be formatted

the information is
formatted in XML

the XML policy is
forwarded to the PCM

The GUI shows that
modules to the user

yes

Figure 4 - 11. GUI-initiated activity diagram

 79

CHAPTER 4 – PROPOSED MODEL

The first activity diagram introduced for describing the expected behaviour of
the Policy Editor is the GUI-initiated activity diagram. As easily deducible from
the title, this diagram specifies the expected behaviour of the Policy Editor
component when a user wants to manage its resources through the GUI.

In order to start the process, the user first introduces his login and password
in the GUI for initiating a session. This information will be used by the
component to authenticate the user. We have opt for a such a simple
authentication method instead of a more elaborated one, because the focus of
this thesis is the framework as a whole and not the concrete security
algorithms.

If the authentication of the user succeeds, the component must now identify
what policy services or functional domains is the user allowed to access.
These services will then be listed in the GUI to allow the user to pick one or
more of them. The list of policy services accessible for a user (e.g. service
providers) is set by the management infrastructure administrator (e.g. network
operator) after the negotiation of the corresponding Service Level Agreement.
This process can be seen as an initial discrimination of access rights for that
user, as a low-granularity authorisation check complemented by the high-
granularity authorisation check realised afterwards.

Once the user has chosen the policy services, the Policy Editor has to check
whether the GUI modules that will permit the user to introduce the
corresponding information for those policy services are installed. In case it
receives a negative answer, it requests to the Code Installing Application
(CIA) the download and installation of the necessary GUI modules before
proceeding to the next step.

In the next step, the user introduces the information in the GUI modules,
which on their turn, prepare the received information to be formatted in
XML and finally, send it to the Policy Consumer Manager (PCM) component.

 80

Section IV.3 – Description of the MANBoP components

b Signalling

yes

the XML policy is
forwarded to the PCM

the information is
formatted in XML

Authenticate the user based on
its login and password

Wait for
signalling info

succeeds?

throw
exception

no

Figure 4 - 12. Signalling-initiated activity diagram

When the information arrives from a signalling request forwarded by a Policy
Consumer, many of the previous tasks of the Policy Editor component are
not needed. A clear example is all GUI related processes, which are obviously
skipped. Also, since the Policy Consumer component that has forwarded the
signalling request has already prepared the information to be formatted, this
step can also be skipped within the Policy Editor. Thereby, only the three
tasks shown above specify the behaviour of the component for signalling
support.

First, the signalling information forwarded has to be authenticated. The
framework checks whether the user on whose behalf the request is made has
privileges to access the framework. Only when succeeding in the
authentication, the signalling information received will be formatted in XML
and forwarded to the Policy Consumer Manager for deciding about the
request.

c XML

When the Policy Editor receives an XML policy from an active packet or a
higher-level management application, its expected behaviour would be as
simple as just authenticating the user on whose behalf the XML policy has
been sent and forwarding the policy to the Policy Consumer Manager
component. It is obvious that other tasks of the Policy Editor such as GUI
related processes or XML formatting processes do not apply in this case.

 81

CHAPTER 4 – PROPOSED MODEL

The simplicity of the component behaviour in this case makes unnecessary its
representation in an activity diagram that we have omitted.

B Component Design

From the component behaviour described in the previous sub-section, we
can extract and divide the expected functionality in four main groups of tasks.
These are:

♦

♦

♦

♦

GUI-related processes: Processes needed to provide to a user a
pleasant graphical interface to manage his resources.

Authentication processes: Verify that the user who is ‘entering’ the
management framework has rights to do so.

Information-formatting processes: Related with the creation of the
corresponding XML policies with the information received.

Coordination processes: The core functionality of the component,
that is, to coordinate the different tasks to be developed based on the
type of request received.

Consistently with the four main groups of tasks, the component design is
based on four classes, each of them developing one of the task groups. These
classes and their interfaces are shown in the class diagram below.

CIA Interface

dwCode()

GUI

AuthenticationMod
ule

authen ticate()

XMLBuilder

buildXPolicy()
buildXPolicy()

Policy Consumer
Manager interface

dispatch()
dispatch()

PECore

policyInfo()
policyInfo()
recvXPolicy()
registerUser()
rqPServices()

Figure 4 - 13. Policy Editor component class diagram

 82

Section IV.3 – Description of the MANBoP components

a PECore class

The PECore class is the main class within the Policy Editor component. It
coordinates the whole component behaviour using the GUI, XMLBuilder
and AuthenticationModule classes. It also makes use of the CIA to request
the download and installation of GUI modules, when necessary, as briefly
stated before.

The class offers five public methods, namely: policyInfo() (overloaded in two
methods with different input parameters), recvXPolicy(), registerUser() and
rqPServices(). The input and output parameters as well as the functionality
within these methods are listed and explained in the table below:

 83

CHAPTER 4 – PROPOSED MODEL

Interface Input
parameters

Output
parameters Functionality

registerUser
()

credential
User

string[]
PolicyService

s

The GUI uses this method for retrieving the policy services that the user is
able to access, and list them on the screen. The ‘User’ parameter identifies
the user who introduces the information. ‘Credential’ is a structured type that
contains both the username and password. As return parameter
‘PolicyServices’ is a list of strings one per policy service accessible by that
user.
When receiving a call to this method the PECore class will first request to
the AuthenticationModule the checking of the credential for that user. If
successful it returns the policy services this user can access. It retrieves the
policy services for each user from a local table.

rqPServices
()

string[]
PolicyService

s

handle[]
GUIModule

After the selection of policy services by the user, the GUI uses this method
to request the handles of the needed GUI modules for these policy services.
The ‘PolicyServices’ parameter lists the services chosen by the user. The
returned parameter is an array of handles7, one per each GUI module.
The PECore class, when receiving a call to this method, requests the
download and installation of the needed GUI modules, in case they are not
already installed, and returns the handles of all modules to the GUI.

policyInfo()
string Info,
credential

User
-

This method is used to introduce the policy information coming from the
GUI in the framework and to create the corresponding XML policies out of
it. The ‘Info’ parameter is the information itself that will be, afterwards,
formatted in XML. Finally, the ‘User’ parameter identifies the user who
introduces the information.
When receiving a call to this method the PECore class will forward all
parameters to the buildXpolicy() method of the XMLBuilder class to be
formatted and forwarded to the Policy Consumer Manager. The user would
have been previously registered and authenticated in the framework using
the registerUser() method above. Thus, there is no necessity to repeat the
authentication process at this point.

policyInfo()

string
sigRqId,

string Info,
credential

User

-

The previous method has been overloaded to introduce the information of a
signalling request to take a decision. The new parameter added is the
‘sigRqId’ parameter. It is used for identifying the request to which a decision
should be applied. The other two parameters are left unchanged.
When receiving a call to this method, the PECore class will first request to
the AuthenticationModule the checking of the credential. If succeeded, all
parameters are forwarded to the buildXpolicy() method (which is also an
overloaded method) of the XMLBuilder class to be formatted and
forwarded to the Policy Consumer Manager.
In this case the authentication is needed because the information arrives
from the Policy Consumer, and the involved user would not have been
previously authenticated.

recvXPolicy
()

credential
User, string

XPolicy
-

Used to introduce XML policies coming from higher-level
management applications or even from active packets. The ‘User’
parameter is used for authenticating the principal that sends the
policy. The policy is included in a serialised form in the Xpolicy
parameter.
When receiving a call to this method the PECore class will request to
the AuthenticationModule the checking of the credential. If
successful the XML policy will be forwarded to the Policy Consumer
Manager through its dispatch() method. Both ‘Xpolicy’ and ‘User’
will be passed as parameters of this method.

Table 4 - 2. PECore interface description table

7 The concrete handle type depends on the implementation

 84

Section IV.3 – Description of the MANBoP components

b AuthenticationModule class

The AuthenticationModule class develops the authentication tasks within the
framework. The current design is generic enough for supporting several types
of authentication algorithms. The ‘credential’ structured type can be adapted
to the necessities of the chosen algorithm and the AuthenticationModule
itself can be replaced with a newer version thank to the modular design of the
framework. Nonetheless, as previously justified, the authentication algorithm
we have considered as proof of concept is simply based on usernames and
passwords.

The AuthenticationModule class offers only one public method, namely the
authenticate() method. In the table below we can see the input and output
parameters as well as the functionality expected in this method.

Interface Input
parameters

Output
parameters Functionality

authenticate
()

credential
User

boolean
Result

This method is used by the PECore class to request the authentication of a
user. As input parameter the credential of the user is submitted. The output
parameter is a boolean that indicates the result of the authentication: ‘true’
(success), ‘false’ (fail).
When a call to this method is received, the AuthenticationModule will apply
the authentication algorithm over the credential. This class may utilise user
information, such as credentials, associated to users in a local table or
database.

Table 4 - 3. AuthenticationModule interface description table

c XMLBuilder class

The XMLBuilder class realises all information formatting tasks. It mainly
formats the information received into XML policies that will be afterwards
forwarded to the Policy Consumer Manager (PCM) component.

The class offers, through its interface, one overloaded buildXPolicy() method
with two possible input and output parameters. These methods will always be
accessed by the PECore class and will result in the forwarding of the XML
Policy to the PCM component. The concrete description of the XMLBuilder
interface is given in the table below:

 85

CHAPTER 4 – PROPOSED MODEL

Interface Input
parameters

Output
parameters Functionality

buildXPolicy()
credential

User, string
Info

-

This method will be used by the PECore class to request the creation of an
XML policy based on the ‘Info’ parameter. The ‘Info’ parameter provides
the policy information introduced by the user. The ‘User’ parameter, as in
the previous cases, provides the credentials for that user.
When receiving a call to this method, the XMLBuilder class will try to create
an XML policy using templates and the received information. In case it does
not succeed, an exception would be raised. If successful, the XML Policy
together with the credential will be forwarded to the PCM component.

buildXPolicy()

string
sigRqId,

credential
User, string

Info

-
The only difference with the previous method is that, in this case, the
forwarded information to the PCM component is the XML policy, the
credential of the user and the ‘sigRqId’ parameter.

Table 4 - 4. XMLBuilder interface description table

d GUI class

The GUI class includes all the functionality needed to interact with the user
by means of a graphical interface. This functionality can be split in:

♦

♦

♦

♦

Mechanisms to graphically represent information.

Mechanisms to recompile user information through the graphical
interface.

Mechanisms to communicate the received information to the PECore
class.

Mechanisms to dynamically show in the graphical interface new
installed GUI modules (e.g. JAVA applets) that would have been
requested by the user.

All these mechanisms are realised internally inside the GUI class therefore, no
public method is offered by this class to the other classes inside the Policy
Editor component.

e Sequence diagram

For easing the comprehension of the Policy Editor component we include
below the sequence diagrams with the interactions between the classes for all
possible behaviours of the Policy Editor component. These sequence
diagrams complement the activity diagrams given before for the description
of the component expected functionality.

 86

Section IV.3 – Description of the MANBoP components

PCMPECore Authentication
Module

XMLBuilder CIAGUI

registerUser() authenticate()

rqPServices()
dwCode()

policyInfo()
buildXPolicy()

dispatch()

Figure 4 - 14. GUI-initiated Policy Editor behaviour sequence diagram

PCMPECore Authentication
Module

XMLBuilderPolicy
Consumer

policyInfo()

buildXPolicy()
dispatch()

authenticate()

Figure 4 - 15. Signalling-initiated Policy Editor behaviour sequence diagram

Higher-level
application

PECore PCM

recvXPolicy()

Authentication
Module

authenticate()

dispatch()

Figure 4 - 16. XML Policy-initiated Policy Editor behaviour sequence diagram

 87

CHAPTER 4 – PROPOSED MODEL

2nd Policy Consumer Manager

A Component Behaviour

Taking into account Table 4 - 1, the main tasks and interfaces expected from
the Policy Consumer Manager component are:

♦

♦

♦

♦

Receive XML Policy from Policy Editor: This task is realised through the
dispatch() interface offered by the component. There is no real
algorithm behind this task, just the ability of this component for
correctly receiving policy information from the Policy Editor.

Does the PCC support the policy domain?: The PCM must find out the
current version of the Policy Conflict Check component installed in
the system, and the functional domains that this version supports. In
case the version does not support the functional domain of the policy
under process, the Policy Consumer Manager will also request the
download and installation of the newest version of the PCC
component, which must support this functional domain, and
probably even newer ones. No external interface is offered by the
component for realising this task.

Are these conditions to be monitored?: The PCM component must detect
whether the conditions within the policy under process should be
monitored to take a decision about the enforcement of the policy, or
instead the policy enforcement must start immediately. As in the
previous case, this is an internal functionality of the component and
hence, no external interface is linked to this functionality.

Is the needed Policy Consumer installed?: This task is quite similar to the
second one. The aim is to check whether the appropriate Policy
Consumer component, for the policy under process, is installed. In
case it is not, the PCM component requests the download and
installation of the corresponding Policy Consumer component. The
Policy Consumer requested is identified not only based on the
functional domain to which the processed policy belongs, but also
based on the position of the management station within the
management infrastructure. That is, the Policy Consumer for a QoS
domain working at the network level over element management
stations in the management infrastructure, will certainly be different
from the Policy Consumer for the same domain if there weren’t
element management stations in the infrastructure. During the
bootstrapping of the system the position of the instance within the
management infrastructure is introduced. The Policy Consumer
Manager component has to take into account this information, not
only for the downloading of Policy Consumers but also for the
downloading of Policy Conflict Check components. The Decision-
making Monitoring system must also take into account its position

 88

Section IV.3 – Description of the MANBoP components

within the infrastructure to request the downloading of the most
appropriate Meter components.

♦

♦

♦

♦

♦

Trigger policy enforcement: The Decision-making Monitoring system
launches this task through the triggerEnf() interface to inform the
PCM component that the conditions of a particular policy have
changed their status. Therefore, the policy enforcement (or removal)
of that policy should be initiated. When triggered, it initiates and
coordinates the processes realised until the actual forwarding of the
policy to the Policy Consumer component (in charge of actually
enforcing the policy on the managed device). These processes are
mainly two: request to the Policy Conflict Check component a check
for dynamic conflicts against other enforced policies, and to check
that the appropriate Policy Consumer is installed as described above.

Is it a policy from a Policy Group?: The Policy Consumer Manager checks
whether each processed policy pertains to a policy group. In case it
does, the PCM will initiate the policy group processing as described in
the Policy-triggered Use Case sub-section. Otherwise, the policy is
processed normally. This is an internal functionality of the PCM
component, thus it is not linked to any external interface.

Detect policy ‘position’ within the group: The goal of this functionality is to
determine the relative enforcement order, taking into account the
forwarding algorithm, or Policy Group Execution Strategy (PGES),
chosen. This determines whether the policy must be immediately
enforced or, instead, it must be stored to be enforced afterwards;
depending on the enforcement result of other policies within the
group. For example, if the position is three, the forwarding method is
sequential, and the first and second policies have not yet arrived, the
policy is stored, until a correct enforcement result of the previous
policies of the group arrives. As in the previous case, this functionality
is internal to the PCM component and thus there is no external
method offered for this functionality.

Detect forwarding method: This functionality complements the previous
one. Together, they form the input information needed by the Policy
Group Execution Strategy to take a decision of whether the actual
policy should be enforced or instead should be stored to be enforced
later. The concrete task carried out is to extract the PGES
information from the received policy.

Forward policy according to forwarding method: The forwarding algorithm
already mentioned a couple of times before is, indeed, represented by
this task. This algorithm will use the PGES and policy position
information to control the dispatching of the policies from the group.
The enforcement result of policies is also needed as input to decide
when the group policies must be dispatched.

 89

CHAPTER 4 – PROPOSED MODEL

♦

♦

♦

♦

♦

♦

Is the policy group processing finished?: When receiving an enforcement
result from a policy pertaining to a policy group, the Policy Consumer
Manager component checks whether the enforcement of that policy
concludes the enforcement of the policy group (then, the higher-level
application or GUI should be informed), or instead, the Policy Group
Execution Strategy of the policy group continues and a new policy
must be processed.

Wait for enforcement result: This task represents the ability of the Policy
Consumer Manager to receive the enforcement result of policies.
When the policy pertains to a group, the arrival of the result might
trigger the PGES as described above. The result is notified to the
PCM by the Policy Consumer components.

Receive XML Signalling policy from Policy Editor: This task is very similar
to the first one. Indeed the method linked to this functionality is also
the dispatch() method (overloaded to support different arguments).
The particularity of this task in relation with the first one is that in this
case the policy logically represents a signalling request. The policy is
processed by the framework to take a decision about the signalling
request. The Policy Consumer that raised the request links an
identifier to the request, so that when it receives the decision it can
easily map it with the request. Hence, the Policy Consumer Manager
must forward the identifier of the request together with the decision
to the corresponding Policy Consumer.

Start Policy Consumer Manager component with info: When a network
operator wants to start a MANBoP instance, it first runs the Policy
Consumer Manager component with the adequate input information.
In particular, this information is the management level at which the
MANBoP instance will work, the topology managed by this instance
and the managed node interfaces (when running directly over
managed resources), or lower-level managers below this instance. The
main() method of the PCM component uses this information to
bootstrap the system.

Start PE with management level info: One of the booting processes
developed by the Policy Consumer Manager is the initiation of the
Policy Editor component. The management level at which the
instance is working is introduced as parameter in the instantiation of
the Policy Editor component, so that it can extend its functionality
appropriately.

Is the instance working at the element level?: The PCM checks the value of
the management level parameter, since it determines whether the
TEManager should be started or not. Only when working at the
element level the TEManager component will not be instantiated in
the system.

 90

Section IV.3 – Description of the MANBoP components

♦

♦

♦

♦

♦

♦

Star the TEManager: The PCM component is responsible of
instantiating the TEManager when necessary. During the booting
process, the TEManager applies the routing algorithm over the
managed topology, retrieving the topology Information Model
Objects from the database.

Start DmMs with level info: Another booting task realised by the PCM is
the instantiation of the Decision-making Monitoring system with the
management level info. The DmMs updates an attribute with this
parameter that uses to determine whether the Notification Service
should register as event consumer in underlying MANBoP instances.

Adapt managed topology info to framework component necessities: Each time
the component receives new managed topology information it has to
adapt it to the format required by other framework components. This
functionality is internal to the PCM component, hence no external
interface is involved.

Receive updated topology information: This functionality covers the ability
of the Policy Consumer Manager to receive new managed topology
information. This new managed topology information can differ with
the old one only in the effects of including (or removing) one more
node to the managed topology. In case the MANBoP instance is
running at either the network or subnetwork level, the addition or
removal of a node might not be directly visible in the new topology
(i.e. the access points of the network or subnetwork might be the
same), but only in the capacity of the links between the access points.
This happens when the added or removed node is not an edge node
of the managed subnetwork. The reception of the new topology by
the PCM triggers the topology update processes. When a new node is
being added, the involved method in the PCM manager is the addN()
method. When a node is being removed is removeN().

Are there policies applicable to that node?: Before attempting to remove a
node from the managed topology, the PCM component must check if
the specified node is used by any policy in the system, enforced or
not. This task is realised internally by the PCM using information
stored in the Database.

Refuse removal: In case the previous check task determines that there
are one or more policies involving this node, the PCM refuses the
removal of the node sending an exception.

As one could easily deduce by the amount of tasks listed for this component,
the Policy Consumer Manager is the core component of the MANBoP
framework. It controls and keeps updated all the functionality within the
framework. Nevertheless, there are other functionalities that should be carried
out by this component that, although not listed above, are equally important.

 91

CHAPTER 4 – PROPOSED MODEL

The first one is to control the lifecycle of Policy Consumer components. The
aim of this functionality is to avoid keeping many Policy Consumers running
within the system, which might have not been active for a certain time. In this
way, we try to make the whole framework more lightweight, dynamic and
autonomous. The criteria to control the lifecycle of Policy Consumers might
be diverse e.g. time since the last policy enforcement, presence of policies
within the database from the functional domain covered by the Policy
Consumer, etc.

The Policy Consumer Manager component is also responsible of keeping the
lifecycle of policies. All policies entering in the system will specify a validity
period after which they should be removed from the system as well as the
existing configurations in managed devices related with that policy. When this
validity period expires, the PCM should check and completely remove from
the system the policy and its associated configurations.

In addition, the Policy Consumer Manager needs to report to higher-level
managers the enforcement result of a policy, as well as additional data related
with the enforcement such as resources reserved. To keep this functionality
independent of the higher-level management software and allow different
applications to subscribe for this kind of information, we will use a CORBA-
like notification service. That is, the Policy Consumer Manager component
will send ‘enforcement-result’ type of events to the Notification Service,
which will forward them to the applications that have requested their
reception. More details about the Notification Service will be provided
afterwards, within the Decision-making Monitoring system description
section.

Finally, to develop all these tasks easily, the PCM component will parse the
XML policy into a JAVA8 object in order to simplify the access to policy
information.

In the next sub-sections a set of UML activity diagrams are provided so as to
simplify the comprehension of the expected behaviour of the Policy
Consumer Manager component. One activity diagram is given per each of the
external interfaces of the component, except for the main(), addN() and
removeN() interfaces since their activity diagrams will not differ much from
those shown in Figure 4 - 8, Figure 4 - 9 and Figure 4 - 10 respectively.
Thereby, the activity diagrams shown, namely Policy processing, Signalling
processing and Policy enforcement trigger, correspond to the dispatch(),
dispatch() (overloaded) and triggerEnf() external interfaces respectively.

a Policy processing

Many of the tasks appearing in the activity diagram shown in the figure 4 - 17
are almost the same as those given in the Policy Group processing use case.

8 JAVA is the programming language chosen for the implementation of the framework.

 92

Section IV.3 – Description of the MANBoP components

Nevertheless, the interest of figure 4 – 17 is to illustrate in more detail all tasks
realised by the PCM component when processing policies. Nonetheless, to
avoid redundant repetition of information we will just briefly mention those
tasks that have already been described in previous chapters.

When the PCM component receives a policy, the first task it realises is to
parse the XML policy into a JAVA object to simplify and speed up the
handling of information by the framework. Immediately afterwards, it checks
whether the policy pertains to a policy group. If so, the policy group
processing tasks (see page 63), are realised. Otherwise, the PCM stores the
policy in the DB and requests to the ACC component an authorisation check
for that policy. If the policy actions requested are not authorised, the policy is
removed from the database and the policy processing is stopped. In case the
check is successful, the PCM revises the version of the installed PCC
component before requesting to it the policy conflict checks. Again, only if
these second checks are successful, the policy processing goes on. Otherwise,
the policy is removed and the policy processing stopped. The next step
realised by the PCM is registering the policy expiration date to uninstall the
policy when it expires. Afterwards, the PCM proceeds to the registration of
policy conditions that should be monitored in the DmMs component. If
there are no conditions to monitor, the policy enforcement processes start
immediately.

First, the PCM requests to the PCC the realisation of a dynamic conflict
check against policies already enforced in the system. If successful, the Policy
Consumer expiration date of the involved Policy Consumer components
(related with the policy expiration date as explained later), is updated if
necessary. Then, the PCM demultiplexes the policy to the appropriate Policy
Consumer component to be enforced. When not installed, the PCM
component requests its installation.

After the enforcement has been requested, the PCM component waits for the
policy enforcement results. Based on this information it updates the policy
status information in the database, continues the processing of a policy group
when appropriate and informs higher-level managers about the enforcement
result.

 93

CHAPTER 4 – PROPOSED MODEL

request
authorisation

request policy
conflict checking

Wait for
policies

register policy
expiration date

request dynamic
conflict checking

is the correct PC
component installed?

enforce policy

YES

wait for
enforcement result

update policy status
in the database

is the correct PCC
component installed?

YES

request the installation
of a new PCC

NO

inform upper
management levels

is it a policy
from a group?

detect policy 'position'
within the group

YES

detect forwarding
method

forward next policy according
to forwarding method

is it the policy group
processing finished?

check whether there are
conditions to be monitored

any?

register conditions
to be monitored

YES

request its
installation

NO

parse policy to
JAVA

store policy in
the DB

NO

success? YES

remove policy
from the DB

NO

send exception

success?
YES

remove policy
from the DB

NO

send exception

register involved PCs
for lifecycle control

success?

YES

start policy
uninstalling process

NO

send exception

has it been enforced
correctly?YES

start policy
uninstalling process

NO

NO

YES

Figure 4 - 17. Policy processing inside the PCM component: activity diagram

 94

Section IV.3 – Description of the MANBoP components

b Signalling processing

The signalling processes realised by the PCM component are slightly different
from the policy processes described in the previous section. First, there is no
policy group processing since signalling requests are always ‘individual’
requests. In addition, the policy conflict checks are skipped since a signalling
request is not a policy although it might be syntactically expressed in a similar
way for processing convenience. Since there are no conditions in a signalling
request, because of the nature of the signalling request itself, there is no need
to contact the DmMs and the enforcement process can start directly. As with
policies, a dynamic conflict check is requested before actually giving to the
Policy Consumer component the decision about the signalling request.
However, prior to requesting this check to the PCC component the PCM has
to make sure that the correct version of the PCC is installed. In the policy
processing case, this check is done before. The last difference with the policy
processes is that now there is no need to check if the appropriate Policy
Consumer component is installed, because it is the Policy Consumer
component itself the one that initially raises the signalling request.

The other tasks in signalling processing have already been described in the
previous section; thus, they will not be repeated here.

 95

CHAPTER 4 – PROPOSED MODEL

request
authorisation

Wait for
policies

request dynamic
conflict checking

wait for
enforcement result

is the correct PCC
component installed?

YES

request the installation
of a new PCC

NO

update policy status in
the database

inform upper
management levels

enforce policy

store policy in
the DB

parse to JAVA

success?

remove policy
from the DB

NO

send exception

register policy
expiration date

YES

success?

send exception

start policy
uninstalling process

NO
register involved PCs

for lifecycle control

YES

has it been enforced
correctly?

YES
start policy

uninstalling process

NO

Figure 4 - 18. Signalling processing inside the PCM component: activity diagram

c Policy enforcement trigger

The trigger enforcement case is slightly different from the previous two,
because it begins when conditions of received and processed policy are either
fulfilled (initiating the policy enforcement), or are no longer fulfilled (causing
the removal of the enforcement configurations related with that policy). The
processes are initiated when the DmMs makes use of the triggerEnf() method
(offered by the PCM component) to request the beginning of the policy
enforcement when the conditions are fulfilled or the removal when not. The

 96

Section IV.3 – Description of the MANBoP components

conditions evaluation value is indicated in a parameter included within the
method itself.

The first task realised by the PCM component is to retrieve the mentioned
policy from the database for initiating the corresponding processes. The call
cause (enforcement or removal) is indicated in a parameter introduced in the
call itself by the DmMs component. In case the call indicates that conditions
are fulfilled, the enforcement process starts. As we have already commented,
the first step in the enforcement process is requesting to the PCC component
the realisation of a dynamic conflict check. As with the policy processing case,
the PCM does not need to check now that the correct version of the PCC is
installed, because it has done it before (when the policy was first received and
processed). If there are no dynamic conflicts, the PCM makes sure that the
correct Policy Consumer component is installed before requesting to it the
enforcement of the policy.

If the call indicates that the conditions are no longer fulfilled the component
will simply change the ‘act’ field of the policy with the ‘Remove’ value and
request its enforcement. Such policy enforcement will cause the removal of all
policy-related configurations in the underlying devices. Afterwards, the PCM
requests to the PCC component the update of the resource information
related with the enforced policy. The dynamic checks as well as the
assessment of the availability of the responsible PC component are not
necessary. The first one because the removal of a policy will not cause any
resource conflict, since the resources are being freed, nor a consistency
conflict because we assume that if a group of policies is consistent all possible
subgroups will also be consistent (for more information about conflicts see
pag.123). Additionally, it is not necessary to check the availability of the
responsible PC component since this component should, at least, have been
installed for enforcing the policy.

After the enforcement, or removal, has been requested the component waits
for the result form the PC component. In case the enforcement or removal
has been successful, the component updates the policy status in the database
before starting the policy group processing tasks (or informing to higher-level
managers if the policy group processing is finished). Otherwise, if the
enforcement or removal could not be realised, on the one hand, an error is
sent to the higher-level managers and, on the other hand, the policy group
processing is started if needed.

 97

CHAPTER 4 – PROPOSED MODEL

request dynamic
conflict checking

request its
installation

is the correct PC
component installed?

NO

enforce policy

YES

inform upper
management levels

update policy status
in the database

wait for
enforcement result

retrieve policy
from database

detect policy 'position'
within the group

detect forwarding
method

forward next policy according
to forwarding method

is it the policy group
processing finished?

NO
YES

are the policies starting or
ending of being fulfilled?

STARTING

change the action
mode to remove

ENDING

has it been enforced
successfully?YES

register involved PCs
for lifecycle control

successful?

YES
start policy

uninstalling process

NO

send exception

start policy
uninstalling process

NO

Figure 4 - 19. Policy enforcement trigger: activity diagram

B Component Design

The list of tasks described in the previous chapter can be joined in groups of
functionalities, which summarise the overall functionality of the Policy
Consumer Manager component:

♦ Functionalities related with the bootstrapping and management
infrastructure configuration (e.g.. add/remove node related issues).

 98

Section IV.3 – Description of the MANBoP components

♦

♦

♦

♦

♦

♦

♦

♦

Tasks related to the adaptation of managed topology information
received to IMOs that can be used by the other framework
components.

Tasks for the correct reception, processing and enforcement of each
individual policy (either signalling or ‘normal’ ones).

Notification to upper management levels of the enforcement result of
a policy or policy group.

Functionalities related with the correct reception and processing of
policy groups.

Tasks related with the storage and maintenance of policies.

Functionality dealing with the lifecycle of Policy Consumer
components.

Control of Policy Consumers and demultiplexing of policies to the
correct one.

Tasks dealing with the control of the Policy Conflict Check
component.

To cope with these groups of tasks, the PCM has been designed with the
classes shown in the UML class diagram below:

 99

CHAPTER 4 – PROPOSED MODEL

PCC Interface

checkConfl()
checkDyn()
uninstPR()

PC Interface

enforceP()
enforceP()

CIA Interface

dwCode()

(from Policy Editor)

Scheduler

regTrigger()

ACC Interface

authorise()

DmMs Interface

regCond()
unregCond()

upUnI()

PCCCnt

checkConfl()
uninstal lPR()

TEManager
Interface

updateTop()
findRoute()

estimateCosts()

PCCnt

enforce()
enforce()
uninstal lPC()

LfCnt

pExpDt()
invPCs()
unregpExpDt()

DB-Schema
Interface

setSchema()
getSchema()
remSchema()

DB-Policy interface

setPolicy()
getPolicies()
getPolicies()
modPSts()
removeP()
getPSts()

DB-Policy group interface

setGroup()
setGroupP()
getGroupSt()
getGroupP()

modGroupSt()
rmGroupP()
rmGroup()

PFwCnt

dispatch()
dispatch()
pProcSt()

PCMCore
mgmtTopId

main()
addN()
removeN()
triggerEnf()
procP()
procS()
uninstallP()

GraphBuilder

instObjects()
DB-Topology

interface

getPath()
createPath()
modPath()
remPath()

getGblTop()
modGblTop()

createTopObj()
getTopObj()

modTopObj()
rmTopObj()

(from TEManager)

Figure 4 - 20. Policy Consumer Manager class diagram

In the next sections, the description of each of the classes in the diagram
above will show how do they cope with the expected behaviour of the PCM
component.

a PFwCnt class

The Policy Forwarding Control (PFwCnt) class is in charge of receiving
policies and signalling requests from the Policy Editor component and
processing them accordingly. In particular, this class examines the received
information and detects whether it is a policy or a signalling request. When is
a policy, the PFwCnt checks if it pertains to a policy group and processes it
accordingly.

For realising this functionality, the class receives the policies and their
enforcement results. This information is used as input in the Policy Group
Execution Strategy (PGES) and is kept in the database together with other
group information.

The policy enforcement result is received by the class through the pProcSt()
method. The results might be introduced by the PCMCore class or Policy
Consumer components. The only Policy Consumer components that will

 100

Section IV.3 – Description of the MANBoP components

introduce enforcement results directly to the pProcSt() method are those
working at the network-level over element-level MANBoP managers. The
reason for this behaviour is that the enforcement at this level is the
forwarding of element-level policies. Thereby, the enforcement time of these
element-level policies is unknown. Hence, to avoid that the PCM component
waits for an unknown period of time for the enforcement result, Policy
Consumer components working over element-level managers respond
immediately to the PCM component an undefined enforcement result. Such
enforcement result does not have any effect over the processing of other
group policies, neither over the status of the policy. The only effect over the
system is that the PCM waits no more for the enforcement result. Later on,
when the enforcement result is finally known by Policy Consumers, because
they are warned by element-level managers, they will directly contact the
pProcSt() method to introduce the final enforcement result. Inside the
pProcSt() method the usual tasks will be done. More details are given later on
this sub-section.

The policy group processing functionality is not straightforward. Hence, we
describe it based on two activity diagrams to ease its comprehension.

The PFwCnt functionality can be triggered because of the reception of a
policy (or signalling request), or after the reception of an enforcement result.
Consequently, the two activity diagrams shown below reflect these two
possibilities.

Figure 4 - 21 shows the main activities carried out when a policy arrives to the
PFwCnt class.

 101

CHAPTER 4 – PROPOSED MODEL

receive policy or
signalling request

is it a policy
from a group?

is it the first policy
received from that group?

YES

create group
info in the DB

YES

should it be enforced
inmediately?

NO

forward policy to
PCMCore class

store policy along with
group info in the DB

NO

parse to JAVA

store in the DB
YES

does it exist
already?

is the ActionMode property
set to 'Remove'?

launch
exception

request the policy uninstallating
to the PCMCore class

NOYES
NO

YES

Figure 4 - 21. PFwCnt class: Policy triggered activity diagram.

First, the class parses the XML information into a JAVA object. This is done
to ease the handling of the policy information by the framework components.
Then, it checks whether the received policy is part of a policy group or not.
For realising this check the class simply accesses the group-related
information within the policy (see Information Model section in chapter 5).
In case it isn’t, the policy is simply stored in the DB (in both XML and
JAVA) and the policy identifier is forwarded to the PCMCore class. Although
this will be the most common behaviour, it might be also the case, as
reflected in the diagram, that when trying to store the policy in the DB it
detects that another policy with the same identifier is already stored in the
system. This situation might happen either because an error has occurred or
because the operator is trying to uninstall the corresponding policy. If so, the
received policy should have the ‘act’ field set with the ‘Remove’ value. When
this happens the PFwCnt class requests the uninstalling of the policy using
the uninstallP() method offered by the PCMCore class.

 102

Section IV.3 – Description of the MANBoP components

When the policy is part of a policy group, the PFwCnt class essays to get
group information from the DB. If there is no information for this group, the
PFwCnt deduces that the policy is the first one received policy from that
group and creates the group information in the DB. Then, based on the
group information, it decides whether the received policy should be enforced
immediately (and thus, forwarded to the PCMCore class) or instead, it should
be enforced after other policies from the group. When the latter, the class
simply stores the policy in the DB along with the group information.

When receiving an enforcement result, the activities realised by the class are a
bit more complex than the ones just described, as can be seen in the activity
diagram below:

receive enforcement
result event

is the group finished?

get group status
from DB

NO

decide which policy from the group
should be enforced next

is it already in
the DB?

remove it from the
DB group info

YES

forward policy to
PCMCore class

NO

inform to upper levels with the
result of group enforcement

YES

remove group
info from the DB

detect forwarding
method

should policies from the
group be uninstalled?

request its removal
to the PCMCore

update group status
in the DB

store in the DB

Figure 4 - 22. PFwCnt class: Enforcement result triggered activity diagram.

After the enforcement result arrival, the first step taken by the PFwCnt class
is the update of the policy group status information present in the DB with

 103

CHAPTER 4 – PROPOSED MODEL

the policy enforcement result. The class also gets the PGES applied to that
group. Then, based on the current group status and the execution strategy,
the PFwCnt decides if this last enforcement concludes the policy group
processing, or instead, if a new policy should be processed.

When the policy group processing is finished, the PFwCnt class informs the
upper management layers about the policy group enforcement result. This
report can even specify what group policies have been enforced (many times
only some of them will be enforced). Afterwards, it checks if any group
policies that were correctly enforced should be now removed because of the
last enforcement result received (i.e. an ‘atomic’ forwarding method). If so,
the class requests to the PCMCore to remove those policies. Finally, the
information related with that policy group status is removed from the DB,
since it is only kept there during the actual processing of the policy group.

Alternatively, when the policy group processing is not finished, a new policy
needs to be processed. The PFwCnt retrieves the group status from the DB
to decide which should be the next policy to be forwarded to the PCMCore
class. As soon as the decision is made, the PFwCnt class looks for that policy
in the DB. If the policy has not yet arrived to the framework, the PFwCnt
does nothing. Otherwise, retrieves the policy from the DB and forwards it to
the PCMCore class to be processed.

The PFwCnt class offers three public methods, namely the dispatch() method
overloaded to accept both policies and signalling requests, and the pProcSt()
method for receiving enforcement results. The input and output parameters,
as well as the functionality within these methods, are listed and explained in
the table that follows:

 104

Section IV.3 – Description of the MANBoP components

Interface Input
parameters

Output
parameters Functionality

dispatch()
credential

User, string
XPolicy

-

This method is used by the PE component to request the processing of an
XML policy. The XPolicy parameter provides the policy in XML. The User
parameter gives the credentials for the user that introduced the policy.
When receiving a call to this method, the PFwCnt class will realise the tasks
described in Figure 4 - 21. These tasks might eventually derive in the
processing of the policy, which is requested to the PCMCore class through
the procP() method.

dispatch()

string
sigRqId,

struct
decision,
credential

User, string
XPolicy

-

The difference of this overloaded dispatch method with the previous one is
that the sigRqId string and the decision structure are also introduced as input
parameters. sigRqId univocally identifies the signalling request so that when
notifying the decision taken to the Policy Consumer component, it can easily
link that decision with the signalling request raised. The decision structure
specifies the decision taken. This structure is initialised by the Policy Editor
with an acceptance value. The structure is defined as:
 struct decision {Boolean decision; string reason;};
The Boolean expresses whether the request has been accepted or refused,
while the string expresses the reason for the refusal when appropriate. As
previously mentioned, the signalling request is received as a special type of
XML policy for processing convenience.
The PFwCnt class, as it is not part of a policy group, will simply forward the
request to the PCMCore class through the procS() method.

pProcSt()

string
policyId, int
result, string

error

-

This method is used by either the PCMCore class or Policy Consumer
components. The method is used for notifying, either an enforcement result
or a policy removal for a particular reason (specified in one of the
parameters of the method). The input parameters are just a string identifying
the policy, an integer that determines the result and a string that provides
more details in case an error has occurred. The possible values of the integer
are: (0) enforced, (1) enforcement removed, (2) policy removed, (3)
enforcement error. Enforcement removed applies when due to the policy
conditions the configurations in the managed device related to this policy are
removed. Policy removed applies when the policy is uninstalled due to its
expiration, a conflict or any other reason.
The PFwCnt class when receiving a call to this method will update (or
remove) the policy information from the database, detect (and act
accordingly) if the policy is part of a group not yet concluded and inform to
upper management levels when necessary. For more details see Figure 4 - 22.

Table 4 - 5. The PFwCnt class interface description table

b PCMCore class

The PCMCore class is the central point in the Policy Consumer Manager and
probably the most important class of the whole MANBoP framework.
Among its tasks, the most important ones are the bootstrapping of the
framework, the control of the managed topology update and the coordination
of the policy processing functionality.

In order to facilitate the comprehension of how the PCMCore class behaves,
a set of activity diagrams are given below. These activity diagrams show the
class behaviour when processing policies (or signalling requests), or when
uninstalling a policy. The activity diagrams for the bootstrapping of the
system, or the addition/removal of network nodes are not included here
because they remain mainly as they are in figures 4 - 8, 4 - 9 and 4 - 10.

 105

CHAPTER 4 – PROPOSED MODEL

The information provided by these activity diagrams is complemented at the
end of the PCM description section by a set of sequence diagrams showing
how the different classes of the PCM component interact to achieve their
objective.

is it authorised?

request
authorisation

send
exception

Wait for
policies

request policy
conflict checking

YES

check whether there are
conditions to be monitored

any?

register conditions to
be monitored

YES

request dynamic
conflict checking

NO

register involved PCs for
lifecycle control

request policy
enforcement

successful?

send
exception

successful?

YES

send
exception

register policy
expiration date

YES

request policy
removal from DB

NO

request policy
removal from DB

NO

start policy
uninstalling process

NO

Wait for
enforcement result

has it been enforced
correctly?

request update of
the policy status

start policy
uninstalling process

YES NO

Figure 4 - 23. PCMCore class: Policy processing activity diagram

 106

Section IV.3 – Description of the MANBoP components

The figure above shows the main tasks carried out by the PCMCore class
when processing a policy. First, it contacts the ACC component to request an
authorisation check to the received policy. If the policy is allowed, the
PCMCore class requests to the PCCCnt class the execution of policy conflict
checks.

The PCCCnt class, as will be seen later, maintains the correct version of the
PCC component and interacts directly with it. As result from the conflict
checks, both policy and dynamic conflicts, a list of nodes where the policy
should be enforced might be returned. The PCMCore class will forward this
list to the PCCnt class when requesting the enforcement of a policy. In case
no conflicts are found, the PCMCore component asks to the LfCnt class the
registration of the policy expiration date.

Then, it decides whether the policy has any condition that needs to be
monitored based on the policy attributes. To access to these policy attributes,
the PCMCore class retrieves the policy from the database. If there are
conditions to monitor, the PCMCore class registers them through the DmMs
interfaces.

When no policy conditions need to be monitored, the class assumes that the
policy should be enforced immediately. The first pre-enforcement task,
developed by the PCMCore is requesting to the PCCCnt the realisation of
dynamic conflict checks. Only if the checks are successful, the PCMCore
registers in the LfCnt class the involved PCs before requesting to them the
policy enforcement. As the PCCCnt does with the PCC component, the
PCCnt class maintains the appropriate PC components in the system. More
details on the concrete functionality of the PCCnt class will be given later.

Finally, after requesting the policy enforcement the PCMCore class waits for
the reception of the enforcement result. In case it has been successful it
contacts the PFwCnt class to request the update of the policy information in
the database accordingly. Otherwise, it starts the policy uninstalling processes,
or does nothing if an undefined result is received. The uninstalling tasks are
those shown in Figure 4 - 25.

Complementary, the behaviour of the PCMCore class during the trigger
enforcement process is the one shown in the activity diagram within the
component behaviour description section (see Figure 4 - 19). The only tasks
appearing in that diagram which are not carried out by the PCMCore class,
but by the PFwCnt class, are those shown after the checks to determine if the
enforcement (or removal) has been realised successfully. Based on this
information the PCMCore class accesses the PFwCnt class to realise the
remaining tasks shown in the diagram as has already been described.

 107

CHAPTER 4 – PROPOSED MODEL

is it authorised?

request
authorisation

send
exception

Wait for
policies

request dynamic
conflict checking

register involved PCs for
lifecycle control

request policy
enforcement

successful?

YES

send
exception

register policy
expiration date

YESrequest policy
removal from DB

NO

start policy uninstalling
process

NO

Wait for
enforcement result

has it been enforced
correctly?

start policy
uninstalling process

NO
request update of
the policy status

YES

change decision
to 'refused'

change decision
to 'refused'

Figure 4 - 24. PCMCore class: Signalling processing activity diagram

The activity diagram above shows the behaviour of the PCMCore class when
processing a signalling request. The tasks developed are a subset of those
realised when processing a policy, because the conflict checks, as well as the
evaluation of conditions to be monitored, need not be done.

 108

Section IV.3 – Description of the MANBoP components

receive request for the
removal of a policy

unregister the policy
conditions

check policy
status

is it currently
enforced?

remove managed device configuration
associated with the policy

YES

return removal
result

check whether there are
any registered conditionsYES

NO

unregister the
expiration date

request the removal of the
policy information by the PCC

NO

request policy
removal from DB

Figure 4 - 25. PCMCore class: Policy uninstalling activity diagram

Finally, the last activity diagram described for the PCMCore class details the
tasks to be developed when a policy expires, and hence, must be uninstalled
from the system.

The tasks shown in the diagram might be triggered, either by the LfCnt class,
the PCC component or by the PFwCnt, accessing the uninstallP() method in
the PCMCore class interface. When triggered by the LfCnt class, the removal
of the policy is caused by its expiration. When triggered by the PFwCnt the
cause is an operator request or the policy group processing method applied.
Finally, when requested by the PCC component the reason is the necessity of
removing that policy to solve a conflict.

The PCMCore class receives the removal request and checks, considering
policy attributes, whether there are conditions registered in the DmMs. If so,
requests through the DmMs interface the obliteration of these conditions
(that is, the removal of the conditions registered).

 109

CHAPTER 4 – PROPOSED MODEL

The next task developed by the PCMCore class is retrieving the policy status
from the database to see whether the policy is currently enforced on the
managed devices. If so, it requests to the PCCnt class the enforcement of a
policy, equal to the one that should be uninstalled except for the ‘act’ policy
field, which is set with the ‘Remove’ value. The enforcement of such a policy
by the corresponding PC component will cause the removal of policy-
associated configurations in the underlying level and finally on the device.

Finally, the PCMCore class asks to the PCC component the removal of the
policy-related information, obliterates the expiration date from the LfCnt
class and requests to the PFwCnt class the removal of the policy information
from the database.

For carrying out all these tasks enumerated along the subsection, the
PCMCore offers seven public methods, namely main(), addN(), removeN(),
triggerEnf(), procP(), procS() and uninstallP(). The input and output
parameters as well as the functionality within these methods, are described in
the table below:

 110

Section IV.3 – Description of the MANBoP components

Interface Input
parameters

Output
parameters Functionality

main()

int
mgmtTopId,
file MgdTop,
file UndInt

-

This method is called by the administrator to request the instantiation of a
new MANBoP instance. The method requires three input parameters. The
first one is an integer (i.e. mgmtTopId) that establishes the position within
the management infrastructure at which this new MANBoP instance is going
to work. The possible values are: 0 (network level), 1 (element level), 2
(network over element level) and 3 (network over subnetwork level). The
second input parameter introduced is a file with information about the
managed topology. The information provided by this file is IP addresses,
available link bandwidth, etc. Finally, the third parameter is another file with
information about the underlying interfaces. It provides information about
how to contact and configure the lower-level devices, which either can be
lower-level MANBoP instances, or managed devices.
When receiving a call to this method, the PCMCore class realises the tasks
described in Figure 4 - 8, together with the GraphBuilder class that realises
the adaptation of the managed topology information. These tasks will derive
in the instantiation of a new MANBoP manager.

addN() file MgdTop -

This method is used by the administrator to request the addition of one
node to the topology currently managed by this MANBoP instance. The
method only needs two input parameters. These are, the file with
information about the managed topology and the file with the underlying
interfaces information (both described for the main() class method).
When receiving a call to this method, the PCMCore class develops the tasks
described in Figure 4 - 9, together with the GraphBuilder class that realises
the adaptation of the managed topology information .

removeN() file MgdTop -

This method is used by the administrator to request the removal of one
node from the topology managed by this MANBoP instance. The method
only needs one input parameter. That is, the file, with information about the
managed topology, as described before for the main() method.
When receiving a call to this method, the PCMCore class carries out the
tasks described in Figure 4 - 10, together with the GraphBuilder class that
realises the adaptation of the managed topology information, as well as
verifying that no policy applies to the node that must be removed .

procP()
credential

User, string
policyId

-

Used by the PFwCnt class to request the processing of a policy within the
system. The input parameters introduced are the credentials of the User,
which will be used for the Authorisation Check requested to the ACC class,
and the policyId string that identifies the policy and allows to easily retrieve it
from the DB.
The PCMCore class, when receiving a call to this method, coordinates the
interactions between the different components of the system as described in
Figure 4 - 23.

procS()

string
sigRqId,

decision dec,
credential

User, string
policyId

-

Used by the PFwCnt class to request the processing of a signalling request
policy within the system. The input parameters are the same as in the
procP() method plus the sigRqId string and the decision structure. The
sigRqId string identifies the signalling request; so that the Policy Consumer
component, when it receives the decision, can match it with the
corresponding request. The decision structure specifies the decision taken.
This structure is initialised by the Policy Editor with an acceptance value.
The structure has been already defined in Table 4 - 5.
The PCMCore class, when receiving a call to this method, coordinates the
interactions with the ACC, PCC, DmMs and Policy Consumer components
for correctly processing the signalling request policy (see Figure 4 - 24). If
the decision received as parameter already indicates a refusal value, the class
simply forwards the decision to the PCCnt class through the appropriate
method.

triggerEnf()

string
policyId,
Boolean
reason

-

Used by the DmMs when the conditions of a policy change their global
evaluation value. It indicates that the policy should either be enforced or
removed. The parameters needed in this method are two. The policyId
string identifies the policy whose condition evaluation value has changed.
The reason parameter is a Boolean that indicates (true) when the conditions

 111

CHAPTER 4 – PROPOSED MODEL

match or (false) when they don’t match any longer.
The PCMCore class coordinates the enforcement processes: retrieves the
policy from the DB, requests the dynamic conflict checks and requests also
to the PCCnt class the enforcement of the policy.

uninstallP()
string

policyId, int
reason

boolean
Result

This method can be called either by the PFwCnt class, the PCC component
or by the LfCnt class to request the removal of a policy. When requested by
the PFwCnt class, the cause of the removal can be either because of the
Policy Group Execution Strategy applied or because there is an explicit
request from the policy owner. When requested by the PCC component, the
removal is requested to solve a conflict. Finally, when requested by the
LfCnt class, the reason is the policy expiration. The removal request cause is
given as input parameter in the reason integer. The possible values are: (0)
explicit request from the owner, (1) due to the policy group processing
method, (2) policy expiration, (3) to solve a conflict. The other input
parameter introduced in the method is the identifier of the policy to be
removed. The output parameter is a Boolean that determines the result of
the actions taken.
The PCMCore class requests to the PCCnt class the removal of the policy
configuration from the managed device, removes the policy from the
database and removes the expiration trigger from the LfCnt class when
needed. In addition, it informs the owner about the cause of the removal.
These tasks can be seen in Figure 4 - 25.

Table 4 - 6. The PCMCore class interface description table

c GraphBuilder class

The GraphBuilder class is in charge of the creation, or removal, of topology
Information Model Objects (IMOs) whenever the topology is updated and
during the bootstrap of the framework. Every time a topology IMO should
be removed, the GraphBuilder class must verify that no reservation is using
the resources of the element represented by that IMO. The reason for this
has already been described in the Add/remove node Use case section (see
pag.72). For realising this task, it simply accesses the resource information
linked with this element and verifies that no resources are used or scheduled
to be used in the future.

In particular, during the MANBoP instantiation the GraphBuilder class gets
the MgdTop and UndInt files as well as the mgmtTopId (see Table 4 - 6)
from the PCMCore class and creates the IMOs related to the underlying
devices that will be stored in the Database. Among all the information stored,
the one relevant to this chapter is the assignation of nodeSets to each
underlying topology device. NodeSets are specified within the UndInt file.
They are artificial sets of underlying topology devices grouped based on
Policy Consumer component criteria. NodeSets are identified by the pointer
to where the attached Policy Consumer will be installed. To clarify a bit more
the concept we enumerate below the rules followed to determine these
nodeSets during the bootstrapping:

- When the MANBoP instance is not working directly over the
managed resources (i.e. mgmtTopId values 2 or 3), all underlying
topology devices are grouped under a single nodeSet. This implies
that there will be a single Policy Consumer component per functional

 112

Section IV.3 – Description of the MANBoP components

domain for all underlying topology devices, probably co-located with
the MANBoP instance.

- If the MANBoP instance is working directly over the managed
resources, (i.e. mgmtTopId values 0 or 1), there might be more than
one nodeSet:

o From the MgdTop file the GraphBuilder extracts the active
nodes that permit the installation of a PC component in an
EE. Each of those nodes will form a single nodeSet. The
value of the nodeSet, which is the pointer to where the PC
should be installed, will be obtained from the UndInt file.

o The other nodes will be grouped in those with the same
interface. Each of these groups will form a single nodeSet and
thus, they will have a single PC for each group and functional
domain. All these PC components will probably be co-located
within the MANBoP instance.

The nodeSet information, as we will see on the DmMs description section, is
also used to determine the Monitoring Meter components that are needed
and where they should be installed.

The class must also modify the IMO containing the global topology
information before concluding. The interface offered by the class is described
in the table below.

Interface Input
parameters

Output
parameters Functionality

instObjects()
file newTop,
file UndInt,

int type

boolean
Result

This method will be called by the PCMCore component to request the
creation or removal of topological IMOs, their linked resource information
IMOs and finally, the update of the global topology IMO. The method
specifies three input parameters and a boolean that indicates the result of the
process as output parameter. The first input parameter is a file indicating the
new topological information and the resources linked to it. The second
parameter is a file with information regarding the interface and access
parameters for the new nodes. The third one is an integer ‘type’ that
indicates if the topological information should be added (0) or removed (1)
to the managed network.
When receiving a call to this method the GraphBuilder class obtains from
the newTop file the topological elements (nodes and links) added (or the
ones that should be removed). Based on this information it creates the
corresponding IMOs. The resource IMOs for these elements are also
created based on the information available in the file. Finally, the global
topology IMO is updated with the new topology. The class returns ‘true’ if
no error has been found during the process; otherwise, it returns ‘false’.

Table 4 - 7. The GraphBuilder class interface description table

d PCCCnt class

The main task of the PCCCnt class (PCC Controller class) is the maintenance
of the correct version of the PCC component at any time.

 113

CHAPTER 4 – PROPOSED MODEL

The class receives requests for conflict checks (either dynamic or policy
conflicts) from the PCMCore class. The PCCCnt class keeps a list of the
functional domains supported by the current version of the PCC component.
When a conflict check request is received, it verifies if the functional domain
of the checked policy is in the list. If not supported, it requests to the CIA
system the installation of the newest version of the PCC component and
updates the list of supported functional domains. When the PCCCnt is sure
that the PCC is capable of processing the policy, it forwards the request to the
new PCC component. When the check is finished, the return parameters are
forwarded back to the PCMCore class.

As with the LfCnt class, the functionality of the PCCCnt has already been
described in a previous paragraph and the introduction of activity diagrams
will not provide any extra information.

The PCCCnt class offers an interface with just two methods: the checkConfl()
is used for requesting both dynamic and (static) policy conflict checks. The
uninstPR() method is used to request the removal of the resource information
associated with a policy. A detailed description of these methods is provided
in the table below:

Interface Input
parameters

Output
parameters Functionality

checkConfl()

string policyId,
credential

User, string
domainId, int

chType

boolean
Result,
string[]
nodeId

The PCMCore class uses this method to request a policy conflict check.
The method includes four input and two output parameters. The first
input parameter is a string representing the policyId that uniquely identifies
the policy. The second one are the credentials of the user, needed for
checking that the resources allowed to the user are not overridden. The
third is another string that identifies the functional domain to which that
policy pertains. Finally, the last input parameter is an integer, i.e. chType,
with two possible values: 0 is used for requesting a policy conflict check,
and 1 is used for requesting a dynamic conflict check. Finally, the method
returns a boolean that indicates whether the checks have been successful
or not and a list of nodeIds that identify where should be enforced the
policy. This last parameter is different from null only when a dynamic
conflict checking is requested.
When receiving a call to this method, the PCCCnt class carries out the
PCC controlling functionalities already described at the beginning of the
section.

uninstPR() string policyId,
boolean cause

boolean
Result

This method is called by the PCMCore component to request the removal
or update of the resource information related with a policy. The method
specifies two input and one output parameter. The input parameters are
the policyId that identifies the policy (whose resource information should
be either removed, or updated when the policy is de-enforced). The
boolean ‘cause’ specifies which of the two options (removal when true or
update when false) applies in this case. The output parameter is just a
Boolean that indicates if the requested action has been realised correctly.
When receiving a call to this method the PCCCnt class contacts the PCC
component to request the realisation of the expected functionality.

Table 4 - 8. The PCCCnt class interface description table

 114

Section IV.3 – Description of the MANBoP components

e PCCnt class

The functionality developed by this class is somehow similar to the one in the
PCCCnt class in the sense that its main role is to maintain the lifecycle of
Policy Consumer components. Nonetheless, its responsibilities are broader,
and the complexity of its tasks is slightly higher.

The main task of this component is the maintenance of Policy Consumers.
The PCCnt receives enforcement requests from the PCMCore class and looks
for the needed Policy Consumers9. If not installed, it requests their installation
at the location(s) pointed by the involved nodeSets. In addition, the PCCnt
retrieves the interfaces of the involved nodes from the database to include
them in the request to the PC. When the PCCnt knows that the needed PC
components are installed, it forwards the enforcement requests to them.

Another task realised by this component is the removal of an unused Policy
Consumer component when requested by the LfCnt class.

The PCCnt offers an interface with three methods for developing these tasks.
These methods are: the enforce() method overloaded to support policy and
signalling enforcements and the uninstallPC() method. The logic behind these
methods, as well as the input and output parameters specified are detailed in
the following table:

9 In case of a signalling request, the PCCnt simply retrieves the Policy Consumer that raised the request

from the request itself and links its identifier with its interface.

 115

CHAPTER 4 – PROPOSED MODEL

Interface Input
parameters

Output
parameters Functionality

enforce()

string
policySer,

string[]
nodeId

int result,
string error

The PCMCore class requests, through this method, the enforcement of a
policy. The method specifies two input and two output parameters. The
policy that must be enforced, serialised (‘policySer’) in a string, and the list of
nodes where this policy must be enforced, are the input parameters. The
output ones are an integer that specifies the result and a string that provides
more details if an error occurs. The possible values of the integer are: (0)
enforced, (1) enforcement removed, (2) policy removed, (3) enforcement
error, (4) undefined. Enforcement removed applies when due to the policy
conditions the managed device configurations related to this policy are
removed. Policy removed applies when the policy is uninstalled due to its
expiration, a conflict or any other reason.
When receiving a call to this method, the PCCnt class does the tasks
described before for assessing the availability of the PC component before
forwarding to it the request.

enforce()

string
policySer,

string[]
nodeId,
string

sigRqId,
struct

decision

int result,
string error

The PCMCore class requests, through this method, the enforcement of a
signalling request. The parameters specified in the method are those for the
previous one plus the identifier of the signalling request and the decision
structure. This identifier is used by the PC component to link the decision
made by the system with the signalling request raised. The decision structure,
already described for the PCMCore component, expresses the decision that
should be forwarded to the PC component.
In this case the class forwards directly the enforcement request to the
appropriate PC component.

uninstallPC()
string

nodeSet,
string PCId

boolean
Result

This method is used by the LfCnt class to request the removal of an unused
Policy Consumer component. The method specifies two input parameters
and one boolean parameter as output, which indicates if the requested action
has been realised correctly. The input parameters are the ‘nodeSet’ where the
PC component to be removed can be located, and the PC identifier ‘PCId’.
Both parameters are strings.
When receiving a call to this method, the PCCnt class removes from the
system the requested Policy Consumer component. However, the
component code might be kept in a local cache to avoid the need of
downloading it again in the future.

Table 4 - 9. The PCCnt class interface description table

f LfCnt class

The LfCnt class (i.e. Lifecycle Control class) is responsible of controlling the
lifecycle of both policies and Policy Consumer components. The lifecycle of
policies is dictated by its expiration date property, while the Policy Consumer
lifecycle is dictated by its use within the system. That is, when a PC is not
needed by any of the policies within the system the LfCnt will remove it in
order to save resources. Nevertheless, the removal of Policy Consumers is
only realised once a day, e.g. at midnight, to avoid an unnecessary high
number of installations and removals of Policy Consumers during the day.

Nevertheless, the lifecycle control of Policy Consumer components is not
straightforward, particularly when the MANBoP instance is working at the
network level directly over the managed resources (i.e. mgmtTopId value is
0). In such a situation, the underlying managed devices might be grouped in
more than one nodeSet, as we have seen in the GraphBuilder class
description section, and thus, there might be more than one instance of the

 116

Section IV.3 – Description of the MANBoP components

same type of Policy Consumer component, one per nodeSet. Thereby, the
LfCnt, in order to keep the lifecycle of the PC components, needs to know
not only the policy identifier and the expiration date but also the nodes where
this policy will be enforced. Based on this information the LfCnt will be able
to extract from the database the nodeSets involved and thereby, the PC
components involved.

The main problem is that sometimes, as justified in the traffic engineering
section (see pag. 62), the nodes involved in the enforcement of a policy might
not be known until enforcement time. On the other hand, the expiration date
of the policy should be registered when the policy is received. This process
cannot be done at enforcement time because some policies might never be
enforced. Hence, when the expiration date is registered in the LfCnt class,
when the policy is received, we might not know yet which are the involved
nodes.

The solution to this problem is doing the lifecycle control in two steps. The
first one is, when policies are received in the system, the registration of the
expiration date in the LfCnt class. The second step is, when the policy is
going to be enforced, the registration of the involved PC in the enforcement
of this policy. These two steps are represented in the LfCnt interface by two
methods, i.e. the pExpDt() for the first step and the invPCs() for the second
one.

To execute these tasks, the LfCnt class keeps a table with all policies, their
expiration date, the type of PC component they need and a list of involved
nodes. The first two properties of each row of the table, i.e. policyId and
expiration date, are filled during the first step, while the second couple of
properties are left blank until the second step. Additionally, the class accesses
and modifies the underlying topology information available in the database
(created by the GraphBuilder class during bootstrap as previously described).
In particular, it accesses the nodeSet information in order to find and modify
the list and number of policies processed by a particular Policy Consumer
component instance. The actual structure of this information within the
database will be seen in detail in the Information Model description section in
chapter 5.

Additionally, the LfCnt class makes use of the Scheduler service, considered
as an external service in this thesis, for registering the time triggers for each
policy expiration date. Each time the class receives a trigger from the
scheduler, it gets the involved policies and requests their removal to the
PCMCore class. Also, in case the list of the involved nodes is not blank in the
local table (meaning that the second registration step has been done at least
once), the LfCnt checks if these policies are the last ones that needed a
particular PC component instance and if so, marks that instance in the table
to be uninstalled at midnight. On the other hand when a new policy
expiration date is registered it also checks whether the involved PC is marked
to be uninstalled and if so, clears the mark.

 117

CHAPTER 4 – PROPOSED MODEL

The functionality of this component is not very complex; thus, we have not
considered necessary the introduction of activity diagrams to enhance the
description of its behaviour. The LfCnt class interface is composed by three
methods, pExpDt(), invPCs() and unregpExpDt(), which are further
described in the following table:

Interface Input
parameters

Output
parameters Functionality

pExpDt()
string

policyId,
string date

boolean
Result

This method is used by the PCMCore class to register the expiration date of
a received policy. The method requires just two input parameters: the
policyId that uniquely identifies the policy and the expiration date. The
method returns a boolean that indicates if the registration has been
successful.
When receiving a call to this method, the LfCnt class creates a new entry for
the policy in the local table kept by this class and registers in the Scheduler
service the corresponding trigger.

invPCs()

string
policyId,

string PCId,
string[]
nodeId

boolean
Result

This method is used by the PCMCore class to register the PC, linked with a
received policy, for lifecycle control. The method requires three input
parameters. The first one is the policyId that uniquely identifies the policy.
The PCId identifies the Policy Consumer component type needed to
enforce this policy. Finally, a list of nodes where the policy should be
enforced is introduced The method returns a boolean that indicates whether
the registration has been successful.
When receiving a call to this method, the LfCnt class updates the policy
entry in the local table kept by this class, and modifies the DB with the
lifecycle information for the involved PC components.

unregpExpDt() string
policyId

boolean
Result

This method is called by the PCMCore class to request the removal of an
expiration date of a policy. The method only needs one input and one
output parameter. The input parameter is the policyId that identifies the
policy whose expiration date should be removed. The output parameter is
just a Boolean that indicates if the requested action has been realised
correctly.
When receiving a call to this method, the LfCnt class will just remove the
corresponding row from the local table kept by this component and if
necessary update the corresponding PC components information from the
DB.

Table 4 - 10. The LfCnt class interface description table

g Sequence Diagrams

With the sake of completing the description and comprehension of the Policy
Consumer Manager component we include below sequence diagrams, with
interactions between the classes of the component, for all possible use cases
described in the ‘Component Behaviour’ section, with an additional one for
the policy uninstalling process.

 118

Section IV.3 – Description of the MANBoP components

PE PFwCnt PCMCore PCCCnt LfCnt PCCnt ACC DmMs PCC DB PC

dispatch()
setPolicy()

procP() authorise()

checkConfl() checkConfl()
getPolicies()

regCond()

pExpDt()

triggerEnf()

checkDyn() checkDyn()
getPolicies()

enforce()
enforceP()

getPolicies()

pProcSt()

modPSts()

invPCs()

Figure 4 - 26. Policy Consumer Manager: Policy processing sequence diagram

PE PFwCnt PCMCore PCCCnt LfCnt PCCnt ACC DmMs PCC DB PC

dispatch()

checkDyn()

setPolicy()

procS() authorise()

invPCs()

checkDyn()

getPolicies()

enforce()
enforceP()

pProcSt()
modPSts()

pExpDt()

Figure 4 - 27. Policy Consumer Manager: Signalling processing sequence diagram

 119

CHAPTER 4 – PROPOSED MODEL

PCMCore PCCCnt LfCnt PCCnt ACC DmMs PCC DB PCPFwCnt

triggerEnf()

checkDyn()
checkDyn()

getPolicies()

enforce()
enforceP()

modPSts()
pProcSt()

invPCs()

Figure 4 - 28. Policy Consumer Manager: Trigger Enforcement Sequence Diagram

PCMCore PCCCnt LfCnt PCCnt ACC DmMs PCC DB PCPFwCnt

uninstallP()

unregCond()

getPSts()

enforce()
enforceP()

getPolicies()

pProcSt()

removeP()

uninstPR() uninstPR()

Figure 4 - 29. Policy Consumer Manager: Policy uninstalling sequence diagram

3rd Authorisation Check Component

A Component Behaviour

The table of components and interfaces given in section IV.1 (done after a
system behaviour analysis based on use cases), assigns one task to the
Authorisation Check Component (ACC):

 120

Section IV.3 – Description of the MANBoP components

♦ Authorise policy: This task is requested through the authorise()
component interface. It authorises the policy by comparing it against
the access rights of the user.

The ACC is focused on realising this task that is key for enabling the
delegation of management functionality to users.

The authorisation checks determine what types of policies a user can
introduce in the system. That is, what conditions, actions as well as their
values and, sometimes, where and when policies can be applied. At the same
time, the ACC also checks that the policy is syntactically correct.

To do these tasks, the ACC accesses the DB to obtain the user’s access rights
formatted in a particular way. This information has been introduced
previously in the DB as result of delegation policies enforcements. In our
case, this information is formatted as XML Schemas. Hence, the ACC
accesses the DB to obtain, based on the functional domain and the user’s
credentials the XML Schema defining what the user is allowed to do within
that functional domain. No XML Schema means that the user is not allowed
to introduce any type of policies of that functional domain. In the activity
diagram shown below we can see in more detail how the component does
this task:

obtain domainId and
user credential

look for an schema in the DB
for that user and domain

any found?

return false

check policy against
the schema

success?

return trueraise exception

NO

YES

NO YES

Figure 4 - 30. Authorisation Check Component Activity diagram

 121

CHAPTER 4 – PROPOSED MODEL

B Component Design

As we have seen in the Component Behaviour sub-section there are two
major tasks to be developed: the logic to obtain the necessary information for
the authorisation checks and the checks themselves. The class diagram shown
below reflects this division.

ACkr

pVsS()

DBInterface

setPolicy()
getPolicies()
modPSts()
removeP()
setGroup()

setGroupP()
getGroupSt()
getGroupP()

modGroupSt()
rmGroupP()
rmGroup()
getPSts()

setSchema()
getSchema()
remSchema()

(from PCM)

ACnt

authorise()

Figure 4 - 31. Authorisation Check Component class diagram

The ACnt (Authorisation Control) class is in charge of receiving the request,
getting the schema from the DB and, if necessary, forwarding the schema and
the policy to the ACkr class to do the checks. The concrete functionality and
method description for these two classes are given in the sub-sections below.

a ACnt class

The Authorisation Control class (ACnt) gathers the needed information from
the Database and input parameters and, if a schema is found, retrieves from
the DB the policy in XML format and the XML schema before requesting to
the ACkr the realisation of the checks.

The class interface is described in the table below:

Interface Input
parameters

Output
parameters Functionality

authorise()

string
policyId,
credential

User, string
domainId

boolean
Result

This method is called by the PCM component for deciding whether a user
is authorised to introduce a policy. The method includes three input
parameters: the policyId, which uniquely identifies the policy, the user’s
credentials and the functional domain identifier. The method returns a
boolean that indicates whether the user’s policy is authorised or not.
When receiving a call to this method, the ACnt class carries out the tasks
already described.

Table 4 - 11. The ACnt class interface description table

 122

Section IV.3 – Description of the MANBoP components

b ACkr class

The task done by the ACkr class is validating the policy against the access
rights of the user who introduced it. We are not going to enter in detail how
this functionality is developed, because we are simply taking one of the freely
available XML validators [W3Ctools] that realise this functionality (i.e. the
validation of an XML document against a schema).

The class interface is described in the table below:

Interface Input
parameters

Output
parameters Functionality

pVsS()
string Xpolicy,

string
XMLSchema

boolean
Result

The ACnt class requests the validation of the policy against the user
schema through this method. The input parameters are the XML policy
and the schema needed by the class. The method returns a boolean that
indicates whether the user is authorised or not to introduce that policy. In
case he is not, an exception is raised.
When receiving a call to this method, the ACkr class develops the XML
validation tasks just described.

Table 4 - 12. The ACkr class interface description table

c Sequence Diagrams

As in the previous component descriptions, we provide hereafter a sequence
diagram to facilitate the description of the component behaviour.

PCM ACnt ACkr DB

authorise()
getSchema()

getPolicies()

pVsS()

Figure 4 - 32. Authorisation Check Component sequence diagram

4th Policy Conflict Check

A Component Behaviour

When a set of policies do not contradict each other (they do not conflict), the
set is considered consistent. In [Verma00] they define a policy conflict as:

“A set of policies is consistent if it can be shown that no contradictory policies will ever be
found”

 123

CHAPTER 4 – PROPOSED MODEL

In MANBoP, the PCC component will have the responsibility of detecting,
and if possible solving, these contradictions so that the set of policies
introduced in the system are always consistent.

 Taking into account the table of components and interfaces given in section
IV.1 (Table 4 - 1) the main tasks that must be fulfilled by the Policy Conflict
Check (PCC) component are:

♦

♦

Check for policy conflicts: This task is requested through the checkConfl()
method. It consists on verifying that the new policy does not break
the consistency when introduced in the system. Thus, the check is
done at policy introduction time.

Check for dynamic conflicts: In this case the task is requested through the
checkDyn() method. The PCC component checks if the policy that is
going to be enforced conflicts with other policies previously
enforced. This might also include delegation policies that determine
the resources allowed for a user. This check is done at enforcement
time because in some cases is not possible to predict when a policy is
going to be enforced, and thus, whether there is going to be a
conflict.

In addition to these two tasks, the PCC component must essay to resolve any
detected conflict. To do this task, the component uses a priority property
included within policies. That is, if a conflict between two policies is found,
the one with the highest priority is introduced and the other one removed.
This might be particularly useful, for example, for guaranteeing that network
operators fault management policies (e.g. policies oriented to congestion
avoidance), will be enforced even if they conflict with lower priority user
policies. Obviously, whenever a user policy is removed because conflicting
with a higher priority policy, the user must be notified.

Another important remark is that, when the TEManager component is not
able to find a route with enough resources for a flow, it returns the route with
the minimum cost and a list of the conflicting resources in that route. Hence,
based on this physically-possible route and policy priorities, the PCC
component will take a decision.

One additional task that should be carried out by the Policy Conflict Check
component is the recompilation, analysis and reporting of resource scheduling
and consumption status in underlying devices. These reports are generated
periodically and introduced within the notification channel. PCC components,
except those working directly over the managed devices, will register at
bootstrap in the Notification Service for receiving these reports from the
underlying MANBoP managers.

Despite the apparently simple functionality of this component if we just take
into account the above description, the realisation of these checks based on
the available resources, network topology and user rights is not at all
straightforward. The activity diagrams of the component, given hereafter,

 124

Section IV.3 – Description of the MANBoP components

reflects the complexity of these tasks and complement the textual description
just given.

analyse policy
conditions

is the enforcement
period predictable?

check resource-reservation
tables*

YES

are there enough
resources for that period?

get possible
conflicting policies

YES

check for consistency with
those policies

conflicts?

return OK

get possible conflicting policies
with identical conditions

NO

is there any?

return OK
NO

are the needed resources and the nodes where
those resources are needed specified?

YES

check for consistency with
those policies

NO

conflicts?

return OK

check resource-reservation
requests for those policies

YES

could there be
enough resources?

resolve conflicts
based on priorities

NO

solved?

return OK

send
exception

NO

return not
OK

* If needed the TEManager is
contacted

make
reservation

make
reservation

NO

is the new
policy refused?

YES

make
reservation

send
exception

YES

return not OK

resolve conflicts
based on priorities

YES

solved?

return OK

send
exception

NO

return not
OK

is the new
policy refused?

YES

request the old
policy uninstalling

NO

make
reservation

send
exception

YES

return not OK

resolve conflicts
based on priorities

solved?

return OK

send
exception

NO

return not
OK

is the new
policy refused?

YES

request the old
policy uninstalling

make
reservation

send
exception

return not OK

get possible
conflicting policies

check for consistency with
those policies

conflicts?

NO

NO

YES

YES

NO

NO

YES

Figure 4 - 33. Policy checking activity diagram

 125

CHAPTER 4 – PROPOSED MODEL

Figure 4 - 33 shows the tasks carried out by the PCC when a new policy
conflict check request is received. It guides the rest of the process and
establishes the time interval during which the new policy will be enforced (the
enforcement interval). Such information is needed to assess the availability of
the requested resources at that time and to schedule the allocation of
resources. Nevertheless, sometimes the enforcement interval is not
foreseeable and therefore this scheduling task cannot be realised.

When the enforcement interval can be established the PCC component finds
out if the requested resources are available, not only globally but also for that
particular user. These resources might be needed all along two end-points of
the managed network. In this case, the concrete route with the available
requested resources should be found by the TEManager10 component, which
would be contacted by the PCC. If there are not enough resources, it tries to
solve the conflict based on the requests priorities.

Once the resource scheduling is solved, and obviously only if the new policy
has not been rejected along this process, the component looks for policies
previously received that might create an inconsistency with the new one.
Then, it checks if such inconsistency exists. Again, if a conflict is found, it
tries to solve it based on the requests priorities. Finally, depending on the
process result, the resource scheduling information might be modified and
some policies might be requested to be uninstalled to avoid detected conflicts.

In those situations when the enforcement interval is not foreseeable, the
component looks for policies that share the same conditions with the new
one: those are the only ones that we can assure that will be enforced at the
same time. Then, the PCC checks whether the requested resources (e.g.
including nodes where these resources are requested in) are already known, or
they will only be known at enforcement time. This check is realised to assess
the feasibility of making an initial check of resource availability for those
policies. Anyway, all these policies are checked for consistency, and if a
conflict is found, the component tries to solve it. Finally, the resource
information is updated accordingly.

As already described in the introductory paragraphs of the component, before
the enforcement of a policy another check is realised: a dynamic conflict
check. The activity diagram below shows the main tasks realised by the
component when such a check is requested.

10 The TEManager could be seen as a subcomponent of the PCC since its functionality is

complementary. Nonetheless, both its complexity and its necessity just at network or sub-network
levels have moved us to design it as a separate component.

 126

Section IV.3 – Description of the MANBoP components

check if there is a
reservation for this policy

is it?

check resource-reservation
tables*

NO
check whether the reserved

resources are available

YES

are they?

get possible conflicting policies
between those enforced

YES

check for consistency with
those policies

conflicts?

return OK

request the old
policy uninstalling

return OK

return not OK

return not
OK

send
exceptionis the new policy

refused?NO

solved?
NO

YES

resolve conflicts
based on priorities

send
exception

YES

resolve conflicts
based on priorities

NO

send
exception

return not
OK

is the new policy
refused?NO

send
exception

YES

return not OK

solved?
NOYES

update
resource-reservation tables

update resource-reservation
tables

YES
NO

Figure 4 - 34. Dynamic conflict checking activity diagram

Since all policies should have been previously checked for conflicts by the
PCC component, the first task realised in the dynamic check is finding out if a
reservation has been scheduled in that process (i.e. if the enforcement interval
was predictable). When there is such a reservation, the component just
verifies that the scheduled resources are still available, and solves the conflict
if they are not. On the other hand, when there is no scheduled reservation,
the component checks whether the requested resources are physically
available for that user within the network. Again, if not enough resources are
found, the system tries to resolve the conflicts based on the requests
priorities. Once the resource conflicts are solved, the system gets the policies

 127

CHAPTER 4 – PROPOSED MODEL

that might create an inconsistency with the one that is going to be enforced
(i.e. all enforced policies from a potentially conflicting domain) and looks for
such an inconsistency. If any is found, it tries to resolve it. Otherwise, the
resource information is updated accordingly and, if necessary, conflicting
policies are requested to be uninstalled.

Although not shown in the activity diagrams, the PCC component must also
be capable of removing all resource reservation requests information related
with a policy when this policy is removed. Therefore, each time a policy is
removed, the Policy Consumer Manager requests to the PCC the removal of
this information. Then, the PCC retrieves from the database the resource
information linked with the policy, and it modifies the resource information
kept in the database accordingly.

Finally, the last important task that must be executed by the PCC, not shown
in the activity diagrams, is report processing. That is, receiving reports from
underlying devices, updating resource information based on these reports,
requesting when appropriate the re-calculation of paths costs to the
TEManager component and building reports for higher-level instances. These
tasks will be described in more detail within the RpProc class description sub-
section.

B Component Design

The Policy Conflict Check (PCC) component design presented in this section
does not pretend to suggest an innovative conflict-checking algorithm but just
fulfilling the expected functionality for proving the concepts of the
management framework presented. We should not forget that the focus of
this doctoral thesis is the proposal of a framework oriented to the
management of active and programmable networks. Hence, the concrete
policy-related logic such as policy repository, policy conflict checking and
policy translation is faced just from the functional point of view (we do not
consider the performance properties of these mechanisms) to prove the
global framework. Indeed, an advanced work within each of the above-
mentioned topics itself could be the subject of a doctorate thesis.

Complementarily, the implementation of the PCC component can be faced in
two ways; looking for an easy as possible component upgrade with new
functional domains, or looking for a better component performance
properties.

We should point out also that the logic of the PCC component, as already
described in previous chapters, depends on the management level at which
the component acts, as well as on the functional domains it supports. Thus,
the design presented here should be particularised to the real environments
where the different versions of the component are placed and needed.

 128

Section IV.3 – Description of the MANBoP components

In the component behaviour description above, we have enumerated a
number of tasks the component must develop. These tasks can be grouped as
shown below:

♦

♦

♦

♦

♦

♦

♦

Tasks related with an analysis of policy conditions and checking
requests for identifying the next steps to be taken.

Functionality that copes with the search of requested resources within
the managed devices and the scheduling of resources.

Maintenance of the correct resource information within the database.

Functionality aimed to look for potentially conflicting policies within
the database.

Logic that certifies that a set of policies is consistent.

Tasks that in case of conflict (either because of resource unavailability
or consistency) try to resolve such a conflict based on requests
priorities.

Tasks related with resource information reports (i.e. their construction
and processing).

These groups of tasks lead us to the component design shown in Figure 4 -
35. Each class in the diagram will mainly cope with one of the task groups
above stated. The concrete description of how they handle with that
functionality is given in the class description sub-sections hereafter.

 129

CHAPTER 4 – PROPOSED MODEL

RICnt

updateRI()
remov eRI()

DB-Policy interf ace

setPolicy ()
getPolicies()
getPolicies()
modPSts()
remov eP()
getPSts()

(from PCM)

Resolv C

resourceC()
consC()

ConsCh

check()

PFetch

f indCPol()

DB-Resource
Interf ace

setPRI()
getPRI()
rmPRI()

getUsedRI()
getRI()

getRouteI()
modUsedRI()

modRI()
modRouteI()

PAn

checkConf l()
checkDy n()
uninstPR()

Policy Consumer
Manager interf ace

dispatch()
dispatch()

uninstallP()

(from Policy Editor)

PCCCore

f indResources()
sumResources()
checkRAv ()

RpProc
recRp : String[]
procP : String[]

chPeriod()

TEManager
Interf ace

updateTop()
f indRoute()

estimateCosts()

(from PCM)

Figure 4 - 35. Policy Conflict Check class diagram

a PAn class

The Policy Analysis (PAn) class is mainly responsible of receiving check
requests from the Policy Consumer Manager. Then, analyse these requests
(i.e. analyse policy conditions to find out, when possible, the enforcement
interval) and request the appropriate conflict checks and resource reservation
schedules based on this analysis. The class is also responsible of returning the
check result to the PCM component.

The logic designed within this class is not extraordinary complex. We describe
this logic for each one of the methods offered by this class in the following
table.

 130

Section IV.3 – Description of the MANBoP components

Interface Input
parameters

Output
parameters Functionality

checkConfl()

string
policyId,
credential

User

boolean
Result

The PCM component will make a call to this method to request the conflict
check of a new policy received. The method is defined with two input
parameters and just one boolean parameter as check result. The first input
parameter is a string representing the policyId that uniquely identifies the
policy to be checked. The second one represents the credentials of the user,
needed for checking that the user-allowed resources are not overridden.
When receiving a request through this method the PAn class tries to
establish the enforcement period for this policy and request the
corresponding checks to the PCCCore class accordingly.

checkDyn()

string
policyId,
credential

User

boolean
Result,
string[]
nodeId

The Policy Consumer Manager uses this method to request a dynamic
conflict check to the PCC before the actual enforcement of the policy. The
method includes two input and two output parameters. The input
parameters are the same as the ones described for the previous method. As
output parameters, in addition to the boolean result (mentioned briefly in the
previous method), the method returns a list of nodes where the policy
should be enforced. If not applicable (i.e. when working at the element level)
this parameter is simply ignored and returned with null value.
The PAn class checks whether the policy to be checked has obtained, in a
previous policy conflict check, any kind of resource reservation schedule.
Based on this information it requests the corresponding checks to the
PCCCore class.

uninstPR()

string
policyId,
boolean
cause

boolean
Result

This method is used by the PCM component to request the removal, or
update, of policy-related resource information. The method specifies two
input and a single output parameter. The input parameters are the policyId
that identifies the policy whose resource information should be removed (or
updated when the policy is not removed but de-enforced). The boolean
‘cause’ specifies if the policy is being removed or if it is being de-enforced.
The output parameter is just a Boolean that indicates if the requested action
has been realised correctly.
When receiving a call to this method, the PAn class contacts the RICnt class
to request the realisation of the expected functionality.

Table 4 - 13. The PAn class interface description table

b PCCCore class

The PCCCore class is probably the most important class within the PCC
component. It is in charge of coordinating the whole checking process,
finding requested resources, maintaining resource schedules, contacting the
TEManager component if necessary, deciding what policies should be
uninstalled (based on the results from the ResolvC class) and requesting their
removal to the PCM component.

The functionality, briefly summarised in the previous paragraph, is not as
straightforward as it might seem, especially the functionality related with
resource searching and scheduling. For that reason we provide below an
activity diagram together with a detailed description for each of the three
methods that this class incorporates: findResources(), sumResources() and
checkRAv().

 131

CHAPTER 4 – PROPOSED MODEL

obtain the needed
resources from the policy

look at the enforcement
interval received

gets the available resources for
that interval from the DB'

compares requested resources
with the ones available

finds out whether the requested
resources are concretely specified*

* Only at NL
** Always at EL
' If the interval is undefined gets
from the DB information of
resources actually consumed

contacts the TEManager to define
where are the needed resources*

are they?
NOYES**

are there enough
resources?

request the retrieval of
potential conflicting policies

YES

request consistency checking
for those policies

is there any
conflict?

request resolution of
the conflict

YES

could it be
solved?

request resolution of
the conflict

NO

update the list of policies
to be uninstalled

request the uninstalling of
conflicting policies (if any)

NO

request the update of
resource information

return OK
send exception

NO

return not OK

is the new policy the
one discarded?

YES
NO

request the uninstalling of
conflicting policies (if any)

request the update of
resource information

return OK

could it be
solved?

is the new policy the
one discarded?

send exception

NO

YES

return not OKupdate the list of policies
to be uninstalled

NO

YES

YES

Figure 4 - 36. PCCCore class: findResources activity diagram

 132

Section IV.3 – Description of the MANBoP components

The activity diagram above shows the main tasks that the PCCCore class
realises when a request is received through the findResources() method.

First, the class obtains the requested resources information from the policy
being checked. Moreover, the PCCCore class identifies if the requested
resources must be reserved or instead, they must be allocated directly11. This
information might be forwarded to the TEManager, when reached later in the
process, and to the RICnt class at the end of the process. The PCCCore class
also finds out whether the resources are provided to the level of specifying
also the nodes where they are requested. That is, it assesses whether the
TEManager should be contacted to determine the nodes within the network
where the resources can be obtained from or, instead, these nodes are already
specified in the policy itself. Together with the enforcement interval (received
as parameter), the class either finds out itself if the needed resources are
available based on the resource information in the database, or contacts the
TEManager to realise this task. The class that will carry out this task is chosen
based on the result of the previous assessment. It is important noticing that,
when the enforcement interval is undefined and the findResources method is
requested, the class will compare the requested resources against those
currently used in the managed system since this situation will only happen in a
dynamic conflict checking.

In case not enough resources could be found to fulfil the request the
PCCCore class requests to the ResolvC class the resolution of the conflict
detected. If a solution is found, the PCCCore class receives a list of one or
more policies that should be uninstalled to solve the conflict. When the new
policy is the one discarded, the class simply raises an exception and returns
not OK to the PAn class. Otherwise, it keeps the list of policies to be
uninstalled and continues the process.

Once we know that there are enough resources for the new request the
PCCCore class asks to the PFetch class the database retrieval of policies that
might potentially create an inconsistency with the new one. When a list of
policies is returned by PFetch, and if at least one policy is in that list, the
PCCCore class sends the list of potentially conflicting policies to the ConsCh
class to realise the consistency checking between those policies. If a conflict is
found the ConsCh returns the list of conflicting policies to the PCCCore that
will forward them to the ResolvC class to request the solution of the conflict
based on priorities.

Again, if a solution is found, the ResolvC class returns a list with the policies
that should be uninstalled. The PCCCore class checks that neither in this
second list the new policy is discarded. In case it is, the class raises an
exception and returns not ok. Otherwise, updates the list of policies that must
be removed making sure that no policy is repeated.

11 This information is obtained from the ‘act’ field of the policy.

 133

CHAPTER 4 – PROPOSED MODEL

Finally, after the whole checking process is completed the PCCCore class
requests to the Policy Consumer Manager component the removal of all
policies discarded to solve conflicts (if any) and to the RICnt class the update
of the resource information in the database.

Not included in the diagram, to keep it as simple as possible, are the tasks
related with the processing of policies with the ‘act’ policy field containing a
‘Modify’ value. The processing of this kind of policies is quite similar to the
other ones, with some particularities.

First, after the request, the first thing the PCCCore realises is checking the
‘act’ policy field of the policy received. If the value of this ‘act’ field is ‘Modify’
then the PCCCore retrieves from the database the policy being modified. It
compares both policies, particularly the resources requested. Then, if
necessary it tries to accommodate within the network the resource difference
between both policies. When there is no resource conflict, it makes the
consistency checking against all potentially conflicting policies except the one
that is being modified. Finally, after assuring that there are no conflicts the
PCCCore requests to the RICnt the update of the resource information
related with the policy being modified. Afterwards, the PCCCore changes the
status of the policy that has been modified to ‘not enforced’ and request its
removal to the Policy Consumer Manager, because the new one has already
been successfully introduced. The reason for this is that the enforcement of
the modify policy will cause the modification of all configurations in the
managed devices. Therefore, we do not desire to remove these configurations
when uninstalling the old policy. This removal is requested to keep the whole
group of policies received consistent and to simplify processes such us the
policy expiration and others.

 134

Section IV.3 – Description of the MANBoP components

request the retrieval of policies
with the same conditions

obtain from the DB the resources
requested by these policies

compare the total requested resources
with the maximum available

request the retrieval of
potential conflicting policies

request consistency checking
for those policies

is there any
conflict?

request resolution of
the conflict

could it be
solved?

update the list of policies
to be uninstalled

request the uninstalling of
conflicting policies (if any)

request the update of
resource information

return OK
send exception

return not OK

is the new policy the
one discarded?

request the uninstalling of
conflicting policies (if any)

request the update of
resource information

return OK

could it be
solved?

is the new policy the
one discarded?

send exception

return not OKupdate the list of policies
to be uninstalled

request resolution of
the conflict

are there enough
resources?

YES NO

NO

YES
NO

NO

YESNO

YES

NO

YES

YES

Figure 4 - 37. PCCCore class: sumResources activity diagram

The diagram above shows the main tasks realised within the PCCCore class
when a call is made to the sumResources method. The first task realised is to
extract from the received policy the conditions to ask to the PFetch class the
retrieval from the database of all policies with the same conditions. The
rationale behind such task is that we assume that policies with same
conditions will be enforced at the same time and on the same managed nodes
(if applicable). Hence, they are potentially conflicting policies. Afterwards, it

 135

CHAPTER 4 – PROPOSED MODEL

retrieves from the database the resources requested by these policies and adds
them. Once we have the result, the PCCCore class compares it against the
maximum capability value for these resources. If the added value is higher, a
conflictive situation will occur at their enforcement time. Therefore, the
ResolvC is contacted to resolve such a conflict as already described for the
findResources activity diagram.

Additionally, once possible resource conflicts have been solved, the PCCCore
class will request for a consistency checking between the remaining policies.
From this point, up to the end of the process, the tasks developed are the
same as those described for the findResources activity diagram.

Again, as in the findResources case, there are a number of tasks within the
PCCCore, for the processing of ‘Modify’ policies, which have not been
considered in the activity diagram for sake of simplicity. When a request is
received through the sumResources method, the first thing the PCCCore
class carries out is checking the ‘act’ field of the policy. In case its value is
‘Modify’ then the PCCCore gets all policies with the same conditions (except
the one that is being modified), and assess whether there could be enough
resources for them. If so, checks whether there is any inconsistency within
the same group of policies. Finally, unless a conflict is found, the PCCCore
requests to the RICnt class the update of the resource information related to
the policy being modified, and requests to the Policy Consumer Manager the
removal of the modified policy after having changed its status to ‘not
enforced’.

 136

Section IV.3 – Description of the MANBoP components

retrieve used resources
information from the database

compare it with
reserved resources

request the retrieval of
potential conflicting policies

request consistency checking
for those policies

is there any
conflict?

request resolution of
the conflict

could it be
solved?

update the list of policies
to be uninstalled

request the uninstalling of
conflicting policies (if any)

request the update of
resource information

return OK
send exception

return not OK

is the new policy the
one discarded?

request the uninstalling of
conflicting policies (if any)

request the update of
resource information

return OK

could it be
solved?

is the new policy the
one discarded?

send exception

update the list of policies
to be uninstalled

request resolution of
the conflict

are there enough
resources?

return not OK

YES

NO

NOYES

YES
NO

YES NO

YESNO

YES

NO

Figure 4 - 38. PCCCore class: checkRAv activity diagram

The checkRAv method will be requested by the PAn class when a dynamic
conflict checking is realised for a policy with a previous reservation already
scheduled. The tasks realised by the PCCCore class are thereby oriented to
confirm the availability of the scheduled resources and solve potential
conflicts that might appear.

First, the PCCCore class retrieves from the database the information about
used resources on the managed devices and compares it with scheduled
resources for that policy. In case the scheduled resources are not available, the

 137

CHAPTER 4 – PROPOSED MODEL

PCCCore class finds out, using the resource information in the database,
which are the reservations (and associated policies) conflicting, and requests
to the ResolvC class the resolution of such a conflict.

When the scheduled resources are available, or once the resource conflicts
have been solved, the PCCCore class requests the retrieval of policies
potentially conflicting with the one that is going to be enforced. The
PCCCore asks to the PFetch the retrieval of these policies but only among
those that are currently enforced. The rationale behind this is that consistency
with policies whose enforcement time is detailed has already been done in the
policy conflict checking developed when the policy was first introduced in the
system. Thereby, we must only do consistency checks against those policies
whose enforcement time cannot be foreseen. Additionally, it is only useful to
check only against the subgroup that is already enforced, because the others
might never be enforced. Even if they do, the corresponding dynamic check
will be realised before their enforcement, thus detecting any potential
inconsistency.

The other tasks carried out within the PCCCore class for this method have
already been described before.

The concrete methods, parameters and behaviour of the interface offered by
this class are described in the following table:

 138

Section IV.3 – Description of the MANBoP components

Interface Input
parameters

Output
parameters

findResource
s()

string
policySer,
credential

User, interval
enfInt

Functionality

boolean
Result,
string[]
nodeId

interval is an structure defined as: struct interval{int start_time; short
moymask; int dommask; byte dowmask; string[] tday; int end_time;};12
start_time and end_time are ‘int’ types with the following structure:
YYYYMMDDhhmm (Year, Month, Day, hour, minutes)
moymask is a mask that indicates the valid months of the year. It is
formatted as an octet string of size 2, consisting of 12 bits identifying the 12
months of the year, beginning with January and ending with December,
followed by 4 bits that are always set to '0'.
dommask is a mask indicating the valid days of the month. This property is
formatted as 31 bits identifying the days of the month counting from the
beginning.
dowmask is a mask that specifies the valid days of the week. This property is
formatted as 7 bits identifying the 7 days of the week, beginning with Sunday
and ending with Saturday, followed by 1 bit that is always set to '0'.
tday specifies the valid times of the day. Each member of the array has the
structure: hhmm/hhmm.
When receiving a request through this method the PCCCore class will look
for the resources requested within the managed devices as described in the
Figure 4 - 36.

sumResource
s()

string
policySer,
credential

User

boolean
Result

This method will be used for requesting the checking of possible conflicts
due to the introduction of a policy whose enforcement time cannot be
predicted. The method includes two input parameters and just one Boolean
result as output parameter. The input parameters are a string with the
incoming policy serialised and the credentials of the user.
The PCCCore class will realise the tasks described in the activity diagram
represented in Figure 4 - 37.

checkRAv() string
policyId

boolean
Result

This method is called by the PAn class to verify the availability of the
scheduled resources for a policy. The method only needs on input and one
output parameter. The input parameter is the policyId that identifies the
policy whose scheduled resources availability should be verified. The output
parameter is just a Boolean that indicates if the requested action has been
realised correctly.
When receiving a call to this method the PCCCore class will realise the tasks
drawn in Figure 4 - 38.

The PAn class accesses this method for requesting the resources needed by a
policy either for an established interval or at enforcement time. The method
is defined with three input parameters and two output parameters. The first
input parameter is a string with the policy requesting the resources serialised.
The second one are the credentials of the user, needed for checking that the
user resources are not overridden. The third input parameter is the
enforcement interval described in detail below. The output parameters are
just a boolean with the result and a list of nodes that will be different from
null only when the TEManager has been accessed.

Table 4 - 14. The PCCCore class interface description table

c RICnt class

The Resource Information Controller (RICnt) class develops two tasks:
updating the resource information in the database whenever a new
reservation is made, and removing the policy-related resource information as
part of the policy removal process. In addition, the RICnt also updates the

12 This structure for identifying the enforcement period of a policy is extracted from the IETF PCIM

RFC [, [. Moore01] Moore03]

 139

CHAPTER 4 – PROPOSED MODEL

policy-related resource information when it is modified by a new policy or
when the policy is de-enforced.

The RICnt class stores the resource information in the database taking into
account the type of request parameter. This parameter might get one of the
following values:

- Type 0 (reservation schedule): A reservation schedule occurs when
the enforcement interval of the request is foreseeable and resources
can be assigned and scheduled in advance (i.e., when the policy is
introduced in the system). The scheduling “reserves” some resources.
That is, these resources will be split between multiple posterior
schedules (either reservation or allocation schedules) from the same
user. It can be seen as a virtual tunnel (when forwarding resources), or
device (when computing resources), with certain Quality of service.

- Type 1 (allocation schedule): An allocation schedule is exactly the
same as type 0 except that resources are allocated to one or more
flows which make the physical use of this resources. Thus, the
resources cannot be used by other flows.

- Type 2 (undefined schedule): Occurs when a policy whose
enforcement interval cannot be foreseen is introduced in the system.
At introduction time, the requested resources are simply stored in the
database. No scheduling can be done until enforcement time.

- Type 3 (scheduled reservation enforcement): A scheduled reservation
enforcement occurs whenever a policy whose enforcement interval
was predictable (thus, obtained a reservation schedule at introduction
time), is enforced.

- Type 4 (scheduled allocation enforcement): Exactly as the previous
type except that the schedule was an allocation schedule instead of a
reservation one.

- Type 5 (unscheduled reservation enforcement): It occurs when a
policy whose enforcement interval was not predictable is enforced
and, in addition, the policy requests that resources are reserved, not
allocated.

- Type 6 (unscheduled allocation enforcement): As before except that
the resources are allocated instead of reserved.

The activity diagram below shows the tasks carried out by the RICnt class
whenever an update of the resource information of type 0 is requested.

 140

Section IV.3 – Description of the MANBoP components

NO

obtain the flow linked
with the request

look for a reservation for
this flow in the database

is there
any?

creates a new reservation
within the database

NO

includes the flow filter
specified in the request

creates resource information
objects for that reservation

takes resources from the general
resource ifnroamtion objects

creates the policy
reservations object

creates resource information
objects for that reservation

includes the flow filter
specified in the request

creates a new reservation
within the database

is it a reserved or an
allocated reservation?

YES

sets the reservation
to 'reserved'

retrieve the parent
reservation reference

creates the policy
reservations object

takes resources specified for the reservation from resource
information objects of the reserved reservation where it is contained

takes resources from the general
resource ifnroamtion objects

creates a new reservation
within the database

includes the flow filter
specified in the request

creates resource information
objects for that reservation

creates the policy
reservations object

takes resources from the general
resource ifnroamtion objects

is there
any?

takes resources specified for the reservation from resource
information objects of the reserved reservation where it is contained

*In this case both reservation can never specify
the same flow because it is an inconsistency
**In this case we are adding resources to the
reservaiton

retrieve the parent
reservation reference

any?

are the flow of the reservation and
the flow of the request equal?

takes resources specified for the reservation from resource
information objects of the reserved reservation where it is contained

sets the reservation
to 'reserved'

sets the reservation
to 'reserved'

updates resource information
objects for that reservation

YES**

YES

NO

ALLOCATED*

RESERVED

NO

YES

Figure 4 - 39. RICnt class: Reservation Schedule activity diagram

 141

CHAPTER 4 – PROPOSED MODEL

All tasks realised are oriented to establish what information is already in the
database and should be modified only (such as a previous schedules linked to
this one either because this one extends the resources assigned to the
previous one or because it gets some of the reserved resources), and what
information does not exist yet, and thus, should be created now.

Schedules are linked to flows assigned to them. Hence, the RICnt class looks
for a schedule that applies to the flow specified in the request. If the flow in
the previous available schedule is the same as the requested one, and the
schedule is of the reservation type, we assume that we are adding resources to
the previous reservation schedule. Hence, former reservation schedule
information is updated (i.e. a new reservation information is not created in the
database). If it is a sub-flow contained within the flow filter specified in the
reservation schedule, then we create a new reservation and put the former
one as parent reservation. We should also create the resource information for
that reservation schedule and update, with the requested resources, the parent
reservation resource information, if any exist, or the overall resource
information instead.

When the schedule retrieved from the database based on the requested flow is
an allocation schedule, hence its resources cannot be used by a new resource
schedule, we get the parent schedule of the allocated one (it would be the
same parent schedule to the current one) and update its resource information.
We also create, as explained before, a new reservation schedule with all the
necessary resource information in the database.

A parent schedule can only be of the reservation type, because it is the only
one that permits, indeed it is its goal, to split its resources into multiple
resource schedules.

The same concepts apply when the request is of type 1. However, the tasks
vary slightly. These tasks are shown in the activity diagram below.

 142

Section IV.3 – Description of the MANBoP components

takes resources specified for the reservation from resource
information objects of the reserved reservation where it is contained

obtain the flow linked
with the request

look for a reservation for
this flow in the database

is there
any?

creates a new reservation
within the database

NO

includes the flow filter
specified in the request

takes resources from the general
resource information objects

creates the policy
reservations object

includes the flow filter
specified in the request

creates a new reservation
within the database

is it a reserved or an
allocated reservation?

YES

retrieve the parent
reservation reference

creates the policy
reservations object

takes resources specified for the reservation from resource
information objects of the reserved reservation where it is contained

takes resources from the general
resource information objects

creates a new reservation
within the database

RESERVED

includes the flow filter
specified in the request

creates resource information
objects for that reservation

creates the policy
reservations object

takes resources specified for the reservation from resource
information objects of the reserved reservation where it is contained

any?

are the flow of the reservation and
the flow of the request equal?

NO

ALLOCATED

sets the reservation
to 'allocated'

sets the reservation
to 'allocated'

*We assume that we
are adding resources
to the reservation

sets the reservation
to 'allocated'

set the same
parent reservation

retrieve the parent
reservation reference

YES**

NO

YES

Figure 4 - 40. RICnt class: Allocation schedule activity diagram

 143

CHAPTER 4 – PROPOSED MODEL

When the RICnt class receives a ‘type 2’ request it simply create the policy
schedule objects13 file with the requested resource types.

In case of type 3 and type 4 requests the RICnt class retrieves the resources
specified in the policy schedule objects and updates the used resource
information of the parent information as well as the overall used resource
information.

Finally, for type 5 and 6 requests the behaviour of the RICnt class will be
exactly the same as the one shown in previous activity diagrams (i.e. Figure 4 -
39 and Figure 4 - 40 respectively) except for the fact that instead of dealing
with the scheduled resource information, the RICnt class will create the
schedule with the used resource information.

So as to realise these two tasks the class offers two methods, namely
updateRI() and removeRI(). The concrete description of goal, functionality
and parameters for these methods is given in the table below:

13 Policy schedule objects keep the mapping between a policy and the schedules caused by that policy

 144

Section IV.3 – Description of the MANBoP components

Interface Input
parameters

Output
parameters Functionality

updateRI()

String
policySer,

flow
assocFlow
resource[]
resources,
credential

User, string[]
nodeId, int

type, boolean
modify

boolean
Result

The PCCCore class accesses this method for requesting the update of the
resource information available in the database after both policy and dynamic
conflict checks are completed. The method specifies seven input parameters
and a boolean as result. The ‘type’ parameter is an integer that determines
the status of the scheduling process after the checks and therefore the
resource information that should be updated. The possible values are: (0)
reservation schedule, (1) allocation schedule, (2) undefined schedule, (3)
scheduled reservation enforcement, (4) scheduled allocation enforcement,
(5) unscheduled reservation enforcement and (6) unscheduled allocation
enforcement. The first three values might be used after a policy conflict
check, while the last three might be used after a dynamic conflict check. This
value also determines which of the incoming parameters should be taken
into account by the RICnt class. Another input parameter is a string
identifying the policy that has been checked. The credentials of the user,
needed for updating user’s resource information are also introduced. When
working at the network or sub-network levels, the list of nodes where the
policy should be enforced might be also introduced in the system. The flow
associated to the request is introduced in a flow structure. The structure is
defined as: struct flow{string srcIP; string destIP; string srcPort; string
destPort; string Prot;};
All fields inside the structure, namely source and destination IP addresses,
source and destination ports and protocol are specified as strings to allow
the use of filtering characters such as ‘*’.
Another input parameter introduced in the function is the list of resources.
This parameter is an array of resource structures. The structure is defined as:
struct resource{int resourceType; string resourceId; interval enforcementInt;
int reqValue;};
The resourceType is an integer that identifies the kind of resource requested
(e.g. bandwidth (0), CPU (1)...). The resourceId is a string that uniquely
identifies the resource requested, the interval parameter described before (pg.
131) defines the scheduled enforcement interval. Finally, the reqValue is an
integer that identifies the requested quantity of this resource.
Finally the modify parameter is a boolean that indicates whether the resource
information is caused by a new policy (0) or by a modification of an existing
one (1).
When receiving a request through this method the RICnt class will update
the resource information available in the database based on the ‘type’
parameter as described throughout the section. Additionally when the
modify parameter is set to (1) the RICnt class will first remove the resource
information of the ‘old’ policy and then create the appropriate resource
information corresponding to the new one.

removeRI()

string
policyId,
boolean
cause

boolean
Result

The PAn class will call this method to request the removal from the database
(or update when de-enforced) of all resource information related with a
policy. As input parameters of the method the policy identifier and a boolean
specifying whether the policy is being removed (0) or de-enforced (1) are
given. The output parameter is a Boolean indicating the result of the process.
The RICnt class, based on the policy identifier, retrieves the policy requested
resources and user credentials, as well as the policy status to know whether
the policy is currently enforced or not. With this information it updates the
resource information in the database: removing the resources linked to this
policy when it is being removed, or just removing the corresponding used
resources information when it is being de-enforced.

Table 4 - 15. The RICnt class interface description table
d PFetch class

The Policy Fetch (PFetch) class is responsible of searching for policies that
might potentially conflict within the database in order to realise the conflict

 145

CHAPTER 4 – PROPOSED MODEL

checks over a limited set of policies and not over all policies received in the
system. It decides which are the potentially conflicting policies based on the
interval when the policy should be enforced, the role of the policy to be
checked, the functional domain identifier and the resources affected by the
policy request.

The interval will be used by the PFetch class to determine the method used
for searching the potentially conflicting policies. When the enforcement
interval is clearly specified, the PFetch class retrieves from the database those
policies wit the same enforcement interval and resources, as well as those with
potentially conflicting roles and functional domains. In case the start_time of
the interval has a ‘0’ value (i.e. specifies that the policy is going to be enforced
immediately and for an undefined period of time), the PFetch also gets those
policies sharing the same properties as above but being also currently
enforced. Finally, when the start_time of the interval has the maximum
possible value (the enforcement period is unknown), the PFecth class gets
from the database those policies with identical conditions from potentially
conflicting roles and functional domains.

So as to realise this functionality the PFecth offers an interface with the
findCPol() method. The goal, functionality and parameters in this method are
described in table below.

Interface Input
parameters

Output
parameters Functionality

findCPol()

string
policySer,
interval
enfInt,
string[]

resourceID

boolean
Result,
string[]
policyId

The PCCCore class accesses this method for requesting the retrieval of
potentially conflicting policies from the database. The method specifies three
input and two output parameters. The first input parameter is the serialised
policy being checked. The enforcement interval is also passed as parameter.
The interval structure has already been described in pag.139. Finally, the last
input parameter introduced in the function is the list of resource identifiers
involved in the policy request. As output parameters, a Boolean indicates the
result of the operation and an array of strings contains the list of policy
identifiers of potentially conflicting policies.
When receiving a request through this method the PFetch class carries out
the task already mentioned in the class description above.

Table 4 - 16. The PFetch class interface description table

e ConsCh class

The Consistency Checking (ConsCh) class is responsible of determining
whether a group of policies is consistent or not.

The logic within this class is clearly dependant on the management level and
functional domains supported by the current PCC component version.
Hence, we will not describe in detail the tasks realised by this class but just
give some hints about them. The main task is to determine whether the action
properties and values are consistent or not. Therefore, the class should be
able to interpret the policy actions and establish which potentially inconsistent
actions are really conflicting based on the action properties. The ConsCh

 146

Section IV.3 – Description of the MANBoP components

receives only those policies that are potentially conflicting because of their
enforcement time, involved resources, roles and domains, thus the ConsCh
does not need to realise this task but just assessing if there is a real
inconsistency between those policies based on the action values.

The class offers an interface with the check() method to realise this
functionality. The goal, functionality and parameters of this method are
described in the table below.

Interface Input
parameters

Output
parameters Functionality

check() string[]
policyId

boolean
Result,
string[]
policyId

Either the PCCCore class or the ResolvC might access this method for
requesting the consistency check among a group of policies. The method
specifies one input and two output parameters. The input parameter is an
array with the group of policy identifiers that must be checked for
consistency. As output parameters, a Boolean indicates the result of the
operation and an array of strings contains the list of policy identifiers of
conflicting policies.
When receiving a request through this method the ConsCh class does the
tasks already mentioned in the class description above.

Table 4 - 17. The ConsCh class interface description table

f ResolvC class

The functionality of the Resolve Conflict (ResolvC) class is mainly resolving
either resource or consistency conflicts between policies based on the
priorities of the requests.

The algorithm implemented by this class first looks for the lowest priority
policy and, after verifying that is lower than the corresponding one from the
policy checked, checks whether removing this policy the conflict is solved.
When the conflict is a resource-sharing conflict, it is inside the class where
this first check is realised. Otherwise, that is, when the conflict is of the
consistency type, the ResolvC class contacts the ConsCh class to realise the
consistency checks with the remaining policies.

In case the conflict remains, the policy with the lowest priority among those
remaining is removed (only if its priority is lower than the one of the policy
checked). Then, the class checks again whether with the remaining group the
conflict is solved. This process is repeated until the conflict is solved. Then, it
returns 1 and the list of policies to be uninstalled14. If for whatever reason it
cannot be solved the ResolvC returns 0.

The algorithm can be tuned a bit more if once the conflict is solved, it checks
if it is really necessary to remove all policies in the list. In this case, the
ResolvC might check whether not uninstalling the one before the last policy

14 When the policy to be removed is the new one because removing policies with lower priority does not

solve the conflict, it will always be the only policy in the list. The rationale is that without the new
policy there was not any conflict so there is no need to remove also lower priority policies.

 147

CHAPTER 4 – PROPOSED MODEL

selected the conflict is solved and if so, repeating the process with the others
except for the last policy selected. The reason for this is that it might
eventually happen that the removal of a policy with higher priority than
others solves on its own the conflict and thus all the lower priority policies
previously selected are unnecessarily removed.

When the conflicting resources are scheduled, i.e. ‘type’ parameter value 0
(see below), it might happen that during the future enforcement interval of
the request one or more policies will get and free a certain amount of these
resources. Therefore, it might be necessary to uninstall different lower priority
policies to free the missing amount of resources during the whole
enforcement interval. For this kind of checks, the ResolvC will need to access
the resource information available in the database.

The interface offered by this class defines two methods, namely the
resourceC() and the consC() methods. These methods are used for requesting
the resolution of a resource conflict or a consistency conflict respectively. The
goal, functionality and parameters of these methods are described in the table
below:

Interface Input
parameters

Output
parameters Functionality

resourceC()

string
policySer,

cRes[]
conflRes, int

type

Boolean
Result,
string[]
policyId

The PCCCore class uses this method to request the resolution of a resource
usage conflict. The method specifies three input and two output parameters.
The input parameters are the serialised policy being checked, an array of
cRes structures with information about the conflicting resources and the
involved policies, and an integer determining whether the conflicting
resources are those enforced(1) or scheduled(0). As output parameters, a
Boolean indicates the process result and an array of strings determines what
policies that must be uninstalled to solve the conflict.
The cRes structure is defined as: struct cRes{string resourceId; int misValue;
interval conflInt; string[] policyId;};
ResourceId identifies the conflicting resource. misValue identifies the
quantity of resources that are missing. ‘conflInt’ specifies the interval during
which the specified resource is missing in the misValue quantity (for the
interval structure description see pag.139). Finally the array of policies that
request the resources during that enforcement interval is given.
Whenever the resourceC() method is called the ResolvC class will realise the
tasks already mentioned in the class description above as resource conflict
solution techniques.

consC()

string
policySer,

string[]
policyId

boolean
Result,
string[]
policyId

The PCCCore class accesses this method for requesting a consistency
conflict resolution based on the policy priorities. The method specifies two
input and two output parameters. The input parameters are the policy being
checked serialised and an array with the policy identifiers of the conflicting
policies. As output parameters, a Boolean indicates the result of the
operation and an array of strings contains the list of policy identifiers of
those policies that should be removed to solve the conflict.
When receiving a request through this method the ResolvC class will realise
the tasks already mentioned in the class description above.

Table 4 - 18. The ResolvC class interface description table

 148

Section IV.3 – Description of the MANBoP components

g RpProc class

The report processing functionality consists of two main groups of tasks: one
in charge of periodically building resource information reports, and one
responsible of updating resource information with reports received from
underlying MANBoP instances. Obviously, the later is only developed when
the MANBoP instance is not working directly over the managed devices.

To carry out periodically the resource information report construction, the
component retrieves the needed resource information from the database. The
information that should be included in the report is that needed by a higher-
level. That is, the resource information from a network should be just that of
minimum cost paths between each two end-points since for the higher-level
instance it would be mapped as two “nodes” and a “link”. To achieve a more
efficient resource management, we also include the information about the
maximum available resources individually requested between two end-
points15. All this information is given both as actually used resources and as
resource reservations scheduled for the future. Finally, the identifier of the
last policy processed in the system (which is kept within the component), is
also included, so that higher-level instances can re-adapt the resource
information received in the reports if they have processed other policies after
that one.

When the component receives a resource information report, it updates the
resource information stored in the database accordingly. Additionally, it
compares the policy identifier received in the report with the list of policies
processed since the last cost re-calculation. If any policy has been processed
after the policy identified in the report, the resource information is also
updated based on the schedules that these policies might have caused. The
next step carried out by the component is updating the list of received reports
since the last cost re-calculation. When the report was the last one among all
reports from all underlying devices (it compares the number of received
reports since the last cost re-calculation with the number of underlying
devices), the TEManager is requested to re-calculate the costs of the paths
within the managed network. Finally, also the lists of received reports and
processed policies are restarted.

The activity diagram that follows reflects these tasks:

15 For example, paths with lower computational costs and paths with lower forwarding costs.

 149

CHAPTER 4 – PROPOSED MODEL

Wait for
reporting time

retrieve scheduled resources in minimum
cost path between managed end-points*

*At the element-level
it is in the managed
device

retrieve used resources between managed
end-points in the same path as above

retrieve maximum available
resources between end-points

get last
processed policy

build report

send report to
notification channel

Wait for report from
underlying devices

update resource information based on the
report and new policies processed

update received
reports list

request to the TEManager
the cost update

was it the last
report?

update list of
processed policies

update list of
received reports

NO

YES

Figure 4 - 41. RpProc class: Reports processing activity diagram

The RpProc class is started whenever a new PCC component is instantiated
within the MANBoP framework and works without interruption during the
whole life of the PCC component.

When the PCC component is removed (it might be removed when replaced
by a new one), the arrays with the received reports and processed policies lists
are stored in the database from where they can be retrieved by the RpProc
class of the new PCC component.

The RpProc class interface offers only one method. This method can be used
directly by the network operator or by a Policy Consumer component
specifically designed for the configuration of this facet of the MANBoP
instance itself. The method changes the period at which the information
reports must be re-calculated and introduced in the notification channel.

 150

Section IV.3 – Description of the MANBoP components

Interface Input
parameters

Output
parameters Functionality

chPeriod() int period Boolean
Result

The network operator or an appropriate Policy Consumer can use this
method to change the period at which reports should be built and
introduced in the notification channel. The method specifies one input
parameter, an integer with the new reporting period, and one output
parameter, a boolean that indicates if the change has been done successfully
or not.
Whenever the chPeriod() method is called the RpProc class will update the
reporting period accordingly.

Table 4 - 19. The RpProc class interface description table

h Sequence diagrams

With the sake of completing the description of the Policy Conflict Check
component, we include below the most common sequence diagrams among
the classes of the component.

PAnPCM PCCCore RICnt PFetch ConsCh ResolvC DB TEManag
er

checkConfl() findResources()

findRoute()*

* Only at NL
** Only if not enough resources are found
***Only if a consistency conflict is found
****Only if a policy needs to be uninstalled to
resolve a conflict

getRI()
getRI()

resourceC()** getPRI()

findCPol()
check()

consC()***
check()

check()
uinstallP()****

updateRI() setPRI()

modRI()

modRouteI()

Figure 4 - 42. Policy Conflict Check: Policy conflict checking (predictable enforcement interval)

 151

CHAPTER 4 – PROPOSED MODEL

PCM PAn PCCCore RICnt PFetch ConsCh ResolvC DB

checkConfl() findCPol() getPolicies()

getPolicies()

sumResources() getPRI()'

resourceC()*
getPRI()

* Only if not enough resources are
found
**Only if a consistency conflict is found
***Only if a policy needs to be
uninstalled to resolve a conflict

check()

consC()**
check()

check()

uninstallP()
updateRI()

' Gets policy reservation info
'' Creates a new policy
reservation info

setPRI()''

Figure 4 - 43. Policy Conflict Check: Policy Conflict Checking (unpredictable enforcement interval)

 152

Section IV.3 – Description of the MANBoP components

DBPCM PAn PCCCore RICnt PFetch ConsCh ResolvC TEManag
er

checkDyn() checkRAv()* getUsedRI()*

findResources()** getUsedRI()**

findRoute()***

resourceC()' getPRI()

findCPol()
getPolicies()

check()
consC()''
check()

uninstallP()'''
updateRI()

* When there is a previous reservation
**When there is no previous reservation
***Only at NL
'Only if there are not enough resources
''Only if there is a consistency conflict
'''Only if a policy needs to be uninstalled to
resolve a conflict

modUsedRI()

modRouteI()***

Figure 4 - 44. Policy Conflict Check: Dynamic conflict checking

PCM PAn PCCCore RICnt DB

uninstPR()
uninstPR() removeRI()

rmPRI()

modRI()*

modUsedRI()*

modRouteI()

* They have as parameter also
the user. if=null then the global
parameters are returned

Figure 4 - 45. Policy Conflict Check: Removal of policy related data

 153

CHAPTER 4 – PROPOSED MODEL

5th TE Manager

A Component Behaviour

The TEManager component is in charge of finding out where in the managed
network are enough resources to satisfy a request. It is a special component
within the MANBoP framework since it is the only one not always
instantiated. As already mentioned in previous chapters, the TEManager is
only instantiated when the MANBoP instance is running at either network or
sub-network levels because its tasks are not necessary at the element level.

The TEManager can be seen as a sub-component of the Policy Conflict
Check since it participates in the process of assuring that a new policy does
not conflict with the others due to resource sharing. Nevertheless, the
complexity and importance of this component, and the fact that it is not
always instantiated within the framework, has lead us to design it as a
completely separated component.

Taking into account Table 4 - 1 (see pag.76), the main tasks that must be
carried out by the TEManager component are:

♦

♦

Request the application of the routing algorithm over the managed topology: After
the reception of new managed topology, the PCM requests to the
TEManager component the execution of the routing costs re-
calculations over the new topology. This request is realised through
the updateTop() method offered by the TEManager component.

Apply the routing algorithm over the managed topology: The same task as
above except that it is realised automatically at the bootstrapping of
the component.

The main task of the TEManager component, that is, to find requested
resources within the managed network, does not appear in this table because
it gets shadowed by the conflict check tasks as we have argued before. For
realising this task, the TEManager uses the topological information stored in
the Database.

We have to take into account that the goal of this doctorate thesis is not the
design of a Traffic Engineering manager, which is a rather complex task. The
design included in this document is given for sake of completeness and to
assess the overall framework concepts.

The topological information is composed by nodes and links. Each object
describing a node will contain lists of incoming and outgoing links as well as
references to resource schedule objects. These resource schedule objects will

 154

Section IV.3 – Description of the MANBoP components

be used to calculate the “scheduled costs” for each path16. That is, costs
foreseen in time, taking into account the schedules assigned to different paths.

All possible paths between all end-points of the managed network are
calculated at bootstrap and each time the topological information is updated.

The routing algorithm used is based on a Dijkstra algorithm [Halabi01]
modified to find out all possible paths from one end-point to another in the
network, and not just the one with lower cost.

The reason for choosing the Dijkstra algorithm as basis for the routing
algorithm is simply because it is the most widely available and known.

In a first instance, the cost estimation of the routing algorithm is just based on
the number of hops. However, immediately after concluding the routing
algorithm the TEManager calculates all costs for all paths found within the
managed network. These two processes are realised separately to re-use the
logic of the cost calculation algorithm that is done periodically by the
TEManager as justified below. For the cost calculation we should take into
account not only the costs of the links (related mainly with bandwidth) but
also the costs of the nodes (related mainly with computing power).

In order to ease the description of the routing algorithm that will be used in
the TEManager we give an example.

Let’s assume that we have a simple topology of 4 nodes. Three of them are
end-points and the fourth one is an internal router within the managed
network. In the figure below we can see this simple topology:

A B

C

Dad
daac

ca dccd

db
bd

bc
cb

Figure 4 - 46. A network topology example.

The links are always considered unidirectional, that’s why we have created one
in each direction between each pair of nodes.

The TEManager first gets the list of end-points that form the network (A, B
and C) from the network topology object. The network topology object also
contains an array of references to all nodes and links that form the managed
network.

 155

16 In this thesis, we differentiate between paths and routes in the next way. A path is physical ‘circuit’ to

arrive from one end-point to another in the managed network. On the other hand, a route is a set of
resources from a path that have been already allocated to one or more flows.

CHAPTER 4 – PROPOSED MODEL

In the next step, the TEManager gets the object with the information
concerning the first end-point of the list (end-point A). This object, as well as
all other node objects, contains:

i) Node topology identifier: a string that uniquely identifies this
element within the managed topology.

ii) Array of references to outgoing links objects.

iii) Array of references to incoming links objects.

iv) Available scheduled and actual resources: All the resources that
will be available in this node in different intervals of the future
and the resources that are currently available. The first ones are
those that are left after all allocations caused by the enforcement
of policies whose enforcement interval is predictable. The
second ones are the resources that are left after considering the
allocations because of scheduled policies, unpredictable (not
scheduled) policies and signalling requests. The resources
considered at this point depend greatly in the PCC and
TEManager implementations and the interests of the network
operator. The most common resource information for a node
will be the type of node (e.g. passive:0, active:1,
programmable:2) and for active and programmable nodes: the
available CPU, memory, execution environments...

The TEManager retrieves the list of outgoing links and gets the link
information from the link object:

i) Link topology identifier: A string that uniquely identifies the link
within the managed network.

ii) Source node: A reference to the node object of the node
originating this link.

iii) Sink node: A reference to the node object of the node where
this link ends.

iv) Available scheduled and actual resources: As described for the
node object. These resources are taken into account by the
TEManager together with the ones from the node for
calculating the costs of the paths.

Finally, it also gets the sink node instance. With all this information, it creates
a path object instance with the corresponding values:

i) Path identifier: a string that uniquely identifies this path with the
this end-point as source.

ii) Array of links: In this array we include the links that already
form the path.

iii) Array of nodes: The nodes that form the path.

 156

Section IV.3 – Description of the MANBoP components

iv) Cost: Structure with the scheduled costs taking into account the
different resources and intervals and actual available costs as
well as the number of hops. During the routing algorithm only
the number of hops value is updated.

v) Looping: A boolean that indicates if the last node added to the
array of nodes was already in the array and therefore we are
entering in a loop.

vi) Parent path: A reference to the path from where this path
comes from. That is the parent path of a path going through A,
C and B is the one that went in the previous step from A to C.

In the example two path objects would be instantiated: Path1 associated to
link ad and node D and Path2 associated to link ac and node C:

Path1

- Path identifier: Path1

- Array of links: ad

- Array of nodes: A, D

- Cost: The number of hops attribute is set to 1.

- Looping:0

- Parent path: null

Path2:

- Path identifier: Path2

- Array of links: ac

- Array of nodes: A, C

- Cost: The number of hops attribute is set to 1.

- Looping:0

- Parent path: null

After instantiating all path objects the TEManager checks if any of the paths
instances has a value of 1 in the looping property. If any has, then it checks if
the parent path is already stored in the database and if not it stores it. Finally,
it removes all path instances that had a looping value of 1 and all parent path
instances (in this case null). If no path instances remain the process is
finished, otherwise the algorithm is applied again.

The TEManager gets from the node instances the references to the outgoing
links for that node and creates for each one of the links a new path instance
with the information of the parent path updated taking into account the
information for that link and its sink node.

 157

CHAPTER 4 – PROPOSED MODEL

Following the example we would have:

Path3:

- Path identifier: Path3

- Array of links: ad, db

- Array of nodes: A, D, B

- Cost: The number of hops attribute is set to 2.

- Looping:0

- Parent path: Path1

Path4:

- Path identifier: Path4

- Array of links: ad, dc

- Array of nodes: A, D, C

- Cost: The number of hops attribute is set to 2.

- Looping:0

- Parent path: Path1

Path5:

- Path identifier: Path5

- Array of links: ad, da

- Array of nodes: A, D, A

- Cost: The number of hops attribute is set to 2.

- Looping:1

- Parent path: Path1

Path6:

- Path identifier: Path6

- Array of links: ac, cb

- Array of nodes: A, C, B

- Cost: The number of hops attribute is set to 2.

- Looping:0

- Parent path: Path2

Path7:

- Path identifier: Path7

 158

Section IV.3 – Description of the MANBoP components

- Array of links: ac, cd

- Array of nodes: A, C, D

- Cost: The number of hops attribute is set to 2.

- Looping:0

- Parent path: Path2

Path8:

- Path identifier: Path8

- Array of links: ac, ca

- Array of nodes: A, C, A

- Cost: The number of hops attribute is set to 2.

- Looping:1

- Parent path: Path2

Path5 and Path8 have a looping value of 1. Thus, we store in the database
their parent paths (Path1 and Path2 respectively) and delete Path5 and Path8
instances. Finally, we remove all parent path instances (Path1 and Path2) (not
from the database but just from the algorithm).

The path instances that remain are Path3, Path4, Path6 and Path7. So we
repeat the process again.

Following the process:

Path9:

- Path identifier: Path9

- Array of links: ad, db, bd

- Array of nodes: A, D, B, D

- Cost: The number of hops attribute is set to 3.

- Looping:1

- Parent path: Path3

Path10:

- Path identifier: Path10

- Array of links: ad, db, bc

- Array of nodes: A, D, B, C

- Cost: The number of hops attribute is set to 3.

- Looping:0

 159

CHAPTER 4 – PROPOSED MODEL

- Parent path: Path3

Path11:

- Path identifier: Path11

- Array of links: ad, dc, ca

- Array of nodes: A, D, C, A

- Cost: The number of hops attribute is set to 3.

- Looping:1

- Parent path: Path4

Path12:

- Path identifier: Path12

- Array of links: ad, dc, cd

- Array of nodes: A, D, C, D

- Cost: The number of hops attribute is set to 3.

- Looping:1

- Parent path: Path4

Path13:

- Path identifier: Path13

- Array of links: ad, dc, cb

- Array of nodes: A, D, C, B

- Cost: The number of hops attribute is set to 3.

- Looping:0

- Parent path: Path4

Path14:

- Path identifier: Path14

- Array of links: ac, cb, bd

- Array of nodes: A, C, B, D

- Cost: The number of hops attribute is set to 3.

- Looping:0

- Parent path: Path6

Path15:

- Path identifier: Path15

 160

Section IV.3 – Description of the MANBoP components

- Array of links: ac, cb, bc

- Array of nodes: A, C, B, C

- Cost: The number of hops attribute is set to 3.

- Looping:1

- Parent path: Path6

Path16:

- Path identifier: Path16

- Array of links: ac, cd, da

- Array of nodes: A, C, D, A

- Cost: The number of hops attribute is set to 3.

- Looping:1

- Parent path: Path7

Path17:

- Path identifier: Path17

- Array of links: ac, cd, dc

- Array of nodes: A, C, D, C

- Cost: The number of hops attribute is set to 3.

- Looping:1

- Parent path: Path7

Path18:

- Path identifier: Path18

- Array of links: ac, cd, db

- Array of nodes: A, C, D, B

- Cost: The number of hops attribute is set to 3.

- Looping:0

- Parent path: Path7

The paths Path9, Path11, Path12, Path15, Path16 and Path17 have the
looping value 1. Therefore, the corresponding parent paths Path3, Path4,
Path6 and Path7 are stored in the database and all parent path instances, as
well as paths 9,11,12,15,16 and 17, are removed.

Since we have still Path10, Path13, Path14 and Path18 the algorithm is
applied again.

 161

CHAPTER 4 – PROPOSED MODEL

The next path instances obtained are:

Path19:

- Path identifier: Path19

- Array of links: ad, db, bc, ca

- Array of nodes: A, D, B, C, A

- Cost: The number of hops attribute is set to 4.

- Looping:1

- Parent path: Path10

Path20:

- Path identifier: Path20

- Array of links: ad, db, bc, cd

- Array of nodes: A, D, B, C, D

- Cost: The number of hops attribute is set to 4.

- Looping:1

- Parent path: Path10

Path21:

- Path identifier: Path21

- Array of links: ad, db, bc, cb

- Array of nodes: A, D, B, C, B

- Cost: The number of hops attribute is set to 4.

- Looping:1

- Parent path: Path10

Path22:

- Path identifier: Path22

- Array of links: ad, dc, cb, bd

- Array of nodes: A, D, C, B, D

- Cost: The number of hops attribute is set to 4.

- Looping:1

- Parent path: Path13

Path23:

- Path identifier: Path23

 162

Section IV.3 – Description of the MANBoP components

- Array of links: ad, dc, cb, bc

- Array of nodes: A, D, C, B, C

- Cost: The number of hops attribute is set to 4.

- Looping:1

- Parent path: Path13

Path24:

- Path identifier: Path24

- Array of links: ac, cb, bd, da

- Array of nodes: A, C, B, D, A

- Cost: The number of hops attribute is set to 4

- Looping:1

- Parent path: Path14

Path25:

- Path identifier: Path25

- Array of links: ac, cb, bd, dc

- Array of nodes: A, C, B, D, C

- Cost: The number of hops attribute is set to 4.

- Looping:1

- Parent path: Path14

Path26:

- Path identifier: Path26

- Array of links: ac, cb, bd, db

- Array of nodes: A, C, B, D, B

- Cost: The number of hops attribute is set to 4.

- Looping:1

- Parent path: Path14

Path27:

- Path identifier: Path27

- Array of links: ac, cd, db, bd

- Array of nodes: A, C, D, B, D

- Cost: The number of hops attribute is set to 4.

 163

CHAPTER 4 – PROPOSED MODEL

- Looping:1

- Parent path: Path18

Path28:

- Path identifier: Path28

- Array of links: ac, cd, db, bc

- Array of nodes: A, C, D, B, C

- Cost: The number of hops attribute is set to 4.

- Looping:1

- Parent path: Path18

The result of this last step of the algorithm is that all new path instances
calculated have the looping value 1. Hence, the parent paths are stored in the
database (i.e. Path10, Path13, Path14 and Path18), the path instances with
looping value of 1 are removed and all parent paths are also deleted.

Finally, there are no path instances left so the process is finished. The
resulting paths with source end-point A are: Path1, Path2, Path3, Path4,
Path6, Path7, Path10, Path13, Path14 and Path18. So if we want to go from A
to B the possible routes are:

- Path3: A, D, B

- Path6: A, C, B

- Path13: A, D, C, B

- Path18: A, C, D, B

The same process should be realised again for each one of the end-points
forming the managed network.

The routing algorithm designed is quite resource consuming but we only
execute it at bootstrap and when the managed topology is updated. When a
re-calculation of costs is requested to update them to the actual resource
status the process is much simpler and therefore less resource consuming as
described below17.

The PCC, as described in the previous section, will periodically introduce
resource-scheduling information in the notification service and register to
receive these reports from lower level instances (except for the PCC at the
element level). Each time the PCC receives the reports from all underlying
MANBoP instances, it requests to the TEManager the re-calculation of
“scheduled costs” in all paths.

17 The scalability of the algorithm can be enhanced introducing sub-network manages inside the

management infrastructure, thus distributing the algorithm.

 164

Section IV.3 – Description of the MANBoP components

The information included inside these reports describes the resources within
the managed nodes (when coming from element-level MANBoP instances) or
between edge-nodes in a managed sub-network (when coming from sub-
network managers). The resource information given is: scheduled resources
and used resources (only takes into account those resources being used but
not scheduled, because of signalling requests or unpredictable policies) for
each one of the possible paths between end-points (when coming from sub-
network managers).

Moreover, this information is duplicated in resources available when
requested individually (that is, only bandwidth or just CPU...) and resources
available when more than one resource is requested at the same time (e.g.
bandwidth and a certain level of CPU and memory). When reports are
coming from an element-level MANBoP instance both types of information
will be the same. Oppositely, when reports are coming from a sub-network
level MANBoP instance both types of resource values would normally be
different. The reason is that it might happen that a path within a sub-network
with more bandwidth resources is the one with less computing capabilities.
Thereby, if reports just indicate the available resources in the minimum cost
path between two end-points, this information could be misleading, because
the minimum cost would be estimated taking into account an average of all
resources. Hence, other paths with less average but more available resources
of a particular type would not be taken into account. For that reason, the
individually available resources specified in the report show the maximum
available resources, maybe through different paths, between two end-points
of the sub-network.

The reason for the exchange of resource usage information between the
different MANBoP instances through these reports is that, when a MANBoP
instance is working over sub-network MANBoP managers, a request for an
allocation schedule through the managed sub-network produces a change in
the available resources within the affected end-points of the sub-network.
Such change cannot be estimated by the upper MANBoP instance. A safe
estimation is to remove the allocated resources from the ones that were
available before, however this is only true if the path within the sub-network
where the resources have been allocated is still the path with the maximum
available resources of that type. If after the allocation of the resources in that
path another path becomes the one with more available resources between
those end-points, the estimation made removing the allocated resources from
the available ones would be incorrect. The only way a MANBoP instance
working over sub-network managers can know if its ‘safe’ estimations about
the available resources in the sub-network after allocating resources are
correct is receiving periodical information reports from the managed sub-
networks specifying the concrete available resources at a particular time.

Reports also include the last policy processed by the MANBoP instance
whose processing had an effect on the available resources. This information is

 165

CHAPTER 4 – PROPOSED MODEL

used by the instance receiving the reports to take into account the schedules
that might have been realised by policies processed after that one.

Reports include only information about resource schedules and resources
used by signalling requests or unpredictable policies that have been enforced
at a particular time. There is no information about the total used resources
because these depend on best effort resource consumption. The network
operator can introduce policies determining a minimum percentage of
resources to be used for best effort connections. However, other best effort
connections above these percentages are simply not taken into account by the
TEManager and the PCC components for the scheduling of resources (the
resources used by these best effort users might be assigned to resource
schedules). Therefore, this information is not necessary for these processes.
Nevertheless, the network operator could introduce a performance-type of
Policy Consumer component that periodically retrieves this information from
the managed devices and updates the corresponding resource objects if it still
prefers to introduce this information within the used resources reports. The
tasks of the Decision-making Monitoring system (DmMs) are different from
that one (i.e. monitoring of used resources). It is limited to the monitor of
policy conditions to detect when a policy enforcing should be triggered, thus
participating in the decision-making mechanism.

When all resource information from underlying MANBoP instances has been
received, the TEManager re-calculates the costs of the paths. We assume that
the PCC component has updated correctly all resource information (specially
the links between end-points of the underlying sub-networks) based on the
received reports. To carry out this task the TEManager, for each one of the
end-points in the managed network, gets all possible paths. For each one of
the paths, it gets the list of nodes and links that form it. Finally, it gets the
resource scheduling costs for these nodes and links and establishes the costs
based on them. The scheduling costs might be calculated differently
depending on the resource. For example, the total bandwidth costs for a route
will be the value of the link with less available bandwidth. Contrarily the total
delay in a path will be calculated summing up all partial delays along the paths.

The figure below shows in detail how these tasks are carried out by the
TEManager component.

 166

Section IV.3 – Description of the MANBoP components

receive cost
re-calculation request

get paths from
database

get first path
from the list

obtain from the path the
first node object reference

obtain from the node instance
the costs associated

update the total path
costs with the node ones

was it the last
node in the path?

modify the costs atributes of the
path with the obtained costs

return OK

obtain from the path the
next link object reference

obtain from the link instance
the costs associated

update the total path
costs with the link ones

obtain from the path the
next node object reference

get the next
path in the list

was it the last path of
the managed network?

Figure 4 - 47. TEManager: Cost re-calculation activity diagram

Each time the TEManager receives a request to find a path with a set of
available resources between two particular end-points in the managed
network, the first thing it realises is to check whether a route is already
assigned to the flow specified in the request. If so, it checks if the route found
is a reserved route18 or an allocated route. In the allocated route case, since
resources from an allocated route cannot be used, the TEManager gets the
parent route from that one (if no parent route exists then it takes the general
resources) and just verifies that the requested resources are available along the
parent route. In case they are not available, it returns the parent route together
with the conflicting resources. Otherwise, it simply returns the path. The
same procedure is followed if first, the route found is a reserved route whose
resources can be used; second, the flows of the request and of the route are

18 We are using the term ‘Schedule’ when we talk about resources generically and ‘route’ when we refer

to end-to-end forwarding and computing resources assigned to one or more flows.

 167

CHAPTER 4 – PROPOSED MODEL

exactly the same; and third, the request is a reserve request. Again, the
resources from the parent route are taken because we assume that the user
wishes to add more resources to the reserved route found. In any other case,
the TEManager gets the resources from the route found and checks whether
the requested resources can be found among them. In all cases, if the
resources are found, the TEManager returns the corresponding route and if
not, it returns the route with a list of conflicting resources.

When there is no route already assigned to the related flow, the TEManager
gets the information about the paths calculated between those two end-points
that are stored in the database. It receives the type of resources requested, as
well as where and when they are requested. The TEManager then considers
whether there is a single resource requested individually or instead, a group of
resources are requested jointly. In the first case, it uses the scheduled resource
information for individual requests. In the second case, it uses the scheduled
resource information for several resources requests. The TEManager
compares this information with objects about possible paths retrieved from
the database. Each path object contains the available scheduled costs for that
path and a list of references to nodes and links that form the path. The
TEManager chooses the path object with more available resources (among
those requested), during the requested interval. From this path object, it
retrieves the nodes and links forming the path and verifies that the requested
resources are available where they are needed (e.g. computing resource at
concrete places in the network). If so, it simply returns a reference to the path
object to the PCC component that made the requests. Otherwise, it checks if
the second possible path fulfils the resource requirements.

In case that at the end of the process no path is found with the requested
resources, the TEManager returns a reference to the path object with more
available resources, as well as the list of nodes and links of that path where
the requested resources could not be fulfilled.

It is also important remarking that in all cases the TEManager, if the interval
specified is undefined, takes the used resources instead of the scheduled ones
since it assumes that the request received is going to be enforced immediately
if no conflict is found.

In the activity diagram below we can see all these tasks realised by the
TEManager drawn.

 168

Section IV.3 – Description of the MANBoP components

receive resource
request

obtain the end-points
of the request

get from the DB the possible
paths between these end-points

retrieve individual cost for that
resource from the paths

select the path with the minimum
cost during that interval

is a single resource
requested individually?YES

retrieve 'global' costs
from the paths

NO

get the enforcement
interval from the request*

obtain 'where' should the resources
be allocated from the request

retrieve nodes and links
conforming the path

verify that the resources
can be allocated

can they?

return the path
and OK

YES

keep the path with minimum cost
and the conflicting resources

select the next path with less
cost during that interval

was it the last
path available?

NO

NO

return the path with minimim costs
with the conflicting resources

YES

return not OK

obtain the
related flow

is there a route for
this flow in the db?

verify that the resources
can be allocated

can they?

return the path
and OK

YES

return the path and the
conflicting resources

NO

return not OK

is it a reserved or an allocated
reservation (or route)?

are the flow of the reservation and the flow of
the request equal?

get the enforcement
interval from the request*

obtain 'where' should the resources
be allocated from the request

retrieve parent
route

*If the interval is undefined the
resources retrieved are the
used resources

is it a reserve or an
allocate request?

YES
RESERVE

RESERVEDALLOCATED

get the enforcement
interval from the request*

obtain 'where' should the resources
be allocated from the request

retrieve resources
available in that route

NO

NO

retrieve resources
from that route

NO

YES

Figure 4 - 48. TEManager: Resource request activity diagram

B Component Design

Summarising the component behaviour section, the TEManager must
develop three groups of tasks:

♦ Calculate all paths within the managed topology: At system bootstrap or
when the topology is updated, the TEManager must calculate all possible

 169

CHAPTER 4 – PROPOSED MODEL

paths between the end-points of the managed network. The obtained
paths are stored in the database.

♦ Re-calculate the path costs periodically: After a reception of a request
from the Policy Conflict Check component, the TEManager has to re-
calculate the costs of all paths within the managed network with the
current resource information.

♦ Find a path with the requested resources: Again, when requested by the
PCC, the TEManager component has to find out whether the requested
resources can be fulfilled with the paths available between two end-
points. If no adequate path is found, the TEManager returns the path
with the minimum cost and the conflicting resources.

For realising these groups of tasks, we have designed within the TEManager
component three classes, namely the TECore, CostCalc and Routing, which
are shown together with their interfaces in the class diagram below.

PCC
Interf ace

checkConf l()
checkDy n()
uninstPR()

(from PCM)

Routing

estabPaths()

TECore

f indRoute()
estimateCosts()
updateTop()

DB-Resource
Interf ace

setPRI()
getPRI()
rmPRI()

getUsedRI()
getRI()

createRI()
getRouteI()

modUsedRI()
modRI()

modRouteI()

(from PCC)

DB-Topology interf ace

getPath()
createPath()
modPath()
remPath()

getGblTop()
modGblTop()

createTopObj()
getTopObj()
modTopObj()
rmTopObj()

CostCalc

recalc()

(from Logical View)

Figure 4 - 49. TEManager class diagram

In the following sub-sections we will describe in detail the functionality and
interfaces offered by these classes. Additionally, the last sub-section shows

 170

Section IV.3 – Description of the MANBoP components

some sequence diagrams that reflect how the different classes of the
component interact in order to fulfil the received requests.

a TECore class

The TECore is the class responsible of finding the requested resources within
the managed network. This functionality has already been extensively
described in the previous section and shown in Figure 4 - 48. Additionally, the
TECore also coordinates all processes of the component and interacts with
the Policy Conflict Check component.

To realise this functionality the TECore class offers an interface with three
methods: findRoute(), estimateCosts(), updateTop(). Table 4 - 20 describes
the functionality and parameters of these methods.

 171

CHAPTER 4 – PROPOSED MODEL

Interface Input
parameters

Output
parameters Functionality

findRoute()

flow
assocFlow,
resource[]
resources,

string
endPointA,

string
endPointZ,

boolean
directionality,
boolean type

boolean
Result,
string[]
nodeId,
string

pathId,
resource[]

cRes

The Policy Conflict Check (PCC) component uses this method to ask for
the search of requested resources within the managed network. The method
specifies six input and four output parameters. The first input needed is the
flow associated to the requested. The flow structure, which has already been
described in the RICnt class interface description table (Table 4 - 15.), is
used to determine where to retrieve resources from. The resource structure
is used as input parameter for specifying the requested resources. Two
strings, the endPoint A and Z, specify the two end-points of the managed
network between which the resources are requested. The boolean
‘directionality’ specifies whether the requested resources should be allocated
just from A to Z (0) or both from A to Z and from Z to A (1). Finally, the
‘type’ input parameter is a boolean that identifies whether the requested
resources are to be reserved (0) or allocated (1).
The output parameters are a boolean that indicates if the resources could be
found, or if there were not enough resources and a conflict must be solved
The nodeId parameter is a list of strings that identify the nodes forming the
assigned route. Another string, the ‘pathId’ identifies the path object linked
to the assigned route. Finally, in case that a conflict is found the ‘cRes’
parameter, a list of resource structures, identifies the conflicting resources
and the amount of resources missing at particular intervals (see page 145).
When receiving a request through this method, the TECore class will look
for the requested resources within the managed network as shown in the
activity diagram included in Figure 4 - 48.

estimateCosts
() boolean

Result

The PCC periodically, also at bootstrapping or when the managed topology
is updated, requests to the TEManager through this method a cost re-
calculation between the end-points of the managed network. The method
includes just one boolean with the result as output parameter.
The TECore class will request to the CostCalc class the realisation of the
process.

updateTop() file newTop,
boolean type

boolean
Result

This method is called by the PCM component to request the update
(addition or removal of a node) of the topological information managed by
this MANBoP instance. The method specifies two input parameters, and a
boolean indicating the process result as output parameter. The first input
parameter is a file indicating the new topological information object and the
resources linked to it. The boolean ‘type’ indicates if the new topological
information object should be added (1) or removed (0) to the managed
network.
When receiving a call to this method the TECore class contacts the Routing
class to re-calculate all possible paths within the managed network. Finally,
when the Routing class finishes, the TECore requests the cost re-calculation
for all paths. If an error is found in any of the steps in the process, the
TECore returns ‘false’.

Table 4 - 20. The TECore class interface description table

b Routing class

The Routing class uses the topology instances previously created by the
GraphBuilder class inside the PCM component to calculate all possible paths
between all end-points of the managed network.

 172

Section IV.3 – Description of the MANBoP components

Interface Input
parameters

Output
parameters Functionality

estabPaths() boolean
Result

The TECore requests to the Routing class at bootstrapping, or when the
managed topology is updated, the application of the routing algorithm
implemented by this class over the managed topology information of this
MANBoP instance. The method includes just one boolean with the process
result as output parameter.
When a request is received in this method, the Routing class first accesses
the global topology IMO to retrieve all end-points within the managed
network. Then, it carries out the routing algorithm tasks described along the
component behaviour section of the TEManager component (see page 154)
with an example.

Table 4 - 21. The Routing class interface description table

c CostCalc class

The CostCalc class carries out the costs calculation for all paths within the
managed network periodically, at bootstrap or when the managed topology is
updated.

Interface Input
parameters

Output
parameters Functionality

recalc() boolean
Result

The TECore periodically, also at bootstrapping or when the managed
topology is updated, requests to the CostCalc class, a cost re-calculation
between the end-points of the managed network. The method includes just
one boolean with the process result as output parameter.
When a request is received through this method the CostCalc class carries
out the tasks reflected in the activity diagram drawn in Figure 4 - 47.

Table 4 - 22. The CostCalc class interface description table

d Sequence diagrams

To complement the description and comprehension of the TEManager
component, we include below sequence diagrams reflecting the interactions
between the component classes, related with the three public methods offered
in the component interface.

 173

CHAPTER 4 – PROPOSED MODEL

PCC TECore CostCalc Routing DB

findRoute() getRouteI()

getRI()

getRI()

getTopObj()

...
getTopObj()

getRI()

...

Figure 4 - 50. TEManager: findRoute sequence diagram

PCC TECore CostCalc Routing DB

...

...

recalc()

getPath()

getTopObj()

getRI()

modPath()

getPath()

estimateCosts()

getTopObj()

...

Figure 4 - 51. TEManager: estimateCosts sequence diagram

 174

Section IV.3 – Description of the MANBoP components

PCC TECore CostCalc Routing DB

updateTop()

estabPaths()

recalc()

getGblTop()

getTopObj()

setPath()

getPat...

getTopObj()

getTopObj()

getRI()

...modPat...

getPat...

...

Figure 4 - 52. TEManager: updateTop sequence diagram

6th Decision-making Monitoring system

A Component Behaviour

The Decision-making Monitoring system (DmMs) component plays an
important role within the process of deciding whether a policy should be
either enforced or de-enforced. This component receives the policy
conditions from the Policy Consumer Manager and executes, together with
the appropriate Monitoring Meter (MMs) components, the necessary tasks to
determine when the overall policy conditions are satisfied. When the
conditions are not fulfilled anymore, the DmMs also warns the Policy
Consumer Manager to de-enforce the policy from the managed devices.

The component has many other tasks that were highlighted, in part, at the
end of the Use Cases section (see Table 4 - 1). These tasks are listed below:

♦ Register conditions to be monitored: Basic functionality that should be offered
by the DmMs in order to trigger the monitoring of the policy conditions
process. The task is requested by the Policy Consumer Manager
component through the regCond() method. The request causes the
storage of policy conditions linked to the processed policy and the

 175

CHAPTER 4 – PROPOSED MODEL

creation of a logic expression that represents those policy conditions, so
that the component knows when the overall condition is true based on its
Individual Statement (IS) values (a policy condition can be decomposed in
multiple Individual Statements). As an example, if a request to register a
policy with the following policy condition arrives: if (Tuesday AND
between 8h and 10h AND usedBW in link X<10) OR (usedBW in link X
>= 10). Then, it would be expressed as a boolean expression of
Individual Statements such as: if (A AND B AND C) OR (!C).

♦ Are the meters installed?: Once the policy condition is registered in the
component, it divides the overall policy conditions into the Individual
Statements that form the boolean expression of the condition. Then, it
looks for the Monitoring Meter components in charge of processing them
(in the example above meters for A, B and C). If a needed Monitoring
Meter is not found, the DmMs requests to the Code Installing
Application (CIA) its download based on the Individual Statement to be
monitored, the position of the MANBoP instance within the overall
management infrastructure and the underlying devices.

♦ Do the conditions match?: This is, obviously, the central task to be developed
by the component. Every time a Monitoring Meter component detects a
change in the status of an Individual Statement, it notifies this change to
the DmMs component through the ISValue() method. Then, the DmMs
introduces this change in the logic expression representing the policy
condition and checks whether the overall expression is fulfilled or not.
When a change in the status of the overall expression occurs, the
component notifies the Policy Consumer Manager, so that it can react
accordingly.

♦ Notify new underlying managers info or node interfaces info to the DmMs: The
DmMs receives this notification from the PCM through the upUnI()
interface with the instance identifier of the new underlying device, or the
one removed, as parameter. Then, only if the DmMs is working over
other MANBoP instances, it obtains the underlying device IMO from the
database and retrieves the interface of its Notification Service to register,
or obliterates if the managed device is being removed, as event consumer
in the new underlying MANBoP instance.

In addition to these tasks listed above, the Decision-making Monitoring
system develops other functionalities such as obliterating the policy
conditions when a policy is being removed. The unregCond() method of this
component is used for requesting this obliteration (or unregistration).

Furthermore, the DmMs keeps the lifecycle of the Monitoring Meter
components. When a Monitoring Meter component is not processing any IS,
the DmMs component uninstalls it to save computing resources in the
management station. Monitoring Meters are installed based on the

 176

Section IV.3 – Description of the MANBoP components

functionality to be monitored, the position of the MANBoP instance within
the management infrastructure and the underlying devices.

Additionally, in this section we include a brief description of the Notification
Service defined by the OMG [OMG], which is used by several components
of the framework. Since the Notification Service has not been developed as
part of this thesis, we will just introduce the main concepts of the notification
service and explain how it is used within the framework. For sake of
completeness, we will provide some references that provide details about the
design and implementation of this service along the section.

The by-default communication in CORBA is synchronous. Nonetheless, in
many applications an asynchronous message exchange is a prerequisite for
scalability and for the ability to add and remove event consumers or suppliers
dynamically without affecting existing clients [Iona01]. The OMG group
detected this necessity and developed the Event Service to handle it. The
Event Service [OMG01b] does not provide yet a decoupled, asynchronous,
multicast communication, but provides the building blocks to define an Event
Channel, which does satisfy these requirements. The Event Channel is an
entity that receives all events from event suppliers and delivers them to all
connected consumers. The Notification Service [OMG02b] extends the
Event Service by letting programmers associate filters that precisely specify in
what events each consumer is interested. Moreover, the Notification Service
extends the Event Service in many other ways such as: allowing suppliers to
obtain the kind of events consumers are interested in, as well as allowing
consumers to obtain the kind of events that a channel offers, introducing
quality of service parameters for the event transmission, etc.

At bootstrap, when the DmMs is started with the underlying topology, and if
the current instance is working over other MANBoP instances, the
Notification Service is started and requested to register in the Notification
Service of each underlying MANBoP instance. Additionally, every time that
an underlying manager is added, the Notification Service is requested to
register to the new underlying manager Notification Service as event
consumer.

The Notification Service is used within MANBoP for the communication
between MANBoP instances at different levels by means of events. The
Policy Conflict Check component uses it for sending resource information
reports to higher-level instances, the PFwCnt class within the Policy
Consumer Manager introduces policy group enforcement result events, Policy
Consumers that might be oriented to performance, accounting or billing
could also use the Notification Service to send its periodic reports to higher-
level instances or even to interested users. All these components would act as
suppliers in the Notification Service within their MANBoP instances. As long
as the Notification Services of higher-level MANBoP instances (or even other
applications in behalf of authorised users) are connected as event consumers,
they will receive the events. In the higher-level instance, interested

 177

CHAPTER 4 – PROPOSED MODEL

components are registered as event consumers with a filter specifying the
events they are interested in. The main event consumers would be the Policy
Consumers (to know the enforcement result of policies), Monitoring Meters
(to receive monitoring information) or the Policy Conflict Check component
(to receive resource information reports).

The above introduction to the main functionalities covered by the DmMs is
complemented with some activity diagrams that provide a higher level of
detail.

The activity diagram below describes in more detail the tasks realised by the
DmMs when a request for monitoring a policy condition is received.

YES

receive policy to be
monitored

extract Policy
Condition

split Policy Condition into
Individual Statements

build logic expression
with those

look for IS that
need monitoring

link logic expression with
policyId and ISs identifiers

find the Monitoring Meter responsible for
each IS that needs monitoring

are they
installed?

request the installation of
the missing ones

NOT ALL

request the monitoring of
the ISs to the MMs

update the MM
lifecycle information

assign a unique identifier
to each of these ISs

Figure 4 - 53. DmMs: Policy condition monitoring request activity diagram

 178

Section IV.3 – Description of the MANBoP components

The first thing that the component does is extracting the policy condition
from the policy received and split it into Individual Statements (ISs). Once we
have converted the overall policy condition into Individual Statements, we
look among them, for the ones that need some monitoring to be applied.
Only with those Individual Statements, we build a logic expression that
represents the overall policy condition. When the overall logic expression
value is ‘true’ the overall policy condition is fulfilled, when false it is not. The
logic expression is linked with the policyId to which the policy condition
pertains and with the unique identifiers assigned to the Individual Statements
obtained.

The next step is to verify if the Monitoring Meter (MM) components that are
needed to realise the monitoring tasks implied in the ISs are installed. If any
of them is not, the DmMs requests to the Code Installing Application (CIA)
their installation taking into account the management level at which the
instance is acting, the monitoring task to be realised and the underlying
device. Once we know that all Monitoring Meter components are installed,
we request them the monitoring of their respective Individual Statements.
Finally, the DmMs updates the Monitoring Meter lifecycle information kept
within the component. This information keeps the number of Individual
Statements that are being processed by each Monitoring Meter. These values
are checked periodically and those MMs that are not processing any IS are
uninstalled.

Also the DmMs must handle requests to obliterate a policy condition because
the policy is being removed for whatever reason. The activity diagram below
shows the tasks that are carried out by the component when that occurs.

find logic expression linked
with the policyId specified

retrieve the IS
identifiers

request the stopping
of the ISs monitoring

remove logic
expression

update the MM
lifecycle information

Figure 4 - 54. DmMs: Unregistration of a policy condition monitoring request activity diagram

 179

CHAPTER 4 – PROPOSED MODEL

First, the DmMs uses the PolicyId submitted in the request to find the logic
expression linked to it. With the logic expression, it retrieves the Individual
Statement identifiers that are being processed by the Monitoring Meter
components.

Then, the logic expression is removed and a request is launched to the
Monitoring Meters (MMs) to stop processing the involved ISs.

Finally, the Monitoring Meters lifecycle information kept within the
component is updated accordingly. The next time the component checks the
lifecycle information, those MMs that are not processing any IS will be
uninstalled.

The main functionality developed by the DmMs component is to assess when
a policy condition is met, or no longer met, and inform the Policy Consumer
Manager about it. The tasks done by the DmMs to handle this functionality
are shown in the activity diagram below:

identify the IS

find the logic
expression for that IS

update the value of the IS
within the logic expression

has the overall logic
expression value changed?

wait for IS
value

notify the change
to the PCM

NO

YES

Figure 4 - 55. DmMs: Policy Condition monitoring activity diagram

The component waits for information about the Individual Statements (ISs)
received from the Monitoring Meter components. Every time a MM informs
about a change in the status of one of these ISs the DmMs looks for the
corresponding logic expression based on the IS identifier and updates the
logic expression with the new value. When this change causes that the entire
logic expression value changes, the DmMs warns the Policy Consumer
Manager about it. Otherwise, it waits for another change in an Individual
Statement.

Finally, the DmMs is notified when the managed topology is updated so that
the Notification Service might connect (or disconnect) to lower-level

 180

Section IV.3 – Description of the MANBoP components

Notification Services if necessary. The tasks carried out by the component
every time the managed topology is updated are reflected below:

get nodeId

are we working directly over
the managed resources?

are we adding or
removing a node?

retrieve from DB its
Notification Service interface

request to the Notification Service
to register as event consumer

ADDING

request to the Notification Service
to de-register as event consumer

REMOVING

NO

YES

Figure 4 - 56. DmMs: Managed topology update processing activity diagram

Only if the instance is not working directly over the managed resources a
change in the managed topology affects to the Notification Service. In that
case, the component uses the node identifier received in the request to
retrieve from the database the interface of the Notification Service of the
appropriate underlying MANBoP management node. Finally, the DmMs
requests to the Notification Service its connection (or disconnection in case
the node is being removed), to the specified Notification Service as event
consumer.

B Component Design

In the component behaviour section above, we have described the tasks that
the Decision-making Monitoring system must develop. These tasks can be
easily joined in four groups:

♦ Register and obliterate policy conditions to be monitored: These tasks
form the basic functionality offered to other components in the
framework. They represent the most important communication methods
between the Policy Consumer Manager and the DmMs component.

 181

CHAPTER 4 – PROPOSED MODEL

♦ Monitoring of policy conditions: This one is the most important group of
tasks, because it represents the core functionality expected from the
component. The policy condition monitoring carried out in cooperation
with the MMs is an essential functionality in the decision-taking process.

♦ Monitoring Meter lifecycle controlling: The component also carries out a
group of tasks aimed to uninstall those MMs that are not used so as to
keep their number in a reasonable scale and save computing resources.

♦ Notification Services interconnection: These tasks are possibly the less
frequent in time (they are only realised at bootstrap or when the
underlying topology is updated), but very important for the correct
behaviour of the whole component. These tasks are aimed to guarantee
that, when working over other MANBoP instances, the Notification
Service of the current instance is connected, as event consumer, in all
underlying Notification Services.

These groups of tasks listed above are handled within the component by two
classes that are shown in the class diagram below: the DLgc and the MMCnt
class. The Notification Service is a CORBA-service and therefore is not
described exhaustively within this thesis.

The concrete description of how each class copes with the corresponding
functionality is given in the class description section hereafter.

Policy Consumer
Manager interface

dispatch()
dispatch()

uninstallP()

(from Policy Editor)

DLgc

regCond()
unregCond()
upUnI()
ISValue()

Monitoring Meter
interface

monIS()
sMonIS() CIA Interface

dwCode()

(from Policy Editor)

MMCnt

regIS()
unregIS()

Notification
Service

Figure 4 - 57. Decision-making Monitoring system class diagram

a DLgc class

The DLgc (Decision Logic) class carries out the Notification Services
interconnection control and participates, together with the MMCnt class in

 182

Section IV.3 – Description of the MANBoP components

the registration/obliteration of policy conditions and their monitoring.
Particularly, the class is in charge of: splitting the policy condition into
Individual Statements (ISs), creating the logic expression, maintaining it and
warning the Policy Consumer Manager component when the logic expression
changes its value.

The concrete tasks developed by this class are explained in more detail in the
following interface description table. The DLgc offers an interface with four
methods, namely the regCond(), unregCond(), upUnI() and ISValue(). The
first three methods will be used by the PCM component, while the last one is
used by Monitoring Meters.

The table below provides a concrete description of these methods, their
functionality and parameters.

Interface Input
parameters

Output
parameters Functionality

regCond()

string
policySer,
credential

User

boolean
Result

The PCM component uses this method to request the monitoring of a policy
condition. The method specifies two input parameters and a boolean
specifying the result as output. The input parameters are the serialised policy
whose condition should be monitored and the credentials of the user who
introduces that policy. The user’s credentials might be needed in case the
resources to be monitored are assigned to a user.
When the DLgc receives such a request, it carries out the tasks described in
Figure 4 - 53 up to ‘link logic expression to policyId and IS identifiers’. Then,
it requests to the MMCnt class the realisation of the remaining tasks in that
figure.

unregCond() string
PolicyId

boolean
Result

When a policy is removed, the Policy Consumer Manager uses this method
to request to the DLgc class the obliteration of its policy condition. The
method only specifies the policyId of the policy whose condition should be
obliterated as input parameter and a boolean specifying the result as output
parameter.
The DLgc, when receiving a call to this method, realises the tasks drawn in
Figure 4 - 54 up to ‘remove logic expression’ and request to the MMCnt
class the realisation of the remaining tasks in the figure.

upUnI()
boolean type,

string[]
nodeId

boolean
Result

Whenever the managed topology is updated, the PCM component accesses
this method to notify it to the DLgc class. Thus, the Notification Service can
be always appropriately interconnected. The method includes two input
parameters and a boolean as result of the operation. The input parameters
are a boolean that indicates whether the node identified in the second
parameter is being added (0) or removed (1).
The DLgc class carries out the tasks listed in Figure 4 - 56 when a request is
received in this method.

ISValue()
string ISId,

boolean
Value

The Monitoring Meters (MMs) use this method to inform to the DLgc class
about changes in the value of an Individual Statement they are monitoring.
The method specifies two input parameters: a string identifying the IS that
has changed and a boolean that indicates the new value (i.e. whether the IS is
met or not).
When a request is received through this interface, the DLgc class carries out
the tasks reflected in the activity diagram drawn in Figure 4 - 55.

Table 4 - 23. The DLgc class interface description table

 183

CHAPTER 4 – PROPOSED MODEL

b MMCnt class

The MMCnt (Monitoring Meter Controller) class collaborates with the DLgc
class in the tasks related with the registration and obliteration of monitoring
requests and realises, on its own, the MMs lifecycle controlling tasks.

Summarising, the main responsibility of this class is controlling the whole
lifecycle of the Monitoring Meter components, starting from their installation
when they are needed, the demultiplexing of Individual Statements to them,
and the periodic verification of the number of ISs processed by each of them
for uninstalling those not processing any.

The MMCnt class offers an interface with two methods so as to realise these
tasks, namely the regIS() and unregIS() methods. The concrete goal,
functionality and parameters of these methods are analysed in the table below.

Interface Input
parameters

Output
parameters Functionality

regIS()

string ISId,
string ISSer,
credential

User

boolean
Result,
boolean

initV

The DLgc class makes a call to this method to find the most appropriate
Monitoring Meter to process an Individual Statement and to install it if not
already running. The method specifies three input and two output
parameters. The input parameters are a string identifying the Individual
Statement to be processed, another string with the IS serialised and the
credentials of the user (they might be needed by the corresponding MM in
case the resources requested are allocated to a user). The output parameters
are a boolean that indicates the result of the operation and a boolean with
the initial value of the IS.
When the MMCnt receives such a request, it carries out the tasks described
in Figure 4 - 53 starting from ‘find the Monitoring Meter responsible for
each IS that needs monitoring’. Its tasks conclude with a request to the
corresponding Monitoring Meter for the processing of the IS.

unregIS() string ISId boolean
Result

When a policy is removed, the DLgc class uses this method to request to the
MMCnt class the finalisation of the Individual Statements monitoring
associated to the policy being removed. The method only specifies a string
identifying the IS that should be no longer processed as input parameter and
a boolean that returns the result as output parameter.
The MMCnt, when receiving a call to this method, realises the tasks drawn
in Figure 4 - 54 starting from ‘request the stopping of the ISs monitoring’.
The method functionality concludes with a request to the MMs for stopping
the processing of the corresponding IS.

Table 4 - 24. The MMCnt class interface description table

c Sequence Diagrams

To complement the description of the DmMs component we include
hereafter sequence diagrams showing the interactions between the
component classes linked with three out of four public methods offered in
the component interface. The sequence diagram representing the interactions
occurring in the upUnI() method is not shown, since it does not provide any
extra information (it is just a call and a response between the PCM
component and the DLgc class).

 184

Section IV.3 – Description of the MANBoP components

PCM DLgc MMCnt MMs

...

PCM DLgc MMCnt MMs

regCond() regIS()
monIS()

regIS() monIS()

regIS() monIS()

Figure 4 - 58. Decision making Monitoring system: regCond sequence diagram

PCM DLgc MMCnt MMs

unregCond()
unregIS()

sMonIS()

unregIS() sMonIS()

...
unregIS() sMonIS()

Figure 4 - 59. Decision making Monitoring system: unregCond sequence diagram

 185

CHAPTER 4 – PROPOSED MODEL

PCM DLgc MMCnt MMs

ISValue()

ISValue()

...
ISValue()

triggerEnf()

Figure 4 - 60. Decision making Monitoring system: ISValue sequence diagram

7th Monitoring Meter

A Component Behaviour

The Monitoring Meter (MM) components are responsible for the monitoring
of Individual Statements (ISs). The MMs are installed based on the
management level at which the instance is acting, the IS to be monitored
(each MM will process one or more types of ISs) and the underlying devices.
The logic behind it is the same as for Policy Consumers: even if we have a
MM component capable of processing all present types of ISs, it might occur
that future functionalities within the managed network might require the
processing of new types of ISs and, therefore, new MM components.

Besides the functionalities enumerated above, we have identified in the Use
Cases section some other functionalities for this component that were
summarised in Table 4 - 1. We list below those functionalities identified for
the MM:

♦ Configure Meters: As briefly explained before, when it receives a monitoring
request through the monIS() method, it must analyse the individual
statement to decide what resources from the underlying devices should be
monitored.

♦ Monitor resources: Each meter class realises the Individual Statements
monitoring on the indicated device resources. As result of the method
call, the initial value of the IS is returned. From there on, only the changes
in this value will be notified until the IS is obliterated. The MMs, when
possible, will configure the underlying device to inform about a change in
the monitored resources that affects the IS monitored. Otherwise, they
poll the underlying device periodically to obtain the value of the
monitored resources.

 186

Section IV.3 – Description of the MANBoP components

In addition to all functionalities already commented for the Monitoring Meter
component, there are some others that should be taken into account.

The monitoring of an Individual Statement might require the monitoring of
many resources. Based on all the information obtained from the different
resources monitored the MM should decide the value of the Individual
Statement being monitored and in case the value has changed warn the
DmMs about it.

Moreover, the Monitoring Meter component must be capable of stopping the
monitoring of an Individual Statement when requested (as part of the policy
removal process). The finalisation of an IS monitoring task will cause, the
removal of any configuration that might have been carried out in the
underlying device to obtain the needed information.

A peculiarity of Monitoring Meters when working over other MANBoP
instances is that, to obtain the value of the monitored ISs they need to create
monitoring policies that will be processed by specialised PCs and MMs
components. The enforcement of these monitoring policies causes that event
reports are sent (either periodically or when the IS value changes). The upper
MM receives such events and re-acts accordingly. Obviously, when the IS is
obliterated, the MM requests the removal of the corresponding monitoring
policies in the underlying instances using the already described methodology
for doing so (i.e. introducing the same policy with the ‘act’ policy field with the
‘Remove’ value).

In order to detail and sort out the functional concepts already stated for the
Monitoring Meter components, we provide below two activity diagrams.
They show the tasks that the different classes of this component should carry
out when a request is received through any of the two public methods.

 187

CHAPTER 4 – PROPOSED MODEL

retrieve IS

realise resources
monitoring operations

link involved
meters to IS

return the IS
initial value

decide the IS
initial value

Figure 4 - 61. Monitoring Meter: Monitor Individual Statement activity diagram

The figure above shows the activity diagram of any Monitoring Meter
component any time it receives a request for an Individual Statement
monitoring. The first task that the component does is analysing the IS to be
monitored to decide what resources in the managed network should be
monitored to calculate the IS value.

The meter classes are linked with the ISs assigned to them before realising the
corresponding monitoring operations. Based on the first result of these
operations the component calculates and returns the initial value of the IS.

The component should also be capable of stopping the monitoring of an
Individual Statement when requested. The activity diagram below shows the
main tasks carried out by the component when that happens.

undo IS monitoring
configurations

retrieve involved meters
based on the IS

Figure 4 - 62. Monitoring Meter: Stop Individual Statement (IS) monitoring activity diagram

 188

Section IV.3 – Description of the MANBoP components

As it can be seen in figure 4 – 62, the tasks undertaken by the component are
quite straightforward. With the Individual Statement identifier received in the
request, the MM obtains the meter classes involved in the IS monitoring.
Then, it requests the removal of all configurations done in the underlying
devices to monitor that IS if any.

B Component Design

All tasks described in the component behaviour section can be easily
summarised in three points:

♦ Analysis of the Individual Statement and how to monitor it: The MM
must decide what resources should be monitored to calculate the IS value
and monitor these resources with the appropriate meter classes. Based on
the results obtained from the meter classes, the component establishes
the value of the IS.

♦ Monitoring operations: To obtain the required resource values, the
component sends one or more commands to the underlying device. If
these commands cause a permanent configuration in the device, this
configuration should be removed when the monitoring is finished.

♦ Finishing the monitoring of an Individual Statement: The component
must be capable of stopping an IS monitoring assuring that no
configuration related with this monitoring is kept in the monitored device.

In order to cope with the three points shown above, we have designed a
Monitoring Meter component composed of two classes: the MFact class
(Meter Factory) and the Meter class. The MFact realises all tasks except the
monitoring operations, which are realised by the Meter class. The class
diagram that follows shows this structure:

 189

CHAPTER 4 – PROPOSED MODEL

underlying
device interface

Meter

monR()
sMonR()

DmMs Interface

regCond()
unregCond()

upUnI()
ISValue()

(from PCM)

DB-Topology
interface

getPath()
createPath()
modPath()
remPath()

getGblTop()
modGblTop()

createTopObj()
getTopObj()
modTopObj()
rmTopObj()

(from TEManager)

MFact

monIS()
sMonIS()
RValue()

Figure 4 - 63. Monitoring Meter class diagram

In the next sub-sections, we are going to detail how these classes carry out the
mentioned tasks.

a MFact class

The MFact class is the core of the Monitoring Meter component. It interacts
with the Decision-making Monitoring system component and receives the
monitoring requests. It also analyses the Individual Statement and decides
what resources should be monitored. Then, it demultiplexes to the
corresponding Meters the resource monitoring requests. Finally, it is also in
charge of finishing smoothly the monitoring tasks related with an IS.

The class offers three public methods, two of them are used by the DmMs to
request the beginning or the ending of an IS monitoring, while the third one
is used by the meter classes to indicate the values of the resources being
monitored. These three methods are, respectively: monIS(), sMonIS() and
RValue(). The concrete description of the goal, functionality and parameters
of these methods is given in the table below:

 190

Section IV.3 – Description of the MANBoP components

Interface Input
parameters

Output
parameters Functionality

monIS()

string ISId,
string ISSer,
credential

User

boolean
Result,
boolean

initV

The DmMs makes a call to this method to request the monitoring of an
Individual Statement. The method specifies three input parameters and two
output ones. The input parameters are a string identifying the Individual
Statement to be processed, another string with the IS serialised and finally,
the user’s credentials, which might be needed by the corresponding MM in
case the resources requested are allocated to a user. The output parameters
are a boolean indicating the operation result and a boolean with the IS initial
value. This initial value is obtained as result of processing the initial value of
the corresponding resources monitored by meter classes.
When the MFact receives such a request, it carries out the tasks described in
Figure 4 - 61, except the task ‘realise resources monitoring operations’,
which is realised by the meter classes.

sMonIS() string ISId boolean
Result

When a policy is removed, the DmMs component uses this method to
request the finalisation of monitoring tasks related with an Individual
Statement. The method specifies a string identifying the IS that should be no
longer processed as input parameter and a boolean returning the result as
output parameter.
The MFact class, when receiving a call to this method, realises the tasks
drawn in Figure 4 - 62, except the ‘undo IS monitoring configurations’ task,
which is realised by meter classes.

RValue() string ISId,
int Value

Meter classes use this method to inform to the MFact class about the
monitored resource values related with an Individual Statement. The method
only specifies two input parameters: a string identifying the IS that has
changed, and an integer that indicates the resource value.
When a request is received through this interface, the MFact class
recalculates the overall value of the IS taking into account this new resource
value. In case the IS value changes, the MFact class notifies this change to
the DmMs component through the ISValue() method.

Table 4 - 25. The MFact class interface description table

b Meter class

The Meter class receives requests to monitor resources from the MFact class,
which it must ‘translate’ into monitoring commands on the monitored
underlying device interface. There can be a number of different Meter classes
each being able to monitor one or more concrete types of resources.

The Meter class must be capable also of removing any kind of monitoring-
related configurations when requested.

The class offers an interface with two methods, namely the monR() and the
sMonR(). A detailed description of the goal, functionality and parameters of
these methods is given in the table below:

 191

CHAPTER 4 – PROPOSED MODEL

Interface Input
parameters

Output
parameters Functionality

monR()

string ISId,
string

nodeInt,
boolean type,
int period, int
upperTh, int

lowerTh,
string

ResourceId,
credential

User

boolean
Result, int

initV

The MFact makes a call to this method to request a resource monitoring.
The method specifies eight input and two output parameters. Input
parameters are first, a string identifying the Individual Statement linked to
this resource. Second, a string that specifies the interface of the node where
the resource to be monitored is located. Third, a boolean that indicates
whether the resource value should be provided periodically (0) or when
crossing the specified thresholds (1). Then, three integers that specify the
period and the upper and lower thresholds respectively. A string that
specifies the resource to be monitored and finally, the user’s credentials. The
output parameters are: a boolean that indicates the operation result and
another boolean with the resource initial value.
When the Meter receives such a request it monitors the indicated resource
through the node interface given as parameter and returns the resource
value, either periodically or when crossing a threshold. The resource
monitoring is linked to the IS identifier to easily remove the monitoring
configurations when requested.

sMonR() string ISId boolean
Result

When a policy is removed, the MFact class uses this method to request the
finalisation of monitoring tasks related with a resource. The method specifies
a string identifying the IS that must no longer be processed as input
parameter and a boolean returning the result as output parameter.
The Meter class, when receiving a call to this method, removes all
monitoring configurations that might have been realised on the underlying
device due to the resource monitoring linked with that IS.

Table 4 - 26. The Meter class interface description table

c Sequence diagrams

As a complement of the Monitoring Meter component description above, we
provide below three sequence diagrams with the main interactions that might
occur between the classes of the component:

DmMs MFact Meter Meter Underlying
devices

monIS()

monR()

monR()

monitoring commands

monitoring commands

Figure 4 - 64. Monitoring Meter: monIS sequence diagram

 192

Section IV.3 – Description of the MANBoP components

DmMs MFact Meter Meter Underlying
devices

sMonIS()
sMonR()

sMonR()

undo monitoring commands

undo monitoring commands

Figure 4 - 65. Monitoring Meter: sMonIS sequence diagram

MeterMeterMFactDmMs

RValue()

RValue()

RValue()
ISValue()

Figure 4 - 66. Monitoring Meter: RValue sequence diagram

8th Policy Consumer

A Component Behaviour

Policy Consumer components (PC) are mainly responsible of interacting with
underlying network devices; both mapping policy actions into understandable
commands, and receiving signalling requests from the managed devices.
Requests are then forwarded in the appropriate format to the Policy Editor
component to make a decision.

At the end of the use cases section, in Table 4 - 1, we summarised the main
tasks expected from the PC. Hereafter, we enumerate and describe those
tasks:

♦ Enforce Policy: This is probably the most important task of the component.
When a request for enforcing a policy is received through the enforceP()
method, the component maps the action specified in the policy into
commands understandable by the underlying device. The device can be a
passive, active or programmable router or a lower-level MANBoP

 193

CHAPTER 4 – PROPOSED MODEL

instance. When the latter, the action will be mapped into the appropriate
lower-level policies. Moreover, when a Policy Consumer is responsible of
several devices, the component has to demultiplex the commands onto
the devices specified in the request.

♦ Forward request to Policy Consumer: Policy Consumer components might be
also capable (depending on the type of Policy Consumer component) of
processing certain types of signalling requests. Calls for processing
signalling requests will come from the SigDemux component through the
sigRequest() method, which will be described later on. The Policy
Consumer component assigns a unique identifier to the signalling request
to link the decision (taken in the future) with the request.

♦ Format signalling info: In addition to the task described above, when
receiving a signalling request, Policy Consumers must format the
information within the request to the format needed by the Policy Editor
component, where it will be forwarded.

♦ Enforce decision to signalling request: The enforceP() method previously
mentioned for the enforcement of policies is overloaded to support also
the enforcement of signalling requests. The concrete description of these
methods will be given in the component design section. Nonetheless, the
only difference in the enforcement procedure is that the component must
link decisions with signalling requests and notify this decision, via the
corresponding commands, only to the device that raised the request.

In addition to the above, when enforcing a signalling request, the Policy
Consumer component must check if it is the first enforcement request (both
from policies or signalling) it processes. In that case, it means that it has been
installed by the SigDemux component19. Therefore, and only in this particular
case, if the signalling request has been refused, the Policy Consumer
component must forward the refusal to the device that raised the signalling
request and uninstall itself. The explanation to this behaviour is given in the
SigDemux section (see pag.198). The framework might also implemented so
that only those Policy Consumers that can be installed by the SigDemux
component contain this functionality (to avoid an unnecessary degradation in
the performance of the other ones).

These functionalities represent the main logic of the component. However,
there are two additional functional requirements that the component must
fulfil. Both requirements must be carried out during the component
instantiation.

The first one is the registration of the Policy Consumer instance, as event
consumer, in the Notification Service of the framework. This is particularly

19 The first ‘job’ establishes somehow the necessity that caused its installation and thus, the component

that installed it.

 194

Section IV.3 – Description of the MANBoP components

important when the MANBoP instance where the component is running
works over other MANBoP instances, since the PC will receive the
enforcement results in the form of events.

The second one is the registration in the corresponding SigDemux
component, which will be described in detail in the next section. The Policy
Consumer should only register in the SigDemux component running within
the same nodeSet. This registration is needed only when the Policy Consumer
being instantiated is capable of processing one, or more, types of signalling
requests and it is working directly over managed resources. In the registration
process, the component must indicate the signalling types that it is capable of
process.

In some of the previous component behaviour sections, we have included
activity diagrams for clarifying, and sorting out, the functionality of the
component being described. In this case, we feel that such activity diagrams
will not provide any extra information, since there are only a few tasks.

B Component Design

All the above-described logic for Policy Consumer components can be easily
summarised in a few groups of tasks:

♦ Map the received policy or signalling request into commands: The
functionality in both cases, policy or signalling request, is almost the same,
the only difference is that the signalling decision should be linked with the
request.

♦ Demultiplex commands to device: The component, once the action
specified in the policy has been mapped into the underlying device
commands, must forward these commands to the specified devices.

♦ Process signalling requests: Certain PC might be capable of processing
some types of signalling requests. Those that are capable of doing so must
extract the signalling request information and format it to be forwarded to
the Policy Editor component together with a signalling request identifier.

♦ Registration processes at component instantiation: During the component
instantiation, the PC must register in the Notification Service as event
consumer. Additionally, if they are capable of processing signalling
requests, they must also register in the SigDemux component within its
nodeSet. Note that the registration to the SigDemux component is only
realised when the instance is working directly over managed devices.

The concrete Policy Consumer logic depends on the management level at
which they are acting, the underlying devices and the functionality they
support. In this section, we only aim to design a “generic” Policy Consumer
component capable of handling at least the mandatory, generic tasks expected
from this component. Such design is represented in the class diagram below.

 195

CHAPTER 4 – PROPOSED MODEL

Policy Editor interface

policyInfo()
policyInfo()

recvXPolicy()
registerUser()
rqPServices()

(from PCM) Policy Consumer
Manager interface

dispatch()
dispatch()

uninstallP()

(from Pol icy Editor)

SigDemux interface

SignaRq

sigRequest()

Mapper

enforceP()
enforceP()

underlying device
interface

(from Monitoring Meter)

Figure 4 - 67. Policy Consumer components class diagram

A detailed description of these classes, their functionality, interfaces and how
do they fulfil the expected functionality is given in the following sub-sections.

a Mapper class

The Mapper class is mainly responsible of processing all enforcement
requests. That is, mapping the policy action into underlying device commands
and demultiplexing these commands into the appropriate devices. It is also in
charge of registering in the Notification Service as event consumer.

To fulfil this functionality, the Mapper class offers an interface with two
methods, both named enforceP() method. The method has been overloaded
to also support enforcement of signalling requests decisions, in addition to
the policy enforcement support.

A concrete description of goal, functionality and parameters of these methods
is given in the table below:

 196

Section IV.3 – Description of the MANBoP components

Interface Input
parameters

Output
parameters Functionality

enforceP()

string
policySer,

string[]
nodeInt

int result,
string error

The PCM component requests, through this method, the enforcement of a
policy in one or more underlying devices. The method specifies two input
and two output parameters. The policy that needs to be enforced serialised
(policySer) in a string, and the list of node interfaces where this policy should
be enforced, are the input parameters. The output ones are: an integer
specifying the result and a string providing more details when an error
occurs. The possible integer values are: (0) enforced, (1) enforcement
removed, (2) policy removed, (3) enforcement error, (4) undefined result.
Enforcement removed applies when, due to the policy conditions, the
configurations in the managed device related to this policy are removed.
Policy removed applies when the policy is uninstalled due to its expiration, a
conflict or any other reason.
When receiving a call to this method, the Mapper class realises the tasks
described at the section introduction necessary for enforcing the policy.

enforceP()

string
policySer,

string[]
nodeInt,

string
sigRqId

int result,
string error

The PCM component requests, through this method, the enforcement of a
signalling request decision. The parameters specified in the method are those
described for the previous method plus the signalling request identifier. This
identifier is used by the PC component to link the decision made by the
system with the signalling request raised.
Again, the tasks that the Mapper class realises have been described in the
previous paragraphs. In brief, the class links the decision to the request and
enforces it in the corresponding underlying device interface.

Table 4 - 27. The Mapper class interface description table

b SignaRq class

The SignaRq class deals with the processing of signalling requests (i.e.
formatting of request information) and the registration to the SigDemux
component.

To fulfil this functionality the SignaRq class offers an interface with the
sigRequest() method. The goal, functionality and parameters of this method
are described in detail in the table below.

Interface Input
parameters

Output
parameters Functionality

sigRequest()

string
request,
string

nodeAddr

The SigDemux component requests, through this method, a decision for a
signalling request. The method specifies two input parameters: a string with
the request to be processed and another string with the IP address of the
node from where the request is raised.
When receiving a call to this method, the SignaRq class realises the tasks
described before necessary for processing the signalling request.

Table 4 - 28. The SignaRq class interface description table

c Sequence diagrams

To complement the component description, we provide below sequence
diagrams reflecting the interactions occurring when public methods of the
component are accessed.

 197

CHAPTER 4 – PROPOSED MODEL

PCM Mapper SignaRq underlying
device

enforceP()
commands

Figure 4 - 68. Policy Consumer: enforceP sequence diagram

Policy Editor Mapper SignaRq SigDemux

sigRequest()
policyInfo()

Figure 4 - 69. Policy Consumer: sigRequest sequence diagram

9th SigDemux

A Component Behaviour

The SigDemux component is exclusively involved in the processing of
signalling requests. In particular, it is in charge of correctly receiving signalling
requests supported by the framework (i.e. those supported by PCs already
installed in the framework) and demultiplexing them to the appropriate Policy
Consumer component. Additionally, the SigDemux might be able to detect
the most common signalling request types and force the installation of a
Policy Consumer to process them if none is available yet.

When we analysed the functionality expected from the framework and
assigned functionalities to be covered to the different components (see Table
4 - 1), the ones assigned to the SigDemux component were:

♦ Wait for signalling request: The component must be always listening for
signalling requests from underlying devices within its nodeSet. When a
request is received, the SigDemux must detect the request type and act
accordingly.

♦ Find appropriate Policy Consumer: When a known signalling request is
detected the component looks for a Policy Consumer component
associated with the signalling request type received.

♦ Is it installed?: Finally, it verifies if the corresponding Policy Consumer is
installed. If so, it simply forwards to it the signalling request together with

 198

Section IV.3 – Description of the MANBoP components

the underlying device from where the request has been raised. In case it is
not installed, the component might even request to the Code Installing
Application (CIA) the installation of the corresponding Policy Consumer
component to process that request within that nodeSet.

The SigDemux might be hardcoded with the knowledge of the most
common signalling requests types, so that if one request of any of these types
arrives, the corresponding Policy Consumer can be installed to process such
request. Nevertheless, the SigDemux component is capable of “learning” new
types of signalling requests to be able to detect them later. This happens when
a Policy Consumer capable of processing a new type of signalling request
registers in the SigDemux component. The Policy Consumer will register to
the SigDemux component indicating not only a handle to receive processing
requests of this signalling request type, but also indicating to the SigDemux
component how to detect this signalling request type. Indeed, the Policy
Consumer component provides a filter matching requests of the new type.
Obviously, a new SigDemux component with new types of signalling requests
can also be developed, either for a new nodeSet managed by the MANBoP
instance, or for an existing one (thus, replacing the old SigDemux
component).

As we have seen in previous sections, the Policy Consumer components are
usually installed by the Policy Consumer Manager component, and more
concretely by its PCCnt class. When a PC component is installed by the
SigDemux component the “registration” of the new PC within the PCM
component will be done progressively (during the signalling request
processing). When the signalling request arrives to the PCCnt class, the new
Policy Consumer-related information is stored (i.e. its PCId and component
interface) in the list kept by this component (see page 115) and the
“registration” process is finished. By “registration” process we meant, in this
case, the process of letting know to the PCM that a new Policy Consumer is
being installed, registering its expiration date and updating the list of installed
Policy Consumers kept by the Policy Consumer Manager component.

Nonetheless, this “registration” process is complete only when the signalling
request is accepted. That is, the request is authorised and there is no dynamic
conflict. For that reason, when the signalling request is refused the Policy
Consumer component will not have been registered in the PCM (always
assuming that it is the first request it processes). Hence, to avoid having not-
registered, and therefore, unused Policy Consumers within the MANBoP
instance, the Policy Consumer forwards the refusal to the device that raised
the signalling request and uninstalls itself.

The activity diagrams below sort out the above-described functionality for
this component, when receiving signalling requests or when a new Policy
Consumer registers in the component.

 199

CHAPTER 4 – PROPOSED MODEL

wait for signalling
requests

forward request to
Policy Consumer

is there any PC
for this request?

is it installed?

request Policy
Consumer installation

NO

YES

NO YES

Figure 4 - 70. SigDemux: Signalling request processing activity diagram

receive registration
request

link filter with
Policy Consumer

introduce filter
in the listener

Figure 4 - 71. SigDemux: Policy Consumer registration activity diagram

B Component Design

All the above tasks can be summarised in two groups: tasks for detecting
signalling requests and finding the appropriate Policy Consumer, and tasks for
registering a new Policy Consumer. This component behaviour has leaded us
to a component design composed of two classes. The class diagram of the
SigDemux component is shown in the figure below:

 200

Section IV.3 – Description of the MANBoP components

underlying device
interface

PC Interface

enforceP()
enforceP()

sigRequest()

(from PCM)

Listener

setFilter()

PCDmx

regPC()
recvRq() CIA Interface

dwCode()

(from Pol icy Editor)

Figure 4 - 72. SigDemux class diagram

A detailed explanation of how these classes cope with the expected
functionality of this component is given in the following sub-sections.

a PCDmx class

The PCDmx (Policy Consumer Demultiplexer) class is in charge of finding
the appropriate Policy Consumer for a signalling request received. Moreover,
in case the corresponding Policy Consumer component is not installed, the
PCDmx contacts the Code Installing Application (CIA) component to
request the PC installation within the nodeSet.

Additionally, the PCDmx class is responsible of receiving registration requests
from PCs, updating the list (kept within the component) of registered and
installed PC components and contacting the Listener class to include the
signalling request filter specification of the new PC.

To handle with this functionality the class offers an interface with two
methods, namely the regPC() and the recvRq() methods. The concrete goal,
functionality and parameters of these methods is described in the interface
description table below:

 201

CHAPTER 4 – PROPOSED MODEL

Interface Input
parameters

Output
parameters Functionality

regPC()

string PCId,
string PCInt,

string[]
filterId,

string[] filter

boolean
result

The PC components use this method to register within the SigDemux as
entities capable of processing a particular type of signalling requests. The
method specifies four input parameters and a boolean indicating the
operation result as output. The input parameters are two strings and two
arrays of strings that indicate respectively: the identifier of the PC being
registered, its interface, the identifier of the filters associated to the
supported signalling types and the filters themselves.
When receiving a call to this method, the PCDmx class develops the tasks
described in the previous paragraphs and shown in Figure 4 - 71.

recvRq()

string filterId,
string

request,
string

nodeAddr

-

The Listener class uses this method to inform about the detection of a
signalling request coming from a managed device. The parameters specified
in the method are three strings that include the following information,
respectively: the identifier of the filter met by the signalling request, the
request itself and the address of the node raising the signalling request. These
three parameters are input parameters; no output parameter is included in
the method.
The PCDmx class realises mainly the tasks described before and reflected in
Figure 4 - 70.

Table 4 - 29. The PCDmx class interface description table

b Listener class

The Listener class continuously waits for signalling requests and compares
whether the information received matches with any of the specified filters or
not20. In case it does, the class must inform about it to the PCDmx class. In
addition, the class offers an interface that allows the introduction of new
filters.

A detailed description of the goal, functionality and parameters of the
methods within the Listener interface is given in the table below:

Interface Input
parameters

Output
parameters Functionality

setFilter() string filterId,
string filter

boolean
result

The PCDmx class uses this method to introduce a new signalling request
filter. The method specifies two input parameters and just one boolean
indicating the operation result as output. The input parameters are a couple
of strings that represent, respectively, the identifier of the filter being
introduced and the filter itself.
The Listener class, when receiving a request through this method, introduces
the requested filter within its list.

Table 4 - 30. The Listener class interface description table

c Sequence diagrams

Although the sequence diagrams for this component are quite
straightforward, we include them to give a clearer view of the interactions

20 At component instantiation, the class might need to register within the managed devices as receiver of

signalling requests.

 202

Section IV.3 – Description of the MANBoP components

occurring within the component when receiving a registration request from a
PC or when detecting a signalling request.

Policy
Consumer

PCDmx Listener Underlying
devices

regPC()
setFilter()

Figure 4 - 73. SigDemux: regPC sequence diagram

Policy
Consumer

PCDmx Listener Underlying
devices

signalling request
recvRq()

sigRequest()

Figure 4 - 74. SigDemux: Signalling request detection sequence diagram

10th Database

A Component Behaviour

No database functionality appears in Table 4 - 1. There are two reasons for
this. The first one is that the Database functionality is masked behind the
other tasks. The second reason is that the Database is mainly a passive
component. In this case, with passive we refer to the fact that the Database
component implements no algorithm for realising any task other than storing
and allowing the retrieval of objects. Additionally, as the Database component
offers methods for each particular Information Model Object (IMO) that can
be stored, the logic for finding objects is very simple. The advantage of using
these fine-grained methods in the Database is that the logic needed by other
framework components for introducing and retrieving objects from the
Database is simpler. Another advantage of this approach is that in this way
the Database interface is independent of the database technology used. The
only drawback for this approach is that the Database interface offers a higher
number of methods. We have tried to minimise this drawback by grouping all
these methods into several interfaces.

The methods offered by the Database component are grouped under
different interfaces. These groups have been created taking into account the
functionality represented by the IMOs handled by the group methods. For

 203

CHAPTER 4 – PROPOSED MODEL

example, all methods handling IMOs related with topological aspects of the
framework are grouped under the Topological interface. The goal of using
this type of grouping is that on the one hand, components need to access the
minimum number of interfaces to retrieve and store the objects they are
dealing with. On the other hand, that the size of the Database interfaces is not
too big.

B Component Design

As we have extensively commented in the previous sub-section, the Database
is a passive component. Thereby, it has no other classes than the ones
implementing its interfaces. Hence, we will proceed directly for describing the
interface methods.

Database methods realise the same functionality depending on whether they
are used for create, get, set, modify or remove IMOs. The first characters of
the method name help to identify which of these functionalities is the method
implementing.

Those methods used for creating objects in the Database, receive information
to create the IMO. Once they have created the object, they send the
corresponding Database technology commands to store the new object.

The set methods realise the same functionality of the create methods except
for the fact that they already receive the IMO.

Get methods introduce the corresponding Database technology commands
to look for an IMO based on the parameters they have received. If they find
the IMO, they return it.

The modify methods implement the same functionality as the get methods
except for the fact that they do not return the found IMO. Instead, they
modify it and store it again following the same behaviour as the set methods.

Finally, remove methods introduce the corresponding Database technology
commands to look for an IMO and, if it exists, it requests the removal from
the Database of that IMO again introducing the appropriate commands.

The class interface is described in the table below. As we have already
described the functionality of the database methods, we just include in the
table a brief description of the input and output parameters for each method.

 204

Section IV.3 – Description of the MANBoP components

Interface Input
parameters

Output
parameters Functionality

Topology
interface

getPath() string pathId Path object
The input parameter is a string with the identifier of the path that must be
obtained from the Database.
The output parameter is the Path object, if any is found.

createPath()

string pathId
string[] nodes,
string[] links,
string costId,

boolean
looping, string
parentPathId.

boolean

The method receives seven input parameters. These input parameters
represent the path identifier, the nodes crossed by the path, the links
crossed by the path, the identifier of the cost object containing the path
costs, a boolean used for path calculation purposes and the identifier of the
parent path to this one used for calculation purposes. For more information
about these parameters see page 154.
The result is a boolean that indicates whether the operation could be
realised successfully or not.

setPath() Path object boolean
The input parameter is the Path object that must be stored in the Database.
The result is a boolean that indicates whether the operation could be
realised successfully or not.

modPath()

string pathId
string[] nodes,
string[] links,
string costId,

boolean
looping, string
parentPathId.

boolean The input and output parameters are those described for the createPath
method.

remPath() string pathId boolean
The input parameter is the a string with the identifier of the path that must
be removed from the Database.
The output parameter is a boolean that indicates the result of the operation.

getGblTop() - GblTop
IMO

No input parameter is needed since there is only one GblTop IMO in the
Database. The output parameter is the GblTop IMO.

modGblTop()
string[] nodes,
string[] aps,
string[] links

boolean

The input parameters are three arrays of strings. These arrays contain the
identifiers of nodes, access points and links forming the managed topology.
As output parameter just a boolean is returned indicating if the
modification was successful.

createTopObj(
)

String nodeId,
int type,

boolean edge,
String[] outL,
String[] inL,

String nResoId,
String

nUResoId

boolean

Seven input parameters are introduced in the method. The first one is the
identifier of the node represented by the IMO that has to be created. The
second parameter is an integer that indicates the type of device (active,
programmable or passive). A boolean indicating whether the node acts as
access point is included next. The fourth and fifth parameters are two arrays
of strings containing the identifiers of outgoing and incoming node links,
respectively. The last two input parameters are two strings that identify the
resources IMO and used resources IMO.
The output parameter is a boolean that indicates the result of the operation.

getTopObj() String nodeId Node IMO
The input parameter is a string with the identifier of the node that must be
obtained from the Database.
The output parameter is the Node IMO, if any is found.

modTopObj()

String nodeId,
int type,

boolean edge,
String[] outL,
String[] inL,

String nResoId,
String

nUResoId

boolean The input and output parameters are those described for the createTopObj.

rmTopObj() String nodeId boolean
The input parameter is a string with the identifier of the node that must be
removed from the Database.
The output parameter is a boolean that indicates the result of the operation.

Resource
interface

 205

CHAPTER 4 – PROPOSED MODEL

setPRI() PRI IMO boolean
The only input parameter defined in the method is the PRI IMO that must
be stored in the Database. The output parameter is a boolean that indicates
if the operation has been developed successfully or not.

getPRI() string policyId PRI IMO
To identify the requested PRI IMO, which is the output parameter of the
method, we only need to introduce the identifier of the policy linked with
that PRI IMO.

rmPRI() string policyId boolean The input parameter is the same as for the previous method while the
output parameter just tells if the removal was done correctly.

getRI() string resoId,
string nodeId

NResources
IMO

The input parameters used to identify the NResources IMO to be obtained
from the Database are two strings. The first one contains the identifier of
the NResources IMO while the second one contains the identifier of the
Node IMO linked with the previous one.
The only information returned is the NResources IMO if any.

getUsedRI() string resoId,
string nodeId

UNResource
s IMO

The only difference with the parameters defined for the previous method is
that the returned object is a UNResources IMO.

createRI()

string resoId,
int cpu, int

memory, int
disk, int EEs,
string[] EEIds

boolean

The method defines six input and one output parameter. The input
parameters are first, a string with the identifier of the NResources IMO to
be created. Then, four integers are included representing respectively, the
available cpu, memory, disk and number of EEs. Finally, an array of strings
with the identifiers of the available EEs is also included.
The output parameter is a boolean showing the operation result.

modUsedRI()

string uresoId,
int cpu, int

memory, int
disk, int EEs,
string[] EEIds

boolean Both the input and the output parameters defined in this method are equal
to those in the previous method.

modRI()

string resoId,
int cpu, int

memory, int
disk, int EEs,
string[] EEIds

boolean Both the input and the output parameters defined in this method are equal
to those in the previous method.

getRouteI()
string routeId,
string pathId,
string[] flow

Route object

The input parameters introduced in the method to obtain the Route object
stored in the Database, which is the output parameter, are two strings and
an array of strings. The two strings represent respectively the route object
identifier and the identifier of the path object linked with this route. The
array of strings contains five strings used to specify a flow: source and
destination IP addresses, source and destination ports and protocol.

setRouteI() Route object boolean
To store a Route object in the Database the only input parameter defined is
the Route object itself. The output parameter is a boolean showing the
result of the operation.

modRouteI()

string routeId,
string pathId,
string[] flow,

string[]
uResoId, strin[]

linkIds

boolean

The input parameters specified for modifying a Route object in the
Database are two strings and three arrays of strings. The two strings contain
respectively, the identifier of the route object to be modified and the
identifier of the path object linked with this route object. The arrays of
strings contain respectively, information to identify the flow linked with this
route, the identifiers of the UNResources IMOs used in that route and,
finally, the identifiers of the Link IMO used in that route.

Policy
interface

setPolicy() Policy IMO boolean
The only input parameter defined in this method is the Policy IMO to be
stored in the Database. The output parameter is a boolean that shows the
operation result.

getPolicies() string[]
policyIds Policy[]

The input parameter used to identify the requested Policy IMOs is an array
of strings with the identifiers of these policies. The method returns an array
with all Policy IMOs found.

getPolicies() string conds Policy[]

The input parameter for this overloaded method is a string with a
concatenation of conditions in alphabetic order. This string will be used to
obtain from the Database all those Policy IMOs that contain such
conditions. The output parameter is an array with the Policy IMOs found.

 206

Section IV.3 – Description of the MANBoP components

modPSts() string policyId,
int value boolean

The input parameters defined for this method are a string with the identifier
of the policy to be modified and an integer with the new status value. The
output parameter indicates if the operation was successful or not.

removeP() string policyId boolean

This method defines just one input parameter. This parameter is a string
with the identifier of the policy to be removed from the Database.
A boolean indicating if the operation was successful is the output
parameter.

getPSts() string policyId int The input parameter is the identifier of the policy from which we want to
obtain its status. The result is the policy status of that policy, if any is found.

Group
interface

setGroup() Group IMO,
string username boolean

The input parameters defined in this method are the Group IMO that must
be stored in the Database and a string with the name of the user
introducing that group.
The output parameter is a boolean that shows the operation result.

setGroupP()

Policy IMO,
string XPolicy,
credential user,
string policyId

boolean

There are four input parameters defined for this method. The first one is
the Policy IMO that must be stored in the Database. Second, a string with
the policy in XML. The credential of the user introducing the group is given
in third place. Finally, the identifier of the policy that must be stored is the
last parameter.
The operation result is shown as a boolean returned by the method.

getGroupSt() int groupnum,
string username int

The input parameters defined in this method are an integer with the group
number and a string with the name of the user introducing the group. The
output is an integer showing the group status information if any is found.

getGroupP()
int groupnum,
string position,
string username

Policy IMO

The method receives three input parameters. The first one is an integer with
the group number. Second, a string with the position of the policy searched
within the group. The last parameter is the name of the user introducing the
group.
The output parameter is the Policy IMO obtained from the Database.

modGroupSt()

int groupnum,
string

username, int
value

boolean

The input parameters defined in this method are an integer with the group
number, a string with the name of the user introducing the group and an
integer with the new group status value.
The output parameter is a boolean that shows the operation result.

rmGroupP()
int groupnum,
string position,
string username

boolean

The method receives three input parameters. The first one is an integer with
the group number. Second, a string with the position of the policy searched
within the group. The last parameter is the name of the user introducing the
group.
The operation result is shown as a boolean returned by the method.

rmGroup() int groupnum,
string username boolean

The input parameters defined in this method are an integer with the group
number and a string with the name of the user introducing the group.
The output parameter is a boolean that shows the operation result.

Schema
interface

setSchema()

Schema IMO,
string

username,
string domainId

boolean

The input parameters defined for this method are the Schema IMO that
must be stored in the Database, a string with the name of the user to which
that schema applies and a string with the identifier of the functional domain
represented by the schema.
The output parameter is a boolean that shows the operation result.

getSchema()
string

username,
string domainId

Schema IMO

The method is defined with two input parameters. These are a string with
the name of the user to which that schema applies and a string with the
identifier of the functional domain represented by the schema.
The method output is the Schema IMO obtained from the Database, if any.

remSchema()
string

username,
string domainId

boolean

The method defines two input parameters: a string with the name of the
user to which that schema applies and a string with the identifier of the
functional domain represented by the schema.
The output parameter is a boolean that shows the operation result.

Table 4 - 31. The Database interfaces description table

 207

CHAPTER 4 - PROPOSED MODEL

Section IV.4 – Conclusions

Along this chapter we have described in detail the design of the proposed
solution. We have first explored all functionality that the solution offers, to
explain, afterwards, how this functionality is achieved by all framework
components.

The management framework proposed consists of two main sets of
components: fixed components and dynamically installable components.
Fixed components, i.e. the Policy Editor (PE), the Policy Consumer Manager
(PCM), the Decision-making Monitoring system (DmMs), the Authorisation
Check Component (ACC), the Database (DB), the TEManager and the
SigDemux, provide the policy logic independent of both the functionality and
the managed device. The other components are dynamically installed when
needed, either based on the functionality, as the Policy Conflict Check (PCC),
or based on both the functionality and the managed devices, as the Policy
Consumers (PCs) and Monitoring Meters (MMs).

The goal of this division of components is to make the framework generic
enough to be instantiated at different management levels and over
heterogeneous managed devices; and clever enough to automatically extend
itself with the needed functionality at each particular time. Moreover, when
instantiated at network and subnetwork levels, the system can either work
directly over the managed resources or over element or subnetwork level
managers.

The logic behind such an approach (i.e. to have a core set of components that
are dynamically extended with the needed functionality) is to apply active
networking philosophy to the management plane. In this way, policies act as
active packets at the management plane, which carry pointers to the
components that should process them. When the policy arrives to the
management station, it will automatically download the components that
process the policy before forwarding it to them. The processing of the policy
will finally derive in the appropriate configuration actions over the managed
devices.

This approach greatly simplifies the creation of a management infrastructure
to network operators since they only need to instantiate the required
MANBoP instances at the appropriate locations within the management
infrastructure. For example, the network operator can manage specific
geographic areas with independent subnetwork managers and keep the
management of the whole network with a common network manager. Also, it
can choose between a more cost-effective solution and a more efficient,
scalable and distributed one.

Apart from this flexible and dynamic extensibility property, the framework
includes the possibility of adding or removing network nodes to the managed
topology. This capability together with the support of heterogeneous

 208

Section IV.4 – Conclusions

technologies permits the progressive introduction of active routers on the
managed network without stopping or modifying the management
infrastructure.

The delegation capabilities supported by the framework are mainly
represented by the Authorisation Check Component (ACC). This component
is in charge of checking all policies arriving to the framework against the
access rights information stored in the database for that user. This
information is introduced in the system by means of delegation policies sent
by the principal who is delegating the functionality. The enforcement of these
policies results in the storage of access rights data in the Database (DB) in a
format used by the ACC.

The most important output from the chapter is that, as we have briefly
summarised, the design presented in this chapter supports all the
requirements set to the Thesis in Chapter Two. Most of the requirements are
achieved through the division of the framework functionality in two sets of
components and the extensibility mechanism designed. Nevertheless, there
are others, like the delegation mechanism, concentred in one component, in
this case the Authorisation Check Component (ACC).

All the framework functionality, even the one that is considered as out of the
scope of this thesis, has been designed and explained along the chapter. The
reasons for including also the design of out-of-scope functionality are mainly
two. The first one is to have a complete document describing all functionality
needed by the framework to work. The second one is to show the feasibility
of the solution proposed in all its aspects, including those considered as out
of the scope of this thesis.

The design description is heavily supported on UML diagrams with the
objective of easing significantly the comprehension of the framework and its
behaviour. More specifically, activity and sequence diagrams have been used
systematically for describing the behaviour of every component within the
framework and its relations with other framework components. Additionally,
a class diagram has been included for each of the framework components.
These class diagrams show the component classes designed and their
methods. Indeed, the whole framework could have been described using
UML tools, however this would have required detailed knowledge of these
tools to follow the description. We have opted for a combined approach,
mixing text with UML diagrams to facilitate the comprehension of the
proposed framework.

The following chapter provides a detailed description of the proof-of-
concepts implementation carried out to afterwards evaluate the solution
proposed. The chapter includes an extensive description of all
implementation aspects as the naming convention followed, implemented
code and technologies used. Furthermore, within the next chapter we also
describe the Information Model designed and implemented. The reason for
including the Information Model description in the implementation chapter is

 209

CHAPTER 4 – PROPOSED MODEL

that a substantial part of the Information Model depends on the functional
domains used in the proof-of-concepts. Thereby, to keep the entire
description of the Information Model in a unique section, we have included it
inside the proof-of-concepts implementation chapter. At the end of the
chapter, the scenarios that will be used to evaluate the proposed framework
are also detailed.

 210

