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ha estat realizada per en Dan
Alexandru Paraschiv sota la
meva codirecció.
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Abstract

Rational iteration is the study of the asymptotic behaviour of the sequences given by the
iterates of a rational map on the Riemann sphere. According to Montel’s theory on normal
families, the phase space (also called the dynamical plane) is divided in two completely in-
variant sets known as the Fatou set (an open set where the dynamics is tame) and the Julia
set (a closed set where the dynamics is chaotic). The main topic of this thesis is the study of
the connectivity of the Fatou components for certain families of rational maps. On the one
hand, we consider a family of singular perturbations and extend previous results on singular
perturbations of Blaschke products. The main result is to show that the dynamical planes
for the corresponding maps present Fatou components of arbitrarily large connectivity and
determine precisely these connectivities. On the other hand, we consider a different problem
related to root-finding algorithms. More precisely, we study the Chebyshev-Halley methods
applied to a symmetric family of polynomials of arbitrary degree. The main goal is to show
the existence of parameters such that the immediate basins of attraction corresponding to
the roots of unity are infinitely connected. Moreover, we also prove that the corresponding
dynamical plane contains a connected component of the Julia set, which is a quasiconformal
deformation of the Julia set of the map obtained by applying Newton’s method.

Keywords: Rational iteration, Fatou and Julia set, connectivity of fatou components,
singular perturbations and root finding-algorithms.

V



VI



Resum en català

La iteració racional és l’estudi del comportament asimptòtic de les seqüències donades pels
iterats d’una funció racional sobre l’esfera de Riemann. Segons la teoria de Montel sobre les
famı́lies normals, l’espai de fases (també anomenat pla dinàmic) es divideix en dos conjunts
totalment invariants coneguts com a conjunt de Fatou (unió de components oberts on la
dinàmica és essencialment senzilla) i el conjunt de Julia (un conjunt tancat on la dinàmica és
caòtic). El tema principal d’aquesta tesi és l’estudi de la connectivitat de les components de
Fatou per a determinades famı́lies de funcions racionals. D’una banda, l’autor considera una
famı́lia de pertorbacions singulars i amplia els resultats anteriors sobre pertorbacions singulars
dels productes de Blaschke. El resultat principal és mostrar que els plans dinàmics d’aquestes
funcions presenten components de Fatou de connectivitat arbitràriament grans i determinen
precisament aquestes connectivitats. D’altra banda, l’autor considera un problema difer-
ent relacionat amb els algorismes de recerca d’arrel. Més precisament, estudia els mètodes
Chebyshev-Halley aplicats a una famı́lia simètrica de polinomis de grau arbitrari. L’objectiu
principal és mostrar l’existència de paràmetres de manera que les conques d’atracció imme-
diates corresponents a les arrels de la unitat tinguin connectivitat infinita. A més, també
demostra que el pla dinàmic corresponent conté una component connexa del conjunt de Julia,
que és una deformació quasiconforme del conjunt de Julia de la funció obtinguda aplicant el
mètode de Newton.

Paraules clau: Iteració racional, conjunt de Fatou i Julia, connectivitat dels components
de Fatou, pertorbacions singulars i algorismes de recerca d’arrel.
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List of symbols

U The closure of the set U .

R The real line.

C The complex plane.

Ĉ The Riemann sphere.

D The unit disk.

D∗ The punctured disk.

S1 The unit circle.

Sc The circle centered at the origin and of radius c > 0.

NP (z) The Newton map associated to the polynomial P (z).

J (f) The Julia set of a holomorphic map f .

F(f) The Fatou set of a holomorphic map f .

A(w0) The basin of attraction of the attracting fixed point w0.

A∗(w0) The immediate basin of the attracting fixed point w0.

σ0 The standard complex structure.

µ0 The Beltrami coefficient of the standard complex structure.

Fill(U) The minimal simply connected open set which contains the
open set U but not z =∞.

Ext (γ) The connected component of Ĉ \ γ (where γ is a Jordan
curve in C) that contains z =∞.

Int (γ) The connected component of Ĉ \ γ (where γ is a Jordan
curve in C) that does not contain z =∞.

A(γ1, γ2) The open annulus bounded by Jordan curves γ1 and γ2 with
γ1 ⊂ Int (γ2).
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Chapter 1

Introduction

This PhD Thesis belongs to the area of discrete dynamical systems of one complex variable,
usually referred to as complex dynamics or holomorphic dynamics. More precisely, we are
interested in studying the asymptotic behaviour of the sequences determined by the iterates
of holomorphic functions.

Discrete dynamical systems naturally arise as discretization of continuous dynamical sys-
tems associated to differential equations, or as a natural tool to study, locally, invariant objects
of continuous dynamical systems such as periodic orbits or graphs (Poincaré maps). In turn,
holomorphic (or complex) dynamics come into play as complexifications of real discrete dy-
namical systems. This complexification or enlargement of the phase portrait allows to have
a better understanding of the local dynamics around invariant objects (like fixed points), as
well as the global dynamics.

The first one to attempt a rigurous study of the iteration of holomorphic functions was
Cayley (see [Cay79]) at the end of the 19th century. He tried to generalize the root-finding
algorithm called Newton’s method to polynomials of complex variable. His attempt was only
partially succesfull, as none of the necessary tools were yet developed (including the com-
puter). The French Academy of Sciences announced its major yearly award for 1918 for work
related to iteration of functions of complex variables. This motivated French mathemati-
cians to obtain several historical results (like S. Lattès, who constructed the first complex
map chaotic everywhere). Among them stand out P. Fatou and G. Julia, who independently
founded the field of complex dynamics. They used the theory of normality, developed by P.
Montel at the beginning of the 20th century.

Julia and Fatou divided the dynamical plane of a holomorphic map f based on whether the
family of iterations {fn}n≥0 is normal in some neighbourhood of the point (we now call this
the Fatou set) or not (the Julia set). The Fatou set is open, while the Julia set is closed. Both
sets are completely invariant. For rational maps, the Julia set is either the Riemann sphere, or
it has empty interior. Therefore, we usually study the topology and geometry in the dynamical
plane using connected components of the Fatou set, which are called Fatou components. A
cornerstone result is the Classification Theorem for periodic Fatou components of rational
maps (due to the work of Fatou and and Sullivan, compare Theorem 2.3.4). Thanks to the
No Wandering Domain Theorem proven by Sullivan (see [Sul85], compare Theorem 2.3.3), we
know that any Fatou component of a rational map is eventually mapped onto such a periodic
Fatou component. All together concludes that any Fatou domain of a rational mao eventually
is mapped to a periodic Fatou component, which is either the attracting basin of an attracting
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2 CHAPTER 1. INTRODUCTION

cycle, the attracting basin of a parabolic cycle, or a periodic rotation domain (which can be
simply connected, a Siegel disk, or doubly connected, a Herman ring). Consequently, a natural
question is to know how many of these tame behaviours can share the same dynamical plane
(phase portrait). To solve this question, the cornerstone tool is the control of the orbits of the
critical points, that is, the points c ∈ Ĉ such that f ′(c) = 0. In fact the image of a critical
point v = f(c) is called a critical value and notice that f is a local homeomorphism at every
point which is not a singular value (alternatively, the singular set is the set of points at which
not all branches of the inverse map are well defined). It is proven that every attracting or
parabolic cycle has at least one critical value lying on its immediate basin of attraction. For
the case of rotation domains, the situation is more delicate since the result is that at least
one critical orbit should accumulate on the boundary of the Fatou component (two boundary
components in the case of Herman rings) but, a priori, the same critical orbit might share
many different rotation domains. Due to fundamental results of Fatou and Shishikura, we
know that in fact the number of critical points (finite for a rational map) bound the number
of periodic cycles of Fatou components.

We consider the basic example of family of non-trivial maps, the quadratic family

Qc(z) := z2 + c,

where z ∈ Ĉ, c ∈ C. The polynomials of degree 2 have 2 simple critical points. The point
z =∞ is always a superattracting fixed point (this holds true for all polynomials). The other
critical point is said to be a free critical point. However, the quadratic family is precisely the
set of monic polynomials of degree 2 for which the free critical point is z = 0. Its image, the
coresponding critical value, is z = c. Thererefore, the corresponding singular set is given by
S(Qc) = {∞, c}. Since this set has dimension 1, we say that the family is unicritical.

A well-known result (proven independently by both Fatou and Julia) related to the
quadratic family is the following dichotomy. It offers a characterization of the Julia set
based on whether the orbit of the free critical value z = c is bounded, or not (see Figure 1.1).
We have a first example that understanding the dynamics of the singular set of a map is
sufficient for understanding the dynamical plane.

Theorem 1.0.1 (The Fundamental Dichotomy Theorem). Let Qc(z) = z2 + c, where c ∈ C.
If |Qic(0)| ≤ 2 for any i ∈ N (in particular, the orbit of the critical value z = c is bounded),
then the Julia set J (Qc) is connected. Otherwise, the Julia set is totally disconnected (it is
homeomorphic to a Cantor set) and the orbit of z = c is unbounded.

The connected locus of the quadratic family is

M := {c ∈ C | J (Qc) is connected}.

It is known as the Mandelbrot set (see Figure 1.2), one of the most famous fractals. According
to the previous arguments, if c is a parameter for which the map has an attracting periodic
cycle of a certain period, then c ∈ M. The Implicit Function Theorem implies that in fact
c ∈ Int (M). Components of the interior of M for which the associated polynomials have an
attracting periodic cycle are called hyperbolic components. Parameters in the same hyperbolic
component present attracting periodic cycles of the same period. This is closely related to the
concept of J−stability. Meanwhile, parameters lying on the boundary of the Mandelbrot set
have in any neighbourhood some parameters for which the Julia set is a Cantor set, and other
parameters for which the Julia set is connected. Moreover, if a parameter lies on the boundary
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Figure 1.1: The left figure illustrates the dynamical plane of Qc = z2 + c for c = −1, which
is called the basilica. In the right figure we can see the dynamical plane of Qc = z2 + c for
c = 1, where the Julia set is totally disconnected and homeomorphic to the Cantor set.

of 2 hyperbolic components, any neighbourhood contains parameters with dynamical planes
containing attracting cycles of different periods. The boundary of the Mandelbrot set forms
the bifurcation locus of the quadratic family.

The natural extension of polynomials is the set of maps holomorphic over the Riemann
sphere, that is, the rational maps. Each of these maps can be described as a quotient:

R(z) :=
p(z)

q(z)
,

where p and q are poynomials. The degree of the rational map R is given by:

d := max{deg(p),deg(q)},

and it concides with the topological degree; every point z ∈ Ĉ has precisely d preimages
(counting multiplicity) under iteration by a rational map of degree d. Furthermore, every
rational map has precisely 2d− 2 critical points (counting multiplicity).

The extension of the quadratic maps in the rational maps space are, of course, the quadratic
rational maps. While the space Rat2 of quadratic rational maps defined over the Riemann
sphere is a 5−dimensional manifold, the moduli space of holomorphic conjugacy classes of
quadratic rational maps has dimension 2 (the same as the singular set). Roughly speaking, we
say that quadratic rational maps have 2 degrees of freedom. Since we are only able to visualize
1−dimensional complex spaces, we study 1−dimensional slices. This approach makes clear
the analogy between quadratic rational maps and cubic polynomials, a topic much larger
than the one of quadratic maps. Thus, increasing the degree of the map is a primary way of
obtaining more complicated dynamical systems.

Rational maps are known to present richer dynamics than polynomials (Lattès’ example
in 1918, of a Julia set which is the entire Riemann sphere, was a non-polynomial rational
map). For a start, z =∞ is not in general a superattracting fixed point, but it might present
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Figure 1.2: The Mandelbrot set.

any type of dynamical behaviour. Herman rings, a type of periodic Fatou component, are
proven to not exist for polynomial maps (they were first observed in dynamical planes of
rational maps by Herman in [Her79]).

A major role in this resurgence of complex dynamics has been played by the development
of the technique called quasiconformal surgery. It was the works of Sullivan, Douady, and
Hubbard in the 1980s which established the current framework of holomorphic dynamics.
They proved fundamental results like No Wandering Domains Theorem (see [Sul85], see also
Theorem 2.3.3) and the Straightening Theorem (see [DH85], see also Theorem 2.6.4). Qua-
siconformal surgery uses the theory of quasiconformal maps, homeomorphisms with specific
analytic and geometric properties. First used by Sullivan in 1983 to prove the No Wandering
Domain Theorem, quasiconformal surgery was later used by Douady and Hubbard in 1985 to
prove the Straightening Theorem. Using polynomial-like mappings, this theorem explains why
deformations of the Julia sets of polynomials can be seen in dynamical planes of holomorphic
maps.

Another way of increasing the complexity of a dynamical system is by studying particular
families of rational maps called singular perturbations. Informally, a family is called a singular
perturbation if it is defined by a base family (called the unperturbed family and for which
we have a deep understanding of the dynamical plane) plus a local perturbation, that is,
a perturbation which has a significant effect on the orbits of points in some part(s) of the
dynamical plane, but a very small dynamical relevance on other regions.

Singular perturbations of rational maps were introduced by McMullen in [McM88]. He
proposed the study of the family

Qn,d,λ(z) = zn +
λ

zd
, (1.1)

where n, d ≥ 2 and λ ∈ C, |λ| small. Observe that in (1.1) the unperturbed map is the
simplest possible: zn. He considered the case n = 2 and d = 3 and he proved that if |λ| is small
enough then the Julia set is a Cantor sets of quasicircles (the result actually holds for n and d
satisfying 1/n+1/d < 1). Later, Devaney, Look, and Uminsky (see [DLU05]) considered (1.1)
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as a λ-family of rational maps and they extended McMullen’s result by proving the Escape
Trichotomy. More specifically, they showed that if all critical points belong to the basin of
attraction of infinity then the Julia set is a Cantor set, a Sierpinski carpet, or a Cantor set
of quasicircles (McMullen’s case). Other families of maps that were used as base for singular
perturbations are the unicritical polynomials (see [BDGR08, GMR13]) and finite generalized
Blaschke products of degree 4 (see [Can17, Can18]).

The connectivity of a domain D ⊂ Ĉ is defined as the number of connected components
of its boundary. It is known that periodic Fatou components have connectivity 1, 2, or ∞.
Indeed, Siegel disks have connectivity 1, Herman rings have connectivity 2, and immediate
basins of attraction might have connectivity 1 or ∞. Preperiodic Fatou components can
have finite connectivity greater than 2. The first such example, with connectivities 3 and
5, was presented in [Bea91]. Moreover, for any given n ∈ N, there are examples of rational
maps with Fatou components of connectivity n. These examples can either be obtained by
quasiconformal surgery (see [BKL91]) or by giving explicit families of rational maps (see
[QG04] and [Ste93]). However, the degree of the rational maps obtained in all previous
examples grows rapidly with n. The first example of rational map whose dynamical plane
contains Fatou components of arbitrarily large finite connectivities was presented in [Can17]
(see also [Can18]) by using singular perturbations. Finally, the main tool that we use to
compute connectivities of Fatou components is a particular version of the Riemann-Hurwitz
formula, and its corollaries (see Section 2.4).

Another important topic in rational dynamics is the study of asymptotic behaviour of
iteration of maps obtained using numerical methods. Numerical methods have been exten-
sively used to give accurate approximations of the solutions of systems of non-linear equations.
Those equations or systems of equations correspond to a wide source of scientific models from
biology to engineering and from economics to social sciences, and so their solutions are a cor-
nerstone of applied mathematics. One of the most used families of numerical methods are the
so called root-finding algorithms; that is, iterative methods which asymptotically converge to
the zeros (or some of the zeros) of the non linear equation, say g(z) = 0.

The universal and most studied root-finding algorithm is known as Newton’s method. If
g is holomorphic, the Newton’s method applied to g is the iterative root finding algorithm
defined as follows

zn+1 = zn −
g(zn)

g′(zn)
, z0 ∈ C.

It is well known that if z0 ∈ C is chosen close enough to one of the solutions of the equa-
tion g(z) = 0, say α, then the sequence {zn = gn(z0)}n≥0 converges to α when n tends to
∞. Moreover, the speed of (local) convergence is generically quadratic. It was Cayley (see
[Cay79]) the first to consider Newton’s method as a (holomorphic) dynamical system, that is
studying the convergence of these sequences for all possible seeds z0 ∈ C at once, under the
assumption that g was a degree 2 or 3 polynomial. This was known as Cayley’s problem.

Root-finding algorithms are a natural topic for complex dynamics. In particular, maps
obtained by applying Newton’s method to polynomials are a much studied topic (see [Shi09],
[HSS01], [Tan97]). The key dynamical property of the map NP obtained by applying Newton’s
method to the polynomial P is the following: if z ∈ C is a simple root of P , then it is a
superattracting fixed point of NP . This makes clear why iterating NP is a reasonable way of
approximating the roots of P . However, since the Julia set is not empty, we know that all
not all seeds will converge to a root of the polynomial. For a numerical method, approaching
components of the Julia set, is a problem to be avoided. A priori, the immediate basin of
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attraction can be multiply connected, hence infinitely connected. However, a result due to
Shishikura ([Shi09]) states that the Julia set for a map obtained by applying Newton’s method
to a polynomial is connected, and therefore, all Fatou components are simply connected. An
extension of this theorem to the transcendental case can be found in [BFJK14].

The problems studied in this thesis are related to connectivities of Fatou components for
2 families of rational maps. The first family of maps is a family of singular perturbations,
where we encounter Fatou components of finite arbitrarily large connectivity in one dynamical
plane. The second family of maps is a family derived from root-finding algorithms, where we
encounter infinitely connected immediate basins of attraction. The results regarding these
two families were published in the papers [CJP22] and [Par23].

Singular perturbations

In this thesis we consider the family of degree n+ d+ 1 rational maps given by

Sn,d,λ(z) =
zn(z − a)

Q(z)
+
λ

zd
, (1.2)

λ ∈ C∗, d ≥ 2, where n ≥ 2, a ∈ C∗, and Q is a polynomial of degree at most n with
Q(0)Q(a) 6= 0. For λ 6= 0 the point z = 0 is a pole of degree d. We impose upon this family
of maps 4 conditions, which we denote by (a), (b), (c), and (d), that we will describe later,
in Chapter 3. The first 3 conditions arise from the need for the Julia set of the base family to
be relatively simple, in our particular case a quasicircle. We must point out that our chosen
family of maps is the maximal family to satisfy all the conditions. The last condition is the
same as in the McMullen family.

Our goal is to extend the results in [Can17, Can18] to a wider family of singular pertur-
bations and to study which connectivities are attainable for this family. We assume that all
critical points iterate towards z = ∞, and therefore, the Fatou set is the basin of attraction
of the superattracting fixed point z = ∞. The immediate basin of attraction of z = ∞ has
precisely one preimage other than itself, which contains z = 0, and it is called the trap door
Tλ. We prove that there exists a preimage of Tλ which is an annulus that contains n + d
critical points, and we denote it by Aλ. There exists another critical point, νλ, which is
crucial in order to increase the connectivities beyond 2. For λ = 0, νλ is a critical point of the
unperturbed map, that lies in the immediate basin of attraction of the superattracting fixed
point z = 0. For λ 6= 0, |λ| small enough, if νλ belongs to a preimage Uν of Aλ, then the Fatou
component Uν is triply connected. The configuration of the dynamical plane (the condition
of assuming all critical points iterate towards z = ∞ is in fact equivalent to assuming that
νλ iterates towards z = ∞) allows for the family to be viewed as unicritical for |λ| small
enough. Moreover, if Uν surrounds z = 0, then we can find sequences of iterated preimages
of Uν which increase the (finite) connectivity with every iteration.

Theorem A. Let Sn,d,λ satisfying (a), (b), (c), and (d) and let λ 6= 0, |λ| < C. Assume also
that νλ ∈ Uν , where Uν is an iterated preimage of Aλ which surrounds z = 0. Let k be the
minimal number of iterations needed by the free critical point νλ to be mapped into Fill(Aλ).
Let U be a Fatou component of connectivity κ > 2. Then, there exist i, j, ` ∈ N such that
κ = (n+ 1)idjn` + 2 and ` ≤ jk.

In other words, Theorem A is telling us all potential connectivities κ > 2 for a Fatou
component of a map in Sn,d,λ for |λ| < C (see Chapter 3 for the definition of this constant),
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but it is not claiming the existence of a Fatou component of each (i, j, `)-connectivity. The
next result complements Theorem A and it gives the connectivities that are certainly achieved
for any parameter λ as long as |λ| is sufficiently small and νλ satisfies certain dynamical
conditions.

Theorem B. Let Sn,d,λ satisfying (a), (b), (c), and (d) and let λ 6= 0, |λ| < C. Assume
also that νλ ∈ Uν , where Uν is an iterated preimage of Aλ which surrounds z = 0. Let k ≥ 1
be the minimal number of iterations needed by the free critical point νλ to be mapped into
Fill(Aλ). For any given i, j, ` ∈ N such that ` ≤ j(k − 1), there exists a Fatou component U
of connectivity κ = (n+ 1)idjn` + 2.

In Theorem A and Theorem B the achievable connectivities depend on the minimal number
of iterations k > 0 needed by the free critical point νλ to be mapped into Fill(Aλ). However,
choosing λ appropriately we can make this k as big as desired. Therefore, for any ` and j we
can find λ so that the inequality ` ≤ j(k − 1) is satisfied. From this, we obtain Theorem C.

Theorem C. Let Sn,d,λ satisfying (a), (b), (c), and (d) and let λ 6= 0, |λ| < C. For any
given i, l ≥ 0 and j > 0, there exists a parameter λ such that Sn,d,λ(z) has a Fatou component
of connectivity κ = (n+ 1)idjn` + 2, and a Fatou component of connectivity κ = (n+ 1)i + 2.

A dynamical view of the Chebyshev-Halley family of methods

Newton’s method is the most well-known iterative root-finding algorithm. Many authors
have studied alternative iterative methods having, for instance, a better local speed of conver-
gence. Two of the best known root-finding algorithms are Chebyshev’s method and Halley’s
method (see [ABP04]). They are included in the Chebyshev-Halley family of root-finding al-
gorithms, which was introduced in [CTV13] (see also [Ama16]). For a holomorphic map g,
the Chebyshev-Halley family of root finding algorithms is given by the iterative procedure

zn+1 = zn −
(

1 +
1

2

Lg(zn)

1− αLg(zn)

)
g(zn)

g′(zn)
, (1.3)

where α ∈ C and Lg(z) = g(z)g”(z)
(g′(z))2 . For α = 0 we have Chebyshev’s method and for α = 1

2

Halley’s method. As α tends to ∞, the Chebyshev-Halley algorithms tend to Newton’s
method.

Previously, Campos, Canela, and Vindel have studied the Chebyshev-Halley family applied
to fn,c(z) = zn + c, c ∈ C∗ (see [CCV18], [CCV20]). The maps obtained by applying the
Chebyshev-Halley family to fn,c are all conjugated to the map obtained by applying the
Chebyshev-Halley family to fn(z) := fn,−1(z) = zn − 1. By applying the Chebyshev-Halley
method to fn(z) we obtain the map:

On,α(z) :=
(1− 2α)(n− 1) + (2− 4α− 4n+ 6αn− 2αn2)zn + (n− 1)(1− 2α− 2n+ 2αn)z2n

2nzn−1(α(1− n) + (−α− n+ αn)zn)
.

The map On,α has degree 2n and it has 4n − 2 critical points, counting multiplicity. The
point z = 0 is a critical point of multiplicity n−2, which is mapped to the fixed point z =∞.
The n-th roots of the unity are superattracting fixed points of local degree 3 and, therefore,
they have multiplicity 2 as critical points. This leaves n free critical points. This family is
symmetric with respect to rotation by the n-th root of the unity. The symmetry ties the
orbits of the n free critical points, so the family On,α has only one degree of freedom.
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In [CCV20], the authors studied in detail the topology of the immediate basins of attrac-
tion of the fixed points of On,α(z) given by the n−th root of unity, that is, the zeros of fn(z).
In what follows we refer to these basins as

An,α(ξ) := AOn,α(ξ)
[
A∗n,α(ξ) := A∗On,α(ξ)

]
,

where ξn = 1. For one particular case, the immediate basins of attraction are infinitely
connected (see Figure 4.1). We study the Julia set of On,α for this particular case and relate
it to the Julia set of the map obtained by applying Newton’s method to fn. Our main goal is
to show that the unbounded connected component of the Julia set of the Chebyshev-Halley
maps applied to zn − c (for large enough α) is homeomorphic to the Julia set of the map
obtained by applying Newton’s method to zn − 1.

Theorem D. Fix n ≥ 2 and assume that A∗n,α(1) is infinitely connected for some α ∈
C. Then, there exists an invariant Julia component Π (which contains z = ∞) which is
a quasiconformal copy of the Julia set of Nfn, where Nfn is the map obtained by applying
Newton’s method to the polynomial fn(z) = zn − 1.

We conclude by proving that there exist parameters such that the hypothesis of Theorem
D holds.

Theorem E. Let n ≥ 2. Then, there exists α0 > 0 large enough such that for α > α0, α ∈ R,
A∗n,α(1) is infinitely connected. Moreover, for n = 2, the statement is true for any α ∈ C such
that |α| > α0.

Structure of the thesis

The thesis is structured as follows. In Chapter 2 we include the background necessary to
understand the work in Chapters 3 and 4. We start with basics of rational iteration, local
theory, and fundamental results about Fatou components.We continue with a few results
related to the Riemann-Hurwitz formula, the main tool in computing connectivities of Fatou
components. This is followed by a section on quasiconformal surgery, where we introduce
quasiconformal mappings and their properties, almost complex structures and their pullbacks,
and the Measurable Riemann Mapping Theorem (also known as the Integrability Theorem),
which connects the previous concepts. We conclude the chapter with a section on polynomial-
like mappings, a tool that will be used in Chapter 3.

In Chapter 3 we introduce the families of maps Sn,a,Q and Sn,d,λ. We motivate the
choice of these families and the conditions applied. Then, using quasiconformal surgery, we
show the conjugation between maps in the family Sn,d,λ and a specific Blaschke product.
This is followed by an exhaustive description of the topology of Fatou components in the
dynamical plane, which allows us to explicitly compute all the achievable connectivities in
one dynamical plane (Theorem A). Then, we show that in any dynamical plane satisfying the
necessary conditions, almost all connectivities described in Theorem A are achieved (Theorem
B). Afterwards, we describe the variation of the dynamical plane with respect to the parameter
λ. Finally, we prove Theorem C, which shows that for any possible connectivity described in
Theorem A, there exists a parameter λ such that the corresponding dynamical plane contains
a Fatou component of the desired connectivity.
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In Chapter 4 we introduce the family On,α, which is a family of root-finding algorithms
applied to fn(z) = zn − 1. We highlight several necessary symmetries and properties of the
maps On,α. Using surgery and properties of Newton maps, we prove that the unbounded
component of the Julia set for the map On,α is a quasiconformal copy of the Julia set of a
specific Newton map (Theorem D). Finally, we prove Theorem E, which shows that there
exist parameters for which the hypothesis in Theorem D holds. This is done by separating
the cases n = 2 and n ≥ 3. For n = 2 and λ > 0, the map is conjugated to a Blaschke
product. We prove that, for any λ ∈ C of modulus large enough, the hypothesis in Theorem
D holds. For n ≥ 3, the map is not conjugated to a Blaschke product anymore. We still prove
that, for λ ∈ R large enough, the hypothesis in Theorem D is true.
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Chapter 2

Preliminaries

In this chapter we present the main tools that are common to chapters 3, and 4. We introduce
basic holomorphic dynamics tools and results (for a more detailed introduction to the topic,
see [Bea91], [BF14], [CG93], and [Mil06]).

2.1 Iteration of rational maps

We study discrete holomorphic dynamics, that is, we study the dynamical system obtained
from the iteration of holomorphic maps. In particular, we are interested in the asymptotic
behaviour of the iterates of the map. We focus on iteration of rational maps.

Let R : Ĉ→ Ĉ be a holomorphic map. Then, R is a rational map of the form

R(z) =
p(z)

q(z)
,

where p and q are polynomials, not both being the zero polynomial (it also holds that any
rational map is a holomorphic map over Ĉ). Let d = max{deg(p), deg(q)}. Then, we say
that the rational map R has degree d. The degree of R coincides with its topological degree,
that is, every point z ∈ Ĉ has precisely d preimages under R, counting multiplicity. In other
words, R is a d-fold branched covering of the Riemann sphere. We also denote by

Rn := R ◦R ◦ · · · ◦R︸ ︷︷ ︸
n times

,

the n-th iterate of R.

We start by giving some definitions necessary for the study of any dynamical system.

Definition 2.1.1. Let R : Ĉ→ Ĉ be a rational map and z0 ∈ Ĉ. Then, the set

OR(z0) =
⋃
k≥0

Rk(z0)

is said to be the (forward) orbit of z0.

Points with finite orbit play a fundamental role in dynamical systems.

11
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Definition 2.1.2. Let U, V ⊂ Ĉ. Let f : U → V be a function and let z0 ∈ U such that
fp(z0) = z0, fk(z0) 6= z0, k ∈ {1, 2, . . . , p − 1}. Then, z0 is said to be a periodic point of
period p of f . If p = 1, then z0 is called a fixed point of f . A point z0 with finite orbit is
called a preperiodic point. A preperiodic point z0 such that fk(z0) 6= z0, ∀k ≥ 1, is said to be
strictly preperiodic.

Periodic points are key for understanding discrete dynamical systems. Since periodic
points of period p of f are in fact fixed points of fp, then we present here only the classification
for fixed points. The same notation can be extended to periodic points.

Definition 2.1.3. Let R : U → Ĉ be a holomorphic map. Let z0 be a fixed point of f , and
let λ := f ′(z0) be the multiplier of z0. Then, z0 is called:

1. attracting, if |λ| < 1 (in particular, if λ = 0, z0 is superattracting);

2. neutral, if |λ| = 1;

3. repelling, if |λ| > 1.

Moreover, if z0 is a neutral fixed point, then it is called:

1. parabolic, if λ = e
2πip
q , with p

q ∈ Q;

2. irrational, if λ = e2πiα, with α ∈ R \Q.

Another important feature when studying dynamical systems are conjugacies since con-
jugated maps present the same dynamics.

Definition 2.1.4. Let R,Q : Ĉ → Ĉ be rational maps. We say that R and Q are confor-
mally (respectively topologically conjugated) if there exists a conformal map (respectively a
homeomorphism) h : Ĉ→ Ĉ such that R = h ◦Q ◦ h−1.

Several properties of conjugacies follow immediately from the definition. Two topologically
conjugated rational maps have the same degree. Moreover, if the conjugacy is also conformal,
the multipliers of the corresponding fixed points of the two maps coincide.

Lemma 2.1.5. Let R,Q : Ĉ→ Ĉ be two conformally conjugated rational maps. Let h : Ĉ→ Ĉ
be a conformal map such that R = h◦Q◦h−1. If zR ∈ Ĉ is a fixed point of R, and zQ := h(zR),
we have that R′(zR) = Q′(zQ).

Remark 2.1.6. The map M(z) = 1
z is used to study the multiplier of the point z = ∞, for

any rational map.

Our goal is to understand the asymptotic behaviour of the orbits of all points z ∈ Ĉ.
In other words, we want to understand the dynamical plane, realizing a partition based on
different dynamical behaviours. The main tool for this was introduced by Fatou and Julia,
following Montel’s theory of normality of families of holomorphic maps. We start by defining
the concept of normal family of holomorphic maps.

Definition 2.1.7. Let U ⊂ Ĉ be a domain. Let F be a family of holomorphic maps such
that any sequence {fn}n∈N has a subsequence which converges uniformly on compact sets of
U to a limit map. Then, F is called a normal family and the set U is called a domain of
normality for the family F .
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The concept of normality is tied to equicontinuity by the Arzelá-Ascoli theorem. We first
recall the definition of equicontinuity in complex spaces.

Definition 2.1.8. Let U ⊂ Ĉ be a domain. Let F be a family of holomorphic maps defined
on U . If for every ε > 0 there exists δ > 0 such that dĈ(f(z1), f(z2)) < ε, for any f ∈ F , and
z1, z2 ∈ U with dĈ(z1, z2) < δ, then F is said to be locally equicontinuous.

The Arzelá-Ascoli theorem gives necessary and sufficient conditions to determine existence
of a uniformly convergent subsequence of a family of continuous maps. We give a statement
suited to our particular case.

Theorem 2.1.9 (Arzelá-Ascoli). Let U ⊂ Ĉ be a domain. Let F be a family of holomorphic
maps defined on U . Then, F is normal if and only if F is locally equicontinuous.

The following theorem of Montel, also known as the fundamental normality test, is a
sufficient criterion for a family of holomorphic maps to be normal.

Theorem 2.1.10 (Montel). Let U ⊂ Ĉ be a domain, and let F be a family of holomorphic
functions defined on U . If there exist three omitted values, that is, three different points
w1, w2, and w3, such that f(U) ⊂ Ĉ \ {w1, w2, w3} for all f ∈ F , then the family F is
normal.

We are interested in the iteration of holomorphic functions. Julia and Fatou applied the
theory of Montel to the family of iterations of a given holomorphic map, i.e.,

F = {f, f2, f3, . . . }.

This leads to a partition of the dynamical plane in 2 sets, the Julia and Fatou sets. Before
introducing these sets, let us proceed with a trivial example of using normality to have a
better understanding of the dynamical plane.

Example 2.1.11. Consider the map Q0 : Ĉ → Ĉ, Q0(z) = z2. For any point z ∈ D, there
exists an open neighbourhood N(z) such that for any z ∈ N(z), lim

n→∞
Qn0 (z) = 0. Moreover,

⋃
Qn0

(
N(z)

)
∩
(
Ĉ \ D

)
= ∅.

Similarly, for all points z ∈
(
Ĉ \ D

)
there exists an open neighbourhood N(z) such that for

any z ∈ N(z), lim
n→∞

Qn0 (z) =∞. Furthermore,

⋃
Qn0

(
N(z)

)
∩ D = ∅.

It follows from Montel’s Theorem that the interior and the exterior of the circle are domains
of normality of {Qn0}n.

We now prove that points on the unit circle do not belong to a domain of normality for the
family {Qn0}n. Let ζ ∈ S1 and assume that ζ belongs to a domain of normality of {Qn0}n, say
N(ζ). Then, by definition of normality, there exists a subsequence {nk}k and g a continuous
map such that Qnk0 → g on compact subsets of N(ζ). Let V ⊂ N(ζ) be an open neighbourhood
of ζ. Then, for points z ∈ V ∩ {|z| < 1}, we get that g(z) = 0. Analogously, for points
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z ∈ V ∩{|z| > 1}, we get that g(z) =∞. It follows that the map g is not continuous at z = ζ,
which is a contradiction.

We proved that D and Ĉ \ D are domains of normality for Q0(z) = z2. We also proved
that points on the unit circle do not belong to a domain of normality. We have therefore
realized a partition in the corresponding dynamical plane of the family of iterations of Q0,
using normality as a criterion.

We will now define the Fatou and Julia sets. This constitutes a natural dynamical partition
of the dynamical plane. The study of the geometry and topology of the Julia set is the main
topic of holomorphic dynamics.

Definition 2.1.12. Let R : Ĉ → Ĉ be a rational map of degree d ≥ 2. The maximal open
subset of Ĉ on which the family {Rn}n is normal is called the Fatou set, and it is denoted by
F(R). The complement of the Fatou set is called the Julia set, J (R) = Ĉ \ F(R).

The idea behind this partition is that the points in the Fatou set present stable behaviour,
while the dynamics in any neighbourhood of a point z ∈ J (f) present chaotic behaviour. In
the previous example, for Q0(z) = z2, the Julia set was precisely the unit circle. We will
proceed with the basic non trivial example, the family Qc(z) = z2 + c, where c ∈ C.

Example 2.1.13. The family Qc(z) = z2 + c, where c ∈ C, is as elementary as a rational
map of degree d ≥ 2 can be. Still, the geometry of Julia sets of maps in this family is far
from simple (see Figure 2.1). It has precisely 2 critical points, z = 0, and z = ∞, which do
not depend on the value of the parameter c. While z = ∞ is always a superattracting fixed
point, it is the point z = 0 which governs the dynamics of the map. The boundedness of the
orbit of the critical point z = 0 is a sufficient criterion to study whether the Julia set for a
given parameter is connected or not. More precisely, the Julia set is connected if and only if
OQc(0) is bounded. This is related to the well known Dichotomy Theorem, the Julia set of
a quadratic polynomial is always either connected, either totally disconnected (in fact, a set
homeomorphic to a Cantor set). The set of points c ∈ C for which J (Qc) is connected is
called the Mandelbrot set (see Figure 2.2).

The Julia set has many important properties, which will be useful later. We add here a
brief enumeration of such properties.

Theorem 2.1.14. Let R : Ĉ → Ĉ be a rational map of degree d ≥ 2. Then, the following
statements hold:

(i) The Julia set J (R) is non empty. Moreover, #J (R) is infinite.

(ii) The Julia set J (R) and Fatou set F(R) are completely invariant.

(iii) The Julia set J (R) is the smallest closed and completely invariant set with at least 3
points (minimality of the Julia set).

(iv) The Julia set J (R) is either Ĉ, or it has empty interior.

(v) The Julia set J (R) is the closure of the repelling periodic points.

(vi) J (R) = J (Rn), for n ≥ 1 (and so, F(R) = F(Rn)).



2.1. ITERATION OF RATIONAL MAPS 15

Figure 2.1: The left figure illustrates the dynamical plane of Qc = z2 + c for c = −1, which is
called the basilica. In the right figure we can see the Douady rabbit, for c ≈ −0.123 + 0.745i.
In black, we see the filled Julia set, the set of points with bounded orbit. The Julia set is
precisely the boundary of this set.

Figure 2.2: The Mandelbrot set.
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Recall that in Example 2.1.11 we have studied the domains of normality for the map
Q0(z) = z2. We are now able to say that the unit circle is the Julia set of the map Q0. We
highlight further the behaviour of dynamics of Q0(z) around points in J (Q0) to give a trivial
example of chaotic dynamics.

Lemma 2.1.15. Let Q0 : Ĉ→ Ĉ, Q0(z) = z2. Let ζ ∈ J (Q0) and let N be a neighbourhood
of ζ. Then,

∞⋃
i=0

Qn0 (N) = Ĉ \ {0, ∞}.

Proof. Let ζ = eiθ0 such that 0 ≤ θ0 < 2π, and let N be a small enough open neighbourhood
of ζ such that N ∩ {0, ∞} = ∅.

We first prove that for any z ∈ Ĉ\{0, ∞}, there exists k large enough such that z ∈ Qi0(S),
for any i ≥ k. Since |ζ| = 1, there exists ε, δ > 0 and S ⊂ N an annulus sector such that

S =
{
z = reiθ ∈ C

∣∣∣ 1− ε < r < 1 + ε, θ0 − δ < θ < θ0 + δ
}
.

First, we point out that on the unit circle S1, the map Q0 is conjugated to the doubling map
T , T : S1 → S1. It is easy to see then that the image of S through Q0 is

Q0(S) =
{
z = reiθ ∈ C

∣∣∣ (1− ε)2 < r < (1 + ε)2, 2(θ0 − δ) < θ < 2(θ0 + δ)
}
.

After p := b| log2 δ|c ≥ 0 more iterations, we have that Qp+1
0 (S) is precisely the annulus

A =
{
z = reiθ ∈ C

∣∣∣ (1− ε)2p+1
< r < (1 + ε)2p+1

}
.

We have that for any z ∈ Ĉ\{0, ∞}, there exists n0 ∈ N such that (1−ε)n0 < |z| < (1+ε)n0 .
Hence, for any z ∈ Ĉ \ {0, ∞}, there exists k large enough such that z ∈ Qn0 (S) ⊂ Qn0 (N),
for any n ≥ k.

Now observe that z = 0 and z = ∞ are fixed points of Q0, with no preimages other
than themselves. Finally, since they do not lie in N , they do not lie in any of its eventual
images.

We proved that the union of iterates of Q0(z) in any neighbourhood of a point in J (Q0)
contains the entire Riemann sphere Ĉ except 2 points, z = 0 and z =∞. This is a particular
example of what is called the blow-up property of Julia sets.

Theorem 2.1.16. (Blow-up property of Julia sets) Let R : Ĉ→ Ĉ be a rational map of degree
d ≥ 2. Let U ⊂ Ĉ be an open set such that U ∩J (R) 6= ∅. Then, there exist at most 2 points
z1, and z2, such that

Ĉ \ {z1, z2} ⊂
⋃
Rn(U).

2.2 Local fixed point theory

To better understand the asymptotic behaviour of the sequence of iterates of a function in a
neighbourhood of a fixed point, it is necessary to introduce some results in local fixed point
theory (see [Mil06, Chapters 8 and 9]). In what follows, we assume f : U ⊂ C → C is a
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holomorphic map and z0 ∈ U is a fixed point, with multiplier λ := f ′(z0). The dynamics in a
neighborhood of z0 depend on the multiplier λ (see Definition 2.1.3).

The attracting case: 0 < |λ| < 1

The following result not only characterizes topologically the asymptotic behaviour of the
points in a neighbourhood of the fixed point z0, but it shows the existence of a change of coor-
dinates between f in a neighbourhood of z0 and the linear map w → λw in a neighbourhood
of λ = 0.

Theorem 2.2.1 (Koenigs’ Linearization). Let f : U ⊂ C→ C be a holomorphic map and let
z0 ∈ be a fixed point. Assume that the multiplier λ := f ′(z0) satisfies |λ| 6= 0, 1. Then, there
exists ε > 0, a neighbourhood of z0 V ⊂ U , and a local holomorphic change of coordinate
w = φ(z), with φ(z0) = 0, such that φ ◦ f ◦ φ−1 is the linear map w → λw for all w ∈ Dε
with ε > 0, where Dε := {z ∈ C | |z| < ε}. Furthermore, φ is unique up to multiplication by a
non-zero constant.

Any attracting fixed point has a corresponding basin of attraction (also known as attracting
basin), the set of points which iterate towards the fixed point. Since the map is holomorphic,
it is easy to show that A(z0) is an open set which always includes a neighbourhood of z0.
The connected component of a basin of attraction containing the fixed point is known as
immediate basin of attraction.

Definition 2.2.2 (Basin of attraction. Immediate basin of attraction.). Let R : Ĉ→ Ĉ be a
rational map and let z0 ∈ C be an attracting fixed point. We define the basin of attraction of
z0 as

A(z0) := {z ∈ Ĉ |Rn(z) −−−→
n→∞

z0}.

We also define the immediate basin of attraction as the connected component of A(z0) which
contains the fixed point z0 and we denote it by A∗(z0).

Local theory has important implications in iteration of rational maps. Suppose R : Ĉ→ Ĉ
and R(z0) = z0, with R′(z0) = λ, 0 < |λ| < 1 (using, if needed, a Möbius transformation,
we may assume that z0 ∈ C). We know from Koenigs’ Theorem the local behaviour of R in
a neighbourhood of z0. We want to extend this to all points which eventually converge to
z0. More precisely, we extend the map φ (see Theorem 2.2.1) defined on a neighbourhood
V of z0 to a map φ̂ defined on the entire basin of attraction A(z0). This is known as global
linearization (see [Mil06, Corollary 8.4]).

Lemma 2.2.3. Let R : Ĉ → Ĉ be a rational map of degree d ≥ 2. Let z0 be an attracting
fixed point, A(z0) the corresponding basin of attraction, and A∗(z0) the connected component
of A(z0) containing the fixed point. Then, there exists a holomorphic map φ̂ : A(z0) → C,

with φ̂(z0) = 0, such that φ̂
(
R(z)

)
= λφ̂(z), for all z ∈ A(z0). Furthermore, φ̂ maps a

neighbourhood of z0 biholomorphically onto a neighbourhood of z = 0 and it is unique up to
multiplication by a constant.

For a sufficiently small neighbourhood Dε of 0, where the previously defined function φ̂
is biholomorphic, we can define the holomorphic function ψε : Dε → A(z0), ψε(w) = φ̂−1(w),
for any w ∈ Dε. This map ψε extends, by analytic continuation, to a maximal open disk Dr.
The set ψε(Dr) is known as a maximal domain of linearization. The following lemma states
the existence of this maximal domain and that its boundary contains a critical point, that is,
a point c such that R′(c) = 0 (see [Mil06, Lemma 8.5]).
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Lemma 2.2.4. There exists a uniquely defined holomorphic map ψ : Dr → A(z0)∗, with

ψ(0) = z0, and ψ
(
φ(w)

)
≡ w. Furthermore, ψ extends holomorphically to a map ψ̂ over the

boundary circle ∂Dr, and the image ψ̂(∂Dr) ⊂ A∗(z0) necessarily contains a critical point of
R.

The superattracting case: λ = 0

Let f : U ⊂ C → C be a holomorphic map and let z0 ∈ U . Assume that f(z0) = z0 and
f ′(z0) = 0. Then, in a sufficiently small neighbourhood V of z0, f can be written as

f(z) = z0 + aq(z − z0)q +O(|z − z0|q+1), z ∈ V, aq 6= 0, q ≥ 2.

The natural number q is called the local degree of the superattracting fixed point z0. We can
now define Böttcher coordinates around a superattracting fixed point.

Theorem 2.2.5. Let f : U ⊂ C → C be a holomorphic map and let z0 be a superattracting
fixed point of local degree q ≥ 2. Then, there exists a holomorphic change of coordinate w =
φ(z), with φ(z0) = 0, which conjugates f to the map w → wq throughout some neighbourhood
of w = 0. Furthermore, φ is unique up to multiplication by an (q − 1)st root of unity.

We may also define a maximal domain of Böttcher coordinates. For any small enough
neighbourhood Dε of 0 where the previously defined function φ is biholomorphic, we can
define the holomorphic function ψε : Dε → A∗(z0) as ψε(w) = φ−1(w) for any w ∈ Dε. This
map ψε extends, by analytic continuation, to a maximal open disk Dr. The set ψε(Dr) is
known as a maximal domain of Böttcher coordinates (see [Mil06, Theorem 9.3]).

Theorem 2.2.6. Let R : Ĉ→ Ĉ be a rational map, and let z0 be a superttracting fixed point.
Then, there exists a unique open disk Dr of maximal radius 0 < r < 1 such that ψε extends
holomorphically to a map ψ from the disk Dr into the immediate basin A∗(z0). If r = 1, then
ψ maps the unit disk D1 biholomorphically onto A∗(z0) and z0 is the only critical point in this
immediate basin. On the other hand, if r < 1, then there is at least one other critical point
in A∗(z0), lying on the boundary of ψ(Dr).

The parabolic case: λ = e2πiα, α = p
q ∈ Q

If f : U ⊂ C → C has a parabolic fixed point z0 with multiplier λ := e2πiα, by shrinking
to a sufficiently small neighbourhood V ⊂ U , f can be written as

f(z) = z0 + e
2πi p

q (z − z0) + ak(z − z0)k +O(|z − z0|k+1), k ≥ 2, ak 6= 0.

Hence, considering g = f q (and renaming g as f), we may assume that

f(z) = z + a(z − z0)k + . . . , a 6= 0,

that is, z0 is an isolated parabolic fixed point with multiplier λ = 1.
This case is very different to the previous cases since, as we will see, the linear part of the

map (which is the identity in this case) does not explain the local behaviour of z0. Instead,
the dynamics around z0 describe what are called ”petals” (and all together a ”flower”). This
is why the main result describing the local dynamics around a parabolic fixed point is called
the Fatou-Leau Flower Theorem. To state it, we must first define the notion of petal, an
invariant set having z0 in its boundary.
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Definition 2.2.7 (Attracting and repelling petals). Let f : U ⊂ C → C be a holomorphic
map such that z0 ∈ U is a fixed point with multiplier λ = 1. Let N ⊂ U be a neighbourhood
of z0 containing no critical points (so, f : N → f(N) = N ′ is a diffeomorphism). We say that
V ⊂ N is an attracting petal if:

� V is open and connected;

� V ⊂ (N ∪N ′);

� f(V ) ⊂ V ∪ {z0};

�

⋂
k≥0

fk(V ) = {z0}.

We say that V is a repelling petal if it is an attracting petal for the map f−1.

A preliminary form of the following theorem was first proved by Leau. Later on, Julia
and Fatou have improved the result to the current form, that is generally the one used in
complex dynamics.

Theorem 2.2.8. (Leau-Fatou Flower Theorem) Let f : U ⊂ C → C be a holomorphic map.
Let z0 ∈ U be a parabolic fixed point with multiplier λ = 1, that is, by shrinking to a sufficiently
small neighbourhood V ⊂ U , f can be written as

f(z) = z + a(z − z0)k+1 +O(|z − z0|k+2), k ≥ 1, a 6= 0.

Then, there exist k attracting {U1, U2, . . . , Uk} and k repelling {U ′1, . . . , U ′k} petals such that:

� Ui ∩ Uj = ∅ and U ′i ∩ U ′j = ∅, ∀i 6= j.

� Uj ∩ U ′` 6= ∅ for ` = j, j + 1.

� Uj ∩ U ′` = ∅ for ` 6= j, j + 1.

� The union of all attracting and repelling petals gives a pinched neighbourhood of z0

without critical points.

The irrational case: λ = e2πiα, α ∈ R \Q
According to the previously studied cases, we conclude that, except for the parabolic case,

the behaviour of the iterates of points in a sufficiently small neighbourhood of the fixed point
z0 ∈ U is governed by the behaviour of its linear part. Keeping this in mind, it makes sense
to classify the irrationally indifferent fixed points with respect to the existence (or not) of a
conformal change of coordinates of R (near z0) to the map w → e2πiαw (that is, the irrational
rotation of angle Rα).

Definition 2.2.9 (Siegel and Cremer points). Let f : U ⊂ C → C be a holomorphic map
and let z0 ∈ U such that f(z0) = z0 and f ′(z0) = e2πiα, α ∈ R \Q. We say that z0 is a Siegel
point if there exists a local (conformal) change of coordinates φ : V ⊂ U → C such that

φ ◦ f ◦ φ−1(w) = e2πiαw, ∀w ∈ φ(V ).

Otherwise, we say that z0 is a Cremer point.
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Figure 2.3: The figure illustrates the dynamical plane of Qc = z2 + c, for c = 0.25, which is
coloquially known as the cauliflower. In black, we see the parabolic basin corresponding to
the parabolic fixed point z = 1

2 .

The conditions (on α) that guarantee the existence of such change of coordinates rely
on the arithmetic structure of α as an irrational number. For instance, it is known that
if α is diophantine then z0 is a Siegel point (see [Sie42]). More details can be found in
[Mil06, Chapter 11]. Nevertheless, if z0 is an irrationally indifferent fixed point of a rational
map R, one can show the following dynamical characterization of R being linearizable in a
neighbourhood of z0. For the sake of completeness, we give the proof of the result (see also
[Bea91, Theorem 6.6.2]).

Theorem 2.2.10. Let R : Ĉ→ Ĉ be a rational map. Let z0 ∈ C (a Möebius transformation
allows us to assume this without loss of generality) and assume that for z ∈ U we have

R(z) = z0 + e2πiα(z − z0) +O(|z − z0|2), α ∈ R \Q.

Then, R is (locally) linearizable at z0 if and only if z0 ∈ F(R).

Proof. Assume that R is linearizable around z0. this implies that there exist N a neighbour-
hood of z0 and φ : N → φ(N) conformal such that

φ ◦R ◦ φ−1(w) = e2πiαw.

Let ε small enough such that φ−1(Dz0, ε) ⊂ N , where Dz0, ε = {z ∈ C | |z − z0| < ε}. Observe

that z0 ∈ φ−1(Dz0, ε). We have that R
(
φ−1(Dz0, ε)

)
= φ−1(Dz0, ε). By Montel’s theorem (see

Theorem 2.1.10), the family {Rn}n≥1 is normal in φ−1(Dz0, ε). Therefore, z0 ∈ F(R).
Now we assume that z0 ∈ F(R). Let λ := R′(0). We have that |λ| = 1. Using eventually

a Möbius transformation, we can assume without loss of generality that z0 = 0. It follows
that in a neighbourhood of z = 0, by Arzelá-Ascoli Theorem (see Theorem 2.1.9), the family
of iterations {Rn}n≥1 is locally equicontinous. Therefore, there exists a neighbourhood N of
z = 0 such that |Rn(z)−Rn(0)| = |Rn(z)| < 1, for any z ∈ N .
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First, for n ≥ 1, we define the functions

Tn(z) :=
1

n

(
z +

R(z)

λ
+
R2(z)

λ2
+ · · ·+ Rn−1(z)

λn−1

)
.

We have that (Rk)′(0) = λk, for k ≥ 1. It follows that T ′n(0) = 1 and |Tn(z) ≤ 1|, since
N ⊂ D1. Using that

n

λ
Tn

(
R(z)

)
+ z = nTn(z) +

Rn(z)

λn
,

we can write

Tn

(
R(z)

)
− λTn(z) =

λ

n

(Rn(z)

λn
− z
)
.

We get that
(
Tn

(
R(z)

)
− λTn(z)

)
→ 0 uniformly on N when n→∞. By Montel’s theorem,

the family {Tn}n≥1 is normal. By definition of normal families (see Definition 2.1.7), there
exists a subsequence {Tnk} which converges uniformly on compact sets to a limit map, say φ.

We have that φ
(
R(z)

)
= λφ(z). Since φ′(0) = 1, the map φ is not a constant map, therefore

the map R can be liniarized around z = 0.

If we assume that z0 is a Siegel point of a rational map, it is natural to ask about the
maximal domain of definition of the linearizing map φ.

Definition 2.2.11 (Siegel disk). Let R : Ĉ → Ĉ be a rational map. Assume that z0 is a
Siegel point. The maximal domain of definition of the local change of coordinates described
in Definition 2.2.9 is called a Siegel disk, say ∆(z0). By definition, ∆(z0) is simply connected
and, also by definition, f |∆(z0) is conformal.

One major problem in holomorphic dynamics is to give geometrical, topological, and
measure properties of ∂∆(z0). From the dynamical point of view, the interest is centered
on understanding the relationship between ∆(z0) and the orbits of the critical points. A
cornerstone result is the following.

Theorem 2.2.12. Let R : Ĉ → Ĉ be a rational map. Assume that z0 is a Siegel point, and
denote by ∆(z0) the Siegel disk associated to z0. Then, there exist c ∈ C such that

∂∆(z0) ⊃
⋃
n≥0

Rn(c).

2.3 Fatou components

We study the topology and geometry of the Fatou set using its connected components. They
are known as Fatou components and are a central topic of interest in complex dynamics.

Definition 2.3.1. (Fatou component) A connected component of the Fatou set is called a
Fatou component.

Since the Fatou set is completely invariant, in a given dynamical plane, the image of a
Fatou component may only be a Fatou component. We have already introduced various types
of Fatou components and dynamics of maps inside these Fatou components. Our goal now
is to introduce the three major results about Fatou components (No Wandering Domains,
Classification, and Fatou-Shishikura inequality).

We begin by extending the concept of periodicity to Fatou components.
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Definition 2.3.2. Let f be a holomorphic map, and let U ⊂ F(f) be a Fatou component.
Then, U is:

1. fixed, if f(U) = U ;

2. periodic, if there exists p ≥ 1 such that fp(U) = U . If U is periodic, but not fixed, we
say that U is strictly periodic;

3. eventually periodic, if there exist m > n ≥ 1 such that fm(U) = fn(U). If U is
eventually periodic, but not periodic, we say that U is strictly preperiodic;

4. wandering, if it is not eventually periodic.

Sullivan (see [Sul85]) proved that rational maps do not have wandering Fatou components
(this was a problem posed by Fatou himself). This is a compelling argument for rational maps
having simpler dynamics. This result is also the first major result in holomorphic dynamics
proved using quasiconformal surgery.

Theorem 2.3.3 (No Wandering Domains Theorem). Every Fatou component of a rational
map is eventually periodic.

It follows from Theorem 2.3.3 that any Fatou component of a rational map R is either a
branched covering or a biholomorphic copy of a periodic Fatou component. We now give a
classification of all periodic Fatou components of rational maps (see Figure 2.4). This theorem
is mainly due to the works of Fatou and Sullivan. By considering eventually Rp, we can state
the result for invariant Fatou components.

Theorem 2.3.4 (Classification of invariant Fatou components of rational maps). Let R :
Ĉ→ Ĉ be a rational map and let U ⊂ F(R) be a invariant Fatou component. Then, U is one
of the following:

1. (immediate) attractive basin: U contains an attracting fixed point z0 and Rn(z)→ z0,
as n→∞, for all z ∈ U ;

2. parabolic basin (or Leau domain): ∂U contains a unique fixed point z0 such that
Rn(z)→ z0, as n→∞, for all z ∈ U . Moreover, R′(z0) = 1;

3. Siegel disk: there exists a conformal map φ : U → D such that (φ◦R◦φ−1)(z) = e2πiαz,
for some α ∈ R \Q;

4. Herman ring: there exist r > 1 and a conformal map φ : U → {1 < |z| < r} such that
(φ ◦R ◦ φ−1)(z) = e2πiαz, for some α ∈ R \Q.

Already proposed by Fatou and Julia, a major problem when describing the dynamical
plane of a rational map R is to know the number of invariant (periodic) Fatou components
(that is, different “tame behaviours”) that R may have. It was already noticed before that im-
mediate basins of (super)-attracting fixed (periodic) points always have an associated critical
orbit. Using a similar argument to the one used to prove this result, one can also show that

if z0 is a parabolic fixed point with multiplier λ = e
2πi p

q then there should be at least q differ-
ent critical orbits associated to it. A more refined result is the celebrated Fatou-Shishikura
inequality (see Theorem 2.3.6, see also [Mil06, Theorem 8.6]).
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Figure 2.4: Examples of period Fatou components of rational maps. Top left corner, an
attracting basin. Top right corner, a parabolic basin. Bottom left corner, a Siegel disk.
Bottom right corner, a Herman ring.
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F1

F2
F3

Figure 2.5: The figure illustrates the dynamical plane of Qc = z2 + c, for c = −0.123 + 0.745i,
which is known as the Douady rabbit. In red, we see the basin of attraction of z =∞. Since
it is a simply connected set, it is also the immediate basin of attraction of z = ∞. In black,
we see the basin of attraction corresponding to a periodic cycle of period 3. The 3 periodic
points lie in the Fatou components F1, F2, and F3. The corresponding immediate basin of
attraction is the set F1 ∪ F2 ∪ F3.

Theorem 2.3.5. If R is a rational map of degree d ≥ 2, then the immediate basin of every
attracting periodic orbit contains at least one critical point. Hence, the number of attracting
periodic orbits is less than or equal to the number of critical points.

It was Fatou (see [Fat20]) who first attempted to give a bound, depending on the number of
critical values, of the number of cycles of periodic Fatou components of a rational map. Later
on, Douady and Hubbard expanded on this topic and proved a sharper bound, for polynomial
maps. Their argument did not work, however, for rational maps having no attracting cycle.
Sullivan also managed to find an upper bound in a general setting, and conjectured a sharp
bound. It was finally Shishikura, who proved in his Master’s thesis (see also [Shi87]) the
precise upper bound of periodic cycles for rational maps. He accomplished this by using
quasiconformal surgery to transform the Herman rings of a map to Siegel disks.

Theorem 2.3.6 (Fatou-Shishikura inequality). Let R : Ĉ → Ĉ be a rational map of degree
d. Let nAB denote the number of attracting basins of R, nPB denote the number of parabolic
cycles of R, nSD denote the number of Siegel disk cycles of R, nHR denote the number of
Herman ring cycles of R, and nCremer denote the number of Cremer fixed points. Then,

nAB + nPB + nSD + 2nHR + nCremer ≤ 2(d− 1).

In the dynamical planes that we will study, there will always be attracting fixed points.
This implies the existence of immediate basins of attraction in the corresponding dynamical
planes. The next result states that if an immediate basin of attraction is multiply connected,
it is in fact infinitely connected (see [Mil06], Theorem 8.9).

Theorem 2.3.7. Let A∗(z0) be the immediate basin of an attracting fixed point z0. Then, the
complement Ĉ \A∗ is either connected or else has uncountably many connected components.
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2.4 Riemann-Hurwitz formula

Recall that the connectivity of a set U ⊂ Ĉ is the number of connected components of its
complement Ĉ\U . The Riemann-Hurwitz formula is the fundamental tool necessary to study
connectivities of Fatou components. The Riemann-Hurwitz formula, as originally stated, has
a much larger scope, regarding Riemann surfaces. We will use a particular form of it (see, for
instance, [Ste93]), which will suffice with respect to our study of rational maps.

Theorem 2.4.1. (Riemann-Hurwitz formula) Let U, V ⊂ Ĉ be two connected domains of
connectivity mU ,mV ∈ N∗ and let f : U → V be a degree d proper map branched over r
critical points, counted with multiplicity. Then,

mU − 2 = d(mV − 2) + r.

For our purposes, we add here two direct corollaries of the Riemann-Hurwitz formula,
that we will use extensively in the following chapters.

Corollary 2.4.2. Let R : Ĉ→ Ĉ be a rational map of degree d. Then, R has at most 2d− 2
critical points, counting multiplicity.

Along the text we also use the following corollary of the Riemann-Hurwitz formula (com-
pare [CFG15, Corollary 2.2]).

Corollary 2.4.3. Let U ⊂ Ĉ be an open set and let f : U → f(U) be a proper holomorphic
map. Then, the following statements hold:

(a) If f(U) is doubly connected and f has no critical points in U , then U is doubly connected.

(b) If f(U) is simply connected and f has at most one critical point in U (not counting
multiplicities), then U is simply connected.

Proof. First we prove (a). We get from the Riemann-Hurwitz formula that mU − 2 = 0.
Therefore, the set U is doubly connected.

Second, we prove (b). By applying the Riemann-Hurwitz formula we obtain that

mU − 2 = r − d.

Assume that there is no critical point in U . It follows that the map f is conformal on U ,
hence the degree of the map is d = 1. We get that U is simply connected.

Now consider the case that there exists a critical point c of multiplicity r. Therefore, there
exists W ⊂ U a neighbourhood of c such that the map f |W has degree r + 1. We get that
d ≥ r+ 1 and, therefore, mU − 2 ≤ 1. It follows that mu = 1 and U is simply connected.

2.5 Quasiconformal surgery

Quasiconformality can be described as a degree of regularity, used to study structural stability
in holomorphic dynamics. Quasiconformal maps are continuous, but not necessary differen-
tiable. Differentiable maps with a continuous derivative are quasiconformal on compact sets.
The main reason that quasiconformal mappings are used in holomorphic dynamics are qua-
siconformal conjugacies. Conformal conjugacies for a holomorphic map are sparse, usually
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restricted to a few maps in the same family that we study. Quasiconformal conjugacies,
however, are much more widespread and preserve many of the topological and dynamical
properties that we are interested in. Another key advantage of quasiconformal maps is their
flexibility. It follows from the Identity Theorem that it is impossible to paste different holomor-
phic maps together and obtain a holomorphic map. Meanwhile, pasting together quasiregular
maps to obtain a new quasiregular map (ideally with specific properties, and conjugate to a
given holomorphic map) is precisely the scope of quasiconformal surgery.

Quasiconformal mappings have been a much studied mathematical topic in the past cen-
tury. The first to have studied them was Grötszch (see [Grö28]) in 1928, as a solution to the
Beltrami equation

∂zφ(z) = µ(z)∂zφ(z). (2.1)

Later on, Teichmüller (see [Tei40]) used the analytic definition of quasiconformal maps to
study the function theory of Riemann surfaces. Pfluger (see [Pfl48]) and Ahlfors (see [Ahl54])
used the geometric definition of quasiconformal maps to study value distribution theory of
holomorphic functions. The equivalence of the two definitions is not obvious, and was only
proven in 1959, by Gehring and Lehto (see [GL59]).

The main result that connects quasiconformal maps and complex dynamics is the Mea-
surable Riemann Mapping Theorem (see Theorem 2.5.29). It is the essential tool necessary
for quasiconformal surgery and it is usually called the Integrability Theorem. The theorem is
due to Morrey (see [Mor38]), Bojarski (see [Boj55]), and Ahlfors and Bers (see [AB60]). For
more detailed explanations, see [Ahl06], [AIM09], and [BF14, Chapters 1 and 2].

Now a standard tool of complex dynamics, it was Sullivan who introduced quasiconformal
mappings to complex dynamics, by doing a surgery construction to prove the No Wander-
ing Domains Theorem (see Theorem 2.3.3). While Sullivan introduced what is known as soft
surgery, Douady and Hubbard performed the first cut-and-paste surgery to prove the Straight-
ening Theorem (see Theorem 2.6.4) using polynomial-like maps. Later on, Shishikura defined
the principles of surgery and used cut-and-paste surgery to prove the Fatou-Shishikura in-
equality (see Theorem 2.3.6).

Quasiconformality

There exist several (equivalent) definitions of a quasiconformal map. We will start with
an analytic definition, which, in turn, requires the concept of absolute continuity on lines.

Definition 2.5.1. (Absolute continuity on an interval) A continuous complex valued function
f defined on an interval I ⊂ R is said to be absolutely continuous on I if it satisfies the
following: for every ε > 0, there exists a δ > 0 such that

∑
j |f(bj) − f(aj)| < ε for every

finite sequence of nonintersecting intervals (aj , bj) whose closure are contained in I and have
a total length

∑
|bj − aj | < δ.

Definition 2.5.2. (Absolute continuity on lines, ACL) A continuous function f : U → C
is said to be absolutely continuous on lines if for any family of parallel lines in any disc D
compactly contained in U (that is, D ⊂ U), f is absolutely continuous on almost all of them.

We can now give an analytic definition of K−quasiconformal mappings.

Definition 2.5.3. (Analytic definition of K-quasiconformal mapping) Let U, V ⊂ C be two
domains and let 1 ≤ K <∞. A mapping φ : U → V is K-quasiconformal if and only if:

1. φ is a homeomorphism;
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2. φ is ACL;

3. |∂zφ| ≤ k|∂zφ| almost everywhere, where k := K−1
K+1 ∈ [0, 1].

To introduce a geometrical definition of quasiconformal maps, we first define the modulus
of an annulus.

Definition 2.5.4. (Modulus of an annulus) Let A ⊂ C be an open annulus, that is, a doubly
connected domain in Ĉ. Then, A can be conformally mapped onto a standard annulus (the
conformal map is unique up to multiplication by a positive real number)

Ar,R = {z ∈ C | 0 ≤ r < |z| < R ≤ ∞}.

The conformal modulus of the annulus A is defined as the modulus of Ar,R, i.e.

modA := modAr,R :=

{
1

2π log R
r if r > 0 andR <∞

∞ if r = 0 orR =∞.

}
Definition 2.5.5. (Geometric definition of K-quasiconformal mapping) Let U, V ⊂ C be
two domains and let 1 ≤ K < ∞. Then, φ : U → V is K-quasiconformal if and only if φ is
an orientation preserving homeomorphism satisfying

1

K
modA ≤ modφ(A) ≤ KmodA,

for all annuli A compactly contained in U .

The analytic and geometric definitions of quasiconformal maps are equivalent, as proven
by Gehring and Lehto (see [GL59]). We now give some basic properties of quasiconformal
maps, which will be useful later.

Theorem 2.5.6. Let U, V, and W be domains of C and let K, K1, K2 ∈ [1,∞). Let φ : U →
V be a K−quasiconformal map. Then:

1. The partial derivatives ∂zφ and ∂zφ exist almost everywhere.

2. The inverse map φ−1 is K-quasiconformal.

3. If S is a set of measure zero, then φ(S) is also a set of measure zero.

4. Let φ1 : U → V and φ2 : V → W be K1 and K2−quasiconformal maps. Then the map
φ2 ◦ φ1 is K1K2-quasiconformal.

The next result relates quasiconformality and conformality.

Theorem 2.5.7. (Weyl’s lemma) If φ is 1-quasiconformal, then φ is conformal. In other
words, if φ is quasiconformal and ∂zφ = 0 almost everywhere, then φ is conformal.

We now give a well known theorem in complex analysis, proven by Koebe and Poincaré,
which categorizes the topology of unidimensional complex spaces.

Theorem 2.5.8. (Uniformization Theorem) Let S be a simply connected Riemann surface.
Then, S is conformally equivalent to D, C or Ĉ.
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Now we generalize the definition of K-quasiconformal mappings to Riemann surfaces.

Definition 2.5.9. (K-quasiconformal mapping between Riemann surfaces) Let S and S′ be
two Riemann surfaces, and let φ : S → S′ be a homeomorphism. Then, φ is quasiconformal
if and only if there exists a K ≥ 1 so that φ is locally K-quasiconformal when expressed in
charts.

Quasiconformal maps are defined on domains. To extend them to the boundary, we require
local connectivity.

Definition 2.5.10. (Locally connected set) A set X ⊂ C is locally connected if for every point
x ∈ X and any arbitrarily small ε > 0, the intersection Dε(x) ∩X is connected.

Now we state the extension of a conformal isomorphism to the boundary of a domain.
The following theorem is due to Torhorst (see [Tor21]) and based on the work on prime ends
of Caratheodory (compare with the discussion in [RG14]). It is used for extending Riemann
maps to the boundary.

Theorem 2.5.11. (Carathèodory-Torhorst Theorem) Let G ⊂ C be a simply connected,
bounded domain. Let f : D → G be a Riemann mapping for G (that is, f : D → G is a
conformal isomorphism). Then, f has a continuous extension f : D → G if and only if ∂G
is locally connected. Moreover, f has a continuous and injective extension to D if and only if
∂G is a Jordan curve.

Before extending the previous result to quasiconformal maps, we need to define the con-
cepts of quasicircles, quasidisks, and quasiannuli.

Definition 2.5.12. (Quasicircle, quasidisk, quasiannulus) Let γ ⊂ C be a Jordan curve.
Then, γ is called a quasicircle if for some C > 0

diamγ(z1, z2) ≤ C|z1 − z2|, for z1, z2 ∈ γ,

where γ(z1, z2) is the arc of smaller diameter joining z1 and z2. The interior of γ, Int(γ), is
known as a quasidisk. A bounded annulus such that its outer and inner boundary curves are
quasicircles, is known as a quasiannulus.

Quasiconformality is a property of a map defined on a domain. A natural question arises,
what degree of regularity must a map satisfy on the boundary of a domain (bounded by
quasicircles), so that it is extended to a quasiconformal map on the domain. The answer is
quasisymmetry.

Definition 2.5.13. A map h : S1 → C is quasisymmetric if h is injective and if there exists
a strictly increasing function λ : [0, +∞)→ [0, +∞) such that

1

λ

(
|z2 − z3|
|z1 − z2|

) <
|h(z1)− h(z2)|
|h(z2)− h(z3)|

< λ

(
|z1 − z2|
|z2 − z3|

)
for z1, z2, z3 ∈ S1.

We now connect the concepts of quasicircles and quasisymmetry. Quasicircles are precisely
the non-self-intersecting closed curves with quasisymmetric parametrizations.
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Proposition 2.5.14. If h : S1 → C is quasisymmetric, then γ := h(S1) is a quasicircle.
Conversely, if γ is a quasicircle, then it is image of the unit circle under some quasisymmetric
map.

The Carathèodory-Torhorst Theorem describes the extension of a Rieman mapping defined
on a domain, up to the boundary. The following result (see, for instance, [BF14, Proposition
2.30]) states that given a quasisymmetric map defined on the boundary of a quasidisk (or a
quasiannulus), there exists a quasiconformal interpolation of the map to the entire quasidisk
(quasiannulus).

Proposition 2.5.15. The following statements hold:

1. Suppose G1 and G2 are quasidisks bounded by γ1 and γ2, and let f : γ1 → γ2 be
quasisymmetric. Then, f extends to a quasiconformal map f : G1 → G2.

2. For j = 1, 2 suppose that Aj are open quasiannuli bounded by the quasicircles γin
j , γ

out
j .

Let f in : γin
1 → γin

2 and fout : γout
1 → γout

2 be quasisymmetric maps between the inner
and outer boundaries respectively. Then, there exists a quasiconformal map f : A1 → A2

such that f |γin1 = f in and f |γout1
= fout.

Almost complex structures

Let CR be the complex plane, viewed as the two-dimensional oriented Euclidean R-vector
space with the orthonormal positively oriented standard basis {1, i}. We define two attributes
of an ellipse, dilatation and Beltrami coefficient (also known as complex dilatation). Dilatation
of an ellipse describes the shape, but not the positioning of an ellipse in CR. The Beltrami
coefficient is sufficient to describe both the the shape, and the positioning of an ellipse in CR.

Definition 2.5.16. (Dilatation and Beltrami coefficient of an ellipse) Let E be an ellipse and
let M , respectively m, represent the major, respectively, the minor axis of E . The dilatation
KE and the Beltrami coefficient µ(E) are given by:

KE =
M

m
> 1, µ(E) =

M −m
M +m

e2iθ ∈ D,

where θ ∈ [0, π) is the argument of the direction of the minor axis.

At any point u ∈ U ⊂ C (U is usually assumed to be a domain), one may attach a
corresponding copy of CR, containing an ellipse Eu. The properties that we will use to describe
the ellipse Eu are precisely dilatation and Beltrami coefficient. Therefore, any scaled copy of
the ellipse Eu would suffice, and we will call Eu an infinitesimal ellipse. Let U ⊂ C be a domain
and σ be a field of infinitesimal ellipses Eu ∈ TuU defined at almost every point u ∈ U , where
TuU denotes the colelction of the tangent spaces over points u ∈ U , each one viewed as a
copy of CR. If the map µ : U → D defined by the Beltrami coefficient of the ellipse Eu is
measurable with respect to Lebesgue measure, we say that σ is a measurable field of ellipses.
Quasiconformal surgery constructions involve defining such measurable fields of infinitesimal
ellipses, known as almost complex structures.

Definition 2.5.17. (Almost complex structure) Let U ⊂ C, and let

TU =
⋃
u∈U

TuU
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be the tangent bundle over U , i.e. the collection of the tangent spaces over points u ∈ U ,
each one viewed as a copy of CR. An almost complex structure σ on U is a measurable field
of infinitesimal ellipses E ⊂ TU .

To introduce a notion of boundedness for an almost complex structure, we must extend
the definition of dilatation to the entire almost complex structure. Note that the notion
of Beltrami coefficient can be extended to an almost complex structure by using the map
µ : U → D, µ(u) := µ(E(u)), where E(u) denotes the ellipse at the point u.

Definition 2.5.18. (Dilatation of an almost complex structure) Let U ⊂ C, and let TU be
the tangent bundle over U . Let σ be an almost complex structure on U . The dilatation of σ
is defined as

K(σ) := ess sup
u∈U

K(u), where K(u) :=
1 + |µ(u)|
1− |µ(u)|

denotes the dilatation of E(u).

There exists one particular almost complex structure that always appears in surgery con-
structions (as we will later see, due to the Integrability Theorem). Its name is the standard
complex structure and it is trivially obtained by having each ellipse E(u) be a circle. Further-
more, a quasiconformal map preserves the standard complex structure if and only if it is a
conformal map.

Definition 2.5.19. (Standard complex structure) Let U ⊂ C be a domain and TU its tangent
bundle. The almost complex structure σ0 such that µ0(u) = 0, for any u ∈ U is known as the
standard complex structure.

The usual way to construct a non-trivial almost complex structure is by using pullback
of quasiconformal maps. Before introducing pullback, we state formally the existence of the
partial derivatives of quasiconformal maps a.e (see [BF14, Corollary 1.16]).

Proposition 2.5.20. Let U be a domain. If φ : U → C is a quasiconformal map, then
∂zφ(z) 6= 0 almost everywhere. Moreover, Jacφ(z) > 0 almost everywhere.

Next we introduce the pullback of an almost complex structure by a quasiconformal map
φ : U → V . The preimage of a set of measure zero through a quasiconformal map is also a set
of measure zero. Moreover, because of Proposition 2.5.20, Duφ is well defined and invertible
almost everywhere. It follows that if U is a domain and σ is an almost complex structure in
V , the following definition of pullback of σ by φ is well defined almost everywhere in U .

Definition 2.5.21. (Pullback of an almost complex structure by a quasiconformal map) Let
U, V ⊂ C be domains. Let φ : U → V be a quasiconformal map and let σ be an almost
complex structure on V . The pullback of σ by φ is the almost complex structure σ′ defined
on U which associates, to almost every u ∈ U , the infinitesimal ellipse

σ′ := (Duφ)−1(Eφ(u)).

Remark 2.5.22. If µ is the Beltrami coefficient of the almost complex structure σ, the ex-
pression of pullback by a quasiconformal map φ is

φ∗µ(u) =
∂zφ(u) + µ(φ(u))∂zφ(u)

∂zφ(u) + µ(φ(u))∂zφ(u)
.
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Note that if σ0 is the standard structure (µ0 ≡ 0), the expression of the pullback is

φ∗µ0(u) =
∂zφ(u)

∂zφ(u)
,

which highlights the connection between quasiconformal maps and the Beltrami equation (see
2.1).

Remark 2.5.23. If f is a conformal map, then the expression of the pullback further simplifies
to

f∗µ(u) = µ(f(u))
∂zf(u)

∂zf(u)
.

Therefore, pullback by conformal (1−quasiconformal) maps only rotates the corresponding
ellipse.

The families of maps that we study are rational maps, that is, the maps holomorphic
on the Riemann sphere. We now extend our definition of quasiconformal maps to Riemann
surfaces.

Definition 2.5.24. (Quasiconformal maps on Riemann surfaces) Let S and S′ be two Rie-
mann surfaces, and let φ : S → S′ be a homeomorphism. Then φ is quasiconformal if and
only if there exists a K ≥ 1 so that φ is locally K-quasiconformal when expressed in charts.

We also need to extend Beltrami coefficients, defined on subsets of C, to Beltrami forms,
defined on Riemann surfaces. Keeping in mind that quasiconformal maps were introduced as
solutions to the Beltrami equation (see 2.1), it follows naturally expressing the Beltrami form
as µ(z)dz−1dz (a (−1, 1)-differential).

Definition 2.5.25. (Beltrami form) A Beltrami form µ, also called a Beltrami differential,
on a Riemann surface S is a (−1, 1)-differential on S.

Quasiconformal surgery constructions involve constructing Beltrami forms with specific
properties. We accomplish this by generalizing pullback of quasiconformal maps to Riemann
surfaces.

Definition 2.5.26. (Pullback of Beltrami forms) Let S and S′ be two Riemann surfaces,
and let φ : S → S′ be a quasiconformal mapping. If µ′ is a Beltrami form on S′ then ϕ∗µ′

is defined as the Beltrami form on S, which when expressed in charts fits with the previous
pullback definition.

Sometimes an almost complex structure is preserved under iteration of a map (for instance,
the standard complex structure under iteration of conformal maps). This property is known
as invariance. This is possible in the setting of D+

0 (U, U), the space of continuous orientation
preserving functions f from U onto U which are R-differentiable a.e, have a non-singular
differential Duf a.e. depending measurably on u, and are absolute continuous with respect
to Lebesgue measure (the preimages of sets of measure zero also have measure zero).

Definition 2.5.27. (f -invariant almost complex structure) Let U be an open subset of C
and f : U → U a map in D+

0 (U, U). Let σ be an almost open structure in U with Beltrami
coefficient µ. We say that µ (or σ) is f -invariant if f∗µ(u) = µ(u) for almost every u ∈ U .
We also write f∗σ = σ.
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The Integrability Theorem

Pullback of Beltrami forms allows the generation of new Beltrami forms using a given
quasiconformal map. A natural question arises, whether one may pullback from the standard
complex structure to a given complex structure σ defined on a set U . The Integrability
Theorem (see [AB60]), also known as Measurable Riemann Mapping Theorem, states that
all that is required is for σ to have uniformly bounded dilation. Moreover, it provides a
quasiconformal map φ which is the solution of the Beltrami equation

∂zφ(z) = µ(z)∂zφ(z)

for almost every z ∈ U , where µ is the Beltrami coefficient corresponding to σ. The map φ
integrates µ and it is called an integrating map.

Theorem 2.5.28. (Integrability Theorem-local version)
Let U ⊂ C be an open set such that U ' D (respectively U = C). Let σ be an almost

complex structure on U corresponding to the Beltrami coefficient µ. Suppose the dilatation of
σ is uniformly bounded, that is, K(σ) <∞ or, equivalently, the essential supremum of |µ| on
U is

||µ||∞ = k < 1.

Then, µ is integrable, i.e. there exists a quasiconformal homeomorphism φ : U → D (respec-
tively onto C) which solves the Beltrami equation, i.e. such that

µ(z) =
∂zφ(z)

∂zφ(z)

for a.e. z ∈ U . Moreover, φ is unique up to post-composition with automorphisms of D
(respectively C).

We have stated the Integrability Theorem for subsets of the complex plane. Since the
maps we study are rational maps, defined on the Riemann sphere, we also need the so called
global version of the Integrability Theorem (see [Ahl06]).

Theorem 2.5.29. (Integrability Theorem-global version) Let S be a simply connected Rie-
mann surface and σ be an almost complex structure on S with measurable Beltrami form
µ. Suppose the dilatation of σ is uniformly bounded, i.e. K(σ) < ∞ or, equivalently, the
essential supremum of |µ| on S is

||µ||∞ = k < 1.

Then, µ is integrable, i.e. there exists a quasiconformal homeomorphism φ : S → D (respec-
tively onto C or Ĉ) which satisfies

φ∗µ0 = µ.

If S is isomorphic to D (respectively to C or Ĉ) then φ : S → D (respectively to C or Ĉ) is
unique up to post-composition with automorphisms of D (respectively to C or Ĉ).

Quasiregular maps

The quasiconformal surgery constructions that we will realize involve defining specific Bel-
trami forms, so that the Integrability Theorem can be used. The definition of these Beltrami
forms is done using pullback of so called quasiregular maps. These maps are quasiconformal
everywhere (thus injective), except a discrete set of points.
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Definition 2.5.30. (Quasiregular map) Let U ⊆ C be an open set and K <∞. A mapping
g : U → C is K-quasiregular if and only if g can be expressed as

g = f ◦ φ,

where φ : U → φ(U) is K-quasiconformal and f : φ(U)→ g(U) is holomorphic.

Since quasiregular maps are also in D+
0 (S, S), it follows that we may define pullback under

a quasiregular map as in Definition 2.5.21.

Lemma 2.5.31. Quasiregular mappings and their inverse branches send sets of measure zero
to sets of measure zero. Consequently, the pullback of a Beltrami form defined a.e. by a
quasiregular map is well defined a.e.

Since rational maps of degree d ≥ 2 are not injective, they cannot be quasiconformally
conjugated to a quasiconformal map. We list some properties of quasiregular maps which allow
final step of our surgery constructions: conjugating the quasiregular map with a holomorphic
map.

Lemma 2.5.32. (Weyl’s lemma for quasiregular maps) Let U be a domain of C. If g : U → C
is a quasiregular map such that g∗µ0 = µ0 almost everywhere in U , then g is holomorphic.

Finally, we introduce what is referred to as the Key Lemma for surgery (see [BF14, Lemma
1.39]). This lemma states the properties that a quasiregular map and a Beltrami form must
satisfy, so that a quasiregular map can be quasiconformally conjugated to a holomorphic map.

Lemma 2.5.33. (Key Lemma for surgery) Let S be a Riemann surface isomorphic to C or
Ĉ and let g : S → S be quasiregular. Let µ be a g-invariant Beltrami form on S such that
||µ||∞ := k < 1. Then, there exists a holomorphic mapping f : X → X, where X ∈ {C, Ĉ},
such that g and f are quasiconformally conjugate.

2.6 Polynomial-like mappings

We now recall the basis of the theory of polynomial-like mappings. This theory was introduced
by Douady and Hubbard in [DH85] (see also [BF14, Chapter 7]).

Definition 2.6.1. (Polynomial-like mapping) Let U and V be simply connected domains in
Ĉ, bounded by analytic curves, such that U ⊂ V . If f : U → V is holomorphic and proper of
degree d, then (f ;U, V ) is called a polynomial-like mapping of degree d.

For polynomials, the point z = ∞ is always a superattracting fixed point. Therefore,
partitioning the dynamical plane in the basin of attraction of z =∞ and the filled Julia set,
the set of points which never escape to z =∞, is often useful. An analogous partition is used
for polynomial-like mappings.

Definition 2.6.2. (Filled Julia set of a polynomial-like mapping) The filled Julia set of a
polynomial-like mapping (f ; U, V ) is defined as

Kf :=
⋂
n>0

fn(V ),

i.e. the set of points z ∈ U whose orbits under f never escape the set U . The Julia set Jf is
the boundary of Kf .
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Figure 2.6: The left figure illustrates the dynamical plane of Qc = z2 + c for c ≈ −0.123 +
0.745i, which is called the Douady rabbit. In the right figure we can see the dynamical plane

of N(z) = z2(1+a−2z)
−a+2+2az−3z2

, where a = 0.53725+2.26255i (N(z) is the map obtained by applying
Newton’s method to p(z) = z(z − 1)(z − a)).

By studying the dynamical planes for various families of holomorphic map, one may
find copies of Julia sets of quadratic maps (see Figure 2.6). This is a consequence of the
Straightening Theorem, but first we need to define hybrid equivalence for two polynomial
maps.

Definition 2.6.3. (Hybrid equivalence) Two polynomials f and g in Pold are hybrid equivalent
if there exist neighbourhoods Uf and Ug of Kf and Kg respectively, and a quasiconformal
conjugacy φ : Uf → Ug between f and g, satisfying ∂φ = 0 almost everywhere on Kf .

The following theorem is the cornerstone of understanding the existence of quasiconformal
copies of quadratic maps Julia sets in dynamical planes of other families. The result was
proven by Douady and Hubbard in [DH85] using the theory of polynomial-like mappings.
One of the now several avalaible proofs is also generally used as the standard example of
cut-and-paste quasiconformal surgery construction.

Theorem 2.6.4. (The Straightening Theorem) Let (f ; U, V ) be a polynomial-like mapping
of degree d. Then, the following statements hold:

(a) The polynomial-like mapping (f ; U, V ) is hybrid equivalent to a polynomial P of degree
d.

(b) If Kf is connected, then P is unique up to affine conjugation.

The Mandelbrot set is one of the most famous fractals. One can easily see the small
Mandelbrot-like copies inside the set. By studying many other families of maps, one can
observe Mandelbrot-like copies in the corresponding parameter plane (see Figure 2.7). It has
been proven by Douady and Hubbard that the Mandelbrot-like copies are, in fact, quasi-
conformal copies of the Mandelbrot set. They have accomplished this using the notion of
holomorphic family of polynomial-like mappings, a tool that we will also use in later chapters.
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Figure 2.7: The left figure illustrates the Mandelbrot set. In the right figure we can observe a

quasiconformal copy of the Mandelbrot set, in the parameter plane of N(z) = z2(1+a−2z)
−a+2+2az−3z2

(N(z) is the map obtained by applying Newton’s method to p(z) = z(z − 1)(z − a)).

Definition 2.6.5. (Holomorphic family of polynomial-like mappings) Let Λ be a complex
analytic manifold and F = (fλ;Uλ;Vλ) a family of polynomial-like mappings. Set

V = {(λ, z)|z ∈ Vλ}

U = {(λ, z)|z ∈ Uλ}

f(λ, z) = (λ, fλ(z)).

If F satisfies the following properties:

1. U and V are homeomorphic over Λ to Λ× D;

2. The projection from the closure of U in V to Λ is proper;

3. The map f : U → V is holomorphic and proper;

then F is called a holomorphic family of polynomial-like mappings, which has the property
that all the polynomial-like mappings have the same degree, called the degree of F .

It was Mañé, Sad, and Sullivan who first partitioned the parameter plane of families of
rational maps based on structural stability on a neighbourhood of the Julia set (see [MSS83]).
Douady and Hubbard observed that the J−stability results by Mañé, Sad, and Sullivan also
apply to polynomial-like mappings (see [DH85, Proposition 10]). This is the content of the
next result. Before, we introduce the concept of persistent indifferent periodic point. A point
z0 is called persistent indifferent periodic point if for each neighbourhood V of z0, there exists
a neighbourhood W of λ0 such that, for each λ ∈W , the function Rλ has in V an indifferent
periodic point of the same period.
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Proposition 2.6.6. Let F = {Pλ : U ′λ → Uλ}λ∈Λ be a holomorphic family of polynomial-like
mappings. Let J be the set of parameters λ such that Pλ has a non-persistent periodic point.
Let N = J and R = Λ−N . Then, we have that:

(a) The open set R is dense in Λ;

(b) For any λ0, there exists a neighbourhood W of λ0 in R, a neighbourhood V of Jλ0 in
Uλ0 and an embedding τ : (λ, z)→ (λ, τλ(z)) of W × V into U such that:

(i) τ(λ, z) is holomorphic in λ and quasiconformal in z, with dilatation ration bounded
by a constant independent of λ.

(ii) The image of τ is a neighbourhood of JW = { (λ, z) |λ ∈ W, z ∈ Jλ}, which is
closed in U ∩ (W × C).

(iii) the map τλ0 is the identity of V , and for all λ ∈W we have fλ × τλ = τλ ◦ fλ0.

Observe that R is the set of parameters for which there is J−stability. Indeed, if λ1 and
λ2 belong in the same connected component of R, then the previous results provides a quasi-
conformal conjugacy between Pλ1 and Pλ2 . This conjugacy is defined over a neighbourhood
of the corresponding Julia sets. In particular, J (Pλ2) is a quasiconformal copy of J (Pλ1).



Chapter 3

Achievable connectivities of Fatou
components for a family of singular
perturbations

In the recent decades there has been an increasing interest in studying families of rational
maps usually called singular perturbations. Roughly speaking, a family is called a singular
perturbation if it is defined by a base family (called the unperturbed family and for which
we have a deep understanding of the dynamical plane) plus a local perturbation, that is,
a perturbation which has a significant effect on the orbits of points in some part(s) of the
dynamical plane, but a very small dynamical relevancy on other regions.

Singular perturbations, no matter the concrete formulas, have some common properties
which make their study interesting. On the one hand, the degree of the unperturbed family
is smaller than the degree of the perturbed one. Consequently, one should expect richer
dynamics for singular perturbations than for the unperturbed maps. On the other hand,
most of this new freedom arising from the perturbation may be captive of the dynamical
properties of the unperturbed family. The balance between these two scenarios has become
very successful in finding new dynamical phenomena.

The relation between the topology of the dynamically invariant sets (Fatou and Julia set)
and the behaviour of the critical orbit(s) is an important issue when studying the dynamical
plane of a particular rational map. A paradigmatic example of this is the Dichotomy Theorem
for the quadratic family. In this way, singular perturbations are somehow a perfect scenario
to observe new phenomena for the invariant sets with respect to the unperturbed maps,
for which we usually observe a tame topology. Indeed, the main goal of this chapter is to
investigate in this direction and to prove that for a certain family of singular perturbations we
can construct examples for which, in the same dynamical plane, there are Fatou components
with given arbitrarily high connectivities.

The connectivity of a domain D ⊂ Ĉ is defined as the number of connected components
of its boundary. It is known that periodic Fatou components have connectivity 1, 2, or ∞.
Indeed, Siegel disks have connectivity 1, Herman rings have connectivity 2, and immediate
basins of attraction have connectivity 1 or ∞. Preperiodic Fatou components can have finite
connectivity greater than 2. The first such example, with connectivities 3 and 5, was presented
in [Bea91]. Moreover, for any given n ∈ N, there are examples of rational maps with Fatou
components of connectivity n. These examples can either be obtained by quasiconformal

37
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surgery (see [BKL91]) or by giving explicit families of rational maps (see [QG04] and [Ste93]).
However, the degree of the rational maps obtained in all previous examples grows rapidly
with n. To our knowledge, the first example of rational map whose dynamical plane contains
Fatou components of arbitrarily large finite connectivities was presented in [Can17] (see also
[Can18]) by using singular perturbations. However, in these papers it is not shown which
precise connectivities can actually be attained. The goal of this chapter is to study the
attainable connectivities for a wider family of singular perturbations which includes the ones
studied in [Can17, Can18]. We also want to remark that while this work was being prepared
we knew that, independently, professor Hiroyuki has obtained another family of rational maps
with Fatou components of arbitrarily large connectivity [Hir].

Singular perturbations of rational maps were introduced by McMullen in [McM88]. He
proposed the study of the family

Qn,d,λ(z) = zn +
λ

zd
, (3.1)

where n, d ≥ 2 and λ ∈ C, |λ| small. Observe that in (3.1) the unperturbed map is the
simplest possible: zn. He considered the case n = 2 and d = 3 and he proved that if
|λ| is small enough then the Julia set is a Cantor sets of quasicircles (the result actually
holds for n and d satisfying 1/n + 1/d < 1 (compare [DLU05])). Later, Devaney, Look,
and Uminsky [DLU05] considered (3.1) as a λ-family of rational maps and they extended
McMullen’s result by proving the Escape Trichotomy. More specifically, they showed that if
all critical points belong to the basin of attraction of infinity then the Julia set is a Cantor
set, a Sierpinski carpet, or a Cantor set of quasicircles (McMullen’s case). The proof relies on
the fact that there is a symmetry in the dynamical plane which implies that there is a unique
free critical orbit (the symmetry forces all critical points to follow symmetric orbits). Other
models similar to (3.1) have also been considered. For instance, in [BDGR08, GMR13] the
authors consider singular perturbations of polynomials of the form zn + c, c ∈ C, choosing c
appropriately. Those examples have shown Julia and Fatou sets with new and rich topology,
but the connectivity of the Fatou components is kept as 1, 2 or ∞.

The examples mentioned in the previous paragraph are done perturbing maps with no
free critical points: one or more poles are added to superattracting cycles which contain no
critical points, other than the critical points of the cycle, in their basins of attraction. A next
natural step is to consider singular perturbations of maps with free critical points. A good
candidate for such a perturbation is the family of Blaschke products

Bn,a(z) = zn
z − a
1− az

, where a ∈ C and n ≥ 2.

See [CFG15] for an introduction to the dynamics of these maps for n = 3. If a belongs to the
punctured unit disk D∗ := D \ {0}, the maps Bn,a restrict to automorphisms of the unit disk
whose dynamical plane is trivial. Indeed, its Fatou set consists of two invariant components
given by the immediate basin of attraction A∗(0) of z = 0 (the unit disk) and the immediate
basin of attraction A∗(∞) of z =∞ (the complement of the closed unit disk). Their common
boundary component, the unit circle, is the Julia set of these maps. Moreover, if a ∈ D∗ the
map Bn,a has only two simple critical points c− ∈ A∗(0) and c+ ∈ A∗(∞), other than the
superatracting fixed points z = 0 and z = ∞. In [Can17, Can18], Canela studied the family
of singular perturbations of the maps Bn,a given by

Bn,d,a,λ(z) = zn
z − a
1− az

+
λ

zd
,
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where a ∈ D∗ and λ ∈ C∗ := C \ {0}, for n = 3 and d = 2. Compared to McMullen’s singular
perturbations, these maps can present a much richer dynamics since their free critical points
(which come from the the singular perturbation and the continuous extension of c±) are not
tied by any kind of symmetry. Despite that, in [Can17] it was proven that if |λ| is small enough
the family B3,2,a,λ(z) is essentially unicritical: all critical points but the continuous extension
c−(λ) of c− belong to the basin of attraction of infinity A(∞). In that case, if c−(λ) belongs
to a Fatou component in A(∞) which surrounds z = 0, the dynamical plane has Fatou
components of arbitrarily large finite connectivity. The actual existence of parameters for
which this actually happens was proven in [Can18]. We want to point out that the same
results can be proven for n, d ≥ 2 such that 1/n + 1/d < 1. In Figure 3.1 we illustrate the
dynamical plane of Bn,d,a,λ(z) for a = 0.5, d = 3, and different values of n and λ.

The goal of this chapter is to extend the results in [Can17, Can18] to a wider family of
singular perturbations and to study which connectivities are attainable for such family. With
this aim we consider the family of degree n+ 1 rational maps given by

Sn,a,Q(z) =
zn(z − a)

Q(z)
, (3.2)

where n ≥ 2, a ∈ C∗, and Q is a polynomial of degree at most n, with Q(0)Q(a) 6= 0. On the
one hand it is clear that the family Sn,a,Q contains the family Bn,a. On the other hand it is
worth to be noticed that Sn,a,Q also includes the family

Mn,a(z) = zn(z − a),

where n ≥ 2 and a ∈ C. This family was first introduced by Milnor in 1991 (see [Mil09])
when studying cubic polynomials (n = 2) and was later studied by Roesch [Roe07] for n ≥ 2.
If a 6= 0, these maps have z = 0 and z =∞ as superattracting fixed points of local degree n
and n+1, respectively. Moreover, they have a unique free critical point ca 6= 0 and the global
phase portrait settles down on its dynamical behaviour. It is easy to see that, if |a| is small
enough, ca belongs to the immediate basin of attraction of z = 0 and the Julia set consists
of a quasicircle which separates the immediate basins of attraction of z = 0 and z = ∞ (see
Corollary 3.1.2). In this sense, for |a| small the family Mn,a can be understood as a simplified
version of Bn,a, |a| < 1, where there is no free critical point in A∗(∞) but the Julia set is a
quasicircle instead of a circle.

We now turn to the unperturbed family Sn,a,Q. Inspired by the work in [Can17, Can18]
we will impose the following conditions to be satisfied for the maps in Sn,a,Q.

(a) The point z = 0 is a superattracting fixed point of degree n of Sn,a,Q.

(b) The fixed point z =∞ is (super)attracting. In particular the coefficient of zn of Q, say
bn, satisfies 0 ≤ |bn| < 1.

(c) There are exactly two Fatou components: the immediate basins of attraction A∗(0) and
A∗(∞) of z = 0 and z =∞, respectively.

Remark 3.0.1. We can deduce the following observations from the above conditions. Since
the maps Sn,a,Q have degree n+ 1, the immediate basins of attraction are mapped onto them-
selves with degree n + 1 and, hence, each of them contains exactly n critical points counting
multiplicity. In particular, the basin of attraction of z = 0 (which is a critical point of multi-
plicity n− 1) contains a simple critical point ν0 6= 0.
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Figure 3.1: Dynamical planes of the family Bn,d,a,λ(z) for d = 3. The top-left figure corre-
sponds to n = 2 and λ = 2 · 10−8; the top-right corresponds to n = 3 and λ = −5 · 10−8; the
bottom-left figure corresponds to n = 4 and λ = −6.3 · 10−9; and bottom-right corresponds
to n = 5 and λ = −1.2 · 10−10. In all cases we can see the triply connected regions (where
the critical point νλ lies) and their eventual preimages, which are Fatou components with
increasing connectivity.
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Once the unperturbed family has been described, we now consider the singular perturba-
tion

Sn,d,λ(z) = Sn,a,Q(z) +
λ

zd
, λ ∈ C∗, d ≥ 2. (3.3)

Notice that to simplify notation we do not specify the dependence on a and Q of the family
Sn,d,λ. Notice also that the family Sn,d,λ includes the family Bn,d,a,λ. It follows immediately
that all maps Sn,d,λ have degree n + d + 1 and that for λ 6= 0 the point z = 0 is a pole of
degree d. We will say that Sn,d,λ satisfies (a), (b), and (c) if Sn,a,Q satisfies the conditions
(a), (b), and (c) explained above. Analogously to the condition needed to obtain a Cantor
set of quasicircles for McMullen’s family (see [DLU05]), we have to add a fourth condition to
the family:

(d) The numbers n, d ≥ 2 are such that 1
n + 1

d < 1. In other words, we exclude n = d = 2.

Since the critical points are not tied by any relation, for |λ| big the dynamics can be very
rich. Despite that, if |λ| is small the family is essentially unicritical. Indeed, there exists a
constant C > 0 such that if |λ| < C, λ 6= 0, the following hold (see Proposition 3.1.8):

� The continuous extensions of the n critical points which belong to the immediate basin
of attraction A∗0(∞) of z = ∞ before perturbation belong to the immediate basin of
attraction A∗λ(∞) of z =∞ after perturbation. Moreover, A∗λ(∞) is a quasidisk.

� The pole z = 0 belongs to a quasidisk Tλ (usually called trap door) which is mapped
onto A∗λ(∞) under Sn,d,λ.

� The n + d critical points which appear around z = 0 after perturbation belong to a
doubly connected Fatou component Aλ which is mapped onto Tλ under Sn,d,λ.

The previous points actually coincide with the skeleton of the dynamics in the Cantor set
of quasicircles case of McMullen’s family (see [McM88]). This is why the dynamical planes for
this perturbed family resemble the dynamical planes for the Cantor set of quasicircles with
extra decorations (see Figure 3.1 and Figure 3.2). These decorations come from the presence
of the extra critical point νλ, which comes from the continuous extension of the critical point
ν0 that belongs to the basin of attraction of z = 0 before perturbation. This is the only critical
point which may not belong to the basin of attraction Aλ(∞) of z =∞ after perturbation if
|λ| is small. We want to remark that the main difference between Sn,d,λ and the particular
family Bn,d,a,λ is that we allow certain degrees of freedom in the n critical points that lie in
A∗λ(∞). For instance, if the degree of Q is 0, then z = ∞ is a superatracting fixed point of
local degree n. On the other hand, if the degree of Q is n, then z = ∞ is attracting (but
not superattracting) and there are n critical points which move in A∗λ(∞). Also, the shape of
the Julia set before perturbation affects the shape of the Julia set of the perturbed map (see
Figure 3.1 and Figure 3.2). Recall that in the Blaschke case the unperturbed Julia set is the
unit circle.

The goal of this chapter is to analyse the connectivities which can be achieved with these
singular perturbations. The critical point νλ is crucial in order to increase the connectivities
beyond 2. Indeed, if νλ belongs to a preimage Uν of Aλ then the Fatou component Uν is triply
connected. Moreover, if Uν surrounds z = 0 then we can find sequences of iterated preimages
of Uν which increase the connectivity with every iteration. The next theorems describe the
connectivities which can be achieved with this process. We denote by Fill(Aλ) the union of
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Figure 3.2: Left figure illustrates the dynamical planes of Mn,a for n = 2 and a = (0.9 +
0.6i). Right picture illustrates the dynamical plane of the (perturbed) family Sn,d,λ when the
unperturbed map is preciselyM2,a, and the perturbation corresponds to d = 3 and λ = −10−7.
We can see in the right figure the triply connected Fatou component which contains νλ and
its eventual preimages with higher connectivity.

the connected component of the complement of Aλ not containing z = ∞ and the annulus
itself.

Theorem A. Let Sn,d,λ satisfying (a), (b), (c), and (d) and let λ 6= 0, |λ| < C. Assume also
that νλ ∈ Uν , where Uν is an iterated preimage of Aλ which surrounds z = 0. Let k be the
minimal number of iterations needed by the free critical point νλ to be mapped into Fill(Aλ).
Let U be a Fatou component of connectivity κ > 2. Then, there exist i, j, ` ∈ N such that
κ = (n+ 1)idjn` + 2 and ` ≤ jk.

In other words, Theorem A is telling us all potential connectivities κ > 2 for a Fatou
component of a map in Sn,d,λ for |λ| sufficiently small; but it is not claiming the existence
of a Fatou component of each (i, j, `)-connectivity. The next result complements Theorem A
and it gives the connectivities that are certainly achieved for any parameter λ as long as |λ|
is sufficiently small and νλ satisfies certain dynamical conditions.

Theorem B. Let Sn,d,λ satisfying (a), (b), (c), and (d) and let λ 6= 0, |λ| < C. Assume
also that νλ ∈ Uν , where Uν is an iterated preimage of Aλ which surrounds z = 0. Let k ≥ 1
be the minimal number of iterations needed by the free critical point νλ to be mapped into
Fill(Aλ). For any given i, j, ` ∈ N such that ` ≤ j(k − 1), there exists a Fatou component U
of connectivity κ = (n+ 1)idjn` + 2.

Remark 3.0.2. Observe that Theorem A is stated for ` ≤ jk, while Theorem B is stated for
` ≤ j(k−1). It can be proven that, depending on the particular orbit of the free critical point,
the case ` = jk may not be achieved.
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In Theorem A and Theorem B the achievable connectivities depend on the minimal number
of iterations k > 0 needed by the free critical point νλ to be mapped into Fill(Aλ). However,
choosing λ appropriately we can make this k as big as desired. Therefore, for any ` and j we
can find λ so that the inequality ` ≤ j(k − 1) is satisfied. From this, we obtain Theorem C.

Theorem C. Let Sn,d,λ satisfying (a), (b), (c), and (d) and let λ 6= 0, |λ| < C. For any
given i, l ≥ 0 and j > 0, there exists a parameter λ such that Sn,d,λ(z) has a Fatou component
of connectivity κ = (n+ 1)idjn` + 2, and a Fatou component of connectivity κ = (n+ 1)i + 2.

The chapter is organised as follows. In Section 3.1 we describe in detail the skeleton of the
dynamical plane of Sn,d,λ satisfying the conditions (a), (b), (c) and (d) for |λ| small enough.
In Section 3.2 we prove Theorems A and B. Finally, in Section 3.3 we prove Theorem C.

3.1 The dynamical plane of the perturbed family Sn,d,λ
Let Sn,d,λ satisfying conditions (a), (b), and (c) described above. This section contains the
main properties of the dynamical plane for parameters belonging to a neighbourhood of λ = 0.
To do so, we first describe the dynamical plane of the unperturbed family Sn,a,Q, that is, when
λ = 0. The next result due to Sullivan provides a sufficient criterion for the Julia set of a
map to be a quasicircle. Its proof involves several quasiconformal surgery constructions as in
the Straightening Theorem (see Theorem 2.6.4, see also [BF14, Theorem 7.4] for the proof).

Theorem 3.1.1. [CG93, Theorem 2.1, page 102] If the Fatou set of a rational map R
contains exactly two Fatou components and the map R is hyperbolic on its corresponding
Julia set J(R), then J(R) is a quasicircle.

We can immediately conclude that the Julia sets of the maps Sn,a,Q are quasicircles.

Corollary 3.1.2. Let Sn,a,Q satisfying (a), (b), and (c). Then, its Julia set is a quasicircle.

We first describe the immediate basin of attraction of z = ∞, which we further denote
by A∗λ(∞), and its boundary. The proof of Proposition 3.1.4 uses the theory of holomorphic
families of polynomial-like mappings introduced by Douady and Hubbard (see Definition 2.6.5
and Proposition 2.6.6).

Remark 3.1.3. Along the chapter, when we say that a compact set moves continuously with
respect to parameters, we use the topology induced by the Hausdorff metric for compact sets.

Proposition 3.1.4. Let Sn,d,λ satisfying conditions (a), (b), and (c). Then, for |λ| small
enough, the following hold:

(i) The Fatou component A∗λ(∞) is mapped onto itself with degree n+ 1.

(ii) The boundary of A∗λ(∞) is a quasicircle that moves continuously with respect to λ.

(iii) The set A∗λ(∞) contains exactly n critical points counting multiplicity. Each critical
point of Sn,d,λ in A∗λ(∞) is a continuous extension of a critical point of Sn,a,Q in A∗(∞).

Proof. Observe that the three statements are trivially satisfied (by definition and Corollary
3.1.2) for the unperturbed family. So this proposition says that this conditions are still true
if the perturbation is small enough. To prove the proposition we show the existence of a
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holomorphic family of polynomial-like maps which ensures the continuous deformation of the
key dynamical objects.

Fix Sn,a,Q and let U be the maximal domain of Bottcher coordinates around z = 0. The
critical point ν0 lies on ∂U ⊂ A∗(0). Let γ be an analytic Jordan curve surrounding the origin
such that γ ∈ U \ Sn,a,Q(U). We now show that the preimage of γ has a unique connected
component. Let A := A(γ, ∂A∗(0)). Notice that A ⊂ A∗(0). Observe that the annulus A
does not include any critical value. By Corollary 2.4.3(i), its preimage A−1 (under Sn,a,Q) is
also an annulus. Since ∂A∗(0) is mapped by Sn,a,Q onto itself with degree n+ 1, A−1 is also
mapped onto A with degree n+ 1. Let γ−1

0 be the connected component of ∂A−1 other than
∂A∗(0). Since A−1 is mapped onto A with degree n + 1 under Sn,a,Q, then γ−1

0 is mapped
onto γ with degree n + 1 under Sn,a,Q. Since Sn,a,Q has (global) degree n + 1, we conclude
that there is no other preimage of γ than γ−1

0 under the map Sn,a,Q.

Let V = Ext(γ) and U0 = Ext(γ−1
0 ). It follows from the construction that U0 is compactly

contained in V and Sn,a,Q|U0 : U0 7→ V is a proper map of degree n+ 1. Therefore, the triple
(Sn,a,Q|U0 ,U0,V) is a degree n + 1 polynomial-like map. We want to extend (for |λ| small
enough) this map to a J -stable holomorphic family of polynomial like mappings. Observe
that the map Sn,d,λ depends analytically on λ for all z ∈ Ĉ \ Dε, where Dε denotes the disk
of radius ε centered at z = 0, for all λ ∈ C and all ε > 0. Recall that Sn,a,Q = Sn,d,0.
Therefore, if |λ| is small enough, the continuous extensions of the n critical points (counting
multiplicity) which lie in A∗(∞) = A∗0(∞) for Sn,a,Q lie in A∗λ(∞) for Sn,d,λ. Moreover, if
|λ| is small enough then there exists a unique connected component γ−1

λ of γ under the map
S−1
n,d,λ which is an analytic Jordan curve. In fact, γ−1

λ is a continuous deformation of γ−1
0 and

it is mapped with degree n + 1 onto γ under Sn,d,λ. Let Uλ = Ext(γ−1
λ ). Decreasing |λ| if

necessary, we can ensure the following. The set Uλ is compactly contained in V and the only
critical points of Sn,d,λ in Uλ are the ones which come from the continuous extension of the
critical points in A∗(∞). Moreover, Sn,d,λ|Uλ : Uλ 7→ V is a proper map of degree n + 1 and
the triple (Sn,d,λ|Uλ ,Uλ,V) is a degree n+ 1 polynomial-like mapping.

Let Λ be an open disk centered at λ = 0 compactly contained in the open set of parameters
for which the previous conditions hold. Then, {(Sn,d,λ|Uλ ,Uλ,V)}λ∈Λ defines a holomorphic
family of polynomial like mappings (see Definition 2.6.5). Let Kλ := {z ∈ Uλ | Snn,d,λ(z) ∈
Uλ for all n ≥ 0} and Jλ = ∂Kλ denote the filled Julia set and the Julia set of the polynomial
like map (Sn,d,λ,Uλ,V), respectively. Notice that K0 = A∗(∞). Notice also that all connected
components of the interior of Kλ are Fatou components of Sn,d,λ. Therefore, since the point
z =∞ belongs to Kλ for all λ ∈ Λ, we conclude that A∗λ(∞) ⊂ Kλ.

To finish the proof, we observe that since all critical points of Sn,d,λ|Uλ belong to A∗λ(∞)
it follows that the holomorphic family of {(Sn,d,λ,Uλ,V)}λ∈Λ is J -stable. In particular, the
Julia sets Jλ are quasicircles which are continuous deformations of J0 = ∂A∗(∞) (see Propo-
sition 2.6.6). Notice that, by Corollary 3.1.2, ∂A∗(∞) is a quasicircle. Since A∗λ(∞) ⊂ Kλ,
we can conclude that ∂A∗λ(∞) = Jλ for all λ ∈ Λ. This proves (ii). Statements (i) and (iii)
follow from the choice of the set of parameters Λ.

The first part of the following lemma describes a neighbourhood of z =∞ which, for |λ|
small enough, always lies in the interior of A∗λ(∞). The second part shows that z = 0 lies in
a preimage of A∗λ(∞), different from it.
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Lemma 3.1.5. Let Sn,d,λ satisfying conditions (a), (b), and (c). Then, for |λ| small enough,
the following happen:

(i) There exists a constant K, which only depends on n, a, and Q, such that z ∈ A∗λ(∞) if
|z| > K.

(ii) Assume that Sn,d,λ also satisfies condition (d). For any constant K1 > 0, if |λ| is small

enough, the disk
{
z ∈ C; |z| < K1|λ|

n
n+d

}
belongs to a Fatou component Tλ. The Fatou

component Tλ is mapped onto A∗λ(∞) and it is different from A∗λ(∞).

Proof. We begin with statement (i). From condition (b) we know that, for fixed Sn,a,Q,
there exists a constant K such that the set {z ∈ C; |z| > K} is compactly contained in the
immediate basin of attraction of ∞. By continuity with respect to λ, for |λ| small enough,
this set is also contained in A∗λ(∞).

For statement (ii), let K1 > 0. Assume that λ is such that (i) is satisfied for the constant

K above. Let z ∈ C such that |z| < K1|λ|
n
n+d . It follows that

|Sn,d,λ(z)| >
∣∣∣∣ λzd
∣∣∣∣− ∣∣∣∣zn(z − a)

Q(z)

∣∣∣∣ > |λ|1− nd
n+d

Kd
1

− |λ|
n2

n+dKn
1 (|a|+ 1)

M
=: C1(λ) + C2(λ).

Notice that C2(λ) tends to 0 as λ tends to 0. Because of assumption (d), C1(λ) tends to

∞ as λ tends to 0. Shrinking |λ| if necessary, if |z| < |λ|
n
n+dK1, then |Sn,d,λ(z)| > K. We

conclude that the set
{
z ∈ C; |z| < K1|λ|

n
n+d

}
belongs to a Fatou component. This Fatou

component contains z = 0, which is mapped to ∞ with degree d. By continuity with respect
to λ and Proposition 3.1.4, ∂A∗λ(∞) is a quasicircle which surrounds z = 0. It follows that
A∗λ(∞) does not contain the origin and z = 0 belongs to a preimage of A∗λ(∞), different from
A∗λ(∞), which we denote by Tλ.

Recall that each map of the perturbed family has global degree n + d + 1. Hence, it has
2(n+ d) critical points (counting multiplicity). By Proposition 3.1.4, n+ d− 1 of them lie in
A∗λ(∞) ∪ {0}. By continuity with respect to λ, there is a (simple) critical point νλ which is
the continuous extension of the critical point ν0 of Sn,a,Q in A∗(0). Each map has n+ d+ 1
zeros, one of which, say wλ, corresponds to the continuous extension of w0 = a. We now give
a description of the position of the remaining n+ d critical points and the n+ d preimages of
z = 0 for Sn,d,λ.

Lemma 3.1.6. Let Sn,d,λ satisfying conditions (a), (b), and (c). Let ξ = e
2πi
n+d . Then, for |λ|

small enough, there exist n+ d free critical points, cλ, ξj , and n+ d zeros, zλ, ξj , given by

cλ, ξj = ξj
(
dQ(0)

−na

) 1
n+d

λ
1

n+d + o
(
λ

1
n+d

)
,

zλ, ξj = ξj
(
Q(0)

a

) 1
n+d

λ
1

n+d + o
(
λ

1
n+d

)
,

where j ∈ {0, 1, . . . , n+ d− 1}.
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Proof. In order to avoid problems with the determinations of the n+d roots, within the proof
we assume that λ is of the form λ = re2πiθ where r > 0 and θ ∈ [0, 1) is fixed. In particular,
when we write λ→ 0 we are taking a radial limit by making r → 0.

Let us start with the zeros. Notice that all the zeros of Sn,d,λ (except for wλ) must converge
to z = 0 when λ tends to 0. The zeros of Sn,d,λ(z) are the solutions of

zn+d(z − a) = −λQ(z).

Since a is away from z = 0, there are n + d zeros bifurcating from z = 0, for |λ| small
enough. They are the fixed points of n+ d operators

Tλ, ξj (z) = ξj
(
Q(z)

a− z

) 1
n+d

λ
1

n+d = Rj(z)λ
1

n+d ,

where j ∈ {0, 1, . . . , n+ d− 1}. Notice that Tλ, ξj are well-defined for |z| small, since Q(0) 6=
0. Observe that in a sufficiently small neighbourhood of z = 0, Rj(z) is holomorphic and
bounded (notice that Rj(0) 6= 0), so Tλ, ξj (z) → 0 as λ → 0. We can approximate zλ, ξj by

Tλ, ξj (0) = ξj
(
Q(0)
a

) 1
n+d

λ
1

n+d . Indeed,∣∣zλ, ξj − Tλ, ξj (0)
∣∣ =

∣∣Tλ, ξj (zλ, ξj )− Tλ, ξj (0)
∣∣ ≤ sup

ω∈[0,z
λ, ξj

]
|T ′λ, ξj (ω)||zλ, ξj − 0|

= |λ|
1

n+d sup
ω∈[0,z

λ,ξj
]
|R′j(ω)||zλ, ξj |.

For |λ| small enough, there is no pole of R′j in a neighbourhood of z = 0 containing the line
segment [0, zλ, ξj ], so it is bounded by a constant, say K2. It follows that

1

|λ|
1

n+d

∣∣∣∣∣zλ, ξj − ξj
(
Q(0)

a

) 1
n+d

λ
1

n+d

∣∣∣∣∣ ≤ K2|zλ, ξj |.

Finally, since lim
λ→0

K2

∣∣zλ, ξj ∣∣ = 0, it follows that

zλ, ξj = ξj
(
Q(0)

a

) 1
n+d

λ
1

n+d + o
(
λ

1
n+d

)
.

It can be shown analogously that the n+ d free critical points are solutions of the equation

1

Q2(z)

[
(n+ 1)znQ(z)− zn+1Q′(z)− anzn−1Q(z) + aznQ′(z)

]
− λd

zd+1
= 0.

As before, we write the operators Sλ, ξj as

Sλ, ξj (z) = ξj
(

dQ2(z)

(n+ 1)zQ(z)− anQ(z)− z2Q′(z) + azQ′(z)

) 1
n+d

λ
1

n+d ,

which have the critical points of Sn,d,λ as fixed points. The argument made is identical since
Q(0) 6= 0, so Sλ, ξj are holomorphic in the neighbourhood of z = 0. Finally, the critical points
of the perturbation map are of the form

cλ, ξj = ξj
(
dQ(0)

−na

) 1
n+d

λ
1

n+d + o
(
λ

1
n+d

)
.
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Next we show that there exists a straight annulus (we will show later that it belongs to a
doubly connected Fatou component) which is mapped into Tλ under Sn,d,λ. Let

c1 =
1

2
min

{∣∣∣∣dQ(0)

na

∣∣∣∣ 1
n+d

,

∣∣∣∣Q(0)

a

∣∣∣∣ 1
n+d

}
and c2 = 2 max

{∣∣∣∣dQ(0)

na

∣∣∣∣ 1
n+d

,

∣∣∣∣Q(0)

a

∣∣∣∣ 1
n+d

}
.

Lemma 3.1.7. Let Sn,d,λ satisfying conditions (a), (b), (c), and (d). Then, for |λ| small
enough, the straight annulus

Ωλ := A

(
S
c1|λ|

1
n+d

,S
c2|λ|

1
n+d

)
(3.4)

contains the points cλ, ξj and zλ, ξj introduced in Lemma 3.1.6 and it is mapped into Tλ under
Sn,d,λ.

Proof. The first part of the statement follows directly from the algebraic expression of the
points cλ, ξj and zλ, ξj in Lemma 3.1.6. The rest of the proof is devoted to show that
Sn,d,λ (Ωλ) ⊂ Tλ.

Let m = min{|z|, Q(z) = 0} and let M = min{|Q(z)|, |z| < m/2} (notice that M > 0
since z = 0 is not a root of Q). Let z ∈ Ωλ. For |λ| small enough we have

|Sn,d,λ(z)| < cn2 |λ|
n
n+d (|a|+ 1)

M
+
|λ|

n
n+d

cd1
.

We can rewrite this as |Sn,d,λ(z)| < K1|λ|
n
n+d , where K1 depends on Q, c1 and c2, but it does

not depend on z and λ. By Lemma 3.1.5, for |λ| small enough, the disk centered at z = 0

and of radius K1|λ|
n
n+d lies in Tλ, as desired.

In the next proposition we describe the skeleton of the dynamical plane for |λ| small
(compare Figure 3.3). Recall that wλ is the zero of Sn,d,λ which is the continuous extension
of w0 = a and νλ is the continuous extension of the critical point ν0 in A∗(0) of Sn,a,Q.

Proposition 3.1.8. Let Sn,d,λ satisfying conditions (a), (b), (c), and (d). Then, there exists
a constant C = C(a,Q, n, d) such that if λ 6= 0 and |λ| < C the following statements are
satisfied:

(i) The Fatou component Tλ is simply connected and it is mapped with degree d onto A∗λ(∞)
under Sn,d,λ. There are no other preimages of A∗λ(∞).

(ii) There exists a Fatou component Aλ which is doubly connected and contains exactly n+d
simple critical points, given by cλ, ξj , and n + d zeros, given by zλ, ξj . Moreover, Aλ is
mapped with degree n+ d onto Tλ and surrounds the origin.

(iii) Let Aout be the annulus bounded by Aλ and ∂A∗λ(∞). There exists a Fatou component
Dλ ⊂ Aout which is simply connected, is mapped with degree 1 onto Tλ, and contains
wλ.

(iv) The critical point νλ lies in Aout \Dλ.

(v) There are no preimages of Tλ other than Dλ and Aλ.
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Tλ

Aλ

Ain

Aout

Dλ

νλ

A∗λ(∞)

Figure 3.3: Partition of the dynamical plane with respect toA∗λ(∞), Aλ, Tλ, andDλ, described
in Proposition 3.1.8. Blue and purple points denote zeros and critical points, respectively.

(vi) Let Ain be the annulus bounded by ∂Tλ and Aλ. Then, Ain is mapped onto the annulus
A(∂Tλ, ∂A∗λ(∞)) with degree d. The set Aout \ Dλ is also mapped onto the annulus
A(∂Tλ, ∂A∗λ(∞)), with degree n+ 1.

Proof. Before proving the statements of the proposition we study the location and distribution
of the critical points of Sn,d,λ.

By Proposition 3.1.4, A∗λ(∞) is simply connected (in the Riemann sphere) and it is mapped
onto itself with degree n+1. Since the global degree of the map Sn,d,λ is n+d+1, there exist
exactly d preimages of ∞ outside A∗λ(∞), counting multiplicity. Since z = 0 is mapped to ∞
with degree d, there exist no other preimages of ∞ (different from the ones in A∗λ(∞) and
z = 0). Moreover, Tλ is mapped with degree d onto A∗λ(∞) (observe that up to this point we
still do not know if Tλ is simply connected).

Let Ωλ be the annulus defined in (3.4). By Lemma 3.1.7, we know that Sn,d,λ(Ωλ) ⊂ Tλ
and Sn,d,λ(Tλ) ⊂ A∗λ(∞). Thus, Ωλ ∩ Tλ = ∅ and Ωλ is part of a multiply connected Fatou
component which is a preimage of Tλ. We denote this Fatou component by Aλ (observe that
up to this point we still do not know if Aλ is doubly connected).

We claim that wλ and νλ do not belong to Tλ ∪ Aλ. To see the claim we will prove that,
for sufficiently small values of |λ|, wλ and νλ belong to the annulus bounded by ∂A∗λ(∞) and
Aλ, denoted in what follows by Aout. Let γ be a smooth Jordan curve which separates z = 0
from ν0 and w0, and such that S2

n,a,Q(γ) is a Jordan curve that surrounds z = 0 and lies in
Int(γ). Its existence follows from the Bötcher coordinates of the fixed point z = 0 for the
unperturbed map. Notice that, by construction, γ does not depend on λ and it has a definite
distance to z = 0. By continuity with respect to λ, for |λ| small enough, S2

n,d,λ(γ) ⊂ Int(γ).

Since S2
n,d,λ(Aλ) ⊂ A∗λ(∞) we conclude that γ ∩Aλ = ∅. Shrinking |λ|, if necessary, we claim

that γ lies outside Fill (Ωλ). Indeed, according to (3.4) the annulus Ωλ collapses to the origin
as λ → 0 while γ keeps in a definite distance to z = 0. Finally, notice that for |λ| small νλ
and wλ remain as close as we want to ν0 and w0, respectively. Therefore, γ separates νλ and
wλ from Tλ and Aλ. Let C be a constant such that if |λ| < C all the above is true. Now we
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are ready to prove the statements.

Since Tλ contains only one critical point at z = 0 with multiplicity d− 1 and it is mapped
with degree d onto the topological disk A∗λ(∞), it follows from the Riemann-Hurwitz formula
that Tλ is simply connected. This proves (i). Similarly, Aλ contains exactly n + d simple
critical points and it is mapped with degree n + d onto the topological disk Tλ. Thus, it is
doubly connected by Riemann-Hurwitz formula. This proves (ii).

The point wλ is a preimage of z = 0 which lies in Aout, so it must belong to a Fatou
component, denoted by Dλ, different from Tλ and Aλ. Moreover, Sn,d,λ (Dλ) = Tλ. Since wλ
is the only (simple) preimage of z = 0 in Dλ we conclude that Dλ is mapped with degree 1
onto Tλ and is a conformal copy of Tλ. In particular, νλ /∈ Dλ and all preimages of z = 0
belong to either Aλ and Dλ. This proves (iii), (iv), and (v).

Finally, to prove statement (vi) we just notice that Sn,d,λ|Ain : Ain → A(∂Tλ, ∂A∗λ(∞)) is
a proper map. Since its degree is accomplished on the boundaries and ∂Tλ is mapped onto
∂A∗λ(∞) with degree d, it follows that Ain is mapped onto its image with degree d.

We will now show that the map Sn,d,λ is quasiconformally conjugated with a finite gen-
eralized Blaschke product in a specific annulus. We start by introducing generalized Blaschke
products and stating a few properties. Let β∞(z) := 1

z , and for a ∈ C, let βa(z) := 1−a
1−a

z−a
1−az

be the Möbius maps which map the unit circle onto itself, fix z = 1, and send z = a to z = 0.

Definition 3.1.9. (generalized Blaschke product) Let α ∈ [0, 1) and |ai| ∈ D, for all i ∈
{1, . . . , d}. Then, the rational map

B(z) = e2πiα
d∏
i=1

βai(z),

is called a degree d Blaschke product. If {ai}i ⊂ (Ĉ \ ∂D), the map B is called a degree d
generalized Blaschke product.

Generalized Blaschke products are a well studied topic of complex dynamics. This holds
true because they are precisely the maps which map the unit circle onto itself. Therefore,
they are a natural candidate for conjugacies of maps with Fatou components with invariant
boundary.

Lemma 3.1.10. [Mil06, Lemma 15.5] A rational map of degree d maps the unit circle onto
itself if and only if it is a generalized Blaschke product.

Generalized Blaschke products are symmetric with respect to the unit circle. This result
follows directly from the Schwarz Reflection Principle since generalized Blaschke products
map the unit circle onto itself.

Lemma 3.1.11. Let B be a generalized Blaschke product, and let I(z) = 1
z denote the

inversion with respect to the unit circle. Then, B is symmetric with respect to ∂D, that is,
B(z) = I ◦B ◦ I(z).

We now prove that Sn,d,λ is conjugate to a finite Blaschke product on the annulus Aout

introduced in the previous proposition.
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Proposition 3.1.12. Let Sn,d,λ satisfying (a), (b), (c), and (d). Let λ 6= 0, |λ| < C. Then,
there exist an analytic Jordan curve Γ ⊂ Aλ which surrounds z = 0, b ∈ D∗, θ ∈ [0, 1), and a
quasiconformal map ϕ : Ĉ→ Ĉ such that Rb,θ ◦ ϕ = ϕ ◦ Sn,d,λ on A(Γ, ∂A∗λ(∞)), where

Rb,θ(z) = e2πiθzn
z − b
1− bz

is a Blaschke product.

Proof. We claim that there exists an analytic Jordan curve Γ ⊂ Aλ which surrounds z = 0
and the n + d critical points cλ, ξj and which is mapped with degree n to its image under
Sn,d,λ.

To see the claim let γ be an analytic Jordan curve in the interior of Tλ surrounding z = 0
and the n+d critical values, images of the critical points cλ, ξj . Clearly, the annulus A(γ, ∂Tλ)
contains no critical values and, from the Riemann-Hurwitz formula (compare Corollary 2.4.3),
any connected component of its preimage is an annulus bounded by preimages of γ and ∂Tλ.
It follows from Proposition 3.1.8 that two (among a total of three) of those preimages are
disjoint annuli in Aλ, one associated to the internal boundary of Aλ and another associated
to the external one. Denote them by Gin and Gout. By construction, Sn,d,λ restricted to those
two preimages is a proper map. We know that Sn,d,λ restricted to Aλ is proper of degree n+d
(see Proposition 3.1.8 (ii)) while Sn,d,λ restricted to Gin is proper of degree d (notice that the
degree is achieved in the boundary, compare with Proposition 3.1.8(vi)). All together implies
that Sn,d,λ restricted to Gout is proper of degree n. Let Γ be the inner boundary of Gout.
Then, Γ is an analytic Jordan curve, it maps to γ with degree n, and it surrounds the origin
as well as all critical points cλ, ξj (and zeros zλ, ξj ), as desired.

The remaining part of the proof is analogous to the one of [Can18, Proposition 3.1].
The strategy is to use a similar construction to the one of the Straightening Theorem for
polynomial-like mappings (compare [BF14, Theorem 7.4]) to glue a dynamics conjugated to
the one of the map z → zn inside the curve γ, keep Sn,d,λ outside Γ, and interpolate using
a quasi-conformal map in the annulus A (γ,Γ). In this way we obtain a quasiregular map F
of the Riemann sphere which has z = 0 as superattracting fixed point of local degree n (F is
actually holomorphic around z = 0). The map F coincides with Sn,d,λ on Ext(Γ), all points
in Int(∂A∗λ(∞)) converge to z = 0 under iteration of F , and it maps Int(∂A∗λ(∞)) onto itself
with degree n+ 1 (since we have that z = 0 maps to itself with degree n and wλ is the only
further preimage of z = 0).

The map F is conjugate to a holomorphic function f via a quasiconformal ϕ map fixing
z = 0. The basin of attraction of z = 0 under f is given by ϕ(Int(∂A∗λ(∞))). Since the basin
of attraction is simply connected and bounded by a quasicircle, f is conjugate to a Blaschke
product in ϕ(Int(∂A∗λ(∞))) (use a Rieman mapping to send ϕ(Int(∂A∗λ(∞))) onto D and
apply Lemma 3.1.10). Observe that ϕ(∂A∗λ(∞)) = ∂D. Since z = 0 is superattracting of local
degree n and f maps ϕ(Int(∂A∗λ(∞))) onto itself with degree n+ 1, the Blaschke product has
the form Rb,θ = e2πiθzn z−b

1−bz , where b ∈ D∗ and θ satisfies |e2πiθ| = 1. Since F coincides with

Sn,d,λ in A(Γ, ∂A∗λ(∞)), it follows that Sn,d,λ is conjugate to Rb,θ in A(Γ, ∂A∗λ(∞)).

It will be crucial in what follows to have a deep understanding of the preimages of curves
which surround the origin z = 0 (as well as Fatou components). The following proposition
describes this in a precise way.
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Proposition 3.1.13. Let Sn,d,λ satisfying (a), (b), (c), and (d). Let λ 6= 0, |λ| < C. Let
γ ⊂ A(∂Tλ, ∂A∗λ(∞)) be a Jordan curve which surrounds z = 0. Then, S−1

n,d,λ(γ) contains a

single connected component in Ain, which surrounds z = 0 and is mapped with degree d onto
γ. The other components of S−1

n,d,λ(γ) lie in Aout and, depending on the location of the free
critical value, i.e. Sn,d,λ(νλ), one of the following holds:

(i) If Sn,d,λ(νλ) ∈ Int(γ), then S−1
n,d,λ(γ) has a single connected component in Aout. Indeed,

it is a Jordan curve which surrounds z = 0 and it is mapped with degree n + 1 onto γ
under Sn,d,λ.

(ii) If Sn,d,λ(νλ) ∈ γ, then S−1
n,d,λ(γ) has a single connected component in Aout consisting of 2

Jordan curves intersecting precisely at νλ. One is a Jordan curve γ−1
0 which surrounds

z = 0, but not wλ, and it is mapped with degree n onto γ. The other is a Jordan curve
γ−1
w which surrounds wλ, but not z = 0, and it is mapped with degree 1 onto γ. The

curve γ−1
0 does not surround γ−1

w .

(iii) If Sn,d,λ(νλ) ∈ Ext(γ), then S−1
n,d,λ(γ) has 2 disjoint components in Aout. One is a Jordan

curve γ−1
0 which surrounds z = 0, but not wλ, and it is mapped with degree n onto γ.

The other is a Jordan curve γ−1
w which surrounds wλ, but not z = 0, and it is mapped

with degree 1 onto γ. The curve γ−1
0 does not surround γ−1

w .

Proof. We first notice that given any Jordan curve in A(∂Tλ, ∂A∗λ(∞)) all preimages should
be located either in Ain or Aout since Tλ, Aλ and A∗λ(∞) are mapped outside A(∂Tλ, ∂A∗λ(∞)).
Moreover, by Proposition 3.1.8(vi) any Jordan curve in A(∂Tλ, ∂A∗λ(∞)) should have preim-
age(s) in Ain as well as in Aout.

Let γ ∈ A(∂Tλ, ∂A∗λ(∞)) be a Jordan curve surrounding the origin. First we study the
topology of the preimage(s) of γ in Ain. By Proposition 3.1.8, γ has exactly d preimages in
Ain. Let γ0 be one of the preimages of γ in Ain. The goal is to show that in fact γ0 is mapped
by Tλ with degree d, so there are no other preimages whatsoever. Observe that Int (γ0) should
contain either a pole, a zero, or z = 0, otherwise it cannot be mapped to γ which surrounds
z = 0. Therefore, γ0 surrounds z = 0. Take the annulus A(γ, ∂A∗λ(∞)) and consider its

preimage in Ain. Since the only preimage of ∂A∗λ(∞) in Ain is ∂Tλ and Ain contains no
critical point, the preimage should be the annulus A(∂Tλ, γ0). The map Sn,d,λ|A(∂Tλ,γ0) is
proper of degree d since Sn,d,λ maps ∂Tλ onto ∂A∗λ(∞) with degree d. We conclude that γ0

is mapped with degree d onto γ, as desired.

The proof of statements (i)-(iii) about the topology of the preimage(s) of γ in Aout is
analogous to the one of [Can18, Proposition 3.3] by using that Sn,d,λ is conjugate to the
Blaschke product Rθ,b in Aout (see Proposition 3.1.12).

Remark 3.1.14. It follows from Proposition 3.1.13 that each Fatou component different from
Tλ and A∗λ(∞) which surrounds z = 0 (and so it contains a Jordan curve which surrounds
z = 0) has exactly two preimages which also surround z = 0. One of them lies in Ain and the
other lies in Aout.

The following lemma shows that Fatou components which do not surround the origin do
not have preimages which surround it.
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Lemma 3.1.15. Let Sn,d,λ satisfying (a), (b), (c), and (d). Let λ 6= 0, |λ| < C. Let U be a
multiply connected Fatou component. If U does not surround z = 0, then no component of its
preimage S−1

n,d,λ(U) surrounds z = 0.

Proof. Suppose that U does not surround z = 0 and let V be a preimage of U which surrounds
z = 0. Let U ′ = Fill(U) and V ′ the preimage of U ′ which contains V . Observe that
U ′ ⊂ A(∂Tλ, ∂A∗λ(∞)). Since V ′ ⊂ Ain ∪ Aout, it can contain at most one critical point.
Since Sn,d,λ|V ′ : V ′ → U ′ is proper and V’ contains at most one critical point, it follows from
the Riemann Hurwitz formula that V ′ is simply connected (compare Corollary 2.4.3). Since
V surrounds the origin, then z = 0 lies in V ′. However, this is impossible since z = 0 is
mapped to ∞ and U ′ is bounded.

Proposition 3.1.8 tells us that for |λ| small enough the map Sn,d,λ is essentially uni-critical
since all critical points except νλ belong to Aλ(∞). Up to now, however, we have not imposed
any particular dynamical behaviour for νλ. With the aim of proving the main results of this
chapter from now on we restrict ourselves to parameters for which the free critical point νλ
belongs to Aλ(∞) (sometimes the term captured parameters is used).

Under this assumption, Proposition 3.1.8 implies νλ ∈ Aλ(∞) \ (A∗λ(∞) ∪ Tλ ∪Dλ ∪Aλ).
We further assume that νλ belongs to a Fatou component which is an eventual preimage of Aλ
that surrounds z = 0. The following result gives relevant notation and determines a partition
of the dynamical plane (compare Figure 3.4) that will be extremely useful to study achievable
connectivities of Fatou components.

Theorem 3.1.16. Let Sn,d,λ satisfying (a), (b), (c), and (d). Let λ 6= 0, |λ| < C. Assume that
νλ ∈ Uν , where Uν is a Fatou component which is eventually mapped onto Aλ and surrounds
z = 0. Then, Uν is triply connected and Uν ⊂ Aout. Moreover, the following statements hold.

(i) The set Uν bounds an open disk U1 which is mapped with degree 1 onto the open disk
Vn∪Tλ, where Vn is the annulus bounded by ∂Tλ and Sn,d,λ(Uν). In particular, wλ ∈ U1.

(ii) The annulus Un+1 bounded by Uν and ∂A∗λ(∞) is mapped with degree n + 1 onto the

annulus Vn+1 bounded by Sn,d,λ(Uν) and ∂A∗λ(∞).

(iii) The annulus Un bounded by Aλ and Uν is mapped with degree n onto the annulus Vn
bounded by ∂Tλ and Sn,d,λ(Uν).

(iv) The annulus Ud bounded by ∂Tλ and Aλ (i.e., the annulus Ain) is mapped with degree d
onto the annulus A(∂Tλ, ∂A∗λ(∞)).

(v) The Fatou component Uν lies in Vn+1 and it is mapped under Sn,d,λ with degree n + 1
onto its image. In particular, Uν surrounds Sn,d,λ(Uν).

Remark 3.1.17. Statement (iv) in Theorem 3.1.16 coincides with statement (vi) of Propo-
sition 3.1.8. We use this double naming (Ud and Ain) in order to uniformize notation in
what follows. Notice that every set Ui, i = d, n, n+ 1, is mapped onto its image with degree
i. This notation is particularly useful in Section 3.2. Also, notice that in order to simplify
notation we avoid indicating the dependence of Uν and Ui, i = 1, d, n, n + 1, with respect to
the parameter λ.



3.1. THE DYNAMICAL PLANE OF THE PERTURBED FAMILY SN,D,λ 53

(a) The partition with respect to Uν and Aλ.

Tλ

Uν

Aλ

U1

A∗λ(∞)

Un+1UnUd

(b) The partition with respect to Sn,d,λ(Uν).

Tλ

Sn,d,λ(Uν)

A∗λ(∞)

Vn+1 Vn

Figure 3.4: Partitions of the dynamical plane introduced in Theorem 3.1.16.

Proof. By the Riemann-Hurwitz formula, the iterated preimages of Aλ are doubly connected
unless they contain a critical point. Under our hypothesis, this occurs precisely at Uν (since
the only critical point eventually mapped in Aλ is νλ). A direct application of the Riemann-
Hurwitz formula implies that, since νλ is a simple critical point, Uν is triply connected.
Moreover, Uν ⊂ Aout since νλ ∈ Aout. This proves the first part of the statement.

From above ∂Uν has three components. Since Uν separates z = 0 from z = ∞, there
should be exactly two components of ∂Uν surrounding z = 0. We denote them by γin

c and
γout
c , where γin

c ⊂ Int(γout
c ). The other component of ∂Uν , denoted by γ1

c , does not surround
z = 0.

Set U1 = Int(γ1
c ). Since γ1

c is mapped onto a component of ∂Sn,d,λ(Uν), U1 is mapped
either to the bounded or the unbounded component of the complement of Sn,d,λ(Uν) (which
is an annulus by hypothesis). However, since all poles are in A∗λ(∞) ∪ Tλ, then U1 should be
mapped onto the bounded component of Sn,d,λ(Uν). Therefore, U1 contains the zero wλ (and
no other preimages of z = 0). We conclude that Sn,d,λ|U1 has degree 1. In particular, γ1 is
mapped onto its image with degree 1. This proves (i).

Let Un+1 be the annulus bounded by Uν and ∂A∗λ(∞), and let Vn+1 = Sn,d,λ(Un+1).

By construction, Vn+1 is the annulus bounded by Sn,d,λ(Uν) and ∂A∗λ(∞). It is immediate
that the map Sn,d,λ|Un+1 : Un+1 → Vn+1 is proper. Since the degree is accomplished on the
boundaries and ∂A∗λ(∞) is mapped onto itself with degree n+ 1, Un+1 is mapped onto Vn+1

with degree n+ 1. This proves (ii). The proof of statement (iii) is similar and statement (iv)
was already proven in Proposition 3.1.8.

Finally, we prove statement (v) by contradiction. Assume that Uν does not lie in Vn+1.
Then, either Uν maps onto itself (which is impossible) or Vn+1 ⊂ Un+1. This would imply that
Un+1 is mapped under Sn,d,λ on itself and, hence, there exists a periodic Fatou component
different from Aλ(∞). This is impossible since, by assumption, the orbits of all critical points
converge to z =∞.
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Remark 3.1.18. Under the assumptions of Theorem 3.1.16, if U is a Fatou component which
surrounds z = 0 and lies in Un+1 or Un, then it follows from Proposition 3.1.12 that its image
lies in Fill(U). Indeed, Un and Un+1 are contained in Aout (see Figure 3.4), and Aout belongs
to the region where the dynamics are conjugate to the ones of a Blaschke product.

As it will become clear in the next sections devoted to prove the main results of this
chapter, the presence of Fatou components with high connectivity in the dynamical plane is
based on taking special iterated preimages of Uν . With this in mind we end the section by
stating the following corollary of Proposition 3.1.13 and Theorem 3.1.16.

Corollary 3.1.19. Let Sn,d,λ satisfying (a), (b), (c), and (d). Let λ 6= 0, |λ| < C. Assume
that νλ ∈ Uν , where Uν is an iterated preimage of Aλ which surrounds z = 0. Let W be
a Fatou component which surrounds z = 0, different from Tλ and Aλ. Then, the following
statements hold.

(i) If W ⊂ Vn+1, then it has a unique preimage in Ud, which surrounds z = 0 and is mapped
under Sn,d,λ onto W with degree d, and a unique preimage in Un+1, which surrounds
z = 0 and is mapped under Sn,d,λ onto W with degree n+ 1.

(ii) If W ⊂ Vn, then it has a unique preimage in Ud, which surrounds z = 0 and is mapped
under Sn,d,λ onto W with degree d, and two further preimages. One lies in Un, surrounds
z = 0 and is mapped under Sn,d,λ onto W with degree n. The other one lies in U1, does
not surround z = 0, and is mapped under Sn,d,λ onto W with degree 1.

3.2 Proofs of theorems A and B

In this section we prove Theorem A and Theorem B. We first show that Fatou components
which do not surround z = 0 cannot be used to achieve higher connectivities.

Lemma 3.2.1. Let Sn,d,λ satisfying (a), (b), (c), and (d). Let λ 6= 0, |λ| < C. Assume also
that νλ ∈ Uν . Let V be a Fatou component which does not surround z = 0. Then V and all
of its eventual preimages have the same connectivity.

Proof. Let V be a Fatou component which does not surround z = 0 and let U be a preimage
of it. By Lemma 3.1.15, U does neither surround z = 0. It follows that Fill(U) does not
contain any critical point. Therefore, the map Sn,d,λ|Fill(U) : Fill(U) → Fill(V ) is a proper
map of degree 1. We can conclude that Sn,d,λ|U : U → V is conformal, so U and V have the
same connectivity.

Next we give the form of the connectivities of Fatou components of Sn,d,λ. We want to
remark that not all these connectivities are achievable (see Theorem A).

Proposition 3.2.2. Let Sn,d,λ satisfying (a), (b), (c), and (d). Let λ 6= 0, |λ| < C. Assume
also that νλ ∈ Uν , where Uν is an iterated preimage of Aλ which surrounds z = 0. All Fatou
components have connectivity 1, 2, or κ = (n+ 1)injd` + 2, where i, j, ` ∈ N.

Proof. By Proposition 3.1.8, Dλ and all its eventual preimages have connectivity 1 since
none of them can contain critical points. Analogously, all eventual preimages of Aλ other
than Uν and its preimages have connectivity 2 since none of them contain critical points (see
Corollary 2.4.3). Finally, we study the connectivity of the preimages of Uν . By Lemma 3.2.1,
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Uν
U1

Tλ

W2

B1

Bout
2

Bin
2

W1

Aλ

Figure 3.5: Description of the situation in the proof of Lemma 3.2.3, where k = 2 and
W2 ⊂ Ud. In this case, B2 = Bout

2 ∪Aλ ∪Bin
2 .

it suffices to study preimages of Uν which surround z = 0. It follows from the Riemann-
Hurwitz formula that if f : U → V is proper of degree q without critical points and V has
connectivity p + 2, then U has connectivity qp + 2. By Corollary 3.1.19, all preimages of
Uν which surround z = 0 map to their images with degree d, n, or n + 1. Since Uν has
connectivity 3 = 1 + 2, the possible connectivities of the preimages of Uν surrounding z = 0
are of the form κ = (n+ 1)injd` + 2, where i, j, ` ∈ N.

According to Corollary 3.1.19, if U is a iterative preimage of Uν which surrounds z = 0,
its preimages which surround z = 0 may be located in Ud, Un or Un+1. Next lemma shows
that there are achievable upper bounds for the itineraries of iterated preimages of Uν . Recall
from Remark 3.1.18 that if U ⊂ Un is an iterated preimage of Uν , then either Sn,d,λ(U) ⊂ Un
or Sn,d,λ(U) ⊂ Ud. Let k ≥ 1 be minimal such that Skn,d,λ(Uν) ⊂ Fill(Aλ). The first half
of Lemma 3.2.3 shows that if U ⊂ Un is a preimage of Uν which surrounds z = 0, then the
itinerary of U intersects Ud in p ≤ k iterations. The second half of Lemma 3.2.3 shows that if
U ⊂ Ud is a preimage of Uν which surrounds z = 0, then there exist at least k− 1 consecutive
backwards iterates of U which lie in Un.

Lemma 3.2.3. Let Sn,d,λ satisfying (a), (b), (c), and (d). Let λ 6= 0, |λ| < C. Assume also

that νλ ∈ Uν . Let k ≥ 1 such that Skn,d,λ(Uν) ⊂ Fill(Aλ) and Sjn,d,λ(Uc) ⊂ Un for 1 ≤ j < k.

(i) Let U ⊂ Un be an iterated preimage of Uν which surrounds z = 0. Then, there exists
p ≥ 1 such that Sp(U) ⊂ Ud and Sp

′
(U) ∈ Un for 0 ≤ p′ < p. Moreover, p satisfies

p ≤ k.

(ii) Let U ⊂ Ud be a preimage of Uν which surrounds z = 0. Then, there exists U ′ ⊂ Un
such that Sjn,d,λ(U ′) ⊂ Un for 0 ≤ j < k − 1 and Sk−1

n,d,λ(U ′) = U .

Proof. Set Wi = Sin,d,λ(Uν), i = 0, . . . , k. By Remark 3.1.18, Wi surrounds Wi+1, i =

0, . . . , k − 1. Let Bi+1 be the annulus bounded by Wi and Wi+1, i = 0, . . . , k − 1. It follows
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that Sn,d,λ(Bi) = Bi+1, i = 1, . . . , k−1. Observe that if Wk ⊂ Ud, then Bk = Bout
k ∪Aλ∪Bin

k ,
where Bout

k = Bk ∩ Un and Bin
k = Bk ∩ Ud (see Figure 3.5). Along the proof we distinguish

the cases Wk = Aλ and Wk ⊂ Ud.
We now prove statement (i). Assume first that Wk = Aλ. Let U ⊂ Bi, i = 1, . . . , k, be

an eventual preimage of Uν which surrounds z = 0. Then Sk+1−i
n,d,λ (U) ⊂ Ud. We can conclude

that if U ⊂ Un is a preimage of Uν which surrounds z = 0, then there exists p ≤ k such
that Spn,d,λ(U) ⊂ Ud. In fact, p = k − i if U ⊂ Bi. Now assume Wk ⊂ Ud. For k = 1,
Sn,d,λ(Un) ⊂ Ud and the conclusion follows. For k ≥ 2 we have W1 ⊂ Un (so Bk−1 and Bk
exist). Let U ⊂ Bi, i = 1, . . . , k − 1, be a preimage of Uν which surrounds z = 0 and let
V = Sk−1−i

n,d,λ (U). Observe that V ⊂ Bk−1 is an eventual preimage of Uν which surrounds

z = 0 and Ud is the disjoint union of Bin
k , Wk, and Sn,d,λ(Bout

k ). Then, Sn,d,λ(V ) ⊂ Bout
k

(and S2
n,d,λ(V ) ⊂ Ud) or Sn,d,λ(V ) ⊂ Bin

k (and Sn,d,λ(V ) ⊂ Ud). Since Sk−1−i
n,d,λ (Bi) = Bk−1,

i = 0, . . . , k − 1, this concludes the proof of statement (i).

Now we prove (ii). Let U ⊂ Ud be a preimage of Uν which surrounds z = 0. Assume
first that Wk = Aλ. Then Ud = Sn,d,λ(Bk) = Skn,d,λ(B1). So there exists U ′ ⊂ U1 such that

Sjn,d,λ(U ′) ⊂ Bj+1 ⊂ Un for 0 ≤ j < k and Skn,d,λ(U ′) = U . Now let Wk ⊂ Ud. For k = 1
there is nothing to prove. For k ≥ 2 we have W1 ⊂ Un (so Bk−1 and Bk exist). Moreover,
Ud = Bin

k ∪ Wk ∪ Sn,d,λ(Bout
k ). Since U is a preimage of Uν we have that U 6= Wk. We

distinguish 2 cases. If U ⊂ Bin
k , then U ⊂ Sn,d,λ(Bk−1) and we can take preimages through

the sets Bi so that there exists U ′ ⊂ B1 such that Sjn,d,λ(U ′) ⊂ Bj+1 ⊂ Un for 0 ≤ j < k − 1

and Sk−1
n,d,λ(U ′) = U . Finally, if U ⊂ Sn,d,λ(Bout

k ), then U ⊂ Sn,d,λ(Bk) and there exists

U ′ ⊂ B1 such that Sjn,d,λ(U ′) ⊂ Bj+1 ⊂ Un for 0 ≤ j < k and Skn,d,λ(U ′) = U . This concludes
the proof of statement (ii).

We can now proceed with proof of Theorem A.

Proof of Theorem A. By Corollary 3.1.19, Lemma 3.2.1, and Proposition 3.2.2, if the con-
nectivity of a Fatou component is different from 1 or 2, then it has to be of the form
κ = (n + 1)idjn` + 2 where i, j, ` ∈ N. It follows from the Riemann-Hurwitz formula that if
f : U → V is proper of degree q without critical points and V has connectivity p+ 2, then U
has connectivity qp+ 2. Moreover, these connectivities are achieved through preimages of Uν .
In order to increase the connectivity we have to take preimages of Uν , which has connectivity
3 = 1 + 2. It follows from Remark 3.1.18 that if U ⊂ Us , s ∈ {n + 1, d, n}, is a Fatou
component that surrounds z = 0, then it is mapped onto its image with degree s. Therefore,
in order to increase the coeficient n in the expression of the connectivity, we have to take
preimages in Un. By Remark 3.1.18, every Fatou component U ⊂ Un is eventually mapped
to Ud, without passing through Un+1. By Lemma 3.2.3 (i), for every backwards iteration
through Ud there are at most k backwards iterations in Un. Since Uν 6⊂ Ud ∪ Un, it follows
that ` ≤ jk.

The final part of this section is devoted to the proof of Theorem B. The following lemma
shows that there are no restrictions to the exponents of n+ 1 and d in respect to achievable
connectivities.

Lemma 3.2.4. Let Sn,d,λ satisfying (a), (b), (c), and (d). Let λ 6= 0, |λ| < C. Assume
also that νλ ∈ Uν , where Uν is an iterated preimage of Aλ which surrounds z = 0. Then, the
following hold:
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(i) There exists an eventual preimage of Uν which lies in Un+1, surrounds z = 0, and has
connectivity κ = (n+ 1)i + 2, ∀i ∈ N.

(ii) Let V be an eventual preimage of Uν which surrounds z = 0 and let κ be the connectivity
of V . Then, there exists a Fatou component, which surrounds z = 0, of connectivity
d(κ− 2) + 2.

In particular, there exists a Fatou component which surrounds z = 0 and has connectivity
κ = (n+ 1)idj + 2, ∀i, j ∈ N.

Proof. First we prove (i). Recall that, by Theorem 3.1.16, Uν ⊂ Vn+1. By Corollary 3.1.19
and Remark 3.1.18, for any i ≥ 1 there exists a Fatou component U which surrounds z = 0
such that Sjn,d,λ(U) ⊂ Un+1, for j = 0, . . . i−1, and Sin,d,λ(U) = Uν . Since Uν has connectivity
3 and no eventual preimage of Uν contains a critical point, it follows by succesively applying
the Riemann-Hurwitz formula that the connectivity of U is (n+ 1)i + 2. This proves (i).

To prove (ii), let V be an eventual preimage of Uν which surrounds z = 0, of connectivity
κ. By Corollary 3.1.19, V has a preimage in Ud which surrounds z = 0 and which is mapped
onto it with degree d. Since V cannot contain any critical value, by the Riemann-Hurwitz
formula the connectivity of this preimage of V is d(κ − 2) + 2. This concludes the proof of
(ii).

We can now proceed with proof of Theorem B.

Proof of Theorem B. Fix i ≥ 0, j ≥ 0, ` ≥ 0 such that ` ≤ j(k − 1). We want to show that
there exists a Fatou component U (which will be an iterated preimage of Uν) of connectivity
κ = (n+ 1)idjn` + 2.

If k = 1, then by Lemma 3.2.4 the conclusion holds. Otherwise, Sn,d,λ(Uν) ⊂ Un and
Ud ⊂ Vn. By Lemma 3.2.4 (i), there exists a Fatou component V which is an iterated
preimage of Uν , surrounds z = 0, lies in Un+1, and has connectivity (n + 1)i + 2. This
concludes the proof for j = 0.

Assume that j 6= 0 (remember that k > 1). By Corollary 3.1.19 (i), there exists a
preimage of V in Ud which surrounds z = 0. By Lemma 3.2.3 (ii), there exists V (1) ⊂ Un
which surrounds z = 0 such that

Srn,d,λ(V (1)) ⊂ Un for 0 ≤ r < k − 1, Sk−1
n,d,λ(V (1)) ⊂ Ud and Skn,d,λ(V (1)) = V.

Recall that no iterated preimage of Uν contains a critical point and so, by Corollary 3.1.19,
if they lie in Ui, i ∈ {n+ 1, n, d}, they map forward with degree i. Applying this criteria to
the iterated preimages of V up to V (1), we get from the Riemann-Hurwitz formula that

κ
(
Srn,d,λ(V (1))

)
= (n+ 1)idnk−1−r + 2, r = 0, . . . k − 1.

Starting the process with V (1) instead of V we can take a preimage of V (1) in Ud and then
we can take up to k− 1 iterated preimages in Un to land on, say, V (2). As above, we get that

κ
(
Srn,d,λ(V (2))

)
= (n+ 1)id2n2(k−1)−r + 2, r = 0, . . . k − 1.

Repeating the same process j-times we conclude that there exist Fatou components with
connectivity

κ
(
Srn,d,λ(V (s))

)
= (n+ 1)idsns(k−1)−r + 2, s = 1, . . . j, r = 0, . . . k − 1.
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If (j−1)(k−1) < ` ≤ j(k−1) we are done (take s = j in the previous formula). If ` ≤ t(k−1)
with t ≤ (j − 1), then we stop the process at level t and take j − t preimages in Ud to get the
desired connectivity.

3.3 Proof of theorem C

In this section we prove Theorem C. We first show that there is a sequence of preimages of
Aλ which surround z = 0 and accumulate on ∂A∗λ(∞). We want to remark that the set Aout

depends on λ even if we do not indicate it in its notation.

Lemma 3.3.1. Let Sn,d,λ satisfying (a), (b), (c), and (d). Let λ 6= 0, |λ| < C. Let A0,λ := Aλ.
Then there exist {Am,λ}m≥1 iterated preimages of A0,λ, Sn,d,λ(Am+1,λ) = Am,λ, such that the
following properties are satisfied:

(i) Each Fatou component Am,λ is surrounded by Am+1,λ, that is, Am,λ ⊂ Fill(Am+1,λ). In
particular, all {Am,λ}m≥1 lie in Aout.

(ii) The sequence of Fatou components {Am,λ}m≥1 accumulate on ∂A∗λ(∞) as m→∞.

Proof. Every Fatou component which surrounds z = 0 has exactly 2 boundary components
which surround z = 0. It follows from Proposition 3.1.13 that every Fatou component in Aout

which surrounds z = 0 has exactly a preimage in Aout which surrounds z = 0. Let {Am,λ}m≥1

be the sequence of Fatou components obtained by taking consecutive preimages of A0,λ in
Aout which surround z = 0. Since Sn,d,λ is conjugated to a Blaschke product on Aout, by
Proposition 3.1.12, the Fatou components Am,λ accumulate on ∂A∗λ(∞) as m goes to ∞. It
also follows from the conjugation with the Blaschke product that Am,λ ⊂ Fill(Am+1,λ) for all
m ≥ 0.

The multiply connected sets Am,λ surround z = 0. Therefore, there are exactly 2 boundary
components of Am,λ which surround z = 0. We denote them by ∂IntAm,λ and ∂ExtAm,λ,
where ∂IntAm,λ ⊂ Int(∂ExtAm,λ). Next lemma tells as that if m is large enough then there
are parameters λ such that νλ ∈ Am,λ.

Lemma 3.3.2. Let Sn,d,λ satisfying (a), (b), (c), and (d). Let λ 6= 0, |λ| < C. Then, if
m ∈ N∗ is big enough, there exists a parameter λ such that νλ ∈ Am,λ.

Proof. The idea of the proof is to show that, if m is big enough, we can find a parameter
λ0 such that νλ0 ∈ Fill(Am,λ0) and a parameter λm such that νλm belongs to the unbounded
component of C∗ \Am,λm . We will then conclude that there exists a parameter λ′m such that
νλ′m ∈ Am,λ′m .

Fix λ0 such that all hypothesis hold. Then A0,λ0 is well defined, and so are Am,λ0 , m > 0.
Let m0 be such that νλ0 ∈ Fill(Am0,λ0). Then, for all m ≥ m0 we have νλ0 ∈ Fill(Am,λ0).
For fixed m ≥ m0, we want to find the parameter λm. If λ = 0, the critical point ν0 belongs
to the boundary of the maximum domain of definition of the Böttcher coordinate of A∗(0)
under Sn,a,Q. Therefore, the orbit of ν0 under Sn,a,Q accumulates on z = 0 but never maps
onto it. Observe that Sn,d,λ converges uniformly to Sn,a,Q on compact subsets of C∗ \ Dε as
λ→ 0, where ε > 0 is arbitrarily small and Dε denotes the disk of radius ε centered at z = 0.
Consequently, for fixed m ≥ 0 and ε > 0, if |λ| is small enough then Am,λ ⊂ Dε. Since νλ → ν0
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Figure 3.6: The top figures correspond to the possible cases of νλ lying in a neighbourhood of
∂IntAm,λ. The bottom figures correspond to the possible cases of νλ lying in a neighbourhood
of ∂ExtAm,λ.

as λ→ 0, it follows that if |λ| is small enough then νλ belongs to the unbounded component
of C∗ \Am,λ. It is enough to take λm to be any such λ.

To finish the proof we need to show that when we move continuously the parameter
from λ0 to λm we need to find intermediate parameters λ′m such that νλ′m ∈ Am,λ′m . By
Proposition 3.1.4 we know that ∂A∗∞ moves continuously with respect to λ. Since ∂A∗∞ and
∂Tλ cannot contain critical values, it follows that both boundary components of A0,λ move
continuously with respect to λ. For fixed λ′, the set ∂Am,λ, m ≥ 1, moves continuously with
respect to λ in a neighbourhood of λ′ unless ∂Am,λ′ (or an iterated image of ∂Am,λ′) contains
a critical point. Here by moving continuously we mean that every connected component of
∂Am,λ is a Jordan curve that moves continuously with respect to the Hausdorff metric (in
particular, it does not pinch itself or split in several connected components). Notice that since
there is only a free critical point, at most one of the 2 components of ∂Am,λ which surround
z = 0 may not move continuously for λ in a neighbourhood of λ′. Using Proposition 3.1.12
it can be proven that Sn,d,λ(∂ExtAm,λ0) = ∂ExtAm−1,λ0 and Sn,d,λ(∂IntAm,λ0) = ∂IntAm−1,λ0 .
Assume that for λ′ we have νλ′ ∈ ∂Am,λ′ . Then Am−1,λ is an annulus that moves continuously
with respect to λ for all λ in a neighbourhood of λ′. If νλ′ ∈ ∂IntAm,λ′ then Sn,d,λ(νλ′) ∈
∂IntAm−1,λ′ . By Proposition 3.1.13, for λ in a neighbourhood of λ′ exactly one of the following
holds (see the three upper figures in Figure 3.6):

� If Sn,d,λ(νλ) ∈ Int(∂IntAm−1,λ) then νλ ∈ Int(∂IntAm,λ) and Am,λ is doubly connected.
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� If Sn,d,λ(νλ) ∈ ∂IntAm−1,λ then νλ ∈ ∂IntAm,λ. Then, Am,λ is doubly connected and
∂IntAm,λ consists of the union of 2 Jordan curves.

� If Sn,d,λ(νλ) ∈ Am−1,λ then νλ ∈ Am,λ and Am,λ is triply connected.

On the other hand, if νλ′ ∈ ∂ExtAm,λ′ then Sn,d,λ(νλ′) ∈ ∂ExtAm−1,λ′ . By Proposi-
tion 3.1.13, for λ in a neighbourhood of λ′ exactly one of the following holds (see the three
lower figures in Figure 3.6):

� If Sn,d,λ(νλ) ∈ Am−1,λ then νλ ∈ Am,λ and Am,λ is triply connected.

� If Sn,d,λ(νλ) ∈ ∂ExtAm−1,λ then νλ ∈ ∂ExtAm,λ. Then, Am,λ is doubly connected,
∂ExtAm,λ is a Jordan curve, and there is an extra preimage A′ of Am−1,λ such that
∂Am,λ ∩ ∂A′ = νλ.

� If Sn,d,λ(νλ) ∈ Ext(∂IntAm−1,λ) then νλ ∈ Ext(∂IntAm,λ) and Am,λ is doubly connected.

It follows from the previous configurations that if we move continuously the parameter λ
from λ0 until λm we can find parameters λ′m such that νλ′m ∈ Am,λ′m . This finishes the proof
of the result.

We can now proceed with proof of Theorem C.

Proof of Theorem C. Fix i, j, `. We have to prove that there exists λ for which there is a
Fatou component of connectivity κ = (n+ 1)idjn`+ 2 and a Fatou component of connectivity
κ = (n + 1)i + 2. Recall that the results in Section 4 required the free critical point νλ to
lie in a preimage of Aλ which surrounds z = 0. By Lemma 3.3.2, there exists m > ` such
that νλ ∈ Am,λ. The existence of the Fatou component of connectivity κ = (n + 1)i + 2 is
proven in Lemma 3.2.4(i). Since νλ ∈ Am,λ and m > `, the existence of a Fatou component
of connectivity κ = (n+ 1)idjn` + 2 follows from Theorem B.



Chapter 4

Newton-like components in the
Chebyshev-Halley family of degree
n polynomials

Numerical methods have been extensively used to give accurate approximations of the solu-
tions of systems of nonlinear equations. Those equations or systems of equations correspond
to a wide source of scientific models from biology to engineering and from economics to so-
cial sciences, and so their solutions are a cornerstone of applied mathematics. One of the
most studied families of numerical methods are the so called root-finding algorithms; that is,
iterative methods which asymptotically converge to the zeros (or some of the zeros) of the
non linear equation, say g(z) = 0. Although g could in general describe an arbitrary high
dimensional problem, in this chapter we focus on the one dimensional case, i.e. g : C→ C.

The universal and most studied root-finding algorithm is known as Newton’s method. If
g is holomorphic, we generate a sequence {zn}n≥0 of approximations of a root of g, using
Newton’s method, defined as follows

zn+1 = zn −
g(zn)

g′(zn)
, z0 ∈ C.

It is well known that if z0 ∈ C is chosen close enough to one of the solutions of the equa-
tion g(z) = 0, say α, then the sequence {zn = gn(z0)}n≥0 has the limit α when n tends
to ∞. Moreover, the speed of (local) convergence is generically quadratic (see, for instance,
[ABP04]). It was Cayley (see [Cay79]) the first to consider Newton’s method as a (holomor-
phic) dynamical system, that is studying the convergence of these sequences for all possible
seeds z0 ∈ C at once, under the assumption that g was a degree 2 or 3 polynomial. This was
known as Cayley’s problem.

Many authors have studied alternative iterative methods having, for instance, a better
local speed of convergence. Two of the best known root-finding algorithms of order of con-
vergence 3 are Chebyshev’s method and Halley’s method (see [ABP04]). They are included
in the Chebyshev-Halley family of root-finding algorithms, which was introduced in [CTV13]
(see also [Ama16]), and is defined as follows. Let g be a holomorphic map. Then

zn+1 = zn −
(

1 +
1

2

Lg(zn)

1− αLg(zn)

)
g(zn)

g′(zn)
, (4.1)

61
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where α ∈ [0, 1] and Lg(z) = g(z)g”(z)
(g′(z))2 . Notice that in a real setting, it suffices for g to be a

doubly differentiable function such that g′′(x) is continuous.

For α = 0, we have Chebyshev’s method and for α = 1
2 Halley’s method. As α tends to

∞, the Chebyshev-Halley algorithms tend to Newton’s method. The main goal of the chapter
is to show that the unbounded connected component of the Julia set of the Chebyshev-Halley
maps applied to zn − c (for large enough α) is homeomorphic to the Julia set of the map
obtained by applying Newton’s method to zn − 1.

Root-finding algorithms are a natural topic for complex dynamics. In particular, maps
obtained by applying Newton’s method to polynomials are a much studied topic (see [Shi09],
[HSS01], [Tan97], [BFJK14]). It is proven in [Shi09] that the Julia set of such maps is
connected, so all Fatou components are simply connected.

Previously, Campos, Canela, and Vindel have studied the Chebyshev-Halley family applied
to fn,c(z) = zn + c, c ∈ C∗ (see [CCV18], [CCV20]). The maps obtained by applying the
Chebyshev-Halley family to fn,c are all conjugated to the map obtained by applying the
Chebyshev-Halley family to fn(z) := fn,−1(z) = zn − 1 (see Lemma 4.1.1). By applying the
Chebyshev-Halley method to fn(z) = zn − 1 we obtain the map:

On,α(z) =
(1− 2α)(n− 1) + (2− 4α− 4n+ 6αn− 2αn2)zn + (n− 1)(1− 2α− 2n+ 2αn)z2n

2nzn−1(α(1− n) + (−α− n+ αn)zn)
. (4.2)

The map On,α has degree 2n and it has 4n − 2 critical points, counting multiplicity. The
point z = 0 is a critical point of multiplicity n−2, which is mapped to the fixed point z =∞.
The n-th roots of unity are superattracting fixed points of local degree 3, and therefore, they
have multiplicity 2 as critical points. This leaves n free critical points. They are given by

cn,α,ξ = ξ

(
α(n− 1)2(2α− 1)

n(2n− 1)− α(4n− 1)(n− 1) + 2α2(n− 1)2

) 1
n

, (4.3)

where ξn = 1. This family is symmetric with respect to rotation by the nth root of unity (see
Lemma 4.1.2). This symmetry ties the orbits of the n free critical points, so the family On,α
has only one degree of freedom (see Figure 4.2).

In [CCV20], the authors studied in detail the topology of the immediate basins of attrac-
tion of the fixed points of On,α(z) given by the nth root of unity, that is, the zeros of fn(z).
In what follows we refer to these basins as

An,α(ξ) := AOn,α(ξ)
[
A∗n,α(ξ) := A∗On,α(ξ)

]
,

where ξn = 1. For one particular case, the immediate basins of attraction are infinitely
connected (see Figure 4.1). We study the Julia set of On,α for this particular case and relate
it to the Julia set of the map obtained by applying Newton’s method to fn. We realise this
using a quasiconformal surgery construction, which erases the holes in the immediate basins
of attraction. The construction is a simpler case of one in [McM88]. However, realising the
surgery is still needed, as we prove the uniqueness of the resulted quasiconformal map, to
show that the quasirational map presents the necessary symmetries and is precisely Nfn .

Theorem D. Fix n ≥ 2 and assume that A∗n,α(1) is infinitely connected for some α ∈ C. Then
there exists an invariant Julia component Π (which contains z =∞) which is a quasiconformal
copy of the Julia set of Nfn, where Nfn is the map obtained by applying Newton’s method to
the polynomial fn(z) = zn − 1.
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Figure 4.1: Left figure illustrates the dynamical plane of On,α for n = 3 and α = 10. In the
right figure (which shows z ∈ C such that Re(z) ∈ [1.620; 1.623] and Im(z) ∈ [−0.0015; 0.0015]
in the same dynamical plane), we can see a component of the Julia set which lies in A∗(1).

We finish the chapter by proving that there exist parameters such that the hypothesis of
Theorem D holds. We split the proof of Theorem E in two cases, n = 2 and n ≥ 3. For the case
n = 2, much work was previously done in [CCV18], and the map is conjugate to a Blaschke
product. For the case n ≥ 3, the map is not conjugate to a Blaschke product. We provide
a map conjugate to On,α, for which we prove, using various properties and computational
arguments, that the immediate basin of attraction of z =∞ is infinitely connected. Numerical
computations confirm to us the existence of such hyperbolic components (see Figure 4.2).

Theorem E. Let n ≥ 2. Then there exists α0 > 0 large enough such that for α > α0, α ∈ R,
A∗n,α(1) is infinitely connected. Moreover, for n = 2, the statement is true for any α ∈ C such
that |α| > α0.

The chapter is organised as follows. In Section 4.1 we briefly introduce the tools later
used in the chapter. In Section 4.2 we prove Theorem D. In Section 4.3 we prove Theorem E.

4.1 Preliminaries on Chebyshev-Halley family

In this section we present the main tools that we use along the chapter. Let On,α,c be
the map obtained by applying the Chebyshev-Halley method with parameter α to the map
fn,c = zn + c. The following lemma, indicated but not proven in [CCV18], states that for any
c ∈ C∗, the map On,α,c is conjugated to On,α,−1 = On,α. We give the proof for the sake of
completeness.

Lemma 4.1.1. Let c ∈ C∗, c = rei2πk, where r > 0 and k ∈ [0, 1]. Let u = n√rei
(2k+1)π

n

and ηc(z) = uz, ηc : Ĉ → Ĉ. Then On,α,c and On,α,−1 are conjugated by the map ηc, i.e.
On,α,c ◦ ηc(z) = ηc ◦On,α,−1(z).
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Figure 4.2: Left figure illustrates the parameter plane of On,α for n = 3. In the right figure
we can see the parameter plane of On,α for n = 5.

Proof. First, we need to compute On,α,c. We use the Chebyshev-Halley family of methods
definition (see (4.1)), which can be rewritten as

On,α,c(z) =
2zf ′n,c(z)− 2fn,c(z)− fn,c(z)Lfn,c(z) + 2αLfn,c(z)(fn,c(z)− zf ′n,c(z))

2f ′n,c(z)(1− αLfn,c(z))
,

where fn,c(z) = zn + c, f ′n,c(z) = nzn−1, Lfn,c(z) = (n−1)(zn+c)
nzn . This gives us the expression

of On,α,c:

On,α,c(z) =
c2(1− 2α)(n− 1)− c(2− 4α− 4n+ 6αn− 2αn2)zn + (n− 1)(1− 2α− 2n+ 2αn)z2n

2nzn−1[−cα(1− n) + (−α− n+ αn)zn]
.

Now we prove the conjugation. Observe that un = −c, and the map ηc maps roots of
fn,1 to roots of fn,c (therefore, it also maps the superattracting fixed points of On,α to the
superattracting fixed points of On,α,c). Then

On,α,c

(
ηc(z)

)
= c2(1−2α)(n−1)+c2(2−4α−4n+6αn−2αn2)zn+c2(n−1)(1−2α−2n+2αn)z2n

un−12nzn−1[−cα(1−n)−c(−α−n+αn)zn]

= u (1−2α)(n−1)+(2−4α−4n+6αn−2αn2)zn+(n−1)(1−2α−2n+2αn)z2n

2nzn−1[α(1−n)+(−α−n+αn)zn]

= ηc

(
On,α(z)

)
.

The next lemma shows that the map On,α is symmetric with respect to rotation by an
nth root of unity.

Lemma 4.1.2 ([CCV18], Lemma 6.2). Let n ∈ N and let ξ be an nth root of unity, i.e.
ξn = 1. Then Iξ(z) := ξz conjugates On,α with itself, i.e. On,α ◦ Iξ(z) = Iξ ◦On,α(z).

For α = 1
2 and α = 2n−1

2n−2 , the family On,α degenerates to maps of a lower degree (see
[CCV20], Lemma 4.1). For other values of α, the map On,α has degree 2n, hence, it has
4n − 2 critical points. The point z = 0 maps with degree n − 1 to the fixed point z = ∞.
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Since the n roots of fn are superattracting fixed points of local degree 3, there remain precisely
n free critical points. The next lemma follows directly from Lemma 4.1.2, since the orbits of
the free critical points are symmetric.

Lemma 4.1.3 ([CCV20], Lemma 3.4). Let n ≥ 2 and ξ ∈ C, such that ξn = 1. For all α ∈ C,
the basin of attraction An,α(ξ) contains at most one critical point other than z = ξ.

The following proposition establishes a trichotomy for rational maps with the property
described in Lemma 4.1.3. Based on the existence of the critical point and preimages of
the superattracting fixed point in the immediate basin of attraction, we can establish if the
immediate basin is simply connected.

Proposition 4.1.4 ([CCV20], Proposition 3.1). Let f : Ĉ → Ĉ be a rational map and let
z = 0 be a superattracting fixed point of f . Assume that Af (0) contains at most one critical
point other than z = 0. Then, exactly one of the following statements holds.

1. The set A∗f (0) contains no critical point other than z = 0. Then A∗f (0) is simply
connected.

2. The set A∗f (0) contains a critical point c 6= 0 and a preimage z0 6= 0 of z = 0. Then
A∗f (0) is simply connected.

3. The set A∗f (0) contains a critical point c 6= 0 and no preimage of z = 0 other than z = 0
itself. Then A∗f (0) is multiply connected.

Corollary 4.1.5 ([CCV20], Corollary 3.5). For fixed n ≥ 2 and α ∈ C, the immediate basins
of attraction of the roots of zn − 1 under On,α are multiply connected if and only if A∗n,α(1)
contains a critical point c 6= 1 and no preimage of z = 1 other than z = 1 itself.

Remark 4.1.6. An immediate attracting basin may only have connectivity 1 or∞ (see Theo-
rem 2.3.7). Hence, if A∗n,α(1) is multiply connected, then all the immediate basins of attraction
corresponding to the roots of fn are infinitely connected.

The following lemma in [Tan97] is the critical criterion used to prove Theorem D (see also
[Hea88]).

Lemma 4.1.7 ([Tan97], Lemma 2.2). Any rational map F of degree d having d distinct
superattracting fixed points is conjugate by a Möbius transformation to NP for a polynomial
of degree d. Moreover, if z = ∞ is not superattracting for F and F fixes ∞, then F = NP

for some polynomial P of degree d.

4.2 Proof of Theorem D

We start with a proposition that describes two curves in the dynamical plane of On,α. These
curves are used in the proof of Theorem D, as part of a quasiconformal surgery construction.
The proof follows closely an argument made in the proof of [CCV20, Proposition 3.1].

Proposition 4.2.1. Let On,α such that A∗n,α(1) is infinitely connected. Then there exist Γ and
Γ−1, analytic Jordan curves in A∗n,α(1) which surround z = 1, such that On,α|Γ−1 : Γ−1 → Γ
is a two-to-one map with Γ ⊂ Int(Γ−1).
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(a) ∂U = γ2. (b) ∂U = γ1 ∪ γ2.

Figure 4.3: The two possible configurations, of preimages of γ, described in Proposition 4.2.1.

Figure 4.4: Description of the situation in Proposition 4.2.1, where n = 3 and α = 0.2+1.592i.
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Proof. Let U be the maximal domain of definition of the Böttcher coordinates of the super-
attracting fixed point z = 1. By hypothesis and Corollary 4.1.5, A∗n,α(1) contains the critical
point c1 := cn, a, 1 (see (4.3)), which lies on ∂U , and no other preimages of z = 1. Since z = 1
has local degree 3, the map On,α|A∗n,α(1) : A∗n,α(1)→ A∗n,α(1) has degree 3. Let V := On,α(U).

Then γ := ∂V is a Jordan curve. Let γ−1 be the preimage of γ contained in A∗n,α(1). Then
γ−1 = γ1 ∪ γ2 is the union of two simple closed curves which intersect at the critical point c1.
Exactly one of the two curves, say γ2, contains z = 1 in the Jordan domain bounded by it.
There exist two possibilities: either ∂U = γ2, or ∂U = γ1 ∪ γ2 (see Figure 4.3). Assume that
∂U = γ2. By hypothesis, the critical point c1 lies in A∗n,α(1) and γ1 is contained in the Fatou
set. Therefore, γ1 ⊂ A∗n,α(1) and there exists a preimage of V which lies in Int(γ1). Hence,
A∗n,α(1) contains a preimage of z = 1 other than itself, which is impossible according to Corol-
lary 4.1.5. Consequently, we have that ∂U = γ1 ∪ γ2. Let W be the connected component
of Ĉ \ γ1 which does not contain z = 1. Then W is mapped to an open set which contains
Ĉ \ U , so W contains a pole. Since z = 0 is mapped to z = ∞ with degree n − 1, z = ∞ is
a fixed point, and the map has degree 2n, there remain exactly n preimages for z = ∞. By
symmetry, the pole in W is simple; therefore, ∂W is mapped onto ∂V with degree 1. Hence,
γ1 is mapped onto γ with degree 1 and γ2 is mapped onto γ with degree 2.

Let Γ be an analytic Jordan curve which surrounds z = 1 such that Γ ⊂ U \V , and let A be
the open annulus bounded by Γ and γ. Then A has precisely 3 preimages in A∗n,α(1). Since A
does not contain any critical value, its preimages do not contain critical points. It follows from
the Riemann-Hurwitz formula (see Theorem 2.4.1) that any preimage of A is also an annulus.
One preimage of A lies in W and is mapped onto A with degree 1. There exists precisely
one other preimage of A in A∗n,α(1), which we denote by A−1. It lies in A∗n,α(1) \ Fill(U),
surrounds z = 1, and is mapped onto A with degree 2. Let Γ−1 be the boundary component
of A−1 which is mapped onto Γ. Observe that Γ−1 is an analytic Jordan curve. Since Γ−1

surrounds z = 1 and lies outside U , we have that Γ ⊂ Int(Γ−1) (see Figure 4.4).

The main tool used in the proof of Theorem D is quasiconformal surgery. The strategy
of the proof is as follows. We start by defining a quasiregular map f : A∗n,α(1) → A∗n,α(1)
on the immediate basin of attraction of z = 1, which we later extend to a quasiregular
map F : Ĉ → Ĉ. Secondly, we construct a symmetric F -invariant Beltrami coefficient and
prove, using the Integrability Theorem (see Theorem 2.5.29), the existence of a map NP

quasiconformally conjugate to F . Then, we use Lemma 4.1.7 to show that NP is a map
obtained by applying Newton’s method to a polynomial of degree n, and it is quasiconformally
conjugated to Nfn . Finally, we compare the filled Julia sets of Nfn and On,α.

Proof of Theorem D. Let 0 < ρ < 1. Let R : Int(Γ) → Dρ2 be a Riemann map such that
R(1) = 0. Since Γ is an analytic curve, the Riemann map R extends analitically to the
boundary (see Theorem 2.5.11). Let ψ2 : Γ → Sρ2 be the restriction of R to its boundary.

Let ψ1 : Γ−1 → Sρ be an analytic lift map such that ψ2

(
On,α(z)

)
=
(
ψ1(z)

)2
. Let A =

Int(Γ−1) \ Int(Γ) and Aρ2,ρ = Dρ \ Dρ2 . Let ψ : ∂A → ∂Aρ2, ρ, such that ψ|Γ−1 = ψ1 and

ψ|Γ = ψ2. Since ψ1 and ψ2 are analytic maps, ψ extends quasiconformally to ψ : A → Aρ2, ρ
(see Proposition 2.5.15).

We now define f : A∗n,α(1)→ A∗n,α(1) quasiregular, as follows:
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f(z) :=


R−1

(
(R(z))2

)
if z ∈ Int(Γ),

R−1
((
ψ(z)

)2)
if z ∈ A,

On,α(z) if z ∈ A∗n,α(1) \ Int(Γ−1).

Now let ξ := e
2πi
n . We have that Iξj (z) = Ijξ (z), for j ∈ {0, 1, . . . n− 1}, where Iξ is defined

as in Lemma 4.1.2. We extend to a quasiregular map F : Ĉ → Ĉ defined on the Riemann
sphere, as follows:

F (z) :=

{
Iξj ◦ f ◦ I−1

ξj
(z) z ∈ A∗n,α(ξj), j ∈ {0, 1, ..., n− 1},

On,α(z) otherwise.

Observe that F is a quasiregular map which coincides with On,α outside the immediate
basins of the roots of unity. We intend to construct an F−invariant and Iξ− invariant
Beltrami coefficient µ. We first define an F -invariant Beltrami coefficient, say µ1, in An,α(1),
as follows:

µ1(z) :=


ψ∗µ0(z) if z ∈ A,
(Fm)∗µ0(z) if Fm−1(z) ∈ A, for m ≥ 2,
µ0(z) otherwise.

Observe that for z ∈ A, we have that ψ∗µ0(z) = F ∗µ0(z). Now, we extend the previous
construction to the rest of the Fatou set, that is, the basins of attraction of the nth root of
unity ξj 6= 1, for 1 ≤ j ≤ n − 1. In the following, instead of using Iξj , we will only refer to
invariance with respect to Iξ. Since Iξj = Iξ ◦ Iξ ◦ · · · ◦ Iξ︸ ︷︷ ︸

j times

, it suffices to prove the symmetry

for Iξ. We define an Iξ−invariant Beltrami coefficient in An,α(ξj):

µ(z) :=


µ1(z) if z ∈ An,α(1),

(I−1
ξj

)∗µ1(z) if z ∈ An,α(ξj),

µ0(z) otherwise.

For z ∈ An,α(ξ) we have that

(F )∗µ = (F )∗(I−1
ξj

)∗µ1 = (I−1
ξj
F )∗µ1 = (FI−1

ξj
)∗µ1 = (I−1

ξj
)∗F ∗µ1 = (I−1

ξj
)∗µ1 = µ.

It follows that µ is also F−invariant. By hypothesis, the map On,α is hyperbolic, hence,
the Julia set has measure 0. Since Inξ (z) = z, by construction, µ is both F−invariant and

I−1
ξ −invariant, with bounded dilatation. By the Integrability Theorem (see Theorem 2.5.29),

there exists φ0 : Ĉ→ Ĉ quasiconformal map such that φ∗0µ0 = µ. We normalise φ0 such that
φ0(0) = 0, φ0(∞) =∞, and φ0 is tangent to the identity at ∞. Let φξ := Iξφ0I

−1
ξ . We prove

that φξ and φ0 coincide by using the uniqueness part of the Integrability Theorem. First, we
have that φξ satisfies the same equation as φ0:

φ∗ξµ0 = (I−1
ξ )∗φ∗0I

∗
ξµ0 = (I−1

ξ )∗φ∗0µ0 = (I−1
ξ )∗µ = µ.

We have that φξ satisfies φ∗ξµ0 = µ, φξ(∞) =∞, φξ(0) = 0, and φξ is tangent to the iden-
tity at∞. It follows from the uniqueness up to post-composition with Möbius transformations
of the Integrability Theorem that φξ = φ0; therefore, Iξ ◦ φ0 = φ0 ◦ Iξ.
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Now let NP : Ĉ→ Ĉ, NP := φ0◦F ◦φ−1
0 . Observe that, by construction, NP ◦Iξ = Iξ ◦NP .

The map NP is quasiregular and satisfies (NP )∗µ0 = µ0, therefore, by Weyl’s lemma (see
Lemma 2.5.32) it is holomorphic and quasiconformally conjugated to F by φ0. Since z =∞
is a fixed point of F which is topologically repelling, z = ∞ is a repelling (therefore, not
superattracting) fixed point of NP . It also follows from the conjugacy that NP has precisely
n distinct superattracting fixed points, given by the set {ξjφ0(1)}, where j ∈ {0, 1, . . . n−1}.

By Lemma 4.1.7, the map NP is the map obtained by applying Newton’s method to

P (z) =
n−1∏
j=0

(
z − ξjφ0(1)

)
= zn − φ0(1)n.

We prove that NP and Nfn are linearly conjugated by η(z) := φ0(1)z. Analogously to the
proof of Lemma 4.1.1, we first compute

NP =
n− 1

n
z +

φ0(1)n

nzn−1
.

Then,

NP

(
η(z)

)
=
n− 1

n
φ0(1)z +

φ0(1)n

nφ0(1)n−1zn−1
= φ0(1)

(n− 1

n
z +

1

nzn−1

)
= η

(
Nfn(z)

)
completes the proof of the linear conjugation.

The Julia set of Nfn , J(Nfn), is connected (see [Shi09], Theorem 3.1). Moreover, by
construction, Nfn and On,α are quasiconformally conjugate in a neighborhood of J(Nfn),
by a conjugacy, say φ. Since the conjugacy sends ∞ to ∞, we can conclude that there
is an unbounded connected component Π of J(On,α), which is a quasiconformal copy of
J(Nfn). The fact that φ(J(Nfn)) is a connected component of J(On,α) follows from the
surgery construction, since the surgery is done on the Fatou set of On,α.

4.3 Proof of Theorem E

We begin by studying the case of n = 2. Let α > 2 and let M2(z) := z+1
z−1 be the Möbius

transformation which maps the superattracting fixed points z = 1 and z = −1, to z =∞ and
z = 0. Finally, set a = 2(α− 1) > 2, and consider the map

Ba(z) = z3 z − a
1− az

(4.4)

which is conjugated to O2,α by M2. Indeed, for n = 2, the map On,α is

O2,α(z) =
(2α− 3)z4 − 6z2 + (1− 2α)

4(α− 2)z3 − 4αz
.

We remark that if z = a
b , then M2(z) = a+b

a−b . This gives us

M2

(
On,α(z)

)
=

(2α− 3)z4 + 4(α− 2)z3 − 6z2 − 4αz + (1− 2α)

(2α− 3)z4 − 4(α− 2)z3 − 6z2 + 4αz + (1− 2α)
,
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and

Ba

(
M2(z)

)
=

(z + 1)3
[
z(3− 2α) + (2α− 1)

]
(z − 1)3

[
z(3− 2α)− (2α− 1)

] = M2

(
On,α(z)

)
.

The map Ba(z) = z3 z−a
1−az is a rational map of degree 4 studied in [CFG15], [CFG16], and

[CCV18]. In [CCV18, Section 4] it is proven that for a ∈ C, |a| > 15.133, c+ ∈ Aa(∞). More
precisely, it is shown that there exists a critical point c+, such that Ba(c+) ∈ A∗a(∞). We
will prove that this is a sufficient condition for A∗a(∞) to be infinitely connected. Therefore,
to prove Theorem B when n = 2, it suffices to prove the statements for the family Ba, and
by conjugacy, they hold for O2,α.

The map Ba is a rational map of degree 4, and it is symmetric with respect to S1. The
points z = 0 and z = ∞ are superattracting fixed points of local degree 3. Moreover,
z∞ = 1

a ∈ (0, 1) is a pole, and z0 = a is a preimage of z = 0. Consequently, there are two
free critical points given by

c± =
1

3a

(
2 + a2 ±

√
(a2 − 4)(a2 − 1)

)
. (4.5)

The following lemma is a particular case of [CCV18, Proposition 4.5].

Lemma 4.3.1. Let a > 1. If |z| > 2a, then z ∈ A∗a(∞). Equivalently, for a > 1, we have
that Ĉ \ D(0, 2a) ⊂ A∗a(∞).

Proof. If |z| > 2a then

|Ba(z)| = |z3| |z − a|
|1− az|

> |z − a||z| 2a|z|
|1− az|

> a|z| 2a|z|
1 + a|z|

> a|z|.

Since |Ba(z)| > |z|, it follows that z ∈ A∗a(∞).

In the proof of Proposition 4.6 in [CCV18], the authors show that for a ∈ C with |a| large
enough (indeed |a| > 16), we have Ba(c+) ∈ A∗a(∞). A similar proof was previously done in
[CFG16, Lemma 2.6] for a family that includes Ba (but without providing an explicit bound).
Here we present an easier proof, only for real values of the parameter a.

Lemma 4.3.2. If a ∈ R+ is large enough, then Ba(c+) ∈ A∗a(∞).

Proof. It follows from (4.5) that if a > 2, then a
2 < c+ < a. We write Ba(z) as Ba(z) = z3h(z),

where h(z) = z−a
1−az , and h′(z) = − (a+1)(a−1)

(az−1)2
. Then

B′a(z) = 3z2h(z) + z3h′(z), so Ba(z) =
zB′(z)

3
− z4

3
h′(z).

We have that

Ba(c+) = c4
+

(a+ 1)(a− 1)

3(ac+ − 1)2
> c4

+

a(a− 1)

3a4
.

Since c+ > a
2 > 1, it follows that

Ba(c+) >
a− 1

48
a.

So, for a > 97, we have that Ba(c+) > 2a. According to Lemma 4.3.1, we conclude that
Ba(c+) ∈ A∗a(∞).
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Proposition 4.3.3. Assume a ∈ R+ is large enough such that Lemma 4.3.2 applies. Then
c+ ∈ A∗a(∞) and A∗a(∞) is infinitely connected.

Proof. Observe that, for a > 1, we have that 0 < z∞ < z0 < 2a. By Lemma 4.3.2, Ba(c+) ∈
A∗a(∞). Therefore, the critical point c+ lies either in A∗a(∞) or in a preimage of A∗a(∞).

Assume that c+ lies in a preimage of A∗a(∞), distinct from A∗a(∞), say U . Since U contains
a critical point, it is mapped onto A∗a(∞) with degree at least 2. Hence, U contains at least
2 preimages of z = ∞ (different from itself), a contradiction with deg(Ba) = 4, and z = ∞
being a superattracting fixed point with local degree 3.

Since the map is real, by the Schwarz Reflexion Principle, the map is conjugated to itself
by complex conjugation, i.e. I(z) = z. Then, Fatou components intersecting the real line are
symmetric with respect to the real line. Since 0 < c+ < z0, it follows that 0 and z0 belong
to different connected components of the complement of A∗a(∞). Thus, A∗a(∞) is multiply
connected, therefore, by Remark 4.1.6 it is infinitely connected.

Remark 4.3.4. It follows from [CCV18, Proposition 4.6] that all a ∈ C, with |a| > 15.133,
belong to the same hyperbolic component. Since the connectivity of A∗a(∞) is an invariant
topological property within hyperbolic components, we conclude from Proposition 4.3.3 that if
|a| > 15.133, then A∗a(∞) is infinitely connected. This completes the proof of Theorem E for
n = 2.

To finish the proof of Theorem E we now consider n ≥ 3. As we did before, we consider a
new map Rn,α which is conjugated to On,α via the Möbius map M(z) = 1

z−1 . More specifically,

we consider Rn,α : Ĉ→ Ĉ, given by Rn,α = M ◦On,α ◦M−1. Since M sends z = 1 to z =∞
and z =∞ to z = 0, it is clear from (4.2) that z =∞ is a superattracting fixed point of Rn,α
with local degree 3 and z = 0 is a fixed point of Rn,α.

We have M(z) = 1
z−1 , M−1(z) = z+1

z , and

On,α(z) =
(1− 2α)(n− 1) + (2− 4α− 4n+ 6αn− 2αn2)zn + (n− 1)(1− 2α− 2n+ 2αn)z2n

2nzn−1(α(1− n) + (−α− n+ αn)zn)
.

We write

On,α(z) =
E3(n, α) + E4(n, α)zn + E5(n, α)z2n

2nzn−1[E1(n, α) + E2(n, α)zn]
,

where Ei(n, α) are polynomials of degree 1 in α. It follows that
Rα(z) = M ◦ Sn,a,Q ◦M−1(z)

= M
(
E3(n,α)z2n+E4(n,α)zn(z+1)n+E5(n,α)(z+1)2n

2nz(z+1)n−1[E1(n,α)zn+E2(n,α)(z+1)n]

)
= 2nz(z+1)n−1[E1(n,α)zn+E2(n,α)(z+1)n]

2nz(z+1)n−1[E1(n,α)zn+E2(n,α)(z+1)n]−E3(n,α)z2n+E4(n,α)zn(z+1)n+E5(n,α)(z+1)2n

which we finally write as

Rn,α(z) =
2nz(z + 1)n−1[E1(n, α)zn + E2(n, α)(z + 1)n]

Q1
2n−3(z) + αQ2

2n−3(z)
=:

zP (z)

Q(z)
, (4.6)

where Qj2n−3(z), j = 1, 2 are degree 2n−3 polynomials, with coefficients independent of α. We
can use this expression of Rn,α, without further computations, since Rα is a rational map of
degree 2n, being conjugated to On,α. Furthermore, z =∞ corresponds to the superattracting
fixed point of local degree 3 of On,α(z), z = 1. So the denominator of Rn,α has degree 2n− 3
in z. Since Ei(n, α) are polynomials of degree 1 in α, this concludes the argument of writing
Rn,α in this form.
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We split the proof of the case n ≥ 3 in several lemmas. We start by giving an estimate
for a zero of Rα, which lies on the positive real line.

Lemma 4.3.5. Let α > 2 and let S(z) = E1(α)zn + E2(α)(z + 1)n. Then S
(
α(n − 1)

)
<

0 < S(αn − α − n). In particular, Rα has a zero on the interval
(
α(n − 1) − n, α(n − 1)

)
,

for all α > 2.

Proof. Direct computations show that S writes as

S(z) = −nzn + [α(n− 1)− n)]

n−1∑
k=0

(
n

k

)
zk. (4.7)

On one hand,

S
(
α(n− 1)− n

)
=

n−2∑
k=0

(
n

k

)
(αn− α− n)k > 0.

On the other hand,

S
(
α(n− 1)

)
= −n

[
α(n− 1)

]n
+ [α(n− 1)− n]

n−1∑
k=0

(
n
k

)
[α(n− 1)]k

= −n
[
α(n− 1)

]n
+ [α(n− 1)]

n−2∑
k=0

(
n
k

)
[α(n− 1)]k + [α(n− 1)]n

[
α(n− 1)

]n−1

− n
n−1∑
k=0

(
n
k

)
[α(n− 1)]k

=
n−2∑
k=0

[(
n
k

)
− n

(
n
k+1

)]
[α(n− 1)]k+1 − n

(
n
0

)
< 0.

The following technical lemma will be useful later.

Lemma 4.3.6. Let m, k ∈ N∗, m > k. Let u, vj ∈ C, j = 1, . . . ,m. If |u| −
m∑
j=1
|vj | > 0, then∣∣∣∣∣∣u−

k∑
j=1

vj

∣∣∣∣∣∣ >
∣∣∣∣∣∣

m∑
j=k+1

vj

∣∣∣∣∣∣ .
Proof. Since |u| −

m∑
j=1
|vj | > 0, we have that∣∣∣∣∣∣u−

k∑
j=1

vj

∣∣∣∣∣∣ ≥ |u| −
k∑
j=1

|vj | >
m∑

j=k+1

|vj | ≥

∣∣∣∣∣∣
m∑

j=k+1

vj

∣∣∣∣∣∣ .

We give a sufficient condition for points to lie in A∗α(∞).

Lemma 4.3.7. Let α > 0 large enough. If |z| > nα, then z ∈ A∗α(∞).

Proof. We show that if |z| > nα, then |Rα(z)| > |z|, which is a sufficient condition for

z ∈ A∗α(∞). According to (4.6), we have to prove that, for α large enough,
∣∣∣P (z)
Q(z)

∣∣∣ > 1. We

write P as

P (z) = 2n
[
− nz2n−1 + nα(n− 1)z2n−2 + P2n−2(z) + αP2n−3(z)

]
.

Observe that P2n−2(z) and P2n−3(z) are polynomials of degree 2n−2 and 2n−3, respectively,
with coefficients independent of α. For α large enough (recall that we are assuming |z| > nα),
the following statements hold:
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1. (n− 1)|z|2n−1 > nα(n− 1)|z|2n−2.

2. 1
3 |z|

2n−1 > |P2n−2(z)|, since

lim
α→∞

n(n− 1)|z|2n−2

|z|2n−1
= 0.

3. 1
3 |z|

2n−1 > |αP2n−3(z)|, since

lim
α→∞

P2n−3(z)

|z|2n−2
= 0.

4. 1
3 |z|

2n−1 > |Q(z)|, since Q1
2n−3 and Q2

2n−3 are polynomials of degree 2n− 3 with coeffi-
cients independent of α.

All together imply that

n|z|2n−1 > nα(n− 1)|z|2n−2 + |P2n−2(z)|+ α|P2n−3(z)|+ |Q(z)|.

By using Lemma 4.3.6 (recall that for α large enough, there is no root of Q for |z| > nα), we
get that ∣∣∣∣P (z)

Q(z)

∣∣∣∣ =

∣∣∣∣2n−nz2n−1 + α(n− 1)z2n−2 + P2n−2(z) + αP2n−3(z)

Q(z)

∣∣∣∣ > 2n > 1.

Thus, for |z| > nα, we have that |Rα(z)| > |z| and z ∈ A∗α(∞).

The following proposition concludes the proof of Theorem E.

Proposition 4.3.8. Let α > 0 large enough. Then A∗α(∞) is infinitely connected.

Proof. If z ∈ (0, αn−α− n), then nzn < (αn−α− n)nzn−1. It follows that S(z) (see (4.7))
has no zeros in (0, αn− α− n). In particular, Rα has no zeros in (0, αn− α− n). Let

I =
{
z ∈ C

∣∣∣z = nα

(
1

2
+ it

)
, t ∈ [−1, 1]

}
.

We claim that Rα(I) ⊂ A∗α(∞).
Let Tα(z) := 1

(1+z)2
Rα(z). Firstly, we prove that there exists a constant κ > 0 such that

for z ∈ I, we have that
∣∣∣Tα(z)

∣∣∣ > κ. A direct computation shows that∣∣∣∣Tα(nα(1

2
+ it

))∣∣∣∣ :=
N(α)

M(α)
,

where N and M are polynomials of degree 2n − 2 in α with coefficients depending on t.
Moreover, if we denote by c(t) the degree 2n− 2 coefficient of N , we have:

c(t) = 2n2n−1

(
1

2
+ it

)2n−2 [
−n
(

1

2
+ it

)
+ n− 1

]
.

Observe that
min

t∈[−1, 1]

∣∣∣c(t)∣∣∣ =
∣∣∣c(0)

∣∣∣ := C > 0.
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Figure 4.5: Description of the situation in proof of Proposition 4.3.8. The zero z0 is separated
by (I ∪ γ1) ⊂ A∗α(∞) from z = 0. Therefore, A∗α(∞) is multiply connected.

We denote by d(t) the degree 2n−2 coefficient of M . Let D := max
t∈[−1, 1]

|d(t)|, and let κ := C
2D .

For large enough α, we have that
∣∣∣Tα(nα (1

2 + it
) )∣∣∣ > κ and that∣∣∣∣Rα(nα(1

2
+ it

))∣∣∣∣ > κ
∣∣∣nα

2
+ 1 + nαti

∣∣∣2 > n2

4
κα2 > nα.

It follows from Lemma 4.3.7 that Rα(I) ⊂ A∗α(∞). Hence, I is a subset of A∗α(∞) or a
preimage of this Fatou component. Moreover, for z± = n

2α±inα we have |z±| > nα. We
conclude from Lemma 4.3.7 that z± ∈ A∗α(∞). Therefore, I ⊂ A∗α(∞). By Lemma 4.3.5,
there exists a zero z0 of Rα such that nα

2 < z0 < nα. Therefore, there exists a piece-wise
smooth Jordan curve Γ = I ∪ γ1 ⊂ A∗α(∞) such that z0 ∈ Int(Γ) and 0 ∈ Ext(Γ) (see
Figure 4.5). It follows that A∗α(∞) is multiply connected. By Remark 4.1.6, it is infinitely
connected.
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