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To Chiara and our kids

It ain’t what you don’t know that gets you into trouble.

It’s what you know for sure that just ain’t so.

Mark Twain
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Abstract
The present thesis aims at developing a high-order finite volume method for solid

dynamics on unstructured three-dimensional meshes. The adoption of high-order
interpolation methods has a key importance in the efficient application of numerical
methods for the resolution of real engineering problems where stress concentration
occurs, and it helps to avoid the appearance of the well-known shear locking effect.
Avoiding such a detrimental effect would be possible without adopting high-order
schemes, but with more costly and complex numerical simulations, i.e., by drastically
increasing the number of mesh elements and/or with the need of remeshing until a
suitable mesh is found.

This thesis has been developed within the Heat and Mass Transfer Technological
Center (CTTC) research group, with a strong tradition of resolving fluid flow and
fluid-structure interaction problems and where structural analysis through numerical
methods is a developing field of research. Likewise, until this thesis, there was no
development of the finite volume method with high-order interpolation on unstruc-
tured meshes, which placed the method far behind the finite element method in the
resolution of structural problems. Using finite volume mehod strategies for resolving
governing equations in both solid and fluid would lead to highly efficient couplings in
fluid-structure interaction problems. Hence, this thesis is the first attempt to develop
this kind of methodology, not only within the research group but in the general field
of study of computational solid mechanics.

This work is developed into five chapters. The first is an introduction presenting a
review of the bibliography, the motivations for developing this thesis, and the main
objectives to be achieved. The following three chapters reveal, through different
examples, the validation and verification of the proposed mathematical formulation.
It is worth noting that much of the content included in these three chapters has already
been presented or published in international journals and conferences. However,
some changes have been introduced with respect to the original documents. For
instance, many validations and verification examples were created specifically for
this thesis. The last chapter summarizes the main contributions and proposes ideas
to expand this thesis in the future. At last, five appendices are included to help the
reader to understand some specific parts of the work without disturbing the normal
reading of the thesis.

In detail, this work starts in Chapter 1 by introducing the reader to the historical
development of the finite volume method to solve solid problems. Likewise, an
example is shown where the shear locking phenomenon appears, explaining how this
phenomenon can also affect the solution of bending-dominant real problems, such as
a compressor reed valve.

Next, in Chapter 2, the mathematical formulation is displayed with all the theoret-
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vi Abstract

ical concepts needed to reproduce the method, from basic concepts of solid mechanics
to the introduction of the two adopted interpolation methods: moving least squares
and local regression estimators. In addition, the used spatial and temporal discretiza-
tion are presented, as well as the resolution process, through the Newton-Raphson
method, and the nonlinear problems associated with geometric or material nonlinear-
ities.

Following the above, the verification and validation of the presented method are
carried out in Chapter 3. An exhaustive analysis of all the parameters involved in
formulating both two-dimensional and three-dimensional problems is performed.
Likewise, in all the examples, the results are compared with analytical solutions
and with solutions obtained by other methods, such as the finite element method or
the finite volume method with linear interpolation. Several examples are disclosed,
including: static and dynamic problems, linear and nonlinear forces (impact force),
materials with linear elastic or hyperelastic behavior, and two or three-dimensional
problems with regular and complex geometries.

Subsequently, Chapter 4 presents the analysis of an industrial example carried out
in collaboration with the Voestalpine company. The objective of this collaboration
was to characterize the behavior of the reed valve of a compressor in its cyclic oper-
ation. The company developed a custom-built impact fatigue test rig, from which
displacement measurements were obtained and used to validate the method. The
experiment measures the displacement of the valve as the compressed air opens and
closes it by repeatedly hitting the seat, which leads to valve failure due to fatigue
stresses. Therefore, this example involves several physics, such as the solid, the fluid,
the interaction between them, and the impact between the valve and its seat. For
this reason, it is an ambitious and essential example for the industry since it allows
understanding, at least in part, the behavior of a valve before collapsing. Given its
relevance, in this case, this example has been analyzed with the TermoFluids software,
the finite element method, and the formulation presented in this thesis. Throughout
the chapter, comparisons are made between the methods, obtaining very accurate
results and explaining the main differences.

Finally, the conclusions are summarized and exposed in Chapter 5.
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1

Introduction

1.1 Background and motivation

Since its most original formulations, the Finite Volume Method (FVM) is usually
associated with fluid and heat transfer problems [1–3]. Unlike other numerical
methods, such as the Finite Element Method (FEM) [4–6] and the Finite Difference
Method [7, 8], which were first devised to solve problems in solid mechanics, the
FVM began to be used in this field only since the work of Demirdžić et al. [9]. After
the first cell-centered two-dimensional development of the FVM in [9] using linear
displacement interpolation for linear elasticity, its use has been extended to other
areas such as: material nonlinearity (Elastoplasticity [10], and Viscoelasticity [11]);
large strains [12]; Fluid-Structure Interaction (FSI) [13–16] among others [17]. In
Cardiff et al. [17], an exhaustive review of the development of the FVM method in
solid mechanics is carried out for different approaches. The cell-centered method has
been widely spread; however, some works use the vertex-centered method [18, 19].
Moreover, it is common to see the use of FEM and FVM in solving the same problem,
e.g., in [19–22] the results obtained with both methods are compared, concluding that
there is still no consensus on which is better to solve a specific type of problem (solid
or fluid equation). The FVM has always excelled in Computational Fluid Dynamics
(CFD) by solving equations that come from conservative laws. Furthermore, the FVM
has a more straightforward mathematical formulation than the FEM, making it better
to introduce and understand. Another remarkable advantage of the FVM is that
fluxes only need to be evaluated on the faces of the elements, which is also valid for
nonlinear problems, making the method simpler and cheaper from a computational
point of view. On the other hand, the FEM has always stood out for its ability to
increase, in a straightforward way, the order of interpolation of the main variable
of the problem, which is an advantage in stress concentration problems or when
the shear locking effect appears. On the contrary, for the FVM, the functions that
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2 CHAPTER 1. INTRODUCTION

approximate the solution cannot be easily made of higher order, especially when the
mesh is unstructured.

From the review carried out by Cardiff and Demirdžić [17], it can be deduced that
there is a lack of development in the high-order interpolation of the displacement
field, something that is very usual in FEM [6, 23]. The work that stands out in [17] on
high order is the cell-centered developed by Demirdžić [24], which is developed for
structured meshes in two dimensions and linear elasticity. A high-order interpolation
is helpful, especially for problems dominated by bending. In those problems, an effect
called shear locking appears. The shear locking occurs in bending-dominant problems
due to the inability of the element edges to bend, which causes the appearance of an
artificial shear deformation, making the element stiffer. This problem happens when
using the FEM or the FVM with linear interpolation [24]. Refining the mesh makes it
possible to obtain a sufficiently accurate solution to these problems. However, the
computational cost is usually unacceptable, and the best way to address the problem
is to increase the interpolation order. An example of shear locking is presented in
Figure 1.1. In the left image, there is a slender clamped beam, with its geometric
and mechanical parameters, for which an approximation of the displacement of the
free end can be obtained [25]. The image on the right shows the results obtained
when using FreeFEM1 [26] for two types of interpolations: linear and quadratic. It is
possible to see how, for linear interpolation, a larger number of elements is needed
to obtain an acceptable relative error. In this case, with 141121 tetrahedrons, the
relative error is 3.31 %, while 42 tetrahedrons are necessary to obtain the same error
in a quadratic interpolation. Moreover, with 17971 tetrahedrons the relative errors are
11.35 % and 0.18 % using linear and quadratic interpolation, respectively.

P

E = 30000, ν = 0.3

Z
Y

XLy

Lx

Lz

Lx = 50, Ly = Lz = 2
P = 4

if Lx � Lz then:

uz(Lx , 0, 0) = − 4 P L3
x

E Ly L3
z 12 102 103 104 17971 105 141121

Number of tetrahedrons

-4.5
-4.0
-3.5
-3.0
-2.5
-2.0
-1.5
-1.0
-0.5
0.0 uz

quadratic interpolation

linear interpolation

Figure 1.1: Geometric and mechanical parameters of the slender clamped beam (left)
and results obtained using FreeFEM with two types of interpolation (right).

A common real example where the effect of shear locking appears is in compressor
reed valves. Due to its small thickness, the solution of the simulation may be affected

1Free software that uses FEM.



1.1. BACKGROUND AND MOTIVATION 3

by this phenomenon and could require a high computational effort if linear interpola-
tion is used. The correct simulation of a compressor valve is of great industrial interest
since it would allow predicting the failure of the piece, usually caused by fatigue.
Fatigue is one of the main failures of machine parts in service and civil engineering
structures such as bridges or buildings [27, 28]. Generally, fatigue failures are associ-
ated with stress concentrations produced by cyclic or repeatedly applied loads, which
are usually wide below the loads that would result in the yielding of the material. It
is a phenomenon mostly understood as an alteration in material properties. After
a certain number of cycles, the material loses strength which can be interpreted as
a change in the elastic, plastic, and damage behavior [29]. Usually, it starts with
a crack that propagates and ends with an unpredictable collapse. A widespread
and straightforward example of fatigue failure is when a metal wire is bent; at the
beginning, there is no damage, but after a repetitive upward and downward bend,
the wire fails. Generally, the failure of the valve is produced by the impact stresses
that are generated due to the repeated impact of the valve against the seat after a large
number of cycles [30–33]. Experimentally it is possible to observe that this impact
produces a failure in the tip of the valve; see the left image of Figure 1.2.

As a final result of this thesis, a numerical procedure for assessing and quantifying
the presence of painful stresses in the valve tip area is presented. The right image
in Figure 1.2 shows the result of the von Mises stress at four points on the tip of the
valve during a complete simulation of a work cycle, see Chapter 4 for more details.

γ1
2 43

γ γ
γ = 45◦

0.00 1.52 3.04 4.56 6.09 7.61 9.13
time [ms]

0
10
20
30
40
50
60
70
80
90 σvM[MPa]

1st impact 2nd impact

Point 2
Point 1

Point 4
Point 3

Figure 1.2: Valve failure in experiments [30, 34] (left) and von Mises stress at critical
points obtained with the simulation presented in Chapter 4 (right).

In order to perform a numerical analysis of the phenomenon described above,
it is necessary to take into account different physics: (1) the fluid, (2) the solid, (3)
the interaction between fluid and structure, and (4) the simulation of the impact.
The numerical analysis implies difficulties in mathematical formulation, complex
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algorithms, and high computational costs. Generally, the finite element method is
used to solve these types of problems [30, 35–37]. The previously mentioned works
use commercial software, e.g., ADINA, and usually show the boundary conditions
without delving into the method used. Adopting FVM strategies for resolving gov-
erning equations in both solid and fluid would lead to highly efficient couplings in
fluid-structure interaction problems. In this sense, the procedures used to solve the
solid and fluid problems must be compatible in some aspects, such as the mesh struc-
ture, the method to discretize the equations spatially, and the exchange of information
in the fluid-structure interface [38]. Therefore, to avoid the shear locking effect when
using FVM, it is necessary to use high-order interpolation to reduce the computa-
tional effort. However, the only work where a high-order interpolation scheme for
the displacement field is used is the work of Demirdžić [24]. In that paper, structured
two-dimensional Cartesian meshes were used following the idea proposed in [39].
Therefore, various aspects of the high-order interpolation schemes in solving these
problems are still under intensive investigation [17]. One of these aspects is the use of
unstructured meshes, which are of great importance for the adequate description of
complex geometries and adaptive mesh refinement techniques, which are necessary
in stress concentration cases.

The key feature of the current thesis consists of the formulation and validation
of a high-order interpolation method for hyperelastic materials using FVM on un-
structured meshes. Two techniques are used to approximate the displacement and its
derivatives: the original Moving Least Squares (MLS) [40,41] and the Local Regression
Estimators (LRE) [42, 43]. These methodologies allow working with unstructured
meshes and arbitrary order of interpolation. Until now, none of these methods had
been used to solve linear elasticity problems with finite volumes; moreover, the LRE,
to the best of the author’s knowledge, has never been used in continuum mechanics.
The LRE is a numerical method that comes from the discipline of statistics, and the
main difference with the MLS lies in how the derivatives of the main variable are
approximated. In the proposed method, the coefficients of the high-order interpo-
lation are treated implicitly in a direct solution strategy which differs from what is
described in [24]. The presented method has been validated and verified with two and
three-dimensional problems, considering static and dynamic cases for hyperelastic
materials. In addition, the method has been used to solve the case of a real reed valve,
including the simulation of the impact on the valve, thus obtaining the pressures and
stresses of the impact, see Chapter 4.

1.2 Objectives

The main objective of this thesis is the development of a new formulation of the finite
volume method that allows using a high-order interpolation of the displacement field
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for unstructured meshes. With this, it would be possible to solve problems where
the shear locking effect affects the solution while reducing the number of volumes
necessary for an accurate solution. This formulation must be validated with analytical
examples and compared with the solution provided by other methods such as FEM
or traditional FVM [44].

The specific objectives of this thesis are:

1. Development of a high-order formulation for solid mechanics problems using
the cell-centered finite volume method, see Chapter 2.

2. Verification and validation of the developed method, obtaining an adequate set
of parameters for two-dimensional problems, see Section 3.1.

3. Verification and validation of the developed method, obtaining an adequate set
of parameters for three-dimensional problems, see Section 3.2.

4. Simulation of a compressor reed valve considering the interaction between fluid
and structure and the impact of the valve on the seat. Adopting the high-order
method presented to obtain the displacement, velocity, and stress tensor of a
reed valve, see Chapter 4.

1.3 Outline of the thesis

The next chapter (Chapter 2) presents the mathematical formulation and develop-
ment of the high-order interpolation method. A brief introduction to solid mechanics
is made [45], introducing classical strain and stress tensors. Likewise, the models
of hyperelastic materials and the temporal discretization of finite volume are pre-
sented. Finally, the construction of the matrices that define the system of equations is
illustrated in a pseudo-code.

The validation and verification of the method in two and three dimensions are
presented in Chapter 3. The numerical results obtained with the high-order method
are compared with analytical or approximate solutions under specific hypotheses.
Moreover, this chapter compares the numerical results with those obtained using the
FEM and a classical formulation of FVM [44]. The outcome of the exhaustive analysis
presented in this chapter is a set of parameters suitable for both two-dimensional and
three-dimensional problems.

In Chapter 4, the previously verified method is used to obtain the fields of displace-
ments and stresses in the case of a compressor valve. This chapter briefly presents
the different methodologies to simulate the interaction between fluid and structure
and the impact of the valve on the seat. Then, the high-order formulation presented
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in this thesis is used to obtain the displacement, velocity, and stress tensor of the
valve. Furthermore, the distribution of contact pressures in the valve is illustrated.
An increase in stresses due to the impact force is identified in the areas where the
valves usually break, producing failure in the compressor operation.

Finally, in Chapter 5, the main conclusions of the thesis are presented, and research
lines for future work are proposed.
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[17] P. Cardiff and I. Demirdžić. Thirty Years of the Finite Volume Method for Solid
Mechanics. Archives of Computational Methods in Engineering, 28:3721–3780, 2021.

[18] Y. D. Fryer, C. Bailey, M. Cross, and C. H. Lai. A control volume procedure
for solving the elastic stress-strain equations on an unstructured mesh. Applied
Mathematical Modelling, 15(11-12):639–645, nov 1991.

[19] C. Bailey and M. Cross. A finite volume procedure to solve elastic solid mechan-
ics problems in three dimensions on an unstructured mesh. International Journal
for Numerical Methods in Engineering, 38(10):1757–1776, may 1995.

[20] V. Selmin. The node-centred finite volume approach: Bridge between finite
differences and finite elements. Computer Methods in Applied Mechanics and
Engineering, 102(1):107–138, jan 1993.

[21] N. A. Fallah, C. Bailey, M. Cross, and G. A. Taylor. Comparison of finite element
and finite volume methods application in geometrically nonlinear stress analysis.
Applied Mathematical Modelling, 24(7):439–455, jun 2000.



8 CHAPTER 1. INTRODUCTION

[22] F. D. Molina-Aiz, H. Fatnassi, T. Boulard, J. C. Roy, and D. L. Valera. Comparison
of finite element and finite volume methods for simulation of natural ventilation
in greenhouses. Computers and Electronics in Agriculture, 72(2):69–86, jul 2010.

[23] P. Solin, K. Segeth, and I. Dolezel. Higher-Order Finite Element Methods (Studies in
Advanced Mathematics). Chapman and Hall/CRC, 2003.
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2

High-order finite volume

method for solid dynamics

Part of what is presented in this chapter was published, for small deformations
and two dimensions, in:

[1] Pablo Castrillo, Alfredo Canelas, Eugenio Schillaci, Joaquim Rigola, and Asen-
sio Oliva. High-order finite volume method for linear elasticity on unstructured
meshes. Computers & Structures, 268:106829, aug 2022.
https://doi.org/10.1016/j.compstruc.2022.106829

Section 2.1 of this chapter expose the equations that govern the problem. In this
thesis, the differential equations of the solid are solved using the finite volume method
with a cell-centered formulation, which is detailed in Section 2.2. Section 2.3 presents
the formulation that allows using a high-order interpolation of the displacement
field [1]. Section 2.4 shows a synthesis of the algorithm. Finally, Section 2.5 intro-
duces temporal discretization and summarizes the generalized method for structured
dynamics applications developed in [2].

2.1 Governing equations

This section describes the equations associated with continuum mechanics used in
this thesis.

2.1.1 Motion and deformation

In continuum mechanics, it is usual to define material and spatial points. A material
point (or particle) X belongs to the reference configuration B0. The choice of the reference

11
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configuration is arbitrary [3], although it is usually defined as that of the initial time
or as the undeformed configuration of the solid. The movement of B0 is defined with
a smooth function χ that assigns to each material point X and time t a point

x = χ(X, t) , (2.1)

where x is the spatial point occupied by X at time t. χ(X, t) is called deformation or
deformation function, which must meet some properties that are not detailed in this
thesis; for more references, see Gurtin et al. [3]. The displacement field is defined as:

u(X, t) = x− X = χ(X, t)− X . (2.2)

The region occupied by the body at instant t is Bt = χ(B0, t), called the deformed
body or deformed configuration. Being ∇0 the material gradient (finds the derivatives
with respect to the material coordinates), it is possible to define the tensor field

F = ∇0 χ , (2.3)

which is the deformation gradient that must fulfill that:

J = det(F) > 0 . (2.4)

Therefore
F = ∇0 χ = ∇0(x) = I +∇0 u , (2.5)

where I is the identity tensor. If the deformation is homogeneous1:

χ(X) = χ(Y) + F (X − Y) , (2.6)

for all material points X and Y . The previous equation means that F maps mate-
rial vectors to spatial vectors. In the general case, assuming that χ is continuous,
differentiable and invertible, then:

χ(X + h) = χ(X) +∇0χ(X)h + o(X, h) , with lim
h→0

o(X, h)
‖h‖ , (2.7)

therefore a tiny volume around the material point X deforms about the same as with
a uniform deformation tensor F, see Eq. (2.6). With the above, it is possible to show
relationships between the magnitudes of the reference configuration and the current
configuration. The relation within differentials volumes is:

dV = J dV0 , (2.8)
1The instantaneous deformation gradient F is independent of X.
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where dV is the differential volume in the deformed configuration while dV0 is the
differential volume in the reference configuration. Once again, relationships between
the differential area vector n dA in Bt and the differential area vector n0 dA0 in B0
may be identified:

n dA = J F−Tn0 dA0 , (2.9)

where n and n0 are the unit normal vectors in Bt and B0, respectively.
The tensor F includes information about rigid body rotation, which does not

produce any stress in the body. For that reason it is usual to write tensor F in polar
decomposition F = R U where U =

√
FT F is a positive-definite symmetric tensor and

R is a rotation. The tensor U is often problematic to apply because of the square root;
therefore, it is usual to introduce the right Cauchy-Green tensor:

C = U2 = FT F , (2.10)

which is also symmetric and positive-definite. Another functional tensor for applica-
tions is the Green-Lagrange tensor:

E =
1
2
(C− I) =

1
2

(
FT F− I

)
. (2.11)

If the hypothesis of small deformations is assumed, ‖∇0u‖ � 1,

E =
1
2

[
∇0u + (∇0 u)T + (∇0 u)T∇0u

]
≈ 1

2

[
∇0u + (∇0 u)T

]
= D , (2.12)

where D is the infinitesimal strain tensor.

2.1.2 Balance laws

The fundamental balance equations that govern the continuum mechanics are ex-
pressed in this section.

Mass balance The total mass of any region Pt = χ(P0, t) ⊂ Bt at time t has to be
equal to the total mass of region P0 ⊂ B0:∫

Pt
ρ(x, t)dV =

∫
P0

ρ0(X)dV0 , (2.13)

where ρ > 0 is the mass density in the deformed body Bt and ρ0 > 0 is the mass
density in the reference body B0. Using Eq. (2.8) and since P0 is arbitrary,∫

P0

J ρ− ρ0 dV0 = 0⇒ ρ0 = J ρ . (2.14)
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Linear momentum balance The balance of linear momentum is expressed as:

d
dt

∫
Pt

ρ u̇ dV =
∫

∂Pt
t(n)dA +

∫
Pt

b dV , (2.15)

where u̇ = ∂u/∂t is the velocity, b is a body force, and t is the surface traction
assuming the Cauchy’s hypothesis which implies that the traction depends on the
outward-pointing normal n of the closed surface ∂Pt.

From Cauchy’s theorem t(n, x, t) = σ(x, t)n(x, t) where σ is a spatial tensor field
called Cauchy tensor [3], therefore Eq. (2.15) is rewritten as:

d
dt

∫
Pt

ρ u̇ dV =
∫

∂Pt
σ n dA +

∫
Pt

b dV , (2.16)

where using Reynold’s transport theorem:∫
Pt

ρ
∂u̇
∂t

dV =
∫

∂Pt
σ n dA +

∫
Pt

b dV . (2.17)

Using the divergence theorem, it is possible to rewrite Eq. (2.17) as:∫
Pt
∇ · σ + b− ρ

∂u̇
∂t

dV = 0 , (2.18)

where ∇· is the spatial divergence (finds the derivatives with respect to the spatial
coordinates), and since this must hold for all spatial region Pt:

∇ · σ + b = ρ
∂u̇
∂t

, (2.19)

which is called the local form of the linear momentum balance.

Angular momentum balance Using the expressions mentioned above, the angular
momentum balance is:∫

Pt
rp × ρ

∂u̇
∂t

dV =
∫

∂Pt
rp × σ n dA +

∫
Pt

rp × b dV , (2.20)

where rp is the position vector rp = x− o being o a spatial point. An important conse-
quence of the angular momentum balance is that the Cauchy tensor is symmetric:

σ = σT , (2.21)

this result is found deriving the local form of the momentum balance which is similar to
the derivation of the Eq. (2.19), see [3].
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Energy balance The energy balance has the form:

d
dt

[E(Pt, t) + K (Pt, t)] = Pext(Pt, t) + Q (Pt, t) , (2.22)

where the rate of the addition of specific internal-energy E and kinetic energy K is
equal to the addition of external mechanical power Pext and heat flow Q . The above
expressions are defined as:

E(Pt, t) =
∫
Pt

ρ e dV , (2.23)

K (Pt, t) =
1
2

∫
Pt

ρ u̇ · u̇ dV , (2.24)

Pext(Pt, t) =
∫
Pt

σ : ∇u̇ dV +
d
dt

[K (Pt, t)] , (2.25)

Q (Pt, t) = −
∫

∂Pt
q · n dA +

∫
Pt

q dV , (2.26)

where e is the total specific energy, q is the heat flux, q is a scalar heat supply (e.g.,
radiation), and ∇ is the spatial gradient (finds the derivatives with respect to the
spatial coordinates), therefore:

d
dt

[∫
Pt

ρ e dV
]
= −

∫
∂Pt

q · n dA +
∫
Pt

q dV +
∫
Pt

σ : ∇u̇ dV . (2.27)

Thermoelastic materials are not considered in this thesis, so the energy equation is
not used.

2.1.3 Constitutive relationship

In this thesis, only hyperelastic-isotropic materials neglecting thermal effects are
considered. From the strain energy ψ, it is possible to obtain the stress tensors related
to the strain tensors defined in Section 2.1.1. The three most commonly used stress
tensors are: (1) the Cauchy tensor σ, (2) the second Piola stress tensor S, and (3) the
Piola stress tensor P. The second Piola stress tensor S is obtained from the strain
energy as:

S = 2
∂ ψ(C)

∂ C
, (2.28)

where C is the right Cauchy-Green tensor defined in Eq. (2.10), the other tensors are
related to S as:

σ =
1
J

F S FT and P = F S . (2.29)
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Saint-Venant-Kirchhoff material model For large displacement but small strains,
the Saint-Venant-Kirchhoff material model is the most frequently used [3, 4]. The free
energy function that defines this model is:

ψ(E) =
1
2

λ tr(E)2 + µ tr(E2) , (2.30)

where E is the Green-Lagrange tensor defined in Eq. (2.11), λ and µ are the Lamé
parameters. Using that E = (C− I)/2 it is possible to obtain that:

S = λ tr(E) I + 2 µ E . (2.31)

Simo-Miehe material model This model is more suitable for materials that suffer
large deformations [4, 5]. The free energy function that defines this model is:

ψ(C, J) =
µ

2

(
J−2/3 tr(C)− 3

)
+

κ

4

(
J2 − 1− 2 ln(J)

)
, (2.32)

where C and J are defined in Eqs. (2.10) and (2.4), respectively, and κ = λ + 2 µ/3 is
the material bulk. From Eq. (2.28), it is possible to obtain that:

S = µ J−2/3
(

I− 1
3

tr(C)C−1
)
+

κ

2

(
J2 − 1

)
C−1 . (2.33)

Small deformations hypothesis model If the hypothesis of small deformations
is considered ‖∇0 u‖ � 1, then both of the materials models defined above are
rewritten as:

S = λ tr(D) I + 2 µ D , (2.34)

where D is the infenitesimal strain tensor defined in Eq. (2.12). In addition, it is
fulfilled for the stress tensors that σ = S = P.

2.1.4 Mathematical model

As it was mentioned above, the thermal effect is neglected in this thesis; therefore, the
equations that need to be solved are:∫

Pt
ρ

∂u̇
∂t

dV =
∫

∂Pt
σ n dA +

∫
Pt

b dV ,

ρ = ρ0/J ,

σ = σT ,

(2.35)

where σ is related to the displacement field u trough the constitutive relationship
defined in Section 2.1.3, n is the outward-pointing normal, b is the body force and
u̇ = ∂u/∂t.
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Small deformations hypothesis

Assuming the small deformation hypothesis Eq. (2.35) is reduced to∫
P0

ρ0 ü dV0 =
∫

∂P0

σ n0 dA0 +
∫
P0

b0 dV0 ,

σ = λ tr(D) I + 2 µ D ,

D =
[
∇0 u + (∇0 u)T

]
/2 ,

(2.36)

where ü = ∂2u/∂t2 is the acceleration. In this case, the local form of the linear
momentum balance is:

∇0 · σ + b0 = ρ0
∂u̇
∂t

, (2.37)

where∇0· is the material divergence (finds the derivatives with respect to the material
coordinates).

Large deformations

For solids, it is generally more convenient to use a material description, therefore
replacing in Eq. (2.35) that σ = J−1 P FT and the relations between magnitudes in Pt
and P0 defined in Eqs. (2.8) and (2.9):∫

P0

ρ0 ü dV0 =
∫

∂P0

P n0 dA0 +
∫
P0

b0 dV0 ,

ρ = ρ0/J ,

P FT = F PT .

(2.38)

In this case, the local form of the linear momentum balance is:

∇0 · P + b0 = ρ0
∂u̇
∂t

. (2.39)

Eq. (2.38) is nonlinear since P is, for large deformation, nonlinear with respect to
u. For that reason, to solve Eq. (2.38) for large deformation, the implementation of
a Newton-Raphson scheme is needed [6]. Being u = χ(X, t) − X the solution of
Eq. (2.38) then it is necessary to find χ as:

r(χ) =
∫

∂P0

P n0 dA0 +
∫
P0

b0 dV0 −
∫
P0

ρ0 ü dV0 = 0 , (2.40)

where r is the residual. Therefore, assuming that b0 does not depend on χ and
applying the Netwon-Raphson method to the previous equation, see Appendix A, it
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is obtained that the solution is u(χk+1, t) = u(χk, t) + δ u such as:

r(χk+1) = r(χk) +
∫

∂P0

fS(χk, δu)dA0 +
∫

∂P0

fC(χk, δu)dA0

−
∫
P0

ρ0 δü dV0 ,

= 0 ,

(2.41)

where k represents the iteration of the Netwon-Raphson method and

fS(χk, δu) = [∇0 δu] S(χk)n0 , (2.42)

fC(χk, δu) = F(χk)C(χk) :

[
(∇0 δu)T F(χk) + FT(χk) (∇0 δu)

2

]
n0 , (2.43)

being C a fourth order tensor called elastic moduli [4, 7], see Appendix C.

2.2 Finite volume discretization

This section illustrates the discretization using the finite volume method of the equa-
tions presented in Section 2.1.4. Firstly, the discretization of Eq. (2.36) in the case
of small deformations is presented in a general sense in Section 2.2.1. Then in Sec-
tion 2.2.2 the discretization of Eq. (2.40) and Eq. (2.41) for large deformations is
shown.

2.2.1 Small deformations hypothesis

The body P0 is discretized in Nv finite volumes (internal volumes and boundary
faces) where Eq. (2.36) has to be satisfied for each finite volume. In Figure 2.1, the
discretization for two-dimensional problems is shown, and in Figure 2.2, a finite
volume for three-dimensional is presented. In what follows, the focus is placed on
three-dimensional problems; for two-dimensional problems, see [1]. Vv is the volume
of the internal finite volume Ωv, A f is the area of the face Σ f , and n0, f is the outward
normal of that face. Xn is the centroid of the volume, X f is the centroid of the face
(for boundary faces Xn = X f ) and X f ,g is the g-th quadrature point on the face Σ f .
In this thesis, the centroids of the volumes and faces are called nodes or cells of the
discretization. The total of finite volumes, Nv, can be segregated as Nv = Nic + Nbc
where Nic and Nbc are the number of internal cells and boundary cells, respectively.
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Vv

Vv = 0

Xn

Xn

A f

A f

Internal finite volume

n0, f

n0, f

X f ,g

X f ,g

X f ,g

Xv,m and Xv,b

X f

Boundary face

X f ,g

X f

Figure 2.1: Discretization using the finite volume scheme for two-dimensional
problems.

Xn

X f ,g

X f ,g

Internal finite volume

Boundary face

Xv,m and Xv,b

n0, f

n0, f

A f

Vv

A f

X f

X f

X f ,g

X f ,g

X f ,g

X f ,g
Vv = 0

Xn

Figure 2.2: Discretization using the finite volume scheme for three-dimensional
problems.

Using numerical quadrature, Eq. (2.36), for volume Ωv, is approximated as:

f=Nf

∑
f=1

[g=Ng

∑
g=1

αg σ(X f ,g)

]
n f

+
b=Nb

∑
b=1

βb b0 (Xv,b)−
m=Nm

∑
m=1

γm ρ0(Xv,m) ü(Xv,m) = 0 , (2.44)
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where Nf is the number of faces of the discretized finite volume Ωv, Ng is the number
of quadrature points used to approximate the integral on the face Σ f , αg are the
quadrature weights, Nm and βm are the number of quadrature points and weights
to approximate the integral of the inertial term, respectively, and, Nb and βb are
the number of quadrature points and weights to approximate the integral of the
body force, respectively, see Figures 2.1 and 2.2. Xv,m and Xv,b are the coordinates in
the volume Ωv of the m-th and b-th quadrature points used to integrate the inertial
term and the body force, respectively. Numerical quadrature weights for different
geometries are illustrated in Appendix B. Replacing Eq. (2.34) and Eq. (2.12) into
Eq. (2.44):

f=Nf

∑
f=1

[g=Ng

∑
g=1

αg

(
λ tr

(
∇0 u(X f ,g)

)
I + µ∇0 u(X f ,g) + µ

(
∇0 u(X f ,g)

)T
)]

n0, f

+
b=Nb

∑
b=1

βb b0 (Xv,b)−
m=Nm

∑
m=1

γm ρ0(Xv,m) ü(Xv,m) = 0 . (2.45)

2.2.2 Large deformations

In the general case of large deformations, it is necessary to discretize Eq. (2.40) and
(2.41). Therefore r(χk) is approximated using numerical quadrature and the notation
presented in Section 2.2.1 as:

rd(χk) =
f=Nf

∑
f=1

[g=Ng

∑
g=1

αg P(uk(X f ,g))

]
n0, f +

b=Nb

∑
b=1

βb b0 (Xv,b)

−
m=Nm

∑
m=1

γm ρ0(Xv,m) ük(Xv,m) , (2.46)

where P depends of the material constitutive relationship, see Section (2.1.3), as:

P(uk(X f ,g)) = F(uk(X f ,g))S(uk(X f ,g)) =
[
I−∇0 uk(X f ,g)

]
S(uk(X f ,g)) , (2.47)

being uk (X f ,g) the displacement at iteration k evaluated at point X f ,g. In Eq. (2.46)
ük(Xv,m) is the acceleration at iteration k evaluated at point Xv,m and it is assumed
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that b0 do not depend on χk. Eq. (2.41) it is discretized as:

rd(χk+1) = rd(χk) +
f=Nf

∑
f=1

[g=Ng

∑
g=1

αg fS(χk, δu) + αg fC(χk, δu)

]

−
m=Nm

∑
m=1

γm ρ0(Xv,m) δü(Xv,m) = 0 , (2.48)

where fS and fC are defined in Eq. (2.42) and Eq. (2.43), respectively.

To finish the spatial discretization it is necessary to write the displacement field
u and its derivatives with respect to X, Y, and Z as a function of the nodes/cells
displacements. The following section shows the high-order method developed in this
thesis to carry out the aforementioned and thus complete the spatial discretization.

2.3 High-order interpolation methods

This section describes the interpolation for u
(
X̃
)

and its derivatives. Two methods
are used for the interpolation: Moving Least Squares and Local Regression Estimators.
If X̃ is the field point, then the interpolations using either of the methods are:

u(X̃) =
n=Nn

∑
n=1

cn(X̃)un, (2.49)

∂u
∂X

(X̃) =
n=Nn

∑
n=1

cX,n(X̃)un, (2.50)

∂u
∂Y

(X̃) =
n=Nn

∑
n=1

cY,n(X̃)un (2.51)

∂u
∂Z

(X̃) =
n=Nn

∑
n=1

cZ,n(X̃)un , (2.52)

where un =
(
ux,n uy,n uz,n

)T is the displacement at the node Xn of certain surround-
ing stencil (see Section 2.3.3), cT = (c1 c2 · · · cNn) is the vector of coefficients of the
interpolation of u and cT

X = (cX,1 cX,2 · · · cX,Nn) is the vector of coefficients of the
interpolation of the derivative of u with respect to X. The differences between MLS
and LRE recall in the coefficients for the interpolation of the derivatives, while the
obtained coefficients are equal for the interpolation of the function. The previous
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sentence is illustrated in the following sections. In what follows, it is explained how
to obtain the coefficients cn, cX,n, cY,n and cZ,n for the MLS and LRE methods.

2.3.1 Moving least squares

The MLS is one of the most used methods for building continuous functions that
interpolate a discrete set of point samples [8, 9]. For the set {(Xn, un) : n = 1, . . . , Nn}
of point samples, the MLS method defines the continuous scalar function u(X̃)2 at
the field point X̃ as the value ũ(X̃) that takes an auxiliary function ũ which is found
by using weighted least squares. More precisely, ũ is the function

ũ(X) = pT(X − X̃) a(X̃) , (2.53)

where pT =
(

p1, p2, . . . , pNp

)
is a vector of basis functions (for example, polynomi-

als), and aT(X̃) =
(

a1(X̃), a2(X̃), . . . , aNp(X̃)
)

is the vector of parameters which
minimizes the following weighted sum of squares:

R =
1
2

n=Nn

∑
n=1

w(Xn − X̃) [ũ(Xn)− un]
2

=
1
2

n=Nn

∑
n=1

w(Xn − X̃)
[
pT(Xn − X̃) a(X̃)− un

]2
. (2.54)

In the previous equation, w is a certain weight function described in Section 2.3.4. Note
that the continuous interpolation function u coincides with the auxiliary function
ũ only at the point X̃, since at any other point, say X̂, the MLS method defines
u(X̂) = û(X̂), where û is the auxiliary function corresponding to X̂, which is generally
different from ũ since it is found by minimizing a different weighted sum of squares
(X̃ is replaced by X̂ in Eq. (2.54)).

In order to find the minimum of the weighted sum, the gradient ofR with respect
to a is set to be zero. This gives the following set of normal equations:

∂R
∂ak

=
n=Nn

∑
n=1

w(Xn − X̃) pk(Xn − X̃)
[
pT(Xn − X̃) a(X̃)− un

]
= 0 , (2.55)

for all k = 1, 2, .., Np. The normal equations conform a square system of linear
equations that can be solved for a(X̃). By rearranging the terms, this system can be
written as:

MI(X̃) a(X̃) = PI(X̃)W(X̃)uI , (2.56)
2u(X) is a general function but it is convenient associate it with a displacement component: ux , uy or

uz; and the set {(Xn, un) : n = 1, . . . , Nn} of point samples to the sets (Xn, ux,n), (Xn, uy,n) or (Xn, uz,n).
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where MI(X̃) = PI(X̃)W(X̃)PT
I (X̃) is the Np × Np moment matrix of the system,

PI(X̃) is the Np×Nn matrix whose n-th column is p(Xn− X̃), W is the Nn×Nn matrix
diag

(
w(Xn − X̃)

)
, and uT

I = [u1, u2, . . . , uNn ]. By assuming that MI(X̃) is invertible,
then the solution of Eq. (2.56) is a(X̃) = MI(X̃)−1 PI(X̃)W(X̃)uI

3. Defining

A(X̃) = MI(X̃)−1 PI(X̃)W(X̃) and NT(X̃) = pT(0)A(X̃) , (2.57)

then it is obtained that:

u(X̃) = ũ(X̃) = pT(0) a(X̃) = pT(0)A(X̃)uI = NT(X̃)uI . (2.58)

Hence, N is a Nn× 1 matrix function whose entries can be seen as the shape functions
of the MLS method. Together with the shape functions, there is interest in their partial
derivatives. To obtain the partial derivatives of N, the partial derivatives of A must
be obtained through differentiation of the equation MI(X̃)A(X̃) = PI(X̃)W(X̃). For
instance, the derivatives with respect to the coordinate X satisfy:

∂MI

∂X
(X̃)A(X̃) + MI(X̃)

∂A
∂X

(X̃) =
∂PI

∂X
(X̃)W(X̃) + PI(X̃)

∂W
∂X

(X̃) . (2.59)

Then the following equations are obtained:

∂A
∂X

(X̃) = MI(X̃)−1
[

∂PI

∂X
(X̃)W(X̃) + PI(X̃)

∂W
∂X

(X̃)− ∂MI

∂X
(X̃)A(X̃)

]
, (2.60)

and

∂NT

∂X
(X̃) = pT(0)

∂A
∂X

(X̃) . (2.61)

Partial derivatives of higher order could be obtained by successive differentiation
of the equation MI(X̃)A(X̃) = PI(X̃)W(X̃), which leads to more complex formulas
involving MI(X̃)−1 and high order derivatives of the matrix functions MI, PI, and W.

The moment matrix MI(X̃) of the normal equations is known to be ill-conditioned.
Details of how to accurately compute N and its first partial derivatives are given in
Section 2.3.5.

2.3.2 Local regression estimators

The LRE method can estimate the first and higher-order derivatives of the MLS
interpolation function. In fact, it is used to estimate a complete truncated Taylor

3Sub-index I is used to indicated that it is associated to an interpolation.
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expansion of the interpolation function. The Taylor series of u at the field point X̃ is:

u(X̃) +
∂u
∂X

(X̃)(X− X̃) +
∂u
∂Y

(X̃)(Y− Ỹ) +
∂u
∂Z

(X̃)(Z− Z̃)

+
1
2

∂2u
∂X2 (X̃)(X− X̃)2 +

∂2u
∂X∂Y

(X̃)(X− X̃)(Y− Ỹ) + . . . (2.62)

Let ū be a truncated Taylor expansion of u of Np terms. Then, ū can be represented in
compact form as

ū(X) = qT(X − X̃) ā(X̃) , (2.63)

where qT =
(

q1, q2, . . . , qNq

)
is a vector of polynomial basis functions, and āT(X̃) is

a vector of parameters whose entries are the partial derivatives of u, i.e.:

qT(X − X̃) =
(
1, (X− X̃), (Y− Ỹ), (Z− Z̃), . . .

)
and āT(X̃) =

(
u(X̃),

∂u
∂X

(X̃),
∂u
∂Y

(X̃),
∂u
∂Z

(X̃), . . .
)

. (2.64)

Instead of computing the exact vector of parameters (the exact derivatives of u), the
LRE looks for an approximate vector ā(X̃) by minimizing the following weighted
sum of squares:

R =
1
2

n=Nn

∑
n=1

w(Xn − X̃) [ū(Xn)− un]
2

=
1
2

n=Nn

∑
n=1

w(Xn − X̃)
[
qT(Xn − X̃) ā(X̃)− un

]2
. (2.65)

Following the same steps as in the MLS, the vector ā(X̃) is found by solving the
following linear system of equations, which is analogous to Eq. (2.56):

M̄I(X̃) ā(X̃) = QI(X̃)W(X̃)uI . (2.66)

In the previous equation M̄I(X̃) = QI(X̃)W(X̃)QT
I (X̃), QI(X̃) is the Nq × Nn ma-

trix whose n-th column is q(Xn − X̃). Defining Ā(X̃) = M̄I(X̃)−1QI(X̃)W(X̃) the
solution of the system is:

ā(X̃) = Ā(X̃)uI , (2.67)

when M̄I(X̃) is invertible.
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Note the strong analogy in the representations Eq. (2.53) and Eq. (2.63), in the
weighted sums Eq. (2.54) and Eq. (2.65), and in the linear systems Eq. (2.56) and
Eq. (2.66). In fact, the estimate ū(X̃) = q(0)Tā(X̃) for the zeroth order derivative of u
can be seen as an MLS interpolation function generated by a polynomial basis. In the
case that p = q, i.e. the MLS uses the same Taylor basis functions, then ū(X̃) = ũ(X̃).
In other words, if p = q, then the zeroth order derivative of u estimated by the LRE is
exact. However, the LRE estimation of the higher order derivatives of u is generally
not exact, even if p = q.

As well as the moment matrix of the MLS, the matrix M̄I(X̃) of the LRE is ill-
conditioned. Details of how to accurately compute ā(X̃) are given in Section 2.3.5.

2.3.3 Stencil

The interpolation considers a set of nodes conforming a surrounding stencil. There
are many ways to define the stencil [10, 11]. This thesis proposes to set a number Nn
and consider the Nn-nearest nodes to the point X. With these Nn-nearest nodes, the
maximum distance rs = max ‖X − Xn‖ is calculated, and all nodes at that distance
from the point X are included in the stencil. Note that the stencil of X could contain
more than Nn nodes (this is more common in structured meshes). There is a minimum
number of nodes Nn corresponding to the dimension of the polynomial basis [10],
which, for two dimensions, is given by Nn,min = (i + 1)(i + 2)/2 where i indicates the
order of the interpolation, and in three dimensions is Nn,min = (i + 1)(i + 2)(i + 3)/6.

To calculate the integrals it is necessary to obtain the coefficients for each Gaussian
point of each surface, and consequently, obtain a stencil of Nn points for each Gaussian
point, being computationally expensive. For that reason, two ways of obtaining the
stencil for each Gauss point of a surface are proposed:

seq: Obtain the stencil of the centroid of the face X f and use that stencil for all the
Gauss points X f ,g of that surface, see left image of Figure 2.3.

sdf: Obtain a different stencil for each Gauss point, see right image of Figure 2.3.

Figure 2.3 shows the two types of stencils proposed in this thesis for Nn = 16. The
image on the left shows the stencil seq with the Nn nodes closest to X f , which is used
to obtain the interpolation coefficients of all the Gauss points. It is interesting to see
how, in that example, it ends up being 17 points because ‖X f − X16‖ = ‖X f − X17‖.
The right image presents the stencil sdf for a Gaussian point of the face f , which is 16
points. In this second image, the cells belonging to the stencil and the ones that do
not, squares and asterisks, respectively, have been identified.
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Figure 2.3: Stencil seq (left) and stencil sdf (right).

2.3.4 Weight function

Several different weight functions are available in the literature [11, 12]; in this thesis,
the following radially symmetric exponential function is used:

w(X, Xn, k) =
e−(

d
dm )

2
k2
− e−k2

1− e−k2 , (2.68)

where d = ‖X − Xn‖, dm = 2 rs and k is a shape parameter, being rs = max ‖X − Xn‖
the maximum distance, Xn is a node of the stencil of face Σ f and X is the cell whose
stencil is sought.

2.3.5 Accurate solution of the MLS and LRE linear systems

The MLS linear systems Eq. (2.57) and Eq. (2.60), as well as the LRE systems Eq. (2.67)
are defined by a usually ill-conditioned moment matrix MI. There can be several
sources of ill-conditioning, which are described below:

a) Inadequate basis: the basis functions conforming the vector p should ideally
be linearly independent in order not to affect the rank of the rows of PI. The
Taylor basis fulfills this requirement, but the conditioning can be affected by the
different order of magnitude of the components of the Taylor basis. To alleviate
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this difficulty, the basis should be scaled, e.g., by redefining it as:

p̂T(X − X̃) =[
1,

(X− X̃)

h
,
(Y− Ỹ)

h
,
(Z− Z̃)

h
,
(X− X̃)2

h2 ,
(X− X̃)(Y− Ỹ)

h2 , · · ·
]

, (2.69)

where h = 2 rs is a scaling coefficient, and rs is defined in Section 2.3.3.

b) Inadequate stencil: the rank of PI can be deficient if there is a small number of
points in the stencil or if they are in a bad geometric configuration, e.g., if they
are all aligned. Then, an appropriate rule has to be used to define the stencil,
e.g., the given in Section 2.3.3, which should provide an adequate stencil in a
good quality mesh.

c) Inadequate weight function: if the support of the weight function is too small or
has a bad aspect ratio, then it can lead to the same difficulties mentioned in item
b). Then, the parameters of the weight function must be chosen considering the
definition of the stencil, e.g., as described in Section 2.3.4.

d) Inadequate solution algorithm: It is well known that the linear systems of weighted
least squares problems can require specialized algorithms to obtain accurate
solutions since the moment matrix itself can be a source of ill-conditioning. The
QR decomposition is one of the most popular approaches to accurately solve
these linear systems, as explained below.

The typical form of the normal equations in weighted least squares problems is
given by Eq. (2.70), where PI is an Np × Nn matrix with Nn ≥ Np, W is an Nn × Nn
diagonal positive definite matrix, X is the Np × Nk unknown matrix, and B is an
Np × Nk matrix. For instance, in the MLS linear system Eq. (2.57), Nk = Nn, X
represents A(x̃) and B is the identity matrix.

PIWPT
I X = PIWB . (2.70)

The previous system can be rewritten as PIW(PT
I X− B) = 0, hence X is such that the

column space of (PT
I X− B) is normal to the column space of PT

I for the scalar product
of RNn given by W. By defining P̂I = PIW1/2 and B̂ = W1/2B the following equation
is obtained:

P̂IP̂I
TX = P̂IB̂ , (2.71)

so X is such that (P̂I
TX− B̂) is normal to P̂I

T for the Euclidean scalar product of RNn .
Let P̂I

T
= QR, where the orthogonal Nn × Nn matrix Q and the upper triangular
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Nn × Np matrix R correspond to the QR decomposition of P̂I
T. Then, it is easy to

show that X is the solution to the following system:

R̄X = Q̄TB̂ , (2.72)

where R̄ is the square upper triangular matrix corresponding to the first Np rows of
R and Q̄ is the rectangular matrix corresponding to the first Np columns of Q. Hence,

the solution of Eq. (2.72) can be promptly obtained once the QR factorization of P̂I
T

is computed. In addition, since MI = PIWPT
I = R̄TR̄, then the condition number

of R̄ is the square root of that of the moment matrix MI. Then, the solution of the
linear system Eq. (2.72) avoids dealing with the usually highly ill-conditioned system
Eq. (2.70). However, the QR approach is more expensive since the QR decomposition
involves a number of operations of the order of Nn × N2

p instead of a number of
operations of the order N3

p that would require, e.g., the Cholesky decomposition for
solving Eq. (2.70).

The QR approach can be used to obtain Ā(X̃) from Eq. (2.67) of the LRE scheme.
In the case of the MLS, it can be used to obtain A(X̃) and then the MLS matrix N(X̃)
of Eq. (2.57). If p is defined by the Taylor basis involving all the polynomial functions
up to certain order, the QR algorithm can be used to solve Eq. (2.60) as well. To show
that, let PI, W, A, PI,x, Wx and Ax be short notations respectively for PI(X̃), W(X̃),
A(X̃), ∂PI/∂X(X̃), ∂W/∂X(X̃) and ∂A/∂X(X̃). Then Eq. (2.60) can be written as

PIWPT
I Ax = PI,xW(I− PT

I A) + PIWx(I− PT
I A)− PIWPT

I,xA . (2.73)

Note that A is the solution X of Eq. (2.70) for B = I, so that PIW(PT
I A− I) = 0. This

means that PT
I A− I is normal to PT

I for the scalar product given by W. Since PI,x is
generated by the derivatives of the Taylor basis functions, then the column space of
PI,x is a subspace of the column space of PI, hence PT

I,x is normal to PT
I A− I, and then

PI,xW(PT
I A− I) = 0. The previous equation can then be written as:

PIWPT
I Ax = PIW

[
W−1Wx(I− PT

I A)− PT
I,xA

]
, (2.74)

which is of the form Eq. (2.70) for B = W−1Wx(I− PT
I A)− PT

I,xA. Note that B can be
easily obtained since W is diagonal. Therefore, the previous system can accurately be
solved for Ax using the QR approach [13].

2.4 Solution algorithm

In Sections 2.4.1 and 2.4.2, the equations for the interior and the boundary faces cells,
respectively, are presented. Then in Section 2.4.3 the global systems of equations are
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illustrated, and in Section 2.4.4, a summarized algorithm to obtain the stiffness matrix
of the system is presented.

2.4.1 Equations for interior volumes

Equations for small deformation

Replacing Eqs. (C.8), (C.9), and (C.10) into Eq. (2.45) it is possible to obtain the equa-
tions for an interior cell v as:

f=Nf

∑
f=1

g=Ng

∑
g=1

αg

n=Nn

∑
n=1

(
λ n0, f cT

x,n + µ cT
x,n n0, f I + µ cx,n nT

0, f

)
un

+
b=Nb

∑
b=1

βb b0 (Xv,b)−
m=Nm

∑
m=1

γm ρ0(Xv,m)
n=Nn

∑
n=1

cn I ün = 0 . (2.75)

where cT
x,n(X f ,g) = (cX,n(X f ,g), cY,n(X f ,g), cZ,n(X f ,g)) and cn(Xv,m) are interpolation

coefficients, nT
0, f = (Nx, f , Ny, f , Nz, f ) is the material outward pointing normal of face

Σ f and uT
n = (ux,n, uy,n, uz,n) is the unknown displacement of node n. Eq. (2.75) can

be rearranged as

f=Nf

∑
f=1

g=Ng

∑
g=1

αg

n=Nn

∑
n=1

LSD
n (X f ,g)un +

b=Nb

∑
b=1

βb b0 (Xv,b)

−
m=Nm

∑
m=1

γm ρ0(Xv,m)
n=Nn

∑
n=1

cn I ün = 0 . (2.76)

where

LSD
n = λ

[
n0, f cT

x,n

]
+ µ

[
cT

x,n n0, f I
]
+ µ

[
cx,n nT

0, f

]
, (2.77)

and the superscript SD is because it is associated with small deformations. The expres-
sion associated with ün is discussed with an example in Chapter 3.
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Equations for large deformation

For an interior volume v, it is possible to obtain the discretized versions of Eqs. (2.40)
and (2.41):

rd,v,k =
f=Nf

∑
f=1

[g=Ng

∑
g=1

αg P(uk(X f ,g))

]
n0, f +

b=Nb

∑
b=1

βb b0 (Xv,b)

−
m=Nm

∑
m=1

γm ρ0(Xv,m)
n=Nn

∑
n=1

cn I ün,k , (2.78)

and

rd,v,k+1 = rd,v,k

+
f=Nf

∑
f=1

g=Ng

∑
g=1

αg

n=Nn

∑
n=1

(
cT

x,n fS, f ,k I + Cx cX,n un + Cy cY,n un + Cz cZ,n

)
δun

−
m=Nm

∑
m=1

γm ρ0(Xv,m)
n=Nn

∑
n=1

cn I δün = 0 , (2.79)

where fS, f ,k, Cx, Cy and Cz are defined in Eq. (C.11), (C.19), (C.20) and (C.21), respec-
tively, and depends on X f ,g, n0, f and the displacement field u(X f ,g) at iteration k. For
what follows, it is convenient to define:

LLD
n (X f ,g) = cT

x,n fS, f ,k I + Cx cX,n un + Cy cY,n un + Cz cZ,n , (2.80)

where the superscript LD is because it is associated with large deformations

2.4.2 Equations for boundary faces

In boundary faces, one of the cells of the stencil is the face itself. In what follows, Σ f is
the boundary face. In this section Ln represents either LSD

n or LLD
n , and un represents

either un or δun.

Neumann condition The equation for a boundary face where a Neumann condition
is applied is

g=Ng

∑
g=1

αg

n=Nn

∑
n=1

Ln un =
∫

Σ f

fa dA , (2.81)

where Σ f is the face and fa is the applied tension. In this thesis, the integral of the last
expression is obtained using numerical quadrature.
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Dirichlet condition The Dirichlet condition is included as

n=Nn

∑
n=1

cn I un = ū at X f , (2.82)

where ū is the known displacement.

Symmetry condition This is a condition where the normal component of the dis-
placement is zero and the shear component of the traction vector is zero.

The traction condition is

(
I− n0, f nT

0, f

) g=Ng

∑
g=1

αg

n=Nn

∑
n=1

Ln un = 0 , (2.83)

and the displacement condition is

n0, f nT
0, f

n=Nn

∑
n=1

cn I un = 0 . (2.84)

As described by Cardiff et al. [14], Eq. (2.83) and Eq. (2.84) are linearly independent
and must be added in order to enforce the original mixed boundary condition.

2.4.3 Global system

This section defines the global system of equations that is obtained by allocating the
equations presented in the previous section.

Small deformations hypothesis

In order to use the temporal discretization presented in Modak et al. [2], it is con-
venient to define the global stiffness matrix K, the global mass matrix M and the
generalized external vector fext. With those definitions Eq. (2.76) can be rewritten as:

M üN + K uN = fext , (2.85)
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where

K uN = A
∣∣∣∣∣
v=Nv

v=1

{
f=Nf

∑
f=1

g=Ng

∑
g=1

αg

n=Nn

∑
n=1

LSD
n (X f ,g)un

}
, (2.86)

M üN = A
∣∣∣∣∣
v=Nv

v=1

{
−

m=Nm

∑
m=1

γm ρ0(Xv,m)
n=Nn

∑
n=1

cn I ün

}
, (2.87)

fext = fbc + fb0 with fb0 = A
∣∣∣∣∣
v=Nv

v=1

{
−

b=Nb

∑
b=1

βb b0 (Xv,b)

}
, (2.88)

where fbc is the external vector that includes the boundary conditions defined in
Section 2.4.2, A{} is a function that allocate the 3× 3 Nv equations obtained from the
Eq. (2.76), K and M are matrices of size 3 Nv × 3 Nv, fext is a vector of size 3 Nv × 1,
uN is a vector of size 3 Nv × 1 which contains the displacements of the nodes and
üN is a vector of size 3 Nv × 1 which contains the nodes accelerations. Assuming
Cartesian coordinates, the displacement field is:

u(X) = ux(X) ex + uy(X) ey + uz(X) ez ∀ X ∈ P0 , (2.89)

therefore
uN =

(
ux,1 uy,1 uz,1 . . . ux,Nv uy,Nv uz,Nv

)T . (2.90)

The mass matrix M can be obtained using the method presented in Eq. (2.87) or
by the more usual mass matrix form called lumped mass matrix:

M üN = A
∣∣∣∣∣
v=Nv

v=1

{−ρ0 Vv ü(Xv)} , (2.91)

where Vv is the volume of the finite volume v and it is assumed that ü and ρ0 are
uniform in v. As it was explained above, the matrix M has size 3 Nv× 3 Nv. It is simple
to see that obtaining the matrix defined in Eq. (2.91) requires less computational effort.
Besides, since it is a diagonal matrix, its use would allow using simpler strategies to
solve linear systems.

Large deformations

In the case of large deformations, the following is obtained by rewriting Eq. (2.78):

rd,k = fP − fb0 + M üN,k , (2.92)
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being

fP = A
∣∣∣∣∣
v=Nv

v=1

{
f=Nf

∑
f=1

[g=Ng

∑
g=1

αg P(uk(X f ,g))

]
n0, f

}
, (2.93)

where P depends on the material constitutive relationship and the displacement at
iteration k. Eq. (2.79) it is rewriting as:

rd,k+1 = rd,k + Ktan δuN,k + M δüN,k = 0 , (2.94)

being

Ktan δuN,k = A
∣∣∣∣∣
v=Nv

v=1

{
f=Nf

∑
f=1

g=Ng

∑
g=1

αg

n=Nn

∑
n=1

LLD
n (X f ,g) δun

}
. (2.95)

Substituting Eq. (2.92) into Eq. (2.94) it is obtained that:

Ktan δuN,k + M δüN,k = fext − fint , (2.96)

being

fext = fbc + fb0 and fint = fP + M üN,k . (2.97)

2.4.4 Algorithm to obtain stiffness matrix K

In what follows, it is illustrated how to obtain the stiffness matrix K for small defor-
mations, for mass M and tangential matrix Ktan is analogous.

input: E, ν, mesh, Nn, k, p and Ng.
Obtain the total number of faces Nf, interior cells Nic and boundary cells Nbc from
the mesh.
for f = 1→ Nf do

- Compute the Ng Gaussian points X f ,g for the face Σ f .
- Obtain, for each Gaussian point, the stencil seq or sdf using the Nn-nearest nodes

as illustrated in Section 2.3.3.
- Compute the interpolation coefficients at each Gaussian point using the previous

stencil:

cT
X(X f ,g) =

(
cX,1(X f ,g), · · · , cX,Nn(X f ,g)

)
,

cT
Y(X f ,g) =

(
cY,1(X f ,g), · · · , cY,Nn(X f ,g)

)
,

cT
Z(X f ,g) =

(
cZ,1(X f ,g), · · · , cZ,Nn(X f ,g)

)
,
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defined in Eq. (2.49), using either MLS by Eq. (2.60) (first row of ∂A/∂X, ∂A/∂Y
and ∂A/∂Z, respectively) or LRE by Eq. (2.67) (second, third and fourth row of
Ā, respectively).

- Obtain:
cT

x,n(X f ,g) =
(

cX,n(X f ,g), cY,n(X f ,g), cZ,n(X f ,g)
)

,

defined in Eq. (2.75) for each node of the stencil.
end
for ic = 1→ Nic do

- Obtain the entries of the system matrix K from Eqs. (2.76) and (2.77).
end
for bc = 1→ Nbc do

- Obtain the entries of the system matrix K and the independent vector F, from
Eqs. (2.81) to (2.84).

end

2.5 Temporal discretization

In this thesis, the formulation presented in [2] is used for the temporal discretization,
as it is summarized in what follows. In [2] a formulation called generalized algorithm
is developed which includes nine parameters and is capable of representing other
standard and more common formulations for solid dynamics such as Newmark [15],
HHT-α [16], Generalized-α and SS32 [17, 18] among others.

The first three parameters (βM,0, βM,1 and βM,2) appear after applying a truncation
of Taylor series expansions of u, u̇, and ü. The next three parameters (θM,1, θM,2 and
θM,3) emerge after applying a weighted-average form of the equilibrium equation as
in [17]:

M ü + Cd u̇ + K u = f , (2.98)
where Cd is the damping term that is neglected in this thesis. The final three parame-
ters (γM,0, γM,1 and γM,2) show after applying another truncation to the Taylor series
of the weighted-average form.

The basic equations for the generalized method developed in [2] are:

M ün+θ + Cd u̇n+θ + K un+θ = fn+θ , (2.99)

where n represent previous instant tn and being tn+1 = tn + ∆t the actual instant:

un+θ = un + θM,1 ∆t u̇n +
θM,2 ∆t2

2
ün +

θM,3 γM,0 ∆t2

6
∆ ü , (2.100)

u̇n+θ = u̇n + θM,1 ∆t ün +
θM,2 γM,1 ∆t

2
∆ ü , (2.101)

ün+θ = ün + θM,1 γM,2 ∆ ü , (2.102)
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where ∆ ü = ün+1 − ün is the acceleration increment obtained after solving Eq. (2.99)
and then the updated magnitudes at time tn+1 are:

un+1 = un + ∆t u̇n +
∆t2

2
ün +

βM,0 ∆t2

6
∆ ü , (2.103)

u̇n+1 = u̇n + ∆t ün +
βM,1 ∆t

2
∆ ü , (2.104)

ün+1 = ün + βM,2 ∆ ü . (2.105)

Note that in the general case K = Ktan.

In addition to the generalized algorithm presented above, it is decided to use
Euler’s method, where:

ün+1 =
u̇n+1 − u̇n

∆t
=

un+1 − un

∆t2 − u̇n

∆t
, (2.106)

which cannot be written with the method presented in [2].

Nonlinear contact/impact force In the case of a nonlinearity, for example, if there
is an external force due to contact/impact, it is necessary to solve Eq. (2.99) with an
iterative process. In that case, as it is mentioned in Section 2.1.4, a Newton-Raphson
method is needed [13, 19]. Firstly ∆ ˜̈us is estimated4 and Eqs. (2.100), (2.101) and
(2.102) are evaluated. Then it is obtained that:

r(∆ ˜̈us) = fn+θ −
[
M ün+θ

s + Cd un+θ
s + K un+θ

s

]
, (2.107)

where s indicate the s-th iteration of Newton-Raphson. Then the increment of acceler-
ation is

δ∆ ü = K−1
d r(∆ ˜̈us) , (2.108)

where

Kd = γM,2 θM,1 M +
γM,1 θM,2 ∆t

2
Cd +

γM,0 θM,3 ∆t2

6
K + Kc, (2.109)

being Kc = −∂ Fc/∂ δ∆ ü a matrix related to the contact force. In order to solve the
dynamic contact problem, it is not necessary to include that matrix. However, it helps
to reduce the computational effort (reducing the total number of iterations Ns to solve
the Newton-Raphson method).

4Generaly ∆ ˜̈u0 = ∆ ün where ∆ ün is the acceleration increment obtained in the previous time tn, if
n = 0 then ∆ ˜̈u0 = 0.
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Finally, the expressions are updated as follows:

∆ ˜̈u = ∆ ˜̈u + δ∆ ü , (2.110)

un+θ = un + θM,1 ∆t u̇n +
θM,2 ∆t2

2
ün +

γM,0 θM,3 ∆t2

6
∆ ˜̈u , (2.111)

u̇n+θ = u̇n + θM,1 ∆t ün +
γM,1 θM,2 ∆t2

2
∆ ˜̈u , (2.112)

ün+θ = ün + γM,2 θM,1 ∆ ˜̈u , (2.113)

and Eq. (2.109) is solved again until convergence is reached, e.g., when ‖r(∆ ˜̈us)‖
or/and ‖δ∆ ü‖ are sufficiently small.
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3

Verification and validation

of the proposed method

In this chapter, two-dimensional (2D) and three-dimensional (3D) problems with
analytical solutions are solved and analyzed in Section 3.1.1 and 3.2.1, respectively.
Those examples are used to obtain an adequate set of parameters for the high-order
method in each case (2D and 3D).

The Lamé parameters mentioned in Section 2.1.3 are expressed in terms of the
more common Young modulus E and the Poisson ratio ν: µ = 0.5 E/(1 + ν) and
λ = Eν/ [(1 + ν)(1− 2ν)] which are the expressions for three-dimensional problems
and plane strain. In the case of plane stress the parameters are µ̄ = µ and λ̄ =
λ [1− λ/ (2µ + λ)].

In what follows, pi represents the interpolation order, e.g., interpolation p1 is
linear, which implies that the vector of basis functions is:

for 3D → p̂T =
(
1, (X− X̃)/h, (Y− Ỹ)/h, (Z− Z̃)/h

)
,

for 2D → p̂T =
(
1, (X− X̃)/h, (Y− Ỹ)/h

)
,

(3.1)

as defined in Eq. (2.69). The software FreeFEM [1] with linear (p1) or quadratic
(p2) interpolation (FF p1 and FF p2 in figures and tables) and the 2nd-order method
developed by Cardiff et al. [2] are used to compare with the proposed method. In
order to obtain the value at a certain point, using the 2nd-order method, the LRE and
MLS interpolation methods are used. It is important to note that the size of the system
of equations is the same for the same mesh using any of the FVM interpolations
(2nd-order by Cardiff or the high-order presented in this work). However, for the
high-order method when using pi−1, the system is sparser than using pi (assuming
that the number of points used for the stencil with pi is greater than the number of

39
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points for pi−1). Structured meshes with squares and hexahedrons are created using
GMSH [3], while those of triangles or tetrahedrons are created with FreeFEM [1].

3.1 Two-dimensional examples

In the case of two-dimensional examples, the hypothesis of small deformations and
static problems are considered for all the examples.

3.1.1 Two-dimensional analytical example

A known displacement field u is imposed on the boundary of the domain, and the
corresponding body force b0 is imposed in the interior. The domain is a square of
size L = 1, i.e. Ω = {(X, Y) : X, Y ∈ [0, 1]}. The displacement field imposed on the
boundary is u = ux ex + uy ey + uz ez, where

ux(X, Y) = eX2
sin(Y) ,

uy(X, Y) = ln (3 + Y) cos(X) + sin(Y),

uz(X, Y) = 0 .

(3.2)

This example assumes plane strain, and the material properties are E = 1 and
ν = 0.3. The body force b0 = b0,x ex + b0,y ey + b0,z ez is obtained from Eq. (2.37) using
∂u̇/∂t = 0 and integrated with numerical quadrature as in Eq. (2.76) using 48 and 64
Gaussian points for each finite triangle and square, respectively, see Appendix B.

In this example, an exhaustive study varying all the parameters of the proposed
formulation is carried out:

1. Type of stencil, as defined in Section 2.3.3: seq or sdf.

2. Type of interpolation method: LRE or MLS.

3. Interpolation order: p1, p2, p3 and p4.

4. Shape parameter k, defined in Section 2.3.4: k = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

5. Number of Gauss points Ng to obtain the coefficients of the system, defined in
Section 2.4: Ng = {1, 2, 4, 7}.

6. Number of points for the stencil of the interpolation method Nn = Nn,min + N+,
where N+ takes values of the set {0, 1, 2, 3, . . . 60}.
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Additionally, all the parameters mentioned above are tested in 18 meshes, includ-
ing different types of meshes, such as: (1) structured quadrilateral mesh (SQM), see
the left image of Figure 3.1; (2) structured triangular mesh (STM), see the center image
of Figure 3.1; and (3) unstructured triangular mesh (UTM), see the right image of
Figure 3.1. Table E.1 shows more information about the meshes used in this exam-
ple; for the parametric analysis, the first 18 meshes were considered. With this, it
is possible to compare the accuracy of the method related to the disposition of the cells.

Figure 3.1: Structured quadrilateral mesh (SQM, left), structured triangular mesh
(STM, center), and unstructured triangular mesh (UTM, right).

Consequently, more than 2.1 million cases1 were studied hindering the possibility
of showing the complete analysis here. In Appendix D additional results can be
found.

The relative errors in the displacement field REu and in the stress field REσ are
computed in order to understand the influence of the parameters of the method on
the results

REu =

√∫
Ω ‖u− unum‖2dV∫

Ω ‖u‖2dV
100% and REσ =

√∫
Ω ‖σ − σnum‖2dV∫

Ω ‖σ‖2dV
100% , (3.3)

and the absolute errors in the displacement field AEu and in the stress field AEσ are
considered in order to test the convergence order of the method

AEu =

√∫
Ω ‖u− unum‖2dV∫

Ω dV
and AEσ =

√∫
Ω ‖σ − σnum‖2dV∫

Ω dV
. (3.4)

The integrals defined in Eqs. (3.3) and (3.4) are calculated using 7 and 9 Gaussian
points for each finite triangle and square, respectively, see Appendix B.

1# Cases = 2× 2× 4× 10× 4× 61× 18× 3 = 2108160.
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Number of Gauss points

In order to define the adequate number of Gauss points, the relative error for the
displacement and stress fields using p3 and stencil seq are presented in Figure 3.2 and
3.3, respectively. For those figures, unstructured mesh #18 is used; see Appendix E.
Likewise, different shape parameters k and number of stencil points Nn have been
used.
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Figure 3.2: REu using UTM#18 with LRE (left) and MLS (right).
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Figure 3.3: REσ using UTM#18 with LRE (left) and MLS (right).

It can be seen that with Ng = 2, the displacement field is approximated accurately
using either LRE or MLS. However, for the stress field using MLS, it is seen that when
increasing the Gauss points, the accuracy improves. For this reason and to present
results similar to [4], it is decided to use Ng = 7 in what follows.
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Selection of the stencil

In order to compare the results of using different types of stencils, REu,s and REσ,s are
defined:

REu,s =

√√√√∫Ω ‖unum,sdf − unum,seq‖2dV∫
Ω ‖unum,seq‖2dV

100%

and REσ,s =

√√√√∫Ω ‖σnum,sdf − σnum,seq‖2dV∫
Ω ‖σnum,seq‖2dV

100% , (3.5)

where unum,si and σnum,si are the numerical solution using the type of stencil si, see
Section 2.3.3. The integrals defined in Eq. (3.5) are computed using 7 and 9 Gaussian
points for each finite triangle and square, respectively; see Appendix B.

The REu,s and REσ,s using p2 and p3 for the mesh #18 for SQM, STM and UTM
is shown in Figures 3.4, 3.5 and 3.6, respectively. As it was mentioned before, in all
the cases, Ng = 7. Beyond that, it is possible to conclude that if Ng = 1, the error is
always null since the stencils seq and sdf are equal because the Gauss point coincides
with the centroid of the face. Likewise, it should be noted that there are differences
for small values of Nn; due to problems of poor conditioning of the linear systems, as
mentioned in Section 2.3.5.
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Figure 3.4: REs using SQM#18 with LRE and MLS for p2 (left) and p3 (right).

In all cases, there is a lower difference in using seq or sdf for p3 than for p2, as well
as less difference when using LRE than MLS. The latter is more noticeable for the case
of unstructured meshes, which makes the LRE a more efficient method since using
seq is less expensive from a computational point of view, see Figure 3.6. It is also
possible to see that the less structured the mesh, the greater the difference between
using seq or sdf; however, in all cases, there is a region of the parameters for which
the difference between seq and sdf is negligible. In these figures, when low values of
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Figure 3.5: REs using STM#18 with LRE and MLS for p2 (left) and p3 (right).
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Figure 3.6: REs using UTM#18 with LRE and MLS for p2 (left) and p3 (right).

Nn are used, the gray color indicates a NaN solution due to the bad conditioning of
the moment matrices used to obtain the LRE or MLS interpolations.

It is interesting to see that for small values of k, there are differences in using seq
or sdf, later it is shown that for those values of k, the solution is not accurate. From
what was mentioned above and completing the analysis with what is presented in
Appendix D, it can be concluded that in the case of two dimensions, it is the same to
use seq as sdf.

Therefore, in what follows, results are presented only using seq due to the lower
computational cost; however, they have also been analyzed using sdf, obtaining the
same conclusions.

Set of parameters and comparison between LRE and MLS

In what follows, the results obtained using mesh #18 are analyzed for different types
of meshes; see Table E.1. Likewise, Ng = 7 is used for all cases, and the stencil type is
seq.
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Using SQM: Figures 3.7 and 3.8 show the value of the relative errors of the displace-
ment and stress field using either LRE or MLS. The figures correspond to the RE for
the different interpolations: p1, p2, p3 and p4; using in all the cases the mesh #18 and
different values of the parameters Nn and k. These figures show the most accurate
results for 5 ≤ k ≤ 10. Likewise, it is observed how the relative error is greater for
the stress field than for the displacement field, something that, as mentioned, was
expected. Moreover, as was foreseeable, the RE is smaller with pi+1 than with pi.
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Figure 3.7: RE using SQM#18 with LRE and MLS for p1 (left) and p2 (right).
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Figure 3.8: RE using SQM#18 with LRE and MLS for p3 (left) and p4 (right).

Using STM: As for SQM, Figures 3.9 and 3.10 show the relative error of the dis-
placement and stress fields. It is possible to observe that the results obtained with
STM have a lower RE than using SQM; however, it is important to highlight that the
number of triangles using STM (648) doubles the number of squares using SQM (324),
see Table E.1. As previously mentioned before, the gray color means that, due to the
bad conditioning of the linear systems of the high-order method, the solution is NaN.
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Figure 3.9: RE using STM#18 with LRE and MLS for p1 (left) and p2 (right).
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Figure 3.10: RE using STM#18 with LRE and MLS for p3 (left) and p4 (right).

Using UTM: As exposed for SQM and STM, Figures 3.11 and 3.12 show the relative
errors in displacements and stresses when using UTM. Again, the figures reveal the
RE for different interpolation orders varying the rest of parameters that define the
formulation, reaching similar conclusions. However, in this case, the differences
between using LRE or MLS are even more noticeable, obtaining better results with
the first one, see the left image of Figure 3.12.
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Figure 3.11: RE using UTM#18 with LRE and MLS for p1 (left) and p2 (right).
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Figure 3.12: RE using UTM#18 with LRE and MLS for p3 (left) and p4 (right).

Order of convergence

Another indicator used to define the set of parameters is the order of convergence (OC).
The theoretical order of convergence (TOC) of the displacement field is i + 1 when the
interpolation pi is used, while for the stress field is i. As previously mentioned and
illustrated in [4], stencil seq, k = 6 and Ng = 7 perform properly. To define the number
of stencil points Nn, OC results are shown for different values and interpolations in
Appendix D for SQM, STM, and UTM at Tables D.1, D.2 and D.3, respectively. It has
been decided to use the same value of Nn for each type of mesh, which may vary
depending on the interpolation method, see Table 3.1.

Table 3.1: Order of convergence for the displacement and stress fields using LRE or
MLS. Ng = 7 and k = 6 are used.

.

Mesh pi
Nn Disp. field (u) Stress field (σ)

LRE MLS TOC LRE MLS TOC LRE MLS

SQM

p1 13 13 2 1.71 1.78 1 1.26 1.21
p2 16 16 3 1.86 1.58 2 1.84 1.67
p3 20 33 4 3.61 3.58 3 3.06 3.29
p4 25 25 5 3.29 3.70 4 2.93 3.00

STM

p1 13 13 2 2.03 2.10 1 1.11 1.05
p2 16 16 3 2.04 2.11 2 1.97 1.88
p3 20 33 4 3.93 3.99 3 3.25 3.05
p4 25 25 5 3.81 4.14 4 3.93 4.02

UTM

p1 13 13 2 2.08 1.64 1 1.21 0.84
p2 16 16 3 2.03 2.00 2 2.09 1.95
p3 20 33 4 4.02 3.94 3 3.19 3.27
p4 25 25 5 4.11 4.50 4 4.06 4.03

The values of Nn in Table 3.1 are chosen based on the UTM since this type of
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mesh is the most useful and it was the one presented in [4], and the OC values were
obtained using all the meshes of Table E.1. A better combination of parameters for
SQM and STM are shown in Tables D.1 and D.2, respectively.

As explained in [4] and can be seen in Table 3.1, when using p2 and p4, the TOC for
the displacement field is not usually obtained. However, for the stress field, the TOC
is reached. Figures 3.13 and 3.14 show the orders of convergence for the displacement
and stress fields using p1, p2, p3 and p4 by varying the parameters of the problem.
In the case of p2, it is observed that obtaining the TOC in the displacement field is
possible with MLS but not with LRE. Anyway, the set of parameters needed to do
it using MLS is not a straightforward definition. It is appreciated that, in general,
when using the LRE, the convergence zone has more uniform colors, while for the
MLS, this is not the case. A clear example is observed when using p3; see the left
image of Figure 3.14. On the other hand, the OC for the stress field using different
parameters of the problem is achieved either using LRE or MLS. Furthermore, it can
be appreciated that for the stresses, there is a great variety of parameters that satisfy
the TOC when using LRE. It is worth highlighting from Figures 3.13 and 3.14 that
obtaining the adequate parameters is more challenging when using MLS [4].
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Figure 3.13: OC using UTM with LRE and MLS for p1 (left) and p2 (right).
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Figure 3.14: OC using UTM with LRE and MLS for p3 (left) and p4 (right).

Figures 3.15 and 3.16 show the convergence of the absolute error of the displace-
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ment field and the stress field using LRE and MLS, respectively. For these graphs, the
parameters of Table 3.1 and the unstructured meshes defined in Table E.1 are used.
Meshes #1, #2, #3 and #4 are excluded from these graphs because the number of cells
is less than the number of points needed for p4. It can be concluded that with the
LRE, the results are more precise, particularly for p1, where, when using MLS, it is
possible to find parameters that improve the convergence. In Table 3.1 it is observed
that for the stress field, for which a precise determination is critical in evaluating the
structural stability, the expected TOC is achieved in all the cases when LRE and p3
are used. On the other hand, for the displacement field, the TOC is achieved using p1
and p3 but not using p2 and p4, but the error using pi+1 is smaller than using pi, see
Figures 3.15 and 3.16.
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Figure 3.15: Convergence of AEu (left) and AEσ (right) using LRE with the parame-
ters of Table 3.1 for UTM.
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Figure 3.16: Convergence of AEu (left) and AEσ (right) using MLS with the parame-
ters of Table 3.1 for UTM.

Section D.1 shows the evolution of the displacement and stress field through the
first 18 unstructured meshes when using LRE for different interpolations. In the
following two-dimensional examples, only unstructured meshes are used with the
parameters defined in Table 3.1, using Ng = 7 and stencil seq.



50 CHAPTER 3. VERIFICATION-AND-VALIDATION

3.1.2 Clamped beam with uniformly varying loading

In [4, 5], it is possible to find examples of a cantilever beam where the shear locking
effect appears, comparing in [4] the results with those obtained in [6] concluding that
the method presented in this thesis is accurate and can deal with the shear locking
effect.

This section shows a cantilever beam clamped at the left end and subject to a
uniformly varying loading f = −p(Lx − X)/Lx ey at the top boundary as shown in
Figure 3.17. In [7], it is possible to find an analytical approximation of the solution,
where the stress σx is:

σx(X, Y) =
p (Lx − X)Y

30 Lx I

[
5 (Lx − X)2 − 10 Y2 +

3
2

L2
y

]
, (3.6)

In this case, for the simulation, Lx = 50, Ly = 2, p = 0.1, the inertia I = L3
y/12,

E = 30000, ν = 0.3 and plane stress is considered.

X

Y

0

Lx

Ly

p(Lx − X)/Lx

Figure 3.17: Geometry for the clamped beam with uniformly varying loading.

The approximated analytical solution of σx(Lx/2, Ly/4) is compared with the
presented formulation and other methods in Table 3.2, where #m indicates the number
of the mesh for which information is available in Table E.2.

In Table 3.2, it is possible to observe that with low order interpolation (using p1
or the method developed in [2]), it is not possible to obtain an accurate solution.
Nevertheless, a better approximation of the solution is achieved with high-order
interpolation (p2, p3, and p4). It is worth noting that, generally, with LRE, the solution
is even better than the one obtained with MLS. In the case of the 2nd-order method, [2],
it is possible to see the differences between using MLS or LRE to interpolate the
derivatives.
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Table 3.2: Solution of σx(Lx/2, Ly/4) using LRE and MLS where the analytical
solution is σx(Lx/2, Ly/4) = 3.91.

#m LRE MLS FreeFEM
[2] p1 p2 p3 p4 [2] p1 p2 p3 p4 p1 p2

1 2.03 4.89 3.90 3.91 3.91 2.39 2.34 3.70 3.91 3.91 2.08 3.98
2 3.58 5.58 3.83 3.91 3.91 3.36 58.02 3.78 3.91 3.91 4.89 3.94
3 3.62 3.74 3.89 3.91 3.91 3.67 4.33 3.85 3.91 3.91 3.40 3.91
4 3.72 2.85 3.89 3.91 3.91 3.66 3.05 3.90 3.91 3.91 4.38 3.91
5 3.73 4.31 3.91 3.91 3.91 3.74 3.57 3.90 3.91 3.91 3.73 3.92
6 3.73 4.20 3.91 3.91 3.91 3.77 3.89 3.90 3.91 3.91 3.80 3.92
7 3.95 3.88 3.91 3.91 3.91 3.96 3.98 3.91 3.91 3.91 3.85 3.91
8 3.60 3.72 3.91 3.91 3.91 3.66 4.39 3.91 3.91 3.91 4.21 3.91
9 3.73 3.96 3.91 3.91 3.91 3.76 3.77 3.91 3.91 3.91 3.35 3.91

10 3.81 4.23 3.91 3.91 3.91 3.83 3.29 3.91 3.91 3.91 4.24 3.91
11 3.81 3.91 3.91 3.91 3.91 3.80 3.75 3.91 3.91 3.91 4.00 3.91

3.1.3 Stressed infinite plane with an elliptical hole

In [4, 5] more examples of two-dimensional problems are presented, showing that
the method can deal with problems including stress concentrations and complex
geometries, where unstructured meshes are mandatory.

As in [5], this section presents an infinite plane containing a stress-free elliptical
hole loaded with a uniform stress at infinity, as shown in the left image of Figure 3.18.
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xσ∞
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σ∞
x

Y
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b

a

Figure 3.18: Geometry and model for the stressed infinite plane with an elliptical
hole problem.
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This problem is modeled as shown in the right image of Figure 3.18: left and
bottom boundaries have symmetry conditions, while on the rest of the surfaces
Neumann conditions are imposed. In this case, plane stress is considered, and E = 1,
ν = 0.3, a = 1, Lx = Ly = 300 and σ∞

x = 1 are used. Unlike in [5], in this thesis, the
parameter b varies in order to show its impact on the stress concentration factor, and
for that reason, Lx and Ly are ten times larger than those values in [5]2.

The analytical stress concentration factor is defined in [7]:

Fσ∞ =
σx(0, b)

σ∞
x

= 1 + 2
b
a

, (3.7)

where σx(0, b) = σ∞
x (1 + 2b/a). In Figure 3.19, one of the meshes used to solve the

problem is presented; it is possible to see that an unstructured mesh is needed for this
example.
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Figure 3.19: Mesh to solve the infinite plane with an elliptical hole problem with
b = 4 (left) and zoom of the mesh near the elliptical hole (right).

In Table 3.3, the solution of Fσ∞ using LRE and MLS is presented and compared
with the analytical expression defined in Eq. (3.7), concluding that both methods
work properly. In Table E.3, more information about the meshes can be found.

2The analytical expression is obtained assuming an infinite plane, therefore Lx = Ly � b.
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Table 3.3: Solution of Fσ∞ for different values of b.

Fσ∞
LRE MLS

[2] p1 p2 p3 p4 [2] p1 p2 p3 p4
1.5 1.50 1.49 1.50 1.50 1.50 1.50 1.49 1.50 1.50 1.50
2.0 2.01 1.98 2.00 2.00 2.00 2.01 2.02 2.00 2.00 2.00
2.5 2.52 2.46 2.50 2.51 2.50 2.52 2.53 2.50 2.50 2.50
3.0 3.04 2.94 3.00 3.00 3.00 3.05 2.99 3.00 3.00 3.00
3.5 3.48 3.40 3.50 3.50 3.50 3.49 3.44 3.50 3.51 3.50
4.0 3.95 3.88 4.00 4.01 4.01 3.98 3.89 4.00 4.01 4.01
4.5 4.45 4.35 4.49 4.50 4.49 4.47 4.09 4.49 4.50 4.50
5.0 4.92 4.80 4.98 4.98 4.98 4.96 4.79 4.98 5.00 4.99
5.5 5.41 5.27 5.48 5.54 5.54 5.42 5.25 5.47 5.52 5.54
6.0 5.92 5.72 5.97 6.02 6.05 5.94 5.66 5.94 6.01 6.04
6.5 6.41 6.16 6.46 6.51 6.51 6.37 6.04 6.45 6.50 6.51
7.0 6.92 6.67 6.98 7.03 7.10 6.89 6.42 6.95 7.02 7.09
7.5 7.39 7.11 7.47 7.52 7.56 7.41 7.01 7.44 7.52 7.56
8.0 7.74 7.57 7.96 8.00 7.99 7.84 7.57 7.92 8.00 7.99
8.5 8.31 8.02 8.43 8.45 8.34 8.37 7.93 8.41 8.44 8.39
9.0 8.72 8.48 8.92 8.98 8.93 8.81 8.30 8.92 8.97 8.93
9.5 9.28 8.92 9.44 9.52 9.50 9.31 8.85 9.41 9.51 9.50

10.0 9.56 9.33 9.90 9.90 9.80 9.74 9.26 9.88 9.90 9.82
10.5 10.09 9.77 10.41 10.45 10.41 10.23 9.68 10.38 10.46 10.44
11.0 10.81 10.31 11.05 11.18 11.22 10.92 10.31 10.97 11.14 11.20

3.2 Three-dimensional examples

For three-dimensional cases, it is decided to analyze only the LRE method since, as
seen in the two-dimensional analysis, the MLS method does not work as well as the
first one and has a higher computational cost [4]. However, in some of the examples,
the results obtained with the MLS are shown using the same parameters as with the
LRE in order to illustrate how the LRE continues to have better results in the case of
three dimensions. Likewise, it is decided, not to use the interpolation p4 due to its
high computational effort, knowing, from Section 3.1, that results with p2 and p3 are
accurate enough.

In this section, static and dynamic problems, as well as hyperelastic problems, are
analyzed.
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3.2.1 Three-dimensional analytical example

In this example, a known displacement field u is imposed on the boundary of the
domain, and the corresponding body force b0 is imposed in the interior. The domain
is a cube of size L = 1, i.e. Ω = {(X, Y, Z) : X, Y, Z ∈ [0, 1]}. The displacement field
imposed on the boundary is u = ux ex + uy ey + uz ez, where

ux(X, Y) = ln(X + 3)Y (Z + 1) + eZ ,

uy(X, Y) = sin(Y Z) + 3 Y,

uz(X, Y) = eX Z Y− 4 cos(Z) .

(3.8)

The body force b0 = b0,x ex + b0,y ey + b0,z ez is obtained from Eq. (2.37) using
∂u̇/∂t = 0 and integrated using numerical quadrature as in Eq. (2.76) with 56 and
64 Gaussian points for each finite tetrahedron and hexahedron, respectively, see
Appendix B. In this example, the material properties are E = 1 and ν = 0.3. Four
different types of meshes are used to compare the accuracy of the method related to
the disposition of the cells: (1) structured hexahedral mesh (SHM), see the top-left
image of Figure 3.20; (2) structured tetrahedral mesh (STM), see the top-right image
of Figure 3.20; (3) unstructured-plane tetrahedral mesh (UpTM), see the bottom-left
image of Figure 3.20; and (4) unstructured tetrahedral mesh (UTM), see the bottom-
right image of Figure 3.20. UpTM meshes are useful in cases where the need to use
unstructured meshes is in a plane, e.g., a compressor reed valve. Table E.4 shows
more information about the meshes used in this example. In this case, all meshes are
used for the parametric analysis.

When analyzing the number of Gauss points needed to integrate over the surfaces,
it is necessary to distinguish between hexahedrons and tetrahedrons. For the case of
hexahedrons Ng = {1, 9, 25, 49} and for the case of tetrahedrons Ng = {1, 7, 19, 37}.
Consequently, more than one million cases were studied3, so it is challenging to show
the complete analysis and for that reason, some additional results can be found in the
Appendix D.

As in the two-dimensional analytical example, see Section 3.1, the relative errors
in the displacement field REu and in the stress field REσ are computed using Eq. (3.3),
in order to observe the influence of the parameters of the method on the results, and
the absolute errors in the displacement field AEu and in the stress field AEσ , using
Eq. (3.4), are considered in order to test the convergence order of the method. The
integrals defined in Eqs. (3.3) and (3.4) are computed using 56 and 64 Gaussian points
for each finite tetrahedron and hexahedrons, respectively, see Appendix B.

3# Cases = 2× 1× 3× 10× 4× 61× 18× 4 = 1054080.
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Figure 3.20: Structured hexahedral mesh (SHM, top-left), structured tetrahedral
mesh (STM, top-right), unstructured-plane tetrahedral mesh (UpTM, bottom-left) and
unstructured tetrahedral mesh (UTM, bottom-right).

Number of Gauss points

Figures 3.21 and 3.22 show the relative errors of the field of displacements and
stresses for the mesh #7 with UpTM and UTM, respectively. It is possible to conclude
that at least Ng = 7 is needed. In the analysis of this example, Ng = 37 is used
for tetrahedrons and Ng = 49 for the SHM to reduce errors introduced by this
approximation. However, in other examples, the number of Gaussian points may
vary in order to reduce the computational effort.
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Figure 3.21: REu (left) and REσ (right) using UpTM#7, p3 and sdf.
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Figure 3.22: REu (left) and REσ (right) using UTM#7, p3 and sdf.

Selection of the stencil

As in the two-dimensional case, see Section 3.1, the REu,s and REσ,s, defined in Eq.
(3.5), are obtained. The integrals defined in Eq. (3.5) are computed using 56 and
64 Gaussian points for each finite tetrahedron and hexahedron, respectively; see
Appendix B. Figures 3.23, 3.24, 3.25 and 3.26 show the results of the REs using LRE
and different parameters that define the problem for mesh #7, see Table E.4, of SQM,
STM, UpTM and UTM, respectively.

It is possible to observe that the more unstructured the mesh, the worse the
comparison between stencils. This indicates that for structured meshes, especially
with hexahedrons, using seq or sdf is practically indifferent, but for unstructured
meshes it is not clear. Likewise, it is notorious that when increasing the interpolation
order, the error between the stencils is also higher. Surprisingly, using p2 is even worse
than using p3. However, this fact can be related to what has already been seen in the
case of two dimensions, where it was observed that using p2 is not advisable because
it is not possible to obtain the order of convergence suitable for the displacement field
in most cases.

Due to the aforementioned, and to use the same type of stencil for each type of
mesh, it is decided to use the stencil sdf in the analysis presented in this section.
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Figure 3.23: REs using SHM#7 and LRE with p1 (left), p2 (center) and p3 (right).
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Figure 3.24: REs using STM#7 and LRE with p1 (left), p2 (center) and p3 (right).
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Figure 3.25: REs using UpTM#7 and LRE with p1 (left), p2 (center) and p3 (right).
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Figure 3.26: REs using UTM#7 and LRE with p1 (left), p2 (center) and p3 (right).

Set of parameters

In what follows, the results obtained using mesh #7 are analyzed for the different
types of meshes; see Table E.1. Likewise, for all cases, Ng = 37 when using triangular
meshes and Ng = 49 for hexahedral ones.

Using SHM: Figure 3.27 shows the value of the relative errors of the displacement
and stress field using LRE, for different interpolations using the hexahedral mesh #7,
see Table E.4.
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Figure 3.27: RE using SHM#7 and LRE with p1 (left), p2 (center) and p3 (right).

The images correspond to the RE for the different interpolations: p1, p2, and
p3; for different values of the parameters Nn and k. These images show the most
accurate results for 4 ≤ k ≤ 10. Likewise, it is observed that the relative error is
greater for the stress field than for the displacement field, which is consistent with
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the two-dimensional case. Moreover, as it was expected, the RE is smaller with pi+1
than with pi. As commented in previous examples, the gray color indicates a bad
conditioned system and, therefore, a NaN solution.

Using STM: For structured triangular meshes, similar conclusions to those obtained
with SHM are achieved; see Figure 3.28. Nevertheless, in this case, it is possible to
appreciate that for p3, it is necessary to impose a more significant number of stencil
points Nn, and the gap for the shape form is reduced to 5 ≤ k ≤ 10.
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Figure 3.28: RE using STM#7 and LRE with p1 (left), p2 (center) and p3 (right).

Using UpTM: When using an unstructured-plane tetrahedral mesh, the solution
shows an accurate performance; see Figure 3.29. Also, in this case, the obtained
solution is better than that obtained with STM, where the system is usually poorly
conditioned due to the distribution of the cells.
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Figure 3.29: RE using UpTM#7 and LRE with p1 (left), p2 (center) and p3 (right).
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Using UTM: For unstructured meshes, the results are similar to those obtained
when using UpTM; see Figure 3.30.
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Figure 3.30: RE using UTM#7 and LRE with p1 (left), p2 (center) and p3 (right).

A conclusion for the above is that k = 6, as in two-dimensional cases, is a good
choice for the shape parameter in all cases. In order to define the number of points in
the stencil, the order of convergence is studied.

Order of convergence

As in the two-dimensional analytical example, the order of convergence is analyzed
to define the parameters. As it was mentioned, k = 6 is used in all the cases. In Tables
D.4, D.5, D.6 and D.7 the solution for various values of Nn and Ng = 37 (tetrahedral
meshes) or Ng = 49 (hexahedral meshes) are presented for all the types of meshes.
Table 3.4 summarizes the chosen parameters in each case. In order to simplify the
analysis, it is decided to add 40 points to the minimum (Nn,min) required for each
interpolation, see Section 2.3.3. As it is possible to observe in Table 3.4, the solution
using MLS is also included, being, in general, less accurate than the LRE solution when
unstructured meshes are used. In addition, results using the two types of stencils are
displayed, concluding that there is no significant difference between one and the other
when using LRE. However, in Figures 3.31 and 3.32, the convergence of AE is shown
using UTM and the values presented in Table 3.4 for LRE and MLS, respectively,
being clear that, for LRE, when using seq the convergence is not as straightforward as
when using sdf

4. On the other hand, when using MLS even negative OC are obtained;
see Table 3.4. In Section D.2, analogous graphs to those presented in Figure 3.31 for
the cases of SHM, STM, and UpTM are presented. It can be seen that in the cases
of structured meshes (SHM and STM), the differences between using seq or sdf are

4Mesh #1 is excluded from these graphs because the number of cells is less than the number of points
needed.
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negligible. On the contrary, when using UpTM appreciable differences are observed,
especially when using p3, where, as with UTM, the convergence when using seq is not
clear, presenting inconsistencies. Therefore, it is recommended that for unstructured
meshes, which is the purpose of this thesis, the sdf stencil is used in three-dimensional
problems.

Table 3.4: Order of convergence for the displacement and stress fields using LRE or
MLS and number of stencil points Nn for each method using either seq or sdf. k = 6
and Ng = 37 (tetrahedral meshes) or Ng = 49 (quadrilateral meshes) are used.

.

Mesh pi - Nn

Disp. field (u) Stress field (σ)

TOC LRE MLS TOC LRE MLS
sdf seq sdf seq sdf seq sdf seq

SHM
p1 - 44 2 1.55 1.55 1.75 1.78 1 1.71 1.70 1.58 1.59
p2 - 50 3 2.72 2.68 2.13 2.19 2 1.94 1.95 1.91 1.92
p3 - 60 4 4.07 4.05 4.01 4.03 3 3.32 3.32 3.14 3.15

STM
p1 - 44 2 2.09 2.09 2.15 2.05 1 1.42 1.47 1.26 1.29
p2 - 50 3 3.14 3.06 3.31 3.27 2 2.28 2.28 2.09 2.09
p3 - 60 4 4.52 4.44 4.06 0.31 3 3.53 3.52 2.57 -0.94

UpTM
p1 - 44 2 2.17 2.15 2.18 2.11 1 1.62 1.66 1.30 1.34
p2 - 50 3 3.06 3.18 2.95 2.92 2 2.38 2.46 2.25 2.25
p3 - 60 4 4.64 5.87 2.57 2.21 3 3.69 4.90 1.55 1.41

UTM
p1 - 44 2 2.16 2.21 0.58 -0.50 1 1.53 1.60 -0.32 -1.51
p2 - 50 3 3.34 2.45 3.51 3.42 2 2.49 1.72 2.34 2.26
p3 - 60 4 4.54 3.96 0.13 0.95 3 3.60 3.20 -1.09 -0.16
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Figure 3.31: Convergence of AEu using LRE and sdf (left) or seq (right) with the
parameters of Table 3.4 for UTM.

In Figure 3.32, it is possible to see that when using MLS with p2 the results are
correct. However, the bad behavior for p1 and p3 discourages using MLS. At this point,
it is necessary to emphasize, again, that the MLS is computationally more expensive
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than the LRE. In conclusion, using the LRE with the sdf stencil is recommended,
especially in unstructured meshes, despite being more expensive than seq.
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Figure 3.32: Convergence of AEu using MLS and sdf (left) or seq (right) with the
parameters of Table 3.4 for UTM.

In the previous section, it was concluded that unaccurate OC were obtained
when using p2 in two dimensions. However, this is is not observed in Table 3.4,
using LRE for sdf. Figure 3.33 shows the OC for the displacement and stress fields
using UTM#7 for different values of k, Nn and interpolations p1, p2 and p3. In these
images, it is possible to observe that the TOC is reached when using p2, although
the set of parameters which allow this is smaller than for p1 and p3. Therefore, it is
recommended to use p3, as in two dimensions, for high-order interpolation.
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Figure 3.33: OCu (left) and OCσ (right) using UTM with LRE.

Section D.2 shows the evolution of the displacement and stress field through
the seven unstructured meshes when using LRE for different interpolations. In the
following examples, only unstructured meshes (UTM) are used with the parameters
defined in Table 3.4.
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3.2.2 Cantilever beam with a uniformly distributed load

In [5], it is possible to find an example of a cantilever beam subjected to a vertical force
at the free end, where the shear locking effect appears, using a structured hexahedral
mesh.

This section considers a three-dimensional cantilever beam subjected to a uni-
formly distributed load, as shown in Figure 3.34. For this example E = 30000, ν = 0.3,
Lx = 50, Ly = Lz = 2 and q = 0.05.

q

Z

Y

X
Ly

Lx

Lz

Figure 3.34: Geometry of the beam subject to a uniformly distributed load.

An approximate analytical solution from [7] is used to compare the numerical
results. The displacement uz at the free end and the stress σx at (Lx/2, 0, Lz/4), when
Lx � Lz, are:

uz(Lx, 0, 0) = −3
2

q L4
x

E L3
z

, σx(Lx/2, 0, Lz/4) =
q

80

(
7 + 30

L2
x

L2
z

)
. (3.9)

Clips of three of the seven meshes used in this problem are shown in Figure 3.35.

Figure 3.35: Mesh #1 (top), #4 (middle) and #7 (bottom).

Tables 3.5 and 3.6 show the results of the displacement and stress defined in
Eq. (3.9), respectively. From Table 3.5, it can be deduced, as mentioned in the previous
section, that when using the LRE for unstructured meshes, in three-dimensional cases,
it is more convenient to use the stencil sdf. For example, when using the mesh #6 and
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the stencil seq the relative error is triggered much higher than that obtained when
using sdf

5. When analyzing the results using the MLS, it is observed that, in general,
the results are not accurate enough, even when using p2, which was where the best
behavior of the MLS had been seen. Again, it is observed that when using seq, the
results are also worse than using sdf. It is then concluded that using LRE is more
convenient than MLS, not only from a computational effort point of view but also
when obtaining the numerical solution.

Table 3.5: Solution of uz(Lx, 0, 0) where the approximated analytical value is
uz(Lx, 0, 0) = −1.953.

si #m LRE MLS FF
[2] p1 p2 p3 [2] p1 p2 p3 p1 p2

sdf

1 -1.045 -2.393 -1.914 -1.956 -1.045 -1.863 -1.881 -1.963 -1.124 -1.945
2 -2.500 -2.026 -1.906 -1.948 -2.500 -2.262 -1.856 -2.714 -1.153 -1.946
3 -1.418 -2.028 -1.931 -1.953 -1.418 0.874 -1.928 -1.913 -1.280 -1.946
4 -1.840 -2.126 -1.936 -1.951 -1.840 -3.365 -1.970 -2.989 -1.252 -1.945
5 -2.178 -2.082 -1.940 -1.953 -2.178 -2.523 -1.996 -1.934 -1.267 -1.946
6 -2.441 -2.040 -1.959 -1.956 -2.441 -1.696 -2.012 -1.444 -1.252 -1.946
7 -1.570 -2.025 -1.943 -1.955 -1.570 -1.679 -1.931 -2.037 -1.427 -1.948

seq

1 -1.045 -2.378 -1.871 -1.955 -1.045 -1.617 -1.909 -2.957 -1.124 -1.945
2 -2.500 -1.888 -1.929 -1.955 -2.500 -4.009 -1.884 -1.696 -1.153 -1.946
3 -1.418 -2.001 -1.925 -1.944 -1.418 0.205 -1.946 -1.820 -1.280 -1.946
4 -1.840 -2.166 -1.977 -1.954 -1.840 -0.344 -1.967 -0.052 -1.252 -1.945
5 -2.178 -2.078 -1.936 -1.951 -2.178 146.65 -1.976 -1.943 -1.267 -1.946
6 -2.441 -2.045 -2.066 -1.871 -2.441 0.675 -1.989 -2.740 -1.252 -1.946
7 -1.570 -2.026 -1.938 -1.955 -1.570 -0.934 -1.931 -2.731 -1.427 -1.948

When comparing the results of the LRE using p1 with the other linear interpolation
methods ( [2] and FF p1), it is observed that it is not possible to obtain adequate results,
which was expected due to the effect of shear locking. However, for LRE and p1,
although the result is not correct, the behavior seems adequate, thus obtaining a
sufficiently approximate solution with p1. When comparing with FreeFEM p2, it is
observed that the error of FF with mesh #7 is similar to that of using LRE with p2.
However, for the same mesh using p3, the result of the presented method is more
accurate.

Table 3.6 shows the stress results defined in Eq. (3.9), reaching the same conclu-
sions as for the displacement: the convenience of using LRE and the stencil sdf. Here,
it is possible to see the difference between the LRE and MLS when interpolating
derivatives by looking at the values obtained using [2].

5For example with p3 the error when sdf is 0.15% while using seq it is 4.20%.



3.2. THREE-DIMENSIONAL EXAMPLES 65

Table 3.6: Solution of σx(Lx/2, 0, Lz/4) where the approximated analytical value is
σx(Lx/2, 0, Lz/4) = 11.72.

si #m LRE MLS FF
[2] p1 p2 p3 [2] p1 p2 p3 p1 p2

sdf

1 5.17 11.73 11.40 11.67 6.17 12.02 11.22 11.71 -1.03 11.45
2 19.02 12.30 11.38 11.70 16.02 15.29 10.96 11.68 0.02 11.91
3 7.89 15.50 11.67 11.72 4.63 66.39 11.65 12.34 0.88 11.85
4 6.12 14.61 11.66 11.71 10.24 8.90 11.89 66.02 5.37 11.62
5 22.32 17.25 11.69 11.72 22.79 23.08 12.05 12.80 10.27 11.72
6 5.12 15.11 11.65 11.71 -10.04 5.90 12.03 9.95 4.94 11.73
7 11.22 11.20 11.70 11.73 10.86 2.40 11.65 11.68 9.92 11.71

seq

1 5.17 11.09 11.50 11.67 6.17 -0.54 11.37 -20.37 -1.03 11.45
2 19.02 11.65 11.38 11.70 16.02 13.65 11.07 9.61 0.02 11.91
3 7.89 15.58 11.83 11.73 4.63 -18.87 11.65 11.11 0.88 11.85
4 6.12 14.85 11.97 11.72 10.24 13.39 11.75 -22.02 5.37 11.62
5 22.32 17.25 11.40 11.71 22.79 -931.8 11.96 11.79 10.27 11.72
6 5.12 15.12 11.57 11.72 -10.04 196.1 11.85 19.04 4.94 11.73
7 11.22 11.03 11.67 11.73 10.86 16.35 11.66 18.12 9.92 11.71

In the following examples, from what was said above, only unstructured meshes
(UTM) are used with the parameters defined in Table 3.4 using LRE and stencil sdf.

3.2.3 Vibration of a cantilever beam

In this example, a cantilever beam subjected to a time-varying vertical force at the free
end is studied; see Figure 3.36. The mechanical and geometric parameters used in [8]
and [9] are used. For this example the mechanical parameters are E = 10 MPa, ν = 0.3
and ρ = 2600 kg/m3, while the geometrical parameters are Lx = 20 m, Ly = Lz = 2 m
and Fmax = 500 N.

F(t)

Z

Y

X
Ly

Lx

Lz

Figure 3.36: Geometry of the beam subject to a time-varying vertical force.

The time-varying vertical force is imposed linearly from zero to 500 N during the
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first 7 seconds, and then it is released:

F(t) =

 Fmax
t
t1

if t ≤ t1 , where t1 = 7 s ,

0 if t > t1 .
(3.10)

The first analysis performed in this example is to obtain the lowest natural fre-
quency and compare it with analytical approaches and other methods. The first
natural frequency is fundamental in the dynamic analysis due to the consequences it
may have in the case of imposing stresses that enter into resonance with it. Further-
more, in this case, due to the type of load imposed, the response of the structure is
mainly related to the first vibration mode associated with the lowest natural frequency.
To obtain the natural frequencies ω, the free structural problem is solved, obtaining
the equation that relates natural frequencies with the vibration modes φ:(

M + ω2 K
)

φ = 0 . (3.11)

Then the frequencies and periods are fω = ω/(2 π) and T = 1/ fω, respectively.
From the Euler-Bernoulli beam theory, it is possible to obtain an approximation for
the frequencies, where the first frequency is:

fω1,EB =
β2

2 π

√
E I
ρ A

, (3.12)

where β Lx = 1.8751041 m, I = Ly L3
z/12 is the inertia and A = Ly Lz is the area of the

transverse section. Table 3.7 shows the relative errors in the first natural frequency,
ω1, for different meshes when comparing the frequency obtained using the lumped
mass matrix, Eq. (2.91), with that obtained using the high-order method, Eq. (2.87),
with p3 for three values of Nm = {1, 10, 35}.

Table 3.7: Relative error [%] obtaining ω1 when using different methods to calculate
the mass matrix.

#m Nm
1 10 35

1 4.08×10−6 1.40×10−3 1.40×10−3

3 1.01×10−5 3.33×10−4 3.31×10−4

7 3.61×10−6 1.52×10−3 1.52×10−3

11 6.69×10−7 7.56×10−4 7.56×10−4

15 5.41×10−7 7.18×10−4 7.18×10−4

This comparison was also made for the following four natural frequencies, obtain-
ing results similar to those in Table 3.7. Likewise, it was verified that these minimal
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differences are also observed when using p1 or p2. It is concluded then that there is
no difference in using the lumped mass matrix or the high-order mass matrix. For
this reason, due to its lower computational cost, it is decided to use the expression of
Eq. (2.91) for the mass matrix. The value obtained for the first frequency fω1 using p1,
p2 and p3 with the mass matrix of Eq. (2.91) is compared to other methods in Table
3.8. It is observed that with the method presented, a very accurate approximation
is obtained for both p2 and p3. It is interesting to see how when using p1, the result
of the method presented here is much better than when using another method with
linear interpolation.

Table 3.8: Values of 100 fω1 for different methods where the analytical value is
fω1,EB = 5.009× 10−2 Hz.

#m [2] LRE FF
p1 p2 p3 p1 p2

1 5.271 4.672 5.059 4.982 6.518 5.008
2 4.887 4.862 5.035 4.984 6.385 5.007
3 5.151 4.658 5.007 4.973 6.462 5.005
4 5.370 4.738 5.014 4.982 6.384 5.007
5 5.360 4.734 5.007 4.981 6.387 5.004
6 5.305 4.783 4.984 4.982 6.364 5.005
7 5.031 4.830 4.987 4.979 6.282 5.002
8 5.212 4.810 4.907 4.983 6.224 5.002
9 5.245 4.769 4.991 4.995 6.340 5.006

10 5.354 4.851 4.989 4.978 5.754 4.999
11 5.254 4.877 4.992 4.977 5.736 4.998
12 5.347 4.823 4.990 4.975 5.706 4.998
13 5.264 4.896 4.982 4.973 5.643 4.998
14 5.254 4.893 4.984 4.975 5.613 4.998
15 5.196 4.915 4.979 4.974 5.636 4.998
16 5.219 4.896 4.979 4.975 5.630 4.998
17 5.180 4.932 4.984 4.982 5.471 4.996

‘

Next, the evolution in time of the displacement of the free end of the beam is
analyzed for different temporal discretizations. The temporal discretization methods
can be written from the generalized algorithm presented in Section 2.5, see Table 3.9
that indicates the parameters used.
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Table 3.9: Parameters of the generalized algorithm [10] for different methods.
Method θM,1 θM,2 θM,3 γM,0 γM,1 γM,2 βM,0 βM,1 βM,2

Trapezoidal 1.000 1.000 1.000 1.500 1.000 1.000 1.500 2.000 1.000
HHT-α [11] 0.510 0.510 0.510 3.33015 1.980 1/0.51 3.33015 1.980 1.000
Modak [10] 0.541 1.092 1.000 0.904 0.569 1.102 0.017 1.111 1.000

The displacement of the free end is obtained using p3, Nn = 60, Ng = 7, LRE and
a stencil sdf, see Figure 3.37. The results of [9] are used as references. An unstructured
mesh of 3753 tetrahedral elements was used, while in [9], a mesh of 80× 8× 8 = 5140
tri-linear hexahedral elements was selected. It is clearly observed how the methods
converge when the step decreases, although in the trapezoidal case for ∆t = 0.1 s
a finer mesh is needed. Euler’s method shows that a very small step is required,
making it unacceptable.
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Figure 3.37: Displacement uz(Lx, Ly/2, Lz/2, t) of the free end for different incre-
ments of time ∆t and temporal discretization methods using p3.

3.2.4 Analytic hyperelastic case

This example and the one presented in the next section show that the method is
suitable for hyperelastic problems. Both examples are solved for the two hyperelastic
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models presented in Section 2.1.3. Likewise, these results are compared with those
where small deformations hypothesis is assumed.

In this example, a known displacement field u is imposed on the boundary of the
domain, and the corresponding body force b0 is imposed in the interior. The domain
is a cube of size L = 1, i.e. Ω = {(X, Y, Z) : X, Y, Z ∈ [0, 1]}. The displacement field
imposed on the boundary is u = ux ex + uy ey + uz ez, where

ux(X, Y, Z) = α ln(1 + X) ,

uy(X, Y, Z) = 0,

uz(X, Y, Z) = 0 .

(3.13)

with α ∈ [−0.5, 0.5].
The material properties are E = 1 and ν = 0.3. The same UTM meshes used in the

first three-dimensional example were chosen for the numerical resolution, which can
be found in Table E.4. The body force b0 = b0,x ex + b0,y ey + b0,z ez is obtained from
Eq. (2.39) using ∂u̇/∂t = 0 and integrated using numerical quadrature as in Eqs. (2.78)
and (2.79) using 56 Gaussian points for each finite tetrahedron, see Appendix B. The
components of the body force b are zero except for b0,x = −∂Pxx/∂X where Pxx is the
first component of the Piola stress tensor P. Therefore, the different body forces are:

b0,x,SD =
α

(1 + X)2 (λ + 2 µ) , (3.14)

b0,x,SVK =
α

(1 + X)2

(
3 r2 − 1

2

)
(λ + 2 µ) , (3.15)

b0,x,SM =
α

(1 + X)2

[(
r2 + 1

2 r2

)
λ +

(
2 r2 + 10

9 r8/3 +
r2 + 1

3 r2

)
µ

]
, (3.16)

where r = 1 + α/(X + 1) and the subscripts refer to Small Deformations (SD), Saint
Venant-Kirchhoff (SVK), and Simo-Miehe (SM). It is possible to see that when applying
the hypothesis of small deformations, α→ 0, in Eqs. (3.15) and (3.16), it is obtained,
in both cases, Eq. (3.14)6.

6The Taylor linear approximation, when α→ 0, of a function of the form f (α) = α g(α) is f (α) ≈ α g(0):

f1(α) = α

(
3 r2 − 1

2

)
,

f2(α) = α

(
r2 + 1

2 r2

)
,

f3(α) = α

(
2 r2 + 10

9 r8/3 +
r2 + 1

3 r2

)
.


⇒ Taylor aproximation⇒


f1(α) ≈ α ,

f2(α) ≈ α ,

f2(α) ≈ 2 α .
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The convergence of the method using SVK or SM, when α = −0.3, can be seen in
Figures 3.38 and 3.39, respectively. Mesh #1 is excluded from these graphs because
the number of cells is less than the number of points needed for the interpolation. A
correct convergence is observed for the SM model. However, in the SVK model, the
convergence is unclear, especially when refining the meshes. The latter is because the
SVK model is known to be unstable in the strong compression regime [12, 13], which
happens for α = −0.3. When using the SM, the expected orders of convergence are
obtained for both the stresses and the displacement, except for the displacement field
and p2, as seen in previous sections.
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Figure 3.38: Convergence using the SVK model of the displacement field u (left) and
the stress field σ (right) when α = −0.3.
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Figure 3.39: Convergence using the SM model of the displacement field u (left) and
the stress field σ (right) when α = −0.3.

Figure 3.40 shows the numerical solution compared to the analytic of the displace-
ment ux and the stress σxx at the point X = (0.5, 0.5, 0.5) for different values of α
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using mesh #5 and p3. The Cauchy stress tensors for each model are:

σSD =
α

X + 1

 1 0 0
0 1 0
0 0 1

 λ +

 1 0 0
0 0 0
0 0 0

 2 µ

 , (3.17)

σSVK =
α

X + 1

(1 + r
2 r

) r2 0 0
0 1 0
0 0 1

 λ + (1 + r)

 r 0 0
0 0 0
0 0 0

 µ

 , (3.18)

σSM =
α

X + 1

(
1 + r

2 r

) 1 0 0
0 1 0
0 0 1

 λ

+
α

X + 1

(
1 + r

3 r

)( 1
r2/3

) 2 0 0
0 −1 0
0 0 −1

+

 1 0 0
0 0 0
0 0 0

 µ , (3.19)

where, again, it is possible to observe that linearizing the SVK and SM expressions for
α→ 0 gives the SD one. It is worth noting that for α = {−0.5, −0.4}, no solution is
obtained when using SVK model, due, again, to its instability for strong compressions.
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Figure 3.40: Comparison between analytical and numerical solutions of ux (left) and
σxx (right) at the point X = (0.5, 0.5, 0.5) using mesh # 5 and interpolation p3.

3.2.5 Large deformation of a clamped beam

In this example, the large displacement and moderate rotation of a three-dimensional
cantilever beam, clamped at the left end and subjected to a vertical force at the
right end, are obtained. The numerical results for this case are compared with those
obtained in [14] and [15]. The mechanical and geometrical properties are the same as
those used in [14] where: the Young modulus is E = 15293 kPa and the Poisson ratio
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is ν = 0.3; the structure is a prismatic body with a square diamond cross-section with
side a = 0.2 m and length ` = 2 m, see Figure 3.41.

F

Z
Y

Xa

u w

`

X

F

F
θ

Z

Figure 3.41: Geometry of the clamped beam which suffers large deformations.

The load at the free end is

F =
F E I
`2 (0, 0, −1) , (3.20)

where F is a dimensionless parameter that characterized the load F. The obtained
computed solution is compared with the numerical results from [8, 14, 15] for a range
of values of F that goes from 0.2 to 10.

Both Gonzalez et al. [8], and Tukovic et al. [14] use the finite volume method
with linear interpolation and compare their numerical results with those obtained
by Mattiasson [15]. In Mattiasson’s work, the numerical evaluation of the elliptic
integrals that define the problem is performed, ignoring the axial and shear strains.
This last point is important since the results presented in [8] and [14], as well as the
high-order method presented here, are obtained with numerical simulations that do
take these deformations into account, especially the shear deformation, which, as it
has already been mentioned, is important because of the shear locking effect.

In [14] the results are obtained for F = {0.2, 0.4, 0.8, 1.6} in two structured
meshes using the the SVK model. The comparison between the results obtained
in [15] and those obtained with the finer mesh in [8] and [14] as well as those using p3
are presented in Table 3.10. This table shows the results for different meshes, # Elem
indicates the number of elements (hexahedrons or tetrahedrons). Although the closest
result to [15] is the one obtained with [8], for example, for F = 1.6 the relative error is
0.25 %, the number of elements employed (40960 hexahedrons) is more than ten times
higher than those of the finest mesh using the high-order method (3803 tetrahedrons)
for which a relative error of 0.73 % is obtained. In the case of using the SM model, the
error for F = 1.6 when comparing with [15] is 0.63 %, see results in Table 3.11.
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Table 3.10: Displacement w/` for different loads F and meshes using the SVK model.

F # Elem. 10000 40960 448 889 1674 2318 3803
[15] [14] [8] High order method using p3

0.2 0.06636 0.06545 0.06625 0.06772 0.06705 0.06688 0.06682 0.06664
0.4 0.13098 0.12905 0.13080 0.13363 0.13234 0.13201 0.13189 0.13156
0.8 0.24945 0.24545 0.24940 0.25438 0.25213 0.25157 0.25136 0.25077
1.6 0.42941 0.42535 0.43050 0.43732 0.43434 0.43365 0.43335 0.43256

Table 3.11: Displacement w/` for different loads F and meshes using the SM model.

F # Elem. 448 889 1674 2318 3803
[15] High order method using p3

0.2 0.06636 0.06772 0.06705 0.06688 0.06682 0.06664
0.4 0.13098 0.13361 0.13232 0.13200 0.13188 0.13154
0.8 0.24945 0.25424 0.25202 0.25149 0.25126 0.25066
1.6 0.42941 0.43680 0.43390 0.43329 0.43293 0.43212

The next test is to raise the factor F to 10, which is the maximum value used
in [15]. The results of using the finest mesh (3803 tetrahedrons) with p3 and the
SVK model are shown in the left image of Figure 3.42 and in the right image, the
convergence in the displacement and stress field mesh for F = 1.6 are displayed. To
obtain the convergence, the fields from a fine mesh of 5593 tetrahedrons are used for
the comparison. It can be seen that the convergence in the field of displacements is
adequate, and for the stress field, although it is not exact, it is clear that by further
refining the meshes, convergence is obtained. Figure 3.43 shows the analogous results
to the aforementioned but using the SM model.
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Figure 3.42: On the left image, the magnitudes at the tip for increasing magnitude of
F . Reference solution [15] (lines) and numerical results (points) of θ, u/`, and w/`
using the SVK model. On the right image, the relative error of the displacement and
stress fields for F = 1.6 and SVK model.
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Figure 3.43: On the left image, the magnitudes at the tip for increasing magnitude of
F . Reference solution [15] (lines) and numerical results (points) of θ, u/`, and w/`
using the SM model. On the right image, the relative error of the displacement and
stress fields for F = 1.6 and SM model.

In Figures 3.42 and 3.43, small deviations of the magnitudes for high loads can
be seen with respect to what is obtained in [15]. This is because in [15], the axial and
shear deformations are neglected, whereas, for thick beams, such as the one presented
here, the shear strain plays a relevant role [8, 16]. As in [8], the case for F = 10
is solved for slender beams with lengths ` = {3, 4, 5, 6, 7, 8}m, in order to verify
that by increasing the length of the beam, the numerical result is more similar to the
analytical one presented in [15]. The numerical results are presented in Table 3.12,
compared with those obtained in [8]. Once again, it may be concluded that, with
a much smaller number of elements, it is possible to obtain similar or even smaller
errors using high-order interpolation.

Table 3.12: Analytical result comparison w/` = 0.81061 for slender beams.

`[m]
[8] using SM High order method using p3

# Elem SVK SM
# Elem w/` RE[%] w/` RE[%] w/` RE[%]

2 40960 0.82253 1.470 3803 0.82620 1.923 0.82533 1.816
3 1360 0.81686 0.771 0.81653 0.731
4 81920 0.81280 0.270 792 0.81379 0.393 0.81365 0.375
5 1046 0.81230 0.208 0.81209 0.183
6 1262 0.81163 0.126 0.81156 0.117
7 1412 0.81132 0.087 0.81125 0.078
8 163840 0.81050 0.014 1710 0.81072 0.013 0.81065 0.005

Figure 3.44 shows the deformation of the plane Y = 0 for different cases. The left
image shows the deflection for a beam of length ` = 2 m and different values of F
while the right image shows the deflection for F = 10 and different values of `. Here,
it is possible to observe how increasing the applied force (which is always in the −Z
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direction), the beam begins to be aligned with it, which means that it can resist more
force, that is, the deformation for F = 10 is much less than 50 times that obtained for
F = 0.2 (a value that would correspond to small deformations).
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Figure 3.44: Deflection for a beam of length ` = 2 m and different values of F (left)
and deflection for F = 10 and different lengths ` (right).

3.3 Conclusions

In this chapter, an exhaustive analysis of the proposed method was performed by
solving different classes of problems and providing comprehensive calibration and
validation in two and three dimensions scenarios. All the parameters on which
the presented method depends have been varied, and different types of meshes
(structured and unstructured) have been analyzed. In addition, static and dynamic
problems have been solved. Regarding the interpolation methods proposed, it may
be concluded that the LRE is the most appropriate. For the case of two dimensions, it
is recommended to use the stencil seq, see Section 2.3.3, due to its low computational
cost. The recommended parameters for the two-dimensional case are k = 6, Ng = 7
and Nn = Nn,min + 10 where Nn ,min depends on the interpolation order used. In
the case of three dimensions, it is recommended to use p3 as interpolation, k = 6,
and Nn = 60, with Ng = 7 or Ng = 9 for tetrahedrons or hexahedrons, respectively.
Unlike the two-dimensional case, for three-dimensional problems, it is recommended
to use the stencil sdf; see Section 2.3.3.
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4.1 Introduction

As introduced in Chapter 1, one of the engineering problems in which the numer-
ical methods developed in this thesis can have a significant utility is the study of
reed valves. As part of an industrial collaboration with the Voestalpine company,
a compressor valve was studied through laboratory experiments [2] as a means of
validation for numerical techniques capable of extracting detailed information regard-
ing displacements, velocities, and internal stress by means of FEM simulations with
quadratic interpolation of the displacement [1]. The objectives of those industrial
collaborations were to characterize the behavior of a valve in its cyclic operation.
Since the valve was very thin, the resolution of the same problem by means of FVM
would have required to use a high-order method or employing a classical method
using linear interpolation with a very fine mesh [4]. For this reason, the work carried
out in [1] was one of the triggers for the development of the high-order interpolation
method for FVM presented in this thesis since it was identified that there was no
high-order method using the FVM for unstructured meshes in solids, as recently
highlighted in [5]. A schematic sketch of the custom-built impact fatigue test rig can
be found in [2]. Compressed air opens and closes a valve that repeatedly hits the seat,
inducing impact fatigue stresses, see the left image of Figure 4.1. The geometry of the
valve is shown in the right image of Figure 4.1, and valve dimensions can be found
in [2]. In the experiment, the displacement and velocity of a point on the valve are
measured using a laser at a sampling rate of 10000 values per second. The laser that
detects the valve movement is located 2.5 mm from the top edge of the valve head
along the centerline; see Figure 4.1.

The numerical characterization of the behavior of a valve requires the previous
calculation of the valve’s natural frequencies, maximum displacement, impact velocity,
and valve impact stresses. To obtain the frequencies of the valves is possible to use
commercial software, open source software such as FreeFEM [6], or the high-order
method presented in the previous chapters. The methods used to obtain the maximum
displacement and impact velocity are described in [1] and [2], where the TermoFluids
software was used [7]. Those methods are detailed in Section 4.2 and submitted in [3],
where a two-dimensional plate model with the mode superposition method was used
to model the valve. In order to obtain a better representation of the impact forces and
impact pressures, as well as a complete 3D map of internal stresses, it was decided to
model the valve as a three-dimensional problem in FreeFEM [1]. For this simulation,
the fluid pressure obtained from the simulation in TermoFluids was used as input
data; see Section 4.3. Finally, Section 4.4 presents the results of all the magnitudes
using the high-order method presented in this thesis.
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Figure 4.1: Opening and impact of the valve (left), and geometry of the valve (right).

4.2 Fluid-structure interaction simulation of turbulent
flow through reed valves

The FSI simulation consists of a complex combination of different numerical tech-
niques representing the interaction between a fluid (compressed air) and a solid (reed
valve). In particular, the method is characterized by the following items: (1) gas reso-
lution through a finite volume solver on a moving and unstructured mesh; (2) solving
the movement of the solid using a plate model; (3) resolution of the fluid-structure
interaction through a semi-implicit approach for strongly coupled problems [8].

The entire numerical method is implemented within the Termofluids code [7]. The
fluid-structure coupled problem is solved numerically by a partitioned algorithm
using independent solvers for fluid and structural sub-problems and adopting a
coupling scheme to account for their interaction. This section describes the methods
used for the FSI simulation, and the numerical results when using TermoFluids are
compared with those obtained experimentally.

4.2.1 Fluid model

The fluid flow is solved using an Arbitrary Lagrangian-Eulerian (ALE) formulation
with a conforming mesh that automatically adapts to the movement of the reed valve.
An isothermal and incompressible fluid, governed by the unsteady Navier-Stokes
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equations, is assumed. An ALE formulation of these equations in a moving domain
is given by:

∂ vf
∂ t

+ c · ∇vf =
1
ρf
∇ · σf , (4.1)

∇ · vf = 0 , (4.2)

where vf is the fluid velocity and ρf is the fluid density. c is the ALE convective
velocity c = vf − vm, which is the fluid velocity relative to a domain moving with a
velocity vm. σf is the fluid stress tensor, defined as the following for an incompressible
Newtonian fluid:

σf = −p I + µf

(
∇vf +∇vT

f

)
, (4.3)

where p is the fluid pressure and µf is the dynamic viscosity of the fluid. A fractional-
step projection method is used to solve the velocity-pressure coupling of the mo-
mentum equation, together with an explicit temporal discretization method [9]. This
scheme leads to a three-step solution of the fluid governing equations from time step
n to n + 1, with a time increment of ∆t:

vp
f = vn

f −
∆t
2

[
3
(

cn · ∇vn
f −

µf
ρf

∆vn
f

)
−
(

cn−1 · ∇vn−1
f − µf

ρf
∆vn−1

f

)]
, (4.4)

∆t
ρf

∆pn+1 = ∇ · vp
f , (4.5)

vn+1
f = vp

f −
∆t
ρf
∇pn+1 , (4.6)

where vp
f is a predicted velocity field that does not satisfy the incompressibility

condition (Eq. (4.2)). The correction at Eq. (4.6) projects this intermediate velocity
onto a divergence-free field.

A finite volume method is used for the spatial discretization of the governing
equations. Second-order symmetry-preserving schemes discretize the equations on a
collocated unstructured grid arrangement, guaranteeing the conservation of kinetic
energy in the discrete representation, a crucial feature when dealing with turbulent
flows [10–12]. Large Eddy Simulation (LES) models are used for turbulent flow.
In LES, the largest scales of the flow are solved, while the small-scale motions are
modeled by a SubGrid-Scale (SGS) model, reducing the computational cost of direct
numerical simulations [13].
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4.2.2 Moving meshes

A combination of the moving mesh technique and the Immersed Boundary Method
(IBM) is used for modeling the moving structure in the fluid domain, as described in
the rest of this section.

Due to the adoption of an ALE formulation on a deformable mesh framework,
special attention should be paid to the evaluation of the domain velocity vm in order
to satisfy the Geometric Conservation Law (GCL) [14, 15]. The movement of the
reed valve is tracked by a moving mesh technique, adapting the fluid mesh to the
new location of the moving structure. A significant advantage of the moving mesh
technique is preserving high accuracy in the vicinity of the moving boundary. The
employed moving mesh method, based on the work from Estruch et al. [16], provides
the incremental displacement of the grid points, represented by rm(x), between two
consecutive time steps n and n + 1, at a spatial location x in the fluid, by solving a
pure diffusive problem:

Dg∆rm(x) = 0 , (4.7)

where Dg is the diffusion coefficient. The system of equations is determined by
defining boundary conditions of Dirichlet type (moving or fixed boundaries) or
Neumann (sliding or free boundaries). The diffusion coefficient Dg inversely depends
on the size of each element as:

Dg = 1/vχm , (4.8)

where v is the volume of the element and χm is a positive empirical coefficient.
Consequently, the small cells, generally located in numerically or physically relevant
areas, become stiffer and harder to deform. Therefore, the mesh quality in critical and
sensitive areas is maintained. The softer large cells absorb the major distortion, which
can readily tolerate the deformation without severely degrading their quality.

After the fluid mesh is moved, the domain velocity (vm) needs to be evaluated at
the faces of each control volume. The GCL guarantees that no volume is lost while
moving the grid; therefore, the ALE scheme would preserve a constant field. For any
control volume in the fluid domain, the GCL is stated as follows:

∂ v
∂ t
−
∫

s
vm,face · n dA = 0 , (4.9)

where v and s stand for the volume and the boundary surface of the element, re-
spectively, and n is the normal vector pointing outward. The time rate of change of
volume of a element is equal to the sum of volumes swept by its faces. Then, the
domain velocity is evaluated at each face vm,face based on the volume swept by that
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face. With a second-order backward discretization, it reads:

vn+1
m,face =

3
2

(
δv

A ∆t
n
)n+1

− 1
2

(
δv

A ∆t
n
)n

, (4.10)

where A is the surface area, ∆t is the time step, and δv is the volume swept by the
face at one time step. A more detailed description of the evaluation of the domain
velocity field and the satisfaction of the GCL can be found in [17].

On the other hand, the contact between the valve and the valve seat creates a
change of topology in the mesh, which is challenging to tackle with the moving mesh
method. This change in the mesh topology is handled using an immersed boundary
method to avoid an expensive remeshing process.

The contact between the valve plate and the valve seat creates a change of topology
in the fluid domain, i.e., when the valve is open, the pressure and discharge chambers
are connected. However, as the valve closes, the flow passage is shut, and the
chambers are disconnected. A possible contact between the valve and the outer wall
or catcher also creates a similar change in the mesh topology. The moving mesh
technique presented previously cannot adapt the mesh to the new topology. One
approach to tackle this issue would be to remesh the fluid domain after the contact.
However, this entails a tremendous computational effort. Moreover, retaining the
quality of the mesh at every automatic remeshing remains a challenge. Alternatively,
IBM places elements that behave as ordinary fluid cells at the flow passage when the
valve is open and as disregarded cells when the valve closes and the flow passage is
shut. These elements move with the valve plate and change state (from a fluid cell to
a disregarded cell) when the valve plate meets the seat, and there is no fluid flow. The
term disregarded cells is used because, at that state, no equation (neither fluid nor solid)
is solved on these cells, and they are simply disregarded. This change in the nature of
the elements is achieved using an immersed boundary method, as formulated and
implemented by Favre et al. [18]. An example is represented in Figure 4.2. It shows
the fluid mesh (in blue), as well as the disregarded mesh nodes (in pink) representing
the valve seat and the outer wall, in two different situations: static valve position (left
image) and during the opening process (right image).

4.2.3 Plate model

In this section, the governing equations describing the dynamic movement of the
structure are presented. Moreover, the strategy employed to characterize the contact
between the valve and the seat, i.e., the penalty method, is presented.
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Figure 4.2: Fluid elements are shown in blue and immersed boundary elements
(used as fluid cells or disregarded cells depending on the topology) are depicted in
pink. A close view of the mesh near the valve and orifice when the valve is completely
closed (bottom left) and a close view of the mesh near the valve and orifice when the
valve is open (bottom right).

Kirchhoff-Love plate theory

The reed valve is considered as an arbitrarily shaped plate with uniform thickness
in a Cartesian coordinate system (X, Y, Z) where X and Y are the coordinates on
its mid-surface, and Z is the coordinate in the thickness direction. Such structure
is modeled by the isotropic Kirchhoff-Love plate theory [19], which is suitable for
thin plates subjected to transverse loads fz (X, Y, t) and small strains and rotations.
After applying the kinematics assumptions, the problem becomes two-dimensional
in (X, Y):

E h3

12 (1− ν2)
∇4u + 2 ρs h

∂2 u
∂ t2 = fz , (4.11)

where u = [0, 0, uz]T and uz = uz(X, Y, t) is the normal displacement of the middle
surface of the plate, E is the Young modulus, h the plate thickness, ν the Poisson ratio,
and ρs is the density of the solid. In order to reduce the computational cost of a direct
time integration, the mode superposition method for linear analysis is followed. Thus,
the motion of a vibration system can be approximated by a combination of a limited
number Nq of its free vibration modes [20]:

uz (X, Y, t) ≈
i=Nq

∑
i=1

qi(t) φi (X, Y) , (4.12)
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where φi (X, Y, t) and qi are the normal deformation pattern and the generalized
coordinate corresponding to the vibration mode i, respectively. Mode shapes φi (X, Y)
and natural frequencies ωi have to be obtained beforehand by solving the eigenvalue
problem of the free vibration equation of the system. Imposing the mode superpo-
sition to Equation (4.11) and considering their orthogonality (

∫
s φiφj ds = 0 if i 6= j,

where s is the middle surface of the plate) transforms the original continuum equation
into a set of Nq independent equations, one for each mode, written in terms of the
generalized coordinates qi [21]:

∂2 qi(t)
∂ t2 + ω2

i qi(t) =

∫
s φi(X, Y) fz(X, Y, t)ds

ρs h
∫

s φ2
i (X, Y)ds

. (4.13)

In order to use the plate model described above, a modal analysis needs to be carried
out beforehand to determine the mode shapes φi (X, Y) and the natural frequencies
ωi of the free vibrating reed valve. Depending on the characteristics of the valve,
and the required precision of the results, the number of normal modes employed for
the discretization of the plate equation can be different. Three different sources of
transverse load are considered in the reed system: fluid stress (pressure and shear)
tf = σf n, gravitational acceleration g and the impact force due to the contact with
the seat, Fimp. Any other force, such as reed pre-tension or stiction force, is neglected.
The numerical resolution of the system of Nq equations (Eq. (4.13)) is conducted
by integration over both the upper and lower surfaces of the valve plate. Once the
load fz on the face elements of the structure is known, the midpoint rule is used to
approximate the right-hand side of Eq. (4.13), and a trapezoidal rule is used for time
discretization.

Impact penalty method

The impact force Fimp (X, Y, t) is generated by the contact between the valve plate
and the rigid seat. The contact is considered to be frictionless and completely per-
pendicular (i.e., only producing impact force normal to the plate). Therefore, the
impact force becomes Fimp (X, Y, t) = [0, 0, fimp (X, Y, t)]T . A penalty method is
used in this work to evaluate the impact force of the contact [22]. When an element
on the valve (denoted by i) penetrates the seat, a local impact force proportional to
this penetration δi is recalled:

( fimp)i =

{
κiδi if δi > 0 ,
0 if δi 6 0 ,

(4.14)

where κi is the penalty stiffness. A higher stiffness increases the accuracy of the
model by reducing the limit of allowed penetration (which should be zero in an exact
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solution); however, it also creates more numerical instability. The penalty stiffness at
every element is determined according to the recommendations at [23]:

κi = β
KAi

h
, (4.15)

where K = E/(3 (1− 2 ν)) is the plate bulk modulus, Ai is the area of the surface of the
element, and β is a scale factor set to 1 due to the small time steps used. Similar to the
fluid stress force, the impact force is evaluated implicitly in the equilibrium equation
on the fluid-structure interface (strong coupling), as explained more thoroughly in
the next section.

4.2.4 Fluid-solid coupling algorithm

The interaction of the fluid and structural domains on the common interface Γ is
governed by the kinematic and dynamic equilibrium on the interface. For a no-slip
type interface:

vf,Γ =
∂ us,Γ

∂ t
, (4.16)

tf = σs nΓ = σf nΓ , (4.17)

for any x ∈ Γ, where nΓ is the unit normal vector on the interface nΓ. σs and σf are
the stresses tensors of the solid and the fluid, respectively, while us,Γ indicates the
position of the solid boundary and vf,Γ is the velocity of the fluid at the interface.
Eq. (4.16) represents kinematic equilibrium, i.e., equal velocities for the fluid and the
structure on the common interface, while Eq. (4.17) represents dynamic equilibrium,
i.e., the equality of the traction on the interface.

A Dirichlet-Neumann (DN) domain decomposition method is used to solve the
coupled FSI problem. In the DN decomposition, the kinematic equilibrium condi-
tion (Eq. (4.16)) is used as a Dirichlet boundary condition for fluid flow. Therefore, the
fluid equations are solved for a known interface location. The structural equations,
on the other hand, are subject to a Neumann boundary condition derived from the
dynamic equilibrium condition (Eq. (4.17)). Therefore, the solid equations are solved
for a known traction on the interface.

A semi-implicit FSI coupling method, similar to the ones proposed in [8,17] is used.
The principal idea is segregating the fluid pressure term and coupling it strongly to
the structure via coupling iterations. The remaining fluid terms are loosely coupled to
the structure to reduce computational time. By using a projection method to solve the
fluid equations, the fluid pressure term (Eq. (4.5)) is effectively segregated. Therefore,
only the Poisson equation for pressure in the discretized fluid equations (Eq. (4.5)) is
strongly coupled to the structure. The remaining fluid equations (Eq. (4.4) and (4.6))
are solved only once per time step. The impact force generated by the contact between
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the valve plate and the seat is treated implicitly and included in the strong coupling
iterations together with the fluid pressure term. A Newton-Krylov method with
approximated Jacobian [8] is used to carry out the coupling iterations. A more
detailed description of the numerical methods used for FSI coupling can be found
in [8, 17, 24].

4.2.5 Numerical result validated with the experiment

In this section, the test case presented in [1,2] for the validation of the numerical meth-
ods is illustrated. The problem is considered to its fullest extent, taking into account
the strong coupling between the fluid flow and the structure, the flow turbulence, and
the impact and rebound of the valve. Simulation results are validated by comparing
against experimental data obtained on a test campaign and presented in detail by
Tofique et al. [2]. In particular, the simulation of one entire cycle of a reed-valve
subject to a pulsating inlet flow is reproduced, as described in the following.

Set-up and Boundary Conditions

In this test case, the evolution of the flow and the movement of the valve during an
entire valve stress cycle is simulated, which lasts 10 ms (air flow pulse of 100 Hz). The
reed valve analyzed in this test has a diameter d = 10.6 mm and thickness h = 0.2 mm.
The reed valve was manufactured from a high-strength stainless steel grade called
Flap-X [2]. The valve shape is represented in Figure 4.1. The flow imposed at the
entry of the domain mimics the air pulse of the experimental set-up. It grows rapidly,
remains constant for a certain period, and then gradually decreases to 0 at t = 4 ms
from the beginning. The inlet flow rate evolution along a working cycle, imposed as a
boundary condition in the CFD simulation, is reported in Figure 4.3. In the resolution
of incompressible Navier-Stokes equations, the compressed air is characterized by
ρa = 8.5 kg/m3 and µa = 18.3 × 10−6 Pa · s. The maximum Reynolds number
resulting from the variable inlet flow is evaluated as Re = ρavaD/µa ' 170000, where
va is the maximum air velocity extracted from Figure 4.31. The assembly consists of a
feeding tube of diameter D = 8.5 mm, with the reed valve placed on its top and the
surrounding domain employed for the gas expansion. The physical properties of the
flexible valve are set to be: ρs = 7700 kg/m3, ν = 0.28 and E = 2.20264× 1011 Pa.

The domain is represented schematically in the top image of Figure 4.4, showing
an inlet port where a variable inlet flow rate is imposed and lateral outlets where
pressure-based conditions are set to mimic the flow discharge. The boundary in front
of the valve in the discharge chamber (marked by SMB in the figure) is also a pressure-
based outlet boundary, with the difference that it is allowed to move. The movement

1va =
Q

π D2/4
, where Q = 145 l/min, then va = 42.6 m/s.
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Figure 4.3: Profile of the inlet flow employed to represent the pulsating air flow inlet
condition.

of this boundary helps to absorb morphological changes of the mesh during the valve
opening and closing process, as mentioned in Section 4.2.2. The remaining walls are
fixed solid wall boundaries. The indicated immersed boundary regions are employed
to represent the solid region of the valve seat, as explained in Section 4.2.2. The base
mesh is an unstructured tetrahedral mesh composed of around 300 thousand cells
and represented in the bottom image of Figure 4.4. In order to use the plate model
described in Section 4.2.3, a modal analysis needs to be carried out beforehand to
determine the mode shapes φi (X, Y) and the natural radial frequencies ωi of the free
vibrating reed valve. The modal analysis has been carried out with a commercial
structural software [25] using a clamped boundary condition at the valve root. Only
the first four modes have been considered for this study, as the addition of further
modes was not affecting the behaviour of the moving valve.

Large-eddy simulations are carried out: a subgrid-scale model is applied to repre-
sent the smallest scales, while only the larger eddies are explicitly solved. The chosen
SGS scheme is the Wall-Adapting Local Eddy-viscosity (WALE) model. The time step
is determined using a Courant-Friedrichs-Lewy condition.

Comparison to experimental results

In Figure 4.5, some instantaneous pictures of the valve cycle are depicted. The
figure highlights the velocity field and the topology changes that the fluid domain
undergoes to adapt to the opening/closing valve. Following the inlet flow profile
reported in Figure 4.3, the inlet air flow increases to t = 1 ms and remains constant
for approximately 2 ms. The valve opens progressively after the inlet air pulse,
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FSI

inlet

Open Boundary

outletoutlet

Closed Boundary
Simple Moving Boundary (SMB)
Fluid Structur Interaction Boundary (FSI)
Immersed Boundary (IB)

Figure 4.4: Geometry and mesh employed for the validation test of the reed valve
movement and impact: Schematic domain (top) and detailed representation of the 3D
unstructured mesh (bottom).

reaching its maximum displacement at t ' 1.9 ms. Next, it employs the same time to
close completely, with a slight delay compared to the end of the airflow pulse. The
valve closes entirely and impacts the seat at t = 4.5 ms. Hence, the valve opens and
closes twice during the rest of the cycle, rebounding two times against the base. The
maximum opening after the first impact occurs at t = 5.4 ms.

As shown in the left image of Figure 4.6, valve displacement is slightly over-
predicted in the ascent phase and down-predicted after the rebounds. However,
the results show a good agreement between numerical and experimental data for
valve displacement and velocity. This is especially true when considering that the
experimental signal is a “typical” one, as inevitable variability is visible between
successive cycles. In the same figure, tolerance bars highlight the variability in the
maximum displacement between different cycles and the rebounds successive to the
first opening. The experimental campaign can be found in more detail in [2].

Further differences between numerical and experimental results can be seen in
the descent phase after the first opening. The numerical curve shows a deflection,
probably because the incompressible gas in the inlet duct is an obstacle during
the valve closure. Another difference can be noticed from the reed velocity curve,
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Figure 4.5: Velocity magnitude map in different phases of the reed valve cycle.

reported in the right image of Figure 4.6, at the point of the first impact: in the
experimental signal, a certain plateau can be noticed, probably due to the flexion of
the valve when it comes in contact with the base, while in the simulation the contact
is practically “instantaneous” (sudden velocity increase), due to the formulation of
the impact process using the penalty method. Velocity peaks are well predicted, both
in ascending and descending phases.
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Figure 4.6: Reed valve movement and impact, comparison to experimental data
reported in [2]: valve displacement (left) and valve velocity (right). The tolerance
reported in the left image refers to variability within cycles in the experimental
analysis.
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4.3 Reed valve simulation using the FEM

This section shows some of the results already published in [1] and [2] using a three-
dimensional model in FreeFEM for the valve. As explained in [1], the pressure applied
by the fluid on the valve obtained with the simulation carried out in TermoFluids is
used as an input parameter. Therefore, those external pressure are used to obtain the
valve displacement again (for verification purposes) and to obtain additional insight
regarding internal stresses. Additionally, a different impact model is introduced in the
FreeFEM code to improve the evaluation of impact forces on the valve surface. For this
scope, the work of Armero et al. [26] is implemented, which has slight differences with
the impact method used in TermoFluids; see Section 4.2.3. For the time discretization,
the HHT-α method is used, where the parameters of the generalized algorithm are
displayed in Table 3.9.

Figure 4.7 describes the zone of the valve surface on which the contact pressure
can be applied. In the formulation presented in [26] the function g called gap is defined
as:

g = uz − 0 = uz , (4.18)

where it is taken into account that the coordinate Z is equal to 0 at the base of the
valve (Eq. (4.18) is particular for this case, the general equation can be found in [26]).

Clamped

Contact area

No contact area

uz < 0

Figure 4.7: Contact zone used to obtain the impact pressure with the formulation
presented in Armero et al. [26].

The formulation presented in [26] is applied on the surface Z = 0 of the valve
and for the points that belong to the contact zone; see Figure 4.7. Then, the impact
pressure pimp on point Xp = (Xp, Yp, 0) at time tn+1 is obtained with Algorithm 1.

The first condition in the Algorithm 1,
(

contn(Xp) == 1 or gn+1(Xp) ≤ 0
)
, checks

if there was contact at the last instant tn or/and if there is contact at the current in-
stant tn+1, which means that the previous instant is taken into account to calculate
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Algorithm 1 Impact pressure - ref Armero et al. [26]

Require: Displacements un
z and un+1

z , dynamic gap gn
d, impact parameters kimp and

ϑimp, and contact function contn.

gn+1 = un+1
z

if
(

contn == 1 or gn+1 ≤ 0
)

then

gn+1
d = gn

d + un+1
z − un

z . Compute the dynamic gap

if gn+1
d ≤ 0 then
contn+1 = 1

else
contn+1 = 0

end if

if
(

gn
d ≤ 0 and gn+1

d ≤ 0
)

then . Persistent contact

pimp = −kimp

(
ϑ gn+1

d + (1− ϑ) gn
d

)
else . Initial contact and release

Un =
kimp

2

(
gn

d −
∣∣gn

d

∣∣)2

4

Un+1 =
kimp

2

(
gn+1

d −
∣∣∣gn+1

d

∣∣∣)2

4

pimp = −
(

Un+1 −Un

gn+1
d − gn

d

)
end if

else

contn+1 = 0
gn+1

d = gn
d

end if

the current impact. This is the biggest difference with the penalty method used in
TermoFluids, in which only the current instant is considered. It must be considered
that before the first contact, the dynamic gap and the contact function are zero. The
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contact parameter kimp is determined for the problem, and, as in [1], different values
of kimp were considered. The parameter ϑimp is set equal to 1. The impact force Fimp
is obtained as:

Fimp =
∫

Aimp

pimp dA ez . (4.19)

and is applied in FreeFEM with the corresponding variational formulation.

4.3.1 Spatial convergence test

To observe the spatial convergence, different meshes have been tested using FreeFEM
with quadratic interpolation (p2). The mesh refinement has been done in two ways: in
the plane (left image of Figure 4.8) and in thickness (right image of Figure 4.8, where
ktk represents the number of refinement lines in that direction).

Thickness refinement

ktk = 1

ktk = 4

Figure 4.8: Mesh refinement has been done in two ways: in the plane (left image)
and in thickness (right image, where ktk represents the amount of refinement lines in
that direction).

Figure 4.9 shows the displacement obtained at the point located on the laser. It is
possible to observe that spatial convergence is achieved by refining the mesh in both
directions. The relative error between the finest and coarse mesh using kkt = 1, where
the number of tetrahedrons is increased by 4872, is 0.52 %, while when comparing
the finer meshes using kkt = 1 and kkt = 4, where the number of tetrahedrons is
increased by 21015, the relative error is 0.08 %. Due to the above, and in order to
reduce the computational cost, it is decided to use the finest mesh for kkt = 1.
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Figure 4.9: Convergence for different meshes of the displacement at the experimental
measurement position.

4.3.2 Calibration of the contact parameter kimp

In Figure 4.10, the displacement and velocity obtained for different values of kimp are
compared with those obtained with the TermoFluids software at the point where the
laser makes the experimental measurements. It is observed that the best approxima-
tion, for the values of kimp used, is for kimp = 5000 kPa/mm.
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Figure 4.10: Reed valve movement using FreeFEM: valve displacement (left) and
valve velocity (right). Comparison using different values of kimp to the solution
obtained with TermoFluids.

Once completed the calibration of the numerical parameter, the model was em-
ployed to obtain detailed insights regarding impact forces on valve surfaces and its
internal stresses. The results are reported in the next section, where impact forces and
pressure are analyzed and compared with that obtained with the high-order method
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presented in this thesis.

4.4 Reed valve simulation using the 3D high order fi-
nite volume method

In this section, the FVM high-order method presented in this thesis is used to obtain
comparable results to those presented in the previous section. The mesh and the time
discretization used are the same as those presented in Section 4.3. In this case the
contact force is approximated using Nimp = 19 Gauss points as:

Fimp(Xp) =
∫

Aimp

pimp ez dA ≈
p=Nimp

∑
p=1

αp pimp(Xp) ez , (4.20)

where αp and Xp are the quadrature weights and the coordinates of the p-th Gauss
point, respectively. The force Fimp is imposed as a Neumann condition. For the
high-order method, a cubic interpolation with the LRE method is used.

4.4.1 Stiffness matrix derived from the impact force

As mentioned at the end of Section 2.5 to solve the nonlinear contact problem, the
matrix Kc derived from the impact force may or may not be included. This matrix is
obtained for each contact point as follows:

Kc =
∂ Fc

∂ δ∆ ü
, (4.21)

therefore it is necessary to obtain the derivative of pimp(Xp) ez respect to δ∆ ü2. From
what has been mentioned above, it is clear that the matrix Kc is a diagonal matrix
whose entries are all null except for the degrees of freedom associated with direction
ez in the nodes that are in contact. Those non-zero values are obtained as:

Kc =
βM,0 ∆t2

6

∫
Aimp

kc dA ≈ βM,0 ∆t2

6

p=Nimp

∑
p=1

αp kc(Xp) , (4.22)

where kc is obtained by modifying Algorithm 1 with the statements indicated in
Algorithm 2, which must be performed for each gauss point Xp.

2The impact area Aimp does not change in time since the seat, where the valve hits, does not move.
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Algorithm 2 Impact pressure and contact matrix - ref Armero et al. [26]

Require: Displacements un
z (Xp) and un+1

z (Xp), dynamic gap gn
d(Xp), impact parame-

ters kimp and ϑimp, and contact function contn(Xp).

gn+1(Xp) = un+1
z (Xp)

if
(

contn(Xp) == 1 or gn+1(Xp) ≤ 0
)

then

gn+1
d (Xp) = gn

d(Xp) + un+1
z (Xp)− un

z (Xp) . Compute the dynamic gap

if gn+1
d (Xp) ≤ 0 then, contn+1(Xp) = 1, else, contn+1(Xp) = 0, end

if
(

gn
d(Xp) ≤ 0 and gn+1

d (Xp) ≤ 0
)

then . Persistent contact

pimp(Xp) = −kimp

(
ϑ gn+1

d (Xp) + (1− ϑ) gn
d(Xp)

)
kc(Xp) = kimp ϑ

else . Initial contact and release

Un(Xp) =
kimp

2

(
gn

d(Xp)−
∣∣gn

d(Xp)
∣∣)2

4

Un+1(Xp) =
kimp

2

(
gn+1

d (Xp)−
∣∣∣gn+1

d (Xp)
∣∣∣)2

4

pimp(Xp) = −
(

Un+1(Xp)−Un(Xp)

gn+1
d (Xp)− gn

d(Xp)

)
dUn+1(Xp) =

kimp

2

(
gn+1

d (Xp)−
∣∣∣gn+1

d (Xp)
∣∣∣)

kc(Xp) =
dUn+1(Xp) + pimp(Xp)

gn+1
d (Xp)− gn

d(Xp)
end if

else

contn+1(Xp) = 0
gn+1

d (Xp) = gn
d(Xp)

end if
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Figure 4.11 shows the number of iterations of the Newton-Raphson method used
to solve the problem for kimp = 5000 kPa/mm. It is observed that including the
contact matrix reduces the number of iterations and, therefore, the computational
cost. Likewise, in Figure 4.11, it can be seen that at least two iterations of Newton-
Raphson are always used, even at moments where there is theoretically no contact
(initial opening of the valve). This is because the entire valve has been considered an
impact surface, except the orifice through which the fluid comes (see Figure 4.7), and
therefore near where the valve is clamped, whose displacements are very small, a
possible contact is numerically detected. However, this contact is not relevant as has
been studied in [1]. Although the inclusion of the matrix Kc reduces the iterations and,
therefore, the computational cost, it is worth mentioning that obtaining it requires
another computational effort, which in the case study in this thesis is minor. In a more
complex case, where, for example, the two surfaces in contact are in motion, the cost
of obtaining Kc, theoretically and computationally, may be relevant.

0.00 1.52 3.04 4.56 6.09 7.61 9.13
time [ms]

0

2

4

6

8

10

12
Newton-Raphson iterations Without Kc

Incluiding Kc

Figure 4.11: Number of iterations of the Newton-Raphson method.

Figure 4.12 illustrates the total impact force Fimp =
∥∥Fimp

∥∥ and the instants where
the two impacts occur. Those impacts are defined when contact is detected near the
tip of the valve. It is observed that in the rest of the cycle, the contact force is negligible
and occurs close to the clamped zone, which affects the movement of the valve in a
lesser way.
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Figure 4.12: Total impact force Fimp =
∥∥Fimp

∥∥.

4.4.2 Comparison between FEM and FVM for different kimp

Figure 4.13 compares, for different values of kimp, the results obtained using FEM
with those obtained with the high-order FVM. It is observed that the differences
are minimal throughout the valve work cycle. Figure 4.14 shows the comparison
between the results obtained with the TermoFluids simulation, the high order method
(for kimp = 5000 kPa/mm) and the values obtained experimentally. The left image
shows the valve displacement, and the right image shows the velocity. It is possible
to conclude that, as with TermoFluids, it is possible to capture the velocity peaks. A
difference that can be seen with the three-dimensional models of the valve is that
the opening of the valve after the second impact occurs a few moments later than
in the TermoFluids model. This is explained because in TermoFluids the impacts
are practically instantaneous (2-4 instants), while in three-dimensional models, these
impacts take several instants, thus prolonging the opening of the valve.
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Figure 4.13: Comparison, for different values of kimp, of the results obtained using
FEM and the high-order FVM.
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Figure 4.14: Comparison between the results obtained with the TermoFluids simu-
lation, the high order method (for kimp = 5000 kPa/mm), and the values obtained
experimentally: valve displacement (left) and valve velocity (right).

Each impact is analyzed in detail in the following section, similar to what was
done in [1] and [2].

4.4.3 Detailed results of impact force and impact pressure: compar-
ison to FEM

In this section, the results obtained with the FVM method regarding the impact force
and pressure are reported in detail and compared with those obtained previously
with FEM.
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First impact

The first impact occurs during the time interval TFI = [4.44, 4.58]ms. Figure 4.15
shows the total impact force and the maximum impact pressure obtained on the valve
for the first impact. Both magnitudes grow to a maximum value in this impact and
then fall and disappear. It is possible to observe that the solution obtained with both
methods are very similar.
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Figure 4.15: First impact: total impact force (left) and maximum impact pressure
(right).

Figures 4.16 and 4.17 show the zone that is in contact in the first impact when
using FVM or FEM, respectively. It can be seen that there are practically no differences
between the methods. The differences that appear in the images in the second row of
each figure are negligible pressure differences and, being close to the neck, have little
effect on the behavior of the valve.

4.444 ms 4.467 ms 4.480 ms

4.482 ms 4.530 ms 4.578 ms

No contactContact

Figure 4.16: Area of the first impact using FVM.
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No contact

4.444 ms 4.467 ms 4.480 ms

4.482 ms 4.530 ms 4.578 ms

Contact

Figure 4.17: Area of the first impact using FEM.

Figures 4.18 and 4.19 show the distribution of the impact pressure on the surface
Z = 0 for each of the instants of the interval TFI using FVM or FEM, respectively.
This impact can be sequenced as: (1) impact begins at the tip of the valve; (2) then
the impact pressure is distributed over the valve surface; and (3) finally, the valve is
released from the seat. As previously mentioned, the pressure differences near the
valve neck in the images of the second row of each figure are negligible.
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Figure 4.18: Distribution of the impact pressure in the first impact using FVM.
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Figure 4.19: Distribution of the impact pressure in the first impact using FEM.

Second impact

For the second impact, some differences between the methods are appreciated. The
first difference can be seen in Figure 4.20, where the time interval of the second
impact is different for each method. The second impact, when using FEM, starts a few
moments earlier with its time interval being TSI, FEM = [6.92, 7.13], whereas when
using FVM, it is TSI, FVM = [6.96, 7.12]. The most significant difference can be seen
in the total impact force in the left image of Figure 4.20. It is observed that in the
first part of the second impact (up to an instant t1 ≈ 7.03 ms), the force obtained with
FVM is greater than with FEM, then both the force and the impact pressure are very
similar between the two methods. For both methods, the two magnitudes grow to
their maximum value and then fall, rise again, and fall until they disappear.
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Figure 4.20: Second impact: total impact force (left) and maximum impact pressure
(right).

Figure 4.21 shows the first part of the second impact. It is observed that in the case
of FVM, the impact begins between the fluid inlet orifice and the neck of the valve,
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while in the case of using FEM, the impact begins at the clamped edge and then goes
toward the valve. The differences are close to the clamped edge; therefore, it does not
create too much distortion between the two solutions in what remains of the process
in terms of force and pressure amplitudes, as highlighted in the second part of the
impact shown in Figure 4.20.
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Figure 4.21: Impact pressure and impact force for the first instants of the second
impact using FVM (top images) and FEM (bottom images).

These differences can be associated with the different interpolations used in each
method (quadratic in FEM and cubic in FVM). One method may identify penetration
at a different point than the other at the same instant. The important is that the
general behavior of this first period of the second impact is similar because a stress
concentration is generated near the fluid orifice for both methods (the growth, fall,
and maximum values occur at the same instants for both methods). In general, this
difference does not affect the behavior of the valve along its whole cycle, as previously
seen in Figure 4.13.

Figures 4.22 and 4.23 show the areas where the second impact occurs when
using FVM or FEM, respectively. In these images, the behavior mentioned above is
observed. As previously mentioned in the first instants, there are differences in the
contact between the methods; see images of the first row of each figure. However, in
the second row, the behavior is practically the same, considering that the pressures
near the clamped edge in Figure 4.23 do not affect the behavior of the valve.
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Figure 4.22: Area of the second impact using FVM.
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Figure 4.23: Area of the second impact using FEM.

Figures 4.24 and 4.25 show the distribution of the impact pressure on the surface
Z = 0 for each of the instants of the interval TSI when using FVM or FEM, respectively.
This impact can be sequenced as: (1) impact begins between the clamped edge and
the inlet fluid orifice spreading towards the tip of the valve; (2) the pressure drops
and the impact is again at the tip but on a smaller surface; and (3) finally the valve is
released from the seat.
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Figure 4.24: Distribution of the impact pressure in the second impact using FVM.
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Figure 4.25: Distribution of the impact pressure in the second impact using FEM.

It is worth mentioning that a higher maximum pressure is obtained in the second
impact compared to the first one. This is explained because, despite having lower
impact forces, the impact area is smaller, leading to overall greater impact pressures.

4.4.4 Impact stresses at critical points

As previously discussed, the impact of the valve on the seat is often the cause of
valve failure due to fatigue. Figure 4.26 shows failed reed valves in impact fatigue
experiments [2].
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Figure 4.26: Reed valves in impact fatigue experiments.

Some points of the tip of the valve are analyzed to observe the evolution of some
stresses. The points to be studied are illustrated in the left image of Figure 4.27.
The stresses analyzed are the maximum and minimum principal stress, σI and σI I I ,
respectively, and the von Mises stress, commonly used to limit the elastic behavior of
ductile materials (especially steels).
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Figure 4.27: Points to observe the evolution of stresses (left) and von Mises stresses
(right).

In the right image of Figure 4.27 it is observed that the von Mises stress increases
for all points in each impact. In those points that are practically not affected by bend-
ing (1,2, and 3), a high increase in tensions is noted. Likewise, point 4, which suffers a
little from bending, increases stresses due to the impact. Similar results are obtained
in Figure 4.28 for the maximum and minimum principal stresses. Therefore, it is
possible to conclude that the numerical simulation shows that the impact generates
an important change in the stresses at the points where failures are experimentally
observed.

4.4.5 Computational time comparison

A fully exhaustive comparison between the two numerical methods employed in the
current chapter for structural analysis (in-house FVM and FreeFEM) would require an
analysis of the computational cost required by each of them to perform the proposed
simulations. However, a quantitative comparison between them was impossible
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Figure 4.28: Principal stresses: maximum σI (left) and minimum σIII (right).

due to the inherent differences between the structure of the two codes, which would
have made such a comparison unfair. Generally, pre-process calculations, which
have significant importance over the global computational cost, especially for static
calculations, are much faster with the FreeFEM code, developed in C++ and employed
in pre-compiled form. On the other side, the FVM method was developed in MATLAB
R2021a to verify and validate the method easier, but needing to be more efficient
from a computational point-of-view. The intention of the author is to leave the code
optimization for future work by translating it into a high-performance compiled
language, thus, allowing the comparison of FVM and FEM not only from the point-
of-view of accuracy but also from that of computational efficiency.

4.5 Conclusions

This chapter analyzes the problem of a reed valve subjected to real working conditions
using different computational methods. The results highlighted that the high-order
FVM method presented in this thesis can be used to analyze in detail real engineering
problems, such as the reed valve of a compressor subjected to highly pressurized
flow. The validation of the results was possible thanks to experimental data obtained
from an industrial collaboration with the Voestalpine company, describing the cycle
of a reed valve subjected to a pulsating inlet flow in terms of valve lift and velocity.
First, the results obtained using the FSI model developed in the TermoFluids software,
already submitted in [3], have been compared with experimental results in terms of
lift and velocity. Hence, valve pressures obtained with the FSI model were employed
as an input of structural codes (in-house FVM and FreeFEM) to verify their capability
of computing the valve dynamics. Again, experimental results were compared with
FreeFEM and the method presented in this thesis regarding valve lift and velocity,
providing a very good agreement. Next, structural codes have been employed to
obtain detailed insights regarding internal stresses. A detailed quantitative analysis
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of the time evolution along a valve cycle of forces and pressure distribution asso-
ciated with the impacts suffered by the valve against its seat has been proposed.
The presented FVM method provides close results to the universally accepted FEM
strategy regarding forces and pressure distribution. Finally, it has been shown that the
points indicated as critical and particularly susceptible to rupture from experimental
observations suffer a considerable increase in stress due to the impact of the valve.
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5

Conclusions

In this thesis, a high-order finite volume method for hyperelastic materials using
unstructured meshes has been proposed. As thoroughly described in the introduction,
until now, there was a clear gap in the resolution of solid problems when using
the method of finite volumes since there was no possibility of using high-order
interpolation for the displacement in unstructured meshes [1]. In the case of using
methods with linear interpolation of the displacement, it is necessary to carry out a
refinement that, in many cases, generates an inadmissible computational effort. The
main contribution of the presented thesis is the formulation of a FVM that allows
solving problems where the shear locking effect appears, employing a reasonable
amount of computational resources.

The accuracy and order of convergence of the method have been evaluated consid-
ering several examples and many different settings of the following parameters: type
of stencil (s), type of mesh, interpolation order (pi), stencil size (Nn), shape parameter
of the weight function (k), and the number of Gaussian points (Ng). Besides, two
high-order interpolations have been used and analyzed: the moving least squares and
the local regression estimators. In addition, problems of two and three dimensions
have been solved, concluding in each case which is the appropriate set of parameters.
The method has been used to solve various types of examples: static and dynamic,
including non-linear forces (impact force), with linear elastic or hyperelastic materials,
and has been validated and verified in each case with analytical solutions. In several
cases, the solutions were compared with those obtained with other software, both
open-source or in-house. Finally, the method was used to solve a three-dimensional
unstructured example for which experimental data are available, obtaining acceptable
results and accuracy.

Two-dimensional problems In Section 3.1.1, considering a two-dimensional analyt-
ical example, the order of convergence of the method has been analyzed, concluding
that when using LRE, the appropriate orders of convergence for the stresses are

113
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obtained. However, when using the interpolation p2 and p4 for the displacement,
the numerically estimated order of convergence was one unit less than expected,
but the errors are smaller than those obtained using p1 and p3, respectively. After
performing a results breakdown, the range 5 ≤ k ≤ 10 is recommended for the shape
parameter. Regarding the type of stencil, for the two stencils presented, good results
are obtained, so it is recommended to use seq, see Section 2.3.3, since it is the least
expensive from a computational point of view. Concerning the different meshes
analyzed, it is observed that the method usually has better behavior for structured
meshes. The number of Gaussian points recommended is Ng ≥ 2. For the rest of the
two-dimensional examples, it has been decided to use k = 6, Nn = Nn,min + 101 and
Ng = 7.

Next, this thesis presents two original examples. In Section 3.1.2, a beam with a
uniformly varying load is introduced, showing that the method can solve problems
where the shear locking effect appears. In Section 3.1.3, an example where stress
concentrations appear in complex geometry is shown. In both cases, the obtained
results are close to the analytical solution, presenting the same or better behavior
than using the finite element method. In [3, 4] more examples of two-dimensional
problems are presented, showing that the method can deal with problems with stress
concentrations and complex geometries where unstructured meshes are required.

As a general remark, it is possible to conclude that within the two adopted high-
order interpolation schemes (MLS and LRE), the MLS presents a poor performance
in some examples. At the same time, LRE always provides accurate results. It is
possible to state that it is much simpler to get the parameters to achieve the TOC for
the different interpolation orders when using the LRE rather than the MLS. Moreover,
the LRE is more straightforward and less expensive from a computational point of
view. Therefore, the LRE scheme is strongly recommended.

Three-dimensional problems A whole set of three-dimensional problems were
studied in Section 3.2 to analyze the sensibility of the high-order method when
applied to unstructured meshes. First, in Section 3.2.1, a problem with an analytical
solution was exhaustively analyzed by employing different kinds of interpolation
order, schemes, and stencils to obtain a suitable set of parameters which allows the
generalization of the method. In three-dimensional cases, the interpolation p4 has not
been used due to the computational expense this would entail. Considering the two-
dimensional conclusions regarding the LRE overall better performance compared to
MLS, the exhaustive analysis was carried out using only the first scheme mentioned.
Nevertheless, some results were obtained for the MLS, reaffirming that its use is not
recommended. Regarding the parameters used for the three-dimensional case, one

1See Section 2.3.3 where is defined the minimum number of nodes Nn [2].
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of the most significant differences from those obtained in the two-dimensional case
lies in the types of stencils. It was concluded that for three-dimensional problems,
it is preferable to use the stencil sdf. Another point to highlight when comparing
to the two dimensions case is that when using p2, no difficulties were observed in
obtaining the theoretical order of convergence of the displacement field. On the
other hand, similar behavior was observed for the shape parameter k, recommending
that 4 ≥ k ≥ 7. Finally, in the case of using structured meshes of hexahedrons, it is
recommended to use Ng ≥ 9, while Ng ≥ 7 for meshes of tetrahedrons.

For the rest of the three-dimensional problems, unstructured meshes were used,
and the parameters k = 6, Ng = 7, and Nn = Nn,min + 40 were selected. In Section
3.2.2, a beam with a uniformly distributed load is solved, showing that the method can
deal with the shear locking effect in three-dimensional problems. Later, Section 3.2.3
presents the example of a cantilever beam that vibrates after a load is applied. This
problem reveals how the method can also be used for dynamics problems, obtaining
the beam’s natural frequencies and the displacement of the free end, and comparing
results with the work presented in [5]. The section ends with two examples using
hyperelastic materials. In Section 3.2.4, an example with an analytical solution is
solved, obtaining accurate results, which is helpful to validate the method presented
in this thesis and to show its convergence for hyperelastic materials. However, when
using p2, the order of convergence is lower than expected, so, as in the case of two
dimensions, it is recommended to use p3 for the high-order interpolation. In Section
3.2.5, the benchmark example of the large deformation of a clamped beam presented
in [6] and [7] is solved by the proposed high-order method. It is worth noting that,
in the case of the hyperelastic clamped beam, better or similar results were obtained
using fewer elements than in other works.

Example with experimental data The last case, presented in Chapter 4, consists in
employing the formulation presented in this thesis to analyze and characterize the
behavior of a reed valve in an air compressor. This test case, validated by comparison
to experimental data, represents a possible application of the models developed in
the current thesis to the real engineering world. First, the model used to obtain valve
pressures using a FVM fluid-structure interaction solver developed in TermoFluids [8]
is presented. The results obtained with TermoFluids, submitted in [9], are presented
in detail. Subsequently, the pressures, forces, and stresses generated by the impact
were analyzed with three-dimensional finite element models (results presented in [3])
and with the high-order model presented in this thesis. A correct approximation of
the experimental results is observed in all cases, while differences between results
provided by the two methods are highlighted. Once validated, the method obtains
valuable physical insights into the case under analysis. Similar results were obtained
in this sense by employing both FVM and FEM. The impact pressure and force
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evolution for each of the two impacts observed in a valve work cycle were studied.
Finally, stresses at points near the tip of the valve were identified, showing their
vicinity with the zone where failures have been experimentally observed. It can be
deduced that the stresses increase significantly at these points due to impacts, which
explains why these points are still failure sites despite suffering low stresses due to
bending.

Future work Several lines of research can be continued from this thesis:

1. Use the high order model presented for other physics, for example, plastic
behavior or material damage [10].

2. Use another way of building the stencils, like the ones presented in [11].

3. Use the method presented in a vertex-centered formulation of the method of
finite volumes.

4. Add to the analysis of the reed valve the effects of fatigue, plastification, and
damage [12].
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Appendix A

Newton-Raphson method

for large deformations

Applying the Netwon-Raphson method to Eq. (2.40)

r(χk+1) = r(χk) +
d

d ε
[r(χk + ε δu)]

∣∣∣
ε=0

= 0 , (A.1)

where χk+1 = χk + δu and uk+1 = uk + δu. Assuming that b0 do not depend on χ

d
d ε

[r(χk + ε δu)]
∣∣∣
ε=0

=
∫

∂P0

d
d ε

[P(χk + ε δu)]
∣∣∣
ε=0

n0 dA0 −
∫
P0

ρ0 δü dV0 , (A.2)

using that P = F S then

d
d ε

[P(χk + ε δu)] =
d

d ε
[F(χk + ε δu)] S(χk) + F(χk)

d
d ε

[S(χk + ε δu)] . (A.3)

Remembering that F(χ) = ∇0 χ then

d
d ε

[F(χk + ε δu)]
∣∣∣
ε=0

=
d

d ε
[∇0 χ + ε∇0 δu]

∣∣∣
ε=0

= ∇0 δu . (A.4)

Using the chain rule and Eq. (2.28)

d
d ε

[S(χk + ε δu)]
∣∣∣
ε=0

=
∂ S
∂ C

(χk) :
d

d ε
[C(χk + ε δu)]

∣∣∣
ε=0

, (A.5)

where

C = 2
∂ S
∂ C

= 4
∂2 ψ

∂ C ∂ C
, (A.6)
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is a fourth order tensor and it is called elastic moduli or elasticity tensor. The derivative
of C is found using that C = FT F:

d
d ε

[C(χk + ε δu)] =
d

d ε

[
FT(χk + ε δu)

]
F + FT d

d ε
[F(χk + ε δu)] , (A.7)

therefore
d

d ε
[C(χk + ε δu)]

∣∣∣
ε=0

= [∇0 δu]T F + FT [∇0 δu] . (A.8)

Finally the solution is uk+1(t) = uk(t) + δ u such as:

r(χk+1) = r(χk) +
∫

∂P0

fS(χk, δu)dA0 +
∫

∂P0

fC(χk, δu)dA0

−
∫
P0

ρ0 δü dV0 ,

= 0 ,

(A.9)

where

fS(χk, δu) = [∇0 δu] S(χk)n0 , (A.10)

fC(χk, δu) = F(χk)C(χk) :

[
(∇0 δu)T F(χk) + FT(χk) (∇0 δu)

2

]
n0 . (A.11)



Appendix B

Numerical quadrature

This appendix presents the Gauss points necessary for the presented formulation.

B.1 Gauss points for one dimension

In two-dimensional problems, the surface integrals are line integrals; therefore, find-
ing Gauss points on line segments is necessary. Furthermore, the method presented in
this section can be extrapolated for quadrilateral and hexahedral problems, as shown
in the following sections.

Figure B.1 shows the line segment AB between points A and B whose coordinates
are XA = (XA, YA, ZA) and XB = (XB, YB, ZB), respectively. The coordinates of the
g-th Gauss point are:

Xg =

(
XB − XA

2

)
ξg +

XB + XA

2
, (B.1)

where ξg is defined for each point in Tables B.1 and B.2.

(XA, YA, ZA)

A

B

(XB, YB, ZB)
Y

X

Z

Figure B.1: Gauss points for one dimension.

Tables B.1 and B.2 shows the weights

αg = Jg wg , (B.2)
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where the numerical values of the tables can be found in https://www.unioviedo.
es/compnum/laboratorios_web/Laborat10_inte/Laborat07b_integracion.html.
The coefficients ξg and wg are obtained by making a change of variables in the integral
on AB to a reference segment on [−1, 1], where Jg = `/2 is the determinant of the
Jacobian matrix of that change of variable, being ` = ‖XB − XA‖ the length of the
segment. Then the integration of a function f (X) in the segment AB is approximated
as: ∫

AB
f (X)ds ≈

g=Ng

∑
g=1

αg f (Xg) , (B.3)

where Ng is the amount of Gauss points used. With Ng points, a polynomial of order
p = 2 Ng − 1 is integrated exactly.

Table B.1: 1D Gauss points using Ng = {1, 2, 3, 4, 5}.

.

p Ng g ξg wg

1 1 1 0 2

3 2 {1, 2} ± 1√
3

1

5 3
1 0 8

9

{2, 3} ±
√

3
5

5
9

7 4
{1, 2} ±

√
3
7 −

2
7

√
6
5

18+
√

30
36

{3, 4} ±
√

3
7 + 2

7

√
6
5

18−
√

30
36

9 5

1 0 128
225

{2, 3} ± 1
3

√
5− 2

√
10
7

322+13
√

70
900

{4, 5} ± 1
3

√
5 + 2

√
10
7

322−13
√

70
900

https://www.unioviedo.es/compnum/laboratorios_web/Laborat10_inte/Laborat07b_integracion.html
https://www.unioviedo.es/compnum/laboratorios_web/Laborat10_inte/Laborat07b_integracion.html
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Table B.2: 1D Gauss points using Ng = {6, 7, 8, 9, 10}.

.

p Ng g ξg wg

11 6
{1, 2} ± 0.2386191861 0.4679139346
{3, 4} ± 0.6612093865 0.3607615730
{5, 6} ± 0.9324695142 0.1713244924

13 7

1 0 0.4179591837
{2, 3} ± 0.4058451514 0.3818300505
{4, 5} ± 0.7415311856 0.2797053915
{6, 7} ± 0.9491079123 0.1294849662

15 8

{1, 2} ± 0.1834346425 0.3626837834
{3, 4} ± 0.5255324099 0.3137066459
{5, 6} ± 0.7966664774 0.2223810345
{7, 8} ± 0.9602898565 0.1012285363

17 9

1 0 0.3302393550
{2, 3} ± 0.3242534234 0.3123470770
{4, 5} ± 0.6133714327 0.2606106964
{6, 7} ± 0.8360311073 0.1806481607
{8, 9} ± 0.9681602395 0.0812743883

19 10

{1, 2} ± 0.1488743390 0.2955242247
{3, 4} ± 0.4333953941 0.2692667193
{5, 6} ± 0.6794095683 0.2190863625
{7, 8} ± 0.8650633667 0.1494513492
{9, 10} ± 0.9739065285 0.0666713443

B.2 Gauss points for two dimensions

In two dimensions, it is necessary to make surface integrals to obtain the volume
force or the mass matrix. On the other hand, surface integrals are employed for
three-dimensional cases to obtain the stiffness matrix. In this thesis, quadrilaterals
and triangles are used as surface elements. For this reason, the following shows how
to obtain the integration points for these geometries.
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The integral over a surface S is approximated as:

∫
S

f (X)dA ≈
g=Ng

∑
g=1

αg f (Xg) , (B.4)

where
αg = Jg wg , (B.5)

being Jp, wg, and Xg defined in what follows for quadrilaterals and triangles.

B.2.1 Quadrilateral element

X1

P1

P4

P3

P2

X2

X3

Y

X

SZ
X4

Figure B.2: Gauss points for a two dimensions quadrilateral element.

Let be the quadrilateral of Figure B.2, where the points P1, P2, P3 and P4 define the
surface S. In this case wg is obtained from the weights wg,1D, illustrated in Section B.1,
as:

wg = wr,1D wm,1D where {r, m} = 1, · · · ,
√

Ng . (B.6)

The coordinates of the g-th point are obtained similarly:

Xg = Q + v1 ξg,x + v2 ξg,y + v3 ξg,x ξg,y , (B.7)

where
ξg,x = ξr and ξg,y = ξm , (B.8)
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being ξi presented in Tables B.1 and B.2. Q and vectors vi are defined from the
coordinates Xi of points Pi as:

Q = (X1 + X2 + X3 + X4) /4 ,
v1 = (−X1 + X2 + X3 − X4) /4 ,
v2 = (−X1 − X2 + X3 + X4) /4 ,
v3 = (X1 − X2 + X3 − X4) /4 .

(B.9)

The coefficient Jg is obtained as:

Jg = ‖w1 ×w2‖ , (B.10)

where × is the cross product and the wi vectors are defined as:

w1 = v1 + v3 ξg,y and w2 = v2 + v3 ξg,x . (B.11)

An example using Ng = 9 is presented in Table B.3, analogous results can be
obtained for Ng = {1, 4, 16, 25, 36, 49, 64, 91, 100}.

Table B.3: 2D Gauss points using Ng = 9 for quadrilaterals elements.

.

p Ng g ξg,x ξg,y wg

5 9

1 0 0 64
81

{2, 3} 0 ±
√

3
5

40
81

{4, 5} ±
√

3
5 0 40

81

{6, 7} ±
√

3
5 ±

√
3
5

25
81

{8, 9} ±
√

3
5 ∓

√
3
5

25
81

B.2.2 Triangular element

In this case the surface S is generated by three points: P1, P2 and P3 as can be seen in
Figure B.3. The coordinates of the g-th point are:

Xg = X1 + v1 ξg,x + v2 ξg,y , (B.12)
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X1

P1

P3

P2

X2

X3

Y

X

S

Z

Figure B.3: Gauss points for a two dimensions triangular element.

where ξg,x and ξg,y are defined in Table B.4, and the vectors vi are obtained as:

v1 = X2 − X1 ,
v2 = X3 − X1 . (B.13)

In this case, Jg is equal to all the Gauss points and is obtained as:

Jg =
1
2
‖v1 × v2‖ , (B.14)

and the weights wg are shown in Table B.4. More cases are available in [1] to exactly
integrate polynomials up to order 20 with 79 Gauss points.

B.3 Gauss points for three dimensions

In the case of three dimensions, it is necessary to make volume integrals to obtain
the volume force and the mass matrix. In this thesis, hexahedrons and tetrahedrons
are used as volume elements. For this reason, the following shows how to obtain the
integration points for these geometries.

The integral over a volume V is approximated as:

∫
V

f (X)dV ≈
g=Ng

∑
g=1

αg f (Xg) , (B.15)

where
αg = Jg wg , (B.16)

being Jp, wg, and Xg defined in what follows for hexahedral and tetrahedral elements.
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Table B.4: 2D Gauss points using Ng = {1, 3, 7} for triangular elements.
.

p Ng g ξg,x ξg,y wg

1 1 1 1/3 1/3 1

2 3
1 2/3 1/6 1/3
2 1/6 2/3 1/3
3 1/6 1/6 1/3

5 7

1 0.333333333333333 0.333333333333333 0.225000000000000
2 0.059715871789770 0.470142064105115 0.132394152788506
3 0.470142064105115 0.059715871789770 0.132394152788506
4 0.470142064105115 0.470142064105115 0.132394152788506
5 0.797426985353087 0.101286507323456 0.125939180544827
6 0.101286507323456 0.797426985353087 0.125939180544827
7 0.101286507323456 0.101286507323456 0.125939180544827

B.3.1 Hexahedral element

Let be the hexahedral of Figure B.4, where the points P1, P2, P3, P4, P5, P6, P7 and P8
define the volume V.

Y

X

Z

X1

X5

X7

X6

X8

P1

V

P4

P5

P6

P7P8

P3

P2
X2

X3

X4

Figure B.4: Gauss points for a three dimensions hexahedral element.
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As for the two-dimensional quadrilateral element, in this case, what is obtained in
Section B.1 is used for each of the three directions. From the above:

wg = wr,1D wm,1D wk,1D where {r, m, k} = 1, · · · , 3
√

Ng , (B.17)

with Ng = {1, 8, 27, 64, 125, 216, 343, 512, 729, 1000}.
The coordinates of the g-th point are obtained similarly:

Xg = Q + v1 ξg,x + v2 ξg,y + v3 ξg,z

+ v4 ξg,x ξg,y + v5 ξg,x ξg,z + v6 ξg,y ξg,z + v7 ξg,x ξg,y ξg,z , (B.18)

where
ξg,x = ξr, ξg,y = ξm and ξg,z = ξk , (B.19)

being ξi presented in Tables B.1 and B.2. Q and vectors vi are defined from the
coordinates Xi of points Pi as:

Q = (X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8) /8 ,
v1 = (−X1 + X2 + X3 − X4 − X5 + X6 + X7 − X8) /8 ,
v2 = (−X1 − X2 + X3 + X4 − X5 − X6 + X7 + X8) /8 ,
v3 = (−X1 − X2 − X3 − X4 + X5 + X6 + X7 + X8) /8 ,
v4 = (X1 − X2 + X3 − X4 + X5 − X6 + X7 − X8) /8 ,
v5 = (X1 − X2 − X3 + X4 − X5 + X6 + X7 − X8) /8 ,
v6 = (X1 + X2 − X3 − X4 − X5 − X6 + X7 + X8) /8 ,
v7 = (−X1 + X2 − X3 + X4 + X5 − X6 + X7 − X8) /8 .

(B.20)

The coefficient Jg is obtained as:

Jg = |w1 · (w2 ×w3)| (B.21)

where × is the cross product, · the dot product and the wi vectors are defined as:

w1 = v1 + v4 ξg,y + v5 ξg,z + v7 ξg,y ξg,z ,
w2 = v2 + v4 ξg,x + v6 ξg,z + v7 ξg,x ξg,z ,
w3 = v3 + v5 ξg,x + v6 ξg,y + v7 ξg,x ξg,y .

(B.22)

An example using Ng = 8 is presented in Table B.5

B.3.2 Tetrahedral element

For volume integrals in tetrahedrons, what is presented in [2] is used. In this case the
volume V is generated by four points: P1, P2, P3 and P4 as can be seen in Figure B.5.
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Table B.5: 3D Gauss points using Ng = 8 for hexahedrals elements.

.

p Ng g ξg,x ξg,x ξg,z wg

3 8

{1, 2} ± 1√
3

± 1√
3

± 1√
3

1

{3, 4} ± 1√
3

± 1√
3

∓ 1√
3

1

{5, 6} ± 1√
3

∓ 1√
3

∓ 1√
3

1

{7, 8} ± 1√
3

∓ 1√
3

± 1√
3

1

Y

X

Z

V

X1

P1

X2

P2

X3

P3

X4

P4

Figure B.5: Gauss points for a three dimensions tetrahedral element.

The coordinates of the g-th point are:

Xg = X1 ag,1 + X2 ag,2 + X3 ag,3 + X4 ag,4 , (B.23)

where ag,i are defined in Table B.6. In this case, Jg is equal to all the Gauss points and
is obtained as:

Jg =
1
6
|(w1 ×w2) ·w3| , (B.24)

being
w1 = X2 − X1, w2 = X3 − X1 and w3 = X4 − X1 , (B.25)
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and the weights wg for Ng = 10 are shown in Table B.6. More cases are available in [2]
to exactly integrate polynomials up to order 6 with 56 Gauss points.

Table B.6: 3D Gauss points using Ng = 10 for tetrahedral elements.
.

p Ng g ag,1 ag,2 ag,3

3 10

1 0.7784952948213300 0.0738349017262234 0.0738349017262234
2 0.0738349017262234 0.7784952948213300 0.0738349017262234
3 0.0738349017262234 0.0738349017262234 0.7784952948213300
4 0.0738349017262234 0.0738349017262234 0.0738349017262234
5 0.4062443438840510 0.4062443438840510 0.0937556561159491
6 0.4062443438840510 0.0937556561159491 0.4062443438840510
7 0.4062443438840510 0.0937556561159491 0.0937556561159491
8 0.0937556561159491 0.4062443438840510 0.4062443438840510
9 0.0937556561159491 0.4062443438840510 0.0937556561159491

10 0.0937556561159491 0.0937556561159491 0.4062443438840510
p Ng g ag,4 wg

3 10

1 0.0738349017262234 0.0476331348432089
2 0.0738349017262234 0.0476331348432089
3 0.0738349017262234 0.0476331348432089
4 0.7784952948213300 0.0476331348432089
5 0.0937556561159491 0.1349112434378610
6 0.0937556561159491 0.1349112434378610
7 0.4062443438840510 0.1349112434378610
8 0.0937556561159491 0.1349112434378610
9 0.4062443438840510 0.1349112434378610

10 0.4062443438840510 0.1349112434378610
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Appendix C

Evaluation of equations

using the high order finite

volume method presented

This appendix describes how to evaluate the governing equations using the finite
volume method presented in Section 2.2 with the high-order method presented in
Section 2.3. Section C.1 illustrates the notation that is used in this chapter. Then in
Section C.2, the equations assuming the small deformations hypothesis are discretized.
Finally, in Section C.3, the evaluation of equations for large deformations is shown.

C.1 Notation

The high-order interpolation method for the displacement field u and its derivatives
is described in Section (2.3):

u(X) =
n=Nn

∑
n=1

cn(X)un,
∂u
∂X

(X) =
n=Nn

∑
n=1

cX,n(X)un,

∂u
∂Y

(X) =
n=Nn

∑
n=1

cY,n(X)un,
∂u
∂Z

(X) =
n=Nn

∑
n=1

cZ,n(X)un ,
(C.1)

where cn, cX,n, cY,n and cZ,n are the interpolation coefficients that depend on the
MLS and LRE methods which were described in Section (2.3.1) and Section (2.3.2),
respectively. It is helpful to define the vector of coefficients for a point n of a certain
point X:

cT
x,n(X) = (cX,n(X), cY,n(X), cZ,n(X)) , (C.2)
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and the displacement vector of a node n as:

uT
n(X) =

(
ux,n, uy,n, uz,n

)
. (C.3)

In what follows, the dependency on X is omitted for clarity. The material gradient of
the displacement field is:

∇0 u =



∂ ux

∂X
∂ ux

∂Y
∂ ux

∂Z
∂ uy

∂X
∂ uy

∂Y
∂ uy

∂Z
∂ uz

∂X
∂ uz

∂Y
∂ uz

∂Z

 =
n=Nn

∑
n=1

 cX,nux,n cY,nux,n cZ,nux,n

cX,nuy,n cY,nuy,n cZ,nuy,n

cX,nuz,n cY,nuz,n cZ,nuz,n

 , (C.4)

and the outward-pointing normal in material description of a face Σ f is:

nT
0, f =

(
Nx, f , Ny, f , Nz, f

)
. (C.5)

C.2 Evaluation of equations for small deformations

In this section it is evaluated the first term of Eq. (2.36) that were firstly discretized
with the finite volume method in Eq. (2.45):

d1 =
f=Nf

∑
f=1

[g=Ng

∑
g=1

αg

(
λ tr (∇0 u) I + µ∇0 u + µ (∇0 u)T

)]
n0, f , (C.6)

therefore it is necessary to obtain expressions for:

d2 = tr (∇0 u) I n0, f , d3 = (∇0 u) n0, f and d4 = (∇0 u)T n0, f . (C.7)

Note that d2 = tr (∇0 u) I n0, f = tr (∇0 u)n0, f = n0, f tr (∇0 u), then using Eqs. (C.1):

tr (∇0 u) =
∂ ux

∂ X
+

∂ uy

∂ Y
+

∂ uz

∂ Z
,

=
n=Nn

∑
n=1

cX,n ux,n + cY,n uy,n + cZ,n uz,n =
n=Nn

∑
n=1

cT
x,n un ,

⇒ d2 =
n=Nn

∑
n=1

[
n0, f cT

x,n

]
un .

(C.8)
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Using Eqs. (C.1), (C.4) and (C.5):

∇0 u n0, f =
n=Nn

∑
n=1


cX,nux,nNx, f + cY,nux,nNy, f + cZ,nux,nNz, f

cX,nuy,nNx, f + cY,nuy,nNy, f + cZ,nuy,nNz, f

cX,nuz,nNx, f + cY,nuz,nNy, f + cZ,nuz,nNz, f

 ,

=
n=Nn

∑
n=1


cT

x,n n0, f ux,n

cT
x,n n0, f uy,n

cT
x,n n0, f uz,n

 ,

⇒ d3 =
n=Nn

∑
n=1

[
cT

x,n n0, f I
]

un .

(C.9)

For the last expression, it is possible to obtain that:

(∇0 u)T n0, f =
n=Nn

∑
n=1


cX,nux,nNx, f + cX,nuy,nNy, f + cX,nuz,nNz, f

cY,nux,nNx, f + cY,nuy,nNy, f + cY,nuz,nNz, f

cZ,nux,nNx, f + cZ,nuy,nNy, f + cZ,nuz,nNz, f

 ,

=
n=Nn

∑
n=1


cX,nNx, f cX,nNy, f cX,nNz, f

cY,nNx, f cY,nNy, f cY,nNz, f

cZ,nNx, f cZ,nNy, f cZ,nNz, f




ux,n

uy,n

uz,n

 ,

⇒ d4 =
n=Nn

∑
n=1

[
cx,n nT

0, f

]
un .

(C.10)

C.3 Evaluation of equations for large deformations

In this section Eqs. (2.42) and (2.43) are discretized and evaluated using the proposed
high-order method. First, for Eq. (2.42) it is convenient to define:

fS, f ,k = S(χk)n0, f , (C.11)

therefore using Eq. (C.9)

fS(χk, δu) = [∇0 δu] S(χk)n0 = [∇0 δu] fS, f ,k =
n=Nn

∑
n=1

[
cT

x,n fS, f ,k I
]

δun . (C.12)

In order to evaluate the Eq. (2.43) it is convenient to define:

fC = F H n0, f , (C.13)
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where

H = C : G with G =
(∇0 δu)T F + FT (∇0 δu)

2
, (C.14)

where H is a symmetric second order tensor and (:) is a double contraction of the
fourth order tensor C, see [1]. Using Voigt notation and assuming that C is symmet-
ric1:

H11
H22
H33
H23
H13
H12

 =


C1111 C1122 C1133 C1123 C1113 C1112

C2222 C2233 C2223 C2213 C2212
C3333 C3323 C3313 C3312

C2323 C2313 C2312
sym C1313 C1312

C1212




G11
G22
G33

2 G23
2 G13
2 G12

 , (C.15)

where Hij and Gij are the entries of the symmetric second order tensors H and G
respectively. Because G is symmetric, it is only necessary to obtain the expression of
G1 = FT (∇0 δu) to obtain G = (G1 + GT

1 )/2:

G1 = FT [∇0 u] =
n=Nn

∑
n=1


cX,n FT

c1
δun cY,n FT

c1
δun cZ,n FT

c1
δun

cX,n FT
c2

δun cY,n FT
c2

δun cZ,n FT
c2

δun

cX,n FT
c3

δun cY,n FT
c3

δun cZ,n FT
c3

δun

 , (C.16)

where Fci is the i-th column of tensor F. Therefore in Voigt notation:

G =


G11
G22
G33

2 G23
2 G13
2 G12

 =



cX,n FT
c1

δun

cY,n FT
c2

δun

cZ,n FT
c3

δun[
cY,n FT

c3
+ cZ,n FT

c2

]
δun[

cX,n FT
c3
+ cZ,n FT

c1

]
δun[

cX,n FT
c2
+ cY,n FT

c1

]
δun


. (C.17)

From the above it is possible to prove that:

fC(χk, δu) = Cx(χk)
n=Nn

∑
n=1

cX,n δun

+ Cy(χk)
n=Nn

∑
n=1

cY,n δun + Cz(χk)
n=Nn

∑
n=1

cZ,n δun , (C.18)

1This is true for the materials that are considered in this work.
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where

Cx = F
(

CC,c1 n0 FT
c1
+ CC,c6 n0, f FT

c2
+ CC,c5 n0 FT

c3

)
, (C.19)

Cy = F
(

CC,c6 n0 FT
c1
+ CC,c2 n0, f FT

c2
+ CC,c4 n0 FT

c3

)
, (C.20)

Cz = F
(

CC,c5 n0 FT
c1
+ CC,c4 n0, f FT

c2
+ CC,c3 n0 FT

c3

)
, (C.21)

being CC,ci the second order tensor formed by the i-th column of C, for example:

CC,c1 =

 C1111 C1112 C1113
C1122 C1123

sym C1133

 . (C.22)

Saint Venant-Kirchhoff material model For this material the elastic moduli is [2]:

C =



λ + 2 µ λ λ 0 0 0

λ + 2 µ λ 0 0 0

λ + 2 µ 0 0 0

µ 0 0

sym µ 0

µ


, (C.23)

where λ and µ are the Lamé parameters.

Simo-Miehe material model For this material the elastic moduli is [2]:

C =

(
2
9

µ J−2/3 tr(C) + κ J2
)

C−1 ⊗ C−1

+

(
2
3

µ J−2/3 tr(C)− κ
(

J2 − 1
))

C−1 � C−1

− 2
3

µ J−2/3
(

I ⊗ C−1 + C−1 ⊗ I
)

.

(C.24)
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where κ = λ + 2 µ/3 and

I ⊗ C−1 + C−1 ⊗ I =

2 D11 D11 + D22 D11 + D33 D23 D13 D12

2 D22 D22 + D33 D23 D13 D12

2 D33 D23 D13 D12

0 0 0

sym 0 0

0


,

(C.25)

C−1 ⊗ C−1 =

D11 D11 D11 D22 D11 D33 D11 D23 D11 D13 D11 D12

D22 D22 D22 D33 D22 D23 D22 D13 D22 D12

D33 D33 D33 D23 D33 D13 D33 D12

D23 D23 D23 D13 D23 D12

sym D13 D13 D13 D12

D12 D12


,

(C.26)

C−1 � C−1 =

D2
11 D2

12 D2
13 D13D12 D11D13 D11D12

D2
22 D2

23 D22D23 D12D23 D22D12

D2
33 D33D23 D13D33 D13D23

D33 D22 + D2
23

2
D12 D33 + D23 D13

2
D12 D23 + D22 D13

2

sym
D11 D33 + D2

13
2

D11 D23 + D12 D13

2
D11 D22 + D2

12
2


,

(C.27)
being Dij the entries of C−1 (the inverse of C):

C−1 =

 D11 D12 D13
D22 D23

sym D33

 . (C.28)
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Appendix D

Additional results of

analytical examples

This appendix shows additional results that complement the results presented in
the body of the thesis.

D.1 Two-dimensional analytical example

Figures D.1, D.2, D.3 and D.4 show the evolution1 thought the first 18 meshes of
Table E.1 using p1, p2, p3 and p4, respectively. The gray color indicates that the
number of cells of the mesh is smaller than Nn or a NaN solution due to bad system
conditioning. Figure D.5 illustrates the OC for the displacement and stress field. It is
observed that the convergence for all cases is adequate, obtaining a more accurate
result for pi+1 than for p1, as it was expected.

1Using UTM, LRE, Ng = 7 and seq.
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Figure D.1: REu (top) and REσ (bottom) using UTM with LRE and p1.
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Figure D.2: REu (top) and REσ (bottom) using UTM with LRE and p2.
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Figure D.3: REu (top) and REσ (bottom) using UTM with LRE and p3.
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Figure D.4: REu (top) and REσ (bottom) using UTM with LRE and p4.
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Figure D.5: OCu (left) and OCσ (right) using UTM with LRE.

Figures D.6 and D.7 show the convergence of AEu and AEσ for LRE and MLS,
respectively, using the parameters of Table 3.1 for SQM; while Figures D.8 and D.9
show the convergence of AEu and AEσ for LRE and MLS, respectively, using the
parameters of Table 3.1 for STM.
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Figure D.6: Convergence of AEu (left) and AEσ (right) using LRE with the parame-
ters of Table 3.1 for SQM.
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Figure D.7: Convergence of AEu (left) and AEσ (right) using MLS with the parame-
ters of Table 3.1 for SQM.
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Figure D.8: Convergence of AEu (left) and AEσ (right) using LRE with the parame-
ters of Table 3.1 for STM.
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Figure D.9: Convergence of AEu (left) and AEσ (right) using MLS with the parame-
ters of Table 3.1 for STM.
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Tables D.1, D.2 and D.3 show the order of convergences of the displacement and
stress field for the SQM, STM and UTM, respectively. These OC where obtained using
the 32 meshes of Table E.1.

Table D.1: Order of convergence using mesh #18 for the displacement and stress
fields using SQM and LRE or MLS.

Order Nn
Disp. field (u) Stress field (σ)

TOC LRE MLS TOC LRE MLS

p1

13 2 1.71 1.78 1 1.26 1.21
18 2 1.97 1.89 1 1.49 1.37
26 2 1.95 1.92 1 1.38 1.36

p2

16 3 1.86 1.58 2 1.84 1.67
21 3 1.61 1.79 2 1.88 1.74
29 3 1.56 2.63 2 1.99 2.38

p3

20 4 3.61 3.65 3 3.06 3.04
25 4 3.79 3.60 3 3.24 3.10
33 4 3.74 3.58 3 3.33 3.29

p4

25 5 3.29 3.70 4 2.93 3.00
30 5 3.69 3.91 4 3.71 3.71
38 5 3.45 4.71 4 3.67 3.96

Table D.2: Order of convergence using mesh #18 for the displacement and stress
fields using STM and LRE or MLS.

Order Nn
Disp. field (u) Stress field (σ)

TOC LRE MLS TOC LRE MLS

p1

13 2 2.03 2.10 1 1.11 1.05
18 2 2.02 2.15 1 1.31 1.25
26 2 2.08 1.96 1 1.44 1.37

p2

16 3 2.04 2.11 2 1.97 1.88
21 3 1.79 2.21 2 1.96 1.92
29 3 1.76 2.22 2 2.04 2.04

p3

20 4 3.93 3.74 3 3.25 3.11
25 4 3.92 4.04 3 3.26 3.05
33 4 3.80 3.99 3 3.22 3.05

p4

25 5 3.81 4.14 4 3.93 4.02
30 5 3.80 4.22 4 3.86 3.86
38 5 3.81 4.07 4 3.98 3.89
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Table D.3: Order of convergence using mesh #18 for the displacement and stress
fields using UTM and LRE or MLS.

Order Nn
Disp. field (u) Stress field (σ)

TOC LRE MLS TOC LRE MLS

p1

13 2 2.08 1.64 1 1.21 0.84
18 2 2.09 2.13 1 1.43 1.34
26 2 2.13 2.15 1 1.53 1.49

p2

16 3 2.03 2.00 2 2.09 1.95
21 3 1.91 1.99 2 2.09 2.00
29 3 1.88 2.31 2 2.20 2.20

p3

20 4 4.02 2.19 3 3.19 1.31
25 4 4.08 2.94 3 3.34 2.37
33 4 3.94 3.94 3 3.43 3.27

p4

25 5 4.11 4.50 4 4.06 4.03
30 5 3.96 4.35 4 4.08 4.02
38 5 3.79 4.42 4 4.10 4.08

D.2 Three-dimensional analytical example

Figures D.10, D.11 and D.12 show the evolution2 thought the seven meshes of Ta-
ble E.4 using p1, p2 and p3, respectively. The gray color indicates that the number of
cells of the mesh is smaller than Nn or a NaN solution due to bad system conditioning.
It is observed that the convergence for all cases is adequate, obtaining a more accurate
result for pi+1 than for p1, as it was expected.

2Using UTM, LRE, Ng = 37 and sdf.
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Figure D.10: REu (left) and REσ (right) using UTM with LRE and p1.
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Figure D.11: REu (left) and REσ (right) using UTM with LRE and p2.
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Figure D.12: REu (left) and REσ (right) using UTM with LRE and p3.

Figures D.13, D.14 and D.15 show the convergence of the absolute error of the
displacement field using LRE in SHM, STM and UpTM meshes, respectively, for the
values in Table 3.4. It is possible to observe how for the structured meshes (SHM and
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STM) the difference between using sdf and seq is negligible. However, in the case
of UpTM, the differences, especially with p3, are appreciable, as in the case of UTM
developed in the body of this thesis, see Section 3.2.1. The above indicates that it is
recommended to use sdf.
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Figure D.13: Convergence of AEu using LRE and sdf (left) or seq (right) with the
parameters of Table 3.4 for SHM.
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Figure D.14: Convergence of AEu using LRE and sdf (left) or seq (right) with the
parameters of Table 3.4 for STM.
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Figure D.15: Convergence of AEu using LRE and sdf (left) or seq (right) with the
parameters of Table 3.4 for UpTM.
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Tables D.4, D.5, D.6 and D.7 show the OC, using either MLS or LRE, with sdf or
seq, for the SHM, STM, UpTM and UTM meshes, respectively, for the interpolations
p1, p2 and p3 considering different values of Nn.

Table D.4: Order of convergence using mesh #7 for the displacement and stress fields
using SHM and LRE or MLS. For all the cases Ng = 49.

Order Nn

Disp. field (u) Stress field (σ)

TOC LRE MLS TOC LRE MLS
sdf seq sdf seq sdf seq sdf seq

p1

14 2 2.03 2.01 2.05 1.99 1 0.84 0.82 0.99 0.96
24 2 1.99 2.14 2.06 2.14 1 1.00 1.06 0.89 0.91
34 2 1.64 1.65 1.81 1.85 1 1.57 1.58 1.36 1.38
44 2 1.55 1.55 1.75 1.78 1 1.71 1.70 1.58 1.59
54 2 1.81 1.77 1.95 1.96 1 1.81 1.79 1.71 1.71

p2

20 3 2.85 2.87 1.72 1.59 2 1.97 1.98 1.45 1.38
30 3 2.86 2.83 1.83 1.91 2 2.01 2.00 1.56 1.57
40 3 2.93 2.93 1.82 1.88 2 2.02 2.01 1.80 1.80
50 3 2.72 2.68 2.13 2.19 2 1.94 1.95 1.91 1.92
60 3 2.67 2.71 2.48 2.44 2 1.90 1.95 2.02 2.04

p3

30 4 2.72 2.71 2.71 2.68 3 1.93 1.95 1.93 1.94
40 4 2.59 2.43 2.56 2.39 3 2.33 2.24 2.33 2.25
50 4 2.40 2.40 2.39 2.40 3 2.35 2.38 2.34 2.37
60 4 4.07 4.05 4.01 4.03 3 3.32 3.32 3.14 3.15
70 4 4.09 4.08 4.05 4.08 3 3.41 3.41 3.27 3.28
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Table D.5: Order of convergence using mesh #7 for the displacement and stress fields
using STM and LRE or MLS. For all the cases Ng = 37.

Order Nn

Disp. field (u) Stress field (σ)

TOC LRE MLS TOC LRE MLS
sdf seq sdf seq sdf seq sdf seq

p1

14 2 2.18 2.05 -1.17 NaN 1 1.05 1.01 NaN NaN
24 2 2.02 2.01 1.93 -1.64 1 1.00 1.04 0.88 -2.65
34 2 2.12 2.12 2.16 2.02 1 1.16 1.18 1.06 1.01
44 2 2.09 2.09 2.15 2.05 1 1.42 1.47 1.26 1.29
54 2 2.16 2.14 2.21 2.14 1 1.53 1.59 1.33 1.40

p2

20 3 3.18 -0.23 2.83 NaN 2 2.16 -1.11 1.83 NaN
30 3 3.11 0.60 3.04 -1.08 2 2.14 -0.19 2.05 -2.09
40 3 3.15 3.07 3.24 3.19 2 2.30 2.26 2.09 2.07
50 3 3.14 3.06 3.31 3.27 2 2.28 2.28 2.09 2.09
60 3 3.12 3.10 3.37 3.32 2 2.27 2.28 2.13 2.14

p3

30 4 -2.40 -2.61 -2.93 -2.68 3 -3.34 -4.07 -3.94 -3.84
40 4 3.43 3.05 1.47 1.65 3 2.40 2.39 0.96 0.98
50 4 4.51 3.36 3.19 -0.19 3 3.49 2.45 1.70 -1.02
60 4 4.52 4.44 4.06 0.31 3 3.53 3.52 2.57 -0.94
70 4 4.51 4.46 4.57 1.96 3 3.55 3.56 3.42 0.79
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Table D.6: Order of convergence using mesh #7 for the displacement and stress fields
using UpTM and LRE or MLS. For all the cases Ng = 37.

Order Nn

Disp. field (u) Stress field (σ)

TOC LRE MLS TOC LRE MLS
sdf seq sdf seq sdf seq sdf seq

p1

14 2 2.11 1.65 -0.62 NaN 1 0.99 0.57 NaN NaN
24 2 2.09 2.07 -1.45 NaN 1 1.22 1.23 NaN NaN
34 2 2.13 2.10 1.31 0.00 1 1.45 1.48 NaN NaN
44 2 2.17 2.15 2.18 2.11 1 1.62 1.66 1.30 1.34
54 2 2.18 2.16 2.19 2.15 1 1.70 1.74 1.36 1.41

p2

20 3 1.37 1.79 0.86 NaN 2 0.26 0.71 NaN NaN
30 3 3.10 2.18 2.85 2.51 2 2.21 1.08 NaN NaN
40 3 3.06 0.29 2.88 2.92 2 2.32 -0.58 NaN NaN
50 3 3.06 3.18 2.95 2.92 2 2.38 2.46 2.25 2.25
60 3 3.04 3.16 3.03 2.96 2 2.41 2.47 2.30 2.32

p3

30 4 3.95 2.59 1.89 2.10 3 3.01 1.47 NaN NaN
40 4 4.43 3.49 1.85 1.29 3 3.49 2.52 NaN NaN
50 4 4.56 4.35 1.42 2.17 3 3.59 3.38 0.35 1.24
60 4 4.64 5.87 2.57 2.21 3 3.69 4.90 1.55 1.41
70 4 4.71 4.34 4.47 1.55 3 3.78 3.41 3.50 0.71
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Table D.7: Order of convergence using mesh #7 for the displacement and stress fields
using UTM and LRE or MLS. For all the cases Ng = 37.

Order Nn

Disp. field (u) Stress field (σ)

TOC LRE MLS TOC LRE MLS
sdf seq sdf seq sdf seq sdf seq

p1

14 2 2.15 1.83 0.01 NaN 1 1.11 0.87 NaN NaN
24 2 2.04 2.05 -1.31 2.45 1 1.16 1.21 NaN NaN
34 2 2.07 2.10 -1.38 -1.11 1 1.39 1.44 NaN NaN
44 2 2.16 2.21 0.58 -0.50 1 1.53 1.60 -0.32 -1.51
54 2 2.22 2.28 1.97 1.11 1 1.64 1.72 1.05 0.35

p2

20 3 1.02 1.07 3.11 NaN 2 -0.11 -0.01 NaN NaN
30 3 2.30 0.91 3.25 3.81 2 1.36 -0.24 NaN NaN
40 3 3.28 -0.08 3.40 3.58 2 2.39 -0.47 2.24 2.51
50 3 3.34 2.45 3.51 3.42 2 2.49 1.72 2.34 2.26
60 3 3.35 3.39 3.56 3.64 2 2.51 2.51 2.40 2.49

p3

30 4 6.54 2.04 3.16 3.29 3 5.59 1.04 NaN NaN
40 4 4.43 1.24 1.27 0.86 3 3.59 0.38 0.28 -0.09
50 4 4.34 3.31 1.50 1.34 3 3.41 2.53 0.22 0.39
60 4 4.54 3.96 0.13 0.95 3 3.60 3.20 -1.09 -0.16
70 4 4.61 4.52 1.90 1.85 3 3.67 3.64 0.68 0.93
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Table E.1: Mesh information for the 2D analytic example, see Section 3.1.1.

#m
Structured Untructured (UTM)squares (SSM) triangles (STM)

Nic Nbc `max Nic Nbc `max Nic Nbc `max
1 1 4 1.00000 2 4 1.41421 2 4 1.41421
2 4 8 0.50000 8 8 0.70711 8 8 0.70711
3 9 12 0.33333 18 12 0.47140 20 12 0.49691
4 16 16 0.25000 32 16 0.35355 36 16 0.37268
5 25 20 0.20000 50 20 0.28284 58 20 0.30642
6 36 24 0.16667 72 24 0.23570 88 24 0.26517
7 49 28 0.14286 98 28 0.20203 116 28 0.20910
8 64 32 0.12500 128 32 0.17678 152 32 0.19642
9 81 36 0.11111 162 36 0.15713 192 36 0.17806

10 100 40 0.10000 200 40 0.14142 240 40 0.16977
11 121 44 0.09091 242 44 0.12856 280 44 0.15080
12 144 48 0.08333 288 48 0.11785 346 48 0.12672
13 169 52 0.07692 338 52 0.10879 404 52 0.11697
14 196 56 0.07143 392 56 0.10102 466 56 0.11526
15 225 60 0.06667 450 60 0.09428 536 60 0.10341
16 256 64 0.06250 512 64 0.08839 604 64 0.09775
17 289 68 0.05882 578 68 0.08319 676 68 0.09586
18 324 72 0.05556 648 72 0.07857 778 72 0.08879
19 361 76 0.05263 722 76 0.07443 854 76 0.08233
20 400 80 0.05000 800 80 0.07071 952 80 0.07756
21 441 84 0.04762 882 84 0.06734 1026 84 0.07641
22 484 88 0.04545 968 88 0.06428 1142 88 0.06922
23 576 96 0.04167 1152 96 0.05893 1366 96 0.06473
24 625 100 0.04000 1250 100 0.05657 1456 100 0.06373
25 676 104 0.03846 1352 104 0.05439 1588 104 0.06266
26 729 108 0.03704 1458 108 0.05238 1726 108 0.06016
27 784 112 0.03571 1568 112 0.05051 1860 112 0.05946
28 841 116 0.03448 1682 116 0.04877 1992 116 0.05336
29 900 120 0.03333 1800 120 0.04714 2096 120 0.05121
30 1024 128 0.03125 2048 128 0.04419 2416 128 0.04812
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Table E.2: Mesh information for the 2D example of clamped beam with uniformly
varying loading, see Section 3.1.2.

#m Nic Nbc `max
1 206 104 1.500
2 460 156 0.994
3 854 208 0.800
4 1278 260 0.625
5 1996 312 0.512
6 2844 364 0.434
7 3358 416 0.395
8 4146 468 0.351
9 5142 520 0.329

10 6296 572 0.296
11 7616 624 0.267

Table E.3: Mesh information for the 2D example of an infinite plane with an elliptical
hole, see Section 3.1.3.

b Fσ∞ Nic Nbc `max
0.3 1.5 2765 207 107.00
0.5 2.0 2983 217 107.16
0.8 2.5 2885 217 107.05
1.0 3.0 3058 226 107.13
1.3 3.5 3158 232 107.14
1.5 4.0 3262 238 107.14
1.8 4.5 3352 244 107.12
2.0 5.0 3449 251 107.17
2.3 5.5 3543 255 152.05
2.5 6.0 3676 264 107.16
2.8 6.5 3771 269 107.13
3.0 7.0 3834 276 107.15
3.3 7.5 4006 284 107.15
3.5 8.0 4129 291 107.16
3.8 8.5 4230 298 107.18
4.0 9.0 4299 303 107.13
4.3 9.5 4394 310 107.14
4.5 10.0 4537 317 107.15
4.8 10.5 4650 324 107.15
5.0 11.0 4777 331 107.15
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Table E.4: Mesh information for the 3D analytic example, see Section 3.2.1.

#m SCM STM
Nic Nbc `max Nic Nbc `max

1 1 6 1.00000 6 12 1.73205
2 8 24 0.50000 48 48 0.86603
3 27 54 0.33333 162 108 0.57736
4 64 96 0.25000 384 192 0.43301
5 125 150 0.20000 750 300 0.34641
6 216 216 0.16667 1296 432 0.28868
7 343 294 0.14286 2058 588 0.24744

#m UpTM UTM
Nic Nbc `max Nic Nbc `max

1 6 12 1.73205 6 12 1.73205
2 48 48 0.86603 48 48 0.86603
3 180 112 0.59836 241 108 0.50776
4 432 200 0.44876 551 192 0.43301
5 870 316 0.36591 1142 300 0.34641
6 1584 464 0.31320 2035 432 0.28868
7 2436 624 0.25325 3296 588 0.24744

Table E.5: Mesh information for the 3D cantilever beam with a uniformly distributed
load, see Section 3.2.2.

#m UTM
Nic Nbc `max

1 980 768 2.22764
2 1097 832 2.19688
3 2229 1528 2.23427
4 2124 1512 1.72200
5 2192 1608 1.63100
6 2386 1720 1.50100
7 4075 1832 1.36861
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Table E.6: Mesh information for the 3D vibrating cantilever beam, see Section 3.2.3.

#m UTM
Nic Nbc `max

1 446 336 2.2150178329
2 436 336 2.1961356607
3 882 632 2.1859733660
4 971 648 1.6593758355
5 988 672 1.6453817186
6 876 632 1.6327449280
7 875 648 1.6207957652
8 863 640 1.6102484280
9 940 672 1.6001349644

10 1715 784 1.4142135624
11 1638 800 1.4011434196
12 1842 856 1.3474061940
13 2618 1392 1.3266591763
14 2768 1456 1.3033588149
15 2254 1176 1.2906602961
16 2372 1224 1.1614745233
17 3753 1424 1.0531736507

Table E.7: Mesh information for the hyperelastic cantilever beam, see Section 3.2.5.

#m UTM
Nic Nbc `max

1 448 328 0.21960943536
2 889 648 0.16207957652
3 1674 808 0.13560497524
4 2318 1192 0.12392242035
5 3803 1416 0.10842918795

`[m]
UTM

Nic Nbc `max
2 3803 1416 0.10842918795
3 1360 976 0.16179604445
4 792 656 0.22150178329
5 1046 832 0.22039682393
6 1262 1000 0.21968798329
7 1412 1128 0.22124457055
8 1710 1352 0.21927610449
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