Chapter 1

Introduction

This dissertation is the result of almost five years working in digital communications and signal
processing. During all this time, multiple estimation problems have been addressed. The expe-
rience in these applications is materialized in this document. We thought that an attractive way
of introducing this thesis is to explain its evolution from the original idea until the completion
of this dissertation. In the following sections, the series of obstacles that were dealt with in the
way of this thesis are briefly commented and contextualized. In short, this is the history of the

thesis...

1.1 The nuisance unknowns in parameter estimation

In the beginning, our research activity was focused on non-data-aided (blind) digital synchro-
nization [Gar88a][Men97] [Vaz00]. In this field, the receiver has to estimate some parameters
from the received waveform in order to recover the transmitted data symbols. Basically, the
receiver has to determine the symbol timing and, in bandpass communications, the carrier phase
and frequency. With this aim, in most communication standards, a known training sequence
is transmitted to assist the receiver during the signal synchronization. Once the training is
finished, the synchronizer has to maintain the synchronism despite the parameters usually fluc-
tuate due to the time-varying propagation channel and the terminal equipments nonidealities.
In these conditions, the synchronizer has to cope with the thermal noise and, in addition, with
the so-called self-noise —or pattern-noise— generated by the own unknown random data symbols.
In fact, the random data symbols can be regarded as nuisance parameters that complicate the
estimation of the parameter of interest. An special attention is given in this thesis to these

nuisance parameters and the induced self-noise.

Most non-data-aided techniques in the literature are designed assuming a low SNR
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[Men97][Vaz00]. This assumption is rather realistic in modern digital communications due to the
utilization of sofisticated error correcting codes [Ber93|. In that case, it is well-known that the
maximum likelihood (ML) estimator is quadratic in the received data in most estimation prob-
lems as, for instance, timing and frequency synchronization. The most important point is that,
whatever the actual SNR, the ML estimator is known to attain the Cramér-Rao bound (CRB)
if the observation time is sufficiently large [Kay93b]. Thus, the ML estimator is asymptotically

the minimum variance unbiased estimator [Kay93b].

Unfortunately, the ML estimator is generally unknown for medium-to-high SNRs in the
presence of nuisance parameters. Thus, the ML estimator is an unknown function of the observed
data y, that can be approximated around the true parameter 8 —small-error approximation— by

means of the following N-th order polynomial:

N
O ~ ZMn @)y"
n=0

where y” is the vector containing all the n-th order sample products of y, and M, (@) the
associated coefficients. Notice that the so-called small-error approximation can be achieved by

means of iterative and closed-loop schemes (Chapter 2).

Regarding the last expression, we conclude that higher-order techniques (i.e., N > 2) are
generally required to attain the CRB for medium-to-high SNR. For example, a heuristic fourth-
order closed-loop timing synchronizer was proposed in [And90|[Men97, Sec.9.4] for the minimum
shift keying (MSK) modulation that outperforms —at high SNR- any existing second-order
technique. This work was the motivation for deducing the optimal fourth-order estimator given
by

64 =My () +M; (0)y> + M4 (0)y*

where My (0), M3 (0) and My (0) are selected to minimize the estimator variance [Vil01b].
The proposed estimator became quadratic at low SNR (M, = 0) and exploited the fourth-order
component when the SNR was increased (M4 # 0). For more details, the reader is referred to

the original paper [Vil01b]:

e “Fourth-order Non-Data-Aided Synchronization”. J. Villares, G. Vazquez, J. Riba. Proc.
of the IEEE Int. Conf. on Accoustics, Speech and Signal Processing 2001 (ICASSP 2001).
pp. 2345-2348. Salt Lake City (USA). May 2001.

Although the focus shifted from fourth-order to second-order methods soon, this contribu-
tion was actually the basis of this thesis. In this work, the estimator coefficients were directly
optimized for a given observation length and estimator order (N = 4). To carry out this opti-

mization, the Kronecker product ® and vec () operators were introduced in order to manipulate
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the n-th order observation y™. Moreover, during the computation of the optimal coefficients Mo
and My, we realized that some fourth-order moments of the MSK modulation were ignored in

other well-known second-order ML-based approximations.

After this work, we wondered about the best quadratic non-data-aided estimator or, in other
words, which are the optimal coefficients My () and M () in

/éz = Mo (0) -+ MQ (9) y2

for a given estimation problem. At low SNR, the optimal second-order estimator is given by the
low-SNR, ML approximation, at least for sufficiently large data records. On the other hand, if
the SNR increases, the optimal second-order estimator is only known in case of Gaussian data
symbols. However, the Gaussian assumption is clearly unrealistic in digital communications
because the transmitted symbols belong to a discrete alphabet. This intuition was confirmed

for the MSK modulation in the following paper [VilOla].

e “Best Quadratic Unbiased Estimator (BQUE) for Timing and Frequency Synchroniza-
tion”. J. Villares, G. Vazquez. Proc. of the 11th IEEE Int. Workshop on Statistical
Signal Processing (SSP01). pp. 413-416. Singapore. August 2001. ISBN 0-7803-7011-2.

In this pioneering paper, the Gaussian assumption was found to yield suboptimal timing
estimates at high SNR when the observation time is short. Quadratic estimators were improved
considering the fourth-order cumulants or kurtosis of the MSK constellation. However, this
fourth-order information was shown to be irrelevant if the number of observations is augmented.
Thus, it was shown via Monte Carlo simulations that the Gaussian assumption is asymptotically
optimal in the problem of timing synchronization. Additional simulations and remarks were

given in the tutorial paper presented in the ESA workshop [Vaz01].

1.2 The Bayesian approach: the bias-variance dilema

Another contribution in the referred paper was the formulation of optimal second-order open-
loop estimators. Open-loop schemes are very attractive in digital synchronization because they
allow reducing the acquisition time of closed-loop synchronizers [Men97][Rib97]. To design open-
loop estimators, the small-error approximation is abandonned and the parameter 8 is assumed
to take values in a given interval ©. In this large-error scenario, the N-th order expansion of
the ML estimator depends on the unknown value of 8 € © and, consequently, the ML estimator

cannot be generally implemented by means of a polynomial in y.

To overcome this limitation, the Bayesian formulation was adopted and the parameter 0

was modelled as a random variable of know prior distribution fg (0). Then, the prior was
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applied to optimize the estimator coefficients {M,,} “on the average”, that is, considering all the
possible values of @ € © and the associated probabilities fp (0). Actually, the Bayesian approach
encompasses both the small and large error scenarios since the small-error approximation can

be imposed by considering an extremely informative prior.

It can be shown that, in the small-error regime, it is equivalent to minimize the estimator
mean square error (MSE) and the estimator wvariance. However, in the large-error regime,
the minimum MSE estimator becomes usually biased with the aim of reducing the variance
contribution. In fact, the more corrupted is the observation y, the more biased is the minimum
MSE solution. The reason is that, when the observation is severely degraded by the thermal
and self noise terms, the minimum MSE estimator is not confident about the observation y
and it resorts to the a priori knowledge on the parameters. In that way, the estimator reduces
the variance induced by the random terms (noise and self-noise) although it becomes biased in

return unless the value of @ coincides with the expected value of the prior.

In this early paper, the main problem in second-order open-loop estimation was identified
for the first time. In general, unbiased second-order open-loop estimators are not feasible. Even
if the estimator variance can be usually removed by extending the observation time, there is
always a residual bias that sets a limit on the performance of open-loop estimators. Despite
this conclusion, the design of almost unbiased open-loop second-order estimators was addressed
by imposing the unbiasedness constraint at L values of 8 € ©. Actually, the L test points were
distributed regularly inside the parameter space ©. The number of unbiased test points was in

practice a function of the observation time and the oversampling factor.

This formulation was further improved by allowing the estimator to select automatically the
best unbiased test points. In that way, the estimator can decide the number and position of the
test points in order to minimize the overall estimator bias. This formulation was developed in

the following conference paper for the problem of timing and frequency synchronization [Vil02b].

e “Sample Covariance Matrix Based Parameter Estimation for Digital Synchronization”.
J. Villares, G. Vazquez. Proc. of the IEEE Global Communications Conference 2002
(Globecom 2002). November 2002. Taipei (Taiwan).

Another important advance in this paper was the closed-form derivation of the kurtosis
matriz K for any linear modulations. This matrix contains all the fourth-order statistical in-
formation about the transmitted symbols that is relevant for second-order estimation. Actually,
matrix K gathers all the statistical information about the digital modulation that is ignored

when the Gaussian assumption is adopted.

The last two papers [Vil01a][Vil02b] are actually the foundation of Chapter 3 (open-loop

estimation) and Chapter 4 (closed-loop estimation).
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In the same year, the results obtained in the last two papers [Vil01a][Vil02b] were ex-
tended to estimate the timing and frequency parameters in the presence of multipath prop-
agation. This work was actually motivated by the participation in the EMILY European project
[Bou02a][Bou02b], in which advanced radiolocation techniques for wireless outdoor communica-
tion systems (e.g., GSM and UMTS) were studied. The results of this research were published
in the following paper [Vil02a] and are included in Section 6.3.

e “Optimal Quadratic Non-Assisted Parameter Estimation for Digital Synchronisation”. J.
Villares, G. Vazquez. Proc. of the Int. Zurich Seminar on Broadband Communications

2002 (12S2002). pp. 46.1-46.4. Zurich (Switzerland). February 2002.

The Bayesian formulation adopted to design open-loop estimators requires in most cases to
compute numerically the estimator coefficients. The reason is that, in most estimation problems,
the average with respect to the prior fg (6) does not admit an analytical solution. Exceptionally,
closed-form expressions can be obtained for the frequency estimation problem if the prior is
uniform. Thus, the exhaustive evaluation of open-loop second-order frequency estimators was

carried out in the following paper [Vil03a].

e “Sample Covariance Matrix Parameter Estimation: Carrier Frequency, A Case Study”. J.
Villares, G. Vézquez. Proc. of the IEEE Int. Conf. on Accoustics, Speech and Signal
Processing (ICASSP). pp. VI-725 - VI-728. Hong Kong (China). April 2003.

In this paper, it was shown that unbiased second-order open-loop estimators can be obtained
by increasing the oversampling factor. In practice, unbiased open-loop estimators are feasible if

the sampling rate is greater than four times the maximum frequency error (Section 3.4).

1.3 Noncircular nuisance unknowns

Thus far, the second-order framework was only applied to formulate NDA timing and frequency
synchronizers. However, the problem of carrier phase synchronization was ignored because
higher-order methods are usually required to estimate the signal phase. However, this is not true
in case of noncircular modulations (e.g., PAM, BPSK, staggered formats and CPM). Remember
that the transmitted symbols {x;} belong to a noncircular constellation if the expected value of

x; x5 1s different from zero for certain values of ¢ and k.

The problem of carrier phase synchronization in case of MSK-type modulations was addressed

in the following paper [Vil04b] and can be consulted in Section 6.2.
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e “Self-Noise Free Second-Order Carrier Phase Synchronization of MSK-Type Signals”, J.
Villares, G. Véazquez, Proc. of the IEEE Int. Conf. on Communications (ICC 2004). June
2004. Paris (France).

1.4 Self-noise in multivariate problems: interparameter inter-

ference.

At high SNR, the dominant disturbance is enterely due to the randomness of the received symbols
(i.e., the self-noise). In this high-SNR scenario, the self-noise variance is minimized if the kurtosis
of the data symbols is taken into account. Otherwise, if the Gaussian assumption is imposed,
the variance of the self-noise term increases. However, the self-noise contribution is normally
negligible in digital synchronization and the Gaussian assumption is practically optimal. In
order to test the Gaussian assumption, we decided to study other estimation problems in which

the self-noise term was more critical.

With this purpose, the uniparametric formulation was generalized to encompass important
multivariate estimation problems in the context of digital communications such as direction-
of-arrival (DOA) and channel estimation. These problems were selected because the self-noise
contribution was expected to degrade significantly the estimator performance at high SNR.

Hence, these two problems were valuable candidates for examining the Gaussian assumption.

In the DOA estimation problem, the DOA estimator is faced with the self-noise caused by the
user of interest and, in addition, by the other interfering users (multiple access interference). In
the channel estimation problem, the received pulse is severely distorted by the unknown channel
impulse response. Then, the intersymbol interference is enhanced at high SNR and hence the

self-noise variance is amplified.

The formulation of the optimal second-order multiparametric open- and closed-loop estimator
will appear in the IEEE Transactions on Signal Processing next July [Vil05]. The theoretical
material in this article is presented in Chapter 3 (open-loop or large-error estimation) and

Chapter 4 (closed-loop or small-error estimation).

e “Second-Order Parameter Estimation”. J. Villares, G. Vazquez. IEEFE Transactions on

Signal Processing. July 2005.

As it was expected, the performance of second-order DOA estimators was severely degraded
when the angular separation of the users was reduced because, in that case, the multiple ac-
cess interference became the dominant impairment. In these singular scenarios, the Gaussian

assumption yielded a significant loss for practical SNRs if the transmitted symbols were drawn
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from a constant-modulus constellation such as MPSK or CPM. The Gaussian assumption loss
was a function of the angular separation as well as the the number of antennas. All these

important results were presented in the following paper [Vil03b] and are included in Section 6.5.

e “Second-Order DOA Estimation from Digitally Modulated Signals”, J. Villares, G.
Vézquez, Proc. of the 37th IEEE Asilomar Conf. on Signals, Systems and Computers,
Pacific Grove (USA), November 2003.

In this paper, the problem of tracking the DOA of multiple moving digitally-modulated users
is considered. In this scenario, the tracking condition can be lost at low SNR when two users
approach each other. In this paper, it is shown that this is usually the outcome if the tracker is
forced to cancel out the multiple access interference. On the other hand, if the multiple access
interference is incorporated as another random self-noise term in the tracker optimization, the
optimal second-order tracker is able to maintain the tracking condition even if the users cross
each other [Vil03b].

As it has been explained before, the problem of blind channel estimation was also a promis-
ing candidate for testing the Gaussian assumption. Some results are presented in Section 6.4
that confirm the interest of the optimal second-order estimator in the medium-to-high SNR
range when the nuisance parameters have constant modulus. In that case, the Gaussian as-
sumption cannot estimate the channel amplitude whereas the optimal solution yields self-noise
free estimates even if the channel amplitude is unknown (Section 6.4). This channel estimation
problem is currently being investigated in case of noncircular constant-modulus transmissions

[LS04][LS05a] [LS05b).

1.5 Informative priors: estimation on track

Thus far, all the second-order closed-loop estimators and trackers had been designed and evalu-
ated in the steady-state, that is, assuming that all the parameters were initially captured during
the acquisition phase. In fact, once the acquisition is completed, the estimator begins to op-
erate in the small-error regime. The estimator coefficients were precisely optimized under the
small-error assumption. However, the acquisition performance had never been involved into the

estimator optimization.

After this reflection, we were concerned with the optimization of closed-loop second-order
estimators considering both the acquisition (large error) and steady-state (small-error) perfor-
mance. With this aim, the Kalman filter formulation [And79][Kay93b] was adopted because
it is known to supply the optimal transition from the large to the small error regime when

the parameters and the observations are jointly Gaussian. Evidently, this assumption fails in
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most estimation problems in digital communications and the suboptimal extended Kalman filter
(EKF) is only optimal in the steady-state [And79][Kay93b]|. Despite this, the EKF provides a
systemmatic and automatic procedure for updating the prior distribution fg(0) every time a
new observation is processed. In that way, it is possible to enhance the acquisition performance

without altering the optimal steady-state solution.

The research in this direction yielded the so-called quadratic EKF (QEKF) that extended
the classical EKF to deal with quadratic observations. The QEKF formulation was published
in the following conference paper [Vil04a] and it has been included in Chapter 5.

e “On the Quadratic Extended Kalman Filter”, J. Villares, G. Vazquez. Proc. of the Third
IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM 2004). July
2004. Sitges, Barcelona (Spain).

In this paper, the QEKF is designed and simulated for the aforementioned DOA estimation
problem. The most important conclusion is that, at high SNR, the Gaussian assumption is also
suboptimal during the acquisition phase if the data symbols are drawn from a constant-modulus
constellation. In that way, the acquisition time can be notably reduced if the QEKF takes into
account the kurtosis of the data symbols. Besides, the Gaussian assumption loss at high SNR is
shown to persist in the steady-state even if the tracker observation time is increased to infinity

(Chapter 5).

1.6 Limiting asymptotic performance

The last remark on the QEKF asymptotic performance persuaded us to study in detail the
performance limits in second-order estimation. The objective was to determine the asymptotic
conditions for the Gaussian assumption to apply. The asymptotic analysis confirmed that the
Gaussian assumption was optimal at low SNR but it was suboptimal at high SNR if the nuisance
parameters belonged to a constant-modulus alphabet. Finally, the performance of second-order
closed-loop estimators was evaluated when the number of samples went to infinity. The conclu-
sion was that the Gaussian assumption applies in digital synchronization, and in DOA estimation
if the number of antennas goes to infinite. On the other hand, the Gaussian assumption fails for
the medium-to-high SNR range in the problem of channel estimation and for DOA estimation in
case of finite sensor arrays. All these asymptotic results were finally collected and are presented

for the first time in Chapter 7.
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1.7 Thesis Outline

The structure of the dissertation is presented next. The main contents and contributions are

described chapter by chapter.
Chapter 2: Elements on Estimation Theory.

In this chapter, the most important concepts from the estimation theory are reviewed. The
problem of parameter estimation in the presence of nuisance parameters is introduced and
motivated. The maximum likelihood (ML) estimator is presented and the most important ML-
based approaches in the literature are described. Special emphasis is put on the Gaussian ML
(GML) estimator because it converges to the ML estimator at low SNR and yields the conditional
ML (CML) solution at high SNR. The important point is that all these ML-based estimators
are quadratic in the observation. The GML estimator is actually the ML estimator in case of
having Gaussian nuisance parameters. However, the optimal second-order estimator is normally
unknown if the nuisance parameters are not Gaussian. This was actually the motivation for this

thesis.

The iterative implementation of the aforementioned ML-based estimators is considered and
the utilization of closed-loop schemes motivated. Finally, a survey on estimation bounds is

included for the interested reader.
Chapter 3: Optimal Second-Order Estimation.

In this chapter, the optimal second-order estimator is formulated from the known distribution
of both the wanted parameters and the nuisance parameters. The Bayesian formulation and two
different optimization criteria are considered. In the first case, the estimator mean square error
(MSE) is minimized in the Bayesian sense, that is, averaging the estimator MSE according to
the assumed prior distribution. In the second case, the estimator variance is minimized subject
to the minimum bias constraint. Again, the variance and bias are averaged by means of the

prior distribution.

The resulting large-error or open-loop estimators are evaluated for the problem of blind
frequency estimation. The minimum MSE solution is shown to make a trade-off between the
bias and variance terms. On the other hand, the minimum bias constraint is unable to completely
eliminate the bias contribution although the observation time is augmented. Accordingly, the
ultimate performace of quadratic open-loop estimators becomes usually limited by the residual

bias.
Chapter 4: Optimal Second-Order Small-Error Estimation.

In this chapter, the design of closed-loop second-order estimators is addressed. Assuming that

all the parameters have been previously acquired, closed-loop estimators are due to compensate
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for small errors. In this context, the optimal second-order small-error estimator is derived from
the minimum variance estimator in Chapter 3 by considering an extremely informative prior.
The resulting estimator is the best quadratic unbiased estimator (BQUE) and its variance is the
(realizable) lower bound on the variance of any sample covariance based parameter estimator.
The BQUE is proved to exploit the kurtosis matrix of the nuisance parameters whereas the

Gaussian ML estimator ignores this information.

Later, the conditions for second-order identifiability are analyzed and some important re-
marks are made about the so-called interparameter interference in multiuser scenarios. The
frequency estimation problem is chosen once again to illustrate the main results of the chapter.

Some simulations are selected to illustrate how the Gaussian assumption fails at high SNR.
Chapter 5: Quadratic Extended Kalman Filtering.

In this chapter, the well-known extended Kalman filter (EKF) is adapted to deal with
quadratic observations. The coefficients of the quadratic EKF are calculated from the actual
distribution of nuisance parameters. The optimal tracker is shown to exploit the kurtosis matrix

of the nuisance parameters.

The Gaussian assumption is evaluated during the acquisition and the steady-state for the
problem of DOA estimation. It is shown that the acquisition time and the steady-sate variance
can be reduced at high SNR if the transmitted symbols are drawn from a constant-modulus
alphabet (e.g., MPSK or CPM) and this information is incorporated.

Chapter 6: Case Studies.

In this chapter, the optimal second-order small-error estimator deduced in Chapter 4 is
applied to some relevant estimation problems. In the first section, some contributions in the
field of non-data-aided sychronization are presented. Specifically, Section 6.1 is devoted to
the global optimization of second-order closed-loop synchronizers and the design of open-loop
timing sycnronizers in the frequency domain. In Section 6.2, the problem of second-order carrier
phase synchronization is addressed in case of noncircular transmissions. In this section, the ML
estimator is shown to be quadratic at low SNR for MSK-type modulations. Moreover, second-
order self-noise free estimates are achieved at high SNR exploiting the non-Gaussian structure

of the digital modulation.

In Section 6.3, the problem of time-of-arrival estimation in wireless communications is stud-
ied. The frequency-selective multipath is shown to increase the number of nuisance parameters
and the Gaussian assumption is shown to apply in this case study. In Section 6.4, the classical
problem of blind channel identification is dealt with. The channel amplitude is shown to be not
identifiable unless the transmitted symbols belong to a constant-modulus constellation and this

information is exploited by the estimator.



1.7. THESIS OUTLINE 11

Finally, the problem of angle-of-arrival estimation in the context of cellular communications
is addressed in Section 6.5. The Gaussian assumption is clearly outperformed for practical SNRs
in case of constant-modulus nuisance parameters and closely spaced sources. In this section, the
importance of the multiple access interference (MAI) is emphasized and MAl-resistant second-

order DOA trackers are derived and evaluated.
Chapter 7: Asymptotic Studies.

In this chapter, analytical expressions are obtained for the asymptotic performance of the
second-order estimators presented in Chapter 3 and Chapter 4. Firstly, the low SNR study
concludes that the nuisance parameters distribution is irrelevant at low SNR and, therefore,
the Gaussian assumption is optimal. On the other hand, the high SNR study states that the
Gaussian assumption does not apply in case of constant-modulus nuisance parameters. This
conclusion is related to the eigendecomposition of the nuisance parameters kurtosis matrix.
Finally, the large sample study confirms that the Gaussian assumption is optimal in digital
synchronization if the observation time goes to infinity. Likewise, the Gaussian assumption
applies in DOA estimation if the number of antennas goes to infinity. However, the Gaussian
assumption cannot be applied —even if the number of snapshots is infinite— in case multiple
constant-modulus signals impinge into a finite array. Regarding the channel estimation problem,
the asymptotic study indicates that second-order estimates could be improved by considering

the actual distribution of the nuisance parameters.
Chapter 8: Conclusions.

This chapter concludes and summarizes the main results of this thesis. To finish, some topics

for further research are proposed.



