
Chapter 3

Optimal Second-Order Estimation

In this chapter, optimal second-order estimators are formulated considering that the estimator is

provided with some side information about the unknown parameters. This side information can

be exploited to improve the estimator accuracy or imposed by the designer in order to constrain

the estimator mean response. Although the formulation in both cases will be the same, the

classification above becomes crucial from a theoretical viewpoint. In that way, the adopted

framework allows unifying the Bayesian and classical estimation theories.

In the first case, the Bayesian approach is adopted to model the unknown parameters as

random variables of known probability density function fθ (θ). Thus, fθ (θ) provides the avail-

able statistical information on the parameters prior to the observation of the data. Bayesian

estimators resort to this prior information when the observation is severely corrupted by the

noise in low SNR scenarios. On the other hand, the prior contribution is scarse if the observa-

tion is rather informative. The above side information is supposed to be obtained in a previous

estimation stage providing both the estimate and its accuracy. In that case, Gaussian priors

are usually employed having in mind that the output of a consistent estimator becomes asymp-

totically Gaussian distributed on account of the Central Limit Theorem. When the parameter

is constrained to a given interval, the folded Gaussian distribution is more appropiate [Rib97].

In particular, the folded Gaussian p.d.f. converges to the uniform distribution when all the

available knowledge is the parameter range.

Bayesian estimation has received a lot of attention in the past decades but it has always raised

a lot of controversy because the parameters are actually deterministic unknowns in a typical

estimation problem (Section 2.1). The Bayesian approach is realistic if the parameters can be

modelled as ergodic realizations of the a priori distribution fθ (θ). In this kind of applications,

adaptive filters or trackers must be designed in order to track the parameter temporal evolution

(Section 2.5.2). If the observation is linear in the parameters and the prior is Gaussian, the

optimal linear tracker is the well-known Kalman filter [And79] [Kay93b]. Unfortunately, most
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66 CHAPTER 3. OPTIMAL SECOND-ORDER ESTIMATION

estimation problems in communications are nonlinear and the suboptimal Extended Kalman

filter (EKF) must be used instead. In Chapter 5, the EKF formulation is generalized to design

blind second-order trackers based on the Bayesian interpretation of the results in this chapter.

If the classical estimation theory is adopted, the side information can be used to constrain

the estimator mean response. In that case, fθ (θ) is a weighting function introduced by the

designer to define new custom-built optimization criteria. Anyway, the formulation in both

cases will be identical and fθ (θ) will be referred to as the prior distribution in spite of dealing

with deterministic parameters. Likewise, Eθ {·} will denote indistintly the Bayesian expectation

with respect to the random vector θ or solely the following averaging

Eθ {F (θ)} �

∫
F (θ) fθ (θ)dθ, (3.1)

if the parameters are deterministic amounts.

Based on the a priori distribution fθ (θ) and the known linear signal model introduced in

Section 2.4, the objective is to find the optimal second-order estimator of α ∈ RQ where

α = g (θ)

is an arbitrary transformation of θ ∈ RP . With this aim, the general expression of any second-

order estimator of α is presented next:

α̂ = b+MH r̂ (3.2)

where

r̂ � vec
(
R̂
)
= vec

(
yyH

)
(3.3)

is the column-wise vectorization of the sample covariance matrix R̂ introduced in Section 2.4.1

and, b and M are the estimator coefficients corresponding to the independent and the quadratic

term, respectively. Notice that the linear term is not considered because the nuisance parameters

x are usually zero-mean random variables in the context of NDA estimation (2.4).

If the transmitted constellation is polarized or some training symbols are transmitted, the

linear term LHy should be included following a semi-blind approach, improving so the estimator

performance at low SNR [Mes02, Ch.3][Gor97][Car97]. Notice too that the vec (·) operator can
be applied successively to formulate higher-order estimators in order to improve the estimator

performance in high SNR scenarios [Vil01b].

Finally, it is worth noting that a circular constellation is assumed. In that case, the improper

covariance matrix E
{
yyT

}
is equal to zero and, therefore, no information can be drawn from

the term vec
(
yyT

)
where (·)T stands for the transpose [Sch03][Pic96]. In Appendix 3.A, the

results in this section are extended to encompass important noncircular constellations holding
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E
{
yyT

} �= 0 (e.g., PAM, BPSK or CPM). Moreover, the design of quadratic carrier phase

synchronizers for the noncircular CPM modulation will be addressed in detail in Section 6.2.

Henceforth, the objective is to determine the estimator optimal coefficients M and b under

a given performance criterion. Two criteria will be analyzed next; the first one is the usual

minimum mean squared error (MMSE) criterion that minimizes the aggregated contribution of

variance and bias. The MMSE criterion usually leads to biased estimators, mainly in low SNR

scenarios in which the noise-induced variance is dominant. Unfortunately, in some applications

bias is not tolerated (e.g., navigation applications) and some constraints must be introduced to

compensate this bias. In that case, the proposed alternative is to minimize the estimator MSE

subject to the minimum bias constraint. This chapter presents a convenient framework from

which different estimation strategies can be devised as a trade-off between bias and variance.

With this purpose, the following definitions are introduced in the next section.

3.1 Definitions and Notation

In this section, the mean square error (MSE) and variance figures are computed for the lin-

ear signal model introduced in Section 2.4 and for second-order estimation. Thus, the MSE

associated to the generic second-order estimator in (3.2) is given by

MSE (θ) = E ‖α̂ (θ)− g (θ)‖2 = E
∥∥b+MH r̂ (θ)− g (θ)

∥∥2 (3.4)

where the expectation is computed over the noise w and the nuisance parameters x. The

estimator MSE can be divided into the bias and variance contributions so that

MSE (θ) = BIAS2 (θ) + V AR (θ)

where the squared bias and variance are defined as follows:

BIAS2 (θ) = ‖α (θ)− g (θ)‖2 = ∥∥b+MHr (θ)− g (θ)
∥∥2 (3.5)

V AR (θ) = E ‖α̂ (θ)−α (θ)‖2 = E
∥∥MH (r̂ (θ)− r (θ))

∥∥2 = Tr
{
MHQ (θ)M

}
(3.6)

with α (θ) the estimator mean value

α (θ) � E {α̂ (θ)} = b+MHr (θ) (3.7)

and

r (θ) � E {r̂ (θ)} = vec
(
A (θ)AH (θ) +Rw

)
(3.8)

Q (θ) � E
{
(r̂ (θ)− r (θ)) (r̂ (θ)− r (θ))H

}
(3.9)

the mean and the covariance matrix of the vectorized sample covariance matrix r̂, respectively.

Notice that r (θ) corresponds to the (vectorized) covariance matrix of y whereas Q (θ) gathers
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the central fourth-order moments of y. The vectorization is fundamental to derive a closed form

for the matrix Q (θ). In Appendix 3.B, it is found that

Q (θ) = R∗ (θ)⊗R (θ) +A (θ)KAH (θ) (3.10)

where A (θ) � A∗ (θ)⊗A (θ), R (θ) was introduced in Section 2.4.3 and,

K � Ex{vec
(
xxH

)
vecH

(
xxH

)} − vec (IK) vecH (IK)− IK2 (3.11)

is the matrix containing the fourth-order cumulants (kurtosis) of the nuisance parameters x.

It is worth realizing that Q (θ) and K are calculated analytically for the linear signal model

introduced in Section 2.4, avoiding so the problematic estimation of fourth-order statistics.

In the case of zero-mean, circular complex nuisance parameters, the matrixK is the following

diagonal matrix:

K = (ρ− 2) diag (vec (IK)) (3.12)

where the scalar

ρ �
E
{| [x]k |4}

E2{| [x]k |2}
is the fourth- to second-order moment ratio (Appendix 3.C). If the nuisance parameters are

not circular (e.g., for the CPM modulation), the expectation in (3.11) has to be computed

numerically —and offline— from the known p.d.f. of x. Moreover, if the nuisance parameters

are discrete, as it happens in digital communications, the computation of K needs only a small

number of realizations of fx(x).

It is well-known that matrix K is zero for normally distributed nuisance parameters for

which ρ = 2. Otherwise, matrix K provides the complete non-Gaussian information about

the nuisance parameters that second-order estimators are able to exploit. In fact, the GML

estimator is sometimes outperformed at high SNR if the second term of (3.10) is considered.

This remark was actually the motivation of this thesis and will be analyzed intensively in the

following chapters.

Unfortunately, the vector b and matrix M minimizing the bias, variance or MSE figures

are generally a function of the unknown vector of parameters θ and, therefore, the resulting

estimator is not realizable. Accordingly, the estimator coefficients have to be optimized from a

convenient average of these figures of merit over all the possible values of θ. In that sense, the

prior fθ (θ) introduced previously is applied to obtain the following averaged MSE, bias and

variance:

MSE � Eθ {MSE (θ)} = BIAS2 + V AR = EθE
∥∥b+MH r̂ (θ)− g (θ)

∥∥2 (3.13)

BIAS2 � Eθ

{
BIAS2 (θ)

}
= Eθ

∥∥b+MHr (θ)− g (θ)
∥∥2 (3.14)

V AR � Eθ {V AR (θ)} = Tr
{
MHQM

}
(3.15)
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with

Q � Eθ {Q (θ)} .

The estimator variance in (3.15) is independent of b. Therefore, b can be selected to minimize

the bias contribution without degrading the estimator variance. It is found that the optimum

b is given by

bopt � argmin
b

BIAS2 = argmin
b

MSE = g−MHr (3.16)

where

g � Eθ {g (θ)} (3.17)

r � EθE {r̂ (θ)} (3.18)

If now bopt is substituted into (3.13) and (3.14), we obtain that

BIAS2 = Eθ

∥∥MH (r (θ)− r)− (g (θ)− g)
∥∥2 = σ2

g +Tr
{
MHQ̃M−MHS− SHM

}
(3.19)

V AR = Tr
{
MHQM

}
(3.20)

MSE = BIAS2 + V AR = σ2
g +Tr

{
MH

(
Q+ Q̃

)
M−MHS− SHM

}
(3.21)

with the following definitions

σ2
g � Eθ ‖g (θ)− g‖2 (3.22)

Q̃ � Eθ

{
(r (θ)− r) (r (θ)− r)H

}
(3.23)

S � Eθ

{
(r (θ)− r) (g (θ)− g)H

}
. (3.24)

The expectation with respect to the prior fθ (θ) poses serious problems when calculating

the analytical expressions of g, r, Q, Q̃ and S. In Appendix 3.D, this problem is solved when

the parameter dependence is phasorial. In the following sections, the MMSE estimator and the

minimum bias-variance estimator are formulated, and further analyzed, assuming that these

vectors and matrices have been computed somehow.

3.2 Second-Order MMSE Estimator

The second-order MMSE estimator is obtained minimizing the overall MSE in equation (3.21).

It follows that the optimum matrix M is given by

Mmse = argmin
M

MSE =
(
Q+ Q̃

)−1
S (3.25)
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where the inversion is guaranteed assuming that the noise covariance matrix Rw is positive

definite. Notice that the above expression corresponds to the linear Bayesian MMSE estimator

of α based on the sample covariance vector r̂ where Q + Q̃ is the autocorrelation matrix of r̂

and, S the cross-correlation between r̂ and α [Kay93b].

If (3.25) is now plugged into (3.21), the minimum MSE is found to be

MSEmin = σ2
g −Tr

{
SH
(
Q+ Q̃

)−1
S

}
(3.26)

where σ2
g is the initial (prior) uncertainty about the parameter α and the second term is the

MSE improvement after processing the data vector y. It is easy to show that this second term

vanishes as the noise variance is increased.

3.3 Second-Order Minimum Variance Estimator

The aim of this section would be obtaining the minimum variance unbiased (MVU) estimator

(Section 2.2). However, in most cases it is not possible to cancel out the bias term unless the

covariance vector r (θ) is an affine transformation of α ∈ RQ, that is, r (θ) = Wg (θ)+v for any

value of W and v. If so, it is straightforward to verify that the estimator bias (3.14) is removed

by setting MHW = IQ. Unfortunately, this situation is unusual and quadratic estimators are

normally degraded by some residual bias. Taking into account this limitation, in this section the

minimum variance estimator is deduced subject to those constraints minimizing the estimator

bias. Thus, let us first obtain the equation that M must verify to yield minimum bias:

dBIAS2

dM∗
= Q̃M− S = 0 (3.27)

Generally, the constraints obtained in (3.27) form an underdetermined system of equations

because R � rank
(
Q̃
)

< M2 and S ∈ CM2×Q in (3.24) lies, by definition, in the column

span of Q̃ ∈ CM2×M2

. Hence, (3.27) is actually imposing RQ design constraints on the matrix

M ∈ CM2×Q that, after the diagonalization of Q̃ = VΣVH , can be formulated as follows:

VHM = S (3.28)

where S � Σ−1VHS, Σ ∈ RR×R is the diagonal matrix containing the non-zero eigenvalues of

Q̃ and, V ∈ CM2×R are the corresponding eigenvectors.

Therefore, since equation (3.27) is only forcing R constraints, the remaining degrees of free-

dom in M can be used to optimize the estimator variance. Specifically, the aim is to minimize

the estimator variance subject to the constraints on α (θ) given in (3.27) or (3.28), that is,

Mvar = argmin
M

V AR = argmin
M

MHQM

subject to Q̃M = S or VHM = S,
(3.29)
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which yields the following solution:

Mvar = PHS = PHS (3.30)

with P and P defined as

P �

(
Q̃Q−1Q̃

)#
Q̃Q−1 (3.31)

P �
(
VHQ−1V

)−1
VHQ−1. (3.32)

Thus, after substitutions in (3.2), the minimum variance estimator is given by

α̂ = g+ SHP (r̂− r) = g+ SHP (r̂− r) (3.33)

where P is projecting the sample covariance vector (r̂− r) onto the minimum-bias subspace

generated by matrix Q̃ in (3.27) (see Fig. 3.1). Plugging now (3.30) into (3.20), the minimum

variance is equal to

V ARmin = Tr

{
SH
(
Q̃Q−1Q̃

)#
S

}
= Tr

{
SH
(
VHQ−1V

)−1 S
}

(3.34)

where the argument inside the trace operator is the covariance matrix of the estimation error:

EθE
{
(α̂ (θ)−α (θ)) (α̂ (θ)−α (θ))H

}
= SH

(
Q̃Q−1Q̃

)#
S

= SH
(
VHQ−1V

)−1 S (3.35)

Finally, plugging (3.30) into (3.19), the residual bias can be expressed in any of these alter-

native forms:

BIAS2
min = σ2

g −Tr
{
MHS

}
= σ2

g −Tr
{
MHQ̃M

}
= σ2

g −Tr
{
SHPS

}
= σ2

g −Tr
{SHΣS}

= σ2
g −Tr

{
SHQ̃#S

}
(3.36)

The last equation is obtained from MHQ̃M using that1

PQ̃ = Q̃#Q̃

1The following identity is obtained from the diagonalization of Q̃ = VΣVH . It is found that [Mag98, Ch.2]:

Q̃=VΣ−1
V

H

Q̃Q
−1

Q̃=VΣVH
Q

−1
VΣVH

(
Q̃Q

−1
Q̃
)#

=VΣ−1
(
V

H
Q

−1
V
)
−1

Σ−1
V

H

and, thus,

PQ̃=
(
Q̃Q

−1
Q̃
)#

Q̃Q
−1

Q̃ = VV
H

Q̃
#
Q̃= Q̃Q̃

# = VV
H .

taking into account that VHV = IR.
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Figure 3.1: Geometric interpretation of the second-order estimators deduced in this chapter for

a uniparametric, hypothetical problem in which M had only 2 coefficients: m1 and m2.

is actually the orthogonal projector onto the R-dimensional subspace generated by Q̃. The

resulting expression is then simplified using the following property of the pseudo-inverse:

Q̃#Q̃Q̃# = Q̃# [Mag98, Eq. 5.2].

Notice that any matrix M solving (3.27) or (3.28) yields the same bias, for example, M =

Q̃#S. Indeed, among all of them, Mvar (3.30) is the one yielding minimum variance (Fig. 3.1).

3.4 A Case Study: Frequency Estimation

In this section, the second-order MMSE and minimum variance estimators are applied to esti-

mate the carrier frequency offset in the context of digital synchronization. This problem has

been chosen because closed form expressions exist based on the results in Appendix 3.D.

The signal model for frequency synchronization fits the general linear model in Section 2.4,

in which the transfer matrix A (θ) is given by

[A (ν)]k = exp (j2πνdM/Nss)� [A]k

where ν and Nss are, respectively, the normalized carrier frequency offset and sampling rate,

matrix A generates the actual modulation and, dM � [0, ...,M − 1]T . The precise content of

matrix A in digital synchronization will be detailed in Section 6.1.2.

In addition, a uniform prior is assumed for the unknown carrier frequency ν as the following

one:

fν (ν) =

{
∆−1 |ν| ≤ ∆/2

0 otherwise
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Figure 3.2: Estimator mean response for different values of ∆. The simulation parameters are

M=4, Nss=2, Es/No=10dB.

with ∆ ≤ Nss determining the frequency offset range2. Notice that ∆ constitutes the sole prior

knowledge about the parameter.

In the following figures, the MMSE and minimum variance estimators are compared in terms

of bias, variance and MSE.

The results in this section were partially presented in the following conferences:

• “Sample Covariance Matrix Based Parameter Estimation for Digital Synchronization”. J.

Villares, G. Vázquez. Proceedings of the IEEE Global Communications Conference 2002

(Globecom 2002). November 2002. Taipei (Taiwan).

• “Sample Covariance Matrix Parameter Estimation: Carrier Frequency, A Case Study”. J.

Villares, G. Vázquez. Proceedings of the IEEE International Conference on Accoustics,

Speech and Signal Processing (ICASSP). April 2003. Hong Kong (China).

3.4.1 Bias Analysis

The estimator mean response E {ν̂} is plotted as a function of the parameter value for different

values of ∆. Fig. 3.2 shows how the minimum variance solution minimizes the estimator bias

2Sometimes ∆ will be specified as a percentage of Nss.
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Figure 3.3: Averaged squared bias as a function of the prior range ∆ for Es/No=10dB, M = 4

and Nss=2.

within the prior range. The estimator mean response oscilates around the unbiased response

cancelling out the bias of 2min (LNss,M)−1 points within the prior interval (−∆/2,∆/2], with

L the effective pulse duration (in symbols). These points are automatically selected in order to

minimize the overall estimator bias (3.19). This basic result is shortly proved in Appendix 3.E

and states that the residual bias is a function of the following ratio

∆

min (LNss,M)

Therefore, if the prior range ∆ is fixed, the estimator bias can be reduced by oversampling

the received signal and/or, if possible, reducing the trasmission bandwidth, i.e., increasing L.

Surprisingly, the bias cannot be reduced by augmenting the observation time in the studied

frequency estimation problem for M ≥ LNss (Appendix 3.E).

Regarding Fig. 3.2, one concludes that the bias term increases dramatically if ∆/Nss exceeds

0.5 (50%) for the simulated MSK modulation (L = 2). In the same figure, the mean response of

the MMSE estimator is plotted showing how it is clearly biased. This bias is found to increase

if the SNR is reduced because, in that case, the MMSE estimator trades more bias for variance.

Finally, the S-curve for the closed-loop estimator deduced in the next chapter is depicted. In that

case, the estimator is only required to yield unbiased estimates around the origin (ν = 0). As it

will be studied with more detail in Chapter 4, the closed-loop solution is obtained considering

the asymptotic case in which ∆ → 0.
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Figure 3.4: Normalized MSE for the MMSE and the minimum variance frequency estimators

deduced in (3.25) and (3.30) for the MSK modulation. The corresponding estimators deduced

under the Gaussian assumption are also plotted for comparison. The simulation parameters are

M = 8, Nss = 2 and ∆ = 1.6.

Another interesting simulation is presented in Fig. 3.3 in which the squared bias BIAS2

(3.19) is plotted as a function of ∆ for the MMSE estimator (Mmse), the minimum variance

estimator (Mvar) and the closed-loop small-error estimator (∆ → 0) deduced in Chapter 4. The

SNR is set to 10 dB and, therefore, the noise induced variance is very significative. This fact

justifies the relaxation of the MMSE estimator with respect to the bias term. Notice that the

three estimators are able to cancel out the bias term if the prior range approaches zero (∆ → 0).

This simple remark is of paramount importance in the following sections and motivates the need

of closed-loop algorithms for second-order blind parameter estimation (Chapter 4).

3.4.2 MSE Performance

In this section, the performance of second-order frequency estimators is evaluated in terms of

their mean square error (3.21). Observing the following figures, the next remarks are relevant:

• A priori knowledge. The performance of the MMSE estimator is upper bounded at low

SNR by the a priori mean square error σ2
g (Fig. 3.4). In such a noisy scenario, the

MMSE solution becomes biased with the aim of limiting the variance increase caused

by the noise-induced variability. As the SNR increases, the observation provides more
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Figure 3.5: Normalized MSE for the MMSE and the minimum variance frequency estimators

deduced in (3.25) and (3.30) for the 16-QAM modulation. The transmitted pulse is a square-

root raised cosine with roll-off 0.75 truncated at ±5T . The corresponding estimators deduced

under the Gaussian assumption are also plotted for comparison. The simulation parameters are

M = 8, Nss = 2, K = 13 and ∆ = 1.6.

information about the parameter of interest and this information is exploited to reduce

the average MSE.

• Self-Noise. For finite observations (M finite), the studied quadratic estimators manifest

a significant variance floor at high SNR due to the so-called self-noise (Fig. 3.4). Re-

member that self-noise refers to the random fluctuations caused by the unknown nuisance

parameters x in blind estimation schemes (See Section 2.4.1). Effectively, the feed-forward

estimators presented in this section are unable to cancel out the self-noise for all the pos-

sible values of ν. On the other hand, the self-noise free condition is guaranteed in the case

of closed-loop (∆ → 0) second-order frequency estimators as shown in Fig. 3.7. Conse-

quently, the amount of information that can be drawn from the current sample y is very

limited in the studied case due to the presence of self-noise. In fact, the level of the high-

SNR floor is a function of the observation time M (Fig. 3.8) as well as the prior range ∆

(Fig. 3.7).

• Modulation. If the figures 3.4-3.6 are compared, one concludes that the performance of

the MMSE estimator is practically insensitive to the actual distribution of the transmitted

symbols. However, the incurred minimum bias, BIAS2
min, depends on the transmitted
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Figure 3.6: Normalized MSE for the MMSE and the minimum variance frequency estimators

deduced in (3.25) and (3.30) for the MPSK modulation. The transmitted pulse is a square-

root raised cosine with roll-off 0.75 truncated at ±5T . The corresponding estimators deduced

under the Gaussian assumption are also plotted for comparison. The simulation parameters are

M = 8, Nss = 2, K = 13 and ∆ = 1.6.

pulse. For the considered Nyquist pulse of roll-off 0.75, the minimum variance solution

becomes significantly degraded with respect to the MSK performance for any SNR (Fig.

3.4). Specifically, the bias and self-noise contribution is more significative for the simulated

MPSK and 16-QAM modulations.

• Bias vs. variance trade-off. The MMSE solution outperforms the minimum variance

solution because it is not forced to minimize the bias. On the contrary, it tolerates some

bias if the variance term can be attenuated in return, minimizing so the overall MSE. This

trade-off is more significant in the low SNR regime but it is also observed at high SNR on

account of the self-noise variance. If the self-noise variance is reduced by increasing M ,

the minimum variance solution converges to the MMSE solution at high SNR (Fig. 3.8).

• Consistency. For large samples (M → ∞, with Nss constant), the estimator variance is

completely removed whatever the actual SNR and the residual MSE is the estimator bias

computed in (3.36). Therefore, consistent second-order estimation is not possible unless

the bias term BIAS2
min vanishes as explained in Section 3.3. This asymptotic result applies
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Figure 3.7: MSE corresponding to the minimum variance solution for different values of the

parameter range ∆=0.05, 0.1, 0.2, 0.4, 0.8 and 1.6. The received signal is MSK-modulated and

M=8 samples are processed with Nss=2.

to both the MMSE and minimum variance solutions (Fig. 3.8). Formally,

lim
M→∞

MSE = lim
M→∞

BIAS2
min = σ2

g − lim
M→∞

Tr
{
SHQ̃#S

}
where the last term becomes constant for M ≥ NssL. Notice that the MSE curves in

Fig. 3.8 would eventually converge to the bias floor shown in Fig. 3.4 if the M-axis were

expanded, i.e., limM→∞BIAS2
min ≈ 10−3.

• Gaussian assumption. The Gaussian assumption is checked in Fig. 3.4 showing that it

yields a significant loss for medium-to-high SNRs. On the other hand, it converges to

the optimal solution as the SNR approaches to zero. Regarding Fig. 3.8, the Gaussian

assumption also supplies asymptotically (M → ∞) self-noise free estimators but it suffers a

constant penalty for any finite SNR. This loss is less significative in the case of considering

a linear modulation as shown in Figs. 3.5-3.6.
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Figure 3.8: Normalized MSE for the MMSE and the minimum variance frequency estimators

deduced in (3.25) and (3.30). The modulation is MSK, Es/No=40dB, Nss = 2 and ∆ = 1.6.
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Figure 3.9: MSE as a function of ∆ for the MSK modulation. The simulation parameters are

Es/No=10dB, M = 4 and Nss=2.
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3.5 Conclusions

This chapter was devoted to design feedforward second-order estimators, adopting the well-

known Bayesian approach. The coefficients of the quadratic estimator were selected to minimize

the estimator MSE or the estimator variance on the average, where this average involves the a

priori distribution of the unknown parameters. In the optimization of the estimator coefficients,

the actual distribution of the nuisance parameters was considered avoiding the usual Gaussian

assumption.

The applicability of the studied second-order estimators in nonlinear estimation problems

becomes generally limited due to the impossibility of cancelling the bias term. Indeed, consistent

second-order estimators are mostly unfeasible due to the persistent bias term. Moreover, if the

observation time is finite, a variance floor appears at high SNR due to presence of the random

nuisance parameters. This floor depends on the actual distribution of the nuisance parameters

and can be reduced exploiting their actual distribution, especially in case of CPM signals.

Nonetheless, most of these conclusions depend on the actual parameterization and the as-

sumed prior distribution. In this chapter, the problem of blind frequency synchronization was

chosen to illustrate these conclusions by means of analytical and numerical results. In this case

study, the minimization of the estimator bias —within the parameter range— is proved to be

limited by the effective duration of the transmitted pulse. On the other hand, open-loop second-

order frequency estimators exhibited the referred variance floor at high SNR, whereas self-noise

free closed-loop frequency estimators exist in the literature even for limited observation times.

Beyond the practical interest of open-loop second-order estimators, the formulation in this

chapter constitutes the basis for the deduction of optimum quadratic closed-loop estimators in

Chapter 4.
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Appendix 3.A Second-order estimation in noncircular transmis-

sions

In the main text, optimal second-order estimators have been deduced for complex, circular

constellations. The nuisance parameters circularity can be assumed for any bandpass modulation

if the carrier phase is uniformly distributed and this random term is incorporated into the vector

of nuisance parameters x. In that case, the expectation of yyT becomes zero and does not

provide information about the parameter of interest. However, optimal second-order estimators

should also exploit the improper correlation matrix yyT in case of baseband transmissions

or noncircular bandpass modulations, provided that the carrier phase is known or estimated.

Precisely, the carrier phase estimation is addressed in Section 6.2 using quadratic schemes in

case of MSK-type modulations. Other important noncircular modulations are the CPM format,

any staggered modulation (e.g., offset QPSK), any real-valued constellation such as BPSK or

ASK, trellis coded modulations (TCM) as well as other coded transmissions [Pro95].

The analysis of noncircular or improper complex random variables has been carried out in

[Sch03][Pic96] and references therein. Widely-linear estimators are proposed in [Sch03][Pic95]

in which the vector

z �

[
y

y∗

]

is linearly processed. This extended signal model has been applied in the field of communications

by some authors, e.g., [Gel00][Tul00] [Ger01].

Therefore, all the results in this thesis can be extended by considering the following sample

covariance matrix

R̂ = zzT =

[
yyT yyH

y∗yT y∗yH

]

to obtain the optimal widely-quadratic estimator. When stacking the sample covariance matrix,

it is worth realizing that y∗yT could be omitted from r̂ = vec(R̂) because the term yyH provides

the same information.

To compute the coefficients of the optimal second-order estimator, it is necessary to obtain

the covariance of r̂ = vec(R̂) following the guidelines in Appendix 3.B.
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Appendix 3.B Deduction of matrix Q(θ)

The expression of Q (θ) in (3.9) can be written as follows:

Q (θ) = E
{
r̂r̂H
}− rrH (3.37)

where

r̂ = vec
{
(Ax+w) (Ax+w)H

}
= vec

{
AxxHAH +AxwH +wxHAH +wwH

}
and the dependence on θ is omitted for the sake of brevity.

Taking into account the noise is circular and zero mean, i.e.,

E {w}=0

E
{
wwT

}
=0

E
{
wiw

∗
jwk

}
=E

{
w∗
iw

∗
jwk

}
= 0,

only six terms, out of the sixteen in r̂r̂H , survive to the expectation in (3.37). These terms can

be classified as follows:

• signal × signal : vec
(
AxxHAH

)
vecH

(
AxxHAH

)
• signal × noise : vec

(
AxwH

)
vecH

(
AxwH

)
+ vec

(
wxHAH

)
vecH

(
wxHAH

)
+vec

(
AxxHAH

)
vecH

(
wwH

)
+ vec

(
wwH

)
vecH

(
AxxHAH

)
• noise× noise : vec

(
wwH

)
vecH

(
wwH

)
.

Then, using the following three properties [Mag98, Chapter 2]:

vec
(
ABCH

)
= (C∗ ⊗A) vec (B) (3.38)

(A⊗B) (C⊗D) = AC⊗BD (3.39)

vec
(
abH

)
vecH

(
abH

)
= (b∗⊗a) (b∗⊗a)H =

(
bbH

)∗⊗aaH (3.40)

and, bearing in mind that E
{
xxH

}
= IK , one obtains

E
{
r̂r̂H
}
= AE

{
vec
(
xxH

)
vecH

(
xxH

)}AH +

+R∗
w ⊗AAH +

(
AAH

)∗ ⊗Rw + vec
(
AAH

)
vecH (Rw) + vec (Rw) vec

H
(
AAH

)
+R∗

w ⊗Rw + vec (Rw) vec
H (Rw) (3.41)

where A � A∗ ⊗A and the following property of Gaussian vectors is used (Appendix 3.C):

E
{
vec
(
wwH

)
vecH

(
wwH

)}
= R∗

w⊗Rw + vec (Rw) vec
H (Rw) . (3.42)
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Therefore, grouping terms in (3.41) and having in mind that R = AAH +Rw (2.23), the

following expression is obtained:

E
{
r̂r̂H
}
= AE

{
vec
(
xxH

)
vecH

(
xxH

)}AH

− (AAH
)∗⊗AAH − vec

(
AAH

)
vecH

(
AAH

)
+R∗⊗R+ vec (R) vecH (R)

Finally, using once more (3.38) and (3.39) in order to write the negative terms above as a

function of A and, plugging this result into (3.37), the expression proposed in (3.10) is obtained:

Q (θ) = R∗ (θ)⊗R (θ) +A (θ)KAH (θ) .
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Appendix 3.C Fourth-order moments

In this section the fourth-order moments of a generic zero-mean, circular, possibly non-Gaussian

vector v ∈ CL are deduced. The resulting L4 terms are ordered in the following matrix:

Qv = E
{
vec
(
vvH

)
vecH

(
vvH

)}
(3.43)

whose elements are given by

[Qv]i+Lj,k+Ll = E
{
viv

∗
j v

∗
kvl
}
= E

{
viv

∗
j

}
E {v∗kvl}+E {viv∗k}E

{
v∗j vl
}−

+
(
E
{
‖vi‖4

}
− 2E2

{
‖vi‖2

})
δ (i, j, k, l)

with i, j, k, l ∈ {0, ..., L− 1} and δ (i, j, k, l) the Kronecker delta of multiple dimensions.

If all these elements are arranged in Qv, three components are identified:

Qv = vec (Rv) vec
H (Rv) +R∗

v ⊗Rv + diag (vec (Γ))

with Rv � E
{
vvH

}
and Γ the diagonal matrix with [Γ]i,i � E

{
‖vi‖4

}
− 2E2

{
‖vi‖2

}
.

If the elements of v are identically distributed, µ � E
{
‖vi‖2

}
and ρ � E

{
‖vi‖4

}
/µ2 do

not depend on i and, thus, the third term can be simplified to obtain that

Qv = vec (Rv) vec
H (Rv) +R∗

v ⊗Rv + µ2 (ρ− 2) diag (vec (IL)) (3.44)

In particular, the fourth-order moments of x in (3.12) are given by (3.44) having in mind

that the symbols autocorrelation is E
{
xxH

}
= IK and, thus, we have that Rv = IK and µ = 1.

On the other hand, if v is a complex Gaussian vector, as the noise vector w in the adopted

signal model, the third term in (3.44) can be removed taking into account that ρ = 2 in the

Gaussian case, hence proving equation (3.42):

E
{
vec
(
wwH

)
vecH

(
wwH

)}
= R∗

w⊗Rw + vec (Rw) vec
H (Rw) .



3.D BAYESIAN AVERAGE IN FREQUENCY ESTIMATION 85

Appendix 3.D Bayesian average in frequency estimation

Let us assume that the scalar parameter λ is estimated from the following observation:

y = exp (j2πλdM )�Ax+w

where dM � [0, ...,M − 1]T and A stands for A (θ)|
θ=0. Therefore, the observation covariance

matrix is given by

R (λ) = E
{
yyH

}
= E (λ)�AAH +Rw

where E (λ) is defined as

[E (λ)]i,k = ej2πλ(i−k). (3.45)

Let us consider that the prior is uniform in the interval λ ∈ (−∆/2,∆/2] with ∆ ≤ 1. In

that case, it is possible to obtain closed-form expressions for those matrices appering in bopt

(3.16), Mmse (3.25) and, Mvar (3.30). The resulting expressions are listed next:

g = Eλ {g (λ)} = Eλ {λ} = 0

σ2
g = Eλ

{
λ2
}
= ∆2/12

R = E�AAH +Rw

Q = R∗ ⊗R+ (Eq −E∗ ⊗E)�AAH +Eq �AKAH

Q̃ =
[
Eq − vec (E) vecH (E)

]� vec
(
AAH

)
vecH

(
AAH

)
s = vec

(
Es �AAH

)
with

E � Eλ {E (λ)}
Eq � Eλ {E∗ (λ)⊗E (λ)}
Es � Eλ {E (λ)λ}

whose elements are given next [Vil03a]:

[E]i,k = sinc ((i− k)∆)

[Eq]i+Mj,k+Ml = sinc ((i− j + l − k)∆)

[Es]i,k =

{
0 i = k

j
2π(i−k) [sinc ((i− k)∆)− cos (π (i− k)∆)] i �= k

and the sinc (·) operator is defined as sinc (x) � sin(πx)/(πx) with sinc(0) = 1.
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Appendix 3.E Bias study in frequency estimation

In this appendix, the minimum bias solution is studied in detail for the frequency estimation

problem. The coefficients m � vec (M) minimizing the estimator bias in (3.19) have to satisfy

the minimum-bias constraints in (3.27). After some trivial manipulations, this equation can be

written as

Eν {B (ν)α∗ (ν)} = Eν {B (ν) ν} (3.46)

where B (ν) � A (ν)AH (ν) = E (ν/Nss)�AAH (Appendix 3.D) and

α∗ (ν) = (r (ν)− r)H m = Tr
{
BH (ν)M}−C

stands for the estimator mean value (3.7) as a function of the parameter ν and

C � Eν

{
Tr
{
BH (ν)M}}

is a constant term, which is independent of the parameter ν. Notice also that α (ν) is actually

real-valued despite the complex conjugation in (3.46), that is kept for the sake of generality.

Regarding the obtained minimum bias equation (3.46), it is straightforward to realize that

any unbiased estimator verifies (3.46). Unfortunately, the converse is not usually possible and

(3.46) supplies the least squares fitting of α (ν) to the ideal linear response α (ν) = ν within the

prior domain (i.e., |ν| < ∆/2).

Furthermore, if some elements of B (ν) are connected by an affine transformation, i.e.,

[B (ν)]i2,j2 = Ca [B (ν)]i1,j1 + Cb for any value of Ca and Cb, the system of equations in (3.46)

becomes underdetermined, as it was equation (3.27). Indeed, this is exactly what happens in

the frequency estimation case since the diagonal entries of B (ν) share the same phasor (3.45).

Thus, it is possible to reduce (3.46) to 2M − 1 equations corresponding to the diagonals of

B(ν). Nonetheless, the uppest and lowest diagonals are equal to zero if M > NssL with L the

effective transmitted pulse duration (in symbols). Therefore, the minimization of the estimator

bias requires to fulfill the following 2K + 1 equations:

Eν

{
α∗ (ν) ej2πνk/Nss

}
= Eν

{
νej2πνk/Nss

}
k ∈ [−K,K]

or, equivalently,∫ R/2

−R/2
V (f) ej2πfkdf = Nss

∫ R/2

−R/2
fej2πfkdf k ∈ [−K,K] (3.47)

where K � min (M,LNss)− 1, f � ν/Nss, R � ∆/Nss is the carrier uncertainty relative to the

Nyquist bandwidth and,

V (f)�Tr
{
BH (Nssf)M

}
=

K∑
k=−K

∑
i

[M]i,i+k [B
∗ (Nssf)]i,i+k

=
K∑

k=−K

(∑
i

[M]i,i+k

[
AAH

]∗
i,i+k

)
e−j2πfk
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Figure 3.10: Mean value of the frequency estimator corresponding to the minimum bias solution

for K=4 and 16.

is the Fourier transform of the sequence v[k] defined as

v[k] � F−1 {V (f)} =

⎧⎨⎩
∑
i
[M]i,i+k

[
AAH

]∗
i,i+k

|k| ≤ K

0 otherwise.
(3.48)

Notice that in (3.47) we have taken into account that α∗ (ν) = V (v/Nss)−C where C must

be null to guarantee the odd symmetry of the harmonic expansion of f in the right-hand side of

(3.47).

Thus, equation (3.47) states that the 2K + 1 central terms of the discrete Fourier series of

Nssf and V (f), filtered in the interval±R/2, must be identical in order to minimize the estimator

bias. Formally, this means that the sequence v[k] must be equal to the inverse discrete Fourier

transform of Nssf as stated in the next equation:

v[k] =
jNss

2πk

[
δ [k]− (−1)k

]
|k| < K

Ideally, if K were arbitrarily long, (3.47) would imply the identity of α (ν) and ν within the

prior interval |ν| < ∆/2 or, in other words,

V (f)|K→∞ = lim
K→∞

K∑
k=−K

v[k]e−j2πfk = Nssf |f | < R/2 (3.49)
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whatever the value of R. However, since K is finite and is limited by the transmitted pulse

duration L, the value at which the above Fourier series can be truncated without noticiable

distortion is a function of the ratio R = ∆/Nss; the smaller R, the less terms are required

for the same distortion of α (ν). In the limit (R → 0), the Taylor expansion of (3.49) around

f = 0 ensures that K = 1 is sufficient to hold exactly (3.49) with v [1] = −v [−1] = jNss/(2π).

Otherwise, if (3.49) is truncated taking too few elements, α (ν) will suffer from ripple and the

Gibbs effect, i.e., the overshooting at the discontinuity points |ν| = ±∆/2, as shown in Fig. 3.10

for the most critical situation in which R = 1.

Finally, notice that the effective duration L is inversely proportional to the effective signal

bandwidth. Because the minimum transmission bandwidth in bandpass communications is 1/T

Hz (i.e., 0% roll-off), it follows that the main lobe of the signal autocorrelation lasts 2T seconds

and, thus, in practice the Fourier series in (3.49) becomes truncated approximately at K = Nss

or, in the best case, at a few multiples of Nss.


