
Chapter 6

Case Studies

This chapter explores some illustrative applications in the context of digital communications.

The second-order estimation theory in the preceding chapters is developed for these selected

case studies. In most examples, the focus is on closed-loop second-order schemes assuming

that the small-error approximation is satisfied. The Gaussian ML estimator and the rest of ML-

based approximations are numerically compared to the optimal second-order small-error solution

in Chapter 4. Likewise, the related lower bounds in the presence of nuisance parameters are

included for completeness (Section 2.6.1).

In the first section, some contributions in the field of non-data-aided sychronization are

presented. Specifically, Section 6.1 proposes the global optimization of second-order closed-loop

synchronizers and the design of open-loop timing sycnronizers in the frequency domain. In

Section 6.2, the problem of second-order carrier phase synchronization is addressed in case of

noncircular transmissions. In this section, the ML estimator is shown to be quadratic at low

SNR for MSK-type modulations. Moreover, second-order self-noise free estimates are achieved

at high SNR exploiting the non-Gaussian structure of the digital modulation. In Section 6.3,

the problem of time-of-arrival estimation in wireless communications is studied. The frequency-

selective multipath is shown to increase the number of nuisance parameters and the Gaussian

assumption is shown to apply in this case study.

In Section 6.4, the classical problem of blind channel identification is dealt with. The channel

amplitude is shown to be not identifiable unless the transmitted symbols belong to a constant-

modulus constellation and this information is exploited by the estimator. Finally, the problem

of angle-of-arrival estimation in the context of cellular communications is addressed in Section

6.5. The Gaussian assumption is clearly outperformed for practical SNRs in case of constant-

modulus nuisance parameters and closely spaced sources. In this section, the importance of the

multiple access interference (MAI) is emphasized and MAI-resistant second-order DOA trackers

are derived and evaluated.
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6.1 Non-Data-Aided Synchronization

The problem of blind frequency estimation was adopted in the core of the dissertation —Chapters

3 and 4— to illustrate the most significant conclusions of this thesis. This choice was based on the

relevance of this problem in many applications and, the existence of closed-form expressions for

the feedforward frequency estimator considered in Chapter 3. In this section, some additional

contributions in the field of non-data-aided (NDA) digital synchronization are presented and

simulated.

To introduce the reader to the problem of digital synchronization, a brief review of the

state-of-the-art is provided in Section 6.1.1, in which the most successful timing and frequency

estimators are presented. Afterwards, in Section 6.1.2, the signal model for digital synchroniza-

tion is reviewed and some important remarks are made on the structure of the transfer matrix

A (θ). Based on this signal model, the performance of the most important NDA (quadratic)

timing estimators —for both linear and CPM modulations— is extensively evaluated via simu-

lation in Section 6.1.5. In this context, a closed-form expression for the optimal second-order

open-loop timing estimator is deduced by processing the received signal in the frequency domain

(Section 6.1.3). Another contribution of this section is the global optimization of closed-loop

estimators, showing that the discriminator should be designed to minimize the variance of the

low-pass noisy terms because the high-pass terms (e.g., the self-noise) are filtered at the loop-

filter (Section 6.1.4). Finally, all these results are validated via simulation in Section 6.1.5.

6.1.1 Overview

In digital communications, the receiver has to recover some reference parameters in order to

demodulate the received signal. These parameters are mostly the signal timing and, in band-

pass coherent communications, the carrier phase and the carrier frequency. The knowledge of

these parameters is necessary to synchronize the demodulator and take reliable decisions on the

transmitted symbols [Men97][Vaz00].

Despite the data symbols are a priori unknown, digital modulations exhibit a strict-sense

cyclostationarity that can be exploited to derive sufficient statistics for the estimation of the

aforementioned parameters. Thus, all the methods in the literature for non-data-aided (NDA)

timing and frequency estimation make use of the cyclostationarity property of the received signal

[Rib94].

As trying to exploit the entire statistics would be unpractical, two main directions have been

adopted in the development of practical algorithms. The first direction focuses on an explicit

exploitation of the second-order cyclostationarity [Gar86b][Rib94]. As a result, the algorithms

derived become quadratic with respect to the received signal. There are, at least, two motivations



6.1. NON-DATA-AIDED SYNCHRONIZATION 125

for choosing the second-order statistics. The first one is that it represents a minimum complexity

constraint. The other is that it allows extracting useful insights from the spectral correlation

concept [Gar86b], which is useful for guiding the designer in the derivation of synchronization

algorithms. Although all the above methods start from a solid theoretical foundation, the second

order constraint appears as an ad hoc selection, and the obtained methods are based on heuristic

reasoning. For the preliminary issues on cyclostationarity the reader is referred to [Gar94] and

references therein.

The second direction commonly adopted for the design of synchronization algorithms is

the application of the well-known maximum likelihood principle explained in Section 2.3

[Men97][Vaz00]. While the cyclostationary framework is useful for the derivation of both feed-

forward and feedback structures, the ML criterion leads primarily to feedback schemes (Section

2.5). With the purpose of deriving NDA methods, the data symbols should be modeled as

random variables following the stochastic approach introduced in Section 2.3. Then, the like-

lihood function should be obtained by averaging the joint likelihood function using the known

statistical distribution of the symbols. Additionally, the rest of unknown nuisance parameters

can also be averaged out following a Bayesian approach. The resulting NDA ML criterion is

referred to as the unconditional (or stochastic) maximum likelihood estimator in the literature

(Section 2.3).

Because the difficult computation of the mentioned statistical averages, it is very common

to consider that the signal-to-noise ratio of the received signal is very low (Section 2.4.1). Al-

though this low-SNR assumption is not generally satisfied, it allows the development of reduced

complexity synchronizers because the resulting schemes are usually quadratic in the observation.

A different interpretation of the NDA ML estimation is given in [Vaz00][Vaz01][Rib01a]. The

new approach is based on the compression of the NDA ML function with respect to the vector of

unknown symbols by adopting a linear estimation of these symbols. This approach is valuable

because it unifies the different ML-based NDA solutions, namely the Low-SNR UML (Section

2.4.1), the Conditional ML (Section 2.4.2) and the Gaussian ML (Section 2.4.3).

In the following sections, the most important NDA synchronization techniques are briefly

described and classified. For more information, the reader is referred to the excellent textbooks

and historical reports on digital synchronization [Men97][Mey90][Gar88a][Gar90].

Timing Sychronization

One of the simplest algorithms exploiting the cyclostationarity property for timing estimation

is the well-known Filter and Square Timing Recovery proposed in [Oer88] by M. Oerder and H.

Meyr. This feedforward timing synchronizer is based on an explicit spectral line regeneration

using quadratic processing. The Oerder&Meyr synchronizer was proved in [LS05a][Vaz00] to be
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the low-SNR ML timing estimator if the carrier frequency error is uniformly distributed within

the Nyquist bandwidth and the received symbols are uncorrelated. Likewise, the Oerder&Meyr

synchronizer yields also the low-SNR ML solution in the absence of frequency errors as shown

in [LS05a][Vaz00].

On the other hand, the application of the ML principle along with the approximation of low-

SNR and some additional simplifications, has led to well-known closed-loop estimators such as

the NDA Early-Late detector [Men97, Sec. 8.3.1.] and the Gardner’s detector [Gar86a], which

is shown to outperform the NDA Early-Late detector at high SNR.

A common problem of the existing NDA timing error detectors is the presence of the so-

called self-noise (or pattern-noise) [Men97]. Self-noise is the timing jitter induced by the random

received symbols. Indeed, this self-noise is a consequence of the adopted low SNR approximation.

The occurrence of self-noise yields a high SNR floor on the timing estimation variance that might

invalidate these techniques for the medium-to-high SNR range. This problem was addressed in

detail in [And96]. In this paper, the authors proposed to pre-filter the received signal before

detecting the timing error.

Finally, more recent research efforts have been concerned with timing recovery for Continuous

Phase Modulation (CPM) [Men97][Vaz00]. These modulation schemes are attractive for their

high spectral eficiency and constant envelope nature, which allows the use of low-cost, nonlinear

amplifiers. The ML principle along with the low-SNR approximation has been also applied in

this case, leading to timing recovery detectors very similar to those derived for a linear format.

Carrier-frequency synchronization

The structure of the frequency synchronizers highly depends on the magnitude of the maximum

frequency offset as compared with the symbol rate. Early methods for feedback frequency

recovery in the case of high frequency offset include quadricorrelators [Cah77][Gar88a] and dual

filter detectors [Alb89][Gar88a], which have been proved to be equivalent solutions [Moe92]. The

rotational detectors for estimating moderate frequency offsets with no timing uncertainty were

introduced in [Mes79]. Other ad hoc schemes were proposed in [Sar88] and [Chu91] for the same

problem.

The first rigorous treatment of the problem starting from a ML perspective can be found in

[Gar90]. The frequency recovery methods developed under this framework also make use of the

low-SNR approximation. However, the resulting low-SNR ML frequency error detectors become

self-noise free if the timing is known. Self-noise appears only when the estimator does not use

the timing information [Men97, Sec. 3.5.] and ad hoc techniques for eliminating this effect has

been proposed in [Alb89] and [And93].
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6.1.2 Signal Model

In this section, the signal model used in the context of digital communications is presented in

detail. It is shown that most modulations of interest can be represented by means of the linear,

vectorial model presented in Section 2.4. Let us start formulating the complex envelope of a

generic digital modulation as follows:

y(t) = s(t− τ ;dk)e
j(ϕ+ωt) +w(t) (6.1)

where {dk} are the information symbols conveyed in the transmitted signal s(t), τ is the timing

error within a symbol period (−T/2,+T/2], ϕ and ω are the carrier phase and the carrier

pulsation errors, respectively, and w(t) is the complex AWGN term with double-sided power

spectral density Sw(f) = 2No Watts/Hz.1

If the received signal is low-pass filtered in the Nyquist bandwidth (−0.5/Ts, 0.5/Ts], the

equivalent discrete signal model is given by

y(mTs) = s(mTs − τ ;dk)e
j(ϕ+ωmTs) +w(mTs) (6.2)

where Ts is the sampling period. Under this sampling condition, the discrete noise w(mTs)

remains white.

A first case of interest are those linear modulations admiting the following representation:

y(mTs) =
+∞∑

k=−∞

dkp(mTs − kT − τ)ej(ϕ+ωmTs) +w(mTs) (6.3)

where T = NssTs is the symbol period and, p(mTs) are the samples of the pulse p(t), which is

supposed to last L symbol intervals. If we take M � NsNss samples to estimate the unknown

parameters, the n-th observed vector

yn � [y(nT ), . . . , y(nT + (M − 1)Ts)]
T

is given by

yn = A(θ)xn +wn (6.4)

where the transfer matrix

A(θ) �

⎡⎢⎢⎣
ej(ϕ+nωT )p((L− 1)T − τ ) · · · ej(ϕ+nωT )p((1−Ns)T − τ)

...
. . .

...

ej(ϕ+(n+(M−1)/Nss)ωT )p((L+Ns − 1)T − Ts − τ) · · · ej(ϕ+(n+(M−1)/Nss)ωT )p(T − Ts − τ)

⎤⎥⎥⎦
1The in-phase and quadrature two-sided power spectral density is No W/Hz.
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Figure 6.1: Structure of the transfer matrix A(θ) in a burst or continuous transmission.

is a function of the normailzed vector of parameters

θ � [ϕ, τ/T,ωT/2π]T ,

the vector xn � [dn−L+1, . . . , dn+Ns−1]
T contains the observed data symbols, and the receiver

noise wn is defined in the same way than the vector yn. The phase origin can be arbitrarily

selected. For instance, a practical choice is the center of the observed interval.

In this section, we will focus on the timing and frequency estimation problems assuming

that the signal phase is unknown. In that case, the term ejϕ can be integrated into the nuisance

parameter vector xn and non-coherent (i.e., quadratic) estimation techniques are adopted.

Implicitly, a single channel per carrier (SCPC) system is assumed throughout this thesis in

which a continuous, infinite stream of symbols is received (6.3). In that case the initial L − 1

and final L− 1 symbols are partially observed and, consequently, the modulation matrix A(θ)

has Ns + L− 1 columns and only NsNss rows. Therefore, oversampling (Nss > 1) is normally

necessary to have more samples than unknowns, i.e.,

NsNss > Ns + L− 1.

This condition is usually a requirement to cancel out the disturbance of the modulation and yield

self-noise free estimates of θ. The structure of matrix A(θ) is depicted in Fig. 6.1 (right-hand

side) and its Grammian is a function of τ and ω as indicated next[
A(θ)AH(θ)

]
m1,m2

= ejω(m1−m2)Ts

∞∑
k=−∞

p(m1Ts − kT − τ)p(m2Ts − kT − τ ).

On the other hand, a burst of K symbols is transmitted in a time-division multiple access

(TDMA) system. In that case, the observation is composed of (K +L)Nss−1 non-zero samples



6.1. NON-DATA-AIDED SYNCHRONIZATION 129

and, thus, oversampling is not strictly necessary if the received burst is integrally processed. In

a TDMA system the matrix A(θ) is Sylvester (see Fig. 6.1) and, if the transmitted pulse is

sampled without aliasing, we have that[
AH(θ)A(θ)

]
k1,k2

= Rpp ((k1 − k2)T )

where Rpp (∆t) �
∫
p(t)p(t + ∆t)dt is the pulse autocorrelation. Therefore, AH(θ)A(θ) does

not depend on θ.

Synchronization algorithms for SCPC systems has to cope with the partial observation of

the initial and final symbols. Optimal synchronizers weight the observed samples taking into

account that the initial and final symbols provide less information about θ than the central

ones. The larger is the observation time (Ns) the less significative is this “edge effect”. This

problem is very relevant, for example, in the carrier phase estimation problem studied in Sec-

tion 6.2. Asymptotically, the “edge effect” is negligible and the synchronization techniques for

SCPC systems are identical to those derived for TDMA systems. Thus, in the asymptotic case

synchronizers can be designed considering uniquely the central column of A(θ) (Section 7.4.4).

The linear model in equation (6.3) can be extended to encompass more sofisticated scenarios

such as multicarrier schemes, multiple access systems, space-time transmissions, or binary CPM

modulations on account of the Laurent’s decomposition [Lau86][Men95]. In all these cases, the

received signal can be expressed as the superposition of J linearly modulated signals as follows

y =
J∑

j=1

Aj (θj)xj +w = A (θ1, ...,θJ)x+w

with

A (θ1, ...,θJ)� [A1 (θ1) , ...,AJ (θJ)]

x�
[
xT
1 , ...,x

T
J

]T
where the index n is omitted for simplicity and θj stands for the parameters of the j-th user

in case of a multiple access system. The basic difference with respect to (6.3) is that the J

signals are usually non-orthogonal and, thus, they interfere each other if we deal with space-

time transmissions [Vil03c], asynchronous CDMA users or, binary CPM signals. Moreover, the

J pseudo-pulses of the CPM signal suffer from intersymbol interference (ISI) at their matched

filter output. All these terms of interference introduce an additional noisy component affecting

the estimator performance at high SNR and yielding the so-called self-noise.

6.1.3 Open-Loop Timing Synchronization

In Chapter 3, the formulation of the optimal open-loop second-order estimator was addressed.

In that chapter, the parameters of interest were modeled as random variables with known prob-

ability density function fθ (θ). Then, the estimator coefficients were optimized averaging the
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estimator bias and variance with respect to the prior fθ (θ). The Bayesian expectation was

solved analytically for the problem of frequency estimation in Section 3.4 and some simulations

were presented to illustrate the theory of feedforward quadratic estimation.

Unfortunately, in most problems, the expectation with respect to fθ (θ) must be solved

numerically as, for example, when addressing the problem of timing sychronization. To overcome

this drawback, in this section we propose to process the received signal in the frequency domain

where the timing error appears as a frequency shift. In that way, the formulation in Section 3.4

can be applied to both the frequency and timing estimation problems.

Let z be the DFT of the observed vector y, which is computed as

z � Fy = FA (θ)x+Fw,

where F stands for the unitary M ×M DFT matrix defined as follows:

F �
1√
M

exp

(
−j

2π

M
dMdT

M

)
with dM � [−M/2, . . . ,M/2− 1]T . Notice that MTs must be greater than the burst duration

plus twice the maximum delay to prevent the existence of temporal aliasing.

In the frequency domain, the transfer matrix can be written as

B (θ) � FA (θ) = ejϕE2 (τ)FE1 (ν)A (0) (6.5)

with

E1 (ν)�diag

[
exp

(
j2π

ν

Nss
dM

)]
E2 (τ)�diag

[
exp

(
−j2π

τNss

M
dM

)]
the diagonal matrices accounting for the frequency and timing error, normalized with respect to

the symbol period T . In that way, the observation z exhibits the same phasorial dependence on

the three parameters ϕ, τ and ν. Therefore, the results in Appendix 3.D can be used to obtain

a closed-form expression for the optimal quadratic open-loop timing sychronizer.

Notice that optimal estimators can be obtained from z = Fy since F is a unitary transfor-

mation that can always be inverted —if necessary— by the estimator matrix M without having

noise enhancement. Moreover, the transformation does not change the noise statistics if the

original Gaussian noise w is spectrally white.

To conclude, it is worth realizing that (6.5) is only held if all the received pulses are entirely

observed. Otherwise, those partially observed pulses cannot be interpolated from the vector of

samples y because they do not satisfy the Nyquist criterion. Thus, the above expression can be

applied to design open-loop estimators if the entire burst —including the pulse tails— is captured

and processed in a TDMA system or, alternatively, if the observation time is sufficiently large

to neglect the “edge effect” in SCPC systems (Section 6.1.2).
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6.1.4 Closed-Loop Analysis and Optimization

In Chapter 4, the optimum second-order small-error estimator was deduced and then simu-

lated for the frequency estimation problem. The solution therein can be adopted to design the

discriminator of NDA timing and frequency closed-loop synchronizers. In this manner, the dis-

criminator coefficients are selected to minimize the steady-state variance at the discriminator

output. However, this optimization criterion is not taking into account that the discriminator

output is further lowpass filtered by the loop impulse response. For example, an exponential

filtering is carried out in case of a first-order closed-loop. When the discriminator output is tem-

porally uncorrelated, this standard procedure is globally optimal and the estimator variance is

computed as the discriminator variance divided by the effective loop filter memory N ≈ 0.5/Bn

where Bn is the noise equivalent loop bandwidth. This case corresponds to the closed-loop es-

timator in Section 2.5.1 processing independent blocks zn. However, if the detected errors are

correlated because overlapped blocks of the received signal are processed, the estimator variance

is no longer divided by N and the standard procedure for designing the discriminator is subop-

timal. Remember that overlapping is generally required to have efficient closed-loop estimators

(see Proposition 2.1).

In this section, the small-error variance of any quadratic NDA closed-loop estimator is for-

mulated analytically. This expression is then optimized to find the optimal discriminator coef-

ficients. Some numerical results for the timing estimation problem are provided comparing the

aforementioned design criteria. Notice that the formulation is absolutely general and can be ap-

plied to other uniparametric and multiparametric second-order estimation problems. Also, the

results in this section are useful in the context of open-loop estimation (Chapter 3) if the param-

eter estimates are post-filtered. In that case, the Bayesian expectation should be incorporated

into all the following expressions.

The output of any quadratic discriminator of α = g(θ) can be expressed as

en � α̂n − g (θo) = MH (r̂n − ro) (6.6)

where M are the discriminator coefficients under design, r̂n is the (vectorized) sample covariance

matrix for the n-th observed block and, ro is the expected value of r̂n for any value of n. The

sequence en is strict-sense stationary with zero mean and covariance MHQ0M where

Q0 � E
{
(r̂n − ro) (r̂n − ro)

H
}

is the covariance matrix of the quadratic observation r̂n (3.10). The meaning of subindex in Q0

will be explained next. Let us remind the reader that the discriminator coefficients minimizing

the variance of en were found in Section 4.2.

Let us consider now that hn is the loop infinite impulse response. In that case, the estimation
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errors are given by

εn �

∞∑
k=0

hken−k =
∞∑
k=0

hkM
H (r̂n−k − ro) = MH

∞∑
k=0

hk (r̂n−k − ro)

that is a strict-sense stationary zero-mean sequence with covariance

E
{
εnε

H
n

}
= MH

(
∞∑

m=−∞

Rhh [m]Qm

)
M

where Rhh [m] �
∑∞

k=m hkhk−m is the autocorrelation function of the filter hn and

Qm � E
{
(r̂n − ro) (r̂n−m − ro)

H
}

stands for the “vectorial autocorrelation function” of the quadratic observation r̂n evaluated at

the m-th lag. Thus, Q0 stands for Qm at m = 0.

Notice that Qm is defined for lags |m| ≤ D where D stands for the number of consecutive

statistically-dependent blocks. In that way, the covariance of the estimation error is

E
{
εnε

H
n

}
= MH

(
D∑

m=−D

Rhh [m]Qm

)
M ≈ EhM

H

(
D∑

m=−D

Qm

)
M

where Eh � Rhh [0] =
∑∞

k=0 h
2
k is the filter impulse response energy. In the last approximation,

we have taken into account that the bandwidth of hn is very small and, therefore, Rhh [m] is

approximately flat for |m| ≤ D. Finally, notice that Eh = 1/N ≈ 2Bn where N and Bn are

the effective loop memory and the noise equivalent loop bandwidth, respectively, assuming that∑∞
k=0 hk = 1 is verified to have unbiased estimates (Section 2.5.2).

In the last equation, the variance of any quadratic (unbiased) closed-loop estimator is given

by

E
{
εnε

H
n

}
= MHQoptM

where the fourth-order matrix Qopt is given by

Qopt �

D∑
m=−D

Rhh [m]Qm ≈ Eh

D∑
m=−D

Qm =
1

N

D∑
m=−D

Qm.

and, therefore, the optimal solution is the one deduced in Section 4.2 with Qo = Qopt instead

of Qo = Q0. Thus, the optimal and original second-order discriminators are

Mopt =Q−1
optDr

(
DH

r Q−1
optDr

)#
DH

g

M0 =Q−1
0 Dr

(
DH

r Q−1
0 Dr

)#
DH

g ,

respectively.
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Figure 6.2: Timing error variance with and without loop optimization for different number of

samples M in case of the QPSK modulation with roll-off 0.1 and Nss = 2. The same curves are

obtained for QAM and MPSK.

If Ree[m] and See(f) =
∑

mRee[m]e−j2πfm stand for the autocorrelation and the power

spectrum of the error sequence en in (6.6), we can affirm that the optimal discrimina-

tor Mopt minimizes See(0) =
∑

mRee[m] whereas the original discriminator M0 minimized

Ree[0] =
∫ 1/2
−1/2 See(f)df. This means that the optimal discriminator should filter out the very

low-frequency errors and let the loop filter to cancel out the high-frequency errors. This fact

becomes relevant at high SNR because the self-noise is actually a highpass disturbance.

Unfortunately, this desirable aim is severely limited by the unbiased constraint and minor

gains have been observed for practical SNRs, at least for the symbol synchronization problem.

In Fig. 6.2 and 6.3, it is shown how the self-noise can be reduced at high SNR in case of MPSK

and QAM transmissions with small roll-off pulse shaping. On the other hand, if some bias is

accepted, the discriminator could adopt a more highpass response in order to reduce the ultimate

variance in low-SNR scenarios following the Bayesian formulation in Chapter 3.

6.1.5 Numerical Results

The carrier estimation problem was adopted in Sections 3.4 and 4.5 to illustrate the theory

of second-order optimal estimation in the field of digital communications. Simulations were

provided comparing the optimal solution with the classical ML-based estimators as well as the
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Figure 6.3: Timing error variance with and without loop optimization for Nss equal to 4, 6 and

8 in case of the QPSK modulation with roll-off 0.1 and M=4.

unconditional and modified CRB. To complement these results, some simulations are presented

in this section for the problem of digital clock recovery.

Closed-loop timing synchronization

The optimal second-order timing estimator is compared to the GML and the low-SNR UML.

The NDA Early&Late [Men97, Sec. 8.5.2.], Gardner’s [Gar86a], Oerder&Meyr’s [Oer88] syn-

chronizers are also simulated because they are actually the most usual timing sychronizers in

practical implementations (Fig. 6.4 and 6.5). Notice that the three algorithms are based on

the low-SNR approximation and, therefore, they suffer from self-noise at high SNR. A first-

order closed-loop is simulated with the (normalized) noise equivalent loop bandwidth set to

Bn = 5× 10−3 (i.e., N = 100 symbols). All the Es/N0 values are simulated assuming that the

small-error condition is verified. Finally, the CML estimator is not simulated because, in the

considered scenario, there are more nuisance parameters than observed samples, i.e., M = 4 and

K = 11.

The Gaussian assumption is found to yield optimal timing synchronizers for those linear

modulations, such as QAM and MPSK, for all the simulated SNR (Fig. 6.4 and 6.5). On the

other hand, simulations for the MSK modulation have shown a minor improvement for medium-

to-high SNRs [Vil01b], as illustrated in Fig. 6.6. In the same plot, the optimal fourth-order
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Figure 6.4: Normalized timing variance for the low-SNR ML and GML estimators as well as

the EL (Early&Late), OM (Oerder&Meyr) and Gardner’s symbol sychronizers. The simulation

parameters are; 16-QAM, roll-off 0.75, Nss=2 (Nss=4 for the Oerder&Meyr), M = 2Nss and,

Bn = 5 · 10−3. The shaping pulse and the associated matched filter are truncated at ±5T .

detector designed in [Vil01b] is simulated showing that higher-order methods are only able to

outperform second-order techniques at high SNR.

Open-loop timing synchronization

Some simulations are also presented in Figs. 6.7-6.12 for the open-loop timing synchronizer.

The second-order minimum variance (Mvar) and MMSE (Mmse) estimators proposed in Section

3 are compared with the closed-loop estimator formulated in Section 4. The timing is estimated

from a burst of K = 4 symbols. Simulations are run for the 16-QAM and MSK modulations. In

the first case the transmitted pulse is a square-root raised cosine with roll-off 0.75 and duration

5T . The sampling rate is twice the symbol rate, i.e., Nss = 2. The normalized timing error is

modeled as a uniform random variable in the interval ±∆/2. Notice that in a TDMA system

the range of ∆ is extended to ±Ns with Ns the burst duration in symbols. The reason is that we

are actually dealing with a semiblind estimation problem since those symbols before and after

the burst are known to be null.

In Fig. 6.7 the normalized MSE is plotted as a function of the timing error for ∆ = 1,

K = 4 and Es/N0=10dB. It can be shown that the MMSE is able to outperform the minimum

variance estimator because it is not forced to yield unbiased estimates within the prior range,
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Figure 6.5: Normalized timing variance for the low-SNR ML and GML estimators as well as

the EL (Early&Late), OM (Oerder&Meyr) and Gardner’s symbol sychronizers. The simulation

parameters are; 16-QAM, roll-off 0.25, Nss=2 (Nss=4 for the Oerder&Meyr), M = 2Nss and,

Bn = 5 · 10−3. The shaping pulse and the associated matched filter are truncated at ±5T .

i.e., ±∆/2 = ±1/2. On the other hand, the closed-loop estimator is optimized for τ = 0 but its

performance degrades rapidly when the timing error approaches the prior limits at τ = ±∆/2.

The estimators mean response as well as their squared bias is simulated in Fig. 6.8 and Fig.

6.9, respectively. It is shown that bias is easily cancelled for ∆ = 1 since it is a small fraction of

the burst duration, which is equal to 8 symbols in the simulated scenario.

Some additional conclusions can be drawn from these simulations:

• In noisy scenarios, the loss incurred by open-loop estimators becomes negligible when

compared to the performance of closed-loop estimators (Fig. 6.7). On the other hand,

closed-loop estimators are superior at high SNR as shown in Fig. 6.10.

• The minimum variance and MMSE open-loop estimators converge when the SNR is aug-

mented for the MSK modulation (Fig. 6.11). On the other hand, self-noise is observed at

high SNR for the 16-QAM constellation (Fig. 6.12). In that case, the MMSE estimator

outperforms the minimum variance solution because it introduces some bias in order to

reduce the self-noise variance.
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Figure 6.6: Normalized timing variance for the ML-based estimators for the MSK modulation

with Nss=2, M=4 and, Bn = 5 · 10−3.

• The Gaussian assumption leads to suboptimal open-loop sychronizers at high SNR (Figs.

6.11 and 6.12). Regarding the MSK simulation, the Gaussian assumption avoids having

self-noise free timing estimates (Fig. 6.11).

Some of the results in this section were presented for the first time in the IEEE International

Workshop on Statistical Signal Processing that was held in Singapore in 2001 [Vil01a]. This

work was further elaborated in [Vil02b] and presented in the IEEE Global Communications

Conference that was held in Taipei in 2002:

• “Best Quadratic Unbiased Estimator (BQUE) for Timing and Frequency Synchroniza-

tion”. J. Villares, G. Vázquez. Proceedings of the 11th IEEE International Workshop on

Statistical Signal Processing (SSP01). pp. 413-416. Singapore. August 2001.

• “Sample Covariance Matrix Based Parameter Estimation for Digital Synchronization”. J.

Villares, G. Vázquez. Proceedings of the IEEE Global Communications Conference 2002

(Globecom 2002). November 2002. Taipei (Taiwan).
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Figure 6.7: Normalized timing MSE for the MMSE, minimum variance and closed-loop second-

order estimators for K = 4 and Es/No=10dB. The average MSE for the three estimators is

included inside round brackets.
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Figure 6.8: Estimation mean response for the MSE for the MMSE, minimum variance and

closed-loop second-order estimators for K = 4 and Es/No=10dB.
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Figure 6.9: Normalized timing squared bias for the MMSE, minimum variance and closed-loop

second-order estimators for K = 4 and Es/No=10dB. The average BIAS for the three estimators

is included inside round brackets.
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Figure 6.10: Normalized timing MSE for the MMSE, minimum variance and closed-loop second-

order estimators for K = 4 and Es/No=40dB. The average MSE for the three estimators is
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Figure 6.11: Normalized timing MSE for the MMSE (Mmse) and minimum variance (Mvar)

second-order estimators for the MSK modulation when K = 4 and ∆ = 1. The suboptimal

estimators deduced under the Gaussian assumption are also plotted.
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Figure 6.12: Normalized timing MSE for the MMSE (Mmse) and minimum variance (Mvar)

second-order estimators for the 16-QAM modulation when K = 4 and ∆ = 1. The suboptimal

estimators deduced under the Gaussian assumption are also plotted.
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6.2 Carrier Phase Synchronization of Noncircular Modulations

Coherent demodulation of continuous phase modulations (CPM) requires knowledge of the phase

and frequency of the received carrier. Self-synchronizing techniques are normally preferred

because they avoid the transmission of inefficient training sequences. Moreover, non-data-aided

(NDA) algorithms are more appropriate in noisy scenarios because they do not rely on unreliable

decisions but on the statistical structure of the received waveform [Men97].

In the synchronization field, the Laurent’s expansion (LE) has been frequently used to derive

synchronization techniques for CPM receivers [Men97][Vaz00][Mor00]. The LE is interesting

because it allows expressing the non-linear CPM format as the summation of a finite number of

pulse amplitude modulated (PAM) signals [Lau86][Men95]. Thus, all the extensive literature on

synchronization and parameter estimation for linearly modulated signals can be reused [Rib01b].

On the other hand, the LE allows building scalable schemes considering uniquely the most

powerful components of the decomposition [Mor00].

Focusing on the carrier phase estimation problem, Mengali et al. derived in [Men97, Sec.

6.6.2] the ML NDA carrier phase synchronizer under the low SNR assumption for MSK-type

modulations (e.g., MSK, LREC, LRC, GMSK) [Men97]. The obtained solution was shown to

be quadratic in the data. This is actually a unique feature of MSK-type signals because higher

order techniques are required for NDA carrier phase synchronization in case of linear modulations

[Ser01][Moe94] as well as general CPM signals.

Based on the LE, this property can be justified because the pseudo-symbols are not circular

[Pic94] in case of MSK-type modulations and, therefore, the square of the received signal is not

zero-mean and offers information about the parameter of interest [Moe94]. Finally, note that

the N-th power synchronizer studied in [Moe94] can still be applied to MSK-type modulations

although it will be inefficient at low SNR, as stated previously, and will not attain the Cramér-

Rao bound (CRB) either when the SNR tends to infinity because CPM modulations suffer from

intersymbol interference (ISI).

From this background, in Section 6.2.2, the low-SNR ML estimator has been reformulated

using vectorial notation and the Laurent’s decomposition. The subsequent analysis of the low-

SNR approximation at high SNR in Section 6.2.3 reveals the existence of a significant variance

floor due to the so-called self-noise, that is, the variability caused by the own modulation in

NDA schemes. This floor is inappreciable when the observation is sufficiently large but it is

determinant for short samples.

This drawback motivated the design of second-order self-noise free schemes minimizing the

aggregated contribution of thermal plus pattern noise for a given SNR. The proposed second-

order optimal synchronizer is deduced in Section 6.2.4 and its asymptotic study is presented in
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Section 6.2.5 concluding that, with partial-response signals, some data patterns make the carrier

phase unidentifiable if self-noise corrupted estimates are not tolerated. The estimator failure has

been related to the singularity of the modulating matrix in partial-response signals. Anyway,

although the above circumstance might slow down the parameter acquisition in a closed-loop

implementation, self-noise free estimates are guaranteed after convergence. To conclude, the

above statements are checked via simulation in Section 6.2.6.

The results of this section were presented in the IEEE International Conference on Commu-

nications that was held in Paris in 2004 [Vil04b]:

• “Self-Noise Free Second-Order Carrier Phase Synchronization of MSK-Type Signals”, J.

Villares, G. Vázquez, Proc. of the IEEE International Conference on Communications

(ICC 2004). June 2004. Paris (France).

6.2.1 Signal Model

The Laurent’s expansion (LE) allows the representation of binary CPM signals as the sum of a

few PAM waveforms [Lau86][Men97]. This transformation is adopted in this section in order to

formulate carrier phase synchronizers for the nonlinear CPM format. It was shown in Section

6.1.2 that the complex envelope of the sampled CPM signal is given by

y = ejθo
J−1∑
j=0

Ajxj +w = ejθoAx+w (6.7)

where θo is the unknown carrier phase that must be estimated, xj the pseudo-symbols from the

j-th component of the Laurent’s expansion having contribution into the observation y, Aj the

associated modulating matrix formed from the j-th pseudo-pulse coefficients and, w the vector

of AWG noise. The J components of the LE expansion are stacked in the following manner:

x =
[
xT
0 , . . . ,x

T
J−1

]T
A = [A0, . . . ,AJ−1] .

In order to simplify the study, the following assumptions are taken in the following; 1) the

receiver has perfect timing and frequency-offset synchronization; 2) the CPM modulator has

achieved the steady-state; 3) the focus is on MSK-type signals for which the modulation index

is h = 0.5 and hence the carrier phase shifts are equal to ±π/2; 4) θo ∈ (−π/2, π/2] in order to

avoid the inherent ambiguity of quadratic methods [Men97]. Additionally, the study is carried

out for a continuous transmission system as explained in Section 6.1.2. This point is specially

relevant because some of the concluding remarks are a consequence of the continuous mode

model.
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6.2.2 NDA ML Estimation in Low-SNR Scenarios

In this section, the ML principle is applied to find the optimum estimator of θo when the SNR

is asymptotically low. As it was stated in Section 2.3, the ML estimator is the maximizer of the

following cost function:

fy(y; θ) = CEx

{
exp
(
−σ−2

w ‖y− ejθAx‖2
)}

∝ Ex

{
exp
(
σ−2
w χ(y;x, θ)

)}
(6.8)

where C is an irrelevant constant, Ex{·} the expectation with respect to the pseudo-symbols

distribution, σ2
w the variance of the noise samples and

χ(y;x, θ) � 2Re(e−jθxHAHy) (6.9)

is the term in the exponent of (6.8) that depends on θ.

Unfortunately, the expectation with respect to x normally complicates the calculation of

a closed-form for fy(y; θ). To overcome this obstacle, the likelihood function (6.8) is usually

evaluated assuming that the SNR tends to zero, that is, σ2
w → ∞. Following this reasoning,

Mengali deduced in [Men97, Sec. 6.6.2] the low-SNR ML estimator of θo directly from the

angular signal model in case of MSK-type signals.

Next, an alternative deduction is provided from the vectorial model in Section 6.2.1. In

contrast to [Men97, Sec. 6.6.2], the obtained ML solution is exact even if the observation is

short. Notice too that [Men97, Sec. 6.6.2] approximates the squared CPM signal (averaged

with respect to the data) by means of the first harmonic of its Fourier series in order to yield a

low-cost implementation based on transversal filtering. It can be shown that this approximation

is only exact for LREC signals in which the frequency pulse is rectangular.

The deduction is initiated expanding the logarithm of (6.8) in a Taylor series at σ−2
w = 0,

having that

ln fy(y; θ) � 1

2
σ−4
w Ex

{
χ2(y;x, θ)

}
except for some irrelevant additive constants (see Section 2.4.1). Then, computing the above

expectation, it results that

ln fy(y; θ) � σ−4
w Re

(
Tr(RH(θ)R̂)

)
(6.10)

where the improper sample covariance matrix,

R̃ � yyT , (6.11)

constitutes a sufficient statistic for the estimation of θo in the studied low-SNR scenario (Section

2.4.1) and

R(θ) � E
{
R̃
}
= ej2θAΓAT � ej2θR
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stands for its expected value evaluated at θ with Γ � Ex

{
xxT

}
the improper covariance matrix

of the pseudo-symbols.

Notice that the quadratic form Tr
(
RHR̃

)
= yTRy is the minimal sufficient statistic

[Kay93b] in the studied low SNR scenario. It is worth noting that it is possible to estimate

the carrier phase from the second-order statistics because the pseudo-symbols x do not hold the

circular property [Pic94] (i.e., Γ �= 0), as it happens in case of linear modulations.

Finally, the log-likelihood gradient is given by

∇(y; θ) �
∂

∂θ
ln fy(y; θ) = 2σ−4

w Im
{
Tr(RH(θ)R̃)

}
(6.12)

which is in-quadrature with the likelihood function in (6.10) and vanishes for

θ̂ =
1

2
arg
{
Tr(RHR̃)

}
=

1

2
arg
{
x̂TΓx̂

}
(6.13)

where x̂ � AHy stands for the detected pseudo-symbols at the matched filter output [Vaz00].

The existence of an analytical solution is exceptional and an iterative algorithm is normally

required to seek for the maximum of the log-likelihood function (e.g., in timing and carrier fre-

quency synchronization [Vaz00][Men97]). Anyway, even if we have a closed-form solution (6.13),

gradient-based algorithms (Section 2.5) allow the design of closed-loop schemes for tracking the

parameter of interest in time-varying scenarios (Section 2.5). In that case, the CRB theory

(Section 2.3) guarantees that the following recursion

θ̂n+1 = θ̂n + I−1(θ̂n)∇(y; θ̂n) (6.14)

attains asymptotically (M → ∞) the CRB after convergence to the true parameter, i.e., θ̂n � θo

[Kay93b]. Hence, the asymptotic variance of both the open-loop estimator in (6.13), and its

closed-loop implementation in (6.14), is given by

var(θ̂) � E
∣∣∣θ̂ − θo

∣∣∣2 = I−1 � CRB (6.15)

where

I � −E

{
∂

∂θ
∇(y; θ)

∣∣∣∣
θ=θ0

}
= E{∇2(y; θ0)} = 4σ−4

w Tr(RHR) (6.16)

stands for the Fisher’s information [Kay93b] at low SNR, that is found to be independent of θo.

Notice that the second-order derivative computed in (6.16) normalizes the scoring algorithm in

(6.14) to yield unbiased estimates in the small-error regime (θ̂n � θo).

Remark: equation (6.15) predicts the variance of the open-loop estimator in (6.13) if and

only if the asymptotic (or small-error) condition holds true and, thus, (6.13) works in the linear

region of the arg{·} function. Otherwise, (6.13) becomes biased and the CRB theory fails. For

instance, at low SNR, the CRB is proportional to σ4
w (6.15) whereas the variance of (6.13)

is limited to π2/12 bearing in mind that |θ̂| < π/2 (Fig. 6.13). Nonetheless, the small-error

assumption always applies at high SNR even for short samples.
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6.2.3 High-SNR Analysis: Self-noise

The main drawback of the low-SNR approximation is that it usually suffers from self-noise at

high SNR when the sample is finite [Vaz00]. The reason is that the pseudo-pulses of the Laurent’s

expansion are not ISI-free, that is,AHA �= IK , even in case of full-response CPM formats such as

MSK. Consequently, the variance of (6.13) presents a high-SNR floor. In this section, this floor

is characterized and, afterwards, second-order self-noise free phase synchronizers are designed

in Section 6.2.4.

First of all, let us compute the asymptotic variance of (6.13) for an arbitrary value of the

SNR. This is done evaluating the variance of (6.14) in the steady-state (θ̂n � θo) obtaining, after

some tedious manipulations (Appendix 6.A), that

var(θ̂) = I−2E{∇2(y; θ0)} = 2σ−8I−2rHQr =
rHQr

8Tr2(RHR)
(6.17)

where r � vec(R) stands for the column-wise stacking of R, and Q is the fourth-order moments

matrix given by

Q = 2R⊗R+AKAT , (6.18)

that extends the formulation in Chapter 3 to noncircular constellations with the following set

of definitions:2

R � E
{
yyH

}
= AAH + σ2

wIM

A � A⊗A

K � Γ̃− 2P
P � 1

2(IK2+K)

Γ̃ � Ex

{
vec(xxT ) vecH(xxT )

}−Ex

{
vec(xxT ) vecT (xxT )

}
(6.19)

where K is the commutation matrix that is implicitly defined as the matrix holding that

vec(XT ) = K vec(X) for any matrix X [Mag98, Sec. 3.7]. Likewise, P is the orthogonal projec-

tor onto the subspace that contains the vectorization of any symmetric matrix, i.e., vec(X) with

X = XT [Mag98, Sec. 3.7]. It can be shown that both r and Γ̃ lie in this subspace. The matrix

Γ̃ is specific of the actual CPM format and can be calculated numerically. In case of MSK-type

modulations, this task is simplified because [Γ̃]i,j ∈ {0,±2}.
Therefore, if (6.17) is evaluated in the noiseless case, one finds that the self-noise variance

causing the high-SNR floor is equal to

lim
σ2
w→0

var(θ̂) =
rHAΓ̃AHr

8Tr2(RHR)
. (6.20)

2The reader is warned that some notation is slightly redefined in this section. For example, R (θ) is the

improper covariance matrix; the conjugation is omitted in A; matrix K is redefined in (6.19); and, finally, Q is

the covariance matrix of the new sufficient statistic vec
(
R̃
)
(6.11)
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As stated before, the estimator would be self-noise free in the absence of ISI (AHA = IK)

because in that case AHr = vec(Γ) and, thus, the term Γ̃ vec(Γ) in (6.20) becomes equal to zero

for most noncircular modulations of interest, e.g., real-valued constellations, MSK-type signals

as well as the offset QPSK format. Anyway, the estimator is consistent for any SNR since the

self-noise variance in (6.20) turns out to be proportional to M−1 for M � 1. For example, the

simulations in [Men97, Sec. 6.6.2] show that the variance curvature is practically inappreciable

below SNR=20dB with M = 100 for the MSK and GMSK modulations.

6.2.4 Second-Order Optimal Estimation

The aim of this section is to deduce optimal second-order synchronization techniques for the

whole SNR range. Assuming the noise variance is known (or accurately estimated), the proposed

estimator will minimize the joint contribution of thermal and pattern noise, leading to the

previous ML solution (6.13) when the SNR is sufficiently low and to self-noise free schemes at

high SNR (Section 6.2.5).

With this purpose, let us introduce the equation of a generic second-order gradient following

the structure provided by (6.12) under the low-SNR assumption:

∆(y; θ) � 2 Im
{
e−j2θ Tr(MHR̃)

}
= 2 Im

{
e−j2θmH r̃

}
(6.21)

where M is the matrix of coefficients that should be optimized, m � vec(M) its vectorization

and r̃ � vec
(
R̃
)
the vectorization of (6.11).

The value of θ for which (6.21) is null is given by

θ̂ =
1

2
arg
{
Tr(MHR̃)

}
=

1

2
arg
{
mH r̃

}
(6.22)

provided that mH r̃ �= 0. Otherwise, the open-loop algorithm in (6.22) is unable to extract any

phase information from this specific r̃. This fact will be studied in detail in Section 6.2.5 because

it is only relevant at high SNR. For the moment, (6.22) is assumed to be “well-conditioned”.

Another important remark is that the estimation problem at hand allows obtaining a closed-

form solution for the zero of ∆(y; θ). However, notice that the open-loop estimator proposed

in (6.22) is not quadratic in the data due to the arg {·} operator. Therefore, the estimation

techniques studied in this section should be seen as a nonlinear transformation of the sample

covariance matrix R̃ = yyT , that is only a sufficient statistic under the low-SNR approximation.

Thus, the variance of (6.22) in the small-error regime is given by

var(θ̂) = J−2E{∆2(y; θ0)} = 2J−2mHPQm, (6.23)
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that can be seen as a generalization of (6.17) with J defined as the gradient slope at θo, that is:

J � −E

{
∂

∂θ
∆(y; θ)

∣∣∣∣
θ=θo

}
= 4Re

(
mHr

)
. (6.24)

Notice that J plays the same role than the Fisher’s information in (6.14)-(6.16), that is, it

normalizes the recursion in (6.14) to yield unbiased estimates around the true parameter θo.

The optimal coefficients are obtained minimizing the estimator variance (6.23) subject to the

above bias constraint (6.24). This optimization leads to an underdetermined system of equations

and

m =
JQ−1r

4rHQ−1r
(6.25)

is found to be the minimum-norm solution. Anyway, all the solutions are found to yield the

same variance, that is equal to

var(θ̂) = J−1 =
1

8rHQ−1r
(6.26)

plugging (6.25) into (6.23). Eventually, the coefficients of the optimal estimator are given by

m = 2Q−1r.

Finally, note that all the above expressions reduce to the ones obtained in Section 6.2.2 under

the low-SNR assumption (σ2
w → ∞) taking into account that

Q−1 =
1

2
σ−4
w IM2 + o

(
σ−4
w

)
(6.27)

where o
(
σ−4
w

)
gathers all the terms converging to zero faster than σ−4

w .

Notice that the GML estimator has not been considered in the carrier phase estimation

problem because the Gaussian assumption also implies the circularity of the nuisance parameters.

6.2.5 High SNR Study: Self-noise

This section is concerned with the high-SNR study of the optimal second-order synchronizer

deduced in the last section. Although the analysis is more involved than in Section 6.2.3,

closed-form expressions have been obtained concluding that self-noise can be totally removed.

Nonetheless, in the case of partial-response schemes (e.g., GMSK) the open-loop implementation

(6.22) may fail when mH r̃ = mHA vec(xxT ) = 0 in the noiseless case. When this happens, the

carrier phase is not identifiable from this particular observation r̃. The reason for this abnormal

behavior is that it is not always possible to cancel out the imaginary part of the argument (self-

noise) while the real part is kept positive (6.22). For example, when the binary data symbols
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are alternate, i.e., {+1,−1,+1, ...}, the 2REC modulation exhibits a constant phase equal to

±π/4 and, thus, r̃ = Avec(xxT ) is strictly imaginary in the noiseless case.

A deeper analysis shows that this limitation is a consequence of the singularity of matrix A

for partial-response modulations. However, this conclusion needs to be clarified; the singularity

of A is due to the partial contribution from the pseudo-symbols outside the observation window

in the studied SCPC system (Section 6.1.2). Therefore, only in the asymptotic case (M → ∞),

this “border effect” is negligible and matrix A is effectively full-rank.

The asymptotic study of (6.26) involves the computation of Q−1 when the noise power tends

to zero. Because the noiseless component of Q is singular (6.19), we must resort to the inversion

lemma obtaining that

m = 2Q−1r = R−1
(
I−V(2Σ−1 +VHR−1V)−1VHR−1

)
r (6.28)

where R � R⊗R and VΣVH is the “economy-size” diagonalization of AKAH (6.19), i.e., Σ

only contains the non-zero eigenvalues and, V the associated eigenvectors.

Using again the inversion lemma, the high-SNR asymptotic value of R
−1

can be expanded

in terms of σ2
w, yielding

R
−1

= σ−2
w P⊥

A +B− σ2
wB

2 +O
(
σ4
w

)
(6.29)

where O
(
σ4
w

)
contain all the terms converging to zero as σ4

w or faster, P⊥
A � I−AA# stands

for the orthogonal projector onto the span of matrix A and

B � (AAH)#

is introduced to compact further equations. Thus, the limit of R−1 is straightforward from

(6.29), using that

R−1 = R
−1 ⊗R

−1
. (6.30)

However, all the terms in (6.30) containing P⊥
A go to zero when multiplied by V or r in

(6.28) since span{V} ⊂ span{A} and r = A vec(Γ) ∈ span{A}. Therefore, considering only the

surviving terms, it is found that

R−1 = B − σ2
w

(
B⊗B2 +B2 ⊗B

)
+O

(
σ2
w

)
(6.31)

for σ2
w → 0 where B � B⊗B = (AAH)#.

To complete the deduction, the inversion lemma has to be used once again in order to

compute the inner inverse in (6.28) because

T � 2Σ−1 +VHBV



6.2. CARRIER PHASE SYNCHRONIZATION OF NONCIRCULAR MODULATIONS 149

turns out to be singular again. Precisely because of that, the second term of (6.28) becomes

proportional to σ−2
w and prevails at high SNR avoiding the variance floor. Taking this fact into

account, the high-SNR asymptotic expression of m is given by

m = σ−2
w BVP⊥

TV
HBr+O (1) (6.32)

with

P⊥
T � U−1

(
I−VT (V

H
T U−1VT )

−1VH
T U−1

)
U � VH

(
B⊗B2 +B2 ⊗B

)
V

(6.33)

The above expression is general no matter if A is singular or not. In case A is full-rank,

(6.32) can be simplified if the deduction is started again by decomposing the first term of Q as

AVKΣKVH
KAH with ΣK the diagonal matrix having the non-zero eigenvalues of K and VK the

related eigenvectors. Thus, if V and Σ are redefined as V = AVK and Σ = ΣK , respectively,

(6.32) can be written as follows:

m = σ−2
w A#H

VKP⊥
TV

H
KA#r+O (1) (6.34)

using that AHB = A# and T = 2Σ−1
K + I.

At this point, it is worth understanding that the obtained solution differs from the stan-

dard CML estimator (Section 2.4.2) in that (6.34) cannot project the self-noise term onto the

orthogonal subspace of A because they are collinear [Vaz00][Rib01b]. Alternatively, in (6.34)

the received signal y is passed through a zero-forcing equalizer A# in order to decorrelate the

received pseudo-symbols [Vaz00] and, afterwards, the outer product of the detected pseudo-

symbols is projected onto the matrix VKP⊥
TV

H
K whose span coincide with that of P⊥

˜Γ
, which

is the orthogonal projector onto the subspace generated by Γ̃ (6.19). The key property of P⊥
˜Γ

—inherited by VKP⊥
TV

H
K— is that P⊥

˜Γ
vec(xxT ) is real-valued for any possible vector x.

Resuming the initial discussion, if A is full-rank, the zero-forcer recovers without error the

vector of pseudo-symbols, i.e., x̂ = A#y = x and VKP⊥
TV

H
K is able to eliminate the imaginary

part of vec(xxT ) that causes the referred self-noise while the real part is preserved, allowing

feed-forward estimation (6.22). Otherwise, the real and imaginary parts are coupled and the

self-noise cancellation attenuates inevitably the real part too.

To conclude this section, the estimator variance at high SNR is given by

var(θ̂) =
σ2
w

4vecH(Γ)A#VP⊥
TV

HA#H
vec(Γ)

+ o
(
σ2
w

)
(6.35)

for the general case (6.32) and, reduces to

var(θ̂) =
σ2
w

4 vecH(Γ)VKP⊥
TV

H
K vec(Γ)

+ o
(
σ2
w

)
(6.36)

when A is full-rank (6.34). Notice that in both cases the estimators are consistent, i.e., the

denominator increases without limit as M is augmented.
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Figure 6.13: Carrier phase variance as a function of the SNR for the MSK modulation with

Nss = 2. Dotted lines correspond to the high-SNR bounds computed in Sections 6.2.3 and 6.2.5.

6.2.6 Numerical Results

This section validates via simulation the theoretical results presented in this case study. The

steady-state variance of the closed-loop solution presented in equation (6.14) is evaluated for both

the low-SNR approximation and the optimal second-order synchronizer deduced in Section 6.2.4

(see Fig. 6.13 and Fig. 6.14). Simulations show that the proposed solution is self-noise free even

if the observation is rather short (M = 2, 4). Furthermore, the high-SNR asymptotic expressions

obtained in (6.20), (6.35) and (6.36) exhibit a perfect match at high SNR. Although it is not

plotted, the feedforward synchronizer derived in (6.22) was tested for the MSK modulation in

Fig. 6.13 confirming that it is always self-noise free.

Surprisingly, the high-SNR estimators deduced in (6.32) and (6.34) are also exact for any

SNR. The reason is that, as mentioned before, there is no noise-enhancement at low-SNR because

(6.32) and (6.34) does not include the orthogonal projector P⊥
A.

Finally, the acquisition performance of the optimal closed-loop synchronizer is evaluated in

Fig. 6.15 in order to validate its operability when A is singular in case of partial-response

schemes (e.g., 3REC). In the same figure, the probability of “failure” has been computed as a

function of the observation length for some partial response schemes. As shown in the plot, the

probability of failure decays exponentially with the observation time and the damping factor

increases if the modulator memory is shortened.
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Figure 6.14: Carrier phase variance as a function of the SNR for the 3REC modulation with

Nss = 4.
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Figure 6.15: On the left side, 10 acquisitions for the 3REC modulation with Nss = 2 and M = 2.

The SNR was set to 20 dB and the loop step-size fixed to µ = 0.01. On the right-hand side, the

probability of failure for 2REC and 3REC with Nss = 2 and σ2
w = 0.
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6.3 TOA Estimation in Multipath Scenarios

In the context of wireless, underwater or optical communications, the transmitted signal is

severely distorted by the channel due to the so-called multipath propagation. In a multipath

scenario, the received signal is the sum of multiple replicas of the transmitted waveform whose

delays, amplitudes and phases are unknown. The resulting dispersive channel can be modeled

as a finite impulse response (FIR) filter of unknown complex-valued coefficients. In digital

communications, the multipath disturbance is mitigated implementing digital equalizers in order

to prevent intersymbol interference (ISI). This topic is addressed in Section 6.4 where blind

channel estimators are designed from the sample covariance matrix.

In this section, we focus on the problem of radiolocation in cellular networks using range

estimates from several base stations. Range information can be obtained estimating the time

of arrival (TOA) —if the network is synchronous— or the time difference of arrival (TDOA) in

case of an asynchronous cellular network. Although the principle is the same than in radar and

navigation applications (e.g., GPS or GALILEO), the mobile radio channel poses some additional

impairments as, for example, time- and frequency-selective fast fading, non line-of-sight (NLOS)

conditions, narrowband signaling in case of second generation terminals, low Es/N0 for the

received signal coming from the non-serving base stations, limited training periods for TOA

estimation (e.g., GSM midamble), etc.

In this context, a lot of effort has been made to design TOA estimators robust to the

multipath degradation. Some of them have been developed for satellite positioning systems

(i.e., GPS, GLONASS and, GALILEO) using direct sequence spread spectrum signaling, e.g.,

[Bra01][Sec00, Sec. 2.2.2.] and references therein. All these contributions are intended for single-

antenna receivers. Nonetheless, it has been proved that the use of antenna arrays is useful to

mitigate multipath and also to cancel interferences [Sec00]. Actually, a multisensor receiver

is able to combine direction of arrival (DOA) and TOA information in order to render more

accurate position estimates.

The application of these techniques to third generation cellular systems such as UMTS is

rather straightforward since they share the same signal format. On the other hand, timing

recovery in narrowband systems (e.g., GSM) becomes more difficult since the time resolution is

inversely proportional to the signal bandwidth and, the self-noise contribution becomes critical

for the working SNRs. Recall that self-noise consists of the intersymbol interference (ISI) at

the timing error detector output. In spread spectrum communications, the self-noise term is

negligible because it is filtered out in the despreading stage.

Some relevant contributions in the context of narrowband communications are

[Chi94][Mog03] and, [Fis98][Win00][Rib02]. In the first two proposals, the Gaussian assump-

tion is adopted and non-data-aided TOA estimators are deduced. On the other hand, the last
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three papers rely on the transmission of known training data. In all the papers, with the excep-

tion of [Rib02], the channel coefficients are deterministic unknowns that need to be estimated

in a first step. An alternative approach is adopted in [Rib02] where the multipath is modeled

as a random term of known first- and second-order moments. In this manner, unbiased TOA

estimates are obtained trading some estimation variance following a Bayesian approach.

In this section, the problem of both DA and NDA timing —and also carrier frequency-offset—

estimation is studied in a multipath scenario assuming that the channel response is unknown.

Optimal second-order unbiased estimators are deduced based on the channel first- and second-

order statistics following a similar approach to the one presented in [Rib02]. Some numerical

results are presented for the problem of TOA estimation in a typical wireless outdoor scenario

in the context of the GSM standard and the EMILY European project [Bou02a][Bou02b].

The results in this section were partially presented in the the International Zurich Seminar

on Broadband Communications that was held in Zurich in 2002 [Vil02a]:

• “Optimal Quadratic Non-Assisted Parameter Estimation for Digital Synchronisation”. J.

Villares, G. Vázquez. Proceedings of the International Zurich Seminar on Broadband

Communications 2002 (IZS2002). pp. 46.1-46.4. Zurich (Switzerland). February 2002.

6.3.1 Signal Model

Let us consider that the channel impulse response is time-invariant during the observation time

(M samples). The channel low-pass equivalent impulse response within the receiver bandwidth

W is given by

h(t) =
1

W

L−1∑
k=0

h(k/W ) sinc(Wt− k) (6.37)

with L/W the effective duration of the channel [Pro95, Sec. 5-1, Ch. 14]. Hereafter, the

bandwidth W is set to 2/T (100% excess of bandwidth) in order to admit the majority of

bandpass modulations.

The channel taps h(k/W ) will be modeled as zero-mean complex Gaussian variables with

their envelope and phase following a Rayleigh and uniform distribution, respectively. The

Rayleigh distribution is adopted hereafter because it corresponds to a worst-case situation.

Anyway, it is possible to assume for the first coefficient of h(k/W ) a Ricean distribution in order

to take into account the line-of-sight (LOS) component [Gre92].

From the above considerations, the complex envelope of the received signal at the sampler



154 CHAPTER 6. CASE STUDIES

output can be written as

y (mTs) =
∞∑

i=−∞

di

L−1∑
k=0

h(k/W )ej2πνm/Nssp (mTs − k/W − iT − τT ) +w (mTs) (6.38)

where Ts is the sampling period, {di} is the sequence of transmitted symbols, ν and τ are the

frequency and timing errors normalized with respect to the symbol time T = NssTs, p(t) is the

shaping pulse, and w(t) the stationary AWGN term. Following the guidelines in Section 6.1.2,

the above formula can be expressed in vectorial form as follows:

y = A (λ)Hd+w = A (λ)x+w (6.39)

where λ stands for either the timing or frequency error and the columns of H are 1/W -seconds

delayed versions of the channel impulse response h(k/W ). It is really important to realize that

the inclusion of a random channel h(t) yields directly the same model in (6.3), except that the

proposed estimators will have to cope with the extended, correlated vector of symbols

x � Hd.

Therefore, the channel has two negative effects:

1. Firstly, the unknown vector of symbols x is about WT times longer than the vector of

transmitted symbols d. The increment of the nuisance parameters will establish a limit

on the variance of blind estimators when dealing with a time dispersive channel.

2. Secondly, the channel modifies the covariance of the transmitted symbols in the following

way:

Γ � E
{
xxH

}
= EH

{
HHH

}
assuming again uncorrelated symbols.

Notice that the Gaussian assumption is verified in case of constant amplitude modulations

such as MPSK or CPM. On the other hand, the received symbols are not strictly Gaussian

when the transmitted signal is a multilevel modulation such as QAM or APK. However, it can

be shown that in that case the Gaussian assumption yields practically optimal second-order

estimators for any SNR.

6.3.2 Optimal Second-Order NDA Estimator

The optimal second-order estimator of λ from the above signal model is deduced in the following

lines. First, the covariance matrixR (λ) and the fourth-order matrixQ (λ) are calculated, having
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that

R (λ)=A (λ) ΓAH (λ) +Rw

Q (λ)=R∗ (λ)⊗R (λ) +A (λ)KAH (λ) (6.40)

where the kurtosis matrix K is diagonal in the presence of multipath because x = Hd is always

circular even if the transmitted symbols d are not. Moreover, K is strictly zero for any constant

amplitude modulation and admits a simple form in case of a linear circular modulation. Taking

into account that

K = Ed{vec
(
ddH

)
vecH

(
ddH

)} − vec (I) vecH (I)− I

is equal to

K = (ρ− 2) diag (vec (I))

in case of circular constellations (3.12), it follows that the diagonal entries of K are

[K]k,k = 2 (ρ− 1)
∞∑

i=−∞

PDP 2 (k/W − iT ) (6.41)

where

PDP (t) �

⎧⎨⎩E
{
|h(t)|2

}
0 ≤ t < L/W

0 otherwise

stands for the channel power delay profile (PDP). Notice that (6.41) vanishes in case of constant

amplitude modulations (ρ = 1). Thus, the Gaussian assumption in a multipath scenario applies

for an important class of modulations whereas it is not verified in case of Gaussian distributed

symbols (ρ = 2).

In some circumstances, the channel taps are uncorrelated and, if WT is an integer number,

Γ is a diagonal matrix with entries:

[Γ]k,k =
∞∑

i=−∞

PDP (k/W − iT )

In this uncorrelated scattering (US) scenario, the channel PDP conveys all the statistical

information about the channel. Then, assuming that the channel PDP is known or accurately

estimated, optimal second-order synchronizers can be built for the studied scenario using the

framework provided in Chapter 3 and 4.

Moreover, in some situations a limited set of parameters is sufficient to describe completely

the PDP function. For example, sometimes the mobile radio channel is correctly modeled by

adopting a (decreasing) exponential PDP [Gre92] as the following:

PDP (t;σ) = Cexp

(−t

σ

)
(6.42)
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where σ is the so-called delay spread and C is a normalization constant forcing Tr {Γ} = K with

K the length of x.

Depending on the channel delay spread, two asymptotic situations can be studied:

1. Flat fading channel (σ → 0):

[Γ]k,k =

{
1 k multiple of WT

0 otherwise
(6.43)

and hence (6.39) reduces to the ideal channel case with x = d. In that case, the channel

only changes the distribution of the received symbols.

2. Highly frequency-selective channel (σ → ∞):

Γ =
1

WT
IK (6.44)

and, therefore, the channel is implicitly increasing the vector of received symbols x in (6.39)

by a factor of WT , as well as changing their distribution. Notice that this expansion may

require to oversample the received signal in order to guarantee that the matrixA (λ) is tall,

i.e., it has more rows (received samples) than columns (unknown symbols). Otherwise,

the estimator variance will exhibit a high-SNR floor because the self-noise term cannot be

cancelled. This fact forces the designer to ensure that Nss > WT .

6.3.3 Optimal Second-Order DA Estimator

Thus far, the vector of transmitted symbols d is unknown at the receiver side and, therefore,

NDA estimators are required. Next, the optimal DA estimator is formulated assuming that d

is deterministic (i.e., a training sequence) but the channel H is still unknown. In that case, the

received symbols x = Hd are zero-mean random variables and, hence, second-order methods are

necessary once more. In order to deduce the optimal second-order estimator, the signal model

in (6.39) must be modified in the following way:

y = A (λ)Dh+w (6.45)

with [h]k = h(k/W ) the k-th tap of the unknown channel and D the matrix stacking the known

transmitted symbols {di} in such a way that Dh = Hd.

At this point, the optimal second-order estimator of λ is straighforward from the above

signal model with h the vector of Gaussian nuisance parameters. It only rests to compute the

covariance matrix R (λ) and the fourth-order matrix Q (λ) for the problem at hand, obtaining

that

R (λ)=A (λ)DΓhD
HAH (λ) +Rw

Q (λ)=R∗ (λ)⊗R (λ)
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where

Γh � E
{
hhH

}
andQ (λ) is computed taking into account that h is normally distributed. In case of uncorrelated

scattering, Γh becomes diagonal with entries [Γh]k,k = PDP (k/W ).

6.3.4 Numerical Results

The results in this section were applied to devise multipath resistant TOA estimators in the

context of the EMILY project [Bou02b]. The aim of this project was the integration of position-

ing measurements from the GPS and GSM networks. In the second case, the spatial accuracy

is severely degraded due to the multipath propagation. In this kind of scenarios the proposed

NDA and DA estimators are robust against the multipath providing unbiased TOA estimates.

In both cases, the channel PDP and the noise variance is measured off-line. For the sake of sim-

plicity, an uncorrelated Rayleigh channel having exponential PDP is considered. Different delay

spreads are simulated and the channel is varied in time according to the Jake’s Doppler spec-

trum [Gre92] although this information is not exploited by the estimator. Finally, the GMSK

modulation from the GSM standard as well as the MPSK and MSK modulations are considered

in the simulations.

To estimate the timing error τ , the received bandpass signal is filtered into W = 2/T and,

afterwards, the I and Q components are generated and sampled taking Nss = 4 per symbol. A

first-order closed-loop is implemented to estimate and track the TOA of the user of interest.

The optimal second-order NDA discrimator is considered with M = 8 the number of input

samples. The variance at the discriminator output is computed as a function of the SNR. Notice

that this variance is further reduced by the loop filter. Simulations fit pretty well with the

theoretical performance obtained in Chapter 4, where it is shown that the minimum variance

for any quadratic unbiased timing detector is given by

V AR (τ) =
1

dH
r (τ)Q−1 (τ)dr (τ)

(6.46)

with

dr (τ) � vec

(
dR (τ)

dτ

)
= vec

(
A (τ)

dAH (τ)

dτ
+

dA (τ)

dτ
AH (τ)

)
and dA (τ) /dτ the matrix whose columns are 1/W -delayed versions of the shaping pulse deriva-

tive, i.e., dp(t)/dt. Notice that the estimator variance in (6.46) becomes independent of the

actual value of the parameter τ .

The first simulation in Fig. 6.16 is carried out for the 16-QAM modulation. As commented

before, the number of significant nuisance parameters grows with the delay spread σ. In Fig.
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Figure 6.16: TOA estimation variance as a function of the SNR for 16-QAM symbols. The

simulation parameters are Nss = 4 and M = 8. The transmitted pulse is a square-root raised

cosine truncated at ±4T (100% roll-off).

6.16, the estimator is unable to cope with the self-noise enhancement and exhibits a variance

floor at high SNR. This degradation is rapidly observed even for very small values of σ (e.g.,

σ = T/10). If σ is slightly augmented (σ = T/4), this degradation is also observed at low SNR.

In the limit (σ → ∞), the number of nuisance parameters is multiplied by WT = 2. Notice

that the loss in terms of timing accuracy caused by the channel is extremely important in case

of QAM modulated signals.

On the other hand, the maximum loss with constant modulus constellations such as MPSK,

MSK and LREC is bounded and occurs when the delay spread approaches the symbol time (Figs.

6.17-6.20). The estimator is found to be self-noise free for the MPSK and MSK modulations

whatever the channel delay spread. This loss is manifested first at high SNR, as it was observed

in the QAM simulations (Fig. 6.16). On the other hand, self-noise can be eliminated augmenting

the observation time when dealing with the 2REC and 3REC modulations.

Regarding the Gaussian assumption, it is always verified for the QAM modulation (Fig.

6.16). On the other hand, it applies for any constant modulus modulation (e.g., MPSK and

CPM) in the presence of a fading channel (Figs. 6.17-6.20).
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Figure 6.17: TOA estimation variance as a function of the SNR for MPSK symbols. The

simulation parameters are Nss = 4 and M = 8. The transmitted pulse is a square-root raised

cosine truncated at ±4T (100% roll-off).
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Figure 6.18: TOA estimation variance as a function of the SNR for MSK symbols. The simula-

tion parameters are Nss = 4 and M = 8.
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Figure 6.19: TOA estimation variance as a function of the SNR for the 2REC modulation. The

simulation parameters are Nss = 4 and M = 8.
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Figure 6.20: TOA estimation variance as a function of the SNR for the 3REC modulation. The

simulation parameters are Nss = 4 and M = 8.
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6.4 Blind Channel Identification

In some scenarios, the transmission channel is frequency-selective causing intersymbol interfer-

ence (ISI) at the matched filter output [Pro95]. Most times the channel response is not known

a priori and the receiver has to identify the channel in order to cope with this ISI. This task

is mandatory if the channel response is time-variant as it happens in wireless communications.

In that case, adaptive techniques have to be developped to track the channel evolution. On

the other hand, in a given access network, the subscribers have different channel responses and,

thus, their equipments are supposed to configure theirselves when they are plugged for the first

time to the network.

In most standards, some training or pilot symbols are transmitted periodically to facilitate

the receiver synchronization and the channel identification. The use of training sequences reduces

the system efficiency, mostly when the channel varies in time. This inconvenience has motivated

for a long time the study of blind channel estimation and equalization techniques. The pionnering

work is authored by Y. Sato [Sat75] and was further developed by Godard [God80], Treichler et

al. [Tre83], Benveniste et al. [Ben84], Picci et al. [Pic87], Salvi et al. [Sha90], Giannakis et al.

[Gia89], Nikias [Nik92], Sala [Sal97] among others.

All these methods exploit the higher-order moments of the received signal in the belief that

non-minimum phase channels were not identifiable from second-order techniques3. This idea

was refuted in the revolutionary paper by Tong et al. [Ton91] where the authors proved that

the channel response can be identified from the second-order moments if the received signal is

cyclostationary and multiple samples per symbol are taken from the channel output. This new

perspective is founded into the fractionally-spaced equalizer proposed by Ungerboeck in 1976

[Ung76]. In this paper, the oversampling was proposed as a means of improving the equalizer

performance in the presence of timing errors. Anyway, the main advantage of second-order

methods is that their convergence is faster than the one of higher-order methods.

The original paper was further simplified by Moulines et al. in [Mou95] and studied in

[Ton94][Ton95][Tug95] from different points of view. All these channel estimators are subspace

methods based on the eigendecomposition of the sample covariance matrix. A different perspec-

tive was introduced by Giannakis et al. [Gia97] and Zeng et al. [Zen97a] in which the asymp-

totic (large sample) best quadratic unbiased channel estimator is formulated from the cyclic

spectrum or the cyclic correlation, respectively. Additionally, an hybrid method including sub-

space constraints is proposed in [Zen97a]. The resulting estimator is shown to encompass most

second-order methods in the literature [Gia97][Liu93][Mou95][Sch94] [Ton95]. Some asymptotic

studies are also supplied in [Zen97b].

3A system is minimum phase if all the zeros of its transfer function are inside the unit circle. This implies that

the inverse system is realizable.
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In this chapter, the best quadratic unbiased estimator is deduced for a finite observation.

The proposed estimator exploits the knowledge on the pulse shaping as well as the statistics

of the transmitted discrete symbols. It is found that the optimal solution is able to estimate

the channel amplitude in case of constant-modulus constellations such as MPSK or CPM. On

the other hand, the amplitude is ambiguous under the Gaussian assumption. This contribution

actually complements the results in [Gia97][Zen97a][Zen97b].

6.4.1 Signal Model

This section is based on the signal model presented in Section 6.3.1. The aim is now to estimate

the channel impulse response h(k/W ) in (6.37). The vector of parameters is given by

θ � [Re {h0} , . . . , Re {hL−1} , Im {h0} , . . . , Im {hL−1}]T

with hk � h(k/W ) the k-th tap of the channel.

The received waveform is the superposition of L replicas of the transmitted pulse p(t),

L−1∑
k=0

hkp (t− k/W ) (6.47)

that, if it is sampled every Ts = T/Nss seconds, yields the following transfer matrix A (θ):

A (θ) =
L−1∑
k=0

hkB (k/W )

where

[B(τ)]m,i = p(mTs − τ − iT ) m = 0, ...,M − 1, i = 0, ..., I − 1

is the matrix performing the convolution with the delayed shaping pulse p(t − τ) and I is the

number of observed symbols.

Notice that the proposed signal model can be applied in spread spectrum communications

with p(t) the known signature and ĥ∗k the weight associated to the k-th finger in a RAKE

receiver. The optimality of the RAKE receiver is guaranteed if the L fingers are uncorrelated

which means that p(t) is spectrally white and the channel taps hk are uncorrelated, as well.

In the context of narrowband communications, the identification of the channel impulse re-

sponse h(k/W ) is required to implement fractional equalizers [Ung76]. On the other hand, if the

estimated channel is later employed to implement the maximum likelihood sequence estimator

(MLSE) [For72][Pro95, Sec. 5-1-4] and detect the sequence of transmitted symbols without in-

curring in noise-enhancement, the objective is to estimate the complex channel response at the



6.4. BLIND CHANNEL IDENTIFICATION 163

matched filter output sampled at one sample per symbol, that is,

αn =
L−1∑
k=0

kkg (nT − k/W ) ≈
L−1∑
k=0

hk sinc (n− k/WT )

where g(t) �
∫
p(τ)p(t + τ)dτ stands for the shaping pulse at the matched filter output and

the last equality holds if g (t) is an ideal Nyquist pulse without truncation. Although it is not

strictly necessary, hereafter WT is assumed to be an integer for the sake of simplicity. In that

case the vector of real parameters becomes

α � [Re {α0} , . . . , Re {αN−1} , Im {α0} , . . . , Im {αN−1}]T = Gθ,

which is a linear transformation of θ given by matrix G � I2 ⊗T with N � L/WT and

[T]n,k � g (nT − k/W ) ≈ sinc (n− k/WT ) .

Taking now into account that the estimator is invariant in front of any linear transformation,

the optimal second-order estimator of α is directly given by α̂ = Gθ̂. Therefore, if an unbiased

estimator of α = Gθ is aimed, it has to guarantee that MHDr = I2N and, hence, the IPI-free

solution stated in (4.12) must be adopted (see Section 4.4).

Once the signal model is identified, the procedure for deducing the optimal second-order

estimator is systematic and consists in finding the set of constituent matrices in (4.12) for the

problem at hand. Regarding the matrix of derivatives Dr, the first coefficient h0 is supposed to

be real valued in order to solve the phase ambiguity of second-order algortihms.

Eventually, the matrixDr is built stacking the derivatives of the vectorized covariance matrix

r (θ) = vec (R (θ)) with respect to the real and imaginary part of the complex coefficients hk:

∂r (θ) /∂Re {hk}=vec
[
B (k/W )AH (θ) +A (θ)BH (k/W )

]
∂r (θ) /∂ Im {hk}= j vec

[
B (k/W )AH (θ)−A (θ)BH (k/W )

]
for k = 0, . . . , L− 1.

As stated in [Zen97a, Theorem 2], the channel is identifiable if the channel Z-transform

H(z) �
∑L−1

k=0 hkz
−k can be decomposed into Nss subchannels having different reciprocal zeros4.

When this condition is not hold, Dr is singular for this channel realization (see Section 4.3).

Notice that this condition is weaker than the usual identifiability condition [Ton95][Tug95].

6.4.2 Numerical Results

The simulated channel spreads over N = 3 symbol periods. The transmitted pulse p(t) is

a squared-root raised cosine of roll-off r truncated to last 8 symbols. The channel taps hk are

4z0 is a reciprocal zero of H(z) if H(z0) = H(z−1
0 ) = 0.
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Figure 6.21: Performance of the second-order ML-based estimators (Low-SNR approximation,

Conditional ML and Gausian ML) and the optimal solution provided in Chapter 4. The simu-

lation parameters are r = 0.35, µ = 0.02 (Bn = 5 · 10−3).

generated as independent zero-mean Gaussian variables of unit variance. The receiver bandwidth

is set to W = 2/T to encompass any roll-off factor. Consequently, the number of taps is

L = NWT = 6. The observation window is set to M = 18 samples and the received signal is

oversampled taking Nss = 3 samples per symbol. Finally, the transmitted symbols are QPSK.

The figure of merit computed in this section is the normalized variance of the estimator α̂ in

the steady-state. The expected value with respect to the random channel will be computed in

order to obtain the average performance of the estimator. Thus, the channel estimator variance

is defined in the following way:

V AR � Eθ

{
E ‖α̂ (n)−α‖2

‖α‖2
}

where the expectation with respect to θ is approximated by averaging 100 random channels.

The above figure of merit will be plotted as a function of the signal-to-noise ratio. The noise

variance σ2
w will be adjusted at each realization to maintain the SNR since the received power

depends on the actual channel response.

The ML-based estimators discussed in Chapter 3 and the corresponding bounds are evaluated

and compared with the optimal second order estimator formulated in Chapter 4. In all the cases,

a closed-loop scheme is implemented with its bandwidth adjusted to guarantee the small-error
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Figure 6.22: Comparison of the BQUE and GML estimators when the channel amplitude is

estimated too and the transmitted symbols are QPSK, 64-QAM or, Gaussian distributed for a

roll-off factor equal to 1.

condition for the simulated SNR range.

Suboptimal Algorithms comparison: Low-SNR ML, CML, GML

Using the CML method the channel can be determined up to a constant complex factor

[Car00]. For comparison, all the methods will assume that the value of the first coefficient is 1.

Fig. 6.21 points out that the low-SNR approximation suffers from a severe high-SNR floor

due to the self-noise contribution. On the other hand, the CML criterion is shown to be not

useful for channel estimation because its variance is extremely high within the range of operative

SNRs. Contrarily, the Gaussian model is shown to be appropiate to build good estimators of

the channel response. Uniquely at high SNR, the exploitation of the discrete distribution of the

symbols is found to improve the estimator accuracy.

The UCRB is also depicted showing that is a valid lower bound for the performance of

second-order techniques. Nonetheless, in Fig. 6.21 the UCRB is shown to be a little optimistic

in high-SNR scenarios. Finally, the MCRB predicts the theoretical performance that data-aided

schemes would attain compared with second-order blind estimators. Clearly, the insertion of

pilot symbols improves notably the estimator performance for any SNR. Additionally, another

important advantage of DA methods is that they do not exhibit outliers at low SNR because
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Figure 6.23: Comparison of the BQUE and GML estimators if the channel is multiplicative

using different values of the roll-off factor.

the estimator is a linear transformation of the parameters.

Channel amplitude estimation: GML vs BQUE

In Fig. 6.22, the amplitude of the first channel tap is estimated too. The estimator variance

exhibits a severe floor at high-SNRs due to the self-noise unless the symbols are drawn from a

constant modulus constellation such as M-PSK or CPM. The floor level is inversely proportional

to the observation time, which means that the estimator is consistent for any SNR, and is related

to the amplitude dispersion of the constellation.

In order to clarify these conclusions, in Appendix 6.B the high-SNR asymptotic variances at

high SNR for the GML and the optimal quadratic estimator is deduced when the transmitted

signal is linearly modulated and the channel is multiplicative (Fig. 6.23). The asymptotic

expressions obtained therein predict exactly the aforementioned floor showing its dependence

on the constellation fourth-order moment ρ and the number of observed symbols.

Regarding the QPSK simulation (ρ = 1), the BQUE asymptotic variance is inversely pro-

portional to the SNR whereas the GML performance degrades for high SNR (Fig. 6.22). The

underlying motive is the poor estimation of the channel amplitude, as depicted in Fig. 6.23. In

this figure, the GML suffers a transitory floor because the Gaussian assumption fails gradually

as the SNR is augmented.
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6.5 Angle-of-Arrival (AoA) Tracking

The classical approach in array signal processing considers that the sources are deterministic un-

knowns (conditional model) or, alternatively, Gaussian random variables (unconditional model)

[Sto90a][Ott93]. As a consequence of the Central Limit Theorem, the Gaussian assumption

provides optimal second-order DOA trackers with independence of the actual distribution of the

sources if the number of sensors is asymptotically large [Sto89] or the SNR asymptotically low,

as studied in Chapter 7.

However, in the context of mobile communications, the array size is limited and the above

asymptotic condition is unrealistic. In these scenarios, the consideration of the discrete dis-

tribution of the transmitted signals yields a significant improvement in terms of tracking

variance when two or more sources transmit from a similar DOA, even if the SNR is mod-

erate. Notice that this improvement is not obtained exploiting the signal cyclostationarity

[Gar88b][Sch89][Xu92][Rib96] because we consider that all the users transmit using the same

modulation and, thus, share the same cyclostationarity. Nonetheless, it would be straightfor-

ward to incorporate this information if the received signal were oversampled as indicated in

Section 6.1.

From this background, in the next subsection, we have sketched the formulation of the

optimal second-order DOA tracker when the transmitted signals are digitally modulated. The

performance of the resulting estimator constitutes the lower bound for the variance of any sample

covariance based DOA estimator including the ML [Sto90a][Ott93] and subspace based methods

such as the Pisarenko’s [Pis73], MUSIC [Sch79][Bie80][Sto89], ESPRIT [Roy89], MODE [Sto90b],

weigthed subspace fitting (WSF) [Vib91] and other variants (see [Kri96][Ott93] and references

therein). Notice that all these quadratic methods achieve the same asymptotic performance

under appropiate hypothesis on the array manifold, when the observation time goes to infinity,

as proved in [Ott92][Car94]. However, in this section they are shown to be inefficient —even in

the asymptotic case— if the symbols are drawn from a constant modulus alphabet (e.g., MPSK

or CPM).

The results in this section were presented in the IEEE Asilomar Conference on Signals,

Systems and Computers that was held in Pacific Grove (USA) in 2003 [Vil03b]:

• “Second-Order DOA Estimation from Digitally Modulated Signals”, J. Villares, G.

Vázquez, Proc. of the 37th IEEE Asilomar Conference on Signals, Systems and Com-

puters, Pacific Grove (USA), November 2003.
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6.5.1 Signal Model

In all the estimation problems addressed in this chapter, the parameter θ remains static during

the observation time. However, in the context of mobile communications, it is important to

obtain an accurate estimate of the users angular position but also to track their location as the

transmitters move around the base station. Consequently, it is necessary to estimate both the

angle and the angular speed of every source transmitting towards the base station. Higher-order

derivatives of the AoA (acceleration and so on) will be disregarded from the study for simplicity.

Therefore, based on the small-error estimators obtained in (4.12) and (4.18), a closed-loop

scheme (tracker) as the one suggested in Section 2.5.2 will be implemented in order to track the

parameter θn evolution. To do so, the parameter dynamics (speed, acceleration, etc.) must be

incorporated into the model.

Formally, let us consider the problem of tracking the angle-of-arrival of P narrowband sources

impinging into a uniform linear array composed of M antennas spaced λ/2 meters, with λ the

common signal wavelength. Let us consider that all the transmitters are visible from the base

station array and they do not experience multipath propagation. Let φ (t) ∈ [−π, π)P be the

temporal evolution of the P angles-of-arrival in radians and φ′ (t) � ∂φ (t) /∂t the respective

derivatives accounting for the angular speed. Let us assume that the acceleration and higher-

order derivatives are negligible during the observation time, that is, ∂iφ (t) /∂ti = 0 for i > 1.

Furthermore, let us assume that the bandwidth of φ(t) does not exceed 1/2T , with T the symbol

period. In that case, φ (nT ) holds the sampling theorem and the P trajectories can be ideally

reconstructed from their samples φn � φ (nT ) yielding the following discrete-time dynamical

model or state equation:

φn−k = φn − kφ′
n (6.48)

where the angular speed φ′
n is normalized to the symbol period T . Therefore, the composed

vector of parameters that must be estimated to track the users without having any systematic

pursuit error is

θn+1 �

[
φn+1

φ′
n+1

]
= Gθn (6.49)

with

G �

[
IP IP

0P IP

]

Consequently, the optimal second-order AoA tracker is given by

θ̂n+1 = Gθ̂n + diag (µ)GJ#
2 (θ̂n)D

H
r Q−1(θ̂n)

(
r̂− r(θ̂n)

)
, (6.50)
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using the small-error expression obtained in (4.12) with Dg = G. Notice that the above expres-

sion follows the structure of the optimal ML tracker in Section 2.5.2 with h (θn) = Gθn.

The above solution forces to zero all the cross-derivatives of g (θ) including the IPI terms

associated to the interference from other users (Section 4.4). This interference is referred to as

multiuser or multiple access interference (MUI or MAI) in the literature. Thus, the second-order

AoA tracker in (6.50) will be referred to as the MUI-free AoA tracker hereafter.

On the other hand, following the reasoning in Section 4.4, it is not strictly necessary to cancel

out the cross-derivatives corresponding to different users because the tracker optimization will

remove the MUI contribution if the SNR is sufficiently high. Likewise, if the SNR is low, the

MUI term will be automaticaly ignored to not enhance the noise contribution. Thus, it is only

necessary to decouple the estimates of φn and φ′
n in order to have unbiased estimates of θn+1

in (6.49). If not, AoA estimation errors would yield angular speed deviations and vice versa. To

avoid this, we have to constrain these cross-derivatives to zero, as indicated next:

∂
[
φ̂n

]
p

∂
[
φ′
n

]
p

∣∣∣∣∣∣∣
θ=̂θn

=
∂
[
φ̂
′

n

]
p

∂ [φn]p

∣∣∣∣∣∣∣
θ=̂θn

= 0 p = 1, ..., P (6.51)

while the rest of cross-derivatives is liberated. We will refer to this solution as the MUI-resistant

AoA tracker in the sequel.

To complete the signal model, the received signal is passed throught the matched-filter

and then sampled at one sample per symbol in order to collect K snapshots5. Independent

snapshots are obtained assuming that the actual modulation is ISI-free and, consequently, the

symbol synchronization has been established. On the other hand, it can be shown that carrier

synchronization is not required since the matrix Q (θ) is insensitive to the phase of the P ×K

nuisance parameters.

According to the considerations above, the snapshot recorded at time n− k is given by

yn−k = An−k (θn)xn−k +wn−k

where xn−k is the vector containing the symbols transmitted by the P users at time n−k, wn−k

the white noise samples and the p-th column of An−k (θn) ,

[An−k (θn)]p �

⎡⎢⎢⎢⎢⎢⎣
1

exp
[
jπ sin

(
[φn]p − k

[
φ′
n

]
p

)]
...

exp
[
jπ (M − 1) sin

(
[φn]p − k

[
φ′
n

]
p

)]

⎤⎥⎥⎥⎥⎥⎦ ,

5Notice that the problem dynamics (angle and angular velocity) require to process K ≥ 2 snapshots.
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is the steering vector associated to the p-th source at time n − k with j �
√−1. Notice that

An−k (θn) incorporates the known dynamical model (6.48).

In order to reproduce the vectorial model in (2.13), the K snapshots are stacked to build

the following spatio-temporal observation:

y (n) �

⎡⎢⎢⎣
yn

...

yn−K+1

⎤⎥⎥⎦ = A (θn)x (n) +w (n)

where x (n) and w (n) are constructed as y (n) and the transfer matrix A (θn) is given by

A (θn) �

⎡⎢⎢⎣
An (θn)

. . .

An−K+1 (θn)

⎤⎥⎥⎦
As stated before, once the signal model has been determined, we only have to find the set

of constituent matrices in (4.12) and (4.18). To conclude, the derivatives of the steering vectors

are provided next:

∂ [An−k (θn)]p,m
∂ [φn]q

= jπm cos
(
[φn]p − k

[
φ′
n

]
p

)
exp
[
jπ sin

(
[φn]p − k

[
φ′
n

]
p

)]
δ (p− q)

∂ [An−k (θn)]p,m

∂
[
φ′
n

]
q

=−jπmk cos
(
[φn]p − k

[
φ′
n

]
p

)
exp
[
jπ sin

(
[φn]p − k

[
φ′
n

]
p

)]
δ (p− q)

for all p, q ∈ {1, . . . , P} where δ (·) stands for the Kronecker delta.

6.5.2 Numerical Results

Two independent sources transmitting from the far-field to a uniform linear array composed of

M = 4 antennas are simulated. The received power is assumed to be the same for simplicity.

Both signals are QPSK modulated and two snapshots (K = 2) are recorded at the matched-filter

output.

The figure of merit considered in this section is the estimator normalized steady-state vari-

ance defined as

V AR (∆φ) �
E
∥∥∥φ̂n−φn

∥∥∥2
P∆φ2 (6.52)

with ∆φ � ([φn]2 − [φn]1) /2 half of the sources separation. The variance will be plotted as a

function of the SNR per source at the matched-filter output Es/N0 = σ−2
w with Es the received

symbol energy and N0 the noise double-sided spectral density.

Two AoA trackers forcing a different set of constraints on g (θ) will be tested:
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Figure 6.24: AoA tracking of two users whose trajectories cross at time instant n=500. The

output of the MUI-free and MUI-resistant trackers is plotted on the left and right hand side,

respectively. Two simulations are run with two different outcomes for the MUI-free tracker:

tracking is lost (solid line) or the two sources are interchanged (dashed line). The signal SNR is

fixed to 10 dB in both cases.

1. MUI-free AoA tracker: MHDr = Dg = IP ;

2. MUI-resistant AoA tracker: diag
(
MHDr

)
= diag (Dg) = diag (IP ) and the cross terms in

(6.51) are set to zero.

Two different scenarios have been simulated in order to illustrate the benefit of considering

the actual distribution of the sources when they are transmitting from similar angles.

Two users crossing

Figure 6.24 shows that the MUI-free AoA tracker (left plot) loses tracking as the two sources

approach each other due to the noise enhancement observed when the SNR is low (SNR=10dB).

This situation arises because, when the users are transmitting from similar angles, the matrix

Dr becomes nearly singular and the estimator variance (4.13) augments suddenly.

On the other hand, the MUI-resistant AoA tracker (right plot) overcomes this critical situ-

ation because it does not try to remove the MUI term associated to the cross derivatives of Dr

when the noise contribution is dominant (low SNR). Following the explanation in Section 4.4,
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Figure 6.25: Steady-state variance of the AoA tracker for two sources located at ±5 degrees

from the broadside. The loop-bandwidth is set to Bn = 1.25 · 10−3 and the MUI-free estimator

is simulated.

the MUI-resistant AoA tracker liberates the cross derivatives in Dr while the users are crossing

and matrix Dr is badly conditioned. In this manner, the tracker does not enhance the noise

contribution and is able to remain “locked” during the crossing.

Steady-state variance for two near sources

The steady-state variance of the MUI-free AoA tracker is evaluated as a function of the

SNR, considering that we have two still users separated 10o (Fig. 6.25) and 1o (Fig. 6.26). The

noise equivalent loop bandwidth Bn (Section 2.5.2) has been selected in order to guarantee the

small-error condition for all the simulated SNRs (Section 4). For the studied set-up, the noise

enhancement caused by the sources proximity is found to be negligible. This fact makes the

two suggested implementations (MUI-resistant and MUI-free) to be practically equivalent in the

simulated scenarios. A minor improvement is appreciatted in Fig. 6.26 for low SNR.

Theoretically, the performance of the MUI-free estimator is very limited at low SNR when the

two sources are close, as shown in figure 6.27, whereas its competitor (MUI-resistant) achieves the

single user performance whatever the simulated SNR. Thus, Fig. 6.27 illustrates the potential

gain that the MUI-resistant alternative offers in terms of steady-state variance when the problem

is badly conditioned and the observations are very corrupted by the noise.
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Figure 6.26: Steady-state variance of the AoA tracker for two sources located at ±0.5 degrees

from the broadside. The loop-bandwidth is set to Bn = 1.65 · 10−4 and the MUI-free estimator

is simulated.

In Fig. 6.25 and Fig. 6.26, the optimal second-order tracker has also been compared with the

ML-based trackers formulated in Section 2.4. The first conclusion is that the low-SNR approxi-

mation appears to be useless in these critical scenarios for the SNRs of interest. The underlying

motive is the so-called self-noise, i.e., the variance floor caused by the nuisance parameters at

high SNR (Section 2.4.1). The self-noise is really irrelevant when the SNR tends to zero but it

becomes dominant as soon as the SNR is increased. Notice that, in the AoA estimation prob-

lem at hand, the so-called self-noise is generated by the random symbols (nuisance parameters)

from the user of interest as well as the other interfering users. Therefore, the MUI and self-noise

contributions are strongly connected in this case study.

To overcome the low-SNR UML variance floor, the CML tracker was proposed in Section

2.4.2. The CML is able to yield self-noise free estimates but it suffers from noise enhancement

when the SNR is low because it tries to decorrelate the nuisance parameters from the different

users.

Regarding the GML AoA tracker presented in Section 2.4.3, the convergence to the CML

solution for high SNR and to the low-SNR UML solution for low SNR (if the x -axis were

expanded) is observed. Between these two asymptotic extremes, the GML adjusts its coefficients

depending on the actual SNR to minimize the joint contribution of the noise and the self-noise.

Indeed, the GML solution is found to be the best quadratic estimator or tracker based uniquely
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Figure 6.27: Normalized variance as a function of the SNR for the MUI-free and MUI-resistant

AoA trackers when the sources are separated 0.1, 0.2, 0.5 or 1 as indicated for each curve. The

tracker loop bandwidth is set to Bn = 1.25 · 10−3.

on the second-order moments of the nuisance parameters, i.e., if K = 0 in (3.10). Nonetheless,

when comparing the variance of the GML and the BQUE AoA trackers in Figs. 6.25-6.26, it

is confirmed that second-order estimation is improved for medium-to-high SNRs if the fourth-

order statistical knowledge on the nuisance parameters (K �= 0) is exploited. The resulting gain

is shown to be greater when the angular separation is reduced if one compares Fig. 6.25 and

Fig. 6.26. Moreover, when the loop bandwidth Bn is small (Fig. 6.26), the BQUE performance

is rather close to the one predicted by the MCRB in case of known nuisance parameters and, it

definitely constitutes the lower bound for the variance of any unbiased estimator based on the

sample covariance matrix.

Surprisingly, the GML estimator does not attain the UCRB bound out of the aforementioned

asymptotic cases because the nuisance parameters are actually non-Gaussian (QPSK discrete

symbols) and the UCRB is based on the Gaussian assumption.
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Appendix 6.A Computation of Q for carrier phase estimation

The expected value of ∇2(y; θo) (6.12) can be manipulated as follows

E{∇2(y; θo)}=4σ−8
w E

{
Im2

{
e−j2θorH r̃

}}
= −σ−8

w E

{(
e−j2θorH r̃− ej2θo r̃Hr

)2}
=2σ−8

w

(
rHE

{
r̃r̃H
}
r−Re

(
e−j4θorHE

{
r̃r̃T
}
r∗
))

=2σ−8
w rH

(
E
{
r̃r̃H
}− e−j4θoE

{
r̃r̃T
})

r

bearing in mind that both Γ and Ex

{
vec
(
xxT

)
vecT

(
xxT

)}
are real amounts for any CPM

signal according to the Laurent’s expansion [Lau86]. In that case, the proper and improper

correlation matrices of r̃ can be computed as follow:

E
{
r̃r̃T
}
= ej4θoAEx

{
vec
(
xxT

)
vecT

(
xxT

)}AT

E
{
r̃r̃H
}
=AEx

{
vec
(
xxT

)
vecH

(
xxT

)}AH +

+(I+K)
(
Rw ⊗AAH

)
+ (I+K)

(
AAH ⊗Rw

)
+

+(I+K) (Rw ⊗Rw)

=A [Ex

{
vec
(
xxT

)
vecH

(
xxT

)}− 2P]AH + 2P (R⊗R
)

where P � 1
2 (I+K) and the following identities have been applied as done in Appendix 3.B:

vec
(
ABCT

)
= (C⊗A) vec (B)

(A⊗B) (C⊗D) = AC⊗BD

vec
(
abT

)
vecH

(
abT

)
= (b⊗ a) (b⊗ a)H = bbH⊗aaH

vec
(
baT

)
vecH

(
abT

)
= K vec

(
abT
)
vecH

(
abT

)
= K (bbH⊗aaH

)
=
(
aaH⊗bbH

)K.

Finally, if Q is defined as

Q � AKAH + 2R⊗R

with K given in (6.19), then

E{∇2(y; θo)} = 2σ−8
w rHPQr = 2σ−8

w rHQr

using the following properties of the orthogonal projector P:

PAKAT =APKAT = AKAT

Pr= r.
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Appendix 6.B Asymptotic expressions for multiplicative chan-

nels

Let y =ax+w be the matched filter output with a ∈ (0,+∞) the amplitude we aim to estimate,

x the vector of N symbols and w the AGW noise of variance σ2
w. From this simple model and

after some manipulations, the variance of the GML and BQUE estimators is identical and is

given by

V AR = BUCRB +
a2 (ρ− 2)

4N

where BUCRB denotes the associated UCRB (Section 2.6.1):

BUCRB =

(
a2 + σ2

w

)2
4Na2

If we take the limit of V AR when the noise variance tends to zero, we obtain

V AR =
a2 (ρ− 1)

4N
+

σ2
w

2N
+ o
(
σ2
w

)
,

that only goes to zero as the noise vanishes if N → ∞ (consistent estimator) or ρ = 1, which

is the case of the MPSK modulation, proving that the signal amplitude can only be perfectly

estimated from a finite observation in case of constant amplitude modulations such as the MPSK.

Finally, notice that the performance of the GML and the BQUE is generally different if the

estimator operates directly on the received signal as shown in Fig. 6.23.


