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Male fertilising capacity has traditionally been predicted by the assessment 

of sperm concentration, motility and morphology. During the last few 

decades, however, research has been particularly focused on the analysis 

of sperm chromatin, in terms of protamination, condensation and DNA 

integrity, as a valuable approach to evaluate male fertility. During 

spermiogenesis nuclear histones are replaced by protamines, resulting in 

a tightly condensed structure that is stabilised through intra- and inter-

protamine disulphide bonds formed during epididymal maturation. This 

highly condensed organisation protects the paternal genetic information 

from damaging agents during the transit of sperm through both male and 

female genital tracts. Poor protamination after spermiogenesis may result 

in an elevated number of sperm cells with immature chromatin, which is 

featured by a higher incidence of histone-packed DNA regions; these 

regions have been described to be more susceptible to DNA damage than 

those properly protaminated. Sperm DNA fragmentation is defined by the 

incidence of single- and double-strand breaks caused by oxidative stress 

and enzymatic activity, respectively. Sperm DNA fragmentation has been 

associated to poor sperm quality and impaired fertility outcomes both in 

vitro and in vivo. Because of the relationship between DNA and chromatin 

integrity, it is reasonable to hypothesise that abnormal chromatin 

protamination and condensation can also affect sperm DNA negatively, 

which could ultimately cause male subfertility or infertility. In the light of the 

aforementioned, the present Doctoral Thesis aimed to investigate the 

relationship of sperm chromatin protamination and condensation, and 

DNA integrity with sperm function and fertilising ability. For this purpose, 

experiments included in Chapter I sought to describe how sperm 

chromatin from bovine sperm is altered during incubation at 38 °C, and 

whether such changes are related to their quality and fertilising capacity. 

To address the effects on sperm chromatin, protamination was determined 
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with CMA3 staining, condensation was examined using the sperm 

chromatin dispersion test, and DNA integrity was evaluated through 

neutral and alkaline Comet assays for double-strand and global DNA 

damage, respectively. Chromatin protamination of frozen-thawed bovine 

sperm was observed to decrease upon incubation at 38 °C, whereas 

chromatin condensation was not affected under the same conditions. 

Furthermore, both global damage and double-strand DNA breaks were 

found to increase upon incubation of frozen-thawed bovine sperm at 38 

°C. Regarding sperm quality, which was evaluated by flow cytometry and 

computer assisted sperm analysis (CASA), post-thawing incubation at 

38 °C reduced sperm viability, motility, and the percentage of sperm with 

high intracellular ROS levels, whereas intracellular superoxide and calcium 

levels raised. Besides, fertility rates were found to correlate positively with 

total motility and percentages of sperm with high intracellular ROS levels. 

On the other hand, experiments conducted in Chapter II aimed to 

investigate whether chromatin protamination, condensation and DNA 

integrity of sperm vary between the separate fractions of the pig ejaculate 

(SRF-P1, SRF-P2 and PSRF). As results from CMA3 and DBB tests indicated, 

sperm from SRF-P1 and SRF-P2 exhibited greater chromatin condensation. 

Moreover, an increased imbalance between oxidative stress and 

antioxidant capacity was noticed in the SRF-P1, which was correlated to 

sperm concentration. Finally, Chapter III was conducted to explore if sperm 

chromatin fragmentation (SCF) can be activated in ejaculated sperm in 

vitro, and to elucidate whether the DNA breaks generated by this 

mechanism are mainly located in the toroid linker regions. For this 

purpose, ejaculated sperm were incubated with different concentrations of 

Mn2+ and Mg2+ ions for distinct incubation times at 37 °C. Data from neutral 

and alkaline Comet assays confirmed that sperm DNA breaks can be 

induced in vitro in pig ejaculated sperm through the incubation with 
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intracellular divalent ions in a dose-dependent manner, with Mn2+ being 

more effective than Mg2+. In addition, these incubations resulted in DNA 

fragments similar in size to toroidal structures (33 to 194 Kb). Finally, while 

the induction of SCF impaired sperm motility and induced sperm 

agglutination, it had no effect on in vitro fertilisation outcomes. 
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Tradicionalment, la capacitat fecundant masculina s'ha determinat 

mitjançant l'avaluació de la concentració, motilitat i morfologia dels 

espermatozoides. No obstant això, durant les últimes dècades, les 

investigacions s'han centrat especialment en l'anàlisi del grau de 

protaminació i condensació de la cromatina espermàtica, i de la integritat 

de l'ADN, com a paràmetres complementaris per a l'avaluació de la 

fertilitat masculina. Durant l’espermiogènesi la major part d’histones són 

substituïdes per protamines, donant lloc a una estructura molt compacta 

que s’estabilitza mitjançant enllaços disulfur intra- i inter-protamines 

formats durant la maduració epididimària. Aquesta organització altament 

condensada protegeix la informació genètica paterna enfront d’agents 

perjudicials durant el trànsit dels espermatozoides pels tractes genitals 

masculí i femení. Una protaminació deficient durant l’espermiogènesi pot 

resultar en un major nombre de cèl·lules espermàtiques immadures, que 

presenten una incidència més elevada de regions d'ADN compactades 

per histones. S’ha descrit que aquests regions menys protaminades són 

més susceptibles de patir dany a l'ADN que aquelles que estan 

correctament protaminades. La fragmentació de l'ADN espermàtic es 

defineix per la incidència de trencaments de cadena simple i doble 

causades per l'estrès oxidatiu i l'activitat enzimàtica, respectivament. 

Aquesta fragmentació s'ha associat amb una baixa qualitat de l'esperma i 

una fertilitat menor, tant in vitro com in vivo. Tenint en compte la relació 

entre la integritat de la cromatina i l'ADN, hom pot suggerir que les 

anomalies en la protaminació i condensació de la cromatina també poden 

afectar negativament la funcionalitat espermàtica, la qual cosa podria 

causar subfertilitat o infertilitat masculina. En aquest context, aquesta Tesi 

Doctoral va tenir com a objectiu investigar la relació de la cromatina 

espermàtica, en termes de protaminació, condensació i integritat de 

l'ADN, amb la funcionalitat espermàtica i la capacitat fecundant dels 
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espermatozoides. Per això, els experiments inclosos en el Capítol I es van 

dissenyar per analitzar els canvis que pateix la cromatina de 

l'espermatozoide boví descongelat durant la seva incubació a 38 °C, i per 

determinar si aquests canvis estan relacionats amb la qualitat i fertilitat de 

l'espermatozoide. Per tal de testar els efectes sobre la cromatina 

espermàtica, la protaminació es va examinar mitjançant el test CMA3, la 

condensació es va determinar amb el test de dispersió de la cromatina 

espermàtica i la integritat de l'ADN (fragmentació de cadena doble i global 

de l'ADN) es va avaluar mitjançant els assajos Comet neutre i alcalí. Els 

resultats van mostrar que la protaminació de la cromatina espermàtica dels 

espermatozoides de toro descongelats disminuïa després de la seva 

incubació a 38 °C, mentre que la condensació de la cromatina espermàtica 

no es veia alterada sota les mateixes condicions. A més, tant la 

fragmentació global com la de doble cadena de l'ADN augmentaven 

després de la incubació a 38 °C dels espermatozoides descongelats. Pel 

que fa a la qualitat espermàtica, avaluada mitjançant citometria de flux i el 

sistema d'anàlisi espermàtica automatitzat (CASA), la incubació a 38 °C 

reduïa la viabilitat i la motilitat espermàtiques, així com el percentatge 

d'espermatozoides amb alts nivells intracel·lulars de ROS, mentre que 

augmentava els nivells de superòxids i calci intracel·lulars. A més, es va 

observar que les taxes de fertilitat es correlacionaven amb la motilitat total 

i el percentatge d'espermatozoides amb alts nivells de ROS intracel·lular. 

Paral·lelament, els experiments realitzats en el Capítol II tenien com a 

objectiu investigar si la protaminació i la condensació de la cromatina, i la 

integritat de l'ADN dels espermatozoides, varien entre les diferents 

fraccions de l'ejaculació porcina (SRF-P1, SRF-P2 i PSRF). Els resultats dels 

assajos CMA3 i DBB van mostrar que els espermatozoides procedents de 

les fraccions SRF-P1 i SRF-P2 presentaven una major condensació de la 

cromatina espermàtica. A més, la SRF-P1 presentava un major desequilibri 



Abstract / Resum / Resumen 

 

15 

entre l'estrès oxidatiu i la capacitat antioxidant, la qual cosa es va veure que 

estava correlacionada amb la concentració d'espermatozoides. Finalment, 

el Capítol III es va dur a terme per explorar si la fragmentació de la 

cromatina espermàtica (SCF) pot activar-se en espermatozoides ejaculats 

in vitro i per dilucidar si es produeixen trencaments d'ADN a les regions 

que uneixen els toroides (TLR). Amb aquest objectiu, es van incubar 

espermatozoides ejaculats amb diferents concentracions de Mn2+ i Mg2+ 

durant diferents temps d'incubació a 37 °C. Els resultats dels assajos 

Comet neutre i alcalí van confirmar que es poden induir trencaments de 

l'ADN espermàtic in vitro en els espermatozoides ejaculats de porcí 

mitjançant la incubació amb ions divalents intracel·lulars de forma dosi-

dependent, i que el Mn2+ és més efectiu que el Mg2+. Addicionalment, 

aquesta incubació va donar lloc a fragments d’ADN de mida similar a les 

estructures toroidals (33 to 194 Kb). Finalment, es va examinar l'impacte 

de la fragmentació de l'ADN produïda per la SCF, i es va veure que la 

inducció d’aquest mecanisme comprometia la motilitat espermàtica i 

induïa l'aglutinació dels espermatozoides. Tanmateix, aquesta SCF 

induïda pel Mn2+ en els espermatozoides ejaculats no va influir en els 

resultats de la fecundació in vitro. 
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Tradicionalmente, la capacidad fecundante masculina se ha determinado 

mediante la evaluación de la concentración, motilidad y morfología de los 

espermatozoides. Sin embargo, durante las últimas décadas, la 

investigación se ha centrado especialmente en el análisis del grado de 

protaminización y condensación de la cromatina espermática, y de la 

integridad del ADN, como parámetros complementarios para la 

evaluación de la fertilidad masculina. Durante la espermiogénesis la 

mayoría de les histonas son sustituidas por protaminas, dando lugar a una 

estructura muy compacta que se estabiliza mediante enlaces disulfuro 

intra- e inter-protaminas formados durante la maduración espermática. 

Esta organización altamente condensada protege la información genética 

paterna frente a agentes dañinos durante el tránsito de los 

espermatozoides por los tractos genitales masculino y femenino. Una 

protaminación deficiente durante la espermiogénesis puede resultar en un 

mayor número de células espermáticas inmaduras con una mayor 

incidencia de regiones de ADN compactadas por histonas, las cuales se ha 

descrito que son más susceptibles de sufrir daño en el ADN que las 

regiones correctamente protaminadas. La fragmentación del ADN 

espermático se define por la incidencia de roturas de cadena simple y 

doble causadas por el estrés oxidativo y la actividad enzimática, 

respectivamente. Dichas roturas se han asociado con una baja calidad del 

esperma y una menor fertilidad, tanto in vitro como in vivo. Teniendo en 

cuenta la relación entre la integridad de la cromatina y el ADN, se puede 

sugerir que las anomalías en la protaminación y condensación de la 

cromatina también pueden afectar negativamente la funcionalidad 

espermática, lo que podría causar subfertilidad o infertilidad masculina. En 

este contexto, esta Tesis Doctoral tuvo como objetivo investigar la relación 

de la cromatina espermática, en términos de protaminación, condensación 

e integridad del ADN, con la funcionalidad espermática y la capacidad 
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fecundante de los espermatozoides. Para ello, los experimentos incluidos 

en el Capítulo I se diseñaron para analizar los cambios que sufre la 

cromatina del espermatozoide bovino descongelado durante su 

incubación a 38 °C, y si estos cambios están relacionados con la calidad y 

fertilidad del espermatozoide. Para evaluar los efectos sobre la cromatina 

espermática, la protaminación se determinó mediante el test CMA3, la 

condensación se examinó con el test de dispersión de la cromatina 

espermática y la integridad del ADN (fragmentación de cadena doble y 

global del ADN) se evaluó mediante los ensayos Comet neutro y alcalino. 

Los resultados mostraron que la protaminación de la cromatina 

espermática de los espermatozoides de toro descongelados disminuía 

tras su incubación a 38 °C, mientras que la condensación de la cromatina 

espermática no se veía alterada en las mismas condiciones. Además, tanto 

la fragmentación global cuanto la de doble cadena del ADN aumentaban 

tras la incubación de espermatozoides de toro descongelados a 38 °C. En 

lo que respecta a la calidad espermática, evaluada mediante citometría de 

flujo y el sistema de análisis espermático automatizado (CASA), la 

incubación a 38 °C posterior a la descongelación reducía la viabilidad y la 

motilidad espermáticas, así como el porcentaje de espermatozoides con 

altos niveles intracelulares de ROS, mientras que aumentaban los niveles 

de superóxidos y calcio intracelulares. Además, se observó que las tasas 

de fertilidad se correlacionaban con la motilidad total y el porcentaje de 

espermatozoides con altos niveles de ROS intracelular. Paralelamente, los 

experimentos realizados en el Capítulo II tenían como objetivo investigar 

si la protaminación y la condensación de la cromatina, y la integridad del 

ADN de los espermatozoides varían entre las distintas fracciones del 

eyaculado porcino (SRF-P1, SRF-P2 y PSRF). Los resultados de los ensayos 

CMA3 y DBB mostraron que los espermatozoides procedentes de las 

fracciones SRF-P1 y la SRF-P2 presentaban una mayor condensación de la 
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cromatina espermática. Además, la SRF-P1 presentaba un mayor 

desequilibrio entre el estrés oxidativo y la capacidad antioxidante, lo cual 

se vio que estaba correlacionado con la concentración de 

espermatozoides. Por último, el Capítulo III se llevó a cabo para explorar si 

la fragmentación de la cromatina espermática (SCF) puede activarse en 

espermatozoides eyaculados in vitro y para dilucidar si se producen 

roturas de ADN en las regiones que unen los toroides (TLR). Con este 

objetivo, se incubaron espermatozoides eyaculados con distintas 

concentraciones de Mn2+ y Mg2+ durante diferentes tiempos de incubación 

a 37 °C. Los resultados de los ensayos Comet neutro y alcalino confirmaron 

que se pueden inducir roturas del ADN espermático in vitro en los 

espermatozoides eyaculados de porcino mediante la incubación con iones 

divalentes intracelulares de forma dosis-dependiente, y que el Mn2+ es más 

efectivo que el Mg2+. Además, de esta incubación resultaron fragmentos 

de ADN de tamaño similar a las estructuras toroidales (33 a 194 Kb). 

Finalmente, se examinó el impacto de la fragmentación del ADN 

producida por SCF, y se vio que la inducción de la SCF comprometía la 

motilidad espermática e inducía la aglutinación de los espermatozoides. A 

pesar de ello, esta SCF inducida por el Mn2+ en los espermatozoides 

eyaculados no influyó en los resultados de la fecundación in vitro. 
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1. Mammalian ejaculation 

1.1. Semen and components 

Semen is the liquid suspension released during ejaculation. It is composed 

by sperm cells and the seminal plasma (SP), which is made up of secretions 

from the male accessory glands and provides sperm with a suitable 

medium to support their function upon ejaculation and, in mammals, 

during the transport through the female reproductive tract towards the 

oocyte (Garner & Hafez, 2000; Sancho & Vilagran, 2013). 

 

1.1.1. Sperm 

Sperm cells are the cellular component of the ejaculate. The evolution 

provided sperm cells with an optimised anatomy that enables them to 

reach and fertilise the oocyte, achieving an effective propagation of the 

paternal genetic information. Yet, before a spermatozoon becomes 

competent to fertilise an oocyte, it needs to undergo a myriad of 

processes, both in the male and female reproductive tracts. The processes 

through which a germinal stem cell evolves to a mature spermatozoon with 

fertilising capacity include spermatogenesis, maturation, capacitation and 

acrosome reaction, and take place in the testicular seminiferous 

epithelium, in the epididymis and in the oviduct (fallopian tube), 

respectively. 

Sperm are small, elongated cells that can be morphologically and 

functionally divided into two main regions, the head and the tail, which are 

connected by a region designated as connecting piece or neck (Alberts et 

al., 2008; Briz & Fàbrega, 2013). The sperm head is composed by a haploid 

nucleus containing a highly condensed and transcriptionally inactive DNA 
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that minimises the cell volume (Alberts et al., 2008). Together with the 

nucleus, a membrane-bound vesicle known as acrosome is found in the 

head of most mammalian sperm. The acrosome is an important specialised 

secretory vesicle located in the apical region of the sperm head and covers 

approximately 80 % of its volume. It carries hydrolytic enzymes, mainly 

acrosin and hyaluronidase, which are involved in the acrosome reaction, a 

crucial step that allows sperm penetration through the zona pellucida, 

enabling the further fusion with the oocyte plasma membrane (Garner & 

Hafez, 2000). The sperm tail is composed by a flagellum, whose central 

axoneme emerges from the basal region of the head. The axoneme, 

composed of two central microtubules surrounded by nine pairs of 

microtubules, is enclosed by nine outer dense fibres that restrict the 

flexibility of the flagellum and protects it from the forces resulting from its 

movement (Alberts et al., 2008). The sperm tail can be further subdivided 

into three different regions: the mid, principal, and end pieces. In the 

midpiece, the layer of dense fibres is surrounded by mitochondria, which 

are crucial organelles carrying out oxidative phosphorylation – necessary 

to produce ATP – and are involved in the regulation of sperm capacitation 

and hyperactivated movement (Alberts et al., 2008; Garner & Hafez, 2000). 

The longest segment of the sperm tail is the principal piece, which is 

attached to the midpiece by the Jensen’s ring. More specifically, the 

Jensen’s ring separates the layer of mitochondria of the midpiece from the 

principal piece fibrous cover (Lehti & Sironen, 2017). Finally, the end piece 

is the shorter segment of the sperm tail, and only contains a disorganised 

axoneme (Briz & Fàbrega, 2013).  
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1.1.2. Seminal plasma 

The seminal plasma is the liquid portion of semen, and is composed by 

secretions from the testis, epididymis, and mostly, from the male accessory 

sex glands (seminal vesicles, prostate and bulbourethral glands) 

(Bromfield, 2014; Garner & Hafez, 2000). Seminal plasma joins sperm 

during ejaculation in order to create the appropriate medium to carry, 

protect and nourish ejaculated sperm (Gilany et al., 2015; Perez-Patiño et 

al., 2016). Besides this well-established function of SP, emerging evidence 

supports that it plays an essential role in regulating sperm fertilising ability 

(Bromfield, 2016; Locatello et al., 2013; Rodríguez-Martínez et al., 2011, 

2021). In addition, SP interacts with the female reproductive tract, 

developing an important mission in the modulation of the immune system 

response, which has been shown to be required for an appropriate embryo 

development, implantation and pregnancy (Bromfield, 2016; O’Leary et 

al., 2004; Robertson, 2007; Rodríguez-Martínez et al., 2021; Schjenken & 

Robertson, 2014) 

The SP is composed by inorganic compounds, proteins and 

metabolites (Bromfield, 2014; Garner & Hafez, 2000), whose concentration 

has been reported to vary across species, mainly due to the differences in 

the presence and dimensions of the accessory glands. Moreover, the 

composition of SP has also been described to present inter-individual 

variations and even variations between ejaculates from the same individual 

(Strzeżek et al., 2005; Valverde et al., 2016). The protein fraction is the most 

abundant SP component. Seminal plasma proteins are also able to interact 

with sperm during the epididymal transit, and during/after ejaculation, 

promoting membrane changes associated to sperm capacitation 

(Rodríguez-Martínez et al., 2011). On the other hand, inorganic 

compounds such as sodium, potassium, calcium and magnesium, are also 

present in the SP (Cragle et al., 1958), and have been reported to exert a 
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further impact on sperm function, once ejaculated, in relation to their 

concentration (Hamamah & Gatti, 1998). Metabolites present in the SP, 

which include carbohydrates, lipids, amino acids and hormones, are 

known to be involved in several physiological processes in sperm, such as 

metabolism and motility (Bieniek et al., 2016). In this regard, while 

phospholipids and cholesterol are known to be important for membrane 

structure and sperm function, carbohydrates are directly involved in the 

energy production process (Juyena & Stelletta, 2012). Finally, hormones 

like oestradiol and progesterone have been reported to be present in the 

SP, but their precise function is yet to be defined (Juyena & Stelletta, 2012). 

 

1.2. Ejaculation 

Ejaculation is the physiological process involving the ejection of sperm and 

SP outside the male body. As mentioned above, sperm are produced in 

the seminiferous tubules of the testicle (Alberts et al., 2008; Gilbert, 2000b; 

Parrish et al., 2017). Once sperm cells are completely differentiated at the 

seminiferous tubules, they are pushed through the rete testis and vas 

efferens to finally reach the epididymis (Alberts et al., 2008; Carlson, 2019). 

During its transit through the epididymis (divided into caput, corpus and 

cauda), sperm undergo a functional maturation, acquiring motility and 

higher nuclear condensation, and withstanding changes in the 

composition of their plasma membrane. This process ends when they 

reach the cauda epididymis, where sperm are stored awaiting ejaculation. 

Upon ejaculation, sperm migrate through vas deferens to the pelvic 

urethra, where they mix with secretions from seminal vesicles, the prostate, 

and bulbourethral glands to constitute the final ejaculate (Bonet et al., 

2013; Carlson, 2019; Gilbert, 2000b), which is deposited in the female 

reproductive tract (Suarez & Pacey, 2006).  
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Ejaculates of mammalian species, such as humans, pigs and horses, 

are expelled into two main fractions after the pre-sperm one: the sperm-

rich fraction (SRF) and the post sperm-rich fraction (PSRF) (Eliasson & 

Lindholmer, 1972; Rodríguez-Martínez et al., 2021). As mentioned above, 

ejaculate volume and composition have been found to vary across species, 

among individuals and among ejaculates from the same individual (Mann 

& Lutwak-Mann, 1981). Also, intra-ejaculate differences in terms of sperm 

and SP composition have also been reported (Hebles et al., 2015; 

Kareskoski et al., 2011; Rodriguez-Martinez et al., 2021), each ejaculate 

fraction being different from the other. The collection of split ejaculates is 

a method that has been attempted in humans in order to obtain the semen 

fraction containing the sperm with the highest quality to be used for 

fertilisation (Amelar & Hotchkiss, 1965; de la Torre et al., 2017). Collection 

of human ejaculate fractions, however, exhibits a high degree of variability, 

probably due to the fact that harvesting split fractions highly relies on the 

ability of the patient to fraction their ejaculates. To overcome this limitation, 

one may consider animal models like pigs, as semen collection methods 

are highly standardised because of their commercial production for 

artificial insemination purposes. 

Ejaculate fractions differ in sperm concentration and SP volume, 

origin and composition (Amelar & Hotchkiss, 1965; de la Torre et al., 2017; 

Einarsson, 1971; Kareskoski et al., 2011a; 2011b). Whereas the SRF has the 

major contribution in sperm cells to the final ejaculate (80-90 %) and 

contains a small volume of SP, the PSRF is the largest in volume and only 

contains a small proportion of sperm (10-20 %) (Mann & Lutwak-Mann, 

1981). These changes between fractions are known to be due to the 

differential origin of the fluid, the SP from the SRF being mainly composed 

by epididymal and prostate secretions (Einarsson, 1971; Eliasson & 

Lindholmer, 1972; Rodríguez-Martínez et al., 2009) and that from the PSRF 
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being mainly formed by secretions from seminal vesicles and 

bulbourethral glands (Eliasson & Lindholmer, 1972; Rodríguez-Martínez et 

al., 2009). Thus, different studies have evidenced variations between 

fractions in terms of SP components, such as proteins (Björndahl & Kvist, 

2003; Kareskoski et al., 2011b; Perez-Patiño et al., 2016; Rodríguez-

Martínez et al., 2011), antioxidants (Barranco et al., 2015; Kowalczyk, 

2022a; Pahune, 2013) and metabolites (Arienti et al., 1999; Clegg & Foote, 

1973; Mateo-Otero et al., 2020; Valsa et al., 2012). As a result of these 

differences in sperm and SP composition between ejaculate fractions, 

distinct sperm quality outcomes in terms of viability, motility and DNA 

integrity have been reported for each fraction (de la Torre et al., 2017; 

Dziekońska et al., 2017; Hebles et al., 2015; Kumar et al., 2011). In effect, 

several studies have shown that sperm contained in the SRF exhibit the 

highest motility (Dziekońska et al., 2017; Hebles et al., 2015; Santolaria et 

al., 2016; Valsa et al., 2012), membrane stability (Peña, 2003; Sellés et al., 

2001) and DNA integrity (de la Torre et al., 2017; Hebles et al., 2015; Kumar 

et al., 2011), concluding that the SRF presents the greatest sperm quality 

and, therefore, the highest fertility potential (Barranco et al., 2015; 

Lindholmer, 1973; Sokol et al., 2009). 

 

 

2. Sperm formation 

2.1. Spermatogenesis 

Spermatogenesis is a complex biological process through which a type B 

spermatogonium is divided into four fully differentiated sperm. 

Spermatogenesis occurs in the epithelium of the seminiferous tubules of 

the male testis, starting at puberty and throughout the remainder of the 
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male life, and can be subdivided in three processes: first, the proliferation 

and differentiation of spermatogonia; second, meiosis; and third, cell 

differentiation or spermiogenesis (Clermont et al., 1993; Sharma & 

Agarwal, 2011).  

During foetal development, primordial germ cells migrate to the 

epithelium of the seminiferous cords, the precursors of the seminiferous 

tubules, and start to proliferate and differentiate to lead to type A 

spermatogonia (2n). These stem cells are constantly renewed by mitotic 

divisions and, once puberty is reached, they start to differentiate into type 

B spermatogonia (2n), while maintaining the type A lineage. Type B 

spermatogonia enter meiosis, deriving to primary spermatocytes, which 

undergo two meiotic divisions, the first one resulting in two secondary 

spermatocytes (n) and the second one resulting in four round spermatids 

(n), two per secondary spermatocyte (Gilbert, 2000b; Sharma & Agarwal, 

2011). Among all the molecular processes occurring during meiosis, it is 

important to mention that during prophase I of the first meiotic division, 

homologous chromosomes interchange genetic material, providing 

genetic variability in the resulting daughter cells. This process is initiated 

by the recognition of the telomeres of the homologous chromosomes 

forming the bouquet, followed by a complete pairing of the homologous 

chromosomes and the generation of double-strand DNA breaks by the 

SPO11 nuclease, which enables the production of crossovers and the 

further resolution of chiasmata (Lin & Matzuk, 2014). After the second 

meiotic division, immature round spermatids begin a cell differentiation 

process, known as spermiogenesis, which mainly comprises cytoplasmic 

and morphological changes turning the cell from large round-shaped to 

small elongated spermatids, and changes in the chromatin configuration 

(Hermo et al., 2010a; Leblond & Clermont, 1952; Lin & Troyer, 2014). 

Regarding cytoplasmic changes, the acrosome formation from the Golgi 
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apparatus provides sperm with the ability to penetrate oocyte vestments 

during fertilisation (Hermo et al., 2010). Furthermore, the formation of the 

sperm tail starts with the polarisation of centrioles (Clermont et al., 1993; 

Leblond & Clermont, 1952), the spermatid cytoplasm is reduced and 

mitochondria are confined to the midpiece (Lin & Troyer, 2014). Finally, it 

is during spermiogenesis that most histones of the nuclear chromatin are 

replaced by protamines, leading to a highly-condensed state. Due to the 

relevance of these chromatin changes, they will be approached separately 

in Section 2.1.1. After completion of cell differentiation, testicular sperm 

are released from the seminiferous epithelium to the lumen of the 

seminiferous tubule during a process known as spermiation. 

At the end of spermatogenesis, sperm are highly differentiated cells 

with no motility or fertilising ability, features that are acquired after their 

journey along the epididymis, where sperm undergo the maturation 

process (Cornwall, 2008; Gervasi & Visconti, 2017; Sullivan & Mieusset, 

2016).  

 

2.1.1. Sperm chromatin remodelling 

During mammalian spermatogenesis, an important chromatin 

reorganisation occurs leading to severe changes in the chromatin 

condensation status, turning from a histone-based chromatin structure to 

a structure mostly composed of protamines (Figure 1) (Braun, 2001; 

Dadoune, 2003; Miller et al., 2010; Steger, 1999), which are the most 

abundant chromatin component in mature sperm (Oliva, 2006). In general, 

these chromatin changes occur mostly during spermiogenesis in a 

stepwise manner, first replacing some of the canonical histones by testis-

specific histone variants, then replacing most histones by transition 

proteins (TP) and, finally, replacing these transition proteins by protamines 
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(Braun, 2001; Steger, 1999). Yet, the presence of transition proteins has 

only been described in some species, such as humans, sheep, mice and 

rats (Gosálvez et al., 2011). Histone-to-protamine replacement starts thanks 

to the activity of DNA topoisomerase II, which produces transient DNA 

breaks to alleviate the torsional stress resulting from supercoiling and 

whose function is facilitated by the high degree of histone hyperacetylation 

(Laberge & Boissonneault, 2005; Marcon & Boissonneault, 2004; S. 

McPherson & Longo, 1993a; 1993b). Initially, some canonical histones are 

replaced by testis-specific histone variants (Meistrich et al., 2003; Miller et 

al., 2010; Sharma & Agarwal, 2011). Then, in the species where transition 

proteins are involved, histones are replaced by transition nuclear proteins 

(TP1 and TP2), which are basic proteins that represent up to the 90 % of 

chromatin proteins during the histone-to-protamine replacement process 

(Meistrich et al., 2003). TP1 has been reported to contribute to histone 

displacement and, together with TP2, leads chromatin to achieve a greater 

condensation status (Boissonneault, 2002; Brewer et al., 2002; Lévesque et 

al., 1998). Finally, TPs are subsequently replaced by protamines, which 

leads to the highest degree of chromatin condensation (Braun, 2001). Even 

though most mammalian species present an unique type of protamine in 

sperm (protamine 1), mice, horses and humans exhibit similar amounts of 

two types of protamines, protamine 1 and protamine 2 (Balhorn et al., 

1988; D. T. Carrell et al., 2007; Mengual et al., 2003). Not only has the 

abnormal proportion of protamine 1 and protamine 2 been linked to 

infertility (Francis et al., 2014; Nanassy et al., 2011; Torregrosa et al., 2006), 

but it has also been reported to negatively impact in vitro fertilisation 

outcomes and impair early embryo development (Aoki et al., 2006). 

Compared to histones, protamines are characterised by their high 

amounts of arginine residues, which are basic and contain amino groups (-

NH3
+) that neutralise the negative DNA phosphate groups (-PO4

3-). This 
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results in a net positive charge that leads to a strong binding of these 

proteins to the major groove of the double helix of DNA (Björndahl et al., 

2010; Oliva & Castillo, 2011). In addition, protamines contain a significant 

number of cysteine residues (between five and ten, depending on the 

species) that promote the formation of multiple inter- and intra-protamine 

disulphide bonds, essential to stabilise the highly condensed chromatin in 

mature sperm (Balhorn et al., 1988; Carrell et al., 2007; Ward, 2017). 

Furthermore, zinc bridges have been reported to be present in inter-

protamine binding, contributing to the stability of the structure (Björndahl 

et al., 2010). All these features confer a high degree of DNA packaging, 

with a chromatin that is six to ten times more condensed than mitotic 

chromosomes, and a nuclear volume that is 44 times smaller than that of 

mouse liver cells (Ward & Coffey, 1991). This high degree of packaging of 

the genetic information allows a better protection of the paternal DNA 

during the sperm journey along the male and female reproductive tracts 

towards the oocyte. In spite of this, between 2 and 15 % of histones remain 

in certain regions of the mature sperm genome, being potentially involved 

in the epigenetic regulation of the first embryo stages (Braun, 2001; D. T. 

Carrell et al., 2007; Miller et al., 2010; Oliva, 2006). In this regard, several 

studies have reported that abnormally high levels of histones in mature 

sperm are correlated with male subfertility and infertility (Francis et al., 

2014; Hamad, 2019).  
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Figure 1. Cellular and chromatin changes during the life of a sperm cell, from its 

formation and testicular release, to epididymal maturation and journey through 

the female reproductive tract. Retrieved from Sharma & Agarwal (2011). 

 

Condensation of sperm DNA with protamines promotes a very 

specific chromatin organisation, only found in sperm cells. This 

organisation is formed by the condensation of chromatin loop domains of 

25 to 50 kilobases into toroidal structures, which are the basic packaging 

structure of sperm chromatin (Brewer et al., 1999; Miller et al., 2010). These 

toroidal structures become attached to each other and to the nuclear 

matrix thanks to nuclease-sensitive regions named Toroid Linker Regions 

(TLR), which are supposed to contain matrix attachment regions (MAR) 

(Aoki & Carrell, 2003; Singh, 1997; Wykes & Krawetz, 2003) (Figure 2). 

Particularities of this model that are supported by scientific evidence are: 

a) the presence of histones instead of protamines in large segments of 

DNA (Hammoud et al., 2009; Wykes & Krawetz, 2003); b) the formation of 

toroids by the attachment of protamines to the DNA, which results in 

structures highly resilient to nuclease digestion (Brewer et al., 1999; Hud 

et al., 1993; Sotolongo et al., 2003, 2005); and c) the organisation of 

protamine-DNA toroids in loops (Sotolongo et al., 2003) that are attached 



Introduction 

 

36 

to the nuclear matrix (Kramer & Krawetz, 1996; Ward et al., 1989). Despite 

advances in the recent years, some aspects are still theoretical and need to 

be experimentally proven, including the stacked disposition of toroids, the 

presence of histones rather than protamines in TLRs, and the specific 

localisation of TLRs in sperm chromatin (Ribas-Maynou et al., 2022b). 

 

 

Figure 2. Organisation of sperm chromatin in protamine toroids (red) and histone-

packed regions (green). Protamine-toroids are linked to DNA by matrix 

attachment regions (MAR, Blue) and to each other by toroid linker regions (TLR). 

Modified from Ward (1993). 

 

2.2. Sperm physiology 

2.2.1. Epididymal maturation 

After spermatogenesis, sperm undergo a maturation process during their 

transit through the epididymis. Amongst other changes, most disulphide 

bonds between cysteine residues of protamines (Baker et al., 2015) are 
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formed and sperm acquire progressive motility (Cornwall, 2008; Gervasi & 

Visconti, 2017; Sullivan & Mieusset, 2016). 

Epididymal maturation events are dependent on the surrounding 

environment, highly influenced by the region-specific secretory and 

adsorptive activities of epididymal epithelial cells (Browne et al., 2016; 

Zhou et al., 2018). The composition of the epididymal fluid is controlled by 

these adsorptive and secretion activities, and includes proteins, enzymes, 

ions, hormones, miRNAs and small organic molecules of the epithelial 

cells, which can be found free or contained in extracellular vesicles 

(epididymosomes) (Machtinger et al., 2016). The composition of the 

epididymal fluid differs between epididymal regions (Brooks, 1981; Da 

Silva et al., 2006; Turner et al., 1979), which has been linked to the 

particular functions of each region. In this regard, the composition in the 

caput and corpus regions has been described to be appropriate for 

morphological and physiological changes of sperm, whereas that of the 

cauda has been related to sperm survival during storage in the cauda 

before ejaculation (Browne et al., 2016; Zhou et al., 2018). 

The most important modifications during epididymal maturation 

affect the lipids and proteins of the plasma membrane, which contributes 

to reshaping the sperm surface (Dacheux & Voglmayr, 1983; Scott et al., 

1967). These changes include the proteolytic removal of sperm surface 

proteins, as well as their relocalisation, changes in the molecular weight, 

and modification of their glycosyl units by glycosylation or deglycosylation. 

These modifications are essential for sperm to undergo post-ejaculatory 

events like capacitation, acrosome reaction and fusion with the oocyte 

membrane (Dacheux & Dacheux, 2014). In addition, the specific set of 

proteins acquired during the epididymal maturation, together with the 

increased intracellular cAMP levels, are essential for the acquirement of 

sperm motility, which includes the initiation of the flagellar movement 
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followed by its coordination into a wave-shaped whipping motion that 

enables mature sperm to advance progressively (Dacheux & Dacheux, 

2014).  

Finally, regarding sperm chromatin, during the sperm transit 

through the epididymis, protamines undergo the oxidation of thiol groups 

forming inter- and intra-protamines disulphide bonds (Baker et al., 2015; 

Shalgi et al., 1989). Moreover, the developing sperm cells can internalise 

proteins and miRNAs, which are released in an epididymal region-specific 

manner to the intraluminal fluid both free and/or contained in 

epididymosomes, and play an active role in sperm maturation. These 

proteins are involved in: i) the regulation of sperm membrane calcium 

channels, important for proper sperm capacitation (i.e., CRISP1 and LCN6); 

ii) the posttranslational modification of sperm proteins, which provide the 

control of protein activity in sperm, as sperm cells are transcriptionally 

silent (i.e., RNAse10, INPP5b and SPINK13); iii) changes of the sperm 

membrane lipid composition (i.e., CES5A and SERPINA16); and iv) cell-to-

cell interactions essential to recognise and fertilise the oocyte (i.e., DCXR 

and SOB2) (Björkgren & Sipilä, 2019; Zhou et al., 2018). Besides, the 

miRNAs present in the intraluminal fluid (free and/or contained in 

epididymosomes) have been reported to regulate the gene expression of 

the epithelial cells from the differentiated epididymal segments 

(Belleannée et al., 2013; Browne et al., 2018; Twenter et al., 2017).  

 

2.2.2. Sperm capacitation and acrosome reaction 

Capacitation is the gradual process that sperm undergo during their 

journey along the female reproductive tract to become fertilising 

competent. This process involves several physiological and biochemical 

modifications, including changes in the motility pattern and plasma 
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membrane architecture, the activation of several signalling pathways, and 

the acquisition of the ability to trigger the acrosome reaction (Signorelli et 

al., 2012; Visconti, 2009; Zaneveld et al., 1991; Zigo et al., 2020). As a result, 

capacitated sperm develop the potential to bind and penetrate the zona 

pellucida and the oolemma, to further activate the fertilised oocyte (Puga 

Molina et al., 2018; Yanagimachi, 1994; Zaneveld et al., 1991).  

Capacitation events are initially blocked when sperm are mixed 

with SP, as the latter contains decapacitating factors. Two types of events 

are distinguished in sperm capacitation: the fast/early, which occur upon 

ejaculation – when sperm are deposited in the female tract – and include 

motility activation; and the slow/late, which take place in the female oviduct 

and include motility hyperactivation. Both in the fast/early and slow/late 

events, bicarbonate (HCO3
-) plays a main role (Ickowicz et al., 2012; Jin & 

Yang, 2017; Puga Molina et al., 2018). When sperm is ejaculated and enter 

the female reproductive tract, the increased concentration of HCO3
- 

present in the SP stimulates the activation of the sperm-specific, soluble 

Adenylyl Cyclase (sACY). As a result of sACY activity, cyclic adenosine 

monophosphate (cAMP) levels are increased, promoting the activation of 

the Protein Kinase A (PKA) pathway (Ickowicz et al., 2012; Jin & Yang, 

2017), which stimulates the phosphorylation of several substrates, leading 

to sperm motility activation (Visconti, 2009). The initial activation of the 

cAMP/PKA pathway induces other capacitation-associated events, 

including the increase of intracellular pH (Wang et al., 2003, 2007; Zeng et 

al., 1996), the hyperpolarisation of the plasma membrane (Demarco et al., 

2003), the removal of cholesterol from the plasma membrane (Gadella & 

Harrison, 2002; Harrison & Miller, 2000) and the increase of Ca2+ 

permeability via specific calcium channels (Ickowicz et al., 2012; Signorelli 

et al., 2012), thus promoting the release of sperm from the oviductal 

reservoir and initiating late/slow capacitation events. The simultaneous 
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HCO3
- and Ca2+ influx contributes to the phosphorylation of serine-

threonine protein residues by PKA, finally increasing protein tyrosine 

phosphorylation (Ickowicz et al., 2012; Visconti, 2009). Overall, sperm that 

complete capacitation display hyperactivated motility and have the ability 

to elicit the acrosome reaction (Visconti, 2009).  

As explained above, capacitated sperm in the upper isthmus of the 

oviduct are prepared to trigger the acrosome reaction, which is likely to be 

induced by progesterone and other factors released by cumulus cells 

and/or present in the follicular fluid (Bray et al., 2002; Buffone, Hirohashi, 

et al., 2014; La Spina et al., 2016; Shi, 1997; Torres-Fuentes et al., 2015). 

Over the years, the induction of acrosome reaction was attributed to the 

initial contact between hyperactivated sperm and the zona pellucida 

(Yanagimachi & Phillips, 1984; Yeste, 2013), but recent investigations 

support the potential implication of progesterone and other factors 

released by the cumulus cells to the oviductal fluid. Thus, acrosome 

reaction would be triggered in the upper isthmus of the oviduct before 

sperm interact with oocyte vestments (Buffone, Wertheimer, et al., 2014; 

La Spina et al., 2016; Yanagimachi & Phillips, 1984; Yeste et al., 2017). The 

acrosome reaction is a Ca2+-dependent process that involves the fusion of 

the sperm plasma membrane with the outer acrosome membrane, 

releasing the acrosomal content, which enzymatically degrades oocyte 

vestments and contributes sperm to reach the oolemma (Ickowicz et al., 

2012; Yanagimachi, 2011; Zaneveld et al., 1991). In mammals, mature 

oocytes are surrounded by the zona pellucida that, in turn, is covered by 

several cumulus cell layers which synthesise hyaluronic acid. This implies 

that sperm need to pass through cumulus layers and then through the zona 

pellucida. In this itinerary, sperm appear to rely upon both the mechanical 

properties of hyperactivated motility resulting from capacitation (Quill et 

al., 2003) and the release of the acrosome enzymatic content, which 
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digests the extracellular matrix surrounding cumulus cells and allows 

sperm penetration to reach the zona pellucida. Once there, sperm 

galactosyl transferase binds to ZP3 protein in a species-specific process 

and penetrates the zona pellucida. Finally, sperm and oocyte plasma 

membranes bind thanks to IZUMO1 and JUNO proteins from sperm and 

oocyte, respectively (Bianchi et al., 2014; Gadella & Evans, 2011; Stein et 

al., 2004). 

 

2.3. Sperm implications in fertilisation 

Upon fertilisation, sperm-specific proteins such as phospholipase C zeta 

(PLCζ) activate the oocyte via a yet unidentified mechanism (Saunders et 

al., 2002). Phospholipase C zeta hydrolyses phosphatidylinositol 4,5-

bisphosphate into diacylglycerol and inositol-1,4,5-triphosphate, which 

interacts with its receptor in the endoplasmic reticulum thus initiating Ca2+ 

oscillations that promote several processes related to embryo progression. 

These include polyspermy blocking, metaphase II resumption and 

pronuclear formation, amongst others (Gilbert, 2000a; Liu, 2011). 

Also after fertilisation, while the oocyte is completing the second 

meiotic division (anaphase II and telophase II), sperm chromatin 

undergoes a second remodelling of its structure and composition (McLay 

& Clarke, 2003). First, the disulphide bonds of paternal protamines are 

reduced, which leads to chromatin decondensation and activates 

protamine replacement by oocyte-provided histones through an ATP-

dependent process. After histone assembly, paternal chromatin becomes 

again organised into nucleosomes. It is during this stage that methylation 

of paternal DNA starts to decrease actively due to demethylases, whereas 

the maternal pronucleus does not exhibit differences in the degree of 



Introduction 

 

42 

methylation (Dean et al., 2001; Ivanova et al., 2020; Oswald et al., 2000; 

Santos et al., 2002; Smith et al., 2014).  

Mounting evidence supports oocyte cytoplasm as the main player 

governing sperm chromatin remodelling after fertilisation (McLay & Clarke, 

2003; Zafar et al., 2021). In effect, whether proper paternal chromatin 

remodelling occurs depends on the stage of the oocyte, as earlier 

experiments showed that if oocytes are fertilised at prophase I, sperm 

chromatin does not undergo morphological changes and remains strongly 

condensed (Clarke & Masui, 1986; Maeda et al., 1998; Usui & Yanagimachi, 

1976). In contrast, when metaphase II oocytes are fertilised, sperm 

chromatin is quickly dispersed to replace protamines with histones (Clarke 

& Masui, 1986; McLay & Clarke, 1997). Based on these findings, the 

remodelling of paternal chromatin seems to largely rely upon the meiotic 

maturation stage of the oocyte. Furthermore, the extensive 

decondensation of the paternal pronucleus also requires the oocyte to 

complete the M-phase and enter the interphase. This progression in the 

cell cycle, which is also governed by the Ca2+ oscillations triggered by PLCζ 

(Ducibella et al., 2002; Ducibella & Fissore, 2008; Saunders et al., 2002), 

entails the oocyte cytoplasm changes required for paternal chromatin 

decondensation.  

 

 

3. Alterations in sperm chromatin 

Conventional sperm quality parameters include concentration, motility 

and morphology, and their evaluation is aimed at predicting the male 

fertilising capacity. During the last decades, nevertheless, special emphasis 

on sperm DNA integrity has been made, as affectation of this biomolecule 
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may result in fertilisation failure, poor embryo development, pregnancy 

loss and developmental defects in the offspring (Huang et al., 2005; Morris, 

2002; Virro et al., 2004). In addition, other sperm chromatin alterations 

such as poor protamination and poor condensation are now considered. 

The evaluation of these variables provides a comprehensive picture of the 

sperm chromatin status, and also contributes to determine the male 

fertilising capacity better. 

 

3.1. Types of chromatin alterations 

3.1.1. Protamine alterations 

During spermiogenesis, nuclear histones are replaced by protamines, 

which results in the organisation of sperm DNA into a tightly packed 

structure that helps the preservation of paternal genome integrity during 

the journey of sperm cells through both male and female genital tracts and 

until they interact with the oocyte (Balhorn, 2007; Oliva, 2006). In 

mammals, an appropriate protamination plays a crucial role in sperm 

chromatin conformation (Gill-Sharma et al., 2011; Miller et al., 2010; Ward, 

2010); therefore, insufficient protamination during spermiogenesis may 

result in an increased number of sperm cells with immature chromatin, 

which exhibit a higher incidence of histone-packed DNA regions (Oliva, 

2006). As these regions have been shown to be more susceptible to DNA 

damage than those properly protaminated, abnormal chromatin 

protamination can negatively impair sperm function and cause male 

subfertility or infertility (Oliva, 2006; Sakkas, 1999; Sharma et al., 2004; 

Souza et al., 2018). Indeed, chromatin deprotamination has been 

described to be higher in non-viable than in viable sperm in cattle 

(Llavanera et al., 2021), and correlated with lower sperm concentration, 
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decreased motility and altered morphology in humans (Manochantr et al., 

2012). Furthermore, insufficient chromatin protamination is more frequent 

in infertile than in fertile men (Jumeau et al., 2022; Manochantr et al., 2012). 

The ratio between protamines and histones in sperm chromatin has 

also been associated with male fertility in different studies (Hamad, 2019; 

Zhang et al., 2006; Zini et al., 2007), as sperm from infertile men exhibit a 

lower protamine:histone ratio compared to their fertile counterparts (Zini 

et al., 2007). In other species like cattle, sperm protamine content has been 

positively correlated with in vivo fertility as increased protamine levels are 

exhibited by bulls with high fertility (Dogan et al., 2015; Souza et al., 2018). 

Thus, low sperm chromatin protamination has been linked to reduced 

male fertility. In a similar line of evidence, pre-pubertal bulls and rat males 

have been found to present a high percentage of sperm with 

protamination deficiency compared to reproductive mature individuals 

(Kipper et al., 2017; Zubkova et al., 2005), which suggests that sperm 

protamination depends on the male reproductive maturity. Sperm 

deprotamination, in addition to being associated to lower fertilisation, is 

also linked to reduced sperm quality. Chromatin protamination could thus 

be regarded as a feature of immature sperm, as its degree is lower in 

infertile men with abnormal sperm function parameters such as motility 

and morphology (Iranpour et al., 2000).  

It is known that humans, mice and horses exhibit a similar content 

of two types of protamines, protamine 1 (P1) and protamine 2 (P2) (Balhorn 

et al., 1988; Bower et al., 1987; Gusse et al., 1986; Mengual et al., 2003). 

Several studies reported that an appropriate ratio between P1 and P2 in 

sperm chromatin is necessary to maintain male fertility, as an increased 

P1/P2 ratio is associated to men infertility (Balhorn et al., 1988; Mengual et 

al., 2003; Torregrosa et al., 2006). This P1/P2 imbalance has been related 

with a reduction of the P2 content (Belokopytova et al., 1993; de Yebra et 



Introduction 

 

45 

al., 1993, 1998), which has been reported to cause DNA damage and 

impair embryo development in vitro (Cho et al., 2003; Lolis et al., 1996; 

Nasr-Esfahani et al., 2005). In this regard, P1/P2 ratio in sperm cells is 

considered as a predictive indicator of male fertility and in vitro embryo 

development. 

 

3.1.2. Chromatin decondensation 

Sperm chromatin condensation involves the stabilisation of sperm 

protamines through intra- and inter-protamine disulphide bonds, which 

become fully oxidised during epididymal transit. This protamine-mediated 

stabilisation and condensation of sperm DNA protects genetic information 

from damaging agents, during the journey of sperm along the male and 

female reproductive tracts. While maintaining a condensed chromatin is 

very important over that transit, its decondensation is essential after 

gamete fusion for the formation of the male pronucleus (McLay & Clarke, 

2003; Mudrak et al., 2009). Thus, changes in chromatin condensation 

before fertilisation, which can be caused by different factors such as zinc or 

protamine deficiencies (Aoki et al., 2006; Balhorn et al., 1988; Kvist et al., 

1988), might have a detrimental effect on sperm fertility.  

Although chromatin condensation and protamination are different 

features of sperm chromatin, the scientific literature usually confounds 

these terms and relates the assessment of protamine content to chromatin 

condensation. In this regard, a recent study in human healthy patients 

showed that while protamination evaluated using the CMA3 test is related 

to the fertilising ability of sperm cells, chromatin condensation evaluated 

through the dibromobimane test is associated to higher blastocyst 

development (Ribas-Maynou et al., 2023). 
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3.1.3. DNA fragmentation 

Sperm DNA fragmentation has been extensively studied during the last 

decades as a complementary parameter of sperm fertilisation potential, as 

it is related to the reproductive success (Simon et al., 2010). DNA damage 

may result from intrinsic or extrinsic effector mechanisms, and can take 

place at either testicular level or post-testicular stages (Sakkas & Alvarez, 

2010). 

Sperm DNA fragmentation is characterised by the presence of 

single- and double-strand breaks in the genome. Single-strand breaks 

(SSB) are mostly caused by oxidative stress, as reactive oxygen species can 

oxidise 8-OH-guanine into 8-OH-2’-deoxyguanosine (8-OHdG). 8-OH-2’-

deoxyguanosine is then excised by oxoguanine glycosylase (OGG), the 

first enzyme of the base excision repair mechanism (BER), forming an 

abasic site (Barzilai & Yamamoto, 2004; De Iuliis et al., 2009; Santiso et al., 

2010). On the other hand, double-strand breaks (DSB) are mainly 

associated with a defective enzymatic activity during spermatogenesis and 

spermiogenesis (Ribas-Maynou et al., 2012b). As SSB can occur in both 

protamine- and histone- condensed regions, they can be found in both 

toroidal and TLR regions. In contrast, DSB have been suggested to be 

preferentially located at the TLR regions, due to their accessibility (Ribas-

Maynou et al., 2012b). 

Sperm DNA fragmentation has been related to semen quality and 

fertility outcomes both in vitro and in vivo. In terms of sperm quality, a high 

incidence of DNA fragmentation is concomitant with a poor semen quality 

(Lopes et al., 1998), as low sperm concentration, viability and progressive 

motility are observed together with a greater percentage of sperm with 

fragmented DNA (Le et al., 2019; Mateo-Otero et al., 2022; Muriel et al., 

2006; Sivanarayana et al., 2014). Moreover, sperm malformations, such as 
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elongated heads or the lack of lateral symmetry, have also been associated 

with DNA damage (Dariš et al., 2010; Le et al., 2019; Utsuno et al., 2013). 

Besides, high DNA fragmentation has been observed to be linked to in 

vitro and in vivo fertility rates (Bichara et al., 2019; Bungum et al., 2011; 

Dogan et al., 2015; Souza et al., 2018). Regarding natural conception, 

studies in humans, horses and pigs reported the relationship of sperm 

DNA fragmentation with the lack of clinical pregnancy and the increase of 

conception time (Boe-Hansen et al., 2008; Didion et al., 2009; Evenson, 

1999; Giwercman et al., 2010; Kenney et al., 1995; Ribas-Maynou, et al., 

2012a). On the other hand, there exist inconsistent results regarding the 

relationship between sperm DNA damage and fertility outcomes when 

using assisted reproductive techniques. In IVF treatments, sperm DNA 

fragmentation has been reported to exert a negative impact on 

fertilisation, implantation and pregnancy rates; impair embryo quality; and 

reduce live-birth rate (Evenson & Wixon, 2006; Henkel et al., 2004; Niu et 

al., 2011; Ribas‐Maynou et al., 2021; Simon et al., 2017; Zhang, 2008; 

Zhang et al., 2015). Conversely, opposite results were found regarding the 

effects of sperm DNA fragmentation on embryo quality, implantation and 

pregnancy rates following ICSI (Agarwal et al., 2020; Casanovas et al., 

2019; Evenson & Wixon, 2006; Ribas‐Maynou et al., 2021; Simon et al., 

2017; Zhang et al., 2015; Zini et al., 2005).  

 

3.2. Aetiology of sperm DNA breaks 

The loss of sperm chromatin integrity can be attributed to either intrinsic 

or extrinsic factors (Delbes et al., 2010; Hekmatdoost et al., 2009). Intrinsic 

factors include pathophysiological conditions that may occur during 

spermatogenesis, spermiogenesis, epididymal maturation or storage in 

the cauda epididymis. These circumstances include an imbalance between 
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reactive oxygen species levels and the antioxidant capacity, the activation 

of enzymatic mechanisms and apoptosis-like events. Extrinsic factors, such 

as high temperature, infections, radiations, environmental toxins or even 

nutrition (González-Marín et al., 2012; Panner Selvam et al., 2021), can also 

induce DNA breaks, and may be combined with the intrinsic ones. 

 

3.2.1. Oxidative stress 

Oxidative stress results from the disrupted balance between the 

production of reactive oxygen species (ROS) and the activity of intracellular 

and extracellular antioxidants (Sikka, 2001). It has been described as one 

of the main factors generating genotoxic defects such as DNA breaks 

(Aitken & Krausz, 2001), thus negatively affecting sperm function and 

fertilising ability. For this reason, oxidative stress has been associated with 

infertility (Agarwal et al., 2007). Oxidative stress can ensue from either 

endogenous production or an exogenous source. In mammalian sperm 

cells, one of the main endogenous sources of ROS is the activity of plasma 

membrane NADPH oxidase NOX5 (Ghanbari et al., 2018; Keshtgar & 

Ghani, 2022; Musset et al., 2012). Besides, oxidative phosphorylation in the 

mitochondria, which is used to produce ATP together with glycolysis (Dutta 

et al., 2020; Holland et al., 1982) is also involved in ROS 

generation(Koppers et al., 2008). It should be noted, however, that 

sustained levels of oxygen radicals are physiologically necessary to 

maintain the sperm cell function along maturation, capacitation, 

hyperactivation, acrosome reaction, and sperm-oocyte fusion (Agarwal et 

al., 2003; Du Plessis et al., 2015). Specifically, this active role of ROS is 

mainly carried out through the regulation of the redox status of thiol 

groups. This action stimulates adenylyl cyclase by increasing intracellular 

cAMP concentration which, in turn, activates PKA, thereby triggering 
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various specific downstream cell signalling pathways resulting in the 

hyperactivation of sperm motility and a complete capacitated status 

(Betarelli et al., 2018; Du Plessis et al., 2015; Dutta et al., 2020; Griveau & 

Lannou, 1997; Thompson et al., 2013). Also, nitric oxide and hydrogen 

peroxide are compounds involved in certain processes such as 

capacitation and acrosome reaction (Aitken & De Iuliis, 2010; Marzec-

Wróblewska et al., 2012). Moreover, ROS levels are needed to trigger the 

acrosome reaction (de Lamirande & Gagnon, 1993) and enhance the 

sperm ability to fertilise the oocyte (Kodama et al., 1996).  

Despite playing an essential role in maintaining cell function, 

excessive ROS generation may produce oxidative stress as it disrupts the 

balance between oxidative activity and antioxidant capacity; this has a 

negatively impact upon sperm physiology and fertility (Agarwal et al., 

2003; Garrido et al., 2004; Sikka, 2001; Zini et al., 1993). Related with this, 

it is worth keeping in mind that intracellular and extracellular antioxidants 

scavenge the excess of ROS and thus contribute to maintain redox 

homeostasis and, consequently, sperm function and fertilising ability 

(Barratt et al., 2017; de Lamirande, 1997; Kowalczyk, 2022; Showell et al., 

2014; Smits et al., 2018). Yet, when the excess of ROS cannot be mitigated 

by antioxidant activity, they may interact with - and damage - other 

components of the cell, such as membrane phospholipids and DNA 

(Agarwal et al., 2003; Aitken & Krausz, 2001; Kodama et al., 1996). Elevated 

amounts of ROS thus increase lipid peroxidation levels, resulting in the 

destabilisation of plasma and acrosome membranes (Agarwal et al., 2003; 

Aitken & Krausz, 2001; Kodama et al., 1996; Padron et al., 1997). In terms 

of DNA damage, oxidative stress has been reported to induce histone 

modifications, alterations in DNA methylation and DNA fragmentation 

(Kreuz & Fischle, 2016), specifically causing SSB in both protamine- and 

histone-condensed regions (Agarwal et al., 2007; Aitken & De Iuliis, 2010; 
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Enciso et al., 2009; Ribas-Maynou et al., 2014). Furthermore, ROS levels in 

semen have been shown to negatively correlate with normal sperm 

function and underlie in/subfertility (Agarwal et al., 2007; Aitken et al., 

1998). It is thus essential maintaining proper ROS homeostasis to prevent 

sperm cell damage. 

 

3.2.2 Enzymatic mechanisms  

Activity of nucleases has been detected in both sperm cells and seminal 

fluid from different species such as mice and humans (Fernandez-Encinas 

et al., 2016; Maione et al., 1997; Mann & Lutwak-Mann, 1981; Sotolongo et 

al., 2005). The activation of an endogenous nuclease in mature sperm cells 

has been suggested as a natural defence against the intrusion of 

exogenous molecules such as exogenous DNA (Maione et al., 1997). In 

addition, activity of intracellular and extracellular nucleases in mouse 

epididymal and vas deferens sperm has been observed to induce sperm 

chromatin fragmentation both in vitro (Yamauchi, Shaman, & Ward, 2007) 

and in vivo (Ribas-Maynou et al., 2022a). Moreover, nuclease activity has 

been reported to differ between the epididymis and ejaculated sperm 

harvested from the female uterus (Yamauchi et al., 2007a). Such a nuclease 

activity in sperm and surrounding fluids appears to increase through the 

epididymis and upon ejaculation, as it is low in the corpus, slightly higher 

in the cauda, moderate in the vas deferens, and the highest in the post-

ejaculated fraction (Yamauchi et al., 2007a). This strong nuclease activity of 

ejaculated sperm could account for their increased susceptibility to DNA 

damage under stress, which could be part of a mechanism to positively 

select the most resilient (i.e., best) sperm (Yamauchi et al., 2007a). 

It is known that nuclease activity may generate chromatin damage 

at the toroid linker regions, which have been shown to be accessible to 
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enzymes and, therefore, nuclease-sensitive (Ward, 2010). Noticeably, 

poorly protaminated and histone-condensed chromatin may be more 

accessible to endogenous and exogenous nucleases, and thus exhibit a 

higher susceptibility to DNA damage (Sakkas & Alvarez, 2010). This is also 

associated to a reduction of sperm fertilising capacity.  

Other enzymatic activity that could lead to DNA damage was 

observed in experiments that used Mn2+ and Ca2+ to induce sperm 

chromatin fragmentation via an intracellular topoisomerase, known as 

topoisomerase IIβ (TOPIIβ) (Shaman et al., 2006; Yamauchi, Shaman, & 

Ward, 2007). This topoisomerase could be activated in vitro to produce 

DNA breaks in the toroid linker regions through a sperm chromatin 

fragmentation mechanism (Sotolongo et al., 2005), causing a delay in DNA 

replication at the first stages of embryo development and an impaired 

development to blastocyst (Gawecka et al., 2015). In these experiments, 

TOPIIβ was seen to act together with an exonuclease present in the vas 

deferens fluid, which could cleave the DNA into small fragments (Shaman 

et al., 2006; Yamauchi, Shaman, & Ward, 2007). A decade after, additional 

experiments demonstrated that the DSB produced through that 

topoisomerase during the epididymal stage occurred in DNA regions 

attached to the nuclear matrix, thus facilitating the further repair of these 

DNA breaks by the fertilised oocyte before the formation of the male 

pronucleus after fertilisation (Ribas-Maynou et al., 2014). 

 

3.2.3. Abortive apoptosis 

Apoptosis is a cell process that entails its programmed death. This process 

also occurs in germ cells during spermatogenesis, regulating sperm 

overproduction and ensuring normal proliferation (Sinha Hikim & 

Swerdloff, 1999). In the case of mature/ejaculated sperm, however, 
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apoptotic pathways appear to be truncated, so that one cannot establish 

the existence of a proper apoptotic process, but an apoptosis-like one that 

also causes DNA breaks (Aitken & De Iuliis, 2010). 

During spermatogenesis, Sertoli cells are responsible for 

maintaining a normal proliferation of germ cells, as they remove abnormal 

meiotic or post-meiotic cells; this works like a quality control of sperm 

production. One of the possible key mediators of germ cell apoptosis in 

the testis is the Fas/FasL system (Lee et al., 1997), which is based on the 

expression of the Fas protein in the membrane of the cells that must be 

removed, and the presence of its ligand, the FasL protein, in the membrane 

of Sertoli cells (Pentikäinen et al., 1999). Binding of FasL to Fas initiates the 

apoptosis process, which ends up with the phagocytosis of apoptotic germ 

cells by Sertoli cells (Eguchi et al., 2002; Lee et al., 1997). The relevance of 

this pathway was confirmed by the observed correlation between Fas 

expression and germ cell degeneration during meiotic and post-meiotic 

phases of spermatogenesis in humans (Francavilla, 2002).  

Besides, several authors identified other apoptotic markers such as 

BCL2 and TP53 in ejaculated sperm exhibiting different alterations 

(Barroso et al., 2000; Oldereid et al., 2001; Sakkas et al., 2002). As 

aforementioned, while apoptotic markers can be found in ejaculated 

sperm, one should be cautious when speaking about apoptosis in these 

cells and rather designate this event as apoptosis-like, abortive apoptosis 

or spermptosis (Aitken & De Iuliis, 2010; Martín Muñoz et al., 2018). Be that 

as it may, this process is known to be initiated by oxidative stress, which 

triggers a caspase cascade that subsequently induces the activation of an 

endonuclease. This endonuclease then cleaves the sperm DNA into 

fragments (Muratori et al., 2015; Sakkas, 1999; Sakkas et al., 2004).  
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3.3. Sperm chromatin and DNA integrity assays 

3.3.1. Sperm chromatin protamination  

During routine semen analysis, the chromatin protamination status is not 

usually evaluated, even though there is evidence of its important role in 

male fertility (Llavanera et al., 2021; Ribas-Maynou et al., 2020a; Ribas-

Maynou et al., 2023). Among the methods used in research to determine 

the amount of protamines present in sperm chromatin, the most commonly 

used are Chromomycin A3 and Aniline Blue staining (Dutta et al., 2021; Ni 

et al., 2016; Tanga et al., 2021). The amount of protamines with respect to 

histones can also be semi-quantitatively evaluated through Western blot 

(Hamilton et al., 2019; Mengual et al., 2003). 

 

Chromomycin A3 (CMA3)  

Chromomycin A3 (CMA3) is a fluorescent dye that specifically binds to 

guanine-cytosine sequences in the DNA. As it competes with protamines 

for the same binding sites in the DNA, high levels of CMA3 fluorescence 

are indicative of low levels of protamination in sperm. The detection of 

protamine-deficient DNA thus provides an estimation of the number of 

sperm with poor chromatin protamination (Bianchi et al., 1993; Lolis et al., 

1996; Manicardi et al., 1995; Srivastava & Megha Pande, 2017). Positive 

CMA3 staining has been shown to be related to morphologically abnormal 

and immotile sperm (Bianchi et al., 1996; Nijs et al., 2009), leading to male 

infertility. Also, poor chromatin protamination has been associated to 

sperm decondensation failure after fertilisation using IVF and ICSI 

procedures, resulting in low fertilisation rates (Esterhuizen et al., 2000; 

Llavanera et al., 2021; Lolis et al., 1996; Nasr-Esfahani et al., 2008; Sakkas 
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et al., 1996, 1998). Thus, evaluation of chromatin protamination with CMA3 

may predict the IVF success (Esterhuizenet al., 2000). 

 

Acidic Aniline Blue Staining 

The degree of chromatin protamination can be assessed with acidic aniline 

blue staining. This dye reveals differences in the composition of basic 

amino acids from sperm nuclear proteins, by discriminating between 

lysine-rich histones and arginine/cysteine-rich protamines (Hofmann & 

Hilscher, 1991). Staining of sperm cells with aniline blue indicates the 

presence of lysine in nuclear proteins. Because histones, but not 

protamines, are rich in lysine, strong aniline blue staining indicates low 

protamination (Hammadeh et al., 2001; Hofmann & Hilscher, 1991). After 

this procedure, the percentage of sperm exhibiting abnormal chromatin 

protamination can be calculated as the ratio between the number of blue-

stained sperm and the total number of sperm analysed (Srivastava & 

Megha Pande, 2017). Chromatin protamination results obtained through 

this technique seem to be a good predictor of human male infertility and 

IVF outcomes, despite some works having not observed an association 

with ICSI outcomes (Auger et al., 1990; Hammadeh et al., 2001, 2009). 

 

Acetic acid-urea polyacrylamide gel electrophoresis 

Polyacrylamide acid-urea gel electrophoresis (PAGE) is a technique used 

to distinguish similar proteins based on differences in their molecular 

weight and effective charge (acid or basic) determined by their charge-to-

mass ratio (Hamilton et al., 2021). Thus, proteins that are more acidic and 

have phosphorylated threonine or serine side chains or acetylated lysine 

side chains exhibit a different electrophoretic mobility compared to their 



Introduction 

 

55 

basic counterparts. The PAGE method has been used to evaluate the 

relative amounts of histones, protamines and transition proteins, and their 

posttranslational variants. In particular, it is useful to easily separate 

protamines from histones, but also to distinguish acetylated histones or the 

different protamine forms (protamine 1 and protamine 2) (de Yebra & 

Oliva, 1993; Hamilton et al., 2019; Liu et al., 2013; Panyim & Chalkley, 

1969). Following PAGE, the different proteins and its variants can be 

identified and quantified by Western blot (Hamilton et al., 2019; Hazzalin 

& Mahadevan, 2017). 

 

3.3.2. Sperm chromatin condensation 

As previously explained in Section 2.1.1. about Sperm chromatin 

remodelling, binding of protamines to DNA drives condensation of sperm 

chromatin into toroidal structures that are stabilised thanks to disulphide 

bonds. The assessment of protamine oxidation-reduction status in sperm 

chromatin thus estimates the degree of condensation (Brewer et al., 2003). 

The analysis of chromatin condensation through the determination 

of oxidation-reduction status of disulphide bridges can be assessed with 

dibromobimane (DBB) (Ribas-Maynou et al., 2023). This technique is based 

on the capacity of DBB to bind the free thiol groups (-SH) resulting from 

the reduction (i.e., disruption) of disulphide bonds. Since mammalian 

sperm protamine 1 contain between five and ten cysteine residues 

(Gosálvez et al., 2011), the major amount of thiol groups in these cells is 

due to protamine disulphide bridges. As a result of the covalent bond 

between DBB and a free thiol, DBB emits fluorescence with a peak at 477 

nm. In contrast, if protamine disulphide bridges are oxidised (i.e., formed), 

DBB is not able to react with free thiols and, therefore, no fluorescence is 

emitted. Thus, the fluorescence emitted by DBB is negatively correlated to 
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chromatin condensation, as the higher the proportion of free thiols - and 

thus the lower the number of the disulphide bridges formed -, the lower 

the sperm chromatin condensation (Ribas-Maynou et al., 2023).  

 

3.3.3. Sperm DNA fragmentation 

Sperm chromatin structure assay (SCSA) 

The sperm chromatin structure assay (SCSA) is a flow-cytometry based test 

that evaluates the susceptibility of sperm DNA to denaturation, a feature 

that is highly associated with DNA fragmentation (Bungum et al., 2011; 

Evenson, 2016). This procedure involves the treatment of the sample with 

an acid solution to unwind the DNA strands, which occurs preferentially at 

the sites where DNA breaks are present. After staining with acridine 

orange, a fluorescent dye, the fluorescence intensity is measured with a 

flow cytometer and the percentage of cells with a denatured DNA can be 

calculated. 

The metachromatic properties of acridine orange, which emits 

green fluorescence (510-515 nm) when interspersed as a monomer into 

double-strand DNA, and red fluorescence (630 nm) as a result of its 

binding to single-strand DNA in an aggregate manner (Evenson et al., 

2007) is the basis of the detection mechanism, as DNA containing breaks 

is more susceptible to denaturate. This differential emission allows the 

detection of sperm with a high incidence of DNA breaks. In this sense, 

sperm with low DNA fragmentation emit green fluorescence and sperm 

with highly fragmented DNA emit mostly red fluorescence. The main 

outcome of SCSA is the DNA fragmentation index (DFI), which reflects the 

percentage of sperm with fragmented DNA and can be calculated by the 

ratio between red and the sum of red and green fluorescence (Evenson, 
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2013, 2016; Shaman et al., 2006). In addition, a sperm subpopulation with 

high chromatin immaturity, named High DNA Stainability (HDS), can be 

detected through this method. This subpopulation has been described to 

correspond to those cells that have a better access to all chromatin due to 

a poor interchange of histones by protamines (Evenson, 2016).   

 

Figure 3. Schematic representation of the sperm chromatin structure assay (SCSA). 

Acridine orange emits green or red fluorescence when binds to the DNA as a 

monomer (intact or low fragmented DNA) or aggregate (fragmented DNA), 

respectively. Figure created with BioRender. 

 

Sperm Chromatin Dispersion Test (SCD) 

The sperm chromatin dispersion test (SCD) relies on the fact that damaged 

sperm present greater DNA decondensation when sperm are treated with 

an acidic solution and the nuclear proteins are removed. In most mammals, 

the nucleus of sperm with non-fragmented DNA exhibit small and compact 

dispersion halos, and the presence of DNA breaks results in an extended 

halo dispersion, usually not visible due to the large dispersion of chromatin 

(Fernández et al., 2003, 2011). In men, however, dispersion halos are 

absent when sperm DNA is fragmented, whereas the nuclei of non-

fragmented DNA exhibit a visible dispersion halo. The resulting halos can 
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be evaluated by optical or fluorescence microscopy, and the percentage 

of sperm with non-dispersed and dispersed nuclei can be determined. 

Thus, the SCD test is a simple, fast, and reproducible test to evaluate sperm 

DNA fragmentation (Fernández et al., 2003, 2011). 

 

Figure 4. Sperm chromatin dispersion test (SCD) evaluation. In most mammals but 

not in humans, sperm with non-fragmented DNA exhibit small and compact 

dispersion halos, while the presence of DNA fragmentation results in an extended 

halo dispersion (usually not visible). Scale bar: 10 µm. 

 

Single-Cell Gel electrophoresis assay (Comet) 

The Comet assay is a commonly used assay in somatic cells for toxicology 

studies and was adapted to sperm cells by Singh (1988) (Singh et al., 1988). 

The Comet assay is a laborious method with a wide range of protocols, that 

mainly differ in the lysis step and electrophoresis times (Enciso et al., 2009; 

Simon et al., 2011; Singh et al., 1988; Villani et al., 2010). Briefly, sperm 

cells are first embedded in an agarose matrix and then exposed to a lysis 

buffer. Then, lysed sperm cells are subject to electrophoresis, in which the 

DNA presenting breaks migrate towards the anode, resulting in a “comet 

tail”. This step of electrophoresis can be conducted in a neutral pH or 

alkaline pH solution, depending on the type of DNA breaks that are 

examined. Whereas electrophoresis conducted in a neutral pH solution 

leads to the detection of DSB (Neutral Comet) (Shaposhnikov et al., 2008), 
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the application of an alkaline pH leads to the detection of both SSB and 

DSB (Alkaline Comet) (Simon & Carrell, 2013). Results are observed by 

fluorescence microscopy after staining the sample. Next, sperm cells with 

fragmented DNA show a brightly fluorescent comet halo and comet tail, 

whose length and fluorescence intensity rely on the number of DNA 

breaks. Using a software, the fluorescence intensity of the Comet tail 

indicates the incidence of DNA breaks in each cell. In addition, using non-

damaged reference controls, the percentage of cells with increased DNA 

fragmentation can be expressed (Simon & Carrell, 2013). Only, the 

combination of alkaline and neutral Comet allows the determination of 

global damage, SSB and DSB.  

 

Figure 5. Non-fragmented and fragmented sperm in alkaline and neutral Comet 

assays. Scale bar: 10 µm. 

 

Terminal Deoxynucleotidyl Transferase dUTP Nick End 

Labelling (TUNEL) Assay 

The terminal deoxynucleotidyl transferase dUTP nick end labelling 

(TUNEL) assay is based on the enzymatic incorporation of fluorochrome-

conjugated oligonucleotides to free 3’ DNA strands by a terminal 

deoxynucleotidyl transferase (Sharma et al., 2016). Deoxyuridine 

triphosphates (dUTP), which are conjugated with a fluorochrome, emit 

fluorescence that can be assessed by either fluorescence microscopy or 
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flow cytometry. As the 3’OH DNA ends correspond to single- and double- 

strand DNA fragmentation, the global percentage of sperm with DNA 

breaks is obtained as a result (Gorczyca et al., 1993; Sharma et al., 2016). 

 

Figure 6. Schematic representation of the terminal deoxynucleotidyl transferase 

dUTP nick end labelling assay (TUNEL). The dUTP-fluorochrome conjugate binds 

to free 3’ DNA strands resulting from DNA breaks, and emits fluorescence. Figure 

created with BioRender. 
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Against the background compiled in the previous section, the main aim of 

the present Doctoral Thesis was to elucidate the relevance of chromatin 

condensation and protamination, and DNA integrity for sperm physiology 

and fertility.  

For this purpose, four specific objectives were set: 

1. To determine how frozen-thawed bull sperm chromatin is modified 

over time after in vitro incubation at 38 °C. 

2. To investigate the relationship of sperm chromatin condensation, 

protamination and DNA integrity with sperm function and fertilising 

ability. 

3. To identify whether boar ejaculate fractions differ in the DNA 

integrity and chromatin condensation and protamination of their 

sperm.  

4. To address whether the sperm chromatin fragmentation (SCF) 

mechanism can be activated in vitro in ejaculated sperm. 

5. To evaluate the impact of the DNA fragmentation generated by 

induced SCF on sperm function and in vitro fertilising ability. 
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1. Collection of bovine ejaculates  

Ejaculates were collected from bulls housed at Cenero AI centre in Gijón, 

Asturias (Spain), complying with all European Union regulations for animal 

husbandry, under standard feeding and housing conditions, to produce 

commercially available cryopreserved sperm straws. The collection of bull 

ejaculates was performed through an artificial vagina, with an internal 

temperature of 45 °C at weekly intervals for five weeks.  

 

2. Cryopreservation and thawing of bovine 

semen 

After collection, ejaculates with 2–8 mL of volume, > 109 sperm/mL 

and > 85 % of total motile sperm were subject to cryopreservation. 

Ejaculates were cryopreserved following the standard protocol described 

by Muiño et al. (2008) (Muiño et al., 2008). First, sperm concentration was 

adjusted to 92 × 106 sperm/mL using a commercial extender (Bioxcell; IMV 

Technologies L’Aigle, France) at 22 °C. Subsequently, ejaculate samples 

were cooled at a rate of − 0.2 °C/min to a final temperature of 4 °C, and 

equilibrated at this temperature for 3 h. Samples were subsequently 

packaged into 0.25-mL straws and cryopreserved using a controlled-rate 

freezer (Digit-cool; IMV Technologies), with the following cooling rates: 

5 °C/min from 4 °C to − 10 °C; 40 °C/min from − 10 °C to − 100 °C; and 

20 °C/min from − 100 °C to − 140 °C. Finally, straws were stored in liquid 

nitrogen until use. 

Thawing of frozen samples was performed through immersion of 

straws at 38 °C for 20 s in a water bath and incubated at the same 

temperature for up to 4 h. 
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3. Collection of porcine ejaculates 

Pig ejaculate samples were obtained from an AI centre (AIM Ibérica) 

located in Calasparra (Murcia, Spain), which follows the current Spanish 

(registration number: ES300130640127, August 2006) and European 

(registration number: ES13RS04P, July 2012) regulations for 

commercialisation of porcine semen, and for animal health and welfare. 

Ejaculates were obtained from healthy and sexually mature boars (aged 

18-36 months) from different breeds (Large White and Pietrain). All boars 

were housed in individual pens with controlled temperature (15-25 °C) and 

16 h of light per day. Moreover, animals were fed a commercial diet 

according to the nutritional requirements of adult boars (Chiba, 2009) and 

had ad libitum access to water. 

Upon ejaculation, sperm concentration, motility and morphology 

were assessed. All ejaculate samples included in the study fulfilled the 

standard thresholds for the preparation of semen AI-doses, which include 

a concentration of at least 200 x 106 sperm/mL, a minimum of 70 % of 

motile sperm, and more than 75 % of sperm with normal morphology.  

 

4. Sperm quality evaluation 

4.1. Sperm motility 

Sperm motility was assessed using a computer assisted sperm analysis 

system (CASA) (Integrates Sperm Analysis System, ISAS V1.0; Proiser S.L.; 

Valencia, Spain) coupled to an Olympus BX41 microscope (Olympus; 

Tokyo, Japan) equipped with a negative field phase contrast (Olympus 

10×0.30 PLAN objective, Olympus). Sperm samples were first incubated at 

38 °C for 10 min, and 3 µL of porcine or bovine semen were then placed 
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into a pre-warmed 20 μm Leja chamber slide (Leja Products BV; Nieuw-

Vennep, The Netherlands). Two technical replicates were examined, 

evaluating 1,000 sperm per replicate at 100× magnification. Percentages 

of total and progressive motility were recorded for each sample. Sperm 

were considered motile when their average path velocity (VAP) was ≥ 10 

μm/s, and progressively motile when their straightness index (STR) was ≥ 

70 % in the case of bovine sperm, or ≥ 45 % in the case of porcine sperm. 

The following kinematic parameters were also recorded: velocity (fast, 

medium or slow); curvilinear velocity (VCL, μm/s); straight-line velocity 

(VSL, μm/s); average path velocity (VAP, μm/s); linearity (LIN = 

VSL/VCL×100, %); straightness (STR = VSL/VAP×100, %); oscillation (WOB 

= VAP/VCL×100, %); lateral head displacement (ALH, μm); and frequency 

of head displacement (BCF, Hz). 

 

4.2. Sperm concentration 

Sperm concentration (sperm/mL) was determined using a Makler Counting 

Chamber (Sefi-Medical Instruments, Haifa, Israel) under an Olympus BX41 

microscope (Olympus; Tokyo, Japan). First, samples were diluted in PBS 

when sperm concentration was very high and individual cells could not be 

distinguished. Once adjusted to 35 - 50 × 106 sperm/mL (Johnson et al., 

1996), 5 µL of each sample was placed onto the Makler chamber. Then, 

under the microscope, the number of sperm contained in the squares of 

three rows was recorded and the average of the three counts was 

calculated. After evaluating three replicates, the average cell count 

obtained corresponded to sperm concentration (× 106 sperm/mL). 
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4.3. Evaluation of sperm with flow cytometry  

Flow cytometry parameters described below (viability, and intracellular 

levels of total ROS, superoxides and calcium) were analysed using a 

CytoFLEX Flow cytometer (Beckman Coulter, Fullerton, CA, USA), 

equipped with red, blue and violet lasers (637, 488 and 405 nm). After 

adjusting sperm concentration, the corresponding protocol was applied 

for each parameter, two replicates were examined evaluating 10,000 

sperm per replicate (flow rate was between 10 μL/s and 60 μL/s). The 

analysis of the flow cytometry dot-plots was conducted through the 

CytExpert Software (Beckman Coulter; Fullerton, CA, USA) in order to 

obtain the different populations and/or the fluorescence intensity. The 

mean fluorescence intensity peak (arbitrary units) was exported to 

Microsoft Excel (Microsoft, Redmond, WA, USA). The device was calibrated 

daily using the CytoFLEX Daily QC Fluorospheres (Beckman Coulter; 

Fullerton, CA, USA), as recommended by the manufacturer. 

 

4.3.1. Sperm viability 

Sperm viability was determined using SYBR-14 combined with Propidium 

Iodide (PI). While SYBR-14 is able to penetrate the plasma membrane of 

viable and non-viable sperm, PI is incapable to penetrate an intact 

membrane. Thus, viable sperm become stained by SYBR-14+ (green 

fluorescence), whereas non-viable sperm are labelled by both SYBR-14+ 

and PI+, or only by PI+ (red fluorescence). Regarding the protocol, sperm 

concentration was first adjusted to 1×106 sperm/mL using pre-warmed and 

filtered PBS, and sperm were then incubated for 15 min at 38 °C in the dark 

with SYBR-14 (TermoFisher, Waltham, MA, USA) at a final concentration of 

32 nM, and PI (TermoFisher, Waltham, MA, USA) at a final concentration of 

7.5 μM. Once stained, samples were excited using the 488 nm laser; the 
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fluorescence emitted (Arbitrary Units) by SYBR-14 was detected with the 

FITC channel (525/40) and that emitted by PI was detected through the 

PC5.5 channel (690/50). Staining with SYBR-14 and PI resulted in three 

sperm populations: i) viable sperm (SYBR-14+/PI-); ii) non-viable sperm 

(SYBR-14-/PI+); and iii) moribund sperm, which were also considered as 

non-viable (SYBR14+/PI+). Percentages of viable (SYBR-14+/PI−) and non-

viable sperm (SYBR-14−/PI+ and SYBR-14+/PI+) were recorded. 

 

4.3.2. Intracellular superoxide radicals  

Intracellular superoxide levels (O2
−) were determined using hydroethidine 

(HE), a compound that is oxidised into ethidium (E+) in the presence of O2
−. 

The fluorescence intensity emitted by E+ therefore represents an indicator 

of superoxide levels. In the same protocol, sperm are co-stained with YO-

PRO-1, which is only able to penetrate membrane-damaged cells, 

indicating the viability of sperm cells. Sperm concentration was first 

adjusted with pre-warmed filtered PBS to 1×106 sperm/mL. Then, samples 

were incubated in HE (final concentration of 5 μM) (TermoFisher, Waltham, 

MA, USA) and YO-PRO-1 (final concentration of 31.2 nM) (TermoFisher, 

Waltham, MA, USA) at 38 °C for 20 min in the dark, and subsequently 

analysed with the flow cytometer. Samples were excited at 488 nm, and the 

fluorescence emitted by E+ was detected with the FITC channel (2.24 % 

compensation) and the one emitted by YO-PRO-1 was collected through 

the PE channel (7.5 % compensation). After analysis, four subpopulations 

could be identified: i) viable sperm with low levels of superoxides (E−/YO-

PRO-1−); ii) viable sperm with high levels of superoxides (E+/YO-PRO-1−); 

non-viable sperm with low levels of superoxides (E−/YO-PRO-1+); and iv) 

non-viable sperm with high levels of superoxides (E+/YO-PRO-1+). 
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4.3.3. Intracellular reactive oxygen species  

Total ROS levels in sperm were evaluated using 2’,7’-

dichlorodihydrofuorescein (H2DCFDA), a non-fluorescent probe that 

penetrates sperm plasma membrane. When high levels of ROS are 

present, H2DCFDA is intracellularly oxidised and converted into 2’,7’-

dichlorofluorescein (DCF+), which is highly fluorescent. After sperm 

concentration was adjusted to 1×106 sperm/mL in PBS, sperm samples 

were co-stained with H2DCFDA (TermoFisher, Waltham, MA, USA) at a final 

concentration of 100 μM, and PI (TermoFisher, Waltham, MA, USA) at a final 

concentration of 5.6 μM. Samples were incubated for 20 min at 38 °C in the 

dark, and subsequently analysed with the flow cytometer. H2DCFDA and PI 

were excited with the 488-nm laser and the fluorescence emitted by each 

fluorochrome was detected through FITC (525/40) and PC5.5 (690/50) 

channels, respectively. Four subpopulations could be identified after 

analysis: i) viable sperm with low levels of ROS (DCF−/PI−); ii) viable sperm 

with high levels of ROS (DCF+/PI−); iii) non-viable sperm with low levels of 

ROS (DCF−/PI+); and iv) non-viable sperm with high levels of ROS 

(DCF+/PI+). 

 

4.3.4. Intracellular calcium  

Fluo3, a membrane-permeable dye that emits fluorescence when bound 

to Ca2+, was used to measure intracellular calcium levels in sperm. After 

adjusting sperm concentration to 1×106 sperm/mL in PBS, all samples were 

co-incubated with Fluo3 (TermoFisher, Waltham, MA, USA) (final 

concentration of 1.17 μM) and PI (final concentration of 5.56 μM) for 10 min 

at 38 °C in the dark, and subsequently analysed using the flow cytometer. 

Samples were excited at 488 nm and the fluorescence from Fluo3 and PI 

was detected through FITC (525/40) and PC5.5 (690/50) channels, 
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respectively. Four subpopulations were identified in dot plots: i) viable 

sperm with low levels of Ca2+ (Fluo3−/PI−); ii) viable sperm with high levels 

of Ca2+ (Fluo3+/PI−); iii) non-viable sperm with low levels of Ca2+ 

(Fluo3−/PI+); and iv) non-viable sperm with high levels of Ca2+ (Fluo3+/PI+). 

 

5. Evaluation of sperm agglutination  

The degree of sperm agglutination was assessed following the protocol 

described by Harayama et al. (1994). At least 250 sperm cells per sample 

were counted under a phase-contrast microscope at 100× magnification. 

Each sperm cell was classified as either agglutinated or non-agglutinated. 

Finally, the percentage of agglutinated sperm was calculated as: (Number 

of sperm cells agglutinated / Number of total sperm cells) × 100. 

 

6. Assessment of chromatin protamination 

and condensation 

6.1. Analysis of chromatin protamination  

Chromatin protamination was assessed using the chromomycin A3 test 

(CMA3). In the presence of Mg2+, CMA3 binds to the minor groove of the 

DNA, resulting in the emission of fluorescence with a peak in 590 nm when 

excited at 430 nm. In sperm, CMA3 competes with protamines for a similar 

DNA binding site, thus limiting its binding only to non-protaminated 

regions. In brief, a CMA3 (Sigma-Aldrich, St. Louis, MO, USA) stock solution 

at 0.5 mg/mL in ethanol was first prepared before staining. Thereafter, 

sperm samples were diluted 1:1 (v:v) in 2× McIlvine buffer (60 mM citric 

acid, 280 mM Na2HPO4 and 20 mM MgCl2) to a final concentration of 
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20×106 sperm/mL. Diluted samples were subsequently stained with CMA3 

to a final concentration of 12.5 mg/mL, and incubated at room temperature 

for 20 minutes in the dark. Following the labelling step, samples were 

diluted 1:10 (v:v) in filtered PBS and analysed using the CytoFlex flow 

cytometer (Beckman Coulter, Fullerton, CA, USA), with the fluorescence 

gain previously set and calibrated by means of CytoFlex Daily QC 

Fluorospheres (Beckman Coulter, Fullerton, CA, USA). A negative control 

without CMA3 was included for each sample in order to establish the 

threshold value for positive CMA3 cells. Moreover, a positive control was 

prepared by incubating sperm with a saline solution (5 mM DTT + 1 M 

NaCl) for 8 min at room temperature before sample dilution and labelling 

steps. 

Samples were excited with the violet laser (405 nm), and the 

fluorescence emitted (arbitrary units) was collected through the Violet 610 

channel (610/20 band pass). The mean fluorescence intensity peak 

(arbitrary units) was exported to Microsoft Excel (Microsoft, Redmond, WA, 

USA). For each sample, at least 10,000 sperm were evaluated at a flow rate 

between 10 and 60 mL/s. The fluorescence intensity of CMA3 from both 

sperm populations was recorded as an indicator of the chromatin 

protamination degree. 

 

6.2. Analysis of chromatin condensation 

6.2.1. Dibromobimane test 

Sperm chromatin condensation was evaluated through the oxidation-

reduction status of disulphide bridges present in protamines using 

dibromobimane (DBB). Dibromobimane is a cell-permeant compound 

that, when covalently binds the thiol pairs resulting from reduced 
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disulphide bonds and is excited at 394 nm, emits fluorescence at 490 nm. 

For this purpose, a stock solution of 5 mM DBB (Sigma-Aldrich, St. Louis, 

MO, USA) was first prepared in 100 % dimethyl sulfoxide (Sigma-Aldrich, 

St. Louis, MO, USA). Besides, sperm were diluted in PBS to reach a final 

concentration of 1×106 sperm/mL. Subsequently, samples were incubated 

in 20 μM DBB at room temperature for 20 min in the dark. Following this, 

the fluorescence intensity emitted was evaluated using a CytoFlex flow 

cytometer (Beckman Coulter, Fullerton, CA, USA), with the fluorescence 

gain being previously calibrated by means of the CytoFlex Daily QC 

Fluorospheres (Beckman Coulter, Fullerton, CA, USA). Samples were 

excited with the violet laser (405 nm) and the fluorescence emitted was 

collected through the KO525 channel (525/40 band pass). A negative 

control without DBB was included for each sample in order to establish the 

basal fluorescence intensity. Dot plots were analysed through the 

CytoExpert Software (Beckman Coulter, Fullerton, CA, USA), and the mean 

fluorescence intensity peak (arbitrary units) in the KO525 channel was 

exported to Microsoft Excel (Microsoft, Redmond, WA, USA). For each 

sample, at least 10,000 sperm were evaluated at a flow rate between 10 

and 60 mL/s. Positive (DBB+) and negative (DBB-) cells were identified on 

the basis of the negative control. In addition, the fluorescence intensity of 

DBB was recorded as an indicator of chromatin condensation status.  

 

6.2.2. Neutral halo assay 

The susceptibility of sperm chromatin to decondensation can be assessed 

by the sperm chromatin dispersion test (halo assay). Sperm samples were 

first diluted in PBS to a final concentration of 2×106 sperm/mL, while an 

aliquot of 1 % low melting point (LMP) agarose (Thermo Fisher Scientific; 

Waltham, MA, USA) was melted at 70 °C for 10 min and subsequently 
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cooled down to 37.5 °C for further 10 min. Then, samples were incubated 

at 37.5 °C and mixed 1:2 (v:v) with 1 % LMP agarose at the same 

temperature. Subsequently, a 6.5-μL drop of each mixture was poured 

onto an agarose-treated slide, covered with an 8-mm circular coverslip, 

and allowed to gel on a metal cold plate at 4 °C for 5 min. Following this, 

coverslips were gently removed and samples were incubated at room 

temperature with three lysis solutions: i) the first containing 0.8 M Tris-HCl, 

0.8 M DTT and 1 % SDS (pH = 7.5) for 30 min; ii) the second containing 0.4 

M Tris-HCl, 0.4 M DTT, 50 mM EDTA, 2 M NaCl and 1 % Tween20 (pH = 

7.5) for 30 min; and iii) the third containing 0.4 M Tris-HCl, 0.4 M DTT, 50 

mM EDTA, 2 M NaCl, 1 % Tween20 and 100 μg/mL proteinase K (pH = 7.5) 

for 180 min. After lysis steps, slides were washed in distilled water and 

dehydrated in an increasing ethanol series (70 %, 90 % and 100 %) for 2 

min each. Finally, samples were led to dry horizontally. All samples were 

evaluated under a fluorescence microscope (Zeiss Imager Z1, Carl Zeiss 

AG, Oberkochen, Germany), and dispersed and non-dispersed halos were 

differentiated, recording the percentage of sperm with dispersed 

chromatin.  

 

7. Determination of DNA integrity 

7.1. Global damage and double-strand breaks 

Sperm DNA damage was assessed using Single-Cell Gel Electrophoresis 

(Comet assay). The alkaline and neutral variants were used to evaluate the 

incidence of global DNA damage and of DSB in sperm, respectively. For 

this purpose, the protocol of Ribas-Maynou et al. (2021) was followed. 

Slides were treated in horizontal position throughout the following steps: 
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i) sample preparation and lysis; ii) electrophoresis and fixation; and iii) 

staining, imaging and analysis. 

Sample preparation and lysis: For each sperm sample, two slides were 

prepared and treated following this protocol, one for the alkaline comet 

and the other for the neutral comet. First, sperm samples were diluted in 

PBS to a final concentration of 5×105 sperm/mL. Meanwhile, 1 % LMP 

agarose (Thermo Fisher Scientific; Waltham, MA, USA) was melted at 70 °C 

for 10 min and cooled down to 38 °C for further 10 min. Then, sperm 

samples were mixed with low melting point agarose at a ratio of 1:2 (v:v), 

and 6.5 μL of each mixture was placed onto an agarose pre-treated slide, 

covered with an 8-mm diameter round coverslip and allowed to gel for 5 

min at 4 °C on the top of a metal plate. Following this, coverslips were 

gently removed and slides were incubated at room temperature in three 

lysis solutions: i) the first solution containing 0.8 M Tris-HCl, 0.8 M DTT and 

1 % SDS (pH = 7.5), for 30 min; ii) the second one containing 0.4 M Tris-

HCl, 0.4 M DTT, 50 Mm EDTA, 2 M NaCl and 1 % Tween20 (pH = 7.5), for 

30 min; and iii) the third solution containing 0.4 M Tris-HCl, 0.4 M DTT, 50 

mM EDTA, 2 M NaCl, 1 % Tween20 and 100 mg/μL Proteinase K (pH = 7.5), 

for 3 h. Finally, slides were washed in distilled water for 2 min.  

Electrophoresis and fixation: This step was performed differentially for 

alkaline and neutral Comet slides. Alkaline Comet slides were first 

denatured through incubation in a cold alkaline solution (4 °C) containing 

0.03 M NaOH and 1 M NaCl (pH = 13) for 5 min. Then, slides were 

electrophoresed in alkaline buffer (0.03 M NaOH; pH =13) at 1 V/cm for 4 

min. In parallel, neutral Comet slides were directly electrophoresed in TBE 

buffer containing 0.445 M Tris-HCl, 0.445 M Boric acid and 0.01 M EDTA 

(pH = 8) at 1 V/cm for 12.5 min, and then washed in a 0.9 % NaCl solution 

for 2 min. After electrophoresis, both slides were neutralised in 0.4 M Tris-

HCl (pH = 7.5) for 5 min, and subsequently dehydrated in 70 %, 90 % and 
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100 % ethanol for 2 min each. Thereafter, slides were dried in horizontal 

position at room temperature.  

Staining, Imaging and Analysis: Comet slides were stained by immersion 

in 1× SYTOX orange (Invitrogen, Whaltham, MA, USA) in distilled water, for 

15 min at room temperature. The prepared Comet samples were observed 

under an epifluorescence microscope (Zeiss Imager Z1, Carl Zeiss AG, 

Oberkochen, Germany) at 100× magnification, and at least 100 sperm cells 

per sample were captured using the Axiovision 4.6 software (Carl Zeiss AG, 

Oberkochen, Germany), adjusting the exposure time to avoid 

overexposure of Comet heads or tails.  

Afterwards, microscope captures were used for the quantitative 

analysis of fluorescence intensity using the automatic function of the 

CometScore v2.0 software (RexHoover, http://rexhoover.com). A manual 

review of each Comet image analysis was performed to delete the 

overlapping comets or signals that did not correspond to comets, and to 

correct the automatic identification of comet heads and tails, if necessary. 

At least 50 correctly analysed comets were required to obtain an average 

quantification of sperm DNA breaks for each sample. The Olive Tail 

Moment (OTM), calculated in each sample as (Tail mean intensity – Head 

mean intensity) × (Tail intensity / 100) was used as the standard parameter.  

 

7.2. Pulsed-Field Gel Electrophoresis (PFGE) 

Pulsed-field Gel Electrophoresis (PFGE) was used as a method to identify 

the size of DNA fragments, when DNA damage was present. First, sperm 

samples were centrifuged at 600 g for 5 min and the cellular fraction 

(pellet) was resuspended in pre-warmed PBS (37 °C) to a final sperm 

concentration of 400×106 sperm/mL. After that, samples were mixed 1:1 
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(v:v) with 2 % LMP agarose previously melted at 70 °C and tempered at 38 

°C. Immediately after, around 90 μL of each sample was poured onto 

BioRad plug molds (Bio-Rad; Hercules, CA, USA) and cooled to 4 °C for 10 

min. Subsequently, plugs were unmolded and incubated in 2 mL of lysis 

buffer containing 10 mM Tris-HCl, 10 mM EDTA, 100 mM NaCl, 20 mM 

DTT, 2 % SDS and 2 mg/mL proteinase K (pH = 8.0) for 60 min at 53 °C. 

After incubation, plugs were washed three times in TE buffer (10 Mm Tris-

HCl, 0.1 mM EDTA; pH=8).  

Half of each plug was cut-off and loaded into a well of a 1 % PFGE 

agarose gel (Pulsed-Field Certified Agarose BioRad; Hercules, CA, USA) 

along with a slice of an agarose-embedded Low Range PFG DNA Marker 

(New England Biolabs; Ipswich, MA, USA). The agarose gel was then 

placed in a Bio-Rad CHEF DRIII system with 0.5× TBE buffer (Tris-borate 50 

mM, EDTA 0.1 mM) at 14 °C. Electrophoresis was conducted at 4 V/cm for 

27.1 h with a rotation (angle) of 120° and a pulse change ramp from 6.7 to 

33.7 seconds. Following electrophoresis, the gel was stained with ethidium 

bromide and imaged under ultraviolet light using the GelDoc System 

(BioRad; Hercules, CA, USA).  

The intensity of the DNA smear in the gel was quantified using the 

Image Studio Lite (LI-COR Biosciences, Lincoln, NE, USA). The size of DNA 

fragments was determined using the DNA ladder, distinguishing: i) 

fragments smaller than a toroid (<33 Kb), ii) fragments ranging the size 

between one and multiple toroids (15 – 194 Kb), and iii) undamaged DNA 

(>194 Kb). 
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8. Determination of oxidant capacity and 

antioxidant activity of seminal plasma  

8.1. Oxidant capacity 

Advanced oxidation protein products (AOPPs), which are indicators of 

protein damage caused by oxidative stress, were determined following the 

procedure described by Witko-Sarsat (1996) adapted to pig SP (Barranco 

et al., 2021; Witko-Sarsat et al., 1996). Briefly, 10 µL of a SP sample was 

mixed with 160 µL of 0.074 M potassium iodide, and 25 µL of 50 % acetic 

acid, and then incubated at 37 °C for 40 s. The resulting change in 

absorbance was measured at 340 nm using an automated analyser 

(Olympus AU600 Automatic Chemistry Analyser). The assay was calibrated 

with chloramine-T (0–500 µM) and the results were expressed as μmol/L of 

chloramine-T equivalents. Two technical replicates were evaluated for 

each sample. Intra- and inter-assay coefficient variations were lower than 

10 %, indicating good linearity in serial dilutions.  

 

8.2. Antioxidant activity 

The cupric reducing antioxidant capacity (CUPRAC) assay with 

bathocuproinedisulfonic acid disodium salt as chelating agent was used to 

determine the total antioxidant capacity of SP. This method was described 

by Campos et al. (2009) and adapted to pig SP by Li et al., (2018) (Campos 

et al., 2009; Li et al., 2018). First, 5 µL of SP was mixed with 195 µL of 0.25 

mM bathocuproinedisulfonic acid disodium salt, and the absorbance was 

measured at 480 nm using an automated analyser (Olympus AU600 

Automatic Chemistry Analyser, Olympus Europe GmbH, Hamburg, 

Germany). Next, 50 μL of 0.5 mM CuSO4 was added, and the resulting 
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mixture was incubated at 37 °C for 4 min and 40 s. Then, the absorbance 

was measured again at 480 nm in the same automatic analyser. The 

difference between the two absorbance readings was used to calculate the 

antioxidant capacity of the SP sample. To calibrate this assay, 0 mM to 2 

mM Trolox solutions were used, and the results were expressed as mmol/L 

of Trolox equivalents. Each SP sample was measured per duplicate and the 

intra- and inter-assay coefficient variations were lower than 10 %, indicating 

high linearity in serial dilutions. 

 

9. In Vitro Fertilisation 

Oocyte collection: Ovaries from pre-puberal gilts were obtained from a 

local abattoir (Frigorífics Costa Brava; Riudellots de la Selva, Girona) and 

transported to the laboratory in 0.9 % NaCl supplemented with 70 µg/mL 

kanamycin at 38 °C. Cumulus-oocyte complexes (COC) were collected 

from follicles through aspiration with insulin needles, and the ones with a 

complete, compact cumulus mass were selected under the 

stereomicroscope. These COCs were washed in Dulbecco’s PBS (Gibco, 

ThermoFisher, Waltham, USA) supplemented with 4 mg/mL of BSA. 

Oocyte maturation: For oocyte maturation, TCM-199 (Gibco, 

ThermoFisher, Waltham, USA) medium, supplemented with 0.57 mM 

cysteine, 0.1 % (w:v) polyvinyl alcohol, 10 ng/mL human epidermal growth 

factor, 75 µg/mL of penicillin-G potassium and 50 µg/mL of streptomycin 

sulphate was used. Groups of 40-50 COCs were transferred to a four-well 

multi-dish (Nunc, ThermoFisher; Waltham, USA) containing 500 µL of pre-

equilibrated maturation medium supplemented with 10 IU/mL equine 

chorionic gonadotropin (eCG; Folligon; Intervet International B.V.; 

Boxmeer, The Netherlands) and 10 IU/mL human chorionic gonadotropin 
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(hCG; Veterin Corion; Divasa Farmavic S.A.; Gurb, Barcelona, Spain). 

Oocytes were incubated for 20-22 h at 38 °C under a humidified 

atmosphere of 5 % CO2 in air. After this incubation, oocytes were 

transferred to 500 µL of pre-equilibrated maturation medium without 

hormones. 

IVF protocol: For the fertilisation protocol, matured oocytes were denuded 

in Dulbecco’s PBS (Gibco, ThermoFisher) and placed in 50-µL drops of pre-

equilibrated in vitro fertilisation medium (Tris-buffered medium modified 

from (Abeydeera & Day, 1997) containing 1 mM caffeine). Meanwhile, 

semen samples were adjusted to a final concentration of 1,000 sperm per 

oocyte in fertilisation medium, and oocytes and sperm were then co-

incubated for 5 h at 38 °C under a humidified atmosphere containing 5 % 

CO2 in air. 

Embryo culture: After incubation, presumptive zygotes were washed and 

transferred (40 zygotes/well) to a four-well multi-dish containing 500 μL of 

NCSU23 medium (Peters et al., 2001), supplemented with 0.4 % BSA, 0.3 

mM pyruvate and 4.5 mM lactate. Cleaved embryos were evaluated after 

two days, and the fertilisation rate was calculated. Then, embryos were 

changed to NCSU23 medium supplemented with 0.4 % BSA and 5.5 mM 

glucose. After culturing embryos for 5 days, they were evaluated and 

classified according to the Gardner’s established criterion (Balaban & 

Gardner, 2013). Percentages of morulae, early blastocysts/blastocysts, 

hatching/hatched blastocysts and total embryos (sum of morulae, early 

blastocysts/blastocysts and hatching/hatched blastocysts) were calculated 

at Day 6 post-fertilisation. All incubations carried out during embryo 

culture were performed at 38.5 °C in a humidified atmosphere containing 

5 % CO2 in air. 
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10. Statistical analysis 

Statistical analyses were conducted with IBM SPSS 27.0 for Windows (IBM 

Corp.; Armonk, NY, USA) and graphs were prepared using GraphPad 

Prism v8 (GraphPad Software, La Jolla, CA, USA). Normal distribution and 

homogeneity of variances were tested with Shapiro-Wilk and Levene tests, 

respectively. In all cases, parameters did not fit with parametric 

assumptions, and this was not remedied after linear transformation (arcsin 

√x, √x); therefore, non-parametric tests were used as an alternative. When 

related samples were assessed, differences between groups were 

evaluated through a repeated measures one-way ANOVA (Friedman test) 

followed by Dunn’s post-hoc test for pair-wise comparisons. When 

independent groups were assessed, differences were evaluated using a 

one-way ANOVA (Kruskal-Wallis test), followed by Dunn’ or Mann-Whitney 

post-hoc tests. For multiple comparisons accounting two factors, the 

Scheirer-Ray-Hare Test as an alternative to two-way ANOVA was run 

followed by the Wilcoxon test. Finally, correlations were examined with the 

Spearman coefficient. For all tests, the level of statistical significance was 

set at P ≤ 0.05. 
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1. Experimental design 

The present set of experiments were aimed to evaluate the effects of post-

thaw incubation at 38 °C upon sperm characteristics, including sperm 

chromatin and sperm physiology, in order to establish the sequence of 

events occurring during cell degradation and determine whether they can 

be useful to predict the fertilising capacity of a given sample. For this 

purpose, 25 sexually mature Holstein bulls housed at an Artificial 

Insemination Centre located in Cenero (Gijón, Spain) were involved. For 

each bull, three ejaculates collected at three different periods separated 

with at least five weeks were obtained and, just after thawing, they were 

pooled and evaluated after 0 h, 2 h and 4 h of incubation at 38 °C. This 

provided a dynamic evaluation of the sperm resilience to post-thawing 

incubation. This dynamic evaluation was expressed by the rates of variation 

[(final value – initial value) / time] between 0 and 2 h, 2 and 4 h, and 0 and 

4 h, of all the assessed sperm chromatin and functionality parameters. 

The first experiment sought to address the effects on sperm 

chromatin. Chromatin protamination was determined using the CMA3 test, 

chromatin condensation was examined with the halo test, double-strand 

DNA damage was evaluated through the neutral Comet assay, and the 

global incidence of DNA breaks was assessed using the alkaline Comet 

assay.  

The second experiment was aimed at investigating the effects on 

sperm physiological characteristics. Briefly, sperm motility was evaluated 

using a Computer-Assisted Sperm Analysis system, and sperm viability 

(SYBR-14/PI), intracellular levels of total ROS (H2DCFDA), superoxides (HE) 

and intracellular Ca2+ (Fluo3) were examined with flow cytometry.  

The third experiment was devised to determine whether the static 

evaluation at 0 h, 2 h and 4 h, or the dynamic evaluation (variation rates 
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between 0 h and 2 h and between 2 h and 4 h of incubation) were able to 

predict bull fertility, measured as non-return to oestrus rates after 90 days 

(NRR).  

 

2. Results 

2.1. Experiment 1: Evaluation of the resilience of 

bovine sperm chromatin to freeze-thawing  

2.1.1. Sperm chromatin protamination decreases upon incubation of 

frozen-thawed bovine sperm at 38 °C 

The degree of chromatin protamination was evaluated after thawing 

through CMA3 fluorescence intensity at 0 h, and after 2 h and 4 h of 

incubation at 38 °C. As shown in Figure 7 and Table 1, a higher chromatin 

protamination degree was observed at 0 h compared to 2 h of incubation 

(P < 0.001) and 4 h of incubation (P < 0.001). Moreover, after 4 h of 

incubation, chromatin protamination decreased compared to 2 h (P < 

0.001). These results suggest that the chromatin of frozen-thawed bovine 

sperm becomes deprotaminated upon incubation at 38 °C.  
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Figure 7. Effects of post-thawing incubation at 38 °C on chromatin protamination 

of bovine sperm. For each incubation-time, chromatin protamination values 

corresponding to each bull are depicted as dots, and the mean ± standard 

deviation (SD) are represented by lines. (***) indicates statistically significant 

differences with a P < 0.001. AU: Arbitrary units. 

 

 

Table 1. Effects of post-thawing incubation time on sperm chromatin 

protamination. Values are presented as mean ± standard deviation (SD). (a) 

Statistical differences compared to 0 h of incubation (P < 0.001); and (b) statistical 

differences compared to 2 h of incubation (P < 0.001). AU: Arbitrary units. 

 T = 0 h T = 2 h T = 4 h 

 Mean ± SD Mean ± SD Mean ± SD 

Sperm chromatin 

protamination  

(CMA3 intensity, AU) 

802.04 ± 41.03 853.12 ± 36.20 a 916.18 ± 35.83 a,b 
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Changes in chromatin protamination during post-thawing 

incubation at 38 °C were evaluated in two separate periods (Table 2): i) 

from 0 to 2 h of incubation; and ii) from 2 h to 4 h of incubation. Despite 

the differences in sperm chromatin protamination along the four hours of 

post-thawing incubation, no significant differences in the rate of 

protamination decrease were observed between the two periods of 

incubation (first period: 0 to 2 h; second period: 2 to 4 h) (P > 0.05).  

 

Table 2. Rates of variation between the two periods for the degree of sperm 

chromatin protamination. Values are presented as mean ± standard deviation 

(SD). AU: Arbitrary units. 

 T = 0 - 2 h T = 2 - 4 h T = 0 - 4 h 

 Mean ± SD Mean ± SD Mean ± SD 

Sperm chromatin 

protamination  

(CMA3 intensity, AU) 

25.54 ± 26.32 31.53 ± 24.66 28.54 ± 10.6 

 

 

2.1.2. Sperm chromatin condensation is not impaired after a short 

incubation of frozen-thawed bovine sperm at 38 °C 

Sperm chromatin condensation was evaluated immediately after thawing 

(0 h) and after 2 h and 4 h of incubation at 38 °C through the Halo test, 

which determines the ability of chromatin to decondense. Results, 

expressed as the percentage of sperm with highly decondensed 

chromatin, are shown in Figure 8 and Table 3. Post-thawing incubation did 

not alter sperm chromatin condensation (P > 0.05), but there was a slight 

increase in the percentage of sperm with decondensed chromatin after 2 

h (3.03 ± 1.06 % sperm with decondensed chromatin) and 4 h (3.53 ± 1.78 

% sperm with decondensed chromatin) of incubation. Additionally, 

regarding DNA decondensation rate, no statistical differences were 
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observed between the first and the second periods of incubation (P > 0.05) 

(Table 4).  

 
Figure 8. Effects of post-thawing incubation at 38 °C on sperm chromatin 

condensation. For each incubation time, the chromatin condensation values of 

each individual bull are presented by dots, and the mean ± standard deviation 

(SD) are represented by the lines. No significant differences between time points 

were observed. 

 
 
Table 3. Effects of post-thawing incubation time on chromatin condensation. 

Values are presented as mean ± standard deviation (SD). (a) Statistical differences 

compared to 0 h of incubation (P < 0.001); and (b) statistical differences compared 

to 2 h of incubation (P < 0.001). 

 T = 0 h T = 2 h T = 4 h 

 Mean ± SD Mean ± SD Mean ± SD 

Sperm chromatin 

decondensation  

(Halo test, %) 

2.87 ± 1.56 3.03 ± 1.06 3.53 ± 1.78 

 

 



Chapter I 

 

92 

Table 4. Rates of variation for sperm chromatin condensation between the two 

periods. Values are presented as mean ± standard deviation (SD). 

 T = 0 - 2 h T = 2 - 4 h T = 0 - 4 h 

 Mean ± SD Mean ± SD Mean ± SD 

Sperm chromatin 

decondensation  

(Halo test, %) 

0.08 ± 0.61 0.25 ± 0.84 0.17 ± 0.41 

 

 

2.1.3. Both global damage and double-strand DNA breaks increase 

upon incubation of frozen-thawed bovine sperm at 38 °C, but this 

increase is notably greater during the second period of incubation 

The incidence of double-strand DNA breaks and global DNA damage 

(Olive Tail Moment, OTM) was determined through neutral and alkaline 

Comet assays, respectively, in frozen-thawed sperm at 0 h, and after 2 h 

and 4 h of incubation at 38 °C. Results obtained are shown in Figure 9 and 

Table 5. 

Regarding the incidence of global DNA damage (single- and 

double-strand DNA breaks) in sperm, a statistically significant increase was 

observed after 4 h of incubation, compared to 0 h and 2 h (P < 0.001) 

(Figure 9A). Also, a statistically significant increase in the incidence of 

double-strand DNA breaks was noticed between 0 h and 4 h of post-

thawing incubation (P = 0.024) (Figure 9B). 



Chapter I 

 

93 

 

Figure 9. Effects of post-thawing incubation at 38 °C on (A) Global DNA damage 

(alkaline Comet) and (B) double-strand DNA breaks (neutral Comet). For each 

incubation time, the values for individual bulls are represented by dots, and the 

mean ± standard deviation are shown as lines. (*) indicates statistically significant 

differences with a P < 0.05; and (***) indicates statistically significant differences 

with a P < 0.001. 

 

 

Table 5. Effects of post-thawing incubation time on the incidence of double-strand 

breaks and global DNA damage in bovine sperm. Values are presented as mean 

± standard deviation (SD). (a) Statistically significant differences compared to 0 h 

of incubation (P < 0.01); (b) Statistically significant differences compared to 2 h of 

incubation (P < 0.01).  

 T = 0 h T = 2 h T = 4 h 

 Mean ± SD Mean ± SD Mean ± SD 

Incidence of Global 

DNA damage (OTM) 
15.57 ± 5.20 16.80 ± 5.59 28.38 ± 7.82 a,b 

Incidence of double-

strand DNA breaks 

(OTM) 

1.31 ± 0.20 1.44 ± 0.27 1.48 ± 0.29 a 
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Although the incidence of double-strand DNA breaks in sperm was 

only found to significantly increase when 0 h and 4 h were compared, the 

extent of that increase was similar in the first (from 0 h to 2 h) and second 

periods of incubation (0.06 ± 0.16 AU/h and 0.02 ± 0.14 AU/h, 

respectively) (Table 6). Conversely, while post-thawing incubation also 

increased the incidence of global DNA damage, the extent of that increase 

was much greater in the second than in the first period (0.61 ± 1.65 AU/h 

and 5.79 ± 3.05 AU/h, respectively, P < 0.001) (Table 6). 

 

Table 6. Rates of increase of global DNA damage and double-strand DNA breaks 

in frozen-thawed bovine sperm, between the two periods of incubation (0 h to 2 h 

and 2 h to 4 h). Values are presented as mean ± standard deviation (SD). (a) 

Statistical differences compared to the first period (0 to 2 h) (P < 0.01); and (b) 

statistical differences compared to the second period (2 to 4 h) (P < 0.01). 

 T = 0 - 2 h T = 2 - 4 h T = 0 - 4 h 

 Mean ± SD Mean ± SD Mean ± SD 

Incidence of Global 

DNA damage (OTM) 
0.61 ± 1.65 5.79 ± 3.05 a 3.20 ± 1.57 a,b 

Incidence of double-

strand DNA breaks 

(OTM) 

0.06 ± 0.16 0.02 ± 0.14 0.04 ± 0.07 
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2.2. Experiment 2: Effects of post-thawing incubation 

on sperm quality  

2.2.1. Sperm motility is one of the first parameters affected upon 

post-thawing incubation at 38 °C 

As shown in Figure 10A and Table 7, total sperm motility decreased over 

the incubation period (P ≤ 0.001), the lowest value being observed after 4 

h of incubation. While this reduction of sperm motility was greater in the 

first (0 to 2 h; -8.51 ± 11.50 %/h) than in the second period (2 to 4 h; -

22.39 ± 11.44 %/h), these values were not statistically significant (P > 0.05) 

(Figure 10B and Table 8). 

 

Figure 10. (A) Effects of post-thawing incubation at 38 °C on total sperm motility. 

(B) Variation of total sperm motility during the first (0 h – 2 h), second (2 h – 4 h) and 

entire periods of incubation (0 h – 4 h). Values for individual bulls are presented by 

dots, and lines represent the mean ± standard deviation. (**) Indicates statistically 

significant differences with a P < 0.01; and (***) indicates statistically significant 

differences with a P < 0.001. 
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Table 8. Rates of variation of total motility and sperm viability during the first (0 h – 

2 h), second (2 h – 4 h) and entire periods of incubation (0 h – 4 h). Values are 

presented as mean ± standard deviation (SD). (a) Statistical differences compared 

to 0 h (P < 0.05); and (b) statistical differences compared to 2 h of incubation (P < 

0.05). 

 T = 0 - 2 h T = 2 - 4 h T = 0 - 4 h 

 Mean ± SD Mean ± SD Mean ± SD 

Total motility (%) -8.51 ± 11.50 -7.13 ± 5.96 -5.45 ± 3.52 

Viable sperm  

(SYBR-14+/PI-) (%) 
-4.49 ± 1.79 -2.50 ± 3.39 a -3.50 ± 1.99 a,b 

 

 

Besides, progressive motility also showed a reduction as time 

advanced (P < 0.001) (Table 7) showing a rate of decrease of -4.70 ± 3.42 

%/h and -1.89 ± 2.97 %/h for the first and second periods, respectively. For 

kinematic parameters, a similar trend was observed after 4 h of incubation, 

when all parameters (except medium velocity) suffered a reduction 

compared to 0 h post-thawing (P < 0.05) (Table 7). 
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2.2.2. Sperm viability is reduced at a higher rate during the first 

period of incubation 

Regarding viability (Figure 11A, Table 7), a statistically significant reduction 

of viable sperm was observed during post-thawing incubation (P < 0.01). 

Besides, the rate of the reduction of viable sperm was different between 

periods, with a faster decrease during the first (0 to 2 h; -4.49 ± 1.79 %/h) 

than during the second incubation period (2 to 4 h; -2.50 ± 3.39 %/h) (P = 

0.032) (Figure 11B and Table 8). 

 
Figure 11. (A) Effects of post-thawing incubation at 38 °C on sperm viability. (B) 

Variation of sperm viability during the first (0 h – 2 h), second (2 h – 4 h) and the 

entire (0 h – 4 h) incubation period. Values for individual bulls are presented by 

dots, and the mean ± standard deviation are represented by lines. (*) Indicates 

statistically significant differences with a P < 0.05; (**) indicates statistically 

significant differences with a P < 0.01; and (***) indicates statistically significant 

differences with a P < 0.001. 
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2.2.3. Incubation of frozen-thawed sperm at 38 °C for 4 h decreases 

the percentage of sperm with high intracellular ROS levels 

Incubation of frozen-thawed sperm for 4 h significantly reduced the 

percentage of sperm with high ROS levels (Figure 12A and Table 9; P < 

0.05). When comparing the two periods of incubation, the rate of ROS 

decrease was similar (0 to 2 h: -1.08 ± 2.95 %/h; 2 to 4 h: -1.04 ± 1.47 %/h; 

P > 0.05) (Figure 12B and Table 10). 

 

Figure 12. (A) Effects of post-thawing incubation at 38 °C on the percentage of 

sperm with high intracellular ROS. (B) Variation of the percentage of sperm with 

high intracellular ROS during the first (0 h – 2 h), second (2 h – 4 h) and entire 

incubation period (0 h – 4 h). Values for individual bulls are presented by dots, and 

the mean ± standard deviation are represented by lines. (*) Indicates statistically 

significant differences with a P < 0.05; and (**) indicates statistically significant 

differences with a P < 0.01. 
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2.2.4. The percentage of sperm with high intracellular superoxides 

increase at a higher rate during the first period of incubation 

As shown in Figure 13A and Table 9, the percentage of sperm with high 

levels of intracellular superoxides (E+) was significantly higher at 2 h (P < 

0.001) and 4 h (P = 0.011) post-thawing, compared to 0 h. Comparing the 

rates of variation (Figure 13B and Table 10) between periods, the 

percentage of sperm with high intracellular superoxides increased at a 

greater rate during the first (3.16 ± 3.16 %/h) than the second period 

(0.76 ± 3.96 %/h) (P < 0.01). 

 

Figure 13. (A) Effects of post-thawing incubation at 38 °C on the percentages of 

sperm with high levels of superoxides. (B) Variation in the percentage of sperm 

with high superoxide levels during the first (0 h – 2 h), second (2 h – 4 h) and entire 

(0 h – 4 h) periods of incubation. Values for individual bulls are presented by dots, 

and the mean ± standard deviation (SD) are represented by lines. (*) Indicates 

statistically significant differences with a P < 0.05; and (***) indicates statistically 

significant differences with a P < 0.001. 
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2.2.5. Post-thawing incubation at 38 °C increases the percentage of 

sperm with high intracellular calcium  

The percentage of sperm with high intracellular calcium levels (Fluo3+) was 

found to significantly increase during post-thawing incubation, both 

between 0 h and 2 h (P = 0.002) and between 2 h and 4 h (P < 0.001) (Figure 

14A and Table 9). As depicted in Figure 14B and Table 10, nevertheless, 

no statistically significant differences in variation rates were observed when 

the first and second incubation periods were compared (9.75 ± 11.57 %/h 

and 4.14 ± 4.89 %/h, respectively; P > 0.05). 

 

Figure 14. (A) Effects of post-thawing incubation at 38 °C on the percentages of 

sperm with high intracellular calcium levels. (B) Variation in the percentages of 

sperm with high intracellular calcium levels during the first (0 h – 2 h), second (2 h 

– 4 h) and the entire (0 h – 4 h) incubation period. Values for individual bulls are 

presented by dots, and the mean ± standard deviation are represented by lines. 

(**) indicates statistically significant differences with a P < 0.01; and (***) indicates 

statistically significant differences with a P < 0.001. 
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Table 9. Effects of post-thawing incubation at 38 °C on the percentages of sperm 

with high intracellular ROS, sperm with high superoxides and sperm with high 

calcium levels. Values are presented as mean ± standard deviation (SD). (a) 

Statistical differences compared to 0 h of incubation (P < 0.05); and (b) statistical 

differences compared to 2 h of incubation (P < 0.05). 

 

 
T = 0 h T = 2 h T = 4 h 

 
Mean ± SD Mean ± SD Mean ± SD 

Sperm with high ROS  

(DCF+) (%) 
6.13 ± 4.83 4.51 ± 3.24 2.44 ± 2.31 a,b 

Sperm with high superoxides 

 (E+) (%) 
47.94 ± 9.09 54.26 ± 8.51 a 55.78 ± 9.33 a 

Sperm with high calcium  

(Fluo3+) (%) 
59.66 ± 18.09 79.00 ± 10.28a 

89.26 ± 9.27 

a,b 

 

 

Table 10. Rates of variation during the first (0 h – 2 h), second (2 h – 4 h) and entire 

(0 h – 4 h) incubation periods for the percentages of sperm with high intracellular 

ROS, sperm with high superoxides and sperm with high calcium levels. Values are 

presented as mean ± standard deviation (SD). (a) Statistical differences compared 

to 0 h of incubation (P < 0.05); and (b) statistical differences compared to 2 h of 

incubation (P < 0.05). 

 
T = 0 – 2 h T = 2 – 4 h T = 0 – 4 h 

 
Mean ± SD Mean ± SD Mean ± SD 

Sperm with high ROS  

(DCF+) (%) 
-1.08 ± 2.95 -1.04 ± 1.47 -0.88 ± 1.42 

Sperm with high superoxides 

 (E+) (%) 
3.16 ± 3.16 0.76 ± 3.96 a 1.96 ± 3.07 a,b 

Sperm with high calcium  

(Fluo3+) (%) 
9.75 ± 11.57 5.13 ± 5.26 6.94 ± 6.04 
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2.2.6. Correlations between chromatin parameters and sperm 

function variables 

Correlations between variation rates of DNA damage (global and double-

strand), sperm chromatin condensation and protamination, and sperm 

functionality parameters are shown in Table 11. 

Regarding the first incubation period (0 h to 2 h), the rate of double-strand 

DNA breaks variation showed statistically significant positive correlations 

with the variation rates of global DNA damage and the percentage of 

sperm with decondensed chromatin (P = 0.020 and P = 0.016, 

respectively). Also, positive correlations between the rate of chromatin 

deprotamination (CMA3
+) and the percentages of sperm with high 

superoxide and calcium levels (P = 0.020 and P = 0.034, respectively) were 

observed. 

For the second period of incubation (2 h to 4 h), chromatin damage 

was observed to happen together with a detrimental effect on sperm 

function. The rate of increase observed in the percentage of sperm with 

high intracellular superoxides was found to be negatively correlated to 

both global DNA damage and chromatin protamination (P = 0.039 and P 

< 0.001, respectively). Moreover, the variation rate of viable sperm was 

observed to be correlated to chromatin protamination (P = 0.029). Besides, 

the incidence of global DNA damage and chromatin protamination were 

also found to be correlated (P = 0.001).  

When considering the entire incubation period (0 h to 4 h), a 

positive correlation between the rate of variation of global DNA damage 

and chromatin decondensation (P = 0.032) was found, together with a 

negative correlation between chromatin deprotamination and the 

percentage of sperm with high intracellular ROS levels (P = 0.049).
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2.3. Experiment 3: Correlations between sperm quality 

evaluated after thawing and fertility outcomes 

After assessing sperm quality, all static (i.e., measured at a specific time 

point) and dynamic parameters (i.e., variation between two time points) 

were tested for correlation with non-return rates (NRR) after artificial 

insemination. Table 12 lists the parameters for which correlations were 

found to be significant.  

Regarding static parameters, fertility rates were found to be 

correlated to total motility at 2 h (Rs = 0.512, P = 0.021) and the percentage 

of sperm with high intracellular ROS levels at 4 h (Rs = 0.553, P = 0.004). 

Conversely, no dynamic parameter correlated to non-return rates (P > 

0.05).  

 

Table 12. Statistically significant correlations (P < 0.05) of static and dynamic 

parameters and NRR. 

 Rs 
95% Confidence 

interval 
P value 

Static parameters 

  T0 Progressive motility (%) 0.511 0.133 to 0.759 0.009 

  T0 Fast motility (%) 0.489 0.104 to 0.746 0.013 

  T2 Total motility (%) 0.512 0.076 to 0.784 0.021 

  T2 Progressive motility (%) 0.509 0.072 to 0.782 0.022 

  T2 Fast motility (%) 0.469 0.019 to 0.761 0.037 

  T4 Sperm with high ROS (% DCF+) 0.553 0.190 to 0.783 0.004 

Dynamic parameters 

   No statistically significant correlations 
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1. Experimental design 

This Chapter sought to describe the chromatin condensation and 

protamination, and DNA integrity of sperm from the different ejaculate 

fractions. The study was conducted in the pig model, as the collection of 

different semen fractions in this species is highly standardised. Ejaculates 

from eight healthy, fertile and mature boars were collected in three 

separate fractions: the first 10 mL of the sperm rich fraction (SRP-P1), the 

rest of the sperm-rich fraction (SRF-P2) and the post sperm-rich fraction 

(PSRF). In the first experiment, an aliquot of each fraction per boar was 

taken to examine sperm chromatin protamination (Chromomycin A3 test, 

CMA3), sperm chromatin condensation (Dibromobimane test, DBB), the 

incidence of double-strand DNA breaks (neutral Comet assay) and global 

sperm DNA damage (alkaline Comet assay). 

Based on the results of Experiment 1, a second experiment was 

performed to test whether sperm concentration and the oxidative stress 

index, which differ between fractions, were correlated. To assess that, six 

pools of four animals (n=24) were obtained by mixing the sperm samples 

from the animals involved in Experiment 1. For each pool, sperm 

concentration (sperm/mL), oxidant activity (AOPP method) and total 

antioxidant capacity (CUPRAC method) were evaluated. Finally, the 

oxidative stress index (OSi) was defined by dividing the relative amount of 

oxidant products by the total antioxidant capacity. The formula used was: 

OSi (µmol oxidants / µmol antioxidants) = AOPPs / CUPRAC. 
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2. Results 

2.1. Experiment 1: Evaluation of sperm chromatin  

2.1.1. Sperm chromatin protamination is similar between the 

ejaculate fractions.  

Sperm chromatin protamination of ejaculate fractions, measured by CMA3 

fluorescence intensity, was assessed at 0 h (Figure 15 and Table 13). No 

significant differences between fractions were observed (P > 0.05). 

 
Figure 15. Box-whisker plots showing sperm chromatin protamination (CMA3 

fluorescence intensity, AU) in each ejaculate fraction. Each box encloses data 

between the 25th and 75th percentiles, whereas the whiskers extend from the 

minimum to the maximum values and the line indicates the median. AU: arbitrary 

units. 
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Table 13. Sperm chromatin protamination in each ejaculate fraction (CMA3 

fluorescence intensity, AU). Data are presented as mean ± standard deviation (SD). 

AU: arbitrary units. 

CMA3 fluorescence intensity (AU) 

SRF-P1 SRF-P2 PSRF 

Mean ± SD Mean ± SD Mean ± SD 

3679.50 ± 643.63 3829.58 ± 819.65 3623.23 ± 672.62 

 

 

2.1.2. Sperm chromatin is more condensed in SRP-P1 and SRP-P2 

than in PSRF  

Dibromobimane, a reagent that reacts with free thiols and emits green 

fluorescence, was used to inversely evaluate chromatin condensation; 

indeed, the greater the fluorescence emitted by DBB, the lower the degree 

of chromatin condensation (and the higher the degree of chromatin 

decondensation). Figure 16 and Table 14 show the degree of chromatin 

condensation (DBB fluorescence intensity) exhibited by the sperm from 

SRP-P1, SRP-P2 and PSRF. Significantly lower chromatin condensation was 

detected in the sperm of the PSRF compared to the sperm of SRP-P1 (P = 

0.018) and SRF-P2 (P = 0.004). 
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Figure 16. Box-whisker plots showing sperm chromatin condensation (DBB 

fluorescence intensity, AU). Each box encloses data between the 25th and 75th 

percentiles, whereas the whiskers extend from the minimum to the maximum 

values and the line indicates the median. (*) Indicates statistically significant 

differences with P ≤ 0.05; and (**) indicates statistically significant differences with 

P ≤ 0.01. AU: arbitrary units. 

 

Table 14. Sperm chromatin condensation (DBB fluorescence intensity, AU) in each 

ejaculate fraction. Data are presented as mean ± standard deviation (SD). (a) 

Statistical differences compared to SRP-P1 (P < 0.05); and (b) statistical differences 

compared to SRF-P2 (P < 0.05). AU: arbitrary units.  

DBB fluorescence intensity (AU) 

SRF-P1 SRF-P2 PSRF 

Mean ± SD Mean ± SD Mean ± SD 

3308.71 ± 835.20 3226.04 ± 537.89 4144.33 a,b ± 1025.65 
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2.1.3. Sperm from the different ejaculate fractions exhibit a similar 

incidence of DNA damage 

The incidence of global DNA damage, which includes both single and 

double-strand DNA breaks, was evaluated in all ejaculate fractions using 

the alkaline Comet assay (Figure 17B and Table 15). No significant 

differences between fractions were observed (P > 0.05). 

Moreover, the incidence of double-strand DNA breaks in sperm 

from all ejaculate fractions was determined using the neutral Comet assay 

(Figure 17A and Table 15). In the same fashion to that observed for global 

DNA damage, the incidence of double-strand DNA breaks did not differ 

between ejaculate fractions (P > 0.05). 

 
Figure 17. Box-whisker plots showing the incidence of (A) global DNA damage 

(Alkaline comet), and (B) double-strand DNA breaks (Neutral comet) in each 

ejaculate fraction. Each box encloses data between the 25th and 75th percentiles, 

whereas the whiskers extend from the minimum to the maximum values and the 

line indicates the median. Dots represent outlier values. 
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Table 15. Incidence of global DNA damage and double-strand DNA breaks. Data 

are presented as mean ± standard deviation (SD). 

SRF-P1 SRF-P2 PSRF 

Mean ± SD Mean ± SD Mean ± SD 

Global DNA damage (OTM) 

33.85 ± 11.28 28.98 ± 12.79 29-16 ± 11.09 

Double-strand fragmentation (OTM) 

1.25 ± 0.06 1.32 ± 0.22 1.33 ± 0.24 

 

 

2.2. Experiment 2: The Oxidative Stress Index (OSi) is 

higher in the SRP-P1 than in SRP-P2 and PSRF, and is 

correlated to sperm concentration 

Sperm concentration, oxidant activity, total antioxidant capacity and OSi of 

all fractions are depicted in Table 16. The SRP-P1 showed a higher sperm 

concentration and oxidant activity compared to SRP-P2 and PSRF (P < 

0.01), and a lower total antioxidant capacity than the PSRF (P < 0.01). In 

contrast, the PSRF exhibited the lowest sperm concentration and oxidant 

activity (P < 0.01), and a higher antioxidant capacity than the SRP-P1 (P < 

0.01). More importantly, the relationship between oxidant and antioxidant 

components, evaluated as OSi, was significantly higher in the SRP-P1 than 

in the SRP-P2 (P = 0.002), and higher in the SRP-P2 than in the PSRF (P = 

0.023). Moreover, sperm concentration was found to be positively 

correlated to OSi (Rs = 0.973; P < 0.001) (Figure 18), so that it followed the 

same trend as OSi, the sperm concentration and OSi being the lowest in 

the PSRF, and the highest in the SRP-P1. 
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Table 16. Sperm concentration, oxidant activity (AOPP), total antioxidant capacity 

(CUPRAC) and oxidative stress index (OSi = AOPP / CUPRAC) in the different 

ejaculate-fractions (SRP-P1, SRP-P2 and PSRF). Data are presented as mean ± SD. 

(a) Statistical differences compared to SRP-P1 (P < 0.05); (b) statistical differences 

compared to SRP-P2 (P < 0.05); (c) Statistical differences compared to PSRF (P < 

0.05). 

 
Concentration  

(spz/mL) 

AOPP  

(µmol/L) 

CUPRAC 

 (µmol/L) 

OSi  

(AOPP/CUPRAC)  

 Mean ± SD Mean ± SD Mean ± SD Mean ± SD 

SRF-P1 1.34×109 ± 1.88×108 b,c 78.90 ± 15.60 b,c 188.40 ± 15.42 c 0.42 ± 0.06 b,c 

SRF-P2 5.66×108 ± 1.27×108 a,c 48.25 ± 11.85 a,c 224.23 ± 41.66 0.23 ± 0.09 a,c 

PSRF 1.32×108 ± 3.90×107 a,b 20.15 ± 1.28 a,b 250.32 ± 9.58 a 0.08 ± 0.00 a,b 

 

 

Figure 18. Spearman correlation between sperm count (sperm/mL) and the 

oxidative stress index in each ejaculate fraction (SRP-P1, SRP-P2 and PSRF). Each 

fraction is represented by a different colour: green for the sperm from SRP-P1, 

orange for the sperm from SRF-P2, and red for the sperm from PSRF. 
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1. Experimental design 

In this Chapter, separate experiments were devised: (i) to investigate 

whether the SCF mechanism can be activated in ejaculated sperm; (ii) to 

examine whether Mg2+ ions can trigger SCF in vitro; (iii) to determine if the 

SCF activation entails other consequences for sperm function and survival; 

and (iv) to evaluate whether SCF causes an effect on embryo development. 

In order to address these aims, four experiments were designed, 

interrogating each of the previously mentioned aspects.  

In the first experiment, the generation of DNA breaks in ejaculated 

sperm by Mn2+ and Mg2+ ions was evaluated. For this purpose, ejaculated 

sperm were incubated with these ions at different concentrations and for 

different times. In addition, permeabilised and non-permeabilised sperm 

samples were used to investigate whether the mechanism responsible for 

inducing DNA breaks is triggered outside the cell or involves the 

intracellular machinery. For this purpose, 50 mL of three semen samples 

from different boars (n=3) containing 33 × 106 sperm/mL were centrifuged 

at 600g for 10 min at room temperature. Then, for each sample, the 

supernatant was removed, and the pellet fraction was resuspended in TKB 

buffer (25 mM Tris-HCl, 150 mM KCl, pH=7.5). Subsequently, to 

permeabilise the sperm, samples were incubated with 0.25 % Triton X-100 

for 10 min on ice. Following this, each sample (permeabilised and non-

permeabilised) was split into two aliquots (for incubation with Mn2+/Ca2+ 

and Mg2+/Ca2+, respectively), and each aliquot into 10 tubes (five to assess 

the dose-response and five to evaluate the time-response). To evaluate the 

dose-response, samples were incubated with Mn2+/Ca2+ or Mg2+/Ca2+ at 0 

mM (Control), 0.1 mM, 1 mM, 5 mM and 50 mM (prepared with the 

appropriate volumes of MnCl2, MgCl2 and CaCl2, all at 0.5 M) for 10 min at 

37 °C. Furthermore, to evaluate the time-response, samples were 
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incubated with 10 mM Mn2+/Ca2+ or Mg2+/Ca2+ for 0 min (Control), 2 min, 

10 min, 30 min or 60 min at 37 °C. After incubation, the incidence of single 

and double DNA breaks was determined through the Comet assay. 

After confirming that incubation with Mn2+/Ca2+ and Mg2+/Ca2+ 

induces DNA breaks, pulsed-field gel electrophoresis (PFGE) was used in 

the second experiment to identify the size of the resulting DNA fragments 

in non-permeabilised ejaculated sperm. Briefly, three semen samples from 

different boars (n=3), containing 33 × 106 sperm/mL, were centrifuged at 

600g and room temperature for 10 min and the pellet fraction was 

resuspended in TKB buffer (25 mM Tris-HCl, 150 mM KCl, pH=7.5). 

Samples were subsequently mixed 1:1 (v:v) with 1 % PFGE (Pulsed-Field 

Certified Agarose BioRad; Hercules, CA, USA), placed into moulds and 

allowed to solidify at 4 °C. Thereafter, the resulting plugs were incubated 

with 10 mM Mn2+/Ca2+ or 10 mM Mg2+/Ca2+ at 37 °C for 30 min, and with 

lysis buffer (10 mM Tris-HCl, 10 mM EDTA, 100 mM NaCl, 20 mM DTT, 2 % 

SDS and 20 mg/mL proteinase K, pH = 8.0) at 53 °C for 1 h. Finally, samples 

were subject to PFGE. Negative controls were non-treated sperm in TKB 

buffer (25 mM Tris-HCl, 150 mM KCl, pH = 7.5) without Mn2+/Ca2+ or 

Mg2+/Ca2+, and were also incubated at 37 °C for 30 min. 

For the third experiment, flow cytometry and Computer Assisted 

Sperm Analysis (CASA) were used to determine the impact of different 

Mn2+/Ca2+ and Mg2+/Ca2+ concentrations and incubation times on sperm 

function and survival. For all treatments, 50 mL of each sample (n=3, from 

three different boars) were centrifuged at 600g and room temperature for 

10 min to remove the preservation medium. After centrifugation, the 

supernatant was removed and the pellet was resuspended in 50 mL of PBS, 

previously warmed at 37 °C. Then, samples were distributed in 1-mL 

aliquots according to the number of treatments and incubation times 

tested. Following this, the corresponding Mn2+/Ca2+ or Mg2+/Ca2+ 
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treatments were added to sperm samples. To evaluate the dose and 

incubation time response, sperm samples were incubated with different 

concentrations of Mn2+/Ca2+ or Mg2+/Ca2+ (Control, 0.1 mM, 1 mM, 5 mM, 

10 mM and 50 mM) for different incubation times (2 min, 10 min, 30 min 

and 60 min) at 37 °C. Once conducted, sperm viability and the percentages 

of sperm with high intracellular ROS and superoxide levels were assessed 

by flow cytometry. Also, sperm motility was assessed using CASA, and 

sperm agglutination was evaluated under a phase-contrast microscope. 

In the fourth experiment of this Chapter, in vitro fertilisation was 

used to investigate how incubation of sperm with different doses of 

Mn2+/Ca2+ affects their fertilising capacity. For this purpose, four pools 

made up of equal volumes of semen from four boars were treated with 

different concentrations of Mn2+/Ca2+ before its use for in vitro fertilisation. 

To this end, 40 mL of each pool were centrifuged at 600g and room 

temperature for 10 min. After centrifugation, the supernatant was removed 

and the pellet was resuspended in 40 mL of PBS, previously tempered at 

37 °C. Then, each sample was distributed in five aliquots of 3 mL each. 

Subsequently, the corresponding amount of Mn2+/Ca2+ was added to each 

aliquot to obtain final concentrations of 0.1 mM, 1 mM, 5 mM, 10 mM, prior 

to incubating the samples at 37 °C for 10 min. The remaining aliquot was 

used as the untreated control. After incubation of sperm with Mn2+/Ca2+, 

IVF was carried out.  
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2. Results 

2.1. Experiment 1: Sperm DNA breaks can be induced 

in ejaculated sperm through intracellular divalent ions, 

but Mn2+ is more effective than Mg2+ 

Dose-response results for both Mn2+/Ca2+ and Mg2+/Ca2+ treatments in 

non-permeabilised and permeabilised sperm samples are shown in Figure 

19 and Table 17. On the one hand, Mn2+/Ca2+ exhibited a dose-dependent 

effect on the induction of DNA breaks, both in non-permeabilised and 

permeabilised samples (Figure 19A). Specifically, significant differences 

were found among Mn2+/Ca2+ treatments (P < 0.05), except between 5 mM 

and 50 mM in non-permeabilised sperm and between control and 0.1 mM 

in permeabilised samples (P > 0.05). In contrast, incubation with Mg2+/Ca2+ 

showed no dose-dependent effect as statistical differences were only 

observed between the control and 5 mM (P = 0.010), and between 50 mM 

Mg2+/Ca2+ and all the other treatments (P < 0.05), in both non-

permeabilised and permeabilised samples (P < 0.05) (Figure 19B). 

Furthermore, no statistically significant differences were found between 

non-permeabilised and permeabilised samples after incubation with 

Mn2+/Ca2+ or Mg2+/Ca2+ (P > 0.05) (Figure 20), evidencing that an 

intracellular component could be involved in triggering the SCF 

mechanism and thus generate DNA breaks.    
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Figure 19. Comet assay Olive Tail Moment (OTM) after incubation with different 

concentrations (0 mM, 0.1 mM, 1 mM, 5 mM and 50 mM) of (A) Mn2+/Ca2+ and (B) 

Mg2+/Ca2+ in non-permeabilised (-TX) and permeabilised (+TX) samples. Data are 

shown as mean ± SD. (a) Statistical differences compared to all treatments within 

the same TX group (P < 0.05) unless indicated by ns. (b) Statistical differences 

compared to the control within the same TX group (P < 0.05). 

 

 

 

Figure 20. Comet assay Olive Tail Moment (OTM) obtained after incubation with 

different concentrations (0 mM, 0.1 mM, 1 mM, 5 mM and 50 mM) of (A) Mn2+/Ca2+ 

or (B) Mg2+/Ca2+ in non-permeabilised (-TX) and permeabilised (+TX) samples. 

Data are shown as mean ± SD. (*) Statistically significant differences (P < 0.05). 
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Table 17. Olive Tail Moment (OTM) (mean ± SD) values of the alkaline Comet 

after incubation of sperm with different concentrations of (A) Mn2+/Ca2+ and (B) 

Mg2+/Ca2+ (0 mM, 0.1 mM, 1 mM, 5 mM and 50 mM) in non-permeabilised (-TX) 

and permeabilised (+TX) samples. Data are shown as mean ± SD. (a) Statistical 

differences compared to all treatments within the same TX group (P < 0.05), 

unless indicated by ns. (b) Statistical differences compared to the control within 

the same TX group (P < 0.05). 

 

Olive Tail Moment 

Non-permeabilised 

(- TX) 

Permeabilised 

(+ TX) 

Mean ± SD Mean ± SD 

(A) Mn2+/Ca2+ 

Control (0 mM) 22.72 ± 5.18 a 28.73 ± 4.65 a 

0.1 mM 34.03 ± 5.88 a 29.55 ± 4.84 a 

1 mM 41.45 ± 3.81 a 39.45 ± 4.41 a 

5 mM 58.07 ± 7.38 a 51.01 ± 5.02 a 

50 mM 60.53 ± 6.93 a 64.41 ± 8.17 a 

(B) Mg2+/Ca2+ 

Control (0 mM) 34.48 ± 7.86 35.20 ± 7.20 

0.1 mM 34.93 ± 8.22 35.99 ± 5.90 

1 mM 39.06 ± 11.26 37.21 ± 6.32 

5 mM 39.08 ± 6.61 b 46.63 ± 8.01 a 

50 mM 45.18 ± 5.94 a 50.35 ± 4.89 a 

 

On the other hand, there was no effect of incubation time on the 

activation of the SCF mechanism regardless of the permeabilisation status 

of sperm (Figure 21; Table 18). Incubations with 5 mM Mn2+/Ca2+ for 

different times (2 min, 10 min, 30 min and 60 min) resulted in similar DNA 

damage (P > 0.05). In the case of Mg2+, only the longest incubation (60 min) 

with Mg2+/Ca2+ appeared to evoke SCF, as only this period was significantly 

different from the others (2 min, 10 min and 30 min) and from the control 

(P < 0.05). 
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Figure 21. Comet assay Olive Tail Moment (OTM) obtained after incubation of 

sperm for different times (0 min, 2 min, 10 min, 30 min, 60 min) with 10 mM of (A) 

Mn2+/Ca2+ or (B) Mg2+/Ca2+ in non-permeabilised (-TX) and permeabilised (+TX) 

samples. Data are shown as mean ± SD. (a) Statistical differences compared to all 

treatments within the same TX group (P < 0.05). (b) Statistical differences compared 

to the control within the same TX group (P < 0.05). 

 

 

Finally, while the effects of incubation time did not differ between 

non-permeabilised and permeabilised sperm in Mn2+/Ca2+ treatments, the 

extent of DNA damage was higher in permeabilised than in non-

permeabilised samples after incubation with Mg2+/Ca2+ for 60 min (P < 

0.05) (Figure 22). 
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Figure 22. Comet assay Olive Tail Moment (OTM) obtained after incubation of 

sperm for different times (0 min, 2 min, 10 min, 30 min, 60 min) with 10 mM of (A) 

Mn2+/Ca2+ or (B) Mg2+/Ca2+ in non-permeabilised (-TX) and permeabilised (+TX) 

samples. Data are shown as mean ± SD. (*) Statistically significant differences (P < 

0.05). 

 

Table 18. Comet assay Olive Tail Moment (OTM) (mean ± SD) obtained after 

incubation of sperm for different incubation times (0 min, 2 min, 10 min, 30 min, 

60 min) with 10 mM of (A) Mn2+/Ca2+ or (B) Mg2+/Ca2+ in non-permeabilised (-TX) 

and permeabilised (+TX) samples. (a) Statistical differences compared to all 

treatments within the same TX group (P < 0.05). (b) Statistical differences compared 

to the control within the same TX group (P < 0.05). 

 

Olive Tail Moment 

Non-permeabilised 

(- TX) 

Permeabilised 

(+ TX) 

Mean ± SD Mean ± SD 

(A) 10 mM Mn2+/Ca2+ 

Control (0 min) 22.57 ± 4.82 a 28.73 ± 4.65 a 

2 min 63.80 ± 3.80 b 60.07 ± 2.82 b 

10 min 60.71 ± 4.55 b 57.85 ± 2.39 b 

30 min 58.34 ± 5.24 b 59.55 ± 3.52 b 

60 min 60.42 ± 6.03 b 59.59 ± 3.33 b 
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Table 18. (Continued). 

 

Olive Tail Moment 

Non-permeabilised 

(- TX) 

Permeabilised 

(+ TX) 

Mean ± SD Mean ± SD 

(B) 10 mM Mg2+/Ca2+ 

Control (0 min) 34.48 ± 7.86 35.20 ± 7.20 

2 min 37.44 ± 6.01 38.35 ± 7.67 

10 min 40.16 ± 6.29 37.04 ± 6.75 

30 min 37.76 ± 5.24 34.30 ± 15.30 

60 min 36.63 ± 7.79 47.51 ± 13.27 a 

 

 

2.2. Experiment 2: Incubation with Mn2+/Ca2+ or 

Mg2+/Ca2+ triggers the SCF mechanism in ejaculated 

sperm in vitro 

After confirming that incubation with Mn2+/Ca2+ and Mg2+/Ca2+ induces 

DNA breaks, pulsed-field gel electrophoresis was used to determine the 

sizes of the fragments generated. Noticeably, incubation with Mn2+/Ca2+ 

and Mg2+/Ca2+ increased the amount of DNA fragments ranging between 

33 Kb and 194 Kb (P < 0.05), a size that would be compatible with the DNA 

condensed into one to four toroids (Figure 23). This would suggest that 

Mn2+/Ca2+ and Mg2+/Ca2+ trigger SCF in ejaculated sperm in vitro, in a 

similar fashion to that observed before in epididymal and vas deferens 

mouse sperm in vivo (Ribas-Maynou et al., 2022a). 
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Figure 23. Intensity of bands after Pulsed Field Gel Electrophoresis (mean ± SD). 

Different DNA lengths were analysed: DNA fragments larger than 194 Kb, 

compatible to mostly intact DNA; DNA fragments ranging between 33 Kb and 194 

Kb, compatible to the size of DNA packed into one to four toroids; and DNA 

fragments shorter than 33 Kb, compatible to DNA sizes smaller than one toroid. 

(*) Statistically significant differences (P < 0.05). 

 

 

2.3. Experiment 3: The induction of SCF in vitro impairs 

sperm motility and induces sperm agglutination 

In addition to sperm DNA integrity, the effects of Mn2+/Ca2+ and Mg2+/Ca2+ 

on sperm motility, agglutination, viability and levels of total ROS and 

superoxides were also examined. 

 

2.3.1. Mn2+/Ca2+ impairs sperm motility in a dose-dependent 

manner, whereas Mg2+/Ca2+ only has an effect at high concentrations 

Figure 24A (Table 19) shows that Mn2+/Ca2+ caused a concentration-

dependent decrease in sperm motility, with a noticeable reduction at high 
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concentrations (P < 0.05). Yet, incubation time did not have a significant 

effect on sperm motility. On the other hand, incubation with Mg2+/Ca2+ also 

caused a drastic decrease on sperm motility, but only at the highest 

concentration (50 mM) (P < 0.05), while the other concentrations (Control, 

0.1 mM, 1 mM, 5 mM, and 10 mM) did not have any effect (P > 0.05) (Figure 

24B, Table 20). 

 

 

Figure 24. Percentages of motile sperm after incubation with different 

concentrations (0 mM [Control], 0.1 mM, 1 mM, 5 mM, 10 mM and 50 mM) of (A) 

Mn2+/Ca2+ or (B) Mg2+/Ca2+, for different incubation times (0 min, 2 min, 10 min, 30 

min, 60 min). Data are shown as mean ± SD. (a) Statistical differences compared to 

the control (0 mM); (b) Statistical differences compared to 0.1 mM treatment; (c) 

Statistical differences compared to 1 mM treatment; (d) Statistical differences 

compared to 5 mM treatment; (e) Statistical differences compared to 10 mM 

treatment; and (f) Statistical differences compared to 50 mM treatment. 
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2.3.2. Incubation with Mn2+/Ca2+ or Mg2+/Ca2+ has no effect on sperm 

viability  

The effects of incubation with Mn2+/Ca2+ and Mg2+/Ca2+ on sperm viability 

are depicted in Figure 25 (Table 19 and Table 20, respectively). Statistical 

analysis showed that neither Mn2+/Ca2+ nor Mg2+/Ca2+ had a significant 

impact on sperm viability (P > 0.05). Higher concentrations of Mn2+/Ca2+ 

(50 mM) and Mg2+/Ca2+ (10 and 50 mM) as well as longer incubation times 

(60 minutes) did, however, tend to decrease the percentage of viable 

sperm. 

 

Figure 25. Percentages of viable sperm after incubation with different 

concentrations (0 mM [Control], 0.1 mM, 1 mM, 5 mM, 10 mM and 50 mM) of (A) 

Mn2+/Ca2+ or (B) Mg2+/Ca2+, for different incubation times (0 min, 2 min, 10 min, 30 

min, 60 min). Data are shown as mean ± SD. 
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2.3.3. SCF is not related to oxidative stress, as neither total ROS nor 

superoxide levels are altered following incubation of sperm with 

Mn2+/Ca2+ or Mg2+/Ca2+ 

As shown in Figure 26, Table 19 and Table 20, no significant increase in the 

percentages of sperm with high intracellular levels of total ROS or 

superoxides was observed after incubation with Mn2+/Ca2+ or Mg2+/Ca2+ (P 

> 0.05). The fact that reactive oxygen species did not increase following 

the activation of SCF suggests that this mechanism does not rely upon 

oxidative stress. 

 

Figure 26. Percentages of sperm with high total ROS and superoxide levels after 

incubation with different concentrations (0 mM [Control], 0.1 mM, 1 mM, 5 mM, 10 

mM and 50 mM) of Mn2+/Ca2+ (A.1 and A.2) or Mg2+/Ca2+ (B.1 and B.2), for different 

incubation times (0 min, 2 min, 10 min, 30 min, 60 min). Data are shown as mean 

± SD. 
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2.3.4. Incubation with both Mn2+/Ca2+ and Mg2+/Ca2+ induces sperm 

agglutination  

As presented in Figure 27, Table 19 and Table 20, the percentage of 

agglutinated sperm increased in a dose-dependent manner after 

incubation with Mn2+/Ca2+ or Mg2+/Ca2+ (P < 0.05). In contrast, there was no 

influence from the incubation time (P > 0.05). A significant increase of 

sperm agglutination was observed at high concentrations of Mn2+/Ca2+ (10 

mM and 50 mM), with the percentage of agglutination being greater than 

80 %. 

 

Figure 27. Percentages of agglutinated sperm after incubation with different 

concentrations (0 mM [Control], 0.1 mM, 1 mM, 5 mM, 10 mM and 50 mM) of (A) 

Mn2+/Ca2+ or (B) Mg2+/Ca2+, for different incubation times (0 min, 2 min, 10 min, 30 

min, 60 min). Data are shown as mean ± SD. (a) Statistical differences compared to 

the control (0 mM). (b) Statistical differences compared to 0.1 mM treatment. (c) 

Statistical differences compared to 1 mM treatment. (d) Statistical differences 

compared to 5 mM treatment. (e) Statistical differences compared to 10 mM 

treatment. (f) Statistical differences compared to 50 mM treatment. 
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2.4. Experiment 4: The SCF induced by Mn2+ in 

ejaculated sperm has no impact on fertilisation rates or 

embryo development  

In vitro fertilisation outcomes, including fertilisation rate and the 

percentages of total embryos, morulae, blastocysts and hatching/hatched 

blastocysts, are shown in Table 21. Although these in vitro fertility 

parameters tended to be lower when sperm had been previously treated 

with 10 mM Mn2+/Ca2+, no statistically significant differences between 

treatments were observed in any of the variables evaluated (P > 0.05).  

 

Table 21. Fertilisation rate at Day 2, and percentages of morulae, blastocysts, and 

hatched blastocysts at Day 6 post-fertilisation resulting from sperm previously 

treated with different concentrations of Mn2+/Ca2+ (0 mM [Control], 0.1 mM, 1 mM, 

5 mM, and 10 mM). Data are presented as mean ± standard deviation (SD). 

 

Fertilisation 
rate  

(%) 

Embryos 

(%) 

Morulae  

(%) 

Blastocysts  

(%) 

Hatched  

(%) 

 Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD 

Control 46.75 ± 15.15 60.54 ± 14.50 13.87 ± 6.31 13.44 ± 8.00 2.39 ± 1.48 

0.1 mM 50.74 ± 10.05 65.85 ± 11.31 15.76 ± 3.84 9.08 ± 3.68 3.32 ± 3.23 

1 mM 47.84 ± 11.44 58.83 ± 9.09 13.94 ± 8.24 14.98 ± 5.55 2.98 ± 2.30 

5 mM 49.47 ± 6.23 64.91 ± 4.52 17.14 ± 8.69 13.71 ± 6.36 3.12 ± 4.83 

10 mM 36.81 ± 11.32 55.87 ± 17.44 14.68 ± 8.39 9.21 ± 4.98 0.81 ± 0.99 
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The assessment of sperm concentration, motility and morphology have 

traditionally been used to predict the male fertilising capacity. Over the 

past few decades, however, the analysis of sperm chromatin status has 

become a valuable, complementary parameter for evaluating male fertility. 

In effect, different features of sperm chromatin (integrity, protamination 

and condensation) have been reported to be associated to several sperm 

quality parameters, such as motility and morphology among others (Irvine 

et al., 2000; Muratori et al., 2000; Sharma et al., 2004). Besides, not only 

has poor sperm DNA integrity been associated to impaired sperm quality 

but also to altered fertility outcomes, such as fertilisation failure, poor 

embryo development, pregnancy loss, and developmental defects in the 

offspring (Huang et al., 2005; Morris, 2002; Virro et al., 2004).  

Against this background, the present Doctoral Thesis aimed to 

investigate the resilience of sperm chromatin, evaluated as chromatin 

protamination, condensation and DNA integrity, during incubation after 

ejaculation. Moreover, it also sought to address whether such a resilience 

as well as the possible modifications that sperm chromatin undergoes 

during the aforementioned incubation are linked to the impairment of 

sperm functionality and fertilising ability, as this may help elucidate the 

relevance of sperm chromatin integrity for early embryo development.  

Experiments included in Chapter I were devised with the purpose 

of describing how sperm chromatin is altered, in terms of protamination, 

condensation and DNA fragmentation during incubation after ejaculation 

at 38 °C, and whether such changes are related to the bovine sperm quality 

decline observed during that period. In addition, the relationship between 

chromatin status and sperm fertility was assessed in order to determine if 

chromatin integrity can be used as a biomarker to predict pregnancy rates. 

On the other hand, although earlier research consistently showed that 

sperm quality and function differ between ejaculate fractions (de la Torre 
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et al., 2017; Dziekońska et al., 2017; Hebles et al., 2015; Valsa et al., 2012), 

no study previously investigated if chromatin protamination and 

condensation, and DNA integrity of sperm chromatin also vary when the 

sperm from the separate fractions are compared (SRF-P1, SRF-P2 and 

PSRF), nor whether the differences in the composition of seminal plasma 

have any impact on the resilience of sperm chromatin to incubation after 

ejaculation. Experiments conducted in Chapter II, therefore, aimed to 

compare chromatin protamination and condensation, and DNA integrity 

of sperm between fractions. Finally, Chapter III explored how sperm 

chromatin fragmentation (SCF) occurs in ejaculated sperm in vitro, using 

the pig as a model. The possibility that a mechanism similar to that 

described in mouse sperm from the epididymis and vas deferens (Ribas-

Maynou et al., 2022a) also exists in ejaculated sperm could contribute to 

understand how sperm chromatin is organised, and to elucidate whether 

DNA breaks occur more often in toroid linker regions. In addition, the 

impact of the DNA fragmentation generated by the SCF mechanism on 

sperm function and in vitro fertilisation was also interrogated. 

 

Sperm chromatin condensation and protamination 

The evaluation of sperm chromatin in post-thawed bovine sperm 

conducted in Chapter I (Experiment I) showed that the degree of chromatin 

protamination decreases when sperm are incubated at 38 °C (Figure 7). 

Moreover, although a slight increase in chromatin decondensation could 

be seen (Figure 8), no differences in chromatin condensation were 

observed for the period assessed (4 h). The experiments conducted in 

Chapter II, which compared the different sperm fractions, demonstrated 

that the disulphide bridges between protamines presented a higher 

degree of oxidation in the sperm from the sperm-rich fraction (SRF-P1 and 



Discussion 

 

143 

SRF-P2), thus indicating that chromatin condensation is higher in these 

ejaculate fractions compared to PSRF (Figure 16). No changes were, 

however, observed in chromatin protamination degree between SRF and 

PSRF (Figure 15). Together, these results suggest that the organisation of 

chromatin in the ejaculated sperm of the distinct fractions only differs in 

terms of chromatin condensation. 

The aforementioned results denote that even though chromatin 

protamination and condensation are usually treated as synonyms in 

multiple studies assessing sperm chromatin, the use of both chromomycin 

A3 and dibromobimane allows differentiating these two features. First, 

chromatin protamination leads to the packaging of protamine-DNA into 

toroidal structures of approximately 50 Kb (Braun, 2001; Miller et al., 2010; 

Ward, 2010); these toroidal structures are stabilised by intraprotamine and 

interprotamine disulphide bridges between cysteine residues (Balhorn et 

al., 1991). Protamines contain between 5 and 10 cysteine residues that, 

during the transit of sperm cells through the epididymis, become mostly 

oxidised (Chapman & Michael, 2003), thus accounting for chromatin 

condensation (Hutchison et al., 2017). Upon fertilisation, the reduction of 

these disulphide bonds is known to be essential for paternal chromatin 

decondensation (Cheng et al., 2009; Jager et al., 1990; Perreault et al., 

1984; Zirkin et al., 1989). The oxidation and reduction of disulphide bonds 

between and within protamines could, therefore, not only regulate the 

degree of condensation/decondensation after gamete fusion, but also 

along the transit of the developing and subsequently mature sperm cells 

through male and female reproductive tracts.  

Furthermore, and to the best of the author’s knowledge, Chapter II 

(Experiment 1) of this Doctoral Thesis evaluated, for the first time, 

chromatin protamination and condensation in the sperm of the different 

pig ejaculate fractions. Therein, sperm of the SRF-P1 and SRF-P2 were 
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found to exhibit greater condensation than the PSRF (Figure 16). This 

higher degree of chromatin condensation could provide the sperm from 

the SRF with a stronger protection against DNA damage, which would be 

related to the greater quality and fertility potential that was previously 

reported for such an ejaculate fraction (Rodríguez-Martínez et al., 2005; 

Saravia et al., 2009; Sebastián-Abad et al., 2021).  

 

Sperm DNA integrity 

Regarding the effects of incubation at physiological temperature on sperm 

DNA integrity, results obtained in frozen-thawed bovine sperm (Chapter I, 

Experiment 2) showed a slight increase in the incidence of double-strand 

DNA breaks, and a statistically significant increase of global DNA damage 

(single- and double-strand DNA breaks), especially after 4 h of incubation 

(Figure 9). This suggests that, in cattle, a greater incidence of SSB rather 

than of DSB occurs when sperm are incubated at 38 °C, in agreement with 

that observed before in pigs (Ribas-Maynou et al., 2021) and humans 

(Tímermans et al., 2020). Related to this, it is worth mentioning that SSB are 

thought to be mainly produced by oxidative stress in DNA regions 

condensed by either protamines or histones (Enciso et al., 2009; Simon & 

Carrell, 2013).   

Results from Chapter I (Experiment 2) showed that chromatin 

decondensation was directly correlated to the rate of global DNA 

fragmentation after incubation for 4 h. This relationship between abnormal 

chromatin condensation and DNA fragmentation was previously reported 

in several studies, which revealed that poorly protaminated chromatin is 

strongly linked to high DNA fragmentation (Cho et al., 2003; Llavanera et 

al., 2021; Manochantr et al., 2012; Nasr-Esfahani et al., 2005). Poor 

chromatin protamination would thus appear to enhance the effect of 
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damaging agents producing DNA fragmentation (Aitken & De Iuliis, 2010). 

Earlier research concluded that sperm chromatin stability is closely 

associated to the amount of inter- and intra- protamine interactions 

(Balhorn et al., 1991; Ward & Coffey, 1991; Ward, 2017). Thus, protamine-

deficient sperm exhibit a less stable chromatin structure, resulting in an 

increased susceptibility to DNA damage (Aoki, 2005; Love & Kenney, 

1999; Ribas-Maynou et al., 2021). Data presented in Chapter I, together 

with findings from other investigations, indicate that not only are 

protamines involved in DNA protection, but also in preventing DNA 

damage. Moreover, the concomitant alteration of chromatin protamination 

and DNA integrity pointed out in Chapter I supports the two-step 

hypothesis proposed by Aitken and De Iuliis (2010) to explain the origin of 

DNA damage (Aitken & De Iuliis, 2010). 

After observing that sperm DNA integrity was altered upon 

incubation at 37 °C, differences in the sperm of the distinct ejaculate 

fractions were posited due to differences in the content of their seminal 

plasma. In the experiments comparing ejaculate fractions (Chapter II), the 

greater chromatin condensation observed in SRF-P1 and SRF-P2 initially 

suggested that the sperm contained in these fractions would be more 

resilient to DNA damage, compared to those of the PSRF. Surprisingly, the 

incidence of both global DNA damage and double-strand DNA breaks was 

similar between ejaculate fractions (Figure 17). While this result could not 

seem to make sense at first glance, the further experiments conducted in 

Chapter II, assessing sperm concentration, reactive oxygen species and 

antioxidant capacity, could explain these findings. The oxidative stress 

index, assessed as the ratio between ROS levels and total antioxidant 

capacity, was determined in the sperm of all ejaculate fractions (Chapter II, 

Experiment 2). Thanks to these evaluations, the oxidative stress index was 

found to be positively and significantly correlated to sperm concentration, 
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indicating that the higher the sperm count, the greater the imbalance 

between ROS (oxidant activity) and antioxidant activity. As SRF-P1 and SRF-

P2 fractions presented higher sperm count and higher oxidative stress 

(Figure 18), it could be suggested that ROS production in these fractions 

overwhelmed the antioxidant capacity of their respective SP. Strong 

evidence suggests that high levels of ROS mediate the occurrence of an 

increased frequency of DNA fragmentation in sperm from infertile men 

(Aitken & Krausz, 2001; Kodama et al., 1996; Lopes et al., 1998); in 

addition, a significant positive correlation between ROS and DNA 

fragmentation was previously reported (Barroso et al., 2000). In this sense, 

the increased chromatin condensation exhibited by the sperm from SRF-

P1 and SRF-P2 would not be strong enough to protect their DNA from 

being damaged by the ROS to which they are exposed. Besides, chromatin 

of the sperm from the PSRF is less condensed and, therefore, more 

susceptible to DNA damage. A greater balance between ROS levels and 

antioxidant capacity is, however, exhibited by the PSRF, resulting in a 

reduced DNA exposure to the damaging effects of high ROS levels. 

Together, this may explain why no differences between ejaculate fractions 

are found in terms of DNA damage.  

Accumulating evidence indicates that high ROS levels are 

associated to histone modifications, DNA base modifications, SSB and 

other alterations, such as changes in membrane phospholipids or 

oxidation of other proteins (Agarwal et al., 2007; Aitken & De Iuliis, 2010; 

Enciso et al., 2009; Ribas-Maynou et al., 2014). Elevated ROS levels have 

thus been described to exert a detrimental effect upon sperm quality and 

survival (Agarwal et al., 2003; Saleh et al., 2002). The specific structure of 

sperm chromatin, which is highly condensed, and the presence of 

antioxidants in seminal plasma are known to contribute to minimising the 

adverse impact of excessive amounts of ROS on sperm DNA integrity 
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(Bennetts & Aitken, 2005; Kowalczyk, 2022; Pahune et al., 2013). Yet, when 

ROS generation increases, there may be an imbalance between ROS levels 

and antioxidant protection, which leads to oxidative stress. Such an 

oxidative stress, either intrinsically or extrinsically produced, is one of the 

main causes of sperm DNA damage (Ribas-Maynou & Yeste, 2020). On the 

one hand, the major source of intrinsic ROS production is sperm 

metabolism, specifically the activity of mitochondria, which is essential for 

sperm motility, particularly during capacitation. These organelles produce 

ROS as a by-product during oxidative phosphorylation (Chianese & 

Pierantoni, 2021; Gallo et al., 2021). Intrinsic ROS production has also been 

attributed to NOX5, a calcium-dependent enzyme present in sperm 

plasma membrane, whose activation is essential for the sperm capacitation 

process (Bedard & Krause, 2007; Moreno-Irusta et al., 2020). On the other 

hand, increased levels of ROS can be produced by exogenous conditions 

including varicocele, the activation of the immune system by infections, 

alcohol consumption, the increase of testicular temperature, and the 

exposure to both ionising and non-ionising radiations and environmental 

pollution (Ribas-Maynou & Yeste, 2020).  

Although oxidative stress has been proposed as a possible cause 

of DNA damage, other enzymatic mechanisms have been described to be 

potentially involved. It is known that the nuclease activity may generate 

DSB at the toroid linker regions (TLR), which have been shown to be 

accessible to enzymes thanks to the lack of protamines (Boaz et al., 2008; 

Sotolongo et al., 2005). As it is easier for endogenous and exogenous 

nucleases to access to poorly protaminated chromatin, they are also more 

likely to inflict DNA damage in sperm exhibiting deprotamined chromatin 

(Sakkas & Alvarez, 2010).  
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In vitro induction of SCF as an approach to investigate TLR 

Several studies in humans and animal models have reported that sperm 

DNA integrity is strongly associated with embryo development outcomes 

(Mateo-Otero et al., 2022; Ribas-Maynou et al., 2021; Sedó et al., 2017; 

Simon et al., 2014; Zheng et al., 2018). Particularly, not only is the 

repercussion of SSB and DSBs different (Agarwal et al., 2020), but the latter 

mainly occurs in TLRs and is caused by enzymatic activity (Ribas-Maynou et 

al., 2012b). In humans, the incidence of DSB in TLRs has been linked to 

recurrent miscarriage, slower embryo kinetics and lower developmental 

rates to blastocyst (Casanovas et al., 2019; Ribas-Maynou et al., 2012b). 

Based on these studies, it can be hypothesised that the genetic information 

contained in TLRs plays an important role during the initial stages of 

embryonic development (Kumar et al., 2013; Ward, 2010; Yamauchi et al., 

2007, 2011). Moreover, chromatin in TLRs is condensed with retained 

histones, which are the only sperm nucleoproteins that bear epigenetic 

signatures. These signatures reside in gamete-imprinted genes and can 

influence gene expression after fertilisation and during the initial stages of 

embryo development (Jung et al., 2017; Yoshida et al., 2018). In spite of 

this, whether regions condensed with histones contain genes or non-

coding information is unclear, as some studies found an increased 

presence of histones in gene-rich regions (Yoshida et al., 2018), whereas 

others mainly identified histones in repetitive, intergenic regions (Samans 

et al., 2014). 

In vitro activation of SCF was only described before in epididymal 

and vas deferens mouse sperm (Gawecka et al., 2013; Shaman et al., 2006; 

Sotolongo et al., 2005). Whether SCF is also triggered in ejaculated sperm 

was thus not previously investigated, so that Chapter III set the conditions 

to induce DNA breaks in the TLRs of ejaculated sperm. Inducing these DNA 

breaks was of interest as a previous step to determine the length of the 
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resulting DNA fragments, and to thus elucidate if fragmentation occurs 

more frequently in specific DNA regions such as TLRs. Besides, how the in 

vitro activated SCF affects sperm function and in vitro fertilisation outcomes 

was also investigated in Chapter III. In addition, through this approach, the 

genetic information contained in these regions may be investigated in the 

future, which may in turn provide the basis for confirming if TLRs have a 

crucial role for embryo development as previous research suggested. 

Incubation of ejaculated sperm with Mn2+ and Mg2+ ions resulted in DNA 

fragments similar in size to those corresponding to toroidal structures (33 

to 194 Kb) (Figure 23). These observations demonstrated that the size of 

the fragments generated after the activation of SCF in vitro, a process 

through which sperm degrade their own DNA, was compatible with that of 

toroids (Boaz et al., 2008; Sotolongo et al., 2005).  

In previous research, Mn2+ at a concentration of 10 mM, with or 

without Ca2+, was found to trigger the SCF mechanism (Ribas-Maynou et 

al., 2014; Shaman et al., 2006; Yamauchi, Shaman, & Ward, 2007). How this 

mechanism relies upon Mn2+ concentrations was not, nevertheless, 

interrogated before, that is why a set of experiments tested the effects of 

different Mn2+/Ca2+ concentrations. In this Doctoral Thesis, the effects of 

Mn2+/Ca2+ were, for the first time, revealed to be dose-dependent, as 

greater concentrations of Mn2+/Ca2+ lead to a higher incidence of sperm 

DNA breaks (Figure 19). Furthermore, the effect of Mn2+/Ca2+ was fast and 

obvious as early as 2 min post-incubation, and a longer incubation period 

did not result in a higher incidence of sperm DNA breaks (Figure 21). 

Based on these findings, one could suggest that the activation of the SCF 

mechanism in vitro relies on the concentration of Mn2+/Ca2+ but not on the 

incubation period. Besides, incubation with Mg2+/Ca2+ was also seen to be 

able to activate SCF in ejaculated sperm, also cleaving sperm DNA at TLRs 

(Figure 19). The results, however, showed that the sensitivity to Mg2+/Ca2+ 
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was lower compared to Mn2+/Ca2+, as lower concentrations of Mn2+/Ca2+ 

were sufficient to activate SCF, indicating that the intracellular machinery 

involved could be ion-independent with differing affinities to the distinct 

divalent ions. Several nucleases with DNA cleavage activities have been 

described to require divalent cations to activate. In this regard, there exist 

DNAse I enzymes and endonucleases that require Mg2+ or Mn2+ as 

cofactors and other nucleases which are Ca2+- and Mg2+-dependent 

(Dupureur, 2008; Guéroult et al., 2010; Pan et al., 1998).  

Establishing an in vitro SCF model in ejaculated sperm allowed 

determining whether the DNA damage generated at TLRs is caused by 

oxidative effectors. This aspect is important, as most studies consider that 

global DNA fragmentation is mainly caused by ROS (Muratori et al., 2020; 

Ozmen et al., 2007; Samplaski et al., 2015; Zandieh et al., 2018), despite 

the fact that other enzymatic-dependent mechanisms may also be involved 

(Ribas-Maynou, Nguyen, Valle, et al., 2022; Yamauchi et al., 2007a). In 

Chapter III (Experiment 3), incubation with either Mg2+/Ca2+ or Mn2+/Ca2+ 

was found to cause SCF without increasing ROS production, suggesting 

that a non-oxidative mechanism is involved in the in vitro generation of 

DNA breaks. This mechanism, which probably requires the activation of an 

enzymatic cascade, could be related to the intrinsic apoptotic-like pathway 

of sperm (Gorczyca et al., 1993). In this regard, an active endogenous 

nuclease was identified in vasectomised mice, which suggests that this 

enzyme promotes DNA cleavage in vivo, rendering sperm non-functional 

(Ribas-Maynou et al., 2022a). In addition to this, the participation of 

topoisomerase IIB has to be considered, as previous investigations 

indicated that this enzyme is located near to TLRs, and cleaves DNA into 

loop-sized fragments of 50 Kb (Boaz et al., 2008; Ribas-Maynou et al., 2014; 

Shaman et al., 2006; Sotolongo et al., 2005; Yamauchi et al., 2007b).  
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Triggering in vitro the mechanism described above to induce 

specific DNA breaks at TLRs allows starting the investigation of these 

regions through sequencing technologies. In this sense, it could be 

addressed whether these regions contain specific or repetitive sequences, 

as well as if they contain genes involved in specific biological pathways.  

 

Relationship of sperm chromatin protamination and decondensation, and 

DNA integrity with sperm function 

Sperm function is defined by different parameters, including motility, 

plasma membrane integrity, mitochondrial activity, and intracellular levels 

of ROS and Ca2+. In this Doctoral Thesis, whether such variables are related 

to sperm chromatin protamination and condensation, and DNA integrity 

was investigated, in addition to the effects of incubation at 38 °C. It is worth 

mentioning that the impact of those parameters on sperm function differed 

between frozen-thawed and fresh sperm, as well as between different 

species.  

First, and as expected, experiments conducted in Chapter I 

(Experiment 3) revealed that viability and motility of bovine sperm 

decreased over post-thawing incubation at 38 °C. Interestingly, despite 

sperm motility (total and progressive motility) being seen to be constantly 

reduced throughout the different incubation periods (0-2 h and 2-4 h), 

sperm viability was mostly affected in the first period of incubation. This 

effect could be due to the activity of the ROS generated during freezing 

and thawing (Pezo et al., 2021; Ugur et al., 2019), which would oxidise 

lipids from mitochondrial and plasma membranes. As a consequence, a 

rapid loss of mitochondrial membrane potential and plasma membrane 

integrity would occur, finally leading to the reduction of sperm motility and 

the induction of cell death (Aitken, 2020; Drevet & Aitken, 2019). 
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Moreover, data also showed that sperm motility and viability were altered 

before chromatin integrity alterations appeared, a fact that could be 

explained by the high protection that chromatin possesses thanks to its 

organisation into toroids.  

Conventional sperm quality parameters have been related to DNA 

integrity in previous studies. Most of such studies indicated that sperm 

motility, concentration, viability and morphology are correlated to DNA 

integrity (Irvine et al., 2000; Muratori et al., 2000; Sharma et al., 2004). 

Although no correlations between DNA damage and sperm functionality 

parameters were identified in bovine sperm herein (Chapter I, Experiment 

2), the reduction of DNA integrity in pig sperm caused by the in vitro 

activation of SCF using Mg2+/Ca2+ and Mn2+/Ca2+ treatments (Chapter III, 

Experiment 3) resulted in an impaired sperm motility and an increased 

agglutination in a concentration-dependent manner (Figure 24 and Figure 

27, respectively). As previously suggested, these effects could be related 

to the destabilisation of sperm membrane caused by oxidative stress 

(Kodama et al., 1996), notwithstanding the alteration of sperm viability was 

not observed in this Doctoral Thesis. Since sperm viability is assessed on 

the basis of plasma membrane integrity, further investigation is needed to 

understand why incubation with Mg2+/Ca2+ or Mn2+/Ca2+ leads to sperm 

agglutination, especially at high concentrations. In order to determine 

whether oxidative stress was responsible for the SCF mechanism and the 

concomitant alterations, intracellular ROS and superoxides levels were 

evaluated. Results showed that neither ROS nor superoxide levels showed 

an increase after SCF activation (Figure 26), dismissing the previously 

hypothesised involvement of an oxidative stress mechanism on the 

impairment of sperm function. These results would, therefore, support that 

the in vitro triggering of the SCF mechanism relies upon the activation of 

specific enzymes. 
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Impact of sperm chromatin protamination and condensation, and DNA 

integrity on in vivo and in vitro fertility outcomes 

Previous works showed that impaired sperm quality parameters such as 

total motility or sperm morphology cause a reduction of fertility outcomes 

(Bongso et al., 1989; Carrell & Liu, 2001; Franken et al., 1999; Liu & Baker, 

1992). The consequences of this reduction vary depending on the species, 

from male infertility in humans to subfertility and economic losses in the 

livestock breeding industry. In this regard, results presented in Chapter I 

(Experiment 3) showed that sperm motility correlated to artificial 

insemination outcomes, which is in agreement with other studies 

performed in different species that found an association between sperm 

fertility and both motility and morphology (Ibanescu et al., 2020; 

Kathiravan et al., 2011; Quintero-Moreno et al., 2003; Schulze & Waberski, 

2022; Shulman et al., 1998; Yániz et al., 2015).  

Mounting evidence in farm animals supports that DNA 

fragmentation negatively affects reproductive outcomes, reducing both in 

vitro and in vivo fertility (Boe-Hansen et al., 2008; Didion et al., 2009; 

Dogan et al., 2015; Kenney et al., 1995; Souza et al., 2018). In humans, 

however, the association between sperm DNA damage and fertility 

outcomes remains unclear, as there exist differences between IVF and ICSI. 

Several studies reported that sperm DNA damage is associated with 

clinical outcomes following IVF (Evenson & Wixon, 2006; Henkel et al., 

2004; Niu et al., 2011; Ribas‐Maynou et al., 2021b; Simon et al., 2017; 

Zhang, 2008; Zhang et al., 2015), but not after ICSI (Agarwal et al., 2020; 

Casanovas et al., 2019; Evenson & Wixon, 2006; Ribas‐Maynou et al., 

2021b; Simon et al., 2017; Zhang et al., 2015; Zini et al., 2005). This 

difference could potentially be explained by the technical differences 
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between these two techniques, as ICSI involves the selection of the sperm 

exhibiting progressive motility and good morphology, features that are 

known to be associated with DNA integrity (Aitken & De Iuliis, 2010). Thus, 

sperm with a potentially lower incidence of SSB are used, resulting in the 

lack of an effect of DNA damage on clinical outcomes after ICSI (Ribas‐

Maynou et al., 2021b). In this regard, Chapter I (Experiment 3) assessed, 

for the first time, the relationship between the incidence of global and DSB 

in sperm and artificial insemination outcomes in cattle, but no correlation 

was observed. In addition, in vitro SCF triggered by incubation with Mn2+ 

(Chapter III, Experiment 4) did not show any effect on in vitro fertilisation 

success in pigs. It is important to bear in mind that in vitro induction of SCF 

was found to specifically produce DNA breaks in TLRs, and that the DNA 

affected by these breaks remains attached to the nuclear matrix by a still 

unknown protein/factor (Ribas-Maynou et al., 2014), providing the embryo 

with an opportunity to repair paternal DNA.  

The results obtained in Chapter I also showed that viable sperm 

with high ROS at 4 h post-thaw were correlated to non-return to oestrus 

rates after 90 days (NRR) (Table 12). As broadly discussed above, oxidative 

stress is one of the major effectors leading to damage not only to paternal 

genetic content through base modifications, but also to different 

components of the sperm cell, such as plasma membrane, acrosome and 

proteins (Aitken, 2020). Reactive oxygen species, however, when present 

in small amounts, are important components driving sperm capacitation 

(Aitken, 2017; Mostek et al., 2021). In cattle, previous studies suggested 

that highly imbalanced oxidative stress is directly related to lower fertility 

rates, both in vivo (Leite et al., 2022) and in vitro (Ribas-Maynou et al., 

2020b).  

Based on these observations, one of the main explanations for 

these findings could be the ability of early embryos to repair paternal DNA 
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damage by activating maternally driven mechanisms throughout 

embryonic development, which was first interrogated by Generoso et al. 

(1979) (Generoso et al., 1979). Since then, several investigations have been 

focused on describing how this process is initiated, which mechanisms are 

involved, and how it is regulated (Derijck et al., 2008; Fernández-Díez et 

al., 2016; González-Marín et al., 2012; Horta et al., 2020; Marchetti et al., 

2007). Specifically, and as aforementioned, the breaks induced by the SCF 

mechanism are located in the TLRs, particularly in the DNA that remains 

attached to the nuclear matrix, thus providing a scaffold for DNA repair 

(Ribas-Maynou et al., 2014).  
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The main conclusions of this Doctoral Thesis are: 

1. Sperm chromatin protamination and condensation, and DNA 

integrity are related to sperm functionality parameters such as 

sperm viability and motility. 

2. Sperm chromatin protamination and condensation differ between 

ejaculate fractions, being greater in the SRF-P1 than in the PRSF, 

which would explain the higher sperm quality of the SRF-P1. 

3. Sperm chromatin fragmentation can be induced in vitro in 

ejaculated sperm through incubation with intracellular divalent 

ions.  

4. Sperm chromatin fragmentation is a non-oxidative mechanism that 

produces DNA breaks in toroid linker regions, decreasing sperm 

motility and increasing sperm agglutination.  
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