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Abstract

The Air Traffic Flow and Capacity Management (ATFCM) aims at maintaining the forecast traffic
demand below the estimated capacity in airports and airspace sectors. The purpose is to main-
tain the workload of the air traffic controllers under safe limits and avoid overloaded situations.
Since the air traffic demand has recovered values close to those achieved before the COVID-19
pandemic, the ATFCM processes still require improvements in order to avoid the significant flight
delays experienced some years ago.

At present, the demand and the capacity management initiatives are deployed separately.
Given a forecast traffic demand, the different air navigation service providers allocate their air
traffic control resources providing the airspace sectorisations. Then, the network manager ad-
dresses the remaining overloads by allocating delay using the Computer-Assisted Slot Allocation
(CASA) algorithm based on a ration-by-schedule principle. It should be noted that some ad-hoc
flights might be re-rerouted or limited in cruise altitude in order to avoid congested airspace by
submitting a new flight plan. Hence, the previously chosen sectorisations may be not optimum
once the demand management initiatives are deployed. Moreover, the flexibility of the airspace
users is limited since they cannot express their preferences. Furthermore, the demand and the
capacity are currently measured using entry counts as proxy of the air traffic control workload,
which is rather easy to measure or estimate. Yet, this metric cannot evaluate the difficulty to
handle different traffic patterns inside the sectors leading to the use of capacity buffers.

This PhD focuses on overcoming the limitations of the current ATFCM system outlined be-
fore by the introduction of complexity metrics (instead of entry counts) in order to measure the
traffic load, the better consideration of the airspace users preferences allowing the possibility of
submitting alternative trajectories to avoid congested airspace, and the holistic integration of the
demand and capacity management into the same optimisation problem.

First, the integration of two capacity management initiatives, i.e. Dynamic Airspace Con-
figurations (DAC) and Flight Centric Air Traffic Control (FCA), is studied proving some bene-
fits when such integration is dynamic. Next, a new concept of operation is proposed where the
airspace users have the option of submitting alternative trajectories and the network manager is
the responsible for the demand management (delay allocation and choice of the used trajectory)
and the capacity management (selection of the airspace sectorisation), considering a network-
wide optimisation. This concept of operations is mathematically modelled with two Demand and
Capacity Balancing (DCB) models addressing only demand management and three holistic DCB
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models where the demand and the capacity management measures are considered together in the
same optimisation problem.

A first model aims at choosing the best trajectory and delay allocation per flight while
analysing the traffic load with entry counts at traffic volume level. It is solved in a realistic case
study using the historical regulations providing a 76.84% of reduction in the arrival delay if com-
pared to the current system.

One of the three holistic DCB models formulated in this PhD, i.e. the one that uses complexity
metrics and includes the optimisation of the opening scheme by choosing the used configurations,
is studied in detail. This model is addressed with a new Hybrid method introduced in this PhD
based on Simulated Annealing and Dynamic programming. In a first case study, this new method
is compared with the exact method solved by Gurobi providing better performance principally
when the difficulty of the problem increases. In a second case study a sensitivity study of the
parameter that models a penalty for different consecutive configurations is conducted. Finally, a
big scale scenario is solved with the Hybrid method providing a 74.01% less of arrival delay and
a 28.47% less in the cost of open sectors compared with a baseline scenario representing the best
conditions of the current system.
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Resumen

La gestión de los flujos de tráfico y de la capacidad (ATFCM) tiene como objetivo mantener la
demanda de tráfico prevista por debajo de la capacidad estimada de los aeropuertos y los sectores
del espacio aéreo. El propósito es mantener la carga de trabajo de los controladores de tráfico aé-
reo por debajo de unos niveles seguros y evitar situaciones de sobrecarga. Dado que la demanda
de tráfico aéreo ha recuperado valores cercanos a los anteriores a la pandemia de COVID-19, los
procesos de ATFCM todavía requieren de mejoras para evitar los altos valores de retraso experi-
mentados hace algunos años.

Actualmente, las iniciativas de gestión de la demanda y las iniciativas de gestión de la ca-
pacidad se implementan por separado. Ante una demanda de tráfico prevista, los diferentes pro-
veedores de servicios de navegación aérea asignan sus recursos de control de tráfico aéreo pro-
porcionando las sectorizaciones del espacio aéreo. Después, el administrador de la red trata las
sobrecargas restantes mediante la asignación de retrasos utilizando el algoritmo de asignación de
franjas horarias asistido por ordenador (CASA) basado en un principio de ordenación por orden
de llegada. Cabe señalar que a algunos vuelos también se les puede cambiar de ruta o limitar la
altitud de crucero para evitar la congestión del espacio aéreo requiriendo de un nuevo plan de
vuelo. Así pues, las sectorizaciones elegidas anteriormente pueden no ser óptimas una vez que
se implementen las iniciativas de gestión de la demanda. Adicionalmente, la flexibilidad de los
usuarios del espacio aéreo es limitada ya que no pueden expresar sus preferencias. Además, la
demanda y la capacidad se miden actualmente contando el número de llegadas como proxy de
la carga de trabajo del control del tráfico aéreo ya que es bastante fácil de medir o estimar. Sin
embargo, esta métrica no puede evaluar la dificultad de controlar diferentes patrones de tráfico
dentro de los sectores lo que conduce al uso de márgenes de capacidad.

Este PhD se centra en superar las limitaciones del sistema de ATFCM actual descritas ante-
riormente mediante la introducción de métricas de complejidad (en lugar del número de llegadas)
para medir la carga de tráfico, la mejor consideración de las preferencias de los usuarios del es-
pacio aéreo permitiendo la posibilidad de la presentación de trayectorias alternativas para evitar
la congestión del espacio aéreo, y la integración holística de la gestión de la demanda y de la
capacidad en un mismo problema de optimización.

Primero, se estudia la integración de dos iniciativas de gestión de la capacidad, la configura-
ción dinámica del espacio aéreo (DAC) y el control del tráfico aéreo centrado en el vuelo (FCA),
demostrando algunos beneficios cuando dicha integración es dinámica. A continuación, se pro-
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pone un nuevo concepto operacional donde los usuarios del espacio aéreo tienen la opción de
presentar trayectorias alternativas y el administrador de la red es el responsable de la gestión de
la demanda (asignación de retrasos y elección de la trayectoria utilizada) y la gestión de la capaci-
dad (selección de la sectorización), considerando una optimización de toda la red. Este concepto
operacional se modela matemáticamente con dos modelos de equilibrio de la demanda y la ca-
pacidad (DCB) que abordan sólo la gestión de la demanda y tres modelos holísticos donde las
medidas de gestión de la demanda y de la capacidad se consideran conjuntamente en el mismo
problema de optimización.

Un primer modelo tiene como objetivo elegir la mejor asignación de trayectoria y retraso por
vuelo mientras se analiza la carga de tráfico con el número de llegadas a nivel de volumen de trá-
fico. Se resuelve un caso de estudio realista utilizando las regulaciones históricas proporcionando
un 76.84 % de reducción en el retraso en la llegada si se compara con el sistema actual.

Uno de los tres modelos holísticos de DCB formulados en este PhD se estudia en detalle, en
concreto el que utiliza métricas de complejidad y optimiza las sectorizaciones del espacio aéreo
escogiendo entre un conjunto de configuraciones disponibles. Este modelo se trata con un nuevo
método híbrido presentado en este PhD basado en el recocido simulado y la programación diná-
mica. En un primer caso de estudio, se compara este nuevo método con el método exacto resuelto
con Gurobi proporcionando un mejor rendimiento principalmente cuando aumenta la dificultad
del problema. En un segundo caso de estudio se realiza un estudio de sensibilidad del parámetro
que modela una penalización para diferentes configuraciones consecutivas. Finalmente, se resuel-
ve un escenario a gran escala con el método Híbrido proporcionando un 74.01 % menos de retraso
en la llegada y un 28.47 % menos en el coste de la sectorización resultante en comparación con un
escenario de referencia que representa las mejores condiciones del sistema actual.
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Resum

La gestió dels fluxos de trànsit i de la capacitat (ATFCM) té com a objectiu mantenir la demanda
de trànsit prevista per sota de la capacitat estimada dels aeroports i els sectors de l’espai aeri. El
propòsit és mantenir la càrrega de treball dels controladors de trànsit aeri sota uns nivells segurs i
evitar situacions de sobrecàrrega. Com que la demanda de trànsit aeri ha recuperat valors propers
als anteriors a la pandemia de COVID-19, els processos d’ATFCM encara necessiten de millores
per tal d’evitat els alts valors de retard obtinguts en anys anteriors.

Actualment, les iniciatives de gestió de la demanda i les iniciatives de gestió de la capacitat
es duen a terme de manera separada. Donada una previsió de demanda de trànsit, els diferents
proveïdors de serveis de navegació aèria assignen els seus recursos de control del trànsit aeri
proporcionant les sectoritzacions de l’espai aeri. Després l’administrador de la xarxa tracta les
sobrecàrregues restants mitjançant l’assignació de retards utilitzant l’algoritme d’assignació de
franges horàries assistit per ordinador (CASA), que es basa en l’ordenació per ordre d’arribada.
Cal senyalar que a alguns vols també se’ls pot canviar la ruta o se’ls pot restringit l’altitud del
creuer per tal d’evitar zones congestionades requerint la presentació d’un nou pla de vol. Així
doncs, les sectoritzacions prèviament escollides poden ser no òptimes una vegada s’implementin
les iniciatives de gestió de la demanda. A més, la flexibilitat dels usuaris de l’espai aeri és limitada
ja que no poden expressar les seves preferències. Altrament, la demanda i la capacitat es mesuren
actualment comptant el nombre d’arribades com a proxy de la càrrega de treball del control del
trànsit aeri, ja que és bastant fàcil de mesurar o estimar. No obstant això, aquesta mètrica no pot
evaluar la dificultat de gestionar diferents patrons de trànsit dins els sectors, la qual cosa condueix
a la utilització de marges de capacitat.

Aquest PhD es centra en superar les limitacions de l’actual sistema d’ATFCM indicades ante-
riorment mitjançant la introducció de mètrics de complexitat (en lloc del número d’arribades) per
a mesurar el trànsit, la millor consideració de les preferències dels usuaris de l’espai aeri perme-
tent la possibilitat d’utilitzar trajectories alternatives per a evitar la congestió de l’espai aeri, i la
integració holística de la gestió de la demanda i de la capacitat en el mateix problema d’optimit-
zació.

Primer, s’estudia la integració de dues iniciatives de gestió de la capacitat: la configuració di-
nàmica de l’espai aeri (DAC) i el control del trànsit aeri centrat en el vol (FCA). S’obtenen beneficis
especialement quan la integració és dinàmica. Després, es proposa un nou concepte operacional
on els usuaris de l’espai aeri tenen l’opció de proposar trajectories alternatives i l’administrador

xxi



de la xarxa és el responsable de la gestió de la demanda (assignació de retards i elecció de la
trajectòria utilitzada) i de la capacitat (selecció de la sectorització de l’espai aeri) considerant l’op-
timització de tota la xarxa. Aquest concepte operacional es formula matemàticament amb dos
models d’equilibri de demanda i la capacitat (DCB) que aborden només la gestió de la demanda i
tres models holístics on la gestió de la demanda i de la capacitat es consideren conjuntament en el
mateix problema d’optimització.

Un primer model es centra en escollir la millor trajectòria i assignació de retard per vol,
mentre que el trànsit s’avalua mitjançant el número d’arribades als volums de trànsit. Es resol
un cas d’estudi realista on s’utilitzen les regulacions històriques aconseguint un 76.84% menys de
retard a l’arribada si es compara amb els sistema actual.

Un dels tres models holístics de DCB formulats en aquest PhD s’estudia en detall, en concret
el que utilitza mètriques de complexitat i optimitza les sectoritzacions de l’espai aeri escollint en-
tre un seguit de configuracions disponibles. Aquest model es tracta amb un nou mètode híbrid
presentat en aquest PhD i que combina la simulació del recuit i la programació dinàmica. En un
primer cas d’estudi, aquest nou mètode es compara amb el mètode exacte resolt amb Gurobi pro-
porcionant un millor rendiment principalment quan la dificultat del problema augmenta. En un
segon cas d’estudi es realitza un estudi de sensibilitat del paràmetre que modela una penalització
per a diferents configuracions consecutives. Finalment, es resol un escenari a gran escala amb
el mètode híbrid proporcionant un 74.01% menys de retard a l’arribada i un 28.47% menys en el
cost de la sectorització resultant en comparació amb un escenari de referència que representa les
millors condicions del sistema actual.
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Notation

F Set of flights
T Set of instants of time
P Set of periods of time
T p ⊂ T Set of instants of times in the period p,∀p ∈ P
T v
k ⊂ T Set of instants of times when trajectory k can potentially arrive at the

traffic volume v, ∀k ∈ K,∀v ∈ V
K Set of all trajectories
Kf ⊂ K Set of trajectories for flight f, ∀f ∈ F
V Set of traffic volumes
Vk Set of traffic volumes that the trajectory k crosses
SE Set of elementary sectors
SC Set of collapsed sectors
S = SE ∪ SC Set of operating sectors
Λ Set of configurations
Λs Set of configurations that contain the operating sector s, ∀s ∈ S
Es Set of elementary sectors in operating sector s, ∀s ∈ S
SsE Set of operating sectors that contains the elementary sector sE ,∀sE ∈ SE

Spa Set of active operating sectors during the period p,∀p ∈ P
T v

k First instant of time when the trajectory k can arrive at traffic volume v
T v

k Last instant of time when the trajectory k can arrive at traffic volume v
Jk Total cost of trajectory k, ∀k ∈ K
JFk

Cost of fuel of trajectory k, ∀k ∈ K
JDk

Cost of arrival delay of trajectory k, ∀k ∈ K
JTk

Cost of trip time of trajectory k, ∀k ∈ K
Rk Cost of route charges for trajectory k, ∀k ∈ K
J̄k Cost of the initial submitted trajectory of the flight associated with

trajectory k, ∀k ∈ K
J̄Fk

Cost of fuel of the initial submitted trajectory of the flight associated with
trajectory k, ∀k ∈ K

J̄Dk
Cost of arrival delay of the initial submitted trajectory of the flight associated
with trajectory k, ∀k ∈ K

J̄Tk
Cost of time of the initial submitted trajectory of the flight associated with
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trajectory k, ∀k ∈ K
R̄k Cost of route charges of the initial submitted trajectory of the flight associated

with trajectory k, ∀k ∈ K
rvk Estimated time of arrival of trajectory k at traffic volume v, ∀k ∈ K,∀v ∈ V
v∗k The next traffic volume that the trajectory k crosses after v
Vk First traffic volume that the trajectory k crosses
Vk Last traffic volume that the trajectory k crosses
αk Arrival delay unit cost for trajectory k, ∀k ∈ K
βk Fuel unit cost for trajectory k, ∀k ∈ K
Fk Trip fuel used in trajectory k, ∀k ∈ K
Tk Trip time of trajectory k, ∀k ∈ K
Dk Ground delay of trajectory k, ∀k ∈ K
T̄k Trip time of the initial submitted trajectory of the flight associated

with trajectory k, ∀k ∈ K
J̄k Cost of operating the initial submitted trajectory of the flight associated

with trajectory k, ∀k ∈ K
Ht,s Complexity threshold of sector s at time t, ∀t ∈ T , ∀s ∈ S
Hp,v Entry count threshold of traffic volume v during the period p, ∀v ∈ V , ∀p ∈ P
θp,s Cost of opening sector s during the period p, ∀p ∈ P , ∀s ∈ S
ρ Penalty cost of allocating one elementary sector to a different operating sector
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I
Introduction

The Air Traffic Management (ATM) system is recurrently performing with overloaded airspace
and/or airports. In such situations, Air Traffic Flow and Capacity Management (ATFCM) mea-
sures are typically deployed in order to maintain the forecast demand below the forecast capacity
by the allocation of delay (EUROCONTROL, 2017). For example, the 9.6% of the European flights
were delayed by en-route ATFCM measures in 2018 (EUROCONTROL, 2018). This value, in-
creased to the 9.9% in 2019, although the total en-route ATFCM delay fell by the 9.0%, and 2019
was the second highest year with respect to en-route ATFCM delay since 2010 (EUROCONTROL,
2020a). Due to the COVID-19 outbreak at the beginning of 2020, the air traffic experienced in 2020
and in the first half of 2021 a historical minimum. Nevertheless, the situation at the end of 2022
is recovering the values from before the COVID-19 pandemic. The majority of European states
experienced a prosperous summer, but the network is still disrupted by the Russian invasion of
Ukraine (EUROCONTROL, 2022). Thus, the improvement of ATFCM models and methodologies
remains as one of the big challenges in current ATM research in order to protect the ATM system
from overloaded traffic situations, but also aiming to make operations as efficient as possible in
response to the increasing concerns in the environmental impact of the air transportation.

ICAO (2016) defines ATM as: The dynamic, integrated management of air traffic and airspace in-
cluding air traffic services, airspace management and air traffic flow management — safely, economically
and efficiently — through the provision of facilities and seamless services in collaboration with all par-
ties and involving airborne and ground-based functions. Hence, the main ATM services are typically
divided in:

• Air Traffic Services (ATS), which includes Alert Services, Flight Information Services and
Air Traffic Control (ATC) services. ATC aims at maintaining a minimum separation between
aircraft (when airborne or at ground) and at maintaining an orderly and expeditious flow of
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2 Chapter I - Introduction

air traffic (ICAO, 2001). ATC services are provided by one or a pair of Air Traffic Controller
Officers (ATCOs) within a volume of airspace called sector.

• ATFCM, that aims at balancing the demand and the capacity by optimising the utilization of
the available resources and coordinating appropriate actions in order to improve the quality
of service and the performance of the ATM system (Network Manager, 2018).

• Airspace Management (ASM), which is focused at the strategic scope and it consists in the
design of the airspace as efficiently as possible in order to satisfy the needs of the different
users, both civil and military. The design of new routes, procedures and new sector config-
urations are among the main functions of ASM.

This thesis is mainly focused on the ATFCM activities and aims at improving current Demand
and Capacity Balancing (DCB) processes.

I.1 Current ATFCM

In the context of ATFCM, three main stakeholders are identified:

1. the Airspace Users (AUs), as airlines, flight operators or military/state aircraft, who generate
the traffic demand;

2. the Air Navigation Service Providers (ANSPs), in charge of providing air traffic services
(ATS) and manage the airspace, who provide capacity ; and

3. the Network Manager (NM), which has the global picture and can be in charge of balancing
demand and capacity in the entire network.

The main objective of ATFCM is to keep the forecasted traffic demand below the available
capacity at the airports and in the airspace sectors. Different ATFCM processes are deployed,
from the most strategic planning to the execution of the operations, and the NM considers the
best available information at each planing horizon for the demand and capacity forecasting.

I.1.1 Demand management

In the strategic phase, from one year to one week before the operations, aggregated predictions
of traffic flows are done in order to identify potential hotspots (i.e. where a demand/capacity
imbalance is detected). The traffic prediction is done based on historical data, economic trends
and considering seasonal effects, together with the available Flight Intentions (FIs) from the AUs.

The pre-tactical phase takes place from six to one day before operations, when the most of the
Flight Plans (FPs) have not been filed yet (FPs are typically filled few hours before the departure
time and could be updated by the AUs until the very last moment). In this situation, the FIs are still
the most valuable traffic information and they include the flight callsign, the airline, the origin and
destination airports, the estimated schedule time and the aircraft model. Yet, the actual trajectory
is still not available because there is no information about the lateral route or the requested flight
level (Mateos et al., 2020). In Europe, the NM uses the PREDICT tool for trajectory prediction at
this pre-tatical stage (EUROCONTROL, 2014). This information is used as well by the ANSPs, in
order to facilitate the allocation of their capacity resources.

The tactical phase in ATFCM takes place at the day of operations. In this phase the traffic
demand is evaluated through the FPs and the traffic predictions are done at short term using,
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in Europe, the Enhanced Tactical Flow Management System (ETFMS), which is the system that
finally allocates delay by running the Computer-Assisted Slot Allocation (CASA) algorithm based
on the Ration-by-Schedule (RBS) algorithm (first in first out strategy) (EUROCONTROL, 2017).
With CASA, the demand is shifted in time in order to be below the declared capacity as shown in
Figure I-1.

Figure I-1: Illustrative example of delay allocation

A part of delay allocation, other strategies like level capping or re-routing are currently used.
Yet, these strategies are not integrated and automated in the DCB algorithms and are proposed
ad hoc to certain flights. Both requires a FP re-submission indicating a change on the flight level
(level capping) or a change in the lateral trajectory (re-routing).

Although the delay allocation based on RBS is accepted by the aviation community beacuse
of its fairness criterion (Brinton et al., 2010), it does not guaranty the optimality and it does not
take into account the AU preferences. This PhD aims at overcoming the limitations of the current
system by abandoning the first in first out strategy when the delay is allocated and considering the
use of alternative trajectories (proposed by the AUs) into the same network optimisation problem.

I.1.2 Airspace management and capacity provision

The airspace under the responsibility of an Area Control Center (ACC) is divided in portions of
airspace volumes, named elementary sectors, where ATC functions can be deployed efficiently
and safely. These elementary sectors can be grouped together forming bigger airspace units called
collapsed sectors. How the full airspace of an ACC is divided in operating sectors is called airspace
configuration or sectorisation. The ACCs open different predefined configurations along the day
in order to adapt the capacity profile to the expected demand. The list of used configurations with
its opening/closing times is called the opening scheme.

Different capacity management decisions are taken depending on the ATFCM phase. The
strategic phase contributes to the allocation of the fixed ATCOs resources for an upcoming season
(summer or winter) and up to a year in advance. Note that this ATCO allocation restricts further
capacity modifications at later stages. During the pre-tactical phase, the airspace sector opening
scheme is defined considering the updated traffic demand and the ATCOs resources defined in
the strategic phase. At the tactical phase, the information of traffic is constantly updated thought
the flight plans and the opening scheme can be adjusted in order to deal with unexpected events
(not predicted during the strategic and pre-tactical phase).

Thus, the capacity management nowadays is done by the definition of the opening scheme,
based on the wise choice of predefined sector configurations along the day. This approach, how-
ever, is highly structured and fixed and it may not be flexible and responsive enough to face the
increasing traffic demand (Treimuth, 2018). For this reason, this PhD proposes additional capacity
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management levels based on dynamic airspace configurations.

I.1.3 Demand and capacity balancing

In current operations, the NM applies regulations to the traffic, shifting the demand in order to
accommodate it to the available capacity reported by the ANSPs.

Airspace and capacity management, in turn, are part of the ANSP functions. It is worth
noting that the ANSPs are who decide whether an overloaded sector should be regulated or not,
based on the type of overload (sustained or peak, for instance), the type of flows in the sector, and
many other operational and expert judgement considerations. In Europe this is done in the Flow
Management Positionss (FMPs) that are located at each ACC and which link, in fact, the NM with
the different ANSPs.

Thus, the demand and capacity management in the current operations is still managed by
two separated services with limited performance at system level. For this reason, this PhD pro-
poses a new concept operation where the NM is the responsible for both demand and capacity
management leading to a seamless integration.

I.1.4 Traffic Management Initiatives

ATFCM processes aim at maintaining the traffic demand below the capacity when the network is
overloaded, situation that happens when the demand is too high and/or when capacity is reduced
(as for example due to disruptive weather or staffing limitations) and leads to the application of
Traffic Management Initiatives (TMIs) known as regulations in Europe.

In Europe, ATFCM is provided by the NM through the application of regulations consisting
on the assignment of ground delay. The ATFCM slot allocation is done by the CASA algorithm
(EUROCONTROL, 2017), based on rules agreed and accepted by relevant ATM stakeholders.

In the United States, Ground Delay Programs (GDPs) and Airspace Flow Programs (AFPs)
are the most commonly used TMIs. GDPs assign departure delays in order to manage the de-
mand at the arrival airport. On the other hand, AFPs focus on constrained en-route elements,
i.e., Flow Constrained Areas (FCA) (FAA, 2009). The AFPs offer two different solutions to tackle
the constrained area: delaying flights or specifying alternative routes that bypass the capacity-
constrained area. Then, the aircraft operator concerned can choose either alternative (re-route or
delay) (Pourtaklo & Ball, 2009).

The abovementioned regulations or TMIs use a RBS algorithm as basis for the flight schedul-
ing, which is accepted by the aviation community due to its fairness (Brinton et al., 2010). This
methodology, however, has limited flexibility for taking into account the AUs preferences and
could be improved to be better aligned with the new concept of operations proposed by SESAR1

in Europe and NextGen2 in the United States. In this context, Collaborative Decision Making
(CDM) initiatives have already been introduced for enabling the airspace user involvement and
to provide more flexibility in the route selection (EUROCONTROL, 2017). Under this scope, in
the United States, the GDP concept with RBS was extended with flight substitutions and the
cancellation-compression algorithm, allowing more flexibility to the airspace users for satisfying
their own policies (Ball et al., 2005). Regarding the AFPs, the CDM concept was introduced with
the Collaborative Trajectory Options Program (CTOP), where the airspace users are able to com-
municate their preferences in terms of route selection using Trajectory Options Sets (TOSs) (FAA,
2014). The CDM philosophy was introduced in Europe through the User-Driven Prioritisation
Process (UDPP), that allows the AUs to redistribute the delay across its fleet by granting more

1Single European Sky ATM Research
2Next Generation Air Transportation System
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priority to flights with higher economic value over flights with lower economic value (Pilon et al.,
2016). Although the full UDPP concept is still under development, the Enhanced Slot Swapping
feature was deployed to operations in May 2017 (Ruiz et al., 2019).

All previous measures are applied at the pre-tactical and tactical phases of ATFCM. In Eu-
rope, some strategic actions are taken as well with the application of the Route Availability Doc-
ument (RAD), which specifies a set of restrictions in some routes. For instance, cruise altitude
constraints for specific routes or segments, route (and/or altitude) constraints for certain ori-
gin/destination airports, etc. The purpose of these RAD is to prevent (strategically) congestion
in certain airspace imposing some restrictions beforehand, at the flight planning stage (EURO-
CONTROL, 2019). Therefore, the flight plans submitted by the AUs do not always reflect their
real intentions since they are restricted by the RAD constraints, or the suggested re-routing and
level capping indications. In this context, it has been reported that AUs fly longer routes in cer-
tain situations to avoid more expensive airspace (en-route charges) (Delgado, 2015), or to avoid
possible congestion (Marcos et al., 2018). This PhD aims at better considering the AU preferences
maintaining as much as possible their real intentions.

I.1.5 Metrics for measuring demand and capacity

ATFCM processes, by definition, seek to keep traffic demand below capacity. As a result, both
demand and capacity must be measured. The idea behind is to keep the ATC controller workload
below a safety threshold so that ATC services are delivered with the appropriate level of safety.

Nowadays, the DCB methods in operations rely on the use of Traffic Monitoring Values
(TMVs) such as entry counts (Figure I-1 is a example of regulation based on entry counts) and
occupancy counts as a proxy for the ATC controller workload. The entry counts metric is de-
fined as the number of aircraft that enter in a sector during a period of time, while the occupancy
counts metric is defined as the number of aircraft that are inside a sector during a period of time.
Entry/occupancy counts are just guidelines for the ATFCM actors to “monitor” the traffic loads
but each individual ATFCM actor will apply different logic to each traffic situation being more
subjective than objective. This difference in opinion of workload, in addition to the uncertainty
of the trajectories, lead to the use of capacity buffers. This entails, in turn, a nominal capacity
that is, in general, below the real capacity that could be offered (COTTON Consortium, 2018a,b;
Gomez Comendador et al., 2019).

Although entry and occupancy counts have been used as proxy of the ATC workload because
of their simplicity, the harmonisation of the traffic or the difficulty required to control a given
situation can not be evaluated through these simple metrics. For this reason, a large number of
researchers have been focused on the development of complexity metrics able to measure more
factors representative of the ATC workload. Although SESAR Joint Undertaking (2016) defines
complexity as the ”...measure of the difficulty that a particular traffic situation will present to an air
traffic controller...”, none of the proposed metrics in the literature has been proven superior to all the
others. This PhD aims to include complexity into the DCB metholodgies but it is not constrained
to any particular complexity metric.

I.2 Motivation of this PhD

In the previous section, current ATFCM operations are outlined and some challenges have already
been identified. This room for improvement, together with the new paradigm in ATM that is envi-
sioned by initiatives like Single European Sky ATM Research (SESAR) in Europe, Next Generation
Air Transportation System (NextGen) in the United States, ONESky in Australia and Collabora-
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Table I-1: Capacity elements given in each model (i.e., given inputs for the airspace capacity
management optimisation)

Model 0 Model I Model II Model III Model IV
Elementary sectors ✓ ✓ ✓ ✓ ✓

Collapsed sectors ✓ ✓ ✓ ✓

Configurations ✓ ✓ ✓

Opening scheme ✓ ✓

Entry counts Complexity

tive Actions for Renovation of Air Traffic Systems (CARATS) in Japan, drive the main motivation
of this PhD thesis.

I.2.1 Holistic demand and capacity management

The demand management and the capacity management, are typically deployed independently,
since the demand side is managed by the NM and the capacity side by the different air traffic
control centers (which might be also managed by different ANSPs, as it happens in Europe). This
leads to airspace sectorisations that are designed considering the initially planned demand, which
may differ from the real traffic demand once the delay allocation and potential pre-tactical re-
routings have been applied. In other words, the resulting sectorisation may not be optimal once
the demand management initiatives have been deployed.

The integration of both demand and capacity management initiatives into a single optimisa-
tion problem was introduced by Xu et al. (2018b), where delay allocation and potential pre-tactical
re-routing were considered at the same time that the sector opening scheme was chosen from a
predefined set of configuration options. Xu et al. (2020b) extended this formulation in order to
find the optimal sector opening scheme given a predefined set of operating sectors (i.e. sector
configurations were not fixed beforehand).

Table I-1 depicts the airspace elements that are considered as known or given for the different
DCB models presented in Chapters V and VI (i.e., that are not subject to optimisation).

I.2.2 Include AUs preferences into the DCB decision making

Although a first attempt for considering the AUs preferences is introduced through the CDM and
UDPP initiatives, they are still not flexible enough, since they only offer to the AUs the possibility
of prioritisation among their flights. It would be desirable, for instance, to allow the AUs the
possibility to submit different options to avoid the same hotspot.

Current DCB methodologies consist of the delay allocation to the corresponding flights. A
part of the delay allocation, the re-routing option can be considered as DCB mechanism by us-
ing trajectories that avoid hotspots (airspace sectors with more demand than capacity). Those
hotspots (which are time-varying) can be anticipated in advance and this PhD assumes that this
information is translated into lateral/vertical avoidance requirements that can be shared with the
AUs in order to offer them the possibility of submitting new alternative trajectories. Although
the FPs are typically submitted in the tactical phase, in this PhD it is assumed that AUs will be
prompt to collaborate by submitting the FPs, along with the the alternative trajectories, during the
pre-tactical phase.

This PhD considers the re-routing options given by the AUs together with the delay alloca-
tion. Hence, the DCB problem consists of choosing the best trajectory per each flight as well as the
best option of delay allocation.
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I.2.3 Use of complexity metrics

As previously explained, the current ATFCM processes rely on entry/occupancy counts as proxy
of the controller’s workload. Yet, the workload than one traffic situation creates does not depend
only on the number of aircraft that enter to one sector or are simultaneously presented in the
sector. How the traffic is distributed in a sector greatly affects the workload of the controller.

For example, in Figure I-2(a), there are three flights in a sector, but they are flying in parallel
and no risk of loosing the separation is expected. Figure I-2(b) illustrates a different traffic scenario
where the same number of flights generates a situation where the loose of separations is poten-
tially high and the controller may need to monitor and give instructions to different flights. Hence,
although they have the same number of aircraft (the same value in entry/occupancy counts), the
complexity of controlling the traffic situation illustrated in Figure I-2(b) is much higher than the
situation represented en Figure I-2(a). This example illustrates the limitation of the current metrics
and motivates the introduction of complexity metrics in the DCB models presented in this Phd.

(a) Low complexity (b) High complexity

Figure I-2: Illustrative example of traffic situations.

I.2.4 Improvement on the capacity management initiatives

The main objective of the capacity management is the allocation of the available ATC resources in
order to serve as much of the demand as possible. Two capacity solutions. i.e. Dynamic Airspace
Configurations (DAC) and Flight Centric Air Traffic Control (FCA) are studied in this PhD.

The goal of the DAC solution is to dynamically redesign the airspace to accurately adjust its
capacity to meet the foreseen demand. To create new operating sectors, pre-defined static airspace
blocks are grouped together (SESAR PJ08 Consortium, 2019).

FCA is significantly distinct as it operates in a sectorless environment. Each new aircraft
entering in the FCA area is assigned to an ATCO based on a specific set of FCA operational criteria
(SESAR PJ10-01b Consortium, 2019).

These two capacity management solutions have been studied in two separate SESAR projects
SESAR PJ08 Consortium (2019) and SESAR PJ10-01b Consortium (2019). This PhD explores the
combination of DAC and FCA in the same airspace.

I.2.5 Alignment with SESAR concept of operations

In Europe, the SESAR program was established in 2004 with the goal of modernizing and har-
monizing ATM systems by defining, developing, and deploying a new generation of innovative
operational and technological solutions that are compliant with the Single European Sky (SES)
objectives while also taking into account the human dimension (SESAR Joint Undertaking, 2020,
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2015).

The SESAR programme aspires to improve in the following key performance areas: cost-
efficiency, pacity, environment, safety and security (SESAR Joint Undertaking, 2020). In fact,
SESAR visualises a future paradigm centered on trajectories, called Trajectory Based Operations
(TBO), where the trajectory data is shared in four dimensions (4D trajectories), enabling a more
efficient and predictable handling of flights. In addition, the future SESAR aspirations aim at con-
sidering the airspace users’ preferences in the decision making processes, specially for the ATFCM
measures. This can be achieved by increasing automation in the decision making and reducing
the boundaries between the different ANSPs, enabling the management of a flight as a whole and
not by segments as it is done today.

In order to progress towards the SESAR objectives a big number of solutions are defined. In
fact, the concept of SESAR solution is defined in SESAR Joint Undertaking (2021) as:

SESAR solutions refer to new or improved operational procedures or technologies that are designed
to meet the essential operational improvements outlined in the European ATM Master Plan. They are also
developed in full accordance with the International Civil Aviation Organization (ICAO) and the Global
Air Navigation Plan (GANP) and therefore applicable to ATM environments worldwide. Each solution
is accompanied by a set of documents to support its implementation, including operational services and
environment descriptions, safety, performance and interoperability requirements, technical specifications,
regulatory recommendations, safety and security assessments, human and environmental performance re-
ports, relevant ICAO and industry standards needed for implementation.

In particular, this PhD is linked with the following SESAR solutions:

• DAC, related with a more dynamic airspace management, where the sector design is based
on the expected traffic demand, what can boost the capacity while decreasing delays and
emissions.

• FCA, brings a paradigm shift from the current ATC sectors based on a geographical area to
a flight centric structure without reference to geographical sectors.

Furthermore, this PhD addresses some of the significant operational changes identified in
SESAR Joint Undertaking (2012, 2014):

• Moving from Airspace to 4D Trajectory Management.

• Network Collaborative Management and Dynamic Capacity Balancing. This point includes
important topics addressed by this PhD:

– The DCB process includes complexity management as a fundamental component.

– The introduction of coordinated 4D constraints replaces the principle of first
planned/first served currently used in the slot allocation process. These constraints are
addressed using 4D measures (time, route, and level) aimed at maximising network
capacity and allowing Airspace Users to constantly improve their operational business
performance.

– The DCB solution combines dynamic airspace configurations with 4D constraints aim-
ing at optimally balancing the demand and the capacity, with minor demand changes.
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I.3 Objectives of this PhD thesis

The main objective of this PhD is to improve the current state-of-the-art ATFCM models, aligning
them to the TBO context and seeking a better integration between the different stakeholders in-
volved when DCB measures have to be applied, while using complexity metrics to better estimate
the demand and the capacity. Ultimately, the objective of this PhD is to decrease delay at Net-
work level, while at the same time, improve AU and ANSP cost-efficiency when facing airspace
or airport congestion.

Different sub-problems have been identified in order to address the overall purpose of this
PhD. These more specific objectives are detailed as follows:

• Explore the limits of DAC and FCA solutions when using complexity metrics and address
how they can be combined.

• Introduce a new concept of operations where the NM and ANSPs roles are more integrated
and more flexibility to the AUs is given, allowing them with the possibility to provide alter-
native trajectories when facing with congested airspace.

• Use state-of-the-art trajectory optimisation to model the AUs behaviour when considering
the generation of alternative trajectories.

• Formulate system-wide DCB holistic models that use complexity metrics and with different
levels of capacity management.

• Propose an heuristic solution approach that could be scaled to solve realistic scenarios and
compare it with an exact method.

• Address the performance of one of the proposed methods with a large-scale and realistic
scenario and compare it with a baseline scenario that represents the best solution that could
be achieved with the current system.

I.4 Scope and limitations of this PhD thesis

This section outlines the set of assumptions and simplifications considered in this PhD:

• All models and methods introduced in this PhD are scoped in the ATFCM pre-tactical phase.

• The AUs submit the FPs during the pre-tactical phase.

• All the demand is known during the pre-tactical phase, i.e. no unexpected flights are con-
sidered.

• The RAD constrains are disregarded when considering the alternative trajectory generation.

• The meteorological conditions at the departure time of each flight are considered static dur-
ing the whole flight.

• The ATFCM stakeholders considered are the NM, the ANSPs and the AUs. Some airport
constraints like the runway configuration are not considered.

• Airborne delay and linear holding are not considered.

• When complexity is used, a delayed trajectory is modelled as an alternate trajectory. There-
fore, delay is taken from a discrete set of limited options.
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• The cost of the delay is assumed based on the guidelines provided by Cook & Tanner (2015).

• The cost for open sectors is estimated with the criteria presented in PERFORMANCE RE-
VIEW COMMISSION (2020).

• It is assumed that all stakeholders are willing to participate in the different decision making
processes described in the new concept of operations introduced in this PhD.

• The AUs behaviour when dealing with competition is not modelled. It is assumed the AUs
will choose the option that minimise the direct operating costs of that particular flight when
computing trajectories.

• All elementary sectors considered in this PhD are operable by themselves.

I.5 Outline of this PhD thesis

The following is a summary of the contents of this dissertation, which is structured into eight
Chapters and two Appendices:

• Chapter II contains some background and a review of the state of the art in demand and
capacity methodologies, complexity metrics and resolution methods.

• Chapter III is focused on the capacity management. In particular, DAC and FCA solutions
are considered together. A validation case study is also provided.

• Chapter IV presents the concept of operations proposed in this Phd. The roles and respon-
sibilities of different stakeholders, as well as the relationship among them, are detailed in
this Chapter. Moreover, this Chapter introduces the mathematical formulation necessary to
define the DCB models presented in this PhD.

• Chapter V is dedicated to the demand management. Two models are introduced (Model
0 and Model I), using entry counts and complexity metrics respectively. This Chapter also
includes a validation case study.

• Chapter VI presents three Mixed Integer Linear Programming (MILP) models for the holistic
DCB, dealing with the demand and the capacity management at the same time (Models II, III
and IV). The differences among the three holistic models is the level of capacity management
offered.

• Chapter VII is focused on the resolution of the Model II. A new hybrid method based on the
combination of Simulated Annealing and Dynamic programming is presented in this Chap-
ter. Three validation case studies are provided. The first study compares the performances
of the Hybrid method against the branch and bound algorithm. The second study consists of
a sensitivity study of the parameter that models the penalty for different consecutive config-
urations. The third study is a big scale scenario which is compared with the current system
in order to evaluate the advantages of the proposed concept of operations and the use of
complexity metrics.

• Chapter VIII highlights the main contributions and observations of this PhD thesis, and
outlines some paths for potential future research.



II
Background and literature review

This section contains the background and state of the art on Demand and Capacity Balancing
(DCB) methodologies and metrics together with an introduction to mathematical optimisation.

II.1 Demand and capacity methodologies

As commented before, there are three different approaches to balance air traffic demand and
capacity: a) demand management, b) capacity management, and c) both demand and capacity
management (holistic management). In the next sections, the state-of-the-art of each of these ap-
proaches is given.

II.1.1 Demand management

The first option consists on applying regulations in order to shift the traffic demand and keep it
below the available capacity. This is basically the main function of the Network Manager (NM)
nowadays in Europe, which mainly allocates ground delay to the Airspace Users (AUs) using
the Computer-Assisted Slot Allocation (CASA) methodology based on the Ration-by-Schedule
(RBS) algorithm (EUROCONTROL, 2017). Although this methodology does not provide optimal
solutions in terms of delay or cost, it is accepted by all the stakeholders because of its simplicity
and fairness (Brinton et al., 2010).

This RBS algorithm is complemented with Collaborative Decision Making (CDM) initiatives
(in the United States) (Ball et al., 2005) and the Enhanced Slot Swapping feature from the User-
Driven Prioritisation Process (UDPP), as the first European approach for the inclusion of the AUs

11
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preferences (Pilon et al., 2016; Ruiz et al., 2019). However, the flexibility of these methods is still
limited. For this reason, a lot of researchers have focused their activities to address the demand
and capacity balancing problem as an optimisation problem in order to improve the limitations of
the current RBS method.

A pioneer work was done by Odoni (1987) where the problem of scheduling flights in order
to minimise congestion cost was defined and introduced, specifically focused on the response to
the lack of airport capacity. After this work, several works proposed different formulations of the
same problem. Terrab & Odoni (1993) formulates in a network flow problem the deterministic ver-
sion of the problem where flights from many origins must be scheduled at a single and congested
airport. This problem was known as Single-Airport Ground Holding Problem (SAGHP). The
stochastic linear programming solution to the same problem was proposed by Richetta & Odoni
(1993). In Andreatta et al. (1993), a review of optimisation models for the SAGHP was performed.
After the research on SAGHP, the following works were focused on solving the Multi-Airport
Ground-Holding Problem (MAGHP), where delays are assumed to propagate in the network of
airports as aircraft perform consecutive flights. In Vranas et al. (1992) and Vranas et al. (1994), the
MAGHP was formulated as an integer linear programming problem.

These works only tackled congestion in the airports, but they did not consider the en-route
airspace. In Bertsimas & Patterson (1998), the authors presented a binary integer programming
model for the deterministic, multiairport Air Traffic Flow and Capacity Management (ATFCM)
problem that addressed capacity restrictions on the en-route airspace. Bertsimas & Patterson
(2000) proposed how to introduce the reroute problem in the formulation since only ground de-
lay before departure was considered in previous research. This formulation can be seen as an
alternative to the current version of the Collaborative Trajectory Options Program (CTOP) (FAA,
2014), where the RBS allocations algorithm is substituted by a Mixed Integer Linear Programming
(MILP) formulation that obtains a global optimal solution.

A similar approach was used in Lulli & Odoni (2007), where the complex nature of the Eu-
ropean ATFCM solutions showed that, in certain circumstances, it is better, in terms of total delay
and cost of delay, to assign to a flight more expensive airborne holding delay rather than a ground
delay.

More recent research was done in Xu et al. (2018a, 2020a), where different delay initiatives
and the consideration of alternative trajectories were considered in a MILP formulation in order
to minimise the cost of the regulations.

II.1.2 Capacity management

The second option for balancing the demand and capacity consists on the capacity management
applied by the Air Navigation Service Providers (ANSPs), which basically consists of a better
allocation of the available Air Traffic Control (ATC) resources in order to meet as much of the
demand as possible. Beside the current ATFCM approach (see Section I.1), new capacity solutions
such Dynamic Airspace Sectorisation (DAS), Dynamic Airspace Configurations (DAC) and Flight
Centric Air Traffic Control (FCA) have been introduced.

Both DAS and DAC aims at redesigning dynamically the airspace in order to provide an
accurate adaptation of the capacity to the foreseen demand. The main difference between them
lies in the way how they design the new sectors. While DAS provides airspace sectorisations
adapted to the demand by designing new operating sectors (Chen et al., 2013; Delahaye et al.,
1998; Martinez et al., 2007; Tang et al., 2012; Trandac & Vu Duong, 2002), DAC uses pre-defined
static airspace blocks that are grouped in order to create new operating sectors (Kopardekar et al.,
2007; Delahaye et al., 1995; Sergeeva et al., 2017, 2015; Gianazza, 2019; Gianazza & Durand, 2020;
Gianazza, 2010; Verlhac, C. and Manchon, S., 2005; Treimuth, 2018; Vidosavljevic & Delahaye,
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2017).

Regarding the DAC solution, many different techniques have been used for tackling the prob-
lem, for instance, genetic algorithms (Delahaye et al., 1995; Sergeeva et al., 2017, 2015), ant colony
systems (Gianazza & Durand, 2020), sequential A* algorithm (Gianazza, 2019), dynamical pro-
gramming techniques (Vidosavljevic & Delahaye, 2017) or combinations of neural networks with
tree search methods (Gianazza, 2010), among others.

Furthermore, different levels of DAC can be identified in the literature depending on the
airspace unit which is used for the capacity management (this is also related with the different
DCB models presented in this paper). In Verlhac, C. and Manchon, S. (2005); Vidosavljevic & De-
lahaye (2017), the DAC solutions consist in selecting which of the given configurations is used at
each period of the day. Similarly, in Gianazza (2010, 2019); Gianazza & Durand (2020), although
the problem is based on a given the set of elementary sectors, an initial preprocess is required in or-
der to find out all feasible configurations. Instead, in Delahaye et al. (1995) the configurations used
are based on a given set of operating sectors. In Sergeeva et al. (2017, 2015) the starting point were
basic airspace blocks that can be collapsed in order to create new operating sectors. In Treimuth
(2018) different models and approaches were introduced in order to find the sectorisation given a
set of configurations, operating sectors or elementary sectors.

Finally, it is worth noting that in most of the DAC models, the aim is to balance the controller
workload across all sectors. This is basically done by using complexity metrics (see Section II.2).

Radically different, FCA relies on a sectorless environment where each new aircraft entering
in the FCA area is allocated to an Air Traffic Controller Officer (ATCO) based on a set of FCA
operational criteria (Korn et al., 2009).

These last two capacity management solutions have been studied in two separate SESAR
projects SESAR PJ08 Consortium (2019) and SESAR PJ10-01b Consortium (2019). The combination
of DAC and FCA was explored under the COTTON1 SESAR project.

II.1.3 Holistic demand and capacity management

The integration of both options into a single optimisation problem (i.e. delay allocation and ca-
pacity management using DAC) was introduced by Xu et al. (2018b), through a formulation that
includes the selection of the best ATC sector configuration opening scheme and the optimisation
of the ATFCM resources at the same time. This work was extended in Xu et al. (2020b) allowing
the creation of new sectorisations from existing operating sectors.

A similar approach was also explored in the COCTA2 SESAR project (Ivanov et al., 2019),
where the authors introduced economic instruments and incentives in order to harmonise the
traffic demand and coordinate the capacity and demand management decisions. This work was
extended in the CADENZA3 SESAR project (Künnen & Strauss, 2022), with the introduction of the
concept of trajectory products (the AUs are rewarded with lower charges when giving more route
flexibility to the NM). The consideration of the cross-border capacity was considered in Starita
et al. (2021) in order to improve the performances of the capacity management.

1Capacity optimisation in trajectory-based operations
2Coordinated capacity ordering and trajectory pricing for better-performing ATM
3Advanced Capacity and Demand Management for European Network Performance Optimization
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II.2 Demand and capacity metrics

All the existing Traffic Management Initiatives (TMIs) and the alternative methodologies are ap-
plied when the traffic demand is higher than the capacity available. Nowadays, the metric used
to measure such demand and capacity is the sector entry counts, which is the number of aircraft
entering in an ATC sector in a given period of time. Although this metric is very easy to compute,
it does not consider how much time an aircraft is inside the sector or the difficulty (i.e. complex-
ity) of the traffic to be controlled. For this reason, some Area Control Centers (ACCs) complement
the previous metric with the occupancy counts, i.e. how many aircraft are inside the sector in a
specific moment. Although entry and occupancy counts are used as proxys of the ATC workload,
the harmonisation of the traffic or the difficulty required to control a given situation can not be
estimated with these simple metrics.

For this reason, a large number of researchers have focused on the development of a complex-
ity metric able to capture more factors representative of the ATC workload. This has lead to a large
number of metrics and, although Single European Sky ATM Research (SESAR) defines complexity
as "...measure of the difficulty that a particular traffic situation will present to an air traffic controller..."
(SESAR Joint Undertaking, 2016), none of the proposed metrics in the literature has been proven
superior to all the others. At the end, the "best" metric or set of metrics largely depends on the
specific features of the problem to be solved, the particularities of the concerned airspace and/or
traffic flows, particularities of the ANSPs and methods used for ATC, etc. Thus, different complex-
ity metrics are found in the literature, capturing different causes for the complexity or Complexity
Generators (CGs) and applying different rules for calculating a value.

Among the most significant metrics, the following ones will be explained because of their
applicability under the Trajectory Based Operations (TBO) concept:

1. The Programme for Harmonised ATM Research in EUROCONTROL (PHARE) (EUROCON-
TROL, n.d.) was a collaborative research programme within Europe to investigate a future
Air Traffic Management (ATM) concept. One of the new concepts addressed in the project
was the redistribution of workload from single sector level to a wider multi-sector area con-
trolled by a specialist controller known as multi-sector planner (Meckiff et al., 1998). The
Tactical Load Smoother is a tool that was developed to support the multi-sector planner.
This tool provides three main outputs: 1) the Traffic Load Graph, that displays the expected
number of aircraft in 10-40 minutes in the future; 2) the Problem Load Graph, which is based
on the number of predicted conflicts and their degree of certainty; and 3) Complexity map,
that shows, for a given time in the future, a heat contour map representing the complexity
in the multi-sector area. This complexity map uses a metric that considers the probability
and nature of conflicts between two or more aircraft, the equipment levels of the aircraft (3D
Flight Management System (FMS), 4D FMS, datalink etc.), the aircraft’s speed, the aircraft’s
vertical evolution (climbing, descending or stable), the aircraft’s sector transit time, compat-
ibility between an aircraft’s route and it’s flight level, the distance of the problem from the
boundary of the sector.

2. The fractal dimension approach was proposed in Mondoloni & Liang (2001). The idea pro-
posed is to use the fractal dimension of the traffic pattern as a metric for the traffic complex-
ity. This methodology is useful for evaluating differences in traffic flows between alternative
scenarios. In other words, the fractal dimension can be used as a metric to compare different
concept of operations, i.e. current operations, free route, free flight or continuous climb. The
metric considers the aircraft trajectories as well as the routes with altitude information and
it is independent of the sectorisation.

3. The cognitive complexity can be understood as the difficulty of controlling an air traffic situ-
ation (Histon et al., 2010; Cañas et al., 2017; Ferreira et al., 2017). As the cognitive complexity
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of controllers is the functional limitation on the capacity of the ATC system, a controller
mental model is required. This controller mental model must consider the situation aware-
ness, decision-making and execution processes. The controller mental model introduced in
Histon et al. (2010) is represented in Figure II-1.

Figure II-1: Model of air traffic control system. Source: Histon et al. (2010)

4. Linked with the cognitive complexity there is the solution space metric (Abdul Rahman et al.,
2012; Hermes et al., 2009; d’Engelbronner et al., 2015) that aims at assessing the controller task
demand load based on the geometric and kinematic properties of the traffic. This metric as-
sumes that the controller workload is based on difficulty of the task to be conducted. In
Hermes et al. (2009), the solution space is defined as "the subset of all possible vector (com-
bined heading and velocity) commands that can be issued by an ATC controller that satisfy
constraints of safety, productivity, and efficiency". In other words, it is related to the flexibil-
ity that the ATC has when it is needed to solve a conflict in terms of the airspace available to
perform the resolution manoeuvrers.

5. Idris et al. (2007) defined the notion of trajectory flexibility as the ability of the trajectory
(and hence the aircraft following the trajectory) to abide by all constraints imposed on it
while mitigating its exposure to risks that cause violation of these constraints. The con-
straints intend to achieve ATM and aircraft objectives and include heading limits, required
time of arrivals, and separation minima. To support the concept of trajectory flexibility, two
trajectory characteristics are relevant, i.e. the robustness (ability of the aircraft to keep its
planned trajectory unchanged in response to the occurrence of disturbances) and the adapt-
ability (ability of the aircraft to change its planned trajectory in response to the occurrence of
a disturbance that renders the current planned trajectory infeasible). Differently than other
metrics, robustness and adaptability are trajectory-oriented since they are defined at tra-
jectory level. The relationship with the complexity is based on the hypothesis that if each
aircraft preserves its own trajectory flexibility, using an air-based or ground-based system,
acceptable traffic complexity will naturally be achieved. The results of the analysis done in
Idris et al. (2009) demonstrated that if adaptability and robust metrics are used during the
trajectory planning phase, then the traffic complexity is mitigated naturally.

6. The trajectory based complexity (Prevot & Lee, 2011) is a modified aircraft count to pre-
dict sector complexity. Since the the currently used aircraft count is insufficient to predict
controller workload under all conditions (specially in non-nominal conditions), this metrics
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aims at modifying the aircraft count value considering dynamic factors such as weather,
aircraft equipage or predicted separation violations, as well as static factors such as sector
size.

7. The Input-Output approach (Lee et al., 2007; Prandini et al., 2009) evaluates the complexity
in relationship to the control activity required to accept entering aircraft. The idea is similar
to the solution-space approach because it also sees the complexity as "how difficult" a given
traffic situation is. However, here the airspace is considered as closed loop input-output sys-
tem. This metric has the input as a hypothetical aircraft entering the sector, and the output
as the cost (defined as deviation from the original flight plans) of accepting this additional
aircraft.

8. The dynamic density (Laudeman et al., 1998; Sridhar et al., 1998) is a complexity metric
that includes the traffic density (or occupancy) and the traffic complexity in form of a
weighted linear equation. The traffic complexity factors identified were heading change,
speed change, altitude change, loss of separation and number of conflicts. This metric also
combines occupancy with complexity as the trajectory based complexity, but, in this case, the
result is a complexity value that cannot be compared directly with the aircraft count value.

9. The geometrical approach (Delahaye & Puechmorel, 2000) aims at considering the intrinsic
traffic disorder as a complexity metric. This approach is based on the properties of the rela-
tive positions and the relative speeds of aircraft in a sector, so no human factors are involved
in the process. The metric proposed considers the complexity due to the aircraft proximity
(identifying spacial zones with high aircraft aggregation) and its divergence/convergence
(how fast two aircraft move away from/get closer to each other).

10. The approach based on dynamical system modelling (Delahaye et al., 2003; Puechmorel &
Delahaye, 2009; Delahaye & Puechmorel, 2015) aims at identifying any trajectory organisa-
tion in the traffic pattern in order to quantify the associated control difficulty resulting in
an air traffic complexity metric based on linear or non-linear dynamical system. The main
idea is to find a dynamic system which modelises a vector field as close as possible to the
observations given by the aircraft positions (and speeds). The trajectory disorder can be
computed based on the dynamic system model.

11. A different approach is presented in Walter et al. (2010), where the complexity is related with
the trajectory uncertainty. The strong correlation between trajectory uncertainty and con-
trolled workload is considered by the introduction of a complexity component that quanti-
fies the amount of uncertainty. This complexity component is based on sensitivity analysis,
where the magnitude of uncertainty is obtained by directly investigating the impact of pa-
rameter variations to the aircraft’s predicted position ahead in time.

12. Continuing with uncertainty consideration, in Prandini et al. (2012) describes the proba-
bilistic approach. Here the complexity is evaluated in in terms of proximity in time and
space of the aircraft present in the traffic as determined by their intent and current state
while accounting for possible local deviations of the aircraft from their nominal trajectory.
A probabilistic description of the uncertainty is adopted when the aircraft future position
is considered. Thus, it is possible to attribute different likelihood to different trajectories, in
particular, a lower likelihood to trajectories that are farther away from the nominal one.

In previous research papers on holistic DCB, both demand and capacity were measured using
entry or occupancy counts. In fact, the introduction of complexity metrics in this holistic integra-
tion of the demand and capacity management increases the difficulty of the formulation of the
models and, as a consequence, the difficulty to find a solution in a reasonable computational time.
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This is related with the fact that slightly altering one single trajectory, may considerably change
the complexity in a sector.

Furthermore, the introduction of alternative trajectories for the same flight may significantly
change the traffic patterns, depending on which trajectory is finally selected. This is why previous
works have used entry or occupancy counts, instead of a complexity metric, in order to evaluate
demand and capacity.

This PhD aims at overcoming this issue by using complexity metrics in Holistic DCB models
that allows the AUs to provide alternative trajectories.

II.3 Mathematical optimisation

A mathematical optimisation problem aims at minimising or maximising a function while satis-
fying some constraints. The generic definition of an optimisation problem can be formulated as
follows:

Minimise f(x) (II.1)

s.t.
gj(x) ≤ 0, j = 1, ...,m (II.2)

x ∈ X (II.3)

where x is the vector of decision variables, X is the domain of the decision variables, f is the
objective function and m is the total number of constraints. Equations (II.2) are the constraints of
the optimisation problem.

Depending on the objective function, the constraints and the decision variables, a problem
can be a classified as Linear Programming (LP), Integer Linear Programming (ILP), Mixed Integer
Linear Programming (MILP), unconstrained continuous optimisation, Nonlinear Programming
(NLP) or Mixed Integer Nonlinear Programming (MINLP). Table II-1 describes the conditions
required to classify a problem in a specific category.

Table II-1: Classification of optimisation problems
Function f Constraints gj Domain X Problem type

linear linear continuous ⊆ Rn Linear programming (LP)
linear linear discrete ⊆ Zn Integer linear programming (ILP)
linear linear cont./disc. ⊆ Rn × Zn Mixed integer linear programming (MILP)

nonlinear none continuous ⊆ Rn Unconstrained continuous optimisation
nonlinear (non)linear continuous ⊆ Rn Nonlinear programming (NLP)
nonlinear (non)linear cont./disc. ⊆ Rn × Zn Mixed integer nonlinear programming (MINLP)

II.3.1 Exact methods

An exact method is an optimisation method that guaranties to reach an optimal solution of a
problem, if such a solution exists. Otherwise, it gives the proof of its infeasibility.

When a problem is linear (LP) it can be addressed with the Simplex algorithm, which was
proposed by George Dantzig. The Simplex technique employs a highly efficient strategy: it pro-
gresses methodically from corner point to corner point, improving the value of the objective func-
tion at each stage; starting from the feasibility region where all the main variables are zero.
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Other exact methods are required when the problem is ILP or MILP. The objective of these
methods, such as Branch and Bound (B&B) (Fischetti et al., 1994), cutting planes (Gomory, 1958),
column generation (L.R. Ford, Jr. & D.R. Fulkerson, 1958), and dynamic programming (Bellman,
1957), among others, is to find the optimal solution of the problem.

Because of their relevance for this PhD, B&B and Dynamic programming are explained.

II.3.1.1 Branch and Bound

The B&B algorithm was introduced in Land & Doig (1960) aiming at solving programming prob-
lems where all or some variables can take discrete values (ILP or MILP).

The branching procedure creates new subproblems by recursively applying linear relaxation,
which consists of the suppression of the constraints of integrity of the variables, so as to obtain a
LP. If the solution of the linear relaxation satisfies the integrity constraints, then it is solution of the
integer problem (feasible solution). The value of the best feasible solution found defines the upper
bound of the solution of the minimisation problem. If the solution of the linear relaxation does
not complain the integrity constraints, it is used to establish the lower bound of the minimisation
problem. The difference between the upper and the lower bound is a measure of the proximity
of the actual point and the optimum solution, if this exists. Hence, in a minimisation problem,
the branching procedure increase progressively the lower bound and decrease progressively the
upper bound. When the upper and lower bounds are coincident the optimum solution is found.

The purpose of the bounding procedure is to reduce the size of the search tree by eliminating
subproblems that do not contain the optimal solution. At each iteration of the branching proce-
dure, the following option are addressed:

• If the solution of the linear relaxation fulfils the integrity conditions, it has no sense to con-
tinue branching the current subproblem.

• If the solution of the linear relaxation does not satisfy the integrity conditions and exceeds
the best current know feasible solution (upper bound), the current subproblem certainly
does not contain the optimum, so it can be eliminated.

• If the subproblem is infeasible, the current subproblem is closed.

II.3.1.2 Dynamic programming

The Dynamic programming was introduced by Richard Bellman (Bellman, 1957) and it is based
on the decomposition of a complex problem into simpler subproblems in a recursive way. A
recursion is a rule for calculating a value based on previously calculated values (Bertsekas, 1995).
When a subproblem is solved the information is stored avoiding the need of re-computing when
required later. Typically, dynamic programming simplifies a choice by decomposing it into series
of decision stages. The sequence of decisions that results into the optimal solution is called optimal
policy. The Dynamical programming is based on the Bellman’s Principle of Optimality stated as:

An optimal policy has the property that whatever the initial state and the initial decisions are, the
remaining decisions must continue an optimal policy with regard to the state resulting from the first decision
(Bellman & Dreyfus, 1962).

This principle can be recursively used in order to obtain the subproblems expressed in recur-
sive expressions.
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II.3.2 Heuristic techniques

Differently than exact methods that aim at finding the optimal solution, the objective of the heuris-
tic techniques is to rapidly get one or several solutions of a problem, with no guaranty to get an
optimal solution, or to get any proof of infeasibility

Greedy, one of the simplest algorithms, executes a greedy search beginning at a random
point. Then, it makes small changes to the position and keep only improving movements.
Yet, this method has the disadvantage of often stacking at local optima. This algorithm can be
summarised as follows:

x←Initial solution
N ←Number of iterations
while n ≤N do

x′ ←solution in the neighbourhood of x
if f(x′) ≤ f(x) then

x← x′

Other evolutionary-based techniques mimic and emulate natural processes of the real world,
like genetic algorithms, particle swarm or simulated annealing, among others.

II.3.2.1 Genetic algorithms

Genetic algorithms emulate the laws of natural selection described by Charles Darwin: survival
of the fittest by mutation, crossover and selection (Holland, 1992).

The basic concept is to produce a population of individuals and store the information about
them in the form of chromosomes (typically an array of character strings). The chromosomes
evolves using mutation and crossover and the best individuals are finally selected. The pseudo-
code is as follows (Weise, 2009):

Initial population of random individuals
N ←Number of iterations
while n ≤N do

Evaluation. Compute the objective values of the solution candidates
Fitness assignment. Use the objective values to determine fitness values
Selection. Select the fittest individuals for reproduction
Reproduction. Create new individuals by crossover and mutation

II.3.2.2 Particle swarm

The swarm behaviour of animals like fish and birds inspired the trajectory-based approach known
as particle swarm (Kennedy & Eberhart, 1995). Adjusting the trajectory of individual solutions
known as particles, the algorithm searches the space of the objective function. A particle’s trajec-
tory evolves by adding a velocity vector (−→v i) to the position vector (−→x i) of the particle. At every
iteration two solutions are updated and saved:

• −→x ∗
i is the best historical solution of each particle i

• −→g ∗ is the best historical solution for the entire swarm

There are three potential drivers that guide the evolution of every particle. A particle can be
attracted to g∗ and attracted to x∗i together with some random movements. This is reflected in the
way how the velocity vector is updated at every iteration:
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−→v i ← −→v i + αϵ1(
−→g ∗ −−→x i) + βϵ2(

−→x ∗
i −−→x i), (II.4)

where ϵ1 and ϵ2 are random values, and α and β are weighting factors that indicate the magnitude
of the acceleration towards the global best (−→g ∗) or the current own personal best (−→x ∗

i ), respec-
tively.

The particle swarm algorithm can be summarised as:

Define the number of particles, I , in the swarm
Initialise the position −→x i and velocity −→v i of each particle in the swarm (∀i ∈ I)
Initialise −→x ∗

i ←
−→x i

Initialise −→g ∗ ← −→x i

N ←Number of iterations
while n ≤N do

while i ≤ I do
Calculate new velocity −→v i

Calculate new position −→x i ← −→x i +
−→v i

Evaluate the cost of the particle f(−→x i) at the new position
if f(−→x i) ≤ f(−→x ∗

i ) then
−→x ∗

i ←
−→x i

if f(−→x i) ≤ f(−→g ∗) then
−→g ∗ ← −→x i

II.3.2.3 Simulated annealing

The simulated annealing method is inspired by the metal’s annealing process during which it
cools and crystallises with low energy and big crystals Kirkpatrick et al. (1983). The molecular
structure of a material becomes weaker when the material is heated and is more prone to change.
When a substance cools down, its molecular structure becomes rigid and less prone to transfor-
mation. The fundamental concept is to employ a random search technique that not only selects
better solutions but also retains worse ones within an arbitrary probability p. This probability or
Boltzmann probability factor is defined as:

p = exp

[
− ∆E

kBT

]
, (II.5)

where T is the temperature of the system, kB is the Boltzmann’s constant and ∆E is the change in
the energy of the system. The change of energy ∆E can be interpreted as function of the change
in the objective function between two solutions, x and x∗, as follows:

∆E = γ(f(x∗)− f(x)), (II.6)

where γ is a constant that typically can be set equal to kB . Hence, the probability factor of the
simulated annealing method is:

p = exp

[
−f(x

∗)− f(x)
T

]
. (II.7)

The pseudo-code for the simulated annealing method is described in detail below:

T ← Initial temperature
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Tmin ← Final temperature
α← Cooling rate
x← Initial random solution
while T > Tmin do

f(x)← Objective function of solution x
x∗ ← x+ ϵ (random change)
f(x∗)← Objective function of solution x∗

if f(x∗) < f(x) then
x← x∗

else
if p > rand() then

x← x∗

T ← αT





III
Capacity management

This chapter is focused on the management of the airspace capacity. The capacity resources are de-
ployed and adapted to the expected demand aiming at minimising the impact on the demand side
(in terms of delay allocation). In this context, two SESAR solutions have been studied in the liter-
ature, i.e. Dynamic Airspace Configurations (DAC) and Flight Centric Air Traffic Control (FCA),
but not the integration of both concepts. Hence, the main objective of this chapter is to present
the validation of the holistic integration of the DAC and FCA capacity management solutions pro-
posed in the SESAR exploratory research project COTTON1, to derive potential benefits in terms
of capacity and cost-efficiency improvements in comparison with the deployment of only one ca-
pacity management solution separately. A novel delineation method for dividing the airspace in
DAC and FCA aereas is presented and the current DAC and FCA models are improved with the
introduction of complexity (instead of entry counts or occupancy) as a metric for measuring the
traffic load.

Summarising, the contributions of this chapter are: 1) a novel delineation method to identify
when/where DAC and FCA shall be applied; 2) the introduction of complexity in the DAC and
FCA processess; and 3) a validation assessment of the benefits of the integration of DAC/FCA
solutions.

Note that this chapter deals only with the capacity management and the demand is regu-
lated through the allocation of delays (after the capacity decisions are taken). Thus, no alternative
trajectories neither holistic integration between demand and capacity are taken into account.

1Capacity optimisation in trajectory-based operations

23
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III.1 Integration of DAC and FCA

The main motivation for integrating DAC/FCA is that both DAC and FCA operations deployed
separately are better adapted to different operational environments. Therefore, the ideal way to
achieve high performance and continuous optimal use of the resources (airspace and Air Traffic
Controller Officers (ATCOs)) is to combine, harmonise and eventually fully integrate them.

The initial trigger for this approach is the fact that FCA operations are proven to provide high
performance until a certain level of demand complexity in a subject airspace is reached (Martins
et al., 2019). Beyond this level, FCA mode of operations becomes impracticable. The main reason
lies in the way the Air Traffic Control (ATC) service is provided in FCA (i.e. sectorless Controller
Working Positions (CWPs)). When the complexity is high, some situation awareness limitations
and a high increment in the number of internal coordination arise, which leads to a potential
decrease of safety and an exponential increment of workload.

On top of that, a DAC/FCA integrated environment would require design criteria based on
complexity assessment to decide, monitor and refine the airspace boundaries delineating DAC
and FCA areas. The design of such boundaries is based on DAC airspace design components,
which can be building blocks or shareable blocks. The main difference between them is that a
shareable block cannot be operated as an ATC sector by itself and needs to be collapsed with one
or more building blocks. Building blocks can also be collapsed in order to create bigger collapsed
sectors. As illustrated in Figure III-1(a), vertical delineation of DAC and FCA boundaries can be
assessed through the analysis of complexity of the 5 vertical layers and then through the com-
plexity assessment of individual building and shareable blocks. The resulting delineation is then
illustrated in Figure III-1(b).

(a) Design principles of airspace components in DAC concept

(b) DAC/FCA modes delineation based on complexity assessment of DAC airspace compo-
nents

Figure III-1: Delineation process example

Two delineation modes supported by complexity assessment are proposed:

• Static DAC/FCA. It consists in the identification of one single altitude boundary above
which FCA can be applied along the day such that the demand complexity in the FCA area
remains lower than a maximum acceptable value. Static DAC/FCA boundary is identified
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through the analysis of complexity generated at each vertical layer of the airspace. The
highest layer with complexity higher than the limit defines the boundary between FCA and
DAC.

• Dynamic DAC/FCA. It consists in identifying variable DAC/FCA altitude boundaries per
time period depending on the complexity of altitude layers along the day.

Although the application of the presented study is illustrated on the pre-tactical phase, the
proposed methodology is applicable in all the ATM layered planning.

III.2 Methodology

This section aims at presenting the used methodology for the DAC/FCA integration.

III.2.1 Use of expert advise

In this study, some decisions are taken and many parameters are calibrated by the assignment of
specific values which are justified with expert judgement. During the COTTON project, several
workshop sessions were conducted with ATC controllers and people experienced in the Network
Manager (NM) operations. Questions and results were presented to the experts and the collected
feedback was used for the calibration of the different parameters related with the complexity met-
ric, the different defined thresholds and the setup of the algorithms.

III.2.2 Introduction of complexity

An adaptation of the existing Geometrical complexity metric is used in this study. The Geometrical
complexity metric proposed in Delahaye & Puechmorel (2000); Vidosavljevic et al. (2017) provides
’null’ complexity in traffic situations diverging and widely distributed regardless of the number of
flights involved. Based on expert judgment and simulation tests, even in such ’simple’ situations
there is ATCO workload linked to the monitoring task, that is a linear function of the number of
flights in the controlled area. The mathematical model used to calculate the complexity in a CWP
is given by the following expression:

C = mN +

N∑
i=1

(1 + δi)(1 + λi)

N∑
j=1\{i}

Cvije
−αd2ij , (III.1)

where N is the number of flights in the sector and Cvij is the geometrical complexity that aircraft
j produces on aircraft i, which is modulated in order to consider the vertical evolution of flights
with λi, the proximity with the sector boundary using δi and the aircraft proximity with α. Finally,
the monitoring load is added troughm .This complexity metric provides only a numeric value and
no unit is considered.

The parameter values (i.e. m, δ, λ, α) could only be determined with an extensive study , that
is beyond the scope of this PhD. The calibration parameters are selected based on expert judgment
and small real-time simulation tests.

III.2.3 Complexity threshold identification

Since the complexity metric used in the analysis is a new metric, no threshold had been previously
defined. The approach used to find out this threshold was focused on the the analysis of historical



26 Chapter III - Capacity management

regulations, where the reason was the lack of ATC capacity. For this analysis, the Aeronautical
Information Regulation and Control (AIRAC) 1808 was used containing 48 regulations of this
type over the Hungarian airspace, and 34 of them were used in this study. The remaining ones
were excluded because they started the day before or ended the day after, or because they were
applied in more than one period of time.

The hypothesis in this analysis was that whenever a regulation is triggered there is necessar-
ily a capacity issue, i.e. the traffic complexity should be greater than the capacity threshold. After
the regulation is applied, the complexity value should be under the threshold.

(a) Complexity before the regulation

(b) Complexity after the regulation

Figure III-2: Empirical assessment to identify complexity threshold for sustained overload, ex-
ample for LHCCENH

Figure III-2(a) shows the complexity of the sector LHCCENH before the regulation where
some peaks can be seen above the red line representing the threhold. After applying the reg-
ulation, that is Figure III-2(b), the complexity during the regulation period is always below the
threshold (red line). Based on this assessment on all workable sectors, the threshold was com-
puted to be 50 for sustained overloads, and 80 for peak overloads.

FCA is not applied in real operation, so the same approach could not be performed. Thus,
based on the experience and knowledge obtained in SESAR PJ10-01b Consortium (2019), it is
assumed that the threshold for FCA will be a little bit lower than for DAC, because of the nature
of the concept. Firstly, because in FCA there is only 1 controller per CWP whereas in DAC there
are 2 per CWP. Secondly, due to the higher coordination required between different CWP sharing
the same airspace. According to these reasons, and based on operational expert judgement, the
complexity threshold for overloads in FCA has been established at 40, which is 20% less than in
DAC.

III.2.4 Overload and underload detection process

For DAC operations two different types of overload have been considered:
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• Sustained overload: the complexity is above the sustained overload threshold during a sus-
tained period of time longer than the sustained duration threshold.

• Peak overload: the complexity is above the peak overload threshold during a short period
of time, but longer than the peak duration threshold.

It is important to note that if the demand is above the capacity but that lasts less than the
duration threshold, the overload is not considered. Hence, there is a threshold for the capacity
value and another for the duration. A similar approach is followed for detecting underloads.
Nevertheless, only sustained underloads are considered.

For FCA, the process considers only sustained overloads and sustained underloads.

III.2.5 Airspace delineation process

The DAC/FCA airspace delineation aims at defining the boundary between the DAC and FCA
ares and it is based on a complexity assessment following a top-down approach from the highest
level point of view showing the total complexity of the ACC compared to occupancy to the ele-
mentary sector level to show which portions of the airspace and time periods are more critical. The
aim is to foster a global understanding of the complexity metric, assess how it resembles and/or
differs from occupancy, identify what regions of the airspace contribute more to the complexity
and what times of the day are more critical. The methodology of such delineation process can be
summarised in four steps:

• Step 1: assessment of instantaneous complexity at Area Control Center (ACC) level. It allows
to identify the preliminary time periods when the workload will be high. In addition, the
comparison of the complexity values with occupancy allows to identify if the workload is
generated due to the high number of flights or due to the geometric issues consequence of
the traffic flows.

• Step 2: assessment of aggregated complexity per vertical layer. The airspace can be di-
vided vertically in different layers in order to identify vertical portions of airspace where
the complexity is higher. The comparison between entry counts and complexity is always
recommended since it provides added information about the major source of complexity.

• Step 3: assessment of instantaneous complexity per vertical layer. This step allows to iden-
tify the temporal evolution of the complexity per vertical layer and offers a better view to
define a dynamic boundary between the DAC and FCA areas.

• Step 4: assessment of instantaneous complexity at elementary sector. The study of the com-
plexity at a lower level allows to refine the outputs of previous steps and clearly identify the
portions of airspace where the complexity is high.

Following this top-down approach together with the support of expert judgement allows to
identify when and where DAC and FCA could be deployed respectively.

III.2.6 DAC algorithm

The sector configuration optimisation algorithm aims at balancing demand and capacity dynam-
ically inside the DAC area and it is based on the Improved Configuration Optimizer (ICO) de-
veloped and refined by the EUROCONTROL Experimental Centre (Verlhac, C. and Manchon, S.,
2005). It internally runs a branch and bound algorithm aiming at finding the best sector opening
scheme that satisfies the following multiobjetive criteria:
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1. Minimises the overloads and underloads.

2. Minimises the number of controllers.

3. Maximises the overload and underload balance between sectors.

4. Minimises the number of sector changes.

This algorithm evaluates the demand and the capacity using the complexity metric intro-
duced in Section III.2.2, while the overload and underload detection is done using the approach
explained in Section III.2.4. The optimisation process is also dependant on the following set up
parameters: 1) minimum opening duration of a configuration; 2) minimum opening duration of
a sector; 3) maximum difference in number of sectors between consecutive configurations; and 4)
minimum opening duration of a dynamic airspace configuration.

This last point requires an explanation in order to clarify the concept of dynamic airspace
configuration. There may be some configurations where the only difference among them is where
the shareable blocks are located. In this situation, a change of configuration is less intrusive for
the controllers and more flexibility can be given to the optimisation process.

III.2.7 FCA algorithm

In order to determine the number of CWPs required for the FCA area in the pre-tactical phase,
the FCA algorithm allocates trajectories entering the FCA area to the CWPs with the support of
the complexity metric presented in Section III.2.2. First, complexity is assessed for each trajectory
crossing the FCA airspace. Complexity at CWP level is computed by the sum of the complexity
that the controller already has when the flight enters the FCA area plus what this particular flight
would add to it. Then, based on this complexity assessment principle, the algorithm allocates the
trajectories to the controllers so that complexity is evenly distributed among the CWPs along the
day of operations.

Although the flight allocation algorithm does not provide a global optimal solution, it aims
at:

• Minimising the overloads and underloads.

• Minimising the number of CWPs.

• Balancing the workload of the CWPs.

In the proposed approach, flight reallocation is not considered. Hence, once a trajectory is
allocated, it will be controlled by the same CWP before leaving the FCA area. In addition, when
a CWP is identified to be closed (because of low traffic demand), it remains open until all flights
controlled have left the FCA area.

III.3 Validation case study

In order to analyse the performance of integrated DAC/FCA and compare it with DAC and FCA
implemented separately, a case study of 24 hours of traffic over the Hungarian airspace (LHCC-
CTA) is proposed because it is representative of any airspace with high complexity values. The
day of the study is the 29th of July of 2018 and the traffic sample obtained from the EUROCON-
TROL’s Demand Data Repository 2 (DDR2) database contains 3,046 flights crossing the considered
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Table III-1: Parameters for the DAC and FCA optimisation strategies
DAC mode

Minimum opening duration of a configuration 30 minutes
Minimum opening duration of sectors 30 minutes
Limit steps of the number of sectors when there
is a configuration change

2 sectors

Minimum duration for dynamic airspace configuration 15 minutes
FCA mode

Minimum opening duration of a CWP 30 minutes
Flight reallocation between openened CWPs NO

ACC. Both DAC and FCA algorithms are simulated using the the R-NEST suite EUROCONTROL
(2020b) from EUROCONTROL. This validation exercise was done in the scope of the Capacity
optimisation in trajectory-based operations (COTTON) project and more detailed information can
be found in COTTON Consortium (2019).

III.3.1 DAC and FCA setup

The DAC process requires to be calibrated fixing some operating values agreed and validated to-
gether with EUROCONTROL and Hungarocontrol experts. In this sense, the minimum operating
duration of a configuration is limited to 30 minutes. However, a smaller duration of 15 minutes is
allowed when the change from one configuration to the next one is affecting only to the shareable
blocks. In other words, the exchange of shareable blocks between different building blocks is al-
lowed every 15 minutes. In addition, another limitation related with consecutive configurations
is the difference in the number of sectors. This value is fixed to 2 sectors, avoiding big configura-
tion changes ensuring the traffic situation awareness and safety from the controller point of view.
Moreover, the minimum operating duration of a sector is limited to 30 minutes.

Regarding the FCA algorithm, it also requires some operational constraints. Since there are
no configurations neither sectors in FCA, the minimum operating duration is applied directly
to the CWPs, limited to 30 minutes. All these constraints for the DAC and FCA algorithms are
summarised in Table III-1.

Focusing on the complexity, the equation (III.1) has been calibrated using the following pa-
rameters:

• Monitoring complexity is m = 0.5.

• λ = 0.25 for climb and λ = 0.15 for descent.

• γ = 0.3 at the border (distance = 0 NM) linearly decreasing to 0 at the distance = 10 NM.

• α = 1.7.

The DAC and FCA overload and underload thresholds are summarised in Table III-2.

III.3.2 Definition of scenarios

Three scenarios are defined:

• Scenario 1: full DAC. All the Hungarian airspace is operated under DAC ATC rules.
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Table III-2: Parameters for overloads and underloads
Variable DAC mode FCA mode
Complexity sustained overload threshold 50 40
Complexity sustained overload duration 7 minutes 4 minutes
Complexity peak overload threshold 80 N/A
Complexity peak overload duration 3 minutes N/A
Complexity underload threshold 15 15
Minimum complexity underload duration 7 minutes 4 minutes

• Scenario 2: FCA/DAC static. The Hungarian airspace is statically divided in one part oper-
ated with DAC rules and another under the FCA paradigm. This scenario is designated as
"static" because the boundary between the DAC and FCA airspace does not change during
the day. This is equivalent to consider that FCA is deployed alone since it is impossible to
use FCA in the full airspace.

• Scenario 3: FCA/DAC dynamic. The boundary between the DAC and FCA areas is dynam-
ically adapted accordingly with the characteristics of the traffic demand.

It is worth noting that the definition of the DAC/FCA boundaries in scenarios 2 and 3 is
result of the delineation process introduced in section III.2.5. Next section is devoted to deeply
explain this process for the day of simulation.

III.3.3 Delineation of DAC and FCA areas

The delineation process for identifying when and where DAC and FCA can be applied introduced
in section III.2.5 is divided in several steps. For this case study the steps are:

• Step 1: assessment of instantaneous daily complexity at ACC level. In this case the ACC is
the Hungarian airspace denoted by LHCCCTA and the instantaneous complexity registered
along the day can be showed in Figure III-3(a). One can identify periods with low complexity
at the early morning and late evening periods, as well as high complexity values in the
middle of the day. By comparing the complexity with the occupancy showed in Figure
III-3(b), a similar envelope between them is identified because the monitoring complexity
has a big contribution. However, there are mismatches in some moments reflecting that
the geometry of the traffic demand is so complex in these situations, what may create high
workload periods to the controllers.

• Step 2: assessment of aggregated complexity per vertical layer. From Figure III-4(a) it can be
observed that [FL365 to FL375], [FL345 to FL355] and [FL305 to FL345] are the most complex
layers, with nearly 20% of the total each. For FL305 to FL345, this could be explained with
a high percentage of evolving flights that climb or descend to their corresponding en-route
flight levels because they are in a transition zone between the Lower Airspace and the Upper
(see Figure III-4(b)). Yet, it stands out that FL365 to FL375 is so complex, when most of the
traffic is en-route and flights are in cruise. This demonstrates why in the Hungarian Airspace
these flight levels are crucial and deserve special attention in terms of ATC. As a result of
this assessment, the study considers that FL375 is a good flight level to divide airspace in
static DAC/FCA. FCA will handle 9%+14% = 23% of the total complexity, while DAC takes
airspace below FL375 which accounts for 77% of the total complexity, as it is more adequate
to this kind of traffic, with more complex trajectories, flight level changes, etc.

• Step 3: assessment of instantaneous complexity per vertical layer. Figure III-5 shows how
the vertical layers are contributing in terms of complexity during the day. The dark blue
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(a) Complexity

(b) Occupancy

Figure III-3: Demand of the ACC LHCCCTA

strip corresponding to Flight Levels FL365 to FL375 has a big contribution (as seen in Fig-
ure III-4(a)), also containing the most of the peaks. The valuable information to derive
from this graph are the allocation periods for DAC or FCA areas in the integrated and dy-
namic DAC/FCA concept based on operational expert judgement from EUROCONTROL
and Hungarian Airspace (HungaroControl). The following delineation according to com-
plexity evolution and peaks is proposed:

– From 0:00h to 3.00h: Only FCA in the airspace, since complexity is low (lower than 40
which is the complexity threshold for FCA).

– At 3.00h: following the first peak greater than 40 and 50 which are the complexity
thresholds for FCA and DAC respectively, open DAC from FL095 to FL305.

– At 5.00h: There is a peak above 100 and in general complexity is growing, so to extend
DAC to FL345.

– At 8.00h: there are peaks of 200-250 in order of magnitude, and complexity brought
by FL365 and FL375 is already important, so DAC is extended to FL375. There is a
complexity drop between 12.00h and 14.00h, but it was decided to maintain the airspace
allocation because later the traffic is again intense until 16.00h.

– At 16.00h: After 16.00h the average complexity is dropping, although at 19.00h there is
a great peak, so DAC is lowered to FL345.

– At 19.00h: After the peak at 19.00h, complexity is always below 200 and thus, DAC is
lowered to FL305.

– At 23.00h: Complexity will decrease to 50 and below until midnight, so again full FCA
is applied.
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(a) Complexity

(b) Entry counts

Figure III-4: Demand per vertical layers

• Step 4: assessment of instantaneous complexity at elementary sectors. Complementing the
high-level assessment, the analysis of data at elementary sector level was performed, for the
15 elementary sectors of the LHCCCTA airspace, confirming the decisions taken in the pre-
vious step. For example, Figure III-6 shows the instantaneous complexity of the elementary
sector LHCCWESTH (FL365 to FL385).

Figure III-5: Instantaneous complexity per flight level division

The result of applying this delineation process is presented in Figure III-7.

III.3.4 Results: Capacity analysis

In this study, the total overload and underload sums are used as capacity Performance Indicators
(PIs). On the one hand, the overloads are the periods where the demand is above the capacity
threshold of a sector, while the underloads, represent periods where more aircraft could be han-
dled. The overload and underload sums are, respectively, the aggregation of all overloads and
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Figure III-6: Example of instantaneous complexity in the elementary sector LHCCWESTH

(a) Scenario 1: DAC (b) Scenario 2: static DAC/FCA

(c) Scenario 3: dynamic DAC/FCA

Figure III-7: Resulting airspace delineation for the three scenarios assessed

underloads among all open sectors and periods.

The overload sum observed in Figure III-8(a) shows that DAC/FCA both static and dynamic
processes outperform DAC alone, reducing the overloads significantly, 33% and 47% respectively.
These reductions are significant and demonstrate that capacity planning can be improved with
the use of integrated DAC/FCA mode. A possible explanation is that since FCA does not make
use of the trajectory reallocation, the algorithm opens a new CWP when foresees an increased
complexity period (and new trajectories are arriving). This reasoning is also consistent with the
fact that there is a big number of underloads (see Figure III-8(b)) for FCA in Scenario 2 DAC/FCA
static, since it takes some time to close the active CWPs that were decided to be closed but still have
few aircraft in the area and, thus, are really underloaded. In other words, instead of reallocating
those few flights to other CWPs, there is a lapse of time where too many CWPs are opened and
many underloads are accounted.

The integrated and dynamic DAC/FCA offers even more flexibility, hence, results are even
better in terms of overloads (there are less overall although more in FCA region, obviously because
it is taking more airspace along the day) and underloads (there are less overall) meaning that the
capacity is better balanced.
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III.3.5 Results: Cost-effectiveness analysis

The cost-effectiveness indicators compared are Control Working Position Hours, as a measure of
what are the resources needed to handle the demand with the particular airspace configuration.
If more CWPs hours are needed, this implies the Air Navigation Service Provider (ANSP) would
need more ATCOs on duty, thus increasing costs associated to ATCO salaries. A reduction of
CWPs would mean that scenario is more efficiently prepared and ANSP can control the same
flight hours with less cost.

Figure III-8(c) depicts the comparison of the CWP hours for the three scenarios. Results show
an increment of controlling hours when the static DAC/FCA is applied. It can be explained due to
the static FL of the DAC/FCA boundary. If complexity is concentrated in the FCA area, additional
controllers would be needed to manage the complexity which may have been better dealt with in
a DAC scenario whereby 2 controllers could have opened a sector to manage this complex area
which would be more efficient than FCA. In addition, because of the FCA trajectory allocation
algorithm does not include a reallocation mechanism of trajectories, some CWPs are underloaded
during some periods of the day. Looking at the dynamic DAC/FCA scenario a reduction of the
controlling hours is obtained, even with lack of reallocation in the FCA algorithm which confirms
that the use of DAC mode in some complex areas/periods would be more efficient than FCA
mode.

(a) Overloads (b) Underloads

(c) Controlling hours

Figure III-8: Capacity and cost-effectiveness indicators for all the scenarios
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III.4 Discussion on holistic DAC/FCA

Although the combination of DAC/FCA looks like very promising with some benefits in terms of
capacity and cost-effectiveness, some operational consideration must be taken into account:

• The cost of changing the DAC/FCA airspace delineation has not been considered in this
study and it may have an impact in the cost-effectiveness analysis.

• These results shows that the dynamic DAC/FCA scenario is very promising from the cost-
effectiveness point of view. However, to achieve the potential benefit especially in longer
term, it is very important to introduce more sophisticated Human Resource Planning tools
(adapted to this new concept) in order translate the reduction in controlling hours in eco-
nomic savings.

• The FCA allocation algorithms are very simple nowadays and must be improved in the
future. Since the situation awareness of the FCA controlling working position is limited, the
flight allocation algorithm shall group the flights involved in potential separation issues into
the same CWP.

• The FCA concept by itself was criticised by controllers when the study exposed in this chap-
ter was presented in a workshop during the 9th Single European Sky ATM Research (SESAR)
Innovation Days hosted in Athens. Again the FCA situation awareness was questioned.

• A more recent study Capiot et al. (2022) analysed the FCA concept on non-nominal condi-
tion (emergency decompression, radio failure and thunderstorms). Regarding the situation
awareness, controllers reported that in some situations they were overwhelmed and further
improvements were identified in this domain.

For all these reasons, the FCA solution is not longer explored in this PhD since it is not consid-
ered to be mature enough at the moment this dissertation is written. Hence, DAC will be consid-
ered as main capacity management initiative when deployed together with demand management
initiatives in the holistic Demand and Capacity Balancing (DCB) models that are proposed in this
PhD.





IV
ATFCM concept of operations and

general mathematical formulation for
holistic DCB

As stated before, one of the main objectives of this thesis is to improve the state-of-the-art Air Traf-
fic Flow and Capacity Management (ATFCM) models, in order to better integrate the functions of
the Network Manager (NM) and Air Navigation Service Providers (ANSPs) when dealing with
demand and capacity imbalances, while considering (to some extent) the preferences of the AUs
by means of alternative trajectories. This approach requires to introduce some changes in the
concept of operations currently implemented by the Network Manager. Hence, this chapter is
devoted to explain this new (or modified) concept of operations for ATFCM, including the new
roles proposed for the involved stakeholders, along with the different interactions and processes
needed to solve the Demand and Capacity Balancing (DCB) problem. Furthermore, this chap-
ter introduces the mathematical formulation that will be required to formalise the different DCB
Models presented in the following chapters.

IV.1 Proposed demand and capacity balancing concept

The concept of operations proposed in this PhD represents a significant paradigm shift since the
NM will also decide which sectorisations shall be used in the airspace under its responsibility.
Thus, demand and capacity are both responsibility of the NM and considered in a single mathe-
matical optimisation problem (ı.e., holistic DCB).

37
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Figure IV-1: Framework of the proposed concept of operations.

Figure IV-1 presents the framework proposed, identifying the 3 main stakeholders and the
interactions among them. The process starts when the Airspace Users (AUs) share their initial
flight plans, which basically represent their original preferences. This initial demand is collected
by the NM, as in current operations. At the same time, this initial demand information is shared
with the ANSPs, who act as capacity enablers. Note that in this framework "capacity enablers" is
used instead of "capacity providers", since in the proposed concept of operations the contribution
of the ANSPs in capacity management is to provide the capacity elements options in terms of
airspace configurations, operating sectors or elementary sectors, but not deciding which operating
sectors should be implemented.

With the initial demand and capacity elements options, the NM can preliminary identify
where and when the demand may be above the capacity (i.e. hotspots). Then, the NM identifies
which flights are crossing a hotspot and provides geographical and temporal information of the
hotspot to the concerned AUs. This information is then used by the AUs to provide (if they want)
new trajectories avoiding the hotspots for the concerned flights. Note that in case the AUs reject
the possibility of providing alternative trajectories, they are restricting the NM to allocate them
only delay what may lead to an unfavorable solutions for the AUs. These new trajectories are
added as alternatives to the trajectory initially submitted by the AUs, which is still considered by
the NM. At the end of the process, the AUs will have disposed the initial trajectories as well as
different alternative trajectories for all (or some) concerned flights.

The ANSPs will provide the capacity elements together with the costs incurred when pro-
viding Air Traffic Services (ATS) for the different airspace configurations. The same assumption
does not hold for the AUs, which are typically very reluctant to disclose their cost models due to
business privacy. For this reason, in this proposed concept of operations it is assumed that the NM
estimates the cost of the initial, as well as the alternative trajectories. This fact would also avoid
some “cheating” mechanism that airlines may use if they would report the costs of their flights
(for example, they could report more expensive costs in order be prioritised). It is worth noting,
however, that all models presented in this PhD are still valid (and would be even more precise) if
the AUs would provide their real costs rather than being estimated by the NM.

All models presented in this PhD aim at providing the system-wide optimum solution in
terms of cost, considering both the AUs and the ANSPs associated costs. With all the available
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trajectories (and their estimated costs) and all the capacity options (and their reported costs), the
NM solves a global optimisation problem to decide which trajectory will finally be used for each
flight; how much delay will be allocated (if any); and which operating sectors will be used by
the ANSPs at every period of time. As explained above, this decision is taken considering a
minimisation of a network-wide cost function.

This mechanism is fully aligned with the latest SESAR concept of operations (SESAR PJ19
Consortium, 2019), which aims at restricting AUs demand as less as possible, shifting capacity
where demand is needed (instead of restricting demand when capacity is scarce). In particular,
the Dynamic Airspace Configurations (DAC) and the advanced DCB solutions (studied in projects
PJ08 (SESAR PJ08 Consortium, 2019) and PJ09 (SESAR PJ09 Consortium, 2019), respectively) are
considered integrated into a single optimisation problem.

It is expected that the concept of operations provided in this PhD will provide more flexibility
to the AUs through the possibility to submit alternative trajectories, and the role of "capacity
provider" is shared between the different ANSPs under the umbrella of the same NM. While the
ANSP provide the capacity options and ATS, is the NM who finally decides how the capacity will
be provided considering the global picture of the network as a whole.

IV.2 Problem definition

The DCB problem addressed in this PhD consists of finding an optimal combination of airspace
sectorisations and trajectory/delay allocation that minimises the total cost of the system as a whole
(considering the cost of the different sectorisations and the cost of the flights), while keeping de-
mand below the capacity.

One of the contributions of this PhD is the introduction of complexity as metric for demand
and capacity together with the use of different levels of DAC for the capacity management. The
choice of the airspace sectorisation (capacity management) depends on the level at which capacity
management is performed. In this PhD, four different levels are considered and outlined in Table
I-1. Along with a reference model that is not using complexity but entry counts, this leads to the
five different DCB models considered in this PhD:

• Demand management only

Model 0: fixed opening schemes with entry counts at Traffic Volume (TV) level.

Model I: fixed opening schemes with complexity metric.

• Holistic demand and capacity management with complexity metric

Model II: with a given set of configurations among which the active one should be
chosen for each time period.

Model III: with a given set of operating sectors. Flexible configurations can be done
combining the existing operating sectors.

Model IV: with a fixed set of elementary sectors. The elementary sectors can be col-
lapsed in order to create new collapsed sectors. Then, the elementary and collapsed sectors
are grouped in sectorisations for each time period.
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IV.3 DCB mathematical formulation

Firstly, the mathematical sets that will be used across all proposed the models of this PhD are
defined:

F Set of flights
T Set of instants of time
P Set of periods of time
T p ⊂ T Set of instants of times in the period p,∀p ∈ P
T v
k ⊂ T Set of instants of times when trajectory k can potentially arrive at the traffic volume v,

∀k ∈ K, ∀v ∈ V
K Set of all trajectories
Kf ⊂ K Set of trajectories for flight f, ∀f ∈ F
V Set of traffic volumes
Vk Set of traffic volumes that the trajectory k crosses
SE Set of elementary sectors
SC Set of collapsed sectors
S = SE ∪ SC Set of operating sectors
Λ Set of configurations
Λs Set of configurations that contain the operating sector s, ∀s ∈ S
Es Set of elementary sectors in operating sector s, ∀s ∈ S
SsE Set of operating sectors that contains the elementary sector sE ,∀sE ∈ SE

Spa Set of active operating sectors during the period p,∀p ∈ P

It should be noted that not all sets are used in all models since some of them are applicable
depending on the capacity management level. The different particularities will be given in the
specific sections defining each model.

Besides sets, the following parameters are also defined:

T v
k First instant of time when the trajectory k can arrive at traffic volume v
T v

k Last instant of time when the trajectory k can arrive at traffic volume v
Jk Total cost of trajectory k, ∀k ∈ K
JFk

Cost of fuel of trajectory k, ∀k ∈ K
JDk

Cost of arrival delay of trajectory k, ∀k ∈ K
JTk

Cost of trip time of trajectory k, ∀k ∈ K
Rk Cost of route charges for trajectory k, ∀k ∈ K
J̄k Cost of the initial submitted trajectory of the flight associated with

trajectory k, ∀k ∈ K
J̄Fk

Cost of fuel of the initial submitted trajectory of the flight associated with
trajectory k, ∀k ∈ K

J̄Dk
Cost of arrival delay of the initial submitted trajectory of the flight associated with
trajectory k, ∀k ∈ K

J̄Tk
Cost of time of the initial submitted trajectory of the flight associated with
trajectory k, ∀k ∈ K

R̄k Cost of route charges of the initial submitted trajectory of the flight associated
with trajectory k, ∀k ∈ K

rvk Estimated time of arrival of trajectory k at traffic volume v, ∀k ∈ K,∀v ∈ V
v∗k The next traffic volume that the trajectory k crosses after v
Vk First traffic volume that the trajectory k crosses
Vk Last traffic volume that the trajectory k crosses
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αk Arrival delay unit cost for trajectory k, ∀k ∈ K
βk Fuel unit cost for trajectory k, ∀k ∈ K
Fk Trip fuel used in trajectory k, ∀k ∈ K
Tk Trip time of trajectory k, ∀k ∈ K
Dk Ground delay of trajectory k, ∀k ∈ K
T̄k Trip time of the initial submitted trajectory of the flight associated

with trajectory k, ∀k ∈ K
J̄k Cost of operating the initial submitted trajectory of the flight associated

with trajectory k, ∀k ∈ K
Ht,s Complexity threshold of sector s at time t, ∀t ∈ T , ∀s ∈ S
Hp,v Entry count threshold of traffic volume v during the period p, ∀v ∈ V , ∀p ∈ P
θp,s Cost of opening sector s during the period p, ∀p ∈ P , ∀s ∈ S
ρ Penalty cost of allocating one elementary sector to a different operating sector

As for sets, not all parameters are required in all models. In fact, some of them are decision
variables in some models. The particular details will be given in the specific section for each
model.

When using complexity metrics, choosing one alternative trajectory or just allocating delay to
some flights changes the traffic patterns and, consequently, the complexity of controlling the traffic
situation. Hence, the delay options for a trajectory are modelled as new alternative trajectories.

Thus, the demand management is reduced to the selection of a single trajectory among a set
of available options for each concerned flight. This is considered though the decision variable zk
defined as follows:

zk =

{
1, if trajectory k is chosen
0, otherwise

, ∀k ∈ K. (IV.1)

Aside from zk, more decision variables might be needed depending on the chosen model. These
will be introduced and described in the corresponding sections for each model separately.

IV.3.1 Time considerations

An important remark is required to clarify the difference between the sets T and P . The set T
contains instants of time and the set P contains periods of time. One period p ∈ P contains one or
more instants of times defined in T p.

During a period, the opening scheme does not change, so it can be understood as the mini-
mum amount of time that one configuration is open. Moreover, in Model 0, where traffic load is
evaluated in entry counts, the demand and capacity is balanced during the periods p ∈ P . In the
models with complexity metric (i.e. Models I, II, III and IV) the demand and capacity in the open
sectors is balanced at every instant of time t ∈ T .

IV.3.2 Cost function

All the models have the same cost function, which accounts, on the one hand, for the extra cost for
the AU when comparing the cost of the selected trajectory with the cost of the trajectory initially
planned (J∆A). On the other hand, the cost function also considers the capacity provision cost
for the ANSPs, based on the activation of certain sectors (JO). Additionally, differences in sector
configurations are penalised with an extra term JS , being represented as function of the number
of elementary sectors that change the operating sector in consecutive periods of time. This is done
in order to obtain smoother sector transitions. Mathematically, this cost function is expressed as
follows:
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J = J∆A + JO + JS , (IV.2)

where the extra cost for the AUs, J∆A, is:

J∆A =
∑
k∈K

(Jk − J̄k)zk, (IV.3)

being Jk the cost of trajectory k and J̄k the cost of the initial submitted trajectory of the flight
associated with trajectory k.

The cost for the ANSP due to the active sectors (JO) and the penalty cost explained above
(JS) have different definitions depending on the specific DCB model. Hence, they will be defined
in the dedicated section to each model.

It is worth noting that the cost of the trajectories (Jk and J̄k) is estimated by the NM (see
Section IV.1). In this PhD, this cost is estimated as follows: the cost of the trajectory k, Jk, could
be modelled taking into account the cost of fuel (JFk

), the extra cost due to arrival delay (JDk
), the

cost of the trip time (JTk
) and (if applicable) the route charges (Rk):

Jk = JFk
+ JDk

+ JTk
+Rk, ∀k ∈ K. (IV.4)

with,
JFk

= βkFk, ∀k ∈ K, (IV.5)

JDk
= αk(Tk − T̄k +Dk), ∀k ∈ K, (IV.6)

JTk
= βkCIkTk, ∀k ∈ K, (IV.7)

where αk is the arrival delay unit cost for trajectory k, βk is the fuel unit cost for trajectory k, CIk is
the cost index for trajectory k, Fk is the trip fuel used in trajectory k, Tk is the trip time of trajectory
k, T̄k is the trip time of the initial submitted trajectory of the flight associated with trajectory k and
Dk is the ground delay of trajectory k.

It is acknowledged that a network-wide cost minimisation does not guarantee a fair distri-
bution of the total cost on the individual airspace users in the obtained solution. Fairness aspects
for these type of problems have been widely studied in the literature (see for instance Barnhart
et al. (2012) and Bertsimas & Gupta (2016). Some ways to take into account fairness can be found
in Tosic & Babic (1995). The fairness, however, is out of the scope of the formulation presented in
this PhD.

IV.3.3 Complexity modeling

One of the contributions of this PhD is the introduction of complexity in the concept of operations
for ATFCM proposed in Section IV.1. Since in this work the choice of the particular trajectory a
flight will operate is part of the decision process, the sector complexity is not known in advance.
For this reason, the complexity has to be computed initially for all pairs of trajectories (indepen-
dently of whether they are finally selected in the solution or not). It is worth noting that this is
not a significant drawback since, even in the worst case, the complexity has to be computed |K|2
times (being K the set of trajectories), due to the assumptions listed below.

The models introduced in this thesis are not restricted to any particular complexity metric
and are valid for any complexity metric that satisfies the following conditions:

• The complexity induced by a pair of aircraft is independent for any surrounding traffic,
meaning that the complexity contribution of flight j to the flight i does not depend on other
flights.
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• The complexity metric at trajectory level is additive, hence, the complexity of one trajectory
is the addition of the contributions of all other trajectories to that one.

Note that these assumptions are not introduced in order to simplify the mathematical for-
mulation presented in this PhD. In fact, a large number of state-of-the-art complexity metrics (e.g.
cognitive complexity, trajectory based complexity, dynamic density or geometrical complexity,
among others) satisfy these conditions, as well as the current metrics used in operations (entry
or occupancy counts). For this reason, these assumptions allow to present formulations with the
highest level of granularity (from pairwise trajectory level to sector level), but without restricting
them to any particular complexity metric.

Moreover, the majority of those complexity metrics do not have a closed analytical formula-
tion. Due to this fact, in this PhD the complexity induced by any pair of aircraft is computed in
advance, and it is considered as an input data for the DCB models. This last premise requires that
delays are considered as new trajectories. This significantly increases the number of alternative
trajectories and hence the problem size (dependant on the discretisation step of the delay).

Since the DCB models presented in this PhD aim at balancing demand and capacity at the
different Air Traffic Control (ATC) sectors, this pre-computed complexity given per pairs of tra-
jectories needs to be aggregated at sector level. The following subsection describes in detail this
process.

IV.3.3.1 Complexity aggregation

As commented above, it is assumed that the complexity is given per pairs of trajectories. Let Ct
k,k′

be the complexity that trajectory k′ generates on trajectory k at time t. Since we assume that the
complexity is additive, the total complexity that all trajectories generate on trajectory k at time t
in sector s can be computed as:

Ct,s
Tk

=
∑
sE∈Es

B
t,sE
k

∑
k′∈K\{k}

Ct
k,k′zk′zk, ∀k ∈ K, ∀t ∈ T , ∀s ∈ S, (IV.8)

where B
t,sE
k is a binary incidence parameter that indicates whether the aircraft of trajectory k is

located in the elementary sector sE at the instant of time t:

B
t,sE
k =


1, if trajectory k is in the elementary

sector sE at the instant of time t
0, otherwise

∀k ∈ K,∀t ∈ T , ∀sE ∈ SE . (IV.9)

Note that Ct,s
Tk

will be zero when the aircraft that follows trajectory k is not in sector s at
the instant of time t. Yet, the complexity contribution of other trajectories k′ will be considered
regardless of whether they are crossing sector s or not at the instant of time t. This is especially
important when aircraft are close to the sector boundary, where potential interactions with aircraft
in adjacent sectors are more likely.

Furthermore, the contribution of zk in equation (IV.8) is to ensure that CT
t,s
k is null when

the trajectory k is not selected, while z′k avoids the addition of complexity contributions from
trajectories that are finally not selected either.

Finally, the complexity at sector s at time t is computed by the addition of the complexity
associated to all trajectories within it at that instant of time:

Ct,s
S =

∑
k∈K

CT
t,s
k , ∀t ∈ T , ∀s ∈ S. (IV.10)
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A simple illustrative example showing the computation of the complexity at sector level from
the complexity at trajectory level is provided in Annex A.

As stated before, the principal constraint in a DCB problem is to ensure that the traffic de-
mand is kept below the available capacity, Ht,s. Since this PhD considers complexity as main
capacity indicator, this is ensured by the following constraint:

Ct,s
S =

∑
k∈K

CT
t,s
k ≤ H

t,s, ∀s ∈ Spa , ∀p ∈ P, ∀t ∈ T p, (IV.11)

where Ht,s is the complexity threshold of sector s at the instant of time t. Spa is the set of active
sectors during the period p, P is the set of periods and T p is the set of instants of time in the period
p.

Note that the previous constraint is only applied to the sectors that are activated at each
instant of time t. This is considered through the set Spa when the sector opening scheme is fixed and
known (i.e. in Model I), but it is treated differently in the remaining models, where choice of active
sector is part of decision process. These differences are properly explained in the corresponding
DCB model sections.

IV.3.3.2 Linearisation

Equation (IV.8) and, as a consequence, the equations (IV.10) and (IV.11) are clearly non-linear,
but they can be reformulated in order to obtain linear expressions. The complexity contribution
of trajectory k to the sector s at time t, introduced in Equation (IV.8), takes the following values
depending on the zk:

CT
t,s
k =


∑

sE∈Es

B
t,sE
k

∑
k′∈K\{k}

Ct
k,k′zk′ , if zk = 1

0, if zk = 0
, ∀k ∈ K,∀t ∈ T ,∀s ∈ S. (IV.12)

Hence, it is modeled with new auxiliary decision variable, CT
∗t,s
k , which represents a chosen

value of complexity for the trajectory k in sector s at time instant t, whose value is bounded with
the following two constraints :

CT
∗t,s
k ≥ 0 , ∀k ∈ K,∀t ∈ T ,∀s ∈ S, (IV.13)

CT
∗t,s
k ≥

∑
sE∈Es

B
t,sE
k

∑
k′∈K\{k}

Ct
k,k′zk′ +M(zk − 1), ∀k ∈ K,∀t ∈ T ,∀s ∈ S, (IV.14)

where M is a new parameter that is greater than any possible value of CT
t,s
k . Therefore, depending

on the value of zk there are two options:

• Trajectory k is selected (zk = 1). The constraint defined in Equation (IV.14) is active and leads
to:

CT
∗t,s
k ≥

∑
sE∈Es

B
t,sE
k

∑
k′∈K\{k}

Ct
k,k′zk′ , ∀k ∈ K,∀t ∈ T ,∀s ∈ S. (IV.15)

• Trajectory k is not selected (zk = 0). Now, the constraint defined in Equation (IV.14) results
in:

CT
∗t,s
k ≥

∑
sE∈Es

B
t,sE
k

∑
k′∈K\{k}

Ct
k,k′zk′ −M, ∀k ∈ K, ∀t ∈ T , ∀s ∈ S, (IV.16)
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making it non-active since its right hand side takes zero or negative value due to the param-
eter M. Thus, only the non-negativity constraint defined in Equation (IV.13) is active.

Then, the constraint defined in Equation (IV.11) can be rewritten as:

∑
k∈K

C∗t,s
Tk
≤ Ht,s, ∀s ∈ Spa ,∀p ∈ P,∀t ∈ T p. (IV.17)

Note that CT
∗t,s
k represents an upper bound of CT

t,s
k , hence could take greater values than the

actual load. This does not, anyhow, affect the actual value of CT
t,s
k (neither optimal number of

active sectors), but guarantees that it will always be below the capacity threshold, as it can be seen
in the next expression:

Ct,s
S =

∑
k∈K

CT
t,s
k ≤

∑
k∈K

CT
∗t,s
k ≤ Ht,s, ∀s ∈ Spa ,∀p ∈ P, ∀t ∈ T p. (IV.18)

After solving the DCB problem, the actual values of CT
t,s
k can be easily computed through

the application of Equation (IV.8).

The following chapters explain the different DCB problems and their Mixed Integer Linear
Programming (MILP) formulations identifying all required decision variables, the particularities
of the objective function and the constraints. A simple example, which aims to verify the models
and their formulations is reported in Annex B. Chapter V introduces the demand management
models, i.e. Model 0 and Model I; and Chapter VI presents Models II, III and IV where the holistic
integration between demand and capacity management initiatives is deployed.





V
Demand management

This chapter aims at introducing the Demand and Capacity Balancing (DCB) models focused only
on the demand side. The sector opening scheme is fixed and the models presented lead at choosing
which trajectory will be flown per flight and how much delay is allocated.

Two subproblems have been investigated: Model 0, that uses entry counts on traffic volumes,
and Model I, that uses complexity in order to evaluate the demand and the capacity. Model 0 is
introduced as an intermediate step towards the use of complexity metrics in DCB.

V.1 Model 0: traffic volume approach

In current operations, a certain amount of capacity overloads are usually allowed for certain sec-
tors. Several reasons could explain this phenomenon: the lack of initial schedules for non-planed
flights, the use of entry rate for assessing the demand without considering the occupancy, a con-
servative way for estimating the capacity and the complexity of traffic patterns, etc. Although
some of the previous limitations can be solved by the introduction of complexity metrics, an in-
termediate step consists on changing the airspace unit used in the hotspot detection from sector
to Traffic Volume (TV).

A TV is related with a reference location, that can be a sector, a collapsed sector or an airport.
In addition, one TV is defined by a set of included and excluded flows, what can be understood
as a directional filter. For example, Fig. V-1 shows a sector with three major flows, A-E, B-D, and
C-F. It seems logical that the intersection between the flows A-E and B-D can create some capacity
constraint. Thus, a regulation over a TV related with this sector and including the flows A-E and
B-D and excluding C-F may be applied. Currently, the regulations in Europe are applied to TVs.

47
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Figure V-1: Illustrative example of traffic volume

Hence, the Model 0 evaluates the demand and capacity using entry counts on TVs (and not
at sector level) as directional traffic filters and not entry counts in the sector. This offers an inter-
mediate step towards the full usage of complexity metrics since the regulations can be deployed
only affecting the traffic flows that arguably create more traffic complexity.

This model disregards the capacity management since the opening scheme is given and the
only decision is on the demand side by choosing the trajectory and the amount of delay for each
flight. Note that in this case, since no complexity metric is used, trajectory and ground delay are
decoupled (meaning that the ground delay is not considered as new alternative trajectories).

The decision variables, objective function, and restrictions are all explained in the sections
that follow.

V.1.1 Decision variables

There are two decisions to be taken: 1) Which trajectory is used per each flight? 2) How much
delay is applied? These decisions are modelled with the following decision variables:

zk =

{
1, if trajectory k is chosen
0, otherwise

,∀k ∈ K, (V.1)

bt,vk =

{
1, if trajectory k arrives at traffic volume v by time t
0, otherwise

, ∀k ∈ K,∀t ∈ T ∪ {0},∀v ∈ V,

(V.2)

where K is the set of trajectories, T is the set of instants of time and V is the set of traffic volumes.
Note that, according to Bertsimas & Patterson (1998), the use of “by” time provides faster solution
time than “at” time. However, the “at” time expressions can be easily found by (bt,vk − b

t−1,v
k ), for

all k, v and t in their respective sets.

The set of instants of time is defined as T = {1, ..., tmax} and tmax is the latest arrival time rvk
over all trajectories and traffic volumes plus de maximum amount of delay allowed ϕ:

tmax = max(rvk) + ϕ, ∀k ∈ K, ∀v ∈ V. (V.3)

The decision variable bt,vk is defined ∀t ∈ T ∪{0}, which include one instant of time before the first
instant of T . The value of bt,vk at this time is always null:

b0,vk = 0, ∀k ∈ K, ∀v ∈ V. (V.4)

V.1.2 Objective function

Equation (IV.2) gives a general definition of the objective function used in this dissertation. Yet,
the capacity related costs, i.e. JO and JS , are not considered since the opening scheme is given, so
they are constant for every feasible solution. Thus, this model aims to minimise the total additional
trajectory cost for the airspace users:

J = J∆A, (V.5)
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where J∆A is defined by equation IV.3, together with the expressions IV.4, IV.5, IV.6 and IV.7.
Since the ground delay in this model is not addressed with new alternative trajectories defined in
advance, the ground delay (Dk) in Equation (IV.6) is defined as:

Dk =
∑

t∈T
Vk
k

(t− rVk

k )(b
t,Vk

k − bt−1,Vk

k ), ∀k ∈ K, (V.6)

where Vk is the first traffic volume that the trajectory k crosses. Note that the consideration of
the ground delay costs as well as the extra cost due to longer trip times means that this models is
evaluating the cost of the arrival delays.

V.1.3 Constraints

This section lists and describes all the constraints applied to Model 0:

• One trajectory, i.e. the initial or one of the alternatives must be selected:

∑
k∈Kf

zk = 1, ∀f ∈ F . (V.7)

• Constraints for applying the “by” time technique (Bertsimas & Patterson, 1998):

b
T v

k−1,v
k = 0, ∀k ∈ K, ∀v ∈ Vk, (V.8)

b
T v

k,v
k = zk, ∀k ∈ K, ∀v ∈ Vk, (V.9)

bt,vk − b
t−1,v
k ≥ 0, ∀k ∈ K, ∀v ∈ Vk,∀t ∈ T v

k . (V.10)

Constraint V.9 forces that all the decision variables are equal to zero when the trajectory is
not selected.

• Only ground holding is allowed:

b
t+r

v∗k
k −rvk ,v

∗
k

k − bt,vk = 0, ∀k ∈ K, ∀v ∈ Vk \ {Vk}, ∀t ∈ T v
k .

(V.11)

where v∗k is the next traffic volume that the trajectory k crosses after v and Vk is the last traffic
volume that the trajectory k crosses and it is excluded from the set Vk.

• The demand can not exceed the capacity of any traffic volume:∑
k∈K

∑
t∈T v

k ∩T p

(bt,vk − b
t−1,v
k ) ≤ Hp,v, ∀v ∈ V, ∀p ∈ P, (V.12)

being Hp,v the entry counts threshold of TV v during the period of time p.

V.1.4 MILP formulation for Model 0

Wrapping up, and for the sake of completeness, this section summarises the full Mixed Integer
Linear Programming (MILP) formulation for this model.
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min J∆A =
∑
k∈K

[
(JFk

− J̄Fk
) + (JTk

− J̄Tk
) + (Rk − R̄k) + αk

[
(Tk − T̄k)+

∑
t∈T

Vk
k

(t− rVk

k )(b
t,Vk

k − bt−1,Vk

k )


 zk (V.13)

s.t. ∑
k∈Kf

zk = 1, ∀f ∈ F (V.14)

b
T v

k−1,v
k = 0, ∀k ∈ K,∀v ∈ Vk (V.15)

b
T v

k,v
k = zk, ∀k ∈ K,∀v ∈ Vk (V.16)

bt,vk − b
t−1,v
k ≥ 0, ∀k ∈ K,∀v ∈ Vk, ∀t ∈ T v

k (V.17)

b
t+r

v∗k
k −rvk ,v

∗
k

k − bt,vk = 0, ∀k ∈ K,∀v ∈ Vk \ {Vk},∀t ∈ T v
k

(V.18)∑
k∈K

∑
t∈T v

k ∩T p

(bt,vk − b
t−1,v
k ) ≤ Hp,v, ∀v ∈ V,∀p ∈ P (V.19)

V.2 Model I: complexity approach

This model uses complexity metrics for measuring the traffic load and considers a given opening
scheme (i.e. which operating sectors are open and when in time). This information is provided in
this model through the set Spa containing the active sectors during every period of time p.

The following subsections explain in detail the decision variables, the objective function and
the constraints of this model.

V.2.1 Decision variables

Since this model only affects to the demand side, the decision of the alternative trajectories that
would be selected is modelled as:

zk =

{
1, if trajectory k is chosen
0, otherwise

, ∀k ∈ K. (V.20)

The real valued auxiliary variable CT
∗t,s
k is introduced in order to deal with the linearisation

of the capacity limitation constraint as it explained in section IV.3.3.2:

CT
∗t,s
k ≥ 0, ∀k ∈ K, ∀t ∈ T , ∀s ∈ S. (V.21)

V.2.2 Objective function

The general definition of the objective function (J) is given in Equation (IV.2). Yet, since the
airspace capacity is given in this model, the cost of operation of the sectors, JO, and the cost of
having different configurations, JS , are fixed and do not affect the optimisation. Thus, this model
aims to minimise the total additional trajectory cost:
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J = J∆A. (V.22)

V.2.3 Constraints

Two main constraints are identified for the problem:

• From all trajectory options k ∈ Kf of flight f , one and only one must be selected:∑
k∈Kf

zk = 1, ∀f ∈ F . (V.23)

• The demand can not exceed the capacity (in terms of complexity) in any active sector s and
in any instant of time t. As explained in Section IV.3.3.2, equation (IV.11) is not linear, but it
is linearised by the introduction of the auxiliary decision variable CT

∗t,s
k and the constraints

(IV.13), (IV.14) and (IV.17).

V.2.4 MILP formulation for Model I

Wrapping up, and for the sake of completeness, this section summarises the full MILP formulation
for this model.

min J∆A =
∑
k∈K

(Jk − J̄k)zk (V.24)

s.t. ∑
k∈Kf

zk = 1, ∀f ∈ F (V.25)

∑
k∈K

CT
∗t,s
k ≤ Ht,s, ∀p ∈ P, ∀t ∈ T p, ∀s ∈ Spa (V.26)

CT
∗t,s
k ≥

∑
sE∈Es

B
t,sE
k

∑
k′∈K\{k}

Ct
k,k′zk′ +M(zk − 1), ∀k ∈ K, ∀t ∈ T , ∀s ∈ S (V.27)

CT
∗t,s
k ≥ 0 , ∀k ∈ K,∀t ∈ T ,∀s ∈ S (V.28)

zk ∈ {0, 1}, ∀k ∈ K (V.29)

A verification example of this formulation is presented in Annex B.

V.3 Relation with previous research

This chapter presents two models that take decision only on the demand side. The current role of
the NM is maintained, which is nowadays the delay allocation using the Computer-Assisted Slot
Allocation (CASA) tool EUROCONTROL (2017).

Different works found in the literature only considered the demand side (i.e. fixed capacity).
Firstly, researchers tried to solve the Single-Airport Ground Holding Problem (SAGHP) (Odoni,
1987; Terrab & Odoni, 1993; Richetta & Odoni, 1993; Andreatta et al., 1993). Later, the Multi-
Airport Ground-Holding Problem (MAGHP) was introduced (Vranas et al., 1992, 1994). These
efforts focused solely on the problem in airports, ignoring the en-route airspace. For this reason,
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Bertsimas & Patterson (1998) proposed a binary integer programming model for the deterministic
and multiairport Air Traffic Flow and Capacity Management (ATFCM) problem, which addressed
capacity constraints in the en-route airspace. This approach is also used by Xu & Prats (2017),
where ground, airborne and linear holding were considered as options for the delay.

The introduction of the alternative trajectories in the DCB formulation was introduced by
Bertsimas & Patterson (2000), where the authors tried to minimise the delay costs. A similar
approach was considered in Xu et al. (2018a, 2020a) but, in this case, the objective was to minimise
the total deviation with regard to airspace users’ preferences, considering the fuel consumption,
the route charges and the cost of delay. Note that the problem addressed by these last works (i.e.
fixed sectorisation and alternative trajectories) is similar to the Models 0 and I of this paper. Yet,
the demand and the capacity were measured using occupancy or entry counts at sector level.

The Model 0 is one of the first works of DCB that consider the traffic interaction in the traffic
load by using traffic volumes instead of sectors. This enables the possibility to define regulations
to specific traffic flows instead of applying restrictions to all aircraft in a sector. The model I is
a step forward in the DCB formulations. In fact, this model: a) uses alternative trajectories, b)
minimises the deviations with respect to the airspace users’ preferences, and c) uses a generic
complexity metric defined at trajectory level in order to measure the demand and the capacity.

V.4 Validation case study

The study analyses a 24 hour scenario based on the European Civil Aviation Conference (ECAC)
area. The day of study is the 28th July of 2016 representing one of the busiest summer days and
the traffic sample contains 32,960 flights crossing the ECAC zone. During this day, there were 179
regulations but, only the regulations starting and ending in the same day are considered. It means
that the scenario takes into consideration 175 regulations affecting a total of 144 traffic volumes,
meaning that some traffic volumes were affected with more than one regulation. Figure V-2 shows
the regulated traffic volumes on 28th July of 2016.

Figure V-2: Regulations of 28th July of 2016
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V.4.1 Data sources

The initial traffic, the regulation list and the traffic volume definition are obtained from the De-
mand Data Repository 2 (DDR2) database. The identification of regulated flights in a TV is done
using NEST v1.6.6, which allows to get the entry list for every traffic volume (containing the flight
identification code together with the entry time to the traffic volumes).

The trajectory optimisation is done by DYNAMO, that needs the mass at the arrival airport
and the Cost Index (CI) 1 of the aircraft as inputs for the trajectory optimisation. Not having
access to passenger data and load factor, for this study, the final mass is assumed to be the 90%
of the Maximum Payload (MPL). With respect to the CI, it is set with the information found in
the TOGA report (TOGA projects, 2018) which aims at simulating flights as closely as possible
to the real-world operating environment. To the best of the author’s knowledge, it is the only
source of CI information that is currently available. Still, the information for specific carriers
might be missing in the TOGA report leading to some assumptions for those airlines. Hence,
the CI allocation method adopted in this PhD (and similar to the method adopted by CADENZA
Consortium (2021), can be summarised as follows:

1. Take the value of CI from the TOGA database when the information of the airline is available.

2. For the majority of the remaining airlines, clustering techniques are applied in order to use
the most similar airline from those available in the TOGA database.

3. For the remaining unclassified airlines, the CI used is a random number between 10 and 25
Kg/min.

The alternative trajectories are generated using the same mass and cost index assigned for
the nominal trajectories but avoiding certain traffic volumes (provided by the network manager).

In line with the ATFCM costs in Europe proposed in Cook & Tanner (2015), the cost as-
sumed for the ground delay is 81€/min. The cost of fuel is assumed to be 0.4 €/kg (2016 average
into-plane fuel cost adapted from published fuel spot prices Airline Business (2016)). For this
experiment, cost of the delay and the cost of fuel is also assumed the same for all flights.

V.4.2 Alternative trajectories generation

A total of 7,168 flights crossed at least one traffic volume during the time they were under a
regulation. Nevertheless, only the flights departing from airports inside the network manager
area are subject to regulations, so the DCB problem is applied to only 6,386 flights. The rest of the
flights (exempted of regulations) follow their initial flight plan with no regulation applied.

Note that if the regulated traffic volume is linked with the origin and/or destination airport,
these can not be avoided with alternative trajectories. Thus, from the 6,386 regulated flights, only
4,931 could submit alternative trajectories to avoid the regulated airspace. In this experiment, two
alternative trajectories are requested per flight, avoiding the regulated traffic volumes (non related
with any airport) vertically and horizontally. Some of these alternative trajectories, however, are
not feasible. There could be different reasons, such as the regulated traffic volume is very close
to the origin or destination airport and can not be avoided; or the current route structure do not
allow to connect the origin and destination with the avoidance restrictions.

The lateral trajectories have been simulated by minimising as much as possible the lateral
deviation with respect to the initial trajectories. The vertical alternatives maintain the same lateral
route but change the vertical profile in order to avoid the constrained TVs. In both cases (lateral

1The cost index is a number representing the ratio of the time-related cost of an aircraft operation and the cost of
fuel (Airbus, 1998).
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Table V-1: Summary of the experiment data of Model 0
Traffic data

Flights crossing ECAC 32,960
Flights crossing a regulated TV 7,168
Regulated flights 6,386
Lateral trajectories 3,140
Vertical trajectories 2,084

Constrained airspace
Number of regulations 175
Regulated TVs 144

and vertical), the trajectories are 4D optimised resulting in different flight levels with respect to
the nominal trajectory although they are constrained to not flying higher than the initial trajectory.
Figure V-3 shows an example of lateral and vertical alternative trajectories for one flight.

(a) Lateral alternative (green) vs ini-
tial trajectory (red)

(b) Vertical alternative (green) vs initial trajectory (red)

Figure V-3: Example of alternative trajectories for a BCN-AMS flight

The final number of alternative trajectories is 3,140 (49.17% of the regulated flights) and 2,084
(32.63% of the regulated flights), avoiding the regulated traffic volumes laterally and vertically,
respectively. This data is summarized in Table V-1.

The comparison between the lateral alternative trajectories and the nominal trajectories in
terms of flight distance, time or fuel, as well as costs, is shown in Figure V-4. All lateral re-routed
trajectories are longer in trip time. With respect to the fuel consumption, the majority of the lateral
re-routed trajectories need more fuel but in some occasions they are more fuel efficient. In terms of
distance flown, the majority of the lateral re-routed trajectories also fly more distance but in very
few occasions they fly shorter distances. The conversion of these magnitudes to costs, however,
leads always to more expensive trajectories in comparison with the nominal ones.

The same analysis for vertical re-routed trajectories is provided in Figure V-5. Again the
vertical re-routed trajectories are longer in time and the majority of the trajectories need more
fuel. However, note that the difference in distance is null since the only differences between the
vertical re-routed and the nominal trajectories is in the vertical profile. In the same way as the
lateral options, all vertical re-routed trajectories are more expensive than the nominal ones.

The shorter and/or more fuel efficient alternative trajectories could be explained because of
the optimisation of the vertical profile of the alternative trajectories or the lack of RAD constraints.
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(a) Lateral vs. nominal magnitudes

(b) Lateral vs. nominal costs

Figure V-4: Comparison between lateral and nominal trajectories

(a) Vertical vs. nominal magnitudes

(b) Vertical vs. nominal costs

Figure V-5: Comparison between vertical and nominal trajectories

V.4.3 Baseline scenario

A baseline scenario is considered in order to compare the results. In this study, the baseline sce-
nario is obtained from historical data from the DDR2 database, where the DCB problem is solved
using the CASA delay algorithm (based on RBS). A total of 3,518 flights were delayed, accumu-
lating a delay of 58,622 minutes. Considering only the delayed flights, the average delay is 16.66
minutes, with maximum delay of 139 minutes. The median of 14 minutes indicates that the half of
the delayed flights have 14 minutes of delay or less. The standard deviation of the delay is 11.50
minutes (see Table V-2).
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Table V-2: Summary of the results
CASA Model 0 ∆

C
os

t

Total regulation cost [€] 4,748,382 1,129,978 -76.20%
Arrival delay cost [€] 4,748,382 1,099,768 -76.84%
ΔFuel cost [€] 0 18,736 -
ΔRoute Charges [€] 0 6,762 -
ΔTrip time cost [€] 0 4,712 -

D
el

ay

Total ground delay [min] 58,622 12,785 -78.19%
Delayed flights (ground) 3,518 751 -78.65%
Total arrival delay [min] 58,622 13,577 -76.84%
Delayed flights (arrival) 3,518 1,129 -67.91%
Max. arrival delay [min] 139 355 155.40%
Average arrival delay [min] 16.66 12 -27.85%
Median arrival delay [min] 14 5 -64.29%
Std. Dev. arrival delay [min] 11.5 21.69 88.61%

Tr
ip

da
ta

ΔFuel [Tn] 0 47 -
ΔTrip time [min] 0 792 -
ΔDistance [NM] 0 3,359 -

Tr
aj

.
op

ti
on

s Nominal 6,389 5,980 -
Lateral 0 133 -
Vertical 0 273 -

V.4.4 DCB with Model 0

The main results of solving Model 0 for this case study are summarised in the following lines.

V.4.4.1 Time setup

The time resolution is set to five minutes in T v
k . This set indicates the instants of times when the

trajectory k can potentially arrive at the traffic volume b.

The load of TVs, measured in entry counts, is counted in periods of 20 minutes. As the
experiment is applied to 24 hours, the experiment is divided in 72 periods.

V.4.4.2 Traffic volume capacities

The traffic volume capacity threshold is set based on the information of DDR2 data. Some regula-
tions are applied to traffic volumes that are not active. It means, that the regulated traffic volume
is related to a sector that is not used. This situation can happen, for example, to avoid an airspace
zone due to bad weather conditions or to force an Air Traffic Control (ATC) routing deviation. For
the non-active traffic volumes there are not declared capacities available. In this work, a minimum
of 20 operations per hour is assumed in these situations.

V.4.4.3 Results

The solution of the presented case study with Model 0 shows 12,785 minutes of ground delay
applied to 751 flights. Looking at the arrival delay, a total of 1129 flights arrive later than planed
accumulating 13,577 minutes of delay. The differences between ground and arrival delay are
due to the use of alternative trajectories, which may have longer trip times. The average arrival
delay per delayed flights is 12 minutes what is a 27.85% lower than using CASA. The median is 5
minutes, what means that the half of the delayed flights are delayed 5 minutes or less (64.29% less



V.4 Validation case study 57

than using CASA). These values of arrival delay are illustated in Figure V-7.

These improvements contrast with the value of the maximum value of arrival delay, i.e. 355
minutes, which is much higher than the value of 139 minutes obtained with CASA (155.40% more).
Such big value of maximum delay matches with the big standard deviation (21.69 minutes) ob-
tained with Model 0. Thus, the model allows to reduce the total delay, but a few number of flights
can accumulate a big amount of delay. It means that, with this model, the system-wide delay can
be reduced but the fairness is decreased. This can be seen in Figure V-6 where some flights (the
upper outliers) of Model 0 solution have significantly more delay than in the CASA scenario. The
same data is showed in Figure V-7 by filtering the outliers.

One can note that Model 0 performs better in terms of arrival delay in the majority of the
cases, what means that this fairness issue is only experienced by a minority of the flights. This
could be partially mitigated by including in the objective function a fairness factor (i.e., a super-
linear coefficient for the cost of delay imposed to the flight) as done in Xu et al. (2018a), but it is
not considered in this study.

Figure V-6: Arrival delay boxplot with outliers

Figure V-7: Arrival delay boxplot without outliers

The flights with arrival delay in Model 0 represents only the 32.09% of the delayed flights
obtained with the CASA algorithm. Besides, the Model 0 uses alternative trajectories. From the
6,386 regulated flights, 5,982 flights used the nominal trajectory, 133 flights preferred to use the
lateral re-route trajectory and 273 used vertical re-routed trajectories. Note than the solution con-
tains very few alternative trajectories (only 6.36% of the 6,386 regulated flights). This is because
the alternative trajectories entail extra direct operating costs, but also additional arrival delay due
to the longer trip times (see Figures V-4 and V-5). Table V-2 shows the summary of the results in
comparison with the baseline scenario.

It is important to recall that the Model 0 is solved minimising the cost of the arrival delay
and the difference in terms of direct operating costs between the alternative trajectories and the
original trajectory (see Equation V.13). In fact, although Model 0 decreases the regulation cost due
to arrival delay, it adds additional costs due to the extra fuel burned, the extra trip time and the
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extra route charges. The Model 0 solution needs 47 additional tons of fuel at system level, what
is translated to an extra cost of 18,736€. Moreover, the route charges increase by 6,762€. This is
because the alternative trajectories overfly regions with more expensive unit rates and because
they fly longer (in particular 3,359 NM more). Finally, the use of alternative trajectories represents
an extra trip time of 792 minutes, what represents an extra cost of 4,712€. Although Model 0
introduces extra operating costs, the total regulation cost is reduced by a 76.20% due to the huge
reduction in the arrival delays.

V.4.4.4 Impact on the network

The Model 0, as well as the current model based on the CASA algorithm, only considers the
regulated traffic volumes. It means that the solution obtained may create a negative impact on
the surrounding traffic volumes (or even in the regulated traffic volumes but in periods when the
regulation is not activated). In order to analyse this phenomenon, the overloads are calculated in
all active TV crossed by any of the initial or alternative trajectories numbering a total of 1,240. In
addition, the overloads are only considered during the periods where the corresponding sector is
open according to the sector opening scheme.

Figure V-8 shows the aggregated value of overloads (over all traffic volumes and over all
periods of time) for the initial traffic demand, the regulated demand with CASA and the regulated
demand based Model 0. As expected, the initial traffic demand is the one which creates a greater
value of overloads since no regulation is applied. With CASA, the aggregated overloads is reduced
slightly but the model 0 reduces the aggregated overloads even more. It is surprising to find such
big overload values in the CASA and Model 0 solution since it is the resulting traffic demand
after the regulations. Although it was expected to experience overloads (because capacity is only
considered in the regulated TVs) the values are unexpectedly very comparable to the initial traffic
demand (see also Figure V-9):

• Total number of aggregated overloads of the initial scenario: 11,212

• Total number of aggregated overloads after CASA: 10,543

• Total number of aggregated overloads after Model 0: 10,300

The remaining overloads that have not result in new regulations, as well as the regulations
defined when the traffic load is lower that the capacity, are a good indicator that the simple number
of flights, like the entry counts, is not a good proxy for the ATC workload.

This study of the overloads is extended analysing the distribution of overloads per TV. In
Figure V-9 the outliers representing the 10% of the TVs are removed in order to compare the most
representative TV. The overload distributions are similar among the three scenarios meaning that
the network impact of both solutions is limited.

V.4.5 Potential comparison with Model I

The results obtained in the previous section reinforces the idea that the DCB based on complexity
metrics may improve the DCB performance. Such hypothesis could be tested with the comparison
between Model 0 and Model I since both models only have demand management (fixed sectori-
sation). However, their direct comparison is not possible due to the following reasons. In the
scenario of Model 0 the historical regulation list has been used as a first attempt to disregard the
entry counts overloads that do not represent a big deal in terms of complexity. Nevertheless, the
reasons of those regulations are diverse. The regulations due to ATC capacity are clearly candi-
dates to be analysed in terms of complexity metrics. Other reasons like ATC equipment, weather
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Figure V-8: Aggregated overloads for all TV and periods for the three scenarios of demand
management

Figure V-9: Distribution of overloads per TV (excluding outliers)

or environmental issues, among others, are not related with the harmonisation of the traffic de-
mand and, therefore, are not linked with the complexity.

As a consequence, with Model I not all regulations can be analysed using complexity metrics
and a different number regulations should be considered (i.e. only those related with ATC capac-
ity), making impossible the direct comparison between Model 0 and Model I. Nevertheless, the
formulation of the Model I is verified with a simple example in Appendix B.





VI
Holistic Demand and Capacity

management

This chapter introduces three models that consider the capacity management together with the
demand management in the same optimisation problem, i.e., the holistic Demand and Capacity
Balancing (DCB) problem. The differences between the models is the level of capacity manage-
ment that is provided. The details and particularities of the models are explained in the following
sections.

VI.1 Model II: selection of the sector configurations

The problem consists of selecting one trajectory for every flight and on choosing the sectorisation
opening scheme. Nowadays, the sector opening scheme is defined at Area Control Center (ACC)
level. Then, the problem aims at choosing one configuration per period (p ∈ P) and per ACC
(γ ∈ Γ). Note that the duration of all period does not need to be the same. The set T p contains
the instants of time in the period p and can be used to define periods with different time duration.
Hence, the presented formulation is valid for both synchronised and non-synchronised period
steps.

All decision variables, the objective function and all constraints are fully described in the
following subsections.

61
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VI.1.1 Decision variables

This model aims at choosing one trajectory for each flight, at the same time it selects the best
configuration opening scheme. Thus, there are two decision variables for this problem:

zk =

{
1, if trajectory k is chosen
0, otherwise

, ∀k ∈ K, (VI.1)

xp,λ =

{
1, if configuration λ is chosen during the period p
0, otherwise

, ∀p ∈ P,∀λ ∈ Λ. (VI.2)

Let yt,s be an auxiliary variable directly related to the sectors instead of the configurations:

yp,s =

{
1, if sector s is active during period p
0, otherwise

, ∀p ∈ P,∀s ∈ S. (VI.3)

The relationship between xp,λ and yp,s is then given as follows with the consideration that only
one configuration can be selected during a period p:

yp,s =
∑
λ∈Λs

xp,λ, ∀p ∈ P,∀s ∈ S. (VI.4)

In addition, we define another auxiliary variable (qp,sE ) that indicates if the elementary sector
sE belongs to a different collapsed sector s between the periods p and p− 1:

qp,sE =


1, if elementary sector sE belongs to a different

collapsed sector between p and p− 1

0, otherwise

, ∀p ∈ P\{1}, ∀sE ∈ SE . (VI.5)

qp,sE is linked with other variables through:

qp,sE ≥ yp,s − yp−1,s, ∀p ∈ P \ {1}, ∀s ∈ S,∀sE ∈ E
s. (VI.6)

Finally, and for linearisation purposes, the real valued auxiliary variable CT
∗t,s
k is introduced

as in the Model I, representing the chosen value of complexity contribution of trajectory k to the
sector s at instant of time t:

CT
∗t,s
k ≥ 0, ∀k ∈ K,∀t ∈ T ,∀s ∈ S. (VI.7)

VI.1.2 Objective function

The objective function (J) of this model is given by Equation (IV.2), with the capacity provision
cost during all periods, JO, defined as follows:

JO =
∑
s∈S

∑
p∈P

θp,syp,s, (VI.8)
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where θp,s is the cost of opening the sector s during the period p.

JS in Equation (IV.2) is the penalty cost of having differences in consecutive sector configu-
rations and, for this model, it is calculated as:

JS = ρ
∑

p∈P\{1}

∑
sE∈SE

qp,sE , (VI.9)

where ρ is the penalty cost of allocating one elementary sector to a different operating sector in
consecutive periods.

VI.1.3 Constraints

In this model, three constraints are identified as follows:

• From all trajectory options of flight f , one and only one must be selected:∑
k∈Kf

zk = 1, ∀f ∈ F . (VI.10)

• For all periods, one and only one configuration must be selected in every ACC:

∑
λ∈Λγ

xp,λ = 1, ∀p ∈ P, ∀γ ∈ Γ. (VI.11)

• The demand can not exceed the capacity (in terms of complexity) in any active sector s and
at any instant of time t. After applying the linearsiation process described in Section IV.3.3.2,
the constraint (IV.17) from Model I takes the following form since the active sectors are not
known in advance (Spa not available) in Model II:∑

k∈K
CT

∗t,s
k ≤ Ht,s +MH(1− yp,s), ∀p ∈ P, ∀t ∈ T p, ∀s ∈ S (VI.12)

where CT
∗t,s
k satisfies the additional constraints (IV.13) and (IV.14), and MH is a positive

value bigger than any possible value of complexity in a sector, Ct,s
S .

VI.1.4 MILP formulation for Model II

Wrapping up, and for the sake of completeness, this section summarises the full Mixed Integer
Linear Programming (MILP) formulation for this model.

min J = J∆A + JO + JS =
∑
k∈K

(Jk − J̄k)zk +
∑
s∈S

∑
p∈P

θp,syp,s + ρ
∑

p∈P\{1}

∑
sE∈SE

qp,sE
(VI.13)

s.t. ∑
k∈Kf

zk = 1, ∀f ∈ F (VI.14)

∑
λ∈Λγ

xp,λ = 1, ∀p ∈ P,∀γ ∈ Γ (VI.15)

∑
k∈K

CT
∗t,s
k ≤ Ht,s +MH(1− yp,s), ∀p ∈ P,∀t ∈ T p,∀s ∈ S (VI.16)
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yp,s ≥
∑
λ∈Λs

xp,λ, ∀p ∈ P,∀s ∈ S (VI.17)

qp,sE ≥ yp,s − yp−1,s, ∀p ∈ P \ {1}, ∀s ∈ S, ∀sE ∈ E
s (VI.18)

CT
∗t,s
k ≥

∑
sE∈Es

B
t,sE
k

∑
k′∈K\{k}

Ct
k,k′zk′ +M(zk − 1), ∀k ∈ K,∀t ∈ T ,∀s ∈ S (VI.19)

CT
∗t,s
k ≥ 0 , ∀k ∈ K,∀t ∈ T ,∀s ∈ S (VI.20)

zk ∈ {0, 1}, ∀k ∈ K (VI.21)

xp,γ ∈ {0, 1}, ∀p ∈ P,∀λ ∈ Λ (VI.22)

yp,s ∈ {0, 1}, ∀p ∈ P, ∀s ∈ S (VI.23)

qp,sE ∈ {0, 1}, ∀p ∈ P\{1},∀sE ∈ SE (VI.24)

A verification example of this formulation is presented in Annex B.

VI.1.5 Relation with previous research

Differently than Model I, now the sectorisation is not given and the capacity management is part
of the optimisation problem. Thus, this model uses alternative trajectories to manage the demand
side and the selection of active configuration at each period of time, i.e. the first level Dynamic
Airspace Configurations (DAC) concept, to deal with the capacity side.

This level of capacity management is not new. In fact, it is proposed in Verlhac, C. and
Manchon, S. (2005); Vidosavljevic & Delahaye (2017); Gianazza (2010, 2019); Gianazza & Durand
(2020); Treimuth (2018) and some of them consider complexity metrics as main capacity indica-
tor as well. These works, however, do not take the demand management into account (i.e. the
nominal flight plan is considered when applying capacity management measures).

Similar holistic approaches to this Model II can be found in Xu et al. (2018b), Xu et al. (2020b),
Starita et al. (2021) and Künnen & Strauss (2022) where the problem formulation includes the
selection of the best configuration opening scheme and the selection of the best trajectory for each
flight. In the previous papers, the demand and the capacity are measured using entry counts and
the problem minimises the total deviation with regard to airspace users’ preferences.

The Model II presented in this paper represents an evolution with respect to the previous
research by considering a generic generic complexity metric as measure of the traffic load. In
addition, the problem minimises the costs for the airspace users as well as the costs for the Air
Navigation Service Providers (ANSPs).

VI.2 Model III: selection of the operating sectors

Similarly to Model II, this model considers the capacity management as part of the optimisation
problem. Yet, the sector configuration set is not known here. Thus, the problem consists of select-
ing one trajectory for every flight and the active sectors at every time instant, from a given set of
operating sectors. This Model III gives additional flexibility compared with Model II because it is
not restricted to use a given set of sector configurations.

The following subsections are focused on describing the decision variables, the objective
function and constraints of this third model.
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VI.2.1 Decision variables

This model aims at choosing the trajectory for every flight at the same time it selects the combina-
tion of active operating sectors for every instant of time. This leads to the use of following decision
variables:

zk =

{
1, if trajectory k is chosen
0, otherwise

, ∀k ∈ K, (VI.25)

yp,s =

{
1, if sector s is active during period p
0, otherwise

, ∀p ∈ P,∀s ∈ S. (VI.26)

Similarly to Model II, the auxiliary variable qp,sE indicates if the element sector sE belongs to
a different collapsed sector s between the periods p and p− 1:

qp,sE =


1, if elementary sector sE belongs to a different

collapsed sector between p and p− 1

0, otherwise

, ∀p ∈ P \ {1}, ∀sE ∈ SE . (VI.27)

As in the previous model, qp,sE is linked with other variables through Equation (VI.6).

In order to provide a linear formulation, the real valued auxiliary variable CT
∗t,s
k is also intro-

duced here, representing the chosen value of complexity contribution of trajectory k to the sector
s at instant of time t:

CT
∗t,s
k ≥ 0 , ∀k ∈ K,∀t ∈ T ,∀s ∈ S. (VI.28)

VI.2.2 Objective function

This model uses the same objective function (J) as in the previous model (see Section VI.1.2).

VI.2.3 Constraints

Three main constraints are identified and considered in this model:

• From all trajectory options of flight f , one and only one must be selected:∑
k∈Kf

zk = 1, ∀f ∈ F . (VI.29)

• The demand can not exceed the capacity (in terms of complexity) in any active sector s and
in any instant of time t. This constraint leads to the same formulation obtained in Model
II and expressed in Equation (VI.12), where CT

∗t,s
k is constrained by equations (IV.13) and

(IV.14).

• For all periods, every elementary sector must be selected once and only once. This constraint
also ensures that all elementary sectors are chosen at every time instant, meaning that the
whole airspace is controlled:

∑
s∈SsE

yp,s = 1, ∀sE ∈ SE ,∀p ∈ P. (VI.30)
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VI.2.4 MILP formulation for Model III

Wrapping up, and for the sake of completeness, this section summarises the full MILP formulation
for this model.

min J = J∆A + JO + JS =
∑
k∈K

(Jk − J̄k)zk +
∑
s∈S

∑
p∈P

θp,syp,s + ρ
∑

p∈P\{1}

∑
sE∈SE

qp,sE
(VI.31)

s.t.

∑
k∈Kf

zk = 1, ∀f ∈ F (VI.32)

∑
s∈SsE

yp,s = 1, ∀sE ∈ SE , ∀p ∈ P (VI.33)

∑
k∈K

CT
∗t,s
k ≤ Ht,s +MH(1− yp,s), ∀p ∈ P,∀t ∈ T p,∀s ∈ S (VI.34)

qp,sE ≥ yp,s − yp−1,s, ∀p ∈ P \ {1}, ∀s ∈ S, ∀sE ∈ E
s (VI.35)

CT
∗t,s
k ≥

∑
sE∈Es

B
t,sE
k

∑
k′∈K\{k}

Ct
k,k′zk′ +M(zk − 1), ∀k ∈ K,∀t ∈ T ,∀s ∈ S (VI.36)

CT
∗t,s
k ≥ 0 , ∀k ∈ K,∀t ∈ T ,∀s ∈ S (VI.37)

zk ∈ {0, 1}, ∀k ∈ K (VI.38)

yp,s ∈ {0, 1}, ∀p ∈ P,∀s ∈ S (VI.39)

qp,sE ∈ {0, 1}, ∀p ∈ P\{1},∀sE ∈ SE (VI.40)

A verification example of this formulation is presented in Annex B.

VI.2.5 Relation with previous research

This model, like Model II, considers the capacity management as part of the optimisation problem.
It adds an additional level of flexibility to the DAC concept since the capacity management con-
sists in the selection of the active sector at every period of time from a given set of sectors (instead
of choosing configuration from a limited set). Furthermore, the use of alternative trajectories is
still the way to deal with the demand side.

This level of capacity management together with the use of complexity metrics can be found
in the literature when no demand management is considered. Some referent works are Delahaye
et al. (1995) and Treimuth (2018).

The same level of holistic demand and capacity management was introduced in Xu et al.
(2020b) where new configurations were created from a given set of operating sectors at the same
time that one trajectory was chosen for each flight. The problem formulation was defined using
entry counts and the objective function minimised the airspace users’ costs.

This model III represents a step beyond the state of the art by the introduction of the generic
complexity metric at trajectory level and the consideration of the ANSPs cost. Furthermore, this
formulation enforces the operational feasibility from the Air Traffic Control (ATC) point of view
of the solution by penalising differences in consecutive sector configurations.
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VI.3 Model IV: dynamic creation of operating sectors

Similarly to Models II and III, this model also considers the capacity management as part of the
optimisation problem. The main difference with respect to previous models is that only the ele-
mentary sectors definition is available as input. It means that there are not predefined collapsed
sectors nor configurations, so elementary sectors can be dynamically collapsed to create active
sectors at every period of time. Thus, the problem consists of selecting one trajectory for every
flight and dynamically collapsing the available elementary sectors for each period of time.

The author acknowledges that with this model formulation, one does not have the direct
control of the resulting shape of the sectors (convexity, vertical alienation). Yet, this model may
be used for exploring the theoretical limits of the capacity management. Further, what it is nowa-
days operationally not recommended from the sector shape point of view may change in a future
concept of operations.

The decision variables, objective function and constraints of this model are fully explained
in the following subsections. However, due to the particularities of this model, how the airspace
structure is modelled is firstly explained.

VI.3.1 Airspace sectorisation

The airspace is modelled as an undirected graph G(SE ,E) with the set of vertices SE and the set
of edges E, where the vertices are the elementary sectors and the edges connect the elementary
sectors that are direct geographical neighbours. Each edge e ∈ E is defined by two elementary
sectors sE and s′

E
, i.e. e = (sE , s

′
E
).

With this graph representation, it is possible to introduce an adjacency matrix AsE ,s
′
E indicat-

ing, in a binary way, if the elementary sectors sE and s′
E

are direct neighbours or not:

AsE ,s
′
E =


1, if elementary sectors s′

E
and sE are

direct geographical neighbours
0, otherwise

, ∀sE , s
′
E
∈ SE |sE < s′

E
. (VI.41)

It’s worth noting that the adjacency matrix AsE ,s
′
E is controlling which elementary sectors could be

collapesed together. Hence, the independence of different ANSPs could be easily preserved.

Each operating sector is modelled as a imaginary path (called "sector path" in this paper) that
joins in sequence all the elementary sectors that belong to it, as illustrated in Figure VI-1. Although
one may imagine that knowing which elementary sectors belong to each collapsed sectors would
be enough and precedence is not needed, it would be explained that this formulation is needed in
order to ensure the connectivity of all the elementary sectors in a collapsed sector.

Figure VI-1: Illustrative example of a sectorisation, with two hypothetical operating sectors and
their corresponding sector paths.
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VI.3.2 Decision variables

This model aims at choosing the optimal trajectory and the best combination of elementary sectors.
This leads to the definition of the following decision variables:

zk =

{
1, if trajectory k is chosen
0, otherwise

,∀k ∈ K, (VI.42)

wp,sE ,s
′
E =


1, if elementary sector s′

E
is after sE in the

sector path which defines an operating
sector during the period p

0, otherwise

, ∀p ∈ P, ∀sE , s
′
E
∈ SE |sE < s′

E
.

(VI.43)
In addition, dp,sE is introduced in order to identify the first elementary sector of a sector path
(which is required to count the number of active sectors):

dp,sE =


1, if the elementary sector sE is the first

elementary sector of a sector path during period p
0, otherwise

, ∀p ∈ P, ∀sE ∈ SE . (VI.44)

Furthermore, the auxiliary variable lt,sE ,s
′
E is defined in this model and it indicates if the element

sectors sE and s′
E

are collapsed differently in periods p and p− 1:

lp,sE ,s
′
E =



1, if elementary sector sE and s′
E

where
collapsed in p− 1 but not in p; or if
elementary sector sE and s′

E
are collapsed

in p but they were not collapsed in p− 1

0, otherwise

, ∀p ∈ P \ {1}, ∀sE , s
′
E
∈ SE |sE < s′

E
.

(VI.45)
Links between lt,sE ,s

′
E and other variables are given by:

lp,sE ,s
′
E ≥ wp,sE ,s

′
E + wp,s′

E
,sE , ∀p ∈ P \ {1},∀sE , s

′
E
∈ SE |sE < s′

E
, (VI.46)

lp,sE ,s
′
E ≥ wp−1,sE ,s

′
E + wp−1,s′

E
,sE , ∀p ∈ P \ {1}, ∀sE , s

′
E
∈ SE |sE < s′

E
. (VI.47)

In order to provide a linear formulation, the real valued auxiliary variableCP
t,sE
k,k′ is introduced

as the chosen pairwise complexity that the trajectory k′ induces on the trajectory k at time instant
t when the trajectory k is in the elementary sector sE or in one of its successors:

CP
t,sE
k,k′ ≥ 0, ∀k ∈ K,∀k′ ∈ K \ {k}, ∀t ∈ T , ∀sE ∈ SE . (VI.48)

The auxiliary variable CA
∗t,sE
k is introduced for linearisation purposes, which represents a

chosen value of complexity for the trajectory k at time instant t considering the elementary sector
sE and its successors:

CA
∗t,sE
k ≥ 0, ∀k ∈ K,∀t ∈ T ,∀sE ∈ SE . (VI.49)

The detailed linearisation process is explained in Section VI.3.6.
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VI.3.3 Illustrative example of airspace organisation

In order to complement the previous definitions, the modelisation of the airspace organisation for
the example of Figure VI-1 is explained.

The decision variable wp,sE ,s
′
E indicates if the elementary sector s′

E
is after the elementary

sector sE in the sector path that defines an operating sector during period p. In other words,
wp,sE ,s

′
E = 1 if sE and s′

E
are part of the same sector path being s′

E
successor of sE and, consequently,

being sE predecessor of s′
E
. In this example, there are six elementary sectors collapsed in two

operating sectors (identified in grey and yellow in Figure VI-1) at the period p. The two sector
paths are defined with the variable wp,sE ,s

′
E as follows:

• Operating sector 1: wp,sE1 ,sE4 = wp,sE1 ,sE5 = wp,sE1 ,sE6 = 1, wp,sE4 ,sE5 = wp,sE4 ,sE6 = 1,
wp,sE5 ,sE6 = 1.

• Operating sector 2: wp,sE2 ,sE3 = 1.

• Other w variables are all equal to zero.

Furthermore, the decision variable dp,sE indicates whether the elementary sector sE is the
first one of the sector path defining the collapsed sector it belongs at period p. In this particular
example, dp,sE values are:

• Operating sector 1: dp,sE1 = 1.

• Operating sector 2: dp,sE2 = 1.

• Other d variables are all equal to zero.

Please remark that sectorisation is not a simple partitioning problem due to required connec-
tivity of the elementary sectors collapsed together. This justifies the use of the sector path as a
modelisation artefact.

VI.3.4 Objective function

The objective function for this model is equivalent to the previous models and can be seen in
Equation (IV.2). Yet, a special insight has to be done with the capacity provision cost (JO) and the
penalty cost of having differences in consecutive sector configurations (JS).

The cost of using sector s during the period p (θp,s) that is used to calculate the capacity
provision cost (CO) in Equation (VI.8) is not known a priori since the regrouping of the elementary
sectors is now part of the decision process. Thus, the cost of opening a generic sector during period
p (ψp) is defined. Then, JO can be expressed as:

JO =
∑
p∈P

ψp
∑

sE∈SE

dp,sE . (VI.50)

Note than the sum of all dp,sE over all elementary sectors gives the number of open sectors at
period p.

Regarding the penalty cost of consecutive sector regrouping that are very different (JS), it is
calculated through the auxiliary variable lp,sE ,s

′
E as follows:

JS = ρ
∑

p∈P\{1}

∑
sE∈SE

∑
s′E∈SE |sE<s′E

lp,sE ,s
′
E . (VI.51)
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VI.3.5 Constraints

The constrains for this model are:

• From all trajectory options of flight f , one and only one must be selected:∑
k∈Kf

zk = 1, ∀f ∈ F . (VI.52)

• Each elementary sector (except the first one in a given sector path) must have at least one
predecessor which is a direct neighbour:

∑
s′

E
∈SE |sE>s′

E

wp,s′
E
,sEAs′

E
,sE ≥ 1− dp,sE , ∀p ∈ P,∀sE ∈ SE . (VI.53)

This constraint also ensures that every elementary sector is included in an operating sector.

• The decision variable dp,sE must be 1 for the first elementary sector of each sector path (i.e.
each collapsed sector) and 0 in all other cases:

(1− dp,sE )|SE | ≥
∑

s′
E
∈SE |sE>s′

E

wp,s′
E
,sE , ∀p ∈ P, ∀sE ∈ SE , (VI.54)

where |SE | is the cardinality of set SE . Note that
∑

s′
E
∈SE |sE>s′

E

wp,s′
E
,sE is equal to 0 in the first

elementary sector of the sector path because it has no predecessors and it is greater than 0
in all other cases. Thus, Equation (VI.54) ensures that dp,sE = 0 when the elementary sector
sE is not the first one in the sector path, but it is not sufficient to ensure dp,sE = 1 when sE is
the first elementary sector of the sector path. Nevertheless, equation (VI.53) is ensuring that
dp,sE = 1 in this particular situation.

• If s′
E

is after sE in the sector path, and s′′
E

is after s′
E
, then s′′

E
is after sE :

wp,sE ,s
′
E + wp,s′

E
,s′′

E − 1 ≤ wp,sE ,s
′′
E , ∀p ∈ T , ∀sE , s

′
E
, s′′

E
∈ SE |sE < s′

E
, s′

E
< s′′

E
. (VI.55)

• If two elementary sectors sE and s′
E

have the same successor s′′
E

in the sector path, then s′
E

is
after sE or sE is after s′

E
:

wp,sE ,s
′′
E + wp,s′

E
,s′′

E − 1 ≤ wp,sE ,s
′
E , ∀p ∈ P,∀sE , s

′
E
, s′′

E
∈ SE |sE < s′

E
, s′

E
< s′′

E
. (VI.56)

• The demand can not exceed the capacity (in terms of complexity) in any active operating
sector at any instant of time t. Differently from previous models, the set S is no longer
available. For this reason, let us define CA

t,sE
k as the complexity that all trajectories generate

on trajectory k at time t in the collapsed sector formed by sE and all its successors as follows:

CA
t,sE
k =

∑
k′∈K\{k}

[Ct
k,k′B

t,sE
k +

∑
s′

E
∈SE |sE<s′E

Ct
k,k′B

t,s′
E

k wp,sE ,s
′
E ]zk′zk

∀k ∈ K,∀p ∈ P,∀t ∈ T p,∀sE ∈ SE .

(VI.57)

Then, the demand could be maintained below the capacity threshold through the following
expression:

CA
t,sE
k ≤ Ht, ∀t ∈ T , ∀sE ∈ SE , (VI.58)
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where, Ht is the complexity threshold of an operating sector for an instant of time t. Note
that the previous constraint is evaluated over all elementary sectors, but the ones related
with the first elementary sector of each sector path (dp,sE = 1) will be the most limiting ones
since the aggregated complexity in these cases will consider all the elementary sectors that
form the operating sectors (since they are all successors of the first elementary sector in the
sector path), hence, ensuring capacity limit.

VI.3.6 Linearisation

In this model, the constraint (VI.58) is non-linear because CA
t,sE
k is non-linear (see Equation

(VI.57)). The linearisation of this equation will be done by the introduction of two real valued
auxiliary variables: Firstly, CP

t,sE
k,k′ as the chosen pairwise complexity that the trajectory k′ induces

on the trajectory k at time instant t when the trajectory k is in the elementary sector sE or in one of
its successors. This auxiliary variable can be constrained as follows:

CP
t,sE
k,k′ ≥ 0, ∀k ∈ K,∀k′ ∈ K \ {k}, ∀t ∈ T , ∀sE ∈ SE , (VI.59)

CP
t,sE
k,k′ ≥ C

t
k,k′B

t,sE
k +

∑
s′

E
∈SE |sE<s′E

Ct
k,k′B

t,s′
E

k wp,sE ,s
′
E +M1(zk′ − 1)

∀k ∈ K,∀k′ ∈ K \ {k},∀p ∈ P, ∀t ∈ T p, ∀sE ∈ SE ,

(VI.60)

where M1 is a given parameter that represents the highest pairwise complexity that a trajectory
can receive in a sector and it is calculated as:

M1 ≥ max

Ct
k,k′B

t,sE
k +

∑
s′

E
∈SE |sE<s′E

Ct
k,k′B

t,s′
E

k wp,sE ,s
′
E

 . (VI.61)

Secondly, the auxiliary variable CA
∗t,sE
k is introduced, which represents a chosen value of

complexity for the trajectory k at time instant t considering the elementary sector sE and its suc-
cessors. It is constrained by:

CA
∗t,sE
k ≥ 0, ∀k ∈ K,∀t ∈ T ,∀sE ∈ SE , (VI.62)

CA
∗t,sE
k ≥

∑
k′∈K\{k}

CP
t,sE
k,k′ +M2(zk − 1), ∀k ∈ K, ∀t ∈ T , ∀sE ∈ SE , (VI.63)

where M2 is a big positive value that is greater that any possible value of CA
t,sE
k . Thus, Equation

(VI.58) can be linearised as: ∑
k∈K

CA
∗t,sE
k ≤ Ht, ∀t ∈ T , ∀sE ∈ SE . (VI.64)

VI.3.7 Flexibility of the sector shape

The definition of the decision variable wp,sE ,s
′
E (where sE < s′

E
, see Equation VI.43) together with

constraint (VI.53) (each elementary sector, except the first one in a given sector path, must have at
least one predecessor which is his direct neighbour) limit the feasible set of sector paths and, hence,
the resulting sectors. This issue is illustrated in Figure VI-2(a). The blue sector is perfectly feasible
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since the sector path sE1-sE2-sE4 satisfies the ascending order imposed by the definition of wt,sE ,s
′
E

and also verify the constraint (VI.53), since sE2 has the predecessor sE1 , which is his neighbour; and
sE4 has sE1 as neighbour. Contrary, the orange sector is not feasible, although perfectly operational.
The ascending order imposed in the definition of wt,sE ,s

′
E makes the sector path sE3-sE5-sE6 the only

possible solution that defines orange sector. However, this sector path does not satisfy constraint
(VI.53), since the elementary sector sE3 is the only predecessor of sE5 and they are not neighbours,
hence, it is infeasible.

(a) Infeasible configuration (b) Feasible configuration

Figure VI-2: Illustrative example of feasible and infeasible sectors

Although this limitation makes impossible to represent some sector shapes1, one can find
similar sectors that could be modeled. For example, the sector path sE3-sE5-sE6 is infeasible, but
these elementary sectors could be collapsed together by simply including sE2 in the sector path,
like sE2-sE3-sE5-sE6 . Hence, Figure VI-2(b) illustrates a feasible configuration, provided that the
other constraints are satisfied notably capacity constrains.

Despite this limitation on the feasible set of sector path does not represent a hard operational
limitation (i.e. similar sector path can be found), the total flexibility on the sector shape could be
accomplished by removing the ascending order of the sectors in the sector path that is forced by
the definition of wp,sE ,s

′
E variables. This is achieved by increasing sE and s′

E
index domain in the

variable definition. Thus, this variable wp,sE ,s
′
E could be defined as:

wp,sE ,s
′
E =


1, if elementary sector s′

E
is after sE in the

sector path which defines an operating ∀p ∈ P,∀sE , s
′
E
∈ SE |sE ̸= s′

E
. (VI.65)

This new definition demands the update of the index domains of certain constrains. In addi-
tion, two new constraints are required to guarantee the connectivity:

• If two elementary sectors sE and s′
E

have the same predecessor s′′
E

in the sector path, then
either s′

E
is after sE or sE is after s′

E
:

wp,s′′
E
,sE + wp,s′′

E
,s′

E − 1 ≤ wp,sE ,s
′
E + wp,s′

E
,sE , ∀p ∈ P, ∀sE , s

′
E
, s′′

E
∈ SE |sE ̸= s′

E
̸= s′′

E
. (VI.66)

• If one elementary sector s′
E

is successor of sE in the sector path, then sE cannot be successor
of s′

E
:

wp,sE ,s
′
E + wp,s′

E
,sE ≤ 1, ∀p ∈ P,∀sE , s

′
E
∈ SE |sE ̸= s′

E
. (VI.67)

Note that this alternative formulation increases the number of decision variables and constraints
considerably. In addition, it introduces a symmetry problem since the same elementary sector

1It is worth noting that the orange sector in Figure VI-2(a) could be represented with sector path sE5 -sE6 -sE3 that
perfectly satisfies the constraint (VI.53) but this sector path can not be modeled due to definition of decision variable
w

t,sE ,s
′
E .
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grouping could be represented with multiple sector paths (solutions). For example, the orange
sector in Figure VI-2(a) can be represented by following sector paths:

sE3-sE5-sE6 , sE3-sE6-sE5 , sE5-sE3-sE6 , sE5-sE6-sE3 , sE6-sE3-sE5 , sE6-sE5-sE3

The increased size and symmetry issue make this alternative formulation much more difficult
to solve with exact methods.

VI.3.8 MILP formulation for Model IV

Wrapping up, and for the sake of completeness, this section summarises the full MILP formulation
for this model.

min J = J∆A + JO + JS =
∑
k∈K

(Jk − J̄k)zk +
∑
p∈P

ψp
∑

sE∈SE

dp,sE + ρ
∑

p∈P\{1}

∑
sE∈SE

∑
s′E∈SE |sE<s′E

lp,sE ,s
′
E

(VI.68)
s.t. ∑

k∈Kf

zk = 1, ∀f ∈ F (VI.69)

∑
s′

E
∈SE |sE>s′

E

wp,s′
E
,sEAs′

E
,sE ≥ 1− dp,sE , ∀p ∈ P,∀sE ∈ SE (VI.70)

(1− dp,sE )|SE | ≥
∑

s′
E
∈SE |sE>s′

E

wp,s′
E
,sE , ∀p ∈ P,∀sE ∈ SE (VI.71)

wp,sE ,s
′
E + wp,s′

E
,s′′

E − 1 ≤ wp,sE ,s
′′
E , ∀p ∈ P, ∀sE , s

′
E
, s′′

E
∈ SE |sE < s′

E
, s′

E
< s′′

E
(VI.72)

wp,sE ,s
′′
E + wp,s′

E
,s′′

E − 1 ≤ wp,sE ,s
′
E , ∀p ∈ P, ∀sE , s

′
E
, s′′

E
∈ SE |sE < s′

E
, s′

E
< s′′

E
(VI.73)

lp,sE ,s
′
E ≥ wp,sE ,s

′
E + wp,s′

E
,sE , ∀p ∈ P \ {1},∀sE , s

′
E
∈ SE |sE < s′

E
(VI.74)

lp,sE ,s
′
E ≥ wp−1,sE ,s

′
E + wp−1,s′

E
,sE , ∀p ∈ P \ {1}, ∀sE , s

′
E
∈ SE |sE < s′

E
(VI.75)

CP
t,sE
k,k′ ≥ 0, ∀k ∈ K,∀k′ ∈ K \ {k}, ∀t ∈ T , ∀sE ∈ SE (VI.76)

CP
t,sE
k,k′ ≥ C

t
k,k′B

t,sE
k +

∑
s′

E
∈SE |sE<s′E

Ct
k,k′B

t,s′
E

k wp,sE ,s
′
E +M1(zk′ − 1)

∀k ∈ K, ∀k′ ∈ K \ {k},∀p ∈ P,∀t ∈ T p,∀sE ∈ SE

CA
∗t,sE
k ≥ 0, ∀k ∈ K,∀t ∈ T ,∀sE ∈ SE (VI.77)

CA
∗t,sE
k ≥

∑
k′∈K\{k}

CP
t,sE
k,k′ +M2(zk − 1), ∀k ∈ K, ∀t ∈ T , ∀sE ∈ SE (VI.78)

∑
k∈K

CA
∗t,sE
k ≤ Ht, ∀t ∈ T , ∀sE ∈ SE (VI.79)

zk ∈ {0, 1}, ∀k ∈ K (VI.80)

wp,sE ,s
′
E ∈ {0, 1}, ∀p ∈ P,∀sE , s

′
E
∈ SE |sE < s′

E
(VI.81)

dp,sE ∈ {0, 1}, ∀p ∈ P,∀sE ∈ SE (VI.82)

lp,sE ,s
′
E ∈ {0, 1}, ∀p ∈ P \ {1}, ∀sE , s

′
E
∈ SE |sE < s′

E
(VI.83)

A verification example of this formulation is presented in Annex B.
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VI.3.9 Relation with previous research

The Model IV introduces an additional level of capacity management where elementary sectors
are dynamically collapsed to build operating sectors at every period of time. From the demand
side, the problem is still focused on the selection of the "best" trajectory for each flight.

The level of capacity management proposed here, however, was considered in the litera-
ture only as an isolated problem (with no demand management). Some examples are found in
Sergeeva et al. (2017, 2015) or Treimuth (2018).

The definition of an holistic problem similar to the one corresponding to our Model IV was
discussed in Xu et al. (2020b), but the problem was not modeled. Thus, to the best of the author’s
knowledge, this is the first time such an holistic problem is formulated, which combines the se-
lection of alternative trajectories provided by the Airspace Users (AUs) and a DAC based on the
elementary sectors combination, while including a generic complexity metric at trajectory level
and a penalisation of big differences between consecutive configurations.

VI.4 Discussion on holistic DCB models

Nowadays, the ATC controllers are trained for deploying the ATC services on sectors which are
well known for them. In other words, the controllers need to be familiar with the major traffic
flows in a sector in order to provide separation with a sufficient level of safety. Moreover, the
sectors are operated in configurations in a way that the controllers are aware of the surrounding
sectors.

Hence, the current organisation of the capacity matches perfectly with the Model II. The
Model III still uses predefined operating sectors, so the controllers could be trained on them, but
the coordination load could increase since the sectors around may change. With respect to Model
IV, although it is the most promising from the point of view of capacity management, it is very far
away from the operational feasibility since the sector shape might be different every time period
and the controllers may deal with traffic flows and sector shapes for which they are not trained.
In addition, some uncommon sector shapes may appear as solution of Model IV as illustrated in
Appendix B.

Hence, the Model II has been identified as the most suitable to be tackled in this PhD since
the capacity management level still uses predefined configurations (what fits with what could be
nowadays accepted for ATCs), but in addition uses complexity metric for the traffic load assess-
ment.



VII
Solution for Model II: selection of

sector configurations

After examining the difficulty of the Mixed Integer Linear Programming (MILP) formulation of
Model II, this chapter proposes an adapted solution approach that could scale to solve a realistic
scenario. A hybrid approach, based on the integration of heuristic and exact optimisation meth-
ods, is introduced. Furthermore, three validation case studies are presented.

VII.1 Solution approach

A linear formulation for Model II has been presented in Section VI.1. Since the model contains
integer (binary) variables, the exact method to solve is Branch and Bound (B&B). The size of the
problem when facing real large-scale scenarios, however, may be impracticable for this kind of
methods. For this reason, a new heuristic is proposed as a hybrid method between Simulated
annealing and Dynamic programming.

VII.1.1 Hybrid method: Simulated annealing and Dynamic programming

In this hybrid method, the demand management and the capacity management is decoupled. The
simulated annealing acts as the main evolutionary engine and it is responsible of the demand side,
i.e. choosing which is the trajectory to be used per each flight. The dynamic programming is used
to tackle the capacity side and it is dedicated only to propose the best sector opening scheme given
a traffic condition.

75
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The state vector of the simulated annealing algorithm is −→x = [x1, x2, x3, ..., xNF
]. There is

one element of the vector (xi) for every flight and it indicates the selected trajectory (k ∈ Kf ) for
the specific flight f . Note that the vector −→x has NF (number of flights) positions and represents
by itself one possible solution of the demand side. Then, the contribution of the Airspace Users
(AUs) J∆A in the objective function (IV.2) can be computed.

With respect to the capacity side, for a given traffic situation provided with −→x it is possible
to obtain the optimum sector opening scheme. One decision (used configuration) has to be taken
at each time period, hence the problem could be separatet into subproblems based of the princi-
ple of Dynamic programming. This Dynamic programming algorithm is provided by the Ecole
Nationale de l’Aviation Civile (ENAC) and it is based on the work published by Vidosavljevic &
Delahaye (2017). The optimum sectorisation is obtained by the minimisation of three costs:

• Cost of open sectors, JO as in equation (VI.8).

• Penalisation cost for having differences in consecutive configurations, JS as in equation
(VI.9).

• Penalisation cost for having overloaded sectors.

This last penalty cost is the consequence of the relaxation of the constraint (VI.12) that ensures
that the demand can not exceed the capacity (in terms of complexity) in any active sector s and in
any instant of time t. Hence, the Dynamic programming will provide always an opening scheme
although the demand solution −→x may be infeasible from the capacity side point of view. When
the solution is not feasible, the cost of the Air Navigation Service Providers (ANSPs) is penalised.

The Dynamic programming, dealing with the capacity side, is embedded in the overall
engine based on Simulated annealing, dealing with the demand side, but minimising the global
costs (AUs and ANSPs costs). The following lines describe the pseudo-code of the hybrid method
proposed to solve the Model II:

T ← Initial temperature
Tmin ← Final temperature
N ← Number of transitions
α← Cooling rate (<1)
−→x ← Initial random trajectory allocation
−→y ← Opening scheme from dynamic programming for demand −→x
f(−→x ,−→y )← Objective function for demand −→x and sectorisation −→y
while T > Tmin do

while n < N do
−→x ∗ ← −→x
i← Random selection of a flight (bias to flights with more complexity)
x∗i ← Random selection of new trajectory for flight i
−→y ∗ ← Opening scheme from dynamic programming for demand −→x ∗

f(−→x ∗,−→y ∗)← Objective function for demand −→x ∗ and sectorisation −→y ∗

if f(−→x ∗,−→y ∗) < f(−→x ,−→y ) then
−→x ← −→x ∗

else
if exp(−f(−→x ∗,−→y ∗)−f(−→x ,−→y )

T ) > rand() then −→x ← −→x ∗

T ← αT
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VII.1.2 Heating loop

As explained in Section II.3.2.3, the simulated annealing process emulates the annealing process
of a metal from a high temperature to a lower temperature. The selection of the initial temperature
is important in order to allow a good exploration. A low initial temperature may result in a low
performance local minima. This is because with low temperature the probability of accepting
degradation of the solution is low, hence the simulated annealing could be stuck in a local minima
prematurely.

In this context, a heating loop is proposed in order to establish the initial temperature of the
cooling loop that is adapted to the difficulty of the problem. In this heating loop, the temperature
is increased until the number of solutions accepted at this temperature level reaches a required
threshold (Delahaye et al., 2019). The pseudo-code for the heating loop is:

T ← Initial temperature
A←Minimum number of accepted solutions
N ← Number of transitions
α← Heating rate (>1)
a← 0 (Number of accepted solutions)
while a < A do

a← 0
while n < N do
−→x ← Initial random trajectory allocation
−→y ← Opening scheme from dynamic programming for demand −→x
f(−→x ,−→y )← Objective function for demand −→x and sectorisation −→y
−→x ∗ ← −→x
i← Random selection of a flight (bias to flights with more complexity)
x∗i ← Random selection of new trajectory
−→y ∗ ← Opening scheme from dynamic programming for demand −→x ∗

f(−→x ∗,−→y ∗)← Objective function for demand −→x ∗ and sectorisation −→y ∗

if f(−→x ∗,−→y ∗) < f(−→x ,−→y ) then
a← a+ 1

else
if exp(−f(−→x ∗,−→y ∗)−f(−→x ,−→y )

T ) > rand() then a← a+ 1

T ← αT

VII.2 Validation case studies: General setup

Three validation case studies are described in this chapter. The first one consists of a performance
assessment that aims to compare the exact method to solve the MILP problem, i.e. the B&B algo-
rithm, with the proposed Hybrid method. The second case study consists of a sensitivity analysis
of the penalty cost for different consecutive configurations (ρ in Equation (VI.9)). The third vali-
dation exercise is a big scale case study solved with the Hybrid method aiming at demonstrating
the applicability of the method in an hypothetical use in operations.

The day analysed in these case studies is July 28th 2016. All trajectories crossing the Func-
tional Airspace Block Europe Central (FABEC) are computed, since the initial idea was to study
this geographical area. Nevertheless, and due to the computation time limitations encountered
with the proposed models, the geographical scope of the three validations was later on con-
strained to the upper airspace of Germany. In particular, two Area Control Centers (ACCs) are
considered in the first two case studies (performance assessment and sensitivity study) and are
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shown in Figure VII-1(a); while all seven German ACCs are analysed in the third case study (big
scale case study), which are shown in Figure VII-1(b).

(a) First and second case study (b) Third case study

Figure VII-1: Geographical scope of the validation case studies

Differently than the case study of Section V.4, the historical regulations are not used. The
idea is to regulate where and when the demand complexity exceeds the capacity threshold.

Next, the general setup and assumptions which are common in the three validation case
studies are introduced and the results of each validation are presented in sections VII.3, VII.4 and
VII.5, respectively.

VII.2.1 Generation of nominal and alternative trajectories

The preferred trajectories for the AUs are the optimum trajectories obtained with the DYNAMO
tool (Dalmau et al., 2018) minimising the direct operating costs. Considering the origin and
destination airports, the aircraft types, the meteorological conditions and the airspace routes,
DYNAMO provides the optimum 4D trajectories. A total of 15,994 flights crossing the FABEC
airspace are identified and simulated with DYNAMO. These are considered as nominal trajecto-
ries.

For the alternative trajectories it is important to note that since there are not historical regu-
lations, it is not possible to avoid directly the overloaded sectors. In order to identify the potential
airspace regions to avoid, the complexity is calculated using the nominal trajectories. The alterna-
tive trajectories are then obtained by optimisation (also with DYNAMO), while satisfying one of
the following constraints:

• Avoiding laterally the elementary sector with more complexity among those crossed by the
nominal trajectory.

• Avoiding vertically the elementary sector with more complexity among those crossed by the
nominal trajectory.

Hence, each flight has its nominal trajectory and up to 2 alternative trajectories, since al-
ternative trajectories cannot be provided by all the flights. For instance, there are cases where the
complex elementary sectors (regions to avoid) are over the airport and, in this case, they cannot be
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Table VII-1: Summary of nominal and alternative trajectories
Type Number of trajectories
Nominal 15,994
Lateral 13,301
Vertical 11,469
Total 40,764
Total (with delay options) 203,820

avoided. In other situations, the elementary sector to be avoided is defined over all the available
altitudes, making the vertical avoidance impossible.

The number of each type of alternative trajectory is summarised in Table VII-1. Recall that
the previous table and the following figures consider all trajectories crossing the FABEC airspace,
although some trajectories will not eventually be used due to the reduced geographical scope of
both case studies.

Figure VII-2 depicts a comparison between the lateral alternative trajectories and nominal
trajectories. Typically, the lateral alternative options are longer, consume more fuel and need
more trip time, but some negative values are obtained in very few situations. The same behaviour
is found when analysing the cost of trajectories. Yet, the extra total cost is always higher in the
alternative trajectories. Note that the nominal trajectories were the optimum ones, so having more
expensive alternative trajectories is an expected outcome. With respect to the vertical alternative
trajectories, the comparison with the nominal trajectories is shown in Figure VII-3. The same
behaviour is observed in time and fuel. Since the lateral track is the same (there are only changes
in the vertical profile of trajectories), the distance and the route charges of the vertical re-routed
options are the same as the nominal trajectories.

Finally, the delay options are considered as new trajectories since the pairwise complexity
must be calculated in advance. The delay discretisation is set to 10 minutes having the options: 0,
10, 20, 30 and 120 minutes. This leads to a total of 203,820 trajectories.

(a) Lateral vs. nominal magnitudes

(b) Lateral vs. nominal costs

Figure VII-2: Comparison between lateral and nominal trajectories
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(a) Vertical vs. nominal magnitudes

(b) Vertical vs. nominal costs

Figure VII-3: Comparison between vertical and nominal trajectories

VII.2.2 Complexity threshold establishment

In this study, the original geometric complexity metric described in Delahaye & Puechmorel
(2000); Vidosavljevic et al. (2017) is used as a measure of traffic load. It is worth noting that this
choice may provide ’null’ complexity in case of diverging and widely distributed traffic without
regard to the aircraft quantity.

First, it is necessary to identify the capacity threshold using this complexity metric. The
main hypothesis of the traffic complexity is that the same level of complexity induces the same
difficulty to solve that situation regardless of the number of involved flights and the sector in
which Air Traffic Control (ATC) provision occurs. The following approach is used to determine
the maximum level of complexity that one controller can manage.

The regulations of the day due to ATC capacity are analysed using the data of the EURO-
CONTROL’s Demand Data Repository 2 (DDR2). The rationale behind is that if a regulation was
implemented in one sector for this reason, it would indicate that the ATC controller was over-
loaded. In some occasions, the regulations are deployed on non-open sectors or at ACC level.
These regulations are not considered since no ATC controller was in charge of the airspace region.
The rest of the regulated sectors are analysed in terms of entry counts and complexity. These met-
rics are measured before and after the regulations in order to compare the effect of the regulation.

An example of such sector analysis is given in Figure VII-4 where the sector LFFFUZ, which is
open from 6:00 to 20:00 and it is regulated from 11:20 to 14:00, is analysed. The top figures VII-4(a)
and VII-4(b) contain the complexity and entry counts before the regulation. On the contrary, the
information after the regulation is shown in the figures below VII-4(c) and VII-4(d). The two left
figures VII-4(a) and VII-4(c) provide the traffic complexity evolution and, in the right figures VII-
4(b) and VII-4(d), the same traffic demand is evaluate using entry counts. The red color indicates
the period when the sector is regulated, while the green line indicates the proposed threshold in
complexity and entry counts respectively.

The complexity threshold is set such that it is violated only in the regulated period and the
demand is below during the active periods that are not regulated as well as after the regulation.
It contrasts with the case using entry counts, since the regulations are not systematically applied
when the demand is higher than the capacity. The Flow Management Positionss (FMPs) verify
other traffic parameters before applying a regulation. This is something that is not longer neces-
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sary with the use of a complexity metric that directly takes into account those criteria.

(a) Complexity (before regulation) (b) Entries (before regulation)

(c) Complexity (after regulation) (d) Entries (after regulation)

Figure VII-4: Complexity/Entry count assessment of sector LFFFUZ.

Another example is the sector LECBP1U analysed in Figure VII-5. In this case, the sector is
regulated from 8:20 to 12:00 with an entry count threshold a slightly higher than the nominal. In
terms of complexity, the regulated period contains a big peak of complexity and this explains the
regulation. It is important to note that, after the regulation, the complexity remains under the
value of the threshold. The regulation is also explained when looking at at the entry counts. After
the regulation, however, the entry counts still remain a bit higher the threshold.

There are, however, examples where the explained approach does not give satisfactory re-
sults. This is the case of sector EDYYBOLN (see Figure VII-6). The sector is open from 04:30 to
05:00 and regulated from 05:20 to 06:40. Note that the regulation is extended more than the time
the sector is really opened. Furthermore, the demand entries do not produce any overloaded pe-
riods prior to the implementation of the regulations, which supports the idea that the Network
Manager (NM) considers additional factors when executing a regulation. This is particularly rep-
resented by the high values of complexity before the regulation in comparison with the values of
entry counts. However, what it is difficult to explain and justify are the high values of complexity
after the regulation. A possible explanation could be that additional traffic goes trough the sector
as a consequence of other regulations. Another explanation could be that the complexity metric
is sensible to the traffic patterns and does not depend only on the number of flights. Hence, the
regulations that delay some flights may theoretically create more difficult situations.

Another example of unexpected behaviour is sector EDYYDWST analysed in Figure VII-7.
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(a) Complexity (before regulation) (b) Entries (before regulation)

(c) Complexity (after regulation) (d) Entries (after regulation)

Figure VII-5: Complexity/Entry count assessment of sector LECBP1U.

The sector is used from 08:30 to 21:00 and regulated from 8:40 to 21:40. Again the regulation
is applied even after closing the sector. This sector is particularly interesting because the are
overloads in entry counts after the regulation, but the traffic demand has low complexity. In other
words, considering only the values of complexity, this regulation was not even necessary. Besides
this, the resulting values of complexity and entry counts after the regulation remains above the
respective thresholds. Hence, the reason for this regulation remains unexplained.

Wrapping up, the method used in order to determine the complexity threshold has its limits
and further research is needed on it. In particular, the experience of air traffic controllers or experts
from NM would be very helpful, specially when assessing the cases difficult to explain. With these
limitations, the complexity threshold is set to 1,300 such that provides statistically the best value
considering the considered regulations.

VII.2.3 Algorithms setup

The B&B algorithm used in the first case study is applied using Gurobi 9.5.0, which is a commer-
cial solver (Gurobi, 2023). Gurobi offers many calibration options that change the behaviour of the
solver, for instance, the Presolve and the Heuristics. Presolve transforms the model into an equiv-
alent model that is smaller and easier to solve. Although Gurobi performs the B&B algorithm,
it allows some level of heuristics. The Heuristics value controls the time spent in Mixed Integer
Program (MIP) heuristics. Larger values produce more and better feasible solutions, at a cost of
slower progress in the best bound. Different combinations of Presolve and Heuristics are explored
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(a) Complexity (before regulation) (b) Entries (before regulation)

(c) Complexity (after regulation) (d) Entries (after regulation)

Figure VII-6: Complexity/Entry count assessment of sector EDYYBOLN.

Table VII-2: Gurobi configuration setup used in analysis
Presolve Heuristics

Off 5%
Auto 0%
Auto 5%
Auto 50%
Auto 75%

as summarised in Table VII-2. The Gurobi simulations are limited at a maximum of 5 hours. The
option of computing in parallel is available. This is particularly important when Gurobi is work-
ing with heuristics.

For the Hybrid method, the calibration parameters are:

• α = 0.995 (Cooling rate).

• N = 2000 (Number of transitions).

• Tmin = Tinitial · 10−4.

• A = 0.8N (Minimum number of accepted solutions in the heating loop).
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(a) Complexity (before regulation) (b) Entries (before regulation)

(c) Complexity (after regulation) (d) Entries (after regulation)

Figure VII-7: Complexity/Entry count assessment of sector EDYYDWST.

The simulated annealing component of the Hybrid method works linearly but the dynamic
programming part finds the sector opening scheme of the different ACCs with parallel computing.

VII.2.4 Time considerations

The complexity of the traffic demand is evaluated in samples of 20 seconds. Hence, there is an
instant of time every 20 seconds. The reason of such small discretisation is that the considered
complexity metric provides instantaneous information of the traffic load.

A period of time is linked with the capacity management. The sector configuration can
change at the beginning of each period, but the capacity limitation is verified for every instant
of time of the period. The period duration is set to 15 minutes in order to provide high flexibility
in terms of capacity management.

VII.3 Performance assessment case study: Branch and Bound vs.
Hybrid method

A validation study is proposed in order to compare the performance of the Hybrid method intro-
duced in Chapter VII.1 against the exact method solved with Gurobi.
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VII.3.1 Computation setup

The computer used for the performance assessment case study contains two Intel(R) Xeon(R) CPU
E5-2695 v3 @ 2.30GHz. The combination of both gives 28 cores with 56 threats. The simulations,
however, were launched with a maximum of 18 cores. The available RAM is 256GB.

VII.3.2 Definition of scenarios

The goal of this analysis is to benchmark the performances of the two methods with problem in-
stances of different difficulty. Two instruments have been used to generate the problem instances
of different difficulty: cumulative (total) complexity of the instance and the instance duration.
Figure VII-8 illustrates the number of nominal flights, the number of trajectories (note that one
flight might have more than one alternative trajectory) and the total value of aggregated complex-
ity over two ACCs in Germany (EDUUUTAC and EDUUUTAE) in 28th July of 2016 (see Figure
VII-1(a)). The complexity is aggregated because it is calculated over the two ACCs (with no dif-
ferentiation of sectors). Only two ACCs are considered in order to limit the computation time at a
maximum of 5h.

Figure VII-8: Number of flights, number of trajectories and aggregated complexity

In order to assess the effects of the level of complexity and the time duration, six scenarios
are defined and detailed in Table VII-3. Note that these scenarios are selected only to compare
the computation performance of the two solution methods. In the generation of the scenarios, the
following rules are considered:

• Only the flights, which nominal trajectory crosses the scenario geographic area in the sce-
nario time duration are considered.

• Only the trajectories in the scenario geographic area selected are considered. In other words,
if one alternative trajectory is not crossing the selected geographic area it is not considered.

• Only the trajectories in the scenario time duration are considered. It implies that, in the
scenarios of 1h duration it is not possible to have more than 1h of delay.

• The demand and capacity balance is only ensured during the scenario duration, regardless
what it may happen after.
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Table VII-3: Summary of scenarios
Low

complexity
Medium

complexity
High

complexity
1h

duration
2h

duration
3h

duration
Duration 1h 1h 1h 1h 2h 3h
Start time 01:00 06:00 10:00 00:00 00:00 00:00
End time 02:00 07:00 11:00 01:00 02:00 03:00
Periods 4 4 4 3 7 11
Instants 180 180 180 135 315 495
Flights 18 228 295 13 28 70
Trajectories 67 1630 2200 67 131 354
Sectors 40 40 40 40 40 40
Elementary
sectors

21 21 21 21 21 21

Configurations 62 62 62 62 62 62

Table VII-4: B&B computation times for the Low complexity scenario
Presolve Heuristics Computation time [s]

Off 5% 2.12
Auto 0% 0.97
Auto 5% 1.07
Auto 50% 1.03
Auto 75% 1.11

In both cases, Gurobi and Hybrid method, the penalty for different configurations of the
Model II is set to 0 (ρ = 0).

VII.3.3 Methods benchmark for different scenario complexity

The scenarios with different complexity are assessed in the following lines.

VII.3.3.1 Low complexity scenario

The Low complexity scenario has been solved with all the Gurobi setups listed in Table VII-2.
Although the problem seems easy to be solved with Gurobi, different computation times are ob-
served depending on the setup (see Table VII-4).

The same scenario is solved using the Hybrid method. The Hybrid method is launched three
times in order to check if there are differences due to the stochastic behaviour of the heuristics.
The optimal solution is obtained for each Hybrid method repetition. With respect to the resolution
time, it has been 21.69 minutes, 21.79 minutes and 22.29 minutes in each instance of the Hybrid
method. Although the resolution time is higher than in Gurobi, very good solutions are obtained
much before the end time as it can be seen in Figure VII-9. Yet, the use of the Hybrid method in
low complexity scenarios is not justified when Gurobi provides the optimum solution very fast.

VII.3.3.2 Medium complexity scenario

The Medium complexity scenario is more ambitious than the Low complexity scenario. Gurobi
does not find the optimum solution in 5 hours with any of the Gurobi setups. In fact, it is partic-
ularly relevant that with no Presolve, no feasible solution is found in 5 hours. The time evolution
of the different algorithms is shown in Figure VII-10.
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Figure VII-9: Objective function evolution with Hybrid Method in Low complexity scenario

The Upper Bound (UB) in the B&B algorithm indicates the objective function value of the best
integer feasible solution found. The Lower Bound (LB), by definition, indicates that the optimum
solution must have an objective function value higher or equal to it. The optimality gap indicates
the difference between the upper and the lower bounds and it is defined as follows:

gap =
UB− LB

UB
(VII.1)

The optimum solution is found when the upper and lower bounds are coincident and the
gap is null.

Hence, according to what is shown in Figure VII-10, Gurobi provides feasible solutions but
not the optimum one. The different Gurobi setups have different behaviours in terms of how fast
the first feasible solution is found and in the quality of the feasible solution found. Considering
the best upper and lower bounds, the gap with Gurobi is 39.09%.

With respect to the Hybrid method, it was launched three times in order to study its stochastic
behaviour. The computation times were 2.16 hours, 2.15 hours and 2.17 hours. In all instances,
the Hybrid method provides better feasible solutions than Gurobi (better objectives than the B&B
upper bound and closer to the lower bound) with a considerable reduction in the computation
time. In fact, considering the best lower bound obtained with Gurobi, the gap with the Hybrid
method is 29.23%. Hence, the Hybrid method performs much better than Gurobi when dealing
with the Medium complexity scenario.

VII.3.3.3 High complexity scenario

This scenario is too diffcult to be solved using Gurobi. No feasible solution is found in any of the
Gurobi setups and the solution is only lower bounded. Hence, no gap can be provided for the
Gurobi cases.

Three different repetitions are launched with the Hybrid method and the computation times
have been 2.40 hours, 2.43 hours and 2.46 hours. The solutions obtained are feasible and no big
time differences are observed with respect to the medium complexity scenario. The evolution of
the objective in time of the methods is shown in Figure VII-11. Considering the best lower bound
obtained with Gurobi and the best solution of the Hybrid method, the gap of the Hybrid method
is 68.90%. It is worth noting that the solution obtained with the Hybrid method might be close to



88 Chapter VII - Solution for Model II: selection of sector configurations

Figure VII-10: B&B vs Hybrid method in Medium complexity scenario

the optimum solution, but the big value of gap obtained may be the consequence of a low value
obtained in the lower bound.

Comparing Gurobi and the Hybrid method, the high complexity scenario is intractably with
B&B but it can be addressed easily with the Hybrid method.

Figure VII-11: B&B vs Hybrid method in Medium complexity scenario

VII.3.4 Methods benchmark for different scenario durations

This section aims at comparing the Gurobi and the Hybrid methods when dealing with scenarios
with different time duration. The scenarios were selected during the night hours in order to avoid
inferences due to big changes of complexity or in the number of flights or trajectories. Since the
difficulty of the scenarios remains moderate in terms of complexity, number of flights and trajec-
tories, the optimum solution has been found with Gurobi for all the Gurobi setups given in Table
VII-2. With respect to the Hybrid method, three repetitions are considered in order to evaluate the
stochastic behaviours. All the scenarios are solved with Gurobi and the Hybrid method and the
resolution times are summarised in Table VII-5.
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Table VII-5: Summary of the resolution times for different temporal scenarios
1h 2h 3h

B&B
Presolve Off

Heuristics 5%
2.31 s 14.78 s 534.69 s

B&B
Presolve Auto
Heuristics 0%

1.12 s 4.12 s 25.82 s

B&B
Presolve Auto
Heuristics 5%

1.16 s 4.66 s 27.74 s

B&B
Presolve Auto
Heuristics 50%

1.17 s 4.64 28.75 s

B&B
Presolve Auto
Heuristics 75%

1.18 s 4.72 s 28.61 s

Hybrid 1 22.42 min 34.66 min 74.70 min
Hybrid 2 23.08 min 37.74 min 77.50 min
Hybrid 3 21.86 min 34.06 min 76.31 min

The resolution times are better with Gurobi but this is because the complexity is very low
in all the scenarios. It was already concluded in the previous section that with low complexity
and low number of flights/trajectories Gurobi performs very well. The purpose of this study is
to evaluate how the methods behaves when the scenario duration increases and consequently the
difficulty of the problem. The resolution times when using Gurobi look to have an exponential
trend while the resolution times with the Hybrid method are comparatively less impacted by the
increase of the scenario difficulty.

The average ratio between the computation time for the 3h scenario and the 1h scenario is
3.38. In the case of the B&B algorithm, this ratio is 23.96. This can be observed in Figure VII-12 (the
case with Presolve off is disregarded because of its bad performance). Hence, the Hybrid method
is much more scalable and more suitable for real scale scenarios.

VII.4 Sensitivity case study: penalty for sector configuration
changes

A sensitivity analysis case study is proposed to assess the impact of the penalty cost for differ-
ent consecutive configurations in the resulting solution. This sensitivity analysis consists of the
exploration of different values of the parameter ρ in Equation (VI.9).

VII.4.1 Definition of the scenarios

This sensitivity study is conduced on the medium complexity scenario defined previously in Table
VII-3. The 1 hour duration scenario covers two ACCs in Germany (EDUUUTAC and EDUUUTAE)
and, since the period duration is 15 minutes, there are 4 potential changes of sector configurations.

The Demand and Capacity Balancing (DCB) problem is solved in these conditions with four
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Figure VII-12: B&B vs Hybrid method resolution times

different values of ρ: 0, 15, 30 and 50 € per elementary sector change.

Only the Hybrid method is used in order solve the DCB problem.

VII.4.2 Results

The different costs for the different values of ρ are summarised in Table VII-6, while the resulting
sector opening schemes are illustrated in Figure VII-13. Each item of Figure VII-13 describes in
grey the open configuration during each period and in white the open operating sectors. Look-
ing at the figures horizontally (i.e. rows of the table), one can see how the sectors are split and
collapsed. For example, in Figure VII-13(c), the configuration C3 is open from 6:00 to 6:30 contain-
ing the three sectors EDUUFFM1F, EDUUFUL1U and EDUUWUR1Z. Then, from 6:30 to 7:00 the
open configuration is C1 such that the sectors EDUUFFM1F, EDUUFUL1U and EDUUWUR1Z are
collapsed together to form sector EDUUCNTR.

With ρ = 0, there is no penalty for different consecutive configurations. This is specially
visible in the ACC EDUUUTAC where the configuration C4C with 4 sectors is open from 6:00 to
6:15. Then, the number of sectors is progressively reduced by using the configuration C3 with
3 sectors from 6:15 to 6:30 and the configuration C1 with one sector from 6:30 to 7:00. The ACC
EDUUUTAE, however, is managed with 2 sectors from 6:30 to 6:30 and with 4 sectors from 6:30 to
7:00. A total of 25 elementary sectors changed from operating sector at some period, but with no
effect in the penalty cost due to the value of ρ. With ρ = 0, the capacity provision is better adapted
to the demand needs providing the lowest extra costs for the AUs.

With ρ = 15, the configuration C3 in EDUUUTAC is open from 6:00 to 6:30, avoiding the use
of 4 sectors at the beginning and reducing the number of elementary sectors that change. In fact,
this solution saves the penalty of collapsing the sectors EDUUFFM1C and EDUUFFM3C to EDU-
UFFM1F. In EDUUUTAE, the increment of open sectors with the time is now more progressive
with the use of the configuration E3 from 6:30 to 6:45. With respect to the penalty for different
consecutive configurations in EDUUUTAE, it is the same than with ρ = 0, since the number of
sector changes is the same. The overall number of elementary sectors that changed from oper-
ating sector at some period with ρ = 15 is 21. Regarding the extra cost for the AUs, it is higher
than with ρ = 0, which is an expected consequence due to the use of less open sectors. Since the
capacity provided is lower, the demand side initiatives have a greater impact.

The opening scheme obtained with ρ = 30 in EDUUUTAC is the same as the obtained with
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ρ = 15. In EDUUUTAE, the sector EDUUERL1R remains open during all periods avoiding the
penalty for dividing the sector EDUUERL1R in the sectors EDUUERL12 and EDUUERL22. The
sector EDUUOHAP, however, is divided 3 sectors. The total number of elementary sectors that
changes in this case is 19, which is lower than before. Note that the number of controller hours is
higher than with ρ = 15 because of the use of 4 sectors instead of 3 from 6:30 to 6:45. This explains
why the extra cost for the AUs is lower than the case of ρ = 15.

Finally, the penalty cost for different consecutive configuration becomes predominant with
ρ = 50. Note that the opening schemes obtained are static avoiding changes of elementary sectors.
Hence, the penalty obtained in that case is null. The capacity provision can not adapt to the
demand needs and therefore, the extra extra cost for the AUs is the highest of the analysed values
of ρ.

(a) EDUUUTAC (ρ = 0) (b) EDUUUTAE (ρ = 0)

(c) EDUUUTAC (ρ = 15) (d) EDUUUTAE (ρ = 15)

(e) EDUUUTAC (ρ = 30) (f) EDUUUTAE (ρ = 30)

(g) EDUUUTAC (ρ = 50) (h) EDUUUTAE (ρ = 50)

Figure VII-13: Sector opening schemes for EDUUUTAC and EDUUUTAE with different values
of ρ (Euros per elementary sector change).



92 Chapter VII - Solution for Model II: selection of sector configurations

Table VII-6: Summary of costs (ρ given in € per elementary sector change)
ρ = 0ρ = 0ρ = 0 ρ = 15ρ = 15ρ = 15 ρ = 30ρ = 30ρ = 30 ρ = 50ρ = 50ρ = 50

Extra AU cost [€] 1,428 1,726 1,639 1,753
ANSPs cost [€] 3,161 2,860 3,011 3,613
Penalty cost [€] 0 315 570 0
Total cost [€] 5,016 5,106 5,153 5,311

VII.4.3 Discussion on the results

As expected, when the value of ρ is low, the number of changes of configurations is higher and the
capacity can be better adapted to the demand needs, what is reflected in a low value of extra cost
for the AUs. When ρ has intermediate values the sectors are open for longer time, reducing the
number of elementary sectors that change. With greater values of ρ, the opening schemes become
static and the capacity provision is not adapted to the traffic demand leading to high values of
extra cost for the AUs.

Choosing among the the values of ρ would require expert judgement regarding the oper-
ational feasibility of the resulting opening schemes at ACC level. The feedback of experienced
controllers in the corresponding ACCs would be very valuable in this type of assessment. High
values of ρ are not desirable in order to avoid too rigid (i.e., static) opening schemes, but low
values may result in too many changes that might be difficult to operate.

VII.5 Big scale case study

The aim of this section is to assess a realistic case in order to check the operational feasibility of the
proposed concept of operations introduced in Section IV.1 and the Hybrid method. Furthermore,
a benchmark between the proposed Model II and the best setup of the current system (where
demand and capacity management are deployed separately and using entry counts) is provided.

This big scale case study addresses the traffic over the upper airspace in Germany (7 ACCs)
during the first wave of aggregated complexity from 06:00 to 12:00 (Figure VII-1(b)). The number
of flights/trajectories and the aggregated complexity over the considered airspace is shown in
Figure VII-14. According with the aggregated complexity, there are two waves of aggregated
complexity, having one period of low complexity at midday.

The problem is solved first with no penalty cost associated to sector configuration changes
(ρ = 0 in Equation (VI.9)). This allows for fair comparison with the baseline scenario that is
presented below in section VII.5.2. Then, a repetition of the same scenario is given for ρ = 15 €
per elementary sector change.

VII.5.1 Computation setup

The computer used for the big scale study contains two CPUs Intel(R) Xeon(R) Gold 6230 CPU @
2.10GHz. The combination of both gives 40 cores with 80 threats. The simulations, however, were
launched with a maximum of 30 cores. The available RAM is 1TB.

VII.5.2 Baseline scenario

The baseline scenario is defined in order to compare the results obtained with the Model II and
solved using the Hybrid method. Differently than what it is done in Section V.4, the historical reg-
ulation data is not used. The main reason is to avoid having regulations with diverse motivation
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Figure VII-14: Number of flights, number of trajectories and aggregated complexity

that may not be covered by the use of complexity metrics. Hence, the baseline scenario is created
from scratch using NEST v1.6 in four steps:

1. Import the trajectories. The initial traffic demand consists of the trajectories optimised with
DYNAMO. Those trajectories are imported to NEST.

2. Optimisation of the capacity side. The opening schemes of the 7 ACCs considered are opti-
mised with the Dynamic Airspace Configurations (DAC) tool embedded in NEST based on
the Improved Configuration Optimizer (ICO) algorithm (Verlhac, C. and Manchon, S., 2005).
This optimisation of the capacity side is done measuring the demand and the capacity in en-
try counts. The minimum configuration duration is set to 15 minutes and no limit on the
available number of controllers is considered. In addition, no operational limit is considered
between consecutive configurations. The idea behind is to create a baseline scenario where
the capacity side is optimised with the best possible conditions. The resulting cost for the
ANSPs during the studied period is 174,922€.

3. Identification of regulations. Once the opening scheme is defined, the regulations are cre-
ated where the traffic demand is higher that the capacity in entry counts. The regulations are
simulated with NEST considering that the minimum duration of a regulation is 20 minutes.
Consecutive regulations in less than 60 minutes are merged. The regulation are only identi-
fied in the 7 ACCs and from 06:00 to 12:00. A total number of 62 regulations are created.

4. Allocation of delay. The delay is allocated with the Computer-Assisted Slot Allocation
(CASA) based on Ration-by-Schedule (RBS) algortihm. A total of 28,285 minutes of delay
is given to 1,154 flights, what represents a cost for the AUs of 2,291,085€. The average delay
is 25 minutes, being the maximum 71 minutes. The median is 20 minutes, and the standard
deviation 17.6 minutes. These values for CASA are summarised in Table VII-7.

There are some considerations to be taken when comparing the baseline scenario with the
Model II scenario. The first consideration is that the regulations in the baseline scenario are
identified considering entry counts. This means that some regulations may be applied in re-
gions/periods with low complexity. On the contrary, there may be regions/periods with high
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complexity not regulated because there is a low number of entry counts. This phenomenon, how-
ever, is part of the justification for the use of complexity metrics instead of entry counts.

Another consideration is the use of regulations by itself. The delay allocation is done to main-
tain the demand below the capacity during the regulations what does not prevent overloads after
the delay allocation in the non regulated areas. In fact, the baseline scenario has some overloads
after the delay allocation process.

These considerations contrast with the scenario with Model II, where the concept of regulation
is not used since the demand is maintained below the capacity (in complexity metric) in all open
sectors, so there are no remaining overloads after the DCB process.

The purpose of comparing the baseline scenario with the scenario with Model II is threefold:

• Study the impact of considering the demand and capacity management into the same opti-
misation problem. The baseline scenario is sequential. First, the capacity side is optimised
and then the demand side is considered by the allocation of delay.

• Study the impact of using complexity metrics instead of entry counts.

• Study the impact of the use of alternative trajectories together with delay allocation as de-
mand management measure.

VII.5.3 Results with the Hybrid method

This section is focused on the results obtained with the resolution of the Model II with the Hybrid
method proposed in Section VII.1. The cooling loop of the method needed 30.17 hours to finish
and provided a feasible solution.

For ρ = 0, the opening schemes for all the considered ACCs and periods is shown in Figures
VII-15-VII-21. The open configurations are indicated in grey and the open sectors in white for each
time period. Reading horizontally (i.e., rows in the table), one can see how the sectors are split
and collapsed. When one sector is not directly obtained by collapsing the sectors it has immedi-
ately to the left of this table it is indicated with a *. For example, in Figure VII-21(b), at 6:50 the
airspace delimited by sectors EDYYHMNS, EDYYHRHR and EDYYHSOL is reallocated to sec-
tors EDYYH5MH, EDYYH5RH, EDYYH5SH, EDYYH5SL and EDYYH5WL. The * indicates that
the sector EDYYHMNS is not divided directly to EDYYH5MH and EDYYH5RH and the sector
EDYYHRHR is not divided directly to EDYYH5SH and EDYYH5SL.

Although, there is variability in terms of open sectors, in general, the Model II solution opens
less sectors than the solution obtained in the baseline scenario. In fact, the cost of the open sectors
with Model II is 122,260€, which contrasts with the 174,922€ of the baseline scenario (representing
a 28.47% less). In both cases, baseline and Model II scenarios, the capacity management is done
with no limits in the number of controllers and in consecutive configurations aiming at provid-
ing the best capacity management possible (independently on the operational feasibility of the
opening scheme).

With respect to the demand side, the results are summarised in Table VII-7. The total ground
delay obtained with the Hybrid method is 6,410 minutes, which represents a 77.34% less than the
baseline scenario with CASA. The number of flights with ground delay is reduced by 58.32% with
the Hybrid method. Since Model II has re-routing possibility, the arrival delay is different than
the ground delay because the trip time of the used alternative trajectories is different. The total
amount of arrival delay is lower (a 74.01% less) in the Hybrid solution which is translated into a
cost of 595,339€. The number of flights with arrival delay is a 17.38% lower than in the baseline
scenario.
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Table VII-7: Summary of the results for the AUs
CASA Model II ∆

C
os

t

Total AUs regulation cost [€] 2,291,085 643,873 -71.90%
Arrival delay cost [€] 2,291,085 595,339 -74.01%
∆ Fuel cost [€] 0 20,074 -
∆ Route charges cost [€] 0 26,569 -
∆ Trip time cost [€] 0 1,891 -

D
el

ay

Total ground delay [min] 28,282 6,410 -77.34%
Delayed flights (ground) 1,154 481 -58.32%
Total arrival delay [min] 28,282 7,350 -74,01%
Delayed flights (arrival) 1,154 988 -14.38%
Max. arrival delay [min] 71 35.3 -50.34%
Average arrival delay [min] 25 7.4 -69.65%
Median arrival delay [min] 20 5.3 -73.70%
Std. Dev. arrival delay [min] 17.6 7.5 -57.27%

Tr
ip

da
ta ∆ Fuel [Tn] 0 40 -

∆ Trip time [min] 0 689 -
∆ Distance [NM] 0 2,273 -

Tr
aj

.
op

ti
on

s Nominal 2,992 2,059 -
Lateral 0 423 -
Vertical 0 510 -

The maximum value of arrival delay is 35.3 minutes which is lower than the value obtained
with CASA. This is clearly represented in Figure VII-22 where the boxplot of the arrival delay for
Model II is presented. In fact, the average arrival delay is 7.4 minutes (69.65% less) and the median
is 5.3 minutes (73.70% less), being the standard deviation 7.5 (52.27% less).

Such reduction in the value of arrival delay is due to holistic optimisation of the demand and
capacity sides together with the use of alternative trajectories. In addition, the use of complexity
metric allows to solve the DCB imbalance by cherry peaking the trajectories that contribute the
most to the imbalance and modify them accordingly. Indeed, 2,059 flights used their nominal or
original trajectories (with or without delay), 423 flights used their lateral avoidance trajectories
and 510 used their vertical avoidance trajectories. The use of alternative trajectories, however,
incurs with additional costs due to the extra fuel burned, 20,074€; the extra route charges, 26,569€;
and the extra trip time flown, 1,891€. The overall cost for the AUs of the solution provided by
Hybrid method is 643,873€, what represents a 71.90% less than in the baseline scenario.

Figure VII-22: Arrival delay boxplot with outliers

Although the previous scenario has been solved with no penalty in consecutive configura-
tions (ρ = 0) in order to be compared with the baseline scenario, other values of ρ may be con-
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Table VII-8: Summary of costs for different values of ρ (given in Eur per elementary sector
change).

ρ = 0ρ = 0ρ = 0 ρ = 15ρ = 15ρ = 15 ∆∆∆

Cost

Total AUs regulation cost [€] 643,873 654,287 1.6%
Arrival delay cost [€] 595,339 603,084 1.3%
∆ Fuel cost [€] 20,074 21,601 7.6%
∆ Route charges cost [€] 26,569 26,049 -2%
∆ Trip time cost [€] 1,891 3,553 87.9%

Delay

Total ground delay [min] 6,410 6,460 0.8%
Delayed flights (ground) 481 479 -0.4%
Total arrival delay [min] 7,350 7,445 1.3%
Delayed flights (arrival) 988 980 -0.8%
Max. arrival delay [min] 35.3 120 239.9%
Average arrival delay [min] 7.4 7.60 2.7%
Median arrival delay [min] 5.3 6.18 16.6%
Std. Dev. arrival delay [min] 7.5 8.24 9.9%

Trip data
∆ Fuel [Tn] 40 43 7.5%
∆ Trip time [min] 689 706 2.5%
∆ Distance [NM] 2,273 2,505 10.2%

Traj. options
Nominal 2,059 2,051 -0.4%
Lateral 423 432 2.1%
Vertical 510 509 -0.2%

ANSP costs
Cost sectors 122,260 126,688 3.6%
Penalty 0 10,320 -

sidered in real operations, specially for avoiding fast changes of configurations. As an illustrative
example, one repetition of the same scenario but with ρ = 15 € per elementary sector change has
also been solved.

The summary of the results with ρ = 0 and ρ = 15 are given in Table VII-8. As concluded
in Section VII.4, the opening schemes obtained with ρ = 0 are the best adapted to the demand
needs and this is why the cost for the AUs is higher with ρ = 15. The maximum arrival delay
increases considerably from 35.3 to 120 minutes, but such big differences are explained due to the
discretisation of the delay (recall that only 10, 20, 30 ans 120 minutes were given as delay options).

VII.5.4 Discussion on the obtained results

The Hybrid method has demonstrated its capability for solving a scenario significantly big in
terms of time and geographical area covered. The resolution time, however, was 30 hours and,
although it is sufficient for addressing scenarios in the pre-tactical phase, further research may be
done in order to speed up the algorithm (specially if bigger scenarios are considered). One possible
option could be the parallelisation of the Hybrid method algorithm. With the current version
of the method, the dynamic programming part (which deals with the capacity management) is
executed in parallel, but the overall simulated annealing algorithm run sequentially. Although
the simulated annealing algorithm is not amenable to be computed in parallel, some parts may be
re-considered.
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Analysing the outcomes, the results obtained with Model II are significantly better than the
results of the baseline scenario and even better solutions may be obtained with more granularity
in the delay discretisation.

The baseline scenario represents the best one can do with the current system, i.e. optimisation
of the opening scheme (with unlimited ATC resources) and allocation of delay in the regulated
periods/areas using entry counts. Note that the baseline scenario is facing remaining overloads
even when the DCB process is finished.

On the contrary, the scenario with Model II maintains the demand below the capacity (mea-
sured with complexity metric) in all open sectors and times. The use of complexity metrics makes
that not all flights contributes in the same way to the traffic demand. Hence, when a hotspot is
detected it can be solved by modifying the flight or flights (if needed) that contribute the most
(cherry picking). Furthermore, the consideration of the demand and capacity management to-
gether in the same problem allows a better use of the resources. Moreover, the use of alternative
trajectories gives flexibility in the traffic demand management that helps to reduce significantly
the amount of allocated delay.

Hence, the results show that the concept of operations proposed in this PhD and the Model
II improves considerably the current system, even when it is optimised with no ATC limitations.

In real operations, however, the value of ρ might be different than 0 in order to avoid fast
changes of configuration. The use of expert judgement would be required in order to establish the
adequate value of ρ for each ACC.





VIII
Concluding Remarks

The recovery of the air traffic demand to values close to before the COVID-19 pandemic re-
quires the improvement of the Air Traffic Flow and Capacity Management (ATFCM) models and
methodologies in order to protect the Air Traffic Management (ATM) systems from overloaded
situations.

The current ATFCM processes deploy the capacity management initiatives and the demand
management measures independently, leading to airspace sectorisations that may be not optimal
after the demand management initiatives are deployed. Moreover, the demand and capacity are
evaluated using entry counts as proxy of the Air Traffic Control (ATC) workload. This metric,
however, does not properly evaluate the harmonisation of the traffic and the difficulty to control
certain traffic patterns, what leads to capacity buffers. In addition, the demand management
initiatives are based on delay allocation with a limited flexibility for the Airspace Users (AUs).
This PhD aimed at addressing the limitations of the current system by studying the introduction of
complexity metrics in order to evaluate the demand and the capacity in the ATFCM processes, the
holistic integration of the demand and capacity management into the same optimisation problem
and the use of alternative re-route options in order to give more flexibility to the AUs.

During the execution of this PhD, some questions were raised and were evaluated; some of
these questions remain unsolved and might be the subject of future research.

VIII.1 Summary of conclusions and contributions

The following lines contain the main conclusions achieved in this PhD, along with a brief sum-
mary of the principal scientific contributions:
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• The integration of the Dynamic Airspace Configurations (DAC) and Flight Centric Air Traf-
fic Control (FCA) capacity management solutions, while using complexity metrics, was
studied in Chapter III. A novel delineation method to identify when/where DAC and FCA
shall be applied was also presented. Results showed that the integration of DAC and FCA
has benefits in the cost-effectiveness area when the dynamic integration is proposed. The
static integration of DAC/FCA is penalised by the the lack of a trajectory reallocation mech-
anism in the FCA algorithm leading to a big increase of underloads and consequently need
of more controller hours.

• A new concept of operations was presented in Chapter IV where the Network Manager
(NM) and the Air Navigation Service Providers (ANSPs) functions are integrated into the
same optimisation problem and the AUs are involved into the ATFCM process with the
possibility of submitting re-route options. This concept of operations represents a significant
paradigm shift since the NM takes part of the current ANSP functions and it responsible for
the airspace sectorisation (capacity management) and for the allocation of delay and choice
of the final trajectory used (demand management).

• Two Demand and Capacity Balancing (DCB) models dealing with demand management
were detailed in Chapter V. The Model 0 uses entry counts at Traffic Volume (TV) level as
a first attempt to consider the ATC workload. The use of TVs allows to regulate particular
traffic flows instead of deploying a regulation to the full sector. The Model I is an evolution
and considers a generic complexity metric instead of entry counts. The linear formulation
of two models was also provided. A 24h scenario over the full ECAC area was analysed
with Model 0 and compared with the current system. Results showed that the introduction
of alternative trajectories as a demand measure together with the optimisation of the delay
allocation could reduce the total amount of ground delay by a 78.19% and the total cost
of the regulations was reduced by 76.20% proving that the model presented has enormous
advantages in terms of delay and cost with respect to the current system. Significant big
values of remaining overloads were identified after the regulations with the current system
and with Model 0, what highlights that entry counts are not a good proxy of ATC complexity.

• Three additional DCB models dealing with the holistic demand and capacity management
using complexity metrics are provided in Chapter VI. The diference between the models is
the level of capacity management allowed. A simple verification is provided in Annex B in
order to complement the definition of the models and verify their formulations.

• A new Hybrid method, which combines Simulated annealing with Dynamic programming,
was proposed in Chapter VII in order to address the Model II (optimisation of the open-
ing scheme given a set of available configurations). A performance assessment was done in
order to benchmark the Hybrid method and the exact method using Gurobi. The Hybrid
method performed better with scenarios with medium and high difficulty, where Gurobi
could not find the optimum solution. Moreover, the Branch and Bound (B&B) was more
sensitive against the scenario duration in comparison with the Hybrid method. Moreover,
a sensitivity study of the parameter that models the penalty for different consecutive con-
figurations was assessed. Low values of such parameter provided sector opening schemes
better adapted to the traffic demand while high values of such parameters were translated
to static sectorisations. Finally, a 6h scenario over the upper airspace of Germany is anal-
ysed with Model II and compared with a baseline scenario, which reflects the best that can
be achieved with the current system based on entry counts. The resulting opening schemes
were a 28.47% cheaper and the resulting cost for the AUs was a 71.90% lower proving the
advantages of the proposed Model II.
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VIII.2 Future work

New questions and areas of research have been identified during the realisation of this PhD. Con-
sidering the presented contributions and, in line with the scope and limitations of the PhD, some
future work is proposed:

• The lack of reallocation mechanism in the used FCA algorithm leaded to a big amount of
underloads. Hence, the inclusion of this mechanism should be considered in future research.

• The maximum complexity or threshold that an ATC controller can accept safely requires fur-
ther research. Some human-in-the-loop experiments should be done with trained controllers
in order to collect feedback and define a consolidated threshold.

• The models presented in this PhD may have fairness issues. In future work, the models
require improvements in order to protect the DCB solution against equity imbalances.

• Uncertainty factors should be considered in order to propose models and methods more
robust.

• A Hybrid resolution method was proposed for Model II. Further research is required for
proposing resolution methods for Models III and IV.

• The computation performance of the Hybrid method requires further improvements. Al-
though the Simulated annealing algorithm works sequentially by definition, some parts of
the algorithm may be computed in parallel.

• The proposed formulation for Model IV does not guaranty the operational feasibility of the
resulting sector shapes (see Annex B). Further research is required in the formulation in
order to avoid isolated sectors.





A
Illustrative example of complexity

aggregation at sector level

A simple illustrative example (see Figure A-1) is provided in order to facilitate the comprehension
of the process of calculation of the complexity at sector level from the complexity at trajectory
level. This example refers to only one instant of time t1. An hypothetical airspace is divided in
four elementary sectors (sE1 , sE2 , sE3 , sE4), which can be collapsed into two operating sectors (s1
and s2). This grouping is provided through the set Es. For this particular example, the set Es is
defined as: Es1 = [sE1 , sE2 ] and Es2 = [sE3 , sE4 ].

Figure A-1: Illustrative example of complexity calculation at sector level.

Furthermore, there are two flights, f1 and f2; and f1 has also two alternative trajectories, i.e.
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Table A-1: Complexity per pairs of trajectory for the illustrative example of Fig. A-1
Receiver (k) Generator (k′) Ct1

k,k′

k1 k3 1
k2 k3 0
k3 k1 1
k3 k2 0

Table A-2: Complexity at trajectory level and at sector level for the illustrative example of Fig.
A-1

CT
t1,s
k Ct1,s

S

Sector (s) Receiver (k)
zk1 = 1

zk2 = 0

zk1 = 0

zk2 = 1

zk1 = 1

zk2 = 0

zk1 = 0

zk2 = 1

s1

k1 1 0
2 0k2 0 0

k3 1 0

s2

k1 0 0
0 0k2 0 0

k3 0 0

k1 and k2, while f2 has only the trajectory k3. Recall that the pairwise complexity is precomputed
for all possible combinations of flights and their alternative trajectories regardless if the trajectories
are finally retained by the DCB algorithm or not.

In this example, a very simple complexity metric is used for illustrative purposes only: a
value of 1 will be given if two aircraft are close to each other and 0 if not. These values are sum-
marised in Table A-1, while Figure A-1 shows with a small circle the position of each aircraft and
with a dotted circle what is considered the "vicinity" environment of each aircraft.

The complexity CT
t,s
k associated to trajectory k in sector s and at time t1 depends on whether

trajectory k is inside sector s at time t, but also on which trajectory is finally used (and it is reflected
through variables zk and zk′):

CT
t,s
k =

∑
sE∈Es

B
t,sE
k

∑
k′∈K\{k}

Ct
k,k′zk′zk, ∀k ∈ K,∀t ∈ T ,∀s ∈ S. (A.1)

In this example there are only two options: either trajectory k1 or trajectory k2 can be selected.
Trajectory k3 is going to be always selected since there is only one possible trajectory for flight f2.
Table A-2 provides the values of CT

t,s
k when trajectory k1 is used (zk1 = 1) and when trajectory k2

is used (zk2 = 1).

With these values it is easy to obtain the complexity at sector level Ct,s
S using the following

equation:
Ct,s

S =
∑
k∈K

CT
t,s
k , ∀t ∈ T , ∀s ∈ S. (A.2)

When trajectory k1 is used (zk1 = 1) the complexity of sector s1 is 2 and the complexity of sector
s2 is 0. On the other hand, when trajectory k1 is selected (zk1 = 1), the complexity is zero in all
sectors. These results are summarised in Table A-2.



B
Simple verification example

For the sake of illustration and to verify the proposed models, a simple example is presented and
solved in this appendix. The models are solved using an Intel(R) Xeon(R) CPU X5355 @ 2.66GHz
using 4 cores (8 threads). The solver used is Gurobi 9.1.1.

B.1 Scenario setup

The example comprises 4 flights, each having two different trajectory options, flying in an airspace
defined by 25 elementary sectors during 5 different periods of time and the period duration is 1
instant of time t. This example is illustrated in Figure B-1, where the flights, f1, f2, f3 and f4, and
their trajectory options, k1, k2, k3, k4, k5, k6, k7 and k8, are coloured in green, yellow, blue and red,
respectively. Hence, the trajectories are linked with the flights as follows:

Kf1 = {k1, k2}
Kf2 = {k3, k4}
Kf3 = {k5, k6}
Kf4 = {k7, k8}

(B.1)

where the initial and preferred trajectories by the AUs are k1, k3, k5 and k7, since the choice of k2,
k4, k6 and k8, inquire an assumed extra cost of 250€ for them. All trajectories follow a straight line
and are flown at constant speed, such that they change one elementary sector every time period
(the trajectory evolution is shown in Figure B-1).

In this example, a simple complexity metric is used for illustrative purposes. The complexity
that trajectory k′ generates on trajectory k at time t, Ct

k,k′ , takes the value of 1 when trajectories
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(a) p=t=1 (b) p=t=2 (c) p=t=3

(d) p=t=4 (e) p=t=5

Figure B-1: Evolution of trajectories.

k and k′ are in the same elementary sector and 0 in all other cases. Hence, in the case where
one operating sector s contains an elementary sector with two trajectories inside (k and k′), the
complexity at trajectory level, CT

t,s
k and CT

t,s
k′ , will take the value of 1 and, as a consequence, the

complexity at sector level, Ct,s
S , will be 2.

Figure B-2 shows how the airspace can be organised in configurations, operating sectors and
elementary sectors. The airspace elements known at the beginning of the problem depend on the
model assessed and they will be indicated in the corresponding sections below.

With this initial setup, the solution of this problem is provided considering different levels of
capacity management.

B.2 Model I: Fixed sectorisation

In this case, the model considers a given capacity of the airspace system with a fixed sectorisation
as shown in Figure B-2(b). The same two sectors will be open during all 5 time periods of the
example.

In a first study, the sector complexity threshold is fixed at 2, which means that in an operating
sector, only two trajectories can be in the same elementary sector. The problem is solved in 1.74 ·
10−2 seconds and the chosen trajectories are: k1, k3, k5 and k7. Note that they are the initial
trajectories and the resulting extra cost is 0. The sector complexity is 2 in both sectors at times 2
and 4, and 0 otherwise.

In a second study, the sector complexity threshold is set at 1, which means that only one tra-
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(a) CONF1 (b) CONF2 (c) CONF3

(d) CONF4 (e) CONF5 (f) CONF6

(g) CONF7 (h) CONF8 (i) CONF9

(j) CONF10 (k) CONF11 (l) CONF12

Figure B-2: Set of configurations and sectors.

jectory is allowed to be in one elementary sector. This subscenario is designed aiming at pushing
the solver to choose some of the alternative trajectories. The problem is solved in 1.29 · 10−2 sec-
onds by choosing trajectories k2, k3, k6 and k7. This represents and extra (total) cost of 500€ (250€
for each chosen alternative) but ensures that the sector complexity is 0 in all time periods.
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B.3 Model II: Selection of the best configuration opening scheme

Differently than Model I, the Model II includes the capacity management into the optimisation
problem. As described in Section VI.1, the problem consists on selecting one trajectory for every
flight and on choosing the sectorisation opening scheme given a set of available configurations.
Figure B-2 shows the set of 12 configurations (given from B-2(a) to B-2(l) ), available in model II.

A first subscenario is performed considering a sector complexity threshold of 2. Recall that
in addition to trajectory cost, now the cost of opening sectors and the penalty cost for having
different consecutive configurations are considered in the objective function. The cost of opening
one sector during one time period, θp,s, is set to 100€ for all sectors and time periods. The penalty
cost of allocating one elementary sector to a different operating sector in two consecutive time
periods, ρ, is set to 10€.

The problem is solved in 7.93 · 10−2 seconds by choosing CONF1 (only one sector) during all
time periods and trajectories k1, k3, k6 and k7. Note that flight f3 takes its alternative trajectory k6
instead of the initial k5. This represents an extra cost of 250€ but guarantees a sector complexity
of 2 at time periods 2, 3 and 4. The sector complexity is 0 in the first and last periods considered.
The cost of open sectors is 500€ due to the fact that only 1 sector is open during 5 time periods.

Although opening two sectors in periods 2 and 4 (extra cost of 200€) would be enough to
select the initial trajectories k1, k3, k5 and k7 and to maintain the complexity below the threshold,
the introduction of the penalty cost for configuration changes makes this solution more expensive
than choosing an alternative trajectory k6 and keeping only one sector opened during all time.

For the sake of illustration, another subscenario is defined where the penalty cost is set to
zero (ρ = 0). The solution is found in 2.92 · 10−2 seconds by choosing trajectories k1, k3, k5 and
k7 (no extra cost for AUs), and CONF1 (1 sector) in periods 1, 3 and 5 and CONF2 (2 sectors) in
periods 2 and 4. The overall cost of the solution is 700€ basically due to the sectors opened.

B.4 Model III: Dynamic configurations

The Model III considers the capacity management by choosing among a set of operating sectors.
The 13 available operating sectors are represented with different colours in Figures B-2(a)-B-2(g)
(the ones used to create CONF1-CONF7).

The penalty cost of allocating one elementary sector to a different operational sector, ρ, is set
to 10€; and the cost of opening one sector during one time period, θp,s, is set to 100€ for all sectors
and time periods. The sector complexity threshold remains at 2.

The problem is solved in 8 · 10−2 seconds by choosing trajectories k1, k3, k6 and k7; and
the operating sector s1 during all time periods. It is worth noting that this solution is the same
obtained in the previous model where CONF1 was chosen for all times. Since all configurations
used in the previous model were defined with the same operating sectors used in Model III, it is
then expected to obtain the same result.

In order to fully compare the results obtained with the previous model, a new subscenario
is provided by neglecting the penalty cost ρ. The problem is solved in 3·−2 seconds choosing
trajectories k1, k3, k5 and k7 with no extra cost for AUs. The opened sectors are s1 for time periods
1, 3 and 5; and s4 and s5 for time periods 2 and 4. This is particularly interesting, because s4 and
s5 correspond to CONF3 (instead of CONF2 chosen in model II). Nevertheless, these solutions are
equivalent since both configurations have two sectors and therefore the same opening cost.
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B.5 Model IV

In Model IV, the problem consists of selecting one trajectory for every flight and dynamically
collapsing the available elementary sectors.

As done previously, the cost of opening one sector during one time period, θp,s, is set to 100€
for all sectors and time periods, the penalty cost of allocating one elementary sector to a different
operating sector, ρ, is set to 10€, and the sector complexity threshold is 2. The problem is solved
in 10.1982 seconds what represents a significant increase in comparison with previous models
resolution time . The solution selects trajectories k2, k3, k5 and k7, which represent an extra cost
for the AUs of 250€. With respect to the capacity side, i.e. chosen sectorisation, only one sector is
open during all time periods with a cost of 500€, that is in correspondence to solutions of model II
and III.

As done with the previous models, an additional subscenario is provided ignoring the
penalty cost, ρ, in order to compare the findings. The problem is solved in 2.07 seconds and
the solution selects the trajectories k1, k3, k5 and k7 what represents a null extra cost for the AUs.
The chosen sectorisation is illustrated in Figure B-3.

(a) p=t=1 (b) p=t=2 (c) p=t=3

(d) p=t=4 (e) p=t=5

Figure B-3: Solution for model IV.

The cost of opening sectors is 700€ since there is one opened sector in periods 1, 3 and 5,
but there are two open sectors in periods 2 and 4. Note that the demand is below the capacity
(in complexity) since sE9 and sE17 are part of different operating sectors in time 2 and sE7 and sE19

belong to different operating sectors in time 4.

As acknowledged, this model formulation does not have a direct control of the operational
feasibility of the resulting sectorisation. This can be observed at periods 2 and 4, where sE17 and sE19

are operating as isolated sectors and are fully surrounded by a single operating sector (the second
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one). Based on the current operational standards this is not an operationally feasible sectorisa-
tion. Nevertheless, those isolated sectors are surrounded by empty elementary sectors that have
complexity equal to zero, that explains such "strange" groupings. In real situations with traffic
demand (trajectories) spread in the airspace, it would be less probable to get such solutions. With
some post-processing, however, it would be easy to obtain a mathematically equivalent solution
(same sector complexity, same number of sectors) for periods 2 and 4 as shown in Figure B-4.

Figure B-4: Equivalent configuration for configurations not operationaly feasible.
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Model for Robust Trajectory Planning. Pages pp 69–88 of: ENRI (ed), Air Traffic Management and Systems
II. Lecture Notes in Electrical Engineering, vol. 420. Springer. 25, 80

VRANAS, PETER, BERTSIMAS, DIMITRIS, & ODONI, AMEDEO. 1992. The multi-airport ground-holding
problem in air trafic control. Massachusetts institute of technology (mit), sloan school of management, working
papers, 42(01). 12, 51

VRANAS, PETER, BERTSIMAS, DIMITRIS, & ODONI, AMEDEO. 1994. Dynamic ground-holding policies for
a network of airports. Transportation science, 28(11). 12, 51

WALTER, LEIF, PUSCH, MANUEL, HOLZAPFEL, FLORIAN, & KNORR, DAVE. 2010. Quantifying trajectory
uncertainty using a sensitivity-based complexity metric component. In: Proceedings of the 4th international
congress on research in air transportation (ICRAT). Budapest, Hungary: Eurocontrol and FAA. 16

WEISE, THOMAS. 2009. Global optimization algorithms - theory and application. 19

XU, YAN, & PRATS, XAVIER. 2017. Including linear holding in air traffic flow management for flexible delay
handling. Journal of air transportation, 25(4), 123–137. 52

http://dx.doi.org/https://doi.org/10.1016/j.trc.2011.08.008
http://dx.doi.org/https://doi.org/10.1016/j.trc.2011.08.008
http://dx.doi.org/https://doi.org/10.1016/j.trc.2011.08.008
http://dx.doi.org/10.1109/DASC.2002.1067897
http://dx.doi.org/10.1109/DASC.2002.1067897
http://dx.doi.org/10.1287/opre.42.2.249
http://dx.doi.org/10.1287/opre.42.2.249
http://dx.doi.org/10.1287/opre.42.2.249
http://dx.doi.org/10.1287/trsc.28.4.275
http://dx.doi.org/10.1287/trsc.28.4.275
http://dx.doi.org/https://doi.org/10.2514/1.D0081
http://dx.doi.org/https://doi.org/10.2514/1.D0081


BIBLIOGRAPHY 121

XU, YAN, DALMAU, RAMON, MELGOSA, MARC, MONTLAUR, ADELINE, & PRATS, XAVIER. 2018a. Alter-
native trajectory options for delay reduction in demand and capacity balancing. In: Proceedings of the 8th
international congress on research in air transportation (ICRAT). Castelldefels, Spain: Eurocontrol and FAA.
12, 52, 57

XU, YAN, PRATS, XAVIER, & DELAHAYE, DANIEL. 2018b. Synchronization of traffic flow and sector open-
ing for collaborative demand and capacity balancing. In: Proceedings of the 37th digital avionics systems
conference (dasc). IEEE/AIAA. 6, 13, 64

XU, YAN, DALMAU, RAMON, MELGOSA, MARC, MONTLAUR, ADELINE, & PRATS, XAVIER. 2020a. A
framework for collaborative air traffic flow management minimizing costs for airspace users: Enabling
trajectory options and flexible pre-tactical delay management. Transportation research part b: Methodologi-
cal, 134, 229 – 255. 12, 52

XU, YAN, PRATS, XAVIER, & DELAHAYE, DANIEL. 2020b. Synchronised demand-capacity balancing in
collaborative air traffic flow management. Transportation research part c: Emerging technologies, 114(Mar),
359 – 376. 6, 13, 64, 66, 74

http://dx.doi.org/10.1109/DASC.2018.8569789
http://dx.doi.org/10.1109/DASC.2018.8569789
http://dx.doi.org/https://doi.org/10.1016/j.trb.2020.02.012
http://dx.doi.org/https://doi.org/10.1016/j.trb.2020.02.012
http://dx.doi.org/https://doi.org/10.1016/j.trb.2020.02.012
http://dx.doi.org/https://doi.org/10.1016/j.trc.2020.02.007
http://dx.doi.org/https://doi.org/10.1016/j.trc.2020.02.007
http://dx.doi.org/https://doi.org/10.1016/j.trc.2020.02.007

	Contents
	List of Figures
	List of Figures
	List of Tables
	List of Tables
	Preface
	List of Publications
	Acknowledgements
	Abstract
	Resumen
	Resum
	Notation
	List of Acronyms

	Introduction
	Current ATFCM
	Demand management
	Airspace management and capacity provision
	Demand and capacity balancing
	Traffic Management Initiatives
	Metrics for measuring demand and capacity

	Motivation of this PhD
	Holistic demand and capacity management
	Include AUs preferences into the DCB decision making
	Use of complexity metrics
	Improvement on the capacity management initiatives
	Alignment with SESAR concept of operations

	Objectives of this PhD thesis
	Scope and limitations of this PhD thesis
	Outline of this PhD thesis

	Background and literature review
	Demand and capacity methodologies
	Demand management
	Capacity management
	Holistic demand and capacity management

	Demand and capacity metrics
	Mathematical optimisation
	Exact methods
	Heuristic techniques


	Capacity management
	Integration of DAC and FCA
	Methodology
	Use of expert advise
	Introduction of complexity
	Complexity threshold identification
	Overload and underload detection process
	Airspace delineation process
	DAC algorithm
	FCA algorithm

	Validation case study
	DAC and FCA setup
	Definition of scenarios
	Delineation of DAC and FCA areas
	Results: Capacity analysis
	Results: Cost-effectiveness analysis

	Discussion on holistic DAC/FCA

	ATFCM concept of operations and general mathematical formulation for holistic DCB
	Proposed demand and capacity balancing concept
	Problem definition
	DCB mathematical formulation
	Time considerations
	Cost function
	Complexity modeling


	Demand management
	Model 0: traffic volume approach
	Decision variables
	Objective function
	Constraints
	MILP formulation for Model 0

	Model I: complexity approach 
	Decision variables
	Objective function
	Constraints
	MILP formulation for Model I

	Relation with previous research
	Validation case study
	Data sources
	Alternative trajectories generation
	Baseline scenario
	DCB with Model 0
	Potential comparison with Model I


	Holistic Demand and Capacity management
	Model II: selection of the sector configurations
	Decision variables
	Objective function
	Constraints
	MILP formulation for Model II
	Relation with previous research

	Model III: selection of the operating sectors
	Decision variables
	Objective function
	Constraints
	MILP formulation for Model III
	Relation with previous research

	Model IV: dynamic creation of operating sectors
	Airspace sectorisation
	Decision variables
	Illustrative example of airspace organisation
	Objective function
	Constraints
	Linearisation
	Flexibility of the sector shape
	MILP formulation for Model IV
	Relation with previous research

	Discussion on holistic DCB models

	Solution for Model II: selection of sector configurations
	Solution approach
	Hybrid method: Simulated annealing and Dynamic programming
	Heating loop

	Validation case studies: General setup
	Generation of nominal and alternative trajectories
	Complexity threshold establishment
	Algorithms setup
	Time considerations

	Performance assessment case study: Branch and Bound vs. Hybrid method
	Computation setup
	Definition of scenarios
	Methods benchmark for different scenario complexity
	Methods benchmark for different scenario durations

	Sensitivity case study: penalty for sector configuration changes
	Definition of the scenarios
	Results
	Discussion on the results

	Big scale case study
	Computation setup
	Baseline scenario
	Results with the Hybrid method
	Discussion on the obtained results


	Concluding Remarks
	Summary of conclusions and contributions
	Future work

	Illustrative example of complexity aggregation at sector level
	Simple verification example
	Scenario setup
	Model I: Fixed sectorisation
	Model II: Selection of the best configuration opening scheme
	Model III: Dynamic configurations
	Model IV


