
UNIVERSITAT POLITÈCNICA DE CATALUNYA

Department of Computer Science

Cluster Evaluation on Weighted
Networks

Martí Renedo Mirambell

Supervisor: Argimiro Arratia Quesada

A dissertation submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy in Computing

2023

iii

Abstract

This thesis presents a systematic approach to validate the results of clustering meth-
ods on weighted networks, particularly for the cases where the existence of a com-
munity structure is unknown. Including edge weights has many applications in
network science, as there are many situations in which the strength of the con-
nections between nodes is an essential property that describes the network. This
evaluation of clustering methods comprises a set of criteria for assessing their sig-
nificance and stability.

First, a well-established set of community scoring functions, which already existed
for unweighted graphs, has been extended to the case where the edges have asso-
ciated weights. There is consideration given to how in some cases many possible
weighted extensions to the same function can be defined, and each of them can suit
different types of weighted networks. Additionally, methods to randomize graphs
but maintaining the original graph’s degree distribution have been defined in or-
der to use these random graphs as baseline networks. This randomization together
with the weighted community scoring functions are then used to evaluate cluster
significance, since the random networks built from the original network with our
methods provide reference values for each scoring function that will allow to actu-
ally determine whether a given cluster score for the original graph is better than a
comparable graph with the same degree distribution but no community structure.

As for the evaluation of stability, we define non parametric bootstrap methods with
perturbations for weighted graphs where vertices are resampled multiple times,
and the perturbations are applied to the edge weights. This, together with some
fundamental similarity metrics for set partitions derived from information theory
and combinatorics, constitutes our criteria for clustering stability. These criteria
are based on the essential idea that meaningful clusters should capture an inherent
structure in the data and not be overly sensitive to small or local variations, or the
particularities of the clustering algorithm.

A more in-depth study of the characteristics of cluster scoring functions and their
potential bias towards clusters of a certain size has also been performed. This
would render some of these functions unsuitable to compare results of clustering
algorithms when the size of the partition differs considerably. For this analysis, we
introduce parametrized multi-level ground truth models based on the stochastic
block model and on preferential attachment that can showcase how the functions
respond to varying the strength of each level of clusters in a hierarchical structure.
Additionally, a scoring function that doesn’t suffer from this kind of bias is pro-
posed: the density ratio.

This thesis also contributes with an efficient implementation of Newman’s Reduced
Mutual Information, a measure to compare set partitions based on information the-
ory. Here it is used as a tool to compare network partitions, which is particularly
useful for the evaluation of cluster stability, but it can have applications beyond the
field of network clustering. Our algorithm uses an hybrid approach that combines

iv

analytical approximation with a Markov Chain Monte Carlo method for a good
balance between accuracy and efficiency.

Also an indispensable part of this thesis is the associated software that we devel-
oped, which includes the implementation of all the methods discussed in it. It
all has all been included in our new R package clustAnalytics, which is already
available at the CRAN repository. This package is designed to work together with
igraph, the main R package dedicated to graphs, to make it easy and straightfor-
ward for other researchers to use. There are many situations in which these tools
can be useful: from the study and observation of new datasets, to the evaluation
and benchmarking of clustering algorithms. Additionally, parts of the package like
the implementation of Newman’s Reduced Mutual Information can also be applied
to compare partitions of all kind of sets, not only networks.

v

Abstract (català)

Aquesta tesi presenta un mètode sistemàtic per validar els resultats obtinguts per
mètodes de clústering a xarxes amb pesos, especialment per als casos en què es
desconeix l’existència d’una estructura de comunitats. La inclusió de pesos a les
arestes té diverses aplicacions a l’estudi de xarxes, ja que hi ha moltes situacions
on la força de les connexions entre nodes és una propietat essencial que descriu la
xarxa. Aquesta avaluació de mètodes de clústering inclou una sèrie de criteris per
quantificar la seva significació i estabilitat.

En primer lloc, hem estès un conjunt de funcions per avaluar comunitats, que ja
existien per a grafs sense pesos, al cas on les arestes tenen pesos associats. S’ha
tingut en compte com en alguns casos es poden definir diverses extensions de la
mateixa funció, cada una per a diferents tipus de xarxes amb pesos. A més a més,
s’han definit mètodes per aleatoritzar grafs mantenint la seqüència de graus orig-
inal, per fer servir aquests grafs aleatoris de referència. Aquest procés, juntament
amb les funcions definides, permet avaluar la significació dels clústers, ja que els
grafs aleatoris donen valors de referència que serveixen per determinar si la pun-
tuació del graf original és millor que la d’un de comparable però que no tingui una
estructura de comunitats.

Pel que fa a l’avaluació de l’estabilitat, definim mètodes de bootstrap no paramètric
amb pertorbacions per a grafs amb pesos on els vèrtexs es remostregen diverses ve-
gades, i s’apliquen pertorbacions al pes de les arestes. Conjuntament amb mesures
de similitud per a particions de conjunts basades en teoria de la informació i com-
binatòria, formen els criteris per avaluar l’estabilitat dels clústers. Aquests criteris
es basen en la idea que els clústers rellevants haurien de captar l’estructura de les
dades, però no ser excessivament sensibles a petites variacions locals o a les partic-
ularitats dels algoritmes de clústering.

També es fa un estudi més a fons de les característiques de les funcions avalu-
adores dels clústers i el seu possible biaix cap a clústers d’una certa mida. Això po-
dria fer que algunes d’aquestes funcions fossin inadequades per comparar resultats
d’algoritmes de clústering en cas que la mida de les particions fos prou diferent. Per
aquesta anàlisi, introduïm models parametritzats de comunitats multinivell basats
en el model de blocs estocàstics i en el model de connexió preferencial, que mostren
com les funcions responen quan la força relativa dels diversos nivells de clusters
varia. A més a més, proposem una funció avaluadora que no té aquesta mena de
biaix, la ràtio de densitats.

Aquesta tesi també aporta una implementació eficient de la informació mútua re-
duïda ("reduced mutual information") de Newman, una mesura per comparar par-
ticions de conjunts basada en teoria de la informació. Aquí es fa servir per comparar
particions de xarxes, que és especialment útil per mesurar l’estabilitat dels clusters,
però pot tenir aplicacions més enllà del clústering de xarxes. El nostre algoritme
té un funcionament híbrid que combina una aproximació analítica amb un mètode
de Monte Carlo de cadena de Markov per trobar un bon equilibri entre exactitud i
eficiència.

vi

Una altra part essencial d’aquesta tesi és el software associat que s’ha desenvolu-
pat, que inclou les implementacions de tots els mètodes que s’hi discuteixen. S’ha
compilat tot al nou paquet clustAnalytics, que ja és al repositori de CRAN. Aquest
paquet està fet per funcionar conjuntament amb igraph, el principal paquet d’R
dedicat als grafs, per fer-lo fàcil i accessible d’utilitzar a altres investigadors. Hi ha
moltes situacions on aquestes eines poden ser útils: des de l’estudi i observació de
nous conjunts de dades, a l’avaluació d’algoritmes de clústering. A més a més, al-
gunes parts del paquet, com ara la implementació de la informació mútua reduïda
de Newman també es poden fer servir per comparar particions de tota mena de
conjunts, no només de xarxes.

vii

Acknowledgements

First and foremost, I want to thank my supervisor Argimiro Arratia Quesada for
his guidance in making this thesis. It would have not been possible without his
constant help, support, and inspiration, and I am very grateful for it.

I also want to show my appreciation to the MACDA research group for funding the
development of the clustAnalytics R package, which contains all the software used
to perform all of the included experiments.1

Lastly, but just as importantly, I must also thank my family for always being there
for me during this period. Their help and encouragement has been absolutely es-
sential. And while not entirely appreciated at the time, their creativity in finding
subtle ways to ask when this work would finally be over was arguably quite re-
markable.

1Management and Analysis of Complex Data. Funded by MINECO. TIN2017-89244-R.

ix

Contents

Abstract iii

Acknowledgements vii

List of Figures xi

List of Tables xiv

1 Introduction 1
1.1 Community structure in networks . 3
1.2 Clustering algorithms for networks . 4

1.2.1 Graph partitioning . 4
1.2.2 Hierarchical clustering . 4
1.2.3 Modularity-based clustering 5
1.2.4 Spectral methods . 6
1.2.5 Other methods . 7

1.3 Cluster Assessment . 8
1.4 Thesis structure . 9

2 Cluster scoring functions 11
2.1 Basic definitions. 11
2.2 Community scoring functions . 12

3 Cluster Similarity Measures 17
3.1 Rand index . 17
3.2 Information based measures . 19

3.2.1 Variation of Information . 20
3.2.2 Adjusted Mutual Information 20
3.2.3 Reduced Mutual Information 21

3.3 An example of cluster similarity measures 22

4 Cluster Significance 25
4.1 Methods . 26

4.1.1 Randomized graph . 26
Unweighted case . 26
Weighted case . 27

4.2 Experimental Design . 29
4.2.1 Clustering algorithms . 30
4.2.2 Data . 31

x

4.2.3 Synthetic Ground Truth Models 31
4.3 Results and Discussion . 33

5 Cluster Stability 41
5.1 Methods . 42

5.1.1 Bootstrap with perturbation . 42
5.2 Results and Discussion . 42

6 Network models with multi level community structures 45
6.1 Introduction . 45
6.2 Related work . 45
6.3 Stochastic Block Model (SBM) . 46
6.4 Multi-level stochastic block model . 46

6.4.1 Preferential attachment model 48
6.4.2 Generating the initial graph . 49
6.4.3 Degree distribution . 49

7 Identifying bias in cluster quality metrics 51
7.1 Introduction . 51

7.1.1 Related work . 52
7.2 Methods . 52

7.2.1 Cluster quality metrics . 52
7.3 Cluster metrics analysis . 53

7.3.1 Standard SBM network . 53
7.3.2 Multi-level SBM . 56
7.3.3 Multi-level preferential attachment 56

7.4 Final remarks . 59

8 Software Development 61
8.1 Graph rewiring algorithm . 61

8.1.1 Hash function for edge indices 63
8.1.2 Sampling vector . 63
8.1.3 Overview of the algorithm . 64

8.2 Weighted transitivity and clustering coefficient 66
8.3 Counting of contingency tables . 66

8.3.1 Analytical approximation . 68
8.3.2 Monte Carlo approximation . 69

Random walk . 69
Subset chain . 69

8.3.3 Hybrid analytical Monte Carlo approximation 70
Order relation . 70
Hybrid algorithm . 70

8.3.4 Experiments and discussion . 71
Conclusions . 72

9 The clustAnalytics R package 73
9.1 Introduction . 73
9.2 Background concepts . 73
9.3 The clustAnalytics package . 74

xi

9.3.1 Cluster significance . 74
Rewiring algorithm . 76

9.3.2 Cluster stability . 77
9.3.3 Graph generators and other utilities 78

9.4 An introductory example . 79
9.4.1 Evaluating cluster Significance 80
9.4.2 Applying scoring functions . 82
9.4.3 Evaluating cluster Stability . 83
9.4.4 Clustering assessment on synthetic ground truth networks . . 83

9.5 clustAnalytics in context of related R packages 85

10 Conclusions 87

xiii

List of Figures

3.1 Four different partitions of the same set of four elements. 22

4.1 Rewiring of the edges for a step of the switching algorithm. 27
4.2 Rewiring of the edges for a step of the switching algorithm, in the

weighted case. 27
4.3 Normalized size, variance and variation of information for the Louvain

clustering after applying the proposed algorithm on the Forex graph. Hor-
izontal axis is on logarithmic scale. 29

4.4 Normalized size, variance and variation of information for the Louvain
clustering after applying the proposed algorithm on the karate club graph.
Horizontal axis is on logarithmic scale. 30

4.5 Plot of a sample of the stochastic block model graph with λ = 15.
Vertex colors identify the blocks, which should correspond to the
communities found by good clustering algorithms. 33

4.6 Scores of the weighted stochastic block model as a function of the
parameter λ, for each of the algorithms 36

4.7 VI distance between the ground truth clustering and the result of
each of the algorithms for the weighted stochastic block model (WSBM),
as a function of the parameter λ. 37

6.1 Multi-level stochastic block model. 47
6.2 Probability matrix of the multi-level stochastic block model. 48

7.1 Values of the quality metrics on each level of clustering on the Mul-
tilevel SBM. λ controls the strength of the multi-level community
structure. The y axis has been inverted for the scores where lower
values are better (conductance, normalized cut and expansion). . . . 57

7.2 Diagram of the multi-level preferential attachment graph with com-
munity structure following the previously defined notation. 58

7.3 Affinity matrix of the multi-level block model with preferential at-
tachment. 58

7.4 Values of the quality metrics on each level of clustering for the multi-
level preferential attachment model. λ controls the relative strength
of the multi-level community structure. The y axis has been inverted
for the scores where lower values are better (conductance, normal-
ized cut and expansion). 60

8.1 Cantor pairing function, which assigns a single natural number to
each pair of natural numbers. 63

xiv

9.1 Example of the barabasi_albert_communities function with the commu-
nity labels as vertex colors. 79

9.2 Karate club graph before and after the edge randomization process. Colors
represent the faction of each participant, the ground truth clustering in this
network. 80

xv

List of Tables

2.1 Community scoring functions f (S) for weighted and unweighted
networks. 13

3.1 Contingency table of partitions P and P ′, with labelings r and s. . . . 18
3.2 Values of the similarity measures for the example clusterings. In this

order, the measures are: Mutual Information(MI), Normalized Mu-
tual Information (NMI), Variation of Information (VI), Normalized
Variation of Information (NVI), Reduced Mutual Information (RMI),
Normalized Reduced Mutual Information (NRMI), Rand Index (RI)
and Adjusted Rand Index (ARI). 23

4.1 Values of scoring functions for the weighted SBM graph generated
with λ = 15 (left), compared to those of their averages for 100 ran-
domized samples (right), and its percentile rank (parentheses). 36

4.2 Values of scoring functions for the karate club graph (left), compared
to those of their averages for 100 randomized samples (right), and its
percentile rank (parentheses). 37

4.3 Values of scoring functions for the Forex graph (left), compared to
those of their averages for 100 randomized samples (right), and its
percentile rank (parentheses). "-" indicates the degenerate cases for
which a given score is not defined. 38

4.4 Values of scoring functions for the News on Corporations graph (left),
compared to those of their averages for 100 randomized samples
(right), and its percentile rank (parentheses). 38

4.5 Values of scoring functions for the Enron graph (left), compared to
those of their averages for 100 randomized samples (right), and its
percentile rank (parentheses). 38

4.6 Values of scoring functions for the social network graph (left), com-
pared to those their averages for 10 randomized samples (right), and
its percentile rank (parentheses) . 39

5.1 Mean values of the metrics after bootstrapping with R = 999 , for
both the WSBM graph and its randomized counterpart, for all tested
clustering algorithms . 43

5.2 Mean values of the metrics after bootstrapping with R = 999 , for
both the Zachary graph and its randomized counterpart, for all tested
clustering algorithms . 44

xvi

5.3 Mean values of the metrics after bootstrapping with R = 999 , for
both the Forex graph and its randomized counterpart, for all tested
clustering algorithms . 44

5.4 Mean values of the metrics after bootstrapping with R = 999 , for
both the News graph and its randomized counterpart, for all tested
clustering algorithms . 44

5.5 Mean values of the metrics after bootstrapping with R = 999 , for
both the Enron graph and its randomized counterpart, for all tested
clustering algorithms . 44

7.1 Local scoring functions of a community S of the graph G = (V, E).
Arrows indicate whether the score takes higher values when the
cluster is stronger and lower values when it is weaker (↑), or vice
versa (↓). 54

7.2 Global scoring functions of a partition P of the graph G = (V, E). . . 54
7.3 Pearson Correlation table for both global and local scores with re-

spect to size on the SBM. For the local scores, the first two rows are
weighted means, giving a score for the whole network. Note that the
last three rows correspond to global scores, so there is no value given
for the correlation with local cluster size. 55

8.1 Graph class structure and complexity of its member functions 62
8.2 Sampling vector class structure and complexity of its member func-

tions . 64

9.1 clustAnalytics list of functions split by category. 75

1

Chapter 1

Introduction

Cluster detection is a very active topic with applications in many research fields:
from computer science to biology or sociology. On a very fundamental level, what
we refer as clustering is the aggregation of data into groups that share some char-
acteristic, like proximity or similarity. There are many types of data that one can
try to group into clusters, but we focus on clustering networks.

The first example that comes to mind when talking about the study of networks
is the Internet, both on the physical side (the network of connected computers)
and the more abstract World Wide Web: the network of web pages and the links
between each other. Another very popular application of network science is the
study of the academic world itself, with citation [55, 72] and co-autorship networks
[51]. Of the latter category, perhaps the most popular one is the Erdös collabora-
tion graph [11] and the Erdös numbers derived from it. The Erdös number of a
researcher is defined as the distance between them and the celebrated mathemati-
cian Paul Erdös in the network formed by joining researchers with an edge when
they have co-authored an article. It was initially intended as an homage, but has
since motivated numerous studies on how authors collaborate.

There have also been numerous studies of networks modeling interactions between
people and group dynamics. One of the most ubiquitous examples is the Zachary’s
karate club graph [95]: this network describes the members of a university karate
club and their interactions. A conflict between the instructor and the club admin-
istrator caused the group to split in two, and it was observed that the results of
applying community detection methods to the data corresponded almost exactly
to the groups that formed after the split. This is one of the first notable instances
of successful community detection in social networks, and the karate club graph
has since become one of the most popular benchmarks for new community detec-
tion algorithms. Even before that, multiple articles already studied networks of
social interactions, as surveyed by Mitchell in 1974 [61], though with significant
limitations in terms of data collection at scale. But in the 21th century, the rise of
massive online platforms, such as Facebook or Twitter have allowed the study of
social networks of an unprecedented size [93, 81].

Another important application of network science is transportation networks [12,
40], a field in which a deeper understanding is important for optimizing logis-
tics. Even the traveling salesman problem [32], one of the most well known NP-
complete problems, shows a very direct and intuitive practical application of the

2

study of graphs and networks.

The terms network and graph are used almost interchangeably in the literature,
and as pointed out by Barabási in [9], the difference between them is actually very
subtle. Network is generally used to refer to the real world systems that are stud-
ied, while on the other hand, graph is the mathematical object that represents and
models them. It is also worth noting that despite the relationship between the two
subjects, there is very little overlap in the research done on the fields of graph the-
ory and network science [46].

A graph is a structure consisting of a pair G = (V, E), where V is a set of elements
called vertices, and E is a set of pairs of vertices, which we call edges. When talking
about networks, vertices and edges are more often referred as nodes and links,
respectively.

Different types of graphs can be considered depending on the specific definition.
If multiple edges between the same pair of vertices1 are allowed to exist (that is,
E(G) is a multiset), the graph is generally called multigraph. If pairs of the same
vertex are allowed in E(G) (multisets of size two instead of sets), then the graph can
contain loops: edges that connect a vertex to itself. Most of the graphs considered
in this thesis, as well as the related methods, don’t allow loops or parallel edges,
unless it is previously specified.

If the set E(V) of edges, or pairs of vertices, is replaced in the definition by a set of
ordered pairs, then we obtain a directed graph. In this case, edges have orientation,
and two edges can exist that join the same pair of vertices, one for each direction.

Additionally, a numerical value or weight can be assigned to each edge, which
will result in a weighted graph. Weights can be integer or real values, depending
on the characteristics of the network that is being modeled. These type of graphs
have many applications in network science, as there is a variety of useful interpre-
tations that one can assign to the edges: from distances between nodes in trans-
portation networks, to the number or frequency of interactions between individu-
als in a social network, or even time series correlations in financial networks. Most
of the commonly studied weighted networks have non-negative weights, and the
methods for community evaluation that we will propose are intended for this case.
While they could be used with negative weights, and most definitions would allow
it, one would first have to decide what exactly constitutes a meaningful cluster in
such a network and how to treat these negative edges, which is beyond the scope
of this work.

It is almost always appropriate in practical applications to consider an edge of
weight 0 to be equivalent to the lack of edge between two nodes. It generally
matches the intuition of what it means to have or not have a weighted edge in most
networks, and it is also a convenient and natural assumption to make to extend
unweighted cluster scoring functions to the weighted case (see chapter 2).

1These are often referred as parallel edges

3

1.1 Community structure in networks

It is worth noting that there is not a single universal definition of what constitutes
a community structure in networks. However, there are some fundamental prop-
erties that are often accepted as characteristics of good communities. A community
should have a high internal or intra-cluster connectivity, that is, a high edge density
for the induced subgraph. And consequently, a community should be reasonably
separated from the rest of the network and have a low amount of edges connecting
to it (also referred as low inter-cluster or external connectivity), though this might
not be a requirement in cases where overlapping communities are allowed [92].
Additionally, one can attempt to quantify and define some notions of similarity
between vertices, and group similar vertices together while keeping those that are
dissimilar apart.

These ideas translate well to weighted graphs: it is possible to simply apply the
same concepts while prioritizing heavy edges over light or weak ones. In particular
the weighted edge density can be naturally defined as the sum of edge weight over
the number of pairs of vertices2, and this also extends to the intra-cluster and inter-
cluster densities.

There are many ways to group nodes of a network into clusters, but we will focus
on partitions3. A partition of a graph G is a set of parts such that every part is a
non empty set containing elements of V(G), and every element belongs to exactly
one part. This disallows overlapping communities (with one or multiple nodes
belonging to more than one community), as well as having nodes not belonging to
any community. Nodes that are very poorly connected to the rest of the network
can simply form their own single node clusters, though. Even though they are less
common, there are algorithms that produce overlapping clusters, such as the clique
percolation algorithm [24], or the hierarchical algorithm proposed in [53].

Very often graphs are described using matrices, most of the time using the adja-
cency matrix. The adjacency matrix A of a graph G = (V, E) is defined as the
n × n matrix (where n = |V|) such that the element Aij is 1 if there is an edge
between vertices i and j, and 0 otherwise. On graphs where self edges aren’t al-
lowed, all elements of the diagonal will then be zero. Undirected graphs will have
symmetrical adjacency matrices, while on directed graphs the matrix indicates the
direction of the vertices, and will not be symmetric in general. Other matrices that
are frequently used in the context of community detection are the Laplacian, and
the transfer matrix. The Laplacian is defined as L = D− A, where D is the diagonal
matrix in which the i-th element of the diagonal is the degree of vertex i.

2Ordered pairs if considering directed graphs.
3This excludes the case of clustering with overlapping communities. However, while this thesis

doesn’t cover them, it would be possible to use at least some of its methods on overlapping commu-
nities with only minor modifications.

4

1.2 Clustering algorithms for networks

1.2.1 Graph partitioning

This approach consists on fixing the desired number of clusters and their size, and
then determining the way to distribute vertices in them to minimize the number of
inter-community edges (called the cut size). It is a requirement for these methods
to work to have specified cluster size and number, because otherwise the optimal
solutions would be the single-cluster trivial one with cut size zero (in the case of
no number restriction), or it could often form size one clusters with the lowest de-
gree vertices and group the rest of the network together (if the number of clusters
is fixed but not their size). This is however a big limitation, because in most prac-
tical applications the number of clusters that best describes the structure of a given
network won’t be known beforehand.

Note that graph partitioning is the terminology that is commonly used in the lit-
erature to describe this category of clustering methods, because they are based on
finding or approximating the optimal cuts to minimize inter-cluster connectivity.
However, any grouping of a graph’s vertex into non-overlapping communities is a
partition from the mathematical point of view, so the other categories of algorithms
introduced in this chapter are technically producing partitions as well, regardless
of the method used to obtain them.

Even for the case with just two communities of equal size, the problem (called the
minimum bisection problem) is NP-hard [37], so heuristic algorithms such as the
Kernighan-Lin algorithm [49] have been frequently used to reasonably approxi-
mate a solution.

A popular approach to the problem have been the spectral methods based on the
eigenvectors of the Laplacian matrix, which are later mentioned in the spectral
methods category. Other methods such as the one by Sanders and Schulz [83]
based on the max-flow min-cut theorem [33] or by Galinier et al. [36] based on
Tabu search were recently discussed in the survey by Schulz et al. [16].

1.2.2 Hierarchical clustering

This family of methods attempts to capture the multi-level community structure
of networks, and produces a family of partitions each of which is a refinement
of the previous one. Fundamentally, there are two ways to approach the problem,
agglomeratively (starting with single-vertex communities and merging them based
on similarity), or divisively (iteratively spliting the network by removing edges
that connect disimilar vertices), but historically the agglomerattive way has been
more common. It starts with a similarity measure, such as the cosine similarity, the
correlations between corresponding rows in the adjacency matrix, or the Euclidean
distance [65]. Then, all vertices start forming a singleton cluster, and the two with
highest similarity are joined. At each step, the similarities of the newly formed
cluster with the rest of the network have to be recalculated, to then again join the
two clusters with the highest similarity. The process is repeated until all vertices
are joined together into a single group. Finally, a cut must be made at some level

5

of the tree to select the resulting partition, though this last step can be somewhat
arbitrary.

There are several ways to define the similarity between clusters from any given
measure of similarity between individual vertices. In the single-linkage method, the
most similar pair of vertices (one of each group) is taken, while in the complete-
linkage, the similarity between the least similar pair is used. The average-linkage
clustering method takes the average over all pairs instead. The single-linkage ver-
sion has a time complexity of O(n2), while both the complete and average-linkage
methods have a time complexity of O(n2 log n) [57]. In both of these cases it is
assumed that the similarity between pairs of vertices can be computed in constant
time, if not, the unavoidable initial step of computing the similarity between all
pairs will have complexity O(sn2) (where O(s) is the complexity of each similarity
computation) and will be the bottleneck in the single-linkage method, and possibly
in the other two as well.

One of the challenges of the hierarchical clustering algorithms is that the multi-
level structure is given by the nature of the method, but it is not trivial to determine
which of the levels represent meaningful clusters in the network. In fact, they don’t
detect whether the network actually has a hierarchical structure at all [34].

1.2.3 Modularity-based clustering

This family of clustering algorithms is based around optimizing Newman-Girvan’s
modularity [64] as the objective function (see section 2.2 for the definition). Essen-
tially, the modularity uses a null model to compute the expected number of edges
between vertices, and takes high values when the number of edges between ver-
tices that share a community is higher than their expected values. Finding the
global maximum for the modularity across all the possible partitions has been
shown to be a NP-complete problem [14], so it is not possible to do it in most prac-
tical applications. However, many alternative approaches have been proposed to
find good approximations.

The first algorithm for modularity optimization was Newman’s method [62], a
greedy agglomerative clustering algorithm that starts on a version of the graph
with no edges, placing each vertex on its own community. Then, edges are added
iteratively , starting with those that produce the highest increase in modularity,
joining the respective communities whenever an edge is added. The proper data
structures needed to implement the algorithm efficiently (in particular, to quickly
compute the modularity gains on very sparse matrices) were described later in [18].

A further improvement on greedy modularity optimization techniques is the Lou-
vain algorithm [13], perhaps the most widely used algorithm of this class. It starts
with each vertex on it’s own cluster, and iterates over the vertices to find possible
moves to other communities that produce improvements in modularity (and per-
forms the best possible move). This process is repeated until no more modularity
improvements can be done, and then it’s repeated on a community level: treat-
ing the communities as single vertices and trying to merge them using the same
procedure to find further optimizations.

6

Despite its popularity, the Louvain algorithm has been shown to sometimes pro-
duce instances of communities that are poorly connected internally, and in some
cases even disconnected communities can appear. The Leiden algorithm [86] was
proposed to address this issue, and its main difference is the introduction of an ad-
ditional step that refines the partitions. In addition to solving the problem of poorly
connected communities and as a result finding better modularity values, it has also
been shown to result in a faster running time as well.

Additionally, the modularity has also been shown to fail to identify small clusters in
large networks, what is described as the resolution limit [35]. To attempt to mitigate
the issue, it is possible to parametrize it to favor either smaller or larger communi-
ties [75] [4], but that still doesn’t solve it entirely. Lancichinetti and Fortunato [52]
later showed that tuning the modularity to detect smaller communities will split
larger ones, while doing the opposite will merge the smaller ones. Therefore, it
does not seem possible to avoid both biases simultaneously

Other related methods include the spinglass algorithm[75], which uses simulated
annealing to optimize the Potts Hamiltonian, a function analogous to the parametrized
modularity.

1.2.4 Spectral methods

This family of methods uses the eigenvalues of matrices that encode the graph for
cluster detection. There is some overlap with the other categories.

Many partitional methods are based on the Laplacian matrix of the graph, and par-
ticularly in the properties relating its second eigenvalue to the vertex and edge con-
nectivity of the graph studied by Fiedler [31]. Pothen et al. [71] used this approach
on their spectral partitioning algorithm that can be used to compute both vertex
and edge separators of the graph. The main idea behind it is to encode the graph
partitions as vectors with certain constraints, and then try to find partitions whose
associated vector is as close as possible to the second eigenvector of the Laplacian
matrix.

Newman later proposed a different approach [63], that instead of the Laplacian,
uses the modularity matrix, which is defined by substracting the expected number
of edges (according to an appropriate null model) to each element of the adjacency
matrix. Then, the desired partition will be the one whose associated vector is closest
to being parallel to the leading eigenvector (the eigenvector corresponding to the
eigenvalue of highest absolute value, or leading eigenvalue). After that, a refine-
ment step is performed by having single vertices switch communities when that
produces an increase in modularity. The most basic implementation of this method
simply divides the network into two communities, but by applying it hierarchically
to each of the parts, one can keep subdividing it. To find the best possible partition,
the global increase in modularity is computed at each subdivision, and the divi-
sions are performed recursively until the modularity doesn’t improve anymore.

Alternatively, instead of using a single eigenvector to split the network into two,
and then proceeding recursively to further split the resulting communities, some

7

methods use multiple eigenvectors simultaneously. Ng, Jordan and Weiss [48] pro-
posed a method that uses the first k eigenvectors of the Laplacian matrix to obtain
n points of Rk that are then clustered using the k-means clustering algorithm. Each
of these n points is associated to a vertex of the graph, so the clusters found on the
points of Rk induce clusters on the graph as well. Other methods that also use the
eigenvectors of the Laplacian to embed the vertices of the graph in an metric space
have later appeared, such as the one by Donetti and Muñoz [27], who use hierarchi-
cal clustering on the metric space while simultaneously computing the modularity
on the graph, which is then used to choose the best partition out of the dendrogram.

1.2.5 Other methods

A different approach to community detection is based on random walks. Zhou [97]
introduced a distance between vertices defined as the average number of steps that
a random walker has to take to go from one vertex to the other. Then, the local
attractor of a vertex is defined as its closest neighbor, while the global attractor is
defined as its closest vertex (note a very well connected vertex can be the closest to
another without being its neighbor, using this distance). Local and global commu-
nities are defined around local and global attractors, which results in a two-level
hierarchical community detection (global communities can contain a single or sev-
eral local communities, and Zhou found the two structures to coincide when the
network is small and to be different when it is larger and has thousands of nodes).
The complexity of this algorithm is O(n3).

The Walktrap algorithm by Latapy and Pons [70] also uses random walks, but with
a slightly different hierarchical agglomerative approach. To determine which com-
munities are to be joined at each iteration of the algorithm, they define a distance
based on the probability of random paths of a given length starting in a vertex to
end in another. Using an efficient method for computing these distances, the com-
plexity of the algorithm isO(n2d) where d is the depth of the dendrogram, resulting
in an expected running time of O(n2 log n) in most cases, which allows its use on
reasonably large networks.

Another way to use random walks for community detection is provided by the
Infomap algorithm by Rosvall and Bergstorm [82]. It is based on information theory
and on finding encodings that can efficiently describe random walks. It exploits the
fact that a community structure in a network allows the description of a path using
less information, as nodes within the same community are more likely to appear
consecutively in the path. Ultimately this is expressed in a map equation that is
optimized to find the desired clustering.

A very fast algorithm that can be used on networks of massive scale is the label
propagation method introduced by Raghavan et al. [73]. It works by giving la-
bels to vertices, and iteratively having them adopt the label that is most frequent
among their neighbors. The method converges when all vertices have the same
label as most of their neighbours and no more switches can be performed. Ties
between labels (especially present at the first iterations, when every vertex is as-
signed a unique label) are resolved at random, which makes the algorithm non-
deterministic, though the results of successive executions on the same graph have

8

been observed to be similar in most cases. The complexity of each iteration is linear
on the number of edges m, and the required number of iterations has been observed
to grow very slowly compared to the size of the network. A recent survey by Garza
and Schaeffer [38] discusses multiple potential improvements to the algorithm that
have been proposed over the years to overcome some issues such as the instability
of the results in some instances, to extend it to weighted or bipartite networks, or
to allow overlapping of communities.

1.3 Cluster Assessment

A common issue with most clustering algorithms is that they tend to partition net-
works into multiple clusters even when the network has a nearly homogeneous
structure. Then, when studying a network and trying to determine whether there
is a prevalent community structure in it, it is necessary to validate and evaluate the
partitions that result from applying one or several clustering algorithms to it. This
can be done with scoring functions based on the notions of what constitutes a com-
munity, such as strong internal connectivity, weak external connectivity, and espe-
cially combinations of both. Yang and Leskovec [94] analyzed a collection of such
functions and studied how they performed on real networks with known ground
truth community structures.

However, there aren’t general values of this functions that determine at which point
any given score indicates the presence of actual communities, so they alone aren’t
enough to validate the results of clustering algorithms (they can, however, be used
to compare different algorithms when used on the same network). To make these
measures more useful in applications where the existence of a ground truth com-
munity structure is unknown, we propose to use a randomization algorithm that
rewires the edges of the network without modifying its degree sequence. This ef-
fectively removes the community structure of a network, and gives us benchmark
values of the scoring functions to which we can then compare the original scores
to. While this rewiring algorithm was already well known for the unweighted case
[60], we provide an extension to the weighted case, with two variations to accom-
modate different types of weighted networks.

While the cluster scoring functions are used to evaluate the significance of clusters,
another important part of the evaluation process is stability. If a given algorithm
is successfully detecting the community structure of a network , a reasonable ex-
pectation would be that small variations on the network (such as the addition or
removal of just a few vertices or edges) don’t result in large variations in the re-
sults. Hennig [42] proposed the use of nonparametric bootstrap methods, with and
without perturbations, to evaluate cluster stability in Euclidean datasets. We bring
this method to the study of clusters in networks, with the possibility of adding
perturbation to the edge weights if the network is weighted. To measure the result-
ing deviations from the original clusters, we use measures from both information
theory and combinatorics, such as the Variation of Information [59], the Reduced
Mutual Information [66], and the adjusted Rand Index [45].

9

1.4 Thesis structure

Here we will briefly describe the structure of the thesis and how the contents are
organized. Chapter 2 defines the cluster scoring functions, and also introduces
some basic definitions and notation that will be used throughout the thesis. These
scoring functions quantify to what extend a partition of a network satisfies some of
the properties that are expected of clusters. On the other hand, chapter 3 introduces
functions that compare how two different partitions of the same network differ
from each other.

Chapters 4 and 5 study the significance and stability of clusters. Each includes a
description of the corresponding methods, and their application on a collection of
real life and synthetic networks.

Chapter 6 proposes two models with multi-level community structures, one based
on the stochastic block model, and another using preferential attachment. These
models include parameters to adjust the relative strength of each level of clusters,
and are then used in the next chapter to study the potential bias of community
scoring functions based on size.

Chapter 7 contains a more in depth analysis of the cluster scoring functions, and in
particular studies how some of them might present biases related to the size of the
clusters. It also includes the definition of the density ratio, a new cluster scoring
function that doesn’t suffer from this issue.

Chapter 8 is dedicated to discussing the implementation of the algorithms used in
the thesis, particularly those in which achieving an efficient outcome is not trivial.
This includes the computation of the Reduced Mutual Information (RMI) using an
hybrid method (combining Monte Carlo sampling with an analytical approxima-
tion), as well as the graph randomization algorithms and the weighted version of
the transitivity and clustering coefficient.

Finally, chapter 9 describes the clustAnalytics software package in detail, and in-
cludes many examples of its use. This is intended as a guide to researchers who
might be interested in using the package, and provides indications on how to use
it depending on the characteristics of the networks to be studied.

Contributions

Articles produced:

• Clustering assessment in weighted networks. PeerJ Computer Science, 2021
[77]. Contributions are:

– Weighted version of the switching model for the network’s edges, with
two versions to suit different types of weighted networks

– Extension of the cluster scoring functions to the weighted case.

– Method for studying the cluster significance that combines the switching
model and the scoring functions.

10

– Method for studying the cluster stability by using bootstrap on the ver-
tices.

• Identifying bias in cluster quality metrics [78].

– Method to study bias based on size on the cluster scoring functions
with the multi-level networks where the cluster strength of each level
is parametrized.

– Multi-level preferential attachment model which is also scale-free.

– Introduction of the density ratio, a cluster scoring function with no bias
relative to the size of the clusters.

• Towards an Efficient Algorithm for Computing the Reduced Mutual Infor-
mation. Short paper, 24th International Conference of the Catalan Association for
Artificial Intelligence (CCIA 2022) [80].

– An efficient algorithm for estimating the number of contingency tables
for a given pair of column and row sums, which combines an analyti-
cal approximation for the dense part of the table with a Markov chain
Monte Carlo method for the rest, where the analytical approximation is
inaccurate. This is the challenging step for the computation of the Re-
duced Mutual Information.

• The Assessment of Clustering on Weighted Networks with R Package clust-
Analytics. Short paper, 24th International Conference of the Catalan Association
for Artificial Intelligence (CCIA 2022) [7].

• clustAnalytics: An R Package for Assessing Stability and Significance of Com-
munities in Networks. Article under review at The R Journal. The package is
already available at the CRAN repository [79].

– The package includes the implementation of all the methods described
in this thesis to be used in R with igraph graphs.

– The software also supports directed networks, even though they haven’t
been studied in depth here.

• On methods to assess the significance of community structure in networks
of financial time series. ITISE 2017. 4th International Work-Conference on Time
Series Analysis, 2017 [6].

– Study of weighted networks built from correlations between financial
time series. A preliminary version of the methods for evaluating clus-
ter significance proposed in this thesis was used to study the difference
between different correlation measures used to build the networks and
their effect on cluster detection.

11

Chapter 2

Cluster scoring functions

This chapter is dedicated to introducing scoring functions capable of evaluating
clusters and quantifying how much they adhere to the notions we associate with a
proper community structure in networks, such as the presence of numerous con-
nections within clusters while still having a fair amount of separation (few connec-
tions between different clusters). Many of these functions were studied by Yang
and Leskovec [94] for the unweighted case. Most of these functions extend natu-
rally to graphs with weighted edges, and we provide the definitions. In cases such
as the transitivity or clustering coefficient, there isn’t a single straightforward ex-
tension, and we discuss which of them is more versatile and appropriate. These
functions will later be used in chapter 4 to evaluate cluster significance on a selec-
tion of networks and algorithms.

2.1 Basic definitions.

Let G(V, E) be an undirected graph of order n = |V| and size m = |E|, where V is
the set of vertices, and E the set of edges, which are pairs of vertices. In the case
of a weighted graph1 G̃(V, Ẽ), wuv will denote the weight of the edge (u, v) ∈ E,
and m̃ = ∑(u,v)∈Ẽ wuv the sum of all edge weights. Given S ⊂ G a subset of vertices
of the graph, we have nS = |S|, mS = |{(u, v) ∈ E : u ∈ S, v ∈ S}|, and in the
weighted case m̃S = ∑(u,v)∈Ẽ:u,v∈S wuv. Note that if we treat an unweighted graph
as a weighted graph with weights 0 and 1 (1 if two vertices are connected by an
edge, 0 otherwise), then m = m̃ and mS = m̃S for all S ⊂ V. Associated to G there
is its adjacency matrix A(G) = (Aij)1≤i,j≤n where Aij = 1 if (i, j) ∈ E, 0 otherwise.
We insist that A(G) only take binary values 0 or 1 to indicate existence of edges,
even in the case of weighted graphs.

The following definitions will also be needed later on:

• d(u) = |{v ∈ V : (u, v) ∈ E}| is the degree of vertex u, which counts its
number of incident edges.

• d̃(u) = ∑v ̸=u wuv is the natural extension of the vertex degree d(u) to weighted
graphs; the sum of weights of edges incident to u.

1For every variable or function defined over the unweighted graph, will use a “∼" to denote its
weighted counterpart

12 Chapter 2. Cluster scoring functions

• dS(u) = |{v ∈ S : (u, v) ∈ E}| and d̃S(u) = ∑v∈S wuv are the (unweighted
and weighted, respectively) degrees2 restricted to the subgraph S.

• dm and d̃m are the median values of d(u), u ∈ V.3

• cS = |{(u, v) ∈ E : u ∈ S, v ̸∈ S}| is the number of edges connecting S to the
rest of the graph.

• c̃S = ∑(u,v)∈E:u∈S,v ̸∈S wuv is the natural extension of cS to weighted graphs; the
sum of weights of all edges connecting S to G \ S.

2.2 Community scoring functions

The left column in table 2.1 shows the community scoring functions for unweighted
networks defined in [94]. These functions characterize some of the properties that
are expected in networks with a strong community structure, with more ties be-
tween nodes in the same community than connecting them to the exterior. There
are scoring functions based on internal connectivity (internal density, edges inside,
average degree), external connectivity (expansion, cut ratio) or a combination of
both (conductance, normalized cut, and maximum and average out degree frac-
tions). Uparrow (respectively, downarrow) indicates the higher (resp., lower) the
scoring function value the stronger the clustering.

On the right column we propose generalizations to the scoring functions which
are suitable for weighted graphs while most closely resembling their unweighted
counterparts. Note that for graphs which only have weights 0 and 1 (essentially
unweighted graphs) each pair of functions is equivalent (any definition that didn’t
satisfy this wouldn’t be a generalization at all).

• Internal density, edges inside, average degree: These definitions are easily
and naturally extended by replacing the number of edges by the sum of their
weights.

• Expansion: Average number of edges connected to the outside of the com-
munity, per node. For weighted graphs, average sum of edges connected to
the outside, per node.

• Cut Ratio: Fraction of edges leaving the cluster, over all possible edges. The
proposed generalization is reasonable because edge weights are upper bounded
by 1 and therefore relate easily to the unweighted case. In more general
weigthed networks, however, this could take values well over 1 while lack-
ing many “potential" edges (as edges with higher weights would distort the
measure). In general bounded networks (with bound other than 1) it would
be reasonable to divide the result by the bound, which would result in the
function taking values between 0 and 1 (0 with all possible edges being 0 and
1 when all possible edges reached the bound).

2We assume the weight function wuv is defined for every pair of vertices u,v of the weighted graph,
with wuv = 0 if there is no edge between them.

3To prevent confusion between the function dS(·) and the median value (which only depends on
G) dm we will always refer to subgraphs of G with uppercase letters.

2.2. Community scoring functions 13

TABLE 2.1: Community scoring functions f (S) for weighted and
unweighted networks.

unweighted f (S) weighted f (S)

↑ Internal density mS
nS(nS−1)/2

m̃s
nS(nS−1)/2

↑ Edges Inside mS m̃S

↑ Average Degree 2mS
nS

2m̃S
nS

↓ Expansion cs
ns

c̃s
ns

↓ Cut Ratio cs
ns(n−ns)

c̃s
ns(n−ns)

↓ Conductance cs
2ms+cs

c̃s
2m̃s+c̃s

↓ Normalized Cut cs
2ms+cs

+ cs
2(m−ms)+cs

c̃s
2m̃s+c̃s

+ c̃s
2(m̃−m̃s)+c̃s

↓Maximum ODF maxu∈S
|{(u,v)∈E:v ̸∈S}|

d(u) maxu∈S
∑v ̸∈S wuv

d̃(u)

↓ Average ODF 1
ns

∑u∈S
|{(u,v)∈E:v ̸∈S}|

d(u)
1
ns

∑u∈S
∑v ̸∈S wuv

d̃(u)

• Conductance and normalized cut: Again, these definitions are easily ex-
tended using the methods described above.

• Maximum and average Out Degree Fraction: Maximum and average frac-
tions of edges leaving the cluster over the degree of the node. Again, in the
weighted case the number of edges is replaced by the sum of edge weights.

Some of the introduced functions (internal density, edges inside, average degree,
clustering coefficient) take higher values the stronger the clusterings are, while the
others (expansion, cut ratio, conductance, normalized cut, out degree fraction) do
the opposite.

Clustering coefficient.

Another possible scoring function for communities is the clustering coefficient or
transitivity: the fraction of closed triplets over the number of connected triplets of
vertices. A high internal clustering coefficient (computed on the graph induced by
the vertices of a community) matches the intuition of a well connected and cohesive
community inside a network, but its generalization to weighted networks is not
trivial.

There have been several attempts to come up with a definition of the clustering
coefficient for weighted networks. One is proposed in [10] and is given by ci =

1
d̃(i)(d(i)−1) ∑j,h

wij+wih
2 Aij Ajh Aih. Note that this gives a local (i.e. defined for each

vertex) clustering coefficient.

14 Chapter 2. Cluster scoring functions

While this may work well on some weighted networks, in the case of complete
networks, such as those built from correlation of time series, we obtain

ci =
1

d̃(i)(d(i)− 1) ∑
j,h

wij + wih

2

=
∑jh wij + ∑jh wih

d̃(i)(n− 2) · 2
=

(n− 2)∑j wij + (n− 2)∑h wih

d̃(i)(n− 2) · 2

=
(n− 2)d̃(i) + (n− 2)d̃(i)

d̃(i)(n− 2) · 2
= 1,

which doesn’t give any information about the network.

An alternative was proposed in [58] with complete weighted networks in mind
(with weights in the interval [0, 1]), which makes it more adequate for our case.

• For t ∈ [0, 1] let At be the adjacency matrix with elements At
ij = 1 if wij ≥ t

and 0 otherwise.

• Let Ct the clustering coefficient of the graph defined by At.

• The resulting weighted clustering coefficient is defined as

C̃ =
∫ 1

0
Ct dt (2.1)

Since Ct can only take as many different values as the number of different edge
weights in the network, the integral is actually a finite sum. However, comput-
ing Ct (which is not computationally trivial) potentially as many as n(n− 1) times
would be very costly for large values of n , so this function has been implemented
by approximating the integral dividing the interval [0,1] into n_step parts (where
n_step4 is much smaller than n(n− 1)).

For networks where the weights are either not bounded or bounded into a different
interval than [0, 1], the most natural approach is to simply take

C̃ =
1
w̄

∫ w̄

0
Ctdt, (2.2)

where w̄ can be either the upper bound or, in the case of networks with no natural
bound, the maximum edge weight.

It is a desirable property that the output of scoring functions remain invariant un-
der uniform scaling, that is, if we multiply all edge weights by a constant ϕ > 0, as
the community structure of the network would be the same. This holds for all of
the measures of the third group, which combine the notions of internal and external
connectivity.

This means that these scores will be less biased in favour of networks with high
overall weight (for the internal connectivity based scores) or low overall weight

4In this case we set n_step=100. This gives a reasonable resolution while keeping computations
fast.

2.2. Community scoring functions 15

(for the external connectivity ones). It is particularly interesting for networks with
weights that are not naturally upper bounded by one, and facilitates comparisons
between networks with completely different weight distributions. When we com-
pare each network’s scores to those of a randomized counterpart generated by the
switching model, though, the total weight is kept constant, so even scores without
this property could still give valuable information.

Let G̃ϕ(V, Ẽϕ) be the weigthed graph obtained by multiplying all edge weights in
Ẽ by ϕ. In this case, nSϕ

= nS, mSϕ
= ϕmS, cSϕ

= ϕcS, dSϕ
(u) = ϕdS(u). This

means that the internal density, edges inside, average degree, expansion and cut
ratio behave linearly (with respect to their edge weights). Conductance, normal-
ized cut and maximum and average out degree fractions, on the other hand, remain
constant under these transformations. Since the notion of community structure is
generally considered in relation to the rest of the network (a subset of vertices be-
long to the same community because they are more connected among themselves
than to vertices outside of the community), it seems reasonable to consider that the
same partitions on two graphs whose weights are the same up to a multiplicative
positive constant factor have the same scores. This makes the scores in the third
group, the only ones for which this property holds, more adequate in principle.

For the chosen definition of clustering coefficient this property also holds, as all
terms in the integral in equation (2.2) behave linearly (the proof is immediate with
a change of variables), and that linear factor cancels out.

Modularity

As for the modularity [64] of a partition P , it is defined as:

Q =
1

2m̃ ∑
ij

[
wij −

d̃(i)d̃(j)
2m̃

]
δP (i, j), (2.3)

where δP (i, j) takes value 1 if i and j belong to the same community and 0 other-
wise.

Then, by multiplying the edges by a constant ϕ > 0, we get the graph G̃ϕ(V, Ẽϕ) of
modularity:

Qϕ =
1

2m̃ϕ ∑
ij

[
ϕwij −

ϕ2d̃(i)d̃(j)
2m̃ϕ

]
δP (i, j)

=
1

2m̃ϕ
ϕ ∑

ij

[
wij −

d̃(i)d̃(j)
2m̃

]
δP (i, j) = Q,

(2.4)

which means that modularity is also invariant under uniform scaling.

17

Chapter 3

Cluster Similarity Measures

When working with community detection in networks it is important to be able
to quantify the similarity between different partitions of the same network. Even
when simply observing and comparing clustering algorithms, cluster similarity
measures will help identify whether their outputs resemble each other. But it is
when evaluating cluster stability that such tools become essential. We will want
to determine if the clusters detected by an algorithm are robust and remain mostly
intact under small perturbations of the network, and that requires comparing the
initial results to those of the perturbed networks.

We will focus on two approaches: one based on information theory, which includes
the well known mutual information measure, and another from combinatorics, the
Rand index, which is constructed by counting the amount of agreements and dis-
agreements in whether each pair of vertices belong or not to the same community.
All of these measures are constructed from the contingency table of the labelings.

Consider a set of n elements and two labelings or partitions, one labeled by integers
r = 1, . . . , R and the other labeled by integers s = 1, . . . , S, which we will call
P = {P1, . . . ,PR} and P ′ = {P ′1, . . . ,P ′S}. Define ar as the number of elements
with label r in the first partition, bs the number of elements with label s in the
second partition, and crs be the number of elements with label r in the first partition
and label s in the second. Formally,

ar = |Pr| =
S

∑
s=1

crs

bs = |P ′s| =
R

∑
r=1

crs

crs = |Pr ∩ P ′s|,

and table 3.1 shows the contingency table.

3.1 Rand index

The Rand index and the different measures derived from it [45] are based on the
idea of counting pairs of elements that are classified similarly and dissimilarly
across the two partitions P and P ′. There are four types of pairs of elements:

18 Chapter 3. Cluster Similarity Measures

P ′1 P ′2 ... P ′S sum
P1 c11 c12 ... c1S a1
P2 c21 c22 c2S a2

... ...
PR cR1 cR2 ... cRS ar
sum b1 b2 ... bS n = ∑ cij

TABLE 3.1: Contingency table of partitions P and P ′, with labelings
r and s.

• type I: elements are in the same class both in P and P ′

• type II: elements are in different classes both in P and P ′

• type III: elements are in different classes in P and in the same class in P ′.

• type IV: elements are in the same class in P and different classes in P ′.

Then, similar partitions would have many pairs of elements of types I and II (agree-
ments) and few of type III and IV (disagreements). The Rand index is defined as
the ratio of agreements over the total number of pairs of elements.

Using the terms of the contingency table (table 3.1), the Rand index is given by

RI(r, s) =
(

n
2

)
+ 2 ∑

r
s
(

nrs

2

)
− [

R

∑
r=1

(
ar

2

)
+

S

∑
s=1

(
bs

2

)
] (3.1)

An adjusted form of the Rand index [45] introduces a correction to account for all
the pairings that match on both partitions because of random chance. The Adjusted
Rand Index (ARI) is defined as:

ARI(r; s) =
Index− Expected Index

Maximum Index− Expected Index
, (3.2)

which in terms of the contingency table (table 3.1) can be expressed as:

ARI(r; s) =
∑rs (

crs
2)−∑r (

ar
2)∑s (

bs
2)/(

n
2)

1
2 [∑r (

ar
2) + ∑s (

bs
2)]−∑r (

ar
2)∑s (

bs
2)/(

n
2)

(3.3)

Both the standard and adjusted versions of the Rand index are upper bounded by 1
(which will be achieved when both partitions are identical), but while the standard
index is lower bounded by 0, the adjusted index can take negative values on pairs
of partitions with a standard index that is lower than the expected value. And
naturally, when the standard index matches the expected value, the adjusted index
will be 0.

3.2. Information based measures 19

3.2 Information based measures

This family of metrics derives from Shannon’s entropy and mutual information.
While different bases for the logarithms can be used depending on the application,
in the context of cluster analysis base 2 is generally used, which results in the unit
of entropy being the bit.

Define the probabilities P(r) and P(s) of an object chosen uniformly at random
having label r or s respectively, and the probability P(r, s) that it has both labels r
and s. That is:

P(r) =
ar

n
, P(s) =

bs

n
, P(r, s) =

crs

n
(3.4)

Definition 3.2.1 The entropy of a partition P = {P1, ...,PR} of a set is given by:

H(r) = −
R

∑
r=1

P(r) log (P(r)) . (3.5)

The entropy of a partition measures the level of uncertainty in the membership of
elements. It is always non-negative, and will take value 0 only when there is only a
single cluster (and therefore no uncertainty). It follows that the maximum entropy
will correspond to the partition into n single element clusters.

Definition 3.2.2 The mutual information is defined as:

I(r; s) =
R

∑
r=1

S

∑
s=1

P(r, s) log
(

P(r, s)
P(r)P(s)

)
. (3.6)

Intuitively, the mutual information measures how much knowing the membership
of an element of the set in partition P reduces the uncertainty of its membership in
P ′. This is consistent with the fact that the mutual information is bounded between
zero and the individual partition entropies :

0 ≤ I(r; s) ≤ min{H(r),H(s)}, (3.7)

and the right side equality holds if and only if one of the partitions is a refinement
of the other. As for the mutual information being zero, it happens if and only if
P(r, s) = P(r)P(s) for all labels r and s, which is the case where knowing the label
of an element in one partition doesn’t give any information about its label in the
other.

The mutual information can be normalized by dividing it by the average of the
entropies (or equivalently, the mutual information values obtained by comparing
each partition with itself).

Definition 3.2.3 The normalized mutual information is defined as:

NMI(r; s) =
I(r; s)

1
2 (H(r) +H(s))

. (3.8)

20 Chapter 3. Cluster Similarity Measures

This makes it easier to interpret results when comparing results across networks
of different sizes and with vastly different numbers of clusters, as the range of po-
tential values of the standard mutual information grows as the number of clusters
increases. Danon et al. [23] showed the use of the normalized mutual information
in comparing clusters, and it has been widely used since.

3.2.1 Variation of Information

The variation of information between two clusterings, a criterion introduced in [59],
is defined as follows.

Definition 3.2.4 The variation of information of partitions P and P ′ is given by:

VI(r; s) = H(r) +H(s)− 2I(r; s). (3.9)

As a consequence of equation 3.7, the variation of information will be 0 if and only
if the partitions are equal (up to permutations of indices of the parts), and will get
bigger the more the partitions differ. It also satisfies the triangle inequality, so it is
a metric in the space of partitions of any given set.

The VI is a bounded metric, and one of these bounds, dependent directly on the
size n of the set, is log n. For instance, the value of the VI reaches this bound when
one partition separates all vertices into singleton clusters, while the other has them
all in a single cluster. Another bound is based on the number of clusters of the
partition, and is 2 log(max(R, S)).

Both these bounds can be used to normalize the VI and obtain a distance that ranges
from 0 to 1. As argued in [59], normalizing by log n is appropriate as long as only
the distances between partitions of the same dataset are compared. Alternatively,
bounding by the maximum number of clusters, requires first setting a bound K∗ on
the number of clusters of all partitions that are going to be compared. While this
might comparisons between distances obtained in different datasets that share a
common bound in the number of clusters, this would be a limitation in the context
of this thesis. We want to be able to evaluate the clusters obtained by any algorithm,
and that means we won’t be able to set a bound K∗ other than the trivial value K∗ ≤
n. Therefore, normalizing by log n will be the most appropriate choice for tasks
such as the evaluation of cluster stability using bootstrap resampling techniques
described in chapter 5.

3.2.2 Adjusted Mutual Information

Another approach at an information based measure based on the mutual informa-
tion is the adjusted mutual information [88]. It corrects the high values of mutual
information due to chance by computing its expectation when the clusters are ran-
dom with a fixed number of elements per cluster, similarly to how it’s done for
the Adjusted Rand Index (see equation 3.2). The Adjusted Mutual Information is
defined as:

AMI(r; s) =
I(r; s)− E{I(M)|a,b}

max{H(r),H(s)} − E{I(M)|a,b}
, (3.10)

3.2. Information based measures 21

where E{I(M)|a,b} is the expected mutual information of a pair of clusterings with
fixed number of clusters and cluster sizes, represented by a contingency table M of
fixed row and column sums row and column sums a = {ar}, b = {bs} (see table
3.1). E{I(M)|a,b} is given by the formula

E{I(M)|a,b} =
R

∑
i=1

S

∑
j=1

min(ai ,bj)

∑
cij=(ai+bj−n)+

[
cij

n
log(

n · cij

aibj
)

1
n!cij!(ai − cij)!

ai!bj!(n− ai)!(n− bj)!
(bj − cij)!(n− ai − bj + cij)!

]
,

(3.11)

where the notation (ai + bj − n)+ denotes max(0, ai + bj − n).

As it happens with the adjusted Rand index, the adjusted mutual information will
take negative values when the mutual information is lower than the expected value
for partitions with the same cluster sizes. When the two partitions are identical, the
AMI will be 1, and when the MI coincides with the expected value, the AMI will be
0.

3.2.3 Reduced Mutual Information

More recently, Newman et al. [66] proposed the Reduced Mutual Information (RMI),
an improved version of the mutual information which corrects the high values
given to quite dissimilar partitions in some cases. For instance, if one of the parti-
tion is the trivial one splitting the network into n clusters of one element each, the
standard mutual information will always take the maximal value, even if the other
is completely different. More generally, any partitions will always have maximal
mutual information with all of their filtrations. This is crucial when comparing
clustering algorithms, as some algorithms will output trivial partitions into single-
element clusters when they fail to find a clustering structure. Therefore, it would
not be possible to reliably measure the stability of these clustering methods with
the standard mutual information.

Given r and s two labelings of a set of n elements, the Reduced Mutual Information
is defined as:

RMI(r; s) = I(r; s)− 1
n

log Ω(a, b). (3.12)

where Ω(a, b) is a integer equal to the number R× S non-negative integer matrices
with row sums a = {ar} and column sums b = {bs}.

Note that, contrary to the standard mutual information, the RMI can take negative
values. As described in [66], this happens only when exploiting the knowledge of
one of the partitions doesn’t help encoding the other more efficiently, so it will only
happen with very dissimilar partitions.

The reduced mutual information can also be defined in a normalized form, in the
same way the standard mutual information is, by dividing it by the average of the

22 Chapter 3. Cluster Similarity Measures

values of the reduced mutual information of labelings a and b with themselves:

NRMI(r; s) =
RMI(r; s)

1
2 [RMI(r; r) + RMI(s; s)]

=
I(r; s)− 1

n log Ω(a, b)
1
2 [H(r) + H(s)− 1

n (log Ω(a, a) + log Ω(b, b))]
.

(3.13)

We will use this normalized form to be able to compare more easily the results
of networks with different number of nodes, as well as to compare them to other
similarity measures.

3.3 An example of cluster similarity measures

We will use a very simple example to show how the different similarity measures
defined in this chapter behave. It is built on a set of only four elements, defining
four different partitions into clusters as seen in figure 3.1: C1, C2, C3 and C4.

C1 C2 C3 C4

FIGURE 3.1: Four different partitions of the same set of four ele-
ments.

The entropies of these partitions are:

H(C1) = H(C2) = 1, H(C3) = 2, H(C4) = 0. (3.14)

As for the mutual information, we have I(C1, C2) = 0, because the random vari-
ables associated with these clusterings are completely independent. The mutual
information of any clustering with C4 is also zero, as it contains a single cluster.
Since C3 contains only singleton clusters, I(Ci, C3) = H(Ci) for any clustering Ci,
as C3 will always be a refinement of Ci. For instance, I(C1, C3) = 1. We won’t com-
pare C2 with C3 and C4, because relabeling C1 to become C2 doesn’t change their
neighbors in C3 and C4 so all measures evaluated for (C1, C3) and (C1, C4) are the
same as when evaluated for (C2, C3) and (C2, C4), respectively.

Table 3.2 contains the values of cluster comparison measures defined in this chap-
ter. Keep in mind that they all measure similarity (so higher values are better), ex-
cept for the VI and NVI, which are distances and therefore lower values represent
more similar clusters. We can quickly observe that there are substantial differences
between these functions, though these effects are amplified by the characteristics of
our examples, in which the differences between clusters are proportionately rather
large. The shortcomings of the mutual information for measuring similarity in the
context of community structures are quite apparent, though, as it gives a high value

3.3. An example of cluster similarity measures 23

MI NMI AMI VI NVI RMI NRMI RI ARI
(C1, C2) 0 0 -1/2 2 1 -0.40 -0.66 1/3 -1/2
(C1, C3) 1 2/3 0 1 1/2 0.35 0.49 2/3 0
(C1, C4) 0 0 0 1 1/2 0 0 1/3 0
(C3, C4) 0 0 0 2 1 0 0 0 0

TABLE 3.2: Values of the similarity measures for the example clus-
terings. In this order, the measures are: Mutual Information(MI),
Normalized Mutual Information (NMI), Variation of Information
(VI), Normalized Variation of Information (NVI), Reduced Mu-
tual Information (RMI), Normalized Reduced Mutual Information

(NRMI), Rand Index (RI) and Adjusted Rand Index (ARI).

to the similarity between C1 and C3, even though C3 doesn’t actually give any in-
sight on the communities in the network. As for the VI, it is very intuitive in the
distances it assigns to each pair of clusters, which is supported by the fact that it is
an actual metric (and turning the set of possible partitions of a given network into
a metric space has a lot of potential when comparing algorithms or evaluating sta-
bility). As for the RMI, in this example the correction with respect to the standard
MI is large, and it heavily penalizes both cases in which the mutual information is
not already zero.

The effect of the correction for chance in the ARI with respect to the RI is also very
notable. By its construction, the score becomes zero in the extreme cases where
one of the partitions is either a single cluster, or n singleton clusters. This is very
interesting in the context of community detection algorithms, because neither of
those partitions (or partitions very close to them) give much information about the
structure of a network. Notably, the AMI has the same values as the ARI in this
example, makes it very adequate for the purposes of this thesis. The coincidence is
not unexpected given that both use the same method for correcting the for chance,
though it must be noted that this doesn’t hold true in general, and that the ARI and
AMI differ in other examples and in the experiments performed in chapter 5.

25

Chapter 4

Cluster Significance

This chapter is dedicated to the study of cluster significance, and includes both a
description of the proposed methods, and experiments on a collection of networks
to test them. We consider clusters produced by a clustering algorithm to be signif-
icant if there are strong connections within each cluster, and weaker connections
(or fewer edges) between different clusters. This notion can be quantified and for-
malized by applying several community scoring functions (which we introduced
in chapter 2), that gauge either the intra-cluster or inter-cluster density. Then, it
can be determined that the partition of a network into clusters is significant if it ob-
tains better scores than those for a comparable network with uniformly distributed
edges.

In this chapter, we will introduce a general methodology that can be applied to
any combination of graph (either weighted or unweighted, and directed or undi-
rected) and clustering algorithm that partitions it into non overlapping clusters. It
combines the use of cluster scoring functions with the generation of a randomized
graph to serve as null model and put the value of each score into context. This
model, defined in section 4.1.1), generates a new random graph with the same de-
gree distribution of the original, but with the edges rewired, which will dissolve any
existing community structure that might be present.

We then apply this methodology to a series of datasets and clustering algorithms
(see 4.2 section) and evaluate the results. The discussion of the results can be found
in section 4.3. The examples have been selected to be representative of differ-
ent ways in which weighted edges can be used to describe a network: from the
well known examples of the karate club or the Enron email networks, where edge
weights count interactions, to a financial network of exchange rates where there is
an edge between each pair of nodes with the correlation between the corresponding
time series as its weight.

Also note that while this work focuses on weighted networks, the methodology is
also valid for the unweighted case. In fact, using the unweighted version of both
the edge rewiring algorithm and the scoring functions is equivalent to simply set-
ting all the weights to one and using the methodology for the weighted case. As for
directed graphs (weighted or not), this case hasn’t been covered here, though both
the definitions of the scoring funcions and the rewiring algorithm would suport it.
The implementation of the software (see chapter 9 for details on the clustAnalytics
software) is compatible with these graphs.

26 Chapter 4. Cluster Significance

4.1 Methods

Given a partition of the set of vertices of a graph into communities produced by
a clustering algorithm, the first step in evaluating their significance is computing
the scoring functions described in chapter 2. If our goal is simply to compare the
algorithms to each other, all on that same network, this could suffice, and we will
generally have a good overview of which ones perform best1. However, we gener-
ally don’t have a reference for what values of those functions identify good clusters
on any given network, so whenever we encounter a new network and want to de-
termine whether a significant community structure is present, this is simply not
enough. We could approach it with a varied collection of clustering algorithms,
and some might perform better than others, but that won’t tell us if the best per-
forming algorithms are detecting actual network communities or if they simply are
better than the others at obtaining high scores out of statistical noise.

This is why we use a method to obtain randomized graphs that are similar as possi-
ble to those we are studying, but that contain no community structure whatsoever.
The method is described in section 4.1.1, and consists of taking the original graph,
and successively rewire the edges in a way that keeps the original degree distribu-
tion (as well as weighted degree distribution in the case of weighted graphs, and
in and out degrees if the graph is directed). Then, the scores that a clustering al-
gorithm obtained on the original network can be compared to those of this new
randomized network: if they are similar we will know that there is no community
structure (or at the very least, the algorithm is not capable of detecting it), but if
they are significantly better, then that means that the communities in the network
are actually significant.

With an efficient implementation of this randomization algorithm (see chapter 8.1),
it is possible to generate a good amount of randomized graphs, and then study
each score of the original graph within the distribution of scores of the random
graphs. This allows us to determine whether each of the properties associated with
a community structure that are captured by the scoring functions is stronger that
those of the random graphs with statistical significance.

4.1.1 Randomized graph

Unweighted case

The algorithm is described in [60, 74] and uses a Markov chain where in every step
two edges are selected at random and interchanged. It produces a graph with the
same weighted degree sequence as the original, but otherwise as independent from
it as possible. Each step of this algorithm involves randomly selecting two edges
ac and bd and replacing them with the new edges ad and bc (provided they did
not exist already). This leaves the degrees of each vertex a, b, c and d unchanged
while shuffling the edges of the graph. Whenever the selection of ac and bd would
produce self-edges (i.e. if a = d or b = c) or multiple edges (i.e. if edges ad or bc
already exist), that step is skipped and the graph is left unchanged.

1Note that some of the scoring functions can have limitations when the number of parts of the
partitions (and therefore their size) is very different. This is studied in depth in chapter 7.

4.1. Methods 27

a c

b d

a c

b d

FIGURE 4.1: Rewiring of the edges for a step of the switching algo-
rithm.

The extension of the method to directed graphs is completely straightforward. Two
directed edges ac and bd (with the orientations from a to c and from b to d, respec-
tively) are sampled, and they are rewired to ad and bd as well. In this case, both the
in and out degrees of all vertices are kept constant, as expected.

Weighted case

One way to adapt this algorithm to our weighted graphs (more specifically, com-
plete weighted graphs, with weights in [0, 1]) is, given vertices a, b, c and d, transfer
a certain weight w̄ from wac to wad, and from wbd to wbc

2. We will select only sets
of vertices {a, b, c, d} such that wac > wad and wbd > wbc, that is, we will be trans-
ferring weight from “heavy" edges to “weak" edges. If edges ad or bc are not in
the network already, they will be created with weight w̄. Note that here we con-
sider two vertices with no edge between them equivalent to them having an edge
of weight 0 (so whenever the weight of an edge is reduced to zero, that is effectively
removing the edge). Naturally, if we assign weight 1 to all edges of an unweighted
graph and set w̄ = 1, then we obtain the original unweighted version of the algo-
rithm.

For any value of w̄, the weighted degree of the vertices remains constant, but if it is
not chosen carefully there could be undesirable side effects.

a c

b d

a c

b d

w

w

FIGURE 4.2: Rewiring of the edges for a step of the switching algo-
rithm, in the weighted case.

Just as in the unweighted case, the method also extends naturally to weighted di-
rected graphs without requiring any modifications.

Selection of w̄

We distinguish between two types of weighted networks: those with an upper
bound on the possible values of their edge weights given by the nature of the data
(usually 1, such as in the Forex correlation network –see section 4.2.2 below), and
those without (such as social networks where edge weights count the number of
interactions between nodes). Networks which may include negative weights have
not been studied here, so 0 will be a lower bound in all cases.

2Recall wij refers to the weight of the edge between vertices i and j

28 Chapter 4. Cluster Significance

However, in the case of networks which are upper and lower bounded, this results
in a very large number of edge weights attaining the bounds, which might be un-
desirable (particularly networks like the Forex network, in which very few edges,
if any, have weights 0 or 1) and give new randomized graphs that look nothing like
the original data.

The value of w̄ that most closely translates the essence of the switching method
for unweighted graphs would perhaps be the maximum that still keeps all edges
within their set bounds. This method seems particularly suited to sparse graphs
with no upper bound, because it eliminates (by reducing its weight to zero) at least
an edge per iteration. Other methods without this property could dramatically
increase the edge density of the graph, constantly adding edges by transferring
weight to them, while rarely removing them.

However, in the case of very dense graphs such as the Forex correlation network
(or any other graph similarly constructed from a correlation measure), this method
results in a large number of edge weights attaining the bounds (and in the case of
the lower bound 0, removing the edge), which can reduce this density dramatically.

As an alternative, to produce a new set of edges with a similar distribution to those
of the original network, we can impose the sample variance (i.e. 1

n−1 ∑n
i,j=1(wij −

m)2, where m is the mean) to remain constant after applying the transformation,
and find the appropriate value of w̄. The variance remains constant if and only if
the following equality holds:

(wac −m)2 + (wbd −m)2 + (wad −m)2 + (wbc −m)2

= (wac − w̄−m)2 + (wbd − w̄−m)2 +

(wad + w̄−m)2 + (wbc + w̄−m)2 (4.1)
⇐⇒ 2w̄2 + w̄(−wac − wbd + wad + wbc) = 0.

The solutions to this equation are w̄ = 0 (which is trivial and corresponds to not
applying any transformation to the edge weights) and w̄ = wac+wbd−wad−wbc

2 .

While this alternative can result in some weights falling outside of the bounds, in
the networks we studied it is very rare, so it is enough to discard these few steps to
obtain the desired results.

Figure 4.3 shows how the graph size decreases as the algorithm iterates with the
maximum weight method, which also produces a dramatic increase in the variance.
The constant variance method on the other hand does not remove any edges and
the the size stays constant (as well as the variance, which is constant by definition,
so the their corresponding lines coincide at 1).

However, applying the constant variance method on networks that are sparsely
connected (such as most reasonably big social networks) results in a big increase
in the graph size, to the point of actually becoming complete weighted graphs (see
figure 4.4). Meanwhile, the maximum weight method does not significantly alter
the size of the graph.

Therefore, we will use the constant variance method only for very densely con-
nected networks, such as correlation networks, which are in fact complete weighted

4.2. Experimental Design 29

graphs. For sparse networks, the maximum weight method will be the preferred
choice.

Note that if all edge weights are either 0 or 1, in both cases this algorithm is equiv-
alent to the original switching algorithm for discrete graphs, as in every step the
transferred weight will be one if the switch can be made without creating double
edges, or zero otherwise (which corresponds to the case in which the switch cannot
be made).

Number of iterations

To determine the number Tm of iterations for the algorithm to sufficiently “shuf-
fle" the network (where m is the size of the graph, and T a parameter we select),
we study the variation of information [59] of the resulting clustering compared to the
initial one. In this case using the Louvain algorithm, though other clustering algo-
rithms could be used instead. In chapter 3 we discuss variation of information, and
other clustering similarity metrics that we use in this work, and in section 4.2.1 we
detail all the clustering algorithms that we put to test.

Figures 4.3 and 4.4 show a plateau where the variation of information stops in-
creasing after around T = 1 (which corresponds to one iteration per edge of the
initial graph). This is consistent with the results for the original algorithm in [60]
for unweighted graphs, and we can also select T = 100 as a value that is by far high
enough to obtain a sufficiently mixed graph.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

maximum weight

T
0.1 1 10 100 1000

size
variance
VI

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

constant variance

T
0.1 1 10 100 1000

size
variance
VI

Forex Graph

FIGURE 4.3: Normalized size, variance and variation of information
for the Louvain clustering after applying the proposed algorithm on

the Forex graph. Horizontal axis is on logarithmic scale.

4.2 Experimental Design

The experiments for the detection of cluster significance are performed on a selec-
tion of five weighted networks, which are each clustered with five different cluster-
ing algorithms. These are meant as examples, and as a way to show how to apply
this methodology to any other network. With this approach, the only decision that
must be made is whether to use the maximum weight or the constant variance ver-
sions of the rewiring algorithm. As discussed previously, only in the case of very

30 Chapter 4. Cluster Significance

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

maximum weight

T
0.1 1 10 100 1000

size
variance
VI

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

constant variance

T
0.1 1 10 100 1000

size
variance
VI

Karate Club Graph

FIGURE 4.4: Normalized size, variance and variation of information
for the Louvain clustering after applying the proposed algorithm on

the karate club graph. Horizontal axis is on logarithmic scale.

dense or even complete neworks (such as networks built from correlation mea-
sures, like our Forex network) is the constant variance method recommended, while
on the more common sparsely connected networks the maximum weight method is
the default approach.

4.2.1 Clustering algorithms

In any application, the choice of the clustering algorithm will be hugely dependent
on the characteristics of the dataset, as well as its size. The methods proposed
here, though, can be applied to evaluate any combination of weighted graph and
clustering algorithm.

We have selected five well known state-of-the-art clustering algorithms based on
different approaches, and all suitable for weighted graphs. A more in-depth overview
of the different types and categories of clustering algorithms is provided in section
1.2 of the introduction. They will be applied to all of the networks to then evaluate
the results. The chosen algorithms are the following:

1. Louvain method [13], a multi-level greedy algorithm for modularity opti-
mization. We use the original algorithm, without tweaking the resolution
parameter (i.e. with resolution γ = 1).

2. Leading eigenvector method [63], based on spectral optimization of modu-
larity.

3. Label propagation [73], a fast algorithm in which nodes are iteratively as-
signed to the communities most frequent in their neighbors.

4. Walktrap [70], based on random walks.

5. Spin-glass [75], tries to find communities in graphs via a spin-glass model
and simulated annealing.

4.2. Experimental Design 31

4.2.2 Data

The following five datasets of varying sizes and with different characteristics are
used to showcase the cluster evaluation methods:

• Zachary’s karate club: Social network of a university karate club [95]. The
vertices are its 34 members, and the edge weights are the number of inter-
actions between each pair of them. In this case, we have a “ground truth"
clustering, which corresponds to the split of the club after a conflict, resulting
into two clusters.

• Forex network: Network built from correlations between time series of ex-
change rate returns [76]. It was built from the 13 most traded currencies and
with data of January 2009. It is a complete graph of 78 edges (corresponding
to pairs of currencies) and has edge weights bounded between 0 and 1.

• News on Corporations network: In this network, a list of relevant companies
are the nodes, while the weighted edges between them are set by the amount
of times they have appeared together in news stories over a certain period of
time (in this instance, on 2019-03-13). It has 899 nodes and 13469 edges.

• Social network: A Facebook-like social network for students from the Uni-
versity of California, Irvine [67]. It has 1899 nodes (students) and 20296 edges,
weighted by the number of characters of the messages sent between users.

• Enron emails: a network composed of email communications among Enron
employees [50]. The version of the dataset used here is available in the igraph-
data R package [21], and consists of a multigraph with 184 vertices (users) and
125,409 edges, corresponding to emails between users. We convert it to a an
undirected weighted graph by using as weights for the edges the number of
edges in the multigraph (i.e. the number of emails between the corresponding
users).

4.2.3 Synthetic Ground Truth Models

Another way of comparing and assessing the fit of a clustering algorithm is to
compare it to a ground truth community structure if there is one, which is sel-
dom known in reality. Alternatively one can synthetically generate a graph with a
ground truth community structure. This will allow us to verify that the results of
the algorithm match the expected outcome. For the particular case of time series
correlation networks one can generate the time series using a suitable model that
imposes a community structure with respect to correlations, such as the Vector Au-
toregressive (VAR) model construction in [5], and then compute the values of the
edges accordingly.

A common benchmark for clustering algorithm evaluation is the family of graphs
with a pre-determined community structure generated by the l-partition model [20,
39, 34]. It is essentially a block-based extension of the Erdös-Renyi model, with l
blocks of g vertices, and with probabilities pin and pout of having edges within the
same block and between different blocks respectively.

32 Chapter 4. Cluster Significance

A more general approach is the stochastic block model (SBM) [43, 91], which uses
a probability matrix P (which has to be symmetric in the undirected case) to de-
termine probabilities of edges between blocks. Pij will be the probability of having
an edge between any given pair of vertices belonging to blocks i and j respectively.
Then, having higher values in the diagonal than in the rest of the matrix will pro-
duce strongly connected communities. Note that subgraph induced by each com-
munity is in itself an Erdös-Renyi graph (with p = Pii for the community i). This
model also allows having blocks of different sizes. While this model can itself be
used for community detection by trying to fit it to any given graph [54], here we
will simply use it as a tool to generate graphs of a predetermined community struc-
ture.

To obtain a weighted SBM (WSBM) graph, we propose a variation of the model
which produces multigraphs, which can then be easily converted into weighted
graphs by setting all edge weights as their corresponding edge count. In this case,
probability matrix of the original SBM will be treated as the matrix of expecta-
tions between edges of each pair of blocks. Then, we simply add edges one by one
with the appropriate probability (the same at each step) that will allow each weight
expectation to match its defined value. By definition, the probability of the edge
added at step k to join vertices i and j is given by

P(ek = (i, j)) =
Eij

#steps
, (4.2)

where Eij is the expected number of edges between them given by the expectation
matrix. The sum of these probabilities for all vertices must add up to one, which
gives

#steps =
1
2 ∑ (|Ci||Cj|Ei,j). (4.3)

Note that the 1
2 factor is added because we are using undirected graphs, and we do

not want to count edges (i, j) and (j, i) twice.

This process produces a binomially distributed weight for each edge, though these
distributions are not independent, so independently sampling each edge weight
from the appropriate binomial distribution would not be equivalent.

We will use a graph sampled from this model with block sizes (40, 25, 25, 10), with
a parametrized expectation matrix:

0.03λ 0.01 0.01 0.03
0.01 0.02λ 0.05 0.02
0.01 0.05 0.02λ 0.01
0.03 0.02 0.01 0.03λ

 . (4.4)

With λ = 1 the network will be quite uniform. But as λ increases, the high val-
ues in the diagonal compared to the rest of the matrix will result in a very strong
community structure, which should be detected by the clustering algorithms. (see
figure 4.5).

4.3. Results and Discussion 33

There are other possible extensions of the stochastic block model to weighted net-
works such as [1], which can have edges sampled from any exponential family
distribution. While our approach produces Bernoulli distributed edges (which can
be approximated by a Poisson distribution in most cases), the edge distributions
obtained in [1] are not independent from each other, so the results are not exactly
equivalent. For instance, in our case the total network weight is fixed and will not
vary between samples.

4.3 Results and Discussion

To test for cluster significance of the results of a given clustering algorithm, we
apply the scoring functions defined in chapter 2 to the clustering produced on the
original graph and on randomized versions obtained by the method described in
section 4.1.1. It should be expected that whenever the communities found by an
algorithm on the original graph are significant, they will receive better scores than
those found by the same algorithm on a graph with no actual community structure.

The results of computing these scores on the clustering obtained by the algorithms
on each of the networks can be seen on tables 4.1, 4.2, 4.3, 4.4, 4.5 and 4.6 (recall
that ↑ identifies scores for which higher is best, and ↓ means lower is best). For
each combination of scoring function and algorithm, we represent its value on the
original network, its mean across multiple samples of its randomized switching
model, and the percentile rank of the original score in the distribution of random-
ized graph scores. The percentile rank is obtained after sorting the scores according
to their type (in ascending order when lower is better, and descending when higher
is better), so a value of 0 means that a given value is the best within the distribu-
tion. This percentile rank value serves as a statistical test of significance for each
of the scores: a score is significant if its value is more extreme than most of the
distribution.

It is important to note that some of the scores greatly depend on the number of
clusters, and cannot adequately compare partitions in which that number differs.
For instance, internal density can easily be high on small communities, while it

FIGURE 4.5: Plot of a sample of the stochastic block model graph
with λ = 15. Vertex colors identify the blocks, which should cor-
respond to the communities found by good clustering algorithms.

34 Chapter 4. Cluster Significance

will generally take lower values on bigger ones, even when they are very well con-
nected. This can result in networks with no apparent community structure having
high overall internal density scores just because they are partitioned into many
small clusters.

In comparison, scores that combine both internal and external connectivity (con-
ductance, normalized cut, out degree fractions), clustering coefficient, and modu-
larity suffer less from this effect and seem more adequate in most circumstances.
These also happen to be the scores that are invariant under the multiplication of
the weights by positive constants (see section 2.1).

We suggest focusing on the relative scores (the score of the actual network over the
mean of the randomized ones) to simplify the process of interpreting the results,
especially when trying to compare graphs of different nature. With relative scores,
anything that differs significantly from 1 will suggest that the clustering is strong.
For instance, in figure 4.6 we have the modularity of the stochastic block model
for each algorithm, and for different values of the parameter λ (which will give in-
creasingly stronger clusters). While the algorithms find results closer to the ground
truth the bigger λ is, only the relative scores give us that insight. However, when
comparing several clustering methods on the same network (and not simply trying
to determine if a single given method produces significant results), absolute scores
are more meaningful to determine which one is best.

For the weighted stochastic block model graph, the clustering algorithms get re-
sults closer to the ground truth clustering the bigger the λ parameter is, as one
would expect, and for λ > 30 the results perfectly match the ground truth cluster-
ing outcome in almost all cases (a bit earlier for the Louvain, Walktrap and spin-
glass cases). The relative scores match these results, and get better as λ increases as
well (figure 4.6). Note that in figure 4.6, there are some jumps for the relative mod-
ularity in the spin-glass case, which are caused by the instability of this algorithm
(see chapter 5). This effect is no longer present when the structure of the network
is stronger (λ > 8).

In table 4.1, corresponding to λ = 15, we can see how for the Louvain algorithm,
the scores are more extreme (lower when lower is better, higher when higher is bet-
ter) than those of the randomized network in almost all circumstances. In the case
of the leading eigenvector algorithm the scores are slightly worse, but almost all of
them still fall within statistical significance (if we consider p-values < 0.05). In both
cases, the only metric that is better in the random network is internal density, due
to the smaller size of the detected clusters (which is why by itself internal density
is not a reliable metric, as even in a network with very poor community structure it
will be high for certain partitions into very small clusters that arise by chance). For
both the label propagation and the Walktrap algorithms, the real network scores
are not as close to the edge of the distribution of random scores, but they are still
much better than the mean in all meaningful cases (the only exceptions are the in-
ternal density and edges inside, which are hugely dependent on cluster size and
are therefore inadequate to compare partitions with a different number of clusters).

In the case of the karate club network (table 4.2), the label propagation algorithm
gets the closest results to the ground truth clustering, and this is reflected in most

4.3. Results and Discussion 35

scores being better than those of other methods. This does not apply to the mod-
ularity though, which is always higher for the Louvain and spin-glass, which pro-
duce identical clusters (this is to be expected, because Louvain is a method based
on modularity optimization).

On the Forex graph (table 4.3), we can see that both the leading eigenvector and
Walktrap algorithms produce almost identical results splitting the network into
two clusters, while the spin-glass algorithm splits it into three and Louvain into
four. The scores which are based on external connectivity give better results to the
Walktrap and leading eigenvector, while the spin-glass partition has slightly bet-
ter clustering coefficient and better modularity (with Louvain having very similar
values in those two scores).

It is also important to disregard the results of the scoring functions whenever the al-
gorithms fail to distinguish any communities and either groups the whole network
together or separates each element into its own cluster (such as the label propaga-
tion algorithm on the Forex network, seen in table 4.3). In this case, the scores which
are based on external connectivity will be optimum, as the cut cs of the partition is
0, but that of course does not give any information at all. In addition, the normal-
ized cut and conductance could be not well defined in this case, as it is possible to
have a division by 0 for some of the clusters.

As for the news on corporations graph (table 4.4), the results and in particular the
number of clusters vary greatly between algorithms (from 82 clusters for the Walk-
trap to only 2 for the label propagation). While the label propagation algorithm
scores well on some measures due to successfully splitting to very weakly con-
nected components of the network, others such as the clustering coefficient or in-
ternal density are very low. Louvain and spin-glass have very similar scores across
most measures and seem to be the best, though leading eigenvector does have bet-
ter conductance and normalized cut. In this case the high variation in number of
clusters across algorithms that still score highly could suggest that there is not a
single predominant community structure in the network.

In the Enron graph (table 4.5) Louvain also produces the best results for most
scores, particularly in conductance and normalized cut, and it significantly sur-
passes all other algorithms while having larger clusters, with the only exception of
label propagation, which partitions the network into much smaller clusters. The
spin-glass algorithm stands out as having by far the worse results across all scores,
even though its number of clusters (12) is the same as in leading eigenvector and
similar to Louvain.

For the social network (table 4.6), the Louvain, leading eigenvector and label propa-
gation algorithms produce the same number of clusters (with spin-glass being also
very close), which allows an unbiased comparison of scores. In this case, leading
eigenvector has better results for almost all scores, except for clustering coefficient
and modularity, for which Louvain is again the best algorithm. This huge dispar-
ity may be explained by the fact that modularity compares edge weights to a null
model that considers the degrees of their incident vertices, and does not only dis-
criminate between internal and external edges (as most of the scoring functions
do).

36 Chapter 4. Cluster Significance

Overall the Louvain algorithm seems to be the best at finding significant clusters,
performing consistently well on a variety of weighted networks of very different
nature. It is worth noting though that there are some limitations to it (and all mod-
ularity based methods in general) in terms of resolution limit [35] that can appear
when there are small communities in large networks, though there are methods to
address it, such as the use of a resolution parameter [4].

1 5 10 50 100 500 1000

0.
0

0.
5

1.
0

1.
5

Expansion (relative)

λ
1 5 10 50 100 500 1000

0.
0

0.
5

1.
0

1.
5

Normalized Cut (relative)

λ

1 5 10 50 100 500 1000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Modularity

λ
1 5 10 50 100 500 1000

0
1

2
3

4
Modularity (relative)

λ

Louvain leading eigen label prop Walktrap spinglass

FIGURE 4.6: Scores of the weighted stochastic block model as a func-
tion of the parameter λ, for each of the algorithms

Louvain leading eigen label prop Walktrap spin-glass ground truth
↑ internal density 0.39|0.479(0.98) 0.384|0.362(0.36) 0.311|0.131(0) 0.39|0.33(0.17) 0.46|0.531(0.89) 3.90e-01
↑ edges inside 197|42.6(0) 194|61(0) 252|640(1) 196|22.4(0) 95.7|40.9(0) 1.96e+02
↑ av degree 11.5|5.77(0) 11.3|5.62(0) 11.7|12.8(1) 11.4|2.66(0) 8.92|5.85(0) 1.15e+01
↑ FOMD 0.38|0.0805(0) 0.38|0.0939(0) 0.38|0.45(1) 0.38|0.0359(0) 0.25|0.084(0) 3.80e-01
↓ expansion 0.67|3.51(0) 0.73|3.59(0) 0.53|0.16(1) 0.68|5.07(0) 1.94|3.47(0) 6.70e-01
↓ cut ratio 0.00931|0.041(0) 0.00997|0.0444(0) 0.00783|0.0408(0) 0.00945|0.0581(0) 0.0245|0.0401(0) 9.31e-03
↓ conductance 0.0785|0.381(0) 0.089|0.398(0) 0.0621|0.0125(1) 0.08|0.654(0) 0.159|0.375(0) 7.86e-02
↓ norm cut 0.101|0.42(0) 0.112|0.452(0) 0.0839|0.148(0) 0.103|0.699(0) 0.195|0.412(0) 1.01e-01
↓max ODF 0.164|0.528(0) 0.215|0.552(0) 0.203|0.00875(1) 0.222|0.673(0) 0.266|0.521(0) 1.66e-01
↓ average ODF 0.142|0.544(0) 0.157|0.563(0) 0.113|0.0259(1) 0.144|0.762(0) 0.272|0.536(0) 1.41e-01
↓ flake ODF 0.72|0.996(0) 0.72|0.994(0) 0.62|0.17(1) 0.7|0.975(0) 0.9|0.995(0) 7.10e-01
↑ clustering coef 0.312|0.011(0) 0.31|0.00904(0) 0.303|0.00563(0) 0.312|0.00402(0) 0.352|0.0109(0) 3.12e-01
↑modularity 0.454|0.307(0) 0.447|0.242(0) 0.411|0.000267(0) 0.453|0.082(0) 0.446|0.321(0) 4.54e-01
n_communities 4|7.8(0) 4|6.84(0.02) 3|1.01(1) 4|21.8(0) 5|8.51(0) 4.00e+00
VIdist_to_GT 0.122|4.45(0) 0.299|4.17(0) 0.361|1.86(0) 0.122|4.35(0) 0.521|4.52(0) 0.00e+00

TABLE 4.1: Values of scoring functions for the weighted SBM graph
generated with λ = 15 (left), compared to those of their averages for
100 randomized samples (right), and its percentile rank (parenthe-

ses).

4.3. Results and Discussion 37

1 5 10 50 100 500 1000

0
1

2
3

4
5

VI distance to ground truth clustering
WSBM

λ

V
I

Louvain
leading eigen
label prop
Waktrap
spinglass

FIGURE 4.7: VI distance between the ground truth clustering and
the result of each of the algorithms for the weighted stochastic block

model (WSBM), as a function of the parameter λ.

Louvain leading eigen label prop Walktrap spin-glass ground truth
↑ internal density 1.29|1.6(0.87) 1.32|1.24(0.31) 1.07|1.17(0.6) 1.32|1.5(0.58) 1.29|1.7(0.94) 0.7574
↑ edges inside 50.4|30.5(0.01) 47.4|37.5(0.18) 83.4|106(0.43) 51.8|41.9(0.25) 50.4|28.6(0) 103.0000
↑ av degree 10.1|8.26(0) 9.94|7.98(0) 11.6|10.4(0.28) 10.1|8.44(0.1) 10.1|8.21(0) 12.1176
↑ FOMD 0.412|0.29(0.01) 0.412|0.273(0.01) 0.471|0.38(0.29) 0.382|0.299(0.18) 0.412|0.288(0.02) 0.4412
↓ expansion 1.74|2.67(0) 1.82|2.81(0) 0.971|1.99(0.0886) 1.74|2.57(0.08) 1.74|2.69(0) 0.7353
↓ cut ratio 0.0716|0.0994(0) 0.0739|0.11(0) 0.0469|0.0994(0.0253) 0.0727|0.101(0.06) 0.0716|0.0987(0) 0.0433
↓ conductance 0.149|0.257(0) 0.179|0.293(0.02) 0.0784|0.18(0.114) 0.148|0.273(0.05) 0.149|0.264(0) 0.0573
↓ norm cut 0.194|0.302(0) 0.223|0.349(0) 0.119|0.25(0) 0.194|0.328(0.01) 0.194|0.307(0) 0.1038
↓max ODF 0.216|0.394(0) 0.246|0.396(0.04) 0.0441|0.274(0.0506) 0.211|0.382(0.06) 0.216|0.399(0.01) 0.0833
↓ average ODF 0.183|0.389(0) 0.215|0.442(0) 0.114|0.292(0.0759) 0.185|0.391(0.01) 0.183|0.397(0) 0.0871
↓ flake ODF 0.559|0.946(0) 0.588|0.941(0) 0.5|0.827(0.0759) 0.559|0.921(0.01) 0.559|0.95(0) 0.3824
↑ clustering coef 0.245|0.031(0) 0.241|0.0226(0) 0.243|0.0248(0) 0.247|0.029(0) 0.245|0.0303(0) 0.2205
↑modularity 0.445|0.373(0.01) 0.437|0.309(0) 0.435|0.241(0) 0.44|0.307(0) 0.445|0.376(0.01) 0.3914
n_communities 4|5.23(0) 5|5.44(0.26) 3|3.55(0.36) 4|6.16(0.03) 4|5.74(0) 2.0000
VIdist_to_GT 1.2|3.18(0) 1.34|3(0) 0.747|2.23(0) 1.17|3.1(0) 1.2|3.27(0) 0.0000

TABLE 4.2: Values of scoring functions for the karate club graph
(left), compared to those of their averages for 100 randomized sam-

ples (right), and its percentile rank (parentheses).

38 Chapter 4. Cluster Significance

Louvain leading eigen label prop Walktrap spin-glass
↑ internal density 0.657|0.579(0) 0.587|0.548(0) 0.52|0.52(1) 0.586|0.408(0) 0.628|0.573(0)
↑ edges inside 186|117(0.06) 434|333(0) 1562|1562(1) 434|687(0.55) 253|149(0)
↑ av degree 14.4|11(0.04) 22.3|18.3(0) 40|40(1) 22.2|22(0.49) 17|12.5(0)
↑ FOMD 0|0(1) 0|0(1) 0.5|0.5(1) 0|0.135(1) 0|0(1)
↓ expansion 12.8|14.5(0.04) 8.89|10.9(0) -|-(-) 8.9|12.3(0.301) 11.5|13.8(0)
↓ cut ratio 0.232|0.251(0) 0.229|0.25(0) -|-(-) 0.229|0.254(0) 0.229|0.25(0)
↓ conductance 0.492|0.575(0.06) 0.285|0.381(0) -|-(-) 0.286|0.52(0.247) 0.415|0.526(0)
↓ norm cut 0.585|0.665(0.04) 0.419|0.51(0) -|-(-) 0.419|0.622(0.205) 0.522|0.626(0)
↓max ODF 0.643|0.727(0.03) 0.472|0.544(0.04) -|-(-) 0.443|0.619(0.301) 0.567|0.688(0)
↓ average ODF 0.649|0.726(0.05) 0.445|0.543(0) -|-(-) 0.445|0.617(0.301) 0.58|0.687(0)
↓ flake ODF 1|1(0) 1|1(0) -|-(-) 1|1(0) 1|1(0)
↑ clustering coef 0.87|0.585(0) 0.863|0.562(0) 0.812|0.539(0) 0.864|0.421(0) 0.884|0.583(0)
↑modularity 0.0576|0.0158(0) 0.0558|0.0136(0) -1.6e-14|-3.73e-16(1) 0.0553|0.000591(0) 0.06|0.0187(0)
n_communities 4|4.21(0.06) 2|2.45(0) 1|1(0) 2|19.3(0.27) 3|3.6(0)

TABLE 4.3: Values of scoring functions for the Forex graph (left),
compared to those of their averages for 100 randomized samples
(right), and its percentile rank (parentheses). "-" indicates the de-

generate cases for which a given score is not defined.

Louvain leading eigen label prop Walktrap spin-glass
↑ internal density 0.235|0.183(0) 0.204|0.0997(0) 0.0574|0.0539(0) 0.444|0.244(0) 0.249|0.185(0)
↑ edges inside 5631|3779(0) 9051|5935(0) 21692|21771(1) 7123|2088(0) 5755|3409(0)
↑ av degree 35.7|24.9(0) 39|29(0) 48.4|48.4(1) 39.4|21.1(0) 36|24.9(0)
↑ FOMD 0.38|0.31(0) 0.392|0.35(0) 0.493|0.493(1) 0.384|0.244(0) 0.378|0.302(0)
↓ expansion 6.38|11.8(0) 4.69|9.74(0) 0.00334|-(-) 4.49|13.7(0) 6.2|11.8(0)
↓ cut ratio 0.0108|0.0219(0) 0.0108|0.0272(0) 0.000558|-(-) 0.00791|0.0205(0) 0.0106|0.02(0)
↓ conductance 0.205|0.391(0) 0.154|0.271(0) 0.000702|-(-) 0.22|0.57(0) 0.202|0.412(0)
↓ norm cut 0.259|0.472(0) 0.219|0.384(0) 0.111|-(-) 0.27|0.636(0) 0.257|0.487(0)
↓max ODF 0.229|0.509(0) 0.178|0.481(0) 0.00111|-(-) 0.277|0.7(0) 0.199|0.534(0)
↓ average ODF 0.241|0.518(0) 0.185|0.425(0) 0.00113|-(-) 0.266|0.701(0) 0.238|0.54(0)
↓ flake ODF 0.759|0.999(0) 0.605|0.999(0) 0.00445|-(-) 0.727|1(0) 0.747|0.999(0)
↑ clustering coef 0.296|0.233(0) 0.152|0.221(1) 0.0437|0.217(1) 0.222|0.187(0) 0.289|0.226(0)
↑modularity 0.373|0.149(0) 0.334|0.122(0) 0.000276|-1.13e-14(0) 0.342|0.0973(0) 0.372|0.152(0)
n_communities 14|8.1(1) 10|2.3(1) 2|1(1) 82|76.7(0.6) 16|12.4(1)

TABLE 4.4: Values of scoring functions for the News on Corpora-
tions graph (left), compared to those of their averages for 100 ran-

domized samples (right), and its percentile rank (parentheses).

Louvain leading eigen label prop Walktrap spin-glass
↑ internal density 109|43(0) 57.3|24.4(0.02) 158|8.93(0) 65|7.23(0) 26.2|39.5(1)
↑ edges inside 14828|10482(0.11) 11351|23434(0.67) 7350|111195(1) 10451|121642(1) 6612|4502(0.01)
↑ av degree 1047|583(0) 963|650(0.06) 902|1255(1) 1001|1322(1) 440|482(0.93)
↑ FOMD 0.44|0.26(0) 0.391|0.267(0.06) 0.386|0.488(1) 0.413|0.5(1) 0.163|0.195(0.98)
↓ expansion 113|370(0) 155|357(0) 186|36.4(1) 136|-(-) 417|420(0.35)
↓ cut ratio 0.787|2.58(0) 1|3.05(0) 1.13|17(0) 0.851|-(-) 2.66|2.55(0.91)
↓ conductance 0.113|0.414(0) 0.162|0.407(0) 0.224|0.0167(1) 0.162|-(-) 0.564|0.534(0.9)
↓ norm cut 0.133|0.471(0) 0.182|0.481(0) 0.24|0.15(1) 0.177|-(-) 0.611|0.566(1)
↓max ODF 0.248|0.608(0) 0.303|0.569(0.0426) 0.32|0.00558(1) 0.29|-(-) 0.824|0.695(1)
↓ average ODF 0.207|0.6(0) 0.308|0.578(0) 0.353|0.0277(1) 0.296|-(-) 0.713|0.705(0.63)
↓ flake ODF 0.935|0.998(0) 0.957|0.997(0) 0.967|0.423(1) 0.962|-(-) 0.989|0.999(0)
↑ clustering coef 0.0837|0.194(1) 0.0902|0.19(1) 0.123|0.19(1) 0.112|0.191(1) 0.0351|0.195(1)
↑modularity 0.673|0.27(0) 0.615|0.202(0) 0.615|0.1(0) 0.639|0(0) 0.226|0.251(0.93)
n_communities 10|6.22(1) 12|9.54(0.74) 31|1.94(1) 19|1(1) 12|12.8(0.27)

TABLE 4.5: Values of scoring functions for the Enron graph (left),
compared to those of their averages for 100 randomized samples

(right), and its percentile rank (parentheses).

4.3. Results and Discussion 39

Louvain leading eigen label prop Walktrap spin-glass
↑ internal density 45.3|3.17(0) 15.8|1.22(0) 98|1.19(0) 1.54|0(0) 4.37|5.48(1)
↑ edges inside 255578|86181(0) 1076946|223193(0) 5690431|1230459(0) 896171|0(0) 52171|113572(1)
↑ av degree 3680|342(0) 3639|499(0) 6572|1298(0) 1663|0(0) 577|337(0)
↑ FOMD 0.404|0.217(0) 0.375|0.287(0.1) 0.497|0.5(1) 0.23|0(0) 0.131|0.222(1)
↓ expansion 1594|478(1) 1615|400(1) 148|0.337(1) 2603|649(1) 3146|481(1)
↓ cut ratio 0.906|0.354(1) 1.27|0.374(1) 0.856|0.0422(1) 1.83|0.342(1) 1.81|0.401(1)
↓ conductance 0.307|0.54(0) 0.31|0.434(0.1) 0.0191|0.00021(1) 0.594|1(0) 0.858|0.49(1)
↓ norm cut 0.324|0.6(0) 0.378|0.535(0.1) 0.127|-(0.667) 0.658|1(0) 0.894|0.561(1)
↓max ODF 0.0311|0.626(0) 0.0371|0.553(0) 0.00862|0.00189(0.9) 0.432|1(0) 0.857|0.58(1)
↓ average ODF 0.334|0.668(0) 0.478|0.563(0.1) 0.187|0.000483(1) 0.636|1(0) 0.924|0.822(1)
↓ flake ODF 0.767|0.996(0) 0.763|0.993(0) 0.209|0.0839(0.7) 0.864|0.999(0) 0.974|0.996(0)
↑ clustering coef 0.00417|0.147(1) 0.00127|0.147(1) 0.00179|0.15(1) 0.00031|0(0) 0.0038|0.143(1)
↑modularity 0.461|0.122(0) 0.277|0.0676(0) 0.0778|0.00077(0) 0.0502|-0.00268(0) -0.00289|0.119(1)
n_communities 26|13.7(1) 26|7.7(1) 26|3.3(1) 822|1899(0) 24|23.4(0.4)

TABLE 4.6: Values of scoring functions for the social network graph
(left), compared to those their averages for 10 randomized samples

(right), and its percentile rank (parentheses)

41

Chapter 5

Cluster Stability

Evaluating stability is an important part in the validation process of community de-
tection methods. If the ultimate goal is to find the underlying community structure
of a network (in case there is one), the process must be robust and not be too sensi-
ble to small variations in the data. Cluster stability has been studied more widely
for algorithms that work on Euclidean data (as opposed to networks, weighted or
not). For instance, [90] uses both resampling and adding noise to generate per-
turbed versions of the data. [42] introduces bootstrap resampling (with and with-
out perturbation) to evaluate cluster stability. Also for Euclidean data, [87] intro-
duce a systematic approach for cluster evaluation that combines cluster quality
criteria with similarity and dissimilarity metrics between partitions, and searches
for correlations between them. Our approach consists of a bootstrap technique with
perturbations adapted to clustering on networks, that resembles what Hennig does
for Euclidean data. That is, the set of vertices is resampled multiple times, and the
clustering algorithms are applied to the resulting induced networks. In this case,
the perturbations are applied to the edge weights after resampling the vertices, but
the standard bootstrap method without perturbation can be used on all networks,
weighted or not.

To compare how the clusters of the resampled networks differ from the originals,
we use four measures, which are defined and discussed in more detail in chapter
3. The adjusted Rand index [45] is a similarity measure that counts the rate of pairs
of vertices that are in agreement on both partitions, corrected for chance. Addi-
tionally, we use measures derived from information theory to compare partitions
such as the recently introduced Reduced Mutual Information [66] as well as the
Adjusted Mutual Information [88], which correct some of the issues with the orig-
inal mutual information or its normalized version [23]. For example, giving maxi-
mal scores when one of the partitions is trivial, which in our case would mean that
failed algorithms that split most of the network into single vertex clusters would be
considered very stable. Other attempts at providing adjusted versions of the mu-
tual information include [26], [89] and [96]. The other information theory measure
we employ for the sake of comparison and control is the Variation of Information
(VI) [59]. The VI is a distance measure (as opposed to a similarity measure, like
the Rand index and mutual information) that actually satisfies the properties of a
proper metric.

The proposed cluster evaluation method is tested on the same networks used in
chapter 4 to evaluate significance.

42 Chapter 5. Cluster Stability

5.1 Methods

The evaluation of cluster stability is performed by resampling the network using
bootstrap with perturbation, and applying the clustering algorithms to all these
instances. The similarity metrics (Variation of Information, Reduced Mutual In-
formation, and Adjusted Rand Index) are then used to quantify how much the
resulting partitions differ from the initial partition for the original network. Values
indicating a very high similarity (high RMI and ARI, low VI) will mean that the
clusters are stable.

5.1.1 Bootstrap with perturbation

Non-parametric bootstrap, with and without perturbation or “jittering", has been
used to study the stability of clusters of euclidean data sets [42]. For graphs, boot-
strap resampling can be done on the set of vertices, and then build the resampled
graph with the edges that the original graph induces on them (i.e. two resampled
vertices will be joined by an edge if and only if they were adjacent in the original
graph, with the same weight in the case of weighted graphs). As for adding noise
to avoid duplicate elements, it can be added to the edge weights. We suggest gen-
erating that noise from a normal distribution truncated to stay within the bounds
of the edge weights of each graph (which means it can be truncated on one or both
sides depending on the graph).

Then, to deal with copies of the same vertex on the resampled graph, it seems
necessary to add heavy edges between them to reflect the idea that a vertex and its
copy should be similar and well connected between each other. Not doing so would
incentivize the clustering methods to separate them in different clusters, because
they generally try to separate poorly connected vertices. We can distinguish two
cases:

• Graphs with edge weights built from correlations or other similar graphs
which by their nature have a specific upper bound on the edge weights (usu-
ally 1): We assign the value of the upper bound to the edge weight. After
applying the perturbation, this will result in a weight which will be close to
that upper bound.

• Other weighted graphs, where no particular upper bound to the edge weights
is known: To assign these edges very high weights (to reflect the similarity
that duplicate vertices should have in the resampled network) within the con-
text of the network, one option is to sample values from the highest weights
(e.g. the top 5%) of the original edge set.

5.2 Results and Discussion

Using the non-parametric bootstrap method described in section 5.1.1, we resam-
ple the networks 999 times (R = 999), apply clustering algorithms to them, and
compare them to their original clustering with the metrics from chapter 3. Stable
clusterings are expected to persist through the process, giving small mean values of
the variation of information, and high (close to 1) values of the normalized reduced

5.2. Results and Discussion 43

mutual information and the Rand index. The results of the same method applied
to the randomized versions of each network (see section 4.1.1) are also included,
to have reference values for the stability of networks where there is no community
structure. If the values of the clustering similarity measures, for the original and
randomized networks, happened to be close together, that would suggest that the
chosen algorithm produces a very unstable clustering on the network.

We observe in table 5.1 that for the stochastic block model example graph, all algo-
rithms except for spin-glass produce very stable clusters, which is consistent with
the fact that we chose parameters to give it a very strong community structure.
Meanwhile, clustering algorithms applied to the Zachary and Forex networks (ta-
bles 5.2 and 5.3) produce clusters which are not as stable, but still much better than
their baseline randomized counterparts. Note that the stability values for the label
propagation algorithm in the Forex network (table 5.3) should be ignored, as in that
instance the output is a single cluster (see table 4.3) which does not give any infor-
mation. It is clear that while it works on less dense networks, the label propagation
algorithm is not useful for complete weighted networks and it fails to give results
that are at all meaningful.

On the news on corporations graph (table 5.4) spin-glass is again the most unstable
algorithm, with results for the RMI and ARI (which are both close to 0) that suggest
that the clusters of the original network and all the resampled ones are completely
unrelated. In this case the label propagation algorithm is the most stable, while
the rest of the algorithms are not as good. This might be in part explained by the
fact that its clusters are much bigger than in other networks, which allows them to
remain strongly connected after small perturbations.

Finally, we observe that algorithms on the Enron graph (table 5.5) produce the most
unstable clusters out of all that were tested, which would suggest that the network
does not have a single prevalent clustering structure that can be consistently de-
tected, at least in the weighed graph configuration that we tested.

As a general remark on stability observed from all resulting experiments is that the
spin-glass algorithm is the most unstable across the networks we tested, which are
a diverse representation of different kinds of weighted networks.

original randomized

VI AMI RMI ARI #clust VI AMI RMI ARI #clust
Louvain 0.19 0.72 0.73 0.75 5.00 0.65 0.31 0.20 0.24 7.26
leading ev 0.19 0.71 0.72 0.76 4.67 0.72 0.09 0.17 7.03
label prop 0.22 0.58 0.67 0.77 5.48 0.26 0.00 0.00 0.18 4.40
Walktrap 0.14 0.78 0.80 0.81 4.99 0.70 0.29 0.07 0.13 9.60
spinglass 0.39 0.49 0.45 0.53 5.74 0.76 0.21 0.08 0.19 7.82

TABLE 5.1: Mean values of the metrics after bootstrapping with R =
999 , for both the WSBM graph and its randomized counterpart, for

all tested clustering algorithms

44 Chapter 5. Cluster Stability

original randomized

VI AMI RMI ARI #clust VI AMI RMI ARI #clust
Louvain 0.27 0.62 0.66 0.67 5.57 0.49 0.49 0.39 0.42 5.49
leading ev 0.28 0.60 0.64 0.72 5.66 0.55 0.41 0.30 0.39 5.79
label prop 0.26 0.51 0.63 0.71 5.01 0.50 0.16 0.36 0.33 4.86
Walktrap 0.27 0.62 0.68 0.71 5.94 0.42 0.39 0.49 0.47 6.57
spinglass 0.62 0.29 0.20 0.38 6.34 0.62 0.28 0.22 0.35 6.04

TABLE 5.2: Mean values of the metrics after bootstrapping with R =
999 , for both the Zachary graph and its randomized counterpart, for

all tested clustering algorithms

original randomized

VI AMI RMI ARI #clust VI AMI RMI ARI #clust
Louvain 0.32 0.52 0.52 0.55 3.13 0.66 0.17 0.04 0.15 3.34
leading ev 0.25 0.48 0.47 0.62 2.34 0.40 0.14 0.10 0.19 2.18
label prop 0.00 1.00 0.00 1.00 1.00
Walktrap 0.24 0.49 0.49 0.62 2.41 0.61 0.00 0.00 0.00 31.60
spinglass 0.28 0.57 0.54 0.60 3.07 0.63 0.13 0.08 0.18 3.10

TABLE 5.3: Mean values of the metrics after bootstrapping with R =
999 , for both the Forex graph and its randomized counterpart, for

all tested clustering algorithms

original randomized

VI AMI RMI ARI #clust VI AMI RMI ARI #clust
Louvain 0.34 0.45 0.42 0.59 27.51 0.70 0.06 0.07 0.08 23.47
leading ev 0.27 0.40 0.40 0.75 27.50 0.32 0.15 0.24 0.24 23.40
label prop 0.08 0.56 0.79 0.86 21.16 0.03 0.00 -0.00 0.00 16.62
Walktrap 0.30 0.55 0.42 0.50 85.00 0.18 0.21 0.06 0.07 91.70
spinglass 0.63 0.09 -0.12 0.13 30.65 0.94 0.00 -0.14 0.00 26.01

TABLE 5.4: Mean values of the metrics after bootstrapping with R =
999 , for both the News graph and its randomized counterpart, for

all tested clustering algorithms

original randomized

VI AMI RMI ARI #clust VI AMI RMI ARI #clust
Louvain 0.30 0.64 0.60 0.54 10.34 0.63 0.20 0.09 0.12 5.48
leading ev 0.42 0.53 0.46 0.40 12.78 0.50 0.21 0.14 0.20 5.96
label prop 0.34 0.60 0.54 0.48 16.36 0.02 0.21 0.22 0.48 1.44
Walktrap 0.32 0.65 0.58 0.51 17.08 1.36 0.15 0.00 0.03 170.93
spinglass 0.93 0.04 -0.20 0.03 12.63 0.74 0.17 0.08 0.13 9.36

TABLE 5.5: Mean values of the metrics after bootstrapping with R =
999 , for both the Enron graph and its randomized counterpart, for

all tested clustering algorithms

45

Chapter 6

Network models with multi level
community structures

6.1 Introduction

In this chapter we introduce network models with a hierarchical community struc-
ture where the relative strength of each level of cluster is parametrized. That is, not
only the density of edges is different between vertices sharing the same cluster, but
there can also be sub-clusters of higher density within a cluster, and the relation
between this density can be controlled with a parameter. This allows to generate
graphs where the sub-clusters are emphasized, or on the contrary, others where
these lower level clusters cannot be distinguished from the rest of the larger clus-
ters where they are contained. These models will be used in chapter 7 to determine
whether cluster scoring functions are biased towards the lower or upper levels of
clusters within the hierarchical structure.

We propose two approaches to obtain this multi-level structure. The first one is
based on the Stochastic Block Model (SBM), which samples potential edges uni-
formly with a given probability for each level of clusters. Alternatively, we present
a model based on preferential attachment with the same multi-level structure, but
with scale-free degree distributions. It uses the same principles as the original
Barabási-Albert model, but with the addition of the community structure.

6.2 Related work

Hierarchical or multi-level stochastic block models, have been mostly used for com-
munity detection by trying to fit them to any given graph ([54] and [68] are good
examples of this technique). Here we use the SBM and multilevel SBM for the pur-
pose of generating networks with predetermined community structure. Of utmost
importance is the Barabási-Albert preferential attachment model with community
structure construction of [41], which motivates our own construction of a multi-
level block model with preferential attachment to produce networks with commu-
nity structure and degree distribution ruled by a power law. The proof of this latter
fact is a novel contribution of this thesis.

There is scarce literature in the use of SBM and multilevel SBM, let alone the pref-
erential attachment model for constructing synthetic ground truth communities in

46 Chapter 6. Network models with multi level community structures

networks as benchmarks for testing clustering algorithms. A notable exception is
[69], that uses SBM in this sense to explore how metadata relate to the structure
of the network when the metadata only correlate weakly with the identified com-
munities. This thesis contributes to the literature of clustering assessment through
probabilistic generative models of communities in networks.

6.3 Stochastic Block Model (SBM)

A potential benchmark for clustering algorithm evaluation is the family of graphs
with a pre-determined community structure generated by the planted l-partition
model [20, 39, 34]. It is essentially a block-based extension of the well known Erdös-
Renyi model, with l blocks of g vertices, and with probabilities pin and pout of hav-
ing edges within the same block and between different blocks respectively.

The generalization of this idea is the stochastic block model, which allows blocks to
have different sizes, as well as setting distinct edge probabilities for edges between
each pair of blocks, and for internal edges within each block [43, 91]. These proba-
bilities are commonly expressed in matrix form, with probability matrix P where Pij
is the probability of having an edge between each pair of vertices from blocks i and
j. Then, graphs generated by probability matrices where the values in the diagonal
are larger than the rest, will have very strong and significant clusters, while more
uniform matrices will produce similarly uniform (and therefore poorly clustered)
graphs.

Note that this matrix is symmetric for undirected graphs. Of course, to use this
model for the undirected case, the only modification needed is to separately sample
the edges in both directions for all pairs of vertices. If the probability matrix is not
symmetric, then the density of edges joining any two communities may be different
in each direction.

Also note that this is a model for unweighted graphs. It would be possible to de-
rive a weighted version by sampling edge weights from a discrete or continuous
probability distribution, and replacing the matrix P with an appropriately chosen
matrix (or matrices) of parameters. For example, the Poisson distribution could
be used, and then, for each pair vi, vj of vertices, one would take a sample with
parameter λij taken from a matrix of λ parameters, and that would give the edge
weight (a zero would mean no edge). That matrix would be structured just like
the probability matrix of the standard stochastic block model, but in this case each
element would be the expected average edge weight (counting the lack of edge as
a zero) between the corresponding two communities. However, we will focus on
the unweighted model for simplicity.

6.4 Multi-level stochastic block model

To generate networks with multi-level community structures, we propose a varia-
tion of the stochastic block model with two levels of communities. A more general
model with an arbitrary number of levels (where the hierarchical structure of the
network can be any tree) was proposed by Cohen-Addad and Kanade [19], but for

6.4. Multi-level stochastic block model 47

the purposes of this thesis, a simpler model with few parameters that can be eas-
ily described is more convenient. This two-level variation of the stochastic block
model is defined as follows:

• C1,..., Cn are the first level of communities.

• each community Ci is split into Ci1 , ..., Cimi
sub-communities.

• d1 is the edge probability within sub-communities.

• d2 is the edge probability within communities (but with different sub-commu-
nities).

• d3 is the edge probability outside communities.

Consequently, the model takes as parameters the upper and lower level block size
lists, as well as the edge probabilities d1, d2, d3. Note that the lower level partition
Pl = {Cij} is a refinement of the upper level partition Pu = {Ci}. A representation
of this multi-level stochastic block model is shown in figure 6.1, where the upper
level is the light coloured region whilst the lower level is the darker region, and the
edge probabilities are clearly identified.

d1

d2

d3

FIGURE 6.1: Multi-level stochastic block model.

The resulting model can itself be expressed as a standard (single-level) stochastic
block model, using the lower-level communities as blocks, and with probability
matrix as seen in figure 6.2, which means it is actually a particular case of the stan-
dard stochastic block model. This idea can be extended to define stochastic block
models with a hierarchical or multi-level structure of any number of levels, but in
our experiments we have used 2 levels for the sake of simplicity.

By varying the relation between d1 and d2, we can give different strength to the
multi-level community structure. If d2 is close to or equal to d1, the lower level
of communities will not be distinguishable and will merge into the upper level. If
d1 is instead much larger, then the smaller communities will become more visible.
And similarly, if d2 is not significantly larger than d3, the upper level structure will
be weak.

48 Chapter 6. Network models with multi level community structures

d1

d1
d2

d2

d3

d3

FIGURE 6.2: Probability matrix of the multi-level stochastic block
model.

We won’t consider cases where d1 < d2 and d2 < d3, as the resulting structure
would be closer to a k-partite graph (with k being the number of blocks on the
corresponding level) than to a community structure (i.e. blocks would be more
connected to each other than to themselves).

6.4.1 Preferential attachment model

An alternative way to generate benchmark graphs that resemble real networks is
the Barabási-Albert preferential attachment model [8]. In this model, new vertices
are added successively, and at each addition, a fixed number m of new edges are
added connecting the new vertex to the rest of the network, with probabilities of
linking to each of the existing vertices proportional to their current degree.

An extension to this model to include communities has been explored in [41, 47],
which consists on basing the preferential attachment not only on the degree of the
vertices, but also on a fitness matrix that depends on their labels (i.e. which block
each of the vertices belongs to). This construction can be seen as a weighted pref-
erential attachment, with weights being the affinities between vertex labels. We
propose a variation of this preferential attachment block model where new half
edges are first randomly assigned a community (with probabilities given by the
affinity matrix), from which we then sample the vertex with standard preferential
attachment.

The model consist of a sequence of graphs {Gt = (Vt, Et) : t ≥ t0}, where Vt = [t]
(hence there are t vertices) and |Et| = mt, no self-loops, with the possibility of hav-
ing parallel edges, and communities C = (C1, ..., Cr), with distribution determined
by the following parameters:

• m ≥ 1: fixed number of edges added connecting each new vertex to the
graph.

• r ≥ 1: fixed number of communities.

6.4. Multi-level stochastic block model 49

• β: r × r fitness matrix that determines the probability of edges connecting
each pair of communities.

• p = (pc1 , pc2 , ..., pcr): vertex community membership probability distribution.

• t0 ≥ 1: initial time (which is also the order of the G0 graph).

• Gt0 : initial graph

Given graph Gt and community memberships c = (c1, ..., ct), the graph Gt+1 is
generated as follows: A new vertex t + 1 is added with community membership
sampled from the probability vector p, and with m half-edges attached. To obtain
the other ends of these half edges, m communities are sampled with replacement
with probabilities weighted by βct,1, ..., βct,r, and for each of them, a vertex is sam-
pled within the community with preferential attachment (that is, with probabilities
proportional to the degree of each vertex). The initial graph Gt0 has to be chosen
carefully as we will explain below, and further we will show that the resulting net-
work has a scale-free degree distribution.

6.4.2 Generating the initial graph

The initial graph Gt0 is crucial for computing Gt in discrete time, because early
vertices have a higher probability to end up with a high degree than later ones
due to the nature of the preferential attachment model. To avoid bias with respect
to any of the communities, we assign the initial vertices with the same vector of
probabilities p = (pc1 , ..., pc|P|) used later when adding new vertices. Then, we
sample t0 × m edges between them with probabilities proportional to the fitness
matrix. In order for Gt0 to be able to have enough edges without parallel or self
edges, we need t0 − 1 > 2m (if we have the equality, Gt0 will be an t0-clique). It
is suggested to use t0 = 5m to produce a graph that is not too close to a clique,
because Gt0 is generated with community structure according to a fitness matrix,
but the closer it is to a clique, the less this structure matters (at least if we sample
without replacement to avoid parallel edges).

6.4.3 Degree distribution

Now the goal is to analytically obtain the expected degree distribution of the model.
Recall that for the original Barabási-Albert model it is done as follows (shown in
[2]). Let ki be the expectation of the degree of node i. Then,

dki

dt
= m

ki

∑N−1
j=1 k j

(6.1)

The sum in the denominator is known, since the total amount of edges at a certain

point is fixed by the model, so ∑N−1
j=1 k j = 2mt−m, and thus

dki

dt
=

ki

2t− 1
. For large

t the −1 term can be neglected, and hence we get
dki

ki
=

dt
2t

. Integrating and taking

exponents we get Cki = t
1
2 , for some constant C. By definition, ki(ti) = m, and

hence C =
t

1
2
i
m . Substituting this value into the last equation, we obtain the desired

50 Chapter 6. Network models with multi level community structures

power law:

ki(t) = m
(

t
ti

) 1
2

(6.2)

For our block model the argument goes as follows. We will assume ki belongs to the
first community to simplify the notation (by symmetry the same principles work
on all communities). The rate at which the degree grows is given by

dki

dt
=

(
r

∑
j=1

pjβ j1

)
ki

∑j∈C1
k j

m, (6.3)

where the denominator is the expected sum of degrees in community 1:

E

[
∑

j∈C1

k j

]
t

= tm

(
p1 +

r

∑
j=1

pjβ j1

)
. (6.4)

Then, equation (6.3) becomes

dki

dt
=

(
r

∑
j=1

pjβ j1

)
ki

t(p1 + ∑r
j=1 pjβ j1)

= A
ki

t
, (6.5)

where A = (∑r
j=1 pjβ j1)/(p1 + ∑r

j=1 pjβ j1) is a constant that depends only on the
parameters of the model (p1, ..., pr and β). Then, we integrate the equation:∫ dki

ki
=
∫

A
dt
t

(6.6)

to obtain that ki = CtA, for some constant C. Now, using the fact that ki(ti) = m,

we obtain the value of the constant as C =
m
tA
i

, which results in ki being given by

ki = m
(

t
ti

)A

. (6.7)

By an argument similar to one in [2, Sec. VII.B] we use equation (6.7) to write the
probability that a node has degree ki(t) smaller than k as

P(ki(t) < k) = P
(

ti >
tm1/A

k1/A

)
= 1− tm1/A

(t + m0)k1/A . (6.8)

The last equality obtained from assuming that nodes are added to the network at
equal time intervals, and in consequence P(ti) = 1/(t + m0). Using equation (6.8)
one can readily conclude that the degree distribution of the community P(k) =
∂P(ki(t) < k)/∂k is asymptotically given by: P(k) ∼ 2m1/Ak−γ, where γ = 1/A +
1.

51

Chapter 7

Identifying bias in cluster quality
metrics

7.1 Introduction

Determining how meaningful the results of cluster analysis are can often be diffi-
cult, as well as choosing which clustering algorithm better suits a particular net-
work. In many cases, various clustering algorithms can give substantially different
results when applied to the same network. This is not only due to the limitations or
particularities of the algorithms, but also to some networks possibly having multi-
ple coexisting community structures.

This chapter is motivated by the results of the cluster significance evaluation per-
formed on chapter 4. There, we use many community scoring functions that evalu-
ate one or multiple of the characteristics that we identify with strong and significant
clusters, such as high internal connectivity and low external connectivity. However,
when evaluating the results of clustering algorithms, it is commonly observed that
some algorithms tend to group the network vertices into larger clusters, while oth-
ers seem to favor smaller ones. And some of the scoring functions are observed to
also favor partitions of a certain size, even to the point of giving them better scores
than the ground truth partition in some cases where it is present and known. Then,
if we are to use these functions to study the results of clustering algorithms on net-
works for which we don’t have any prior kowledge of any community structure,
it is important to know if they can potentially be biased towards communities of a
certain size.

Our goal is to study how existing cluster or community quality metrics behave
when comparing several partitions of the same network, and determine whether
they properly show which of them better match the properties of a good clustering,
or if they are biased in favour of either finer or coarser partitions. Knowing this is
essential, for there could be cases in which a cluster quality metric simply scores
better than another because it tends to find smaller or larger clusters, with less
regard for other properties, and not because it is better at revealing the structure of
the network.

We selected a few popular cluster quality metrics, both local, which assign a score
to evaluate each individual cluster (e.g., conductance, expansion, cut ratio, and oth-
ers), and global, which evaluate the partition as a whole (e.g., modularity). We also

52 Chapter 7. Identifying bias in cluster quality metrics

propose a new metric, the density ratio, which combines some of the ideas behind
other metrics, in an attempt to improve over some of their limitations, and more
particularly, to avoid bias caused by the number of clusters of the partitions.

Our analysis is split in two parts. In the first part, we use the stochastic block mod-
els [43, 91] to generate networks of predetermined community structures, and we
then compute the correlation of each metric to the size and number of communi-
ties. On the second part, we define networks with a two level hierarchical commu-
nity structure (with the lower partition being a refinement of the upper partition),
where one additional parameter controls the strength of one level respect to the
other. Then, by varying this parameter and evaluating the quality metrics on both
levels, we can see if certain metrics are biased towards finer or coarser partitions.
These networks with multi-level community structure are implemented on two dif-
ferent models that have been defined in chapter 6: a stochastic block model and a
preferential attachment model which results in networks with a scale-free degree
distribution.

7.1.1 Related work

We briefly survey some of the studies in cluster quality metrics and analyses of
their performance which are relevant to this work. A milestone is the work by
Yang and Leskovec [94], where they analysed and classified many popular clus-
ter scoring functions based on combinations of the notions of internal and external
connectivity. More recently, Emmons et al. in [30] study the performance of three
quality metrics (modularity, conductance and coverage), as well as that of various
clustering algorithms by applying them to several well known benchmark graphs.
For the case of modularity, it was already shown in [35] to have a resolution limit
below which small and strong communities are merged together, even when that
goes against the intuition of what a proper clustering should be. This limit de-
pends on the total amount of edges in the network, in such a way that it is more
pronounced the larger the network and the smaller the community. Almeida et
al. [3] do a descriptive comparison of the behaviour of five cluster quality metrics
(modularity, silhouette, conductance, coverage, and performance) for four different
clustering algorithms applied over different real networks, to conclude that none
of those quality metrics represents the characteristics of a well-formed cluster with
a good degree of precision. Chakraborty et al. [17] survey several popular metrics,
comparing their application to networks with ground truth communities to the re-
sults of a selection of clustering algorithms, though the potential of bias relative to
cluster size is not addressed.

7.2 Methods

7.2.1 Cluster quality metrics

We study two different kinds of quality metrics: cluster-wise (or local), which eval-
uate each cluster separately, and global, which give a score to the entire network.
Additionally, for each local metric, we also consider the global metric obtained by

7.3. Cluster metrics analysis 53

computing its weighted mean, with weights being the corresponding sizes of the
clusters.

We consider a collection of local metrics (or community scoring functions) intro-
duced in [94] which combine the notions of strong internal and weak external con-
nectivity that are expected of good clusters. Definitions of these local clustering
quality metrics, which we already defined in chapter 2, are summarised in table
7.1. While many of them are too focused on a single property to be able to give
a general overview on their own (like internal density, average degree, cut ratio
. . .), they all capture properties that are considered desirable in a proper cluster-
ing (which essentially come down to a combination of strong internal and weak
external connectivity). The ones that actually combine both internal and external
connectivity are the conductance and normalized cut (which happen to be highly
correlated, as seen in [94]), so we will mostly focus our analysis on those.

As for global metrics, we consider modularity [64] and coverage [30]. Addition-
ally, we propose another metric, which we named density ratio, and is defined as
1− external density

internal density . It is based on some of the metrics in table 7.1, but defined globally
over the whole partition (see table 7.2). It takes values on (−∞, 1], with 1 represent-
ing the strongest partition, with only internal connectivity, while poor clusterings
with similar internal and external connectivity have values around 0. Only cluster-
ings with higher external than internal connectivity (so worse on average than clus-
tering randomly) will have negative values, and if we keep decreasing the internal
connectivity, the density ratio will tend to −∞ as the internal density approaches
0. The density ratio can be computed on linear time over the number of edges. A
local version of this metric is defined in table 7.1.

7.3 Cluster metrics analysis

7.3.1 Standard SBM network

Using stochastic block models—particularly the l-partition model, given the use of
the same fixed probabilities for all blocks (cf. sec. 6.3)—we generate a collection
of networks with predetermined clusters of varying sizes. The networks are gener-
ated as follows: The number of vertices n is fixed, and then, each vertex is assigned
to a community with probability pc1 , pc2 , ..., pc|P| (such that ∑ Pi = 1). Then, this set
of probabilities is what will determine the expected sizes of the clusters. Finally,
once each vertex is assigned to a community, the edges are generated using the
stochastic block model with probabilities pin = 0.1 and pout = 0.001 (which control
the probability of intra and inter community edges, respectively).

To generate pc1 , pc2 , ..., pc|P| we sample x1, ..., xP from a power law distribution with
β = 1.5, and then use the probabilities pi = xi

∑j xj
. For this experiment, we have

used networks of 300 nodes, with a number of clusters ranging from 5 to 25. For
each number of clusters, 1000 samples have been generated.

Since both the internal and external densities remain constant across all clusters,
a strong correlation of a quality metric with cluster size could suggest that it is
biased. We can then study the correlation between each quality metric like cluster

54 Chapter 7. Identifying bias in cluster quality metrics

↑ Internal density mS
nS(nS−1)/2

↑ Edges inside mS

↑ Fraction over median degree |{u:u∈S,|{(u,v)v∈S}|>kmed}|
nS

↑ Triangle participation ratio |{u:u∈S,{(v,w):v,w∈S,(u,v)∈E,(u,w)∈E,(v,w)∈E}̸=∅}|
nS

↑ Average degree 2mS
nS

↓ Expansion cs
ns

↓ Cut ratio cs
ns(n−ns)

↓ Conductance cs
2ms+cs

↓ Normalized cut cs
2ms+cs

+ cs
2(m−ms)+cs

↓Maximum ODF maxu∈S
|{(u,v)∈E:v ̸∈S}|

ku

↓ Average ODF 1
ns

∑u∈S
|{(u,v)∈E:v ̸∈S}|

ku

↑ Local density ratio 1− cs/(nS(n−nS))
mS/(nS(nS−1))

TABLE 7.1: Local scoring functions of a community S of the graph
G = (V, E). Arrows indicate whether the score takes higher values
when the cluster is stronger and lower values when it is weaker (↑),

or vice versa (↓).

↑Modularity 1
2m ∑u,v(Auv − kukv

2m)δP (u, v)

↑ Coverage ∑u,v AuvδP(u,v)
∑u,v Auv

↑ Global density ratio 1− |{(u,v)∈E:δP (u,v)=0}|/|{u,v∈V:δP (u,v)=0}|
|{(u,v)∈E:δP (u,v)=1}|/|{u,v∈V:δP (u,v)=1}|

TABLE 7.2: Global scoring functions of a partition P of the graph
G = (V, E).

7.3. Cluster metrics analysis 55

size (for cluster-wise scores), mean cluster size, and number of clusters relative to
graph size (for global scores). Results are shown in table 7.3.

global local

#clusters size (mean) size
internal density 0.0830 -0.0610 -0.0606
edges inside -0.6587 0.7620 0.9027
FOMD -0.6308 0.5951 0.8126
expansion 0.6855 -0.7388 -0.3388
cut ratio 0.0095 -0.0113 0.0010
conductance 0.9718 -0.9432 -0.8164
norm cut 0.9682 -0.9369 -0.7674
max ODF 0.9154 -0.9320 -0.8005
average ODF 0.9671 -0.9390 -0.8016
density ratio -0.3079 0.2648 0.0913
modularity -0.3169 0.2096 -
coverage -0.9234 0.8778 -
global density ratio -0.0035 0.0069 -

TABLE 7.3: Pearson Correlation table for both global and local scores
with respect to size on the SBM. For the local scores, the first two
rows are weighted means, giving a score for the whole network.
Note that the last three rows correspond to global scores, so there

is no value given for the correlation with local cluster size.

Note that by the properties of our model, some of the correlations are to be expected
and are a direct consequence of their definitions. This is the case of the cut ratio,
internal density or density ratio, which remain nearly constant because they are
determined by the values of pin and pout, which are constant across all networks.
We must remark the very high correlations of both conductance and normalized
cut with the number of clusters. For these two metrics, lower scores indicate better
clusterings, so they overwhelmingly favour coarse partitions into few large clus-
ters. We also observe a similarly strong correlation in the case of the coverage met-
ric, but in this case it is a trivial consequence of its definition (coarser partitions will
always have equal or better coverage, with the degenerate partition into a single
cluster achieving full coverage). In contrast, the modularity only shows very weak
correlations to either the number of clusters or their average size.

In the case of the density ratio, we observe that the global version has no correlation
to mean size or number of clusters, and that the local version has no correlation
with individual cluster size. There is a weak correlation of the weighted mean of
the local density ratio with the global properties of the network, which we attribute
to the higher likelihood of outliers whenever there is a high number of clusters.
Since the score has no lower bound and an upper bound of 1, outliers can have a
very small values of the local density ratios, with a great effect on the mean. That is

56 Chapter 7. Identifying bias in cluster quality metrics

why we suggest using the global density ratio and not the weighted mean of local
density ratios when evaluating a network clustering as a whole, and only using the
local version when studying and comparing individual clusters.

7.3.2 Multi-level SBM

We use the multi-level stochastic block model to identify whether a certain metric
favours either finer or coarser partitions. Given values of d1 and d2, we can define
a parameter 0 ≤ λ ≤ 1 that will set the strength of the lower level of clustering (if
λ = 1 the upper level dominates, if λ = 0, the lower level dominates), and then
set d2 = d3 + λ(d1 − d3). Upper level representing coarser partitions than those in
lower level, being the latter a refinement of the former.

To evaluate each metric on different configurations of the multi-level community
structure, we set a benchmark graph with 4 communities of 50 vertices on the upper
level, each of which splits into two 25 vertex communities on the lower level. We
then generate samples across the whole range [0, 1] of values of λ, with d1 = 0.2
and d3 = 0.01.

Figure 7.1 shows that all scores fail to capture the multi-level nature of the clus-
tering except for modularity and density ratio. The point at which the scores of
the lower and upper levels cross on the plot gives us the value of λ for which both
clusterings are considered equally good by the metric. Then, for values of λ smaller
than the one attained at the crossing point, the lower level structure is considered
preferable, while for larger values, it’s the upper level. Then, the value of λ at
which we find this tipping point characterises the propensity of a metric to favor
finer or coarser partitions. In this case, since this occurs for a smaller value of λ on
the modularity (about 0.15) than the density ratio (a bit over 0.20), we can conclude
that the former favors coarser partitions than the later.

As for the rest of the metrics, they always prioritize one level of clustering over the
other across all the range of λ (that is, the score lines don’t cross). Even the con-
ductance and normalized cut, which take into account both internal and external
connectivity, fail to give a better score to the lower level when λ is zero. Note that
when λ = 0, our model on the upper level is equivalent to an l-partition model of
8 blocks which have been clustered arbitrarily joined in pairs, and that still gets a
similar or better score than the correct finer partition into the 8 ground truth clus-
ters.

7.3.3 Multi-level preferential attachment

Here we describe how to set the parameters of the preferential attachment block
model defined in section 6.4.1 to obtain graphs with a multi-level or hierarchical
community structure. This is given by the selection of the vector p and the matrix β.
Let pl1 = (p1, ..., pr) be the vector of probabilities for the upper level, where pi is the
probability of membership to community Ci (see figure 7.2). Then, similarly to sec-
tion 7.3.2, we want to define a lower level structure that can vary according to a pa-
rameter λ, which will determine which level dominates. We will define Ci,1, ..., Ci,si

7.3. Cluster metrics analysis 57

0.3

0.4

0.5

0.6

0.00 0.25 0.50 0.75 1.00
λ

m
od

ul
ar

ity

0.4

0.5

0.6

0.7

0.8

0.9

0.00 0.25 0.50 0.75 1.00
λ

co
ve

ra
ge

0.80

0.85

0.90

0.95

0.00 0.25 0.50 0.75 1.00
λ

de
ns

ity
 r

at
io

0.1

0.2

0.3

0.4

0.00 0.25 0.50 0.75 1.00
λ

co
nd

uc
ta

nc
e

0.6

0.7

0.8

0.9

1.0

0.00 0.25 0.50 0.75 1.00
λ

T
P

R

0.1

0.2

0.3

0.4

0.00 0.25 0.50 0.75 1.00
λ

no
rm

 c
ut

0.5

1.0

1.5

2.0

2.5

3.0

0.00 0.25 0.50 0.75 1.00
λ

ex
pa

ns
io

n

0.12

0.16

0.20

0.00 0.25 0.50 0.75 1.00
λ

in
te

rn
al

 d
en

si
ty

level lower upper

FIGURE 7.1: Values of the quality metrics on each level of cluster-
ing on the Multilevel SBM. λ controls the strength of the multi-level
community structure. The y axis has been inverted for the scores
where lower values are better (conductance, normalized cut and ex-

pansion).

58 Chapter 7. Identifying bias in cluster quality metrics

as the lower level sub-communities of the higher level community Ci. Then, to sam-
ple the membership of vertices when generating a multi-level preferential attach-
ment graph, we need a vector of probabilities pl2 = (p1,1, ..., p1,s1 , ..., pr,1, ..., pr,sr),
where pi,j is the probability of membership to Ci,j, and such that ∑si

j=1 pi,j = pi for
all i ∈ {1, ..., r}, and ∑r

i=1 pi = 1.

C1

G

C2 Ci Cr

C1,1 C1,s1 Ci ,1 Ci , j Ci ,ri Cr ,sr
... ...

... ...

...... ...

FIGURE 7.2: Diagram of the multi-level preferential attachment
graph with community structure following the previously defined

notation.

Then, to sample the membership of each vertex on both levels, we simply need
to sample its lower level membership according to the probability weights in pl2 ,
which will also induce its upper level membership. As for the affinity matrix (see
figure 7.3), it will have the same block structure as the probability matrix of the
multi-level stochastic block model in section 7.3.2.

β1

β1
β2

β2

β3

β3

FIGURE 7.3: Affinity matrix of the multi-level block model with
preferential attachment.

Again, we use the parameter 0 ≤ λ ≤ 1, which controls the values of β2 as follows:

β2 = β3 + λ(β1 − β3), (7.1)

and then, following the preferential attachment model we sample edges attached to
a new vertex i with probability distribution (deg(1)β1,i, ..., deg(i− 1)β(i−1),i). For
our experiments, we set β1 = 0.2, β3 = 0.01, and generate samples of λ across the
whole [0, 1] interval, just as with the multi-level SBM in section 7.3.2. m has been
set at 4. The results are shown in figure 7.4.

7.4. Final remarks 59

The results are consistent with those of the multi-level SBM, and again only the
modularity and density ratio prioritize either partition depending on the strength
of the parameters (the rest always favour the same level of partition). This is seen
when the plot lines for the lower and upper level partitions cross, and the value of
λ at which the lines cross tells us at which degree of relative strength both levels of
clustering receive the same score. Ultimately, this value of λ characterizes to what
extent any given score favours fine or coarse partitions.

7.4 Final remarks

We have observed that most of the considered community metrics are heavily bi-
ased with respect to cluster size. While this does not mean that they are useless
for cluster quality evaluation, it makes them inadequate for a simplistic approach
based on either of them individually. They do however characterize properties that
are expected of good clusters, and can complement other methods on a more qual-
itative analysis. And considering that there isn’t a single universal definition of
what constitutes a good clustering, being able to evaluate each of these properties
separately can be valuable. Also note that these metrics can be particularly useful
when comparing partitions of the same number of elements, because in that case
the potential of bias related to cluster size is not a concern.

The results of the tests performed on both multi-level models are similar and show
that both the modularity and our newly introduced density ratio are capable of
evaluating multi-level community structures successfully. When compared among
them, though, the modularity favors slightly coarser partitions. Therefore, there
are grounds for further analysis of the density ratio metric in future work, such
as evaluating it both on well known benchmark graphs and real world networks.
It would also be particularly interesting to see how it fares in circumstances were
the modularity has limitations, such as when there are strong clusters below its
resolution limit.

Additionally, the methods we propose for studying network metrics using multi-
level models gave valuable insight and can be of use in to study any new metrics
that might be introduced in the future. We strongly suggest the use of metrics that
can appropriately detect clusters at different scales when comparing the results of
clustering algorithms, because as we have shown, otherwise cluster size has too
much influence on the result.

60 Chapter 7. Identifying bias in cluster quality metrics

0.3

0.4

0.5

0.6

0.00 0.25 0.50 0.75 1.00
λ

m
od

ul
ar

ity

0.4

0.5

0.6

0.7

0.8

0.9

0.00 0.25 0.50 0.75 1.00
λ

co
ve

ra
ge

0.80

0.85

0.90

0.95

0.00 0.25 0.50 0.75 1.00
λ

de
ns

ity
 r

at
io

0.1

0.2

0.3

0.4

0.00 0.25 0.50 0.75 1.00
λ

co
nd

uc
ta

nc
e

0.6

0.7

0.8

0.9

1.0

0.00 0.25 0.50 0.75 1.00
λ

T
P

R

0.1

0.2

0.3

0.4

0.00 0.25 0.50 0.75 1.00
λ

no
rm

 c
ut

0.5

1.0

1.5

2.0

2.5

3.0

0.00 0.25 0.50 0.75 1.00
λ

ex
pa

ns
io

n

0.12

0.16

0.20

0.00 0.25 0.50 0.75 1.00
λ

in
te

rn
al

 d
en

si
ty

level lower upper

FIGURE 7.4: Values of the quality metrics on each level of cluster-
ing for the multi-level preferential attachment model. λ controls the
relative strength of the multi-level community structure. The y axis
has been inverted for the scores where lower values are better (con-

ductance, normalized cut and expansion).

61

Chapter 8

Software Development

This chapter is dedicated to the discussion of how the methods described in the
thesis have been implemented. We will focus particularly on those where finding
an efficient algorithm is not completely trivial, and where a naive approach would
be incredibly slow and severely limit the size of networks that could be evaluated.

In the evaluation of cluster significance, the two bottlenecks are the graph rewiring
algorithm (which ideally needs to run enough iterations to guarantee that the net-
work has been sufficiently shuffled), and extension of the transitivity and cluster-
ing coefficient for weighted networks. As for cluster stability, the computation of
the Reduced Mutual Information is a big challenge, because it requires estimating
the number of contingency tables with fixed margins (which in practice cannot be
computed exactly as it is too costly).

8.1 Graph rewiring algorithm

Here we will discuss the implementation of the algorithm described in section 4.1.1.
We only treat the weighted version of the algorithm, because it can be used on
unweighted graphs by giving edges weight 1, and in that case it is equivalent to
the unweighted version. Since ommiting the weights doesn’t simplify the problem
substantially, and the efficiency would only be improved by a small constant, the
clustAnalytics package doesn’t include an implementation for unweighted graphs,
and internally treats them as weighted graphs of weight 1 for all edges.

Any fast implementation of the algorithm will need a data structure with the fol-
lowing properties:

• Checking whether two vertices are adjacent is fast.

• Checking the weight of a known edge is fast.

• It is possible to sample edges uniformly.

• Adding or removing edges to the graph, as well as modifying their weight, is
also fast.

The first two properties can be easily satisfied by using a map containing all edge
information, where each key is a pair of vertex indices (as integers), and the corre-
sponding value stores the edge weight. However, it is not trivial to sample elements
uniformly out of a search tree or hash table. For this, an additional data structure

62 Chapter 8. Software Development

class Graph
int n
int m
unordered_map<pair<int,int> >, CantorHash> edge_map
SVector sampling_vector

average worst case
get_weight() O(1) O(m)
set_weight() O(1) O(m)
sample_pair_edges() O(1) O(1)

TABLE 8.1: Graph class structure and complexity of its member
functions

will be needed, which we have called sampling vector (in the clustAnalytics package,
it is defined as the class SVector).

Table 8.1 contains a summary with the most relevant members and methods of the
resulting Graph class that we define. For simplicity, additional variables and meth-
ods that don’t affect the computational complexity of the algorithm (such as those
related to the edge weight bounds, or controlling whether the graph is directed)
haven’t been included. In the case of directed and undirected graphs, for example,
the only particularity is that the edges are treated as unordered pairs of vertices for
the former and ordered pairs for the latter.

Algorithm 1 Graph class methods

1: function GET_WEIGHT(a, b)
2: w← edge_map[(a, b)]
3: return(w)
4: end function
5: function SET_WEIGHT(a, b, w)
6: if w = 0 then
7: delete_edge(a, b)
8: end if
9: edge_map(a, b)← w

10: sampling_vector.insert((a, b))
11: end function
12: function SAMPLE_PAIR_EDGES

13: (a, c)← sampling_vector.sample_element()
14: (b, d)← sampling_vector.sample_element()
15: while (a, c) = (b, d) do
16: (b, d)← sampling_vector.sample_element()
17: end while
18: return((a, c), (b, d))
19: end function

8.1. Graph rewiring algorithm 63

8.1.1 Hash function for edge indices

For storing our edges in hash tables we need to provide an adequate hash function.
In the case of our particular implementation done in C++, the unordered_map con-
tainer in the standard library doesn’t have a default hash function for the
std::pair<int,int> type, so we have to provide our own. The integers in this case
are always going to be non negative, because they correspond to the indices of the
edges (0-based for C++). We also want the function to work for both the directed
and undirected cases, so inverting the order of the elements of the pair should not
cause colisions. In other words, a perfect hash function in this case would be any
injective function f : N×N→N.

A natural choice in this case is the Cantor pairing, possibly the most well known
bijection between N2 and N. It is a very intuitive pairing that sorts the elements
of N2 by navigating its grid diagonally as shown in figure 8.1. It is defined by the
following expression:

C(v1, v2) =
1
2
(v1 + v2 − 2)(v1 + v2 − 1) + v1. (8.1)

1 2 3 4 5

1

2

3

4

0 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

FIGURE 8.1: Cantor pairing function, which assigns a single natural
number to each pair of natural numbers.

8.1.2 Sampling vector

This data structure combines a vector v of pairs of integers (each corresponding to
the indices of the incident vertices of an edge, resulting with a vector of length m)
and an unordered map M with all elements of v as keys, and their position whithin
v as values. As we insert or remove edges to the graph, the order of the elements
of v is irrelevant as long as they are kept indexed in M. Then, insertions, deletions,
and uniform sampling can all be done in constant time on average.

• uniform sampling: We can simply sample elements uniformly from vector v.

64 Chapter 8. Software Development

class SVector
vector<pair<int,int> > v
unordered_map<pair<int,int> >, CantorHash> edge_map
int len

average worst case
insert() O(1) O(len)
remove() O(1) O(len)
sample_element() O(1) O(1)

TABLE 8.2: Sampling vector class structure and complexity of its
member functions

• insertion Insert the element at the end of v, and insert it also to M with its
index. This is O(m) in the worst case, but O(1) on average.

• deletion The order of elements in v doesn’t matter, so to delete it from v, we
simply swap it with the last element, and then delete the last position of the
vector. The value in M of what used to be the last element of v needs to be
updated with its new position, and the deleted element is also deleted from
M. Again, the complexity is given by the insertions and deletions into M,
resulting in O(m) in the worst case, but O(1) on average.

Algorithm 2 SVector class methods

1: function INSERT(a, b)
2: if (a, b) ̸∈ edge_map then
3: v.push_back((a, b))
4: edge_map[(a, v)]← v.size()− 1
5: len← len + 1
6: end if
7: end function
8: function REMOVE(a, b)
9: if (a, b) ̸∈ edge_map then

10: pa ← edge_map[(a, b)]
11: edge_map.erase((a, b))
12: last← v.back()
13: if a ̸= last then
14: v[pa]← last
15: edge_map[last]← pa
16: end if
17: v.pop_back()
18: len← len− 1
19: end if
20: end function

8.1.3 Overview of the algorithm

Algorithm 3 describes in pseudo-code a single step of the randomization process:
that is, the selection of two edges, and the transfer of a certain amount of weight

8.1. Graph rewiring algorithm 65

from them to the edges that share their end points as described previously. While
the amount t of transferred weight can vary depending on the parameters of the al-
gorithm, here it is described for the ”max weight” version, with no upper bound (so
the maximum amount of weight is trensferred that still keeps all edge weights non
negative). The resulting implementation of the complete randomization algorithm
is described in algorithm 4.

Algorithm 3 Randomization step

1: {(a, c), (b, d)} ← g.sample_pair_edges()
2: if a = d or b = c then
3: return
4: end if
5: for e ∈ {(a, c), (b, d), (a, d), (b, c)} do ▷ read edge weights
6: we = g.get_weight(e)
7: end for
8: t← min(wAC, wBD)
9: wAC ← wAC − t

10: wAD ← wAD + t
11: wBD ← wBD − t
12: wBC ← wBC + t
13: for e ∈ {(a, c), (b, d), (a, d), (b, c)} do ▷ update edge weights
14: g.set_weight(e, we)
15: end for

Algorithm 4 Randomization algorithm

1: function RANDOMIZE(EdgeList)
2: g← Graph() ▷ Initialize empty graph
3: for (e, w) ∈ EdgeList do
4: g.set_weight(e, w) ▷ fill the Graph class object with the data
5: end for
6: for i ∈ [Tm] do ▷ T is the parameter that controls the number of iterations
7: randomization_step(g)
8: end for
9: return(g)

10: end function

66 Chapter 8. Software Development

8.2 Weighted transitivity and clustering coefficient

Let Γ be the number of connected triplets in the graph and γ the number of closed
triplets (i.e. 3 times the number of triangles). As before Γ(t) and γ(t) are their re-
spective values when only edges with weight greater or equal than t are considered.
Then, the clustering coefficient or transitivity is defined as:

C̃ =
1
w̄

∫
t≥0

γ(t)
Γ(t)

dt, (8.2)

This is an integral of a step function that takes a finite number of values (bounded
by the number of different edge weights) which we will compute as follows:

1. Construct a hash table of all edges with their corresponding weights to be able
to search if there is an edge between any two edges (and obtain its weight) in
constant time. Complexity: O(m)

2. Construct a hash table for each vertex containing all its neighbors. Can be
done by iterating once over the edges and updating the corresponding tables
at each step. This will be used to iterate over the connected triplets incident
to each vertex. Complexity: O(m)

3. Construct a sorted list containing the edge weights at which either a con-
nected triplet or a triangle appears (i.e. the maximum edge weight of that
triangle or triplet), and an associated variable for each indicating whether it
corresponds to a triangle or a triplet. For this, we iterate over the connected
triplets using the hash tables from step 2, and for each, we check if it also
forms a triangle by checking the hash table from step 1 (which allows each
iteration to be done in constant amortized time). This step has complexity
O(Γ log Γ), as the list has Γ + γ elements, and (Γ + γ) ∈ O(Γ).

4. We iterate the list from step 3 and compute the cumulative sums of connected
triplets and closed connected triplets (which correspond to γ(t) and Γ(t) for
increasing values of t in the list). This gives us all values of γ(t)

Γ(t) , from which
we compute the integral (equation 8.2). This involves O(Γ) steps of constant
complexity.

Therefore, the overall complexity of the algorithm is O(m + Γ log Γ). Because Γ is
bounded by m2, we can also express the complexity only in terms of m (which will
then be O(m2)), but that bound is not tight in most graphs.

8.3 Counting of contingency tables

This section will be dedicated to the computation or approximation of the number
of contingency tables with fixed row and column sums, which is a necessary step
for the computation of Reduced Mutual Information (RMI), described in section
3.2.3. This is a #P-complete problem (it was proven in [29], with a proof that we
reproduce below in slightly more detail in theorem 8.3.1), so we don’t have any
algorithm to perform the exact computation in polynomial time, which rules it out
for even moderately sized networks. When introducing the RMI [66], Newman et

8.3. Counting of contingency tables 67

al. suggest using analytical approximations, but they have important limitations.
Particularly, they don’t give accurate results when row and column sums contain
numerous small elements (instead, the approximation is accurate when the con-
tingency tables are very dense). On the other hand, it is possible to use a Markov
chain Monte Carlo method, as described in section 8.3.1 , but it is much slower to
compute.

The idea behind our approach is to separate the part of the table for which the
analytical formula is accurate, and use that to then obtain the result with fewer
steps of the Monte Carlo method.

Theorem 8.3.1 Determining the number of contingency tables with given row and col-
umn sums is a #P-complete problem.

Proof: It is clear that the problem belongs to #P, because for any guess consisting
on R× S integers, one simply has to compute the row and column sums (which is
done in linear time), and the number of guesses that satisfy the constraints is the
number of contingency tables.

Now, we will see that the case with 2× n dimensions is #P-hard using polynomial-
time reductions, and therefore the problem is #P-hard and #P-complete.

We start with a known #P-hard problem (see [28]): given positive integers a1,a2,...,
an−1,b, computing the (n− 1)-dimensional volume of the polytope

n−1

∑
j=1

ajyj ≤ b, 0 ≤ yj ≤ 1 ∀j ∈ [n− 1]. (8.3)

Then, it is also #P-hard to compute the (n− 1)-dimensional volume of the polytope

n

∑
j=1

ajyj = b, 0 ≤ yj ≤ 1 ∀j ∈ [n], (8.4)

where an = b. This is because the polytope 8.3 is the orthogonal projection of the
polytope 8.4 to the hyperplane yn = 0, so the volume of the former is the volume
of the latter times cos(α), where α is the angle between the two hyperplanes.

Now, we perform the change of variables x1j = ajyj, x2j = aj(1− yj) for all j ∈ [n].
Now, in terms of xi j the polytope 8.4 can be expressed as

P(r, s) = {x ∈ R2×n :
n

∑
j=1

x1j = b

n

∑
j=1

x2j =
n−1

∑
j=1

aj

x1j + x2j = aj ∀j ∈ [n]

xi j ≥ 0 ∀i, j }.

(8.5)

68 Chapter 8. Software Development

It is clear that each point of integer coordinates inside P(r, s) corresponds to a 2× n
contingency table with row and column sums

r = (b,
n−1

∑
j=1

aj), s = (a1, ..., an−1, b) (8.6)

respectively. Note that if all aj and b are integers, P(r, s) is a polytope with integer
vertices.

Now consider L(P, t) = Ln−1(P)tn−1 + Ln−2(P)tn−2 + ... + L0(P) the Ehrhart poly-
nomial of P(r, s), which has degree n− 1 and corresponds to the number of integer
points inside the polytope P(tr, ts). This polynomial also has the property that
its coefficient for the tn−1 term corresponds to the (n− 1)-dimensional volume of
P(u, v) (by proposition 4.6.13 in [85]). Then, to prove that counting contingency
tables is #P-hard, we need to see that if we can determine the number of countin-
gency tables for any r, s, we can find the value of this coefficient in polynomial time
(in the size of r, s).

We take t = 1, ..., n, and by definition, we know the values of L(P, 1), ..., L(P, n).
Then, by solving the system of n equations and n variables

L(P, 1) = Ln−1(P) + Ln−2(P) + ... + L0(P)
.
.
.
L(P, n) = Ln−1(P)nn−1 + Ln−2(P)nn−2 + ... + L0(P),

(8.7)

which is determined (because the vectors (tn−1, tn−2, ..., t0) for t = 1, ..., n are lin-
early independent) and can be done in linear time, we obtain Ln−1(P), the volume
of P. □

8.3.1 Analytical approximation

The following approximation works in cases where the numbers of clusters R and
S are relatively small relative to the total number of elements, resulting in very pop-
ulated clusters. Let a and b vectors of lengths R and S respectively be the margins
of the contingency table, and Ω(a, b) the its corresponding number of contingency
tables. Also, define:

w =
n

n + 1
2 RS

, (8.8)

xr =
1− w

R
+

war

n
, ys =

1− w
S

+
wbs

n
, (8.9)

µ =
R + 1

R ∑s y2
s
− 1

R
, υ =

S + 1
S ∑r x2

r
− 1

S
. (8.10)

8.3. Counting of contingency tables 69

Then:

log Ω(a, b) ≃(R− 1)(S− 1) log(n +
1
2

RS) +
1
2
(R + υ− 2)∑

s
log ys

+
1
2
(S + µ− 2)∑

r
log xr +

1
2

log
Γ(µR)Γ(υS)

[Γ(υ)Γ(R)]S[Γ(µ)Γ(S)]R
.

(8.11)

However, this approximation can become highly inaccurate when the conditions
aren’t met. This can easily happen, for example, when a relatively high number of
vertices are left isolated forming their own clusters, even if the rest of the clusters
are large.

8.3.2 Monte Carlo approximation

An alternative approach is to use a Monte Carlo method to estimate the number
of contingency tables by successively iterating over the set of solutions using an
approppriately defined Markov chain. The method, introduced by Diaconis and
Gangolli [25], uses a nested chain of subsets Σab ⊃ H1 ⊃ H2 ⊃ ... ⊃ Ht. Then,
Monte Carlo sampling is used to estimate each ratio |Hi|/|Hi+1|, which will allow
the estimation of the whole set by just being able to enumerate Ht, which will be
small (more specifically, it will contain a single element).

Random walk

First let’s define a random walk on the set Σab of matrices with row sums a and
column sums’ b. Let M ∈ Σab. A pair of rows i1, i2 and columns j1, j2 is selected
randomly. Then, M′ ∈ Σab is obtained by adding 1 to the (i1, j1), (i2, j2) elements
and substracting 1 to the (i1, j2), (i2, j1) elements, or viceversa, each of the two pos-
sibilities with probability 1

2 . In other words, the table is modified in one of the
following cross patterns:

+− − +

−+ + −
(8.12)

Whenever a substraction would make an element become negative, the table re-
mains invariant. This gives a connected, symmetric, aperiodic Markov chain on
Σab.

Subset chain

Let M ∈ Σab. Then, define [Σab|M; (k, l)] the subset of Σab containing only tables
that match M in all positions strictly preceding (k, l) in the lexocographic order.
Then, if (k′, l′) succeeds (k, l), then [Σab|M; (k′, l′)] ⊆ [Σab|M; (k, l)]. This gives a
chain of subsets Σab = [Σab|M; (1, 1)] ⊆ ... ⊆ [Σab|M; (r, s)].

Theorem 8.3.2 The random walk on [Σab|M; (k, l)] is ergodic and has uniform stationary
distribution for all M ∈ Σab.

Proof: Proof in [25]. □

70 Chapter 8. Software Development

8.3.3 Hybrid analytical Monte Carlo approximation

In this section, we are going to redefine the subset chain of the Markov Monte Carlo
method to reduce its length by estimating the size of the biggest subset we can
analitically. First of all, we want to concentrate all the denser comunities on one
corner of the matrix, so before starting, a and b will be sorted to be in ascending
order. Then, we will divide the matrix into four blocks Q1, Q2, Q3, Q4 such that
(ΣQ4)ab can be estimated analytically.

Of course, it is not possible to extend this estimation directly using the method
described in section 8.3.1 because not all elements of Q1, Q2 and Q3 precede those
of Q4 unless Q4 has only one row.

Order relation

Here we will define an order in which to traverse the matrix M of R× S elements,
or equivalently, a total order relation on the set [R] × [S]. Let ≺, and ⪯ denote
the lexicographical order (the strict and non-strict versions respectively), and p ∈
[R] × [S] the element at the lower right corner of Q1. Then, we define the strict
order relation ⊏ as follows:

x ⊏ y ⇐⇒ x ≺ y if x, y ∈ Q1 ∪Q2 (8.13)
x ⊏ y if x ∈ (Q1 ∪Q2), y ∈ (Q3 ∪Q4) (8.14)
(x1, x2) ⊏ (y1, y2) ⇐⇒ if x1, y1 > p1 (8.15)
⇐⇒ x2 < y2 or(x2 = y2 and x1 < y1) (8.16)

In other words, ⊏ puts the elements of Q1 and Q2 first in lexicographical order, and
then those of Q3 and Q4 in a variation of the lexicographical order that goes from
left to right and top to bottom in that order. That puts all elements of Q4 after any
element of Q1, Q2, and Q3. We will denote ⊑ the non-strict version of the strict
order relation ⊏.

Hybrid algorithm

Then, with the order relation ⊏, we can define [Σab|M; (k, l)]⊏ as the subset of Σab
containing tables that match M in all positions strictly preceding (k, l) in the ⊏
order. Then, to obtain a random walk on [Σab|M; (k, l)]⊏, we just need to uniformly
select a pair of rows i1 < i2 ≤ R and columns j1 < j2 < S such that (k, l) ⊑
(i1, j1). Then, only elements that succeed (k, l) in the ⊑ order will be modified by
the random walk.

Corollary 8.3.3 of theorem 8.3.2. The random walk on [Σab|M; (k, l)]⊏ is ergodic and has
uniform stationary distribution for all M ∈ Σab.

Proof: We have to show that there is a path between any pair of elements X, Y ∈
[Σab|M; (k, l)]⊏ using only steps of the walk.

Let (i, j) be the first coordenate in which X and Y differ. Then, there are two cases:

8.3. Counting of contingency tables 71

• (i, j) ∈ (Q1 ∪ Q2). In this case, [Σab|M; (k, l)]⊏ = [Σab|M; (k, l)]≺, so by the
proof of theorem 8.3.2, there is a path between X and Y.

• (i, j) ∈ (Q3 ∪ Q4). In this case, take the Q3 ∪ Q4 submatrix, transpose it, and
again apply the proof of the previous theorem. The path on the transposed
matrices can be transposed as well respecting the restrictions to become a
path between the lower submatrices of X and Y that doesn’t modify elements
preceding (i, j). Then, the path on the reduced matrices induces a path on
[Σab|M; (k, l)]⊏ because all elements outside of this submatrix are fixed by
definition.

□

Then, the resulting algorithm can be described as follows:

• Rearrange the rows and columns of M so that their sums are in ascending
order.

• Determine p = (p1, p2) the position of the upper left corner of Q4. This is the
cutoff point between the small and large communities, here we are using the
first row and column with size > 1.

• Estimate the values |H1|/|H2|, |H2|/|H3|, . . . , |Hq−1|/|Hq|, where
Hq = [Σab|M; (p1, p2)]⊏, with the Markov chain Monte Carlo method.

• Approximate Hq with the analytical formula described in section 8.3.1.

• Multiply the chain of fractions from the previous steps to obtain H1 = Σab.

8.3.4 Experiments and discussion

To test the standard Markov chain Monte Carlo and the hybrid algorithms, we use
two vectors to set the margins of the tables, and execute both. The chosen vectors
are:

a = (20, 10, 10, 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
b = (10, 10, 5, 5, 5, 5, 5, 1, 1, 1, 1, 1),

(8.17)

which correspond to a network of 50 nodes. Even in such a relatively small net-
work, exact counting algorithms are not practical. As for using the analytical ap-
proximation alone, the results are not meaningful because of the presence of a few
isolated vertices, which makes the contingency tables less dense.

For the hybrid method, the matrix is split such that Q4 sub-matrix is formed by the
rows and columns with sum greater than 1. The computation took 24.2 seconds,
almost twice as fast as the standard Markov chain Monte Carlo method (41.32 sec-
onds). The term 1

n log Ω(a, b) estimated with each method differs by less than 0.01,
so there is not a significant loss of accuracy when the method is used for the compu-
tation of the Reduced Mutual Information. In comparison, using only the analytical
formula on the whole matrix produces an estimation that is off by over 0.3, which is
clearly too inaccurate to obtain any meaningful estimation of the Reduced mutual
Information.

72 Chapter 8. Software Development

If we instead study a case with fewer single element labels:

a = (25, 25, 15, 10, 4, 1)
b = (25, 20, 15, 9, 8, 8, 1, 1, 1),

(8.18)

the difference is much more apparent with the hybrid method taking 2.98 seconds
compared to 37.41 of the standard Monte Carlo.

It is worth noting that the implementation of the Markov chain uses a naive sam-
pling method that doesn’t take advantage of the sparsity of the matrix in some
areas. When the chosen elements that have to be decreased by one are already 0,
the matrix remains invariant for that step of the chain. Then, when the matrix is
very sparse and most of the steps are going to be invariant, it is possible to optimize
the process by simply simulating the number of invariant steps before the matrix
changes with a geometric distribution, and then sampling only from the rows and
columns which will result in a step that modifies the matrix. This optimization
would be a lot more beneficial on the sparser parts of the matrix (Q1, Q2, Q3) and
much less on the Q4 sub-matrix, which would benefit the hybrid method more than
the standard Monte Carlo method.

Conclusions

The proposed hybrid algorithm offers a more efficient alternative to the Markov
chain Monte Carlo method to compute the Reduced Mutual Information (RMI) in
cases where the analytical approximation is not accurate enough. The advantages
of this hybrid approach are particularly apparent when using the RMI for cluster
analysis, as it is not uncommon to have a few single element or small clusters in a
partition mostly consisting of larger clusters.

There is room for future work in determining the optimal point at which to split
the contingency table into the parts that will be estimated analytically or with the
Markov chain Monte Carlo method, to find the best possible trade-off between
speed and accuracy. This, together with some potential optimizations discussed
in the article should make this algorithm capable of dealing with larger datasets.

The implementation of the RMI measure presented here is available as part of the
clustAnalytics R package [79], with the goal of providing a readily available tool
for cluster analysis on networks.

73

Chapter 9

The clustAnalytics R package

9.1 Introduction

In this final chapter we introduce the R package clustAnalytics, which contains the
implementations of all the methods used to perform the experiments in this thesis.
It is mainly intended to be a useful toolbox for other researchers working on clus-
tering of networks (particularly the main functions dedicated to the evaluation of
cluster significance and stability), but some of its functionalities, like the implemen-
tations of the weighted rewiring method or the reduced mutual information could
be used in other applications as well. While most of our experiments are focused
on weighted networks, care has been taken to make sure that the package can cover
as many use cases as possible.

clustAnalytics handles weighted networks, as well as unweighted, and it also sup-
ports both directed and undirected edges (again, for both the weighted and un-
weighted cases). Some useful functions used internally, like a version of the apply
function for the communities in a graph, have been made available as part of the
package as well.

In the following sections we introduce some examples of usage and highlight the
principal tasks resolved by clustAnalytics.

9.2 Background concepts

Community detection on networks, which are represented by graphs, is a very
active topic of research with many applications. The igraph [22] package contains
a collection of popular algorithms for this task, such as the Louvain [13], walktrap
[70] or label propagation [73] algorithms.

Evaluating the significance of the community structure of a network is no simple
task, because there is not a single definition of what a significant community is.
However, there is some agreement in the literature (see the survey by Fortunato
[34]) in that communities should have high internal connectivity (presence of edges
connecting nodes in the community) while being well separated from each other.
These notion can be quantified and formalized by applying several community
scoring functions (also known as quality functions in [34]), that gauge either the
intra-cluster or inter-cluster density. clustAnalytics implements the most relevant,

74 Chapter 9. The clustAnalytics R package

or representative, community scoring functions following the taxonomy of these
quality measures done by Yang and Leskovec [94] and the further discussion on
how to adapt them to weighted networks in [77]. The definitions of these functions
can be found in chapter 2.

However, to evaluate the significance of clusters on a given network, one needs
reference values of the scoring functions to determine whether they are actually
higher than those of a comparable network with no community structure. For this,
we use a method described in chapter 4 that rewires edges (or transfers some of
their weight, in the case of weighted networks) while keeping the degree distribu-
tion constant. Then, it can be determined that the partition of a network contains
significant clusters if it obtains sufficiently better scores than those for a comparable
network with uniformly distributed edges.

On the other hand, stability measures how much the partition of a network into
communities remains unchanged under small perturbations. In the case of weighted
networks, these could include the addition and removal of vertices, as well as the
perturbation of edge weights. This is consistent with the idea that meaningful clus-
ters should capture an inherent structure in the data and not be overly sensitive to
small or local variations, or the particularities of the clustering algorithm. To mea-
sure the variation that such perturbations present in the clusters, there are multiple
similarity metrics available. We have selected to include the Variation of Informa-
tion [59], the Reduced Mutual Information [66], and the Rand Index (both in its
original and adjusted forms) [45]. The first two are based on information theory,
while the second one counts agreements and disagreements in the membership
of pairs of elements. Then, it is possible to evaluate the network using resampling
methods such as nonparametric bootstrap, as described for clustering on Euclidean
data by Hennig [42], and later for networks as proposed here in chapter 5, and
quantify the deviations from the initial partition with the similarity measures.

9.3 The clustAnalytics package

The clustAnalytics package (current version 0.5.0) contains 23 functions for assess-
ing clustering significance and stability, and other useful utilites. These are listed
in Table 9.1 grouped by category. It also contains some other 14 auxiliary functions
to support package management and provide useful baseline graphs with commu-
nities. Check these in the reference manual. In what follows we detail the usage of
the main functions.

9.3.1 Cluster significance

The scoring functions are formally defined in chapter 2, and were selected and pro-
grammed based on the analysis of appropriate scoring functions for unweighted
graphs made in [94]. They will take into account the weights of the edges if the
graph is weighted. They take as arguments the graph as an igraph object, and a
membership vector: a vector of the same length as the graph order for which each
element is an integer that indicates the cluster that its corresponding vertex belongs
to.

9.3. The clustAnalytics package 75

significance

scoring
functions

scoring_functions(g, com, type , weighted, w_max)

average_degree, average_odf, conductance, coverage,

cut_ratio, density_ratio, edges_inside, expansion,

FOMD, internal_density, max_odf,

normalized_cut, weighted_clustering_coefficient,

weighted_transitivity

graph
rewiring

rewireCpp(g, Q=100, weight_sel="const_var",

lower_bound=0, upper_bound=NULL)

evaluation

evaluate_significance(g, alg_list, gt_clustering,

w_max)

evaluate_significance_r(g, alg_list, gt_clustering,

Q=100, lower_bound=0,

w_max=NULL,

table_style = "default")

stability

boot_alg_list(g, alg_list, R=999, return_data=FALSE,

type="global")

reduced_mutual_information(c1, c2, base=2,

normalized=FALSE,

method="approximation2")

other functions

apply_subgraphs(g, com, f, ...)

barabasi_albert_blocks(m, p, B, t_max, G0=NULL,

t0=NULL, G0_labels=NULL,

type="block_first",

sample_with_replacement=FALSE)

sort_matrix(M)

TABLE 9.1: clustAnalytics list of functions split by category.

A general call to all the scoring functions is made with scoring_functions(),
which computes all the scores and returns a dataframe containing a row for each
community (if type = "local") and a column for each score, or alternatively (if
type = "global") returns a single row with the weighted average scores. Addi-
tionally, an individual function is available for each of the scores, as listed in Table
9.1. The package includes efficient implementations of the clustering coefficient
and transitivity for weighted networks introduced by McAssey and Mijma [58].

The main functions for significance evaluation are
evaluate_significance_r() and evaluate_significance().

The first one takes an igraph graph and a list of clustering algorithms, and computes
the scoring functions of the resulting communities, both on the original graph and
on rewired versions of it for comparison. The second version does the same while
skipping the rewired graphs. By default the clustering algorithms used by these
functions are Louvain, label propagation and Walktrap, but they can take any list
of clustering algorithms for igraph graphs. Both functions allow for comparison
against ground-truth in case this is known.

The edge rewiring method (including its versions for weighted networks) is avail-
able separately as rewireCpp. This differs from the igraph function rewire, in that
it is capable of rewiring weighted as well as directed graphs while keeping the
weighted degrees constant.

76 Chapter 9. The clustAnalytics R package

Rewiring algorithm

The function rewireCpp provided by the package is an implementation of the switch-
ing algorithm that rewires edges while keeping the degree distribution constant
described in [60, 74] (conceived originally for unweighted graphs). The function
has been extended to work with weighted and/or directed graphs.

The directed version works very similarly to the undirected one. In the unweighted
case, at each step of the algorithm, two directed edges AC and BD are selected
randomly, and replaced with the new edges AD, BC (as in the original algorithm,
any steps that would produce self-edges or multi-edges are skipped). For vertices
A and B, we add and remove 1 to the out-degree, so it remains constant (as well
as the in-degree, since no incoming edges are modified). Analogously, we add and
remove one incoming edge to both the C and D vertices, so their in-degrees remain
constant as well.

We do the same for the directed weighted case, extending the undirected unweighted
algorithm. This time, when edges AC and BD are selected, there is a transfer of a
certain amount w̄ of weight from both AC and BD to AD and BC. This means
that the only effects on the in and out-degrees are adding and removing w̄ to out-
degrees of vertices A and B, and the same to out-degrees of vertices C and D, which
means that again they all remain constant.

If the graph is directed, the rewireCpp function automatically detects it and inter-
nally runs the implementation for directed graphs, so there is no need to specify
direction as a parameter. The following example is a food network (where edges
indicate predator-prey relationships) from the igraphdata package:

> data(foodwebs, package="igraphdata")

> rewired_ChesLower <- rewireCpp(foodwebs$ChesLower,

weight_sel = "max_weight")

In the weighted case, the rewiring algorithm transfers a certain amount w of weight
from some edges to others. The package provides two settings, which we will
choose according to what type of weighted graph we are working with:

• Complete graphs with a fixed upper bound: These graphs have an edge
between every pair of vertices, which will usually be the result of applying
some function to each pair. For example, networks resulting from computing
correlations of time series (where each series corresponds to a vertex, and the
edge weights are the correlations between series) fall into this category.

• More sparse graphs with weights that are non-negative but not necessar-
ily upper bounded: This describes most commonly found weighted graphs,
where the weights quantify some characteristic of the edges. Multigraphs
also fit here, if we reinterpret them as weighted graphs where the edge weight
is the number of parallel edges between each pair of vertices.

Of the first type, we show an example built from correlations of currency exchange
time series (from [77]). In this network (g_forex included in the package) vertices

9.3. The clustAnalytics package 77

are pairs of exchange rates, and the edge weights are the correlations of their cor-
responding time series, scaled to the interval [0, 1]. In this case, the appropriate
setting is the one that keeps the variance of the edge weights constant.

> data(g_forex, package="clustAnalytics")

> rewireCpp(g=g_forex, weight_sel="const_var",

lower_bound=0, upper_bound=1)

As for the second type, this includes most of the well known examples of weighted
graphs, such as Zachary’s karate club graph:

> data(karate, package="igraphdata")

> rewired_karate <- rewireCpp(karate, weight_sel="max_weight")

The number of iterations, which is computed as Q · #edges can be controlled with
the parameter Q, but we recommend leaving it on the default value (Q = 100),
which has been shown to provide more than enough shuffling, while still being
very fast (see section 4.1.1 for details).

9.3.2 Cluster stability

As for the study of cluster stability, the function used to perform the evaluation is
boot_alg_list(). This performs a bootstrap resampling (i.e. uniform sampling of
the vertices with replacement) of the input graph, applies a given list of clustering
algorithms, and measures the variation of the communities obtained in the resam-
pled graphs with respect to the original communities. In more detail, for each input
graph and a list of clustering algorithms, the set of vertices in the input graph is re-
sampled (R times), the induced graph is obtained by taking the new set of vertices
with the induced edges from the original graph (two vertices are joined with an
edge on the resampled graph if they were on the original graph), and the cluster-
ing algorithms are applied to it. Then, the resulting clusterings (in each of the re-
sampled graphs) are compared to the clustering of the original graph using several
metrics: the variation of information (vi.dist from package mcclust), normalized
reduced mutual information (NRMI) and both adjusted and regular Rand index
(rand.index from package fossil and adjustedRandIndex from package mclust). If
return_data is set to TRUE, the output is a list of objects of class boot (from package
boot); otherwise, returns a table with the mean distances from the clusters in the
original graph to the resampled ones, for each of the algorithms.

The Reduced Mutual Information is provided as a separate function:
reduced_mutual_information().

This is an implementation of Newman’s Reduced Mutual Information (RMI) [66],
a version of the mutual information that is corrected for chance. The exact compu-
tation of this metric is not reasonable for even moderately sized graphs, so it must
be approximated. We provide two analytical methods for this approximation, and
also a hybrid approach that combines a Markov Chain Monte Carlo method with
the analytical approximation.

> data(karate, package="igraphdata")

> c1 <- membership(cluster_louvain(karate))

> c2 <- V(karate)$Faction

78 Chapter 9. The clustAnalytics R package

> reduced_mutual_information(c1, c2, method="approximation2")

[1] 0.5135699

Just as with the standard mutual information, the RMI can be normalized as well:

> reduced_mutual_information(c1, c2, method="approximation2",

normalized=TRUE)

[1] 0.6621045

9.3.3 Graph generators and other utilities

In the analysis of clustering algorithms it is useful to generate controlled exam-
ples of networks with communities. The package igraph provides the function
sample_sbm which builds random graphs with communities from the stochastic
block model, and hence these networks have binomial degree distribution.

We provide in clustAnalytics the barabasi_albert_blocks() function, which pro-
duces scale-free graphs using extended versions of the Barabási-Albert model that
include a community structure. This function generates the graph by iteratively
adding vertices to an initial graph and joining them to the existing vertices using
preferential attachment (existing higher degree vertices are more likely to receive
new edges). Additionally, vertices are assigned labels indicating community mem-
bership, and the probability of one vertex connecting to another is affected by their
community memberships according to a fitness matrix B (if a new vertex belongs
to community i, the probability of connecting to a vertex of community j is propor-
tional to Bij).

The parameters that need to be set are m the number of new edges per step, the vec-
tor p of label probabilities, the fitness matrix B (with the same dimensions as the
length of p), and t_max the final graph order. The initial graph G0 can be set man-
ually, but if not, an appropriate graph will be generated with m edges per vertex,
labels sampled from p, and edge probabilities proportional to B.

There are two variants of the model. If type="Hajek", new edges are connected
with preferential attachment to any existing vertex but using the appropriate values
of B as weights (see [41]). If type="block_first", new edges are connected first to
a community with probability proportional to the values of B, and then a vertex is
chosen within that community with regular preferential attachment. In this case,
the resulting degree distribution is scale-free (see section 6.4.1) for a proof of this
fact).

This is a simple example with just two communities and a graph of order 100 and
size 400:

> B <- matrix(c(1, 0.2, 0.2, 1), ncol=2)

> G <- barabasi_albert_blocks(m=4, p=c(0.5, 0.5), B=B,

t_max=100, type="Hajek",

sample_with_replacement = FALSE)

> plot(G, vertex.color=(V(G)$label), vertex.label=NA, vertex.size=10)

Finally, it is worth mentioning the apply_subgraphs() function, which is used in-
ternally in the package, but has also been made available to the user because it can

9.4. An introductory example 79

FIGURE 9.1: Example of the barabasi_albert_communities func-
tion with the community labels as vertex colors.

be very convenient. It simply calls a function f on each of the communities of a
graph (treated as its own igraph object), acting as a wrapper for the vapply func-
tion. The communities are given as a membership vector com. For a very simple
example, we call it to obtain the order of each of the factions of the karate club
graph:

> apply_subgraphs(g=karate, com=V(karate)$Faction, f=gorder)

[1] 16 18

9.4 An introductory example

As a toy example we consider the Zachary’s karate club graph [95]. First to show-
case the graph randomization procedure rewireCpp, we apply it to the Zachary’s
karate club graph with the default settings (positive weights with no upper bound,
which suits this graph):

> library(clustAnalytics)

> data(karate, package="igraphdata")

> rewired_karate <- rewireCpp(karate, weight_sel = "max_weight")

> par(mfrow=c(1,2), mai=c(0,0.1,0.3,0.1))

80 Chapter 9. The clustAnalytics R package

> plot(karate, main="karate")

> plot(rewired_karate, main="rewired_karate")

The resulting plots are shown in Figure 9.2.

karate

H

2

3

4

5

6
7

8

9 10

11

12

13

14

15

16

17

18

19

20

21

22

232425 26

27

28

29

30

31

32

33
A

rewired_karate

H
2

3
4

5

6

7
8

9

10

11

12

13

14

15

16

17
18

1920

21

22

23

24

25

26

27 28

29

30

31

32 33

A

FIGURE 9.2: Karate club graph before and after the edge random-
ization process. Colors represent the faction of each participant, the

ground truth clustering in this network.

Now we continue with an analysis of significance and stability of some known
clustering algorithms on the Zachary’s karate club graph.

9.4.1 Evaluating cluster Significance

The function evaluate_significance takes the graph and a list of clustering func-
tions as arguments. If the graph has a known ground truth community structure
(such as the factions in the karate club), we can set ground_truth=TRUE and set
gt_clustering as the membership vector to evaluate it and compare it to the re-
sults of the clustering algorithms. In our karate graph the ground truth is available
with V(karate)$Faction.

> evaluate_significance(karate, ground_truth=TRUE,

+ alg_list=list(Louvain=cluster_louvain,

+ "label prop"= cluster_label_prop,

+ walktrap=cluster_walktrap),

+ gt_clustering=V(karate)$Faction)

Louvain label prop walktrap ground truth

size 9.58823529 10.52941176 10.00000000 17.05882353

internal density 1.29491979 1.29766214 1.32254902 0.76885813

edges inside 50.35294118 59.17647059 51.82352941 104.82352941

av degree 5.05882353 5.29411765 5.05882353 6.14705882

FOMD 0.26470588 0.29411765 0.26470588 0.41176471

expansion 3.47058824 3.00000000 3.47058824 1.29411765

cut ratio 0.14311885 0.12786548 0.14540629 0.07638889

conductance 0.25696234 0.22578022 0.25484480 0.09518717

9.4. An introductory example 81

norm cut 0.37937069 0.34206059 0.38131607 0.19090909

max ODF 0.43576990 0.42077566 0.51172969 0.38911607

average ODF 0.18336040 0.17884402 0.18493603 0.07498851

flake ODF 0.05882353 0.02941176 0.08823529 0.00000000

density ratio 0.87751142 0.88955342 0.86846364 0.90017702

modularity 0.41978961 0.41510519 0.41116042 0.37146614

graph_order 34.00000000 34.00000000 34.00000000 34.00000000

n_clusters 4.00000000 4.00000000 4.00000000 2.00000000

mean_cluster_size 8.50000000 8.50000000 8.50000000 17.00000000

coverage 0.74458874 0.77922078 0.74458874 0.90476190

global density ratio 0.75864388 0.76992481 0.74273256 0.80043860

VIdist_to_GT 0.90782167 0.82624391 0.87293838 0.00000000

If a ground truth clustering has been provided, the row VIdist_to_GT indicates the
variation of information distance [59] between that and each of the partitions. In
this case the label propagation algorithm obtains the partition closest to the ground
truth, while the Louvain algorithm is the furthest.

With the function evaluate_significance_r we compute the scoring functions as
above, and we compare the results to those of a distribution of randomized graphs
obtained with the rewiring method. The parameters of the rewiring method can be
selected as shown in Table 9.1, in this case we specify weight_sel="max_weight",
but we could also set an upper bound if appropriate to the graph. The resulting (de-
fault) table is shown below. This is a table with three columns per algorithm: the
original one, the mean of the corresponding rewired scores and its percentile rank
within the distribution of rewired scores. If parameter table_style = "string",
the function instead returns a table with a column per algorithm where each ele-
ment is of the format "original|rewired(percentile)".

> evaluate_significance_r(karate,

+ alg_list=list(Lv=cluster_louvain,

+ "WT"= cluster_walktrap),

+ weight_sel="max_weight", n_reps=100)

Lv WT Lv_r WT_r Lv_perc WT_perc

size 9.588 10.000 8.04 8.22 0.89 0.81

internal density 1.295 1.323 1.40 1.43 0.45 0.50

edges inside 50.353 51.824 28.72 37.86 0.99 0.83

av degree 5.059 5.059 3.68 3.85 1.00 0.98

FOMD 0.265 0.265 0.17 0.19 0.99 0.86

expansion 3.471 3.471 6.24 5.88 0.00 0.02

cut ratio 0.143 0.145 0.24 0.23 0.00 0.00

conductance 0.257 0.255 0.48 0.48 0.00 0.00

norm cut 0.379 0.381 0.68 0.70 0.00 0.00

max ODF 0.436 0.512 0.64 0.66 0.00 0.04

average ODF 0.183 0.185 0.45 0.47 0.00 0.00

flake ODF 0.059 0.088 0.35 0.41 0.00 0.00

density ratio 0.878 0.868 0.75 0.76 1.00 1.00

modularity 0.420 0.411 0.18 0.16 1.00 1.00

clustering coef 0.541 0.614 0.46 0.44 0.73 0.82

82 Chapter 9. The clustAnalytics R package

graph_order 34.000 34.000 34.00 34.00 0.00 0.00

n_clusters 4.000 4.000 4.89 6.58 0.01 0.05

mean_cluster_size 8.500 8.500 7.09 5.77 0.74 0.84

coverage 0.745 0.745 0.54 0.57 1.00 0.98

global density ratio 0.759 0.743 0.54 0.59 1.00 0.99

9.4.2 Applying scoring functions

If it is the case that we already have some explicit community partition, but not the
algorithm that produced it, we can assess its significance by applying the scoring
functions directly to the network and the partition. To apply all scoring functions
at once use scoring_functions with either type local or global:

> scoring_functions(karate, V(karate)$Faction, type="local")

size internal density edges inside av degree FOMD expansion

1 16 0.8250000 99 6.187500 0.5000000 1.375000

2 18 0.7189542 110 6.111111 0.3333333 1.222222

cut ratio conductance norm cut max ODF average ODF flake ODF

1 0.07638889 0.10000000 0.1909091 0.3636364 0.05651941 0

2 0.07638889 0.09090909 0.1909091 0.4117647 0.09140548 0

density ratio modularity

1 0.9074074 NA

2 0.8937500 NA

> scoring_functions(karate, V(karate)$Faction, type="global")

size internal density edges inside av degree FOMD

[1,] 17.05882 0.7688581 104.8235 6.147059 0.4117647

expansion cut ratio conductance norm cut max ODF average ODF

[1,] 1.294118 0.07638889 0.09518717 0.1909091 0.3891161 0.07498851

flake ODF density ratio modularity graph_order n_clusters

[1,] 0 0.900177 0.3714661 34 2

mean_cluster_size coverage global density ratio

[1,] 17 0.9047619 0.8004386

Alternatively, apply the scoring functions individually. Each is called with the
graph and the membership vector as arguments, and return a vector with the scores
for each community:

> cut_ratio(karate, V(karate)$Faction)

[1] 0.07638889 0.07638889

> conductance(karate, V(karate)$Faction)

[1] 0.10000000 0.09090909

A case in point are the clustering coefficient and transitivity. As they can be applied
to weighted graphs in general and not only to their partition into communities, they
are simply called with the graph as the only argument:

> weighted_clustering_coefficient(karate)

[1] 0.8127164

9.4. An introductory example 83

To be able to obtain the result for every community in the graph, we provide the
function apply_subgraphs; which given a graph, a membership vector and a scalar
function, applies the function to every community and returns the vector of results.
In this case it works as follows:

> apply_subgraphs(karate, V(karate)$Faction,

weighted_clustering_coefficient)

[1] 0.9514233 0.7783815

9.4.3 Evaluating cluster Stability

Here we perform a nonparametric bootstrap to the karate club graph and the same
selection of algorithms. For each instance, the set of vertices is resampled, the in-
duced graph is obtained by taking the new set of vertices with the induced edges
from the original graph, and the clustering algorithms are applied. Then, these re-
sults are compared to the induced original clusterings using the metrics mentioned
above: the variation of information (VI), the Adjusted Mutual Information (AMI),
the normalized reduced mutual information (NRMI), and both adjusted and regu-
lar Rand index (Rand and adRand).

> boot_alg_list(g=karate, return_data=FALSE, R=99,

+ alg_list=list(Louvain=cluster_louvain,

+ "label prop"= cluster_label_prop,

+ walktrap=cluster_walktrap))

Louvain label prop walktrap

VI 0.2657555 0.3623330 0.2608622

AMI 0.6202236 0.4896837 0.5900336

NRMI 0.7024417 0.3415649 0.6959898

Rand 0.8584598 0.5969139 0.8609266

AdRand 0.6457648 0.2574423 0.6645099

n_clusters 5.9191919 5.1313131 6.3030303

Note that in this table the variation of information is a distance, so lower values
indicate similar partitions, while for the AMI, NRMI, Rand, and adRand, higher
values mean the partitions are more similar (1 means they are the same partition).
The exact definitions of these measures can all be found in chapter 5.

9.4.4 Clustering assessment on synthetic ground truth networks

We can evaluate the significance and stability of clusters produced by a set of clus-
tering algorithms on a network with known community synthetically created with
the stochastic block model (with function sample_sbm) or the preferential attach-
ment model (with barabasi_albert_blocks). The former produces a network with
binomial degree distribution, and the latter produces networks with scale-free de-
gree distribution.

Let us generate a graph from a stochastic block model in which we set very strong
clusters: the elements in the diagonal of the matrix are much larger than the rest,
so the probability of intra-cluster edges is much higher than that of inter-cluster
edges.

84 Chapter 9. The clustAnalytics R package

> pm <- matrix (c(.3, .001, .001, .003,

.001, .2, .005, .002,

.001, .005, .2, .001,

.003, .002, .001, .3), nrow=4, ncol=4)

> g_sbm <- igraph::sample_sbm(100, pref.matrix=pm,

block.sizes=c(25,25,25,25))

> E(g_sbm)$weight <- 1

> significance_table_sbm <- evaluate_significance(g_sbm)

> significance_table_sbm

Louvain label prop walktrap

size 2.500000e+01 2.212000e+01 2.500000e+01

internal density 2.666667e-01 2.983333e-01 2.666667e-01

edges inside 8.000000e+01 7.240000e+01 8.000000e+01

av degree 3.200000e+00 3.100000e+00 3.200000e+00

FOMD 4.400000e-01 4.100000e-01 4.400000e-01

expansion 2.800000e-01 4.800000e-01 2.800000e-01

cut ratio 3.733333e-03 5.918681e-03 3.733333e-03

conductance 4.479596e-02 8.784949e-02 4.479596e-02

norm cut 5.943574e-02 1.059249e-01 5.943574e-02

max ODF 2.847222e-01 3.307937e-01 2.847222e-01

average ODF 4.642605e-02 8.307287e-02 4.642605e-02

flake ODF 0.000000e+00 0.000000e+00 0.000000e+00

density ratio 9.849546e-01 9.794867e-01 9.849546e-01

modularity 6.860276e-01 6.700177e-01 6.860276e-01

graph_order 1.000000e+02 1.000000e+02 1.000000e+02

n_clusters 4.000000e+00 5.000000e+00 4.000000e+00

mean_cluster_size 2.500000e+01 2.000000e+01 2.500000e+01

coverage 9.580838e-01 9.281437e-01 9.580838e-01

global density ratio 9.720000e-01 9.580098e-01 9.720000e-01

We now assess the stability of the clustering algorithms on this SBM graph.

> b_sbm <- boot_alg_list(g=g_sbm, return_data=FALSE, R=99)

> b_sbm

Louvain label prop Walktrap

VI 0.1234341 0.1769217 0.1178832

AMI 0.86969891 0.7686690 0.88815033

NRMI 0.8536997 0.7841236 0.8656356

Rand 0.9411244 0.9230160 0.9472768

AdRand 0.8306925 0.7651778 0.8476909

n_clusters 6.9797980 7.7070707 7.4646465

We can clearly see that for all metrics, the results are much more stable, which
makes sense because we created the sbm graph with very strong clusters.

9.5. clustAnalytics in context of related R packages 85

9.5 clustAnalytics in context of related R packages

The defining characteristic of clustAnalytics is that it provides set of robust and ef-
ficient measures for assessing significance and stability of clustering algorithms
on graphs with the convenience of working with igraph objects, which makes it
a valuable complement to the igraph package [22]. A revision of the CRAN Task
View: Cluster Analysis & Finite Mixture Models [56] shows that there are very few
packages devoted to assessing quality of clusters in general, and none for igraph
graphs as input. One could use in a limited manner some of the existing packages
by converting igraph graphs to their adjacency matrices, but then quality evalua-
tion follows different paradigms not quite pertaining to networks. For instance,
the package ClustAssess [84] conceived for evaluating robustness of clustering of
single-cell RNA sequences data using proportion of ambiguously clustered pairs,
as well as similarity across methods and method stability using element-centric
clustering comparison; sigclust [44] which provides a single function to assess the
statistical significance of splitting a data set into two clusters; clValid [15] imple-
ments Dunn Index, Silhouette, Connectivity, Stability, BHI and BSI, for a statistical
and biological-based validation of clustering results. None of these apply directly
to igraph objects, and were not conceived for the analysis of clustering in social
networks.

87

Chapter 10

Conclusions

The main goal of this thesis was to tackle the problem of evaluating and validating
the results of clustering on networks, especially when working with networks for
which the existence or lack thereof of a community structure is unknown. The
methods proposed for the evaluation of significance and stability can therefore
serve two purposes: first of all determine if the partition into clusters obtained
by a given algorithm is indeed properly capturing the structure of the network, but
also serves to compare different clustering algorithms with each other. These meth-
ods are intended to provide a systematic approach to cluster evaluation and to be
useful to other researchers when studying all sorts of networks. With that in mind,
even though the initial focus of the thesis were weighted undirected graphs, some
care has been taken to ensure that the methods are also suitable for the directed
as well as the unweighted case. Additionally, the wide variety of weighted graphs
that can be studied has been taken into account as well, providing indications on
how to treat cases such as graphs with very high density of weighted edges when
necessary.

A study on the limitations of some of the functions used to score the results of clus-
tering on networks has also been conducted, which shows varying degrees of bias
of most of these functions regarding the number and size of clusters on a given net-
work. While this doesn’t invalidate their usefulness, it is something to be aware of
when comparing clustering algorithms that produce very different results in terms
of the number of clusters in their respective partitions. The methods and in par-
ticular the multi-level network models used for this evaluation can be useful to
evaluate potential metrics that might be proposed in the future, including objective
functions that are optimized by clustering algorithms themselves.

An important part of this work is all the associated code, which has been gathered
in an R package available at the CRAN repository. There are many R packages
dedicated to the study of networks, and we hope that this is a tool that can com-
plement them well and fit in this ecosystem, and provides other researchers useful
and accessible tools to help their research. In addition to the implementation of
our own methods, the package also includes efficient implementations of works by
other authors, such as one of the versions of the weighted clustering coefficient,
or the Reduced Mutual Information, which to our knowledge were not available
publicly. And this latter contribution also extends the potential use cases of the
package outside of just clustering on networks, as measures to compare partitions
can be useful for clustering in general, among other applications.

89

Bibliography

[1] Christopher Aicher, Abigail Z. Jacobs, and Aaron Clauset. Learning latent
block structure in weighted networks. Journal of Complex Networks, 3(2):221–
248, 06 2014.

[2] Réka Albert and Albert-László Barabási. Statistical mechanics of complex net-
works. Rev. Mod. Phys., 74:47–97, Jan 2002.

[3] Hélio Almeida, Dorgival Guedes, Wagner Meira, and Mohammed J. Zaki.
Is there a best quality metric for graph clusters? In Dimitrios Gunopulos,
Thomas Hofmann, Donato Malerba, and Michalis Vazirgiannis, editors, Ma-
chine Learning and Knowledge Discovery in Databases, pages 44–59, Berlin, Hei-
delberg, 2011. Springer Berlin Heidelberg.

[4] A. Arenas, A. Fernández, and S. Gómez. Analysis of the structure of complex
networks at different resolution levels. New Journal of Physics, 10(5):053039,
may 2008.

[5] Argimiro Arratia and Alejandra Cabaña. A graphical tool for describing the
temporal evolution of clusters in financial stock markets. Computational Eco-
nomics, 41(2):213–231, 2013.

[6] Argimiro Arratia and Martí Renedo-Mirambell. On methods to assess the sig-
nificance of community structure in networks of financial time series. In Pro-
ceedings ITISE 2017. 4th International Work-Conference on Time Series Analysis.,
pages 585–596, 2017.

[7] Argimiro Arratia and Martí Renedo-Mirambell. The assessment of clustering
on weighted networks with R package clustAnalytics. pages 143–146, 2022.
Publisher: IOS Press.

[8] Albert-László Barabási and Réka Albert. Emergence of scaling in random net-
works. Science, 286(5439):509–512, 1999.

[9] Albert-László Barabási and Márton Pósfai. Network science. Cambridge Uni-
versity Press, Cambridge, 2016.

[10] A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani. The archi-
tecture of complex weighted networks. Proceedings of the National Academy of
Sciences of the United States of America, 101(11):3747–3752, 2004.

[11] Vladimir Batagelj and Andrej Mrvar. Some analyses of Erdős collaboration
graph. Social Networks, 22(2):173–186, 2000.

90 BIBLIOGRAPHY

[12] Michael G. H. Bell and Yasunori Lida. Transportation networks. In Transporta-
tion Network Analysis, pages 17–40. John Wiley & Sons, Ltd.

[13] V. D. Blondel, J. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding
of communities in large networks. Journal of Statistical Mechanics: Theory and
Experiment, 2008(10):P10008, 2008.

[14] Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert Görke, Martin Hoefer,
Zoran Nikoloski, and Dorothea Wagner. On modularity – NP-completeness
and beyond, 2006.

[15] Guy Brock, Vasyl Pihur, Susmita Datta, and Somnath Datta. clValid: Validation
of Clustering Results, 2021. R package version 0.7.

[16] Aydın Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian
Schulz. Recent advances in graph partitioning. In Lasse Kliemann and Peter
Sanders, editors, Algorithm Engineering, volume 9220, pages 117–158. Springer
International Publishing, 2016. Series Title: Lecture Notes in Computer Sci-
ence.

[17] Tanmoy Chakraborty, Ayushi Dalmia, Animesh Mukherjee, and Niloy Gan-
guly. Metrics for community analysis: A survey. ACM Comput. Surv., 50(4),
2017.

[18] Aaron Clauset, M. E. J. Newman, and Cristopher Moore. Finding community
structure in very large networks. Physical Review E, 70(6):066111, 2004.

[19] Vincent Cohen-Addad, Varun Kanade, and Frederik Mallmann-Trenn. Hier-
archical clustering beyond the worst-case. In Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc., 2017.

[20] Anne Condon and Richard M. Karp. Algorithms for graph partitioning on the
planted partition model. Random Structures & Algorithms, 18(2):116–140, 2001.

[21] Gabor Csardi. igraphdata: A Collection of Network Data Sets for the ’igraph’ Pack-
age, 2015. R package version 1.0.1.

[22] Gabor Csardi and Tamas Nepusz. The igraph software package for complex
network research. InterJournal, Complex Systems, 1695(5):1–9, 2006.

[23] Leon Danon, Albert Díaz-Guilera, Jordi Duch, and Alex Arenas. Comparing
community structure identification. Journal of Statistical Mechanics: Theory and
Experiment, 2005(09):P09008–P09008, 2005.

[24] Imre Derényi, Gergely Palla, and Tamás Vicsek. Clique percolation in random
networks. Physical Review Letters, 94(16):160202, 2005.

[25] Persi Diaconis and Anil Gangolli. Rectangular arrays with fixed margins. In
David Aldous, Persi Diaconis, Joel Spencer, and J. Michael Steele, editors, Dis-
crete Probability and Algorithms, pages 15–41. Springer New York, 1995.

[26] Byron E. Dom. An information-theoretic external cluster-validity measure.
UAI’02, page 137–145, San Francisco, CA, USA, 2002. Morgan Kaufmann Pub-
lishers Inc.

BIBLIOGRAPHY 91

[27] Luca Donetti and Miguel A Muñoz. Detecting network communities: a new
systematic and efficient algorithm. Journal of Statistical Mechanics: Theory and
Experiment, 2004(10):P10012.

[28] M. E. Dyer and A. M. Frieze. On the complexity of computing the volume of
a polyhedron. SIAM Journal on Computing, 17(5), 1988.

[29] Martin Dyer, Ravi Kannan, and John Mount. Sampling contingency tables.
Random Structures & Algorithms, 10(4):487–506, 1997.

[30] Scott Emmons, Stephen Kobourov, Mike Gallant, and Katy Börner. Analysis
of network clustering algorithms and cluster quality metrics at scale. PLOS
ONE, 11(7):1–18, 07 2016.

[31] Miroslav Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical
Journal, 23(2):298–305, 1973.

[32] Merrill M. Flood. The traveling-salesman problem. Operations Research,
4(1):61–75, 1956.

[33] Lester Randolph Ford and Delbert R Fulkerson. Maximal flow through a net-
work. Canadian journal of Mathematics, 8:399–404, 1956.

[34] Santo Fortunato. Community detection in graphs. Physics Reports, 486(3):75 –
174, 2010.

[35] Santo Fortunato and Marc Barthélemy. Resolution limit in community detec-
tion. Proceedings of the National Academy of Sciences, 104(1):36–41, 2007.

[36] Philippe Galinier, Zied Boujbel, and Michael Coutinho Fernandes. An efficient
memetic algorithm for the graph partitioning problem. Annals of Operations
Research, 191(1):1–22, 2011.

[37] Michael R Garey. A guide to the theory of NP-completeness. Computers and
intractability, 1979.

[38] Sara E. Garza and Satu Elisa Schaeffer. Community detection with the label
propagation algorithm: A survey. Physica A: Statistical Mechanics and its Appli-
cations, 534:122058, 2019.

[39] M. Girvan and M. E. J. Newman. Community structure in social and biologi-
cal networks. Proceedings of the National Academy of Sciences, 99(12):7821–7826,
2002.

[40] R. Guimerà, S. Mossa, A. Turtschi, and L. A. N. Amaral. The worldwide
air transportation network: Anomalous centrality, community structure, and
cities’ global roles. Proceedings of the National Academy of Sciences, 102(22):7794–
7799, 2005.

[41] Bruce Hajek and Suryanarayana Sankagiri. Community recovery in a prefer-
ential attachment graph. IEEE Transactions on Information Theory, 65(11):6853–
6874, 2019.

[42] Christian Hennig. Cluster-wise assessment of cluster stability. Computational
Statistics & Data Analysis, 52(1):258–271, 2007.

92 BIBLIOGRAPHY

[43] Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochas-
tic blockmodels: First steps. Social networks, 5(2):109–137, 1983.

[44] Hanwen Huang, Yufeng Liu, and J. S. Marron. sigclust: Statistical Significance
of Clustering, 2014. R package version 1.1.0.

[45] L. Hubert and P. Arabie. Comparing partitions. Journal of Classification,
2(1):193–218, 1985.

[46] Gerardo Iñiguez, Federico Battiston, and Márton Karsai. Bridging the gap
between graphs and networks. Communications Physics, 3(1):1–5, 2020.

[47] J. Jordan. Geometric preferential attachment in non-uniform metric spaces.
Electronic Journal of Probability, 18(8):1–15, 2013.

[48] Michael I Jordan, Yair Weiss, and Andrew Y Ng. On spectral clustering: Anal-
ysis and an algorithm. Advances in neural information processing systems, 14:849–
856, 2002.

[49] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning
graphs. Bell System Technical Journal, 49(2):291–307, 1970.

[50] Bryan Klimt and Yiming Yang. The Enron corpus: A new dataset for email
classification research. In European Conference on Machine Learning, pages 217–
226. Springer, 2004.

[51] Sameer Kumar. Co-authorship networks: a review of the literature. Aslib
Journal of Information Management, 67(1):55–73, 2015.

[52] Andrea Lancichinetti and Santo Fortunato. Limits of modularity maximiza-
tion in community detection. Physical Review E, 84(6):066122, 2011.

[53] Andrea Lancichinetti, Santo Fortunato, and János Kertész. Detecting the over-
lapping and hierarchical community structure in complex networks. New Jour-
nal of Physics, 11(3):033015, 2009.

[54] Clement Lee and Darren J. Wilkinson. A review of stochastic block models
and extensions for graph clustering. Applied Network Science, 4(1):122, 2019.

[55] S. Lehmann, B. Lautrup, and A. D. Jackson. Citation networks in high energy
physics. Physical Review E, 68(2):026113, 2003.

[56] Friedrich Leisch and Bettina Gruen. CRAN task view: Cluster analysis & finite
mixture models, 2022.

[57] C.D. Manning, P. Raghavan, and H. Schütze. Introduction to Information Re-
trieval. Cambridge University Press, 2008.

[58] Michael P. McAssey and Fetsje Bijma. A clustering coefficient for complete
weighted networks. Network Science, 3(2):183–195, 2015.

[59] Marina Meilă. Comparing clusterings - an information based distance. Journal
of Multivariate Analysis, 98(5):873 – 895, 2007.

[60] R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, and U. Alon. On the
uniform generation of random graphs with prescribed degree sequences, 2003.

BIBLIOGRAPHY 93

[61] J. Clyde Mitchell. Social networks. Annual Review of Anthropology, 3:279–299,
1974. Publisher: Annual Reviews.

[62] M. E. J. Newman. Fast algorithm for detecting community structure in net-
works. 69(6):066133, 2004.

[63] M. E. J. Newman. Finding community structure in networks using the eigen-
vectors of matrices. Physical Review E, 74(3), Sep 2006.

[64] M. E. J. Newman. Modularity and community structure in networks. Proceed-
ings of the National Academy of Sciences, 103(23):8577–8582, 2006.

[65] M. E. J. Newman. Networks: An Introduction. OUP Oxford, 2010.

[66] M. E. J. Newman, George T. Cantwell, and Jean-Gabriel Young. Improved
mutual information measure for clustering, classification, and community de-
tection. Phys. Rev. E, 101:042304, Apr 2020.

[67] T. Opsahl and P. Panzarasa. Clustering in weighted networks. Social Networks,
31(2):155–163, 2009.

[68] Subhadeep Paul and Yuguo Chen. Consistent community detection in multi-
relational data through restricted multi-layer stochastic blockmodel. Electronic
Journal of Statistics, 10(2):3807–3870, 2016.

[69] Leto Peel, Daniel B Larremore, and Aaron Clauset. The ground truth
about metadata and community detection in networks. Science advances,
3(5):e1602548, 2017.

[70] Pascal Pons and Matthieu Latapy. Computing communities in large networks
using random walks. In International symposium on computer and information
sciences, pages 284–293. Springer, 2005.

[71] Alex Pothen, Horst D. Simon, and Kang-Pu Liou. Partitioning sparse matrices
with eigenvectors of graphs. SIAM Journal on Matrix Analysis and Applications,
11(3):430–452, 1990.

[72] Filippo Radicchi, Santo Fortunato, and Alessandro Vespignani. Citation net-
works. In Andrea Scharnhorst, Katy Börner, and Peter van den Besselaar, ed-
itors, Models of Science Dynamics, pages 233–257. Springer Berlin Heidelberg,
2012. Series Title: Understanding Complex Systems.

[73] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. Near linear time
algorithm to detect community structures in large-scale networks. Physical
Review E, 76(3), Sep 2007.

[74] A. Ramachandra Rao, Rabindranath Jana, and Suraj Bandyopadhyay. A
Markov chain Monte Carlo method for generating random (0, 1)-matrices with
given marginals. Sankhyā: The Indian Journal of Statistics, Series A (1961-2002),
58(2):225–242, 1996.

[75] Jörg Reichardt and Stefan Bornholdt. Statistical mechanics of community de-
tection. Physical Review E, 74(1):016110, 2006.

94 BIBLIOGRAPHY

[76] Martí Renedo-Mirambell and Argimiro Arratia. Clustering of exchange rates
and their dynamics under different dependence measures. In Proc. of the First
Workshop on MIning DAta for financial applicationS (MIDAS 2016), collocated
ECML-PKDD., pages 17–28, 2016.

[77] Martí Renedo-Mirambell and Argimiro Arratia. Clustering assessment in
weighted networks. PeerJ Computer Science, 2021.

[78] Martí Renedo-Mirambell and Argimiro Arratia. Identifying bias in cluster
quality metrics. Technical report, arXiv:2112.06287, 2021.

[79] Martí Renedo-Mirambell. clustAnalytics: Cluster Evaluation on Graphs, 2022. R
package version 0.5.2.

[80] Martí Renedo-Mirambell and Argimiro Arratia. Towards and efficient algo-
rithm for computing the reduced mutual information. pages 168–171, 2022.
Publisher: IOS Press.

[81] Daniel M. Romero, Brendan Meeder, and Jon Kleinberg. Differences in the me-
chanics of information diffusion across topics: idioms, political hashtags, and
complex contagion on twitter. In Proceedings of the 20th international conference
on World wide web - WWW ’11, page 695. ACM Press, 2011.

[82] Martin Rosvall and Carl T. Bergstrom. Maps of random walks on complex
networks reveal community structure. Proceedings of the National Academy of
Sciences, 105(4):1118–1123, 2008.

[83] Peter Sanders and Christian Schulz. Engineering multilevel graph partitioning
algorithms. In Camil Demetrescu and Magnús M. Halldórsson, editors, Algo-
rithms – ESA 2011, volume 6942, pages 469–480. Springer Berlin Heidelberg,
2011. Series Title: Lecture Notes in Computer Science.

[84] Arash Shahsavari, Andi Munteanu, and Irina Mohorianu. ClustAssess: Tools
for Assessing Clustering, 2022. R package version 0.3.0.

[85] Richard P. Stanley. Enumerative Combinatorics, volume 1. Second edition, 2012.

[86] V. A. Traag, L. Waltman, and N. J. van Eck. From Louvain to Leiden: guaran-
teeing well-connected communities. Scientific Reports, 9(1):5233, 2019.

[87] Lucas Vendramin, Ricardo J. G. B. Campello, and Eduardo R. Hruschka. Rel-
ative clustering validity criteria: A comparative overview. Statistical Analysis
and Data Mining: The ASA Data Science Journal, 3(4):209–235, 2010.

[88] Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information theoretic mea-
sures for clusterings comparison: is a correction for chance necessary? In Pro-
ceedings of the 26th Annual International Conference on Machine Learning, ICML
’09, pages 1073–1080. Association for Computing Machinery.

[89] Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information theoretic mea-
sures for clusterings comparison: Variants, properties, normalization and cor-
rection for chance. Journal of Machine Learning Research, 11(95):2837–2854, 2010.

[90] Ulrike von Luxburg. Clustering stability: An overview. Found. Trends Mach.
Learn., 2(3):235–274, 2010.

BIBLIOGRAPHY 95

[91] Yuchung J Wang and George Y Wong. Stochastic blockmodels for directed
graphs. Journal of the American Statistical Association, 82(397):8–19, 1987.

[92] Jaewon Yang and Jure Leskovec. Community-affiliation graph model for over-
lapping network community detection. In 2012 IEEE 12th International Confer-
ence on Data Mining, pages 1170–1175. ISSN: 2374-8486.

[93] Jaewon Yang and Jure Leskovec. Patterns of temporal variation in online me-
dia. In Proceedings of the fourth ACM international conference on Web search and
data mining - WSDM ’11, page 177. ACM Press, 2011.

[94] Jaewon Yang and Jure Leskovec. Defining and evaluating network communi-
ties based on ground-truth. Knowledge and Information Systems, 42(1):181–213,
2015.

[95] Wayne W. Zachary. An information flow model for conflict and fission in small
groups. Journal of Anthropological Research, 33(4):452–473, 1977.

[96] Pan Zhang. Evaluating accuracy of community detection using the relative
normalized mutual information. Journal of Statistical Mechanics: Theory and
Experiment, 2015(11):P11006, nov 2015.

[97] Haijun Zhou. Network landscape from a brownian particle’s perspective.
Physical Review E, 67(4):041908, 2003.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Community structure in networks
	Clustering algorithms for networks
	Graph partitioning
	Hierarchical clustering
	Modularity-based clustering
	Spectral methods
	Other methods

	Cluster Assessment
	Thesis structure

	Cluster scoring functions
	Basic definitions.
	Community scoring functions

	Cluster Similarity Measures
	Rand index
	Information based measures
	Variation of Information
	Adjusted Mutual Information
	Reduced Mutual Information

	An example of cluster similarity measures

	Cluster Significance
	Methods
	Randomized graph
	Unweighted case
	Weighted case

	Experimental Design
	Clustering algorithms
	Data
	Synthetic Ground Truth Models

	Results and Discussion

	Cluster Stability
	Methods
	Bootstrap with perturbation

	Results and Discussion

	Network models with multi level community structures
	Introduction
	Related work
	Stochastic Block Model (SBM)
	Multi-level stochastic block model
	Preferential attachment model
	Generating the initial graph
	Degree distribution

	Identifying bias in cluster quality metrics
	Introduction
	Related work

	Methods
	Cluster quality metrics

	Cluster metrics analysis
	Standard SBM network
	Multi-level SBM
	Multi-level preferential attachment

	Final remarks

	Software Development
	Graph rewiring algorithm
	Hash function for edge indices
	Sampling vector
	Overview of the algorithm

	Weighted transitivity and clustering coefficient
	Counting of contingency tables
	Analytical approximation
	Monte Carlo approximation
	Random walk
	Subset chain

	Hybrid analytical Monte Carlo approximation
	Order relation
	Hybrid algorithm

	Experiments and discussion
	Conclusions

	The clustAnalytics R package
	Introduction
	Background concepts
	The clustAnalytics package
	Cluster significance
	Rewiring algorithm

	Cluster stability
	Graph generators and other utilities

	An introductory example
	Evaluating cluster Significance
	Applying scoring functions
	Evaluating cluster Stability
	Clustering assessment on synthetic ground truth networks

	clustAnalytics in context of related R packages

	Conclusions

