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Abstract

Deep Learning (DL) models have gained extensive attention due to their remarkable per-

formance in a wide range of real-world applications, particularly in computer vision. This

achievement, combined with the increase in available medical records, has made it possible

to open up new opportunities for analyzing and interpreting healthcare data. This symbi-

otic relationship can enhance the diagnostic process by identifying abnormalities, patterns,

and trends, resulting in more precise, personalized, and effective healthcare for patients.

Wireless Capsule Endoscopy (WCE) is a non-invasive medical imaging technique used to

visualize the entire Gastrointestinal (GI) tract. Up to this moment, physicians meticulously

review the captured frames to identify pathologies and diagnose patients. This manual

process is time-consuming and prone to errors due to the challenges of interpreting the

complex nature of WCE procedures. Thus, it demands a high level of attention, expertise,

and experience. To overcome these drawbacks, shorten the screening process, and improve

the diagnosis, efficient and accurate DL methods are required.

This thesis proposes DL solutions to the following problems encountered in the analysis

of WCE studies: pathology detection, anatomical landmark identification, and Out-of-

Distribution (OOD) sample handling. These solutions aim to achieve robust systems that

minimize the duration of the video analysis and reduce the number of undetected lesions.

Throughout their development, several DL drawbacks have appeared, including small and

imbalanced datasets. These limitations have also been addressed, ensuring that they do

not hinder the generalization of neural networks, leading to suboptimal performance and

overfitting.

To address the previous WCE problems and overcome the DL challenges, the proposed

systems adopt various strategies that utilize the power advantage of Triplet Loss (TL)

and Self-Supervised Learning (SSL) techniques. Mainly, TL has been used to improve

the generalization of the models, while SSL methods have been employed to leverage the

unlabeled data to obtain useful representations. The presented methods achieve state-

of-the-art results in the aforementioned medical problems and contribute to the ongoing

research to improve the diagnostic of WCE studies.
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The opening chapter of this dissertation emphasizes the motivation behind this research.

It aims to grab the reader’s attention by presenting convincing arguments for conducting

this study. After that, the chapter introduces the main objectives and the important con-

tributions achieved during this doctorate. Finally, there is the outline of this thesis.

1



2 CHAPTER 1. INTRODUCTION

1.1 Motivation

Recent advances in Artificial Intelligence (AI) and Machine Learning (ML) have led to

tremendous improvements in medical image analysis, resulting in remarkable enhancements

in diagnostic capabilities (Chan et al., 2020b). Both technologies allow the development of

methods that possess the ability to learn based on examples (Chan et al., 2020a). These

models analyze different input data and search for common patterns to aid in medical

diagnosis (Ostherr, 2022).

The potential impact of these innovations on the healthcare sector is profound. By lever-

aging AI and ML techniques, medical image analysis becomes faster, more accurate, and

more accessible (Wang et al., 2021). Hence, these frameworks are expected to revolutionize

several aspects of healthcare, such as early disease detection, precise diagnosis, personal-

ized treatment plans, and improved patient outcomes (Chan et al., 2020a; Zhu et al., 2020;

Anaya-Isaza et al., 2021; Tufail et al., 2021).

In particular, Deep Learning (DL) techniques, a type of ML algorithm, have emerged

as a powerful tool for automatic image analysis and diagnosis, using thousands of previous

medical cases and the expertise of hundreds of healthcare professionals (Rana and Bhushan,

2022). The ability to learn from examples enables DL models to extract complex features

and make accurate assessments based on medical data (Sejnowski, 2018).

Leveraging the power of DL for medical imaging is not without its challenges. One

impediment that arises is the requirement for large numbers of labeled images to train these

systems (Saraf et al., 2020). Unfortunately, in the field of medical imaging, datasets are often

small and imbalanced. Training models under these circumstances can lead to overfitting

and suboptimal performance (Ellis et al., 2022). Moreover, DL models are considered black

boxes since humans frequently do not directly interpret their internal workings. This may

lead to a lack of confidence from health institutions to adopt the developed technology

(Baselli et al., 2020).

These aforementioned problems are typically handled by over-designing systems to

overfit the data (Santos et al., 2018). However, it has been demonstrated that such ap-

proaches often result in networks that perform poorly with new data as they do not gener-

alize(Varoquaux and Cheplygina, 2022). As a result, alternative strategies are required to

overcome these limitations and ensure that DL models can be applied in medical imaging.

This thesis is a compilation of published works that contribute to the ongoing efforts

to improve the efficiency and effectiveness of medical diagnosis systems. Particularly, the

research is focused on the application of cutting-edge techniques to enhance the performance

and capabilities of Wireless Capsule Endoscopy (WCE) (Iddan et al., 2000). WCE is a non-

invasive medical imaging technique that has revolutionized the way physicians visualize

the Gastrointestinal (GI) tract. It involves swallowing a pill-sized device equipped with a

camera that captures an enormous amount of high-resolution images of the digestive tract
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as it moves through the body. Manually reviewing these images is time-consuming and often

prone to human errors due to the subjectivity involved, making the interpretation process

difficult for medical professionals (Beg et al., 2021; Cortegoso Valdivia et al., 2022). The

complexity of the digestive system’s anatomy presents one of the main challenges owing

to the presence of folds, shadows, and reflections in the images. Moreover, the process

of distinguishing between normal and anomalous tissue can be also extremely difficult as

abnormalities may vary in shape, size, and location (Biniaz et al., 2020).

The vast amount of data generated by WCE requires automatic analysis techniques to

perform an efficient and effective interpretation of WCE procedures. CAD systems based

on DL are well-suited to achieve this aim. DL models can leverage the large volume of

WCE images to develop highly accurate methods capable of identifying abnormalities with

high precision (Lan et al., 2019). These systems are expected to significantly reduce clini-

cians’ review time, allowing faster diagnosis while minimizing the risk of misdiagnosis (Lei

et al., 2023a). Thereby, DL methods can contribute to better patient outcomes as they

enable earlier detection of diseases and more precise treatment planning (Kim and Lim,

2021). Despite the extensive research in this area, further efforts are needed to develop

trustworthy and robust systems for clinical settings (Chan et al., 2020a; Muruganantham

and Balakrishnan, 2021). In this thesis, several WCE diagnosis challenges are faced to con-

tinue with the ongoing improvement of DL-based CAD systems. Particularly, the following

problems have been studied: pathology detection, anatomical landmark identification, and

Out-of-Distribution (OOD) sample handling.

The first problem addressed is the detection of GI pathologies, with particular emphasis

on polyps, which are abnormal tissue growths (Mi et al., 2022). Pathologies and lesions

are often small and subtle, making them susceptible to be oversight (Kim et al., 2022).

Image artifacts, low image quality, or the presence of similar-looking structures may also

lead to misinterpretations (Zhou et al., 2022). Moreover, abnormalities appear sporadically

throughout the video, making their detection even more difficult (Bai et al., 2022). Resolving

this challenge accelerates the process of reviewing WCE studies and enhances the diagnostic

accuracy and efficiency of WCE.

The second challenge approached in this thesis is the identification of anatomical land-

marks. They are specific structures on the GI tract used as reference points for medical

examinations, surgeries, and other procedures (Lopes et al., 2022). Their proper determina-

tion plays a crucial role in the analysis process, since successfully identifying them enables

the localization of pathologies and lesions within the digestive system (Koulaouzidis et al.,

2021). Automatic detection will speed up the reviewing process of WCE studies.

The third problem lies in building robust and reliable systems. To achieve this aim, two

approaches are proposed: the generalization of the model when using data from different

devices and the detection of OOD images. In the first case, the model has to work properly

even when frames are captured by distinct WCE devices. This meant that the training

and test datasets have different distributions caused by the image quality and lighting
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conditions, which is referred to as a covariate distribution shift (Guan and Liu, 2021).

In the other case, the OOD detection in WCE images aims to discriminate between in-

distribution images representing normal anatomy and OOD images showing pathological

findings not shown in the training set (Chen et al., 2023). When these problems remain

untreated, both scenarios negatively impact the performance of WCE systems analysis,

leading to unreliable diagnoses and compromised patient care.

All the challenges faced in WCE have a common thread: the scarcity of labeled data

(Vats et al., 2022). The labeling of WCE images requires expert knowledge and meticulous

annotation. As a consequence, the size of WCE datasets is usually small, which is a sig-

nificant obstacle to the design of robust DL algorithms. To overcome this limitation, new

approaches have to be developed (Muruganantham and Balakrishnan, 2021).

By tackling these complex challenges, from both DL and WCE, this research aims to

improve the performance and applicability of DL-based CAD systems in medical imaging

(Altaf et al., 2019; Tai et al., 2023). The outcomes of this work have the potential for enhanc-

ing diagnostic accuracy and enable more efficient decision-making processes in healthcare

organizations. Moreover, it opens the way for further breakthroughs and improvements in

patient care.
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1.2 Objectives

The main objective of this thesis is to develop innovative CAD systems that leverage

cutting-edge DL techniques to enhance the diagnosis of WCE studies by reduc-

ing the required review time while preserving or increasing their performance.

The specific goals of this thesis are summarized as follows:

1. Create models to tackle data scarcity. This involves developing different ap-

proaches that can learn and extract better features than standard models, even when

there is a small amount of labeled data to train a neural network.

2. Create a model to tackle imbalanced datasets. This entails creating DL meth-

ods capable of handling imbalanced datasets, that is, where some classes have signif-

icantly fewer examples than others do.

3. Create a model that integrates explainability. This implies the development of

CAD systems that provide methods to understand the logic behind their predictions.

4. Create a model to detect GI pathologies. This involves developing CAD systems

to detect and locate pathologies, with special attention to polyps in images acquired

from WCE videos.

5. Create a model to identify anatomical landmarks. This involves creating a clin-

ical decision support tool that can identify anatomical landmarks in images acquired

from WCE videos.

6. Create a model that generalizes with data from different devices. This entails

creating a reliable CAD system capable of effectively analyzing images captured from a

variety of WCE devices, regardless of the manufacturer or version. It should maintain

optimal performance and be able to handle any differences in image characteristics.

7. Create a robust model to detect OOD samples. This involves creating a DL

model capable of detecting and flagging findings that are not part of its training data.

To confirm that each method contributes significantly to the field of medical imaging and

helps to improve the diagnosis of GI conditions, it must fulfill the following requirements

and considerations:

1. State-of-the-art results. The DL models will achieve state-of-the-art results in

terms of relevant metrics for the specific task. These results should be compared with

other approaches or existing systems to demonstrate their superiority and potential

benefits.
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2. Limitations. The study of the method will include clear identification and discussion

of its limitations. In addition, it should contain how these limitations will be addressed

in future iterations of the system.
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1.3 Contributions

This section compiles the contributions to the field of WCE diagnosis carried out in this

thesis.

• Polyp detection in WCE images is a challenging task due to a variety of factors, in-

cluding the diverse appearance of polyps, imbalanced datasets, and limited data avail-

ability. To address this issue, a DL model optimized with the Triplet Loss (TL) is

used to enhance the feature extraction capability. The experimental results show that

the proposed system outperforms existing state-of-the-art methods. Furthermore, an

explainability technique is implemented to provide insights into the decision-making

process of the model. This method was published in the prestigious journal Comput-

erized Medical Imaging and Graphics (Laiz et al., 2020).

• Problems related to WCE datasets are notoriously challenging due to the limited

number of labeled samples and imbalanced classes, which present significant obstacles

in developing accurate models. To tackle these matters, this study introduces a novel

approach that combines Self-Supervised Learning (SSL) with pseudo-label extraction

from unlabeled videos. The initial parameters are optimized by utilizing a pretraining

phase with SSL. The compressed representations generated by the model contain

valuable information that can be used for multiple downstream tasks. In particular,

this knowledge is used in two cases: polyp detection and inflammatory and vascular

lesion identification. In both tasks, state-of-the-art results are achieved. This research

was published in the reputable journal Computers in Biology and Medicine (Pascual

et al., 2022a).

• Identifying anatomical landmarks accurately is crucial for effectively interpreting

WCE videos. For this reason, a novel system is developed in this study. It com-

bines images, timestamps, and motion data to precisely detect the capsule’s entrance

and exit in both the small bowel and large intestine. The proposed method is eval-

uated on three distinct datasets, and the results show significant improvements over

the state-of-the-art systems. The research paper was accepted for publication in the

journal Computerized Medical Imaging and Graphics (Laiz et al., 2023).

• The mitigation of the covariate distribution shift is important to avoid the deteri-

oration of the performance of DL models. The following research explores the use

of the TL as a domain adaptation technique to leverage frames from both training

and test datasets, that are extracted from different WCE devices, respectively. The

approach aims to improve the overall performance and the model’s generalization.

The experimental results show that the proposed domain adaptation approach out-

performs transfer learning techniques and training the system from scratch. The

resulting method was presented in the 2019 IEEE/CVF International Conference on

Computer Vision Workshop (ICCVW) (Laiz et al., 2019).
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• OOD image detection allows to design robust and reliable DL systems. To achieve

this, a novel OOD detector for WCE images is proposed. The method is a patch-

based methodology that involves three stages: (1) training a self-supervised triplet

network to learn representations of WCE images using patches; (2) clustering the

patch embeddings based on visual similarity; and (3) using the cluster assignments as

pseudo-labels to train a patch classifier and detect OOD images using ODIN. The

proposed method is evaluated with the public dataset Kvasir-Capsule (Smedsrud

et al., 2021). The results show that the method achieves higher performance than

the tested methods. This research was published in the reputable journal Artificial

Intelligence in Medicine (Quindós et al., 2023).
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1.4 Outline

This thesis is organized as follows. The next chapter provides the background of this

dissertation. It starts with an outline of the digestive system, with a particular emphasis

on lesions and pathologies of the GI tract. After that, the WCE is presented along with its

reading process and the technique’s limitations. The subsequent section provides a general

overview of DL and its applications in medical imaging. Finally, there is a brief introduction

to CAD systems in WCE.

A comprehensive overview of the theoretical foundations of DL and tools used to achieve

the set goals is presented in Chapter 3. It is divided into four sections: Deep Metric

Learning (DML) and contrastive approaches, SSL, OOD samples, and a summary of the

key takeaways.

As the thesis is a compilation of publications carried out during this doctorate, the

following chapters contain different solutions to three diagnostic problems in WCE.

The first problem focuses on the detection of GI pathologies, mainly colorectal polyps.

Polyp detection is a complex task owing to the range of positions, sizes, forms, and loca-

tions. However, DL-based CAD methods are well-suited to accomplish a reliable identifica-

tion based on their visual features. Moreover, the lack of annotated data, the imbalanced

datasets, and the requirement for model interpretability must also be addressed. Chapters

4 and 5 present two papers that propose DL methods to achieve this aim.

The second explored problem is the identification of anatomical landmarks, which are

crucial points of reference for physicians in diagnosing and managing various GI disorders.

The complexity of this task relies on identifying one frame for each landmark. In particular,

Chapter 6 focuses on the anatomical landmark detection of the small intestine and colon.

The last two publications, displayed in Chapters 7 and 8, provide solutions to two

problems related to OOD samples. Chapter 7 presents a methodology that achieves the

generalization of the system, even when test images come from a different source (device)

than training data. In contrast, Chapter 8 proposes an OOD detector, which seeks to

discover GI pathologies that were not included in the training data.

To end the dissertation, the overall results of the developed studies are discussed in

Chapter 9. Finally, in Chapter 10, the conclusions and suggestions for further research are

presented.
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To establish the background and provide the reader with the necessary knowledge to

understand the studied problems, the chapter is organized as follows. First, an overview of

the digestive system is provided, along with the most important lesions and pathologies of

the GI tract, as well as the anatomical landmarks of its organs. After that, WCE and the

reading process of this technique along with their limitations are presented. Then, there is

a general introduction to DL and medical imaging, including the difficulties encountered in

this field. Finally, there is a brief discussion of the related work of CAD systems in WCE.
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2.1 Digestive System

The digestive system is a set of organs that participate in food intake, digestion, and nutrient

absorption. The organs ensure that nutrients extracted from meals reach the cells of the

body to maintain the immune system and assist in other vital functions. It also eliminates

the food and product waste from numerous endogenous metabolic processes (Smith and

Morton, 2010).

The anatomy of the digestive system, illustrated in Figure 2.1, can be split into two

groups. The mouth, esophagus, stomach, small intestine (small bowel), and large intestine

(colon) compose the initial group of organs known as the primary organs. The second

group is known as the accessory organs of digestion and includes the liver, pancreas, and

gallbladder.

Figure 2.1: Anatomy of the digestive system. Image adapted from BioRender.

The person’s health and well-being are closely related to a well-functioning digestive

system, which occurs when there is a balanced diet, regular physical activity, and stress

management. When this is not the case, lesions and disorders can emerge. Several digestive

screening techniques are available for assessing the digestive system’s health. Depending on

the patient’s needs, diagnostic tools range from simple techniques like stool tests to more

complex methodologies like medical imaging. Endoscopy and colonoscopy are the gold-

standard screening procedures when a visual examination of the digestive tract is required.

They allow the visualization of the upper GI tract or the large intestine, respectively. During

the procedure and depending on the location, a flexible tube ending in a camera is inserted

through the mouth or rectum to screen for GI disorders.



2.1. DIGESTIVE SYSTEM 13

2.1.1 Digestive System Pathologies

The digestive system can be affected by many different GI disorders, from common condi-

tions such as acid reflux or Inflammatory Bowel Disease (IBD) to more serious diseases such

as bleeding or Colorectal Cancer (CRC). Although the early detection of polyps is one of

the main focuses of this thesis, other lesions and pathologies such as lymphangiectasia, ery-

thematous mucosa, angiectasias, GI bleeding, erosions, and ulcers are also studied. Figure

2.2 and Figure 2.3 show visual examples of each of them.

(a) Lymphangiectasia (b) Erythematous mu-

cosa

(c) Angiectasia (d) Fresh blood

(e) Hematin blood (f) Erosion (g) Ulcer

Figure 2.2: Mosaic of images with examples of the different pathologies explained in Section

2.1.1. Images extracted from the dataset of Smedsrud et al. (2021).

Lymphangiectasia (Figure 2.2a) is a condition characterized by dilated lymphoid vessels

in the mucosal wall. Erythematous mucosa (Figure 2.2b) corresponds to a reddish appear-

ance of the mucosa, whereas angiectasias (Figure 2.2c) are small, superficial, dilated vessels

that can cause chronic bleeding and anemia, particularly in persons with chronic heart and

lung diseases.

Lesions in the upper GI tract or small bowel can produce GI bleeding, resulting in the

appearance of fresh, red-colored blood (Figure 2.2d). In cases of minor bleeding, black

stripes of blood called hematin (Figure 2.2e) can be observed on the mucosa surface. Ex-

cavated lesions in the mucosa can cause erosion (Figure 2.2f), which may be covered by a

tiny fibrin layer or may extend to form larger ulcers (Figure 2.2g).
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Polyps and Colorectal Cancer

A colonic or colorectal polyp is the precursor lesion of CRC. It is a small abnormal growth

of tissue that protrudes from the surface of the colon’s mucosa membrane, most commonly

in the sigmoid colon and rectum. These growths can be either benign (non-cancerous)

or malignant (cancerous), and their size and shape can vary widely, as seen in Figures

2.3a–2.3d. Moreover, they can be found as single, as shown in Figure 2.3a, or multiple, as

shown in Figure 2.3d.

(a) Pedunculated polyp (b) Sessile polyp (c) Flat polyp (d) Multiples polyps

(e) CRC (f) CRC

Figure 2.3: Mosaic of images with examples of four different polyps (2.3a - 2.3d) and two

CRC images (2.3e - 2.3f).

Polyps are generally classified according to their visual characteristics, with size and mor-

phology being the most relevant. Based on their diameter, they are categorized as diminu-

tive (less than 6 mm), small (6 mm to 9 mm), or large (more than 10 mm) (M. Meseeha,

2022). Polyps, on the other hand, are also divided into depressed, flat, sessile, or peduncu-

lated depending on their morphology (Inoue et al., 2003). Each case is illustrated in Figure

2.4.

Polyps are diagnosed through screening techniques such as colonoscopy or WCE. Their

visual features and location play a crucial role in assessing their type and potential to

become malignant. However, focusing only on their aspect is insufficient for accurately

identifying their nature and danger. Hence, a biopsy is usually required to confirm the

diagnosis. When a polyp is detected, physicians surgically remove it and dispatch it to

a laboratory for pathological analysis. If the lesion is benign, no further treatment is
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(a) Depressed (b) Flat (c) Sessile (d) Pedunculated

Figure 2.4: Morphology of polyps. Images adapted from United European Gastroenterology.

required. Otherwise, if the polyp is malignant or has the potential to be, treatment options

may include surgery, chemotherapy, or radiation therapy. In cases where the polyp is left

untreated, it can develop into CRC, the third most common cancer in the world (World

Health Organization, 2022). Examples of it are shown in Figure 2.3e and 2.3f. Therefore,

regular screening and early detection are critical to prevent further complications.

2.1.2 Anatomical Landmarks

The anatomical landmarks of the digestive system are specific structures that subdivide the

GI tract. They are used as reference points for identifying locations and determining the

relationship between different organs. These structures aid physicians in the diagnosis and

treatment of certain conditions through their localization. However, these landmarks are

difficult to accurately identify as they are approximate regions with similar-looking features.

(a) Small bowel (b) Large intestine

Figure 2.5: Anatomy of the small bowel (a) and the large intestine (b). The regions delimited

by dashed lines are the parts of the organs, whereas the lines ending with a dot refer to the

anatomical landmarks. Images adapted from BioRender.

The small bowel anatomy is divided into three parts: the duodenum, the jejunum, and

the ileum, approximately as depicted in Figure 2.5a. The duodenum is the small intestine

entrance. The jejunum is the middle part of the organ. Finally, the ileum is located at the

end of the small bowel.

The pylorus and the ileocecal valve, which limit the organ, are two key landmarks
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for gastroenterologists. The pylorus is the opening at the lower end of the stomach that

connects to the small intestine. The ileocecal valve is a ring-shaped muscle that connects

the ileum and the cecum (the first part of the large intestine).

On the other hand, the large intestine is divided into the cecum, ascending colon, trans-

verse colon, descending colon, sigmoid colon, and rectum, as illustrated in Figure 2.5b. The

cecum is the first part of the organ and has a pouch-like structure. The ascending colon is

situated next to it. The transverse colon, the colon’s longest segment, is located across the

abdomen. The descending colon connects the transverse and the sigmoid colon. The latter

is an S-shaped region of the large intestine that ends in the rectum.

The landmarks of the large intestine are the hepatic and splenic flexures. The first is

the curve where the ascending colon becomes the transverse colon. The second is the bend

where the transverse colon becomes the descending colon.
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2.2 Wireless Capsule Endoscopy

Endoscopy and colonoscopy are the gold-standard screening procedures to examine the di-

gestive system. However, both procedures carry some associated risks and issues (Häfner,

2007; Sieg, 2011). Both techniques are invasive and might cause discomfort and pain in pa-

tients, requiring sedation in some cases for management. Anesthesia, on the other hand, can

result in unpleasant side effects such as nausea, drowsiness, and confusion. Complications,

such as hemorrhage, perforation, and infection, are also possible with these techniques.

Moreover, GI preparation is required before the procedure, which can cause discomfort and

dehydration. In addition to physical discomfort, both procedures demand a considerable

amount of time and resources for preparation and execution.

Wireless Capsule Endoscopy (WCE) (Iddan et al., 2000) is a relatively new technology,

approved by the Food and Drug Administration (FDA) in 2001 (Food and Drug Admin-

istration, 2001). It is a non-invasive diagnostic technology used to visualize the inside of

the GI tract. The small, pill-sized capsule contains a camera, a light, and a transmitter.

The patient swallows the capsule, like the one shown in Figure 2.6, which travels through

the GI tract and captures images of the interior of the digestive system. There is a small

portable recording device known as a data recorder that receives the signals transmitted

by the capsule. This device is attached to the patient’s belt during the examination, al-

lowing him to continue with his daily life while the analysis is being carried out. Once the

procedure is complete, a workstation with pre-installed software is available to physicians,

allowing them to view and interpret the images captured by the capsule.

Figure 2.6: PillCam SB3 Capsule. Image from Medtronic.

At the start of the 21st century, the medical community welcomed WCE with great

enthusiasm, as it expanded the diagnostic capabilities in the digestive system, particularly

in the small intestine. Compared with endoscopy and colonoscopy, WCE is less intrusive

and causes less discomfort to patients. Additionally, it provides a complete visualization

of the entire GI tract, including hard-to-reach areas that endoscopy and colonoscopy may

not be able to access. As a result, WCE has become a significant tool for diagnosing. In

particular, it is commonly used in patients experiencing symptoms such as abdominal pain,

GI bleeding, or anemia without a known cause.

Currently, small bowel WCE is used as the initial diagnostic tool in several countries,

including the United States, the United Kingdom, and across various European nations

for cases of GI bleeding (Goyal et al., 2022; Garbaz et al., 2022), Crohn’s disease (Xing

and Mouchère, 2022; Saxena et al., 2022), and, to a lesser extent, polyposis syndromes
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(Falin et al., 2022), celiac disease (Sana et al., 2020), or other small bowel pathologies

(Trasolini and Byrne, 2021). On the other hand, colon WCE is gaining acceptance as a

reliable method for detecting polyps (Pascual et al., 2022b; Reuss et al., 2022; Gilabert

et al., 2022), bleeding (Shahril et al., 2020; Smedsrud et al., 2021; Rustam et al., 2021), and

ulcers (Wang et al., 2019b; Aoki et al., 2019; Wang et al., 2019c), as well as completing an

unfinished colonoscopy (Yung et al., 2016; Koulaouzidis et al., 2021).

The initial commercial version of WCE, PillCam SB, was a compact device measuring 26

mm in length, 11 mm in diameter, and weighing less than four grams. The capsule captured

two frames per second, translating to 57, 600 frames after 8 hours of analysis. Since then,

numerous manufacturers have released new devices with different specifications, such as

size, weight, frame rate acquisition, battery life, camera resolution, and reading software.

Although most capsules are designed for small bowel and colon examination, Given Imaging

has also produced capsules specifically for analyzing the esophagus. Small-bowel capsules

typically include a single camera. However, devices that focus on the colon contain two

cameras, one at each end, to provide a complete view of the colon’s interior. The company

CapsoVision, on the other hand, redesigned the capsule to include four cameras in the

middle, providing a 360-degree field of view. Further details on the different capsules and

their specifications are summarized in Table 2.1 (Kurniawan and Keuchel, 2014).

Table 2.1: Summary of commercial WCE devices used to perform screening procedures.

Data extracted from Ciuti et al. (2011); Wang and Meng (2011); Kurniawan and Keuchel

(2014); CapsoVision (2022). The legend used is: Length (L) and Diameter (D).

Capsule Name Manufactures Year
Size (L×D) Weight Battery Organ Frames Field of

(mm) (g) life (h) per second view (º)

PillCam SB Given Imaging 2001 26.0 × 11.0 4.00 8 Small Bowel 2 156

PillCam SB2 Given Imaging 2012 26.2 × 11.4 3.40 8 Small Bowel 2 − 6 156

PillCam SB3 Given Imaging 2015 26.0 × 11.0 3.00 > 8 Small Bowel 2 − 6 156

PillCam COLON Given Imaging 2006 31.4 × 11.4 2.90 10 Colon 4 154

PillCam COLON 2 Given Imaging 2012 31.5 × 11.6 2.90 10 Colon 4 − 35 172

PillCam CROHN Given Imaging 2018 26.0 × 11.0 2.90 > 10 Intestines 4 − 35 172

PillCam ESO Given Imaging 2004 26.0 × 11.0 4.00 1/2 Esophagus 14 140

PillCam ESO 2 Given Imaging 2008 26.0 × 11.0 4.00 1/2 Esophagus 18 169

EndoCapsule Olympus America 2012 26.0 × 11.0 3.50 > 8 Small Bowel 2 145

MiroCam IntroMedic Company 2014 24.5 × 10.8 4.70 > 11 Small Bowel 3 170

OMOM Jinshan Science and Technology 2005 27.9 × 13.0 6.00 > 8 Small Bowel 2 140

CapsoCam CapsoVision 2016 31.0 × 11.0 4.00 15 Small Bowel 20 360

The unique characteristics of each capsule result in visual variations in the captured

frames. New devices obtain images with better clarity and sharpness, more color information

due to the lighting, or less blurring. An example of the images captured by each capsule

is shown in Figure 2.7. In particular, Given Imaging capsules (Figures 2.7a–2.7g) contain

similar lenses and, as a result, a comparable profile. In contrast, the shape of EndoCapsule

images (Figure 2.7h) is similar to the one obtained during colonoscopies. Standing out from

the others, the CapsoCam (Figure 2.7k) images show a 360-degree field of view.
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(a) PillCam SB (b) PillCam SB2 (c) PillCam SB3 (d) PillCam

COLON

(e) PillCam COLON

2

(f) PillCam CROHN (g) PillCam ESO 2 (h) EndoCapsule (i) MiroCam (j) OMOM Jinshan

(k) CapsoCam

Figure 2.7: Mosaic with random captured frames of the different capsules endoscopy devices

introduced in Table 2.1.

2.2.1 Reading Process

A WCE reading process involves at least one gastroenterologist reviewing and interpreting

the large volume of images captured by the capsule as it moves through the GI tract. The

interpretation of the thousands of generated images is a time-consuming and labor-intensive

task for endoscopists. Moreover, the reviewing process of a WCE video requires multiple

stages to guarantee that all relevant information is analyzed. It is fair to say that this

reading process might be repetitive, tedious, and even monotonous, especially when the

video is long or negative.

Currently, there is a lack of scientific evidence for determining the optimal protocol

for reading a WCE video (Adler et al., 2015; Yamamoto et al., 2017; Enns et al., 2017;

Rondonotti et al., 2020; Koulaouzidis et al., 2021). Hence, no standards or guidelines

have been established. Until now, there has been only a combination of the suggestions

provided by capsule manufacturers and the opinions of experts in the field (Adler et al.,

2015; Yamamoto et al., 2017; Ahmed, 2022). These recommendations can be summarized

in three steps: the patient’s clinical history, a quick overview of the video, and a review.
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Clinical History

Before reading any WCE video, it is essential to be aware of the patient’s clinical in-

formation (Rondonotti et al., 2020), such as clinical presentation details, duration of the

clinical history, existence of one or more additional medical conditions, medications, and,

most importantly, the referrer’s query. The knowledge of the patient’s medical history and

symptoms can help guide the interpretation of the images, which is crucial for a balanced

evaluation of findings and meaningful WCE conclusions (Koulaouzidis et al., 2021).

Quick overview of the video

After obtaining the patient’s clinical history, it is recommended that physicians conduct a

quick overview of the entire video. The goal of this initial phase is to quickly identify areas

of interest for a more in-depth study, locate key anatomical landmarks, and obtain vital

clinical information in a timely manner. This can be done using automated fast-reading

modes that are specifically designed for this purpose (Saurin et al., 2012; Hausmann et al.,

2019; Freitas et al., 2020).

The landmarks that should be located in the small intestine are the pylorus and ileo-

cecal valve to assess small bowel cleansing, confirm complete small bowel exploration, and

precisely point potential lesions (Rondonotti et al., 2020). In the colon, the cecum and

rectum, which delimit the organ, must be indicated. Furthermore, the hepatic and splenic

flexures are important landmarks to place, as this information is used to assess screening

completion (Koulaouzidis et al., 2021). The relative position of the small bowel and the

colon landmarks within the video can also be used to adjust the frame speed per segment,

accelerating the diagnostic process (Koulaouzidis et al., 2021). However, it is important to

note that accurate and proper landmarking can be a challenging task due to the to-and-fro

movement of the capsule as well as inadequate bowel preparation in some patients.

Review

After the first quick overview, the goal of the review is that experts mark any suspected

lesions and take some normal images for photo-documentation to aid in the diagnosing

procedure. To ensure that all relevant information is captured, it is important to annotate

findings using dedicated classification or scoring systems. Additionally, it is necessary to

register the overall adequacy of bowel cleanliness in the report, because inadequate visual-

ization can increase the missed rate of lesions (Spada et al., 2021).

Although a complete protocol for the review process does not exist, there are some rec-

ommendations depending on the organ studied. For the small intestine, it is suggested that

readers avoid using high frame rates (Rondonotti et al., 2020), as this can make identifying

minimal changes difficult, even for expert readers. In the colon, it is advised to review the

images from one camera at a time, followed by the other. The suggested rate is 8 − 15
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frames per second, so it can be slowed down if the capsule is moving too fast. In both

cases, it is recommended to use different AI software readers to check for missing findings

(Koulaouzidis et al., 2021). Examples of these systems are the Top 100 mode (Freitas et al.,

2020), which shows candidate frames containing small polyps, and the Collage mode, which

selects and displays suspicious frames from the video. An example of both modes using the

RAPID Reader software of Given Imaging is shown in Figure 2.8.

(a) Top 100 mode. Using AI, 100 candidate frames to contain small polyps are shown.

(b) Collage mode. Using AI, suspicious frames are selected and shown.

Figure 2.8: Example of two reading modes: Top 100 and Collage Mode from RAPID Reader

software of Given Imaging. Images extracted from Koulaouzidis et al. (2021).

The GI has propulsive activity; hence, it is common for the capsule to move in both

directions, which means that the same lesion or anomaly may appear several times. Con-

sequently, the second part of the review should focus on comparing the saved findings and

unifying them in unique lesions. As an optional step, a final confirmatory run on the an-

notated findings should be performed in reverse mode, that is, from the rectum to the top,

to confirm the findings and eliminate duplicates.

Before writing the report, physicians should systematically examine the other organs
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to identify any possible lesions. Between 7% and 15% (up to 30% in certain reports) of

the time, patients have lesions outside the studied organ (Koffas et al., 2018). It is also

suggested to have a “think twice” policy in negative exams, where the same reviewer or, if

possible, a second, more experienced one repeats the review process.

Pre-readers and readers

As can be concluded from the previous details, the reading process of WCE videos is a

complex task, especially considering that relevant information appears in a few frames of the

entire screening. For this reason, despite the scarcity of studies, the use of a reader-validation

team is highly recommended during this process (Barkin and Barkin, 2017; Rondonotti

et al., 2020), particularly in colon screening. This approach employs one reviewer as a

pre-reader and another as a validator. (Koulaouzidis et al., 2021). The WCE recording is

reviewed by the pre-reader, who is usually an experienced nurse, who adds landmarks and

any obvious pathology, which is then validated by the reader. It is advised that pre-readers

also highlight areas of ambiguity where the validator’s opinion is required.

2.2.2 Drawbacks

WCE is a valuable tool for the diagnosis of GI disorders and has gained popularity in the

medical community, but it is not without its drawbacks. From a design perspective view,

the capsule may not always be entirely conclusive due to factors such as intestinal content

or a limited field of view. Furthermore, it does not execute therapeutic procedures, meaning

that if further tests are needed, additional techniques must be employed (El-Matary, 2008).

For physicians, the interpretation of thousands of WCE images is an overwhelming and

time-consuming task, which can lead to fatigue (Lan et al., 2019; Beg et al., 2021). The

danger of fatigue involves an increase in the likelihood of missing clinically relevant findings

that appear in only a few frames. Indeed, Lewis et al. (2005) reported that the rate of

missed lesions in these cases is around the 10%.

Furthermore, the organ where the capsule is located at a certain time is unknown.

Consequently, the exact location of the visualized lesion is difficult to discern. Anatomical

landmarks are commonly employed to limit organs and thus, allow the estimation of the

location of the pathologies. Moreover, they can be used to adjust the frame rate during

the reading process (Koulaouzidis et al., 2021). However, the accurate identification of

anatomical landmarks is a complex task due to the many similar-looking structures of the

digestive tract and the limited visual field of the capsule camera, in a constantly moving

environment. Moreover, the view can also be obstructed by the mucosal folds lining the

organs, making it even more challenging to locate them properly.

To address the two last drawbacks and improve the clinical utility of WCE, various

solutions, including the use of AI and DL techniques, are being explored. To overcome
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the large volume of images that have to be reviewed by physicians, new technologies and

techniques are being studied to accelerate the image review process and reduce the risk

of missed lesions. In particular, DL approaches are well suited to this aim, as they can

automatically learn to recognize patterns in the data. These techniques can aid in object

detection and image classification, assisting physicians in identifying relevant findings more

quickly (Gilabert et al., 2022). Regarding the location of pathologies in the GI tract,

various techniques are being developed to pinpoint, or at least limit, the area of the lesions.

As mentioned previously, it can be accomplished by locating anatomical landmarks. It is

achieved by using software-assisted detection algorithms that aid in the classification of

images into organs and then in the identification of landmarks. Overall, while WCE has

its limitations, ongoing advancements in DL hold promise for overcoming the drawbacks,

leading to improved clinical outcomes and patient care.
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2.3 Deep Learning and Medical Imaging

Deep Learning (DL) is a sub-field of ML that aims to learn the underlying patterns in the

data, allowing the systems to make sophisticated decisions (LeCun et al., 2015; Goodfellow

et al., 2016). The concept of DL was first introduced in the 1980s; however, it only began

to gain mainstream attention in the early 2010s with the advent of powerful computational

resources and extensive data collection. The ability of DL models to process and learn

from data has led to significant breakthroughs in a wide range of fields, including computer

vision (Voulodimos et al., 2018), Natural Language Processing (NLP) (Qiu et al., 2020),

and decision-making (Latif et al., 2019).

DL involves the use of models called Artificial Neural Networks (ANNs) (McCulloch

and Pitts, 1943). They are inspired by the structure and function of the brain and are

able to analyze and process large amounts of data. They are formed by interconnected

nodes, named artificial neurons. Each pair has an associated weight wl
ij , which is adjusted

to perform a specific task. Neurons are organized into layers and are typically divided into

three main categories: input, hidden, and output. An example of it is illustrated in Figure

2.9 where the blue dotted square represents the input layer, the hidden is the grey one

which must be between the other two, and finally, the output, displayed as a green dashed

square. The latter is responsible for providing the predictions of the system. It is worth

noting that when the number of hidden layers is large in an ANN, the network is referred

to as Deep Neural Network (DNN).

(a) Feed-Forward (b) Back-Propagation

Figure 2.9: Principle of training an ANN. In (a) the arrows between the neurons represent

the weight of the ANN, wl
ij , used to infer the network output. In (b) the arrows represent

the gradient of the loss with respect to the weights. Using both steps, the weights are

adjusted to obtain a more accurate network prediction.

The learning process of an ANN is based on the idea of adjusting the network’s weights

to improve the accuracy of the predictions. To this aim, two steps are required. First, the

input layer of the ANN receives the raw data, which is then processed and transformed
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by the hidden layer(s) before being transmitted to the output layer for a final prediction

or decision. This process is called feed-forward or inference, as illustrated in Figure 2.9a.

In the second step, the adjustment of the weights is done using a loss function and the

back-propagation algorithm (Rumelhart et al., 1986). The loss function computes the error

between the network’s prediction and the ground truth, normally designated as ŷ and

y, respectively. Different loss functions can be applied depending on the problem, data,

and neural network used. However, the most common losses in computer vision problems

are Categorical Cross-Entropy (CCE), Mean Absolute Error (MAE), and Intersection over

Union (IoU). The back-propagation algorithm is an optimization technique that enables

ANN to learn from data. It minimizes the error produced by the network, that is, the

value obtained after applying the loss function. This algorithm propagates the errors to

the input data and updates the parameters using the gradient of the loss with respect to

the weights. A schematic illustration of the process is shown in Figure 2.9b. The two-step

process is repeated until the neural network is able to accurately predict the output for the

given input data.

DL techniques have been applied to a wide range of problems, reaching state-of-the-art

results in many areas. Particularly, notable success has been accomplished in the field of

computer vision, where Convolutional Neural Networks (CNNs) (Fukushima, 1980; Lecun

et al., 1998) have been used to achieve near-human performance in tasks such as image

classification (Yadav and Jadhav, 2019), and object recognition (Xiao et al., 2020). They are

inspired by the organization of the visual cortex and the way it processes information from

the eyes. As a consequence, they are designed to process images and preserve the spatial

structure of the data. These networks consist of a combination of different layers, including

convolution, pooling, and dense. The convolutional layers have sets of 2D filters, also called

kernels. The weights of the filters are optimized with the back-propagation algorithm to

identify patterns and characteristics in the images like edges, corners, and textures by

using the mathematical convolution operation. Pooling layers reduce the input’s spatial

dimensions by summarizing local features and preserving the most relevant information.

And finally, dense layers connect each neuron between the previous and the current layers.

Since its first appearance, many variants of CNNs have been published, and the most

outstanding ones are presented below. Lecun et al. (1998) introduced LeNet-5, one of the

first CNN designed for handwritten digit recognition. In 2012, Krizhevsky et al. (2012)

presented AlexNet, which won the ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) that year. The authors introduced three additional convolutional layers to cap-

ture more complex features than LeNet-5. Moreover, the use of max-pooling layers to down-

sample the feature maps (Scherer et al., 2010), and the adoption of the Rectified Linear

Unit (ReLU) activation function (Nair and Hinton, 2010), led to a significant improvement

in the performance. Later, VGGNet was introduced by Simonyan and Zisserman (2015)

and the main difference with AlexNet was the concatenation of multiple convolutional lay-

ers before applying a max-pooling operation to achieve a deeper architecture than before.

Because of its structure, VGGNet is widely used as a feature extractor in segmentation and
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object detection tasks (Geng et al., 2019; Haque et al., 2019). In the same year, Szegedy

et al. (2015) proposed GoogleNet, known for its use of inception modules. The modules are

designed to generate a single output by concatenating the results from several convolution

operations with multiple filter sizes in parallel. This approach allows the network to learn

multiple feature scales simultaneously.

He et al. (2016) proposed a DNN called ResNet, which also won the ILSVRC. The main

innovation made by the authors was the use of residual connections, which add the input of n

consecutive convolutional layers to its output, enabling the layer to learn a residual mapping

between the input and output. This strategy provides networks with more layers that

converge without suffering from exploding or vanishing gradient problems (Grosse, 2017).

That is gradients that become extremely small or large as they are back-propagated, which

may hamper the network to learn. By the same purpose, Huang et al. (2017a) proposed

DenseNet. This architecture connects all the layers directly with each other to increase

the flow of information throughout the network, allowing the use of fewer parameters than

in previous architectures. Another CNN derived from ResNet is EfficientNet, which was

proposed by Tan and Le (2019). It is characterized by a scaling coefficient that controls the

network dimensions (number and size of the convolutional layers) and balances the trade-off

between accuracy and efficiency.

Another field where DL has shown excellent performance is in NLP, where sequences

of data are processed. The first models to achieve state-of-the-art results in this field were

Recurrent Neural Networks (RNNs) (Rumelhart et al., 1986). An RNN consists of a loop

that allows information to be transmitted from one step to the next. This approach creates

a memory of previous inputs, also called hidden states, that the network uses to produce the

outputs. In other words, this type of architecture remembers previous inputs and employs

that information to make future predictions. Figure 2.10a contains two schemes of a RNN.

In the left part of the figure, the network is illustrated as a loop. However, it is important

to note that the network is actually formed of interconnected cells or neurons, as illustrated

on the right side.

RNNs are build using cells. The most basic one mainly consists of the application of an

activation function over the combinations of the inputs. However, this approach has short-

term memory problems due to the vanishing of the gradient. To overcome them, Long

Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) and Gated Recurrent

Units (GRU) cells (Cho et al., 2014) are commonly used. Both have mechanisms to forget

or remember information from the past, enabling the network to capture better long-term

dependencies in sequential data in a more effective manner.

As explained so far, RNN only processes sequences in one direction. In contrast, bidi-

rectional RNNs (Schuster and Paliwal, 1997) have two separate hidden states for each time

step, so they can process the input sequence in both, forward and backward, directions. The

aim of this network is to capture past and future contexts, which can be useful in certain

applications, such as in language translation. To infer the outcome, the outputs from the
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(a) Fold and unfold representation of a RNN structure

(b) Bidirectional RNN structure

Figure 2.10: Comparison of a RNNs and a Bidirectional RNNs.

two layers are concatenated and used to compute the final prediction. The entire process

is shown in Figure 2.10b.

Recently, transformer networks (Vaswani et al., 2017) have outperformed the results ob-

tained by RNN in NLP tasks. They are designed to achieve high performance in processing

data sequences. They use self-attention mechanisms that weigh the importance of different

parts of the input and make predictions based on those weights. This approach captures

better the dependencies between words within a sentence compared to RNNs. Moreover, it

achieves state-of-the-art results not only in language translation (Karita et al., 2019), but

also in text generation (Zhang et al., 2022).

RNNs and transformers were initially designed for NLP tasks due to their ability to

model sequential data effectively. However, their architectures and mechanisms can also be

applied to image-related problems. RNNs can be applied to image classification by treating

images as sequential data (Van Den Oord et al., 2016). On the other hand, transformers have

emerged as a powerful alternative due to their ability to capture long-range dependencies

efficiently (Parmar et al., 2018). These models have demonstrated promising results in image

classification tasks and offer an alternative approach to traditional CNN-based architectures.

Although significant progress has been made in the field of DL, it remains a dynamic and

evolving area of research with numerous opportunities and open challenges. Some of these

include developing methods for explainability and interpretability, robustness, and OOD

detection. If progress is made on them, DL is expected to continue playing a significant

role in the development of AI and the advancement of various fields.



28 CHAPTER 2. BACKGROUND AND RELATED WORK

2.3.1 Medical Imaging and Computer-Aided Systems

Medical imaging plays an important role in modern medicine because it generates visual

representations of the body using technologies such as radiography, ultrasound, endoscopy,

and Magnetic Resonance Imagery (MRI) (Aiello et al., 2019). Clinicians use the data col-

lected through these tools to identify and diagnose a wide range of lesions and diseases,

monitor the progression of illnesses, guide therapeutic procedures, and evaluate the effec-

tiveness of treatments (Chan et al., 2020a; Zhu et al., 2020; Anaya-Isaza et al., 2021; Tufail

et al., 2021). These procedures are carried out manually and may be time-consuming, po-

tentially susceptible to human error, and influenced by the subjective expertise of the reader

(Brady, 2017; Waite et al., 2020). Therefore, the analysis of these medical images and the

corresponding diagnosis present significant challenges, that demand extensive training and

experience.

The evolution of DL has opened new horizons in the field of healthcare, making it pos-

sible to apply DNNs to a wide range of medical problems and overcome the aforementioned

challenges (Wang et al., 2021). In recent years, the application of DL tools in medical imag-

ing diagnostics has led to rapid and significant advances in CAD systems. In particular,

in improving the accuracy and efficiency of the diagnostic process and helping experts to

identify potential pathologies that might otherwise be missed (Chan et al., 2020b; Ostherr,

2022).

CAD systems can be divided into two types, Computer-Aided Detection (CADe) and

Computer-Aided Diagnosis (CADx). CADe systems are designed to detect and highlight

regions within an image that may indicate specific anomalies. Then, it alerts the clinician

about the findings during screening. Indeed, most of the developed methods belong to this

type. In contrast, CADx systems go beyond just detecting abnormalities and provide po-

tential diagnoses, including the pre-screening and triage, evaluation of treatment response,

recurrence monitoring, and prediction of prognosis or survival.

Lo et al. (1993) and Lo et al. (1995) were one of the earliest studies that attempted

to use DL in the medical field. They use CNNs to detect lung nodules on chest radio-

graphy. Since then, many other studies have been conducted employing DL to detect a

wide range of diseases and disorders using different images modalities, such as Computed

Tomography (CT) (Higaki et al., 2019; McLeavy et al., 2021; Serte and Demirel, 2021),

MRI (Lundervold and Lundervold, 2019; Mostapha and Styner, 2019; Ueda et al., 2022),

and endoscopy (Hoogenboom et al., 2019; Ali et al., 2021; Wan et al., 2021). However,

Chan et al. (2020a) report that although computer-assisted image analysis has become a

major area of research and development, few CAD systems that incorporate advanced DL

techniques have undergone extensive clinical trials, a requirement to be implemented in the

medical field.

Over the past few years, there has been a strong focus on developing AI solutions

that can be utilized in clinical settings (Wang et al., 2019a). Numerous promising studies
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have been published, indicating the potential benefits of such technology. However, the

implementation of AI in healthcare systems is currently limited due to several factors. The

main one is the lack of safety studies and the absence of standardized protocols for utilizing

CAD tools (Qayyum et al., 2020).

Despite these limitations, there is optimism that these challenges will be addressed

through ongoing research and sufficient time. As AI systems continue improving their

performance, they will become increasingly valuable in assisting healthcare professionals

with tasks such as diagnosis, treatment planning, and patient care management (Yanase

and Triantaphyllou, 2019b). Consequently, it is expected that DL and CAD methods will

be adopted extensively in healthcare systems, ensuring their safe and reliable integration

(Yanase and Triantaphyllou, 2019a).

2.3.2 Challenges in the Diagnostic

Manually diagnosing medical imaging can be lengthy and complex, as the interpretation

of the images needs expert knowledge and extensive experience. To deliver a fast and

high-quality reading process, it is important to leverage computer-assisted technology to

ensure efficient and thorough evaluation (Allen Jr et al., 2019). However, the limitations of

applying DL tools to clinical diagnostics cannot be ignored. The most common challenges

when they are implemented are small and imbalanced datasets, black-box models, and OOD

samples (Yanase and Triantaphyllou, 2019a; Chan et al., 2020a).

Lack of annotated data

A large amount of labeled data is needed to train DL models. However, in the medical field,

the process of labeling data to train DL methods is expensive, as it is a time-consuming

task and even in some cases impossible owing to the high precision required (Altaf et al.,

2019). In other cases, privacy concerns associated with sharing medical records further

limit the data available for training the models (Astromskė et al., 2021). Due to these

facts, most studies use small training sets and over-designed systems (Vats et al., 2022).

Furthermore, some of the models do not undergo strict validation using extensive test data.

As a result, these models may tend to memorize the training samples instead of learning

general patterns (Willemink et al., 2020). This concept is called overfitting. Hence, the

generalizability of these models to new patients and clinical environments remains unclear.

Researchers often use data augmentation, transfer learning, or domain adaptation to

address the lack of annotated data. Data augmentation techniques aim to artificially in-

crease the limited data by applying transformations to images, such as rotations, flips, or

adding noise (Garcea et al., 2023). In transfer learning, pretrained models are fine-tuned

on smaller medical imaging datasets to leverage the knowledge of the previous method (Yu

et al., 2022). Finally, the domain adaption goal is to adjust a model trained on one domain
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(e.g., the source domain) to perform well in another one (e.g., the target domain) (Guan

and Liu, 2022). However, these methods still face limitations and may not always yield op-

timal performance (Chan et al., 2020b). Therefore, it is important to find ways to improve

the generalization of models with small amounts of labeled data to advance in the field of

medical imaging and ensure accurate diagnoses.

Imbalanced datasets

DL algorithms work properly when datasets are balanced across different classes, i.e., all

the classes have approximately the same number of samples. Unfortunately, many datasets

from the medical field are imbalanced. It is a common problem because certain conditions

or diseases appear in a limited number of images (Saraf et al., 2020). Thus, labeling an

adequate number of abnormal samples to create an optimal dataset is a tedious task com-

pared with obtaining normal cases, which are easier to gather for screening purposes (Akay

and Hess, 2019; Yanase and Triantaphyllou, 2019a).

When the used dataset is imbalanced, the distribution of classes is skewed towards one

or a few, which makes it difficult for the models to learn from minority classes. In this

case, it is likely that DL systems predict the majority class (non-abnormal images) more

frequently, resulting in a higher number of false negatives (missed lesions). Hence, the

models over-represent the predominant class and may not learn the patterns and features

associated with the minority classes. In addition, traditional evaluation metrics, such as

accuracy, may not be appropriate for imbalanced datasets, because they may not reflect

precisely the performance of underrepresented classes (Johnson and Khoshgoftaar, 2019).

Several techniques can be employed to address the imbalanced datasets problem, includ-

ing dropout, sampling strategies, and class-balanced losses. Dropout is a technique that

randomly disconnects neurons during the training of the network to improve the knowl-

edge of others (Srivastava et al., 2014). With this, the model can prevent overfitting in

the majority class and generalize more effectively. Regarding sampling strategies, different

approaches exist, including oversampling the minority class (Tarawneh et al., 2022) and

undersampling the majority class (Devi et al., 2020). Both strategies ensure that the model

learns from sufficient examples to obtain accurate predictions. Finally, class-balanced losses

can be used to adjust the importance of loss terms and mitigate the imbalance in the dataset

(Cui et al., 2019; Fernando and Tsokos, 2022). In addition, the use of evaluation metrics

designed for imbalanced datasets, such as the F1-score, Area Under the ROC Curve (AUC),

or Mean Accuracy (MACC), can provide a more accurate and informative assessment of

the model performance (Yanase and Triantaphyllou, 2019b).



2.3. DEEP LEARNING AND MEDICAL IMAGING 31

Black boxes and Explainability

Complex DL models, such as CNNs, RNNs, and transformers are powerful tools for a

wide range of applications. However, they present difficulties in terms of transparency

and explainability as they generate outcomes without revealing how those predictions are

reached. For this reason, these systems are called black boxes (Baselli et al., 2020). When

DL is applied in medical applications, it is crucial to comprehend how the model arrived

at its conclusions, because physicians need evidence to make or corroborate the diagnosis.

Furthermore, a misdiagnosis can have a major impact on a patient’s health.

Particularly, according to the study published by Zech et al. (2018), DL models may

acquire knowledge of non-medical features to make predictions that are unrelated to a

patient’s medical conditions. These features could include aspects such as the protocols

used in image acquisition, image processing techniques, or other markings and accessories

that may be present in the data. These factors are often related to the facilities or coexisting

conditions of the patient. Therefore, models require the ability to justify decisions to confirm

that the conclusions are drawn exclusively based on medical features.

To address this challenge, approaches such as visualization techniques, attribution meth-

ods, and model interpretation frameworks, have been explored to make black boxes more

reliable and transparent. Visualization techniques aim to show the internal activation and

decision processes of a system (Zhou et al., 2016; Selvaraju et al., 2017; Huff et al., 2021).

The goal of attribution methods is to assign importance scores to each input feature (Singh

et al., 2020; Jin et al., 2022). Finally, model interpretation frameworks provide additional

information that supports the understanding of the neural network outcomes (Kohoutová

et al., 2020).

The field of explainable AI is in its early stages, but it is important to develop inter-

pretable and explainable DL models to ensure their effectiveness in the tasks. In the context

of medical applications, understanding and trusting the predictions made by CAD systems

is crucial for their use and integration in the diagnostic processes (Linardatos et al., 2020).

In addition, its comprehension helps to detect any possible biases or errors in the model,

which can be corrected to enhance the performance of the system (Albahri et al., 2023).

Detection and Localization of lesions

Lesions might appear in various poses, lighting, sizes, and shapes due to the patient’s

anatomy and disease progression. Moreover, they are found in a small percentage of the

data resulting in datasets that tend to be small and imbalanced. Such conditions make the

task of detecting and localizing them consistently complex. Consequently, it is important

to develop and evaluate robust CAD systems that can properly generalize and be useful for

diagnosis (Mi et al., 2022).

The research community is exploring a wide range of solutions to aid in the detection
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and localization of lesions. The proposed approaches go from transfer learning (Pascual

et al., 2022a) or data augmentation (Xiao et al., 2022), to attention mechanisms or multi-

task learning. Attention mechanisms focus on relevant regions of the image and improve the

accuracy of the detection (Muruganantham and Balakrishnan, 2022), whereas multi-task

learning involves leveraging shared knowledge and features across related tasks to improve

performance and generalization (Vats et al., 2021).

Covariate distribution shift

The effectiveness of DL models relies on the existence of a diverse training dataset that

represents accurately the intended domain or space where the system is employed. However,

in the medical field, the models may have been trained using a particular version of the

device and conditions, which may not align with the ones used during testing. This situation

generates that data from the training and test set have different distributions, which is

known as a covariate distribution shift (Nair et al., 2019; Guan and Liu, 2021).

Recent studies have proved that the performance of DL models generally deteriorates as

the covariate distribution shift increase (Dharani et al., 2019). For this reason, it is essential

to develop methods that are robust to changes in data distribution and that can be used

with images obtained from different devices and conditions.

Several approaches have been proposed to address the disparity in data distribution

shifts, including domain adaptation (Ma et al., 2019), transfer learning (Wang and Schnei-

der, 2014), and adversarial training (Long et al., 2018). These techniques aim to bridge the

gap between the source and the target domains by minimizing the distributional difference

between them, thereby enabling the model to generalize better with new devices.

Out-of-Distribution data

DNNs and CAD systems are achieving incredible results in several tasks, but they still

have trouble recognizing categories that they have not seen in the learning process. These

examples are known as Out-of-Distribution (OOD). In any real-world application where the

model may encounter unseen conditions, building robust methods to detect them is impor-

tant. In the medical field is even more significant as rare images could contain abnormalities

or diseases that should not remain undetected (Chen et al., 2023).

Various methods have been proposed to detect OOD data. Among them are Hendrycks

and Gimpel (2016), Liang et al. (2017), and Hsu et al. (2020) which are intended to improve

the model’s ability to provide reliable uncertainty estimation for each image. However, OOD

detection remains an open problem that requires further investigation to develop robust and

generalizable solutions.
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2.4 CAD Systems in WCE

The use of CAD systems based on DL techniques has the potential to revolutionize the

diagnosis and treatment of digestive diseases. This new technology can ensure a more

efficient and thorough evaluation of WCE studies. In particular, gastroenterologists are

benefiting from the proposed and published AI techniques from the research community,

which aim to assist them in the diagnosis. Some of the published work include lesion

detection, video summarization, or multi-organ segmentation. All of them aim to reduce

the required time to review the video, which is one of its main WCE challenges (Anaya-Isaza

et al., 2021). Despite the fact that there are no standardized protocols in clinical settings

for the use of CAD tools, ongoing improvement in the accuracy of these systems makes

them valuable for initial screening and for more comprehensive analyses where pathologies

are not immediately detected (Yanase and Triantaphyllou, 2019b).

Lesion detection is the most common approach to assist physicians during the reading

process. It is a type of CAD application designed to identify any abnormality or change

in the GI tract, which could indicate the presence of a lesion. These systems can identify

one or multiple pathologies while reviewing each captured frame of the WCE video. New

DL approaches have obtained promising results in detecting many pathologies, particularly

polyp (Yuan et al., 2020; Reuss et al., 2022; Pascual et al., 2022b; Gilabert et al., 2022).

In addition, the latest published systems also highlight the region where the abnormalities

are located in the WCE images (Guo and Yuan, 2020; Vieira et al., 2021; Vats et al., 2021;

Muruganantham and Balakrishnan, 2022).

Video summarization is a type of CAD system that condenses redundant images of one

WCE study into a more manageable format. This facilitates the review and interpretation

process for clinicians. Lan and Ye (2021) and Raut and Gunjan (2022) demonstrated the

effectiveness of these applications by keeping the relevant medical frames from the video

and reducing the time of diagnosis in WCE studies.

Other types of CAD applications in WCE that have not attracted as much attention

as the previous ones are multi-organ segmentation and the proper functioning of intestinal

motility. The first aims to delimit various organs by identifying the corresponding anatom-

ical landmarks (Adewole et al., 2020; Zhao et al., 2021; Son et al., 2022). On the other

hand, intestinal motility is the physiological process that coordinated the contraction and

relaxation of the intestine to move food and waste through the digestive tract. Hence, the

aim of these models is to determine whether this process works correctly (Malagelada et al.,

2015; Segúı et al., 2016; Alcalá-Gonzalez et al., 2022).

The development of CAD systems to aid physicians in the diagnosis of digestive system

disorders is an active research area, as evidenced by the numerous studies conducted thus

far. By leveraging the power of DL algorithms, the accuracy, the speed of image analysis,

and the detection of abnormalities in WCE videos can be potentially improved. Moreover,

this advancement is expected to remove the bottleneck of human pre-reading resources and
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allow for a combination of AI-validation pairs, as anticipated in recent studies (Dray et al.,

2021).

The rest of this thesis is focused on continuing with the ongoing effort in the design and

development of efficient and reliable CAD systems based on DL in WCE videos. Specifically,

the three problems studied are pathology detection, anatomical landmark identification, and

OOD sample handling.
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This chapter explores the theoretical fundamentals required to reach the goals proposed

in Chapter 1. First, an introduction to the basic concepts and insights of DML employed

in this dissertation is provided. From there, the details of the TL are explained. This loss

allows the models to learn discriminative features and generalize more. Subsequently, SSL is

discussed, which enables the models to learn meaningful representations from data without

the need for labels. Next, the concept of the OOD problem is discussed, focusing on covariate

and semantic distribution shifts, which are relevant in real-world applications, especially in

the medical field. Finally, the main key takeaways of the chapter are summarized. Overall,

this chapter provides a comprehensive overview of the essential concepts, literature, and

techniques employed in this thesis.
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3.1 Deep Metric Learning and Contrastive Approaches

Deep Metric Learning (DML) is a sub-field of DL that focuses on learning a feature space

in which data that are related in some way are mapped to points close together, while data

that are dissimilar are projected to points that are far apart. Consequently, DML methods

can handle large amounts of data, making them suitable for real-world applications such

as face recognition (Hermans et al., 2017), object detection (Xiao et al., 2020), and image

retrieval (Chen et al., 2021).

The ability of DML systems to learn robust representations of the data enables the

models to be insensitive to variations in inputs such as rotation, scale, and viewpoint.

Hence, the models learn to detect discriminative features with low intra-class variance and

high inter-class differences, as shown in Figure 3.1a. When each class forms a cluster far

from the others, the networks have generalized and performed properly with test data. In

contrast, if the clusters fail to exhibit low intra-class variance or high inter-class differences

(Figures 3.1b - 3.1d), the absence of clear differences hampers the performance of DL models.

(a) Low intra-class

and high inter-class

variance.

(b) Low intra-class

and low inter-class

variance.

(c) High intra-class

and high inter-class

variance.

(d) High intra-class

and low inter-class

variance.

Figure 3.1: Illustration of the combinations of intra-class and inter-class variance. The

points represent low representations of two different classes.

Different contrastive loss functions can be used to accomplish the objective of DML.

Nonetheless, optimizing these models entails meticulous tuning of the hyperparameters and

may incur significant computational costs.

Before proceeding further and explaining the most common losses used in this field, it

is necessary to define some nomenclature. Let be fθ(x) : X −→ Z a function that maps

similar high-dimensional data belonging to X onto close points in the representation space

Z, also known as the embedding space. Function fθ is usually a DNN, and θ are their

weights. The distance or similarity in the embedding space is computed using a metric

function D(x, y) : Z × Z −→ R. In most cases, the Euclidean distance or cosine similarity

is used. For ease of notation, Dfθ(x, y) is denoted as a shortcut for D (fθ(x), fθ(y)) where

x, y ∈ X.
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3.1.1 Contrastive Loss

Chopra et al. (2005) and Hadsell et al. (2006) were the first publications in the field of

computer vision that used the contrastive loss function. The aim of this loss is to allow the

network to learn how to map alike pairs of data to similar representations while ensuring

that dissimilar pairs of data generate embeddings far apart from each other. In particular,

the model achieved it by maximizing and minimizing the distance between pairs of samples.

Let be xi and xj a pair of samples from X. They are called a positive pair when

they belong to the same category. In this case, the aim of contrastive loss is to reduce

the distance between their representation, that is minimizeθDfθ(xi, xj). Opposite, when

xi and xj belong to different classes, they are known as a negative pair. Now, the goal

of the function is to increase the distance between them, known as dissimilarity, that is

minimizeθ [m−Dfθ(xi, xj)]+, where [·]+ = max(0, ·) is the hinge function, and m > 0 is

the hyperparameter margin, which defines a radius around fθ(x).

During the learning process, given a set of pairs of points, the contrastive loss is cal-

culated as the sum of the distance between positive pairs and the dissimilarity of negative

pairs. Besides, yi,j is used in the loss to specify whether the pair is positive (yi,j = 0) or

negative (yi,j = 1). Therefore, the loss is defined as follows:

LCL =
∑
∀i,j

(1 − yi,j) ·Dfθ(xi, xj) + yi,j · [m−Dfθ(xi, xj)]+ (3.1)

Figure 3.2: Schematic implementation of the contrastive loss using a Siamese network. The

process is divided into pair sampling, data projection, and Contrastive Loss.

Training a DL model with contrastive loss involves preparing positive and negative pairs

and defining a Siamese network architecture. These networks are a type of ANN structure

that consists of two identical subnetworks that share the same weights. Therefore, they

map each pair into the embedding space and obtain the two representations simultaneously.

Then, with the obtained embeddings, the contrastive loss is computed. The scheme of this

process is illustrated in Figure 3.2.
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The implementation of this approach has some associated challenges. The main ones are

the selection of the optimal margin, m, and mining the appropriate pairs of images, which

are crucial to ensure that the learning process generates meaningful embeddings. Regardless

of the method used to sample the pairs, a separate procedure from the actual training is

required to calculate the distance between pairs of samples and select the most relevant.

Thereby, this results in an additional computational effort that slows down the optimization

process. Moreover, when large datasets are used for training, the cost of mining the right

pairs quickly becomes overwhelming.

3.1.2 Triplet Loss

The Triplet Loss (TL) was first employed by Weinberger and Saul (2009) with the explicit

goal of performing a k-Nearest-Neighbors (KNN) classification. Despite being an evolution

of the contrastive loss, the TL takes a slightly different approach to learn rich and robust

embeddings. Instead of comparing pairs of samples, the TL compares three samples simul-

taneously. However, it was not until 2015 that Schroff et al. (2015) proposed the current

version of this loss. It uses three samples, xa, xp, and xn, denoted as anchor, positive and

negative. Both the anchor and positive samples belong to the same class, whereas the neg-

ative is from another category than the previous two. The aim of this loss is to ensure that

the embeddings of xa and xp are closer than the embeddings of xa and xn, by at least a

margin m. This constraint is formalized in Equation 3.2. In particular, Schroff et al. (2015)

used Euclidean distance as the metric function D(x, y).

Dfθ(xa, xp) + m < Dfθ(xa, xn), ∀(xa, xp, xn) ∈ τ (3.2)

However, to use the previous constraint as a loss, Equation 3.2 has to be reformulated

as Equation 3.3. This second expression minimizes the distance between the embeddings

of xa and xp while increasing the distance between the embeddings of xa and xn. The use

of the margin m in this approach ensures that although all the points belong to the same

class and form a single cluster, they do not collapse into a single embedding.

LTL =
∑
a,p,n

ya=yp ̸=yn

[Dfθ(xa, xp) −Dfθ(xa, xn) + m]+ (3.3)

Similarly to the contrastive loss, to train a neural network using the TL, it is necessary

to employ Siamese networks and provide them with triplets of samples, as shown in the

pipeline of Figure 3.3. Usually, the model, fθ, quickly learns to correctly map most basic

triplets, making a large portion of them ineffective. The challenge of using this loss function

is that, as the dataset increases in size, the potential number of triplets grows cubically,

making the training process quite lengthy. To overcome this, it is important to focus on

identifying and using triplets that do not fulfill the constraint of Equation 3.2 during the
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training phase. In other words, the distance between the anchor and the positive samples

should be larger than the distance between the anchor and the negative samples in the

embedding space.

Figure 3.3: Pipeline of a Siamese network with the TL. The process is divided into triplet

sampling, data projection, and the TL.

Schroff et al. (2015), Hoffer and Ailon (2015) and Hermans et al. (2017), among others,

defend that mining hard triplets, i.e., Dfθ(xa, xn) < Dfθ(xa, xp), is crucial for an effective

learning process. Intuitively, being repeatedly informed that categories with distinct visual

characteristics represent separate classes does not facilitate learning. However, observing

similar-looking but dissimilar categories, (i.e., hard negatives) or images of the same class

in varying poses (i.e., hard positives) can significantly aid in understanding the concept

of identical categories. To find hard positives and negatives and build hard triplets, the

following definitions can be used. Given an anchor image xa, xp is a hard positive if

argmaxxp
Dfθ(xa, xp). Similarly, xn is a hard negative if argminxn

Dfθ(xa, xn). Nevertheless,

if only the most difficult triplets are presented, this results in a disproportionate selection

of outliers in the data, causing the model to be unable to learn (Hermans et al., 2017). To

avoid ineffective and hard triplets, it is common to mine moderate negatives (Schroff et al.,

2015) and moderate positives (Shi et al., 2016), which are a middle point between easy and

difficult samples.

Using the Siamese network-based approach, for each set of T triplets, T terms contribute

to the loss. However, the batch contains 3T samples. Therefore, considering that 3T samples

can generate up to 6T 2 − 4T combinations of valid triplets, only computing T is inefficient.

To take advantage of all the combinations, mining strategies such as Batch All (Ding et al.,

2015) and Batch Hard (Hermans et al., 2017), among others, can be used. These can

improve the efficiency of the training process, by reducing the amount of memory and the

computational cost required to update the model parameters. To apply these approaches,

Hermans et al. (2017) propose to employ batches formed by P ·K samples, where P is the

number of random classes sampled and K is the number of samples from each class. The

first strategy, Batch All, uses all possible combinations of triplets, PK(K − 1)(PK −K).

It is formalized in Equation 3.4, where xij corresponds to the j-th sample of the i-th class

in the batch.
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LBA =

P∑
i=1

K∑
a=1

K∑
p=1
p̸=a

P∑
j=1
j ̸=i

K∑
n=1

[
Dfθ(xia, x

i
p) −Dfθ(xia, x

j
n) + m

]
+

(3.4)

The Batch All strategy (Ding et al., 2015) requires the modification of the pipeline

implementation, as it cannot be carried out with a Siamese network. To use it, only one

network computes the embedding of the bs samples of the batch. Then, a pairwise distance

is applied to obtain the similarity between any pair of embeddings, resulting in a tensor of

size bs × bs. To compute a cube tensor containing all the loss terms associated with each

triplet, the second and third dimensions of the similarity matrix are expanded into two new

tensors with size bs× bs× 1 and bs× 1× bs. Then, both are subtracted to obtain the cube

with shape bs× bs× bs. At that point, the margin hyperparameter, m, is added.

The resulting tensor contains the loss term for every possible combination of three

images. However, certain triplets are invalid as they do not satisfy the previously mentioned

constraint, which requires two images from the same class and a third from a different one.

Therefore, to only consider the loss term of the valid triplets, a binary tensor mask is created

using the class label information from the samples. This is done in a similar manner to

the procedure employed to obtain the cube tensor. The pipeline is illustrated in detail in

Figure 3.4.

Figure 3.4: Scheme of the implementation of the Batch All strategy. The process is divided

into the computation of all the triplets (top) and the creation of the binary mask to get the

valid triplets (bottom).

For the Batch Hard strategy (Hermans et al., 2017), given an anchor sample xa in the

batch, the hardest positive and hardest negative samples in the batch are used to compute

the loss. This strategy is formalized in Equation 3.5. Hermans et al. (2017) explained that
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the obtained triplets are moderate as they are the hardest within a small subset of the data.

In addition, they consider that this procedure is the best approach to optimize a network

with the TL.

LBH =

P∑
i=1

K∑
a=1

m + max
p=1···k

Dfθ(xia, x
i
p) − min

j=1···P
n=1···K

j ̸=i

Dfθ(xia, x
j
n)


+

(3.5)

Despite the previous online strategies being the most common ones, variants like Batch

“Semi-hard”, Batch “Hard and Semi-hard” or Batch “Easy, Hard, and Semi-hard” can

be found in the literature. The Batch “Semi-hard” method mines semi-hard triplets, i.e.,

triplets that fulfill Dfθ(xa, xp) < Dfθ(xa, xn) < Dfθ(xa, xp) + m. These triplets are closer

to the decision boundary than the easy ones but further than the hard ones (Schroff et al.,

2015). Batch “Hard and Semi-hard” strategy selects both the hardest and semi-hardest

triplets within each batch (Khaertdinov et al., 2021). Finally, Batch “Easy, Hard, and

Semi-hard” approach collects easy, hard, and semi-hard triplets within each batch. It is

argued that by balancing them, the model learns from all types of triplets, not only the

hardest ones (Xuan et al., 2020).

Overall, TL has become a widely used loss function for training DL models. Despite its

effectiveness, this loss does have a few drawbacks. The main limitations are the need for a

large number of triplets and the difficulty in finding hard negatives. Multiple adaptations

have been proposed to mitigate these issues, including Quadruplet loss (Chen et al., 2017b),

Angular loss (Wang et al., 2017), and N-pair loss (Sohn, 2016). They extend the original TL

by considering more samples, changing the comparison metric, or incorporating a different

optimization objective. In several scenarios, these losses have improved the training process

and the quality of the learned embeddings, thereby achieving higher performance.

It is important to note that each specific task and dataset requires the network to learn

different features. Therefore, it is crucial to conduct experiments with different mining

strategies and hyperparameters to determine the appropriate method and achieve the best

performance.
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3.2 Self-Supervised Learning

Self-Supervised Learning (SSL) is a ML technique, where the system learns from data

without explicit supervision. In other words, the model is trained to perform a task without

the need for ground-truth labels. Despite the concept first appearing in the early 2000s, it

was not until the 2010s that it gained significant attention and made remarkable advances as

it extracts information from large amounts of unlabeled data. Since then, it has been applied

to several tasks, including representation learning, generative models, and reinforcement

learning. The first aims to extract a compact, meaningful, and useful embedding of the

input data (Ericsson et al., 2022). Alternatively, generative models create new samples that

are similar to the training data (Liu et al., 2023). Finally, in reinforcement learning, the

goal is to generate a policy that maximizes the reward signal (Pong et al., 2019).

Focusing solely on representation learning, the assignment performed is commonly known

as a pretext task. It is specifically designed for the purpose of pretraining a model to be

later fine-tuned in a downstream task. The learning pipeline is displayed in Figure 3.5. SSL

methods are employed to lead to better performance and faster convergence compared with

other approaches that are trained from scratch. Common pretext tasks in computer vision

include image colorization (Iizuka et al., 2016), image rotation prediction (Gidaris et al.,

2018), and contrastive approaches (Chen et al., 2020a). Published works concluded that

SSL has the potential to reduce the amount of annotated data that is required to train DL

systems, making it a valuable tool when the size of the dataset is small.

Figure 3.5: Scheme of the knowledge transfer approach. In stage 1 (top) the training is

done by using a self-supervised pretext task and unlabeled data. Stage 2 (bottom) employs

the knowledge learned to train the downstream task.

Rumelhart et al. (1986), Bengio (2009) and Kingma and Welling (2014) are consid-

ered the earliest works in SSL as they utilized a bottleneck architecture. Particularly,

Autoencoders (AEs) (Ackley et al., 1985) are a type of ANNs that reconstructs the data
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to capture the relevant features and learn compact representations. During training, AEs

compresses the input into a lower-dimensional representation using a neural network as an

encoder. Subsequently, another network, called a decoder, reconstructs it from this embed-

ding. However, AEs do not obtain rich features to be applied as a pretrained model. To

overcome this limitation, Bengio (2009) proposed Variational Autoencoders (VAEs), which

is a variant of AEs that encodes the low-dimensional representation as a probability distri-

bution. This modification allows the network to capture more information than with the

previous approach, but sometimes it is still insufficient to perform downstream tasks.

An important breakthrough in DL and SSL was the publication of Generative Adver-

sarial Networks (GANs), proposed by Goodfellow et al. (2014a). These systems have two

networks that are trained in an adversarial manner. The first model, called generative,

attempts to produce new samples that are indistinguishable from the real data. Contrar-

ily, the second network, known as discriminative, tries to discern between the original and

generated samples. The feature extraction learned by the discriminative network can be

employed as pretraining for other classification tasks.

The next important milestone in SSL methods was the Colorization paper (Iizuka et al.,

2016). In this study, the authors train a CNN to predict the color of grayscale images using

them as the input and the ground-truth color image as the target. The network reaches

its goal, producing results that are visually appealing and semantically meaningful. This

procedure has been successfully implemented as a pretext task in different computer vision

problems.

In 2019, Feng et al. (2019) proposed a new type of DNN architecture that incorporates

rotation invariance into the feature learning pipeline. On one hand, given four rotations

of an image, the network aims to predict the rotations applied to the data. On the other

hand, the method penalizes the distance between embeddings obtained to ensure that they

contain the same information. This methodology outperformed state-of-the-art results on

standard self-supervised feature learning benchmarks.

A year later, Chen et al. (2020a) designed the Simple Framework for Contrastive Learn-

ing of Visual Representations (SimCLR). The authors proposed a three-step contrastive

learning approach in which the network is trained to maximize the agreement between dif-

ferent views of the same image, while minimizing the agreement between the representations

of different images. To that purpose, given an image x, two random data augmentations,

τi and τj , are applied over x, obtaining two related views of the same image, denoted as

x̃i and x̃j . The applied data augmentation techniques are a random crop, followed by re-

sizing to the original dimensions of the image, a random color distortion, and a random

Gaussian blur. Subsequently, a neural network f projects both views of the image into a

low-dimensional space, obtaining the embeddings zi = f(x̃i) and zj = f(x̃j). Finally, a

contrastive loss function is employed to reduce the distance between the embeddings, that

is, to maximize the agreement. The pipeline is illustrated in Figure 3.6.
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Figure 3.6: Scheme of SimCLR divided into three steps: stochastic data augmentation,

image projection, and maximization of the agreement.

The contrastive loss function used by Chen et al. (2020a) is called Normalized Temperature-

Scaled Cross-Entropy Loss (NT-Xent) and it is expressed in Equation 3.6, where 1[k ̸=i] ∈
{0, 1} is the indicator function, sim(u, v) = uT · v/∥u∥∥v∥ is the cosine similarity and T is

the temperature parameter.

Li,j = − log
exp(sim(zi, zj)/T )∑2N

k=1 1[k ̸=i] exp(sim(zi, zk)/T )
(3.6)

In the training process, the authors propose the use of N randomly selected samples in

each batch. Thus, as two random data augmentations are applied, each batch contains

2N elements. Moreover, this method does not require explicitly sampling negative images

because, for each view, the other 2(N − 1) are used to construct negative pairs.

The results shown by the authors outperformed previous state-of-the-art SSL methods

on different benchmark datasets and computer vision tasks. Consequently, SimCLR has

been widely adopted by the research community as a pretext task. Modifications and

extensions of the framework have been presented to improve the performance of the system.

Among them, large architectures, strong data augmentations, and multi-crop evaluations

have been proposed with successful results by researchers. For instance, He et al. (2020)

introduced the Momentum Contrast (MoCo) framework. The key innovation was a queue

of negative examples with a dynamic momentum update to train the network.
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3.3 Out-of-Distribution

DL methods are built assuming that training and testing data are independent and identi-

cally distributed (i.i.d) (Liao et al., 2020). However, in real-world scenarios, this condition

can hardly be satisfied, as both sets may have different ranges of feature values, and even

distinct events can be found in them. When this happens, the performance of the system

decreases, along with the reliability and safety of the model.

In 2017, the concept of Out-of-Distribution (OOD) samples emerged, and since then, it

has gained significant research attention, resulting in a large number of methods to handle

them (Yang et al., 2022). Mathematically, OOD is defined as follows. Given the joint of

feature and label spaces denoted as X × Y . In this space, two distributions are defined:

Ptr(X,Y ) which is drawn from the training distribution, and Pte(X,Y ) which arises from

the test distribution. When Ptr(X,Y ) ̸= Pte(X,Y ), implies that Pte(X,Y ) contains OOD

samples.

With the given definition of OOD, three different scenarios can be defined. In the first

case, the samples are categorized into the same classes but derive from different feature

spaces. This particular case is called covariate distribution shift (Ben-David et al., 2010;

Li et al., 2017; Wang and Deng, 2018). The second one is when the domain is the same

but the categories are different, which is known as semantic distribution shift (Hendrycks

and Gimpel, 2016; Liang et al., 2017; Hsu et al., 2020). And finally, the last setting occurs

when the feature and the classes are distinct.

Figure 3.7: OOD classification according to the distribution shifts.
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Figure 3.7 shows a visual example of the previously explained cases using WCE images.

The first scenario is represented in the right column of the figure. Despite the images being

labeled as bubbles and no bubbles in both cases, they are extracted from distinct capsule

devices. The second case is illustrated in the first row of the figure. In it, the frames have

been captured through the same capsule device, PillCam Colon 2. However, the labels are

distinct. Specifically, in the second set of images, the images are labeled as a tumor, turbid,

and other pathologies. The last scenario corresponds to comparing the differences in the

diagonal of the figure, where the capsule and the labels are different.

Among the three scenarios that have been presented, this thesis studies the two firsts.

The former is formalized as Ptr(Y |X) = Pte(Y |X) but Ptr(X) ̸= Pte(X), meaning that

the marginal distribution of X is different from training to test sets while the labels remain

unchanged. In the second case, the marginal distribution of X is the same, Ptr(X) = Pte(X),

but the marginal distribution of Y is not, Ptr(Y ) ̸= Pte(Y ). In the following pages, more

details about these two scenarios are introduced, along with their possible solutions.

3.3.1 Covariate Distribution Shift

The covariate distribution shift is addressed by aligning the feature spaces or modifying the

learning process to consider the differences between the distributions. The choice of the

approach depends on the specific problem, the available data, and the nature of the shift.

Next, different techniques and strategies are presented.

The basic approaches for mitigating the covariate distribution shift are collecting more

representative data and using preprocessing techniques. The first set of proposed methods

aims to increase the quantity of data in the training phase. Several strategies can be

applied, for instance, by sampling from different sources (Shrivastava et al., 2017), using

synthetic images (Shafahi et al., 2019) and employing data augmentation (Garcea et al.,

2023). Regarding the preprocessing techniques, common methods are batch normalization

(Ioffe and Szegedy, 2015) and feature scaling. All of these approaches make the training

data more diverse and reduce the impact of the distribution shift. However, these solutions

only work with small variations in the data.

Transfer learning methods (Noh et al., 2019) and domain adaptation techniques (Ganin

et al., 2016; Chen et al., 2018) are well-suited for mitigating the covariate distribution shift

when the variation in the data is large. The former is the process of using a pretrained model

to fine-tune and solve a new task that is related to the original one. A similar technique

is domain adaptation, which adjusts DL systems to work effectively on data from different

sources or domains. Both strategies allow the models to leverage knowledge from a domain

with abundant data (source domain) to improve their performance in a domain with limited

data (target domain). These approaches attempt to minimize the discrepancy between the

distributions by adjusting the model parameters, re-weighting the data, or applying other

techniques to generalize better to the test data. Moreover, domain adaptation can be
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included in the transfer learning field.

To determine the differences between transfer learning and domain adaptation is neces-

sary to define the concepts of domain and task. The domain refers to the feature space and

its marginal distribution, whereas the task refers to the label space and the loss function.

The goal of transfer learning is to transfer knowledge from one task Ta on a domain A to

another task Tb in domain B, even if the domain or the task changes during the process. For

domain adaptation, it is assumed that the domains and tasks remain constant. However,

the marginal distributions differ between the source and target domains.

Domain adaptation can be mathematically expressed as follows. Let define S, T ∈ X×Y ,

as the source and the target domain, respectively, with different distributions, Ps(X,Y ) and

Pt(X,Y ). Domain adaptation aims to transfer the knowledge learned from S to T to perform

a specific task on T , and this task is shared by S and T . In other words, given the source

and target domain, the aim is to find an aligned space where the samples from each class,

source independent, are together. This idea is illustrated in Figure 3.8.

Figure 3.8: Scheme of domain adaptation.

A wide range of methods are available to perform domain adaptation. These can be

classified based on their model type, label availability, modality difference, and adaptation

steps (Zhao et al., 2020; Farahani et al., 2021; Guan and Liu, 2022).

Model type refers to how the features of the data are obtained. They can be categorized

as shallow (Becker et al., 2015) or deep (Huang et al., 2017b). Shallow models involve

human-engineered features, whereas deep ones use DL models to extract them.

Depending on the label availability, methods can be classified as supervised (Huang

et al., 2017b), semi-supervised (Madani et al., 2018), or unsupervised (Ganin et al., 2016).

In supervised methods, the target domain data are available to train the model. Semi-

supervised systems involve a small amount of labeled and unlabeled data for training. By

contrast, unsupervised models rely only on unlabeled data.

Modality differences can be divided into single-modality (Becker et al., 2015) and cross-

modality (Dou et al., 2019). In the first case, data are recorded with the same type of device

or source, whereas in cross-modality, data are obtained from different types of devices.

Finally, the adaptation step refers to the number of processes that the system must
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perform to mitigate the distribution shift. One-step approaches are typically employed for

domain adaptation (Huang et al., 2017b). However, when there is significant heterogene-

ity between data domains, multi-step approaches may be necessary to achieve successful

alignment of the spaces (Gu et al., 2020).

3.3.2 Semantic Distribution Shift

The semantic distribution shift is addressed by building OOD detectors. These systems

identify unseen events in the training set and report them to the user to avoid any conse-

quences, particularly in real-world applications. To accomplish this, OOD detectors utilize

different approaches to calculate scores or values that are used to determine whether a given

image belongs to the training distribution or not. Mathematically, it can be expressed as

follows. Consider a sample x belonging to the joint distribution Pte(X,Y ). Let F (·) repre-

sent a function that computes a score or value associated with x and let δ denote a threshold

that separates the in-distribution and OOD samples. The OOD detector g(·) is formalized

as:

g(x; δ) =

1 if F (x) ≤ δ

0 if F (x) > δ
(3.7)

Although there are several approaches to constructing the function F (·), this section

specifically focuses on three types: data-only, classifier-only, and auxiliary models. However,

it is important to acknowledge that OOD methods can be categorized in multiple ways, as

discussed in Yang et al. (2022). Each one of them possesses its own set of strengths and

weaknesses, and the choice depends on the specific task and the available datasets.

Data-only methods

Data-only approaches are based on the idea that OOD samples differ considerably from the

training data. Hence, to detect them, they compare the similarity between the training and

test data. To reach this goal, these methods focus on utilizing the characteristics of the

data itself without requiring additional labeling or auxiliary models. However, it usually

has poor generalization and needs a large amount of storage.

The simplest and most straightforward approach uses the KNN algorithm (Sun et al.,

2022). To identify the OOD samples, the neighbor distance is computed between both

distributions. Then, the threshold is set to determine which inputs are OOD or not.
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Classifier-only methods

Classifier-only approaches measure the confidence of the model using the classification out-

puts. These values, called softmax scores, are obtained through the softmax function,

which is the last activation of the output layer, where logits are converted into probabili-

ties. Classifier-only methods operate on the principle that well-trained models assign higher

softmax scores to in-distribution data than to OOD samples. These approaches do not re-

quire any modification in the training procedure. Moreover, contrary to data-only methods,

classifier-only models require less stored data.

One of the first classifier-only methods was Maximum over Softmax Probabilities (MSP)

(Hendrycks and Gimpel, 2016). It utilizes the softmax score from the classifier trained on

Ptr(Y |X) to detect OOD samples. Despite the low efficacy of the method due to its sim-

plicity, it acted as a stepping stone for subsequent developments. One year later, Liang

et al. (2017) proposed Out-of-Distribution Detector for Neural Networks (ODIN), an im-

provement of MSP. This method is a confidence-based approach based on two components:

temperature scaling (Geoffrey Hinton and Dean, 2015) and input preprocessing (Goodfel-

low et al., 2014b). Using them, the authors aim to achieve highly peaked softmax outputs

for in-distribution samples and flat ones for OOD samples. Further details of these two

components are given next.

Generally, the softmax activation function produces very sharp probability distributions,

which implies that the model is overconfident in its predictions, even when the input is

slightly different from those from the training. To reduce the confidence in the model’s

outcomes and make it more sensitive to small changes in the input, Geoffrey Hinton and

Dean (2015) proposed a technique called temperature scaling. When it is applied to the

logits before the softmax function, the entropy or degree of uncertainty of the probability

distribution is increased. To formalize this method, let be x the input and fθ = (f1, · · · , fn)

a neural network trained to classify n classes. The output predicted by the neural network

is ŷ(x) = argmaxiSi(x;T ), where Si(x;T ) is the calibrated softmax score and is defined in

Equation 3.8, being T ∈ R+ the temperature scaling parameter.

Si(x;T ) =
exp(fi(x)/T )∑N
j=1 exp(fi(x)/T )

(3.8)

It is noteworthy that during the training phase, T is set to 1. Finally, the softmax score is

the maximum softmax probability, that is, Sŷ(x;T ) = maxi Si(x;T ).

Alternatively, the input preprocessing in ODIN is inspired by Goodfellow et al. (2014b).

They discussed that preprocessing an image by introducing small perturbations decreases

the softmax score of any given input. Moreover, it exposes potential weaknesses in the

network and makes it easy to detect OOD samples. Essentially, to create these perturba-

tions, it is enough to add small amounts of noise or distortions in all the data. In the case

of ODIN, the input preprocessing is formulated in an adversarial manner as displayed in
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Equation 3.9, where ϵ is the perturbation magnitude parameter.

x̃ = x− ϵ · sign(−∇x logSŷ(x;T )) (3.9)

To determine if an input is OOD sample, ODIN combines the two previously detailed

components, the scaling temperature and the input preprocessing. First, preprocessing is

applied over x to obtain x̃. Subsequently, the calibrated softmax score S(x̃;T ) is computed

using fθ. Finally, the obtained score is compared against the threshold δ to determine if

the evaluated image is an OOD sample. Mathematically, the function that formalizes the

detection of OOD samples is:

g(x; δ, T, ϵ) =

1 if maxiSi(x̃;T ) ≤ δ

0 if maxiSi(x̃;T ) > δ
(3.10)

As reported by Liang et al. (2017), the hyperparameters T , ϵ, and δ have to be selected to

correctly classify the 95% of the in-distribution images.

Finally, another classifier-only method is Hsu et al. (2020). It is based on ODIN but

without requiring any OOD data for tuning. For it, the authors propose two strategies

to improve the detection performance. The first one involves decomposing the confidence

scoring process, while the second strategy modifies the hyperparameter ϵ of the input prepro-

cessing method. These modifications allowed the model to achieve state-of-the-art results,

outperforming ODIN.

Auxiliary models

Auxiliary approaches attempt to learn what a training distribution sample looks like. Par-

ticularly, to identify OOD samples, they evaluate the performance of the model on auxiliary

tasks. The intuition is that if the model performs poorly on them, then it is likely that the

input is OOD.

These methods can be implemented using deep-generative models such as AEs (Ackley

et al., 1985) and VAEs (Bengio, 2009; Kingma and Welling, 2014). Intuitively, these models

are optimized to reconstruct the training data. However, when OOD data are reconstructed,

their quality is expected to be poor and with a higher error, which allows defining a threshold

to detect them.
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3.4 Key Takeaways

Although DL might be a powerful tool for multiple applications, it also has a significant

number of challenges, including imbalanced datasets, lack of annotated data, and the exis-

tence of OOD samples. The previous sections of this chapter have detailed the advanced

technologies that will be used in this thesis to overcome WCE diagnosis and DL challenges.

Next, the key takeaways are summarized below.

The TL is a DML technique for learning better representations, particularly in the

context of image recognition tasks. This loss facilitates the learning of low-dimensional rep-

resentations of images, ensuring that related images are embedded close to each other, while

dissimilar images are projected far apart. This can encourage the model to discriminate

better between classes and capture more detailed information in the learned representations.

In addition, it can mitigate the effects of imbalance and small datasets. However, generating

all the possible triplets to train the network is not completely effective. Therefore, batch

sampling strategies that involve mining triplets of anchor, positive, and negative samples

within a batch might be one plausible strategy to overcome the TL limitations.

SSL is an emerging paradigm that has shown great promise in leveraging unlabeled

data. The basic idea is to define pretext tasks that encourage the model to learn useful

representations without explicit supervision. SSL can yield highly generalizable and trans-

ferable features that can be applied to a wide range of downstream tasks. The success

of these methods has been further enhanced by recent developments in contrastive learn-

ing approaches. As a result, its application to obtain pretrained models might improve the

performance in downstream tasks, even with the presence of imbalanced and small datasets.

Domain adaptation is a powerful technique for addressing the covariate distribution

shift. The main idea is to leverage the similarities between the source and target domains

to effectively transfer knowledge from the first to the second one. This can improve the

model’s ability to generalize to new data.

One of the major challenges in DL is the impact of OOD data, which can lead to

catastrophic errors in model predictions, especially in the healthcare field. Therefore, OOD

detection is a critical technique to prevent further complications. Particularly, ODIN has

shown hopeful results in addressing this issue. The key idea is to enhance the model’s

uncertainty estimation by using temperature scaling and input preprocessing. By doing

so, ODIN can distinguish between in-distribution and OOD samples, leading to improved

model robustness and reliability.

As has been previously shown, leveraging these advanced techniques enhances the ro-

bustness, reliability, and generalizability of the models. It is important to note that the

choice of technique depends on the specific problem and application at hand. However, by

incorporating these techniques into our DL pipelines, the performance and effectiveness of

diagnostics can be improved.





Chapter 4

Paper I

WCE polyp detection with triplet based
embeddings
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Motivation and Context

Colorectal polyps are a common and potentially dangerous condition found in the GI tract.

To prevent further health complications such as CRC, it is crucial to detect them in the

early stages. A screening technique used to identify polyps is WCE. However, identifying

them is challenging, even for experienced gastroenterologists. Polyps appear in only a

few frames in up to 8 hours of videos and can vary in position, morphology, and size.

Therefore, analyzing frame-by-frame a WCE video is a time-consuming and error-prone

task (Vasilakakis et al., 2019; Yang, 2020). To address it, DL-based CAD systems are

well-situated to assist physicians (El Ansari and Charfi, 2017; Rahim et al., 2020).

In the following study, instead of using a traditional classification approach, a novel

CAD system is proposed and evaluated as an information retrieval problem. The model

aims to rank the images of a WCE video and display the most relevant at the beginning of

the list of results shown to the physician. This strategy facilitates the screening of a smaller

set of images and maximizes the capability of detecting polyps.

The development of CAD systems for polyp detection is difficult. First, the datasets used

to train the models have an imbalanced structure Akay and Hess (2019). It means that the

number of positive images (polyps) is significantly smaller compared to negative samples.

The second problem is the scarcity of data, as obtaining a large number of annotated WCE

images is a lengthy and costly process (Vats et al., 2022). To overcome the challenges of
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small and imbalanced datasets, the proposed CAD system employs the TL to optimize the

model. This loss function pushes the embedding of images from the same class together and

maximizes the distance between the images from different classes, resulting in improving

the feature extraction process and obtaining robust representations.

In the current literature, the evaluation metrics used for polyp detection in WCE images

do not always reflect the actual performance of CAD systems (Johnson and Khoshgoftaar,

2019). In this paper, a set of recommendations and guidelines are proposed to show their real

performance, taking into consideration the imbalanced dataset structure and the scarcity

of data.

The experiments conducted in this study demonstrate that the proposed CAD system

outperforms both the baseline and state-of-the-art methods for polyp detection in WCE

images. The superior performance of the model is attributed to the use of the TL. Overall,

this study highlights the importance of developing CAD systems for polyp detection and

presents a new approach to address the challenges associated with this task.

Furthermore, for the effective implementation of this CAD system in clinical practice,

it is important to increase the trust and acceptance of physicians in it. For this reason, this

paper includes a section with qualitative results, where the method proposed by Zhou et al.

(2016) is used to explain the reason behind the model’s predictions. It enables clinicians to

understand in which part of the image the polyp is located, thus increasing their confidence

in the system.

Finally, it is important to note that the method presented in this paper has been used

in the clinical trial Lei et al. (2023b), to evaluate its effectiveness in detecting polyps as

an AI-reader pair. This trial aimed to gather empirical evidence to support the use of this

system in medical practice.
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4.1 Abstract

Wireless capsule endoscopy is a medical procedure used to visualize the entire gastrointesti-

nal tract and to diagnose intestinal conditions, such as polyps or bleeding. Current analyses

are performed by manually inspecting nearly each one of the frames of the video, a tedious

and error-prone task. Automatic image analysis methods can be used to reduce the time

needed for physicians to evaluate a capsule endoscopy video. However, these methods are

still in the research phase.

In this paper, we focus on computer-aided polyp detection in capsule endoscopy images.

This is a challenging problem because of the diversity of polyp appearance, the imbalanced

dataset structure, and the scarcity of data. We have developed a new polyp computer-aided

decision system that combines a deep convolutional neural network and metric learning. The

key point of the method is the use of the Triplet Loss function with the aim of improving

feature extraction from the images when having a small dataset. The Triplet Loss function

allows training robust detectors by forcing images from the same category to be represented

by similar embedding vectors while ensuring that images from different categories are rep-

resented by dissimilar vectors. Empirical results show a meaningful increase in AUC values

compared to state-of-the-art methods.

A good performance is not the only requirement when considering the adoption of this

technology to clinical practice. Trust and explainability of decisions are as important as

performance. With this purpose, we also provide a method to generate visual explanations

of the outcome of our polyp detector. These explanations can be used to build a physician’s

trust in the system and also to convey information about the inner working of the method

to the designer for debugging purposes.

The paper has been re-typeset to match the thesis style.
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Polyp detection.

4.2 Introduction

According to the Global Health Organization, colorectal cancer is the third most frequent

type of cancer with 1.8 million people diagnosed in 2018 (Siegel et al., 2019). The early

detection of cancer, when it is still small and has not spread, is essential for the treatment

and the survival of the patient. The detection and removal of intestinal polyps, an abnormal

growth of the tissue that can evolve into cancer, is especially important. According to the

American Cancer Society, screening tests of the Gastrointestinal (GI) tract have significantly

increased the survival rate of colorectal cancer patients∗.

The standard clinical procedure for screening the rectum and the colon is a colonoscopy.

Despite the fact that this procedure is widely accepted, it has some important drawbacks:

it requires qualified personnel, expensive medical facilities and may result in patient dis-

comfort.

Wireless Capsule Endoscopy (WCE), originally developed by Iddan et al. (2000), is an

alternative technique designed to visualize the inside of the digestive tract with minimal

patient discomfort. Patients ingest a vitamin-size capsule that contains a camera and an

array of LEDs powered by a battery, to record and send the captured images to an external

device for a posterior analysis.

WCE has become a solution to the rapid increase in demand for optical endoscopies

in recent years (Li and Leung, 2018), as it can deliver GI investigations without the need

for expensive clinical resources and much improved patient comfort. It has been reported

report that this device can accurately evaluate pathologies such as gastrointestinal bleeding

(Usman et al., 2016; Jia and Meng, 2016; Zwinger et al., 2019), Crohn’s disease (Goran

et al., 2018), ulcerative colitis (Ozawa et al., 2019; Maeda et al., 2019), small-bowel tumors,

polyposis syndrome (Byrne and Donnellan, 2019; Yang, 2020) and is also applicable in polyp

detection (Kobaek-Larsen et al., 2018). Furthermore, recent studies (McGoran et al., 2019;

Takada et al., 2020) foresee WCE as a tool to not only investigate the symptoms of GI

disorders but also, in the future, to perform therapeutic interventions. The capsule could

also democratize the screening process since it is better tolerated than standard endoscopy

(McGoran et al., 2019), has minimal invasiveness with user-friendliness (Vasilakakis et al.,

2019), does not require sedation and has fewer potential complications.

Although WCE presents many advantages over other screening techniques, it presents an

important drawback in clinical practice: resulting videos can contain hundreds of thousands

of images per patient that must be screened by clinical specialists. This screening is complex,

tedious and time-consuming, often lasting 2 to 3 hours per video (Vasilakakis et al., 2019;

∗https://www.cancer.org/cancer/colon-rectal-cancer/detection-diagnosis-staging/survival-rates.html
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Yang, 2020). Moreover, and also because of the fatigue caused by the visual inspection

of these videos, it is common to review procedures more than once to ensure that no

pathological images are missed (Byrne and Donnellan, 2019). All these inconveniences

hinder the adoption of WCE, exposing the need of Computer-Aided Detection and Diagnosis

(CAD) support systems (El Ansari and Charfi, 2017; Rahim et al., 2020) with artificial

intelligence (McGoran et al., 2019; Hwang et al., 2018; Yang, 2020).

In the literature, we can find several AI-based CAD systems specially designed to detect

suspicious or abnormal WCE images. Most of these methods are aimed at reducing visual-

ization and diagnosis time by detecting specific GI events with high-performance machine

learning systems (Takada et al., 2020).

With regard to the specific goal of polyp detection, most of the published systems have

been reported and validated as automatic detection methods. However, because of legal

and practical reasons, these systems cannot be used for automatic diagnosis and can only

be deployed as decision support systems that filter the whole set of frames to allocate

physician’s attention to those images that show potential polyp structures. In most cases,

this is a needle-in-haystack problem because of the occasional appearance of images with

these pathologies. Figure 4.1 shows two sequences from different procedures where a polyp

is observed. It is important to point out that, in both procedures, those are the only images

of the whole procedure where a polyp is visible. Figure 4.2 shows some random images from

the same procedures.

Figure 4.1: Illustration of two polyp sequences extracted from different patients. In the

first sequence can be seen how the polyp appears in all the frames approximately in the

same location. However, in the second sequence, the polyp location changes while the WCE

moves through the GI tract.

Polyp detection has been an active research topic, as can be seen in Table 4.2. However,

to our knowledge, there is no agreement about a common evaluation methodology to allow

the community to compare different CAD methods. Most of these methods have been

developed and evaluated with private datasets and using different evaluation methodologies,

which are suited for image detection systems but not fully informative for CAD systems in

medical applications.

In this paper, we propose and validate a CAD system for the detection of polyps in WCE
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Figure 4.2: Illustration of 16 random samples obtained from the same procedures that

represent the huge diversity of the dataset. For example, some of the frames present turbid,

GI walls or wrinkles among others.

videos. The proposed system is based on deep Convolutional Neural Network (CNN). It

is well known that CNNs have become state-of-art in many visual recognition problems,

but their application in the medical field has been rather limited, with some exceptions

like dermatology and breast x-rays. The main reason for this is that medical databases are

comparably poor and small due to the high costs involved in data acquisition, their complex

labeling, and because the use of these data often involves confidentiality issues (Akay and

Hess, 2019).

Small size and imbalanced data are two of the main obstacles to develop reliable Deep

Learning (DL) classifiers, because if not properly addressed, they may lead to training over-

fitting and poor generalization. Several tricks and techniques, such as dropout (Srivastava

et al., 2014), sampling strategies (Katharopoulos and Fleuret, 2018), image augmentation

(Miko lajczyk and Grochowski, 2018) and curriculum learning (Taghanaki et al., 2019), try

to alleviate this problem, but it is still an open and important challenge in the medical field

as described in Akay and Hess (2019). To this aim, and to overcome the small amount

of available data for training the CNN, in this paper we propose an optimization strategy

based on deep metric learning that uses the Triplet Loss function (Schroff et al., 2015). The

obtained results show that this learning strategy outperforms the classical learning strategy

using the cross-entropy loss function in our problem.

Our contributions are as follows:

• We propose an evaluation methodology that involves quantitative metrics as well as

the reporting of qualitative database information in order to allow fair comparisons

between different systems.

• We show how to build an end-to-end CNN polyp detection system, based on the

Triplet Loss function, that overcomes the problem of imbalanced datasets.

• Finally, we propose the use of classifier interpretation techniques as a mechanism to

build trust in the system.

The paper is organized as follows: first, we give an overview of the related work in the
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field. This is followed by a description of our methodology, presenting the system archi-

tecture, parameter optimization and evaluation methodology, followed by experimentally

setup and results. Finally, we conclude the paper and give directions for future work.

4.3 Related Work

Since the presentation of WCE, several computational systems have been proposed to reduce

its inherent drawbacks in clinical settings (Liedlgruber and Uhl, 2011; Belle et al., 2013).

Generally, these systems are designed either for efficient video visualization (Mackiewicz

et al., 2008; Chu et al., 2010; Iakovidis et al., 2013; Drozdzal et al., 2013) or to automatically

detect different intestinal abnormalities such as bleeding (Jia and Meng, 2016; Usman et al.,

2016; Li et al., 2017), polyp (Yuan et al., 2018; Zhang et al., 2019), tumor (M Cobrin et al.,

2006), ulcer (Ciaccio et al., 2013), motility disorders (Malagelada et al., 2015; Segui et al.,

2014) and other general pathologies (Ciaccio et al., 2010; Kumar et al., 2012; Malagelada

et al., 2012; Chen et al., 2013; Zhao et al., 2015). DL nowadays represents the state-of-the-

art to most of these problems. Table 4.1 shows detailed information on those systems that

have been implemented using DL methods.

Table 4.1: Comparison of existing DL methods for the classification problem in WCE. In

the last column, Metrics, the legend used is: Accuracy (A), Sensitivity - Recall - TPR (B),

Specificity - TNR (C), ROC (D), AUC (E), Precision (F), Confusion Matrix (G), F1-Score

(H), Cohen’s Kappa score (I).

Reference (Year) Class Dataset Validation Architecture Metrics

Videos Images Method Patient Separation

Zou et al. (2015) Localization 25 75k 60k / 15k Unknown AlexNet A

Yu et al. (2015) Digestive organs 25 1M 60k / 15k Unknown CNN + ELM A

Segúı et al. (2016) Scene classification 50 120k 100k / 20k Unknown CNN A-G

Jia and Meng (2016) Bleeding - 10k 8.2k / 1.8k Unknown AlexNet B-F-H

Li et al. (2017) Haemorrhage - 11.9k 9.6k / 2.24k Unknown LeNet, AlexNet, F-B-C-H

GoogleNet, VGG-Net

Among possible WCE uses, polyp detection has been one of the problems that have

attracted a lot of attention from researchers. Table 4.2 presents a set of methods, published

in high-impact conferences and journals, aimed at detecting polyps by using any of the GI

examination modalities. As can be seen, prior to 2015, most of the published methods were

based on conventional computer vision and machine learning techniques, which are based

on the extraction of handcrafted visual features followed by a classifier. These systems have

used several image features such as color, texture, and shape to deal with the classification

task.

Since 2015, and following the success of DL methods in any computer vision applica-

tion, most of the proposed methods to detect WCE events are based on DL. One of the

first methods, known as SSAEIM, was proposed by Yuan and Meng (2017). This method,
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Table 4.2: Overview of our proposed and existing method for polyp detection. The nomen-

clature is the same as in Table 4.1.

Reference (Year) Modality Dataset Validation Feature Metrics

Videos Polyp Non-polyp Method Patient Separation

Li et al. (2009) WCE 2 150 150 3-fold Unknown Colour and shape A-B-C

Zhao and Meng (2011) WCE 2 - - 5-fold Unknown Colour A-D-E

Li and Q.-H. Meng (2012) WCE 10 600 600 10-fold Unknown Texture A

Yuan and Meng (2014) WCE 10 436 436 10 random splits Unknown Texture A-B-C

Bae and Yoon (2015) Endoscopy 141 1k 100k 5-fold Unknown Shape B-E-F

El Khatib et al. (2015) Colonoscopy 20 2k 3k - Unknown Texture B

Zhu et al. (2015) Endoscopy - 6.5k 50k 10-fold Unknown CNN A-B-C

Zhang et al. (2017) Colonoscopy - 826 1.1k Random test Unknown CNN A-C-F-H

Yuan et al. (2017b) Colonoscopy 6 37k 36k Random test Unknown CNN A-B-G

Yu et al. (2017) Colonoscopy 20 3.7k - 18 dif. videos Separate FCN G-F-B-H

Yuan and Meng (2017) WCE 35 - - 1k /3k Unknown SAE A-G

Yuan et al. (2018) WCE 62 1.5k 1.5k 150/150 Unknown CNN A-B-F-H

Zhang et al. (2019) Colonoscopy 215 404 - 50 rand. images Unknown CNN G-F-B-H

Yuan et al. (2020) WCE 80 1.2k 6k 120/600 Unknown CNN A-B-C-F-H

Guo and Yuan (2019) WCE - 585 2.2k 4-fold Unknown CNN A-I

This Paper WCE 120 2.1k 1.3M 5-fold Separate CNN

which uses a set of concatenated sparse autoencoders and a reconstruction loss to automat-

ically find powerful features for the classification task, shows an improvement over previous

methods based on handcrafted features.

Yuan et al. (2018) argued that object rotation and high intra-class variability are two

main limitations for WCE image analysis. In order to overcome this problem, the authors

proposed a new method named RIIS-DenseNet, based on a DenseNet, which uses two

loss functions as constraints. The rotation-invariant constraint was designed to achieve

rotation invariance by enforcing similarity between feature representations of the training

samples and their corresponding rotated ones. Meanwhile, the image similarity constraint

was proposed to allow a small intra-class variance in the feature space.

The same authors, Yuan et al. (2020), proposed DenseNet-UDCS one year later, aiming

to overcome three different problems: an imbalanced database, small inter-class variance,

and high intra-class variability. To achieve these goals, the network uses a weighted cross-

entropy loss together with a category sensitivity loss. Weighted cross-entropy is appropriate

to deal with the imbalanced dataset while category-sensitive loss aims to reduce the dis-

tances between feature representation of samples from the same category.

Guo and Yuan (2019) proposed Triple ANet, a CNN system which addresses the prob-

lems of high intra-class variability, small inter-class variance, and the existence of artifacts

in the images. The system introduces two blocks of deformable convolutions to capture

correlations and highlight informative areas in the images. The other fundamental point of

the system is the replacement of the classifier by an angular contractive loss.

These methods represent a significative achievement, overcoming some of the main prob-

lems related to WCE image analysis, but we think that the solution to this problem is not

complete if the right metrics and evaluation methodologies are not used for validating them.

There are three features of these methods that are worth analyzing in order to define the
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right comparison methodology: database size, validation strategy, and evaluation metrics.

Databases: As it can be seen, in most of the cases the number of polyps in the

dataset is relatively small. The paper that uses the largest number of polyps uses a total

of 37,000 images, while the smallest uses just 25. If we consider only those papers which

work exclusively with WCE images versus also colonoscopy images, the number of images

is significantly smaller. The paper that uses the largest dataset uses a total of 1,500 polyp

images obtained from 62 different patients, which means an average of 25 polyp frames per

procedure. It is also important to point out that the number of procedures is 2 to 1,000

times smaller than the number of polyps. This means that several images from the same

patient or even polyp are used in the dataset, but this information is not usually reported.

Besides this and in order to understand how challenging the dataset is, it would also be

important to report the size and type of polyps. Regarding negative samples, the paper

that uses the largest databases uses a total of 100,000 images while the paper that uses the

smallest set uses 75 images. No information about the sampling strategy that was used to

obtain these negative images is reported in any case.

Training and validation strategy: As pointed out before, datasets usually contain

several positive images from the same patient, and in most cases several images from the

same polyp. For this reason, it is very important to ensure that the training and the

validation sets do not share images from the same procedure. If the partition of the training

and validation is not properly done, it would be highly probable to have consecutive and

practically identical frames in both sets. This fact clearly contaminates any validation

result based on those datasets. Only the method presented by Yu et al. (2017) reports this

information.

Evaluation metrics: In order to validate these systems, authors use a variety of

evaluation metrics: accuracy, precision, sensitivity/recall, specificity, ROC-Curve, AUC, F1-

Score as well as the confusion matrix. The diversity of evaluation metrics clearly hinders a

clear comparison between methods, thus showing the need for a good and unified evaluation

strategy.

Taking into account that we are dealing with a computer-aided decision system, we

designed and evaluated our approach not as a classical classification problem, but as an

information retrieval problem. Given a WCE video, the problem is to rank the images

of the video according to some criterion so that the more relevant images appear early in

the result list displayed to the physician. This allows the visual screening of a reduced set

of images and at the same time ensures the detection of a maximum number of positive

images.

The description of the method is divided into the following three parts:

• System Architecture: Introduction of the CNN architecture used to detect polyp

images.
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• Parameter Optimization: Explanation of how the chosen architecture is optimized.

Presentation of the problems derived from the database and how to adapt the learning

process to achieve better results.

• Evaluation Methodology: Presentation of standard metrics and discussion about how

to evaluate polyp detection systems to be able to compare them with other works.

4.3.1 System Architecture

The proposed DL method is based on the Deep Residual Network (ResNet) architecture,

presented by He et al. (2016). This network has shown outstanding results in important

image recognition problems.

The main novelty of this architecture is the use of a high number of layers that progres-

sively allow to learn more complex features. The first layers learn edges, shapes or colors

while the last ones are able to learn concepts. In order to learn, this architecture needs the

introduction of a set of residual blocks that avoid the problem of vanishing gradients when

the number of layers increases. These blocks are built by using skip connections or identity

shortcuts, that reuse the outputs from previous layers.

The residual block has the following form:

y = F (x, {Wi}) + x (4.1)

where F (x, {Wi}) represents stacked non-linear layers and x the identity function.

Taking into account the performance of this architecture in other image classification

problems, we used the fifty-layer ResNet version, known as ResNet-50.

4.3.2 Parameter optimization

ResNet-50 has over 23 million trainable parameters. The robust estimation of these param-

eters needs millions of images as described in He et al. (2016), but these parameters have

been shown useful for a variety of visual recognition problems. The original paper used the

cross-entropy loss function with an L2 regularization term to estimate all these parameters.

Binary cross-entropy loss function decreases as the prediction converges to the true label,

and increases otherwise, as its function indicates:

LCE(p, y) = −y · log(p) − (1 − y) · log(1 − p) (4.2)

where y is the true label of the sample and p is the estimated probability of the sample

belonging to class 1.

In our case, to deal with a small and imbalanced dataset, we propose an optimization

of the ResNet in two stages. First, images are projected into an embedding space using the

Triplet Loss (TL) as described in Schroff et al. (2015). Then, we consider the cross-entropy
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loss function in the embedding space. The proposed methodology is shown in the upper

part of Figure 4.3.

Figure 4.3: Overview of the proposed CNN structure. The upper part of the scheme appears

the ResNet architecture with our methodology applied to it. The background color reflects

the layers affected by each one of the gradients generated by the main losses. The lower

part of the figure shows how the class activation mapping is built.

TL, a Deep Metric Learning (DML) method, has shown great generalization results when

dealing with a large number of classes as for instance in the problem of face identification.

The goal of TL is to optimize a latent feature space f(x) ∈ Rd such that examples from the

same class are closer to each other than to those belonging to different classes.

In order to learn this embedding representation, TL aims at ensuring that an anchor

image, xa, is closer to all other images from the same class, xp, than any image from a

different class, xn. This concept, illustrated in Figure 4.4, can be formulated as follows:

∥fa − fp∥22 + α < ∥fa − fn∥22 ,∀(xa, xp, xn) ∈ τ (4.3)

where fk is the embedding of f(xk), ∥·∥2 is the Euclidean distance and α is a margin, which

defines the minimum distance between elements of different classes.

In order to train the network and reach the sought condition, the TL function is defined

as follows:

Ltriplet−loss =
N∑
i=1

[
∥fa

i − fp
i ∥

2
2 − ∥fa

i − fn
i ∥

2
2 + α

]
+

(4.4)

Training a neural network using TL is not simple. At training time, the network receives

triplets of images. For small datasets, the generation of each triplet is feasible, but when the

amount of images increases, the number of possible triplets grows with cubic complexity. If

we try to generate all of them, it becomes intractable and inefficient, making it impossible
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Figure 4.4: Behavior representation of the of TL using one triplet. The arrows of each

image indicate the direction in which the embedding will move following the gradient.

to optimize the loss. As a consequence, a sampling strategy for the images becomes an

essential part of the learning method. The right choice of triplets can increase the speed

of convergence, the probability to find a lower minimum and even the possibility of getting

better generalization.

In the literature, we can find two different methodologies to face the problem of triplet

sampling for each batch. The first one is called Batch All, being introduced in Ding et al.

(2015), TLBA. In this case, for each sample xa in the batch, we consider all possible triplets.

This results in k0 · k1 · (k0 + k1 − 2) elements. The TLBA loss function is:

LBA(τ) =
2∑

c=1

k0∑
a=1

k0∑
p=1
p̸=a

k1∑
n=1

[
∥fa − fp∥22 − ∥fa − fn∥22 + α

]
+

(4.5)

The use of the previous methodology declined from the appearance of the Batch Hard

(Ding et al., 2015) approach, TLBH . It takes each anchor xa and generates triplets by

seeking in the batch for the hardest positive sample xp, defined as the farthest positive

sample xp = argmaxxi(∥fa
i − fp

i ∥
2
2), and the hardest negative sample xn, defined as the

closest negative sample xn = argminxi(∥fa
i − fn

i ∥
2
2). The TLBH loss function is:

LBH(τ) =

k0+k1∑
a=1

[
argmax

xp
(∥fa − fp∥22) − argmin

xn
(∥fa − fn∥22) + α

]
+

(4.6)

4.3.3 Evaluation

In the field of medical imaging, and in particular, when databases are protected and not

released to the public domain, the evaluation of different proposals is perhaps the hardest

and most critical part. However, as shown in the related work, a unified procedure that
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allows an objective comparison of methods does not exist. We can see that a diversity of

metrics are used and in most of the cases, not the ideal ones for the problem. Moreover, in

most of the papers, the used or the reported information about the dataset is not sufficient

to understand the relevance of the proposal. To this aim, in this section, we study and

propose a methodology to be used in order to validate computer-aided polyp detection

systems. The proposed evaluation methodology is divided into three fundamental points:

• Databases and cross-validation strategy: How to properly build it and what informa-

tion must be reported to understand the relevance of the proposal and allow a detailed

comparison of models.

• Quantitative Results: Standard metrics in computer vision problems have several

drawbacks that can affect the understating of the performance of the methods. For

this reason, we propose and justify a set of metrics to be used.

• Qualitative Results: Aside from the numeric results, it is important to consider qual-

itative results to trust in the system. To this aim, we propose the use of a method to

understand the output of the model.

Databases and cross-validation strategy

The creation of medical databases is an essential step before training and validating any

type of system. Both, positive and negative samples must be collected in the best way.

With respect to size and diversity, training data can follow any distribution that one deems

appropriate, however, it is crucial that results are reported using a test set large enough

to also capture the diversity of non-pathological images that can be found. In order to

capture this diversity, we consider a uniform time sampling strategy as the best option for

creating the negative set. As negative samples are cheap, since we have as many as needed,

a minimum number of images per video should be used, being 2,000 a reasonable number.

The second important point to consider when creating the database and its evaluation

methodology is that although all polyps have common visual characteristics, the appearance

of different polyps from the same patient must be considered. The first row of Figure 4.5

shows three different polyps from the same patient, while the second row shows three

polyps from different patients. As it can be observed, those polyps from the same patient

are generally similar in shape and texture while the polyps from other patients are more

diverse. It is for this reason, that training and test sets must not use images from the same

procedures.

Additionally, since the datasets are small, it is recommended to perform cross-validation

to avoid data selection problems. As mentioned before, it is important that the folds of

the cross-validation process are done by leaving procedures out, not by leaving images

out, therefore ensuring that images from the same procedure never belong to two different

partitions.
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Figure 4.5: Example of polyps extracted from the procedures. In the first row, the polyps

come from the same procedures, while the polyps from the second row come from different

ones.

Lastly, and since in most of the cases databases are not released to the public domain,

it is fundamental to have a detailed description of the dataset in order to understand the

complexity and impact of the solution. We consider that the following information should

necessarily be reported:

• Number of procedures/cases used in the dataset.

• How many of them suffer a pathology?

• Distribution of unique pathological events.

• Frames per each pathological event.

Quantitative Results

Evaluation metrics illustrate the performance of the system and allow to compare. For this

reason, they require a high capability of discrimination among models and they must match

with the aim of the system.

Accuracy is the most frequently used metric to validate polyp detection systems. How-

ever, it does not reflect what is expected from the system since it does not necessarily

correlate with the time needed to reach a diagnosis by the physician. Accuracy depends

on the defined threshold of the system, without giving the full picture of the system out-

put. Moreover, in imbalanced problems, accuracy is mostly affected by the predominant

class. Weighted accuracy is a more suitable metric, although it is still dependent on a fixed

threshold.

Precision and recall (also known as sensitivity), have also been widely used by the
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community. Precision is the fraction of true polyp images (TP) among all the positives

obtained by the system (TP + FP), while recall is the fraction of true polyp images (TP)

that have been detected from the total amount of polyp images (TP + FN). However, with

accuracy, these measurements are also affected by the threshold of the classifier. Since

the goal of the system is to reduce the time needed for the physician, it is interesting to

report the obtained recall scores at different specificity (TNR) values instead of using the

best trade-off between both metrics. The recall at these fixed specificity values allows us to

understand the expected amount of images that are needed to be visualized by the physician

in order to obtain a certain performance, i.e., recall at the specificity of 95% measures the

percentage of detected polyps (TPR) if only 5% of the images are reviewed. The recall for

specificity values of 80%, 90% and 95% are analyzed for this paper.

The Area Under the ROC Curve (AUC) is another interesting measurement. The AUC

is computed from the ROC curve which relates the specificity and the recall obtained for all

the possible thresholds of the classifier. The AUC value can be understood as the probability

of the classifier to predict a true positive element as a positive with higher probability than

as a negative; therefore the larger the AUC value is, the better the classifier is. A limitation

of the AUC is that both negative and positive classes have the same impact on the output,

so FP and FN penalize equally.

Qualitative Results

Although DL has shown impressive results, its application to the medical field carries worries

and criticisms since computerized diagnostic methods are seen as black boxes which do not

show how the data is analyzed or how the output is obtained. In medical imaging problems,

and particularly on the topic of polyp detection, it is transcendent to trust and understand

the obtained predictions by the system. Understanding how the outcome was obtained

allows to: 1) understand why something is considered pathological; 2) provide the needed

trust of physicians and scientists in the system; 3) debug and identify errors of the system

in an easier way.

To this aim, we consider that a qualitative evaluation, showing where and why the

system is failing is a very important element. It is not the same to fail in a small and or

partly-occluded polyp than missing a large polyp. It is also important to show FP cases,

since these images with shapes or textures that are similar to polyps may be understandable

errors and increase the confidence in the system.

Studying where the system detected a polyp in a frame can be useful for two main

reasons: 1) to identify if the detector is focusing on the area of interest and 2) to help

physicians in the review process.

Class Activation Map (CAM) presented by Zhou et al. (2016), is a generic localized

deep representation that could be used to interpret the prediction decision made by the

system. This method indicates the implicit attention that the network gives to the pixels
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of an image considering the class where it belongs.

To obtain the class activation map a linear combination is computed between the fea-

ture maps and the classifier weights, since they connect the output and the last feature

maps, which identify the importance of each response obtained. For a given class c, the

formalization of the class activation map Mc is defined as:

Mc(x, y) =
∑
k

wc
k · fk(x, y) (4.7)

where K is the number of channels, fk are the different responses of the filters and wc
k is

the weight that relates class c with filter k, which is activated by some visual pattern within

its receptive field. Briefly, this technique is a weighted linear sum of these visual patterns

at different spatial locations, which gives the most relevant regions for the system.

4.3.4 Guidelines

After analyzing and discussing each one of the previous aspects, in order to get a full

validation of the system, we propose that the following items should be included in the

validation methodology:

1. A fully detailed report of the dataset used.

2. Training and validation set must not contain images from the same procedure.

3. The negative images in the validation set must represent the diversity of the domain.

A random sampling or uniform time sampling from the same videos are good strategies

(patients and control cases).

4. The number of negative images in the validation set must be higher than the number

of positive images. At least 2,000 times the number of positive images should be

considered.

5. For small datasets it is necessary to apply a cross-validation method.

6. Recall@80, Recall@90 and Recall@95 should be used in order to make the system

comparable with other methods in the community.

7. A qualitative evaluation is recommended to build trust in the system.

4.4 Experimental Setup and Results

4.4.1 Dataset Details

The database used in this paper is composed of 120 procedures from different patients. All

these procedures have been performed using Medtronic PillCam COLON2 or PillCam SB3.
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Each image from the video was labeled as positive, where at least one polyp was visible,

or negative. All these labels were obtained by expert physicians and trained nurses. Each

video was examined by at least two experts. In case of controversy between experts, the

final decision was taken by a final expert. Polyps were found in 52 out of the 120 analyzed

procedures. From those 52 procedures with polyps, a total of 165 different polyps were

annotated and used as a positive set. Table 4.3 summarizes the number of polyps found

per procedure. As it can be observed, the number of polyps per procedure is diverse, in the

majority of procedures, the experts have not reported any polyps, being 1.37 the average of

reported polyps per procedure and 11 is the maximum number in a single procedure. Table

4.4 shows the number of frames where each polyp is visualized within the video. Since most

polyps are observed in more than one frame, a total of 2, 136 images with polyps have been

considered as positive images. Additional details of the database are reported in Table 4.5,

such as the morphology and size of the polyps. The size of the polyps was determined using

the Rapid PillCam Software V9.

Figure 4.6 shows 9 polyp samples of different sizes and morphologies.

All the images have 256 × 256 resolution and the time stamp and device information

were removed.

Table 4.3: Amount of polyps per procedure.

# Polyps 0 1 2 3 4 5 6 7 11

# Procedures 68 17 11 8 3 5 3 2 3

Table 4.4: Amount of frames per polyp.

# Frames 1-2 3-4 5-6 7-10 11-20 21+

# Polyps 33 32 20 19 31 30

Table 4.5: Morphology - Size of the polyps

Morphology

Sessile Pedunculated Undefined Total

Size

Small

(2-6 mm)
65 4 19 88

Medium

(7-11 mm)
29 4 20 53

Large

(12+ mm)
8 3 13 24

Total 102 11 52 165
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Figure 4.6: Polyp samples of different sizes and morphologies. Columns represent the

different morphologies while raw represents the different sizes of the polyps.

4.4.2 Architecture and Evaluation Details

In all of the experiments, a pre-trained model with the ImageNet dataset is used to alleviate

the problem of data scarcity. Moreover, in order to enlarge the number of available images,

data augmentation for training is performed by applying rotations of 0, 90, 180, 270 degrees,

horizontal and vertical flips, and changes in the brightness of the images with a random

probability.

Networks were optimized using Stochastic Gradient Descent with a fixed learning rate

of 10−3 during 50 epochs. The hyper-parameter margin of the TL was fixed at 0.2. The

batch size was fixed to 64, and the proportion of positive and negative images was set to

1/5 and 4/5 respectively. In order to not create a bias on the large videos, negative images

were obtained using stratified random sampling from those procedures in the training set.

Since the dataset is highly imbalanced, an epoch is considered once the entire set of positive

images is passed forward and backward through the neural network.

To assess performance, results are reported following the 5-fold cross-validation strategy.

It is important to remark that the stratified partitions have been done not by individual

frames but by patients, thus images from the same patient do not belong to the same

partition of the validation set.

The implementation of the methods has been done using TensorFlow and executed on

a machine with an NVIDIA GeForce RTX 2080 TI. Training the network for 50 epochs

takes about one hour, and the processing time per image in a forward pass is approximately

2.7ms. Taking into consideration that the mean number of frames per procedure in our

database is 15, 183, the mean processing time per video is 40.89s.
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4.4.3 Quantitative Results

In the first experiment, we aim to compare the performance of each one of the methodologies

explained previously: ResNet, TLBH and TLBA. As shown in Table 4.6, our methodology

TLBA has outperformed the obtained results by the standard optimization methodology of

ResNet and TLBH . Contrary to what usually happens, batch all sampling strategy exceeds

the batch hard strategy. To our understanding, this result is due to the complexity of the

generated triplets. Images from the same class are not visually similar. On one hand, all

(positive and negative) images present a high visual variability due to the free movement of

the camera, the different parts of the gut, or because of intestinal content, such as food in

digestion or bile, and on the other hand, polyps can be found in different stages presenting

different sizes and morphologies. The obtained AUC value of our methodology has a 12%

increase with respect to ResNet and a 5% compared to TLBH , achieving 92.94 ± 1.87%.

The system enhancement is also reflected in the obtained sensitivity scores, which increased

between 25 and 40 points compared to the other models. This fact shows that, given

the same percentage of frames reviewed by the experts, the system finds more pathological

frames. Figure 4.7 shows the ROC curves of the three studied models. On the left side of the

curves, the TLBA model obtains a higher recall value than the other methods considering

the same specificity. This difference means that TLBA detects more frames containing

polyps, while at the right side of the curve the three systems, TLBA, TLBH and ResNet,

work similarly. It is remarkable to notice that in the TLBA experiment, the low standard

deviation values indicate that the model is more robust than the others.

The proposed method is also compared against some of the most recent polyp recognition

systems: 1) SSAEIM from Yuan and Meng (2017), 2) UDCS from Yuan et al. (2020) and

3) ANET from Guo and Yuan (2019). All these methods have been implemented, trained

and evaluated using the same dataset and evaluation methodology. The full details of the

results are shown in Table 4.6 and Figure 4.7. As it can be observed, the proposed TLBA

model demonstrates a significant improvement over these state-of-the-art systems. The

system shows an increment of at least the 2% in the AUC value and an increase of around

4% in the different sensitivity values. On one hand, we observed that the SSAEIM method

is not able to handle this imbalanced and complex database. From our point of view, as

a consequence of the complexity of the problem, the dense layers of the autoencoders were

not able to find a proper representation of the images. On the other hand, and although

UDCS and ANET show good results, the obtained AUC score and the sensitivity values

do not reach the results obtained with our method. This result reflects the capacity of our

method to detect polyps, validating the efficiency of TL in this application.

In the next experiment, see Table 4.7, we contrast the performance of TLBA against

the same methodology but adding a new extra layer, that acts as the embedding layer.

This experiment is done since when deep metric losses are used, it is common to add an

extra dense layer between the extracted features and the classification layer. This layer

introduces more versatility in data representation while it compresses the information in
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Figure 4.7: ROC Curve of the three models. Each vertical line represents a specificity

value that indicates the percentage of true negative images predicted in the video, and the

percentage of polyps that the system is expected to detect.

the embedding. As shown in Table 4.7, the embedding sizes used in these experiments are:

128, 256, 512 and 1, 024. Despite the fact that the new networks have more parameters, none

of them exceeds the previous TLBA results in the AUC score. The obtained AUC value and

sensitivity values show a correlation between the embedding size and the obtained scores.

TLBA model with an embedding size of 2,048 has exceeded the other models because the

variation in the embedding size allows the network to have a better representation to detect

the polyps.

The margin hyper-parameter of the TL has been set until now at 0.2 as it is set in other

works like Schroff et al. (2015) or Hermans et al. (2017). As the domain of the problem

is different from previous applications of the TL method, our fourth experiment evaluates

the behavior of the system with the following margins: 0.1, 0.5 and 1.0. As shown in

the obtained results summarized in Table 4.8, any of these margins outperforms all the

metrics. Margins 0.5 and 1.0 obtain standard deviation values which are higher than the

small margins, indicating that the model is less robust. However, the margin that achieves

the best results on almost all the reported metrics is 0.2.

The comparison of models is shown in Tables 4.6, 4.7 and 4.8 demonstrating that TLBA

is the best computer-aided decision support system for polyp detection in terms of accuracy

and sensitivity.
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Table 4.6: Performance comparison of the methods: ResNet, TLBA and TLBH . Each

method has been evaluated with a 5-fold validation in the classification task.

Parameter Accuracy Sensitivity Specificity AUC Sensitivity (%)

Optimization (%) (%) (%) (%) Spec. at 95% Spec. at 90% Spec. at 80%

ResNet 97.85 ± 0.24 26.01 ± 9.78 97.97 ± 0.27 82.85 ± 5.72 37.75 ± 9.12 51.49 ± 11.09 66.71 ± 12.15

SSAEIM 59.85 ± 48.75 40.11 ± 48.90 59.91 ± 48.92 57.76 ± 5.83 6.98 ± 2.99 13.29 ± 3.56 27.82 ± 5.96

UDCS 94.41 ± 1.53 71.51 ± 7.80 94.45 ± 1.54 88.64 ± 2.87 70.44 ± 6.53 78.22 ± 6.46 83.31 ± 5.18

ANET 96.96 ± 0.53 65.07± 7.58 97.02 ± 0.54 90.44 ± 3.23 72.02 ± 6.03 78.92 ± 5.59 85.23 ± 4.98

TLBH 99.83± 0.05 0.00 ± 0.00 100.00± 0.00 87.68 ± 2.71 50.15 ± 3.21 63.19 ± 4.48 77.52 ± 6.70

TLBA 99.43± 0.12 51.15 ± 7.62 99.51 ± 0.12 92.94± 1.87 76.68± 4.93 82.86± 4.78 88.53± 3.76

Table 4.7: Performance of the methods: TLBA and different versions of the same adding

an extra dense layer and changing the embedding size. Each method has been evaluated

with a 5-fold validation in the classification task.

Accuracy Sensitivity Specificity AUC Sensitivity (%)

Embedding (%) (%) (%) (%) Spec. at 95% Spec. at 90% Spec. at 80%

TLBA 99.43± 0.12 51.15 ± 7.62 99.51± 0.12 92.94± 1.87 76.68± 4.93 82.86± 4.78 88.53± 3.76

128 59.99 ± 7.48 84.67± 6.17 59.95 ± 7.51 83.05 ± 2.78 42.23 ± 5.04 57.38 ± 5.54 72.54 ± 4.85

256 68.12 ± 12.92 79.10 ± 14.60 68.09 ± 12.97 83.35 ± 5.27 45.09 ± 10.34 59.9 ± 11.64 73.35 ± 10.11

512 86.29 ± 2.56 70.50 ± 9.02 86.31 ± 2.57 86.58 ± 3.91 49.91 ± 8.56 64.66 ± 6.43 78.13 ± 6.04

1024 89.69 ± 2.50 68.28 ± 9.44 89.72 ± 2.51 86.67 ± 3.25 55.47 ± 3.86 67.97 ± 5.79 79.89 ± 5.29

From a medical point of view, the computer-aided system should help to detect polyps

but not necessarily detect all the images where a given polyp is seen. For this reason, we

analyzed the performance of our proposed system over polyps. A global overview of the

numerical results is summarized in Table 4.9, where each score represents the percentage

of detected polyps in different scenarios of the entire dataset. Each of them is computed

with a different specificity value: 80%, 90% and 95%. The first row of the table contains

the percentage of detected polyps, that grows when the specificity decreases. Setting the

specificity at 95%, the system only misses 14 polyps; if we decrease specificity to 90% and

80%, the missed polyps are 11 and 8 respectively. A complete view of the curve is reported

in Figure 4.8.

The second set of results in Table 4.9 presents the detection of the system according to

polyp size. When we consider small polyps the amount of missed polyps is 7, 4 and 3 for

the respectively reported values of specificity. In the case of medium-sized polyps, using

the specificity of 90 or higher, the system is not able to detect 5 polyps, but with lower

specificity, the amount of detected polyps raises. In the case of larger polyps, 2 of them are

lost for the two higher specificity values, however, with a slight decrease in specificity, the

polyps are detected.

Finally, the last rows of Table 4.9 show the detection rated based on polyp morphol-

ogy: sessile, pedunculated or undefined. As it has been reported previously, most polyps

are labeled as sessile, obtaining high detection scores despite the misplacement of 7. Pe-

dunculated polyps are relatively rare, and the system detected all except one at the three
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Table 4.8: Performance of TLBA method changing the margin parameter. Each network

has been evaluated with a 5-fold validation in the classification task.

Accuracy Sensitivity Specificity AUC Sensitivity (%)

Margin (%) (%) (%) (%) Spec. at 95% Spec. at 90% Spec. at 80%

0.1 87.98 ± 2.01 66.85 ± 7.75 88.01 ± 2.01 86.53 ± 2.96 47.35 ± 10.22 63.35 ± 7.66 78.69 ± 5.60

0.2 (TLBA) 99.43± 0.12 51.15 ± 7.62 99.51± 0.12 92.94± 1.87 76.68± 4.93 82.86± 4.78 88.53± 3.76

0.5 90.89 ± 2.07 68.79± 8.66 90.93 ± 2.07 87.74 ± 3.04 56.07 ± 9.18 70.96 ± 7.44 83.87 ± 4.61

1.0 91.67 ± 1.00 66.30 ± 8.74 91.71 ± 1.02 86.80 ± 3.23 56.84 ± 8.68 70.65 ± 7.38 81.02 ± 6.06

sensitivity values.

Table 4.9: Detection vs. Specificity with model TLBA

% detection Specificity@95 Specificity@90 Specificity@80

Polyps 91.14% 93.04% 94.94%

Small Polyps 91.86% 95.35% 96.51%

Medium Polyps 90.38% 90.38% 92.31%

Large Polyps 90.00% 90.00% 95.00%

Sessile Polyps 93.07% 95.05% 96.04%

Pedunculated Polyps 90.91% 90.91% 100.00%

Undefined Morphology 86.96% 89.13% 91.30%

4.4.4 Qualitative Results and Polyp Localization

CAM visualization was applied to the output of the network. This method generates a heat

map, where the red tones show the regions of the image that obtain a high response from the

filters. Figure 4.9 shows in the first row eight polyps frames where the different morphology

and size of the polyps may be observed. In the second row, the CAM visualization method

highlights the location where the system focused to predict that there was a polyp.

Figure 4.10 shows eight images without polyps where the system has erroneously de-

tected a polyp. In these samples, some of the regions highlighted by the network contain

features of polyps such as growths of tissue, mucous membranes or areas with reddish color

from the wall, that might indicate the existence of it.

Figure 4.11 shows eight polyp images where the system has not obtained enough features

to predict the frame as a polyp. Each image shows a boundary with the location of the

polyps. These difficult cases are complex to detect in single images by the system. The

evaluation of a whole sequence of images where the polyp is seen facilitates detection by

the human eye. Due to the complexity of polyp detection, sometimes is easier for humans

to detect them through the sequence.

Figure 4.12 shows the second sequence of images in Figure 4.1 with the output of the

system represented by adding a green square around the frames where the system has

detected a polyp. Although in this example the system missed two frames where the
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Figure 4.8: Percentage of polyps detected.

Figure 4.9: The first row contains eight examples of TP of our proposed method, with polyps

of different morphology and size. The second row incorporates the CAM representation that

locates each one of the polyps over the original image.

polyp is present, the detection in four frames is sufficient for the physician to establish

the diagnosis.

4.4.5 Effect of imbalance datasets over models

Healthcare datasets commonly suffer from imbalanced data, a feature that frequently affects

the performance of classical DL approaches. In the following experiment, we evaluate how

both, TL and the original ResNet networks behave with respect to different degrees of

imbalanced data. The imbalance degree of a dataset is defined as the number of negative

images per each positive one. To conduct a meaningful comparison, both models are trained

and evaluated on six different imbalance degrees (1, 10, 25, 50, 100). Furthermore, each

imbalance degree is repeated ten times using different sampled data.
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Figure 4.10: The first row contains eight examples of FP of our proposed method, where

the system has detected polyps. In some images abnormal tissue can be seen, some mucous

membranes or reddish zone, that are features related to polyps. The second row shows the

CAM representation that locates where these features are located.

Figure 4.11: The images correspond to eight examples of FN of our proposed method, where

a polyp is in the frame, but the system couldn’t detect it. To help the reader to find the

polyps in the images, the outline of the polyp has been drawn in white color.

As it can be seen in Figure 4.13, the experiment shows the robustness of the proposed

methodology to highly imbalanced data. The performance of the method increases when

the degree of imbalance increased from 1 to 10 and then stabilizes. On the other hand,

it can be observed that the original ResNet network suffers from highly imbalanced data.

The network achieves the best result with an imbalance degree of 10 and then it starts to

deteriorate as the imbalance degree increases.

4.5 Conclusion

The methodology proposed in this study improves automatic polyp detection in WCE im-

ages and additionally enables localization of the polyp in each image. The reported experi-

ments demonstrate that the TL method improves feature extraction outperforming previous

results and that the limited and imbalanced data availability may be alleviated with the

appropriate losses. Furthermore, the qualitative output of the system may increase trust in

the prediction.

Future research will focus on the detection of other intestinal pathologies to develop a

complete computer-aided detection system for WCE videos.
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Figure 4.12: Polyp sequence where the green squares denote the presence of polyps detected

by the system. In this sequence, there are two frames where the polyp is not detected,

despite this, the support system has found the polyp in the previous frames, allowing the

doctor to diagnose the patient.

Figure 4.13: AUC values of ResNet and our methodology trained with difference imbalance

degrees. Each point represents the mean of 10 executions of a 5-fold validation in the

classification task.
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Motivation and Context

DL models require a large number of samples to be trained and learn the patterns of the data.

However, the medical field datasets often contain only a few hundred or thousand examples,

making it challenging to train robust models. Additionally, medical datasets also suffer

from imbalanced class distributions, where one or more classes have a disproportionately

low number of examples compared to the others. This imbalance can lead to models that are

biased towards the more represented classes, resulting in poor performance for the minority

classes.

To address the previous issues, researchers have adopted transfer learning strategies.

They have been widely used in the computer vision community, where pretrained models on

large datasets, like ImageNet, are used as a starting point for many image recognition tasks

(Liu et al., 2021). However, medical imaging datasets, and in particular, images captured

with WCE videos, have different features compared to images containing real-world objects,

making it necessary to find better pretraining settings.

To handle the aforementioned problem, this study proposes the use of SSL to extract

richer representations from unlabeled data. Instead of using data augmentation techniques

and NT-Xent loss, as other SSL methods such as Chen et al. (2020a), the proposed learning

approach takes advantage of the temporal axis of WCE videos and uses the TL to optimize
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the weights of the neural network. This combination leverages the temporal information

present in hours-long capsule endoscopy videos to learn more generalized and rich embed-

dings through the exploration of inter-sequence and inter-video triplets.

After obtaining the pretrained model using SSL, the network is fine-tuned with the

labeled data for two specific tasks: polyp detection and GI lesion classification. The exper-

imental results show that utilizing the structure learned from the temporal axis, as inferred

by the proposed model, enhances the detection rate in various domain-specific applications.

Furthermore, the detection rate remains effective even when confronted with significantly

imbalanced datasets. This highlights the potential of SSL as a promising approach to

mitigate the challenges posed by small medical imaging datasets and imbalanced class dis-

tributions. Moreover, it opens up new possibilities for improving the performance of DL

models for other medical applications.
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5.1 Abstract

State-of-the-art machine learning models, and especially deep learning ones, are significantly

data-hungry; they require vast amounts of manually labeled samples to function correctly.

However, in most medical imaging fields, obtaining said data can be challenging. Not only

the volume of data is a problem, but also the imbalances within its classes; it is common to

have many more images of healthy patients than of those with pathology. Computer-aided

diagnostic systems suffer from these issues, usually over-designing their models to perform

accurately. This work proposes using self-supervised learning for wireless endoscopy videos

by introducing a custom-tailored method that does not initially need labels or appropri-

ate balance. We prove that using the inferred inherent structure learned by our method,

extracted from the temporal axis, improves the detection rate on several domain-specific

applications even under severe imbalance. State-of-the-art results are achieved in polyp

detection, with 95.00 ± 2.09% Area Under the Curve, and 92.77 ± 1.20% accuracy in the

CAD-CAP dataset.

Key words: capsule endoscopy; deep learning; self-supervised learning; semi-supervised

learning.

The paper has been re-typeset to match the thesis style.
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5.2 Introduction

Obtaining Gastrointestinal (GI) images has traditionally been an intrusive intervention until

the advent of Wireless Capsule Endoscopy (WCE) technology (Iddan et al., 2000). WCE

imaging eases the process of securing a continuous stream of images, but at the same time,

it introduces its own set of problems.

The videos recorded by the capsule, although usually with a low frame rate, can have a

duration of up to 12 hours (Vasilakakis et al., 2019). Unlike traditional methods, it is not

a targeted exploration but rather a complete recording as the capsule travels through the

entire system. A physician must go over the full length of the video, possibly at multi-image

speeds, while looking for any abnormality. Not only do they have to invest considerably

more time, but the fatigue and repetitiveness of the task could affect their ability to detect

such abnormalities.

Providing a reliable and accurate Computer-Aided Diagnosis (CADx) system capable of

selecting the most promising frames would ease the pressure for those professionals, cutting

down the time spent on the task while obtaining comparable—if not better—results.

Also of great importance, especially when designing automated systems that rely on

images obtained from patients, is to examine the properties of the data. In day-to-day

examinations, not all patients have an associated pathology, and the data used in research

to train CADx models directly reflects it. In polyp detection, for example, the majority of

videos have no polyp present in a video at all. One must also consider that, even in the case

that there might be polyps, they would appear only in a small fraction of the frames (Laiz

et al., 2020). A polyp might appear in several subsequent frames, perhaps slightly displaced

or rotated, but the overall number would be negligible when considering the whole duration

of the video.

Combining the difficulty of obtaining said datasets with the amount and distribution of

the data itself makes creating accurate and production-ready CADx systems a difficult task.

Data is fairly scarce compared to other problems studied in deep learning, and the classes,

such as polyp, or non-polyp, suffer significant imbalances. Not to mention that supervised

algorithms, which dominate the field, require that all those videos are accurately labeled to

function.

Creating better models for the medical field which, ultimately, could be used in CADx,

requires sorting out these issues. Techniques like data augmentation and regularization have

been used to cope with overfitting and under-generalizing models, but they are hard to train

and can obtain sub-par results. As such, it is the aim of this work to produce a method that

enables obtaining better WCE models without over-relying on these two approaches. The

main motivation being that such models would help reduce the workload that physicians are

facing when examining WCE videos while, perhaps even more importantly, not sacrificing

any accuracy, be it detecting polyps, bleeding, or any other critical condition.
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Thereafter, this work proposes the application of Self-Supervised Learning (SSL) on

WCE videos to obtain a better representation of the data, enabling future models to perform

better in their classification tasks. Self-supervision has been canonically considered a variant

of supervised learning (Liu et al., 2021), as the network learns from supervisory signals

obtained from the data itself, often leveraging the underlying structure in the data. Based

on this definition, we derive a novel pseudo-labeling method for WCE that works with

several unlabeled videos, enabling the use of SSL, which helps train models for downstream

tasks.

In SSL, instead of directly training a model with a set objective in mind, the process is

divided into two steps. SSL is done during an initial phase named pretrain, where a deep

neural network is trained to learn a better representation, or embedding, of the data. It

encodes the most essential information into a smaller vector by using the data without their

final labels, learning its inherent structure. This information is learned accordingly to the

data’s nature, the model’s architecture, and the task used for SSL. Then, during a second

pass, the finetune process, the embedding is used in conjunction with the labels to perform

supervised classification.

With the present work, summarized in Figure 5.1, we aim to use self-supervision to

provide more accurate models for domain-specific tasks derived from WCE images. In

particular, given unlabeled WCE videos, we exploit their temporal nature to perform SSL

and then train several supervised models. These models can then be used for CADx,

which would improve the results with respect to current methods, reducing the workload

for physicians.
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Figure 5.1: Overview of the proposed method, including the pretain phase, in the upper

half, and the final finetune phase in the lower half.
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The paper is organized as follows. First, we give an overview of the related work in the

field followed by a description of our methodology, presenting the self-supervised training,

supervised training, and system architecture. Further, we explain the experimental setup

and results, and finally present the main conclusions and give directions for future work.

5.3 Related work

5.3.1 Wireless Capsule Endoscopy research

WCE, due to the nature of its long data streams, has been a popular candidate for computer-

aided automation. For instance, bleeding detection was first done by means of superpixels

in conjunction with a support vector machine (Fu et al., 2014), by means of Super-Vector

Machines (SVM) and manually found color invariants (Lv et al., 2011), through saliency

maps (Yuan and Meng, 2015), and using hand-crafted textures and multiple machine learn-

ing algorithms like classification trees, random forests, and logistic model trees (Pogorelov

et al., 2019). Other tasks explored are polyp detection through image subdivision and SVM

(Alexandre et al., 2007), ulcer detection with texture and color invariants (Yeh et al., 2014),

and motility events with pattern recognition, color decomposition, and chromatic stability

(Malagelada et al., 2008).

These processes saw an increase in performance with the advent of deep-learning based

models. In Segúı et al. (2016), Convolutional Neural Network (CNN) automate the process

of texture finding, no longer requiring hand-crafted features, and achieving better results

at motility event classification. Likewise, other WCE domains such as polyp detection

(Iakovidis et al., 2018; Aoki et al., 2019; Nadimi et al., 2020), bleeding (Caroppo et al., 2021;

Khan et al., 2020), ulcer detection (V and Prashanth, 2020), and celiac disease diagnosis

(Wang et al., 2020), have benefited from the use of CNNs.

Recently, WCE models have thrived with more advanced methods, as the works in Laiz

et al. (2020); Jain et al. (2021); Yuan et al. (2020); Kundu and Fattah (2019); Jain et al.

(2020); Guo et al. (2022) demonstrate. Attention mechanisms to let the network learn

the important features (Jain et al., 2021), the use of residual connections with the ResNet

model (He et al., 2016) along with metric learning with Triplet Loss (TL) (Schultz and

Joachims, 2004) in Laiz et al. (2020), and the ability to created deeper and denser models

(Yuan et al., 2020) have enabled them to produce more robust and accurate methods.

Noteworthy, disease detection in the gastrointestinal tract has greatly gained from recent

advances, with CADx systems being explored in bleeding detection, vascular lesions, ulcers,

polyp, and tumors (Trasolini and Byrne, 2021; Attallah and Sharkas, 2021; Gilabert et al.,

2022).

Notwithstanding the recent advances, both traditional machine-learning based methods

and the deep-learning variants, suffer from the same problems—lack of labeled data and,

in some domain-specific tasks like polyp detection, also highly imbalanced classes. This
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is formalized and analyzed in Yuan et al. (2020) and Akay and Hess (2019), where the

difficulties of producing models that generalize and do not overfit, product of imbalance,

low inter-class variance, and high intra-class variance are inspected in detail. Techniques

like dropout, L1 or L2 regularization, and sampling mechanisms have also been applied to

WCE in an attempt to soften the problems derived from data imbalances and inter-class

and intra-class variances, such as overfitting and failing to generalize (Kim and Lim, 2021).

Other works, like Laiz et al. (2020), show that using TL to learn better embeddings also

contribute towards obtaining more robust models. Nonetheless, the problem still remains,

WCE is tedious to label due to its length, which often means that researchers have low

amounts of labeled data to work with. Moreover, several fields must still tackle with huge

imbalances within the data.

5.3.2 Self-supervised learning

Other approaches to tackle low amounts of labeled data, when pseudo-labeled data is avail-

able, and class-imbalances in downstream tasks are self-supervision methods, of which a

wide range of options are available. For instance, a popular architecture choice was au-

toencoders (Rumelhart et al., 1986; Kingma and Welling, 2014; Hinton et al., 2011), whose

dimensionality-reducing capabilities were believed to be useful for SSL. However, it has

been demonstrated that they fail to capture rich information (Bengio, 2009), focusing only

on compressing data. Thus, their capacity to adapt to any future generic task is hindered

at best.

In contrast to the former generative method, where the network learns from a single

image, contrastive learning trains on multiple examples or instances of the same image to

learn the inherent information (Falcon and Cho, 2020). One such way to introduce multiple

samples of a single image has been by reordering subsections (Misra and van der Maaten,

2020). This type of SSL encourages the network to learn invariant representations, unlike

their generative counterparts. Similarly, when the time dimension is available, reordering

can be done based on fragments of the input, as done with audio streams (van den Oord

et al., 2018). Additional techniques, like rotation, color jittering, blurring, and cropping,

can be applied as shown in Chen et al. (2020a) and Chen et al. (2020b). The authors

propose SimCLR, an architecture based on ResNet (He et al., 2016) that can be trained

with multiple contrastive approaches and a new contrastive loss. They provide a simple

framework to perform SSL and benchmark the different methods.

More specifically and related to our application, contrastive SSL from videos has been

done by predicting the order of a sequence (Misra et al., 2016; Xu et al., 2019; Lee et al.,

2017), object tracking (Pathak et al., 2017; Wang and Gupta, 2015; Wang et al., 2019d), and

specialized losses (Tschannen et al., 2015; Sermanet et al., 2018). In particular, our method

resembles the single-view approach of Time-Contrastive Networks (Sermanet et al., 2018),

which uses metric learning for temporal coherence. Their work, however, diverges from ours
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because they do not focus on the embeddings’ richness nor task-generalization. Given the

nature of their action imitation task, they limit their triplets to be in a single sequence and

do not explore the embedding quality, whereas our work aims to learn generalized and rich

embeddings from hours-long videos, exploring inter-sequence and inter-video triplets, for

further usage in downstream tasks.

In medical imagining, some efforts have been made in regards to SSL and semi-supervised

training (Cheplygina et al., 2019; Azizi et al., 2021). For instance, Pérez-Garćıa et al. (2021)

uses a generative network to create simulated postoperative MRI images, which used in a

SSL step obtains better results. Other tasks such as pneumonia detection and multi-organ

segmentation (Navarro et al., 2021), also show improvements by means of SSL based on

samples’ patch reordering. Likewise, SSL has also been applied to WCE related tasks, using

distortions to the original images in Vats et al. (2021), combined with multi-task learning

to detect inflammatory and vascular lesions. Similarly, Guo and Yuan (2020) minimizes

the difference in predictions between the SSL head and the supervised head, leveraging

unlabelled data.

To the best of our knowledge, however, there has been no work that leverages the

temporal aspect of WCE videos, using a SSL process to obtain better representations,

which, in turn, would help tackle data-derived problems.

5.4 Method

An overview of our proposed self-supervised approach is illustrated in Fig. 5.1. Similar

to most methods relying on self-supervised training, our approach is divided into two dis-

tinct stages: (a) pretraining a self-supervised network using unlabeled data to obtain rich

representations, and (b) finetuning the model using labeled data for a specific task. This

section follows the same pattern, explaining both phases first, and finishes by explaining

the architecture used.

5.4.1 Self-supervised pretraining

During the first stage of the process, we aim to extract useful generic information from the

unlabeled images, which then can be transferred to deal with many specific tasks by finetun-

ing the model with limited labeled data. In other words, it creates a reduced representation

(embedding) of the original image that contains its most important information.

Extracting an embedding can be understood as a process f(x), where a neural network

transforms a sample x from the dataset to its compressed and rich representation.

Out of all the possible ways to obtain said embedding, we have chosen to exploit the

temporal nature of WCE videos. Our method works by taking sequences of N contiguous

frames and creating a relationship between them. Namely, given two frames i, j in the
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sequence, their relationship is established as the distance d(i, j) between them, counted by

the number of frames that separates them.

Unlike the work in Sermanet et al. (2018), where all samples come from a single sequence,

our method must generalize to multiple videos and sequences. Per-frame pseudo-labels are

introduced to encode their video identifier along with their position. Given an image i, its

pseudo-label is a combination of its video identifier γ(i), which can be a simple numbered

sequence, and the position inside the video δ(i), as seen in Equation 5.1.

ȳ(i) = Mγ(i) + δ(i) (5.1)

Where M must be a large enough number so that ∀i,M > δ(i). For our particular

experiments and datasets, we have chosen M = 106.

Next, we impose a similarity measure between frames on the sequence so that contrastive

learning can be done by finding the inherent relationship between similar and dissimilar

images. For that purpose, two images will be consider similar if they are close enough,

formalized as d(i, j) = |ȳ(i) − ȳ(j)| ≤ w, where w ≤ N is a constant chosen beforehand.

The pair (i, j) is considered similar (positive) in such cases, and negative otherwise.

In other words, taking a reference image (anchor) in a sequence, all other images within

a window of size 2w (w images per side) are considered similar. In general, given an N -

sequence, all images have between min(N, 2w) and w positive samples. Images around the

edges of the sequences lose up to half the positives, tending towards the latter, while those

on the center have the whole spectrum.

The pseudo-labels guarantee that (i, j) negative pairs are consistent with images coming

from different videos, as γ(i) ̸= γ(j), thus d(i, j) ≈ |Mγ(i)−Mγ(j)| ≥ M > w. Additionally,

for two frames i, j extracted from the same video, the formula reduces to the distance in

frames between them, d(i, j) = |ȳ(i) − ȳ(j)| = |δ(i) − δ(j)|.

Given the above approach to create a similarity measure, the TL (Schultz and Joachims,

2004), a contrastive loss, is introduced to learn the embeddings. TL works by using triplets

of samples, where two of the triplet’s elements, the anchor a and the positive p, pertain

to the same class. The remaining element, the negative n, is of a different class than a.

That is, given the embedding of an anchor f(a), a triplet (f(a), f(p), f(n)) is formed so

that y(a) = y(p) ̸= y(n), where y(·) is the class of a sample.

Using Equation 5.2, TL forces f(p) to be close to f(a) while moving away f(n). It eases

the problem by introducing a soft margin α between the positive and negative pairs.

TL = max(||f(a) − f(p)||2 − ||f(a) − f(n)||2 + α, 0) (5.2)

Translated to our domain, a triplet is formed by two similar images and a dissimilar

image, so that d(a, p) ≤ w and d(a, n) > w. As shown, TL is directly applicable to WCE
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videos when used in conjunction with the pseudo-labels, forcing close images in a sequence

to have similar representations in the embedding space.

It must be noted that this method is bound to have incorrect pairs, as different videos or

sequences could contain similar images, regardless of their distance. Also, WCE videos tend

to have periods where the capsule moves at a slow rate, producing many similar images in a

relatively long interval, or the contrary, moves fast and captures rapidly changing sequences.

We estimate those cases to be negligible compared to our dataset’s size, being effectively

treated as noise during the process.

5.4.2 Supervised learning

During the second phase of our method, the same model is reused to learn a domain-

specific task with limited amounts of data. For instance, the rich representations could be

used to model motility events, to classify several conditions like bleeding or inflammation,

to evaluate keyframes, or to detect polyps, to name a few.

For that purpose, the process starts with the SSL model’s parameters, obtaining em-

beddings produced by the new dataset and feeding them into a classifier. That classifier

needs to access the ground truth labels, as it uses a softmax cross-entropy loss to model the

problem.

Following SimCLR findings (Chen et al., 2020a), we have confirmed that fixing the

weights obtained during SSL is counterproductive. However, unlike SimCLR, which assumes

balanced problems, we use the approach proposed by Laiz et al. (2020), where the TL is

used to modify the embeddings. As such, the gradient coming from the linear classifier is

removed so that it cannot negatively impact the embeddings due to the imbalance. Instead,

a TL is imposed on them to facilitate the network to finetune the dataset representations.

However, unlike in the previous step, the TL no longer uses the pseudo-labels created

through our method. Triplets are formed by considering the real labels of the images,

which are domain-specific and help finetune the embeddings to the particular task. To

further reference it and avoid confusion, the term TLsup will be used.

The TLsup is trained in batch all mode, which considers all triplets regardless of their

difficulty. No special sampling algorithm is introduced; the only restriction we impose is

for a batch to have a proportional representation from all classes. Other than that, data is

randomly sampled.

The final loss obtained in this model is the linear combination of both the cross-entropy

loss and the triplet loss, as shown in Equation 5.3.

Lsup = TLsup + Lcrossentropy (5.3)
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5.4.3 Architecture

The backbone of our architecture consists of a ResNet-50 (He et al., 2016), as can be seen in

Figure 5.2a. Most works that extract or require embeddings use the output of the ResNet

model directly as their representations, but following the work in SimCLR, we decided to

explore the possibility of including several projection layers.

Each projection layer consists of a ReLU activation followed by a dense layer. We restrict

all the projection layers to have the same dimensionality, which must be lower than the 2048

given by ResNet. While our pretrain phase benefits from the reduced complexity after the

projection, the final finetuning network utilizes the whole 2048-sized embedding to allow for

better detection rates. These layers, along with their configuration, hyperparameters, and

performance, are studied below. Ultimately, they are found to be beneficial for domain-

specific tasks.

Once the pretrain is done, at the beginning of the finetune phase all learned parameters

are kept except for the projection layers, which are removed from the model, as can be

observed in Figure 5.2b. Classification is done through a linear layer (a dense layer without

any activation) and a cross-entropy loss. As denoted in red and a dashed line in Figure

5.2b, we eliminate the gradient coming from the linear classifier to stop it from modifying

the embedding. Only the TL loss is able to tune the representations.

It must be remarked that the TL losses used in both phases of the architecture are

different. As pointed out, the first phase uses the pseudo-labels deducted from videos,

while the second uses the ground truth labels.
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TRIPLET LOSS

RELU + DENSE

RELU + DENSE

RELU + DENSE
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(a) Pretrain

RESNET 50
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LINEAR CLASSIFIER

AVERAGE POOL

CROSS-ENTROPY
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Figure 5.2: Detailed network architecture. The parameters obtained during pretain for

ResNet are used in the finetune phase, while the projection layers are removed. Here, the

dashed red line denotes that gradient is stopped.
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5.5 Discussion and results

This section begins by laying out the datasets used during both steps of the method. Fur-

ther, it explains the implementation details, such as preprocessing steps and train strategies.

A subsection is devoted explicitly to the SSL hyperparameters, justifying and proving the

choices made. Finally, individual results are shown for each dataset, discussing the results

qualitatively and quantitatively.

5.5.1 Datasets

Three datasets are used throughout the process. The Generic WCE videos dataset is em-

ployed only for the common SSL stage, while the other two are each used to evaluate their

own downstream tasks.

Generic WCE videos

This dataset consists of a total 49 unlabeled WCE videos, each from different patients,

obtained with Medtronic PillCam SB2. From those videos, only the small intestine and

colon segments are used, selecting a total of 1,185,033 frames.

Even though these images are not labeled, pseudo-labels can be introduced through our

method, which makes this dataset suitable for a pretrain step using SSL.

Polyp WCE

The dataset consists of 248,136 frames sampled from 120 procedures performed using

Medtronic PillCam SB3 and PillCam Colon 2. Notably, they are not the same videos as the

subsection above. Of those frames, 2,080 contain polyps, while 246,056 do not. An initial

report is produced by eight expert readers, endoscopy nurses with at least three months

of experience, who tag potential polyp frames, and others that require detailed revision.

Then, two medical doctors (one gastroenterologist, one internal medicine) obtain the final

version of the dataset. The polyp’s sizes, as reported in Table 5.1, were obtained through

Rapid PillCam Software V9. The largest polyp was determined to be 16 mm. Tumors were

considered positive, while any other pathology, like ileal lymphoid hyperplasia, bleeding,

and diverticulitis, were discarded from the dataset.

Unlike the Generic WCE videos, this dataset uses SB3 and Colon 2 as sources. It is

shown in Laiz et al. (2019) that using SB3 from SB2 is possible, while Laiz et al. (2020)

demonstrates that having mixed sources poses no problems for polyp detection.

Overall, this dataset suffers from the exact problems this publication aims to tackle: only

0.85% of all images contain polyps. It is a highly imbalanced problem with an objectively

low amount of samples compared to traditional deep learning settings.
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Table 5.1: Morphology - Polyp’s size in the Polyp WCE dataset, as reported in Laiz et al.

(2020).

Morphology Total

Sessile Pedunculated Undefined

Size Small (2–6 mm) 65 4 19 88

Medium (7–11 mm) 29 4 20 53

Large (12+ mm) 8 3 13 24

Total 102 11 52 165

CAD-CAP WCE

This public dataset was compiled during the Gastrointestinal Image ANAlysis (GIANA)

challenge (Dray et al., 2018). It consists of three balanced classes: normal, inflammatory,

and vascular lesion, each with approximately 600 images for a total of 1,800 images.

Although the classes are balanced, the total amount of samples is much smaller than the

other supervised dataset. Thus, this set can be used to test if the SSL process has captured

enough rich information to avoid overfitting.

5.5.2 Implementation Details

We performed all the experiments on one NVIDIA Titan Xp GPU, implementing the entire

architecture in TensorFlow 2.4. The backbone network, a ResNet-50, was initialized using

the Imagenet trained model, while the projection layers were randomly initialized.

Preprocessing

All data, including the used in pretrain and finetune, was processed using standard data

augmentation techniques during the training phase, such as color jittering, grayscale con-

version, and random rotations and flips.

Only RGB channels are used during all stages, keeping the images’ size at 256 by 256

pixels downsizing them using bilinear interpolation without antialias when needed. We also

introduced a mask with a radius of 128 pixels to eliminate any artifacts present at the

borders of the images, making sure that no specific noise or patterns could identify either

a dataset or a particular video.

For our finetune step, as is customary in the field due to the low number of images, the

use of data augmentation is mandatory to avoid overfitting. We found that not introducing

this same augmentation on the pretrain step negatively affected our final classification re-

sults. Thus, all sections below assume the use of data augmentation techniques for training.

During evaluation no prepocessing, other than resizing, is done to the data.
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Self-supervised learning

The unlabeled Generic WCE videos were used as training data during this stage. The

network was optimized using stochastic gradient descent, without momentum, for a total

of 21,000 batches with 72 images each (about 2 hours and 30 minutes on our GPU). In our

best-performing configuration, the network processes 21,000 sequences. The learning rate

was fixed to 0.1, and was divided by 5 every 4,300 iterations. Throughout the process, we

used an L2 weight decay of 0.0001. We experimented with multiple values, reaching the

same conclusion as SimCLR (Chen et al., 2020a), whereas any low value helps regularize

the embedding pre-projection. Finally, we used a batch all strategy for triplet loss, with

unnormalized embeddings and a margin of 0.2.

While the SSL network will be used as is, after training with the Generic WCE videos,

it is required to find the best set of hyperparameters. To such means, a procedure has been

devised. For a particular set of hyperparameters, the network is normally trained, then

finetuned over the polyp dataset, and finally evaluated using Area Under the ROC Curve

(AUC) computed from Receiver Operating Characteristic Curve (ROC). Here, the polyp

dataset is only used as a proxy to evaluate how the hyper-parameters perform, and not as

a proper evaluation of the downstream task. For instance, this procedure uses a five-fold

cross-validation over randomly selected samples from the Polyp WCE videos, whereas the

downstream task will be evaluated with complete videos.

Supervised learning

For each of the two supervised datasets, Polyp and CAD-CAP, the entire pretrained network

was finetuned with a linear classifier on top of the learned representation. All datasets were

equally trained with a learning rate of 0.01, decaying it by 10 every 1,500 iterations for a

total of 4,500 steps.

5.5.3 SSL Hyperparameters

We first performed experiments to choose the sequences’ length N , window size w, and

whether multiple videos should be used in a single batch or not. Due to our available GPU

memory, we could fit at most 72 images in a single batch, which set an upper bound to N . We

designed several models, see Table 5.2, to select the best performing combination. Although

the results show no statistically significant difference among some, it can be observed that

sequences of 72 images, where all images come from the same video, tend to give better

results. Sampling from one video or multiple at once, within a set sequence and window

size, has a lower effect on the results than the length of the sequence. Due to hardware

limitations, further combinations could not be tested. For instance, it is encouraged to try

whether multiple sequences of 72 images are beneficial for a particular downstream task.



5.5. DISCUSSION AND RESULTS 97

Most images will be relatively similar and close when using a continuous stream of

72 images. Therefore, triplets formed for TL will consist of hard negatives, namely from

samples that are difficult to distinguish. Oppositely, mixing several short sequences in a

single batch will produce negatives that are too easy to distinguish from their anchors.

Table 5.2: Hyperparameters tested during the self-supervised training, combining different

Sequence Sizes (N) and Window Sizes (w). Resampling indicates that, in a single batch,

all sequences come from the same video. Note that resampling only makes sense if N is

smaller and multiple of the batch size.

Sequence Size Sequences per Batch Window Size Resample AUC (%)

9 8 3 No 93.51 ± 1.35

9 8 3 Yes 93.23 ± 1.78

9 8 6 No 93.49 ± 1.31

9 8 6 Yes 93.81 ± 2.12

18 4 3 No 93.68 ± 1.97

18 4 6 No 93.47 ± 1.11

18 4 6 Yes 92.91 ± 2.70

18 4 9 No 93.42 ± 1.62

18 4 9 Yes 93.62 ± 1.63

72 1 6 – 94.12 ± 1.35

72 1 9 – 94.60± 1.15

72 1 18 – 94.14 ± 2.12

72 1 32 – 94.53 ± 0.96

We believe this added difficulty, albeit making the training process slower, helps the

network extract more meaningful information of the images. Thus, richer embeddings are

produced, which can then perform better in later downstream tasks. For future experiments,

N was fixed to 72, obtained continuously from a single video, and w to 9 images.

Following, we pinpointed the benefits of adding projection layers. We verified, as can be

observed in Table 5.3, whether adding these additional parameters during the pretraining

phase yielded better results during polyp detection. It is of particular importance to remark

that any projection layer added is then removed during the second phase, thus the same

number of parameters is kept regardless of the choices made here.

Table 5.3: Study of the effect of adding several projection layers with a varying number of

parameters. Each projection layer consists of a ReLU activation followed by a dense layer.

All dense layers have the same amount of parameters (dimensionality).

Projection Layers Projection Dimensionality AUC (%)

0 – 92.97 ± 1.19

1 128 93.02 ± 1.39

2 128 94.09 ± 1.28

3 128 94.60± 1.15

3 256 93.56 ± 1.53

6 128 93.85 ± 1.80

Particularly, the optimal combination for our particular task seemed to be at 3 layers,
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each of 128 parameters, which yields a substantial improvement compared to using none

and outperforms more complex solutions.

After finding the set of hyper-parameters that performs best, all models used for hyper-

parameter evaluation are discarded. Downstream tasks are finetuned with the SSL network

trained with the Generic WCE videos dataset, with N = 72, w = 9, and 3 projection layers

with 128 parameters each.

5.5.4 Results

In this subsection, first the quality of the embeddings learned during the self-supervised

learning is evaluated. Then, we explore the results obtained with two downstream specific

tasks.

SSL embeddings

As stated, our SSL process aims to learn rich embeddings. To such end, we use the temporal

sequences extracted from WCE videos to make the network learn when two images are close

or not in the video. It is expected that two embeddings of consecutive images are similar.

Taking into account we measure similarity with Euclidean distance in the TL function,

two embeddings are considered close if their distance is relatively near the margin parameter,

or distant otherwise. As can be seen from Figure 5.3, the network successfully distinguishes

not only images that are completely different but also correctly represents images that are

similar while not being consecutive.

Similarly, some samples are close to frames of other videos while maintaining evident

similarities, which serves to justify that the network has not learned features specific to a

video, but, rather, it has trained for rich information. Our time-based contrastive learning

implicitly enables the model to identify similarities between different videos with similar

events, which is vital for SSL, as the finetune process needs this augmented information to

properly function.

To further validate the embeddings, we obtained a t-SNE representation (Van Der

Maaten and Hinton, 2008) of one WCE video. As can be seen in Figure 5.4a, frames

that are visually close, containing similar structures and colors, are densely packed in the

same area of the representation. This indicates that their embeddings are also close, verify-

ing that the network has learned our contrastive metric successfully. Likewise, the network

has learned that images that are close in the video, are naturally similar, Figure 5.4b. The

smooth gradient of colors, following the viridis scheme, along with the clusters of similar

colors further indicate that similar images have similar embeddings.
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33/3303: 0.0 33/3300: 0.411 33/3299: 0.414 25/21740: 0.425 33/3302: 0.429 33/3301: 0.435 3/29130: 0.436 25/21754: 0.441 25/21739: 0.443

35/3168: 0.0 35/3154: 0.399 35/3171: 0.415 35/6544: 0.418 35/6551: 0.429 35/3155: 0.431 35/6552: 0.44 35/6143: 0.445 35/3160: 0.446

13/68504: 0.0 13/68513: 0.327 13/68514: 0.33 13/68517: 0.342 13/68512: 0.355 13/68505: 0.356 13/68516: 0.358 13/68515: 0.365 13/68507: 0.374

39/13624: 0.0 39/13625: 0.167 39/13623: 0.178 39/13627: 0.221 39/13622: 0.222 39/13626: 0.227 39/13629: 0.229 39/13618: 0.242 39/13628: 0.243

Figure 5.3: Given samples from the test set, shown in the first column, each row represents

other samples in the set sampled by distance in the embedding space. Each image is titled

as video/frame: distance, and framed in red if they come from a different video, orange if

it is the same video, and green if, additionally to being in the same video, they are within

w distance.

(a) Each embedding is represented with its cor-

responding image.

(b) Each embedding is colored according to

its position in the video, following the viridis

scheme. Images at the start of the video appear

yellow, gradually turning purple as they get to

the end.

Figure 5.4: t-SNE of the embeddings post-projections obtained from one WCE video after

the pretrain phase. The representation shows (a) that visually alike images have close

embeddings, and (b) that order is preserved.

Polyp dataset

Following previous work from Laiz et al. (2020), we abandon traditional metrics used in

polyp detection. Accuracy, for instance, is a skewed metric under such data imbalances,

favoring the class with most examples in detriment to the overall performance. Thus,
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as proposed in their publication, we adopt AUC ROC as the primary metric. Moreover,

following the same procedure in Laiz et al. (2020), sensitivity at set specificity thresholds,

namely 95%, 90%, and 80%, are also reported. Not only are they robust towards imbalance,

but most importantly they provide helpful information regarding the number of images a

physician needs to check to obtain a certain level of performance in polyp detection. For

instance, this metric gives a measure of how many polyps would be detected if a percentage

of negatives was discarded based on the classifier.

To ensure that similar images, which are commonly found in sequential frames in videos,

are not present in both train and evaluation simultaneously, we split the dataset based on

whole videos. Consequently, a patient can only be found either in train or evaluation, but

never in both. Failing to do so would overestimate the performance, producing better results

while probably failing to generalize with new data.

The baseline for this particular task, further referred to as Imagenet, uses a ResNet-

50 preinitialized with Imagenet and trained on this same dataset. Unlike our model, the

Imagenet model uses no SSL nor any contrastive loss. A more advanced model, TLBA as

trained in Laiz et al. (2020), introduces a TL to the previous model. Finally, the state-of-

the-art contrastive learning architecture SimCLR (Chen et al., 2020a), is also compared.

Every result, as seen in Table 5.4, is reported as the mean value and standard deviation

obtained from a 5-fold cross-validation. Each evaluation set is done with whole videos, not

individual samples. Also, each fold is finetuned and evaluated independently, starting from

exactly the same initial values taken from our pretrained network.

Table 5.4: Performance comparison of several methods with the same parameter count.

Imagenet refers to a ResNet-50 pretrained on the imagenet dataset and then finetuned with

a cross-entropy loss over our dataset. SimCLR has been trained with NT-Xent as per Chen

et al. (2020a). TLBA is equivalent to Imagenet but trained with an additional triplet loss.

Ours is the self-supervised network.

AUC Sensitivity %

Model (%) Spec. at 95% Spec. at 90% Spec. at 80%

Imagenet 82.85 ± 5.72 37.75 ± 9.12 51.49 ± 11.09 66.71 ± 12.15

SimCLR (Chen et al., 2020a) 92.76 ± 1.62 68.13 ± 6.37 76.92 ± 5.40 87.91 ± 3.94

TLBA (Laiz et al., 2020) 92.94 ± 1.87 76.68 ± 4.93 82.86 ± 4.78 88.53 ± 3.76

Ours 95.00± 2.09 80.16± 6.97 86.31± 6.20 92.09± 4.63

Adding any kind of contrastive losses, as can be seen from TLBA and SimCLR in Table

5.4, already provides a significant boost over the baseline of 9.91% and 10.02% on the AUC

score, respectively. Furthermore, our method based on SSL outperforms the former models

by 2.24% and 2.06%, respectively, reaching an AUC score of 95.00%. A detailed view of the

ROC curve is provided in Figure 5.5, where our model can be seen outperforming the rest,

achieving higher true positive detections with a lower false positive rate. This significant

improvement can be observed across all metrics, meaning SSL and our particular time-based
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contrastive learning can extract information that remains otherwise hidden or ignored. Of

particular interest are the improvements in the sensitivity at different specificity levels,

as shown in Table 5.4. Our method can give a notable increase in the number of polyps

correctly classified when discarding varying amounts of negatives.
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Figure 5.5: Receiver Operating Characteristic Curve (ROC) curve for the four models

tested for the polyp dataset. Each cross-validation split is shown in lighter versions its

corresponding model color, the mean ROC value is outlined in darker color, and the standard

deviation is provided as the background shade. True Positive Rate indicates the percentage

of polyps correctly identified, while False Positive Rate is the percentage of non-polyps

misclassified as polyps

Another approach to validation, aside from the quantitative analysis above, is to inspect

and visualize the results. In other words, performing a qualitative validation of the results by

examining where the model is performing correctly and where it is failing. Miss-classified

non-polyp images would add more work to the physician due to having to unnecessarily

check false positives. However, not showing a polyp frame because the system has falsely

classified it as negative can have a devastating effect, with implications much severe than

its counterpart case. Figure 5.6 depicts two examples of the mentioned cases. It can be seen

that the network fails in especially tough cases, where the polyp would be hard to be seen

even for a physician. The polyps have been circled for the reader to identify where they

are. False positives occur in zones with a more pinkish tone, characteristic of polyps, and

always in rugged and wrinkled surfaces, which could explain why the network is mistaking

them for polyps.
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(a) (b) (c) (d)

Figure 5.6: Random samples from the test set. a) and b) shows two false positives, images

inaccurately classified as polyps. c) and d) depicts two false negatives. The polyps have

been circled to help with their identification.

CAD-CAP dataset

Following the procedure established in Guo and Yuan (2020), we have split the data into

4 sets and performed a 4-fold cross-validation. As per the original challenge (Dray et al.,

2018), we report in Table 5.5 the per-class Matthews Correlation Coefficient (MCC) and

F1 scores, and the overall accuracy as p0.

A naive implementation, using a ResNet-50 and without SSL, fails to correctly classify a

significant portion of the data, achieving only a 69.98% accuracy. However, adding SSL to

this same model and using the method we propose in this publication, immediately boosts

every metric by more than 20%. Our implementation reaches a total of 92.77% accuracy

without any change to the architecture.

Further, we compare our results with those reported by Guo and Yuan (2020), the

current state-of-the-art model for CAD-CAP. They handcrafted a network for this dataset

and provide six baselines and one additional model that uses semi-supervision to improve

the results. With respect to the baselines, our model obtains higher scores across most

metrics, as can be observed in Table 5.5. We also attain comparable results to their best

implementation, which has a semi-supervised phase training over 1807 unlabeled images

provided by CAD-CAP that we do not use.

These results, from a clinical point of view, provide a positive step towards the simulta-

neous detection of several pathologies. For instance, results show that standard models that

do not rely on SSL tend to accurately classify normal images, but miss a notable amount of

the positive classes. Their SSL counterparts, however, keep the approximate same level of

detection for normal samples, while they significantly boost the ability to detect inflamma-

tory and vascular lesions. This encouraging accuracy would enable bringing physicians and

experts into the loop, further developing the model and producing a CADx system capable

of aiding in diagnosis.
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Table 5.5: Per class and overall results of various methods in GIANA. ResNet is the same

architecture as Ours but without the SSL step. Baseline 1 and 6 refer to the baselines

reported by Guo and Yuan (2020), while the model with the same name is their semi-

supervised performing implementation. Here p0 indicates the mean accuracy across all

classes.

Method Class F1-Score (%) MCC (%) p0 (%)

ResNet

Normal 73.28 ± 3.57 60.58 ± 5.44

69.98 ± 1.35Inflammatory 65.19 ± 2.95 55.86 ± 1.77

Vascular 70.79 ± 4.60 65.35 ± 3.80

Baseline 1 (Guo and Yuan, 2020)

Normal 94.92 ± 0.71 92.37 ± 1.07

84.99 ± 0.80Inflammatory 79.24 ± 1.55 68.72 ± 2.15

Vascular 80.75 ± 1.65 71.49 ± 2.57

Baseline 6 (Guo and Yuan, 2020)

Normal 96.41 ± 0.84 94.61 ± 1.26

91.92 ± 1.71Inflammatory 88.98 ± 2.13 83.44 ± 3.24

Vascular 90.27 ± 2.78 85.75 ± 3.73

Ours

Normal 95.00 ± 1.13 92.57 ± 1.66

92.77 ± 1.20Inflammatory 89.87 ± 1.65 84.99 ± 2.46

Vascular 90.26 ± 1.76 85.78 ± 2.37

Guo and Yuan (2020)

Normal 97.41 ± 0.45 96.10 ± 0.69

93.17 ± 1.14Inflammatory 90.30 ± 1.56 85.43 ± 2.24

Vascular 91.69 ± 1.21 87.78 ± 2.06

5.6 Conclusion

In this work, we propose an SSL method that leverages the information in the temporal

axis of WCE videos to obtain rich embeddings. Our method introduces a pseudo-labeling

process that enables time-based contrastive learning, forcing frames close in a video to be

represented by similar embeddings.

We demonstrate that using this process yields better results in subsequent models spe-

cializing in domain-specific tasks. Using the SSL model to classify polyps shows an increase

in successful polyp detection, achieving a 95.00% AUC, a significant improvement over exist-

ing methods. Similarly, we test the method to detect several events in the GIANA dataset,

obtaining comparable results to state-of-the-art models while offering reduced complexity

and a more general approach.

It is a limitation of our SSL method that the data used during the pretrain stage

must come in a video format. This makes it directly applicable for WCE datasets, but

would require adaptation for other medical fields. The pretaining phase is also limited by

the hardware capacity, specially so since results show that longer sequences produce richer

embeddings. If deployed as a CADx system, our work would only require individual samples

and appropriate hardware to run.

Thus, we claim that using SSL when leveraging temporal information is beneficial for

WCE models. Most importantly, the method imposes no requirements for the dataset
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used during the supervised phase, effectively tackling the classical problems commonly

encountered in medical imaging: low amounts of data—specially labeled—and severe class

imbalances.

Overall, we strongly believe the method is a good step towards better models that

empower CADx models in medical interventions. For instance, a higher rate of polyp

detection would decrease the time spent by physicians revising WCE videos, allowing more

accurate diagnosis in shorter amounts of time.

Future work could focus on exploring other SSL architectures that might boost the

downstream tasks’ performance, while exploring other hyper-parameters settings and sam-

pling mechanisms. Moreover, expanding the method to other WCE domains and other

medical fields would also be of high interest.
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a) Department of Mathematics and Computer Science, Universitat de Barcelona,

Barcelona, Spain

b) CorporateHealth International ApS, Denmark

c) Digestive System Research Unit, University Hospital Vall d’Hebron, Barcelona, Spain

d) Department of Surgery, Raigmore Hospital, Inverness, UK

In Computerized Medical Imaging and Graphics, Elsevier,

Volume 108:102243, 2023. ISSN 0895-6111

doi: 10.1016/j.compmedimag.2023.102243

Impact Factor Journal: 7.422

Q1 Biomedical Engineering (15/98)





107

Contents

Motivation and Context . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.4 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.4.1 Step 1: Probability prediction . . . . . . . . . . . . . . . . . . . . . 112

6.4.2 Step 2: Smoothing the probabilities . . . . . . . . . . . . . . . . . 113

6.4.3 Step 3: Boundaries prediction . . . . . . . . . . . . . . . . . . . . . 116

6.5 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.5.2 Evaluation criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.5.3 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.6.1 Image classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.6.2 Anatomical landmarks identification . . . . . . . . . . . . . . . . . 123

6.6.3 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.7 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . 126

Motivation and Context

The development of CAD systems has led to significant advancements in medical imaging.

In particular, their application for pathology identification in WCE studies has gained much

attention, due to their potential to reduce the time required to complete the video anal-

ysis. While the identification of anatomical landmarks has not received the same amount

of attention as other CAD applications, it is another approach to accelerate the reading

process. Moreover, it is also used to limit the region of the GI tract where lesions have been

found, and it may be considered a preliminary step for algorithms targeting one specific

organ (Koulaouzidis et al., 2021).

As discussed in Section 2.2.2, identifying the entrance and exit of an organ in the

digestive tract using WCE is a complex task. The reason behind that is the presence of

numerous similar-looking structures and the capsule movement. To address this issue, the

following study proposes a method to automatically localize relevant anatomical landmarks

that can be used in clinical practice. The system not only classifies the images from WCE

videos, as being inside or outside the studied organs but, also identifies the entrance and

exit frames, which correspond to the anatomical landmarks.
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To overcome the aforementioned challenges, the proposed method employs a three-step

approach. Firstly, a CNN is used to extract a low-dimensional representation of the images.

The obtained embeddings and timestamps of each image are used to predict the probability

of an image belonging to an organ. Second, a signal is generated for every video by leveraging

the probabilities derived from each image. Since the signal can be noisy, the probabilities

are smoothed using context data and bidirectional RNNs with motion and time information.

Finally, the boundaries of the organs are identified by solving a minimization problem.

The proposed method is evaluated using three different datasets of the small bowel and

the large intestine. The results showed that it outperformed the baseline and state-of-the-

art methods in WCE videos in both tasks: frame classification and anatomical landmark

identification. Hence, the proposed approach has the potential to reduce the time required

for screening and improve the accuracy of pathological localization in clinical practice.
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6.1 Abstract

Wireless Capsule Endoscopy is a medical procedure that uses a small, wireless camera to

capture images of the inside of the digestive tract. The identification of the entrance and

exit of the small bowel and of the large intestine is one of the first tasks that need to

be accomplished to read a video. This paper addresses the design of a clinical decision

support tool to detect these anatomical landmarks. We have developed a system based on

deep learning that combines images, timestamps, and motion data to achieve state-of-the-

art results. Our method does not only classify the images as being inside or outside the

studied organs, but it is also able to identify the entrance and exit frames. The experiments

performed with three different datasets (one public and two private) show that our system

is able to approximate the landmarks while achieving high accuracy on the classification

problem (inside/outside of the organ). When comparing the entrance and exit of the studied

organs, the distance between predicted and real landmarks is reduced from 1.5 to 10 times

with respect to previous state-of-the-art methods.

Key words: Anatomical Landmarks; Deep learning; Wireless Capsule endoscopy;

Organ detection.

The paper has been re-typeset to match the thesis style.
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6.2 Introduction

Wireless Capsule Endoscopy (WCE) (Iddan et al., 2000) is a medical procedure designed

to visualize the entire digestive tract through a swallowed vitamin-size capsule, which is

propelled by peristalsis via the esophagus, stomach, small intestine, and large intestine

(also referred to as colon). WCE offers several benefits to patients, clinicians, and the

healthcare system in comparison with traditional endoscopic procedures. It does not require

sedation, is less likely to cause discomfort, and presents fewer potential complications. It

also minimizes the needed medical resources compared to the standard screening technique

(Darrow, 2014).

Currently, in several countries, small bowel WCE is used as the first indication for

obscure Gastrointestinal (GI) bleeding, Crohn’s disease, and to a lesser extent, screening in

polyposis syndromes, celiac disease, or other small bowel pathologies (Trasolini and Byrne,

2021). Meanwhile, colon WCE is increasingly recognized as a reliable option for polyp

detection, investigation of inflammatory bowel diseases or completion of an incomplete

colonoscopy (Yung et al., 2016; Koulaouzidis et al., 2021).

Unfortunately, the adoption of this technique is below the initial expectation, mainly

because WCE: 1) does not admit any surgical intervention; 2) does not provide the exact

location of the pathology or organs; and 3) generates recordings with thousands of frames

that must be reviewed by experts, entailing a complex and time-consuming task. Even an

experienced reader may require at least an hour to analyze the data of a single patient

(Maieron et al., 2004; Rondonotti et al., 2020; Dokoutsidou et al., 2011).

Artificial Intelligence (AI) methods are being employed in several solutions to overcome

WCE limitations and accelerate the reviewing process for readers. While most studies have

been centered on detecting images with abnormalities, such as polyps, tumors, bleeding, or

ulcers, few of them are focused on localizing the findings or the anatomical landmarks.

In the clinical field, the localization of anatomical landmarks and abnormalities repre-

sents a problem of particular interest as it is essential to guide gastroenterologists during

the screening and to take clinical decisions (Iakovidis and Koulaouzidis, 2015). Indeed, the

localization of these landmarks is one of the first tasks carried out by the readers and is

required to perform a complete exploration (Koulaouzidis et al., 2021).

In this paper, we propose a deep learning method for automatically localizing relevant

anatomical landmarks to be used in the clinical routine with different capsule endoscopy

devices. The aim of this work is to reduce the average time required to complete the clinical

routine which typically takes approximately 25 minutes by a specialist reader (Iakovidis and

Koulaouzidis, 2015). To reach this purpose, the method focuses on detecting the end of

the pylorus and the ileocecal valve, which delimit the small bowel. For the large intestine,

the points of interest are the first cecal and last rectal images. Moreover, the last rectal

image ensures the proper identification of the farthest point of capsule progression. These
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landmarks are illustrated in Figure 6.1 bordered by a green dashed line. Each one of them

can be visualized in multiple depending on the orientation of the capsule. Though, in some

cases, they can be hidden by GI content, which increases the complexity of the task.

Figure 6.1: Illustration of random frames from two GI tracts. The first sample is recorded

with the Olympus EC-S10, whereas the second one is obtained with Medtronic PillCam

COLON2. The corresponding landmarks of the small bowel (first sample) and the large

intestine (second sample) are bordered by a green dashed line.

First, our system aims to identify all the images between the landmarks using video

frames, and additionally, timestamps and motion information that have not been employed

in previous studies. Subsequently, the model recognizes the first and last image belonging

to the studied organ. The obtained results show that, by providing extra knowledge to the

network, the performance of the system increases compared to the state-of-the-art methods

and may reduce the average time to complete the clinical routine.

The paper is organized as follows: initially, an overview of the related work in the field

is given. Then, our method is presented in detail explaining the key steps, followed by the

experimental setup, where the three used databases and metrics are introduced. After that,

the results of the experiments are extensively exposed in a quantitative and qualitative

manner to prove the performance of the method. Finally, the conclusions and future work

are discussed.

6.3 Related Work

The related work can be divided into two main categories: ad hoc techniques and deep

learning models. First, the traditional statistical methods and machine learning techniques

are reviewed. Then, deep learning methods focused on organ classification are summarized.

Berens et al. (2005) were the first to propose a solution for the detection of anatomi-

cal landmarks. They employed hue saturation chromaticity histograms to distinguish the

stomach, intestine, and colon tissues. Lee et al. (2007) made use of intestinal contractions

to locate the boundaries of the organs or unusual events such as intestinal juices, bleeding,

and rare capsule movements. Mackiewicz et al. (2008) described the use of color image

analysis to discriminate between the esophagus, stomach, small intestine, and colon. Haji-
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Maghsoudi et al. (2012) proposed an algorithm to classify the same organs using static and

non-static features. Li et al. (2015) reported a method that draws a dissimilarity curve

implementing the color feature to locate the boundaries between the stomach, small in-

testine, and large intestine. In these methods, the system performance is assessed as the

frame distance (error) between the point in the video where the boundary was manually

annotated by a clinician and the one selected by the algorithm.

The latest methods to discriminate between organs are based on deep learning tech-

niques. Zou et al. (2015) proposed a network called DCNN-WCE-CS to classify the diges-

tive organs from WCE images by recognizing high-level semantic features. The network

was built with three convolutional layers and a dense layer to classify. Chen et al. (2017a)

presented two different systems, O-CNN and TO-CNN. The former consisted of a stan-

dard Convolutional Neural Network (CNN), “AlexNet”, whereas the latter additionally

integrated temporal information employing Hidden Markov models. Adewole et al. (2020)

compared four state-of-the-art Deep Neural Networks (DNNs) to detect the anatomical

parts within the GI tract. Zhao et al. (2021) designed a three stages method to detect

the boundaries of the small bowel. The method explores long-range temporal dependency

with a transformer module, which captures the temporal inter-frame dependencies in short

sequences. To locate the starting and ending of the organ, a search algorithm is applied.

Finally, Son et al. (2022) proposed a system based on a DNN with temporal filtering (a

combination of median and Savitzky-Golay filters) on the predicted probabilities. To detect

the boundaries, the method considers the minimum and maximum frame index predicted

as small bowel. Although in terms of classification, deep learning methods outperform the

obtained results with the extraction of handcrafted features, only Zhao et al. (2021) and Son

et al. (2022) apply thresholding techniques to identify the boundaries of the small bowel.

To the best of our knowledge, all the studies were performed using private datasets and

with only one type of capsule.

6.4 Method

Our method aims to localize the anatomical landmarks from WCE videos. An overview

of the employed strategy is illustrated in Figure 6.2. To achieve the primary purpose, the

main steps are: 1) Develop a deep learning model to predict the probability of each image to

belong to the area of interest, the small bowel or the large intestine; 2) Smooth and mitigate

any noisy behavior of the probabilities with extra information (temporal and motion data);

3) Predict the boundaries using a rectangular pulse function by a minimization problem.

6.4.1 Step 1: Probability prediction

Let xi ∈ X be an image, where xi is the ith-frame of a WCE video X, and f(·), a DNN

architecture. The low representation of the image xi is defined as x′i = f(xi) ∈ R2048. The
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Figure 6.2: Overview of the proposed system. The input of the network consists of a

sequence of images and their temporal information. The main architecture is a DNN con-

catenated with the temporal and CMT blocks. The output of the model is a smooth signal

with low noise.

vector x′i is extended by adding a new feature containing the temporal information of the

frame, zi = x′i ∥ ti ∈ R2049, ti ∈ [0, 1].

The added time-related feature, ti, is based on the image timestamp and exists for each

i. Each image is mapped to a value between zero and one according to:

ti =
timestampi

video length
(6.1)

where timestampi represents the time (in seconds) of the ith-frame in the video. This

equation normalizes all the video lengths and provides the temporal position with respect

to the entire video.

The WCE advances through the GI tract recording all organs in a continuous manner.

It is worth remarking that although the camera might go back and forth, it remains in the

same organ. This allows the model to create a relationship between time and organs. The

temporal feature added by our system allows the model to discard erroneous predictions in

different sections of the video.

Then, using a linear classifier g(·) and the extended vector zi, the probability pi of each

frame is inferred:

pi = g(zi) = g(x′i ∥ ti) = g(f(xi) ∥ ti) (6.2)

6.4.2 Step 2: Smoothing the probabilities

Figure 6.1 contains some examples of frames where the mucosa of the digestive tract is

hidden by noisy content (Chen et al., 2017a) like bile, bubbles, residues, and liquids. In

those frames, the network may yield senseless probabilities. To mitigate this undesirable

behavior, it is important not only to properly analyze a still image but the entire sequence.

Furthermore, if the context analysis is complemented with the movements of the capsule

within the intestine and the temporal information, the developed model can further decrease

this erratic behavior.
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Given all the frames from a video, the capsule movement signal sm(·) is obtained by

estimating the distance between frames. To calculate them, the time-based self-supervised

network, fss(·), proposed by Pascual et al. (2022a) is employed to obtain the embedding for

each image xi, ei = fss(xi). The network generates similar representations for images that

are close in time, i.e., consecutive frames from the same sequence have similar embeddings.

For images from different sequences, the network yields distant image representations. Then,

the Euclidean pairwise distance is computed between the embeddings to obtain the matrix

M . The values of M are an approximation of the motion between two frames. Small values

of the matrix are caused by small movements of the capsule, while high values mean the

opposite.

The visualization of this matrix shows contraction patterns of the GI tract and can

suggest where the camera might be located. Because of the length of the video, the complete

matrix is difficult to visualize. Therefore, it is simplified as a figure containing the ith-frame,

centered in the middle of each row and their 500 nearest temporal neighbors, all of them

represented as pixels. The color of each one is the distance between the frame and the central

one. The darkest points correspond to small distances, implying that the capsule hardly

moves. While, the lighter pixels point out larger distances, which entails a drastic movement

of the capsule. Figure 6.3 contains three samples of the capsule movement codified as an

image. Each one is shown in four parts: the beginning of the video, the first landmark,

a random segment of the organ, and the second landmark. The frames containing the

landmarks annotated by the experts are represented with black dashed lines.

(a) (b) (c)

Figure 6.3: Movement visualization of the capsule in different dataset videos: a) Kvasir-

Capsule dataset, b) VH dataset and, c) Capri dataset. Each row corresponds to the

beginning of the video, the first landmark, a random part of the organ, and the second

landmark. Inside each patch, the x-axis represents the relationship of the central frame to

the other frames, and the y-axis contains the frames in chronological order.
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The sequential analysis is performed in the context - motion - temporal (CMT) block,

which smooths the probabilities of those frames with senseless values by combining neighbor-

hood probabilities, motion, and time information. The use of the CMT block is a paradigm

shift which works with probabilities and information from the whole video encoded in three

signals:

• Probability signal, sp(·), is obtained by concatenating the probabilities inferred in

each frame of a video:

sp(i) = g(f(xi) ∥ ti), ∀i | xi ∈ X (6.3)

• Motion signal, sm(·), is obtained by using the normalized ith-row of the matrix M.

• Temporal signal, st(·), is obtained by concatenating the time information of each

frame of a video:

st(i) = ti, ∀ti (6.4)

These signals are concatenated vertically to generate a matrix of size 3 × video length.

To calculate the output signal, s(·), a small network called CMTw(·) is used. It is composed

of two layers of bidirectional LSTM cells and one dense layer over w consecutive frames.

This is formalized as:

s = CMTw(sp ∥ sm ∥ st) (6.5)

The window size hyper-parameter, w, is a natural odd number that must be determined to

achieve optimal results. The overview of this block can be seen in Figure 6.4.

Figure 6.4: Overview of the proposed CMT block with w = 5. The input of the block is

the different signals extracted from processing a WCE video: the probability signal sp, the

motion signal m and the temporal signal st. The output signal s is obtained after combining

the given information.
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6.4.3 Step 3: Boundaries prediction

Finally, a simple but efficient technique is employed to identify the landmarks of the WCE

video using the inferred probabilities of each image belonging to an organ. A minimization

problem, φ(·), is solved over the output signal to identify the boundaries of the organ, as it

is shown in Figure 6.5. Let V (t) be the rectangular pulse function:

V (t) = u(t− a) − u(t− b) (6.6)

where u(t) is the unit step function defined as:

u(t) =

{
0 if t < 0

1 if t ≥ 0
(6.7)

and a and b are the limits where the function V (t) has value one. To identify the first and

last frame of the organ, the distance between the output signal s(i) and the rectangular

pulse V (t) is minimized by finding the best a and b values:

minimize
a,b

a−1∑
i=0

s(i) +
b−1∑
i=a

1 − s(i) +
n∑
i=b

s(i)

s.t. a < b
(6.8)

Figure 6.5: Overview of the minimization problem, given the output signal of the video and

the rectangular pulse function required to solve Equation 6.8. Grey lines correspond to the

anatomical landmark annotated by the expert.

The optimization of the network weights is carried out using the binary cross-entropy

loss to minimize Equations 6.2 and 6.5. In both cases, the real binary labels inside/outside

the organ have been used to compute the cross-entropy during training.
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6.5 Experimental Setup

6.5.1 Datasets

The proposed system is evaluated with one public dataset (Kvasir-Capsule) and two private

ones (VH and Capri).

Kvasir-Capsule dataset

This public dataset was collected from 117 examinations at a Norwegian Hospital employing

the Olympus Endocapsule 10 System (EC-S10) (Smedsrud et al., 2021). In our case, we only

used the set of 24 videos that contains anatomical landmarks of the small bowel, specifically

the pylorus and the ileocecal valve. The number of frames per video is 44K on average.

Small bowel images represent 75.14% of the dataset. However, this dataset does not contain

the temporal information of the videos.

VH dataset

The second dataset was obtained from 48 healthy volunteers. Physicians from Vall d’Hebron

Hospital in Barcelona recorded all the videos using Medtronic PillCam SB3 and labeled the

limits of the small bowel. The average number of frames per video is 35K with a mean video

duration of 04:36:06. The frames between the pylorus and the ileocecal valve represent the

70.68% of this dataset.

Capri dataset

The last used database is composed of 68 colon studies from different patients. All these

WCE videos were recorded with Medtronic PillCam COLON2 on behalf of the NHS High-

land Raigmore Hospital in Inverness. Images from both cameras, frontal and rear, from the

PillCam COLON2 are used in the experiments. The mean duration of the videos is 08:19:51

with an average of 14K frames. The colon images represent the 74.63% of the dataset.

6.5.2 Evaluation criteria

Models are evaluated with a two-fold stratified cross-validation strategy, following the in-

structions established in Smedsrud et al. (2021). It is worth remarking that the stratified

partitions are not based on individual frames but on individual patients. Hence, images

from the same patients do not belong to different sets. Table 6.1 contains the details about

each fold for each one of the used datasets.

As in previous (Zou et al., 2015; Chen et al., 2017a; Adewole et al., 2020; Zhao et al.,
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Table 6.1: Overview of the records in the three datasets used in this paper. The column

#Inside refers to those frames that are between the landmarks specified in each dataset.

Respectively, column #Outside refers to the number of frames that do not belong to the

area of interest.

Dataset Partitions #Patients #Inside #Outside Total

Kvasir-Capsule

Fold 0 12 400K 160K 560K

Fold 1 12 384K 97K 481K

Total 24 784K 257K 1M

VH

Fold 0 24 602K 246K 848K

Fold 1 24 592K 249K 841K

Total 48 1.2M 495K 1.6M

Capri

Fold 0 34 347K 148K 495K

Fold 1 34 393K 97K 490K

Total 68 740K 245K 985K

2021; Son et al., 2022), the performance of the method in the classification task is measured

with the following metrics: the Area Under the ROC Curve (AUC), Accuracy (ACC), Mean

Accuracy (MACC), Specificity (SPEC), and Sensitivity (SENS).

The AUC and MACC are the most appropriate metrics for evaluating the performance

of a binary classification model on imbalanced datasets. The AUC measures the model’s

ability to distinguish between images that belong to the target organ and those that do not,

while the MACC and ACC measure the number of images that are correctly predicted. It

is important to note that relying solely on SENS and SPEC rates for comparison can be

problematic, as these can vary depending on the chosen cut-off thresholds.

Similar to Mackiewicz et al. (2008); Li et al. (2015); Zhao et al. (2021); Son et al. (2022),

the performance of localizing the anatomical landmarks is assessed as the frame distance

(error) between the image where the boundaries of the organ were manually annotated by

the experts and those predicted by the system. Mean Absolute Error (MAE) and median

absolute error are used to quantify the performance. Since the capsule frame rate is variable,

both errors (MAE and median) are also presented as the difference in time (except in the

Kvasir-Capsule dataset, where frame time information is not available).

It is important to note that the metrics are computed per video to avoid any bias caused

by the video lengths.

6.5.3 Implementation details

TensorFlow 2.4 was used to implement the models, which were executed on a machine with

an NVIDIA GeForce RTX 2080 TI and CUDA 11.0. The training process is composed of

two separate stages. Firstly, the DNN with the temporal block is trained. Then, the weights
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of the DNN are frozen and the CMT block is optimized.

ResNet-50 (He et al., 2016) initialized with ImageNet weights has been used as a back-

bone architecture for the first stage DNN. The optimization of the network was carried

out with Stochastic Gradient Descent and a batch size of 256. In all the experiments, the

networks were trained for 10K iterations. For all the datasets, the learning rate was set to

0.1 and it was decreased by a factor of 0.1 every 2K iterations.

All the images were resized to 128 × 128 pixels. In the case of the private datasets, a

uniform circle mask was applied over each frame to eliminate the artifacts present at the

borders of the images, ensuring that no specific noise or patterns could identify either a

dataset or a particular video.

Data augmentation techniques were applied during the training phase to improve the

robustness of the method. Specifically, rotations of 0, 90, 180, and 270 degrees, horizontal

and vertical flips, and changes in the brightness of the images were used.

The CMT network from the second stage is composed of two bidirectional LSTM layers

with 200 and 100 units, respectively. Finally, the dense layer has two neurons as output.

The network was optimized with RMSprop as it is recommended in Zaman et al. (2021).

The learning rate was fixed to 0.001 during 4K iterations. The batch size was set to 512. To

find the optimal hyper-parameter window size, w, a search grid was done, and the chosen

value was = 201 for the Kvasir-Capsule and Capri datasets and w = 151 for the VH dataset.

Since the presented datasets are statistically different, the hyper-parameter window size,

w, must be chosen carefully for each case. The reported metrics in Table 6.2 are the AUC

score of the model in the image classification task and the median error in the entrance,

exit, and sum of both in the landmark identification task. A window size of 201 achieves

the best results with the AUC metric for all the datasets. At the entrance of the organ,

the smallest error is obtained with w = 51, whereas the lowest error in the exit is achieved

with w = 151 in VH dataset and w = 201 in Kvasir-Capsule and Capri datasets. The

same values of w are the ones that obtain the lowest error in the sum of the entrance and

exit of the organs. Therefore, the hyper-parameter w chosen for Kvasir-Capsule and Capri

datasets is w = 201 because the AUC and total median error coincide. In the case of the

VH dataset, the chosen value is w = 151 since the difference between the AUC values for

w = 151 and w = 201 is negligible.

6.6 Results

The results section is divided into two sets of experiments. The first one presents the

performance of the classification task for each one of the datasets. The second is focused on

identifying the exact frames where the capsule enters and exits the studied organ. Finally,

qualitative results are shown to complement the quantitative results of the proposed system

compared to methods published so far.
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Table 6.2: Window size hyper-parameters tested during training. The metrics used to

identify which is the best value are the AUC and the total median error obtained in a

two-fold cross-validation.

Window Size

Datasets

Kvasir-Capsule VH Capri

AUC
Median Error

AUC
Median Error

AUC
Median Error

Entrance Exit Total Entrance Exit Total Entrance Exit Total

11 95.66 58.25 982.00 1040.25 98.09 46.50 266.75 313.25 99.61 4.00 1.50 5.50

51 95.47 55.75 693.25 749.00 98.66 31.25 276.75 308.00 99.79 2.75 1.50 4.25

75 95.53 82.75 954.25 1037.00 98.59 35.75 260.00 295.75 99.74 3.00 1.50 4.50

101 94.60 75.75 1540.50 1616.25 98.55 37.25 259.00 296.25 99.76 3.50 1.75 5.25

151 95.41 111.75 1082.75 1194.50 98.54 41.50 210.75 252.25 99.78 6.25 1.50 7.75

201 96.00 76.50 487.25 563.75 98.68 53.75 260.00 313.75 99.79 2.75 1.00 3.75

251 93.71 92.75 758.00 850.75 98.43 43.50 218.00 261.50 99.62 3.50 2.25 5.75

301 95.63 76.00 777.00 853.00 98.41 42.50 218.00 260.50 99.70 2.75 1.00 3.75

In all the experiments, Kvasir-Capsule, VH, and Capri datasets are evaluated using

our proposed method, which consists of a DNN concatenated with the temporal and CMT

blocks. To analyze the influence of each component, an ablation study is performed by

building several additional models. Finally, our method is compared with the state-of-the-

art works in each task.

For the ablation study, ResNet is the simplest method and is considered the baseline for

the comparisons. The influence of the temporal block is evaluated with the ResNet + Time

model, which combines the image representation obtained by ResNet with the timestamp

of the image. The probability signals generated with the outputs of each model are used to

study the contribution of the context block. Let’s note that ResNet + Time + CMT is the

proposed method. Table 6.3 contains a summary of the ablation settings of each method.

Table 6.3: Overview of the ablation settings and the name used.

Method

Ablation Settings

ResNet Temp. Block
Context

Prob. Motion Time

ResNet ✓

ResNet + C ✓ ✓

ResNet + CM ✓ ✓ ✓

ResNet + CT ✓ ✓ ✓

ResNet + CMT ✓ ✓ ✓ ✓

ResNet + Time ✓ ✓

ResNet + Time + C ✓ ✓ ✓

ResNet + Time + CM ✓ ✓ ✓ ✓

ResNet + Time + CT ✓ ✓ ✓ ✓

Proposed Method ✓ ✓ ✓ ✓ ✓
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6.6.1 Image classification

The first experiment evaluates the performance of the proposed method in the image classi-

fication problem. Specifically, on Kvasir-Capsule and VH datasets, all the compared models

aim to identify the small bowel frames, whereas, on the Capri dataset, they aim to classify

the large intestine images.

Table 6.4: Comparison of the ablation study in the image classification problem for each

dataset. Displayed results are the mean obtained after evaluating a two-fold cross-validation.

Dataset Methods AUC (%) ACC (%) MACC (%) SPEC (%) SENS (%)

Kvasir-Capsule

ResNet 91.48 ± 4.96 87.13 ± 7.00 82.10 ± 7.78 71.75 ± 15.43 92.45 ± 7.22

ResNet + C 93.53 ± 5.51 87.24 ± 13.04 82.78 ± 10.18 73.05 ± 16.82 92.50 ± 11.90

ResNet + CM 92.70 ± 6.22 88.47 ± 11.18 83.95 ± 9.71 74.41 ± 16.75 93.49 ± 10.66

ResNet + CT 94.40 ± 6.22 87.65 ± 11.59 83.72 ± 11.06 75.45 ± 18.98 91.98 ± 11.32

ResNet + CMT 95.47 ± 5.39 90.07 ± 7.25 85.18 ± 8.86 75.23 ± 17.76 95.12 ± 6.54

ResNet + Time 92.40 ± 5.06 87.88 ± 6.04 81.16 ± 7.66 67.92 ± 15.42 94.40 ± 5.27

ResNet + Time + C 94.91 ± 4.29 89.53 ± 6.73 87.69± 7.31 82.11± 15.57 93.27 ± 6.96

ResNet + Time + CM 94.67 ± 5.24 89.87 ± 6.54 87.39 ± 7.48 80.83 ± 15.88 93.95 ± 6.30

ResNet + Time + CT 96.36± 3.98 90.80 ± 5.80 87.62 ± 7.77 80.21 ± 16.73 95.03 ± 4.92

Proposed Method 96.00 ± 4.57 91.36± 5.75 87.47 ± 7.49 78.91 ± 16.28 96.03± 4.29

VH

ResNet 94.42 ± 6.70 84.60 ± 9.59 86.26 ± 8.36 88.26 ± 13.96 84.25 ± 10.27

ResNet + C 96.28 ± 6.93 93.44 ± 6.27 91.89 ± 8.01 87.31 ± 15.88 96.47 ± 3.97

ResNet + CM 97.70 ± 4.05 93.78 ± 5.94 91.97 ± 7.86 87.15 ± 15.69 96.79 ± 3.93

ResNet + CT 97.81 ± 3.69 92.59 ± 6.93 91.12 ± 8.37 86.10 ± 17.00 96.15 ± 4.68

ResNet + CMT 97.98 ± 3.31 93.49 ± 6.52 92.02 ± 8.06 87.55 ± 15.86 96.49 ± 4.19

ResNet + Time 95.97 ± 6.28 88.64 ± 8.16 89.24 ± 7.57 89.94± 12.64 88.56 ± 9.00

ResNet + Time + C 97.17 ± 6.35 94.63 ± 5.84 92.58± 8.06 88.00 ± 16.06 97.16 ± 3.85

ResNet + Time + CM 98.13 ± 3.49 94.55 ± 5.84 92.41 ± 8.07 87.56 ± 15.96 97.26 ± 3.81

ResNet + Time + CT 98.20 ± 3.79 94.69± 5.79 92.55 ± 7.94 87.25 ± 15.89 97.84± 3.28

Proposed Method 98.54± 2.36 94.58 ± 5.17 92.26 ± 7.74 87.25 ± 15.78 97.27 ± 3.42

Capri

ResNet 99.09 ± 1.41 95.71 ± 3.67 92.36 ± 4.62 85.70 ± 9.06 99.00 ± 3.16

ResNet + C 99.83 ± 0.81 98.63 ± 3.40 98.51 ± 3.30 98.50 ± 3.63 98.52 ± 5.59

ResNet + CM 99.82 ± 0.74 98.70 ± 3.21 98.37 ± 3.56 97.83 ± 5.01 98.90 ± 4.94

ResNet + CT 99.79 ± 0.92 98.54 ± 3.51 98.51 ± 3.13 98.54 ± 3.03 98.47 ± 5.69

ResNet + CMT 99.86 ± 0.54 98.73 ± 3.18 98.42 ± 3.54 98.01 ± 4.90 98.84 ± 5.07

ResNet + Time 99.66 ± 0.76 97.18 ± 3.50 96.51 ± 3.37 93.82 ± 6.46 99.20 ± 2.28

ResNet + Time + C 99.88 ± 0.54 98.97 ± 2.22 98.79 ± 2.36 98.08 ± 4.19 99.51 ± 2.28

ResNet + Time + CM 99.59 ± 1.52 98.91 ± 2.55 98.76 ± 2.51 97.92 ± 4.66 99.60± 2.11

ResNet + Time + CT 99.90± 0.47 99.02 ± 2.01 98.90 ± 2.16 98.43 ± 3.49 99.36 ± 2.81

Proposed Method 99.79 ± 0.82 99.07± 2.12 98.96± 2.21 98.58± 3.48 99.35 ± 2.97

The obtained results in the ablation study are presented in Table 6.4. In all the datasets,

the temporal block enhances the performance of the methods with respect to the baseline

ResNet. Similarly, it can be seen that the obtained results by the models with the context

block are higher than the baselines (ResNet and ResNet + Time). In general, when time

or motion is added to the context block, the models achieve better results. This means

that the combination of visual, temporal, and contextual information produces a powerful

discriminative model. It can also be observed that the higher performance obtained in
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our model is an AUC value of 99.79% on the Capri dataset. On Kvasir-Capsule and VH,

the obtained scores are 96.00% and 98.54%, respectively. Several reasons can justify the

difference in performance among datasets, being the main differences between them: 1) the

organ of study (colon on Capri vs. small bowel on Kvasir-Capsule and VH ); 2) capsule

device (Olympus EC-S10, Medtronic PillCam SB3, and Medtronic PillCam Colon2); and 3)

amount of intestinal content. Therefore, capsule characteristics like optic, illumination, and

resolution are not equivalent neither the intestinal mucosa and content. In addition, the

statistics from each dataset are different as reported in Table 6.1. Despite all the mentioned

differences, the results are coherent among the various datasets.

As previously stated, Kvasir-Capsule dataset lacks temporal information. To address

this limitation, the frame index has been used as a substitute for temporal information.

Despite this adjustment, similar effects on the system’s performance have been observed in

this dataset. This can be attributed to the fact that the order of the frames is a reliable

proxy for timestamps.

The proposed method is compared with the following state-of-the-art methods: Zou et al.

(2015), Chen et al. (2017a), Zhao et al. (2021), and Son et al. (2022). All these methods

have been implemented, trained, and evaluated using the same datasets and evaluation

methodology. The results reported in Table 6.5 show that the proposed method outperforms

all others in all datasets.

Table 6.5: Comparison of the different methods of the state-of-the-art with our model in

the image classification problem for each dataset. Displayed results are the mean obtained

after evaluating a two-fold cross-validation.

Dataset Methods AUC (%) ACC (%) MACC (%) SPEC (%) SENS (%)

Kvasir-Capsule

ResNet 91.48 ± 4.96 87.13 ± 7.00 82.10 ± 7.78 71.75 ± 15.43 92.45 ± 7.22

Zou et al. (2015) 75.37 ± 9.42 69.51 ± 11.67 69.11 ± 8.68 70.19 ± 16.35 68.03 ± 14.60

Chen et al. (2017a) 83.65 ± 10.37 82.38 ± 9.20 76.90 ± 10.28 67.95 ± 16.18 85.84 ± 10.96

Zhao et al. (2021) 94.05 ± 4.50 89.46 ± 7.72 85.09 ± 7.87 76.29 ± 14.40 93.89 ± 7.46

Son et al. (2022) 95.75 ± 4.85 90.96 ± 6.56 81.03 ± 12.55 64.42 ± 26.40 97.64± 4.40

Proposed Method 96.00± 4.57 91.36± 5.75 87.47± 7.49 78.91± 16.28 96.03 ± 4.29

VH

ResNet 94.42 ± 6.70 84.60 ± 9.59 86.26 ± 8.36 88.26 ± 13.96 84.25 ± 10.27

Zou et al. (2015) 90.05 ± 9.91 84.56 ± 11.00 74.78 ± 12.22 56.87 ± 24.96 92.68 ± 9.98

Chen et al. (2017a) 95.86 ± 5.46 90.29 ± 8.12 87.69 ± 8.28 82.53 ± 15.62 92.84 ± 10.02

Zhao et al. (2021) 97.81 ± 4.24 93.56 ± 7.12 91.95 ± 8.04 87.54 ± 14.89 96.37 ± 5.07

Son et al. (2022) 96.46 ± 6.65 89.27 ± 9.35 90.46 ± 8.73 91.05± 14.59 89.88 ± 9.21

Proposed Method 98.54± 2.36 94.58± 5.17 92.26± 7.74 87.25 ± 15.78 97.27± 3.42

Capri

ResNet 99.09 ± 1.41 95.71 ± 3.67 92.36 ± 4.62 85.70 ± 9.06 99.00 ± 3.16

Zou et al. (2015) 86.06 ± 7.93 80.64 ± 12.24 65.93 ± 6.29 33.50 ± 12.51 98.35 ± 2.02

Chen et al. (2017a) 95.28 ± 4.37 88.42 ± 7.84 88.69 ± 6.49 88.31 ± 10.25 89.07 ± 9.62

Zhao et al. (2021) 99.85 ± 0.47 98.59 ± 2.23 98.17 ± 2.94 97.76 ± 3.74 98.58 ± 4.14

Son et al. (2022) 99.93± 0.21 97.94 ± 2.74 96.06 ± 4.30 92.57 ± 8.22 99.57± 2.58

Proposed Method 99.79 ± 0.82 99.07± 2.12 98.96± 2.21 98.58± 3.48 99.35 ± 2.97
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6.6.2 Anatomical landmarks identification

In the second experiment, the difference between the predicted landmarks and the annota-

tions provided by the experts is analyzed. On Kvasir-Capsule and VH datasets, the pylorus

and the ileocecal valve, which delimit the small bowel, are identified. On the other hand,

on Capri dataset, the boundaries of the colon, first cecal and last rectal images are used.

The results from the ablation study come from minimizing the rectangular pulse function

over the output signal of each setting. Table 6.6 contains the MAE and median error of

each one in frames and time. The reported results show that the use of the temporal and

context block reduces the error of the baseline ResNet. Particularly, in the small bowel

datasets, Kvasir-Capsule and VH, there is a large difference between MAE and median

error. This suggests that there are several outliers. Despite them, the proposed method

achieves promising results in all the cases.

Table 6.6: Comparison of the ablation study in the anatomical landmarks identification

task for each dataset. MAE and median error are represented as the difference in frames

and time (hh:mm:ss).

Dataset Methods

Entrance Exit

MAE Median MAE Median

Frame Time Frame Time Frame Time Frame Time

Kvasir-Capsule

ResNet 668.34 ± 1091.84 - 111.75 ± 28.25 - 1875.96 ± 2747.54 - 1124.00 ± 493.00 -

ResNet + C 1505.83 ± 3316.56 - 207.50 ± 153.00 - 2147.42 ± 2967.07 - 908.50 ± 757.50 -

ResNet + CM 1504.54 ± 3272.05 - 217.25 ± 131.75 - 1877.62 ± 2736.03 - 928.00 ± 684.50 -

ResNet + CT 1677.79 ± 3509.05 - 139.00 ± 51.50 - 1902.29 ± 2683.68 - 1220.50 ± 391.50 -

ResNet + CMT 830.08 ± 1341.51 - 127.50 ± 31.00 - 1770.79 ± 2771.27 - 743.75 ± 580.25 -

ResNet + Time 785.88 ± 1182.88 - 93.00 ± 15.50 - 2002.38 ± 2959.43 - 1077.00 ± 539.00 -

ResNet + Time + C 535.50 ± 1089.54 - 26.75± 2.25 - 1710.71 ± 2769.83 - 559.00 ± 169.00 -

ResNet + Time + CM 606.08 ± 1104.42 - 61.25 ± 9.25 - 1727.67 ± 2767.06 - 651.50 ± 383.00 -

ResNet + Time + CT 556.38 ± 951.79 - 116.00 ± 43.00 - 1730.50 ± 2756.90 - 663.25 ± 83.25 -

Proposed Method 465.88± 918.13 - 76.50 ± 46.50 - 1679.67± 2775.72 - 487.25± 163.75 -

VH

ResNet 667.70 ± 1070.13 00 : 04 : 00 220.75 ± 191.75 00 : 01 : 45 2710.98 ± 4505.58 00 : 22 : 02 1235.75 ± 1126.75 00 : 12 : 20

ResNet + C 559.98 ± 1007.92 00 : 03 : 11 78.50 ± 17.00 00 : 00 : 34 1290.33 ± 2117.18 00 : 14 : 52 198.50 ± 82.00 00 : 04 : 02

ResNet + CM 512.38 ± 870.20 00 : 02 : 59 91.75 ± 48.75 00 : 00 : 39 1028.02 ± 1704.22 00 : 12 : 14 199.50 ± 85.50 00 : 03 : 24

ResNet + CT 557.83 ± 1181.40 00 : 03 : 10 78.25 ± 16.75 00 : 00 : 32 1279.73 ± 1774.48 00 : 14 : 55 369.75 ± 3.75 00 : 05 : 53

ResNet + CMT 500.90 ± 1166.62 00 : 02 : 45 50.50 ± 17.0 00 : 00 : 25 1077.35 ± 1605.62 00 : 12 : 05 259.50 ± 109.00 00 : 05 : 40

ResNet + Time 731.71 ± 1451.30 00 : 03 : 57 103.50 ± 59.50 00 : 01 : 14 2050.94 ± 4142.68 00 : 17 : 01 397.00 ± 350.00 00 : 06 : 26

ResNet + Time + C 502.62 ± 877.55 00 : 02 : 47 59.50 ± 4.00 00 : 00 : 25 911.23 ± 1619.69 00 : 11 : 38 167.25 ± 106.25 00 : 03 : 03

ResNet + Time + CM 417.79± 814.67 00 : 02 : 18 44.00 ± 7.00 00 : 00 : 10 1110.48 ± 1992.44 00 : 13 : 02 166.50± 103.00 00 : 03 : 00

ResNet + Time + CT 443.46 ± 1092.63 00 : 02 : 31 50.25 ± 8.25 00 : 00 : 23 1051.17 ± 1933.66 00 : 11 : 37 225.25 ± 170.25 00 : 03 : 29

Proposed Method 443.69 ± 1064.05 00 : 02 : 38 41.50± 11.00 00 : 00 : 15 837.77± 1485.79 00 : 09 : 46 210.75 ± 164.75 00 : 03 : 14

Capri

ResNet 53.70 ± 110.44 00 : 01 : 19 14.50 ± 4.00 00 : 00 : 06 13.80 ± 48.35 00 : 02 : 19 1.00 ± 0.00 00 : 00 : 01

ResNet + C 28.94 ± 85.33 00 : 00 : 59 4.50 ± 0.50 00 : 00 : 02 41.76 ± 215.63 00 : 04 : 44 3.00 ± 0.00 00 : 00 : 01

ResNet + CM 32.43 ± 97.72 00 : 01 : 00 2.75 ± 0.25 00 : 00 : 01 38.58 ± 210.08 00 : 03 : 01 1.75 ± 0.25 00 : 00 : 01

ResNet + CT 32.62 ± 91.01 00 : 01 : 02 5.00 ± 1.00 00 : 00 : 02 48.45 ± 240.70 00 : 07 : 08 2.00 ± 0.50 00 : 00 : 02

ResNet + CMT 32.35 ± 100.58 00 : 01 : 01 2.50 ± 0.50 00 : 00 : 01 37.71 ± 209.38 00 : 03 : 06 2.00 ± 0.00 00 : 00 : 01

ResNet + Time 38.40 ± 86.46 00 : 01 : 11 5.00 ± 2.00 00 : 00 : 02 19.80 ± 114.86 00 : 05 : 37 1.00± 0.00 00 : 00 : 01

ResNet + Time + C 29.57 ± 81.18 00 : 00 : 51 4.50 ± 1.50 00 : 00 : 01 8.89 ± 38.02 00 : 02 : 13 1.00± 0.00 00 : 00 : 01

ResNet + Time + CM 23.58± 69.27 00 : 00 : 41 3.50 ± 0.50 00 : 00 : 01 8.26 ± 38.02 00 : 02 : 04 1.00± 0.00 00 : 00 : 01

ResNet + Time + CT 30.40 ± 79.19 00 : 00 : 58 5.25 ± 3.25 00 : 00 : 01 8.88 ± 38.15 00 : 02 : 09 1.00± 0.00 00 : 00 : 01

Proposed Method 29.40 ± 83.94 00 : 00 : 55 2.75± 0.25 00 : 00 : 01 7.91± 37.82 00 : 01 : 47 1.00± 0.00 00 : 00 : 01

The proposed method is compared with Zhao et al. (2021) and Son et al. (2022), as

shown in Table 6.7. For this experiment, the proposed methods by Zou et al. (2015) and

Chen et al. (2017a) have not been considered since they do not identify the boundaries

of the organs. The results in Table 6.7 show that the proposed method outperformed all

methods in all the cases.

It can be observed in Table 6.6 and Table 6.7 that in both small bowel datasets, that
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Table 6.7: Comparison of the different methods of the state-of-the-art with our model in

the anatomical landmarks identification task for each dataset. MAE and median error are

represented as the difference in frames and time (hh:mm:ss).

Dataset Methods

Entrance Exit

MAE Median MAE Median

Frame Time Frame Time Frame Time Frame Time

Kvasir-Capsule

Zhao et al. (2021) 2644.16 ± 4637.65 - 1251.00 ± 115.25 - 4603.58 ± 1545.95 - 1669.00 ± 185.26 -

Son et al. (2022) 2711.00 ± 3435.83 - 1786.00 ± 231.93 - 2409.00 ± 3106.30 - 1506.75 ± 1161.42 -

Proposed Method 465.88± 918.13 - 76.50± 46.50 - 1679.67± 2775.72 - 487.25± 163.75 -

VH

Zhao et al. (2021) 1304.23 ± 1394.26 00 : 08 : 20 915.25 ± 22.98 00 : 04 : 34 3308.58 ± 583.28 00 : 31 : 44 1765.25 ± 461.03 00 : 16 : 59

Son et al. (2022) 1390.47 ± 3487.30 00 : 07 : 12 304.75 ± 220.97 00 : 02 : 14 1552.00 ± 520.78 00 : 16 : 47 627.75 ± 1469.01 00 : 08 : 09

Proposed Method 443.69± 1064.05 00 : 02 : 38 41.50± 11.00 00 : 00 : 15 837.77± 1485.79 00 : 09 : 46 210.75± 164.75 00 : 03 : 14

Capri

Zhao et al. (2021) 214.24 ± 437.6 00 : 07 : 28 85.0 ± 23.33 00 : 01 : 11 524.94 ± 1258.34 00 : 35 : 23 23.5 ± 2.12 00 : 01 : 02

Son et al. (2022) 56.39 ± 161.94 00 : 04 : 00 14.50 ± 0.70 00 : 00 : 08 32.25 ± 111.27 00 : 07 : 29 7.50 ± 0.70 00 : 00 : 43

Proposed Method 29.40± 83.94 00 : 00 : 55 2.75± 0.25 00 : 00 : 01 7.91± 37.82 00 : 01 : 47 1.00± 0.00 00 : 00 : 01

the identification of the entrance of the organ is more accurate than the exit. On the other

hand, for the colon dataset (Capri) the identification of last rectal image is more accurate

than the entrance.

Finally, the impact of the landmarks identification strategy is analyzed. To evaluate it,

the third step of our model has been applied to the outputs of the models from Zhao et al.

(2021) and Son et al. (2022). Table 6.8 summarizes the results obtained, which indicate that

by solving the minimization problem the errors decrease. These findings suggest that the

proposed strategy of locating anatomical landmarks is more effective than those currently

published.

Table 6.8: Comparison of the different strategies for identifying the anatomical landmarks.

The proposed strategy is applied to state-of-art methods. The displayed results are the

median error obtained after evaluating a two-fold cross-validation.

Method

Dataset

Kvasir-Capsule VH Capri

Entrance Exit Entrance Exit Entrance Exit

Zhao et al. (2021) 1251.00 1669.00 915.25 1765.25 85.00 23.50

Zhao et al. (2021) + Step 3 93.00 702.50 65.00 478.00 3.50 1.00

Son et al. (2022) 1786.00 1506.00 304.75 627.75 14.50 7.50

Son et al. (2022) + Step 3 686.25 1683.25 214.50 1236.00 35.50 6.00

Proposed Method 76.50 487.25 41.50 210.75 2.75 1.00

The results from both tasks, image classification (Table 6.5) and anatomical landmark

identification (Table 6.7) show a strong correlation. In other words, the better the classifier,

the more accurate the limit identification of the organs.
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6.6.3 Qualitative Results

This section aims to gain additional information about the performance of the proposed

method and to visualize the types of errors in a qualitative manner (Figure 6.6). These

results are presented using one test video per dataset (Kvasir-Capsule dataset in Figure 6.6a,

VH dataset in Figure 6.6b and Capri dataset in Figure 6.6c). The selected ones have metrics

near the median values reported in Table 6.6, thus avoiding outliers and championship cases.

The output signals represent the classification task, where the probability for each image

to belong to the studied organ is plotted. Yellow dots are the frames corresponding to

the organs (small bowel or large intestine), whereas the blue ones are considered out of

this range. The visualization allows assessing the performance of our method by removing

certain blocks and understanding the contribution of each component to the overall system.

For that purpose, each figure shows four of the methods previously introduced: ResNet,

ResNet + Time, ResNet + CMT and Proposed Method.

For the Kvasir-Capsule dataset (Figure 6.6a), the ResNet + Time method infers worse

probabilities than the ResNet model. When the temporal information is combined with the

contextual block in our method, the obtained output signal is smoother and more similar

to the ground truth. However, there are still some misclassified sequences outside the small

intestine. In the case of the videos from the other datasets (Figure 6.6b and Figure 6.6c)

the application of the contextual information further evidence the improved performance of

the proposed method even more.

Moreover, each subfigure contains a set of false positive and false negatives samples

determined by our method. The small bowel videos show several misclassified examples,

where the mucosa is completely hidden, thus preventing the system from making a correct

prediction.

The identification of the anatomical landmarks is a complex task since only one correct

frame in the video has to be determined as the entrance or exit of the organ. In Figure 6.6,

the green dashed lines over the output signals indicate the frame labeled by the experts while

the purple ones correspond to the system predictions. The rectangular pulse function fits

the output signal and correctly identifies the landmarks, but it fails when the prediction of

belonging to the organ is wrong. In the identified last pylorus image, it can be observed that

despite the distance between the predicted and the real landmarks, the frames are visually

similar (Figure 6.6a and 6.6b). But when the mucosa is hidden by the noise content of the

GI tract, as happens in the exit sequences in Figures 6.6a and 6.6b, the error is higher.

Therefore, the complexity of the problem increases. However, in Capri dataset (Figure

6.6c), the exit of the large intestine is easier to identify due to the drastic change in the

visual features caused by the evacuation of the capsule from the body or because the video

stopped.
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6.7 Discussion and Conclusion

In this paper, an effective deep learning system for WCE is proposed. The method is de-

signed to, firstly, infer the probability for every image to belong to the area of interest,

taking advantage of temporal, neighboring and motion information. Secondly, the land-

marks are predicted by solving a minimization problem. Experimental results have been

reported over three datasets, one public and two private. In all of them, the proposed

method improves the results of the baseline system.

The results obtained in the two datasets of the small bowel, Kvasir-Capsule and VH,

show a high performance in the classification problem. Moreover, our method in the VH

dataset displays even better results, increasing at least three points in each metric. Several

reasons can justify the difference in performance achieved on each dataset such as dataset

size, amount of intestinal content or device used to collect the video.

After performing all the experiments and analyzing the results, we believe that our

method is a good candidate for the automatic classification of organs regardless of the

device used. Although our method of landmark identification does not achieve the best

performance for all the datasets, it exhibits promising results.

One limitation of the proposed system is that it has been designed to deal with only one

organ, given the lack of multi-organ labels in the used datasets. However, this limitation

could be addressed by incorporating anatomical landmarks for multiple organs and adapting

the CMT block accordingly. Additionally, the results strongly depend on the organ, the

used WCE device, and the dataset size. To overcome this issue, future research could focus

on exploring a general method for multiple devices and organs.

Future work could explore the detection of multiple organs and their anatomical land-

marks. Moreover, distinct landmarks inside one organ can be localized, for example, the

flexures of the large intestine.
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(a) Kvasir-Capsule

(b) VH

(c) Capri

Figure 6.6: Visual representation of the system outputs of three WCE videos from: a)

Kvasir-Capsule b) VH and c) Capri datasets. Each subfigure contains the output signals

and the identification of the anatomical landmarks for the evaluated methods. Yellow

points represent frames from the organ of interest (small bowel or large intestine), whereas

the blues ones are outside these areas. The second task is displayed over the outputs signals

as dashed lines. The predicted landmarks are ticked in purple, while the ground truth

is in green. Below the output signals are displayed a uniform sampling of frames around

the landmarks, achieving sequences of 11 items. The frame identification (id) and the

probability of belonging to the organ of interest are shown above each image. The frames of

the labeled and predicted landmarks are surrounded by a green and purple box, respectively.

Finally, several misclassified frames are shown, which are localized in the output signal of

the Proposed Method as crosses in red for false positives and dark green for false negatives

samples. The figure is best viewed on the computer.
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Motivation and Context

The evolution of hardware allows the design of smaller and more powerful parts of the

WCE, leading to the development of new capsule devices. The comparison between images

captured by distinct pill cameras enables us to perceive that features such as illumination

and resolution are different. Therefore, this results in datasets from different capsules having

significant changes in data distribution.

As previously mentioned in Chapter 3, DL exhibit optimal performance when the train-

ing and test data distributions are identical. However, when they are obtained from different

distributions the performance of the system deteriorates. This is known as covariate dis-

tribution shifts. In the context of this thesis, this phenomenon arises when a dataset is

evaluated on a DL system trained with data from another capsule device. Consequently,

the systems may no longer work well in images captured by new capsules.

The labeling of an entirely new dataset for each new capsule can be a time-consuming

and expensive process. Therefore, discarding previous databases and starting from scratch

each time a new device is released is impractical. To address this covariate distribution

shift, a domain adaptation approach is used. The following study proposed the use of

the TL to improve the generalization of the model over several datasets from different

devices, particularly PillCam SB2 and PillCam SB3. The method is categorized as a deep,

supervised, single-modality, and one-step approach according to Section 3.3.1.
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The proposed method works by adapting an embedding space that is trained with a large

dataset to a new domain where only a comparatively small labeled dataset is available. The

space is adapted by generating triplets of images from both domains, so two images of the

same category but from different domains are closer to each other than images belonging

to the same domain but in a different class. This approach aligns the embedding space

without learning device-specific features while maintaining the accuracy of the model in

both domains.

The experimental results show that the designed method performs properly with both

capsule devices, proving its ability to adapt the embedding space to new domains. The quan-

titative and qualitative results suggest that this approach is a valuable tool for researchers

to create new models that are effective across different datasets and devices. Therefore,

there is no need to spend significant time and resources to create new large databases for

each new device.
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7.1 Abstract

Wireless Capsule Endoscopy (WCE) is a minimally-invasive procedure that, based on a

vitamin-size camera that is swallowed by the patient, allows the visualization of the entire

gastrointestinal tract. This technology was developed 20 years ago to perform useful and

safe studies of different bowel disorders. However, especially the number of captured images

and their difficult interpretation has hindered its deployment in some clinical scenarios.

Deep learning methods have the necessary capacity to deal with WCE image interpreta-

tion, but training good models is still an open problem for some bowel disorders due to the

fact that obtaining a sufficiently large set of positive cases, for the creation and validation of

the model, is an arduous task. Moreover, technological advances are rapidly moving forward

proposing new hardware able to obtain images with a substantially improved quality. Given

these two facts, it is obvious that highly accurate models can only be built by considering

heterogeneous datasets composed of images captured by different cameras, and if training

methods are able to find invariances with respect to the image acquisition systems.

In this paper, we study the use of deep metric learning, based on the triplet loss function,

to improve the generalization of a model over different datasets from different versions of

WCE hardware. The obtained results show evidence that with just a few labeled images

from a newer camera set, a model that has been trained with images from older systems

can be easily adapted to the new environment.

Key words: deep learning; deep metric learning; triplet loss; domain adaptation;

capsule endoscopy; medical imaging.

The paper has been re-typeset to match the thesis style.
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7.2 Introduction

Wireless Capsule Endoscopy (WCE) is a medical procedure that enables the visualization of

the entire gastrointestinal tract. WCE is based on a vitamin-size capsule, equipped with a

light source, camera, an optical lens, radio transmitter, and a battery, that is swallowed by

the patient and propelled by the peristalsis along all Gastrointestinal (GI) tract, allowing

the full visualization of it, from inside, without pain or sedation.

The use of a WCE capsule produces a long video that contains thousands of images that

must be individually reviewed by a medical specialist, making the interpretation and analy-

sis of WCE data a complex and time-consuming activity. To overcome this drawback we can

use a Computer-Aided Detection and Diagnosis (CAD) to support human interpretation.

The first difficulty that researchers must tackle when developing CADs for WCE is the

need to build representative databases for some specific disease or condition. The creation

of these databases is time-consuming and economically expensive because of technical ques-

tions and also because of the scarcity of positive cases. For this reason, most of the methods

we can find in the literature are built and validated with very small datasets.

Another important point that should not be overlooked is that, in the medical field,

technological advances are rapidly moving forward. Since the presentation of the first WCE

device in 2001, new devices have been periodically presented with better image resolution,

illumination or larger field of view. Today, we can find different WCE devices, coming from

different manufacturers, that present different technical specifications. Table 7.1 illustrates

some of the most known WCE devices with their main specs, and Figure 7.1 shows images

captured by two different capsules from Medtronic: PillCam SB2 and PillCam SB3. As

it can be appreciated, images from PillCam SB3 are better. It is clear that if a model is

trained with data from an older capsule, it might not give the expected results when it is

evaluated on a newer one since the same data distribution is not guaranteed. However, when

the cost of creating a database is that high, it is not acceptable to lose previous databases

and build a new one from scratch each time a new device is released.

Table 7.1: Capsule endoscopy devices used to perform endoscopy operations. The table

contains a summary of the main features of each one.

Capsule
Size Weight Battery Resolution Frames Field

(mm) (g) life (h) (pixels) per second of view

PillCam SB2 - Given Imaging 26.0 × 11.0 3.40 8 256×256 2 fps 156◦

PillCam SB3 - Given Imaging 26.2 × 11.4 3.00 >8 340×340 2-6 fps 156◦

EndoCapsule - Olympus America 26.0 × 11.0 3.50 >8 512×512 2 fps 145◦

MiroCam - IntroMedic Company 24.5 × 10.8 3.25 - 4.70 >11 320×320 3 fps 170◦

OMOM Jinshan - Science and Technology 27.9 × 13.0 6.00 >6 - 8 640×480 2 fps 140◦

To overcome this problem, we propose a domain adaptation method based on deep

metric learning using the triplet loss. The proposed method aims to adapt the embedding
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Figure 7.1: Frames from different capsules present different technical quality. (a) PillCam

SB2 capsule image (b) PillCam SB3 capsule image. Image in (b) is clearly better than

image in (a).

space trained with a large training data set to a new domain where only comparatively

few labeled images are available. The embedding space is adapted by generating triplets of

images from both domains, with the goal that two images in the same category are closer

than images belonging to different domains. The obtained results show that by using a

small labeled dataset from the new domain, the embedding space can be adapted to work

in both domains with high performance.

The rest of the paper is organized as follows: first, we give an overview of the related

work in the field. This is followed by a description of our methodology, presenting the

system architecture, followed by the experimental setup and results. Finally, we conclude

the paper and give directions for future work.

7.3 Related Work

7.3.1 Deep Learning for WCE analysis.

Several deep learning methods have been proposed for WCE image analysis, dealing with

different pathologies such as bleeding, hemorrhages, angiectasia, polyps/cancer, ulcers, and

hookworms. For example, Zou et al. (2015) proposed a CNN-based method to classify the

different organs of the digestive system such as the stomach, small intestine, and colon; Segúı

et al. (2016) proposed a classification method of motility events such as turbid, bubbles,

clear blob, wrinkle, and wall; finally, Yuan and Meng (2017) proposed a stacked sparse

autoencoder-based approach for detecting polyps.

7.3.2 Metric Learning

Metric learning has been extensively used in many machine learning and computer vision

applications (Kulis, 2013). Inspired by the success of deep neural networks, deep metric
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learning has become popular in the last few years. These methods aim to learn a dis-

criminative feature embedding, using deep neural networks, such that similar samples are

represented by similar embedding vectors and different samples are represented by dissim-

ilar ones. In order to learn these features, embedding deep neural networks are trained

using special loss functions such as the Contrastive loss (Hadsell et al., 2006), the Triplet

loss (Hoffer and Ailon, 2015) or the Quadruplet loss (Chen et al., 2017b). Triplet loss

has shown very good results on several image retrieval tasks (Chechik et al., 2010; Gordo

et al., 2016) and in many image classification problems such as facial recognition (Schroff

et al., 2015), person re-identification (Cheng et al., 2016; Hermans et al., 2017) or action

recognition (Ma et al., 2016).

The selection of the triplets is one of the key factors when implementing the triplet loss.

In the literature, we can find several methodologies, such as the Batch All or Batch Hard

(Ding et al., 2015), that face the problem of triplet sampling for each batch.

7.3.3 Domain Adaptation

Domain adaptation methods are designed to deal with the problem of distribution shift

across domains. Many domain adaptation (or transfer learning) approaches have been

proposed for computer vision applications (Oquab et al., 2014; Donahue et al., 2014; Chen

et al., 2015). To our knowledge, the use of triplet loss in the domain adaptation problem has

been limited. Huang et al. (2015) defined a triplet visual similarity constraint for learning

to rank across two sub-networks using online and offline images.Yu et al. (2018) used the

triplet loss to correct the selection bias in the triplet selection. Deng et al. (2018) used the

triplet loss and pseudo-labels for unsupervised domain alignment.

7.4 Method

The architecture of our system is illustrated in Figure 7.2. As it can be seen, the system

architecture consists of a classical neural network architecture followed by a normalization

layer L2 and an embedding layer which is optimized with the triplet loss.

In this section, we first introduce the triplet loss function for deep metric learning and

then we consider its role in the problem of domain adaptation in our scenario.

7.4.1 Triplet loss for Deep Metric Learning

Let X, Y denote two random variables, which indicate data and label, respectively. Let D

be the set of data sampled from P (X,Y ). The goal of metric learning is to learn a distance

function that assigns small (or large) distance values to a pair of similar (or dissimilar)

images. Deep metric learning uses a deep neural network to learn a feature embedding
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Figure 7.2: Overview of the proposed CNN structure. The input of the network consists of a

batch of images from both domains, source Ds and target Dt. A set of triplets is generated,

where anchor images and negative images are from the same domain while positive images

are from a different domain but belonging to the same class as the anchor image. The

architecture is defined as a standard CNN Architecture followed by L2 normalization and

an embedding layer. It is optimized by using the triplet loss over the generated triplets.

x′ = Φ(x) with the goal of learning a non-linear distance function as follows:

d2(xi, xj) = ||Φ(xi) − Φ(xj)||22 (7.1)

In order to learn this embedding representation Φ(xi), the triplet loss function is defined

as follows:

Ltriplet =
∑

(xa,xp,xn)∈D

[
d2(xa, xp) − d2(xa, xn) + α

]
+

(7.2)

where [·]+ = max(·, 0), α > 0 and xa, xp and xn refers to anchor, positive and negative

examples respectively. Hence, the set of triplets used to train the network is defined as:

τ = {(xa, xp, xn)|ya = yp and ya ̸= yn} (7.3)

This loss function has shown excellent results in learning feature embedding mappings,

requiring that the distance between Φ(xa) and Φ(xp) is smaller than the distance between

Φ(xa) and Φ(xn).

The selection of triplets during training is one of the key factors in order to optimize the

network using the triplet loss. As it was said before, there exist two main methodologies

to face the sampling problem of triplets: Batch All and Batch Hard (Ding et al., 2015).

In Batch All strategy a batch of images from the training set is selected and then all

possible triplets are generated to optimize the loss. On the other hand, in Batch Hard

strategy, triplets are generated by seeking, for each sample xa in the batch, the hardest

positive sample, or farthest positive sample argmaxxp(∥Φ(xa) − Φ(xp)∥22), and the hardest
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negative sample, or closest negative sample argminxn(∥Φ(xa) − Φ(xn)∥22). Depending on

the data set, Batch All can lead to a sub-optimal solution while Batch Hard can have some

convergence problems as a consequence of only considering the hardest samples. For our

problem, we will consider the Batch All strategy due to the visual heterogeneity of our

classes.

7.4.2 Domain adaption using triplet loss

In our problem, it is assumed that two datasets from different domains are available, the

source domain dataset, Ds, and the target domain dataset, Dt, obtained by different cap-

sules. Both datasets are fully labeled but Ds is expected to contain a larger amount of

images while Dt is expected to be smaller. To goal is to adapt the model trained with

images from Ds to the new environment Dt with minimal effort.

We assume that there is a covariate shift on the marginal distribution P (X) across do-

mains while the conditional distribution P (Y |X) remains equal. To correct the distribution

shift across domains, we first learn a model that defines the embedding function using the

large labeled training set Ds. This model is trained using the standard Batch All strategy

using all the images from the training set Ds. Then, in order to align the data distributions

from both domains and then reduce the whole distribution discrepancy between the source

and target datasets, new triplets are generated using both domains, Ds and Dt. Triplets

are generated from a batch of N images, where K images are selected from Dt while N −K

from Ds. Each triplet consists of an anchor sample xa that can be from Ds or Dt indif-

ferently, a positive sample xp that is from a different domain than xa but with the same

label and a negative sample xn which is from the same domain than the anchor image xa.

Formalizing, the set of triplets used to train the system is defined as follows:

τ = {(xai , x
p
j , x

n
i )|yai = ypj and yaj ̸= ynj and i ̸= j}

where i and j represent any of the classes of the dataset.

7.5 Experimental Results

7.5.1 Dataset

In order to validate the proposed system, two different datasets have been used, named

SB2D and SB3D. These datasets have been created using two different versions of the

capsules. SB2D has been created using the PillCam SB2 version while the SB3D dataset

with the PillCam SB3 version. The most remarkable difference between these two capsules

is a 30% improvement in resolution quality (see Table 7.1 and Figure 7.1) but also the

improvement in illumination, color and the overall image quality.
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Figure 7.3: Each row shows six exemplary images for each category in the database: bubbles,

turbid, clear blob, wrinkles, wall, and undefined, respectively

Both datasets were labeled by expert physicians into 6 different classes: bubbles, turbid,

clear blob, wrinkles, wall, and undefined. All images are resized to 256 × 256 pixels. SB2D

contains a total of 120K labeled images, 20K images per class from a total of 50 different

procedures. SB3D contains a total of 6K images, 1K images per class obtained from a total

of 10 different procedures. Figure 7.3 shows six exemplary images for each class.

7.5.2 Implementation Details and Evaluation Methodology

We implemented the methods using Tensorflow (Abadi et al., 2015). The system architec-

ture is based on the ResNet-50 (He et al., 2016) with an additional normalization L2 layer

and embedding layer of size 2048. ResNet parameters are preloaded from a trained network

using Imagenet dataset. The network is trained for a total of 50 epochs using the stochas-

tic gradient descent (SGD) algorithm with a cyclic learning (Smith, 2017) rate that moves



140 CHAPTER 7. PAPER IV

between 0.01 and 1e-5 with stepsize 4000. The batch size is set to 64. All experiments are

executed using the standard 2-fold cross-validation methodology where images of the same

procedure strictly belong to only one partition.

7.5.3 Results

A first experiment is done to compare the proposed methodology, TL SB2-3, against 3

classical training alternatives CE SB2, CE SB2-FT-SB3 and TL SB2. CE SB2 refers

to ResNet-50 trained on SB2D with the classical cross-entropy loss function. CE SB2-FT-

SB3 consists of the CE SB2 model where the classification layer is fine-tunned using the

standard methodology with the dataset SB3D. TL SB2 refers to the proposed architecture

presented in Figure 7.2, based on the ResNet-50 and optimized with the triplet loss function

with the dataset SB2D. Finally, the proposed method TL SB2-3 which is optimized with

the triplet loss function using data from both domains, SB2D and SB3D. In order to avoid

overfitting, the parameters of the network are initialized using the TL SB2 model which is

trained using SB2D.

As it can be seen in Table 7.2, CE SB2 and TL SB2 obtain good results on SB2D but

very poor results when using SB3D. On the other hand, CE SB2-FT-SB3, that uses the

classical fine-tunning procedure, obtains satisfactory results on SB3D but its accuracy on

SB2D drops. The proposed methods, TL SB2-3 is able to obtain good results on SB3D

without deteriorating its accuracy on the source domain SB2D.

Table 7.2: Comparison of the different proposed methods evaluated in target and source

domains respectively, SB2D and SB3D.

Methods
Accuracy (%)

SB2 SB3

CE SB2 92.5 51.7

CE SB2-FT-SB3 62.7 87.0

TL SB2 93.3 41.2

TL SB2-3 93.1 89.3

Figure 7.4 shows the UMAP (McInnes et al., 2018) plots of the learned embedding

spaces. Each color represents a different class. Plot (a) illustrates the embedding space

obtained with SB2D; in plot (b) colored points represent SB3D data projected into the

SB2D embedding space (gray); and plot (c) illustrates the adapted embedding space with

SB2D (grey) and SB3D (colored). As it can be observed, there exists a clear shift between

the distribution from different domains which is adapted after training with both domains.

In the second experiment (see Table 7.3), we evaluated the accuracy of the system using

different amount of images per procedure. A total of 10 procedures were selected using

the standard 2-fold cross-validation strategy. As it can be seen, with just 30 images per
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Figure 7.4: UMAP plots of the learned embedding spaces. Each color represent a different

class while (a) illustrates the embedding space obtained with SB2D; (b) colored points

represents SB3D data projected into the SB2D embedding space (gray); and (c) illustrates

the adapted embedding space with SB2D (gray) and SB3D (colored).

procedure (5 images per class), i.e. a total of 150 images since 5 videos are used for creating

the training data, the accuracy of the system is increased from 41.28% to 84.64%. As more

images per procedure are used, the accuracy increases, obtaining an accuracy of 89.32%

when all images of all procedures are used.

Table 7.3: Accuracy of the proposed system evaluated on SB3D with different size of

training samples from the target domain. Data is obtained uniformly per class (k = 6) and

procedure (n = 5).

Method SB3 Images Accuracy (%)

TL SB2-3

0 41.2

150 84.6

300 86.1

750 87.3

1500 88.6

3000 89.3

Finally, Table 7.4 shows the behavior of the system when more diversity of the target

domain is introduced. To perform this experiment, the accuracy of the system is evaluated

when a different amount of videos are used but setting the same amount of labeled data,

600 images. As it can be seen, the accuracy of the system is enhanced as the number of

different used videos is increased. Hence, it is more important to use a diverse set of data,

for example using more procedures, than using a large number of images from the same

procedure.

Finally, Figure 7.5 shows a set of anchor images acquired with PillCam SB3, the target

domain, and its top more similar images from the PillCam SB2 dataset, the source domain.
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Table 7.4: Accuracy of the proposed system evaluated on SB3D trained with 600 from

SB3D using different number of procedures.

Method SB3 Videos Accuracy (%)

TL SB2-3

1 80.2

2 85.7

3 86.8

4 86.8

5 86.9

Figure 7.5: Each row shows a query where (b) is the anchor images from the target domain

SB3D capsule, (a) the three most similar images to the anchor image without adapting the

model to the target domain, and (c) The three most similar images adapting the model to

the target domain.

Central images in each row represent anchor images while the three images at the left are

the top most similar images before adapting the domain, and the three images at the right

are the top most similar images when the embedding has been adapted. As can be seen,

similar images when using the adapted embedding are really similar in shape and color to

the anchor images, although their look and feel are blurrier.

7.6 Conclusions

In this work, we have explored the use of deep metric learning, based on the triplet loss

function, to improve the generalization of a model over different datasets from different

versions of WCE capsules. The proposed method is trained using a larger dataset from a
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source domain, using an old WCE device, and is adapted to work on a target domain that

represents images obtained by a new WCE device, with minimal labeling efforts. Results

show evidence that with just a few labeled images from a newer camera, a model that has

been trained with images from older systems can be readily used in the new environment.

We also explored, evaluated, and compared several different transfer learning solutions

when dealing with small target domain datasets. We have shown that the triplet loss

function may be well suited for dealing with the problem of data distribution shift over

different domains. Particularly, we study the effects of using different amounts of images

and procedures, concluding that diversity is more important than the amount.
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Motivation and Context

The accurate detection of GI lesions is crucial for effective diagnosis and treatment. How-

ever, it is not sufficient for a system to perform well on the task it was designed for; it must

also be able to detect OOD images, which may indicate other severe conditions. This study

focused on the development of a reliable OOD detector, which is necessary for the adoption

of CAD systems in clinical practice.

The nature of WCE images is wide and heterogeneous, making it challenging for the

system to learn what is normal. In addition, some endoscopic images are considered ab-

normal because of an abnormality in a small area of the image, even though the rest of the

image is completely normal. In these cases, an OOD detector is likely to classify the image

as in-distribution, because the anomaly cannot outweigh the in-distribution features of the

image. Thus, the goal of this study is to develop an OOD detector that can identify large

and small anomalies in images.

To address this challenge, the following study presents a novel patch-based self-supervised

approach for WCE images. It does not require labels to detect OOD samples and consists

of three stages. First, the system uses SSL to learn the embedding representations of WCE
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image patches. Then, the patches are clustered using the K-means algorithm and the em-

beddings learned. Then, the clusters are used as pseudo-labels to train a patch classifier,

which is employed along ODIN to detect the patches that are OOD.

The results of the experiments provide compelling evidence that the suggested approach

is capable of detecting a wide variety of pathologies. This is a significant finding because

the ability to accurately and quickly identify pathologies is critical for the proper diagnosis

and treatment of diseases.

In addition, the comparison of the proposed method with other state-of-the-art tech-

niques demonstrated its superiority in nearly all pathologies. This suggests that the pro-

posed approach can be used as an effective alternative or complement to existing methods

in detecting OOD samples. The superior performance of the presented method can be

attributed to its ability to identify small patterns in the image data that are not readily

apparent to other techniques.
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8.1 Abstract

While deep learning has displayed excellent performance in a broad spectrum of application

areas, neural networks still struggle to recognize what they have not seen, i.e., Out-of-

Distribution (OOD) inputs. In the medical field, building robust models that are able to

detect OOD images is highly critical, as these rare images could show diseases or anomalies

that should be detected. In this study, we use Wireless Capsule Endoscopy (WCE) images

to present a novel patch-based self-supervised approach comprising three stages. First, we

train a triplet network to learn vector representations of WCE image patches. Second, we

cluster the patch embeddings to group patches in terms of visual similarity. Third, we

use the cluster assignments as pseudolabels to train a patch classifier and use the Out-

of-Distribution Detector for Neural Networks (ODIN) for OOD detection. The system has

been tested on the Kvasir-capsule, a publicly released WCE dataset. Empirical results show

an OOD detection improvement compared to baseline methods. Our method can detect

unseen pathologies and anomalies such as lymphangiectasia, foreign bodies and blood with

AUROC > 0.6. This work presents an effective solution for OOD detection models without

needing labeled images.

Key words: out-of-distribution; anomaly detection; deep learning; capsule en-

doscopy.

The paper has been re-typeset to match the thesis style.
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8.2 Introduction

Wireless Capsule Endoscopy (WCE) is an endoscopy technique that is an alternative to the

standard procedure originally developed by Iddan et al. (2000). This method presents a

variety of advantages versus standard endoscopy due to being far less invasive, not requiring

sedation, and risking fewer potential complications. WCE makes use of a small pill-shaped

capsule with a camera inside, rather than the traditional long, thin, flexible tube with a

camera at one of its ends. This capsule can be easily swallowed, upon which the cam-

era records hours of intestinal video that a medical team can later view to diagnose any

gastrointestinal condition.

Nevertheless, WCE videos can contain thousands of images per patient and must be

screened by medical specialists. This is a time-consuming and complex process. Its repet-

itive nature might lead to missing pathologies or other important elements (Koulaouzidis

et al., 2021). For this reason, artificial intelligence offers a clear opportunity to support this

task (Yang, 2020; Robertson et al., 2021; Koulaouzidis et al., 2022).

The application of AI techniques has been thoroughly investigated for the detection of

abnormal or suspicious images in WCE. Several works have been presented for the iden-

tification or segmentation of pathological conditions such as bleeding (Hajabdollahi et al.,

2018; Aoki et al., 2020; Saraiva et al., 2021), polyps or tumors (Yuan et al., 2017a; Laiz

et al., 2020; Yang et al., 2020; Saito et al., 2020; Falin et al., 2022; Gilabert et al., 2022),

angiectasia (Leenhardt et al., 2019), ulcers (Aoki et al., 2019; Klang et al., 2020; Ribeiro

et al., 2022), motility disorders (Malagelada et al., 2008), as well as methods for multi-

pathology detection (Segúı et al., 2016; Ding et al., 2019; Guo and Yuan, 2020; Vieira et al.,

2021; Adewole et al., 2021; Pascual et al., 2022a; Jain et al., 2021). Deep learning currently

represents the state-of-the-art for most of these problems and has demonstrated promising

results. Nevertheless, independent of the performance on the task for which these models

were designed, the ability to detect unseen Out-of-Distribution (OOD) images is crucial,

as such OOD images may correspond to other severe conditions. For example, a polyp is

an abnormal growth of tissue that can evolve into cancer, and therefore, its detection can

be highly beneficial. However, a system that accurately detects polyps but fails to identify

advanced-stage tumors would not be desirable. Therefore, the development of reliable OOD

detectors in addition to supervised detectors is necessary for adoption in clinical practice.

The nature of capsule endoscopy images is wide and heterogeneous, which challenges

deep learning models to learn what is normal or in-distribution. Furthermore, some images

are considered abnormal due to an anomaly in a small area of the image, despite the

remaining image being completely normal. In these cases, an OOD detector will most likely

classify those as in-distribution, as the anomaly cannot outweigh the in-distribution features

of the image. Therefore, one of the goals of this work is to develop a detector that is able

to identify small anomalies.

In this study, we introduce a self-supervised method derived from ODIN (Liang et al.,
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Figure 8.1: Random WCE sample images that illustrate the diversity of the dataset (Smed-

srud et al., 2021) and the complexity of out-of-distribution detection. First row: normal

frames. Second row: frames containing some pathology.

2017) based on patches. We first create a model able to generate vector representations of

fixed-size patches extracted from WCE images as a self-supervised task. These embeddings

encode visual features from the patches and allow the creation of clusters of patches in terms

of visual similarity. Finally, we train a classifier using cluster assignments as pseudolabels.

Similar to its predecessor method ODIN, our OOD detector is based on the confidence of

this patch classifier.

The remainder of this paper is structured as follows. First, we present an overview

of the related work in the OOD field. Then, we describe the details of our methodology,

followed by the experimental setup and results. Finally, we conclude the paper and provide

directions for future work.

8.3 Related Work

The OOD image detection problem in deep learning has been studied for many years using

a variety of approaches ranging from conventional statistical techniques (such as density

estimation) to generative models (such as autoencoders or GANs). In this study, we distin-

guish between supervised methods, which use some type of labeling in the training set, and

self-supervised methods, which learn the necessary knowledge to perform the OOD problem

without the need for specific labeling in the training set. Our method falls in the second

category.

8.3.1 Supervised methods

A widely used baseline method for this problem is the maximum over softmax probabilities

(MSP) (Hendrycks and Gimpel, 2016). This approach is based on a classifier trained over in-

distribution data and works on the assumption that models make more confident predictions

with in-distribution inputs than with OOD data. It conceptually depends on the outputs

of a simple multiclass classifier and requires no further training. However, its performance

has proven to be inferior to many later approaches. Thus, it is currently only used as a
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baseline method.

Since diverse and enormous datasets of images are available, Hendrycks et al. (2018)

proposed leveraging these data to improve OOD detectors against auxiliary datasets of

outliers in a method called Outlier Exposure (OE). In this method, the classifier is trained

to predict a uniform distribution over labels for outlier inputs, which enforces low confidence

over these inputs. Thulasidasan et al. (2019) proposed using an abstention class in the

classification problem and assigning known outliers to this class. Further work showed

that leveraging the labels of the known outliers instead of assigning all outliers to a single

abstention class can further enhance the performance of the OOD detector, despite only

representing a small subset of the type of outliers that we want to detect Roy et al. (2021).

Another effective improvement to MSP is ODIN Liang et al. (2017). While still being a

confidence-based approach, ODIN includes two fundamental novel techniques: temperature

scaling and input perturbation. These techniques lead to better OOD detection, making

it one of the best-performing state-of-the-art methods for the OOD problem. Nonetheless,

ODIN relies on OOD data to tune the temperature and perturbation hyperparameters. In

contrast, a generalized version of ODIN (GODIN (Hsu et al., 2020)) does not require tuning

with OOD data and mitigates this issue.

Other approaches focus on modeling the class-conditional distribution of pretrained

CNN features with a Gaussian distribution and use the Mahalanobis distance in the pre-

dicted class distribution to detect OOD samples (Lee et al., 2018). For example, DeepIF

method (Li et al., 2020) achieves better detection performance by modeling the distribution

of CNN features with a nonparametric technique based on isolation forests.

8.3.2 Self-supervised methods

The concept of learning normality to then detect anomalies is evident in methods based

on deep-generative models including autoencoders (AEs), variational autoencoders (VAEs)

and generative adversarial networks (GANs). All of these methods learn features with high

representation quality that can be used for density estimation methods (Abati et al., 2018)

or reconstruction error methods (Lu and Xu, 2018). These approaches rely on the assump-

tion that reconstruction models trained on in-distribution images produce higher-quality

outcomes with in-distribution inputs than with OOD inputs. Thus, images producing a

high reconstruction error can be classified as OOD.

Other self-supervised approaches have tried to replicate classifier-based supervised meth-

ods without using labeled data, such as ensemble leave-out classifiers proposed by Vyas et al.

(2018). This technique consists of randomly partitioning data in K subsets and creating K

classifiers, each of which samples one of the K subsets without replacement as OOD data

and samples the remaining subsets as in-distribution training data.
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8.4 Methodology

The general concept of the proposed method in this paper is to use ODIN (Liang et al.,

2017), which is considered one of the state-of-the-art approaches in OOD detection, to

detect abnormal areas of WCE images. To focus on small regions of the image, we split the

WCE images into fixed-size patches, which we consider our training and testing examples.

Since ODIN is a classifier-based approach, labels are required to classify samples. Toward

this application, we use a self-supervised feature extraction network to generate embeddings

and then apply a clustering algorithm that assigns each sample one label that is later used

to train the classifier. Importantly, our method does use any external labeling of the images

or patches.

The pipeline of the method comprises three stages, which are henceforth described in

detail.

8.4.1 Triplet-loss embeddings

The first stage of our method seeks to learn a vector representation for patches extracted

from WCE images. To learn these embeddings, we use a Triplet Loss (TL) network, which

allows us to perform self-supervised learning, as described in the next paragraph.

A TL architecture compares an anchor input with two other inputs: a positive input,

which shares a property with the anchor, and a negative input, which does not share this

property. In our case, inputs are fixed-size patches extracted from WCE images, and the

shared property is that both subsets are extracted from the same image, whereas the neg-

ative patch is extracted from a different image, as illustrated in Figure 8.2. TL aims at

ensuring that the anchor image, xa, is closer to all other images from the same class, xp,

than any image from a different class, xn.

Figure 8.2: Triplet loss applied to three patches that are transformed into three vectors.

Anchor: patch from a given image. Positive: a different patch of the same image. Negative:

a patch of a different image.
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To achieve classification, the following loss function is used:

LTL(xa, xp, xn) =

N∑
i=1

max (||fa
i − fp

i || − ||fa
i − fn

i || + α, 0) (8.1)

where fk is the vector representation of xk, N is the batch size, || · || is a norm and α is a

margin parameter to enforce separation between classes.

Given two patches from the same image, this network generates embeddings that are

closer together than two patches from different images. Since two patches from the same

image will tend to be more visually similar than two from different images, these embeddings

can be useful to cluster patches based on visual features.

8.4.2 Cluster pseudolabeling

As outlined above, we must label patches to train a patch classifier. Therefore, we use

cluster predictions as pseudolabels to train our OOD-detector classifier.

Given the triplet-loss embeddings produced in the previous stage, we use the mini-batch

K-means algorithm to create patch clusters based on visual similarity. Images in the same

cluster tend to share visual features such as color, texture or shape. An example of such a

clustering is shown in Figure 8.3.

Figure 8.3: Example of clusters produced; each column represents one cluster. Patches in

the same cluster are more visually similar than patches in different clusters (K = 15, patch

size 96 × 96).

This clustering partitions the patch dataset, which is then used to train a K-class

classifier.
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8.4.3 Patch OOD classifier

The third and final stage of our method is the patch-based ODIN, which is based on a

K-class classifier trained with the aforementioned pseudolabels. This classifier also includes

temperature scaling and input perturbation, as defined in the original ODIN paper (Liang

et al., 2017). A given image is partitioned into m patches and fed to the ODIN model,

which outputs an anomaly score for each patch (see Figure 8.4).

(a) WCE example image with

lymphangiectasia.

(b) Patches extracted from the

image. Note some overlap be-

tween patches.

(c) Heatmap produced by

ODIN. Red represents high

anomaly score areas.

Figure 8.4: Illustration of the patch-splitting process.

Formally, we let x be an input patch, x̃ be the perturbed version of this patch and

z = (z1, . . . , zK) be the output vector produced by the temperature-scaled K-softmax layer.

We define the anomaly score, called the softmax score, in Equation 8.2. Then, these scores

are combined using a summary function to obtain a measure of the abnormality of the

image as a whole. If this score surpasses a certain threshold, then the image is labeled as

OOD.

S(x̃;T ) = 1 − max
i=1,...,k

softmax(x̃;T )i = 1 − max
i=1,...,k

zi (8.2)

For each image x, we will extract m patches x1, . . . , xm. Given a perturbation magnitude

ε, a temperature parameter T and a threshold δ, our OOD discriminator is defined as follows:

OOD(x;T, ε) =

1, Ψ (S(x̃1;T ), . . . ,S(x̃m;T )) ≥ δ

0, Ψ (S(x̃1;T ), . . . ,S(x̃m;T )) < δ
(8.3)

where Ψ is a summary function applied to the softmax scores of the patches.

Given the softmax scores of the patches of an image y⃗ = (y1, . . . , ym), we define three

summary functions in Table 8.1.

Each of these three strategies may perform differently depending on the nature of the

anomalies to detect. For instance, max, which only uses the patch with the highest anomaly
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Table 8.1: Definition of the summary functions used in this paper. Sn is the subset of the

first n softmax scores, sorted in descending order.

max maximum-score patch Ψmax(y) = maxi=1,...,m yi

top-k average of top-k patches Ψtop k(y) = 1
k

∑
yi∈Sk

1 yi

wavg weighted average of all the patches Ψwavg(y) = 1
m

∑
yi∈Sm

1 λiyi

score, might work better for localized features but might also introduce more noise; wavg,

which accounts for all the patches but gives more importance to the highest scores, might

be better suited for global anomalies; top-k is an intermediate approach that might work

like max but with less noise.

8.5 Experimental setup

8.5.1 Dataset

We evaluate and compare our proposed method with Kvasir-Capsule (Smedsrud et al.,

2021). Kvasir-Capsule is a publicly released WCE dataset that contains 117 videos of gas-

trointestinal footage from different patients, 74 of which are unlabeled and 43 partially

labeled. The labeled frames are comprised of 14 different classes, 5 of which refer to non-

pathological categories: Normal Clean Mucosa (NOR), Ileocecal Valve (IV), Pylorus (PYL),

Reduced Mucosal View (RED) and Ampulla of Vater (AV); and 9 that refer to patholog-

ical or abnormal categories: Angiectasia (ANG), Erythema (ERY), Blood - fresh (BLO),

Blood - hematin (BLH)∗, Erosion (ERO), Foreign body (FB), Ulcer (ULC), Polyp (POL)

and Lymphangiectasia (LYM). For our OOD problem, we considered the 9 pathological

categories as OOD, i.e., our detection target.

Different frames from the same video can be very similar. Thus, data partitions must be

done by videos instead of frames. We randomly selected 64 out of the 74 unlabeled videos

for the training of the triplet network, the K-Means clustering and the patch classifier.

The 10 remaining unseen videos are used as an intermediate validation set to assess the

quality of the resulting embeddings and clustering and the accuracy of the classifier. The

43 labeled videos are then used only for testing purposes, with normal classes considered in-

distribution and pathological frames of OOD. We extract fixed-size patches of 96×96 pixels

from a video frame resolution of 336 × 336 using a step size of 60 pixels between patches,

while ensuring that there is overlap between patches and that all areas of the image are

captured.

∗BLH class is not considered for evaluation purposes due to the small number of frames available in this

category, of which there are only 10.
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8.5.2 Method stages

1. Triplet-loss embeddings The triplet-loss model uses the EfficientNetB0 (Tan and

Le, 2019) architecture, followed by a global average pooling layer. Finally, a 1280-unit

dense layer outputs the feature vectors.

2. K-Means clustering Due to the high volume of images, we used the mini-batch

version of the K-Means algorithm. The value chosen for the number of clusters is

K = 20 due to seemingly showing the most consistent clustering results.

3. Patch ODIN classifier We use a CNN classifier that comprises the first three blocks

of the ResNet50v2 (He et al., 2016) architecture (ImageNet pretrained), followed by

three fully connected layers integrating dropout and batch normalization layers. The

top fully connected layer uses a temperature scaling with a fixed temperature param-

eter value T = 1000, as proposed in other previous work (Hsu et al., 2020). Because

the number of labeled videos for each pathology is limited, cross-validating these pa-

rameters is very risky.

8.5.3 Baseline methods

We use baseline self-supervised methods trained with the same data to compare the per-

formance of our approach with other previous work. The implementation of supervised

approaches would require using additional data or labels and, more importantly, would

make an unfair comparison. The following methods are used as baselines:

ODIN (Liang et al., 2017). To incorporate a nonpatch-based ODIN as a baseline

method, we trained a self-supervised model that uses temporal information of the frames

to generate pseudolabels and train an ODIN classifier on the full image. Importantly, this

adapted version is self-supervised, indicating that it has not been trained with ground-truth

labels.

SelectiveNet (Geifman and El-Yaniv, 2019). The SelectiveNet architecture includes

a rejection option for selective classification, which we use as the OOD score. We use the

same self-supervised methodology to generate pseudolabels as described for ODIN.

VAE (Lu and Xu, 2018). We use the same VAE architecture and train on the same

in-distribution data as our approach. Then, we use the VAE anomaly score proposed in

their work to determine if an image is an OOD.

Patch VAE. We use a patch-based method, but instead of ODIN, we introduce the

VAE from the baseline method (trained on patches) to create an anomaly score for every

patch. Then, for every image, the scores of the patches are combined using a summary

function to obtain an anomaly score for the image. We use this model as an intermediate

between the VAE and our method.
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8.5.4 Evaluation metrics

• Accuracy. Measures the fraction of examples correctly classified.

• True Negative Rate (TNR) or specificity. Refers to the proportion of negative

examples that were classified as negative: TN/(TN + FP ).

• True Positive Rate (TPR) or sensitivity. Refers to the fraction of positive ex-

amples that were classified as positive: TP/(TP + FN).

• AUROC. Area under the ROC curve. Refers to the sensitivity-specificity tradeoff at

various threshold settings. To determine AUROC, we compute the anomaly score of

normal and OOD samples and measure sensitivity and specificity at TPR and FPR

at different threshold configurations.

• TPR at n% TNR, abbr. TPRn. Refers to the TPR when the TNR is n%. TPR95

and TPR90 are used.

• %PF. Refers to the percentage of pathological frames among all the frames in a video.

• %DPF(n). Refers to the percentage of pathology among the n frames with the

highest outlier scores.

• Difference between %PF and %DPF (diff ). Given the high variance in %PF

across different videos in the dataset, we use this to measure how well the model

detects OOD frames for different pathological prevalences.

diff = %PF − %DPF

In addition to these quantitative metrics, we also evaluate the system qualitatively by

inspecting the results produced on a subset of images. We consider this a very impor-

tant evaluation to understand the predictions obtained by each model, which allows us

to understand which images the model considers abnormal and which others are classified

confidently.

8.6 Results

In our first experiment, we seek to analyze anomaly score distributions produced by the

patch ODIN † for each class. Toward this goal, we extract the softmax score of each image

and fit a Gaussian distribution to each set of scores. Figure 8.5 shows these normalized

distributions, i.e., with balanced classes to better compare the degree of overlap of these

distributions. We note that, as a result of the plain nature of ERY images in this dataset,

this class produces even lower anomaly scores than the normal class. The normal class

†For the patch ODIN, we fix the following parameters: k = 20, ε = 5 · 10−4, and T = 1000.
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(NOR) produces the lowest anomaly scores and thus allows us to separate classes using

these scores. However, the degree of separation varies for each pathology: some classes,

such as ERO and BLO, have a large overlap with NOR, while others, such as LYM or

ULC, have a significant separation. We compare each pathology versus the normal class

to evaluate the potential of our OOD discriminator. The results for a patch size of 96 are

shown using ROC curves in Figure 8.6.

Figure 8.5: Softmax score distributions produced by patch ODIN (top5 summary) by

pathology. Real distributions are used to fit Gaussian distributions, which are plotted

above. The second window shows a zoomed view. Distributions are normalized for the sake

of comparison.

Figure 8.6: ROC curve of patch ODIN (top 5 ) OOD detection by pathology. Mixed con-

siders all Kvasir pathological frames as one single class.

To further investigate the effect of the patch size, we repeated the experiments using

additional patch sizes of 64 and 128. The results are presented in Table 8.2, which shows

that the patch size of 96 yields the best results. Therefore, we adopt this size for the

subsequent experiments.

The AUROC score by pathology and comparison with baseline methods are summarized

in Table 8.3. The results show that, considering all pathological frames as one abnormal
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Table 8.2: AUROC scores of OOD detection by pathology of the proposed Patch ODIN

method. Comparison between three different patch sizes (PS).

pathology #samples
PS 64 × 64 PS 96 × 96 PS 128 × 128

max top-k wavg max top-k wavg max top-k wavg

ANG 866 0.576 0.629 0.636 0.572 0.628 0.635 0.592 0.591 0.595

BLO 446 0.646 0.708 0.701 0.613 0.677 0.678 0.644 0.616 0.601

ERO 507 0.579 0.593 0.598 0.562 0.582 0.587 0.538 0.557 0.564

ERY 159 0.412 0.398 0.407 0.322 0.301 0.300 0.457 0.468 0.479

FB 776 0.669 0.698 0.696 0.737 0.729 0.732 0.621 0.613 0.602

LYM 592 0.645 0.671 0.671 0.739 0.767 0.772 0.627 0.635 0.640

POL 55 0.531 0.417 0.435 0.776 0.848 0.845 0.580 0.600 0.600

ULC 854 0.615 0.618 0.626 0.725 0.795 0.804 0.534 0.521 0.518

Aggregated 4255 0.611 0.638 0.640 0.650 0.680 0.686 0.578 0.578 0.575

class, our method slightly improves performance over the baseline methods. Considering

each pathology individually, we observe different results. Patch ODIN performs especially

well with LYM and ULC and slightly outperforms the baseline methods with FB and ERO.

However, our method does not improve BLO detection, which the VAE model does espe-

cially well. This is attributed to blood being the most global anomaly, such that splitting

the data into patches does not contribute to better detection. Furthermore, we observed

that the best summary strategy depends on pathology. Some of the pathologies are global,

while others appear very localized; overall, top5 and wavg seem to yield the best results.

Table 8.3: AUROC scores of OOD detection by pathology, comparison between different

methods. For each pathology, the best score is marked in bold.

pathology #samples
Patch ODIN Patch VAE

ODIN VAE SelectiveNet
96×96, top k 96×96, top k

ANG 866 0.628 0.367 0.483 0.573 0.515

BLO 446 0.677 0.705 0.541 0.791 0.576

ERO 507 0.582 0.622 0.570 0.540 0.472

ERY 159 0.301 0.231 0.560 0.324 0.326

FB 776 0.729 0.623 0.642 0.679 0.632

LYM 592 0.767 0.671 0.752 0.745 0.738

POL 55 0.848 0.350 0.667 0.622 0.652

ULC 854 0.795 0.706 0.543 0.680 0.669

Aggregated 4255 0.680 0.577 0.578 0.642 0.572

In general, we observe that VAEs tend to assign higher anomaly scores to images that

appear more complex in terms of texture, colors and shapes. For instance, we find that

nonpathological bubble images are usually assigned high scores, while pathological plain

images are not detected. This mainly occurs because complex features, despite being com-

mon in the training set, are harder to reconstruct for an autoencoder. Thus, reconstruction
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error is higher for complex images, which plays a large role in anomaly score.

The availability of images for certain pathologies is extremely limited (different images

may be consecutive frames of the video that contain the same anomaly), which can lead to

inaccurate results. For this reason, further qualitative and quantitative analysis is necessary

to confirm the performance of the system.

Notably, to compute AUROC scores, we use normal and OOD frames extracted from

different videos. In real-world situations, given a WCE video from a single patient, it is

desirable to flag the most abnormal frames to detect any potential condition. To better

measure the performance of the model in such a situation, we test our method in each

video separately and measure how well the model detects pathological frames among the

‘most abnormal’ frames. For this test, we use the diff metric described in the previous

section, with n = 100. This metric compares the percentage of pathological frames among

the 100 frames with the highest outlier score (%DPF(100)) with respect to the percentage

of pathological frames in the video (%PF).

The results of the video analysis are shown in Figure 8.7. We observe that frames

containing LYM, FB and BLO produce high anomaly scores and thus are detected among

the most outlier frames. For remaining diseases, the average diff is close to 0, indicating

that the model detects pathological frames (among the most abnormal) at the same rate as

they are present throughout the video. Because labeled videos containing ULC are ¿90%

pathological, diff may not be the best performance indicator for this class. Additionally,

these results may not match with the AUROC scores as previously presented because this

metric measures each video independently and focuses on the most abnormal tail end.

(a) %PF vs. %DPF (n = 100) (b) diff by pathology

Figure 8.7: Results by video. Each circle represents a video, and the size is proportional to

the number of frames contained in that video.
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We also conducted a qualitative analysis using the outputs of the model on a subset of

images. To do this, for each selected image, we examined the score of each patch, analyzed

which patches produced the highest scores, and plotted the results in the form of a heatmap

over the original image. This process is illustrated in Figure 8.8, where the model performs

well, and in Figure 8.9, where the model fails to correctly identify anomalies. We examined

both successful and unsuccessful examples to determine those types of anomalies our model

is able to identify and those which it cannot. A general conclusion is that the model tends

to detect more visually prominent anomalies more accurately, as was expected.

Figure 8.8: Left: sample WCE images that contain LYM, FB and BLO, from top to bot-

tom. Center: patches extracted from each image sorted in terms of softmax score. Right:

Heatmaps produced using softmax scores; red areas represent high anomaly scores. In these

examples, the model correctly identifies anomalies, and thus, patches containing anomalies

produce high scores.

Figure 8.9: Left: sample WCE images that contain BLO, ANG, and no pathologies (NOR),

from top to bottom. Center: patches extracted from each image sorted in terms of softmax

score. Right: Heatmaps produced using softmax scores; red areas represent high anomaly

scores. In these examples, the model is not able to correctly identify anomalies. In the first

two cases, all the patches are assigned low scores, and thus, any abnormal area is detected.

In the third case, the model incorrectly assigns a high score to a normal patch.
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8.7 Conclusions

This study presents a method to improve OOD detection in WCE images with respect to

other self-supervised approaches, such as VAEs or ODIN without patches. Both quantita-

tive and qualitative results show that the system successfully detects pathologies including

lymphangiectasia, foreign bodies, and blood showing. Moreover, the patch-based nature of

our methodology allows us to measure the abnormality of every region of the image.

While our method tends to effectively detect the most visually prominent anomalies,

it is less sensitive to subtler anomalies such as erosion, angiectasia or erythema. These

pathologies are visually quite similar to in-distribution WCE images. Therefore, detecting

these types of anomalies using a model that has not been previously exposed to them is a

great challenge. Moreover, the limited availability of data in medical fields reinforces the

need for larger and more diverse datasets. Toward this goal, our future work may consider

incorporating online learning techniques, where the model could dynamically adapt as a

medical team flags unseen images to the system.

Overall, we intend that our method can provide an effective solution for OOD detec-

tion models without the need for labeled images. While this work has focused on WCE

images, our methodology can also be applied to OOD detection in other computer vision

applications.
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9.1 Pathology Detection

The first addressed problem is the detection of pathologies, mainly focusing on colorectal

polyps. The proposed CAD systems aim to identify them with high precision based on their

visual attributes. Moreover, this problem is associated with three DL challenges: scarcity

labeled data, imbalanced datasets, and model explainability.

9.1.1 Paper I

Commonly, the pathology detection problem only involves solving an image-classification

task. However, the methodology explained in the first paper to detect polyps(Chapter 4)

proposed another optimization strategy to achieve the goal and mitigate the small and

imbalanced dataset issues. Specifically, the TL with the Batch All strategy for mining

the triplets (Section 3.1.2) was used to train the backbone network and obtain informative

embeddings of the images. Subsequently, a dense layer was employed over the embeddings

to produce the predictions of the system. This layer acted as a classifier and was optimized

with the CCE loss.

Although full details about the dataset used are presented in Chapter 4, the main

ones are summarized in the following lines. 120 procedures were employed, where only 52

contained at least one polyp. The total number of unique polyps in the dataset was 165

distributed in 2, 136 frames.

Quantitative and qualitative experiments were conducted to analyze the performance of

the proposed approach. First, several experiments were run to explore different hyperparam-

eters of the system, including the margin m of the TL and the size of the low representation

of the images. These tests helped to identify the best configuration for the task, concluding

that the appropriate margin and embedding size were 0.2 and 2048, respectively.

After obtaining the best experimental setup, the model was compared against two base-

lines: ResNet, the backbone of the system trained only with CCE loss, and the proposal

with Batch Hard strategy mining. The results showed that the proposed method outper-

formed both baselines, obtaining an AUC-ROC of 92.94±1.87%. In addition, the sensitivity

scores for the specificity at 95%, 90%, and 80% were 76.68 ± 4.93%, 82.86 ± 4.78%, and

88.53±3.76%, respectively. These scores represent the percentage of polyp images detected

by revising only the top 5%, 10%, and 20% of video frames.

In the final quantitative experiment, the designed method was compared against state-

of-the-art models, Yuan and Meng (2017), Guo and Yuan (2019), and Yuan et al. (2020).

The results showed that the proposed model was more efficient in the retrieval task. In

particular, it outperformed each metric by at least 2%.

It is important to note that the commented experiments were frame-based. Conse-

quently, the metrics measure whether the system detected each frame in which a polyp
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was visible. However, for physicians, it is crucial to find all unique polyps, which is not

the same as finding all the frames from each polyp. Hence, the results were also displayed

and discussed considering the identification of unique polyps. Briefly, detection at different

specificity values, 95%, 90%, and 80%, were above 90% regardless of their size or morphol-

ogy.

Finally, the implementation of CAM (Zhou et al., 2016), an explainability method, in

the system allowed the extraction of qualitative results. After visualizing several examples

of true positives, false positives, and false negatives, several conclusions were drawn. True

and false positives demonstrated that the system had learned the visual features of polyps.

However, false negatives were difficult to analyze using only one frame, which is also complex

even for expert gastroenterologists. Overall, this incorporation might help physicians locate

polyps in the images.

In summary, the TL proved to be appropriate for addressing all the mentioned challenges

in this problem. Moreover, the use of CAM might allow experts to know the location

of the polyp and increases their trust in the proposed CAD system. Despite the good

results obtained, there is still room for improvement. With the development of new DL

methodologies, more powerful embeddings can be extracted. Moreover, as the Batch All

mining strategy uses random images from each class, other techniques might be designed

to provide large diversity between the samples in each batch. This improvement would

enhance the sampling process and the generalization of the network.

9.1.2 Paper II

The second paper, included in Chapter 5, deals with the detection of polyps and the iden-

tification of inflammatory and vascular lesions. As described in Section 2.3.2, the lack of

labeled data and the imbalanced dataset are usually mitigated using transfer learning, par-

ticularly with ImageNet weights. In this study, a SSL method (Section 3.2) was proposed to

generate a proper initialization for the network weights. To this end, the method leveraged

the temporal axis of WCE videos to obtain richer embeddings. Specifically, the developed

SSL method learned to produce similar representations for images belonging to the same

sequence and distinct embeddings for images belonging to different sequences.

To perform this task, 49 unlabeled WCE videos were used. The SSL was performed

with the TL and sequences of 9 images. The qualitative results showed that the method

successfully generated rich representations. In addition, a set of experiments were performed

to optimize the hyperparameters of the system: sequence size, sequence batch, window size,

number of projection layers, and projection dimensionality. The best setup obtained was

with hyperparameters 72, 1, 9, 3 and 128, respectively.

Once the weights of the network converged to a solution of the pretext task, two down-

stream tasks were applied. The first one aimed to detect polyps employing the methodology

and the dataset of the previous article (Laiz et al., 2020). The proposed method achieved
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state-of-the-art results compared to the previous paper and the well-known SimCLR method

(Chen et al., 2020a), demonstrating its ability to handle imbalanced datasets. The method

reached an AUC-ROC of 95.00 ± 2.09% and sensitivity scores at specificity of 95%, 90%,

and 80% of 80.16 ± 6.97%, 86.31 ± 6.20%, and 92.09 ± 4.63%, respectively. The second

task involved a 3-class classification problem. It consisted of a dataset formed by 600 im-

ages from normal, inflammatory, and vascular lesions; hence, 1, 800 images. The proposed

method achieved comparable results to the current state-of-the-art method (Guo and Yuan,

2020) and proved that the approach can also deal with small datasets.

However, this system has two main limitations. First, sequences of images are required

to train the SSL model, which limits its applicability in certain medical imaging domains,

such as X-rays. Second, because of hardware limitations, the number of images that can be

used during training is limited, leading to less diverse learning embeddings. To overcome

these limitations, future research could explore alternative SSL architectures to improve

the downstream task performance and use different hyperparameter settings and sampling

techniques. In addition, expanding the system to other WCE domains and medical fields

would be highly beneficial.
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9.2 Anatomical Landmark Identification

The second problem is the identification of the anatomical landmarks of the small bowel and

large intestine. This task entails distinguishing between structures in the digestive system

with similar appearances.

9.2.1 Paper III

In Chapter 6, a clinical decision-support tool was proposed. The system performed two

tasks, namely, image classification and anatomical landmark identification. The first aimed

to predict whether the image was between the landmarks, while the second one identified

the exact frame where the anatomical landmark was located.

The designed method employed a combination of still images and timestamp informa-

tion to predict the probability that an image belonged to a specific organ. To improve the

accuracy of these predictions, a bidirectional RNN was used. It smoothed the probabil-

ity scores by incorporating context, time, and motion data. The output was utilized to

measure the performance in the image classification task. Then, to identify the anatomical

landmarks, a minimization problem was applied to the smoothed signal to determine the

beginning and end of the organ.

The performance of the system was evaluated using three datasets, two from the small

bowel and one from the colon. The first one was a public database, called Kvasir-Capsule

(Smedsrud et al., 2021), containing 24 small bowel WCE studies. Each video had a mean of

44K frames on average. The second one, named VH and also extracted from small intestine

capsules, was formed by 48 explorations with a mean number of frames of 35K. Finally, 68

colon WCE studies formed the last dataset, Capri. The average of frames, in this case, was

14K.

In the first set of experiments, the image classification task was evaluated. Initially, an

ablation study was carried out to determine the effects of each component on the system.

The results showed that adding the timestamp enhances the performance with respect to

training only with still images. Moreover, considering the context, temporal, and motion

information, the system further improved, achieving at least an AUC-ROC value of 96.00±
4.57% and a Mean Accuracy (MACC) score of 87.47±7.49%. The proposed method was also

compared with state-of-the-art models: Zou et al. (2015), Chen et al. (2017a), Zhao et al.

(2021) and Son et al. (2022). The results showed that the developed system outperformed

previous methods in all datasets.

The second set of experiments focused on identifying the anatomical landmarks. This

task was measured as the error between the predicted and actual frames. As in the previous

experiments, the ablation study showed that incorporating context, temporal, and motion

information with the probabilities of the images improved the performance of the method.

When compared to the state-of-the-art methods Zhao et al. (2021) and Son et al. (2022),
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the proposed method exhibited the lowest error. Moreover, a comparison of the landmark

identification strategy was performed, revealing that the designed approach produced more

accurate predictions.

The developed system is restricted to the analysis of one organ, owing to the lack of

multi-organ labels in the datasets used. To overcome this limitation, future research should

incorporate datasets with several labeled organs and adapt the CMT block accordingly.

Furthermore, future methods should also accommodate different devices. In addition, to

enhance the system, future research could explore the localization of other landmarks, such

as the flexures of the large intestine. By incorporating these improvements, the proposed

system could be better equipped to handle a wide range of medical scenarios and provide

more accurate diagnoses.
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9.3 Out-of-Distribution

The final problem faced in this thesis is related to OOD samples. As explained in Section

3.3, OOD includes all cases in which the data distributions from the training and test sets

are different.

9.3.1 Paper IV

In Chapter 7, a novel method addressed the covariate distribution shift (Section 3.3.1) that

arises from different capsule devices. This study aimed to adapt the domain of both device

to a common space. To achieve this, the proposed method used the TL (Section 3.1.2)

to ensure that embeddings from images belonging to the same class, but different devices,

remained closer than any other embedding of an image from the same domain.

Two datasets were used in this study, one from PillCam SB2 (old device) and one from

PillCam SB3 (new device). Both datasets contained images that were classified into six

classes. However, the first dataset consisted of 20, 000 images per class extracted from 50

procedures, while the second had only 1, 000 images per class captured from 10 procedures.

The first set of experiments was aimed at detecting the classification performance of the

system in different scenarios. The results showed that the model trained on the old dataset

and evaluated on the new one dropped drastically from an accuracy of 92.50% to 51.70%.

Transfer learning was then applied, which resulted in a considerably good performance on

the new dataset, with an accuracy of 87.00%, but a worse performance on the old dataset,

62.70%. Finally, the proposed domain adaptation method achieved the best results for the

new dataset, 89.30%, and enhanced the results for the old dataset to 93.10%.

After proving the proposed approach as a good candidate for addressing the targeted

problem, the impact of using different numbers of images from the new dataset and the

number of procedures was explored. The results showed that increasing the number of

images employed in the training improves the obtained accuracy. In addition, experiments

suggested that the diversity of images (number of different procedures) was more important

than the number of images. These findings were supported by the qualitative results.

Moreover, it was observed that the system learned about lesion features, but not device

features, when using the TL for domain adaptation.

A limitation of the proposed method is the need for labeled data to perform domain

adaptation. Future work should focus on using unsupervised learning to avoid the require-

ment of labeled target data in the training process.
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9.3.2 Paper V

Paper in Chapter 8 focused on the problem of detecting OOD samples. For this purpose,

a three-stage SSL patch-based method was proposed. In the first step, a network was

trained to extract the embedding of patches using a SSL approach (Section 3.2) with the

TL (Section 3.1.2). Then, using the embeddings, a clustering method was applied to create

pseudo-labels for a classification problem. Finally, a network was trained to classify the

patches with the pseudo-label clusters. When this network performed properly, its outputs

were used along with ODIN to detect OOD patches.

To evaluate this approach, the public dataset Kvasir-Capsule (Smedsrud et al., 2021)

was used. The 74 unlabeled videos were used to train the classifier in a self-supervised

manner. In addition, 43 videos, partially annotated in 9 pathological categories, were used

to validate the proposed OOD detector.

The first experiment aimed to determine the optimal patch size. The results showed that

patches of 96×96 pixels obtained the best performance among the proposed metrics, with an

aggregated score of 0.68 with the top-k metric. Then, the method was compared with state-

of-the-art approaches Lu and Xu (2018), Geifman and El-Yaniv (2019), and themselves with

patches. The aggregated score obtained by the proposed method outperformed all systems.

However, specific classes exhibited higher scores in other tested models. This happened

with pathologies considered global lesions; hence, in this case, splitting the image in patches

does not improve the detection. The same conclusions were obtained after analyzing the

qualitative results.

To overcome the fact that general lesions may not be detected as OOD samples, other

approaches for obtaining the OOD score have to be proposed and thoroughly explored. Ad-

ditionally, other computer vision applications could benefit from the patch-based method-

ology utilized in this study.
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9.4 Summary

Throughout this dissertation, five CAD systems have been presented, introducing innovative

techniques to enhance diagnosis in WCE studies. The proposed models have addressed the

challenges and limitations of both, DL and WCE, obtaining state-of-the-art results in each

of their tasks. Therefore, the developed CAD systems have enhanced the effectiveness of

WCE diagnosis.

In particular, the TL has allowed models to obtain richer embeddings and generalize

better than with other standard approaches, even when data have been limited and imbal-

anced. This has been particularly beneficial in the pathology detection task.

The employment SSL has proven to be valuable as a first-step task to obtain more infor-

mative features by leveraging unlabeled data. The network trained with this methodology

serves to be employed as a pretrained model, capable of transferring its knowledge to various

other tasks. This approach is of great help when working with limited amounts of labeled

data.

Finally, ODIN has played a crucial role in detecting pathologies that were not included

during the training phase. Specifically, it has been demonstrated that the synergy between

ODIN and SSL techniques allows the development of robust and reliable systems to detect

unseen pathologies, and thus, improve the diagnosis of WCE videos.

Despite the promising results that CAD systems have shown, there are still many lim-

itations and weaknesses that need to be addressed to further improve their performance.

By addressing these issues, the research community will continue improving the reliability

and capability of CAD systems for clinical use, which may lead to more accurate diagnoses

and better patient outcomes. Therefore, DL applied to WCE studies will help to mitigate

the current bottleneck of human pre-reading resources and enable medical professionals to

diagnose and treat patients more efficiently and effectively.
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The content of this chapter is focused on two parts. First, the contributions of this

thesis are summarized and compared with the goals proposed in Section 1.2. Then, future

research directions are discussed.
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10.1 Thesis Contributions

This thesis provides meaningful contributions to the development of state-of-the-art CAD

systems. Specifically, they incorporate advanced DL techniques to improve diagnostic per-

formance in WCE studies. These innovative methods have demonstrated remarkable results

and might have the potential to advance the field of medical imaging. Therefore, it can be

concluded that the main objective of this thesis has been successfully accomplished.

Moreover, the specific goals defined in Section 1.2 are also fulfilled.

1. Create a model to tackle data scarcity. By using the TL, SSL, and domain

adaptation, the proposed DL methods have mitigated the problems caused by small

datasets. This can be observed, first, in the polyp detection problem and then, in the

domain adaptation proposal.

2. Create a model to tackle imbalanced datasets. Analogously to the previous goal,

the TL and SSL mitigate the imbalanced dataset by enhancing the generalization of

DL methods in the detection of polyps.

3. Create a model that integrates explainability. Through the use of CAM (Zhou

et al., 2016), the CAD system for polyp detection provides the reason behind the

prediction. Consequently, the trust of experts in the method could increase.

4. Create a model to detect GI pathologies. Two systems have been developed

for detecting polyps. The first uses the TL to enhance the feature compression in

the embedding. Whereas, the second method utilizes a SSL approach to obtain richer

features from unlabeled WCE videos and then, applies this knowledge to the detection

task. Finally, a third method has been implemented to detect several GI lesions

without the need for labels.

5. Create a model to identify anatomical landmarks. Each of the required

anatomical landmarks from the small bowel and the large intestine is detected in

WCE videos by combining the image, timestamp, and motion information.

6. Create a model that generalizes with data from different devices. The

covariate distribution shift has been addressed using a domain adaptation approach

with the TL to align data from different capsule devices.

7. Create a robust model to detect OOD samples. An OOD detector has been

implemented in a patch-based manner using SSL and ODIN.

Through extensive experiments and evaluations, it has been demonstrated the effective-

ness of the proposed systems in the three problems. All papers have achieved state-of-the-art

results and constitute a contribution to the medical field.
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10.2 Future Lines of Research

The fields of medical imaging and WCE are rapidly evolving, and five approaches have been

proposed to address their associated challenges. Although these methods and others from

the literature may be successful, their limitations suggest that there is scope for further

research. In this section, it is discussed some potential lines of work that are necessary to

continue advancing in the field in the future.

For pathology detection, TL was shown to be valuable in mitigating small and imbal-

anced polyp datasets. Thus, it would be worthwhile to explore the same approach for the

detection of other pathologies. Similarly, TL can also be applied to other medical imaging

fields, where images with anomalies represent a small portion of the total dataset. It can

also be used in multi-class problems to improve the feature-extraction process.

Most CAD systems currently use still frames to classify the image, whereas an expert

uses the entire sequence to determine whether there is a pathology in the image. Therefore,

it would be interesting to investigate the use of RNNs over a sequence that contains images

with potential lesions. This could possibly improve the diagnostic accuracy of CAD systems.

Anatomical landmarks are crucial in the screening process, but current CAD systems

only identify the start and end of an organ. To increase the quality of the video analysis,

all landmarks from each organ should be identified. We believe that the proposed method,

with proper data and a few adjustments, can identify these landmarks and improve the

screening process.

WCE recorded data is readily accessible for further on-demand reviews. Therefore, these

videos offer a unique learning platform for the new generation of physicians and researchers.

This is an ideal scenario for the development and training of DNN systems and AI diagnoses.

In the future, it would be worthwhile to continue researching the use of more powerful DL

models to improve diagnostic accuracy and reduce the rate of missed lesions. In addition,

the development of user-friendly software that integrates these models into clinical practice

could facilitate the widespread adoption of these technologies (Leenhardt et al., 2019).

Finally, as the field of DL continues to evolve, it is likely that new and more advanced

techniques will emerge to address the challenges faced in this thesis. For instance, recent

research is been exploring the use of meta-learning, few-shot learning, and continual learning

to improve the efficiency, scalability, and adaptability of diagnostic systems for healthcare.

It is certainly an exciting time to be working in this field, as many more advances and

breakthroughs are expected in the coming years.
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Generic feature learning for wireless capsule endoscopy analysis. Computers in Biology

and Medicine, 79:163–172, 2016. ISSN 18790534. doi: 10.1016/j.compbiomed.2016.10.011.

T. J. Sejnowski. The deep learning revolution. MIT press, 2018.

R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. Grad-cam:

Visual explanations from deep networks via gradient-based localization, Oct 2017. ISSN

2380-7504.

P. Sermanet, C. Lynch, Y. Chebotar, J. Hsu, E. Jang, S. Schaal, S. Levine, and G. Brain.

Time-Contrastive Networks: Self-Supervised Learning from Video. Institute of Electrical

and Electronics Engineers Inc., sep 2018. ISBN 9781538630815. doi: 10.1109/ICRA.2018.

8462891.

S. Serte and H. Demirel. Deep learning for diagnosis of COVID-19 using 3D CT scans.

Computers in Biology and Medicine, 132:104306, 2021. ISSN 0010-4825. doi: https:

//doi.org/10.1016/j.compbiomed.2021.104306.

A. Shafahi, M. Najibi, M. A. Ghiasi, Z. Xu, J. Dickerson, C. Studer, L. S. Davis, G. Taylor,

and T. Goldstein. Adversarial training for free!, volume 32. Curran Associates, Inc.,

2019.

R. Shahril, A. Saito, A. Shimizu, and S. Baharun. Bleeding Classification of Enhanced

Wireless Capsule Endoscopy Images using Deep Convolutional Neural Network. Journal

of Information Science and Engineering, 36(1):91–108, 2020. ISSN 10162364. doi: 10.

6688/JISE.20200136(1).0006.

H. Shi, Y. Yang, X. Zhu, S. Liao, Z. Lei, W. Zheng, and S. Z. Li. Embedding deep metric

for person re-identification: A study against large variations, 2016. ISSN 16113349.

A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb. Learning from

Simulated and Unsupervised Images through Adversarial Training. Institute of Electrical

and Electronics Engineers Inc., 2017. doi: 10.1109/CVPR.2017.241.

A. Sieg. Capsule endoscopy compared with conventional colonoscopy for detection of col-

orectal neoplasms. World Journal of Gastrointestinal Endoscopy, 3(5):81, 2011. ISSN

1948-5190. doi: 10.4253/wjge.v3.i5.81.

R. L. Siegel, K. D. Miller, and A. Jemal. Cancer statistics, 2019. CA: a cancer journal for

clinicians, 69(1):7–34, 2019.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image

recognition, 9 2015.



204 APPENDIX A. RESEARCH OUTCOME

A. Singh, S. Sengupta, and V. Lakshminarayanan. Explainable deep learning models in

medical image analysis. Journal of Imaging, 6(6):52, 2020.

P. H. Smedsrud, V. Thambawita, S. A. Hicks, H. Gjestang, O. O. Nedrejord, E. Næss,

H. Borgli, D. Jha, T. J. D. Berstad, S. L. Eskeland, M. Lux, H. Espeland, A. Petlund,

D. T. D. Nguyen, E. Garcia-Ceja, D. Johansen, P. T. Schmidt, E. Toth, H. L. Ham-

mer, T. de Lange, M. A. Riegler, and P. Halvorsen. Kvasir-Capsule, a video cap-

sule endoscopy dataset. Scientific Data, 8(1):1–10, 2021. ISSN 20524463. doi:

10.1038/s41597-021-00920-z.

L. N. Smith. Cyclical Learning Rates for Training Neural Networks. Institute of Electrical

and Electronics Engineers Inc., March 2017. doi: 10.1109/WACV.2017.58.

M. E. Smith and D. G. Morton. The Digestive System. Elsevier, 2010. ISBN 978-0-7020-

3367-4. doi: 10.1016/C2009-0-51554-1.

K. Sohn. Improved deep metric learning with multi-class N-pair loss objective. Advances

in Neural Information Processing Systems, pages 1857–1865, 2016. ISSN 10495258.

G. Son, T. Eo, J. An, D. J. Oh, Y. Shin, H. Rha, Y. J. Kim, Y. J. Lim, and D. Hwang.

Small bowel detection for wireless capsule endoscopy using convolutional neural networks

with temporal filtering. Diagnostics (Basel, Switzerland), 12(8):1858, July 2022. ISSN

2075-4418. doi: 10.3390/diagnostics12081858.

C. Spada, C. Hassan, D. Bellini, D. Burling, G. Cappello, C. Carretero, E. Dekker, R. Eli-

akim, M. de Haan, M. F. Kaminski, A. Koulaouzidis, A. Laghi, P. Lefere, T. Mang, S. M.

Milluzzo, M. Morrin, D. McNamara, E. Neri, S. Pecere, M. Pioche, A. Plumb, E. Ron-

donotti, M. C. W. Spaander, S. Taylor, I. Fernandez-Urien, J. E. van Hooft, J. Stoker,

and D. Regge. Imaging alternatives to colonoscopy: CT colonography and colon capsule.

European Society of Gastrointestinal Endoscopy (ESGE) and European Society of Gas-

trointestinal and Abdominal Radiology (ESGAR) Guideline – Update 2020. European

Radiology, 31(5):2967–2982, 2021. ISSN 1432-1084. doi: 10.1007/s00330-020-07413-4.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A

simple way to prevent neural networks from overfitting. Journal of Machine Learning

Research, 15, 2014. ISSN 15337928.

Y. Sun, Y. Ming, X. Zhu, and Y. Li. Out-of-distribution detection with deep nearest

neighbors. PMLR, 4 2022.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,

and A. Rabinovich. Going deeper with convolutions, 9 2015. ISSN 10636919. URL

https://arxiv.org/abs/1409.4842v1.

S. A. Taghanaki, Y. Zheng, S. Kevin Zhou, B. Georgescu, P. Sharma, D. Xu, D. Comaniciu,

and G. Hamarneh. Combo loss: Handling input and output imbalance in multi-organ seg-

https://arxiv.org/abs/1409.4842v1


BIBLIOGRAPHY 205

mentation. Computerized Medical Imaging and Graphics, 75:24–33, 2019. ISSN 18790771.

doi: 10.1016/j.compmedimag.2019.04.005.

F. W. D. Tai, M. McAlindon, and R. Sidhu. Colon capsule endoscopy–shining the light

through the colon. Current Gastroenterology Reports, pages 1–7, 2023.

K. Takada, Y. Yabuuchi, and N. Kakushima. Evaluation of current status and near future

perspectives of capsule endoscopy: Summary of Japan Digestive Disease Week 2019.

Digestive Endoscopy, 32(4):529–531, 2020. ISSN 14431661. doi: 10.1111/den.13659.

M. Tan and Q. V. Le. Efficientnet: Rethinking model scaling for convolutional neural

networks. 36th International Conference on Machine Learning, ICML 2019, 2019-June:

10691–10700, 5 2019. doi: 10.48550/arxiv.1905.11946.

A. S. Tarawneh, A. B. Hassanat, G. A. Altarawneh, and A. Almuhaimeed. Stop oversam-

pling for class imbalance learning: A review. IEEE Access, 10:47643–47660, 2022. doi:

10.1109/ACCESS.2022.3169512.

S. Thulasidasan, T. Bhattacharya, J. Bilmes, G. Chennupati, and J. Mohd-Yusof. Combat-

ing label noise in deep learning using abstention. arXiv:1905.10964, 2019.

R. Trasolini and M. F. Byrne. Artificial intelligence and deep learning for small bowel capsule

endoscopy, volume 33. John Wiley & Sons, Ltd, jan 2021. doi: 10.1111/den.13896.

M. Tschannen, J. Djolonga, M. Ritter, A. Mahendran, N. Houlsby, S. Gelly, and M. Lucic.

Self-Supervised Learning of Video-Induced Visual Invariances. Institute of Electrical and

Electronics Engineers Inc., 2015.

A. B. Tufail, Y.-K. Ma, M. K. A. Kaabar, F. Mart́ınez, A. R. Junejo, I. Ullah, and

R. Khan. Deep learning in cancer diagnosis and prognosis prediction: A minireview

on challenges, recent trends, and future directions. Computational and Mathematical

Methods in Medicine, 2021, 2021.

T. Ueda, Y. Ohno, K. Yamamoto, K. Murayama, M. Ikedo, M. Yui, S. Hanamatsu,

Y. Tanaka, Y. Obama, H. Ikeda, and H. Toyama. Deep Learning Reconstruction of

Diffusion-weighted MRI Improves Image Quality for Prostatic Imaging. Radiology, 303

(Genitourinary Imaging), 2022.

M. A. Usman, G. Satrya, M. R. Usman, and S. Y. Shin. Detection of small colon bleeding

in wireless capsule endoscopy videos. Computerized Medical Imaging and Graphics, 54:16

– 26, 2016. ISSN 0895-6111. doi: https://doi.org/10.1016/j.compmedimag.2016.09.005.

V. V and K. V. Prashanth. Ulcer detection in Wireless Capsule Endoscopy images using

deep CNN. Journal of King Saud University - Computer and Information Sciences, sep

2020. ISSN 22131248. doi: 10.1016/j.jksuci.2020.09.008.



206 APPENDIX A. RESEARCH OUTCOME

A. Van Den Oord, N. Kalchbrenner, and K. Kavukcuoglu. Pixel recurrent neural networks.

PMLR, 2016.

A. van den Oord, Y. Li, and O. Vinyals. Representation Learning with Contrastive Predic-

tive Coding. arXiv, jul 2018.

L. Van Der Maaten and G. Hinton. Visualizing data using t-SNE. Journal of Machine

Learning Research, 9:2579–2625, 2008. ISSN 15324435.

G. Varoquaux and V. Cheplygina. Machine learning for medical imaging: methodological

failures and recommendations for the future. NPJ digital medicine, 5(1):48, 2022.

M. Vasilakakis, A. Koulaouzidis, D. E. Yung, J. N. Plevris, E. Toth, and D. K. Iakovidis.

Follow-up on: optimizing lesion detection in small bowel capsule endoscopy and beyond:

from present problems to future solutions. Expert Review of Gastroenterology and Hepa-

tology, 13(2):129–141, 2019. ISSN 17474132. doi: 10.1080/17474124.2019.1553616.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,  Lukasz Kaiser,

and I. Polosukhin. Attention is all you need. Advances in Neural Information Processing

Systems, 2017-December, 2017. ISSN 10495258.

A. Vats, M. Pedersen, A. Mohammed, and Ø. Hovde. Learning More for Free - A Multi

Task Learning Approach for Improved Pathology Classification in Capsule Endoscopy,

volume 12907 LNCS. Springer International Publishing, 2021. ISBN 9783030872335. doi:

10.1007/978-3-030-87234-2 1.

A. Vats, A. Mohammed, and M. Pedersen. From labels to priors in capsule endoscopy: a

prior guided approach for improving generalization with few labels. Scientific Reports,

12(1):15708, 2022.

P. M. Vieira, N. R. Freitas, V. B. Lima, D. Costa, C. Rolanda, and C. S. Lima. Multi-

pathology detection and lesion localization in WCE videos by using the instance seg-

mentation approach. Artificial Intelligence in Medicine, 119(June):102141, 2021. ISSN

18732860. doi: 10.1016/j.artmed.2021.102141.

A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis. Deep learning for

computer vision: A brief review. Computational Intelligence and Neuroscience, 2018,

2018. ISSN 16875273. doi: 10.1155/2018/7068349.

A. Vyas, N. Jammalamadaka, X. Zhu, D. Das, B. Kaul, and T. L. Willke. Out-

of-distribution detection using an ensemble of self supervised leave-out classifiers.

arXiv:1809.03576, 2018.

S. Waite, Z. Farooq, A. Grigorian, C. Sistrom, S. Kolla, A. Mancuso, S. Martinez-Conde,

R. G. Alexander, A. Kantor, and S. L. Macknik. A review of perceptual expertise in

radiology-how it develops, how we can test it, and why humans still matter in the era



BIBLIOGRAPHY 207

of artificial intelligence. Academic Radiology, 27(1):26–38, 2020. ISSN 1076-6332. doi:

https://doi.org/10.1016/j.acra.2019.08.018. Special Issue: Artificial Intelligence.

J. Wan, B. Chen, and Y. Yu. Polyp detection from colorectum images by using attentive

YOLOv5. Diagnostics, 11(12), 2021. ISSN 20754418. doi: 10.3390/diagnostics11122264.

F. Wang, L. P. Casalino, and D. Khullar. Deep learning in medicine—promise, progress,

and challenges. JAMA internal medicine, 179(3):293–294, 2019a.

J. Wang, F. Zhou, S. Wen, X. Liu, and Y. Lin. Deep Metric Learning with Angular Loss.

Proceedings of the IEEE International Conference on Computer Vision, 2017-October:

2612–2620, 2017. ISSN 15505499. doi: 10.1109/ICCV.2017.283.

J. Wang, H. Zhu, S. H. Wang, and Y. D. Zhang. A review of deep learning on medical

image analysis. Mobile Networks and Applications, 26, 2021. ISSN 15728153. doi: 10.

1007/s11036-020-01672-7.

M. Wang and W. Deng. Deep visual domain adaptation: A survey. Neurocomputing, 312,

2018. ISSN 18728286. doi: 10.1016/j.neucom.2018.05.083.

S. Wang, Y. Xing, L. Zhang, H. Gao, and H. Zhang. A systematic evaluation and optimiza-

tion of automatic detection of ulcers in wireless capsule endoscopy on a large dataset using

deep convolutional neural networks. Physics in Medicine and Biology, 64(23):235014, dec

2019b. doi: 10.1088/1361-6560/ab5086.

S. Wang, Y. Xing, L. Zhang, H. Gao, and H. Zhang. Deep Convolutional Neural Network

for Ulcer Recognition in Wireless Capsule Endoscopy: Experimental Feasibility and Op-

timization. Computational and Mathematical Methods in Medicine, 2019:7546215, 2019c.

ISSN 1748-670X. doi: 10.1155/2019/7546215.

X. Wang and A. Gupta. Unsupervised learning of visual representations using videos,

volume 2015 Inter. Institute of Electrical and Electronics Engineers Inc., 2015. ISBN

9781467383912. doi: 10.1109/ICCV.2015.320.

X. Wang and M. Q. Meng. Perspective of active capsule endoscope: actuation and locali-

sation. International Journal of Mechatronics and Automation, 1, 2011. ISSN 20451067.

doi: 10.1504/IJMA.2011.039154.

X. Wang and J. Schneider. Flexible Transfer Learning under Support and Model Shift,

volume 27. Curran Associates, Inc., 2014.

X. Wang, A. Jabri, and A. A. Efros. Learning correspondence from the cycle-consistency

of time, volume 2019-June. Institute of Electrical and Electronics Engineers Inc., 2019d.

ISBN 9781728132938. doi: 10.1109/CVPR.2019.00267.

X. Wang, H. Qian, E. J. Ciaccio, S. K. Lewis, G. Bhagat, P. H. Green, S. Xu, L. Huang,

R. Gao, and Y. Liu. Celiac disease diagnosis from videocapsule endoscopy images



208 APPENDIX A. RESEARCH OUTCOME

with residual learning and deep feature extraction. Computer Methods and Programs

in Biomedicine, 187:105236, apr 2020. ISSN 18727565. doi: 10.1016/j.cmpb.2019.105236.

K. Q. Weinberger and L. K. Saul. Distance metric learning for large margin nearest neighbor

classification. Journal of Machine Learning Research, 10:207–244, 2009. ISSN 15324435.

M. J. Willemink, W. A. Koszek, C. Hardell, J. Wu, D. Fleischmann, H. Harvey, L. R. Folio,

R. M. Summers, D. L. Rubin, and M. P. Lungren. Preparing medical imaging data for

machine learning. Radiology, 295(1):4–15, 2020.

Y. Xiao, Z. Tian, J. Yu, Y. Zhang, S. Liu, S. Du, and X. Lan. A review of object detection

based on deep learning. Multimedia Tools and Applications, 79(33):23729–23791, 2020.

ISSN 1573-7721. doi: 10.1007/s11042-020-08976-6.

Z. Xiao, J. Lu, X. Wang, N. Li, Y. Wang, and N. Zhao. WCE-DCGAN: A data augmentation

method based on wireless capsule endoscopy images for gastrointestinal disease detection.

IET Image Processing, pages 1–11, 2022. ISSN 17519667. doi: 10.1049/ipr2.12704.

J. Xing and H. Mouchère. Contrastive Self-Supervised Learning on Crohn’s Disease Detec-

tion. IEEE, 2022.

D. Xu, J. Xiao, Z. Zhao, J. Shao, D. Xie, and Y. Zhuang. Self-supervised spatiotemporal

learning via video clip order prediction, volume 2019-June. Institute of Electrical and

Electronics Engineers Inc., 2019. ISBN 9781728132938. doi: 10.1109/CVPR.2019.01058.

H. Xuan, A. Stylianou, and R. Pless. Improved embeddings with easy positive triplet mining.

Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV

2020, pages 2463–2471, 2020. doi: 10.1109/WACV45572.2020.9093432.

S. S. Yadav and S. M. Jadhav. Deep convolutional neural network based medical image

classification for disease diagnosis. Journal of Big Data, 6(1):113, 2019. ISSN 2196-1115.

doi: 10.1186/s40537-019-0276-2.

H. Yamamoto, H. Ogata, T. Matsumoto, N. Ohmiya, K. Ohtsuka, K. Watanabe, T. Yano,

T. Matsui, K. Higuchi, T. Nakamura, and K. Fujimoto. Clinical Practice Guideline for

Enteroscopy. Digestive Endoscopy, pages 519–546, 2017. doi: 10.1111/den.12883.

J. Yanase and E. Triantaphyllou. The seven key challenges for the future of computer-aided

diagnosis in medicine. International journal of medical informatics, 129:413–422, 2019a.

J. Yanase and E. Triantaphyllou. A systematic survey of computer-aided diagnosis in

medicine: Past and present developments. Expert Systems with Applications, 138:112821,

2019b.

J. Yang, L. Chang, S. Li, X. He, and T. Zhu. WCE polyp detection based on novel fea-

ture descriptor with normalized variance locality-constrained linear coding. International

Journal of Computer Assisted Radiology and Surgery, 15(8):1291–1302, 2020.



BIBLIOGRAPHY 209

J. Yang, K. Zhou, Y. Li, and Z. Liu. Generalized out-of-distribution detection : Survey.

IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 1–22, 2022.

Y. J. Yang. The Future of Capsule Endoscopy: The Role of Artificial Intelligence and Other

Technical Advancements. Clinical Endoscopy, 53(4):387–394, 2020. ISSN 2234-2400. doi:

10.5946/ce.2020.133.

J.-Y. Yeh, T.-H. Wu, and W.-J. Tsai. Bleeding and Ulcer Detection Using Wireless Capsule

Endoscopy Images. Journal of Software Engineering and Applications, 07(05):422–432,

may 2014. ISSN 1945-3116. doi: 10.4236/jsea.2014.75039.

B. Yu, T. Liu, M. Gong, C. Ding, and D. Tao. Correcting the triplet selection bias for triplet

loss. Springer, 2018.

J. Yu, J. Chen, Z. Q. Xiang, and Y. Zou. A hybrid convolutional neural networks with

extreme learning machine for WCE image classification. Institute of Electrical and Elec-

tronics Engineers Inc., Dec 2015. doi: 10.1109/ROBIO.2015.7419037.

L. Yu, H. Chen, Q. Dou, J. Qin, and P. A. Heng. Integrating online and offline three-

dimensional deep learning for automated polyp detection in colonoscopy videos. IEEE

Journal of Biomedical and Health Informatics, 21(1):65–75, Jan 2017. ISSN 2168-2194.

doi: 10.1109/JBHI.2016.2637004.

X. Yu, J. Wang, Q.-Q. Hong, R. Teku, S.-H. Wang, and Y.-D. Zhang. Transfer learning for

medical images analyses: A survey. Neurocomputing, 489:230–254, 2022. ISSN 0925-2312.

doi: https://doi.org/10.1016/j.neucom.2021.08.159.

Y. Yuan and M. Q. . Meng. A novel feature for polyp detection in wireless capsule endoscopy

images. Institute of Electrical and Electronics Engineers Inc., Sep. 2014. doi: 10.1109/

IROS.2014.6943274.

Y. Yuan and M. Q. Meng. Automatic bleeding frame detection in the wireless capsule

endoscopy images, volume 2015-June. Institute of Electrical and Electronics Engineers

Inc., June 2015. doi: 10.1109/ICRA.2015.7139360.

Y. Yuan and M. Q. Meng. Deep learning for polyp recognition in wireless capsule endoscopy

images:. Medical Physics, 44(4):1379–1389, apr 2017. ISSN 00942405. doi: 10.1002/mp.

12147.

Y. Yuan, D. Li, and M. Q.-H. Meng. Automatic polyp detection via a novel unified bottom-

up and top-down saliency approach. IEEE journal of biomedical and health informatics,

22(4):1250–1260, 2017a.

Y. Yuan, W. Qin, B. Ibragimov, B. Han, and L. Xing. RIIS-DenseNet: Rotation-Invariant

and Image Similarity Constrained Densely Connected Convolutional Network for Polyp

Detection. Springer, 09 2018.



210 APPENDIX A. RESEARCH OUTCOME

Y. Yuan, W. Qin, B. Ibragimov, G. Zhang, B. Han, M. Q. Meng, and L. Xing. Densely

connected neural network with unbalanced discriminant and category sensitive constraints

for polyp recognition. IEEE Transactions on Automation Science and Engineering, 17:

574–583, 4 2020. ISSN 15583783. doi: 10.1109/TASE.2019.2936645.

Z. Yuan, M. Izadyyazdanabadi, D. Mokkapati, R. Panvalkar, J. Shin, N. Tajbakhsh, S. Gu-

rudu, and J. Liang. Automatic polyp detection in colonoscopy videos, volume 10133. SPIE,

2017b. doi: 10.1117/12.2254671.

D. E. Yung, E. Rondonotti, and A. Koulaouzidis. Capsule colonoscopy — a concise clinical

overview of current status. Annals of translational medicine, 4(20), 2016.

S. M. Zaman, M. M. Hasan, R. I. Sakline, D. Das, and M. A. Alam. A Comparative Analysis

of Optimizers in Recurrent Neural Networks for Text Classification. Institute of Electrical

and Electronics Engineers Inc., 2021. doi: 10.1109/CSDE53843.2021.9718394.

J. R. Zech, M. A. Badgeley, M. Liu, A. B. Costa, J. J. Titano, and E. K. Oermann.

Variable generalization performance of a deep learning model to detect pneumonia in

chest radiographs: A cross-sectional study. PLoS Medicine, 15(11):1–17, 2018. ISSN

15491676. doi: 10.1371/journal.pmed.1002683.

H. Zhang, H. Song, S. Li, M. Zhou, and D. Song. A survey of controllable text generation

using transformer-based pre-trained language models, 2022.

R. Zhang, Y. Zheng, T. W. C. Mak, R. Yu, S. H. Wong, J. Y. W. Lau, and C. C. Y. Poon.

Automatic detection and classification of colorectal polyps by transferring low-level cnn

features from nonmedical domain. IEEE Journal of Biomedical and Health Informatics,

21(1):41–47, Jan 2017. ISSN 2168-2194. doi: 10.1109/JBHI.2016.2635662.

X. Zhang, F. Chen, T. Yu, J. An, Z. Huang, J. Liu, W. Hu, L. Wang, H. Duan, and J. Si.

Real-time gastric polyp detection using convolutional neural networks. PLOS ONE, 14

(3):1–16, 03 2019. doi: 10.1371/journal.pone.0214133.

Q. Zhao and M. Q. . Meng. Polyp detection in wireless capsule endoscopy images using

novel color texture features. Institute of Electrical and Electronics Engineers Inc., June

2011. doi: 10.1109/WCICA.2011.5970656.

Q. Zhao, G. E. Mullin, M. Q.-H. Meng, T. Dassopoulos, and R. Kumar. A general framework

for wireless capsule endoscopy study synopsis. Computerized Medical Imaging and Graph-

ics, 41:108 – 116, 2015. ISSN 0895-6111. doi: https://doi.org/10.1016/j.compmedimag.

2014.05.011. Machine Learning in Medical Imaging.

S. Zhao, B. Li, C. Reed, P. Xu, and K. Keutzer. Multi-source domain adaptation in the

deep learning era: A systematic survey. arXiv, 2 2020. doi: 10.48550/arxiv.2002.12169.

X. Zhao, C. Fang, F. Gao, D.-j. Fan, X. Lin, and G. Li. Deep Transformers for fast small

intestine grounding in Capsule Endoscope Video. VIDEO School of Data and Computer



BIBLIOGRAPHY 211

Science , Sun Yat-Sen University , Guangzhou , China School of Artifical Intelligence ,

Xidian University , Xi ’ an , China The Sixth Affiliated Ho. IEEE 18th International

Symposium on Biomedical Imaging (ISBI), pages 150–154, 2021.

B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Learning Deep Features for

Discriminative Localization. IEEE Computer Society, Los Alamitos, CA, USA, jun 2016.

doi: 10.1109/CVPR.2016.319.

C. Zhou, K. Qiu, C. Chen, D. Zhang, and Y. Guo. Video super-resolution for wireless

capsule endoscopy imaging sensor. IEEE Sensors Journal, 22(17):17283–17290, 2022.

R. Zhu, R. Zhang, and D. Xue. Lesion detection of endoscopy images based on convolutional

neural network features. Institute of Electrical and Electronics Engineers Inc., Oct 2015.

doi: 10.1109/CISP.2015.7407907.

W. Zhu, L. Xie, J. Han, and X. Guo. The application of deep learning in cancer prognosis

prediction. Cancers, 12, 2020.

Y. Zou, L. Li, Y. Wang, J. Yu, Y. Li, and W. J. Deng. Classifying digestive organs in

wireless capsule endoscopy images based on deep convolutional neural network. Institute of

Electrical and Electronics Engineers Inc., July 2015. doi: 10.1109/ICDSP.2015.7252086.

L. L. Zwinger, B. Siegmund, A. Stroux, A. Adler, W. Veltzke-Schlieker, R. Wentrup,

C. Jürgensen, B. Wiedenmann, F. Wiedbrauck, S. Hollerbach, et al. Capsocam sv-1

versus pillcam sb 3 in the detection of obscure gastrointestinal bleeding. Journal of

clinical gastroenterology, 53(3):e101–e106, 2019.




