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“Causa latet, vis est notissima."
"The cause is hidden, but the result is well known.”

Aristotle

“There is no dark side of the moon, really. Matter of fact, it’s all dark.”

Pink Floyd
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by Gilles BLONDEL

Luckily, we are not only observers but also actors of reality, or part of it. Our apparent
capability to intervene and alter the course of some events in the space and time surrounding
us is an essential component of how we build our model of the world.

In this doctoral thesis we propose a novel method for measuring how efficient an inter-
vention is to discover the causal relations at play. We introduce a generic a-priori assessment
of each possible intervention on the subset of reality we are modelling, in order to select
the most cost-effective interventions only, and avoid unnecessary systematic experimenta-
tion on the real world. Based on this a-priori assessment, we propose an active learning
algorithm that identifies the causal relations in any given causal model, using a least cost
sequence of interventions. There are several novel aspects introduced by our algorithm. It is,
in most case scenarios, able to discard many causal model candidates using relatively inex-
pensive interventions that only test one value of the intervened variables. Also, the number
of interventions performed by the algorithm can be bounded by the number of causal model
candidates. Hence, fewer initial candidates (or equivalently, more prior knowledge) lead to
fewer interventions for causal discovery.

Causality is intimately related to time, as causes appear to precede their effects. Cyclical
causal processes are a very interesting case of causality in relation to time. In this doctoral
thesis we introduce a formal analysis of time cyclical causal settings by defining a causal
analog to the purely observational Dynamic Bayesian Networks, and provide a sound and
complete algorithm for the identification of causal effects in the cyclic setting. We introduce
the existence of two types of hidden confounder variables in this framework, which affect
in substantially different ways the identification procedures, a distinction with no analog in
either Dynamic Bayesian Networks or standard causal graphs.
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Chapter 1

Introduction

1.1 Causality

It is our perception, from the moment we start observing and interacting with mother nature,
that we live in a time evolving environment. We learn that our actions lead to consequences.
We extrapolate towards the outer world these basic frameworks from early personal expe-
riences and we quickly develop a simple and mechanistic explanation of the world: causes
produce effects in time. This is our intuitive and practical model of reality.

Imagine a simple universe, fully described using a finite number of variables, and where
all these variables are constant across any dimensions, since inception and for ever after. An
external observer may make a picture of this universe, but would not be able to describe any
dependence relations between its variables. This may not be a problem if nothing ever alters
the course of the universe, because there is no expectation of change and no need to model
the world to predict change. However, if there is any chance that there will be an external
influence altering any of the variables, the observer may ask himself what are the relations
(if any) between the variables to attempt predicting the consequences. Causality, as other
conceptualizations of the world, is intimately related to the existence of an external observer,
and the ability of the observer to interact with the world and alter its course. Simply observing
the world without acting on it, would not let us reach the conclusion that causal relations exist,
at best we could only describe sequences of events in time and their correlations.

In the causal context, an intervention or experiment is defined as externally forcing a
variable, pushing it outside of its natural behaviour, and therefore cutting it from the variables
it naturally depends from. By observing the consequences of such action, we may learn what
are the causal effects of the intervened variable. An intervention not only isolates a variable
from its natural observable causes but also from hidden confounders, unobserved variables
that causally influence two or more observed variables such that the association they produce
between these observed variables may be taken erroneously as causal.

We use causal graphs to encode the causal relations between variables. Both observable
and unobservable variables may be represented as vertex in the graph, and the causal relations
may be represented as edges. Causal relations are directional in the sense that acting on one
variable causes another to change (smoking causes cancer) while the opposite is untrue. We
may reduce the chance of contracting cancer by reducing the amount of smoking. This is
not to say that there are not cyclic dependencies among variables, however we may observe
this cyclic process over time and, if the observation time scale is small enough, the causal
relations may be describable again as directional. A simple way to model causal relations is
to use directed acyclic graphs (DAGs).
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1.2 Discovery of Causal Relations

Causal graphs encode the causal relations between the variables in a model. In the smoking
and cancer example, we may want to observe a population and attempt to build a causal
graph from the characteristics of the observed data. Note that in a deterministic world, once
we know the cause variables, we would know without a doubt the effects (cancer would be
totally predictable). However, this is almost never the case, as we usually know and observe
only part of a complex reality. When we observe samples of a limited set of variables,
and assume that unobserved variables exist, the model becomes probabilistic. The observed
variables may be represented by their joint probability distribution.

In the probabilistic context, one may analyse the joint probability distribution of the ob-
served variables to extract dependence and independence relations among them. In particu-
lar the conditional independence relations may provide causal information. As an example,
given four variables X ,Y ,Z,T , if the statistical test P (Y |X) = P (Y ) holds true this in-
dicates Y and X are independent. Translated to the causal graph this means there is no
"d-connected" path, i.e., a sequence of adjacent edges between X and Y through which X
and Y have a causal influence on each other. Also, if P (T |Z,X) = P (T |Z) we conclude
that T is independent of X given Z so that Z blocks any such paths between X and T . We
say that X and T are "d-separated" conditional to Z. These statistical tests lead to graphical
rules that "d-connect" or "d-separate" variables depending on other variables, and a set of
DAGs compatible with these rules can be inferred, in other words, a skeleton structure of a
completed partially directed acyclic graph (CPDAG) can be inferred from the observed joint
probability distributions.

From a general perspective, the discovery of causal relations from empirical data is the
basis of the scientific method. In the last few decades, some focus has been given to the
development of algorithms for the discovery of causal relations from observed probabilistic
data. The attempts to automate causal discovery from purely observed data, aim at avoiding
the requirement of experimentation on the domain, which can be a very costly process. Sys-
tematic analysis of the observed data, under various assumptions, provides appropriate hints
that there might be causal relationships between the variables under analysis in the model.

In this thesis we will assume that the distributions generated by causal processes satisfy
the Markov and Faithfulness conditions.

Definition 1 (Markov Condition) Let G be a DAG, V be the set of vertices of G, X ∈ V
be a vertex of G, Pa(X) be the set of parents of X and De(X) be the set of descendants of
X in G. The DAG G and a probability distribution P on the vertices V satisfy the Markov
condition iff for every X ∈ V , X and {V \ (X ∪De(X))} are independent conditional on
Pa(X).

Definition 2 (Faithfulness Condition) Let G be a DAG, V the set of vertices of G and P a
distribution over V . Then P is faithful to G iff G and P satisfy the Markov condition and
every conditional independence relation true in P is entailed by the Markov condition for G.

These conditions connect the observed probability distribution with the underlying causal
system that generates the distribution.

A number of methods have been proposed for finding causal relations from observational
data. Several algorithms have been developed, IC, IC* (Verma and Pearl, 1991) and (Pearl,
2000), PC (Spirtes, Glymour, and Scheines, 2000), GES (Chickering, 2003), FCI (Spirtes,
Meek, and Richardson, 1995) and (Spirtes, Glymour, and Scheines, 2000), RFCI (Colombo
et al., 2012). Some of these algorithms assume there are no hidden variables, while others
assume that hidden variables exist and may confound, i.e., influence causally, several of the
observed variables.
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The discovery of causal relations from observational data has its limits. In most cases we
will obtain, at best, a set of causal models compatible with the observed data. Examples of
this are CPDAGs, output of the PC algorithm and Partial Ancestral Graphs (PAG), output of
the FCI algorithm.

A different approach is to, not only find causal relations from the observational data, but
also do so by performing experiments (also called "interventions") on the system of variables
we are trying to discover the causal relations from, and gathering the joint probability distri-
butions of the system under various interventions. A number of interventions may be required
to build a complete DAG. Worst case scenario bounds for the number of interventions have
been identified by (Eberhardt, Glymour, and Scheines, 2005). (Hauser and Bühlmann, 2011)
expand the GES algorithm to causal discovery with experimental data. (Peters, Bühlmann,
and Meinshausen, 2015) use the predicted invariance of causal models under several inter-
ventions as a method for causal discovery, in comparison with non-causal models where the
invariance does not hold, and (Heinze-Deml, Peters, and Meinshausen, 2018) expand this
setting to non-linear models.

(Cooper and Yoo, 1999) propose a method for learning causal models from a mixture of
observational and interventional data. (Tong and Koller, 2001) and (Murphy, 2001) introduce
active learning algorithms for the discovery of causal relations, based on interventional data.
However, these methods and algorithms have focused on the discovery of causal relations by
using interventions in causal models without hidden confounders. This is very restrictive in
real world applications, because hidden confounders are typically present in real world data.

This thesis is concerned with the discovery of causal models that contain hidden con-
founders, using sequences of interventions. This is a more realistic scenario. Causal models
without hidden confounders are a particular sub-case and as such our proposition includes
and unifies previous active learning methods.

1.3 Prediction of Causal Effects

In the previous section we have discussed the discovery of causal relations. Using appropriate
methods, the objective of causal discovery is to build a causal model that best represents the
causal relations that exist in the system we want to describe. Another central topic in causality
is the prediction of causal effects. Once we know what causal relations exist among the
variables of a system, we may want to reason about the system’s behaviour, and in particular
we may want to predict the causal effects of an intervention on the system. This is called the
causal identification problem.

Pearl’s causal graphical models and do-calculus (Pearl, 1994) are a leading approach to
modelling causal relations and predicting the effect of interventions. The do-calculus is an
algebraic framework for reasoning about such interventions: An expression P (Y |do(X)) in-
dicates the probability distribution of a set of variables Y upon performing an intervention on
another set X . In some cases, the effect of such an experiment can be obtained given a causal
graph and some observational distributions; this is convenient as some experiments may be
impossible, expensive, or unethical to perform. When P (Y |do(X)), for a given causal graph,
can be rewritten as an expression containing only observational probabilities, without a do
operator, we say that it is identifiable. (Shpitser and Pearl, 2006) and (Huang and Valtorta,
2006b) showed that a do expression is identifiable if and only if it can be rewritten in this
way with a finite number of applications of the three rules of do-calculus, and (Shpitser and
Pearl, 2006) proposed the ID algorithm which performs this transformation if at all possible,
or else returns fail indicating non-identifiability. More precisely, the do-calculus framework
provides non-parametric identifiability, whereas other identification methods for causal ef-
fects need to rely on more restrictive assumptions beyond the causal graph, such as structural
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equations models, linearity, or other parametric assumptions involving the variables in the
model. In this thesis, by identifiability we always mean non-parametric identifiability.

The soundness and completeness of do-calculus opens the way for new research. In
particular, under some assumptions, given a causal model we can predict the effects of in-
terventions. This thesis introduces a method for learning causal models by comparing the
predicted outcomes of interventions with the actual intervention results.

1.4 Timescale and Equilibrium

Causal discovery and causal identification, as described so far in this thesis, can be time ag-
nostic. In the probabilistic context, indeed the time component may be one more unobserved
variable, along with many others. However, we clearly perceive that causes produce effects
after some lapse of time, even if microscopical, and that time is crucial to understanding
causality.

One of the problems that appear when trying to discover causal effect relations from data
over time is choosing an appropriate timescale. Data sets are usually built from data samples,
and are not in the form of continuous data over time. Without any prior knowledge about the
rate of change under which the system evolves some causal relations may not be discovered,
just because the sampling rate is not adjusted to the dynamics of the variables. Also, there
may be various causal effects occurring at different timescales within the same system, which
adds to the complexity of the problem. This is a generic challenge in science.

Another challenge of causal discovery across time is that some causal relations may be
hidden if we monitor the system after these causal relations have reached some stable equi-
librium. We do not know if and when these causal relations have existed and have caused the
system to evolve in the past. Modelling the system only with the observed dynamic causal
relations will not guarantee we can correctly predict the effect of interventions. Indeed, in
reality some interventions may take the system out of equilibrium and awaken the previously
unobserved causal relations.

Existing research discusses some of the challenges of the dynamic temporal environment.
Dynamic causal systems are often modelled with sets of differential equations. However
(Dash and Druzdzel, 1999) (Dash and Druzdzel, 2001) (Dash, 2005) show the caveats of
the discovery of causal models based on differential equations which pass through equilib-
rium states, and how causal reasoning based on the models discovered in such way may fail.
(Voortman, Dash, and Druzdzel, 2012) propose an algorithm for the discovery of causal rela-
tions based on differential equations while ensuring those caveats due to system equilibrium
states are taken into account. Timescale and sampling rate at which we observe a dynamic
system play a crucial role in how well the obtained data may represent the causal relations
in the system. (Aalen et al., 2014) discuss the difficulties of representing a dynamic system
with a DAG built from discrete observations and (Gong et al., 2015) argue that under some
conditions the discovery of temporal causal relations is feasible from data sampled at a lower
rate than the system dynamics. (Hyttinen et al., 2017) extend the discussion on the impact
of choosing an appropriate timescale and sampling rate, and propose a discovery algorithm
based on a general-purpose constraint solver.

1.4.1 Causal Discovery in Dynamic Systems

Regarding the discovery of causal models from observational data in dynamic, time depen-
dent systems (Iwasaki and Simon, 1989) and (Dash and Druzdzel, 2008) propose an algo-
rithm to establish an ordering of the variables corresponding to the temporal order of prop-
agation of causal effects. Methods for the discovery of cyclic causal graphs from data have
been proposed using independent component analysis (Lacerda et al., 2012) and using local



1.5. Thesis Contributions 5

d-separation criteria (Meek, 2014). Existing algorithms for causal discovery from static data
have been extended to the dynamic setting by (Moneta and Spirtes, 2006) and (Chicharro
and Panzeri, 2015). (Dahlhaus and Eichler, 2003; White and Lu, 2010; White, Chalak, Lu,
et al., 2011) discuss the discovery of causal graphs from time series by including Granger
causality concepts into their causal models. (Löwe et al., 2022) introduce a method to infer
causal relations from samples obtained across various underlying causal models with shared
structural dynamics.

1.4.2 Causal Prediction in Dynamic Systems

Regarding reasoning from a given dynamic causal model, one existing line of research is
based on time series and Granger causality concepts (Eichler and Didelez, 2010; Eichler and
Didelez, 2012; Eichler, 2012). The authors in (Queen and Albers, 2009) use multivariate time
series for identification of causal effects in traffic flow models. (Lauritzen and Richardson,
2002) discuss interventions in dynamic systems in equilibrium, for several types of discrete-
time and continuous-time processes with feedback. (Didelez, 2015) uses local independence
graphs to represent time-continuous dynamic systems and identify the effect of interventions
by re-weighting the causal processes involved.

Existing work on causality does not thoroughly address causal reasoning in dynamic sys-
tems using do-calculus. (Eichler and Didelez, 2010; Eichler and Didelez, 2012; Eichler,
2012) discuss back-door and front-door criteria in time-series. (Dawid and Didelez, 2010)
study a framework of sequential data-gathering and decision-making through a discrete se-
quence of stages, but do not extend their work to the full power of do-calculus as a complete
logic for general causal effect identification. (Peters, Bauer, and Pfister, 2020) discuss causal
prediction in dynamic systems, using an extension of structural causal models to models
governed by differential equations that include noise.

One of the advantages of do-calculus is its non-parametric approach so that it leaves the
type of functional relation between variables undefined. This thesis extends the use of do-
calculus to time series while requiring less restrictions than existing parametric causal anal-
ysis. Parametric approaches may require to differentiate the intervention impacts depending
on the system state, non-equilibrium or equilibrium, while our non-parametric approach is
generic across system states. This thesis shows the generic methods and explicit formulas
revealed by the application of do-calculus to the dynamic setting. These methods and formu-
las simplify the identification of time evolving effects and reduce the complexity of causal
identification algorithms.

1.5 Thesis Contributions

This thesis introduces novel contributions in two fields: the discovery of causal relations and
the prediction of causal effects.

Regarding causal discovery, this thesis introduces a novel and generic method to learn
causal graphs by performing a sequence of interventions, where each intervention is applied
on a single value of the intervened variables, and while minimizing the overall cost of the se-
quence of intervened and observed variables during the discovery process. Regarding causal
effect prediction, this thesis introduces a comprehensive causal reasoning method for models
recurrent in time. In this thesis, all causal models are assumed to contain hidden confounders
that have an influence on observed variables in the causal model, except when explicitly re-
ferring to causal models without hidden confounders as a sub-case. Also, all variables are
assumed to be in a finite domain.
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1.5.1 Contributions to the Discovery of Causal Relations

Our method for the discovery of causal relations introduces several novelties. Firstly, we use
interventions on a single value of the intervened variables. To the best of our knowledge, all
previous methods require interventions on several values of the intervened variables in order
to measure correlation or conditional independence among variables. By using do-calculus
as a tool to predict systematically and numerically the effect of all the interventions that are
possible, without having to actually perform them, we move the search space out of the real
world, and eliminate the need for systematic correlation and independence testing in the real
world. We assume that computational cost is not a concern, when compared with the cost of
actually experimenting in the real world.

Secondly, we accept any set of candidate graphs as input to our method. Previous knowl-
edge may or may not be in the form of an equivalence class of graphs, and the set of candi-
date graphs may or may not have any particular parametric characteristic. Some candidate
graphs may have been discarded previously based on analysing the available observational
data, however no algorithm based on observational data only can identify the true graph of
a causal model. As such, our method accepts any set of causal graph candidates, with the
only assumption that the true graph, the solution to the problem, is included in the set of
candidates.

Thirdly, all causal graphs are assumed to contain hidden confounders, whereas most
previous work focused on causal graphs without hidden confounders.

In more detail, our contribution to the discovery of causal relations is as follows:

• We introduce a mechanism to predict the effect of all possible interventions across a
set of candidate graphs, under the hypothesis that any of the candidates can be the
true graph, given a-priori knowledge. We do this prediction across all possible val-
ues of the intervened variables. This allows to systematically assess and compare the
potential effect of all interventions a-priori, choose the most appropriate ones in or-
der to discriminate between the candidates, and avoid the need to apply most of the
interventions in the real world.

• We avoid the need to use systematic correlation and conditional independence tests
in the real world, whereas most previous methods use a systematic interventional ap-
proach in the real world.

• We introduce an algorithm for active learning of causal graphs, based on identifying
the set of single value interventions that discriminate between all candidate graphs with
the minimal cost of intervening and observing variables. As we assess the effects of
all possible interventions a-priori, we can apply a surgical approach and identify with
precision the required intervened variables, observed variables and value of the inter-
vened variables that provide the most effective discrimination information between the
candidate causal graphs, at the lowest cost.

• We uncover the graphical conditions under which the true causal graph cannot be fully
identified with a sequence of single value interventions, in which case conditional in-
dependence testing is required to complete the discovery process. This case scenario
occurs if problematic graphical structures called hedges are present in specific parts of
the graph.

• We prove that, if we start the discovery process with a set of candidate causal graphs
with hidden confounders, but without hedges, we can always learn the true graph with
a sequence of least cost, single value interventions.
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To provide a simple example of our method, let us consider a causal model M⋆, which
we call the true model, with induced graph G⋆, which we call the true graph. Let us consider
a set of causal graphs that include G⋆, which we call the candidate graphs. We do not know
which candidate graph is the true graph G⋆. Figure 1.1 shows a set of candidate graphs.
Bi-directed edges represent the presence of a hidden confounder which has an effect on the
two variables the bi-directed edge is pointing at. To find which one of the candidates is G⋆

we apply selected interventions on M⋆ that provide us enough information to discriminate
between the candidates. Let us consider an intervention on variables X and Y , and let us
observe the effect of that intervention on Z. Assume the true graph is G1. If that is the case,
we predict, using do-calculus rules and standard probability manipulations, that the effect
of the intervention should be P (Z|X,Y ). Using the same logic, if G2 is the true graph
instead of G1, then we predict that the effect should be

∑
X P (Z|X,Y )P (X). Figure 1.2

shows the predicted effect on Z from the intervention for each candidate graph. We see in
Figure 1.2 that the predicted effect is different for each candidate graph. Let us now apply
this intervention on M⋆, i.e., "in the real world", and find the actual effect of the intervention
on Z. It suffices to apply the intervention on M⋆ for one value of the intervened variables for
which the predicted effect on Z, i.e., the joint probability distribution of Z, differs among the
candidate graphs. We can now eliminate the candidate graphs for which the predicted effect
and the actual effect differ, and conclude that G⋆ is the graph for which the prediction and
the actual effect are the same.

Another intervention may provide different results. Figure 1.3 shows that an intervention
on Y and measuring the effect on Z does not provide enough information to discriminate
between the four candidates. We see in Figure 1.3 that the predicted effect is the same for G1

and G2 and is the same for G3 and G4. The intervention is not sufficient to identify G⋆, and
additional interventions will be required.

The example shows that given a set of candidate causal graphs, some interventions have
more discriminative power than others. Also, some interventions may be more costly than
others, e.g., observing more variables or intervening more variables, and some variables may
be more costly to intervene or observe than others. This thesis proposes a generic method
for selecting inexpensive interventions with a high power of discrimination among the candi-
dates, and using these interventions to eliminate candidate models that are incompatible with
the interventional effects in M⋆. We may do this iteratively until a single graph is found to
be compatible with all performed interventions, while minimizing the cost of the sequence
of interventions.

G1 G2

G3 G4

FIGURE 1.1: Set of causal graph candidates.
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P1 = P (Z|X,Y ) P2 =
∑

X P (Z|X,Y )P (X)

P3 = P (Z|X) P4 = P (Z)

FIGURE 1.2: Set of candidate graphs for a causal model M⋆. Variables X,Y
are intervened and variable Z is observed. The intervention P (Z|do(X,Y ))
can discriminate between the four candidates as follows: assuming G1 is the
true graph G⋆, we predict the effect on Z as P1. Assuming G2 is the true
graph G⋆, we predict the effect on Z as P2, and we do the same for graphs
G3 and G4. We find that the predicted effect for this intervention differs
across all candidate graphs. If we apply the intervention on M⋆ and find
the actual effect on Z, we can eliminate the candidate graphs for which the
prediction and the actual effect differ. We keep the candidate for which the
prediction matches the actual effect of the intervention on M⋆, and conclude

it is G⋆.

P1 =
∑

X P (Z|X,Y )P (X) P2 =
∑

X P (Z|X,Y )P (X)

P3 = P (Z) P4 = P (Z)

FIGURE 1.3: The intervention P (Z|do(Y )) cannot discriminate between the
four candidates. For instance, the predicted effect on Z for G1 and G2 are
the same. Also, the predicted effect is the same for G3 and G4. If we apply
the intervention on M⋆ and find the actual effect on Z, we can eliminate the
two candidate graphs for which the prediction and the actual effect differ. We
keep, as potentially valid, the two candidate graphs for which the prediction

and the actual effect on M⋆ are the same.

1.5.2 Contributions to the Prediction of Causal Effects

The second subject of this thesis is causal prediction. The thesis focus is on dynamic causal
reasoning: given the formal description of a dynamic causal system and a set of assumptions,
we propose methods to evaluate the modified trajectory of the system over time, after an ex-
periment or intervention. We assume that the observation timescale is sufficiently small com-
pared to the system dynamics, and that the causal model includes both the non-equilibrium
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causal relations and those under equilibrium states. We assume that a stable set of causal de-
pendencies exist which generate the system evolution along time. Our proposed algorithms
take such models as an input and predict their evolution over time, after an intervention. We
also introduce transportability algorithms in the dynamic setting, where causal knowledge in
source time-recurrent domains may be used for prediction in target time-recurrent domains.

In more detail, our contribution to the prediction of causal effects is as follows:

• We introduce a complete reasoning method (Lemmas and Theorems) for the identifica-
tion of causal effects in causal models recurrent in time, which we call dynamic causal
networks. We apply do-calculus to this setting, and show what parts of a bi-infinite
causal graph, across time, need to be analysed in order to solve the causal effect iden-
tification of the entire graph.

• We uncover the existence of several scenarios in regards to time sampling and slicing
of the bi-infinite temporal graph, and in relation to how hidden confounders affect the
dynamic causal network. More specifically, we show how static hidden confounders,
affecting variables in the same time step, and dynamic hidden confounders, affecting
variables in different time steps, have a very different impact on the complexity of our
causal effect identification methods.

• We introduce several algorithms for the identification of causal effects in dynamic
causal networks, when static hidden confounders are present, and when dynamic hid-
den confounders are present. We identify the causal graph structures that prevent iden-
tifiability in the dynamic setting.

• We introduce an algorithm for the transportability of causal effects in dynamic causal
networks. That is, we extend the transportability algorithm to the use case where some
interventional data is known in a source dynamic domain, and is used to help identify
causal effects in a target dynamic domain with the same cyclic causal structure.

To provide a simple running example (not as a precise or accurate modelling of reality),
let us consider two roads joining the same two cities, where drivers choose every day to
use one or the other road. The average travel delay between the two cities on any given
day depends on the traffic distribution among the two roads. Drivers choose between the
two roads depending on recent experience, in particular how congested a road was last time
they used it. Figure 1.4 indicates these relations: the weather (w) has an effect on traffic
conditions on a given day (tr1, tr2) which affects the travel delay on that same day (d). Driver
experience has an influence on the road choice next day, therefore impacting tr1 and tr2.
To simplify, we assume that drivers have short memory, being influenced by the conditions
on the previous day only. This infinite network can be folded into a finite representation
as shown in Figure 1.5, where +1 indicates an edge linking two consecutive replicas of the
DAG. Additionally, if one assumes the weather to be an unobserved variable, then it becomes
a hidden confounder as it causally affects two observed variables, as shown in Figure 1.6.
We call the hidden confounders with causal effect over variables in the same time slice static
hidden confounders, and hidden confounders with causal effect over variables at different
time slices dynamic hidden confounders. Our models allow for causal identification with
both types of hidden confounders.

This setting enables the resolution of causal effect identification problems where causal
relations are recurrent over time. These problems are not solvable in the context of classic
DBNs, as causal interventions are not defined in such models. For this we use causal net-
works and do-calculus. However, time dependencies cannot be modelled with static causal
networks. As we want to predict the trajectory of the system over time after an intervention,
we must use a dynamic causal network.
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Using our example, in order to reduce travel delay traffic controllers could consider
actions such as limiting the number of vehicles admitted to one of the two roads. We
would like to predict the effect of such action on the travel delay a few days later, e.g.,
Pr(dt+α|do(tr1t)).

This thesis solves the causal identification problem (causal prediction) in such settings.

FIGURE 1.4: A dynamic causal network. The weather w has an effect on
traffic flows tr1, tr2, which in turn have an impact on the average travel
delay d. Based on the travel delay, car drivers may choose a different road

next time, which has a causal effect on the traffic flows.

FIGURE 1.5: Compact representation of the Dynamic Causal Network in
Figure 1.4 where +1 indicates an edge linking a variable in Gt with a vari-

able in Gt+1.

FIGURE 1.6: Dynamic Causal Network where tr1 and tr2 have a common
unobserved cause, a hidden confounder. Since both variables are in the same

time slice, we call it a static hidden confounder.
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Chapter 2

Background and Previous Work

2.1 Causal Models

The notation used in this thesis is based on causal models and do-calculus (Pearl, 1994; Pearl,
2000).

Definition 3 (Causal Model) A causal model over a set of variables V is a tuple M =
⟨V,U, F, Pa, P (U)⟩, where V = {V1, V2, ...Vn} is a set of n variables that are determined
by the model ("endogenous" or "observed" variables), U is a set of random variables that are
determined outside the model ("exogenous" or "unobserved" variables) but that can influence
the rest of the model, F is a set of n functions such that Vi = fi(Pa(Vi), Ui), Pa(Vi) is a
subset of V \ Vi ("observed parents of Vi"), Ui is a subset of U ("unobserved parents of Vi")
and P (U) is a joint probability distribution over the variables in U . A causal model has an
associated graph in which each observed variable Vi corresponds to a vertex, there is one
edge pointing to Vi from each of its observed parents Pa(Vi) and there is a doubly-pointed
edge between the pairs of vertices influenced by a common unobserved parent in U .

In other words, in a causal model the probability distribution of each variable Vi is as-
signed by a function fi which is determined by a subset of V \ Vi called the "observed
parents" of Vi (Pa(Vi)) and a subset of U (Ui) called the "unobserved parents" of Vi. The
joint probability distribution of the observed variables in a causal model M is (Tian and Pearl,
2002c):

P (V ) = P (V1, V2, ...Vn) =
∑
U

∏
i

P (Vi|Pa(Vi), Ui)
∏
i

P (Ui) (2.1)

The graphical representation of a causal model is also called the "induced graph of the
causal model" or "causal graph". It contains vertices Vi, edges from Pa(Vi) to Vi and bidi-
rected edges between the pairs of vertices influenced by a common unobserved variable, that
is between Vi and Vj if Ui ∩ Uj ̸= ∅ (see Figure 2.1). We call the unobserved variables U
"hidden confounders".

In this thesis, in chapters 3 and 4 all causal models are assumed to be acyclic. Causal
models where there exist Pa(Vi) relations such that the model contains cycles are studied in
chapters 5 and 6, where we introduce a time dependent definition of causal models.

Causal graphs encode causal relations between variables in a model. The primary purpose
of causal graphs is to help estimate the joint probability of some of the variables in the model
upon controlling some other variables by forcing them to specific values; this is called an
action, experiment, or intervention. For every model M , every set of variables X ⊂ V and
every set of values X = x we define the model Mdo(X=x) to be the same as M except that
every function fi for variable Xi ∈ X assigns a probability distribution of 1 to the value xi
and 0 to the rest of values.
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FIGURE 2.1: Causal graph with vertices representing variables X,Y,W,Z,
edges representing functions X = f1(W );Z = f2(X);W = f3(U);Y =
f3(W,Z,U). The hidden confounder that has an effect on W and Y is rep-

resented by the doubly-pointed edge.

Graphically, this is represented by removing all the incoming edges (which represent
the causes) of the variables in the graph that we control in the intervention. Mathemat-
ically the do() operator represents this intervention on the variables, by transforming M
into Mdo(X=x). Given a causal graph where X and Y are sets of variables, the expression
P (Y |do(X = x)) is the joint probability of Y upon doing an intervention on the controlled
set X , rigorously the application of Equation 2.1 on Mdo(X=x) instead of M .

A causal relation represented by the expression P (Y |do(X = x)) is said to be identi-
fiable if it can be uniquely determined from the graph G induced by causal model M , and
from the joint distribution P of its observed variables. A formal definition of identifiability
is given in Definition 11.

In many real-world scenarios, it is impossible, impractical, unethical or too expensive
to perform an intervention, thus the interest in evaluating its effects from observational data
only, i.e., without actually performing the intervention "in the real world".

2.1.1 Do-calculus

The three rules of do-calculus (Pearl, 1994) allow us to transform expressions with do()
operators into other equivalent expressions, based on the causal relations present in the causal
graph.

For any disjoint sets of variables X , Y , Z and W :

1. P (Y |Z,W, do(X)) = P (Y |W,do(X))
if (Y ⊥ Z|X,W )GX

2. P (Y |W,do(X), do(Z)) = P (Y |Z,W, do(X))
if (Y ⊥ Z|X,W )GXZ

3. P (Y |W,do(X), do(Z)) = P (Y |W,do(X))
if (Y ⊥ Z|X,W )G

XZ(W )

Where (X ⊥ Y |Z) means X and Y are independent conditional to Z. Z(W ) = Z \
An(W )GX

. An(W )G is the set of ancestors of W in G. GX is the graph G where all edges
incoming to X are removed from the graph. GY is the graph G where all edges outgoing
from Y are removed from the graph.

Do-calculus was proven to be sound and complete (Shpitser and Pearl, 2006; Huang and
Valtorta, 2006b), in the sense that an expression obtained by iterative application of the three
rules of calculus is always correct, and if an expression cannot be converted into a do-free
one by iterative application of the three do-calculus rules, then it is not identifiable.
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2.2 Causal Discovery Algorithms

2.2.1 Causal discovery without interventions

The algorithms PC (Spirtes, Glymour, and Scheines, 2000), FCI (Spirtes, Meek, and Richard-
son, 1995) and (Spirtes, Glymour, and Scheines, 2000), and RFCI (Colombo et al., 2012)
can, under some assumptions, infer information about the causal structure from observational
data. While PC assumes that all variables in the system under consideration are observed,
FCI and RFCI consider structure learning in the presence of hidden variables. Other standard
algorithms for causal discovery from observational data include IC, IC* (Verma and Pearl,
1991) and (Pearl, 2000), GES (Chickering, 2003).

The PC Algorithm

Under the assumption of faithfulness, the PC algorithm estimates the set of DAGs compatible
with the probability distribution of the observed variables. In general, several DAGs may be
compatible with the conditional independence relations among the observed variables. The
output of the PC algorithm is a CPDAG, which represent an equivalence class of DAGs, also
called Markov equivalence class.

A CPDAG may contain both directed and undirected edges. There is an edge (directed or
undirected) in a CPDAG if the edge’s endpoint variables are conditionally dependent given
all possible subsets of the remaining variables. A directed edge in a CPDAG represents that
all DAGs in the equivalence class contain the directed edge. An undirected edge in a CPDAG
represents that some DAGs in the equivalence class contain the edge going in one direction,
while the other DAGs in the class contain the edge going in the opposite direction.

The PC algorithm works as follows. The algorithm starts with a complete undirected
graph where all variables have an undirected edge to all other variables in the graph. Then
based on conditional independence tests (using the observed distribution) some edges are re-
moved, when the variables connected initially by an edge are found to be in fact independent
given subsets of the other variables. Then the edges are oriented based on several criteria.
First, each set of three variables i − j − k is oriented as a collider i− > j < −k if i and
k are found to be dependent given j. Then some of the remaining undirected edges may be
oriented given the rules that no new collider and no directed cycles should be introduced in
the graph.

The FCI Algorithm

The FCI algorithm, as the PC algorithm, assumes the Faithfulness condition, however it is
a generalization of the PC algorithm as it considers hidden confounders may be present in
the causal model. The output of the FCI algorithm is a PAG. The FCI algorithm finds an
equivalence class of graphs which may include hidden confounders.

A PAG is an equivalence class of Maximal Ancestral Graphs (MAG). A PAG may contain
several types of edges: o-o, o-, o->, ->, <->, -. A tail or an arrowhead on an edge of a PAG
means all MAGs in the equivalence class contain the tail or arrowhead. An edge ending
with o- means some MAGs in the equivalence class contain a tail and the remaining MAGs
contain an arrowhead. Bidirected edges represent hidden confounders.

The FCI algorithm works in a similar way than the PC algorithm. It starts with a com-
pleted undirected graph, performs conditional independence tests in order to remove edges,
and then orients the remaining edges using some rules. However, the conditional indepen-
dence tests used in FCI are more conservative than for the PC algorithm due to the potential
presence of hidden confounders. Indeed, the hidden confounders may not be conditioned
upon, and more precise rules for determining independence are required.
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However, the discovery of causal relations from observational data only has its limits. In
most cases we will obtain, at best, a set of causal models compatible with the observed data,
in other words, an equivalence class of DAGs. Examples of this are Completed Partially
Directed Acyclic Graphs (CPDAG), which are an output of the PC algorithm, and Partial
Ancestral Graphs (PAG), output of the FCI algorithm.

2.2.2 Causal discovery with interventions, in the absence of hidden confounders

The largest part of the literature on causal discovery with interventions assumes the ab-
sence of hidden confounders. This is also described by saying that “observable variables
are causally sufficient”: there may be unobserved variables, but none of them causally af-
fects more than one observable variables.

For the active learning process, (Cooper and Yoo, 1999), (Tong and Koller, 2001) and
(Murphy, 2001) select the next intervention based on maximally reducing some entropy func-
tion amongst causal graphs without hidden confounders, and using interventions on single
variables only, which limits the graphs that can be learned.

The method exposed in (Eberhardt, Glymour, and Scheines, 2005) discusses the number
of interventions required when there is no prior knowledge of the causal structure, in causal
graphs without hidden confounders. For this, it is required to perform adjacency and direc-
tional tests on all pairs of variables naively. This is an interesting setup to identify worst
case scenarios, starting with a complete graph. However, in an active learning setup, there
will be prior knowledge right after the first intervention, since a number of candidate graphs
(even if maximal at the start) are discarded at each iteration. So, the worst-case scenarios in
(Eberhardt, Glymour, and Scheines, 2005) are interesting theoretical bounds but with limited
application in real case scenarios, other than setting the bound for worst case. Also, the fact
that the setup is assuming the absence of hidden confounders makes it even more theoretical,
whereas real world data and causal models include hidden confounders.

The algorithm proposed in (Meganck, Leray, and Manderick, 2006) uses several decision
criteria (maximax, maximin, Laplace) to identify the next best intervention for uncovering
causal structure. In essence the method evaluates how many edges will be identified by an
intervention, in models without hidden confounders and using single variable interventions.
This method offers several limitations, as it does not evaluate the effect of interventions, it
only evaluates if there is an effect or not.

(Eberhardt, 2007) provides a comprehensive analysis that has influenced much later re-
search, including our own, and remarks interesting differences among the cases with and
without hidden confounders. In particular, it shows that, for graphs with N vertices:

• log2(N) + 1 interventions suffice for causal identification in the absence of hidden
confounders, both for adaptive and non-adaptive strategies.

• N interventions are necessary and sufficient for causal identification of the observ-
able graph in the presence of hidden confounders, both for adaptive and non-adaptive
strategies.

• In particular, for the “sufficient” part, N interventions on N − 1 observable variables
suffice. We note that (Eberhardt, 2007) does not explicitly identify in addition the
hidden confounders, but this can be done with existing techniques.

The research following (Eberhardt, 2007) usually address specific sub-cases, in order
to estimate computational costs of selecting the right interventions, or sub-cases with some
restrictions on the types of causal models being considered.

Similar to (Eberhardt, Glymour, and Scheines, 2005), the method proposed in (Eber-
hardt, 2008) analyses the theoretical worst-case scenarios but now starting with a Markov
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equivalence class of causal graphs, instead of starting with no prior knowledge. This is a
useful theoretical setup for identifying worst case bounds in scenarios without hidden con-
founders. However, in real case scenarios, we will have to account for the presence of hidden
confounders. The sub-case without hidden confounders discussed in (Eberhardt, 2008), con-
siders the number of interventions as a function of the cliques (a type of graphical structure)
present in the graph.

(He, Geng, and Elisseeff, 2008) use minimax and maximum entropy criteria as scor-
ing method for selecting interventions, either sequentially or in a batch (simultaneous), in
causal models without hidden confounders. (Hyttinen, Eberhardt, and Hoyer, 2013) expand
and generalize previous combinatorial results given in (Eberhardt, Glymour, and Scheines,
2005) and (Eberhardt, 2008) for worst case bounds, with no prior knowledge in causal graphs
without hidden confounders, and highlight the assumptions and conditions for complete iden-
tification of the causal structure.

(Hauser and Bühlmann, 2014) propose two greedy approaches, one using single inter-
ventions, and another with multiple simultaneous interventions. Both are combinatorial ap-
proaches, the first aims at maximizing the number of oriented edges after each intervention
and the second aims at minimizing the clique number of the graph with simultaneous in-
tervention on several variables. In both cases these methods do not actually predict and
measure effects of interventions, and only use a combinatorial approach, in the context of
causal graphs without hidden confounders.

(Shanmugam et al., 2015) and (Squires et al., 2020) analyse the bounds in the number of
interventions required to learn a causal graph. However, this is without considering hidden
confounders, and only considering the number of interventions and not the overall cost of the
sequence.

In general, interventions on more variables can be considered more costly. The number
and the size of the interventions should be somehow taken into account in the analysis, rather
than only the number of interventions. Our method removes as many candidates with inex-
pensive interventions as possible. We consider that the general setting of minimizing the cost
for discovering the graph is a more realistic approach than just minimizing the number of
interventions.

Minimizing the overall cost of the interventions to learn a causal model, instead of only
minimizing the number of interventions, has attracted attention recently in the context of
causal graphs without hidden confounders (Ghassami et al., 2017), (Agrawal et al., 2019).

2.2.3 Causal discovery with interventions, in the presence of hidden confounders

For causal models which may include hidden confounders, (Eberhardt, Hoyer, and Scheines,
2010), (Hyttinen, Eberhardt, and Hoyer, 2010), (Hyttinen, Eberhardt, and Hoyer, 2012a),
(Hyttinen, Eberhardt, and Hoyer, 2012b) introduce methods for the discovery of causal mod-
els using interventional data, however the approach is limited to linear models only.

(Kocaoglu, Shanmugam, and Bareinboim, 2017) propose an algorithm to learn the ances-
tral relations and the observable graph using strongly separating sets of nodes, which leads to
interventions on a large number of variables. The cost of intervening large numbers of vari-
ables is not being considered and not being minimized, as only the number of interventions is
being evaluated by the method. The main merit of the algorithm is that it uses O(d log2N))
interventions to find the observable graph, therefore circumventing (when d is small) the
lower bound of N proved in (Eberhardt, 2007). It also identifies the hidden cofounders using
O(d2 log2N) interventions, instead of the more baseline O(N2).

(Acharya et al., 2018) propose methods for learning causal graphs with hidden con-
founders, and prove bounds on number of samples and interventions required. However,
the proposed framework only considers the number of interventions, and does not evaluate
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the cost of intervening or observing more or less variables, and hence does not minimize the
overall cost of the sequence of interventions. (Addanki, McGregor, and Musco, 2020) pro-
pose algorithms for the discovery of causal graphs, in the presence of hidden confounders,
via a minimum cost set of interventions in specific settings: when an undirected graph is
already provided as input and when a superset of causal relations is provided. However other
costs are disregarded, like the cost of observations, and the cost of conditional independence
testing, which requires sampling several values of the intervened variables. Also, in these
settings the presence and location of the hidden confounders are not learned, they are only
assumed.

(Addanki et al., 2020) propose two specific settings with hidden confounders. One setting
where the cost of interventions is linear with the number of intervened variables, in order to
discover the ancestral relations of the underlying graph (not the entire graph) with minimal
cost. Another setting is to discover the entire causal graph including hidden confounders, but
only considering the number of interventions and not the overall cost as a function of the size
of the interventions.

2.3 Causal Identification Algorithms

Several algorithms have been developed using do-calculus offers for the identification of
causal effects. In this thesis we will mainly refer to the ID algorithm and the Transportability
algorithm.

2.3.1 The ID Algorithm

The ID algorithm (Shpitser and Pearl, 2006), and earlier versions by (Tian and Pearl, 2002a;
Tian, 2004) implement an iterative application of do-calculus rules to transform a causal ex-
pression P (Y |do(X)) into an equivalent expression without any do() terms in semi-Markovian
causal graphs. This enables the identification of interventional distributions from non-interventional
data in such graphs.

The ID algorithm is sound and complete (Shpitser and Pearl, 2006) in the sense that if a
do-free equivalent expression exists it will be found by the algorithm, and if it does not exist
the algorithm will exit and provide an error.

The algorithm specifications are as follows. Inputs: a causal graph G, variable sets X and
Y , and a probability distribution P over the observed variables in G; Output: an expression
for P (Y |do(X)) without any do() terms, or fail.

The ID algorithm is based on the general method for identification of causal effects by
C-component factorization (Tian, 2002) and (Tian and Pearl, 2002b).

Definition 4 (C-component) A set of nodes S is a C-component in a graph G if any two
nodes in S are connected by a path consisting entirely of bidirected edges in G.

Tian proved that a graph G can be partitioned into a set C-components, and the joint
distribution P (V ) in G can be expressed as a product of interventional distributions factors,
where each factor corresponds to a C-component. If all factors from each component are
identifiable then P (V ) is identifiable. This is known as the C-component factorization of
causal models.

Lemma 5 (C-component factorization) Let M be a causal model with graph G. Let X,Y
be disjoint variables in G. Let C(G \X) = {S1, ...Sk}. Then:
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P (Y |do(X)) =
∑

V \(Y ∪X)

∏
i

P (Si|do(V \ Si))

However, in some cases, one or more of the factors, corresponding to C-components
in the graph, are not identifiable. This happens when a C-component contains a graphical
structure called hedge (Shpitser and Pearl, 2006). Before defining a hedge, Shiptser provides
the definition of C-forest.

Definition 6 (C-forest) A graph G where the set of all its nodes is a C-component, and where
each node has at most one child is called a C-forest.

A C-forest with a set R of nodes with no children is called R-rooted. This leads to the
following definition for hedge.

Definition 7 (Hedge) Let X,Y be sets of variables in G. Let F, F ’ be R-rooted C-forests in
G such that F ’ is a subgraph of F , X only occur in F , and R ∈ An(Y )GX

, where An(X)G
denotes the set of ancestors of X in G. Then F and F ’ form a hedge for P (Y |do(X)).

The hedge criterion (Shpitser and Pearl, 2006) states that P (Y |do(X)) is identifiable in
G if and only if there are no two C-forests F, F ’ that form a hedge for P (Y |do(X)) in G.

Another algorithm for the identification of causal effects is given in (Shpitser, Richard-
son, and Robins, 2012).

2.3.2 The Transportability Algorithm

(Pearl and Bareinboim, 2011) introduced the sID algorithm, based on do-calculus, to iden-
tify a transport formula between two domains, where the effect in a target domain can be
estimated from experimental results in a source domain and some observations on the target
domain, thus avoiding the need to perform an experiment on the target domain.

Let us consider a country with a number of alternative roads linking city pairs in different
provinces. Suppose that the alternative roads are all consistent with the same causal model but
have different traffic patterns (proportion of cars/trucks, toll prices, traffic light durations...).
Traffic authorities in one of the provinces may have experimented with policies and observed
the impact on, say, traffic delay. This information may be usable to predict the average
travel delay in another province for a given traffic policy, provided that the source domain
(province where the impact of traffic policy has already been monitored) and target domain
(new province) share the same causal relations among variables.

The target domain may have specific distributions of the toll price and traffic signs,
which are accounted for in the model by adding a set of selection variables, pointing at
variables whose distribution differs among the two domains. Under some assumptions the
transportability algorithm provides a transport formula which combines experimental prob-
abilities from the source domain and observed distributions from the target domain. Thus,
the traffic authorities in the new province can evaluate the impacts before effectively chang-
ing traffic policies. This amounts to relational knowledge transfer learning between the two
domains (Pan and Yang, 2010).

2.4 Dynamic Bayesian Networks

Dynamic Bayesian Networks (DBN) are graphical models that generalize Bayesian Networks
(BN) in order to model time-evolving phenomena. We rephrase them as follows.
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Definition 8 A DBN is a directed graph D over a set of nodes that represent time-evolving
metavariables. Some of the arcs in the graph have no label, and others are labelled “+1”.
It is required that the sub-graph G formed by the nodes and the unlabelled edges must be
acyclic, therefore forming a DAG.

Unlabelled arcs denote dependence relations between metavariables within the same
time step, and arcs labelled “+1” denote dependence between a variable at one time and
another variable at the next time step.

Definition 9 A DBN with graph G represents an infinite Bayesian Network Ĝ as follows.
Timestamps t are the integer numbers; Ĝ will thus be a biinfinite graph. For each metavari-
able X in G and each time step t there is a variable Xt in Ĝ. The set of variables indexed by
the same t is denoted Gt and called “the slice at time t”. There is an edge from Xt to Yt iff
there is an unlabelled edge from X to Y in G, and there is an edge from Xt to Yt+1 iff there
is an edge labelled “+1” from X to Y in G. Note that Ĝ is acyclic.

The set of metavariables in G is denoted V (G), or simply V when G is clear from the
context. Similarly, Vt(G) or Vt denote the variables in the t-th slice of G.

In this thesis, we will use transition matrices to model the time evolution of probability
distributions. Rows and columns are indexed by tuples assigning values to each variable, and
the (v, w) entry of the matrix represents the probability P (Vt+1 = w|Vt = v). Let Tt denote
this transition matrix. Then we have, in matrix notation, P (Vt+1) = Tt P (Vt) and, more in
general, P (Vt+α) = (

∏t+α−1
i=t Ti)P (Vt). In the case of time-invariant distributions, all Tt

matrices are the same matrix T , so P (Vt+α) = TαP (Vt).
Note that transition matrices model how probability distributions evolve from one time

step to the next. They do not model dependencies between variables within a time step. For
modelling dependencies within a time step, or without considering time at all, we may use
BNs and, in the context of causality, existing non-dynamic causal model theory.
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Chapter 3

Distinguishability of Causal Graphs

This chapter sets the theoretical foundations for the efficient causal discovery algorithm AL-
CAM that will be presented in Chapter 4.

The main difference of ALCAM with respect to most existing algorithms is that it does
not take a tabula-rasa approach to discovering the causal structure of the phenomenon. Often,
we have previous knowledge from our familiarity with reality: we may know that some
variable causally influences another; we may know that some pairs of variables are likely to
be affected by common unobserved confounders, etc.

One way of providing this a-priori knowledge to an algorithm is with a set G of candidate
graphs, with the promise that the graph induced by the true model is included in this candidate
set. In other words, the algorithm can safely assume that all graphs not in G are definitely
not the graph induced by the true model. If the algorithm is delicate enough, it can focus on
performing only the interventions needed to eliminate all graphs in G other than true graph,
rather than eliminating all potential graphs on n variables, of which there are 2O(n2).

Thus, if |G| (the number of candidate graphs in G) is much smaller than 2O(n2), our
algorithm performs fewer, or simpler, interventions than a tabula-rasa algorithm.

In this chapter we provide lemmas that identify the specific interventions needed to pro-
gressively rule out graphs in G. In Chapter 4 we present ALCAM and, using these lemmas,
we prove its correctness as well as non-trivial bounds on the number of interventions it per-
forms. It turns out that this number of interventions can always be bounded by |G|; not only
that, we provide finer bounds that depend on how similar or different the candidate graphs
are to the graph induced by the true model, hence very often fewer than |G|.

3.1 Notation and Basic Lemmas

In this thesis all causal models are assumed to contain hidden confounders, except when
explicitly referring to causal models without hidden confounders as a sub-case. Also, all
variables are assumed to be in a finite domain. We will use the following notation:

• V : a set of observed variables;

• U : a set of hidden confounder variables;

• Vi, Vj : single variables in V ;

• X , Y : disjoint sets of variables in V ;

• vi, vj , x, y: a value assignment for Vi, Vj , X , Y respectively;

• M⋆: the reference or “true” causal model over the set V of observed variables and the
set U of hidden confounder variables. Unless otherwise indicated, all statements in
this thesis are implicitly universally quantified over this true model, meaning that they
hold for any M⋆.
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• G⋆: graph induced by M⋆;

• P ⋆: probability distribution of the observed variables in M⋆ without interventions;

• P ⋆(Y |do(X = x)): probability distribution of Y , given the intervention X = x in
M⋆;

• G: a set of causal graphs over the set V of observed variables and the set U of hidden
confounder variables, which we call the candidates;

• Gk, Gl: two causal graphs in G;

• E = (X,x, Y ): intervention or experiment where variable X is set to a value x, and
the causal effect is measured on variable Y ;

In this thesis we use do-calculus (Pearl, 1994), its completeness and soundness (Huang
and Valtorta, 2006a), as well as the notion of causal effect identifiability and the ID algorithm
(Shpitser and Pearl, 2006) as tools for the identification of causal effects.

Definition 10 (Causal Effect) The causal effect of an intervention E = (X,x, Y ) in a
causal model M , mathematically P (Y |do(X = x)), is the probability distribution of Y
given the intervention X = x in M .

Definition 11 (Causal Effect Identifiability) Let M be a causal model with causal graph
G and observational joint probability distribution P . The causal effect of an intervention
E = (X,x, Y ) in M is said to be identifiable if P (Y |do(X = x)) is uniquely determined
from G and P , that is, if it is the same probability distribution for every model M that induces
the same G and P .

Theorem 12 (Do-calculus is sound and complete) Let M be a causal model with causal
graph G and observational joint probability distribution P , then

• Completeness: If the causal effect of an intervention E = (X,x, Y ) is identifiable
then there is a sequence of application of do-calculus rules that finds the probability
distribution P (Y |do(X = x)) from G and P ;

• Uniqueness: If the causal effect of an intervention E = (X,x, Y ) is identifiable then
any sequence of application of do-calculus rules finds the same probability distribution
of P (Y |do(X = x)) from G and P ;

• Soundness: If there exists a sequence of application of do-calculus rules that finds a
probability distribution for P (Y |do(X = x)) from G and P , then the causal effect is
identifiable;

Remark: P(Y|do(X=x)) is an expression, and therefore a syntactic object. The do-
calculus rules perform symbolic (i.e., syntactic) transformations and, for all we know, may
yield different do-free expressions that represent the same probability distributions. In this
thesis we deal with finite domains and finitely many variables, so it is always possible to de-
termine in finite time by brute-force evaluation if two do-free expressions actually represent
the same probability distributions. Therefore, we can without loss of generality assume that
the application of do-calculus yields a probability distribution whenever it provides a do-free
expression. We sometimes write "a (do-free) probability distribution" to emphasize that we
mean an actual distribution and not a do-free expression.

In the following Definition 13 we relax the assumptions from Definition 11, as we do not
assume the graph G to be induced by the model.
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Definition 13 (Causal Effect from an arbitrary Graph) Given a causal model M with ob-
servational joint probability distribution P , and given an arbitrary graph Gk (not neces-
sarily induced from M ), we call Pk(Y |do(X = x)) the causal effect of an intervention
E = (X,x, Y ) from Gk and P , and define it as follows:

1. let P 1
k , .., P

Q
k be the set of all (do-free) probability distributions that can be obtained

by starting from P and Gk and repeatedly applying do-calculus rules, in any order.
Then, Pk(Y |do(X = x)) = {P 1

k , ..., P
Q
k };

2. if there is no (do-free) probability distribution, then Pk(Y |do(X = x)) = ∅;

Clearly, if the graph Gk is induced by the model M in the definition above, then by
Theorem 12 (uniqueness) the causal effect consists of either a singleton joint probability
distribution or the empty set, depending on whether Pk(Y |do(X = x)) is identifiable or not.

Lemma 14 Let M be a causal model with observational joint probability distribution P . If
the causal effect from an arbitrary graph Gk consists of more than one probability distri-
bution, i.e., Pk(Y |do(X = x)) = {P 1

k , ..., P
Q
k } with Q > 1 then Gk is not induced from

M .

Proof: If the causal graph G is induced by M then, by Theorem 12, if the causal effect is
identifiable then any sequence of application of do-calculus rules finds the same probability
distribution. ■ ■

Definition 15 (Distinguishability of Causal Graphs from an Intervention) Let M be a causal
model with observational joint probability distribution P . Let Gk and Gl be two causal
graphs. We say that Gk and Gl are distinguishable from an intervention E = (X,x, Y )
under P , and note this with Gk ̸≈PE

Gl iff:

• Pk(Y |do(X = x)) ̸= ∅, Pl(Y |do(X = x)) ̸= ∅ and Pk(Y |do(X = x)) ̸= Pl(Y |do(X =
x));

or

• Pk(Y |do(X = x)) = ∅, Pl(Y |do(X = x)) = {P (Y )};

or

• Pk(Y |do(X = x)) = {P (Y )}, Pl(Y |do(X = x)) = ∅;

Definition 15 leads to several case scenarios an intervention makes two causal graphs
distinguishable. A list of case scenarios is shown in Table 3.1 and Figure 3.1 shows causal
graph examples for each case scenario given in Table 3.1.

Note if an intervention does not make the two graphs distinguishable, there may exist
other interventions that do.

Definition 16 (Distinguishability) Let P , Gk and Gl be as in Definition 15. We say that
Gk and Gl are distinguishable iff there exists an intervention E = (X,x, Y ) for which
Gk ̸≈PE

Gl, and note this with Gk ̸≈P Gl.

The intuition behind definitions 15 and 16 is we are able to guarantee that the causal effect
from two arbitrary graphs per Definition 13 differs in three case scenarios. Firstly, when there
exist causal effect probability distributions from both graphs, and they are different for the
two graphs.
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TABLE 3.1: Case scenarios an intervention E = (X,x, Y ) makes two causal
graphs Gk, Gl distinguishable.

Case Pk(Y |do(X)) Pl(Y |do(X)) Gk ̸≈PE
Gl

1 = {P (Y )} = {P (Y )} no
2 = {P (Y )} ≠ {P (Y )} yes
3 ̸= {P (Y )} ≠ {P (Y )} no
4 ̸= {P (Y )} ≠ {P (Y )} yes
5 = {P (Y )} ∅ yes
6 ̸= {P (Y )} ∅ no
7 ∅ ∅ no

FIGURE 3.1: Causal graph examples for case scenarios 1-7 from Table 3.1.

The second and third case occur when the effect is not identifiable in one of the graphs,
while there is no effect from X on Y on the other graph. If there is no probability distribution
from one of the graphs, there exists a hedge for the intervention (Shpitser and Pearl, 2006)
in that graph, which also implies there exists a direct path from X to Y in the graph. This
means there is an effect from X on Y in that graph. If there is no effect from X on Y on the
other graph then the two graphs are distinguishable.

Note that for two graphs to be distinguishable it suffices that there exists an intervention
E = (X,x, Y ) on a single value X = x of the intervened variables, for which one of the
conditions of definitions 15 is true.

Figure 3.2 provides an example of distinguishability among three graphs, across all possi-
ble interventions. For the intervention E = (X,x, Y ) = (X1, x1, X4) we find P1(X4|do(X1 =
x1)) ̸= P2(X4|do(X1 = x1)) so G1 ̸≈PE

G2 and therefore G1 ̸≈P G2. There is a hedge
in G3 for the intervention E so P3 = ∅ and, since P1 ̸= P (Y ) and P2 ̸= P (Y ), G3 is not
distinguishable from G1 and G2 with E: G3 ≈PE

G1 and G3 ≈PE
G2. The same logic

applies to interventions P (X4|do(X1 = x1, X2 = x2)) and P (X4|do(X1 = x1, X3 = x3)).
And there are no other interventions that make the graphs distinguishable. So G3 ≈P G1

and G3 ≈P G2.
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FIGURE 3.2: Example of distinguishability among three causal graphs. As
P1(X4|do(X1 = x1)) ̸= P2(X4|do(X1 = x1)): G1 ̸≈P G2. However, G3

is not distinguishable from G1 or G2 due to the hidden confounders form-
ing a hedge for the interventions P (X4|do(X1 = x1)), P (X4|do(X1 =
x1, X2 = x2)) and P (X4|do(X1 = x1, X3 = x3)), so G3 ≈P G1 and

G3 ≈P G2.

Lemma 17 Let M be a causal model with induced graph G and observational joint proba-
bility distribution P . If two causal graphs Gk, Gl are distinguishable then either Gk ̸= G or
Gl ̸= G.

Proof: If Gk ̸≈P Gl then:

• Gk = G ⇒ G ̸≈P Gl

• Gl = G ⇒ Gk ̸≈P G

If G ̸≈P Gl then Gl ̸= G, and if Gk ̸≈P G then Gk ̸= G. ■ ■

The key importance of Lemma 17 is that it is constructive: if we have some intervention
E witnessing Gk ̸≈P Gl, then performing E in the real world lets us pick up one of Gk and
Gl that is guaranteed not to be G.

Let us analyse each one of the three scenarios of distinguishability from Definition 15. If
Gk and Gl are distinguishable due to Pk(Y |do(X = x)) ̸= ∅, Pl(Y |do(X = x)) ̸= ∅ and
Pk(Y |do(X = x)) ̸= Pl(Y |do(X = x)), then Pk(Y |do(X = x)) or Pl(Y |do(X = x)) will
differ from the effect of the intervention in the real world, so we can guarantee that Gk or Gl

differ from the true model.
If Pk(Y |do(X = x)) = ∅, Pl(Y |do(X = x)) = {P (Y )} and the effect of the inter-

vention in the real world is P (Y ) then, based on the completeness of do-calculus given in
Theorem 12, Gk is not correct, because otherwise Pk(Y |do(X = x)) would be P (Y ). Al-
ternatively, if the effect of the intervention in the real world is not P (Y ) then, based on the
soundness and uniqueness of do-calculus given in Theorem 12, Gl is not correct.

3.2 Structure of What is to Come

Lemma 17 is the central tool of our strategy to prune the set of candidates down to a single
element, which must be the true graph. Indeed, if we can find an intervention E that distin-
guishes any two candidates Gk and Gl, then performing that intervention “in the real world”
is guaranteed, by Lemma 17, to rule out either Gk or Gl.

Our strategy reduces the candidate set to one graph in phases.
1. Pruning candidates that are distinguishable.
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We first prune the candidate graphs that are distinguishable from the true graph. We
prove in Section 3.4 that by doing this we can prune many candidate graphs, and leave only
the graphs that have the same ancestor relations, the same edges and the same hidden con-
founders as the true graph, except graphs with edges and hidden confounders for which there
are hedges on some specific interventions. We show in Lemma 20 that for any two graphs that
do not have the same ancestor relation one can always find an intervention E = (X,x, Y )
that distinguishes them in the sense of Definition 15. Also, we show in Lemma 21 that for
any two graphs where there exists an edge in one of the graphs that does not exist in the other,
we can find an intervention that distinguishes the two graphs, except if the intervention forms
a hedge. And we show in Lemma 22 that for any two graphs where there exists a hidden
confounder in one of the graphs that does not exist in the other, we can find an interven-
tion that distinguishes the two graphs, except if the intervention forms a hedge or the hidden
confounder is across variables not ancestors of each other.

Furthermore, all these interventions can be found with no intervention "in the real world",
by just applying the rules of do-calculus and computation. And since the graphs are distin-
guishable, we know by Lemma 17 that at least one of them is not the true graph, and by
performing the interventions "in the real world", we can find which candidate graphs are
wrong.

Another interesting point is that these interventions are with a single assignment x to
the intervened variables X . In contrast, existing causal discovery algorithms use conditional
independence tests which need to test all values of X . A conditional independence test when
the intervention on X is required implies interventions on all values of X . Presumably, in al-
most all real cases testing for all the values of X is more expensive than testing a single value
of X . Therefore, this pruning of the set of candidates can in many cases lead to enormous
savings.

Finally, the pruning of distinguishable graphs leads directly to the true graph, and nothing
else is required to find the true graph, except when some specific graphical conditions exist in
the set of candidate graphs, per Lemma 21 and Lemma 22. For example, as a sub-case, when
there are no hidden confounders in the set of candidate graphs, the pruning of distinguishable
graphs leads directly to the true graph. This in turn allows us to find a sequence of single
valued interventions with minimal cost to complete the learning process.

2. Pruning candidates with "wrong observable edges" using conditional indepen-
dence tests.

In some cases, when specific graphical conditions exist in the set of candidate graphs
(given by Lemma 21), it may happen that after the pruning of distinguishable candidate
graphs, some of the remaining graphs still differ in the presence or absence of edges among
observable variables.

To determine the presence or absence of such edges, therefore to discard further graphs,
one needs to perform conditional independence tests, which we discuss in Section 3.5.

In Lemma 24 we give a graphical condition that lets us choose one smallest conditional
independence tests that distinguishes graphs that differ in at least one edge. By performing
that test "in the real world", we can then select the graphs based on if the test confirms the
presence or absence of the edge. We can then iteratively apply this test to leave only the
candidate graphs whose observable set of edges is the same, which we write as "have the
same observable graph".

In contrast, (Eberhardt, 2008) performs conditional independence tests via systematic in-
terventions on n − 1 variables, in causal models without hidden confounders. (Kocaoglu,
Shanmugam, and Bareinboim, 2017) and (Addanki, McGregor, and Musco, 2020) perform
conditional independence tests using systematic interventions on strongly separating sets of
variables. In practice, interventions tend to be more expensive the more variables they in-
tervene. Furthermore, there may be parts of the causal model whose structure is somehow
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known, and therefore there is no real need to perform interventions on those parts. Therefore,
our surgical approach intervenes only "where the uncertainties lie", which is more efficient
in practice than the carpet-bombing approach of (Eberhardt, 2008), (Kocaoglu, Shanmugam,
and Bareinboim, 2017) and (Addanki, McGregor, and Musco, 2020).

3. Pruning candidates with "wrong hidden confounders" using conditional inde-
pendence tests.

Finally, in some cases, when specific graphical conditions exist in the set of candidate
graphs (given by Lemma 22), it may happen that after pruning the distinguishable candidate
graphs, and pruning the graphs with "wrong edges" using conditional independence tests,
some of the remaining graphs still differ in the presence or absence of some hidden con-
founders.

To determine the presence or absence of such hidden confounders, therefore to discard
further graphs, one needs to perform conditional independence tests, which we discuss in
Section 3.6.

In Theorems 26 and 27 we give graphical conditions that lets us choose conditional in-
dependence tests that distinguishes graphs that differ in at least one hidden confounder. By
performing that test "in the real world", we can then select the graphs based on if the test
confirms the presence or absence of the hidden confounder. We can then iteratively apply
this test to leave only the candidate graphs whose set of hidden confounders is the same as
the true graph.

Note that previous interventions, for example when pruning the distinguishable graphs,
may already have removed graphs with different hidden confounders, so there may only be
few graphs with hidden confounder differences. Again, our surgical approach performs only
interventions where the candidates differ among themselves, which will be more efficient in
many practical cases.

3.3 Power of an Intervention

Given a set of candidate causal graphs, we want to find interventions for which a maximal
number of candidates are distinguishable from each other. If we query an oracle for the causal
effects from these interventions, we may eliminate a maximal number of candidate graphs,
as their causal effect differs from the response from the oracle.

In this section we introduce a measure of the power an intervention has to make a set of
graphs distinguishable.

Definition 18 (Power of an Intervention) Let G be a set of causal graphs. Let M be a
causal model with observational joint probability distribution P . We say that the Power of
Intervention E = (X,x, Y ) over G and under P , and note this with PI(E,G,P ), is the
number of pairs of graphs in G that are distinguishable with this intervention under P , i.e.,
the number of pairs Gk, Gl in G that satisfy one of the three distinguishability conditions

• Pk(Y |do(X = x)) ̸= ∅, Pl(Y |do(X = x)) ̸= ∅ and Pk(Y |do(X = x)) ̸= Pl(Y |do(X =
x));

or

• Pk(Y |do(X = x)) = ∅, Pl(Y |do(X = x)) = {P (Y )};

or

• Pk(Y |do(X = x)) = {P (Y )}, Pl(Y |do(X = x)) = ∅;
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Given a set of causal graphs including the true graph G⋆, if we find interventions with
PI(E,G,P ⋆) >0 we are guaranteed to discover invalid graphs. Assuming we have an ora-
cle that provides the causal effect from the true graph from the intervention, we can elimi-
nate graphs for which the causal effect differs from the oracle response. Interventions with
PI(E,G,P ⋆) = 0, are not able to eliminate candidate graphs, while interventions with the
highest PI(E,G,P ⋆) eliminate the maximal possible number of graphs from the candidate
set G. This process allows us to eliminate all graphs that are distinguishable from the true
graph with a small number of interventions. Also, we can control the cost of the process,
choosing interventions with high PI and low cost.

It may happen that more than one graph remain in G and all interventions have PI(E,G,P ⋆) =
0. This is the case when the remaining graphs are not distinguishable. This is a worst case
which we must consider to complete the discovery process in all situations. Our approach
is to first remove as many candidate graphs as possible, using a sequence of interventions
with PI(E,G,P ⋆) > 0 and minimum total cost of the sequence, until there remains only one
graph, or there are no further interventions with PI(E,G,P ⋆) >0. Only in the latter case
we apply additional steps with conditional independence testing. If the remaining candidates
contain edge differences, then we apply conditional independence tests specifically for de-
tecting the edges that are different between the remaining candidate graphs, as discussed in
Section 3.5. And if the remaining candidates contain hidden confounder differences, then we
apply conditional independence tests specifically for detecting these hidden confounders, as
discussed in Section 3.6. This is likely to reduce the overall cost of the discovery process.
What is interesting is that we can formulate an algorithm whose improvement over the algo-
rithms that brute-force through conditional independence tests is quantifiable, as a function
of the "goodness" of the initial set of candidates.

3.4 Graphical Conditions for Distinguishability

In this section we analyse the graphical conditions that make causal graphs distinguishable.
We first define ancestral relation.

Definition 19 (Ancestral Relation) We say that two graphs Gk and Gl with the same ob-
servable variables have the same ancestral relations iff for every pair of variables Vi, Vj

• iff Vi ∈ An(Vj) in Gk then Vi ∈ An(Vj) in Gl.

Lemma 20 (Distinguishability of Ancestral Relations) Let Gk, Gl be two causal graphs.
Let P be an observational joint probability distribution. If the ancestral relations of Gk and
Gl are different, then Gk ̸≈P Gl.

Proof: If the ancestral relations of Gk and Gl are different, then there exists an intervention
E = (Vi, vi, Vj) for which Vi is an ancestor of Vj in Gk and Vi is not an ancestor of Vj in Gl

(or vice-versa). Then

• Pk(Vj |do(Vi = vi)) = ∅, if there is a hedge for Vi, Vj in Gk

• Pk(Vj |do(Vi = vi)) ̸= {P (Vj)}, if there is no hedge for Vi, Vj in Gk

• Pl(Vj |do(Vi = vi)) = {P (Vj)}

so Gk and Gl are distinguishable from the intervention E = (Vi, vi, Vj).
■ ■

Graphs with the same ancestral relations may have differences in some of their edges.
We are interested in finding interventions that distinguish graphs with the same ancestral
relations but different edges.
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Lemma 21 (Distinguishability of Edges) Let Gk, Gl be two causal graphs with the same
ancestral relations. If

• there exists an edge from Vi to Vj in Gk that does not exist in Gl;

and

• there are no hedges in Gk and Gl for Pk(Vj |do(block(Vi, Vj))) and Pl(Vj |do(block(Vi, Vj)))
respectively, where block(Vi, Vj) is a set of variables that blocks all paths from Vi to
Vj in Gl, such that (Vi ⊥ Vj |block(Vi, Vj)) in GlViblock(Vi,Vj)

;

then Gk ̸≈P Gl.

Proof: Let block(Vi, Vj) be any set of variables such that (Vi ⊥ Vj |block(Vi, Vj)) in GlViblock(Vi,Vj)

(for example, but not necessarily, one of minimal cardinality). This condition is the do-
calculus rule 3 condition for the intervention Pl(Vj |do(block(Vi, Vj))) in Gl. Applying do-
calculus rule 3 we obtain:

Pl(Vj |do(block(Vi, Vj))) = Pl(Vj |do(Vi, block(Vi, Vj))) =

by C-component factorization

=
∑

V \(Vi∪Vj∪block(Vi,Vj))

∏
r

P (Sr|do(V \ Sr))

where Sr are the C-components C(Gl \ Vi \ block(Vi, Vj)) = {S1, S2, ...}.
In Gk, rule 3 cannot be applied due to the presence of the edge from Vi to Vj , and the

C-component factorization gives

Pk(Vj |do(block(Vi, Vj))) =
∑

V \(Vj∪block(Vi,Vj))

∏
r

P (S′
r|do(V \ S′

r)) =

where S′
r are the C-components C(Gk \ block(Vi, Vj)) = {S′

1, S
′
2, ...}. Clearly, one of

the C-component S′ in Gl includes Vi, and none of the C-components S in Gk include Vi.
Assume the two graphs differ only in one C-component S′

ϕ and Sϕ, where S′
ϕ includes Vi

and Sϕ includes all variables in S′
ϕ except Vi, and S′

r = Sr for all other C-components, then

=
∑
Vi

∑
V \(Vi∪Vj∪block(Vi,Vj))

∏
r ̸=ϕ

P (S′
r|do(V \ S′

r))P (S′
ϕ|do(V \ S′

ϕ))
P (Sϕ|do(V \ Sϕ))

P (Sϕ|do(V \ Sϕ))

and recombining the factors
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Pk(Vj |do(block(Vi, Vj))) =
∑
Vi

Pl(Vj |do(block(Vi, Vj)))
P (S′

ϕ|do(V \ S′
ϕ))

P (Sϕ|do(V \ Sϕ))

By assumption there are no hedges for the intervention in Gk and Gl so Pk(Vj |do(block(Vi, Vj))) ̸=
∅ and Pl(Vj |do(block(Vi, Vj))) ̸= ∅. The factor

P (S′
ϕ|do(V \S′

ϕ))

P (Sϕ|do(V \Sϕ))
̸= 1 as Vi ∈ S′

ϕ and Vi /∈ Sϕ,
and the marginalization by Vi makes Pk(Vj |do(block(Vi, Vj))) ̸= Pl(Vj |do(block(Vi, Vj)))
so Gk and Gl are distinguishable.

In the sub-case where S′
ϕ = Vi and Sϕ = ∅

Pk(Vj |do(block(Vi, Vj))) =
∑
Vi

Pl(Vj |do(block(Vi, Vj)))P (Vi|do(V \ Vi))

and Pk(Vj |do(block(Vi, Vj))) ̸= Pl(Vj |do(block(Vi, Vj))).
If the two graphs differ in additional C-components (due to the presence of different

hidden confounders in Gk and Gl), we assume that the effects of the other C-components
will not cancel out exactly, and across all values of Vi,Vj , the difference coming from C-
components S′

ϕ and Sϕ.
■ ■

Graphs with the same ancestral relations and the same edges, in other words, graphs with
the same observable graph, may have differences in some of their hidden confounders. We
are interested in finding interventions that distinguish graphs with the same observable graph
but different hidden confounders.

Lemma 22 (Distinguishability of Hidden Confounders) Let Gk, Gl be two causal graphs
with the same observed graph. If

• there exists a hidden confounder between Vi and Vj in Gk that does not exist in Gl;

and

• there is no hedge in Gk for Pk(Vj |do(Vi)) and in Gl for Pl(Vj |do(Vi));

and

• Vi ∈ An(Vj);

then Gk ̸≈P Gl.

Proof: By C-component factorization

Pk(Vj |do(Vi)) =
∑

V \(Vi∪Vj)

∏
r

P (Sr|do(V \ Sr))

Pl(Vj |do(Vi)) =
∑

V \(Vi∪Vj)

∏
r

P (S′
r|do(V \ S′

r))
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where Sr are the C-components C(Gk\Vi) = {S1, S2, ...}, and S′
r are the C-components

C(Gl \ Vi) = {S′
1, S

′
2, ...}

In Gk there is one C-component Sϕ ⊂ Ŝϕ ∈ C(Gk), where Sϕ includes Vj and Ŝϕ

includes Vi and Vj , due to the presence of the hidden confounder between Vi and Vj . Also,
by assumption Vi ∈ An(Vj) and there are no hedges, so the conditions of the last recursive
call of the ID algorithm are satisfied (Shpitser and Pearl, 2006), then in Gk:

P (Sϕ|do(V \ Sϕ)) =
∑
Ŝϕ\Vj

∏
{t|Vt∈Ŝϕ}

P (Vt|V (t−1)
π )

where V
(t−1)
π is the set of nodes preceding Vt in some topological ordering of Ŝϕ in G.

In Gl there is one C-component S′
ϕ ∈ C(Gl), where S′

ϕ includes Vj , as there is no hidden
confounder between Vi and Vj . Also, by assumption Vi ∈ An(Vj) and there are no hedges,
then in Gl:

P (S′
ϕ|do(V \ S′

ϕ)) =
∑
S′
ϕ\Vj

∏
{t|Vt∈S′

ϕ}

P (Vt|V (t−1)
π )

As Ŝϕ\S′
ϕ = Vi then P (Sϕ|do(V \Sϕ)) in Gk includes the additional factor P (Vi|V (i−1)

π ),
compared with P (S′

ϕ|do(V \ S′
ϕ)) in Gl. Assume the two graphs differ only in the C-

components Sϕ and S′
ϕ, where Sϕ includes the additional factor P (Vi|V (i−1)

π ), and Sr = S′
r

for all other C-components, then

Pk(Vj |do(Vi)) =
∑

V \(Vi∪Vj)

∏
r

P (Sr|do(V \ Sr)) =

=
∑

V \(Vi∪Vj)

∏
r ̸=ϕ

P (Sr|do(V \ Sr))P (Sϕ|do(V \ Sϕ))
P (S′

ϕ|do(V \ S′
ϕ))

P (S′
ϕ|do(V \ S′

ϕ))

and recombining the factors

Pk(Vj |do(Vi)) = Pl(Vj |do(Vi))
P (Sϕ|do(V \ Sϕ))

P (S′
ϕ|do(V \ S′

ϕ))

where
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P (Sϕ|do(V \ Sϕ))

P (S′
ϕ|do(V \ S′

ϕ))
=

∑
Ŝϕ\Vj

∏
{t|Vt∈Ŝϕ} P (Vt|V (t−1)

π )∑
S′
ϕ\Vj

∏
{t|Vt∈S′

ϕ}
P (Vt|V (t−1)

π )
=

=

∑
Vi

∑
S′
ϕ\Vj

∏
{t|Vt∈S′

ϕ}
P (Vt|V (t−1)

π )P (Vi|V (i−1)
π )∑

S′
ϕ\Vj

∏
{t|Vt∈S′

ϕ}
P (Vt|V (t−1)

π )

By assumption there are no hedges for the intervention in Gk and Gl so Pk(Vj |Vj)) ̸= ∅
and Pl(Vj |Vi)) ̸= ∅ and the factor P (Sϕ|do(V \Sϕ))

P (S′
ϕ|do(V \S′

ϕ))
̸= 1, so Gk and Gl are distinguishable.

If the two graphs differ in additional C-components (due to the presence of different
hidden confounders in Gk and Gl), we assume that the effects of the other C-components
will not cancel out exactly, and across all values of Vi,Vj , the difference coming from C-
components S′

ϕ and Sϕ.
■ ■

Lemma 23 Two graphs Gk, Gl are distinguishable if :

1. they have different ancestral relations;

or

2. they have the same ancestral relations, there exists an edge from Vi to Vj in Gk that
does not exist in Gl, and there are no hedges for P (Vj |do(block(Vi, Vj))) in either
graph, where block(Vi, Vj) is a set of variables that blocks all paths from Vi to Vj in
Gl, such that (Vi ⊥ Vj |block(Vi, Vj)) in GlViblock(Vi,Vj)

;

or

3. they have the same observable graph, there exists a hidden confounder between Vi

and Vj in Gk that does not exist in Gl, there are no hedges for P (Vj |do(Vi)) in either
graph, and Vi ∈ An(Vj);

Proof: By lemmas 20, 21 and 22.
■ ■

Lemma 23 provides conditions under which two graphs are distinguishable. This means
we can distinguish them with interventions using a single value of the intervened variables.
However, two graphs may contain edges or hidden confounder differences that we cannot
distinguish with such interventions, particularly in the presence of hedges, in which case we
need to use conditional independence testing, as described in sections 3.5 and 3.6.

3.5 Testing Non-Distinguishable Edges

In this section we discuss the criteria for detecting edges using conditional independence
tests. As discussed in previous sections, this is avoidable if interventions with PI(E,G,P ⋆) >0
have eliminated enough candidate graphs so that the remaining candidates do not contain
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edge differences. In other words, given a set of candidate causal graphs, conditional in-
dependence tests for detecting edges are only required if PI(E,G,P ⋆) =0 for all inter-
ventions across the remaining candidate graphs (the remaining candidate graphs are non-
distinguishable) and some of the remaining candidate graphs contain edge differences.

Lemma 24 (Conditional Independence Testing of Edges) Let M be a causal model with
observational joint probability distribution P . Let G be a set of causal graphs that includes
the graph G induced by M . Let Ged ⊂ G be the subset of all graphs in G that contain an
edge from Vi to Vj: ed(Vi, Vj), and G \ Ged be the subset of graphs that do not contain
ed(Vi, Vj). Let Ged ̸= ∅ and G \ Ged ̸= ∅. Let dsep(Vi, Vj) be a minimal set of variables
whose intervention d-separates Vi and Vj in all graphs in G \ Ged. Then

• iff G ∈ Ged then Vi and Vj are dependent in M under the intervention on dsep(Vi, Vj);

• iff G ∈ G \ Ged then Vi and Vj are independent in M under the intervention on
dsep(Vi, Vj);

Proof: If G ∈ G \Ged an intervention on dsep(Vi, Vj) in M d-separates Vi and Vj , as G does
not have the edge ed(Vi, Vj), so Vi and Vj are independent, and vice-versa. If G ∈ Ged an
intervention on dsep(Vi, Vj) in M does not d-separate Vi and Vj , due to the presence of the
edge ed(Vi, Vj) in G, so Vi and Vj are dependent, and vice-versa.

■ ■

Lemma 24 provides a strategy for further reducing the set of candidates in G. Each edge
ed(Vi, Vj) such that Ged ̸= ∅ and G \ Ged ̸= ∅ leads to a conditional independence test
between Vi and Vj , under the intervention on dsep(Vi, Vj). If Vi and Vj are independent then
we know none of the graphs in Ged is the true graph. Else, we know that none of the graphs
in G \ Ged is the true graph. Note that it may be required to intervene on Vi to d-separate Vi

and Vj , due to the presence of hidden confounders in G \ Ged, in which case the conditional
independence test requires doing interventions across all values of Vi.

3.6 Testing Non-Distinguishable Hidden Confounders

In this section we discuss the criteria for detecting hidden confounders using conditional in-
dependence tests. Given a set of candidate causal graphs, this is only required if PI(E,G,P ⋆) =0
for all interventions, as discussed in previous sections. If PI(E,G,P ⋆) =0 across all inter-
ventions, we cannot eliminate further candidate graphs with interventions, however in some
cases the remaining candidate graphs may still contain some hidden confounder differences
among them. At this stage, all remaining candidate graphs have the same edges between
observable variables than the true graph. We say that we have learned the observable graph.
We use the observable graph in the criteria to test the remaining hidden confounders.

We formally define confounding in definition 25.

Definition 25 (Confounding) We say that two variables Vi and Vj are not confounded iff:

P (Vj |do(Vi)) = P (Vj |Vi)

Two variables Vi, Vj are confounded if there exists another variable with causal effect on
both Vi and Vj , in which case P (Vj |do(Vi)) ̸= P (Vj |Vi). Note that two observed variables
may be confounded by another observed variable or may be confounded by an unobserved
variable, a hidden confounder.

Given the observable graph, an intervention on all observed parents of Vi and all observed
parents of Vj makes Vi and Vj independent, except if there is an edge between Vi and Vj
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(they are adjacent in the graph) or there is a hidden confounder between them. This leads to
Theorem 26 (Kocaoglu, Shanmugam, and Bareinboim, 2017) for non-adjacent variables. We
assume that the causal relations between the observed variables in the graph are known. In
other words, the adjacencies between observed variables are known, and the observed parents
of all observed variables are also known.

Theorem 26 (Hidden Confounders between non-adjacent variables) Two non-adjacent vari-
ables Vi and Vj are not confounded by an unobserved variable iff

P (Vj = vj |do(O)) = P (Vj = vj |Vi = vi, do(O))

for all values Vi = vi and Vj = vj , where O is the union of the set of observed parents
of Vi and the set of observed parents of Vj .

Theorem 26 leads to conditional independence tests, where the equality is tested across
all values Vi = vi and Vj = vj . Note that it is not required to test the equality across all
values of O. The equality is tested with a constant value of O.

When Vi and Vj are adjacent, the observed parents of Vi and Vj include Vi or Vj so an
intervention on O implies intervening Vi or Vj . The criteria used to in Theorem 26 to detect
hidden confounders for non-adjacent variables cannot be used for adjacent variables. The-
orem 27 (Kocaoglu, Shanmugam, and Bareinboim, 2017) provides a criterion for detecting
hidden confounders when Vi and Vj are adjacent variables in the observable graph.

Theorem 27 (Hidden Confounders between adjacent variables) Two adjacent variables
Vi and Vj are not confounded by an unobserved variable iff

P (Vj = vj |do(Vi = vi, O)) = P (Vj = vj |Vi = vi, do(O))

for all values Vi = vi and Vj = vj , where O is the union of the set of observed parents
of Vi and the set of observed parents of Vj .

Theorem 27 also leads to a conditional independence test for detecting hidden con-
founders, where the equality is tested across all values Vi = vi and Vj = vj . Note that
it is not required to test the equality across all values of O. The equality is tested with a
constant value of O.
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Chapter 4

Active Learning of Causal Graphs

In this chapter, we introduce a generic method for active learning of causal graphs from
interventions. The main features of the algorithm are as follows:

• It allows causal models that contain hidden confounders, and identifies both the edges
among observable variables and the pairs of variables affected by a common hidden
confounder. Most previous research regarding learning of causal graphs did not con-
sider for the presence of hidden confounders, whereas real world causal systems and
causal data typically contain hidden confounders.

• It accepts any arbitrary set of candidate graphs as representations of previous knowl-
edge, without any requisite on restrictions or forms. The number of interventions per-
formed by the algorithm is O(|G|). In most previous work it is difficult to assess how
the amount of previous knowledge about the domain translates to a reduction in the
number of interventions. For example, eliminating some of the candidate graphs with
expert knowledge or running a causal discovery algorithm from observational data, be-
fore running our active learning algorithm, may reduce the number of candidates and
reduce the execution time of our algorithm, but is not a requirement. Most existing
algorithms are not designed to take advantage of this pre-processing option.

• Our algorithm can accommodate various functions describing the cost of an interven-
tion, unlike others that are designed for one particular cost (e.g., unit cost where all
interventions have the same cost). Our method considers that the cost of intervening
variables may differ for every variable, or combination of variables, and for every value
assignment of the intervened variables. Also, the cost of observing may differ for ev-
ery variable, or combination of variables. We aim at minimizing the total cost of the
sequence of interventions and observations. To the best of our knowledge, our method
is the first that encompasses all these cost dimensions, and is general in that sense.

• Finally, all existing algorithms for the discrete case perform tests that implicitly re-
quire testing all values of the intervened variables (i.e., P (Y |do(X)), where X is
implicitly intervened or sampled with all of its domain values). Our algorithm has
a pre-processing phase that eliminates as many candidates as possible using single-
valued interventions, i.e., P (Y |do(X = x)) for a single assignment of values to the
variables in X . We claim that the number of values tested by an intervention is, in
many practical cases, a leading factor in the cost of an intervention, and therefore this
approach can drastically reduce the cost of the discovery process. We argue that by
using single valued interventions it is possible, in the vast majority of cases, to distin-
guish two candidates with differences in their edge structure, and also candidates that
have differences in their hidden confounders. To the best of our knowledge our method
is the first method that uses interventions on a single value of the intervened variables.
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Our approach is combinatorial rather than statistical, in that we consider that the answers
to our interventions are retrieved exactly and we do not study the number of individual sam-
ples required to know the result of an intervention with a given precision. In fact, in most
cases the primitive operation is simply checking for equality or inequality among two proba-
bility distributions.

We start with a number of causal graph candidates that may be the output of other previ-
ous analysis using observational data and expert knowledge. This is the most likely general
setting, as interventions are usually more expensive than observations, so we consider that
everything is done to first use previous expert knowledge and use observational distributions
and algorithms based on that data, before starting any experiment design.

We take a two-phase approach. First we use causal effect predictions to discard as many
causal graphs candidates as possible. This is done using interventions with a single value of
the intervened variables X , which avoids the cost of repeating the interventions with multi-
ple values of X . Using do-calculus as a predictive mechanism ensures that a causal effect
prediction is either correct or not possible, due to the soundness and completeness of do-
calculus. The first phase concludes when there are no further single valued interventions
capable of discarding any more candidate graphs, which means the remaining graphs are not
distinguishable per Definition16.

The second phase uses conditional independence tests, in order to discard the remaining
causal graph candidates. We provide the graphical conditions that explain which conditional
independence tests are required. The advantage of eliminating as many candidates as possible
in the first phase, with selected interventions using single values of the intervened variables
X , before applying the second phase, reduces the overall cost of the process.

4.1 Algorithm for Active Learning of Causal Graphs

This section introduces the ALCAM algorithm for active learning of causal graphs. The
algorithm is based on the iterative application of two main functions: the function SelectIn-
tervention is given in Figure 4.3, and the function SelectGraphs is given in Figure 4.4. The
algorithm uses a causal effect Predictor based on do-calculus, given in Figure 4.5 and an in-
tervention Oracle given in Figure 4.6. Additionally, the function PowerOfIntervention given
in Figure 4.1 provides the metric required for distinguishing causal graphs. The ALCAM
algorithm for active learning of causal graphs is given in Algorithm 1.

4.1.1 Power of Intervention function

Given an intervention and a set of causal graph candidates, the PowerOfIntervention function
(Figure 4.1) counts the number of pairs of candidates that are distinguishable (Definition 16)
with the intervention, based on all case scenarios (see Table 3.1).
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Function PowerOfIntervention(E,G,P ⋆,Pk)
INPUT:

• E: intervention (X,x, Y ) where X,Y ⊂ V , Y ∩X = ∅ and x is a value assignment
for X

• G = {G1, G2, ...GN}: set of N causal models over a set V of observed variables and
a set U of unobserved variables (hidden confounders)

• P ⋆: probability distribution of the observed variables in the true causal model M⋆,
without interventions

• Pk: set of causal effects Pk(Y |do(X = x)) for all Gk in G

OUTPUT:

• PI: number of pairs of causal graphs in G that are distinguishable with intervention E

1. let PI be the number of pairs of graphs Gk, Gl in G for which Gk ̸≈PE
Gl;

2. return PI;

FIGURE 4.1: The PowerOfIntervention function

4.1.2 Select Interventions

Intervening and observing variables has a cost. We represent the cost of intervening or ob-
serving variables with cost functions CI(X = x) and CO(Y ) respectively. Our aim is to find
the sequence of interventions which eliminates the maximal number of candidate graphs at
the lowest possible cost.

Given a set of candidate causal graphs G, some graphs are distinguishable from others
in the set, and some graphs are not distinguishable. We provide an example in Figure 4.2,
which shows a set of candidate causal graphs G = {G1, G2, G3, G4, G5} and a method
to find interventions that maximize the distinguishability among the graphs at the lowest
possible cost.

In step a we find all maximal non-distinguishable subsets of graphs Ĝ = {G1,G2...} in G
so that for every subset Gr ∈ Ĝ, PI(E,Gr,P ) = 0 for all E, and for every pair of different
subsets Gr,Gs ∈ Ĝ, there exist interventions E for which PI(E,Gr ∪ Gs, P ) > 0. This
means no interventions exist that distinguish pairs of graphs within a subset, but there exist
interventions that distinguish graphs from different subsets. Note that a graph may belong
to several subsets if it is not distinguishable from the other graphs in these subsets. In the
example, G2 is not distinguishable from G1 and G3. Interventions E3 and E5 make G1

and G3 distinguishable from each other, but not G2. This is due to P1(Y |do(X = x)) ̸=
P3(Y |do(X = x)), however P2(Y |do(X = x)) = ∅, P1(Y |do(X = x)) ̸= P (Y ) and
P3(Y |do(X = x)) ̸= P (Y ).

In step b, we find all minimal sets of interventions Ê = {E1, E2...} that split all the
subsets of non-distinguishable graphs in Ĝ. In the example, the sets of interventions E1 =
{E1, E2, E5}, E2 = {E1, E3, E4}... split all subsets of non-distinguishable graphs. If the
set of candidate graphs includes the true graph, then any of these sets of interventions allows
us to eliminate all subsets of graphs other than the subset where the true graph is. Also, no
further intervention will be able to eliminate any additional graphs.
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In step c, we select the set of interventions Et with the smallest total cost. This means Et
has the smallest cost among all sets of interventions that are able to eliminate all candidate
graphs except the subset of non-distinguishable graphs where the true graph is.

At this stage, we can apply a strategy to select the order for the interventions in Et. In the
example, the smallest cost set of interventions is E2 = {E1, E3, E4}. If the true graph is G4

and we choose intervention E3 first, we will need additional interventions as E3 does not split
G4 from the other subsets. However, if we choose E4 first we find the true graph directly.
If the true graph is G1 we need the three interventions E1, E3, E4 in order to eliminate all
graphs other than the subset of non-distinguishable graphs where G1 is, and there is no other
smaller set of interventions able to do that. From these examples we can see that it is better
to prioritize interventions that split single subsets of graphs without requiring the entire set of
selected interventions. If the true graph belongs to these subsets we will avoid the cost of the
remaining interventions. Our strategy is to select first the subsets of interventions in Et that
split single subsets of graphs, starting with the smallest cost ones. With each intervention we
eliminate subsets of graphs from the candidate set, so we use an active learning process to
adjust the strategy after every intervention.

FIGURE 4.2: Method to find the set of interventions that splits all non-
distinguishable subsets of graphs with the smallest cost.
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Function SelectIntervention(E , Ĝ, P ⋆, Pk, CI , CO)
INPUT:

• E : set of interventions that splits all subsets of non-distinguishable graphs in Ĝ

• Ĝ = {G1,G2...}: subsets of non-distinguishable graphs

• P ⋆: probability distribution of the observed variables in the true causal model M⋆,
without interventions

• Pk: set of causal effect identifications Pk(Y |do(X = x)), ∀Gk ∈ G

• CI(X,x): cost of intervention do(X = x), ∀X,x

• CO(Y ): cost of observing Y , ∀Y

OUTPUT:

• E = (X,x, Y ): intervention with smallest cost in the subset of interventions Imin ⊂
E : Imin = {(X1, x1, Y1), (X2, x2, Y2), ...(Xi, xi, Yi), ..} that splits any subset of
graphs in Ĝ from all other subsets with smallest total cost

∑
i(CI(Xi, xi) + CO(Yi))

1. if PowerOfIntervention(E, Ĝ, P ⋆, Pk) = 0 for all E ∈ E then return NA;

2. let Î = {I1, I2, ...} be all subsets of E that split any subset of graphs in Ĝ from all
other subsets, i.e., for every Gi ∈ Ĝ there exists Ij ∈ Î that includes interventions E
for which PowerOfIntervention(E,Gi ∪ Gs, P

⋆, Pk) > 0 for all Gs ∈ Ĝ, Gs ̸= Gi;

3. let Imin be the set in Î with smallest total cost
∑

i(CI(Xi, xi) + CO(Yi));

4. let E = (X,x, Y ) be the intervention with smallest cost in Imin;

5. return E;

FIGURE 4.3: The SelectIntervention function

4.1.3 Select Graphs

The SelectGraphs function selects the subsets of non-distinguishable graphs for which the
causal effect from an intervention E = (X,x, Y ) is the same as the effect in the true graph
G⋆, as well as subsets for which the effect is unknown (empty set) while the effect in G⋆ is
not P ⋆(Y ).

From the three scenarios of distinguishability from Definition 15, and the soundness
and completeness of do-calculus, we can see that if Pk(Y |do(X = x)) ̸= ∅ then we se-
lect Gk only if Pk(Y |do(X = x)) is the same joint distribution that the joint distribution
P ⋆(Y |do(X = x)) in M⋆. If Pk(Y |do(X = x)) = ∅ then we select Gk only if the effect
of the intervention in M⋆ is not P ⋆(Y ). The graphs for which the effect is unknown have a
hedge for X ,Y (Shpitser and Pearl, 2006) so the effect in G⋆ is not P ⋆(Y ) and we cannot
eliminate these graphs.
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Function SelectGraphs(Ĝ,E,P ⋆(Y, do(X = x)),Pk)
INPUT:

• Ĝ = {G1,G2...}: subsets of non-distinguishable graphs

• E: intervention (X,x, Y ) where X,Y ⊂ V , Y ∩X = ∅ and x is a value assignment
for X

• P ⋆(Y |do(X = x)): joint probability distribution of Y upon performing the interven-
tion X = x on the true model M⋆

• Pk: set of causal effect identifications Pk(Y |do(X = x)), ∀Gk ∈ G

OUTPUT:

• Ĝ′ ⊂ Ĝ: subsets of non-distinguishable graphs in Ĝ for which the causal effect from
the intervention E is the same as the effect in the true graph G⋆, as well as subsets for
which the effect is unknown (empty set) while the effect in G⋆ is not P ⋆(Y ).

1. let Ĝ′ be all subsets of non-distinguishable graphs in Ĝ for which, ∀Gk ∈ Ĝ′:

• Pk(Y |do(X = x)) ̸= ∅ and Pk(Y |do(X = x)) = P ⋆(Y |do(X = x));
or

• Pk(Y |do(X = x)) = ∅ and P ⋆(Y |do(X = x)) ̸= P ⋆(Y );

2. return Ĝ′;

FIGURE 4.4: The SelectGraphs function

4.1.4 ALCAM algorithm

The ALCAM algorithm for active learning of causal graphs is shown in Algorithm 1. The
algorithm starts with a set G of candidate causal graphs compatible with any previously avail-
able information about the true graph.

Using the predicted causal effects obtained by the Predictor function given in Figure 4.5,
and the power of interventions obtained by the PowerOfIntervention function given in Fig-
ure 4.1, the algorithm finds all the subsets of non-distinguishable graphs in G. Then it finds
the set of interventions that splits G into these subsets with the smallest cost. ALCAM then
selects the next intervention by assigning an order of priority to this set, with SelectInterven-
tion. Subsets of interventions that split one subset of non-distinguishable graphs from the
rest of graphs at the lowest cost are done first. ALCAM calls the Oracle given in Figure 4.6 to
obtain the interventional probability distribution of the true model from the selected interven-
tions, and eliminates from G all subsets of non-distinguishable graphs where the causal effect
differs from the interventional probability distribution of the true model, with SelectGraphs.

This sequence of three steps SelectIntervention, Oracle and SelectGraphs is done itera-
tively until no interventions exist with positive PowerOfIntervention in G. The SelectInter-
vention function returns NA and at that stage the selected subset of causal graphs is the one for
which the causal effects of each intervention, at each iteration of the algorithm, are the same
than what the Oracle returns as effects in the true graph. At that stage if there is only one
graph left in G, then we have identified the true graph. If there are several candidate graphs
left, due to the presence in G of graphs that are non-distinguishable from the true graph, then
we test the edges and hidden confounders that differ among the remaining candidates, to
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confirm or refute their presence, using conditional independence testing (functions idEdges
shown in Figure 4.7 and idHidden, shown in Figure 4.8). Note that the interventions have
reduced the conditional independence testing to the minimal possible set of graphs, edges
and hidden confounders. Also, in some sub-cases conditional independence testing is not
required at all.

Lemma 28 The subset of graphs in Ĝ that ALCAM finds in line 5 consists of all the graphs
that are non-distinguishable from the true graph. All other graphs are removed from Ĝ.

Proof: Êt = {E1, E2, ..., En} is a set of interventions for which PowerOfIntervention(Ei,Gr∪
Gs, P

⋆, Pk) > 0 for every pair of subsets of non-distinguishable graphs Gr, Gs in Ĝ. Line 5a
selects one intervention in Êt and line 5b queries the Oracle for its effect on the true model.
Line 5c removes from Ĝ all subsets of graphs that are distinguishable from the true graph with
the intervention and line 5d removes the intervention from the set Êt. At each iteration of the
loop, line 5 selects another intervention in Êt until only one subset of non-distinguishable
graphs remain in Ĝ, which is the subset of graphs that are non-distinguishable from the true
graph. ■ ■

Lemma 29 The maximal number of interventions in line 5 is at most |G| - |Gq|, where G
is the set of candidate graphs, and Gq ∈ Ĝ is the subset of candidate graphs that are non-
distinguishable from the true graph.

Proof: Assume the worst case, where line 5 removes from Ĝ only one subset of graphs
consisting on one graph only, at each recurrence. ■ ■

Lemma 30 The subset of graphs in Ĝ that ALCAM finds in line 5 have:

1. the same ancestral relations than the true graph;

2. the same edges than the true graph, except graphs that have edges ed(Vi, Vj) that differ
among candidates and have a hedge for P (Vj |block(Vi, Vj));

3. the same hidden confounders than the true graph, except graphs that have hidden
confounders hc(Vi, Vj) that differ among the candidates and either have a hedge for
P (Vj |do(Vi)) where Vi ∈ An(Vj), or have Vi /∈ An(Vj) and Vj /∈ An(Vi);

Proof: By lemma 28 the subset of graphs that ALCAM finds in line 5 consists of all the
graphs non-distinguishable from the true graph. Lemma 23 provides the three conditions
under which two causal graphs are distinguishable.

■ ■

Lemma 31 If there exist edge differences among the graphs in Ĝ in line 8, ALCAM uses at
most Q conditional independence tests to eliminate from Ĝ the graphs that have different
edges than the true graph, where Q is the number of edges ed(Vi, Vj) that differ and for
which there is a hedge for P (Vj |do(block(Vi, Vj))) in one or more of the graphs.

Proof: If the true graph is identified in line 6, ALCAM ends at line 7. If there are no edge
differences among graphs in Ĝ, ALCAM does not execute function idEdges(Ĝ) in line 8
and moves onto line 9. Finally, if there are edge differences among graphs in Ĝ, ALCAM
executes function idEdges(Ĝ) and performs conditional independence tests on the edges that
differ from the true graph in the subset of graphs found in line 5 as specified in lemma 21.

■ ■
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Lemma 32 If there exist hidden confounder differences among the graphs in Ĝ in line 9,
ALCAM uses at most H conditional independence tests to eliminate from Ĝ the graphs that
have different hidden confounders than the true graph, where H is the number of hidden
confounders hc(Vi, Vj) that differ for which there is a hedge for P (Vj |do(Vi)) in one or
more of the graphs, or for which Vi /∈ An(Vj) and Vj /∈ An(Vi).

Proof: If there are no hidden confounder differences among graphs Ĝ in line 9, ALCAM does
not execute the function idHidden(Ĝ) and ends at line 10. If there are hidden confounder
differences among graphs in Ĝ, ALCAM executes the function idHidden(Ĝ) and performs
conditional independence tests on the hidden confounders that differ from the true graph in
the subset of graphs found in line 5, as specified in lemma 22 ■ ■

Theorem 33 (ALCAM is Sound and Complete) ALCAM always returns the true causal
graph G⋆.

Proof: Let G⋆ be the true causal graph. Let G be the set of candidate causal graphs and Ĝ
the subsets of non-distinguishable graphs in G. By lemma 28 the subset of graphs in Ĝ that
ALCAM finds in line 5 consists of all the graphs that have the same ancestral relations than
the true graph, the same edges than the true graph, and the same hidden confounders than
the true graph, except graphs that have edges or hidden confounders under the conditions of
lemma 28. If the exceptions do not exist, then the subset in Ĝ consists of one graph only,
ALCAM exits at line 7, and Ĝ = {G⋆}. If the exceptions do exist for edges, then Ĝ contains
graphs with edge differences, and ALCAM line 8 executes. By lemma 21 ALCAM line 8
eliminates from Ĝ all graphs that have different edges than the true graph. If the exceptions
do exist for hidden confounders, then Ĝ contains graphs with hidden confounder differences,
and ALCAM line 9 executes. By lemma 22 ALCAM line 9 eliminates from Ĝ all graphs
that have different hidden confounders than the true graph, ALCAM exits at line 10, and
Ĝ = {G⋆}, which completes the proof.

■ ■

Theorem 34 (ALCAM number of interventions) ALCAM requires at most |G| - |Gq| inter-
ventions on a single value of the intervened variables, and Q+H conditional independence
tests, where

• G is the set of candidate graphs;

• Gq is the subset of candidate graphs that are non-distinguishable from the true graph;

• Q is the number of edges ed(Vi, Vj) that differ among the graphs in Gq and for which
there is a hedge for P (Vj |do(block(Vi, Vj))) in one or more of the graphs;

• H is the number of hidden confounders hc(Vi, Vj) that differ among the graphs in Gq

and for which there is a hedge for P (Vj |do(Vi)) in one or more of the graphs, or for
which Vi /∈ An(Vj) and Vj /∈ An(Vi);

Proof: By Lemma 29, Lemma 31, and Lemma 32.
■ ■
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Algorithm 1 ALCAM(G, P ⋆, CI , CO) Algorithm for active learning of causal graphs
INPUT:

• G: set of causal graphs over a set V of observed variables and a set U of unobserved
variables (hidden confounders)

• P ⋆: probability distribution of the observed variables in the true causal model M⋆,
without interventions

• CI(X,x): cost of intervention do(X = x),∀X,x

• CO(Y ): cost of observing Y,∀Y

OUTPUT:

• Gid ∈ G: causal graph for which all interventional distributions provided by the Or-
acle are equal to the distributions from the Predictor, and all the edges and hidden
confounders that are not identifiable with interventions are identified with condi-
tional independence tests

1. let Pk = Predictor(E,Gk, P
⋆) for all Gk ∈ G, for all E = (X,x, Y );

2. let Ĝ = {G1,G2...} be all maximal subsets of non-distinguishable graphs in G, i.e:

• PowerOfIntervention(E,Gr, P
⋆, Pk) = 0, for all Gr ∈ Ĝ and for all E =

(X,x, Y );

• there exists E = (X,x, Y ) for every pair of different subsets Gr, Gs ∈ Ĝ:
PowerOfIntervention(E,Gr ∪ Gs, P

⋆, Pk) > 0;

3. let Ê = {E1, E2...} be all minimal sets of interventions that split all subsets of non-
distinguishable graphs in Ĝ, i.e for every pair of different subsets Gr,Gs ∈ Ĝ, all
Et include an intervention E = (X,x, Y ) for which PowerOfIntervention(E,Gr ∪
Gs, P

⋆, Pk) > 0;

4. let Et = {E1, E2, ..., En} be the set of interventions in Ê with smallest total cost∑
1≤i≤n

(CI(Xi, xi) + CO(Yi));

5. While |Ĝ|> 1

(a) let Ei = SelectIntervention(Et, Ĝ, P ⋆, Pk, CI , CO);

(b) let P ⋆(Y |do(X = x)) = Oracle(Ei);

(c) let Ĝ = SelectGraphs(Ĝ, Ei, P
⋆(Y |do(X = x)), Pk);

(d) let Et = Et \ Ei;

6. let Ĝ be the set of graphs in the single subset in Ĝ

7. If Ĝ contains 1 graph, then return Ĝ;

8. If there exist edge differences in graphs in Ĝ, then let Ĝ = idEdges(Ĝ)

9. If there exist hidden confounder differences in graphs in Ĝ, then let Ĝ =
idHidden(Ĝ)

10. return Ĝ;
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Function Predictor(E,Gk, P
⋆)

INPUT:

• E: intervention (X,x, Y ) where X,Y ⊂ V , Y ∩X = ∅ and x is a value assignment
for X

• Gk: causal graph

• P ⋆: joint probability distribution over V

OUTPUT:

• Pk(Y |do(X = x)): set of causal effects in Y for intervention do(X = x) from Gk

1. if there is a hedge for E in Gk then let Pk = ∅;

2. else, let Pk(Y |do(X = x)) be all the different evaluations from P ⋆ of all do-free
expressions that can be obtained by repeated application of do-calculus rules, together
with standard probability manipulations from Gk;

3. return Pk;

FIGURE 4.5: Predictor based on do-calculus

Function Oracle(E)
INPUT:

• E: intervention (X,x, Y ) where X,Y ⊂ V , Y ∩X = ∅ and x is a value assignment
for X

OUTPUT:

• P ⋆(Y |do(X = x)): joint probability of Y upon performing the intervention do(X =
x) on the true causal model M⋆

FIGURE 4.6: The Intervention Oracle
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Function idEdges(Ĝ)
INPUT:

• Ĝ: set of graphs with the same ancestral relations than the true graph and with edge
differences

OUTPUT:

• Ĝ′ ⊂ Ĝ: set of graphs with the same edges than the true graph

1. for each edge ed(Vi, Vj) appearing only in a subset Ĝed of Ĝ:

(a) On the true causal model M⋆, perform intervention on the minimal set of vari-
ables dsep(Vi, Vj) whose intervention d-separates Vi and Vj in all graphs in
Ĝ \ Ĝed, and do a conditional independence test between Vi and Vj . If Vi and
Vj are dependent then Ĝ = Ĝed;

(b) else, Ĝ = Ĝ \ Ĝed;

FIGURE 4.7: Edge Identification Function

Function idHidden(Ĝ)
INPUT:

• Ĝ: subset of non-distinguishable graphs with hidden confounder differences

OUTPUT:

• Ĝ′ ⊂ Ĝ: subset of graphs with the same hidden confounders than the true causal model
M⋆

1. for each hidden confounder (Vi, Vj) appearing only in a subset Ĝhc of Ĝ do the fol-
lowing conditional independence tests between Vi and Vj on the true causal model
M⋆:

(a) if Vi and Vj are adjacent and P (Vj |do(Vi, O)) = P (Vj |Vi, do(O))

(b) if Vi and Vj are non-adjacent and P (Vj |do(O)) = P (Vj |Vi, do(O))

where O = Parents(Vi) ∪ Parents(Vj)

2. then Ĝ = Ĝ \ Ĝhc;

3. else, Ĝ = Ĝhc;

4. return Ĝ;

FIGURE 4.8: Hidden Confounder Identification Function
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Chapter 5

Causality and Time

5.1 Dynamic Causal Networks

The generic definition of causal models (Definition 3) leaves the functions fk unspecified.
These functions can take any suitable form that best describes the causal dependencies be-
tween variables in the model. In natural phenomena some variables may be time independent
while others may evolve over time. However rarely does Pearl specifically treat the case of
dynamic variables.

The definition of Dynamic Causal Network is an extension of Pearl’s causal model defi-
nition, by specifying that the variables are sampled over time, as in (Valdes-Sosa et al., 2011).

Definition 35 (Dynamic Causal Network) A dynamic causal network D is a causal model
in which the set F of functions is such that Vk,t = fk(Pa(Vk,t), Uk,t−α); where Vk,t is
the variable associated with the time sampling t of the observed process Vk; Uk,t−α is the
variable associated with the time sampling t− α of the unobserved process Uk; t and α are
discrete values of time.

Note that Pa(Vk,t) may include variables in any time sampling previous to t up to and
including t, depending on the delays of the direct causal dependencies between processes in
comparison with the sampling rate. Uk,t−α may be generated by a noise process or by a hid-
den confounder. In the case of noise, we assume that all noise processes Uk are independent
of each other, and that their influence to the observed variables happens without delay, so that
α = 0. In the case of hidden confounders, we assume α ≥ 0 as causes precede their effects.

To represent hidden confounders in DCN, we extend to the dynamic context the frame-
work developed in (Pearl, Verma, et al., 1991) on causal model equivalence and latent struc-
ture projections. Let us consider the projection algorithm (Verma, 1993), which takes a causal
model with unobserved variables and finds an equivalent model (with the same set of causal
dependencies), called a "dependency-equivalent projection", but with no links between un-
observed variables and where every unobserved variable is a parent of exactly two observed
variables.

FIGURE 5.1: Dynamic Causal Network where tr1 and tr2 have a common
unobserved cause, a hidden confounder. Since both variables are in the same

time slice, we call it a static hidden confounder.
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The projection algorithm in DCN works as follows. For each pair (Vm, Vn) of observed
processes, if there is a directed path from Vm,t to Vn,t+α through unobserved processes then
we assign a directed edge from Vm,t to Vn,t+α; however, if there is a divergent path between
them through unobserved processes then we assign a bidirected edge, representing a hidden
confounder.

5.2 Hidden Confounders

In this thesis, we represent all DCN by their dependency-equivalent projection. Also, we
assume the sampling rate to be adjusted to the dynamics of the observed processes. How-
ever, both the directed edges and the bidirected edges representing hidden confounders may
be crossing several time steps depending on the delay of the causal dependencies in com-
parison with the sampling rate. We now introduce the concept of static and dynamic hidden
confounder.

5.2.1 Static Hidden Confounders

Definition 36 (Static Hidden Confounder) Let D be a DCN. Let β be the maximal number
of time steps crossed by any of the directed edges in D. Let α be the maximal number of
time steps crossed by a bidirected edge representing a hidden confounder. If α ≤ β, then the
hidden confounder is called "static".

To give an example of a static confounder, gas consumption and acceleration power at
a car are causally influenced by the tire pressure, which may be unmeasured. The gas con-
sumption and acceleration are influenced by the tire pressure at any particular moment in
time, and are not impacted by the tire pressure earlier or later.

5.2.2 Dynamic Hidden Confounders

Definition 37 (Dynamic Hidden Confounder) Let D, β and α be as in Definition 36. If
α > β, then the hidden confounder is called "dynamic". More specifically, if β < α ≤ 2β,
we call it "first order" Dynamic Hidden Confounder; if α > 2β, we call it "higher order"
Dynamic Hidden Confounder.

In this thesis, we consider three case scenarios in regards to DCN and their time-invariance
properties. If a DCN D contains only static hidden confounders, we can construct a first order
Markov process in discrete time, by taking β (per Definition 36) consecutive time samples
of the observed processes Vk in D. See Figure 5.2. This does not mean the DCN generat-
ing functions fk in Definition 35 are time-invariant, but that a first order Markov chain can
be built over the observed variables when marginalizing the static confounders over β time
samples.

In a second scenario, we consider DCN with first order dynamic hidden confounders.
See Figure 5.3. We can still construct a first order Markov process in discrete time, by
taking β consecutive time samples. However, we will see in later sections how the effect
of interventions on this type of DCN has a different impact than on DCN with static hidden
confounders.

Finally, we consider DCN with higher order dynamic hidden confounders, in which case
we may construct a first order Markov process in discrete time by taking a multiple of β
consecutive time samples. See Figure 5.4.

As we will see in later sections, the difference between these three types of DCN is crucial
in the context of identifiability. Dynamic hidden confounders cause a time invariant transition
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FIGURE 5.2: Example of static hidden confounder. The time steps crossed
by confounders are α ≤ β and we can construct a first order Markov process

in discrete time, using time slices of length β.

FIGURE 5.3: Example of first order dynamic hidden confounder. The time
steps crossed by confounders are β < α ≤ 2β and we can construct a first

order Markov process in discrete time, using time slices of length β.

matrix to become dynamic after an intervention, e.g., the post-intervention transition matrix
will change over time. However, if we perform an intervention on a DCN with static hidden
confounders, the network will return to its previous time-invariant behaviour after a transient
period. These differences have a great impact on the complexity of the causal identification
algorithms that we present.

Considering that causes precede their effects, the associated graphical representation of
a DCN is a DAG. All DCN can be represented as a biinfinite DAG with vertices Vk,t; edges
from pa(Vk,t) to Vk,t; and hidden confounders (bi-directed edges). DCN with static hidden
confounders and DCN with first order dynamic hidden confounders can be compactly repre-
sented as β time samples (a multiple of β time samples for higher order dynamic hidden con-
founders) of the observed processes Vk,t; their corresponding edges and hidden confounders;
and some of the directed and bi-directed edges marked with a "+1" label representing the
dependencies with the next time slice of the DCN.

Note that a DCN can also be seen as a biinfinite causal model in general, agnostic to
whether time is defined or not. As such, removing the time assumption does not make any of
the lemmas, theorems or algorithms in this thesis invalid, as they are the result of graphical
non-parametric reasoning.

5.3 Do-Calculus and Time

In the context of DCN, the do-calculus rules, originally identified for the non-temporal con-
text, can be translated under several assumptions. The assumptions rely on the presence of
static or dynamic hidden confounders.
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FIGURE 5.4: Example of higher order dynamic hidden confounder. The
time steps crossed by confounders in this example are 2β < α ≤ 3β and we
can construct a first order Markov process in discrete time, using time slices

of length 2β.

DCNs with static hidden confounders contain hidden confounders that impact sets of
variables within one time slice only, and contain no hidden confounders between variables at
different time slices (see Figure 5.1).

The following two lemmas are based on the application of do-calculus to DCNs with
static hidden confounders only. Intuitively, conditioning on the variables that cause time
dependent effects d-separates entire parts (future from past) of the DCN (Lemmas 38, 39).

Lemma 38 (Past observations and actions) Let D be a DCN with static hidden confounders.
Take any set X . Let C ⊆ Vt be the set of variables in Gt that are direct causes of variables
in Gt+1. Let Y ⊆ Vt+α and Z ⊆ Vt−β , with α > 0 and β > 0 (positive natural numbers).
The following distributions are identical:

1. P (Y |do(X), Z, C)

2. P (Y |do(X), do(Z), C)

3. P (Y |do(X), C)

Proof: By the graphical structure of a DCN with static hidden confounders, conditioning on
C d-separates Y from Z. The three rules of do-calculus apply, and (1) equals (3) by rule 1,
(1) equals (2) by rule 2, and also (2) equals (3) by rule 3. ■ ■

In our traffic example, we want to predict the traffic flow Y in two days caused by traf-
fic control mechanisms applied tomorrow X , and conditioned on the traffic delay today C.
Any traffic controls Z applied before today are irrelevant, because their impact is already
accounted for in C.

Lemma 39 (Future observations) Let D, X and C be as in Lemma 38. Let Y ⊆ Vt−α and
Z ⊆ Vt+β , with α > 0 and β > 0, then:

P (Y |do(X), Z, C) = P (Y |do(X), C)

Proof: By the graphical structure of a DCN with static hidden confounders, conditioning on
C d-separates Y from Z and the expression is valid by rule 1 of do-calculus. ■ ■

In our example, observing the travel delay today makes observing the future traffic flow
irrelevant to evaluate yesterday’s traffic flow.

The following lemma (Lemma 40) is based on the application of do-calculus to DCN in
general, with static or dynamic confounders. Intuitively, future actions have no impact on the
past.



5.3. Do-Calculus and Time 55

Lemma 40 (Future actions) Let D be a DCN. Take any sets X ⊆ Vt and Y ⊆ Vt−α, with
α > 0. Then for any set Z the following equalities hold:

1. P (Y |do(X), do(Z)) = P (Y |do(Z))

2. P (Y |do(X)) = P (Y )

3. P (Y |Z, do(X)) = P (Y |Z) whenever Z ⊆ Vt−β with β > 0.

Proof: The first equality derives from rule 3 and the proof in (Shpitser and Pearl, 2006) that
interventions on variables that are not ancestors of Y in D have no effect on Y . The second
is the special case Z = ∅. We can transform the third expression using the equivalence

P (Y |Z, do(X)) = P (Y, Z|do(X))/P (Z|do(X));

since Y and Z precede X in D, by rule 3 P (Y,Z|do(X)) = P (Y,Z) and P (Z|do(X)) =
P (Z), and then the above equals P (Y,Z)/P (Z) = P (Y |Z). ■ ■

In words, traffic control mechanisms applied next week have no causal effect on the traffic
flow this week.
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Chapter 6

Identification of Causal Effects in
Dynamic Causal Networks

In this chapter, we analyse the identifiability of causal effects in the DCN setting. We first
study DCNs with static hidden confounders and propose a method for identification of causal
effects in DCNs using transition matrices. Then we extend the analysis and identification
method to DCNs with dynamic hidden confounders.

First we define the identification problem in the DCN context.

6.1 Identification in DCN

Definition 41 (Dynamic Causal Network identification) Let D be a DCN, and t, t + α
be two time slices of D. Let X be a subset of Vt and Y be a subset of Vt+α. The DCN
identification problem consists of computing the probability distribution P (Y |do(X)) from
the observed probability distributions in D, i.e., computing an expression for the distribution
containing no do() operators.

In this thesis, we always assume that X and Y are disjoint and we only consider the case
in which all intervened variables X are in the same time sample. It is not difficult to extend
our algorithms to the general case.

The following lemma shows that it is possible to limit the size of the graph to be used for
the identification of DCNs.

Lemma 42 Let D be a DCN with biinfinite graph Ĝ. Let tx, ty be two time points in Ĝ.
Let Gxy be sub-graph of Ĝ consisting of all time slices in between (and including) Gtx

and Gty . Let Glx be graph consisting of all time slices in between (and including) Gtx and
the left-most time slice connected to Gtx by a path of dynamic hidden confounders. Let Gdx

be the graph consisting of all time slices that are in Glx or Gxy. Let Gdx− be the graph
consisting of the time slice preceding Gdx. Let Gid be the graph consisting of all time slices
in Gdx− and Gdx. If P (Y |do(X)) is identifiable in Ĝ then it is identifiable in Gid and the
identification provides the same result on both graphs.

Proof: Let Gpast be the graph consisting of all time slices preceding Gid and Gfuture be the
graph consisting of all time slices succeeding Gid in Ĝ. By application of do-calculus rule 3,
non-ancestors of Y can be ignored from Ĝ for the identification of P (Y |do(X)) (Shpitser and
Pearl, 2006), so Gfuture can be discarded. We will now show that identifying P (Y |do(X))
in the graph including all time slices of Gpast and Gid is equal to identifying P (Y |do(X)) in
Gid.

By C-component factorization (Tian, 2002; Shpitser and Pearl, 2006), the set V of vari-
ables in a causal graph G can be partitioned into disjoint groups called C-components by
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assigning two variables to the same C-component if and only if they are connected by a path
consisting entirely of hidden confounder edges, and

P (Y |do(X)) =
∑

V \(Y ∪X)

∏
i

P (Si|do(V \ Si))

where Si are the C-components of GAn(Y )\X expressed as C(GAn(Y )\X) = {S1, ..., Sk}
and GAn(Y ) is the sub-graph of G including only the variables that are ancestors of Y . If and
only if every C-component factor P (Si|do(V \Si)) is identifiable then P (Y |do(X)) is iden-
tifiable.

C-component factorization can be applied to DCN. Let VGpast , VGdx− and VGdx
be the

set of variables in Gpast, Gdx− and Gdx respectively. Then (VGpast ∪VGdx−)∩ (Y ∪X) = ∅
and it follows that V \ (Y ∪X) = VGpast ∪ VGdx− ∪ (VGdx

\ (Y ∪X)).
If Si ∈ C(GAn(Si)) the C-component factor P (Si|do(V \ Si)) is computed as (Shpitser

and Pearl, 2006):

P (Si|do(V \ Si)) =
∏

{j|vj∈Si}

P (vj |v(j−1)
π )

Therefore, there is a P (vj |v(j−1)
π ) factor for each variable vj in the C-component, where

v
(j−1)
π is the set of all variables preceding vj in some topological ordering π in G.

Let vj be any variable vj ∈ VGpast ∪ VGdx− . There are no hidden confounder edge paths
connecting vj to X , and so vj ∈ Si ∈ C(GAn(Si)). Therefore, the C-component factors
QVGpast∪VGdx−

of VGpast ∪ VGdx− can be computed as (chain rule of probability):

QVGpast∪VGdx−
=

∏
{j|vj∈VGpast∪VGdx−}

P (vj |v(j−1)
π ) = P (VGpast ∪ VGdx−)

We will now look into the C-component factors of VGdx
. As the DCN is a first order

Markov process, the C-component factors of VGdx
can be computed as (Shpitser and Pearl,

2006):

QVGdx
=

∏
i

∑
Si\Y

∏
{j|vj∈Si}

P (vj |v(j−1)
π ) =

∏
i

∑
Si\Y

∏
{j|vj∈Si}

P (vj |v(j−1)
π ∩ (VGdx− ∪VGdx

))

So, these factors have no dependency on VGpast and therefore P (Y |do(X)) can be marginal-
ized over VGpast and simplified as:

P (Y |do(X)) =
∑

V \(Y ∪X)

∏
i

P (Si|do(V \Si)) =
∑

VGpast∪VGdx−∪(VGdx
\(Y ∪X))

QVGpast∪VGdx−
QVGdx

=
∑

VGdx−∪(VGdx
\(Y ∪X))

P (VGdx−)QVGdx

We can now replace VGdx− ∪ VGdx
by VGid

and define S′
i as the C-component factors of

VGid
which leads to
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P (Y |do(X)) =
∑

VGid
\(Y ∪X)

∏
i

P (S′
i|do(V \ S′

i))

Therefore, the identification of P (Y |do(X)) can be computed in the limited graph Gid.
■ ■

Note that if a DCN contains no dynamic hidden confounders, then Gid consists of Gxy

and the time slice preceding it. In a DCN with dynamic hidden confounders Gid may re-
quire additional time slices into the past, depending on the reach of hidden dynamic con-
founder paths. Note that Gid may include infinite time slices to the past, if hidden dynamic
confounders connect with each other cyclically in successive time slices. However, in this
doctoral thesis we will consider only finite dynamic confounding.

This result is crucial to reduce the complexity of identification algorithms in dynamic
settings. In order to describe the evolution of a dynamic system over time, after an interven-
tion, we can run a causal identification algorithm over a limited number of time slices of the
DCN, instead of the entire DCN.

As discussed in Chapter 5, both the DCNs with static hidden confounders and with dy-
namic hidden confounders can be represented as a Markov chain. For graphical and nota-
tional simplicity, we represent these DCN graphically as recurrent time slices, as opposed to
the shorter time samples, on the basis that one time slice contains as many time samples as
the maximal delay of any directed edge among the processes. Also, for notational simplicity
we assume the transition matrix from one time slice to the next to be time-invariant; however,
removing this restriction would not make any of the lemmas, theorems or algorithms invalid,
as they are the result of graphical non-parametric reasoning.

Consider a DCN under the above assumptions, and let T be its time invariant transition
matrix from any time slice Vt to Vt+1. We assume that there is some time t0 such that the
distribution P (Vt0) is known. Fix now tx > t0 and a set X ⊆ Vtx . We will now see how
performing an intervention on X affects the distributions in D.

We begin by stating a series of lemmas that apply to DCNs in general.

Lemma 43 Let t be such that t0 ≤ t < tx, with X ⊆ Vtx . Then P (Vt|do(X)) = T t−t0P (Vt0).
Namely, transition probabilities are not affected by an intervention in the future.

Proof: By Lemma 40, (2), P (Vt|do(X)) = P (Vt) for all such t. By definition of T , this
equals T P (Vt−1). Then induct on t with P (Vt0) = T 0P (Vt0) as base. ■ ■

Lemma 44 Assume that an expression P (Vt+α|Vt, do(X)) is identifiable for some α > 0.
Let A be the matrix whose entries Aij correspond to the probabilities P (Vt+α = vj |Vt =
vi, do(X)). Then P (Vt+α|do(X)) = AP (Vt|do(X)).

Proof: Case by case evaluation of A’s entries. ■ ■

6.2 Identification of DCN with Static Hidden Confounders

Our analysis of DCN with static hidden confounders requires an additional lemma, and then
we will be able to provide a theorem and an algorithm for the causal identification of DCN
with static hidden confounders.

Lemma 45 If t > tx then P (Vt+1|do(X)) = TP (Vt|do(X)). Namely, transition probabili-
ties are not affected by an intervention more than one time unit in the past.
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Proof: P (Vt+1|do(X)) = T ′ P (Vt|do(X)) where the elements of T ′ are P (Vt+1|Vt, do(X)).
As Vt includes all variables in Gt that are direct causes of variables in Gt+1, conditioning on
Vt d-separates X from Vt+1. By Lemma 38, we exchange the action do(X) by the observa-
tion X and so P (Vt+1|Vt, do(X)) = P (Vt+1|Vt, X).

Moreover, Vt d-separates X from Vt+1, so they are statistically independent given Vt.
Therefore,

P (Vt+1|Vt, do(X)) = P (Vt+1|Vt, X) = P (Vt+1|Vt)

which are the elements of matrix T as required. ■ ■

Theorem 46 Let D be a DCN with static hidden confounders, and transition matrix T . Let
X ⊆ Vtx and Y ⊆ Vty for two time points tx < ty.

If the expression P (Vtx+1|Vtx−1, do(X)) is identifiable and its values represented in a
transition matrix A, then P (Y |do(X)) is identifiable and

P (Y |do(X)) =
∑

Vty\Y

T ty−(tx+1)AT tx−1−t0P (Vt0).

Proof: Applying Lemma 43, we obtain that

P (Vtx−1|do(X)) = T tx−1−t0P (Vt0).

We assumed that P (Vtx+1|Vtx−1, do(X)) is identifiable and, therefore, Lemma 44 guarantees
that

P (Vtx+1|do(X)) = AP (Vtx−1|do(X)) = AT tx−1−t0P (Vt0).

Finally, P (Vty |do(X)) = T (ty−(tx+1))P (Vtx+1|do(X)) by repeatedly applying Lemma 45.
P (Y |do(X)) is obtained by marginalizing variables in Vty \ Y in the resulting expression
T ty−(tx+1)AT tx−1−t0P (Vt0). ■ ■

As a consequence of Theorem 46, causal identification of D reduces to the problem of
identifying the expression P (Vtx+1|Vtx−1, do(X)). The ID algorithm can be used to check
whether this expression is identifiable and, if it is, to compute its joint probability from ob-
served data.

Note that Theorem 46 holds without the assumption of transition matrix time-invariance
by replacing powers of T with products of matrices Tt. Also, note the assumption on identi-
fiability holds when there is no hedge structure (Definition 7) in the DCN for the expression
P (Vtx+1|Vtx−1, do(X)). See Section 6.4 for the full analysis on non-identifiability.

6.2.1 DCN-ID algorithm for DCNs with Static Hidden Confounders

The DCN-ID algorithm for DCNs with static hidden confounders is given in Figure 6.1. Its
soundness is immediate from Theorem 46, the soundness of the ID algorithm (Shpitser and
Pearl, 2006), and Lemma 42.

Theorem 47 (Soundness) Whenever DCN-ID returns a distribution for P (Y |do(X)), it is
correct. ■

Observe that line 2 of the algorithm calls ID with a graph of size 4|G|. Formally, this
would require two calls to ID, but notice that in this case we can spare the call for the “de-
nominator” P (Vtx−1|do(X)) because Lemma 40 guarantees P (Vtx−1|do(X)) = P (Vtx−1).
Computing transition matrix A in line 3 has complexity O((4k)(b+2)), where k is the number
of variables in one time slice and b the number of bits encoding each variable. The formula
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in line 4 is the multiplication of P (Vt0) by n = (ty − t0) matrices, which has complex-
ity O(n.b2). To solve the same problem with the ID algorithm would require running it on
the entire graph of size n|G| and evaluating the resulting joint probability with complexity
O((n.k)(b+2)) compared to O((4k)(b+2) + n.b2) with DCN-ID.

If the problem that we want to solve is evaluating the trajectory of the system over time,

(P (Vtx+1), P (Vtx+2), P (Vtx+3), ...P (Vtx+n))

after an intervention at time slice tx, with ID we would need to run ID n times and evaluate
the n outputs with overall complexity O((k)(b+2)+(2k)(b+2)+(3k)(b+2)+ ...+(n.k)(b+2)).
Doing the same with DCN-ID requires running ID one time to identify P (Vtx+1), evaluat-
ing the output and applying successive transition matrix multiplications to obtain the joint
probability of the time slices thereafter, with resulting complexity O((4k)(b+2) + n.b2).

Function DCN-ID(Y ,ty, X ,tx, G,C,T ,P (Vt0))
INPUT:

• DCN defined by a causal graph G on a set of variables V and a set C ⊆ V × V
describing causal relations from Vt to Vt+1 for every t

• transition matrix T for G derived from observational data

• a set Y included in Vty

• a set X included in Vtx

• distribution P (Vt0) at the initial state,

OUTPUT: The distribution P (Y |do(X)), or else FAIL

1. let G′ be the acyclic graph formed by joining Gtx−2, Gtx−1, Gtx , and Gtx+1 by the
causal relations given by C;

2. run the standard ID algorithm for expression P (Vtx+1|Vtx−1, do(X)) on G′; if it re-
turns FAIL, return FAIL;

3. else, use the resulting distribution to compute the transition matrix A, where Aij =
P (Vtx+1 = vi|Vtx−1 = vj , do(X));

4. return
∑

Vty\Y T ty−(tx+1)AT tx−1−t0 P (Vt0);

FIGURE 6.1: The DCN-ID algorithm for DCNs with static hidden con-
founders

6.3 Identification of DCN with Dynamic Hidden Confounders

We now discuss the case of DCNs with dynamic hidden confounders, that is, with hidden
confounders that influence variables in consecutive time slices.

The presence of dynamic hidden confounders d-connects time slices, and we will see in
the following lemmas how this may be an obstacle for the identifiability of the DCN.

If dynamic hidden confounders are present, Lemma 45 no longer holds, since d-separation
is no longer guaranteed. As a consequence, we cannot guarantee the DCN will recover its
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“natural” (non-interventional) transition probabilities from one cycle to the next after the
intervention is performed.

Our statement of the identifiability theorem for DCNs with dynamic hidden confounders
is weaker and includes in its assumptions those conditions that can no longer be guaranteed.

Theorem 48 Let D be a DCN with dynamic hidden confounders. Let T be its transition
matrix under no interventions. We further assume that:

1. P (Vtx+1|Vtx−1, do(X)) is identifiable and its values represented in a transition matrix
A

2. For all t > tx + 1, P (Vt|Vt−1, do(X)) is identifiable and its values represented in a
transition matrix Mt

Then P (Y |do(X)) is identifiable and computed by

P (Y |do(X)) =
∑

Vty\Y

[ ty∏
t=tx+2

Mt

]
AT tx−1−t0P (Vt0).

Proof: Similar to the proof of Theorem 46. By Lemma 43, we can compute the distribution
up to time tx − 1 as

P (Vtx−1|do(X)) = T tx−1−t0P (Vt0).

Using the first assumption in the statement of the theorem, by Lemma 44 we obtain

P (Vtx+1|do(X)) = AT tx−1−t0P (Vt0).

Then, we compute the final P (Vty |do(X)) using the matrices Mt from the statement of the
theorem that allows us to compute probabilities for subsequent time-slices. Namely,

P (Vtx+2|do(X)) = Mtx+2AT tx−1−t0P (Vt0),

P (Vtx+3|do(X)) = Mtx+3Mtx+2AT tx−1−t0P (Vt0),

and so on until we find

P (Vty |do(X)) =

[ ty∏
t=tx+2

Mt

]
AT tx−1−t0P (Vt0).

Finally, the do-free expression of P (Y |do(X)) is obtained by marginalization over variables
of Vty not in Y . ■ ■

Again, note that Theorem 48 holds without the assumption of transition matrix time-
invariance by replacing powers of T with products of matrices Tt. Also, the assumptions
of Theorem 48 on identifiability hold when there is no hedge structure (Definition 7) in the
DCN for expressions P (Vtx+1|Vtx−1, do(X)) and P (Vt|Vt−1, do(X)). See Section 6.4 for
the full analysis on non-identifiability.

6.3.1 DCN-ID algorithm for DCNs with Dynamic Hidden Confounders

The DCN-ID algorithm for DCNs with dynamic hidden confounders is given in Figure 6.2.
Its soundness is immediate from Theorem 48, the soundness of the ID algorithm (Shpitser

and Pearl, 2006), and Lemma 42.

Theorem 49 (Soundness) Whenever DCN-ID returns a distribution for P (Y |do(X)), it is
correct. ■
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Notice that this algorithm is more expensive than the DCN-ID algorithm for DCNs with
static hidden confounders. In particular, it requires (ty − tx) calls to the ID algorithm with
increasingly larger chunks of the DCN. To identify a single future effect P (Y |do(X)) it may
be simpler to invoke Lemma 42 and do a unique call to the ID algorithm for the expression
P (Y |do(X)) restricted to the causal graph Gid. However, to predict the trajectory of the sys-
tem over time after an intervention, the DCN-ID algorithm for dynamic hidden confounders
directly identifies the post-intervention transition matrix and its evolution. A system charac-
terized by a time-invariant transition matrix before the intervention may be characterized by
a time dependent transition matrix, given by the DCN-ID algorithm, after the intervention.
This dynamic view offers opportunities for the analysis of the time evolution of the system,
and conditions for convergence to a steady state.

To give an intuitive example of a DCN with dynamic hidden confounders, let us consider
three roads in which the traffic conditions are linked by hidden confounders from tr1 to tr2
the following day, and from tr2 to tr3 the day after. After applying control mechanisms to
tr1, the traffic transition matrix to the next day is different than the transition matrix several
days later, because it is not possible to d-separate the future from the controlling action by just
conditioning on a given day. As a consequence, the identification algorithm must calculate
every successive transition matrix in the future.
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Function DCN-ID(Y ,ty, X ,tx, G,C,C ′,T ,P (Vt0))
INPUT:

• DCN defined by a causal graph G on a set of variables V and a set C ⊆ V × V
describing causal relations from Vt to Vt+1 for every t, and a set C ′ ⊆ V ×V describing
hidden confounder relations from Vt to Vt+1 for every t

• transition matrix T for G derived from observational data

• a set Y included in Vty

• a set X included in Vtx

• distribution P (Vt0) at the initial state,

OUTPUT: The distribution P (Y |do(X)), or else FAIL

1. let G′ be the graph consisting of all time slices in between (and including) Gtx+1 and
the time slice preceding the left-most time slice connected to X by a hidden confounder
path or, if there is no hidden confounder path to X, Gtx−2;

2. run the standard ID algorithm for expression P (Vtx+1|Vtx−1, do(X)) on G′; if it re-
turns FAIL, return FAIL;

3. else, use the resulting distribution to compute the transition matrix A, where Aij =
P (Vtx+1 = vi|Vtx−1 = vj , do(X));

4. for each t from tx + 2 up to ty:

(a) let G′′ be the graph consisting of all time slices in between (and including) Gt

and the time slice preceding the left-most time slice connected to X by a hidden
confounder path or, if there is no hidden confounder path to X, Gtx−1;

(b) run the standard ID algorithm on G′′ for the expression P (Vt|Vt−1, do(X)); if it
returns FAIL, return FAIL;

(c) else, use the resulting distribution to compute the transition matrix Mt, where
(Mt)ij = P (Vt = vi|Vt−1 = vj , do(X));

5. return
∑

Vty\Y

[
ty∏

t=tx+2
Mt

]
AT tx−1−t0P (Vt0);

FIGURE 6.2: The DCN-ID algorithm for DCNs with dynamic hidden con-
founders

6.4 Non-Identifiability

In this section we show that the identification algorithms, as formulated in previous sections,
are not complete, and we develop the algorithms for complete identification of DCNs. To
prove completeness, we use previous results (Shpitser and Pearl, 2006). It is shown there
that the absence of a hedge structure (Definition 7) is a sufficient and necessary condition for
identifiability. The same applies in the context of DCNs.



6.4. Non-Identifiability 65

Lemma 50 (DCN complete identification) Let D be a DCN with hidden confounders. Let
X and Y be sets of variables in D. P (Y |do(X)) is identifiable iff there is no hedge in D for
P (Y |do(X)).

Proof: If a hedge exists in D for P (Y |do(X)) then the conditions for the existence of a
hedge in every time slice of D are true. By (Shpitser and Pearl, 2006), P (Y |do(X)) is
identifiable iff there is no hedge for X and Y in the expanded causal graph of D. ■ ■

We can show that the algorithms presented in the previous section, in some cases in-
troduce hedges in the sub-networks they analyse, even if no hedges existed in the original
expanded network.

Lemma 51 The DCN-ID algorithms for DCNs with static hidden confounders (Section 6.2.1)
and dynamic hidden confounders (Section 6.3.1) are not complete.

Proof: Let D be an DCN. Let X be such that D contains two R-rooted C-forests F and F ′,
F ′ ⊆ F , F ∩X ̸= 0, F ′ ∩X = 0. Let Y be such that R ̸⊂ An(Y )DX̄

. The condition for Y
implies that D does not contain a hedge, and is therefore identifiable by Lemma 50. Let the
set of variables at time slice tx + 1 of D, Vtx+1, be such that R ⊂ An(Vtx+1)DX̄

. By Defi-
nition 7, D contains a hedge for P (Vtx+1|Vtx−1, do(X)). The identification of P (Y |do(X))
requires DCN-ID to identify P (Vtx+1|Vtx−1, do(X)) which fails. ■ ■

The proof of Lemma 51 provides the framework to build a complete algorithm for iden-
tification of DCNs.

FIGURE 6.3: Identifiable Dynamic Causal Network which the DCN-ID al-
gorithm fails to identify. F and F ′ are R-rooted C-forests, but since R
is not an ancestor of Y there is no hedge for P (Y |do(X)). However,
R is an ancestor of Vtx+1 and DCN-ID fails when finding the hedge for

P (Vtx+1|Vtx−1, do(X)).

Figure 6.3 shows an identifiable DCN that DCN-ID fails to identify.

6.4.1 Complete DCN identification with Static Hidden Confounders

The DCN-ID algorithm can be modified so that no hedges are introduced if none existed
in the original network. This is done at the cost of more complicated notation, because the
fragments of network to be analysed do no longer correspond to natural time slices. More
delicate surgery is needed.

Lemma 52 Let D be a DCN with static hidden confounders. Let X ⊆ Vtx and Y ⊆ Vty for
two time slices tx < ty. If there is a hedge H for P (Y |do(X)) in D then H ⊆ Vtx .

Proof: By definition of hedge, F and F ′ are connected by hidden confounders to X . As D
has only static hidden confounders F , F ′ and X must be within tx. ■ ■
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Lemma 53 Let D be a DCN with static hidden confounders. Let X ⊆ Vtx and Y ⊆ Vty

for two time slices tx < ty. Then, P (Y |do(X)) is identifiable if and only if the expression
P (Vtx+1 ∩An(Y )|Vtx−1, do(X)) is identifiable.

Proof: (if) By Lemma 50, if

P (Vtx+1 ∩An(Y )|Vtx−1, do(X)) =
P (Vtx+1 ∩An(Y ), Vtx−1|do(X))

P (Vtx−1)

is identifiable, then there is no hedge for this expression in D. By Lemma 52, if D has static
hidden confounders, a hedge must be within time slice tx. If time slice tx does not contain
two R-rooted C-forests F and F ′ such that F ′ ⊆ F , F ∩X ̸= 0, F ′ ∩X = 0, then there is
no hedge for any set Y so there is no hedge for the expression P (Y |do(X)), which makes it
identifiable. Now let us assume time slice tx contains two R-rooted C-forests F and F ′ such
that F ′ ⊆ F , F ∩ X ̸= 0, F ′ ∩ X = 0, then R ̸⊂ An(Vtx+1 ∩ An(Y ), Vtx−1)DX̄

. As R
is in time slice tx, this implies R ̸⊂ An(Y )DX̄

and so there is no hedge for the expression
P (Y |do(X)) which makes it identifiable.

(only if) By Lemma 50, if P (Y |do(X)) is identifiable then there is no hedge for P (Y |do(X))
in D. By Lemma 52 if D has static hidden confounders, a hedge must be within time slice
tx. If time slice tx does not contain two R-rooted C-forests F and F ′ such that F ′ ⊆ F ,
F ∩ X ̸= 0, F ′ ∩ X = 0, then there is no hedge for any set Y so there is no hedge for the
expression

P (Vtx+1 ∩An(Y )|Vtx−1, do(X)) =
P (Vtx+1 ∩An(Y ), Vtx−1|do(X))

P (Vtx−1)

which makes it identifiable. Now let us assume time slice tx contains two R-rooted C-forests
F and F ′ such that F ′ ⊆ F , F∩X ̸= 0, F ′∩X = 0, then R ̸⊂ An(Y )DX̄

(if R ⊂ An(Y )DX̄

D would contain a hedge by definition). As R is in time slice tx, R ̸⊂ An(Y )DX̄
implies

R ̸⊂ An(Vtx+1 ∩ An(Y ))DX̄
and R ̸⊂ An(Vtx+1 ∩ An(Y ), Vtx−1)DX̄

so there is no hedge
for P (Vtx+1 ∩An(Y )|Vtx−1, do(X)) which makes this expression identifiable. ■ ■

Lemma 54 Assume that an expression P (V ′
t+α|Vt, do(X)) is identifiable for some α > 0

and V ′
t+α ⊆ Vt+α. Let A be the matrix whose entries Aij correspond to the probabilities

P (V ′
t+α = vj |Vt = vi, do(X)). Then P (V ′

t+α|do(X)) = AP (Vt|do(X)).

Proof: Case by case evaluation of A’s entries. ■ ■

Lemma 55 Let D be a DCN with static hidden confounders. Let X ⊆ Vtx and Y ⊆ Vty

for two time slices tx < ty. Then P (Y |do(X)) =

[
ty∏

t=tx+2
Mt

]
P (Vtx+1 ∩ An(Y )|do(X))

where Mt is the matrix whose entries correspond to the probabilities P (Vt ∩ An(Y ) =
vj |Vt−1 ∩An(Y ) = vi).

Proof: For the identification of P (Y |do(X)) we can restrict our attention to the subset of
variables in D that are ancestors of Y. Then we repeatedly apply Lemma 45 on this subset
from t = tx + 2 to t = ty until we find P (Vty ∩An(Y )|do(X)) = P (Y |do(X)). ■ ■
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Function cDCN-ID(Y ,ty, X ,tx, G,C,T ,P (Vt0))
INPUT:

• DCN defined by a causal graph G on a set of variables V and a set C ⊆ V × V
describing causal relations from Vt to Vt+1 for every t

• transition matrix T representing the probabilities P (Vt+1|Vt) derived from observa-
tional data

• a set Y included in Vty

• a set X included in Vtx

• distribution P (Vt0) at the initial state,

OUTPUT: The distribution P (Y |do(X)) if it is identifiable, or else FAIL

1. let G′ be the acyclic graph formed by joining Gtx−2, Gtx−1, Gtx , and Gtx+1 by the
causal relations given by C;

2. run the standard ID algorithm for expression P (Vtx+1 ∩An(Y )|Vtx−1, do(X)) on G′;
if it returns FAIL, return FAIL;

3. else, use the resulting distribution to compute the transition matrix A, where Aij =
P (Vtx+1 ∩An(Y ) = vi|Vtx−1 = vj , do(X));

4. let Mt be the matrix T marginalized as P (Vt ∩An(Y ) = vj |Vt−1 ∩An(Y ) = vi)

5. return

[
ty∏

t=tx+2
Mt

]
AT tx−1−t0 P (Vt0);

FIGURE 6.4: The cDCN algorithm for DCNs with static hidden confounders

Theorem 56 Let D be a DCN with static hidden confounders and transition matrix T . Let
X ⊆ Vtx and Y ⊆ Vty for two time slices tx < ty. If P (Y |do(X)) is identifiable then

P (Y |do(X)) =

[
ty∏

t=tx+2
Mt

]
AT tx−1−t0P (Vt0) where A is the matrix whose entries Aij

correspond to P (Vtx+1 ∩ An(Y )|Vtx−1, do(X)) and Mt is the matrix whose entries corre-
spond to the probabilities P (Vt ∩An(Y ) = vj |Vt−1 ∩An(Y ) = vi).

Proof: Applying Lemma 43, we obtain that

P (Vtx−1|do(X)) = T tx−1−t0P (Vt0).

By Lemma 53 P (Vtx+1 ∩ An(Y )|Vtx−1, do(X)) is identifiable. Lemma 54 guarantees that
P (Vtx+1 ∩ An(Y )|do(X)) = AP (Vtx−1|do(X)) = AT tx−1−t0P (Vt0). Then we apply
Lemma 55 and obtain the resulting expression

P (Y |do(X)) =

[ ty∏
t=tx+2

Mt

]
AT tx−1−t0P (Vt0).

■ ■
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The cDCN-ID algorithm for identification of DCNs with static hidden confounders is
given in Figure 6.4.

Theorem 57 (Soundness and completeness) The cDCN-ID algorithm for DCNs with static
hidden confounders is sound and complete.

Proof: The completeness derives from Lemma 53 and the soundness from Theorem 56. ■■

6.4.2 Complete DCN identification with Dynamic Hidden Confounders

We now discuss the complete identification of DCNs with dynamic hidden confounders. First
we introduce the concept of dynamic time span from which we derive two lemmas.

Definition 58 (Dynamic time span) Let D be a DCN with dynamic hidden confounders and
X ⊆ Vtx . Let tm be the maximal time slice d-connected by confounders to X; tm − tx is
called the dynamic time span of X in D.

Note that the dynamic time span of X in D can be in some cases infinite, the simplest
case being when X is connected by a hidden confounder to itself at Vtx+1. In this thesis we
consider finite dynamic time spans only. We will label the dynamic time span of X as tdx.

Lemma 59 Let D be a DCN with dynamic hidden confounders. Let X , Y be sets of variables
in D. Let tdx be the dynamic time span of X in D. If there is a hedge for P (Y |do(X)) in D
then the hedge does not include variables at t > tx + tdx.

Proof: By definition of hedge, F and F ′ are connected by hidden confounders to X . The
maximal time point connected by hidden confounders to X is tx + tdx. ■ ■

Lemma 60 Let D be a DCN with dynamic hidden confounders. Let X ⊆ Vtx and Y ⊆ Vty

for two time slices tx, ty. Let tdx be the dynamic time span of X in D and tx + tdx < ty.
P (Y |do(X)) is identifiable if and only if P (Vtx+tdx+1∩An(Y )|Vtx−1, do(X)) is identifiable.

Proof: Same as the proof of Lemma 53, but replacing "static" by "dynamic", Vtx+1 by
Vtx+tdx+1, Lemma 52 by Lemma 59, and "time slice tx" by "time slices tx to tx + tdx".
■ ■

Theorem 61 Let D be a DCN with dynamic hidden confounders and T be its transition
matrix under no interventions. Let X ⊆ Vtx and Y ⊆ Vty for two time slices tx, ty. Let tdx
be the dynamic time span of X in D and tx + tdx < ty. If P (Y |do(X)) is identifiable then:

1. P (Vtx+tdx+1 ∩An(Y )|Vtx−1, do(X)) is identifiable by matrix A

2. For t > tx + tdx + 1, P (Vt ∩An(Y )|Vt−1 ∩An(Y ), do(X)) is identifiable by matrix
Mt

3. P (Y |do(X)) =

[
ty∏

t=tx+tdx+2
Mt

]
AT tx−1−t0P (Vt0)

Proof: We obtain the first statement from Lemma 60 and Lemma 54. Then if t > tx+tdx+1,
then the set (Vt∩An(Y ), Vt−1∩An(Y )) has the same ancestors than Y within time slices tx
to tx+ tdx+1, so if P (Y |do(X)) is identifiable then P (Vt∩An(Y )|Vt−1∩An(Y ), do(X))
is identifiable, which proves the second statement. Finally, we obtain the third statement
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similarly to the proof of Theorem 48 but using statements 1 and 2 as proved instead of
assumed. ■ ■

Function cDCN-ID(Y ,ty, X ,tx, G,C,C ′,T ,P (Vt0))
INPUT:

• DCN defined by a causal graph G on a set of variables V and a set C ⊆ V × V
describing causal relations from Vt to Vt+1 for every t, and a set C ′ ⊆ V ×V describing
hidden confounders from Vt to Vt+1 for every t

• transition matrix T for G derived from observational data

• a set Y included in Vty

• a set X included in Vtx

• distribution P (Vt0) at the initial state,

OUTPUT: The distribution P (Y |do(X)) if it is identifiable or else FAIL

1. let G′ be the graph consisting of all time slices in between (and including) Gtx+1 and
the time slice preceding the left-most time slice connected to X by a hidden confounder
path or, if there is no hidden confounder path to X, Gtx−2;

2. run the standard ID algorithm for expression P (Vtx+tdx+1 ∩An(Y )|Vtx−1, do(X)) on
G′; if it returns FAIL, return FAIL;

3. else, use the resulting distribution to compute the transition matrix A, where Aij =
P (Vtx+tdx+1 ∩An(Y ) = vi|Vtx−1 = vj , do(X));

4. for each t from tx + tdx + 2 up to ty:

(a) let G′′ be the graph consisting of all time slices in between (and including) Gt

and the time slice preceding the left-most time slice connected to X by a hidden
confounder path or, if there is no hidden confounder path to X, Gtx−1;

(b) run the standard ID algorithm on G′′ for the expression P (Vt ∩ An(Y )|Vt−1 ∩
An(Y ), do(X)); if it returns FAIL, return FAIL;

(c) else, use the resulting distribution to compute the transition matrix Mt, where
(Mt)ij = P (Vt ∩An(Y ) = vi|Vt−1 ∩An(Y ) = vj , do(X));

5. return

[
ty∏

t=tx+tdx+2
Mt

]
AT tx−1−t0P (Vt0);

FIGURE 6.5: The cDCN algorithm for DCNs with dynamic hidden con-
founders

The cDCN-ID algorithm for DCNs with dynamic hidden confounders is given in Fig-
ure 6.5.

Theorem 62 (Soundness and completeness) The cDCN-ID algorithm for DCNs with dy-
namic hidden confounders is sound and complete.

Proof: The completeness derives from the first and second statements of Theorem 61. The
soundness derives from the third statement of Theorem 61. ■ ■
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6.5 Transportability

(Pearl and Bareinboim, 2011) introduced the sID algorithm, based on do-calculus, to iden-
tify a transport formula between two domains, where the effect in a target domain can be
estimated from experimental results in a source domain and some observations on the target
domain, thus avoiding the need to perform an experiment on the target domain.

Let us consider a country with a number of alternative roads linking city pairs in different
provinces. Suppose that the alternative roads are all consistent with the same causal model
(such as the one in Figure 5.1, for example) but have different traffic patterns (proportion of
cars/trucks, toll prices, traffic light durations...). Traffic authorities in one of the provinces
may have experimented with policies and observed the impact on, say, traffic delay. This
information may be usable to predict the average travel delay in another province for a given
traffic policy. The source domain (province where the impact of traffic policy has already
been monitored) and target domain (new province) share the same causal relations among
variables, represented by a single DCN (see Figure 6.6).

FIGURE 6.6: A DCN with selection variables s and s′, representing the
differences in the distribution of variables tr1 and tr1 in two domains M1

and M2 (two provinces in the same country). This model can be used to
evaluate the causal impacts of traffic policy in the target domain M2 based

on the impacts observed in the source domain M1.

The target domain may have specific distributions of the toll price and traffic signs, which
are accounted for in the model by adding a set of selection variables to the DCN, pointing at
variables whose distribution differs among the two domains. If the DCN with the selection
variables is identifiable for the traffic delay upon increasing the toll price, then the DCN iden-
tification algorithm provides a transport formula which combines experimental probabilities
from the source domain and observed distributions from the target domain. Thus, the traffic
authorities in the new province can evaluate the impacts before effectively changing traffic
policies. This amounts to relational knowledge transfer learning between the two domains
(Pan and Yang, 2010).

Consider a DCN with static hidden confounders only. We have demonstrated already that
for identification of the effects of an intervention at time tx we can restrict our attention to
four time slices of the DCN, tx − 2, tx − 1, tx, and tx + 1. Let M1 and M2 be two domains
based on this same DCN, though the distributions of some variables in M1 and M2 may
differ. Then we have

PM2(Y |do(X)) = T
ty−(tx+1)
M2

AM2T
tx−1−t0
M2

P (Vt0),

where the entry ij of matrix AM2 corresponds to the transition probability PM2(Vtx+1 =
vi|Vtx−1 = vj , do(X)).

By applying the identification algorithm sID, with selection variables, to the elements
of matrix A we then obtain a transport formula, which combines experimental distributions
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in M1 with observational distributions in M2. The algorithm for transportability of causal
effects with static hidden confounders is given in Figure 6.7.

Function DCN-sID(Y ,ty, X ,tx, G,C,TM2 ,PM2(Vt0),IM1)
INPUT:

• DCN defined by a causal graph G (common to both source and target domains M1 and
M2) over a set of variables V and a set C ⊆ V × V describing causal relations from
Vt to Vt+1 for every t

• transition matrix TM2 for G derived from observational data in M2

• a set Y included in Vty

• a set X included in Vtx

• distribution PM2(Vt0) at the initial state in M2

• set of interventional distributions IM1 in M1

• set S of selection variables

OUTPUT: The distribution PM2(Y |do(X)) in M2 in terms of TM2 , PM2(Vt0) and IM1 , or
else FAIL

1. let G′ be the acyclic graph formed by joining Gtx−2, Gtx−1, Gtx , and Gtx+1 by the
causal relations given by C;

2. run the standard sID algorithm for expression P (Vtx+1|Vtx−1, do(X)) on G′; if it re-
turns FAIL, return FAIL;

3. else, use the resulting transport formula to compute the transition matrix A, where
Aij = P (Vtx+1 = vi|Vtx−1 = vj , do(X));

4. return
∑

Vty\Y T ty−(tx+1)AT tx−1−t0 P (Vt0);

FIGURE 6.7: The DCN-sID algorithm for the transportability in DCNs with
static hidden confounders

For brevity, we omit the algorithm extension to dynamic hidden confounders, and the
completeness results, which follow the same caveats already explained in the previous sec-
tions.

6.6 Experiments

In this section, we provide some numerical examples of causal effect identifiability in DCN,
using the algorithms proposed in this thesis.

In our first example, the DCN in Figure 5.1 represents how the traffic between two cities
evolves. There are two roads and drivers choose every day to use one or the other road. Traffic
conditions on either road on a given day (tr1, tr2) affect the travel delay between the cities on
that same day (d). Driver experience influences the road choice next day, impacting tr1 and
tr2. For simplicity we assume variables tr1, tr2 and d to be binary. Let us assume that from
Monday to Friday the joint distribution of the variables follow transition matrix T1 while on
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Saturday and Sunday they follow transition matrix T2. These transition matrices indicate the
traffic distribution change from the previous day to the current day. This system is a DCN
with static hidden confounders, and has a Markov chain representation as in Figure 5.1.

T1 =



0.0 0.4 0.0 0.3 0.0 0.2 0.0 0.1
0.0 0.4 0.0 0.3 0.0 0.2 0.0 0.1
0.0 0.4 0.0 0.3 0.0 0.2 0.0 0.1
0.0 0.4 0.0 0.3 0.0 0.2 0.0 0.1
0.2 0.0 0.0 0.1 0.4 0.0 0.0 0.3
0.2 0.0 0.0 0.1 0.4 0.0 0.0 0.3
0.2 0.0 0.0 0.1 0.4 0.0 0.0 0.3
0.2 0.0 0.0 0.1 0.4 0.0 0.0 0.3



T2 =



0.1 0.0 0.3 0.1 0.2 0.2 0.0 0.1
0.1 0.0 0.3 0.1 0.2 0.2 0.0 0.1
0.1 0.0 0.3 0.1 0.2 0.2 0.0 0.1
0.1 0.0 0.3 0.1 0.2 0.2 0.0 0.1
0.0 0.2 0.1 0.0 0.1 0.3 0.3 0.0
0.0 0.2 0.1 0.0 0.1 0.3 0.3 0.0
0.0 0.2 0.1 0.0 0.1 0.3 0.3 0.0
0.0 0.2 0.1 0.0 0.1 0.3 0.3 0.0


The average travel delay d during a two-week period is shown in Figure 6.8.

FIGURE 6.8: Average travel delay of the DCN without intervention.

Now let us perform an intervention by altering the traffic on the first road tr1 and evaluate
the subsequent evolution of the average travel delay d. We use the algorithm for DCNs with
static hidden confounders. We trigger line 1 of the DCN-ID algorithm in Figure 6.4 and
build a graph consisting of four time slices G′ = (Gtx−2, Gtx−1, Gtx , Gtx+1) as shown in
Figure 6.9.

FIGURE 6.9: Causal graph G′ consisting of four time slices of the DCN,
from tx − 2 to tx + 1

The ancestors of any future delay at t = ty are all the variables in the DCN up to ty, so
in line 2 we run the standard ID algorithm for α = P (v10, v11, v12|v4, v5, v6, do(v7)) on G′,
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which returns the expression α:

∑
v1,v2,v3,v8,v9

P (v1, v2, ...v12)
∑

v7,v9
P (v7, v8, v9|v4, v5, v6)

P (v4, v5, v6)
∑

v9
P (v7, v8, v9|v4, v5, v6)

Using this expression, line 3 of the algorithm computes the elements of matrix A. If
we perform the intervention on a Thursday the matrices A for v7 = 0 and v7 = 1 can be
evaluated from T1.

Av7=0 =



0.0 0.4 0.0 0.3 0.0 0.2 0.0 0.1
0.0 0.4 0.0 0.3 0.0 0.2 0.0 0.1
0.0 0.4 0.0 0.3 0.0 0.2 0.0 0.1
0.0 0.4 0.0 0.3 0.0 0.2 0.0 0.1
0.0 0.4 0.0 0.3 0.0 0.2 0.0 0.1
0.0 0.4 0.0 0.3 0.0 0.2 0.0 0.1
0.0 0.4 0.0 0.3 0.0 0.2 0.0 0.1
0.0 0.4 0.0 0.3 0.0 0.2 0.0 0.1



Av7=1 =



0.2 0.0 0.0 0.1 0.4 0.0 0.0 0.3
0.2 0.0 0.0 0.1 0.4 0.0 0.0 0.3
0.2 0.0 0.0 0.1 0.4 0.0 0.0 0.3
0.2 0.0 0.0 0.1 0.4 0.0 0.0 0.3
0.2 0.0 0.0 0.1 0.4 0.0 0.0 0.3
0.2 0.0 0.0 0.1 0.4 0.0 0.0 0.3
0.2 0.0 0.0 0.1 0.4 0.0 0.0 0.3
0.2 0.0 0.0 0.1 0.4 0.0 0.0 0.3


In line 4, we find that transition matrices Mt are the same than for the DCN without

intervention. Figure 6.10 shows the average travel delay without intervention, and with in-
tervention on the traffic conditions of the first road.

FIGURE 6.10: Average travel delay of the DCN without intervention, and
with interventions tr1 = 0 and tr1 = 1 on the first Thursday

In a second numerical example, we consider that the system is characterized by a unique
transition matrix T and the delay d tends to a steady state. We measure d without intervention
and with intervention on tr1 at t = 15. The system’s transition matrix T is shown below:
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T =



0.02 0 0.03 0 0.26 0.13 0.34 0.22
0.02 0 0.03 0 0.26 0.13 0.34 0.22
0.02 0 0.03 0 0.26 0.13 0.34 0.22
0.02 0 0.03 0 0.26 0.13 0.34 0.22
0.34 0.1 0.24 0.21 0 0.02 0.09 0
0.34 0.1 0.24 0.21 0 0.02 0.09 0
0.34 0.1 0.24 0.21 0 0.02 0.09 0
0.34 0.1 0.24 0.21 0 0.02 0.09 0


Figure 6.11 shows the evolution of d with no intervention and with intervention.

FIGURE 6.11: Average d of the DCN without intervention and with inter-
vention on tr1 at t = 15.

As shown in the examples, the DCN-ID algorithm calls ID only once with a graph of size
4|G| and evaluates the elements of matrix A with complexity O((4k)(b+2), where k = 3 is the
number of variables per slice and b = 1 is the number of bits used to encode the variables.
The rest is the computation of transition matrix multiplications, which can be done with
complexity O(n.b2), with n = 40 − 15 in example 2. To obtain the same result with the ID
algorithm by brute force, we would require processing n times the identifiability of a graph
of size 40|G|, with overall complexity O((k)(b+2)+(2k)(b+2)+(3k)(b+2)+ ...+(n.k)(b+2)).
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Chapter 7

Conclusions

7.1 Conclusions

This doctoral thesis introduces the ALCAM algorithm for the discovery of causal models
with hidden confounders. It uses active learning and chooses a sequence of interventions in
order to minimize the overall cost of the discovery process across a set of comprehensive cost
dimensions.

Also, this doctoral thesis introduces dynamic causal networks and their analysis with do-
calculus, so far studied thoroughly only in static causal graphs. We extend the ID algorithm
to the identification of DCNs, and remark the difference between static vs. dynamic hidden
confounders. We also provide an algorithm for the transportability of causal effects from one
domain to another with the same dynamic causal structure.

7.2 Future Work

The ALCAM algorithm learns causal graphs with hidden confounders in O(|G|) interventions.
Using combinatorial optimisations, we may improve this bound and learn the causal graph
with the same fundamental concepts and methodologies but with O(log|G|) interventions
instead of O(|G|).

Another line of future research could be to reduce the complexity of the ALCAM algo-
rithm, by performing some pre-analysis of the causal graph structure and discarding some
interventions upfront, instead of calculating the predicted effects for every single possible
intervention.

Generalizing the method to a mix of observational and interventional data is also an inter-
esting direction. Defining a comprehensive and integrated set of distinguishability conditions
across all available data, both observational and interventional, would close an important
chapter of causal research.

For future work on DCN identifiability, note that in the present thesis we have assumed
all intervened variables to be in the same time slice; removing this restriction flows rather
naturally from our work, and may be an interesting application for the dynamic treatment of
time evolving models. Dynamic control of pandemics could be an application for this setting.

Also, we would like to extend the introduction of causal analysis to a number of dynamic
settings, including Hidden Markov Models, and study properties of DCNs in terms of Markov
chains (conditions for ergodicity, for example).

Finally, evaluating the distributions returned by the causal identification algorithms is in
general very complex (exponential in the number of variables and domain size); identifying
tractable sub-cases and simplifying heuristics is a general question in the field of causality.





79

Bibliography

Aalen, OO et al. (2014). “Can we believe the DAGs? A comment on the relationship between
causal DAGs and mechanisms”. In: Statistical methods in medical research, p. 0962280213520436.

Acharya, Jayadev et al. (2018). “Learning and Testing Causal Models with Interventions”.
In: CoRR abs/1805.09697. arXiv: 1805.09697. URL: http://arxiv.org/abs/
1805.09697.

Addanki, Raghavendra, Andrew McGregor, and Cameron Musco (2020). “Intervention Effi-
cient Algorithms for Approximate Learning of Causal Graphs”. In: CoRR abs/2012.13976.
arXiv: 2012.13976. URL: https://arxiv.org/abs/2012.13976.

Addanki, Raghavendra et al. (2020). “Efficient Intervention Design for Causal Discovery
with Latents”. In: CoRR abs/2005.11736. arXiv: 2005 . 11736. URL: https : / /
arxiv.org/abs/2005.11736.

Agrawal, Raj et al. (Feb. 2019). ABCD-Strategy: Budgeted Experimental Design for Targeted
Causal Structure Discovery.

Chicharro, Daniel and Stefano Panzeri (2015). “Algorithms of causal inference for the anal-
ysis of effective connectivity among brain regions”. In: Information-based methods for
neuroimaging: analyzing structure, function and dynamics.

Chickering, David Maxwell (Mar. 2003). “Optimal Structure Identification with Greedy Search”.
In: J. Mach. Learn. Res. 3, pp. 507–554. ISSN: 1532-4435. DOI: 10.1162/153244303321897717.
URL: http://dx.doi.org/10.1162/153244303321897717.

Colombo, Diego et al. (Feb. 2012). “Learning high-dimensional directed acyclic graphs with
latent and selection variables”. In: Ann. Statist. 40.1, pp. 294–321. DOI: 10.1214/11-
AOS940. URL: http://dx.doi.org/10.1214/11-AOS940.

Cooper, Gregory F. and Changwon Yoo (1999). “Causal Discovery from a Mixture of Ex-
perimental and Observational Data”. In: Proceedings of the Fifteenth Conference on
Uncertainty in Artificial Intelligence. UAI’99. Stockholm, Sweden: Morgan Kaufmann
Publishers Inc., pp. 116–125. ISBN: 1-55860-614-9. URL: http://dl.acm.org/
citation.cfm?id=2073796.2073810.

Dahlhaus, Rainer and Michael Eichler (2003). “Causality and graphical models in time series
analysis”. In: Oxford Statistical Science Series, pp. 115–137.

Dash, Denver (2005). “Restructuring Dynamic Causal Systems in Equilibrium.” In: AISTATS.
Citeseer.

Dash, Denver and Marek Druzdzel (2001). “Caveats for causal reasoning with equilibrium
models”. In: Symbolic and Quantitative Approaches to Reasoning with Uncertainty. Springer,
pp. 192–203.

Dash, Denver and Marek J Druzdzel (2008). “A note on the correctness of the causal ordering
algorithm”. In: Artificial Intelligence 172.15, pp. 1800–1808.

Dash, Denver H. and Marek J. Druzdzel (1999). “A Fundamental Inconsistency Between
Equilibrium Causal Discovery and Causal Reasoning Formalisms”. In: Working Notes of
the Workshop on Conditional Independence Structures and Graphical Models. Toronto,
Canada: Fields Institute, pp. 17–18.

Dawid, Alexander and Vanessa Didelez (Oct. 2010). “Identifying the consequences of dy-
namic treatment strategies: A decision-theoretic overview”. In: Statistics Surveys 4. DOI:
10.1214/10-SS081.

https://arxiv.org/abs/1805.09697
http://arxiv.org/abs/1805.09697
http://arxiv.org/abs/1805.09697
https://arxiv.org/abs/2012.13976
https://arxiv.org/abs/2012.13976
https://arxiv.org/abs/2005.11736
https://arxiv.org/abs/2005.11736
https://arxiv.org/abs/2005.11736
https://doi.org/10.1162/153244303321897717
http://dx.doi.org/10.1162/153244303321897717
https://doi.org/10.1214/11-AOS940
https://doi.org/10.1214/11-AOS940
http://dx.doi.org/10.1214/11-AOS940
http://dl.acm.org/citation.cfm?id=2073796.2073810
http://dl.acm.org/citation.cfm?id=2073796.2073810
https://doi.org/10.1214/10-SS081


80 Bibliography

Didelez, Vanessa (2015). “Causal Reasoning for Events in Continuous Time: A Decision–
Theoretic Approach”. In.

Eberhardt, Frederick (2007). “Causation and Intervention”. PhD thesis. Pittsburgh, PA, USA.
ISBN: 0-521-77362-8.

— (2008). “Almost Optimal Intervention Sets for Causal Discovery”. In: Proceedings of the
Twenty-Fourth Conference on Uncertainty in Artificial Intelligence. UAI’08. Helsinki,
Finland: AUAI Press, pp. 161–168. ISBN: 0-9749039-4-9. URL: http://dl.acm.
org/citation.cfm?id=3023476.3023496.

Eberhardt, Frederick, Clark Glymour, and Richard Scheines (2005). “On the Number of Ex-
periments Sufficient and in the Worst Case Necessary to Identify All Causal Relations
Among N Variables”. In: Proceedings of the Twenty-First Conference on Uncertainty in
Artificial Intelligence. UAI’05. Edinburgh, Scotland: AUAI Press, pp. 178–184. ISBN:
0-9749039-1-4. URL: http://dl.acm.org/citation.cfm?id=3020336.
3020358.

Eberhardt, Frederick, Patrik Hoyer, and Richard Scheines (Jan. 2010). “Combining experi-
ments to discover linear cyclic models with latent variables”. In.

Eichler, Michael (2012). “Causal inference in time series analysis”. In: Causality: statistical
perspectives and applications. Wiley, Chichester, pp. 327–354.

Eichler, Michael and Vanessa Didelez (2010). “On Granger causality and the effect of inter-
ventions in time series”. In: Lifetime data analysis 16.1, pp. 3–32.

— (2012). “Causal reasoning in graphical time series models”. In: arXiv preprint arXiv:1206.5246.
Ghassami, AmirEmad et al. (2017). “Budgeted Experiment Design for Causal Structure

Learning”. In: CoRR abs/1709.03625. arXiv: 1709.03625. URL: http://arxiv.
org/abs/1709.03625.

Gong, Mingming et al. (2015). “Discovering temporal causal relations from subsampled
data”. In: Proceedings of the 32nd International Conference on Machine Learning (ICML-
15), pp. 1898–1906.

Hauser, A. and P. Bühlmann (Apr. 2011). “Characterization and Greedy Learning of Inter-
ventional Markov Equivalence Classes of Directed Acyclic Graphs”. In: ArXiv e-prints.
arXiv: 1104.2808 [stat.ME].

Hauser, Alain and Peter Bühlmann (June 2014). “Two Optimal Strategies for Active Learning
of Causal Models from Interventional Data”. In: Int. J. Approx. Reasoning 55.4, pp. 926–
939. ISSN: 0888-613X. DOI: 10.1016/j.ijar.2013.11.007. URL: http:
//dx.doi.org/10.1016/j.ijar.2013.11.007.

He, Yang-Bo, Zhi Geng, and André Elisseeff (2008). “Active Learning of Causal Networks
with Intervention Experiments and Optimal Designs”. In.

Heinze-Deml, Christina, Jonas Peters, and Nicolai Meinshausen (2018). “Invariant Causal
Prediction for Nonlinear Models”. In: Journal of Causal Inference 6.2, p. 20170016. DOI:
doi:10.1515/jci-2017-0016. URL: https://doi.org/10.1515/jci-
2017-0016.

Huang, Y. and M. Valtorta (2006a). “Pearl’s calculus of interventions is complete”. In: Pro-
ceedings of the 22nd conference on Uncertainty in artificial intelligence. AUAI Press.

Huang, Yimin and Marco Valtorta (2006b). “Identifiability in causal Bayesian networks: A
sound and complete algorithm”. In: Proceedings of the National Conference on Artifi-
cial Intelligence. Vol. 21. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT
Press; 1999, p. 1149.

Hyttinen, Antti, Frederick Eberhardt, and Patrik Hoyer (Sept. 2010). “Causal discovery for
linear cyclic models with latent variables”. In.

— (Oct. 2012a). “Causal Discovery of Linear Cyclic Models from Multiple Experimental
Data Sets with Overlapping Variables”. In: Uncertainty in Artificial Intelligence - Pro-
ceedings of the 28th Conference, UAI 2012.

http://dl.acm.org/citation.cfm?id=3023476.3023496
http://dl.acm.org/citation.cfm?id=3023476.3023496
http://dl.acm.org/citation.cfm?id=3020336.3020358
http://dl.acm.org/citation.cfm?id=3020336.3020358
https://arxiv.org/abs/1709.03625
http://arxiv.org/abs/1709.03625
http://arxiv.org/abs/1709.03625
https://arxiv.org/abs/1104.2808
https://doi.org/10.1016/j.ijar.2013.11.007
http://dx.doi.org/10.1016/j.ijar.2013.11.007
http://dx.doi.org/10.1016/j.ijar.2013.11.007
https://doi.org/doi:10.1515/jci-2017-0016
https://doi.org/10.1515/jci-2017-0016
https://doi.org/10.1515/jci-2017-0016


Bibliography 81

— (Nov. 2012b). “Learning Linear Cyclic Causal Models with Latent Variables”. In: Journal
of Machine Learning Research (JMLR) 13.

Hyttinen, Antti, Frederick Eberhardt, and Patrik O. Hoyer (2013). “Experiment Selection for
Causal Discovery”. In: Journal of Machine Learning Research 14, pp. 3041–3071. URL:
http://jmlr.org/papers/v14/hyttinen13a.html.

Hyttinen, Antti et al. (2017). “A constraint optimization approach to causal discovery from
subsampled time series data”. In: International Journal of Approximate Reasoning 90,
pp. 208–225. ISSN: 0888-613X. DOI: https://doi.org/10.1016/j.ijar.
2017 . 07 . 009. URL: https : / / www . sciencedirect . com / science /
article/pii/S0888613X17304577.

Iwasaki, Yumi and Herbert A Simon (1989). “Causality in device behavior”. In: Readings in
qualitative reasoning about physical systems. Morgan Kaufmann Publishers Inc., pp. 631–
645.

Kocaoglu, M., Karthikeyan Shanmugam, and Elias Bareinboim (2017). “Experimental De-
sign for Learning Causal Graphs with Latent Variables”. In: NIPS.

Lacerda, Gustavo et al. (2012). “Discovering cyclic causal models by independent compo-
nents analysis”. In: arXiv preprint arXiv:1206.3273.

Lauritzen, Steffen L and Thomas S Richardson (2002). “Chain graph models and their causal
interpretations”. In: Journal of the Royal Statistical Society: Series B (Statistical Method-
ology) 64.3, pp. 321–348.

Löwe, Sindy et al. (2022). “Amortized Causal Discovery: Learning to Infer Causal Graphs
from Time-Series Data”. In: Proceedings of the First Conference on Causal Learning
and Reasoning. Ed. by Bernhard Schölkopf, Caroline Uhler, and Kun Zhang. Vol. 177.
Proceedings of Machine Learning Research. PMLR, pp. 509–525. URL: https://
proceedings.mlr.press/v177/lowe22a.html.

Meek, Christopher (2014). “Toward Learning Graphical and Causal Process Models.” In:
CI@ UAI, pp. 43–48.

Meganck, Stijn, Philippe Leray, and Bernard Manderick (2006). “Learning Causal Bayesian
Networks from Observations and Experiments: A Decision Theoretic Approach”. In:
Modeling Decisions for Artificial Intelligence. Ed. by Vicenç Torra et al. Berlin, Hei-
delberg: Springer Berlin Heidelberg, pp. 58–69. ISBN: 978-3-540-32781-3.

Moneta, Alessio and Peter Spirtes (2006). “Graphical Models for the Identification of Causal
Structures in Multivariate Time Series Models.” In: JCIS.

Murphy, Kevin P. (2001). Active Learning of Causal Bayes Net Structure. Tech. rep.
Pan, Sinno Jialin and Qiang Yang (2010). “A survey on transfer learning”. In: Knowledge

and Data Engineering, IEEE Transactions on 22.10, pp. 1345–1359.
Pearl, Judea (1994). “A probabilistic calculus of actions”. In: Proceedings of the Tenth inter-

national conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publish-
ers Inc., pp. 454–462.

— (2000). Causality: Models, Reasoning, and Inference. New York, NY, USA: Cambridge
University Press. ISBN: 0-521-77362-8.

Pearl, Judea and Elias Bareinboim (2011). “Transportability of causal and statistical rela-
tions: A formal approach”. In: Data Mining Workshops (ICDMW), 2011 IEEE 11th In-
ternational Conference on. IEEE, pp. 540–547.

Pearl, Judea, Thomas Verma, et al. (1991). A theory of inferred causation. Morgan Kaufmann
San Mateo, CA.

Peters, J., Stefan Bauer, and Niklas Pfister (2020). “Causal Models for Dynamical Systems”.
In: Probabilistic and Causal Inference.

Peters, J., P. Bühlmann, and N. Meinshausen (2015). “Causal inference using invariant pre-
diction: identification and confidence intervals”. In: Journal of the Royal Statistical Soci-
ety, Series B. URL: http://arxiv.org/abs/1501.01332.

http://jmlr.org/papers/v14/hyttinen13a.html
https://doi.org/https://doi.org/10.1016/j.ijar.2017.07.009
https://doi.org/https://doi.org/10.1016/j.ijar.2017.07.009
https://www.sciencedirect.com/science/article/pii/S0888613X17304577
https://www.sciencedirect.com/science/article/pii/S0888613X17304577
https://proceedings.mlr.press/v177/lowe22a.html
https://proceedings.mlr.press/v177/lowe22a.html
http://arxiv.org/abs/1501.01332


82 Bibliography

Queen, Catriona M and Casper J Albers (2009). “Intervention and causality: forecasting traf-
fic flows using a dynamic Bayesian network”. In: Journal of the American Statistical
Association 104.486, pp. 669–681.

Shanmugam, Karthikeyan et al. (2015). “Learning Causal Graphs with Small Interventions”.
In: CoRR abs/1511.00041. arXiv: 1511.00041. URL: http://arxiv.org/abs/
1511.00041.

Shpitser, Ilya and Judea Pearl (2006). “Identification of joint interventional distributions in
recursive semi-Markovian causal models”. In: Proceedings of the National Conference
on Artificial Intelligence. Vol. 21. Menlo Park, CA; Cambridge, MA; London; AAAI
Press; MIT Press; 1999, p. 1219.

Shpitser, Ilya, Thomas S Richardson, and James M Robins (2012). “An efficient algorithm
for computing interventional distributions in latent variable causal models”. In: arXiv
preprint arXiv:1202.3763.

Spirtes, P., C. Glymour, and R. Scheines (2000). Causation, Prediction, and Search. 2nd.
MIT press.

Spirtes, Peter, Christopher Meek, and Thomas Richardson (1995). “Causal Inference in the
Presence of Latent Variables and Selection Bias”. In: Proceedings of the Eleventh Con-
ference on Uncertainty in Artificial Intelligence. UAI’95. Montr&#233;al, Qu&#233;,
Canada: Morgan Kaufmann Publishers Inc., pp. 499–506. ISBN: 1-55860-385-9. URL:
http://dl.acm.org/citation.cfm?id=2074158.2074215.

Squires, Chandler et al. (2020). Active Structure Learning of Causal DAGs via Directed
Clique Tree. DOI: 10.48550/ARXIV.2011.00641. URL: https://arxiv.
org/abs/2011.00641.

Tian, J. and J. Pearl (2002a). On the identification of causal effects. Tech. rep. Technical Re-
port R-290-L. Department of Computer Science, University of California, Los Angeles.

Tian, Jin (2002). “Studies in Causal Reasoning and Learning”. PhD thesis. University of
California, Los Angeles.

— (2004). “Identifying conditional causal effects”. In: Proceedings of the 20th conference
on Uncertainty in artificial intelligence. AUAI Press, pp. 561–568.

Tian, Jin and Judea Pearl (2002b). “A general identification condition for causal effects”. In:
AAAI/IAAI, pp. 567–573.

— (2002c). “Studies in Causal Reasoning and Learning”. AAI3070088. PhD thesis. ISBN:
0493897879.

Tong, Simon and Daphne Koller (2001). “Active Learning for Structure in Bayesian Net-
works”. In: Proceedings of the 17th International Joint Conference on Artificial Intel-
ligence - Volume 2. IJCAI’01. Seattle, WA, USA: Morgan Kaufmann Publishers Inc.,
pp. 863–869. ISBN: 1-55860-812-5, 978-1-558-60812-2. URL: http://dl.acm.
org/citation.cfm?id=1642194.1642209.

Valdes-Sosa, Pedro A et al. (2011). “Effective connectivity: influence, causality and biophys-
ical modeling”. In: Neuroimage 58.2, pp. 339–361.

Verma, Thomas and Judea Pearl (1991). “Equivalence and Synthesis of Causal Models”.
In: Proceedings of the Sixth Annual Conference on Uncertainty in Artificial Intelligence.
UAI ’90. New York, NY, USA: Elsevier Science Inc., pp. 255–270. ISBN: 0-444-89264-8.
URL: http://dl.acm.org/citation.cfm?id=647233.719736.

Verma, TS (1993). “Graphical aspects of causal models”. In: Technical R eport R-191, UCLA.
Voortman, Mark, Denver Dash, and Marek J Druzdzel (2012). “Learning why things change:

the difference-based causality learner”. In: arXiv preprint arXiv:1203.3525.
White, Halbert, Karim Chalak, Xun Lu, et al. (2011). “Linking Granger Causality and the

Pearl Causal Model with Settable Systems.” In: NIPS Mini-Symposium on Causality in
Time Series, pp. 1–29.

https://arxiv.org/abs/1511.00041
http://arxiv.org/abs/1511.00041
http://arxiv.org/abs/1511.00041
http://dl.acm.org/citation.cfm?id=2074158.2074215
https://doi.org/10.48550/ARXIV.2011.00641
https://arxiv.org/abs/2011.00641
https://arxiv.org/abs/2011.00641
http://dl.acm.org/citation.cfm?id=1642194.1642209
http://dl.acm.org/citation.cfm?id=1642194.1642209
http://dl.acm.org/citation.cfm?id=647233.719736


Bibliography 83

White, Halbert and Xun Lu (2010). “Granger causality and dynamic structural systems”. In:
Journal of Financial Econometrics 8.2, pp. 193–243.


	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Causality
	Discovery of Causal Relations
	Prediction of Causal Effects
	Timescale and Equilibrium
	Causal Discovery in Dynamic Systems
	Causal Prediction in Dynamic Systems

	Thesis Contributions
	Contributions to the Discovery of Causal Relations
	Contributions to the Prediction of Causal Effects


	Background and Previous Work
	Causal Models
	Do-calculus

	Causal Discovery Algorithms
	Causal discovery without interventions
	The PC Algorithm
	The FCI Algorithm

	Causal discovery with interventions, in the absence of hidden confounders
	Causal discovery with interventions, in the presence of hidden confounders

	Causal Identification Algorithms
	The ID Algorithm
	The Transportability Algorithm

	Dynamic Bayesian Networks

	Distinguishability of Causal Graphs
	Notation and Basic Lemmas
	Structure of What is to Come
	Power of an Intervention
	Graphical Conditions for Distinguishability
	Testing Non-Distinguishable Edges
	Testing Non-Distinguishable Hidden Confounders

	Active Learning of Causal Graphs
	Algorithm for Active Learning of Causal Graphs
	Power of Intervention function
	Select Interventions
	Select Graphs
	ALCAM algorithm


	Causality and Time
	Dynamic Causal Networks
	Hidden Confounders
	Static Hidden Confounders
	Dynamic Hidden Confounders

	Do-Calculus and Time

	Identification of Causal Effects in Dynamic Causal Networks
	Identification in DCN
	Identification of DCN with Static Hidden Confounders
	DCN-ID algorithm for DCNs with Static Hidden Confounders

	Identification of DCN with Dynamic Hidden Confounders
	DCN-ID algorithm for DCNs with Dynamic Hidden Confounders

	Non-Identifiability
	Complete DCN identification with Static Hidden Confounders
	Complete DCN identification with Dynamic Hidden Confounders

	Transportability
	Experiments

	Conclusions
	Conclusions
	Future Work

	Bibliography

