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Abstract

The aim of the work we have developed is to contribute to the understand-
ing of discrete elliptic boundary value problems on finite networks from an
electrical point of view as we are concerned with a particular operation on
networks that has a physical meaning in circuit theory.

Elliptic problems in the continuous field are a very well known item in phys-
ical mathematics. It is a very important tool in the development of so many
situations of real interest and many efforts have been devoted to it from a
long time ago. Even though our work is centered in the discrete field, we use
notations that are inspired in the continuous setting for elliptic operators
because there is a strong symbiosis between both fields. Indeed, sometimes
solving a problem in the discrete setting can lead to the solution of its con-
tinuum version by a limit process, but sometimes the relation between these
two worlds does not work so easily.

It is very clear that an electrical network may be viewed as a graph, and
conversely, that every graph can be considered as a model of an electrical
circuit, after considering that electrical components are identified with ver-
tices and the interconnections between electrical components are described
as edges. In other words, electrical circuits are naturally treated as graphs.
When some item is connected to a circuit, an straightforward interpretation
is to add one or various vertices to the former graph and/or consider new
information defined on the edges of the graph. We are interested not only
in graphs, discrete structures where vertices and nodes are considered all
equal (only the number of incident edges to an specific vertex make a differ-
ence between different vertices), but in networks that are discrete structures
where edges are equipped with a conductance (a positive value) that dis-
criminates edges from other edges and is also possible to consider a value for
every vertex that differentiate vertices among them (even further than for
the adjacencies).

An elementary subdivision of a nonempty network is not electrically com-
patible as, when inserting a vertex in an edge, does not satisfy the total re-
sistance series connection electrical law. We are interested in the subdivision
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procedure on networks so as to model the physical situation of connecting
items (to all edges or only to some of the edges) to an electrical network.
These connections have to be electrically compatible and the concept of con-
ductance associated with every edge has to satisfy the requirement of

1

c(x, y)
=

1

c(x, vxy)
+

1

c(vxy, y)

where x, y are vertices on the network, vxy is the new vertex inserted in
the edge {x, y} after the elementary subdivision procedure, {x, vxy} and
{vxy, y} are the resulting two new edges and provided that a conductance is
the inverse value of a resistance. In this way the very well known physical
law for electrical resistance in a series connection is satisfied.

All along our work we have considered global subdivision procedures first
and a partial subdivision procedure of only some edges later, as this case is
a more general one. We will continue our future work with an even more
general subdivision operation where just some edges should be replaced by
different length open paths.

Thus our task has consisted in stating the precise connection between solu-
tions of elliptic problems on these related discrete structures, a given initial
network and another one resulting of a subdivision procedure of the former.

Moreover, and again from the existing relationship between discrete struc-
tures and electrical circuits, a novel distance concept was introduced by ex-
ploiting the idea that, given an edge and its two adjacent vertices, the more
the resistance value of and edge is, the further both adjacent vertices are.
This so called resistance distance is proved to be thinner than the canonical
shortest–path distance that is usually considered in graph theory but, what
is more important to us, is suitable to treat diffusion problems on discrete
structures as in most cases spreads try every single possibility of propaga-
tion at their hand and this distance is defined between two different vertices
taking into account all possible paths that join them. Furthermore, very im-
portant topological information of the structure we are interested in is easily
obtainable upon this resistance distance concept.

More specifically, we are focussed in determining the existing relationship
between resistance distances and also between Kirchhoff indexes of these
discrete structures, relating those parameters of the subdivided structures
with their respective of the given initial structure.

In order to compute resistance distances, we take advantage of the so called
Green’s kernel of an elliptic operator. First for the Laplacian operator, then
for Schödinger type operators, we have studied how to relate Green’s kernel
function for the subdivided network in terms of Green’s kernel of the former
discrete structure. As there exists a one-to-one identification between elec-
trical circuits (graphs, networks) and M–matrices, and given that Green’s
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kernel of an elliptic operator is also identified with the Moore–Penrose inverse
matrix, our problem can also be seen as a contribution to the computation of
higher dimensional Moore–Penrose inverse matrices in terms of given lower
order Moore–Penrose inverse matrices in a sort of Woodbury–Shermann–
Morrison formula, a well known result but for singular matrices.
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Introduction

Despite the close relationship between graph theory and electrical circuit
theory, with the well known analogy of vertices and edges standing for con-
nectors and connections and despite the obvious equivalence between the
elementary subdivision of an edge of a graph and the representation of a
series connection of two elements in a given electrical circuit, when searching
at Google for instance for any combination of the words "electric", "circuit",
"graph" and "subdivision" it turns a very difficult task to find any reference
to what has been the object of study of this thesis. Not even our published
works are easy to find, and they are in the world wide web for sure!

Considering mathematical literature, we are aware of many papers where
graph operations are considered, but these operations are generally other
graph operations as union or intersection of two or more graphs, the join of
two graphs, the cartesian product of graphs, the line graph of a graph, series
or parallel graphs compositions, corona product of graphs, rooted product of
graphs, . . . The subdivision procedure is seldomly treated. We certainly have
the impression that the well known and elementary operation of subdividing
edges on graphs is devoted only to define homomorphism between graphs. It
is definitely a no small matter and especially taking into account its relation
to planarity of structures after Kuratowski’s theorem.

However, papers devoted to the study of different parameters of the subdi-
vision of a graph do exist. For instance, Chen in [31], obtained a formula
for the effective resistances of the subdivision graph in terms of the effective
resistances of the original graph by using some nice sum rules. The Kirch-
hoff index of the subdivision graph is considered in different works under
several hypothesis such as regular graphs in [49], bipartite graphs in [71], or
operations between graphs that involve the subdivision concept as well, see
[22] for instance. In [76], the author extends the previous results to general
graphs and computes the Kirchhoff index of subdivision graph in terms of
the Kirchhoff index, the multiplicative degree–Kirchhoff index, the additive
degree–Kirchhoff index, the number of vertices, and the number of edges of
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the graph. Also in [71] an expression for the Kirchhoff index in terms of a
{1}–inverse of the combinatorial Laplacian is given.

Also, subdivision graphs and their spectra seem to be particularly important
in the study of thermodynamic properties of crystalline solids. This practical
problem led B.E. Eichinger and J.E. Martin in [41], to devise an algorithm
for computing the Laplacian eigenvalues of a subdivided graph by applying
numerical linear algebraic methods to the matrix of the unsubdivided graph.

But none of these works seem to realize the existence of the obvious coinci-
dence we have mention in the initial paragraph of this introduction. As far
as we know nobody has used graph subdivision to model series connection
in an electrical circuit.

On the other hand complex systems are pervasive in our society. Everybody
knows so many examples that support the previous sentence (the Internet
System, the World Wide Web System, the electrical power system, any bio-
logical system, . . . ).

Possibly there are three main aspects to have in mind to study complex sys-
tems: the nature of the individual components of the systems, the nature of
connections or interactions and the pattern of connections between compo-
nents. And it is at these points where graphs should be equipped, for well
modelling really interesting situations, with alternatives that allow the dis-
crimination between vertices (per se and not just because every vertex has
its own quantity of adjacent edges), and between edges (as different links
may have different behaviours). Then a third actor has a role in the play,
as networks should be a too simple tool to face the study of the dynami-
cal behavior of an aggregation of nodes and links. In our vocabulary it is
called Schrödinger type operators as a potential function is defined over the
vertices of the structure, so as the particular value it attains at every single
node may model a specific behaviour.

The nodes, for vertices, might be molecules or genes for biological systems,
humans for social systems, routers or switches for communication systems,
transformers for electrical systems. The links, for edges, might be contagions
or synapses for biological system, friendships or other relationships for social
systems, physical wires or wireless for communication systems, connections
for electrical systems, etc. And the behaviour of whatever is defined on
the structure (not the structure itself) is the third component to take into
account in a serious analysis of a real problem.

Is in this direction, over the years, that scientists have developed a huge set
of mathematical, computational, and statistical tools for analyzing, model-
ing and understanding networks. These tools work with networks in their
abstract form and help in finding some crucial and useful information about
them, for example, the critical node or edge in a network, the length of a
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path from one node to another in a network, the flow of traffic over the net-
work, clusters or communities in a network, etc. These tools can be applied
to any systems that can be represented as networks. And we honestly think
that the techniques of discrete potential theory applied in this setting, mim-
icking the theory of partial differential equations in the continuous case, can
be considered as a modest contribution to this amount of knowledge. And
our work in this thesis follows this line, as we have been concerned with the
study of Poisson problems on discrete structures having in mind diffusion
contexts as the spread of an epidemic, heat transfer or whatever that flows
throughout the set of vertices and edges is distributed.

Some authors, for instance [44], support the idea that it is more important
to understand the organizational principles of such systems on the basis of
their connectivity than to understand the role of their individual components.
And it is in this sense that discrete Laplacian–like operators appear in the
mathematical description of the majority of dynamical processes occurring
on these systems, becoming more and more popular from time to time but
unfortunately at still low levels.

A third very profitable idea that we would like to expose at this particular
moment is that an efficient way to get valuable information from a graph or
a network is to associate the discrete structure with matrices. Then some
characteristics of these matrices have a direct translation in terms of relevant
information concerned with the discrete structure. When finite graphs are
considered, these matrices can be related to kernels of linear operators that
are defined on the vertex set, so as acting on the discrete structure. For
instance, a Laplacian matrix associated with the Laplacian operator can be
seen as an object that acts distributing whatever is considered throughout
the network, in a so called diffusion problem.

There are quite a few very well known matrices commonly tied with graphs
and networks, whose consideration has returned in a profit on the knowledge
of discrete structures. The probably most basic one is the so called adja-
cency matrix, from what important properties of a graph can be revealed
such as the order of the structure, the count of paths of a precise length in
the graph, the number of clicks that exist or whether the graph is bipartite
or not. Also the Laplacian matrix is widely used for counting the number
of spanning trees, studying connectivity, counting the number of connected
components and more. The normalized Laplacian matrix, see [33] is also a
very well known matrix that has been shown to be adequate enough to ana-
lyze from a probabilistic point of view a discrete structure. The normalized
Laplacian discriminates vertices not only by the connections established with
other vertices, but also considering the different behaviour that the corre-
sponding edges can have. Nevertheless it is not able to capture an intrinsic
discrimination of the vertices between them beyond for connections.
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A fourth argument, to include and briefly discuss in this not at all short
introduction, is a sort of geometrical and topological one. For decades to
know what a graph looks like has been a main objective. So, new tools have
been developed so as to understand networks from some other points of view.
In this sense, Klein and Randić in [58] but also Stephenson and Zellen in [70]
introduced both, independently, with no apparent connection and from two
very separate frameworks, a new distance function that we call resistance
distance. The electrical version of it, based on electric network theory, is
defined to be the effective electrical resistance between two vertices when
each edge is replaced by a unit resistor. But the social networks version of
the same distance, see [18, 37] where the equivalence is stated, insists in the
interesting and profitable idea that distances in a discrete structure that are
based upon consideration of all possible paths between two given vertices do
worth a value. From this point of view, vertices in the discrete structure are
closer (this distance is thinner than the canonical shortest–path distance)
but, what is more important to us, the resistance distance reacts to changes
in the overall structure, whether they are due to erased/incorporated edges,
or a variation of the modelled behaviour. So, this new exciting context fits
extremely well with the initial idea of our work.

Moreover, once a new distance is considered, new topological invariants can
be defined and studied. And paradoxically some valuable ideas initially
developed in a Chemistry theory framework, as for instance the Wiener
index, can be reproduced in some other very different frameworks as electrical
circuits, thermodynamics, random walks, general science networks or others.
Thus, based upon this resistance distance, the Kirchhoff index, that can be
defined as the sum of resistance distances between all pairs of vertices of the
network, is a classifier which is worth computing and studying.

Not surprisingly, the different considerations that have been presented in this
introduction of course can be intimately related. For example the calculation
of resistance distances, and therefore of Kirchhoff indexes, is related to the
Moore–Penrose inverse matrix of the Laplacian matrix associated with a
network where a diffusion problem is posed. And in this context is where
our work has to be interpreted and comprehended.

Moreover, despite the great interest generated by resistance distances and
Kirchhoff index, and the obvious importance of diffusion problems modelled
by operators as those we consider and the subdivision procedure, we have
taken no profit at all of the published literature in relation with these, our
concerns. Certainly, there are some works that point in this direction, in
[22] the authors investigated resistance distance in subdivision–vertex join
and subdivision–edge join of graphs, also in [61] the resistance distance and
Kirchhoff index of R–vertex join and R–edge join of two graphs are given, in
[78] the Kirchhoff index of some composite operations between two graphs
such as product, lexicographic product, join, corona and cluster is considered.
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For sure that in [49] the Kirchhoff index for graphs derived from a single
graph is studied. But all literature, as far as we know, is only concerned
with graphs. So, the opportunity of considering really interesting discrete
structures is missed. Or to put in other words, the knowledge more or less
related to a subdivision procedure and resistance distances is devoted just
to the simple graph setting, with no possibility of satisfying the electrical
compatibility condition that we are interested in.

Therefore, we have faced a completely exciting new paradigm: we have stud-
ied different diffusion problems (for different difference operators), resistance
distances and Kirchhoff index in a setting of more sophisticated discrete
structures and by applying the subdivision operation but with an electrical
compatibility condition to fulfill.

Once we have explained the motivations and introduced our work, we point
out that we have four research papers that are already published. One
of these in an online journal (ENDM) and the other three on paper sup-
port classical very reputated journals in the scope of our work (LAMA and
AAMD), both usually in the highest Q1 range. Next we give their refer-
ences in chronological order of appearance and a very short explanation of
the realized work.

1. Á. Carmona, M. Mitjana and E. Monsó.

The group inverse of subdivision networks

Electronic notes in discrete mathematics, 54: 295–300, 2016.

url = http://hdl.handle.net/2117/101529

doi = 10.1016/j.endm.2016.09.051

This first work to appear, in an online publication, is related to what
we expose in this memory as our second case, since the normalized
Laplacian operator on a subdivision network was treated there. It
is a work written in a matrix scenario rather than our prototypical
functional framework.

2. Á. Carmona, M. Mitjana and E. Monsó.

Effective resistances and Kirchhoff index in subdivision networks.

Linear and Multilinear Algebra, 65: 1823–1837, 2017.

https://doi.org/10.1080/03081087.2016.1256945

In second place we obtained the publication of our first work, where
we studied total electrical compatible subdivision of networks and the
Laplacian operator was considered. The definition of resistance dis-
tance is the classical one, as in [58].
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3. Á. Carmona, M. Mitjana and E. Monsó.

Green’s function in partial subdivision networks.

Linear and Multilinear Algebra, 68: 94–112, 2020.

https://doi.org/10.1080/03081087.2016.1256945

Our third published work corresponds with the third problem we have
addressed. In this work the structure is the toughtest, with a potential
value considered on every vertex, thus the operator is a positive semi–
definite Schrödinger type operator and a partial electrical subdivision
(only in some edges) is applied. Of course, the generalized resistance
distance is the one that fits in this environment.

4. Á. Carmona, M. Mitjana and E. Monsó.

Group inverse matrix of the normalized Laplacian on subdivision networks.

Applicable analysis and discrete mathematics, 14: 272–286, 2020.

doi = 10.2298/AADM180420023C

Finally, our fourth published work is devoted to the functional expres-
sion of the results of our second problem, where a simple electrically
compatible subdivision of a network and the normalized Laplacian op-
erator are considered.

To end this chapter, this thesis memory is organized as follows. Chapter 3
gives an overview of Discrete Potential Theory, the mathematical framework
we have worked in. Even though inspired in the works of Choquet and Deny
about two centuries ago for the continuous field, our references here are
from the colleagues of the MAPTHE research group, to which we proudly
belong, [7, 8, 11, 12]. A brief introduction to the discrete counterpart of
elliptic operators is presented: Laplacian and Schrödinger type. We justify
the names. Moreover we prove the existence of their generalized inverse
operators, called Green’s operator in every case. Also their associated kernels
are presented.

Chapter 4 is the core of our work. There the different cases that have pro-
duced our four now published works are treated. Case by case, the elec-
trically compatible subdivision procedure is defined and the corresponding
Poisson problem on the subdivided network is solved. This is done by taking
advantage of a particular solution of a related Poisson problem posed on a
given initial network, to which the subdivision operation is applied. The
different cases of the three well known difference operators, combinatorial
Laplacian, normalized Laplacian and Schrödinger type operators, are con-
sidered and the correspondent Green’s functions are obtained. We give a
matrix interpretation of our results, as Green kernels can be identified with
Moore–Penrose inverse matrices (or group inverse matrices) of the respective
symmetric matrices associated with the mentioned operators.



In Chapter 5 the definitions of the resistance distance and the Kirchhoff in-
dex are provided. The ideas behind the definitions are explained and their
computation is adressed. In the case of networks, they are a quite straight-
forward generalization of the respective concepts well established on graphs
in the seminal paper [58]. But in the case of the Schrödinger operator, the
richness of the structure demands a brand new definition provided in [12].
Then, the computation of resistance distances and Kirchhoff indices for sub-
division networks are obtained in the three reiteratively referred cases.

The three last chapters contained in this memory are devoted to the presen-
tation of the application of our results to some simple scenarios, to establish
the future work in which we are determined to devote our efforts, and to
explain some conclusions that we have obtained from our work during this
time, respectively. Thus, in Chapter 6 simple networks as Star networks and
Wheel networks are taken into account, and examples of the obtained results
are provided so as the reader can get a better idea of the work we have done.
Then, in Chapter 7, some more works that we are to be submited soon, open
problems and further works that are still in mind are described at the last
chapter. To end with, in Chapter 8 we have listed some interesting ideas,
remarks and conclusions that we have obtained from the work done.

The Bibliography used in our research is listed in the very last pages of this
work, too.
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Discrete Potential Theory

Mathematical community has been for a long time interested in finding out
explicit expressions for solutions of partial differential equations. Many ef-
forts have been devoted to their resolution from a long time ago, many
hurdles encountered have been fortunately overcame, but many others re-
main unfortunately unsolved. Computing solutions of such partial differen-
tial equations is a challenging task, even in numerical mathematics, mainly
because of the physical domain where they are established.

As many situations of real interest are treated, modelled and solved, con-
sidering elliptic partial differential equations in the continuous field, elliptic
problems play a central role in mathematical physics. Two very well known
examples are the Poisson equation

∆u = f on D

where D ⊂ Rs is a given domain and f ∈ C(D) is a given data function, and
also the eigenvalue problem or Schrödinger’s equation

−∆u = λu on D,

with λ ∈ R. In both cases ∆ denotes the classical Laplace operator given by

∆u =
∂2u

∂x12
+

∂2u

∂x22
+ · · ·+ ∂2u

∂xs2
.

The principal aim of the work we have developed is to contribute to the
understanding of discrete elliptic problems on finite networks, where a par-
ticular operation that has a circuit theory inspiration has been applied. For
this purpose, we have taken advantage of the so called discrete potential
theory techniques.

Thus, even though our work is centered in the discrete field, we use nota-
tions that are inspired in the continuous setting for elliptic operators because
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there is a strong symbiosis between both frameworks, see [47, 55] as an ex-
ample. Indeed, sometimes solving a problem in the discrete setting can lead
to the solution of its continuum version by a limit process. On the contrary,
sometimes the relation between these two worlds does not work so easily.

In this chapter, our goal is to introduce the terminology and results on dis-
crete vector calculus on finite networks that we have used in this work. We
define what a network is, the functional notation we use, and the geometric
concepts (up to tangent space and vector fields) to justify basic difference
operators that mimic the usual differential operators in the continuous case,
in particular gradient and divergence. Thus, we explain that these discrete
operators satisfy analogue properties to those fulfilled by self–adjoint sec-
ond order elliptic continuous operators. In particular, they have associated
quadratic forms and resolvent or Green kernel, too.

The results we are about to show have been obtained by some members
of our research group in [6, 7, 8, 9, 11, 23]. Particularly, the concept of
tangent space is an identifying characteristic of our group. Other authors
have also treated some of the topics presented in this chapter, see for instance
[16, 19, 34, 36, 59].

3.1 Preliminaries

In this manuscript, we prefer to use a functional notation that emphasizes
similarities between the situation of discrete structures (graphs and net-
works) and the continuous case (manifolds). We will consider real–valued
functions defined on the vertex set of the graph, that can be identified so
handled as real finite dimensional vectors, and real–valued functions defined
on the edges set of the discrete structure as well. Moreover, we will also
use the word Laplacian, as our principal discrete operator can be viewed as
a proper discretization of the usual Laplace–Beltrami differential operator.
Finally, operators between functional spaces will have their corresponding,
kernels and inverses. Finally, a matrix version is also at disposal after giving
a labelling on the network vertex set.

3.1.1 Graphs and networks

A graph Γ = (V,E) consists of a finite nonempty set V = {x, y, z, . . .} of
vertices (or nodes), and a second set E of edges (or links) that are conceived
as relationships between vertices. Thus E ⊆ V × V so that {x, y} ∈ E if
and only if vertices x and y are to be considered as linked in some sense.
Therefore, (y, x) ∈ E too. The number of vertices, |V |, is known as the order
of the graph while the number of edges, |E|, is referred as the size of Γ.
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Given x, y ∈ V two different vertices in a graph, they are told to be adjacent
(or neighbours) if and only if there exists an edge relating them. In this case,
we write x ∼ y and the edge {x, y} ∈ E is said to be incident on both x and
y. The set of adjacent vertices to a given vertex x is N(x) = {y ∈ V : y ∼ x}
and the degree of a vertex is defined as the cardinality of N(x), that is
deg(x) = |N(x)|. When a couple of vertices in V, say x and y, be connected
by a sequence of ` + 1 different vertices {x = x1, x2, · · · , x`, x`+1 = y} ⊆ V
such that xi ∼ xi+1 for all i = 1, . . . , `, then we say that there is a path
between x and y and we write Pxy when referring to the set of all ` + 1
vertices together with the ` edges {xi, xi+1} for all i = 1, . . . , `. We also say
that `(Pxy) = ` is the length of this path Pxy.

Graphs can be sketched in two dimensional representations by drawing points
for vertices, and segments for the edges that join corresponding neighbours.
See [20, 29] for basic concept on graph theory.

In graph theory, vertices are all considered identical in nature, whatever they
represent, as if they behave all exactly in the same way, with no established
differences among them. Hence, no different roles can be assumed, except by
the number of their connections to other vertices, as they may have different
degree.

Similarly, edges are considered solely as connections. They are entities that
just establish (or not) a relationship between vertices. There is no possibility
of discrimination among them, as if all links were equal, and the sole question
that can be treated is whether they exist or not.

When a positive value is assigned to every edge of a given graph Γ introducing
the possibility of differentiating between connections, allowing the possibility
of modelling links between vertices differently, the discrete structure is called
network. Thus, a network Γ = (V,E, c) is a graph (V,E) endowed with a
nonnegative function c : V × V → [0,+∞), such that c(x, y) > 0 for every
pair x, y when {x, y} ∈ E and, therefore, c(x, y) = 0 when {x, y} /∈ E. We
call this function conductance, and consider the value c(x, y) as a weight
assigned to the corresponding edge {x, y} whenever it exists. Moreover, this
conductance function is symmetric as c(x, y) = c(y, x) because {x, y} and
{y, x} are considered as the same edge. Then, the generalized degree of a
vertex x ∈ V is κ(x) =

∑
y∼x

c(x, y), and the reciprocal function r defined as

r(x, y) = 1/c(x, y) for x ∼ y, is called resistance function.

As the particular case of c(x, y) being one on every edge where is non–null
puts us back in the case of a simple graph, where no differences between
edges can be considered, we will also use Γ to denote a graph.

In this work we will only consider simple networks; that is, with no loops,
i.e. no edges that link a vertex with itself will be considered, nor multiples
edges, so there will exist at most one connection between every possible pair
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of vertices. Therefore, the definition of conductance is consistent.

3.1.2 Connectness, geodesic distance

Related to paths (both in graphs but also in networks) there are two concepts
that deserve a mention in our work: connectness and distance.

We say that Γ is connected if any two vertices x and y of V can be joined by a
path, Pxy. By abuse of notation, it is said that V is connected. Furthermore,
given a vertex subset F ⊆ V we say that F is connected if each pair of
vertices of F is joined by a path, entirely contained in F ; that is, the vertices
that compound such a path are all vertices in the subset F. We will consider
only connected networks.

As the number of edges in a path Pxy connecting two vertices x and y is
said to be the length of this path, `(Pxy), a geodesic distance function can
be defined on a graph relating every pair x and y of two vertices of V to the
minimum length among all paths that join x and y; that is, d : V × V → N
such that d(x, y) = min

Pxy

`(Pxy) when paths joining x and y do exist1.

It is well known that this distance function satisfies the properties of a dis-
tance, so d(x, y) = 0 if and only if x = y, d(x, y) = d(y, x), for all x, y ∈ V
and d(x, y) ≤ d(x, z) + d(z, y), for all x, y, z ∈ V.
The corresponding extension of former shortest–path distance to networks is
easily acomplished by defining adequately the length of a path. Given Pxy =
{x = x1 ∼ x2 ∼ · · · ∼ xk = y} a path joining vertices x and y, it is convenient

to consider that the length of the path Pxy is `c(Pxy) =
k−1∑
i=1

1

c(xi, xi+1)
. In

such a way, we relate the length of an edge with the electrical resistance of it
and consider then the sum of these distances as they are connected in series.
Thus, on networks, the geodesic distance between two vertices x and y is
defined as the least resistive path; that is,

dc(x, y) = min {`c(Pxy) : Pxy is a path between x and y}.

The function dc determines a distance on the network as it fulfills the three
required properties for a function to be a distance. In particular, the tri-
angular inequality is an equality when the central node separates the two
others; that is, dc(x, y) = dc(x, z) + dc(z, y) if every path between x and y
passes through z or, in other words, is a cut–vertex because its elimination
disconnects the network.

From now on, we will make no difference between d and dc, the two shortest–
path distances defined for graphs and networks. These shortest–path dis-
tances are only one possibility to define whether two different vertices are

1It is accepted that d(x, y) = +∞ when do not (only on non connected networks).
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close or far away in a given discrete structure. We will also consider resis-
tance distances (or effective resistances) in networks further on within this
work.

3.1.3 Boundary of a vertex subset

For our purposes it is now timely and appropriate to introduce the concept of
the boundary of a subset of V. Given F ⊂ V, a proper subset, for every x /∈ F
the distance from x to F is defined canonically as d(x, F ) = min

y∈F
d(x, y). Then

the boundary of a proper subset F, is denoted and defined by ∂F =
{
x ∈

V \ F : d(x, F ) = 1
}
. Moreover, the interior and the exterior of F ⊂ V are

◦
F=

{
x ∈ F : if y ∼ x then y ∈ F

}
and Ext(F ) =

{
x ∈ V : d(x, F ) ≥ 2

}
consequently. Please, observe that

◦
F is not necessarily connected even when

F is. Finally, the closure of F is defined naturally as F = F ∪ ∂F and
coincides with the set

{
x ∈ V : d(x, F ) ≤ 1

}
.

3.2 Functions and linear operators on networks

3.2.1 Functions on networks

The set of real–valued functions u : V → R where u(x) ∈ R for every x ∈ V, is
denoted by C(V ) and clearly is a real vector space that is isomorphic to R|V |
(and thus we will –by abuse of notation– simply denote this vector space by
R|V |). Similarly, C(V ×V ) is the real vector space of all real functions defined
on edges, from V × V into R. We will use C(V × V ) or C(E) indistinctly.

The support of u ∈ C(V ) is supp(u) = {x ∈ V : u(x) 6= 0} ⊂ V. For every
F ( V it is possible to identify the corresponding C(F ) with the set {u ∈
C(V ) : supp(u) ⊆ F}.

Dirac’s delta function εx : V → R is defined for every vertex x ∈ V such that
its support is exclusively the vertex x, with an assigned value of one. Simi-
larly there also is the Dirac’s delta function on edges εe : E → R, vanishing
at all edges except the one from it is named and where attains a unitary
value.

Both sets of Dirac’s delta functions can be considered as standard or canon-
ical bases for their respective vector spaces C(V ) and C(E). Hence, every
u ∈ C(V ) can be expressed by u =

∑
x∈V

u(x)εx for some coordinates u(x) ∈ R

and, analogously, every u ∈ C(E) can be expressed by u =
∑
e∈E

u(e)εe for

some coordinates u(e) ∈ R.
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Moreover, we shall endow these two vector spaces with a correspondingly in-
ner product 〈u, v〉C(V ) =

∑
x∈V

u(x)v(x) and 〈u, v〉C(E) =
∑
e∈E

u(e)v(e), respec-

tively, in which standard basis are orthonormal. As usual then, ||u||2C(V ) =

〈u, u〉C(V ) and ||u||2C(E) = 〈u, u〉C(E) define a norm on the vector space where
they respectively have sense.

3.2.2 Linear operators on networks

Given two vertex sets F1, F2 ⊂ V, a linear operator K : C(F2) → C(F1)
is just a structure–preserving morphism such that K(u) ∈ C(F1) for every
u ∈ C(F2).

It is important for us to point out that, associated with a linear operator,
there always exists a kernel K ∈ C(F1 × F2), defined in the following way:
if y ∈ F2, then K(εy) ∈ C(F1) is a function that may be evaluated for every
x ∈ F1 hence

K(x, y) = K(εy)(x)

for all x ∈ F1 and all y ∈ F2. It is called the discrete version of Schwarz’s
kernels theorem, as varying y ∈ F2 we evaluate different functions over their
whole domain, for every x ∈ F1.

The functionK(x, y) is called a kernel (associated with K) because the linear
operator can be restituted from it

(K(u)) (x) =
∑
y∈F2

K(x, y)u(y) for all x ∈ F1 and u ∈ C(F2)

as K(u) ∈ C(F1) is defined for every x ∈ F1 by combining all the attained
values u(y) in the way that the kernel K(x, y) specifies.

Moreover we can introduce two families of functions associated with the
kernel K of the linear operator K, the so called components of K with
respect to y i.e. Ky(x) = K(x, y) = K(εy)(x) and with respect to x, i.e.
Kx(y) = K(x, y).

3.3 Difference operators on networks

Now we proceed to describe discrete analogues of the fundamental first order
differential operators on Riemannian manifolds, specifically the derivative
and the gradient, the divergence and the curl. Time for second order differ-
ential operators as Laplacian and Schrödinger type operators will come in
the next section.

Before that we should start by defining what is the tangent space of a given
network and so, how to consider vector fields.
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3.3.1 Tangent space and vector fields

For every x ∈ V, the tangent space at vertex x of a graph is defined as the
formal linear combinations of the edges that are incident with x. We denote
it by Tx(Γ), and consider that the set of edges {exy = {x, y} : y ∈ N(x)} is
a coordinate basis of the tangent space. Hence dimTx(Γ) = deg(x), varying
with x unless the graph is regular.

Therefore, a vector field on Γ is an application f : V →
⋃
x∈V

Tx(Γ) such that

f(x) ∈ Tx(Γ), that is, f(x) =
∑
y∼x

λyexy, where the sum is restricted only to

the vertices of V that are adjacent to x. We will denote by χ(Γ) the space
of vector fields. Moreover supp(f) = {x ∈ V : f(x) 6= 0} will stand for
the support of a vector field f. A vector field on Γ is uniquely determined
by its components in the (local) coordinate basis. Therefore, a component
function may be associated with a vector field as f(x) =

∑
y∼x

f(x, y)exy. As

this relation is one–to–one, χ(Γ) can be identified with C(E).

A vector field is called a flow when its component functions satisfy f(x, y) =
−f(y, x) for any x, y ∈ V. Analogously, a vector field f is called symmetric
when its corresponding component function is symmetric.

It is also possible to relate a vector field f ∈ χ(Γ) with two other vector fields:
fs is the symmetric and fa is the antisymmetric vector fields associated with
f. We define both fields by expliciting their components functions as

fs(x, y) =
f(x, y) + f(y, x)

2
and fa(x, y) =

f(x, y)− f(y, x)

2
.

Observe that f = fs + fa for any f ∈ χ(Γ).

If u ∈ C(V ) and f ∈ χ(Γ) that has f ∈ C(E) as its component function, the
field uf ∈ χ(Γ) and has uf as its component function.

For any two vector fields f, g ∈ χ(Γ), we define 〈f, g〉 a function in C(V ) such
that

〈f, g〉(x) =
∑
y∼x

r(x, y) f(x, y)g(x, y) for any x ∈ V,

in terms of its component functions and of the resistance function. Clearly,
〈·, ·〉(x) determines an inner product on Tx(Γ). Therefore, on a network, we
can consider the following inner products on C(V ) and on χ(Γ),

〈u, v〉 =
∑
x∈V

u(x)v(x), u, v ∈ C(V ) and
1

2

∑
x∈V
〈f, g〉(x), f, g ∈ χ(Γ),

where the factor
1

2
is due to the fact that information on each edge is con-
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sidered twice. Moreover given f, g ∈ χ(Γ), then∑
x∈V
〈f, g〉(x) =

∑
x∈V
〈fs, gs〉(x) +

∑
x∈V
〈fa, ga〉(x).

Finally, and in particular, if f is symmetric and g is a flow, it holds that∑
x∈V
〈f, g〉(x) = 0.

3.3.2 Derivative, Gradient, Divergence and Curl

The derivative operator is the linear map d : C(V ) → χ(Γ) that assigns to
every u ∈ C(V ) the flow du, called derivative of u, and given by

du(x) =
∑
y∼x

(u(y)− u(x)) exy, for every x ∈ V.

Then, the gradient operator is the linear map ∇ : C(V )→ χ(Γ) that assigns
to every u ∈ C(V ) the flow ∇u, called gradient of u, and defined as

∇u(x) =
∑
y∼x

c(x, y) (u(y)− u(x)) exy, for every x ∈ V.

Clearly, it is verified that du = 0, or equivalently ∇u = 0, if and only if u is
a constant function.

The divergence operator is defined, mimicking the continuous operator, as
the linear map div : χ(Γ)→ C(V ), given by div = −∇∗. So, it is the one that
assigns to every f ∈ χ(Γ) the function div f called divergence of f, given by
the relation∑

x∈V
u(x)div f(x) = −1

2

∑
x∈V
〈∇u, f〉(x) for every u ∈ C(V ).

Taking u constant above, we obtain the Divergence Theorem∑
x∈V

div f(x) = 0 for every f ∈ χ(Γ).

Moreover, we have div f(x) =
∑
y∼x

fa(x, y), for every x ∈ V.

The curl of a vector field is, finally, the linear map curl : χ(Γ) → χ(Γ) that
assigns to every f ∈ χ(Γ) the symmetric vector field curl f, called curl of f,
and defined by

curl f(x) =
∑
y∼x

r(x, y)fs(x, y) exy, for every x ∈ V.
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As desired, the above defined difference operators satisfy analogous proper-
ties to that ones satisfied by their differential counterparts. For instance,
curl∗ = curl, div ◦ curl = 0 and curl ◦ ∇ = 0, see [13].

3.4 Second order difference operators

It is time now to introduce the fundamental elliptic second order difference
operator on C(V ), which is obtained by composition of the last two first order
operators previously presented.

3.4.1 The Laplace operator

Specifically, we consider the endomorphism of C(V ) given by

L = −div ◦ ∇,

that we call the Laplace operator of Γ and which is also known as the combi-
natorial Laplacian of Γ. We point out the analogy of this definition with the
definition of its continuous counterpart, the well known Laplace–Beltrami
elliptic operator for Riemannian manifolds, that can be also defined as the
divergence of the gradient ∆ = div ◦ ∇, but for operators in the continu-
ous setting of course. Hence the name given to the discrete operator. Please
note the opposite sign, due to the former definition of the discrete divergence
operator.

Its expression and some critical properties of this operator, see [7], are shown
just right now. For every u ∈ C(V ) and for every x ∈ V we get that

L(u)(x) =
∑
y∈V

c(x, y)
(
u(x)− u(y)

)
with the sum extended to all y ∈ V, provided that c(x, y) vanishes when
{x, y} /∈ E. Moreover, given u, v ∈ C(V ) the Laplacian of Γ satisfies anal-
ogous properties to those fulfilled by its continuous counterpart. The First
Green Identity can be expressed as∑

x∈V
v(x)L(u)(x) =

1

2

∑
x∈V
〈∇u,∇v〉(x)

=
1

2

∑
x,y∈V

c(x, y)
(
u(x)− u(y)

)(
v(x)− v(y)

)
.

Also a Second Green Identity can be established in the following terms∑
x∈V

v(x)L(u)(x) =
∑
x∈V

u(x)L(v)(x).
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And finally the corresponding version of Gauss theorem is∑
x∈V
L(u)(x) = 0.

Easily from the previous results, we also obtain that the Laplacian of Γ is
self–adjoint and positive semi–definite.

Moreover L(u) = 0 if and only if u is constant. Hence, when restricted to
its kernel, the Laplacian operator is an automorphism.

3.4.2 Schrödinger type operators

Given a function q ∈ C(V ), we define a Schrödinger operator on Γ as the
linear operator Lq : C(V )→ C(V ) that assigns to every u ∈ C(V ) the function

Lq(u)(x) = L(u)(x) + q(x)u(x).

While we refer to q as the potential, some authors use the term ground–state
as it might be interpreted as a connection of each vertex in a network with a
conductor medium with null potential. Instead of considering a Schrödinger
operator as a perturbation of the combinatorial Laplacian, which it is, we
prefer to look at it as an assignation of a real number (positive, negative
or zero) to every single vertex in the structure, allowing the possibility of
differentiating between vertices somehow (and not only because of having
different degree).

Hence, by introducing Schrödinger operators we get to satisfy our wish of
working with discrete structures that consider the possibility of distinguish-
ing both constitutive elements of a network; vertices by q and also edges by
c.

Clearly Lq is also a self–adjoint operator and defines a bilinear form Eq(u, v) =
〈u,Lq(v)〉 that is called the energy of Lq. Applying the first Green identity
for the Laplacian it turns out that

Eq(u, v) =
1

2

∑
x,y∈V

c(x, y)
(
u(x)− u(y)

)(
v(x)− v(y)

)
+
∑
x∈V

q(x)u(x)v(x)

so if q ≥ 0 then the energy of Lq is positive semi–definite.

What we will call a weight is a function ω ∈ C(V ), such that ω > 0 on V
and also 〈ω, ω〉 = 1. We will denote as Ω(V ) the set of positive and unitary,
weight functions. For every weight ω, we define qω the potential associated
with ω, as

qω(x) = − 1

ω(x)
L(ω)(x), x ∈ V.
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Therefore, it is qω(x) = −κ(x) +
1

ω(x)

∑
y∈V

c(x, y)ω(y) for every x ∈ V. So

a weight and its associated potential are orthogonal functions and therefore
qω must take positive and negative values except when the weight is con-
stant, in which case its associated potential vanishes at every vertex and its
corresponding Schrödinger operator Lqω = L0 = L is the Laplacian.

Potentials associated with a weight do determine, up to a multiplicative
positive constant, the weight function. That is, if ω1 and ω2 are weight
functions, it is qω1 = qω2 if and only if ω1 = aω2 for some a > 0. On
the other hand when qω1 6= qω2 , qω1 determines a family of functions q for
which Lq is positive semi–definite and is essentially different from the family
determined by qω2 .More properties of these potential associated with weight
functions can be found in [7].

By using the well known Perron–Frobenius theorem every potential function
q is related to a potential function associated with a weight qω in the following
terms: given q ∈ C(V ), there exists a unique ω ∈ Ω(V ) and λ ∈ R such that

q = qω + λ

(see [7] again for a detailed justification of this very important result).

So there is another characterization of Schrödinger operators,

Lq(u)(x) = L(u)(x) + q(x)u(x) = Lqωu(x) + λu(x).

An expression for Lqω is obtained by applying the so called Doob’s Transform
once a weight is given. Hence, for every u ∈ C(V ) it is

L(u)(x) + qω(x)u(x) =
1

ω(x)

∑
y∈V

c(x, y)ω(x)ω(y)

(
u(x)

ω(x)
− u(y)

ω(y)

)
, x ∈ V.

In addition, for every u, v ∈ C(V ) we obtain that

Eqω(u, v)+
∑
x∈V

qω(x)u(x)v(x) =

1

2

∑
x,y∈V

c(x, y)ω(x)ω(y)

(
u(x)

ω(x)
− u(y)

ω(y)

)(
v(x)

ω(x)
− v(y)

ω(y)

)
.

So now we are ready to set a necessary and sufficient condition for the positive
semi–definiteness of Schrödinger operators, which is a result that evidently
has a continuous counterpart known as the Energy principle. Once q =
qω + λ, then Lq is positive semi–definite if and only if λ ≥ 0, and positive
definite if and only if λ > 0. Moreover, when λ = 0, Lq(u) = 0 if and only
if u = aω for some a ∈ R.
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Also, as min
〈u,u〉=1

{Eq(u)} ≥ λ, it is Eq(u) = λ if and only if u = ±ω. Hence

Lq(ω) = λω and λ turns to be the lowest eigenvalue of Lq, and it is simple.

In the positive semi–definite case, when λ = 0 and q = qω, it is Lqω ⊥ ω and
therefore if u ∈ C(V ) is such that Lqω(u) ≥ 0, then Lqω(u) = 0 and u = aω
with a ∈ R.

3.4.3 The normalized Laplacian

The concept of Schrödinger operator encompasses other widely used discrete
operators as, for example, the so called normalized Laplacian introduced in
[35] and defined as

L u(x) =
1

κ(x)

∑
y∈V

c(x, y)

(
u(x)√
κ(x)

− u(y)√
κ(y)

)

for a connected network with conductance function c. If the size of the subja-
cent graph ism, then the normalized Laplacian on (V,E, c) coincides with the
non–singular positive semi–definite Schrödinger operator on (V,E, ĉ) where

the conductance function is ĉ(x, y) =
c(x, y)√
κ(x)

√
κ(y)

, considering ω =
1

2m

√
κ

and obviously λ = 0, thus L = Lqω , applied on the same graph but consid-
ered as two different networks.

3.5 Green’s function for Poisson and Dirichlet prob-
lems

In this work we have considered solving Poisson and Dirichlet boundary value
problems on networks associated with linear operators as the combinatorial
Laplacian, the normalized Laplacian and Schrödinger type operators as well.

In this section we introduce the required concepts to solve these problems.
The so called Green’s function turn to be critical in the sense it can be
considered as the universal solver.

3.5.1 Poisson and Dirichlet boundary value problems on net-
works

Roughly speaking, a Poisson problem on Γ is when the domain where the
condition has to be validated is the hole vertex set V, whereas a Dirichlet
problem establishes a condition only in a proper subset F ⊂ V while adding
the values of the solution on the boundary ∂F.
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More explicitly, let L denote now whatever of our three second order differ-
ence linear operators, the combinatorial Laplacian or the normalized Lapla-
cian or more generalized Schrödinger type operator. Then, given f ∈ C(V )
a Poisson problem with data f is set so as we want to find out which is
u ∈ C(V ) such that

L(u) = f

on the whole V.

On the other hand, a Dirichlet boundary value problem is posed once a
proper subset F ⊂ V and two data functions f ∈ C(V ) and g ∈ C(F ) are
given. Therefore, we are interested in finding u ∈ C(V ) such that

L(u) = f on F

u = g on ∂F.

It is worth to mention that both Poisson and Dirichlet boundary value prob-
lems are related not only to a domain (in our case the vertex set associated
with the network Γ, or a subset of it), but also to a particular linear operator
to be considered and solved.

3.5.2 Green operators and Green’s kernel functions

Now we assume that both, combinatorial Laplacian and Schrödinger type
operators2, are positive semi–definite. We have seen that it is always the
case for the first one, and that we have to consider q = qω + λ, for some ω ∈
Ω(V ) and λ ≥ 0, for the second one. Provided this situation, we construct
kernels associated with their respective inverse operators that correspond
to Poisson problems. Analogously to the well known continuous case, such
inverse operators will be called Green operators.

We start recalling fundamental notions about operators and their associated
kernels that we have exposed in section 3.2.2 and assuming F1 = F2 = V . We
will remark the conditions that assure existence and uniqueness of the inverse
operators, list a few properties that are satisfied by them and finally build
the associated kernel that is known as Green’s kernel function or Green’s
function for short.

Generally speaking, if K : V × V → R is a kernel in V then its associated
endomorphism K : C(V )→ C(V ) is defined as

(K(u))(x) =
∑
y∈V

K(x, y)u(y), for every x ∈ V.

Conversely, any endomorphism in C(V ) determines a kernel in V byK(x, y) =
K(εy)(x) for every pair x, y ∈ V.

2We consider the normalized Laplacian as a "particular" case
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In this context, an operator K is self–adjoint (that is 〈K(u), v〉 = 〈u,K(v)〉
for every u, v ∈ C(V )) if and only if its related kernel K is a symmetric
function (K(x, y) = K(y, x) for all x, y ∈ V ).

3.5.3 Inverse operator for the Laplacian operator

Let us now denote 1 ∈ C(V ) the constant function 1(x) = 1, for every x ∈ V.
It turns out that ||1||2 = |V|. Given f ∈ C(V ), the Poisson problem on Γ for
the Laplace operator consists in finding u ∈ C(V ) such that

L(u)(x) = f(x), for every x ∈ V.

As we have previously seen, the kernel of the Laplacian operator is the set
of constant functions, so we can consider the orthogonal projection onto

kerL = span{1}, P : C(V ) → ker(L) defined as P(f) =
〈f, 1〉
〈1, 1〉

· 1, for every

f ∈ C(V ) so that (P(f)) (x) =

∑
y∈V f(y)1(y)

|V |
·1(x) =

1

|V |
∑

y∈V f(y) is the

constant function with value equal to the sum of all values that f attains.

It is clear, see below in Figure 3.1 for a representation of the Laplacian
operator, that L◦P = 0. As Gauss theorem holds for the Laplacian operator,
L(u) ∈ (kerL)⊥ or equivalently P ◦ L = 0, as well.

Consequently we have a characterization for data function on Poisson prob-
lems for the corresponding problem being compatible and therefore solutions
exist.

Therefore, the set of all solutions to a Poisson problem L(u) = f − P(f) is
a one–parameter family {u + µ1, µ ∈ R}, with u the unique function that
exists by the previous results. Again Figure 3.1 illustrates this fact, as there
is exactly one point (for a function) in every line parallel to 1 (for a one–
parameter family) that is in 1⊥.

Thus it is possible to fix a particular solution in some sense because an
orthogonal to 1 solution of a compatible Poisson problem can be always
found.

So there is a Fredholm’s alternative discrete version that also applies in this
discrete setting, see [8]. Given f ∈ C(V ), the Poisson problem L(u) = f is
consistent if and only if P(f) = 0. Then, there exists a unique solution such
that P(u) = 0.

Therefore and so to speak, in some sense, there is existence and uniqueness
of solutions for a Poisson problem given the Laplacian operator.

Now we consider the operator that assigns to every function f ∈ C(V ) the
unique u ∈ C(V ) such that

L(u) = (I − P)(f) and 〈u, 1〉 = 0.
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u

1⊥

L

G

1⊥

00 1

(I − P)(u)

1 = kerL

C(V ) C(V )

P(u)

u

1⊥ 1⊥

00 1 = kerG

f

P(f)1

C(V ) C(V )

(I − P)(f)

Figure 3.1 Two pictures about the Laplacian and Green operators
in relation with a Poisson problem L(u) = f

We will call it the Green operator and will denote it by G so as G : C(V )→
C(V ), such that G(f) = u. See again Figure 3.1, now above, for a geometric
interpretation.

As the network is connected and as happens with the Laplacian operator, the
Green operator, when restricted to the space 1⊥, is also an automorphism.
Then it is clear that G ◦P = 0. By definition G(f) ∈ 1⊥ so P ◦G = 0 as well.

Moreover, this Green operator satisfies nice properties such that for instance
being self–adjoint and positive semi–definite. Also the Green operator of
f ∈ C(V ) is orthogonal to f only when f is constant, or 〈G(f), f〉 = 0 if and
only if f = a1 for a ∈ R.

Therefore, the associated kernel G : V ×V → R defined for every pair x, y ∈
V as G(x, y) = G(εy)(x) is called Green’s kernel function. We note that it
is symmetric, as G is self–adjoint, and that u(x) =

∑
y∈V

G(x, y)f(y) is the

unique solution orthogonal to 1 of the Poisson problem L(u) = (I − P)(f)
for every f ∈ C(V ).

Hence, the well known relation between an operator and its associated kernel
enables us, again, to characterize the Green kernel of Γ by considering a
family of solutions of suitable consistent Poisson problems.

Let us define for every y ∈ V, the function Gy ∈ C(V ) defined by Gy(x) =
G(x, y), x ∈ V. It can be characterized by

L(Gy) = εy −
1

|V |
1, 〈Gy, 1〉 = 0.
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So, from the relationship between L and G, it turns out that L◦G = G ◦L =
I − P. Thus, when restricted to 1⊥, it is L ◦ G = G ◦ L = I obviously.
Therefore, it is

L ◦ G ◦ L = L ◦ (I − P) = L, and G ◦ L ◦ G = G ◦ (I − P) = G

by applying that L ◦ P = P ◦ L = G ◦ P = P ◦ G = 0. So both operators are
generalized inverse operators one of each other and our goal is accomplished.

3.5.4 Inverse operator for a Schrödinger type operator

Once we have presented the so called Green operator and its respective
Green’s kernel for L, the Laplacian operator on a network Γ, we face now
the study of their counterparts in the case of a Schrödinger operator Lq by
reproducing previous arguments and definitions.

Now a Poisson problem consists in, given f ∈ C(V ), figuring out u ∈ C(V ),
satisfying

Lq(u) = f, for all x ∈ V.

We are concerned with Schrödinger type operators that have good properties,
so we consider that the potential q ∈ C(V ) is q = qω + λ for some ω ∈ Ω(V )
and λ ≥ 0. Two cases have to be treated separately: when λ > 0 the self–
adjoint operator is positive definite, so invertible; while when λ = 0 it is
self–adjoint and positive semi–definite, with a null simple eigenvalue as the
network is connected.

As we shall see, in both cases the Green operator is well defined, self–adjoint,
and denoted by Gq with no ambiguity because of the scenario. Moreover,
the associated kernel Gq : V × V → R, that is constructed by analogous
procedures so as Gq(x, y) = Gq(εy)(x), for any x, y ∈ V, is called the Green
function and it turns out to be symmetric.

We notably remark, in a unifying notation, that Gq(ω) = λ†ω, where λ† =
λ−1 in the invertible case λ > 0, while λ† = 0 in the singular case, that is
λ = 0.

Case (i): λ > 0, Lq positive definite

When λ > 0 the Schrödinger operator Lq is an isomorphism on C(V ), as
there is no kernel to consider, ( i.e. ker(Lq) = 0). Then, a Poisson problem
Lq(u) = f, for all x ∈ V, is always, for every data function f ∈ C(V ),
consistent. Therefore, we can define its inverse operator Gq : C(V )→ C(V ),
such that Gq(f) = u, for every f ∈ C(V ). This inverse operator will be called
Green operator of Γ.
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Obviously it is Lq ◦Gq = Gq ◦Lq = I. The Green operator is positive definite
in this case by applying the positive semi–definiteness of Eq. Moreover it is
also a self–adjoint operator in the sense that∑

x∈V
g(x)Gq(f)(x) =

∑
x∈V

f(x)Gq(g)(x), for all f, g ∈ C(V ).

The Green kernel of Γ is the kernel associated with the previous Green
operator, is denoted by Gq = Gq(x, y) and is symmetric again. Then, the
sole solution to the Poisson problem Lq(u) = f on V, can be recovered from
the data function f ∈ C(V ) by

u(x) =
∑
y∈V

Gq(x, y) f(y), for all x ∈ V.

Finally, the relation between operators and their associated kernels enables
us to characterize the Green kernel as the set of solutions of a suitable bat-
tery of Poisson problems. As Lq is an isomorphism, we consider for every
y ∈ V, the function (Gq)y(x) = Gq(εy)(x) for every x on V, and finally we
define Gq(x, y) = (Gq)y(x) so this component function is symmetric and
characterized by Lq(Gy) = εy on V.

Case (ii): λ = 0, Lq positive semi–definite

When λ = 0, the Schrödinger operator is a singular, self–adjoint and positive
semi–definite operator, as the Laplacian operator is. We will denote again as
Lq even though, as λ vanishes, it should be a Lqω in fact, for some ω ∈ Ω(V ).

Let us consider the vector space ker(Lq) which is now the linear space gen-
erated by ω. Therefore, the orthogonal projection onto ker(Lq) = span{ω}, is
P : C(V ) → 〈ω〉 defined as P(f) = 〈f, ω〉 · ω, for every f ∈ C(V ). It is clear
that Lq ◦ P = 0, and also that P ◦ Lq = 0.

Consequently, we have a characterization for data function on Poisson prob-
lems so there exist a solution. Moreover, as in the Laplacian case, a Fred-
holm’s alternative holds: consistency is assured if and only if data functions
are orthogonal to the weight function, and there is a unique orthogonal to
the weight function solution of the problem (when there is) or mathemati-
cal spoken given ω ∈ Ω(V ) and f ∈ C(V ), then the corresponding Poisson
problem for the Schrödinger operator Lq(u) = f is consistent if and only if
P(f) = 0. Moreover, there exists a unique solution such that P(u) = 0.

Hence, for each f ∈ C(V ), as f−P(f) is in (ker(Lq))⊥ , there exists u ∈ C(V )
such that Lq(u) = f − P(f). Then, the set of all solutions of the Poisson
problem is

{
v ∈ C(V ) : v = u+ aω for some a ∈ R

}
. And there is just one

function in this set that is orthogonal to ω.
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Now is clear how to define the desired inverse operator. Let us consider the
operator that assigns to every function f ∈ C(V ) the unique u ∈ C(V ) such
that

Lq(u) = (I − P)(f) and 〈u, ω〉 = 0.

Of course, we will call it the Green operator and we will denote it by Gq so
as Gq : C(V ) → C(V ), such that Gq(f) = u. As the network is connected,
the Green operator, when restricted to the space ω⊥, is an automorphism.
So Gq ◦ P = 0 and P ◦ Gq = 0 as well.

Moreover, this Green operator also satisfies the nice properties of being self–
adjoint and positive semi–definite. And it sends 〈ω〉 to 〈ω〉⊥, or more pre-
cisely 〈Gq(f), f〉 = 0 if and only if f = aω for a ∈ R.
With all that, its corresponding kernelGq : V×V → R defined asGq(x, y) =
Gq(εy)(x) for every pair x, y ∈ V is called Green’s kernel function. We note
that it is symmetric, as Gq is self–adjoint, and hence

u(x) =
∑
y∈V

Gq(x, y)f(y)

is the unique solution orthogonal to ω of the Poisson problem Lq(u) =
(I − P)(f) for every f ∈ C(V ), now in the case that q = qω for some weight
function ω ∈ Ω(V ).

As in the previous cases, the relation between an operator and its associated
kernel enables us, again, to characterize the Green kernel of Γ as solutions of
a battery of appropriate consistent Poisson problems. Let us define for every
y ∈ V, then function (Gq)y ∈ C(V ) defined by (Gq)y(x) = Gq(x, y), x ∈ V is
characterized by

L((Gq)y) = (I − P)εy = εy − ω(y)ω, 〈(Gq)y, ω〉 = 0.

Finally, to end this section and this chapter too, from the relationship be-
tween the singular Schrödinger operator Lq and its inverse operator Gq, it
turns out that Lq ◦Gq = Gq ◦Lq = I −P. Analogously to the Laplacian case,
it is Lq ◦ Gq = Gq ◦ Lq = I when restricted to ω⊥. Therefore, it is true that

Lq ◦ Gq ◦ Lq = Lq ◦ (I − P) = Lq, and Gq ◦ Lq ◦ Gq = Gq ◦ (I − P) = Gq

and we can state that both operators are generalized inverse operators one
of each other.

3.6 Matrix interpretation

As we are concerned with finite discrete structures, both size and order of
the subjacent graph are finite. Thus it is quite straightforward to obtain a
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vectorial version of what functions are and also a matrix interpretation for
linear operators and their correspondent kernels.

Hence, given a labelling of a connected network Γ, that is supposing that
V = {x1, ..., xn}, the conductance c(xi, xj) ≥ 0, for every i, j = 1, . . . , n
then each u ∈ C(V ) can be identified with a vector of n components (now
|V | = n). Hence

u = [u(x1), . . . , u(xn)]T ∈ Rn.

Therefore, the combinatorial Laplacian of Γ is identified with the singular
irreducible M–matrix

L =



κ(x1) −c(x1, x2) · · · −c(x1, xn)

−c(x2, x1) κ(x2) · · · −c(x2, xn)

...
...

. . .
...

−c(xn, x1) −c(xn, x2) · · · κ(xn)


.

Clearly, this matrix is symmetric and diagonally dominant and hence it is
positive semi–definite. Moreover, it is singular and 0 is a simple eigenvalue
whose associated eigenvectors are constant.

In the particular case of a graph, that is when c(x, y) = 1 when non–null, the
Laplacian matrix is a very powerful tool that is used to analyze structures
from the connectivity point of view (counting connected parts, algebraic
connectivity, expanding properties, isoperimetric number and many more).

Similarly, we can also have in mind that its inverse operator, what is called
the Green operator, has its own matrix counterpart, say G corresponding to
the Green’s kernel function of course, which is symmetric. Therefore, so it
is G.

Moreover, the very well known Moore–Penrose conditions for a generalized
inverse hold, as in this case it is

LGL = L
GLG = G

(LG)T = LG
(GL)T = GL.

Hence G is the Moore–Penrose generalized inverse of the Laplacian matrix L,
denoted as G = L†. See [17] for a general introduction to generalized inverses.

It is possibly to translate the former discussion to the case of a Schrödinger
type operator.
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So again, after a labelling on the vertex set, Lq can be identified with the
matrix

Lq =



κ(x1) + q(x1) −c(x1, x2) · · · −c(x1, xn)

−c(x2, x1) κ(x2) + q(x2) · · · −c(x2, xn)

...
...

. . .
...

−c(xn, x1) −c(xn, x2) · · · κ(xn) + q(xn)


which is an irreducible, symmetric, Z–matrix, but not necessarily diagonally
dominant. Depending on the values q(xi), i = 1, . . . , n, the matrix is singular
or non singular. As we are interested only in positive definite or positive
semi–definite Schrödinger type operators, and after the identity q = qω + λ,
we can think on Lq as its correspondent Lqω assuming λ = 0, thus semi–
definiteness or as Lqω + λI for the non–singular case, thus invertible.

As we did before, in the Laplacian matrix case, the corresponding inverse
operator, what is called the Green operator, has its own matrix counterpart,
say Gq in perfect matching with the Green’s kernel function of course, which
is always symmetric. Therefore, so it is Gq either when λ = 0 or positive.

Thus, when referred to the matrix environment, we conclude again that the
two matrices associated with both operators Lq and Gq, Lq and Gq respec-
tively, are of course symmetric matrices (as the corresponding kernel are
symmetric).

Therefore, Gq = L−1q in the positive definite scenario because in terms of the
respective matrices, it comes out that Lq Gq = Gq Lq = I, from the properties
operators satisfy.

And finally Gq = L†q in the positive semi–definite case as matrices satisfy the
four Moore–Penrose conditions for a generalized inverse, by mimicking the
relations established previously for the operators. So it is, again

LqGqLq = Lq
GQLqGq = Gq

(LqGq)T = LqGq

(GqLq)T = GqLq.

With all this in mind, it is clear that figuring out the Green’s kernel related to
a difference operator in this boundary value problems posed on networks has
a computing generalized inverses counterpart. This is what allows our work
to be interesting in the Matrix theory framework as a possible interpretation
of it is as a sort of Sherman–Morrison–Woodbury formulae for structured
matrices, as it will be clear from the sequel.
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Poisson problems and
Green’s functions on
Subdivision networks

Now that we have presented what is, given a network and a differential
operator defined on it, a Poisson problem and it has also been stated that
the solution of such a problem is possible to be achieved by using the so
called Green’s function, it is time now to expose the most important part of
the work we have done.

Given the relationship between graph theory and electrical circuit theory,
which is probably dating back to Kirchhoff’s time, in this work we have
inspected the possibilities of generating subdivisions of discrete structures
that, as electrical circuits, can be considered equivalent. So while it does
not seem like an overly original approach, we have already discussed on
the difficulty of finding references to the issue in a scientific–mathematical
context.

In this chapter we present the results we have obtained from the different
possibilities that we have considered. These possibilities have been designed
upon two factors that we had in mind: the network operation and the linear
difference operator that models a physical situation object of study.

There is a first case, which became our first published work, when subdivision
network and the combinatorial Laplacian operator were taken into account.
So it can be understood as if the structural modification agrees with the
idea of diffusion. Then, in our second work, we changed to the normalized
Laplacian operator without modifying the network operation just to verify
the compatibility of a random walk operator with an electrically equivalent
modification of the domain. In third place, the problem was the hardest one
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where we changed both, to a Schrödinger, more general, type operator and
with a partial subdivision network operation, that is a slight generalization
of the structural modification applied in the previous two cases offering the
chance of expanding possibilities.

As it will be clear, the working way is quite similar in all the three situa-
tions. The starting point is a network Γ to be electrically subdivided and
a difference linear operator. The given network is converted in ΓS where
a Poisson problem is posed for a consistent data function. The aim of the
works (all three) is to obtain another consistent Poisson problem on the for-
mer, simpler, network. And then use a solution of it obtained by using the
corresponding Green’s function, to again obtain a solution of the initially
posed Poisson problem on ΓS . In this way we can set a relationship between
both Green’s functions that is interesting per se, of course, but that has a
matrix lecture which is also worth it.

4.1 Subdivision networks for combinatorial Lapla-
cian

The first and initiatory problem we faced in our study of subdivision net-
works, was the case of the combinatorial Laplacian operator L with a graph–
theory inspired electrical subdivision of a given network ΓS . That is, we
considered a problem of diffusion on a simple network where vertices are
indistinguishable except by their degree and all edges are substituted by a
2–length path setting, with its corresponding conductance function.

After the well known operation defined for graphs, we now say that a subdivi-
sion network ΓS = (V S , ES , cS) of a given network Γ = (V,E, c), is obtained
by inserting a new vertex in every edge, so that all former edges {x, y} ∈ E
are replaced by only two new ones, say {x, vxy} and {y, vxy} being vxy the
new inserted vertex.

We denote by V ′ the new vertex set assuming that, vxy = vyx. Thus, V S =
V ∪ V ′, the order of the subdivision network is n + m, whereas the size is
2m. Moreover, according to the well known rule that express the equivalent
resistance of two resistors connected in series, we define the conductance
function cS : V S × V S −→ [0,+∞) by choosing, for every pair of adjacent
vertices, non–null values cS(x, vxy) and cS(y, vxy) such that

1

c(x, y)
=

1

cS(x, vxy)
+

1

cS(y, vxy)
. (4.1)

The definition of cS (and those concepts depending upon it as the degree
function for example) cannot be misunderstood because of notation as all
the edges in ES have both kind of vertices, one in V and the other in V ′.
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Hence, for the sake of simplicity, it will be denoted also as c (even though it
has no the same meaning).

Moreover we point out that, for each edge, there exist infinitely many differ-
ent choices of conductances fulfilling (4.1), so that different choices will lead
to different subdivision networks.

Up to our knowledge, the only case that has been studied in the literature,
([31, 49, 71, 76]), is c(x, y) = c(x, vxy) = c(y, vxy) = 1, that not fulfills the
electrical compatibility condition (4.1). In order to compare our study with
the known results, we will consider as a particular case c(x, y) = 1 for all
x, y ∈ V and c(x, vxy) = c(y, vxy) = 2. We call it standard subdivision graph.

We remark that ΓS is also a connected, finite, with no loops, nor multiple
edges network.

4.1.1 Related Poisson problems

Let LS be the combinatorial Laplacian of ΓS . Then for any u ∈ C(V S) we
have that

LS(u)(x) =
∑
y∈V

c(x, vxy) (u(x)− u(vxy)) , for all x ∈ V,

LS(u)(vxy) = c(x, vxy) (u(vxy)− u(x))

+ c(y, vxy) (u(vxy)− u(y)) , for all vxy ∈ V ′.

The aim of this section is to obtain a solution of a compatible Poisson prob-
lem in ΓS in terms of the solution of an appropriate and also compatible
Poisson problem on Γ.

It is helpful for the sequel to define, for each pair x, y ∈ V with x ∼ y, the
coefficient

α(x, y) =
c(x, vxy)

c(x, vxy) + c(y, vxy)
=
c(x, vxy)

k(vxy)
,

where k(vxy) = c(x, vxy) + c(y, vxy), is the degree of vxy in ΓS . In additon,
if x 6∼ y we define α(x, y) = α(y, x) = 0.

Notice that trivially α(y, x) + α(x, y) = 1 and that α(x, y) = α(y, x) iff
c(x, vxy) = c(y, vxy) = 2c(x, y) for any x, y ∈ V.

We will briefly take advantage of these two next definitions. In a first place
and for every h ∈ C(V S), we define the contraction of h to V, h ∈ C(V ), to
be

h(x) = h(x) +
∑
y∼x

α(x, y)h(vxy), for all x ∈ V. (4.2)
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Secondly, for every pair u ∈ C(V ), h ∈ C(V S), we consider uh ∈ C(V S), the
extension of u to V S with respect to h, defined in the following sense

uh(x) = u(x), for all x ∈ V ;

uh(vxy) =
h(vxy)

k(vxy)
+ α(x, y)u(x) + α(y, x)u(y), for all vxy ∈ V ′.

(4.3)

Clearly the intention of the first definition is to adequately diffuse the value
of a function h on the vertices vxy in V ′ between its two neighbours. And we
just use the coefficient α(x, y) to achieve this goal. On the contrary, the idea
behind the concept of an extension with respect to, is just technical. We have
created a function defined on V S that clearly satisfies LS(uh)(vxy) = h(vxy).

Thus, taking into account these definitions and the notation we have intro-
duced we are now at the point we wanted to be and present our result.

Theorem 4.1.1. Given h ∈ C(V S) such that 〈h, 1V S 〉 = 0, then 〈h, 1V 〉 = 0.
Moreover, u ∈ C(V S) is a solution of the Poisson equation LS(u) = h in V S

iff u = u|V is a solution of the Poisson equation L(u) = h in V. In this case,
the identity u = uh holds.

Proof. Firstly we note that 〈h, 1V 〉 = 〈h, 1V S 〉 as∑
x∈V

h(x) =
∑
x∈V

h(x) +
∑
x∈V

∑
y∼x

α(x, y)h(vxy) =
∑
x∈V

h(x) +
∑

vxy∈V ′

h(vxy).

So the first statement holds.

Given h ∈ C(V S) such that 〈h, 1V S 〉 = 0 and u a solution of the Poisson
equation LS(u) = h in V S , then

h(vxy) = c(x, vxy) (u(vxy)− u(x)) + c(y, vxy) (u(vxy)− u(y)) , vxy ∈ V ′;

h(x) =
∑
y∼x

c(x, vxy) (u(x)− u(vxy)) , x ∈ V.

The first identity implies u(vxy) = uh(vxy), assuming u = u|V . Then, substi-
tuting the expression of u(vxy) in the second one, we obtain that

LS(u)(x) =
∑
y∼x

c(x, vxy)

(
u(x)− h(vxy)

k(vxy)
− α(x, y)u(x)− α(y, x)u(y)

)
=
∑
y∼x

c(x, vxy)α(y, x) (u(x)− u(y))−
∑
y∼x

c(x, vxy)

k(vxy)
h(vxy)

=
∑
y∼x

c(x, y) (u(x)− u(y))−
∑
y∼x

α(x, y)h(vxy)

= L(u)(x)− h(x) + h(x),
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for every x ∈ V. Therefore, LS(u) = h in V S iff L(u) = h in V.

Once we have found out the intimate relationship between the solutions set
of two Poisson problems posed on a subdivision network and on the network
which has been electrically subdivided respectively, we are now ready to
address the computations of the Green’s function.

Thus, in order to obtain the Green’s function that we are interested in, our
next result shows how to obtain the unique solution of a Poisson problem
on the subdivision network ΓS that is orthogonal to 1V S in relation to the
corresponding Green’s function of a related Poisson problem on Γ.

Corollary 4.1.2. Given h ∈ C(V S), such that 〈h, 1V S 〉 = 0, let u ∈ C(V ) be
the unique solution of L(u) = h that satisfies 〈u, 1V 〉 = 0 and the constant

λ = − 1

(n+m)

∑
x∼y

h(vxy)

k(vxy)
− 1

(n+m)

∑
x∼y

(α(x, y)u(x) + α(y, x)u(y) ) .

Then, u⊥ = uh + λ is the unique solution of LS(u⊥) = h that satisfies
〈u⊥, 1V S 〉 = 0.

Proof. As two solutions of a Poisson problem differ on a constant, we have
that u⊥ = uh + γ1V S , γ ∈ R. Then,

0 = 〈u⊥, 1V S 〉 = 〈uh, 1V S 〉+ (n+m)γ =
∑
x∈V

u(x) +
∑
x∼y

uh(vxy) + (n+m)γ

=
∑
x∼y

h(vxy)

k(vxy)
+
∑
x∼y

(α(x, y)u(x) + α(y, x)u(y)) + (n+m)γ,

because 〈u, 1V 〉 = 0, and the result follows taking γ = λ.

4.1.2 Related Green’s functions

Taking into account the relation between Poisson problems on ΓS and Γ,
we obtain the expression of Green’s kernel of a subdivision network, GS , in
terms of Green’s kernel of the base network. From now on we consider the
function on C(V ), πS(x) =

∑
y∼x

α(x, y) and the constant

β =
1

(n+m)2

∑
x,y∈V

G(x, y)πS(x)πS(y) +
1

(n+m)2

∑
x∼y

1

k(vxy)
.
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Proposition 4.1.3. Let ΓS be the subdivision network of Γ, then for any
x, z ∈ V and vxy, vzt ∈ V ′, the Green kernel of ΓS is given by

GS(x, z) = G(x, z)− 1

n+m

∑
`∈V

[
G(x, `) +G(z, `)

]
πS(`) + β,

GS(vxy, z) = α(x, y)G(x, z) + α(y, x)G(y, z)

− 1

n+m

∑
`∈V

[
α(x, y)G(x, `) + α(y, x)G(y, `) +G(z, `)

]
πS(`)

− 1

(n+m)k(vxy)
+ β,

GS(vxy, vzt) = α(z, t)
(
α(x, y)G(x, z) + α(y, x)G(y, z)

)
+ α(t, z)

(
α(x, y)G(x, t) + α(y, x)G(y, t)

)
− 1

n+m

∑
`∈V

[
α(x, y)G(x, `) + α(y, x)G(y, `)

]
πS(`)

− 1

n+m

∑
`∈V

[
α(z, t)G(z, `) + α(t, z)G(t, `)

]
πS(`)

+
εvzt(vxy)

k(vxy)
− 1

(n+m)k(vxy)
− 1

(n+m)k(vzt)
+ β.

Proof. Suppose z ∈ V, and let hz = εz −
1

n+m
. Then, for every x ∈ V

hz(x) = εz(x)− 1

n+m
− 1

n+m

∑
y∼x

α(x, y) = εz(x)− 1

n+m
(1 + πS(x)).

Hence, we now need to solve the Poisson problem L(uz) = hz. Using the
Green kernel for Γ, we obtain

uz(x) = G(εz)(x)− 1

n+m

∑
`∈V

G(x, `)πS(`) = G(x, z)− 1

n+m

∑
`∈V

G(x, `)πS(`).

Then, from Corollary 4.3.2

GSz (x) = uhzz (x)− 1

(n+m)

∑
r∼s

hz(vrs)

k(vrs)

− 1

(n+m)

∑
r∼s

[α(r, s)uz(r) + α(s, r)uz(s)]
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and

GSz (x) = G(x, z)− 1

n+m

∑
`∈V

G(x, `)πS(`) +
1

(n+m)2

∑
r∼s

1

k(vrs)

− 1

(n+m)

∑
r∼s

α(r, s)

[
G(r, z)− 1

n+m

∑
`∈V

G(r, `)πS(`)

]

− 1

(n+m)

∑
r∼s

α(s, r)

[
G(s, z)− 1

n+m

∑
`∈V

G(s, `)πS(`)

]

= G(x, z)− 1

n+m

∑
`∈V

[
G(x, `) +G(z, `)

]
πS(`)

+
1

(n+m)2

∑
r,s

G(s, r)πS(r)πS(s) +
1

(n+m)2

∑
r∼s

1

k(vrs)
.

Now if z ∈ V, then for every vxy ∈ V ′

GSz (vxy) =
hz(vxy)

k(vxy)
+ α(x, y)uz(x) + α(y, x)uz(y)

− 1

(n+m)

∑
r∼s

hz(vrs)

k(vrs)
− 1

(n+m)

∑
r∼s

[α(r, s)uz(r) + α(s, r)uz(s)]

GSz (vxy) = − 1

(n+m)k(vxy)
+ α(x, y)G(x, z) + α(y, x)G(y, z)

− 1

n+m

∑
`∈V

[
α(x, y)G(x, `) + α(y, x)G(y, `)

]
πS(`)

+
1

(n+m)2

∑
r∼s

1

k(vrs)

− 1

(n+m)

∑
r∼s

α(r, s)

[
G(r, z)− 1

n+m

∑
`∈V

G(r, `)πS(`)

]

− 1

(n+m)

∑
r∼s

α(s, r)

[
G(s, z)− 1

n+m

∑
`∈V

G(s, `)πS(`)

]

GSz (vxy) = − 1

(n+m)k(vxy)
+ α(x, y)G(x, z) + α(y, x)G(y, z)

− 1

n+m

∑
`∈V

[
α(x, y)G(x, `) + α(y, x)G(y, `)

]
πS(`)

+
1

(n+m)2

∑
r∼s

1

k(vrs)
− 1

n+m

∑
`∈V

[
G(z, `)

]
πS(`)

+
1

(n+m)2

∑
r,s

G(s, r)πS(r)πS(s)
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So finally,

GSz (vxy) = − 1

(n+m)k(vxy)
+ α(x, y)G(x, z) + α(y, x)G(y, z)

− 1

n+m

∑
`∈V

[
α(x, y)G(x, `) + α(y, x)G(y, `) +G(z, `)

]
πS(`)

+
1

(n+m)2

∑
r∼s

1

k(vrs)
+

1

(n+m)2

∑
r,s

G(s, r)πS(r)πS(s).

Suppose now we fix vzt ∈ V. The compatible data function to take into

account is hvzt = εvzt −
1

n+m
. Then, for every x ∈ V the contraction to be

used in the basis network Γ is

hvzt(x) = εvzt(x)− 1

n+m
+
∑
y∈V

α(x, y)

(
εvzt(vxy)−

1

n+m

)
= − 1

n+m
(1 + πS(x)) + α(z, t)εz(x) + α(t, z)εt(x).

Hence, the Poisson problem to solve is L(uvzt) = hvzt , and, using Green’s
kernel for Γ, we obtain that the solution to be extended is

uvzt(x) = − 1

n+m

∑
`∈V

G(x, `)πS(`) + α(z, t)G(x, z) + α(t, z)G(x, t).

Then, by applying again Corollary 4.3.2 Green’s function on ΓS on the new
generated vertices is

GSvzt(vxy) =
hvzt(vxy)

k(vxy)
+ α(x, y)uvzt(x) + α(y, x)uvzt(y)

− 1

(n+m)

∑
r∼s

hvzt(vrs)

k(vrs)

− 1

(n+m)

∑
r∼s

[α(r, s)uvzt(r) + α(s, r)uvzt(s)]
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Now substituting we get that

GSvzt(vxy) =
εvzt(vxy)

k(vxy)
− 1

(n+m)k(vxy)

− 1

n+m

∑
`∈V

(
α(x, y)G(x, `) + α(y, x)G(y, `)

)
πS(`)

+ α(z, t)
(
α(x, y)G(x, z) + α(y, x)G(y, z)

)
+ α(t, z)

(
α(x, y)G(x, t) + α(y, x)G(y, t)

)
− 1

(n+m)k(vzt)
+

1

(n+m)2

∑
r∼s

1

k(vrs)

− 1

n+m

∑
`∈V

(
α(z, t)G(z, `) + α(t, z)G(t, `)

)
πS(`)

+
1

(n+m)2

∑
r,s∈V

G(r, s)πS(r)πS(s).

And finally,

GSvzt(vxy) = α(z, t)
(
α(x, y)G(x, z) + α(y, x)G(y, z)

)
+ α(t, z)

(
α(x, y)G(x, t) + α(y, x)G(y, t)

)
− 1

n+m

∑
`∈V

(
α(x, y)G(x, `) + α(y, x)G(y, `)

)
πS(`)

− 1

n+m

∑
`∈V

(
α(z, t)G(z, `) + α(t, z)G(t, `)

)
πS(`)

+
εvzt(vxy)

k(vxy)
− 1

(n+m)k(vxy)
− 1

(n+m)k(vzt)

+
1

(n+m)2

∑
r∼s

1

k(vrs)
+

1

(n+m)2

∑
r,s∈V

G(r, s)πS(r)πS(s).

In particular, if Γ is a k–regular graph and we consider the standard subdi-
vision graph; that is c(x, vxy) = c(y, vxy) = 2, we get the following result.

Corollary 4.1.4. Let ΓS be the standard subdivision graph of a k–regular
graph, Γ; then for any x, z ∈ V and vxy, vzt ∈ V ′, the Green kernel of ΓS is
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given by

GS(x, z) = G(x, z) +
k

2n(2 + k)2
,

GS(vxy, z) =
1

2

(
G(x, z) +G(y, z)

)
− 1

n(2 + k)2
,

GS(vxy, vzt) =
1

4

(
G(x, z) +G(y, z) +G(x, t) +G(y, t)

+ εvzt(vxy)
)
− (4 + k)

2n(2 + k)2
.

4.2 Subdivision networks for the normalized Lapla-
cian

Our second step in exploring the possibilities for the electrical subdivision
procedure was set in the context of random walks and Markov chains, as we
studied also the compatibility of related Poisson problems on a given network
and its subdivision counterpart for the well known normalized Laplacian
operator. So, the idea of the modification of a given network was not at
stake at that moment, but the idea of the Poisson problem was no more a
typical diffusion setting.

The conclusion of our study was at first glance a little bit disappointing as the
result we obtained forces a very restrictive idea of electrical subdivision for
this operator. However, due to the particular use of the degree concept in the
definition of the normalized Laplacian operator, with plenty of square roots
of sums, subdivision of edges must follow a very particular pattern because
of technicalities. Hence the exciting network operation of subdivision has a
rather short run when used in such a random walks scenario. But this, at
the end, is in perfect concordance with the mismatching of the concepts of
random walks and electrical circuits or flows, and subdivision procedure as
successful as it were in the previous case of a diffusion problem. Or, explained
in other words, the relation of conductances (or resistances, we don’t care) in

electrical circuits with ĉ(x, y) =
c(x, y)√
κ(x)

√
κ(y)

, when considering ω =
1

2m

√
κ

and obviously λ = 0 is, let’s say, at least rather intrincated.

Thus a subdivision network ΓS = (V S , ES , cS) of Γ is now obtained in a very
similar way than the previous scenario, by inserting a new vertex in every
edge, so that each {x, y} ∈ E is replaced by two new edges, say {x, vxy}
and {vxy, y} where vxy is the new inserted vertex, see [75] where a classical
subdivision process is considered. The important point now is that we have
had to define conductances on the new edges as cS(x, vxy) = cS(y, vxy) =
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2c(x, y), so that, electrical compatibility is still fulfilled, but in a somewhat

graph but not network manner. So it is still
1

c(x, y)
=

1

cS(x, vxy)
+

1

cS(y, vxy)

but more in detail it turns
1

c(x, y)
=

1

2c(x, y)
+

1

2c(y, x)
and there is just

one possibility to accomplish the network structural operation. Of course
then the degree function on ΓS , kS ∈ C(V S), satisfies kS(x) = 2k(x) for any
x ∈ V, and kS(vxy) = 4c(x, y) for those vertices in V ′. Moreover, it holds
that vol(ΓS) = 4vol(Γ).

So we now present the precise relationship between a solution of a compati-
ble Poisson problem for the normalized Laplacian on a subdivision network
ΓS and a solution of a conveniently well posed Poisson problem for the nor-
malized Laplacian on the base network Γ.

4.2.1 Related Poisson problems

Mimicking the preceding subsection 4.1.1, we also recall what is the normal-
ized Laplacian operator for a subdivision network, denoted now as L S , and
defined for any u ∈ C(V S) as

L S(u)(x) =
1√
κS(x)

∑
y∈V

c(x, vxy)

(
u(x)√
κS(x)

− u(vxy)√
κS(vxy)

)
, x ∈ V,

L S(u)(vxy) =
1√

κS(vxy)

{
c(x, vxy)

(
u(vxy)√
κS(vxy)

− u(x)√
κS(x)

)

+ c(y, vxy)

(
u(vxy)√
κS(vxy)

− u(y)√
κS(y)

)

)}
, vxy ∈ V ′.

As we proceed similarly to the previous case, we also put in place two func-
tional operators, let’s say a contraction and an extension related to.

Let h ∈ C(V S) we define its contraction to C(V ) as

h(x) = h(x) +
1√

2k(x)

∑
y∼x

√
c(x, y)h(vxy).

Now unfortunately with no ideological context, just because it works. Hon-
estly, we have never seen in the literature a significance for

√
c(x, y) and we

have arrived to non satisfactory conclusions when trying to understand what
could be a possible meaning for it.

Also we briefly will consider, for a couple u ∈ C(V ) and h ∈ C(V S) the
extension of u (the former) related to h (the latter) to C(V S), such as

uh(vxy) = h(vxy) +

√
c(x, y)√

2

(
u(x)√
k(x)

+
u(y)√
k(y)

)
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for vxy ∈ V ′, while uh(x) = u(x) for those vertices in V.

The following result links the solution of a given compatible Poisson problem
in the subdivision network with an appropriate and also compatible Poisson
problem on the base network.

Theorem 4.2.1. Given h ∈ C(V S) such that 〈h,
√
kS〉V S = 0, then 〈h,

√
k〉V =

0. Moreover, u ∈ C(V S) is a solution of the Poisson equation LS (u) = h in
V S iff u = u|V is a solution of the Poisson equation L (u) = 2h in V. In this
case, the identity u = uh holds.

Proof. Firstly we note that
〈
h,
√
k
〉
V

=
1√
2

〈
h,
√
kS
〉
V S

as

∑
x∈V

h(x)
√
k(x) =

∑
x∈V

h(x)

√
kS(x)

2

+
1√
2

∑
x∈V

1√
k(x)

∑
y∼x

√
c(x, y)h(vxy)

√
k(x)

=
1√
2

∑
x∈V

h(x)
√
kS(x) +

1√
2

∑
vxy∈V ′

h(vxy)
√
kS(vxy).

So the first statement holds. Then,

L S u(vxy) = u(vxy)−
cS(vxy, x)√

kS(vxy)
√
kS(x)

u(x)− cS(vxy, y)√
kS(vxy)

√
kS(y)

u(y)

= u(vxy)−
√
c(x, y)√

2

u(x)√
k(x)

−
√
c(x, y)√

2

u(y)√
k(y)

.

So we obtain that,

u(vxy) = L S u(vxy) +

√
c(x, y)√

2

(
u(x)√
k(x)

+
u(y)√
k(y)

)
.

Also, for the former vertex in the given network,

L S u(x) =
1√
kS(x)

∑
vxy∼x

cS(x, vxy)

[
u(x)√
kS(x)

− u(vxy)√
kS(vxy)

]
.
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Substituting the precedent expression for u(vxy) we obtain

L S u(x) =
∑
y∼x

c(x, y)

2
√
k(x)

[
2u(x)√
k(x)

−
√

2L S u(vxy)√
c(x, y)

− u(x)√
k(x)

− u(y)√
k(y)

]

=
1

2
√
k(x)

∑
y∼x

c(x, y)

(
u(x)√
k(x)

− u(y)√
k(y)

)
− 1√

2k(x)

∑
y∼x

√
c(x, y)L Su(vxy).

Finally, we get, if u = u|V

L S(u)(x) =
1

2
L (u)(x)− 1√

2k(x)

∑
vxy∼x

√
c(x, y)L Su(vxy).

So, for short, we have proven that given a Poisson problem with a compatible
data function on ΓS , it can be contracted to a compatible data function on
Γ so as a solution of this related Poisson problem on Γ expands to a solution
of the initial given Poisson problem on the subdivided network.

Now, in order to choose a particular solution of the Poisson problem on the
subdivided network, as in the previous section we can find the precise value
for the constant because the following holds.

Corollary 4.2.2. Given h ∈ C(V S), such that 〈h,
√
kS〉V S = 0, let h ∈ C(V )

be its contraction to V, let u ∈ C(V ) be the unique solution of L (u) = 2h
that satisfies 〈u,

√
k〉V = 0 and let be the constant

λ = − 1

2vol(Γ)

∑
r∼s

h(vrs)
√
c(r, s).

Then, u⊥ = uh+λ
√
kS ∈ C(V S) is the unique solution of the Poisson problem

L S(u) = h that satisfies 〈u⊥,
√
kS〉V S = 0. Specifically,

u⊥(x) = u(x)−
√
k(x)√

2vol(Γ)

∑
r∼s

h(vrs)
√
c(r, s),

u⊥(vxy) = h(vxy) +

√
c(x, y)√

2

(
u(x)√
k(x)

+
u(y)√
k(y)

)
−
√
c(x, y)

vol(Γ)

∑
r∼s

h(vrs)
√
c(r, s),

for any x ∈ V and vxy ∈ V ′.
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Proof. As two solutions differ on a multiple of
√
kS , we have that u⊥ =

uh + γ
√
kS , γ ∈ R. Then,

0 = 〈u⊥,
√
kS〉V S = 〈uh,

√
kS〉V S + γ

∑
x∈V S

kS(x)

=
√

2
∑
x∈V

u(x)
√
k(x) +

∑
vxy∈V ′

uh(vxy)
√
kS(vxy) + γvol(ΓS)

= 2
∑

vxy∈V ′

uh(vxy)
√
c(x, y) + 4γvol(Γ),

because 〈u,
√
k〉V = 0, and hence

λ = − 1

2vol(Γ)

∑
r∼s

uh(vrs)
√
c(r, s)

= − 1

2vol(Γ)

∑
r∼s

[
h(vrs)

√
c(r, s) +

c(r, s)√
2

(
u(r)√
k(r)

+
u(s)√
k(s)

)]

= − 1

2vol(Γ)

∑
r∼s

h(vrs)
√
c(r, s)− 1

2
√

2vol(Γ)

∑
r∈V

u(r)√
k(r)

∑
s∼r

c(r, s)

= − 1

2vol(Γ)

∑
r∼s

h(vrs)
√
c(r, s)− 1

2
√

2vol(Γ)

∑
r∈V

u(r)
√
k(r)

= − 1

2vol(Γ)

∑
r∼s

h(vrs)
√
c(r, s).

4.2.2 Related Green’s functions

Taking into account the relation between both Poisson problems for the
normalized Laplacian on ΓS and on Γ, we obtain the expression of the Green
function for the normalized Laplacian of the subdivision network GS , in
terms of the Green function of the base network G.
Theorem 4.2.3. Let ΓS be the subdivision network of Γ, then for any x, z ∈
V and vxy, vzt ∈ V ′, the Green function of ΓS is given by

GS(x, z) = 2G(x, z) +

√
k(x)

√
k(z)

4vol(Γ)
,

GS(vxy, z) =
√

2
√
c(x, y)

(
G(x, z)√
k(x)

+
G(y, z)√
k(y)

−
√
k(z)

4vol(Γ)

)
,

GS(vxy, vzt) =
√
c(x, y)c(z, t)

(
G(x, z)√
k(x)k(z)

+
G(x, t)√
k(x)k(t)

+
G(y, z)√
k(y)k(z)

+
G(y, t)√
k(y)k(t)

)

−
3
√
c(x, y)c(z, t)

2vol(Γ)
+ εvzt(vxy).
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Proof. For the first case, suppose z ∈ V, and let hz = εz −
√
kS(z)

4vol(Γ)

√
kS .

After Theorem 4.2.1, for every x ∈ V the data function to be used for the
Poisson problem on Γ must be

hz(x) = εz(x)−
√
kS(z)

√
kS(x)

4vol(Γ)
− 1√

2

√
kS(z)

4vol(Γ)

∑
y∼x

√
c(x, y)√
k(x)

√
kS(vxy)

= εz(x)−
√
kS(x)

√
kS(z)

2vol(Γ)
= εz(x)−

√
k(x)

√
k(z)

vol(Γ)
.

The unique solution to the Poisson problem L (uz) = 2hz, orthogonal to√
k, using the Green function for Γ, is uz(x) = 2G(x, z), and from Corollary

4.3.2

GS(x, z) = 2G(x, z) +

√
k(x)

√
k(z)

4vol(Γ)2

∑
r∼s

√
kS(vrs)

√
c(r, s)

= 2G(x, z) +

√
k(x)

√
k(z)

2vol(Γ)2

∑
r∼s

c(r, s) = 2G(x, z) +

√
k(x)

√
k(z)

4vol(Γ)
.

On the other hand, for every vxy ∈ V ′,

GS(vxy, z) =
√

2
√
c(x, y)

(
G(x, z)√
k(x)

+
G(y, z)√
k(y)

)

−
√
k(z)

√
c(x, y)√

2vol(Γ)
+

√
c(x, y)

√
k(z)√

2vol(Γ)2

∑
r∼s

c(r, s)

=
√

2
√
c(x, y)

(
G(x, z)√
k(x)

+
G(y, z)√
k(y)

−
√
k(z)

4vol(Γ)

)
.

Finally, we complete the proof by considering the case where the pole is a new
generated vertex by the subdivision procedure. So suppose now vzt ∈ V ′,

and let hvzt = εvzt −
√
c(z, t)

2vol(Γ)

√
kS . Then, for every x ∈ V
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hvzt(x) = −
√

2
√
c(z, t)

2vol(Γ)

√
k(x) +

1√
2

∑
y∼x

√
c(x, y)√
k(x)

−

(
εvzt(vxy)−

√
c(z, t)

vol(Γ)

√
c(x, y)

)

= −
2
√
c(z, t)√

2vol(Γ)

√
k(x) +

1√
2

[√
c(z, t)√
k(z)

εz(x) +

√
c(z, t)√
k(t)

εt(x)

]

=
1√
2

√
c(z, t)√
k(z)

(
εz(x)−

√
k(z)

vol(Γ)

√
k(x)

)

+
1√
2

√
c(z, t)√
k(t)

(
εt(x)−

√
k(t)

vol(Γ)

√
k(x)

)
.

Hence, the Poisson problem to solve is L (uvzt) = 2hvzt and, using the Green
function for Γ, we obtain

uvzt(x) =
√

2
√
c(z, t)

(
G(x, z)√
k(z)

+
G(x, t)√
k(t)

)
.

Then, from Corollary 4.3.2, we get that

GS(vxy, vzt) = εvzt(vxy)−
√
c(x, y)

√
c(z, t)

vol(Γ)

+
√
c(x, y)c(z, t)

(
G(x, z)√
k(x)k(z)

+
G(x, t)√
k(x)k(t)

)

+
√
c(x, y)c(z, t)

(
G(y, z)√
k(y)k(z)

+
G(y, t)√
k(y)k(t)

)

−
√
c(x, y)c(z, t)

2vol(Γ)
.

4.3 Partial subdivision for singular Schrödinger type
operators

Our third goal in this thesis work was established again in a diffusion prob-
lems setting, with an extension of the combinatorial Laplacian operator to
a more general Schrödinger type one and also by considering a partial sub-
division structural operation that pretends a wider range of applicability by
considering the standard subdivision for networks on only some prescribed
edges.

It is at this moment when networks can be used as discrete structures where
edges are distinguishable ones from the others because of the conductance
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function, but also vertices can be treated differently, modelled as if their
behaviour is not the same, not only because of the number of its connections
(degree) but also because the real value a potential function q assigns to
every one of them expresses this specificity.

Our objective in this section is, as in the previous cases, to relate the solution
of a compatible Poisson problem on the partial subdivision network with the
solution of an appropriate Poisson problem on the base network. In this
way, we obtained a relationship between solutions of problems that differ in
dimension in a more freely way. What it is meant to say with the previous
sentence is that, till now, we were concerned in relation to Poisson problems
of different dimensionality of course, but fixed in the sense that edges were
always doubled and the number of added vertices was established by the base
network Γ as it was the number of initially given edges. With this partial
subdivision we will be in position to relate solutions of Poisson problems
between discrete structures with a number of vertices and edges that can
vary at our wish (with some upper bounds of course).

Let us begin with the definition of what a partial subdivision network ΓS =
(V S , ES , cS) of a given network Γ = (V,E, c) is. The point now is that ΓS

is obtained by inserting a new vertex in some edges of Γ, we denote the set
of subdivided edges by E1 ⊂ E, so that each edge {x, y} ∈ E1 is replaced
by two new edges, say {x, vxy} and {y, vxy} where vxy is the new inserted
vertex. We denote by V ′ the new vertex set assuming that, vxy = vyx. Thus,
V S = V ∪ V ′, the order of the subdivision network is n+ |E1|, and the size
is m+ |E1|.
When, E1 = E, the partial subdivision network is nothing else but the
so called subdivision network [26] and we return back to previous network
operations. But when it is not, we have here a degree of freedom to create a
new discrete structures of different size and order (always bounded of course).

vxy

x

y

c(x, vxy)

c(y, vxy)

Figure 4.1 A partial subdivision network

As Schrödinger linear operators are intimately linked with weight functions
after Doob’s transform, and having in mind that we are now concerned with
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singular operators (i.e. λ = 0) it is mandatory in this new context to define
the extension of a given weight function on ΓS so that it remains being a
weight (of V S now). So given a weight, that is ω ∈ C(V ) such that ω(x) > 0
for every x ∈ V and

∑
x∈V

ω2(x) = 1, we now define an extension of this weight

function, ωS : V ∪ V ′ → [0,+∞) by using a positive constant α > 0 so that
ωS(x) = αω(x), it is a reescaling of the given initial weight ω when x ∈ V,
and also such that ωS(vxy) = αω(vxy), where ω(vxy) is a positive absolutely
arbitrary value, for vxy ∈ V ′. Hence, by choosing the factor α such that

α2 =
1

1 +
∑
x∈V ′

ω(vxy)2

the extension of a weight function is also a weight function defined on the
partial subdivided network ΓS .

Moreover, according to the well known rule that express the equivalent
resistance of two resistors connected in series and the expression for the
Schrödinger operator, we define the conductance function cS : V S × V S −→
[0,+∞) by choosing, for every edge in E1, {x, y}, non–null values cS(x, vxy)
and cS(y, vxy) such that

1

ω(x)ω(y)

1

c(x, y)
=

1

ω(x)ω(vxy)

1

cS(x, vxy)
+

1

ω(y)ω(vxy)

1

cS(y, vxy)
, (4.4)

whereas for every edge in ES \ E1 we define cS(x, y) = c(x, y).

Again, and as usual now, the definition of cS cannot be misunderstood be-
cause of the chosen notation. Hence, by the sake of simplicity, it will be
denoted as c. Moreover and for each edge, there exist infinitely many differ-
ent choices of conductances fulfilling (4.4), so that different choices will lead
to different partial subdivision networks.

Observe that ΓS is still a connected, finite, with no loops, nor multiple edges
network.

4.3.1 Related Poisson problems

We proceed now, similarly at what we did in the precedent subsections 4.1.1
and 4.2.1, to obtain the expression of a singular Schrödinger linear operator
defined on the partial subdivided network. We recall that, given a potential
q ∈ C(V ) the corresponding Schrödinger operator is Lq = L + q being L
the combinatorial Laplacian operator defined on the network. Hence, when
considering ΓS , and if LS denotes the combinatorial Laplacian on ΓS , then
for any u ∈ C(V S) we have now that, for any x ∈ V

LS(u)(x) =
∑

y∈V \N(x)

c(x, y) (u(x)− u(y)) +
∑

y∈N(x)

c(x, vxy) (u(x)− u(vxy))
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being N(x) the set of adjacent vertices to x, see 3.1.1, and for any vxy ∈ V ′,

LS(u)(vxy) = c(x, vxy) (u(vxy)− u(x)) + c(y, vxy) (u(vxy)− u(y)) .

On the other hand, we consider the potential determined by ωS ,

q′ = −(ωS)−1LS(ωS) = −ω−1LS(ω),

because of linearity. Hence, the expression of a singular Schrödinger operator
on a partial subdivided network turns to be

LSq′(u)(x) =
1

ω(x)

∑
y∈N(x)

c(x, vxy)ω(x)ω(vxy)

[
u(x)

ω(x)
− u(vxy)

ω(vxy)

]
+

1

ω(x)

∑
y∈V \N(x)

c(x, y)ω(x)ω(y)

[
u(x)

ω(x)
− u(y)

ω(y)

]
, for x ∈ V.

and

LSq′(u)(vxy) =
c(vxy, x)ω(x) + c(vxy, y)ω(y)

ω(vxy)
u(vxy)− c(vxy, x)u(x)− c(vxy, y)u(y),

for vxy ∈ V ′. Therefore, for any vxy ∈ V ′ and u ∈ C(V S) we have that

u(vxy)

ω(vxy)
=
LSq′(u)(vxy) + c(x, vxy)u(x) + c(y, vxy)u(y)

c(x, vxy)ω(x) + c(y, vxy)ω(y)
.

Keeping in mind the compatibility equation (4.4) we can rewritte the ex-
pression for LSq′(u)(x) as

LSq′(u)(x) = Lqω (u)(x)−
∑

y∈N(x)

c(x, vxy)ω(vxy)

c(x, vxy)ω(x) + c(y, vxy)ω(y)
LSq′(u)(vxy). (4.5)

This expression suggests to call contraction of h ∈ C(V S) the function of
C(V ), h, defined as

h(x) = h(x) +
∑

y∈N(x)

α(x, y)h(vxy),

with
α(x, y) =

c(x, vxy)ω(vxy)

c(x, vxy)ω(x) + c(y, vxy)ω(y)
,

satisfying that
α(x, y)ω(x) + α(y, x)ω(y) = ω(vxy).

Moreover, we call extension of u ∈ C(V ) with respect to h ∈ C(V S) to the
function of C(V S), uh, defined as

uh(x) = u(x), x ∈ V,

uh(vxy) =
h(vxy)c(x, y)

c(x, vxy)c(y, vxy)
+ α(x, y)u(x) + α(y, x)u(y), vxy ∈ V ′
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Using these definitions we obtain from (7.8) that for any u ∈ C(V ) and
x ∈ V ,

Lqω(u)(x) = LSq′(u)(x).

This relation and the previous constructions, allow us to obtain the follow-
ing result which stablishes the relation between solutions of related Poisson
problems posed on both discrete structures, a given initial network Γ and a
partial subdivision of it, ΓS .

Theorem 4.3.1. Given h ∈ C(V S) such that 〈h, ωS〉 = 0, then 〈h, ω〉 = 0.
Moreover, u ∈ C(V S) is a solution of the Poisson equation LSq′(u) = h in V S

iff u = u|V is a solution of the Poisson equation Lqω(u) = h in V. In this
case, the identity u = uh holds.

Proof. We only have to prove the first statement. For that we show that
α 〈h, ω〉 =

〈
h, ωS

〉
as

∑
x∈V

h(x)ω(x) =
∑
x∈V

h(x)ω(x) +
∑
x∈V

∑
y∈N(x)

α(x, y)h(vxy)ω(x)

=
1

α

∑
x∈V

h(x)ωS(x) +
∑

vxy∈V ′

h(vxy)ω
S(vxy)

 .

To end this subsection, and following the structure of the previous two sub-
sections, we give our next result that shows how to obtain the unique solution
of a Poisson problem on the partial subdivision network ΓS orthogonal to
ωS .

Corollary 4.3.2. Given h ∈ C(V S), such that 〈h, ωS〉 = 0, let h ∈ C(V )
be its contraction to V, u ∈ C(V ) be the unique solution of Lqω(u) = h that
satisfies 〈u, ω〉 = 0 and the constant

λ = −
∑

{x,y}∈E1

c(x, y)ωS(vxy)

c(x, vxy)c(y, vxy)

(
h(vxy) + c(x, vxy)u(x) + c(y, vxy)u(y)

)

Then, u⊥ = uh + λωS is the unique solution of LSq′(u⊥) = h that satisfies
〈u⊥, ωS〉 = 0.

Proof. As two solutions differ on a constant times the weight, we have that
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u⊥ = uh + γωS , γ ∈ R. Then,

0 = 〈u⊥, ωS〉 = 〈uh, ωS〉+ γ

= α
∑
x∈V

u(x)ω(x) +
∑

vxy∈V ′

uh(vxy)ω
S(vxy) + γ

=
∑

{x,y}∈E1

h(vxy)c(x, y)

c(x, vxy)c(y, vxy)
ωS(vxy)

+
∑

{x,y}∈E1

(α(x, y)u(x) + α(y, x)u(y))ωS(vxy) + γ

=
∑

{x,y}∈E1

h(vxy)c(x, y)

c(x, vxy)c(y, vxy)
ωS(vxy)

+
∑

{x,y}∈E1

c(x, y)ωS(vxy)

(
u(x)

c(y, vxy)
+

u(y)

c(x, vxy)

)
+ γ,

because 〈u, ω〉 = 0, and the result follows taking γ = λ.

4.3.2 Related Green’s functions

The preceding results allows us to obtain the expression for the Green kernel
of a partial subdivision network in terms of the Green kernel of the base
network and some other parameters.

If we let

πS(x) =
∑

y∼S(x)

c(x, y)ωS(vxy)

c(y, vxy)
=

∑
y∼S(x)

α(x, y)ωS(vxy)

and

β =
∑
r,s∈V

Gqω(s, r)πS(r)πS(s) +
∑

{r,s}∈E1

c(r, s)ωS(vrs)
2

c(r, vrs)c(s, vrs)
,

we get, in the next result, the desired expression.

Proposition 4.3.3. Let ΓS be the partial subdivision network of Γ, then for
any x, z ∈ V and vxy, vzt ∈ V ′, the Green kernel of ΓS is given by

GSq′(x, z) = Gqω(x, z)−
∑
`∈V

[
ωS(z)Gqω(x, `) + ωS(x)Gqω(z, `)

]
πS(`)

+ βωS(x)ωS(z),
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GSq′(vxy, z) = α(x, y)Gqω(x, z) + α(y, x)Gqω(y, z)

−
∑
`∈V

ωS(z)
(
α(x, y)Gqω(x, `) + α(y, x)Gqω(y, `)

)
πS(`)

−
∑
`∈V

ωS(vxy)Gqω(z, `)πS(`)

+

(
β − c(x, y)

c(x, vxy)c(y, vxy)

)
ωS(vxy)ω

S(z),

GSq′(vxy, vzt) =
εzt(vxy)c(x, y)

c(x, vxy)c(y, vxy)

+ ωS(vzt)ω
S(vxy)

(
β − c(x, y)

c(x, vxy)c(y, vxy)
− c(z, t)

c(z, vzt)c(t, vzt)

)
− ωS(vzt)

∑
`∈V

(
α(x, y)Gqω(x, `) + α(y, x)Gqω(y, `)

)
πS(`)

− ωS(vxy)
∑
`∈V

(
α(z, t)Gqω(z, `) + α(t, z)Gqω(t, `)

)
πS(`)

+ α(x, y)
(
α(z, t)Gqω(x, z) + α(t, z)Gqω(x, t)

)
+ α(y, x)

(
α(z, t)Gqω(y, z) + α(t, z)Gqω(y, t)

)
.

Proof. Suppose z ∈ V, and let hz = εz − ωS(z)ωS . Then, for every x ∈ V

hz(x) = εz(x)− ωS(x)ωS(z)−
∑

y∼N(x)

α(x, y)ωS(vxy)ω
S(z)

= εz(x)− ωS(x)ωS(z)−
∑

y∼N(x)

c(x, vxy)ω
S(z)ωS(vxy)

2

c(x, vxy)ω(x) + c(y, vxy)ω(y)

= εz(x)− ωS(x)ωS(z)− ωS(z)
∑

y∼N(x)

c(x, y)ωS(vxy)

c(y, vxy)

= εz(x)− (ωS(x) + πS(x))ωS(z),

with πS(x) =
∑

y∼N(x)

c(x, y)ωS(vxy)

c(y, vxy)
.

Hence, from Theorem 4.3.1, the related Poisson problem to solve on Γ is
Lqω(uz) = hz and, using the Green kernel G for Γ, we obtain

uz(x) = Gqω(εz)(x)−
∑
`∈V

Gqω(x, `)πS(`)ωS(z)

= Gqω(x, z)−
∑
`∈V

Gqω(x, `)πS(`)ωS(z).
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Hence, after corollary 4.3.2 the expression of the Green kernel on ΓS is

GSq′(vxy, z) =
h(vxy)c(x, y)

c(x, vxy)c(y, vxy)
+ α(x, y)u(x) + α(y, x)u(y)

−
∑

{r,s}∈E1

c(r, s)ωS(vrs)

c(r, vrs)c(s, vrs)
h(vrs)ω

S(vxy)

−
∑

{r,s}∈E1

c(r, s)ωS(vrs)

c(r, vrs)c(s, vrs)
(c(r, vrs)u(r) + c(s, vrs)u(s))ωS(vxy).

After substituting, our expression turns to be

GSq′(vxy, z) = −ω
S(vxy)ω

S(z)c(x, y)

c(x, vxy)c(y, vxy)
+ α(x, y)Gqω(x, z) + α(y, x)Gqω(y, z)

− ωS(z)
∑
`∈V

(
α(x, y)Gqω(x, `) + α(y, x)Gqω(y, `)

)
πS(`)

+ ωS(z)
∑
{r,s}∈F

c(r, s)ωS(vrs)

c(r, vrs)c(s, vrs)
ωS(vrs)ω

S(vxy)

−
∑

{r,s}∈E1

c(r, s)ωS(vrs)

c(r, vrs)c(s, vrs)
(c(r, vrs)Gqω(r, z))ωS(vxy)

−
∑

{r,s}∈E1

c(r, s)ωS(vrs)

c(r, vrs)c(s, vrs)
(c(s, vrs)Gqω(s, z))ωS(vxy)

+
∑

{r,s}∈E1

c(r, s)ωS(vrs)

c(s, vrs)

(∑
`∈V

Gqω(r, `)πS(`)ωS(z)

)
ωS(vxy)

+
∑

{r,s}∈E1

c(r, s)ωS(vrs)

c(r, vrs)

(∑
`∈V

Gqω(s, `)πS(`)ωS(z)

)
ωS(vxy)

and can finally can be established as

GSq′(vxy, z) = − ωS(vxy)ω
S(z)c(x, y)

c(x, vxy)c(y, vxy)
+ α(x, y)Gqω(x, z) + α(y, x)Gqω(y, z)

−
∑
`∈V

ωS(z)
(
α(x, y)Gqω(x, `) + α(y, x)Gqω(y, `)

)
πS(`)

−
∑
`∈V

(
ωS(vxy)Gqω(z, `)

)
πS(`)

+ ωS(z)ωS(vxy)
∑

{r,s}∈E1

c(r, s)ωS(vrs)

c(r, vrs)c(s, vrs)
ωS(vrs)

+ ωS(z)ωS(vxy)
∑
r,`∈V

Gqω(r, `)πS(`)πS(r).
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On the other hand, for vertices from former structure

GSq′(x, z) = uhzz (x)−
∑

{r,s}∈E1

c(r, s)ωS(vrs)

c(r, vrs)c(s, vrs)
h(vrs)ω

S(x)

−
∑

{r,s}∈E1

c(r, s)ωS(vrs)

c(r, vrs)c(s, vrs)

(
c(r, vrs)u(r) + c(s, vrs)u(s)

)
ωS(x).

This expression can be seen as

GSq′(x, z) = Gqω(x, z)−
∑
`∈V

Gqω(x, `)πS(`)ωS(z)

+ ωS(x)ωS(z)
∑

{r,s}∈E1

c(r, s)ωS(vrs)
2

c(r, vrs)c(s, vrs)

−
∑

{r,s}∈E1

α(r, s)Gqω(r, z)ωS(vrs)ω
S(x)

+
∑

{r,s}∈E1

α(r, s)

(∑
`∈V

Gqω(r, `)πS(`)ωS(z)

)
ωS(vrs)ω

S(x)

−
∑

{r,s}∈E1

α(s, r)Gqω(s, z)ωS(vrs)ω
S(x)

+
∑

{r,s}∈E1

α(s, r)

(∑
`∈V

Gqω(s, `)πS(`)ωS(z)

)
ωS(vrs)ω

S(x).

Finally, by summing up related terms, we obtain the desired expression

GSq′(x, z) = Gqω(x, z)− ωS(x)ωS(z)
∑
`∈V

[Gqω(x, `)

ωS(x)
+
Gqω(z, `)

ωS(z)

]
πS(`)

+ ωS(x)ωS(z)
∑
r,s∈V

Gqω(s, r)πS(r)πS(s)

+ ωS(x)ωS(z)
∑

{r,s}∈E1

c(r, s)ωS(vrs)
2

c(r, vrs)c(s, vrs)
.

Once the first case is completed, suppose now vzt ∈ V ′, and consider as data
function hvzt = εvzt − ωS(vzt)ω

S . Then, for every x ∈ V the corresponding
contraction results in

hvzt(x) = εvzt(x)− ωS(vzt)ω
S(x)

+
∑

y∈S(x)

α(x, y)
(
εvzt(vxy)− ωS(vzt)ω

S(vxy)
)
.

This previous expression can be developed and finally rewritten as follows
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hvzt(x) = −ωS(vzt)ω
S(x) +

∑
y∈S(x)

α(x, y)
(
εvzt(vxy)− ωS(vzt)ω

S(vxy)
)

= −ωS(vzt)ω
S(x) +

∑
y∈S(x)

α(x, y)εvzt(vxy)

− ωS(vzt)
∑

y∈S(x)

α(x, y)ωS(vxy)

= −ωS(vzt)ω
S(x) + α(z, t)εz(x) + α(t, z)εt(x)− ω(vzt)π

S(x)

= −ωS(vzt)
(
ωS(x) + πS(x)

)
+ α(z, t)εz(x) + α(t, z)εt(x).

Hence, the Poisson problem to solve on Γ is stated as Lqω(uvzt) = hvzt . Its
solution, by using Green’s kernel for Γ, is

uvzt(x) = −ωS(vzt)
∑
`∈V

Gqω(x, `)
(
ω(`) + πS(`)

)
+ α(z, t)Gqω(x, z) + α(t, z)Gqω(x, t)

= −ωS(vzt)
∑
`∈V

Gqω(x, `)πS(`) + α(z, t)Gqω(x, z) + α(t, z)Gqω(x, t).

Then, the result follows by applying once again Corollary 4.3.2.

GSvzt(vxy) =
hzt(vxy)c(x, y)

c(x, vxy)c(y, vxy)
+ α(x, y)uzt(x) + α(y, x)uzt(y)

−
∑
{r,s}∈F

c(r, s)ωS(vrs)

c(r, vrs)c(s, vrs)
hzt(vrs)ω(vxy)

−
∑
{r,s}∈F

c(r, s)ωS(vrs)

c(r, vrs)c(s, vrs)
(c(r, vrs)uzt(r) + c(s, vrs)uzt(s))ω(vxy)

GSvzt(vxy) =
εzt(vxy)c(x, y)

c(x, vxy)c(y, vxy)
− ω(vzt)ω(vxy)c(x, y)

c(x, vxy)c(y, vxy)

− ω(vzt)
∑
`∈V

(
α(x, y)G(x, `) + α(y, x)G(y, `)

)
πS(`)

+ α(x, y)α(z, t)G(x, z) + α(x, y)α(t, z)G(x, t)

+ α(y, x)α(z, t)G(y, z) + α(y, x)α(t, z)G(y, t)

−
∑
{r,s}∈F

c(r, s)ωS(vrs)

c(r, vrs)c(s, vrs)
(εvzt(vrs)− ω(vzt)ω(vrs))ω(vxy)

−
∑
{r,s}∈F

c(r, s)ωS(vrs)

c(r, vrs)c(s, vrs)
(c(r, vrs)uzt(r))ω(vxy)

−
∑
{r,s}∈F

c(r, s)ωS(vrs)

c(r, vrs)c(s, vrs)
(c(s, vrs)uzt(s))ω(vxy).
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Now substituting the values of the solution of the Poisson problem on Γ, the
expression becomes

GSvzt(vxy) =
εzt(vxy)c(x, y)

c(x, vxy)c(y, vxy)
− ω(vzt)ω(vxy)c(x, y)

c(x, vxy)c(y, vxy)

− ω(vzt)
∑
`∈V

(
α(x, y)G(x, `) + α(y, x)G(y, `)

)
πS(`)

+ α(x, y)α(z, t)G(x, z) + α(x, y)α(t, z)G(x, t)

+ α(y, x)α(z, t)G(y, z) + α(y, x)α(t, z)G(y, t)

− c(z, t)ωS(vzt)ω(vxy)

c(z, vzt)c(t, vzt)
+ ω(vzt)ω(vxy)

∑
{r,s}∈F

c(r, s)ωS(vrs)
2

c(r, vrs)c(s, vrs)

+
∑
{r,s}∈F

c(r, s)ωS(vrs)

c(s, vrs)

(
−ω(vzt)

∑
`∈V

G(r, `)πS(`)

)
ω(vxy)

−
∑
{r,s}∈F

c(r, s)ωS(vrs)

c(s, vrs)
(α(z, t)G(r, z) + α(t, z)G(r, t))ω(vxy)

+
∑
{r,s}∈F

c(r, s)ωS(vrs)

c(r, vrs)

(
−ω(vzt)

∑
`∈V

G(s, `)πS(`)

)
ω(vxy)

−
∑
{r,s}∈F

c(r, s)ωS(vrs)

c(r, vrs)
(α(z, t)G(s, z) + α(t, z)G(s, t))ω(vxy).

A little more development of the expression turns to

GSvzt(vxy) =
εzt(vxy)c(x, y)

c(x, vxy)c(y, vxy)
− ω(vzt)ω(vxy)c(x, y)

c(x, vxy)c(y, vxy)

− ω(vzt)
∑
`∈V

(
α(x, y)G(x, `) + α(y, x)G(y, `)

)
πS(`)

+ α(x, y)α(z, t)G(x, z) + α(x, y)α(t, z)G(x, t)

+ α(y, x)α(z, t)G(y, z) + α(y, x)α(t, z)G(y, t)

+ ω(vzt)ω(vxy)
∑
{r,s}∈F

c(r, s)ωS(vrs)
2

c(r, vrs)c(s, vrs)

+
∑
r,`∈V

G(r, `)πS(`)πS(r)ω(vzt)ω(vxy)

−
∑
r∈F

(α(z, t)G(r, z) + α(t, z)G(r, t))πS(r)ω(vxy).
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And finally we complete the proof by writting

GSvzt(vxy) =
εzt(vxy)c(x, y)

c(x, vxy)c(y, vxy)
+ ωS(vzt)ω(vxy)β

− ωS(vzt)ω(vxy)

(
c(x, y)

c(x, vxy)c(y, vxy)
+

c(z, t)

c(z, vzt)c(t, vzt)

)
−
∑
`∈V

ω(vzt)
(
α(x, y)G(x, `) + α(y, x)G(y, `)

)
πS(`)

−
∑
`∈V

ω(vxy)
(
α(z, t)G(z, `) + α(t, z)G(t, `)

)
πS(`)

+ α(x, y)α(z, t)G(x, z) + α(x, y)α(t, z)G(x, t)

+ α(y, x)α(z, t)G(y, z) + α(y, x)α(t, z)G(y, t).

If we consider E1 = E; that is, the case of subdivision networks, the above
result coincides except for a constant with [26, Proposition 3.1]. The scalar
is due to the fact that in the mentioned work, we were considering no weights
in the vertex set; i.e., ω(x) = 1 for any x ∈ V and hence the normalization
factor appears.





5

Resistance Distance and
Kirchhoff Index.

The concept of distance is a basic one in the whole human experience. In ev-
ery day life, it usually means some degree of closeness of two physical objects
or ideas, i.e. length, time interval, gap, rank difference, coolness or remote-
ness, while the term metric is often used as a standard for a measurement.

The mathematical notions of (i) distance metric ( i.e. a nonnegative function
d(x, y) that vanishes only when x = y, symmetric and that fulfills the so
called triangular inequality d(x, y) ≤ d(x, z) + d(z, y)), and of (ii) metric
space, were originated a little over a century ago by M. Fréchet 1 and F.
Hausdorff2 even though the triangle inequality above appears in Euclid.

Distances and metrics have become now an essential tool in many areas
of mathematics and its applications including geometry, probability, statis-
tics, coding/graph theory, clustering, data analysis, pattern recognition, net-
works, engineering, computer graphics/vision, astronomy, cosmology, molec-
ular biology, and many others areas of science. Devising the most suitable
distance metric and similarities, in order to quantify the proximity between
objects, has become a standard task for many researchers. Especially in-
tense ongoing search for such distances occurs in so many and diverse areas
as for example computational biology, image analysis, speech recognition and
information retrieval, just to mention a few.

Canonical geodesic distance on graphs is probably the most ancient, natural
and used notion of distance on discrete structures and has proved to be very
suitable for dealing with so many situations and purposes of great interest.
But also shows its limitations when the phenomena that is being studied

1In 1906, Maurice Fréchet submitted his outstanding thesis Sur Quelques points du
Calcul Fonctionnel introducing (within a systematic study of functional operation) the
notion of metric space (E-espace, E from écart in french, which means gap).

2In 1914, Felix Hausdorff published his famous Grundzüge der Mengen–Lehre where the
theory of topological and metric spaces (metrische Räume) was created.
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is considered to be transmitted in a quite more sophisticated way as when
the framework is that of virus diseases or social media or electrical circuits
for instance. Due to the own nature of whatever is propagating, it does not
take place by solely using one option (the shortest path) but all possibilities
are taken into account. Hence looking for new alternatives to this distance
concept is justified.

Klein and Randic’s 1993 electrical idea of effective resistances, see [58], is
then a different paradigm that has shown its versatility and opportunity to
deal with these situations. This is verified not only because of the big amount
of bibliographic references that the mathematical community is generating
more and more and progressively, but also because, and very interestingly,
the same distance metric appeared independently and in the apparently very
poorly related framework of social media in Stephenson and Zeller, [70]. It
is quite often that a result or an idea is found in different areas, but this
happy coincidence reaffirms the importance and opportunity of the discovery.
Equivalance between apparentely different distances is stated in [18, 37], for
example.

Another concern of major interest in the study of discrete structures is the
obtention of topological indices. Graphs and networks do have properties
that are very useful when unravelling the information that they contain,
so it is very interesting to extract meaningful information that you would
not have if the individual components were examined separately with all the
complexity of the whole vertices and edges set. In this sense, several measures
of network performance, topological indices and classification parameters
have been introduced and studied.

The way in which the nodes and edges are arranged within a discrete struc-
ture is its particular topology and can help us to identify relevant aspects of
it. Topological properties can apply to the network as a whole or to individ-
ual nodes and edges, they are of a great nature of origins and some of them,
just to put a few examples, are the degree and the centrality of a vertex, the
degree distribution (that defines whether a network is scale–free or not), the
diameter of the whole structure, the closeness and betweenness concepts, . . .

Perhaps the best known and most widely used topological index is the Wiener
index which is based on the geodesic distance of vertices. It was defined and
used by Wiener in 1947 when comparing the boiling points of some alkane
isomers. Since then, over 3000 topological graph indices are registered includ-
ing Hosoya index, Estrada index, Randič connectivity index, Zabreg group
for instance. There is also a rapidly increasing interest in this topic, there-
fore topological graph indices are researched worldwide in so many scientific
diverse areas.
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In this sense there are many proposals that have proven their opportunity
and raison d’être and that are worth analyzing. Among them the Kirchhoff
index is a global parameter that is tested day by day as really suitable. The
Kirchhoff index topologically analyzes the structure, initially from the point
of view of its global connectivity but also, and more lately, for centrality
concerns (as those of closeness and betweenness just mentioned) as well. An
interpretation that is usually given for the Kirchhoff index is as a generaliza-
tion of the former Wiener index when resistance distances are considered in
a discrete structure instead of the primitive geodesic shortest path distance.

Therefore, we will devote this chapter to these two topics: resistance dis-
tances and Kirchhoff index. After a very brief introduction of both concepts,
we will develop a more detailed exposition of them, how they are considered
and computed, whenever the structure in which they are defined turns more
elaborated from time to time, it is for graph, for networks and finally in
a Schödinger type operator setting. Finally we obtain resistance distances
and Kirchhoff index for subdivision networks in the three different scenar-
ios we are treating in this thesis, relating them to their correspondents on
the former discrete structure, the one existing previously to the subdivision
procedure. To be honest, all these results are obtained after Green’s func-
tion for the adequately stated Poisson problem as mere by–products. Even
though they are very important results in some specific areas on discrete
structures or network science, the power of discrete potential theory allows
the obtention of them quite straightforward.

5.1 Resistance distance or effective resistance

Geodesic distance is enough for in some environments, but it is clearly un-
satisfactory in many other more, when information, current, whatever is
distributed within a discrete structure is more properly assumed to be dif-
fused not only in a “shortest” way, but in all possible ways (as do fluids on
the air for instance).

The geodesic distance between two nodes does not consider the actual num-
ber of (shortest) paths that lie among the two vertices: two nodes that are
separated by a single path are at the same distance than two nodes that are
separated by many more paths of the same length. In many applications,
however, paths longer than geodesic ones are also relevant, since informa-
tion or whatever flows on the network does not necessarily choose an optimal
path. For instance, in social networks, a fad does not know the optimal route
to move among actors, but simply wanders around more or less randomly;
moreover, nodes separated by many pathways are often perceived closer than
nodes separated by few pathways, even if the paths have all the same length.
Communication between nodes is typically enhanced as soon as more routes
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are possible, [70].

We give another argument, following [63, 67], insisting in the idea that the use
of shortest path has, sometimes, some drawbacks as in many cases, shortest
paths form a small subset of all paths between two nodes. It follows then
that paths even slightly longer than the shortest one, potentially many more,
are not considered at all.

Hence resistance distance, also known as effective resistance as will be clear
soon, is an answer to a new paradigm, where the distance between two nodes
is sensible to all paths that can be considered between them (and not only the
shortest) and also diminishes as soon as more routes are stablished. There-
fore is an interesting (and maybe still underestimated) metric on networks.
It has a strong mathematical background, and persuasive interpretations in
both information and electrical network theory.

One of the fundamental problems in electric circuit theory is the computa-
tion of the electrical effective resistance between two vertices of the network.
Informally, the effective resistance between two vertices of a network, as-
suming that a network is seen as an electrical circuit, can be calculated by
the well known series and parallel manipulations. Two edges, corresponding
to resistors with resistance r1 and r2 ohm, in series can be replaced by one
edge with effective resistance r = r1 + r2. If the two edges are connected in
parallel, the two edges can be replaced by one edge with effective resistance

r such that
1

r
=

1

r1
+

1

r2
.

The point, see [58], is to view a network Γ = (V,E, c) as a resistor network
in which edges {x, y} ∈ E are resistors and the nodes {x, y, . . .} ∈ V are
junctions between resistors. Each edge is possibly assigned with a positive
value c(x, y) ≥ 0 indicating the conductance (the reciprocal of the resistance)
of the edge. Hence, the distance between two nodes x and y is defined as
the potential difference of nodes x and y when a unit of current is injected
in source x and removed from target y; since the current is equal to unity,
the potential difference is also the effective resistance between nodes x and
y. A high resistance (potential difference) between nodes indicates that the
two nodes are far away, while low resistance between nodes means that the
nodes are close points.

In [50] the authors show that the resistance distance notion satisfies many
interesting mathematical properties and it has different intriguing interpre-
tations. For instance, it establishes a metric on the graph and in particular
the resistance distance matrix is an euclidean distance matrix. Furthermore,
the resistance distance is a monotone decreasing function as well as a convex
function of the edge weight (conductance) vector of the graph.

Resistance distance across a pair of nodes is the same as the effective resis-
tance across that pair, treating each edge as a 1 ohm resistance. A special



5.2. Kirchhoff index 73

case of this restricted to only the edges of a graph was studied by Foster [48].

Resistance distance has an easy interpretation in terms of random walks
on graphs. The resistance distance between nodes u and v of a graph is
proportional to the average commute time of nodes x and y of the Markov
chain defined by the graph, which is the average number of steps it takes
to return to node x for the first time after starting from x and passing
through y. Curiously, resistance distance has been also used in the context
of bibliometrics to express a rational version of the popular Erdös number
[4].

5.2 Kirchhoff index

Topological indices are mathematical measures corresponding to discrete
structures that are invariant under isomorphisms. The significance of these
topological indices is usually associated with quantitative structures prop-
erty relationship (QSPR) and quantitative structure activity relationship
(QSAR) (see [67]).

Probably the idea of a topological index, in order to obtain critical informa-
tion from a discrete structure, appears in a work by Wiener (see [73]) in 1947
when he was working on the boiling point of paraffin. The so called Wiener
index of graph Γ, began the theory of topological indices being defined as

W (Γ) =
1

2

∑
{x,y}

d(x, y)

where {x, y} is any ordered pair of vertices in Γ and d(x, y) is the shortest
path x − y geodesic distance (when it exists). More information about the
Wiener index can be found in [45, 51, 79].

Thus it was first in the field of organic chemistry, with the very powerful
idea of a molecular graph Γ = (V,E) representing a given molecule so that
vertices are atoms and edges correspond to electron pair bonds, that the idea
of having a parameter to represent an object took its roots. After that it
has been used in a variety of ways from predicting antibacterial activity in
drugs to correlating thermodynamic parameters in physical chemistry and
modelling various solid–state phenomena.

The formal definition of the Kirchhoff index, or effective graph resistance or
total resistance as well, is the sum of the effective resistances over all pairs
of vertices. Then it is

k(Γ) =
1

2

∑
x,y∈V

R(x, y).

So from these series and parallel manipulations, it follows that it takes into
account both the number of (not necessarily disjoint) paths between two
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vertices and their length, intuitively measuring the presence and quality of
back–up possibilities.

Although derived from the field of electric circuit analysis, it was also in-
troduced in chemistry as a better alternative to other parameters used as a
discriminator among different molecules with similar shapes and structures,
see the seminal paper [58] again.

Since then a new line of research with a considerable amount of production
has been developed and the Kirchhoff index has been computed for some
classes of graphs with symmetries and for composite graphs (product, lex-
icographic product, join, corona, cluster, see for instance [78]). This paper
also motivated the study of the Kirchhoff index for graphs derived from a
single graph, such as the line graph, the subdivision graph and the total
graph of a regular graph in [49]. See [60, 3] and [63] for more examples.
Also closed–form formulae for the Kirchhoff index have been developed, for
example in [68, 69] following a Foster’s formulae approach.

Moreover, Kirchhoff index is deeply related to the Kemeny constant when
considering a Markov chain associated with a network, see [54].

The lower the value of k(Γ) for a network (from amongst all possible net-
works with the same number of nodes and edges), the more compact the
embedding, and the more structurally robust the overall network is. For
short, the Kirchhoff index provides a geometric measure to rank different
networks of comparable sizes.

5.3 Resistance distance and Kirchhoff index

In this section, we will expose some facts related to resistance distances
and Kirchhoff index when the discrete structure considered is just a graph,
that is, where there is no possibility of differentiating an existing edge from
another existing edge on the graph except by the vertices they link.

Using standard methods of the theory of electrical networks, that are the very
well known Ohm’s and Kirchhoff’s law for electrical currents, the effective
resistance between two vertices of a graph Γ = (V,E) can be calculated, from
the excellent seminal paper [58], in terms of some specifically determinate
entries of L†, the Moore–Penrose generalized inverse matrix of the Laplacian
matrix associated with a graph. Given a labelling of V = {x1, . . . , xn} it is

R(xi, xj) = l†ii + l†jj − l
†
ij − l

†
ji, for i 6= j.

In this way, many properties of resistance distances were proved using the
Laplacian matrix see [43, 74], and many dynamical properties of a graph or
network can be obtained from their study.
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Then the resistance matrix associated with a connected graph G, that will
be denoted by R = [Rij ] can be defined as Rij = R(xi, xj) if i 6= j. In
addition we set Rii = 0, for all i = 1, 2, . . . , n without contradicting the
previous definition.

When applying the symmetry of L†, it is Rij = l†ii+l
†
jj−2l†ij for i, j = 1, . . . , n.

Let us now denote the eigenvalues of L by µ1 ≥ µ2 ≥ · · · ≥ µn−1 ≥ µn, always
enumerated in decreasing order and repeated according to their multiplicity.
It is very well known, after applying Gerschgorin’s disk theorem, that the
Laplacian spectrum is contained in the real interval [0, 2maxx∈V deg(x)], in
a non–sharp upper bound. Hence, all eigenvalues for L are positive real
numbers; it is always µn = 0, because L1 = 0, so the lowest is equal to
0, and the biggest as large as desired. Therefore, we conclude that the
combinatorial Laplacian matrix is positive semi–definite.

Now we denote the corresponding eigenvectors of L by uk with k = 1, . . . , n.
So the equality

Luk = µk uk

holds for k = 1, . . . , n. In addition we specify that the components of every
eigenvector are uk = [u1k, u2k, . . . , unk]

T , for k = 1, . . . , n.

It is always possible to choose the Laplacian eigenvectors to be real, nor-
malized and mutually orthogonal. So the matrix U = [u1, u2, . . . , un] is
orthogonal, i.e. UUT = UTU = I,

and as UTLU = diag(µ1, µ2, . . . , µn) we have

lij =
n∑
k=1

µkuikujk.

Then, see [52], the entries of the Moore–Penrose generalized inverse for the
Laplacian matrix associated with a connected graph Γ can be defined by

l†ij =
n−1∑
k=1

1

µk
uikujk.

Hence, returning to the resistance matrix, it is

Rij =

n−1∑
k=1

1

µk
(uikuik + ujkujk − 2uikujk) =

n−1∑
k=1

1

µk
(uik − ujk)2

insisting in the idea of distance as r(xi, xj) is the squared euclidean distance
between the i-th and the j-th rows of U .

Another way of calculating resistance distances in the case that the subjacent

structure is a graph is considering the non–singular matrix L +
1

n
J, where
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J stands for the all ones matrix. When considering its inverse X = [xij ] =

L† +
1

n
J, the entries of the resistance matrix may be expressed as, see [5]

Rij = xii + xjj − 2xij .

Now, as for the Laplacian matrix and its generalized inverse it is L2L† =
L†L2 = L, some properties satisfied by the resistance matrix R can be estab-
lished such as LRL = −2L and also L†RL† = −2

(
L†
)3
. Finally , using both

relations a reverting expression can be obtained so that the Moore–Penrose
inverse matrix for the Laplacian matrix can be expressed in terms of the
resistance matrix

L† = −1

2

[
R− 1

n
(RJ + JR) +

1

n2
JRJ

]
.

The Laplacian matrix of a graph is sometimes called Kirchhoff matrix or
admittance matrix (or many other names, see [64] and the references therein).

An interesting property of the resistance distance, which is useful to illumi-
nate its meaning, is that, given any undirected, unweighted, and connected
graph with n nodes, the sum of resistance distances between pairs of nodes
connected by an edge is n− 1, independently of the number of edges of the
graph (here we assume that each pair defining an undirected edge is consid-
ered only once in the sum). Notice that the geodesic distance between two
nodes connected by an edge is 1, and hence the sum of geodesic distances
on a graph is the number of edges of the graph. Thus if, for instance, the
graph is acyclic, so it is a tree, then resistance and geodesic distances coin-
cide, because in a tree there is a unique path between any two nodes, and
the resistance distance for two nodes is the length of this path, that is, the
geodesic distance. Since a tree of n nodes has n− 1 edges, we have that the
sum of distances on edges is the number of edges, that is n−1. However, the
presence of cycles in a graph reduces resistance distances in comparison with
geodesic counterparts as, in general, more paths are available between pairs
of nodes when loops are present in the graph. Hence resistance distance is a
thinner distance between vertices than geodesic shortest path. For a graph
with the maximum number of cycles, a complete graph in which any pair
of nodes is linked by an edge, each of the n(n − 1)/2 pairs of nodes linked
by an edge are distant 2/n in the case that resistance distance is considered
with a remarkable reduction of their geodesic distance of 1 as soon as n > 2
and the difference increasing with n. After summing up all possibilites, we
obtain a total of n− 1 again, much less than the geodesic counterpart which
is 2n. So the denser the graph, the more paths there are between nodes, the
smaller are resistance distances compared with geodesic ones.

One of the main topics in the study of the resistance distance is the compu-
tation problem: besides some typical techniques used in electrical network
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theory various kinds of formulas for computing resistance distances have been
developed including algebraic, probabilistic, combinatorial, recursive an so
on. For more details see [77] and the references therein.

The resistance distances (and following Kirchhoff index as well) have been
extensively studied in chemical literature, [58, 74]. They both appear in sev-
eral applications: electrical networks, averaging networks, and experiment
designs [21, 58]. The results of [50] represent an excellent survey on effective
resistances, the authors also consider the problem of obtaining optimal con-
ductances for the effective resistance be minimal given the network structure.

We have already mentioned that the connection between resistance distances
and random walks on graphs has also been established and discussed, [54].
In [72] Tetali proved Foster’s first theorem using certain results from the
theory of Markov chains, then Palacios gave an extension of Foster’s second
theorem in [69]. Generalization of all of the Foster’s theorems are given by
some authors, see [15].

A very important result ([51]), in connection with the Kirchhoff index of a
graph now, is the next result, where the Kirchhoff index is related to the
inverse value of the non–null eigenvalues of the Laplacian matrix, or with
the eigenvalues of L†,

k(Γ) = n
n−1∑
i=1

1

µi
.

For more information we refer to [65], in which Mohar gives a clear survey
on the Laplacian, its properties, and its applications; to appendix B.8 of
[38] where an extensive review of publications on the Laplacian of graphs is
given. Also [3, 69], are very well known references in this field.

5.4 Resistance distances and Kirchhoff index on net-
works

In this section we are replicating a presentation of the resistance distance con-
cept but now we consider the case when the discrete structure Γ = (V,E, c)
allows to differentiate edges because of a conductance is defined for every
one of them.

In this case some minor observations have to be done in order to calculate
pairwise resistance distances because the corresponding Laplacian matrix,
now attached to the network, can be defined and considered similarly as in
the previous case of a simple graph.

But also a different approach, based on discrete Potential Theory, is appli-
cable to calculate effective resistances, as was demonstrated in [8]. In this
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paper the authors relate equilibria measures associated with the combina-
torial Laplacian kernel and the corresponding Wiener capacities, a powerful
idea when the structure is symmetric. The authors also generalize Palacio’s
techniques, [69].

As in the former standard setting, the effective resistance between vertices
x and y can also be defined through the solution of the Poisson problem
L(u) = f when the data function is the dipole with poles at x and at y;
that is f = εx− εy. Being data f ∈ C(V ), so that the corresponding Poisson
problem is compatible, the effective resistance is defined as

R(x, y) = u(x)− u(y)

with u ∈ C(V ) is any solution, no matter what. We remark that R(x, y) is
independent on the chosen solution u.

Again the Kirchhoff index or Total resistance of a network is

k(Γ) =
1

2

∑
x,y∈V

R(x, y).

Effective resistances can be used to deduce important properties of electrical
networks as can be seen in [50, 58, 74]. Also a couple of good references
where some calculations have been developed are [5, 8].

5.5 Resistance distances and Kirchhoff index for
Schrödinger operators

In [9] a generalization of the concept of effective resistance with respect to a
value λ ≥ 0 and a weight ω ∈ Ω(V ) was introduced through a commonly used
technique in the context of electrical networks and Markov chains and with
the aim of generalizing the Fiedler characterization of irreducible, symmetric
and diagonally dominant M–matrices as resistive inverses, see [46], to all
irreducible and symmetric M–matrices or equivalently, to all positive semi–
definite Schrödinger operators. This generalization is essential to obtain the
expression for the Kirchhoff index of a composite network in terms of the
Kirchhoff indexes of the factors, see [1, 2].

When associating a positive value to each node of a network and then defining
a one parametric family of resistance distances associated with this weight
function through a positive semi–definite Schrödinger type operator (for
which the parameter and the function are the lowest eigenvalue and the
corresponding eigenfunction), the framework of discrete potential theory is
applicable to analyze the main properties of these distances.
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This generalized effective resistance, with respect to λ and ω, define a dis-
tance on the network as in the standard case and hence it can be also used
with the same aims, see [14]. Actually we will explain how the effective re-
sistance verifies analogous properties to those that the classical case satisfy.
Among them, the relation between the Kirchhoff index with respect to λ and
ω and the eigenvalues of the associated Schrödinger operator as well as the
relation between the effective resistances with respect to λ and ω and the
eigenvalues and eigenfunctions of the mentioned operator.

Specifically, given λ ≥ 0 and ω ∈ Ω(V ) so that q = qω + λ, the ω–dipole

function with poles at x and y is defined as f =
1

ω
(εx − εy) . Clearly P(f) =

0 so the Poisson problem Lq(u) = f is consistent. Moreover every one of its
solutions maximizes the functional

Ix,y(u) = 2
[u(x)

ω(x)
− u(y)

ω(y)

]
− 〈Lq(u, u)〉.

Then given x, y ∈ V, the generalization of the effective resistance is defined,
with respect to λ and ω so that

Rλ,ω(x, y) = max
u∈C(V )

{Ix,y(u)}.

Since the matrix associated with the Schrödinger operator Lq is an irre-
ducible, symmetric M–matrix, and conversely, every irreducible, symmetric
M–matrix appears as associated with a Schrödinger operator, we can assign
an effective resistance function to any irreducible, symmetricM–matrix (not
necessarily diagonally–dominant).

Hence, the generalized Kirchhoff index of Γ with respect to λ and ω is

k(λ, ω) =
1

2

∑
x,y∈V

Rλ,ω(x, y)ω2(x)ω2(y).

Observe that, our definitions of effective resistance and Kirchhoff index when
ω is constant, differ from the classical ones in a factor of |V |, since the
weight is always normalized to 1. As we will see for us the Kirchhoff index
is basically the trace of the Green function, giving to that index a physical
meaning. Also note, that the defined Kirchhoff index can be seen as one half
of the energy of the kernel given by the effective resistance matrix applied
to the vector ω and finally, R0,1(x, y) = R(x, y).

Nevertheless, the calculation of Rλ,ω(x, y) is again in terms of the solution
of a Poisson problem with the ω–dipole function as data function, as can be
seen in [9]. Moreover, symmetry, non–negativity and relationship with the
Green kernel function is also obtained from the fact that, for u ∈ C(V ) any
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solution of the Poisson equation Lq(u) = f, then

Rλ,ω(x, y) = 〈Lq(u), u〉 =
u(x)

ω(x)
− u(y)

ω(y)
.

. From this expression, Rλ,ω is symmetric, non–negative and vanishes if and
only if x = y. In addition,

Rλ,ω(x, y) =
Gq(x, x)

ω2(x)
+
Gq(y, y)

ω2(y)
− 2

Gq(x, y)

ω(x)ω(y)
.

So, the role of the Green function is crucial in order to evaluate effective
resistances and the subsequent Kirchhoff index of the network as

k(λ, ω) =
∑
x∈V

Gq(x, x)− λ†.

where λ† = λ−1 if λ > 0 and λ† = 0 if λ = 0. We see from the above
expression that the Kirchhoff index is the trace of the Green function.

The main properties satisfied by this generalized effective resistance may be
are those listed in the next final result, see [24].

Theorem 5.5.1. If Γ is a connected network, the effective resistance with
respect to a parameter and a weight satisfies the following properties:

1. The effective resistance Rλ,ω(x, y) determines a distance on the net-
work. Moreover, Rλ,ω(x, y) = Rλ,ω(x, z) + Rλ,ω(z, y) if and only if
λ = 0 and z separates x and y.

2. For 0 ≤ λ̂ ≤ λ and q̂ = qω + λ̂ then Rλ,ω ≤ Rλ̂,ω ≤ R0,ω.

3. Rλ,ω(x, y) ≤ dĉ(x, y), where ĉ(x, y) = c(x, y)ω(x)ω(y), with equality if
and only if λ = 0 and there exists a unique path from x to y.

4. lim
λ→+∞

Rλ,ω = 0 and lim
λ→0

Rλ,ω = R0,ω.

Or in other words, for a fixed weight function ω, the associated effective
resistance distances are continuous and monotone decreasing with respect
to the parameter λ (the larger the parameter, the lower the resistance) and
they are upper bounded by the weighted geodesic distance of the network.
Moreover, both distances do coincide if and only if the parameter is null and
the network is a tree. In addition, this new generalized resistance distance
is graph geodetic if and only if the operator is singular.

Just to end this section we mention that in the case of constant weight, by
applying some electrical equivalences it is possible to show that the one–
parametric family of effective resistances can be seen as the effective resis-
tance associated with the combinatorial Laplacian of a complete network.
The so called forest distance and adjusted forest distance can be recovered
as this particular case, see [30].
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5.6 Resistance distances and Kirchhoff index on sub-
division networks

After this presentation of both treated concepts and their different inter-
pretation and computation depending on the case we are considering, we
are now in a position to present our results when electrical subdivision of a
network is considered. Of course we did our job in the three, at this point,
well known cases we are considering in this manuscript: standard electrical
subdivision for a combinatorial Laplacian operator, also standard electrical
subdivision for a normalized Laplacian operator and finally the third a more
general case of partial electrical subdivision for a Schrödinger type operator.

What it follows, structured in subsections, are the corresponding results we
have obtained in every case. Hence this section mimics previous sections of
Chapter 3.

5.6.1 Subdivision for combinatorial Laplacian

We are now concerned with the relation between effective resistances in a
base network Γ and the effective resistances, RS , in a subdivision network
ΓS .

Theorem 5.6.1. Let Γ = (V,E, c) be a network and ΓS = (V S , ES , c) its
subdivision network, then

RS(x, y) = R(x, y),

RS(x, vzt) =
1

k(vzt)
+ α(z, t)R(x, z) + α(t, z)R(x, t)− α(z, t)α(t, z)R(z, t),

RS(vxy, vzt) =
1

k(vxy)
+

1

k(vzt)

− α(x, y)α(y, x)R(x, y)− α(z, t)α(t, z)R(z, t)

+ α(x, y)α(z, t)R(x, z) + α(x, y)α(t, z)R(x, t)

+ α(z, t)α(y, x)R(y, z) + α(y, x)α(t, z)R(y, t), for vxy 6= vzt.

Proof. The proof is a direct consequence of Proposition 4.3.3. Let us do
the non–trivial case 2. The case 3, can be proved similarly.

RS(x, vzt) = GS(x, x) +GS(vzt, vzt)− 2GS(x, vzt)
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RS(x, vzt) = G(x, x)− 2

n+m

∑
`∈V

G(x, `)πS(`)

+ α(z, t)
(
α(z, t)G(z, z) + α(t, z)G(t, z)

)
+

+ α(t, z)
(
α(z, t)G(z, t) + α(t, z)G(t, t)

)
− 2

n+m

∑
`∈V

[
α(z, t)G(z, `) + α(t, z)G(t, `)

]
πS(`) +

εvzt(vzt)

k(vzt)

− 2

(n+m)k(vzt)
− 2α(z, t)G(z, x)− 2α(t, z)G(t, x)

+
2

n+m

∑
`∈V

[
α(z, t)G(z, `) + α(t, z)G(t, `) +G(x, `)

]
πS(`)

+
2

(n+m)k(vzt)

RS(x, vzt) =
1

k(vzt)
+G(x, x)− 2α(z, t)G(z, x)− 2α(t, z)G(t, x)

+ α(z, t)
(
α(z, t)G(z, z) + α(t, z)G(t, z)

)
+ α(t, z)

(
α(z, t)G(z, t) + α(t, z)G(t, t)

)
=

1

k(vzt)
+ α(z, t)

[
G(x, x) +G(z, z)− 2G(x, z)

]
+ α(t, z)

[
G(x, x) +G(t, t)− 2G(x, t)

]
− α(t, z)α(z, t)

[
G(z, z) +G(t, t)− 2G(z, t)

]
,

and hence, the result follows.

Observe that the effective resistance between vertices of the original network
remains unchanged, as expected. In particular for the standard subdivision
graph we get the following result, which coincides with the obtained in [32,
71, 76], up to the factor 2 due to our (electrically compatible)–choice of the
conductances.

Corollary 5.6.2. Let Γ = (V,E, c) be a network and ΓS = (V S , ES , c) its
standard subdivision network, then

RS(x, y) = R(x, y),

RS(x, vzt) =
1 + 2R(x, z) + 2R(x, t)−R(z, t)

4
,

RS(vxy, vzt) =
2−R(x, y)−R(z, t) +R(x, z) +R(x, t) +R(y, z) +R(y, t)

4
,

for any vxy 6= vzt.
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Next we obtain an expression for the Kirchhoff index of the subdivision
network, k(ΓS), in terms of the Kirchhoff index, k, of the base network and
other parameters.

Theorem 5.6.3. Let Γ = (V,E, c) be a network and ΓS = (V S , ES , c) its
subdivision network, then

k(ΓS) =
n+m

n
k(Γ) + (n+m)

∑
x∈V

G(x, x)πS(x)−
∑
x,y∈V

G(x, y)πS(x)πS(y)

− (n+m)
∑
x∼y

α(x, y)α(y, x)R(x, y) + (n+m− 1)
∑
x∼y

1

k(vxy)
.

Proof.

k(ΓS) = (n+m)
∑
x∈V

GS(x, x) + (n+m)
∑

vxy∈V ′

GS(vxy, vxy)

=
(n+m)

n
k(Γ)− 2

∑
x∈V

∑
`∈V

G(x, `)πS(`)

+ (n+m)
∑

vxy∈V ′

(
α(x, y)2G(x, x)+2α(x, y)α(y, x)G(y, x)+α(y, x)2G(y, y)

)
− 2

∑
vxy∈V ′

∑
`∈V

[
α(x, y)G(x, `) + α(y, x)G(y, `)

]
πS(`)

+
∑
x,y∈V

G(x, y)πS(x)πS(y) + (n+m− 1)
∑
x∼y

1

k(vxy)

kS =
n+m

n
k(Γ) + (n+m)

∑
x,y∈V

(
α(x, y)2G(x, x) + α(x, y)α(y, x)G(y, x)

)
−

∑
x,y∈V

G(x, y)πS(x)πS(y) + (n+m− 1)
∑
x∼y

1

k(vxy)

=
n+m

n
k(Γ) + (n+m)

∑
x∈V

G(x, x)πS(x)− (n+m)
∑
x∼y

α(x, y)α(y, x)R(y, x)

−
∑
x,y∈V

G(x, y)πS(x)πS(y) + (n+m− 1)
∑
x∼y

1

k(vxy)
.

In particular, the Kirchhoff index of the standard subdivision graph has the follow-
ing expression which, coincides with [71, Th 3.1]. In the case of k–regular graph
the result coincides with [49, Th 3.5].

Corollary 5.6.4. Let ΓS be the standard subdivision network of a graph Γ; then

k(ΓS) =
n+m

n
k(Γ) + (n+m)

∑
x∈V

G(x, x)πS(x)−
∑
x,y∈V

G(x, y)πS(x)πS(y)

+
m2 − n2 + n

4
.
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In particular, if Γ is k–regular

k(ΓS) =
(k + 2)2

4
k(Γ) +

(k2 − 4)n2 + 4n

16
.

5.6.2 Subdivision for the normalized Laplacian

From Theorem 4.2.3, we easily calculate the values of the effective resistances for
the subdivision network. Moreover, we also give the expression of its Kirchhoff
index.

Theorem 5.6.5. Let ΓS be the subdivision network of Γ, then for any x, z ∈ V
and vxy, vzt ∈ V ′, the effective resistances between vertices of ΓS are given by

RS(x, z) = R(x, z),

RS(vxy, z) =
1

4

1

c(x, y)
+

1

2
R(x, z) +

1

2
R(y, z)− 1

4
R(x, y),

RS(vxy, vzt) =
1

4

(
1

c(x, y)
+

1

c(z, t)

)
+

1

4

(
R(x, z) +R(x, t) +R(y, z) +R(y, t)−R(x, y)−R(z, t)

)
,

for any vxy 6= vzt.

Moreover, the Kirchhoff index of the subdivision network is

k(ΓS) = 16 k(Γ) + 2 vol(Γ)(2m− 2n+ 1).

Proof. The expressions for the effective resistance follow directly from Theorem
4.2.3 and Proposition 4.3.3. On the other hand, from the definition of Kirchhoff
index we get

k(ΓS) = 8k(Γ) + 2vol(Γ)(2m− 1)

+ 4vol(Γ)
∑
x∼y

c(x, y)

(
G(x, x)

k(x)
+2

G(x, y)√
k(x)k(y)

+
G(y, y)

k(y)

)
= 8k(Γ) + 2vol(Γ)(2m− 1)

+ 4vol(Γ)
∑
x∈V

G(x, x)

k(x)

∑
y∼x

c(x, y)

+ 4vol(Γ)
∑
x∈V

1√
k(x)

∑
y∼x

c(x, y)
G(x, y)√
k(y)

= 12k(Γ) + 2vol(Γ)(2m− 1) + 4vol(Γ)
∑
x∈V

G(x, x)

k(x)

∑
y∼x

c(x, y)

+ 4vol(Γ)
∑
x∈V

1√
k(x)

∑
y∼x

c(x, y)

(
G(x, y)√
k(y)

− G(x, x)√
k(x)

)

= 16k(Γ) + 2vol(Γ)(2m− 1)− 4vol(Γ)
∑
x∈V

(
1−

√
k(x)

vol(Γ)

√
k(x)

)
= 16k(Γ) + 2vol(Γ)(2m− 2n+ 1).
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5.6.3 Partial Subdivision for Schrödinger operator

In this section we aim at obtaining the expression for the effective resistances on
a partial subdivision network of a given network Γ. The expression will follow by
taking into account the expression for the effective resistances in terms of Green’s
function.

Proposition 5.6.6. Let ΓS be a partial subdivision network of Γ, then for any
x, z ∈ V and vxy, vzt ∈ V ′, the effective resistances of ΓS are given by

RSωS (x, z) =
1

α2
Rω(x, y),

RSωS (vzt, x) =
c(z, t)

α2c(z, vzt)c(t, vzt)ω(vzt)2

+
ω(z)ω(t)

α2ω(vzt)

(
α(z, t)Rω(x, z)

ω(t)
+
α(t, z)Rω(x, t)

ω(z)

−α(t, z)α(z, t)Rω(z, t)

ω(vzt)

)
,

RSωS (vxy, vzt) =
c(x, y)

α2c(x, vxy)c(y, vxy)ω(vxy)2
+

c(z, t)

α2c(z, vzt)c(t, vzt)ω(vzt)2

+
1

α2ω(vxy)ω(vzt)

[
α(x, y)α(z, t)ω(x)ω(z)Rω(x, z)

+α(x, y)α(t, z)ω(x)ω(t)Rω(x, t)

+ α(y, x)α(z, t)ω(y)ω(z)Rω(y, z)

+α(y, x)α(t, z)ω(y)ω(t)Rω(y, t)
]

− α(x, y)α(y, x)ω(x)ω(y)

α2ω(vxy)2
Rω(x, y)

− α(z, t)α(t, z)ω(z)ω(t)

α2ω(vzt)2
Rω(z, t), for any vxy 6= vzt.

Proof. Suppose that x, z ∈ V , then

RSωS (x, z) =
GSq′(x, x)

[ωS(x)]2
+
GSq′(z, z)

[ωS(z)]2
− 2

GSq′(x, z)

ωS(x)ωS(z)

=
1

[ωS(x)]2

(
Gqω (x, x)− 2ωS(x)

∑
`∈V

Gqω (x, `)πS(`)
)

+
1

[ωS(z)]2

(
Gqω (z, z)− 2ωS(z)

∑
`∈V

Gqω (z, `)πS(`)
)

− 2

ωS(x)ωS(z)

(
Gqω (x, z)−

∑
`∈V

(
ωS(x)Gqω (z, `)+ωS(z)Gqω (x, `)

)
πS(`)

)
=
Gqω (x, x)

[ωS(x)]2
+
Gqω (z, z)

[ωS(z)]2
− 2

Gqω (x, z)

ωS(x)ωS(z)
=

1

α2
Rω(x, z).
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Moreover, if x ∈ V and vzt ∈ V ′, then

RSq′(x, vzt) =
GSq′(x, x)

[ωS(x)]2
+
GSq′(vzt, vzt)

[ωS(vzt)]2
− 2

GSq′(x, vzt)

ωS(x)ωS(vzt)
,

where from Proposition 4.3.3

GSq′(x, x)

ωS(x)2
=
Gqω (x, x)

ωS(x)2
− 2

ωS(x)

∑
`∈V

Gqω (x, `)πS(`) + β,

GSq′(vzt, vzt)

ωS(vzt)2
=

c(z, t)

c(z, vzt)c(t, vzt)ωS(vzt)2
− 2

c(z, t)

c(z, vzt)c(t, vzt)

− 2

ωS(vzt)

∑
`∈V

(
α(z, t)Gqω (z, `) + α(t, z)Gqω (t, `)

)
πS(`)

+
α(z, t)2Gqω (z, z)+2α(z, t)α(t, z)Gqω (z, t)+α(t, z)2Gqω (t, t)

ωS(vzt)2

+ β

GSq′(vzt, x)

ωS(vzt)ωS(x)
=
α(z, t)Gqω (z, x) + α(t, z)Gqω (t, x)

ωS(vzt)ωS(x)
− c(z, t)

c(z, vzt)c(t, vzt)
+ β

−
∑
`∈V

(α(z, t)Gqω (z, `)

ωS(vzt)
+
α(t, z)Gqω (t, `)

ωS(vzt)
+
Gqω (x, `)

ωS(x)

)
πS(`).

Summing up

RSωS (x, vzt) =
c(z, t)

c(z, vzt)c(t, vzt)ωS(vzt)2
+
Gqω (x, x)

ωS(x)2

+
α(z, t)2Gqω (z, z)

ωS(vzt)2
+
α(t, z)2Gqω (t, t)

ωS(vzt)2

+
2α(z, t)α(t, z)Gqω (z, t)

ωS(vzt)2
− 2

α(z, t)Gqω (z, x) + α(t, z)Gqω (t, x)

ωS(vzt)ωS(x)

=
c(z, t)

c(z, vzt)c(t, vzt)ωS(vzt)2

+
Gqω (x, x)

ωS(x)2

(
α(z, t)ω(z)

ω(vzt)
+
α(t, z)ω(t)

ω(vzt)

)
+
Gqω (z, z)

ωS(z)2

(
α(z, t)ω(z)

ω(vzt)
− α(t, z)α(z, t)ω(z)ω(t)

ω(vzt)2

)
+
Gqω (t, t)

ωS(t)2

(
α(t, z)ω(t)

ω(vzt)
− α(t, z)α(z, t)ω(z)ω(t)

ω(vzt)2

)
+

2α(z, t)α(t, z)ω(z)ω(t)

ωS(vzt)2
Gqω (z, t)

ω(z)ω(t)

− 2
α(z, t)ω(z)

ωS(vzt)

Gqω (z, x)

ωS(x)ω(z)
− 2

α(t, z)ω(t)

ωS(vzt)

Gqω (t, x)

ωS(x)ω(t)

=
c(z, t)

c(z, vzt)c(t, vzt)ωS(vzt)2
+
α(z, t)ω(z)

α2ω(vzt)
Rω(x, z)

+
α(t, z)ω(t)

α2ω(vzt)
Rω(x, t)− α(t, z)α(z, t)ω(z)ω(t)

α2ω(vzt)2
Rω(z, t).
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For the last case, take into account also that

GSq′(vxy, vzt)

ωS(vxy)ωS(vzt)
=

εzt(vxy)c(x, y)

c(x, vxy)c(y, vxy)ωS(vxy)ωS(vzt)

−
(

c(x, y)

c(x, vxy)c(y, vxy)
+

c(z, t)

c(z, vzt)c(t, vzt)

)

−
∑
`∈V


(
α(x, y)G(x, `) + α(y, x)G(y, `)

)
ωS(vxy)

+

(
α(z, t)G(z, `) + α(t, z)G(t, `)

)
ωS(vzt)

πS(`)

+
α(x, y)α(z, t)G(x, z) + α(x, y)α(t, z)G(x, t)

ωS(vxy)ωS(vzt)

+
α(y, x)α(z, t)G(y, z) + α(y, x)α(t, z)G(y, t)

ωS(vxy)ωS(vzt)
.

Hence the expression for RSωs(vxy, vzt) is

RSωs(vxy, vzt) =
c(x, y)

c(x, vxy)c(y, vxy)ωS(vxy)2
+

c(z, t)

c(x, vzt)c(t, vzt)ωS(vzt)2

+
α(x, y)2G(x, x) + 2α(x, y)α(y, x)G(x, y) + α(y, x)2G(y, y)

ωS(vxy)2

+
α(z, t)2G(z, z) + 2α(z, t)α(t, z)G(z, t) + α(t, z)2G(t, t)

ωS(vzt)2

− 2
α(x, y)α(z, t)G(x, z) + α(x, y)α(t, z)G(x, t)

ωS(vxy)ωS(vzt)

− 2
α(y, x)α(z, t)G(y, z) + α(y, x)α(t, z)G(y, t)

ωS(vxy)ωS(vzt)

=
c(x, y)

c(x, vxy)c(y, vxy)ωS(vxy)2
+

c(z, t)

c(x, vzt)c(t, vzt)ωS(vzt)2

+
1

α2ωS(vxy)ωS(vzt)[
α(x, y)α(z, t)ω(x)ω(z)R(x, z)+α(x, y)α(t, z)ω(x)ω(t)R(x, t)

+α(y, x)α(z, t)ω(y)ω(z)R(y, z)+α(y, x)α(t, z)ω(y)ω(t)R(y, t)
]

− α(x, y)α(y, x)ω(x)ω(y)

α2ωS(vxy)2
R(x, y)− α(x, t)α(t, z)ω(z)ω(t)

α2ωS(vzt)2
R(z, t).

Proposition 5.6.7. Let ΓS be the partial subdivision network of Γ, then the Kirch-
hoff index of ΓS is given by

k(ωS) = k(ω) +
∑
x∈V

πS(x)

ωS(x)
Gqω (x, x) +

∑
{x,y}∈E1

c(x, y)

c(x, vxy)c(y, vxy)
− β

+
∑

{x,y}∈E1

α(x, y)α(y, x)ω(x)ω(y)Rω(x, y).
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Proof. It is enough to compute the trace of Green’s function.

k(ωS) =
∑
x∈V

[
Gqω (x, x)− 2ωS(x)

∑
`∈V

Gqω (x, `)πS(`) + βωS(x)2
]

+
∑

{x,y}∈E1

[ c(x, y)

c(x, vxy)c(y, vxy)
− ωS(vxy)2

(
2

c(x, y)

c(x, vxy)c(y, vxy)
− β

)
− 2ω(vxy)

∑
`∈V

(
α(x, y)Gqω (x, `) + α(y, x)Gqω (y, `)

)
πS(`)

+ α(x, y)2Gqω (x, x) + 2α(x, y)α(y, x)Gqω (x, y) + α(y, x)2Gqω (y, y)
]

= k(ω) + β +
∑
{x,y}∈E1

[ c(x, y)

c(x, vxy)c(y, vxy)
− 2

c(x, y)ωS(vxy)2

c(x, vxy)c(y, vxy)

]
k(ωS) =− 2

∑
x,`∈V

Gqω (x, `)πS(x)πS(`)

+
∑

{x,y}∈E1

[
α(x, y)2Gqω (x, x) + 2α(x, y)α(y, x)Gqω (x, y) + α(y, x)2Gqω (y, y)

]
= k(ω) +

∑
x∈V

Gqω (x, x)
πS(x)

ωS(x)
−

∑
{x,y}∈E1

α(x, y)α(y, x)ω(x)ω(y)Rω(x, y)

+
∑

{x,y}∈E1

c(x, y)

c(x, vxy)c(y, vxy)
− β.



6

The case of Star and
Wheel networks.

In this last chapter we consider two examples, namely Star and Wheel networks. We
perform the subdivision operation to obtain Green’s functions, effective resistances
and Kirchhoff indexes on the new obtained networks for the different operators we
have been considered, see [26, 27, 28].

6.1 Partial subdivision on star networks

Let us consider S2n = (V,E, c), the Star network with vertex set V = {x0, x1, . . . , x2n}
and positive conductances

c(x0, x2j) = aj , c(x0, x2j−1) = a′j

for j = 1, . . . n and c(xi, xj) = 0 otherwise. We define SS2n = (V ∪ V ′, cS), the
partial subdivision network of S2n where V ′ = {x0 2i, |i = 1, . . . , n} and

cS(x0 2i, x0) = c0 i > 0, cS(x0 2i, x2i) = ci 0 > 0

for i = 1, . . . , n and cS(xi, xj) = c(xi, xj) otherwise. See, Figure 6.1.

Let ω : V → R+ be a weight on S2n and we define an extension of this weight
function ωS : V ∪ V ′ → R+ as mentioned in Section 4.3. In order to simplify the
notation, the weight function SS2n will be denoted

ωS(xj) = ωj , ωS(x0 2i) = ω0 2i

for any j = 0, . . . , 2n, i = 1, . . . , n. The compatibility condition (4.4) reads
ω0 2i

ai
=
ω2i

c0 i
+
ω0

ci 0
.

α(x0, x2i) =
c0 i ω0 2i

c0 iω0 + ci 0ω2i
=

ai
c0 i

,

πS(x0) =

n∑
i=1

c0 i ω
2
0 2i

c0 iω0 + ci 0ω2i
=

n∑
i=1

ai ω0 2i

ci 0
,

πS(x2i) =
ai ω0 2i

c0 i
.
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x2n

x1

x2

x3

x4

x5

x0

an

a′1

a1

a′2a2

a′3

x2n

x1

x2

x3

x4

x5

x0

x0 2n

x0 2

x0 4

Figure 6.1 The Star network (left) and a partial subdivision
(right)

Let us assume constant weight for the Star network ω(xi) =
1√

2n+ 1
, for any

i = 0, . . . , 2n, and we assign a positive constant γ to the weight of the new vertices.
Thus,

ωS(xi) = ωi =
α√

2n+ 1
, ωS(x0 2i) = ω0 2i = αγ.

In this case, α2 =
1

1 + nγ2
. Moreover, we assume equal conductance for each pair

of new edges, this is, ci 0 = c0 i for any i = 1, . . . , n. Then, according to expression
(4.4), the following equality holds

ai
c0 i

=
ai
ci 0

=
1

2
γ
√

2n+ 1.

Moreover, the parameters are

α(x0, x2i) =
c0 i ω0 2i

c0 iω0 + ci 0ω2i
=

ai
c0 i

=
1

2
γ
√

2n+ 1,

πS(x0) =

n∑
i=1

c0 i ω
2
0 2i

c0 iω0 + ci 0ω2i
=

n∑
i=1

ai ω0 2i

ci 0
=
n

2
αγ2
√

2n+ 1,

πS(x2i) =
ai ω0 2i

c0 i
=

1

2
αγ2
√

2n+ 1.

If we denote

Q =
1

2n+ 1

n∑
j=1

(
1

aj
+

1

a′j

)
,

the expression for the Green function and the effective resistance of the Star network
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is, see [23]

G(x0, x0) = ω2
0Q =

1

2n+ 1
Q =

1

(2n+ 1)2

n∑
j=1

(
1

aj
+

1

a′j

)
,

G(x0, x2i) = ω2i

(
ω0Q−

ω2i

ai

)
=

1

2n+ 1
(Q− 1

ai
),

G(x0, x2i+1) = ω2i−1

(
ω0Q−

ω2i+1

a′i

)
=

1

2n+ 1
(Q− 1

a′i
),

G(xi, xk) =
ωiωk
ω0

(
ω0Q−

ωi
ai
− ωk
ak

)
=

1

2n+ 1
(Q− 1

ai
− 1

aj
),

G(xi, xi) =
ω2
i

ω0

(
ω0Q− 2

ωi
ai

)
+

ωi
aiω0

=
1

2n+ 1
(Q− 2

ai
) +

1

ai

and

R(x0, xk) =
2n+ 1

c(x0, xk)
, R(x`, xk) = (2n+ 1)

(
1

c(x0, x`)
+

1

c(x0, xk)

)
,

where ` 6= k and `, k = 1, . . . , 2n.

Moreover, under the previous assumptions, the expression for the Kirchhoff index
is

k(S2n) = 2nQ.

In order to obtain the Green function for the partial subdivision network of the
Star, we first compute β, that in this case is

β = G(x0, x0)πS(x0)2 + 2
n∑
i=1

G(x0, x2i)π
S(x0)πS(x2i)

+

n∑
i,j=1

G(x2i, x2j)π
S(x2i)π

S(x2j) +

n∑
i=1

aiω
2
0 2i

c0 ici 0

=
1

4
n2α2γ4Q+

2

4
n2α2γ4Q− 2n

4
α2γ4

n∑
i=1

1

ai
+

2

4
α2γ4

n∑
i<j,i=1

[
Q− 1

ai
− 1

aj

]

+
1

4
α2γ4

n∑
i=1

[
Q− 2

ai

]
+

(2n+ 1)

4
α2γ2

n∑
i=1

1

ai
+

n∑
i=1

aiω
2
0 2i

c0 ici 0

= n2α2γ4Q+
α2γ4

2

n∑
i=1

1

ai
.

Proposition 6.1.1. The Green function for the partial subdivision network of the
Star network S2n has the following expression according to the different vertices
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involved

GSωS (x0, x0)=
α4

2n+ 1
Q+ α2γ2fev

n∑
i=1

1

ai
,

GSωS (x0, x2i)=GSωS (x0, x0)−fev
1

ai
, GSωS (x0, x2i−1)=GSωS (x0, x0)−f

odd

1

a′i
,

GSωS (x2i, x2j)=GSωS (x0, x0)+εx2i
(x2j)

1

ai
−f

ev

(
1

ai
+

1

aj

)
,

GSωS (x2i, x2j−1)=GSωS (x0, x0)−f
ev

1

ai
− f

odd

1

a′j
,

GSωS (x2i−1, x2j−1)=GSωS (x0, x0)+εx2i
(x2j)

1

a′i
−f

odd

( 1

a′i
+

1

a′j

)
,

GSωS (x0, x0 2i)=γ
√

2n+ 1
(
GSωS (x0, x0)−f

sub

1

ai

)
,

GSωS (x2i−1, x0 2j)=γ
√

2n+ 1
(
GSωS (x0, x0)−f

odd

1

a′i
−f

sub

1

aj

)
,

GSωS (x2i, x0 2j)=γ
√

2n+ 1
(
GSωS (x0, x0)+

1

2
εx2i

(x2j)
1

aj
−f

ev

1

ai
−f

sub

1

aj

)
,

GSωS (x0 2i, x0 2j)=γ2(2n+ 1)
(
GSωS (x0, x0)+

1

2
εx2i

(x2j)
1

aj
−f

sub

( 1

ai
+

1

aj

))
,

where

f
odd

=
α2

2n+ 1
, f

ev
=

2 + α2γ2

2(2n+ 1)
and f

sub
=

1 + (n+ 1)α2γ2

2(2n+ 1)
.

Proof. We compute only some cases by using the results given in Proposition
4.3.3.

GSωS (x0, x0) = G(x0, x0)− 2
∑
`∈V

ω0G(x0, x2i)π
S(`) + βω2

0

=
α4

2n+ 1
Q+

α2γ2(2 + α2γ2)

2(2n+ 1)

n∑
i=1

1

ai
.

GSωS (x0, x2i) = G(x0, x2i)− ωS(x2i)G(x0, x0)πS(x0)

− ωS(x0)G(x2i, x0)πS(x0) + βωS(x0)ωS(x2i)

−
n∑
j=1

[
ωS(x2i)G(x0, x2j) + ωS(x0)G(x2i, x2j)

]
πS(x2j)

=
1

2n+ 1

(
Q− 1

ai

)
− nα2γ2

2(2n+ 1)

(
2Q− 1

ai

)
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GSωS (x0, x2i) =− α2γ2

2(2n+ 1)

n∑
j=1

(
Q− 1

aj

)
− α2γ2

2(2n+ 1)

n∑
j=1

(
Q− 1

ai
− 1

aj

)

− α2γ2

2

1

ai
+

(
n2α2γ4Q+

α2γ4

2

n∑
i=1

1

ai

)
α2

2n+ 1

=
α4

2n+ 1
Q+

(
− 1

2n+ 1
+
nα2γ2

2n+ 1
− α2γ2

2

)
1

ai

+
α2γ2(2 + α2γ2)

2n+ 1

n∑
j=1

1

aj

=
α4

2n+ 1
Q− 2 + α2γ2

2(2n+ 1)

1

ai
+
α2γ2(2 + α2γ2)

2(2n+ 1)

n∑
j=1

1

aj
.

The expression for the Green function for positions involving new vertices is

GSωS (x0, x0 2i) =
1

2
γ
√

2n+ 1
(
G(x0, x0) +G(x0, x2i)

)
− n
√

2n+ 1α2γ3

4

(
3G(x0, x0) +G(x2i, x0)

)
−
√

2n+ 1α2γ3

4

n∑
j=1

(
3G(x0, x2j) +G(x2i, x2j)

)

+

n2α4γ4Q+
α2γ4

2

n∑
j=1

1

aj
− γ2(2n+ 1)

4

1

ai

 α2γ√
2n+ 1

=
α4γ√
2n+ 1

Q−γ(1 + (n+ 1)α2γ2)

2
√

2n+ 1 ai
+
α2γ3(2 + α2γ2)

2
√

2n+ 1

n∑
j=1

1

aj
.

For i 6= j,

GSωS (x2i, x0 2j) =
1

2
γ
√

2n+ 1
(
G(x0, x2i) +G(x2j , x2i)

)
− nα2γ3

√
2n+ 1

4

(
G(x0, x0) +G(x2j , x0) + 2G(x2i, x0)

)
− α2γ3

√
2n+ 1

4

n∑
k=1

(
G(x0, x2k) +G(x2j , x2k) + 2G(x2i, x2j)

)
+

(
n2α4γ4Q+

α2γ4

2

n∑
k=1

1

ak
− γ2(2n+ 1)

4

1

aj

)
α2γ√
2n+ 1

=
α4γ√
2n+ 1

Q− γ(2 + α2γ2)

2
√

2n+ 1

1

ai
− γ(1 + (n+ 1)α2γ2)

2
√

2n+ 1

1

aj

+
α2γ3(2 + α2γ2)

2
√

2n+ 1

n∑
k=1

1

ak
.
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When i = j we get a similar expression

GSωS (x2i, x0 2i) =
1

2
γ
√

2n+ 1
(
G(x0, x2i) +G(x2i, x2i)

)
− nα2γ3

√
2n+ 1

4

(
G(x0, x0) +G(x2i, x0) + 2G(x2i, x0)

)
− α2γ3

√
2n+ 1

4

n∑
k=1

(
G(x0, x2k) +G(x2i, x2k) + 2G(x2i, x2k)

)
+

(
n2α4γ4Q+

α2γ4

2

n∑
k=1

1

ak
− γ2(2n+ 1)

4

1

ai

)
α2γ√
2n+ 1

=
γ√

2n+ 1
Q+

γ(n− 1)√
2n+ 1

1

ai
− nγ3α2

√
2n+ 1

Q+
3nγ3α2

4
√

2n+ 1

1

ai

− nγ3α2

√
2n+ 1

Q+
γ3α2

√
2n+ 1

n∑
k=1

1

ak
− 3(n+ 1)γ3α2

4
√

2n+ 1

1

ai

+

(
n2α4γ4Q+

α2γ4

2

n∑
k=1

1

ak
− γ2(2n+ 1)

4

1

ai

)
α2γ√
2n+ 1

=
α4γ√
2n+ 1

Q+
γ(4(n− 1)− 2(n+ 2)α2γ2)

4
√

2n+ 1

1

ai

+
α2γ3(2 + α2γ2)

2
√

2n+ 1

n∑
j=1

1

aj
.

For positions that involve only new vertices, we get

GSωS (x0 2i, x0 2j) = −α
2γ4(2n+ 1)

4

(
1

ai
+

1

aj

)
+ βα2γ2

− nα2γ4(2n+ 1)

4
(2G(x0, x0) +G(x2i, x0) +G(x2j , x0))

− α2γ4(2n+ 1)

4

n∑
k=1

(2G(x0, x2k) +G(x2i, x2k) +G(x2j , x2k))

+
γ2(2n+ 1)

4
(G(x0, x0) +G(x0, x2j) +G(x2i, x0) +G(x2i, x2j))

= −α
2γ4(2n+ 1)

4

(
1

ai
+

1

aj

)
+ n2α4γ6Q+

α4γ6

2

n∑
k=1

1

ak

− nα2γ4

4

(
4Q− 1

ai
− 1

ai

)
− α2γ4

4

n∑
k=1

(
4Q− 4

ak
− 1

ai
− 1

aj

)
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− α2γ4(2n+ 1)

4

(
1

ai
+

1

aj

)
+
γ2

4

(
4Q− 1

ai
− 1

aj

)
= α4γ2Q−

γ2
(
1 + (n+ 1)α2γ2

)
2

(
1

ai
+

1

aj

)

+
α2γ4(2 + α2γ2)

2

n∑
k=1

1

ak
.

GSωS (x0 2i, x0 2i) =
γ2(2n+ 1)

4

1

ai
− α2γ4(2n+ 1)

2

1

ai
+ βα2γ2

− nα2γ4(2n+ 1)

2
(G(x0, x0) +G(x2i, x0))

− α2γ4(2n+ 1)

2

n∑
k=1

(G(x0, x2k) +G(x2i, x2k))

+
γ2(2n+ 1)

4
(G(x0, x0) + 2G(x0, x2i) +G(x2i, x2i))

=
γ2(2n+ 1)

4

1

ai
− α2γ4(2n+ 1)

2

1

ai
+ n2α4γ6Q+

α4γ6

2

n∑
k=1

1

ak

− nα2γ4

4

(
4Q− 2

ai

)
− α2γ4

4

n∑
k=1

(
4Q− 4

ak
− 2

ai

)
− α2γ4(2n+ 1)

2ai

+
γ2

4

(
4Q− 4

ai

)
+
γ2(2n+ 1)

4

1

ai

= α4γ2Q−
γ2
(
2n− 1− 2(n+ 1)α2γ2

)
2ai

+
α2γ4(2 + α2γ2)

2

n∑
k=1

1

ak
.

The remaining cases will follow by performing similar computations.

Finally, we obtain the Kirchhoff index for the partial subdivision of the Star.

Proposition 6.1.2. Let SS2n be the partial subdivision network of the star S2n, then
the Kirchhoff index of SS2n is given by

kSωS (SS2n) = n(2 + α2γ2)Q+
γ2

2

(
2n− 1− α2γ2

) n∑
i=1

1

ai
.

Proof. Taking into account Proposition 5.6.7

kSωS (SS2n) = k(S2n) +
∑
x∈V

G(x, x)
πS(x)

ωS(x)

−
∑
x,y∈F α(x, y)α(y, x)ωS(x)ωS(y)R(x, y)

+
∑

{x,y}∈E1

c(x, y)

c(x, vxy)c(y, vxy)
− β
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kSωS (SS2n) = 2nQ+
nγ2

2
Q+

nγ2

2
Q− γ2

n∑
i=1

1

ai
+
γ2

2
(2n+ 1)

n∑
i=1

1

ai

− n2α2γ4Q− α2γ4

2

n∑
i=1

1

ai

=
(
2n+ nγ2 − n2α2γ4

)
Q+

γ2

2
(2n− 1− α2γ2)

n∑
i=1

1

ai
.

As expected, the Kirchhoff Index of the partial subdivided Star takes the minimum
value for γ approaching zero; this can be interpreted as no subdivision has been
performed in the initial network S2n. Actually, kSωS (SS2n) attains a minimum for
γ = 0.

6.2 Subdivision on Star networks for the normal-
ized Laplacian

In this section we add results corresponding to the case of the normalized Laplacian
for subdivision on the n–Star, see [28]. Moreover, notice that in this case we do the
subdivision process on every edge of the network.

Firstly we consider the n–Star network, see Figure 6.2 (left), that has n + 1 ver-
tices, {x0, x1, . . . , xn}, and constant conductance a > 0, i.e., c(x0, xi) = a, for
i = 1, . . . , n, and zero otherwise. Thus, the degree function is k(x0) = na and
k(xi) = a for i = 1, . . . , n, while vol(Γ) = 2na. Hence, the subdivision of the n–
Star has n new inserted vertices, those white in Fig. 6.2 (right), that we denote
as vx0xi

. Accordingly to the definition of the conductances, the degree function of
the subdivision n–Star network is kS(x0) = 2na, kS(xi) = 2a, and kS(vx0xi

) = 4a,
i = 1, . . . , n.

a

aa

2a

2a

2a

2a

Figure 6.2 The Star network and its subdivision network

Normalized Laplacian matrices of the former network and its subdivision are, re-
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spectively

L =

 1 − 1√
n
1T

− 1√
n
1 I

 and L
S

=


1 0T − 1√

2n
1T

0 I − 1√
2
I

− 1√
2n

1 − 1√
2
I I


being 0 and 1, n entries vectors (all zeros, all ones) and I the n×n identity matrix.
It can be proved, see [23] for instance, that the group inverse matrix for such an
n-Star network is

G =


1

4
− 1

4
√
n
1T

− 1

4
√
n
1 A


being A an n × n matrix whose values are 1 − 3

4n
on the diagonal, and − 3

4n
otherwise.

For the n–Star network, effective resistances are

R(x0, xi) =
1

a
, R(xi, xj) =

2

a
,

while its corresponding Kirchhoff index is k(Γ) = n(2n− 1)a.

Hence, using Proposition 4.3.3, we calculate

GS =



5

8
− 3

8
√
n
1T −

√
2

8
√
n
1T

− 3

8
√
n
1 A1 A2

√
2

8
√
n
1 AT2 A3


where matrices A1,A2 and A3 have all the same “shape”; that is, a constant value
on the diagonal and a different one off the diagonal, so they can be expressed in
terms of the identity matrix and J the all ones matrix as

A1 = 2I− 11

8n
J, A2 =

√
2I− 9

√
2

8n
J and A3 = 2I− 7

4n
J.

After using Proposition 5.6.6, effective resistances for the subdivision network of
n–Star network are to be

RS(x0, xi) = RS(vx0xi,x0xj
) =

1

a
,

RS(x0, vx0xi) = RS(xi, vx0xi) =
1

2a
,

RS(xi, xj) =
2

a
and RS(xi, vx0xj

) =
3

2a
,
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for i, j = 1, . . . , n, i 6= j. Please note that as the subdivided star is a tree, the
values of the effective resistances do agree with those obtained by direct application
of simple electrical properties.

And also, the Kirchhoff index for the subdivision network of the n–Star network is,

k(ΓS) = 4na(8n− 5).

a

a

a

a

c
c

c

c

2a

2a

2c
2c

2c
2a

2c

2a

2a

2a

Figure 6.3 The Wheel network and its subdivision network

6.3 Subdivision on Wheel networks for the normal-
ized Laplacian

In our second example, we consider the n–Wheel network, see Figure 6.3 (left),
Wn, that has n + 1 vertices labelled {x0, x1, . . . , xn}. The results in this section
can be found in [25]. The only non null conductances are c(x0, xi) = a > 0 and
c(xi, xi+1) = c > 0, for i = 1, . . . , n, assuming xn+1 = x1. Thus, the degree
function is defined as k(x0) = na and k(xi) = a + 2c for i = 1, . . . , n. In addition,
vol(Wn) = 2n(a+ c).

As the normalized Laplacian operator on a network can be seen as a particular
Schrödinger operator, we use the results in [23] again to obtain the Green function
of the normalized Laplacian for the n–Wheel network. And it is

G(x0, x0) =
(a+ 2c)2

(2(a+ c))2

G(x0, xi) = −
(a+ 2c)

√
na(a+ 2c)

n(2(a+ c))2
, i = 1, . . . , n

G(xi, xj) = − (a+ 2c)2

2na(a+ c)

( a

2(a+ c)
+ 1
)

+ p
Un−1−|i−j|(p) + U|i−j|−1(p)

Tn(p)− 1

i, j = 1, . . . , n, where p = 1 +
a

2c
and Tk(p) and Uk(p) are the first and the second

kind Chebyshev polynomials respectively.
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Then the effective resistances are

R(x0, xi) =
n(a+ c)

c

Un−1(p)

(Tn(p)− 1)

R(xi, xj) = 2
n(a+ c)

c

(
Un−1(p) + Un−1−|i−j|(p) + U|i−j|−1(p)

)
(Tn(p)− 1)

,

i, j = 1, . . . , n, i 6= j and the Kirchhoff index is

k(Wn) = 2n(a+ c)

(
− (a+ 2c)2

2a(a+ c)
+
n(a+ 2c)

2c

Un−1(p)

Tn(p)− 1

)

= 2n(a+ c)

 p2

(2p− 1)(1− p)
+

n−1∑
j=0

p

p− cos( 2π j
n )

 ,

taking into account that
nUn−1(p)

Tn(p)− 1
=

n−1∑
j=0

1

p− cos( 2π j
n )

.

Let us now consider the subdivision network of the n–Wheel network. We denote
the new white vertices in Figure 6.3 (right), by vx0xi and vxixi+1 , i = 1, . . . , n
provided xn+1 = x1, as before. According to the notation, the degree of the vertices
in the subdivision network of the n–Wheel network are kS(x0) = 2na, kS(xi) =
2(a+ 2c), kS(vx0xi

) = 4a and kS(vxixi+1
) = 4c.

From Proposition 4.3.3, we obtain the expression of the values of the Green function
for the subdivision of the Wheel network case by case.

Initially when only former vertices are concerned

GS(x0, x0) =
5a2 + 17ac+ 16c2

8(a+ c)2
,

GS(x0, xi) = −
√
na(a+ 2c)

8n(a+ c)2
(3a+ 7c), i = 1, . . . , n;

GS(xi, xj) = − (a+ 2c)2

8an(a+ c)2
(11a2 + 31ac+ 16c2),

+
2p
(
Un−1−|i−j|(p) + U|i−j|−1(p)

)
(Tn(p)− 1)

, i, j = 1, . . . , n.

Secondly when both, former and later, kinds of vertices are involved for i, j =
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1, . . . , n

GS(x0, vx0xi) =

√
2

8
√
n

8c2 + 3ac− a2

(a+ c)2
;

GS(x0, vxixi+1
) =

√
2nac

8n(a+ c)2
(−5a− 9c) assuming xn+1 = x1;

GS(xj , vx0xi) = −
√

2a(a+ 2c)

8na(a+ c)2
(9a2 + 21ac+ 8c2)

+
p
√

2a√
a+ 2c

(
Un−1−|i−j|(p) + U|i−j|−1(p)

)
(Tn(p)− 1)

;

GS(xj , vxixi+1
) =

√
2(a+ 2c)c

8an(a+ c)2
(−11a2 − 33ac− 16c2) with xn+1 = x1.

And finally when only new vertices are taken into account

GS(vx0xi
, vx0xj

) = −a(7a+ 11c)

4n(a+ c)2
+

a

2c

(
Un−1−|i−j|(p) + U|i−j|−1(p)

)
(Tn(p)− 1)

+ εvx0xi
(vx0xj

), i, j = 1, . . . , n;

GS(vx0xi
, vxjxj+1

) = −
√
ac

(11a2 + 23ac+ 8c2)

4an(a+ c)2

+

√
ac

2c

(
Un−1−|i−j|(p) + Un−1−|i−j−1|(p)

)
Tn(p)− 1

+

√
ac

2c

(
U|i−j|−1(p) + U|i−j−1|−1(p)

)
Tn(p)− 1

,

GS(vxixi+1
, vxjxj+1

) = −c(15a2 + 35ac+ 16c2)

4an(a+ c)2

+ (1 + p)
Un−1−|i−j|(p) + U|i−j|−1(p)

Tn(p)− 1
+ εxi

(xj),

with i, j = 1, . . . , n in every case and, as usual with xn+1 = x1 when required.

Applying Proposition 5.6.6 we can obtain the effective resistances for the subdivision
network of the n–Wheel. In what follows we compute just some of them as examples.

RS(xi, xj) = R(xi, xj), i, j = 0, ..., n i 6= j;

RS(x0, vx0xi
) =

1

4a
+
n(a+ c)

c

Un−1(p)

Tn(p)− 1
, i = 1, . . . , n;

RS(xj , vx0xi
) =

1

4a
+

5

4

n(a+ c)

c

Un−1(p)

Tn(p)− 1

+
n(a+ c)

c

Un−1−|i−j|(p) + U|i−j|−1(p)
)

Tn(p)− 1
, i, j = 1, . . . , n;
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RS(vxixi+1
, xj) =

1

2c
+
n(a+ c)

c

Un−1(p)

Tn(p)− 1
− n(a+ c)

c

(
Un−2(p) + 1

)
Tn(p)− 1

+
n(a+ c)

c

(
Un−1−|i−j|(p) + U|i−j|−1(p)

)
Tn(p)− 1

+
n(a+ c)

c

(
Un−1(p) + Un−1−|i+1−j|(p) + U|i+1−j|−1(p)

)
Tn(p)− 1

,

with i, j = 1, . . . , n and assuming xn+1 = x1 once more.

In addition, the Kirchhoff index for the subdivision network of the n–Wheel is

kS(WS
n ) = n+ 4np

Un−1(p)

(Tn(p)− 1)
− 5a2 + 17ac+ 16c2

2a(a+ c)
.

6.4 Subdivision on Wheel networks for the Lapla-
cian

We consider the wheel network with constant conductances and a subdivision of
it for the combinatorial Laplacian. The result of this section can be found in [25].
Let Wn be the wheel network with vertex set V = {x0, x1, . . . , xn}, where x0 has
degree n, and conductances c(x0, xi) = a > 0 for any i = 1, . . . , n, c = c(xi, xi+1)
if i = 1, . . . , n − 1 and c = c(xn, x1), as can be seen in Figure 6.4. For the sake of
simplicity we consider that xn+1 = x1.

It is known, see for instance [23], that the Green function of Wn is

G(x0, x0) =
n

a(n+ 1)2
,

G(x0, xi) =
−1

a(n+ 1)2
, i = 1, . . . , n,

G(xi, xj) = − n+ 2

a(n+ 1)2
+
Un−1−|i−j|(p) + U|i−j|−1(p)

2c
(
Tn(p)− 1

) , i, j = 1, . . . , n,

where p = 1 + a
2c and U`(x), T`(x) are the Chebyshev polynomials of 1st and 2nd

order defined by the recurrence Pm(x) = 2xPm−1(x) − Pm−2(x) m ≥ 0 provided
that U0(x) = 1, U1(x) = x and T−2(x) = −1, T−1(x) = 0, respectively.

Let us now define the standard subdivision of the wheel network. The new vertices
are yi = vx0xi

and zi = vxixi+1
if i = 1, . . . , n. The conductances for the new edges

are 2a = c(x0, yi) and 2c = c(xi, zi) for i = 1, . . . , n. Whereas, the conductance of
the remaining edges follows taking into account relation (4.1).

Observe that k(yi) = 4a and k(zi) = 4c for i = 1, . . . , n. Moreover, α(x, y) = 1
2 , for

every pair of adjacent vertices and πS(x0) = n
2 and πS(xi) = 3

2 , i = 1, . . . , n. Then,
the expression of the Green kernel for the subdivision network is given next.

Proposition 6.4.1. Let WS
n be the subdivision network of Wn, and for any i, j =

1, . . . , n consider

gij(p) =
Un−1−|i−j|(p) + U|i−j|−1(p)

2c
(
Tn(p)− 1

) .
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x1

x2

x0

xn

z1

z2

zn

y1

y2

yn

2a

2a

2c

2c

Figure 6.4 Subdivision network of a wheel of n+ 1 vertices

Then, the Green kernel for WS
n is given by

GS(x0, x0) =
n(a+ 26c)

4ac(3n+ 1)2
,

GS(x0, xi) =
1

4ac(3n+ 1)

(
n(a+ 26c)

3n+ 1
− 10c

)
,

GS(x0, yi) =
1

4ac(3n+ 1)

(n(a+ 26c)

3n+ 1
− 6c

)
,

GS(x0, zi) =
1

4ac(3n+ 1)

(n(a+ 26c)

3n+ 1
− (a+ 10c)

)
,

GS(xi, xj) = gij(p) +
n(a− 34c)− 20c

4ac(3n+ 1)2
,

GS(xi, yj) =
1

2
gij(p) +

n(a− 34c)− 20c

4ac(3n+ 1)2
+

1

a(3n+ 1)
,

GS(xi, zj) =
1

2

(
gij(p) + gi j+1(p)

)
+
n(a− 34c)− 20c

4ac(3n+ 1)2
− 1

4c(3n+ 1)
,

GS(yi, yj) =
1

4
gij(p) +

εyi(yj)

4a
+
n(a− 34c)− 20c

4ac(3n+ 1)2
+

2

a(3n+ 1)
,

GS(yi, zj) =
1

4

(
gij(p) + gi j+1(p)

)
+
n(a− 34c)− 20c

4ac(3n+ 1)2
− a− 4c

4ac(3n+ 1)
,

GS(zi, zj) =
p+ 1

2
gij(p) +

n(a− 34c)− 20c

4ac(3n+ 1)2
− 1

2c(3n+ 1)
+
εzi(zj)

4c
.

Proof. The expressions given in the proposition follow from the expression for the
Green kernel obtained in Proposition 4.3.3. We compute one of the cases in order
to illustrate the methodology.
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Firstly, we compute the constant

β =
1

(n+m)2
∑

s,r∈V
G(s, r)πS(r)πS(s) +

1

(n+m)2
∑
r∼s

1

k(vrs)

=
n

4a(3n+ 1)2

[(
n− 3

n+ 1

)2

+
a

c
+ 1

]
,

where we have taken into account that
∑
r∈V

G(s, r) = 0 and hence

∑
r∈V

G(s, r)πS(r) =
n− 3

2
G(s, x0).

Consider zi = vxixi+1
and zj = vxjxj+1

, then

GS(zi, zj) =
1

4

(
G(xi, xj) +G(xi+1, xj) +G(xi, xj+1) +G(xi+1, xj+1)

)
− 1

2(3n+1)

n∑̀
=0

(
G(xj , x`) +G(xj+1, x`) +G(xj , x`) +G(xj+1, x`)

)
πS(x`)

+
εzj (zi)

k(zi)
− 1

(3n+ 1)k(zi)
− 1

(3n+ 1)k(zj)
+ β

= − n+ 2

a(n+ 1)2
+

2U|i−j|−1(p) + U|i+1−j|−1(p) + U|i−j−1|−1(p)

8c
(
Tn(p)− 1

)
+

2Un−1−|i−j|(p) + Un−1−|i+1−j|(p) + Un−1−|i−j−1|(p)

8c
(
Tn(p)− 1

)
+

n− 3

(3n+ 1)(n+ 1)2
+
εzj (zi)

4c
− 2

(3n+ 1)4c
+ β

=
(a+ 4c)

(
Un−1−|i−j|(p) + U|i−j|−1(p)

)
8c2
(
Tn(p)− 1

) − n(5a+ 34c) + 2a+ 20c

4ac(3n+ 1)2

+
εzi(zj)

4c
.

To end up the section we compute the Kirchhoff index of the standard subdivision
graph associated with the wheel Wn.

Corollary 6.4.2. The Kirchhoff index of the standard subdivision network of WS
n

is

kS(WS
n ) =

3n2(a+ c)− 25cn

4ac
+
n(3n+ 1)

(
7Un−1(p) + 2Un−2(p) + 2

)
8c
(
Tn(p)− 1

) .
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Future Work

At this very particular moment, July 2022, we have in mind two exciting work in
progress that evidently must be considered in a chapter untitled Future Work of
this PhD thesis memory.

The second one of them, it can be understood as a natural extension of the mathe-
matical path we have followed and have explained so far. Presenting what we have
called electrical path–subdivision of a network that is accomplished by substituting
only some initial edges by general paths (of length greater than two and eventually
of different lengths each of them). We face the obtention of explicit expression of
Green’s operator and Green’s function for a non–singular Schrödinger type oper-
ator, as it is the more general linear difference second order operator that can be
related to diffusion problems. In this work we will take profit of a very important
result we are to obtain in the first work we are about to introduce right now.

And the first one is a generalized inverse matrix problem so, in some sense, related
with all of our previous work as well. We expect two obtain two different publica-
tions from it. It is conceived from a slightly different point of view, as the result is
established directly in a matrix version framework but is obtained also by consid-
ering modified discrete structures from a given initial one and taking advantage of
related boundary value problems posed on the related networks. In this work there
is no references to the subdivision procedure, hence being settled in a more general
framework, and the main goal is that of figuring out an explicit expression for an
inverse matrix of a reduced dimension matrix in terms of the Moore–Penrose inverse
matrix of a higher dimensional inverse matrix that is initially given. With such a
result we obtain a generalization of the well known bottleneck matrices and also a
second important result (which is the one used in the other work in progress) that
is an explicit expression for the Green’s function on a path for Scödinger type op-
erators on networks for Dirichlet boundary value problems. This, we think, is also
a rather important result by itself that deserves its own publication aside. Hence
we expect, hopefully, for two more publications from this work once we conclude it.

Hence, we proceed now to explain these two works that are quite developed and
also some other ideas that we will take into consideration once this thesis processus
ends.
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7.1 Inverse matrix of a submatrix of a singular M–
matrix

Given L, a symmetric singular positive semi–definite M–matrix, we have explained
that it can be related with a network Γ = (V,E, c) where a singular Schrödinger
type operator Lqω for some potential associated to a weight, hence to some positive
and unitary function ω ∈ Ω(V ), is considered. In this context the Moore–Penrose
inverse matrix of the initially given matrix is an expression of the kernel associated
to Green’s operator (again, associated to Lqω ), that is L† = Gqω .

Our goal is to find out an explicit expression to compute, entrywise, the inverse
matrix of any submatrix of L that we want to consider, so the title of this section,
by using mainly the contents of Gqω .

Of course that we put the problem in a networks setting where discrete potential
theory is going to be applied. As the entries of the chosen submatrix can be related
to some of the vertices of the initial given network, we take into account a subset
F ⊂ V and pose convenient Poisson but also Dirichlet problems in carefully chosen
discrete structures that are related to the former one, Γ, and the one defined upon
the vertex set F, noted as ΓF .

As Dirichlet problems are always compatible, the inverse operator of Lqω on C(F )
is called Green’s operator for F and denoted by GFqω . The associated function
GFqω : F × F −→ IR defined for any y ∈ F as GFq (·, y) = GFq (εy), is called the Green
function for F . It is symmetric, can be found by solving homogeneous Dirichlet
problems en F and satisfies that GFq (f)(x) =

∑
y∈F

GFq (x, y)f(y), x ∈ F, for every

f ∈ C(F ). Hence our efforts are devoted to find out which is the kernel GFqω so as
to define the inverse operator GFqω on the subnetwork.

7.1.1 Host networks, null–extensions, contractions, bordered
and host operators

At this point we define some technical linear operators that, having no physical
meaning (at least we do not care if they have any), are suitable for our purposes.

In first place we define new discrete structures by adding a new vertex. Let x̂ /∈ V
and suppose that both ω and Gqω , are extended by 0 to V̂ = V ∪ {x̂} and V̂ × V̂
respectively; that is, let us assume that ω(x̂) = 0 and Gqω (x̂, x) = Gqω (x, x̂) =
Gqω (x̂, x̂) = 0 for any x ∈ V . We then take into account Gqω,V̂ , the null–extension
of Gqω to C(V̂ ) defined as Gqω,V̂ : C(V̂ )→ C(V̂ )

Gqω,V̂ (u)(x) =
∑
y∈V̂

Gqω (x, y)u(y)

Therefore, for a proper F ⊂ V, let us consider F̂ = F ∪ {x̂} and let us define not
only the contraction to F of the Green operator Gqω , denoted Gqω,F : C(F )→ C(F )

but also its null–extension to F̂ noted as Gqω,F̂ : C(F̂ )→ C(F̂ ), analogously.

A critical role in our main result is devoted to two additional operators (and their
respective kernels) that are related to the operators we have just defined. The
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Bordered operator for F̂ is the linear operator BF̂ : C(F̂ ) −→ C(F̂ ) defined for any
u ∈ C(F̂ ) as {

BF̂ (u)(x) = Gqω,F̂ (u)(x) + u(x̂)ω(x) x ∈ F,
BF̂ (u)(x̂) = 〈u, ω〉

F̂

It is a non–singular, self–adjoint operator and its corresponding kernel, called bor-
dered kernel for F̂ , and denoted by BF̂ is strongly related with the Green function
defined on the initial whole vertex set V. Next, we take into account the so called
host operator for F̂ as the linear endomorphism on C(F̂ ) that is the inverse of the
previous bordered operator for F̂ . Thus the linear operator HF̂ =

(
BF̂
)−1 has an

associated kernel HF̂ that we name host kernel for F̂ that is symmetric and can be
characterized by some identities.

All previous kernels can be interpreted matricially once a labelling on the vertex
set is provided. So let us suppose that F ⊂ V is such that |F | = m < n =
|V | being F = {x1, . . . , xm} while V = {x1, . . . , xm, . . . , xn}. Then, if the matrix
associated with Gqω is denoted by Gqω ∈Mn×n, we identify the kernel Gqω,F with
its submatrix

Gqω,F =

Gqω (x1, x1) · · · Gqω (x1, xm)
...

. . .
...

Gqω (xm, x1) · · · Gqω (xm, xm)

 ∈Mm×m.

Therefore, the matrices associated with the bordered kernel and the host kernel are
inM(m+1)×(m+1) and can be denoted respectively by

BF̂ =

[
Gqω,F w

w> 0

]
and HF̂ =


HF̂ (x1, x1) · · · HF̂ (x1, xm) HF̂ (x1, x̂)

...
. . .

...
...

HF̂ (xm, x1) · · · HF̂ (xm, xm) HF̂ (xm, x̂)

HF̂ (x̂, x1) · · · HF̂ (x̂, xm) HF̂ (x̂, x̂)


with w =

[
ω(x1), . . . , ω(xm)

]> ∈ C(F ) being the restriction to F of the given initial
weight function ω ∈ C(V ). We will call both matrices Bordered matrix for F̂ and
Host matrix for F̂ , respectively and our target is to find an explicit expression of
the entries of (Gqω , F )

−1.

Since Gqω,F is positive definite, we have that a = −〈(GFq )−1w,w〉 < 0. Therefore,
after a quite straightforward blockwise calculation,

HF̂ can be expressed also as

HF̂ =
1

a

[
a(Gqω,F )−1 + (Gqω,F )−1ww>(Gqω,F )−1 −(Gqω,F )−1w

−w>(Gqω,F )−1 1

]
.

7.1.2 A Poisson problem in connection with a Dirichlet prob-
lem

The core of the work comes when considering Discrete Potential theory tools. We
succeed in establishing a relationship between the solution of a Poisson equation
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posed on the whole V, with the solution of a related homogeneous Dirichlet problem
stated on the proper F ⊂ V. Applying this idea to suitable Poisson equations and
their related Dirichlet problems we are capable to relate their respective Green
kernels.

In order to do this, let us first consider a data function hF ∈ C(F ), that can be
extended by zero to be considered as hF ∈ C(V ) too.

For a moment we denote by LFqω the automorphism that results from restricting
to C(F ) the positive semidefinite Schrödinger operator Lqω . Hence the Dirichlet
problem

LFqω (uF ) = hF , on F

has a unique solution, say uF ∈ C(F ) that can be extended by zero so as to be
considered in C(V ). In this way Lqω (uF ) ∈ C(V ) makes sense. We denote hF c =
Lqω (uF )|Fc ∈ C(F c), that is hF c(x) = Lqω (uF )(x) only when x ∈ F c. As the
corresponding null–extensions hF and hF c do have supports that do not intersect,
the equation

Lqω (uF )(x) = hF (x) + hF c(x), for every x ∈ V,

makes sense. So here it is a Poisson problem on the whole V related with the initial
Dirichlet problem defined only on F.

Certainly hF + hF c ∈ C(V ) is a compatible data function for the Poisson equation
so the correspondent Green’s operator gives us the orthogonal to ω solution of it.
Therefore, it must be some α ∈ R such that

uF (x) = Gqω (hF + hF c)(x) + αω(x) = Gqω (hF )(x) + Gqω (hF c)(x) + αω(x) (7.1)

for every x ∈ V.

7.1.3 Main result and two very important particular cases

After this value for α is figured out, our main result is expressed as

GFqω (x, y) = Gqω (x, y)−
∑
z,t∈F c

Gqω (x, z)H
F̂ c(z, t)Gqω (t, y)

− ω(y)
∑
z∈F c

H
F̂ c(x̂, z)Gqω (z, x)− ω(x)

∑
z∈F c

H
F̂ c(x̂, z)Gqωv(z, y)

− ω(x)ω(y)H
F̂ c(x̂, x̂).

There are two immediate corollaries of this wonderful result that are worth to
mention: when F = V \ {z} (all the given initial vertex set except one vertex) and
when F = V \ {z1, z2} (that is we are subtracting two of the initial given vertices).

Bottleneck matrix

In the first case we recover the so called bottleneck matrix defined for the Laplacian
operator and here extended to the case of singular Schrödinger type operators, see
[56].
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When ω is constant, Schrödinger type operators turn out to be combinatorial Lapla-
cians and the correspondent kernels are called Laplacian matrices. A very well
known tool related with a Laplacian matrix is the so called bottleneck matrix,
obtained by erasing the row and column corresponding to a particular vertex of
the network. Many authors, see for example [56, 66], have investigated on bottle-
neck matrices and many important results in relation with the connectivity of the
structure for instance can be derived from bottleneck matrices.

In our framework, the idea of a bottleneck matrix can be extended to networks by
solving Dirichlet problems when F, the proper subset, is V but just one vertex, lets
say z, so that F c = {z}. In this particular case, Dirichlet problems are stated as

Lqω (u)− λ〈u, ω〉|V ω = f on F and u(z) = 0

and then we obtain

GFq (x, y) = Gq(x, y)−
[ Gq(x, z)
ω(x)ω(z)

+
Gq(y, z)

ω(y)ω(z)
− Gq(z, z)

ω(z)2

]
ω(x)ω(y),

for every x, y ∈ F.

Green’s function for a Dirichlet problem on a path

The second particular case turns to be a very important result. As far as we
know it is unknown up to today and it is important because it can be related to
second order difference equations. The result can be stated in terms of giving a
closed expression for the Green’s function for a Dirichlet problem when a singular
Schrödinger operator is taking into account on a path.

Let P =
{
x = x1 ∼ x2 ∼ · · · ∼ xn = y

}
denote a n–vertex path joining ver-

tices x and y equipped with a conductance function c(xi, xj) non–null whenever
i, j = 1, . . . , n are consecutive. Moreover there exists ω ∈ C(P ) a weight func-
tion defined on the vertex set (that will be also denoted by P ). We shall use
Ci = ω(xi)c(xi, xi+1)ω(xi+1), i = 1, . . . , n−1 so that the corresponding Schrödinger
type non–singular linear operator from C(P ) to itself is defined as

Lqωu(xi) =



C1

ω(x1)

(
u(x1)

ω(x1)
− u(x2)

ω(x2)

)
, i = 1,

Ci−1
ω(xi)

(
u(xi)

ω(xi)
− u(xi−1)

ω(xi−1)

)
+

Ci
ω(xi)

(
u(xi)

ω(xi)
− u(xi+1)

ω(xi+1)

)
i = 2, . . . , n− 1,

Cn−1
ω(xn)

(
u(xn)

ω(xn)
− u(xn−1)

ω(xn−1)

)
, i = n,

(7.2)
for every u ∈ C(P ).

Within the framework of this second future work, we can consider that F =
{x2, . . . , xn−1} that is the hole vertex set but except for the two end points x = x1
and y = xn, apply the main result obtained and previously presented, figure out
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the correspondent expression of the Green kernel and, after some calculation to get
resistance distances involved in the cited expression obtaining a beautiful result

GFq (xi, xj)

ω(xi)ω(xj)
=
R(x1, xmin{i,j})R(x1, xmax{i,j})

R(x1, xn)

for every i, j = 1, . . . , n.

7.2 Path–subdivision

In this second work we have two targets to be achieved: from a first point of
view we complete our study of the so called electrical subdivision of a network by
considering a generalization that models the most general case that has sense, or it
is applicable, for facing diffusion problems. But, and from another point of view, as
we consider the case of non-singular Schrödinger operators, we get a contribution to
the computation of generalized inverse matrices of large non singular positive semi–
definite M–matrices from given generalized inverse matrices of smaller dimension
and obviously related to the previous ones.

In these second work, from a technical point of view, we also change of paradigm
as we obtain the solutions of boundary value problem that do include Dirichlet
boundary value problems as well. Thus a different situation, more ellaborated and
that imposes a longer algorithm has to be treated.

7.2.1 Electrically compatible path–partial subdivision

Graphs and networks can be modified in order to obtain other graphs or networks.
Vertices and/or edges can be removed or added in an extremely vaste variety of
ways in order to obtain new discrete structures that are related with the former
ones. Correspondingly the conductance function may be modified too. There are
so many operations that transform a given discrete structure into others, simpler
or much more complicated.

Up to now we have extensively treated an electrically compatible subdivision pro-
cedure of all the edges of a given discrete structure and also a somehow partial–
generalization of it, that can be understood in both senses; as it do not forces all
edges to be subdivided thus allowing some degrees of freedom it should be clearly
considered a generalization, but also it consists in a particular case of the idea, being
applied to just one edge or to a few of them, so using not the hole transformation.
By the time of baptism we had many doubts and quite a few controversial.

But a really significative generalization of the initial idea came to our minds some-
time: using subdivision of just a precise subset of the initially given edge set of
the discrete structure but allowing the possibility of every edge to be subdivided
in a different way, in the sense of being substituted by a path of different length.
For sure we are still installed in the electric circuit setting (by now it is clear that
this framework is clearly overcame) but we again force the substituting path to be
equivalent to the former edge.

Specifically what we discussed to name generalized electrical subdivision of networks
but finally propose to be called electrical compatible path–partial subdivision of
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networks, consists in, given a network Γ = (V,E, c) replacing only some former
edges {x, y} ∈ E by a path

Pxy = {x = v0xy ∼ v1xy ∼ · · · ∼ v`xyxy ∼ v`xy+1
xy = y},

not just of length two, but of length `xy + 1 instead, and the conductance function
to be defined on the new vertices introduced in this way such that the electrical
condition of a generalized series connection is fulfilled.

x

y

z

v1xy
v2xy

v3xy

Thus a brand new ΓpS = (V pS , EpS , cpS) is defined as follows. Given a two sets
partition of the former edge set E, say E1, E2 ⊂ E such that E = E1∪E2 and E1∩
E2 = ∅, suppose that the edges in E1 are those to be electrically path–subdivided
while the edges corresponding to E2 are those devoted to stay. Then the new vertex
set V pS is the former set V to which the new vertices included in the collection of
paths has been added. Hence some new v1xy, v

2
xy, . . . , v

`xy
xy vertices are defined for

every single former edge {x, y} ∈ E1 to be erased. Thus, being `xy the number of
new vertices in a substituting path, easily |V pS | = |V |+

∑
{x,y}∈E1

`xy. The new edges

set EpS is composed by the initially given edges on Γ not to be replaced, that is
E2 ⊂ E and the set of new edges that are defined in the paths that substitute the
former edges in E1. In this way it turns out that |EpS | = |E2|+

∑
{x,y}∈E1

(`xy + 1) =

|E|+
∑

{x,y}∈E1

`xy. Finally the conductance function cpS : V pS × V pS → [0,+∞) is

defined almost freely on the new created edges (vixy, v
i+1
xy ) for i = 0, . . . , `xy for

every Pxy adjoined path. We will denote them as cxy(vixy, v
i+1
xy ) as though there is

no possible confusion with former existing conductances and accept an absolutely
arbitrary choice of values if that fulfills the electrically compatible series connection
condition, which is (for a non–singular Schödinger type operator)

1

ω(x)c(x, y)ω(y)
=

1

ω(x)cxy(x, v1xy)ω(v1xy)
+ · · ·+ 1

ω(v
`xy−1
xy )cxy(v

`xy−1
xy , y)ω(y)

(7.3)
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and is not altered whenever {x, y} ∈ E2.

Remark: we would like to point out that this quite bizarre notation cannot be
simplified for our purposes. Even though, the names we have chosen for the vertices
avoid any kind of confusion so, in the sequel, we are not using cpS anymore in an
obvious abuse of notation. Moreover, as ΓpS is clearly non directed (as a graph)
we must take into account that for every {x, y} ∈ E1 paths Pxy and Pyx consists
in the same vertex and edges sets, thus we write Pxy = Pyx. Also `xy = `yx

and vixy = v
`yx+1−i
yx for i = 1, . . . , `xy. Also we consider x = v0xy = v

`yx+1
yx and

y = v0yx = v
`xy+1
xy in a certain abuse of notation.

Also it is very important for us to notice that this definition of the electrical sub-
division of a network has a very clear physical inspiration and sense as it models
substitution of a wire in an electric circuit by equivalent more complicated branches.
And allows the possibility of replacing only some of the components of an initial
given electric circuit. Also we want to point out that physically, we are simulating
putting rheostats in any point of the wire. This is a crucial difference with re-
spect to the standard graph subdivision that can be found in the literature because
it obliges to consider two substituting wires that are equal and this new electri-
cal subdivision allows substitutions that are globally equivalent but with no other
restriction, in particular new wires can behave differently one from each others.

The definition of cxy cannot be misunderstood as all the edges in Exy have both
vertices in Vxy. Hence, by the sake of simplicity, it will be denoted as c.Moreover for
each subdivided edge, there exist infinitely many different choices of conductances
fulfilling (4.1), so that different choices will lead to different subdivision networks.

With this definition of the modified structure then, If LSqω denotes the positive
semi–definite Schrödinger operator related to the weight ω ∈ C(V S) of ΓS , then for
any u ∈ C(V S) we have that the so called Doob transform expression of LSqω is

LSqω (u)(x) =
∑

{x,y}∈E1

c(x, v1xy)ω(v1xy)

(
u(x)

ω(x)
−
u(v1xy)

ω(v1xy)

)

+
∑

{x,y}∈E2

c(x, y)ω(y)

(
u(x)

ω(x)
− u(y)

ω(y)

)
,

when x ∈ V (is an old vertex of the former network), whereas

LSqω (u)(vixy) = c(vi−1xy , v
i
xy)ω(vi−1xy )

(
u(vixy)

ω(vixy)
−
u(vi−1xy )

ω(vi−1xy )

)

+ c(vixy, v
i+1
xy )ω(vi+1

xy )

(
u(vixy)

ω(vixy)
−
u(vi+1

xy )

ω(vi+1
xy )

)

when vixy, i = 1, . . . , `xy is a new inserted vertex of some of the attached paths.

7.2.2 Overall approach

Our goal is, given f ∈ C(V sP ), to obtain a solution of

LSqω (u) = f, on V sP (7.4)
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that is u ∈ C(V sP ) with the help of the solution of two other auxiliary problems:
a Dirichlet boundary value problem on every attached path, and a conveniently
stated Poisson problem defined on the base network Γ, that is on former V .

On every Pxy inserted we will pose a Dirichlet boundary value problem. As these
problems are always compatible, their solution will establish de values of the overall
solution u on the new inserted vertices vixy for i = 1, . . . , `xy and every {x, y} ∈ E1.
These values will be defined explicitly depending on the unknown values u(x) and
u(y) (the ends of each path, vertices of the former network) for every path Pxy.

Once all the battery of Dirichlet boundary value problems will be solved, a rather
well known technique of contracting the data, solving a Poisson problem on Γ for
this contracted data and finally extension of the accomplished solution to ΓS that
we have used in all our previous works will lead to a solution of the initial problem.

Finally, after obtaining the solution of (7.4) we will be ready for obtaining the
correspondent Green’s function.

7.2.3 Dirichlet boundary value problems

Now we recover from Subsection 3.5.1 what a Dirichlet boundary value problem is
and we explain some inquiries of the way we solve this situation.

Generally speaking a Dirichlet problem consists in, given a proper connected subset
W ( V, f ∈ C(W ) and g ∈ C(W ), finding u ∈ C(W ) such that

Lqω (u) = f on W ;
u = g on ∂W.

(7.5)

Such a boundary value problem has a unique solution (see [7]) for any data f ∈
C(W ) and g ∈ C(∂W ) that can be found equivalently by solving

Lqω (v) = f − Lqω (g) on W ;
v = 0 on ∂W,

(7.6)

as u = v + g on W easily, once using that a function is extended by zero outside
the domain where it is canonically defined.

7.2.4 The Green’s function of a path

We apply the previous general setting when W =
◦
Pxy (hence ∂Pxy = {x, y}) for

every {x, y} ∈ E1. Thus there will be some Dirichlet boundary value problems to
be solved, just a few or quite a lot of them depending on |E1|. Remarkably all the
solutions of these problems do not share support, or, better expressed, for every
vertex vixy the obtained value u(vixy) follows from one specific Dirichlet problem,
hence it is well defined. Specifically for every {x, y} ∈ E1 substituted by Pxy we
write LSqω = LPxy

qω the boundary Dirichlet value problem on Pxy ( V S is established
as

LPxy
qω (u)(vixy) = f(vixy) i = 1, . . . , `xy

u(v0xy) = u(x)

u(v
`xy+1
xy ) = u(y)
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where u(x) and u(y) are the values that u ∈ C(V sP ) the required solution from
(7.4) will take. By now there are presumed and treated as known data.

This required u ∈ C(Pxy) can be obtained, after (7.6) and some calculation, by
solving

LPxy
qω (v) = f +

(
u(x)c(x, v1xy)εv1xy

+ u(y)c(v
`xy
xy , y)ε

v
`xy
xy

)
on

◦
Pxy

v = 0 on {x, y} = ∂Pxy

(7.7)

and then
u = v + u(x)εx + u(y)εy

by using Green’s operator and Green’s function obtained from the first on progress
work that we have just exposed in the previous subsection.

As we have just said, this solution of a Dirichlet problem can be considered for
every edge {x, y} ∈ E1 that has been replaced by a path in ΓS . Then we denote
all these functions as uxy and remark that they attain their corresponding values
within the paths, while coinciding with u, a function defined on V at the boundary
of the paths, that is, at x and y.

At this point we are set to obtain the expression of the Green’s function for a path in
the case of a Schrödinger type operator, a result by itself that worths a publication
as we have mention previously

7.2.5 Related Poisson problem on V

The aim of this section is to obtain a solution of the Poisson problem in ΓS in
terms of the solution of an appropriate Poisson problem on Γ. So we now apply our
familiar procedure of contracting data to V , solving a convenient Poisson problem
on Γ and finally extending its solution to V sP as this extension is the function we
were looking for from the very beginning.

Once the auxiliary Dirichlet problems over the different attached paths have been
solved, we use their solutions to define a Poisson problem on the basis network Γ
The start of this last stage begins with defining, for each h ∈ C(V sP ) the contraction
of h to V, h ∈ C(V ), as

h(x) = h(x) +
∑

{x,y}∈E1

c(x, v1xy)(GPxy
qω )(v1xy), x ∈ V, (7.8)

hence establishing the appropriate Poisson problem

LSqω (u)(x) = f(x)

for x ∈ V and f ∈ C(V sP ) from the initial given problem 7.4.

This expression turns to be a Poisson problem for a Schrödinger type operator is
some compatibility conditions are fulfilled. After a little calculation the resulting
conditions to be imposed for conductances and weights can be written such that

1

c(x, y)
=

1

c(x, v1xy)

1

G
Pxy
qω (v1xy, v

`xy
xy )

1

c(v
`xy
xy , y)

(7.9)
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So, with the help of the Green’s function for the previous Schrödinger operator we
obtain u ∈ C(V ) that finally is extended to the desired solution of (7.4) by using
the extension of u to V S with respect to f , uf ∈ C(V sP ), that is defined as

uf (x) = u(x);

uf (vixy) = GPxy
qω

(
f
)
(vixy) + c(x, v1xy)G

Pxy
qω (vixy, v

1
xy)u(x)

+ c(v
`xy
xy , y)G

Pxy
qω (vixy, v

`xy
xy )u(y)

(7.10)

for all x ∈ V, i = 1, . . . , `xy and every {x, y} ∈ F.
And once the boundary value problem is solved, the computation of the correspond-
ing Green’s function follows.

7.3 Some other ideas

To end this chapter we introduce a few ideas that have come to our mind some-
time. They are not only attractive as they represent a more or less natural way of
developing our research task from our current point, but they are also in agreement
with the interests of the research group Mapthe, to which I belong.

1. λ > 0

The very first idea, in order to continue with our present research, probably
should be attempting the solution of the case of a positive definite Schrödinger
operator in a generalized subdivision network. This is a natural prolongation
of our works and we are now initiated in the use of host networks. Embedding
a given network into a suitable host network should probably be definitive
for us in order to extend our result to the case where λ > 0.

This technique, see [39, 40] is commonly used in the context of electrical
networks and Markov chains. Provided Lq a positive definite Schrödinger
operator on Γ, that is q = qω + λ for some ω ∈ Ω(Γ) and λ > 0, we can
consider a new network constructed by adding to Γ a brand new vertex, that
will represent an absorbing state, that is joined with every each vertex in Γ
through edges whose conductances are the, so called, diagonal excess after
the use of the Doob transform.
After [9], given λ > 0, ω ∈ Ω(V ) and x̂ /∈ V, we should consider the network
Γλ,ω = (V ∪ {x̂}, cλ,ω) with cλ,ω(x, y) = c(x, y) for x, y ∈ V but cλ,ω(x, x̂) =
λω(x) for all x ∈ V. If we denote the combinatorial Laplacian for the new
network Γλ,ω as Lλ,ω and define a weight function on the new network,

ω̂ ∈ Ω(V ∪ x̂), such that ω̂(x̂) =

√
2

2
and ω̂(x) =

√
2

2
ω(x) for the rest

vertices x ∈ V, it turns out that there exists a simple relation between the
positive definite Schrödinger operator Lq on Γ and a new positive semi–
definite Schrödinger operator on Γλ,ω .

Lλ,ωq̂ (u) = Lq(u|V )− λωu(x̂) on V.

that will permit us to extend our results as we mentioned earlier.
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2. Puncturing a net between non adjacent vertices.
In all the works we have intended, in relation with networks and their sub-
division procedures, we have always considered the substitution of edges by,
eventually an arbitrary length path so that the remaining discrete structure
is electrically equivalent to the given initial one. But we have never tried a
puncture of the network between two non–adjacent vertices. As our closed
expressions for the Green’s function that we have found do not need adja-
cency as a necessary condition, we think there probably might be a way of
joining paths (or much more elaborated networks) to a given network so as
to keep electrical equivalence.

3. Spectral study of Schrödinger operators.
Some members of our research group have occasionally devoted their atten-
tion punctually to the so called Kron–reduction operation on networks. The
Kron reduction process is ubiquitous in classic circuit theory and in other
related theories such as electrical impedance tomography, smart grid moni-
toring, analysis and simulation of induction motors, for example. The Kron
reduction process in used to obtain lower dimensional electrically–equivalent
networks. We (the research group) strongly believe that we have the tools to
encompass the problem of studying the spectrum of Schrödinger type opera-
tors in this situation, so this could be one line of research in which we could
collaborate, if the group take this direction.

4. Probabilistic interpretation for Schödinger operators
Finally another alternative of developing our work in the very soon future to
come is concerned with the fact that some of the concepts above mentioned,
have a well–known probabilistic counterpart. For instance the effective re-
sistance is related with the escape probability for a reversible Markov chain.
Therefore, the effective resistance with respect to a non–negative value and
a weight will correspond to a generalization of the escape probability. In
turns, the equilibrium measure with respect to λ and ω can be seen as a
generalization of the hitting time.
As a by–product of the expression for the effective resistance with respect
to a non–negative value and a weight, Bendito et al. obtained in [10] a
full generalization of Foster’s formulae; see [8, 57, 69, 72] for the standard
case. To get the formulae they introduce a generalization of the transition
probability matrix that takes into account the probability of transitioning
from one state to another in a single step or remaining in the same state.
The probability laws governing the evolution of the chain are given by the
(one step) transition probability kernel with respect to λ and ω, Pλ,ω ∈ C(V ×
V ), that is defined for any x, y ∈ V as

Pλ,ω(x, y) =

(
c(x, y) + λω(x)ω(y)

)
ω(y)(

k(x) + q(x)
)
ω(x)

. (7.11)

As we can see, the main novelty in our definition is the consideration of a non–

negative probability of remaining at vertex x given by the term
λω2(x)

k(x) + q(x)
.
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The future work we will try to develop should consist in interpreting all
the results obtained for Schrödinger operators in probabilistic terms. For
instance, we can expect for a formula for the mean first passage times for
generalized Markov chains in terms of the group inverse of the corresponding
Schrödinger operator; see [56]. This is also related with the inverseM–matrix
problem.
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Conclusions

In this last chapter we would like to include some brief conclusions and remarks
that we have reached and find interesting to expose, after devoting our efforts to
the work we have explained so far.

1. On discrete potential theory
The first point we would like to highlight is the framework within we have
developed our research. What we call discrete potential theory is not only a
set of technicalities that mimick potential theory from the continuum, and
that are perfectly constructed. We conceived functions, linear operators,
inverse operators, . . . in intimately connection with the network where they
are applied. Of course we obtain a gain with the non–coordinate notation
that we use, treating all vertices as they are the same, at the same time that
we see them different one from the others. But the main characteristic of
the way we work, is a kind of a play with the structure. Because we apply
changes on it, we modify it, sometimes annexing vertices, sometimes erasing
edges,. . . In this way it becomes a very succesful manner to obtain our desired
results in the solution of discrete boundary value problems.
Moreover we have the feeling now that we have to have friends we have
never heard of them. And we say this because we have recently discov-
ered, [42, 62], that the notation and vocabulary that we use also appears
in publications devoted to topics that are quite far away from our scope, at
least apparently. Social networks, pattern recognition, digital image process-
ing, machine learning are worlds where discrete potential theory also applies.
Without any doubt this is not a coincidence. We give to this fact a very
positive interpretation, of course.

2. On electrical subdivision
Surprisingly we found very little work devoted to the subdivision of a graph
procedure and an electric circuit implemention of it, even though the obvious
relationship. We know understand what at that moment we valued as simply
incredible. The topic for sure deserved attention, but graphs are not capable
to face it.
A more developed structure had to be used. And fortunately we were in
touch with a tool likely to be used to adress the situation. From an electric
circuit point of view, when a series connection is considered an equivalent
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simpler circuit can be taken into account. This scenario was our starting
point and we manage to find a discrete structure operation that do perfectly
describe the physical situation. Moreover it modelled all possibilities, as if a
rheostat is connected in any point within a wire.
Thus when we started our first research work, conceiving electrical subdi-
vision and trying to solve a Poisson problem posed for the combinatorial
Laplacian, we were aware that we were attacking a particular situation that
seemed uninteresting to anyone.
But today we have the feeling that the idea opens the door to a new paradigm
in diffusion problems as it offers a possibility of manipulating networks so
as to achieve whatever our objectives are. In other words, we think that
electrical subdivision is a natural discrete structure operation suitable for
diffusion problems, as if everything that propagates could be explained and
analyzed with the help of it.

3. On Schrödinger type operators
In a graph theory framework, we have lately witnessed the discovery of the
Laplacian matrix as an important tool to work with. Of course the topic is
known from old times, but just a few years ago many publications and talks
offered at meetings treated mainly the adjacency matrix case. We think then
that it is just a matter of time that the communitiy will turn its attention to
Schrödinger type operators as well. Graphs, as collection of vertices that are
connected or not, are discrete structures of enormous success. But graphs
have their limitations too. And Schrödinger operators constitute a tool for
modelling discrete structures were not only connections between vertices can
be much better explained but also vertexs in the discrete structure can be
assigned different roles by its own nature. In this sense our conclusion is that
an increasing recognition for the operator can be expected, even though the
inherent difficulties of dealing with it.

4. On the normalized Laplacian and electrical subdivision
From the results we have obtained, the normalized Laplacian, with the very
particular role that associates to the vertices of a network, is not an elliptical
operator particularly compatible with the concept of electrical subdivision.
From this point of view there is something that we miss and we think it would
be well worth paying attention to try to clarify this situation, for sure.
Pels resultats que hem obtingut el Laplacià normalitzat, amb el seu par-
ticular paper associat als vèrtexs, no és un operador ellíptic particularment
compatible amb el concepte de subdivisió elèctrica. Des d’aquest punt de
vista hi ha alguna cosa que se’ns escapa i de ben segur que valdria molt la
pena dedicar-hi atenció per mirar d’aclarir-ho.

5. On Green’s function
From our point of George Green’s ideas deserve much more recognition from
both mathematical and technological environements than they have. It is
quite straightforward to see Google’s references in the topic to have an ap-
proximated idea. In our opinion a rather restricted number of mathemati-
cians are in touch with his ideas and almost all of them because their concerns
and interests are located in potential theory but for the continuum. And,
without any doubt, it is also a discrete–algebraic topic that should have
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much more popularity. It is usually said that linear algebra is too far from
applications to really catch students or researchers interest, apart of those
whose expertise is in the field. But Green operator and Green’s function can
be seen as universal solvers, thus very interesting. And that’s why we sup-
port the idea that it is necessary to make the subject much more attractive
to a large part of the mathematical community, at least.

6. On the concept of conductance as a distance.
The simple fact of considering conductances, a value on each edge, in addition
to being used to discriminate between them, has a very interesting geometric
lecture that has also been the subject of study and analysis in our work. The
value assigned to a given edge can be read as the distance that separates
their two adjacent vertices.
In the case of electrical circuits the value of the conductance of a segment,
or of its reciprocal value the resistance, clearly has the meaning to express
the facility or difficulty for the electrons to accede from a place to another
one (the lower the conductance or the higher the resistance is, the more
the cost is). This interpretation can obviously be generalized and applied
everywhere. Actually, ordinary people we do already use this idea extensively
as for instance, when a locomotive of a train is changed by a new faster model,
the train itself runs faster on the same a track. Hence, in some sense, cities
linked by the train track are now closer, even though the spatial distance
between them remains the same. So its not only the track, for an edge in the
network, that matters!
As far as we know, it seems that very little attention is paid to this conception
of what a distance can be in the boundary value problems field. Obviously
there are numerical schemas that are used to solve approximately partial
differential equations and that are related, for instance, to the (combinatorial)
Laplacian operator. But in so many of them, when that conception turns into
a matricial setting, the idea of the distance that separates points is always
the classical spatial distance. We wonder if a lot of gain would be obtained
by including the conductance distance in these numerical algorithms.

7. On effective resistances distance and difusion problems.
It is clear that diffusion, conceived as the local distribution of a physical
entity that ends up having a global reach, has to be treated more in a effective
resistance distance scenario that in the classical shortest–path distance one.
Throughout our research we have discovered many examples corresponding
to so many different frameworks where the possibilities of this almost thirty
years old distance conception are explored. Usually a process of diffusion
takes place taking advantage of all the possibilities, it takes advantage of all
the forms in which it can take place, it propagates using all possible ways.
Hence this idea that, takes into account all connecting possibilities between
to vertices and not only one (the shortest–path), seems to us to be a better
alternative to work with in diffusion problems.
Clearly this point is in close connection with the previous one devoted to
conductances, but we would like to emphasize the possibilities of this thinner
than geodesic distance approch to be used in applications. And our conclu-
sion is that, in the near future, we will see an increasing amount of research
based on this conception.
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Moreover, we have realised lately that this idea of distance is been used
also as a new tool to establish analysis of robustness, connectivity and other
features that are interesting to know given a discrete structure. This is
another argument to augur an esplendid future for the idea.
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[19] T. Biyikoǧlu, J. Leydold and P.F. Stadler. Laplacian eigenvectors of
graphs. LNM 1915, Springer, Berlin, 2007. ISBN 978-3-540-73509-0.

[20] B. Bollabás. Modern graph theory. Graduate Texts in Mathematics 184,
Springer-Verlag, New York, 1998. ISBN 0-387-98488-7.

[21] D. Bonchev, A.T. Balaban, X. Liu and D.J.Klein. Molecular cyclicity
and centricity of polycyclic graphs. I. Cyclicity based on resistance distances
or reciprocal distances. Int. J. Quantum Chem., 50: 1–20, 1994.

[22] C. Bu, B. Yan, X. Zhou and J. Zhou. Resistance distance in subdivision–
vertex join and subdivision–edge join of graphs. Linear Algebra Appl., 458:
454–462, 2014.

[23] Á. Carmona, A.M. Encinas and M. Mitjana. Discrete elliptic operators
and their Green operators. Linear Algebra Appl., 442: 115–134, 2014.

[24] Á. Carmona, A.M. Encinas and M. Mitjana. Resistance distances on
networks. Appl. Anal. Discrete Math., 11: 136–147, 2017.

[25] Á. Carmona, M. Mitjana and E. Monsó. The group inverse of subdivision
networks. Electron. Notes Discret. Math., 54: 295–300, 2016.

[26] Á. Carmona, M. Mitjana and E. Monsó. Effective resistances and Kirch-
hoff index in subdivision networks. Linear Multilinear Algebra, 65: 1823–1837,
2017.

[27] Á. Carmona, M. Mitjana and E. Monsó. Green’s function in partial
subdivision networks. Linear Multilinear Algebra, 68: 94–112, 2020.

[28] Á. Carmona, M. Mitjana and E. Monsó. Group inverse matrix of the
normalized Laplacian on subdivision networks. Appl. Anal. Discret. Math.,
14: 272–286, 2020.

[29] G. Chartrand and L. Lesniak. Graphs and Digraphs. The Wadsworth
& Brooks/Cole Mathematics Series, Second. Wadsworth & Brooks/Cole Ad-
vanced Books & Software, Monterey, CA, 1986. ISBN: 0–535–06324–1.



Bibliography 125

[30] P. Chebotarev and E.V. Shamis. The forest metrics of a graph and their
properties. Automat. Remote Control, 8: 1364–1373, 2000.

[31] H. Chen. Random walks and the effective resistance sum rules. Discrete Appl.
Math., 158: 1691–1700, 2010.

[32] H. Chen and F. Zhang. Resistance distance and the normalized Laplacian
spectrum. Discrete Appl. Math., 155: 654–661, 2007.

[33] F.R.K. Chung. Spectral Graph Theory. CBMS Regional Conference Series
in Mathematics 92, 1997. ISBN 0-8218-0315-8.

[34] S.Y. Chung and C.A. Berenstein. ω–harmonic functions and inverse con-
ductivity problems on networks. SIAM J. Appl. Math., 65: 1200–1226, 2005.

[35] F.R.K. Chung and R. P. Langlands. A combinatorial Laplacian with
vertex weights. J. Combin. Theory (A), 75: 316–327, 1996.

[36] F. Chung and S.T. Yau. Discrete Green’s functions. J. combin. Theory Ser.
A, 91(1–2): 191–214, 2000.

[37] G.P. Clemente and A. Cornaro. A novel measure of edge and vertex
centrality for assessing robustness in complex networks. Soft Comput., 18:
13687–13704, 2020.

[38] D.M. Cvetković, M. Doob and H. Sachs. Spectra of Graphs. Theory
and Applications. 3rd ed. Johann Ambrosius Barth, Heidelberg, 1995. ISBN
3-335-00407-8.

[39] C. Dellacherie, S. Martínez and J. Sn Martín. Ultrametric matrices
and induced Markov chains. Adv. in Appl. Math., 17: 169–183, 1996.

[40] C. Dellacherie, S. Martínez and J. Sn Martín. Description of the
sub–Markov kernel associated with generalized ultrametric matrices. An algo-
rithmic approach. Linear Algebra Appl., 318: 1–21, 2000.

[41] B.E. Eichinger and J.E. Martin. Distribution function for Gaussian
molecules II. Reduction of the Kirchhoff matrix for large molecules. J. Chem.
Phys., 10: 4595–4599, 1978.

[42] A. Elmoataz, O. Lezoray and S. Bougleux. Nonlocal Discrete Regular-
ization on Weighted Graphs: A Framework for Image and Manifold Processing.
IEEE Trans. Im. Proc., 17 (7): 1047–1060. 2008

[43] W. Ellens, F. M. Spieksma, P. van Mieghem, A. Jamakovic and R.E.
Kooij. Effective graph resistance. Linear Algebra Appl., 435: 2491–2506,
2011.

[44] E. Estrada. The Structure of Complex Networks: Theory and Applications.
Oxford University Press, 2011. ISBN 9780199591756.

[45] M. Fiedler. Algebraic connectivity of graphs. Czechoslovak. Math. J, 23:
298–305, 1973.

[46] M. Fiedler. Some characterizations of symmetric M–matrices. Linear Alge-
bra Appl., 275–276: 179–187, 1998.

[47] M.E. Fisher. On hearing the shape of a drum. J. Comb. Theory, 1: 105–126,
1966.



126 Bibliography

[48] R.M. Foster. The average impedance of an electrical network. Contributions
to Applied Mechanics (Reissner Anniversary Volume), Ann Arbor, Edwards
Brothers, Inc., 333–340, 1949.

[49] X. Gao, Y. Luo and W. Liu. Kirchhoff index in line, subdivision and total
graphs of a regular graph. Discrete Appl. Math., 160: 560–565, 2012.

[50] X. Ghosh, S. Boyd and A. Saberi. Minimizing effective resistances of a
graph. SIAM Review, 50: 37–66, 2008.

[51] I. Gutman and B. Mohar. The quasi–Wiener and the Kirchhoff indices
coincide. J. Chem. Inf. Comput. Sci, 36: 982–985, 1996.

[52] I. Gutman and W. Xiao. Generalized inverse of the Laplacian matrix and
some applications. Bull. CXXIX de l’Académie serbe des sciences et des arts,
29: 15–23, 2004.

[53] S. Huang, J. Zhou and C. Bu. Some results on Kirchhoff index and degree–
Kirchhoff index. MATCH Comm. Math. Comput. Chem., 75: 207–222, 2016.

[54] J. J. Hunter. The Role of Kemeny’s Constant in Properties of Markov
Chains. Comm. Stat. Theo. Meth., 43 (7), 1309–1321, 2014.

[55] M. Kac. Can one hear the shape of a drum? Am. Math. Mon., 73: 1–23,
1966.

[56] S.J. Kirkland and M. Neumann. Group inverses of M–matrices and their
applications. Chapman & Hall/CRC Applied Mathematics and Nonlinear Sci-
ence Series. CRC Press, Boca Raton, FL, 2013. ISBN 978-1-4398-8858-2.

[57] D.J. Klein. Resistance distance sum rules. Croat. Chem. Acta, 75: 633–649,
2002.

[58] D. J. Klein and M. Randić. Resistance distance. J. Math. Chem., 12:
81–95, 1993.

[59] L.H. Lim. Hodge Laplacians on graphs. SIAM Rev., 62: 685–715, 2020.

[60] J. B. Liu and J. Cao. The resistance distances of electrical networks based
on Laplacian generalized inverse. Neurocomputing, 167: 306–310, 2015.

[61] X. Liu, J. Zhou and C. Bu. Resistance distance and Kirchhoff index of R-
vertex join and R-edge join of two graphs. Discret. Appl. Math., 187: 130–139,
2015.

[62] F. Lozes, A. Elmoataz, and O. Lezoray, Partial Difference Operators on
Weighted Graphs for Image Processing on Surfaces and Point Clouds IEEE
Trans. Im. Proc., 23 (9): 3896–3909, 2014

[63] I. Lukovits, S. Nikolić and N. Trinajstić. Resistance distance in regular
graphs. Int. J. Quant. Chem, 71: 217–225, 1999.

[64] R. Merris. Laplacian Matrices of Graph: A Survey. Linear Algebra Appl.,
197: 143–176, 1994.

[65] B. Mohar. The Laplacian spectrum of graphs. Graph Theory, combinatorics,
and applications, Wiley-Intersci. Publ., Wiley, New York, vol 2: 871–898,
1991.



Bibliography 127

[66] J.J. Molitierno. Applications of Combinatorial Matrix Theory to Laplacian
Matrices of Graphs. Discrete Mathematics and Its Applications (Boca Raton).
CRC Press, Boca Raton, FL, 2012. ISBN1978-1-4398-6337-4.

[67] M.E.J. Newman. Networks: An Introduction. Oxford University Press, Ox-
ford, 2010. ISBN 978-0-19-920665-0.

[68] J.L. Palacios. Closed–form formulas for Kirchhoff index. Int. J. Quant.
Chem, 81: 135–140, 2001.

[69] J.L. Palacios. Foster’s formulas via probability and the Kirchhoff index.
Methodol. Comput. Appl. Probab., 6: 381–387, 2004.

[70] K. Stephenson, and M. Zelen. Rethinking Centrality: Methods and Ex-
amples. Soc. Netw., 11: 1–37, 1989.

[71] L. Sun, W. Wang, J. Zhou and C. Bu. Some results on resistance distances
and resistance matrices. Linear Multilinear Algebra, 63: 523–533, 2015.

[72] P.Tetali. Random walks and the effective resistance of networks. J. Theoret.
Probab., 4: 101–109, 1991.

[73] H. Wiener. Structural Determination of Paraffin Boiling Points. J. Amer.
Chem. Soc., 69: 17–20, 1947.

[74] W. Xiao and I. Gutman. Resistance distance and Laplacian spectrum.
Theor. Chem. Acc., 110: 284–289, 2003.

[75] P. Xie, Z. Zhang and F. Comellas. The normalized Laplacian spectrum
of subdivisions of a graph. Appl. Math. and Comp, 286: 250–256, 2016.

[76] Y. Yang. The Kirchhoff index of subdivisions of graphs. Discrete Appl. Math.,
171: 153–157, 2014.

[77] Y. Yang and D.J. Klein. A recursion formula for resistance distances and
its applications. Discrete Appl. Math., 161: 2702–2715, 2013.

[78] H.P. Zhang, Y.J. Yang and C.W. Li. Kirchhoff index of composite graphs.
Discrete Appl. Math., 157: 2918–2927, 2009.

[79] H.Y. Zhu, D.J. Klein and I. Lukovits. Extension of the Wiener number.
J. Chem. Inf. Comput. Sci, 36: 420–428, 1996.


