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ABSTRACT 

 

The Action Research Arm Test (ARAT) is a measurement tool to assess post-stroke upper extremities 

motor function. However, ARAT scoring can be subjective and limited only to determining performance 

quality. Therefore, in this thesis, we presented a novelty hand motion system to improve the evaluation 

with the ARAT. The hand motion system is composed of a data glove CyberGlove II®, a Finger force sensing 

module, and a Graphical User Interface (GUI). In this thesis, three studies were conducted to evaluate 

whether the hand motion system improved the assessment with the ARAT.  

Firstly, in Chapter 4, we performed an analysis on healthy subjects using the hand motion system 

during the performance of the ARAT. We determined the fingertip force and the flexion angles of the 

metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joints of the fingers (index, middle, ring, 

and little) and carpometacarpal (CMC), MCP, and interphalangeal (IP) for the thumb. The results showed 

that the flexion angles and the finger force depend on the object size and the type of grasp used (power, 

grip, or pinch). In addition, an important database of the range of motion of the finger joints and finger 

forces was obtained.  

Secondly, Chapter 5 evaluated post-stroke patients with right (RH) and left (LH) hemiparesis to 

identify joint impairments and compensatory grasping strategies. For this purpose, an experimental study 

was carried out with 12 patients six months after a stroke with a global ARAT score ≥ 10. The range of 

motion (ROM) of the finger joints in stroke patients was compared with the data obtained in Chapter 4. 

Stroke patients with LH and RH showed significantly lower flexion angles in the MCP joints of the Index 

and Middle fingers than the Control group. However, RH patients showed larger flexion angles in the PIP 

joints of the Index, Middle, Ring, and Little fingers. In contrast, LH patients showed larger flexion angles 

in the PIP joints of the Middle and Little fingers. Therefore, the results showed that RH and LH patients 

used compensatory strategies involving increased flexion at the PIP joints for decreased flexion in the MCP 

joints. In addition, the hand motion system allows the detection of finger joint impairments in stroke 

patients that are not visible from ARAT scores.  

Finally, in Chapter 6, we developed classification models to predict whether activities with similar 

ARAT scores were performed by a healthy subject or by a subject with stroke. For this purpose, we used 

three classification algorithms: Support Vector Machine (SVM), Random Forest (RF), and K-N Neighbors 

(KNN). The results showed that the SVM classifier had the best performance, with a precision of 98.3% 

and an accuracy of 94.5 %. However, the dataset showed class imbalance and the classification models 

presented a low recall, especially in the stroke class. Therefore, we implemented class balance using the 

technique Borderline-SMOTE (BSM). After data balancing, the models showed a significantly higher 
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accuracy, recall, f1-score, and AUC. The SVM classifier showed a higher performance with a precision of 

98% and a recall of 97.5% after data balancing. Hence, the results showed that classification models based 

on human hand motion features combined with BSM achieve higher performance. 

Therefore, we conclude that integrating the hand motion system during the performance of the ARAT 

allows for a quantitative, accurate, and sensitive assessment. Furthermore, the proposed method is of 

clinical relevance as it will help health care professionals to create more specific and effective 

rehabilitation programs for functional recovery of the hand in patients with stroke and other chronic 

diseases. 

Keywords: finger joints; finger force; ARAT; stroke; CyberGlove II; machine learning; hand; 

rehabilitation 
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RESUMEN 

 

El Action Research Arm Test (ARAT) es una herramienta para evaluar la función motora de las 

extremidades superiores después de un ictus. Sin embargo, la puntuación del ARAT puede ser subjetiva y 

limitarse a evaluar solamente la calidad del rendimiento de la tarea. Por lo tanto, en esta tesis 

presentamos un novedoso sistema de movimiento de la mano para mejorar la evaluación con el ARAT. El 

sistema está compuesto por un guante de datos CyberGlove II®, un módulo de detección de fuerza de los 

dedos y una interfaz gráfica de usuario. En esta tesis, se realizaron tres estudios para determinar si el 

sistema propuesto mejoraba la evaluación con el ARAT. 

En primer lugar, en el Capítulo 4 se realizó un estudio en sujetos sanos utilizando el sistema de 

movimiento de la mano durante la realización de la ARAT. Se determino la fuerza de los dedos y los 

ángulos de flexión de las articulaciones metacarpofalángicas (MCP) e interfalángicas proximales (PIP) de 

los dedos (índice, medio, anular y meñique) y carpometacarpiana (CMC), MCP e interfalángica (IP) del 

pulgar. Los resultados mostraron que los ángulos de flexión y la fuerza de los dedos dependen del tamaño 

del objeto y del tipo de agarre utilizado. 

En segundo lugar, en el Capítulo 5 se evaluaron pacientes con ictus con hemiparesia derecha e 

izquierda para identificar deficiencias articulares y estrategias de agarre compensatorias. Para ello, se 

realizó un estudio experimental con 12 pacientes seis meses después de un ictus con una puntuación 

ARAT global ≥ 10. El rango de movimiento (ROM) de las articulaciones de los dedos en los pacientes con 

ictus se comparó con los datos del Capítulo 4. Los pacientes con ictus con LH y RH mostraron ángulos de 

flexión significativamente menores en las articulaciones MCP de los dedos índice y medio que el grupo de 

control. Sin embargo, los pacientes con RH mostraron mayores ángulos de flexión en las articulaciones 

PIP de los dedos índice, medio, anular y meñique. Por el contrario, los pacientes del grupo LH mostraron 

mayores ángulos de flexión en las articulaciones PIP de los dedos medio y meñique. Por lo tanto, los 

resultados mostraron que los pacientes RH y LH utilizaron estrategias compensatorias que implicaban un 

aumento de la flexión en las articulaciones PIP debido a la disminución de flexión en las articulaciones 

MCP. Además, el sistema permitió detectar deficiencias en las articulaciones de los dedos que no son 

visibles con el ARAT. 

Por último, en el Capítulo 6, se desarrollaron modelos de clasificación para predecir actividades con 

puntuaciones ARAT similares de sujeto sanos y sujetos con ictus. Para ello, se utilizaron tres algoritmos de 

clasificación: Maquinas de vector soporte (SVM), Bosques aleatorios (RF) y K vecinos más cercanos (KNN). 

Los datos mostraban un desbalanceo de clases y los clasificadores presentaron una baja exhaustividad, 

especialmente en la clase de ictus. Por lo tanto, se implementó el balanceo de clases con la técnica 
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Borderline-SMOTE (BSM). Después de equilibrar los datos, los clasificadores mostraron una precisión, una 

exhaustividad, una puntuación f1 y un AUC significativamente mayores. El clasificador SVM mostró el 

mayor rendimiento con una precisión de 98% y una exhaustividad de 97.5%. Por lo tanto, los resultados 

mostraron que los clasificadores basados en características del movimiento de la mano humana 

combinados con el algoritmo BSM lograron un mayor rendimiento.  

Por lo tanto, concluimos que la integración del sistema de movimiento de la mano durante la 

realización del ARAT permite una evaluación cuantitativa, precisa y sensible. Además, el método 

propuesto es de relevancia clínica ya que ayudará a los profesionales de la salud a crear programas de 

rehabilitación más específicos y eficaces para la recuperación funcional de la mano en pacientes con ictus 

y otras enfermedades crónicas. 

Palabras clave: articulaciones de los dedos; fuerza de los dedos; ARAT; ictus; CyberGlove II; 

aprendizaje automático; mano; rehabilitación 
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CHAPTER 1 

Introduction 

 

 

1.1 Motivation 

Stroke remains one of the leading causes of death and disability in Europe, and projections show that 

the burden of stroke will not decrease in the next decade or beyond. An important contributing factor to 

this is that the number of older persons in Europe is rising, with a projected increase of 35% between 2017 

and 2050 [1]. Stroke is caused by the death of brain cells as a result of blockage of a blood vessel supplying 

the brain (ischemic stroke) or bleeding into or around the brain (hemorrhagic stroke), is a serious medical 

emergency [2]. According to the World Health Organization, 15 million people suffer stroke worldwide 

each year. Of these, 5 million die and another 5 million are permanently disabled. Therefore, it is one of 

the main causes of disability, a large number of people who survive have important sequels that limit the 

performance of their activities of daily living (ADL). In addition, the need of medical attention translates 

in a very high economic cost in health services e.g. the expense on both caring and rehabilitation reaches 

$34 billion per year in the US [3]. One of the main sequels produced by Stroke is the loss of mobility in the 

upper extremities of the human body (hands). The human hand consists of 27 bones and 27 joints and is 

one of the most important tools in the human body. The hands allow us to perform a wide variety of 

actions to interact with the environment, such as touching, reaching, holding, grasping, and 

manipulating different types of objects.  The people who suffer the loss of mobility in this upper extremity 

of the human body (hand) endure a great negative impact on their living standards, causing problems in 

their family, work, and social environment. For that reason, the rehabilitation process for hand recovery is 

vital to post-stroke patients. The rehabilitation process is traditionally carried out by a physiotherapist 

specializing in treating disabilities related to motor and sensory impairments [4]; hand therapy helps to 

improve strength and increase the range of motion (ROM) of the finger joints. Therefore, to evaluate and 

improve the effectiveness of rehabilitation programs, it is important to assessment upper extremity (UE) 

function, and the use of standardized outcome measures (OMs) can lead to more efficient rehabilitation for 

the patients [5], [6]. There are several types of OMs used for evaluating patients with UE disability with 

good psychometric these are: the Fugl-Meyer assessment (FMA), the Action Research Arm Test, the Box 

and Block test (BBT), the Chedoke Arm and Hand Inventory (CAHAI), the Nine Hole Peg Test (9-HPT), 

and the Wolf Motor Function Test (WMFT). However, one of the most OMs used by physical therapists 

and other health care professionals to assess the performance of the upper extremities in people post-stroke 

is The Action Research Arm Test (ARAT). The ARAT is a measurement tool used to assess UE functional 

impairments that has shown good reliability and validity [7], [8], [9]. The ARAT evaluates 19 movement 
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tasks divided into four subtests (Grasp, Grip, Pinch, and Gross arm movement) assess a patient’s ability to 

handle objects differing in size, weight, and shape.   

However, the ARAT, like most other OMs, requires a human examiner to transform observations of 

the patient's movement into a score. Therefore, reliance on a human examiner leaves room for subjective 

measures, especially in scoring, limited to assessing the quality of performance on each task. The ARAT 

also presents problems in assessing patterns of movement abnormality that emerge after stroke [7]. In 

addition, it presents a ceiling effect that prevents detection of improvements produced with rehabilitation 

treatments in subjects with mild impairments with high scores [10]. In recent years, due to technological 

development, several investigations have been developed in medical rehabilitation post-stroke, such as 

using multiple types of sensors to measure human hand motion. However, to the best of our knowledge, 

few studies integrate sensors during the performance of the ARAT [10],[11],[12],[13] but none of them 

focused on the assessment of hand function through the analysis of the range of motion (ROM) of the finger 

joints and the fingertip forces. Therefore, we proposed in this thesis the use of a Hand motion system based 

on a data glove (CyberGlove II®) and five force-sensing resistors (FSRs) during the performance of the 

ARAT. The system is a novel alternative for occupational therapists and health care professionals for a 

more objective, sensitive, and quantitative assessment method with the ARAT in post-stroke patients.  

1.2 State of Art 

In the last years, due to technological development, several investigations have been developed in 

robotics, biomechanics, and medical rehabilitation, such as using multiple types of sensors to analyze 

human hand motion. Sensors for hand motion analysis most commonly used are Data glove, Inertial 

measurement unit (IMU), Optical markers, vision-based capturing (Ordinary Cameras, Depth Cameras, 

Leap Motion Controller), electromyography sensor (EMG), and Force sensors (Capacitive, Piezoresistive, 

Piezoelectric) [14] [15]. The hand motion data obtained from these sensors allow us to know: hand position, 

finger joint angles, force detection, and angular velocity in real-time.  

1.2.1 Data Glove based capturing 

Data gloves are the more popular and widely sensor used in research use highly precise sensors to 

achieve hand dynamic gestures including positions, velocities, and accelerations. The gloves use different 

types of sensors, such as wire driven mechanism, optical fiber sensors, resistive bend sensors, inertial 

measurement units (IMUs). Some Gloves are commercial and others was developed for researchers. The 

first glove prototypes included the Sayre Glove, the Massachusetts Institute of Technology (MIT)- LED 

glove, and the Digital Entry Data Glove. The Sayre Glove was developed in 1977 by Thomas de Fanti and 

Daniel Sandin based on the idea of Rich Sayre. This glove used flexible tubes with a light source at one 

end and a photocell at the other, mounted along with each finger [16]. The first glove-like data system is 

the Digital Data Entry Glove developed at AT&T Bell Laboratories in 1983. This glove was designed to 
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measure hand positions, including finger flexure, hand orientation, and wrist position (Grimes G,1983). In 

the 80s Thomas G. Zimmerman developed research about hand gestures with the VPL Data Glove TM and 

the Z-Glove TM [17]. These lightweight gloves with flexion sensors measured finger flexion, positioning, 

and orientation systems, and used tactile feedback vibrators. Moreover, the CyberGlove I model CG1801 

has 18 or 22 bend sensors placed at critical points to measure the posture of the hand [18] , which was used 

in researches [19], [20].  

On the other hand, the CyberGlove II uses 18 or 22 bend sensors to capture the hand and finger motion. 

The CyberGlove II 22-sensor model has three flexion sensors per finger, four abduction sensors, a palm 

arch sensor, and measures flexion and abduction [21]. The  CyberGlove II has been used in various research 

about: teleoperation [22], human robot interaction [23], [24], rehabilitation [25], [26] [27]. In contrast, the 

CyberGlove III glove provides 22 bend sensors placed along each MCP, PIP and DIP finger joint. This 

glove has been used in applications witch touchscreen gestures by Asakawa [28], Hand pose estimation 

[29]. Other several glove prototypes with bend sensors have been developed by [30] [31] [32] [33] [34]. 

On the other hand, some Data-glove-based systems for tracking hand motion use sensors of mechanical 

architecture  [35], [36] . In 2014, Park et al. proposed a data glove-based system composed of linear poten-

tiometers, flexible cables, and linear springs to measure finger flexion angles [36]. Another similar glove 

that used linear potentiometer was developed by Saliba et al. [37]. The most representative data-glove-

based system with optical fiber sensors is the 5DT data glove MRI developed by the Fifth Dimension 

Technologies. The 5DT data glove has been used to capture hand motion in virtual reality [38], for 

rehabilitation [39][40], for applications in biomechatronics [41], for teleoperation [42] and for hand gesture 

recognition [43]. Another commercial glove is the Human Glove (manufactured by HumanWare) consists 

of 22 Hall Effect sensors that measure the flexion-extension and adduction–abduction movements of the 

fingers and wrist. In addition, we found a review of commercial Data Glove Systems in the study presented 

by Dipietro [16]. The Gloves based on inertial measurement units (IMUs) can record hand kinematics 

accurately and provide valuable parameters, such as measures parameters such as angular velocity, 

acceleration, and range of motion [44]. A sensory glove for hand-object manipulation that employs a 

network of 15 IMUs to measure the rotations between individual phalanxes was developed by Liu [45]. A 

data glove system with 6-axis IMU sensors to capture hand kinematics was developed by Shing Lin [46]. 

Finally, a Novel Smart Glove for measuring the angles of the finger joints was developed by O´Flynn [47]. 

1.2.2 Force sensing 

Haptics/tactile/force information is an important part of the study of human hand motions, especially 

for object manipulations. In order to measure the force applied by the human hand, there have been 

implemented several types of research. Some researchers placed force sensors on the object of interaction, 

and others placed sensors just on the subject’s fingertips. However, this thesis focuses on force sensors 

placed on the hand or the fingertips. A glove equipped with six customized force sensors made from 
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Velostat for the study of hand-object manipulation was proposed by Liu et al. [45].  Nikonovas et al. 

developed a system that measures forces over the entire hand using 12 Flexiforce sensors (Tekscan Inc., 

Boston, MA, USA) in each hand [48]. On the other hand, Qiang et al. developed a Force-sensing glove 

system for measuring real-time hand forces during motorbike riding, using two gloves with four Flexiforce 

sensors [49]. While Battaglia et al. proposed the ThimbleSense: a fingertip-wearable tactile sensor for grasp 

analysis [50]. Ferre et al. developed a thimble with Flexiforce sensors for measuring forces applied during 

manipulating virtual and real objects [51]. Castro and Cliquet proposed a Low-Cost instrumented glove for 

monitoring forces during object manipulation with force sensing resistors (FSR) by Interlink Electronics 

[52]. O’Flynn et al. developed the Tyndall glove composed of a combination of 20 bend sensors, 16 triaxial 

accelerometers and 11 force sensors to detect joint movement and force [33]. As we can see, many 

researchers use the Flexiforce sensors; we can find a complete study of this sensor made by Vecchi [53]. 

1.2.3 Sensors for stroke rehabilitation 

Assessment and analysis of upper extremities in post-stroke patients using diverse types of sensors can 

be found in several studies. Lin et al. proposed a data glove system integrated with six-axis inertial 

measurement unit sensors for evaluating the hand function in patient post-stroke [54]. A shoe-based sensor 

with force-sensitive resistors (FSRs) to accurately identify postures in people with stroke was proposed by 

Fulk and Sazonov [55]. Ambar et al. designed an arm rehabilitation monitoring device utilizing an Arduino 

based Microcontroller using a flex sensor to detect arm bending movement, an IMU board (InvenSens Inc., 

San José, CA, USA) and two force-sensitive resistors to detect muscle force [32]. Data from a Microsoft 

Kinect sensor (kinematic upper limb) and an FSRs glove (strength of muscles) were used to predict muscle 

forces in stroke patients through the least square regression matrix by Hoda et al. [56]. A data-glove-based 

system embedded with 9-axis IMUs sensors and FSRs for evaluation of hand function was designed by 

Hsiao et al.[44]. Kim et al. used a Microsoft Kinect sensor during the Fugl–Meyer assessment (FMA) to 

predict scores in hemiplegic stroke patients [57]. Schwarz et al. used a wearable inertial sensing system 

composed of eight IMUs, with triaxial accelerometers and gyroscopes, to assess upper extremity movement 

impairments after stroke [12]. Ganeson et al. developed a low-cost instrumented glove based on flex sensors 

and FSRs for post-stroke hand rehabilitation [58]. 

1.2.4 Incorporation of sensors in the Action Research Arm Test (ARAT) 

The use of sensors allows for more quantitative and sensitive assessment methods during clinical 

rehabilitation of the upper extremities. However, to the best of our knowledge, few studies have integrated 

sensors during the performance of the ARAT. Carpinella et al. presented an analysis for quantitative 

assessment of upper limb motor function on healthy subjects and persons with Multiple Sclerosis, using a 

single inertial sensor on the wrist [10]. Nam et al. quantified the Range of Motion (ROM) of the upper 

extremities (UE) during the performance of the ARAT and six essential ADL, using 25 Inertial 

Measurement Unit (IMU) sensors [11]. Ticó Falguera assessed the functional recovery of the upper 
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extremity and the motion of the finger joints in stroke patients with the CyberGlove II® from week one 

after stroke to six months after stroke [25]. Held et al. designed a study to evaluate rehabilitation progress 

with a full-body IMU system (Xsens Technologies, Enschede, Netherlands) in stroke patients, over four 

weeks [13]. Repnik et al. presented a study in healthy subjects and patients post-stroke to quantify upper 

limb movement, using a wearable system of seven IMUs for kinematics and electromyography (EMG) 

sensors for muscle activity analysis [59].  

1.2.5 Machine Learning and ARAT test 

In recent years, machine learning models have been used to predict outcome measures such as the 

ARAT and to classify functional motion performance. Dutta et al. evaluated grasp abilities in the ARAT 

test with Support Vector Machine (SVM) algorithms in healthy subjects and post-stroke patients using an 

instrumented glove composed of six flex sensors, three force sensors, and a motion processing unit [60]. In 

contrast, Bochniewicz et al. during the performance of the ARAT used a Random Forest model to classify 

UE movement into functional and non-functional, using inertial measurement units (IMU) [61]. Lum et al. 

developed several machine learning algorithms K-Nearest Neighbors (KNN), Random Forest (RF), Linear 

Support Vector Machine (SVM), and Radial Basis Function SVM (RBF-SVM) to classify functional and 

nonfunctional activities using a wrist-worn IMU during the performance of the ARAT [62]. Moreover, 

Kanzler et al. predicted outcomes scores of the ARAT, BBT, and 9-HPT with several machine learning 

models (decision tree, KNN, linear regression, and RF) using clinical data, and digital health metrics [63].  

1.2.6 Machine Learning in Clinical Measures of Upper extremities 

Furthermore, the use of machine learning models has been widely used in other clinical assessments 

of the upper extremity, most notably in the Fugl-Meyer Assessment. Lee et al. proposed a binary logic 

classification algorithm to automate the evaluation of the FMA using a Kinect v2 and force-sensing resistor 

(FSR) [64]. In addition, Kim et al. used an artificial neural network learning to predict FMA scores in 

hemiplegic stroke patients using a Kinect [57]. Formstone et al. proposed a system that combines Inertial 

measurement and mechanomyography (MMG) sensors to quantify hand and wrist motor function and 

predict FMA scores with the Light Gradient Boosting Classification Model (LightGBM) (Microsoft 

Corporation) [65].On the other hand, Yu et al. presented a quantitative FMA framework with two 

accelerometer and seven flex sensors used to monitoring the movement function of upper limb, wrist and 

fingers in stroke patients using extreme learning machine (ELM) algorithms to predict FMA scores [66]. 

Julianjatsono et al. presented a work for predict FMA scores using a sensor data and five regression 

algorithms: Linear Regression (L-R), Bayesian Linear Regression (BL-R), Neural Network Regression 

(NN-R), Boosted Decision Tree Regression (BDT- R), and Decision Forest Regression (DF-R) [67]. Otten 

et al. proposed a framework  to predict scores of FMA using SVM and Backpropagation Neural Network 

(BNN) algorithms  using multiple sensors (Kinect, Data glove, FSR sensors and IMU) [68]. Tozlu et al. 

Predicted  FMA scores and clinical improvement of patients with chronic stroke using five machine learning 
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methods  Elastic net (EN), support vector machines (SVM), artificial neural networks (ANNs), 

classification and regression trees (CART), and random forest (RF) [69]. In contrast, during the Wolf Motor 

Function Test execution, Del Din et al. used six accelerometers placed on the arm and the trunk to estimate 

FMA Test scores [70]. Finally, Routhier et al. studied the correlation between finger-to-nose task (FNT) 

and Upper limb motor function in subacute stroke patients, using an IMU [71]. 

1.3 Thesis Objectives  

The overall objective of this thesis is to improve the assessment of hand function in post-stroke patients 

with the ARAT through the use of a hand motion system. Towards this general objective, several more 

specific targets must be pursued, which also represent the main contributions of this research. These 

objectives are the following: 

▪ Develop a hand motion system capable of measuring finger joint movement and fingertip force 

with a graphical interface for real time hand simulation. 

▪ Measure the ROM of the finger joints and the fingertip force of healthy subjects during the 

performance of the Grasp, Grip, and Pinch subtests of the ARAT using the hand motion 

system. 

▪ Determine the functional range of motion (FROM) and the ROM of the finger joints in post-

stroke patients with a global ARAT score ≥ 10. 

▪ Compare the functional range of motion (FROM) and the ROM of finger joints between 

healthy subjects and poststroke patients. 

▪ Identify alterations in joint movement and compensatory strategies in patients with stroke. 

▪ Develop machine learning models to classify activities between healthy subjects and post-

stroke patients with similar ARAT score. 

1.4 Outline of the Thesis 

This dissertation is divided into seven chapters and references. The chapters are summarized as 

follows: 

Chapter 2: In this chapter, we have introduced a few concepts about the functional anatomy and bio-

mechanics of the hand. The objective of these concepts is to know the function and range of motion of the 

joints of each of the fingers. These concepts are fundamental in this thesis since one of the objectives is to 

measure and evaluate the movement of the finger joints. 

Chapter 3: In this chapter, we presented the development of the Hand motion system proposed. This 

chapter includes the development of the device to measure finger force, the integration with the Cyberglove 
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II to measure the angle of the finger joints and the development of the graphical user interface (GUI) for 

hand simulation and data acquisition. 

Chapter 4: This chapter presents a study to assess hand function in healthy subjects using the hand 

motion system developed in Chapter 3 with the aim of improving the ARAT assessment. Hence, in this 

chapter, we measured the flexion angles of 11 finger joints and fingertip forces during the performance of 

three subsets (Grasp, Grip, and Pinch) of the ARAT. Therefore, the results of this study provided an 

important database of finger joint ROM and fingertip force in ARAT activities of healthy subjects. 

Chapter 5: This chapter presents a study where the ROM and the functional range of motion (FROM) 

were compared between stroke patients and healthy subjects. The data used from healthy patients are those 

obtained in Chapter 4, while the data from stroke patients were obtained in a previous study [26]. The aim 

of this chapter is to identify joint impairments and compensatory grasping strategies in stroke patients with 

left hemiparesis (LH) and right hemiparesis (RH) that are not detected by the ARAT scoring method. 

Chapter 6: In this chapter, we present the development of machine learning models to classify whether 

ARAT activities were performed by a healthy subject or by a post-stroke subject with good upper extremity 

function, based on the hand motion information obtained with the Cyberglove II in Chapters 4 and 5. The 

aim of this chapter is to demonstrate that there are differences between the activities of healthy and post-

stroke subjects that are not detected by the ARAT scoring method. 

Chapter 7: In this chapter, we present a general conclusion and presents future work for this research.  
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CHAPTER 2 

Anatomy of the Hand 

 

 

This chapter describes the hand's anatomy because it is our main object of study. Although this chapter 

does not intend to perform a detailed analysis at the clinical level, we consider it essential to have a general 

knowledge of the hand structure to understand the subsequent chapters better. First, we describe the bones 

of the hand and the joints of the fingers. Next, we present the types of motion and the normal range of 

motion proposed by various authors. Finally, we show the methods for measuring the range of motion of 

the joints and the strength of the hand. 

2.1 Basic Hand Anatomy 

The hand is one of the most complex parts of the human body to study. The hand's anatomy is effi-

ciently organized to perform simple and complex tasks within the Activities of Daily Living (ADLs). These 

tasks require a combination of coordinated movements and finely controlled force production [72]. The 

human hand consists of 27 bones. The wrist, which joins the hand to the forearm, contains eight carpal 

bones arranged in two rows of four bones each. The metacarpus, or palm, is composed of five long meta-

carpal bones. Finally, fourteen phalangeal bones constitute the four fingers and thumb. Each finger has 3 

phalanges (distal, middle, and proximal) and two phalanges in the thumb (distal, proximal). The finger 

digits are designated numerically from one to five, or as called the Thumb, Index, Middle, Ring, and Little 

(or Small). 

 

Figure 2.1. Bones of the Human Hand. 
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2.1.1 Finger Joints 

The finger joints of the hand involved in hand motion, beginning with the joints at the connection 

between the metacarpals and distal row of carpal bones and moving distally to the tips of the phalanges, 

will be described below and are shown in Fig. 2.2. 

Carpometacarpal Joints (CMC) 

The carpometacarpal (CMC) joints connect the carpals with each of the five fingers via the metacarpal 

bones. The CMC is a gliding joint that moves directionally with the carpals and offers very little movement 

for the four fingers. In contrast, The CMC joint of the thumb is a saddle joint consisting of the articulation 

between the trapezium and the first metacarpal that provides most of the range of motion for the thumb 

[73]. Motions at the Thumb CMC joint occur primarily in 2 degrees of freedom. Abduction and adduction 

occur generally in the sagittal plane, and flexion and extension in the frontal plane [74]. 

Metacarpophalangeal Joints (MCP) 

This joint is located between the metacarpal head and the base of the proximal phalanx [75]. The 

function of the MCP joints of the four fingers differs from that of the thumb. The MCP joints of the four 

fingers are condyloid joints that allow flexion-extension and abduction-adduction motions. The joint is well 

reinforced on the dorsal side by the dorsal hood of the fingers, on the palmar side by the palmar plates that 

span the joint, and on the sides by the collateral ligaments or deep transverse ligaments [73]. The MCP for 

the thumb is a hinge joint allowing motion in only one plane flexion and extension. Active abduction and 

adduction of the thumb MCP joint is limited and therefore these are considered accessory motions [74]. 

Interphalangeal Joints (IP) 

The interphalangeal articulations (IP) are the most distal joints in the upper extremity. Each finger has 

three phalanges, the proximal, middle, and distal. Therefore, fingers have two IP joints, the proximal inter-

phalangeal (PIP) and the distal interphalangeal joint (DIP). The thumb has only two phalanges, the proximal 

and distal phalanges; consequently, the thumb has only one IP. The IP joints are hinge joints allowing for 

motion in one plane flexion and extension, and they are reinforced on the lateral sides of the joints by 

collateral ligaments that restrict movements other than flexion and extension [73]. From both a structural 

and a functional perspective, these joints are simpler than the MCP joints [74].  
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Figure 2.2. Finger Joints of the Index Finger and the Thumb. 

2.1.2 Palm Arch 

The natural curvature of the hand's palmar surface makes it possible to grasp and manipulate objects 

of various shapes and sizes. The human hand palm is supported for three arches (see Fig 2.3). Firstly, the 

proximal transverse arch is formed by the distal row of carpal bones. This static, rigid arch forms the carpal 

tunnel, permitting passage of the median nerve and many flexor tendons coursing toward the digits. 

Secondly, the distal transverse arch of the hand passes through the metacarpophalangeal (MCP) joints. In 

contrast to the rigid proximal arch, the ulnar and radial sides of the distal arch are relatively mobile. Finally, 

the longitudinal arch of the hand follows the general shape of the index and middle fingers. These relatively 

rigid articulations provide an important element of longitudinal stability to the hand [74].  Therefore, the 

index and the middle fingers are constant when the hand arches the palm, but for the ring and small fingers, 

the metacarpal bones rotate about their respective CMC joints. This movement decomposes into two, one 

in the direction of extension/flexion (E/F) and the other in the direction of abduction/adduction (Ab/Ad). 

Distal Interphalangeal (DIP) 

Proximal Interphalangeal (PIP) 

Metacarpophalangeal (MCP) 

Interphalangeal (IP) 

Metacarpophalangeal (MCP) 

 

Carpometacarpal (CMC) 
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Figure 2.3. The three arches supporting the palm of the hand: one longitudinal and two transverse.  

2.1.3 Normal Range of motion 

The type of motion that is available at a joint varies according to the structure of the joint. The main 

types of motion of the finger joints are E/F, and Ab/Ad. Flexion and extension occur in the sagittal plane, 

while abduction and adduction occur in the frontal plane. Fig 2.4 shows the types of motion of the fingers. 

On the other hand, the wrist is composed of a complex series of joints. These joints allow three types of 

movement: flexion/extension, supination/pronation, and ulnar deviation/radial deviation. Fig 2.5 shows the 

movements of wrist for E/F and the radial/ulnar deviation for the wrist. 

 

Figure 2.4. Abduction/adduction(Ab/Ad) (left); Flexion/extension (F/E) for one finger(right) 
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Figure 2.5. Radial/ulnar deviation of the wrist (left); Flexion/extension of the wrist (right) 

The Range of motion (ROM) is the arc of motion in degrees between the beginning and the end of a 

motion in a specific plane [76]. In order for a subject move efficiently and with the minimal effort, full 

range of motion across the joints is imperative. The measurement of the ROM has been used for physio-

therapist and health professionals as an outcome measure to evaluate the functional recovery of a joint after 

a medical condition, surgical intervention or injury. The most widely system used to define ROM are the 

0- to 180-degree system [76]. Thus, neutral extension at each joint is recorded as 0 degrees and proceeds in 

an arc toward 180 degrees. Table 2.1 summarizes the finger joints of the hand and their associated normal 

ranges of motion; these values comes from the literature [77], [78]. It’s important mention that not all the 

fingers have these movements, and these tables do not cover all the populations.  The term hyperextension 

is used to describe a greater than normal extension ROM. 

Table 2.1. Range of Motion for the joints of the Hand 

Finger Joint Adduction/Abduction Extension/Flexion 

Thumb 

CMC 0/60 25/35 

MCP 0/60 10H/55 

IP - 15H/80 

Index 

MCP 13/42 0/80 

PIP - 0/100 

DIP - 10H/90 

Middle 

MCP 8/35 0/80 

PIP - 0/100 

DIP - 10H/90 

Ring 

MCP 14/20 0/80 

PIP - 0/100 

DIP - 20H/90 

Little 

MCP 19/33 0/80 

PIP - 0/100 

DIP - 30H/90 

CMC= carpometacarpal; MCP = metacarpophalangeal; IP = interphalangeal; PIP = proximal interphalangeal. SD= standard 

deviation; H= hyperextension. 
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2.1.4 Muscular Hand Function 

The motion and force of the fingers would not be possible without the linked muscles and flexors 

acting at the hand and wrist and collateral ligaments that restrict motion to certain directions. The muscles 

that help with finger motion are located in the hand and forearm. The following section describes the basic 

anatomy and function of extrinsic and intrinsic muscles [74]. The extrinsic muscles are originated in the 

forearm or arm and entered at the hand as tendons, some tendons are quit long and ended on the tip of the 

finger. The extrinsic muscles provide considerable strength and dexterity to the fingers. In addition, the 

intrinsic muscles originated in the hand create motion at the MCP and PIP joints. The Finger flexion is 

performed primarily by the flexor digitorum profundus and flexor digitorum superficialis. However, the 

flexion of the middle, ring and little fingers usually is simultaneously because the flexor digitorum 

profundus tendons derive from a common tendon and muscle. In contrast, the flexor digitorum superficialis 

allows flexing each finger independently. However, the fingers can be independently flexed at the PIP but 

not at the DIP joint. The flexion of the MCP joint is produced by two intrinsic muscles, the lumbricales and 

the interossei [73]. On the other hand, for the extension of the fingers the primary muscle is the extensor 

digitorum. The extensor digitorum formed an extensor hood that wraps around the dorsal surface of the 

phalanges. Therefore, the lumbricales and the interossei muscles connected into the hood, assist with 

extension of the PIP and DIP joints [73].  

On the other hand, most of the activities performed with our hands require the use of a small or large 

amount of wrist flexion, therefore we consider it important to talk a little about the functioning of this 

muscle group. The wrist flexors and extensors originating in the vicinity of the medial and lateral 

epicondyle, respectively. Flexor and extensors are paired to produce ulnar and radial flexion [73]. 

2.2 Methods of ROM Measurement 

There are several instruments that are used for physical therapists and other health professionals for 

the measurement of the ROM: 1) Goniometer 2) Inclinometer 3) Electrogoniometer 4) Radiography and 

Photography. 

2.2.1 Goniometer 

The goniometer is the measurement tool most commonly used in clinical practice to measure joints' 

range of motion (ROM). It can be used to measure joint position and ROM at almost all body joints. 

Universal Goniometers are constructed of metal or plastic and are produced in different sizes but follow the 

same design. The design consists of two straight arms, a stationary and a moving arm [76]. The scales on a 

half-circle goniometer read from 0 to 180 degrees and from 180 to 0 degrees. The universal Goniometer 

come in two forms; a short arm goniometer used for smaller joints and long arm goniometer which are more 

accurate for larger joints. The goniometer is still the most economical, and most portable device for assess-

ment of the range of motion. 
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2.2.2 Inclinometer 

The Inclinometer uses gravity’s effect on pointers and fluid levels to measure joint position and 

motion. An inclinometer consists of a circular, fluid-filled disk with a bubble or weighted needle that 

indicates the number of degrees on the scale of a protractor [76]. There are two types of inclinometers: 

mechanical and electronic. The electronics are more expensive and require special programs and software. 

2.2.3 Electrogoniometers 

Electrogoniometers were introduced by Karpovich and Karpovich in 1959, are used primarily to obtain 

dynamic joint measurements. The electrogoniometer is an electronic device that uses sensors for angle 

measurement, implemented with potentiometers, strain gauges or accelerometers to record measurements 

[76] . Mostly devices have two arms, similar to those of the goniometer, which are attached to the proximal 

and distal segments of the joint being measured. A potentiometer is connected to the two arms. Changes in 

joint position cause the resistance in the potentiometer to vary. The resulting change in voltage indicate the 

amount of joint motion. 

2.2.4 Radiography and Photography 

For many years, radiographs were the gold standard used to verify the range of motion measurements 

of various joints made with goniometers and inclinometers. Nevertheless, since radiographs were produced 

by x-ray imaging, they had the major drawback of exposing the subject to radiation. Another problem was 

the processing time of the film  [76]. On the other hand, photography has been another method for 

measuring joint ROM and has been reported to have excellent reliability. However, this method was 

considered to be more time-consuming and costly than the use of goniometry and therefore has not been 

used as much in recent years [76]. 

2.3 Types of human grip 

The manipulative abilities of the human hand are divided in two general classes: prehensile and non-

prehensile movements. The prehensile movements are defined as the movements where the hand grasped 

objects using only the fingers or the fingers and the palm. In contrast, non-prehensile movements include 

pushing or lifting movements of the whole hand or the fingers [79]. The most commonly classification of 

prehensile movements have been divided into two grips: Power grip and Precision grip.  

2.3.1 Power Grip 

The power grip is used when an object needs to be held strongly in order to apply force and is executed 

between the fingers and the palm of the hand. In addition, the fingers flex more, with flexion at all three 

finger joints, the MCP, PIP, and DIP ant the Thumb acting as a buttress[73]. Therefore, a Power grip require 
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maximum force and uses the extrinsic muscles. According to Aielle  & Dean Power grip can be subdivided 

into spherical grip, cylindrical grip and disc grip [79]. 

2.3.2 Precision Grip 

On the other hand, the precision grip is used in order to make fine movements [80]. Therefore, the 

intrinsic muscles are involved and the major flexion occurs at the PIP and DIP joints. The precision grip is 

performed between the terminal pads of the thumb and the pads of one or more of the remaining fingers[79]. 

According to Aielle & Dean precision grip can be subdivided into three-jaw chuck, pinch grip and pad-to-

side grip [79]. 

2.4 Hand force measurement methods 

According to Ruth Litchfield, Iowa State University, “Grip strength is a measure of muscular strength 

or the maximum force/tension generated by one’s forearm muscles”. There are several instruments for the 

measurement of both static and dynamic grip forces. However, most of them are used during static tests.  

2.4.1 Dynamometer 

A hand dynamometer is the most commonly evaluation tool used to measure isometric grip force (hand 

grip strength). Grip strength measurement devices fall into four basic categories: hydraulic, pneumatic, 

mechanical and strain gauges [81]. The Hydraulic Hand Dynamometer most widely used for professional 

clinical and recommended to measure grip strength is the he Jamar dynamometer (Asimow Engineering, 

Santa Fe Springs, CA, USA)[82]. The Jamar dynamometer can be used to measure isometric force and peak 

strength with five adjustable positions. Hydraulic instruments record the gripping force in kilograms or 

pounds of force. The Pneumatic Hand Dynamometer is based in the compression of an air-filled bulb or 

bag to determine grip strength [82]. They are commonly used with clients who have painful hands or fragile 

skin because they are softer and more comfortable to grasp [81]. In addition, pneumatic hand-held 

dynamometers are suitable for quick measurement of grip force in comparative studies. Pneumatic hand 

dynamometer readings are measured in pounds per square inch (PSI). The Mechanical Hand Dynamometer 

record grip strength based on the amount of tension produced in a steel spring [82]. Mechanical instruments 

record the gripping force measured in kilograms or pounds of force. They include the Harpenden(R) 

dynamometer and the Jamar mechanical dynamometer. The strain-gauge Hand Dynamometer can be used 

to measure grip strength, pinch strength, and to perform muscle fatigue studies. The use of strain gauges is 

widely, since mechanical methods of strain measurement are not very reliable. The basic principle of a 

strain gauge sensor is based on the transformation of the applied force into an electrical signal due to elastic 

strain. Strain gauges commonly measure grip strength in Newtons of force [82]. 
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CHAPTER 3 

Human Hand Motion System 

 

 

3.1 Overview 

The design of the Hand motion system is described in this Chapter. Firstly, we present the system 

overview diagram. Secondly, we present the CyberGlove II calibration protocol based in a previous study 

[26]. Thirdly, we show the development of the device for fingertip force measurement, where the following 

stages were carried out: component selection, signal conditioning, signal filtering, calibration, and circuit 

design. Finally, the design of the graphical user interface (GUI) in the Unity software is presented. In this 

GUI, the acquisition of data from the sensors as well as the simulation of a model of the hand were carried 

out. 

3.2 Introduction 

The system is composed of a data glove CyberGlove II®, Force Sensing Module, and a Graphical User 

Interface (GUI) developed in Unity® software; the hand motion system diagram is shown in Figure 3.1. 

The force sensing module allows measuring individual finger forces and contact points when grasping 

objects. At the same time, the data glove measures the range of motion of the finger joints. Thus, integrating 

a force sensing module and a data glove provides a novel hand motion system to assess hand function 

during the performance of the ARAT activities.  

 

Figure 3.1. Diagram of the Hand motion system. 
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3.3 Data Glove 

The data glove used in this thesis is the CyberGlove II® which provides up to 22 high-accuracy joint 

angle measurements in real-time (see Figure 3.2). The glove has 18 resistive flex sensors and 8-bit digital 

signal output; the sensor has a resolution: <1 degree and sensor repeatability: 3 degrees [83]. 

 

Figure 3.2. A subject wearing the CyberGlove II. 

3.3.1 Calibration 

A previously calibrated protocol to convert raw data obtained from the CyberGlove II® in finger joints 

angles was used in this study [26]. The protocol is based on a 25 degrees of freedom (DOF) model [84]. 

The hand model of 25 DOF is shown in the Figure 3.3. 

 

Figure 3.3. Dorsal view of the model of the right hand with 25 degrees of freedom proposed by Peña-Pitarch et al. 

[84]; q value represents a degree of freedom. 
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The procedure to pass the readings of the 18 sensors of the glove to the 25 DOF model is based on 

linear interpolation, and it’s the same for each joint. Since there are DOF that depend on the readings of 

one or more sensors, the maximum and minimum reading of each sensor and the range of motion (ROM) 

of each hand joint are considered to obtain each calibration equation [26]. The eleven sensors used in this 

Thesis are shown in Figure 3.4. 

Consequently, to demonstrate the procedure of calibration used, the Index metacarpophalangeal joint 

(MCP) of the right hand was used as one example. For other fingers joints, the procedure was similar. The 

sensor (x5) of the CyberGlove II® corresponds to the motion (Extension/ Flexion) of this joint. In addition, 

the range of motion (ROM) of the index MCP is Extension (0°) and Flexion (80°) according Tubiana et al. 

[85]. Therefore, when the index MCP joint is in extension (0°) the value of the sensor (x4) was 105 and in 

flexion (80°) the value was 135°. Finally, the equation of the Index MCP is as follows. 

𝐼𝑛𝑑𝑒𝑥𝑀𝐶𝑃 =  
8

3
∙  (𝑥4  −  105) 

 

Figure 3.4. Numbering of the sensors used (CyberGlove II®) 

The eleven finger joints angles assessed in this thesis were: Thumb carpometacarpal (CMC) joint, 

Thumb, Index, Middle, Ring, and Little metacarpophalangeal (MCP) joints, Thumb interphalangeal (IP) 

joint, and Index, Middle, Ring, and Little proximal interphalangeal (PIP) joints. The calibration equations 

for each finger joint are shown in the Table 3.1. In this thesis we don’t include the Abduction and Adduction 

(Ab/Ad) motion of the finger joints since multiple sensor were involved in the motion of each joint. 

Therefore, the finger joints angles of Ab/Ad with this calibration method could be variable and unreliable. 
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In addition, in a previous study of Tico-Falguera with stroke patients, no significative improvements were 

found in the joints angles of Ab/Ad after six months of rehabilitation [25]. 

Table 3.1 Calibration equations for finger joints. 

Finger Joint Calibration equation 

Thumb 

CMC 𝑇ℎ𝑢𝑚𝑏𝐶𝑀𝐶 =  
1

2
∙  (𝑥1  −  60)  − 25 

MCP 𝑇ℎ𝑢𝑚𝑏𝑀𝐶𝑃 =  
65

35
∙  (𝑥2  −  105) − 10 

IP 𝑇ℎ𝑢𝑚𝑏𝐼𝑃 =  
95

10
∙  (𝑥3  −  65) − 15 

Index 

MCP 𝐼𝑛𝑑𝑒𝑥𝑀𝐶𝑃 =  
80

13
∙  (𝑥4  −  120) 

PIP 𝐼𝑛𝑑𝑒𝑥𝑃𝐼𝑃 =  
10

14
∙  (𝑥5  −  36) 

Middle 

MCP 𝑀𝑖𝑑𝑑𝑙𝑒𝑀𝐶𝑃 =  0.90 ∙  (𝑥6  −  58) 

PIP 𝑀𝑖𝑑𝑑𝑙𝑒𝑃𝐼𝑃 =  
100

115
∙  (𝑥7  −  45) 

Ring 

MCP 𝑅𝑖𝑛𝑔𝑀𝐶𝑃 =  
8

9
∙  (𝑥8  −  53) 

PIP 𝑅𝑖𝑛𝑔𝑃𝐼𝑃 =  
10

13
∙  (𝑥9  −  15) 

Little 

MCP 𝐿𝑖𝑡𝑡𝑙𝑒𝑀𝐶𝑃 =  
8

11
∙  (𝑥10  −  85) 

PIP 𝐿𝑖𝑡𝑡𝑙𝑒𝑃𝐼𝑃 =  
10

14
∙  (𝑥11  −  45) 

Note. Adapted from Peña-Pitarch et al. [26]. CMC= carpometacarpal; MCP = metacarpophalangeal; IP = interphalangeal; PIP = 
proximal interphalangeal.  

Finally, the raw data from the CyberGlove II® was transmitted to a PC via Bluetooth connection. To 

read and record the data, a graphic user interface (GUI) was developed in Unity® software. The GUI 

description is explained in detail below.  

3.4 Force sensing module 

3.4.1 Force Sensors 

The Force Sensing Resistors (FSR) are a polymer thick film (PTF) devices that show a decrease in 

resistance to an increase of force applied to the active surface. The FSR sensors allow measuring static and 

dynamic forces [86]. In recent years, FSR sensors have been used in robotics and biomechanics 
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applications. Currently, there are several manufacturers of this type of sensor with very similar designs and 

operating principles. Their main advantages are the wide variety of shapes and sizes, the low cost per unit, 

the portability, their use in human touch applications (forces less than 10Kg), and their easy integration 

(thicknesses less than 1.25mm) [87] [88]. The FSR sensor consists of two membranes separated by a thin 

air gap. The air gap is maintained by an adhesive spacer and due to the stiffness of the two membranes. 

One of the membranes has two sets of electrically isolated interdigitated tracks and each set is connected 

to an output terminal. The other membrane is coated with FSR carbon-based ink. When the sensor is 

pressed, the FSR ink short-circuits the two traces and the resistance value depends on the applied force 

[86]. The schematic diagram of the FSR sensor and its components are shown in Figure 3.5. 

 

Figure 3.5. Basic schematic of the force sensing resistor (FSR). 

Ohmite (Manufacturing Company, USA) has designed different FSR sensors. The sensors comprising 

the FSR-Series family are shown in Figure 3.6. The sensors have similar characteristics, which will be 

discussed below but are mainly characterized by being optimized for human-machine interface (HMI) or 

machine-machine interface (MMI) applications, such as medical, industrial, and robotic applications. 

However, their shape and size vary, so the most suitable sensor for the required application can be chosen.  

 

Figure 3.6. The Force sensing resistors family of Ohmite (Manufacturing Company, USA). 
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The thesis objective was to measure the force applied to the fingertip. The model FSR03 had a larger 

active area but was too large for the fingertips. On the other hand, model FSR04 had too small an active 

area. Therefore, the sensor chosen due to its characteristics and size was the model FSR 07 Ohmite. The 

FSR 07 has the following characteristics: an active area of 14.7 mm, a thickness of 0.375 mm (Inc. 0.05mm 

adhesive), and a sensor overall length of 56.34 mm and overall width of 18.0 mm as shown in Figure 3.7.   

 

Figure 3.7. Force Sensing Resistor FSR07. 

The resistance of an FSR sensor, when there is no pressure applied and the circuit is open, has a value 

greater than 10MΩ. The response curve of the FSR sensors given by the manufacturers is shown in Figure 

3.8. At the curve's start, there is a zone known as the Actuation Force, where there is an abrupt change in 

resistance and where the sensor's impedance does not show a potential response to the force. The force is 

influenced by several factors such as the surface, the thickness and the flexibility of the coating, the shape 

and size of the object acting on the sensor and the space between the conductive elements [86]. Then, the 

behavior of the response curve is similar to a potential function in which the resistance follows a linear 

relationship with the force on a logarithmic scale. Therefore, this section is useful for force measurement. 

Finally, it should be noted that there is a saturation zone where the sensor's resistance has reached its limit 

and can no longer decrease [89]. On the other hand, Figure 3.9 shows the plot of the conductance vs. force 

(the inverse of resistance: 1/r). This last plot allows the interpretation of force on a linear scale. 

 

Figure 3.8. Curve of Resistance vs Force. 
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Figure 3.9. Curve of Conductance vs Force. 

3.4.2 Signal conditioning  

A signal conditioning circuit was designed to provide a variable voltage according to the force exerted 

on the sensor. The FSR is a resistive sensor and there are several circuits for resistive sensors to convert 

this signal to voltage. The most common conditioning methods are: 

▪ The voltage divider. 

▪ The Wheatstone bridge. 

▪ Amplifier circuits. 

Voltage Divider  

The voltage divider circuit is the simplest and most commonly used circuit for FSRs. In fact, the 

manufacturers propose a voltage divider as a conversion circuit. The circuit is shown in the Figure 3.10. 

 

Figure 3.10. Circuit of a voltage divider for a force sensing resistor (FSR). 
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The voltage divider uses two resistors; the FSR resistor (which is variable and depends on the force 

applied) and the bottom RM resistor, which is a measuring resistor. The RM resistor is chosen to maximize 

the desired force sensitivity range and to limit current. In this configuration, the output voltage (VOUT) 

increases as the applied pressure increases until a value is reached where the voltage no longer grows and 

becomes constant [86], [89]. The equation (1) describes the output of the voltage divider, while the Figure 

3.11 shows the characteristic curves for a standard Interlink FSR sensor with different RM resistor values. 

𝑉𝑜𝑢𝑡 =
𝑅𝑀

𝑅𝑀 + 𝑅𝐹𝑆𝑅
∙ 𝑉+ 

 

Figure 3.11. Characteristic curves for a FSR Voltage Divider with different RG resistor values. 

Inverting operational amplifier  

Another alternative was to use an inverting operational amplifier (op-amp) circuit. In this circuit, the 

output voltage is inverse to the reference voltage (VREF) in polarity and inversely proportional to the FSR 

value RFSR. Therefore, the output voltage (VOUT) will be inversely proportional to the pressure. The circuit 

diagram is shown in Figure 3.12. In this configuration, when there is no pressure, the circuit will have an 

output voltage of zero due to the high impedance of the resistor RFSR [86], [89]. However, the output voltage 

will increase as pressure is applied, in major or minor proportion, depending on the value of 𝑅𝐺 chosen. 

The equation (2) describes the output of this amplifier, while the Figure 3.13 shows the characteristic curves 

for a standard Interlink FSR sensor with different RG resistor values for an input voltage of -5V. 

𝑉𝑜𝑢𝑡 =  −
𝑅𝐺

𝑅𝐹𝑆𝑅
 ∙  𝑉𝑅𝐸𝐹 
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Figure 3.12. Inverting operational amplifier circuit diagram for an FSR. 

 

Figure 3.13. Characteristic curves for a FSR Inverting Operational Amplifier with different RG resistor values. 

Selection of the components for signal conditioning 

The objective of this thesis is to measure the fingertip forces when grasping different objects while 

performing various activities. Therefore, the sensors presented a wide range of pressures for each finger in 

each test. The equations of the voltage divider and the inverting op-amp circuits showed a linear behavior, 

as was observed previously. This linearity was seen in the voltage divider at low-pressure values, while it 

became more constant at higher values. In contrast, the inverter always presented a linear behavior between 

the output voltage and pressure. Therefore, the best alternative for our objective was the inverting op-amp 

since using the voltage divider for high pressures would not be reliable. In addition, the linearity of the 

inverting op-amp allowed us to operate in a smaller range and extrapolate to higher values. 

The inverting op-amp circuit was integrated by a Fixed Regulator, an Operational amplifier (op-amp) 

and a Resistor. The selected op-amp was the LM324 model based on its characteristics. The advantages of 
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the LM324 are its low cost and it does not require a large voltage power. The LM324 needs two voltage 

sources, one negative and one positive. However, the op-amp has a voltage swing of 0v ± 1.5v. Therefore, 

a fixed 7806CT regulator was used for feed the op-amp with 6v and have an output close to 5v. For the 

FSR sensor, a -5v power supply was used, so we used a 7905CT regulator. Next, the adequate resistor value 

for the circuit was chosen based on the following considerations. An Arduino board processes the data from 

the FSR sensors. The microcontroller inputs allow an input power of 5 v, so if it had a higher output voltage, 

it would saturate and would not be useful. In addition, the maximum finger force applied to the FSR sensor 

was measured with a voltmeter and the RFSR value reached was 100 ohms. Therefore, we decided to use a 

resistor value close to that value to provide an output near to 5 volts. For these reasons, a commercial 

resistor value (RG) of 150 ohms was chosen. It is important to mention that since the inverse op-amp only 

has four inputs, it would be necessary to use two LM324 amplifiers for the five sensors required.  

3.4.3 Signal filtering 

In this section, a low pass filter was designed to eliminate high-frequency noise. We decided to use a 

filter before the analog to digital conversion to limit high frequencies and prevent aliasing. Therefore, a 

first-order active low pass filter was selected; this filter permits only the low frequencies and attenuates the 

high frequencies. The filter is composed of an active element which is the operational amplifier (Op-amp), 

and is first order because it contains only one reactive element (a capacitor). The passband begins from 0Hz 

and continues at -3dB to the designated cut-off point. In addition, the active filter is simple, low cost, and 

practical. We considered that a cut-off frequency (fc) of 60 Hz was adequate to reduce the signal noise 

caused by the electronic circuit. Therefore, it was necessary to calculate the value of the capacitor using the 

design equation shown below. 

𝐶 =
1

2𝜋𝑓𝑐 𝑅𝑓
 

Where: C = Capacitor value; fc = cut-off frequency; Rf= resistor value  

Finally, taking into consideration that the value of Rf = 150 ohms and fc=60Hz; the obtained value of 

the capacitor was 17.69 μF. However, the value obtained is not commercial, so we used the closest value 

which was 22 μF. The circuit diagram of the force sensing device is shown in Figure 3.14. 
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Figure 3.14. Circuit diagram of the force sensing module; configuration for a single FSR is shown.  

The five FSR sensors were calibrated under static conditions before application to reduce inaccuracies. 

Calibrated weights were statically placed over each sensor to obtain a graph with the relation between the 

force applied and the output voltage, thus obtaining the equations of the calibration curve. During the whole 

test, the output voltage was measured. For this purpose, we used the Arduino board and the data was stored 

in a .xlsx file using the PLX DAQ application. The analog-to-digital conversion is explained in more detail 

below. Similar procedures to calibrate FSRs have been proposed in several studies [49], [87], [90].  

The calibration curve of one FSR sensor is shown in Figure 3.15. Generally, a coefficient of correlation 

R2 ≥ 0.990 is considered acceptable. Therefore, the coefficients of the equations show that the output 

voltage is proportional to the applied force and equivalent to that exerted by the calibrated weights. In 

addition, this equation allows the possibility of extrapolating the results to higher pressures if necessary. 

The calibration equations for the five FSRs are shown below. 

𝑆𝑒𝑛𝑠𝑜𝑟 1 =  3.6915𝓍 −  0.2895      ℛ2 = 0.994 

𝑆𝑒𝑛𝑠𝑜𝑟 2 =  3.6497𝓍 − 0.3745       ℛ2 = 0.991 

𝑆𝑒𝑛𝑠𝑜𝑟 3 =  3.7318𝓍 −  0.6047       ℛ2 = 0.992 

𝑆𝑒𝑛𝑠𝑜𝑟 4 =  3.7741𝓍 −  0.6082      ℛ2 = 0.994 

𝑆𝑒𝑛𝑠𝑜𝑟 5 =  3.7543𝓍 −  0.3652       ℛ2 = 0.990 
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Figure 3.15. Calibration curve of a single FSR.  

3.4.4 Data Acquisition 

Once we conditioned the force sensor signal, we proceeded to the data acquisition phase to digitally 

process and visualize the fingertip force and the hand kinematics data on the PC. The data acquisition 

system was implemented in Arduino and Unity®. The board selected was the Arduino Nano shown in 

Figure 3.16. This board was selected due to its small size and the following characteristics: 

▪ Microcontroller: ATmega328  

▪ Analog Input Pins: 8 (A0 – A7) 

▪ PCB Size: 18 x 45 mm 

▪ Weight: 7 grams. 

▪ Input Voltage: 7 – 12v 

▪ Analog to digital converter (ADC): 10 bits 

▪ Frequency (Clock Speed): 16 MHz 
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Figure 3.16. Schematic circuit of the Arduino Nano.  

The software used for the Arduino boards is the Arduino IDE (Integrated Development Environment), 

a free software used as a programming platform. In addition, Arduino code is written in C++ with an 

addition of special methods and functions so it is easy to use.  

The process to perform the analog conversion to force values after obtaining the calibration equations 

is as follows. First, the output terminals of the inverting op-amp were connected to the analogic inputs of 

the Arduino Nano to convert raw data into force. Next, we program an Arduino sketch to read the analog 

inputs voltages corresponding to the amount of pressure on each sensor and converted into digital voltage. 

Then, the digital voltage was transformed into a force using the linear equations derived during the 

calibration process for each sensor. Finally, the force data from Arduino were transmitted via wireless to 

the Graphical User Interface (GUI); for this purpose, we used the HC-05 module Bluetooth SPP (Serial 

Port Protocol) because of its compatibility and size. The HC-05 module has six pins and can easily be 

interfaced with the Arduino Nano board; the logic voltage level of the data pin is 3.3 V to 5 V [91]. The 

Arduino Nano and HC-05 module were powered by 9 volts Li-Ion battery.  

3.4.5 Graphical User Interface 

A user-friendly Graphical User Interface (GUI) was developed using the software Unity® version 

2020.2.2f1.Unity® is a game-development environment used to create games and applications [92]. We 

chose Unity software because of the following features: high-quality 2d and 3d graphics, based on object-

oriented programming, compatible with various platforms, and the integrated development editor supports 

JavaScript and C# for scripting. In addition, Unity is compatible with Augmented reality (AR) and Virtual 

reality (VR) applications so we will seek to migrate the hand motion system to these technologies in future 
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work. We decided to make a simple and intuitive interface design that anyone could handle without any 

problem. Three scenes were designed for the GUI.  

The first scene shown in Figure 3.17 contains the main menu with the basic information of patients 

(Id, name, gender, age, hand length (HL), hand breadth (HB). The data was subsequently stored in the next 

scene. When the button START is clicked, the following scene is accessed. 

 

Figure 3.17. Main menu scene of the Graphical User Interface (GUI).  

The second scene was dedicated to the ARAT menu and is shown in Figure 3.18. This is the main 

scene for the assessment of each patient with the ARAT. In this scene, the information from the sensors is 

displayed and recorded during the performance of each of the ARAT tests. A script was written in C# using 

JetBrains Rider 2019.2.3 and attached to the ARAT scene for reading raw data from the CyberGlove II® 

and converted in the angles of the finger joints based in the calibration equations obtained previously. 

Another script was created using an Arduino Bluetooth Plugin to connect the Arduino board and obtain the 

force data of each fingertip. Sensor information is displayed in real-time at the top of the screen. In addition, 

the user can time and score each task. Data obtained from the sensors in each activity were recorded at a 

rate of 50 Hz into a Comma-Separated Values (CSV) file. The third scene dedicated to the simulation of 

the hand is explained below. 

 



 

30 

 

 

Figure 3.18. ARAT menu scene of the Graphical User Interface; (1) Buttons to select each subtest; (2) Description of 

the Test; (3) Buttons to record each test with timer; (4) Sensors information in real-time (angle finger joints and 

forces); (5) Dropdown list to score each test. 

3.4.6 Digital Filter  

The Butterworth filters are one of the most commonly used digital filters in biomechanics for human 

motion analysis [93][94][10]. In addition, this type of digital filter is fast and simple to use. In 1974, Winter 

et al. used an analogue TV camera to record motion in the sagittal plane and proposed to filter data with a 

second-order low-pass Butterworth filter with a cutoff frequency (fc) of 6 Hz with zero-lag. The zero-lag 

(or zero-phase) involves applied the filter two times to the signal, obtaining a frequency response of 4th 

order. In addition, the results of  Winter et al. showed that the cut-off at the 7th harmonic reduces the high 

frequency noise of the data [95][96]. Similar results were presented in [97]. In human hand motion analysis 

several studies have been used a second order zero-lag Butterworth low-pass filter with a fixed fc = 5 Hz 

[98][99][100][101]. Therefore, Data recorded from the CyberGlove II® and the Force sensor FSRs were 

filtered with a 5-Hz lowpass second-order Butterworth filter in MATLAB® software for statistical analysis. 

The gain and the normalized response of the Butterworth filter for different orders are given in Figure 3.19. 

  

Figure 3.19. Butterworth filter gain at distinct orders. 
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3.5 Hand Model and Simulation 

The following section describes the process performed for the creation of the hand model, and the 

simulation in Unity.  

3.5.1 Hand model 

We made the model of the hand from the design of each of the finger bones, using Blender v2.80 

software. Blender is a cross-platform computer software, especially dedicated to modeling, rendering, 

animation and the creation of three-dimensional graphics. In addition, Blender has the following features: 

is an open-source software, is compatible with Unity, and include the FBX and OBJ formats. In order to 

create a realistic hand model of the hand we used parametric lengths. Therefore, the parameters hand length 

(HL) and hand breath (HB) were used to determine the bone lengths (see Figure 3.20). The equations for 

determine the parametric lengths of each finger bone were based on the work of [102]. The equations for 

calculating the lengths of the metacarpal bones and the phalangeal bones of the fingers are shown in Table 

3.2. In other hand, the Figure 3.21 shows the dimensions used in the equations for the fingers (Index, 

Middle, Ring, Little, while Figure 3.22 shows the dimension used for the thumb.  

 

Figure 3.20. Parametric length for a hand; HL= Hand length (measured from the tip of the longest finger to the crease 

under the palm); HB= Hand breadth (measured across the widest area where the fingers join the palm). Adapted from 

Peña-Pitarch et al. [102]. 
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Figure 3.21. Parametric length for a finger; fingers(i) II=Index, III=Middle; IV=Ring; V= Little. Adapted from 

Peña-Pitarch et al. [102]. 

 

Figure 3.22. Parametric length for the Thumb. Adapted from Peña-Pitarch et al. [102].  

Table 3.2. Formulas for determining metacarpal and phalangeal bone lengths  

Finger Metacarpal (Ɩ1)  Proximal (Ɩ2) Middle (Ɩ3) Distal (Ɩ4) 

Thumb 0.251 ∗ 𝐻𝐿 0.196 ∗ 𝐻𝐿 ---- 0.158 ∗ 𝐻𝐿 

Index √(0.374 ∗ 𝐻𝐿)2 + (0.126 ∗ 𝐻𝐵)2 0.265 ∗ 𝐻𝐿 0.143 ∗ 𝐻𝐿 0.097 ∗ 𝐻𝐿 

Middle 0.373 ∗ 𝐻𝐿 0.277 ∗ 𝐻𝐿 0.170 ∗ 𝐻𝐿 0.108 ∗ 𝐻𝐿 

Ring √(0.336 ∗ 𝐻𝐿)2 + (0.077 ∗ 𝐻𝐵)2 0.259 ∗ 𝐻𝐿 0.165 ∗ 𝐻𝐿 0.107 ∗ 𝐻𝐿 

Little √(0.295 ∗ 𝐻𝐿)2 + (0.179 ∗ 𝐻𝐵)2 0.206 ∗ 𝐻𝐿 0.117 ∗ 𝐻𝐿 0.093 ∗ 𝐻𝐿 

Note. Adapted from Buchcholz et al. [77] and Sancho-Bru [78]. HL= Hand length; HB= Hand breadth 

According to the National Aeronautics and Space Administration (NASA), the average hand sizes of 

biological adult males are 7.6 in for HL and 3.5 in for HB and for females are 6.8 in for HL and 3.1 in for 

HB [103]. We used the average hand size of males and females for the hand model. Therefore, we used 

19.5 cm for Hand length and 8.5 cm for Hand breadth to calculate the parameters of each finger bone. The 

Table 3.3 shown the parametric lengths calculated for each finger bone.  
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Table 3.3. Lengths for the metacarpal and phalangeal bones of the hand model 

Finger Metacarpal (Ɩ1) Proximal (Ɩ2) Middle (Ɩ3) Distal (Ɩ4) 

Thumb 4.89 cm 3.82 cm — 3.08 cm 

Index 7.37 cm 5.17 cm 2.79 cm 1.89 cm 

Middle 7.27 cm 5.40 cm 3.32 cm 2.11 cm 

Ring 6.58 cm 5.05 cm 3.22 cm 2.09 cm 

Little 5.95 cm 4.02 cm 2.28 cm 1.81 cm 

cm=centimeters 

For the design of the hand bones in Blender, first the hand armature was created. An armature in 

Blender is similar to a human skeleton, and can consist in several bones. The bones are associated with 

each other to have movement and deform similarly to the human hand. During this stage the parametric 

measurements of each bone were not taken into consideration. However, is important to use the correct 

hand bones structure [104]. Next, the bones length was adjusted with the parametric measurements obtained 

previously shown in table. The bones can be rotated around the X, Y and Z axes, so the rotation of each 

bone was limited according to the corresponding range of motion. In addition, the axes of rotation were 

constrained according to the type of motion that each finger joint can perform (extension/flexion and 

abduction/adduction) with the objective of having a more accurate simulation. Finally, the armature was 

attached to a hand mesh; this process is known as rigging [105]. Therefore, we can realistically control and 

move the hand mesh without seeing the armature. It is important to mention that each bone has an identifier 

that allows it to move independently according to the sensor values during the simulation. The hand model 

(see Fig 3.23) was exported and saved as a .fbx file for further simulation in Unity. 

 

Figure 3.23. Hand model created in Blender with parametric lengths. 
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3.5.2 Simulation 

The third scene was dedicated to the hand simulation. First, the Hand model was imported to Unity for 

perform the hand simulation in real-time. We used the same script developed for the ARAT menu scene, 

where we acquire the CyberGlove II® data and convert them into angles with the calibration equations. 

The fundamental objects in Unity are called GameObjects. In this case, the object is the armature of the 

hand, and to access each bone, we need a Unity function. For this, we use the function 

Gameobject.transform.Find  for each bone and we assign the value to a variable [92].  

Then, we assign the rotation angles obtained with the CyberGlove II®  to each variable using the function 

transform.localEulerAngles [92]. The previous function is used to set de rotation of a game object relative 

to the parent transform's rotation, in this case the parent is the previous bone. Therefore, at the time of each 

ARAT test the hand movement is simulated in this scene. Importantly, to access this scene the ARAT scene 

button must be pressed and scenes can be alternated without stopping the assessment process since this 

scene works as a secondary display. The model of the hand in the Unity scene is shown in the Figure 3.24. 

 

 

Figure 3.24. Hand model in the Unity Scene. 

3.6. Conclusions 

In this chapter, we present the calibration protocol used in the CyberGlove II®. In addition, a force 

sensing module based on five force sensing resistors (FSR) was developed using an inverting operational 

amplifier. The calibration process was performed on each sensor and showed an output voltage linearly 

proportional to the exerted pressure. In addition, we developed a user-friendly graphical user interface 

(GUI) that allows real-time monitoring of the sensor data and its storage in a CSV file for further analysis. 

Finally, we developed a hand model with parametric lengths with 25 degrees of freedom, which provides a 

realistic simulation of the hand in the GUI. 
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CHAPTER 4 

Hand Motion Analysis in Healthy Subjects 
during the performance of the Action 

Research Arm Test 

 

 

4.1. Overview 

In this chapter, we conducted a study with 25 healthy subjects (age 40.2 ± 18 years) to measure the 

flexion angle of the finger joints and fingertip forces during the performance of three subtests (Grasp, Grip, 

and Pinch) of the ARAT using the hand motion system described in Chapter 3. The joints evaluated in this 

study were the proximal interphalangeal (PIP), and metacarpophalangeal (MCP) joints of the (index, 

middle, ring and little fingers) and the interphalangeal (IP), carpometacarpal (CMC) and MCP joints of the 

thumb. The results showed that the mean flexion angles of the finger joints required to perform the 16 

ARAT activities were Thumb (CMC 28.56°, MCP 26.84°, and IP 13.23°), Index (MCP 46.18° and PIP 

38.89°), Middle (MCP 47.5° and PIP 42.62°), Ring (MCP 44.09° and PIP 39.22°), and Little (MCP 31.50° 

and PIP 22.10°). The averaged fingertip force exerted in the Grasp Subtest was 8.2 N, in Grip subtest 6.61 

N and Pinch subtest 3.89 N. These results suggest that the integration of multiple sensors during the 

performance of the ARAT has clinical relevance, allowing therapists and other health professionals to 

perform a more sensitive, objective, and quantitative assessment of the hand function. 

Importantly, this chapter is a slightly modified version of the article [106] published at the MDPI 

Sensors journal in the topic Human Movement Analysis. The article was published under a Creative 

Commons Attribution 4.0 International License (CC BY 4.0). This permits the copying, distribution, adap-

tation, and remixing of the work provided the work is appropriately cited. See https://crea-

tivecommons.org/licenses/by/4.0/ to view a copy of the CC BY 4.0 license. 

4.2. Introduction 

The human hand is one of the most complex and fascinating structures in the human body consisting 

of 27 bones, including eight carpal bones, five metacarpals, and 14 phalanges, making it difficult to study 

[107]. Human hand function allows object manipulation and physical interaction with the environment. 

Deficits in hand function severely affect their quality of life by preventing them from performing activities 

of daily living (ADLs). Stroke is the number one cause of severe adult disability in the U.S. and worldwide 

[108], [109]. One of the main sequels after a stroke is the loss of mobility in the upper extremities, often 

affecting hand dexterity. Therefore, the rehabilitation process for hand recovery is vital to post-stroke 
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patients. The rehabilitation process is traditionally carried out by a physical therapist specializing in treating 

disabilities related to motor and sensory impairments [4]; hand therapy helps to improve strength and 

increase the range of motion (ROM) extension/flexion. Therefore, to evaluate and improve the efficacy of 

rehabilitation programs, it is crucial to measure upper limb function with standardized outcome measures 

(OMs). The use of OMs in physical therapy can lead to more efficient rehabilitation programs for the 

patients and more significant insights into the clinical condition [5], [6]. Hence, the selection of OMs with 

good psychometric properties is highly recommended. One of the most commonly OMs used by physical 

therapists and other health care professionals to assess the performance of the upper extremities in people 

who have suffered a stroke is The Action Research Arm Test (ARAT). The ARAT is a standardized and 

validated test that consists of 19 movement tasks divided into four subtests (grasp, grip, pinch, and gross 

arm movement). The ARAT has demonstrated excellent reliability, and it’s a relatively short and simple 

measure of upper limb function, and testing can be completed quickly on higher functioning patients [110]. 

ARAT, like most other tests, requires a human examiner to transform observations of a patient’s movement 

into a score; reliance on a human examiner leaves room for subjective measures, particularly in scoring, 

especially patterns of motor test abnormality that emerge after stroke [7]. In the last years, due to 

technological development, several investigations have been developed in medical rehabilitation, such as 

using multiple types of sensors to analyze human hand motion. Sensors for hand motion analysis most 

commonly used are Data glove, Inertial measurement unit (IMU), Optical markers, vision-based capturing 

(Ordinary Cameras, Depth Cameras, Leap Motion Controller), electromyography sensor (EMG)-based 

capturing, and Force sensors (Capacitive, Piezoresistive, Piezoelectric) [14]. The Hand motion data 

obtained from these sensors allow us to know: hand position, finger joint angles, force detection, and 

angular velocity in real-time. Assessment and analysis of upper extremities in post-stroke patients using 

diverse types of sensors can be found in several investigations. Lin et al. [54] proposed a data glove system 

integrated with six-axis inertial measurement unit sensors for evaluating the hand function. A shoe-based 

sensor with force-sensitive resistors (FSRs) to accurately identify postures in people with stroke was 

proposed by Fulk and Sazonov [55]. Ambar et al. [32] designed an arm rehabilitation monitoring device 

utilizing an Arduino-based Microcontroller using a flex sensor to detect arm bending movement, an IMU 

board InvenSens Inc., and two force-sensitive resistors to detect muscle force. Data from a Microsoft Kinect 

sensor (kinematic upper limb) and an FSRs glove (strength of muscles) to predict muscle forces in stroke 

patients through the least square regression matrix were used by Hoda et al. [56]. A data-glove-based system 

embedded with 9-axis IMUs sensors and FSRs for evaluation of hand function was designed by Hsiao et 

al. [44]. Kim et al. [57] proposed a Microsoft Kinect sensor tool during the Fugl-Meyer Assessment (FMA) 

and validated it for hemiplegic stroke patients. Schwarz et al. [12] used a wearable inertial sensing system 

composed of eight IMUs, with triaxial accelerometers and gyroscopes, to assess upper extremity movement 

impairments after stroke. However, to the best of our knowledge, few studies integrate sensors during the 

execution of the ARAT. Carpinella et al. [10] presented an analysis for quantitative assessment of upper 

limb motor function on healthy subjects and persons with Multiple Sclerosis, using a single inertial sensor 
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on the wrist. Nam et al. [11] quantified the Range of Motion (ROM) of the upper extremities during the 

performance of the ARAT and six essential ADL, using 25 Inertial Measurement Unit (IMU) sensors. Ticó 

Falguera [111] published a study to assess the ROM of finger joints and hand simulation using an 

instrumented glove (CyberGlove II®) in post-stroke patients during the first six months of recovery. Held 

et al. [13] designed a study to evaluate rehabilitation progress with a full-body IMU system composed of 

14 IMUs, over four weeks. Repnik et al. [59] presented a study in healthy subjects and patients after stroke 

to quantify upper limb movement, using a wearable system of 7 IMUs for kinematics and electromyography 

(EMG) sensors for muscle activity analysis. Nevertheless, only one research incorporates multiple sensors 

and focuses on hand finger joints, but not on finger forces.  

Multisensory information of human hand motion with wearable sensors during a standardized OMs 

performance as is the ARAT test is an alternative for a more objective, accurate, and quantitative 

measurement method. The purpose of this study is to measure the flexion angle of the finger joints and the 

finger forces during the performance of the three subtests (Grasp, Grip, and Pinch) of the ARAT test in 

healthy subjects. In the next stage of the project, the data obtained will be used for clinical purposes as a 

dataset for machine learning classification algorithms in post-stroke patients. 

4.3 Materials and Methods 

4.3.1. Action Research Arm Test 

The ARAT evaluates 19 tests of arm motor function, both distally and proximally. The tests are 

distributed across four subtests (Grasp, Grip, Pinch, Gross movement), with four to six tasks each. The first 

three subtests assess the patient’s ability to perform functional tasks, including lifting and moving objects 

of various shapes and sizes (e.g., blocks, balls, and marbles) [7], [112]. The last subtest is the gross arm 

movement which assesses the movement of the entire upper limb. The required materials are a chair without 

armrests, a table, a 37-cm high shelf, and specific materials.  

The description of each test and material specifications are shown in Table 4.1. In each subtest, task 

performance is scored on a 4-point scale and ordered hierarchically by difficulty to improve testing 

efficiency. The ARAT is scored from 0 to 3 [112]; A score of 3 is given when the task is performed 

normally, A score of 2 is given when the subject completes the test but takes a long time or have a difficult, 

A score of 1 is given when the subject performs the test partially, A score of 0 is given when the subject 

cannot perform any part of the test [7], [112]. Sometimes the assessment can be complex and subjective, 

based on the examiner's observation and criteria alone. 
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Table 4.1. Materials and test description of the Action Research Arm Test 

Subtest Test Item (size) Description 

Grasp 

1 Block, 10 cm3 

Grasp, lift vertically, place, and 

release the item onto the top of 

the shelf.  

2 Block, 2.5 cm3 

3 Block, 5 cm3 

4 Block, 7.5 cm3 

5 Cricket ball (Diameter, 7cm) 

6 Sharpening stone (10.0 x 2.5 x 1 cm) 

Grip 

7 
Two plastic tumblers (Upper diameter, 7 cm; lower 

diameter, 6 cm; height, 12 cm) 

Pour water from one glass into 

another. 

8 Displace alloy tube (Diameter,2.25cm) 
Displace from one side of the 

table to the other. 

9 Displace alloy tube (Diameter,1 cm) 
Displace from one side of the 

table to the other. 

10 Put washer over bolt (Diameter, 0.5 cm) Put washer over the bolt. 

Pinch 

11 Ball-bearing (Diameter, 6 mm) 
Held the ball-bearing between 

ring and thumb finger. 

12 Marble (Diameter, 1.6 cm) 
Held the marble between index 

and thumb finger. 

13 Ball-bearing (Diameter, 6 mm) 
Held the ball-bearing between 

middle and thumb finger. 

14 Ball-bearing (Diameter, 6 mm) 
Held the ball-bearing between 

index and thumb finger. 

15 Marble (Diameter, 1.6 cm) 
Held the marble between ring 

and thumb finger. 

16 Marble (Diameter, 1.6 cm) 
Held the marble between middle 

and thumb finger. 

4.3.2. Participants 

This study included 25 healthy subjects, 14 women and 11 men, whose descriptive data are shown in 

Table 4.2. The subjects were selected under the criteria of being right-handed, over 18 years old, and not 

having suffered any hand disorders or injury. The study was approved by the Ethics Committee of the 

Polytechnic University of Uruapan (UPU) Michoacán, Mexico. All participants provided written consent 

after being informed of the aims and procedures of the experiments. 

Table 4.2. Descriptive data of the subjects. 

Subject Data 
Descriptive Statistics 

Mean SD Min Max 

Age (years) 40.2 18.1 18.0 72.0 

HL (mm) 176.6 4.4 167.0 184.0 

HB (mm) 75.4 3.8 70.0 84.0 

HL= Hand length (measured from the tip of the longest finger to the crease under the palm); HB= Hand breadth (measured across 

the widest area where the fingers join the palm); Standard Deviation (SD); Minimum (Min); Maximum (Max). 
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4.3.3. Experimental Setup 

The study was performed in the facilities of the UPU. The ARAT equipment for the test performance 

was prepared according to the instructions and measures obtained from the model described by Lyle [31]. 

All subjects received verbal and written descriptions for all procedures before the test. Hand length and 

Hand breadth were measured in each subject with a tape measure. The subjects were equipped with the 

hand motion system in the right hand; five FSRs were attached to the fingertip of the fingers (thumb, index, 

middle, ring, little) with a double-sided tape, the force sensing module was placed at one side of the table. 

Then, a silk glove was placed taking care that the FSRs wires pass through the dorsal part of the hand. Next, 

the CyberGlove II® was put on in the hand, and the connection Bluetooth with the GUI was tested. Finally, 

the subjects performed the 16 tests part of the subtests: Grasp, Grip, and Pinch, the description of each test 

are shown in Table 4.1. Each subject performed the 16 tests three times each (Figure 4.1). The data were 

measured and recorded in a CSV file from the start to the end of each activity. 

 

Figure 4.1. A participant is wearing the hand motion system, performing the Action Research Arm test (ARAT). 

During the beginning of each test, the hand is in a neutral position placed horizontally on the table, so 

we assumed that this would be the maximum extension angle of the finger joints in many tasks and was not 

considered in the analysis. Next, at the time of pre-grasp the object, the angle of flexion increases, but no 

force is exerted. During the grasping event, the maximum flexion angle and maximum force are reached. 

Finally, when the subject releases the object, the force starts to decrease and the hand back to the start 

position (extension). Therefore, the maximum values of the three measurements obtained for each subject 

during each test were averaged. These values were defined as the flexion angle and fingertip force of a 

subject for a given test. Next, the respective flexion angles and force among the 25 participants were 
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averaged. The finger joints evaluated in this study were as follows: MCP and PIP joints of the fingers 

(index, middle, ring, and little) and CMC, MCP, and IP for the thumb.  

On the other hand, the distal interphalangeal (DIP) joint was not considered in the analysis because a 

linear relationship with the proximal PIP joint was assumed, it was considered as 𝐷𝐼𝑃 = 2 3⁄ ∗ 𝑃𝐼𝑃 adopted 

from [32]. However, the information of the DIP joint is in the database. The gross movement subtest is 

excluded in the study because it assesses the entire arm, and the objective of this study is to assess finger 

joints. 

4.3.4. Statistical Analysis 

Statistical analysis was conducted using the Software R 4.1.0 and IBM SPSS Statistics Version 28.0. 

Armonk, NY: IBM Corp. First, the flexion angles of the finger joints were compared among the three 

subtests (Grasp, Grip, and Pinch), an ANOVA Welch’s test for unequal variances was used to determine 

whether the differences between group means were statistically significant. In the Pinch subtest, an 

independent-samples t-test was conducted to compare the flexion angle of the finger joints between similar 

tests using specific fingers but with different objects (ball-bearing, marble). Finally, the mean flexion angles 

during the 16 tests were compared among the finger joints using a Welch’s ANOVA. Subjects’ age and 

hand length (HL) were tested for significant differences with respect to the flexion angles using a Mann–

Whitney U test. Differences in fingertip force between age groups were analyzed using a Mann–Whitney 

U test. A Games–Howell post hoc test was conducted for significant differences with a Bonferroni p-adjust 

correction. The level of significance was set at α = 0.05 for statistical tests. 

4.4. Results 

4.4.1. Finger Joints Flexion Angles 

The flexion angles of the finger joints required to perform each test are shown in Table 4.3. In the 

grasp subtest, maximum flexion angles were found during the performance of Test 2 (index MCP 49.9°, 

middle MCP 50.1°, and ring MCP 39.2°), and Test 6 (thumb CMC 31°, index MCP 52.6°, middle MCP 

49.2°, ring MCP 42.2°, index PIP 40.6°, middle PIP 49.5°, and ring PIP 45.2°). In the grip subtest, 

maximum flexion angles were found in Test 10 (index MCP 58.6°, index PIP 54.7°, middle MCP 57.4°, 

middle PIP 58.6°, ring MCP 63.5°, ring IP 54.3°, little MCP 52.9°, and PIP 33.6°), Test 8 and Test 9 

presented similar flexion angles. In the pinch subtest, flexion angles were similar in the six tests, considering 

that specific fingers were used in each test. 
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Table 4.3. Descriptive statistics of flexion angles required to perform ARAT test. 

Test 

Thumb (deg) Index (deg) Middle (deg) Ring (deg) Little (deg) 

CMC  MCP  IP  MCP  PIP  MCP  PIP  MCP  PIP  MCP  PIP  

Mean 

(SD) 

Mean 

(SD) 

Mean 

(SD) 

Mean 

(SD) 

Mean 

(SD) 

Mean 

(SD) 

Mean 

(SD) 

Mean 

(SD) 

Mean 

(SD) 

Mean 

(SD) 

Mean 

(SD) 

1 15.9 27.6 20.3 36.1 33.2 37 46.5 28.4 45.6 22.3 29.3 
 (6.0) (9.0) (12.0) (9.4) (11.9) (10.3) (6.7) (9.0) (6.4) (6.4) (14.3) 

2 27.3 23.8 9.6 49.9 32 50.1 35.7 39.2 31.6 27.6 19.3 
 (6.5) (8.4) (6.8) (7.6) (9.8) (6.6) (7.7) (7.6) (10.1) (8.2) (12.1) 

3 24.4 22.2 9.9 40.4 34.6 44.4 37.8 36.2 34.9 27.7 19.6 
 (6.4) (9.5) (8.0) (9.4) (9.6) (7.7) (6.5) (5.3) (6.8) (7.5) (12.4) 

4 21.2 23.2 11.3 37.8 36.8 37.6 44.1 32.2 39.9 27.8 22.8 
 (6.6) (9.6) (10.8) (9.5) (12.8) (9.6) (7.2) (8.2) (8.8) (6.0) (13.2) 

5 24.3 22.3 13.1 39.4 34.1 41.4 36.7 36 33.7 34.1 23.5 
 (5.8) (8.3) (10.2) (10) (7.9) (8.9) (5.5) (6.0) (6.1) (8.7) (10.5) 

6 31.0 27.0 15.8 52.6 40.6 49.2 49.5 42.2 45.2 33.3 23.1 

 (4.9) (7.2) (17.9) (9.4) (9.7) (7.5) (10.1) (9.5) (10.8) (11.7) (12.4) 

7 25.7 21.5 15.5 34.1 41.1 35.8 44.5 35.2 36.6 30 20.2 

 (5.4) (8.3) (12.6) (10.1) (9.3) (7.8) (6.7) (9.7) (7.8) (5.0) (11.7) 

8 32.1 29.8 15.2 48.1 49.5 50.5 50.5 50.6 45.6 41.8 23.6 

 (4.9) (8.3) (15.4) (9.2) (10.2) (6.5) (8.6) (12.1) (8.5) (10.4) (12.6) 

9 32.5 30.4 23.1 50.5 54.2 51.3 53.8 53.4 47.6 42.3 23.2 

 (5.5) (8.9) (21.4) (10.3) (11.1) (7.1) (8.8) (12.3) (9.1) (11.2) (13.4) 

10 32.5 32 20.5 58.6 54.7 57.4 58.6 63.5 54.3 52.9 33.6 

 (5.5) (9.2) (20.6) (12.4) (13.8) (12.6) (10.5) (12.1) (11) (12.2) (16.4) 

11 34.4 33.5 9.2 36.9 28.4 44.7 41.6 60.1 43.5 37.5 28.9 

 (6.0) (7.4) (14.9) (12.7) (12.1) (9.7) (10.9) (11.5) (11.2) (8.5) (15.7) 

12 29.3 24.6 12.6 61.1 43.8 44.8 34.9 39.6 28.7 24.0 17.6 

 (5.2) (6.9) (16.8) (8.9) (10.1) (7.1) (10) (8.6) (11.2) (9.9) (11.7) 

13 32 28.7 8.9 45.4 30.9 64.3 44.8 59.5 43 25.7 16.9 

 (5.8) (8.6) (14.2) (11.2) (11.3) (9.2) (11) (9.3) (11.8) (9.1) (11.8) 

14 31.9 27.4 11.0 64.4 52 46.9 34.5 37.2 28 21.4 15.7 

 (4.4) (8.3) (13.5) (9.6) (13.2) (7.0) (8.9) (8.1) (10.5) (7.3) (11.5) 

15 32.3 29.5 8.2 40.1 27.7 44.6 31 54.7 35.0 31.3 20.9 

 (5.4) (7.2) (13.5) (11.5) (9.8) (8.2) (9.1) (8.8) (9.8) (8.7) (12.5) 

16 30.2 25.8 7.4 43.4 28.6 60.1 37.4 47.3 34.1 24.4 15.3 

 (5.2) (7.1) (14.3) (10.2) (9.7) (8.4) (8.7) (8.3) (9.1) (8.5) (10.1) 

Test 1–6 corresponds to grasp subtest, Test 7–10 corresponds to grip subtest, Test 11–16 corresponds to Pinch Subtest. CMC= 

carpometacarpal; MCP = metacarpophalangeal; IP = interphalangeal; PIP = proximal interphalangeal. SD= standard deviation; 

deg= degrees. 

4.4.2. Pinch Subtest t-Test 

An independent-samples t-test showed that flexion angle of the Index PIP in Test 12 (M = 43.8, SD = 10.1) 

was significantly smaller than Test 14 (M = 52, SD = 13.15) conditions; t (48) = −2.46, p = 0.017 see Table 

4.4. The flexion angle of the Middle PIP in Test 13 (M = 44.8, SD = 11) was significantly larger than Test 

16 (M = 37.3, SD = 8.72) conditions; t (48) = 2.64, p = 0.011 see Table 4.5. Lastly, flexion angle of the 

Ring PIP in Test 11 (M = 43.5, SD = 11.1) was significantly larger than Test 15 (M = 34.9, SD = 9.82) 

conditions; t (48) = 2.87, p = 0.006 see Table 4.6. 
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Table 4.4. Independent samples t-test for comparison flexion angles with respect to Test 12 and Test 14. 

Finger Joints 
Levene’s Test  t-Test for Equality of Means 

F Sig. t df p-Value 

Thumb CMC 0.78 0.383 −1.95 48 0.58 

Thumb MCP 1.14 0.291 −1.27 48 0.21 

Thumb IP 0.74 0.394 0.38 48 0.71 

Index MCP 0.13 0.719 −1.26 48 0.21 

Index PIP 0.96 0.333 −2.46 48 0.017 ** 
** p < 0.05, considered statistically significant. 

Table 4.5. Independent samples t-test for comparison flexion angles with respect to Test 13 and Test 16. 

Finger Joints 
Levene’s Test t-Test for Equality of Means 

F Sig. t df p-Value 

Thumb CMC 0.175 0.678 1.135 48 0.26 

Thumb MCP 1.315 0.257 1.319 48 0.19 

Thumb IP 0.08 0.929 0.353 48 0.73 

Middle MCP 0.872 0.355 1.658 48 0.10 

Middle PIP 2.062 0.157 2.647 48 0.011 ** 
** p < 0.05, considered statistically significant. 

Table 4.6. Independent samples t-test for comparison flexion angles with respect to Test 11 and Test 15. 

Finger Joints 
Levene’s Test t-Test for Equality of Means 

F Sig. t df p-Value 

Thumb CMC 0.27 0.60 1.29 48 0.20 

Thumb MCP 0.08 0.78 1.95 48 0.06 

Thumb IP 0.26 0.61 0.24 48 0.81 

Ring MCP 1.61 0.21 1.87 48 0.07 

Ring PIP 0.73 0.40 2.87 48 0.006 ** 
** p < 0.05, considered statistically significant. 

4.4.3. Grasp, Grip, and Pinch Subtests 

A Welch’s ANOVA was conducted to determine whether the flexion angle of the finger joints differed 

based on the different subtests (Grasp, Grip, and Pinch). The results showed that mean flexion angles of the 

Thumb (CMC 31.68°, MCP 28.27°), Index MCP 48.54°, Middle MCP 50.91°, and Ring MCP 48.08° 

obtained in the Pinch subtest were significantly larger than flexion angles of the Thumb (CMC 24.02°, 

MCP 24.34°), Index MCP 42.70°, Middle MCP 43.27°, and Ring MCP 35.71° obtained in the Grasp 

subtest. In contrast, flexion angles in the Index PIP 49.87°, Middle PIP 51.88°, and Ring PIP 46.03° 

obtained in the Grip subtest were significantly larger than flexion angles obtained in the Grasp and Pinch 

subtest. The full results are shown in Figures 4.2-4.4.  
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Figure 4.2. Welch’s ANOVA and post hoc results; Comparison of flexion angles of the Thumb joints concerning the 

three Subtests of the ARAT. The flexion angles of the carpometacarpal (CMC) and metacarpophalangeal (MCP) joints 

of the Thumb finger were significantly larger (p < 0.05 each) in the Pinch and Grip subtest than in the Grasp subtest. 

Likewise, the flexion angles of the interphalangeal (IP) were significantly larger (p < 0.05 each) in the grip subtest 

than in the grasp subtest. Horizontal lines indicate significant differences (p < 0.05, Games–Howell test post hoc 

comparison); deg= degrees. 
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Figure 4.3. Welch’s ANOVA and post hoc results; Comparison of flexion angles of the Index and Middle joints 

concerning the three subtests of the ARAT. The flexion angles of the proximal interphalangeal (PIP) joints of the 

Index and Middle fingers were significantly larger (p < 0.05 each) in the grip subtest than in the grasp and pinch 

subtest. In contrast, the flexion angles of the metacarpophalangeal (MCP) joints were significantly larger (p < 0.05 

each) in the pinch subtest than in the grasp subtest. Horizontal lines indicate significant differences (p < 0.05, Games–

Howell test post hoc comparison); deg = degrees. 
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Figure 4.4. Welch’s ANOVA and Post hoc results; Comparison of flexion angles of the Ring and Little joints 

concerning the three Subtests of the ARAT. The flexion angles of the metacarpophalangeal (MCP) and proximal 

interphalangeal (PIP) joints of the Ring finger were significantly larger (p < 0.05 each) in the grip subtest than in the 

grasp subtest. On the other hand, the flexion angles of the metacarpophalangeal (MCP) and proximal interphalangeal 

(PIP) joints of the Little finger were significantly larger (p < 0.05 each) in the grip subtest than in the pinch subtest. 

Horizontal lines indicate significant differences (p < 0.05, Games–Howell test post hoc comparison); deg = degrees. 

4.4.4. Flexion Angle of Each Finger Joint during the 16 Tests 

A Welch’s ANOVA was conducted to determine whether the mean flexion angle during the 16 ARAT tests 

differed based on the different finger joints. The results showed no significant differences between the mean 

flexion angle of the Index MCP 46.18°, Index PIP 38.89°, Middle MCP 47.5°, Middle PIP 42.62°, Ring 

MCP 44.09°, Ring PIP 39.22° finger joints, while mean flexion angles of the Thumb (CMC 28.56°, MCP 
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26.84°, IP 13.23°) and Little PIP 22.10° were significantly smaller than the other finger joints. The full 

results are shown in Figure 4.5. 

 

Figure 4.5. Welch’s ANOVA and Post hoc results; Comparison flexion angles concerning the finger joints, during 

the 16 tests of the ARAT; Horizontal lines indicate significant differences (p < 0.05, Games–Howell test post hoc 

comparison). The flexion angles of the carpometacarpal (CMC), metacarpophalangeal (MCP), and interphalangeal 

(IP) joints of the Thumb finger were significantly smaller (p > 0.05 each) than the flexion angles of the MCP joints of 

the Index, Middle, Ring. Similarly, the flexion angles of the proximal interphalangeal (PIP) joint of the Little finger 

were significantly smaller (p > 0.05 each) than the flexion angles of the MCP and PIP joints of the Index, Middle, and 

Ring fingers. deg= degrees. 
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4.4.5. Differences in the Flexion Angles Respect to Age and Hand Length Groups 

A Mann–Whitney U test was used to compare the flexion angles of the finger joints between different age 

groups, and between hand length groups, during the performance of the 16 activities. Results showed that 

subjects (18–32 years) had a significantly higher flexion angle in the finger joints (Thumb MCP, Index 

MCP, Index PIP, and Middle MCP) than subjects (45–72 years), as shown in Figure 4.6. On the other hand, 

the Mann–Whitney tests in Figures 4.7 and 4.8 showed that flexion angles in the Thumb IP, Index PIP, 

Middle PIP, and Ring PIP in subjects with a hand length of 190–230 mm were larger and statically 

significant than in subjects with a hand length of 167–178 mm. In contrast, the flexion angles in Middle 

MCP and Ring MCP were significantly larger in subjects with a hand length of 167–178 mm than subjects 

with a hand length of 190–230 mm. 

 

Figure 4.6. Mann–Whitney U test flexion angle of the finger joints with respect to different age groups. The figure 

only shows the finger joints in which significant differences were found (Thumb MCP, Index MCP, Index PIP, Middle 

MCP); p < 0.05, significantly different; deg= degrees. 
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Figure 4.7. Mann–Whitney U test of flexion angle in finger joints with respect to different hand length groups; The 

figure only shows the finger joints in which significant differences were found (Thumb IP, Index PIP, Middle MCP, 

Middle PIP); p < 0.05, significantly different; deg= degrees. 
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Figure 4.8. Mann–Whitney U test of flexion angle in finger joints with respect to different hand length groups; The 

figure only shows the finger joints in which significant differences were found (Ring MCP, Ring PIP, Little PIP); p < 

0.05, significantly different; deg= degrees. 

4.4.6. Fingertip Forces 

The force exerted for the fingertips (thumb, index, middle, ring, and little) during the performance of the 

16 tests of the grasp, grip, and pinch subtest are shown in Table 4.7. During Test 1 of the grasp subtest, the 

thumb exerts a mean force of 4.5 N, the index exerts a mean force of 2.9 N, the middle exerts a mean force 

of 3.5 N, the ring exerts a mean force of 2.1 N, and the little exerts a mean force of 1.1 N, with a total force 

of 14.1 N, these values were the highest of all the tests. In grip subtest maximum total force of 8.1 N was 

applied in Test 7. Additionally, in the pinch subtest, maximum total forces of 4.5 N and 4.4 N were applied 

in Test 16 and Test 12, respectively. 

The mean force of the fingertips thumb, index, middle, ring, and little fingers required to perform the tests 

in the Grasp subtest were thumb 2.8 N (1.52), index 2.08 N (1.13), middle 2.16 N (1.2), ring 0.74 N (0.9), 

and little 0.24 N (0.73). Mean force required to perform grip subtest were thumb 2.39 N (1.5), index 1.95 

N (0.94), middle 1.89 N (0.96), and ring 0.39 N (0.63). Finally, the mean forces required to perform the 

pinch subtest were thumb 2.06 N (0.68), index 2.13 N (0.81), middle 2.02 N (0.69), and ring 1.35 N (0.84). 
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Table 4.7. Descriptive statistics of fingertip forces during the performance of the ARAT test. 

Test 

Thumb 

Force (N) 

Index 

Force (N) 

Middle 

Force (N) 

Ring 

Force (N) 

Little 

Force (N) 
Total 

Force (N) 
Mean SD Mean SD Mean SD Mean SD Mean SD 

1 4.5 2.1 2.9 1.5 3.5 1.7 2.1 1.1 1.1 1.3 14.1 

2 2.3 0.7 2.2 1.1 1.8 0.7 - - - - 6.3 

3 2.4 1.1 1.7 0.6 1.5 0.6 0.5 0.7 - - 6.1 

4 2.6 0.9 1.9 1.0 1.8 0.7 1.1 0.8 - - 7.7 

5 2.6 1.2 1.6 0.8 1.9 0.6 0.4 0.6 - - 6.6 

6 2.2 0.9 2.2 1.1 2.5 0.7 - - - - 6.9 

7 3.0 1.8 2.0 0.7 2.3 1.1 0.8 0.8 - - 8.1 

8 2.3 1.1 2.1 1.0 1.9 0.8 - - - - 6.4 

9 2.1 1.0 1.9 1.1 1.8 0.8 - - - - 6.1 

10 2.1 1.0 1.9 0.9 1.7 1.0 - - - - 5.8 

11 1.8 0.2 - – - - 1.2 1.0 - - 3.0 

12 2.1 0.7 2.4 0.9 - - - - - - 4.4 

13 1.8 0.2 - - 1.8 0.5 - - - - 3.5 

14 2.2 0.5 1.9 0.6 - - - - - - 4.1 

15 2.3 1.0 - - - - 1.5 0.9 - - 3.8 

16 2.2 0.9 - - 2.3 0.8 - - - - 4.5 

Test 1–6 corresponds to grasp subtest; Test 7–10 corresponds to grip subtest; Test 11–16 corresponds to pinch subtest; Force N = 

Newton. 

4.4.7. Differences in Fingertip Force with Respect to Age Groups 

An independent-samples t-test was conducted to compare the fingertip force exerted for different age 

groups of subjects during the performance of the tests in grasp subtest. Table 8 shows there was a significant 

difference in the index finger force of subjects (18–32 years) (M = 1.35, SD = 1.4) and subjects (45–72 

years). (M = 0.76, SD = 1.24) conditions; t (118) = 2.38, p = 0.019. There was a significant difference in 

the middle finger force of subjects (18–32 years) (M = 1.77, SD = 1.14) and subjects (45–72 years). (M = 

1.14, SD = 1.34) conditions; t (118) = 2.47, p = 0.015 see Table 4.8. Although in the grip subtest there was 

a significant difference in middle finger force of subjects (18–32 years) (M = 1.28, SD = 1.17) and subjects 

(45–72 years); (M = 1.14, SD = 1.34) conditions; t (78) = 2.43, p = 0.017 see Table 4.9. 

Table 4.8. Independent samples t-test for comparison finger forces in grasp subtest, with respect to different groups 
of age (18–32 years) and (45–72 years). 

Fingertip 
Levene’s Test t-Test for Equality of Means 

F Sig. t df p-Value 

Thumb 1.715 0.193 0.807 118 0.421 

Index 1.314 0.254 2.385 118 0.019 ** 

Middle 0.038 0.846 2.477 118 0.015 ** 

Ring 1.421 0.236 0.662 117 0.510 

Little 0.013 0.908 0.051 118 0.959 
** p < 0.05, significant difference. 
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Table 4.9. Independent samples t-test for comparison finger force in grip subtest, with respect to different groups of 
age (18–32 years) and (45–72 years). 

Fingertip 
Levene’s Test t-Test for Equality of Means 

F Sig. t df p-Value 

Thumb 3.152 0.080 1.628 78 0.108 

Index 0.247 0.621 0.534 78 0.595 

Middle 2.913 0.092 2.429 78 0.017 ** 

Ring 0.339 0.562 0.618 78 0.538 
** p < 0.05, significant difference. 

4.5. Discussion 

There are only a few studies about the integration of sensors in upper limb measurement methods, but 

there is a need for more quantitative tests [5], [6]. In this paper, we used a hand motion system to determine 

the flexion angles of the finger joints and fingertip force required to perform the 16 tests of the ARAT in 

healthy subjects. Traditionally the ARAT is scored on an ordinal four point-scale, that is, from 0 to 3 [112]. 

A score of 3 is given when the task is performed normally, a score of 2 is given when the subject completes 

the test but takes a long time or has a difficulty, a score of 1 is given when the subject performs the test 

partially, a score of 0 is given when the subject cannot perform any part of the test [7], [112]. Nevertheless, 

sometimes the ARAT assessment can be complex and subjective, based on the examiner’s observation and 

criteria alone. The data obtained indicates that the integration of multiple sensors during the performance 

of the ARAT allows therapists and other health professionals to perform a more objective, sensitive, and 

accurate evaluation with a validated clinical test.  

To analyze and evaluate the data obtained by the hand motion system, we studied the behavior of each 

finger joint, from particular to general, during the performance of the 16 tests of the ARAT. The flexion 

angles were determined for each test presented in Table 3. The flexion angles of the finger joints were 

compared in each subtest to carry out a more in-depth analysis. In the grasp subtest, flexion angles of finger 

joints were larger when grasping a small object (Test 2 and Test 6) in comparison to when grasping a larger 

object (Test 1 and Test 4). In the grip subtest, significant differences were found in Test 7 with respect to 

the other tests of the subtest. These differences were because the object’s size is larger in this test than in 

the others. In the pinch subtest, the results showed that in similar tests using specific fingers but different 

objects, no significant differences were found in the flexion angle of the thumb joints (CMC, MCP, IP) 

despite grasping objects of various sizes (Tables 4–6). The angle adjustment to make the pinch grip was 

made by the PIP joint of the other finger involved (index, middle, ring). Similar results where thumb joints 

did not show significant changes in the flexion angle but index finger joints changed significantly with 

respect to the object’s width were presented by [113], [114]. Next, the subtests of the ARAT were grouped 

for statistical analysis. Although the subtests are similar, each of them involves different types of grasp, 

and, therefore, different flexion angles of the finger joints are required. In our study, we observed that 

flexion angles of the joints MCP in the fingers (index, middle, ring) were larger in tests involving the 

grasping of small objects, and the pinch subtest involved many of them.  
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Similar results were presented for Lee et al. [115], who found that MCP and PIP joints increased as 

cylinder diameter decreased, but flexion angles were fairly constant in the DIP joint. Shimawaki et al. [116] 

found the same correlation using a three-dimensional bone model during the grasping of a cylinder of three 

different diameters (10, 60, and 120 mm). Finally, the mean flexion angles obtained during the performing 

of the 16 activities were as follows: Thumb CMC: 28.56°; Thumb MCP: 26.84°; Thumb IP: 13.23°; Index 

MCP: 46.18°; Index PIP: 38.89°; Middle MCP: 47.5°; Middle PIP: 42.62°; Ring MCP: 44.09°; Ring PIP: 

39.22°; Little MCP: 31.50°; Little PIP: 22.10°. The mean flexion angles of the thumb joints (CMC, MCP, 

and IP) were significantly smaller than the flexion angles of the index, middle, ring, and little finger (MCP, 

IP) joints. A similar result was obtained during the performance of 16 activities of daily living (ADL) in 

the MCP joints of the hand by Murai et al. [117]. On the other hand, no significant differences were found 

in the mean flexion angle of the index, middle, and ring (MC, PIP) joints, but statistically significant 

differences were found in the flexion angle of the Little (MCP, PIP) with respect to the other finger joints. 

Excluding the pinch test in our research, no statistically significant differences between all the MCP fingers 

joints were found. Hume et al. [118] reported similar results, that there were no significant differences 

between the flexion angles of the finger joints during 11 ADL, while Bain et al. [119] found during the 

performance of the Sollerman hand grip function test, statistically significant differences between the mean 

values for the active ROM of the finger joints. The differences found in these studies with our study is that 

grip and pinch subtests of ARAT involved the radial side of the hand, radial activities include the precision 

grip between (thumb, index, and middle fingers) and precision pinch between the thumb and the (index or 

middle or ring) finger. As far as we know, there is little research studying the range of motion of the thumb 

joints. Hume et al. Measured a mean angle of 21 degrees of flexion in the Thumb MCP and 18 degrees in 

the IP joint during grip postures, and Murai et al. [117] measured 35.3 degrees of flexion in his research. 

Our study obtained similar results than Hume et al. [118], the flexion angles of the thumb were MCP 26.84° 

and IP 13.3°. The flexion angles were smaller than Murai et al. Because many of the tests in ARAT involves 

precision grip and pinch. Regarding to the relationship of the flexion angle of finger joints with respect to 

different age groups, the results showed that young subjects (18–32 years) had a greater flexion angle in 

the finger joints (Thumb MCP, Index MCP, Index PIP, and Middle MCP) than elderly subjects (45–72 

years) during the performance of the 16 activities. Similar results were presented for Smahel and Klímová 

[120]. They found that university students had a statistically significantly wider range of motion in the 

finger joints MCP, PIP, and DIP than Seniors citizens, while DeSmet et al. [121] found a significant 

correlation between increasing the age and decreasing MCP and IP flexion of the thumb in a study with 

101 subjects. Regarding the flexion angles of the finger joints compared to different hand sizes, the result 

showed that subjects with a longer hand length performed greater flexion in Thumb IP, Index PIP, Middle 

PIP, and Ring PIP, but had a smaller flexion in Middle MCP and Ring MCP. Similar results were found 

during an experiment with cylinders of different radius, subjects with the largest HL, close the hand around 

the object with a slightly larger joint angle by Peña-Pitarch et al. [122]. The fingertip forces for each test 

are presented in Table 7. Maximum total finger forces were exerted during the performance of Test 1 (14.1 
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N), Test 4 (7.7 N), and Test 7 (8.1 N). In these tests, a power grip was executed between the fingers and the 

palm, power grip uses high force but low precision movements and involves the radial and ulnar sides of 

the hand [43]. Moreover, the results showed that the youngest subjects applied greater strength than the 

oldest subjects in the index and middle fingertip when performing the six tests part of the grasp subtest and 

in the middle fingertip during the four tests of the grip subtest. The mean total force in the six tests of the 

grasp subtest was 8.2 N, grip subtest 6.61 N, and pinch subtest 3.89 N. On the other hand, the force sensor 

data allows us to know the contact points used to grasp an object. Peña-Pitarch et al. (Peña-Pitarch et al., 

2020) found that the number of fingers used to grasp a cylindrical object depends on the radius (ρ) of the 

object, e.g., for 5 ≤ ρ ≤ 12.5 mm used two fingers, 12.5 ≤ ρ ≤ 20 mm used three fingers, 20 ≤ ρ ≤ 35 mm 

used four fingers, and 35 ≤ ρ ≤ 70 mm used five fingers. In our study, we found similar results, e.g., when 

we used objects with a length (l) ≤ 100 mm subjects used five fingers, in objects 50 ≤ l ≤ 75 mm subjects 

used four fingers and in objects 10 ≤ l ≤ 25 mm were used three fingers. The differences found in our study 

were due to the object orientation, while in Peña-Pitarch et al., subjects performed a cylindrical grip since 

the cylinder was in a horizontal position and in this research, the subjects performed a three jaw-chuck grip 

due to the vertical position of the object.  

4.6. Limitations 

The limitation in the study was that using a data glove and sensors attached to the fingertips makes it 

difficult for some subjects to grasp small objects accurately; despite this, all subjects completed the tests. 

Another limitation is that the test of gross movement was not performed. Therefore, it would be suitable to 

use a motion capture system based on inertial measurement units (IMU), as were found in other studies 

[11], [59] for measuring flexion angles of the entire arm. In our research, the abduction and adduction 

angles of the finger joints were not analyzed; these data may be important for evaluating the ARAT and 

should be considered for future studies. 

4.7. Conclusions 

The results showed that flexion angles in Thumb (CMC, MCP), Index MCP, Middle MCP, and Ring 

MCP finger joints obtained in the pinch subscale were significantly larger than flexion angles in the grasp 

subtest. We determined that the flexion angles depend on the object size and the type of grasp used (power, 

precision, or pinch). In contrast, the mean total fingertip force exerted on the fingers was significantly 

greater in the grasp subtest (8.2 N) than in the grip (6.61 N) and the pinch (3.89 N) subtests. The data 

obtained showed that the integration of multiple sensors during the performance of 16 tests of the ARAT 

allows therapists and other health professionals to perform a more sensitive, objective, and quantitative 

assessment of the hand function. In the chapter 6, we will use the data as a dataset for machine learning 

algorithms with stroke patients. 
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CHAPTER 5 

Quantitative Assessment of Hand 
Function in Healthy Subjects and Post-

Stroke Patients with the Action Research 

Arm Test 

 

 

5.1. Overview 

The aim of this chapter was to identify joint impairments and compensatory grasping strategies in 

stroke patients with left (LH) and right (RH) hemiparesis. For this purpose, an experimental study was 

carried out with 12 patients six months after a stroke (three women and nine men, mean age: 65.2 ± 9.3 

years), and 25 healthy subjects (14 women and 11 men, mean age: 40.2 ± 18.1 years). The subjects were 

evaluated during the performance of the ARAT using a data glove. Stroke patients with LH and RH showed 

significantly lower flexion angles in the MCP joints of the Index and Middle fingers than the Control group. 

However, RH patients showed larger flexion angles in the proximal interphalangeal (PIP) joints of the 

Index, Middle, Ring, and Little fingers. In contrast, LH patients showed larger flexion angles in the PIP 

joints of the Middle and Little fingers. Therefore, the results showed that RH and LH patients used 

compensatory strategies involving increased flexion at the PIP joints for decreased flexion in the MCP 

joints. The integration of a data glove during the performance of the ARAT allows the detection of finger 

joint impairments in stroke patients that are not visible from ARAT scores. Therefore, the results presented 

are of clinical relevance. 

This chapter is a slightly modified version of the article [123] published at the MDPI Sensors journal 

in the Special Issue Wearable Sensors for Human Motion Analysis. The article was published under a 

Creative Commons Attribution 4.0 International License (CC BY 4.0). This permits the copying, 

distribution, adaptation, and remixing of the work provided the work is appropriately cited. See 

https://creativecommons.org/licenses/by/4.0/ to view a copy of the CC BY 4.0 license. 

5.2. Introduction 

Stroke remains the second-leading cause of death and the third-leading cause of death and disability 

combined globally. Projections show that the burden of stroke will not decrease in the next decade or 

beyond [1]. An important contributing factor is that the number of older persons in Europe is rising, with a 

projected increase of 35% between 2017 and 2050 [2]. Stroke is caused by the death of brain cells as a 

result of blockage of a blood vessel supplying the brain (ischemic stroke) or bleeding into or around the 
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brain (hemorrhagic stroke) [3]; the disability and the rehabilitation that is needed post-stroke depends on 

the size of the brain injury and the particular brain circuits that are damaged [4]. The most common sequelae 

caused by stroke is motor impairment, which impairs function in muscle movement or mobility [5]. One of 

the most affected parts are the upper extremities (UE) of the human body; movement problems in these 

parts limit the quality of life by limiting the ability to perform activities of daily living (ADL). The hand is 

one of the essential tools of the human body, allowing us to perform a wide variety of actions to interact 

with the environment, such as touching, reaching, holding, grasping, and manipulating different types of 

objects. People who suffer the loss of mobility in the hand endure a tremendous negative impact on their 

living standards, causing problems in their family, work, and social environment. Therefore, the 

rehabilitation process after a stroke is fundamental to prevent deterioration of function, reduce motor 

disability and reintegrate patients into their ADL [6]. Stroke rehabilitation is divided into three phases: 

acute phase (first month), subacute phase (one–six months), and chronic phase (after six months)[124]. In 

order to evaluate the patient's progress during the rehabilitation program, it is highly recommended the use 

of standardized outcome measures (OMs) with good psychometric properties. There is a wide range of 

upper extremity rehabilitation OMs (e.g., motor function, muscle strength, dexterity, global stroke severity, 

and others) [110]. Many physical therapists have assessed the upper limb function in post-stroke patients 

with The Action Research Arm Test (ARAT). The ARAT is a measurement tool to assess UE functional 

limitations. The test described by Lyle [112] evaluates 19 tests of arm motor function that assess a patient’s 

ability to handle objects differing in size, weight, and shape. Each test is given an ordinal score of 0, 1, 2, 

or 3, with higher values indicating better arm motor status[7]. The test has been shown good reliability and 

validity [7]–[9].  

The ARAT, like other OMs, is evaluated by an examiner who determines the score of each test. The 

scoring process can lead to subjective results due to the difficulty of assessing abnormal patterns in patients 

after stroke. Therefore, with the technological advances, wearable sensors have been incorporated during 

the performance of various OMs in several clinical investigations. The use of sensors allows having more 

quantitative and sensitive assessment methods during clinical rehabilitation of the UE. Most research 

studies have used inertial measurement units (IMU) while performing the ARAT. Carpinella et al. proposed 

a method to discriminate between healthy subjects and Multiple Sclerosis patients wearing a single inertial 

sensor on the wrist [10]. Nam et al. obtained a database of the workspace and ROM of the major joints of 

the UE in healthy subjects using a wearable motion capture system based on an (IMU) [11]. Repnik et al. 

proposed a system of IMUs for kinematic quantification and electromyography (EMG) sensors for muscle 

activity analysis in stroke patients [59]. Held et al. measured arm kinematics in stroke patients during 

different stages of the rehabilitation process using Xsens full-body motion capture suit (Xsens 

Technologies, Enschede, Netherlands) [13]. In contrast, Dutta et al. Evaluated grasp abilities deploying 

intelligent algorithms with healthy subjects and post-stroke patients using an instrumented glove composed 

of six flex sensors, three force sensors, and a motion processing unit [60]. During the Wolf Motor Function 
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Test execution, Del Din et al. used six accelerometers placed on the arm and the trunk to estimate FMA 

scores [70]. Finally, Routhier et al. studied the correlation between finger-to-nose task (FNT) and Upper 

limb motor function in subacute stroke patients, using an IMU [71]. Although many of these studies 

evaluate the UE with sensory information during OMs, none of them focus on the assessment of hand 

function by studying the ROM of the finger joints. Nevertheless, there are several studies about the 

functional range of motion (FROM) of the finger joints during the performance of ADL in healthy subjects 

[98], [117], [118]. Despite this, only Bain et al., who used the Sollerman hand grip function test [119] and 

Hayashi et al., who used 19 activities of the Disabilities of the Arm, Shoulder, and Hand (DASH) [125], 

used rehabilitation OMs. To the best of our knowledge, no study has determined the FROM and the ROM 

of the finger joints in stroke patients during the performance of the ARAT using a data glove. This study 

aimed to determine whether differences in the FROM and the ROM of finger joints between healthy 

subjects and post-stroke patients allow the identification of joint motion impairments and compensatory 

strategies in stroke patients that are not detected with the ARAT. The data obtained are of clinical 

importance for occupational therapists, as they allow a more quantitative and objective evaluation method. 

5.3. Methods 

5.3.1. Subjects 

Twelve patients (3 women and 9 men, mean age: 65.2 ± 9.3 years; right-handed) were evaluated six 

months after a stroke at Sant Joan de Deu Hospital. Ten patients suffered an ischemic stroke, and two 

patients a hemorrhagic stroke. Inclusion criteria for this study included the following: patients who had a 

stroke for the first time with motor deficits in the UEs; patients older than 18 years; patients who, before 

the stroke, were independent in their ADLs; patients with a global ARAT score ≥ 10. Exclusion criteria: 

patients with UE deficits and sequelae of any etiology before the stroke. Data from the control group used 

in this study was obtained in Chapter 5. The dataset includes information from 25 healthy subjects (14 

women and 11 men, mean age: 40.2 ± 18.1 years). Inclusion criteria were being right-handed, over 18 years 

old, and not having suffered any hand disorders or injury. Healthy subjects performed sixteen activities of 

the ARAT corresponding to the subtests (Grasp, Grip, and Pinch) using an instrumented glove (Cyberglove 

Systems LLC; San Jose, CA, USA). All subjects signed informed consent to the protocol, which was 

conformed following the Declaration of Helsinki and was approved by the Ethics and Clinical Research 

Committee of the Fundacio Unió Catalana d’Hospitals ID 13/71. The stroke patients were divided into two 

groups to evaluate and detect impairments of the finger joints. Therefore, we formed one group of patients 

with hemiparesis on the right side and the other with hemiparesis on the left side. The information of the 

two stroke groups and the control group is shown in Table 5.1. 
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Table 5.1. Characteristics of the groups. 

Variable 

 

Groups 

RH LH C 

Age (Mean ± SD) 62 ± 10.3 69.6 ± 5.3 40.2 ± 18.1 

Hemisphere Affected L R - 

Subjects (N) 7 5 25 

S. Grasp (tests) 31 24 150 

S. Grip tests (tests) 19 16 100 

S. Pinch tests (tests) 30 24 150 

Total (tests) 80 64 400 

TSS 6 6 - 

ARAT score (Mean ± SD) 39.2 ± 14.3 45.4 ± 13.7 - 

RH= right hemiparesis; LH= left hemiparesis; C= control group; SD= standard deviation; L= left; R= right; N= Number of 

participants; tests= complete test (ARAT score ≥ 2); S= Subtest; TS= Time since stroke (months) 

5.3.2. Experimental Protocol 

In the present study, post-stroke patients performed sixteen tests of the ARAT. These tests correspond 

to the Grasp, Grip, and Pinch subtests. The ARAT is an evaluative measure used to assess the arm motor 

status after a stroke, consisting of 19 tests categorized into four subtests: Grasp, Grip, Pinch, and Gross 

movements. Within each subtest, the first test is the most difficult and the second the easiest to facilitate 

the application of the test [112]. The Gross movement subtest was excluded because it involves the 

assessment of large muscle movements and, in this study, we focused on measuring the finger joints. Stroke 

patients sat upright in a standard chair with a firm back and no armrests. The assessments were performed 

in the hospital by a trained therapist. Subjects were seated in front of a table; the table was set at a distance 

of 15 cm and at the abdomen level. The physical therapist ensured that the subjects back remained in contact 

with the back of the chair and that the legs were positioned in front of the chair with the feet in contact with 

the floor throughout the test. The subject was asked to grasp, lift vertically, place, and then release each 

object (block, cricket ball, or marble) onto the top of the shelf. The objects used in each activity were placed 

one at a time on the table. The ARAT performance score is rated on a 4-point scale, ranging from 0 (no 

movement) to 3 (movement performed normally). A full description of all ARAT tasks was presented in 

[7]. In this study, only the ARAT activities that the patient was able to complete, which obtained a score of 

2 (complete task that takes a little longer) and 3 (complete task), were analyzed and compared with the 

control group. 

5.3.3. Experimental Equipment 

Subjects performed the sixteen activities of the ARAT wearing the CyberGlove II® data glove on the 

affected hand of subjects with hemiparesis and on the right hand (dominant) of healthy subjects (Figure 1). 

The data glove is composed of 18 flexion sensors: two bend sensors on each finger, four abduction sensors, 

and sensors measuring thumb crossover, palm arch, wrist flexion, and wrist abduction. The data glove has 

a resolution <1 degree and weighs only 70 g [83]. The procedure for converting the readings of the 18 

sensors into finger joint angles was based on linear interpolation, according to a previously validated 
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calibration protocol [26], [84]. The eleven finger joints angles recorded in this study were: Thumb 

carpometacarpal (CMC) joint, Thumb, Index, Middle, Ring, and Little metacarpophalangeal (MCP) joints, 

Thumb interphalangeal (IP) joint, and Index, Middle, Ring, and Little proximal interphalangeal (PIP) joints. 

Data from the CyberGlove II® were transmitted to a PC via Bluetooth connection. The data was read and 

recorded in a .raw file using the CyberGlove graphical user interface (GUI). A script in the software R 4.1.0 

was created in order to convert the raw data of the CyberGlove II® into the finger joints angles according 

to the equations obtained in the calibration process.  

5.3.4. Data Analysis 

The data obtained were filtered with a 2nd-order two-way low pass Butterworth filter with a cut-off 

frequency of 5 Hz in MATLAB® software (MathWorks, Inc., Natick, MA, USA). The following protocol 

was applied separately to the control group and the stroke groups. At the start of each test, the subject placed 

the hand tested pronated, immediately lateral to the testing object. Therefore, the initial instants of each 

record, in which the hand were static, were trimmed. The minimum and maximum values for each activity 

were calculated for each finger joint of each subject. The respective values were averaged across all subjects 

during each activity; these values became known as the extension and flexion angles (E/F). Then, the 

functional range of motion (FROM) was calculated as the 5th and 95th percentiles of the (E/F) angles of 

each finger joint in the sixteen activities, thus representing the maximum and minimum angles covering 

90% of the activities at each specific finger joint. The FROM was used based on 90% of activities because 

considering 100% of activities may result in excessive values [119]. Alternatively, the range of motion 

(ROM) was defined as the average of the E/F angles of the finger joints during the sixteen activities of the 

ARAT. Similarly, the total arc of motion (aROM) was defined as the range of flexion and extension angles 

that compose the ROM. Finally, the range of motion for each finger joint in each subtest (sROM) was 

calculated. The sROM was defined as the average of the extension and flexion angles corresponding to the 

activities of the subtest considered. 

Statistical analysis was conducted using IBM SPSS Statistics, Version 28.0. Armonk, NY, USA: IBM 

Corp. The respective extension and flexion angles (ROM) of each finger joint were compared between 

control and each stroke group using a non-parametric test, the Mann–Whitney U test. In each subtest (Grasp, 

Grip, and Pinch), the Mann–Whitney U test was used to compare whether there was a statistical difference 

in the sROM of the finger joints between the control group and each stroke group. Additionally, the flexion 

angles of the FROM in each finger joint were compared between the right hemiparesis, left hemiparesis, 

and control groups. For this purpose, a Welch’s ANOVA and a Games–Howell post hoc test was used to 

detect significant differences. Lastly, the ROM and aROM of each finger joint were compared between the 

right hemiparesis and the left hemiparesis groups using the Mann–Whitney U test. A p-value of less than 

0.05 was considered statistically significant for all statistical analyses. 
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5.4. Results 

5.4.1. Functional Range of Motion of the Finger Joints 

The functional range of motion (FROM) of the finger joints required to perform 90% of the activities 

for each group is shown in Figure 5.1. In this study we decided to analyze the mean flexion angles of the 

14 tasks that integrate the FROM. Mean and standard deviation values of the mean flexion angles (FROM) 

of each finger joint in the control, right hemiparesis (RH), and left hemiparesis (LH) groups are shown in 

Table 5.2. A Welch’s ANOVA revealed that there was a statistically significant difference in the flexion 

angle of the Thumb IP, Index MCP, Index PIP, Middle MCP, Middle PIP, Ring PIP, and Little PIP finger 

joints between the control, right hemiparesis (RH), and left hemiparesis (LH) groups. The results of the 

post hoc test (see Table 5.2) showed that the mean flexion angles of the Index MCP and Middle MCP in 

the control group were significantly larger than those in the RH group. In contrast, the mean flexion angles 

of the Thumb IP, Middle PIP, Ring PIP, Little MCP, and Little PIP in the RH group were significantly 

larger than those in the control group. The mean flexion angles of the Thumb IP, Middle PIP, and Little 

PIP in the LH group were significantly higher than those in the control group. However, the mean flexion 

angles in the Middle MCP joint in the control group were significantly larger than those in the RH group. 

Moreover, the mean flexion angles of the Thumb IP and Middle MCP in the LH group were significantly 

higher than those in the RH group. Lastly, the mean flexion angles of the PIP joints (Index, Middle, and 

Ring) in the RH group were significantly larger than those in the LH group. 

 

Figure 5.1. Functional range of motion in each finger joint; CMC = carpometacarpal; MCP = metacarpophalangeal; 

IP = interphalangeal; PIP = proximal interphalangeal; negative values represent hyperextension; maximum = flexion; 

minimum = extension. 
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Table 5.2. Flexion angles of the functional range of motion (FROM) during 14 tests. 

Finger Joints 
C RH LH M(C-RH) M(C-LH) M(RH-LH) 

F SD F SD F SD M p M p M p 

Thumb CMC 28.2 5.0 26.5 4.8 26.6 0.7 1.65 0.629 1.55 0.474 -0.10 0.996 

Thumb MCP 26.4 3.3 29.1 4.2 29.9 5.0 -2.70 0.143 -3.48 0.084 -0.78 0.887 

Thumb IP 12.6 4.1 26.8 5.1 21.7 4.1 -14.21 0.000*** -9.16 0.000*** 5.04 0.016** 

Index MCP 45.0 8.3 35.8 3.4 40.4 6.2 9.18 0.002** 4.53 0.224 -4.64 0.047* 

Index PIP 37.8 8.7 43.7 11.3 30.6 11.4 -5.84 0.269 7.24 0.143 13.09 0.010* 

Middle MCP 46.4 7.0 34.9 4.6 34.8 7.0 11.46 0.000*** 11.54 0.000*** 0.083 0.999 

Middle PIP 41.6 6.8 59.6 9.9 51.3 8.1 -17.99 0.000*** -9.77 0.003** 8.22 0.048* 

Ring MCP 42.8 9.3 49.6 7.3 48.8 10.7 -6.78 0.085 -5.99 0.246 0.79 0.970 

Ring PIP 38.2 6.5 54.2 7.3 39.2 6.9 -16.00 0.000*** -1.02 0.909 14.97 0.000*** 

Little MCP 30.1 6.6 38.9 9.9 33.4 5.1 -8.80 0.023* -3.34 0.284 5.45 0.166 

Little PIP 21.3 4.2 47.2 11.5 48.1 8.8 -25.87 0.000*** -26.73 0.000*** -0.86 0.971 

Games–Howell post-hoc comparison; C = control group; RH = right hemiparesis; LH = left hemiparesis; F = flexion; SD = standard 

deviation; CMC = carpometacarpal; MCP = metacarpophalangeal; IP = interphalangeal; PIP = proximal interphalangeal; * p < 

0.05; ** p < 0.01; *** p < 0.001; M = mean differences between groups; p = significance level. 

5.4.2. Range of Motion of the Finger Joints in the Stroke Group with Right Hemiparesis 

Mean and standard deviation values of the range of motion (ROM) and the total arc of motion (aROM) 

of each finger joint in the control and the stroke group with right hemiparesis (RH) are shown in Table 5.3. 

As reported in Table 5.4, the extension angles of the Thumb CMC, Index MCP, Middle MCP joints in the 

control group were significantly lower than those in the RH group. In contrast, the RH group showed 

significantly lower extension angles in the Thumb IP, Middle PIP, Ring MCP, Ring PIP, Little MCP, and 

Little PIP joints. The flexion angles of the Index MCP and Middle MCP joints in the control group were 

significantly higher than those in the RH group, while flexion angles of the Thumb MCP, Thumb IP, Index 

PIP, Middle PIP, Ring MCP, Ring PIP, Little MCP, and Little PIP joints in the RH group were significantly 

higher (see Table 5.4).  

On the other hand, the aROM in the control group was significantly larger than that in the RH group 

in the Middle MCP joint. By comparison, the aROM of the Thumb MCP, Index PIP, Middle PIP, Ring PIP, 

and Little PIP joints in the RH group was significantly larger (see Table A1.1). 

Table 5.3. Range of motion (ROM) during the sixteen activities (control and right hemiparesis). 

 Extension (Degree) Flexion (Degree) aROM (Degree) 
 C RH C RH C RH 

Finger Joints Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Thumb CMC 9.7 7.5 5.6 7.5 28.6 7.4 26.8 10.0 18.9 6.4 21.2 9.6 

Thumb MCP 12.6 9.3 11.3 10.5 26.8 8.9 29.7 11.4 14.3 7.3 18.4 10.6 

Thumb IP −7.5 16.2 6.4 16.4 13.2 14.9 28.3 16.9 20.7 13.7 21.9 15.6 

Index MCP 22.2 13.1 11.2 15.3 46.2 13.5 36.5 12.4 24.0 12.1 25.4 13.3 

Index PIP 16.4 9.2 15.8 10.3 38.9 14.0 44.2 16.5 22.4 11.1 28.4 16.8 

Middle MCP 17.8 11.9 14.0 12.8 47.5 11.5 36.0 12.6 29.7 10.9 22.0 10.2 

Middle PIP 16.3 8.5 27.3 14.5 42.6 11.4 60.0 15.4 26.3 9.3 32.7 15.5 

Ring MCP 15.6 11.8 20.6 14.7 44.1 13.6 49.8 13.0 28.5 11.4 29.3 15.7 

Ring PIP 12.3 8.1 23.9 13.6 39.2 11.8 54.3 14.1 26.9 9.8 30.5 12.2 
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Table 5.3. Cont. 

 Extension (Degree) Flexion (Degree) aROM (Degree) 
 C RH C RH C RH 

Finger Joints Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Little MCP 9.1 8.8 13.2 8.0 31.5 12.1 39.3 15.1 22.4 8.9 26.2 14.9 

Little PIP 11.3 9.5 15.4 11.0 22.1 13.4 47.5 21.6 10.8 8.3 32.1 19.6 
C = control group; RH = right hemiparesis group; CMC = carpometacarpal; MCP = metacarpophalangeal; IP = interphalangeal; 

PIP = proximal interphalangeal; SD = standard deviation; deg = degrees; aROM = arc of motion; negative values represent 
hyperextension. 

Table 5.4. Results of Mann–Whitney test of the ROM with respect to the control and right hemiparesis groups. 

   Extension Flexion 

Finger Joint Group N 
Mean 

Rank 
U Z p 

Mean 

Rank 
U Z p 

Thumb CMC C 400 252.9 11,023.0 −4.39 0.000 *** 245.6 13,959.5 −1.80 0.072 
 RH 80 178.3    215.0    

Thumb MCP C 400 243.1 14,949.0 −0.93 0.353 234.2 13,489.0 −2.22 0.027 * 
 RH 80 227.4    271.9    

Thumb IP C 400 222.4 8764.5 −6.39 0.000 *** 219.1 7435.0 −7.56 0.000 *** 
 RH 80 330.9    347.6    

Index MCP C 400 257.7 9136.0 −6.06 0.000 *** 256.6 9555.5 −5.69 0.000 *** 
 RH 80 154.7    159.9    

Index PIP C 400 242.9 15,058.0 −0.83 0.406 232.7 12,877.5 −2.76 0.006 ** 
 RH 80 228.7    279.5    

Middle MCP C 400 248.6 12,758.0 −2.86 0.004 ** 259.7 8302.5 −6.80 0.000 *** 
 RH 80 200.0    144.3    

Middle PIP C 400 223.0 9002.0 −6.18 0.000 *** 215.7 6092.5 −8.75 0.000 *** 
 RH 80 328.0    364.3    

Ring MCP C 400 231.6 12,459.0 −3.13 0.002 ** 229.8 11,706.0 −3.79 0.000 *** 
 RH 80 284.8    294.2    

Ring PIP C 400 220.7 8085.0 −6.99 0.000 *** 217.0 6593.5 −8.31 0.000 *** 
 RH 80 339.4    358.1    

Little MCP C 400 230.4 11,941.0 −3.58 0.000 *** 228.0 11,012.0 −4.40 0.000 *** 
 RH 80 291.2    302.9    

Little PIP C 400 231.4 12,372.0 −3.20 0.001 ** 213.5 5192.0 −9.54 0.000 *** 
 RH 80 285.9    375.6    

C = control group; RH = right hemiparesis group; * p < 0.05; ** p < 0.01; *** p < 0.001; control vs. stroke Mann–Whitney U test.; 

N = number of tests per group. 

5.4.3. Range of Motion of the Finger Joints in the Stroke Group with Left Hemiparesis 

The range of motion (ROM) and the total arc of motion (aROM) of each finger joint in the control and 

the stroke group with left hemiparesis (LH) are shown in Table 5.5. As shown in Table 5.6, the extension 

angles of the Thumb CMC, Index MCP and PIP, Middle MCP joints in the control group were significantly 

lower than those in the LH group. In contrast, the LH group showed significantly lower extension angles 

in the Thumb IP, Middle PIP, Little MCP, and Little PIP joints. The flexion angles of the Index (MCP, PIP) 

and Middle MCP joints in the control group were significantly larger than those in the LH group, while 

flexion angles in the LH group were significantly larger in the Thumb MCP, Thumb IP, Middle PIP, Ring 

MCP, Little MCP, and Little PIP joints (see Table 5.6). The aROM of the Thumb IP and Little MCP joints 
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in the control group was significantly larger than that in the LH group. In addition, aROM in the LH group 

was significantly larger in the Thumb MCP and Little PIP joints (see Table A1.2). 

Table 5.5. Range of motion (ROM) during the sixteen activities (control and left hemiparesis). 

Finger Joints 

Extension (Deg) Flexion (Deg) aROM (Deg) 

C LH C LH C LH 

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Thumb CMC 9.7 7.5 8.1 1.8 28.6 7.4 26.7 1.5 18.9 6.4 18.6 1.6 

Thumb MCP 12.6 9.3 11.1 6.5 26.8 8.9 30.4 10.0 14.3 7.3 19.2 10.9 

Thumb IP −7.5 16.2 7.2 8.7 13.2 14.9 22.7 8.5 20.7 13.7 15.5 9.4 

Index MCP 22.2 13.1 14.0 18.9 46.2 13.5 41.8 13.0 24.0 12.1 27.9 21.9 

Index PIP 16.4 9.2 8.4 11.9 38.9 14.0 32.5 19.3 22.4 11.1 24.1 15.2 

Middle MCP 17.8 11.9 7.1 13.1 47.5 11.5 36.4 15.5 29.7 10.9 29.3 18.6 

Middle PIP 16.3 8.5 25.8 11.4 42.6 11.4 52.2 13.1 26.3 9.3 26.3 11.8 

Ring MCP 15.6 11.8 17.4 13.4 44.1 13.6 50.9 17.3 28.5 11.4 33.5 16.7 

Ring PIP 12.3 8.1 15.8 10.0 39.2 11.8 40.1 13.2 26.9 9.8 24.4 11.8 

Little MCP 9.1 8.8 21.1 4.6 31.5 12.1 34.5 7.3 22.4 8.9 13.4 7.3 

Little PIP 11.3 9.5 21.7 10.4 22.1 13.4 49.6 16.9 10.8 8.3 27.8 15.9 

C = control group; LH = left hemiparesis group; CMC = carpometacarpal; MCP = metacarpophalangeal; IP = interphalangeal;    

PIP = proximal interphalangeal; SD = standard deviation; deg = degrees; aROM = arc of motion; negative values represent 

hyperextension. 

Table 5.6. Results of Mann–Whitney test of the ROM with respect to the control and left hemiparesis groups. 

   Extension Flexion 

Finger Joint Group N 
Mean 

Rank 
U Z p 

Mean 

Rank 
U Z p 

Thumb CMC C 400 239.04 10,184 −2.63 0.009 ** 241.31 9276.5 −3.54 0.000 *** 
 LH 64 191.63    177.45    

Thumb MCP C 400 236.86 11,055 −1.75 0.080 225.95 10,181 −2.63 0.009 ** 
 LH 64 205.23    273.42    

Thumb IP C 400 214.15 5459 −7.37 0.000 *** 216.74 6494.5 −6.33 0.000 *** 
 LH 64 347.20    331.02    

Index MCP C 400 239.85 9862 −2.95 0.003 ** 237.69 10,724 −2.08 0.037 * 
 LH 64 186.59    200.06    

Index PIP C 400 246.80 7081 −5.74 0.000 *** 240.10 9761 −3.05 0.002 ** 
 LH 64 143.14    185.02    

Middle MCP C 400 248.15 6540 −6.29 0.000 *** 244.94 7825 −5.00 0.000 *** 
 LH 64 134.69    154.77    

Middle PIP C 400 216.99 6595 −6.23 0.000 *** 219.62 7649 −5.17 0.000 *** 
 LH 64 329.45    312.98    

Ring MCP C 400 229.43 11,573 −1.23 0.218 224.78 9712.5 −3.10 0.002 ** 
 LH 64 251.67    280.74    

Ring PIP C 400 227.95 10,981 −1.83 0.068 230.32 11,926 −0.88 0.380 
 LH 64 260.92    246.16    

Little MCP C 400 207.59 2836 −10.00 0.000 *** 224.78 9712 −3.10 0.002 ** 
 LH 64 388.19    280.75    

Little PIP C 400 216.00 6198 −6.63 0.000 *** 207.51 2805 −10.04 0.000 *** 
 LH 64 335.66    388.67    

C = control group; LH = left hemiparesis group; * p < 0.05; ** p < 0.01; *** p < 0.001; control vs. LH Mann–Whitney U test.;     

N = number of tests per group. 
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5.4.4. Comparison of the Range of Motion between the Stroke Groups 

The results of the comparison between the stroke groups are shown in Table 5.7. The results showed 

than the extension angles of the Thumb CMC and Little (MCP, PIP) joints in the left hemiparesis (LH) 

group were significantly lower than those in the right hemiparesis (RH) group. In contrast, the extension 

angles of the Index PIP and Middle MCP joints in the RH group were significantly lower. The flexion 

angles of the PIP joints of the Index, Middle and Ring fingers in the RH group were significantly larger 

than those in the LH group, while, in the LH group, the flexion angle of the Index MCP joint was 

significantly larger. Lastly, the aROM of the Thumb IP, Middle PIP, Ring PIP and Little MCP in the LH 

group was significantly larger (see Table A1.3). 

Table 5.7. Results of Mann–Whitney test of the ROM with respect to the stroke groups (left hemiparesis vs. right 
hemiparesis). 

   Extension Flexion 

Finger Joint Group N 
Mean 

Rank 
U Z p 

Mean 

Rank 
U Z p 

Thumb CMC LH 64 82.45 1923.5 −2.56 0.010 ** 72.65 2550.5 −0.04 0.970 
 RH 80 64.54    72.38    

Thumb MCP LH 64 70.77 2449.5 −0.44 0.657 73.89 2471 −0.36 0.720 
 RH 80 73.88    71.39    

Thumb IP LH 64 74.30 2445 −0.46 0.644 66.08 2149 −1.65 0.098 
 RH 80 71.06    77.64    

Index MCP LH 64 76.67 2293 −1.08 0.282 82.09 1946 −2.47 0.013 ** 
 RH 80 69.16    64.83    

Index PIP LH 64 55.27 1457 −4.44 0.000 *** 57.24 1583.5 −3.93 0.000 *** 
 RH 80 86.29    84.71    

Middle MCP LH 64 60.95 1820.5 −2.97 0.003 ** 73.53 2494 −0.27 0.791 
 RH 80 81.74    71.68    

Middle PIP LH 64 70.84 2454 −0.43 0.670 59.94 1756 −3.23 0.001 ** 
 RH 80 73.83    82.55    

Ring MCP LH 64 66.91 2202.5 −1.44 0.151 73.13 2519.5 −0.16 0.871 
 RH 80 76.97    71.99    

Ring PIP LH 64 57.68 1611.5 −3.81 0.000 51.55 1219.5 −5.39 0.000 *** 
 RH 80 84.36    89.26    

Little MCP LH 64 96.03 1054 −6.06 0.000 *** 66.45 2173 −1.56 0.120 
 RH 80 53.68    77.34    

Little PIP LH 64 85.30 1741 −3.29 0.001 ** 76.23 2321 −0.96 0.337 
 RH 80 62.26    69.51    

RH = right hemiparesis group; LH = left hemiparesis group; * p < 0.05; ** p < 0.01; ***; p < 0.001; control vs. stroke Mann–

Whitney U test.; N = number of tests per group. 

5.5 Discussion 

To the best of our knowledge, there are no previous studies that measured and evaluated the finger 

joint motions during a standardized outcome measure such as the ARAT test. In this study, we determined 

the functional range of motion (FROM) and the range of motion (ROM) of the finger joints of the right 

hand, with the exception of distal interphalangeal (DIP) joints, using a data glove (CyberGlove II®) while 
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performing the Grasp, Grip, and Pinch subtests of the ARAT. The study was conducted in healthy subjects 

and post-stroke subjects with a global ARAT score ≥ 10. In this study, both the FROM and ROM were 

analyzed. The FROM is the amplitude of motion necessary for each finger joint to perform 90% of the 

activities of the ARAT (14 activities). The FROM has been used in several studies to determine the 

minimum range of motion needed to comfortably and effectively perform activities of daily living [117], 

[118], [125], [126]. A table with the functional range of motion (FROM) for each finger joint is included 

in the Supplementary Material (Table A1.4). Determining the FROM allowed us to detect if there is a 

decrease in the arc of motion in some of the finger joints, and thus to establish rehabilitation therapy goals. 

To the best of our knowledge, there are no previous studies regarding the FROM in stroke patients. 

However, the FROM is highly dependent on the activities performed and is normally used with activities 

of daily living (ADLs) [118],[98][98],[125]. Therefore, we also decided to determine the ROM for a more 

in-depth evaluation since the ROM analyses relate to flexion and extension angles during the sixteen tests 

of the ARAT. The results of the flexion angles in the FROM (see Table 5.2) showed that the control group 

performed significantly greater flexion with the Index MCP and Middle MCP joints than the stroke groups, 

whereas no significant differences were found in the flexion angles at the Ring MCP joint. In contrast, the 

right hemiparesis (RH) group performed larger flexion angles in PIP joints of the Index, Middle, Ring, and 

Little fingers, whereas the left hemiparesis (LH) group performed larger flexion angles in the PIP joints of 

the Middle finger. The results in the RH stroke group suggest that they use a compensatory grasping strategy 

for the deficit of flexion in the Index MCP and Middle MCP joints. By comparison, the LH stroke group 

used a similar strategy for the deficit of flexion in the Middle MCP joint. In the ARAT, most of the activities 

are radial activities that include precision grip and pinch (Grip and Pinch subtests); as a result, the Index 

and Middle joints are essential in most of the tests. 

In addition, the results of the ROM in the RH and LH stroke groups showed significantly larger 

extension angles (closer to 0 deg) in the Index MCP and Middle MCP joints than those in the control group. 

Finger joint extension problems may occur because, after stroke, the ability to extend the fingers during 

grip is highly variable due to issues with the active extensor muscles of the fingers and the coordination of 

muscle activity between the flexor and extensor muscles of the fingers [127]. In Carpinella et al., patients 

with hemiplegic stroke showed significantly lower extension and flexion angles than healthy subjects in all 

the finger joints (MCP, IP) during hand open and closing movements [94]. By comparison, in our study, 

the LH and RH stroke groups showed significantly lower flexion angles in the Index MCP and Middle MCP 

joints than healthy subjects. However, the RH stroke group showed significantly larger flexion in the Index, 

Middle, Ring, and Little PIP joints. Moreover, the LH stroke group showed significantly larger flexion in 

the Middle and Little PIP joints than in the control group. The difference with Carpinella et al. is that their 

study only evaluated hand movement (open and close). In contrast, our study assessed ROM of the finger 

joints during the performance of sixteen activities with different objects (shape and size). A previous study 

found a relationship between the size of the object and the fingers used when grasping an object [122]. 
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According to Peña-Pitarch et al., in the Grasp subtest, healthy subjects used five, four, or three fingers. In 

contrast, the subjects used a three-jaw chuck pinch, involving the pads of the thumb as opposed to the pads 

of the Index and Middle fingers in the Grip subtest. Activities in the Grasp subset involve power grasping. 

Power grasping is usually used when the object needs to be held firmly and involves the ulnar side of the 

hand. In contrast, in the Grip subtest, most activities include precision grasping, which is used to perform 

fine-grained actions that require accuracy [80]. In addition, the Grasp activities involve global activities 

where the radial and ulnar sides of the hand are employed. In our study, the RH patients showed 

significantly larger flexion angles in the Ring MCP, Little MCP, and the PIP joints than the control group 

in the Grasp and Grip subset (see Tables S5 and S6), but significantly lower flexion in the Index and Middle 

MCP joints. Nevertheless, RH patients in the Grip subset, which involves radial activities (precision grip 

and pinch), used greater flexion in the ulnar side of the hand. Furthermore, RH patients showed increased 

PIP joint flexion angles, indicating a compensatory strategy involving increased Index PIP and Middle PIP 

flexion as compensation for reduced flexion angles in the Index MCP and middle MCP joints. Furthermore, 

the LH patients showed significantly lower flexion angles in the Middle MCP in the Grasp and Grip subtest 

but significantly larger flexion angles in the Middle PIP in the grip subtests (see Tables A1.5 and A1.6). 

Therefore, the LH patients showed a PIP compensation strategy similar to the RH patients in the Middle 

joints. In addition, LH patients showed reduced flexion angles in the Index MCP and Index PIP joints. On 

the other hand, several studies [113] showed that, in a precision pinch, the Index finger worked actively 

and the Thumb worked passively, i.e., the Index joints performed a more significant flexion movement than 

the Thumb joints. Similar results were observed in the control group during the Pinch subset in our study. 

At the same time, RH patients showed impairment at the MCP joints of the Index and Middle fingers, 

compensating with increased flexion of the Thumb MCP and IP joints, and the PIP joints of the Index, 

Middle, and Ring fingers (see Table A1.7). Furthermore, the LH group in the Pinch subtest showed reduced 

flexion angles in the Index MCP, Index PIP, and Middle MCP, compensating with increased flexion of the 

Thumb CMC, Thumb MCP, Middle PIP, and Ring PIP joints. Therefore, during the Pinch subtest, the LH 

and RH stroke patients also used the PIP strategy to compensate for the flexion deficit in the MCP joints. 

In addition, we found the same compensation strategy during the FROM analysis (see Figure 5.1), showing 

that this metric performed reliably with the ARAT tasks. 

On the other hand, Raghavan et al. found that stroke patients with right hemiparesis used a 

compensatory strategy that involved increased MCP flexion rather than the PIP flexion seen in controls 

[128]. The stroke patients showed reduced flexion angles at the PIP joints and extension angles at the MCP 

joints when grasping three objects of different shapes (rectangular, concave, and convex) wearing an 

instrumented glove. The difference with our study is that Raghavan et al. found the compensatory strategy 

in stroke patients with significant impairments, as were noted in their scores on the Fugl–Meyer Scale 

(FMS). In contrast, our study found the compensatory strategy in LH and RH stroke patients with moderate 

and good recovery, who obtained an ARAT global score greater than ten before the study. Furthermore, in 
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Raghavan et al., stroke patients were evaluated during the grasping of only three objects, and in our study, 

stroke patients were assessed using 12 different objects. In addition, we found the compensatory strategy 

in the assessment of patients with left and right hemiparesis. 

Finally, we evaluated patients with right and left hemiparesis separately in this study. Although 

patients with right-sided hemiparesis had the dominant hand affected, the results showed similar behavior 

in both groups. However, the results showed that, in the LH group, the flexion angle of the Index MCP joint 

was significantly higher than that in the RH group. In contrast, the index PIP joint flexion angle was larger 

in the RH group. Therefore, we determined that the LH group presented the compensatory strategy (PIP) 

in the Middle finger, whereas the RH group presented the PIP strategy in the Index and Middle fingers. 

Movement deficits in finger joints in patients with right hemiparesis found in our study suggested that 

patients with RH suffered a more severe stroke. Moreover, Hedna et al. found that left hemispheric ischemic 

strokes appear to be more frequent and have a worse outcome [129]. In our study, seven patients presented 

stroke in the left hemisphere and five in the right hemisphere. In addition, patients having suffered a stroke 

in the right hemisphere showed a higher ARAT score, consistent with that presented by Hedna et al. 

However, given the small and selected sample in this study, we are unable to generalize these compensatory 

strategies to post-stroke patients overall. 

Importantly, the results presented in this study showed that the integration of the CyberGlove II® 

during the performance of the ARAT allows for a more quantitative and sensitive assessment of post-stroke 

patients. In addition, analyzing and measuring the FROM and ROM of the finger joints revealed the 

compensatory strategies used for impairments in the finger joints of stroke patients.  

5.6. Limitations 

This research, however, is subject to several limitations. Firstly, the subjects in this study had a 

moderate and good recovery; futures studies should evaluate subjects with more severe impairments for 

more complete results. Secondly, it was impossible to obtain consent from the hospital’s ethics committee 

to have access to more stroke patients due to the restrictions of COVID-19 and the risk of SARS-CoV-2 

infection among patients with a history of stroke. Thirdly, the method proposed in this study to evaluate the 

finger joints is not compatible with the Gross movement subtest of the ARAT because this test evaluates 

the movement of the arm. Finally, abduction and adduction angles of the finger joints were not obtained 

and not assessed in this study. 

5.7. Conclusions 

The results presented in this study demonstrated that the integration of a data glove (CyberGlove II®) 

during the performance of a validated clinical test such as the ARAT can be used to determine the range of 

motion (ROM) and the functional range of motion (FROM) of the finger joints. Therefore, the assessment 

of the FROM and ROM allowed us to detected finger joint impairments and compensatory grasp strategies 
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in stroke patients that were not detected using clinical scores. The present study is of clinical relevance and 

allows for a more accurate and sensitive evaluation of a validated test, which would help occupational 

therapists and other health professionals to create rehabilitation programs focused on the recovery of hand 

function in stroke patients. However, future studies should consider a sample of more stroke subjects and 

incorporate an inertial sensor system to assess hand motion. 
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CHAPTER 6 

Classification Models in Post-stroke 

patients based in Human Hand Motion 

 

 

6.1. Overview 

In this chapter, we present the development of Machine Learning models for the classification of 

Action Research Arm Test (ARAT) activities between Healthy and post-stroke subjects with similar scores. 

For this purpose, we used three classification algorithms: Support Vector Machine (SVM), Random Forest 

(RF), and K-N Neighbors (KNN). The performance of each of the classification models was evaluated with 

the metrics: Precision, Accuracy, Recall, F1-score, and AU-ROC. In addition, due to data class imbalance, 

the three models were balanced using the Borderline-SMOTE oversampling algorithm, and their 

performance were compared with the 5x2cv combined F-test. Finally, the performance of the classification 

models before and after class balancing was compared using the paired t-test to select the best one.  

6.2. Introduction 

In the previous chapters, we measured the extension and flexion angles of eleven finger joints in 

healthy subjects (Chapter 4) and stroke patients (Chapter 5) during the performance of the Action Research 

Arm Test (ARAT) using the CyberGlove II®. The information obtained allowed us to construct a dataset 

composed of the flexion and extension angles of 25 healthy individuals during the performance of 400 

ARAT activities and 12 post-stroke patients during the execution of 144 ARAT activities completed with 

an ARAT score of 2 or 3. Therefore, based on this dataset, this chapter presents the development of Machine 

learning models for classifying ARAT activities with similar scores. In particular, the chapter had two main 

objectives: I) Develop classification models to predict whether the ARAT activities were performed by a 

healthy subject or by a subject post-stroke with good upper extremity functionality, based on the hand 

motion information obtained with the CyberGlove II®. Therefore, a high performance of the classification 

model will demonstrate that there are differences between the activities of healthy and post-stroke subjects 

that are not detected by the ARAT scoring method. On the other hand, this chapter have a second objective: 

II) Evaluate if data class balancing using the Borderline-SMOTE method allows obtaining better 

performance-classifiers. 
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6.2. Basic Concepts  

6.2.1. Machine Learning 

Machine learning (ML) is considered a subfield of computer science where knowledge from artificial 

intelligence and statistics is applied to the generation of computational models. Contrary to algorithms in 

traditional programming, ML algorithms can learn automatically and generate a model from input data 

without being explicitly programmed to produce a particular output [130]. The automatic learning process 

is performed through training and the data for training is known as training data [131]. Therefore, to 

generate an accurate model, a large quantity and quality of training data are necessary [131]. Besides, the 

independent variables or attributes that are introduced into an algorithm are called "features." Actually, the 

algorithm learns from these features to make a prediction. Therefore, selecting quality features that are 

relevant, independent, and informative is critical to making an accurate prediction. The model features can 

be continuous, categorical, or binary [132]. On the other hand, the ML subfield tries to emulate the 

functioning of the human brain in tasks such as data processing, image recognition, and pattern 

identification [133]. In recent years it has been used in various clinical applications, for example, in medical 

diagnosis, disease classification, prediction of clinical outcomes, and treatment response [134]. ML can be 

classified into three main categories: supervised learning, unsupervised learning, and reinforcement 

learning. 

6.2.2. Classification Models 

The classification algorithms belong to supervised learning. In supervised learning, the algorithm learns 

through a labeled data set (for example, a set of images labeled as containing a dragon or a dinosaur), where 

each training data sample is presented in the form of an input value with an output label [135]. The algorithm 

trains a model that, from the input values, can predict the correct response based on the features defined in 

the process [131]. When the outputs of the prediction model are discrete variables, the model is called a 

classifier. The classification problems are commonly categorized into binary classification and multi-class 

classification. In binary classification, the dataset are classified into two classes, while in multi-class 

classification, the given dataset is classified into more than two classes [136]. 

The types of classification algorithms according to [137] are as follows: 

▪ Logical Regression 

▪ Naïve Bayes Classifier 

▪ Perceptron 

▪ Support Vector Machine 

▪ K-means Clustering 
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▪ Boosting 

▪ Decision Tree 

▪ Random Forest 

▪ Neuronal Networks 

▪ Bayesian Networks 

In this thesis, we performed a ML models to classify ARAT activities of healthy and post-stroke 

subjects. For this purpose, we selected three of the most widely used and best-performing classification 

algorithms, which are Support Vector Machine (SVM), Random Forest (RF), and K-N Neighbors (KNN). 

The theoretical background of the classification models used in this thesis is presented below.   

6.2.3. Support vector machine (SVM) 

Support vector machines (SVM) were developed by Vladimir Vapnik and colleagues [138], SVM are 

a set of supervised learning algorithms. SVM is one of the most powerful and widely used methods in 

machine learning. Despite its simplicity, it has proven to be a robust algorithm and can be applied to 

problems in many areas. These methods are mainly used for classification problems but can also be applied 

in regression and outlier detection. Among the main advantages of SVM are the following: effective in high 

dimensional spaces, the optimization problem is convex and provides a unique solution, the model is robust 

to over-fitting, it is effective even when the number of dimensions is greater than the number of samples, 

the use of the kernel provides flexibility, and the use of support vectors allows it to provide memory 

efficiency [139]. The SVM technique's basic idea is to find an optimal hyperplane in a high dimensionality 

space that separates the data perfectly into two classes. A good separation between the classes allows a 

correct classification of the test sample, i.e., it is necessary to find the maximal margin of separation to the 

points closest to this hyperplane [140]. Hence, the vectors (points) that define the hyperplane are the support 

vectors. Nevertheless, the classes can be linearly separable or not separable (see Figure 6.1).  

 

Fig 6.1. Illustration of data with Linear Separation (left); Illustration of data with Non-linear Separation (right). 
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However, when the data are linearly separable, several separation lines may exist, which would give 

rise to different separation hyperplanes (see Figure 6.2). Therefore, selecting an incorrect hyperplane may 

result in classification problems with real data (overfitting), so the algorithm may not generalize well (see 

Figure 6.2). In contrast, the optimal hyperplane is the one where the maximum margin is found, i.e. where 

the separation between classes is as wide as possible (see Figure 6.3). 

 

 

Fig 6.2. Example of different separation hyperplanes (left); Example of over-fitting problem with training and 

classification data (highlighted in yellow) (right). 

 

 

Fig 6.3. Example of Optimal Separating Hyperplane and its associated maximum margin; Hyperplane and decision 

boundary are equivalent at small dimension space. 
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However, most of the time, the data are not linearly separable. Hence, the Soft margin and Kernel 

Trick methods are used to find the separating hyperplanes. The soft margin o also called support vector 

classifier, is a method used in cases where the data are linearly quasi-separable, relaxing the degree of class 

separability. This technique creates a soft margin that tolerates the classification errors of some samples at 

the cost of suffering a penalty. The soft margin handles a fitting parameter called C that controls the trade-

off between training errors or overfitting and rigid margins. 

 

Fig 6.4. Example of Soft-Margin in SVM. 

On the other hand, the Kernel method is suitable for problems with data that are not linearly separable. 

This technique consists of transforming low-dimensional training sets to a higher-dimensional space, so 

that the data become linearly separable. Therefore, it allows to obtain a more accurate classifier [141]. 

Among the most commonly used kernels for use with SVMs are: 

Lineal 

The linear kernel is one of the most commonly used when data is linearly separable. This kernel is primarily 

used when there are a large number of features in a data set. 

𝑘(𝑥𝑖𝑥𝑗) =  (𝑥𝑖
Τ 𝑥𝑗) 

Polynomial (parameters p y c) 

The Polynomial kernel represents the similarity training samples in a feature space over polynomials of the 

original variables. 

𝑘(𝑥𝑖𝑥𝑗) =  (𝑥𝑖
Τ 𝑥𝑗 + 𝑐)

𝑝
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Radial basis function kernel (RBF) (tunable parameter σ2) 

Radial Basis Function (RBF) Kernel is one of the most widely used kernels due to its similarity to the 

Gaussian distribution. This kernel is a Radial Basis Function, with the support vectors as centers. Therefore, 

SVM is used to find the number (and location) of centers needed to form the RBF network with the highest 

expected generalization performance [142]. Figure 6.5 illustrates an example of the Radial Basis Function 

(RBF) kernel SVM. 

 

𝑘(𝑥𝑖𝑥𝑗) =  (−
||𝑥𝑖  − 𝑥𝑗||2

2σ2 ) 

where, 

1. σ is the variance and our hyperparameter 

2. ||xi - xj|| is the Euclidean distance between two points X₁ and X₂ 

 

Fig 6.5. Example of Non-Linear SVM; Kernel= Radial basis function (RBF). 

6.2.4. K-Nearest Neighbor Classification 

The technique K-Nearest Neighbor (KNN) belongs to the supervised language and is commonly used 

for classification problems but is also applied in regression problems. The KNN classification algorithm is 

intuitive and relatively simple to use. The operation of this method is based on the fact that when a new 
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data point is introduced to the algorithm with a given value of k, a search for the k nearest neighbors of the 

data point is performed. Then, the nearest neighbors are found by calculating the distance between the 

introduced data point and the existing data points. The distance can be calculated using various techniques 

such as Euclidean distance, Manhattan distance, and cosine distance [143]. Finally, the KNN algorithm 

among these k neighbors, count the number of the data points in each category to select the group to which 

the new data point belongs. Importantly, the k value selected has important impact on the performance of 

KNN algorithm. A big k decreases the variance caused by random error, but running the risk of ignoring 

small but important patterns [144]. On the other hand, KNN is also called a lazy learner that memorizes the 

complete training dataset and not require training. However, the process of classify a new point, require a 

lot of memory and CPU resources. Additionally, KNN is a non-parametric algorithm so that if more 

instances are introduced, the learning changes drastically. Therefore, the learning does not depend on the 

given data, which is a feature of a non-parametric algorithm. The main advantages of KNN are the 

following: Simplicity, No training time, non-linear decision boundary, Robust to noisy training data, hyper-

parameter tuning easy, and include different distance metrics [145]. Figure 6.6. illustrates the classification 

process in KNN. The green circle encloses the two objects considered for k=2; the unknown object is 

classified in the class 1 because the two neighbors belong to class 1. In contrast, the red circle encloses the 

eight objects considered for k=8; therefore, the unknown object is classified in the class 2 because five of 

the eight neighbors belong to class 2. 

 

Fig 6.6. Illustration example of K-Nearest Neighbor (KNN) algorithm. 

6.2.5. Random Forest 

The Random Forest (RF) algorithm was first introduced by Breiman [146]. The RF is one of the most 

popular tree-based supervised learning algorithms. Moreover, this algorithm is the most flexible and easy 

to use to solve classification and regression problems. Random forests build hundreds of decision trees to 

perform the classification process[147]. The RF algorithms use the ensemble technique called Bootstrap 
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Aggregation or Bagging. Bagging technique selects a random sample from the data set, which is referred 

to as bag, and the rest which are left out of the sample are referred to as out-of-bag (oob) samples [147]. 

Therefore, each tree is generated from the samples provided by the original data with a replacement known 

as row sampling. This step of row sampling with replacement is called bootstrap [148]. Each tree is then 

trained independently, which generates a particular result. The forest selects the final classification based 

on majority voting after combining the results of each of the trees. The step of combining all the results and 

generating a classification based on the majority vote is known as aggregation. Thus, the aggregation step 

helps to reduce the variance. In addition, the oob (out-of-bag) data is used to obtain the OOB Error, which 

serves as a validation error and is essentially in the validation set because there is no need for cross-

validation. Finally, the main advantages of RF are the following: the accuracy of RF is generally very high, 

can handle large datasets efficiently, present estimates for variable importance in classification, forests 

generated can be stored and reused, and RF include methods for balancing error in unbalanced data 

sets[147]. Figure 6.7 shown the classification process in RF. 

 

Fig 6.7. Conceptual diagram of the Random Forest algorithm. 

6.3 Methods 

6.3.1. Programming Language 

This project was implemented on Spyder (Python 3.9), an Integrated Development Environment (IDE) 

specially designed for Python. The three classification models were developed using the scikit learn library, 

also called sklearn. The sklearn is a python library used to implement machine learning models. In this 

library, we can implement several classification algorithms and offers the following advantages: simple, 

effective, free software, and user-friendly [149]. On the other hand, working with Python allows us to 

perform data analysis and manipulation with the Panda library and make 2D plots with the Matplotlib 

library. 
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6.3.2. Data pre-processing 

The dataset used in the classification model is composed of the flexion and extension angles of the 

finger joints of each subject during each ARAT test. The data collection and statistical analysis procedure 

for this data set were presented in the previous chapters. In the dataset each sample was labeled according 

to the class to which each activity belonged (Control=0; Stroke =1). There are 800 cases in class ‘0’ and 

288 cases in class ‘1’. Table 6.1 shown the structure of the dataset used in the model.  

Table 6.1 Dataset variables 

y1 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 

0 Test 01 GRASP Extension 4.47 13.51 1.73 -16.75 7.72 8.02 3.93 -17.50 3.16 8.64 2.13 

1 Test 12 GRIP Flexion 18.42 17.87 -23.39 28.44 9.41 27.20 10.76 11.30 13.52 21.26 4.42 

0 Test 13 GRASP Extension 6.70 13.78 0.65 20.91 13.05 22.22 11.41 13.85 12.03 20.11 3.68 

1 Test 04 PINCH Flexion 13.85 15.30 7.08 17.12 10.53 19.67 8.00 13.23 10.31 18.02 4.89 

y1= response of the dataset; x1-x14 = features of the dataset 

In the dataset we identify input and output variables, the input is known as feature, and the output is 

known as response (discrete variable). The dataset has 14 features; the first three correspond to "Activity," 

"Subtest," and "Motion," and the remaining eleven correspond to the angles of the finger joints. On the 

other hand, the output variable is the class to which the subject corresponds {0-Control,1-Stroke}. Hence, 

the categorical features in the dataset were transformed into binary values using one-Hot encoding method 

with sklearn. Then, the features corresponding to the finger joints were standardized using Sklearn's 

StandardScaler function. There were no missing values in the dataset and therefore the 1088 samples were 

used in the classification models.  

6.3.3. Training and testing sets 

As mentioned previously, a classification model is trained using a training data set. Therefore, we split our 

dataset into two parts a training set and test set. To perform this process, we use the sklearn function 

(train_test_split). In each classification model we used 75% of the data as training set and the remaining 

25% as test set. The dataset was not split into the validation set because we used the GridSearchCV 

technique for tuning the hyperparameters of our algorithms. This technique performs the cross-validation 

process as detailed below. Finally, the training set is fitted to each of the classifier models to subsequently 

perform the hyperparameter tuning.  

The following functions from sklearn were used for the development of each of the classifiers. 

▪ from sklearn.neighbors import KNeighborsClassifier() 

▪ from sklearn.ensemble import RandomForestClassifier() 

▪ from sklearn.svm import SVC () 



 

77 

 

6.3.4. Tuning hyperparameters 

Machine learning models have hyperparameters. Hyperparameters are user-adjustable parameters that 

can vary in quantity from one model to another. Therefore, proper selection of parameter values allows for 

finding the optimal model performance. However, some models have many possible combinations of 

hyperparameter values, so adjusting them manually is not the best alternative. There are several 

computational methods to find the optimal hyperparameters of the model. This process is also known as 

hyperparameter tuning. Two of the most commonly used are Grid Search CV and Randomized Search CV. 

We decided to use the GridSearchCV this technique uses all possible permutations of the hyperparameters 

of a given model. The performance of each model is then evaluated, and the best-performing model is 

selected. In addition, GridSearchCV has the advantage of including cross-validation. Cross-validation is a 

technique to identify different problems during model training, such as the occurrence of overfitting. To do 

this, GridSearchCV will split the training data into training and test partitions to tune the hyperparameters 

on these data[149]. Next, the model will be fitted with the full training data with the best parameters found. 

Finally, the model is evaluated with the test data set aside at the beginning of the process (unseen data). 

However, using all possible combinations consumes a large amount of memory, but in our thesis, we did 

not handle Big data. The GridSearchCV method is available in the sklearn class and can be initiated by 

creating an object of GridSearchCV () as is shown below [149]: 

hyp = GridSearchCV (estimator, param_grid, cv, scoring) 

estimator = The model selected (SVM, RF, KNN);  

param_grid = Dictionary with parameters names (str) as keys and lists of parameter settings to try as values;  

cv = Number of folds for K-fold cross-validation;  

scoring = The performance measure. For example, ‘r2’ for regression models, ‘precision’ for classification 

models. 

6.3.5. Classification metrics 

One of the most important steps in machine learning is evaluating the model performance. Different 

metrics exist for regression and classification models. Since in regression, results are continuous values and 

in classification, results are discrete values, the evaluation metrics are distinct. However, in this thesis, we 

focus on classification models. Evaluation metrics within classification models can be applied in two 

phases. Firstly, in the training phase, to produce a more accurate prediction result in the future evaluation 

of the classification model. Then, in the testing phase, evaluation metrics are used to measure the efficacy 

of the classifier when tested on unseen data[150]. Therefore, knowing the different metrics and making the 

proper selection is crucial to improving the model's performance. The most commonly used metric in 

classification is accuracy  [150], but there are others that are important for evaluating classification models. 

Therefore, to evaluate the performance of the classification models, we will discuss the metrics used in this 
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Thesis: Confusion matrix (not a metric but fundamental to the others), Precision, Accuracy, Recall, F1-

score, AU-ROC, and the Classification Report. 

Confusion Matrix 

A confusion matrix is a useful tool for analyzing the performance of classification models when tested on 

unseen data. Furthermore, it is not exactly a performance metric, but is a basis on which other metrics 

evaluate the results. A confusion matrix is a cross table of true labels versus model predictions. Each row 

of the confusion matrix represents instances of an actual class, and each column represents instances of a 

predicted class [150]. Typically, it is used for binary classification problems but can also be applied to 

multi-class Classification problems. In Figure 6.8 a binary confusion matrix of 2x2 is shown.  

 

Figure 6.8. Confusion Matrix Binary Classification; TP and TN represent the number of positive and negative 

instances that are correctly classified. For its part, FP and FN represent the number of misclassified negative and 

positive instances, respectively. 

Accuracy 

Accuracy measures the ratio of the number of correct predictions over the total number of predictions. 

Therefore, accuracy measures how often the classifier correctly predicts. This can be calculated using the 

below formula: 

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
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Precision 

Precision: measure the positive instances that are correctly predicted from the total predicted instances 

in a positive class. This can be calculated using the below formula: 

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall 

Recall is used to measure the fraction of positive instances that are correctly classified. Therefore, the 

recall must be as high as possible and It can be calculated using the below formula 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

F1-Score 

F-score or F1-Score evaluates the recall and precision at the same time. Therefore, F-score is maximum 

if the recall is equal to the precision. This can be calculated using the below formula: 

 

2 ×
𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

Multi-class Metrics 

In contrast, the metrics Precision, Recall and F-score in multi-class classification are calculated as the 

arithmetic mean of the individual class metrics [151]. The formulas are as follows: 

 

𝑀𝑎𝑐𝑟𝑜 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑑 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑘

𝐾
𝑘=1

𝐾
 

 

𝑀𝑎𝑐𝑟𝑜 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑑 𝑅𝑒𝑐𝑎𝑙𝑙 =  
∑ 𝑅𝑒𝑐𝑎𝑙𝑙𝑘

𝐾
𝑘=1

𝐾
 

 

𝑀𝑎𝑐𝑟𝑜 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑑 𝐹1𝑆𝑐𝑜𝑟𝑒 =  2 ×
𝑀𝑎𝑐𝑟𝑜 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑑 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑀𝑎𝑐𝑟𝑜 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑑 𝑅𝑒𝑐𝑎𝑙𝑙

𝑀𝑎𝑐𝑟𝑜 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑑 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛−1 × 𝑀𝑎𝑐𝑟𝑜 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑑 𝑅𝑒𝑐𝑎𝑙𝑙1
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AUC-ROC (Area under Receiver operating characteristics curve) 

The Receiver Operating Characteristic (ROC) curve is graph used to evaluate the performance of 

binary classification algorithms, i.e., between two classes. Contrary to the other metrics, the ROC curve 

provides a graphical representation. The ROC curve is obtained by plotting the true positive rate (TPR) (y 

axis) against the false positive rate (FPR) (x axis) for a single classifier. In the other hand, The Area Under 

the Curve (AUC) is a metric that allows to summarize the information displayed with the ROC curve. 

Therefore, the higher the AUC value (closer 1), the better performance of the binary classifier in a given 

classification test [152]. An illustration of the ROC curve is shown in Figure 6.9. 

 

Figure 6.9. Example of distinct receiver operating characteristic curves (ROC). 

Classification Report 

The classification report displays the following metrics: precision, recall, and f1-score. In addition, the 

report includes the support value, which is the number of samples of the true response that lies in each class. 

Therefore, these metrics provide a better understanding of the overall performance of the trained model. 

This report can be used in both binary and multi-class classification. 

6.3.6. Over-sampling Data 

In this thesis, the classes in the data set are slightly unbalanced. Therefore, the imbalanced data 

problem of classification models is commonly solved with oversampling and undersampling techniques. 

The advantage of oversampling over undersampling is that no samples are lost from the original training 

set, since all data from the minority and majority classes are preserved [153]. However, in a large dataset, 

the time and memory consumption could be very large and costly in oversampling. Since the dataset in our 

thesis is not huge and the imbalance is mild, we do not face this problem. Therefore, we selected an 
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oversampling technique. We decided to use the Borderline-SMOTE algorithm motivated by the results in 

studies of arrhythmia detection[154], estimation brain metastasis [155] and emotions recognition [136]. 

Borderline-SMOTE is an algorithm derived from SMOTE (Synthetic Minority Over-sampling 

Technique). SMOTE uses the k-nearest neighbor algorithm to generate new and synthetic data to over-

sampled the minority class [156]. In contrast, Borderline-SMOTE generates the synthetic data around the 

borderline between the two classes, unlike SMOTE, where synthetic data is created randomly in all the 

minority samples [157].  

The procedure of Borderline-SMOTE is as follows: First, we calculate the nearest neighbors in the 

minority class N in all the training set samples. Next, we identified the nearest neighbors; if the majority 

correspond to the majority class, the samples are put in a set called Danger. The samples in Danger 

correspond to the borderline data of the minority class. Then, we selected a random N nearest neighbors for 

each sample in Danger to create the synthetic data. Therefore, we calculate the distance between the sample 

and its N nearest neighbors and multiply by a random number between 0 and 1. Finally, the synthetic 

samples of the minority class are generated: 

𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 =  𝑝𝑗 + 𝑟𝑗 ∗ 𝑑𝑖𝑓𝑗,        𝑗 = 1,2, … , 𝑠 

Where pj represents the samples in Danger, rj represents a random number between [0,1], and difj 

represents the distance between the samples and the N nearest neighbor. 

6.3.7. Statistical Analysis 

The three classification models (RF, SVM, KNN) were compared to determine which has the best 

performance. First, we evaluated the performance of the three classification models with different 

evaluation metrics such as Accuracy, Precision, Recall, F1-score, and AUC-ROC in the testing set. Next, 

the models were evaluated using k-fold cross-validation with five folds and two replicates, giving ten scores 

for each model. Then, the scores between models were compared with the 5x2cv combined F test [158] 

using the MLxtend library by Sebastian Raschka [159], which provided the f-statistic and p-value. 

Subsequently, we evaluated the performance of the three classification models with the evaluation metrics 

after balancing the data classes using the technique Borderline-SMOTE. The scores between the three 

models were compared using the 5x2cv combined F test. Finally, each classification model was compared 

before balancing and after balancing using the paired t-test. The statistical analysis was conducted using 

the software Anaconda (Anaconda Inc, Austin, TX, USA) with Python 3.9. A p-value of less than 0.05 was 

considered statistically significant for all the statistical analyses.  

6.4. Results  

In this section, the results of the performance of the classification models Random Forest (RF), K-

nearest Neighbor (KNN), and Support Vector Machine (SVM) are presented.   
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6.4.1. Hyperparameters selection 

The GridSearchCV technique was applied to each of the classification algorithms (RF, KNN, SVM) 

used in this thesis. The hyperparameter values obtained were used to evaluate each classifier in the 

prediction of results with the test set. 

First, the hyperparameters of the SVM model were evaluated and the results were as follows. 

SVM: {'C': 10, 'gamma': 0.1, 'kernel': 'rbf'} 

Then, the hyperparameters of the KNN model were evaluated and the results were as follows. 

KNN: {'leaf_size': 20, 'metric': 'minkowski', 'n_neighbors': 10, 'p': 3, 'weights': 'distance'} 

Finally, the hyperparameters of the RF model were evaluated and the results were as follows. 

RF: {'max_depth': 50, 'min_samples_leaf': 1, 'min_samples_split': 3, 'n_estimators': 500} 

6.4.2. Performance of the Classification Models in the Dataset 

Random forest  

The Random forest (RF) classifier showed a high accuracy of 93% and a high precision of 96.5%. In 

contrast, the recall of 76.4% and the f1-score of 85.3% were low. On the other hand, the classification report 

presented in Table 6.2 shows that the recall and the f1-score values were higher in the control class but 

were lower in the stroke class. In contrast, the precision was higher in the stroke class, as is shown in the 

confusion matrix in Figure 6.10.  

Table 6.2. Random Forest model classification report  

Classes Precision Recall F1-score Support 

Control 0.92 0.99 0.95 200 

Stroke 0.96 0.76 0.85 72 

 

Fig 6.10. Random Forest (RF) Confusion Matrix 
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K-nearest neighbor 

The K-nearest neighbor (KNN) classifier presented a high precision of 95.3% and an accuracy of 

87.9%. In contrast, the recall of 56.9 % and the f1-score of 71% were low. The Table 6.3. shown that the 

recall and f1-score were higher in the control class. While the precision was low in the control class as is 

shown in Figure 6.11. 

 

Table 6.3. K-nearest neighbor model classification report  

Classes Precision Recall F1-score Support 

Control 0.86 0.99 0.92 200 

Stroke 0.95 0.57 0.71 72 

 

Fig 6.11. K-nearest neighbor (KNN) Confusion Matrix. 

Support Vector Machine 

The Support Vector Machine (SVM) classifier showed a high precision of 98.3% and a high accuracy 

of 94.5%. In contrast, the SVM classifier showed a recall of 80.5% and an f1-score of 88.5%. However, the 

classification report in Table 6.4 showed high values in precision, recall, and f1-score in the control class 

and in the precision of the stroke class, as is shown in the confusion matrix in Figure 6.3. 

Table 6.4. Support Vector Machine model classification report  

Classes Precision Recall F1-score Support 

Control 0.93 0.99 0.96 200 

Stroke 0.98 0.81 0.89 72 
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Fig 6.12. Support Vector Machine Confusion Matrix. 

6.4.3 Comparison of classification models 

Table 6.5 shows the mean values and deviation standard of several evaluation metrics for the RF, 

SVM, and KNN classifiers. The results showed that the three models have similar precision and no 

significant differences were found among the three classifiers (p > 0.05). The SVM classifier showed 

significantly higher accuracy and f1-score than the KNN classifier. In contrast, no significant differences 

(p > 0.05) were found in accuracy and f1-score between the SVM and RF classifiers. In addition, the SVM 

classifier showed a significantly higher recall and AUC than the RF and the KNN classifiers.  

Table 6.5. Comparison of classification models in different evaluation metrics 

Evaluation Metric 
RF SVM KNN RF − SVM RF − KNN SVM − KNN 

Mean ± SD Mean ± SD Mean ± SD f p f p f p 

Precision 0.961 ± 0.02 0.969 ± 0.03 0.951 ± 0.02 1.459 0.355 1.788 0.271 1.421 0.366 

Accuracy 0.933 ± 0.01 0.958 ± 0.01 0.913 ± 0.01 2.917 0.124 2.2 0.199 26.388 0.001*** 

Recall 0.781 ± 0.04 0.872 ± 0.04 0.710 ± 0.07 8.959 0.013* 1.089 0.513 45.417 0.00*** 

F1-score 0.861 ± 0.02 0.917 ± 0.02 0.811 ± 0.04 3.789 0.077 1.7 0.29 36.179 0.00*** 

AUC 0.980 ± 0.01 0.984 ± 0.03 0.939 ± 0.02 5.445 0.038* 8.15 0.016** 11.754 0.007** 

RF= Random Forest; SVM= Support Vector Machine; KNN= K-nearest Neighbors; SD = standard deviation; f= f statistic; *: p 

<= .05; **: p <= .01; ***: p <= .001 

 

Figure 6.13. The receiver operating characteristic curves (ROC) of the three classification models in the test set. 
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Borderline-SMOTE Data Balancing 

The dataset in this thesis presented a mild case of imbalanced data between the two classes (control 

and stroke) as is show in Figure 6.14. The results presented earlier in this chapter showed a high accuracy 

in the three classifiers. However, the accuracy metric is not a good indicator when there are imbalanced 

classes, as in this case. In contrast, the classifiers KNN and RF showed a lower recall especially in the 

classification of subjects of the control class. Therefore, to optimize the performance of the classifiers, we 

decided to use the Borderline-SMOTE algorithm for data oversampling. Figure 6.15 shown the classes after 

the data balancing with Borderline-SMOTE. 

 

Figure 6.14 Distribution of each class in the dataset; 0=Control and 1=Stroke. 

   

Figure 6.15. Distribution of each class in the dataset after Borderline-SMOTE; 0=Control and 1=Stroke. 

6.4.4. Classification Models with Borderline-SMOTE 

The three classification models showed an improvement in the classification of both classes (control 

and stroke), as is shown in Table 6.6 after data balancing with Borderline-SMOTE. Previously, the 

classification models showed difficulty in classifying subjects with stroke due to the class imbalance. The 

improvement was remarkable, particularly in the metrics of Recall and f1-score. The overall performance 

of the classification models in the test set was evaluated with the following evaluation metrics: Accuracy, 
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Precision, Recall, F1-score, and ROC AUC. The results were as follows: The SVM classifier showed a 

precision of 98%, while the RF classifier showed a precision of 96.4%, and the KNN classifier showed a 

precision of 86.3%. On the other hand, the KNN presented a recall value of 98% but analyzing the 

classification report in Table5 we observed a low recall value of 84% in the control class. In contrast, the 

SVM classifier presented a recall value of 97.5% and the RF presented a recall of 94% and both classifiers 

had a uniform recall value in the two classes. In addition, the SVM classifier showed the highest f1-score 

of 97.7 %, while the RF classifier showed a f1-score of 95.2% and the KNN classifier showed a f1-score 

of 91.8%. Finally, the Receiver Operating Characteristic (ROC) curve and the AUC (area under the ROC 

curve) of the three classifiers is shown in Figure 6.16.   

Table 6.6. Classification Report of the three classification models after data balancing (Borderline-SMOTE) 

Evaluation 

Metric 

RF SVM KNN 

Control Stroke Control Stroke Control Stroke 

Precision 0.94 0.96 0.98 0.86 0.98 0.98 

Recall 0.96 0.94 0.84 0.98 0.98 0.97 

F1-score 0.95 0.95 0.91 0.92 0.98 0.98 

Support 200 200 200 200 200 200 

Accuracy 0.95 0.98 0.91 

RF=Random Forest; SVM= Support Vector Machine; KNN=K-nearest Neighbors  

 

Fig 6.16. The receiver operating characteristic curves (ROC) of the three classification models with Borderline-

SMOTE  

6.4.5. Performance Comparison between Classifiers after Borderline-SMOTE 

Table 6.7 shows the mean values and deviation standard of several evaluation metrics for the RF, 

SVM, and KNN classifiers using Borderline-SMOTE. As can be seen, the three classification models have 

a similar and consistent performance. The results showed no significant differences (p > 0.05) in accuracy, 

recall, and f1-score among the three classifiers. However, the RF classifier showed significantly higher 

precision than the KNN classifier. In contrast, the RF and the SVM classifiers showed a significantly higher 

AUC than the KNN classifier.  
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Table 6.7. Comparison of classification models after Borderline-SMOTE in different evaluation metrics  

Evaluation 

Metric 

BS_RF BS_SVM BS_KNN BS_RF − BS_SVM BS_RF − KNN BS_SVM − KNN 

Mean ± SD Mean ± SD Mean ± SD f p f p f p 

Precision 0.971 ± 0.014 0.968 ± 0.008 0.914 ± 0.021 0.551 0.803 6.083 0.03* 4.049 0.068 

Accuracy 0.971 ± 0.010 0.978 ± 0.006 0.948 ± 0.014 1.691 0.293 2.81 0.133 3.88 0.074 

Recall 0.970 ± 0.014 0.989 ± 0.007 0.989 ± 0.009 3.403 0.094 3.8 0.077 2.765 0.137 

F1-score 0.971 ± 0.010 0.978 ± 0.006 0.950 ± 0.013 1.833 0.261 2.525 0.159 3.668 0.082 

AUC 0.996 ± 0.002 0.995 ± 0.004 0.980 ± 0.009 4.074 0.067 7.457 0.019* 7.098 0.022* 

BS_RF= Borderline-SMOTE in Random Forest; BS_SVM= Borderline-SMOTE in Support Vector Machine; BS_ KNN= 

Borderline-SMOTE in K-nearest Neighbors; SD = standard deviation; f= f statistic; *: p <= .05; **: p <= .01; 

6.4.6. Performance comparison of the Classifiers before and after data balancing 

In general, the three classification models RF, KNN, SVM showed an improvement after the data 

balancing process using the Borderline-SMOTE technique in several metrics. In the statistical comparison 

of the classifiers with unbalanced data and with data balancing, the following results were obtained. In 

precision metrics, no significant differences were found in the RF and SVM classifiers before data 

balancing and after data balancing. In contrast, the KNN classifier after data balancing showed significantly 

lower precision than before balancing, as is shown in Figure 6.17. On the other hand, the RF, SVM, and 

KNN classifiers showed significantly higher accuracy, recall, f1-score, and AUC after data balancing, as is 

shown in Figure 6.18-6.21. 

 

Figure 6.17. Comparison of Precision between Classification models with imbalanced and oversampled data. 

RF=Random Forest; BS_RF= Borderline-SMOTE in Random Forest; SVM= Support Vector Machine; BS_SVM= 

Borderline-SMOTE in Support Vector Machine; KNN=K-nearest Neighbors; BS_ KNN= Borderline-SMOTE in K-

nearest Neighbors; ns: p > 0.05; **: p <= .01. 
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Figure 6.18. Comparison of Accuracy between Classification models with imbalanced and oversampled data. 

RF=Random Forest; BS_RF= Borderline-SMOTE Random Forest; SVM= Support Vector Machine; BS_SVM= 

Borderline-SMOTE Support Vector Machine; KNN=K-nearest Neighbors; BS_ KNN= Borderline-SMOTE K-nearest 

Neighbors; **: p <= .01; ****: p <= .0001. 

 

Figure 6.19. Comparison of Recall between Classification models with imbalanced and oversampled data. 

RF=Random Forest; BS_RF= Borderline-SMOTE Random Forest; SVM= Support Vector Machine; BS_SVM= 

Borderline-SMOTE Support Vector Machine; KNN=K-nearest Neighbors; BS_ KNN= Borderline-SMOTE K-nearest 

Neighbors; ****: p <= .0001. 
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Figure 6.20. Comparison of F1-score between Classification models with imbalanced and oversampled data. 

RF=Random Forest; BS_RF= Borderline-SMOTE Random Forest; SVM= Support Vector Machine; BS_SVM= 

Borderline-SMOTE Support Vector Machine; KNN=K-nearest Neighbors; BS_ KNN= Borderline-SMOTE K-nearest 

Neighbors; ***: p <= .001; ****: p <= .0001. 

 

Figure 6.21. Comparison of AUC between Classification models with imbalanced and oversampled data. 

RF=Random Forest; BS_RF= Borderline-SMOTE Random Forest; SVM= Support Vector Machine; BS_SVM= 

Borderline-SMOTE Support Vector Machine; KNN=K-nearest Neighbors; BS_ KNN= Borderline-SMOTE K-nearest 

Neighbors; *: p <= .05; **: p <= .01; ***: p <= .001 

6.5. Discussion 

In this Thesis, three binary classification models were developed using the following algorithms: 

Support Vector Machine (SVM), Random Forest (RF), and K-nearest neighbor (KNN). We used as features 

the angles of flexion and extension of 11 finger joints during the performance of the activities of the Action 

Research Arm Test (ARAT) to classify activities between two classes: healthy subject (0= Control) and 
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post-stroke patients (1= Stroke). Importantly, the activities included in the dataset of the stroke group 

obtained a score of 2 – 3 on the ARAT. While in all the activities included in the dataset of the control 

group, a score of 3 was obtained. Therefore, based on the ARAT score all tasks were completed and there 

is not much difference between the tasks in one group and the other. In this way, using completed tasks 

based on the ARAT score, the performance of the classifier is evaluated. 

The result showed that the Support Vector Machine (SVM) classifier had the best performance in the 

test set before data balancing with a Precision of 98.3%, an Accuracy of 94.5 %, a recall of 80.5%, f1-score 

of 88.5% and an AUC of 0.989. In addition, the Recall and AUC were significantly higher than the RF and 

KNN classifiers. However, the recall values in three classifiers were low especially in the stroke group. The 

lower recall showed that the model was classifying stroke patients as healthy subjects as is shown in the 

confusion matrices in Fig 4-5. Besides, we detected a mild imbalance between classes, so we decided to 

use the oversampling technique Borderline-SMOTE. The results showed that after Borderline-SMOTE the 

three classifiers showed significantly higher accuracy, recall, f1-score, and AUC. In the recall, there was 

an increase in the RF (17.6 %), SVM (17%), and KNN (41.1 %). However, the KNN classifier showed a 

recall of 84% in the Control class while the RF and SVM classifiers had a balanced recall in both classes. 

In addition, the precision of the KNN was significantly lower after data balancing. Finally, all the 

classification model showed and AUC > 0.95. In fact, the RF and SVM showed the best performance after 

data balancing and no significant differences were found in any metric between the two classifiers. 

However, the SVM showed a high accuracy, recall and f1-score and therefore a more balanced 

performance. Hence, The SVM was the model with the best performance after data balancing with 

Borderline-SMOTE and before data balancing. 

The results in our thesis showed that after data balancing using Borderline-SMOTE the classification 

models showed an improved performance as in other research. Reddy et al. applied the Borderline-SMOTE 

algorithm on convolutional neural networks (CNN) to detect arrhythmias using electrocardiogram signals. 

Their results showed a significantly higher f1-score and accuracy after the use of Borderline-SMOTE [154]. 

The results of our thesis were similar, where the three classification models obtained significantly higher 

accuracy, recall and f1-score after using the Borderline-SMOTE technique. On the other hand, Chang et al. 

presented a study for emotion recognition with electroencephalogram (EEG) signals using data 

augmentation with the Borderline-SMOTE method [136]. They compared traditional machine learning 

methods, and their results showed that SVM and XGBoost had better performance in average accuracy and 

average macro f1-score than decision tree and KNN models. Our thesis obtained similar results where the 

SVM algorithm showed higher accuracy and f1-score than the KNN and RF models. However, our study 

used a binary classification analysis, and in Chang et al. study, a multiclass classification method was used. 

Moreover, there are few studies that combine machine learning with the ARAT test. Dutta et al. developed 

an SVM classifier with an accuracy of 92% to predict ARAT scores in patients with different degrees of 

disability. They used a glove with six flex sensor and three force sensors and a motion processing unit [60]. 
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The difference with our study was that we analyzed healthy subjects and patients with good recovery after 

the rehabilitation process. In addition, the activities we analyzed were completed tasks with a high score. 

Therefore, we decided to analyze whether the information provided by a data glove with 18 flexion sensors 

would allow us to classify subjects in each group with good performance. In contrast, Rheme et al. used an 

SVM model to predict good and poor motor outcomes of stroke patients using ARAT, grip force index, and 

magnetic resonance imaging (fMRI) [160]. However, the outcome of patients with initially moderate 

impairment could not be predicted with the information of the ARAT and the grip force test. Their results 

demonstrate that it is difficult to predict in post-stroke subjects with moderate impairments based on the 

ARAT scoring process. The difference with our thesis is that our study was not based on the ARAT score 

but on the information obtained with the human hand motion system, which allowed us to differentiate 

between subjects with a good post-stroke recovery and healthy subjects. 

Importantly, the use of human hand motion information allows the development of high-performance 

Machine Learning models for the classification of activities between healthy subjects and persons post-

stroke. However, to achieve these results it was necessary to balance classes using the Borderline-SMOTE 

algorithm. These differences are not detected by the ARAT scoring process that is limited only to evaluate 

the quality performance. Therefore, these results are of clinical relevance for occupational therapists and 

other health care professionals who can use a classification model for the detection of finger joint 

impairments not only in people post-stroke but also after surgical procedures, hand injuries and other hand 

disorders. Regardless, it is essential to consider the recall results since the activities of post-stroke patients 

identified as the control group could have been performed in the same way as a healthy person. Therefore, 

the bias would not be in the classifier model, but in the fact that there were no significant differences in 

certain activities between post-stroke patients and healthy subjects. 

6.6 Limitations  

In this Thesis, we limited to the use of traditional machine learning classifiers but the use of Ensemble 

Machine Learning methods has shown very good results in clinical studies [161],[164], so that in future 

work we could implement an ensemble classifier and compare the results. In addition, deep learning has 

also been used for classification problems in the area of healthcare, especially Convolutional neural 

networks (CNNs), showing good results in combination with Borderline-SMOTE [136], [154]. Therefore, 

the use of deep learning should also be considered for future studies. Another limitation we had is that it 

was not possible to access patient demographic data. This would have allowed us to evaluate the impact of 

these features on the classification algorithm. Finally, we limited ourselves to evaluating patients with good 

upper extremity function according to the ARAT score. Therefore, it would be interesting to evaluate 

subjects with different degrees of upper extremity impairment to perform a classification model to predict 

ARAT scores based on information from the eleven finger joints. 
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6.7. Conclusions 

The classifiers with unbalanced data showed a low recall and f1-score especially in the stroke class, 

after the implementation of Borderline-SMOTE the three classifiers showed a significantly higher accuracy, 

recall, f1-score, and AUC. However, the SVM classifier showed the higher performance with a precision 

of 98%, a recall of 97.5% and an AUC of 0.996 after data balancing. Therefore, the results showed that 

classification models based on human hand motion features in combination with the oversampling 

algorithm Borderline-SMOTE achieve a higher performance. In addition, the high performance of the 

classifiers showed that there are differences between the activities performed between healthy and post-

stroke individuals that are not detected by the ARAT scoring process. Regardless, the recall results can 

show activities in which people from both classes performed equally well. Furthermore, the classification 

model based in hand motion information can be used in future work for the detection of finger joint 

impairments not only in people post-stroke but also after surgical procedures, hand injuries and other hand 

disorders. 
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CHAPTER 7 

Conclusions and Future Work 

 

 

7.1 Conclusions  

In this chapter we present a general conclusion for this Thesis. 

A novelty hand motion system to improve the evaluation of post-stroke patients with the Action 

Research Arm Test (ARAT) was presented. The hand motion system is composed of a data glove 

CyberGlove II®, a Force Sensing module based in force sensitive resistors (FSRs), and a Graphical User 

Interface (GUI) developed in Unity®.  

An important database was obtained in healthy subjects of the finger forces and the range of motion 

of the metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joints of the fingers (index, middle, 

ring, and little) and Carpometacarpal (CMC), MCP, and interphalangeal (IP) for the thumb. The database 

is clinically relevant for the psychotherapist and health professionals to establish therapy goals for patients 

with impairments and post-stroke patients. 

The flexion angles and the finger force on healthy subjects depend on the object size and the type of 

grasp used (power, precision, or pinch). Therefore, the mean total force was higher in the grasp subtest. In 

this subtest, we found several activities in which the power grip was used. In contrast, flexion angles in 

Thumb (CMC, MCP), Index MCP, Middle MCP, and Ring MCP finger joints obtained in the pinch subscale 

were significantly larger. In this subtest, we found several activities in which the pinch grip was used. 

Finger joint impairments and compensatory grasping strategies were identified in stroke patients with 

left (LH) and right (RH) hemiparesis not detected with the ARAT scoring method. RH and LH patients 

used compensatory strategies involving increased flexion at the PIP joints for decreased flexion in the MCP 

joints.  

Classification models were developed with the oversampling algorithm Borderline-SMOTE to classify 

ARAT activities between healthy subject or post-stroke subject with similar ARAT scores. The Support 

Vector Machine (SVM) classifier showed the higher performance with a precision of 98%, a recall of 97.5% 

and an AUC of 0.996 after data balancing.  

The high performance obtained with the classification models showed that there are differences 

between the activities performed between healthy and post-stroke individuals that are not detected by the 

ARAT scoring process. In addition, classification models based on human hand motion features in 

combination with the Borderline-SMOTE oversampling algorithm demonstrated higher performance. 
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7.2 Future Work 

The use of a motion capture system based on inertial measurement units (IMU) will be incorporated 

into the hand motion system. This will allow us to add to the existing system the analysis and evaluation of 

the major joints of the upper extremity (wrist, forearm, elbow, shoulder). 

Future studies will evaluate the range of motion of abduction and adduction of the MCP finger joints. 

Studying these movements will allow us to perform a complete grasping evaluation and identify 

impairments and compensatory strategies in post-stroke patients in this plane of motion.  

Use a hand model with 29 DOF developed in a previous study [165] for the simulation in the module 

of the Graphical User Interface (GUI).  In this way, more realistic movements of the fingers, especially the 

thumb, can be obtained. 

Evaluate stroke patients with mild and severe impairment of upper extremity motor function to assess 

the performance of the proposed hand motion system during the ARAT execution. In addition, the 

evaluation of stroke patients with different degrees of hand function impairment will allow the development 

of machine learning models for ARAT score prediction based on finger joint angles, finger strength, and 

other demographic characteristics of stroke patients.  

Develop applications for the rehabilitation in virtual reality (VR) and augmented reality (AR) for 

people with stroke by incorporating the leap motion sensor into the hand motion system. The compatibility 

of the GUI developed in unity allows us to upgrade the application easily to these VR and AR platforms. 
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Appendix A 

Supplementary material for Chapter 5 

Table A1.1. Results of Mann–Whitney test of the arc of motion (AROM) with respect to the Control and Right 

hemiparesis groups. 

   aROM 

Finger Joint Group N 
Mean 

Rank 
U Z p 

Thumb CMC C 400 236.2 14,262.0 −1.53 0.125 
 RH 80 262.2    

Thumb MCP C 400 231.8 12,518.0 −3.07 0.002 ** 
 RH 80 284.0    

Thumb IP C 400 239.5 15,610.0 −0.34 0.731 
 RH 80 245.4    

Index MCP C 400 238.4 15,146.0 −0.75 0.451 
 RH 80 251.2    

Index PIP C 400 233.1 13,055.0 −2.60 0.009 ** 
 RH 80 277.3    

Middle MCP C 400 258.2 8940.0 −6.23 0.000 *** 
 RH 80 152.3    

Middle PIP C 400 230.6 12,029.0 −3.51 0.000 *** 
 RH 80 290.1    

Ring MCP C 400 240.8 15,874.0 −0.11 0.911 
 RH 80 238.9    

Ring PIP C 400 233.9 13,363.0 −2.33 0.020 ** 
 RH 80 273.5    

Little MCP C 400 236.8 14,521.0 −1.31 0.192 
 RH 80 259.0    

Little PIP C 400 211.6 4450.0 −10.20 0.000 *** 
 RH 80 384.9    

C= control group; RH= right hemiparesis group; *p < 0.05; **p < 0.01; ***p < 0.001; Control vs Stroke Mann–Whitney U test.; 
N= Number of tests per group 

Table A1.2. Results of Mann–Whitney test of the AROM with respect to the Control and Left hemiparesis groups. 

   aROM 

Finger Joint Group N 
Mean 

Rank 
U Z p 

Thumb CMC C 400 231.11 12,245 −0.56 0.577 
 LH 64 241.17    

Thumb MCP C 400 223.10 9038 −3.78 0.000 *** 
 LH 64 291.28    

Thumb IP C 400 239.12 10,152 −2.66 0.008 ** 
 LH 64 191.13    

Index MCP C 400 232.16 12,665 −0.14 0.892 
 LH 64 234.61    

Index PIP C 400 232.36 12,744 −0.06 0.955 
 LH 64 233.38    
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Table A1.2. Cont. 

   aROM 

Finger Joint Group N 
Mean 

Rank 
U Z p 

Middle MCP C 400 236.83 11,070 −1.74 0.082 

 LH 64 205.47    

Middle PIP C 400 234.35 12,061 −0.74 0.458 

 LH 64 220.95    

Ring MCP C 400 227.78 10,910 −1.90 0.058 

 LH 64 262.03    

Ring PIP C 400 237.09 10,963 −1.84 0.065 
 LH 64 203.80    

Little MCP C 400 251.12 5353 −7.48 0.000 *** 
 LH 64 116.14    

Little PIP C 400 211.14 4257 −8.58 0.000 *** 
 LH 64 365.98    

C= control group; LH= left hemiparesis group; *p < 0.05; **p < 0.01; ***p < 0.001; Control vs LH Mann–Whitney U test.; N= 
Number of tests per group 

Table A1.3. Results of Mann–Whitney test of the AROM with respect to the Stroke groups (Left hemiparesis vs 
Right hemiparesis). 

   aROM 

Finger Joint Group N 
Mean 

Rank 
U Z p 

Thumb CMC LH 64 69.84 2390 −0.68 0.494 
 RH 80 74.63    

Thumb MCP LH 64 75.74 2352.5 −0.83 0.404 
 RH 80 69.91    

Thumb IP LH 64 61.88 1880 −2.73 0.006 ** 
 RH 80 81.00    

Index MCP LH 64 71.86 2519 −0.17 0.869 
 RH 80 73.01    

Index PIP LH 64 66.38 2168 −1.58 0.115 
 RH 80 77.40    

Middle MCP LH 64 78.67 2165 −1.59 0.112 
 RH 80 67.56    

Middle PIP LH 64 61.84 1878 −2.74 0.006 ** 
 RH 80 81.03    

Ring MCP LH 64 78.56 2172 −1.56 0.119 
 RH 80 67.65    

Ring PIP LH 64 61.54 1858.5 −2.82 0.005 ** 
 RH 80 81.27    

Little MCP LH 64 50.23 1135 −5.73 0.000 *** 
 RH 80 90.31    

Little PIP LH 64 68.06 2276 −1.14 0.253 
 RH 80 76.05    

RH= right hemiparesis group; LH= left hemiparesis group; C= control group; S= stroke group; *p < 0.05; **p < 0.01; ***p < 
0.001; Control vs Stroke Mann–Whitney U test.; N= Number of tests per group 
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Table A1.4. Functional Range of Motion (FROM) for each finger joint 

Finger Joints Groups 

  C LH RH 

Thumb CMC 4.09 - 32.97 6.36 - 27.68 -33.44 

Thumb MCP 6.99 - 32.40 3.70 - 39.78 3.92 - 36.4 

Thumb IP -38.99 1.96 - 28.48 -44.09 

Index MCP 6.90 - 61.89 1.53 - 48.93 -42.76 

Index PIP 14.36 - 54.36 3.18 - 52.36 12.55 - 63.1 

Middle MCP 2.32 - 61.17 -52.65 5.27 - 45.94 

Middle PIP 13.17 - 55.02 19.19 - 65.67 21.39 - 75.34 

Ring MCP -61.06 0.90 - 66.38 10 - 61.01 

Ring PIP 8.62 - 49.25 9.31 - 50.21 19.24 - 64.42 

Little MCP 2.44 - 44.97 16.68 - 43.17 7.74 - 59.47 

Little PIP 8.96 - 30.34 15.82 - 60.60 10.83 - 63.46 

C= control group; RH= right hemiparesis; LH= left hemiparesis; CMC= carpometacarpal; MCP = metacarpophalangeal; IP = 

interphalangeal; PIP = proximal interphalangeal; Negative values represent hyperextension; FROM represents the amplitude of the 

motion. 

Table A1.5. Subtest Range of Motion (sROM) during the performance of the Grasp Subtest (All groups) 

Finger Joints 
C (°) LH (°) RH (°) C (°) LH (°) RH (°) 

E SD E SD E SD F SD F SD F SD 

Thumb CMC 5.9 7.4 6.7 1 2.0** 7.8 24 7.6 26.1 1.7 22.2 9.1 

Thumb MCP 10.4 9.5 9.7 5.6 9.3 10.3 24.3 8.8 26.9 10.3 26.8 12 

Thumb IP -2.6 14.3 7.3*** 6.8 6.6** 18.1 13.3 11.9 22.2*** 7.2 32.5*** 21.1 

Index MCP 17.7 15.8 3.8*** 18.4 4.7*** 17 42.7 11 41.6 13.9 36.5** 12.3 

Index PIP 15.6 8.9 5.0*** 11.4 13.8 8.6 35.2 10.6 24.6*** 17.3 38.6 13.8 

Middle MCP 11.9 12.9 -2.0*** 12.3 8.4 12.5 43.3 9.9 35.8** 16.5 32.3*** 12 

Middle PIP 15.9 7.4 20.4 8.3 24.8*** 9.8 41.7 9 45.6 12.5 53.1*** 12.3 

Ring MCP 7.9 11.6 8 12.5 13.5 13.2 35.7 8.9 45.0** 17 43.3** 13.9 

Ring PIP 12.3 8.1 10.2 3.9 21.4*** 10.9 38.5 9.9 34 10.9 48.8*** 13.4 

Little MCP 7.3 7.4 17.8*** 4.6 10.1 8.4 28.8 9.1 31.3 5.6 36.0** 14.5 

Little PIP 11.8 9.7 18.6*** 8.2 15 9 22.9 12.7 45.8*** 16.2 44.0*** 23.3 

RH= right hemiparesis group; LH= left hemiparesis group; C= control group; E= extension; F= flexion; SD= standard deviation 

*p < 0.05; **p < 0.01; ***p < 0.001; Mann–Whitney U test; °=degrees; CMC= carpometacarpal; MCP = metacarpophalangeal; IP 

= interphalangeal; PIP = proximal interphalangeal; 
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Table A1.6. Subtest Functional Range of Motion (sROM) during the performance of the Grip Subtest (All groups) 

Finger Joints 
Control LH RH Control LH RH 

E SD E SD E SD F SD F SD F SD 

Thumb CMC 9.9 6.9 8.6 1.5 8.8 4.2 30.7 6 27.0* 1.2 28.1 7.6 

Thumb MCP 10.6 8.6 9 6.1 8.2 8.8 28.4 9.5 29.8 9.6 28.7 9.8 

Thumb IP -11.6 17.4 4.5*** 7.7 3.9*** 12.9 18.6 17.9 25.3* 7.9 30.6*** 9.7 

Index MCP 21.4 11 14.1 17.8 11.9*** 13.3 47.8 13.7 41.3 15.2 33.6*** 10.2 

Index PIP 18.4 10.1 12.2* 13.6 17.7 12 49.9 12.3 48.4 20.4 56.1 14 

Middle MCP 17.5 8.7 8.2*** 8 14.1* 10.6 48.7 11.8 36.2* 18.1 33.2*** 10.1 

Middle PIP 19.6 9.5 29.7** 14.5 30.3** 15.9 51.9 10 61.1** 10.8 67.5*** 12.3 

Ring MCP 16.6 9.4 19.4 11.2 23.2* 9.8 50.7 15.3 60.4 20.2 54.8 11.7 

Ring PIP 14.1 7.9 18.4 12.3 25.0** 14.7 46 11 46.5 11.6 57.0** 15.6 

Little MCP 12.5 7.4 22.4*** 2.7 16.1* 7.2 41.7 12.9 40.6 7.3 51.2* 17.4 

Little PIP 11.2 9.7 21.1** 12.4 13.3 13.7 25.2 14.4 53.8*** 17.7 49.7*** 24.1 

RH= right hemiparesis group; LH= left hemiparesis group; C= control group; E= extension; F= flexion; SD= standard deviation 

*p < 0.05; **p < 0.01; ***p < 0.001; Mann–Whitney U test; °=degrees; CMC= carpometacarpal; MCP = metacarpophalangeal; IP 

= interphalangeal; PIP = proximal interphalangeal; 

Table A1.7. Subtest Functional Range of Motion (sROM) during the performance of the Pinch Subtest (All groups)  

Finger Joints 
Control LH RH Control LH RH 

E SD E SD E SD F SD F SD F SD 

Thumb CMC 13.3 6.1 9.2*** 1.6 7.2*** 7.6 31.7 5.5 27.2*** 1.2 30.7 10.6 

Thumb MCP 16 8.6 14 6.8 15.4 10.8 28.3 8 34.2** 9.1 33.2 11.2 

Thumb IP -9.6 16.1 8.9*** 10.6 7.6*** 16.8 9.5 14.4 21.6 10.1 22.4*** 13.9 

Index MCP 27.1 9.3 24.1 14.8 17.3*** 12.1 48.5 14.9 42.5** 11.1 38.5*** 13.8 

Index PIP 16 8.8 9.2*** 10.7 16.6 10.9 35.3 14.4 29.9 14.3 42.2* 17.2 

Middle MCP 24 9.3 15.6*** 10.6 19.8 12.2 50.9 11.5 37.2*** 13.3 41.7** 13 

Middle PIP 14.6 8.2 28.7** 9.9 27.9*** 17.5 37.4 10.7 52.7*** 11.8 62.3*** 17.4 

Ring MCP 22.6 8.6 25.5 9.6 26.2* 16 48.1 12 50.4 12.9 53.4** 10 

Ring PIP 11.2 8 19.6*** 10.3 25.8*** 15.4 35.4 12.1 41.9** 14.3 58.4*** 12.1 

Little MCP 8.7 10.3 23.5*** 3.8 14.5** 7.3 27.4 10.1 33.6 6.4 35.3*** 9.9 

Little PIP 10.9 9.2 25.3*** 10.3 17.2** 11 19.2 13 50.5 17.1 49.8*** 18.1 

RH= right hemiparesis group; LH= left hemiparesis group; C= control group; E= extension; F= flexion; SD= standard deviation 

*p < 0.05; **p < 0.01; ***p < 0.001; Mann–Whitney U test; °=degrees; CMC= carpometacarpal; MCP = metacarpophalangeal; IP 

= interphalangeal; PIP = proximal interphalangeal; 
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Appendix B 

 

Supplementary material for Chapter 6 

 

Fig B1. Random Forest Confusion Matrix after Borderline-SMOTE. 

 

 

Fig B2. K-nearest neighbor Confusion Matrix after Borderline-SMOTE. 
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Fig B3. Support Vector Machine Confusion Matrix after Borderline-SMOTE 

Table B1.1. Random Forest Paired t-test  

Metric RF BS_RF t-statistic p 

Precision 0.961 ± 0.022 0.971 ± 0.014 -1.858 0.096 

Accuracy 0.933 ± 0.010 0.971 ± 0.010 -8.153 0.000**** 

Recall 0.781 ± 0.049 0.970 ± 0.014 -11.281 0.000**** 

F1-score 0.861 ± 0.024 0.971 ± 0.010 -12.531 0.000**** 

AUC 0.980 ± 0.006 0.996 ± 0.002 -6.591 0.000**** 

RF=Random Forest; BS_RF= Borderline-SMOTE Random Forest; *: p <= .05; **: p <= .01; ***: p <= .001; ****: p <=.0001 

Table B1.2. Support Vector Machine Paired t-test  

Metric SVM BS_SVM t-statistic p 

Precision 0.969 ± 0.029 0.968 ± 0.008 0.107 0.917 

Accuracy 0.958 ± 0.011 0.978 ± 0.006 -4.034 0.003*** 

Recall 0.872 ± 0.044 0.989 ± 0.007 -8.457 0.000**** 

F1-score 0.917 ± 0.023 0.978 ± 0.006 -7.189 0.000**** 

AUC 0.984 ± 0.007 0.995 ± 0.004 -3.925 0.003*** 

SVM= Support Vector Machine; BS_SVM= Borderline-SMOTE Support Vector Machine; ***: p <= .001; ****: p <=.0001 

Table B1.3. K-nearest Neighbors Paired t-test  

Metric KNN BS_KNN t-statistic p 

Precision 0.951 ± 0.023 0.914 ± 0.021 4.459 0.002*** 

Accuracy 0.913 ± 0.014 0.948 ± 0.014 -5.137 0.001*** 

Recall 0.710 ± 0.068 0.989 ± 0.009 -12.884 0.000**** 

F1-score 0.811 ± 0.039 0.950 ± 0.013 -9.999 0.000**** 

AUC 0.939 ± 0.018 0.980 ± 0.009 -5.492 0.000**** 

KNN=K-nearest Neighbors; BS_ KNN= Borderline-SMOTE K-nearest Neighbors; ***: p <= .001; ****: p <=.0001 
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Appendix C 

 

Participant Information Sheet 

 

HOJA DE INFORMACION PARA EL PARTICIPANTE 

 

TITLE OF THE STUDY: Human Hand Kinematics and Fingertip Force during the Action 

Research Arm Test 

 

TÍTULO DEL ESTUDIO: Cinemática de la mano humana y fuerza de la punta de los dedos 

durante el Action Research Arm Test  

 

INVESTIGADORES: Dr. Esteban Peña Pitarch, M.S.M Jesús Fernando Padilla Magaña.   

 

ADSCRIPCIÓN: Universitat Politècnica de Catalunya (UPC). 

 Escola Politècnica Superior d'Enginyeria de Manresa (EPSEM) 

 

PROGRAMA: DOCTORADO EN AUTOMÁTICA, ROBÓTICA Y VISIÓN. 

 

INTRODUCCIÓN Y PROCEDIMIENTO 

 

Le informamos a través de este documento sobre un estudio de investigación, en el cual está 

invitado a participar voluntariamente. Para ello le pedimos que lea atentamente esta hoja 

informativa y que nos consulte la más mínima duda al respecto. 

 

OBJETIVOS:  

En este estudio se evaluará a pacientes sanos que no hayan tenido ninguna lesión en la 

extremidad superior del cuerpo (mano) mediante el Action Research Arm Test ARAT. Con el 

Objetivo de analizar la cinemática de la mano para determinar el rango de movimiento de las 

articulaciones mediante el sensor (Cyberglove) y medir la fuerza de agarre a través de 

sensores de fuerza resistivos (FSR). 

 

BENEFICIOS:  

Es posible que de su participación en este estudio no se obtenga un beneficio directo. Sin 

embargo, Los investigadores de la EPSEM-UPC en colaboración con los médicos 

rehabilitadores pretenden mediante el análisis de la información obtenida en el estudio: 

Desarrollar y validar nuevas herramientas para el análisis cinemático y la simulación de la 
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mano, para su posterior aplicación en el ámbito clínico dentro del área de rehabilitación física. 

Con el fin de ofrecer un mejor seguimiento, al mejorar la evaluación y la predicción de la 

evolución de cada paciente. Permitiendo ofrecer planes de rehabilitación más personalizados. 

 

DESCRIPCIÓN DEL ESTUDIO:  

El estudio consiste en la colocación de 5 sensores de fuerza resistivos (FSR)en la punta del 

dedo de la mano dominante, posteriormente se colocará el guante (CyberGlove II) con 

sensores de flexión. El participante deberá estar sentado en una silla con respaldo firme y sin 

apoyabrazos. La cabeza en una posición neutral y con los pies en contacto con el suelo. Esta 

posición se deberá mantener durante todo el periodo de la prueba. EL (ARAT) es una prueba 

de observación de 19 elementos utilizada por fisioterapeutas y otros profesionales de la salud 

para evaluar el rendimiento de las extremidades superiores (coordinación, destreza y 

funcionamiento).  

El investigador proporcionara las instrucciones al sujeto para que realice las tareas del Test 

ARAT que se dividen en 4 subescalas: Grasp, Grip, Pinch y Gross Movement, al tiempo que 

califica al individuo en función de su desempeño en base a la siguiente escala: 0= sin 

movimiento, 1= la tarea de movimiento se realice parcialmente, 2= la tarea de movimiento 

se completa, pero lleva demasiado tiempo, 3= el movimiento se realiza normalmente. Los 

datos obtenidos por los sensores se almacenarán en una base de datos que posteriormente 

será analizada por el equipo de investigadores de la Universidad Politécnica de Cataluña. Los 

datos obtenidos y los resultados publicados respetaran la ley de Protección de datos 

personales. Esta prueba no durará más de 15 minutos 

 

PROTECCIÓN DE DATOS PERSONALES:  

De acuerdo con la Ley 15/1999 de Protección de Datos de Carácter Personal, los datos 

personales que se obtengan serán los necesarios para cubrir los fines del estudio. En ninguno 

de los informes del estudio aparecerá su nombre, y su identidad no será revelada a persona 

alguna salvo para cumplir con los fines del estudio, y en el caso de urgencia médica o 

requerimiento legal. Cualquier información de carácter personal que pueda ser identificable 

será conservada por métodos informáticos en condiciones de seguridad por EPSEM. El acceso 

a dicha información quedará restringido al personal del equipo investigador designado al 

efecto que estará obligado a mantener la confidencialidad de la información.  

De acuerdo con la ley vigente, tiene usted derecho al acceso de sus datos personales; 

asimismo, y si está justificado, tiene derecho a su rectificación y cancelación. Si así lo desea, 

deberá solicitarlo al investigador que le atiende en este estudio. De acuerdo con la legislación 

vigente, tiene derecho a ser informado de los datos relevantes para su salud que se obtengan 

en el curso del estudio. Esta información se le comunicará si lo desea; en el caso de que 

prefiera no ser informado, su decisión se respetará. Si necesita más información sobre este 

estudio puede contactar con el investigador responsable, el/la Dr. Esteban Peña Pitarch Tel. 

938732100 ext. 1864. Su participación en el estudio es totalmente voluntaria, y si decide no 

participar recibirá todos los cuidados médicos que necesite y la relación con el equipo médico 

que le atiende no se verá afectada. 
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Consent Form 

 

FORMULARIO DE CONSENTIMENTO DE INFORMACION  

 

TITLE OF THE STUDY: Human Hand Kinematics and Fingertip Force during the 

performance of the Action Research Arm Test. 

 

TÍTULO DEL ESTUDIO: Cinemática de la mano humana y fuerza de la punta de los dedos 

durante la realización del Action Research Arm Test.  

 

Nombre(participante):______________________________________________DECLARO 

que he leído la hoja de Información y que se me ha entregado una copia, que se me ha dado 

la oportunidad de hacer preguntas, y que he recibido suficiente información de parte del 

investigador, quien me ha informado adecuadamente de las condiciones de mi participación 

en esta investigación. Me han asegurado el tratamiento confidencial de mis datos, además 

declaro que entiendo que mi participación es voluntaria, por lo que puedo retirarme de la 

investigación libremente, en cualquier momento durante el experimento y por cualquier 

motivo, y que: 

 

☐ Otorgo mi consentimiento. 

☐ No otorgo mi consentimiento. 

 

Para participar en la investigación que se me ha propuesto, y para que se pueda utilizar la 

información obtenida durante el experimento con fines puramente de investigación. 

 

DECLARO que cumplo con los siguientes criterios del estudio: 

▪ Mayor de 18 años. 

▪ No eh sufrido ninguna lesión en la muñeca/mano. 

▪ No padezco ninguna enfermedad crónica que afecten el funcionamiento de mi mano. 

 

Fecha y firma del participante 

 

 

Declaración del investigador responsable 

La información contenida en esta solicitud, incluyendo cualquier información que la 

acompañe, es completa y correcta.  

Investigador:  

Fecha: 

Firma:   


