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Summary

This PhD dissertation deals with qualitative questions from the theory of elliptic Partial
Differential Equations (PDE) and integro-differential equations. We are primarily inter-
ested in a distinguished class of solutions satisfying appropriate minimality conditions.

The first part of the thesis provides a regularity theory for stable solutions to semilinear
problems involving variable coefficients. Here, stability refers to the nonnegativity of the
principal eigenvalue of the linearized equation. For variational problems, this amounts to
the nonnegativity of the second variation, a necessary condition for minimality. Our main
achievement is to show the boundedness of stable solutions in C1,1 domains in the optimal
range of dimensions n ≤ 9. This result is new even for the Laplacian, for which a C3

assumption on the domain was needed.
The second part furnishes natural sufficient conditions for the minimality of critical

points in a general nonlocal framework. Namely, we construct a calibration for nonlocal
energy functionals, under the assumption that the critical point is embedded in a family
of sub/supersolutions whose graphs produce a foliation. As a consequence, we deduce that
the solution is a minimizer with respect to competitors taking values in the foliated region.
Our result extends, for the first time, the classical Weierstrass extremal field theory in
the Calculus of Variations to a nonlocal setting. To find a calibration for the most basic
fractional functional, the Gagliardo-Sobolev seminorm, was an important open problem
that we have solved.
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Introduction

Our quantitative description of reality rests upon a collection of universal principles, ex-
pressed in mathematical language, from which all phenomena may be deduced. Such
principles or laws often manifest in the form of equations, which are in turn satisfied by
functions accounting for the state of the system under consideration.

Depending on the nature of the phenomenon being studied, different types of equations
are of interest. Classically, Partial Differential Equations (PDE) have been successfully
applied to model diverse phenomena arising from short-range interactions. These equations
involve relations between partial derivatives of the solution. To compute such derivatives
at a point, it is only necessary to know the function in a vicinity of the point in question,
reflecting the local nature of PDEs. More recently, integro-differential equations have
gained an increasing notoriety in applications. Such equations capture the effect of long-
range interactions by integrating differences of the solution in the whole space. Notice that
this operation takes into account the value of the solution everywhere and not just at a
point. Thanks to this feature, they effectively model nonlocal phenomena.

Within these two broad categories of equations, elliptic ones hold a distinct position.
This family of equations can be thought of as describing equilibrium configurations of evo-
lution processes. As a closed system evolves in time, it reaches a steady state characterized
by such an elliptic problem. These equations are typically nonlinear and solutions are by
no means uniquely determined. In fact, the natural boundary (or exterior) value problems
associated to such equations may admit multiple solutions or even infinitely many of them.
Nevertheless, there is a special class of solutions comprising most physical situations of
interest, the so called stable solutions. They are distinguished by the fulfillment of certain
minimality conditions with respect to the problem in question (as we explain later). For
instance, local minimizers of energy functionals are stable solutions of the Euler-Lagrange
equations. In a sense, these solutions correspond to the observables of Nature, since they
do not disappear under small perturbations of the parameters (hence their name “stable”).

In this thesis, we are interested in various qualitative aspects of stable solutions to
both PDEs and integro-differential equations. We focus primarily on the regularity and
minimality properties of these solutions, which play crucial roles in many applications.
Next, we briefly comment on our contributions to these fields.

First, we investigate the regularity of stable solutions to nonlinear elliptic PDEs. This
turns out to be delicate question which usually depends on the dimension of the space,
even for apparently simple semilinear problems. Our principal result shows the bounded-
ness (and hence smoothness) of stable solutions to semilinear equations with variable coef-
ficients, up to the optimal dimension 9. Such a result was only known for the Laplacian in
C3 domains. As a consequence of our analysis, we are able to weaken the regularity of the
domain to a C1,1 assumption, which is natural in the elliptic estimates for non-divergence
form operators.

Secondly, we study sufficient conditions for minimality (and hence stability) of solutions
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to equations associated to nonlinear elliptic functionals. Before our work, a theory of
sufficient conditions was only available for local equations, in the form of the classical
Weierstrass extremal field theory. There, the basic result states that if a solution can be
embedded in a family of critical points (i.e., solutions) whose graphs produce a foliation,
then it must be a minimizer with respect to competitors taking values in the foliated
region. Our main result provides the analogue of this theorem in the general nonlocal
framework. Namely, under the foliation assumption, we construct a calibration for nonlocal
functionals. This calibration is a null-Lagrangian satisfying certain additional properties
which lead directly to the minimality of the solution. In particular, our construction gives a
calibration for the simplest nonlocal functional (the fractional Gagliardo-Sobolev seminorm
corresponding to the fractional Laplacian) which was not known to exist prior to this work.

In the following, we further elaborate on the notions that we just mentioned.

Stable solutions

As mentioned above, we are interested in solutions that describe stable configurations. To
better explain this concept, we consider the steady state reaction-diffusion equation

−∆u = f(u) in Ω, (1)

where Ω ⊂ Rn is a bounded domain and f : R → R is a smooth function. Later, we will
further assume f to be nonnegative, nondecreasing, and convex.

There are several equivalent ways to define the stability of a solution to (1), as explained
below. Some of these definitions are variational in nature, reflecting a minimality property
of u with respect to some functional. Others are intrinsic to the linearization of (1) and
can be generalized to other, non-variational situations. In the first part of the thesis, we
will be particularly interested in this second case.

A first definition is based on the variational structure of (1). Notice that equation (1)
is the first variation of the energy functional1

E1,F (u) =

∫
Ω

{
1

2
|∇u|2 − F (u)

}
dx, 2 (2)

where F is a primitive of the nonlinearity f . Computing the second variation at u

d2

dε2
E1,F (u+ εξ)

∣∣∣
ε=0

=

∫
Ω

{
|∇ξ|2 − f ′(u)ξ2

}
dx, (3)

where ξ ∈ C∞c (Ω), we have the following:

Definition 1. A solution u of (1) is stable if the second variation (3) of E1,F at u is
nonnegative. Equivalently, the solution u is stable if∫

Ω

f ′(u)ξ2 dx ≤
∫

Ω

|∇ξ|2 dx for all ξ ∈ C∞c (Ω).3 (4)

1Here, we call functionals “energies” following elliptic PDE terminology. In other contexts, to avoid
ambiguity, it might be more appropriate to refer to them as action functionals instead.

2The subindex 1 is in contrast to the fractional parameters s ∈ (0, 1) appearing later in the text. As
mentioned below, E1,F can be recovered as the formal limit of a family of nonlocal functionals Es,F as s ↑ 1.

3In the literature, solutions satisfying such a nonnegativity assumption have also been called semistable,
while the term stable is reserved for the strict inequality. Instead, we will employ the terms stable and
strictly stable, respectively.
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Notice here that the test functions ξ vanish at the boundary ∂Ω and hence the competi-
tors u+ εξ have the same boundary condition as u. It follows that stability is a necessary
condition for u to be a minimizer with respect to small perturbations. However, being
stable is not sufficient for minimality. For instance, if f is superlinear and u vanishes on
∂Ω, then, taking rescalings λu as competitors, it is easy to check that E1,F is unbounded
from below. In this case, the functional does not admit global minimizers but it may have
stable solutions; see [11, 24, 44, 64]. Moreover, stability does not even guarantee the local
minimality of the solution, as we will see in the next paragraphs.

It is useful to note that the second variation can always be written as the quadratic
form associated to the linearized equation. More precisely, integrating by parts we have

d2

dε2
E1,F (u+ εξ)

∣∣∣
ε=0

= −
∫

Ω

(Juξ) ξ dx for all ξ ∈ C∞c (Ω), (5)

where Ju is the linearization of (1) at u, namely,

Juξ :=
d

dε

(
∆(u+ εξ) + f(u+ εξ)

)∣∣∣
ε=0

= ∆ξ + f ′(u)ξ.

The operator Ju is also known as the Jacobi operator in the literature. We point out that
the representation (5) holds for the second variation of general functionals, not only for
the ones associated to semilinear equations.

With (5) at hand, we can give another definition of stability. Let µ1[Ju,Ω] denote the
principal (smallest) eigenvalue of Ju in Ω with respect to homogeneous Dirichlet conditions.
Here and throughout the text, we use the sign convention Juξ = −µ ξ for the eigenvalues
of Ju. By the variational characterization of µ1[Ju,Ω], we have

µ1[Ju,Ω] = inf
ξ∈C∞c (Ω),ξ 6=0

−
∫

Ω
(Juξ) ξ dx∫
Ω
ξ2 dx

.

Hence, we see that Definition 1 above is equivalent to the following:

Definition 2. A solution u of (1) is stable if the principal eigenvalue of the linearized
operator Ju is nonnegative, that is, if µ1[Ju,Ω] ≥ 0.

Let us come back to the minimality properties of stable solutions. Given u a stable
solution of (1), we consider a principal eigenfunction φ1 of Ju in Ω. Namely, φ1 satisfies

−Juφ1 = µ1[Ju,Ω]φ1 in Ω
φ1 > 0 in Ω
φ1 = 0 on ∂Ω.

(6)

If µ1[Ju,Ω] = 0 then, assuming f to be strictly convex, it is not hard to see that the
competitor u+εφ1 has less energy than u. This shows that u need not be a local minimizer,
as we claimed above. On the other hand, if µ1[Ju,Ω] > 0, then it can be shown that u is
a minimizer with respect to competitors in a small tubular neighborhood around itself.4

When µ1[Ju,Ω] > 0, we say that u is a strictly stable solution. It is worth mentioning
that this last condition is equivalent to the operator Ju satisfying the maximum principle;
see [9].

4More precisely, we have E1,F (u+ v) ≥ E1,F (u) for all v ∈ C1
c (Ω) with ‖v‖L∞(Ω) < ε, for a small ε > 0.
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Definition 2 offers a crucial advantage over the first one, since it applies to more general
problems. The key point is that the principal eigenvalue can be defined for any linear
operator, not necessarily a variational one. In particular, it allows us to consider stable
solutions of equations involving non self-adjoint operators. Thus, in the first part of the
thesis, our main focus will be in stable solutions to semilinear equations of the form

− Lu = f(u) in Ω, (7)

where L is a linear second order elliptic operator with variable coefficients

L = aij(x)∂2
ij + bi(x)∂i. (8)

This class of operators constitutes a natural generalization of the Laplacian. First of
all, while ∆ models the simplest (homogeneous, isotropic) diffusion process, the operator L
in (8) can be used to describe more complex phenomena, such as an arbitrary diffusion in
the presence of advection (i.e., a flow). Studying equations of the type (7) is thus crucial in
real-world applications where multiple physical phenomena act at the same time. Secondly,
under a general change of coordinates, the Laplacian transforms into an operator of the
form (8). Such transformations are relevant, for instance, when investigating the boundary
regularity of solutions, since the curved boundary can be flattened out by a change of
variables. This way, it suffices to study equations involving an operator L in a flat domain.

Notice that the linearization of (7) at u corresponds to the Jacobi operator

Ju = L+ f ′(u) = aij(x)∂2
ij + bi(x)∂i + f ′(u(x)),

where we are still using the same notation as above. To give a more precise definition of
stability for the equation (7), it will be worth recalling some fundamental properties of
linear elliptic operators such as Ju.

The classic work of Berestycki, Nirenberg, and Varadhan [9] provides a theory of prin-
cipal eigenvalues for elliptic operators with bounded coefficients. There, one assumes that
the coefficient matrix A(x) = (aij(x)) is uniformly elliptic, that is, satisfying

c0|p|2 ≤ aij(x)pipj ≤ C0|p|2 for all p ∈ Rn, (9)

for some positive constants c0 and C0, as well as the regularity assumptions

aij ∈ C0(Ω), bi ∈ L∞(Ω), (10)

f ′(u) ∈ L∞(Ω).5 (11)

In [9], the authors gave the following definition for the principal eigenvalue of an oper-
ator Ju satisfying (9), (10), and (11):

µ1[Ju,Ω] := sup
{
µ ∈ R : ∃ϕ > 0 ∈ W 2,n

loc (Ω) satisfying Juϕ+ µϕ ≤ 0 in Ω
}
. (12)

Moreover, without any regularity assumption on Ω, they prove the existence of a principal
eigenfunction φ1 in L∞(Ω) ∩ W 2,p

loc (Ω), for all p < ∞, satisfying (6) above, where the
boundary condition must be appropriately interpreted.6

5In applications, assuming f to be locally Lipschitz, the boundedness of the zero order coefficient f ′(u)
will follow from the boundedness of the solution u.

6One first constructs a solution to −Lu0 = 1 in Ω by approximation, solving the Dirichlet problem with
zero boundary conditions in smooth domains that exhaust Ω and taking a converging subsequence. We
say that φ1 = 0 on ∂Ω if, whenever u0(xk)→ 0 for some xk ∈ Ω converging to ∂Ω, then φ1(xk)→ 0.
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It is not hard to see that the variational definition of µ1 is equivalent to (12). Essentially,
µ1 is a threshold for the existence of positive supersolutions, the principal eigenfunction
being the “last” one. From this characterization follows another definition of stability:

Definition 3. A solution u of (7) is stable if there is a function ϕ ∈ W 2,n
loc (Ω) such that{

Juϕ ≤ 0 in Ω
ϕ > 0 in Ω.

By (12), a solution that is stable in the sense of Definition 3 is also stable for Definition 2.
For the converse, it suffices to take ϕ equal to φ1, the principal eigenfunction of Ju above.

Although we will never use it, it is interesting to note that the function ϕ in Definition 3
can also be taken such that the inequality becomes an equality, i.e., with Juϕ = 0 in Ω.
Indeed, if µ1[Ju,Ω] > 0, then Ju satisfies the maximum principle and we can solve the
boundary value problem Juϕ = 0 in Ω, ϕ = c on ∂Ω for a positive constant c > 0; see [9].
Otherwise, if µ1[Ju,Ω] = 0, then we simply take the principal eigenfunction.

Regularity of stable solutions

Having introduced the notion of stability in the previous section, we now turn toward the
main focus of the first part of this work: the regularity of stable solutions. Given a bounded
domain Ω ⊂ Rn and a nonlinearity f ∈ C1(R), we consider the boundary value problem{

−Lu = f(u) in Ω
u = 0 on ∂Ω,

(13)

where L is the linear operator introduced in (8) above. We always assume that L satisfies
the uniform ellipticity condition (9) and the regularity assumptions (10).

Since (13) involves a semilinear equation, the question of regularity reduces to showing
the boundedness of solutions. Indeed, if u is in L∞(Ω), then f(u) is bounded and by Lp

estimates we deduce that u is in W 2,p
loc (Ω), for all p < ∞. The latter estimate holds up to

the boundary in domains of class C1,1 and under the additional assumption that

aij ∈ C0(Ω), (14)

which allows us to apply the Lp estimates in [63, Theorem 9.14]. For further smoothness
properties of the solution, more assumptions on the coefficients and the domain are needed.

If we do not restrict the class of solutions, then the regularity will depend on the growth
of the nonlinearity. For the Laplacian L = ∆ and assuming f to grow like a power

|f(u)| ≤ C(1 + |u|m),

if m is subcritical with respect to Sobolev exponent, i.e., m < n+2
n−2

=: ms, then every energy

solution of (13) is bounded. By an energy solution, we mean a weak solution in W 1,2
0 (Ω),

the natural energy space for the functional E1,F to be well defined. This boundedness
result can be easily proved by the iterated Lp estimates of Crandall and Rabinowitz [44].
Moreover, using the Brezis-Kato trick [13], the same conclusion continues to hold for critical
nonlinearities. However, when n ≥ 3, the singular solution

Um(x) := (m− 1)
(
|x|−

2
m−1 − 1

)
5



is an energy solution in the supercritical range m > ms. Notice that Um solves (13) in
Ω = B1 with f(u) = λn,m(1 + 1

m−1
u)m, where λn,m := 2

(
n− 2m

m−1

)
.

We are interested in a regularity theory for stable solutions that applies to all non-
linearities, independently of their growth. For instance, the stability of Um amounts to

m

m− 1
λn,m

∫
B1

ξ2

|x|2
dx ≤

∫
B1

|∇ξ|2 dx for all ξ ∈ C∞c (B1). (15)

By Hardy’s inequality with best constant, this is equivalent to m
m−1

λn,m ≤ (n−2)2

4
and hence,

in the supercritical range m > ms, it can be checked that Um is stable for m ≥ n−2
√
n−1

n−4−2
√
n−1

.
This last condition on the exponent is equivalent to the inequality

n ≥ 2 + 4

√
1 +

1

m− 1
+ 4

(
1 +

1

m− 1

)
. (16)

As a consequence, we deduce the existence of singular stable energy solutions for n > 10.
In fact, letting m→∞ above, the solutions Um converge to the logarithm

U ](x) := −2 log |x|, (17)

which solves (13) with L = ∆ and the exponential nonlinearity f(u) = 2(n − 2)eu, in the
weak sense. This singular solution is always in the energy space and is stable for n ≥ 10
(for instance, by taking the limit in (16) above).

When n
n−2

< m ≤ ms, the function Um is no longer in the energy space. Nevertheless, it
still lies in a weaker Sobolev space and satisfies f(Um) ∈ L1(B1), which is enough to show
that Um solves (13) in a weak sense. What is more surprising is the fact that Um satisfies

the stability condition (15) in the smaller range n
n−2

< m ≤ n+2
√
n−1

n−4+2
√
n−1

; see [14]. This
last example suggests that a satisfactory regularity theory, if any, can only be expected for
stable solutions in the energy class. Furthermore, even in that case, the smoothness of these
solutions must depend on the dimension n of the domain. As we have seen, singularities
may appear for n ≥ 10, and it is therefore natural to ask whether this is the only case.

The Gelfand problem

Before discussing the optimality of dimension 10, we comment on a physical motivation
for considering exponential nonlinearities (which led to this dimensional threshold). Such
reaction terms arise naturally in combustion theory, this being the main inspiration for the
first regularity results.

In the 1930’s, Frank-Kamenetskii suggested the use of reaction-diffusion equations to
model thermal combustion phenomena. The temperature of the combustible mixture is
assumed to satisfy such an equation, with a reaction governed by the Arrhenius Law.
Under the simplifying assumption that the fuel consumption time is much larger than the
ignition time, the term coming from the Arrhenius Law can be well approximated by an
exponential. In this theory, the solvability of the steady-state equation is used to determine
whether an explosion will happen. Namely, the nonexistence of solutions is interpreted as
the occurrence of an explosion, while the existence, for instance, of stable solutions would
mean that the temperature evolves towards a stationary profile.

More precisely, let u denote a suitably normalized temperature of the combustible
mixture. Suppose that the mixture is contained in a cylindrical vessel of cross-section
Ω ⊂ Rn, with u vanishing on the boundary (meaning that the walls of the vessel are at
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constant temperature). Then, after a sufficiently long time, u solves the Gelfand problem
−Lu = λg(u) in Ω

u > 0 in Ω
u = 0 on ∂Ω

(18)

with L = ∆ and g(u) = eu, where λ > 0 is a nondimensional parameter quantifying
the relative strength of the reaction with respect to the diffusion. According to Frank-
Kamenetskii, solutions to (18) are not expected to exist for sufficiently large λ; see [57].

In the sixties, Barenblatt [60] introduced problem (18) in the mathematical literature,
initiating the rigorous study of explosion phenomena.7 One natural way of constructing
solutions to (18) is by applying the implicit function theorem at u = 0, λ = 0, solving for
u in terms of λ and continuing this branch of solutions. Since the linearized operator at
the trivial solution is the Laplacian, by continuity, the first portion of the branch consists
of stable solutions. Another way of obtaining this same branch is by monotone iteration
starting at u = 0. Here, one constructs barriers for the problem (18) to ensure that the
iteration converges. Furthermore, this procedure shows that solutions are not only stable
but also minimal, in the sense that they are the smallest positive supersolutions of (18).

Thanks to the robustness of these methods, they can also be applied to more general
nonlinearities than exponential or power-type ones. To reproduce the behavior expected
by Frank-Kamenetskii, it is natural to consider g : [0,+∞)→ R satisfying

g(0) > 0, g nondecreasing, convex, and superlinear at +∞, (19)

where the last condition means that

lim
u→+∞

g(u)

u
= +∞.

Under assumptions (19), the fundamental existence theory for (18) can be summarized in
the following proposition, which has appeared in various forms in the literature:

Proposition 4 ([8,11,38,43]). Let Ω ⊂ Rn be a bounded domain and let L be an operator
of the form (8) with coefficients satisfying (9) and (10) in Ω. Assume that g ∈ C1(R)
satisfies (19). Then, there exists a constant λ? ∈ (0,+∞) such that:

(i) For each λ ∈ (0, λ?) there is a unique minimal strong solution uλ ∈ L∞(Ω)∩W 2,n
loc (Ω)

of (18). In particular, uλ is stable and we have uλ < uλ′ in Ω for λ < λ′.

(ii) For λ > λ? there are no strong solutions of (18) in L∞(Ω) ∩W 2,n
loc (Ω).

Assume moreover that Ω is C1,1 and that the coefficients of L are smooth up to the bound-
ary.8 Then:

(iii) For λ = λ? there exists a unique L1-weak solution u? of (18), in the following sense:
u? ∈ L1(Ω), g(u?)dist(·, ∂Ω) ∈ L1(Ω), and, letting LT denote the adjoint of L,

−
∫

Ω

u?LT ζ dx = λ?
∫

Ω

g(u?)ζ dx

for all test functions ζ ∈ W 2,n(Ω) such that LT ζ ∈ L∞(Ω) and ζ|∂Ω = 0. Moreover,
u? can be obtained as the pointwise limit uλ ↑ u? as λ ↑ λ?.

7Barenblatt’s work appeared in the volume [60] edited by Gelfand, and the latter’s name became
associated with the explosion problem.

8We will give more precise regularity assumptions in Chapter 3 below.
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Recall here that, under minimal regularity assumptions on the coefficients (condi-
tion (10) above), the best solutions to (18) that we can expect are strong solutions in
L∞(Ω) ∩ W 2,p

loc (Ω). By this we mean that they solve the equation almost everywhere in
Ω and satisfy the boundary condition in an appropriate sense (see footnote 6). In C1,1

domains and under the additional assumption (14), bounded solutions are in W 2,p(Ω), for
all p <∞ (and hence in C1,α(Ω) for all 0 < α < 1).

Proposition 4 underlines the important role played by stable solutions in the Gelfand
problem. Namely, for λ ∈ (0, λ?) there is a distinguished stable solution uλ, which is
bounded (and hence smooth if the domain and the coefficients of L are smooth), while for
λ > λ? there are no solutions (not even in a weak sense, as shown in [12]). As we approach
the extremal parameter λ?, the stable solutions uλ converge to a function u? in L1, which
solves (18) in a weak sense. This is the extremal solution and it is also the unique solution
of (18) for λ = λ?, as proved by Martel [73].

A priori, the extremal solution u? is only in L1 and, therefore, it is natural to ask
whether it is bounded. In the seventies, Joseph and Lundgren [64] considered the Gelfand
problem (18) in the unit ball for exponential and power nonlinearities, with L = ∆. Since
positive solutions are radially symmetric in this case, the problem reduces to an ODE.
Using phase plane techniques, they showed that the stable branch (and hence u?) is always
bounded when n ≤ 9, while it can be unbounded for n ≥ 10. In fact, for n ≥ 10, the
logarithm U ] given by (17) above is the extremal solution for g(u) = eu.9

As noted by Crandall and Rabinowitz [44], the boundedness of u? in general domains
could be deduced from L∞ a priori estimates for the stable solutions {uλ}0<λ<λ? . In the
seminal work [44], they obtained such a bound for exponential and power-type nonlinear-
ities in the optimal range n ≤ 9. Their result applies to variational problems involving
operators in divergence form with bounded coefficients. Using appropriate test functions
in the variational stability inequality, for exponential and power nonlinearities they showed
that ‖uλ‖L∞(Ω) ≤ C for n ≤ 9 and λ ∈ (0, λ?), where the constant C is independent of λ.
Taking the limit as λ→ λ?, it follows that u? is bounded in this case.

Optimal dimension for the Laplacian

After the work of Crandall and Rabinowitz, no singular stable solutions were found in low
dimensions, which led to the conjecture that they must all be bounded in this case. In the
nineties, Brezis [11] asked whether dimension 10 could also be optimal for more general
nonlinearities, emphasizing the class satisfying the natural assumptions (19). Along similar
lines, Brezis and Vázquez [14] noticed that the known examples of extremal solutions were
always in the energy space, independently of the dimension. Consequently, they wondered
if such a phenomenon could hold for general nonlinearities as above.

Both of these questions motivated a series of papers trying to establish a priori estimates
that could apply to all stable solutions, at least in low dimensions and for the model case
L = ∆. All these attempts over the course of a quarter of a century culminated in the
recent work of Cabré, Figalli, Ros-Oton, and Serra in [24], where the two questions were
answered affirmatively for the Laplacian in general C3 regular domains. Next, we comment
on the previous works leading to this last result, emphasizing the test functions used in
the stability condition (4).

9This fact follows directly from a useful characterization of singular extremal solutions due to Brezis
and Vázquez [14]. Namely, if a stable energy solution is unbounded, then it is necessarily the extremal
solution.
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• The first positive result for the Laplacian in smooth domains was obtained by Nedev
in [78]. By choosing test functions of the form ξ = h(u) in (4), with h depending on
the nonlinearity g, he obtained a priori estimates for the minimal solutions uλ. As a
consequence, he was able to show that u? ∈ L∞(Ω) for n ≤ 3 and u? ∈ W 1,2

0 (Ω) for
n ≤ 5. Under the additional assumption that Ω is convex, he proved that the last
inclusion holds in every dimension [79].

• Cabré and Capella [21] treated the radial case (Ω = B1, L = ∆) for general nonlin-
earities. They were able to reach the optimal dimension in this case, showing that
u? ∈ L∞(B1) for n ≤ 9 and u? ∈ W 3,2

0 (B1) for all n. Inspired by the work of Simons
on minimal surfaces [90], they considered a test function of the form ξ = cη in the
stability inequality, where c depends on the solution and η is a cut-off. This choice
leads to the inequality ∫

Ω

(Juc) cη2 ≤
∫

Ω

c2|∇η|2,

and the goal is then to choose c in a way such that Juc no longer depends on the
nonlinearity. Writing ur = x

|x| · ∇u and r = |x|, they considered c = rur and

η = (r−α − 2α)+ for the exponent α < 1 +
√
n− 1. This choice allowed them to

control a weighted norm of ur, which then yields pointwise bounds for the solution.
When n ≤ 9, they obtained an L∞ estimate valid for all stable energy solutions
of (13) and for all C1 nonlinearities f , not only those satisfying (19). Their result
gave credibility to the conjecture that 10 was indeed the lowest dimension where
singularities could arise.

• Cabré [16] proved the boundedness of u? up to n ≤ 4 in convex domains. Using
stability, he first controlled stable energy solutions in an arbitrary domain by their
L∞ norm close to the boundary. Assuming the convexity of the domain, the method
of moving planes then yields an estimate of this last quantity in terms of the L1 norm
of the solution. To obtain the first estimate, he again considered a test function of
the form ξ = cη in the stability inequality, letting

c = |∇u| and η = h(u)

for an appropriate h. This choice had already appeared in the works of Sternberg and
Zumbrun on phase transitions [91,92] and leads to control certain geometric quantities
associated to the level sets of the solution, such as their curvature. Combined with
the Sobolev inequality of Michael, Simon, and Allard [2,76] on level sets, the stability
of u yields the L∞ estimate for n ≤ 4.

Later, Villegas [95] extended this boundedness result to all smooth domains, combin-
ing ideas of Nedev [78] and of Cabré [16]. Moreover, he showed that u? is in W 1,2

0 (Ω)
for n ≤ 6.

• Cabré and Ros-Oton [27] showed that u? is bounded for n ≤ 7 in convex do-
mains of double revolution (invariant under rotations of the first m and last n −m
variables). Here, by symmetry, the solution depends only on the radial variables
s =

√
x2

1 + · · ·+ x2
m and t =

√
x2
m+1 + · · ·+ x2

n. Similar to the radial case treated
in [21], they considered test functions ξ = cη, letting c = sus and η = s−αζ first
(where ζ is a cut-off), and then c = tut and η = t−βζ, for exponents in the range
α < 1 +

√
m− 1 and β < 1 +

√
n−m− 1. As in [16], this yields an L∞ estimate
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in terms of the solution close to the boundary, which can be further bounded in
convex domains. Without this convexity assumption, they were able to show that
u? ∈ W 1,2

0 (Ω) for n ≤ 6, later improved by Villegas in [95] (as commented above).

As mentioned above, the conjectures of Brezis and Brezis-Vázquez for the Laplacian
were eventually solved by Cabré, Figalli, Ros-Oton, and Serra in [24], where they showed
that u? ∈ L∞(Ω) for n ≤ 9 and u? ∈ W 1,2

0 (Ω) for all n, in domains of class C3. In that
paper, the authors consider several of the test functions that we have already mentioned
and they also introduce new ideas to complete the proof. Their strategy is to upgrade the
proof of [21] for the radial case, which already yields an optimal result, to make it work in
general domains.

The main result in [21] consists of two types of universal a priori estimates for bounded
stable solutions. Namely, an energy estimate, valid in all dimensions, and a Hölder estimate
in the optimal range n ≤ 9, all in terms of the L1 norm of the solution. We briefly discuss
their proof, which is based on obtaining local interior and boundary analogues of these
estimates.

The interior estimates in [24] apply to classical stable solutions of (1) in the unit
ball Ω = B1 (without boundary conditions), and only need the nonnegativity of f . For
the energy estimate, they choose a Sternberg-Zumbrun type test function in the stability
inequality, letting ξ = cη with c = |∇u| and where η is a cut-off. Applying the divergence
theorem, they are then able to control the Dirichlet energy on level surfaces, and by the
coarea formula the higher integrability of the gradient follows. In contrast, the interior
Hölder estimate uses a variant of the test function for the radial case in [21]. Letting

c(x) = x · ∇u(x) and η(x) = |x|
2−n
2 ζ

for a cut-off ζ, when n ≤ 9, the stability condition leads to a control of the weighted
scale-invariant quantity

∫
Bρ
u2
rr

2−n, with ρ < 1/2, by the Dirichlet energy in the annulus

B2ρ \ Bρ. It remains to bound the full gradient in terms of the radial derivative, since
the previous estimate would then lead to the algebraic decay of the weighted integral, and
hence to a Cα bound. To show this, they argue by compactness, using that there are no
nonconstant homogeneous superharmonic functions in an annulus.

On the other hand, the boundary estimates in C3 domains require that f be nonneg-
ative, nondecreasing, and convex. The test functions are variants of the ones used in the
interior estimates, obtained by modifying c so that it vanishes on the curved boundary ∂Ω.
Once again, the crucial point is controlling the full derivative by the radial one. Here, the
superharmonicity no longer suffices to have such a property, and one must further use that
u is a stable solution to a semilinear equation. The authors of [24] are only able to show
this in flat domains, by compactness, which requires a subtle closedness result for stable
solutions with convex nonlinearities. To obtain the Hölder estimate in curved domains,
they apply a blow-up procedure, and the problem reduces to proving a Liouville theorem
in half-spaces. This result follows from the stability inequality with c = x · ∇u combined
with the estimate for ur in half-balls.

Notice how the use of compactness arguments was crucial to obtain the optimal Hölder
estimate in [24]. While these methods can be quite versatile, they do not provide a means
to quantify the constants that appear in the estimates. Recently, Cabré [19,20] has found a
new quantitative proof for the Laplacian in half-balls. Namely, he obtains interior estimates
assuming only the nonnegativity of f , and boundary estimates in half-balls for nonnegative,
nondecreasing, and convex nonlinearities. This new quantitative proof greatly simplifies
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the previous boundary argument. The author’s approach is to control the L1 norm of the
solution by the L1 norm of its radial derivative directly, in a quantitative way. For the
interior estimates, the key is proving L1 estimates for the Neumann problem and using
the superharmonicity of the solution to carry out a comparison argument. The boundary
estimates use the equation satisfied by the solution under rescalings, taking a derivative
with respect to the scaling parameter and applying the stability inequality.

Another natural question concerns the optimal regularity when n ≥ 10. This has been
solved by Peng, Zhang, Zhou [81], who show that, for the Laplacian, stable energy solutions

belong to the Morrey space Mmn,4+ 2
mn−2 (Ω) with mn = 2(n−2

√
n−1−2)

n−2
√
n−1−4

.10

Operators with variable coefficients

While the works mentioned above dealt with the Laplacian in sufficiently smooth domains,
the same optimal regularity question can be asked in more general scenarios. Some natural
extensions include substituting the Laplacian by an operator with variable coefficients, or
weakening the regularity of the domain Ω in the boundary value problem. We will obtain
an optimal regularity result for operators in non-divergence form in C1,1 domains, as we
explain later after first describing the previously known literature.

Concerning operators with variable coefficients, the only optimal results apply to par-
ticular nonlinearities. For (self-adjoint) operators in divergence form, Crandall and Ra-
binowitz [44] showed the boundedness up to dimension 9 for exponential and power-type
nonlinearities. This result was extended by Cowan and Ghoussoub [40] to non self-adjoint
operators of the form L = ∆ + bi(x)∂i in smooth domains, with bi ∈ C∞(Ω). In this
setting, a variational stability inequality is no longer available and one must solely rely
on the nonnegativity of the principal eigenvalue µ1[Ju,Ω]. To surmount this difficulty, the
authors in [40] apply a general Hardy inequality by Cowan [39] to the principal eigenfunc-
tion, resulting in an alternative integral inequality. Subsequently, the test functions of [44]
lead to the boundedness of u? in the optimal range. The Hardy inequality by Cowan uses
a Hodge-type decomposition of the vector field b(x) = (bi(x)) , which requires it to be
smooth. We will get a more general result for bounded bi, as explained in the last section
of this Introduction.

We now discuss the regularity of the domain. Before the optimal dimension for the
Laplacian (n ≤ 9) was reached in [24], all previous works assumed the smoothness of ∂Ω
but did not investigate the possibility of weakening this assumption. On the other hand,
the local analysis of [24] around the boundary works precisely in C3 regular domains.

To prove the Hölder estimate for classical stable solutions in [24], the authors consider
a portion of the boundary that is close to flat in C3 norm. Under this assumption, when
applying the blow-up procedure, the domain converges to a half-space and all error terms
in their estimates vanish. Moreover, the C3 regularity assumption ensures that classical
stable solutions are in the Sobolev space W 3,p(Ω), for all p < ∞. The existence of third
weak derivatives is crucial for the estimates not to depend on the nonlinearity. Here, when
computing the linearized operator Ju acting on the test functions c = |∇u| and c = x ·∇u,
the nonlinearity cancels out, but this can only happen if u has third derivatives.

Instead of using a blow-up procedure, we will study curved boundaries by flattening
them out locally. Under such a transformation, the Laplacian becomes an operator with
variables coefficients of the form (8). Our finer estimates for these operators in flat domains

10Here, we say that u belongs to the Morrey space Mm,β(Ω) if supy∈Ω,ρ>0 ρ
β−n ∫

Ω∩Bρ(y)
|u|m <∞.
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will be applicable to domains that are close to flat in C2 norm. Moreover, by an approxi-
mation argument, such estimates will continue to hold in C1,1 regular domains. This is a
natural assumption from the point of view of the regularity theory for non-divergence form
operators.

Stable solutions to other problems

The regularity of stable solutions can also be studied in other frameworks. Here, we briefly
mention some natural extensions obtained by modifying the nonlinearity or the operator
in the equation.

An important class of nonlinearities consists in functions blowing up at a point. The
Gelfand problem in this case models the behavior of MEMS devices. For a positive, in-
creasing, and convex nonlinearity f : [0, 1) → (0,∞) blowing up at 1, stable solutions u
are always bounded by 1, but are only regular if u < 1. Here, the optimal dimension for
the regularity of stable solutions depends on the blow-up rate of f , and is open in certain
general classes; see the monograph [53].

Quasilinear operators have also been considered in the literature. Here, the operator L
in the equation −Lu = f(u) is replaced by a quasilinear one. When L is the p-Laplacian,
the optimal dimension depends on p. Namely, explicit examples of singular stable energy
solutions (in W 1,p) have only been found for n ≥ p + 4p

p−1
. For p > 2, Cabré, Miraglio,

and Sanchón [25] have shown that this range is optimal. When 1 < p < 2, they have also
proved the boundedness of stable solutions for n < 5p, but it is not known whether this can
be improved. Mellet and Vovelle [75] have treated the case when L is the mean curvature
operator. Here, smoothness does not follow from the boundedness of the solution (in fact,
stable solutions are always bounded) and the goal is to show that the gradient is bounded.
In [75] the authors show that, in the radial case, stable solutions are regular independently
of the dimension. Whether this result holds in general domains is an open problem.

Finally, another interesting scenario arises when substituting the differential operator
L by a nonlocal one. The model case here is the fractional Laplacian (−∆)s (on which we
comment more in the next section below), and the regularity of stable solutions depends on
the fractional parameter s ∈ (0, 1). For this operator, the optimal dimension is believed to
be the one given by the exponential nonlinearity in [83]. However, for general nonlinearities,
this dimension has not been reached, not even in the radial case; see [29, 85, 86] and the
references therein.

Minimizers and calibrations

Up until this point we have focused on the stability of solutions, a necessary condition
for minimality. Now, we turn our attention to minimizers of energy functionals. In the
second part of this dissertation, we will be particularly interested in the theory of sufficient
conditions for nonlocal functionals. Namely, given a solution to a variational equation,
we would like to identify auxiliary conditions guaranteeing its minimality. While such a
theory has been known for a long time for classical local problems, before this work there
were almost no results in the nonlocal setting.

First, we give a brief summary of the classical theory of necessary and sufficient condi-
tions. For this part, we mostly follow the celebrated monograph of Giaquinta and Hilde-
brandt [61]. Then, we move onto nonlocal energy functionals, focusing on the fractional
Gagliardo-Sobolev seminorm.
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The classical theory of necessary and sufficient conditions

One of the greatest discoveries in Physics was the realization that the laws of nature could
be deduced from variational principles. An early example is Fermat’s principle of least time
in optics, whereby the path of a light ray traveling between two points is determined by
minimizing the traveling time. Such principles motivated the development of the Calculus
of Variations, the mathematical discipline dealing with the minimization of functionals.

A great part of the classical theory deals with general energy functionals of the form

EL(w) =

∫
Ω

GL(x,w(x),∇w(x)) dx.11

Here, we assume that the Lagrangian function GL = GL(x, λ, q) is smooth and that the
functional EL : AL → R acts on a class AL of scalar functions w : Ω→ R in C1(Ω), defined
in some bounded domain Ω ⊂ Rn.12 We say that u ∈ AL is a minimizer of EL if

EL(u) ≤ EL(w) for all w ∈ AL with w = u on ∂Ω.

That is, we always consider minimizers with respect to competitors satisfying the same
Dirichlet boundary conditions.

To compute minimizers, the first step is to find necessary conditions for minimality.
This is achieved by testing the minimality condition with suitable competitors. Given
u ∈ AL a minimizer of EL, we consider competitors of the form u + εξ with ξ ∈ C∞c (Ω)
and where ε > 0 is sufficiently small so that u + εξ ∈ AL (which is satisfied in most
applications). By minimality of u, the first variation of EL at u (i.e., the derivative of
ε 7→ EL(u+ εξ) at ε = 0) must vanish. Since ξ is arbitrary, after a simple computation and
integrating by parts, it follows that u satisfies the Euler-Lagrange equation

−div (∂qGL(x, u,∇u)) + ∂λGL(x, u,∇u) = 0.

Solutions to the Euler-Lagrange equation are called critical points or extremals of the
functional EL.

As discussed above, another necessary condition follows from taking the second varia-
tion of EL at u, which must be nonnegative and leads to the stability of the critical point.
Choosing test functions of the form ξ = εη(·/ε) in the stability inequality and letting ε→ 0
leads to Legendre’s necessary condition

∂2
qi,qj

GL(x, u(x),∇u(x))pipj ≥ 0 for all p ∈ Rn and x ∈ Ω.

Notice that the linearized Euler-Lagrange equation at u is the Jacobi operator

Juξ = div
(
∂2
q,qGL(x, u,∇u)∇ξ

)
+
{

div
(
∂2
q,λGL(x, u,∇u)

)
− ∂2

λ,λGL(x, u,∇u)
}
ξ.

When u is a minimizer, it follows that the principal part of Ju is nonnegative definite, that
is, Ju is an elliptic operator in this case.

Until the XIX century, it was believed that extremals of elliptic energy functionals were
necessarily minimizers. Weierstrass disproved this belief by producing examples of critical

11The subindices L and N will be used throughout the work to denote “local” and “nonlocal” objects,
respectively.

12Here it is worth mentioning that, historically, vector valued functions of one variable were also crucial
in the development of the Calculus of Variations. Minimization problems in that case leads to the study
of systems of ODEs, while in this thesis we focus on scalar PDEs.
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points which did not minimize the corresponding functional. The claim is only true for
convex Lagrangians, that is, such that the joint function (λ, q) 7→ GL(x, λ, q) is convex.
However, this convexity assumption is too restrictive in most applications, where only
ellipticity is available. These observations motivate the search for sufficient conditions.

Jacobi developed a theory of sufficient conditions for weak minimizers, namely, local
minimizers in a C1 neighborhood. More precisely, u ∈ AL is a weak minimizer of EL if

EL(u) ≤ EL(u+ ξ) for all ξ ∈ C∞c (Ω) with ‖ξ‖C1(Ω) < ε,

for some small ε > 0. Arguing as above, we have that weak minimizers satisfy Legendre’s
condition. Under a uniform ellipticity assumption on Ju (the strict Legendre condition),
Jacobi proved that strictly stable solutions are weak minimizers. To see this, by Taylor’s
expansion, it suffices to show that the second variation at u + ξ is positive. Since GL

and all its derivatives are continuous with respect to C1 perturbations, the positivity at
u+ ξ follows from the one at u, up to errors of order ‖∇ξ‖2

L2(Ω). These errors can then be
controlled using G̊arding’s inequality, which shows the claim.

As we just saw, Jacobi’s sufficient condition (i.e., the strict stability of u) yields local
minimality in a very small neighborhood of functions whose slopes are close to those of
u. In applications, however, a stronger and more precise notion of minimality is often
needed. Following this direction, Weierstrass studied the class of strong minimizers: local
minimizers with respect to the C0 topology. Thus, u ∈ AL is a strong minimizer of EL if
there is a ε > 0 such that

EL(u) ≤ EL(u+ ξ) for all ξ ∈ C∞c (Ω) with ‖ξ‖C0(Ω) < ε.

First, Weierstrass obtained a necessary condition for strong minimizers. For this, taking
perturbations of the form ξ(x) = ψε(xn)ζ(x′/ε) (up to translations and rotations), where
x = (x′, xn) ∈ Rn−1 × R, ζ is a cut-off, and

ψε(xn) :=

{
(xn + ε2)+ for xn ≤ 0
ε(ε− xn)+ for xn > 0,

and letting ε→ 0 in the strong minimality condition, it follows that

GL(x, u(x),∇u(x) + p) ≥ GL(x, u(x),∇u(x)) + ∂qiGL(x, u(x),∇u(x)) pi

for all p ∈ Rn and x ∈ Ω. This is the Weierstrass necessary condition, which corresponds
to a stronger notion of ellipticity for Ju than Legendre’s condition.

Later, Weierstrass found a sufficient condition which gives minimality in a more precise
region of space, not just in a small C0 neighborhood. It states that if a solution can
be embedded in a family of extremals, whose graphs produce a foliation, then it is a
minimizer in the region foliated by these critical points. In the literature, this is known as
the Weierstrass extremal field theory.

We now explain this necessary condition in more detail. Let {ut}t∈I , where I ⊂ R is
an interval, be a one-parameter family of critical points whose graphs give a foliation of a
certain region GL ⊂ Ω× R. In particular, the graphs of ut do not touch. Such a family is
called a field of extremals,13 a nomenclature originating in scalar ODE, where the slopes of
the ut would define a vector field in GL. The extremal field theory asserts the following: if
every critical point {ut}t∈I satisfies the Weierstrass necessary condition, then each ut is a

13The term extremal field is also often used in the literature, but we find it ambiguous.
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minimizer with respect to competitors w ∈ AL, taking values in the foliated region GL, and
satisfying w = ut on ∂Ω. In particular, the field of extremals is made up of minimizers.

This minimality result can be proved directly by constructing an auxiliary functional
CL : AL → R, defined next. Here, the foliation property of the field is crucial. Using that
for each point (x, λ) ∈ GL ⊂ Ω×R there is exactly one t = t(x, λ) ∈ I such that ut(x) = λ,
we define CL by

CL(w) :=

∫
Ω

{
GL(x, ut(x),∇ut(x)) + ∂qGL(x, ut(x),∇ut(x)) · (∇w −∇ut)

}∣∣∣
t=t(x,w(x))

dx.

Notice that CL is obtained by letting p = ∇w(x) − ∇ut(x)
∣∣
t=t(x,w(x))

in the Weierstrass

necessary condition satisfied by ut(x,w(x)) and then integrating in x ∈ Ω. It follows imme-
diately that CL touches EL by below at each extremal ut. Moreover, using that {ut}t∈I are
critical points, it can be shown that CL is also a null-Lagrangian, in the sense that it only
depends on the boundary values of the functions. Hence, we have CL(w) = CL(w̃) for all
w, w̃ ∈ AL such that w = w̃ on ∂Ω. From these properties, it is now easy to deduce the
minimality of each ut.

Functionals such as CL are called calibrations in the Calculus of Variations, and they can
be used in many situations to conclude that certain solutions are minimizers. The strategy
is to embed such a critical point u in a family of extremals {ut}t∈I , so that u = ut0 for some
t0 ∈ I. More generally, assuming that t 7→ ut is increasing in t ∈ I, to prove the minimality
of ut0 it suffices that the functions ut above ut0 (with t ≥ t0) are supersolutions of the Euler-
Lagrange equations, while the ones below (with t ≤ t0) are subsolutions. Such approaches
have found important applications in the theory of minimal surfaces; see [10,45,46,71].

We conclude this section by mentioning that Jacobi’s sufficient condition above yields
the existence of an extremal field in a small C0 neighborhood of the solution. Namely,
assuming the strict Legendre condition, if u is strictly stable, then one can construct
extremals of the form ut = u + ξt by the Banach fixed point theorem, with ξt small. To
conclude their minimality in the foliated neighborhood, the Weierstrass necessary condition
is still needed.

Nonlocal problems

Recently, there has been an increasing interest in nonlocal problems. Classical functionals
such as EL cannot capture the long range interactions present in many relevant situations.
Minimizing the energy functionals associated to these processes leads to nonlocal Euler-
Lagrange equations. Nonlocality refers to the fact that evaluating these equations at a
point requires knowledge of the solution everywhere in space.

One of the simplest energy functionals modeling nonlocal phenomena is given by

Es,F (w) =
cn,s
4

∫∫
Q(Ω)

|w(x)− w(y)|2

|x− y|n+2s
dx dy −

∫
Ω

F (w(x)) dx,

where s ∈ (0, 1), cn,s is a positive normalizing constant, F ∈ C1(R), and

Q(Ω) = (Rn × Rn) \ (Ωc × Ωc)

for a bounded domain Ω ⊂ Rn, with Ωc = Rn \ Ω. The functional Es,F is the “fractional”
version of E1,F considered in (2) above. It is obtained substituting the Dirichlet energy by
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the Gagliardo seminorm [58]. Moreover, one can formally recover E1,F from Es,F by letting
s ↑ 1; see [47].

Notice that here, in the definition of Es,F , we are considering functions w : Rn → R
taking values in the whole space, not just in the domain Ω. Thus, the functional accounts
for interactions between points that can be very far apart from each other. In this context,
it is natural to consider competitors having the same value in the exterior Ωc = Rn \ Ω.
This is one reason why we do not include Ωc × Ωc interactions in Es,F , the other being
that such an integral need not be finite, even for smooth and bounded functions. Hence,
the exterior datum becomes a nonlocal analogue of the boundary conditions from classical
local problems.

Minimizers of Es,F satisfy the Euler-Lagrange equation

(−∆)su = f(u) in Ω,

where (−∆)s is the fractional Laplacian defined by

(−∆)su(x) = cn,s P.V.

∫
Rn

u(x)− u(y)

|x− y|n+2s
dy.

Here, P.V. indicates that the integral must be understood in the principal value sense.
Once again, in order to compute the fractional Laplacian of u at a point, we need to know
the values of the function in the whole Rn. The normalizing constant cn,s is determined by
taking the Fourier transform F and imposing that

F [(−∆)su](z) = |z|2sF [u](z) for all z ∈ Rn.

In particular, (−∆)s converges to the ordinary Laplacian −∆ as s ↑ 1, in a suitable sense.
While being a nonlocal operator, the fractional Laplacian can also be studied via the

Caffarelli-Silvestre extension [33], an auxiliary local problem in an extended n+ 1 dimen-

sional space. There, writing (x, y) ∈ Rn × (0,∞) =: Rn+1
+ , one considers U : Rn+1

+ → R to
be the solution of the degenerate elliptic problem{

div (y1−2s∇U) = 0 in Rn+1
+

U = u on ∂Rn+1
+ = Rn.

It can then be shown that (−∆)su(x) = − limy→0+ y
1−2s∂yU(x, y), allowing us to recover

the fractional Laplacian of u from its harmonic s-extension U . Notice that the semilinear
equation in Ω above becomes a Neumann reaction problem for the extension.

A theory of necessary of sufficient conditions as the one described in the previous section
does not seem to be available for nonlocal functionals at the moment. Such results would
help us to better understand nonlocal variational problems and would also equip us with
a valuable toolkit to effectively attack these problems. For instance, in the last section of
this Introduction, we give some nontrivial applications of having sufficient conditions.

Concerning necessary conditions, even the notion of ellipticity has not been properly
defined in that case. The fractional Laplacian is admitted to be an elliptic operator in some
sense, since its Fourier symbol is invertible away from zero (a concept of ellipticity from
the theory of pseudo-differential operators) and because it satisfies a maximum principle.
While the former condition is only applicable to pseudo-differential operators, the latter
condition continues to hold for more general nonlocal operators satisfying some monotonic-
ity assumption, which can be taken as a nonlocal notion of ellipticity (as explained below
in the last section of this Introduction).
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On the other hand, sufficient conditions for minimality had only been found in the
context of nonlocal minimal surfaces. There, one considers functionals PN acting on sets
E ⊂ Rn instead of functions, and which describe a nonlocal analogue of the perimeter of
the surface ∂E. These functionals are of the form

PN(E) =
1

2

∫∫
Q(Ω)

|1E(x)− 1E(y)|K(x− y) dx dy,

where K is a singular, nonnegative, symmetric kernel. We note in particular that quadratic
functionals of the form Es,F are not covered by this setting. For nonlocal perimeters, the
only results are by Cabré [18] and Pagliari [80]. In [18], the author built a calibration for PN

in the presence of a field of extremals by nonlocal minimal surfaces (i.e., critical points of
PN). This construction suggested that a nonlocal version of the Weierstrass extremal field
theory could exist for other functionals, but the method of proof could not be generalized
to that framework. As we will see in the last section below, the present dissertation will
confirm the validity of such a conjecture. Lastly, [80] gave a calibration for the nonlocal
total variation functional

ENTV(w) :=
1

2

∫∫
Q(Ω)

|w(x)− w(y)|K(x− y) dx dy,

(which can be obtained as the integral of the PN on level sets) for the particular case of
characteristic functions of the half-space. As an application, the author of [80] deduced
that halfspaces minimize PN. While this is the first nonlocal calibration (for the types of
functionals that we are interested in) that has appeared in the literature, the proof does
not use fields of extremals and only works for the characteristic function of a half-space.
Thus, it was not known how it could be generalized to other situations.

Finally, we would like to point out that it is not clear a priori how to use the local
extension problem to obtain sufficient conditions for Es,F . As shown in [32], minimality
properties of Es,F can be related to those of a functional acting on functions defined in the
extended space Rn+1

+ . However, applying the local theory to functionals in Rn+1
+ leads to

intricate conditions that, at first glance, cannot be written on Rn.

Results and outline of the thesis

The thesis is divided in two parts. Part I is devoted to the regularity of stable solutions,
while Part II deals with necessary conditions for minimality in a nonlocal setting. First, in
Part I, we develop a regularity theory for stable solutions to semilinear elliptic equations
with variable coefficients. It consists of Chapters 1–3 and Appendices A–F. Later, in
Part II, we present a nonlocal Weierstrass extremal field theory. This portion includes
Chapters 4–5 and Appendices G-J.

Part I: Regularity of stable solutions

Below, L denotes a linear elliptic operator in non-divergence form, given by (8), that is,

L = aij(x)∂ij + bi(x)∂i.

As before, we assume that L is uniformly elliptic, i.e., satisfying (9) above or

c0|p|2 ≤ aij(x)pipj ≤ C0|p|2 for all p ∈ Rn, (20)
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recalled here for convenience. Our regularity theory requires some additional assumptions
on the coefficients beyond the basic hypothesis (10). Namely, we always assume that

aij ∈ C0,1(Ω), bi ∈ L∞(Ω). (21)

For the boundary regularity, we will also need the interior continuity assumption

bi ∈ L∞(Ω) ∩ C0(Ω). (22)

Chapter 1 provides interior estimates for stable solutions under the sole assumption that
the nonlinearity is nonnegative. Here and in the following, whenever we write C = C(. . .),
we mean that the constant C depends only on the quantities between the parentheses. The
main result of that chapter is the following:

Theorem 5 (Theorem 1.1.1). Let L satisfy conditions (20) and (21) in Ω = B1, and let
f ∈ C1(R) be nonnegative.

Let u ∈ W 3,p(B1), for some p > n, be a stable solution of −Lu = f(u) in B1.
Then

‖∇u‖L2+γ(B1/2) ≤ C‖u‖L1(B1),

where γ = γ(n) > 0 and C = C(n, c0, C0, ‖∇aij‖L∞(B1), ‖bi‖L∞(B1)). In addition,

‖u‖Cα(B1/2) ≤ C‖u‖L1(B1) if n ≤ 9,

where α = α(n, c0, C0) > 0 and C = C(n, c0, C0, ‖∇aij‖L∞(B1), ‖bi‖L∞(B1)).

This theorem gives two types of a priori estimates: an energy estimate in every di-
mension and a Hölder estimate in the optimal range n ≤ 9. Our bounds depend only on
the ellipticity constants, as well as the Lipschitz norm of aij and the L∞ norm of bi. In
particular, the constants do not depend on the nonlinearity. Previously, such a result was
only known to hold for the Laplacian; see [24].

Notice that u is assumed to have three derivatives. This is needed to have a cancellation
which removes the nonlinearity in the stability condition, ensuring that the estimates do
not depend on f . Assuming the coefficient bi to be smooth, one can show the existence of
third derivatives for bounded strong solutions. However, in our boundary regularity result
below, thanks to an approximation argument, we will not need this additional assumption.

In order to establish Theorem 5, we test the stability condition with variants of the
test functions in [24]. Since our problem is not variational, the characterization of stability
via the second variation is not available, and we must obtain an integral inequality from
the pointwise condition in Definition 3. A first approach to the computations leads to
bounds depending on the C2 norm of aij and the C1 norm of bi. The main difficulty in the
proofs is to obtain the claimed C0,1 and L∞ dependence, which is crucial for the subsequent
boundary estimates to hold in C1,1 domains. This forces us to treat certain error integrals
involving the Hessian of the solution, which are controlled via a Sternberg-Zumbrun type
inequality (see Theorem 1.1.2).

Moreover, thanks to a device of [19] for the Laplacian, all our estimates are quantifiable.
Instead, the proof in [24] used contradiction-compactness arguments that did not yield a
quantitative control of the constants. Adapting the method from [19] to our setting adds
some technical difficulties. In essence, the problem reduces to obtaining estimates for a
Neumann problem, which we only know how to achieve by a Moser iteration.
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In Chapter 2, we prove an energy estimate up to the boundary in half-balls, valid in
every dimension. This result is the boundary analogue of the energy estimate in Theorem 5,
and requires the nonlinearity f to be nonnegative and nondecreasing. Its proof uses the
interior estimates from Chapter 1 together with a delicate Sternberg-Zumbrun estimate up
to the boundary in flat domains (Theorem 2.1.4 below). For this, we again use a variant of
the test functions in [24]. The dependence on the constants is through the same coefficient
norms appearing in Theorem 5. This chapter serves as an intermediate step between the
interior estimates and the curved boundary estimates.

Finally, in Chapter 3, we prove boundary estimates in curved domains of class C1,1.
These estimates are the main conclusion of Part I, and can be summarized in the following:

Theorem 6 (Theorem 3.1.1). Let Ω ⊂ Rn be a bounded C1,1 domain. Let L satisfy
conditions (9), (21), and (22) in Ω, and let f ∈ C1(R) be nonnegative, nondecreasing, and
convex.

Let u ∈ C0(Ω) ∩W 2,n
loc (Ω) be a stable solution of −Lu = f(u) in Ω, with u = 0 on ∂Ω.

Then,
‖∇u‖L2+γ(Ω) ≤ C‖u‖L1(Ω),

where γ = γ(n) > 0 and C = C(Ω, c0, C0, ‖∇aij‖L∞(Ω), ‖bi‖L∞(Ω)). In addition,

‖u‖Cα(Ω) ≤ C‖u‖L1(Ω) if n ≤ 9,

where α = α(n, c0, C0) > 0 and C = C(Ω, c0, C0, ‖∇aij‖L∞(Ω), ‖bi‖L∞(Ω)).

Similarly to the interior bounds above, Theorem 6 establishes boundary energy and
Hölder estimates in the optimal range of dimensions. These are new even for the Laplacian
in [24], a result which required a C3 regularity assumption on the domain. Moreover, by
adapting some ideas of [19] for the Laplacian in half-balls, we give the first quantitative
proof in curved domains. It is worth mentioning that in both [24], [19], and in Theorem 6,
the nonlinearity is required to be nonnegative, nondecreasing, and convex.

Our proof uses all previous results from Chapters 1 and 2. Here, the strategy is to
flatten the boundary locally and then choosing appropriate test functions in the alternative
integral stability inequality obtained in Chapter 1.

Notice that our result applies to strong stable solutions. In fact, since we are only
assuming conditions (21) and (22) on the coefficients, our solutions need not have third
derivatives, while the a priori estimates from the preceding chapters required this assump-
tion. To circumvent this issue, we carry out an approximation argument. Namely, we
consider a smooth exhaustion Ωk of our C1,1 domain, and we construct regular stable so-
lutions uk to an auxiliary problem in each Ωk. These solutions approximate the original
solution in some sense. Applying our estimates to the sequence uk and passing to the
limit then yields the result. For this method to work in C1,1 domains, it is crucial that
the bounds depend only on the C0,1 and L∞ norms of aij and bi, respectively. Indeed,
when flattening the boundary by a change of variables, the solution in the new coordinates
satisfies an equation of the same form but with different coefficients. Namely, the new
aij coefficients involve first derivatives of the flattening map, while the bi contain second
derivatives of the same map. Thus, the stated dependence on the norms corresponds to a
C1,1 domain.

We conclude Part I with Appendices A–F, which provide certain accessory results re-
quired by the proofs of the main theorems above. In Appendix A we show that the stability
condition is not equivalent to the integral inequality obtained in Chapter 1. Appendix B

19



contains an elementary proof of the Sobolev trace inequality in the ball, which is needed
in Chapter 1 to carry out the Moser iteration leading to quantitative interior estimates. In
Appendix C we recall some useful interpolation inequalities of Cabré [19,20]. Appendix D
serves the purpose of recalling a celebrated lemma by Simon [89] for absorbing errors in
large balls. In Appendix E, we explain how to approximate C1,1 domains from the interior
by smooth sets satisfying uniform bounds, an important fact in the boundary regularity
theory of Chapter 3. Finally, Appendix F is devoted to proving the uniqueness of sta-
ble solutions for convex nonlinearities, an auxiliary result needed in our approximation
argument.

Part II: A nonlocal Weierstrass extremal field theory

In Chapter 4, we extend the classical Weierstrass extremal field theory to the fractional
setting. As explained above, here the central theme is the notion of “field”, namely, a one-
parameter family of functions producing a foliation. If the field is made of extremals (i.e.,
solutions), then one expects to be able to construct a calibration functional. The existence
of such an object proves the minimality of each extremal among competitors taking values
in the foliated region.

Given an interval I ⊂ R (not necessarily open or bounded), we say that a family {ut}t∈I
of functions ut : Rn → R is a C2 field in Rn if the map (x, t) 7→ ut(x) is C2 in Rn×I and for
each x ∈ Rn the function t 7→ ut(x) is increasing in I. In particular, the graphs of {ut}t∈I
produce a foliation of a region G ⊂ Rn × R and we may define the parameter t = t(x, λ)
as above (i.e., as the unique t ∈ I such that ut(x) = λ).

Our main result of Chapter 4 is the construction of a calibration for the functional
Es,F , the Gagliardo-Sobolev seminorm with a potential term, introduced above. Recall
that, given a bounded domain Ω ⊂ Rn, we write Q(Ω) = (Rn × Rn) \ (Ωc × Ωc), where
Ωc = Rn \ Ω. The existence of a calibration for Es,F was an important open problem that
we have solved in the following:

Theorem 7 (Theorem 4.1.3). Let I ⊂ R be an interval, Ω ⊂ Rn a bounded domain, and
s ∈ (0, 1). Let {ut}t∈I be a C2 field in Rn satisfying

|ut(x)|+ |∂tut(x)| ≤ C for all x ∈ Rn and t ∈ I,

for some constant C. Consider the admissible functions

As = {w ∈ C0(Rn) ∩ L∞(Rn) : graphw ⊂ G},

where
G = {(x, λ) ∈ Rn × R : λ = ut(x) for some t ∈ I}.

Given t0 ∈ I and F ∈ C1(R), let Cs,F be the functional

Cs,F (w) := cn,s P.V.

∫∫
Q(Ω)

∫ w(x)

ut0 (x)

ut(x)− ut(y)

|x− y|n+2s

∣∣∣∣
t=t(x,λ)

dλ dx dy −
∫

Ω

F (w(x)) dx

+
cn,s
4

∫∫
Q(Ω)

|ut0(x)− ut0(y)|2

|x− y|n+2s
dx dy

defined for w ∈ As, where cn,s is the positive constant in the definition of Es,F .
If {ut}t∈I is a field of extremals, that is, if

(−∆)sut = F ′(ut) in Ω for all t ∈ I,

then Cs,F is a calibration for Es,F and ut0. More precisely, Cs,F satisfies the three properties
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(C1) Cs,F (ut0) = Es,F (ut0).

(C2) Cs,F (w) ≤ Es,F (w) for all w ∈ As such that w ≡ ut0 in Ωc.

(C3) Cs,F (w) = Cs,F (w̃) for all w, w̃ ∈ A with w ≡ w̃ ≡ ut0 in Ωc.

As a consequence, the function ut0 minimizes Es,F among functions w in As such that
w ≡ ut0 in Ωc.

In fact, Theorem 7 is a simplified version of our main result in Theorem 4.1.3 below.
There, in addition to fields of extremals, we consider families of super and subsolutions,
which suffice to prove the minimality of ut0 . The regularity of the field can also be

Recall that, prior to our result above, a nonlocal calibration had only been found in
the setting of nonlocal minimal surfaces, in [18,80]. Before our work, a calibration or null-
Lagrangian structure for fractional quadratic functionals was not known. Thus, it was not
even clear whether a calibration such as Cs,F could exist.

We first succeeded in constructing many functionals satisfying properties (C1) and (C2)
above, but the null-Lagrangian property (C3) was either not satisfied or seemed too difficult
to prove. Coming back to the work [18] on the nonlocal perimeter, we noticed that the
calibration there could be written as a sum of two terms: one depending on the nonlocal
mean curvature (the first variation of the perimeter) and another depending only on the
exterior datum. Inspired by this observation, we searched for such a structure in the clas-
sical local theory but, to our surprise, it was never mentioned in the literature. Eventually,
we were able to show that the classical calibration CL could be written in terms of the
Euler-Lagrange equation and the Neumann condition satisfied by the field. In particular,
in a field of extremals, such an expression depends only on the values of the function on
the boundary. This discovery allowed us to guess a natural calibration candidate for Es,F ,
obtained by simply considering the fractional Euler-Lagrange and Neumann operators in
the previous identity. By construction, the candidate satisfied properties (C1) and (C3),
and we later proved that it also satisfied (C2).

Finally, in Chapter 5, we extend the fractional construction from Chapter 4 to more
general nonlocal elliptic energy functionals. For this, the idea is to carry out the process
explained in the previous paragraph, identifying a natural notion of ellipticity. Our main
result applies to energy functionals of the form

EN(w) =
1

2

∫∫
Q(Ω)

GN(x, y, w(x), w(y)) dx dy,

where GN = GN(x, y, a, b) is a function with GN(x, y, a, b) = GN(y, x, b, a) and satisfying
the ellipticity condition

∂2
abGN(x, y, a, b) ≤ 0. (23)

Here, we are only interested in the most general class of Lagrangians for which our
proof above works and, hence, we do not make any growth and regularity assumptions
on the Lagrangian GN. In that sense, our next result is only formal, but can be made
fully rigorous (as Theorem 7 above) for appropriate classes of Lagrangians, which would
be modeled after each particular nonlinear problem. This is what we mean by “sufficiently
regular for GN” in the statement below. We have the following:

Theorem 8. Let I ⊂ R be an interval and let Ω ⊂ Rn be a bounded domain. Given a
smooth function GN = GN(x, y, a, b), with GN(x, y, a, b) = GN(y, x, b, a), and satisfying the
ellipticity condition (23), let {ut}t∈I be a field in Rn which is sufficiently regular for GN.
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Given t0 ∈ I, let CN be the functional

CN(w) :=

∫∫
Q(Ω)

∫ w(x)

ut0 (x)

{
∂aGN(x, y, ut(x), ut(y))

}∣∣∣
t=t(x,λ)

dλ dx dy + EN(ut0)

defined in a set AN of sufficiently regular admissible functions w : Rn → R (for GN) satis-
fying graphw ⊂ G, where

G =
{

(x, λ) ∈ Rn × R : λ = ut(x) for some t ∈ I
}
.

If {ut}t∈I is a field of extremals, that is, if∫
Rn
∂aGN(x, y, ut(x), ut(y)) dy = 0 for all x ∈ Ω and t ∈ I,

then CN is a calibration for EN and ut0. As a consequence, the function ut0 minimizes EN

among functions w in AN such that w ≡ ut0 in Ωc.

As a first application of Theorem 8, we prove that monotone solutions are minimizers.
While such a result was known for functionals with an existence and regularity theorem
for minimizers, our calibration proof does not need to assume the existence of a minimizer
a priori. This allows us to prove the minimality of monotone solutions for more general
functionals. Such a question was motivated by the fractional version of a conjecture of De
Giorgi conjecture on the symmetry of monotone solutions to the Allen-Cahn equation, see
the survey [36].

As a second application, we show that minimizers of EN are viscosity solutions. This is
perhaps surprising, since here minimality is assumed instead of being concluded. Previous
proofs [5,66,87] of such a result needed a weak comparison principle for the Euler-Lagrange
equation, restricting the class of functionals where they could be applied. However, a
calibration argument will yield the viscosity property in a more general setting, without
the need of a comparison principle.

Part II includes the following appendices expanding on the theory of nonlocal calibra-
tions. In Appendix G, following Chapter 4, we apply the local theory to the Caffarelli-
Silvestre extension to give a calibration for the fractional Laplacian in the extended space.
Appendix H enumerates other natural candidates for a calibration associated to the frac-
tional Laplacian; some of them are shown not to be calibrations. In Appendix I we relate
the ellipticity condition for the general Lagrangian in Chapter 5 to a strong comparison
principle for nonlocal nonlinear operators. Finally, in Appendix J we apply our calibra-
tion from Chapter 5 to the nonlocal total variation, relating it with the calibration for the
nonlocal perimeter constructed in [18].
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Regularity of stable solutions to
semilinear elliptic problems
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Chapter 1

Interior regularity

In this chapter, we extend the interior estimates for stable solutions in [24] to operators
with variable coefficients. We show that stable solutions to the semilinear elliptic equation
aij(x)uij + bi(x)ui + f(u) = 0 are Hölder continuous in the optimal range of dimensions
n ≤ 9. Our bounds are independent of the nonlinearity f ∈ C1, which we assume to be
nonnegative.

The main achievement of our work is to make the constants in our estimates depend on
the C0,1 norm of aij and the L∞ norm of bi, instead of their C2 and C1 norms, respectively,
which arise in a first approach to the computations.

1.1 Introduction

Let Ω ⊂ Rn be a bounded domain and f : R → R a C1 function. We consider stable
solutions (defined below) u : Ω→ R to the semilinear equation

− Lu = f(u) in Ω, (1.1.1)

where L is a second order linear elliptic differential operator of the form

Lu = aij(x)uij + bi(x)ui, aij(x) = aji(x). (1.1.2)

For simplicity, throughout this chapter we assume that the coefficients are smooth up to
the boundary, i.e., we have aij ∈ C∞(Ω) and bi ∈ C∞(Ω). However, our results continue
to hold for merely Lipschitz aij and bounded bi.

The purpose of this chapter is to extend the recent results of Cabré, Figalli, Ros-Oton,
and Serra in [24] and of Cabré in [20] for the Laplacian to the above operators with variable
coefficients. In [24], the authors solved a long-standing conjecture concerning the regularity
of stable solutions to semilinear problems. They showed that stable solutions are bounded
(and hence smooth) in dimension n ≤ 9. This result is optimal, since there are examples
of singular stable solutions for n ≥ 10.

In the papers [20, 24], the authors obtain universal a priori estimates that do not de-
pend on the nonlinearity f . They prove interior regularity bounds, assuming f ≥ 0, and
boundary regularity estimates on C3 domains, assuming f ≥ 0, f ′ ≥ 0, and f ′′ ≥ 0. The
boundary result applies only to solutions vanishing on the boundary.

The first main interest in extending these results to operators with variable coefficients
(besides possible future applications to nonlinear problems) is to simplify the boundary
regularity arguments, even for the Laplacian. Indeed, starting from a curved boundary, the
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proof of regularity in [24] requires a delicate blow-up and Liouville theorem argument, which
is needed in order to apply a result of theirs only available on a flat boundary. In addition,
this proof is by contradiction-compactness and does not allow to quantify the constants
in the estimates. Recently in [20], Cabré has given a quantitative proof of this result for
the Laplacian in the case of a flat boundary. On the other hand, a curved boundary can
be flattened out by a change of variables. Note now that, in the new coordinates, the
Laplacian is written as an operator of the form (1.1.2). It is therefore natural to establish
quantitative a priori estimates for our family of equations in the half-ball. By extending
the techniques in [20] to operators with variable coefficients, we will avoid the intricate
blow-up and Liouville theorem result form [24] as well as the compactness part.

An important feature of our estimates is that they depend only on the ellipticity con-
stants and on the norms ‖∇aij‖L∞ and ‖bi‖L∞ of the coefficients. The main difficulty in
our proofs will be to obtain this dependence instead of on ‖aij‖C2 and ‖bi‖C1 , which are
the norms that appear naturally in a first approach to the computations. This will be es-
pecially relevant for boundary regularity (treated in the next chapters), since it will allow
us to relax the C3 regularity requirement of the domain in [24]. The key point here is that,
as mentioned before, flattening the boundary transforms the Laplacian into an operator
of the form (1.1.2), with coefficients aij and bi involving first and second derivatives of the
boundary surface, respectively. Thus, a C0,1, C0 bound of the coefficients aij, bi would
correspond to a C2 bound of the boundary. In fact, the result holds in weaker domains, as
shown in Chapters 2 and 3.

Moreover, our methods will also be useful in a future work where we treat the case
of the Laplacian with non-homogeneous boundary conditions. Recall that the previous
papers [24] and [20] require strongly that the solutions vanish on the boundary. Flattening
the boundary, we will be able to reduce the problem to an equation on the half-space for
an operator of the form (1.1.2) with zero boundary conditions and an additional source
term.

The study of the regularity of stable solutions was initiated in the seventies by Crandall
and Rabinowitz in [44]. There, they showed the boundedness of stable solutions when n ≤ 9
for exponential and power-type nonlinearities. Their work was motivated by problems
in combustion [60], commonly known as “Gelfand-type problems”; for more information
on these problems, we refer the reader to the monograph of Dupaigne [48] (see also the
Introduction or Chapter 3 of this thesis). Later, in the mid-nineties, Brezis [11] asked for
an extension of this regularity result to a larger class of nonlinearities. The boundedness
of stable solutions was proven by Nedev [78] for n ≤ 3, and by Cabré [16] for n = 4. The
optimal dimension n ≤ 9 remained open until it was finally reached by Cabré, Figalli,
Ros-Oton, and Serra in [24].

1.1.1 The setting. Stability.

We are interested in the class of stable solutions to the semilinear equation (1.1.1). Assume
that the domain Ω ⊂ Rn is smooth. We say that u is a stable solution of (1.1.1) if there
exists a function ϕ ∈ C0(Ω) ∩ C2(Ω) such that

−Lϕ ≥ f ′(u)ϕ in Ω,
ϕ > 0 in Ω,
ϕ = 0 on ∂Ω.

(1.1.3)
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Equivalently, a solution is stable when the principal Dirichlet eigenvalue of the linearized
equation is nonnegative; see [9]. We denote the linearized equation at u by

Juϕ = Lϕ+ f ′(u)ϕ, (1.1.4)

also known as the Jacobi operator.
Since the coefficients of L are smooth, our operator (1.1.2) can be written in divergence

form as
Lu = ∂i (aij(x)∂ju) + di(x)∂iu (1.1.5)

for certain appropriate coefficients di. Now, recall that our bounds for non-divergence
operators depend on the norms ‖aij‖C1 and ‖bi‖C0 of the coefficients. As a consequence, our
results continue to hold for every divergence-form operator L as in (1.1.5), with constants
depending on ‖aij‖C1 and ‖di‖C0 instead.

We assume that the symmetric coefficient matrix A(x) = (aij(x)) is uniformly elliptic,
i.e., there are positive constants c0, C0 such that

c0|p|2 ≤ aij(x)pipj ≤ C0|p|2 for all p ∈ Rn.

This condition will be written as c0 ≤ A(x) ≤ C0. In particular, the matrix A(x) is positive
definite and defines a norm

|p|A(x) := (aij(x)pipj)
1/2

on vectors p ∈ Rn.
For variational equations −∂i (aij(x)∂ju) = f(u) stability is equivalent to the nonnega-

tivity of the second variation of the associated energy functional. This provides the useful
integral inequality ∫

Ω

f ′(u)ξ2 dx ≤
∫

Ω

|∇ξ|2A(x) dx, (1.1.6)

satisfied by all test functions ξ ∈ C1
c (Ω). A key strategy to derive a priori estimates in that

setting is to choose appropriate test functions in (1.1.6). When chosen correctly in terms
of the Jacobi operator, the test functions allow to get rid of the nonlinearity within the
proofs. This is what is done for the Laplacian in [24].

Since our operator L does not have variational structure, (1.1.6) is not available. Nev-
ertheless, we are able to exploit the pointwise stability condition (1.1.3) for ϕ to obtain
a convenient integral inequality which does not involve the function ϕ. We will use it as
replacement of (1.1.6) in our non-variational setting. To derive the integral inequality, we

first write the operator L in divergence form as in (1.1.5) with di(x) = b̂i(x), where b̂ is the
vector field given by

b̂i(x) = bi(x)− ∂kaki(x), (1.1.7)

hence Lu = ∂i (aij(x)uj) + b̂i(x)ui. Now, for a test function ξ ∈ C1
c (Ω), multiply (1.1.3) by

ξ2/ϕ and integrate by parts to obtain∫
Ω

f ′(u)ξ2 dx ≤
∫

Ω

(
A(x)∇ϕ · ∇

(
ξ2

ϕ

)
− b̂(x) · ξ

2

ϕ
∇ϕ
)

dx

=

∫
Ω

(
−|ξ∇ logϕ|2A(x) + 2A(x)ξ∇ logϕ · ∇ξ − ξ b̂(x) · ξ∇ logϕ

)
dx.

Using that

2A(x)ξ∇ logϕ ·
(
∇ξ − 1

2
ξA−1(x)̂b(x)

)
− |ξ∇ logϕ|2A(x) ≤

∣∣∣∇ξ − 1
2
ξA−1(x)̂b(x)

∣∣∣2
A(x)

,
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we deduce∫
Ω

f ′(u)ξ2 dx ≤
∫

Ω

∣∣∣∇ξ − 1
2
ξA−1(x)̂b(x)

∣∣∣2
A(x)

dx for all ξ ∈ C1
c (Ω). (1.1.8)

We remark that, in general, (1.1.8) is not equivalent to the stability condition (1.1.3).
The main reason is that our equation −Lu = f(u) is not variational due to the presence

of b̂ when written in the divergence form (1.1.5). In Appendix A, we give an example

of the non-equivalence, and, at the same time, we characterize the drifts b̂ for which the
equivalence holds.

1.1.2 Main results

This chapter concerns the interior regularity of stable solutions. Boundary regularity results
will be treated in Chapters 2 and 3. Therefore, it suffices to consider stable solutions to
−Lu = f(u) in the unit ball B1. A constant depending only on n, c0, and C0 will be called
universal, a terminology that we use throughout the work.

The following is our main result of this chapter, which provides interior a priori esti-
mates for stable solutions: a Hölder bound when n ≤ 9, and a W 1,2+γ estimate in every
dimension. The only requirement for the nonlinearity is f ≥ 0, as in [24]. An important
accomplishment in our estimates is that they involve the norms ‖∇aij‖L∞ and ‖bi‖L∞ ,
while a first approach to the problem leads to computations including second derivatives
of aij and first derivatives of bi. On the other hand, our bounds are independent of f .
Here and throughout the work, when we write C = C(. . .) we mean that the constant C
depends only on the quantities inside the parentheses.

Theorem 1.1.1. Let u ∈ C∞(B1) be a stable solution of −Lu = f(u) in B1 ⊂ Rn, for
some nonnegative function f ∈ C1(R).

Then

‖∇u‖L2+γ(B1/2) ≤ C‖u‖L1(B1), (1.1.9)

where γ = γ(n) > 0 and C = C(n, c0, C0, ‖∇aij‖L∞(B1), ‖bi‖L∞(B1)). In addition,

‖u‖Cα(B1/2) ≤ C‖u‖L1(B1) if n ≤ 9, (1.1.10)

where α = α(n, c0, C0) > 0 and C = C(n, c0, C0, ‖∇aij‖L∞(B1), ‖bi‖L∞(B1)).

For applications, it may be useful to point out that the result only needs aij to be
Lipschitz and bi to be bounded. Our direct computations within the proofs assume aij ∈ C1

and bi ∈ C1 in order to evaluate certain identities pointwise. However, we only need these
to be meaningful in a weaker sense; see Remarks 1.3.1 and 1.5.2. Similarly, we only need
u to be C2 and to have weak third derivatives. These last conditions seem to require more
regularity of the drift b; see Remark 1.3.1. When we treat the boundary regularity in
Chapters 2 and 3, we will make weaker, more precise, regularity assumptions on the data.

The proof of Theorem 1.1.1 will rely on our second main result, Theorem 1.1.2 below,
and its consequences. It consists of two types of Hessian estimates. The first one, (1.1.11),
is an extension of the geometric stability condition due to Sternberg and Zumbrun [91]
to operators with variable coefficients. The second one, (1.1.13)-(1.1.14), controls the L1

norm of the “Hessian times the gradient”, |D2u||∇u|, in balls and annuli by the L2 norm
squared of the gradient whenever the lower order coefficients are small.
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Theorem 1.1.2. Let u ∈ C∞
(
B1

)
be a stable solution of −Lu = f(u) in B1, for some

function f ∈ C1(R). Assume that

‖DA‖L∞(B1) + ‖b‖L∞(B1) ≤ ε

for some ε > 0.
Then ∫

B1

A2η2 dx ≤
∫
B1

|∇u|2A(0)

(
|∇η|2A(x) + Cε|∇(η2)|+ Cε2η2

)
dx

+ Cε

∫
B1

|D2u||∇u|η2 dx

(1.1.11)

for all η ∈ C∞c (B1), where C is a universal constant and

A :=

{ (
tr(A(x)D2uA(0)D2u)− |∇u|−2

A(0)|D2uA(0)∇u|2A(x)

)1/2

if ∇u 6= 0

0 if ∇u = 0.
(1.1.12)

Assume in addition that f ≥ 0. If ε ≤ ε0, then

‖ |∇u|D2u ‖L1(B3/4) ≤ C‖∇u‖2
L2(B1) (1.1.13)

and
‖ |∇u|D2u ‖L1(B1/2\B1/4) ≤ C‖∇u‖2

L2(B1\B1/8), (1.1.14)

where ε0 > 0 and C are universal constants.

Our first inequality (1.1.11) generalizes the Sternberg-Zumbrun estimate for the Lapla-
cian, which corresponds to the case ε = 0 and A(0) = I. The peculiar form of the function
A in (1.1.12) (the coefficients of A are evaluated both at x and 0) will guarantee that
the direct computations within our proofs give dependence on the norm ‖aij‖C1 , instead
of ‖aij‖C2 for other choices of A. In this direction, it is worth noting that the classical
Sternberg-Zumbrun result and the function A have a Riemannian analogue (found by Fa-
rina, Sire, and Valdinoci [56]) which can be related to our Euclidean setting with variable
coefficients. The estimate from the Riemannian framework leads to bounds depending on
‖aij‖C2 . We elaborate on these topics further in Remarks 1.3.2 and 1.3.3.

The “Hessian times the gradient” estimates (1.1.13)-(1.1.14) rely on the inequality
(1.1.11) with sufficiently small errors ε, and will require the assumption f ≥ 0. While
the bound on annuli (1.1.14) can be deduced from the one in balls (1.1.13) by a standard
scaling and covering argument, we include it in the statement since it will be crucial in the
proof of the Hölder estimate in Theorem 1.1.1.

1.1.3 Structure of the proof

By a scaling and covering argument, it suffices to obtain the a priori estimates from The-
orem 1.1.1 in small balls. There, the problem can be written as an equation in the unit
ball involving an operator L that is close to the Laplacian, i.e., whose coefficients satisfy
A(0) = I and ‖∇aij‖L∞(B1) + ‖bi‖L∞(B1) ≤ ε, with ε small. We explain this in more detail
in Section 1.2 below.

The key estimates leading to Theorem 1.1.1 are contained in Propositions 1.1.3, 1.1.4,
and 1.1.5 below. Our proofs are all quantitative as in the paper [20] and avoid the com-
pactness argument from the previous work [24]. The proofs of the first two propositions
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use the Hessian estimates of Theorem 1.1.2 above. In particular, this forces us to prove
the Sternberg-Zumbrun inequality before the crucial weighted L2 estimate for the radial
derivative (Proposition 1.1.4). It is worth noting that, for the Laplacian, these two results
are independent from each other (and hence can be obtained in any order, as in the works
[24] and [20]), while this is no longer the case for operators with variable coefficients.

In the first proposition, we control the L2 norm of the gradient by the L1 norm of
the solution under a smallness condition on the coefficients, namely, when the error ε is
sufficiently small. This is a direct consequence of Theorem 1.1.2 and the interpolation
inequalities of Cabré in [20]. We recall these inequalities in Appendix C.

Proposition 1.1.3. Let u ∈ C∞
(
B1

)
be a stable solution of −Lu = f(u) in B1, for some

nonnegative function f ∈ C1(R). Assume that

‖DA‖L∞(B1) + ‖b‖L∞(B1) ≤ ε

for some ε > 0.
If ε ≤ ε0, then

‖∇u‖L2(B1/2) ≤ C‖u‖L1(B1), (1.1.15)

where ε0 > 0 and C are universal constants.

The second proposition is a weighted L2 estimate for the radial derivative in a ball by
the full gradient in an annulus. It is here that we need n ≤ 9. Again, we will assume that
the coefficient error ε is small and that the nonlinearity is nonnegative f ≥ 0. Here and
throughout the paper we use the notation

r = |x|, ur =
x

|x|
· ∇u

for the radial derivative.

Proposition 1.1.4. Let u ∈ C∞
(
B1

)
be a stable solution of −Lu = f(u) in B1, for some

nonnegative function f ∈ C1(R). Assume that

‖DA‖L∞(B1) + ‖b‖L∞(B1) ≤ ε

for some ε > 0.
If 3 ≤ n ≤ 9 and ε ≤ ε0, then∫

Bρ

r2−nu2
r dx ≤ C

∫
B2ρ\Bρ

r2−n|∇u|2 dx+ Cε

∫
B4ρ

r3−n|∇u|2 dx (1.1.16)

for all ρ ≤ 1/4, where ε0 > 0 and C are universal constants.

Notice that this result requires n ≥ 3. However, adding superfluous variables to the
solution, we can also use it when n ≤ 2.

Our inequality (1.1.16) in Proposition 1.1.4 is an analogue of Lemma 2.1 in [24], where
the authors obtain a similar bound for the Laplacian (ε = 0 and A(0) = I) without the
nonnegativity assumption on f . Recall that this assumption is needed in the Hessian
estimates (1.1.13)-(1.1.14) in Theorem 1.1.2 above, which will allow us to treat a weighted
|D2u||∇u| error term which does not appear for the Laplacian. We will be able to control
this error by writing it as an infinite sum on dyadic annuli, pulling the weight out of the
integral in each annulus, and applying the bound (1.1.14).
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Finally in the third proposition we show that, under the assumption that A(0) = I,
(generalized) superharmonic functions are controlled by the radial derivative plus an error
involving the full gradient in L1. This is an extension of Lemma 4.1 in Cabré [20] to
operators with variable coefficients.

Proposition 1.1.5. Let u ∈ C∞(B1) be superharmonic in the sense that Lu ≤ 0 in B1.
Assume that

A(0) = I and ‖DA‖L∞(B1) + ‖b‖L∞(B1) ≤ ε

for some ε > 0.
Then there exists a constant t, which depends on u, such that

‖u− t‖L1(B1\B1/8) ≤ C‖ur‖L1(B1\B1/8) + Cε‖∇u‖L1(B1),

where C is a constant depending only on n and c0.

Our proof of Proposition 1.1.5 is by comparison with harmonic functions. The required
L1 estimates for harmonic functions will follow by duality from the L∞ bounds of a Neu-
mann problem. Such L∞ estimates are the most technical part of the argument, where we
use a Moser iteration in the spirit of Winkert [96] to deduce the uniform bounds.

The W 1,2+γ result (1.1.9) in Theorem 1.1.1 will follow from the Hessian estimate on
balls (1.1.13) in Theorem 1.1.2 together with Proposition 1.1.3. To show it, we first control
the L2 norm of the gradient uniformly on level sets by the Dirichlet integral in a ball, and
hence by the L1 norm of the solution. A device from [24] will then allow us to deduce the
higher integrability.

To prove the Hölder estimate (1.1.10) in Theorem 1.1.1, we will show that the scale-
invariant weighted integral

∫
Bρ
r2−n|∇u|2 decays algebraically. In the previous works [24]

and [20], the authors proved the decay of the weighted radial derivative instead. They
could later deduce the Cα estimate by either averaging or applying a version of Morrey’s
embedding for radial derivatives. Here we will obtain the decay of the full gradient directly
for the first time. For this, combining Propositions 1.1.3 and 1.1.5, we are able to bound
the full gradient by the radial derivative on annuli in L2. This, together with the dyadic
decomposition explained above, allows us to control the weighted integral of the gradient
by that of the radial derivative (up to gradient errors). Now, Proposition 1.1.4 will yield
a control of the weighted integral of the gradient in the ball by the same quantity on an
annulus. A standard iteration then leads to the decay.

Our integral stability inequality (1.1.8) will be crucial in the proofs of both Theo-
rem 1.1.2 and Proposition 1.1.4. These will follow from (1.1.8), with Ω = B1, by choosing
appropriate test functions in terms of the Jacobi operator, as we explain next. Taking a
test function of the form ξ = cη, where c and η are smooth and supp η ⊂ B1, the integrand
on the right-hand side of (1.1.8) becomes∣∣∣∇ξ − 1

2
ξA−1(x)̂b(x)

∣∣∣2
A(x)

=
∣∣∣η∇c + c∇η − 1

2
cηA−1(x)̂b(x)

∣∣∣2
A(x)

= |η∇c|2A(x) + 2A(x)η∇c · c∇η − η2c b̂(x) · ∇c + c2
∣∣∣∇η − 1

2
ηA−1(x)̂b(x)

∣∣∣2
A(x)

.

(1.1.17)

Integrating in B1, the first term
∫
B1
|η∇c|2A(x) dx in (1.1.17) can be integrated by parts as∫

B1

|η∇c|2A(x) dx =

∫
B1

(
− div (A(x)∇c) cη2 − 2A(x)η∇c · c∇η

)
dx
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and hence, by (1.1.17), (1.1.8), and rearranging terms, it follows that∫
B1

(Juc) cη2 dx ≤
∫
B1

c2
∣∣∣∇η − 1

2
ηA−1(x)̂b(x)

∣∣∣2
A(x)

dx. (1.1.18)

The key idea now is to choose the c function in a way such that Juc becomes independent
of the nonlinearity. This will yield universal a priori estimates for stable solutions. Since u
solves the equation −Lu = f(u), taking a derivative, we have that f ′(u)∇u = −∇Lu and
hence Ju∇u = L∇u−∇Lu no longer involves f . This computation suggests that we choose
c as a function of the gradient of u. Thus, to prove the estimate for A in Theorem 1.1.2,
we will make the choice

c(x) = |∇u(x)|A(0) =
(
aij(0)uiuj

)1/2
.

On the other hand, the weighted L2 bound in Proposition 1.1.4 will also require to choose
the auxiliary function η above carefully. The test functions leading to this estimate are

c(x) = x · ∇u = rur and η(x) = |x|
2−n
2

A−1(0)ζ,

where ζ ∈ C∞c (B1) is a cut-off.
We note that our test functions above are the ones used in the paper [24] under the

linear transformation x 7→ A1/2(0)x, where A1/2(0) is the positive square root of the matrix
A(0). These seem to be the simplest functions leading to a priori estimates in the variable
coefficients framework. Moreover, thanks to the particular form of these functions, all direct
computations within our proofs will only involve first derivatives of the coefficients A and
b, while other choices of functions require two derivatives of A. A suitable integration by
parts will yield bounds in terms of the norms ‖A‖C1 and ‖b‖C0 , as in the results mentioned
above.

1.1.4 Outline of the chapter

In Section 1.2 we briefly comment on the invariance of stability under affine transforma-
tions. Section 1.3 is devoted to proving Theorem 1.1.2 and Proposition 1.1.3. In Section 1.4
we prove the W 1,2+γ bound (1.1.9) from Theorem 1.1.1. Section 1.5 contains the proof of
Proposition 1.1.4. In Section 1.6 we prove Proposition 1.1.5. Finally, in Section 1.7 we
prove the Hölder bound (1.1.10) in Theorem 1.1.1.

1.2 Preliminaries: Invariance under affine transfor-

mations

To prove Theorem 1.1.1, we will analyze the semilinear equation −Lu = f(u) in small balls.
Since the class of stable solutions is invariant under affine transformations, the question
reduces to studying an equation in the unit ball involving an operator that is close to the
Laplacian. After proving the necessary estimates in this setting, the theorem will follow
from a scaling and covering argument. It is worth mentioning that the nonnegativity of the
nonlinearity, which is required in our main results, is preserved under these transformations.

We now explain this invariance with more detail in different particular situations. First
we study the equation under translations and scalings. These simple yet important trans-
formations will be used several times throughout the paper. Secondly, we consider the
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equation under general linear transformations. These allow us to reduce ourselves to the
case where the coefficient matrix is the identity at the origin. Notice that this is only
required in Proposition 1.1.5, but will be crucial in the proof of the Cα bound (1.1.10) in
Theorem 1.1.1 given in Section 1.7.

As mentioned in the Introduction, the bounds in our a priori estimates depend only on
the ellipticity constants c0 and C0 and on the quantity

‖DA‖L∞(B1) + ‖b‖L∞(B1) ≤ ε (1.2.1)

involving the coefficients. As we will see now, the two norms in (1.2.1) have the same
scaling. It is therefore natural to state our results in terms of this quantity.

(i) Translation and scale invariance. If u is a stable solution of −Lu = f(u) in a
ball Bρ(y), then the function uy,ρ := u(y + ρ ·) is a solution of −Ly,ρuy,ρ = ρ2f(uy,ρ)
in B1, where Ly,ρ is the linear operator

Ly,ρv = tr
(
Ay,ρ(x)D2v

)
+ by,ρ(x) · ∇v

with coefficients

Ay,ρ(x) = A(y + ρ x) and by,ρ(x) = ρ b(y + ρ x).

The stability condition (1.1.3) in Bρ(y) becomes −Ly,ρϕy,ρ ≤ ρ2f ′(uy,ρ)ϕy,ρ in B1,
where ϕy,ρ = ϕ(y + ρ ·) satisfies the assumptions in (1.1.3), and hence uy,ρ is stable.

Since the coefficients satisfy the bounds

‖DAy,ρ‖L∞(B1) ≤ ρ‖DA‖L∞(Bρ(y)) and ‖by,ρ‖L∞(B1) ≤ ρ‖b‖L∞(Bρ(y)),

whenever Bρ(y) ⊂ BR for some R > 0 and L is defined in this larger ball, we have

‖DAy,ρ‖L∞(B1) + ‖by,ρ‖L∞(B1) ≤ ρ
(
‖DA‖L∞(BR) + ‖b‖L∞(BR)

)
, (1.2.2)

which can be made small for ρ small. In particular, assuming that L is close to the
Laplacian as in the statements of our propositions and by (1.2.2), we deduce the
following property: if ‖DA‖L∞(BR) + ‖b‖L∞(BR) ≤ ε, then

‖DAy,ρ‖L∞(B1) + ‖by,ρ‖L∞(B1) ≤ ρε for all Bρ(y) ⊂ BR.

This elementary observation will be used throughout the paper.

(ii) Invariance under linear transformations. Given a symmetric positive definite
matrix M ∈ Rn×n, if u is a stable solution of −Lu = f(u) in the unit ball B1, then
the function uM := u(M ·) is a solution of −LMuM = f(uM) in M−1(B1), where LM

is the operator
LMv = tr

(
AM(x)D2v

)
+ bM(x) · ∇v,

with coefficients

AM(x) = M−1A(Mx)M−1 and bM(x) = M−1b(Mx).

As above, the stability condition (1.1.3) in B1 becomes −LMϕM ≤ f ′(uM)ϕM in
M−1(B1), where ϕM = ϕ(M ·), and hence uM is a stable solution.
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If M satisfies
√
c0 ≤ M ≤

√
C0, then the new coefficients AM are uniformly elliptic

with c0/C0 ≤ AM(x) ≤ C0/c0. Moreover, we have the bounds

|DAM(x)| ≤
√
C0

c0

|DA(Mx)| and |bM(x)| ≤ 1
√
c0

|b(Mx)|,

and taking the supremum in x ∈M−1(B1), using that B1/
√
C0
⊂M−1(B1), we deduce

‖DAM‖L∞(B
1/
√
C0

) + ‖bM‖L∞(B
1/
√
C0

) ≤
√
C0

c0

(
‖DA‖L∞(B1) + ‖b‖L∞(B1)

)
. (1.2.3)

In particular, taking M = A1/2(0) as the unique positive square root of A(0), we see

that uA
1/2(0) solves an elliptic equation in the ballB1/

√
C0

with coefficients (AA
1/2(0))(x)

satisfying (AA
1/2(0))(0) = I, i.e., equal to the identity at the origin. By the mono-

tonicity of the principal eigenvalue with respect to the domain, it follows that uA
1/2(0)

is also a stable solution in this ball.

It is now easy to combine these transformations with the ones given in the first part
(i). For each ball Bρ(y) ⊂ B1, the function ũ = u

(
y+ ρ√

C0
A1/2(y) ·

)
is a stable solution

of an elliptic equation −L̃ũ = f̃(ũ) in B1. Here, f̃ is the nonlinearity f̃ = ρ2

C0
f , while

L̃ is an operator of the form (1.1.2) with coefficients

Ã(x) = A−1/2(y)A
(
y + ρ√

C0
A1/2(y)x

)
A−1/2(y)

and
b̃(x) = ρ√

C0
A−1/2(y)b

(
y + ρ√

C0
A1/2(y)x

)
.

Notice that the matrix Ã(x) is uniformly elliptic with c0/C0 ≤ Ã(x) ≤ C0/c0 and is
equal to the identity at the origin. Furthermore, combining (1.2.3) and (1.2.2), the
coefficients can be bounded by

‖DÃ‖L∞(B1) + ‖b̃‖L∞(B1) ≤
ρ

c0

(
‖DA‖L∞(B1) + ‖b‖L∞(B1)

)
.

As mentioned above, this observation will be important in the proof of the Hölder
estimate 1.1.10 in Section 1.7 below.

1.3 Hessian and W 1,2 estimates

The goal of this section is to prove Theorem 1.1.2 and the energy estimate Proposition 1.1.3.
Recall the function A : B1 → R introduced in (1.1.12) in the statement of Theo-

rem 1.1.2. This function can also be written as

A =

{ (
‖A1/2(x)D2uA1/2(0)‖2

HS − |A1/2(x)D2uA1/2(0)n(x)|2
)1/2

if ∇u 6= 0

0 if ∇u = 0,
(1.3.1)

where ‖ · ‖HS denotes the Euclidean Hilbert-Schmidt norm for matrices1 and n(x) is the
unit vector field n : B1 ∩ {∇u 6= 0} → R given by

n(x) := |∇u|−1
A(0)A

1/2(0)∇u(x). (1.3.2)

1Recall that, for a matrix M ∈ Rn×n, this norm squared is ‖M‖2HS = tr(MTM) =
∑n
i,j=1M

2
ij .
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The equivalence between the expressions (1.1.12) and (1.3.1) follows from the identities

‖A1/2(x)D2uA1/2(0)‖2
HS = tr

(
A(x)D2uA(0)D2u

)
and

|A1/2(x)D2uA1/2(0)n(x)|2 = |∇u|−2
A(0)|D

2uA(0)∇u|2A(x),

which are easy to check.
We start by proving the bound (1.1.11) in Theorem 1.1.2, which is a generalization of

the geometric stability inequality due to Sternberg and Zumbrun [91] for stable solutions
to −∆u = f(u). For this, we will test the integral stability inequality (1.1.18) with the
function

c(x) = |∇u|A(0)

and a cut-off η. The proof of the remaining estimates in Theorem 1.1.2 will rely on this
preliminary inequality.

Two comments are in order. First, with this choice of c, our result requires an appro-
priate integration by parts to allow dependence of the bounds on only ‖b‖C0 . Secondly,
after the proof, in Remarks 1.3.2 and 1.3.3 we will comment on alternative choices of c
and of the function A.

We originally took |∇u|A(x) as our c function, a choice that required the regularity A ∈
C2 and b ∈ C1 when computing Juc in the stability inequality (1.1.18). With that choice,
a further integration by parts was needed to obtain bounds depending only on ‖A‖C1 .
Instead, our function |∇u|A(0) only needs A ∈ C1 and b ∈ C1. Moreover, the proof with
our choice is easier and we only need an integration by parts to get rid of the first derivatives
of b. Note that the function |∇u|A(x) is motivated by geometric considerations and had
already appeared in the Riemannian analogue of the Sternberg-Zumbrun estimates, as
explained in Remark 1.3.3.

Proof of (1.1.11) in Theorem 1.1.2. Since |∇u|A(0) is not necessarily smooth when∇u = 0,
we consider the smooth function

cδ :=
√
|∇u|2A(0) + δ2

instead. We will apply the integral stability inequality (1.1.18) with c = cδ. In the end we
will let δ → 0, which will yield the claim. Throughout this proof, the letter C denotes a
generic universal constant.

By the stability inequality (1.1.18), we have the upper bound∫
B1

cδ Jucδ η
2 dx ≤

∫
B1

(
|∇u|2A(0) + δ2

) ∣∣∣∇η − 1
2
ηA−1(x)̂b(x)

∣∣∣2
A(x)

dx

≤
∫
B1

(
|∇u|2A(0) + δ2

) (
|∇η|2A(x) + Cε|∇(η2)|+ Cε2η2

)
dx,

(1.3.3)

where in the last line we have expanded the quadratic expression and applied the bounds
of the coefficients.

We will bound the expression cδ Jucδ = cδ Lcδ + f ′(u)c2
δ from below. Since

∂icδ = c−1
δ uikakl(0)ul

and

∂2
ijcδ = c−1

δ uijkakl(0)ul + c−1
δ uikakl(0)ujl − c−3

δ uikakl(0)ul ujpapq(0)uq,
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we deduce

cδ aij(x)∂2
ijcδ = akl(0)ul aij(x)uijk

+ ‖A1/2(x)D2uA1/2(0)‖2
HS −

|∇u|2
A(0)

|∇u|2
A(0)

+δ2
|A1/2(x)D2uA1/2(0)n|2

≥ akl(0)ul aij(x)uijk +A2

(1.3.4)

and

cδ bi(x)∂icδ = akl(0)ul bi(x)uik. (1.3.5)

Adding (1.3.4) and (1.3.5), we obtain

cδ Jucδ ≥ akl(0)ul Luk +A2 + f ′(u)c2
δ . (1.3.6)

Differentiating the equation −Lu = f(u) in the direction of A(0)∇u, we have

A(0)∇(Lu) · ∇u = −f ′(u)|∇u|2A(0). (1.3.7)

The first term on the right-hand side of (1.3.6) can be written in terms of this derivative
as

akl(0)ul Luk = A(0)∇(Lu) · ∇u− akl(0)ul∂kaij(x)uij − akl(0)ul∂kbi(x)ui,

hence, by (1.3.7) and the coefficient estimates, we can bound this expression from below
as

akl(0)ul Luk ≥ −f ′(u)|∇u|2A(0) − Cε|D2u||∇u| − akl(0)ul∂kbi(x)ui. (1.3.8)

Applying (1.3.8) in (1.3.6), since c2
δ − |∇u|2A(0) = δ2, we obtain

cδ Jucδ ≥ A2 + δ2f ′(u)− Cε|D2u||∇u| − akl(0)ul∂kbi(x)ui. (1.3.9)

Multiplying (1.3.9) by η2 and integrating, the last term −
∫
B1
akl(0)ul∂kbi(x)uiη

2 dx can be
integrated by parts as∣∣∣∣−∫

B1

akl(0)ul∂kbi(x)ui η
2 dx

∣∣∣∣ =

∣∣∣∣∫
B1

bi(x)∂k(akl(0)ului η
2) dx

∣∣∣∣
≤ Cε

∫
B1

|D2u||∇u|η2 dx+ Cε

∫
B1

|∇u|2|∇(η2)| dx.

(1.3.10)

Combining (1.3.9), (1.3.10), and (1.3.3), rearranging terms, we obtain∫
B1

(
A2 + δf ′(u)

)
η2 dx

≤
∫
B1

(
|∇u|2A(0) + δ2

) (
|∇η|2A(x) + Cε|∇(η2)|+ Cε2η2

)
dx

+ Cε

∫
B1

|D2u||∇u|η2 dx,

and letting δ → 0 yields the claim.

Several remarks are in order:
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Remark 1.3.1. In (1.3.7) above we took a derivative of the equation in the direction
A(0)∇u to get rid of the dependence on the nonlinearity. Instead, we could have multiplied
the equation by the test function ξ = div (A(0)∇u η2) and integrated by parts. Notice that
this avoids having to take any derivatives of b, since the term involving it can be bounded
directly.

In the argument above, we need u to have three (weak) derivatives, otherwise we cannot
compute Lc (or rather Lcδ). In [24], the authors only need to assume u ∈ C2(B1) to deduce
the analogue estimate for the Laplacian, since this already gives u ∈ W 3,p

loc for all p < ∞.
Indeed, differentiating the equation, −∆ui = f ′(u)ui ∈ Lploc and by Lp estimates they
deduce ui ∈ W 2,p

loc , hence u ∈ W 3,p
loc for all p < ∞. This fact allows them to carry out a

similar argument to the one explained above.2

For an operator with variable coefficients L, the regularity of the solution depends on
that of the coefficients. Assuming aij ∈ C0,1(B1), bi ∈ L∞(B1), and u bounded, applying
Lp estimates to the equation −Lu = f(u) ∈ Lploc, we deduce u ∈ W 2,p

loc for all p < ∞
(and hence in C1,α for all 0 < α < 1). Now, for u to be in C2 ∩ W 3,p

loc we need more
regularity on the drift b. To see this, taking a derivative of the equation we have −Luk =
∂kaij(x)uij + ∂kbi(x)ui + f ′(u)uk and the right hand side is in Lp for ∂kaij ∈ L∞ (i.e.,
aij Lipschitz) and ∂kbi ∈ Lp. In particular, if b ∈ W 1,p(B1) with p > n, we deduce
u ∈ C2(B1) ∩W 3,p

loc (B1). This is somewhat surprising, since our estimates do not involve
any derivatives of b.

Remark 1.3.2. The following comments concern the form of the function A in our a
priori estimate (1.1.11) in Theorem 1.1.2. Recall that A quantifies a part of the “mixed”,
non-symmetric matrix A1/2(x)D2uA1/2(0), which includes both the variable coefficients
A1/2(x) and the constants A1/2(0). We are led naturally to it from the choice of test
function c = |∇u|A(0) in the integral stability inequality, which is the function used by
Cabré, Figalli, Ros-Oton, and Serra in [24] after a linear transformation.

We could have also given an estimate for the function

Ax :=
(
‖A1/2(x)D2uA1/2(x)‖2

HS −
∣∣A1/2(x)D2uA1/2(x)nA(x)

∣∣2)1/2

(1.3.11)

involving the symmetric matrix A1/2(x)D2uA1/2(x), where nA is the vector field nA(x) :=
|∇u|−1

A(x)A
1/2(x)∇u, by choosing the test function c = |∇u|A(x) instead. However, in this

case, the proof of the analogue of Theorem 1.1.2 is more involved. This is why we prefer
our choice of A. On the other hand, the choice c = |∇u|A(x) is related to an existing
Riemannian version of the Sternberg and Zumbrun inequality, which we explain next in
Remark 1.3.3.

This discussion leads to the question of whether a similar estimate exists for A0, the
natural part of the simpler symmetric matrix A1/2(0)D2uA1/2(0), which only involves the
constant coefficients A1/2(0). There does not seem to be a direct way to derive such an
estimate from the stability inequality, since it is not clear which c function could lead to
it. Nevertheless, when the parameter ε is small, thanks to (1.3.15) below, it can be shown
that A0 is comparable to A. Hence, for ε small, we can deduce the desired bound for A0

from our result (1.1.11) for A. We will need this fact in the proof of the Hessian estimates
in Theorem 1.1.2, as explained below.

2In fact, they are able to deduce the estimate without computing Lc directly, but they still need to
have three derivatives of the solution; see the proof of Lemma 2.1 in [24].
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Remark 1.3.3. Our result (1.1.11) is related to a Riemannian analogue of the Sternberg
and Zumbrun estimate found by Farina, Sire, and Valdinoci in [56]. It states that stable
solutions to the equation −∆LBu = f(u) in a Riemannian manifold (M, g), where ∆LB is
the Laplace-Beltrami operator, satisfy the inequality∫

M

A2
Riem η

2 +

∫
M

Ric(∇gu,∇gu) η2 ≤
∫

M

|∇gu|2g|∇gη|2g. (1.3.12)

Here, ARiem (given by (1.3.13)) is a Riemannian analogue of the function A in Theo-
rem 1.1.2, Ric denotes the Ricci tensor, and all the norms, gradients, and integrals are
intrinsic to the metric g.

When expressed in coordinates, these Riemannian quantities fit within our Euclidean
setting with variable coefficients. For instance, the operator ∆LB can be written in coor-
dinates as Lu = div (A(x)∇u) + b̂(x) · ∇u. Here A(x) = (aij(x)) = (gij(x)) is the inverse

of the metric and b̂i(x) = 1
2
gij(x)∂j log |g| involves the volume density |g| = det(gij(x)).

Moreover, with our notation for matrices, the function ARiem in (1.3.12) can be written
locally in {∇gu 6= 0} as

ARiem =
(
‖A1/2(x)HuA1/2(x)‖2

HS −
∣∣A1/2(x)HuA1/2(x)nA(x)

∣∣2)1/2

, (1.3.13)

where nA(x) = |∇u|−1
A(x)

A1/2(x)∇u has appeared in the definition (1.3.11) of Ax in Re-

mark 1.3.2 and Hu = ((Hu)ij) is the Riemannian Hessian matrix given by (Hu)ij =
uij − Γkijuk, where Γkij are the Christoffel symbols of the metric.

By this identification of ∆LB with L, applying the Riemannian result in [56], collecting
all lower order terms, and estimating the derivatives of the metric, we are led to an a
priori bound for the function Ax in (1.3.11) which involves errors of the same type as
in (1.1.11). Due to the presence of the Ricci tensor in (1.3.12), this estimate derived from
the Riemannian inequality (1.3.12) depends on the norm ‖A‖C2(B1), i.e., it requires two
derivatives of the metric. Nevertheless, integrating the unwanted coefficient derivatives by
parts as we did in our proof of (1.1.11), we could deduce an estimate depending only on
‖A‖C1(B1).

The authors in [56] obtain (1.3.12) by choosing the test function c = |∇gu|g in their
stability inequality. In our coordinates, this function reads as c(x) = |∇u|A(x). As explained
in Remark 1.3.2, this choice of c and our integral stability inequality (1.1.18) lead to a
similar estimate for Ax by using the ideas from the proof of (1.1.11) above.

We emphasize that both approaches (the Riemannian one and ours) give an estimate
for Ax which contains an error term involving the product |D2u||∇u|. This error arises
from the interaction between the second and first order terms in the Riemannian Hessian
Hu when squaring ARiem, and thus squaring Hu = D2u− Γ∇u = D2u+O(ε|∇u|).

Next, we prove the “Hessian times the gradient” estimates (1.1.13) and (1.1.14) in
Theorem 1.1.2. For this, we will need to consider the auxiliary function

A0 :=

{ (
‖A1/2(0)D2uA1/2(0)‖2

HS − |A1/2(0)D2uA1/2(0)n(x)|2
)1/2

if ∇u 6= 0

0 if ∇u = 0,
(1.3.14)

where n(x) = |∇u|−1
A−1(0)A

1/2(0)∇u is again the vector field in the definition of A in (1.3.1).

Notice that (1.3.14) is precisely the definition of A in (1.3.1) with the matrix A1/2(x)
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replaced by A1/2(0); see Remark 1.3.2. The greatest advantage of the function A0 over
A is the symmetry of the matrix A1/2(0)D2uA1/2(0) in the definition above. This will
allow us to bound the Hessian of the solution by A0, with the exception of the n ⊗ n
component, which can be treated separately thanks to the nonnegativity assumption on
the nonlinearity.

We will also need the a priori estimate (1.1.11) proved above, which gives a bound for
the L2 norm of the function A. In the proof below, for ‖DA‖L∞(B1) ≤ ε, we will see that

|A2 −A2
0| ≤ Cε|x|A2

0 in B1, (1.3.15)

where C is a universal constant. In particular, for ε small, the functions are comparable
and (1.1.11) allows us to bound the L2 norm of A0 as well.

Proof of (1.1.13) and (1.1.14) in Theorem 1.1.2. Throughout the proof, C denotes a generic
universal constant. The proof is divided into four steps.

Step 1: We prove that

|D2u| ≤ −Ctr
(
A(0)D2u

)
+ CA0 + Cε|x||D2u|+ Cε|∇u| a.e. in B1, (1.3.16)

where C > 0 is universal.
First we bound the full Hessian of u almost everywhere by the function A0 and the

n⊗n component of the matrix A1/2(0)D2uA1/2(0). If ∇u(x) 6= 0, then, extending n(x) to
an orthonormal basis of Rn, it is easy to see3 that

‖A1/2(0)D2uA1/2(0)‖2
HS ≤ 2A2

0 +
∣∣(A1/2(0)D2uA1/2(0))n(x) · n(x)

∣∣2. (1.3.17)

Moreover, by Stampacchia’s result, |D2u| = 0 a.e. in ∇u = 0 (see [69, Theorem 6.19]), and
the inequality (1.3.17) holds almost everywhere in B1. By uniform ellipticity we also have
|D2u| ≤ C|A1/2(0)D2uA1/2(0)| ≤ C‖A1/2(0)D2uA1/2(0)‖HS and hence

|D2u| ≤ CA0 + C
∣∣(A1/2(0)D2uA1/2(0))n(x) · n(x)

∣∣ a.e. in B1. (1.3.18)

Next we use that the nonlinearity is nonnegative to bound the n ⊗ n component
(A1/2(0)D2uA1/2(0))n(x) · n(x) in (1.3.18) in terms of the equation, the function A0, and
lower order terms.

Since 0 ≥ −f(u) = Lu = tr(A(x)D2u) + b(x) · ∇u, we have∣∣tr(A(x)D2u)
∣∣ = |Lu− b(x) · ∇u|
≤ −Lu+ |b(x) · ∇u| = −tr(A(x)D2u)− b(x) · ∇u+ |b(x) · ∇u|
≤ −tr(A(x)D2u) + 2ε|∇u|.

(1.3.19)

By the mean value theorem we have |A(x)− A(0)| ≤ ε|x|, and hence by (1.3.19)∣∣tr(A(0)D2u)
∣∣ ≤ ∣∣tr(A(x)D2u)

∣∣+ Cε|x||D2u|
≤ −tr(A(x)D2u) + Cε|x||D2u|+ Cε|∇u|
≤ −tr(A(0)D2u) + Cε|x||D2u|+ Cε|∇u|.

(1.3.20)

3This follows immediately from the fact that, for any symmetric matrix M ∈ Rn×n, we have ‖M‖2HS =∑n−1
i,j=1M

2
ij + 2

∑n−1
i=1 M

2
in +M2

nn and ‖M‖2HS − |Men|2 =
∑n−1
i,j=1M

2
ij +

∑n−1
i=1 M

2
in.
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By the same argument to deduce (1.3.17) above, it is easy to see that4∣∣A1/2(0)D2uA1/2(0)−
[
(A1/2(0)D2uA1/2(0))n · n

]
n⊗ n

∣∣ ≤ CA0 a.e. in B1. (1.3.21)

Writing the n⊗ n component of A1/2(0)D2uA1/2(0) as

(A1/2(0)D2uA1/2(0))n · n

= tr
(
A1/2(0)D2uA1/2(0)

)
− tr

(
A1/2(0)D2uA1/2(0)−

[
(A1/2(0)D2uA1/2(0))n · n

]
n⊗ n

)
,

from (1.3.20) and (1.3.21), it follows that∣∣(A1/2(0)D2uA1/2(0))n · n
∣∣ ≤ ∣∣tr (A1/2(0)D2uA1/2(0)

)∣∣+ CA0

≤ −tr(A(0)D2u) + CA0 + Cε|x||D2u|+ Cε|∇u|
(1.3.22)

a.e. in B1. Combining (1.3.22) and (1.3.18) yields the claimed inequality (1.3.16).

Step 2: We prove that there is a universal ε0 > 0 such that, if ε ≤ ε0, then∫
B1

|D2u||∇u|η2 dx ≤ C

∫
B1

A|∇u| η2 dx+ C

∫
B1

|∇u|2
(
|∇(η2)|+ εη2

)
dx

for all η ∈ C∞c (B1), where C is universal.
By uniform ellipticity, it suffices to estimate the integral

∫
B1
|D2u||∇u|A(0)η

2 dx. Mul-

tiplying (1.3.16) in Step 1 by |∇u|A(0)η
2 and integrating in B1, by uniform ellipticity we

have ∫
B1

|D2u||∇u|A(0)η
2 dx

≤ −C
∫
B1

|∇u|A(0)tr
(
A(0)D2u

)
η2 dx+ C

∫
B1

A0|∇u|A(0) η
2 dx

+ Cε

∫
B1

|x||D2u||∇u|A(0)η
2 dx+ Cε

∫
B1

|∇u|2 η2 dx.

(1.3.23)

The only delicate term in the right-hand side of (1.3.23) is the first one, which can be
treated as follows.

We write the product −|∇u|A(0)tr(A(0)D2u) in {∇u 6= 0} as

−2|∇u|A(0)tr
(
A(0)D2u

)
= −|∇u|A(0)tr(A(0)D2u)− div

(
|∇u|A(0)A(0)∇u

)
+∇|∇u|A(0) · A(0)∇u.

(1.3.24)

Since

∇|∇u|A(0) · A(0)∇u = |∇u|−1
A(0) D

2uA(0)∇u · A(0)∇u

= |∇u|A(0)(A
1/2(0)D2uA1/2(0))n · n,

4Follows from the fact that, for any symmetric matrix M ∈ Rn×n, we have |M | ≤ n‖M‖HS and
‖M −Mnnen ⊗ en‖2HS ≤ 2

(
‖M‖2HS − |Men|2

)
.
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by (1.3.24) and using that n is unitary, it follows that

− 2|∇u|A(0)tr
(
A(0)D2u

)
= −|∇u|A(0)tr

(
A1/2(0)D2uA1/2(0)−

[(
A1/2(0)D2uA1/2(0)

)
n · n

]
n⊗ n

)
− div

(
|∇u|A(0)A(0)∇u

) (1.3.25)

a.e. in B1. By the bound (1.3.21) in the proof of Step 1 above, it follows that∣∣∣tr(A1/2(0)D2uA1/2(0)−
[(
A1/2(0)D2uA1/2(0)

)
n · n

]
n⊗ n

)∣∣∣ ≤ CA0

a.e. in B1, and hence from (1.3.25) we deduce

−2|∇u|A(0)tr
(
A(0)D2u

)
≤ −div

(
|∇u|A(0)A(0)∇u

)
+ CA0|∇u|A(0) a.e. in B1. (1.3.26)

Substituting (1.3.26) in (1.3.23) leads to∫
B1

|D2u||∇u|A(0)η
2 dx

≤ −C
∫
B1

div
(
|∇u|A(0)A(0)∇u

)
η2 dx+ C

∫
B1

A0|∇u|A(0) η
2 dx

+ Cε

∫
B1

|x||D2u||∇u|A(0) η
2 dx+ Cε

∫
B1

|∇u|2 η2 dx,

and integrating by parts the divergence term, we obtain the inequality∫
B1

|D2u||∇u|A(0)η
2 dx ≤ C

∫
B1

|∇u|2
(
|∇η2|+ εη2

)
dx+ C

∫
B1

A0|∇u|A(0) η
2 dx

+ Cε

∫
B1

|x||D2u||∇u|A(0) η
2 dx.

(1.3.27)

Since |x| ≤ 1 in B1, choosing ε0 > 0 universal small such that Cε0 = 1/2, we can absorb
the “Hessian times the gradient” error in (1.3.27) into the left-hand side to obtain∫

B1

|D2u||∇u|A(0)η
2 dx ≤ C

∫
B1

|∇u|2
(
|∇η2|+ εη2

)
dx+ C

∫
B1

A0|∇u|A(0) η
2 dx.

(1.3.28)

To conclude the argument, let us show that A and A0 are comparable for ε small.
Letting E(x) = A(x)− A(0) and M(x) = D2u(x)A1/2(0), it is easy to check that

A2 = A2
0 + tr

(
M(x)TE(x)M(x)

)
− (M(x)TE(x)M(x))n · n in {∇u 6= 0},

and for x ∈ {∇u 6= 0}, extending n = n(x) to an orthonormal basis e1, . . ., en = n of Rn,
we can rewrite this identity as

A2 = A2
0 +

n−1∑
i=1

E(x)M(x)ei ·M(x)ei in {∇u 6= 0}. (1.3.29)

By the mean value theorem we can bound the error by |E(x)| ≤ ε|x|, and hence, by uniform
ellipticity,∣∣∣∣∣

n−1∑
i=1

E(x)M(x)ei ·M(x)ei.

∣∣∣∣∣ ≤ ε|x|
n−1∑
i=1

|M(x)ei|2 ≤ Cε|x|
n−1∑
i=1

|M(x)ei|2A(0). (1.3.30)
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Since |M(x)ei|2A(0) = |A1/2(0)D2u(x)A1/2(0)ei|, by (1.3.21) above, the sum in right-hand

side of (1.3.30) can be further bounded by

n−1∑
i=1

|M(x)ei|2A(0) ≤ CA0 a.e. in B1. (1.3.31)

Combining (1.3.30) and (1.3.31), from (1.3.29) we conclude that

(1− Cε|x|)A2
0 ≤ A2 ≤ (1 + Cε|x|)A2

0 in B1,

which was the inequality (1.3.15) mentioned before the proof. Choosing ε0 smaller if
necessary, we may assume that A0 ≤ 2A, which applied in (1.3.27) yields the claim.

Step 3: We prove that, if ε ≤ ε0, with ε0 > 0 as in Step 1, then∫
B1

A2η2 dx ≤ C

∫
B1

|∇u|2
(
|∇η|2 + ε2η2

)
dx

for all η ∈ C∞c (B1), where C is a universal constant.
Combining (1.1.11) in Theorem 1.1.2 and Step 2, we have∫

B1

A2η2 dx ≤ Cε

∫
B1

A|∇u|η2 dx+

∫
B1

|∇u|2A(0)|∇η|2A(x) dx

+ Cε

∫
B1

|∇u|2
(
|∇(η2)|+ εη2

)
dx.

(1.3.32)

By Young’s inequality, the first term on the right-hand side of (1.3.32) can be bounded by

Cε

∫
B1

A|∇u|η2 dx ≤ 1

2

∫
B1

A2η2 dx+ Cε2

∫
B1

|∇u|2η2 dx,

and the A2η2 integral can be absorbed into the left-hand side. By uniform ellipticity and
the bound ε|∇(η2)| ≤ |∇η|2 + ε2η2, we deduce the claim.

Step 4: Conclusion.
Combining Steps 2 and 3, for ε ≤ ε0 as above and by Cauchy-Schwarz, we obtain∫

B1

|D2u||∇u|η2 dx

≤ C

(∫
B1

A2η2 dx

)1/2(∫
B1

|∇u|2η2 dx

)1/2

+ C

∫
B1

|∇u|2
(
|∇(η2)|+ εη2

)
dx

≤ C

(∫
B1

|∇u|2
(
|∇η|2 + ε2η2

)
dx

)1/2(∫
B1

|∇u|2η2 dx

)1/2

+ C

∫
B1

|∇u|2
(
|∇(η2)|+ εη2

)
dx.

(1.3.33)

The inequalities (1.1.13) and (1.1.14) in Theorem 1.1.2 follow easily from (1.3.33) by
choosing appropriate cut-off functions and using that ε is bounded by a universal constant
ε0. Choosing η ∈ C∞c (B1) such that η = 1 in B3/4 and 0 ≤ η ≤ 1 in B1 leads to the
estimate in balls (1.1.13). The second estimate in annuli (1.1.14) follows by choosing
η ∈ C∞c (B1 \B1/8) with η = 1 in B1/2 \B1/4 and 0 ≤ η ≤ 1 in B1.
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Remark 1.3.4. By the proof above, we can also deduce an interior a priori estimate for
the L1 norm of the Hessian. For this, assuming ε to be small, recalling that A0 ≤ CA by
(1.3.15), and absorbing the Hessian term in Step 1, we obtain

|D2u| ≤ −Cdiv (A(0)∇u) + CA+ C|∇u| a.e. in B1.

Multiplying this inequality by a cut-off function and integrating by parts, using the bound
for A in Step 3 and applying Cauchy-Schwarz, we deduce an estimate for the L1 norm of
the Hessian in terms of the L2 norm of the gradient in a larger ball.

We conclude this section by proving Proposition 1.1.3. To show that the L2 norm of the
gradient is controlled by the L1 norm of the function in a larger ball, we use the interpolation
inequalities of Cabré [20] combined with the Hessian estimates from Theorem 1.1.2. The
errors in larger balls can then be absorbed thanks to a well-known lemma of Simon [89].
We recall the interpolation inequalities of Cabré in Appendix C and Simon’s lemma in
Appendix D.

Proof of Proposition 1.1.3. We cover B1/2 (except for a set of measure zero) with a family
of disjoint open cubes Qj of the same side-length and small enough so that Qj ⊂ B3/4.
The side-length and the number of cubes depend only on n. Combining the interpolation
inequalities of Propositions C.1 and C.3, rescaled from the unit cube to Qj, with δ̃ = δ3/2

for a given δ ∈ (0, 1), we obtain

∫
Qj

|∇u|2dx ≤ Cδ

∫
Qj

|D2u||∇u| dx+ Cδ

∫
Qj

|∇u|2dx+ Cδ−2− 3n
2

(∫
Qj

|u| dx

)2

.

Since Qj ⊂ B3/4, applying (1.1.13) from Theorem 1.1.2, for ε ≤ ε0 we have∫
Qj

|∇u|2dx ≤ Cδ

∫
B1

|∇u|2dx+ Cδ−2− 3n
2

(∫
B1

|u| dx
)2

.

Adding up these inequalities, we obtain

‖∇u‖2
L2(B1/2) ≤ Cδ‖∇u‖2

L2(B1) + Cδ−2− 3n
2 ‖u‖2

L1(B1) for δ ∈ (0, 1) and ε ≤ ε0. (1.3.34)

As explained in Section 1.2, for Bρ(y) ⊂ B1, the function uy,ρ := u(y + ρ ·) is a stable
solution to a semilinear equation with coefficients Ay,ρ = A(y + ρ ·) and by,ρ = ρ b(y + ρ ·).
In particular, since ρ ≤ 1, for ε ≤ ε0 we have that

‖DAy,ρ‖L∞(B1) + ‖by,ρ‖L∞(B1) ≤ ρε ≤ ε0,

and we can apply (1.3.34) to uy,ρ, which yields

ρn+2

∫
Bρ/2(y)

|∇u|2 dx ≤ Cδρn+2

∫
Bρ(y)

|∇u|2 dx+ Cδ−2− 3n
2

(∫
Bρ(y)

|u| dx

)2

≤ Cδρn+2

∫
Bρ(y)

|∇u|2 dx+ Cδ−2− 3n
2

(∫
B1

|u| dx
)2

.

By Lemma D.1 with σ(B) := ‖∇u‖2
L2(B), the claim follows.
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1.4 The W 1,2+γ estimate

Here we prove the higher integrability estimate (1.1.9) in Theorem 1.1.1. The strategy of
proof is the same as for the Laplacian in [24]. First we bound the L2+γ norm in terms
of the L2 norm of the gradient when the coefficients are small. This will follow from a
uniform estimate of the Dirichlet norm on level sets, which relies on the Hessian estimates
in Theorem 1.1.2.

Lemma 1.4.1. Let u ∈ C∞
(
B1

)
be a stable solution of −Lu = f(u) in B1, for some

nonnegative function f ∈ C1(R). Assume that

‖DA‖L∞(B1) + ‖b‖L∞(B1) ≤ ε

for some ε > 0.
If ε ≤ ε0, then

‖∇u‖L2+γ(B1/2) ≤ C‖∇u‖L2(B1),

where γ > 0 depends only on n, and ε0 > 0 and C are universal constants.

Proof. The proof is divided in two steps.

Step 1: We prove that, if ε ≤ ε0, then for a.e. t ∈ R we have∫
{u=t}∩B1/2

|∇u|2 dHn−1 ≤ C‖∇u‖2
L2(B1),

where ε0 > 0 and C are universal.
Since

∣∣div
(
|∇u|∇u

)∣∣ ≤ C|D2u||∇u|, by (1.1.13) in Theorem 1.1.2, for ε ≤ ε0 we have∥∥div
(
|∇u|∇u

)∥∥
L1(B3/4)

≤ C‖∇u‖2
L2(B1). (1.4.1)

Consider a cut-off function η ∈ C∞c (B3/4) with η = 1 in B1/2 and 0 ≤ η ≤ 1. By the
divergence theorem, for a.e. t ∈ R we have∫

{u=t}∩B1/2

|∇u|2 dHn−1 ≤
∫
{u=t}∩B1∩{∇u6=0}

|∇u|2η2 dHn−1

= −
∫
{u>t}∩B1∩{∇u6=0}

div
(
|∇u|∇u η2

)
dx

≤
∫
B1

|∇u|2|∇(η2)| dx+

∫
B1

∣∣div
(
|∇u|∇u

)∣∣η2 dx

and applying (1.4.1) we obtain the claim.

Step 2: Conclusion.
Let

v :=
u− (u)B1

‖∇u‖L2(B1)

,

where (u)B1 :=
1

|B1|

∫
B1

u dx. In particular ‖∇v‖L2(B1) = 1 and by the Sobolev-Poincaré

inequality, for some dimensional p > 2, we have(∫
B1

|v|p dx

) 1
p

≤ C

(∫
B1

|∇v|2 dx

) 1
2

= C. (1.4.2)
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By the coarea formula and (1.4.2), we have∫
R

dt

∫
{v=t}∩{|∇v|6=0}

|t|p|∇v|−1 dHn−1 =

∫
B1∩{|∇v|6=0}

|v|p dx ≤ C. (1.4.3)

Since p > 2, we can choose dimensional constants q > 1 and θ ∈ (0, 1/3) such that
p/q = (1− θ)/θ. We define

h(t) := max{1, |t|}.

Using the coarea formula and the Hölder inequality (note that pθ−q(1−θ) = 0), we obtain∫
B1/2

|∇v|3−3θ dx =

∫
R

dt

∫
{v=t}∩B1/2∩{|∇v|6=0}

h(t)pθ−q(1−θ)|∇v|−θ+2(1−θ) dx

≤
(∫

R
dt

∫
{v=t}∩B1∩{|∇v|6=0}

h(t)p|∇v|−1 dHn−1

)θ
·

·

(∫
R

dt

∫
{v=t}∩B1/2

h(t)−q|∇v|2 dHn−1

)1−θ

.

Thanks to (1.4.3) and the definition of h(t), we have∫
R

dt

∫
{v=t}∩B1∩{|∇v|6=0}

h(t)p|∇v|−1 dHn−1

≤
∫ 1

−1

dt

∫
{v=t}∩B1∩{|∇v|6=0}

|∇v|−1 dHn−1 + C ≤ |B1|+ C ≤ C.

Since q > 1, it follows that
∫
R h(t)−q dt is finite and by Step 1, for ε ≤ ε0, we have∫

R
dt h(t)−q

∫
{v=t}∩B1/2

|∇v|2 dHn−1 ≤ C.

Finally, we obtain ∫
B1/2

|∇v|3−3θ dx ≤ C

which gives the claim, since ∇v ≡ ∇u/‖∇u‖L2(B1).

To deduce the L2+γ estimate (1.1.9) in Theorem 1.1.1, we will combine Proposition 1.1.3
with Lemma 1.4.1, and apply a scaling and covering argument.

Proof of (1.1.9) in Theorem 1.1.1. Combining Proposition 1.1.3 and Lemma 1.4.1, applied
to u(·/2), we deduce that there is a universal ε0 > 0 such that, if ε ≤ ε0, then

‖∇u‖L2+γ(B1/4) ≤ C‖u‖L1(B1), (1.4.4)

where γ > 0 depends only on n, and C is universal.
Now (1.1.9) will follow easily from (1.4.4) by a scaling and covering argument. Let

ρ ∈ (0, 1) to be chosen later. We cover the ball B1/2 by a finite number of balls Bρ/4(yj)
with Bρ(yj) ⊂ B1. The number balls depends only on n and ρ. As explained in Section 1.2,
the functions uyj ,ρ = u(yj+ρ ·) are stable solutions to a semilinear equation with coefficients
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Ayj ,ρ = A(yj+ρ ·) and byj ,ρ = ρ b(yj+ρ ·). Choosing ρ small enough so that ρ
(
‖DA‖L∞(B1)+

‖b‖L∞(B1) ≤ ε
)
≤ ε0, it follows that

‖DAyj ,ρ‖L∞(B1) + ‖byj ,ρ‖L∞(B1) ≤ ε0,

and we can apply (1.4.4) to each uyj ,ρ, which yields

‖∇u‖L2+γ(B1/2) ≤
∑
j

‖∇u‖L2+γ(Bρ/4(yj)) ≤ C
∑
j

‖u‖L1(Bρ(yj)) ≤ C‖u‖L1(B1),

for some C depending only on n, c0, C0, and ρ. Since ρ depends only on ‖DA‖L∞(B1),
‖b‖L∞(B1), and ε0, which is universal, this concludes the proof.

1.5 The weighted L2 estimate for radial derivatives

Our goal in this section is to prove Proposition 1.1.4, where we bound the weighted L2

norm of the radial derivative in balls by the L2 norm of the full gradient in annuli. To prove
the estimate, we will first apply the integral stability inequality with the test functions

c(x) = x · ∇u and η = |x|
2−n
2

A−1(0)ζ,

where ζ is a cut-off. Our choice will yield the desired bound with an additional error term
involving a weighted integral of the “Hessian times the gradient”, which we will be able to
treat thanks to the a priori estimates on annuli from Theorem 1.1.2.

We start by choosing c = x · ∇u and a generic test function η in the integral stability
inequality:

Lemma 1.5.1. Let u ∈ C∞
(
B1

)
be a stable solution of −Lu = f(u) in B1, for some

function f ∈ C1(R). Assume that

‖DA‖L∞(B1) + ‖b‖L∞(B1) ≤ ε

for some ε > 0.
Then ∫

B1

|∇u|2A(x)

(
(n− 2)η2 + x · ∇(η2)

)
dx

+

∫
B1

(
− 2(x · ∇u)A(x)∇u · ∇(η2)− |x · ∇u|2|∇η|2A(x)

)
dx

≤ Cε

∫
B1

|D2u||∇u||x|2η2 dx

+ Cε

∫
B1

|∇u|2
(
|x|2|∇(η2)|+

(
|x|+ |x|2ε

)
η2
)

dx

for all η ∈ C∞c (B1), where C is a universal constant.

Proof. Throughout the proof, C denotes a generic universal constant. Testing the integral
stability inequality (1.1.18) with η and c = x · ∇u, we deduce∫

B1

(x · ∇u)Ju(x · ∇u) η2 dx ≤
∫
B1

|x · ∇u|2
∣∣∣∇η − 1

2
ηA−1(x)̂b(x)

∣∣∣2
A(x)

dx. (1.5.1)
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The quadratic term on the right-hand side of (1.5.1) can be bounded by∣∣∣∇η − 1
2
ηA−1(x)̂b(x)

∣∣∣2
A(x)
≤ |∇η|2A(x) + Cε|∇(η2)|+ Cε2η2,

and hence∫
B1

(x · ∇u)Ju(x · ∇u) η2 dx ≤
∫
B1

|x · ∇u|2|∇η|2A(x) dx

+ Cε

∫
B1

|∇u|2|x|2
(
|∇(η2)|+ εη2

)
dx.

(1.5.2)

To compute the Jacobi operator Ju(x ·∇u) = L(x ·∇u) +f ′(u)(x ·∇u), we differentiate
the equation −Lu = f(u) in the direction of x, which yields

− x · ∇(Lu) = f ′(u) (x · ∇u) , (1.5.3)

and hence

Ju(x · ∇u) = L (x · ∇u)− x · ∇ (Lu)

= 2aij(x)uij − xk∂kaij(x)uij + bi(x)ui − xj∂jbi(x)ui.
(1.5.4)

From (1.5.4), by the coefficient bounds, it follows that

(x · ∇u)Ju(x · ∇u) ≥ 2xkukaij(x)uij − xkukxj∂jbi(x)ui

− Cε|x|2|D2u||∇u| − Cε|x||∇u|2.
(1.5.5)

The idea now is to integrate by parts to get rid of the highest order terms on the
left-hand side of (1.5.2). For this we must rewrite the term 2xkuk aij(x)uij in (1.5.5) in
divergence form. By the chain rule, we have

xkuk aij(x)uij = ∂i
(
xkuk aij(x)uj

)
− xkuk∂iaij(x)uj − aij(x)uiuj − xkaij(x)uikuj. (1.5.6)

Using that aij(x) = aji(x), the last term in (1.5.6) can be written as

xkaij(x)uikuj =
1

2
∂k
(
aij(x)uiujxk

)
− n

2
aij(x)uiuj −

1

2
xk∂kaij(x)uiuj,

and hence

2xkuk aij(x)uij = ∂i

(
2xkuk aij(x)uj − ajk(x)ujukxi

)
+ (n− 2)aij(x)uiuj

− 2xkuk∂iaij(x)uj + xk∂kaij(x)uiuj

≥ div
(
2(x · ∇u)A(x)∇u− |∇u|2A(x)x

)
+ (n− 2)|∇u|2A(x)

− Cε|x||∇u|2,

(1.5.7)

where in the last inequality we have used the estimates for the coefficients. Combining
(1.5.7) and (1.5.5), we obtain

(x · ∇u)Ju(x · ∇u)

≥ div
(
2(x · ∇u)A(x)∇u− |∇u|2A(x)x

)
+ (n− 2)|∇u|2A(x)

− xkukxj∂jbi(x)ui − Cε|x|2|D2u||∇u| − Cε|x||∇u|2.
(1.5.8)
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Multiplying (1.5.8) by η2 and integrating, the term −
∫
B1
xkukxj∂jbi(x)uiη

2 dx can be
integrated by parts and estimated by∣∣∣∣−∫

B1

xkukxj∂jbi(x)uiη
2 dx

∣∣∣∣ =

∣∣∣∣∫
B1

bi(x)∂j(xkukxjuiη
2) dx

∣∣∣∣
≤ Cε

∫
B1

|D2u||∇u||x|2η2 dx

+ Cε

∫
B1

|∇u|2
(
|x|2|∇(η2)|+ |x|η2

)
dx.

(1.5.9)

Substituting (1.5.8) in the inequality (1.5.2), rearranging terms and by the error bound
(1.5.9), it follows that∫

B1

(
(n− 2)|∇u|2A(x)η

2 − |x · ∇u|2|∇η|2A(x)

)
dx

+

∫
B1

div
(

2(x · ∇u)A(x)∇u− |∇u|2A(x)x
)
η2 dx

≤ Cε

∫
B1

|D2u||∇u||x|2η2 dx+ Cε

∫
B1

|∇u|2
(
|x|2|∇(η2)|+ (|x|+ ε|x|2)η2

)
dx.

(1.5.10)

Integrating by parts the divergence term on the left-hand side of (1.5.10) yields the claim.

Remark 1.5.2. In (1.5.3) we took a derivative of the equation in the x direction to get rid
of the dependence on the nonlinearity. Instead, we could have multiplied the equation by
the test function ξ = div (x (x · ∇u)η2) and integrated by parts. Thanks to this, we avoid
having to take any derivatives of b, since the term involving it can be bounded directly.
Notice also that we need u to have three derivatives to be able to compute Lc. This is the
same phenomenon as in the proof of Theorem 1.1.2; see the discussion in Remark 1.3.1.

Remark 1.5.3. Since |A(x) − A(0)| ≤ Cε|x|, the inequality in Lemma 1.5.1 also holds
if we replace A(x) by the constant matrix A(0) and we add an additional error term
Cε
∫
B1
|∇u|2|x|3|∇η|2 dx on the right-hand side. For future use, the final estimate involving

A(0) instead of A(x) reads as∫
B1

|∇u|2A(0)

(
(n− 2)η2 + x · ∇(η2)

)
dx

+

∫
B1

(
− 2(x · ∇u)A(0)∇u · ∇(η2)− |x · ∇u|2|∇η|2A(0)

)
dx

≤ Cε

∫
B1

|D2u||∇u||x|2η2 dx

+ Cε

∫
B1

|∇u|2
(
|x|3|∇η|2 + (|x|+ ε|x|2)η2

)
dx,

(1.5.11)

where we have used that |x|2|∇(η2)| ≤ |x|3|∇η|2 + |x|η2.

Next, we choose the singular test function η = |x|−a/2A−1(0)ζ in Lemma 1.5.1, where the
exponent a ≥ 0 will satisfy a ≤ n− 2 when n ≤ 9. Recall our notation for the modulus of
the position vector and the radial derivative

r = |x| and ur =
x

|x|
· ∇u.
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Lemma 1.5.4. Let u ∈ C∞
(
B1

)
be a stable solution of −Lu = f(u) in B1, for some

function f ∈ C1(R). Assume that

‖DA‖L∞(B1) + ‖b‖L∞(B1) ≤ ε

for some ε > 0.
If

0 ≤ a ≤ min{10, n} − 2, (1.5.12)

then

(n− 2− a)

∫
Bρ

r−a|∇u|2 dx+
a(8− a)

4

∫
Bρ

r−au2
r dx

≤ C

∫
B2ρ\Bρ

r−a|∇u|2 dx+ Cε

∫
B2ρ

r2−a|D2u||∇u| dx

+ Cε

∫
B2ρ

(
r1−a + εr2−a)|∇u|2 dx.

(1.5.13)

for all ρ ≤ 1/2, where C is a universal constant.

Proof. By approximation, the inequality in Lemma 1.5.1 is valid for Lipschitz test functions
η ∈ C0,1

c (B1). Moreover, this inequality also holds for the singular test function

η := |x|−a/2A−1(0)ζ,

where ζ ∈ C0,1
c (B1) is a cut-off. To see this, for δ > 0 consider the C0,1

c approximation

ηδ = min{|x|−a/2A−1(0), δ
−a/2}ζ

and apply dominated convergence to take the limit as δ → 0.
By Remark 1.5.3, it suffices to compute the left-hand side of the inequality in Lemma 1.5.1

with A(0) in place of A(x). Since

∇(η2) = −aζ2|x|−(a+2)

A−1(0)A
−1(0)x+ |x|−aA−1(0)∇(ζ2),

the first integrand in (1.5.11) is equal to

|∇u|2A(0)

(
(n− 2)η2 + x · ∇(η2)

)
= (n− 2− a)|x|−aA−1(0)|∇u|

2
A(0)ζ

2 + |x|−aA−1(0)|∇u|
2
A(0)(x · ∇(ζ2)).

(1.5.14)

Moreover, since

|∇η|2A(0) =
a2

4
|x|−(a+2)

A−1(0) ζ
2 − a

2
|x|−(a+2)

A−1(0)

(
x · ∇(ζ2)

)
+ |x|−aA−1(0)|∇ζ|

2
A(0),

the second integrand is

− 2(x · ∇u)A(0)∇u · ∇(η2)− |x · ∇u|2|∇η|2A(0)

=
a(8− a)

4
|x|−(a+2)

A−1(0) |x · ∇u|
2ζ2 − 2|x|−aA−1(0)(x · ∇u)A(0)∇u · ∇(ζ2)

− |x · ∇u|2|x|−aA−1(0)|∇ζ|
2
A(0) +

a

2
|x · ∇u|2|x|−a−2

A−1(0)

(
x · ∇(ζ2)

)
.

(1.5.15)
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From the identities (1.5.14) and (1.5.15), by (1.5.11), it follows that

(n− 2− a)

∫
B1

|x|−aA−1(0)|∇u|
2
A(0)ζ

2 dx+
a(8− a)

4

∫
B1

|x|−a−2
A−1(0)|x · ∇u|

2ζ2 dx

≤ C

∫
B1

(
r2−a|∇ζ|2 + r1−a|∇(ζ2)|

)
|∇u|2 dx+ Cε

∫
B1

r2−a|D2u||∇u|ζ2 dx

+ Cε

∫
B1

(
r3−a|∇ζ|2 + r2−a|∇(ζ2)|

)
|∇u|2 dx

+ Cε

∫
B1

(
r1−a + εr2−a)|∇u|2ζ2 dx,

(1.5.16)

for some universal constant C, where we have controlled the remainder terms thanks to
the uniform ellipticity and the fact that a is bounded by a dimensional constant.

For 0 < ρ ≤ 1/2 as in the statement, we consider a Lipschitz function ζ, with 0 ≤ ζ ≤ 1,
such that ζ|Bρ = 1, supp ζ ⊂ B2ρ, and |∇ζ| ≤ C/ρ. Plugging this cutoff function in

(1.5.16), using that r is comparable with ρ inside supp∇ζ ⊂ B2ρ \Bρ, we deduce that

(n− 2− a)

∫
B1

|x|−aA−1(0)|∇u|
2
A(0)ζ

2 dx+
a(8− a)

4

∫
B1

|x|−a−2
A−1(0)|x · ∇u|

2ζ2 dx

≤ C

∫
B2ρ\Bρ

r−a|∇u|2 dx+ Cε

∫
B2ρ

r2−a|D2u||∇u| dx

+ Cε

∫
B2ρ

(
r1−a + εr2−a)|∇u|2 dx.

(1.5.17)

Since a is in the range (1.5.12), the constants in the left-hand side of (1.5.17) are nonnega-

tive. Moreover, by uniform ellipticity we have |x|A−1(0) ≤ c
−1/2
0 |x| and |∇u|2A(0) ≥ c0|∇u|2,

hence, since ζ|Bρ = 1 and ζ ≥ 0, it follows that

λa/2+1

(
(n− 2− a)

∫
Bρ

r−a|∇u|2 dx+
a(8− a)

4

∫
Bρ

r−au2
r dx

)

≤ (n− 2− a)

∫
B1

|x|−aA−1(0)|∇u|
2
A(0)ζ

2 dx+
a(8− a)

4

∫
B1

|x|−a−2
A−1(0)|x · ∇u|

2ζ2 dx.

(1.5.18)

Using (1.5.18) in (1.5.17) and multiplying by λ−a/2−1 now yields the claim.

We can finally prove Proposition 1.1.4. For this, we will apply Lemma 1.5.4 with the
exponent a = n − 2. The key point in the proof will be to control the weighted L1 norm
of |D2u||∇u| in the right-hand side of (1.5.13) by a weighted L2 norm of the gradient.
We obtain this bound by writing the integral as an infinite sum on dyadic annuli and by
using that the weight in each annulus can be pulled out of the integral. This allows us
to apply the non-weighted a priori estimate for the “Hessian times the gradient” (1.1.14)
from Theorem 1.1.2.

Proof of Proposition 1.1.4. Since 3 ≤ n ≤ 9, we have that min{10, n} − 2 = n− 2 and we
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may choose the exponent a = n− 2 in Lemma 1.5.4, which yields the inequality

(n− 2)(10− n)

4

∫
Bρ

r2−nu2
r dx

≤ C

∫
B2ρ\Bρ

r2−n|∇u|2 dx+ Cε

∫
B2ρ

r4−n|D2u||∇u| dx

+ Cε

∫
B2ρ

(
r3−n + εr4−n)|∇u|2 dx.

(1.5.19)

To bound the Hessian term
∫
B2ρ

r4−n|D2u||∇u| dx on the right-hand side of (1.5.19), we

will apply the a priori estimate on annuli (1.1.14) from Theorem 1.1.2 at different scales.
Let rj := 2−j with j ≥ 0. As explained in Section 1.2, the functions u(rj·) are stable

solutions to a semilinear equation with coefficients A(rj·) and rjb(rj·). In particular, since
‖DA‖C0(B1) + ‖b‖C0(B1) ≤ ε, we also have ‖DA(rj·)‖L∞(B1) + ‖rjb(rj·)‖L∞(B1) ≤ εrj ≤ ε.
Hence, by (1.1.14) in Theorem 1.1.2 applied to u(rj·), there is a universal ε0 > 0 with the
following property: if ε ≤ ε0, then∫

Brj+1\Brj+2

|D2u||∇u| dx ≤ Cr−1
j

∫
Brj \Brj+3

|∇u|2 dx for all j ≥ 0, (1.5.20)

where C is a universal constant.
Writing the weighted integral as an infinite sum on annuli, we have∫

B1/2

r4−n|D2u||∇u| dx =
∞∑
j=0

∫
Brj+1\Brj+2

r4−n|D2u||∇u| dx

≤ C
∞∑
j=0

r4−n
j

∫
Brj+1\Brj+2

|D2u||∇u| dx,
(1.5.21)

where in the last line we have used that r4−n ≤ Cr4−n
j in Brj+1

\ Brj+2
, with C universal.

Multiplying (1.5.20) by r4−n
j and summing in j, the right-hand side in (1.5.21) can be

bounded by

∞∑
j=0

r4−n
j

∫
Brj+1\Brj+2

|D2u||∇u| dx ≤ C

∞∑
j=0

r3−n
j

∫
Brj \Brj+3

|∇u|2 dx

≤ C
∞∑
j=0

∫
Brj \Brj+3

r3−n|∇u|2 dx

≤ C

∫
B1

r3−n|∇u|2 dx.

(1.5.22)

Combining (1.5.21) and (1.5.22), we deduce∫
B1/2

r4−n|D2u||∇u| dx ≤ C

∫
B1

r3−n|∇u|2 dx, (1.5.23)

where C is universal. Applying (1.5.23) to the stable solutions u(4ρ·), there is a universal
ε0 > 0 with the following property: if ε ≤ ε0, then∫

B2ρ

r4−n|D2u||∇u| dx ≤ C

∫
B4ρ

r3−n|∇u|2 dx for all ρ ≤ 1/4, (1.5.24)
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where C is a universal constant.
Applying (1.5.24) in (1.5.19), we deduce the key estimate

(n− 2)(10− n)

4

∫
Bρ

r2−nu2
r dx

≤ C

∫
B2ρ\Bρ

r2−n|∇u|2 dx+ Cε

∫
B4ρ

r3−n|∇u|2 dx

for ρ ≤ 1/4 and ε ≤ ε0,

(1.5.25)

where we have additionally bounded the last integrand in (1.5.19) by εr4−n ≤ Cr3−n.
Finally, since (n − 2)(10 − n) > 0, absorbing this constant on the right-hand side of
(1.5.25) yields the claim.

Remark 1.5.5. Our proof in Section 1.7 of the Cα bound (1.1.10) from Theorem 1.1.1
controls the weighted integral

∫
Bρ
r2−n|∇u|2 dx. It will require a delicate estimate proven

in Section 1.6. As a consequence, we will also obtain a bound for the less singular error
terms

∫
Bρ
r3−n|∇u|2 dx. Here we point out that this last quantity can be estimated directly

from our previous Lemma 1.5.4, without the use of Section 1.6. This is done as follows.
Letting a = n−3 in Lemma 1.5.4, since a(8−a) = (n−3)(11−n) ≥ 0 for 3 ≤ n ≤ 11, we

can drop the radial term in (1.5.13) and the left-hand side becomes
∫
Bρ
r3−n|∇u|2 dx. The

right-hand side now includes an error term ε
∫
B2ρ

r5−n|D2u||∇u| dx, which can be bounded

by ε
∫
B4ρ

r4−n|∇u|2 dx for ε ≤ ε0 as in the proof of Proposition 1.1.4. Hence, we obtain∫
Bρ

r3−n|∇u|2 dx ≤ C

∫
B4ρ\Bρ

r3−n|∇u|2 dx+ Cε

∫
Bρ

r4−n|∇u|2 dx

for ρ ≤ 1/4. Making ε0 smaller if necessary, since r4−n ≤ r3−n in Bρ, we can absorb the
rightmost term into the left-hand side. This leads to an expression which can be hole-filled,
and by a standard iteration argument it is easy to deduce the decay estimate∫

Bρ

r3−n|∇u|2 dx ≤ Cρ2α‖∇u‖2
L2(B1) for all ρ ≤ 1/4, (1.5.26)

where α > 0 and C are universal constants. We note that, adding superfluous variables,
the decay (1.5.26) is satisfied when n ≤ 11.

In general, this strategy allows to prove the decay of weighted integrals of the form∫
Bρ
r−a|∇u|2 dx for exponents a < n−2 and a ≤ 8. As an application, we could extend the

optimal regularity result of Peng, Zhang, and Zhou [81] for stable solutions in dimensions
n ≥ 10 to our setting of variable coefficients. The key point in [81] is to find an a a
priori estimate of the form ρ−an

∫
Bρ
|∇u|2 dx ≤ C‖∇u‖2

L2(B1), where an = 2(1 +
√
n− 1)

is a critical exponent. When considering variable coefficients, one has to deal with error
terms ε

∫
Bρ
r1−an|∇u|2 dx. Our method above gives the decay of these error terms whenever

10 ≤ n ≤ 13. For this, we choose a = an − 1 in (1.5.13), and notice that an − 1 < n − 2
and an − 1 ≤ 8 in this dimension range. The case n ≥ 14 can be treated similarly using
that a = an − 1 ≥ 8 and u2

r ≤ |∇u|2 in (1.5.13).

Remark 1.5.6. The key estimate in the proof of Proposition 1.1.4 is an inequality for
weighted integrals, ∫

B2ρ

r4−n|D2u||∇u| dx ≤ C

∫
B4ρ

r3−n|∇u|2 dx, (1.5.27)
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which has been proved decomposing the integral in dyadic annuli. There is a way to prove
a weaker inequality than (1.5.27), namely,

∫
B2ρ

r4−n|D2u||∇u| dx ≤ C

(∫
B4ρ

r2−n|∇u|2 dx

)1/2(∫
B4ρ

r4−n|∇u|2 dx

)1/2

+ C

∫
B4ρ

r3−n|∇u|2 dx,

(1.5.28)

which avoids the use of annuli and which involves a very recent test function of Cabré [17]
and Peng, Zhang, and Zhou [82].

To obtain (1.5.28), one uses the inequality (1.3.33) from the proof of Theorem 1.1.2 with
the singular test function η = r−n/2ζ, where ζ ∈ C∞c (B1) is a cut-off. It is worth noting
that this inequality relies on the Sternberg-Zumbrun estimate for

∫
B1
A2η2 dx, which comes

from choosing the test function ξ = |∇u|η = |∇u|r−n/2ζ in the integral stability inequality
(1.1.8). A function of this form had already appeared in [17], where the author considered
ξ = |∇u|r−(n+ε)/2ζ to prove the boundedness of stable solutions for unsigned nonlinearities
when n ≤ 4. Interestingly, our choice ξ = |∇u|r−n/2 coincides with the test function used
by the authors in [82], where they obtained an a priori Hölder estimate for stable solutions
when n ≤ 5. While their strategy involves integrating by parts an expression that is
already quadratic in the gradient, expressing the new “coupled” Hessian errors D2u∇u as
the uncoupled expression ∆u∇u and an error term related to A0, we do not integrate by
parts.

By Young’s inequality, the coefficient in front of
∫
B4ρ

r2−n|∇u|2 dx, the leading order

term in (1.5.28), can be made arbitrarily small. This error in a larger ball can still be
treated with our methods to yield the Hölder estimate from Theorem 1.1.1.

1.6 The radial derivative controls the function in L1

The goal of this section is to prove Proposition 1.1.5, where we control the L1 norm of
(generalized) superharmonic functions Lu ≤ 0 by the L1 norm of the radial derivative
on annuli. By a comparison argument, it will suffice to derive the analogue L1 estimate
on spheres for harmonic functions Lv = 0, which are obtained by duality from the L∞

estimates of a Neumann problem.
Let g ∈ C∞(∂B1), and consider the Neumann problem in divergence form{

div(A(x)∇ϕ) = 0 in B1

A(x)∇ϕ · ν = g on ∂B1,
(1.6.1)

which admits solutions if and only if
∫
∂B1

g dHn−1 = 0. Recall that the solutions of (1.6.1)
are unique up to addition of constants. We will derive an L∞ a priori estimate for the zero
mean solutions of (1.6.1) in terms of the conormal derivative

Nϕ := A(x)∇ϕ · x
|x|
. (1.6.2)

This is achieved by a Moser iteration based on the following Sobolev trace inequality

‖u‖2
L2? (∂B1) ≤ C

(
‖∇u‖2

L2(B1) + ‖u‖2
L2(∂B1)

)
(1.6.3)
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for u ∈ W 1,2(B1), where C depends only on n and

2? :=
n− 1

n− 2
2 (1.6.4)

is the Sobolev trace exponent. We give a short proof of this inequality in Appendix B.
Our proof by Moser iteration is inspired by the one of Winkert in [96], where he obtains

L∞ estimates for general quasilinear Neumann problems. While the author employs certain
technical interpolation and trace inequalities from the theory of Besov and Lizorkin-Triebel
spaces, we only need the basic trace inequality (1.6.3), for which we give an elementary
proof.

Lemma 1.6.1. Let ϕ be the unique solution of (1.6.1) with
∫
B1
ϕ dx = 0. Then

‖ϕ‖L∞(B1) ≤ C‖g‖L∞(∂B1),

where C depends only on n and c0.

Proof. Dividing ϕ by the norm ‖g‖L∞(∂B1), we may assume ‖g‖L∞(∂B1) = 1. By the maxi-
mum principle, it suffices to bound the L∞ norm of ϕ on the sphere ∂B1. In this proof, C
always denotes a generic constant depending only on n and c0.

First, we obtain a basic energy estimate. Multiplying the equation (1.6.1) by ϕ and
integrating by parts, we have∫

B1

|∇ϕ|2A(x) dx =

∫
∂B1

gϕ dHn−1. (1.6.5)

Combining the standard trace inequality ‖u‖2
L2(∂B1) ≤ C

(
‖∇u‖2

L2(B1) + ‖u‖2
L2(B2)

)
with the

Poincaré inequality in the ball (recall that
∫
B1
ϕ = 0), we also have

‖ϕ‖L2(∂B1) ≤ C‖∇ϕ‖L2(B1). (1.6.6)

Hence, applying Cauchy-Schwarz in (1.6.5), by (1.6.6) we obtain∫
B1

|∇ϕ|2A(x) dx ≤ ‖g‖L2(∂B1)‖ϕ‖L2(∂B1) ≤ C‖g‖L2(∂B1)‖∇ϕ‖L2(B1). (1.6.7)

By uniform ellipticity and the bound ‖g‖L∞(B1) = 1, from (1.6.7) it follows that

‖∇ϕ‖L2(B1) ≤ C. (1.6.8)

Therefore, by (1.6.3), (1.6.6), and (1.6.8) we deduce the a priori estimate

‖ϕ‖L2? (∂B1) ≤ C. (1.6.9)

Next, we derive an L∞ bound for the positive part of the solution by Moser iteration.
Let m ≥ 2. Multiplying the equation by the power (ϕ+)m−1 and integrating by parts

(m− 1)

∫
B1

(ϕ+)m−2|∇ϕ+|2A(x) dx =

∫
∂B1

(ϕ+)m−1g dHn−1. (1.6.10)

Since

|∇(ϕ+)
m
2 |2A(x) =

m2

4
(ϕ+)m−2|∇(ϕ+)|2A(x),
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by (1.6.10) and the uniform ellipticity, using that m
m−1
≤ 2 for m ≥ 2, we have∫

B1

|∇(ϕ+)
m
2 |2 dx ≤ Cm

∫
∂B1

(ϕ+)m−1 dHn−1. (1.6.11)

Adding the integral
∫
∂B1

(ϕ+)m dHn−1 to both sides of (1.6.11), we have

‖∇(ϕ+)
m
2 ‖2

L2(B1) + ‖(ϕ+)
m
2 ‖2

L2(∂B1) ≤ Cm‖(ϕ+)m−1‖L1(∂B1) + ‖(ϕ+)
m
2 ‖2

L2(∂B1)

and applying the Sobolev trace inequality (1.6.3) on the left-hand side yields

‖ϕ+‖m
L

2?
2 m(∂B1)

≤ Cm‖(ϕ+)m−1‖L1(∂B1) + C‖ϕ+‖mLm(∂B1). (1.6.12)

By Hölder and since m ≥ 2, the Lm−1 norm in (1.6.12) can be bounded by

‖(ϕ+)m−1‖L1(∂B1) ≤ |∂B1|
1
m‖ϕ+‖m−1

Lm(∂B1) ≤ C‖ϕ+‖m−1
Lm(∂B1),

and hence

‖ϕ+‖m
L

2?
2 m(∂B1)

≤ Cm‖ϕ+‖m−1
Lm(∂B1) + C‖ϕ+‖mLm(∂B1). (1.6.13)

Since ‖ϕ+‖m−1
Lm(∂B1) ≤ max{1, ‖ϕ+‖Lm(∂B1)}m, from (1.6.13) it follows that

‖ϕ+‖
L

2?
2 m(∂B1)

≤ C
1
mm

1
m max{1, ‖ϕ+‖Lm(∂B1)}. (1.6.14)

We wish to iterate (1.6.14). Let m0 := 2? and, for k ∈ N, let

mk :=

(
2?

2

)k
m0.

By (1.6.14) and the definition of mk, we have

‖ϕ+‖Lmk (∂B1) ≤ C
1

mk−1m
1

mk−1

k−1 max{1, ‖ϕ+‖Lmk−1 (∂B1)}

= (Cm0)
1
m0

( 2
2? )

k−1
(

2?

2

) k−1
m0

( 2
2? )

k−1

max{1, ‖ϕ+‖Lmk−1 (∂B1)}.
(1.6.15)

We have exactly one of the following three cases:

• Case 1:

‖ϕ+‖Lmk (∂B1) ≤ 1 (1.6.16)

• Case 2: there is an l ∈ {1, 2, . . . , k − 1} such that

‖ϕ+‖Lmk+1−i (∂B1) > 1 for 1 ≤ i ≤ l, and ‖ϕ+‖Lmk−l (∂B1) ≤ 1. (1.6.17)

• Case 3:

‖ϕ+‖Lmk+1−i (∂B1) > 1 for 1 ≤ i ≤ k. (1.6.18)
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Case 1 already yields a uniform bound for ‖ϕ+‖Lmk (B1). If Case 2 holds then, iterating
(1.6.15) l − 1 times, we arrive at

‖ϕ+‖Lmk (∂B1) ≤ (Cm0)
1
m0

∑k−1
j=k−l(

2
2? )

j
(

2?

2

) 1
m0

∑k−1
j=k−l j(

2
2? )

j

. (1.6.19)

The right-hand side of (1.6.19) is nondecreasing in l for (say) C ≥ 1, which we can always
assume. Finally, if Case 3 holds then, iterating (1.6.15), we obtain

‖ϕ+‖Lmk (∂B1) ≤ (Cm0)
1
m0

∑k−1
j=0( 2

2? )
j
(

2?

2

) 1
m0

∑k−1
j=0 j( 2

2? )
j

‖ϕ+‖Lm0 (∂B1). (1.6.20)

By the monotonicity of (1.6.19) in l and using the a priori estimate (1.6.9) for ‖ϕ‖Lm0 (∂B1)

in (1.6.20), we see that in all three cases above we have

‖ϕ+‖Lmk (∂B1) ≤ C(Cm0)
1
m0

∑k−1
j=0( 2

2? )
j
(

2?

2

) 1
m0

∑k−1
j=0 j( 2

2? )
j

,

and since the exponent on the right-hand side is uniformly bounded, we deduce

‖ϕ+‖Lmk (∂B1) ≤ C. (1.6.21)

Taking the limit as k →∞ in (1.6.21) now yields

‖ϕ+‖L∞(∂B1) ≤ C,

which is the desired L∞ estimate for the positive part of the solutions. The same argument
gives an a priori estimate for the negative part ϕ− and yields the claim.

By duality, from the L∞ estimate in Lemma 1.6.1 we deduce an L1 bound for the elliptic
problem with a source:

Lemma 1.6.2. Given h ∈ C∞(B1), let v ∈ C∞(B1) satisfy

div(A(x)∇v) + h(x) = 0 in B1.

Then
‖v − t‖L1(∂B1) ≤ C‖Nv‖L1(∂B1) + C‖h‖L1(B1),

where t := inf{t : |{v > t} ∩ ∂B1| ≤ |∂B1|/2} and C depends only on n and c0.

Proof. Replacing v by v− t we may assume that t = 0, therefore |{v > 0}∩∂B1| ≤ |∂B1|/2
and |{v < 0}∩∂B1| ≤ |∂B1|/2. The function sgn(v) = v/|v| in v 6= 0 can then be extended
to {v = 0} ∩ ∂B1, taking values ±1 and in such a way that

∫
∂B1

sgn(v) dHn−1 = 0. In
particular, |v| = v sgn(v) on ∂B1.

We define the convolutions on ∂B1

gk := sgn(v) ? ηk,

where {ηk} is a sequence of smooth mollifiers on ∂B1. We have g ∈ C∞(∂B1), |gk| ≤ 1,
and

∫
∂B1

gk dHn−1 = 0 since sgn(v) has zero average on ∂B1. Moreover, it holds that∫
∂B1

|v| dHn−1 = lim
k

∫
∂B1

vgk dHn−1. (1.6.22)
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Since gk has zero average on ∂B1, we can uniquely solve the Neumann problem{
div(A(x)∇ϕk) = 0 in B1

Nϕk = gk on ∂B1

imposing additionally that
∫
B1
ϕk dx = 0. By Lemma 1.6.1, we deduce

‖ϕk‖L∞(∂B1) ≤ C, (1.6.23)

where C depends only on n and c0. Notice that, integrating by parts, we have∫
∂B1

vgk dHn−1 =

∫
∂B1

vNϕk dHn−1

=

∫
∂B1

(Nv)ϕk dHn−1 −
∫
B1

div(A(x)∇v)ϕk dx

=

∫
∂B1

(Nv)ϕk dHn−1 +

∫
B1

hϕk dx,

where in the last equality we have used the equation satisfied by v. Hence, by (1.6.23)∣∣∣∣∫
∂B1

vgk dHn−1

∣∣∣∣ ≤ C

∫
∂B1

|Nv| dHn−1 + C

∫
B1

|h| dx,

and the claim follows by (1.6.22).

We now use the previous estimates on spheres to obtain L1 bounds on annuli for a
divergence-form operator with drift. The drift term will be treated as a source, which will
appear as an error in the right-hand side of the estimate. If the coefficient matrix A(x) is
close to the identity, then the conormal derivative Nu is close to the radial derivative ur.
Hence, we will obtain Proposition 1.1.5 as a corollary of the following:

Proposition 1.6.3. Let u ∈ C∞(B1) be a supersolution Lu ≤ 0 in B1, where L is the
operator Lu = div(A(x)∇u) + d(x) · ∇u. Assume that

‖d‖C0(B1) ≤ ε

for some ε > 0.
Then there exists a constant t, which depends on u, such that

‖u− t‖L1(B1\B1/8) ≤ C‖ur‖L1(B1\B1/8) + C‖Nu‖L1(B1\B1/8) + Cε‖∇u‖L1(B1),

where C is a constant depending only on n and c0.

Proof. Since ‖Nu‖L1(B1\B1/8) =
∫ 1

1/8
dr
∫
∂Br
|Nu| dHn−1, by the mean value theorem

‖Nu‖L1(B1\B1/8) =
7

8

∫
∂Bρ

|Nu| dHn−1 (1.6.24)

for some ρ ∈ [1/8, 1]. Let v be the unique solution of the boundary value problem{
div(A(x)∇v) + d(x) · ∇u = 0 in Bρ

v = u on ∂Bρ.
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Since div(A(x)∇(u − v)) ≤ 0 in Bρ, by the comparison principle u ≥ v in Bρ. Moreover,
using that u = v on ∂Bρ, we deduce that Nu ≤ Nv on ∂Bρ. In particular, this gives

(Nv)− ≤ (Nu)− on ∂Bρ. (1.6.25)

Notice also that, integrating the equation div(A(x)∇v) = −d(x) · ∇u in Bρ, by the diver-
gence theorem we have∣∣∣∣∣

∫
∂Bρ

Nv dHn−1

∣∣∣∣∣ =

∣∣∣∣∣
∫
Bρ

div (A(x)∇v) dx

∣∣∣∣∣ =

∣∣∣∣∣−
∫
Bρ

d(x) · ∇u dx

∣∣∣∣∣ ≤ ε‖∇u‖L1(Bρ)

and since
∫
∂Bρ

Nv dHn−1 = ‖(Nv)+‖L1(Bρ) − ‖(Nv)−‖L1(Bρ), we deduce

‖(Nv)+‖L1(Bρ) ≤ ‖(Nv)−‖L1(Bρ) + ε‖∇u‖L1(Bρ). (1.6.26)

Using (1.6.26) and (1.6.25) we obtain

‖Nv‖L1(∂Bρ) = ‖(Nv)−‖L1(∂Bρ) + ‖(Nv)+‖L1(∂Bρ)

≤ 2‖(Nv)−‖L1(∂Bρ) + ε‖∇u‖L1(Bρ)

≤ 2‖Nu‖L1(∂Bρ) + ε‖∇u‖L1(Bρ).

(1.6.27)

Applying Lemma 1.6.2 with coefficients A(ρ ·) and source h(x) = ρ2d(ρx) · ∇u(ρx) to
the function v(ρ ·) yields the estimate

‖v − t‖L1(∂Bρ) ≤ Cρ‖Nv‖L1(∂Bρ) + Cρε‖∇u‖L1(Bρ). (1.6.28)

Since u− t = v − t on ∂Bρ, combining (1.6.28) and (1.6.27), we obtain

‖u− t‖L1(∂Bρ) ≤ Cρ‖Nu‖L1(∂Bρ) + Cρε‖∇u‖L1(Bρ),

and since ρ ∈ [1/8, 1], by (1.6.24), we deduce that

‖u− t‖L1(∂Bρ) ≤ C‖Nu‖L1(B1\B1/8) + Cε‖∇u‖L1(B1). (1.6.29)

To conclude the proof, it suffices to show that

‖u− t‖L1(B1\B1/8) ≤ C‖u− t‖L1(∂Bρ) + C‖ur‖L1(B1\B1/8). (1.6.30)

Since (u− t)(sσ) = (u− t)(ρσ)−
∫ ρ
s
ur(rσ) dr for every s ∈ (1/8, 1) and σ ∈ ∂B1, we have

sn−1|(u− t)(sσ)| ≤ 8n−1ρn−1|(u− t)(ρσ)|+ 8n−1

∫ 1

1/8

rn−1|ur(rσ)| dr.

Integrating in σ ∈ ∂B1, and then in s ∈ (1/8, 1), we deduce (1.6.30). Combining (1.6.29)
and (1.6.30) yields the claim.

Proof of Proposition 1.1.5. We consider the operator L with d(x) = b̂(x) given by (1.1.7),

so that Lu = Lu = div(A(x)∇u) + b̂(x) · ∇u. Since A(0) = I, writing the conormal
derivative (1.6.2) as Nu = ur + (A(x)− I)∇u · x|x| and by the mean value theorem, we have

|Nu| ≤ |ur| + Cε|∇u| in B1. Applying Proposition 1.6.3 now, the conormal term on the
right-hand side of the estimate can be bounded by C‖ur‖L1(B1\B1/8) +Cε‖∇u‖L1(B1), hence
the claim.

58



1.7 Proof of the Cα estimate

This section is devoted to proving the Hölder regularity estimate (1.1.10) in Theorem 1.1.1.
The main goal will be to show that the scale-invariant weighted integral

∫
Bρ
r2−n|∇u|2

decays like a power ρ2α, since this implies a Cα bound of the original function. We will
show this property under the additional assumption that the operator L is close to the
Laplacian, i.e., assuming A(0) = I and ‖DA‖L∞(B1) + ‖b‖L∞(B1) ≤ ε with ε sufficiently
small. An affine transformation will then lead to an estimate that is valid for all operators,
with bounds depending on the norms of the coefficients.

The key idea is to write the weighted integral of the gradient as an infinite sum on
dyadic annuli, pulling out the weights, and applying Propositions 1.1.3 and 1.1.5 in each
annulus. This allows to control the weighted L2 norm of the gradient by a weighted L2

norm of the radial derivative. Once we have this bound, Proposition 1.1.4 will lead directly
to the decay by a standard iteration argument. This will yield a bound of the Cα norm
in terms of the L2 norm of the gradient, which can be controlled by the L1 norm of the
solutions thanks to Proposition 1.1.3.

Proof of the Hölder estimate (1.1.10) in Theorem 1.1.1. We may assume that 3 ≤ n ≤ 9.
Indeed, when n = 2, we recover the estimate by applying Theorem 1.1.1 to the function
ũ(x1, x2, x3) := u(x1, x2), which is a stable solution to the elliptic equation Lũ+ c0ũx3x3 =
f(ũ) in B1 ⊂ R3. Similarly, when n = 1, one considers the function ũ(x1, x2, x3) := u(x1).

Throughout the proof, C denotes a generic universal constant unless stated otherwise.
The proof is divided in three steps.

Step 1: Under the assumption that

A(0) = I and ‖DA‖L∞(B1) + ‖b‖L∞(B1) ≤ ε,

we prove that it ε ≤ ε0, then∫
Bρ

r2−n|∇u|2 dx ≤ C‖∇u‖2
L2(B1)ρ

2α for all ρ ≤ 1/8, (1.7.1)

where α > 0, ε0 > 0, and C are universal constants.
As explained before, we will write the weighted Dirichlet integral as an infinite sum on

dyadic annuli, similarly to what we did for the weighted Hessian estimates in the proof
of Proposition 1.1.4. We treat the case ρ = 1/2 first, and then apply the scaling of the
problem.

Let rj := 2−j with j ≥ 0. We have∫
B1/2

r2−n|∇u|2 dx =
∞∑
j=0

∫
Brj+1\Brj+2

r2−n|∇u|2 dx

≤ C

∞∑
j=0

r2−n
j

∫
Brj+1\Brj+2

|∇u|2 dx.

(1.7.2)

We want to apply Proposition 1.1.3 on annuli to control the Dirichlet integrals in (1.7.2)
by the L1 norm of the solution, and then Proposition 1.1.5 to obtain bounds in terms of
the radial derivative.

We cover the annulus B1/2 \ B1/4 by a finite number of balls Bd/2(yj), where d = d(n)
is small enough so that Bd(yj) ⊂ B1 \ B1/8. The number of balls depends only on n.
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As explained in Section 1.2, the functions u(yj + d·) are stable solutions to a semilinear
equation with coefficients A(yj + d·) and d b(yj.+ d·). Applying Proposition 1.1.3 to each
u(yj + d·), there is a universal ε0 > 0 such that, for ε ≤ ε0, we have

‖∇u‖2
L2(B1/2\B1/4) ≤

∑
j

‖∇u‖2
L2(Bd/2(yj))

≤ C
∑
j

‖u‖2
L1(B2d(yj))

≤ C‖u‖2
L1(B1\B1/8).

(1.7.3)

For each t ∈ R, the function u− t is a stable solution to −Lũ = f(ũ+ t) in B1. Hence, by
(1.7.3), it follows that

‖∇u‖L2(B1/2\B1/4) ≤ C‖u− t‖L1(B1\B1/8) for all t ∈ R and ε ≤ ε0. (1.7.4)

Since A(0) = I, we can choose t in (1.7.4) to be the constant in the conclusion of Proposi-
tion 1.1.5, and by this result we deduce

‖∇u‖L2(B1/2\B1/4) ≤ C‖ur‖L1(B1\B1/8) + Cε‖∇u‖L1(B1) for all ε ≤ ε0. (1.7.5)

Squaring (1.7.5) and by Cauchy-Schwarz, we also have the weaker

‖∇u‖2
L2(B1/2\B1/4) ≤ C‖ur‖2

L2(B1\B1/8) + Cε2‖∇u‖2
L2(B1) for all ε ≤ ε0. (1.7.6)

Now we apply (1.7.6) to the rescaled functions u(rj·), which gives (see the comments
in (i) in Section 1.2)∫

Brj+1\Brj+2

|∇u|2 dx ≤ C

∫
Brj \Brj+3

u2
r dx+ Cε2r2

j

∫
Brj

|∇u|2 dx for all ε ≤ ε0. (1.7.7)

Hence, multiplying (1.7.7) by r2−n
j and summing in j

∞∑
j=0

r2−n
j

∫
Brj+1\Brj+2

|∇u|2 dx

≤ C
∞∑
j=0

r2−n
j

∫
Brj \Brj+3

u2
r dx+ Cε2

∞∑
j=0

r4−n
j

∫
Brj

|∇u|2 dx

≤ C

∞∑
j=0

∫
Brj \Brj+3

r2−nu2
r dx+ Cε2

∞∑
j=0

rj

∫
Brj

r3−n|∇u|2 dx for all ε ≤ ε0,

(1.7.8)

where in the last line we have used that r3−n
j ≤ r3−n in Brj for n ≥ 3. Since rj = 2−j,

splitting the annuli into Brj \ Brj+3
= (Brj \ Brj+1

) ∪ (Brj+1
\ Brj+2

) ∪ (Brj+2
\ Brj+3

), we
see that the first integral in the right-hand side of (1.7.8) is bounded by

∞∑
j=0

∫
Brj \Brj+3

r2−nu2
r ≤ 3

∫
B1

r2−nu2
r,

while the second can be bounded by

∞∑
j=0

rj

∫
Brj

r3−n|∇u|2 ≤
( ∞∑

j=0

rj

)∫
B1

r3−n|∇u|2 = 2

∫
B1

r3−n|∇u|2.
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From this, it follows that

∞∑
j=0

r2−n
j

∫
Brj+1\Brj+2

|∇u|2 dx

≤ C

∫
B1

r2−nu2
r dx+ Cε2

∫
B1

r3−n|∇u|2 dx for all ε ≤ ε0.

(1.7.9)

Combining (1.7.2) and (1.7.9) now yields∫
B1/2

r2−n|∇u|2 dx ≤ C

∫
B1

r2−nu2
r dx+ Cε2

∫
B1

r3−n|∇u|2 dx for all ε ≤ ε0, (1.7.10)

and applying (1.7.10) to rescaled functions u(2ρ·), we deduce∫
Bρ

r2−n|∇u|2 dx ≤ C

∫
B2ρ

r2−nu2
r dx+ Cε2ρ

∫
B2ρ

r3−n|∇u|2 dx

for all ρ ≤ 1/2 and ε ≤ ε0.

(1.7.11)

Next, we apply the radial estimate (1.1.16) from Proposition 1.1.4 (with 2ρ) to bound
the right-hand side of (1.7.11), which gives∫

Bρ

r2−n|∇u|2 dx ≤ C

∫
B4ρ\B2ρ

r2−n|∇u|2 dx+ Cε(1 + ερ)

∫
B8ρ

r3−n|∇u|2 dx

for all ρ ≤ 1/8 and ε ≤ ε0.

(1.7.12)

Hence, using that the bounds ρ ≤ 1/8 and ε ≤ ε0 are universal, splitting the last integral
into B8ρ = (B8ρ \Bρ) ∪Bρ, and by r3−n ≤ r2−n, from (1.7.12) we deduce∫

Bρ

r2−n|∇u|2 dx ≤ C

∫
B8ρ\Bρ

r2−n|∇u|2 dx+ Cε

∫
Bρ

r2−n|∇u|2 dx

for all ρ ≤ 1/8 and ε ≤ ε0.

(1.7.13)

Taking ε0 > 0 universal smaller if necessary, we can absorb the last integral into the
left-hand side and obtain∫

Bρ

r2−n|∇u|2 dx ≤ C

∫
B8ρ\Bρ

r2−n|∇u|2 dx for all ρ ≤ 1/8 and ε ≤ ε0. (1.7.14)

Hole-filling (1.7.14), we also have∫
Bρ

r2−n|∇u|2 dx ≤ θ

∫
B8ρ

r2−n|∇u|2 dx for all ρ ≤ 1/8 and ε ≤ ε0, (1.7.15)

where θ = C
1+C
∈ (0, 1) is universal. Iterating (1.7.15), for 8−(k+1) < ρ ≤ 8−k we deduce∫

Bρ

r2−n|∇u|2 dx ≤ θk
∫
B

8kρ

r2−n|∇u|2 dx ≤ 1

θ
ρ2α

∫
B1

r2−n|∇u|2 dx,

where α = −1
2

log8 θ > 0, and hence∫
Bρ

r2−n|∇u|2 dx ≤ Cρ2α

∫
B1

r2−n|∇u|2 dx for all ρ ≤ 1/8 and ε ≤ ε0. (1.7.16)
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Finally, we can estimate the integral in the right-hand side of (1.7.16) by splitting B1 =
(B1 \ B1/8) ∪ B1/8 and applying (1.7.14) with ρ = 1/8 to bound the term in the annulus.
This yields the claim.

Step 2: Assuming
‖DA‖L∞(B1) + ‖b‖L∞(B1) ≤ ε,

we prove that if ε ≤ ε0, then

‖u‖Cα(Bθ) ≤ C‖u‖L1(B1), (1.7.17)

where α > 0, θ > 0, ε0 > 0, and C are universal.
As explained in Section 1.2, for each ball Bd(y) ⊂ B1, by uniform ellipticity, the function

uy,d(x) := u(y + d√
C0
A1/2(y)x) is a stable solution of an equation in B1 with coefficients

Ay,d(x) := A−1/2(y)A
(
y + d√

C0
A1/2(y)x

)
A−1/2(y)

and
by,d(x) := d√

C0
A−1/2(y)b

(
y + d√

C0
A1/2(y)x

)
.

Notice that the matrix Ay,d satisfies Ay,d(0) = I and the coefficients can be bounded
by ‖DAy,d‖L∞(B1) + ‖by,d‖L∞(B1) ≤ Cd

(
‖DA‖L∞(B1) + ‖b‖L∞(B1)

)
≤ ε. Choosing d > 0

universal sufficiently small so that Cd ≤ 1, we have

‖DAy,d‖L∞(B1) + ‖by,d‖L∞(B1) ≤ ε for all y ∈ B1−d.

Hence, for ε ≤ ε0 with the ε0 > 0 from Step 1, by (1.7.1) we deduce∫
Bρ

r2−n|∇uy,d|2 dx ≤ C‖∇uy,d‖2
L2(B1)ρ

2α for y ∈ B1−d and ρ ≤ 1/8,

and since
∫
Bρ
r2−n|∇uy,d|2 dx ≥ ρ2−n ∫

Bρ
|∇uy,d|2 dx, we also have∫

Bρ

|∇uy,d|2 dx ≤ C‖∇uy,d‖2
L2(B1)ρ

2α+n−2 for y ∈ B1−d and ρ ≤ 1/8. (1.7.18)

For the remaining part of the proof of Step 2, we assume that ε ≤ ε0.
Now we express (1.7.18) in terms of the original function u. By the change of variables

z = y + d√
C0
A1/2(y)x and by uniform ellipticity, using that B√c0ρ ⊂ A1/2(y)(Bρ), we have∫
Bρ

|∇uy,d|2 dx =
d2−n

C
1−n/2
0

det(A(y))−1/2

∫
y+ d√

C0
A1/2(y)(Bρ)

|∇u|2A(y) dz

≥ c d2−n
∫
B
d
√ c0

C0
ρ
(y)

|∇u|2 dz

for some universal c > 0. Similarly, we also have ‖∇uy,d‖ ≤ Cd2−n‖∇u‖L2(B1) and, there-
fore, from (1.7.18) we deduce∫

B
d
√ c0

C0
ρ
(y)

|∇u|2 dz ≤ C‖∇u‖2
L2(B1)ρ

n−2+2α for y ∈ B1−d and ρ ≤ 1/8. (1.7.19)
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Dividing ρ by d
√

c0
C0

in (1.7.19) and letting θ := d
16

√
c0
C0

, since d is universal, we obtain∫
Bρ(y)

|∇u|2 dz ≤ C‖∇u‖2
L2(B1)ρ

n−2+2α for y ∈ B1−d and ρ ≤ 2θ,

and by Cauchy-Schwarz we also have the weaker∫
Bρ(y)

|∇u| dz ≤ C‖∇u‖L2(B1)ρ
n−1+α for y ∈ B1−d and ρ ≤ 2θ. (1.7.20)

Taking d smaller if necessary, we may assume that B2θ ⊂ B1−d. Hence, from (1.7.20)
it follows that∫

Bρ(y)

|∇u| dz ≤ C‖∇u‖L2(B1)ρ
n−1+α for all balls Bρ(y) ⊂ B2θ. (1.7.21)

Applying [63, Theorem 7.19] with Ω = B2θ, we deduce the Hölder estimate

‖u‖Cα(B2θ) ≤ C‖∇u‖L2(B1). (1.7.22)

To obtain the final bound (1.7.17) in terms of the L1 norm, apply (1.7.22) to the rescaled
function u(·/2) first, and then Proposition 1.1.3 (taking ε0 smaller if necessary).

Step 3: Conclusion. Scaling and covering argument.
We cover B1/2 by balls Bθρ(yj), where θ is the universal constant in Step 2 above and ρ is

small so that Bρ(yj) ⊂ B1. The number of balls depends only on n, ρ, and θ = θ(n, c0, C0).
We choose ρ smaller still so that(

‖DA‖L∞(B1) + ‖b‖L∞(B1)

)
ρ ≤ ε0, (1.7.23)

with ε0 > 0 the universal constant in Step 2. Thus ρ = ρ(n, c0, C0, ‖DA‖L∞(B1), ‖b‖L∞(B1)).
The functions u(yj +ρ·) are stable solutions of an elliptic equation with coefficients Ayj ,ρ =
A(yj +ρ·) and byj ,ρ = ρb(yj +ρ·). Since Bρ(yj) ⊂ B1 and by (1.7.23), the coefficients satisfy
the bounds

‖DAyj ,ρ‖L∞(B1) + ‖byj ,ρ‖L∞(B1) ≤
(
‖DA‖L∞(Bρ(yj)) + ‖b‖L∞(Bρ(yj))

)
ρ ≤ ε0,

therefore, we can apply Step 2 to deduce

‖u‖Cα(B1/2) ≤
∑
j

‖u‖Cα(Bθρ(yj))
≤ C

∑
j

‖u‖L1(Bρ(yj)) ≤ C‖u‖L1(B1),

where C = C(n, c0, C0, ‖DA‖L∞(B1), ‖b‖L∞(B1)). This concludes the proof of the theorem.
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Chapter 2

Energy estimate up to the boundary

In this chapter, we obtain a universal energy estimate up to the boundary for stable
solutions of semilinear equations with variable coefficients. Namely, we consider solutions
to −Lu = f(u), where L is a linear uniformly elliptic operator and f is C1, such that the
linearized equation −L−f ′(u) has nonnegative principal eigenvalue. Our main result is an
estimate for the L2+γ norm of the gradient of stable solutions vanishing on the flat part of
a half-ball, for any nonnegative and nondecreasing f . This bound only requires the elliptic
coefficients to be Lipschitz. As a consequence, our estimate continues to hold in general
C1,1 domains if we further assume the nonlinearity f to be convex. This result is new even
for the Laplacian, for which a C3 regularity assumption on the domain was needed.

2.1 Introduction

Given a bounded domain Ω ⊂ Rn and a function f ∈ C1(R), we consider stable solutions
u : Ω→ R to the semilinear boundary value problem{

−Lu = f(u) in Ω
u = 0 on ∂Ω.

(2.1.1)

Throughout the text, L denotes a uniformly elliptic operator of the form

L = aij(x)∂ij + bi(x)∂i, aij(x) = aji(x). (2.1.2)

A solution u of (2.1.1) is called stable if the principal eigenvalue (with respect to Dirichlet
conditions) of the linearized equation Ju := L+f ′(u) is nonnegative.1 When the problem is
variational, this amounts to the nonnegativity of the second variation, a necessary condition
for the minimality of u.

The goal of the present article is to obtain a universal energy estimate for stable so-
lutions to (2.1.1) in the spirit of the pioneering work of Cabré, Figalli, Ros-Oton, and
Serra [24] for the Laplacian. In [24], the authors proved two types of a priori bounds for
classical stable solutions when L = ∆. Namely, a control of the L2+γ norm of the gra-
dient (for some γ > 0) by the L1 norm of the function, valid in all dimensions, and an
estimate of the Hölder norm of the solution when n ≤ 9. The latter result is optimal,
since there are examples of singular (unbounded) stable solutions in dimensions n ≥ 10.
A notable feature of these estimates is that they do not depend on the nonlinearity, which
is assumed to be nonnegative, nondecreasing, and convex. Thanks to this, the paper [24]

1Here we adopt the sign convention Juϕ = −µϕ for the eigenvalues µ of Ju.
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answered positively two long-standing open questions of Brezis and Vázquez [14] and of
Brezis [11] concerning the regularity of extremal solutions (which are L1 limits of classical
stable solutions), recalled briefly below.

Here we will be interested in extending the L2+γ energy estimate to operators with
variable coefficients as in (2.1.2). Our main achievement is to make the constants in our
bounds depend on the C0,1 norm of aij and the L∞ norm of bi, this being the major difficulty
in our proofs. As a consequence, we will obtain a global estimate in C1,1 domains. This
result is new even when L is the Laplacian, as [24] required a C3 regularity assumption
on the domain. For this, starting from a curved boundary, we flatten it out locally by a
change of variables. In the new coordinates, our solution is still a stable solution to an
equation of the form (2.1.1), where the new operator L now involves the derivatives of
the flattening map. More precisely, the new coefficients aij depend on the differential of
this map, while bi additionally depend on its Hessian. It follows that the C0,1 and L∞

regularity of the coefficients corresponds to a C1,1 domain. In particular, it will suffice to
prove a priori estimates in half-balls with the stated dependence on the coefficients.

Furthermore, when n ≤ 9, our energy bound (as well as the auxiliary Hessian estimates
in Theorem 2.1.4 below) will be crucial to establish Hölder estimates up to the boundary
in C1,1 domains. We tackle this issue in the next chapter, where we extend the optimal
Cα bounds of [24] to equations with coefficients. The previous work [24] relied on delicate
contradiction-compactness arguments which do not allow to quantify the constants in the
estimates. Here, thanks to a new device of Cabré [19] for the Laplacian in flat domains we
will be able to give a direct, quantitative proof of all our estimates in [50].

The study of the regularity of stable solutions to (2.1.1) was originally motivated by
problems in combustion theory. In that setting, the interest lies in positive, nondecreas-
ing, convex, and superlinear nonlinearities f accounting for the reaction of a combustible
mixture. It is also natural to consider a multiple λf of the nonlinearity, where λ > 0 is a
nondimensional parameter measuring the relative strength of the reaction with respect to
the processes modeled by L. Applying the implicit function theorem at λ = 0 and by the
properties of f , one obtains a branch of positive classical stable solutions {uλ}0<λ<λ? of
−Luλ = λf(uλ) in Ω, uλ = 0 on ∂Ω, where 0 < λ? < ∞ is the maximal threshold for the
existence of classical solutions to this problem. Moreover, by maximum principle, λ 7→ uλ
is increasing in (0, λ?) and converges in L1 to a weak (distributional) solution u?, the so
called extremal solution; see, for instance [11,44,48].

By construction, the extremal solution u? is a priori only in L1 and can be unbounded.
In [14], Brezis and Vázquez gave a characterization of singular (unbounded) extremal
solutions in the energy space W 1,2

0 (Ω) when L is the Laplacian. Their result led them to ask
whether extremal solutions are necessarily in this space; see [14, Problem 1]. This question
has been addressed in various works, always considering the model operator L = ∆. The
first result in this direction was obtained by Nedev [78], who showed the validity of the
claim for n ≤ 5. Later, assuming Ω to be convex (or, more generally, “bean shaped”), he
was able to extend this result to all dimensions in an unpublished preprint [79] (which is
recalled and proven again in [28]). Then, Cabré and Capella studied radial stable solutions
in Ω = B1, showing that u? ∈ W 3,2(B1) in this case. After that, Cabré and Ros-Oton [27]
proved the claim for n ≤ 6 in domains of double revolution, and Villegas [95] obtained the
same result in general smooth domains. Recently, Cabré, Figalli, Ros-Oton, and Serra [24]
settled the conjecture, showing that u? ∈ W 1,2+γ

0 (Ω) in all dimensions, where γ > 0 depends
only on n, and Ω is of C3 class. For this, as mentioned above, they proved a universal energy
estimate for smooth stable solutions. Then, they applied it to the functions {uλ}0<λ<λ?

66



and passed to the limit as λ→ λ?.
For further regularity properties of u?, the dimension of the space plays a critical role.

Notice that, by the linear theory, the smoothness of u? follows from its boundedness.
When n ≥ 10, explicit unbounded extremal solutions had been known for a long time,
while no such examples were found in lower dimensions. In [11, Open problem 1], Brezis
asked whether the extremal solution was always bounded in the latter case. His question
prompted a series of works trying to establish L∞ bounds for classical stable solutions in
the range n ≤ 9. Recently, in the breakthrough paper [24] mentioned above, the question
was answered positively for the Laplacian in C3 domains. For more information on that
problem, see the references in [24,50] or, for instance, in Chapters 1 and 3 of this thesis.

2.1.1 Main results

We assume that the coefficient matrix A(x) = (aij(x)) is uniformly elliptic in Ω, that is,
there are positive constants c0, C0 such that

c0|p|2 ≤ aij(x)pipj ≤ C0|p|2 for all p ∈ Rn. (2.1.3)

Our global theorem in C1,1 domains requires the assumption

aij ∈ C0,1(Ω), bi ∈ L∞(Ω) ∩ C0(Ω), (2.1.4)

For our local results in half-balls, we further need the auxiliary condition

bi ∈ C0(Ω). (2.1.5)

We will be able to remove (2.1.5) by an approximation argument, as explained in Re-
mark 2.1.6.

Since we always assume aij ∈ C0,1(Ω) = W 1,∞(Ω), we can write L in divergence form

Lu = div (A(x)∇u) + b̂(x) · ∇u, (2.1.6)

where b̂(x) = (̂bi(x)) is the vector field given by

b̂i(x) = bi(x)− ∂kaki(x). (2.1.7)

Notice that b̂i is in L∞(Ω) by assumption (2.1.4).
Having specified the regularity of the coefficients, we can give a more precise definition

of stable solution. Assuming (2.1.3) and (2.1.4), we consider the class of strong solutions
to (2.1.1), that is, functions u ∈ C0(Ω) ∩W 2,n

loc (Ω) such that −Lu = f(u) a.e. in Ω and
u = 0 on ∂Ω. As commented above, a strong solution u of (2.1.1) is stable if the principal
eigenvalue of the linearized equation at u is nonnegative. Equivalently (see [9]), the solution
u is stable if there exists a function ϕ ∈ W 2,n

loc (Ω) such that{
Juϕ ≤ 0 a.e. in Ω,
ϕ > 0 in Ω,

(2.1.8)

where, recall, Ju = L+f ′(u) denotes the Jacobi operator (the linearization) at u. We would
like to point out that the notion of stable solution refers only to the equation satisfied by
u and not to its boundary value.

67



Our energy estimate in C1,1 domains will apply to strong stable solutions as above.
In a sense, these functions are the natural replacement of the classical solutions for the
Laplacian in C3 domains considered in [24]. Notice that, since f(u) ∈ L∞(Ω), by Lp

estimates in C1,1 domains (see [63, Theorem 9.13]), strong solutions belong to W 2,p(Ω)
for all p < ∞. For further regularity properties, more assumptions on the coefficients
and the domain are needed. In fact, our a priori estimates in half-balls below require our
solutions to have third weak derivatives, but we will be able to remove this assumption by
an approximation argument; see Remark 2.1.6.

We now state the main result of this chapter, an energy estimate up to the boundary
in flat domains. For ρ > 0, we denote the half-ball of radius ρ centered at 0 by

B+
ρ := {xn > 0} ∩Bρ,

where Bρ = {|x| < ρ} ⊂ Rn is the full-ball. We also write

∂0B+
ρ = {xn = 0} ∩ ∂B+

ρ .

for the lower boundary of B+
ρ . In the results below, C = C(. . .) denotes a constant C

depending only on the quantities appearing inside the parentheses. We have the following:

Theorem 2.1.1. Let L satisfy conditions (2.1.3), (2.1.4), and (2.1.5) in Ω = B+
1 ⊂ Rn.

Assume that f ∈ C1(R) is nonnegative and nondecreasing.
Let u ∈ W 3,p(B+

1 ), for some p > n, be a nonnegative stable solution to −Lu = f(u) in
B+

1 , with u = 0 on ∂0B+
1 .

Then
‖∇u‖L2+γ(B+

1/2
) ≤ C‖u‖L1(B+

1 ),

where γ = γ(n) > 0 and C = C(n, c0, C0, ‖∇aij‖L∞(B+
1 ), ‖bi‖L∞(B+

1 )).

Remark 2.1.2. Note that we are further assuming u ∈ W 3,p(B+
1 ) with p > n. In par-

ticular, by Sobolev embedding, u is in C2(B+
1 ) and the solution is classical.2 We need

third weak derivatives in order to have a cancellation which removes the nonlinearity in
the stability condition. This step is crucial for our bounds to be independent of f .

Remark 2.1.3. The continuity bi ∈ C0(B+
1 ) up to the boundary (assumption (2.1.5)

above) will allow us to control these coefficients on certain surface integrals over ∂0B+
1

arising in the proof. Assuming only bi ∈ L∞(B+
1 ) does not suffice for such estimates on

surfaces.

To prove Theorem 2.1.1, the stability condition (2.1.8) will come into play through
a useful integral inequality that has already appeared in the previous chapter and was
introduced in our work [52]. Recall that since the coefficient matrix A(x) = (aij(x)) is
positive definite, it gives rise to a norm

|p|A(x) := (aij(x)pipj)
1/2 for p ∈ Rn.

2For the embedding in half-balls, just apply the usual Sobolev embedding in the full ball to a third
order reflection of u, for instance, letting

u(x′, xn) = −10u(x′,−xn) + 160u(x′,−xn2 )− 405u(x′,−xn3 ) + 256u(x′,−xn4 )

for xn < 0 and x′ ∈ Rn−1, which is in W 3,p(B1) ⊂ C2(B1).
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In [52], we showed that if u is stable, then∫
Ω

f ′(u)ξ2 dx ≤
∫

Ω

∣∣∣∇ξ − 1
2
ξA−1(x)̂b(x)

∣∣∣2
A(x)

dx for all ξ ∈ C∞c (Ω), (2.1.9)

where b̂(x) is the vector field introduced in (2.1.7) above. As shown in Chapter 1 above,
(2.1.9) follows from the pointwise inequality in (2.1.8) multiplying by ξ2/ϕ, integrating by
parts, and completing squares. We often refer to (2.1.9) as the “integral stability inequality”
to distinguish it from the pointwise condition (2.1.8) above. Moreover, we would like to
point out that the inequality (2.1.9) is not equivalent to our stability condition (2.1.8) in
general; see [52] or Chapter 1 above.

A fundamental ingredient in the proof of Theorem 2.1.1 will be to control the Hessian of
a stable solution in half-balls. The following boundary Hessian estimates can be interpreted
as a generalization of a geometric stability condition due to Sternberg and Zumbrun [91].
As above, throughout this chapter, a constant depending only on n, c0, and C0 will be
called universal.

Theorem 2.1.4. Let u ∈ W 3,p(B+
1 ), for some p > n, be a nonnegative stable solution of

−Lu = f(u) in B+
1 , with u = 0 on ∂0B+

1 . Assume that f ∈ C1(R) is nonnegative. Assume
that L satisfies conditions (2.1.3), (2.1.4), and (2.1.5) in Ω = B+

1 , and that

‖DA‖L∞(B+
1 ) + ‖b‖L∞(B+

1 ) ≤ ε

for some ε > 0.
Then∫

B+
1

A2η2 dx ≤ C

∫
B+

1

|∇u|2
(
|∇η|2 + |D2(η2)|+ ε|∇(η2)|+ ε2η2

)
dx

+ C

∫
B+

1

|D2u||∇u|
(
|∇(η2)|+ εη2

)
dx

+ C

∫
∂0B+

1

|∇u|2(|∇(η2)|+ εη2) dHn−1

(2.1.10)

for all η ∈ C∞c (B1), where C is a universal constant and

A :=

{ (
tr(A(x)D2uA(0)D2u)− |∇u|−2

A(0)|D2uA(0)∇u|2A(x)

)1/2

if ∇u 6= 0

0 if ∇u = 0.
(2.1.11)

Assume moreover that f is nondecreasing and ε ≤ ε0. Then

‖∇u‖L2(∂0B+
2/3

) ≤ C‖∇u‖L2(B+
1 ), (2.1.12)

‖|∇u|D2u‖L1(B+
4/7

) ≤ C‖∇u‖2
L2(B+

1 )
, (2.1.13)

‖A‖L2(B+
1/2

) ≤ C‖∇u‖L2(B+
1 ), (2.1.14)

and
‖D2u‖L1(B+

4/7
) ≤ C‖∇u‖L2(B+

1 ), (2.1.15)

where ε0 > 0 and C are universal constants.
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To prove the first bound (2.1.10) in Theorem 2.1.4, we will exploit the integral stability
inequality (2.1.9) by choosing appropriate test functions. Letting ξ = cη in (2.1.9) with
Ω = B+

1 , where c, η are smooth functions satisfying c = 0 on ∂0B+
1 and supp η ⊂ B1, if

we integrate by parts, then (2.1.9) becomes∫
B+

1

cJuc η
2 dx ≤

∫
B+

1

c2
∣∣∇η − 1

2
ηA−1(x)b(x)

∣∣2
A(x)

dx. (2.1.16)

In order to obtain universal estimates, the crucial point will be to choose c in such a
way that the Jacobi operator Juc in the left-hand side of (2.1.16) becomes independent of
the nonlinearity. Thus, in the proof of (2.1.10), our choice will be a smooth approximation
of

c(x) = |∇u(x)|A(0) −N · ∇u(x)

for an appropriate constant vector field N : Rn
+ → Rn (given by (2.2.3) in Section 2.2

below). Here, we need f ≥ 0 to make sure that such an approximation of c vanishes on
∂0B+

1 , but otherwise is a technical assumption in this step.
Under a smallness assumption on the coefficients (ε ≤ ε0), the function A in (2.1.11)

controls part of the Hessian of u (as explained in [52] or in Section 2.2 below). We can
further bound the full Hessian by assuming that the equation has a sign −Lu = f(u) ≥ 0.
For the the final form of the Hessian estimates in (2.1.13), (2.1.14), and (2.1.15), we need
to control the third term in the right-hand side of (2.1.10), which is a surface integral
and arises at every integration by parts. To control such an integral requires both the
monotonicity of f and the stability of u, while the previous works [20,24] only needed the
condition on f . The reason for this is an additional Hessian error which does not appear
for the Laplacian on C3 domains when trying to control the boundary integral.

Once Theorem 2.1.4 is available, our main result, Theorem 2.1.1, will follow directly by
the ideas of [19,24] combined with a scaling and covering argument.

To conclude this section, we state our energy estimate in general domains of C1,1 class.
Approximating (2.1.1) by stable solutions to smoother problems (as explained next in
Remark 2.1.6), flattening the boundary, the result will follow easily from Theorem 2.1.1
and by the interior estimates obtained in Chapter 1. This argument requires the convexity
of f to ensure that the approximating sequence of stable solutions converges to the original
one. The same procedure can be used to obtain Hölder estimates up to the boundary in C1,1

domains, which has been carried out in our work [50] and we describe in detail in Chapter 3
below. Since the ideas are very similar, we defer the complete proof of Theorem 2.1.5 below
to Chapter 3, where we implement the approximation and flattening argument in full detail.
Here, we just give indications in Remark 2.1.6, after the theorem.

Theorem 2.1.5 (Theorem 3.1.1). Let Ω ⊂ Rn be a bounded domain of class C1,1 and
let L satisfy conditions (2.1.3) and (2.1.4) in Ω. Assume that f ∈ C1(R) is nonnegative,
nondecreasing, and convex.

Let u ∈ C0(Ω) ∩W 2,n
loc (Ω) be a nonnegative stable solution of −Lu = f(u) in Ω, with

u = 0 on ∂Ω.
Then

‖∇u‖L2+γ(Ω) ≤ C‖u‖L1(Ω),

where γ = γ(n) > 0 and C = C(Ω, n, c0, C0, ‖∇aij‖L∞(Ω), ‖bi‖L∞(Ω)).

Remark 2.1.6. As mentioned above, our energy estimate in C1,1 domains will follow from
Theorem 2.1.1 but, unlike this result, it does not require third derivatives of the solution or
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assumption (2.1.5) (the continuity of bi up to the boundary). To achieve this, we consider
an exhaustion of Ω by smooth sets Ωk. Using u as a barrier, by monotone iteration, we
construct strong stable solutions uk to a semilinear equation −Lkuk = fk(uk) in Ωk with
smoother coefficients.

Flattening the boundary ∂Ωk, we obtain solutions in the half-ball, where we would like
to apply Theorem 2.1.1. For this, we need to ensure the existence of third weak derivatives
in Lp for these solutions, which is guaranteed if the new coefficients (bki )k are sufficiently
regular.3 The interior continuity of bi (assumption (2.1.4) above) will make sure that
bki → bi locally uniformly in Ω, which is essential to show that u is a barrier.

Finally, we need the convexity of f for uk to converge to the original solution u and not
to some other limit. The deeper reason behind this is that stable solutions with convex
nonlinearities are unique; see [48, 50] or Appendix F in Chapter 3 below. For C3 domains
and smooth coefficients, we do not need the approximation procedure and we could give
the analogue of Theorem 2.1.5 without the convexity assumption on f .

2.1.2 Outline of the chapter

Section 2.2 is devoted to the proof of Theorem 2.1.4 containing the Hessian estimates up
to the boundary. In Section 2.3 we prove Theorem 2.1.1, the energy estimate in half-balls.

2.2 Boundary Hessian estimates

Recall the function A : B1 → R given by (2.1.11) in the statement of Theorem 2.1.4 (and
introduced in (1.3.1) in the previous chapter). It can also be written as

A =
(
‖A1/2(x)D2uA1/2(0)‖2

HS − |A1/2(x)D2uA1/2(0)n(x)|2
)1/2

in {∇u 6= 0}, (2.2.1)

where ‖·‖HS denotes the Euclidean Hilbert-Schmidt norm for matrices and n(x) is the unit
vector field n : (B+

1 ∪ ∂0B+
1 ) ∩ {∇u 6= 0} → R given by

n(x) := |∇u|−1
A(0)A

1/2(0)∇u(x). (2.2.2)

Here we are following the notation for the Hessian estimates in Chapter 1 above.
First we prove the bound (2.1.10) for A in Theorem 2.1.4. This is an analogue of the

Sternberg-Zumbrun geometric estimate up to the boundary. For this, it is convenient to
define the constant vector field

N := |en|−1
A(0)A(0)en, Ni := (ann(0))−1/2ain(0). (2.2.3)

Notice that N has unit norm with respect to the scalar product defined by the inverse
matrix A−1(0), i.e., |N|A−1(0) = 1. Moreover, since u is nonnegative and u = 0 on ∂0B+

1 ,
we have the identity

|∇u|A(0) = N · ∇u on ∂0B+
1 . (2.2.4)

3For instance, suppose that aij ∈ C0,1(B+
1 ) and bi ∈ W 1,p(B+

1 ) for some p > n, and let u ∈ W 2,p(B+
1 )

be a strong solution to −Lu = f(u) in B+
1 , u = 0 on ∂0B+

1 . Since f(u) ∈ L∞(B+
1 ), by Calderón-Zygmund

estimates (see [63, Theorem 9.13]) we have u ∈W 2,q
loc (B+

1 ∪∂0B+
1 ) for all q <∞. Formally taking tangential

derivatives, for k = 1, . . . , n− 1 we obtain −Luk = f ′(u)uk + ∂kaij(x)uij + ∂kbi(x)ui ∈ Lploc(B+
1 ∪ ∂0B+

1 )

and uk = 0 on ∂0B+
1 , hence, again by Lp estimates, we deduce u ∈W 3,p

loc (B+
1 ∪∂0B+

1 ). It remains to check
that the weak derivative unnn exists and lies in Lploc(B+

1 ∪∂0B+
1 ), but this follows easily from the equation.
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The vector field N will also be useful later when controlling the Dirichlet energy on the
boundary.

Proof of (2.1.10) in Theorem 2.1.4. We test the stability inequality (2.1.16) with a variant
of

c := |∇u|A(0) −N · ∇u,

where N = (Ni) is the constant vector field defined in (2.2.3) above. Since |∇u|A(0) is not
necessarily smooth when ∇u = 0, following [24], we take a convex C1,1 regularization of
the modulus | · |A(0) instead. For each small δ > 0, we define

φδ(z) := |z|A(0)1{|z|A(0)>δ} +

(
δ

2
+
|z|2A(0)

2δ

)
1{|z|A(0)<δ}. (2.2.5)

Given that u is nonnegative and superharmonic (in the sense that Lu = −f(u) ≤ 0),
unless u ≡ 0 (in which case there is nothing to prove), by the Hopf lemma and uniform
ellipticity we have |∇u|A(0) ≥ c > 0 on ∂0B+

1 ∩ supp η, for some constant c. Hence, for
δ > 0 sufficiently small we have

φδ(∇u) = |∇u|A(0) in a neighborhood of ∂0B+
1 ∩ supp η inside B+

1 . (2.2.6)

Choosing δ > 0 small enough such that (2.2.6) holds, we let

cδ := φδ(∇u)−N · ∇u.

Since cδ vanishes on ∂0B+
1 , this is a valid test function in the stability inequality (2.1.16).

We can write the Jacobi operator acting on cδ as the sum of three terms

cδJucδ = cδ(Lcδ + f ′(u)cδ)

= φδ(∇u)Ju [φδ(∇u)]− cδJu [N · ∇u]− (N · ∇u)Ju [φδ(∇u)] .

Multiplying this identity by η2 and integrating inB+
1 yields the left-hand side of (2.1.16), i.e.,∫

B+
1

cδJu cδη
2 dx =

∫
B+

1

φδ(∇u)Ju [φδ(∇u)] η2 dx−
∫
B+

1

cδJu [N · ∇u] η2 dx

−
∫
B+

1

(N · ∇u)Ju [φδ(∇u)] η2 dx.

(2.2.7)

We now study each of the three terms in (2.2.7) separately.

First term. We prove that∫
B+

1

φδ(∇u)Ju [φδ(∇u)] η2 dx

≥
∫
B+

1

A2 1{|∇u|A(0)>δ} η
2 dx− Cδ

∫
B+

1

|f ′(u)|(|∇u|+ δ)η2 dx

− Cε
∫
B+

1

(|∇u|+ δ)
(
|D2u|η2 + |∇u||∇(η2)|

)
dx− Cε

∫
∂0B+

1

|∇u|2η2 dHn−1.

(2.2.8)
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Recalling that Ju = L + f ′(u), we start by computing L[φδ(∇u)] first. Here, since

u ∈ W 3,p(B+
1 ) with p > n, by Sobolev embedding u ∈ C2(B+

1 ) and, moreover, the Hessian
D2u is differentiable a.e. in B+

1 (for instance, see [55]). Thus we have

L [φδ(∇u)] = aij(x)∂2
ij [φδ(∇u)] + bi(x)∂i [φδ(∇u)]

= aij(x)∂zkφδ(∇u)uijk + aij(x)∂2
zkzl

φδ(∇u)ujkuil + bi(x)∂zkφδ(∇u)uik
(2.2.9)

a.e. in B+
1 . By the convexity of φδ and its definition (2.2.5), it is easy to check that

φδ(∇u)aij(x)∂2
zkzl

φδ(∇u)ujkuil ≥ A2 1{|∇u|A(0)>δ}. (2.2.10)

Therefore, multiplying (2.2.9) by φδ(∇u)η2, using (2.2.10), and integrating we obtain∫
B+

1

φδ(∇u)L [φδ(∇u)] η2 dx

≥
∫
B+

1

aij(x)∇uij · ∇φδ(∇u)φδ(∇u)η2 dx+

∫
B+

1

A2 1{|∇u|A(0)>δ} η
2 dx

+

∫
B+

1

bi(x)∂zkφδ(∇u)uikφδ(∇u)η2 dx.

(2.2.11)

Next, we treat the zero order term f ′(u)φδ(∇u) in the linearization Ju[φδ(∇u)]. By
direct computation |φδ(∇u)−∇φδ(∇u) · ∇u| ≤ δ and hence∫
B+

1

f ′(u)φδ(∇u)2η2 dx ≥
∫
B+

1

f ′(u)∇u · ∇φδ(∇u)φδ(∇u)η2 dx− δ
∫
B+

1

|f ′(u)|φδ(∇u)η2 dx.

(2.2.12)
Using the equation, we integrate by parts the first term in the right-hand side of (2.2.12)
as∫

B+
1

f ′(u)∇u · ∇φδ(∇u)φδ(∇u)η2 dx =

∫
B+

1

∇[f(u)] · ∇φδ(∇u)φδ(∇u)η2 dx

=

∫
B+

1

Lu div
(
∇φδ(∇u)φδ(∇u)η2

)
dx−

∫
∂0B+

1

f(u)∂znφδ(∇u)φδ(∇u)η2 dHn−1.

(2.2.13)

Moreover, undoing the integration by parts in∫
B+

1

aij(x)uij div
(
∇φδ(∇u)φδ(∇u)η2

)
dx

= −
∫
B+

1

∇[aij(x)uij] · ∇φδ(∇u)φδ(∇u)η2 dx

+

∫
∂0B+

1

aij(x)uij∂znφδ(∇u)φδ(∇u)η2 dHn−1,

substituting in (2.2.13) and using that −Lu = f(u) up to B+
1 by continuity, we deduce∫

B+
1

f ′(u)∇u · ∇φδ(∇u)φδ(∇u)η2 dx

= −
∫
B+

1

∇[aij(x)uij] · ∇φδ(∇u)φδ(∇u)η2 dx+

∫
B+

1

bi(x)ui div
(
∇φδ(∇u)φδ(∇u)η2

)
dx

+

∫
∂0B+

1

bi(x)ui∂znφδ(∇u)φδ(∇u)η2 dHn−1.

(2.2.14)
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Finally, combining (2.2.11), (2.2.12), and (2.2.14), we obtain∫
B+

1

φδ(∇u)Ju [φδ(∇u)] η2 dx =

∫
B+

1

φδ(∇u)L [φδ(∇u)] η2 dx+

∫
B+

1

f ′(u)φδ(∇u)2η2 dx

≥
∫
B+

1

A2 1{|∇u|A(0)>δ} η
2 dx− δ

∫
B+

1

|f ′(u)|φδ(∇u)η2 dx

−
∫
B+

1

∇aij(x)uij · ∇φδ(∇u)φδ(∇u)η2 dx

+

∫
B+

1

bi(x)
{
ui div

(
∇φδ(∇u)φδ(∇u)η2

)
+ ∂zkφδ(∇u)uikφδ(∇u)η2

}
dx

+

∫
∂0B+

1

bi(x)ui|en|A(0)|∇u|A(0)η
2 dHn−1,

(2.2.15)

where in the boundary term we have used (2.2.6) and (2.2.4) to write

∂znφδ(∇u)φδ(∇u) = en · A(0)∇u = |en|A(0)|∇u|A(0) on ∂0B+
1 .

The claim now follows from (2.2.15) by applying the uniform ellipticity, the coefficient
bounds ‖∇aij‖L∞ + ‖bi‖C0 ≤ ε, and

φδ(∇u) ≤ C (|∇u|+ δ) , (2.2.16)

|∇φδ(∇u)|+ φδ(∇u)|D2φδ(∇u)| ≤ C, (2.2.17)

where C are universal constants (and hence independent of δ).

Second term. We prove that∣∣∣∣∣
∫
B+

1

cδJu [N · ∇u] η2 dx

∣∣∣∣∣
≤ Cε

∫
B+

1

(|∇u|+ δ)
(
|D2u|η2 + |∇u||∇(η2)|

)
dx.

(2.2.18)

Computing, we have

L[N · ∇u] = Nkaij(x)uijk + Nkbi(x)uik a.e. in B+
1 . (2.2.19)

Since cδ = 0 on ∂0B+
1 , integrating by parts and using the equation∫

B+
1

f ′(u) (N · ∇u) cδη
2 dx =

∫
B+

1

N · ∇[f(u)] cδη
2 dx =

∫
B+

1

(Lu) N · ∇
(
cδη

2
)

dx

= −
∫
B+

1

N · ∇[aij(x)uij] cδη
2 dx+

∫
B+

1

bi(x)ui N · ∇
(
cδη

2
)

dx,

(2.2.20)

where in the last line we have integrated by parts again. Combining (2.2.19) and (2.2.20)∫
B+

1

cδJu [N · ∇u] η2 dx

= −
∫
B+

1

N · ∇aij(x)uij cδη
2 dx+

∫
B+

1

Nkbi(x)uik cδη
2 +

∫
B+

1

bi(x)ui N · ∇
(
cδη

2
)

dx.

(2.2.21)
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The claim follows from (2.2.21) by applying (2.2.16), (2.2.17), and the coefficient bounds.

Third term. We prove that

∣∣∣∣∣
∫
B+

1

(N · ∇u)Ju [φδ(∇u)] η2 dx

∣∣∣∣∣
≤ C

∫
B+

1

(|∇u|+ δ)
(
|D2u|{|∇(η2)|+ εη2}+ ε|∇u||∇(η2)|+ |∇u||D2(η2)|

)
dx

+ C

∫
∂0B+

1

|∇u|2
(
|∇(η2)|+ εη2

)
dHn−1.

(2.2.22)

By definition, we have

(N · ∇u)Ju [φδ(∇u)] = (N · ∇u)L[φδ(∇u)] + φδ(∇u)f ′(u)(N · ∇u). (2.2.23)

The idea is to integrate the first term in (2.2.23),
∫
B+

1
(N · ∇u)L[φδ(∇u)] η2 dx, by parts to

get the linearized equation acting on the directional derivative N · ∇u instead of on the
modulus φδ(∇u). It will then be easy to bound the remaining terms as in Step 2 above.

We write the operator in divergence form Lu = div(A(x)∇u) + b̂(x) · ∇u as in (2.1.6).
Integrating by parts twice in

∫
B+

1
(N · ∇u)div

(
A(x)∇ [φδ(∇u)]

)
η2 dx, we have

∫
B+

1

(N · ∇u)div
(
A(x)∇ [φδ(∇u)]

)
η2 dx

=

∫
B+

1

φδ(∇u)div
(
A(x)∇(N · ∇u)

)
η2 dx

+

∫
B+

1

φδ(∇u)
(

2A(x)∇(N · ∇u) · ∇(η2) + (N · ∇u) div
{
A(x)∇(η2)

})
dx

+

∫
∂0B+

1

(
φδ(∇u)A(x)∇

{
(N · ∇u)η2

}
· en − (N · ∇u)A(x)∇ [φδ(∇u)] · en η2

)
dHn−1.

(2.2.24)

Since u is nonnegative and u = 0 on ∂0B+
1 , we have ∇u = |∇u|A(0)|en|−1

A(0)en and hence,

using (2.2.4) and (2.2.6), the boundary integrand in (2.2.24) can be written simply as

φδ(∇u)A(x)∇
{

(N ·∇u)η2
}
· en− (N ·∇u)A(x)∇ [φδ(∇u)] · en η2 = |∇u|2A(0)A(x)∇(η2) · en.

(2.2.25)
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Combining (2.2.24) and (2.2.25), we deduce∫
B+

1

(N · ∇u)L[φδ(∇u)] η2 dx

=

∫
B+

1

(N · ∇u)div
(
A(x)∇ [φδ(∇u)]

)
η2 dx+

∫
B+

1

(N · ∇u)
(̂
b(x) · ∇ [φδ(∇u)]

)
η2 dx

=

∫
B+

1

φδ(∇u)L[N · ∇u] η2 dx

+

∫
B+

1

φδ(∇u)
(

2A(x)∇(N · ∇u) · ∇(η2) + (N · ∇u) div
{
A(x)∇(η2)

})
dx

+

∫
B+

1

(
− φδ(∇u) b̂(x) · ∇(N · ∇u) + (N · ∇u) b̂(x) · ∇ [φδ(∇u)]

)
η2 dx

+

∫
∂0B+

1

|∇u|2A(0)A(x)∇(η2) · en dHn−1.

(2.2.26)

We now treat the second term in (2.2.23). Integrating by parts twice as in the proof of
Step 2 (this time including boundary terms) and using the equation, it follows that∫

B+
1

f ′(u) (N · ∇u) φδ(∇u)η2 dx =

∫
B+

1

N · ∇[f(u)]φδ(∇u)η2 dx

=

∫
B+

1

(Lu) N · ∇
(
φδ(∇u)η2

)
dx−

∫
∂0B+

1

f(u)|en|A(0) φδ(∇u)η2 dHn−1

= −
∫
B+

1

N · ∇[aij(x)uij]φδ(∇u)η2 dx+

∫
B+

1

bi(x)ui N · ∇
(
φδ(∇u)η2

)
dx

+

∫
∂0B+

1

bi(x)ui|en|A(0) φδ(∇u)η2 dHn−1.

(2.2.27)

Finally, summing (2.2.26) and (2.2.27), we obtain∫
B+

1

(N · ∇u)Ju[φδ(∇u)] η2 dx

=

∫
B+

1

(
L[N · ∇u]−N · ∇[aij(x)uij]

)
φδ(∇u)η2 dx

+

∫
B+

1

φδ(∇u)
(

2A(x)∇(N · ∇u) · ∇(η2) + (N · ∇u) div
{
A(x)∇(η2)

})
dx

+

∫
B+

1

b̂(x) ·
(

(N · ∇u)∇ [φδ(∇u)]− φδ(∇u)∇(N · ∇u)
)
η2 dx

+

∫
B+

1

bi(x)ui N · ∇
(
φδ(∇u)η2

)
dx

+

∫
∂0B+

1

(
|∇u|2A(0)A(x)∇(η2) · en + bi(x)ui|en|A(0) φδ(∇u)η2

)
dHn−1.

(2.2.28)

Noticing that L[N · ∇u] − N · ∇[aij(x)uij] = −N · ∇aij(x)uij + Nkbi(x)uik, every term
in the right-hand side of (2.2.28) can be bounded as claimed in (2.2.22). For this, apply
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the uniform ellipticity, the coefficient bounds ‖∇aij‖L∞ + ‖bi‖C0 + ‖b̂i‖L∞ ≤ 2ε, and the
estimates (2.2.16) and (2.2.17).

Conclusion. Applying the three estimates (2.2.8), (2.2.18), and (2.2.22) in (2.2.7) yields
the lower bound∫

B+
1

cδJucδ η
2 dx

≥
∫
B+

1 ∩{|∇u|A(0)>δ}
A2 η2 dx− Cδ

∫
B+

1

|f ′(u)|(|∇u|+ δ)η2 dx

− C
∫
B+

1

(|∇u|+ δ)
(
|D2u|{|∇(η2)|+ εη2}+ ε|∇u||∇(η2)|+ |∇u||D2(η2)|

)
dx

− C
∫
∂0B+

1

|∇u|2(|∇(η2)|+ εη2) dHn−1.

(2.2.29)

By the integral stability inequality (2.1.16) with c = cδ, we also have the upper bound∫
B+

1

cδJucδ η
2 dx ≤

∫
B+

1

φδ(∇u)2|∇η − 1
2
ηA−1(x)̂b(x)|2A(x) dx

≤ C

∫
B+

1

(|∇u|+ δ)2
(
|∇η|2 + ε2η2

)
dx.

(2.2.30)

Hence, combining (2.2.29) and (2.2.30) and taking the limit as δ → 0, we deduce the
claim

In order to prove the remaining estimates in Theorem 2.1.4, we need to control the right-
hand side of (2.1.10). For this, next we prove two basic Hessian estimates for (generalized)
superharmonic functions. We essentially follow the proof of Theorem 1.1.2 above, but now
including boundary terms.

Lemma 2.2.1. Let u ∈ C2(B+
1 ) be superharmonic in the sense that Lu ≤ 0 in B+

1 , where
L satisfies conditions (2.1.3) and (2.1.4) in Ω = B+

1 . Assume that

‖DA‖L∞(B+
1 ) + ‖b‖L∞(B+

1 ) ≤ ε

for some ε > 0.
Then, there exists a universal ε0 > 0 with the following property: if ε ≤ ε0, then, for

all ζ ∈ C0,1
c (B1) with ζ ≥ 0, we have∫

B+
1

|D2u| ζ dx ≤ C

∫
B+

1

|∇u| (|∇ζ|+ εζ) dx+ C

∫
B+

1

A ζ dx+ C

∫
∂0B+

1

|∇u| ζ dx (2.2.31)

and ∫
B+

1

|D2u||∇u| ζ dx ≤ C

∫
B+

1

|∇u|2 (|∇ζ|+ εζ) dx+ C

∫
B+

1

A|∇u| ζ dx

+ C

∫
∂0B+

1

|∇u|2ζ dHn−1,

(2.2.32)

where C is a universal constant.
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Proof. Consider the auxiliary function

A0 :=

{ (
‖A1/2(0)D2uA1/2(0)‖2

HS − |A1/2(0)D2uA1/2(0)n(x)|2
)1/2

if ∇u 6= 0

0 if ∇u = 0,

where the vector field n(x) has been introduced in (2.2.2) in the definition of A in (2.2.1).
Using that ‖DA‖L∞(B+

1 ) ≤ ε, it is easy to show (see [52] or Step 2 in the proof of Theo-

rem 1.1.2 above) that
|A2 −A2

0| ≤ Cε|x|A2
0 in B+

1 , (2.2.33)

where C always denotes a universal constant. In particular, the functions A and A0 are
comparable for ε small. Using that Lu ≤ 0, following [52], it is not hard to show that

|D2u| ≤ −Ctr
(
A(0)D2u

)
+ CA0 + Cε|x||D2u|+ Cε|∇u| a.e. in B+

1 . (2.2.34)

First we prove the Hessian bound (2.2.31). Multiplying (2.2.34) by ζ and integrating
in B+

1 ∫
B+

1

|D2u|ζ dx ≤ −C
∫
B+

1

tr
(
A(0)D2u

)
ζ dx+ C

∫
B+

1

A0 ζ dx

+ Cε

∫
B+

1

|x||D2u|ζ dx+ Cε

∫
B+

1

|∇u| ζ dx.

(2.2.35)

Integrating by parts, we have

−
∫
B+

1

tr
(
A(0)D2u

)
ζ dx =

∫
B+

1

A(0)∇u · ∇ζ dx−
∫
∂0B+

1

A(0)∇u · en ζ dHn−1,

and substituting in (2.2.35), by uniform ellipticity,∫
B+

1

|D2u|ζ dx ≤ C

∫
B+

1

|∇u| |∇ζ| dx+ C

∫
B+

1

A0 ζ dx+ C

∫
∂0B+

1

|∇u| ζ dx

+ Cε

∫
B+

1

|x||D2u|ζ dx+ Cε

∫
B+

1

|∇u| ζ dx.

(2.2.36)

Choosing ε0 > 0 universal sufficiently small, we can absorb the Hessian term in the right-
hand side of (2.2.36), and by (2.2.33) (taking ε0 smaller) we deduce the first claim.

For the second estimate (2.2.32), multiplying (2.2.34) by |∇u|A(0)ζ and integrating in
B+

1 ∫
B+

1

|D2u||∇u|A(0)ζ dx ≤ −C
∫
B+

1

|∇u|A(0)tr
(
A(0)D2u

)
ζ dx+ C

∫
B+

1

A0|∇u|A(0) ζ dx

+ Cε

∫
B+

1

|x||D2u||∇u|A(0)ζ dx+ Cε

∫
B+

1

|∇u|2 ζ dx.

(2.2.37)

The first integrand in the right-hand side of (2.2.37) can be bounded by

−|∇u|A(0)tr
(
A(0)D2u

)
≤ −1

2
div
(
|∇u|A(0)A(0)∇u

)
+ CA0|∇u|A(0) a.e. in B+

1 . (2.2.38)
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Substituting (2.2.38) in (2.2.37) leads to∫
B+

1

|D2u||∇u|A(0)ζ dx ≤ −C
∫
B+

1

div
(
|∇u|A(0)A(0)∇u

)
ζ dx+ C

∫
B+

1

A0|∇u|A(0) ζ dx

+ Cε

∫
B+

1

|x||D2u||∇u|A(0) ζ dx+ Cε

∫
B+

1

|∇u|2 ζ dx,

and integrating by parts the divergence term, we obtain the inequality∫
B+

1

|D2u||∇u|A(0)ζ dx ≤ C

∫
B+

1

|∇u|2 (|∇ζ|+ εζ) dx+ C

∫
B+

1

A0|∇u|A(0) ζ dx

+ Cε

∫
B+

1

|x||D2u||∇u|A(0) ζ dx+ C

∫
∂0B+

1

|∇u|2ζ dHn−1.

(2.2.39)

Once again, choosing ε0 > 0 universal small, we can absorb the “Hessian times the gradient”
error in (2.2.39) into the left-hand side, and by (2.2.33) we deduce the second claim.

Thanks to Lemma 2.2.1, we can get rid of the Hessian terms appearing in the right-hand
side of the first inequality (2.1.10) in Theorem 2.1.4:

Lemma 2.2.2. Let u ∈ W 3,p(B+
1 ), for some p > n, be a nonnegative stable solution of

−Lu = f(u) in B+
1 , with u = 0 on ∂0B+

1 . Assume that f ∈ C1(R) is nonnegative. Assume
that L satisfies conditions (2.1.3), (2.1.4), and (2.1.5) in Ω = B+

1 , and that

‖DA‖L∞(B+
1 ) + ‖b‖L∞(B+

1 ) ≤ ε

for some ε > 0.
If ε ≤ ε0, then ∫

B+
8/9

A2 dx ≤ C

∫
B+

1

|∇u|2 dx+ C

∫
∂0B+

1

|∇u|2 dHn−1,

where ε0 > 0 and C are universal constants.

Proof. Let ε0 > 0 be the universal constant in the conclusion of Lemma 2.2.1. Apply-
ing (2.2.32) in Lemma 2.2.1 with ζ = |∇(η2)|+ εη2 ∈ C0,1

c (B1) yields∫
B+

1

|D2u||∇u|(|∇(η2)|+ εη2) dx

≤ C

∫
B+

1

|∇u|2
(
|D2(η2)|+ ε|∇(η2)|+ ε2η2

)
dx+ C

∫
B+

1

A|∇u| (|∇(η2)|+ εη2) dx

+ C

∫
∂0B+

1

|∇u|2(|∇(η2)|+ εη2) dHn−1.

(2.2.40)

Since |∇(η2)| + εη2 = |η| (2|∇η|+ ε|η|), by Cauchy-Schwarz, the second term in (2.2.40)
can be bounded by∫

B+
1

A|∇u| (|∇(η2)|+ εη2) dx ≤ C

(∫
B+

1

A2η2 dx

)1/2(∫
B+

1

|∇u|2
(
|∇η|2 + ε2η2

)
dx

)1/2

.

(2.2.41)
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Hence, applying (2.2.40) and (2.2.41) to the Hessian errors in the right-hand side of (2.1.10)
in Theorem 2.1.4, we obtain

∫
B+

1

A2η2 dx ≤ C

(∫
B+

1

A2η2 dx

)1/2(∫
B+

1

|∇u|2
(
|∇η|2 + ε2η2

)
dx

)1/2

+ C

∫
B+

1

|∇u|2
(
|∇η|2 + |D2(η2)|+ ε|∇(η2)|+ ε2η2

)
dx

+ C

∫
∂0B+

1

|∇u|2(|∇(η2)|+ εη2) dHn−1.

(2.2.42)

Therefore, by Young’s inequality, we can absorb the
∫
B+

1
A2 η2 dx term in (2.2.42) into the

left-hand side. Choosing η ∈ C∞c (B1) with 0 ≤ η ≤ 1 in B1 and η = 1 in B8/9, by the
universal bound ε ≤ ε0, we deduce the claim.

Thanks to the preliminary lemmas above, we are now in position to conclude the proof
of Theorem 2.1.4:

Proof of the boundary estimates (2.1.12), (2.1.13), (2.1.14), and (2.1.15) in Theorem 2.1.4.
Once we obtain the boundary gradient estimate 2.1.12, the remaining inequalities (2.1.13),
(2.1.14), and (2.1.15) will follow easily from Lemmas 2.2.1 and 2.2.2.

To control the gradient on the boundary, we proceed in two steps. First we employ the
Pohozaev trick to bound the L2 norm of ∇u on the lower boundary by the Dirichlet energy
up to Hessian errors. Secondly, we use Lemmas 2.2.1 and 2.2.2 to control these Hessian
errors and apply Simon’s lemma (recalled in Appendix D).

Step 1. We prove that

‖∇u‖2
L2(∂0B+

2/3
)
≤ C(1 + ε)‖∇u‖2

L2(B+
7/9

)
+ Cε‖|D2u| |∇u|‖L1(B+

7/9
),

where C is a universal constant.

Let η ∈ C∞c (B7/9). Integrating by parts, by the properties of u and the vector field N
defined in (2.2.3), it is easy to check that

|en|A(0)

∫
∂0B+

1

|∇u|2A(0)η
2 dHn−1

=

∫
B+

1

div
(
|∇u|2A(0)N− 2(N · ∇u)A(0)∇u

)
η2 dx

+

∫
B+

1

(
|∇u|2A(0)N− 2(N · ∇u)A(0)∇u

)
· ∇(η2) dx.

(2.2.43)

The divergence term in (2.2.43) can be written as

div
(
|∇u|2A(0)N− 2(N · ∇u)A(0)∇u

)
= −2(N · ∇u)tr(A(0)D2u)

= −2(N · ∇u)Lu+ 2(N · ∇u)(b(x) · ∇u) + 2(N · ∇u)tr
(
{A(x)− A(0)}D2u

)
≤ −2(N · ∇u)Lu+ Cε|∇u|2 + Cε|x||D2u||∇u|,
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where in the last line we have used the bounds ‖b‖L∞(B+
1 ) ≤ ε and |A(x)−A(0)| ≤ ε|x| for

x ∈ B+
1 . It follows that

|en|A(0)

∫
∂0B+

1

|∇u|2A(0)η
2 dHn−1

≤ −2

∫
B+

1

(N · ∇u)Lu η2 dx+ C

∫
B+

1

|∇u|2
(
|∇(η2)|+ εη2

)
dx

+ Cε

∫
B+

1

|x||D2u||∇u|η2 dx

(2.2.44)

and, thus, it remains to control the term −2
∫
B+

1
(N · ∇u)Lu η2 dx in (2.2.44).

Since −Lu = f(u) in B+
1 , the primitive F (t) :=

∫ t
0
f(s) ds of f satisfies

N · ∇[F (u)] = (N · ∇u)f(u) = −(N · ∇u)Lu,

and the first term on the right hand side of (2.2.44) can be integrated by parts as

−
∫
B+

1

(N · ∇u)Lu η2 dx =

∫
B+

1

N · ∇[F (u)]η2 dx = −
∫
B+

1

F (u)
(
N · ∇(η2)

)
dx. (2.2.45)

By the monotonicity of f , since u and f are nonnegative, we have |F (u)| ≤ uf(u) = −uLu.

Hence, writing L in divergence form Lu = div(A(x)∇u) + b̂(x) · ∇u as in (2.1.6), by the

coefficient bound ‖b̂‖L∞(B+
1 ) ≤ Cε we deduce

|F (u)| ≤ −u div(A(x)∇u) + Cεu |∇u|. (2.2.46)

Using (2.2.46), we estimate the right-hand side of (2.2.45) by∣∣∣−∫
B+

1

F (u)
(
N·∇(η2)

)
dx
∣∣∣ ≤ −C ∫

B+
1

u div
(
A(x)∇u

)
|∇(η2)| dx+Cε

∫
B+

1

u |∇u||∇(η2)| dx,

(2.2.47)
and since |∇(η2)| is Lipschitz, the divergence term in (2.2.47) can be integrated by parts
as

−
∫
B+

1

u div
(
A(x)∇u

)
|∇(η2)| dx =

∫
B+

1

|∇u|2A(x)|∇(η2)| dx+

∫
B+

1

uA(x)∇u · ∇|∇(η2)| dx.

(2.2.48)

Therefore, combining (2.2.45), (2.2.47), and (2.2.48), we deduce

−
∫
B+

1

(N · ∇u)Lu η2 dx ≤
∫
B+

1

|∇u|2A(x)|∇(η2)| dx+C

∫
B+

1

u|∇u|
(
|D2(η2)|+ ε|∇(η2)|

)
dx.

(2.2.49)
Moreover, we can bound the last term in (2.2.49) by Cauchy-Schwarz and the Poincaré
inequality (valid since u = 0 on ∂0B+

1 ) as∫
B+

1

u|∇u|
(
|D2(η2)|+ ε|∇(η2)|

)
dx

≤ C

(∫
B+

7/9

|∇u|2 dx

)1/2(∫
B+

1

|∇u|2
(
|D2(η2)|+ ε|∇(η2)|

)2
dx

)1/2

.

(2.2.50)
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Applying the bounds (2.2.49) and (2.2.50) in (2.2.44), by uniform ellipticity, we obtain∫
∂0B+

1

|∇u|2η2 dHn−1

≤ C

(∫
B+

7/9

|∇u|2 dx

)1/2(∫
B+

1

|∇u|2
(
|D2(η2)|+ ε|∇(η2)|

)2
dx

)1/2

+ C

∫
B+

1

|∇u|2
(
|∇(η2)|+ εη2

)
dx+ Cε

∫
B+

1

|x||D2u||∇u|η2 dx.

(2.2.51)

Finally, choosing η ∈ C∞c (B7/9) in (2.2.51) satisfying η = 1 in B2/3 and 0 ≤ η ≤ 1 in B7/9,
we deduce∫

∂0B+
2/3

|∇u|2 dHn−1 ≤ C (1 + ε)

∫
B+

7/9

|∇u|2 dx+ Cε

∫
B+

7/9

|x||D2u||∇u| dx,

which yields the claim.

Step 2. Conclusion.
Let ε0 > 0 be the universal constant in the conclusion of Lemma 2.2.1. Applying this

result with a cut-off ζ ∈ C1
c (B8/9) such that 0 ≤ ζ ≤ 1 and ζ = 1 in B7/9, if ε ≤ ε0, then

‖|D2u| |∇u|‖L1(B+
7/9

) ≤ C‖∇u‖2
L2(B+

8/9
)
+ C‖∇u‖2

L2(∂0B+
8/9

)
+ C‖A |∇u|‖L1(B+

8/9
). (2.2.52)

Hence, applying Cauchy-Schwarz in (2.2.52) and by Lemma 2.2.2, we deduce

‖|D2u| |∇u|‖L1(B+
7/9

) ≤ C‖∇u‖2
L2(B+

1 )
+ C‖∇u‖2

L2(∂0B+
1 )
. (2.2.53)

Let δ > 0. Using (2.2.53) in Step 1 above, letting εδ := min{ε0, δ/C}, we obtain

‖∇u‖2
L2(∂0B+

2/3
)
≤ δ‖∇u‖2

L2(∂0B+
1 )

+ C‖∇u‖2
L2(B+

1 )
for ε ≤ εδ. (2.2.54)

Hence, by translation and rescaling of (2.2.54), for all y ∈ ∂0B+
1 and ρ > 0 such that

B+
ρ (y) ⊂ B+

1 , we have

ρ

∫
∂0B+

2ρ/3
(y)

|∇u|2 dHn−1 ≤ δρ

∫
∂0B+

ρ (y)

|∇u|2 dHn−1 + C

∫
B+
ρ (y)

|∇u|2 dx

≤ δρ

∫
∂0B+

ρ (y)

|∇u|2 dHn−1 + C

∫
B+

1

|∇u|2 dx for ε ≤ εδ.

(2.2.55)

Since y ∈ ∂0B+
1 , we have y = (y′, 0) for some y′ ∈ Rn−1, and the lower boundary

∂0B+
ρ (y) is simply the (n − 1)-dimensional ball B′ρ(y

′) := {x ∈ Rn−1 : |x − y′| < ρ} ⊂
Rn−1 = ∂0Rn. By (2.2.55), we can apply the Simon lemma to the subadditive quantity

B′ 7→
∫
B′
|∇u|2 dHn−1

on balls B′ ⊂ B′1 ⊂ Rn−1 = ∂0Rn to deduce the bound∫
∂0B+

2/3

|∇u|2 dHn−1 ≤ C

∫
B+

1

|∇u|2 dx for ε ≤ εδ, (2.2.56)
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for some universal δ > 0. In particular, we may take ε0 universal equal to εδ and this
concludes the proof of (2.1.12).

Finally, to deduce the remaining Hessian estimates we proceed as in the proof of
(2.2.53). To prove (2.1.13), we apply (2.2.32) from Lemma 2.2.1 with a cut-off func-
tion ζ ∈ C1

c (B16/27) such that 0 ≤ ζ ≤ 1 and ζ = 1 in B4/7=16/28 ⊂ B16/27, and by
Cauchy-Schwarz

‖|D2u| |∇u|‖L1(B+
4/7

) ≤ C‖∇u‖2
L2(B+

16/27
)
+ C‖∇u‖2

L2(∂0B+
16/27

)
+ C‖A‖2

L2(B+
16/27

)

≤ C‖∇u‖2
L2(B+

2/3
)
+ C‖∇u‖2

L2(∂0B+
2/3

)
,

(2.2.57)

where in the last line we have used Lemma 2.2.2 applied to the rescaled function u(2
3
·).

Applying (2.2.56) to (2.2.57) now leads to (2.1.13).
Now, the bound (2.1.14) is easily obtained combining Lemma 2.2.2 with the boundary

estimate (2.1.12). The final estimate (2.1.15) follows from Lemma 2.2.1 and the above.

2.3 Boundary W 1,2+γ estimate

First we control the Dirichlet energy by the L1 norm of the solution under a smallness
condition on the coefficients. This follows from Theorem 2.1.4 and the interpolation in-
equalities of Cabré in [19] (recalled in Appendix C below).

Lemma 2.3.1. Let u ∈ W 3,p(B+
1 ), for some p > n, be a nonnegative stable solution of

−Lu = f(u) in B+
1 , with u = 0 on ∂0B+

1 . Assume that f ∈ C1(R) is nonnegative and
nondecreasing. Assume that L satisfies conditions (2.1.3), (2.1.4), and (2.1.5) in Ω = B+

1 ,
and

‖DA‖L∞(B+
1 ) + ‖b‖L∞(B+

1 ) ≤ ε

for some ε > 0.
If ε ≤ ε0, then

‖∇u‖L2(B+
1/2

) ≤ C‖u‖L1(B+
1 ),

where ε0 > 0 and C are universal constants.

Proof. We cover B+
1/2 (except for a set of measure zero) with a family of disjoint open cubes

Qj ⊂ Rn
+ of the same side-length and small enough so that Qj ⊂ B+

4/7. The side-length
and the number of cubes depend only on n. Combining the interpolation inequalities of
Proposition C.1 (with p = 2) and Proposition C.3, rescaled from the unit cube to Qj, with
δ̃ = δ3/2 for a given δ ∈ (0, 1), we have∫

Qj

|∇u|2dx ≤ Cδ

∫
Qj

|D2u||∇u| dx+ Cδ

∫
Qj

|∇u|2dx+ Cδ−2− 3n
2

(∫
Qj

|u| dx

)2

.

Since Qj ⊂ B+
4/7, applying (2.1.13) from Theorem 2.1.4, for ε ≤ ε0 we deduce

∫
Qj

|∇u|2dx ≤ Cδ

∫
B+

1

|∇u|2dx+ Cδ−2− 3n
2

(∫
B+

1

|u| dx

)2

.

Adding up these inequalities, we obtain

‖∇u‖2
L2(B+

1/2
)
≤ Cδ‖∇u‖2

L2(B+
1 )

+ Cδ−2− 3n
2 ‖u‖2

L1(B+
1 )

for δ ∈ (0, 1) and ε ≤ ε0. (2.3.1)
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For B+
ρ (y) ⊂ B+

1 with y ∈ ∂0B+
1 , the function uy,ρ := u(y+ ρ ·) is a stable solution to a

semilinear equation with coefficients Ay,ρ = A(y+ ρ ·) and by,ρ = ρ b(y+ ρ ·). In particular,
since ρ ≤ 1, for ε ≤ ε0 we have

‖DAy,ρ‖L∞(B+
1 ) + ‖by,ρ‖L∞(B+

1 ) ≤ ρε ≤ ε0,

and we may apply (2.3.1) to uy,ρ, which yields

ρn+2

∫
B+
ρ/2

(y)

|∇u|2 dx ≤ Cδρn+2

∫
B+
ρ (y)

|∇u|2 dx+ Cδ−2− 3n
2

(∫
B+
ρ (y)

|u| dx

)2

,

hence

ρn+2

∫
B+
ρ/2

(y)

|∇u|2 dx ≤Cδρn+2

∫
B+
ρ (y)

|∇u|2 dx+ Cδ−2− 3n
2 ‖u‖2

L1(B+
1 )

for all B+
ρ (y) ⊂ B+

1 with y ∈ ∂0B+
1 and δ ∈ (0, 1).

(2.3.2)

To deduce the desired bound, we must combine (2.3.2) with the following interior estimates
derived in [52, Proposition 1.3]:

ρn+2

∫
Bρ/2(y)

|∇u|2 dx ≤ C‖u‖2
L1(B+

1 )
for all Bρ(y) ⊂ B+

1 . (2.3.3)

We now claim that for all balls Bρ(y) ⊂ B1 (not necessarily contained in B+
1 ) and every

δ ∈ (0, 1), we have

ρn+2

∫
∂Rn+∩Bρ/2(y)

|∇u|2 dx ≤Cδρn+2

∫
∂Rn+∩Bρ(y)

|∇u|2 dx+ Cδ−2− 3n
2 ‖u‖2

L1(B+
1 )
. (2.3.4)

This is achieved by a simple covering argument. The key observation is that Rn
+ ∩Bρ/2(y)

can be covered by a dimensional number of balls {Bρ/16(yi)}i and {B3ρ/16(zj)}j, where
yi are such that Bρ/8(yi) ⊂ Rn

+ ∩ Bρ(y) ⊂ B+
1 are interior balls, while zj ∈ ∂Rn

+ satisfy
B+

3ρ/8(zj) ⊂ Rn
+ ∩ Bρ(y) ⊂ B+

1 . Applying (2.3.3) to the interior balls and (2.3.2) to the

boundary balls, it is not hard to deduce (2.3.4). For more details, we refer the reader to
the proof of Lemma 8.2 in [20].

By (2.3.4), applying Simon’s lemma to the subadditive quantity B 7→ ‖∇u‖2
L2(Rn+∩B)

now yields the claim.

Following ideas from [24], the higher integrability estimate in Theorem 2.1.1 will now
be a direct consequence of the Hessian estimates in Theorem 2.1.4 and of Lemma 2.3.1.

Proof of Theorem 2.1.1. There are three steps in our proof. First, by the divergence theo-
rem and Theorem 2.1.4, we control the surface integral of |∇u|2 on every level set of u by
the Dirichlet energy. Secondly, using coarea formula, Hölder, and Sobolev inequality, we
will bound the L2+γ norm of the gradient by the L2 norm. Finally, Lemma 2.3.1 will yield
the final estimate in terms of the L1 norm of the solution. All these bounds are shown
under a smallness condition on the coefficients which is removed in the last step.

Step 1: We prove that, if ε ≤ ε0, then for a.e. t ∈ R we have∫
{u=t}∩B1/2

|∇u|2 dHn−1 ≤ C‖∇u‖2
L2(B1),
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where ε0 > 0 and C are universal.
Since

∣∣div
(
|∇u|∇u

)∣∣ ≤ C|D2u||∇u|, by (2.1.13) in Theorem 2.1.4, for ε ≤ ε0 we have∥∥div
(
|∇u|∇u

)∥∥
L1(B+

4/7
)
≤ C‖∇u‖2

L2(B+
1 )
. (2.3.5)

Consider a cut-off function η ∈ C∞c (B4/7) with η = 1 in B1/2 and 0 ≤ η ≤ 1. By the
divergence theorem, for a.e. t ∈ R we have∫

{u=t}∩B+
1/2

|∇u|2 dHn−1

≤
∫
{u=t}∩B+

1 ∩{∇u6=0}
|∇u|2η2 dHn−1

= −
∫
{u>t}∩B+

1 ∩{∇u6=0}
div
(
|∇u|∇u η2

)
dx−

∫
{u>t}∩∂0B+

1 ∩{∇u6=0}
|∇u|2 η2 dx

≤
∫
B+

4/7

|∇u|2|∇(η2)| dx+

∫
B+

4/7

∣∣div
(
|∇u|∇u

)∣∣η2 dx

and (2.3.5) now yields the claim

Step 2: We prove that, if ε ≤ ε0, then

‖∇u‖L2+γ(B+
1/2

) ≤ C‖∇u‖L2(B+
1 ),

where γ > 0 is dimensional and ε0 > 0 and C are universal constants.
Multiplying by a constant, we may assume that ‖∇u‖L2(B+

1 ) = 1.

Letting h(t) = max{1, t}, by the Sobolev embedding for functions vanishing on ∂0B+
1 ,∫

R+

dt

∫
{u=t}∩B+

1 ∩{|∇u|6=0}
dHn−1h(t)p|∇u|−1

≤ |B+
1 ∩ {u < 1}|+

∫
B+

1

up dx ≤ C

(2.3.6)

for some p > 2. Choosing dimensional constants q > 1 and θ ∈ (0, 1/3) such that p/q =
(1− θ)/θ, we obtain∫

B+
1/2

|∇u|3−3θ dx =

∫
R+

dt

∫
{u=t}∩B+

1/2
∩{|∇u|6=0}

dHn−1h(t)pθ−q(1−θ)|∇u|−θ+2(1−θ)

≤

(∫
R+

dt

∫
{u=t}∩B+

1 ∩{|∇u|6=0}
dHn−1h(t)p|∇u|−1

)θ

·

(∫
R+

h(t)−q dt

∫
{u=t}∩B+

1/2

dHn−1|∇u|2
)1−θ

.

By Step 1 and (2.3.6), it follows that∫
B+

1/2

|∇u|3−3θ dx ≤ C,

which was the claim.
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Step 3: Conclusion.
Combining Step 2 (rescaled) and Lemma 2.3.1, we deduce that our class of stable

solutions satifies
‖∇u‖L2+γ(B+

1/4
) ≤ C‖u‖L1(B+

1 ) for ε ≤ ε0, (2.3.7)

where γ > 0 is dimensional and ε0 > 0 and C are universal.
To conclude, we apply a simple covering argument. Let δ ∈ (0, 1) be sufficiently small

such that
δ
(
‖DA‖L∞(B+

1 ) + ‖b‖L∞(B+
1 )

)
≤ ε0. (2.3.8)

First, we cover the lower boundary ∂0B+
1/2 by a finite number of balls Bδ/4(yi) with yi ∈

∂0B+
1 , taking δ > 0 smaller if necessary so that Bδ(yi) ⊂ B1. Next, we cover B+

1/2 \(
∪iBδ/4(yi)

)
by balls Bδ̃/2(zi) with a smaller radius δ̃ > 0 such that Bδ̃(zi) ⊂ B+

1 . Thus we

obtain a covering of B+
1/2 by half-balls {B+

δ/4(yi)}i (centered at the boundary) and interior

balls {Bδ̃/2(zi)}i, satisfying B+
δ (yi) ⊂ B+

1 and Bδ̃(zi) ⊂ B+
1 , respectively. Notice that, by

(2.3.8), the radii δ and δ̃ as well as the number of balls depend only on n, ε0, ‖DA‖L∞(B+
1 ),

and ‖b‖L∞(B+
1 ).

Thanks to (2.3.8), the function u(yi + δ·) vanishing on ∂0B+
1 is a stable solution of a

semilinear equation in B+
1 , with coefficients Ayi,δ = A(yi + δ·) and byi,δ = δ b(yi + δ·) such

that ‖DAyi,δ‖L∞ + ‖byi,δ‖L∞ ≤ ε0. From (2.3.7) now we deduce

‖∇u‖L2+γ(B+
δ/4

(yi))
≤ Cδ‖u‖L1(B+

δ (yi))
, (2.3.9)

where Cδ depends only on n, c0, C0, and δ. For the interior balls Bδ̃/4(zi), we need the

following interior energy estimates from Theorem 1.1.1 above (rescaled):

‖∇u‖L2+γ(B
δ̃/2

(zi)) ≤ Cδ̃‖u‖L1(B
δ̃
(zi)), (2.3.10)

where Cδ̃ depends only on n, c0, C0, and δ̃.
By (2.3.9) and (2.3.10), we finally obtain

‖∇u‖L2+γ(B+
1/2

) ≤
∑
i

‖∇u‖L2+γ(B+
δ/4

(yj))
+
∑
i

‖∇u‖L2+γ(B
δ̃/2

(zi))

≤ Cδ
∑
i

‖u‖L1(B+
δ (yi))

+ Cδ̃

∑
i

‖u‖L1(B
δ̃
(zi))

≤ C‖u‖L1(B+
1 ),

where the last constant depends only on n, c0, C0, ‖DA‖L∞(B+
1 ), and ‖b‖L∞(B+

1 ). This
concludes the proof of the theorem.

Remark 2.3.2. It is also possible to deduce a higher integrability of the gradient from
Lemma 2.3.1 directly by applying Gehring’s lemma [59]. However, by that method, the in-
tegrability exponent in Theorem 2.1.1 would no longer be dimensional (i.e., depending only
on n), but would additionally depend on the ellipticity constants.4 Thus, the techniques

4Indeed, combining Lemma 2.3.1 with the analogous interior estimates in [52, Proposition 1.3], by
Poincaré’s inequality and a scaling and covering argument, it is not hard to show that the (say) even

reflection of ∇u with respect to {xn = 0} satisfies
(
R−n

∫
BR(x)

|∇u|2
)1/2

≤ C1R
−n ∫

B2R(x)
|∇u| for any

ball B2R(x) ⊂ B1, where C1 = C1(n, c0, C0) is a universal constant. Applying Gehring’s lemma (for
instance, by Theorem 6.38 in [62]) we now obtain an estimate ‖∇u‖Lp(B+

1/2
) ≤ C‖∇u‖L2(B+

1 ) for some

p = p(n,C1) > 2 and C = C(n,C1).
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in [24] give a more precise control of the integrability exponent than Gehring’s lemma. For
instance, following the proof above, it is easy to see that one can take any γ(n) < 4

3n−2
.

We conclude this section by stating a corollary of the higher integrability and Hessian
estimates that will be useful in the next chapter. It consists of two simple estimates on
annuli that can be proven by a standard covering argument, combining Theorem 2.1.1
(respectively Theorem 2.1.4 and Lemma 2.3.1) with the analogous interior estimates The-
orem 1.1.1 (respectively in Proposition 1.1.3 and Remark 1.3.4) obtained in Chapter 1.

Corollary 2.3.3. Let u ∈ W 3,p(B+
1 ), for some p > n, be a nonnegative stable solution of

−Lu = f(u) in B+
1 , with u = 0 on ∂0B+

1 . Assume that f ∈ C1(R) is nonnegative and
nondecreasing. Assume that L satisfies conditions (2.1.3), (2.1.4), and (2.1.5) in Ω = B+

1 ,
and

‖DA‖L∞(B+
1 ) + ‖b‖L∞(B+

1 ) ≤ ε

for some ε > 0. Let 0 < ρ1 < ρ2 < ρ3 < ρ4 ≤ 1.
Then

‖∇u‖L2+γ(A+
ρ2,ρ3

) ≤ Cε,ρi‖u‖L1(A+
ρ1,ρ4

)

and
‖D2u‖L1(A+

ρ2,ρ3
) ≤ Cε,ρi‖u‖L1(A+

ρ1,ρ4
),

where Cε,ρi is a constant depending only on n, c0, C0, ε, ρ1, ρ2, ρ3, and ρ4.
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Chapter 3

Boundary regularity in C1,1 domains

This chapter establishes the boundary Hölder continuity of stable solutions to semilinear
elliptic problems in the optimal range of dimensions n ≤ 9, for C1,1 domains. We consider
equations −Lu = f(u) in a bounded C1,1 domain Ω ⊂ Rn, with u = 0 on ∂Ω, where L is a
linear elliptic operator with variable coefficients and f ∈ C1 is nonnegative, nondecreasing,
and convex. The stability of u amounts to the nonnegativity of the principal eigenvalue
of the linearized equation −L− f ′(u). Our result is new even for the Laplacian, for which
[24] proved the Hölder continuity in C3 domains.

3.1 Introduction

Let Ω ⊂ Rn be a bounded domain and f : R → R a C1 function. In this chapter, we
consider stable solutions u : Ω→ R to the semilinear problem{

−Lu = f(u) in Ω
u = 0 on ∂Ω,

(3.1.1)

where L is a second order linear elliptic differential operator of the form

Lu = aij(x)uij + bi(x)ui, aij(x) = aji(x). (3.1.2)

We assume that the coefficient matrix A(x) = (aij(x)) is uniformly elliptic in Ω, i.e., there
are positive constants c0, C0 such that

c0|p|2 ≤ aij(x)pipj ≤ C0|p|2 for all p ∈ Rn. (3.1.3)

This last condition is denoted by c0 ≤ A(x) ≤ C0. In addition, we will always assume that

aij ∈ C0,1(Ω), bi ∈ L∞(Ω) ∩ C0(Ω). (3.1.4)

For some auxiliary results, we will further need that

bi ∈ C0(Ω). (3.1.5)

A strong solution u ∈ C0(Ω)∩W 2,n
loc (Ω) of (3.1.1) is stable if the principal eigenvalue of

the linearized equation at u is nonnegative. Equivalently, the solution u is stable if there
is a function ϕ ∈ W 2,n

loc (Ω) satisfying{
Juϕ ≤ 0 a.e. in Ω,
ϕ > 0 in Ω,

(3.1.6)
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where Ju := L+ f ′(u) denotes the Jacobi operator (the linearization) at u. For variational
problems, the stability condition amounts to the nonnegativity of the second variation. In
particular, the class of stable solutions contains (local and global) minimizers. Instead,
here we are interested in non-variational equations as above. For fundamental properties
of the principal eigenvalue of linear non self-adjoint operators such as Ju, we refer to the
classic work of Berestycki, Nirenberg, and Varadhan [9].

The aim of this chapter is to investigate the regularity up to the boundary of stable
solutions to (3.1.1). Here, the question reduces to showing that solutions are bounded, since
the linear theory then allows to prove further smoothness properties. Our present work
extends the boundary regularity results of Cabré, Figalli, Ros-Oton, and Serra [24] and
of Cabré [19] for the Laplacian to the above operators with variable coefficients. When
n ≥ 10, examples of singular stable solutions have been known for a long time. In the
breakthrough article [24], the authors solved the long-standing conjecture: if n ≤ 9, then
all stable solutions are bounded (when L = ∆). Their proof was quite delicate and relied
on a contradiction-compactness argument which did not allow to quantify the constants in
the estimates. An alternative quantitative proof has been recently found in [19], although
it only applies to the Laplacian in flat domains. Generalizing and combining ideas form
these two works, we will give, for the first time (even for the Laplacian), a quantitative
proof valid in curved domains.

For L = ∆, a key assumption needed in [24] was for the domain to be of class C3. As
we explain next, our analysis will allow us to weaken this condition to a C1,1 regularity
assumption. For this, starting from a curved boundary, we flatten it out (locally) by
a change of variables. This transformation does not alter the semilinear nature of the
equation but modifies the coefficients, which now involve first and second order derivatives
of the flattening map. Namely, the new coefficients aij include first derivatives of this map,
while the bi contain second derivatives. Now, the crucial point is to obtain universal a
priori estimates independent of the nonlinearity (in the spirit of [24]) and having a specific
dependence on the coefficients. Our bounds will depend only on the ellipticity constants
in (3.1.3) and on the norms ‖∇aij‖L∞ and ‖bi‖L∞ of the coefficients, corresponding to the
flattening map of a C1,1 domain. As mentioned above, thanks to a device of [19] for flat
domains, our estimates in the new coordinates will all be quantitative. Combined with the
interior bounds that we established in [52], they will yield a global estimate.

We believe that our ideas can also be applied to study the boundary regularity of
stable solutions for other equations. Our method provides a robust, direct way of proving
quantitative estimates up to the boundary. In particular, when L is the p-Laplacian, we
could extend the optimal interior bounds of Cabré, Miraglio, and Sanchón in [25] up to the
boundary. By contrast, the previous work [24] relies on an intricate blow-up and Liouville
theorem argument. The authors of [24] need this in order to apply a result of theirs only
available on a flat boundary, which they could only prove by contradiction-compactness.
This critical step does not allow them to quantify the constants in their inequalities.

Variational problems have a long history of regularity results for stable solutions, start-
ing with the pioneering work of Crandall and Rabinowitz [44] in the seventies. For expo-
nential and power nonlinearities, they showed that stable solutions are bounded in smooth
domains when n ≤ 9 (see also Joseph and Lundgren [64] for an exhaustive analysis of
the radial case). Their result is optimal, since the logarithm u(x) = log(1/|x|2) ∈ W 1,2

0 (Ω)
solves (3.1.1) (in the weak sense) with Ω = B1, L = ∆, and f(u) = 2(n−2)eu, and is stable
for n ≥ 10. This last fact follows immediately from Hardy’s inequality. Surprisingly, [44]
appears to be the only variational paper where variable coefficients have been considered.
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Namely, the a priori estimates in [44] apply to self-adjoint operators in divergence form,
with merely bounded coefficients. However, the methods used cannot be extended to treat
more general nonlinearities.

The motivation for considering exponential nonlinearities in [44] came from problems in
combustion theory, namely, from the so called explosion or Gelfand problem [60] (recalled
in Subsection 3.1.2 below). In the nineties, Brezis [11] asked whether the optimal dimension
could be the same for more general nonlinearities. He was interested in a natural class of
nonlinearities for which the Gelfand problem admits stable solutions, namely: nonnegative,
nondecreasing, convex, and superlinear ones. This question motivated a series of works
trying to establish global a priori estimates for stable solutions to (3.1.1) in the model
case, i.e., when L = ∆. First, Nedev [78] proved their boundedness for n ≤ 3. Then,
Cabré and Capella [21] reached the optimal dimension n ≤ 9 in the radial case. Later,
Cabré [16] and Villegas [95] showed the boundedness when n ≤ 4. Afterwards, Cabré and
Ros-Oton [27] proved the boundedness for n ≤ 7 when Ω is a domain of double revolution.
Finally, Cabré, Figalli, Ros-Oton, and Serra [24] solved the conjecture in C3 domains.

Concerning non-variational problems, there is only one paper, to the best of our knowl-
edge, studying the regularity of stable solutions in our setting. In [40], Cowan and Ghous-
soub consider operators of the form (3.1.2), assuming that aij = δij and bi ∈ C∞(Ω), where
Ω ⊂ Rn is a smooth bounded domain. They showed that stable solutions are bounded
when n ≤ 9 for the exponential nonlinearity. In particular, adding an advection term does
not modify the optimal dimension in this case. This is in accordance with our present
work, where our mild smoothness assumption on the coefficients guarantees the invariance
of the optimal dimension for general nonlinearities. It is worth noting that the interest
of the authors in [40] was in singular nonlinearities appearing in the modeling of MEMS
devices, namely, nonlinearities f = f(u) defined for u ∈ [0, 1) which blow up at u = 1.

Finally, we would also like to mention the recent work of Costa, de Souza, and Montene-
gro [38] for a more general non-variational setting. In that paper, the authors consider the
Gelfand problem for systems of equations including operators of the form (3.1.2). While
they are mostly concerned with the existence of stable solutions to this problem, they also
address the question of regularity, but only for the Laplacian. More precisely, they study
stable solutions u : Rn → Rm (with m ≥ 2) of −∆u = F (u), where F : Rm → Rm satisfies
natural assumptions analogous to ours. In the radial case, they are able to show that they
are bounded for n ≤ 9, which is the optimal dimension for scalar equations. For convex
C1,1 domains, they show their boundedness for n ≤ 3 by adapting the interior estimates of
Cabré [16]. We believe that our techniques can also be used to reach the optimal dimension
for systems of equations in any C1,1 domain.

3.1.1 Main results

Our main result provides two types of a priori estimates for strong stable solutions on
domains of class C1,1. The first one is an energy estimate valid in all dimensions. It has
been announced in the previous chapter (Theorem 2.1.5 above), where we have proved it
in flat domains (see Theorem 2.1.5 above or Theorem 3.1.4 below). Here, we will complete
the proof, which involves a covering and approximation procedure. The second estimate
is a bound of the Hölder norm in the optimal range of dimensions n ≤ 9. As usual, here
and throughout the chapter, when we write C = C(. . .) for a constant C we mean that C
depends only on the quantities appearing inside the parentheses.
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Theorem 3.1.1. Let Ω ⊂ Rn be a bounded domain of class C1,1 and let L satisfy condi-
tions (3.1.3) and (3.1.4) in Ω. Assume that f ∈ C1(R) is nonnegative, nondecreasing, and
convex.

Let u ∈ C0(Ω) ∩W 2,n
loc (Ω) be a nonnegative stable solution of −Lu = f(u) in Ω, with

u = 0 on ∂Ω.
Then

‖∇u‖L2+γ(Ω) ≤ C‖u‖L1(Ω), (3.1.7)

where γ = γ(n) > 0 and C = C(Ω, n, c0, C0, ‖∇aij‖L∞(Ω), ‖bi‖L∞(Ω)). In addition,

‖u‖Cα(Ω) ≤ C‖u‖L1(Ω) if n ≤ 9, (3.1.8)

where α = α(n, c0, C0) > 0 and C = C(Ω, n, c0, C0, ‖∇aij‖L∞(Ω), ‖bi‖L∞(Ω)).

The proof of Theorem 3.1.1 relies on analogous boundary estimates in half-balls, given
next, as well as in the interior bounds from Chapter 1. As before, below, we always write
Rn

+ = {x ∈ Rn : xn > 0} and, for each ρ > 0, we let

B+
ρ := Rn

+ ∩Bρ.

Moreover, for any open set Ω ⊂ Rn
+, we denote its lower and upper boundaries by

∂0Ω = {xn = 0} ∩ ∂Ω, ∂+Ω = Rn
+ ∩ ∂Ω.

The Hölder estimate (3.1.8) will be a consequence of the following:

Theorem 3.1.2. Let L satisfy conditions (3.1.3), (3.1.4), and (3.1.5) in Ω = B+
1 . Assume

that f ∈ C1(R) is nonnegative, nondecreasing, and convex.
Let u ∈ W 3,p(B+

1 ), for some p > n, be a nonnegative stable solution to −Lu = f(u) in
B+

1 , with u = 0 on ∂0B+
1 .

Then
‖u‖

Cα(B+
1/2

)
≤ C‖u‖L1(B+

1 ) if n ≤ 9, (3.1.9)

where α = α(n, c0, C0) > 0 and C = C(n, c0, C0, ‖∇aij‖L∞(B+
1 ), ‖bi‖L∞(B+

1 )).

Remark 3.1.3. In contrast to Theorem 3.1.1 above, here we require additional hypotheses
on the solution and the coefficients. Namely, we need third weak derivatives of u to remove
the nonlinearity from the stability condition, making our bounds independent of f . We
further need the continuity of bi up to the boundary, assumption (3.1.5), to control certain
surface integrals over ∂0B+

1 appearing in the proof.
To prove the estimate in C1,1 domains from the one in half-balls, we carry out an

approximation and flattening procedure. We consider an exhaustion by smooth domains
Ωk and, in each of them, we construct a stable solution uk to a semilinear equation with
more regular coefficients. The smoothness of the data will guarantee that uk is in W 3,p(Ωk)
and hence, flattening the boundary ∂Ωk, we may apply Theorem 3.1.2. Thanks to the C1,1

regularity assumption, the constants in the bounds for uk in half-balls will be independent
of k. By convexity of f , the functions uk converge to the original solution and taking limits
we deduce the theorem.

As mentioned above, the energy estimate (3.1.7) in C1,1 domains uses the analogue
result in half-balls. In the following result from Chapter 2 (see Theorem 2.1.1), we obtained
such a bound via Hessian estimates for stable solutions in the spirit of Sternberg and
Zumbrun [91]. To prove Theorem 3.1.2, we will need both the energy and Hessian estimates.
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Theorem 3.1.4 (Theorem 2.1.4). Let L satisfy conditions (3.1.3), (3.1.4), and (3.1.5) in
Ω = B+

1 . Assume that f ∈ C1(R) is nonnegative and nondecreasing.
Let u ∈ W 3,p(B+

1 ), for some p > n, be a nonnegative stable solution to −Lu = f(u) in
B+

1 , with u = 0 on ∂0B+
1 .

Then
‖|∇u|D2u‖L1(B+

1/2
) ≤ C‖∇u‖2

L2(B+
1 )
, (3.1.10)

and
‖∇u‖L2+γ(B+

1/2
) ≤ C‖u‖L1(B+

1 ), (3.1.11)

where γ = γ(n) > 0 and C = C(n, c0, C0, ‖∇aij‖L∞(B+
1 ), ‖bi‖L∞(B+

1 )).

3.1.2 Application: Regularity of the extremal solution in C1,1

domains.

Let f : [0,+∞) → R satisfy f(0) > 0 and be nondecreasing, convex, and superlinear at
+∞, meaning that

lim
u→+∞

f(u)

u
= +∞.

Given a constant λ > 0, we consider the problem
−Lu = λf(u) in Ω

u > 0 in Ω
u = 0 on ∂Ω,

(3.1.12)

where Ω ⊂ Rn is a C1,1 bounded domain, and L satisfies conditions (3.1.3) and (3.1.4) in
Ω.

The boundary value problem (3.1.12) is the Gelfand problem mentioned above. It was
first presented by Barenblatt in a volume edited by Gelfand [60]. Originally, (3.1.12) was
introduced to study ignition and explosion phenomena in the theory of thermal combustion.
In that framework, u can be understood as the temperature of a combustible mixture, while
λ measures the relative strength of the reaction f(u) with respect to the diffusion-advection
processes modeled by L. When λ is large, solutions are not expected to exist, which is
interpreted as the occurrence of an explosion.

Stable solutions play a prominent role in the Gelfand problem, as evidenced by the next
proposition below. For an account of the history and references for (3.1.12), we refer the
reader to the monograph of Dupaigne [48]. Here, instead, we only recall a basic, well-known
result concerning the existence of solutions to (3.1.12).

Note that by the identification aij ∈ C0,1(Ω) = W 1,∞(Ω) we can always write our
operator L in divergence form

Lu = div (A(x)∇u) + b̂(x) · ∇u, (3.1.13)

where b̂(x) = (̂bi(x)) is the vector field given by

b̂i(x) = bi(x)− ∂kaki(x). (3.1.14)

In particular, since we always assume that ∂kaij ∈ L∞(Ω) and bi ∈ L∞(Ω), we also have

b̂i ∈ L∞(Ω). The following result for non-variational problems has appeared in a slightly
different form in [8, 38]. For the classical variational version, see, for instance, [11,48].
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Proposition 3.1.5. There exists a constant λ? ∈ (0,+∞) such that:

(i) For each λ ∈ (0, λ?) there is a unique strong stable solution uλ ∈ C0(Ω)∩W 2,n
loc (Ω) of

(3.1.12). Moreover, we have uλ < uλ′ in Ω for λ < λ′.

(ii) For λ > λ? there is no strong solution.

Assume moreover that
div b̂ ∈ L∞(Ω), (3.1.15)

so that the adjoint operator

LT ζ = div (A(x)∇ζ)− b̂(x) · ∇ζ − div b̂(x) ζ

is well defined for ζ ∈ W 2,n
loc (Ω) and has bounded coefficients. Then:

(iii) For λ = λ? there exists a unique L1-weak solution u?, in the following sense: u? ∈
L1(Ω), f(u?)dist(·, ∂Ω) ∈ L1(Ω), and

−
∫

Ω

u?LT ζ dx = λ?
∫

Ω

f(u?)ζ dx for all ζ ∈ W 2,n(Ω) with LT ζ ∈ L∞(Ω) and ζ|∂Ω = 0.

The solution u? is called the extremal solution of (3.1.12) and satisfies uλ ↑ u? as
λ ↑ λ?.

Remark 3.1.6. The uniqueness of u? is due to Martel [73]. Although he proved it in the
model case L = ∆, the same ideas extend to the operators considered in this chapter.

Remark 3.1.7. The additional regularity (3.1.15) of the drift b̂i is needed in (iii) to
guarantee that u? ∈ L1(Ω) and f(u?)dist(·, ∂Ω) ∈ L1(Ω). For this, testing the equation
with the principal eigenfunction φ of LT , by superlinearity of f , it is easy to show that∫

Ω

f(uλ)φ dx ≤ C for λ ∈ (0, λ?),

where C does not depend on λ. By regularity φ ∈ W 2,p(Ω) for all p <∞, hence φ ∈ C1(Ω),
and by maximum principle φ ≥ c dist(·, ∂Ω), whence f(u?)dist(·, ∂Ω) ∈ L1(Ω). Now,
testing the equation with the unique solution to −LTϑ = 1 in Ω, ϑ = 0 on ∂Ω, we also have∫

Ω

uλ dx = λ

∫
Ω

f(uλ)ϑ dx for λ ∈ (0, λ?).

Again, by regularity ϑ ≤ Cφ, and using the inequality above, we conclude that u? ∈ L1(Ω).

Since, a priori, the extremal solution u? is only in L1(Ω), it is natural to investigate
further regularity properties. In this direction, Brezis and Vázquez [14, Problem 1] asked
whether the extremal solution for the model operator L = ∆ was always in W 1,2

0 (Ω), this
being the natural energy space of the variational problem. Similarly, as explained above,
Brezis [11, Open problem 1] asked if the extremal solution u? was always bounded for
n ≤ 9. Both of these questions were answered positively by Cabré, Figalli, Ros-Oton, and
Serra [24] for the Laplacian in C3 domains. For this, they applied their a priori estimates
to the classical stable solutions {uλ}λ<λ? and, using that they are bounded in L1(Ω), they
passed to the limit as λ ↑ λ?. By this same procedure, our main theorem, Theorem 3.1.1,
extends their result to operators with coefficients in C1,1 domains:
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Corollary 3.1.8. Let Ω ⊂ Rn be a bounded domain of class C1,1 and let L satisfy condi-
tions (3.1.3), (3.1.4), and (3.1.15) in Ω. Assume that f ∈ C1(R) is positive, nondecreasing,
convex, and superlinear at +∞.

Then the extremal solution u? to (3.1.12) is in W 1,2+γ
0 (Ω) for some γ = γ(n) > 0.

Moreover, if n ≤ 9, then u? is bounded (and hence is a strong solution in W 2,p(Ω) for all
p <∞).

3.1.3 Structure of the proof

By approximation, it will suffice to prove Theorem 3.1.1 in smooth domains. Flattening the
boundary, we further reduce the problem to half-balls and, hence, the core of the proof is to
show the Hölder estimate in Theorem 3.1.2. Moreover, by a scaling and covering argument,
we may assume that the operator L is close to the Laplacian, i.e., the coefficients satisfy
A(0) = I and ‖DA‖L∞ + ‖b‖L∞ ≤ ε, with ε small.

As in the previous chapters, to obtain a priori estimates, we will use the stability of
the solution via a more convenient integral inequality. Following the notation above, we
denote the norm induced by the positive definite matrix A(x) = (aij(x)) by

|p|A(x) := (aij(x)pipj)
1/2 for p ∈ Rn.

In Chapter 1, we showed that if u is stable, then∫
Ω

f ′(u)ξ2 dx ≤
∫

Ω

∣∣∣∇ξ − 1
2
ξA−1(x)̂b(x)

∣∣∣2
A(x)

dx for all ξ ∈ C∞c (Ω), (3.1.16)

where the vector field b̂(x) = (̂bi(x)) is given by (3.1.14) above (and introduced in (2.1.7)).
Using the integral stability inequality (3.1.16) and thanks to the energy and Hessian

estimates in Theorem 3.1.4, we will be able to prove two key auxiliary results: Proposi-
tions 3.1.9 and 3.1.10 below, which we comment on next. Combined, they will yield the
Hölder estimate (3.1.9) in Theorem 3.1.2.

The first proposition provides a weighted L2 estimate for the radial derivative

ur =
x

|x|
· ∇u (r = |x|)

in a half-ball by the L2 norm of the full gradient in a half-annulus, under a smallness
condition on the coefficients. This bound requires n ≤ 9 and will be essential in the proof
of the Hölder regularity of stable solutions. As above, here and throughout this chapter, a
constant depending only on n, c0, and C0 will be called universal.

Proposition 3.1.9. Let u ∈ W 3,p(B+
1 ), for some p > n, be a nonnegative stable solution

of −Lu = f(u) in B+
1 , with u = 0 on ∂0B+

1 . Assume that f ∈ C1(R) is nonnegative and
nondecreasing. Assume that L satisfies conditions (3.1.3), (3.1.4), and (3.1.5) in Ω = B+

1 ,
and

‖DA‖L∞(B+
1 ) + ‖b‖L∞(B+

1 ) ≤ ε

for some ε > 0.
If 3 ≤ n ≤ 9 and ε ≤ ε0, then∫

B+
ρ

r2−nu2
r dx ≤ C

∫
B+

2ρ\B
+
ρ

r2−n|∇u|2 dx+ Cε

∫
B+

4ρ

r3−n|∇u|2 dx

for all ρ ≤ 1/4, where ε0 > 0 and C are universal constants.
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Although Proposition 3.1.9 requires n ≥ 3, adding superfluous variables, we may be
able to use it to prove the Cα estimate when n ≤ 2 as well.

To prove Proposition 3.1.9, we use the integral stability inequality (3.1.16) with ap-
propriate test functions. Letting ξ = cη in (3.1.16) with Ω = B+

1 , where c, η are smooth
functions satisfying c = 0 on ∂0B+

1 and supp η ⊂ B1, if we integrate by parts, then (3.1.16)
becomes ∫

B+
1

cJuc η
2 dx ≤

∫
B+

1

c2
∣∣∇η − 1

2
ηA−1(x)b(x)

∣∣2
A(x)

dx. (3.1.17)

By approximation, we may choose

c(x) = x · ∇u(x) = rur and η(x) = |x|
2−n
2

A−1(0)ζ(x),

where ζ ∈ C∞c (B1) is a cut-off. A test function of this type appeared for the first time in
the work of Cabré and Capella [21] for the Laplacian in the radial case. A similar choice
was used in [24] to establish the boundedness in C3 domains. Our function is a linear
transformation of the latter one.

This choice of test function will lead to the desired inequality, but also produces
weighted Hessian errors that we must control. For this, we invoke Theorem 3.1.4, which is

why we need the continuity of the coefficient bi ∈ C0(B+
1 ) and the assumptions f ≥ 0 and

f ′ ≥ 0 on the nonlinearity. By contrast, for the Laplacian in C3 domains, no such errors
arise, which is why the previous works [19, 24] did not need any assumptions on f at this
step.

In the second proposition, we control the L1 norm of our stable solution by the L1

norm of its radial derivative. This estimate is an extension of a device in [19] for the
Laplacian in half-balls, and it is also the key step which makes our proofs quantitative. In
addition to a smallness condition on the coefficients, this is the only place where we need
the assumption A(0) = I and where we use the convexity of f crucially (aside from the
approximation argument for C1,1 domains). It is worth mentioning that such a tool is also
available for interior estimates, where the proof is entirely different and only requires f to
be nonnegative; see [19,52].

Proposition 3.1.10. Let u ∈ W 3,p(B+
1 ), for some p > n, be a nonnegative stable solution

of −Lu = f(u) in B+
1 , with u = 0 on ∂0B+

1 . Assume that f ∈ C1(R) is nonnegative,
nondecreasing, and convex. Assume that L satisfies conditions (3.1.3), (3.1.4), and (3.1.5)
in Ω = B+

1 , and that

A(0) = I and ‖DA‖L∞(B+
1 ) + ‖b‖L∞(B+

1 ) ≤ ε

for some ε > 0.
If ε ≤ ε0, then

‖u‖L1(B+
1 \B

+
1/2

) ≤ C‖ur‖L1(B+
1 \B

+
1/2

),

where ε0 > 0 and C are universal constants.

The proof of the Hölder estimate (3.1.9) in Theorem 3.1.2 requires the previous results.
Combining the energy estimate (3.1.11) with Proposition 3.1.10 on dyadic annuli and
rescaling, it is easy to show that the weighted Dirichlet energy in a ball is controlled by
the weighted L2 norm of the radial derivative in a larger ball. Applying Proposition 3.1.9
and by hole-filling, we now deduce a decay of the former quantity, leading to a Cα bound.
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3.1.4 Outline of the chapter

In Section 3.2, we prove Proposition 3.1.9, the weighted inequality for the radial derivative.
Section 3.3 focuses on the proof of Proposition 3.1.10, controlling the solution by its radial
derivative. In Section 3.4, we obtain the Hölder estimates in Theorem 3.1.2. Finally, in
Section 3.5 we proof our main result, Theorem 3.1.1.

3.2 The boundary weighted L2 estimate for radial deriva-

tives

Here we obtain the weighted estimates in half-balls for the radial derivative leading to
Proposition 3.1.9. We will test the stability inequality (3.1.17) with the functions

c := x · ∇u and η = r
2−n
2 ζ,

where ζ ∈ C∞c (B1) is a cut-off. This is a valid test function, since x · ∇u = 0 on ∂0B+
1 .

Thus, the proof is essentially the same as in the interior case; see Chapter 1 or [52].
First we test with a generic cut-off η, not necessarily a power function:

Lemma 3.2.1. Let u ∈ W 3,p(B+
1 ), for some p > n, be a stable solution of −Lu = f(u)

in B+
1 , with u = 0 on ∂0B+

1 , for some function f ∈ C1(R). Assume that L satisfies
conditions (3.1.3) and (3.1.4) in Ω = B+

1 , and that

‖DA‖L∞(B+
1 ) + ‖b‖L∞(B+

1 ) ≤ ε

for some ε > 0.
Then∫
B+

1

|∇u|2A(x)

(
(n− 2)η2 + x · ∇(η2)

)
dx

+

∫
B+

1

(
− 2(x · ∇u)A(x)∇u · ∇(η2)− |x · ∇u|2|∇η|2A(x)

)
dx

≤ Cε

∫
B+

1

|D2u||∇u||x|2η2 dx+ Cε

∫
B+

1

|∇u|2
(
|x|2|∇(η2)|+ (|x|+ ε|x|2)η2

)
dx,

for all η ∈ C∞c (B1), where C is universal.

Proof. We will test the stability inequality (3.1.17) with c = x ·∇u. First, we compute the
left-hand side of (3.1.17), i.e.,

∫
B+

1
(x · ∇u)Ju[x · ∇u] η2 dx. Computing, we have

L[x · ∇u] = xkaij(x)uijk + 2aij(x)uij + xkbi(x)uik + bi(x)ui for a.e. x ∈ B+
1 . (3.2.1)

For the zero order term, integrating by parts and using the equation, we have∫
B+

1

f ′(u)(x · ∇u)2 η2 dx =

∫
B+

1

∇[f(u)] · (x · ∇u)x η2 dx =

∫
B+

1

Lu div
{

(x · ∇u)x η2
}

dx

= −
∫
B+

1

x · ∇[aij(x)uij] (x · ∇u) η2 dx+

∫
B+

1

bi(x)ui div
{

(x · ∇u)x η2
}

dx,

(3.2.2)
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where in the last line we have integrated by parts again. Combining (3.2.1) and (3.2.2), it
follows that∫

B+
1

(x · ∇u)Ju[x · ∇u] η2 dx =

∫
B+

1

(x · ∇u)L[x · ∇u] η2 dx+

∫
B+

1

f ′(u)(x · ∇u)2 η2 dx

=

∫
B+

1

2(x · ∇u)aij(x)uijη
2 dx−

∫
B+

1

x · ∇aij(x)uij (x · ∇u) η2 dx

+

∫
B+

1

xkbi(x)uik(x · ∇u)η2 dx+

∫
B+

1

bi(x)ui

(
(x · ∇u)η2 + div

{
(x · ∇u)x η2

})
dx.

(3.2.3)

Notice that the first integrand in the right-hand side of (3.2.3) can be written as

2(x · ∇u)aij(x)uij = div
(
2(x · ∇u)A(x)∇u− |∇u|2A(x)x

)
+ (n− 2)|∇u|2A(x)

− 2(x · ∇u)∂iaij(x)uj + x · ∇aij(x)uiuj.
(3.2.4)

Hence, substituting (3.2.4) in (3.2.3) we deduce∫
B+

1

(x · ∇u)Ju[x · ∇u] η2 dx

=

∫
B+

1

div
(
2(x · ∇u)A(x)∇u− |∇u|2A(x)x

)
η2 dx+

∫
B+

1

(n− 2)|∇u|2A(x)η
2 dx

+

∫
B+

1

(
− 2∂iaij(x)uj (x · ∇u) + x · ∇aij(x)

{
uiuj − uij (x · ∇u)

})
η2 dx

+

∫
B+

1

bi(x)xkuik(x · ∇u)η2 dx+

∫
B+

1

bi(x)ui

(
(x · ∇u)η2 + div

{
(x · ∇u)x η2

})
dx.

(3.2.5)

Thus, integrating by parts the divergence term in (3.2.5) and applying the coefficient
estimates ‖∇aij‖L∞ + ‖bi‖L∞ ≤ ε, we obtain the lower bound∫

B+
1

(x · ∇u)Ju[x · ∇u] η2 dx

≥ −
∫
B+

1

2(x · ∇u)A(x)∇u · ∇(η2) +

∫
B+

1

|∇u|2A(x)

(
(n− 2)η2 + x · ∇(η2)

)
dx

− Cε
∫
B+

1

(
|D2u||∇u||x|2η2 + |∇u|2|x|η2 + |∇u|2|x|2|∇(η2)|

)
dx.

(3.2.6)

On the other hand, testing the integral stability inequality (3.1.17) with c = x ·∇u, we
deduce the upper bound∫

B+
1

(x · ∇u)Ju[x · ∇u] η2 dx

≤
∫
B+

1

|x · ∇u|2
∣∣∣∇η − 1

2
ηA−1(x)̂b(x)

∣∣∣2
A(x)

dx

≤
∫
B+

1

|x · ∇u|2|∇η|2A(x) dx+ Cε

∫
B1

|∇u|2|x|2
(
|∇(η2)|+ εη2

)
dx.

(3.2.7)

Combining (3.2.6) and (3.2.7) and rearranging terms yields the claim.
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Recall our notation for the radial derivative

r = |x|, ur =
x

|x|
· ∇u.

Given ρ ∈ (0, 1/2], we consider a cut-off ζ ∈ C∞c (B2ρ) with 0 ≤ ζ ≤ 1, ζ = 1 in Bρ, and
|∇ζ| ≤ C/ρ in supp |∇ζ| ⊂ B2ρ \ Bρ. For a ≥ 0, by approximation, we may take the
singular test function η = r−a/2ζ in Lemma 3.2.1 (see Lemma 1.5.4 above), which yields:

Lemma 3.2.2. Let u ∈ W 3,p(B+
1 ), for some p > n, be a stable solution of −Lu = f(u)

in B+
1 , with u = 0 on ∂0B+

1 , for some function f ∈ C1(R). Assume that L satisfies
conditions (3.1.3) and (3.1.4) in Ω = B+

1 , and that

‖DA‖L∞(B+
1 ) + ‖b‖L∞(B+

1 ) ≤ ε

for some ε > 0.
If 0 ≤ a ≤ min{10, n} − 2, then

(n− 2− a)

∫
B+
ρ

r−a|∇u|2 dx+
a(8− a)

4

∫
B+
ρ

r−au2
r dx

≤ C

∫
B+

2ρ\B
+
ρ

r−a|∇u|2 dx+ Cε

∫
B+

2ρ

r2−a|D2u||∇u| dx

+ Cε

∫
B+

2ρ

(
r1−a + εr2−a)|∇u|2 dx.

for all ρ ≤ 1/2, where C is a universal constant.

The proof of this lemma is the same as the one for interior estimates in Lemma 1.5.4,
hence we omit it. Lemma 3.2.2 now allows us to prove Proposition 3.1.9:

Proof of Proposition 3.1.9. Since 3 ≤ n ≤ 9, we have that min{10, n} − 2 = n− 2 and we
may choose the exponent a = n− 2 in Lemma 3.2.2, leading us to the inequality

(n− 2)(10− n)

4

∫
B+
ρ

r2−nu2
r dx

≤ C

∫
B+

2ρ\B
+
ρ

r2−n|∇u|2 dx+ Cε

∫
B+

2ρ

r4−n|D2u||∇u| dx

+ Cε

∫
B+

2ρ

(
r3−n + εr4−n)|∇u|2 dx

(3.2.8)

for ρ ≤ 1/2.
It remains to control the weighted Hessian error in (3.2.8). For this, combining the

boundary “Hessian times the gradient” estimate (3.1.10) in Theorem 3.1.4 with the analo-
gous interior estimates in Theorem 1.1.2 above, by a simple scaling and covering argument
we have∫

B+
δ/2
\B+

δ/4

r4−n|D2u||∇u| dx ≤ C

∫
B+
δ \B

+
δ/8

r3−n|∇u|2 dx for all δ ∈ (0, 1) and ε ≤ ε0,

(3.2.9)
where ε0 > 0 and C are universal. Letting δ = 23−kρ in (3.2.9) and summing in k ∈ N, we
obtain∫

B+
2ρ

r4−n|D2u||∇u| dx ≤ C

∫
B+

4ρ

r3−n|∇u|2 dx for all ρ ≤ 1/4 and ε ≤ ε0. (3.2.10)

Applying (3.2.10) in (3.2.8), using that (10− n)(n− 2) > 0, we deduce the claim.
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3.3 In half-annuli the radial derivative controls the

function in L1

Here we take advantage of the homogeneity of the equation to control the L1 norm of a
solution by the L1 norm of its radial derivative. This is an extension of a device due to
Cabré [19] which provided quantitative proofs of the regularity of stable solutions for the
Laplacian in flat domains. Our proofs remain quantitative thanks to this idea.

Let τ ≥ 1 be a parameter close to 1. Given any function v : B+
1 → R, we denote its

L∞ rescaling by vτ := v(τ ·). Consider the elliptic operator Lv = aij(x)vij + bi(x)vi, with

coefficients aij ∈ C0,1(B+
1 ) and bi ∈ C0(B+

1 ). For each τ , we define Lτ to be the operator
given by the rescaling

Lτv := τ−2aτij(x)vij + τ−1bτi (x)vi. (3.3.1)

Our principal motivation for considering Lτ is the invariance property (Lv)τ = Lτvτ . In
particular, given u ∈ W 3,p(B+

1 ) a solution to −Lu = f(u) in B+
1 , we have

− Lτuτ = f(uτ ) in B+
1/τ . (3.3.2)

Notice that if 1 ≤ τ < 1 + δ, then this last equation is satisfied in B+
1/(1+δ) ⊂ B+

1/τ . To

prove Proposition 3.1.10, we will take a derivative of (3.3.2) with respect to τ .
Before giving the proof of the proposition, it is convenient to recall the following simple

corollary of the Hessian and higher integrability estimates proven in Chapter 2. Here
and throughout this section, we use the notation for half-annuli from [19], namely, for
ρ2 > ρ1 > 0, we let

A+
ρ1,ρ2

:= B+
ρ2
\B+

ρ1
= {x ∈ Rn : xn > 0, ρ1 < |x| < ρ2}.

Corollary 3.3.1 (Corollary 2.3.3 in Chapter 2). Let u ∈ W 3,p(B+
1 ), for some p > n,

be a nonnegative stable solution of −Lu = f(u) in B+
1 , with u = 0 on ∂0B+

1 . As-
sume that f ∈ C1(R) is nonnegative and nondecreasing. Assume that L satisfies con-
ditions (3.1.3), (3.1.4), and (3.1.5) in Ω = B+

1 , and

‖DA‖L∞(B+
1 ) + ‖b‖L∞(B+

1 ) ≤ ε

for some ε > 0. Let 0 < ρ1 < ρ2 < ρ3 < ρ4 ≤ 1.
Then

‖∇u‖L2+γ(A+
ρ2,ρ3

) ≤ Cε,ρi‖u‖L1(A+
ρ1,ρ4

)

and
‖D2u‖L1(A+

ρ2,ρ3
) ≤ Cε,ρi‖u‖L1(A+

ρ1,ρ4
),

where Cε,ρi is a constant depending only on n, c0, C0, ε, ρ1, ρ2, ρ3, and ρ4.

Proof of Proposition 3.1.10. Considering the rescaled function u( ·
6
), we may assume that

we have a stable solution in B+
6 .

Let ζ ∈ C∞c (A4,5) be a nonnegative cut-off function with ζ = 1 in A4.1,4.9. We consider
the function ξ := xnζ, which satisfies

ξ ≥ 0 in A+
4,5, ξ = 0 on ∂0A+

4,5, ξ = ξν = 0 on ∂+A+
4,5, and ξ = xn in A+

4.1,4.9.

Multiplying (3.3.2) (rescaled) by ξ for each 1 ≤ τ ≤ 1.1 and integrating in A+
4,5, we have∫

A+
4,5

(Lτuτ )ξ dx = −
∫
A+

4,5

f(uτ ) dx for all τ ∈ [1, 1.1]. (3.3.3)
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Differentiating (3.3.3) with respect to τ and integrating, we also have∫ 1.1

1

d

dτ

(∫
A+

4,5

(Lτuτ )ξ dx

)
dτ =

∫
A+

4,5

(
f(u)− f(u1.1)

)
ξ dx. (3.3.4)

Our claim will be a consequence of this last identity. For this, we first establish lower
bounds for the left-hand side of (3.3.4) by using that Lτuτ ≤ 0. Later, with the help of
the stability inequality and the convexity of f , we obtain upper bounds of the right-hand
side. Finally, we will control the remaining Hessian errors by applying Corollary 3.3.1.

Step 1. We prove that

d

dτ

∫
A+

4,5

(Lτuτ )ξ dx ≥ c‖u‖L1(A+
4.7,4.8) − C‖ur‖L1(A+

4,5.5)

− Cε‖D2u‖L1(A+
4,5.5) − Cε‖∇u‖L1(A+

4,5.5)

for all τ ∈ [1, 1.1], where c and C are universal constants.
By definition (3.3.1), we have∫

A+
4,5

(Lτuτ )ξ dx =

∫
A+

4,5

τ−2aτij(x)uτij ξdx+

∫
A+

4,5

τ−1bτi (x)uτi ξ dx (3.3.5)

for all τ ∈ [1, 1.1].
On the one hand, since duτ

dτ
= τ−1x · ∇uτ , differentiating under the integral sign

d

dτ

{∫
A+

4,5

τ−2aτij(x)uτij ξdx

}
=

∫
A+

4,5

τ−3aτij(x)[x · ∇uτ ]ij ξdx− 2

∫
A+

4,5

τ−3aτij(x)uτij ξdx+

∫
A+

4,5

τ−3x · ∇aτij(x)uτij ξdx

=

∫
A+

4,5

τ−1Lτ [x · ∇uτ ] ξdx− 2

∫
A+

4,5

τ−1(Lτuτ ) ξdx−
∫
A+

4,5

τ−2bτi (x)[x · ∇uτ ]i ξdx

+

∫
A+

4,5

τ−3x · ∇aτij(x)uτij ξdx+ 2

∫
A+

4,5

τ−2bτi (x)uτi ξdx.

(3.3.6)

On the other hand, since supp ξ1/τ ⊂ A+
4τ,5τ ⊂ A+

4,5.5, by a change of variables∫
A+

4,5

τ−1bτi (x)uτi ξ dx =

∫
A+

4,5

bτi (x)(ui)
τξ dx =

∫
A+

4,5.5

τ−nbi(x)uiξ
1/τ dx

and taking a derivative

d

dτ

{∫
A+

4,5

τ−1bτi (x)uτi ξ dx

}
=

d

dτ

{∫
A+

4,5.5

τ−nbi(x)uiξ
1/τ dx

}
= −n

∫
A+

4,5.5

τ−(n+1)bi(x)uiξ
1/τ dx−

∫
A+

4,5.5

τ−(n+2)bi(x)ui x · ∇ξ1/τ dx

= −n
∫
A+

4,5

τ−2bτi (x)uτi ξ dx−
∫
A+

4,5

τ−3bτi (x)uτi x · ∇ξ dx,

(3.3.7)
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where in the last line we have undone the change of variables. Thus, combining (3.3.6) and
(3.3.7), by (3.3.5) we deduce

d

dτ

{∫
A+

4,5

(Lτuτ )ξ dx

}
=

∫
A+

4,5

τ−1Lτ [x · ∇uτ ] ξdx− 2

∫
A+

4,5

τ−1(Lτuτ ) ξdx

+

∫
A+

4,5

τ−3x · ∇aτij(x)uτij ξdx−
∫
A+

4,5

τ−2bτi (x)[x · ∇uτ ]i ξdx

+ (2− n)

∫
A+

4,5

τ−2bτi (x)uτi ξdx−
∫
A+

4,5

τ−3bτi (x)uτi x · ∇ξ dx,

and hence, by the bounds 1 ≤ τ ≤ 1.1 and ‖∇aij‖L∞ + ‖bi‖L∞ ≤ ε, we have

d

dτ

{∫
A+

4,5

(Lτuτ )ξ dx

}
≥
∫
A+

4,5

τ−1Lτ [x · ∇uτ ] ξdx− 2

∫
A+

4,5

τ−1(Lτuτ ) ξdx

− Cε‖D2u‖L1(A+
4,5.5) − Cε‖∇u‖L1(A+

4,5.5).

(3.3.8)

Next, we bound the two terms in the right-hand side of (3.3.8) by below.

For the first term, we write Lτv = div (τ−2Aτ (x)v) + τ−1b̂τ (x) · ∇v in divergence form
as in (3.1.13) and integrate by parts. Recalling that ξ and ξν vanish on ∂+A+

4,5, and ξ and
x · ∇uτ vanish on ∂0A+

4,5, integrating by parts twice we have∫
A+

4,5

τ−1Lτ [x · ∇uτ ] ξ dx

=

∫
A+

4,5

τ−3(x · ∇uτ )div
(
Aτ (x)∇ξ

)
dx+

∫
A+

4,5

τ−2b̂τ (x) · ∇[x · ∇uτ ] ξ dx

≥ −C‖ur‖L1(A+
4,5.5) − Cε‖D

2u‖L1(A+
4,5.5) − Cε‖∇u‖L1(A+

4,5.5),

(3.3.9)

where in the last line we have used that 1 ≤ τ ≤ 1.1, as well as the uniform ellipticity and
the bounds ‖∇aij‖L∞ + ‖bi‖L∞ ≤ ε.

The lower bounds for the second term in (3.3.8) are the most delicate. Given ρ1 ∈
(4.1, 4.2) and ρ2 ∈ (4.8, 4.9), we consider the solution ϕ of the mixed boundary value
problem 

−∆ϕ = 1 in A+
ρ1,ρ2

ϕ = 0 on ∂0A+
ρ1,ρ2

ϕν = 0 on ∂+A+
ρ1,ρ2

.

Notice that ϕ ≥ 0 in A+
ρ1,ρ2

by the maximum principle. Moreover, we have the a priori
bounds |ϕ|+ |∇ϕ| ≤ C in A+

ρ1,ρ2
, where C = C(n) is a dimensional constant, and hence

ξ ≥ cϕ in A+
ρ1,ρ2

, (3.3.10)

for some small dimensional c = c(n) > 0; for the details see [19, Appendix B].
Using (3.3.10) and by the nonnegativity of −Lτuτ = f(uτ ) ≥ 0, we have

−
∫
A+

4,5

τ−1(Lτuτ ) ξ dx ≥ c

∫
A+
ρ1,ρ2

τ−1(−Lτuτ )ϕ dx. (3.3.11)
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Since A(0) = I, we have |Aτ (x)− I| ≤ ετ |x| and writing

Lτuτ = τ−2∆uτ + τ−2tr
(
(Aτ (x)− I)D2uτ

)
+ τ−1bτ (x) · ∇uτ ,

by the bounds for ϕ, τ , and the coefficients, the right-hand side of (3.3.11) can be further
bounded by below as∫

A+
ρ1,ρ2

τ−1(−Lτuτ )ϕ dx

≥ τ−3

∫
A+
ρ1,ρ2

(−∆uτ )ϕ dx− Cε
∫
A+
ρ1,ρ2

τ−1
(
|D2uτ ||x|+ |∇uτ |

)
dx

≥ c

∫
A+
ρ1,ρ2

(−∆uτ )ϕ dx− Cε‖D2u‖L1(A+
4,5.5) − Cε‖∇u‖L1(A+

4,5.5).

(3.3.12)

Following [19], we integrate by parts the Laplacian in (3.3.12) as∫
A+
ρ1,ρ2

(−∆uτ )ϕ dx =

∫
A+
ρ1,ρ2

uτ dx−
∫
∂+A+

ρ1,ρ2

(uτ )ν dHn−1

≥ c‖u‖L1(A+
τρ1,τρ2

) −
∫
∂+B+

ρ1

|(uτ )r| dHn−1 −
∫
∂+B+

ρ2

|(uτ )r| dHn−1

≥ c‖u‖L1(A+
4.7,4.8) − C

∫
∂+B+

τρ1

|ur| dHn−1 − C
∫
∂+B+

τρ2

|ur| dHn−1,

(3.3.13)

where in the last line we have used that τρ1 ≤ 1.1 · 4.2 ≤ 4.7 and τρ2 ≥ 4.8. Now,
combining (3.3.11), (3.3.12), and (3.3.13), we deduce

−2

∫
A+

4,5

τ−1(Lτuτ ) ξ dx ≥ c‖u‖L1(A+
4.7,4.8) − C

∫
∂+B+

τρ1

|ur| dHn−1 − C
∫
∂+B+

τρ2

|ur| dHn−1

− Cε‖D2u‖L1(A+
4,5.5) − Cε‖∇u‖L1(A+

4,5.5).

(3.3.14)

Integrating (3.3.14) in ρ1 ∈ (4.1, 4.2) and ρ2 ∈ (4.8, 4.9), using that τρ1 ≥ 4.1 ≥ 4 and
τρ2 ≤ 1.1 · 4.9 ≤ 5.5, we finally obtain

−2

∫
A+

4,5

τ−1(Lτuτ ) ξ dx ≥ c‖u‖L1(A+
4.7,4.8) − C‖ur‖L1(A+

4,5.5)

− Cε‖D2u‖L1(A+
4,5.5) − Cε‖∇u‖L1(A+

4,5.5).

(3.3.15)

Applying (3.3.9) and (3.3.15) in (3.3.8) now yields the claim.

Step 2. We prove that for every δ ∈ (0, 1) and ε0 > 0, we have∫
A+

4,5

(
f(u)− f(u1.1)

)
ξ dx

≤ Cε0

(
δ‖u‖L1(A+

3,6) + δ‖D2u‖L1(A+
3.8,5.8) + δ−1−2 2+γ

γ ‖ur‖L1(A+
3,6)

)
for all ε ≤ ε0, where γ = γ(n) > 0 and Cε0 depends only on n, c0, C0, and ε0.
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Let φ ∈ C∞c (A3.9,5.1) be a nonnegative test function with φ = 1 in A4,5. Since ξ = 0
on ∂A+

4,5 and u − u1.1 = 0 on ∂0A+
3.9,5.1, the functions ξ and (u − u1.1)φ are valid test

functions in the integral stability inequality (3.1.16) with Ω = B+
1 .

Since f is nondecreasing, we have f ′ ≥ 0. By convexity f(u)−f(u1.1) ≤ f ′(u)(u−u1.1),
hence, multiplying by ξ, integrating, and using the stability inequality (3.1.16) twice, we
obtain∫

A+
4,5

(
f(u)− f(u1.1)

)
ξ dx ≤

∫
A+

4,5

f ′(u)(u− u1.1)ξ dx

≤

(∫
A+

4,5

f ′(u)ξ2 dx

)1/2(∫
A+

3.9,5.1

f ′(u)
(
(u− u1.1)φ

)2
dx

)1/2

≤

(∫
A+

4,5

|∇ξ − 1
2
ξA−1(x)̂b(x)|2A(x) dx

)1/2

·

(∫
A+

3.9,5.1

∣∣∇{(u− u1.1)φ
}
− 1

2
(u− u1.1)φA−1(x)̂b(x)

∣∣2
A(x)

dx

)1/2

.

(3.3.16)

Using that ‖ξ‖C1 + ‖φ‖C1 ≤ C and the coefficient bounds, from (3.3.16) it follows that∫
A+

4,5

(
f(u)− f(u1.1)

)
ξ dx

≤ C(1 + ε)‖∇(u− u1.1)‖L2(A+
3.9,5.1) + C(1 + ε)2‖u− u1.1‖L2(A+

3.9,5.1)

≤ Cε0‖∇(u− u1.1)‖L2(A+
3.9,5.1),

(3.3.17)

where in the last line we have applied the Poincaré inequality for functions vanishing
on ∂0A+

3.9,5.1.
It remains to control the norm ‖∇(u− u1.1)‖L2(A+

3.9,5.1) in (3.3.17). First we interpolate

between L1 and L2+γ. Letting q = 2(1+γ)
2+γ

, we have

‖∇(u− u1.1)‖L2(A+
3.9,5.1) ≤ C‖∇u‖1/q

L2+γ(A3.9,5.1·1.1)‖∇(u− u1.1)‖1/q′

L1(A+
3.9,5.1)

. (3.3.18)

From (3.3.18), by Corollary 3.3.1 we deduce

‖∇(u− u1.1)‖L2(A+
3.9,5.1) ≤ Cε0‖u‖

1/q

L1(A+
3,6)
‖∇(u− u1.1)‖1/q′

L1(A+
3.9,5.1)

≤ δ‖u‖L1(A+
3,6) + Cε0δ

−q′/q‖∇(u− u1.1)‖L1(A+
3.9,5.1).

(3.3.19)

By Corollary C.2 (with δ̃ = δ1+q′/q), we also have

‖∇(u− u1.1)‖L1(A+
3.9,5.1)

≤ Cδ1+ q′
q ‖D2(u− u1.1)‖L1(A+

3.8,5.2) + Cδ−1− q
′
q ‖u− u1.1‖L1(A+

3.8,5.2).
(3.3.20)

Hence, applying (3.3.20) in (3.3.19), we obtain the following estimate for the Dirichlet
energy

‖∇(u− u1.1)‖L2(A+
3.9,5.1)

≤ δ‖u‖L1(A+
3,6) + Cε0δ‖D2u‖L1(A+

3.8,5.8) + Cε0δ
−1−2 q

′
q ‖u− u1.1‖L1(A+

3.8,5.2).
(3.3.21)
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Finally, since d
dτ
uτ (x) = rur(τx), we have u(x)− u1.1(x) = −r

∫ 1.1

1
ur(τx) dτ and hence

‖u− u1.1‖L1(A+
3.8,5.2) ≤ C‖ur‖L1(A+

3.8,5.2·1.1) ≤ C‖ur‖L1(A+
3,6). (3.3.22)

Using (3.3.22) in (3.3.21), and by (3.3.17) we deduce the claim.

Step 3. Conclusion.
Combining Steps 1 and 2 in (3.3.4), for δ ∈ (0, 1) and (say) ε ≤ 1, we have

‖u‖L1(A+
4.7,4.8) ≤ Cδ‖u‖L1(A+

3,6) + C (ε+ δ) ‖D2u‖L1(A+
3.8,5.8) + Cε‖∇u‖L1(A+

4,5.5)

+ Cδ−1−2 2+γ
γ ‖ur‖L1(A+

3,6).
(3.3.23)

Thanks to Corollary 3.3.1 we can control the Hessian and gradient errors in (3.3.23)
by the L1 norm of the function. Namely, we have ‖D2u‖L1(A+

3.8,5.8) ≤ C‖u‖L1(A+
3,6) and by

Hölder’s inequality ‖∇u‖L1(A+
4,5.5) ≤ C‖∇u‖L2+γ(A+

4,5.5) ≤ C‖u‖L1(A+
3,6). It follows that

‖u‖L1(A+
4.7,4.8) ≤ Cδ‖u‖L1(A+

3,6) + Cδ−1−2 2+γ
γ ‖ur‖L1(A+

3,6) for ε ≤ δ. (3.3.24)

Now, proceeding as in [19], if we write the function in terms of the radial derivative as
u(sσ) = u(tσ)−

∫ t
s
ur(rσ) dr for s ∈ (3, 6), t ∈ (4.7, 4.8), and σ ∈ Sn−1, then integrating in∫ 6

3
sn−1 ds

∫
∂+B+

1
dσ it is not hard to show that

‖u‖L1(A+
3,6) ≤ C

(
‖u‖L1(A+

4.7,4.8) + ‖ur‖L1(A+
3,6)

)
. (3.3.25)

Combining (3.3.25) and (3.3.24), we deduce

‖u‖L1(A+
3,6) ≤ Cδ‖u‖L1(A+

3,6) + Cδ−1−2 2+γ
γ ‖ur‖L1(A+

3,6) for εδ,

and choosing δ > 0 universal small in this last inequality, we can absorb the L1 norm of u
into the left-hand side, concluding the proof.

3.4 Boundary Cα estimate

We prove the Hölder estimate in half-balls. At this point, the proof amounts to combining
Propositions 3.1.9 and 3.1.10 with Theorem 3.1.4, to deduce a decay of the weighted
Dirichlet energy and applying a scaling and covering argument.

Proof of the Hölder estimate (3.1.9) in Theorem 3.1.2. We may assume that 3 ≤ n ≤ 9.
Indeed, when n = 2, we recover the estimate by applying Theorem 3.1.2 to the function
ũ(x1, x2, x3) := u(x2, x3), a stable solution to the elliptic equation c0ũx1x1 + Lũ = f(ũ) in
B+

1 ⊂ R3 where L acts only in the (x2, x3) variables. Similarly, when n = 1, one considers
the function ũ(x1, x2, x3) := u(x3).

Throughout the proof, C denotes a generic universal constant unless stated otherwise.
The proof is divided in three steps. In Step 1, we prove the decay of the weighted Dirichlet
energy under the assumption A(0) = I. Later, in Step 2, we remove this assumption and
prove a Cα estimate in universally small balls. Finally, in Step 3, we deduce the theorem
by a scaling an covering argument.
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Step 1: Under the assumption that

A(0) = I and ‖DA‖L∞(B+
1 ) + ‖b‖L∞(B+

1 ) ≤ ε,

we prove that if ε ≤ ε0, then∫
B+
ρ

r2−n|∇u|2 dx ≤ C‖u‖2
L1(B+

1 )
ρ2α for all ρ ≤ 1/16, (3.4.1)

where ε0 > 0, α > 0, and C are universal constants.
First we write the weighted Dirichlet integral as an infinite sum on dyadic annuli,

applying Corollary 3.3.1 on each annulus. We treat the case ρ = 1/2 and recover the result
for general ρ by rescaling. This is the same approach used for the interior estimates in
Chapter 1.

Let rj := 2−j for j ≥ 0. Then∫
B+

1/2

r2−n|∇u|2 dx =
∞∑
j=0

∫
A+
rj+2,rj+1

r2−n|∇u|2 dx ≤ C

∞∑
j=0

r2−n
j

∫
A+
rj+2,rj+1

|∇u|2 dx, (3.4.2)

and hence, we must control each of the summands in (3.4.2).
Combining Corollary 3.3.1 and Proposition 3.1.10 applied to the functions u(rj·) and

by Hölder inequality, we have

r2−n
j

∫
A+
rj+2,rj+1

|∇u|2 dx ≤ Cr2−n
j

∫
A+
rj+3,rj

u2
r dx for ε ≤ ε0. (3.4.3)

Therefore, using (3.4.3) in (3.4.2), we obtain∫
B+

1/2

r2−n|∇u|2 dx ≤ C
∞∑
j=0

r2−n
j

∫
A+
rj+3,rj

u2
r dx ≤ C

∫
B+

1

r2−nu2
r dx for ε ≤ ε0. (3.4.4)

Applying (3.4.4) to the functions u(2ρ·), we deduce∫
B+
ρ

r2−n|∇u|2 dx ≤ C

∫
B+

2ρ

r2−nu2
r dx for all ρ ≤ 1/2 and ε ≤ ε0,

and, by Proposition 3.1.9 (with 2ρ in place of ρ), it follows that∫
B+
ρ

r2−n|∇u|2 dx ≤ C

∫
B+

4ρ\B
+
2ρ

r2−n|∇u|2 dx+ Cε

∫
B+

8ρ

r3−n|∇u|2 dx

for all ρ ≤ 1/8 and ε ≤ ε0.

(3.4.5)

Now, splitting the last integral into B+
8ρ = (B+

8ρ \B+
ρ ) ∪B+

ρ , since r3−n ≤ r2−n in B+
1 , and

using that the bounds ρ ≤ 1/8 and ε ≤ ε0 are universal, from (3.4.5) we deduce∫
B+
ρ

r2−n|∇u|2 dx ≤ C

∫
B+

8ρ\B
+
ρ

r2−n|∇u|2 dx+ Cε

∫
B+
ρ

r2−n|∇u|2 dx

for all ρ ≤ 1/8 and ε ≤ ε0.
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Taking ε0 > 0 universal smaller if necessary, we can absorb the last integral into the
left-hand side, which yields∫

B+
ρ

r2−n|∇u|2 dx ≤ C

∫
B+

8ρ\B
+
ρ

r2−n|∇u|2 dx for all ρ ≤ 1/8 and ε ≤ ε0. (3.4.6)

Hole-filling (3.4.6), we also have∫
B+
ρ

r2−n|∇u|2 dx ≤ θ

∫
B+

8ρ

r2−n|∇u|2 dx for all ρ ≤ 1/8 and ε ≤ ε0, (3.4.7)

where θ = C
1+C
∈ (0, 1) is universal. Iterating (3.4.7), for 8−(k+1) < ρ ≤ 8−k we deduce∫

B+
ρ

r2−n|∇u|2 dx ≤ θk
∫
B+

8kρ

r2−n|∇u|2 dx ≤ 1

θ
ρ2α

∫
B+

1

r2−n|∇u|2 dx,

with α = −1
2

log8 θ > 0, and hence∫
B+
ρ

r2−n|∇u|2 dx ≤ Cρ2α

∫
B+

1

r2−n|∇u|2 dx for all ρ ≤ 1/8 and ε ≤ ε0. (3.4.8)

Finally, we can estimate the integral in the right-hand side of (3.4.8) by splitting B+
1 =

(B+
1 \B+

1/8)∪B+
1/8 and applying (3.4.6) with ρ = 1/8 to bound the integral in the annulus,

which results in∫
B+
ρ

r2−n|∇u|2 dx ≤ Cρ2α‖∇u‖L2(B+
1 ) for all ρ ≤ 1/8 and ε ≤ ε0. (3.4.9)

Applying the energy estimate (3.1.11) in Theorem 3.1.4 (rescaled) to (3.4.9) now yields the
claim.

Step 2: Assuming
‖DA‖L∞(B+

1 ) + ‖b‖L∞(B+
1 ) ≤ ε,

we prove that if ε ≤ ε0, then

‖u‖
Cα(B+

ρ0
)
≤ C‖u‖L1(B+

1 ),

where ε0 > 0, α > 0, ρ0 > 0, and C are universal.
Notice that for each y ∈ ∂0B+

1 and each half-ball Bd(y) ⊂ B+
1 , there is a rotation matrix

R = R(y) ∈ SO(n) such that the function uy,d(x) := u
(
y + d√

C0
A1/2(y)Rx

)
satisfies u = 0

on ∂0B+
1 , and is a stable solution to a semilinear equation in B+

1 with coefficients

Ay,d(x) := RTA−1/2(y)A
(
y + d√

C0
A1/2(y)Rx

)
A−1/2(y)R,

by,d(x) := d√
C0
RTA−1/2(y)b

(
y + d√

C0
A1/2(y)Rx

)
.

The new matrix is uniformly elliptic c0
C0
≤ Ay,d ≤ C0

c0
with Ay,d(0) = I, and the coeffi-

cients can be bounded by ‖DAy,d‖L∞(B+
1 ) +‖by,d‖L∞(B+

1 ) ≤ Cd
(
‖DA‖L∞(B+

1 ) + ‖b‖L∞(B+
1 )

)
.

Choosing d > 0 universal sufficiently small so that Cd ≤ 1, we further have

‖DAy,d‖L∞(B+
1 ) + ‖by,d‖L∞(B+

1 ) ≤ ε for all y ∈ ∂0B+
1−d.

107



Since ε ≤ ε0 (with ε0 > 0 as in Step 1), by (3.4.1) it follows that∫
B+
ρ

r2−n|∇uy,d|2 dx ≤ C‖uy,d‖2
L1(B+

1 )
ρ2α for y ∈ ∂0B+

1−d and ρ ≤ 1/8,

and using that r2−n ≥ ρ2−n in B+
ρ , we also have∫

B+
ρ

|∇uy,d|2 dx ≤ C‖uy,d‖2
L1(B+

1 )
ρ2α+n−2 for y ∈ ∂0B+

1−d and ρ ≤ 1/8. (3.4.10)

Let us express (3.4.10) in terms of the original function u. By the change of variables
z = y + d√

C0
A1/2(y)Rx and by uniform ellipticity, using that B+√

c0ρ
⊂ A1/2(y)R(B+

ρ ), the

left-hand side of (3.4.10) can be bounded from below by∫
B+
ρ

|∇uy,d|2 dx ≥ c d2−n
∫
B+

d
√ c0

C0
ρ
(y)

|∇u|2 dz, (3.4.11)

where c > 0 is a universal constant. Similarly, we also have ‖uy,d‖L1(B+
1 ) ≤ Cd−n‖u‖L1(B+

1 )

and hence, from (3.4.10) and (3.4.11) we deduce∫
B+

d
√ c0

C0
ρ
(y)

|∇u|2 dz ≤ Cd−2‖u‖2
L1(B+

1 )
ρn−2+2α for y ∈ ∂0B+

1−d and ρ ≤ 1/8. (3.4.12)

We let ρ0 := d
16

√
c0
C0

. Making d smaller if necessary, we may assume that B+
2ρ0
⊂ B+

1−d.

Dividing ρ by d
√

c0
C0

in (3.4.12), using that d is universal, and by Cauchy-Schwarz we have∫
B+
ρ (y)

|∇u| dz ≤ C‖u‖L1(B+
1 )ρ

n−1+α for y ∈ ∂0B+
2ρ0

and ρ ≤ 2ρ0. (3.4.13)

With (3.4.13) on hand, we are finally ready to prove the boundary Hölder estimate.
Let x = (x′, xn) ∈ B+

ρ0
⊂ Rn × R+. Since u = 0 on ∂0B+

1 , by the Poincaré inequality

‖u‖L1(B+
2xn

(x′,0)) ≤ Cxn‖∇u‖L1(B+
2xn

(x′,0)). (3.4.14)

Applying (3.4.13) with ρ = 2xn and y = (x′, 0), from (3.4.14) we deduce

‖u‖L1(B+
2xn

(x′,0)) ≤ C‖u‖L1(B+
1 )(xn)n+α. (3.4.15)

By the interior Hölder estimates from Theorem 1.1.1 (see Chapter 1) applied in the ball
Bxn(x) ⊂ B+

1 , we have

‖u‖L∞(Bxn/2(x)) + (xn)α[u]Cα(Bxn/2(x)) ≤ C‖u‖L1(Bxn (x))(xn)−n, (3.4.16)

where α > 0 and C are universal constants (since we are assuming a universal bound ε ≤ ε0

on the coefficients). Since Bxn(x) ⊂ B+
2xn(x′, 0), combining (3.4.16) and (3.4.15)

‖u‖L∞(Bxn/2(x)) + (xn)α[u]Cα(Bxn/2(x)) ≤ C‖u‖L1(B+
1 )(xn)α for x ∈ B+

ρ0
. (3.4.17)

In particular, from (3.4.17) it follows that |u(x)| ≤ C‖u‖L1(B+
1 )(xn)α in B+

ρ0
, and we

have controlled the L∞ norm of u in B+
ρ0

. To bound the Hölder norm in B+
ρ0

, consider
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x, y ∈ B+
ρ0

such that x 6= y. Without loss of generality we may assume yn ≤ xn. On the
one hand, if |x− y| ≤ xn/2, then from (3.4.17) we deduce

|u(x)− u(y)|
|x− y|α

≤ [u]Cα(Bxn/2(x)) ≤ C‖u‖L1(B+
1 ).

On the other hand, if |x− y| > xn/2, then by the L∞ estimates in (3.4.17) it follows that

|u(x)− u(y)| ≤ u(x) + u(y) ≤ C‖u‖L1(B+
1 ) ((xn)α + (yn)α) ≤ C‖u‖L1(B+

1 )(xn)α

≤ C‖u‖L1(B+
1 )|x− y|

α.

Combined, the two inequalities above yield a bound for [u]Cα(B+
ρ0

), which was the claim.

Step 3: Conclusion.
Arguing as in the proof of the higher integrability estimate in Chapter 2, by a scaling

and covering argument and using the interior estimates from Chapter 1, is is not hard to
deduce the theorem in its final form from Step 2.

3.5 Approximation and proof in C1,1 domains

Here we give the complete proof of our main result, Theorem 3.1.1, which establishes a
priori estimates in C1,1 domains. By an approximation argument (carried out in the proof
at the end of this section), it will suffice to prove this result in smooth domains.

First, we comment on the invariance of our class of solutions under general transforma-
tions flattening the boundary. This will allow us to reduce the problem in smooth domains
to proving estimates in half-balls, which have already been obtained in Theorem 3.1.2
above.

Given a smooth bounded domain Ω ⊂ Rn, we can always write it as the superlevel set
of a smooth function Φ ∈ C∞(Rn), namely,

Ω = {x ∈ Rn : Φ(x) > 0} = {Φ > 0}.

Moreover, Φ can be chosen so that ∇Φ 6= 0 on ∂Ω; see Appendix E.
Let x0 ∈ ∂Ω. Upon rotating the coordinate axes, we may assume that ∇Φ(x0) =

∂nΦ(x0)en, with ∂nΦ(x0) = |∇Φ(x0)| > 0. Then, writing x = (x′, xn) ∈ Rn−1 × R, the

map Ψ(x) :=
(
(x−x0)′, Φ(x)

∂nΦ(x0)

)
is a local diffeomorphism around x0 which flattens out the

boundary ∂Ω. More precisely, by a quantitative version of the Inverse Function Theorem,
we have the following:

Lemma 3.5.1. There are numbers 0 < R1 < R2 and ρ > 0 depending only on ‖∇Φ‖C0,1(Rn)

and ‖|∇Φ|−1‖L∞(∂Ω) such that

Ψ(BR1(x0) ∩ Ω) ⊂ B+
ρ/2 ⊂ B+

ρ ⊂ Ψ(BR2(x0) ∩ Ω). (3.5.1)

Proof. By a translation, we may assume that x0 = 0 ∈ ∂Ω. Since the map Ψ satisfies
Ψ(0) = 0 and DΨ(0) = I, choosing R2 > 0 small such that

|DΨ(x)−DΨ(z)| ≤ 1/2 for all x, z ∈ BR2 , (3.5.2)
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by Lemma 1.3 in [67, Chapter XIV] we deduce that for all y ∈ BR2/2 there is a unique
x ∈ BR2 such that Ψ(x) = y. Thus, we obtain the second inclusion

B+
R2/2
⊂ Ψ(BR2 ∩ Ω).

Using that [DΨ]C0,1(Rn) ≤ [∇Φ]C0,1(Rn)‖|∇Φ|−1‖L∞(∂Ω), it is easy to check that condi-
tion (3.5.2) is fulfilled if

R2 ≤ (4[∇Φ]C0,1(Rn)‖|∇Φ|−1‖L∞(∂Ω))
−1. (3.5.3)

To show the first inclusion in (3.5.1), we proceed as above but considering the inverse
map Ψ−1 instead. If R1 > 0 is sufficiently small such that

|DΨ−1(x̃)−DΨ−1(z̃)| ≤ 1/2 for all x̃, z̃ ∈ B2R1 , (3.5.4)

then, again by Lemma 1.3 in [67, Chapter XIV], we deduce

Ψ(BR1 ∩ Ω) ⊂ B+
2R1

. (3.5.5)

For (3.5.4) to hold in this case, it suffices to take R1 > 0 sufficiently small such that

[DΨ−1]C0,1(B2R1
)4R1 ≤ 1/2. (3.5.6)

It remains to estimate [DΨ−1]C0,1(B2R1
). Let x̃ = Ψ(x), ỹ = Ψ(y) ∈ B2R1 . If R1 ≤ R2,

with R2 as in (3.5.3), then 1
∂nΦ(x)

≤ 2‖|∇Φ|−1‖L∞(∂Ω) and hence

|DΨ−1(x̃)−DΨ−1(ỹ)|2

≤ 2
|∇′Φ(x)−∇′Φ(y)|2

|∂nΦ(x)|2
+

(2|∇′Φ(y)|2 + |∂nΦ(0)|2) |∂nΦ(x)− ∂nΦ(y)|2

|∂nΦ(x)|2|∂nΦ(y)|2

≤ 8(1 + 6‖∇Φ‖2
L∞(Rn)‖|∇Φ|−1‖2

L∞(∂Ω))‖|∇Φ|−1‖2
L∞(∂Ω)[∇Φ]2C0,1(Rn)|x− y|2.

Moreover, under the same assumption on R1, we have

|x− y| ≤ [DΨ−1]L∞(B2R1
)|x̃− ỹ| ≤ (1 + 8‖∇Φ‖2

L∞‖|∇Φ|−1‖2
L∞(∂Ω))

1/2|x̃− ỹ|.

Combining the last two bounds, it follows that if R1 ≤ R2 is such that

R1 ≤
(

16
√

2
(
1 + 8‖∇Φ‖2

L∞(Rn)‖|∇Φ|−1‖2
L∞(∂Ω)

)
‖|∇Φ|−1‖L∞(∂Ω)[∇Φ]C0,1(Rn)

)−1

, (3.5.7)

then (3.5.6) holds, and hence (3.5.5) also.
Finally, choosing R1, R2 > 0 satisfying (3.5.3), (3.5.7), and 8R1 ≤ R2, we may take

ρ = 4R1, which concludes the proof of (3.5.1).

Consider now the operator Lu(x) = aij(x)uij + bi(x)ui introduced in (3.1.2) acting
on functions u ∈ C2(BR2(x0) ∩ Ω), with R2 as in Lemma 3.5.1. In the new coordinates
x̃ = Ψ(x), the function ũ = u ◦Ψ−1 satisfies

L̃ũ := (Lu)(Ψ−1(x̃)) = ãij(x̃)ũij + b̃i(x̃)ũi,

where the new coefficients are given by

ãij ◦Ψ(x) = akl(x)∂kΨi(x)∂lΨj(x)
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and

b̃i ◦Ψ(x) = bk(x)∂kΨi(x) + ajk(x)∂2
jkΨi(x)

If 0 < c0 ≤ A(x) ≤ C0, then, taking R2 = R2(‖∇Φ‖C0,1(Rn), ‖|∇Φ|−1‖L∞(∂Ω)) > 0 smaller

if necessary (uniformly in the norms of ∇Φ), the new matrix Ã(x̃) = (ãij(x̃)) is uniformly
elliptic with (say)

0 <
1

2
c0 ≤ Ã(x̃) ≤ 3

2
C0.

1

If u is a stable solution of −Lu = f(u) in BR2(x0) ∩ Ω, then ũ is a stable solution

of −L̃ũ = f(ũ) in Ψ(BR2(x0) ∩ Ω) ⊂ Rn
+. We have already shown that ũ solves this

equation. To show that it is stable, notice that if ϕ > 0 is the function in the definition of
stability (3.1.6), then ϕ̃ = ϕ ◦Ψ−1 satisfies the same condition with respect to L̃.

Finally, notice that the norms of the coefficients ‖DÃ‖L∞ and ‖b̃‖L∞ involve the norms
‖DA‖L∞ , ‖b‖L∞ , ‖DΦ‖L∞ , and ‖D2Φ‖L∞ . This dependence will be crucial to extend our
results to C1,1 domains, which are given by a C1,1 = W 2,∞ function Φ.

Now, thanks to all the preliminaries, we can finally upgrade our estimates in half-balls
to C1,1 domains by an approximation argument:

Proof of Theorem 3.1.1. We proceed in two steps. First, we prove the theorem in smooth
domains for solutions in u ∈ W 3,p(Ω), that is, with weak derivatives integrable up to the
boundary. Then, we approximate our C1,1 domain from the interior by smooth domains
and apply the first step on a suitable sequence of stable solutions.

As commented above (see also Appendix E), recall that given a bounded domain Ω ⊂ Rn

of class C1,1, there is a function Φ ∈ C1,1(Rn) such that Ω = {Φ > 0} and ∇Φ 6= 0 on
∂Ω. If Ω is smooth, then the function Φ can be chosen to be C∞. The main purpose of
the function Φ is to quantify the dependence of our bounds on the domain. In the proof
below, diam(Ω) denotes the diameter of Ω, that is, diam(Ω) = supx,y∈Ω |x− y|.

Step 1: Under the additional assumptions that Ω is smooth, L satisfies (3.1.5), and u ∈
W 3,p(Ω) for some p > n, we prove that

‖∇u‖L2+γ(Ω) ≤ C‖u‖L1(Ω),

where γ > 0 is dimensional and C is a constant depending only on n, c0, C0, ‖DA‖L∞(Ω),
‖b‖L∞(Ω), ‖∇Φ‖C0,1(Rn), ‖|∇Φ|−1‖L∞(∂Ω), and diam(Ω). In addition,

‖u‖Cα(Ω) ≤ C‖u‖L1(Ω) if n ≤ 9,

where α > 0 is universal and C is a constant depending only on n, c0, C0, ‖DA‖L∞(Ω),
‖b‖L∞(Ω), ‖∇Φ‖C0,1(Rn), and ‖|∇Φ|−1‖L∞(∂Ω).

Let 0 < R1 < R2 be the functions of ‖∇Φ‖C0,1(Rn) and ‖|∇Φ|−1‖L∞(∂Ω) constructed in
Lemma 3.5.1 above.

Let δ := R1/3 > 0. Since Ω is bounded, it is contained in a ball of radius diam(Ω) <∞.
Hence, we can cover Ω by N balls {Bi}i of radius δ, where N ≤ Cdiam(Ω)nδ−n for some

1Indeed, since Ã(x̃)p ·p = A(x)DΨ(x)p ·DΨ(x)p, by ellipticity c0|DΨ(x)p|2 ≤ Ã(x̃)p ·p ≤ C0|DΨ(x)p|2.

Moreover, since |DΨ(x)p|2 = |p′|2 + | ∇
′Φ(x)

∂nΦ(x0) · p
′ + ∂nΦ(x)

∂nΦ(x0)pn|
2, choosing R2 > 0 smaller (as before, with

the stated dependence) such that 9
10 ≤

∂nΦ(x)
∂nΦ(x0) ≤

|∇Φ(x)|
∂Φ(x0) ≤

11
10 and |∇

′Φ(x)|
∂Φ(x0) ≤

1
100 , it is easy to check that

1
2 |p|

2 ≤ |DΨ(x)p|2 ≤ 3
2 |p|

2 as claimed.
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dimensional C.2 We write 2Bi to denote the ball centered at the same point but with twice
the radius. We label the balls Bi in a way such that the first N ′ < N are close to the
boundary, in the sense that 2Bi∩∂Ω 6= ∅, and the remaining N −N ′ are interior, i.e., they
satisfy the inclusion 2Bi ⊂ Ω.

For each i ≤ N ′, by definition, there is a boundary point xi ∈ 2Bi ∩ ∂Ω and hence
Bi ⊂ B3δ(xi) = BR1(xi). In particular, flattening the boundary as explained above and
applying the energy estimate (3.1.11) in Theorem 3.1.2 rescaled, we deduce

‖∇u‖L2+γ(Bi∩Ω) ≤ ‖∇u‖L2+γ(BR1
(xi)∩Ω) ≤ C‖u‖L1(BR2

(xi)∩Ω) for all i ≤ N ′, (3.5.8)

where C = C(n, c0, C0, ‖DA‖L∞(Ω), ‖b‖L∞(Ω), ‖∇Φ‖C0,1(Rn), ‖|∇Φ|−1‖L∞(∂Ω)). Therefore, by
(3.5.8) and interior estimates (Theorem 1.1.1 above), we deduce

‖∇u‖L2+γ(Ω) ≤
∑
i≤N ′
‖∇u‖L2+γ(Bi∩Ω) +

∑
i>N ′

‖∇u‖L2+γ(Bi)

≤ C
∑
i≤N ′
‖u‖L1(BR2

(xi)∩Ω) + C
∑
i>N ′

‖u‖L1(2Bi)

≤ C‖u‖L1(Ω),

where C depends only on n, c0, C0, ‖DA‖L∞(Ω), ‖b‖L∞(Ω), ‖∇Φ‖C0,1(Rn), ‖|∇Φ|−1‖L∞(∂Ω),
and diam(Ω). The first claim follows.

Assume now that n ≤ 9.

We prove the L∞ estimate first. Let x ∈ Ω. If dist(x, ∂Ω) < R1, then x ∈ BR1(x0) ∩ Ω
for some x0 ∈ ∂Ω. Hence, flattening the boundary, by Theorem 3.1.2 we deduce

|u(x)| ≤ ‖u‖L∞(BR1
(x0)∩Ω) ≤ C‖u‖L1(BR2

∩Ω) ≤ C‖u‖L1(Ω),

where C = C(n, c0, C0, ‖DA‖L∞(Ω), ‖b‖L∞(Ω), ‖∇Φ‖C0,1(Rn), ‖|∇Φ|−1‖L∞(∂Ω)). Otherwise, if
dist(x, ∂Ω) ≥ R1, then by interior estimates (rescaled) we have

|u(x)| ≤ ‖u‖L∞(BR1/2
(x) ≤ C‖u‖L1(BR1

(x)) ≤ C‖u‖L1(Ω),

where again C = C(n, c0, C0, ‖DA‖L∞(Ω), ‖b‖L∞(Ω), ‖∇Φ‖C0,1(Rn), ‖|∇Φ|−1‖L∞(∂Ω)). The
two inequalities yield the desired L∞ bound ‖u‖L∞(Ω) ≤ C‖u‖L1(Ω).

Next, we estimate the Cα seminorm. Let x, y ∈ Ω with x 6= y and let δ̃ := 2R1/3 > 0.
We distinguish three cases:

• If |x− y| ≥ δ̃/2, then

|u(x)− u(y)|
|x− y|α

≤ 2αδ̃−α (|u(x)|+ |u(y)|) ≤ 2α+1δ̃−α‖u‖L∞(Ω)

and we may apply the L∞ estimate ‖u‖L∞(Ω) ≤ C‖u‖L1(Ω).

2To see this, given k ∈ N and R > 0, consider the set Ak,R = {Rl/k : l ∈ Z with − k ≤ l ≤ k}n ⊂ Rn.
Notice that Ak,R is a discrete set with N = (2k+ 1)n elements. For each x ∈ BR, there is a y ∈ Ak,R such
that |x− y| ≤

√
n R

2k . Hence, if
√
n R2δ < k ≤

√
n R2δ + 1, then BR ⊂ ∪y∈Ak,RBδ(y) and the number of balls

can be estimated by N ≤ (
√
nRδ + 3)n ≤ (2

√
n)n

(
R
δ

)n
by taking δ smaller in terms of R and n.
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• If |x− y| < δ̃/2 and (say) dist(x, ∂Ω) < δ̃, then x, y ∈ Bδ̃/2(x) ⊂ B 3
2
δ̃(x0) ⊂ BR1(x0)

for some x0 ∈ ∂Ω. Hence, flattening the boundary, by Theorem 3.1.2 we deduce

|u(x)− u(y)|
|x− y|α

≤ [u]Cα(B
δ̃/2

(x)∩Ω) ≤ [u]Cα(BR1
(x0)∩Ω) ≤ C‖u‖L1(BR2

(x0)∩Ω)

≤ C‖u‖L1(Ω),

where C has the same dependence as above.

• If |x−y| < δ̃/2 and min{dist(x, ∂Ω), dist(y, ∂Ω)} ≥ δ̃, then x, y ∈ Bδ̃/2(x) ⊂ Bδ̃(x) ⊂
Ω and by interior estimates (rescaled) we deduce

|u(x)− u(y)|
|x− y|α

≤ [u]Cα(B
δ̃/2

(x)) ≤ C‖u‖L1(B
δ̃
(x)) ≤ C‖u‖L1(Ω),

where C has the same dependence as above.

The three inequalities yield the bound

[u]Cα(Ω) ≤ C‖u‖L1(Ω),

where C = C(n, c0, C0, ‖DA‖L∞(Ω), ‖b‖L∞(Ω), ‖∇Φ‖C0,1(Rn), ‖|∇Φ|−1‖L∞(∂Ω)). This con-
cludes the proof of Step 1.

Step 2: Conclusion: Approximation argument.
Let Ωk = {Φk > 0} be an exhaustion of Ω = {Φ > 0} by C∞ sets, with norms satisfying

‖∇Φk‖C0,1(Rn) + ‖|∇Φk|−1‖L∞(∂Ωk) ≤ C (3.5.9)

for some constant C depending only on Φ and Ω; see Appendix E.
For each k, let bki := bi∗ηk, where (ηk)k is a regularizing sequence such that bki ∈ C∞(Ωk).

In particular, bki → bi locally uniformly in Ω. We define the operator

Lk := aij(x)∂ij + bki (x)∂i,

where aij ∈ C0,1(Ω) is the same coefficient as in the statement of the theorem. By elliptic
regularity, all bounded strong solutions of the problem −Lkuk = f(uk) in Ωk, uk = 0 on
∂Ωk, belong to W 3,p(Ωk).

We will distinguish the two cases f(0) > 0 and f(0) = 0.
Case f(0) > 0. Let εk ∈ (0, 1) with εk ↓ 0. For each k, we will construct a stable

solution uk ∈ W 3,p(Ωk) to the problem
−Lkuk = (1− εk)f(uk) in Ωk

uk > 0 in Ωk

uk = 0 on ∂Ωk

(3.5.10)

by monotone iteration starting at 0. This is the so called minimal solution of (3.5.10),
that is, the smallest positive supersolution of (3.5.10), and it is well-known to be stable.3

3To prove that it is stable one argues by contradiction, considering φ, the principal eigenfunction of
L+ (1− εk)f ′(uk) in Ωk, and showing that uk− δφ would be a positive supersolution for δ > 0 sufficiently
small; see [8].
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For the monotone iteration to converge, we need a barrier function. We claim that
u ∈ C0(Ω) ∩W 2,n

loc (Ω) is a barrier for (3.5.10), in fact, we have u > 0 on Ωk ⊂ Ω and

−Lku ≥ (1− εk)f(u) in Ωk.

Indeed, using the equation satisfied by u and by monotonicity of f , we have

−Lku− (1− εk)f(u) = εkf(u) + (L− Lk)u ≥ εkf(0)− ‖b− bk‖L∞(Ωk)‖∇u‖L∞(Ωk),

and the right-hand side is nonnegative by choosing the regularizing sequence ηk in terms
of εk, f(0), and ‖∇uk‖L∞(Ωk) so that ‖b− bk‖L∞(Ωk) is sufficiently small. Here, recall that

by Lp estimates we have u ∈ C0(Ω) ∩W 2,p
loc (Ω) for all p < ∞, and hence u ∈ C1,α(Ωk) for

all α ∈ (0, 1) and k ∈ N.

Next, we carry out the monotone iteration. Let k ∈ N and u
(0)
k = 0. For each l ∈ N,

we consider the unique solution u
(l)
k to the problem −Lku(l)

k = (1 − εk)f(u
(l−1)
k ) in Ωk,

u
(l)
k = 0 on ∂Ωk. Since u is a barrier, by maximum principle, it is not hard to show that

0 ≤ u
(l−1)
k ≤ u

(l)
k ≤ u in Ωk, and by global regularity the monotone limit uk := liml↑∞ u

(l)
k

converges uniformly in C2(Ωk) norm and solves (3.5.10). By construction, uk is below any
supersolution of (3.5.10) and hence it is the minimal solution.

Since Ωk ⊂ Ωk+1 ⊂ Ω, by maximum principle we have

0 ≤ uk ≤ uk+1 ≤ u in Ωk.

Let u?(x) := limk→∞ uk(x) for x ∈ Ω. Using that u ∈ C0(Ω), by Lp estimates we have
uk → u? weakly in W 2,p

loc (Ω) for all p <∞. Since u? ≤ u in Ω, we can extend u? up to the
boundary to a function u? ∈ C0(Ω) ∩W 2,p

loc (Ω). By weak convergence, it follows that u?

is a strong solution to −Lu? = f(u?) in Ω, u? = 0. Moreover, u? is a stable solution. To
see this, taking a positive function ϕ ∈ W 2,n

loc (Ω) as in the stability inequality (3.1.6) for u,
using that u? ≤ u and by the convexity of f , we have

Ju?ϕ = (L+ f ′(u?))ϕ ≤ (L+ f ′(u))ϕ = Juϕ ≤ 0 in Ω.

Finally, by the uniqueness of stable solutions for convex nonlinearities (see Appendix F),
it follows that u = u?.

Applying Step 1 to the minimal solutions uk, by the bounds ‖bk‖L∞(Ωk) ≤ ‖b‖L∞(Ω)

and (3.5.9), and by the monotonicity of the sequence, for k ≥ l + 1 we obtain

‖∇uk‖L2+γ(Ωl) ≤ ‖∇uk‖L2+γ(Ωk) ≤ C‖uk‖L1(Ωk) ≤ C‖u‖L1(Ω).

Now, since ∇uk → ∇u uniformly on compacts, letting k → ∞ and l → ∞ in this last
estimate and by monotone convergence, we deduce the higher integrability in C1,1 domains.

Assuming moreover that n ≤ 9, by Step 1 applied to uk, for k ≥ l + 1 we have

‖uk‖Cα(Ωl)
≤ ‖uk‖Cα(Ωk) ≤ C‖uk‖L1(Ωk) ≤ C‖u?‖L1(Ω) = C‖u‖L1(Ω).

Hence, letting k →∞ and l→∞, we deduce the Hölder estimate in C1,1 domains.
Case f(0) = 0. Without loss of generality, we may assume that u > 0 in Ω. Since 0 is

a stable solution, by Proposition F.1 we deduce that f(u) = µ1[L,Ω]u,4 and hence u is a
principal eigenfunction of L.

4Here we are following the notation in Appendix F, namely, µ1[L,Ω] denotes the principal eigenvalue
of L in Ω with the sign convention Lϕ = −µϕ.
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Since aij ∈ C(Ωk) and bki ∈ L∞(Ωk), by standard existence theory, there is a principal
eigenvalue µk := µ1[Lk,Ωk] and eigenfunction ϕk ∈ W 2,p(Ωk) for all p < ∞, satisfying
ϕk > 0 in Ωk, ‖ϕk‖L1(Ωk) = ‖u‖L1(Ω), −Lkϕk = µkϕk in Ωk, and ϕk = 0 on ∂Ωk. Moreover,

recalling that aij ∈ C0,1(Ωk) and bki ∈ C∞(Ωk), we further have ϕk ∈ W 3,p(Ωk) for p <∞.
In particular, since ϕk are stable, by Step 1 we have the bounds

‖∇ϕk‖L2+γ(Ωk) ≤ C‖u‖L1(Ω), (3.5.11)

and
‖ϕk‖Cα(Ωk) ≤ C‖u‖L1(Ω) if n ≤ 9. (3.5.12)

To deduce the final estimates it suffices to extract a subsequence converging to u. For
this, we essentially follow the proof of Theorem 2.1 in [9]. Namely, by Harnack inequality,
for k ≥ l + 1 we have ‖ϕk‖L∞(Ωl) ≤ Cl infΩl ϕk ≤ Cl‖ϕk‖L1(Ωl) ≤ Cl‖u‖L1(Ω), hence, by

interior estimates (up to a subsequence) ϕk → ϕ weakly in W 2,p
loc (Ω) for some positive ϕ ∈

W 2,p
loc (Ω). Moreover, since ϕk ∈ W 1,2+γ

0 (Ωk), the extension ϕkχΩk is bounded in W 1,2+γ
0 (Ω)

and by compactness ϕkχΩk → ϕ weakly in W 1,2+γ
0 (Ω), hence strongly in L2+γ(Ω). In

particular, by strong convergence ‖ϕ‖L1(Ω) = limk ‖ϕk‖L1(Ωk) = ‖u‖L1(Ω) and by weak
lower semicontinuity, from (3.5.11), we deduce

‖∇ϕ‖L2+γ(Ω) ≤ C‖u‖L1(Ω). (3.5.13)

By (3.5.12), using that ϕk → ϕ converges locally uniformly in Ω, it is also clear that

‖ϕ‖Cα(Ω) ≤ C‖u‖L1(Ω) if n ≤ 9. (3.5.14)

Passing to the limit in the equation, we see that ϕ ∈ W 1,2+γ
0 (Ω) ∩ W 2,p

loc (Ω) solves
−Lϕ = µ?ϕ where µ? = limk µ1[Lk,Ωk]. In fact, µ? = µ1[L,Ω] by the characterization of
the principal eigenfunction and the maximum principle.

It follows that both u and ϕ are positive principal eigenfunctions of L in Ω, with
‖u‖L1(Ω) = ‖ϕ‖L1(Ω), hence u = ϕ and (3.5.13), (3.5.14) are already the claimed estimates.
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Appendix A

Stability is not equivalent to the
integral inequality

Let u ∈ C2(Ω) be a solution to −Lu = f(u) in Ω with u = 0 on ∂Ω. Recall that u is a
stable solution if

Juϕ = Lϕ+ f ′(u)ϕ ≤ 0 in Ω, (A.1)

for some function ϕ ∈ C2(Ω) with ϕ > 0 in Ω and ϕ = 0 on ∂Ω. This is the stability
condition (1.1.3) presented in the Introduction and is equivalent to the nonnegativity of
the first Dirichlet eigenvalue of Ju (with the sign convention Juϕ = −µϕ). There, we also
showed that stable solutions satisfy the integral inequality (1.1.8), which reads∫

Ω

f ′(u)ξ2 dx ≤
∫

Ω

|∇ξ − 1
2
A−1(x)̂b(x)ξ|2A(x) for all ξ ∈ C∞c (Ω). (A.2)

Our goal in this appendix is to show that the integral inequality (A.2) does not imply the
stability condition (A.1) in general. The main reason is that the problem is not variational,
due to the drift in L. We also give conditions under which the equivalence holds. Namely,
writing the operator in divergence form Lu = div(A(x)∇u) + b̂(x) · ∇u, we show that if

A−1(x)̂b(x) is the gradient of a scalar function, then the problem is variational and the two
conditions are equivalent.

First we write the integrals in (A.2) as the quadratic form associated to a linear self-
adjoint operator. Integrating by parts, we have∫

Ω

(
|∇ξ − 1

2
ξA−1(x)̂b(x)|2A(x) − f ′(u)ξ2

)
dx = −

∫
Ω

ξJ̃uξ dx, (A.3)

where J̃u is the operator

J̃uξ := div(A(x)∇ξ)−
{

1
2
div(̂b(x)) + 1

4
|̂b(x)|2A−1(x)

}
ξ + f ′(u)ξ. (A.4)

Hence, by the variational characterization of eigenvalues, (A.2) amounts to the nonnega-

tivity of the principal eigenvalue of J̃u.
We can now state our example of a solution satisfying (A.2) but not (A.1):

Example A.1. Consider the operator Lv = ∆v + b̂(x) · ∇v with vector field

b̂(x) =
−x2e1 + x1e2√

x2
1 + x2

2

.

117



For each constant c > 0, we let f(u) = (λ1 + c)u+ 1, where λ1 denotes the least Dirichlet
eigenvalue of the Laplacian in the unit ball B1.

If c > 0 is sufficiently small, then the unique solution u to the boundary value problem{
−Lu = f(u) in B1

u = 0 on ∂B1

satisfies the integral stability condition (A.2) but is not a stable solution, i.e., the stability
condition (A.1) does not hold.1

Proof. The problem for u is equivalent to solving{
−∆u− b̂(x) · ∇u− (λ1 + c)u = 1 in B1

u = 0 on ∂B1.
(A.5)

Notice that the drift b̂ ∈ L∞(B1) has a weak derivative Db̂ ∈ Lp(B1) for 1 ≤ p < 2, and

satisfies the identities |̂b(x)| = 1 and div b̂(x) = 0 for a.e. x ∈ B1. Moreover, since b̂ is

tangent to spheres, the derivative b̂(x) · ∇ vanishes on radial functions. In particular, the
principal eigenfunction of the Laplacian is also an eigenfunction of the adjoint operator
LT = ∆ − div

(̂
b(x) ·

)
= ∆ − b̂(x) · ∇, with eigenvalue λ1. Since the point spectrum of

LT is discrete, for c > 0 small, we deduce that λ1 + c is not an eigenvalue of the adjoint
operator. The Fredholm alternative now gives that (A.5) has a unique solution.

Let ϕ1 and ξ1 be positive principal eigenfunctions of Ju and J̃u, respectively. Since ϕ1

and ξ1 are positive in B1, they must be radial. It follows that

Juϕ1 = ∆ϕ1 + (λ1 + c)ϕ1 = −µ1ϕ1 and J̃uξ1 = ∆ξ1 + (λ1 + c− 1/4)ξ1 = −µ̃1ξ1,

where µ1 and µ̃1 are the least eigenvalues of each operator. By uniqueness, the functions are
multiples of the principal eigenfunction of the Laplacian. Therefore, we have µ1 = −c < 0
and µ̃1 = 1/4 − c > 0 for c sufficiently small. This means that u is not stable but (A.2)
holds, which was the claim.

Next we investigate the relation between the failure of the equivalence and the form
of the drift b̂. Let ϕ1 ∈ C2(Ω) be the unique positive principal eigenfunction of Ju with∫
ϕ2

1 dx = 1. In particular, the function satisfies ϕ1 > 0 in Ω, ϕ1 = 0 on ∂Ω, and
Juϕ1 = −µ1ϕ1, where µ1 ∈ R is the least eigenvalue of Ju. Consider a test function
ξ ∈ C∞c (Ω). Multiplying Juϕ1 by ξ2/ϕ1 and integrating by parts in Ω, we have

−µ1 =

∫
Ω

(Juϕ1)
ξ2

ϕ1

dx =

∫
Ω

(
−A(x)∇ϕ1 · ∇

(
ξ2

ϕ1

)
+ b̂(x) · ξ

2

ϕ1

∇ϕ1 + f ′(u)ξ2

)
dx

=

∫
Ω

(
|ξ∇ logϕ1|2A(x) − 2A(x)ξ∇ logϕ1 · ∇ξ + ξ b̂(x) · ξ∇ logϕ1

)
dx

+

∫
Ω

f ′(u)ξ2 dx.

1The function u can be given explicitly in terms of Bessel functions of the first kind Jα as

u(x) =
1

(λ1 + c)Jn−2
2

(√
λ1 + c

) |x| 2−n2 Jn−2
2

(√
λ1 + c |x|

)
− 1

λ1 + c
.
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Using that

|ξ∇ logϕ1|2A(x) − 2A(x)ξ∇ logϕ1 ·
(
∇ξ − 1

2
ξA−1(x)̂b(x)

)
=
∣∣∣∇ξ − 1

2
ξA−1(x)̂b(x)− ξ∇ logϕ1

∣∣∣2
A(x)
−
∣∣∣∇ξ − 1

2
ξA−1(x)̂b(x)

∣∣∣2
A(x)

,

in the integral above, by (A.3) we obtain the identity

−µ1 =

∫
Ω

ξJ̃uξ dx+

∫
Ω

∣∣∣∇ξ − 1
2
ξA−1(x)̂b(x)− ξ∇ logϕ1

∣∣∣2
A(x)

dx. (A.6)

Now, assuming the integral stability inequality (A.2), we can minimize (A.3) among
smooth functions ξ with ξ = 0 on ∂Ω and

∫
Ω
ξ2 dx = 1. The unique positive minimizer ξ1

satisfies J̃uξ1 = −µ̃1ξ1, where µ̃1 ≥ 0 is the least eigenvalue of J̃u. Letting ξ = ξ1 in (A.6)
yields

−µ1 = −µ̃1 +

∫
Ω

∣∣∇( log ξ1 − logϕ1

)
− 1

2
A−1(x)̂b(x)

∣∣2
A(x)

ξ2
1 dx, (A.7)

and from (A.7) we see that we always have µ1 ≤ µ̃1, with equality if and only if

∇ log

(
ξ1

ϕ1

)
=

1

2
A−1(x)̂b(x). (A.8)

This can only happen when the drift b̂ is of a special form. Notice that the vector field from
Example A.1 is the curl of

√
x2

1 + x2
2 e3 and so, by the Helmholtz decomposition, cannot

be written as the gradient of a function.
Conversely, assume that b̂(x) = A(x)∇w(x) for some function w ∈ C2(Ω). In this

case, the problem can be cast in variational form and conditions (A.1) and (A.2) are
equivalent. Indeed, the solutions of −Lu = f(u) in Ω are critical points of the functional

E(u) =
∫

Ω
ew(x)

(
1
2
|∇u|2A(x) − F (u)

)
dx, where F (u) =

∫ u
0
f(t) dt. The integral stability

inequality (A.2) amounts to the nonnegativity of the second variation

d2

d2t

∣∣∣
t=0
E
(
u+ tϕ

)
=

∫
Ω

ew(x)
(
|∇ϕ|2A(x) − f ′(u)ϕ2

)
dx = −

∫
Ω

ew(x)ϕJuϕ dx

since, letting ϕ = e−w/2ξ in this expression, we have

d2

d2t

∣∣∣
t=0
E
(
u+ te−w/2ξ

)
=

∫
Ω

(
|∇ξ − 1

2
ξ∇w(x)|2A(x) − f ′(u)ξ2

)
dx = −

∫
Ω

ξJ̃uξ dx.

In particular, since −
∫

Ω
ξJ̃uξ dx ≥ µ̃1‖ξ‖2

L2(Ω) and taking ϕ = ϕ1 to be the principal
eigenfunction of Ju above, we have

µ1

∫
Ω

ew(x)ϕ2
1 dx = −

∫
Ω

(ew/2ϕ1)J̃u(e
w/2ϕ1) dx ≥ µ̃1

∫
Ω

ew(x)ϕ2
1 dx

and we obtain the reverse inequality µ1 ≥ µ̃1.
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Appendix B

A trace inequality

First we prove a simple lemma to control the Lp norm in the ball by the Lp norms of the
trace and the gradient:

Lemma B.1. For p ≥ 1 and u ∈ W 1,p(B1), we have

‖u‖pLp(B1) ≤ 2p−1
(
‖u‖pLp(∂B1) + ‖∇u‖pLp(B1)

)
.

Proof. By approximation, we may assume that u ∈ C∞(B1). For r ∈ (0, 1) and σ ∈ ∂B1,

we have u(rσ) = u(σ)−
∫ 1

r
σ · ∇u(tσ) dt and hence

rn−1|u(rσ)|p ≤ 2p−1rn−1|u(σ)|p + 2p−1rn−1

∫ 1

r

|∇u(tσ)|p dt

≤ 2p−1|u(σ)|p + 2p−1

∫ 1

0

tn−1|∇u(tσ)|p dt.

(B.1)

Integrating (B.1) in
∫ 1

0
dr
∫
∂B1

dHn−1(σ) now yields the claim.

We prove a Sobolev trace inequality with best exponent:

Proposition B.2. For 1 < p < n, let p? := n−1
n−pp. Then

‖u‖p
Lp? (∂B1)

≤ C
(
‖u‖pLp(∂B1) + ‖∇u‖pLp(B1)

)
for all u ∈ W 1,p(B1), where C is a constant depending only on n and p.

Proof. By approximation, we may assume that u ∈ C∞(B1). Recall the standard Sobolev
inequality

‖u‖pLpS (B1) ≤ C
(
‖u‖pLp(B1) + ‖∇u‖pLp(B1)

)
, (B.2)

where pS := n
n−pp is the Sobolev exponent and C depends only on n and p.

By the divergence theorem we have∫
∂B1

|u|p? dHn−1 =

∫
B1

div(x|u|p?) dx = n

∫
B1

|u|p? dx+ p?
∫
B1

|u|p?−2u(x · ∇u) dx,

whence ∫
∂B1

|u|p? dHn−1 ≤ n

∫
B1

|u|p? dx+ p?
∫
B1

|u|p?−1|∇u| dx. (B.3)
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The last term in (B.3) can be bounded by the Hölder inequality as∫
B1

|u|p?−1|∇u| dx ≤
(∫

B1

|u|(p
?−1) p

p−1 dx

) p−1
p

‖∇u‖Lp(B1),

and noticing that (p? − 1) p
p−1

= pS we deduce

‖u‖p
?

Lp
? (∂B1)

≤ n‖u‖p
?

Lp? (B1)
+ p?‖∇u‖Lp(B1)‖u‖p

?−1
LpS (B1). (B.4)

Since p? < pS, by Hölder we have ‖u‖Lp? (B1) ≤ C‖u‖LpS (B1), and applying the Sobolev
inequality (B.2) in (B.4), we obtain the trace Sobolev inequality

‖u‖p
Lp? (∂B1)

≤ C
(
‖u‖pLp(B1) + ‖∇u‖pLp(B1)

)
, (B.5)

where C depends only on n and p. Applying Lemma B.1 in (B.5) now yields the claim.
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Appendix C

Two interpolation inequalities

We recall two interpolation inequalities in cubes by Cabré [19] (with elementary proofs in
that paper). In the first one, the Lp norm of the gradient is bounded by a weighted L1

norm of the Hessian and the Lp norm of the function:

Proposition C.1 ([19]). Let Q = (0, 1)n ⊂ Rn, p ≥ 1, and u ∈ C2(Q).
Then, for every δ ∈ (0, 1),

‖∇u‖pLp(Q) ≤ Cp

(
δ‖ |∇u|p−1D2u ‖L1(Q) + δ−p‖u‖pLp(Q)

)
,

where Cp is a constant depending only on n and p.

Proof. We first prove the claim for n = 1. In this case, we have |u′(x0)| = minx∈[0,1] |u′(x)|
for some x0 ∈ [0, 1]. For 0 < y < 1

3
< 2

3
< z < 1, since (u(y)− u(z))/(y − z) is equal to u′

at some point, we have |u′(x0)| ≤ 3(|u(y)|+ |u(z)|) and integrating in y and z, we deduce

|u′(x0)| ≤ 6‖u‖L1(0,1).

Integrating d
dx

(|u′|)p from x0 to x ∈ (0, 1), we obtain

|u′(x)|p ≤ p

∫ 1

0

|u′|p−1|u′′| dx+ |u′(x0)|p.

Now, applying the previous inequality, integrating in x ∈ (0, 1), and by Hölder, we deduce

‖u′‖pLp(0,1) ≤ p‖|u′|p−1u′′‖L1(0,1) + 6p‖u‖pLp(0,1).

Rescaling and covering, it is then easy to conclude the claim with a parameter δ > 0.
For n > 1, we apply the last inequality to xn 7→ u(x′, xn) for each x′ ∈ (0, 1)n−1 and

then integrate in x′. This leads to the claimed inequality with ‖uxn‖
p
Lp(Q) on the left-hand

side. Applying this to the remaining variables and summing yields the claim.

By a simple covering argument, we also have the analogous estimate in half-annuli. We
state it for p = 1, since this is the form in which we will use it:

Corollary C.2. Let u ∈ C2(B+
1 ) and 0 < ρ1 < ρ2 < ρ3 < ρ4 ≤ 1.

Then, for every δ̃ ∈ (0, 1), we have

‖∇u‖L1(B+
ρ3
\B+

ρ2
) ≤ Cρi

(
δ̃‖D2u‖L1(B+

ρ4
\B+

ρ1
) + δ̃−1‖u‖L1(B+

ρ4
\B+

ρ1
)

)
,

where Cρi is a constant depending only on n, ρ1, ρ2, ρ3, and ρ4.
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Proof. We cover B+
ρ3
\ B+

ρ2
by disjoint cubes Qj of side-length ε > 0, with ε sufficiently

small such that Qj ⊂ B+
ρ4
\ B+

ρ1
. Since ε and the number of cubes depend only on n and

ρi, applying Proposition C.1 in each cube and summing in j yields the claim.

The second inequality controls the Lp norm of the function by the Lp norm of the
gradient and the L1 norm of the function:

Proposition C.3 ([19]). Let Q = (0, 1)n ⊂ Rn, p ≥ 1, and u ∈ C2(Q).

Then, for every δ̃ ∈ (0, 1),

‖u‖pLp(Q) ≤ C
(
δ̃p‖∇u‖pLp(Q) + δ̃−n(p−1)‖u‖pL1(Q)

)
,

where C is a constant depending only on n.

Proof. Let uQ = 1
|Q|

∫
Q
u dx. By Poincaré’s inequality ‖u − uQ‖Lp(Q) ≤ Cp‖∇u‖Lp(Q) and

hence
‖u‖Lp(Q) ≤ ‖u− uQ‖Lp(Q) + ‖uQ‖Lp(Q) ≤ Cp(‖∇u‖Lp(Q) + ‖u‖L1(Q)).

A scaling and covering argument then leads to the result.
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Appendix D

Absorbing errors in larger balls

We recall a celebrated device of Simon [89] which allows to absorb errors in large balls
when controlling quantities in smaller balls:

Lemma D.1 ([89]). Let β ≥ 0 and C0 > 0. Let B be the class of all open balls B contained
in the unit ball B1 of Rn and let σ : B → [0,+∞) satisfy the following subadditivity property:

σ(B) ≤
N∑
j=1

σ(Bj) whenever N ∈ Z+, {Bj}Nj=1 ⊂ B, and B ⊂
N⋃
j=1

Bj.

It follows that there exists a constant δ > 0, which depends only on n and β, such that
if

ρβσ
(
Bρ/2(y)

)
≤ δρβσ (Bρ(y)) + C0 whenever Bρ(y) ⊂ B1,

then
σ(B1/2) ≤ CC0

for some constant C which depends only on n and β.

Proof. The idea is to obtain an inequality for the quantity

S := sup{ρβσ(Bρ/2(y)) : Bρ(y) ⊂ B1}.

Given ε ∈ (0, 1/2), there are N = N(ε) points yi ∈ B1/2 such that B1/2 ⊂ ∪Ni=1Bε/4(yi).
Notice that Bε(yi) ⊂ B1.

Let ρ > 0 and y ∈ Rn be such that Bρ(y) ⊂ B1, and consider ε ∈ (0, 1/2) as above.
Since Bρ/2(y) ⊂ ∪iBερ/4(y + yi) and Bερ(y + yi) ⊂ Bρ(y) ⊂ B1, by assumption we have

ρβσ(Bρ/2(y)) ≤ ρβ
N∑
i=1

σ(Bερ/4(y + yi))

≤ δε−β
N∑
i=1

ρβεβσ(Bερ/2(y + yi)) + 2βε−βNC0

≤ δε−βNS + 2βε−βNC0

and hence, taking the supremum in ρ and y we deduce

S(1− δε−βN) ≤ 2βε−βNC0.

Taking δ > 0 such that δε−βN = 1/2, it follows that S ≤ 2β+1ε−βNC0, and hence the
claim.
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Appendix E

Approximating C1,1 domains by
smooth ones from the interior

In this appendix, we show that bounded domains of class C1,1 can be approximated by
smooth sets from the interior, satisfying certain uniform bounds. This is a well-known
result in the literature, and is valid more generally for domains of class Ck,α with k ≥ 1
and α ∈ [0, 1]. We have included an elementary proof for the sake of completeness. Our
proof follows the approach suggested by Gilbarg and Trudinger in [63, Problem 6.9].

Recall the definition of C1,1 domains:

Definition E.1. A bounded domain Ω ⊂ Rn is of class C1,1 if at each point x0 ∈ ∂Ω there
is a ball B = Bρ(x0) and a one-to-one mapping Ψ of B onto U ⊂ Rn such that:

(i) Ψ(B ∩ Ω) ⊂ Rn
+

(ii) Ψ(B ∩ ∂Ω) ⊂ ∂Rn
+

(iii) Ψ ∈ C1,1(B) and Ψ−1 ∈ C1,1(U)

Equivalently, Ω is of class C1,1 if each point of ∂Ω has a neighborhood in which ∂Ω is the
graph of a C1,1 function of n− 1 of the coordinates.

Every such domain can be written as the positive set of a C1,1 function. Namely, we
have:

Lemma E.2. Let Ω ⊂ Rn be a bounded domain of class C1,1. Then there is a function
Φ ∈ C1,1(Rn) such that Ω = {Φ > 0}, Φ = 0 on ∂Ω, and ∇Φ(x) 6= 0 for all x ∈ ∂Ω.

Proof. By compactness, ∂Ω may be covered by finitely many balls {Bj = Bρj(xj)}Nj=1, with

xj ∈ ∂Ω and ρj > 0, such that there are flattening maps Ψj ∈ C1,1(Bj) as in Definition E.1.
Let ρ > 0 be sufficiently small so that the set B0 := {x ∈ Ω: dist(x, ∂Ω) > ρ} satis-

fies Ω ⊂ ∪Nj=0Bj, and consider a partition of unity {ηj}Nj=0 subordinated to the covering
{Bj}Nj=0. The function

Φ = η0 +
N∑
j=1

ηjΨ
n
j

now satisfies the desired properties.

Remark E.3. Notice that, by construction, Φ is compactly supported and takes negative
values in a bounded neighborhood of ∂Ω outside Ω.
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Regularizing Φ and taking appropriate superlevel sets, we obtain the following approx-
imation result:

Lemma E.4. Let Ω = {Φ > 0} ⊂ Rn be a bounded domain of class C1,1, with Φ ∈ C1,1(Rn)
as in Lemma E.2 above. Then, there is an exhaustion of Ω by smooth sets Ωk = {Φk > 0},1
where the functions Φk ∈ C∞(Rn) satisfy

‖∇Φk‖C1(Rn) + ‖|∇Φk|−1‖L∞(∂Ωk) ≤ C,

for some constant C depending only on Φ and Ω. Moreover, we have that ∂Ωk → ∂Ω in
the sense of the Hausdorff distance.2

Proof. Since Ω = {Φ > 0} and∇Φ 6= 0 on ∂Ω, by continuity it follows that Φ is comparable
to the distance function d(x) = dist(x, ∂Ω) in Ω, say

L−1d(x) ≤ Φ(x) ≤ Ld(x) for x ∈ Ω, (E.1)

for some L ≥ 1. From now on, for x outside Ω, we let d(x) = −dist(x, ∂Ω).
Consider a mollifying sequence (ηε)ε>0 with supp ηε ⊂ Bε. We will choose the functions

Φk := Φ ∗ ηεk − 2Lεk (E.2)

for some appropriate sequence εk ↓ 0. Since ‖∇Φk‖C1 = ‖∇Φk‖L∞ + ‖D2Φk‖L∞ , recalling
that ‖D2Φk‖L∞(Rn) = [∇Φk]C0,1(Rn) (because Φk is C∞) and Φ ∈ C1,1, the stated uniform
bounds for ‖∇Φk‖C1 hold by the standard properties of convolutions.

Given δ > 0, from (E.1) we see that

Φ(x) > δ/L for x ∈ {x ∈ Rn : d(x) > δ} = {d > δ},

and taking the convolution with ηε, we deduce

Φ ∗ ηε(x) > δ/L for x ∈ {d > δ + ε}. (E.3)

Similarly, for δ̃ > 0 we have

Φ(x) ≤ Lδ̃ for x ∈ {d ≤ δ̃},

and regularizing we obtain

Φ ∗ ηε(x) ≤ Lδ̃ for x ∈ {d ≤ δ̃ − ε}. (E.4)

Letting δ̃ = δ/L2, since Lδ̃ = δ/L, by (E.3) and (E.4) we have

{d > δ + ε} ⊂ {Φ ∗ ηε > δ/L} ⊂ {d > δ/L2 − ε},

and the choice δ = 2L2ε now yields the inclusions

{d > ε(2L2 + 1)} ⊂ {Φ ∗ ηε > 2Lε} ⊂ {d > ε}. (E.5)

Next, we construct the sequence εk in (E.2) inductively. Given ε1 > 0 small, we define
εk+1 := εk/{2(2L2 + 1)}. Hence, by (E.5), the sets Ωk := {Φk > 0} = {Φ ∗ ηεk > 2Lεk}
satisfy

Ωk ⊂ {d ≥ εk} ⊂ {d > εk+1(2L2 + 1)} ⊂ Ωk+1 ⊂ Ω. (E.6)

1By an exhaustion we mean that Ωk ⊂ Ωk+1 ⊂ Ω and Ω = ∪kΩk.
2By this we mean that max{supx∈∂Ω dist(x, ∂Ωk), supx∈∂Ωk

dist(x, ∂Ω)} → 0 as k →∞.
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They clearly exhaust Ω, since εk ↓ 0 and thus Ω = ∪k{d ≥ εk−1} ⊂ ∪kΩk. Furthermore,
the inclusions (E.6) show that ∂Ωk is at a Hausdorff distance of at most εk(2L

2 + 1) from
∂Ω, and hence ∂Ωk → ∂Ω with respect to this distance.

It remains to prove the lower bound for |∇Φk| on ∂Ωk, which will also show that the
boundary ∂Ωk is smooth. Let x ∈ Rn with d(x) = |x− x0| for some x0 ∈ ∂Ω. Since

∇Φ(x) · ∇Φ(x0)
|∇Φ(x0)| ≥ |∇Φ(x0)| − [∇Φ]C0,1(Rn)d(x),

we have the lower bound

∇Φ(x) · ∇Φ(x0)
|∇Φ(x0)| ≥

1
2
‖|∇Φ|−1‖−1

L∞(∂Ω) for x ∈ {−ρ < d < ρ},

where ρ > 0 depends only on ‖|∇Φ|−1‖L∞(∂Ω) and [∇Φ]C0,1(Rn). Taking the convolution
with ηεk in this last inequality, we obtain

∇Φk(x) · ∇Φ(x0)
|∇Φ(x0)| ≥

1
2
‖|∇Φ|−1‖−1

L∞(∂Ω) for x ∈ {−(ρ− εk) < d < ρ− εk}. (E.7)

By (E.6), the boundary ∂Ωk is at a distance of at most εk(2L
2 + 1) from ∂Ω. Hence,

choosing ε1 > 0 sufficiently small such that ρ − ε1 > ε1(2L2 + 1), from (E.7) and the
definition of εk = ε1/{2(2L2 + 1)}k−1 we deduce

|∇Φk(x)| ≥ ∇Φk(x) · ∇Φ(x0)
|∇Φ(x0)| ≥

1
2
‖|∇Φ|−1‖−1

L∞(∂Ω) on ∂Ωk,

and therefore ‖|∇Φk|−1‖L∞(∂Ωk) ≤ 2‖|∇Φ|−1‖L∞(∂Ω), which concludes the proof.
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Appendix F

On the uniqueness of stable solutions

Here, we prove the uniqueness of stable solutions to nonvariational equations involving
convex nonlinearities. For this, we employ some fundamental results of Berestycki, Niren-
berg, and Varadhan [9] on the principal eigenfunction. Compare the following statement
with Proposition 1.3.1 in Dupaigne’s book [48]:

Proposition F.1. Given Ω ⊂ Rn a bounded domain, let u1, u2 ∈ C0(Ω)∩W 2,n
loc (Ω) be two

stable solutions of the equation −Lu = f(u) in Ω, with u = 0 on ∂Ω.
Assume that f ∈ C1(R) is convex.
Then either u1 = u2 or f(u) = µ1[L,Ω]u on the ranges of u1 and u2.

Remark F.2. Here µ1[L,Ω] denotes the principal (or smallest) eigenvalue of L in Ω, with
the sign convention −Lϕ = µ1ϕ. It is characterized by (see [9])

µ1[L,Ω] = sup
{
µ : there is a function ϕ > 0 ∈ W 2,n

loc (Ω) satisfying Lϕ+ µϕ ≤ 0 in Ω
}
.

Moreover, L can be any uniformly elliptic second order operator. In particular, we allow
zero order terms.

Remark F.3. In the proof of Theorem 3.1.1 above, we only need a weaker version of
Proposition F.1. Namely, we could assume additionally that u1 ≤ u2, which admits a
shorter proof. However, the present statement might be more useful in applications.

Proof. Assume u1 6= u2 and consider the difference w := u2 − u1. Let

Ω+ := {x ∈ Ω: u2(x) > u1(x)} = {w > 0},

and assume Ω+ 6= 0 (otherwise we exchange the roles of u1 and u2). By convexity

−Lw = f(u2)− f(u1) ≤ f ′(u2)w,

whence
Ju2w = Lw + f ′(u2)w ≥ 0 in Ω. (F.1)

By the monotonicity of the principal eigenvalue with respect to the domain, since u2 is
stable, we have

µ1[Ju2 ,Ω
+] ≥ µ1[Ju2 ,Ω] ≥ 0. (F.2)

Since w > 0 in Ω+, by (F.1) and (F.2) it follows that{
Ju2w + µ1[Ju2 ,Ω

+]w ≥ 0 in Ω+

w = 0 on ∂Ω+.
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Applying [9, Corollary 2.2], we deduce that w is a positive principal eigenfunction of Ju2
in Ω+, that is,

Ju2w + µ1[Ju2 ,Ω
+]w = 0 in Ω+. (F.3)

Using the equation −Lw = f(u2)− f(u1) in Ω+, from (F.3) we see that

f(u2)− f(u1)− f ′(u2)(u2 − u1) = µ1[Ju2 ,Ω
+](u2 − u1) ≥ 0 in Ω+. (F.4)

By convexity we also have f(u2) − f(u1) − f ′(u2)(u2 − u1) ≤ 0 and hence, by (F.4), it
follows that µ1[Ju2 ,Ω

+] = 0 and f is affine in the union of the intervals [u1(x), u2(x)] when
x ∈ Ω+.

For instance, if f is of the form f(u) = au + b in the ranges above, since −Lw = aw
in Ω+ with w > 0, we must have a = µ1[L,Ω+]. Moreover, to have nontrivial solutions
of −Lu = µ1[L,Ω+]u + b, the Fredholm alternative forces b = 0. Therefore, we see that
f(u) = µ1[L,Ω+]u in the ranges of u1 and u2 in Ω+.

If Ω− := {w < 0} 6= ∅, then, arguing as above with −w in place of w, we deduce

(Ju1 + µ1[Ju1 ,Ω
−])w = 0 in Ω−,

with µ1[Ju1 ,Ω
−] = 0 and f(u) = µ1[L,Ω−]u in the ranges of u2 and u1 in Ω−.

The regularity of f and the continuity of the solutions forces µ1[L,Ω+] = µ1[L,Ω−].
However, by the stability of u2

0 ≤ µ1[Ju2 ,Ω] = µ1

[
L+ µ1[L,Ω+],Ω

]
= µ1[L,Ω]− µ1[L,Ω+],

but
µ1[L,Ω]− µ1[L,Ω+] < 0

by the strict monotonicity of µ1, since Ω+ ( Ω with |Ω \ Ω+| = |Ω−| > 0 by assumption.1

This contradiction forces either Ω+ or Ω− to be empty, hence f(u) = µ1[L,Ω] in the ranges
of u1 and u2, as we claimed.

1To show that µ1[L,Ω] < µ1[L,Ω+], first notice that we already have µ1[L,Ω] ≤ µ1[L,Ω+] by definition
of µ1. Suppose µ1[L,Ω] = µ1[L,Ω+] and consider ϕ1 a positive principal eigenfunction of L in Ω. Hence
Lϕ1 + µ1[L,Ω+]ϕ1 ≤ 0 in Ω+ and ϕ1 > 0 in Ω+. By Corollary 2.1 in [9] we must have ϕ1 = 0 on
∂Ω+ ∩ Ω 6= ∅, contradicting the positivity in Ω.
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Part II

A nonlocal Weierstrass extremal field
theory
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Chapter 4

A Weierstrass extremal field theory
for the fractional Laplacian

In this chapter, we extend part of the Weierstrass extremal field theory in the Calculus
of Variations to a nonlocal framework. Our model case is the energy functional for the
fractional Laplacian (the Gagliardo-Sobolev seminorm), for which such a theory was still
unknown until our work [23].

We build a null-Lagrangian and a calibration for nonlinear equations involving the
fractional Laplacian in the presence of a field of extremals. Thus, our construction assumes
the existence of a family of solutions to the Euler-Lagrange equation whose graphs produce
a foliation. Then, the minimality of each leaf in the foliation follows from the existence of
the calibration. As an application, we show that monotone solutions to fractional semilinear
equations are minimizers.

4.1 Introduction

The Weierstrass extremal field theory, a classical tool from the Calculus of Variations,
provides a sufficient condition for the minimality of critical points. Namely, if an extremal
of an elliptic functional can be embedded in a family of critical points whose graphs produce
a foliation (in particular, the graphs do not intersect each other), then the given extremal
is a minimizer. The proof of this result is based on the construction of a calibration, that
is, an auxiliary functional satisfying certain properties (see Definition 4.1.1). This theory
has found important applications in the context of minimal surfaces, among others.

The purpose of this chapter is to extend the classical Weierstrass field theory to the
setting of functionals associated to nonlocal equations, starting here with the simplest one.
Our main result is the construction of a calibration for the fractional functional

Es,F (w) :=
cn,s
4

∫∫
Q(Ω)

|w(x)− w(y)|2

|x− y|n+2s
dx dy −

∫
Ω

F (w(x)) dx,

where s ∈ (0, 1), cn,s is a positive normalizing constant, F ∈ C1(R),

Q(Ω) := (Rn × Rn) \ (Ωc × Ωc) = (Ω× Ω) ∪ (Ω× Ωc) ∪ (Ωc × Ω), (4.1.1)

and Ω ⊂ Rn is a given bounded domain. Here and throughout the paper, Ωc = Rn \ Ω.
The Euler-Lagrange equation for the functional Es,F is the semilinear equation

(−∆)su = F ′(u) in Ω,
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where

(−∆)su (x) = cn,s P.V.

∫
Rn

u(x)− u(y)

|x− y|n+2s
dy

is the fractional Laplacian and P.V. stands for the principal value.
Our construction does not use the Caffarelli-Silvestre extension problem for the frac-

tional Laplacian. This is relevant, since in the next chapter, it allows us to treat more
general nonlocal functionals of the form1

EN(w) :=
1

2

∫∫
Q(Ω)

GN(x, y, w(x), w(y)) dx dy,

where the Lagrangian GN(x, y, a, b) is required to satisfy the natural ellipticity condition

∂2
abGN(x, y, a, b) + ∂2

abGN(y, x, b, a) ≤ 0. (4.1.2)

As in the classical local theory, our calibration is built in the presence of a field of
extremals, namely, a one-parameter family of critical points of Es,F (or of EN) whose graphs
form a foliation (see Definition 4.1.2). In particular, the graphs do not intersect each other.
For the construction, it suffices to have subsolutions, respectively supersolutions, on each
respective side of a given extremal —something very useful for some applications.

As a first application of our calibration, we establish that monotone solutions to transla-
tion invariant nonlocal equations are minimizers. This is related to a celebrated conjecture
of De Giorgi for the Allen-Cahn equation. More precisely, if u is a solution satisfying
∂xnu > 0 in Rn, then it is a minimizer2 among functions w such that

lim
τ→−∞

u(x′, τ) ≤ w(x′, xn) ≤ lim
τ→+∞

u(x′, τ)

for x = (x′, xn) ∈ Rn−1 ×R. This result was only known for those nonlocal functionals for
which an existence and regularity theory of minimizers is available. We elaborate on this
further in Subsection 4.1.4.

As a second application, in Chapter 5 below, we establish that minimizers of nonlocal
elliptic functionals are viscosity solutions. Although this was previously known for problems
where a weak comparison principle is available (see [5, 66, 87]), we can prove it in more
general scenarios by using the calibration technique. This has been motivated by the
theory of nonlocal minimal surfaces, where the calibration argument of Cabré [18] greatly
simplified the original proof (that minimizers are viscosity solutions) from [32].

4.1.1 The notion of calibration

A fundamental problem in the Calculus of Variations consists of finding conditions for
a function to be a minimizer of a given functional. More precisely, given a functional
E : A → R defined on some set of admissible functions A, and given u ∈ A, one wishes to
know whether u minimizes E among competitors in A having the same Dirichlet condition
as u.

1The subindices L and N will be used throughout the work to denote local and nonlocal objects,
respectively.

2Monotone solutions are easily seen to be strictly stable solutions and, as a result, to be minimizers
with respect to small compactly supported perturbations. Our result gives a more precise neighborhood
in which the solution is minimizing.
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In classical local problems, the Dirichlet condition refers to the value of u on the bound-
ary of the domain Ω, while in nonlocal problems one prescribes the value in all the exterior
of Ω, namely, in Ωc = Rn \ Ω.

One effective strategy to establish the minimality of a given function u ∈ A consists of
constructing a calibration:

Definition 4.1.1. A functional C : A → R is a calibration for the functional E and the
admissible function u ∈ A if the following conditions hold:

(C1) C(u) = E(u).

(C2) C(w) ≤ E(w) for all w ∈ A with the same Dirichlet condition as u.

(C3) C(w) = C(w̃) for all w, w̃ ∈ A with the same Dirichlet condition as u.

Functionals satisfying (C3) are known as null-Lagrangians (see, for instance, [54, Chapter 8]
and [61, Section 1.4]). It is, however, convenient to relax this last condition to the less
stringent

(C3′) C(u) ≤ C(w) for all w ∈ A with the same Dirichlet condition as u.

In this work we still refer to functionals satisfying (C1), (C2), and (C3′) as calibrations.3

Recall the meaning of the Dirichlet condition for local and nonlocal problems given
right before Definition 4.1.1.

Once a calibration is available, the minimality of u follows immediately both in the
local and nonlocal cases. Indeed, if C is a calibration for E and u ∈ A, then, for every
w ∈ A with the same Dirichlet condition as u, applying (C1), (C3′), and (C2) (in this order)
we obtain

E(u) = C(u) ≤ C(w) ≤ E(w).

Therefore, u is a minimizer.

4.1.2 The classical theory of calibrations

Calibrations arose in the development of the classical theory of the Calculus of Variations.
Historically, a fundamental question was to determine necessary and sufficient conditions
for a function to be a minimizer. A satisfactory answer has been obtained for functionals
—that we often call “energies”, following PDE terminology— of the form

EL(w) :=

∫
Ω

GL

(
x,w(x),∇w(x)

)
dx. (4.1.3)

In this framework, the function GL(x, λ, q) is called the Lagrangian of EL.
A necessary condition for minimality is the vanishing of the first variation of EL. That

is, every minimizer is a critical point of EL (an extremal) and must satisfy the associated
Euler-Lagrange equation. If the Lagrangian GL(x, λ, q) is convex in the variables (λ, q),
then the functional EL is convex and, in this case, every extremal is a minimizer. Although
many models from Physics exhibit such a convexity property, it is well known that very
relevant nonconvex energies appear in applications. This is the case of the Allen-Cahn
energy, among many others. For such energy functionals, the Dirichlet problem may admit

3In the literature, functionals satisfying (C1), (C2), and (C3′) are sometimes called subcalibrations.
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several extremals, not all of them being minimizers. Still, if GL is not convex in (λ, q), one
often has that the Lagrangian GL(x, λ, q) is convex with respect to the gradient variable
q, which amounts to the ellipticity of the problem.

For nonconvex elliptic problems, one is interested in having sufficient conditions for an
extremal to be a minimizer. Two of such conditions, due to Jacobi and Weierstrass, are
well known. First, if a solution is strictly stable,4 then it is a local minimizer in a certain
topology, that is, a minimizer in a small neighborhood. This is Jacobi’s condition. The
real difficulty is proving minimality in a larger, more interesting class of competitors (or
perhaps even absolute minimality). In this direction, the Weierstrass sufficient condition
yields minimality among functions taking values in a precise region. To further elaborate
on this, we need to introduce the notion of field. Essentially, this is a collection of ordered
functions ut : Ω → R, with t in some interval I ⊂ R, enjoying some regularity for the
joint function (x, t) 7→ ut(x). The key point is that the graphs of these functions produce
a foliation of a certain region G in Rn × R, which allows to carry out a subtle convexity
argument to bound the nonconvex functional by below with a calibration.

While fields are a classical concept in local problems, we can extend their definition to
include both the local and nonlocal settings, as follows.

Definition 4.1.2. Given a domain D ⊂ Rn (not necessarily bounded) and an interval I ⊂
R (not necessarily bounded, nor open), we say that a family {ut}t∈I of functions ut : D → R
is a field in D if

• the function (x, t) 7→ ut(x) is continuous in D × I;

• for each x ∈ D, the function t 7→ ut(x) is C1 and increasing in I.

We say that {ut}t∈I is a C2 field in D if, additionally, the function (x, t) 7→ ut(x) is C2 in
D × I.

Given a functional E acting on functions defined in D, and given a subdomain Ω ⊂ D,
we say that {ut}t∈I is a field of extremals5 in Ω (roughly speaking, since we should refer to
E , D, and Ω) when it is a field in D and each of the functions ut is a critical point of E in
Ω.

In the local setting, we will take D = Ω. For nonlocal Lagrangians we will set D = Rn

and Ω ⊂ Rn.

Given a field in D as above, the region

G = {(x, λ) ∈ D × R : λ = ut(x) for some t ∈ I} ⊂ Rn × R

is foliated by the graphs of the functions ut, which do not intersect each other (since ut(x)
is increasing in t). In particular, we can uniquely define a leaf-parameter function

t : G → I, (x, λ) 7→ t(x, λ) determined by ut(x,λ)(x) = λ. (4.1.4)

The function t is continuous in G by the assumptions in Definition 4.1.2. We will often
refer to the functions ut (or their graphs) as the “leaves” of the field.

4A solution u is said to be strictly stable if the principal eigenvalue of the linearized equation at u is
positive.

5The term extremal field is also often used in the literature, but we find it ambiguous.
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Having defined what a field is, we can now state the classical theorem of Weierstrass,
which was first proven for scalar ODEs:

Weierstrass sufficient condition. For the functional EL in (4.1.3), assum-
ing ellipticity (i.e., that the Lagrangian GL(x, λ, q) is convex in the gradient
variable q), if a critical point is embedded in a field of extremals,6 then the
critical point is a minimizer among functions taking values in the foliated
region G and having the same boundary values as the given critical point.

(4.1.5)

The proof of (4.1.5) is based on the construction of a calibration. For this, given an
interval I ⊂ R, a bounded domain Ω ⊂ Rn, and a C2 field of extremals {ut}t∈I in Ω, one
considers the set of admissible functions AL = {w ∈ C1(Ω) : graphw ⊂ G}. Then, the
functional CL : AL → R, defined through the Legendre transform of the Lagrangian GL as

CL(w) :=

∫
Ω

{
∂qGL(x, ut(x),∇ut(x)) ·

(
∇w(x)−∇ut(x)

)}∣∣∣
t=t(x,w(x))

dx

+

∫
Ω

GL(x, ut(x),∇ut(x))
∣∣
t=t(x,w(x))

dx,

(4.1.6)

is a calibration for EL and each critical point ut0 , t0 ∈ I. While condition (C1) in Defini-
tion 4.1.1 follows directly from (4.1.6), and condition (C2) amounts to ellipticity (i.e., the
convexity of the Lagrangian in the gradient variable q = ∇w(x)), it is a remarkable fact
that the null-Lagrangian property (C3) holds. Its proof will be recalled in Section 4.3.

As an illustrative example, in the presence of a field of extremals, the functional7

E1,F (w) =
1

2

∫
Ω

|∇w(x)|2 dx−
∫

Ω

F (w(x)) dx

(which is typically nonconvex), admits a calibration. It is given by

C1,F (w) =

∫
Ω

{
∇ut(x) · (∇w(x)−∇ut(x)) +

1

2
|∇ut(x)|2

}∣∣∣
t=t(x,w(x))

dx−
∫

Ω

F (w(x)) dx.

(4.1.7)
Notice that, although the functional E1,F is not convex, its Lagrangian is elliptic.

The Weierstrass sufficient condition (4.1.5) naturally leads to the question of when it
is possible to embed a solution of the Euler-Lagrange equation into a field of extremals
in a large portion of space. An important case corresponds to functionals which are in-
variant with respect to some translations. A first example are those Lagrangians which
do not depend on a direction of space and, at the same time, the extremal is monotone
in that same direction. Such a solution can be translated along the invariant direction to
produce a field of extremals. This applies to layer solutions of the Allen-Cahn equation;
see Subsection 4.1.4 below. A second example are those Lagrangians GL(x, λ, q) which do
not depend on the function variable λ. In this case, a field can be obtained by translating
the solution in the vertical direction. This can be used, for instance, to show that minimal
graphs are minimizing minimal surfaces; see Section 4.2.

6In fact, it suffices that the leaves of the field above and below the graph of the given critical point are,
respectively, super and subsolutions to the Euler-Lagrange equation. This, which is well known, will be
easily seen within the proofs of our main results.

7The subindex 1 in the definition of the energy functional refers to the fractional parameter s in Es,F ,
which are the nonlocal analogues of E1,F treated later. As s tends to 1, one recovers E1,F from Es,F after
a suitable normalization; see, for instance, [47].
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Fields of extremals can also be built in the presence of a concrete explicit solution.
Here, using the precise solution and PDE at hand, one may be able to construct a field in a
more or less explicit way. This approach has been applied in the theory of minimal surfaces
to establish the minimality of Simons and Lawson cones, as explained also in Section 4.2.

4.1.3 Nonlocal calibrations

While the theory of calibrations for local equations is well understood, there are only two
papers, to the best of our knowledge, dealing with nonlocal ones. In [18] the first au-
thor found an explicit calibration for the fractional perimeter, as explained in Section 4.2.
Pagliari [80] investigated the abstract structure of calibrations for the fractional total vari-
ation.8

We now present our main result, which builds a calibration for the functional

Es,F (w) =
cn,s
4

∫∫
Q(Ω)

|w(x)− w(y)|2

|x− y|n+2s
dx dy −

∫
Ω

F (w(x)) dx (4.1.8)

in the presence of a field of extremals. Recall (4.1.1) for the meaning of Q(Ω), Defini-
tion 4.1.2 for the notion of field, and (4.1.4) for the leaf-parameter function t. The cali-
bration properties (C1), (C2), (C3), and (C3′) have been introduced in Definition 4.1.1. As
we will explain in Section 4.4, the regularity assumptions on the field can be significantly
weakened.

Theorem 4.1.3. Let I ⊂ R be an interval, Ω ⊂ Rn a bounded domain, and s ∈ (0, 1). Let
{ut}t∈I be a C2 field in Rn in the sense of Definition 4.1.2 satisfying

|ut(x)|+ |∂tut(x)| ≤ C for all x ∈ Rn and t ∈ I,

for some constant C. Consider the admissible functions

As = {w ∈ C0(Rn) ∩ L∞(Rn) : graphw ⊂ G},

where

G = {(x, λ) ∈ Rn × R : λ = ut(x) for some t ∈ I}.

Given t0 ∈ I and F ∈ C1(R), let Cs,F be the functional

Cs,F (w) := cn,s P.V.

∫∫
Q(Ω)

∫ w(x)

ut0 (x)

ut(x)− ut(y)

|x− y|n+2s

∣∣∣∣
t=t(x,λ)

dλ dx dy −
∫

Ω

F (w(x)) dx

+
cn,s
4

∫∫
Q(Ω)

|ut0(x)− ut0(y)|2

|x− y|n+2s
dx dy

(4.1.9)

defined for w ∈ As, where cn,s is the positive constant in (4.1.8).
Taking C = Cs,F and E = Es,F as in (4.1.8), we have the following:

(a) Cs,F satisfies (C1) and (C2) with u = ut0.

8This functional involves the fractional perimeter of each sublevel set of a given function. The author
succeeded in constructing a calibration to prove that halfspaces are minimizers, but other fields of extremals
are not mentioned in this work.
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(b) Assume in addition that the family {ut}t∈I satisfies

(−∆)sut − F ′(ut) ≥ 0 in Ω for t ≥ t0,

(−∆)sut − F ′(ut) ≤ 0 in Ω for t ≤ t0.

Then, Cs,F satisfies (C3′) with u = ut0. In particular, ut0 minimizes Es,F among
functions w in As such that w ≡ ut0 in Ωc.

(c) Assume in addition that {ut}t∈I is a field of extremals in Ω, that is, a field in Rn

satisfying

(−∆)sut − F ′(ut) = 0 in Ω for all t ∈ I.

Then, the functional Cs,F satisfies (C3) with u = ut0. Therefore, Cs,F is a calibration
for Es,F and ut0. As a consequence, for every t ∈ I, the extremal ut minimizes Es,F
among functions w in As such that w ≡ ut in Ωc.

The meaning of the principal value P.V. in the definition of the functional Cs,F will be
made precise in Section 4.4; see Remark 4.4.3.

Even when the nonlocal energy functional is as simple as Es,F (the energy functional
associated to the fractional Laplacian) the form of a calibration, if any could exist, was
not known prior to our work [23].

Our first attempts at constructing a calibration for Es,F consisted on trying to “nonlo-
calize” the expression (4.1.7) for the local calibration, mainly by substituting gradients by
fractional ones or double integrals of differences. This strategy seems to lead to functionals
that are not calibrations. We comment on these attempts with more detail in Appendix H.

A second failed approach consisted of trying to find a satisfactory calibration using the
extension problem for the fractional Laplacian. Indeed, applying the local theory in the
extended space gives a calibration in terms of a certain field of extremals “upstairs”, but
it was not clear at all how to write it in terms of the given field “downstairs” (the reason
being that the functional is too involved). Thus, the extension has not been useful to us;
see Appendix G.

We were puzzled for a long time until we revisited the work of the first author [18],
which found a calibration for the fractional perimeter. It was written in terms of the Euler-
Lagrange and Neumann operators associated to the fractional perimeter. We then realized
that such a structure was also present, but hidden, in the classical local calibration CL in
(4.1.6). More precisely, for every t0 ∈ I, in Theorem 4.3.1 we will see that

CL(w) =

∫
Ω

∫ w(x)

ut0 (x)

LL(ut)(x)
∣∣∣
t=t(x,λ)

dλ dx

+

∫
∂Ω

∫ w(x)

ut0 (x)

NL(ut)(x)
∣∣
t=t(x,λ)

dλ dHn−1(x) + EL(ut0),

(4.1.10)

where LL and NL are, respectively, the Euler-Lagrange and Neumann operators associated
to the functional EL in (4.1.3). To the best of our knowledge, this is the first time that the
local calibration has been written in this way. From this expression, the null-Lagrangian
property follows easily.9 Instead, traditionally one exhibited the null-Lagrangian property

9Indeed, if {ut}t∈I is a field of extremals, then LL(ut) ≡ 0 and the calibration depends only on the
value of w on ∂Ω.
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of CL by either expressing the functional as the flux of a divergence-free vector field in Ω×R
or by certain straightforward although opaque analytic computations; see Section 4.3. Nei-
ther of these approaches reveals the exact role played by the Euler-Lagrange and Neumann
operators in the calibration.

Once we found (4.1.10) for the local case, a simple extension of this expression easily
led us to the nonlocal calibration of Theorem 4.1.3. The key point is that each of the terms
in (4.1.10) has a clear nonlocal counterpart. In fact, the same procedure works for general
nonlocal functionals EN of the form

EN(w) =
1

2

∫∫
Q(Ω)

GN(x, y, w(x), w(y)) dx dy

with Lagrangian GN(x, y, a, b) satisfying the natural ellipticity condition (4.1.2).

4.1.4 An application to monotone solutions

Our main motivation to find a calibration came from the study of monotone solutions to
the fractional Allen-Cahn equation

(−∆)su = u− u3 in Rn

(see [30, 31], for instance, and [42] for more general integro-differential operators). Note
that when the operator is the classical Laplacian, these solutions are related to a famous
conjecture of De Giorgi; see [26] for instance.

The following is an application of our main theorem to monotone solutions of translation
invariant equations.

Corollary 4.1.4. Given s ∈ (0, 1) and F ∈ C3(R), let u : Rn → R be a bounded solution
of

(−∆)su = F ′(u) in Rn. (4.1.11)

Assume that u is increasing in xn.
Then, for each bounded domain Ω ⊂ Rn, u is a minimizer of Es,F among continuous

functions w : Rn → R satisfying

lim
τ→−∞

u(x′, τ) ≤ w(x′, xn) ≤ lim
τ→+∞

u(x′, τ) for all (x′, xn) ∈ Rn−1 × R (4.1.12)

and such that w ≡ u in Ωc.

Let us mention that we only assume F ∈ C3 for simplicity, to ensure that u is of class
C2 independently of s. We could weaken the regularity assumptions, but this is not the
purpose of the thesis.

To prove Corollary 4.1.4, we define the one-parameter family of functions ut(x) :=
u(x′, xn + t), where x = (x′, xn) ∈ Rn−1 × R. Thanks to the monotonicity assumption,
uxn > 0, the family {ut}t∈R is a field in Rn in the sense of Definition 4.1.2. Moreover, it is
a field of extremals on account of the translation invariance of the equation (4.1.11). Thus,
Theorem 4.1.3 gives that, on each bounded domain Ω ⊂ Rn, u is a minimizer of the energy
Es,F among the admissible functions in the statement.

Let us point out that this minimality result was already known and can be proven
without using calibrations. Nevertheless, this alternative proof (described in the next
paragraph) requires an existence and regularity theorem for minimizers. Such a result
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is not available for many other nonlocal equations. In the next chapter, we construct
calibrations in a general nonlocal setting, and thus the proof above will allow us to show
minimality of monotone solutions for the fist time.

Now, we briefly discuss the proof of Corollary 4.1.4 which does not use calibrations; for
the details, see [26]. One considers a minimizer within the region given by (4.1.12) and
with the same exterior datum as the monotone solution. Its existence and regularity can
be proved in the case of equation (4.1.11). Now, the monotone solution can be translated,
starting from infinity, until it touches the minimizer from one side, something that must
happen in Ω, not in the exterior. The strong comparison principle then yields that the
translated solution and the minimizer must coincide. Moreover, by the exterior condition
they must be equal to the original solution. In particular, this proves that the monotone
solution is a minimizer. Furthermore, this proof gives uniqueness of solution with the
exterior data of u.

4.1.5 Outline of the chapter

For the proofs of our main theorems, the reader may skip sections 4.2 and 4.3.
In Section 4.2 we briefly comment on the classical perimeter functional and review the

work of the first author on the calibration for the nonlocal perimeter [18]. Section 4.3 is
devoted to recalling some known facts from the classical theory of calibrations and proving
the new expression (4.1.10); see Theorem 4.3.1. In Section 4.4 we prove Theorem 4.1.3
under weaker assumptions on the field.

4.2 The classical and nonlocal perimeters

In this section we recall different notions for the perimeter of a set. First we introduce the
classical perimeter functional and its calibration. We will mention several results concern-
ing fields of extremals in this setting. Later we revisit the work of the first author [18] on
the construction of a calibration for the nonlocal perimeter. Here we will focus on identi-
fying the key feature that leads to the calibration properties in this nonlocal framework.
This will suggest a candidate structure to search for in local functionals, which will lead
to (4.1.10) and then allow us to treat the fractional Laplacian case.

As mentioned in the Introduction, some relevant applications of calibrations concern
the theory of minimal surfaces. In broad terms, a minimal surface Σ ⊂ Rn is a critical
point of the (n − 1)-dimensional area functional. Given a domain Ω ⊂ Rn, the classical
perimeter of a (regular) set F ⊂ Rn inside Ω is defined by

PL(F ) := Hn−1(Ω ∩ ∂F ), (4.2.1)

where Hn−1 is the (n−1)-dimensional Hausdorff measure. Here we interpret the boundary
of F as the surface Σ = ∂F . The critical points E of PL (known as minimal sets in
the literature) satisfy HL[∂E] = 0 in Ω, where HL[Σ] denotes the mean curvature of Σ.
The variation of PL is taken with respect to perturbations preserving the boundary datum
E ∩ ∂Ω.

We are interested in showing that certain minimal sets E minimize PL among sets F
with the same boundary condition F ∩∂Ω = E ∩∂Ω. Assume that for a family of minimal
sets {Et}t∈R, the surfaces ∂Et form a foliation of Ω. For x ∈ Ω, we let t(x) be the unique
t ∈ R such that x ∈ ∂Et. Denote the outward unit normal vector to ∂F by ν∂F . Then, the
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perimeter functional admits as a calibration

CPL
(F ) :=

∫
Ω∩∂F

X · ν∂F dHn−1, (4.2.2)

where

X(x) := ν∂Et
∣∣
t=t(x)

(x)

is the vector field given by the normal vectors to the surfaces ∂Et. Notice that Defini-
tion 4.1.1 can be easily modified to involve subsets of Rn instead of functions. Then,
properties (C1) and (C2) are easy to check directly, while the null-Lagrangian property
(C3) follows from the divergence theorem and the fact that divX = 0. As a consequence,
each Et minimizes PL and, therefore, each ∂Et is a minimizing minimal surface.

This discussion leads to the question of when it is possible to embed a minimal surface
in a field of extremals. The simplest situation is when the minimal surface is a graph. If
u : Ω′ ⊂ Rn−1 → R is a minimal graph, then the graphs of the translations ut = u + t
give a field of extremals in Ω = Ω′ × R. By the calibration CPL

in (4.2.2), every minimal
graph is a minimizing minimal surface.10 We point out that the functional CPL

can also be
obtained by integrating a closed differential form; see Chapter 1 in [37].

Another interesting situation is when the minimal surface is not a graph but has an
explicit expression. Here a field of extremals can still be obtained in some cases. For
instance, this is done for the Simons cone and for the more general Lawson cones in
Bombieri, De Giorgi, and Giusti [10] and in Davini [45]. The strategy here consists of using
the symmetries of the cone to reduce the minimal surface equation to an ODE in the plane.
It is then shown that the solutions of this ODE do not intersect each other, and thus give a
foliation. We remark that, although the cone is an explicit extremal, the field of extremals
itself is not explicit. An alternative is to build fields made of sub and supersolutions,
which are easier to obtain and suffice to show the minimality (see footnote 6). Explicit
examples of such fields have been found for Lawson cones, simplifying the proof of the
minimality; see De Philippis and Paolini [46] for the Simons cone and Liu [71] for Lawson
cones. We mention that the case of minimal surfaces of codimension greater than 1 can
also be treated, where the appropriate notion of calibration involves the use of differential
forms; see [77].

The perimeter functional PL in (4.2.1) has a nonlocal analogue. Given a nonnegative
symmetric kernel K = K(z), with z ∈ Rn, the K-nonlocal perimeter of a set F ⊂ Rn

inside Ω is defined by

PN(F ) :=
1

2

∫∫
Q(Ω)

|1F (x)− 1F (y)|K(x− y) dx dy,

where Q(Ω) was defined in (4.1.1). It is well known that the Euler-Lagrange operator
associated to PN is the nonlocal mean curvature HK , which is defined for F at boundary
points x ∈ ∂F by

HK [F ](x) :=

∫
Rn

(
1F c(y)− 1F (y)

)
K(x− y) dy,

10Notice that restricting the area functional to the class of graphs yields a convex functional. In par-
ticular, every minimal graph minimizes area in this smaller class, but it is not a priori clear if they are
minimizers with respect to all surfaces. The calibration is used to prove this stronger fact.
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as introduced in [32]. In particular, if a (sufficiently regular) set E minimizes PN with
respect to sets F with the same exterior values F \ Ω = E \ Ω, then HK [E](x) = 0
for x ∈ ∂E ∩ Ω.

In [18], the first author showed that, given a measurable function φ : Rn → R, the
functional11

CPN
(F ) :=

1

2

∫∫
Q(Ω)

sign
(
φ(x)− φ(y)

)(
1F (x)− 1F (y)

)
K(x− y) dx dy (4.2.3)

is a calibration for the nonlocal perimeter PN and each superlevel set

Et := {x ∈ Rn : φ(x) > t},

assuming that these sets have zero nonlocal mean curvature. As a consequence, each Et is
a minimizer of PN with respect to sets that coincide with Et outside Ω.

Properties (C1) and (C2) are easy to check directly from expression (4.2.3). However,
showing the null-Lagrangian property (C3) requires an alternative expression for CPN

. For
this, [18] wrote (4.2.3) in terms of the sets Et as follows. Assume for simplicity that φ is
smooth and ∇φ(x) 6= 0 for all x. Then the level sets are smooth surfaces

∂Et = {x ∈ Rn : φ(x) = t},

which have zero Lebesgue measure in Rn, and it can be readily checked that

sign
(
φ(x)− φ(y)

)
=
(
1(Et)c(y)− 1Et(y)

)∣∣
t=φ(x)

for a.e. (x, y) ∈ Rn × Rn. (4.2.4)

By skew-symmetry of sign(φ(x)−φ(y)), using (4.2.4) and splitting the integration domain
into

(
Ω× Rn

)
∪
(
Ωc × Ω

)
, we arrive at the alternative expression

CPN
(F ) =

∫
Ω∩F

HK [Et](x)
∣∣
t=φ(x)

dx

+

∫
F\Ω

{∫
Ω

(
1(Et)c(y)− 1Et(y)

)
K(x− y) dy

} ∣∣∣∣
t=φ(x)

dx,
(4.2.5)

see [18] for details. Thus, if for all t we have HK [Et] = 0 in Ω, then the quantity CPN
(F )

depends only on the exterior condition F \ Ω, which makes it to be a null-Lagrangian.12

Passing from (4.2.3) to (4.2.5) is the crucial step in [18]. To our knowledge, the structure
of the alternative expression (4.2.5) for CPN

is the only way to prove the null-Lagrangian
property. The two terms in (4.2.5) bring out the true dependence of CPN

on the data:13

the first one involves the Euler-Lagrange equation of PN at each superlevel set Et, while
the second one depends only on the set F outside Ω. The existence of such a structure for
the nonlocal perimeter suggested that it could also be present, although hidden, in other
calibrations, even in the local case, as we will see in next section.

11Let us point out that the idea of using the sign function comes from the Legendre transform of the
absolute value that appears in the fractional perimeter functional.

12As mentioned in the Introduction, to show minimality one does not actually need the full null-
Lagrangian property (C3) but rather the weaker condition (C3′). For instance, to prove that the set E0

minimizes PN, from (4.2.5) it can be shown that it suffices for the Et “above” and “below” E0 to be
super and subsolutions, respectively. For more details see [18] and compare with Theorem 4.1.3 and
Proposition 4.3.3 in the following sections.

13The structure in (4.2.5) also appears in the local framework, where the calibration CPL
given by (4.2.2)

can be written as

CPL
(F ) =

∫
Ω∩F

HL[∂Et](x)|t=t(x) dx−
∫
∂Ω∩F

X · ν∂Ω dHn−1.

Moreover, it is not difficult to see that the calibration for the fractional perimeter, i.e., the K-nonlocal
perimeter with K(z) = |z|−n−2s for s ∈ (0, 1), recovers CPL

in the limit when s→ 1.
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4.3 The theory of calibrations for local equations, and

a novelty

The purpose of this section is twofold: first, to review the classical theory of fields of
extremals and calibrations for “local” functionals and, second, to give a new proof of the
calibration properties in this setting. Inspired by the structure of the calibration (4.2.5) for
the nonlocal perimeter, we will find an alternative expression for the classical calibration
(4.3.8) (a new expression to the best of our knowledge), which involves only the Euler-
Lagrange and Neumann operators acting on the field.

Consider an energy functional of the form

EL(w) :=

∫
Ω

GL

(
x,w(x),∇w(x)

)
dx, (4.3.1)

where the Lagrangian GL(x, λ, q) is of class C2 in all arguments.
A function that plays an important role when studying minimality to nonconvex energy

functionals of the form (4.3.1) is the so-called Weierstrass excess function. It is defined for
x ∈ Ω, λ ∈ R, and q, q̃ ∈ Rn by

E(x, λ, q, q̃) := GL(x, λ, q̃)−GL(x, λ, q)− ∂qGL(x, λ, q) · (q̃ − q). (4.3.2)

It is well known (see [61]) that if u ∈ C1(Ω) is a minimizer of EL with respect to small
C0
c (Ω) perturbations,14 then it must satisfy the Weierstrass necessary condition

E(x, u(x),∇u(x), ξ) ≥ 0 for all x ∈ Ω, ξ ∈ Rn. (4.3.3)

Note that condition (4.3.3) on the excess function is automatically satisfied by every func-
tion u whenever GL(x, λ, q) is convex with respect to the variable q, i.e., when the problem
is elliptic. The Dirichlet energy and more generally the Lagrangian associated to the
p-Laplacian are important elliptic examples where (4.3.3) is thus automatically satisfied.

Given an interval I ⊂ R and {ut}t∈I a C2 field in Ω (in the sense of Definition 4.1.2),
we let

GL :=
{

(x, λ) ∈ Ω× R : λ = ut(x) for some t ∈ I
}

and consider the set of admissible functions

AL :=
{
w ∈ C1(Ω) : graphw ⊂ GL

}
.

In the classical theory, one employs the Legendre transform of GL to define the functional
CL : AL → R by

CL(w) :=

∫
Ω

{
∂qGL(x, ut(x),∇ut(x)) ·

(
∇w(x)−∇ut(x)

)}∣∣∣
t=t(x,w(x))

dx

+

∫
Ω

GL(x, ut(x),∇ut(x))
∣∣
t=t(x,w(x))

dx.

(4.3.4)

Under the assumption that {ut}t∈I is a field of extremals and every leaf ut satisfies the
Weierstrass necessary condition (4.3.3), it is well known that CL is a calibration for the
functional EL and each ut;15 see [1,3,61]. As an illustrative example, the p-Dirichlet energy

Ep-Dir(w) =
1

p

∫
Ω

|∇w(x)|p dx

14This type of local minimizers are often referred to as strong minimizers in the literature.
15The positivity of the excess function E for every leaf ut is only required to show property (C2).

Properties (C1) and (C3) follow directly from the existence of the field of extremals.

146



admits the calibration

Cp-Dir(w) =

∫
Ω

{ ∣∣∇ut(x)
∣∣p−2∇ut(x) ·

(
∇w(x)−∇ut(x)

)
+

1

p

∣∣∇ut(x)
∣∣p }∣∣∣

t=t(x,w(x))
dx.

We will give a new proof that the functional CL is a calibration. As mentioned before,
the key point in our approach is to rewrite CL in an alternative form involving only those
operators which are of interest to the theory of PDE: the Euler-Lagrange and Neumann
operators. These arise when computing the first variation of EL at u ∈ C2(Ω) in a direction
of η ∈ C∞(Ω), that is,

d

dε
EL(w + εη)

∣∣∣
ε=0

=

∫
Ω

LL(w)(x) η(x) dx+

∫
∂Ω

NL(w)(x) η(x) dHn−1(x). (4.3.5)

Here in (4.3.5), LL denotes the Euler-Lagrange operator

LL(w)(x) := −div
(
∂qGL

(
x,w(x),∇w(x)

))
+ ∂λGL

(
x,w(x),∇w(x)

)
(4.3.6)

and NL denotes the Neumann operator

NL(w)(x) := ∂qGL

(
x,w(x),∇w(x)

)
· ν∂Ω(x), (4.3.7)

where ν∂Ω is the outward unit normal vector to ∂Ω.
The following identity is our new result.

Theorem 4.3.1. Given an interval I ⊂ R and a bounded domain Ω ⊂ Rn, let {ut}t∈I be
a C2 field in Ω in the sense of Definition 4.1.2. Let GL = GL(x, λ, q) be a C2 function.

Then, for any t0 ∈ I, the functional CL defined in (4.3.4) can be written as

CL(w) =

∫
Ω

∫ w(x)

ut0 (x)

LL(ut)(x)
∣∣∣
t=t(x,λ)

dλ dx

+

∫
∂Ω

∫ w(x)

ut0 (x)

NL(ut)(x)
∣∣
t=t(x,λ)

dλ dHn−1(x) + EL(ut0).

(4.3.8)

The proof of the theorem follows a typical strategy for showing the null-Lagrangian
property, as seen for instance in [1]. However, a new trick will allow us to identify in the
expression the operators LL and NL acting on the leaves. This is the first time we have
seen the calibration written this way.

Proof of Theorem 4.3.1. In order to prove the result it will be enough to show that

CL(w)− CL(w̃) =

∫
Ω

∫ w(x)

w̃(x)

LL(ut)(x)
∣∣∣
t=t(x,λ)

dλ dx

+

∫
∂Ω

∫ w(x)

w̃(x)

NL(ut)(x)
∣∣
t=t(x,λ)

dλ dHn−1(x).

(4.3.9)

for any given w, w̃ ∈ AL. That is, we only need to take w̃ = ut0 and use the easy equality
CL(ut0) = EL(ut0).

First, let us briefly describe the proof of identity (4.3.9). We consider CL acting on
the convex combination wθ := (1 − θ)w̃ + θw and express the left-hand side of (4.3.9) as∫ 1

0
d
dθ
CL(wθ) dθ. While in the literature the functions w and w̃ are assumed to have the
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same boundary conditions, here we do not impose such a restriction. Then, we compute
the derivative in θ using the expression of CL(wθ) as an integral in x and integrating by
parts. Finally, after applying Fubini’s theorem to interchange the order of integration, the
key point is to make the change of variables θ 7→ wθ(x) for each x. This yields the final
expression.

Next, let us proceed with the proof. We let ζ := w − w̃ and hence wθ = w̃ + θζ. Since

CL(w)− CL(w̃) =

∫ 1

0

d

dθ
CL(wθ) dθ (4.3.10)

and

d

dθ
CL(wθ) =

∫
Ω

d

dθ

{
GL

(
x, ut,∇ut

)∣∣
t=t(x,wθ(x))

}
dx

+

∫
Ω

d

dθ

({
∂qGL

(
x, ut,∇ut

)
·
(
∇wθ −∇ut

)}∣∣∣
t=t(x,wθ(x))

)
dx,

(4.3.11)

we must compute each of the integrands in (4.3.11).
By the chain rule, the first integrand can be written as

d

dθ

{
GL

(
x, ut,∇ut

)∣∣
t=t(x,wθ(x))

}
= ∂λGL

(
x, ut,∇ut

)∣∣
t=t(x,wθ(x))

d

dθ

(
ut(x,wθ(x))

)
+ ∂qGL

(
x, ut,∇ut

)∣∣
t=t(x,wθ(x))

· d

dθ

(
∇ut|t=t(x,wθ(x))

)
and using that d

dθ

(
ut(x,wθ(x))(x)

)
= d

dθ
wθ(x) = ζ(x), we deduce

d

dθ

{
GL

(
x, ut,∇ut

)∣∣
t=t(x,wθ(x))

}
= ∂λGL

(
x, ut,∇ut

)∣∣
t=t(x,wθ(x))

ζ + ∂qGL

(
x, ut,∇ut

)∣∣
t=t(x,wθ(x))

· d

dθ

(
∇ut|t=t(x,wθ(x))

)
.

(4.3.12)

Similarly, the second integrand in (4.3.11) is

d

dθ

({
∂qGL

(
x, ut,∇ut

)
·
(
∇wθ −∇ut

)}∣∣∣
t=t(x,wθ(x))

)
=
{
∂t
[
∂qGL

(
x, ut,∇ut

)]
·
(
∇wθ −∇ut

)}∣∣∣
t=t(x,wθ(x))

d

dθ

[
t(x,wθ(x))

]
+ ∂qGL

(
x, ut,∇ut

)∣∣
t=t(x,wθ(x))

· d

dθ
∇wθ

− ∂qGL

(
x, ut,∇ut

)∣∣
t=t(x,wθ(x))

· d

dθ

(
∇ut|t=t(x,wθ(x))

)
=
{
∂t
[
∂qGL

(
x, ut,∇ut

)]
·
(
∇wθ −∇ut

)}∣∣∣
t=t(x,wθ(x))

∂λt(x,wθ(x))ζ

+ ∂qGL

(
x, ut,∇ut

)∣∣
t=t(x,wθ(x))

· ∇ζ

− ∂qGL

(
x, ut,∇ut

)∣∣
t=t(x,wθ(x))

· d

dθ

(
∇ut|t=t(x,wθ(x))

)
.

(4.3.13)
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Adding (4.3.12) and (4.3.13), substituting in (4.3.11), and rearranging terms, we see
that

d

dθ
CL(wθ)

=

∫
Ω

∂λGL

(
x, ut,∇ut

)∣∣
t=t(x,wθ(x))

ζ dx+

∫
Ω

∂qGL

(
x, ut,∇ut

)∣∣
t=t(x,wθ(x))

· ∇ζ dx

+

∫
Ω

{
∂t
[
∂qGL

(
x, ut,∇ut

)]
·
(
∇wθ −∇ut

)}∣∣∣
t=t(x,wθ(x))

∂λt(x,wθ(x))ζ dx.

(4.3.14)

The second term in (4.3.14) can be integrated by parts as∫
Ω

∂qGL

(
x, ut,∇ut

)∣∣
t=t(x,wθ(x))

· ∇ζ dx

=

∫
∂Ω

∂qGL

(
x, ut,∇ut

)∣∣
t=t(x,wθ(x))

· ν∂Ω ζ dHn−1

−
∫

Ω

div
(
∂qGL

(
x, ut,∇ut

))∣∣
t=t(x,wθ(x))

ζ dx

−
∫

Ω

∂t
[
∂qGL

(
x, ut,∇ut

)]∣∣
t=t(x,wθ(x))

· ∇
[
t(x,wθ(x))

]
ζ dx.

(4.3.15)

We now claim that

∇
[
t(x,wθ(x))

]
=
(
∇wθ −∇ut

)∣∣∣
t=t(x,wθ(x))

∂λt(x,wθ(x)), (4.3.16)

which leads to the identity we wish to prove. Indeed, if (4.3.16) holds, then, substituting
(4.3.15) in (4.3.14), we have

d

dθ
CL(wθ) =

∫
Ω

{
∂λGL

(
x, ut,∇ut

)
− div

(
∂qGL

(
x, ut,∇ut

))}∣∣
t=t(x,wθ(x))

ζ dx

+

∫
∂Ω

∂qGL

(
x, ut,∇ut

)∣∣
t=t(x,wθ(x))

· ν∂Ω ζ dHn−1

=

∫
Ω

LL(ut)
∣∣
t=t(x,wθ(x))

ζ dx+

∫
∂Ω

NL(ut)
∣∣
t=t(x,wθ(x))

ζ dHn−1.

(4.3.17)

Thus, using (4.3.17) in (4.3.10), by Fubini’s theorem we deduce

CL(w)− CL(w̃)

=

∫
Ω

∫ 1

0

LL(ut)
∣∣
t=t(x,wθ(x))

ζ(x) dθ dx+

∫
∂Ω

∫ 1

0

NL(ut)
∣∣
t=t(x,wθ(x))

ζ(x) dθ dHn−1

=

∫
Ω

∫ w(x)

w̃(x)

LL(ut)
∣∣
t=t(x,λ)

dλ dx+

∫
∂Ω

∫ w(x)

w̃(x)

NL(ut)
∣∣
t=t(x,λ)

dλ dHn−1,

where in the last line we have applied the change of variables λ = w̃(x) + θζ(x) for each x.
To show the claim (4.3.16), we use the definition of the leaf-parameter function t(x, λ).

Differentiating ut(x)
∣∣
t=t(x,λ)

= λ with respect to λ, we have

∂tu
t
∣∣
t=t(x,λ)

∂λt(x, λ) = 1. (4.3.18)
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Figure 4.1

Moreover, taking the gradient of the identity ut(x,wθ(x))(x) = wθ(x), we obtain

∇ut(x)
∣∣
t=t(x,wθ(x))

+ ∂tu
t(x)

∣∣
t=t(x,wθ(x))

∇
[
t(x,wθ(x))

]
= ∇wθ(x). (4.3.19)

Multiplying (4.3.19) by ∂λt(x,wθ(x)), applying (4.3.18) with λ = wθ(x), and rearranging
terms leads to (4.3.16) and concludes the proof.

Remark 4.3.2. The expression (4.3.8) can be deduced in a more geometric way using
the divergence theorem in Rn+1. As we see next, this gives an alternative proof of Theo-
rem 4.3.1. Consider the vector field X : Ω× R→ Rn+1 = Rn × R given by

X(x, λ) =
(
Xx(x, λ), Xλ(x, λ)

)
,

where

Xx(x, λ) := −∂qGL

(
x, ut(x),∇ut(x)

)∣∣
t=t(x,λ)

,

Xλ(x, λ) :=
{
− ∂qGL

(
x, ut(x),∇ut(x)

)
· ∇ut(x) +GL

(
x, ut(x),∇ut(x)

)}∣∣∣
t=t(x,λ)

.

Then, an easy computation from [1] shows

divX(x, λ) = LL(ut)(x)
∣∣
t=t(x,λ)

,

where div is the divergence in Rn+1, i.e., divX(x, λ) = divxX
x(x, λ) + ∂λX

λ(x, λ). From
the definition of X, it can also be checked that CL can be written in the compact form

CL(w) =

∫
Γw

X · νΓw dHn,

where Γw ⊂ Rn+1 is the graph of w and νΓw is the unit vector normal to Γw pointing

“upwards”. In coordinates, νΓw reads νΓw(x,w(x)) =
(
1 + |∇w(x)|2

)−1/2
(−∇w(x), 1).

Consider now the regions between the graphs of w and w̃, distinguishing the parts above
and below each function

R+ = {(x, λ) ∈ Ω× R : w̃(x) < λ < w(x)},
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R− = {(x, λ) ∈ Ω× R : w(x) < λ < w̃(x)},
as well as their lateral boundaries on ∂Ω × R, that is, S+ = R+ ∩ (∂Ω × R) and S− =
R− ∩ (∂Ω×R); see Figure 4.1. Applying the divergence theorem to the field X separately
in each of the regions R+ and R−, we see that

CL(w) = CL(w̃) +

∫
R+

divX dHn+1 −
∫
R−

divX dHn+1 −
∫
S+

X · ν∂Ω dHn +

∫
S−
X · ν∂Ω dHn,

where we have extended the outer normal ν∂Ω parallel to the surface ∂Ω×R; see Figure 4.1.
It is also immediate to check that

X · ν∂Ω = −NL(ut)
∣∣
t=t(x,λ))

on S+ ∪ S−, with NL as in (4.3.7). Thus, we obtain the passage from (4.3.4) to (4.3.8) as
an application of the divergence theorem.

Next we prove the key null-Lagrangian property (C3) for the calibration, which follows
readily from the new identity (4.3.8) for CL:

Proposition 4.3.3. Under the same hypotheses as in Theorem 4.3.1, assume that, for
some t0 ∈ I, the leaves of the field {ut}t∈I satisfy

LL(ut) ≥ 0 in Ω for t ≥ t0,

LL(ut) ≤ 0 in Ω for t ≤ t0,
(4.3.20)

where LL is the Euler-Lagrange operator introduced in (4.3.6).
Then, for all w in AL such that w ≡ ut0 on ∂Ω, the functional CL defined in (4.3.4)

satisfies
CL(ut0) ≤ CL(w).

Assume, moreover, that the leaves {ut}t∈I satisfy the Euler-Lagrange equation in Ω,
that is,

LL(ut) = 0 in Ω for all t ∈ I. (4.3.21)

Then, for all w as above, we have

CL(w) = CL(ut0).

Proof. Notice that, by (4.3.8), we have CL(ut0) = EL(ut0). Hence, assuming (4.3.20), since
the boundary integral in (4.3.8) vanishes (w ≡ ut0 on ∂Ω), it suffices to show that∫ w(x)

ut0 (x)

LL(ut)(x)
∣∣
t=t(x,λ)

dλ ≥ 0. (4.3.22)

However, this is clear by (4.3.20) and the fact that ut are increasing with respect to t. If we
additionally have (4.3.21), then the integral in (4.3.22) is zero and the claim follows.

The remaining calibration properties (C1) and (C2) can be directly obtained from the
original definition (4.3.4) of CL. First, we prove property (C1):

Proposition 4.3.4. Assume the same hypotheses of Theorem 4.3.1. Then, for all t ∈ I,
the functional CL defined in (4.3.4) satisfies

CL(ut) = EL(ut).
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Proof. Given t0 ∈ I, from the definition of the leaf-parameter function it follows that
t(x, ut0(x)) = t0. In particular, ∇ut0(x) = ∇ut(x)

∣∣
t=t(x,ut0 (x))

, and substituting in the

definition of CL in (4.3.4) we see that

CL(ut0) =

∫
Ω

GL

(
x, ut0(x),∇ut0(x)

)
dx = EL(ut0).

Since t0 was arbitrary, the claim follows.

Finally, we show property (C2):

Proposition 4.3.5. Under the same hypotheses as in Theorem 4.3.1, the energy EL can
be decomposed in terms of CL and the excess function E as

EL(w) = CL(w) +

∫
Ω

E(x, ut(x),∇ut(x),∇w(x))
∣∣
t=t(x,w(x))

dx, 16

for all w in AL.
As a consequence, if each leaf of the field {ut}t∈I satisfies the Weierstrass necessary

condition (4.3.3), then
CL(w) ≤ EL(w),

for all w in AL.

Proof. For each x ∈ Ω, take λ = w(x) = ut(x)|t=t(x,w(x)), q = ∇ut(x)
∣∣
t=t(x,w(x))

, and

q̃ = ∇w(x). Substituting in (4.3.2) and integrating in Ω, comparing this expression with
the definition of CL in (4.3.4), the identity follows.

Remark 4.3.6. If the energy functional includes reaction terms on a portion of the bound-
ary ΓN ⊂ ∂Ω, i.e.,

ẼL(w) =

∫
Ω

GL

(
x,w(x),∇w(x)

)
dx−

∫
ΓN

F (w(x)) dHn−1(x),

then we can still apply the methods from the local theory of calibrations to show that

C̃L(w) =

∫
Ω

∂qGL(x, ut(x),∇ut(x)) ·
(
∇w(x)−∇ut(x)

)∣∣
t=t(x,w(x))

dx

+

∫
Ω

GL(x, ut(x),∇ut(x))
∣∣
t=t(x,w(x))

−
∫

ΓN

F (w(x)) dHn−1(x) dx

is a calibration. Hence, one can establish the minimality of the leaves among competitors
with the same boundary data only on ∂Ω\ΓN . Note that in this scenario, extremals satisfy
the equation {

LL(u) = 0 in Ω,
NL(u) = F ′(u) in ΓN .

In particular, this allows to treat the extension problem for the fractional Laplacian as
explained in Appendix G. In this setting, one considers the Dirichlet energy in a domain of
the extended space Rn+1

+ with an additional potential energy on the part of its boundary
lying on Rn = ∂Rn+1

+ .

16This identity is known as the Weierstrass representation formula
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4.4 The calibration for the fractional Laplacian

In this section we construct a calibration for the functional

Es,F (w) =
cn,s
4

∫∫
Q(Ω)

|w(x)− w(y)|2

|x− y|n+2s dx dy −
∫

Ω

F (w(x)) dx,

where s ∈ (0, 1), cn,s is a positive normalizing constant, and F ∈ C1(R). It involves the
Gagliardo-Sobolev seminorm and a nonlinear potential term.

If u is a critical point of Es,F with respect to functions with the same exterior data as u,
then u satisfies the nonlocal semilinear equation

(−∆)su− F ′(u) = 0 in Ω. (4.4.1)

In this setting, recall the standard subspace of locally integrable functions given by

L1
s(Rn) :=

{
u ∈ L1

loc(Rn) : ‖u‖L1
s(Rn) =

∫
Rn

|u(y)|
1 + |y|n+2s

dy < +∞
}
.

If u ∈ L1
s(Rn) is C2 in a neighborhood of x ∈ Rn, then the fractional Laplacian

(−∆)su(x) is well defined. More generally, we only need u to be C2s+α in a neighbor-
hood of x for some small α > 0 such that 2s + α is not an integer. Here Cβ denotes
the space Ck,γ of functions with Hölder continuous k-th order derivatives, where k = bβc,
γ = β−k. In particular, for (−∆)su to be well defined in a domain Ω, we just need that the
function u ∈ L1

s(Rn) is smooth in a neighborhood of Ω. The function could be extremely
wild outside the domain, as long as it satisfies the growth assumption defining L1

s(Rn).
As explained in the Introduction, to build the calibration we will assume the existence

of a field in Rn. In particular, we are given a family of functions ut : Rn → R, with t ∈ I
for some interval I ⊂ R, satisfying certain regularity assumptions. For clarity reasons, in
the statement of Theorem 4.1.3 we have assumed that the function (x, t) 7→ ut(x) belongs
to C2(Rn× I)∩L∞(Rn× I) and (x, t) 7→ ∂tu

t(x) is in L∞(Rn× I). We have also assumed
that t 7→ ut(x) is increasing in I for all x ∈ Rn. Thus, the graphs of ut produce a foliation
of a certain region in Rn×R. Nevertheless, these conditions can be weakened, as presented
next, to yield a more satisfactory theory for the fractional Laplacian.

The following is a weaker definition of field than the one in the statement of The-
orem 4.1.3, but which suffices to establish the result. On the one hand, we allow the
functions ut in the field to be “wild” outside a neighborhood of Ω, as long as their frac-
tional Laplacian is under control. On the other hand, the leaves ut can touch each other
(but not cross) outside Ω. That is, we need ut to be increasing in t in Ω, but only nonde-
creasing outside. In particular, the graphs of ut will only produce a foliation in a certain
region of Ω× R.

Definition 4.4.1. Given an interval I ⊂ R, a bounded domain Ω ⊂ Rn, and s ∈ (0, 1), we
say that a family {ut}t∈I of functions ut : Rn → R is a field (to be precise, we should say a
field associated to the s-fractional Laplacian, not to be inconsistent with Definition 4.1.2)
when the following conditions hold:

(i) The function (x, t) 7→ ut(x) is continuous in Ω× I.

(ii) The function t 7→ ut(x) is

• increasing in I for all x ∈ Ω
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• nondecreasing in I for a.e. x ∈ Ωc

• C1 in I for a.e. x ∈ Rn

(iii) For each compact interval J ⊂ I, we have

sup
t∈J

{
‖∂tut‖L∞(Rn) + ‖ut‖L1

s(Rn) + ‖ut‖C2s+α(N)

}
<∞,

for some bounded domain N ⊂ Rn, with Ω ⊂ N , and some α > 0.

Essentially, one needs a reasonable regularity of the joint function, as well as some
further regularity separately in each of the variables, locally uniformly in the parameter t.

By properties (i) and (ii), the leaf-parameter function t = t(x, λ) from (4.1.4) is well-
defined and continuous in the region

G := {(x, λ) ∈ Ω× R : λ = ut(x) for some t ∈ I}. (4.4.2)

The potential F will play no role in the construction of the calibration for Es,F and,
hence, we can focus on the first term. Let

Es(u) :=
cn,s
4

∫∫
Q(Ω)

|u(x)− u(y)|2

|x− y|n+2s dx dy

and consider the energy space Ḣs(Ω) := {u ∈ L1
loc(Rn) : Es(u) <∞}.

Let {ut}t∈I be a field in the sense of Definition 4.4.1, and let t0 ∈ I. We consider the
functional

Cs(w) :=

∫
Ω

∫ w(x)

ut0 (x)

(−∆)sut(x)
∣∣
t=t(x,λ)

dλ dx+
cn,s
4

∫∫
Q(Ω)

|ut0(x)− ut0(y)|2

|x− y|n+2s dx dy (4.4.3)

acting on continuous functions w ∈ C0(Ω) with the same exterior datum as ut0 , and such
that their graph is contained in G ⊂ Ω×R when restricted to Ω. Here G has been introduced
in (4.4.2). We denote this set of admissible functions by As,t0 , that is,

As,t0 :=
{
w ∈ C0(Ω) : w = ut0 on ∂Ω, w = ut0 a.e. in Ωc, graph (w|Ω) ⊂ G

}
. (4.4.4)

Remark 4.4.2. The functional Cs is well defined in the set As,t0 . Let us check this.
For x ∈ Ω and λ between ut0(x) and w(x), we have that

t(x, λ) ∈ [tmin, tmax] ⊂ I,

where
tmin = min

x∈Ω
t(x,w(x)) and tmax = max

x∈Ω
t(x,w(x)).17 (4.4.5)

Then, on the one hand, since the fractional Laplacians (−∆)sut(x) are uniformly bounded
in x ∈ Ω and t ∈ [tmin, tmax] by (iii), the iterated integral in the first term in (4.4.3) is
finite. On the other hand, taking into account the identity

cn,s
2

∫∫
Q(Ω)

|ut(x)− ut(y)|2

|x− y|n+2s
dx dy =

∫
Ω

ut(x)(−∆)sut(x) dx,

the second integral in (4.4.3) is finite thanks to the uniform boundedness in x ∈ Ω and
t ∈ [tmin, tmax] of each ut(x) and of the fractional Laplacians (−∆)sut(x).

17Note here that t(x, ut0(x)) ≡ t0 and that tmin ≤ t0 ≤ tmax since w ≡ ut0 on ∂Ω.
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Remark 4.4.3. The functional Cs coincides, in the set As,t0 , with the functional Cs,F
appearing in Theorem 4.1.3 when F = 0. Indeed, we can write∫

Ω

∫ w(x)

ut0 (x)

(−∆)sut(x)
∣∣
t=t(x,λ)

dλ dx

=

∫
Ω

dx

∫ w(x)

ut0 (x)

dλ lim
ε↓0

∫
Rn\{|x−y|>ε}

dy cn,s
ut(x)− ut(y)

|x− y|n+2s

∣∣∣∣
t=t(x,λ)

= lim
ε↓0

∫∫
(Ω×Rn)\{|x−y|>ε}

dx dy

∫ w(x)

ut0 (x)

dλ cn,s
ut(x)− ut(y)

|x− y|n+2s

∣∣∣∣
t=t(x,λ)

= cn,s lim
ε↓0

∫∫
Q(Ω)\{|x−y|>ε}

dx dy

∫ w(x)

ut0 (x)

dλ
ut(x)− ut(y)

|x− y|n+2s

∣∣∣∣
t=t(x,λ)

by the regularity of the field and where the last equality follows from the fact that ut0(x) =
w(x) for almost every x ∈ Ωc. This last expression gives meaning to the principal value in
the definition of Cs,F in Theorem 4.1.3 in the Introduction.

Notice that the expression of Cs in (4.4.3) only involves the Euler-Lagrange equation
of the field {ut}t∈I and the energy of the leaf ut0 . This will give both (C1) and the
null-Lagrangian property (C3). To prove (C2), we next show, in Lemma 4.4.4, that the
functional (4.4.3) can be recast in a useful alternative form. We include Figure 4.2 for the
convenience of the reader, to better identify the terms involved in the new expression (of
Lemma 4.4.4).

To simplify the statements and proofs below, for ε > 0 we use the truncated kernel
Kε(z) = cn,s|z|−n−2s 1Bcε(z), and for u ∈ L1

s(Rn) we let

(−∆)sεu(x) =

∫
Rn

(u(x)− u(y))Kε(x− y) dy.

In particular, when ε goes to zero we recover the fractional Laplacian (−∆)sut(x) =
limε↓0(−∆)sεu

t(x). We also write

Cεs(w) :=

∫
Ω

∫ w(x)

ut0 (x)

(−∆)sεu
t(x)

∣∣
t=t(x,λ)

dλ dx

+
1

4

∫∫
Q(Ω)

|ut0(x)− ut0(y)|2Kε(x− y) dx dy.

(4.4.6)

Lemma 4.4.4. Given an interval I ⊂ R, a bounded domain Ω ⊂ Rn, and s ∈ (0, 1), let
{ut}t∈I be a field in the sense of Definition 4.4.1. Consider the set of admissible func-
tions As,t0 defined in (4.4.4).

Then, for each ε > 0 and w ∈ As,t0, with t0 ∈ I, the functional Cεs defined in (4.4.6)
satisfies

Cεs(w) =− cn,s
2

∫∫
Q(Ω)\{|x−y|<ε}

dx dy

∫ t(y,w(y))

t(x,w(x))

ut(x)− ut(y)

|x− y|n+2s
∂tu

t(y) dt

+
cn,s
4

∫∫
Q(Ω)\{|x−y|<ε}

|w(x)− ut(x,w(x))(y)|2

|x− y|n+2s
dx dy,

where we have extended the leaf-parameter function x 7→ t(x,w(x)) continuously outside Ω
by letting t(x,w(x)) = t0 for x ∈ Ωc.
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λ

w(y)

ut(y,λ)(x)

w(x)

ut(x,w(x))(y)

x y

ut(x,w(x))

ut(y,λ)

w

ut(y,w(y))

Figure 4.2: The function w (in red) and the leaves ut.

Proof. Throughout the proof, Cε denotes a generic positive constant depending only on n,
s, |Ω|, and ε. It is easy to check that(

1 + |y|n+2s
)
Kε(x− y) ≤ Cε for all x ∈ Ω and y ∈ Rn. (4.4.7)

By (4.4.7) we have

Kε(x− y) |ut(x)− ut(y)| ≤ Cε

(
‖ut‖C0(Ω) + |ut(y)|

) (
1 + |y|n+2s

)−1

for all x ∈ Ω, a.e. y ∈ Rn and all t ∈ I. Hence, integrating in y ∈ Rn,∫
Rn
Kε(x−y) |ut(x)−ut(y)| dy ≤ Cε

(
‖ut‖C0(Ω) + ‖ut‖L1

s(Rn)

)
for all x ∈ Ω, t ∈ I. (4.4.8)

Consider now tmin and tmax given in (4.4.5). By properties (i) and (iii) in Definition 4.4.1,
for x ∈ Ω we have∣∣∣∣∣

∫ w(x)

ut0 (x)

dλ

∫
Rn

dy Kε(x− y) |ut(x)− ut(y)|
∣∣
t=t(x,λ)

∣∣∣∣∣
≤ Cε sup

t∈[tmin,tmax]

(
‖ut‖C0(Ω) + ‖ut‖L1

s(Rn)

)
‖w − ut0‖C0(Ω) <∞,

and we can apply Fubini’s theorem to get∫
Ω

dx

∫ w(x)

ut0 (x)

dλ(−∆)sεu
t(x)

∣∣
t=t(x,λ)

=

∫
Ω

dx

∫
Rn

dyKε(x− y)

∫ w(x)

ut0 (x)

(ut(x)− ut(y))
∣∣
t=t(x,λ)

dλ.

(4.4.9)
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Applying the change of variables λ = ut(x) for a.e. x ∈ Ω in (4.4.9), the integral becomes

∫
Ω

dx

∫
Rn

dy Kε(x− y)

∫ w(x)

ut0 (x)

(ut(x)− ut(y))
∣∣
t=t(x,λ)

dλ

=

∫
Ω

dx

∫
Rn

dy Kε(x− y)

∫ t(x,w(x))

t0

(ut(x)− ut(y)) ∂tu
t(x) dt.

(4.4.10)

Thanks to the extension of the leaf-parameter function by t(x,w(x)) = t0 for x ∈ Ωc, using
that Q(Ω) = (Ω× Rn) ∪ (Ωc × Ω), we can rewrite the right-hand side of (4.4.10) as

∫
Ω

dx

∫
Rn

dy Kε(x− y)

∫ t(x,w(x))

t0

(ut(x)− ut(y)) ∂tu
t(x) dt

=

∫∫
Q(Ω)

dx dy Kε(x− y)

∫ t(x,w(x))

t0

(ut(x)− ut(y)) ∂tu
t(x) dt.

(4.4.11)

The idea now is to use the symmetry of the domain Q(Ω) to symmetrize the right-hand
side of the previous identity. This will allow us to integrate an exact differential of t, and
this will lead to the identity claimed in the lemma.

Symmetrizing (4.4.11), we have

∫∫
Q(Ω)

dx dyKε(x− y)

∫ t(x,w(x))

t0

(ut(x)− ut(y))∂tu
t(x) dt

=
1

2

∫∫
Q(Ω)

dx dyKε(x− y)

∫ t(x,w(x))

t0

(ut(x)− ut(y))∂tu
t(x) dt

− 1

2

∫∫
Q(Ω)

dx dyKε(x− y)

∫ t(y,w(y))

t0

(ut(x)− ut(y))∂tu
t(y) dt.

(4.4.12)

Splitting the integral
∫ t(y,w(y))

t0
dt into the sum

∫ t(x,w(x))

t0
dt +

∫ t(y,w(y))

t(x,w(x))
dt and rearranging

terms, the right-hand side of (4.4.12) becomes

1

2

∫∫
Q(Ω)

dx dyKε(x− y)

∫ t(x,w(x))

t0

(ut(x)− ut(y))∂tu
t(x) dt

− 1

2

∫∫
Q(Ω)

dx dyKε(x− y)

∫ t(y,w(y))

t0

(ut(x)− ut(y))∂tu
t(y) dt

= −1

2

∫∫
Q(Ω)

dx dyKε(x− y)

∫ t(y,w(y))

t(x,w(x))

(ut(x)− ut(y))∂tu
t(y) dt

+
1

2

∫∫
Q(Ω)

dx dyKε(x− y)

∫ t(x,w(x))

t0

(ut(x)− ut(y))(∂tu
t(x)− ∂tut(y)) dt.

(4.4.13)

Let us show that the integrals in the right-hand side of (4.4.13) are well defined. For
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the first integral, taking absolute values and using Fubini’s theorem, we have

1

2

∫∫
Q(Ω)

dx dyKε(x− y)

∣∣∣∣∣
∫ t(y,w(y))

t(x,w(x))

|ut(x)− ut(y)||∂tut(y)| dt

∣∣∣∣∣
≤ 1

2

∫∫
Q(Ω)

dx dyKε(x− y)

∫ tmax

tmin

|ut(x)− ut(y)|‖∂tut‖L∞(Rn) dt

=
1

2

∫ tmax

tmin

dt ‖∂tut‖L∞(Rn)

∫∫
Q(Ω)

Kε(x− y)|ut(x)− ut(y)| dx dy

≤
∫ tmax

tmin

dt ‖∂tut‖L∞(Rn)

∫
Ω

dx

∫
Rn

dyKε(x− y)|ut(x)− ut(y)|,

(4.4.14)

where in the last line we have used that Q(Ω) = (Ω×Rn)∪ (Rn×Ω) (not a disjoint union)
and the symmetry of Kε. Applying the bound (4.4.8) in (4.4.14) and by property (iii) in
Definition 4.4.1, we deduce the finiteness of (4.4.14). It follows that the first integral is
well defined.

The second integral in the right-hand side of (4.4.13) can be integrated explicitly as

1

2

∫∫
Q(Ω)

dx dyKε(x− y)

∫ t(x,w(x))

t0

(ut(x)− ut(y))(∂tu
t(x)− ∂tut(y)) dt

=
1

4

∫∫
Q(Ω)

dx dyKε(x− y)

∫ t(x,w(x))

t0

d

dt
|ut(x)− ut(y)|2 dt

=
1

4

∫∫
Q(Ω)

dx dyKε(x− y)|w(x)− ut(x,w(x))(y)|2

− 1

4

∫∫
Q(Ω)

dx dyKε(x− y)|ut0(x)− ut0(y)|2.

(4.4.15)

Concatenating the equalities (4.4.9), (4.4.10), (4.4.11), (4.4.12), and (4.4.13), and using
(4.4.15), we conclude∫

Ω

dx

∫ w(x)

ut0 (x)

dλ(−∆)sεu
t(x)

∣∣
t=t(x,λ)

= −1

2

∫∫
Q(Ω)

dx dyKε(x− y)

∫ t(y,w(y))

t(x,w(x))

(ut(x)− ut(y))∂tu
t(y) dt

+
1

4

∫∫
Q(Ω)

dx dyKε(x− y)|w(x)− ut(x,w(x))(y)|2

− 1

4

∫∫
Q(Ω)

dx dyKε(x− y)|ut0(x)− ut0(y)|2,

which is the claim of the lemma.

Having Lemma 4.4.4 at hand, we can now prove the calibration property (C2).

Lemma 4.4.5. Given an interval I ⊂ R, a bounded domain Ω ⊂ Rn, and s ∈ (0, 1), let
{ut}t∈I be a field in the sense of Definition 4.4.1. Consider the set of admissible functions
As,t0 defined in (4.4.4).

Then, for all w ∈ As,t0, with t0 ∈ I, we have

Cs(w) ≤ Es(w).
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Proof. Let ε > 0. By Lemma 4.4.4, we have

Cεs(w) =− 1

2

∫∫
Q(Ω)

dx dyKε(x− y)

∫ t(y,w(y))

t(x,w(x))

(ut(x)− ut(y))∂tu
t(y) dt

+
1

4

∫∫
Q(Ω)

|w(x)− ut(x,w(x))(y)|2Kε(x− y) dx dy,

(4.4.16)

where t(x,w(x)) = t0 for x ∈ Ωc. We claim that for a.e. (x, y) ∈ Q(Ω) we have

−1

2

∫ t(y,w(y))

t(x,w(x))

(ut(x)− ut(y))∂tu
t(y) dt ≤ −1

2

∫ t(y,w(y))

t(x,w(x))

(w(x)− ut(y))∂tu
t(y) dt. (4.4.17)

Indeed, first of all note that ∂tu
t(y) ≥ 0 for a.e. y ∈ Rn by property (ii) in Definition 4.4.1.

Moreover, the quantities ut(x), ut(y), w(x), and ∂tu
t(y) are finite for a.e. (x, y) ∈ Q(Ω)

and all t ∈ I. For those (x, y) ∈ Q(Ω), if t(x, u(x)) ≤ t(y, u(y)) then by property (ii) we
have w(x) = ut(x,w(x))(x) ≤ ut(x) for t ∈ [t(x, u(x)), t(y, u(y))], and the claim follows in
this case. When t(x, u(x)) ≥ t(y, u(y)) the argument is similar.

The right-hand side of (4.4.17) can be integrated explicitly as

−1

2

∫ t(y,w(y))

t(x,w(x))

(w(x)− ut(y))∂tu
t(y) dt =

1

4

∫ t(y,w(y))

t(x,w(x))

d

dt
|w(x)− ut(y)|2 dt

=
1

4
|w(x)− w(y)|2 − 1

4
|w(x)− ut(x,w(x))(y)|2.

(4.4.18)

Now, using (4.4.17) and (4.4.18) in (4.4.16), it follows that

Cεs(w) ≤ EKε(w).

Finally, by property (iii) in Definition 4.4.1, (−∆)sεu
t converge to (−∆)sut in L1(Ω),

locally uniformly in t, as ε ↓ 0. This is enough to pass to the limit in the inequality above
and conclude the proof.

We can finally give the proof of Theorem 4.1.3. We will show the identity

Cs,F (w) =

∫
Ω

∫ w(x)

ut0 (x)

(
(−∆)sut(x)− F ′(ut(x))

)∣∣
t=t(x,λ)

dλ dx+ Es,F (ut0) (4.4.19)

for w ∈ As,t0 , and that this functional is a calibration for Es,F and each ut when the family
{ut}t∈I is a field of extremals, that is, when each ut solves the semilinear equation (4.4.1).
In particular, each of the ut will be a minimizer. More generally, we show that ut0 minimizes
Es,F if the ut above ut0 are supersolutions of (4.4.1) and the ut below are subsolutions.

Proof of Theorem 4.1.3. First of all, note that for x ∈ Ω we have

F (w(x))− F (ut0(x)) =

∫ w(x)

ut0 (x)

F ′(λ) dλ =

∫ w(x)

ut0 (x)

F ′(ut(x,λ)) dλ

and, thanks to Remark 4.4.3, the functional Cs,F given by (4.1.9) can be written simply as

Cs,F (w) = Cs(w)−
∫

Ω

F (w(x)) dx,
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where Cs has been introduced in (4.4.3). This proves (4.4.19).
(a) From (4.4.19) it is clear that Cs,F (ut0) = Es,F (ut0), which is condition (C1). To

obtain (C2) we apply Lemma 4.4.5, which gives

Cs,F (w) = Cs(w)−
∫

Ω

F (w(x)) dx ≤ Es(u)−
∫

Ω

F (w(x)) dx = Es,F (w).

(b) To show (C3′), that is, Cs,F (w) ≥ Cs,F (ut0) = Es,F (ut0), by (4.4.19) it suffices to
show that ∫ w(x)

ut0 (x)

(
(−∆)sut(x)− F ′(ut(x))

)∣∣
t=t(x,λ)

dλ ≥ 0

for x ∈ Ω. But this is clear from the monotonicity of the field ut and the hypotheses in (b).
On the other hand, we have already seen in subsection 4.1.1 how properties (C1), (C2),

and (C3′) yield the minimality of u = ut0 .
(c) By (4.4.19), using that each ut satisfies the Euler-Lagrange equation (4.4.1), we

have that

Cs,F (w)− Es,F (ut0) =

∫
Ω

∫ w(x)

ut0 (x)

(
(−∆)sut(x)− F ′(ut(x))

)∣∣
t=t(x,λ)

dλ dx = 0.

Hence Cs,F (w) = Es,F (ut0) = Cs,F (ut0) for all w ∈ As,t0 . In particular, the functional Cs,F
satisfies all three properties (C1),(C2), and (C3), and thus it is a calibration. Choosing
t0 = t for each t ∈ I, we deduce the minimality of ut.

Proof of Corollary 4.1.4. First of all, by a simple argument from [1], it suffices to prove
the corollary for the class of functions w ∈ C0 satisfying the strict inequality

lim
τ→−∞

u(x′, τ) < w(x′, xn) < lim
τ→+∞

u(x′, τ) for all (x′, xn) ∈ Rn−1 × R. (4.4.20)

Indeed, if w satisfies the non-strict inequality (4.1.12), then for θ ∈ (0, 1) we consider
wθ := (1 − θ)u + θw, which satisfies (4.4.20) by the strict monotonicity of u. Hence,
applying the corollary in the strict case, we have Es,F (u) ≤ Es,F (wθ). Letting θ → 1− yields
the result for w. Hence, we may assume (4.4.20).

Since u is bounded and F ∈ C3, by regularity theory for the fractional Laplacian,
we have that u is at least C2 and ∇u ∈ L∞(Rn); see [84]. For each t ∈ R, we consider
the family of translations ut(x) = u(x′, xn + t). By the monotonicity and the regularity
properties of u, the family {ut}t∈R is a field in the sense of Definition 4.4.1. Moreover, by
the translation invariance of the equation, it is a field of extremals. Hence, we can apply
Theorem 4.1.3 to conclude that u is a minimizer in the set of admissible functions As with
w = u in Ωc.
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Chapter 5

Null-Lagrangians and calibrations for
general nonlocal functionals and an
application to the viscosity theory

In this chapter we build a null-Lagrangian and a calibration for general nonlocal elliptic
functionals in the presence of a field of extremals. Thus, our construction assumes the
existence of a family of solutions to the Euler-Lagrange equation whose graphs produce a
foliation. Then, as a consequence of the calibration, we show the minimality of each leaf
in the foliation. Our model case is the energy functional for the fractional Laplacian, for
which such a null-Lagrangian was recently discovered by us.

As a first application of our calibration, we show that monotone solutions to translation
invariant nonlocal equations are minimizers. Our second application is perhaps surprising,
since here “minimality” is assumed instead of being concluded. We will see that the
foliation framework is large enough to provide a proof showing that minimizers of nonlocal
elliptic functionals are viscosity solutions.

5.1 Introduction

Null-Lagrangians and calibrations have played a prominent role in the Calculus of Varia-
tions, since they provide sufficient conditions for the minimality of critical points. Impor-
tant examples are those calibrations constructed in the presence of a field of extremals, i.e.,
a foliation by critical points. These notions have their origin in the classical extremal field
theory of Weierstrass and are a powerful tool to prove minimality of solutions to PDEs.
Especially, they have found many relevant applications in the context of minimal surfaces.

In Chapter 4 we initiated the study of calibrations for nonlocal problems. There, we
treated the simplest nonlocal model: the energy functional for the fractional Laplacian
(the Gagliardo-Sobolev seminorm). In the present chapter, we extend the theory to a wide
class of nonlocal functionals. Our main result is the construction of a calibration for the
energy functional1

EN(w) :=
1

2

∫∫
Q(Ω)

GN(x, y, w(x), w(y)) dx dy,

1Consistent with the notation in [23], the subindices N and L are used throughout the text to denote
nonlocal and local objects, respectively.
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where, given a bounded domain Ω ⊂ Rn, we have written

Q(Ω) := (Rn × Rn) \ (Ωc × Ωc) = (Ω× Ω) ∪ (Ω× Ωc) ∪ (Ωc × Ω). (5.1.1)

Throughout the chapter Ωc = Rn \ Ω, as above. The Lagrangian GN(x, y, a, b) is required
to satisfy the natural ellipticity condition

∂2
abGN(x, y, a, b) + ∂2

abGN(y, x, b, a) ≤ 0,

on which we elaborate below (see the comments before Theorem 5.1.3 and also Section 5.2).
As in the local theory, as well as in our fractional Laplacian theory developed in the

previous chapter, our calibration for EN is built in the presence of a field of extremals. As
mentioned above, this is a one-parameter family of critical points of EN whose graphs form
a foliation (see Definition 5.1.2). For the construction, it suffices to have subsolutions and
supersolutions on each respective side of a given extremal, a fact that is sometimes very
useful.

A first application of our calibration concerns the minimality of monotone solutions to
translation invariant nonlocal equations. More precisely, we prove that if u is a solution
(with an appropriate regularity and growth at infinity, which will depend on the Lagrangian
GN) satisfying ∂xnu > 0 in Rn, then it is a minimizer among functions w satisfying

lim
τ→−∞

u(x′, τ) ≤ w(x′, xn) ≤ lim
τ→+∞

u(x′, τ)

for x = (x′, xn) ∈ Rn−1 × R. This result, which is related to a celebrated conjecture of
De Giorgi for the Allen-Cahn equation, was only known for those nonlocal functionals for
which an existence and regularity theory of minimizers is available. We explain this further
in Subsection 5.1.4.

As a second application, we show that minimizers of nonlocal elliptic functionals are
viscosity solutions. This type of result was previously known for problems where a weak
comparison principle is available; see [5, 66, 87]. However, we can prove it in more gen-
eral scenarios by using the calibration technique; see Subsection 5.1.5. This strategy was
previously used by Cabré [18] in the context of nonlocal minimal surfaces.

5.1.1 Examples

Our theory covers several important elliptic functionals EN given by a Lagrangian GN as
above:

• The case

GN(x, y, a, b) =
|a− b|p

2p|x− y|n+ps

with p ∈ [1,∞) and s ∈ (0, 1), corresponds to the fractional p-Dirichlet Lagrangian,
which gives rise to the fractional p-Laplace equation. More generally, considering

GN(x, y, a, b) =
|a− b|p

2p|x− y|n+ps
− 1

2|Ω|
1Ω×Ω(x, y)(F (a, x) + F (b, y)),

we can add a reaction term in the Euler-Lagrange equation. For instance, if we take p = 2
we recover (up to a multiplicative constant) the Lagrangian associated to the fractional
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semilinear equation (−∆)su = ∂uF (u, x) in Ω, treated in our previous work [23]. Recall
the expression for the fractional Laplacian:

(−∆)su(x) = cn,s P.V.

∫
Rn

u(x)− u(y)

|x− y|n+2s
dy,

where cn,s is a positive normalizing constant and P.V. stands for the principal value.

• The Lagrangian

GN(x, y, a, b) =
G
(

a−b
|x−y|

)
|x− y|n+s−1

,

where s ∈ (0, 1), G′′(τ) = (1 + τ 2)−(n+s+1)/2, and G(0) = G′(0) = 0, recovers the
fractional perimeter for subgraphs; see [41].

• The general structure
GN(x, y, a, b) = G(x− y, a− b)

appears in the leading terms of the previous examples and gives rise to translation invari-
ant equations. However, it is also of interest to treat functionals where the interactions
occur only inside Ω, that is, when GN is of the form

GN(x, y, a, b) = 1Ω×Ω(x, y) G(x− y, a− b).

These Lagrangians appear, for instance, in the macroelastic energy from Peridynamics;
see [88]. In this case, G might be compactly supported in the (x− y)-variable.

• The case

GN(x, y, a, b) = −1Ω×Ω(x, y)K(x− y) ab+
1

2|Ω|
1Ω×Ω(x, y)(F (a) + F (b))

corresponds to convolution-type operators. Functionals of this type appear in numerous
problems, but most notably in the framework of constrained minimization (not treated
in our setting); see, for instance, [4,7,35,70] where the first term is the interaction energy
and the second one is the entropy. Let us point out that, when the kernel K is even, the
ellipticity condition boils down to the nonnegativity of K.

5.1.2 Calibrations and fields of extremals

As mentioned in the previous chapter, a fundamental problem in the Calculus of Variations
is to find conditions for a function to be a minimizer of a given energy functional. More
precisely, given a functional E : A → R defined on some set of admissible functions A, and
given u ∈ A, one wishes to know whether u minimizes E among competitors in A having
the same Dirichlet condition as u. For nonlocal problems, given a bounded domain Ω, the
Dirichlet condition refers to the value of the function in all the exterior of Ω, namely, in
Ωc = Rn \ Ω.

One useful method to show the minimality of a given function u ∈ A consists of
constructing a calibration. This is an auxiliary functional touching the energy E by below
at u and satisfying a null-Lagrangian property.

Definition 5.1.1. A functional C : A → R is a calibration for the functional E and the
admissible function u ∈ A if the following conditions hold:
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(C1) C(u) = E(u).

(C2) C(w) ≤ E(w) for all w ∈ A with the same Dirichlet condition as u.

(C3) C(w) = C(w̃) for all w, w̃ ∈ A with the same Dirichlet condition as u.

Functionals satisfying (C3) are known as null-Lagrangians. As in our previous work [23],
it is convenient to relax this last condition to the less stringent

(C3′) C(u) ≤ C(w) for all w ∈ A with the same Dirichlet condition as u.

We still refer to functionals satisfying (C1), (C2), and (C3′) as calibrations.

Once a calibration is available, the minimality of u among admissible functions with the
same Dirichlet condition follows immediately. For this, simply apply (C1), (C3′), and (C2),
in this order.

Historically, motivated by classical problems in Mechanics and Geometry, significant
efforts have been put into rigorously understanding minimizers of general functionals of
the form

EL(w) :=

∫
Ω

GL

(
x,w(x),∇w(x)

)
dx. (5.1.2)

It is well-known that every minimizer is a critical point of EL (an extremal) and must
satisfy the associated Euler-Lagrange equation. Conversely, if the Lagrangian GL(x, λ, q)
is convex in the variables (λ, q), then the functional EL is convex and every critical point is
a minimizer. This convexity assumption is too restrictive for many relevant applications,
such as the Allen-Cahn energy. For these functionals, the Dirichlet problem may admit
several extremals, not all of them being minimizers. Nevertheless, one often has that the
Lagrangian GL(x, λ, q) is convex with respect to the gradient variable q, which amounts to
the ellipticity of the problem.

A systematic theory of calibrations has been developed for functionals EL of the form (5.1.2),
namely, the extremal field theory going back to works of Weierstrass. The key idea is to
assume the existence of a family of critical points ut : Ω→ R, with t in some interval I ⊂ R,
whose graphs do not intersect each other. Thus, the graphs of these functions produce a
foliation of a certain region G in Rn × R, which allows to carry out a subtle convexity
argument to bound the nonconvex functional by below with a calibration.

Next, we recall our definition of field for nonlocal problems, as introduced in [23]:

Definition 5.1.2. Given an interval I ⊂ R (not necessarily bounded, nor open), we say
that a family {ut}t∈I of functions ut : Rn → R is a field in Rn if

• the function (x, t) 7→ ut(x) is continuous in Rn × I;

• for each x ∈ Rn, the function t 7→ ut(x) is C1 and increasing in I.

Given a functional E acting on functions defined in Rn, and given a bounded domain
Ω ⊂ Rn, we say that {ut}t∈I is a field of extremals in Ω (for E) when it is a field in Rn and
each of the functions ut is a critical point of E in Ω.

Given a field in Rn as above, the region

G = {(x, λ) ∈ Rn × R : λ = ut(x) for some t ∈ I} ⊂ Rn × R
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is foliated by the graphs of the functions ut, which do not intersect each other (since ut(x)
is increasing in t). In particular, we can uniquely define a leaf-parameter function

t : G → I, (x, λ) 7→ t(x, λ) determined by ut(x,λ)(x) = λ. (5.1.3)

The function t is continuous in G by the assumptions in Definition 5.1.2. We will often
refer to the functions ut (or their graphs) as the “leaves” of the field.

Next, let us recall the fundamental result of the classical extremal field theory. Namely,
given an elliptic Lagrangian2 GL and {ut}t∈I a smooth field of extremals in Ω, the functional

CL(w) :=

∫
Ω

{
∂qGL(x, ut(x),∇ut(x)) ·

(
∇w(x)−∇ut(x)

)}∣∣∣
t=t(x,w(x))

dx

+

∫
Ω

GL(x, ut(x),∇ut(x))
∣∣
t=t(x,w(x))

dx,

(5.1.4)

is a calibration for the functional EL and each critical point ut0 , t0 ∈ I. In particular, each
leaf ut0 minimizes EL among competitors w satisfying w = ut0 on ∂Ω and whose graphs
lie in the region G. Moreover, in [23, Theorem 3.1] we found the following alternative
expression for the calibration CL. For each t0 ∈ I, we have that CL in (5.1.4) can be written
as

CL(w) =

∫
Ω

∫ w(x)

ut0 (x)

LL(ut)(x)
∣∣∣
t=t(x,λ)

dλ dx

+

∫
∂Ω

∫ w(x)

ut0 (x)

NL(ut)(x)
∣∣
t=t(x,λ)

dλ dHn−1(x) + EL(ut0),

(5.1.5)

where LL and NL are, respectively, the Euler-Lagrange and Neumann operators associated
to the functional EL in (5.1.2). As in the fractional Laplacian framework treated in [23],
our new nonlocal calibration given in Theorem 5.1.3 below will be based on this identity.

While the theory of calibrations for local equations is well understood, there are very
few papers prior to [23] dealing with nonlocal ones, which we mention next. In [18], Cabré
gave a calibration for the fractional perimeter. Independently, Pagliari [80] investigated
the abstract structure of calibrations for the fractional total variation. This last func-
tional involves the fractional perimeter of each sublevel set of a given function. The author
succeeded in constructing a calibration to prove that the characteristic functions of halfs-
paces are minimizers, but other fields of extremals are not mentioned in that work. Our
present work provides, as a particular case, a calibration for the fractional total variation
in the presence of a general field of extremals. Moreover, we can relate our construction
with the calibration for the fractional perimeter in [18] applied to each superlevel set; see
Appendix J.

In Chapter 4 we constructed a calibration for the energy associated to semilinear equa-
tions involving the fractional Laplacian, that is, for energies of the form

Es,F (w) =
cn,s
4

∫∫
Q(Ω)

|w(x)− w(y)|2

|x− y|n+2s
dx dy −

∫
Ω

F (w(x)) dx.

2Recall that here ellipticity means that GL(x, λ, q) is convex with respect to the gradient variable q.
However, for (5.1.4) to be a calibration, a weaker condition than convexity in q suffices. One needs to
assume that each ut satisfies the Weierstrass sufficient condition, namely

GL(x, ut(x), q) ≥ GL(x, ut(x),∇ut(x)) + ∂qGL(x, ut(x),∇ut(x)) ·
(
q −∇ut(x)

)
for all x ∈ Ω, q ∈ Rn, and t ∈ I; see [23] for more details.
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Given {ut}t∈I a field of extremals in Ω, we showed that

Cs,F (w) = cn,s P.V.

∫∫
Q(Ω)

∫ w(x)

ut0 (x)

ut(x)− ut(y)

|x− y|n+2s

∣∣∣∣
t=t(x,λ)

dλ dx dy −
∫

Ω

F (w(x)) dx

+
cn,s
4

∫∫
Q(Ω)

|ut0(x)− ut0(y)|2

|x− y|n+2s
dx dy

is a calibration for Es,F and ut0 , t0 ∈ I. We recall that the expression of Cs,F was obtained
by replacing the operators LL and NL appearing in (5.1.5) by their nonlocal counterparts.

5.1.3 Main result

Next, we present our main result, which builds a calibration for the functional

EN(w) =
1

2

∫∫
Q(Ω)

GN(x, y, w(x), w(y)) dx dy (5.1.6)

when the Lagrangian GN(x, y, a, b) satisfying the condition3

∂2
abGN(x, y, a, b) + ∂2

abGN(y, x, b, a) ≤ 0. (5.1.7)

We will see that (5.1.7) guarantees the ellipticity of the problem (or a strong comparison
principle, see Appendix I). It will also ensure that the calibrating functional defined in
Theorem 5.1.3 below satisfies property (C2), thus mirroring the effect of ellipticity in the
local case.

As in the classical theory, in this general nonlocal framework every extremal is a mini-
mizer whenever the functional EN is convex. A sufficient condition to guarantee the convex-
ity of EN is that the Lagrangian (a, b) 7→ GN(x, y, a, b) +GN(y, x, b, a) be convex. Contrary
to the local case, this hypothesis does not guarantee the ellipticity assumption (5.1.7).4

This seems to be due to the great generality of (5.1.6). Nevertheless, in most examples
we have in mind, the Lagrangian has a leading term of the form G(x, y, a − b) for which
ellipticity does follow from convexity in the (a − b)-variable. For instance, consider the
linear equation (−∆)su = λu, with λ ∈ R. This equation admits an energy functional

cn,s
4

∫∫
Q(Ω)

|u(x)− u(y)|2

|x− y|n+2s
dx dy − λ

2

∫
Ω

u(x)2 dx

which is elliptic in the sense of (5.1.7) but not always convex (when λ is large enough).
Notice that the equation satisfies the strong comparison principle, while the availability of
the weak comparison principle depends on λ.5

3Compare it with (5.2.15) in Section 5.2, where the Lagrangian additionally satisfies the pairwise
symmetry condition (5.2.1) (a condition that can always be assumed without loss of generality).

4For pairwise symmetric Lagrangians (see (5.2.1) below) ellipticity reduces to ∂2
abGN ≤ 0 while convexity

amounts to the conditions ∂2
aaGN ≥ 0 and ∂2

aaGN∂
2
bbGN ≥ (∂2

abGN)2. The reader can check the non-
equivalence with the simple quadratic examples GN = ±K(x− y)(a± b)2, with K > 0.

5We say that an operator L satisfies the strong comparison principle if, given two functions u and v
satisfying Lu ≤ Lv in Ω, u ≤ v in Rn, and touching somewhere in Ω, then u ≡ v in Rn. By contrast, L
satisfies the weak comparison principle if, given two functions u and v satisfying Lu ≤ Lv in Ω and u ≤ v
in Ωc, then u ≤ v in Ω.
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For the functional EN and its associated Euler-Lagrange operator

LN(w)(x) :=
1

2

∫
Rn

(
∂aGN(x, y, w(x), w(y)) + ∂bGN(y, x, w(y), w(x))

)
dy (5.1.8)

to be well defined for x ∈ Ω, one needs to make growth and regularity assumptions on
the Lagrangian GN. These determine the class of admissible functions; see [15] for some
examples of natural assumptions. In this respect, our main result (Theorem 5.1.3 be-
low), which gives a calibration for general nonlocal Lagrangians satisfying the ellipticity
hypothesis (5.1.7), is a formal result since it does not specify the precise class of admis-
sible functions. In other words, the great generality of the functions does not allow for
specifying the growth and regularity assumptions on GN and on the admissible functions
w. Thus, the theorem cannot take into account any integrability issues.6 However, we
could give completely rigorous results for some specific families of Lagrangians, adapting
the admissible class of functions to the concrete problem. Indeed, within the proof of the
next theorem, there are only a few points that must be justified, namely, the interchange
of certain integrals and the convergence of some expressions. Hence, in the following state-
ment we use the term “sufficiently regular for GN” in the sense that those functions make
all integrals to be well defined.

Recall (5.1.1) for the meaning ofQ(Ω), Definition 5.1.2 for the notion of field, and (5.1.3)
for the leaf-parameter function t. The calibration properties (C1), (C2), (C3), and (C3′)
have been introduced in Definition 5.1.1.

Theorem 5.1.3. Let I ⊂ R be an interval and let Ω ⊂ Rn be a bounded domain. Given
a function GN = GN(x, y, a, b) satisfying the ellipticity condition (5.1.7), let {ut}t∈I be a
field in Rn (in the sense of Definition 5.1.2) which is sufficiently regular for GN.

Given t0 ∈ I, let EN be defined by (5.1.6) and CN be the functional

CN(w)

:=
1

2

∫∫
Q(Ω)

∫ w(x)

ut0 (x)

{
∂aGN(x, y, ut(x), ut(y)) + ∂bGN(y, x, ut(y), ut(x))

}∣∣∣
t=t(x,λ)

dλ dx dy

+ EN(ut0)

defined in a set AN of sufficiently regular admissible functions w : Rn → R (for GN) satis-
fying graphw ⊂ G, where

G =
{

(x, λ) ∈ Rn × R : λ = ut(x) for some t ∈ I
}
.

Taking C = CN and E = EN in Definition 5.1.1, we have the following:

(a) CN satisfies (C1) and (C2) with u = ut0.

(b) Assume in addition that the family {ut}t∈I satisfies

LN(ut) ≥ 0 in Ω for t ≥ t0,

LN(ut) ≤ 0 in Ω for t ≤ t0,

where LN is the Euler-Lagrange operator associated to EN given by (5.1.8). Then, CN

satisfies (C3′) with u = ut0. In particular, ut0 minimizes EN among functions w in
AN such that w ≡ ut0 in Ωc.

6This is in contrast with Theorem 1.3 in [23], where we gave a fully rigorous result for the fractional
Laplacian.

167



(c) Assume in addition that {ut}t∈I is a field of extremals in Ω, that is, a field in Rn

satisfying

LN(ut) = 0 in Ω for all t ∈ I.

Then, the functional CN satisfies (C3) with u = ut0. Therefore, CN is a calibration for
EN and ut0. As a consequence, for every t ∈ I, the extremal ut minimizes EN among
functions w in AN such that w ≡ ut in Ωc.

As mentioned above, the class of functionals EN of the form (5.1.6) satisfying the ellip-
ticity condition (5.1.7) includes the Gagliardo-Sobolev seminorm (for which we constructed
a calibration in Chapter 4 above) as well as the fractional total variation (see Appendix J)
and the examples in Subsection 5.1.1. Our calibration in Theorem 5.1.3 is a generalization
of the one in the previous chapter. To guess the expression of CN above, we extrapolated
our new identity (5.1.5) in the local theory. The key point is that each of the terms in
(5.1.5) has a clear nonlocal counterpart; see (5.2.7) below.

An interesting feature of the calibrations considered in this chapter is their stability
under the addition of functionals. Due to their special structure, calibrations given in terms
of fields can be added together to obtain new ones. In particular, the local theory can be
combined with the nonlocal one developed in this work to produce calibrations for energies
involving both local and nonlocal interaction terms. We explain this further in Section 5.3.

5.1.4 An application to monotone solutions

Our interest in fields of extremals came from the study of monotone solutions to the
fractional Allen-Cahn equation

(−∆)su = u− u3 in Rn (5.1.9)

(see [30, 31], as well as [42] for more general integro-differential operators). When the
operator is the classical Laplacian, these solutions are related to a celebrated conjecture of
De Giorgi; see [26].

In Corollary 4.1.4 above, we proved that monotone solutions of (5.1.9) are minimizers
among competitors taking values in a precise region of space (the region specified in the
next corollary). Thanks to Theorem 5.1.3 of the current chapter, the same proof allows
to establish the minimality of monotone solutions to more general nonlocal translation
invariant equations. More precisely, given a Lagrangian of the form GN = GN(x− y, a, b),
with associated energy functional EN defined by (5.1.6), the Euler-Lagrange operator LN

given by (5.1.8) is translation invariant, that is, for all x and z in Rn the identity

LN(w)(x+ z) = LN(w(·+ z))(x)

holds. We then have the following:

Corollary 5.1.4. Let GN = GN(x − y, a, b) be a function satisfying the ellipticity con-
dition (5.1.7). Let u be a sufficiently regular solution for GN (see the comments before
Theorem 5.1.3) of LN(u) = 0 in Rn. Assume that u is increasing in the xn-variable, i.e.,

∂xnu > 0 in Rn. (5.1.10)
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Then, for each bounded domain Ω ⊂ Rn, u is a minimizer of EN among sufficiently
regular admissible functions w satisfying

lim
τ→−∞

u(x′, τ) ≤ w(x′, xn) ≤ lim
τ→+∞

u(x′, τ) for all x = (x′, xn) ∈ Ω

and such that w ≡ u in Ωc.

This minimality result was already known for the fractional Laplacian LN = (−∆)s.
For such an operator, it can be proven with an alternative argument (described in the
Introduction of [23]) which does not use any calibration. However, such an alternative proof
requires an existence and regularity theorem for minimizers, as explained in Appendix I.
Such a result is not available for many general Lagrangians of the form GN(x−y, a, b). For
these functionals, Corollary 5.1.4 allows to establish the minimality of monotone solutions
for the first time.

Notice that, given a monotone solution, the translation invariance of the equation is
all what is needed in order to produce a field of extremals (by sliding the solution in
the xn-variable). Therefore, Corollary 5.1.4 also holds for translation invariant equations
involving both local and nonlocal terms; see Section 5.3.

5.1.5 An application to the viscosity theory

Here we are interested in conditions to ensure that minimizers, or more generally weak
solutions, are viscosity solutions. These are different notions of solutions that have been
formulated both for differential and for nonlocal equations. Within the Calculus of Vari-
ations, it is natural to work with weak solutions belonging to the energy space. On the
contrary, when dealing with fully nonlinear equations, it is more suitable to work with
viscosity solutions. Here, the equation is transferred to act on smooth functions touching
the extremal from one side.

In the local framework, it has been shown in the literature that minimizers of many
relevant functionals are viscosity solutions. For the p-Laplace equation (here every weak
solution is a minimizer), Juutinen, Lindqvist, and Manfredi [65] obtained the result by
using a weak comparison principle. This allows to compare the minimizer with a function
touching it by below and which is later slid upwards, forcing the equation to have the
correct sign. For functionals of the form (5.1.2), assuming convexity (a stronger condition
than ellipticity), Barron and Jensen [6] found a simpler variational argument. We comment
on their strategy at the end of the present subsection as well as in Remark 5.4.9. Showing
that non-minimizing weak solutions are viscosity solutions has also been treated in the
literature. For instance, this has been done by Medina and Ochoa [74] for semilinear
equations driven by the p-Laplacian. Their proof again uses a comparison principle.

Concerning nonlocal problems, the first results in this direction appeared in the geomet-
ric setting. Caffarelli, Roquejoffre, and Savin [32] showed that minimizers to the nonlocal
perimeter are viscosity solutions of the homogeneous nonlocal mean curvature equation.
Their proof is quite involved and uses a comparison principle. Later, Cabré [18] was able
to show the same result via a simpler calibration argument (here we will give the analogue
of this result in the functional setting). The case of nonlocal minimal graphs has also been
treated by Cozzi and Lombardini [41]. In the functional setting, as far as we know, the first
nonlocal result appeared in the work of Servadei and Valdinoci [87] for linear equations
involving the fractional Laplacian. There, the authors employ a regularization by con-
volution that is not available for other operators. For equations driven by the fractional
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p-Laplacian, we mention the paper by Korvenpää, Kuusi, and Lindgren [66] where they
treat the homogeneous problem, and the work by Barrios and Medina [5] for the semilinear
one. In both cases, a comparison principle is needed.

Next, we state the main result of this subsection. We will show that every minimizer
of our elliptic nonlocal functionals is a viscosity solution. In contrast with most of the
previous works, the novelty of our result is that we do not need a weak comparison prin-
ciple, allowing us to treat a bigger class of Lagrangians. This is achieved by a calibration
argument. In a way, the information given by the weak comparison principle is already
contained in the properties (C1)-(C3) satisfied by the calibration. Recall, as explained at
the beginning of Subsection 5.1.3, that the weak comparison principle does not follow from
ellipticity. However, the ellipticity of the Lagrangian (condition (5.1.7) above) suffices for
the calibration argument in our proof.

Our theorem applies to general nonlocal elliptic functionals of the form (5.1.6). Since we
do not make any growth and regularity assumptions on the Lagrangian GN, as in the main
theorem above, our result is only formal. Nevertheless, again, we could give a fully rigorous
statement for specific families of Lagrangians. In fact, this is what we do in Section 5.4 for
fractional semilinear equations.

Theorem 5.1.5. Let GN = GN(x, y, a, b) be a function satisfying the ellipticity condi-
tion (5.1.7) and let Ω ⊂ Rn be a bounded domain. Let u be a sufficiently regular minimizer
of the functional EN given by (5.1.6).

Then, the function u is a viscosity solution of the associated Euler-Lagrange equation
LN(u) = 0 in Ω.

Later in Section 5.4, we will give a more precise statement of this result, showing that
minimizers by above (below) are viscosity supersolutions (subsolutions). Furthermore,
while our theorem only applies to minimizers, we will explain how it can be used to prove
that certain non-minimizing weak solutions are viscosity solutions. Here, the idea is to
“freeze” the lower order terms; see Remark 5.4.10.

The proof of Theorem 5.1.5 is based on the following energy comparison result for
ordered functions embedded in a weak field (that is, a “degenerate field” where the leaves
are still ordered, but may touch each other; see Figure 5.1 and Definition 5.4.1). Thus,
here we will need to extend the above theory of nonlocal calibrations to the more general
setting of weak fields.

Theorem 5.1.6. Let GN = GN(x, y, a, b) be a function satisfying the ellipticity condi-
tion (5.1.7). Given a bounded domain Ω ⊂ Rn, let u and v belong to C(Ω) and satisfy
u = v a.e. in Ωc and u ≤ v in Ω.

Assume that there exists a weak field {ϕt}t∈[0,T ] for u and v (in the sense of Defi-
nition 5.4.1) which is sufficiently regular for GN (see the comments at the beginning of
Subsection 5.4.3).

Then, if EN(u) <∞, we have

EN(v) ≤ EN(u) +

∫
Ω

∫ v(x)

u(x)

LN (ϕt(x))
∣∣
t=t(x,λ)

dλ dx.

Let us point out that, in Section 5.4, we will prove analogous results to Theorems 5.1.5
and 5.1.6 in the fractional semilinear setting, giving in this case fully rigorous statements
under precise regularity assumptions (see Theorems 5.4.6 and 5.4.3 respectively). Further-
more, the same proof will allow us to prove Theorems 5.1.5 and 5.1.6 in the more general
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v = ϕT

u = ϕ0

ϕt1

ϕt2ϕt3

Ω

Ωt2

Figure 5.1: Example of a weak field for two functions u and v.

setting of “mixed” functionals involving both local and nonlocal terms (see Theorems 5.4.8
and 5.4.7 below).

The energy inequality in Theorem 5.1.6 is established as in our previous calibration
arguments. Once available, we can prove Theorem 5.1.5. Indeed, assume that u is a
minimizer and that a smooth function ϕ touches u by below at some contact point. Now,
we slide ϕ upwards and take the maxima with u to obtain a weak field. The energy
comparison with v = ϕT will show that ϕ must be a supersolution at the contact point,
since otherwise u would not be a minimizer. Applying the same procedure to smooth
functions touching u by above, we will conclude that u is a viscosity solution.

Finally, let us mention that a simple variational proof of our result can be given without
using the calibration argument. For this, in addition to the ellipticity condition (5.1.7),
one needs to assume that the function (a, b) 7→ GN(x, y, a, b) +GN(y, x, b, a) is convex; see
footnote 4. The proof is a nonlocal counterpart of the one by Barron and Jensen [6]. We
explain this further in Remark 5.4.9.

5.1.6 Outline of the chapter

Section 5.2 contains the proofs of Theorem 5.1.3 and Corollary 5.1.4. In Section 5.3 we
explain how to combine the local and nonlocal theory to obtain calibrations for mixed
energy functionals. In Section 5.4 we apply the calibration formalism to the theory of
viscosity solutions. First, we prove the fully rigorous results for the fractional Laplacian
(Theorems 5.4.3 and 5.4.6) with all details in regularity and integrability issues. Then, we
show Theorems 5.1.5 and 5.1.6 (contained, respectively, in the more general Theorems 5.4.8
and 5.4.7).
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5.2 The calibration for general nonlocal functionals

Having obtained a calibration for the semilinear problem involving the fractional Laplacian
in the previous chapter, we are now interested in extending this construction to a general
class of nonlocal functionals. In this way, we plan to obtain a similar picture to that of
the general local theory treated in Section 4.3 above. We find a functional CN that, at
least at the formal level, is a calibration for the nonlocal energy functional EN. We say at
the formal level since the appropriate regularity assumptions on the field of extremals will
depend on the concrete given functional EN and its associated nonlocal problem.

Consider the nonlocal energy functional EN of the form (5.1.6). Since Q(Ω) is invariant
with respect to the reflection (x, y) 7→ (y, x), we may assume without loss of generality
that the Lagrangian GN is pairwise symmetric,7 that is,

GN(y, x, b, a) = GN(x, y, a, b) for all (x, y) ∈ Q(Ω) and (a, b) ∈ R2. (5.2.1)

In particular, from the pairwise symmetry it follows that

∂bGN(x, y, ã, b̃) = ∂aGN(y, x, b̃, ã) for all (x, y) ∈ Q(Ω) and (ã, b̃) ∈ R2. (5.2.2)

The first variation of EN at u in the direction of η ∈ C∞c (Rn) (notice that η is not
necessarily supported in Ω) is given by

d

dε
EN(u+ εη)

∣∣∣
ε=0

=
1

2

∫∫
Q(Ω)

∂aGN(x, y, u(x), u(y)) η(x) dx dy +
1

2

∫∫
Q(Ω)

∂bGN(x, y, u(x), u(y)) η(y) dx dy

=
1

2

∫∫
Q(Ω)

∂aGN(x, y, u(x), u(y)) η(x) dx dy +
1

2

∫∫
Q(Ω)

∂bGN(y, x, u(y), u(x)) η(x) dx dy

=

∫∫
Q(Ω)

∂aGN(x, y, u(x), u(y)) η(x) dx dy,

where we have used the symmetry of Q(Ω) and the identity (5.2.2).
Writing the domain Q(Ω) as the disjoint union Q(Ω) = (Ω × Rn) ∪ (Ωc × Ω), we can

split the last integral to obtain

d

dε
EN(u+ εη)

∣∣∣
ε=0

=

∫
Ω

LN(u)(x) η(x) dx+

∫
Ωc
NN(u)(x) η(x) dx, (5.2.3)

where we have introduced the nonlinear operators

LN(u)(x) :=

∫
Rn
∂aGN(x, y, u(x), u(y)) dy

and

NN(u)(x) :=

∫
Ω

∂aGN(x, y, u(x), u(y)) dy.

Consistent with the terminology in [23], we refer to LN as the Euler-Lagrange operator
associated to EN, while NN is its associated nonlocal Neumann operator.

7Here we follow the terminology of [49].
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Since we are interested in minimization problems with respect to functions with the
same exterior data, we only consider variations η that are compactly supported in Ω. Thus,
an extremal u of EN will satisfy the Euler-Lagrange equation

LN(u) = 0 in Ω. (5.2.4)

Given an interval I ⊂ R, let ut : Rn → R be a field in Rn (in the sense of Defini-
tion 5.1.2), with t ∈ I, which covers the region

G := {(x, λ) ∈ Rn × R : λ = ut(x) for some t ∈ I}.

Let us also consider the class of admissible functions

AN := {w : Rn → R : w is sufficiently regular for GN and graphw ⊂ G}, (5.2.5)

where “sufficiently regular” refers to the following issue. Since we are not making any
growth or structure assumption on GN, the class of functions w for which EN(w) makes
sense must be chosen according to each nonlocal functional under investigation. This will
be the functions considered in AN, which may contain further regularity restrictions so
that the operators LN and NN, as well as all the integrals in the proofs are well defined.

Let t0 ∈ I. Our goal is to construct a calibration for EN and ut0 . We define the
functional CN on AN by

CN(w) :=

∫∫
Q(Ω)

∫ w(x)

ut0 (x)

∂aGN(x, y, ut(x), ut(y))
∣∣
t=t(x,λ)

dλ dx dy + EN(ut0). (5.2.6)

By the above considerations and splitting the domain into Q(Ω) = (Ω×Rn)∪ (Ωc×Ω),
we can rewrite (5.2.6) as

CN(w) =

∫
Ω

∫ w(x)

ut0 (x)

LN(ut)(x)
∣∣
t=t(x,λ)

dλ dx

+

∫
Ωc

∫ w(x)

ut0 (x)

NN(ut)(x)
∣∣
t=t(x,λ)

dλ dx+ EN(ut0).

(5.2.7)

Notice that (5.2.7) is the “canonical” nonlocal analogue of Theorem 3.1 in [23], and thus
of the classical local Weierstrass calibration CL.

Next we show that if the field {ut}t∈I is made up of supersolutions above ut0 and
subsolutions below, then ut0 minimizes CN among functions in AN with the same exterior
data. Furthermore, if all the functions ut satisfy the Euler-Lagrange equation (i.e., ut is a
field of extremals), then CN is a null-Lagrangian and its value depends only on the exterior
datum. The following result (properties (C3) and (C3′) of the calibration) follows readily
from expression (5.2.7) for CN. Note that here we do not need to assume the ellipticity
of GN.

Proposition 5.2.1. Given an interval I ⊂ R, a bounded domain Ω ⊂ Rn, and a function
GN = GN(x, y, a, b), let {ut}t∈I be a field in Rn (in the sense of Definition 5.1.2) which is
sufficiently regular for GN. Assume that, for t0 ∈ I, the leaves satisfy the inequalities

LN(ut) ≥ 0 in Ω for t ≥ t0, and

LN(ut) ≤ 0 in Ω for t ≤ t0.
(5.2.8)
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Consider the set of admissible functions AN defined in (5.2.5).
Then, for all w in AN such that w ≡ ut0 in Ωc, the functional CN defined in (5.2.6)

satisfies
CN(ut0) ≤ CN(w).

Assume in addition that the leaves satisfy the Euler-Lagrange equation (5.2.4), that is,

LN(ut) = 0 in Ω for all t ∈ I. (5.2.9)

Then, for all w in AN such that w ≡ ut0 in Ωc, we have

CN(ut0) = CN(w).

Proof. First, notice that CN(ut0) = EN(ut0). Since w ≡ ut0 in Ωc, by (5.2.7) we have

CN(w)− CN(ut0) =

∫
Ω

∫ w(x)

ut0 (x)

LN(ut)
∣∣
t=t(x,λ)

dλ dx.

Assuming (5.2.8), it suffices to show that for all x ∈ Ω we have∫ w(x)

ut0 (x)

LN(ut)
∣∣
t=t(x,λ)

dλ ≥ 0. (5.2.10)

If w(x) ≥ ut0(x), then, using that the functions {ut}t∈I are increasing in t, we have t(x, λ) ≥
t0 for λ ∈ [ut0(x), w(x)]. Hence, by assumption (5.2.8), LN(ut)

∣∣
t=t(x,λ)

≥ 0 and (5.2.10)

follows in this case. The case w(x) ≤ ut0(x) is treated similarly.
If we further assume (5.2.9), then the integral in (5.2.10) vanishes and the claim follows.

The functional CN can be rewritten in the following alternative form that we will use
to verify the remaining calibration properties (C1) and (C2).

Lemma 5.2.2. Given an interval I ⊂ R, a bounded domain Ω ⊂ Rn, and a pairwise
symmetric function GN = GN(x, y, a, b) in the sense of (5.2.1), let {ut}t∈I be a field in Rn

(in the sense of Definition 5.1.2) which is sufficiently regular for GN. Consider the set of
admissible functions AN defined in (5.2.5).

Then, for all w in AN, the functional CN defined in (5.2.6) satisfies

CN(w) =
1

2

∫∫
Q(Ω)

GN(x, y, w(x), ut(y))
∣∣
t=t(x,w(x))

dx dy

+
1

2

∫∫
Q(Ω)

∫ t(y,w(y))

t(x,w(x))

∂bGN(x, y, ut(x), ut(y))∂tu
t(y) dt dx dy.

(5.2.11)

Proof. We will rewrite the integral term in the definition (5.2.6) of CN. Applying the change
of variables λ 7→ t with ut(x) = λ for each x, we have∫∫

Q(Ω)

∫ w(x)

ut0 (x)

∂aGN(x, y, ut(x), ut(y))
∣∣
t=t(x,λ)

dλ dx dy

=

∫∫
Q(Ω)

∫ t(x,w(x))

t0

∂aGN(x, y, ut(x), ut(y))∂tu
t(x) dt dx dy.
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Symmetrizing this expression in (x, y) and using (5.2.2), we deduce∫∫
Q(Ω)

∫ w(x)

ut0 (x)

∂aGN(x, y, ut(x), ut(y))
∣∣
t=t(x,λ)

dλ dx dy

=
1

2

∫∫
Q(Ω)

∫ t(x,w(x))

t0

∂aGN(x, y, ut(x), ut(y))∂tu
t(x) dt dx dy

+
1

2

∫∫
Q(Ω)

∫ t(y,w(y))

t0

∂bGN(x, y, ut(x), ut(y))∂tu
t(y) dt dx dy.

(5.2.12)

Splitting the integral
∫ t(y,w(y))

t0
· dt in (5.2.12) into

∫ t(x,w(x))

t0
· dt+

∫ t(y,w(y))

t(x,w(x))
· dt, we obtain

∫∫
Q(Ω)

∫ w(x)

ut0 (x)

∂aGN(x, y, ut(x), ut(y))
∣∣
t=t(x,λ)

dλ dx dy

=
1

2

∫∫
Q(Ω)

∫ t(x,w(x))

t0

d

dt

{
GN(x, y, ut(x), ut(y))

}
dt dx dy

+
1

2

∫∫
Q(Ω)

∫ t(y,w(y))

t(x,w(x))

∂bGN(x, y, ut(x), ut(y))∂tu
t(y) dt dx dy.

(5.2.13)

Integrating the derivative with respect to t in (5.2.13) and recalling, by definition of the
leaf-parameter function, that w(x) = ut(x,w(x))(x), we have∫∫

Q(Ω)

∫ w(x)

ut0 (x)

∂aGN(x, y, ut(x), ut(y))
∣∣
t=t(x,λ)

dλ dx dy

=
1

2

∫∫
Q(Ω)

GN(x, y, w(x), ut(x,w(x))(y)) dx dy − EN(ut0)

+
1

2

∫∫
Q(Ω)

∫ t(y,w(y))

t(x,w(x))

∂bGN(x, y, ut(x), ut(y))∂tu
t(y) dt dx dy.

(5.2.14)

Adding EN(ut0) to both sides of (5.2.14) now yields the claim.

In the next proposition we prove the calibration property (C1). This follows directly
from Lemma 5.2.2. Here, ellipticity of GN is still not needed.

Proposition 5.2.3. Given an interval I ⊂ R, a bounded domain Ω ⊂ Rn, and a pairwise
symmetric function GN = GN(x, y, a, b) in the sense of (5.2.1), let {ut}t∈I be a field in Rn

(in the sense of Definition 5.1.2) which is sufficiently regular for GN.
Then, for all t ∈ I, the functional CN defined in (5.2.6) satisfies

CN(ut) = EN(ut).

Proof. Let t0 ∈ I. Choosing w = ut0 in (5.2.11), since t(x,w(x)) = t0 for all x, we have

CN(ut0) =
1

2

∫∫
Q(Ω)

GN(x, y, ut0(x), ut0(y)) dx dy = EN(ut0).

Since t0 ∈ I was arbitrary, this proves the proposition.
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It remains to prove the last calibration property (C2). We will now need the natural
ellipticity assumption on the Lagrangian GN:

∂2
abGN(x, y, a, b) ≤ 0. (5.2.15)

Notice that (5.2.15) is simply the ellipticity condition (5.1.7) from the Introduction written
for a pairwise symmetric Lagrangian. Moreover, this condition is related to a strong
comparison principle, as explained in Appendix I.

Proposition 5.2.4. Given an interval I ⊂ R, a bounded domain Ω ⊂ Rn, and a pairwise
symmetric function GN = GN(x, y, a, b) in the sense of (5.2.1), let {ut}t∈I be a field in Rn

(in the sense of Definition 5.1.2) which is sufficiently regular for GN. Consider the set of
admissible functions AN defined in (5.2.5). Assume that the ellipticity condition ∂2

abGN ≤ 0
holds.

Then, for all w in AN, the functional CN defined in (5.2.6) satisfies

CN(w) ≤ EN(w).

Proof. If we compute the difference EN(w)−CN(w), using the alternative expression (5.2.11)
for CN, we obtain

EN(w)− CN(w)

=
1

2

∫∫
Q(Ω)

{
GN(x, y, w(x), w(y))−GN(x, y, w(x), ut(x,w(x))(y))

}
dx dy

− 1

2

∫∫
Q(Ω)

∫ t(y,w(y))

t(x,w(x))

∂bGN(x, y, ut(x), ut(y))∂tu
t(y) dt dx dy.

(5.2.16)

Recalling that ut(y,w(y))(y) = w(y), we can write the first integral on the right-hand side
of (5.2.16) as

1

2

∫∫
Q(Ω)

{
GN(x, y, w(x), w(y))−GN(x, y, w(x), ut(x,w(x))(y))

}
dx dy

=
1

2

∫∫
Q(Ω)

∫ t(y,w(y))

t(x,w(x))

d

dt

{
GN(x, y, w(x), ut(y))

}
dt dx dy

=
1

2

∫∫
Q(Ω)

∫ t(y,w(y))

t(x,w(x))

∂bGN(x, y, w(x), ut(y))∂tu
t(y) dt dx dy.

(5.2.17)

Plugging (5.2.17) into (5.2.16), we see that

EN(w)− CN(w)

=

∫∫
Q(Ω)

∫ t(y,w(y))

t(x,w(x))

{
∂bGN(x, y, w(x), ut(y))− ∂bGN(x, y, ut(x), ut(y))

}
∂tu

t(y) dt dx dy.

Thus, it suffices to show that∫ t(y,w(y))

t(x,w(x))

{
∂bGN(x, y, w(x), ut(y))− ∂bGN(x, y, ut(x), ut(y))

}
∂tu

t(y) dt ≥ 0 (5.2.18)

for all (x, y) ∈ Q(Ω).
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Let (x, y) ∈ Q(Ω) and assume first that t(x,w(x)) ≤ t(y, w(y)). By monotonicity of
the leaves ut in I, for t ∈ [t(x,w(x)), t(y, w(y))] we have

w(x) = ut(x,w(x))(x) ≤ ut(x),

and by ellipticity

∂bGN(x, y, w(x), ut(y))∂tu
t(y) ≥ ∂bGN(x, y, ut(x), ut(y))∂tu

t(y).

Whence, (5.2.18) follows. The case t(x,w(x)) ≥ t(y, w(y)) is treated similarly.

Finally, combining Propositions 5.2.1, 5.2.3, and 5.2.4, we easily conclude Theorem 5.1.3.

Proof of Theorem 5.1.3. (a) Property (C1) follows from Proposition 5.2.3 and property
(C2) follows from Proposition 5.2.4.

(b) This follows from the first part of Proposition 5.2.1.
(c) This follows from the second part of Proposition 5.2.1.

Proof of Corollary 5.1.4. For each t ∈ R we define ut(x) := u(x′, xn + t), where x =
(x′, xn) ∈ Rn−1 × R. By the monotonicity (5.1.10) of u and by translation invariance of
the equation LN(u) = 0, it follows that the family {ut}t∈R is a field of extremals in Rn in
the sense of Definition 5.1.2. Hence, Theorem 5.1.3 yields the minimality of each ut among
competitors w with w ≡ u in Ωc and satisfying the assumption

lim
τ→−∞

u(x′, τ) < w(x′, xn) < lim
τ→+∞

u(x′, τ) for all x = (x′, xn) ∈ Ω.

Finally, we can relax the previous strict inequalities by considering the competitor
(1 − ε)w + εu and letting ε → 0. In this way we recover the condition in the statement
of Corollary 5.1.4 where the inequalities are not strict.

5.3 The calibration for functionals involving both lo-

cal and nonlocal terms

The results derived in Section 5.2 may be combined with the classical local ones to yield
a theory that applies to functionals involving both local and nonlocal interactions. These
functionals appear when dealing with symmetric Lévy processes, where the infinitesimal
generators are given by the sum of a second order differential operator and an integro-
differential one. Recently, mixed functionals have attracted great attention from different
points of view; see [72, 93] and references therein.

The mixed energy8

ET(w) := EN(w) + EL(w)

=
1

2

∫∫
Q(Ω)

GN(x, y, w(x), w(y)) dx dy +

∫
Ω

GL(x,w(x),∇w(x)) dx
(5.3.1)

admits a calibrating functional

CT(w) := CN(w) + CL(w),

8Here in the notation we use the subscript M, which stands for “Mixed”.
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where EL, GL, CL, and EN, GN, CN are defined as in the Introduction. By combining
identities (5.1.5) and (5.2.7), the functional CT may be written equivalently as

CT(w) =

∫
Ω

∫ w(x)

ut0 (x)

LT(ut)
∣∣
t=t(x,λ)

dλ dx

+

∫
Ωc

∫ w(x)

ut0 (x)

NN(ut)
∣∣
t=t(x,λ)

dλ dx+

∫
∂Ω

∫ v(x)

ut0 (x)

NL(ut)
∣∣
t=t(x,λ)

dλ dHn−1(x)

+ ET(ut0),

where the Euler-Lagrange operator of the mixed problem is

LT(w) := LN(w) + LL(w),

and LL, NL, LN, and NN are the operators introduced above.
Since CT shares the same structure as CL and CN, a straightforward adaptation of the

proofs in the sections above shows that CT satisfies all three calibration properties. We
mention that property (C2) requires both the local and nonlocal ellipticity conditions, that
is, one must assume that both

∂2
qqGL(x, λ, q) ≥ 0 and ∂2

abGN(x, y, a, b) ≤ 0

hold.
As an application of this theory, we can prove the analogue of Corollary 5.1.4 for mixed

functionals. Namely, if LT is translation invariant, i.e., LT(u(·+ y))(x) = LT(u)(x+ y) for
all x and y in Rn, then monotone solutions are minimizers among functions lying between
the limits of the solution in the direction of monotonicity. The proof is identical to the one
of Corollary 5.1.4.

Remark 5.3.1. Mixed energies appear in the following relevant frameworks. However,
these minimization problems include constraints. Thus, one cannot directly apply the
calibration theory developed above, since constrained minimizers need not be minimizers
of the original functional and no foliation of extremals is expected. As examples of such
frameworks, we mention the theory of aggregation equations [35], certain problems from
astrophysics [70], the Thomas-Fermi theory [7], the Choquard-Pekar model [68], as well as
the problem of finding the best constant in the Sobolev inequality [94].

5.4 Application to the viscosity theory

For the application of calibrations to prove that minimizers are viscosity solutions, we
need to consider more general fields, namely, those which are not necessarily increasing in
a bounded domain Ω ⊂ Rn, but only nondecreasing. The situation is that different leaves
will coincide in certain subsets of Ω; see Figure 5.1 in the Introduction. Such a field will
appear when sliding a touching test function and truncating it with the minimizer.

5.4.1 An energy comparison result for fractional functionals

Given s ∈ (0, 1) and a bounded domain Ω ⊂ Rn, let u, v ∈ C(Ω)∩L1
s(Rn) be two functions

such that u = v a.e. in Ωc and u ≤ v in Ω. Assume we are given functions ϕt : Rn → R, with
t ∈ [0, T ] and nondecreasing in t, such that they “interpolate” between the two functions:

178



ϕ0 = u, ϕT = v. When the family {ϕt}t∈[0,T ] satisfies appropriate regularity assumptions,
we will be able to construct a calibration involving the field.

Consider the region

G =
{

(x, λ) ∈ Ω× R : u(x) < λ < v(x)
}
,

as well as the sections

Ωt := {x ∈ Ω: ϕt(x) > u(x)} for each t ∈ (0, T ),

which will be increasing in t, and

Ix := {t ∈ (0, T ) : ϕt(x) > u(x)} for each x ∈ Ω.

Definition 5.4.1. Given s ∈ (0, 1) and a bounded domain Ω ⊂ Rn, let u, v ∈ C(Ω)∩L1
s(Rn)

be such that u = v a.e. in Ωc and u ≤ v in Ω. A family {ϕt}t∈[0,T ] of functions ϕt : Rn → R
is said to be a weak field for u and v (see Figure 5.1) if the following conditions are satisfied:

(i) ϕ0 = u and ϕT = v.

(ii) ϕt = u a.e. in Ωc, for all t ∈ [0, T ].

(iii) The function (x, t) 7→ ϕt(x) is continuous in Ω× [0, T ].

(iv) For each x ∈ Ω, the function t 7→ ϕt(x) is C1(Ix) and increasing in Ix. Moreover,
there exists a constant C0 > 0 such that

|∂tϕt(x)| ≤ C0 for all x ∈ Ω and t ∈ Ix.

Moreover, the weak field is regular by below, if the following regularity condition holds:

(v) The functions {ϕt}t∈(0,T ) are uniformly C1,1 by below in Ωt, uniformly in t, in the
following sense. There exist a constant C0 > 0 and a bounded domain N ⊂ Rn, with
Ω ⊂ N , such that, for each t ∈ (0, T ) and x ∈ Ωt, there is a function ψ ∈ C2(N)
touching ϕt by below in N at x, that is, ψ(x) = ϕt(x) and ψ ≤ ϕt a.e. in N , satisfying

D2ψ ≥ −C0 in N.

Remark 5.4.2. The more technical assumption in Definition 5.4.1, condition (v), is needed
for the calibration of the fractional Laplacian to be well defined. An important consequence
of (v) is that the fractional Laplacian (−∆)sϕt(x) is bounded by above uniformly in t ∈
(0, T ) and x ∈ Ωt.

If {ϕt}t∈[0,T ] is a weak field for u and v, then for each (x, λ) ∈ G there exists a unique
t = t(x, λ) such that ϕt(x,λ)(x) = λ. The existence is a consequence of (iii), since ϕ0(x) <
λ < ϕT (x), while the uniqueness follows from (iv).

Recall that, given s ∈ (0, 1) and F ∈ C1(R), we have

Es,F (w) =
cn,s
4

∫∫
Q(Ω)

|w(x)− w(y)|2

|x− y|n+2s
dx dy −

∫
Ω

F (w(x)) dx.

We also write

Es(w) =
cn,s
4

∫∫
Q(Ω)

|w(x)− w(y)|2

|x− y|n+2s
dx dy

following the notation introduced in Chapter 4. The weak field allows to compare the
energies of u and v via the following theorem:
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Theorem 5.4.3. Given a bounded domain Ω ⊂ Rn and s ∈ (0, 1), let u, v ∈ C(Ω)∩L1
s(Rn)

be such that u = v a.e. in Ωc and u ≤ v in Ω. Let {ϕt}t∈[0,T ] be a weak field for u and v
which is regular by below in the sense of Definition 5.4.1.

Then, given F ∈ C1(R), if Es(u) <∞ we have

Es,F (v) ≤ Es,F (u) +

∫
Ω∩{v>u}

∫ v(x)

u(x)

(
(−∆)sϕt(x)− F ′(ϕt(x))

)∣∣
t=t(x,λ)

dλ dx.

Proof. We proceed as in the proof of the calibration properties although giving fewer
details. The idea is to consider the analogue of the fractional calibration Cs,F for Es,F and
v introduced in (4.1.9) above, and to use property (C2), i.e., Cs,F (u) ≤ Es,F (u), which gives
the energy comparison.

For ε > 0, we consider the kernel Kε = cn,s| · |−n−2s1Rn\Bε and the truncated fractional
Laplacian (−∆)sεϕ(x) =

∫
Rn(ϕ(x)− ϕ(y))Kε(x− y) dy.

Since u and v differ only in the region ΩT ⊂ Ω, it suffices to consider all functionals
defined in Q(ΩT ) instead of on the larger set

Q(Ω) = Q(ΩT ) ∪ ((Ω \ ΩT )× Ωc
T ) ∪ (Ωc × (Ω \ ΩT )).

By a slight modification of the proof of Lemma 4.4.4 above, we have the identity∫
ΩT

∫ u(x)

v(x)

(−∆)sεϕ
t(x)

∣∣
t=t(x,λ)

dx+
1

4

∫∫
Q(ΩT )

|v(x)− v(y)|2Kε(x− y) dx dy

= −1

2

∫∫
Q(ΩT )

dx dyKε(x− y)

∫ t(y,u(y))

t(x,u(x))

(ϕt(x)− ϕt(y)) ∂tϕ
t(y) dt

+
1

4

∫∫
Q(ΩT )

|u(x)− ϕt(x,u(x))(y)|2Kε(x− y) dx dy.

(5.4.1)

Moreover, since ϕt is nondecreasing in t, the first term in the right-hand side of (5.4.1) can
be bounded by

− 1

2

∫∫
Q(ΩT )

dx dyKε(x− y)

∫ t(y,u(y))

t(x,u(x))

(ϕt(x)− ϕt(y)) ∂tϕ
t(y) dt

≤ −1

2

∫∫
Q(ΩT )

dx dyKε(x− y)

∫ t(y,u(y))

t(x,u(x))

(u(x)− ϕt(y)) ∂tϕ
t(y) dt

=
1

4

∫∫
Q(ΩT )

dx dyKε(x− y)
(
|u(x)− u(y)|2 − |u(x)− ϕt(x,u(x))(y)|2

)
,

(5.4.2)

where in the last line we have integrated −(u(x)−ϕt(y))∂tϕ
t(y) = d

dt
|u(x)−ϕt(y)|2. Hence,

writing EKε(u) = 1
2

∫∫
Q(Ω)
|u(x) − u(y)|2Kε(x − y) dx dy, combining (5.4.1) and (5.4.2) we

deduce

EKε(u)− EKε(v) =
1

4

∫∫
Q(ΩT )

(
|u(x)− u(y)|2 − |v(x)− v(y)|2

)
Kε(x− y) dx dy

≥
∫

ΩT

∫ u(x)

v(x)

(−∆)sεϕ
t(x)

∣∣
t=t(x,λ)

dλ dx.

(5.4.3)

Finally, thanks to property (v) and by Fatou’s lemma, we can pass to the limit as ε ↓ 0
inside the integrals in (5.4.3) to obtain

Es(v) ≤ Es(u) +

∫
Q(ΩT )

∫ v(x)

u(x)

(−∆)sϕt(x)
∣∣
t=t(x,λ)

dλ dx.
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Since F (u)−F (v) =
∫ u(x)

v(x)
F ′(λ) dλ =

∫ u(x)

v(x)
F ′(ϕt(x))

∣∣
t=t(x,λ)

dλ, adding the potential term

now yields the result.

5.4.2 Minimizers of fractional functionals are viscosity solutions

We recall the definition of viscosity solution in the nonlocal setting. The following is taken
from Definition 2.2 in [34]:

Definition 5.4.4. Given bounded domain Ω ⊂ Rn, s ∈ (0, 1), and F ∈ C1(R), we say
that u ∈ C(Ω) ∩ L1

s(Rn) is a viscosity supersolution of the semilinear equation

(−∆)sv = F ′(v) in Ω,

if whenever the following happens

• x0 is any point in Ω

• N is a neighborhood of x0 in Ω

• ϕ is some C2 function in N

• ϕ(x0) = u(x0)

• ϕ(x) < u(x) for every x ∈ N \ {x0},

then, the function

ϕ(x) :=

{
ϕ(x) for x ∈ N
u(x) for x ∈ Rn \N,

satisfies (−∆)sϕ(x0) ≥ F ′(ϕ(x0)).

We also have the analogous definition of viscosity subsolution. We say that u is a
viscosity solution if it is both a viscosity supersolution and subsolution.

Our main results in this section deal with minimizers of the energy functional Es,F . In
fact, it is enough to consider one-sided minimizers, which are defined as follows:

Definition 5.4.5. Given a bounded domain Ω ⊂ Rn, s ∈ (0, 1), and F ∈ C1(R), we say
that a function u : Rn → R is a one-sided minimizer by above of the functional Es,F if
Es,F (u) <∞ and for all functions v such that v ≥ u in Ω and v = u in Ωc we have

Es,F (v) ≥ Es,F (u).

We also have the analogous definition of one-sided minimizer by below.

We will now prove that one-sided minimizers by above are viscosity supersolutions.
This is a consequence of Theorem 5.4.3.

Theorem 5.4.6. Given a bounded domain Ω ⊂ Rn, s ∈ (0, 1), and F ∈ C1(R), let
u : Rn → R in C(Ω) be a one-sided minimizer by above of the functional Es,F .

Then u is a viscosity supersolution.
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Proof. We proceed by contradiction. Suppose that u is not a viscosity supersolution.
Then there exist x0 ∈ Ω, a neighborhood N ⊂ Ω of x0, and a function ϕ ∈ C2(N), with
ϕ(x0) = u(x0) and ϕ(x) < u(x) for all x ∈ Ω, such that the extension ϕ satisfies

(−∆)sϕ(x0) < F ′(ϕ(x0)).

We will now construct a function above u which has less energy, thus violating the
one-sided minimality by above. The idea of the proof is to raise the function ϕ to produce
a local foliation whose leaves are strict subsolutions.

Recall the truncations introduced in the proof of Theorem 5.4.3 above. Namely, for
ε > 0 we let Kε = cn,s| · |−n−2s1Rn\Bε and (−∆)sεϕ(x) =

∫
Rn(ϕ(x)− ϕ(y))Kε(x− y) dy.

Since (−∆)sϕ(x0) − F ′(ϕ(x0)) =: −4c0 < 0, by continuity of F ′ and of the fractional

Laplacian, there is a smaller neighborhood Ñ of x0, with Ñ ⊂ N , such that

(−∆)sεϕ(x)− F ′(ϕ(x)) < −2c0

for all x ∈ Ñ and ε ∈ (0, ε0), for some small ε0 > 0.
For 0 ≤ t ≤ T , where 0 < T ≤ min∂N(u− ϕ), we define the functions

ϕt(x) :=

{
max{u(x), ϕ(x) + t} for x ∈ N
u(x) for x ∈ Rn \N.

It is clear that the family {ϕt}t∈[0,T ] is a weak field for u and ϕT which is regular by below,
in the sense of Definition 5.4.1.

For 0 < t < T , ε > 0, and x ∈ N such that ϕt(x) > u(x), we have

(−∆)sε ϕ
t(x) ≤ (−∆)sε ϕ(x) + T

∫
Rn\N

cn,s|x− y|−n−2s dy.

From this inequality and the continuity of F ′, taking a sufficiently small T , we obtain

(−∆)sεϕ
t(x)− F ′(ϕt(x)) < −c0

for all x ∈ Ñ , ε ∈ (0, ε0), and t ∈ (0, T ) such that ϕt(x) > u(x).
Letting v = ϕT , by Theorem 5.4.3, we conclude that

Es,F (v) ≤ Es,F (u) +

∫
Ω∩{v>u}

∫ v(x)

u(x)

{
(−∆)sϕt(x)− F ′(ϕt(x))

}∣∣∣
t=t(x,λ)

dλ dx

≤ Es,F (u)− c0

∣∣{(x, λ) ∈ Ω× R : u(x) < λ < v(x)}
∣∣

< Es,F (u),

which contradicts the minimality of u.

5.4.3 More general nonlocal functionals

We now extend the previous approach to the more general setting of mixed functionals.
First, we note that the notion of weak field needs to be adapted to arbitrary mixed function-
als ET of the form (5.3.1). This class of energies is too big to allow for a general definition
of weak field. However, it can be done for specific families of Lagrangians GL and GN,
as the ones given in the Introduction. Under precise growth and regularity assumptions
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on the Lagrangians, it suffices to modify condition (v) in Definition 5.4.1 appropriately so
that there are no integrability issues in our proofs below. Thus, in the next theorems, by
a weak field which is “sufficiently regular for GL and GN” we mean a weak field satisfying
the required additional regularity conditions.

Next, we prove the following energy comparison result in the presence of a sufficiently
regular weak field, which contains Theorem 5.1.6 in the Introduction (and will be proven
as in Theorem 5.4.3 above):

Theorem 5.4.7. Let GL = GL(x, λ, q) be a function satisfying ∂2
qqGL(x, λ, q) ≥ 0, and let

GN = GN(x, y, a, b) be a pairwise symmetric function satisfying ∂2
abGN(x, y, a, b) ≤ 0.

Given a bounded domain Ω ⊂ Rn, let u, v ∈ C(Ω) such that u = v a.e. in Ωc and
u ≤ v in Ω. Assume that there exists {ϕt}t∈[0,T ], a weak field for u and v (in the sense of
Definition 5.4.1) which is sufficiently regular for GL and GN.

Then, if ET(u) = EL(u) + EN(u) <∞ (defined in Section 5.3), we have

ET(v) ≤ ET(u) +

∫
Ω

∫ v(x)

u(x)

LT (ϕt(x))
∣∣
t=t(x,λ)

dλ dx,

where LT = LL + LN is the Euler-Lagrange operator associated to ET.

Proof. We consider the calibration functional constructed in Section 5.3, that is,

CT(w) = ET(v) +

∫
Ω

∫ w(x)

v(x)

LT(ϕt)
∣∣
t=t(x,λ)

dλ dx.

Following the strategy there, one can show, by using the ellipticity conditions, that CT also
satisfies property (C2) in the new framework of weak fields. In particular,

ET(u) ≥ CT(u) = ET(v) +

∫
Ω

∫ u(x)

v(x)

LT(ϕt)
∣∣
t=t(x,λ)

dλ dx,

which yields the desired result.

With this result at hand, we can easily show that one sided minimizers by above are
viscosity supersolutions of the Euler-Lagrange equation. Here it is clear how to adapt
Definitions 5.4.4 and 5.4.5 to the case of mixed energy functionals. The following result
includes Theorem 5.1.5 in the Introduction (and is proven as Theorem 5.4.6 above):

Theorem 5.4.8. Let GL = GL(x, λ, q) be a function satisfying ∂2
qqGL(x, λ, q) ≥ 0, and let

GN = GN(x, y, a, b) be a pairwise symmetric function satisfying ∂2
abGN(x, y, a, b) ≤ 0. Let

Ω ⊂ Rn be a bounded domain and let u be a sufficiently regular one-sided minimizer by
above of the functional ET.

Then, the function u is a viscosity supersolution of the associated Euler-Lagrange equa-
tion LT(w) = 0 in Ω.

Proof. Proceeding as in the proof of Theorem 5.4.6, we slide the touching function ϕ
upwards and take the maximum with u to obtain a weak field. Applying Theorem 5.4.7,
we see immediately that ϕ cannot be a strict subsolution, otherwise, the leaves of the weak
field would have smaller energy than the minimizer.

We can finally give the proof of Theorem 5.1.5 in the Introduction:
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Proof of Theorem 5.1.5. If u is a minimizer, then u and −u are one-sided minimizers by
above of the functionals EN(·) and EN(−·), respectively. By Theorem 5.4.8, the function u is
both a viscosity supersolution and subsolution. In particular, u is a viscosity solution.

Remark 5.4.9. There is a more direct proof of Theorem 5.4.8 which does not use cali-
brations. In addition to the ellipticity ∂abGN(x, y, a, b) ≤ 0, one further assumes that the
functions (λ, q) 7→ GL(x, λ, q) and (a, b) 7→ GN(x, y, a, b) are both convex. Proceeding by
contradiction as above, we consider the same weak field and pick one leaf ϕt0 with t0 > 0.
By continuity and the ellipticity assumption, this function will satisfy LT(ϕt0)(x) < 0 when-
ever ϕt0(x) > u(x). Then, applying integration by parts in the local term, symmetrizing
in the nonlocal one, and using the convexity assumptions, we obtain

0 <

∫
Ω

(u(x)− ϕt0(x))LT(ϕt0)(x) dx

≤
∫

Ω

(
GL(x, u(x),∇u(x))−GL(x, ϕt0(x),∇ϕt0(x))

)
dx

+
1

2

∫∫
Q(Ω)

(
GN(x, y, u(x), u(y))−GN(x, y, ϕt0(x), ϕt0(y))

)
dx dy

= ET(u)− ET(ϕt0).

This contradicts the one-sided minimality by below.

Remark 5.4.10. The calibration approach allows us to prove that one-sided minimizers
by above are viscosity supersolutions, but says nothing a priori about supersolutions that
are not minimizers. Nevertheless, the strategy can be adapted to treat some of these cases.
The idea consists on building an auxiliary functional for which the weak supersolution is
a one-sided minimizer.

We briefly discuss the semilinear case for the sake of clarity. Let u be a weak superso-
lution, not necessarily a one-sided minimizer, of the equation (−∆)sv = f(v) in Ω, that is,
u satisfies

cn,s
2

∫∫
Q(Ω)

(u(x)− u(y))(ϕ(x)− ϕ(y)))

|x− y|n+2s
dx dy ≥

∫
Ω

f(u(x))ϕ(x) dx

for all ϕ ∈ C∞c (Ω) such that ϕ ≥ 0. Then, one can check that u is also a weak supersolution
of the linear equation (−∆)sv = g in Ω, with g(x) := f(u(x)). In particular, u is a one-sided
minimizer of the auxiliary convex energy functional

Ẽ(w) =
cn,s
4

∫∫
Q(Ω)

|w(x)− w(y)|2

|x− y|n+2s
−
∫

Ω

g(x)w(x).

Applying Theorem 5.4.8, we deduce that u is a viscosity supersolution of the linear equation
(−∆)sw = g. By definition of g, one clearly concludes that u is a viscosity supersolution
of the original semilinear equation.
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Appendix G

A calibration for the extension
problem of the fractional Laplacian

In this appendix we study minimizers of the energy functional Es,F by using the extension
technique for the fractional Laplacian. The strategy is based on building a calibration for
an auxiliary local energy Ẽs,F in the extended space Rn+1

+ = Rn × (0,∞). We point out
that this construction did not give us, during the conception of our work, any a priori
information about the form of a calibration written “downstairs” (i.e., in Rn) for the
original energy functional Es,F . It was only after finding Cs,F by nonlocal arguments that
we noticed how to deduce it, at least formally, from the extension problem.

We denote by (x, z) ∈ Rn × R points in Rn+1
+ . Given a bounded domain Ω ⊂ Rn, we

say that a bounded set Ω̃ ⊂ Rn+1
+ is an extension of Ω if ∂0Ω̃ := ∂Ω̃ ∩ {z = 0} ⊂ Ω. It is

well known that there is a strong connection between the nonlocal energy functional Es,F
and the local one

Ẽs,F (W ; Ω̃) :=
ds
2

∫∫
Ω̃

z1−2s|∇W (x, z)|2 dx dz −
∫
∂0Ω̃

F (W (x, 0)) dx,

where ds is a positive normalizing constant. For this, given a function u defined in Rn we
consider U : Rn+1

+ → R the solution of{
div(z1−2s∇U) = 0 in Rn+1

+

U = u on ∂Rn+1
+ = Rn.

Here, U is the so-called s-harmonic extension of u. In [32, Lemma 7.2], Caffarelli, Roquejof-
fre, and Savin showed that u is a minimizer of Es,F among functions with the same exterior

data as u in Ωc if and only if, for every extension domain Ω̃, the s-harmonic extension U
of u is a minimizer of Ẽs(·; Ω̃) among functions with the same boundary condition as U on

∂LΩ̃ := ∂Ω̃ ∩ {z > 0}.
Taking into account this equivalence we can apply the classical theory of calibrations

to the mixed Dirichlet-Neumann problem as explained in Remark 4.3.6. To do this, given
a field {ut}t∈I in Rn, for some interval I ⊂ R, it is clear by the maximum principle that
we can define a new field {U t}t∈I in Rn+1

+ where each leaf U t is the s-harmonic extension
of ut. Then, the functional

C̃s,F (W ; Ω̃) :=ds

∫∫
Ω̃

z1−2s
{
∇U t(x, z) · ∇W (x, z)− 1

2
|∇U t(x, z)|2

}
t=t(x,z,W (x,z))

dx dz

−
∫
∂0Ω̃

F (W (x, 0)) dx

(G.1)
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can be proved to be a calibration for Ẽs,F and U . Therefore, U is a minimizer of Ẽs,F , and
by [32, Lemma 7.2] it follows that u is a minimizer of Es,F .

We point out that although in this way we easily found a calibration for the local energy
Ẽs,F (·; Ω̃), it was not clear at all how it translated into a calibration written “downstairs”
for the original energy functional Es,F . It was only after building the calibration Cs,F by
using purely nonlocal techniques that we discovered how to pass, at least formally, from
C̃s,F (·; Ω̃) to Cs,F . Let us explain this. First, as in Section 4.3, for t0 ∈ I, we rewrite (G.1)
in the alternative form1

C̃s,F (W ; Ω̃) = −ds
∫∫

Ω̃

∫ W (x,z)

Ut0 (x,z)

div
(
z1−2s∇U t(x, z)

) ∣∣∣
t=t(x,z,λ)

dλ dz dx

+

∫
∂0Ω̃

∫ W (x,0)

Ut0 (x,0)

{
(−∆)sut(x)− F ′(ut(x))

}∣∣∣
t=t(x,0,λ)

dλ dx

+ ds

∫
∂LΩ̃

∫ W (x,z)

Ut0 (x,z)

z1−2s ν∂LΩ̃ · ∇U
t(x, z)

∣∣∣
t=t(x,z,λ)

dλ dHn(x, z)

+ Ẽs,F (U t0 ; Ω̃),

where ν∂LΩ̃ is the exterior normal vector to the lateral boundary ∂LΩ̃. Notice here that in
the second term we have used the identity

lim
z↓0

{
− dsz1−2sU t

z(x, z)− F ′(U t(x, z))
}

= (−∆)sut(x)− F ′(ut(x)),

which follows from the Caffarelli-Silvestre extension; see [33]. Finally, taking a sequence

of extended domains Ω̃i converging to the half-space Rn+1
+ , we recover the functional Cs,F

(up to an additive constant) as the formal limit of C̃s,F (·; Ω̃i).

1Here, the first term is the one associated to the Euler-Lagrange operator of the local energy functional
and vanishes by the definition of the field U t. On the other hand, the second and third terms are the ones
involving the Neumann operator for the extended problem.
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Appendix H

Other candidates for the fractional
calibration

In this section we discuss three other natural candidates to be a calibration for the energy
functional

Es,F (w) =
cn,s
4

∫∫
Q(Ω)

|w(x)− w(y)|2

|x− y|n+2s dx dy −
∫

Ω

F (w(x)) dx.

We will be able to discard two of them since some of the calibration properties fail in these
cases. Nevertheless, there is still one candidate for which we cannot determine whether it
is a calibration or not.

Let us recall that the local counterpart of Es,F is the functional

E1,F (w) =
1

2

∫
Ω

|∇w(x)|2 dx−
∫

Ω

F (w(x)) dx,

which admits the calibration

C1,F (w) =

∫
Ω

(
∇ut(x) · (∇w(x)−∇ut(x)) +

1

2

∣∣∇ut(x)
∣∣2 )∣∣∣

t=t(x,w(x))
dx−

∫
Ω

F (w(x)) dx,

a functional that can also be written as

C1,F (w) =

∫
Ω

(
∇ut(x) · ∇w(x)− 1

2

∣∣∇ut(x)
∣∣2 )∣∣∣

t=t(x,w(x))
dx−

∫
Ω

F (w(x)) dx.

Inspired by the form of C1,F , the first natural calibration candidate for Es,F can be built
replacing the gradient terms by differences and double integrals. That is, we let

F1
s,F (w) :=

cn,s
2

∫∫
Q(Ω)

(ut(x)− ut(y))(w(x)− w(y))

|x− y|n+2s

∣∣∣∣
t=t(x,w(x))

dx dy

− cn,s
4

∫∫
Q(Ω)

|ut(x)− ut(y)|2

|x− y|n+2s

∣∣∣∣
t=t(x,w(x))

dx dy −
∫

Ω

F (w(x)) dx.

By using Young’s inequality and the definition of the leaf-parameter function, one can
directly conclude that F1

s,F satisfies properties (C1) and (C2). It remains to check whether
the null-Lagrangian property (C3) is satisfied, but we do not know how to answer this
question. For the affirmative answer, the idea would be to use the usual nonlocal integration
by parts technique to obtain the Euler-Lagrange equation on the leaves. However, since
the leaf-parameter function t depends on the variable x, we get remainder terms that we
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do not know how to treat. It is then natural to look for a counterexample. We looked
at cases where an explicit field is available. For the trivial potential F = 0, for which
ut(x) = x + t are extremals (even if not bounded), property (C3) does not fail. Hence,
this case does not discard the candidate F1

s,F . Another interesting example with explicit
solutions is the Peierls-Nabarro model, corresponding to the case n = 1, s = 1/2, and
F (u) = 1−cos(u). Here the equation (−∆)1/2u = sin(u) in R admits the field of extremals
ut(x) = 2 arctan(x+ t). We do not know if the null-Lagrangian property holds for F1

s,F in
this concrete example.

It is also interesting to compare F1
s,F with the calibration Cs,F constructed in Section 4.4.

There, by the alternative expression for Cs,F derived in Lemma 4.4.4, we see that F1
s,F (w)

and Cs,F (w) would coincide if the following equality were true:

− lim
ε↓0

∫∫
Q(Ω)\{|x−y|>ε}

∫ t(y,w(y))

t(x,w(x))
(ut(x)− ut(y))∂tu

t(y) dt

|x− y|n+2s
dx dy

=

∫∫
Q(Ω)

(w(x)− ut(x,w(x))(y))(ut(x,w(x))(y)− w(y))

|x− y|n+2s
dx dy.

However, we do not know how to prove or disprove this identity.
The functional F1

s,F does not capture the symmetry in the variables x and y that has
appeared in the two previous works on nonlocal calibrations [18, 80]. Hence, it is also
natural to propose the following new candidate:

F2
s,F (w) :=

cn,s
2

∫∫
Q(Ω)

(uτ (x)− ut(y))(w(x)− w(y))

|x− y|n+2s

∣∣∣∣t=t(x,w(x))
τ=t(y,w(y))

dx dy

− cn,s
4

∫∫
Q(Ω)

|ur(x)− ut(y)|2

|x− y|n+2s

∣∣∣∣t=t(x,w(x))
τ=t(y,w(y))

dx dy −
∫

Ω

F (w(x)) dx.

As in the preceding case, we can apply Young’s inequality and the definition of the leaf-
parameter function to deduce that F2

s,F satisfies properties (C1) and (C2). Nevertheless,
in this case we can discard it as a calibration since the null-Lagrangian property fails even
when F = 0 and ut(x) = x+ t.

One could also think of a calibration candidate constructed by replacing the gradient
terms in the local theory by fractional ones. That is,

F3
s,F (w) :=

∫
Ω

{
∇sut(x) · ∇sw(x) dx− 1

2

∣∣∇sut(x)
∣∣2 }∣∣∣

t=t(x,w(x))
dx−

∫
Ω

F (w(x)) dx.

Here, the fractional gradient is defined as

∇sw(x) = c̃n,s

∫
Rn

w(x)− w(y)

|x− y|n+s

x− y
|x− y|

dy.

This last candidate would be motivated by the identity∫
Rn
∇sv(x) · ∇sw(x) dx =

cn,s
2

∫∫
Rn×Rn

(v(x)− v(y))(w(x)− w(y))

|x− y|n+2s dx dy.

Nevertheless, a similar equality does not hold when restricting to a domain Ω, i.e.,∫
Ω

∇sv(x) · ∇sw(x) dx 6= cn,s
2

∫∫
Q(Ω)

(v(x)− v(y))(w(x)− w(y))

|x− y|n+2s dx dy.

Hence, F3
s,F does not satisfy property (C1) and thus it is not a calibration for Es,F .
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Appendix I

Minimality via a comparison
principle

Here in this appendix, we explain how to prove minimality for a function embedded in a
field of extremals via a strong comparison principle. The proof will require an existence
and regularity theorem for minimizers.

As in Section 5.2, we let GN(x, y, a, b) be a nonlocal Lagrangian giving the energy
functional

EN(w) =
1

2

∫∫
Q(Ω)

GN(x, y, w(x), w(y)) dx dy.

For the sake of clarity, we assume that GN is pairwise symmetric, that is,

GN(y, x, b, a) = GN(x, y, a, b) for all (x, y) ∈ Q(Ω) and a, b ∈ R,

which can always be done by the symmetry of the domain Q(Ω) = (Rn ×Rn) \ (Ωc ×Ωc),
see (5.2.1). The Euler-Lagrange operator associated to EN is given in terms of the integral

LN(w)(x) =

∫
Rn
∂aGN(x, y, w(x), w(y)) dy,

see (5.2.3).
A sufficient condition for the operator LN to satisfy a strong comparison principle

is the strict ellipticity condition ∂2
abGN < 0. Indeed, given two regular functions u,

v : Rn → R, if u touches v from below at some point x0, then the monotonicity of
∂aGN leads to the inequality LN(u)(x0) ≥ LN(v)(x0). To see this, one must simply in-
tegrate ∂aGN(x, y, u(x0), u(y)) ≥ ∂aGN(x, y, u(x0), v(y)) with respect to y and use that
u(x0) = v(x0). Moreover, when u 6= v we have the strict inequality LN(u)(x0) > LN(v)(x0).

Whenever a result on the existence of minimizers for EN is available, the comparison
principle above can be used to show the minimality of solutions in a field of extremals.
This method has been known for a long time for the fractional Laplacian. It does not need
the construction of a calibration, but again requires an existence result which in general
will not be available for nonlocal energy functionals.

To see this, let {ut}t∈I be a field of extremals in Ω and suppose, for the sake of contra-
diction, that ut0 with t0 ∈ I is not a minimizer. Let v be a minimizer of EN in the set of
functions with graph v ⊂ G = {(x, λ) ∈ Rn × R : λ = ut(x) for some t ∈ I} satisfying the
exterior condition v = ut0 in Ωc. In particular, v 6= ut0 and by the monotonicity with respect
to the leaf-parameter, there is a first leaf ut1 touching v from (say) above at an interior point
x0 ∈ Ω. The strong comparison principle now gives 0 = LN(v)(x0) > LN(ut1)(x0) = 0,
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which is a contradiction, and thus ut0 ≡ v. Note that this argument gives the uniqueness
of the minimizer (and even of the extremal) with the given exterior condition. It is also
clear that the same argument works for fields made of super and subsolutions, that is,
fields such that LN(ut) ≥ 0 for t ≥ t0 and LN(ut) ≤ 0 for t ≤ t0 in Ω.
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Appendix J

The calibration for the nonlocal total
variation

In this appendix, we relate our functional setting to the geometric calibrations for the
nonlocal perimeter appearing in the works of Cabré [18] and Pagliari [80]. This is achieved
through the nonlocal total variation, which amounts to the integral of the nonlocal perime-
ters of the levels sets of a function.

Let us recall that, given an even kernel K : Rn \ {0} → [0,+∞), the K-nonlocal total
variation of a function w : Rn → R is defined by

ENTV(w) :=
1

2

∫∫
Q(Ω)

|w(x)− w(y)|K(x− y) dx dy,

where Ω ⊂ Rn is a bounded domain. In particular, it is an energy functional of the
form (5.1.6) with Lagrangian

GN(x, y, a, b) = |a− b|K(x− y),

which is elliptic and hence covered by our extremal field theory.
There is a strong connection between the nonlocal total variation and nonlocal minimal

surfaces. Given a sufficiently regular set E ⊂ Rn, its K-nonlocal perimeter is

PN(E) :=
1

2

∫∫
Q(Ω)

|1E(x)− 1E(y)|K(x− y) dx dy,

and E is called a K-nonlocal minimal surface if the first variation of PN at E vanishes.
Notice that PN(E) = ENTV(1E). It is well-known that the sublevel sets of minimizers
of ENTV are K-nonlocal minimal surfaces. Moreover, one can recover the nonlocal total
variation ENTV of any function w in terms of the nonlocal perimeter PN of its sublevel sets.
Namely, we have the following nonlocal coarea formula

ENTV(w) =

∫
R
PN({w < λ}) dλ. (J.1)

In [80], Pagliari studied minimality properties of the nonlocal total variation ENTV

when acting on functions taking values in the interval [0, 1]. He showed that characteristic
functions of halfspaces minimize ENTV among those functions by constructing a calibration.
On the other hand, Cabré [18] gave a calibration (recalled in (J.2) below) for the K-
nonlocal perimeter PN and an arbitrary set E whenever it is embedded in a family of
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nonlocal minimal surfaces. Thus, the author extended the classical extremal field theory
to nonlocal minimal surfaces. Our thesis is in the spirit of this second result but applied
to the nonlocal total variation considered in [80]. In particular, Theorem 5.1.3 provides a
calibration for the nonlocal total variation ENTV and an arbitrary function whenever it is
embedded in a field of extremals.

Let us recall the calibration for the perimeter PN obtained in [18]. Given a smooth
function φ : Rn → R, for each t ∈ R, we consider the superlevel sets Et = {φ(x) > t}. In
[18] (see also [23, Section 2]), under the assumption that Et are nonlocal minimal surfaces,
it was shown that the functional

CPN
(F ) =

1

2

∫∫
Q(Ω)

sign (φ(x)− φ(y)) (1F (x)− 1F (y))K(x− y) dx dy (J.2)

is a calibration for PN and each Et0 , t0 ∈ I.

Finally, we show that the analogue of the nonlocal coarea formula (J.1) holds for the
calibration functional. Namely, the calibration for the nonlocal total variation constructed
in the present paper can be written in terms of the calibration for the nonlocal perimeter
of each sublevel set. We point out that all identities in Proposition J.1 continue to hold if
{ut}t∈I is simply a field in Rn, that is, if the ut are not necessarily extremals of ENTV.

Proposition J.1. Let {ut}t∈I be a field of extremals for ENTV. Then, the associated cali-
bration functional CNTV given by Theorem 5.1.3 can be written as

CNTV(w) =
1

2

∫∫
Q(Ω)

∫ w(x)

w(y)

sign
(
ut(x,λ)(x)− ut(x,λ)(y)

)
dλ K(x− y) dx dy.

Moreover, the functional CNTV can also be expressed as

CNTV(w) =

∫
R
CPN,λ({w < λ}) dλ,

where CPN,λ is the calibration for the K-nonlocal perimeter PN in (J.2) constructed via the
foliation given by the sublevel sets {ut < λ}t∈I .

Remark J.2. Before we succeeded in constructing a calibration for general functionals
(and even the quadratic one in Chapter 4), we were able to build one for the nonlocal
total variation ENTV. For this, we considered the second identity in Proposition J.1 as
our definition of the calibration. This idea was motivated by the coarea formula (J.1). It
is quite remarkable that our general construction in Theorem 5.1.3 (found by completely
different means) recovers this natural calibration.

Notice that by the properties of the field {ut}t∈I , for each λ ∈ R, the level sets {ut =
λ}t∈I give a foliation of Rn. Moreover, since each ut is an extremal of the nonlocal total
variation, the sublevel sets

Et
λ := {x ∈ Rn : ut(x) < λ}

are K-nonlocal minimal surfaces. By monotonicity, we have ut(x) < λ = ut(x,λ)(x) if and
only if t < t(x, λ), and hence Et

λ = {φλ > t} with φλ(x) := t(x, λ), consistently with the
notation for CPN

in (J.2).
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Proof of Proposition J.1. Let t0 ∈ I. First, letting GN(x, y, a, b) = |a − b|K(x − y) in
Theorem 5.1.3, the calibration functional associated to CNTV is

CNTV(w) =

∫∫
Q(Ω)

dx dy

∫ w(x)

ut0 (x)

dλ sign
(
ut(x,λ)(x)− ut(x,λ)(y)

)
K(x− y) + ENTV(ut0). (J.3)

It is easy to check that the sign term in (J.3) can be written as

sign
(
ut(x,λ)(x)− ut(x,λ)(y)

)
= sign (t(y, λ)− t(x, λ))

for all x, y ∈ Rn and λ ∈ R. Symmetrizing in the variables x and y, and using that∫ w(x)

ut0 (x)
· dλ−

∫ w(y)

ut0 (y)
· dλ =

∫ w(x)

w(y)
· dλ−

∫ ut0 (x)

ut0 (y)
· dλ, we have∫∫

Q(Ω)

dx dy

∫ w(x)

ut0 (x)

dλ sign (t(y, λ)− t(x, λ)) K(x− y)

=
1

2

∫∫
Q(Ω)

dx dy

∫ w(x)

w(y)

dλ sign (t(y, λ)− t(x, λ)) K(x− y)

− 1

2

∫∫
Q(Ω)

dx dy

∫ ut0 (x)

ut0 (y)

dλ sign (t(y, λ)− t(x, λ)) K(x− y).

(J.4)

On the other hand, by the nonlocal coarea formula (J.1) and the simple identity

|1{ut0<λ}(x)− 1{ut0<λ}(y)| = sign (t(x, λ)− t(y, λ))
(
1{ut0<λ}(x)− 1{ut0<λ}(y)

)
,

it is not hard to show that

ENTV(ut0) =
1

2

∫∫
Q(Ω)

dx dy

∫
R

dλ |1{ut0<λ}(x)− 1{ut0<λ}(y)|K(x− y)

=
1

2

∫∫
Q(Ω)

dx dy

∫ ut0 (x)

ut0 (y)

dλ sign (t(y, λ)− t(x, λ))K(x− y).

(J.5)

Combining (J.4) and (J.5), from (J.3) we deduce

CNTV(w) =
1

2

∫∫
Q(Ω)

dx dy

∫ w(x)

w(y)

dλ sign (t(y, λ)− t(x, λ)) K(x− y)

=
1

2

∫∫
Q(Ω)

dx dy

∫ w(x)

w(y)

dλ sign
(
ut(x,λ)(x)− ut(x,λ)(y)

)
K(x− y),

which was the first claim. Moreover, this expression can also be written as

CNTV(w) =
1

2

∫∫
Q(Ω)

dx dy

∫
R

dλ sign (t(x, λ)− t(y, λ)) (1{w<λ}(x)− 1{w<λ}(y))K(x− y).

Changing the order of integration, to finish the proof it remains to show that

CPN,λ({w < λ}) =
1

2

∫∫
Q(Ω)

sign (t(x, λ)− t(y, λ)) (1{w<λ}(x)− 1{w<λ}(y))K(x− y) dx dy,

but this is precisely the calibration CPN
in (J.2) with φ(x) = φλ(x) = t(x, λ), which yields

the claim.
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[16] X. Cabré, Regularity of minimizers of semilinear elliptic problems up to dimension 4, Comm. Pure
Appl. Math. 63 (2010), 1362–1380.

[17] , A new proof of the boundedness results for stable solutions to semilinear elliptic equations,
Discrete Contin. Dyn. Syst. 39 (2019), 7249–7264.

[18] , Calibrations and null-Lagrangians for nonlocal perimeters and an application to the viscosity
theory, Ann. Mat. Pura Appl. (4) 199 (2020), 1979–1995.

[19] , Estimates controlling a function by only its radial derivative and applications to stable solu-
tions of elliptic equations, Preprint arXiv 2211.13033 (2022).

195
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[28] X. Cabré and M. Sanchón, Geometric-type Sobolev inequalities and applications to the regularity of
minimizers, J. Funct. Anal. 264 (2013), 303–325.
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[66] J. Korvenpää, T. Kuusi, and E. Lindgren, Equivalence of solutions to fractional p-Laplace type equa-
tions, J. Math. Pures Appl. (9) 132 (2019), 1–26.

[67] S. Lang, Real and functional analysis, 3rd ed., Graduate Texts in Mathematics, Springer-Verlag, New
York, 1993.

197



[68] E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation,
Studies in Appl. Math. 57 (1976/77), 93–105.

[69] E. H. Lieb and M. Loss, Analysis, Second, Graduate Studies in Mathematics, vol. 14, American
Mathematical Society, Providence, RI, 2001.

[70] P.-L. Lions, Minimization problems in L1(R3), J. Functional Analysis 41 (1981), 236–275.

[71] Z. Liu, Stability inequalities for Lawson cones, Asian J. Math. 23 (2019), no. 6, 1001–1012. MR4136487

[72] A. Maione, D. Mugnai, and E. Vecchi, Variational methods for nonpositive mixed local-nonlocal oper-
ators, Preprint arXiv 2207.14008 (2022).

[73] Y. Martel, Uniqueness of weak extremal solutions of nonlinear elliptic problems, Houston J. Math. 23
(1997), 161–168.

[74] M. Medina and P. Ochoa, On viscosity and weak solutions for non-homogeneous p-Laplace equations,
Adv. Nonlinear Anal. 8 (2019), 468–481.

[75] A. Mellet and J. Vovelle, Existence and regularity of extremal solutions for a mean-curvature equation,
J. Differential Equations 249 (2010), 37–75.

[76] J. H. Michael and L. M. Simon, Sobolev and mean-value inequalities on generalized submanifolds of
Rn, Comm. Pure Appl. Math. 26 (1973), 361–379.

[77] F. Morgan, Calibrations and new singularities in area-minimizing surfaces: a survey, Variational meth-
ods (Paris, 1988), 1990, pp. 329–342.

[78] G. Nedev, Regularity of the extremal solution of semilinear elliptic equations, C. R. Acad. Sci. Paris
Sér. I Math. 330 (2000), 997–1002.

[79] , Extremal solutions of semilinear elliptic equations (2001). Unpublished preprint.

[80] V. Pagliari, Halfspaces minimise nonlocal perimeter: a proof via calibrations, Ann. Mat. Pura Appl.
(4) 199 (2020), 1685–1696.

[81] F. Peng, Y. R. Zhang, and Y. Zhou, Optimal regularity and Liouville property for stable solutions to
semilinear elliptic equations in Rn with n ≥ 10, Preprint arXiv 2105.02535 (2021).
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