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Abstract

In many modern signal processing applications, traditional machine learning and
pattern recognition methods heavily rely on the having a sufficiently large amount
of data samples to correctly estimate the underlying structures within complex
signals. The main idea is to understand the inherent structural information and
relationships embedded within the raw data, thereby enabling a wide variety of
inference tasks. Nevertheless, the definition of what constitutes a sufficiently large
dataset remains subjective and it is often problem-dependent. In this context, tra-
ditional learning approaches often fail to learn meaningful structures in the cases
where the number of features closely matches (or even exceeds) the number of
observations. These scenarios emphasize the need for tailored strategies that ef-
fectively extract meaningful structured information from these high-dimensional
settings. In this thesis we address fundamental challenges posed by applying tra-
ditional machine learning techniques in large dimensional settings.

Particularly, this thesis explores the comparison and clustering of symmetric
positive definite matrices, such as covariance matrices, seen as objects in a Rie-
mannian manifold. Initially, we investigate the asymptotic behavior of distances
between sample covariance matrices by establishing a central limit theorem (CLT)
that allows us to describe the asymptotic statistical law of these distances. We
provide a general result for the class of distances that can be expressed as sums
of traces of functions applied separately to each covariance matrix. This class in-
cludes conventional metrics like the Euclidean distance and Jeffreys' divergence,
as well as more advanced distances found in Riemannian geometry, such as the
log-Euclidean metric. Subsequently, we extend these findings to address the chal-
lenge of consistently estimating the distance between covariance matrices directly
from the data. We complement this with a new statistical analysis of the asymp-
totic behavior of this category of distance estimators. Finally, we showcase the
practical implications of these results by demonstrating how unsupervised learn-
ing algorithms can leverage them, with specific applications in wireless commu-
nications. In doing so, this thesis contributes with theoretical insights into unsu-
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pervised learning mechanisms, with a practical orientation toward wireless com-
munication systems. The overarching aim is to facilitate the integration and inter-
pretability of unsupervised learning solutions in forthcoming wireless networks
and broader signal processing challenges.



Resumen

En varias aplicaciones modernas de procesado de señales, los métodos tradicionales
de aprendizaje automático y reconocimiento de patrones dependen en gran me-
dida de la presencia de una cantidad de muestras de datos suficientemente grande
para estimar correctamente las estructuras subyacentes en señales complejas. La
idea principal es adquirir la información estructural inherente y las relaciones
intrı́nsecas dentro de los datos brutos, lo que permite una amplia variedad de tar-
eas de inferencia. Sin embargo, la definición de lo que constituye un conjunto de
datos suficientemente grande sigue siendo subjetiva y a su vez depende del prob-
lema. En este contexto, los enfoques de aprendizaje tradicionales a menudo fallan
al aprender estructuras significativas, especialmente en los casos en los que la di-
mensı́on de los dados es muy similar (o incluso superior) al número de observa-
ciones. Estos escenarios enfatizan la necesidad de diseñar nuevas estrategias que
permitan extraer de forma eficaz información estructurada y significativa desde
estos contextos de alta dimensionalidad. En esta tesis abordamos los desafı́os fun-
damentales que plantean la aplicación de las técnicas tradicionales de aprendizaje
automático en entornos de grandes dimensiones.

En concreto, esta tesis explora la comparación y el agrupamiento de matrices
simétricas definidas positivas, como las matrices de covarianza, vistas como obje-
tos en una variedad de Riemann. Inicialmente, investigamos el comportamiento
asintótico de las distancias entre matrices de covarianza muestral estableciendo
un teorema central del lı́mite que nos permite describir la distribución asintótica
de estas distancias. En concreto, presentamos un resultado general para la fa-
milia de distancias que pueden expresarse como sumas de trazas de funciones
aplicadas por separado a cada matriz de covarianza. Esta familia incluye métricas
convencionales como la distancia euclidiana y la divergencia de Jeffreys, ası́ como
distancias más avanzadas basadas en la geometrı́a riemanniana, como la métrica
log-euclidiana. Posteriormente, ampliamos estos hallazgos para abordar el reto de
estimar coherentemente la distancia entre matrices de covarianza directamente a
partir de los datos asociados a ellas. Complementamos este estudio con un nuevo
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análisis estadı́stico del comportamiento asintótico de esta categorı́a de estimadores
de distancia. Finalmente, mostramos las implicaciones prácticas de estos resulta-
dos demostrando cómo algoritmos de aprendizaje no supervisado pueden hacer
uso de esas métricas y su respectivas distribuciones asintóticas, con aplicaciones
especı́ficas en la comunicación inalámbrica. De este modo, esta tesis aporta per-
spectivas teóricas sobre los mecanismos de aprendizaje no supervisado, con una
orientación práctica hacia los sistemas de comunicación inalámbrica. El objetivo
principal es facilitar la integración y la interpretabilidad de las soluciones de apren-
dizaje no supervisado en las redes inalámbricas de próxima generación, ası́ como
en desafı́os más amplios en el procesado de señales.



Resum

En moltes aplicacions modernes de processament de senyals, els mètodes tradi-
cionals d’aprenentatge automàtic i de reconeixement de patrons depenen de la
disponibilitat d’una quantitat de mostres de dades suficientment gran per a esti-
mar correctament les estructures subjacents en senyals complexes. La idea princi-
pal és entendre la informació estructural inherent i les relacions intrı́nseques a les
dades en brut, permetent aixı́ una gran varietat de tasques d’inferència. No ob-
stant això, la definició del que constitueix un conjunt de dades suficientment gran
segueix sent subjectiva i sovint depèn del problema. En aquest context, els enfo-
caments d’aprenentatge tradicionals sovint no aconsegueixen aprendre estructures
significatives en els casos en què el número de caracterı́stiques o dimensionaliat de
les dades coincideix amb (o fins i tot supera) el nombre d’observacions. Aquests
escenaris emfatitzen la necessitat d’estratègies personalitzades que extreguin de
manera efectiva informació estructurada significativa d’aquests entorns d’alta di-
mensió. En aquesta tesi abordem els reptes fonamentals que planteja l’aplicació de
tècniques tradicionals d’aprenentatge automàtic en entorns de grans dimensions.

En concret, aquest treball explora la comparació i l’agrupament de matrius
simètriques positives definides, com les matrius de covariança, vistes com objectes
en una varietat de Riemann. Inicialment, investiguem el comportament asimptòtic
de distàncies entre matrius de covariança mostrals, establint un teorema central del
lı́mit que ens permet descriure la distribució asimptòtica d’aquestes distàncies. En
concret, presentem un resultat general per a la famı́lia de distàncies que poden
expressar-se com a suma de traces de funcions aplicades per separat a cada matriu
de covariança. Aquesta famı́lia inclou mètriques convencionals com la distància
euclidiana i la divergència de Jeffrey, aixı́ com distàncies més avançades basades
en la geometria riemanniana, com la mètrica log-euclidiana. Posteriorment, am-
pliem l’estudi per abordar el repte d’estimar coherentment la distància entre ma-
trius de covariança directament a partir de les dades. Complementem això amb ua
anàlisi estadı́stica del comportament asimptòtic d’aquesta categoria d’estimadors
de distància. Finalment, mostrem les implicacions pràctiques d’aquests resultats
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provant com algoritmes d’aprenentatge no supervisat poden fer ús d’aquestes
mètriques i les seves respectives distribucions asintòtiques, amb aplicacions es-
pecı́fiques en comunicacions inalàmbriques. D’aquesta manera, aquesta tesi aporta
perspectives teòriques sobre mecanismes d’aprenentatge no supervisat, amb una
orientació pràctica cap a sistemes de comunicació inalàmbrica. L’objectiu princi-
pal és facilitar la integració i la interpretació de les solucions d’aprenentatge no
supervisades a les xarxes inalàmbriques de la propera generació, aixı́ com a de-
safiaments més amplis en el processament de senyals.
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Notations

In general, uppercase boldface letters (A) denote matrices, lowercase boldface let-
ters (a) denote (column) vectors and italics (a) denote scalars and generic non-
commutative random variables. Below we provide a list of symbols and notations
used throughout this thesis. The specific usage of a symbol might slightly vary
depending on the context.

Matrix

AT,AH Transpose and Hermitian (i.e., complex conjugate transpose) of
a matrix A, respectively.

tr[A] Trace of a matrix A.

det[A], pdet[A] Determinant and pseudo determinant (i.e., product of non-zero
eigenvalues) of a matrix A, respectively.

∥A∥, ∥A∥F Spectral and Frobenius norm of a matrix A, i.e.,
√
λmax(AHA)

and
√
tr[AAH], respectively.

Rk True covariance matrix.

R̂k Sample covariance matrix obtained from Nk ∈ N+ samples.

IM Identity matrix of size M ×M .

Pk Projection matrix defined as A(AHA)−1AH for a full column-
rank matrix A of size M ×Nk.

[A]ij The entry in row i and column j of a matrix A (row and column
indices begin at 1).

λ(A), λmax(A) Eigenvalues and largest eigenvalue of matrix A.
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NOTATIONS xviii

BM ≍ CM For two random matrices BM and CM of dimension M×M , we
write BM ≍ CM if M−1tr [AM (BM −CM)] → 0 almost surely
as M → ∞, where AM is any sequence of deterministic M ×M

matrices with bounded norm.

Sets and Bounds

N,R,C The set of all natural, real and complex numbers, respectively.

NM ,RM ,CM The set of M -dimensional vectors with entries in N,R and C,
respectively.

Re{·}, Im{·} Real and imaginary part, respectively.

C−
0 Negatively oriented simple closed contour enclosing zero and

no other singularities.

C− Negatively oriented simple closed contour not crossing zero.

supp(f) Support of a function f , i.e., {x ∈ Ω : f(x) ̸= 0} where here Ω is
the function domain.

sup Supremum (least upper bound). If the set is finite, it coincides
with the maximum (max).

inf Infimum (greatest lower bound). If the set is finite, it coincides
with the minimum (min).

Statistical Terms

N (µ, σ) Gaussian distribution centered at µ and with variance σ2.

Ê[·] Empirical expectation which is equivalent to the empirical av-
eraging of elements.

E[·] Mathematical expectation.

Φ(x) CDF of a standard Gaussian distribution evaluated at x.

Distance Related Symbols

dM Distance between true covariance matrices of size M ×M .



NOTATIONS xix

d̂M Plug in distances between sample covariance matrices of size
M ×M .

d̃M Consistent estimator of distances between sample covariance
matrices of size M ×M .

d̄M , mM , σM Asymptotic equivalent, (second order) mean and variance of
plug in distances beteween covariance matrices of size M ×M ,
respectively.

m̃M , σ̃M (Second order) mean and variance of consistent estimator of
distances between covariance matrices of size M ×M , respec-
tively.

Other Symbols(
n
k

)
Binomial coefficient (i.e., n(n−1)···(n−k+1)

k(k−1)···1 ) indexed by the pair of
parameters n ≥ k ≥ 0.

∂f
∂x

Partial first order derivative of a function f with respect to the
variable x.

d
dx
f(x), f ′(x) First order derivative of a function f .

limx→α f(x) Limit for x approaching α.

I{·} Indicator function, equal to 1 if event {·} is true and 0 otherwise.

i Depending on the context used as imaginary unit i =
√
−1 or

ith element.



Chapter 1

Introduction

Several traditional machine learning and pattern recognition methods rely on hav-
ing sufficiently large amount of data samples to describe its intrinsic structure.
The idea is that, by learning the inherent structural information and relationships
within the original data, one can obtain sufficient knowledge to later perform dif-
ferent inference tasks. It is often the case that observations with latent features
reside in some topological space. This implies the existence of underlying patterns
within the data which can be potentially explored through learning mechanisms.
For example, in face recognition, latent features are frequently employed to learn
high-level facial descriptors that are used to compare and (possibly) match differ-
ent faces or facial expressions. Similarly, in natural language problems, semantic
and sentiment analysis tasks often leverage the use of latent features of the data to
comprehend context and associate different parts of the text.

In general, when a sufficiently large amount of data is available, learning algo-
rithms can approximate the topological space of the data, which is often beneficial
for generalization purposes. However, the notion of what constitutes sufficiently
large data is subjective and varies depending on the specific problem at hand and
its dimensionality. For instance, in a more analytical view of the problem, classi-
cal limit theorems often assume that the data has fixed dimensionality and that by
collecting more data samples one can better approximate their inherent structure.
In this scenario, one observation is typically defined as a collection of samples,
e.g., several readings from one sensor. Nonetheless, there exist several cases [1, 2]
where the number of observations is large and comparable to the number of fea-
tures. Hence, during the last decades, there has been growing interest on how
to consistently learn from these large dimensional settings. Initial efforts have been
made on trying to describe high dimensional data based only on their most impor-
tant features via dimensionality reduction [3,4]. Indeed, such solutions are valid in

1
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applications where the task is solvable in a considerably lower-dimensional space
than the one where the original data lies [5]. However, by limiting the observed
feature space, they fail to solve the general task of learning in large dimensional
settings.

More related to this thesis, unsupervised learning aims to unveil patterns from
unlabeled data. Particularly, cluster analysis aims to identify groups (or clusters) of
observations that exhibit similar features and structures. This process often reveals
hidden structures and relationships present within fractions of the data that may
not be evident when considering the individual observations separately. Generally,
by identifying distinct clusters in the data, one can make more informed decisions
and improve the overall understanding of the underlying systems generating the
data [6, 7]. Consequently, this makes cluster analysis particularly valuable in sce-
narios where obtaining labeled data proves challenging or impractical [8].

In this dissertation, our primary focus is on the analysis and synthesis of learn-
ing solutions from high-dimensional observations. Moreover, this thesis is strongly
inspired by the field of wireless communications, particularly in the clustering of
wireless devices in massive multiple-input multiple-output (MIMO) communica-
tions systems for a more efficient use of the spectrum resources. Therefore, in the
following sections, we introduce several concepts related to clustering methods,
with specific examples relevant to the field of wireless communications. Addi-
tionally, by the end of the chapter, we also present a more generic discussion of
the problem, which involves the comparison (and clustering) of symmetric posi-
tive definite (SPD) matrices (e.g., covariance matrices) seen as objects lying on a
Riemannian manifold.

1.1 Clustering of High Dimensional Data

Clustering analysis usually rely on extracting meaningful and structured features
of the data which are then fed into conventional clustering methods (see [4, 9, 10]
for surveys applied to computer vision and data mining). One common approach
is to compare the intrinsic features of different observations by directly studying
the topological spaces to which they belong. A generic view of the problem con-
siders the case where data belongs to several non-linear manifolds [11,12]. In such
scenarios, kernel methods are widely applied to account for the non-linearity in the
data [13–15]. The main idea behind kernel methods is to map the input data (or
features) from their original input space to a higher-dimensional space where the
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relationship between the data is potentially easier to learn. However, the choice
of the kernel function directly influences the results, and selecting the optimal ker-
nel function remains a challenge in many applications [16, 17]. To address these
challenges, data-driven solutions, such as deep neural networks (DNN) [12], are
commonly employed to automatically learn the non-linearities and kernel func-
tions. Nevertheless, DNN solutions often face limitations in terms of interpretabil-
ity while demanding large amount of data and potentially expensive training pro-
cedures to properly learn these structures.

A classical clustering method, which will be extensively used during the exam-
ples presented in this thesis, is agglomerative hierarchical clustering. By consec-
utively combining different observations into groups, this unsupervised learning
method provides an easy way to assess and interpret the relationship between
these observations (see Figure 1.1a). In this bottom-up approach, initially, every
observation forms a singleton, i.e., a cluster of one observation. At each merging
step, the pair with the highest similarity (or, equivalently, the lowest distance) is
merged to form a new cluster. The algorithm finishes when a target number of
clusters is reached or when the highest similarity falls below a pre-defined thresh-
old.

In the lower levels of the hierarchy, the comparison between singletons (indi-
vidual elements) is usually done using some pre-defined metric. As elements start
to be grouped together, the similarity between two different groups is often de-
fined using some linkage method [18, 19], based on the pairwise similarity of the
elements that form the two clusters. This is a common approach in agglomerative
solutions as it allows for quick comparison of the non-equidimensional groups
resulting from the sequential merging of elements into distinct groups. Typical
choices include the average linkage (Figure 1.1b), which merges the two groups
with the smallest average pairwise distance between elements within the com-
pared clusters; and the Ward's linkage (Figure 1.1c), which merges the two groups
that minimize the total within-cluster variance of the new group.

Another common solution, which requires some extra computation, is to com-
pute and compare the centroids of the different groups (Figure 1.1d). The centroid
of a group containing several elements is often defined either as the average among
the observations in the cluster (e.g., the mean); or as the observation with small-
est cumulative distance to the other observations of the group (e.g., the medoid).
These ideas are applicable regardless of the clustering algorithm or the chosen
comparison metric. For instance, the authors in [20] make a comparison among
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Figure 1.1: Visualization of a typical hierarchical clustering solution of three classes
of objects (triangle, circle and square) and several linkage methods.

different metrics as well as between K-means and hierarchical clustering for the
grouping and scheduling of user in frequency division duplexing (FDD) systems.
As a result, they show that using hierarchical clustering outperforms K-means and
K-medoids in both complexity and rate obtained after scheduling.

Naturally, there exists a vast variety of supervised and unsupervised learning
methods which account for the different challenges present in high dimensional
data. Several methods try to improve the learning process itself while others focus
on enhancing the performance of such methods for a specific application. The
objectives of this thesis are more aligned with the first case, as it proposes solutions
applicable to general clustering methods. In the following subsections we focus on
two concepts which are widely used throughout this thesis, namely, subspace and
covariance analysis, while studying their applications into clustering methods. We
further motivate the use of such analysis with examples in the field of wireless
communications.

1.1.1 Subspace Clustering in Wireless Communications

In high-dimensional data analysis, a common approach to describe the underlying
intrinsic features is through topological structures like subspaces. It is often the



1.1. CLUSTERING OF HIGH DIMENSIONAL DATA 5

case that the relevant features reside within certain subspaces which indicates the
existence of lower-dimensional representations that capture the most descriptive
characteristics of the observations. As mentioned above, this thesis is strongly
motivated by wireless communications systems, hence we dedicate this section to
exemplify how wireless communications systems can benefit from such subspace
clustering schemes.

Let us start by noting that, in recent wireless communications systems, it is of-
ten desired to achieve simultaneous communications between one or more trans-
mitters and multiple receivers. In these multi-user scenarios, multi-antenna radio
access technologies are widely employed as means to enhance wireless communi-
cations spectral efficiency and connectivity. Particularly, space-division multiple
access (SDMA) has traditionally been used to enhance spectral efficiency in the
uplink. In the downlink, dirty-paper coding (DPC) achieves the channel capacity
region by encoding the data at the transmitter side in order to pre-cancel interfer-
ence at the receiver side. Since, in practice, DPC is difficult to implement, there
has been intensive research on suboptimal solutions which combine superposition
coding (SC) and spatial processing. For instance, non-orthogonal multiple access
(NOMA) [21] has recently become a key mechanism to significantly enhance com-
munication rates by allowing multiple users to superimpose their signals in the
time and frequency domain. The resulting interference is then processed at the re-
ceiver side using successive interference cancellation (SIC). Similarly, joint spatial
division multiplexing (JSDM) [22] and hierarchical rate splitting [23] use precod-
ing to separate transmissions into clusters of users, and then apply the correspond-
ing downlink processing to the resulting cluster-specific multiple-input multiple-
output (MIMO) channels.

Obtaining the optimum user clustering for a particular transmission scheme
is in general a very difficult problem that can only be solved by comparing all
possible partitions of the different channels into groups. In order to avoid the ex-
ponentially high computational complexity of this process, when there exist suffi-
cient degrees of freedom and a very strong line-of-sight signal, it is often assumed
that groups of users with a significantly different DoA can be spatially separated,
whereas those that are close together should have their interference processed
using SIC. However, in the more realistic wireless scenario in which multipath
is present, it is more reasonable to measure users proximity based on how well
aligned the subspaces spanned by their channel matrices are. In that sense, subop-
timal clustering schemes have been proposed in the literature that try to group the
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multi-antenna wireless channels according to the similarity of the subspace they
span (see for instance [23, 24]). The main idea is to use unsupervised clustering
methods based on some similarity measure between different channel subspaces.

Inspired by the multiple-input and multiple-output (MIMO) channel cluster-
ing application in wireless communications, in [25] we focus on the agglomerative
clustering of complex observations that belong to many distinct non-linear com-
plex manifolds. In the wireless communications context, this translates into having
receivers with different number of antennas scattered on the environment. Specif-
ically, we consider the case in which the subspaces that describe each observation
lay within non-equidimensional Grassmannian manifolds [26, 27]. The idea is to
optimize the use of the available spatial degrees of freedom by identifying groups
of users that are seen from similar angles (i.e. span a similar subspace) as a single
spatial entity. It is typically easier to spatially multiplex different signals among
well separated groups rather than attempt individual user multiplexing. Once
these groups have been spatially multiplexed, one can process the signals within
each group by either orthogonal (FDMA, TDMA) or non-orthogonal (NOMA, Rate
Splitting) techniques [23, 24]. Using a similar approach as above, in [28], we also
show that depending on the scenario, there exist several clustering solutions that
might lead to high communication rates. It is therefore important that MIMO wire-
less channels are clustered in a structured manner and according to their proximity
in terms of the subspace they span.

1.1.2 Clustering of Covariance Matrices

A large number of applications in machine learning and signal processing rely on
the analysis of multivariate data, where each observation consists of readings from
multiple entities or sensors. In such cases, patterns need to be extracted based
on the dependence among these multiple readings, rather than just between the
unique observations themselves. In other words, the relevant information is con-
tained in the covariance pattern of multivariate observations, rather than the actual
measurements. For instance, the covariance of a time series is closely related to its
spectral density. Similarly, the covariance of signals received by a number of spa-
tially distributed antennas/sensors is directly related to the spatial distribution of
the corresponding sources [29]. In both cases, the covariance pattern holds vital
information about the underlying relationships within the data, making it relevant
for various analyses and learning procedures.
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More related to this thesis, clustering according to covariance matrices has also
recently become a common approach in multivariate and functional data analy-
sis [29–31]. The main application in this setting consists in grouping segments of
data that are represented by the same correlation structure. A prominent exam-
ple is the study of electroencephalography (EEG) signals, where obtaining labeled
data can be challenging. EEG signals are often analyzed on short-time readings
obtained using a set of sensors capable of detecting electrical signals generated by
different parts of the brain. These signals are often associated to some type of mo-
tor imagery, i.e., a mental execution of a movement which not necessarily results
in a muscle activation. Depending on the motor imagery, different signal correla-
tion structures can be obtained [32]. In this context, discovering and clustering the
different covariances (correlation structures) of these signals becomes essential in
order to detect the different patterns generated by the brain [8, 33, 34].

Similarly as in the previous section, relevant examples can also be found in
the context of multi-user MIMO communications [35, 36]. Here the objective is to
group a number of channel matrices so that channels which are seen from the same
spatial locations are grouped together. Since spatial distribution is directly related
to the inter-antenna signal covariance, one can alternatively cluster these MIMO
channels according to their receivers' covariance matrices. The main difference
lies in the fact that by directly considering the signals' covariance matrices, one
gains insights regarding the angular location of the sources (using the basis of these
matrices) as well as to the distance between the (distinct) sources and the receiver
(which can now be obtained using the spectrum of the covariance matrices).

1.2 A Family of Riemannian Distances

So far, we have primarily discussed different clustering mechanisms and their
applications in the field of wireless communications. However, a crucial design
choice of such algorithms consists in measuring the relationship (e.g., similarity
or distance) between different observations/clusters. This often depends on the
nature of the observations and their structure. For instance, as already mentioned
in the section above, in multivariate analysis, one often wishes to study the re-
lationship between the covariance matrices that represent the (multivariate) data.
That is because these second order statistics provide a concise descriptor of the
multiple features which are only detectable across several samples (e.g., over time
or frequency). By considering a more geometric approach, one can also observe
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covariance matrices as symmetric positive definite (SPD) matrices lying in a Rie-
mann manifold [37]. Consequently, common definitions based on the Euclidean
space are no longer applicable to covariance matrices. Particularly, considering
the Euclidean topology to handle SPD matrices is known to lead to inadequate
conclusions [38]. Hence, instead of considering traditional definitions from the
Euclidean space, one should consider the topological structure of the underlying
manifold. In this section, we turn our focus to the study of the distance between
covariance matrices.

In general, the concept of distance between these second order statistics have
their own importance beyond the clustering problem. For example, image set clas-
sification is largely based on discriminant analysis on the intra-set covariance ma-
trices [39]. By identifying each image set with its natural second-order statistic,
the classification problem can be formulated as discriminating points in the Riem-
mann manifold of positive semidefinite matrices. Similar approaches can be found
in diffusion tensor imaging [40] context, where the main descriptor is a vortex-
depending covariance matrix; or applied to radar/sonar signal processing [41,42],
where the spatial covariance matrix is used to capture the spatial characteristics of
the clutter. In all these settings, the conventional Euclidean metric is not appro-
priate for measuring proximity between the observed covariance matrices, which
belong to the set of positive semidefinite matrices. Hence, a number of studies
propose to rely on metrics that consider the topological structure of underlying
manifolds [37,40], e.g., Riemannian based distances [42,43] instead of the classical
Euclidean distance.

In this dissertation, by taking into account the Riemann geometry of SPD ma-
trices, we are primarily interested in studying the family of (squared) distances-
between two covariance matrices, namely R1 and R2 that can be mathematically
expressed as

dM =
L∑
l=1

1

M
tr
[
f
(l)
1 (R1) f

(l)
2 (R2)

]
(1.1)

for certain functions f (l)
1 , f

(l)
2 : CM×M → CM×M , l = 1, . . . , L. Typically, these

functions are understood to be the result of applying scalar analytic functions to
the real eigenvalues of the Hermitian matrices Rj , j ∈ {1, 2}. With some abuse of
notation, f (l)

j , l = 1, . . . , L will also denote these scalar functions.
Note that any distance that can be expressed in the form

dM =
1

M
tr
[
(f1(R1)− f2(R2))

2]
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for two matrix-valued functions f1, f2 can be seen as a particularization of the gen-
eral expression in (1.6). In particular, if these two functions are chosen so that
fj(Rj) = Rj , j ∈ {1, 2} we will recover the conventional Euclidean distance be-
tween covariance matrices, that is

dEM =
1

M
tr
[
(R1 −R2)

2] . (1.2)

Likewise, the choice fj(Rj) = log(Rj) will lead to the log-Euclidean distance [44]
between covariance matrices

dLEM =
1

M
tr
[
(logR1 − logR2)

2] , (1.3)

whereas the choice fj(Rj) = (Rj)
α for some α > 0 will lead to the power-Euclidean

distance in [45].
Similarly, after proper normalization, the symmetrized version of the Kullback-

Leibler divergence between two multivariate Gaussians (usually referred to as Jef-
freys’ divergence [46]) can be expressed by

dKL
M =

1

2M
tr
[
R1R

−1
2

]
+

1

2M
tr
[
R2R

−1
1

]
− 1 (1.4)

which also conforms to the general expression in (1.6).

Remark 1.1. Naturally, the formulations above can also be applied to sample covariance
matrices. Let us consider two sets of multidimensional observations of dimensionality M ,
which are denoted y1(n) ∈ CM×1 and y2(n) ∈ CM×1 respectively, n ∈ N. We assume
that the first sample set contains N1 observations, whereas the second one is composed of
N2 observations. We will denote by Y1 and Y2 two matrices of dimensions M × N1 and
M×N2 respectively, which contain the observations associated to each of these observation
sets as columns, that is

Yj =
[
yj(1) . . . yj(Nj)

]
for j ∈ {1, 2}. When the observations are zero mean, the covariance matrix of these ob-
servations are typically estimated using the sample covariance matrices, which are defined
as

R̂j =
1

Nj

YjY
H
j . (1.5)

Then the family of distances (1.1) becomes

d̂M =
L∑
l=1

1

M
tr
[
f
(l)
1

(
R̂1

)
f
(l)
2

(
R̂2

)]
, (1.6)

hereafter also referred as the plug-in distances.
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Interestingly enough, the above formulation allows us to relate the results to
the proximity measures between the column spaces of the observations Y1,Y2 in
the undersampled regime, i.e., N1, N2 < M (so that both Y1,Y2 are tall matrices).
In this case, it is a standard approach to consider the sum of the squared sines of
the principal angles between these subspaces as a valid distance in the Grassmann
manifold [47], namely

d̂SSM =
1

M
tr
[
(P1 −P2)

2] (1.7)

where Pi = Yi

(
YH

i Yi

)−1
YH

i is the projection matrix onto the column space1 of Yi,
i ∈ {1, 2}. Moreover, the characterization of the above quantity has an interest be-
yond the framework of this dissertation and can be used to characterize indepen-
dence tests based on canonical correlation analysis, which typically use tr [P1P2]

as the relevant statistic to determine whether the two sets of observations are sta-
tistically independent (see [48–51] for the problem formulation and the asymptotic
characterization when the observations are spatially white; results in this disserta-
tion extend this characterization to the general spatially colored case).

Table 1.1: Summary of distances considered in this dissertation.

Name Definition

Symmetrized KL divergence dKL
M = 1

2M
tr
[
R1R

−1
2

]
+ 1

2M
tr
[
R2R

−1
1

]
− 1

Euclidean distance dEM = 1
M
tr
[
(R1 −R2)

2] .
Log-Euclidean distance dLEM = 1

M
tr
[
(logR1 − logR2)

2]
Subspace Similarity d̂SSM = 1

M
tr
[
(P1 −P2)

2]
One of the problems that must be faced when applying these second order

learning approaches is the fact that covariance matrices are generally unknown,
and consequently the inherent distances must be estimated from the correspond-
ing data. Furthermore, one usually needs to deal with the situation where the
number of available samples is not much larger than the corresponding obser-
vation dimension. In order to address these issues, multiple contributions have
focused on providing good estimators when both sample size and observation di-
mension are large but comparable in magnitude. This was for instance the case
in [30], which considered an appropriate regularization of the covariance matrix in

1Notice d̂SS
M only makes sense in the undersampled regime, otherwise, one cannot possibly de-

fine the original subspaces by using this definition.
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a clustering application. More recently, there have been a number of contributions
that directly propose consistent estimators of the distance between covariances,
namely [52–55]. In these contributions, the main target were distance measure-
ments between covariances that could be expressed as functions of R−1

1 R2. Un-
fortunately, there exist important distances such as the log-Euclidean metric that
do not really fall into this category. Hence, one of the objectives of this disserta-
tion is to provide an asymptotic characterization of quantities like the ones above
(and summarized in Table 1.1) when the dimensions of the matrices M and the
corresponding sample sizes N1, N2 increase to infinity at the same rate, so that
their quotient converges to a fixed quantity, namely M/N1 → c1, M/N2 → c2 for
some 0 < c1, c2 < ∞. The main advantage of this characterization with respect to
the more conventional one (which assumes fixed M ) is the fact that here all the di-
mensions (M,N1, N2) are comparable in magnitude even in the asymptotic regime,
which makes the analysis more reliable in order to analyze the behavior of d̂M in
the finite sample size regime.

1.3 Contributions and Thesis Outline

The primary goal of this thesis is to conduct an analysis of the distance metrics
described in the previous section together with their implications in unsupervised
learning methods. Moreover, we demonstrate how these results can be directly ap-
plied to the field of signal processing, with practical examples in wireless commu-
nications. By doing so, this research contributes to a deeper understanding of high
dimensional data analysis and its real-world applications in signal processing and
wireless communications. To that end, in Chapter 2 we will see that, under stan-
dard statistical assumptions, the above (plug-in) distances d̂M estimated from the
sample covariance matrices all asymptotically behave as deterministic quantities.
Moreover, we will also prove that these distances fluctuate around these determin-
istic equivalents as Gaussian random variables, and characterize their asymptotic
(second order) mean and variance. The results of this chapter are based on the
paper:

• R. Pereira, X. Mestre and D. Gregoratti, ”On the Asymptotic Study of Dis-
tances Between Covariance Matrices,” Submitted to IEEE Transactions on
Signal Processing, 2023.
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In Chapter 3, we focus on the development of a consistent estimator, denoted
as d̃M , for these metrics which better approximate the distance between the true
covariance matrices. Building upon the previous contribution, we also provide a
comprehensive characterization of the estimator's asymptotic behavior, leading to
a Central Limit Theorem (CLT) that effectively describes this new metric. These
results are also presented in:

• R. Pereira, X. Mestre and D. Gregoratti, ”Consistent Estimation of Distances
Between Covariance Matrices,” Submitted to IEEE Transactions on Informa-
tion Theory.

• R. Pereira, X. Mestre and D. Gregoratti, ”Consistent Estimators of a New
Class of Covariance Matrix Distances in the Large Dimensional Regime,”
ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Rhodes Island, Greece, 2023, pp. 1-5,
doi: 10.1109/ICASSP49357.2023.10096831.

Moving forward to Chapter 4, we undertake a general comparison between
these two estimators, namely the traditional plug-in one and the consistent one.
The primary goal of this chapter is to illustrate how these estimators can be utilized
to assist and enhance clustering tasks. These findings are based in the publications
mentioned above, along with the results presented in this thesis. The combination
of these chapters offers valuable insights into the efficacy and applications of the
proposed estimators in addressing large-dimensional observation problems.

The remaining chapters of this thesis are dedicated to practical examples in the
field of wireless communications. Specifically, Chapter 5 extends the findings from
Chapter 2 and demonstrates how these results can be applied to offer a hierarchical
clustering solution for user equipments (UEs) in a MIMO communications system.
Furthermore, still in Chapter 5, we also present estimators of the first moments of
the plug in distances which can be directly obtained from the sample covariance
matrices. Particularly, we will use an alternative estimator of the deterministic
equivalent of the original distance (valid only for identical covariance matrices)
as a correction term which accounts for the comparison non-equidimensional sub-
spaces. This can be translated to the wireless communications domain as the com-
parison of clusters of UEs where the total number of antennas is different at each
cluster. Similarly, in Chapter 6, we carry out a similar analysis, but this time we
propose a shallow neural network based clustering technique to learn and group
different UEs according to their instantaneous noisy channel to maximize the rate
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achieved using a hierarchical rate splitting mechanism. By providing these prac-
tical examples and their applications in wireless communications, this thesis con-
tributes to the understanding and advancement of large-dimensional observation
problems in real-world contexts. These contributions were originally published in:

• R. Pereira, X. Mestre and D. Gregoratti, ”Subspace Based Hierarchical Chan-
nel Clustering in Massive MIMO,” 2021 IEEE Globecom Workshops, Madrid,
Spain, 2021, pp. 1-6, doi: 10.1109/GCWkshps52748.2021.9682075.

• R. Pereira, X. Mestre and D. Gregoratti, ”Clustering Complex Subspaces in
Large Dimensions,” ICASSP 2022 - 2022 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Singapore, Singapore,
2022, pp. 5712-5716, doi: 10.1109/ICASSP43922.2022.9747627.

• R. Pereira, A. A. Deshpande, C. J. Vaca-Rubio, X. Mestre, A. Zanella, D.
Gregoratti, E. de Carvaho and P. Popovski, ”User Clustering for Rate Split-
ting using Machine Learning,” 2022 30th European Signal Processing Con-
ference (EUSIPCO), Belgrade, Serbia, 2022, pp. 722-726, doi: 10.23919/EU-
SIPCO55093.2022.9909639.

In Chapter 7 we conclude the main body of this thesis and outline potential
future directions that can be pursued based on the findings and contributions of
this thesis. Appendices A-D detail several of the proofs developed throughout
this dissertation. Finally, Appendix E provide a concise summary of all the meth-
ods proposed in this thesis, encompassing their general and closed form solutions
alongside with corresponding assumptions and remarks on their applicability. The
purpose of this appendix is to serve as a convenient reference for readers, rather
than introducing new material.

Collaborations

The following publications are not directly related to the content of this disserta-
tion but have been conducted in collaboration with other researchers and institu-
tions during the time of this PhD.

• A. A. Deshpande, R. Pereira, A. Zanella, A. Pastore, X. Mestre and F. Chiari-
otti, ”Beam Aware Stochastic Multihop Routing for Flying Ad-hoc Networks,”
2022 IEEE International Conference on Communications Workshops (ICC
Workshops), Seoul, Korea, Republic of, 2022, pp. 1065-1070, doi: 10.1109/IC-
CWorkshops53468.2022.9814607.
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• C. J. Vaca-Rubio, R. Pereira, X. Mestre, D. Gregoratti, Z. H. Tan, E. de Car-
valho and P. Popovski, ”Floor Map Reconstruction Through Radio Sensing
and Learning by a Large Intelligent Surface,” 2022 IEEE 32nd International
Workshop on Machine Learning for Signal Processing (MLSP), Xi’an, China,
2022, pp. 1-6, doi: 10.1109/MLSP55214.2022.9943430.

• X. Mestre, R. Pereira and D. Gregoratti, ”Asymptotic Spectral Behavior of
Kernel Matrices in Complex Valued Observations,” 2021 IEEE Data Science
and Learning Workshop (DSLW), Toronto, ON, Canada, 2021, pp. 1-6, doi:
10.1109/DSLW51110.2021.9523410.



Chapter 2

Asymptotic Study of Distances
Between Sample Covariance Matrices

In this chapter, we are interested in examining the asymptotic properties of the
overall class of distances d̂M as defined in Section 1.2. To begin with, we demon-
strate that the set of functions f (l)

j (R̂j), when applied to the sample covariance
matrices R̂j , accepts a deterministic equivalent that can be obtained directly from
its definition, along with the covariance matrix Rj . Using these findings, we then
analyze the behavior of d̂M and provide specific characterizations for some par-
ticular distances of interest. Additionally, we delve deeper into the analysis by
examining the fluctuations of d̂M around its deterministic equivalent.

2.1 Preliminaries

The objective of this section is to analyze the asymptotic behavior of the distance
between sample covariance matrices d̂M in its most general form and to describe
the necessary tools for the development of this dissertation. Let us start by recall-
ing this definition, namely

d̂M =
L∑
l=1

1

M
tr
[
f
(l)
1

(
R̂1

)
f
(l)
2

(
R̂2

)]
for certain functions f (l)

1 , f
(l)
2 : CM×M → CM×M , l = 1, . . . , L. Then, throughout this

thesis, we will make the following assumptions
Assumption 1 (As1): For j ∈ {1, 2} and k = 1, . . . , Nj the observations yj(k) (see
Remark 1.1) are all independent and can be expressed as

yj(k) = R
1
2
j xj(k)

15
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where (·) 1
2 denotes the square root of a matrix, Rj is an Hermitian positive defi-

nite matrix and xj(k) is a vector of i.i.d. random entries with zero mean and unit
variance. We will consider a binary variable ς that will indicate whether the ob-
servations are real or complex valued. If ς = 1 the observations are real valued,
whereas ς = 0 indicates they are complex circularly symmetric.
Assumption 2 (As2): The different eigenvalues of Rj are denoted 0 < γ

(j)
1 < . . . <

γ
(j)

M̄j
(j ∈ {1, 2}) and have multiplicity K(j)

1 , . . . , K
(j)

M̄j
, where M̄j is the total number

of distinct eigenvalues. All these quantities may vary with M but we always have
infM γ

(j)
1 > 0 and supM γ

(j)

M̄
<∞.

Assumption 3 (As3): The quantities N1 and N2 depend on M , that is N1 = N1(M)

andN2 = N2(M). Furthermore, whenM → ∞ we have, for j ∈ {1, 2},Nj(M) → ∞
in a way that M/Nj → cj for some constant 0 < cj <∞ such that cj ̸= 1.

Assumption (As1) is quite standard, except for the fact that we introduce the
binary variable ς to discriminate between real-valued (ς = 1) or complex-valued
(ς = 0) observations. Assumption (As2) points out that the eigenvalues of the true
covariance matrices Rj , j ∈ {1, 2} may behave freely as the dimensions of the ma-
trix grow, as long as they fluctuate in a compact interval of the positive real axis
independently of M . Finally, it is worth pointing out that (As3) explicitly excludes
the case cj = 1, mainly because addressing this case requires more elaborate tech-
nical tools that are out of the scope of this thesis.

In order to analyze the behavior of d̂M under the above assumptions, we will
build upon random matrix theory tools. To begin with, let us consider the function
of complex variable ωj (z), given by one of the solutions to the polynomial equation

z = ωj (z)

1− 1

Nj

M̄j∑
m=1

K(j)
m

γ
(j)
m

γ
(j)
m − ωj (z)

 . (2.1)

More specifically, if z ∈ C+ (upper complex semiplane), ωj (z) is the only solution
of the above equation located in C+. If z ∈ C−(lower complex semiplane), ωj (z) is
the only solution in C−. Conversely, if z is real valued, ωj (z) is defined as the only
real valued solution such that

1

Nj

M̄j∑
m=1

K(j)
m

(
γ
(j)
m

γ
(j)
m − ωj (z)

)2

< 1. (2.2)

Finally, it will also be useful to denote as µ(j)
0 < . . . < µ

(j)

M̄j
the solutions to the
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equation

µ

1− 1

Nj

M̄j∑
m=1

K(j)
m

γ
(j)
m

γ
(j)
m − µ

 = 0. (2.3)

It can be easily shown [56] that µ(j)
0 < 0 when Nj < M (undersampled case) and

µ
(j)
0 = 0 when Nj > M (oversampled case).

Theorem 2.1. Let AM denote a sequence of deterministic M ×M matrices with bounded
spectral norm1. For z ∈ C+, consider the resolvents

Q̂j(z) =
(
R̂j − zIM

)−1

Qj(ω) = (Rj − ωIM)−1

for j ∈ {1, 2}. Under (As1) − (As3) we have

1

M
tr
[
AMQ̂j(z)

]
− ωj (z)

z

1

M
tr [AMQj (ωj (z))] → 0

almost surely.

The above result is the cornerstone of the development of this work2, and basi-
cally states that quantities that essentially depend on the sample covariance matrix
through the resolvent Q̂j(z) asymptotically behave as deterministic quantities. In
other words, the random resolvent Q̂j(z) is asymptotically equivalent to a deter-
ministic quantity, given by

Q̄j (z) =
ωj (z)

z
Qj (ωj (z)) . (2.4)

This result can be readily used to analyze the asymptotic behavior of d̂M in
(1.6) under some additional assumptions on the quantities f (l)

j (R̂j). Consider the
interval Sj = [θ−j , θ

+
j ], where

θ−j = inf
M

[
γ
(j)
1 ×

(
1−

√
M/Nj

)2
]
,

θ+j = sup
M

[
γ
(j)

M̄
×
(
1 +

√
M/Nj

)2
]
. (2.5)

1Throughout this thesis, when not specified, we will also denote spectral norm of a matrix,
i.e., ||A|| = sup(

√
λmax(AHA)), just by norm. Here λmax(·) represents the largest eigenvalue of a

matrix.
2Theorem 2.1 is well known in the literature and it can be easily obtained from [57].
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Observe, in particular, that the interval Sj is independent of M and that θ−j >

0 regardless of whether cj < 1 (oversampled regime) or cj > 1 (undersampled
regime). According to [58], all the positive eigenvalues of R̂j belong to Sj with
probability one for all M sufficiently large. Using this property, we will assume
that the functions f (l)

j (R̂j) accept the following representation:
Assumption 4 (As4): For j ∈ {1, 2} and l = 1, . . . , L, the quantity f (l)

j (R̂j) can be
expressed as

f
(l)
j

(
R̂j

)
=

1

2πj

∮
C−

j

f
(l)
j (z)Q̂j(z)dz (2.6)

with probability one for all large M , where C−
j is a negatively oriented simple

closed contour enclosing Sj and not crossing zero and where, with some abuse of
notation, f (l)

j (z) denotes a complex function analytic on an open set including Cj .
Observe that the above contour Cj does not depend on M and may be chosen

differently for each j ∈ {1, 2} and each l = 1, . . . , L, even if we omit this in the
notation. In particular, Cj may be chosen to enclose zero for some l and not to
enclose it for some other l. This distinction is sometimes important, for example if
we choose f (l)

j (z) = 1 when Nj < M . In this case we have (by a direct application
of the matrix inversion lemma and residue calculus)

1

2πj

∮
C−

j

Q̂j(z)dz =

{
IM Cj encloses {0}
Pj otherwise.

Remark 2.1. In order to emphasize this distinction, from now on we will use calligraphic
letters (e.g. C−

j ) when the contour encloses {0} and roman letters (e.g. C−
j ) when the

contour does not enclose {0}. The usual notation (e.g. C−
j ), which has been used so far,

will refer to either one of the two cases indistinctively.

For simplicity, assumption (As4) is restricted to the common situation in which
f
(l)
j (z) can be taken to be analytic in Sj . In this case, the quantity f

(l)
j (R̂j) can

be seen as the matrix that results from the application of f (l)
j (z) to the positive

eigenvalues of R̂j . Similarly, from (2.4) and by using Cauchy integration, we can
also express the family of functions f (l)

j (Rj) applied to the covariance matrices Rj

by

f
(l)
j (Rj) =

1

2πj

∮
C−
f
(l)
j (ωj (z))Qj (ωj (z))ω

′
j (z) dz (2.7)

where now ω′
j (z) denotes the derivative of ωj (z). These observations will become

building blocks for the following discussions. Particularly, in the next section we
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will use assumption (As4) to study the asymptotic behavior of d̂M in (1.6), and (2.7)
in Chapter 3 to build a consistent estimator of dM in (1.1) directly from the sample
covariance matrices R̂1, R̂2.

2.2 Asymptotic behavior of d̂M

The result presented below follows from a direct application of Theorem 2.1 to-
gether with the dominated convergence theorem.

Proposition 2.1. Under (As1)-(As4) and for any given sequence of deterministic matrices
AM with bounded norm,

1

M
tr
[
f
(l)
j (R̂j)AM

]
− 1

2πj

∮
C−

j

f
(l)
j (z)

M
tr
[
Q̄j(z)AM

]
dz → 0 (2.8)

almost surely, where Q̄j(z) is as defined in (2.4).

Proof. Consider M sufficiently large and the probability set for which (2.6) holds
true (a set which, by (As4), has probability one). We can write

f
(l)
j

(
R̂j

)
− 1

2πj

∮
C−

j

f
(l)
j (z)Q̄j(z)dz =

1

2πj

∮
C−

j

f
(l)
j (z)

[
Q̂j(z)− Q̄j(z)

]
dz.

Moreover, by omitting the dependence on M in AM , we obtain∣∣∣∣∣
∮
C−

j

f
(l)
j (z)

1

M
tr
[
A
(
Q̂j(z)− Q̄j(z)

)]
dz

∣∣∣∣∣ ≤
≤ sup

z∈Cj

∣∣∣f (l)
j (z)

∣∣∣ ∮
Cj

∣∣∣∣ 1M tr
[
A
(
Q̂j(z)− Q̄j(z)

)]∣∣∣∣ |dz|
where, obviously, supz∈Cj

|f (l)
j (z)| < ∞ because of its analyicity. We know from

Theorem 2.1 that M−1tr[A(Q̂j(z)− Q̄j(z))] → 0 almost surely for all fixed z ∈ Cj ∩
C+. However, Q̂j(z) and Q̄j(z) are analytic functions on an open subset including
Cj , and from Lemma D.1 in Appendix D.1 we have that supM supz∈Cj

∥Q̂j(z)∥ <∞
almost surely and supM supz∈Cj

∥∥Q̄j(z)
∥∥ <∞. Hence, it follows that

sup
z∈Cj

1

M
tr[A(Q̂j(z)− Q̄j(z))] → 0

as a direct application of Montel' s theorem (see [59, Chapter 7]).
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Proposition 2.1 above shows that f (l)
j (R̂j) has a deterministic asymptotic equiv-

alent but fails to provide a closed form expression for this quantity. In practice, one
needs to particularize the integral in (2.8) to the specific choices of f (l)

j (z) in order
to obtain a closed form expression for the corresponding asymptotic equivalent. In
order to do that, it turns out to be particularly useful to use the change of variable
proposed in [56] using the invertible map z 7→ ωj(z). Let us denote by zj(ω) the
inverse of this map, namely

zj (ω) = ω

1− 1

Nj

M̄j∑
m=1

K(j)
m

γ
(j)
m

γ
(j)
m − ω

 .

Note that this is different from (2.1) as here we have zj(ω) as a function of ω. More-
over, let z′j (ω) denote its derivative, that is

z′j (ω) = 1− Γj (ω) (2.9)

where we have defined

Γj (ω) =
1

Nj

M̄j∑
m=1

K(j)
m

(
γ
(j)
m

γ
(j)
m − ω

)2

=
1

Nj

tr
[
R2

jQ
2
j(ω)

]
. (2.10)

All this notation allows us to write, by direct application of the change of variables,

1

2πj

∮
C−

j

f
(l)
j (z)Q̄j(z)dz =

1

2πj

∮
C−

ωj

f
(l)
j (zj (ω))

ω

zj (ω)
Qj(ω)z

′
j (ω) dω (2.11)

where C−
ωj

= ω
(
C−

j

)
. Now, we can directly use Proposition 2.1 to establish that d̂M

in (1.6) has a deterministic asymptotic equivalent.

Corollary 2.1. Under (As1)-(As4) we have d̂M − d̄M → 0 with probability one, where

d̄M =
L∑
l=1

1

(2πj)2

∮
C−

1

∮
C−

2

f
(l)
1 (z1)f

(l)
2 (z2)

1

M
tr
[
Q̄1(z1)Q̄2(z2)

]
dz1dz2. (2.12)

Proof. This will be a direct consequence of Proposition 2.1 if we are able to establish
that supM ∥f (l)

j (R̂j)∥ < ∞ almost surely for j ∈ {1, 2} and l = 1, . . . , L. Now, it
follows from the expression in (2.6) that we have the bound∥∥∥f (l)

j

(
R̂j

)∥∥∥ ≤ 1

2π

∮
Cj

∣∣∣f (l)
j (z)

∣∣∣ ∥∥∥Q̂j(z)
∥∥∥ |dz| .

Again supz∈Cj
|f (l)

j (z)| < ∞ and supM,z∈Cj

∥∥∥Q̂j(z)
∥∥∥ < ∞ almost surely thanks to

Lemma D.1 in Appendix D.1, so that we can conclude that supM ∥f (l)
j (R̂j)∥ < ∞

with probability one.
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In the following subsections we will illustrate how to solve the double inte-
gral in (2.12) in some specific cases of interest, namely the Euclidean, symmetric
Kullback-Leibler and subspace distances. The key point will always be the use of
the change of variable stemming from the invertible map zj 7→ ωj(zj). As we will
see below, this change of variable will allow us to obtain a closed form expression
for the asymptotic equivalent d̄M .

2.2.1 Euclidean distance

The Euclidean distance in (1.6) can be expressed according to (As4) with all the
contours enclosing {0} and

L∑
l=1

f
(l)
1 (z1)f

(l)
2 (z2) = (z1 − z2)

2 = z21 − 2z1z2 + z22 .

Consequently, to evaluate d̄EM we need to solve the integral in (2.11) with f (l)
j (z) = z

and f
(l)
j (z) = z2. Beginning with f

(l)
j (z) = z we see that, using the change of

variables above, we can write

1

2πj

∮
C−
j

zQ̄j(z)dz =
1

2πj

∮
C−
ωj

ωQj(ω)z
′
j (ω) dω

where z′j (ω) is as in (2.9) and C−
ωj

= ωj(C−
j ). Now the right hand side of the above

integrand only has singularities at the eigenvalues γ(j)m , m = 1, . . . , M̄j , which are
all enclosed by C−

ωj
[56]. We can therefore enlarge the contour C−

ωj
and apply a

second change of variables ζ = ω−1 in a way that ζ(C−
ωj
) encloses zero and no other

singularity. The corresponding integral takes the form

1

2πj

∮
C−
j

zQ̄j(z)dz =
−1

2πj

∮
ζ(C−

ωj)
z′j
(
ζ−1
)
ζ2 (ζRj − IM) dζ.

The only singularity of the integrand corresponds to a second order pole at {0}, so
that observing that ζ(C−

ωj
) is positively oriented and computing the residue at ζ = 0

we have
1

2πj

∮
C−
j

zQ̄j(z)dz = Rj.

Following exactly the same approach one finds that

1

2πj

∮
C−
j

z2Q̄j(z)dz = R2
j +

(
1

Nj

tr [Rj]

)
Rj (2.13)
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and consequently

d̄EM =
1

M
tr
[
(R1 −R2)

2]+ 1

MN1

tr2 [R1] +
1

MN2

tr2 [R2] .

Observe that, as expected, the asymptotic equivalent is different from the Eu-
clidean distance between the true covariance matrices. This illustrates the fact that
distances between sample covariance matrices are generally inconsistent estima-
tors of the corresponding distance between the true covariance matrices. In some
cases, such as in the case of the Euclidean distance, it is possible to modify d̂M so
that it converges to the Euclidean distance between the true covariances. However,
this is not always possible for all distances in the form of (1.6), particularly in the
undersampled regime.

2.2.2 Symmetrized Kullback-Leibler distance

The symmetrized KL distance in (1.4) and its generalization3 can both be expressed
as in (As4) with

L∑
l=1

f
(l)
1 (z1)f

(l)
2 (z2) =

1

2

z2
z1

+
1

2

z1
z2

− 1

where in the first two terms the contours do not enclose zero, whereas they do in
the last term. Therefore, to find the asymptotic equivalent d̄KL

M we need to evaluate
the integral in (2.11) with f (l)

j (z) = z and f
(l)
j (z) = z−1, in both cases assuming that

the corresponding contour does not contain zero. As the first case has already been
considered before, let us study the integral for f (l)

j (z) = z−1 and observe that we
can particularize (2.11) to

1

2πj

∮
C−

j

z−1Q̄j(z)dz =
1

2πj

∮
C−

ωj

1− Γj (ω)

ω2
(
1− 1

Nj

∑M̄j

m=1K
(j)
m

γ
(j)
m

γ
(j)
m −ω

)2ωQj(ω)dω

where C−
ωj

= ωj(C
−
j ).

Now, recalling the definition of µ(j)
0 < . . . < µ

(j)

M̄j
from (2.3), it turns out that µ(j)

0

is the only root in the above set that is not enclosed by C−
ωj

, and therefore all the
singularities of the above integrand fall inside C−

ωj
except for a potential singularity

at µ(j)
0 . Hence, we can enlarge C−

ωj
in the above integral so that it encloses µ(j)

0 if we
then add the corresponding residue, which turns out to be equal to

RjQ
2
j(µ

(j)
0 )

1− Γj

(
µ
(j)
0

)
3In the undersampled regime, one can replace the inverse of the sample covariance (Rj)

−1 by
its respective the Moore-Penrose pseudoinverse (Rj)

#.
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(notice that C−
ωj

is negatively oriented). Once this has been evaluated, we can apply
the change of variables ζ = ω−1, leading to

1

2πj

∮
C−

j

z−1Q̄j(z)dz =
RjQ

2
j(µ

(j)
0 )

1− Γj

(
µ
(j)
0

)+
+

1

2πj

∮
C−

0

1− Γj (ζ
−1)(

1− 1
Nj

∑M̄j

m=1K
(j)
m

γ
(j)
m ζ

γ
(j)
m ζ−1

)2 ζ−1Qj(ζ
−1)dζ

where now C−
0 is a negatively oriented contour enclosing zero and no other singu-

larity. Noting that the second term of the above expression is zero (the integrand
presents a removable singularity at zero), we can conclude that

1

2πj

∮
C−

j

z−1Q̄j(z)dz =
RjQ

2
j(µ

(j)
0 )

1− Γj

(
µ
(j)
0

) .
With all the above intermediate results, it follows directly that

d̄KL
M =

tr
[
R1Q

2
1(µ

(1)
0 )R2

]
2M

(
1− Γ1

(
µ
(1)
0

)) +
tr
[
R2Q

2
2(µ

(2)
0 )R1

]
2M

(
1− Γ2

(
µ
(2)
0

)) − 1.

It is particularly interesting to note that in the oversampled situation, that is when
N1, N2 > M , we have µ(1)

0 = µ
(2)
0 = 0 and therefore

d̄KL
M =

1

2M

(
N1tr

[
R−1

1 R2

]
N1 −M

+
N2tr

[
R−1

2 R1

]
N2 −M

)
− 1.

2.2.3 Subspace distance

The subspace distance also responds to the form in (1.6)-(2.6) with all the functions
f
(l)
j (z) = 1 and where none of the contours encloses {0}, that is

d̂SSM =
N1 +N2

M
+

1

2π2

∮
C−

1

∮
C−

2

tr[Q̂1(z1)Q̂2(z2)]

M
dz1dz2.

Using the above integration technique we directly see that

1

2πj

∮
C−

j

Q̄j(z)dz =
1

2πj

∮
C−

ωj

ωQj(ω)
1− Γj (ω)

zj (ω)
dω

= µ
(j)
0 Qj(µ

(j)
0 ) +

1

2πj

∮
C−
ωj

ωQj(ω)
1− Γj (ω)

zj (ω)
dω

= RjQj(µ
(j)
0 )
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and consequently

d̄SSM =
N1

M
+
N2

M
− 2

M
tr
[
R1Q1(µ

(1)
0 )R2Q2(µ

(2)
0 )
]
. (2.14)

Obviously, this distance only makes sense in the undersampled regime (otherwise,
one cannot possibly define the original subspaces).

2.3 Asymptotic fluctuations

In this section, we analyze the fluctuations of the above distances around their
asymptotic equivalents. The main idea is to show that the distance d̂M between
sample covariance matrices asymptotically behaves as a Gaussian random vari-
able around its asymptotic equivalent d̄M . More specifically, let us consider the
following normalized random variable

ζ̂M =M
(
d̂M − d̄M

)
=

1

(2πj)2

∮
C−

1

∮
C−

2

gM(z1, z2)×

× tr
[
Q̂1(z1)Q̂2(z2)− Q̄1(z1)Q̄2(z2)

]
dz1dz2

where gM(z1, z2) =
∑L

l=1 f
(l)
1 (z1)f

(l)
2 (z2). We will establish a central limit theorem

(CLT) on ζ̂M that will basically state that it asymptotically behaves as a Gaussian
random variable with a certain mean and variance. In order to introduce the rele-
vant quantities that will describe the asymptotic mean and variance, we need some
notation. For a given M ×M deterministic matrix A, we denote

Ωj (ω;A) = A+ ϕj (ω;A) IM (2.15)

where ϕj (ω;A) is the scalar function

ϕj (ω;A) =
ω

1− Γj(ω)

1

Nj

tr
[
RjQ

2
j (ω)A

]
. (2.16)

We define the asymptotic (second order) mean of ζ̂M as

mM =
ς

(2πj)2

∮
C−

1

∮
C−

2

ω1

z1

ω2

z2
gM(z1, z2)m (ω1, ω2) dz1dz2 (2.17)

where we have introduced the function

m (ω1, ω2) = m1 (ω1,Q2 (ω2)) +m2 (ω2,Q1 (ω1))
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with

mj (ωj,A) =
1

Nj

tr
[
R2

jQ
3
j (ωj) Ωj (ωj;A)

]
1− Γj(ωj)

(2.18)

for j ∈ {1, 2}, and where we have used the shorthand notation ωj = ωj(zj). At
this point, it is also worth recalling the definition of the binary variable ς from
(As3) which discriminates between real-valued (ς = 1) and complex-valued (ς = 0)
observations. Then, interestingly enough, we observe that the second-order mean,
mM , consistently becomes 0 when dealing with complex-valued observations (see
Appendix A.1). This will happen regardless of the specific distance metric.

The asymptotic variance is defined as

σ2
M =

1 + ς

(2πj)4

∮
C−

1

∮
C−

1

∮
C−

2

∮
C−

2

gM(z1, z2)gM(z′1, z
′
2)×

× ω1ω2

z1z2

ω′
1ω

′
2

z′1z
′
2

Σ2 (ω1, ω2, ω
′
1, ω

′
2) dz1dz2dz

′
1dz

′
2 (2.19)

where (writing again ωj = ωj(zj) and ω′
j = ωj(z

′
j))

Σ2 (ω1, ω2, ω
′
1, ω

′
2) = σ2

1 (ω1, ω
′
1;Q2 (ω2) ,Q2(ω

′
2))

+ σ2
2 (ω2, ω

′
2;Q1 (ω1) ,Q1(ω

′
1))

+ ϱ(ω1, ω
′
1, ω2, ω

′
2) (2.20)

and where we have introduced the quantities (with some abuse of notation with
respect to (2.10))

Γj(ω, ω
′) =

1

Nj

tr
[
R2

jQj (ω)Qj (ω
′)
]

together with

ϱ(ω1, ω
′
1, ω2, ω

′
2) =

tr2 [R1Q1 (ω1)Q1 (ω
′
1)R2Q2 (ω2)Q2 (ω

′
2)]

N1N2 (1− Γ1(ω1, ω′
1)) (1− Γ2(ω2, ω′

2))
(2.21)

and

σ2
j (ω, ω

′;A,B) =
1

1− Γj(ω, ω′)

1

Nj

×

× tr [RjQj (ω)Qj (ω
′) Ωj (ω;A)RjQj (ω)Qj (ω

′) Ωj (ω
′;B)]

+
1

(1− Γj(ω, ω′))2
1

Nj

tr
[
R2

jQ
2
j (ω)Qj (ω

′) Ωj (ω;A)
]
×

× 1

Nj

tr
[
R2

jQj (ω)Q
2
j (ω

′) Ωj (ω
′;B)

]
. (2.22)

We have now all the necessary notation to introduce the main result of this section.
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Theorem 2.2. Assume that (As1)-(As4) hold and that the observations are Gaussian dis-
tributed. If lim infM→∞ σ2

M > 0 we have

ζ̂M −mM

σM
→ N (0, 1).

Proof. See Appendix A.1.

The above result can be used to approximate the behavior of the distance be-
tween sample covariance matrices d̂M for finite values of M,N1, N2. Indeed, one
can approximate d̂M as a Gaussian random variable with mean value d̄M +mM/M

and variance σ2
M/M

2. This will be a fundamental help in order to establish the
performance of the different distance measures in specific problems. Let us now
see how this general result particularizes to some of the distances that have been
introduced before. Detailed proofs are provided in Appendix A.

2.3.1 Euclidean distance

By direct evaluation of the integrals in (2.17)-(2.19) when g(z1, z2) = (z1 − z2)
2 one

can establish that mM takes the form

mE
M = ς

(
1

N1

tr
[
R2

1

]
+

1

N2

tr
[
R2

2

])
(2.23)

whereas (σM)2 particularizes to(
σE
M

)2
1 + ς

= 2

(
1

N1

tr
[
R2

1

])2

+ 2

(
1

N2

tr
[
R2

2

])2

+
4

N1N2

tr2[R1R2]

+
4

N1

tr
[
(R1∆1)

2
]
+

4

N2

tr
[
(R2∆2)

2
]

(2.24)

where we have introduced ∆j = (R1−R2)+(M/Nj)IM , for j ∈ {1, 2}. All the terms
are obviously positive, so that one can easily see that the variance is uniformly
bounded away from zero. This shows that the CLT holds for the Euclidean distance
between sample covariance matrices.

Of particular interest is the expression of the variance when R1 = R2 = R. In
this specific case, it simplifies to(

σE
M

)2
1 + ς

= 2

(
N1 +N2

N1N2

)2

tr2
[
R2
]
+ 4

(
1

N3
1

+
1

N3
2

)
tr
[
R2
]
tr2 [R] .
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2.3.2 Symmetrized Kullback-Leibler distance

In this case, we need to consider the integrals in (2.17)-(2.19) for g(z1, z2) = z1/(2z2)+

z2/(2z1)− 1 where only the contours of the last integral enclose {0}. One can show
that the second order mean takes the form

mKL
M = ς

∑
i,j∈{1,2}

i ̸=j

d[ωimi(ωi,Rj)]/dωi|ωi=µ
(i)
0

2
(
1− Γi(µ

(i)
0 )
) (2.25)

where we recall that mj(ω,A) is defined in (2.18).
Regarding the variance, one can proceed in a similar way to show that(
σKL
M

)2
1 + ς

=
∂2 [ω1ω

′
1Υ11 (ω1, ω

′
1)]/∂ω1∂ω

′
1|ω1=ω′

1=µ
(1)
0

4
(
1− Γ1(µ

(1)
0 )
)2

+
∂2 [ω2ω

′
2Υ22 (ω2, ω

′
2)]/∂ω2∂ω

′
2|ω2=ω′

2=µ
(2)
0

4
(
1− Γ2(µ

(2)
0 )
)2

+
∂2 [ω1ω2Υ12 (ω1, ω2)]/∂ω1∂ω2|ω1=µ

(1)
0 ,ω2=µ

(2)
0

2
(
1− Γ1(µ

(1)
0 )
)(

1− Γ2(µ
(2)
0 )
) (2.26)

where we have defined

Υ11 (ω1, ω
′
1) =

tr2 [R2R1Q1 (ω1)Q1 (ω
′
1)]

N1N2 (1− Γ1(ω1, ω′
1))

+

+ σ2
1 (ω1, ω

′
1;R2,R2) +

1

N2

tr [R2Q1 (ω1)R2Q1 (ω
′
1)] (2.27)

where Υ22 (ω2, ω
′
2) is defined equivalently but interchanging the two indexes (1 ↔ 2)

and where

Υ12 (ω1, ω2) =
1

N1N2

tr2 [R1Q1 (ω1)R2Q2 (ω2)]

− 1

N1

tr [R1Q1 (ω1)Q2 (ω2)R1Q1 (ω1) Ω1 (ω1;R2)]

− 1

N2

tr [R2Q2 (ω2)Q1 (ω1)R2Q2 (ω2) Ω2 (ω2;R1)] . (2.28)

The expression of the second order mean and variance can be significantly sim-
plified in the oversampled case, where we will always have µ(1)

0 = µ
(2)
0 = 0. In this

situation, the second order mean particularizes to

mKL
M =

ς

2

[
N1tr[R2R

−1
1 ]

(N1 −M)2
+
N2tr[R1R

−1
2 ]

(N2 −M)2

]
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whereas the variance takes the simple form

(σKL
M )2

1 + ς
=
N2

1Υ11(0, 0)

4(N1 −M)2
+
N2

2Υ22(0, 0)

4(N2 −M)2
+

N1N2Υ12(0, 0)

2(N1 −M)(N2 −M)

where

Υ11(0, 0) =
N1 +N2 −M

N2(N1 −M)

[
tr[(R−1

1 R2)
2] +

tr2[R−1
1 R2]

N1 −M

]
with Υ22(0, 0) equivalently defined by swapping indexes (1 ↔ 2), and where

Υ12(0, 0) =
M2

N1N2

− M

N1

− M

N2

.

The fact that lim infM(σKL
M )2 > 0 is easy to see in the oversampled case, by simply

using the fact that αtr(A) + βtr(A−1) > 2M
√
αβ for α, β > 0 and positive definite

A. Indeed, by using this inequality with A = (R−1
1 R2)

2 and noting that the terms
of the form tr2(·) are positive, we see that

(σKL
M )2

1 + ς
>

N1N2

2(N1 −M)(N2 −M)
×

×

(
M(N1 +N2 −M)√

(N1 −M)(N2 −M)N1N2

+
M2

N1N2

− M

N1

− M

N2

)
.

Next, we observe that (N1 +N2 −M)/(N1 −M) > 1 +N2/N1, so that

M2(N1 +N2 −M)2

(N1 −M)(N2 −M)N1N2

>

(
M

N1

+
M

N2

)2

and we can conclude that

(σKL
M )2 >

M2

2(N1 −M)(N2 −M)

which is bounded away from zero.

2.3.3 Subspace distance

In the case of the subspace distance, it is shown in Appendix A that the second
order mean takes the form

mSS
M = −2µ

(1)
0 m1(µ

(1)
0 ,R2Q2(µ

(2)
0 ))− 2µ

(2)
0 m2(µ

(2)
0 ,R1Q1(µ

(1)
0 )). (2.29)
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whereas the asymptotic variance can be written as(
σSS
M

)2
1 + ς

= 4
(
µ
(1)
0

)2
σ2
1

(
µ
(1)
0 , µ

(1)
0 ;R2Q2

(
µ
(2)
0

)
,R2Q2

(
µ
(2)
0

))
+ 4

(
µ
(2)
0

)2
σ2
2

(
µ
(2)
0 , µ

(2)
0 ;R1Q1

(
µ
(1)
0

)
,R1Q1

(
µ
(1)
0

))
+ 4

(
µ
(1)
0 µ

(2)
0

)2 tr2
[
R1Q

2
1(µ

(1)
0 )R2Q

2
2(µ

(2)
0 )
]

N1N2

(
1− Γ1(µ

(1)
0 )
)(

1− Γ2(µ
(2)
0 )
) . (2.30)

Close examination of the expression of the variance reveals that, since Qj(µ
(j)
0 ) is

positive definite, the first two terms of (2.30) are non-negative. Moreover, it is easy
to see that |µ(j)

0 | ≥ (M/Nj − 1)γ
(j)

M̄j
, which is bounded away from zero. Finally,

a direct application of Lemma D.1 in Appendix D.1 shows that the third term in
(2.30) is bounded away from zero, and hence the CLT holds.

2.4 Numerical Consistency of Asymptotic Descriptors

In order to validate the results presented above, we consider two multidimensional
observation sets Y1 ∈ CM×N1 and Y2 ∈ CM×N2 associated to two (possibly dis-
tinct) Toeplitz covariance matrices R1 and R2 with first rows [ρ0j , . . . , ρ

M−1
j ], for

j ∈ {1, 2}. In this section, through numerical evaluation, we assess the consistency
of the asymptotic descriptors (d̄M ,mM and σM ) of the family of metrics d̂M defined
in Chapter 1.6. Specifically, we are interested in the particularizations d̂EM , d̂KL

M ,
d̂SSM . We compare the asymptotic descriptors from the theorems above against the
empirical distribution of their respective metrics, namely, Euclidean (EU), Sym-
metrized Kullback Leibler (KL) and subspace (SS) distances. Figure 2.1 compares
the histogram (in blue) and the asymptotic values (in orange) of these metrics for
M = 100, ρ1 = 0.7, ρ2 = 0.8 and some specific choices of c1, c2. Observe that there is
a very good match between the asymptotic and the empirical distribution regard-
less of the considered metric or of whether c1, c2 are large or small. In other words,
we have that the random distribution of the distance d̂M seems to be correctly ap-
proximated by

d̂M ∼ N
(
d̄M +

mM

M
,
σ2
M

M2

)
. (2.31)

Similar results are also observed by comparing the Normalized Mean Squared
Error (NMSE) between the empirical and asymptotic first- and second-order mo-
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Figure 2.1: Histogram of empirical distribution (in blue) and asymptotic descrip-
tors (in orange) of the different metrics EU, KL and SS.

ments of d̂M , given by

εmean =

(
Ê[d̂M ]− (d̄M +M−1mM)

)2
(
d̄M +M−1mM

)2 (2.32)

and

εvar =

(
v̂ar[d̂M ]−M−2σ2

)2
M−4σ4

,

respectively, where the empirical expectation (Ê[d̂M ]) and variance (v̂ar[d̂M ]) are ob-
tained from the observations by replacing the expectation with empirical averages.
Figure 2.2 presents these results for growingM,N1, N2 and fixed c1, c2. The empiri-
cal quantities (expectation and variance) are estimated over 105 samples. The solid
lines portray the results for the undersampled regime (c1 = 5.0 and c2 = 2.5) while
the dashed lines represent the results for the oversampled regime (c1 = 0.5 and
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Figure 2.2: Normalized mean squared error (y-axis) between asymptotic descrip-
tors (mean and variance) and their empirical values, obtained from multiple real-
izations of d̂M , for growing M (x-axis) in the undersampled (solid lines) and over-
sampled (dashed lines) scenarios.

c2 = 0.7). For all the three distances we observe that, as the system grows (x-axis),
the NMSE (y-axis) of the compared quantities (empirical and asymptotic descrip-
tors) decay (tend to zero). Moreover, we notice that for a specific moment (mean
or variance) and fixed asymptotic regime (under or oversampled), the NMSE for
the different metrics are usually in the same order of magnitude. This comes as a
consequence of the fact that all the asymptotic regimes studied in this work follow
as a particularization of the generic results presented in (2.12), (2.17) and (2.19).

These results support the idea that our descriptors are consistent both when
R1 = R2 and R1 ̸= R2 for the metrics studied in this chapter, namely the Eu-
clidean, symmetric Kullback-Leibler and subspace distances. In Chapter 4, we
further develop these results to the task of clustering observations according to
their respective distributions. Particularly, motivated by need of such mechanism
in wireless communications, we will discuss how to cluster user equipments based
on the alignment between the subspaces that span their channel matrices.



Chapter 3

Consistent Estimators of Distances
Between True Covariance Matrices

As mentioned in the previous chapter, one of the problems that must be faced
when applying second order learning approaches is the fact that covariance matri-
ces are generally unknown and consequently the inherent distances must be esti-
mated from the corresponding data. As discussed throughout Chapters 2, one way
to do so is by plugging the two sample covariance matrices R̂j, j ∈ {1, 2}, as de-
fined in (1.5), into (1.1) to obtain d̂M as in (1.6). Unfortunately, this naive approach
(hereafter denoted by plug-in distance) only approximates the original distance dM
between the associated covariance matrices Rj up to a certain bias, i.e., |d̂M − dM |
converges to a constant different from zero as M,Nj grow large (see results in Sec-
tion 3.4 for a detailed comparison). In this chapter, we circumvent this issue by
proposing a consistent estimator for dM . More formally, for a certain collection of
functions f (l)

1 , f
(l)
2 : CM×M → CM×M , l = 1, . . . , L, applied to the covariances ma-

trices R1,R2, we propose an estimator of dM , denoted d̃M that is consistent (i.e.
dM − d̃M → 0) when the observation dimension (M ) and the number of samples
(Nj, j = 1, 2) grow to infinity at the same rate.

To do so, we will assume that the functions1 f
(l)
j (j ∈ {1, 2}) are analytic on

a subset including all the eigenvalues of Rj . So that we can express (by Cauchy
integration of each element of the matrix)

f
(l)
j (Rj) =

1

2πj

∮
C−

ω

f
(l)
j (ω)Qj (ω) dω (3.1)

1We recall that with some abuse of notation, we also defined f
(l)
j : CM → CM to be the scalar

function applied to the eigenvalues of the covariance matrix Rj .

32
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where C−
ω is a negatively oriented simple closed contour enclosing all the eigen-

values of Rj and
Qj(ω) = (Rj − ωIM)−1

is the resolvent defined in Section 2.1. Moreover, by considering the change of
variable ω 7→ z (introduced in (2.1) ) we can reformulate the above expression and
write

f
(l)
j (Rj) =

1

2πj

∮
C−

f
(l)
j (ωj (z))Qj (ωj (z))ω

′
j (z) dz (3.2)

where now C− = ω−1
j (C−

ω ) (see also Chapter 2 and Remark 2.1). Then, since the
contour enclosing zero C− can be chosen independently of M , we can find asymp-
totic equivalents of f (l)

j (Rj) by essentially finding asymptotic equivalents of the
quantities inside the argument of the integral above (3.2). We formulate the result
in the following section, which basically states the consistent estimator takes the
form

d̃M =
L∑
l=1

1

M
tr
[
ĥ
(l)
1

(
R̂1

)
ĥ
(l)
2

(
R̂2

)]
for some matrix-valued functions ĥ(l)j (R̂j) of the sample covariance matrix which
are asymptotically equivalent to f (l)

j (Rj).

3.1 Improved Estimation of Riemannian Distances

Let us start by assuming that the functions f (l)
j (ω) in (3.1) are sufficiently regular, in

the sense that they are analytic in a sufficiently large region of the complex plane.
One possibility would be to assume analycity in C\R− (that is the whole com-
plex plane except for the negative real axis). However, in practice this would rule
out a number of situations in which we can achieve a consistent estimator even if
the number of available samples is lower than the observation dimension, that is
Nj < M (undersampled case). So, instead, we will consider analytical functions on
the whole complex plane except for only a subset of the negative real axis. In ad-
dition, it is worth pointing out that the analycity of the function f

(l)
j (ω) can easily

be replaced by considering a wider class of continuously differentiable functions
on the plane (except for a portion of the negative real axis). However, we choose
to keep it here in order to simplify the proofs and because it clearly holds for all
the covariance distance measures discussed in this thesis, namely the Euclidean,
symmetrized Kullback-Leibler and log-Euclidean distances (see Section 1.2).
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Assumption 5 (As5): For j ∈ {1, 2} and l = 1, . . . , L, the functions f (l)
j (ω) are

analytic on the set C\(−∞, µ
(j)
inf ], where µ

(j)
inf = infM µ

(j)
0 and µ

(j)
0 is the smallest

solution to the equation

0 = µ

(
1− 1

Nj

tr [RjQj (µ)]

)
(3.3)

which is a restatement of (2.3). In particular, if infM Nj/M > 1 (oversampled
regime2) we have µ(j)

inf = 0 whereas µ(j)
inf < 0 if supM Nj/M < 1 (undersampled

regime).

Remark 3.1. For two random matrices BM and CM and two analytic functions f, h :

C → C applied to the eigenvalues of these matrices, we write f(BM) ≍ h(CM) if

1

M
tr [AM (f(BM)− h(CM))] → 0

almost surely as M → 0, where AM is any sequence of deterministic M ×M matrices
with bounded norm. Moreover, we will frequently use the equivalence

f(AM) ≡
∮
C

f(z)(zIM −AM)−1dz

to represent the contour integral

[f(AM)]ij =

∮
C

f(z)(zIM −AM))−1
ij dz

applied element wise for i, j = 1, . . . ,M .

Proposition 3.1. Under (As1)-(As3), from Section 2.1, and (As5), defined above, we have

f
(l)
j (Rj) ≍ ĥ

(l)
j

(
R̂j

)
≡ 1

2πj

∮
C−
ĥ
(l)
j (z)Q̂j(z)dz, (3.4)

where, with some abuse of notation, ĥ(l)j (z) denotes both a CM×M → CM×M function and
the scalar (random) function

ĥ
(l)
j (z) = f

(l)
j (ω̂j (z))

z

ω̂j (z)
ω̂′
j (z) (3.5)

where ω̂j (z) denotes the consistent estimator of ωj (z) given by

ω̂j (z) =
z

1− 1
Nj
tr
[
R̂jQ̂j(z)

] (3.6)

2Note that in the oversampled regime (µ(j)
inf = 0) the function f

(l)
j (ω) is not required to be analytic

at the origin, which is the case in some important distance metrics such as the KL metric (for which
f
(l)
j (ω) = ω−1) or the log-Euclidean metric (for which f

(l)
j (ω) = logω).
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and ω̂′
j (z) represents its derivative, namely

ω̂′
j (z) =

1− M
Nj

+ z2 1
Nj
tr
[
Q̂2

j(z)
]

(
1− 1

Nj
tr
[
R̂jQ̂j(z)

])2 . (3.7)

Furthermore, we have supM≥M0
∥ĥ(l)j (R̂j)∥ < +∞ almost surely for sufficiently large M0.

Proof. See Appendix B.1.

Proposition 3.1 provides in (3.4) the basic piece that can be used to build con-
sistent estimators of the general distances in the form of (1.1). Indeed, it is a direct
consequence of Proposition 3.1 that dM − d̃M → 0 almost surely, where

d̃M =
L∑
l=1

1

M
tr
[
ĥ
(l)
1

(
R̂1

)
ĥ
(l)
2

(
R̂2

)]
=

−1

4π2

∮
C−

∮
C−

L∑
l=1

ĥ
(l)
1 (z1)ĥ

(l)
2 (z2)

1

M
tr
[
Q̂1(z1)Q̂2(z2))

]
dz1dz2

=
−1

4π2

∮
C−

∮
C−

(
L∑
l=1

f
(l)
1 (ω̂1 (z1))f

(l)
2 (ω̂2 (z2))

)
×

× 1

M
tr
[
Q̂1(z1)Q̂2(z2))

] z1z2ω̂′
1 (z1) ω̂

′
2 (z2)

ω̂1 (z1) ω̂2 (z2)
dz1dz2. (3.8)

Hence, d̃M provides a general expression for a consistent estimator of a distance be-
tween covariance matrices taking the form in (1.1). Interestingly enough, this gen-
eral expression can be particularized to well-known distances commonly found in
the literature, exhibiting straightforward closed-form analytical representations.
These specific cases will be examined in more detail in the subsequent subsec-
tions. We begin by considering the conventional Euclidean and symmetrized KL
distances. In these two cases, the solution to (3.8) will be directly derived from
conventional residual calculus procedures. Obtaining the consistent estimator for
the log-Euclidean distance necessitates additional efforts, and its derivation will
be presented towards the conclusion of this section.

Remark 3.2. At this point, it is also interesting to contextualize the above results in re-
lation to prior works that have directly proposed consistent estimators for quantifying the
distance between covariance matrices. Let us start by pointing out that several of the con-
tributions in this domain, e.g. [52–55] to name a few, are primarily designed for distances
between covariances expressed as functions of the product R̂−1

1 R̂2. It is also worth noticing
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that, in many of this works, R̂1 is considered full rank, which imposes strong restrictions
when considering the undersampled regime.

More specifically, in [52,54], the authors strongly rely on the results of [57] to associate
the eigenvalue distributions of R̂−1

1 R̂2 and R−1
1 R2. To alleviate the restrictions in c1 < 1

the authors also consider the case where the covariance matrix R1 is known and inevitable.
This, however, might not be a realistic assumption in many real-world applications. More
recently, in [60], the same authors expanded upon their initial findings to consistently
estimate distances between covariance matrices in the undersampled regime. However, in
practice, the consistency is only achieved for polynomial functions. Finally, it is important
to note that there exist important distances such as the log-Euclidean metric that do not
fall into this category. In this context, the results presented in this section and later in
this chapter differs from previous works already presented in the literature in two main
aspects: (i) by considering both the undersampled and oversampled regime; and (ii) by also
introducing a new general CLT on the consistent estimators (see Section 3.2).

3.1.1 Estimation of the Euclidean distance

We have seen in the previous chapter that the Euclidean distance takes the form in
(1.1) with

L∑
l=1

f
(l)
1 (ω1)f

(l)
2 (ω2) = (ω1 − ω2)

2 = ω2
1 + ω2

2 − 2ω1ω2

so that we have to solve the integral in (3.8) for f (1)
j (ωj) = ωj and f (2)

j (ωj) = ω2
j . We

start by noticing that the function

Q̂j(z)zω̂
′
j (z) = zQ̂j(z)

1− M
Nj

+ z2 1
Nj
tr
[
Q̂2

j(z)
]

(
1− 1

Nj
tr
[
R̂jQ̂j(z)

])2
presents all its poles inside the contour C. Indeed, by definition C encloses all the
eigenvalues of R̂j almost surely for all large M (see [58]), as well as the solutions
to the equation 1 = 1

Nj
tr
[
R̂jQ̂j(z)

]
(see [61]). Furthermore, in the undersampled

case the function presents a removable singularity at zero, so that effectively all
the singularities are located inside the contour C. We can therefore enlarge the
contour C without changing the value of the integral, and then apply the change
of variables z 7→ ζ = z−1, which only has a single singularity at ζ = 0. This can be
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done to show that, when f (l)
j (ω) = ω, we have

1

2πj

∮
C−
f
(l)
j (ω̂j (z))

zω̂′
j (z)

ω̂j (z)
Q̂j(z)dz =

=
1

2πj

∮
C−

0

1− M
Nj

+ 1
ζ2

1
Nj
tr
[
Q̂2

j(ζ
−1)
]

(
1− 1

Nj
tr
[
R̂jQ̂j(ζ−1)

])2 Q̂j(ζ
−1)

1

ζ3
dζ

where C−
0 encloses only ζ = 0 and no other singularity. Noting that

lim
ζ→0

ζ−1Q̂j(ζ
−1) = −IM

we see that the above integrand presents a second order pole at ζ = 0 and therefore
one easily computes (for the case f (l)

j (ω) = ω)

1

2πj

∮
C−
f
(l)
j (ω̂j (z))

zω̂′
j (z)

ω̂j (z)
Q̂j(z)dz = R̂j.

Proceeding in exactly the same way for f (l)
j (ω) = ω2 we see that the pole at ζ = 0

has now order three, and therefore (after some algebra)

1

2πj

∮
C−
f
(l)
j (ω̂j (z))

zω̂′
j (z)

ω̂j (z)
Q̂j(z)dz =

1

2πj

∮
C−

0

1− M
Nj

+ 1
ζ2

1
Nj
tr
[
Q̂2

j(ζ
−1)
]

(
1− 1

Nj
tr
[
R̂jQ̂j(ζ−1)

])3 Q̂j(ζ
−1)

1

ζ4
dζ

= R̂2
j −

(
1

Nj

tr
[
R̂j

])
R̂j.

As a consequence of the above two integrals, we can conclude that the estimator
in (3.8) particularizes to the Euclidean distance as

d̃EM =
1

M
tr

[(
R̂1 − R̂2

)2]
− 1

MN1

tr2
[
R̂j

]
− 1

MN2

tr2
[
R̂2

]
which corresponds to the conventional estimator corrected by the square of the
normalized trace of the two sample covariance matrices. Obviously, the estimator
becomes the conventional plug-in one if N1, N2 increase but M remains fixed.

3.1.2 Estimation of the symmetrized KL distance

We recall that the symmetrized KL distance corresponds to the definition in (1.1)
with

L∑
l=1

f
(l)
1 (ω1)f

(l)
2 (ω2) =

1

2

ω2

ω1

+
1

2

ω1

ω2

− 1.
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Note that in this case the function ω−1 is not holomorphic at the origin, which
implies that we can only tolerate µinf = 0 in (As5). In particular, this implies that we
can only obtain a consistent estimator for the oversampled case (namely N1 > M

and N2 > M ).
Here again, we need to solve the different integrals in (3.8) for the functions

f
(l)
1 (ω) = ω (already done in the previous section), f (l)

j (ω) = 1 and f
(l)
j (ω) = ω−1.

Let us first consider the simpler case where f (l)
j (ω) = 1. To solve the corresponding

integral, we can simply notice that the function

zω̂′
j (z)

ω̂j (z)
Q̂j(z) = Q̂j(z)

1− M
Nj

+ z2 1
Nj
tr
[
Q̂2

j(z)
]

1− 1
Nj
tr
[
R̂jQ̂j(z)

]
presents all its poles inside the contour C (note that there is no singularity at zero
because, by definition (3.3), Q̂j(0) = R̂−1

j which is well-defined since we are in the
oversampled situation so that R̂j is invertible with probability one). Hence, we
can enlarge the contour C as much as we want and consider again the change of
variable ζ = z−1, after which the integrand will only have a singularity at ζ = 0.
Consequently, we can find

1

2πj

∮
C−

zω̂′
j (z)

ω̂j (z)
Q̂j(z)dz =

1

2πj

∮
C−

0

Q̂j(ζ
−1)

1− M
Nj

+ ζ−2 1
Nj
tr
[
Q̂2

j(ζ
−1)
]

1− 1
Nj
tr
[
R̂jQ̂j(ζ−1)

] dζ

ζ2
= IM .

Regarding the integral (3.8) for f (l)
j (ω) = ω−1, we consider the function

Q̂j(z)zω̂
′
j (z)

ω̂2
j (z)

=
Q̂j(z)

z

(
1− M

Nj

+ z2
1

Nj

tr
[
Q̂2

j(z)
])

(3.9)

and observe again that all its singularities are inside the contour C except for a
simple pole at z = 0 . Therefore, we can deform the contour C into a larger one C
(see Remark 2.1) that now encloses Sj ∪ {0} and write (for the case f (l)

j (ω) = ω−1)

1

2πj

∮
C−
f
(l)
j (ω̂j (z))

zω̂′
j (z)

ω̂j (z)
Q̂j(z)dz =

(
1− M

Nj

)
R̂−1

j +

+
1

2πj

∮
C−

Q̂j(z)

z

(
1− M

Nj

+ z2
1

Nj

tr
[
Q̂2

j(z)
])

dz

where the first term is the residue of (3.9) at zero. We can now see that the second
integral is zero by enlarging the contour and applying the change of variable ζ =
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z−1, after which the corresponding integrand becomes analytic at zero. We can
therefore conclude that

1

2πj

∮
C−
f
(l)
j (ω̂j (z))

zω̂′
j (z)

ω̂j (z)
Q̂j(z)dz =

(
1− M

Nj

)
R̂−1

j .

With this, we have now all the ingredients to evaluate the integral at (3.8), which
provides a consistent estimator for the symmetrized KL distance between covari-
ance matrices, namely

d̃KL
M =

(
1− M

N1

)
1

2M
tr
[
R̂−1

1 R̂2

]
+

(
1− M

N2

)
1

2M
tr
[
R̂−1

2 R̂1

]
− 1.

3.1.3 Estimation of the Log-Euclidean distance

The log-Euclidean distance takes the form in (1.1) with

L∑
l=1

f
(l)
1 (ω1)f

(l)
2 (ω2) = (logω1 − logω2)

2

and therefore to evaluate the integral in (3.8) one must consider the two functions
f
(l)
j (ω) = logω and f

(l)
j (ω) = (logω)2. Observe now that these two functions are

analytic everywhere except for the negative real axis (including zero). Hence, sim-
ilarly as in the symmetric KL distance, in (As5) we must have µ(j)

inf = 0, implying
that µ(j)

0 = 0 for all M and hence Nj > M (oversampled regime).
The first integral (with respect to f (l)

j (ω) = logω) was already solved by [62], and
we will recall it in the context of this dissertation. In order to present the closed
form solution for this integral, let us denote by λ̂

(j)
1 < . . . < λ̂

(j)
M and ê

(j)
1 , . . . , ê

(j)
M

the eigenvalues and associated eigenvectors of the sample covariance matrix R̂j .
It was shown in [62] that

1

2πj

∮
C−

log(ω̂j (z))
zω̂′

j (z)

ω̂j (z)
Q̂j(z)dz =

M∑
k=1

β
(j)
k ê

(j)
k

(
ê
(j)
k

)H
where the coefficients β(j)

k , k = 1, . . . ,M , are defined as

β
(j)
k = 1 +

1 +
M∑

m=1
m ̸=k

λ̂
(j)
k

λ̂
(j)
m − λ̂

(j)
k

−
M∑

m=1

µ̂
(j)
k

λ̂
(j)
m − µ̂

(j)
k

 log λ̂
(j)
k

+

 M∑
r=1
r ̸=k

λ̂
(j)
r

λ̂
(j)
r − λ̂

(j)
k

log λ̂(j)r −
M∑
r=1

µ̂
(j)
r

µ̂
(j)
r − λ̂

(j)
k

log µ̂(j)
r


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where we have denoted by µ̂
(j)
0 < . . . < µ̂

(j)
M the M solutions to the polynomial

equation in (3.3) by interchanging the covariance matrix Rj by its estimator R̂j .
Let us denote by α(j) the integral of the term in f (l)

j (ω) = log2(ω̂j (z)), that is

α(j) =
1

2πj

∮
C−

log2(ω̂j (z))
zω̂′

j (z)

ω̂j (z)

1

M
tr
[
Q̂j(z)

]
dz (3.10)

Using very similar arguments as above, it is shown in Appendix B.2 that α(j) takes
the form

α(j) =

(
Nj

M
− 1

) M∑
r=1

(
1 + log µ̂(j)

r

)2 − (1 + log λ̂
(j)
k

)2
+

1

M

M∑
k=1

(
1 + log λ̂

(j)
k

)2
−
(
Nj

M
− 1

)
log2

(
1− M

Nj

)

+ 1 +
2

M

M∑
k=1

M∑
r=1

[
Φ2

(
µ̂
(j)
r

λ̂
(j)
k

)
− Φ2

(
λ̂
(j)
r

λ̂
(j)
k

)]

+
2

M

M∑
k=1

( M∑
r=1
r ̸=k

log
λ̂
(j)
r

λ̂
(j)
k

log
λ̂
(j)
k∣∣∣λ̂(j)k − λ̂

(j)
r

∣∣∣
−

M∑
r=1

log
µ̂
(j)
r

λ̂
(j)
k

log
λ̂
(j)
k∣∣∣λ̂(j)k − µ̂

(j)
r

∣∣∣
)

(3.11)

where we have defined

Φ2(x) =

{
Li2 (x) x < 1

π2

3
− 1

2
log2 x− Li2 (x

−1) x ≥ 1
(3.12)

and where Li2 (x) = −
∫ x

0
y−1 log(1− y)dy is the dilogarithm function.

Combining the two expressions above, we obtain a closed form expression for
the consistent estimator of the log-Euclidean distance between covariance matri-
ces, namely

d̃LEM = α(1) + α(2) − 2

M

M∑
k=1

M∑
m=1

β
(1)
k β(2)

m

∣∣∣∣(ê(1)k

)H
ê(2)m

∣∣∣∣2
where α(j) and β

(j)
k , j = 1, . . . ,M are defined as above.

3.2 A general CLT of Consistent Estimators

In this section, we follow a similar approach as the one conducted in the previous
chapter to study the fluctuations of d̃M around the true values dM . To that effect,
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we will basically show that the random variable M(d̃M − dM) asymptotically be-
haves as a Gaussian distribution with a certain mean and variance that will be
characterized below in its most generic form and particularized to the case of the
Euclidean, symmetrized KL and log-Euclidean distances.

Let us start by recalling, from (3.8), that the estimators above can all be ex-
pressed as

d̃M =
1

(2πj)2

∮
C−

∮
C−

L∑
l=1

ĥ
(l)
1 (z1)ĥ

(l)
2 (z2)

1

M
tr
[
Q̂1(z1)Q̂2(z2))

]
dz1dz2

and that, from the definitions (1.1) and (3.2), the distance between covariance ma-
trices can be re-written as

dM =
1

(2πj)2

∮
C−

∮
C−

L∑
l=1

f
(l)
1 (ω1(z1))ω

′
1(z1)f

(l)
2 (ω2(z2))ω

′
2(z2)×

× 1

M
tr [Q1(z1)Q2(z2))] dz1dz2

=
1

(2πj)2

∮
C−

∮
C−

L∑
l=1

h
(l)
1 (z1)h

(l)
2 (z2)

1

M
tr
[
Q̄1(z1)Q̄2(z2))

]
dz1dz2

where in the last step we have used the definition

h
(l)
j (z) = f

(l)
j (ωj (z))

z

ωj (z)
ω′
j (z)

to represent the asymptotic equivalent of the random quantity ĥ(l)j (z).
Then, similar to Section 2.3, we have that

ζ̃M =M
(
d̃M − dM

)
=

1

(2πj)2

∮
C−

1

∮
C−

2

g̃M(z1, z2)×

× tr
[
Q̂1(z1)Q̂2(z2)− Q̄1(z1)Q̄2(z2)

]
dz1dz2 (3.13)

with the only difference in the integrand being that now we have

g̃M(z1, z2) =

(
L∑
l=1

h
(l)
1 (z1)h

(l)
2 (z2)

)
− g̃(1)(z1)− g̃(2)(z2) (3.14)

where, for j, k = 1, 2 and j ̸= k, we have defined

g̃(j)(zj) =
L∑
l=1

f
(l)
j (ωj)ϕ

(
ωj; f

(l)
k (Rk)

)
(3.15)

using the definition of ϕ (ω;A) in (2.16).



3.2. A GENERAL CLT OF CONSISTENT ESTIMATORS 42

Theorem 3.1. In addition to (As1)-(As3) and (As5), assume that the observations are
Gaussian distributed. If lim infM→∞ σ2

M > 0, we have

M(d̃M − dM)− m̃M

σ̃M
→ N (0, 1).

where we have now defined

m̃M =
L∑
l=1

ς

2πj

∮
C−

ω1

f
(l)
1 (ω1)

tr
[
R2

1Q
3
1 (ω1) f

(l)
2 (R2)

]
N1(1− Γ1(ω1))

dω1

+
L∑
l=1

ς

2πj

∮
C−

ω2

f
(l)
2 (ω2)

tr
[
R2

2Q
3
2 (ω2) f

(l)
1 (R1)

]
N2(1− Γ2(ω2))

dω2 (3.16)

and where we have also introduced the function (for j ∈ {1, 2})

Γj (ω) =
1

Nj

tr
[
R2

jQ
2
j(ω)

]
. (3.17)

Likewise, we have also defined (denoting again ωj = ωj(zj) and ω̃j = ωj(z̃j))

σ̃2
M =

1 + ς

(2πj)4

∮
C−

ω1

∮
C−

ω1

∮
C−

ω2

∮
C−

ω2

f(ω1, ω2)f(ω̃1, ω̃2)×

× Σ
2
(ω1, ω2, ω̃1, ω̃2) dω1dω2dω̃1dω̃2 (3.18)

where the last term consists of three terms

Σ
2
(ω1, ω2, ω̃1, ω̃2) = σ2

1 (ω1, ω̃1;Q2 (ω2) ,Q2(ω̃2))

+ σ2
2 (ω2, ω̃2;Q1 (ω1) ,Q1(ω̃1))

+ ϱ (ω1, ω̃1, ω2, ω̃2) (3.19)

with the following definitions. The first two terms are specific instances of the function

σ2
j (ω, ω̃;A,B) =

tr [RjQj (ω)Qj (ω̃)ARjQj (ω)Qj (ω̃)B]

Nj(1− Γj(ω, ω̃))

+
tr
[
R2

jQ
2
j (ω)Qj (ω̃)A

]
tr
[
R2

jQj (ω)Q
2
j (ω̃)B

]
N2

j (1− Γj(ω, ω̃))
2 (3.20)

where we recall the bivariate function from (2.10) defined as

Γj(ω, ω̃) =
1

Nj

tr
[
R2

jQj (ω)Qj (ω̃)
]
.

Finally, the third term in (3.19) takes the form

ϱ (ω1, ω̃1, ω2, ω̃2) =
tr2 [R1Q1 (ω1)Q1 (ω̃1)R2Q2 (ω2)Q2 (ω̃2)]

N1N2 (1− Γ1(ω1, ω̃1)) (1− Γ2(ω2, ω̃2))
. (3.21)

Proof. See Appendix B.3.
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3.3 Simplified Expressions in the Oversampled Regime

Even if the expression obtained above appears to be difficult to evaluate due to
the presence of the contour integrals, one can typically simplify these expressions
using conventional residue calculus. This is illustrated next for the three distances
that have been considered in this section, namely the Euclidean distance, the sym-
metrized Kullback Leibler divergence and the log-Euclidean distance.

3.3.1 Particularization to the Euclidean distance

For the conventional Euclidean norm we have f(ω1, ω2) = (ω1 − ω2)
2 and both the

integrands in (3.16) and (3.18) have all the singularities inside the corresponding
contours. The strategy to solve these integrals is therefore to apply the change of
variable ωj 7→ ζj = ω−1

j after enlarging the contours, so that the resulting inte-
grands after the change of variable have only a singularity at ζj = 0. Using this
technique, one can show that the asymptotic (second order) mean takes the form

m̃E
M = ς

(
1

N1

tr
[
R2

1

]
+

1

N2

tr
[
R2

2

])
.

Regarding the asymptotic variance, one can use exactly the same integration tech-
nique to show that

σ̃2
M

1 + ς
= 2

(
1

N1

tr
[
R2

1

])2

+ 4
1

N1

tr [R1∆R1∆]

+ 2

(
1

N2

tr
[
R2

2

])2

+ 4
1

N2

tr [R2∆R2∆]

+ 4
1

N1N2

tr2 [R1R2]

where, now, ∆ = R1 −R2. Obviously, the three terms are positive, so that in order
to show that lim infM→∞ σ2

M > 0 it is sufficient to see that any of these are bounded
away from zero. In particular, using the fact that the eigenvalues of R1 are located
inside a compact of R+ independent of M one trivially sees that the first term is
bounded away from zero.

An interesting consequence from the above is that it becomes fairly easy to
obtain the estimators of m̃E

M and σ̃E
M directly from the data. We will denote these

by ˆ̃mE
M and ˆ̃σE

M , respectively. We recall from (2.13), that

1

Nj

tr[R2
j ] ≍

1

Nj

tr[R̂2
j ]−

1

N2
j

tr2[R̂j]. (3.22)
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Hence, for R1 = R2, these estimators take the form

ˆ̃mE
M = ς

(
1

N1

tr
[
R̂2

1

]
− 1

N2
1

tr2
[
R̂1

]
+

1

N2

tr
[
R̂2

2

]
− 1

N2
2

tr2
[
R̂2

])
. (3.23)

and (
ˆ̃σE
M

)2
1 + ς

= 2

(
1

N1

tr
[
R̂2

1

]
− 1

N2
1

tr2
[
R̂1

])2

+ 2

(
1

N2

tr
[
R̂2

2

]
− 1

N2
2

tr2
[
R̂2

])2

+ 4
1

N1N2

tr2
[
R̂1R̂2

]
. (3.24)

3.3.2 Particularization to the symmetrized KL divergence

For the symmetrized KL divergence we need to particularize the above expressions
to the case

f(ω1, ω2) =
1

2

(
ω1

ω2

+
ω2

ω1

)
− 1.

We recall that the estimator for this particular distance has only been defined in
the oversampled case (Nj > M ), and in this case the contour Cωj

does not enclose
{0} [56]. Hence, the integrands in (3.16) and (3.18) have all the singularities in-
side the contour, except for a potential singularity at zero. The integration strategy
therefore consists in enlarging the contour Cωj

so that it also encloses this singu-
larity, compensating the result by adding the corresponding residue at zero (note
that the original contour is always negatively oriented). The resulting integral can
therefore be solved applying the change of variables ωj 7→ ζj = ω−1

j .
Using this integration technique, one can easily show that the asymptotic (sec-

ond order) mean takes the form

m̃KL
M =

ς

2

(
1

N1 −M
tr
[
R−1

1 R2

]
+

1

N2 −M
tr
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R1R

−1
2
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.

whereas the asymptotic variance can be expressed as

σ̃2
M

(1 + ς)(N1 +N2 −M)
= − M
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+
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R1R
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+
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+
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4N2
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tr
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R−1

1 R2

]
N1 −M
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.
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One can easily show that this is positive by applying the inequality αtr [A] +

βtr [A−1] ≥ 2M
√
αβ (valid for any positive M ×M matrix A). Indeed, using this

inequality we see that the sum of the first three terms of the above expression is
non-negative. The fact that the other two terms are bounded away from zero fol-
lows easily from the fact that the eigenvalues of the covariance matrices are located
in a compact interval of R+ independent of M . This shows that lim infM→∞ σ2

M > 0

and the CLT holds.
Finally, when we have equal covariance matrices R−1

1 R2 = IM , the asymptotic
estimators of these quantities become

ˆ̃mKL
M =

ς

2

(
M

N1 −M
+

M

N2 −M

)
(3.25)

and (
ˆ̃σKL
M

)2
(1 + ς)(N1 +N2 −M)

=
1

4N1

(
M

N2 −M

)(
1 +

M

N2 −M

)
+

1

4N2

(
M

N1 −M

)(
1 +

M

N1 −M

)
− M

2N1N2

which are both independent of R1 and R2. These results become particularly use-
ful in practical scenarios where one does not need to have access to R1 nor R2.

3.3.3 Particularization to the Log-Euclidean distance

Finally, the log-Euclidean distance we have f(ω1, ω2) = (logω1 − logω2)
2 and the

above integral tricks are not useful anymore due to the fact that the integrands are
not holomorphic on the whole negative axis. We can still find the solution to the
asymptotic (second-order) mean by evaluating the residues at the poles given by
the eigenvalues of Rj and the solutions to Γj(ωj) = 1, which are denoted θ

(j)
m , m =

1, . . . , 2M̄j . One can readily see that (assuming that the roots θ(j)m are of multiplicity
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one) the asymptotic (second order) mean takes the form
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where E
(j)
m is an M × K

(j)
m matrix that contains the eigenvectors associated with

the eigenvalue γ(j)m , assumed to have multiplicity K(j)
m . In the particular case where

R1 = R2 = R this simplifies to

m̃LE
M = ς

2M̄∑
m=1

tr
[
R2Q3 (θm) (log θmIM − logR)2

]
tr [R2Q3 (θm)]

.

We have not been able to come up with a manageable expression for asymptotic
variance. We therefore will only evaluate it using numerical integration.

3.4 Numerical Consistency of the Estimators

We start by comparing the traditional plug-in estimators d̂M to the proposed consis-
tent estimators d̃M . Specifically, we are interested in the particularizations already
discussed throughout this work, namely, Euclidean distance (EU), Symmetrized
Kullback-Leibler (KL) and the log-Euclidean norm (LE) distances. We recall that
both the traditional and our proposed methods rely on the information available in
the samples' covariance matrices R̂1, R̂2 and try to approximate the true distance
between the covariance matrices R1, R2. Here we use the same definition of the
previous chapters where two multidimensional observation sets Y1 ∈ CM×N1 and
Y2 ∈ CM×N2 are associated to two (possibly distinct) Toeplitz covariance matrices
R1 and R2 with first rows [ρ0j , . . . , ρ

M−1
j ], for j ∈ {1, 2}. Figure 3.1 illustrates the rel-

ative Mean Square Error (MSE) of our proposed consistent estimators compared
to the true distance over 103 samples for different choices of the coefficients ρ1, ρ2
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and c = M/N1 = M/N2. For the proposed estimators (dashed lines in the figures)
the MSE between these quantities is given by

εPROP = Ê

( d̃M − dM
dM

)2


where the empirical expectation (Ê[·]) is equivalent to empirical averaging. Fol-
lowing the same approach, one can also define εTRAD (solid lines in the figures) by
interchanging the proposed estimator d̃M with the traditional plug-in distance d̂M .

Specifically, Figures 3.1(a)-(b) portrays the case where observations are drawn
from distinct processes (ρ1 = 0.3 and ρ2 = 0.6). In this scenario, the traditional esti-
mators fail to converge to the actual distance between the two covariance matrices,
whereas the MSE of the proposed estimators continuously decay by growingM,N .
The lack of consistency of the conventional estimators is more apparent for the LE
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Figure 3.1: Relative MSE related to different metrics in different scenarios (a)-(d)
with respect to the growth of N = N1 = N2 (x–axis). In all these curves, the system
dimension M is scaled proportionally so that M/N = c is constant.
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and the KL norms, although all of them are inconsistent. A similar behavior is
displayed in Figures 3.1(c)-(d), for the case where ρ1 = ρ2 = 0.6. In this case, we
have that dM = 0 and hence we consider only the MSE of the distances with zero,
i.e., the norm of the empirical distances (Ê[d̂2M ] and Ê[d̃2M ]). Hence, these quantities
should all converge to zero. We notice, however, that all three traditional meth-
ods converge to another quantity away from zero while our proposed estimators
continuously decay as the system grows. Both these results corroborate the accu-
racy of the estimators proposed in this work, illustrating the advantage of the new
estimators for relatively low values of M,N .

3.4.1 Consistency of Asymptotic Descriptors

We also compare the asymptotic descriptors from the theorems above against the
empirical distribution of their respective metrics. Figure 3.2 (in the next page)
compares the histogram (in blue) and the asymptotic values (in orange) of these
metrics for c1 = M/N1 = 1/10, c2 = M/N2 = 1/2 and some specific choices of M
and ρ1, ρ2. Observe that there is a very good match between the asymptotic and
the empirical distributions regardless of the considered metric. This fact, together
with the results from the previous section, gives strong indications that for large
M,N the random quantity d̃M approximates its associated deterministic dM value
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Figure 3.2: Histogram of empirical distribution (in blue) and asymptotic descrip-
tors (in orange) of the different metrics EU, KL and LE for fixed ρ1 = 0.8, ρ2 = 0.4.
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better than the traditional plug-in method. These results support the idea that our
proposed asymptotic descriptors are consistent in several scenarios.



Chapter 4

Applications to Clustering

Up until now, in this dissertation, we have primarily focused on how to estimate
and asymptotically describe several distances between covariance matrices. Natu-
rally, this analysis alone already provides valuable results for the research commu-
nity. Nonetheless, in this chapter we further exploit these results and their applica-
tions to unsupervised clustering, namely, to the clustering of random observations
according to covariance matrices. In general, clustering solutions compare differ-
ent pairs of elements and, at each step, decide which pair of elements should be
merged together. After the clustering process is over, one often wishes to gain fur-
ther insights on how good the clustering solution is. In this chapter, we propose
studying the quality of a clustering solution based on the pairwise comparisons
that generate this solution.

To illustrate this idea in a practical scenario, consider the situation where a
clustering solution is being evaluated by an external controller. Typically, to ensure
privacy, this controller has no access to the elements that were used to generate the
clustering solution. Instead, it is possible that this external controller has access
to general information regarding the (several) underlying processes that generate
data or, alternatively, to some labeled dataset which describes these processes1.
Hence, one can also assume the controller to have access to the covariance matrices
that generate the processes, which can be obtained from the controller's labeled
data; and to the clustering solutions, which can be sent to the controller. In this
scenario, the controller wants to evaluate how good this clustering solution is, but
has no way to directly compare the covariance matrices to the elements that were

1This assumption is not completely unsupported and can be found, for instance, in teacher-
student knowledge distillation learning mechanisms [63], where the goal is to transfer the knowl-
edge from a large and complex learning model (teacher) to a smaller one (student). The teacher
often has access to a labeled dataset while the student only has access to the local data.

50
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clustered. Therefore, it has to rely on some statistical mechanism to evaluate how
good or how bad this clustering solution is.

In the remainder of this chapter, we will employ the asymptotic descriptors
derived in Chapters 2 and 3 to study each merge performed by a hierarchical clus-
tering algorithm as a binary hypothesis test (see Section 4.1), with the null hypoth-
esis being that elements belong to the same group (i.e., have the same covariance).
Specifically, we will use the fact that the distance estimators (consistent and plug-in
ones) can be seen as random variables and, in Section 4.2, use their CLTs to study
the probability of having correctly merged two elements that should be merged
together. Through numerical experiments, we will demonstrate that the empirical
rate of correctly detecting merges can be closely approximated by the cumulative
density function of the standard normal distribution. In Section 4.3, we follow a
similar intuition and also consider the probability of having wrongly merged two
elements that belong to different groups. We will conclude this chapter by show-
casing how to use such analysis to gain insights on the performance of binary
predictors using the different metrics discussed throughout this work.

4.1 Statistical Analysis of Clustering Evidence

Let us consider a set {Ŷk}Kk=1 containing K elements, where each element is a real-
ization of either one of the two processes, denoted by g = 1 or g = 2 and described
by the covariance matrices Rg. We do not know which element is associated to
which process (covariance matrix). In learning mechanisms, one often wishes to
study whether two elements Ŷi, Ŷj are generated by the same underlying pro-
cesses. That is, whether one of the covariance matrices Rg is (simultaneously)
associated with the two elements Ŷi, Ŷj . This analysis helps to determine whether
the two elements being compared should be merged into a single cluster or dif-
ferent ones. More formally, one can define each clustering decision as a binary
hypothesis test

H0(i, j) : R(i) = R(j)

H1(i, j) : R(i) ̸= R(j) (4.1)

where here we have denoted the covariance matrix associated to the kth element
by R(k) ∈ {Rg : g = 1, 2}. Statistically, if the null hypothesis is accepted, then
there exists sufficient evidence that the ith and jth elements should be clustered
together. Otherwise, they should be clustered in different groups. Naturally, this
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becomes fairly easy if one has access to the covariance matrices of the processes
(Rg, g = 1, 2) and to their associations with the covariance matrices of the elements
(R(k), k = 1, . . . , K). Indeed, there is no need to perform clustering as the solution
is trivially obtained by directly comparing these second order moment matrices.
Typically, for the kth element, the clustering algorithm does not know if R(k) = R1

or R(k) = R2. It does not know Rg, g = 1, 2 either, otherwise, the task could
be converted into classification instead of clustering. In fact, in a more realistic
scenario, it is often the case that the algorithm does not have access to any of the
elements' covariance matrices R(k), k = 1, . . . , K. Instead, it only has access to
the elements Ŷk, k = 1, . . . , K and needs to perform clustering decisions based on
these.

Coming back to our example described at the beginning of this chapter, the
controller would have access to the covariance matrices Rg, g = 1, 2, but no access
to the elements Ŷk, k = 1, . . . , K. Hence, it may rely on studying the hypothesis
test in (4.1) to evaluate how good or bad is the pairwise merge of two elements.
In the remainder of this chapter, we will describe how the statistical study of this
hypothesis test can assist in gaining insights on the quality of a clustering solution.
In particular, we will detail how the asymptotic characterization of various metrics
(described in Chapters 2 and 3) allows us to describe the behavior of this hypoth-
esis test for a given number of samples Ni, Nj . This analysis is later used to study
the probability of correctly clustering two elements.

4.2 Probability of Detection

In this section, we will focus on the probability that a clustering solution has de-
tected the merging of two elements, hereafter also denoted as the detection (or
merging) rate. Particularly, when the null hypothesis in (4.1) holds true, this trans-
lates into correctly deciding for the merge of two elements that should be merged
together (correct merging rate). Throughout this section we will demonstrate that,
under the null hypothesis, this correct merging rate is closely related to the cumu-
lative distribution function (CDF) of the standard normal distribution. This behav-
ior will happen regardless of the chosen metric. Conversely, the rate at which two
elements are wrongly merged is strongly influenced by the chosen metric and, as
the system grows, tends towards zero. To carry out this analysis, we will strongly
rely on the asymptotic behavior of the family of metrics described in Section 1.2.
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Particularly, in this section, we will mainly consider the consistent estimator dis-
tance described in Chapter 3. One of the main advantages of doing so is that,
by definition (see Section 1.2), when the null hypothesis H0(i, j) holds true (i.e.,
R(i) = R(j)) we have that dM = 0 which will ease the mathematical notation and the
explanation of the following discussion. Nonetheless, the conclusions discussed in
this section can be readily applicable to the plug-in distances (described in Chap-
ter 2) by considering their respective definitions.

Let us start by recalling some results from Chapter 3. The consistent estimated
distance d̃M between two sample covariance matrices R̂i and R̂j asymptotically
behaves as a Gaussian random variable around its asymptotic mean dM +M−1mM

with asymptotic variance M−2σ̃2
M . Specifically, when the observations associated

with these sample covariance matrices are generated by the same process (i.e.,
R(i) = R(j)), by definition, we have that dM = 0. Hence, when comparing two
elements, Ŷi and Ŷj , one can study the null hypothesis in (4.1) by using their as-
sociated z-score (also known as z-statistic), which we define as

z
(g)
ij =

d̃M(R̂i, R̂j)−M−1m̃
(g)
M

M−1σ̃
(g)
M

where m̃
(g)
M , σ̃(g)

M denote the second order mean and standard deviation of the dis-
tance d̃M , which are obtained by considering R(i) = R(j) = Rg into their respective
definitions (see Theorem 3.1).

In a practical scenario, after formulating the hypothesis test, one often uses the
z-score to assess the plausibility of the hypothesis being tested. In our scenario,
this translates into studying whether two elements are generated by the same co-
variance matrix or not. This plausibility is usually measured by comparing the
z-score against some pre-defined threshold. For instance, the test's significance is
a typical threshold that allows one to specify the maximum type-I error rate that
they are willing to accept. Our objective is to show that as the dimension of the
system increases, we will be able to correctly decide between the null and the al-
ternative hypothesis in (4.1). To do so, let us denote by ᾱM = αM a threshold
that scales proportionally to the dimension of the system M . We will assume that,
if z(g)ij ≤ ᾱM , then there exists significant evidence that the two elements Ŷi, Ŷj

should be merged together. Otherwise, they should not be merged together.
One way to evaluate the above is to compare the empirical rate of merges

which, for the gth group, is given by

P(g)
ij (ᾱM) = Ê

[
I
{
z
(g)
ij ≤ ᾱM

}]
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with I{·} being the indicator function, against its asymptotic value, namely the
CDF of a standard Gaussian distribution

Φ(t) =
1√
2π

∫ t

∞
e

−t2

2 dt

which, in turn, is evaluated at t = ᾱM . In other words, when the null hypoth-
esis holds true, z(g)ij should asymptotically behave as a standard normal random
variable and P(g)

ij (ᾱM) should be approximated by Φ(ᾱM).
In order to numerically present this idea, we consider the ith multidimensional

element Ŷ(i)
g ∈ RM×Ng to be associated to the gth group by the Toeplitz covariance

matrix Rg with first row defined by [ρ0g, . . . , ρ
M−1
g ]. Additionally, let us consider

three elements, Ŷ(i)
1 , Ŷ(j)

1 and Ŷ
(m)
2 , where the first two are considered to be associ-

ated to the same process (g = 1) and the last one to another process (g = 2). Then,
for some given threshold ᾱM , we can estimate the empirical rate P(g)

kl (ᾱM) that two
distinct elements (i.e., k, l ∈ {i, j,m} and k ̸= l) are merged at the gth group by
comparing different realizations of the elements Ŷ

(i)
1 , Ŷ(j)

1 and Ŷ
(m)
2 . Particularly,

in this thesis, this estimation is based on 103 realizations of these elements.
To perform this comparison, we start by noticing that the only correct merge is

between the pair (i, j). The others combinations (i,m) and (j,m) would be consid-
ered as incorrect merges (type-II errors). Moreover, by construction, the optimal
merge should occur when using the covariance of the g = 1 group. This is because
the pair of elements (i, j) are associated to the covariance matrix R1. Generally, in
the remainder of this chapter, when there is no confusion, we will denote by (k, l)

any of the three possible merging pairs (i, j), (i,m) or (j,m). Figure 4.1 compares
the empirical rates P(g)

ij (ᾱM),P(g)
im(ᾱM),P(g)

jm(ᾱM) against their expected theoretical
value Φ(ᾱM) under the null hypothesis. For each metric (EU, KL, LE), P(g)

ij (ᾱM)

(blue circles in the plot) is associated to the correct merge of two elements while
P(g)
im(ᾱM),P(g)

jm(ᾱM) (orange plus sign and green cross, respectively) are both asso-
ciated to the merging of elements that should not be merged together, i.e., to the
wrong merge of two elements. The comparison of these empirical rates is done
for growing2 M,Ni = Nj = Nm, fixed ρ1 = 0.6, ρ2 = 0.5, initial α = 1/8, and
for the different consistent estimator distances considered in this thesis, namely
the Euclidean, symmetrized Kullback-Leibler and the log-Euclidean distances (see

2Other settings, e.g. Ni ̸= Nj , under the null hypothesis, result in similar behaviors hence
are not displayed here. This is also a consequence of the fact that, asymptotically, the normalized
quantity (d̃M − M−1m̃

(g)
M )/(M−1σ̃

(g)
M ) will behave (under H0(i, j) in g = 1) as a Gaussian random

variable with zero mean and unit variance.
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Chapter 3). A reference diagonal line is also provided to indicate a perfect match
between these values.
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Figure 4.1: Rate of merging of two elements compared against the theoretical ex-
pected result when the null hypothesis hold. (a) Merging of two elements in the
correct cluster g = 1; (b) and in the alternative one g = 2, i.e., the other possible
null hypothesis.

In general, when the null hypothesis is true, as the system grows larger, the
empirical rate of correctly detecting merges P(g=1)

ij (ᾱM) (represented by the blue
solid circles) tends to its theoretical value Φ(ᾱM) (represented by the solid lines
crossing the plots). This tendency is visually represented by a close alignment
between the blue circles and the solid lines. Moreover, this tendency is a natural
consequence of the construction of the z-score. As described above, under the null
hypothesis, z(g=1)

ij asymptotically follows a standard normal distribution (z(g=1)
ij ∼

N (0, 1)), then, as the system grows large, P(g=1)
ij (ᾱM) asymptotically approaches

Φ(ᾱM). This property holds true for all the considered metrics. Indeed, after closer
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analysis, a strong correspondence is also observed in the correct (under the null
hypothesis and g = 1) rate of detection across all metrics.

Particularly, for the consistent estimator of the KL distance, we recall the re-
sults from Section 3.3.2 and note that, whenever under the null hypothesis (i.e.,
the element's covariance matrices are equal R(1) = R(2)), the asymptotic quanti-
ties m̃KL

M and σ̃KL
M do not depend on R(1) nor R(2). Consequently, under the null

hypothesis, P(1)
kl (ᾱM) and P(2)

kl (ᾱM) are asymptotically equivalent. This is visually
depicted in the figures by having a similar behavior for of the KL distance in Fig-
ure 4.1(a) and Figure 4.1(b). In a clustering application, this implies that, when
employing the symmetrized KL distance, if two observations belong to the same
cluster, it does not matter to which cluster they are associated to (g = 1 or g = 2),
the distribution of d̃M(R̂i, R̂j) is fully described based on the quantities M,Ni, Nj .
We also note a similar behavior when evaluating the LE distance and comparing
the different figures. However, this time around, the similarity between the re-
sults is due to the proximity of the distributions for the first (g = 1) and second
group (g = 2). Nonetheless, this is not a general rule, for the EU distance, for
instance, P(g=2)

ij (ᾱM) (wrong cluster assignment) is below the reference line Φ(ᾱM)

while P(g=1)
ij (ᾱM) (correct cluster assignment) is above it.

Finally, we emphasize that the behaviors observed when applying the KL and
LE distances do not necessarily pose any detrimental impact on the clustering anal-
ysis itself, as the purpose of clustering is to merge elements based on the hypoth-
esis test described in (4.1), which remains unbiased toward the group affiliation
of the elements (g = 1 or g = 2). In this scenario, the primary advantage is that,
when considering the alternative hypothesis, the rate of wrongly merging two el-
ements (P(g)

im(ᾱM) and P(g)
jm(ᾱM) in our setting) converges to zero regardless of the

true cluster assignment. In the next section, we further investigate the impacts
of the alternative hypothesis into the general clustering task with more than two
elements.

4.3 Assessing Clustering Performance

In the previous section, we investigated the probability of correctly detecting a
merge. However, more generally, one wishes to choose a metric that properly
maximizes the probability of detection while minimizing the probability of false
alarm (type-II error). Hence, in this section, we shift our focus to this more general
case and evaluate how the choice of different metrics impacts both probability of
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detection and type-II error. A common way to visualize the trade-off between
these quantities is in terms of the Receiver Operating Characteristic (ROC) curve
that describes the probability of detection as a function of the probability of false
alarm, i.e., fixed probability of keeping the elements in different clusters when they
should be clustered together.

Similarly as above, in order to numerically present this idea, we consider the
ith multidimensional element Ŷ(i)

g ∈ RM×Ng to be associated to the gth group by
the Toeplitz covariance matrix Rg with first row defined by [ρ0g, . . . , ρ

M−1
g ]. The

class assignment is unknown to the algorithm, then, for each binary comparison,
the ROC curve depicts the probability of correctly merging two elements that be-
long to the same cluster (e.g., Ŷ(i)

1 and Ŷ
(j)
1 , for g = 1), for some fixed false alarm

rate. Figure 4.2 presents the ROC curves for these distances in various scenarios.
A random binary classifier is also represented by a dashed line crossing the origin
and upper right corner of these plots. An optimal solution aims to get closer to the
upper left corner of the plot, this would represent a maximum probability of detec-
tion and for a given probability of false alarm. During our experiments, we noticed
that this is possible for the trivial case of large |ρ1 − ρ2| and increasing M,N1, N2.
Nonetheless, in the more general case, we notice that the choice of the best metric
is highly dependent on the specific choice of scenario and its parameters. In this
context, regardless of the used estimator, different settings (rows of Figure 4.2(a))
will lead to different distributions of the ROC curves even for small changes in ρ1,
ρ2 which describe the true covariance matrices.

A similar behavior is also noticed by simply swapping ρ1 ↔ ρ2 (rows of Fig-
ure 4.2(b)-(c)). These analyses become particularly useful in clustering scenarios
where more than two elements are being compared. Consider, for example, two
groups g = 1, 2, each defined by the set of elements Ẑg = {Ŷ(l)

g }Lg

l=1 of size Lg > 1.
Moreover, assume that all the elements associated to gth group are also generated
by to the covariance matrix Rg with Ng observations each. Then, given the joint
set Ẑ2 ∪ Ẑ2, the clustering goal is to form two distinct clusters, one containing all
the L1 elements generated by R1, namely Ẑ1, and another cluster containing all
the L2 elements associated to R2, namely Ẑ2. In this scenario, separately analyzing
the merges of the elements in the two groups Ẑ1 or in Ẑ2 might be misleading as
both merges need to occur for an accurate clustering to happen. In other words,
one has to ensure that the distance between Y

(k)
1 and Y

(l)
2 (elements from differ-

ent clusters) is smaller than the distance between Y
(i)
g and Y

(i)
g (elements from the
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Figure 4.2: ROC curves for binary hypothesis test in various scenarios using con-
sistent estimator. The choice of the best metric depends on each scenario.

same cluster), simultaneously for both g = 1 and g = 2. Otherwise, it might hap-
pen that d̃M(Ŷ

(k)
1 , Ŷ

(l)
2 ) > d̃M(Ŷ

(i)
1 , Ŷ

(j)
1 ) happens, indicating a correct merge, but

it is also possible that d̃M(Ŷ
(i)
2 , Ŷ

(j)
2 ) > d̃M(Ŷ

(k)
1 , Ŷ

(l)
2 ) happens which would in-

dicate wrongly merging two elements. Hence, in this case, to ensure the correct
clustering, we need to assess scenarios simultaneously.

To help better illustrate this concept, Figure 4.3 compares the (asymptotic) prob-
ability density functions of d̃M(Ŷ

(i)
1 , Ŷ

(j)
1 ) (blue) and d̃M(Ŷ

(i)
2 , Ŷ

(j)
2 ) (green) against

the PDF of d̃M(Ŷ
(k)
1 , Ŷ

(l)
2 ) (magenta) for the same setting as in the Figure 4.2(c).

Notice that these PDFs do not depend on the particular realization of any obser-
vations because, by construction, in our experiment, all elements associated with
the gth covariance matrix have the same size M × Ng. The first two PDFs (blue
and green) represent the distance between elements that belong to the same clus-
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Figure 4.3: Comparison of the PDF of the (consistent) distances between elements
of the same class (blue and green) and elements of different classes (magenta) for
M = 20, N1 = 40, N2 = 6.0 and ρ1 = 0.5, ρ2 = 0.7.

ter (g = 1 or g = 2, respectively). The final PDF (magenta) represents the distance
between elements that belong to different groups and should not be merged to-
gether. Optimally, the first two PDFs should be to the left of the latter one, i.e.,
distances of elements within the same group (inner-group) should be smaller than
the ones between elements of different groups (inter-group). We recall from The-
orem 3.1 in Chapter 3 that, under the null hypothesis, the first-order asymptotic
mean of the consistent estimator is zero (the true covariance matrices are equal
hence dm = 0). As a result, it (usually) becomes fairly easy to correctly distin-
guish d̃M(Ŷ

(k)
1 , Ŷ

(l)
2 ) from the other two curves, d̃M(Ŷ

(i)
g , Ŷ

(j)
g ), g ∈ {1, 2}, with a

rather small false alarm rate (refer to Section 4.3.2 for a similar analysis using the
plug-in distance). Nonetheless, as there might exist overlaps between these three
distributions, to reliably analyze the effectiveness of a metric in clustering differ-
ent elements, one needs to perform a multiple hypothesis test to assert that the
events d̃M(Ŷ

(i)
g , Ŷ

(j)
g ) < d̃M(Ŷ

(k)
g , Ŷ

(l)
g′ ) hold true with high probability, for g ̸= g′

and g, g′ ∈ {1, 2}.
As we need to account for the probability of multiple events, it becomes nat-

ural to use a multiclass ROC curve to analyze this joint probability for the differ-
ent configurations of M,N1, N2 and covariances R1,R2. Moreover, the multiclass
ROC curve simultaneously associated to both of these events becomes the average
between their singular ROC curves. Particularly, Figure 4.4(a)-(b) presents these
curves for the same settings as in Figure 4.2(b)-(c), respectively. An interesting
consequence of directly analyzing these curves is that they allow us to compare the
suitability of distance metrics for a specific problem without the need of acquiring
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Figure 4.4: Average ROC curves for binary hypothesis test in two different scenar-
ios using plug-in estimator.

any data. In other words, by using the proposed asymptotic descriptors, one is
capable of assessing the behavior of a metric in a specific scenario based solely on
its statistics. This becomes particularly useful in agglomerative clustering tasks
where a pair of elements are combined based on how distant they are from one
another. Finally, in what follows, we will use the area under the (multiclass) ROC
curve (AUC) to summarize into a single quantity the suitability of a metric applied
in a specific setting. For two distinct random processes, the AUC is associated to
the probability that the model ranks two random positive examples (samples that
belong to the same groups) more highly than a random negative example (samples
that belong to different groups). In a clustering scenario, this represents correctly
merging two elements that belong to the same cluster.

4.3.1 Impacts on Clustering using Consistent Estimators

To analyze the impacts of the results presented above to the task of selecting an op-
timal metric to cluster random elements, we will consider two random processes
and their associated groups Ẑ1 and Ẑ2, each containing L1, L2 elements, respec-
tively, that need to be clustered. We first evaluate the performance of a hierarchical
clustering with the average linkage to cluster these elements considering the dif-
ferent consistent estimators d̃M of the metrics EU, KL and LE (see Section 4.3.2 for
a similar analysis using the plug-in estimators). At the beginning, each element
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forms a cluster on its own and the final goal is to iteratively combine the most
similar groups until we are left with only two disjoint sets. At the end of each sim-
ulation, we evaluate the clustering results by considering the accuracy (ACC) and
the adjusted rand index (ARI) [64]. These are obtained by comparing the empirical
clustering solution (result of the hierarchical clustering) to the expected (ground
truth) one. The accuracy of the clustering result is calculated as the percentage of
elements that are associated to the correct cluster and is given by

ACC =
|G1 ∩ Ẑ1|+ |G2 ∩ Ẑ2|

L1 + L2

,

where G1 and G2 are the empirical clustering results associated to the true ones,
Ẑ1 and Ẑ2, respectively. This association is not directly provided by the clustering
algorithm. Instead, here we associate the solutions to G1 and G2 such that the ACC
above is maximized.

The ARI is another common way to assess the quality of a clustering solu-
tion and basically consists in counting the number of pairs of elements that are
grouped together (or separately) in both the true (Ẑ1, Ẑ2) and the empirical clus-
tering (Ĝ1, Ĝ2) solutions, i.e., the number of true positives (respectively, true nega-
tive) pairs of elements. Hereafter also denoted by TP and TN, respectively. More
specifically, the rand index (RI) coefficient is a measure which accounts for both
these quantities and it is given by

RI =
TP + TN(

L
2

)
where the denominator is the number of all possible pairwise combination among
the L elements being clustered. The RI coefficient ranges from 0 to 1 and, if all
the pairwise combinations, (TP and FP ones) are correct, it means that both the
predicted and ground truth clustering solutions are equal, so that we obtain RI = 1.
However, it is well-known this traditional definition of the RI coefficient is (often)
sensitive to the number of clusters [64, 65] and that the above definition can (by
chance) yield high RI values even when the clustering solution has only a few
agreements to the ground truth one (e.g., high TP or TN). A typical improvement
on the traditional RI is the adjusted rand index (ARI)

ARI =
RI−

[∑
i

(
Li

2

)∑
j

(|Ĝj |
2

)]
/
(
L
2

)
1
2

[∑
i

(
Li

2

)
+
∑

j

(|Ĝj |
2

)]
−
[∑

i

(
Li

2

)∑
j

(|Ĝj |
2

)]
/
(
L
2

) ,
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where Li (respectively |Ĝi|) represents the total number of elements in the ith clus-
ter according to the true (respectively predicted) clustering solution. As a result,
the ARI definition above describes a normalized metric that now takes into account
both the probability of randomly combining two elements together and the proba-
bility of this happening due to the clustering algorithm (see [64]). ARI values close
to (or below) zero represent solutions equal (respectively, worse) than a random
clustering algorithm. Alternatively, high ARI values indicate a good agreement
between the clustering solution and the ground truth.

Moreover, to validate our proposed metric selection mechanism, for each met-
ric, we compare their AUC (obtained from their asymptotic descriptors) against
their average ACC and average ARI, each obtained over 103 simulations. We
consider each true group to contain L1 = L2 = 8 elements that need to be clus-
tered, each of these elements being real-valued observation sets of size M × Ng,
for g = 1, 2. Table 4.1 presents this comparison for different scenarios. Notice that
there seems to be a strong correlation between the average ARI and the AUC/ARI.
Specifically, it seems that the metric with the highest AUC also yields the best clus-
tering assignment (highest ACC and ARI). However, it is important to note that it
is not possible to directly predict the overall ACC nor the ARI of the hierarchical
solution solely based on the AUC. The ACC and the ARI of the clustering solution
may vary depending on several factors such as the number of elements and the
chosen linkage method. Therefore, while the AUC provides valuable information
about the performance of a metric, it should not be used as the sole indicator of
clustering accuracy. Other factors should be considered, such as the specific char-
acteristics of the system and of the clustering algorithm being used.

Table 4.1: Comparison of AUC, ACC and ARI for different consistent estimators.

Scenario KL EU LE
M N1 N2 ρ1 ρ2 AUC ACC ARI AUC ACC ARI AUC ACC ARI

30 40 40 0.3 0.6 0.830 0.678 0.342 0.905 0.958 0.893 0.875 0.893 0.788

30 40 40 0.4 0.8 0.967 0.997 0.993 0.841 0.994 0.984 0.998 1.000 1.000

25 40 35 0.8 0.6 0.915 0.874 0.722 0.800 0.820 0.619 0.954 0.984 0.963

20 40 60 0.5 0.7 0.918 0.880 0.787 0.831 0.886 0.683 0.934 0.951 0.913
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4.3.2 Impacts on Clustering using Plug-in Distance

A similar analysis as the one above can also be performed by using the traditional
plug-in estimators d̂M , where now the distances are either KL, EU or SS. We re-
call that, in this case, we are primarily concerned with the undersampled scenario
where the number of observations Ng is lower than the dimensionality of the un-
derlying system M . Figure 4.5 presents the ROC curves for these distance esti-
mators for varying N1, N2, ρ1, ρ2 and fixed M = 30. Again, in order to achieve
an optimal solution, the goal is for the ROC curve to approach the upper part of
the plot. This position corresponds to a maximum probability of detection and a
given probability of false alarm. Conversely, classifiers that lie below the random
classifier (dashed line) represent the case where it is not possible to correctly distin-
guish between the two groups. Specifically, for the plug-in distance, this is a con-
sequence of the undesired scenarios where we observe larger distances between
elements from the same group than between elements from different groups, e.g.,
d̂(Ŷ

(i)
1 , Ŷ

(j)
1 ) > d̂(Ŷ

(k)
1 , Ŷ

(l)
2 ), for i ̸= j, k ̸= l. To help better illustrate this concept,

Figure 4.6 now compares the probability density functions of d̂M(Ŷ
(i)
1 , Ŷ

(j)
1 ) (blue)

and d̂M(Ŷ
(i)
2 , Ŷ

(j)
2 ) (green) against the PDF of d̂M(Ŷ

(k)
1 , Ŷ

(l)
2 ) (magenta) consider-

ing the plug-in estimators and for the same setting as in the Figure 4.5(c). Par-
ticularly, Figure 4.6(b) shows that, when applying the SS distance, even for large
false alarm rates, it is very unlikely to obtain (in the scenario considered here)
d̂M(Ŷ

(i)
1 , Ŷ

(j)
1 ) < d̂M(Ŷ

(k)
1 , Ŷ

(l)
2 ). As mentioned before, a direct consequence of this

behavior is that its respective ROC curve (orange line in the left hand side plot of
Figure 4.5(c)) is pushed below the random classifier. Notice that this could happen
when using any of the plug-in distances depending on the scenario considered.

Similarly as in the previous section, in the subsequent discussion we will use
the area under the (averaged multi-class) ROC curves as a method to summarize,
into a single quantity, the effectiveness of a metric applied in a specific context. We
will consider two random processes and their associated group of elements G1,G2,
each containing Lg = 8 elements that need to be clustered. This time around, we
evaluate the performance of a hierarchical clustering to cluster these elements con-
sidering the different consistent estimators of the metrics KL, EU and SS. Table 4.2
presents the comparison of the AUC, ACC and ARI for different settings and met-
rics using the plug-in estimators. Results are similar to the ones achieved when
employing the consistent estimator, i.e., higher AUC is strongly correlated with
the metric that leads to higher ACC/ARI values. Specifically, for the cases where
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Figure 4.5: ROC curves for binary hypothesis test of in various scenarios using
plug-in estimator and for M = 30.
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Figure 4.6: Comparison of the PDF of the distances between elements of the same
class (blue and green) and elements of different classes (magenta) for M = 30,
c1 = 1.5, c2 = 2.0 and ρ1 = 0.8, ρ2 = 0.5.
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Table 4.2: Comparison of AUC, ACC and ARI for different plug-in estimators.

Scenario KL EU SS
M N1 N2 ρ1 ρ2 AUC ACC ARI AUC ACC ARI AUC ACC ARI

30 15 20 0.5 0.9 0.983 0.999 0.997 0.927 0.927 0.811 0.682 0.417 0.035

30 20 25 0.4 0.8 0.818 0.759 0.438 0.952 0.950 0.877 0.513 0.431 0.004

30 12 12 0.3 0.8 0.737 0.615 0.067 0.886 0.747 0.383 0.592 0.411 0.017

30 10 25 0.7 0.9 0.818 0.787 0.499 0.782 0.640 0.274 1.000 1.000 1.000

30 15 25 0.5 0.7 0.645 0.564 0.001 0.628 0.451 0.004 0.883 0.917 0.846

30 15 20 0.3 0.8 0.797 0.635 0.129 0.847 0.723 0.400 0.698 0.417 0.044

AUC is close to 0.5 (random classifier) the ARI becomes very close to zero while
the ACC becomes close to 0.5 which might be misleading in some scenarios. In
general, the similarity between the results obtained in this section (using the plug-
in) and the ones obtained in the previous section (using the consistent estimators)
further suggests that it is possible to favor one metric over another based solely on
the AUC of their respective ROC curves.

4.4 Conclusions

The asymptotic characterization of the general class of distances between sample
covariance matrices presented in Section 1.2 has been applied to assert the qual-
ity of clustering solutions. Specifically, we have described this process as a binary
hypothesis test and evaluated its probability of detection and type-II error. To-
gether, these quantities provide valuable insights into determining if two elements
are generated by the same or different processes (i.e., whether they should be clus-
tered together or not). We showcase these results in several scenarios, employing
both our proposed consistent and plug-in estimators. Particularly, this illustrates
that the assertion mechanism described in this chapter is applicable regardless of
the metric system used and both in the over- and undersampled case. Finally, we
stress that the results described here are also applicable to other clustering mech-
anisms that are based on pairwise similarity comparisons and to other distances
that follow the same structure as the class of distances discussed throughout this
work.



Chapter 5

Subspace Similarity Applied to
Wireless Communications

Multi-antenna radio access technologies are extensively utilized to improve the
spectral efficiency and connectivity of wireless communications systems. By em-
ploying multiple antennas at both the transmitter and the receiver sides (MIMO
systems), these technologies can make use of advanced signal processing tech-
niques to exploit the spatial dimension of the wireless channel. For instance, by
exploiting the spatial degrees of freedom provided by multiple antennas, MIMO
systems can overcome the adverse effects of fading while improving the overall
quality and reliability of wireless connections. Particularly, in the uplink (MAC
channel), space-division multiple access (SDMA) is a traditional method that has
been extensively used to enhance spectral efficiency by exploiting the spatial sepa-
ration of transmitters to optimize the use of different channelization protocols (en-
hancing time and frequency multiplexing using spatial multiplexing). Similarly, in
the downlink (broadcast channel), dirty–paper coding (DPC) has shown to achieve
the channel capacity region. While DPC has theoretical advantages by exploiting
the presence of self-induced interference, the practical complications associated
with the need for accurate channel state estimation and the inherent computational
complexity make its implementation challenging. In this context, several subop-
timal alternatives have been proposed in the literature, such as non-orthogonal
multiple access (NOMA) [21], joint spatial division multiplexing (JSDM) [22], and
hierarchical rate splitting (H-RSMA) [23] to name a few. These downlink methods
share a common approach used to improve communication efficiency, which in-
volves partitioning receivers into clusters based on some pre-defined criteria. In
such scenarios, one can rely on clustering for leveraging the spatial relationships
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among signals and mitigating multi-transmitter interference, thereby enhancing
overall communication performance.

This chapter focuses on the general task of clustering of users based on the scat-
tering at the base station side, regardless of whether the application is in the up-
link or downlink. Finding the optimal user clustering for a specific transmission
scheme is generally a challenging problem that involves comparing all possible
partitions of different channels into groups. This approach incurs exponentially
high computational complexity, making it infeasible in practice. Hence, when
there are sufficient degrees of freedom, it is reasonable to form groups based on
spatial proximity such that receivers/transmitters with similar angles of arrival
(AoA)/angles of departure (AoD) are grouped together. Unfortunately, when mul-
tipath is present, geometric/spatial proximity is almost meaningless and one should
instead measure users' proximity based on how well aligned the subspaces spanned
by their channel matrices are [23, 24]. This is closely related to what we have dis-
cussed in the previous chapters of this dissertation: the similarity between two
subspaces can be measured as

d̂SSM =
1

M
tr
[
(P1 −P2)

2
]
.

where Pk (see below) represents the projection matrix onto the column space of the
kth user channel. A similar line of reasoning can also be used when comparing the
(sample) channel covariance matrices of the different UEs. In this scenario, users
that are close together will have similar covariance matrices.

Throughout this chapter, we will explore how the results presented in the pre-
vious chapters of this thesis can be applied to the clustering of wireless devices. We
will primarily focus on the undersampled regime hence, we will rely on the plug
in distances studied in Chapter 2 of this thesis. In the multi-user MIMO scenario
(MU-MIMO), the undersampled regime represents the case where the number of
antennas at the base station is larger than the number of users in each cluster.
Simultaneously, we will also consider the case where the total number of users
(i.e., the sum of the number of users in each cluster) is larger than the number of
antennas at the base station, scenarios where clustering can assist in mitigating
interference.

In what follows, we start by presenting the MIMO signal model considered in
this chapter as well as how to apply the results derived in the previous chapters to
this specific setting. We will leverage the results from the previous chapters to pro-
pose a hierarchical clustering solution designed specifically for the comparison of
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non-equidimensional channel matrices. This scenario corresponds to the situation
where groups with different number of users are being compared. Alternatively,
one could also see this by comparing UEs that are equipped with different num-
bers of antennas [7]. Throughout this chapter we will focus on the first scenario.
Since we are dealing with the undersampled scenario, most of the consistent es-
timators derived in the previous chapter are not applicable. For this reason, we
will mainly focus on the plug-in distance. The main idea behind this chapter is
to adopt these distances by connecting their asymptotic bias when the two com-
pared covariances are the same. Specifically, we build on the asymptotic results
established in Chapter 2 to introduce correction terms that converge to the asymp-
totic equivalents of various plug in distances, but only when the two covariance
matrices are equal. This guarantees that the corrected distance converges to zero
in this situation, which also guarantees consistency when the two covariance ma-
trices are equal. We will show that the corrected distances effectively assist in the
comparison and clustering of non-equidimensional channels matrices. Finally, we
will conclude this chapter with a comparative analysis between our proposed cor-
rected metrics and the traditional ones.

5.1 MIMO Signal Modeling

Consider a wireless scenario with a base station equipped with M antennas and
K > M single antenna user equipments (UEs) which are divided into G groups,
each of size Nk, k = 1, . . . , G and

∑
Nk = K together with Nk < M . The MU-

MIMO channel of the kth group can be described by a M ×Nk matrix of complex
entries Yk. We consider the same signal model with correlation/scattering at the
BS side as the one presented in Remark 2.1 in Chapter 2. In the context of wire-
less communications, this can be understood as a Rayleigh model for MIMO fad-
ing channels, according to which the channel matrices Yk are independent among
group of users and can be decomposed as

Yk = R
1
2
kXk (5.1)

where Rk ∈ CM×M is assumed to be full rank and represents the channel spatial
covariance matrix at the BS. In this case, the matrix Rk is inherently dependent on
the scattering structure of the scenario, in particular on the multiple channel paths.
Moreover, the entries of the M × Nk matrix Xk are assumed to be independent
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and identically distributed (i.i.d.) complex circularly symmetric Gaussian random
variables, with zero mean and unit variance (Rayleigh fading).

The results presented in this chapter are quite general and applicable to any
kind of observation sets that follow (5.1). Nonetheless, inspired by the channel
clustering application in wireless communications, we will tailor our analysis to
the MIMO setting and simulate observation matrices as MU-MIMO wireless chan-
nels. In this context, the covariance matrices Rk, k = 1, . . . , G are generated by
averaging the contribution of random directions of arrival, which impinge on a
uniform linear array with half a wavelength inter-element separation [66, Chapter
2]. We will denote by φk the average angle of arrival associated to each channel,
we assume them to be Gaussian distributed with angular spread δ2φ. For two co-
variance matrices, Ri and Rj , the separation between φi and φj can be understood
as a spatial distance between the ith and jth groups of users. In other words, it
is associated to the distance between the distribution from the associated channel
matrices or, in a more geometric view, to the distance between the subspaces that
are spanned by the channel matrices associated to each group. For instance, for
small ∆φij = |φi−φj|, we have that two groups are close together, thus it becomes
harder to distinguish between one another. In contrast, for ∆φij large, both groups
are generated by non-related subspaces hence are easily to distinguish from one
another.

As mentioned above, we are interested in establishing whether two set of UEs
channels Yi,Yj belong to the same spatial sector as seen from the BS. This spatial
information is completely contained in the column space of the channel matrices
Yk, k = 1, . . . , G. Hence, we will formally assign the two matrices to the same
spatial cluster when the two column spaces are close enough, in terms of a dis-
tance/proximity measure that will be specified in what follows.

Remark 5.1. Throughout this chapter we will simultaneously follow two intuitions to
cluster the channel matrices described in (5.1). The first one, described above, considers the
alignment of the column space of two channel matrices, e.g., span(Yk), span(Yj). If these
subspaces are well aligned, it suggests that the two channels should be grouped together.
In a clustering context, this often translates into selecting the pair of channel matrices
that exhibit the best/highest alignment. This approach is commonly employed in several
wireless applications, such as [7, 20, 67] to name a few, where the interest is in clustering
wireless channels according to their field of view or the set of directions of arrival associated
to them. A detailed analysis is conducted in the following section.
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Now, a different view of the problem considers the direct comparison of the sample
covariance matrices associated to the channel matrices Yk,Yj , namely,

R̂k =
1

Nk

YkY
H
k and R̂j =

1

Nj

YjY
H
j . (5.2)

This is a more natural clustering problem in applications where we want to group users ac-
cording to their physical proximity (i.e., taking into account both their directions of arrival
and their power/distance to the base station). In this scenario, it is natural to consider the
family of metrics described throughout this thesis. Here again, given that we are strictly
examining the undersampled regime where Nk, Nj < M , we will rely on the plug in dis-
tances described in Chapter 2.

5.2 Subspace Comparison and Grassmann Manifolds

The distance between subspaces can be geometrically characterized by their prin-
cipal angles. Let Hk,Hj ⊆ CM denote the subspaces spanned by the columns
of two complex-valued matrices Yk ∈ CM×Nk ,Yj ∈ CM×Nj , respectively, where
Ωkj = {αkj(1), αkj(2), . . . , αkj(min(Nk, Nj))} be the principal angles between these
two subspaces. It can be seen that the cosine of the principal angles between two
subspaces Hk,Hj are the singular values of the matrix V̂H

k V̂j , where we have de-
noted by V̂k the first Nk left singular vectors associated to the kth channel matrix1

and similarly for V̂j . The complex (or real) Grassmannian G(N,M) can be seen
as the complex (real) manifold built of the symmetric projection matrices of size
M ×M and rank N [27]. Hence, given an observation matrix Yk, one can rely on
its (left) column space Hk to design an equivalence to the point Pk in the Grass-
mannian G(Nk,M), where Pk is the projection matrix

Pk = Yk(Y
H
k Yk)

−1YH
k = V̂kV̂

H
k . (5.3)

Notice that Pk is fully described by the first Nk left singular vectors V̂k of the
channel matrix Yk. This will later become particularly useful in our MU-MIMO
clustering setting, but for now, let us continue to describe the general scenario.

Remark 5.2. For readability, in this section, we focus on the case where two subspaces have
the same dimension, that is Nk = Nj = N . Nonetheless, we emphasize that these results
can be trivially generalized to the more general case where Nk ̸= Nj (see Section 5.3).

1A similar analysis can also be performed in the context of covariance matrices by considering
V̂k as the eigenvectors of the sample covariance matrix associated to the kth UE.
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Specifically, by using an appropriate embedding, we can still consider all the distances
below by simply selecting the positive eigenvalues in the corresponding definitions (or,
equivalently, by setting N = min(Nk, Nj)).

Interesting enough, if we denote by λ̂(kj)1 ≥ . . . ≥ λ̂
(kj)
N the non-zero eigenvalues

of PkPjPk, we can relate the principal angles Ωkj and these eigenvalues by

cos2(αkj(i)) = λ̂
(kj)
i .

The main advantage of identifying a channel as a point in the Grassmannian is
that we can consider conventional distance measures that define the topological
structure of this manifold, see [68] for a detailed review. In particular, in this thesis
we consider the squared projection-Frobenius distance, which is defined as

d2PF(Yk,Yj) =
N∑
i=1

sin2(αkj(i)) = N −
N∑
i=1

λ̂
(kj)
i = N − tr(PkPj). (5.4)

Analogously, another metric commonly used in wireless systems [20, 67] is the
squared Fubini-Study (FS) distance

d2FS(Yk,Yj) =
N∏
i=1

cos2(αkj(i)) =
N∏
i=1

λ̂
(kj)
i = pdet(PkPj) (5.5)

where pdet(·) denotes the pseudo-determinant (product of the non-zero eigenval-
ues). The main advantage of distance (5.4) with respect to other metrics is the fact
that it can be computed without the need for eigendecompositions. Furthermore,
according to our simulations (see also results in [7]), this distance appears to out-
perform other metrics in the clustering application considered here.

In summary, the above framework allows us to compare the column subspace
spanned by two distinct matrices Yk,Yj according to the distance between their
projection matrices Pk,Pj as elements of G(N,M). Notice that the quantity in (5.4)
is closely related to d̂(SS)M from the previous chapters, specifically, we have that

d̂SSM =
1

M
tr
[
(Pk −Pj)

2
]
=

1

M
tr
[
P2

k +P2
j − 2PkPj

]
=

1

M
tr
[
P2

k +P2
j

]
− 2

M
tr [PkPj]

= 2− 2

M
tr [PkPj]

= 2− 2N

M
+

2

M
d2PF (5.6)
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where we use the fact that projection matrices are idempotent, i.e., P2 = P. Hence,
in order to study the similarity measure

skj =
1

M
tr [PkPj] , (5.7)

it is sufficient to study (5.6) and vice versa. To simplify the explanation, we chose
to use skj in the remainder of this chapter when studying the alignment between
the column space of two channel matrices.

Theorem 5.1. Consider two independent (complex) channel matrices Yk ∈ CM×Nk , Yj ∈
CM×Nj defined according to (5.1), assume that M,Nk, Nj increase to infinity at the same
rate, so that M/Nk → ck, M/Nj → cj for ck, cj > 1. Additionally, assume that the
spectral norms of Rk and Rj are uniformly bounded in M . Then, the projection-Frobenius
based similarity skj in (5.7) converges almost surely to

s̄PF
kj =

1

M
tr
[
RkQk

(
µ
(k)
0

)
RjQj

(
µ
(j)
0

)]
(5.8)

where now, µ(l)
0 < 0, l = k, j is the only negative solution to the equation

1 =
1

Nl

tr
[
Rl(Rl − µ

(l)
0 IM)−1

]
. (5.9)

Furthermore, defining

(σPF
kj )2 =

(
µ
(k)
0

)2
σ2
k

(
µ
(k)
0 , µ

(k)
0 ;RjQj

(
µ
(j)
0

)
,RjQj

(
µ
(j)
0

))
+
(
µ
(j)
0

)2
σ2
j

(
µ
(j)
0 , µ

(j)
0 ;RkQk

(
µ
(k)
0

)
,RkQk

(
µ
(k)
0

))
+
(
µ
(k)
0 µ

(j)
0

)2 tr2
[
RkQ

2
k(µ

(k)
0 )RjQ

2
j(µ

(j)
0 )
]

NkNj

(
1− Γk(µ

(k)
0 )
)(

1− Γj(µ
(j)
0 )
) (5.10)

we have that (σPF )−1M(sPF
kl − s̄PF

kl ) converges in law to a standard Gaussian random
variable.

Proof. The asymptotic quantities s̄PF
kl and (σPF

kl )2 presented here are obtained in a
similar manner as the ones in Chapter 2 due to (5.6).

The characterization of the above quantity has an interest beyond the frame-
work of this thesis and can be used to characterize independence tests based on
canonical correlation analysis, which typically use tr [P1P2] as the relevant statis-
tic to determine whether the two sets of observations are statistically independent
(see [48–50] for the problem formulation and the asymptotic characterization when
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the observations are spatially white; results in this paper extend this characteriza-
tion to the general spatially colored case). In the remainder of this chapter, we will
see how the above line of reasoning can assist in the comparison and clustering of
different MIMO channels.

5.3 Hierarchical Clustering

We consider the use of an agglomerative hierarchical clustering approach using
one of the plug in distances described in Chapter 2. In this bottom–up approach,
the goal is to combine different observations into larger collections based on how
similar their corresponding subspaces are. Initially, every observation forms a sin-
gleton, i.e., a cluster of one observation. The idea is to consecutively merge clusters
based on one of the similarity/distance measures described above. At each merg-
ing step, the pair with the highest similarity (or, equivalently, the lowest distance)
is merged and forms a new cluster. The algorithm finishes whenever a certain
number of clusters is reached or the highest similarity falls below a pre-defined
threshold.

In order to study the merging problem from the statistical perspective, we will
follow the same procedure as in Chapter 4 and formulate each merging step in the
hierarchical clustering procedure as a binary hypothesis test. We assume that two
channel matrices belong to the same cluster (in terms of proximity of their corre-
sponding column subspaces) if they are generated from the same left covariance
matrix, that is

H0(i, j) : Ri = Rj

H1(i, j) : Ri ̸= Rj. (5.11)

If the null hypothesis is accepted, then the new cluster is formed by the concatena-
tion Y[kj] = [Yk,Yj], which is equivalent to stacking, side by side, the eigenvectors
associated to their respective column subspaces. Notice that this linkage method is
distinct from the ones considered in the previous chapters of this thesis. While in
the previous chapter we average the contribution of the different channels, here we
generate a new channel based on the concatenation of the channel matrices being
merged. Moreover, the concatenated matrix Y[kj] – of dimensions M × (Nk +Nj)

– can still be modeled according to (5.1), where Rk = Rj is the common covariance
matrix of the new cluster. Naturally, as contributions are averaged, this has little
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Figure 5.1: Merging point in agglomerative hierarchical clustering where groups
have equal number of elements N1 = N2 = N3 = 4 and M = 10. (a) Groups
spread in the spatial domain and their respective dendrogram connectivity. (b)
Empirical behavior (represented by the blue histogram) and asymptotic descriptor
under the null hypothesis (depicted by the red curves) of similarity measures for
various channel realizations within different groups.

impact when considering the sample covariance matrices, however becomes bene-
ficial in the subspace similarity. This, however, becomes beneficial when consider-
ing the construction of the projection matrix Pk. Notice that the larger the number
of columns Nk < M , the better the approximation of the intrinsic subspace is. In
the following sections, we will examine this merging procedure according to two
scenarios: the first and simpler scenario describes cases where the subspaces (e.g.,
span(Yk), span(Yj)) being compared have the same dimension (Nk = Nj), while
the second and more general one represents situations where the compared sub-
spaces are non-equidimensional (Nk ̸= Nj). Particularly, we will tailor our exam-
ples to the subspace similarity, but it is worth emphasizing the intuitions provided
below are also applicable when considering the general class of distances between
sample covariance matrices.

5.3.1 Comparison of Equidimensional Subspaces

We first exemplify the merging process in the specific scenario where every group
is of the same size (we will later describe the more general case). Figure 5.1 illus-
trates this idea: it represents a merging point in the hierarchical algorithm where
we compare three groups (denoted here by Y1, Y2, Y3) with the same number of
elements, i.e., N1 = N2 = N3 = 4. The number of antennas at the BS stations
is M = 10. At this point, the clustering algorithm needs to decide which pair of
groups to merge. To do so, it needs to choose – among the three possible options
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(Y1,Y2), (Y1,Y3) and (Y2,Y3) – the pair with the highest similarity or, alterna-
tively, the pair with the smallest distance.

Let us assume R1 = R2 ̸= R3. In this scenario, because Y1 and Y2 are asso-
ciated to the same left covariance (i.e., R1 = R2), the similarity measure between
them should be the highest, so that we should in principle have s12 > s13 and
s12 > s23 with very high probability. Figure 5.1(a) visually represents this scenario
in the spatial domain (left) and in a hierarchical structure (right). Indeed, by com-
paring different realizations of users' channels2 (φ1 = φ2 = 45◦ and φ3 = 60◦),
which belong to the groups g = 1, 2, 3, and analyzing the empirical distribution
of their subspace similarities (blue histograms in Figure 5.1(b)), we notice that the
similarity s12, between (Y1,Y2), is always higher than the similarity between any
of the other possible pairs (Y1,Y3) and (Y2,Y3). Moreover, we observe that, be-
cause N1 = N2 and R1 = R2, we have that Y1 and Y2 have equal subspace struc-
tures. Hence, the other two statistics s13 and s23 will have the same distribution,
i.e., E[s13] = E[s23] and var[s13] = var[s23]. This statistical behavior is illustrated
by the overlapping histograms in the second line of Figure 5.1(b) and denoted by
s13 ∼ s23.

We also highlight that the solid lines in Figure 5.1(b) represent the theoretical
probability density function (PDF) of the similarity (5.7). These PDFs are obtained
from Theorem 5.1 under the assumption Rk = Rj , which corresponds to the null
hypothesis in (5.11). By employing this method, when the null hypothesis is valid,
we obtain a perfect match between the theoretical PDF and its associated empir-
ical distribution (first line of Figure 5.1(b)). Conversely, when in the alternative
hypothesis, there exists a mismatch between the theoretical PDF and its associated
empirical distribution. A similar behavior can also be obtained using any of the
plug in distances, hence omitted here.

5.3.2 Non-equidimensional Subspaces

One of the main problems with the use of the similarity measure in (5.7) or, gener-
ally, any of the plug in distances, is that their statistics are inherently dependent on
the pair of observations (groups) that are being compared, specially with regard to
the dimensionality of the associated subspaces [7]. This problem is a direct conse-
quence of the fact that the distance measures are substantially related to the dimen-
sionality of the underlying manifold. For instance, in the SS case, by comparing

2See Section 5.1 for details on the modeling of the true covariance matrices.
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Figure 5.2: Behavior of similarity measure for comparison of non-equidimensional
subspaces of dimensions N1 = 4, N2 = 24, N3 = 32 before (a) and after (b) normal-
ization with respect to the null hypothesis, for M = 50.

subspaces of different dimensions (non-equidimensional subspaces) one is implic-
itly comparing measures among points defined in different Grassmann manifolds.
Hence, in the more generic case, where each group has a different number of ob-
servations (i.e., N1 ̸= N2 ̸= N3), a direct application of any of the plug in distances
might potentially lead to a misleading comparison metric.

To illustrate this idea, let us again consider the subspace similarity, but now the
scenario where we have the projections P1 ∈ G(N1, M), P2 ∈ G(N2, M) and
P3 ∈ G(N3, M). Recall that the projection Pℓ is closely related to the subspace
span(Yℓ) and to its dimensionality Nℓ. Moreover, because N1 ̸= N2 ̸= N3, we
also have that

G(N1,M) ̸= G(N2,M) ̸= G(N3,M).

Hence, in this new scenario, the measures s12, s23 and s13 are no longer compara-
ble. Figure 5.2(a) represents the same results as in Figure 5.2(b) but for the case
where N1 = 4, N2 = 24, N3 = 32 and M = 50. Based only on the comparisons
of the similarities s12, s13 and s23 (represented by histograms), one would wrongly
conclude the pair (Y1,Y3) to be the merge of choice, i.e., their similarity seems to
be the largest one when compared to the other possible pairs.



5.3. HIERARCHICAL CLUSTERING 77

Notice that, whenever Nk ̸= Nj , the similarity measure skj only considers the
first min(Nk, Nj) principal angles. Consequently, comparisons between two large
clusters (e.g., Y2 and Y3) may yield a higher similarity than comparisons between
a small and a large cluster (e.g., Y1 and Y2), regardless of the true group assign-
ments. As illustrated in Figure 5.2(a), even if s12 follows the theoretical PDF ob-
tained under the null hypothesis (red curve), the highest similarity turns out to be
between clusters Y2 and Y3. This is clearly undesirable. To ensure accurate clus-
tering, the algorithm should prioritize merges between elements belonging to the
same group, i.e., those conforming to the theoretical PDF associated with the null
hypothesis. Similar conclusions can be derived by considering any of the plug in
distances between covariance matrices. In this scenario, this undesirable behavior
may occur as a consequence of comparing two sample covariance matrices ob-
tained from a large amount of samples against two other estimators obtained from
a small amount of samples.

To circumvent the problem of non-equidimensional subspace comparison, in
[7], we showed that, when considering the projection-Frobenius based similarity
skj in (5.7), it is useful to consider the normalized measurement

s̃kj =
skj − s̄PF

kj

σPF
kj

(5.12)

where s̄PF
kj and

(
σPF
kj

)2 are defined as in Theorem 5.1, but tailored to the null hy-
pothesis in (5.11), namely Rk = Rj . The idea is to implicitly promote larger
values for comparisons under the null hypothesis while penalizing comparisons
under the alternative hypothesis. The main advantage of the proposed metric
space is the fact that all similarities are asymptotically comparable regardless of
the inherent subspace dimensions and that it benefits comparisons under the null
hypothesis, i.e., when the subspaces are generated with the same covariance ma-
trix.

As a result, this normalized measure allows us to effectively compare the de-
gree of alignment of multiple non-equidimensional subspaces. Figure 5.2(b) ex-
emplifies this case when comparing Y1 and Y2 in s̃12 (green histogram). In the
cases where two clusters have different spatial covariance matrices – e.g., (R1,R3)

and (R2,R3) – their normalized similarities – s̃13 (orange histogram) and s̃23 (blue
histogram), respectively – are moved far away from the standard normal distribu-
tion (red curve). This effect is visually represented by the shifting of the distribu-
tions over the x-axis. As a conclusion, notice that, in this normalized metric space,
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groups that have the same covariance matrix will usually have higher similarity
than groups with different covariance matrices, therefore allowing the comparison
of subspaces of different dimensions. Moreover, because each set of UE is associ-
ated to a subspace, we can directly infer the UEs clustering association based on
their subspaces cluster assignments.

Finally, notice that a similar behavior could also be obtained by considering the
corrected term skj − s̄PF

kj . The main difference between s̃kj in (5.12) and this cor-
rected term is that s̃kj is normalized by the variance, so that one can also perform
other statistical analysis to this quantity, such as the one described in Chapter 4.
Let us recall that to solve the problem of comparing non-equidimensional sub-
spaces, it is sufficient to properly shift the quantities s12, s13, s23 along the x-axis
so that the one that is associated to the correct merge (s12 in our example) can be
selected. The problem of rearranging the quantities in the x-axis, thus selecting the
correct cluster, can be tackled by considering the correction terms skl − s̄PF

kl which
does not depend on the variance. Before exploring the numerical implications of
this idea (see Section 5.5), in the following section, we build upon the results above
and present a correction term, denoted by ˆ̄dM , which can be directly derived from
the data. Notice that this is essentially different from what we have been doing
so far. Specifically, in Chapter 3, we proposed consistent estimators for the dis-
tance between sample covariance matrices, which were consistent under both null
and alternative hypotheses but primarily applicable to the oversampled regime (at
least for the KL and LE distances). In the remainder of this chapter, we propose
a different approach which is specifically designed for the undersampled regime
and the plug in distances. It consists in estimating the asymptotic equivalent of
d̂M under the null hypothesis and creating the corrected term denoted as d̂M − ˆ̄dM

which can be obtained directly from the channel matrices.

5.4 Correction Terms Under R1 = R2

Let us start by observing that the construction of the normalized statistic in (5.12)
requires the perfect knowledge of the covariance matrices of the channels that are
being compared. In low dimensional scenarios (small M and large N ), this is typ-
ically approximated by computing the required parameters with the sample co-
variance matrix instead of the true one. However, in large dimensional scenarios
(M and N large and comparable) this is far from optimal, mainly because the sam-
ple covariance matrix can hardly be regarded as a consistent estimate of the true
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one. In this section, we will propose estimators for the asymptotic equivalents
d̄KL
M , d̄EM , d̄

SS
M under the null hypothesis, which can be obtained directly from the

channel (or observation) matrices. To improve clustering, these correction terms
are tailored to correctly approximate their asymptotic equivalents under the null
hypothesis while penalizing comparisons under the alternative hypothesis. For
visualization purposes, these asymptotic equivalents, derived in Chapter 2 using
the true covariance matrices Rk,Rj , are recalled in Table 5.1. In what follows, we
will propose estimators to each of them.

Table 5.1: Asymptotic equivalents of KL, E and SS plug in distances in the under-
sampled regime (Nk, Nj < M ).

Name Asymptotic Equivalents of d̂M (Nk, Nj < M )

Euclidean distance 1

M
tr
[
(Rk −Rj)

2]+ 1

MN1

tr2[Rk]+
1

MN2

tr2[Rj]

Subspace Similarity 1

M
tr
[
RkQk

(
µ
(k)
0

)
RjQj

(
µ
(j)
0

)]
Symmetrized KL divergence tr

[
RkQ

2
k(µ

(k)
0 )Rj

]
2M

(
1− Γk

(
µ
(1)
0

))+ tr
[
RjQ

2
j(µ

(j)
0 )Rk

]
2M

(
1− Γj

(
µ
(j)
0

))−1

5.4.1 Euclidean distance

Let us start by the Euclidean distance. Notice that, by definition when Rk = Rj ,
we can re-write d̄EM as

d̄EM =
1

MNk

tr2[Rk] +
1

MNj

tr2[Rj].

Moreover, using the tools described in Section 3.1.1 of this thesis, we have that

1

MNk

tr2[Rk] ≍
1

MNk

tr2[R̂k]

where the equivalence should be understood as in Remark 3.1 of Chapter 3, that is,
for two Hermitian matrices BM and CM and two analytic functions f, h : C → C
applied to the eigenvalues of these matrices, we write f(BM) ≍ h(CM) if

1

M
tr [AM (f(BM)− h(CM))] → 0
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almost surely as M → ∞, where AM is any sequence of deterministic M × M

matrices with bounded norm.
The above allows us to write the correction term of the plug in Euclidean dis-

tance as
ˆ̄dEM =

1

MNk

tr2[R̂k] +
1

MNj

tr2[R̂j].

It is worth noticing that the corrected quantity d̂EM − ˆ̄dEM is equivalent3 to the defini-
tion of the consistent estimator d̃EM introduced in Section 3.1.1 of Chapter 3. We
recall that, for R1 = R2, the consistent estimator d̃EM → 0 and, for R1 ̸= R2,
d̃EM → M−1tr[(R1 − R2)

2] (i.e., it tends to the true distance between covariance
matrices dEM ). Then, as the corrected term d̂EM − ˆ̄dEM is equivalent to the consistent
estimator d̃EM , they will also follow the same behavior meaning that, under the null
hypothesis, d̂EM − ˆ̄dEM correctly approaches zero and, under the alternative hypoth-
esis, the corrected term tends to some positive value which is bounded away from
zero.

Finally, we also observe that both quantities share the same CLT, with m̃E
M = 0

(due to the complex nature of the observations, i.e., ς = 0) and

σ̃2
M = 2

(
1

Nk

tr
[
R2

k

])2

+ 2

(
1

Nj

tr
[
R2

j

])2

+ 4
1

NkNj

tr2 [RkRj] .

then, by using once more the results from Section 3.1.1, we readily obtain the esti-
mators

ˆ̃σ2
M =2

(
1

Nk

tr
[
R̂2

k

]
− 1

N2
k

tr2
[
R̂k

])2

+ 2

(
1

Nj

tr
[
R̂2

j

]
− 1

N2
j

tr2
[
R̂j

])2

+ 4
1

NkNj

tr2
[
R̂kR̂j

]
. (5.13)

Obviously, the three terms are positive, so that in order to show that lim infM→∞ ˆ̃σ2
M >

0 it is sufficient to see that any of these are bounded away from zero. In particular,
the eigenvalues of R̂k, R̂j are located inside a compact subset of R+ independent
of M , and one trivially sees that the last term is bounded away from zero.

5.4.2 Subspace similarity

The proposed estimator of the subspace similarity, which is defined under the null
hypothesis, is denoted as ˆ̄sk,j and can be expressed (see Appendix C.1 for details)

3This is not a general rule. The consistent estimator will often have different a CLT than its
associated corrected term.
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by

ˆ̄sPF
kj =


Nk

2M

(
1− κ̂2k(1)

κ̂k(2)

)
+

Nj

2M

(
1−

κ̂2j(1)

κ̂j(2)

)
Nk = Nj (5.14)

1

2M

(
Nkυ̂k(k)−Nj υ̂j(k)

υ̂k(k)− υ̂j(k)
+
Nkυ̂k(j)−Nj υ̂j(j)

υ̂k(j)− υ̂j(j)

)
Nk ̸= Nj (5.15)

where we have defined, for l ∈ {k, j},

κ̂l(m) =
1

Nl

tr
[(

R̂#
l

)m]
, m ∈ N

with (·)# denoting the Moore-Penrose pseudoinverse. Furthermore, for Nk = Nj ,
we have υ̂ℓ(l) = −κ̂−1

ℓ (1), whereas for Nk ̸= Nj we take

υ̂j(k) = γ

(
1− Nj

Nk

)
where γ is the smallest solution to

1

Nj

tr

[
R̂k

(
R̂k − γIM

)−1
]
= 1.

This distinction is particularly useful to penalize the alternative hypothesis H1(k, j)

based on υ̂j and R̂#
j by relating the smaller sample eigenvalue distribution in terms

of the larger one.
The estimator of the asymptotic variance (σPF

kj )2 is denoted by (σ̂PF
kj )2 and can

also be derived in a similar manner, but, as it is not directly applied to this the-
sis (see Remark 5.3), we leave its description in the Appendix C.2. Nevertheless,
it’s worth emphasizing that this estimator for the second-order moment holds po-
tential relevance in various domains. One notable example is its applicability to
sensor fusion methods, commonly utilized in signal processing, where it facilitates
the combination of different observations or measurements based on their respec-
tive variances [69]. This, however, is outside the scope of this thesis and is left for
future work.

Remark 5.3. After having introduced the derivations above, one can rush into the conclu-
sion that they can follow similar steps as the one conducted for the Euclidean distance and
simply plug the estimators ˆ̄sPF

kj and (σ̂PF
kj )2 directly into (5.12). Unfortunately, this is not

possible for the subspace similarity. When applying the new estimator of the deterministic
equivalent ˆ̄sPF

kl under the null hypothesis, the corrected value skl− ˆ̄sPF
kl will produce a new
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statistic that behaves differently from the correction based on its true asymptotic coun-
terpart skl − s̄PF

kl , meaning that these random quantities will have different asymptotic
variances. In other words, it is important to emphasize that, despite

skl − s̄PF
kl ∼ N

(
0,
(
σPF
kj

)2)
,

in general, when using the first order mean estimator for sPF
kl under H0(k, l), we have that

skl − ˆ̄sPF
kl ̸∼ N

(
0,
(
σPF
kj

)2)
meaning that the corrected quantity skl − ˆ̄sPF

kl cannot be described by neither of the vari-
ances discussed in this chapter. That is because the first order estimator ˆ̄sPF

kl is directly
obtained from the data and may vary depending on the channel realization which, in turn,
will directly affect the distribution of the corrected value skl− ˆ̄sPF

kl . Notice, however, that we
can still estimate (σ(PF )

M )2 by (σ̂
(PF )
M )2, but this estimator only holds for skl and skl − s̄PF

kl .

5.4.3 Symmetrized KL divergence

Under the null hypothesis Rk = Rj = R, the asymptotic equivalent of d̂KL
M be-

comes

d̄KL
M =

tr
[
R2Q2

k(µ
(k)
0 )
]

2M
(
1− Γk

(
µ
(k)
0

)) +
tr
[
R2Q2

j(µ
(j)
0 )
]

2M
(
1− Γj

(
µ
(j)
0

)) − 1

where we recall that, under the undersampled (Nj < M ) regime, µ(j)
0 is the only

negative solution to the equation (respectively to k)

0 = µ(j)

(
1− 1

Nj

tr
[
RjQj

(
µ(j)
)])

. (5.16)

Then, by using the results from Appendix C, and after some algebra, we readily
obtain

ˆ̄dKL
M =

Nk

2M

N
−1
j tr

[(
R̂#

j

)2]
(
N−1

j tr
[
R̂#

j

])2 − 1

+
Nj

2M

N
−1
k tr

[(
R̂#

k

)2]
(
N−1

k tr
[
R̂#

k

])2 − 1

− 1.

5.4.4 Consistency of Correction Terms

Before delving into the numerical implications of the correction terms described
above, in this section we analyze (under the null hypothesis) how accurate these
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correction terms are. We will assess the asymptotic consistency of our proposed
estimators by comparing the Normalized Mean Squared Error (N-MSE) between
the correction terms ˆ̄dM and their asymptotic equivalents d̄M for each of the metrics
considered in this chapter, namely, SS, EU and symmetrized KL divergence. The
N-MSE for each of these correction terms is defined as

εcor = Ê

( ˆ̄dM − d̄M
d̄M

)2


where the empirical expectation (Ê[·]) is averaged over a large number of different
channel realizations. In what follows, we will consider the covariance matrices
R1 = R2, as described in Section 5.1. These matrices both correspond to angle
φ1 = φ2 = 30◦ with angular spread of δ2φ = 15◦. We will use these covariance
matrices to define d̄M (under the null hypothesis) and generate S = 103 realization
of channel matrices, namely Y

(i)
1 ∈ CM×N1 , Y(i)

2 ∈ CM×N2 , i = 1, . . . , S. Notice
that, by construction (see definition (5.1)), these channel matrices are not equal
to one another due to the fact that X(i)

1 ̸= X
(i)
2 and X

(i)
l ̸= X

(j)
l , for l = 1, 2 and

i ̸= j. These channel matrices will be subsequently used to build the (estimated)
correction term ˆ̄dM .
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Figure 5.3: Measured N-MSE (y-axis) between asymptotic and estimators descrip-
tors for growing number of antennas (x-axis).

Figure 5.3 shows the N-MSE for the asymptotic estimations of s̄PF
M , d̄EM and d̄KL

M .
Note that, for every metric and constant M/N1 = M/N2 = c, as M → ∞ (x-axis),
the N-MSE (y-axis) between the estimated corrections and their respective asymp-
totic equivalents tends to zero, meaning that they become very close or equal to
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one another. Moreover, we note that the closer Nj, j = 1, 2 is from M the easier
it becomes to reconstruct the intrinsic subspace or, alternatively, to estimate the
true covariance matrix R. Hence, in our scenario, the closer the number of anten-
nas at the receiver M is to the number of antennas at the transmitters Nj, j = 1, 2,
the faster this convergence happens. This convergence is visually depicted in the
figure, with smaller values of c corresponding to a faster convergence rate. These
results corroborate the accuracy of the estimators proposed in this chapter, demon-
strating that they are reliable approximations of their asymptotic counterparts.

5.5 Clustering of MIMO Channels

In order to validate the results presented above, we assess the clustering perfor-
mance of the proposed corrected measures d̂M − ˆ̄dM . Here d̂M can be any of the
metrics discussed in this chapter, namely SS distance (equivalently ŝPF

kj and ˆ̄sPF
kj for

similarity), EU distance, or symmetrized KL divergence. Moreover, ˆ̄dM represents
the correction term derived as per its respective definition from Section 5.4. The
performance of the proposed measures are denoted as “COR” in the figures and
are represented by dashed lines. The original (non-corrected) statistics are depicted
using the same color but are displayed as a solid line and are denoted as “TRAD”
in the figures. We also compare the performance against four other more common
measures: the Projection–Frobenius similarity (denoted here by “PF”), the Fubini–
Study based similarity [68] (“FS”), together with the minimal (dC–S) and average
(dC–AVG) columnwise cosine distance between two clusters Y1, Y2. Specifically, the
minimal columnwise cosine distance dC–S is defined as the minimum between ev-
ery column pair y1(i), y2(j). Similarly, the average columnwise distance is defined
as

dC–AVG =
1

N1N2

N1∑
i=1

N2∑
j=1

(
1−

∣∣yH
1 (i)y2(j)

∣∣
||y1(i)||2||y2(j)||2

)2

where yi(k) represents the kth column of matrix Yi. For all these distances, we con-
sider an agglomerative hierarchical clustering algorithm that, at each step, merges
the pair of clusters with highest similarity or, equivalently, smallest distance.

Moreover, rather than characterizing the behavior of the whole hierarchical
clustering method, we focus here on individual merging steps in the clustering
process. More specifically, we evaluate a simplified scenario with three clusters
(set of channel matrices), Y1,Y2,Y3 and assume that Y1,Y2 are generated with
the same left covariance matrix (R1 = R2), and should therefore be merged into a
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Figure 5.4: Comparison of probability of success for corrected and non-corrected
plug in metrics in four different scenarios (a)-(d) with respect to the growth of N1

(x–axis).

(new) single cluster. The left covariance matrix of the third observation is different
from the other two (R3 ̸= R1). Notice that the hierarchical clustering of K groups
boils down to K!

(K−3)!3!
triplet comparisons. In this sense, analyzing the merging of

pairs based on triplets is closely related to the behavior of the hierarchical cluster-
ing in large scenarios, i.e., K > 3. Moreover, by comparing clusters of different
sizes, we are essentially simulating different levels of the hierarchical clustering.
Finally, for each of the metrics described above, the algorithm first computes the
three similarity measures between pairs of matrices, and chooses to merge the pair
that has the highest similarity. We define the probability of success (POS) as the
probability of making the right merge and evaluate it by considering a collection
of 103 realizations of these clusters.

Particularly, we will simulate the scenario where the first two groups are asso-
ciated to φ1 = φ2 = 30◦ and the third one to φ3 = 60◦. Moreover, we will always
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consider the case whereN1, N2, N3 < M andM = N1+N2+N3−min(N1, N2, N3)+1.
The first condition simulates the undersampled regime, while the second one en-
sures it is not possible to spatially separate UEs and hence, a clustering solution is
desired. Figure 5.4 illustrates the POS obtained in four distinct scenarios for dif-
ferent choices of the dimensions (M,N1, N2, N3), where in all cases these quantities
are taken to increase proportionally in the x–axis. Notice that in all four scenarios,
the proposed corrected metric (dashed lines) generally outperform or equals their
respective non-corrected measure (solid lines) especially in situations where the
compared subspaces have very different dimensions. The proposed corrected met-
rics usually outperform their non-corrected counterpart in the case where the tra-
ditional metric cannot properly distinguish between a correct merge and a wrong
one this is illustrated, for instance, when considering the SS and EU distances in
Figure 5.4(b) or the KL distance in Figure 5.4(c). Unfortunately, there exist sce-
narios, for instance the one depicted in Figure 5.4(d), in which also the corrected
symmetrized KL divergence fails to correctly select the two clusters that should be
merged together. It turns out that, in some cases, ˆ̄dKL

M is also a close approxima-
tion of the statistic d̂KL

M even under the alternative hypothesis. As a consequence,
instead of separating the two PDFs associated to the null and alternative hypoth-
esis, the corrected term d̂KL

M − ˆ̄dKL
M brings them close together4, i.e., center both in

zero. Nonetheless, this is primarily present when considering the symmetrized KL
divergence and over specific scenarios.

We also compare the proposed corrected metrics against other traditional met-
rics, namely FS, C-S and C-AVG. These traditional metrics can serve as baselines
to our proposed corrected metrics. This comparison is depicted in Figure 5.5 for
the same scenarios as in Figure 5.4. Notice that in all four scenarios, the proposed
corrected metric of the EU and SS metrics generally outperform the traditional
metrics, especially in situations where the compared subspaces have very differ-
ent dimensions. Furthermore, we observe that a similar behavior is observed even
in the scenarios with a relatively low number of dimensions, in spite of the fact
that the statistic is designed to perform well in large dimensional settings.

Finally, we also study the relationship between the mean angular distance in
the covariance generation ∆φ13 = |φ1 − φ3| and the POS for each of the consid-
ered similarity measures. Notice that this is the same as moving the elements from

4It is worth noting that there might exist some alternative definition for d̄KL
M and ˆ̄dKL

M which
further penalizes the alternative hypothesis. The specific study of such alternatives is left as future
work.
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Figure 5.5: Probability of success related to the different metrics in four different
scenarios (a)-(d) with respect to the growth of N1 (x–axis).

the desired merging groups Y1,Y2 far away from the other group Y3. Figure 5.6
illustrates the relationship between the mean angular distance in the covariance
generation |φ1 − φ3|, for φ1 = 20◦, M = 10 and the POS for each of the considered
similarity measures. Observe that, once again, both normalized metrics outper-
form all the other metrics, especially in the region where the two left covariance
matrices are close, which corresponds to the region where ∆φ is small.

5.6 Conclusions

An agglomerative hierarchical clustering of UEs has been analyzed in this chapter.
Particularly, we have considered merging elements that are similar to each other
based on their intrinsic subspaces. We have discussed two main intuitions: the
first, which results from the direct comparison of the sample covariance matrices
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Figure 5.6: Probability of success for different ∆φ. The dimensions of each obser-
vation can be described by N1/2 = N2/2 = N3 = 3.

associated to each channel matrices; and the second one, which has been the focus
of this chapter, and considers how well aligned the subspaces spanned by their
channel matrices are. Naturally, one is closely related to the other. Moreover, it has
been shown that by using the asymptotic behavior of the statistic d̂M under the null
hypothesis H0(i, j), one can re-normalize this measure into a corrected equivalent,
namely d̂M − ˆ̄dM , such that the comparison between channels or group of chan-
nels with different dimensionality becomes possible. This correction measurement
relies solely on the observations and their sample covariance matrices.

Particularly, these correction terms are estimators of the asymptotic equiva-
lents, under H0(i, j), of the different metrics plug in distances. The primary ad-
vantage of these estimators, as opposed to those presented in the previous chap-
ters, is that these estimators can be directly obtained from the sample covariance
matrices. Through numerical simulations, we have confirmed the correctness of
the presented results and how one can rely on the estimated asymptotic equiva-
lent to improve clustering. Our results have shown the better performance of the
proposed correction term when compared against their original (non-corrected)
statistics and three other commonly used metrics.



Chapter 6

Clustering for Rate Splitting and
MIMO

In the previous chapter, we described how to take advantage of the different plug in
metrics to correctly cluster wireless equipments. Particularly, we have introduced
correction terms, built directly from the channel matrices, that assist in the cluster-
ing of these devices. One of the downsides of this approach is that it assumes that
the base station has access to the true channel of each user equipment. However,
in practice, it is often the case that the base station only has access to estimators of
these channel matrices. In this chapter, we will build upon the results presented
in the previous chapter, but this time we propose a shallow neural network based
clustering technique to learn and group different UEs according to their instanta-
neous noisy channels. Moreover, we also take a more wireless focused approach
and study the direct impact of clustering in the spectral efficiency of communica-
tion systems. Furthermore, once again, we focus on the undersampled regime for
which, in the downlink, the total number of UEs exceeds the number of antennas
at the base station, making it difficult to effectively mitigate the interference from
multiple transmitters.

Rate splitting is a flexible and robust scheme which effectively manages in-
terference among multiple transmitters and receivers. Its versatility and efficacy
make rate splitting a promising solution for next-generation wireless networks.
Different from other traditional non-orthogonal techniques which try to fully mit-
igate interference from multiple sources (e.g., NOMA), rate splitting takes advan-
tage of the possible interference by partially decoding it and partially treating it
as noise. This has shown to further improve multiplexing gains [70]. In its most
simple design, 1-layer rate splitting divides the total data rate into two compo-
nents: a common message (s(c)) shared among all users and K private messages

89
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(s(p)k , k < K) intended for the individual users. At the receiver side, one often first
decodes the common message while treating the remaining signals as interference,
and then apply SIC to retrieve the private message. Notice that the common mes-
sage is treated as a shared resource that needs to be decoded by all users in the
system. This is often tackled by allocating a larger fraction of the total power to
the common message. In the presence of a large number of receivers, this condition
limits the total rate by the minimal common rate achieved in the whole system. As
a consequence, the power assigned to each s(p) is reduced, leading to a degradation
in communication rate. This limitation is irrespective of the number of antennas
at the transmitter and arises from power allocation strategies aimed at minimizing
interference among different users.

A possible solution is to adopt multiple common streams (generalized rate
splitting) which leads to higher multiplexing gains. However, this approach comes
with the drawback of increased complexity at the decoder due to the presence of
several layers of SIC [70]. To address the escalating complexity while minimizing
the loss in multiplexing gains, [23] proposes a 2-layer hierarchical rate splitting
(HRS) transmission mechanism. In this scenario, users are now considered to be
divided into G groups. The kth user of the gth group is required to decode three
messages: a common (s(c)) one, the semi-private message associated to its group
(s(sp)g ) and its private message s(p)gk . The idea is similar to the one deployed in the
1-layer RS, with the difference that now the system contains a semi-private mes-
sage which is encoded by a codebook shared only among users in a specific group.
Moreover, at the receiver side, each user is required to perform a hierarchical SIC.
This involves decoding the common stream (s(c)) first and treating the all semi-
private streams and the private streams as interference. Next, the user proceeds
to decode its associated semi-private common stream s

(sp)
g , considering the private

streams as interference. Finally, the user retrieves its private message from the
private stream (s(p)gk ). This sequential decoding process allows the user to separate
and extract the desired information from the different encoded streams. One of
the major challenges for such HRS schemes is the necessity to know the optimal
clustering of the users based only on their channel state information (CSI). As de-
scribed in throughout this thesis, this clustering problem is known to be NP hard.
Hence, in this chapter, we use the finding from [7] to train a neural network capa-
ble of directly learning (or approximating) the optimal clustering option from the
imperfect CSI.
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6.1 System and Transmission Model

Consider the scenario where a base station (BS) equipped with M antennas trans-
mits messages to K single-antenna user equipments (UEs) over a downlink chan-
nel. Additionally, let us assume these UEs to be divided into G disjoint groups,
with each group consisting of Kg UEs, g = 1, . . . , G. The signal y ∈ CK received by
all the users can be described by

y = HHx+ n (6.1)

where, H = [h1, . . . ,hK ]
T ∈ CM×K contains the stacked channels of all the k ∈

{1, . . . , K} UEs, n ∼ NC(0, IK) is an additive white Gaussian noise vector and
x ∈ CM is the combined signal

x =
√
p(c)w(c)s(c) +

G∑
g=1

Bg

(√
p
(sp)
g w(sp)

g s(sp)g +
√
pgkWgsg

)
(6.2)

where p(c), p(sp)g and pgk are the power allocated to the common (s(c) ∈ C), semi-
private (s(sp)g ∈ C, for all g) and private (sg ∈ CKg ) messages, respectively. Bg ∈
CM×bg is the group precoder designed from the gth group's long term channel's
second order statistics. The number of columns bg is a design parameter and is
related to the rank of the channel's covariance matrix (see [22, 23] for a detailed
explanation). Finally, w(c), w(sp)

g and wgk = [Wg]k are the unit-norm precoders as-
sociated to the instantaneous common, semi-private and private messages, respec-
tively. These terms, together with their impact in the model, are further detailed in
the following section.

Remark 6.1. In this chapter we adopt a slightly different notation from the one used in
other chapters of this dissertation. Specifically, we use the notation Hg = [hg,1, . . . ,hg,Kg ]

T

∈ CM×Kg to denote the matrix which contains the stacked channels of all the Kg UEs that
are associated to the gth cluster, and y ∈ CK to denote the signal received by all the users
as in (6.1). Additionally, in this chapter, we also consider the case where, due to limited
feedback, the BS only observes an imperfect estimation of the channel. We follow [22]
and model the imperfect channel for each UE as the sum of the (perfect) channel and an
additional noise component generated from the same subspace which is given by

hg,k = Rgĝk = UgΛ
1
2
g ĝk = UgΛ

1
2
g

(√
1− τ 2gk + τzk

)
(6.3)
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where Ug ∈ CM×M a is unitary matrix containing the eigenvectors of the covariance
matrix Rg associated to the gth group, Λg ∈ CM×M is a diagonal matrix with its asso-
ciated eigenvalues, and gk, zk ∈ CM are unrelated random variables that contain i.i.d.
entries with zero mean and unit variance. Specifically, gk describes the complex path gains
present in the environment while zk is associated to the channel's imperfect estimation.
Finally, τ ∈ [0, 1] controls the trade-off between these quantities, i.e., the quality of the
instantaneous channel. For instance, τ = 0 leads to a perfect channel estimation, i.e.,
ĥg,k = R

1
2
g gk while τ = 1 leads to an uncorrelated channel in the subspace spanned by Ug,

i.e., ĥg,k = R
1
2
g zk for uncorrelated gk and zk.

6.1.1 Hierarchical Rate Splitting Transmission Model

The hierarchical rate splitting transmission design is defined based on the com-
bined transmission signal x from (6.2). Specifically, to achieve the maximum sum-
rate it is required that there exists zero interference among clusters. Particularly,
the group precoder Bg aims to reduce this interference by minimizing the inter-
group interference (i.e., BH

g Hl ≈ 0,∀l ̸= g) while enhancing the signal intended to
the gth group [71]. This interference can be understood as the leakage of power
from each of the lth interference groups into the gth intended group, for all l ̸= g.
We follow the approaches in [22, 23] and consider r∗g =

∑G
l ̸=g rl singular vectors

associated with each one of the rl largest eigenvalues of these interference groups
(l ̸= g) to build the precoder Bg orthogonal to them1. As a result, we end up with
the gth group effective channel H̃H

g = HH
g Bg of dimensionality bg ×Kg. This ef-

fective channel represents the projection of Hg onto the bg–dimensional subspace
orthogonal to the r∗g strongest components of the interference groups. It is impor-
tant to note that, in order to properly distinguish theKg users within the gth group,
we must have bg > Kg. Moreover, it is also not possible to set both bg and rg indis-
criminately large, as they impose constraints on each other. Specifically, since there
are a maximum of M singular vectors available in each group, this means that the
number of users in a group should be less than (or equal to) the dimension of the
subspace of H̃g, so that we can ensure Kg ≤ bg ≤ M − r∗g . Consequently, a large
number of groups leads to less freedom on the choice of both bg and rg which can
harm the overall communication rate.

Moreover, w(c), w(sp)
g and wgk = [Wg]k are the unit-norm precoders associated

to the common, semi-private and private messages, respectively. To address the

1Generally, rl is a design parameter.
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interference among the private messages within the gth group, we adopt a Regu-
larized Zero Forcing (RZF) precoder. Following the approach described in [22], for
a given total transmission power P , we can define

Wg = ξg

(
H̃gH̃

H
g + εIbg

)−1

H̃g,

where ξg is used to ensure that the precoder operates within a desired power level,
i.e., to fix ||Wg||F = 1. The parameter ε is also a normalization factor (see [23] for
a detailed analysis on the choice of normalization). Furthermore, we build w

(sp)
g as

the equally weighted Matched Beamforming (MBF) vector given by

w(sp)
g = ξic,g

Kg∑
k=1

wgk

where ξic,g is a normalization parameter. The purpose of this MBF vector is to pro-
vide a beamforming scheme that evenly distributes the weight among the private
precoders within the group, facilitating a balanced contribution from each user.
Finally, the common precoder

w(c) = ξoc

G∑
g=1

Kg∑
k=1

Bgh̃gk

is a weighted MBF, but it is designed to handle inter-group power leakage where
ξoc is another normalization parameter.

To distribute power among the different messages, we introduce two parame-
ters, α and β, both in the interval (0, 1]. The first parameter α represents the fraction
of the total power P that is allocated to the common message. The parameter β rep-
resents the fraction of the remaining power (after allocating power to the common
message) that is allocated to all the semi-private messages. By combining these
parameters, we can determine the power allocation for each message as follows:
p(c) = αP for the common message, p(sp)g = (1−α)βP

G
for the semi-private message

in the gth group, and pgk = (1−α)(1−β)P
Kg

for the private message of user k in the gth
group. As we are primarily concerned with the clustering aspect of HRS solutions,
in this work we adopt a brute force search to find the optimal values of α and β.
This is done for each channel realization.

As previously mentioned, at the receiver side, the kth user belonging to the
gth group employs a 2-step successive interference cancellation (SIC) technique to
decode its message. In the first step, the user decodes the common message (s(c))
and removes it from the received signal, thereby eliminating its interference to the
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other messages. Subsequently, in the second step, the user proceeds to decode the
semi-private common codeword of the group after applying SIC to further miti-
gate interference. Once both common messages have been successfully decoded,
the user extracts its own private message by treating the remaining private mes-
sages as interference. The Signal-to-Interference Plus-Noise Ratio (SINR) for each
of these messages can be expressed as follows:

γ
(c)
gk =

p(c)|hH
gkw

(c)|2

1 + Igk
(6.4)

γ
(sp)
gk =

p
(sp)
g |hH

gkw
(sp)
g |2

1 + Igk − p
(sp)
g |hH

gkw
(sp)
g |2

(6.5)

γ
(p)
gk =

pgk|hH
gkwgk|2

1 + Igk −
(
p
(sp)
g |hH

gkw
(sp)
g |2 + pgk|hH

gkwgk|2
) (6.6)

where

Igk =
G∑
l=1

p
(sp)
l |hH

gkBlw
(sp)
l |2 +

G∑
l=1

Kg∑
k=1

plk|hH
gkBlwlk|2

is the combination of all interference leaked from other users and groups.
Finally, we can describe the achievable rate as the combination of the smallest

achievable common rate among all users R(c) = min
gk

log2(1 + γ
(c)
gk ), the minimal

semi-private common rate per group R(sp) =
∑G

g=1 min
k

(log2(1+γ
(sp)
gk )) and the sum

of the rate achievable at all private messages R(p) =
∑G

g=1

∑Kg

k=1 log2(1 + γ
(p)
gk ).

Then, the total achievable rate is obtained by summing up these components: R =

R(c) +R(sp) +R(p).

6.2 User Clustering for HRS

The selection of an appropriate grouping mechanism is of utmost importance to
fully leverage the benefits of two-tier precoding techniques like Hierarchical Rate
Splitting (HRS) [22, 23]. However, as extensively explained throughout this thesis,
finding the optimal clustering is a challenging task as it involves searching through
a large number of potential partitions. The number of ways to partition a set into
non-empty subsets is given by the Bell number which grows exponentially with
the size of the set, K in our case. Moreover, many of these partitions may result in
poor communication rates due to high interference. To address this challenge, we
leverage the hierarchical clustering solution based on the subspace similarity (see
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Chapter 5) to narrow down the number of available options. This time around, we
also re-calculate the centroid of the new cluster after every merge. By using an ag-
glomerative approach, we can systematically merge UEs and generate a hierarchy
of possible clustering configurations which naturally consider their similarity. The
advantage of this approach is that it reduces the search space from an exponen-
tial number of possibilities to a more manageable and feasible number of choices.
Instead of considering all possible combinations, we can focus on evaluating the
K + 1 clustering options obtained from the clustering hierarchy (each of the K + 1

levels of the hierarchy produces a new clustering solution). By analyzing these
distinct clustering options, we can assess the performance of different clustering
configurations and select the ones that yield more promising results. While this
approach may not guarantee the optimal clustering solution, it provides a practi-
cal and effective way to explore a subset of clustering options and make informed
decisions based on their achieved communication rates.

We dedicate the remainder of this chapter to illustrate this idea. Specifically,
we will begin by introducing a general synthetic dataset definition, which we will
use in our simulations to showcase the advantages of clustering in HRS communi-
cation systems. This dataset will include downlink communication channels, and
their (best) clustering solution obtained from performing a hierarchical clustering
of these channels. Here, the best solution refers to the grouping that yields the
highest communication rate when using the hierarchical rate splitting scheme de-
scribed above. Figure 6.1 illustrates the generation of one sample of this dataset.
The idea is that after every merge we compute the communication rate obtained
using the HRS scheme and in the end select the class that achieves the maximum
rate (this is represented by a dashed line in the figure). Moreover, we also use this
best clustering solution to train a shallow neural network capable of predicting the
grouping of different UEs based solely on their estimated channel matrices. By
doing so, we assume a more realistic scenario where the BS only has access to esti-
mates of these channel matrices. Moreover, this can become particularly useful in
scenarios where there exist a large number of UEs and the hierarchical clustering
procedure might be expensive depending on the linkage method used.

6.2.1 Simulated Scenario & Dataset Definition

To illustrate our method, we start by generating a dataset of channel matrices ac-
cording to (6.3) and clustering them according to the hierarchical clustering scheme
described above. Specifically, we run the algorithm using the subspace similarity
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(a)

Maximum HRS rate

(b)

Figure 6.1: Scheme of generation of one sample of the dataset. (a) A illustrative
downlink communication scenario. (b) Hierarchical clustering solution.

metric s̃kl defined in (5.12) and concatenate the clustered channel matrices side
by side to represent new formed clusters, similar to the approach described in
Section 5.3. To build our dataset, we consider four different covariance matrices
and randomly generate MIMO channels using each of them. We will denote this
processes of generating and clustering the MIMO channels as the generation (or
realization) of one sample. We assume that the number of users associated to a
particular covariance matrix may vary across different samples. Additionally, this
association does not necessarily represent cluster assignments, instead, it is solely a
method for generating random channels. The cluster assignment is done based on
the clustering solution (different levels of the hierarchy) that achieves maximum
communication rate using the HRS communication scheme. In other words, we
estimate the HRS communication rate for each level of the hierarchy and choose
the clustering solution that yields the highest rate. Moreover, these covariance ma-
trices are derived by considering azimuth angles, denoted as θg = −π

2
+ π

3
(g − 1),

and a constant angular spread of ∆g = π
6
, g ∈ {1, 2, 3, 4}. Finally, we assume that

the base station (BS) is equipped with a Uniform Circular Array (UCA) antenna.
By considering these parameters and configurations, we can create a representa-
tive scenario to evaluate the performance of our method in handling multi-group
communications with different channel characteristics.

Particularly, we design three different configurations based on the relationship
between the number of UEs K and the number of antennas at the BS M , namely,
the overloaded (K > M ), balanced (K = M ) and underloaded (K < M ) scenar-
ios. We evaluate these scenarios for different values of K and M . Specifically, we
consider M ∈ {4, 8, 12} for K = 8 and M ∈ {6, 12, 16} for K = 12 so that we have
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six different scenarios. We generate a total of 10.000 random samples for each sce-
nario, which includes both imperfect (for fixed τ 2 = 0.4) and perfect channel state
information. Additionally, for each sample in each scenario, we determine the
clustering scheme that maximizes the transmission rate based on the hierarchical
clustering mechanism and the true CSI. Apart from this scenario, the perfect chan-
nel information is used solely to evaluate the performance of the methods being
compared.

Due to the random nature of the samples, for each of the six scenarios, we ob-
tain more than G∗ = 200 possible clustering options (accumulated over different
sample realizations) that lead to optimal results. This results in highly imbalanced
datasets2 which becomes particularly problematic when training a NN. To address
this, we perform sub-sampling by discarding classes that achieve less than 25% of
the average rate of the scenario and have fewer than 50 samples associated to them.
Moreover, to further balance the data, we limit the maximum number of samples
in each class to 200. As a result, for each scenario, we still obtain an imbalanced
dataset with approximately G∗ = 50 classes, each containing at least 50 samples
and at most 200 samples. To address the decrease in the number of samples after
sub-sampling, we perform additional data augmentation by randomly shuffling
the users within each cluster. This augmentation technique leads to a natural ex-
tension of this dataset as clustering is unaffected by the order in which users are
arranged. Notice that this procedure is performed after we have already generated
the channel matrices and clustered them using this hierarchical clustering method
and the projection-Frobenius based similarity. In other words, by shuffling the
users, we can generate additional variations of the same clustering configuration,
thereby enriching the dataset and (possibly) improving the robustness of models
trained in with this dataset.

6.2.2 Performance Analysis

We solve the classification problem presented in the previous section by designing
a shallow neural network with the same structure and parameters as described
in [28]. The output layer consists of G∗ neurons with a softmax activation that cor-
respond to each cluster where G∗ is the total number of classes in the scenario. For
the training procedure, we use the Adam optimizer with a learning rate of 10−3,
we train for 50 epochs and use a batch size of 128 samples. For our multi-class

2Here one dataset is associated with one of the different configurations considered in this chap-
ter, namely overloaded (K > M ), balanced (K = M ), and underloaded (K < M ) scenarios.
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Table 6.1: Parameters of the Simulations

Simulation Parameter Simulation Value

Antenna Configuration Uniform Circular Array

Angular Spread (∆g) π/6

Number of Unique Distributions 4

Channel Quality (τ 2) 0.4

Dominant Eigenvectors (bg = rg) ⌊M/G⌋
Channel Quality (rg) 0.4

Number Shuffling 10

Number of Neurons in NN {256, 128}
NN Learning Rate 10−3

NN Training Epochs 50

NN Training Batch Size 128

Total Number of Classes (G∗) 50

NN Loss Function Categorical Cross-entropy Loss

classification task, we aim to minimize the categorical cross-entropy loss. Each
class representing a possible clustering solution. For each scenario, we divide our
dataset into training, validation and test sets in a proportion of 80/10/10. Dur-
ing the training procedure, we use the validation set to tune the corresponding
hyper-parameters. Our model is defined as a shallow neural network following
the parameters from Table 6.1.

Additionally, when evaluating the accuracy of the NN model, the conventional
approach is to consider the class which is predicted with the highest probability
(top-1 accuracy). However, in our case, there can be multiple clustering options
that achieve sufficiently high transmission rates. Hence, it also becomes valuable
to analyze the top-k accuracy, which measures if the desired clustering option is
among the k most probable outputs. This provides a more comprehensive assess-
ment of the model's performance in capturing the potential clustering solutions.

In order to validate the learning of the NN, we compare the achieved rate us-
ing the NN predicted classes and different RS clustering options. To perform a
complete evaluation, we determine the rate achieved by the following solutions,

• Hierarchical Clustering - Hierarchical Rate Splitting (HC): The users are clus-
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tered according to a hierarchical clustering solution, the group with higher
communication performance is selected;

• Neural Network - Hierarchical Rate Splitting (NN): Proposed NN based clus-
tering;

• Universal Cluster (UNI): All users are clustered into one single cluster;

• Singleton Cluster (SING): Each cluster contains only single user.

As mentioned above, we consider three scenarios to evaluate the clustering so-
lutions 1) M < K, 2) M = K and 3) M > K. Hence, for K = 8, we determine the
rate achieved forM ∈ {4, 8, 12} and forK = 12, we determine the rate achieved for
M ∈ {6, 12, 16}. Then, we compare the different clustering techniques mentioned
before based on the rate achieved. Figure 6.2 shows the rate achieved (in the test
set) for all four clustering techniques for the different values of M and K. Each
box plot shows the rate obtained for different realizations of the channel in the test
dataset. The median rate is presented by a horizontal line through the box and the
top and bottom of the box are the 75th and 25th percentile rate (i.e. rate achieved
by 75% and 25% of the scenarios). Lastly, the extremities of the boxplot refer to
the 1% and 99% and the red plus indicators in the boxplot denote the outlier rate
values. Notice that the rate achieved by HC-HRS and NN-HRS is approximately
similar while both clustering techniques outperform UNI and SING. This is due
to the fact that with a noisy channel, it is really difficult to generate accurate pre-
coders that can maximize the rate and minimize the inter-group and intra-group
interferences. Additionally, the NN-HRS only receives the instantaneous noisy
channel as an input and determines its clustering solution while HC-HRS needs to
iteratively determine the similarity between different channels making it consid-
erably slower when compared to the NN solution. Moreover, for SING, the choice
of parameters bg and rg seems to harm the performance. We recall that both pa-
rameters are integers thus are susceptible to the trade-off between M and G. For
instance, for G = K = 8 and M = 12, there exist only one viable option of rg, i.e.,
rg = ⌊M/G⌋ = 1. Alternatively, we could select four (mod(M,G)) groups to have
rg = 2, but this requires further processing on the choice of these groups. As a con-
sequence, we obtain similar rates for K = 8 users served with M = 8 or M = 12.
Similar consequences are obtained for K = 12. Moreover, for G = K > M , we
have rg = mod(M/K) = 0 what makes impossible to derive meaningful precoders
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Fig 6.2(a)-(b). In contrast to that, the other three techniques, which consider clus-
tering, do not suffer from this trade-off between G, rg and M . Instead, even for
K > M we still achieve reasonable spectral efficiency.
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Underloaded (M = 4)

HC NN UNI SING
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HC NN UNI SING
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(a) K = 8

HC NN UNI SING
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HC NN UNI SING
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Overloaded (M = 16)

(b) K = 12

Figure 6.2: Spectral efficiency (bps/Hz) achieved for clustering mechanisms using
HRS.

Finally, we analyze the capability of the shallow NN to learn the grouping clas-
sification task as described above. To do so, we first analyze the accuracy of the
network for class prediction. Recall that, here, a class represents a different clus-
tering option. Table 6.2 presents, in percentage, the results obtained by training
different NN according to the configuration parameters in Table 6.1 for different
number of users (K) and antennas in the BS (M ). The validation column contains
the final classification accuracy in the validation dataset and indicates some learn-
ing capability in untrained data. During our experiments, we noticed that different
points of the same dendrogram might result in similar communication rates, i.e.,
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Table 6.2: Top-k Accuracy of validation and test sets

K/M
Validation

(top-1)

Test

(top-1)

Test

(top-3)

Test

(top-5)

Test

Relative Rate

8 / 4 65.38% 65.37% 85.22% 90.48% 94.12%

8 / 8 98.3% 92.0% 96.3% 97.7% 99.0%

8 / 12 96.9% 92.2% 97.0% 98.2% 99.5%

12 / 6 71.45% 35.6% 65.62% 77.75% 89.99%

12 / 12 98.7% 86.2% 96.8% 98.9% 93.5%

12 / 16 99.18% 95.62% 98.32% 93.32% 99.77%

there might exist different clustering options which achieve the same rate. There-
fore, for the test dataset, we show the top-1, top-3 and top-5 classification accuracy.
Despite the fact that performance in top-1 accuracy might be considered poor, the
top-5 results are, often, above 90%. Finally, the last column compares (in %) the
relative communication rate if using the top-1 option from the NN. Results show
that, except in the cases whereK > M , on average, the rate drops 2.5% which is an
acceptable loss when compared to the complexity of the original problem. More-
over, we can infer from these results that the NN is capable of learning the maxi-
mum clustering option or clusters that approximate this option. In other words, it
is capable of learning the relationship between different users directly from their
channel matrices and cluster the users with a high degree of accuracy for most sce-
narios and finally achieve a rate comparable to more complicated similarity-based
HC-HRS.

6.3 Conclusions

In this chapter, we have addressed the challenge of estimating the optimal group-
ing of users in a two-layer hierarchical rate splitting scenario. Due to the expo-
nential growth of possible clustering solutions, finding the optimal grouping is an
NP-hard problem. Moreover, most of these groupings result in high interference
between users and should be disregarded. To overcome this, we have proposed
the use of clustering techniques to identify a subset of relevant clustering solu-
tions that achieve high communication rates by mitigating interference between
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users. By leveraging these feasible clustering solutions, we have trained an NN ar-
chitecture to learn the relationship between the channel matrices and the optimal
clustering configurations. Numerical results have shown that the trained neural
network achieves similar rates to those obtained using the hierarchical clustering
solution. This demonstrates the effectiveness of machine learning techniques in
learning the grouping of users in complex communication scenarios. Overall, the
approach offers a practical and efficient solution for determining the clustering of
users, enabling the design of efficient communication strategies that maximize the
achievable rates while mitigating interference.



Chapter 7

Conclusions and Future Directions

This thesis has addressed a diverse range of challenges that arise from applying
machine learning to large-dimensional observations, specifically by exploring sta-
tistical properties of the distances between positive definite matrices. Our con-
tributions encompass deep theoretical insights into unsupervised learning with
high-dimensional data, along with practical solutions to improve common unsu-
pervised learning approaches. In particular, we have shown how to estimate the
distance between covariances of high-dimensional observations and how to ex-
ploit these results in learning tasks. We have also exemplified the applicability of
our findings in several applications in the field of wireless communications. Below,
we provide a summary of contributions discussed throughout this thesis together
with insights on possible future works.

In Chapter 2, we studied the asymptotic characterization of a general class of
distances between sample covariance matrices, which consider the Riemmanian
geometry of the set of positive definite matrices. These distances can be expressed
as the sum of traces of analytic functions applied to each matrix separately. The re-
sults are established in the asymptotic regime where both the sample size and the
observation dimension tend to infinity at the same rate. These generic results gen-
erally hold for both the undersampled and oversampled regimes, as well as for
complex- and real-valued observations. Furthermore, we have specialized these
results to three commonly used distances between covariance matrices: the Eu-
clidean distance, a symmetrized version of the Kullback–Leibler divergence, and
Subspace Similarity based on the principal angles of the compared subspaces. Al-
ways in Chapter 2, we considered the traditional plug-in estimators, where the
sample covariance matrices are directly plugged into the definition of the distance
between covariance matrices. Numerical simulations validated the presented re-
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sults, illustrating the accuracy of the asymptotic behavior of these metrics when
compared to their empirical distributions.

Moving on to Chapter 3, we further improved these plug-in estimators to con-
sistently approximate the distance between true covariance matrices. We proposed
a general form for the consistent estimator of this particular family of distances,
along with a central limit theorem that describes its asymptotic behavior. We also
provided the closed-form solution for the consistent estimator of three distances
between covariance matrices: the symmetrized version of the Kullback–Leibler di-
vergence, the Euclidean distance, and the Log-Euclidean distance. Additionally,
we also presented closed-form solutions for the mean and variance of these met-
rics, except for the Log-Euclidean distance, whose fluctuations are expressed in
terms of an integral.

A general numerical evaluation of both the traditional plug-in and the consis-
tent estimators of distances between covariance matrices was provided in Chap-
ter 4. Particularly, we demonstrated the utility of the CLTs formulated in this the-
sis to further account for the impact of measurement (e.g., distance/similarities
between samples) uncertainty in clustering solutions. Furthermore, we also il-
lustrated how these results can assist in properly designing clustering solutions.
Specifically, we showed that the CLTs derived in this work become useful when
assessing the quality of clustering solutions based on different distance metrics. It
is important to emphasize that the outcomes outlined in this study are not limited
to the specific clustering methods examined in this thesis. Instead, they provide
a broader analysis and are also applicable to other clustering approaches that rely
on comparing pairwise similarities and for distances that fall into the family of
distances investigated in this thesis.

In the remainder of the thesis, specifically in Chapters 5 and 6, we provided
practical examples demonstrating the application of these analytical results to the
field of wireless communications. Particularly, in Chapter 5, we analyzed an ag-
glomerative hierarchical clustering of user equipments based on the alignment of
the subspaces spanned by their channel matrices. We further explored the ap-
plications of the plug in distances in the undersampled regime, for which consis-
tent distance estimators are not generally available. We showed that, properly
correcting the plug-in distances using their respective asymptotics, we can better
compare subspaces of different dimensions (in our scenario, groups of UEs of dif-
ferent sizes). The correction terms were particularly tailored to converge to the
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corresponding deterministic equivalent when we have identical covariance matri-
ces, which facilitates the clustering of UEs. Finally, in Chapter 6, we built upon
these results to train a neural network to select the (almost) optimal UEs clustering
scheme that enables the application of a (hierarchical) rate splitting coding strat-
egy. These practical examples illustrate the relevance of our analytical findings in
real-world wireless communications scenarios. By applying our research insights,
one can enhance clustering techniques and improve the overall efficiency and per-
formance of wireless communications systems.

7.1 Future Directions

Finally, there are several promising directions for future research that can build
upon the foundations laid out in this thesis. Firstly, throughout this thesis, we have
only provided hints on how to devise, directly from the data, general asymptotic
estimators for the first and second order moments of the plug-in and consistent dis-
tance estimators, leaving the task of finding their closed-form solutions for further
investigation. These solutions can offer a deeper understanding of their statisti-
cal properties and potentially increase the applicability of our results to scenar-
ios where limited data samples are available. Particularly, areas such as manifold
learning, meta learning, and explainable AI can greatly benefit from the insights
and methodologies developed in this thesis. Specially, these fields could lever-
age the statistical tools we have introduced to gain a better understanding of the
inherent data structures, enhance transfer learning processes, and provide more
interpretable explanations for machine learning solutions.

Additionally, considering the evolving needs of wireless communications, fur-
ther research can be conducted to adapt and enhance our techniques to address
the unique challenges of 5G and beyond communications systems. This could in-
volve incorporating the insights from this thesis into new large dimensional anten-
nas configurations (e.g., Large and Reconfigurable Intelligent Surfaces); advanced
communication protocols, including UAV routing protocols based on position un-
certainty and clustering-aware multiple access schemes; and network optimization
strategies, by exploiting manifold structures for improved efficiency. By doing so,
one can potentially take advantage of the findings from this thesis and improve
the overall efficiency and performance of future wireless networks.

Lastly, extending the application of our analytical results beyond wireless com-
munications holds considerable potential. For instance, in areas like natural lan-
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guage processing, where analyzing large volumes of text data can be challenging
due to the high-dimensional nature of text features, researchers could adapt the
statistical tools developed in this thesis to derive efficient distance metrics between
text representations (e.g., word embeddings) and apply them to measure the simi-
larity between documents or parts of text. This could lead to improved accuracy in
sentiment analysis, text translation and classification tasks. Similarly, applications
in the medical domain, where statistical analysis is crucial for disease prevention,
early detection, and treatment, can also benefit from these methodologies.

In summary, while this thesis has significantly contributed to the theoretical as-
pects of machine learning with practical applications in wireless communication,
it has also laid the foundation for future research to delve deeper into the dis-
cussed theoretical aspects and extend applications to diverse domains with spe-
cific requirements. Together, these can further contribute to advancing the field of
machine learning algorithms in large dimensional settings.



Appendix A

Appendix for Chapter 2

A.1 Proof of Theorem 2.2

We recall here the definitions introduced in Theorem 2.1 and (2.4), namely

Q̂j(zj) = (R̂j − zjIM)−1 and Q̄j(zj) =
ωj(zj)

zj
Qj(ωj(zj)).

Moreover, to simplify the notation in this appendix, we will drop the dependence
on zj whenever it is obvious from the context. A similar notation will be used when
the argument of these functions is an alternative variable z′j . More specifically, we
will write (for j ∈ {1, 2}), Q̂j ≡ Q̂j(zj), Q̄j ≡ Q̄j(zj), ωj ≡ ωj(zj) and Qj ≡
Qj(ωj(zj)). We will use a similar short-hand notation for the “prime” quantities,
namely Q̂j′ ≡ Q̂j(z

′
j), Q̄j ≡ Q̄j′(z

′
j), ωj′ ≡ ωj(z

′
j) and Qj′ ≡ Qj(ωj(z

′
j)). Let us start

by considering the random variable

ζ̂M =
1

(2πj)2

∮
C−

1

∮
C−

2

g(z1, z2)tr
[
Q̂1Q̂2 − Q̄1Q̄2

]
dz1dz2

In order to derive the CLT, we will consider the function

ΨM(u) = ejuζ̂M .

The objective is to show that, in the limit when M,Nj → ∞, we have

E [ΨM (v)]− ejumM−(uσM )2/2 → 0 (A.1)

pointwise in u, where mM and σ2
M will be as defined in Theorem 2.2. Given the

boundedness assumptions in the statement of the theorem, the result will follow
from a trivial modification of [72, Proposition 6]. The rest of the section is therefore
devoted to showing (A.1).
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Unfortunately, the random variable ζ̂M above does not need to have a charac-
teristic function for all M . This is because there might exist realizations for which
the positive eigenvalues of R̂j become dangerously close to the contour Cj . In or-
der to overcome this difficulty, we will follow the approach in [73,74] and consider
an equivalent (large-M ) representation of ζ̂M that is guaranteed to have a charac-
teristic function for all M . Indeed, let us define the interval Sϵ

j as an ϵ-blowup of
the set Sj ∪ {0} = [θ−j , θ

+
j ] ∪ {0}, that is Sϵ

j = [θ−j − ϵ, θ+j + ϵ] ∪ [−ϵ, ϵ] for some small
ϵ > 0. Assume that ϵ is small enough such that S2ϵ

j does not intersect with the
contour Cj . Let ϕ denote a smooth function ϕj : R → [0, 1] such that ϕj(x) = 1 for
x ∈ Sϵ

j and ϕj(x) = 0 for x ∈ R\S2ϵ
j . We will write ϕj = detϕj(R̂j). By [58], we

know that ϕj = 1 with probability one for all M sufficiently large. Therefore, we
have ζ̂M = ζ̃M almost surely for all M sufficiently large, for

ζ̃M =
−1

4π2

∮
C−

1

∮
C−

2

g(z1, z2)tr
[
Q̂1Q̂2ϕ1ϕ2 − Q̄1Q̄2

]
dz1dz2. (A.2)

The characteristic function of ζ̃M exists for every realization and every possible M .
Having introduced this regularization parameter ϕj , we are now in the position of
introducing the main technical tools that will be used in the proof of this theorem.
Following the approach in [72], our derivations will be based on the partial integra-
tion formula for Gaussian functionals, together with the Poincaré-Nash inequality.
We introduce these tools in the following proposition.

Remark A.1. In what follows, the symbol O(M−k) will denote a general multivariate
complex function that is bounded in magnitude by ϵ (z1, . . . , z4)M−k, where ϵ (z1, . . . , z4)
does not depend on M and is such that

max
m,n

sup
(z1,...,z4)∈Cm×...×Cn

∥ϵ (z1, . . . , z4)∥ < +∞. (A.3)

The function itself may be different from one line to another, and it may be matrix valued,
in which case (A.3) is understood as the spectral norm. Moreover, O(M−N) should be
understood as a multivariate complex function that can be written as O(M−ℓ) for every
ℓ ∈ N.

Proposition A.1. Consider function Ω (X,X∗, z) : R2MN1 → C to be continuously dif-
ferentiable and such that both itself and its partial derivatives are polynomically bounded.
If X is real valued, simply consider Ω as a function on RMNℓ , with the same properties. If
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X is a matrix of i.i.d. standard Gaussian random variables and Xij denotes its i, jth entry,
we have

E [XijΩ (X,X∗, z)] = E
[
∂Ω (X,X∗, z)

∂X∗
ij

]
(A.4)

where
∂

∂X∗
ij

=
1 + ς

2

∂

∂Re [Xij]
+ j

1− ς

2

∂

∂Im [Xij]
.

On the other hand, we can also write

var [Ω (X,X∗, z)] ≤
M∑
i=1

Nℓ∑
j=1

E

[∣∣∣∣∂Ω (X,X∗, z)

∂Xij

∣∣∣∣2
]

+ (1− ς)E

[∣∣∣∣∂Ω (X,X∗, z)

∂X∗
ij

∣∣∣∣2
]

(A.5)

where now
∂

∂Xij

=
1 + ς

2

∂

∂Re [Xij]
− j

1− ς

2

∂

∂Im [Xij]
.

Assume that, for each fixed z ∈ C and ℓ ∈ {1, 2} . The function ϕℓ is continuously dif-
ferentiable (on R2MNℓ) with polynomically bounded partial derivatives. If, in addition,
supz∈Cℓ

E
(
|Ω (X,X∗, z)ϕℓ|2

)
< C for some positive deterministic C independent of M ,

then
E [Ω (X,X∗, z)ϕr

ℓ ] = E [Ω (X,X∗, z)ϕℓ] +O
(
M−N) (A.6)

for any r ∈ N, and also

E
[
Ω (X,X∗, z)

∂ϕℓ

∂Xij

]
= O

(
M−N) (A.7)

where the term O
(
M−N

)
should be understood as in Remark A.1 above.

The above results are well known in the random matrix literature and the proof
is therefore omitted. One of the conclusions of Proposition A.1 is the fact that we
can basically ignore the presence of the regularization term ϕℓ up to an error of
order O (M−m) for every m ∈ N, which will be irrelevant for the purposes of our
derivations.

From now on we will therefore consider the definition of ζ̃M in (A.2). Further-
more, we will denote Yℓ = R

1/2
ℓ Xℓ for ℓ ∈ {1, 2} and we will use the symbol Eℓ [·]

to denote the expectation with respect to the entries of Xℓ, which are all i.i.d. stan-
dard Gaussian random variables. The jth column vector of Xℓ will be denoted as
xj and the (i, j)th entry as Xij (in both cases, the dependence on ℓ will be obvi-
ous from the context). We will also drop the dependence on M in ΨM(u) to further
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simplify the notation. Finally, using the Dominated Convergence Theorem, we can
establish that E [Ψ(u)] is a differentiable function with derivative

dE [Ψ(u)]

du
= jE[ζ̃MΨ(u)].

We start by noting that we can decompose the sample covariance matrix R̂1 as
where ei is the ith column of the M ×M identity matrix. By denoting as Eℓ the
expectation with respect to the elements of Xℓ, we have

E1

[
Q̂1R̂1Ψ(u)ϕ1

]
=

M∑
i=1

N1∑
j=1

E1

[
XijQ̂1R

1/2
1

eix
H
j

N1

R
1/2
1 Ψ(u)ϕ1

]

which can be further developed using the integration by parts [72], together with
the identity

∂

∂X∗
ij

Q̂ℓ = −Q̂ℓR
1/2
ℓ

(
xje

H
i + ςeix

H
j

)
Nℓ

R
1/2
ℓ Q̂ℓ.

A direct application of these techniques and the resolvent identity zℓQ̂ℓ = Q̂ℓR̂ℓ−
IM allows us to write

E1

[
Q̂1R̂1Ψ(u)ϕ1

]
= −E1

[
Q̂1R̂1

1

N1

tr
[
R1Q̂1

]
Ψ(u)ϕ1

]
− ς

N1

E1

[
Q̂1R1Q̂1R̂1Ψ(u)ϕ1

]
+ E1

[
Q̂1R1Ψ(u)ϕ1

]
− 1 + ς

N1

uj
1

(2πj)2

∮
C−

1

∮
C−

2

g(z′1, z
′
2)×

× E1

[
Q̂1R1Q̂1′Q̂2′Q̂1′R̂1Ψ(u)ϕ1

]
dz′1dz

′
2 +O

(
M−N)

where we recall that Q̂j′ ≡ Q̂j(z
′
j). Hence, by using the fact that

1

Nj

tr
[
RjQ̄j

]
=
ωj

zj
− 1,

for j ∈ {1, 2}, together with the resolvent identity from above and the error quan-
tity

α1(z1) =
1

N1

tr
[
R1Q̂

]
ϕ1 −

1

N1

tr
[
R1Q̄1

]
,
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we can then manipulate the above expectation into

E1

[
Q̂1Ψ(u)ϕ1

]
= Q̄1E1 [Ψ(u)ϕ1] +

+
z1
ω1

E1

[
Q̂1R̂1Q̄1Ψ(u)ϕ1α1(z1)

]
+
z1
ω1

ς

N1

E1

[
Q̂1R1Q̂1R̂1Q̄1Ψ(u)ϕ1

]
+
z1
ω1

1 + ς

N1

ju
1

(2πj)2

∮
C−

1

∮
C−

2

g(z′1, z
′
2)×

× E1

[
Q̂1R1Q̂1′Q̂2′Q̂1′R̂1Q̄1Ψ(u)ϕ1

]
dz′1dz

′
2 +O

(
M−N) . (A.8)

Moreover, multiplying (A.8) by Q̂2ϕ2, taking expectation with respect to X2 and
using again (A.8) after interchanging the two indices, we obtain

E
[
tr
(
Q̂1Q̂2ϕ1ϕ2 − Q̄1Q̄2

)
Ψ(u)

]
=
z1
ω1

E
[
1

N1

tr
[
Q̂1R̂1Q̄1Q̂2

]
ϕ1ϕ2 [N1α1(z1)] Ψ(u)

]
+
z2
ω2

E
[
1

N2

tr
[
Q̄1Q̂2R̂2Q̄2

]
ϕ1ϕ2 [N2α2(z2)] Ψ(u)

]
+ ς

z2
ω2

E
[
1

N2

tr
[
Q̄1Q̂2R2Q̂2R̂2Q̄2ϕ1ϕ2

]
Ψ(u)

]
+ ς

z1
ω1

E
[
1

N1

tr
[
Q̂1R1Q̂1R̂1Q̄1Q̂2ϕ1ϕ2

]
Ψ(u)

]
+ ju

z1
ω1

1 + ς

(2πj)2

∮
C−

1

∮
C−

2

g(z′1, z
′
2)×

× E
[
1

N1

tr
[
Q̂1R1Q̂1′Q̂2′Q̂1′R̂1Q̄1Q̂2

]
Ψ(u)ϕ1ϕ2

]
dz′1dz

′
2

+ ju
z2
ω2

1 + ς

(2πj)2

∮
C−

1

∮
C−

2

g(z′1, z
′
2)×

× E
[
1

N2

tr
[
Q̄1Q̂2R2Q̂2′Q̂1′Q̂2′R̂2Q̄2

]
Ψ(u)ϕ1ϕ2

]
dz′1dz

′
2

+O
(
M−N) .

where we have defined α2(z2) in the same way as α1(z1).
Now, we still need to further investigate the two terms that depend on αℓ(zℓ).
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By multiplying (A.8) by R1 and taking traces, we immediately obtain

E1 [Ψ(u)N1α1(z1)] =
E1 [β1 (z1, z1)Ψ(u)N1α1(z1)]

1− γ1 (z1, z1)

+ ς
z1
ω1

E1

[
N−1

1 tr
[
R1Q̂1R1Q̂1R̂1Q̄1ϕ1

]
Ψ(u)

]
1− γ1 (z1, z1)

+

+
1

1− γ1 (z1, z1)

z1
ω1

1 + ς

N1

ju
1

(2πj)2

∮
C−

1

∮
C−

2

g(z′1, z
′
2)×

× E1

[
tr
[
R1Q̂1R1Q̂1′Q̂2′Q̂1′R̂1Q̄1

]
Ψ(u)ϕ1

]
dz′1dz

′
2+

+O
(
M−N) (A.9)

where we have introduced the definitions

βj
(
zj, z

′
j

)
=

1

Nj

tr
[
QjRjQ̂j′R̂j

]
ϕj − γj

(
zj, z

′
j

)
γj
(
zj, z

′
j

)
=

1

Nj

tr [QjRjQj′Rj]

and where we have used the well known fact that supM sup(z,z′)∈Cj×Cj
|γj (z, z′)| < 1

(from Cauchy-Schwarz and Lemma D.2) so that the quantity 1−γj
(
zj, z

′
j

)
is always

invertible. In order to further simplify the notation, we will denote from now on
γjj ≡ γj(zj, zj), γjj′ ≡ γj(zj, z

′
j) and γj′j′ ≡ γj(z

′
j, z

′
j). According to [75, Lemma 11],

the expectations of αℓ(zℓ) and βℓ(zℓ, zℓ) are O(M−1), and their variance decays as
O(M−2). Hence, we can write (by Cauchy-Schwarz)

|NℓE [αℓ(zℓ)βℓ(zℓ, zℓ)Ψ(u)]|2 ≤ N2
ℓ E
[
|αℓ(zℓ)|2

]
E
[
|βℓ(zℓ, zℓ)|2

]
= O(M−2)

so that the first term on the right hand side of (A.9) decays as O(M−1) and therefore

E [N1α1(z1)Ψ(u)] = ς
E
[
tr
[
R1Q̂1R1Q̂1R̂1Q1ϕ1

]]
N1(1− γ11)

E[Ψ(u)]

+
1

1− γ11

1 + ς

N1

ju
1

(2πj)2

∮
C−

1

∮
C−

2

g(z′1, z
′
2)×

× E
[
tr
[
R1Q̂1R1Q̂1′Q̂2′Q̂1′R̂1Q1ϕ1ϕ2

]]
dz′1dz

′
2E [Ψ(u)] +O

(
M−1

)
where we have used the variance bounds in Lemmas D.4 and D.5 in Appendix
D.2.
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Now, using the results in Lemmas D.3 to D.5 (regarding the bound on the cor-
responding variances) together with the above result, one can readily see that

dE [Ψ(u)]

du
=

−jς

4π2

∮
C−

1

∮
C−

2

g(z1, z2)µ (z1, z2) dz1dz2E [Ψ(u)]

− u
1 + ς

(2πj)4

∮
C−

1

∮
C−

2

∮
C−

1

∮
C−

2

g(z1, z2)g(z
′
1, z

′
2)×

× σ2 (z1, z
′
1, z2, z

′
2) dz1dz2dz

′
1dz

′
2E [Ψ(u)] +O

(
M−1

)
(A.10)

where

µ (z1, z2) = µ12 (z1, z2) + µ21 (z1, z2)

σ2 (z1, z
′
1, z2, z

′
2) = χ2

12 (z1, z
′
1, z2, z

′
2) + χ2

21 (z1, z
′
1, z2, z

′
2)

and

µ12 (z1, z2) =
1

1− γ12

1

N1

Etr
[
Q̂1R̂1Q1Q̂2ϕ1ϕ2

] 1

N1

Etr
[
R2

1Q1ϕ1R̂
2
1Q̂

2
1

]
+

Etr
[
R1Q1R̂1Q̂

2
1Q̂2ϕ1ϕ2

]
N1

(A.11)

µ21 (z1, z2) =
1

1− γ22

1

N2

Etr
[
Q̄1Q̂2R̂2Q2ϕ1ϕ2

] 1

N2

Etr
[
R2

2Q2R̂2Q̂
2
2ϕ2

]
+

1

N2

Etr
[
Q̄1R2Q2R̂2Q̂

2
2ϕ1ϕ2

]
(A.12)

χ2
12 (z1, z

′
1, z2, z

′
2) =

1

(1− γ11)N1

Etr
[
Q̂1R̂1Q1Q̂2ϕ1ϕ2

]
× (A.13)

× 1

N1

Etr
[
Q1R1Q̂1R

2
1Q̂

2
1′Q̂2′ϕ1ϕ2

]
+

1

N1

Etr
[
Q1Q̂2Q̂1R1Q̂1′Q̂2′Q̂1′R̂1ϕ1ϕ2

]
(A.14)

χ2
21 (z1, z

′
1, z2, z

′
2) =

1

1− γ22

1

N2

Etr
[
Q̂2R̂2Q2Q̄1ϕ2

]
× (A.15)

× 1

N2

Etr
[
Q2R

2
2Q̂2Q̂

2
2′Q̂1′R̂2ϕ1ϕ2

]
+

1

N2

Etr
[
Q2Q̄1Q̂2R2Q̂2′Q̂1′Q̂2′R̂2ϕ1ϕ2

]
(A.16)

At this point, it is worth noting that this definition of dE [Ψ(u)]/du is closely related
to the results presented in Section 2.3. Particularly, mM and σM are associated to
the first and, respectively, second integrals on the right hand side of (A.10). Then,
it is also interesting to note that whenever ς = 0 (complex-valued observations)
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the first term goes to zero and also mM = 0. In what follows, we analyze the
terms from (A.11)-(A.16). Observe that these four terms are essentially different
and should be analyzed separately.

Regarding the functions µ12 (z1, z2) and µ21 (z1, z2), a direct application of Lem-
mas D.3 and D.4 shows

(
z1
ω1

)2 Etr
[
Q̄1R1Q̂1R1Q̂1R̂1ϕ1

]
N1

= γ11 +
ω1tr [R

2
1Q

3
1]

(1− γ11)N1

+O(M−1)

=
tr
[
Q̄2R1Q̄

2
1

]
N1

+
z1

1− γ11

tr
[
Q̄2R1Q̄

3
1

]
N1

+O(M−1)

and equivalent expressions can be obtained by swapping the indices 1, 2. A di-
rect application of these identities together with the fact that Qj (Rj − ωjIM) = IM

shows that

µ12 (z1, z2) =
ω1

z1

ω2

z2
m1 (ω1,Q2) +O(M−1)

µ21 (z1, z2) =
ω1

z1

ω2

z2
m2 (ω2,Q1) +O(M−1)

where we notice that γjj = Γ(ωj, ωj) in the statement of the theorem.
In order to deal with the variance terms, we consider the following random

function

ψℓ(zℓ, z
′
ℓ;A,B) =

1

N ℓ

Etr
[
QℓAQ̂ℓRℓQ̂ℓ′BQ̂ℓ′R̂ℓϕℓ

]
+

tr
[
ARℓQ

2
ℓ

]
(1− γℓℓ)Nℓ

1

Nℓ

Etr
[
QℓRℓQ̂ℓRℓQ̂ℓ′BQ̂ℓ′R̂ℓϕℓ

]
where A,B are twoM×M matrices that are either deterministic or independent of
Xℓ. Using Lemma D.3, one can express the two variance terms as specific instances
of the above function, namely

χ2
12 (z1, z

′
1, z2, z

′
2) = ψ1(z1, z

′
1; Q̂2ϕ2, Q̂2′ϕ2) +O(M−1)

χ2
21 (z1, z

′
1, z2, z

′
2) = ψ2(z2, z

′
2; Q̄1, Q̄1) +O(M−1)

It is therefore sufficient to analyze the behavior ofψℓ(zℓ, z
′
ℓ;A,B) for general bounded
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matrices A,B. By Lemma D.5 presented below, we readily obtain

zℓz
′
ℓψℓ(zℓ, z

′
ℓ;A,B)

ωℓωℓ′
=

(
γ
(1,2)
ℓℓ′ γ

(2,1)
ℓℓ′

(1− γℓℓ′)
2 +

γ
(2,2)
ℓℓ′

1− γℓℓ′

)
ϕℓ (A)ϕℓ′ (B)

+
ϕℓ (A)

1− γℓℓ′

γ
(2,1)
ℓℓ′

1− γℓℓ′

tr
[
BRℓQℓRℓQ

2
ℓ′

]
N ℓ

+
ϕℓ (A)

1− γℓℓ′

tr
[
BRℓQ

2
ℓRℓQ

2
ℓ′

]
N ℓ

+
ϕℓ′ (B)

1− γℓℓ′

γ
(1,2)
ℓℓ′

1− γℓℓ′

tr
[
ARℓQ

2
ℓRℓQℓ′

]
Nℓ

+
ϕℓ′ (B)

1− γℓℓ′

tr
[
ARℓQ

2
ℓRℓQ

2
ℓ′

]
N ℓ

+
tr[AZ2

ℓQℓ′ ]tr[BZ
(2,1)
ℓ Qℓ′ ]

N2
ℓ (1− γℓℓ′)2

+
tr[AZℓQℓ′BZℓQℓ′ ]

Nℓ(1− γℓℓ′)
+O(M−1) (A.17)

where we have defined

ϕℓ (A) =
ωℓtr

[
ARℓQ

2
ℓ

]
N ℓ(1− γℓℓ)

and γ
(r,s)
ℓℓ′ =

tr [RℓQ
r
ℓRℓQ

s
ℓ′ ]

N ℓ

so that in particular γℓℓ′ = γ
(1,1)
ℓℓ′ and where we have used the identities

1

N ℓ

tr
[
R2

ℓQ
2
ℓ

]
= γℓℓ

and
1

N ℓ

tr
[
RℓQ̄

2
ℓ

]
=

1

z2ℓ
[zℓ − ωℓ (1− γℓℓ)].

Particularizing the above expression we see that

χ2
21 (z1, z

′
1, z2, z

′
2) =

ω1ω1′ω2ω2′

z1z′1z2z
′
2

σ2
2 (ω2, ω

′
2,Q1,Q1′) +O(M−1).

On the other hand, using again Lemma D.4,

χ2
12 (z1, z

′
1, z2, z

′
2) =

ω1

z1

ω1′

z′1

ω2

z2

ω2′

z′2
×
[
σ2
1 (ω1, ω

′
1,Q2,Q2′) +

tr2 [R1Q1′Q1R2Q2Q2′)]

N1N2 (1− γ11′) (1− γ22′)

]
+O(M−1)

which concludes the derivation.
In order to finalize the proof of the theorem, we need to prove that

lim sup
M→∞

|mM | <∞
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and
lim sup
M→∞

σ2
M <∞.

Since we are assuming that
lim inf
M→∞

σ2
M > 0,

the CLT will follow from [72]. To show that mM is asymptotically bounded we see
from (2.17) that it is sufficient to show that

lim inf
M→∞

sup
C1×C2

|ω1ω2/(z1z2)m (ω1, ω2) | <∞.

This follows easily from Lemmas D.1 and D.2 since, for instance

|m1 (ω1,Q2)| ≤
|ω1| |tr [R2

1Q
3
1]| |tr [R1Q

2
1Q2]|

N2
1 (1− |Γ1(ω1)|)2

+
1

1− |Γ1(ω1)|

∣∣∣∣ 1N1

tr
[
R2

1Q
3
1Q2

]∣∣∣∣
≤

(
|ω1| ∥Q1∥5 ∥Q2∥
N1 (1− |Γ1(ω1)|)2

tr [R1] +
∥Q1∥3 ∥Q2∥
(1− |Γ1(ω1)|)

)
tr [R2

1]

N1

where the second inequality follows from the fact that tr [AB] ≤ ∥B∥ tr [A] for
Hermitian positive definite A, together with ∥AB∥ ≤ ∥A∥ ∥B∥. All the terms
on the right hand side of the above inequality are bounded by Lemmas D.1 -D.2,
leading to the conclusion that

lim sup
M→∞

|mM | <∞.

Regarding the upper bound on σ2
M , we can use the expression in (2.19) to see that

it is sufficient to show that

lim inf
M→∞

sup
C2

1×C2
2

∣∣Σ2 (ω1, ω2, ω
′
1, ω

′
2)
∣∣ <∞,

which amounts to finding an upper bound on each of the three terms in (2.20). The
bounds on these three terms can be found using again Lemmas D.1-D.2 together
with the fact that, by Cauchy-Schwarz,

∣∣Γj(ωj, ω
′
j)
∣∣ ≤√Γj(ωj)Γj(ω′

j).

A.2 Derivation of the Asymptotic Second-Order Mean
and Variances

A.2.1 Euclidean distance

Let us evaluate the asymptotic mean and variance of the Euclidean distance be-
tween sample covariance matrices. To that effect, one must carry out the integrals
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in (2.17)-(2.19) for g(z1, z2) = (z1 − z2)
2 under the assumption that all the contours

enclose {0}. Hence, one can follow exactly the same approach that was used in
Section 2.2.1. The main idea is to first use the change of variable z 7→ ω = ωj(z).
The resulting contour C−

ωj
= ωj(C−

j ) encloses all the singularities of the integrand,
so that one can apply a second change of variables ω 7→ ζ(ω) = ω−1 in a way that
ζ(C−

ωj
) encloses zero and no other singularity. By direct application of this tech-

nique we may find

1

2πj

∮
C−
1

ω1

z1
m (ω1, ω2) dz1 =

tr [R2
2Q

3
2 (ω2) Ω2 (ω2; IM)]

N2 (1− Γ2(ω2))
(A.18)

together with

1

2πj

∮
C−
1

ω1m (ω1, ω2) dz1 =
1

N2

tr [R2
2Q

3
2 (ω2) Ω2 (ω2;R1)]

1− Γ2(ω2)
.

Repeating the approach with respect to the second variable z2 we find

1

(2πj)2

∮
C−
1

∮
C−
2

z1z2
ω1ω2

z1z2
m (ω1, ω2) dz1dz2 = 0

and
1

(2πj)2

∮
C−
1

∮
C−
2

z22
ω1ω2

z1z2
m (ω1, ω2) dz1dz2 =

1

N2

tr
[
R2

2

]
.

We can therefore conclude that mM takes the form in (2.23).
The same approach can be followed to evaluate the asymptotic variance. In this

case, we will use the fact that, for any ω′ ∈ C−
ωj

= ωj(C−
j ), the equation Γj(ω, ω

′) = 1

has all its solutions inside C−
ωj

, see [75]. Therefore, all the singularities of the term
σ2
j (ω, ω

′;A,B) are located inside C−
ωj

. We can therefore use the same integration
technique as before by first applying the change of variables zj 7→ ωj = ωj(zj) and
noting that the resulting contour C−

ωj
= ωj(C−

j ) encloses all the singularities of the
integrand, because C−

j is built to enclose zero. Applying then a second change of
variables ωj 7→ ζ(ωj) = ω−1

j one can see that ζ(C−
ωj
) encloses zero and no other
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singularity. Computing the corresponding residue, one easily finds that

1

2πj

∮
C−
1

(z1 − z2)
2 ω1

z1
σ2
1 (ω1, ω

′
1;A,B) dz1 =

=

(
2z2 + ω′

1

1

N1

tr [R1Q1 (ω
′
1)]

)
×

× 1

N1

tr [R1Q1 (ω
′
1)AR1Q1 (ω

′
1) Ω1 (ω

′
1;B)]

− 1

N1

tr
[
R2

1Q1 (ω
′
1)AR1Q1 (ω

′
1) Ω1 (ω

′
1;B)

]
− 1

N1

tr
[
R1Q1 (ω

′
1)AR2

1Q1 (ω
′
1) Ω1 (ω

′
1;B)

]
+ ω′

1

1

N1

tr [R1Q1 (ω
′
1)A]

1

N1

tr
[
R2

1Q
2
1 (ω

′
1) Ω1 (ω

′
1;B)

]
.

We can now multiply by (z′1 − z′2)
2 ω′

1/z
′
1 and integrate with respect to z′1. Following

exactly the same approach as above, after some algebra, we obtain

1

(2πj)2

∮
C−
1

∮
C−
1

(z1 − z2)
2 (z′1 − z′2)

2 ω1

z1

ω′
1

z′1
σ2
1 (ω1, ω

′
1;A,B) dz1dz

′
1 =

=
1

N1

tr
[
R1

((
1

N1

tr [R1]− 2z2

)
A+R1A+AR1 +

1

N1

tr [R1A] IM

)
×

×R1

((
1

N1

tr [R1]− 2z′2

)
B+BR1 +R1B+

1

N1

tr [R1B] IM

)]
+

1

N1

tr
[
R2

1A
] 1

N1

tr
[
R2

1B
]
+

1

N1

tr
[
R2

1

] 1

N1

tr [R1AR1B] . (A.19)

Now, to solve the integrals with respect to z2, we apply the following result

1

2πj

∮
C−
2

Q2(ω2)
ω2

z2
dz2 = IM

1

2πj

∮
C−
2

z2Q2(ω2)
ω2

z2
dz2 = R2.

A direct application of the above identities allows us to obtain

1

(2πj)4

∮
C−
1

∮
C−
1

∮
C−
2

∮
C−
2

(z1 − z2)
2 (z′1 − z′2)

2

(
ω1

z1

ω′
1

z′1

ω2

z2

ω′
2

z′2

)
σ2
1 (ω1, ω

′
1;A,B) dz1dz

′
1dz2dz

′
2

= 2

(
1

N1

tr
[
R2

1

])2

+ 4
1

N1

tr

[(
R1

(
R1 +

1

N1

tr [R1] IM −R2

))2
]
. (A.20)

Obviously, the integral of the term σ2
2 (ω2, ω

′
2;Q1(ω1),Q1(ω

′
1)) can be obtained from

the above by simply swapping the two indices.
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We finally evaluate the last integral, first by noting that, using the same inte-
gration technique, we obtain

1

2πj

∮
C−
1

(z1 − z2)
2 ω1

z1

tr2 [AQ1 (ω1)]

1− Γ1(ω1, ω′
1)
dz1 =

=

(
2z2 −

1

N1

tr [R1]

)
tr2 [A]− 2tr [A] tr [AR1]

+ tr2 [A]
1

N1

tr
[
R2

1Q1 (ω
′
1)
]

and therefore replacing A with BQ2 (ω2)A and using the same technique we find

1

(2πj)2

∮
C−
1

∮
C−
2

(z1 − z2)
2 ω1

z1

ω2

z2
×

× tr2 [AQ1 (ω1)BQ2 (ω2)]

(1− Γ1(ω1, ω′
1)) (1− Γ2(ω2, ω′

2))
dz1dz2 = −2tr2 [AB]

and consequently, after some manipulation,

1

(2πj)4

∮
C−
1

∮
C−
1

∮
C−
2

∮
C−
2

(z1 − z2)
2 (z′1 − z′2)

2 ω1ω
′
1ω2ω

′
2

z1z′1z2z
′
2

×

× ϱ(ω1, ω
′
1, ω2, ω

′
2)dz1dz2dz

′
1dz

′
2 = 4

tr2[R1R2]

N1N2

.

Adding the three integrals, we can conclude that the asymptotic variance takes the
expression in (2.24).

A.2.2 Symmetrized KL distance

Let us consider the integrals in (2.17)-(2.19) for g(z1, z2) = z1/(2z2) + z2/(2z1) − 1,
where only the contours of the last integral enclose {0}. The third term can be
evaluated by considering the integral in (A.18) and integrating with respect to z2.
Using the change of variable z2 7→ ζ = ω−1

2 (z2) one can readily see that

1

(2πj)2

∮
C−
1

∮
C−
2

ω1ω2

z1z2
m (ω1, ω2) dz1dz2 = 0

and we only need to evaluate the other two terms. We begin by noticing that, by
applying the change of variable z1 7→ ω = ω1 (z1)

1

2πj

∮
C−

1

z1
ω1ω2

z1z2
m (ω1, ω2) dz1 (A.21)

=
1

2πj

∮
C−

ω1

ω1ω2

z2
m (ω1, ω2)

(
1− 1

N1

tr
[
R2

1Q
2
1 (ω1)

])
dω1 (A.22)
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where C−
ω1

= ω1(C
−
1 ). It can readily be seen that the integrand is holomorphic at µ(1)

0

and therefore C−
ω1

contains all the singularities. This means that we can enlarge the
contour and apply the change of variables ω 7→ ζ(ω) = ω−1 so that the transformed
contour only encloses zero and no other singularity. This readily shows that

1

2πj

∮
C−

1

z1
ω1ω2

z1z2
m (ω1, ω2) dz1 =

ω2

z2
m2 (ω2,R1) .

Now, multiplying by z−1
2 and by applying the change of variable z2 7→ ω = ω2 (z2)

and using the integration by parts formula we see that

1

(2πj)2

∮
C−

1

∮
C−

2

z1
z2

ω1ω2

z1z2
m (ω1, ω2) dz1dz2

=
1

2πj

∮
C−

ω2

ω2

z22
m2 (ω2,R1) (1− Γ2(ω2)) dω2

=
1

2πj

∮
C−

ω2

m2 (ω2,R1)

z2
dω2 +

1

2πj

∮
C−

ω2

ω2

z2
m′

2 (ω2,R1) dω2

where we have introduced the notation

m′
j (ω,A) =

dmj (ω,A)

dω
.

Let us now evaluate these two integrals separately. The first one can be solved
by using the fact that m2 (ω2,R1) is holomorphic at µ(2)

0 so that we can expand the
contour as

1

2πj

∮
C−

2

1

z2
m2 (ω2,R1) dω2

=
m2

(
µ
(2)
0 ,R1

)
1− Γ2

(
µ
(2)
0

) +
1

2πj

∮
C−
ω2

1

z2
m2 (ω2,R1) dω2.

Now, the integral on the right hand side can be shown to be zero by using the
change of variables ω2 7→ ζ(ω2) = ω−1

2 . Following the same procedure, we find that

1

2πj

∮
C−

ω2

ω2

z2

dm2 (ω2,R1)

dω2

dω2

=
µ
(2)
0 m′

2

(
µ
(2)
0 ,R1

)
1− Γ2

(
µ
(2)
0

) +
1

2πj

∮
C−
ω2

ω2

z2
m′

2 (ω2,R1) dω2

where the last integral is shown to be zero by using the change of variables ω2 7→
ζ(ω2) = ω−1

2 . This directly leads to (2.25).
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Let us now consider the computation of the variance. We begin by noticing that

1

2πj

∮
C−
1

ω1

z1
σ2
1 (ω1, ω

′
1;A,B) dz1

=
1

2πj

∮
C−
ω1

σ2
1 (ω1, ω

′
1;A,B)

1− Γ1(ω1)

1− 1
N1

tr [R1Q1 (ω1)]
dω1

= 0

where the last integral is evaluated by using the change of variables ω1 7→ ζ = ω−1
1 .

Proceeding in the same way, we find

1

2πj

∮
C−
1

ω1

z1
ϱ(ω1, ω

′
1, ω

′
2)dz1 = 0

which allows us to conclude that

1

(2πj)2

∮
C−
1

∮
C−
2

ω1

z1

ω2

z2
Σ2 (ω1, ω2, ω

′
1, ω

′
2) dz1dz2 = 0 (A.23)

and that the same equality holds if we integrate with respect to z′j instead of zj . On
the other hand, following the same procedure we can show

1

2πj

∮
C−

1

ω1σ
2
1 (ω1, ω

′
1;A,B) dz1

= −ϕ1 (ω
′
1;B)

1

N1

tr
[
R2

1Q
2
1 (ω

′
1)A

]
− 1

N1

tr [R1Q1 (ω
′
1)AR1Q1 (ω

′
1)B]

and
1

(2πj)2

∮
C−

1

∮
C−

1

ω1ω
′
1σ

2
1 (ω1, ω

′
1;A,B) dz1dz

′
1 =

1

N1

tr [R1AR1B] .

Similarly, we obtain

1

2πj

∮
C−

1

ω1ϱ(ω1, ω
′
1, ω2, ω

′
2)dz1 = −tr2 [R1Q1 (ω

′
1)R2Q2 (ω2)Q2 (ω

′
2)]

N1N2 (1− Γ2(ω2, ω′
2))

and

1

(2πj)2

∮
C−

1

∮
C−

1

ω1ω
′
1ϱ(ω1, ω

′
1, ω2, ω

′
2)dz1dz

′
1 =

tr2 [R1R2Q2 (ω2)Q2 (ω
′
2)]

N1N2 (1− Γ2(ω2, ω′
2))

.

We can conclude that

1

(2πj)2

∮
C−

1

∮
C−

1

ω1ω
′
1Σ

2 (ω1, ω2, ω
′
1, ω

′
2) dz1dz

′
1 =

= σ2
2 (ω2, ω

′
2;R1,R1) +

1

N1

tr [R1Q2 (ω2)R1Q2 (ω
′
2)]

+
tr2 [R1R2Q2 (ω2)Q2 (ω

′
2)]

N1N2 (1− Γ2(ω2, ω′
2))

(A.24)
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and

1

(2πj)2

∮
C−

1

∮
C−

2

ω1ω
′
2Σ

2 (ω1, ω2, ω
′
1, ω

′
2) dz1dz

′
2 =

= −ϕ1 (ω
′
1;R2)

1

N1

tr
[
R2

1Q
2
1 (ω

′
1)Q2 (ω2)

]
− 1

N1

tr [R1Q1 (ω
′
1)Q2 (ω2)R1Q1 (ω

′
1)R2]

− ϕ2 (ω2;R1)
1

N2

tr
[
R2

2Q
2
2 (ω2)Q1 (ω

′
1)
]

− 1

N2

tr [R2Q2 (ω2)Q1 (ω
′
1)R2Q2 (ω2)R1]

+
1

N1N2

tr2 [R1Q1 (ω
′
1)R2Q2 (ω2)] . (A.25)

With the above results, let us now focus on the evaluation of the variance. Using
(A.23) we can simplify the evaluation of σ2

M to

σ2
M =

1 + ς

(2πj)4

∮
C−

1

∮
C−

2

∮
C−

1

∮
C−

2

(
z1
2z2

+
z2
2z1

)
×

×
(
z′1
2z′2

+
z′2
2z′1

)
ω1ω2

z1z2

ω′
1ω

′
2

z′1z
′
2

Σ2 (ω1, ω2, ω
′
1, ω

′
2) dz1dz2dz

′
1dz

′
2.

Now using the integration by parts formula together with the integrals in (A.24)-
(A.25) we can write

σ2
M =

1 + ς

4 (2πj)2

∮
C−

ω1

∮
C−

ω1

1

z1z′1

∂2 [ω1ω
′
1Υ11 (ω1, ω

′
1)]

∂ω1∂ω′
1

dω1dω
′
1

+
1 + ς

2 (2πj)2

∮
C−

ω1

∮
C−

ω2

1

z1z2

∂2 [ω1ω2Υ12 (ω1, ω2)]

∂ω1∂ω2

dω1dω2

+
1 + ς

4 (2πj)2

∮
C−

ω2

∮
C−

ω2

1

z2z′2

∂2 [ω2ω
′
2Υ22 (ω2, ω

′
2)]

∂ω2∂ω′
2

dω2dω
′
2

where Υ11, Υ22 and Υ12 are as defined in (2.27)-(2.28). Now, noting that the above
quantities are holomorphic at ω1 = µ

(1)
0 and ω2 = µ

(2)
0 and using the fact that

1

2πj

∮
C−
ω1

1

z1

∂Υ11 (ω1, ω
′
1)

∂ω1

dω1 = 0

1

2πj

∮
C−
ω1

1

z1

∂Υ12 (ω1, ω2)

∂ω1

dω1 = 0

(which follows using the integration by parts formula together with the change of
variables ω 7→ ζ = ω−1), we obtain the expression of the variance in (2.26).
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A.2.3 Subspace distance

Consider next the subspace distance between two sample covariance matrices in
the undersampled regime. In this case, we need to consider the integrals in (2.17)-
(2.19) for g(z1, z2) = 1 where none of the contours encloses {0}. We begin by notic-
ing that, by applying the change of variable z1 7→ ω = ω1 (z1) we are able to write

1

2πj

∮
C−

1

ω1ω2

z1z2
m (ω1, ω2) dz1 =

1

2πj

∮
C−

ω1

ω1ω2

z1z2
m (ω1, ω2) (1− Γ1 (ω1)) dω1

where C−
ω1

= ω1(C
−
1 ). This contour contains all the singularities of the integrand,

except for the smallest zero of z1(ω), that is µ(1)
0 . Noting that m(ω1, ω2) is holomor-

phic at ω1 = µ
(1)
0 we see that the residue of the integrand at this point turns out to

be µ(1)
0 ω2/z2m(µ

(1)
0 , ω2), where we have used the fact that the derivative of z1(ω1) is

precisely 1− Γ1 (ω1). Therefore, we can write

1

2πj

∮
C−

1

ω1ω2

z1z2
m(ω1, ω2)dz1 = µ

(1)
0

ω2

z2
m(µ

(1)
0 , ω2)+

+
1

2πj

∮
C−
ω1

ω1ω2

z1z2
m(ω1, ω2) (1− Γ1 (ω1)) dω1

where now C−
ω1

encloses µ(1)
0 . The integral on the right hand side can now be solved

by enlarging C−
ω1

and using the change of variables ζ(ω) = ω−1 so that ζ(C−
ω1
) en-

closes only zero. Using this technique one can easily see that this integral is equal
to ω2

z2
m2 (ω2, IM). Repeating the same process with respect to z2 we find

1

(2πj)2

∮
C−

2

∮
C−

1

ω1ω2

z1z2
m(ω1, ω2)dz1dz2 =

= µ
(1)
0 m1(µ

(1)
0 ,R2Q2(µ

(2)
0 )) + µ

(2)
0 m2(µ

(2)
0 ,R1Q1(µ

(1)
0 ))

which directly leads to the expression of mM in (2.29).
Now, regarding the variance we can follow the same approach as before. We

begin by noting that Q2 (ω2) is holomorphic at ω2 = µ
(2)
0 , so that we can write

1

2πj

∮
C−

2

ω2

z2
Q2(ω2)dz2 = µ

(2)
0 Q2(µ

(2)
0 ) +

1

2πj

∮
C−
ω2

ω2

z2
Q2 (ω2) (1− Γ2 (ω2)) dω2

where C−
ω2

now encloses µ(2)
0 . The second integral is solved by using the change of

variable ω2 7→ ζ = ω−1
2 , leading to

1

2πj

∮
C−
ω2

ω2

z2
Q2 (ω2) (1− Γ2 (ω2)) dω2 = IM
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so that
1

2πj

∮
C−

2

ω2

z2
Q2 (ω2) dz2 = R2Q2(µ

(2)
0 ).

Since σ2
1 (ω1, ω

′
1;Q2 (ω2) ,Q2 (ω

′
2)) is a linear function in the last two terms, we have

1

(2πj)2

∮
C−

2

∮
C−

2

ω2ω
′
2

z2z′2
σ2
1(ω1, ω

′
1;Q2(ω2),Q2(ω

′
2))dz2dz

′
2

= σ2
1(ω1, ω

′
1;R2Q2(µ

(2)
0 ),R2Q2(µ

(2)
0 )). (A.26)

On the other hand, noting that σ2
1 is holomorphic at ω1 = µ

(1)
0 and ω′

1 = µ
(1)
0 we can

write (denoting here A = R2Q2(µ
(2)
0 ))

1

2πj

∮
C−

1

ω1

z1
σ2
1(ω1, ω

′
1;A,A)dz1dz

′
1 = µ

(1)
0 σ2

1(µ
(1)
0 , ω′

1;A,A)+

+
1

2πj

∮
C−
ω1

σ2
1 (ω1, ω

′
1;A,A)

1− Γ1 (ω1)

1− 1
N1

tr [R1Q1 (ω1)]
dω1

where now C−
ω1

enloses also µ(1)
0 . Now, we consider the change of coordinates ω1 7→

ξ = ω−1
1 which readily shows that the integral on the right hand side of the above

expresson is identically zero. Proceeding in the same way with the other variable
ω′
1 one can conclude that the integral of (A.26) with respect to ω1, ω

′
1 is equal to

(µ
(1)
0 )2σ2

1(µ
(1)
0 , µ

(1)
0 ;R2Q2(µ

(2)
0 ),R2Q2(µ

(2)
0 )). The integral corresponding to the term

σ2
2 (ω2, ω

′
2;Q1 (ω1) ,Q1 (ω

′
1)) is obtained by swapping indices (1 ↔ 2).

It remains to compute the third integral

I =
1

(2πj)4

∮
C−

1

∮
C−

1

∮
C−

2

∮
C−

2

ω1ω
′
1ω2ω

′
2

z1z′1z2z
′
2

× ϱ(ω1, ω
′
1, ω2, ω

′
2)dz2dz

′
1dz

′
2.

Using again the approach above we can readily see that

1

2πj

∮
C−

1

ω1

z1
ϱ(ω1, ω

′
1, ω2, ω

′
2)dz1

= µ
(1)
0 ϱ(µ

(1)
0 , ω′

1, ω2, ω
′
2) +

1

2πj

∮
C−
ω1

ω1

z1
ϱ(ω1, ω

′
1, ω2, ω

′
2)dz1

where the integral on the right hand side can be shown to be identically zero by the
change of variables ω1 7→ ξ = ω−1

1 . Following the same reasoning over the other
integration variables, one can conclude that

I = (µ
(1)
0 µ

(2)
0 )2ϱ(µ

(1)
0 , µ

(1)
0 , µ

(2)
0 , µ

(2)
0 )

so that we can conclude that the variance takes the form in (2.30).



Appendix B

Appendix for Chapter 3

B.1 Proof of Proposition 3.1

We start by noticing that we can express f (l)
j (Rj) as in (3.2), so that proving Propo-

sition 3.1, it is the same as proving

sup
z∈C

{
f
(l)
j (ωj (z))Qj (ωj (z))ω

′
j (z)− ĥ

(l)
j (z)Q̂j(z)

}
≍ 0.

From Theorem 2.1 together with (2.4), we know that ωj (z)Qj (ωj (z)) ≍ zQ̂j(z)

for z ∈ C+. Then, by using the fact that zQ̂j(z) = −IM +R̂jQ̂j(z) (and equivalently
for Qj (ωj (z))), we obtain RjQj (ωj (z)) ≍ R̂jQ̂j(z). By Montel’s theorem, one can
extend this result to uniform convergence on C, so that

sup
z∈C

∣∣∣∣ 1Nj

tr [RjQj(ωj (z))]−
1

Nj

tr
[
R̂jQ̂j(z)

]∣∣∣∣→ 0

almost surely. Now, noting that

ωj (z)− ω̂j (z) = ωj (z)
tr
[
RjQj(ωj (z))− R̂jQ̂j(z)

]
Nj

(
1− 1

Nj
tr
[
R̂jQ̂j(z)

])
and using the fact that supz∈C supM |ωj (z) | < +∞, together with (see Lemma D.1)

inf
z∈C

inf
M

∣∣∣∣1− 1

Nj

tr
[
R̂jQ̂j(z)

]∣∣∣∣ > 0,

we can conclude that supz∈C |ωj (z) − ω̂j (z) | → 0 almost surely. Since these func-
tions are holomorphic and the above properties can be extended to an open subset
that includes C, by Montel’s theorem, we automatically have

sup
z∈C

|ω′
j (z)− ω̂′

j (z) | → 0
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with probability one. Consequently, we end up with

f
(l)
j (ωj (z))ω

′
j (z)Qj (ωj (z))− ĥ

(l)
j (z)Q̂j(z) =

=
ĥ
(l)
j (z)

z

(
ωj (z)Qj (ωj (z))− zQ̂j(z)

)
+

(
f
(l)
j (ωj (z))ω

′
j (z)

ωj (z)
−
f
(l)
j (ω̂j (z))ω̂

′
j (z)

ω̂j (z)

)
ωj (z)Qj (ωj (z)) . (B.1)

In what follows, we show that the terms on the right hand side of this equation are
asymptotically equivalent to zero which is sufficient to conclude the proof.

The first term is asymptotically equivalent to zero because ωj (z)Qj (ωj (z)) −
zQ̂j(z) ≍ 0 and

sup
z∈C

∣∣∣ĥ(l)j (z)
∣∣∣ = sup

z∈C

∣∣∣f (l)
j (ω̂j (z))

∣∣∣ sup
z∈C

∣∣∣∣zω̂′
j (z)

ω̂j (z)

∣∣∣∣ <∞ (B.2)

with probability one for all large M . Indeed, the second term on the right hand
side of (B.2) is finite (see Lemma D.1), and the first one is also bounded because
ω̂j (z) belongs to a compact interval inside the analycity region of F (l)

j (ω) with
probability one.

Now, the second term on the right hand side of (B.1) can be studied by noting
that supz∈C supM ∥ωj (z)Qj (ωj (z))∥ < +∞ and∣∣∣∣∣f

(l)
j (ωj (z))ω

′
j (z)

ωj (z)
−
f
(l)
j (ω̂j (z))ω̂

′
j (z)

ω̂j (z)

∣∣∣∣∣ ≤
≤
∣∣∣f (l)

j (ω̂j (z))
∣∣∣ ∣∣∣∣ω′

j (z)

ωj (z)
−
ω̂′
j (z)

ω̂j (z)

∣∣∣∣+ ∣∣∣∣ω′
j (z)

ωj (z)

∣∣∣∣ ∣∣∣f (l)
j (ωj (z))− f

(l)
j (ω̂j (z))

∣∣∣ .
Then, reasoning as above, we immediately see that

sup
M

sup
z∈C

|f (l)
j (ω̂j (z))| <∞

and

sup
z∈C

∣∣∣∣ω′
j(z)

ωj(z)
−
ω̂′
j(z)

ω̂j(z)

∣∣∣∣→ 0

with probability one. Regarding the second term, we have∣∣∣f (l)
j (ωj(z))− f

(l)
j (ω̂j (z))

∣∣∣ ≤ |f (l)′
j (ω̄j (z))||ωj (z)− ω̂j (z) |

where f (l)′
j (ω) denotes the derivative of f (l)

j (ω) and where ω̄j (z) belongs to the seg-
ment joining ωj (z) and ω̂j (z). Clearly supM supz∈C |f (l)′

j (ω̄j (z))| < ∞ as before, so
that this term converges to zero uniformly in C.
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Consider now the norm of ĥ(l)j
(
R̂j

)
and observe that

∥∥∥ĥ(l)j (R̂j

)∥∥∥ = sup
∥u∥=1

uH ĥ
(l)
j

(
R̂j

)
u ≤ sup

∥u∥=1

1

2π

∮
C−

∣∣∣ĥ(l)j (z)
∣∣∣ ∣∣∣uHQ̂j(z)u

∣∣∣ |dz| .
Now, obviously, |uHQ̂j(z)u| ≤ dist−1(z,Sj ∪ {0}) and, as claimed in (B.2), we
have supz∈C |ĥ(l)j (z)| < ∞ almost surely for all large M . It therefore follows that
sup ∥ĥ(l)j (R̂j)∥ <∞ with probability one for all large M .

B.2 Solving the integral in (3.10)

In order to simplify the notation, we drop the dependence on j ∈ {1, 2} in all
quantities (such as λ̂(j)m , ê(j)k , ω̂j (z), Nj , or α(j)) within this appendix. On the other
hand, we will extensively use the fact that the eigenvalues λ̂k are inside the contour
C almost surely for all large M . Hence, all the associated statements should be
understood to hold also with probability one and assuming thatM is large enough
(we will omit this detail throughout this appendix).

By using the expression for ω̂ (z) and ω̂′ (z) in (3.6) and (3.7) respectively, we
can immediately see that we need to evaluate

α =
1

2πj

∮
C−

log2

(
1− Ψ̂(z)

z

)(
1

M

M∑
k=1

1

λ̂k − z

)1− M
N

+ 1
N

∑M
m=1

z2

(λ̂m−z)
2

1− Ψ̂(z)

 dz

where we have defined

Ψ̂(z) =
1

N

M∑
m=1

λ̂m

λ̂m − z
.

To evaluate this integral, we first observe that log2((1− Ψ̂(z))/z) = log2(1− Ψ̂(z))−
2 log z log(1 − Ψ̂(z)) + log2(z) and analyze the three integrals separately. The first
integral (containing log2(1 − Ψ̂(z))) is the one that is simpler to evaluate, because
log(1−Ψ̂(z)) is holomorphic everywhere except for the intervals ∪M

k=1[µ̂k, λ̂k] where
{µ̂k, k = 1, . . . ,M} are the solutions to the equation Ψ̂(µ̂) = 1. Since these intervals
are inside the contour C almost surely for all large M , one can conclude that the
whole integrand is holomporphic outside C. One can therefore enlarge C and con-
sider the change of variable ζ = z−1, after which the only potential singularity will
be at ζ = 0. It turns out that the resulting singularity at zero has residue equal to
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zero, so that the corresponding integral is zero as well:

1

2πj

∮
C−

log2
(
1− Ψ̂(z)

)( 1

M

M∑
k=1

1

λ̂k − z

)1− M
N

+ 1
N

∑M
m=1

z2

(λ̂m−z)
2

1− Ψ̂(z)
dz

 = 0.

Now, the integral with respect to the term log2 (z) is also easily solved by evalu-
ation of the residues at the singularities {λ̂k, µ̂k} for k = 1, . . . ,M , which are the
only ones inside the contour C. It follows that

1

2πj

∮
C−

log2 z

(
1

M

M∑
k=1

1

λ̂k − z

)
×

1− M
N

+ 1
N

∑M
m=1

z2

(λ̂m−z)
2

1− Ψ̂(z)
dz =

=

(
N

M
− 1

) M∑
r=1

log2 (µ̂r) + 2
1

M

M∑
k=1

log2
(
λ̂k

)
+ 2

1

M

M∑
k=1

log
(
λ̂k

)
− 1

M

M∑
k=1

M∑
r=1
r ̸=k

log2
(
λ̂r

) λ̂r

λ̂k − λ̂r

− 1

M

M∑
k=1

log2
(
λ̂k

) M∑
m=1

λ̂m

λ̂m − µ̂k

−
M∑

m=1
m ̸=k

λ̂m

λ̂m − λ̂k

 .

It remains to compute the integral with respect to the cross term log z log
(
1− Ψ̂(z)

)
.

Let us denote

I =
1

2πj

∮
C−

log z log
(
1− Ψ̂(z)

)( 1

M

M∑
k=1

1

λ̂k − z

)1− M
N

+ 1
N

∑M
m=1

z2

(λ̂m−z)
2

1− Ψ̂(z)

 dz.

We observe that I = I(1) where we have defined the function I(x) : [0, 1] → C as

I(x) = 1

2πj

∮
C−

log z log
(
1− xΨ̂(z)

)( 1

M

M∑
k=1

1

λ̂k − z

)
×

×
1− M

N
+ 1

N

∑M
m=1

z2

(λ̂m−z)
2

1− Ψ̂(z)
dz. (B.3)

The above function is continously differentiable with respect to x, with derivative

I ′(x) =
1

2πj

∮
C+

log z

(
1

M

M∑
k=1

1

λ̂k − z

)
Ψ̂(z)

1− M
N

+ 1
N

∑M
m=1

z2

(λ̂m−z)
2(

1− xΨ̂(z)
)(

1− Ψ̂(z)
)
 dz.
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This is a consequence of the fact that the integrand of the above function is uni-
formly bounded in C, so that by the dominated convergence theorem we can move
the derivative with respect to x inside the integration. The above integral can eas-
ily be solved for x ∈ (0, 1) by noting that the only singularities of the integrand
inside C are the sample eigenvalues λ̂m, the solutions to the equation 1 = Ψ̂(µ̂),
namely µ̂m, and the solutions to the equation 1 = xΨ̂(z), which will be denoted
µ̂m (x), m = 1, . . . ,M. Using conventional residue calculus, we can solve for any
x ∈ (0, 1), leading to

I ′(x) =
1−N/M

1− x

M∑
r=1

log µ̂r +
1

M

M∑
r,k=1

log µ̂r (x)

λ̂k − µ̂r (x)
µ̂′
r (x)

+
1

(1− x)x

(
N

Mx
− 1

) M∑
r=1

log µ̂r (x)

+
1

x

M + 1

M

M∑
k=1

log λ̂k +
1

x
−
(
1

x
+ 1

)
1

x

N

M

M∑
k=1

log λ̂k

where we have used the fact that µ̂m (x) are differentiable functions of xwith prob-
ability one, with derivative

µ̂′
k (x) =

−x2

N

M∑
m=1

λ̂m(
λ̂m − µ̂k (x)

)2


−1

.

The above expression can be simplified by using the fact that (see [56, 75])

1− M

N
=

∏
r µ̂r∏
r λ̂r

1− xM

N
=

∏
r µ̂r (x)∏

r λ̂r
(B.4)

so that the derivative I ′(x) can alternatively be expressed as

I ′(x) =
−1

1− x

(
N

M
− 1

)
log

(
1− M

N

)
+

1

(1− x)x

(
N

Mx
− 1

)
log

(
1− xM

N

)
+

1

M

M∑
k=1

M∑
r=1

log µ̂r (x)

λ̂k − µ̂r (x)
µ̂′
r (x) +

1

x

(
1 +

1

M

M∑
k=1

log λ̂k

)
. (B.5)

From the above expression of the derivative I ′(x) it is easy to find a primitive
as follows. The primitive of the first and the fourth term are trivial, so let us first
focus on the second term. In order to obtain a primitive of this term, we recall the
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function Φ2(x) introduced in (3.12). By using the change of variables t = 1 − xM
N

and partial fraction decomposition one can show that∫
1

(1− x)x

(
N

Mx
− 1

)
log

(
1− xM

N

)
dx =

= − N

xM
log

(
1− xM

N

)
+ log

(
1− xM

N
xM
N

)

+

(
N

M
− 1

)
log

(
1− xM

N

)
log

(
x
1− M

N

1− x

)

+

(
N

M
− 1

)[
Φ2

(
1− xM

N

)
− Φ2

(
1− xM

N

1− M
N

)]
+K

where K is an undetermined constant (its value may change from one line to the
next) and where we have used the fact that∫

log t

λ− t
dt = log t log

(
λ

|λ− t|

)
− Φ2

(
t

λ

)
+ constant (B.6)∫

log t

(λ− t)2
dt =

log t

|λ− t|
− 1

λ
log

(
t

|λ− t|

)
+ constant

which can be readily proven by taking derivatives on both sides.
Regarding the third term of (B.5), one can easily show using (B.6) that

1

M

M∑
k=1

M∑
r=1

∫
log µ̂r (x)

λ̂k − µ̂r (x)
µ̂′
r (x) dx =

1

M

M∑
k=1

M∑
r=1

log µ̂r (x) log
λ̂k∣∣∣λ̂k − µ̂r (x)

∣∣∣
− 1

M

M∑
k=1

M∑
r=1

Φ2

(
µ̂r (x)

λ̂k

)
+K.

Hence, putting everything together we can state that the primitive of I ′(x) takes
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the form

I(x) =
(
N

M
− 1

)
log

(
1− M

N

)
log(1− x)

+

(
N

M
− 1

)
log

(
1− xM

N

)
log

((
1− M

N

)
x

1− x

)
+

(
N

M
− 1

)[
Φ2

(
1− xM

N

)
− Φ2

(
1− xM

N

1− M
N

)]

− N

xM
log

(
1− xM

N

)
+ log

(
N

M

(
1− xM

N

))
+

1

M

M∑
k=1

M∑
r=1

log µ̂r (x) log
λ̂k∣∣∣λ̂k − µ̂r (x)

∣∣∣
+

(
1

M

M∑
k=1

log λ̂k

)
log x− 1

M

M∑
k=1

M∑
r=1

Φ2

(
µ̂r (x)

λ̂k

)
+K.

The undetermined constant can be obtained by forcing I(0) = 0 (which follows
from the definition of I(x) in (B.3)), leading to

K = −
(
N

M
− 1

)[
Φ2 (1)− Φ2

(
1

1− M
N

)]
− 1− log

(
N

M

)
+

1

M

M∑
k=1

M∑
r=1

Φ2

(
λ̂r

λ̂k

)

− log (N)

M

M∑
k=1

log λ̂k −
1

M

M∑
k=1

M∑
r=1
r ̸=k

log λ̂r log

 λ̂k∣∣∣λ̂k − λ̂r

∣∣∣


where we have used the fact that µ̂k (x) → λ̂k when x→ 0, and also

lim
x→0

xλ̂k

λ̂k − µ̂k (x)
= lim

x→0

N − x

M∑
m=1
m̸=k

λ̂m

λ̂m − µ̂k (x)

 = N.

As a consequence of this, we can directly find

I(1) =
(
N

M
− 1

)
log

(
1− M

N

)[
1

2
log

(
1− M

N

)
− 1

]
− 1

+
1

M

M∑
k=1

M∑
r=1

log µ̂r log

(
λ̂k

λ̂k − µ̂r

)
− 1

M

M∑
k=1

M∑
r=1
r ̸=k

log λ̂r log

(
λ̂k

λ̂k − λ̂r

)

+
1

M

M∑
k=1

M∑
r=1

Φ2

(
λ̂r

λ̂k

)
− 1

M

M∑
k=1

M∑
r=1

Φ2

(
µ̂r

λ̂k

)
− log (N)

1

M

M∑
k=1

log λ̂k
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where we have used the fact that Li2 (1) = π2/6 (so that Φ2 (1) = π2/6) together
with the identity (for z ∈ (0, 1))

Φ2 (z) + Φ2

(
z−1
)
=
π2

3
− 1

2
log2 z.

The final expression for α is obtained by putting together all the above integrals
and using the fact that [76]

− 1

N
λ̂k =

∏M
r=1

(
µ̂r − λ̂k

)
∏M

r=1
r ̸=k

(
λ̂r − λ̂k

)
and therefore

logN =
M∑
r=1

log
λ̂k∣∣∣µ̂r − λ̂k

∣∣∣ −
M∑
r=1
r ̸=k

log
λ̂k∣∣∣λ̂r − λ̂k

∣∣∣ .

B.3 Proof of Theorem 3.1

The estimators d̂M can all be expressed as

d̂M =
−1

4π2

∮
C−

1

∮
C−

2

ĥ(z1, z2)
1

M
tr
[
Q̂1(z1)Q̂2(z2)

]
dz1dz2

for some L, where

ĥ(z1, z2) =
L∑
l=1

ĥ
(l)
1 (z1)ĥ

(l)
2 (z2)

ĥ
(l)
j (z) = f

(l)
j (ω̂j (z))

zω̂′
j (z)

ω̂j (z)

for some f (l)
j (ω) under consideration. Let us now denote as h(z1, z2) the asymptotic

equivalent of the random quantity ĥ(z1, z2), that is

h(z1, z2) =
L∑
l=1

h
(l)
1 (z1)h

(l)
2 (z2) (B.7)

h
(l)
j (z1) = f

(l)
j (ωj (zj))

zjω
′
j (zj)

ωj (zj)

and note that, recalling the definition of Q̄j(zj) and by Cauchy integration,

dM =
−1

4π2

∮
C−

1

∮
C−

2

h(z1, z2)
1

M
tr
[
Q̄1(z1)Q̄2(z2)

]
dz1dz2.
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We begin by noticing that almost sure convergence in Theorem 2.1 above and
the fact that all quantities inside the integral are bounded over the corresponding
contours that we can write, using the short-hand notation Q̄j = Q̄j(zj) and Q̂j =

Q̂j(zj),

M
(
d̂M − dM

)
=

−1

4π2

∮
C−

1

∮
C−

2

h(z1, z2)ξ̂(z1, z2)dz1dz2

− 1

4π2

∮
C−

1

∮
C−

2

tr
[
Q̄1Q̄2

] (
ĥ(z1, z2)− h(z1, z2)

)
dz1dz2 + op(1) (B.8)

where op(1) denotes a random variable that converges in probability to zero and
where we have defined

ξ̂(z1, z2) = tr
[
Q̂1Q̂2

]
− tr

[
Q̄1Q̄2

]
. (B.9)

Our first objective is to show that the second term on the right hand side of (B.8)
can be expressed in a similar way as the first one. In a second step, we will apply
a central limit theorem that was derived in [77] for this type of statistic. Let us
focus on the first step of the proof, which is summarized in the proposition that is
presented below.

In order to introduce this result, we need some additional definitions. For
j ∈ {1, 2} and for a certain M ×M deterministic matrix A, consider the function
ϕj(ω;A), defined as

ϕj(ω;A) =
ω

1− Γj (ω)

1

Nj

tr
[
RjQ

2
j(ω)A

]
(B.10)

where Γj (ω) is defined in (3.17). With these definitions, we are now ready to
present the first step in the proof, which is summarized in the following propo-
sition.

Proposition B.1. Under assumptions (As1)-(As4) we can write M(d̂M − dM) = ξ̂M +

op(1), where

ξ̂M =
−1

4π2

∮
C−

1

∮
C−

2

h(z1, z2)ξ̂(z1, z2)dz1dz2

+
1

4π2

∮
C−

1

∮
C−
2

g(1)(z1)ξ̂(z1, z2)dz1dz2

+
1

4π2

∮
C−

2

∮
C−
1

g(2)(z2)ξ̂(z1, z2)dz1dz2 (B.11)



B.3. PROOF OF THEOREM 3.1 134

where C−
j , j ∈ {1, 2}, are negatively oriented simple contours enclosing Sj∪{0} and where

we have introduced the two functions

g(1)(z1) =
L∑
l=1

f
(l)
1 (ω1)ϕ1(ω1; f

(l)
2 (R2))

g(2)(z2) =
L∑
l=1

f
(l)
2 (ω2)ϕ2(ω2; f

(l)
1 (R1)).

Proof. It is sufficient to see that the second term on the right hand side of (B.8) co-
incides with the sum of the second and third terms in the statement of the propo-
sition up to a sequence of random variables that converge to zero in probability.
Observe that we can write

M(ĥ(z1, z2)− h(z1, z2)) =
L∑
l=1

χ(l)(z1, z2).

where we have defined

χ(l)(z1, z2) =M
(
ĥ
(l)
1 (z1)ĥ

(l)
2 (z2)− h

(l)
1 (z1)h

(l)
2 (z2)

)
. (B.12)

Using again Theorem 2.1 and the bounds in Lemmas D.1-D.2, we see that

χ(l)(z1, z2) = h
(l)
2 (z2)M

(
ĥ
(l)
1 (z1)− h

(l)
1 (z1)

)
+

+ h
(l)
1 (z1)M

(
ĥ
(l)
2 (z2)− h

(l)
2 (z2)

)
+ op(1)

where here and in the rest of this proof we should understand op(1) as a function
of z1, z2 which converges in probability to zero uniformly in C1 ×C2. Now, using a
Taylor approximation of f around ωj (z), we see that

Nj

(
f
(l)
j (ω̂j)− f

(l)
j (ωj)

)
= f

(l)′
j (ωj)Nj (ω̂j − ωj) + op(1)

where f (l)′
j (ωj) is the derivative of f (l)

j (ωj). Consequently, we see that

Nj

(
ĥ
(l)
j (zj)− h

(l)
j (zj)

)
= zj

f
(l)
j (ω̂j)

ωj

Nj

(
ω̂′
j − ω′

j

)
+ zj

(
f
(l)′
j (ωj)−

f
(l)
j (ω̂j)

ωj

)
ω′
j

ωj

Nj (ω̂j − ωj) + op(1)

where we have used the short-hand notation ω′
j = ω′

j (zj) to denote the derivative
of the function ωj (zj) (and equivalently for ω̂′

j). Now, by using the actual expres-
sions for these two quantities, one can also express

Nj (ω̂j − ωj) = Njω̂jωj

(
1

ωj

− 1

ω̂j

)
= ω̂jωjtr

[
Q̂j − Q̄j

]
= ω2

j tr
[
Q̂j − Q̄j

]
+op(1)
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which implies that

Nj

(
ĥ
(l)
j (zj)− h

(l)
j (zj)

)
= φ

(l)
j (zj) + op(1)

where

φ
(l)
j (zj) = zj

f
(l)
j (ωj)

ωj

d

dzj

[
ω2
j tr
[
Q̂j − Q̄j

]]
+ zj

[
ωjf

(l)′
j (ωj)− f

(l)
j (ωj)

]
ω′
jtr
[
Q̂j − Q̄j

]
.

We can therefore express the second term on the right hand side of (B.8) as the sum
for l = 1, . . . , L of the terms

−1

4π2

∮
C−

1

∮
C−

2

tr
[
Q̄1Q̄2

]
M

χ(l)(z1, z2)dz1dz2 =
1

2πj

∮
C−

1

1

N1

tr
[
Q̄1f

(l)
2 (R2)

]
φ
(l)
1 (z1)dz1

+
1

2πj

∮
C−

2

1

N2

tr
[
f
(l)
1 (R1) Q̄2

]
φ
(l)
2 (z2)dz2 + op(1)

where we have used the fact that (introducing the short hand notation Qj = Qj(ωj(zj)))

1

2πj

∮
C−

j

h
(l)
j (zj)Q̄jdzj =

1

2πj

∮
C−

ωj

f
(l)
j (ωj)Qjdωj = f

(l)
j (Rj) . (B.13)

Using the integration by parts formula we can simplify the above expression to

−1

4π2

∮
C−

1

∮
C−

2

tr
[
Q̄1Q̄2

]
M

χ(l)(z1, z2)dz1dz2

=
−1

2πj

∮
C−

1

ϕ1(ω1; f
(l)
2 (R2))f

(l)
1 (ω1)tr

[
Q̂1 − Q̄1

]
dz1

− 1

2πj

∮
C−

2

ϕ2(ω2; f
(l)
1 (R1))f

(l)
2 (ω2)tr

[
Q̂2 − Q̄2

]
dz2 + op(1)

where we have used the fact that, for any deterministic square matrix A, we can
write

d

dzj

[
tr
[
Q̄jA

]
Nj

zj
f
(l)
j (ωj)

ωj

]
=

d

dzj

[
tr [QjA]

Nj

f
(l)
j (ωj)

]
=

1

Nj

tr
[
Q2

jA
]
f
(l)
j (ωj)ω

′
j +

1

Nj

tr [QjA] f
(l)′
j (ωj)ω

′
j.

Now, let C−
1 and C−

2 denote two negatively oriented simple contours as in the state-
ment of the proposition. We can now use the fact that

1

2πj

∮
C−
j

Q̂jdzj =
1

2πj

∮
C−
j

Q̄jdzj = IM
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which directly leads to

tr[Q̂1 − Q̄1] =
1

2πj

∮
C−
2

ξ̂(z1, z2)dz2

(equivalently for tr[Q̂2 − Q̄2]) and hence the statement of the proposition.

It directly follows from the above proposition that the asymptotic law ofM(d̂M−
dM) coincides with that of ξ̂M in (B.11). To study the asymptotic behavior of this
new sequence of random variables, we use a CLT derived in [77], which can be di-
rectly applied to this new sequence of random variables. The CLT basically shows
that random variables of the form ζM asymptotically fluctuate as Gaussian ran-
dom variables with some predefined asymptotic (second order) mean and vari-
ance, which we introduce next.

The expression of ξ̂M in (B.11) is complicated because the three integrals have
to be taken with respect to different contours (i.e. Cj when the contour encloses
{0} and Cj when it does not). In order to simplify the presentation, we will admit
a certain abuse of notation and rewrite ξ̂M in (B.11) as

ξ̂M =
−1

4π2

∮
C−

1

∮
C−

2

g(z1, z2)ξ̂(z1, z2)dz1dz2

where now
g(z1, z2) = h(z1, z2)− g(1)(z1)− g(2)(z2) (B.14)

and where the general contour Cj should be understood to symbolize either Cj or
Cj depending on the actual function that is integrated and following the conven-
tion in (B.11).

Following this simplified notation, we now define the asymptotic (second or-
der) mean of ξ̂M as

mM =
−ς
4π2

∮
C−

1

∮
C−

2

ω1ω2

z1z2
g(z1, z2)m (z1, z2) dz1dz2 (B.15)

where the function m(z1, z2) is defined as follows. We let m(z1, z2) = m1(ω1,Q2(ω2))+

m2(ω2,Q1(ω1)), where mj(ωj,A) is defined (for a given M ×M matrix A) as

mj(ω,A) =
1

Nj

tr
[
R2

jQ
3
j (ω) Ωj(ωj;A)

]
1− Γj(ω)

(B.16)

with Ωj(ω;A) denoting

Ωj(ω;A) = A+ ϕj(ω;A)IM (B.17)
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and where ϕj(ω;A) is defined in (B.10).
In the same way, we define the asymptotic variance of ξ̂M as (denoting again

ωj = ωj(zj) and ω̃j = ωj(z̃j))

σ2
M =

1 + ς

(2πj)4

∮
C−

1

∮
C−

1

∮
C−

2

∮
C−

2

g(z1, z2)g(z̃1, z̃2)×

× ω1ω2ω̃1ω̃2

z1z2z̃1z̃2
Σ2 (ω1, ω2, ω̃1, ω̃2) dz1dz2dz̃1dz̃2 (B.18)

where g(z1, z2) is defined in (B.14) and where the function Σ2 (ω1, ω2, ω̃1, ω̃2) consists
of the sum of three terms, namely

Σ2 (ω1, ω2, ω̃1, ω̃2) = σ2
1 (ω1, ω̃1;Q2 (ω2) ,Q2(ω̃2))

+ σ2
2 (ω2, ω̃2;Q1 (ω1) ,Q1(ω̃1)) + +ϱ (ω1, ω̃1, ω2, ω̃2) .

The first two terms are given by

σ2
j (ω, ω̃;A,B) =

=
1

1− Γj(ω, ω̃)

1

Nj

× tr [RjQj (ω)Qj (ω̃) Ωj(ω;A)RjQj (ω)Qj (ω̃) Ωj(ω̃;B)]

+
1

(1− Γj(ω, ω̃))
2

1

Nj

tr
[
R2

jQ
2
j (ω)Qj (ω̃) Ωj(ω;A)

] 1

Nj

tr
[
R2

jQj (ω)Q
2
j (ω̃) Ωj(ω̃;B)

]
(B.19)

whereas ϱ (ω1, ω̃1, ω2, ω̃2) is as defined in (3.21). Now, assuming that (As1)-(As3)
together with (As5) hold and that the observations are Gaussian distributed. It
was proven in [77] that if lim infM→∞ σ2

M > 0 we have

ζM −mM

σM
→ N (0, 1).

Hence, Theorem 3.1 follows directly from this result, provided that we prove that
the expressions of the asymptotic (second order) mean mM in (B.15) and the asymp-
totic variance in σ2

M (3.18) coincide with the expressions that are provided in the
statement of the theorem.

B.3.1 Simplification of mM in (B.15)

The idea here again is to first use the change of variables zj 7→ ωj = ωj (zj) and
noting that the transformed contour C−

ωj
= ωj(C−

j ) encloses all the singularities of
the integrand in (B.15). Consequently, one can enlarge the resulting contour C−

ωj
so
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that it encloses {0} and then apply a second change of variables ωj 7−→ ζ = ω−1
j

which only presents a singularity at zero. Following this procedure, one can easily
see that

1

2πj

∮
C−
1

ω1

z1
m (z1, z2) dz1 = m2(ω2, IM)

and equivalently for the integral with respect z1. Consequently, the expression in
(B.15) can be written as

mM =
−ς
4π2

∮
C−

1

∮
C−

2

ω1

z1
h(z1, z2)m1

(
ω1, Q̄2(z2)

)
dz1dz2

− ς

4π2

∮
C−

1

∮
C−

2

ω2

z2
h(z1, z2)m2

(
ω2, Q̄1(z1)

)
dz1dz2

− ς

2πj

∮
C−

1

ω1

z1
g(1)(z1)m1(ω1, IM)dz1

− ς

2πj

∮
C−

2

ω2

z2
g(2)(z2)m2(ω2, IM)dz2.

The integral of the first (resp. second) term with respect to z2 (resp. z1) can easily
be solved by inserting the expression of h(z1, z2) given in (B.7) and using (B.13). At
this point, we introduce the identity

Ωj

(
ω;A− ωj

zjω′
j

ϕj(ωj;A)IM

)
= A (B.20)

where ω′
j = (1−Γj(ωj))

−1 is the derivative of ωj(zj) with respect to zj . A direct ap-
plication of this identity, which can be proven using conventional algebra, allows
converting the above expression for the second order mean into the expression
given in (3.16).

B.3.2 Simplification of σ2M in (3.18)

Noting that some of the terms of g(z1, z2) only depend on one of the variables, we
see that in a number of terms of σ2

M one of the variables will be integrated out of
Σ2 (ω1, ω2, ω̃1, ω̃2). We begin by noticing that, applying first the change of variables
z1 7→ ω1 (z1), enlarging the contour and applying a second change of variables
ω1 7→ ζ (ω1) = ω−1

1 , we obtain

1

2πj

∮
C−
1

ω1

z1
ϱ (ω1, ω̃1, ω2, ω̃2) dz1 =

1

2πj

∮
C−
ω1

ω1

z1
ϱ (ω1, ω̃1, ω2, ω̃2) (1− Γ1(ω1)) dω1

=
1

2πj

∮
C−

0

ζ−1 (1− Γ1(ζ
−1))

z1 (ζ−1)
ϱ
(
ζ−1, ω̃1, ω2, ω̃2

) dζ
ζ2
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where C−
0 is a simple closed clockwise oriented contour enclosing zero and no

other singularity. The last integral can be shown to be zero since the singularity at
zero is in fact removable. By exactly the same procedure we see that

1

2πj

∮
C−
1

ω1

z1
σ2
1 (ω1, ω̃1;A,B) dz1 = 0

and, using the fact that (since µ(1)
0 = 0)

1

2πj

∮
C−

1

ω1

z1
Q1 (ω1) dz1 = IM

we can conclude that
1

2πj

∮
C−

1

ω1

z1
Σ2 (ω1, ω2, ω̃1, ω̃2) dz1 = σ2

2 (ω2, ω̃2; IM ,Q1(ω̃1)) .

Proceeding in a similar way, one can also show that

−1

4π2

∮
C−

1

∮
C−

1

ω1ω̃1

z1z̃1
Σ2 (ω1, ω2, ω̃1, ω̃2) dz1dz̃1 = σ2

2 (ω2, ω̃2; IM , IM)

whereas

−1

4π2

∮
C−

1

∮
C−

2

ω1

z1

ω2

z2
Σ2 (ω1, ω2, ω̃1, ω̃2) dz1dz2 =

=
−1

4π2

∮
C−

1

∮
C−

2

ω1ω̃2

z1z̃2
Σ2 (ω1, ω2, ω̃1, ω̃2) dz1dz̃2 = 0.

Using all these identities, together with the fact that one can express

g(1)(z1) =
ω1

z1ω′
1

1

2πj

∮
C−

2

ω2

z2
h(z1, z2)ϕ1(ω1;Q2 (ω2))dz2

g(2)(z2) =
ω2

z2ω′
2

1

2πj

∮
C−

1

ω1

z1
h(z1, z2)ϕ2(ω2;Q1 (ω1))dz1

we see that we can express the asymptotic variance as

σ2
M =

1 + ς

(2πj)4

∮
C−

1

∮
C−

1

∮
C−

2

∮
C−

2

ω1

z1

ω2

z2

ω̃1

z̃1

ω̃2

z̃2
×

× h(z1, z2)h(z̃1, z̃2)Σ
2
(ω1, ω2, ω̃1, ω̃2) dz1dz2dz̃1dz̃2

which is similar to the original expression, save for the fact that g(z1, z2) in (3.18) is
replaced by the simpler function h(z1, z2) and Σ2 (ω1, ω2, ω̃1, ω̃2) is also replaced by
the function

Σ
2
(ω1, ω2, ω̃1, ω̃2) = σ2

1 (ω1, ω̃1;Q2 (ω2) ,Q2(ω̃2))+

+ σ2
2 (ω2, ω̃2;Q1 (ω1) ,Q1(ω̃1)) + ϱ (ω1, ω̃1, ω2, ω̃2)
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where σ2
j (ωj, ω̃j;A,B) takes the form

σ2
j (ωj, ω̃j;A,B) = σ2

j

(
ωj, ω̃j;A− ωjϕj(ωj;A)

zjω′
j

IM ,B− ω̃jϕj(ω̃j;B)

z̃jω̃′
j

IM

)
.

Now, using the identity in (B.20) one trivially finds that σ2
j (ωj, ω̃j;A,B) can also be

expressed as in (B.19), but replacing Ωj(A) and Ωj(B) with A and B respectively.
In order to obtain the above expression, one needs to use the interesting identity

σ2
j

(
ωj, ω̃j;A− ωjϕj(ωj;A)

zjω′
j

IM ,B− ω̃jϕj(ω̃j;B)

z̃jω̃′
j

IM

)
= σ̃2

j (ωj, ω̃j;A,B)

which follows directly from the identity in (B.20).



Appendix C

Appendix for Chapter 5

C.1 Estimation of mean

To derive an estimator for the first order moment s̄PF
12 , for the subspace similarity

s12 = M−1tr[P1P2], we first observe that, for two processes Y1,Y2 built from the
same covariance R, we have that

µ1Q1 − µ2Q2 = Q2(µ2 −Q−1
2 µ2Q1) = R(µ2 − µ1)Q2Q1,

where we have defined the short notation Qj = Qj

(
µ
(j)
0

)
, for j = 1, 2. The above

allows us to re-write Q1 − Q2 = (µ2 − µ1)Q1Q2. This is particularly useful for the
case whereN1 > N2, but whenN1 = N2, we have µ1 = µ2, and the above brings no
further intuition. Therefore, we need to distinguish between the two casesN1 > N2

and N1 = N2.

C.1.1 Case N1 > N2

We start by the simpler case and observe that, for R1 = R2 = R, we can re-write

s̄PF
12 =

1

M
tr [R1Q1R2Q2]

=
1

µ1 − µ2

(
µ1

1

M
tr [RQ1]− µ2

1

M
tr [RQ2]

)
=
N1µ1 −N2µ2

M
(C.1)

so that we only need to find an estimate for µj, j ∈ {1, 2}.
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Consistent estimator under null and alternative hypothesis

Consider the identity

1

Nj

tr

[
R̂j

(
R̂j − zIM

)−1
]
≍ 1

Nj

tr
[
Rj (Rj − zIM)−1] = 1− zj

ωj(zj)

we then recover (2.1), i.e.,

z = ωj (z)

1− 1

Nj

M̄j∑
m=1

K(j)
m

γ
(j)
m

γ
(j)
m − ωj (z)


and because µ(j)

0 = ωj(0), we obtain that

µ
(j)
0 ≍ −

 1

Nj

M∑
m=M−Nj−+1

λj

−1

= −Nj

(
tr
[
R̂#

j

])−1

. (C.2)

Plugging the above into (C.1), we obtain, for N1 > N2,

1

M

N2
1 tr
[
R̂#

2

]
−N2

2 tr
[
R̂#

1

]
N1tr

[
R̂#

2

]
−N2tr

[
R̂#

1

] .
The problem with the above estimate is that it is consistent even under the al-
ternative hypothesis which is undesired in our scenario as we want an estimator
consistent under the null hypothesis but that penalizes the alternative one.

Consistent estimator only under null hypothesis

Let us consider the estimator of both R̂1 and R̂1 assuming we only have access to
R̂1, which is built using N1 > N2 samples. This means that we have

ω1 (z1) ≍ z1

(
1− 1

N1

tr

[
R̂1

(
R̂1 − z1IM

)−1
])−1

.

Now, by definition (2.3) µ(2)
0 is the only negative solution to

1

N2

tr

[
R
(
R− µ

(2)
0 IM

)−1
]
= 1

and we have that

1

N2

tr
[
R (R− ω1(z1)IM)−1] ≍ 1

N2

tr

[
R̂1

(
R̂1 − z1IM

)−1
]
.
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Therefore, we can estimate µ(2)
0 by first finding the negative solution to the equation

1

N2

tr
[
R̂1

(
R̂1 − γIM

)]
= 1

and then taking

υ̂2(1) = γ

(
1− N2

N1

)
.

Plugging the above back into (C.1) we obtain (5.15). This distinction is particularly
useful to penalize the alternative hypothesis based on υ̂2 and R̂#

2 by relating the
smaller sample eigenvalue distribution in terms of the larger one.

C.1.2 Case N1 = N2

For the case where N1 = N2 = N , we also have that Q1 = Q2. Hence, the obser-
vation in the beginning of this appendix brings no further intuition. Therefore, we
rely on the fact that, for R1 = R2 = R, we have

s̄PF
12 =

1

M
tr
[
R2Q2

]
=
N

M

(
1− 1

ω′(0)

)
where ω′

1(0) = ω′
2(0) = ω′(0). Hence, by taking any of the derivatives ω′

j(0), for
j ∈ {1, 2} we obtain

s̄PF
kj ≍ Nj

M

1−

(
N−1

j tr
[
R̂#

j

])2
N−1

j tr

[(
R̂#

j

)2]
 .

Finally, by splitting the contributions of both the observations (R̂1 and R̂2), we
obtain with our estimator

s̄PF
12 ≍ ˆ̄sPF

12 =
1

2M

(
N1υ̂1(k)−N2υ̂2(k)

υ̂1(k)− υ̂2(k)
+
N1υ̂1(2)−N2υ̂2(2)

υ̂1(2)− υ̂2(2)

)
=

N1

2M

(
1− κ̂21(1)

κ̂1(2)

)
+
N2

2M

(
1− κ̂22(1)

κ̂2(2)

)
.

C.2 Estimation of variance of Subspace Similarity

The estimator of the asymptotic variance (σPF
kj )2 in (5.10) is denoted by (σ̂PF

kj )2 and
can be described as

(
σ̂PF
kj

)2
= ζ2k(j) + ζ2j (k) +

(
tr
[
R̂#

k R̂
#
j

])2
tr

[(
R̂#

k

)2]
tr

[(
R̂#

j

)2] (C.3)
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where we have defined

ζ2j (k) =

[
κ̂j(4)κ̂

2
j(1)

κ̂3j(2)
− 2

(
κ̂j(1)κ̂j(3)

κ̂2j(2)

)2
]
×[

1

κ̂j(1)
ρj(Bk, 1)−

(
1

κ̂j(1)
ρj(Ak, 1)

)2
]

+
κ̂j(1)κ̂j(3)

κ̂2j(2)

(
ρj(Bk, 1)

κ̂j(1)
+

2ρj(Ak, 2)

κ̂j(2)
− ρj(Bk, 3)

κ̂j(3)

)
− 2

κ̂j(3)ρj(Ak, 1)

κ̂2j(2)

(
2ρj(Ak, 2)

κ̂2(2)
− ρj(Ak, 3)

κ̂j(3)

)
+

(
ρj(Ak, 2)

κ̂j(2)

)2

− ρj(Bk, 2)

κ̂j(2)
(C.4)

and have also introduced the matrices Ak = −P⊥
k and Bk = P⊥

k −
κ̂k(1)
κ̂k(2)

R̂#
k , together

with P⊥
k = IM −Pk and

ρj(A, n) =
1

Nj

tr
[
A
(
R̂#

j

)n]
valid for any squared matrix A. Finally, ζ2k(j) is defined in the same way, but
swapping the two indexes k, j. In the next section, we further detail the derivation
of this estimator.

C.2.1 Detailed Estimation

Let us start by observing that, for R1 = R2 = R, the variance (5.10) takes the form

(
σPF
12

)2
=
(
µ
(1)
0

)2
σ2
1

(
µ
(1)
0 , µ

(1)
0 ;RQ2

(
µ
(2)
0

)
,RQ2

(
µ
(2)
0

))
+
(
µ
(2)
0

)2
σ2
2

(
µ
(2)
0 , µ

(2)
0 ;RQ1

(
µ
(1)
0

)
,RQ1

(
µ
(1)
0

))
+
(
µ
(1)
0 µ

(2)
0

)2 tr2
[
R2Q2

1(µ
(1)
0 )Q2

2(µ
(2)
0 )
]

N1N2

(
1− Γ1(µ

(1)
0 )
)(

1− Γ2(µ
(2)
0 )
) (C.5)

and that the second order moment is a combination of two elements µ(j)
0 σ2

j =

σ2
j (µ

(j)
0 , µ

(j)
0 ;A,A), j = 1, 2 and

(
µ
(1)
0 µ

(2)
0

)2 tr2
[
R2Q2

1(µ
(1)
0 )Q2

2(µ
(2)
0 )
]

N1N2

(
1− Γ1(µ

(1)
0 )
)(

1− Γ2(µ
(2)
0 )
) . (C.6)
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Let us first focus on the estimation of σ2
j = σ2

j (µ
(j)
0 , µ

(j)
0 ;A,A), j = 1, 2. By plugging

in the definition of Ωj we obtain

σ2
j (A) =

1

1− Γj

1

Nj

tr
[
RjQ

2
j (A+ ϕ(ω;A)IM)RjQ

2
j (A+ ϕ(ω;A)IM)

]
+

+
1

(1− Γ(ωj))
2

1

Nj

tr2
[
R2

jQ
3
j(ωj) (A+ ϕ(ω;A)IM)

]
(C.7)

and by defining, for m ∈ N,

κj(m) =
1

N
tr
[
R2

jQm
k

]
,

we can further expand the above into

σ2
j (A) =

(
κ2j(3)

1− κ2j(2)
+

κj(4)

1− κ2j(2)

)(
µj

1− κ2j(2)

1

Nj

tr
[
ARjQ2

j

])2

+ 2
µj

1− κ2j(2)

1

Nj

tr[ARjQ2
j ]

(
κj(3)

1− κ2j(2)

1

Nj

tr[AR2
jQ3

j ] +
1

Nj

tr[AR2
jQ4

j ]

)
+

1

1− κ2j(2)

(
1

Nj

tr[AR2
jQ3

j ]

)2

+
µ2
j

1− κ2j(2)

1

Nj

tr
[(
ARjQ2

j

)2]
. (C.8)

In what follows, we will derive estimators for each one of these quantities.
To do so, we first recall that

1

Nj

tr
[
ARj (Rj − ωj(zj)IM)−1] ≍ 1

Nj

tr

[
AR̂j

(
R̂j − zjIM

)−1
]
. (C.9)

and then notice that its sequential derivatives (up to the fifth order) with respect
to zj are closely related to the quantities of the type N−1

j tr[ARn
jQm

j ], for n,m ∈ N.
For instance, by taking the first order derivative of (C.9), we directly obtain

1

Nj

1

1− Γj(ωj)
tr
[
ARj (Rj − ωjIM)−2] ≍ 1

Nj

tr

[
AR̂j

(
R̂j − zjIM

)−2
]

(C.10)

and, by taking the limit as zj → 0, we see that

1

Nj

1

1− Γj(ωj)
tr
[
ARj (Rj − µjIM)−2] ≍ 1

Nj

tr
[
AR̂#

j

]
.

Similarly, the second order derivative (together with zj → 0) leads to

1

Nℓ

1

(1− θℓ(2))
2 tr
[
ARℓQ3

ℓ

]
+

1

Nℓ

θℓ(3)

(1− θℓ(2))
3 tr
[
ARℓQ2

ℓ

]
≍ 1

Nℓ

tr[A(R̂#
ℓ )

2] (C.11)
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Moreover, for the particular case where A = I, we have the estimators

κ̂j(1) =
1

Nj

tr
[
R̂#

j

]
≍ − 1

µj

(C.12)

κ̂j(2) =
1

Nj

tr

[(
R̂#

j

)2]
≍ 1

µ2
j

1

1− κj(2)
(C.13)

κ̂j(3) =
1

Nj

tr

[(
R̂#

j

)3]
≍ 1

µ2
j

κj(3)

(1− κj(2))
3 − 1

µ3
j

κj(3)

(1− κj(2))
2 (C.14)

κ̂j(4) =
1

Nj

tr

[(
R̂#

j

)4]
≍ 1

µ4
j

1

(1− κj(2))
3 +

1

µ2
j

κj(4)

(1− κj(2))
4 (C.15)

− 2
1

µ3

κj(3)

(1− κj(2))4
+ 2

1

µ2
j

κ2j(3)

(1− κj(2))5
(C.16)

where κ̂ℓ(3) and κ̂ℓ(4) are obtained as above using the third and fourth order
derivatives of (C.9), respectively. Then, by manipulating these quantities, one can
also obtain estimators for the entries of κj(m),m ≤ 4. With this we have an es-
timator for almost all the quantities of σ2

j (A), except for the terms that contain
the deterministic matrix A inside a trace which can be obtained by plugging in
(C.12)-(C.16) into the sequential (first to third order) derivatives of (C.10) for some
deterministic matrix A.

At this point, we need to find the asymptotic equivalent for (RkQk)
2, k ̸= j

which will replace the matrix A2 in the last term of (C.8). Notice that this quantity
cannot be directly estimated from the above estimators. Hence, to provide con-
sistent estimators that can be used in σ2

j (A), we first observe that, for any α ∈ R
we have σ2

j (A + αI) = σ2
j (A) and σ2

j (αA) = α2σ2
j (A), so that, by considering

Rk Qk = IM + µkQk, we end up with

σ2
j (RkQk) = σ2

j (IM + µkQk) = µ2
kσ

2
j (Qk). (C.17)

Therefore, it is sufficient to estimate for A = µkQk and A2 = µ2
kQ2

k. To that effect,
we consider the identity

1

Nk

tr[A(R̂k − zkIM)−1] ≍ ωk(zk)

zk

tr[AQk (ωk(zk))]

Nk

(C.18)

valid for any deterministic B. Again, by letting zk → 0 we have

1

Nk

tr
[
BP̂⊥

k

]
≍ −µk

1

Nk

tr [BQk] (C.19)
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or equivalently, we can express A = µkQk ≍ −P̂⊥
k . Similarly, taking the derivative

of (C.18) and forcing again zk → 0 leads to

1

Nk

tr
[
BR̂#

k

]
≍ 1

Nk

tr [BRkQ2
k]

1− θk(2)
(C.20)

or, after some algebra,

1

Nk

tr
[
Bµ2

kQ2
k

]
≍ 1

Nk

tr

[
B

(
P̂⊥

k − κ̂(1)

κ̂(2)
R̂#

k

)]
(C.21)

or, equivalently,

µkQk ≍ −P̂⊥
k (C.22)

µ2
kQ2

k ≍ P̂⊥
k − κ̂k(1)

κ̂k(2)
R̂#

k . (C.23)

Finally, the estimator for (C.6) is the direct combination of the elements already
presented above, so that by rearranging the terms we have

(
µ
(1)
0 µ

(2)
0

)2 1

N1N2

tr2
[
R2Q2

1(µ
(1)
0 )Q2

2(µ
(2)
0 )
]

(
1− Γ1(µ

(1)
0 )
)(

1− Γ2(µ
(2)
0 )
) ≍ 1

N1N2

tr2
[
R̂#

2 R̂
#
1

]
κ̂2(2)κ̂1(2)

(C.24)

where for the trace we have applied (C.10) twice, first considering A = RjQ2
j and

then A = RjQ2
j .



Appendix D

Auxiliary Lemmas

D.1 Some useful lemmas

Lemma D.1. Let j ∈ {0, 1}. Under (As1)-(As3) we have

sup
M

sup
z∈Cj

∥Qj(ωj (z))∥ < +∞

0 < inf
M

inf
z∈Cj

|ωj (z)| ≤ sup
M

sup
z∈Cj

|ωj (z)| < +∞ (D.1)

inf
M

dist
{
ωj (z) , (−∞, µ

(j)
inf ]
}
> 0

where µ(j)
inf = infM µ

(j)
0 . Furthermore,

sup
M≥M0

sup
z∈Cj

∥∥∥Q̂j(z)
∥∥∥ < +∞

0 < inf
M≥M0

inf
z∈Cj

|ω̂j (z)| ≤ sup
M≥M0

sup
z∈Cj

|ω̂j (z)| < +∞ (D.2)

inf
M≥M0

dist
{
ω̂j (z) , (−∞, µ

(j)
inf ]
}
> 0

with probability one for some M0 sufficiently high.

Proof. It is well known that all the eigenvalues of R̂j are located inside Sj (plus {0}
if Nj ≤M ) almost surely for all large M [58]. This implies that

sup
z∈Cj

sup
M≥M0

∥Q̂j(z)∥ ≤ sup
z∈Cj

dist−1 (z,Sj ∪ {0}) < +∞

almost surely for sufficiently large M0. Next, observe that

Im (z) = Im [ωj (z)]
(
1− Γj(ωj(z))

)
(D.3)

where we have defined

Γj(ω) = Γj(ω, ω
∗) =

1

Nj

M̄j∑
m=1

K(j)
m

(
γ
(j)
m

)2
|γ(j)m − ω|2

. (D.4)
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Note that, by the definition of ωj (z), we always have

sup
z∈Cj

Γj(ωj(z)) < 1. (D.5)

Indeed, the above inequality holds uniformly on C\R and follows from (D.3) and
the fact that Im (z) Im (ωj (z)) > 0. On R it follows from the fact that Cj does not
intersect Sj so that ωj (z) is real valued and is chosen as the only root for which
this inequality holds. Now, if we take the supremum in M on the left hand side of
(D.5) the same identity holds, although the strict inequality may become equality.
In any case, we see that

inf
m,M

inf
z∈Cj

|γ(j)m − ωj (z) |2 > 0.

This implies that

∥Qj(ωj (z))∥ ≤ ( min
m=1,...,M̄j

inf
m,M

inf
z∈Cj

|γ(j)m − ωj (z) |2)−1,

which is therefore uniformly bounded as we wanted to prove.
Regarding (D.1), we reason by contradiction. Suppose we can select a sequence

of points z(M) ∈ Cj such that ωj

(
z(M)

)
→ 0 as M → ∞. From (2.1) and because of

(D.5) this would imply z(M) → 0, contradicting the fact that the contourCj does not
cross {0}. Similarly, assume that there exists a sequence such that |ωj(z(M))| → ∞.
From (2.1), this would imply |z(M)| → ∞, contradicting the fact that z(M) ∈ Cj .

To show (D.2), we first observe that∣∣∣∣1− 1

Nj

tr
[
R̂jQ̂j(z)

]∣∣∣∣ ≥ ∣∣∣∣1− 1

Nj

tr [RjQj(ωj (z))]

∣∣∣∣− 1

Nj

∣∣∣tr [RjQj(ωj (z))]− tr
[
R̂jQ̂j(z)

]∣∣∣
=

∣∣∣∣ z

ωj (z)

∣∣∣∣− ∣∣∣∣ 1Nj

tr [RjQj(ωj (z))]−
1

Nj

tr
[
R̂jQ̂j(z)

]∣∣∣∣ .
The second term converges almost surely to zero whereas the first term is uni-
formly bounded in M thanks to (D.1). This implies that

inf
M≥M0

inf
z∈C

∣∣∣∣1− 1

Nj

tr
[
R̂jQ̂j(z)

]∣∣∣∣ > 0 (D.6)

almost surely for sufficiently large M0. On the other hand, it is obvious that

|1−N−1
j tr[R̂jQ̂j(z)]| < 1 + | 1

Nj

tr[R̂jQ̂j(z)]| ≤ 1 +
M

Nj

∥R̂j∥∥Q̂j(z)∥

so that
sup

M≥M0

sup
z∈C

∣∣∣∣1− 1

Nj

tr
[
R̂jQ̂j(z)

]∣∣∣∣ < +∞.
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This directly shows (D.2).
Next, if we let µ(j)

0 ≤ 0 denote the smallest root of

µ
(j)
0 (1− 1

Nj

tr[RjQj(µ
(j)
0 )]) = 0

we can write (by subtracting this equation and (2.1))

z =
(
ωj (z)− µ

(j)
0

)(
1− Γj

(
ωj (z) , µ

(j)
0

))
.

By taking the real parts on both sides of the equation we obtain

Re(z) =
(
1− Γ(ωj(z))

)
Re
[
ωj (z)− µ

(j)
0

]
+

1

Nj

M̄j∑
m=1

K(j)
m

(
γ
(j)
m

)2 ∣∣∣ωj (z)− µ
(j)
0

∣∣∣2∣∣∣γ(j)m − ωj (z)
∣∣∣2 (γ(j)m − µ

(j)
0

) .
Now, assume that there exists a sequence of points z(M) in Cj such that ωj(z(M)) →
θ, where θ ∈ (−∞, µ

(j)
inf ]. From the above equation we can conclude that, along that

subsequence,

1

Nj

M̄j∑
m=1

K(j)
m

(
γ
(j)
m

)2 (
θ − µ

(j)
0

)2
(
γ
(j)
m − θ

)2 (
γ
(j)
m − µ

(j)
0

) + (1− Γ(θ))
(
θ − µ

(j)
0

)
− Re(z(M)) → 0

or, alternatively (
1− Γ(θ, µ

(j)
0 )
)(

θ − µ
(j)
0

)
− Re(z(M)) → 0

which is a contradiciton since (by Cauchy-Schwarz)∣∣∣Γj

(
θ, µ

(j)
0

)∣∣∣2 ≤ Γj (θ) Γj

(
µ
(j)
0

)
≤ 1

whereas we always have (θ−µ
(j)
0 )Re

[
z(M)

]
≤ 0 by the construction of the contour.

The last inequality in the above equation follows from the fact that both µ
(j)
0 and

θ correspond to values of z for which the root ωj (z) is real-valued. The result for
ω̂j (z) follows from the above and the fact that supz∈C |ω̂j (z)− ωj (z)| → 0 almost
surely as M → ∞.

Lemma D.2. Let j ∈ {0, 1}. Under (As1)-(As3) we have

sup
M

sup
z∈Cj

Γj(ωj(z)) < 1



D.1. SOME USEFUL LEMMAS 151

Proof. We first observe that for each z ∈ C we have Γj(ωj(z)) < 1. Indeed, if
Im(z) ̸= 0 we can take imaginary parts on both sides of (2.1) and obtain

Im(z) =
(
1− Γj(ωj(z))

)
Im [ωj(z)] (D.7)

Since Im[z] and Im[ωj(z)] have, by definition, the same sign, we see that Γj(ωj(z)) <

1 for each z ∈ Cj . When Im(z) ̸= 0 the same property follows directly from the fact
that ωj (z) is chosen as the only real-valued root of (2.1) such that (2.2) holds, which
is equivalent to Γj(ωj(z)) < 1 because ωj (z) is real valued.

So, it remains to prove that the supremum over M also holds. To that effect, we
reason by contradiction. Assume that there exists a sequence of points z(M) in Cj

such that
Γj(ωj(z(M))) → 1. (D.8)

Since z(M) is bounded, we can find a convergent subsequence (say z(M ′)) such that
z(M ′) → z∗, where z∗ ∈ Cj by compactness. Now, assume first that Im(z∗) ̸= 0.
Clearly, from (D.7) we must have |Im[ωj(z(M ′))]| → ∞ along that subsequence.
However, since |γ(j)m − ωj(z)| > |Im[ωj(z)]| we have

Γj(ωj(z(M ′))) <
1

Nj

M̄j∑
m=1

K(j)
m

(
γ
(j)
m

)2
Im2

[
ωj

(
z(M ′)

)] → 0

which clearly contradicts (D.8). Assume therefore that Im(z∗) = 0, so that we either
have z∗ < θ−j or z > θ+j , where θ−j and θ+j respectively denote the lower and upper
limits of the interval in (2.5). Assume that z∗ < θ−j (the reasoning for z∗ > θ+ being
completely equivalent). By subtracting two instances of the equation in (2.1) when
evaluating it at two different points z = z(M ′) and at z = θ−j in Cj , we see that

θ−j − z(M ′) =
(
1− Γj(z(M ′), θ

−
j )
)
.

Observe that by construction of the contour we have

lim
M→∞

(θ−j − z(M ′)) = θ−j − z(M ′) > 0,

so that it follows from the above equation that lim infM→0(ωj(θ
−
j ))− ωj(z(M ′))) > 0.

Now, consider the real-valued function Γj(ω) on the interval (0, ωj

(
θ−j
)
) This is a

strongly convex function since the second order derviative is bounded away from
zero, that is

inf
ω∈(0,ωj(θ−j ))

Γ′′
j (ω) =

6

Nj

M̄j∑
m=1

K
(j)
m

(
γ
(j)
m

)2
(
γ
(j)
m − ωj

(
θ−j
))4 ≡ ςM > 0.
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Furthermore, infM ςM > 0 because γ(j)m − ωj(θ
−
j ) ≤ supM(γ

(j)

M̄j
+ |ωj

(
θ−j
)
|) <∞ and

inf
M
ςM ≥ inf

M

6

Nj

∑M̄j

m=1K
(j)
m

(
γ
(j)
m

)2
supM

(
γ
(j)

M̄j
+
∣∣ωj

(
θ−j
)∣∣)4 > 0.

By strong convexity, we have

1− Γj(ωj(z(M ′))) ≥ Γj(ωj(θ
−
j ))− Γj(ωj(z(M ′))) ≥

≥ 2

Nj

M̄j∑
m=1

K(j)
m

(γ
(j)
m )2

(γ
(j)
m − ωj(z(M ′)))3

(ωj

(
θ−j
)
− ωj(z(M ′)))+

+
ςM
2
(ωj(θ

−
j )− ωj(z(M ′)))

2.

By the definition of z(M ′) the left hand side of the above inequality converges to
zero, leading to a contradiction. The same reasoning can be applied to the case
where z∗ > θ+j .

D.2 Auxiliary Lemmas for Theorem 2.2

In this appendix, we provide some bounds on expectations and variances of dif-
ferent random functions of complex variable. We will assume that assumptions
(As1)-(As3) hold, and that the observations are Gaussian distributed. We will also
keep the shorthand notation introduced in the previous section.

Lemma D.3. Let A denote an M ×M deterministic matrix with bounded spectral norm.
Then, we can write

1

N1

Etr
[
AQ̂1ϕ1

]
=

1

N1

tr[AQ̄1] +O(M−1)

1

N1

Etr
[
AQ̂1R̂1ϕ1

]
=
z1
ω1

1

N1

tr
[
AQ̄1R1

]
+O(M−1)

and also

var

(
1

N1

tr
[
AQ̂1

]
ϕ1

)
= O(M−2)

var

(
1

N1

tr
[
AQ̂1R̂1

]
ϕ1

)
= O(M−2).
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Lemma D.4. Let A,B denote two M ×M deterministic matrices with bounded spectral
norm. Then, we can write

1

N1

Etr
[
AQ̂1BQ̂1′ϕ1

]
=

1

N1

tr
[
AQ̄1BQ̄1′

]
+
z1z

′
1

ω1ω′
1

tr
[
AQ̄(z1)RQ̄1′

]
tr
[
R1Q̄1BQ̄1′

]
N2

1 (1− γ(z1, z′1))
+O(M−1) (D.9)

together with

1

N1

Etr
[
AQ̂1BQ̂1′R̂1ϕ1

]
=

1

N1

tr
[
AQ̄1B

]
+ z′1

1

N1

tr
[
AQ̄1BQ̄1′

]
+ z′1

z1z
′
1

ω1ω′
1

tr
[
AQ̄(z1)R1Q̄1′

]
tr
[
R1Q̄1BQ̄1′

]
N2

1 (1− γ(z1, z′1))
+O(M−1) (D.10)

and also

var
1

N1

tr
[
AQ̂1BQ̂1′ϕ1

]
= O(M−2)

var
1

N1

tr
[
AQ̂1BQ̂1′R̂1ϕ1

]
= O(M−2).

Proof. The proof follows the same steps as the proof of [75, Lemma 12], so we
provide here just a sketch of the main steps. The proof of the variances follows
directly from the Nash-Poincaré variance inequality in (A.5), so that we will only
prove the first two identities. Let us first consider the first and second identities.
Developing with respect to X and applying the integration by parts formula in
(A.4), we obtain

E
[
Q̂1BQ̂1′R̂1ϕ1

]
=
z′1
ω′
1

E
[
Q̂1BQ̂1′R1ϕ1

]
− z′1
ω′
1

E
[
Q̂1R̂1

1

N1

tr
[
Q̂1BQ̂1′R1

]
ϕ1

]
− z′1
ω′
1

E
[
Q̂1BQ̂1′R̂1ϕ1α1(z

′
1)
]
+O(M−N) (D.11)

where we recall that α1(z1) = N−1
1 tr[R1Q̂1ϕ1] − N−1

1 tr[R1Q̄1] and where we have
used the identity

∂

∂X∗
ij

Q̂1 = −Q̂1Y1
eje

H
i

N1

R
1/2
1 Q̂1

as well as the fact that 1 + N−1
1 tr

[
R1Q̄1

]
= ω1/z1. Usign the resolvent identity
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(Q̂1′R̂1 = z′1Q̂1′ + IM ), this leads to

1

N1

Etr
[
AQ̂1BQ̂1′ϕ1

]
=

1

N1

Etr
[
AQ̂1BQ̄1′ϕ1

]
+
z′1
ω′
1

E
[
1

N1

tr
[
AQ̂1R̂1Q̄1′

] 1

N1

tr
[
Q̂1BQ̂1′R1

]
ϕ1

]
+
z′1
ω′
1

E
[
1

N1

tr
[
AQ̂1BQ̂1′R̂1Q̄1′ϕ

]
α1(z

′
1)

]
+O(M−N).

Hence, applying Lemma D.3 we see that

1

N1

Etr
[
AQ̂1BQ̂1′ϕ1

]
=

1

N1

tr
[
AQ̄1BQ̄1′

]
+
z1z
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ω1ω′
1

1

N1

tr
[
AQ̄(z1)R1Q̄1′

] 1

N1

Etr
[
Q̂1BQ̂1′R1ϕ1

]
+O(M−1)

where we have used the fact that E
[
|α1(z

′
1)|

2] = O(M−2). Setting A = R1 we
readily see that

1

N1

Etr
[
R1Q̂1BQ̂1′ϕ1

]
=

tr
[
R1Q̄1BQ̄1′

]
N1(1− γ11′)

+O(M−1)

where we recall that
γ11′ =

z1
ω1

z′1
ω′
1

1

N1

tr
[
R1Q̄1R1Q̄1′

]
.

Inserting this into the above function, we arrive at the result in (D.9) and inserting
it into (D.11) we obtain (D.10).

Lemma D.5. Let A and B denote two M × M deterministic matrices with bounded
spectral norm. Then, we can write

1

N1

Etr
[
AQ̂1R1Q̂1′BQ̂1′ϕ1

]
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1

1− γ11′

1

N1
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[
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′
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2

+
1
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ϕ1 (ω
′
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1− γ11′
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tr
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AQ̄1R1Q̄1′

]
+O(M−1) (D.12)

and
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Etr
[
AQ̂1R1Q̂1′BQ̂1′R̂1ϕ1

]
=
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′
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)2 tr
[
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[
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2
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2 +O(M−1). (D.13)
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On the other hand, we have

var
1

N1

tr
[
AQ̂1R1Q̂1′BQ̂1′ϕ1

]
= O(M−2)

var
1

N1

tr
[
AQ̂1R1Q̂1′BQ̂1′R̂1ϕ1

]
= O(M−2).

Proof. The proof that the variance decays as O(M−2) follows the conventional ap-
proach from the Nash-Poincaré inequality, and is therefore omitted. To proof the
first two identities, we proceed as in the proof of Lemma D.4. Using first the re-
solvent identity on Q̂1′ = (z′1)

−1Q̂1′R̂1 − (z′1)
−1IM together with the integration by

parts formula and Lemmas D.3 and D.4, we can write
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[
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1
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] 1
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]
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1
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1− ω′

1

z′1
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1
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1
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]
+O(M−1) (D.14)

where we have decorrelated the double terms using the fact that all variances de-
cay as O(M−2) and we have used the identity 1 + N−1

1 tr
[
R1Q̄1

]
= ω′

1/z1. In a
similar way, we can develop the term

1
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Etr
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ω′
1

1

N1

Etr
[
AQ̂1R1Q̂1′BQ̂1′R1ϕ1

]
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1
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]
+
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1
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+O(M−1) (D.15)
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Inserting this back into the first equation and replacing A with Q̄1′A we obtain
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Etr
[
AQ̂1R1Q̂1′BQ̂1′ϕ1

]
=
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1

1− γ11′

1
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[
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′
1;B) Q̄1′

]
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z′1
ω′
1

1

N1

Etr
[
R1Q̂1R1Q̂1′BQ̂1′ϕ1

]
+
ϕ1 (ω

′
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z′1

)
×

× 1

N1

tr
[
Q̄1′AQ̄1R1

]
+O(M−1) (D.16)

Particularizing this expression for A = R1 we see that

1

N1

Etr
[
R1Q̂1R1Q̂1′BQ̂1′ϕ1

]
=

ω′
1

(z′1)
2

ω1

z1

γ11′ϕ1 (ω
′
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1− γ11′

+
1
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2

1
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tr
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Ω1 (ω

′
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+O(M−1)

and inserting this back into (D.16), together with (D.15), we obtain (D.13).



Appendix E

Synthesis of Developed Methods

In this appendix, we provide a concise summary of all the methods proposed in
this thesis, encompassing their general and closed form solutions alongside with
corresponding assumptions and remarks on their applicability. The purpose of this
appendix is to serve as a convenient reference for readers, rather than introducing
new material. Also, we often refer the reader to different chapters of this thesis for
a detailed explanation of the different results presented throughout this thesis.

Let us start by recalling that the main focus of this thesis lies around the study
of distances between sample covariance matrices that can be written as

d̂M =
L∑
l=1

1

M
tr
[
f
(l)
1

(
R̂1

)
f
(l)
2

(
R̂2

)]
for certain functions f (l)

1 , f
(l)
2 : CM×M → CM×M , l = 1, . . . , L. Typically, these

functions are understood to be the result of applying scalar analytic functions to
the real eigenvalues of the Hermitian matrices Rj , j ∈ {1, 2}. With some abuse of
notation, f (l)

j , l = 1, . . . , L will also denote these scalar functions. Throughout this
thesis, we have mainly considered the following assumptions (see Section 2.1 for
details):
Assumption 1 (As1): For j ∈ {1, 2} and k = 1, . . . , Nj the observations yj(k) (see
Remark 1.1) are all independent and can be expressed as

yj(k) = R
1
2
j xj(k)

where Rj is an Hermitian positive definite matrix and xj(k) is a vector of i.i.d.
random entries with zero mean and unit variance.
Assumption 2 (As2): The different eigenvalues of Rj , denoted by 0 < γ

(j)
1 < . . . <

γ
(j)

M̄j
(j ∈ {1, 2}), may vary with M but always have but we always have infM γ

(j)
1 >

0 and supM γ
(j)

M̄
<∞, where M̄j is the total number of distinct eigenvalues.

157



E.1. PLUG-IN DISTANCE 158

Assumption 3 (As3): The quantities N1 and N2 depend on M , that is N1 = N1(M)

andN2 = N2(M). Furthermore, whenM → ∞ we have, for j ∈ {1, 2},Nj(M) → ∞
in a way that M/Nj → cj for some constant 0 < cj <∞ such that cj ̸= 1.
Assumption 4 (As4): For j ∈ {1, 2} and l = 1, . . . , L, the quantity f (l)

j (R̂j) can be
expressed as

f
(l)
j

(
R̂j

)
=

1

2πj

∮
C−

j

f
(l)
j (z)Q̂j(z)dz (E.1)

with probability one for all large M , where C−
j is a negatively oriented simple

closed contour enclosing

Sj =

[
inf
M

[
γ
(j)
1 ×

(
1−

√
M/Nj

)2
]

, sup
M

[
γ
(j)

M̄
×
(
1 +

√
M/Nj

)2
]]

.

and not crossing zero and where, with some abuse of notation, f (l)
j (z) denotes a

complex function analytic on an open set including Cj .

E.1 Plug-in Distance

We recall the general results from Corollary 2.1 and Theorem 2.2, so that assum-
ing that (As1)-(As4) hold and that the observations are Gaussian distributed. If
lim infM→∞ σ2

M > 0 we have

M(d̂M − d̄M)−mM

σM
→ N (0, 1).

Throughout this thesis we have particularized each of these quantities, namely
d̄M ,mM and σM , for the Euclidean, symmetrized KL and Subspace distances. When
not mentioned, the results are understood to hold both for the undersampled and
oversampled regimes.

E.1.1 Euclidean Distance

• Distance:

d̂EM =
1

M
tr
[
(R1 −R2)

2]
• Asymptotic equivalent:

d̄EM =
1

M
tr
[
(R1 −R2)

2]+ 1

MN1

tr2 [R1] +
1

MN2

tr2 [R2]
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• Asymptotic (second order) mean of ς̂EM :

mE
M = ς

(
1

N1

tr
[
R2

1

]
+

1

N2

tr
[
R2

2

])
• Asymptotic variance of ς̂EM :

(
σE
M

)2
1 + ς

= 2

(
1

N1

tr
[
R2

1

])2

+ 2

(
1

N2

tr
[
R2

2

])2

+
4

N1N2

tr2[R1R2]

+
4

N1

tr
[
(R1∆1)

2
]
+

4

N2

tr
[
(R2∆2)

2
]

E.1.2 Symmetrized KL Distance

• Distance:

d̂KL
M =

1

2M
tr
[
R1R

−1
2 +R−1

1 R2

]
− 1

where, in the undersampled regime, one can replace R̂−1
j by R#

j , for j = 1, 2.

• Asymptotic equivalent:

d̄KL
M =

tr
[
R1Q

2
1(µ

(1)
0 )R2

]
2M

(
1− Γ1

(
µ
(1)
0

)) +
tr
[
R2Q

2
2(µ

(2)
0 )R1

]
2M

(
1− Γ2

(
µ
(2)
0

)) − 1,

where
Γj (ω) =

1

Nj

tr
[
R2

jQ
2
j(ω)

]
and µ(j)

0 , j = 1, 2 is the smallest solution to (2.3).

• Asymptotic equivalent tailored to the oversampled regime:

d̄KL
M =

1

2M

(
N1tr

[
R−1

1 R2

]
N1 −M

+
N2tr

[
R−1

2 R1

]
N2 −M

)
− 1.

• Asymptotic (second order) mean of ς̂KL
M :

mKL
M = ς

∑
i,j∈{1,2}

i ̸=j

d[ωimi(ωi,Rj)]/dωi|ωi=µ
(i)
0

2
(
1− Γi(µ

(i)
0 )
)

where we recall that mj(ω,A) is defined as in (2.18).
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• Asymptotic (second order) mean of ς̂KL
M tailored to the oversampled regime:

mKL
M =

ς

2

[
N1tr[R2R

−1
1 ]

(N1 −M)2
+
N2tr[R1R

−1
2 ]

(N2 −M)2

]
.

• Asymptotic variance of ς̂KL
M :(

σKL
M

)2
1 + ς

=
∂2 [ω1ω

′
1Υ11 (ω1, ω

′
1)]/∂ω1∂ω

′
1|ω1=ω′

1=µ
(1)
0

4
(
1− Γ1(µ

(1)
0 )
)2

+
∂2 [ω2ω

′
2Υ22 (ω2, ω

′
2)]/∂ω2∂ω

′
2|ω2=ω′

2=µ
(2)
0

4
(
1− Γ2(µ

(2)
0 )
)2

+
∂2 [ω1ω2Υ12 (ω1, ω2)]/∂ω1∂ω2|ω1=µ

(1)
0 ,ω2=µ

(2)
0

2
(
1− Γ1(µ

(1)
0 )
)(

1− Γ2(µ
(2)
0 )
)

where we have defined

Υ11 (ω1, ω
′
1) =

tr2 [R2R1Q1 (ω1)Q1 (ω
′
1)]

N1N2 (1− Γ1(ω1, ω′
1))

+

+ σ2
1 (ω1, ω

′
1;R2,R2) +

1

N2

tr [R2Q1 (ω1)R2Q1 (ω
′
1)]

where Υ22 (ω2, ω
′
2) is defined equivalently and

Υ12 (ω1, ω2) =
1

N1N2

tr2 [R1Q1 (ω1)R2Q2 (ω2)]

− 1

N1

tr [R1Q1 (ω1)Q2 (ω2)R1Q1 (ω1) Ω1 (ω1;R2)]

− 1

N2

tr [R2Q2 (ω2)Q1 (ω1)R2Q2 (ω2) Ω2 (ω2;R1)] .

Finally, σ2
j (ωj, ωj,Rk,Rk), for j, k = 1, 2 and j ̸= k is defined as in (2.22).

• Asymptotic variance of ς̂KL
M tailored to the oversampled regime:

(σKL
M )2

1 + ς
=
N2

1Υ11(0, 0)

4(N1 −M)2
+
N2

2Υ22(0, 0)

4(N2 −M)2
+

N1N2Υ12(0, 0)

2(N1 −M)(N2 −M)

where

Υ11(0, 0) =
N1 +N2 −M

N2(N1 −M)

[
tr[(R−1

1 R2)
2] +

tr2[R−1
1 R2]

N1 −M

]
with Υ22(0, 0) equivalently defined by swapping indexes (1 ↔ 2), and where

Υ12(0, 0) =
M2

N1N2

− M

N1

− M

N2

.
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E.1.3 Subspace Similarity

This distance and all their related results are only valid in the undersampled regime
(otherwise, one cannot possibly define the original subspaces).

• Distance:

d̂SSM =
1

M
tr
[
(P1 −P2)

2]
where Pi = Yi

(
YH

i Yi

)−1
YH

i is the projection matrix onto the column space.

• Asymptotic equivalent in undersampled regime:

d̄SSM =
N1

M
+
N2

M
− 2

M
tr
[
R1Q1(µ

(1)
0 )R2Q2(µ

(2)
0 )
]

• Asymptotic (second order) mean of ς̂SSM in the undersampled regime:

mSS
M = −2µ

(1)
0 m1(µ

(1)
0 ,R2Q2(µ

(2)
0 ))− 2µ

(2)
0 m2(µ

(2)
0 ,R1Q1(µ

(1)
0 )),

see (2.18) for the definition of mj(ω,A).

• Asymptotic variance of ς̂SSM in the undersampled regime:

(
σSS
M

)2
1 + ς

= 4
(
µ
(1)
0

)2
σ2
1

(
µ
(1)
0 , µ

(1)
0 ;R2Q2
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+ 4
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µ
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(
µ
(1)
0

)
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(
µ
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+ 4

(
µ
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0 µ
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)2 tr2
[
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2
1(µ

(1)
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2
2(µ

(2)
0 )
]

N1N2

(
1− Γ1(µ

(1)
0 )
)(

1− Γ2(µ
(2)
0 )
) .

E.1.4 Plug-in Correction Terms Tailored to R1 = R2

We recall the correction terms (see Chapter 5 for a detailed explanation) designed
for the plug-in distances. These correction terms are designed to correctly approxi-
mate their asymptotic equivalents under the null hypothesis (i.e., R1 = R2) while
penalizing comparisons under the alternative hypothesis (i.e., R1 ̸= R2). These
results are inspired by the clustering of wireless devices, hence are tailored for
complex observations (ς = 0).
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Correction Term of Euclidean Distance

ˆ̄dEM =
1

MNk

tr2[R̂k] +
1

MNj

tr2[R̂j].

Correction Term of Symmetrized KL Distance

ˆ̄dKL
M =

Nk

2M

N
−1
j tr
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R̂#

j

)2]
(
N−1

j tr
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j
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k tr

[(
R̂#

k

)2]
(
N−1

k tr
[
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k

])2 − 1

− 1.

Correction Term of Subspace Similarity

ˆ̄sPF
kj =


Nk

2M

(
1− κ̂2k(1)

κ̂k(2)

)
+

Nj

2M

(
1−

κ̂2j(1)

κ̂j(2)

)
Nk = Nj

1

2M

(
Nkυ̂k(k)−Nj υ̂j(k)

υ̂k(k)− υ̂j(k)
+
Nkυ̂k(j)−Nj υ̂j(j)

υ̂k(j)− υ̂j(j)

)
Nk ̸= Nj

where we have defined, for l ∈ {k, j},

κ̂l(m) =
1

Nl

tr
[(

R̂#
l

)m]
, m ∈ N.

Furthermore, for Nk = Nj , we have υ̂ℓ(l) = −κ̂−1
ℓ (1), whereas for Nk ̸= Nj we take

υ̂j(k) = γ

(
1− Nj

Nk

)
where γ is the smallest solution to

1

Nj

tr

[
R̂k

(
R̂k − γIM

)−1
]
= 1.

E.2 Consistent Estimators

We briefly summary the expressions related to the consistent estimator of a dis-
tance between covariance matrices, namely d̃M . The main idea is to design con-
sistent estimators that approximate the true distance between covariance matrices,
i.e., dM − d̃M → 0, almost surely. In (3.8) we have proposed a general expres-
sion of d̃M . Note that this is different from correction terms presented above for
the plug-in distance. Those were designed to penalize the scenario where R1R2

and are only valid in for complex-valued observations. In this appendix, we recall
some of the results presented in Chapter 3, including the closed form solutions of
these consistent estimators for the Euclidean distance, symmetrized KL distance
and log-Euclidean. Finally, we also summary the CLT of these quantities.
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E.2.1 Euclidean Distance

• Consistent estimator:

d̃EM =
1

M
tr

[(
R̂1 − R̂2

)2]
− 1

MN1

tr2
[
R̂j

]
− 1

MN2

tr2
[
R̂2

]
.

• Asymptotic (second order) mean of ς̃M :

m̃E
M = ς

(
1
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tr
[
R2

1

]
+

1

N2

tr
[
R2

2

])
.

• Asymptotic variance of ς̃EM :

σ̃2
M

1 + ς
= 2

(
1
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[
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])2

+ 4
1

N1

tr [R1∆R1∆]

+ 2

(
1

N2

tr
[
R2

2

])2

+ 4
1
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+ 4
1
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tr2 [R1R2]

where, now, ∆ = R1 −R2.

E.2.2 Symmetrized KL Distance

We recall that the function ω−1 is not holomorphic at the origin, which implies that
we can only tolerate µinf = 0. In particular, this implies that we can only obtain a
consistent estimator for the oversampled case (namely N1 > M and N2 > 0).

• Consistent estimator:

d̃KL
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(
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• Asymptotic variance ς̃KL
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E.2.3 Log-Euclidean Distance

• Consistent estimator:

d̃LEM = α(1) + α(2) − 2

M
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where we have defined

Φ2(x) =

{
Li2 (x) x < 1
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2
log2 x− Li2 (x
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and where Li2 (x) = −
∫ x

0
y−1 log(1− y)dy is the dilogarithm function.

The coefficients β(j)
k , k = 1, . . . ,M , are defined as
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where we have denoted by µ̂(j)

0 < . . . < µ̂
(j)
M theM solutions to the polynomial

equation in (3.3) by interchanging the covariance matrix Rj by its estimator
R̂j .
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• Asymptotic (second order) mean of ς̂LEM :
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where θ(j)m , m = 1, . . . , 2M̄j are the solutions to Γj(ωj) = 1, j = 1, 2.

• Asymptotic variance ς̂LEM : We evaluate the variance using using numerical in-
tegration.
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