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Abstract

Despite its tremendous potential, it is still unclear how quantum computing will scale to
satisfy the requirements of its most powerful applications. Continued progress in the fab-
rication and control of qubits is certainly required. However, there are hard limits to the
number of qubits that can be integrated into a single chip. Multi-core quantum computing
has been identified as a solution to this scalability problem and included in the develop-
ment roadmaps of the leading industry. Nevertheless, interconnecting quantum chips is not
trivial, as quantum communications have their share of quantum weirdness. Quantum data
cannot be copied, and decoherence is an unforgiving noise source for every qubit transfer,
where every extra nanosecond counts and retransmission is physically impossible. Despite
all these challenges, a comprehensive approach to quantum computer design based on multi-
core architectures that leverages all the potential of quantum communications is crucial to
unlocking the scalability issues.

In this context, the present thesis aims to lay the foundations of such a communications-
enabled multi-core quantum computing architecture, as a proposed vision for the ultimate
success of quantum computing. Our goal is to design a multi-core architecture that en-
tangles computing and communication with a complete understanding of their intertwining
requirements. In this way, while putting together dozens of quantum cores (i.e. thousands
or millions of qubits collaborating), we alleviate the requirements for control circuits and
improve qubit isolation.

In order to achieve this goal, we tackle three main tasks. First, we propose a layered
approach for a double full-stack comms-enabled many-core quantum computer architecture
(chapter 2), aligned with our vision. We aim to provide the basis for an architecture that
may be technology-agnostic and intertwine quantum computing and communications.

Secondly, using design space exploration, we carry out a scalability and feasibility study
of multi-core quantum architectures. The first approach used analytical formulations (chap-
ter 4), while at the end of the thesis, leveraging all the acquired knowledge, code-base
analysis, and fully-fledged network simulations are employed, run within a framework de-
veloped also for this work (chapter 7). The results of the exploration let us also compare
different existing qubit and quantum communication technologies (section 4.4.2). This work
might facilitate future work for providing design guidelines and optimal operation ranges for
efficient and scalable multi-core quantum computers.

Finally, all this work needs to be backed by a study on short-range quantum commu-
nications. In particular, we have developed a model of quantum teleportation as a fitting
candidate for inter-core communication technology (chapter 5). Moreover, we perform a
thorough qubit traffic analysis on several algorithms and architectures that helps us see the
bottlenecks and inefficiencies of such a network (sections 6.1 to 6.3). This leads to a latency
and throughput analysis with real traffic together with the dimensioning of networking re-
sources, completed by using a fully-fledged simulator developed for this thesis that models
with high fidelity the different parts of a multi-core quantum computer (section 7.1). In ad-
dition, we have started the development of an efficient MAC protocol specific to our use case



(section 6.4), which we believe will complete the architecture design and communications
modeling.

With the results of this thesis, we hope to contribute with design guidelines that may
enable multi-core quantum architectures to unleash the potential of quantum computing.
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Chapter 1

When both expectations and stakes
are high

QC (i.e computing platforms based on nanoscale quantum mechanical properties as op-
posed to classical electronics based on transistors) has been for some decades limited to
theoretical developments and algorithms. However, in recent years it has started to become
a reality [1–6]. By taking advantage of unconventional properties such as superposition
and entanglement (details on this in Section 1.1.1), quantum computer implementations of
time-consuming algorithms can be exponentially faster than their classical counterparts. For
instance, Shor’s algorithm [7] allows factoring large numbers in polynomial time: while a
classical computer would take a million years to factor a standard 1024-bit RSA key, a quan-
tum computer could do the same task in hundreds of seconds [8] (see Fig. 1.1). Therefore,
fields as important as internet security, pharmacology, complex combinatorial and optimiza-
tion problem solving, big data analysis or AI could make a leap when fully-fledged quantum
computers become available.

However, extraordinary performance requires an extraordinary environment: any in-
teraction with other particles or forces causes a qubit (the alter ego of a classical bit in
the quantum world) to rapidly lose the information it contains. Preserving qubit entangle-
ment and quantum state superposition –the key enablers of the quantum processing power–
implies maintaining the quantum information in qubits intact: see Section 1.1.1 for more
details. This, being trivial in classical computing, is in fact one of the most challenging is-
sues for building quantum computers. Therefore, quantum processors must be kept at very
low temperatures (close to absolute zero) and isolated from the outside world, something
which greatly hinders the external control and computation, for operations on the qubits
and measurements of their values.

These demanding requirements make building quantum computers a challenging task
and compromise quantum computing scalability. Although during these last years we have
seen remarkable sustained advances in quality and number of qubits in working prototypes,
the existing realizations of quantum computers are too small-scale and error-prone yet to
be able to experimentally demonstrate the theoretical results and proven algorithms that
show these impressive speed-ups [2]. It is predicted that millions of qubits will be required
in order to run practical quantum algorithms [9].

1



Figure 1.1: Comparison between classical and quantum facorization, as taken from [8]. L stands for
the length of the number to be factored. Color lines represent the predicted performance of various
quantum platforms, whereas the black line follows the execution time of a classical computer.

Despite all the ongoing research, the largest experimental quantum computers at the
time of writing have only recently reached several hundreds of qubits in a single chip [10–13],
and monolithic single-chip approaches are expected not to scale past the thousand-qubit
barrier, due to impracticality of control circuits integration, per-qubit wiring, prohibitive
quantum decoherence and severe qubit operation errors [1, 2, 14].

The quantum leap –doubly quantum, we could say– there exists from today’s prototypes
to fully-functional and useful quantum computers has such a breadth and depth as to require
additional support from other disciplines related to processor design. Such an approach to
the problem demands a system-wide optimization, the foundations of which may be laid on
audacious proposals for the design and architecture of the quantum computer as a whole.

In this introductory chapter to the thesis, we review the fundamentals of QC, for the
reader to have enough background to fully grasp the different advantages and disadvantages
of such a groundbreaking technology. In Section 1.1 we present the most important proper-
ties and challenges when working with quantum computations, and how the different pieces
work together: quantum programs, compilers, processors, communications, and networks.
With these tools at hand, we describe the complexity of scaling quantum computers in Sec-
tion 1.2, and present the most promising approach to solve it in Section 1.3. This will let
us motivate the present work leading the way into Chapter 2, where the motivation, scope,
and goals of this thesis are put forward.

1.1 Quantum background: on qubits, gates and circuits

Reviewing the main concepts of multi-core quantum computing and communication lets
us set the stage for our work Basic notions of quantum computing and communications

A Double Full-Stack Architecture for Multi-Core Quantum Computers 2



Figure 1.2: Qubits VS bits and “the observer effect” in quantum measurement. a) While
bits can only represent two discrete values, qubits hold a probabilistic state that exponentially
increases its computing capacity, b) When measuring a qubit a collapse of the quantum state occurs
leading to information loss if the qubit is not holding a pure quantum state coherent with the chosen
measurement basis

are needed in order to fully understand the implications of QC performance, as well as to
identify correctly the particularities that might help in designing a quantum computer. For
a deeper look into quantum computing and communications, the interested reader may refer
to [2,15]. However, if the reader is familiar with QC, it might be helpful to hop directly into
Section 1.2.

1.1.1 The power of qubits

The qubit constitutes the basic unit of computation in the quantum world, as an alter ego
of a 1-0 classical bit. In the most commonly used model of quantum computation, i.e.
the unitary circuit model [16], the quantum information contained in a qubit (a quantum
state) can take, as in the classical world, the logical values of 0 and 11. These are usually
represented as |0⟩ and |1⟩, also called ket notation.

The quantum weirdness of a qubit (and its power) might be very well summarized in
three key concepts:

• First, quantum superposition, i.e. the ability of a qubit to hold a state which might
be a pure |0⟩, a pure |1⟩, or just a linear combination of both, as in:

|ϕ⟩ = v0 |0⟩+ v1 |1⟩ , (1.1.1)

where v0, v1 ∈ C and |v0|2 + |v1|2 = 1. That is, when two qubits are superposed, the
quantum state becomes a combination of |00⟩, |01⟩, |10⟩ and |11⟩ states, in a process
that can be extended to an arbitrary number of qubits. In other words, a quantum
computer with N superposed qubits is operating over 2N states simultaneously, which
provides an exponential increase in performance for certain applications.

1Other qubit models (such as quantum annealing [17], measurement-based [18] or quantum walks [19])
assume some variations, such as continuous quantum states or even compress several discrete values in a
single d-state qubit, also called qudit.

A Double Full-Stack Architecture for Multi-Core Quantum Computers 3



Figure 1.3: Behavior of a pair of entangled qubits. In the depicted case, the qubits collapse always
to opposed base states, no matter how far apart they might be.

• Second, we have quantum measurement and the “observer effect” . Extracting
the information from a qubit into the the macro world means measuring its physical
quantum state. Due to quantum mechanics’ postulates, this gives us only a partial
view of it, as the |ϕ⟩ state collapses into the measurement basis, e.g. either |0⟩ or |1⟩.
In other words, the measurement leads to either |0⟩ with probability |v0|2 or to |1⟩
with probability |v1|2, in a process that destroys the quantum state of the qubit. With
two qubits A and B, the quantum state before measurement is the superposition of
four possible values v00, v01, v10 and v11 corresponding to the relative probabilities of
the qubits taking the |0⟩ or |1⟩ states after measurement. This can be generalized to
any number of qubits.

• Third, quantum entanglement. Two or more qubits can also be entangled, i.e.
whenever any of them is measured, all of them collapse into a definite state, with a
non-zero correlation of the global result. This happens independently of the existing
distance between them. In other words, the state of each of those qubits cannot be
described independently of the state of the other(s). For instance, two entangled qubits
could be such that either both collapse to 0 or both collapse to 1, as in:

|ϕ⟩AB =
|00⟩+ |11⟩√

2
(1.1.2)

Observe that the probability of |01⟩ and |10⟩ states is 0. That means that there
is no need to measure both: knowing just one of the measurement’s values lets us
know both of them. In fact, Einstein called this “spooky action at a distance”, as
this seemed to imply information was traveling faster than light, thus violating the
Relativity Theory. However, sharing a state at a distance is just a quantum mechanical
property, involving specific operations in the entangled qubits creation phase, with no
magic powder participating in the matter.

1.1.2 Adding quantum noise

These powerful properties are the foundations of quantum computing but also imply some
difficulties. In particular, the no-cloning theorem (a derivative of the “observer effect”)
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states that it is not possible to create an identical copy of any given quantum state. As a
consequence, qubits are not only an abstract unity of information but also the physical entity
containing the information: if the qubit is measured or corrupted, the quantum state is lost.
This is an issue because qubits nowadays are noisy and prone to quantum decoherence, which
arises from the interactions of a qubit with the environment and other qubits (i.e. unsought
entanglement due to cross-talk), imperfect qubit operations, and qubit leakages. In any
case, these undesired (but unavoidable) effects lead, over time, to unwanted modifications
of the qubit’s state [20].

The coherence time τc corresponds to the amount of time the qubit is able to maintain
its quantum state unchanged. Following one of the most used noise models, measuring qubit
decoherence can be done in two different ways, usually referred to as amplitude damping
(or T1) and phase damping (or T2). Amplitude damping is the average transition time from
the excited state to the ground state, mainly due to dynamic coupling. Phase damping
determines the amount of time the qubit is able to keep a superposition state. Furthermore,
if we want to measure the decoherence of a qubit ensemble instead of a single qubit, we use
T ∗
2 , which takes into account an additional decoherence source, i.e. the uncertainty in the

relative phases among different qubits due to the spatial dissimilarity. This means usually
that T ∗

2 ≤ T2, having that T ∗
2 may deviate notably from T2 [3, 21, 22]. Although these

two metrics represent different decoherence phenomena, given that the energy relaxation
(amplitude damping) does disturb also the qubit phase, the coherence time T2 is affected
by both decoherence processes, and thus it is widely used in the literature as the standard
qubit decoherence metric.

Being the main quality metric for a qubit, the decoherence times have been continuously
improved in the different existing qubit technologies. Although it is not the only challenge
for the scalability of quantum computers, the values hitherto reached are still far from
allowing qubits to run successfully representative quantum algorithms without Quantum
Error Correction (QEC) [23]. You can find more details on these advances in Section 3.1.

The quantitative metric for the distance between the actual quantum state of a qubit
and the theoretical quantum state it should be holding if there was no decoherence affecting
it is called fidelity, and it is usually expressed as [24]:

F (ρ, σ) =

(
tr

√√
ϕρ
√
ϕ

)2

, (1.1.3)

where ϕ and ρ are the two quantum states being compared, and thus fidelity represents the
(symmetric) probability that either state would pass a test to identify as the other.

1.1.3 Quantum Error Correction

Quantum decoherence and the “observer effect”, leading to the no-cloning theorem, impose
hard limitations on the computing capabilities of a quantum platform: the quantum infor-
mation is fated to disappear sooner or later without any option to recover the decoherence
and operation errors. However, the development of QEC let some optimism in. With QEC,
quantum information is protected by encoding a quantum state into several entangled qubits
using a specific Quantum Error Correction Code (QECC). Usually, it also implies a continu-
ous monitorization to detect and correct existing errors [8]. Error detection is done through
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Figure 1.4: A 2D lattice implementation of the surface code, as extracted from [25].

parity check measurements called Error Syndrome Measurements (ESM), which avoid direct
measurement of the qubits during these checks, thus preserving the qubit states. The extra
qubits used for this encoding overhead are usually called ancilla qubits.

One of the most well-known QECC is surface code [25, 26], convenient due to its rela-
tively high error threshold (∼ 1%) and its low-complexity 2D-grid structure that matches
with most qubit platforms topologies. In surface code, qubits are arranged in a regular 2D
lattice (see Fig. 1.4). Within the array both data (white-filled circles) and ancilla qubits
are arranged in an alternate fashion: observe that there are two types of ancilla qubits: Z
(green) and X (yellow), used to detect errors on each axis (bit-flip and phase-flip, respec-
tively). When errors are identified after a ESM, the corresponding corrections are applied.

1.1.4 From a quantum circuit to a quantum computation

The power of quantum computing comes from the operation of qubits and their probabilistic
states. In the quantum computation unitary circuit model, quantum logic circuits are used.
These circuits, as their classical counterpart, contain (quantum) logic gates that operate
either on single or several qubits. In this way, they are capable of altering the quantum
state of qubits by affecting the values v0 and v1 with single-qubit operations, or by applying
gates that combine the quantum state of two or more qubits. A controlled-NOT (CNOT),
shown in Fig. 1.6, is a clear example of a two-qubit gate: a NOT is applied to a qubit
B only when the control qubit A is |1⟩, thus modifying the values of v00, v01, v10 and v11
accordingly. Quantum algorithms can be therefore described as quantum circuits, i.e. a
sequence of quantum gates applied to the qubits in the computer: see the example in Fig.
1.5.

Quantum algorithms are usually expressed as quantum circuits that are agnostic of
quantum hardware, i.e. it is assumed that all qubits can interact with each other or that
quantum gates can be performed in parallel as long as their dependencies are respected.
However, quantum processors suffer from several constraints that must be satisfied when
executing a quantum algorithm on them [27]. Qubits are arranged on a specific topology,
and although all-to-all qubit connectivity is possible for trapped-ion processors [28], in most
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Figure 1.5: An example of a quantum circuit with single- and two-qubit gates together with
measurements.

of the quantum devices one of the most stringent constraints is the reduced connectivity
between qubits, limiting their possible interactions to, for instance, only nearest-neighbour.
In fact, one should differentiate physical qubits (the material holders of the quantum data,
whether they are movable, e.g. photons, or not, e.g. spin qubits) and virtual qubits (the
abstract quantum information which is operated on, swapped or teleported around the
processor, measured, etc.).

Accordingly, for compiling a quantum circuit into specific hardware, different map-
ping approaches have been proposed for realizing quantum algorithms in connectivity-
constrained, and in more general resource-constrained, single-core quantum architectures
[29]. The main steps in this process are:

1. Initial placement of qubits in which the virtual qubits (qubits in the circuit) are as-
signed to the physical ones (qubits in the quantum chip).

2. Routing of the qubits to adjacent positions whenever they need to interact (using
specific quantum operations such as SWAP gates)

3. Scheduling of quantum operations to leverage their parallelism and reduce the overall
circuit latency (i.e. the time it takes to complete the execution). This process results
in an increase in the number of gates and circuit depth (number of steps in the circuit)
that in turn decreases the success rate of the algorithm [30].

1.1.5 Fundamentals of Quantum Communications

In order to improve their isolation and minimize decoherence, qubits are operated and read
out using quantum gates which, as opposed to what is done in classical computing, are
applied in-place. However, when two qubits are required to interact by means of a two-qubit
gate, their quantum state needs to be moved to adjacent positions in the computer. For
instance, if we want to apply a CNOT gate between qubits A and C of Fig. 1.6, we will
have to exchange (using SWAP gates) the position of qubits B and A or C. This movement,
which we refer to as qubit communication, is a key operation in QC and its efficiency in
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Figure 1.6: Some fundamental operations of quantum computing and communications. From left
to right: controlled-NOT gate between qubits A and B, swap between qubits A and B, shuttling of
qubit A, and teleportation of qubit A to the position of distant qubit B (whose state becomes that
of A after completing the teleportation) via an entangled pair.

space and time is crucial, as it involves a resource and time overhead that may be critical
for the overall execution performance.

In fact, transferring a quantum state in any fashion is a complex task: it cannot be
done using classical communications, and, due to the no-cloning theorem (i.e. an arbitrary
unknown quantum state cannot be copied), qubit retransmissions are impossible. Even more
importantly, communication latencies have to be as low as possible, to minimize the effect
of the constant degradation on the qubit to be transmitted due to quantum decoherence.

Quantum state communication can take place via the physical movement of the qubit or
by the transfer of its quantum state. Aiming at overcoming the described obstacles, different
quantum interconnect techniques that enable quantum state transfer are employed. Here, we
describe three methods depicted in Figure 1.6: SWAP gates, qubit shuttling, and quantum
teleportation.

SWAP gates. The most basic form of communication in quantum computers is the
SWAP gate. A SWAP gate can only be applied to two physically adjacent qubits, which
exchange their state with one another. Thus, to move a qubit state to an arbitrary position,
a chain of SWAPs can be applied. However, this implies interacting with every qubit along
the way.

Qubit shuttling. A technique where qubits are physically moved using electromag-
netic fields across a chip space intentionally left devoid of qubits (shown as blank positions
in Fig. 1.6) in order to place together the ones that need to inter-operate. This technique
is used in a specific implementation of qubits, the ion traps. Using multiplexed architec-
tures such as the Quantum Charge-Coupled Device (QCCD), some experiments have shown
coherent shuttling of ion qubits through 2D junctions over millimeter distances in microsec-
ond timescales. However, with today’s technology, its latency and complexity do not scale
well for more than ∼ 100 qubits, and optical interconnects are needed to scale to larger
platforms [31]. For a deeper look into the state of the art of this technology, see e.g. [32]).

Qubit teleportation. A more versatile yet indirect quantum communication tech-
nique is quantum teleportation. This technique exploits the property of quantum entangle-
ment, which refers to the ability to have two or more qubits containing states that cannot
be described independently of each other. For two qubits X and Y , being in an entangled
state |Φ⟩+ is defined as:

|Φ+⟩ = 1√
2

(
|0⟩X ⊗ |0⟩Y + |1⟩X ⊗ |1⟩Y

)
=

|00⟩+ |11⟩√
2

, (1.1.4)

implying that, when measured, both qubits collapse to the same state, either |0⟩ or |1⟩. That
is, if we measure one qubit, we can be completely sure about the other qubit’s state no matter
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how far apart they are. Therefore, qubit teleportation is applicable for communication at
any distance, from the chip to planetary scales.

Qubit teleportation uses a pair of these entangled photons, also called Einstein Podol-
sky Rosen (EPR) pair or Bell states [33], and a classical channel to transfer the quantum
information of a qubit without moving it physically. For that, as shown in Fig. 1.6, both
transmitter A and receiver B are sent one qubit out of a pair that shares an entangled state,
which we name |Φ⟩+A and |Φ⟩+B. These are completely independent of the state |A⟩ to be
transferred.

Then, some basic operations involving the qubit to be transmitted and the entangled
qubit are applied, followed by a measurement. The result (a binary value) is then sent
via a classical channel. With that information, the receiver can reconstruct the original
transmitted quantum state by applying some corrections, turning |B⟩ into |A⟩. Note that
by being measured, the original state of qubit A is lost and hence the no-cloning theo-
rem is respected. Although it is still in a nascent stage, quantum teleportation has been
demonstrated experimentally at different scales [5, 34].

The most notable advantages of this technique are the distance-independent latency,
the decoupling of transfer into two different channels (entangled qubit pair and classical) for
better protection of quantum data, and the compatibility with different qubit technologies.
On the other hand, the efficiency of entangled pair distribution and network integration pose
hard challenges. As a whole, quantum teleportation is generally accepted as a fit candidate
for quantum communication networks, both at large and small scales. The interested reader
can read further on the topic in [35].

1.1.6 Quantum networks

In the context of quantum technologies, the challenges of quantum communications are
several. First, a dedicated physical infrastructure is required to realize the quantum channels.
For instance, EPR generators and optical fibers capable of transmitting entangled photons
are required to perform quantum teleportation. A second challenge, posed by the no-cloning
theorem, is the need to minimize the noise as qubit retransmissions are not possible. Hence,
quantum networks are extremely latency-sensitive, since qubits tend to decohere as time
passes, which clearly affects protocol design.

These challenges are being addressed in large-scale networks with solutions that already
reached the industry. Quantum cryptography, and more specifically Quantum Key Distri-
bution (QKD), provides an unconditionally secure way to encrypt communication [36]. In
this case, a string of qubits is directly transmitted using photons in dedicated optical net-
works and used to produce random secret keys for secure communication. Thanks to the
no-cloning theorem, this key distribution protocol is able to detect an eavesdropper in the
channel. Such a process has been deployed at a city-wide scale [37] and even using free-space
optics with a satellite as the secure middle-point producing the qubits [38].

Along these lines, the concept of Quantum Internet (QI) [39] has been conceived as
a large-scale quantum network capable of working in parallel with the classical internet to
enhance its applications (starting with QKD) [5], as well as of interconnecting distant quan-
tum computers to distribute computation [40]. This has opened a wide and fertile research
field, where the networking challenges are being tackled. In particular, the need for quan-
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Figure 1.7: Achieved and predicted scalability on a single chip for the most widespread qubit
technologies. Data obtained from [1,10,11,44–47]

tum repeaters to allow long-distance quantum teleportation [41], quantum communications
protocol stack design and implementation [42, 43], and modeling of communications at this
scale [15] are being investigated.

1.2 The scalability problem

Due to the already mentioned challenging issues of quantum decoherence, control errors,
qubit crosstals, no-cloning theorem, etc., scaling up quantum computers to fully-fledged
computing platforms capable of achieving the theoretical exponential speed-ups for turning
the Second Quantum Revolution into reality is proving a really hard challenge. An image
will explain that much better than a thousand words: in Fig. 1.7 the scalability potential
for the different existing qubit technologies is summarized. Observe how none of them
exceeds 10,000 qubits, well below the millions of them we need to effectively get into the
high-performance QC range.

What are the solutions at hand to this problem? An extended review can be found
in Chapter 3, but the technology improvements that are looking into control issues and
decoherence rates are not expected to unlock this issue. For that reason, the industry has
recently turned into distributed architectures, composed of state-of-the-art-sized quantum
chips that work together in order to sum up to larger amounts of total qubits. For instance,
IBM updated its roadmap to include a evolving strategy into multi-core/distributed quantum
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Figure 1.8: IBM’s vision of their 2033 100,000 quantum supercomputer, as extracted from [50]

architectures, starting with classical communication among chips, entanglement forging,
quantum circuit knitting and fully-fledged distributed QC [1, 48, 49]. Most recently, IBM
announced their goal to reach 100,000 qubits by the next decade using such a distributed
approach [50]. But how are these architectures envisioned for actually enabling such a wide
quantum leap?

1.3 Divide and conquer

Multi-core quantum architectures represent an effort to utilize currently existing limited-size
quantum processors into a large structure by interconnecting them and making the whole
platform work jointly. It may consist of dozens of quantum chips, containing hundreds to
thousands of qubits each, communicated both by a classical network (intended for signaling,
message passing, and measurement results communications) and a quantum backbone (to
allow quantum state sharing).

Connecting several quantum chips in a multi-core fashion has been proposed as a mod-
ular approach that may enable the scaling of quantum computers (see section 3.3.2 for a
detailed review of existing proposals). This not only simplifies control circuit requirements
but also reduces crosstalk errors and other impairments derived from a densely packed group
of qubits integrated in a single-chip quantum processor. Existing works on these and simi-
lar architectures [31, 40, 51–56] use different qubit technologies (ion trap, quantum dots or
impurities in solids) and module interconnects (ion shuttling, photonic switches, quantum
teleportation).

However, multi-core quantum computers come with their own set of challenges, which
have to be overcome. Particularly, communicating quantum chips is far from being a simple
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task. Sharing quantum data across cores is hindered by a variety of issues such as that
qubits cannot be copied due to the no cloning theorem or that qubits have a limited lifetime
rendering communication extremely latency sensitive. Moreover, this quantum-coherent
network needs to work in parallel with a chip-scale network transporting classical data,
intended for assisting quantum transfers with control and synchronization messages.

Nevertheless, the previously described proposals remain at a theoretical plane without
entering into details on the actual implementation, lacking completeness in how to solve all
these communication issues. In the present work, we have aimed to fill this void by going
further and studying thoroughly the implications of quantum communications in quantum
multi-core computing in order to produce analysis tools and architecture proposals that
might serve as strong foundations for such a promising technology.
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Chapter 2

Intertwining Communications and
Computation to Unlock Quantum
Computing Power

The promising features and computing power of quantum computers let us dream of a
revolution in crucial research fields. However, the existing challenges and bottlenecks cannot
be understated. Although current prototypes let us glimpse the theoretical potential of this
technology, their production and maintenance costs, together with the existing difficulties
to scale them up to fully-fledged computers, struggled with over a long time, can lower
the expectations over such a revolution. However, research is not about expectations or
predictions. Many of the “prophecies” on new technologies have been quickly proved wrong1:
proving a hypothesis right or wrong requires a thorough study on the matter, with model,
data and lots of testing.

After around forty years of research in QC and billions of USD invested into this tech-
nology, a firm grounding effort including great industry players such as Intel, Google, or
IBM has facilitated a rapid evolution and growth, particularly in the last decade. We may
very well say that QC is at that precise turning point where it may definitely become
either a too-good-to-be-true theoretical development or a historical milestone. At this criti-
cal period, research in QC must focus on the somewhat sophisticated and even sometimes
counter-intuitive nature of its roots, digging deep into quantum mechanics.

Therefore, promising efforts to scale up quantum computers by interconnecting several
processors (such as those presented at the end of the previous chapter) should be built from
the ground up, avoiding any pretended parallelism with classical computing or mimicking
classical networks. In fact, none of the existing works on the matter has deeply analyzed
whether this approach is effectively enabling an architecturally scalable quantum computer,
and which are the resource overheads and computational costs of such architectures.

This thesis’ postulate is that a comprehensive approach to the quantum computer design
based on multi-core architectures, as opposed to current densely-packed monolithic models,
is crucial to unlock the scalability issues. Such an endeavor implies not only proposing an

1One of the most famous in computer history would be the one coming from the then-IBM Chairman,
Thomas Watson, who said in 1943 “I think there is a world market for maybe five computers”.
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architecture design (i.e. specifying the organization, functionality, and design rules), but
also doing so by taking into account the specific challenges and virtues of qubit operation
inside a core, and all the quantum weirdness of entanglement and superposition in inter-core
quantum communications.

The nature of quantum computing makes it to be very much related to communicating,
and quantum communications (see more on this in Chapter 5) are crucial for executing
even small quantum programs. This indeed is more present in the case of the multi-core
architectures, where the described complexity of quantum communications is inserted into
the already constrained quantum computing environment.

This implies that in order to lay firm foundations for multi-core quantum computer
architectures, a deeply entangled design between computation and communications is essen-
tial. We need to minimize overheads and inefficiencies in order to leverage the full potential
of quantum mechanics: avoiding long communication latencies, buffering waiting times, or
data losses (something which may be easily overcome in classical multi-core computing) may
be crucial for the QC success.

Finally, this work is to be done with a multi-disciplinary perspective: quantum physics,
computer science, electrical engineering, and computer networks are bound together. Being
at the dawn of large-scale QC, abstracting out any of the involved research fields can lead
to a partial and sub-optimal design. In particular, this thesis is grounded on the basics of
qubit technologies and operations, communications design, and network protocols, looking
forward to covering the existing gap between work on single-core quantum chips and that
on large-scale distributed QC and the quantum Internet [5].

In the present chapter, we are going to delve into the entanglement between quantum
computing and quantum communications, explore the full QC stack while discovering how
the communications stack is already implicitly present, and summarize the goals of the
present thesis which develop its multidisciplinary vocation.

2.1 The blurry frontier between quantum computing and com-
munication

The basics of computing with qubits have been reviewed in the previous chapter. From there,
four distinctive elements could be highlighted: qubits are operated in place, the topology of
quantum processors typically forces two-qubit gates to be executed on contiguous targets,
quantum states steadily corrupt with time, and qubits cannot be copied.

Let us make a simple metaphor in order to extract some insights from these charac-
teristics: operating with qubits can be compared to cooking with delicate and perishable
ingredients, while classical computing is closer to the job of a traditional scribe.

Both processes have a clear outcome that comes from a series of dependent tasks that
should be performed in a specific order: chopping, peeling, boiling some water... and also
preparing the ink, working out a structure, looking for the most fitting wording... However,
many elements make both tasks differ.

First, the scribe might write some parts of the text on different pieces of paper, and later
on he can just copy all of them in order to obtain the final result. On the other hand, the
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Figure 2.1: Quantum communication implied by computations with qubits. a) Single-
core scenario. b) Multi-core scenario.

cooker cannot chop one carrot and boil in water another carrot, because he cannot combine
the output of both tasks afterward: (qubit) operations must be performed in place.

Second, whenever two paragraphs have to be combined together, the scribe can simply
make a new copy with the final combination, without changing the first copies of both texts.
Meanwhile, the cooker needs to put all ingredients into the blender whenever he needs to
mix them up: ingredients (qubits) need to be moved close together to “interact”.

Third, the passing of time affects very differently both professionals. The paper and ink
couple can produce a legible text lasting decades. Both the ink and the paper, if properly
kept, can be used for writing texts for a long time. However, the cooker needs to be careful
with the conservation of food and cooking timing, as some of the ingredients might corrupt:
the dish (the quantum state) might be contaminated if much time passes before eating it.

Finally, even in case the scribe finds out that a copy of one of the chapters of his book
is corrupting (because it fell into the river or the ink was low-quality), he only needs to copy
it again into another paper. On the other hand, the cooker has to be very careful with the
processes and corruption of ingredients: if he realizes any ingredient or process has altered
the whole dish, he is not able to simply “copy” it in order to fix the error. The whole receipt
(quantum circuit) must be carried out from the beginning, with newly acquired ingredients
(qubits).

Let us now take a step further and analyze how these characteristics make quantum
computing (cooking) and communicating (carrying food) much entangled: qubits are con-
stantly moving around, latencies are critical, and communication losses equals computation
failures. And multi-core quantum architectures, as in the case of precooked meals (with
several “kitchens” interconnected and doing separate processes on the same food), imply
even tougher requirements (specialized freight carriers, dehydrating processes, etc.).
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Figure 2.2: Inserting extra communication gates in compilation time. a) SWAP gates. b)
Inter-core teleported SWAP.

Indeed, whenever two distant qubits are to be operated by means of a two-qubit gate,
they must be moved to adjacent positions. This happens even for simple circuits. This
implies that quantum circuits involve constant qubit traffic. See Fig. 2.1a for a simple
example of how qubit movement is generated by swapping qubits in order to be able to
execute a simple two-qubit gate. When going to a multi-core environment, this problem
extends into inter-core operations requiring two qubits in different cores to interact (see Fig.
2.1b).

When moving qubits we are in fact making the execution last longer, as we introduce
extra SWAP or inter-core communication operations. And, having perishable ingredients
(corruptible qubits), this overhead affects the overall computing performance. In the exam-
ple of Figs. 2.2a and 2.2b, where a couple of SWAP gates and a teleportation operation are
inserted in compilation time, we are elongating the circuit duration by a factor of two or
more. Understandably, the multi-core case is even more affected, as inter-core communica-
tions are slower than SWAP operations: latencies are from 5× to 100× longer [14,51,57].

Finally, communications should be carried out in a way that best keeps the coherence
of qubits (quality of ingredients), together with a fine optimization on the timing for them
to avoid inefficiencies such as idling or waiting queues that will affect the overall latency
and performance. See for instance the example shown in Fig. 2.3, where in the left-hand
execution the communication has been started when the channel was not cleared, thus
incurring a useless wait that only allows for decoherence of the qubit being moved. In the
right-hand execution, this inefficiency is fixed in the schedule, thus achieving a Just In Time
approach.

Observe that these requirements do not apply to classical computing: bits always stay
in cache/memory, and the operations are performed with duplicates; latencies may affect the
qualitative perception of the computing performance, but not necessarily the quantitative
result; very poor communication environments and network scheduling may equally affect
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the performance in terms of perceived responsiveness, but only extremely harsh environments
will not be able to provide the correct result.

In a nutshell, a tight co-design of quantum computing processes and qubit communica-
tions is not only desirable but instrumental for leveraging the power of this approach and
reducing inefficiencies for optimized performance. Moreover, multi-core quantum architec-
tures, with their promising approach to QC scalability, will benefit from such an entangled
computation-communications design by controlling the fragility of qubits in a better-isolated
environment while benefiting from the surprising properties of quantum communication.

2.2 Revisiting the computer stack to allow quantum entangle-
ment in

Layered stacks are a powerful tool to tackle complex systems in computing architectures
and communications. This type of hierarchical conceptualization has already been used in
some existing proposals of layered architectures for QC [58–60]. However, all of them focus
on single-core quantum computers, lacking a communications perspective.

We introduce a general-purpose (i.e. no specific qubit or interconnect technology is as-
sumed) layered stack specific to multi-core QC. We call it a double full-stack as it merges the
traditional computing stack (application, runtime/compiler, micro-architecture, hardware)
with the communication stack (routing qubits among cores, qubit reservation and swapping,
etc.). As explained in the previous section, intertwining both will facilitate a tight co-design
and may provide further insights on how to efficiently leverage the specifics of quantum
computing and communications.

The full-stack layered architecture vision for multi-core quantum computers that we
propose is presented in Fig. 2.4. The different abstractions of the quantum computer at
each of the layers are included in the stairway : the step treads correspond to elements that
configure that specific layer and the step risers its key functions. The whole network layer
and the elements included in the red “wedge” correspond to the multi-chip implementation-
specific kernel of the stack. Quantum data transfers in multi-core quantum computers affect
all the way from the high-level code to the physical operations performed for measuring a
qubit.

In the following pages, we do a quick overview of the different layers of the presented
full-stack architecture in order to show how communications play a fundamental role not
only in a specific part of the computation but also in the computer as a whole. Without the
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Figure 2.4: A double full-stack multi-core quantum computer vision.

communications block (in red), the stack of Fig. 2.4 is unstable. But, the question arises of
whether this key block would really unlock quantum computer scalability.

2.2.1 Qubit layer

This layer is the foundation of the quantum computer, composed of each one of the qubits
that can be individually controlled and read out. It could be further divided into logical
and physical sub-layers when the processor implements a reliability system where several
physical qubits act as a single logical qubit using QEC techniques [61].

At this level (controlling and operating single qubits) no quantum communications are
involved. However, the performance of this layer is key as it will impose some limits on
latencies and qubit rates of upper layers communication processes. This is particularly
relevant when we consider that quantum communication is closer to “transporting physical
qubits” rather than to “sending quantum information”: whatever affects the physical qubit
(and hence the quantum state in it) will affect the entire computation performance, and any
communication involving that qubit should act consequently.

Decoherence processes as well as measurement and gate performance are the main
aspects here (see Section IV in [22]). They are highly dependent upon the qubit technology
(e.g. ion traps, superconducting qubits, or quantum dots) and its maturity stage (see, e.g.
Section 5 of [4]).

The relationship of these parameters with the upper layer communication processes is
indirect but real, e.g., the coherence time (τc) sets a fundamental limit on the maximum time
we can operate, read out the state, or transfer the qubit before the quantum information (see
corresponding subsection in Section VI of [22]) is degraded irremediably due to decoherence.
Also, long gate latencies (i.e. small quality factors) have a similar effect. Qubits supporting
long travels will not withstand too many operations on their already worn-out quantum state.
Finally, low qubit gate fidelities are equivalent to the inverse of classical communications
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error rates; the higher the better for accurate quantum information transmission. On top
of that, the fact that the qubit errors and decoherence are accumulated asks for accounting
for their effects on the optimization in communications and also on upper layers.

2.2.2 Core layer

The core layer is formed by a set of qubits integrated into a single chip capable of inter-
operating using one and two-qubit gates. If the core is incorporated into a multi-core
architecture, some of its qubits will be responsible for interconnecting the core with one
or several cores, acting as transducers or communication ports (see e.g. Linking atomic
qubits with photons subsection in [31]).

This layer performs the fine-grained qubit mapping inside the core as well as inter-core
communications control (in a multi-core architecture). In a single-core quantum computer,
the core layer reaches the whole physical environment of the quantum computer.

The qubit interconnection graph might follow a certain topology, whether it is all-to-all,
a ring, or a regular 2D lattice. Together with the intra-core communication technology, it
characterizes the intra-core connectivity, as well as the intra-core communication latencies
and qubit transportation capacities. Finally, the control wiring and qubit technology de-
termine a minimum qubit-to-qubit distance, which will impose restrictions on the minimum
area occupied by the core and affect the communication latencies.

Communications are also here remarkably entangled with computations, as two-qubit
operations inside a quantum core are usually constrained to contiguous locations (see e.g.
Qubit plan organization subsection in Section VI of [22]). Therefore, qubit movement or
swapping –the most basic form of quantum communication– is a constant for almost every
two-qubit operation. Also, in the multi-core case, the core receives and sends quantum states
from and to other cores. Two-qubit gate quality metrics are hence key for communications
performance, similar to what we have just seen on the qubit layer with single-qubit gates.
First, two-qubit gate latency: the time spent in performing a certain quantum operation
(such as a SWAP gate for intra-core communication). And second, two-qubit gate fidelity,
which represents the accuracy of a given quantum operation. Long gate latencies and low
gate fidelities will affect the time and number of transfers a qubit may be able to support
before losing the quantum information it stores.

Note also that the performance of this communication process will be affected by the
qubit interconnection topology, the number of qubits per core, and the inter-qubit spacing
e.g. a large processor with an uneven topology may need on average longer travels. In other
types of communication, such as qubit shuttling, the inter-qubit spacing (which depends on
qubit technology and control wiring) will determine the travel distance (and duration).

2.2.3 Network layer

This layer is fully responsible for interconnecting cores, both with a classical network (for ex-
changing control messages and qubit measurement results) and a quantum network, capable
of transferring quantum states using any of the existing techniques (qubit shuttling, quan-
tum teleportation, etc.). Also, it carries out the control and optimization of this inter-core
communication, by means of medium access protocols, entanglement distribution, etc. That
is resource reservation and network scheduling. This will strongly depend on the technology
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employed. Interested readers may look for more details in Chapters 5 and 6. In case the
qubit mapping is disaggregated in two steps, this layer would implement the qubit-to-core
mapping defined by the upper layer.

The specific inter-core topologies and interconnect technologies (e.g. ion shuttling, qubit
teleportation...) that define the connection among cores are key. These will determine the
inter-core connectivity in terms of core-to-core distances, inter-core communication laten-
cies and qubit transfer rates, along with other technology-specific parameters such as e.g.
number and output fidelity of EPR generators for qubit teleportation, or trapped voltage
and segment size for ion shuttling [32,35].

Quantum communications at this layer imply inter-core qubit transportation for local
two-qubit gates (i.e. qubit routing), although some proposals on remote gates [62] would
imply an even tightened relationship with ongoing computations. Therefore, the network
policies and protocols should be efficiently designed taking into account the harsh require-
ments in computation on the lower layers.

2.2.4 Runtime/Compiler Layer

This layer is the first logical layer i.e. abstracting out physical elements of the multi-core
quantum computer. It is in charge of compiling the code to quantum assembly and coordi-
nating the execution of the instructions together with the coarse architectural mapping (i.e.
partitioning of the algorithm among the existing cores, in analogy with the mapping process
in classical many-core computer architectures), always in pursuit of optimized processing.

This implies applying offline optimizations to the code (naturally for both computation
and communications) by taking into account the limited resources and characteristics of the
specific architecture: capacity and flexibility of the inter-core network, topology, and features
of the cores, qubit technology employed, etc. At this layer, we see the quantum computer
as a set of connected quantum cores (i.e. “processing units”).

Therefore, inter-core communications, as well as some details on the capabilities and
topology of the multi-core platform, are implied in the compilation and coarse mapping
process. Observe that qubit traffic is almost deterministic by nature, because of its direct
relationship with the computation: hence, qubit transfers are indeed loosely scheduled at
this layer, though they are ultimately controlled by the network layer.

2.2.5 Application Layer

The uppermost layer corresponds to the code description of the quantum algorithm to be
run on the quantum computer. This layer is hardware agnostic, meaning that low-level
architectural details or constraints are not considered. There is no reference to any explicit
communication operation unless it is performed within a large-scale quantum network such
as the Quantum Internet.

In any case, the code might include some compiler directives enabling optimized qubit
distribution and instructions execution, as it is already done in multi-core classical comput-
ing.
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Figure 2.5: Multi-core quantum architecture vision. a) 2D diagram of a multi-chip archi-
tecture. b Detailed view of a single core and the different elements involved in computation and
communication.

2.3 Developing a multi-disciplinary roadmap for double full-
stack multi-core quantum architectures

Being still unclear whether QC will break current scalability limits, the vision of this work
is taking multi-core quantum computers not just as an intermediate step before having
fully functional large-sized quantum monolithic chips integrating millions of qubits, but as
the enabler of the full power of QC. Instead of proposing a “black-box” interconnection of
Noisy Intermediate-Scale Quantum (NISQ) chips, designing a multi-core architecture that
entangles computing and communication with a full understanding of their intertwining
requirements has to pay attention to its specific limitations while preserving its properties.

Rooted into that vision, the main goal of the thesis is to lay the foundations of com-
munications-enabled multi-core quantum computers as a proposed enabler of the ultimate
success of QC. This main goal can be decomposed into several objectives focusing on
different outcomes, as detailed in Section 2.4.

This multi-core quantum computer, presented in Fig. 2.5, will cluster together dozens
of NISQ cores (with tens to hundreds of qubits), connected through a quantum communica-
tions network (for core-to-core qubit transport, such as quantum teleportation or photonic
switches) and a control classical network (for core coordination and job distribution), map-
ping the quantum algorithm among them to boost performance. In this way, we alleviate
the requirements for control circuits and improve qubit isolation, while leveraging all the
advantages of quantum parallelism.

This vision is sustained by three main pillars:

• An architecture designed bottom-up from an entangled communications-
computation perspective: Some layered architectures for QC have already been
proposed [58–60], but all of them focus on single-core quantum computers, lacking for
a communications perspective. The presented vision goes however beyond adding mere
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interconnects, encompassing instead communications and computing in a consolidated
layered architecture itself –a là Network-on-Chip (NoC) [63]–. Although there exist
some stack proposals extending quantum computers to connected environments, these
approaches come from a Quantum Internet perspective, i.e. do not integrate the
quantum computation process with communications: they are network stacks rather
than computer architecture stacks [5, 42,43].

• Short-range quantum communications specific design: While recent years have
seen an explosion of research in quantum communications and networking for the QI,
less attention has been placed on chip-scale communications for the scaling of quantum
computers. On the one hand, for its role as an interconnect among computing cores
within or across chips, quantum interconnects may recall the classical concept of NoCs.
On the other hand, for their quantum nature and the need to transfer quantum data
using mainly quantum teleportation, they may be compared with its big brother, the
QI. However, the radical differences between quantum and classical communications
(i.e. relevance of keeping latencies as low as possible, inability to retransmit lost qubits,
etc.), and the resource limitations, together with the distance and temperature ranges,
call for a specific analysis and modeling of quantum communications at a multi-chip
scale.

• Lasting design principles: the complexity of the task, the variety of challenges, and
the need to design without being able to validate experimentally a fully-fledged multi-
core quantum computer is at the risk of falling into a theoretical model with too many
assumptions that would hardly be implemented into an actual machine. Therefore,
accurate models are needed together with a complete exploration of the design space.
Moreover, instead of looking for optimal and very specific designs, this work aims at
doing a first validation on the main issue (scalability of these architectures) and giving
out design trends that may guide future experimental research.

2.3.1 Three big questions to be answered

“Research is formalized curiosity”, said the american anthropologist Zola Neale Hurston.
That is, doing good research is all about formulating the right questions... When looking at
solving scalability issues in QC using a multi-core approach, which are the questions that
may help us in arriving earlier to the most useful conclusions? We believe they can be
summarized into three:

1. Will the multi-core approach unlock the current monolithic single-core quantum com-
puters’ scalability bottlenecks? This implies proving the main postulate of the thesis.

2. For a given technology used to implement (or a specific application to be executed on)
a multi-core quantum architecture, which is the optimal architectural configuration?
That is, providing design guidelines that allow us to foresee the requirements for multi-
core quantum computers as well as how the computing power is better leveraged for
different architectures.

3. How could we improve inter-core communications in order to have fast/efficient multi-
core quantum architectures? Being communications the obvious bottleneck to any type
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of distributed computing architecture, it is key to determine which physical/design
parameters of the communication systems affect most to the overall computing per-
formance.

Each of these questions opens a research line itself. In the present thesis, we lay the
foundations of the three of them, willing to open the research path for subsequent works
deepening in them for the advancement of multi-core QC.

2.4 Summary of this thesis’ contributions

The aim of the proposed thesis is to lay the foundations of communications-enabled multi-
core quantum computers as a proposed vision for the ultimate success of QC. According to
the main pillars of this vision, we set as objectives of this thesis the following three main
tasks/research lines:

I. Multi-core quantum architectures scalability study

Multi-core quantum architectures are proposed as an approach to unlock the scalability
of QC. However, this has not been demonstrated yet. Till we have experimental resources
available to build the first multi-core models, we need to confirm the viability of this approach
using analytical models and simulations. In order to do that, we use DSE, evaluating the
scalability of multi-core architectures in terms of the number of cores, and number of qubits
per core together with qubit technology and performance, among others. This methodology
allows us to:

• Explore the entire design space without being limited by the “intuition” and designer’s
previous experience that might hinder the way to the optimal (but maybe not intuitive)
solution.

• Provide not just a single optimal analytical solution, but rather design trends and
guidelines extracted from the exploration.

• Remain valid also for early design decisions when there are no analytical models or
computer simulations for the performance metrics of the system.

Moreover, the results of the exploration let us compare different existing qubits and
quantum communication technologies. We plan to tackle this study as an “unfolding” of
models, adding more complexity layers to the study in order to focus better the exploration:

• Analytical model: Together with the literature review on the topic, we have devel-
oped a behavioral model describing the performance of a multi-core quantum archi-
tecture. In order to do so, we first studied how the different elements in a quantum
chip and the interconnection network may interact, to then select the variables and
parameters that provide valuable information for the exploration. As we are validat-
ing whether a multi-core architecture can make the difference in terms of processing
power scalability, we must particularly take into account the elements of the quan-
tum computer that may be affected by the architecture paradigm (single-core versus
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multi-core). Most importantly, we have defined a Figure of Merit (FoM), that aggre-
gates metrics on performance, cost, and qualitative attributes [64]. It is important to
note that, not having experimental fully-fledged quantum computers, measuring the
progress of QC is, right now, more about calibrating its maturity and overcoming indi-
vidual obstacles rather than benchmarking computational power [65]. This is further
developed in Chapter 4.

• Communications overhead analysis: The previous study (a preliminary approach
whose validity is limited to the FoM accuracy) has been completed afterward with
an analysis of what we expect to be the hardest bottleneck in implementing multi-
core architectures: the inter-chip communications overhead. This implies studying
the trade-off between communications overhead (both in terms of execution time and
consumed resources) and the gain in size of the algorithms that can be executed on
them. Using well-known quantum algorithms with various inter-qubit traffic profiles
also gives an idea of how multi-core architectures may be adapted to specific algorithms
or rather be prepared to run generic quantum algorithms. This helps not only to
determine the viability of multi-core computing but also to characterize the decision
threshold where the communications cost of distributing quantum computation among
several cores pays off.

Studies on this trade-off are available [14, 66–69], although none of them allows us to
answer any of these key questions, namely: how fast should inter-core communica-
tions be in order to allow multi-core architectures to supersede traditional single-core
quantum processors? For a given interconnect technology, which is the optimal archi-
tectural configuration that the communication costs pay off?

This analysis is presented in Chapter 7.

• Network Performance Scalability: The final analysis of this “layered” exploration
consists of a complete study of a fully simulated multi-core network running real quan-
tum programs (at a scaled size). We have done so by adapting existing simulators for
QC. The aim is to provide a list of design guidelines and optimal design spaces where
multi-core may effectively scale QC, for a variety of applications and technologies.
This study also contributes to dimensioning the proposed architecture (Objective II),
by enabling the exploration of different topologies, resources, etc. The results of these
full simulations are presented in Chapter 7.

II. Architecture proposal: a double full-stack comms-enabled many-core
quantum computer

Although remaining mostly at the theoretical plane, several architectures for different ap-
proaches of modular quantum computers have been proposed [31,40,51–56]. Though we are
not an experimental group and hence have not been able to develop a functioning prototype,
we provide a scalable proposal (presented before, see Fig. 2.4) validated via simulation (as
explained in Objective I). In particular, our aspiration is to generate an architecture that
may be i) technology-agnostic, and sufficiently generic so as to be valid not only during
the present NISQ stage, but also for large numbers of cores and qubits working together,
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and ii) a combination of quantum computing and communications, a conception which we
believe will unlock both layers and is rooted deeply inside the most unique characteristics
of quantum. The outcomes of this task are as follows:

• Entangling communications and computation into a single quantum stack:
As a way to showcase our vision of a multi-core quantum computer where computing
and comms are fused together, we present a layered stack where both worlds are
considered. This implies studying the state of the art in a vertical fashion, covering
from the physical research on qubit technology and operation to quantum algorithms
and coding, in order to be able to understand the entire process of describing and
executing a quantum program. This work has also been a valuable input for the DSE,
as it facilitates a structured analysis of the variables and parameters present at a
multi-core quantum computer, and how they affect performance. The layered stack
has been already presented in this chapter.

• Dimensioning a many-core quantum computer: Proposing an architecture im-
plies not only providing an understanding and organization of the operation flow but
also giving out design guidelines and decisions following that theoretical conception.
In our case, after having developed the layered architecture, we have been able to
explore the design space (along with the scalability analysis of Objective I) in order to
find the limitations, bounds, and trade-offs in the architecture. We provide the best
operation ranges for e.g. number of cores, the number of qubits per core, communi-
cation resources, qubit technologies, etc. This exploration is developed using different
starting points in Chapters 4 to 7.

III. Short-range quantum communications model

As the key technology enabling multi-core QC, quantum communications at the chip scale
are an important part of this thesis. Understanding the particularities of this type of com-
munication means getting to know how quantum communications work, and what are its
main characteristics when operated at such a scale. To the best of our knowledge, the re-
search on quantum communications has been focused on large-scale communications, and
hence in order to provide a valid scalability analysis (Objective I) and a complete multi-
core quantum architecture (Objective II) we need to adequately model short-range quantum
communications:

• Multi-core scale communications model and simulation: Following the liter-
ature on quantum communications at large-scale and existing experimental work on
chip-to-chip quantum networks, we have developed a model of a multi-core quan-
tum network, looking for a fit technology among the existing ones, and analyzing
it from a pure communications perspective. Interesting outcomes have been latency
and throughput analysis with real traffic, dimensioning of networking resources and
interaction with the runtime controller and the computation flow, adapting an exist-
ing quantum communications simulator (NetSquid) [70]. The model and results from
these analyses are presented in Chapters 5-7.
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• Preliminary MAC Protocol Development To the best of our knowledge, the few
publications existing yet on multi-core quantum computers have not tackled chip-to-
chip communications as far as designing the needed protocol set. We have aimed at
completing the architecture design and communications modeling with a first simple
Medium Access Control (MAC) protocol for this environment. We envision that an
efficient MAC protocol will be a key element in multi-core quantum networks, due
to the prohibitive cost of qubit losses and communication latencies. This work is
presented in Chapter 6.
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Chapter 3

State of the Art

Connecting several quantum chips in a multi-core fashion has already been proposed as a
modular approach that may enable the scaling of quantum computers. As we have men-
tioned in the previous chapter, this not only simplifies control circuit requirements but also
reduces crosstalk errors and other impairments derived from a densely packed group of qubits
integrated into a single-chip quantum processor.

Existing works on these and similar architectures [31, 40, 51–56] use different qubit
technologies (ion trap, quantum dots or impurities in solids) and module interconnects (ion
shuttling, photonic switches, quantum teleportation). However, all of them remain on a
theoretical plane without entering into details on the actual implementation and offer a
limited technology-specific approach. You can go forward to Section 3.3.2 for more details
on these existing proposals.

By looking at the multi-core scale building a NoC on top of NISQ chips, our work is
focused on a realistic approach that leverages a tight co-design between communications and
computation to maximize the efficiency of the overall design. In this way, we are able to
provide detailed analysis of the different layers (qubit parameters, NoC performance, EPR
pair generation specifications, communication scheduling guidelines, etc.) for covering the
existing gap, while enabling experimentalists to take benefit from these design guidelines for
specific technology implementations.

Nevertheless, multi-core quantum computing as a scalability enabler for unlocking the
full power of QC is just the tip of a research iceberg more than 40 years old. In order to
fully understand the complexity of this QC paradigm and the existing interplay between the
involved technologies, it might be of help to go through a broad overview of the research
conducted during the past decades.

QC, which is now living the “Second Quantum Revolution”, was born around the 80s,
although to find some of its theoretical foundations we have to go to some years before and
even to the dawn of the twentieth century, with the postulation and discovery of quantum
mechanics.

Realizing that modeling quantum systems is out of reach for classical computers, Feyn-
man, Deutsch and others put the foundations of universal quantum computers [71,72]. Still
in the theoretical realm, the development of paper-and-pencil quantum algorithms came
afterward. In 1994, Peter Shor published what would become a turning point for QC: he
demonstrated a quantum algorithm that could factor integers in polynomial time [73]. This
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translated into a rise in the interest in QC as it proved the potential of this technology. It
also puts at a theoretical risk all the modern cryptography, mainly based on the complexity
of factoring long integers [74]. The qubit decoherence problem was also tackled early with
the development of the first quantum analogs to error correcting codes [75,76].

Experimentalists did not take much longer to achieve the first working prototype of a
small quantum computer. It was in 1998 when the first experimental demonstration of an
algorithm was shown, jointly at IBM, Oxford, and Berkeley. They used 2 qubits to perform
a fast quantum search using Nuclear Magnetic Resonance (NMR) techniques [77, 78]. The
beginnings of the 21st century led to fast advances in qubit technology and other key ele-
ments for QC development (quantum interconnects, qubit control circuits, quantum error
correction...). Most recently, Google demonstrated quantum supremacy (a controversial term
coined by John Preskill [79,80]) on their 53-qubit Sycamore processor, i.e. performed a com-
putation that is practically impossible to execute on the most powerful classical computer
available [81].

As explained in Chapter 1, although the number of qubits successfully integrated in
quantum computer prototypes has been steadily increasing, some concerns on QC scalability
have risen, leading research in the fields of physics, materials, electronic, and quantum engi-
neering. Much of the research being carried out now on scalability of QC aims at extracting
the most performance out of the current NISQ computers1 by optimizing compilers [82–86],
qubit mapping and routing [27, 87–92], and very importantly, QEC, i.e. techniques devel-
oped for qubit error detection and correction [61,93,94]. Closer to the physics are the works
on improving control wiring, as well as signaling and circuits that may work at near-zero
temperatures [95–99]. Moreover, several technologies for implementing qubits, with different
performance advantages, have been proposed [100–104].

Modular QC, represented by proposals of large-scale distributed QC on the Quantum
Internet (e.g. [40]) and short-scale efficient multi-core quantum architectures (such as the
work in [56]), is hence sitting on top of a large quantity of past and ongoing research.
Therefore, in order to better contextualize and understand the work in this dissertation, we
are orderly presenting in this chapter the state of the art in QC as a whole. We will structure
this survey by visiting the quantum computer stack layers one by one. The reader can use
Table 3.1 for an overview of the state of the art and pointers to the different sections in the
chapter where each layer can be found.

3.1 Quantum bits

Quantum bits are the foundation of QC, and hence research on qubit technologies, looking
forward to improving their quality and control, is key. As of the time of writing this thesis,
there is no dominating qubit technology yet, although some are preferred over the rest for
their recent experimental performance results. However, each technology is at a different
maturity stage and presents advantages and disadvantages on the various qubit quality
attributes. This, far from being a problem, may also make certain qubit technologies more
fitting for specific roles: e.g. multi-core quantum architectures are in need of both static,

1NISQ is a term coined by John Preskill that encompasses the small-sized and constrained (yet fascinating)
computers built nowadays [9]
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Table 3.1: Layered overview of QC state of the art

Layer Main research focus Challenges Details and refs. Section

Qubit Qubit technologies Qubit coherence time

Ion trap [47,105–107], supercon-
ducting [12, 103, 108–110], solid-
state [101,102,104,111–117] and
photonic [118–123]

3.1

Core Qubit interaction

Qubit count (in a sin-
gle chip), qubit con-
trol & isolation, gate
fidelity, Fault Tolerant
(FT) QC

Platforms: ion trap [46,
47, 124–127], superconduct-
ing [1, 10, 81, 108, 128–130],
solid-state [45, 131–133], pho-
tonic [11, 13, 122, 134]; cryogenic
control circuits [97–99, 135, 136]
and QEC [137–140]

3.2

Network

Quantum interconnects Qubit transfer rate and
fidelity

Ion shuttling [32, 141],
mw photon-mediated cou-
pling [142], entanglement
generation and distribu-
tion [143–147], quantum
teleportation [34, 35, 148],
remote quantum gates [62, 149],
light-to-matter [51,150,151] and
hybrid qubit platforms [152–155]

3.3.1

Multi-chip proposals

Fully-fledged experi-
mental demonstration,
HW/SW and compu-
tation/communication
co-design

Ion trap-based [28, 31, 51, 54–56,
69,156–162], spin-based [52], su-
perconducting based [1,163–165]
and photonic-based [44]

3.3.2

Runtime/
compiler

Compilers: mapping
and routing

Algorithm complexity
due to architectural
constraints, optimal
routing, mapping in
multi-core QC

Circuit synthesis [166–168],
QEC integration [91, 169, 170],
qubit mapping optimiza-
tion [87, 89, 92, 171], schedul-
ing [27, 88, 90], multi-core
targets [14] and distributed QC
on QI [172].

3.4

Application Quantum languages
Plethora of available
options, dependency
on low-level languages

Functional languages [173, 174],
imperative languages [67,82,175]
and assembly languages [176–
180]

3.5

memory-focused qubits (i.e. long coherence times and high fidelity control and read-out),
and mobile qubits (i.e. low interaction with the environment, kept at room temperature),
intended for communications, with the ability to transfer quantum states from one another.

Proposals for quantum computer implementations include largely developed candidates
such as ion traps or superconducting qubits, promising candidates such as quantum dots and
other solid-state proposals (such as Nitrogen-Vacancy (NV) centers in diamond and silicon-
based nuclear/electron donor spins), and many others, including photonic and topological
qubits [2, 3, 8, 181,182].

Being the most prominent technologies for now, we will review Ion traps, Supercon-
ducting qubits, and three types of Solid-state spins: quantum dots, donor spins in silicon
and NV centers in diamond, and photonic qubits.

A visual comparison among qubit technologies in terms of their main quality attributes
is presented in Fig. 3.1. Photonic qubits are not included due to being conceptually different
and thus not comparable using these metrics.
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Figure 3.1: A visual comparison among different quantum technologies. Fidelity percentages and
quality factors correspond to two-qubit gate values.

In the figure, three different characteristics are depicted for each technology: coherence
time, quality factor, and gate fidelity. Instead of just providing a table with figures and
metrics (which have been extracted from the refs. above), these parameters are represented
geometrically: the height (or width) of each box is proportional to the value of the parameter
for that technology. As the coherence times of both donor spins in Si and ion traps (as well
as quality factor in ion traps) are out of scale, their corresponding boxes are represented as
a “discontinued” surface. In this way, we can easily compare the performance of the different
technologies (i.e. of the most recent experimental results using each of them). During the
last years, all technologies have been able to demonstrate fidelities greater than 99%, being
the bare minimum fidelity that QEC protocols are able to correct. However, some of them
have reached that quality only in two-qubit lab experiments.

Ion Traps. In this implementation, qubits are represented by the energy levels of
electron spins in single ions, which are trapped together in a vacuum (Paul traps) using
electromagnetic fields. Ion traps are reliable and present low error rates (being charged
atoms, they can be manipulated with high precision): these qubits have showcased coherence
times of tens of seconds and single- and two-qubit gate fidelities of 99.9999% and 99.9%
respectively [47]. However, operating with them is slow and complex [105–107]. As they
led the way to high-fidelity operation, they are also pioneering experimental fault-tolerant
logical qubits with impressive results [137,138].

Superconducting qubits. Using well-known CMOS technology, these qubits are “ar-
tificial atoms” implemented in superconducting circuits at cryogenic temperatures as reso-
nant circuits translated into discrete energy-level systems thanks to the non-linear behav-
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ior of Josephson junctions. The information, encoded in different ways (charge, flux, or
phase qubits) can be electrically controlled via microwaves, voltages, magnetic fields, or cur-
rents [103]. Leading tech companies such as IBM and Google are betting on this technology.
While they started lagging behind ion traps’ qubit lifetimes and error resistance, they have
been rapidly progressing: average lifetimes are still below the millisecond [12, 108], but
the gate fidelity has rocketed recently from 99% up to 99.91% [108–110]. They are also
the technology of choice at Google for demonstrating a complex development of quantum
computers such as QEC [140]. All these advances imply that superconducting qubits are
currently leading the quantum race.

Solid-state spins. To avoid the issues found in ion traps with cooling and control-
ling a large number of atoms in a vacuum, several qubit technology proposals are based on
“artificial atoms” integrated into solid-state hosts, such as quantum dots (nano-structures
of trapped electrons, which could be said to be the extreme one-electron case of a transis-
tor) [101], NV centers in diamond (a platform which works well at room temperatures and is
a fit candidate for interconnecting quantum processors for its good optical properties) [104],
or donor spins in silicon (e.g. P:Si) [102]. Although less consolidated than superconduct-
ing qubits or ion traps, they provide fast operating and long-lived qubits. Moreover, the
silicon-based implementations benefit from the know-how of the global silicon manufacturing
experience. Most recently, the three mentioned technologies have well surpassed the 99%
fidelity barrier [111–113]. The research community behind solid-state spins is dynamic with
several open ongoing efforts for better substrates and techniques [114–117].

Photonic qubits. Encoding the quantum state into polarization, time-bin, or path,
photons provide a room-temperature noise-resistant platform for qubits, which is by nature
ideal for transporting quantum information [118]. On the other hand, its inherent mobility
and the resistance to interacting with the environment make it difficult to operate with other
qubits and to store them, leading to important research on light-to-matter transducers [119,
120]. In the last years, research on programmable integrated photonic circuits has come to
bear fruit, using high-quality single-photon sources and detectors, and also advocating for an
alternate form of quantum computing called measurement-based QC [121–123]. However, it
adds constraints on working at low temperatures.

The interested reader can refer to [6, 47, 130, 183, 184] for a deeper dive into existing
qubit technologies.

3.2 Qubits operating with other qubits: interaction VS isola-
tion

At this point, we are certain about the fragile nature of quantum computing, as any electro-
magnetic disturbance from the environment may affect the quantum state being operated.
That is the reason for having quantum computers running completely isolated inside cryo-
genic freezers, at almost absolute 0 temperatures. In fact, the ideal scenario would be having
every single qubit perfectly confined, getting never-seen-before coherence times. However,
making a quantum computer implies getting several qubits to interact, breaking therefore
qubit isolation. Finally, we cannot be satisfied by just having a perfectly isolated quantum
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chip, that is able to run a program if we are not able to control and read the final solution
out of it.

That is, QC is born as a contradiction itself: the more isolation for the qubits, the
better; but it also holds true that the faster and simpler the qubit control and read-out
(i.e. the access from outside), the better. Such a design problem has been present since the
dawn of experimental QC, and is still demanding the hardest work from material engineers
and physicists: we need qubits that operate efficiently with other qubits and can be easily
controlled while having long coherence times.

According to the commonly used gate model, quantum algorithms are described by
quantum circuits composed of one- or several-qubit gates, and results are read out using
measurement operations. Also, qubits are initialized using specific preparation operations.
Though the measurement operations collapse the quantum state of the measured qubit and
hence cause an irreversible information loss, all operations on the quantum system always
aim at minimizing its disturbance on the system. The physical implementation of these
operations requires independent control circuitry, which depends very much on the specific
qubit technology employed. In the following, we will detail the state of the art per qubit
technology, in order to give a general perspective on the hard work done and open challenges
for integrating as many qubits as possible in a single processor for QC:

• Ion Traps. Usually operated at room temperatures, ions have been typically con-
trolled using laser fields, though lately the use of microwave pulses is gaining mo-
mentum, as they promise unique scaling benefits and fidelities beyond 99.99% [124].
Though showing high-fidelity operations, these have been demonstrated in small lab
experiments, rather than in multi-qubit devices. Advanced prototypes with ∼ 20
ions are available [46], but experimental physicists are struggling with scaling up to
more than 50 qubits [47]. In particular, scalability-enabling miniaturization is a chal-
lenge, though some micro-fabricated 2D RF-trap arrays have already been success-
fully demonstrated [125], and even a compact rack-mounted demonstrator computer
has been presented [126]. On the other hand, qubit-to-qubit connectivity is not lim-
ited to nearest-neighbor interactions, which simplifies two-qubit gate control. Lately,
some proposals on using human-made ions that may have better properties for housing
qubits and integrating with photonic devices have been announced [127].

• Superconducting qubits. Superconducting qubits can be controlled using mi-
crowave pulses. Although there exist fixed frequency approaches, tuneable super-
conducting chips allow to selection of specific qubits to operate on by changing the
frequency of the pulse [108]. The possibility of reusing existing classical chip technol-
ogy to build them, as well as their fast operation, has raised the interest of industry
players, such as Google or IBM. Such investment has already largely paid off, as this
technology is already leading the qubit count and integration complexity (433 qubits
in a single chip at the time of writing [10], with a multi-layered architecture including
qubits, readout resonators and control lines on different layers together with inte-
grated filtering for noise reduction and greater stability) and the quantum supremacy
demonstration [81]. Measurement and classical control electronics are also continu-
ously progressing, while struggling with the scalability challenge of avoiding control
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crosstalk, spurious cross-coupling, imperfections in fabrication reproducibility of de-
vice parameters [128, 129]: it is predicted that the limit on qubit count for a single
chip will be on the thousand qubits [1, 130]. One of the latest proposals uses super-
conducting circuits also for control, providing great flexibility and a bright future for
scaling [136].

• Solid-state spins. Donor spins and quantum dots, exploiting the semiconductor in-
dustry’s well-known technologies, are also controlled electrically, in a similar way to
transistors in digital electronics. Nevertheless, global microwave fields have also been
recently proposed for driving gates, as in some trapped ion experiments, due to their
potential scaling advantages [131]. On the other hand, impurities in solids, such as
NV centers, are typically controlled by a combination of techniques from liquid state
NMR and optical manipulation. These systems can be operated at room temperature,
though fidelity improves at lower temperatures. Though they show outstanding per-
formance on qubit lifetimes and single-qubit control and are predicted to scale over 105

qubits in a single chip [132], it is still hard to go beyond a dozen qubits employing these
technologies [45,133]. Some of the reasons behind this are the only recent high-fidelity
in two-qubit operations, as well as poor fabrication reproducibility of qubits.

• Photonic qubits. Miniaturization and integration of photonic platforms have al-
lowed for higher programmability and scalability while leveraging nano-feature accu-
racy that industry fabrication processes can produce. This theoretically implies being
able to integrate thousands of detectors, sources, and waveguides on each wafer. It
also calls for going into cryogenic temperatures, and following the measurement-based
QC model, which is equivalent to the well-known gate-model [122]. This model comes
with its own share of challenges and has yet to experimentally prove its validity for
large-scale processors, although it promises to hold thousands of qubits in a single
chip [44]. Of course, moving away from almost absolute zero operating temperatures
is also desirable. While crosstalk is now not an issue for photonic qubits, it might
enter the scene when stretching qubit count up. However, photonic qubits are in good
shape, having been able to compete with Google’s quantum supremacy results, first
with a 50indistinguisable single-mode squeezed states [134], later by means of a 144-
mode photonic platform [13], and most recently with an impressive publicly available
photonic platform from Xanadu with 216 squeeze-state qubits [11].

We have already summarized the scalability potential of these qubit technologies in Fig.
1.7. Photonic qubits, with a recent explosive growth and promising potential, substantially
contrast with solid-state spins (high potential but still stuck in a growth bottleneck) and
ion traps (once they led the race but single-chip scalability has made them hop quickly into
modular alternatives – see Section 3.3.2).

Though the complexity existing on qubit control techniques is high, as we have checked
through the literature review above, it is only one of the several challenges in integrating
thousands of qubits in a chip. Let us move on to the next one: classical control circuitry, in
charge of translating logic commands to analog inputs (electric or microwave pulses, laser
fields, etc.) and quantum-classical interfacing for readout and processing of measurements.
When applicable, it can also perform QEC-related computations.

A Double Full-Stack Architecture for Multi-Core Quantum Computers 33



Up to now, only a few off-the-shelf quantum processors are available, and we can safely
consider them prototypes for their qubit count and performance limitations. Most of the
cutting-edge experiments showcasing record-breaking fidelities are performed using qubit
platforms which are controlled using expensive and full-sized equipment such as microwave
sources, Analog-to-Digital Converter (ADC), and high-rate waveform generators. They work
at room temperatures, present high power consumption rates (around 1kW per qubit [22]),
and have direct high-quality connection lines to the chip: scaling these platforms up to 106

qubits would mean thousands of racks and an unacceptable amount of cabling connecting the
chip (typically at cryogenic temperatures) and the control system, resulting in an unprece-
dented challenge for the refrigerator to keep the temperature with such high heat dissipation.
Moreover, we would face highly demanding transfer rates for individually controlling such
an amount of qubit devices.

To this end, integrated, miniaturized, and multiplexing-based control platforms are
desirable [96, 129]. However, that is not sufficient: allocating local control circuitry closer
to the qubits, in a fully integrated design approach, would alleviate some of these harsh
requirements [52]. This implies, for most of the qubit technologies, having cryogenic control
circuits, which comes with a big challenge of having to work with really low power budgets
to minimize heat dissipation and thus keep the system within the typical capabilities of
cryogenic refrigerators. On top of this complex but desirable control device, we should look
for highly demanding requirements for realizing qubit control according to the different qubit
technologies: stable DC voltages with very high resolution (of µV to mV ), baseband AC
control displaying bandwidths ranging from DC to a few hundred MHz, waveform generators
with up to 1 GS/s sample rates [46], control currents reaching over 1mA at zero resistance,
or up to 20 GHz microwave carrier frequencies for qubit control [22].

Research on such a complex endeavor is still ongoing, with exploratory experiments
working below 4K looking for the performance and limitations of this approach [97–99].
More recently, the industry has also shown some impressive results on cryogenic control
chips, for spin qubits (Intel and QuTech Horse Ridge chip [135]), superconducting qubits
(using superconducting circuits also for control [136]) and close future prospects on achieving
similar approaches on photonic platforms.

The last challenge at this qubit interaction layer, but not least, comes the need for
integrating FT QC, by means of QEC techniques (you may revisit Section 1.1.3 for refreshing
the main concepts behind it). Even if qubit technologies ever evolve up to really low error
rates (around 10−12 − 10−15 is said to be required [25]), QEC provides an extra layer of
performance, but at a high cost in number of qubits and computation time: in [25] an
overhead ratio of around 5 × 104 is calculated for an example involving surface-code-based
QEC on Shor’s algorithm for factoring a 2000-bit number.

Although most of the current prototypes are focused on increasing the qubit count,
coherence time, and gate fidelities, some advances have already been presented on exper-
imentally implementing logical qubits for fault-tolerant qubit platforms, as well as small
working implementations of QEC. Ion traps and superconducting qubits are leading these
demonstrations, with several logical qubit platforms [137,138], and implementations of color
codes (from Honeywell’s trapped ions technology [139]) and repetition codes (from Google’s
superconducting qubits, on their way to full 2D surface codes [140]).
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3.3 Interconnecting quantum chips

Even though some qubit technologies are rapidly advancing and leading the QC endeavor
to quantum supremacy and fully-fledged computers, the review of the previous section has
clearly stated some scalability problems for all of them. While large-scale QC needs several
magnitudes more qubits, we are still struggling with integrating only a few more than a
hundred. And controlling issues are adding up to the complexity.

Therefore, modular approaches where several chips are interconnected to jointly operate
are being included in every quantum industry developer roadmap. The difficulties reviewed
in Section 1.1.5 regarding the fragility of transferring quantum states through quantum
coherent links are being tackled by the research community by studying and refining existing
qubit interconnects as well as presenting some proposals for such architectures.

3.3.1 Quantum Interconnects

Quantum interconnects are devices that are able to transfer quantum states between different
physical media. Modular QC proposals basically aim at joining separate chips using these
interconnects (i.e. quantum coherently connecting them in order to enable qubit transfers
among them). Two main approaches exist: direct qubit transportation and entanglement
distribution.

While the first has been experimentally demonstrated in several qubit technologies [144,
148], channel losses provide poor performance even in highly-curated experiments. However,
approaches such as ion trap shuttling and microwave photon-mediated coupling in supercon-
ducting circuits feature higher fidelities for short communication distances involved [32,142].
Most recently, a team from the University of Sussex and Universal has shown a proposal
of ion transport with large improvement in rate and transfer fidelity (2400 per second and
99.999995%) [141].

Entanglement distribution uses a pair of previously entangled flying qubits (typically
photons) to facilitate distant operations between modules, using remote quantum gates [62]
or quantum teleportation [35]. Key performance metrics of this technique are the rate and
fidelity of the generated entanglement. There have been several experimental demonstra-
tions obtaining reliable entanglement for different technologies: trapped-ion systems [143],
neutral atoms [144, 145], NV centers in diamond [146] and quantum dots [147], with only
moderate entanglement generation rates yet (the most recent on ion traps showcases 82
per second with fidelity 94%). However, the higher flexibility provided by entanglement-
mediated communication puts high expectations of substantial increases in these metrics.
Moreover, quantum teleportation enabling distant gates between separate modules has also
been demonstrated [34, 149]. You will find more details on quantum teleportation and en-
tanglement distribution in Section 5.3.

In modular QC architectures, quantum interconnects may be used in different scenarios:

• Light-to-matter. For their capabilities as qubit carriers with low interaction with
the environment, use of standard optical components for control as well as high-speed
low-loss transmissions, photons provide the best solution for qubit transportation for
all distance ranges [51, 150]. In modular QC, having short distances (inside a room
or in a chip), low frequency (mm-Wave or microwave) photons may be used. These
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photons may be used for direct qubit state transfer or entanglement distribution, but
in any case these interconnects need to provide a high-fidelity coupling. For such
an endeavor, optical cavities or waveguides behave best in the single-photon regime.
High-fidelity requirements must be met: operating at short wavelengths, low insertion
loss, and compatibility with qubits’ mK operation temperatures [151]. Deterministic
and active light-to-matter teleportation has been realized with light pulses for atomic
ensembles, photonic qubits, and cavity quantum electrodynamics for various types of
trapped ions, and quantum dots for solid-state systems, with increasing fidelities up
to ∼ 90% (although for small scenarios, with 2-3 qubits) [35].

• Matter-to-matter. The wide variety of qubit technologies, together with the con-
trasting advantages that each one presents, may also lead to task-driven modularity,
where different qubit technologies are used for executing tasks with disparate require-
ments. For example, qubit technologies presenting long coherence times, such as ion
traps, may be used for memory purposes, and superconducting qubits could be fitting
for processing, for their fast operation [152]. Interconnecting such diverse modules is a
hard challenge itself, but some experimental results are already available [153,154]. A
promising approach is that of superconducting resonators and cavities, for their wide
compatibility with atoms, ions, quantum dots, and others [22]. A qubit technology
that also may provide high flexibility for small modules is NV centers in diamond:
it combines a memory qubit, able to both keep quantum states for a long time, and
a communication qubit, with single-photon emission properties. Most recently this
technology has proved to keep three nodes entangled at 4K, at QuTech [155].

In summary, interconnect technologies are still a cutting-edge research topic, looking
to achieve fast quantum communication rates that may be competitive with the current
decoherence times. This is hard yet at the short-scale (communications within a chip), but
future scalability might also require coherent communication in a room, among separate
computers [163].

3.3.2 Multi-chip proposals

Despite the technical hurdles in demonstrating experimental quantum interconnects, pro-
posals on multi-chip quantum computers as scalability enablers are not new. Since the early
2000s, some theoretical architectural developments have been presented.

In [156], authors propose an architecture under the name of QCCD for ion trap technol-
ogy, using ion shuttling to transport qubits between separate arrays, specialized into memory
and interaction regions. Remarkably, this architecture has been recently demonstrated on a
programmable trapped-ion quantum computer with low error rates comparable to those of
the individual qubits [157]. The authors have been able to realize a teleported CNOT gate
achieving a Quantum Volume (QV) = 64.

QLA ion trap architecture was presented by Metodi et al. [158], where each module
is able to perform a two-qubit gate, together with ancilla generation and teleportation
with neighboring modules. This concept was further developed with greater flexibility with
CQLA [69], Qalipso [159] and Requp [160] architectures.
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Figure 3.2: Some modular architecture proposals for QC. a) Interleaved modular archi-
tectures for quantum photonic platforms [44] b) Optically switched ion trap modules in Modular
Universal Scalable Ion trap Quantum-Computer (MUSIQC) proposal [51] c) Sparse qubit arrays
with integrated local control electronics for spin qubit technology [52] d) Modular architecture for
superconducting qubits as proposed by Rigetti [164].

Also assuming ion trap technology, researchers at UC Berkeley presented early ex-
ploratory designs for teleportation-based distributed architecture [56], highlighting the in-
fluence of communications on overall fidelity and performance, and the amount of resources
required for such a system.

Another work from that time [54] presents a distributed architecture connection through
photonic links several five-qubit quantum registers (assuming either ion traps or NV centers
for their long coherence times), and studies its performance assuming high-fidelity local
operations but high error in register-to-register communications.

One of the authors of the original QCCD paper has more recently proposed a scalable
modular architecture called MUSIQC, which is based on photonic interconnects and entan-
glement distribution, and tackles the technological challenges in true scalability of QCCD
beyond 100 qubits [31,51]. Linke et al. [28] experimentally compared the performance of the
base ion-trap module for such architectures with the IBM Quantum Experience supercon-
ducting platform, showing how qubit connectivity and quantum hardware-software co-design
will be instrumental for QC scalability.

Following up on these ion trap proposals, Ahsan et al. combined the MUSIQC archi-
tecture with the QLA proposal, to provide more flexibility [161]. Most recently, SAQIP
architecture was proposed as an improvement to all previous ion trap architectures derived
from QCCD [55].

Even though ion trap, for its longest history and leading performance, is almost monop-
olizing the multi-chip modular architecture proposals, other technologies are also getting on
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(a) IBM Roadmap as of 2020 [185] (b) IBM Roadmap expansion of 2022 [1]

Figure 3.3: Evolution of IBM Roadmap to include multi-chip approach past year. The red rectangle
marks the added multi-chip prototypes.

board. For instance, regarding spin qubit technology, authors in [52] proposed sparse qubit
arrays with local control electronics in between to allow for better scalability. Following their
bet on fusion-based QC [122], scientists at PsiQuantum have also proposed a modular archi-
tecture for scaling their photonic chips to million qubits [44]. Most recently, LaRacuente et
al. [165] have proposed a distributed architecture based on superconducting processors inter-
connected through microwave links, providing valuable insights on the promising prospects
of the multi-core approach. Their focus on bridging network and physical layers follows
our call for co-designing hardware and software at all computing and communications stack
layers (explained in Section 2.2), while in that contribution they limit the analysis to exper-
imental analysis of a given qubit and interconnect technology.

Very importantly, all this research interest on multi-chip architectures has also reached
industry, and not only for ion trap technology, with IonQ, Rigetti, and IBM including this
approach in their roadmaps [1, 162, 164]. In the case of IBM, as shown in Fig. 3.3, the
addition of the multi-core approach as a scalability enabler was made public as an extension
to their previous roadmap in 2022.

3.4 Mapping, routing and translating code: quantum compil-
ers

The task of the quantum compilers is broader than that of their classical counterparts: par-
tially because current technology limitations require much more detailed optimizations and
hardware-tailored implementations. The tight resource constraints that NISQ systems im-
pose in terms of the number of qubits available (circuit width) and coherence time (limiting
the total execution time of a single circuit or its depth) require aggressive optimizations,
that must be applied during the compiling process. In this way, the few resources available
are completely squeezed.

These optimizations can range from algorithm simplifications (hardware independent),
such as gate transformations and decompositions that lead to further reductions, to gate-
level qubit-technology-related operations. This need for deep optimization leads to increas-
ing computational resources being consumed in the compilation process. Research on these
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optimizations for the very specific realm of QC algorithms is being carried out by a large
community. In the following, we will briefly review the main lines for optimization in quan-
tum compilers: the interested reader can dive into [186] for a larger outlook.

Synthesizing quantum circuits involves decomposing and translating them into a series
of operations pertaining to a universal set, fitted to a FT implementation available in the
target hardware [166–168]. With that translated version, if QEC is implemented in the
platform where the program is going to be executed, logical qubits are encoded into multiple
physical qubits, and the instructions are thus expanded [91,169,170].

With that hardware-adapted code, the next step is mapping the virtual qubits in the
circuit to the physical qubits [87]. The most constraining requirement to be met in this
process is the topology of the quantum platform: not all operations can be performed in all
qubit positions, and typically two-qubit gates have to be performed in adjacent positions.
Thus, SWAP and MOVE operations need to be introduced to route the qubits into the re-
quired places. This process, leading to a latency overhead, is also to be precisely optimized
in order to minimize the degradation of the whole circuit performance [89, 92, 171]. Within
the mapping process, the scheduling of operations is also performed, which aims at exploit-
ing the available parallelism while meeting qubit control constraints as well as operation
dependencies [27,88,90].

As multi-chip QC architectures are still in their nascent stage, only a few compilers
have been designed for this scenario. Some of the proposed modular architectures include
a specific compiler [55,67], but also there are recent works devoted exclusively to compilers
for distributed/modular QC, such as [14] and [172], with diverging approaches.

In [14], authors tackle the compilation of a quantum circuit for a multi-core target
architecture by leveraging partitioning algorithms to allocate qubits to the different nodes for
each timeslice of the algorithm and inserting afterward the required communication overhead
operations in between. This approach is hardware-agnostic, though without considering
typical requirements, such as intra-module topology constraints.

Cuomo et al. [172], however, focus on a large-scale distributed platform and take for
granted an underlying entanglement distribution layer that provides continuous inter-node
communication. Moreover, they make use of remote gates [62]. On top of that system, they
develop a highly curated solution for what they call the distributed quantum compilation
problem.

3.5 Speaking primitive quantum languages

Because of the complexity behind current NISQ quantum computers, existing quantum
programming languages exhibit a low level of abstraction. Therefore, most of them follow
the circuit model, sometimes providing libraries or high-level definitions for embedding or
abstracting complex well-known routines.

Although the development of such languages is still ongoing, there is a wide variety of
available options already, including functional and imperative languages. Current examples
of the first group include Quipper [173] and LIQUi|> [174], whereas others such as Scaf-
fold [67], ProjectQ [175] or OpenQL [82] fall into the second one. Most of them are in fact
extensions of current classical programming languages and include complete tool flows for
programming and compilation.
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Right below these rather high-level languages, there exist some low-level assembly lan-
guages, also specified at the gate level. The variety and rapid development of existing
software, together with the already mentioned need for curated optimization of the final
code, make these assembly languages much more familiar to quantum researchers than it
would be desirable. These include QASM [176] and its derivatives, such as cQASM [177],
eQASM [178] and OpenQASM [179,180].

At the time of writing, to the best of our knowledge, still there is no tool flow or pro-
gramming language specifically developed for multi-core quantum architectures. Although
the reference to the modular nature of the computer could be hidden from the programmer,
developing such a tool will be of interest for i) the need in current NISQ QC to optimize
the code with the most details of the target hardware, and ii) provide the programmer
with some control over the distribution of the code, as it is already done in classical dis-
tributed computing, for leveraging any information on the algorithm structure for further
optimization.
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Chapter 4

On a Design Space Exploration for
Double Full-stack
Communications-enabled Quantum
Computers

Having now fresh in mind the colossal research efforts on QC and their unstoppable advance
in the last decade with commendable results, it might be easier to bet on the success of such
promising technology, assuming scalability-enabler approaches such as multi-core quantum
architectures.

However, we should not forget the quantum leap there remains from today’s prototypes
to fully functional and useful quantum computers1. Moreover, multi-core quantum comput-
ers come with their own set of challenges. Certainly, putting together currently available
small-sized computing nodes as opposed to packing more qubits into monolithic quantum
chips alleviates the requirements for control circuits and improves qubit isolation. Never-
theless, interconnecting quantum chips is far from being a simple task (more details on this
in Chapter 5).

Therefore, in order to lay firm foundations of scalable multi-core QC, there is a need for
a systemic approach. In particular, we are looking for a well-reasoned answer to the first of
our three questions (if curious or in need of a refresh, check Section 2.3.1). That is, analyzing
whether multi-core architectures can effectively enable a scalable quantum computer, which
are the resource overheads and computational costs of such architectures, and even which
qubit type or communication technology will behave best. In other words, substantiating
that quantum computing scalability (and ultimately, quantum computing culmination) may
not be possible without multi-core architectures enabled by communications, in a Quantum
Network-on-Chip (QNoC) fashion.

We have aimed at doing such a systematic approach in this thesis by means of a “V”-like
procedure. We have started with a top-bottom scaffolding of the whole architecture with the
double full-stack layered architecture proposal (see Section 2.2 in Chapter 2). Second, we

1Remember from the previous chapter that most advanced QC prototypes reach a few hundred qubits,
while more than a million are required for executing algorithms of interest.
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analyze specific elements of the stack for optimizing them (Chapters 4 to 6), with a specific
focus on communications, and finally, we go up again into full network simulation (Chapter
7), having thus a complete view of the full system. In these comprehensive analyses, we aim
to find out the device and architectural parameters that are optimally enabling multi-core
QC. For such a complex endeavor, we have employed DSE for its virtues on system-wide
optimizations.

In this chapter, we set the framework for this exploration and start diving into it. After
introducing the DSE technique, we present a DSE formulation to compare the multi-core
and monolithic single-core approaches, based upon the double full-stack layered architecture
from Chapter 2. This helps us to find a sweet spot (or region of the design space) where the
design performs better by examining the parameter space (i.e. qubit technology, qubit and
core interconnects, number of cores...) and evaluating it with performance metrics.

The chapter is structured as follows. Section 4.1 is devoted to explaining DSE. Section
4.2 details how this technique can be applied to QC, with a brief state-of-the-question on
performance metrics for QC. Then, in Section 4.3 the modeling and results of the first
analytical scalability exploration and quantum technology gap analysis are shown, before
drawing some conclusions.

4.1 The Design Space Exploration technique

DSE is a structured design methodology that allows optimizing a system by maximizing a
given cost function –or FoM– based on some parameters of interest that describe the per-
formance, quality, or overall cost of the solution [187,188]. Like any other structured design
process, this optimization relies on modeling the interdependencies among the different per-
formance metrics and the variables describing the system. This modeling process might
include analytic/theoretical expressions, behavioral models, computer-based simulations, or
their zone-wise combinations.

However, it is important to note that DSE is used to design, not just to optimize.
Performance metrics optimization is in fact just one of the DSE use cases, as it is also useful
for rapid prototyping or system integration with no need for analytical metrics [188]. Indeed,
DSE uses the optimization framework to control the design process by looking for trends
and guidelines in the system performance when varying the available parameters. Whatever
the design problem is, if the analysis is correctly prepared, DSE will not blindly look for
“the extreme-case highest-performing scenario”, which could be unpractical or ignore sub-
optimal options that may suffice for the actual context or the resources constraints. Rather,
the main virtue of DSE is to be able to consider system-wide trade-offs and different metrics
that may also affect the design optimality.

For example, a DSE analysis of a network deployment will not optimize the average
throughput of the entire network but will take into account deployment costs and qualitative
characteristics such as network reliability or flexibility. DSE achieves this by letting the
designer concurrently sweep all the open variables in the design space, instead of “manually”
tweaking them in a one-by-one approach and consolidating several performance/cost metrics
into a single FoM, which is then optimized.
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DSE can be applied to any design problem, from a very specific single-variable local
problem to a System Architecting Problem (SAP), such as the one we are facing. In either
case, DSE optimization can be generically formulated as in:

max
v

Γ = f (J (v,p)) (4.1.1)

s.t. i (v,p) ≤ 0

e (v,p) = 0

v ∈ D

where Γ is the FoM and J (v,p) is the vector containing the different optimization metrics
considered. Each point in the solution space is represented by the pair ⟨v,p⟩, where v is the
vector containing the decision variables that determine the system design, and p the vector
of fixed parameters that specify the environment/scenario the system is placed on. The
equalities in vector e and inequalities in vector i must be satisfied in order for the solution
to remain within the feasible domain D.

Note that the FoM Γ is obtained as a function f of the set J containing the selected
objectives/metrics, and may take any form. These three elements are thus interrelated.
However, they should be readily differentiated.

The multiple metrics in J are selected to convey the performance/quality/utility-related
attributes of a given solution to the problem (i.e. ⟨v,p⟩ ). For instance, an industrial produc-
tion flow could be evaluated through several metrics: energy employed, worker hours needed,
resulting spare material, etc. Each of these objectives is related to different stakeholders’
interests: overall cost, perceived quality, product lifespan, etc.

These metrics depend on a variety of components of the solution: dimensioning, archi-
tecture, technology, applications, etc. For instance, the power supply for a network node
will depend on the number of ports that are included, the average latency of a NoC is con-
ditioned by the chosen inter-nodes topology, the total weight of a road bike is determined
by the materials used, the perceived quality of a knife is based on the applications for which
it has been designed... Certainly, there will be crossed dependencies and trade-offs: e.g.
worst-case bit rate and latency will improve if a network is dimensioned for heavy usage,
while the overall cost will be higher.

Naturally, when facing these design problems, we are not going to evaluate each solution
in the explored design space by means of an experimental prototype and measurement.
To enable such an extensive exploration, metrics are extracted for each solution through
previously obtained models. They might come from analytical models (either theoretical or
behavioral), simulations, or experimental data from a subset of the solution space.

However, the complexity of optimizing a problem with several objectives (in our case,
those contained in J) is self-evident: such a Multi-Objective Optimization (MOO) problem
with usually multiple optima, discrete variables, and often a non-linear combinatorially-
exploding nature is typically solved either by means of aggregating those objectives into
a single objective function or using Pareto methods [189]. Although the latter provides a
rich technique for telling apart the effects of the different attributes, its complexity explodes
with the number of involved metrics. In MOO problems where the attributes can be said to
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contribute to the overall performance/quality/utility of the solution, defining a FoM Γ as a
single unitless attribute combining all of them is usually a more efficient approach.

Therefore, although Γ is a numeric value and can be used to compare two different
solutions, it is not possible to relate its numerical value to a specific cause. It simply (and
powerfully) provides a way to transform a MOO problem (which could turn highly complex
and hence computationally challenging) into a single golden figure optimization problem.

Consequently, the f function is the chosen form of numerically aggregating the metrics
in J into a single figure, Γ. The simplest definition for f would be that of a weighted sum,
meaning that each metric in J contributes independently to the overall FoM Γ. This could
be expressed as in Eq. 4.1.2:

Γ =
∑
i

wi · Ji (4.1.2)

where:

wi ∈ (0, 1], ∀i (4.1.3a)∑
∀i

wi = 1 (4.1.3b)

This method, despite its simplicity, might not be useful for contexts where the overall
value of the solution implies that all attributes are contributing to it: the weighted sum
could mark a solution where some high-scoring metrics make up for others presenting low
values as equivalent to another solution with higher-than-average values on all metrics.

Therefore, defining the f function as a non-linear cross-combination of the different met-
rics is usually closer to the overall stakeholders’ satisfaction with a given solution. Therefore,
f typically takes the form of a utility function U(·), which can be bounded in the interval
[0, 1] for convenience. Many different definitions have been proposed (the interested reader
can dive into ref. [189] and the references therein for a wider review), but the multiplicative
approach [190] is the most commonly used (see Eq. 4.1.4):

U(J) =
1

W

[∏
i

(1 +WwiJi)

]
(4.1.4)

where wi are the weights for each objective J i, and the parameter W is used to ensure that
U(J) ∈ [0, 1]. The relation between W and wi follows:

1 +W =
∏
i

1 +Wwi (4.1.5)

The flexibility of this framework is what makes DSE a powerful approach for complex
design optimization problems. In summary, this methodology facilitates the task by:

• Exploring the entire design space without being limited by the “intuition” and de-
signer’s previous experience that might hinder the way to the optimal (but maybe not
intuitive) solution.
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• Providing not just a single optimal analytical solution, but rather design trends and
guidelines extracted from the exploration.

• Being valid also for early design decisions, when there are no experimental data sets,
computer simulations, or even analytical models for the performance metrics of the
system.

4.2 Applying DSE methodology to QC

DSE provides a resilient design flow that fits the characteristics of any design problem
within QC: the largely unexplored design space, with still many design decisions left open,
the high cost and current unfeasibility of experimenting with physical implementations, and
the novelty of the quantum realm (the quantum weirdness), requiring multi-disciplinary
collaboration [191].

For that reason, DSE has been already used for different problems in the field of QC:
optimal quantum arithmetic reversible circuit synthesizing [192]; optimizing the parameters
of the Quantum Approximate Optimization Algorithm (QAOA), a quantum-classical hybrid
technique to solve NP-hard problems in NISQ quantum computers [193]; and mapping, either
by reducing circuit overhead for specific target hardware [194], or by benchmarking existing
mapping approaches and deriving optimal strategies for specific quantum algorithms and
quantum processors [195,196].

Most interestingly, DSE has already been applied also for architecting QC systems. Fo-
cusing on NISQ ion trap QCCD architectures, in [30], Murali et al. gave out some optimal
parameters, operation implementation of gates and communications, as well as topology
choices for improving scalability in the near term. This would be a qubit-technology-specific
case study covering a very small space in our overarching approach on scalability and com-
munications analysis for going beyond NISQ through modular architectures.

When applying DSE to a given problem, one needs to determine the solution domain
(i.e. the variables and parameters we can tweak in order to optimize the design), the
performance/quality metrics, and the aggregation function that groups them into the FoM.
While the latter is a critical task, it is less dependent on the specific nature of the problem
(in our case, QC). Before getting into our specific design exploration (in Section4.3), where
we describe the different variables and parameters involved, let us first review the actual
state-of-the-art performance metrics and benchmarks in QC. This will help us in choosing
the adequate set of metrics J and reasoning on the best fitting FoM Γ for our problem.

4.2.1 Existing metrics for QC

Being QC still a developing research field, exploring it by means of DSE has to be careful
on which performance metrics are chosen. Measuring the progress of QC is, right now, more
about calibrating its maturity and overcoming individual obstacles rather than benchmark-
ing computational power [65]. To calibrate how this fact could impact our exploration, let us
analyze the metrics proposed in the existing literature in the context of QC (the interested
reader may consult [20] for a complete review on this topic).
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Current quantum computers are closer to experimental prototypes than to commercial
products. Therefore, cost metrics are not a priority: for the moment, the interest lies in
achieving a certain goal, almost at any cost (in dollars or Watts). Similarly, some system
attributes such as design flexibility or reliability are not taken into account either: these
characteristics are for the moment luxuries that remain secondary actors in this initial era
of QC. Including them in the design decisions will be for sure part of the transition from a
research technology to a production one.

The early stage QC is at involves also the tools used to measure performance. Whenever
a new prototype of a quantum computer is presented, aspects such as its number of qubits,
lower gate errors, longer coherence times, or the demonstration of a new technology fill the
headlines. Of course, all of these aspects are necessary for QC development and contribute
to the overall performance of the quantum computer. However, consensus on a generic
qubit-technology-agnostic metric is essential in order to establish a common framework for
a fair comparison among existing prototypes and technologies.

Few system-level metrics have been defined for quantum computers. Rather, qubit- and
gate-level metrics related to their error performance (such as coherence time, gate fidelities,
and latencies) have been widely used, and several methods for measuring them have been
developed (e.g. direct fidelity estimation [197] and state gate set tomography [198]).

Algorithms used as benchmarks in experimental QC are, thus, adapted to their cur-
rent limited size and capabilities, and interdependencies among single-qubit errors make
extrapolating benchmark results from small computers to larger ones impractical. Because
of that, existing metrics and benchmarks are still far from capturing all the limitations of a
quantum computer design [20, 65]. Nevertheless, their validity for driving progress in cur-
rent research is beyond a reasonable doubt. In fact, quantum tomography [199], miniature
versions of key algorithms [200,201] or randomized benchmarking [202,203] are extensively
accepted for technology demonstrations, and new approaches are continuously proposed and
improved [204–207].

This necessity for a global performance metric valid for comparing quantum computer
prototypes in the NISQ era, regardless of the qubit technology employed, was first answered
by a proposal stemming from IBM’s quantum research team [204, 208]: QV. This perfor-
mance metric takes a step forward from qubit counts, aggregating the most important factors
affecting performance, such as the number of physical qubits, the number of gates that can
be operated before errors make results useless, qubit connectivity, and the number of oper-
ations that can be run in parallel. The QV is computed using the largest random square
circuit the quantum computer is able to execute successfully. Authors in [209] highlighted
the limitations of QV and generalized the concept by presenting the volumetric benchmarks.

More recently, the same team has also introduced Circuit Layer Operations Per Sec-
ond (CLOPS), which measures the number of QV layers that can be executed per second
(averaged over 100 samples) on a given processor. This helps with knowing about the
computational speed aggregating gate, read-out, and control latencies [210].

These metrics are in fact adding up to the quality metrics (gate fidelities, qubit co-
herence times, qubit count...) providing further information on computational power (QV)
and speed (CLOPS). These involve the first efforts to give an architecture-neutral figure for
evaluating the useful amount of quantum computing performed by a given system.
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Figure 4.1: A DSE for Multi-core Quantum Computers

4.3 An analytical approach to exploration of Multi-Core Quan-
tum Computers

In the present section, we start the DSE study of this thesis with an exploratory analytical
approach. That is, based upon figures and numerical parameters describing the quantum
multi-core computer architecture and a model that predicts its performance, we delve into
the scalability limits and prospects of the multi-core approach.

Applying DSE to our system-wide optimization problem implies identifying each one of
the generic components of the formulation above (Eq. 4.1.1) in the multi-core QC environ-
ment (see Fig. 4.1). That is, choosing one or more performance metrics (which encapsulate
the computational power of the resulting design) to evaluate the whole multidimensional
design space. Nevertheless, we must first determine this solution domain, by specifying the
set of variables and parameters that have to be taken into account for our problem (i.e. the
pair ⟨v,p⟩).

4.3.1 Compressing a quantum computer through models: distilling its
essence

When describing a problem in order to explore the design space with a performance opti-
mization purpose, one must carefully select the elements in the design that are crucial from
the point of view of the optimization problem and discard the rest of them, as long as they
do not influence the model from the chosen perspective.

In our case, we are exploring whether a multi-core architecture can make a difference
in terms of processing power scalability. Therefore, we must particularly take into account
the elements of the quantum computer that may be affected by the architecture paradigm
(single-core versus multi-core).

For this reason, based upon the layered stack described in Chapter 2 (see Section 2.2),
we will analyze the three lower layers that come into play when considering multi-core archi-
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tectures and thus are most affected by intra-core and inter-core quantum communications,
namely: qubit, core, and network layers (see Fig. 4.2).

Let us now go through each layer separately and identify the main parameters to take
into account for the subsequent DSE, with special attention to their effect on communica-
tions.

4.3.1.1 Qubit layer

When looking at an individual qubit for the main features that may affect the performance
of the quantum computer as a whole, we should recall that it plays a double role: it acts
both as a memory position (storing a quantum state) and as a computing unit (one can
perform operations/gates on it). Therefore, we could make use of three main parameters.
With respect to memory capabilities, we can use coherence time. Regarding computing
capabilities, we have the gate fidelity and the quality factor. Both are also applicable for
two-qubit operations (which we will review next).

• Coherence time. The coherence time τc (you can go back to Section 1.1.2 for more
background on this concept) sets a fundamental limit on the maximum time we can
operate and read out the state of the qubit. Thus, τc is proportional to the qubit’s
memory capabilities. Short coherence times mean short-lived variables (which in turn
implies that complex algorithms are not supported), considering that, as stated by
the no-cloning theorem, there is no way to replicate quantum information [211], [212]:
only QEC is able to somewhat extend variables lifetime, generally at a notably high
cost in space (qubits used) and time. Being the main quality metric for a qubit, the
decoherence times have been continuously improved in the different selected qubit
technologies.

• Quality factor - single qubit gates. Computing capabilities on qubits are governed
not only by the qubit characteristics themselves but also by the control operations
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quality. The quality factor QF is a unitless parameter derived from the coherence
time τc and the gate latency LG (i.e. the time spent in performing a certain quantum
operation, such as a Hadamard gate or a CNOT). It is an estimate of the number of
gates (quantum operations) that can be applied to a qubit while it contains coher-
ent information (see for instance [3]) and hence is related to the qubit’s computing
capabilities. The quality factor is computed as:

QF =
τc
LG

(4.3.1)

It is clear to see the relationship between coherence time and the memory capabilities
of that qubit technology. For instance, ion traps and quantum dots are technologies
well suited to building up quantum memories. On the other hand, we have chosen
the quality factor instead of the gate latency LG because it conveys more intuitively
the computing capabilities of the qubit: a high-quality factor allows operating many
times on the qubit. Note that it is not necessarily related to large coherence times
(τc); a good memory qubit may constitute a lower quality processing qubit, see e.g.
quantum dots. This relationship τc – QF is quite interesting and may affect quantum
processors’ design and claim for hybrid technologies approaches.

• Single-qubit gate fidelity. The single-qubit gate fidelity (FG) is a simplification of
the complex quantum error models, and represents how likely a quantum operation will
not introduce errors in the system (i.e. inverse to the gate error rate). It is usually
displayed as a percentage value, where 100% means that the qubit state has not
experienced any deviation from the ideal value it is representing. Low fidelity values
will render a qubit useless, no matter how long the coherence time might be, as each
operation on the qubit will corrupt its information and affect the entire computation.

4.3.1.2 Core layer

We have just introduced τc, QF , and FG. Although the coherence time is directly related to
a single qubit, the quality factor and the gate fidelity are usually computed separately for
one-qubit gates (QF (1), F

(1)
G ) and two-qubit gates (QF (2), F

(2)
G ). Therefore, as they involve

operations among more than one qubit, they are the first parameters of the core layer.

• Two-qubit gate fidelity. F
(2)
G is the application of the concept of fidelity to the case

of the two-qubit gates.

• Quality factor - two-qubit gates. We can use τc and the two-qubit gate latency
to compute QF (2) to obtain the quality factor extended to the case of the two-qubit
gates.

• Number of qubits per core. We will use NCORE
Q for the total number of qubits

forming each core in the multi-core system.

• Number of communication qubits per core. Out of the NCORE
Q qubits, NCOMM

Q

of them will be responsible for interconnecting the core with one or several (identical)
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modules, in the multi-core case (i.e. they would act as input/output ports of the core).
In monolithic single-core architecture, no other module exists, and hence NCOMM

Q = 0.

• Intra-core topology. The qubit interconnection graph might be all-to-all, a ring, or
a regular 2D lattice... hence constraining computation among qubits in the same core.

• Quantum intra-core communication latency. Average qubit transfer time within
a core (LCORE).

• Qubit intra-core transfer rate. Together with LCORE , RCORE characterizes the
performance of the intra-core connectivity network.

4.3.1.3 Network layer

At this layer, we can see the whole quantum communications network perspective. Param-
eters interesting to our analysis include:

• Number of cores. Monolithic quantum chips count in a given multi-core processor
(NCORES)

• Total number of qubits. Sum of the number of qubits integrated into the cores
forming the processor (NQ).

• Inter-core topology. Disposition of the nodes and their connectivity within the
multi-core network.

• Quantum inter-core communication latency. Average qubit transfer time be-
tween cores (LCOMM ).

• Qubit inter-core transfer rate. RCOMM can be defined as the average qubit rate
in the multi-core network.

With this, we have a first description of the system parameters and open variables in
our system design, layer by layer. That is, they integrate the vectors p and v in the DSE
exploration. Depending on the aspects to be analyzed, a given element will be considered
in the analysis as a fixed parameter (part of the scenario under study, i.e. part of p) or
as an open variable (being part of v the DSE will explore different values for that element
looking for the one that may contribute to the optimal solution). As an example, let us
take NCORES . If NCORES ∈ p, we have fixed its value for our exploration, otherwise,
NCORES ∈ v, and DSE will sweep over different values of NCORES . Accounting for our
computing-communications double-stack approach, v is divided into two different axes: q
(variables coming from the pure computing stack, such as gate latencies or fidelities) and c
(those that are part of the communications).

4.3.2 A behavioral model for a DSE scalability analysis of multi-core
quantum architectures

Now that we have described the parameters that model the proposed approach of a double
full-stack communications-enabled quantum computer, it is time to delve into the significant
metrics J and the development of the aggregated FoM Γ for our scalability analysis.
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Table 4.1: Notation and symbol definitions for Sections 4.3 and 4.4

Notation Meaning

τc Coherence time

L
(1)
G , L

(2)
G One and two-qubit gate latencies [s]

F
(1)
G , F

(2)
G One and two-qubit gate fidelities

QF (1), QF (2) One and two-qubit quality factors

NQ Total number of qubits in a quantum computer

NCORE
Q Total number of qubits in a quantum core

NCOMM
Q Number of qubits dedicated to inter-core communications in

a core

NCORES Number of cores in a multi-core quantum computer

LCORE Average quantum communication latency within a core

RCORE Average qubit rate within a core

LCOMM Average quantum communication latency in inter-core com-
munications

RCOMM Average qubit rate in inter-core communications

JQF Qubit quality metric

JF Aggregated fidelity metric

JQb Computational power metric

JI Qubit integration penalty metric

ϵI Qubit-to-qubit disturbance error

NMAX
Q Qubit technology limit to the number of qubits integrated

into the cores forming a multi-core quantum computer

NLIM
Q Qubit technology limit to the number of qubits integrated

into the same chip

d Exponential factor on the overhead qubit ratio

JC Inter-core communications performance metric

ϵC Error factor due to inter-core communications overhead

NUSED Number of cores that contain active qubits (i.e. are being
used in the current configuration)

J̃i Normalized value for metric Ji

For the sake of the completeness of the FoM, it should aggregate metrics on performance,
cost, and qualitative attributes [64]. Applying existing proposals (see Section 4.2.1) is hence
not straightforward nor comprehensive, as the elements considered in these metrics do not
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include communication latencies or qubit rates at different layers. They do not differentiate
either the communication time or the computational time.

Having this in mind, we could conclude that an optimal performance metric for multi-
core quantum computers should be:

• Communications-oriented. Adding communication overheads and other consid-
erations related to the multi-core nature of the proposed double-stack architecture
claims for accurate modeling of communication processes inside the quantum chip and
possibly designing specific benchmarks.

• Adaptive. The non-universality and expiration time of current benchmarks (including
QV and CLOPS, which are also intended for short-term NISQ devices) implies Γ should
evolve along with quantum computation to avoid misleading designs. Its definition
should take into account qualitative attributes.

• A multidisciplinary effort. A full-fledged analysis requires very refined models (for
elements as diverse as qubit crosstalk, fidelity degradation, quantum communication
technologies, etc.) and a complete definition of Γ, something that cannot be obtained
without the collaboration of all the fields involved (physicists, material engineers,
electrical and computer engineers...).

Therefore, in this first exploratory analysis, we have tailored intuitive yet useful perfor-
mance metrics and models. Not being possible to obtain experimental data from large-scale
multi-core computers (as it is only a theoretical proposal yet) nor even from large single-
core chips, we should resort to other modeling approaches. Although in subsequent sections
and chapters, we will get into benchmarking different aspects of multi-core architectures
by means of simulating their performance, we aim in the present study to widely explore
the parameters space. For that, the most fitting approach is to use a behavioral model,
based on existing results and literature. Moreover, this approach suffices for showing all the
possibilities that DSE has to offer.

For each layer, we have focused on the main elements affecting the overall quantum
computing performance. In the qubit layer, we have included qubit quality metrics based
on the coherence time together with gate fidelities and latencies. Regarding the core layer,
we have incorporated the effects of qubit crosstalk and control issues, as well as the gain
in computational power when putting together many qubits. Finally, we have enclosed the
overhead of inter-core communication in the network layer. In the following, we describe
each metric with the proposed analytical formulation.

4.3.2.1 Qubit quality

As summarized in Section 4.3.1, the qubit implementation, depending on its technology and
the fabrication quality, affects its own computational and memory capabilities. These are
related to the gate latencies and coherence time, however, there is an inherent coherence-
controllability trade-off among these two: qubit isolation allows for longer coherence times,
while usually making qubit interactions more difficult, hence affecting the gate performance.
Therefore, as suggested in [3, 16], we have chosen single-qubit quality factor QF (i.e. an
estimate on the number of quantum operations that can be performed, which is also related
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to the maximum size of the quantum algorithms we could run on an ideal platform formed
by these qubits) as the qubit quality metric JQF :

JQF = QF (1) =
τc

L
(1)
G

(4.3.2)

4.3.2.2 Aggregated fidelity in a quantum core

The qubit performance does not depend only on coherence time and gate latencies: however
big the ratio among them (QF ) is, if the gates themselves are quickly destroying the quantum
state, the computing performance will be highly degraded. That is, we need to take into
account gate fidelities. In accordance with the literature (see e.g. [3, 206]), two-qubit gate
fidelities model better large systems performance than their single-qubit counterpart.

In order to improve this performance indicator in large ensembles of qubits sharing the
same chip, we have added an exponential degradation factor related to the qubit count, due
to the crosstalk and controllability issues [22]. This is coherent with the fact that the overall
fidelity of a sequence of gates results from the product of the fidelities of each one of them.
Therefore, we have defined the aggregated fidelity metric as:

JF =
[
F (2)

]NQ

(4.3.3)

Observe that, being F (2) < 1, the greater the number of qubits (exponent) the lower
the aggregated fidelity.

4.3.2.3 Computational power

We could have a system with great qubit quality and aggregated fidelity, but with a low
number of qubits: this would not be anything else than a prototype, not really useful for
solving adequate-size circuits. The potential computing power of a quantum chip increases
exponentially with the qubit count [16], so we have defined the computational power metric
as:

JQb = 2NQ (4.3.4)

4.3.2.4 Performance degradation due to qubit single-core integration limit

Qubit crosstalk and controllability issues do not affect performance degradation linearly,
especially because of the control scalability issues [52]. As already explained in the pre-
vious chapter (see Section 3.2) for each existing technology there exists a predicted qubit
integration limit for a single chip.

To model this, we have defined a qubit integration penalty metric which works as a step
function on this threshold to the number of qubits per core (which we have labeled NLIM

Q ):
in case we have NCORE

Q > NLIM
Q , this metric measures the performance degradation related

to this integration qubit overhead. For this, we have derived qubit density from the number
of qubits per core NCORE

Q = NQ/NCORES , and a technology-related multiplicative factor
which we have termed as qubit-to-qubit disturbance ϵI . This latter component comes from
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e.g. the physical qubit-to-qubit distance, control frequency overlapping, etc., and is different
for each qubit implementation.

To model the steep deterioration, we have used a multiplicative factor related to the
overhead qubit ratio and an exponential factor d:

JI =
ϵINQ

NCORES︸ ︷︷ ︸
qubit density

·

(
NQ

NMAX
Q

)d

︸ ︷︷ ︸
overhead qubit ratio

· H
(
NQ −NMAX

Q

)︸ ︷︷ ︸
non-linear penalty on max qubit count

(4.3.5)

where:

NMAX
Q is the aggregated maximum of qubits that may be integrated into NCORES :

NMAX
Q = NLIM

Q ·NCORES (4.3.6)

H(x) is the Heaviside step function:

H(x) =

{
0 if x < 0

1 if x ≥ 0
(4.3.7)

Observe that, in opposition to the previous metrics, JI is proportional to the perfor-
mance degradation (i.e. inverse to the computing performance). It is useful to note also
that:
For NQ < NMAX

Q the degradation is not accounted for:

JI

∣∣∣∣
NQ<NMAX

Q

= 0 (4.3.8)

For NQ = NMAX
Q :

JI

∣∣∣∣
NQ=NMAX

Q

= ϵIN
LIM
Q (4.3.9)

and from there, the penalty follows an exponential function:

JI

∣∣∣∣
NQ>NMAX

Q

=
ϵINQ

NCORES
·

(
NQ

NMAX
Q

)d

(4.3.10)

4.3.2.5 Inter-core communications performance

Once we have covered the performance limitations coming from both qubit and core layers,
we have to take into account the overhead incurred in multi-core quantum architectures as
we scale in the number of cores integrated into the platform [56]. When using more than one
core, the communication processes (be it quantum teleportation, ion shuttling, etc.) that
are needed to operate among qubits placed in different cores might be costly and set a limit
for the multi-core approach.
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In order to avoid technology-specific metrics, we have preferred to concentrate the differ-
ent characteristics of existing and future quantum core interconnects into a single parameter
ϵC which corresponds to the error escalation due to communications overhead when adding
cores to the system. For the sake of simplicity, this inter-core communications performance
metric has been defined as the exponentiation of the overhead factor with the number of
cores (which is a rough approximation of the effect of all-to-all traffic among the cores):

JC = (1− ϵC)
NUSED (4.3.11)

where NUSED is the number of cores that contain active qubits (i.e. qubits that are being
used in the given configuration), and (1 − ϵC) correspond to the complementary of the
communications error. Observe that being (1 − ϵC) < 1, the greater the number of cores,
the lower the performance.

4.3.3 Aggregating the metrics into a single FoM

In order to adequately design the function f that aggregates the metrics in J into the FoM
Γ, we need to establish: i) how each metric affects the overall performance of the system,
ii) how these metrics are interrelated in order to choose the most fitting function to group
them, and iii) whether we need to normalize or weigh each metric.

First, when we view our scalability problem as a whole, we realize that a high-performing
multi-core system should have:

• enough qubits to compute and the required applications (high JQb),

• a good coherence-latency ratio for keeping the data coherent while the circuit is being
executed (high JQF ),

• sufficiently high gate fidelity to perform all operations (keeping low the effect on the
number of qubits in the aggregated fidelity JF ),

• a good trade-off on fitting a high number of qubits in each core while not suffering
from high errors due to qubit crosstalk or controllability issues (low JI), and

• a low inter-core communications overhead (controlling the impact on JC).

Choosing a particular f function depends mainly on the interaction between the metrics
in their contribution to Γ. In our case, all five metrics should have high values in the optimal
solution: low qubit quality is as unacceptable as a low number of qubits, high crosstalk, and
controllability issues, or high inter-core communications overhead.

This means that a weighted sum, such as that shown in Eq. 4.1.2, which assumes each
metric contributes independently to Γ, does not fit our problem.

The multiplicative approach that can be found in Eq. 4.1.4 already includes the in-
terdependence on the different metrics. However, observe that developing the equation
particularizing to Ji = 0, for some i does not lead to U(J) = 0. This behavior is not useful
either for our case: when we have, e.g. F (2) = 0 =⇒ JF = 0 we should have U(J) = 0. In
fact, that should apply to every metric.
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For this reason, we have chosen an even tighter form for the f equation: the product
of the whole sequence of metrics. For a better understanding of how each metric affects the
overall Γ value, we have placed the performance-centric metrics in the numerator, and the
degradation-centric ones in the denominator (as in Eq. 4.3.12).

U(J) =

∏
i Ji∏
k Jk

(4.3.12)

Normalizing the different components of the FoM helps to equalize and bound the effect
of the metrics on the overall performance, and is usually done to the [0, 1] interval. However,
determining which normalization to apply on each metric or whether to apply it might be
different for each one.

The qubit quality metric JQF represents a technology-specific advancement and should
be in principle unbounded (the coherence time could always be larger and the gate latency
will be asymptotically tending to 0). Therefore, being a fundamental parameter for any
quantum computer’s quality benchmark, we have decided to keep it as it is, hence not
normalizing it:

J̃QF = JQF (4.3.13)

On the other hand, the computational power grows also with technology development,
but at an exponential rate: without a normalization function, this metric would greatly
distort the FoM Γ. Moreover, it is lower-bounded to 1 (NQ = 0), so we have also shifted
this bound to 0. Therefore, we have:

J̃Qb = 2ÑQ − 1 (4.3.14)

where ÑQ is NQ normalized between [0, 1] to the maximum number of qubits in the under-
going DSE exploration, hence having also J̃Qb ∈ [0, 1].

Regarding aggregated fidelity, it is naturally bounded within [0, 1]. However, as this
metric is focused on the effect that putting many qubits together has on the aggregated
fidelity, we consider that it depicts a degradation rather than an improvement and we will
place it in the denominator of the f function for computing the FoM. Therefore, we have pre-
ferred to get the inverse metric (the lower, the better for the measured quantum computer),
that is, mapping it into [1, 2] (to avoid zeroes in the denominator):

J̃F = 2− JF (4.3.15)

Being also a degradation-centric metric (and hence appearing in Γ denominator), we
have also JI shifted its lower bound to 1. However, we have preferred not to limit the penalty
(i.e. the upper bound of it) as it only appears after the NQ surpasses the predicted qubit
limit for a specific technology and hence we want to force that any solution within this part
of the solution space is avoided:

J̃I = 1 + JI (4.3.16)

Only the inter-core communications overhead is left. By definition, it is already bounded
within [0, 1]. However, as it represents an added overhead, we have included it in the
degradation-centric metrics, hence shifting and reversing it to [1, 2] in order to place it in
the denominator of Γ.

J̃C = 2− JC (4.3.17)
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Figure 4.3: Scalability analysis (I) Quantum computer’s overall performance is plotted against
the number of qubits used in the system, for several configurations in terms of number of cores used
and the following parameters’ values: F (2) = 99.9%, ϵC = 5%, ϵI = 0.1%, d = 3, and NLIM

Q = 1000.

Accordingly, the final form of the FoM Γ is that of Eq. (4.3.18):

Γ =
J̃Qb · J̃QF

J̃F · J̃I · J̃C
(4.3.18)

Observe that Γ is not bounded within [0, 1], as it is not a requirement for the DSE [213].

4.4 Results

In order to visualize and clarify the possibilities of DSE, we now present the results of a
first analysis on multi-core quantum computers looking for answers to some of the most
interesting questions in QC: How will the quantum computer scale in the number of qubits?
Will the multi-core approach unlock the current monolithic single-core quantum computers’
scalability bottlenecks? How do the existing qubit technologies compare as candidates for
multi-core quantum computing? Does the inter-core communications technology affect the
performance of multi-core quantum computers? Let us look into the procedure used to
perform this first analysis before commenting on the results.

4.4.1 Scalability analysis

The main concern of the present chapter, and thus the main result expected from the DSE
analysis, is to determine whether the multi-core approach will effectively supersede current
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Figure 4.4: Scalability analysis (II) Performance analysis when varying both the number of
qubits and the number of cores in the quantum computer. The isolines in the plot let us know
different configurations that provide the same performance.

NISQ computers and enable their scalability into large quantum computers. Then, if we take
into account a specific scenario or a given set of requirements (i.e. having fixed p, e.g. core-
to-core communication latency, gate fidelity upper-bound, existing (or predicted) coherence
time τc range, etc.), we will be able to study the evolution of the design performance (Γ)
when sweeping over the number of cores NCORES from 1 (single-core traditional quantum
processor) to tens or hundreds of them. This is called scalability analysis. This type of study
allows the detection of scalability trends and bottlenecks, hence obtaining design guidelines
on quantum computer configurations for optimal performance.

Using the assumptions and models presented in the previous section, we show such
exploration in Figs. 4.3 and 4.4, where we plot the Γ values for a wide range of quantum
computer configurations. We have selected NQ and NCORES as our vector v, fixing the
rest of the elements. That is, the exploration is restricting the scalability to the increase in
the number of qubits and cores, and the relationship among them. The fixed parameters
(p) have been set to realistic values for ion trap technology (the most evolved yet) taken
from [3] and [2], that is, two-qubit gate fidelity F (2) = 99.9%, gate latency L1

G = 5.4 · 10−7s,
coherence time τc = 2 ·10−1s, ϵI = 0.0001, d = 3, ϵC = 0.05 and maximum number of qubits
per core NLIM

Q = 1000.
In Fig. 4.3, a single-core quantum computer is compared to several multi-core configu-

rations, for a total number of qubits NQ in the system varying from 10 to 106 qubits. For
each configuration, the performance (Γ) follows a peaky bell-shape trend, with a maximum
close to NQ = NMAX

Q (the optimal configuration for that number of cores). Trying to in-
tegrate more than NLIM

Q qubits in a single core causes a steep degradation of performance.
The single-core processor is clearly exceeded by multi-core approaches. In the zoom-in, a
saw-like profile in the performance curve can be clearly seen. Whenever the optimal qubit
distribution requires another core to be used (if available in the configuration), the extra
communications overhead causes a steep fall in performance. This implies that the con-
figuration with more cores is not always the best-performing one. The plots in Fig. 4.4
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contain a complete input variables sweeping, with NQ varying from 10 to 106 qubits, and
NCORES from 1 to 256. The isolines in the plot let us know different configurations that
provide the same performance, e.g. 105 qubits in a 200-core quantum computer perform
the same as twice as many qubits using less than half of the cores. Observe that, when
incrementing NCORES , the overall goodness of the architecture does not increase linearly,
due to the inter-core communications overhead. Note also that the more cores are present in
the system, the narrower is the performance curve, that is, a low number of cores guarantees
good relative performance for both low and high numbers of qubits. That may collapse for
a sufficient number of qubits, where no matter the number of cores, the performance may
be the same or worse (due to communications overheads).

Using this simple model, we can clearly draw three main conclusions:

• The multi-core approach is promising as a scalability enabler,

• for every multi-core quantum computer configuration there exists an optimal working
range (Γ over a certain minimum threshold), and

• the NLIM
Q parameter clearly constrains the performance of the configuration and thus

we should consider it as a fundamental design variable.

With more accurate data and models, we postulate that this type of analysis will effectively
accelerate and optimize the research on QC.

4.4.2 A Qubit Technology Gap Analysis

DSE can also be applied to analyses that go further than stating the benefits of the appli-
cation of multi-core architectures to quantum computers: it may help quantum engineers
optimize the efforts and investments in QC. For instance, with accurate models, we are
able to explore the whole design space in order to focus research and experiments only on
the most promising materials, technologies, or parameter ranges. As an example, we have
performed a simple quantitative technology gap analysis, i.e. a performance comparison of
the selected qubit technologies and their evolution in the next years that opens a window
to the future, letting us know which technologies may provide higher profitability after a
certain research investment. To do so, a common performance metric, such as the previ-
ously defined golden metric Γ, is needed, in order to establish a common ground for a fair
comparison.

In Fig. 4.5 the comparison among several current qubit technologies (and their projected
performance) is shown, both for varying NQ and NCORES . Each technology is represented
using the three most representative physical parameters: τc, L

(1)
G and F (2). Using actual

measurements retrieved from [3] and [181] as the parameters baseline, δ represents a correl-
ative technology improvement on the three of them. In the case of quality factor QF (1), δ
represents a constant proportional improvement (i.e. QF

(1)
δ = QF (1) ∗ (1+ δ) ). The fidelity

is set to improve asymptotically to 100 %. Under the used assumptions and models, we
could already draw some conclusions on the comparison of existing technologies, e.g. donor
spins in Si seem to be the most promising technology, with still much room for growth.

It is important to highlight the non-linear behavior of performance improvement with δ.
See Figs. 4.6 and 4.7. In ion traps, for instance, in the interval δ = (0.5, 0.6) the performance
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(a) (b)

Figure 4.5: Quantitative qubit technology gap analysis a) Quantum computer’s overall
performance Γ for selected qubit technologies is log-plotted against the number of qubits used in
the system. For each technology, current state-of-the-art parameters [2,3] are used to draw the solid
line, and a δ = 1.5 evolution/improvement on them is reflected in the dashed line. The number
of cores is set to 256, and the rest of the parameters are fixed as in previous figures. The validity
of the conclusions drawn from this technology comparison depends exclusively on the accuracy of
the models used. b) In this case, Γ is plotted against the number of cores in the system. The
performance value assigned to a given number of cores corresponds to the peak performance of that
quantum computer configuration (i.e. the number of qubits is set to be optimal for every value of
NCORES).

scales exponentially. It corresponds to fidelity values going from 99.999% to 99.9999%, that
is, investments to make improvements in this interval will pay off abundantly. Moreover, we
can conclude that, even with a 100% improvement, only ion traps can place performance
on a range similar to that of solid-state-based quantum computers. Observe also that a δ-
evolution on qubit technologies does not only improve peak performance but also the optimal
operational margin. For instance, 30.000 “future” ion trap qubits (δ = 1) integrated in a
256-core quantum processor provide the same performance as 200.000 (5x increase) current
ion trap qubits. A similar behavior is present in all technologies. When studying the effect
of varying the number of cores in the system, we observe as before a clear performance
improvement in δ. However, it is to be remarked the “conversion factor” that we find of a
δ-evolution and the number of cores needed to achieve the same performance. Observe that,
for instance, for all technologies, a δ = 0.6 suffices for having a 70-core processor matching
a processor more than twice as large in number of qubits and cores.
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Figure 4.6: Qubit technology gap analysis (log plot) extended for a wide range of δ, for selected
qubit technologies, sweeping the number of qubits in the system. Observe that performance does
not increase linearly with δ, nor does it behave the same for different technologies. Equivalent
performance can be obtained with a notably lower number of qubits if the technology is improved.

4.4.3 Discussion

The results presented allow us to foresee not only the promising effects of applying multi-core
architecture to quantum computers but also the possibilities of using such a system-wide
optimization proposal (DSE) which might facilitate once-for-all design guidelines unifying
the still separated design technologies into a consolidated solution with optimal technologies
and parameters for every situation. This type of analysis can be easily reproduced together
with more accurate data, FoM and models coming from materials engineers and physicists to
draw conclusions such as “among the selected qubit technologies, basing upon model predic-
tions, the technology X is the most promising for building multi-core quantum computers in
high-latency environments”, or “a lattice topology provides the lowest latency for quantum
teleportation-based intra-core networks”, and especially “the multi-core quantum computer
approach performs better than the monolithic single-core designs when more than N qubits
are needed, and/or intra-core latencies are lower than Lmax, and/or coherence times τc are
in the range (tL, tH)”, that will effectively accelerate and optimize the research on QC.
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Figure 4.7: 3D version of the qubit technology gap analysis log plot, for selected qubit technologies
(they are offset in Z axis for the sake of clarity while keeping the color mapping for Γ values), sweeping
the number of qubits and the number of cores in the system. Observe that donor spins performance
evolution with δ is really promising when compared to the other technologies, which in comparison
remain almost plain. When exploring for an increasing number of qubits, the number of cores is set
to 256, while for varying numbers of cores, the number of qubits is determined as the one providing
peak performance. The rest of the parameters remain the same as in Fig. 4.3.
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Chapter 5

Communications in Multi-core
Quantum Computing: the Good, the
Bad and the Ugly

Multi-core quantum architectures may recall the revolution of classical multi-core computing.
However, while multi-core classical processors enabled the potential of parallelism and solved
existing energy and thermal issues, multi-core quantum computing comes as a solution to
correlated errors and control issues, which limit its potential even for small computations.
Therefore, interconnecting quantum nodes is not a matter of upgrading quantum computers
but unlocking their prospects of success.

However, transferring a quantum state among quantum chips is a complex task: it
cannot be done using classical communications, and, due to the no-cloning theorem (i.e.
an arbitrary unknown quantum state cannot be copied), qubit retransmissions are impos-
sible. Moreover, as we have already seen in Section 2.1 when quantum communications
are inserted in a quantum computing environment, they have to deal with qubits that are
constantly moving around, stringent latencies requirements, and irreparable communica-
tion losses. However, the quantum weirdness does not only contribute to the complexity
and inefficiency of multi-core quantum architectures but also provides some very interesting
properties that should be leveraged in order to design and implement powerful quantum
multi-core computers.

Therefore, in order to achieve the aim of this thesis, i.e. set the foundations for scal-
able multi-core quantum architectures, a special focus must be set on quantum inter-core
communications. In other words, in order to appreciate the implications of implementing
a multi-core quantum architecture, it is key to understand the particularities of quantum
communications and how deeply they are intertwined with quantum computing.

In the present chapter, we will leave the global perspective from the last chapter to set
the spotlight on the details of chip-level quantum communications. For that, we highlight
its unique characteristics and the differences when compared to other similar communica-
tion environments. We also dive into the already presented quantum teleportation, and its
constant companion, entanglement distribution. Finally, we present a model and several
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Figure 5.1: Classical noise versus quantum noise in communications. a) Classical noise can
be battled with at any stage of the communication, reconstructing the signal: it is not accumulative,
b) quantum noise, however, is harder to tackle, and accumulates everywhere (when computing, when
communicating, etc.). Qubit’s “age” is hence important.

simulation-based studies to stress this quantum communication technique in search of per-
formance boundaries and to explore the design space for quantum multi-core architectures.

5.1 Provably secure (but impatient and merciless) communi-
cation at a distance

Quantum mechanics brings some interesting properties not only to computing with quantum
information but also to quantum communication. Not even the well-known Shannon’s model
of communication [214], which is the foundation of all the modern Information Theory, is
able to describe fully the transfer of quantum information mainly due to a quantum-specific
noise source (quantum decoherence) and the measurement problem. The interested reader
may dive into this topic in [215,216].

Indeed, whereas in classical communication the noise is either injected in the channel
or at reception/transmission, quantum information carriers are subject to degradation at
contact with any external energy while at any point in the communication process. This
degradation (quantum decoherence) can be described as a multiplicative (rather than ad-
ditive) noise, which leads to an effectively constant degradation with time: it affects more
to the older qubits, as it accumulates over time (see Fig. 5.1). This translates into making
communication latencies (i.e. encoding, travel and waiting times) much more critical than
in the classical case: it is not only a matter of timeliness but of validity of the received data.
That is, longer latencies are equivalent to larger communication error rates.

On the other hand, qubits cannot be “read out” (measured) without effectively destroy-
ing their quantum state. This, in communication terms, implies that no retransmissions are
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Figure 5.2: Quantum entanglement as a channel, also affected by quantum decoherence, which
disentangles the group state

possible, as there is no way to replicate an arbitrary quantum state into another qubit (no-
cloning theorem). That is, every quantum data exchange is a single-chance transmission,
analogous to best-effort classical communications.

The combination of the effects of long communication latencies and the unavailability
of retransmissions leaves us with a communication system that needs fast operation and
zero tolerance for transmission errors to work properly. This is a perfect storm for designing
a communication system: in classical communications, usually these two requirements are
never demanded simultaneously. Environments with low tolerance to errors (e.g. distributed
computing or storage) implement lengthier error codes and refined networking policies for
optimizing Quality of Service (QoS) and make use of retransmissions whenever required. All
these policies may imply large latency overheads, which are assumed by design. However,
applications requiring ultra-low latencies usually accept in return information loss/errors
(think of video calling or streaming). Hence, quantum communications pose a hard problem,
especially when used in computing (such as multi-core or distributed architectures) due to
their need for high-fidelity data.

Nevertheless, not everything is lost here. The same phenomena that complicate things
for retransmissions and information quality build precisely the perfect environment for a
sensitive topic: information security and privacy. Not being able to copy or read out quantum
data without interrupting the transmission is the best defense against eavesdroppers. This
powerful property has been already leveraged for several practical quantum communication
applications, such as QKD (used for securely distributing a communication key among two
parties [36]), communication among non-trusted nodes (such as quantum coin-flipping [217]),
or blind quantum computation (for delegating computations to an untrusted device without
compromising data privacy [218]).

Still, the complexity of latency and error rate requirements remains. One way to deal
with it, circumventing or at least relaxing the requirements, is by using quantum entan-
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distribution process. In qubit direct transfer we are dealing “best-effort” communication paradigm.

glement (you may do a quick refresh on that by reviewing Section 1.1.1 if you need it).
From a communications perspective, quantum entanglement works as a sort of instanta-
neous channel, where the quantum information is shared among several parties. It can also
be described as a multi-partite quantum state distributed among several qubits that might
be geographically distant, and whichever operation is made on any of the entangled qubits
affects the whole state. Of course, quantum entanglement is still vulnerable to quantum
decoherence, which disentangles the involved qubits (see Fig. 5.2).

5.1.1 Quantum teleportation: introducing channel Quality of Service

We have already introduced quantum teleportation in Section 1.1.5, as a versatile and in-
direct quantum communication technique that is applicable for communication at any dis-
tance, from the chip to planetary scales. It is generally considered a safer alternative to
direct qubit shuttling for transferring quantum states on low-quality environments and de-
manding applications [204, 215]. This includes multi-core quantum communications, hence
we assume this technology is the standard for inter-core communications for the rest of this
manuscript. Let us see now why it has such an advantage over other alternatives.

As a brief reminder, in the quantum teleportation protocol, there are five main stages
in the process: i) entanglement generation at the EPR pair generator, ii) entanglement
distribution, when the EPR pair is generated and shared among the two nodes willing to
communicate, iii) Tx operations, applied in the transmitter node to entangle the EPR qubit
and the data qubit, iv) measurement at Tx and classical transmission of the results, and v)
Rx operations, applied in the receiver node to the target qubit depending on the bits just
received, finally obtaining the original data.

The crucial point here is the decoupling of the channel establishment and the data
transmission itself. Direct qubit transfer is a single-shot communication attempt, and its
success will depend on the environmental conditions at the time of communication. In qubit
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Figure 5.4: Two-way comparison between multi-core quantum inter-core communications and two
analogous scenarios: Quantum Internet and Network-on-Chip.

teleportation, however, entanglement generation and distribution provide a reinforcement
layer: the EPR pair is a well-known quantum state that, contrarily to what happens with
the arbitrary quantum state we want to send, can be easily reproduced if lost or severely
damaged when sending it (see Fig. 5.3). Only when we are sure we have a sufficiently high-
quality entanglement, do we proceed to stages iii) and further, i.e. the actual transmission
of the data. Of course, that introduces uncertainty on the global latency of the operation
but may guarantee better conditions for the overall operation.

Indeed, quantum teleportation upgrades quantum communications by leveraging the
power of quantum entanglement, enabling some sort of channel QoS.

5.2 Between the Quantum Internet and Network-on-Chip

While recent years have seen an explosion of research in large-scale quantum communications
and networking for the QI, less attention has been placed on chip-scale communications for
the scaling of quantum computers. Although the fundamentals of quantum communication
remain the same at both scales, they provide substantially different environments whose
specific characteristics shall be considered in the communications system design.

In order to provide a context analysis of the communications scenario concerning this
thesis, we will compare multi-core quantum communications with two analogous applica-
tions. The comparison is summarized in Fig. 5.4. On the one hand, for its role as an
interconnect among computing cores within or across chips, quantum interconnects may
recall the classical concept of NoC. On the other hand, for its quantum nature and the need
to transfer quantum data using mainly quantum teleportation, it may be compared with its
big brother, the QI [5].
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5.2.1 Comparison with the Quantum Internet

Research on the QI is one step ahead of multi-core quantum computers and its main focus
is on quantum teleportation, which is also a strong candidate for the multi-core scenario.
Hence, the QI could seem like a good source of inspiration for models and protocols of
quantum multi-cores, yet with the following non-trivial differences.
Distance: In the classical communications world, distance is related mainly to attenua-
tion, which can be fixed by deploying amplifiers along the line. In quantum communications,
quantum states get decohered with time and interaction with the environment. This means
that long fiber lines cause photon qubits to irremediably lose their information. However,
due to the no-cloning theorem, it is not possible to re-use the classical solution and recon-
struct the signal by amplifying it. But there is always an exception. The special case of
EPR pairs quantum states can be restored with quantum repeaters [5,41]. Therefore, we im-
prove performance by using quantum teleportation instead of physically sending the qubits,
and applying this “amplification” technique to entanglement distribution. In the multi-core
scenario, however, distances are in the millimeter scale, and hence there is no need (and no
desire, due to stringent resource constraints) to deploy repeaters. This may simplify the link
and network layer protocols.
Temperature: Going into the outside world along a country-wide inter-network makes it
impossible to keep low temperatures to facilitate quantum coherence, and photonic qubits
can fairly withstand room temperatures. However, inter-chip networks in multi-core ar-
chitectures can be kept at cryogenic temperatures, thus increasing the coherence time for
communicating qubits and improving the isolation of the whole computer. In order to
facilitate this, all the circuitry used to control and communicate the qubits in quantum
computers should ideally be prepared for operating at cryogenic temperatures. Moreover,
given the limited cooling power of refrigerators, protocols need to be simplified to reduce
the energy footprint. Such a constraint is not present in the QI.
Qubits as a scarce resource: Multi-core quantum computers are a resource-constrained
environment, both in area and in power consumption, as opposed to the QI. On the one
hand, every qubit that is sent to another core is unique: due to the no-cloning theorem,
the only way to reproduce a qubit state is to repeat the computation all over again. In the
QI scenario, we may have the sufficient quantum computational power to recalculate some
small parts of the computation or implement large QEC codes as we are dealing with larger
amounts of qubits, but in multi-core architectures, every qubit is invaluable and hence all
qubit transfers must be operated with the highest of guarantees and ultra-low latency.
Communications overhead: Given the resource-constrained nature of this environment,
the number of qubits that we can integrate on each chip is limited. In the QI, in order to
protect qubits from decoherence, QEC techniques are applied. This implies that multiple
physical qubits encode a logical qubit, which implies a very significant overhead. In multi-
core quantum computers, qubits are scarce and, therefore, we may face the trade-off between
dedicating qubits to QEC or to computation, having to sacrifice some protection along the
way.
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5.2.2 Comparison with Network-on-Chip

The NoC paradigm accompanied the rise of multi-core processors in the classical domain. Its
divide-and-conquer approach is similar to that proposed in multi-core quantum computing,
and both are highly resource-constrained environments: whereas NoC needs to efficiently
leverage every microwatt of power while integrating big caches at different levels, multi-core
quantum processors must be designed in a highly conservative manner aiming at making the
most out of every nanosecond: latency translates into error, hence timeliness means higher
network capacity. Of course, both NoC and multi-core quantum inter-core networks may
share some design principles, but interconnecting quantum nodes implies some particulari-
ties, namely:
Latency as an error: In NoC, latency is critical because it essentially delays the com-
putation [219], but it is generally not tied to a loss of accuracy. In contrast, qubits tend
to decohere as time passes, which implies that the communication latency not only delays
the computation in multi-core quantum computers but also degrades its accuracy, to the
point of completely destroying it when a particular latency threshold is exceeded. This
fundamentally impacts flow and congestion control protocols, if any.
Uniqueness of data: Due to the no-cloning theorem, data cannot be copied and dis-
tributed to multiple cores. Data is physically moved around, and therefore scheduling the
communication operations is of critical importance to minimize qubit movements and con-
solidate interactions with a given qubit in the minimum amount of time. A NoC is generally
not bound to scheduling, although efforts in real-time embedded systems or machine learning
accelerators also advocate for it in the classical domain [220,221].
Welcome back to circuit switching: Quantum teleportation uses both a classical
channel and a quantum channel to transmit the information: the measurement output at the
Tx node (2 bits), and the EPR entangled pair. While the classical channel works as expected
(plain information traveling through a wire), the quantum channel is not used to transmit
directly quantum information, but a quantum resource: entanglement. This resource is
used thereafter to teleport the qubit. In this way, we could describe the entangled pair as a
channel itself, being the EPR pair generator a shared resource. Similar to what is done in
circuit switching technologies, the two communicating parties are interconnecting by means
of a channel (entanglement) reservation. This makes multi-core quantum networks depart
from the traditionally packet-switched NoC paradigm: the topology among cores is virtually
configured as needed, and there is a shared resource (the EPR pair generator, which may
also be decentralized) that enables communication.

5.3 A Communications-Centric Model of Quantum Telepor-
tation

In order to adequately explore the implications of quantum communications on the multi-
core architecture design, we need to look deeper into modeling the main underlying process
of inter-core links, i.e. quantum teleportation.

Quantum teleportation was theoretically demonstrated some decades ago [222] and
experimentally shown shortly thereafter [223]. In recent years, this technology has been
validated for distances of tens or even hundreds of kilometers via satellite and optical fiber
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Figure 5.5: Multi-chip quantum computer full view. a) 2D diagram of a multi-chip architec-
ture. The classical network also depicted completes the networking infrastructure, b) Enumeration
of the components, including intra- and inter-core communications, and c) Circuit for quantum tele-
portation.

links [224,225]. However, most of the research conducted on it is focused on improving link
quality and robustness, as well as on developing further supporting technology (EPR pair
generators, quantum repeaters, etc.).

In contrast, the importance of modeling quantum teleportation as a communications
system has only recently been highlighted. This kind of model enables a deeper understand-
ing of this technology from the communications standpoint, which facilitates and provides
guidelines for protocols and system design [43,226]. Models for quantum teleportation have
been mostly developed for the QI scenario [215]. Because of the differences previously men-
tioned between multi-core quantum communications and QI, specific modeling of the former
is needed. This is of crucial importance because the performance of a multi-core quantum
computer will depend on its communications.

Let us assume a quantum computer composed of NCORES cores that communicate
through quantum teleportation (Fig. 5.5). This implies having three resources available for
every core-to-core link:

• A classical network enabling classical data passing between any pair of cores in the
computer.

• An EPR “factory” or generator, which produces the EPR pairs, to be then distributed
to the end nodes. Using photons as entanglement carriers is widely accepted due to
their inherent mobility and low interaction with the environment. Ranging from low
to high resource requirements, the EPR generation and later distribution could be
implemented as [215]:

– A single EPR pair generator shared among all cores (1 teleportation at a time),
using typically spontaneous parametric down-conversion. In this case, the pair of
resulting photons are entangled in polarization in one of the Bell states by means
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Figure 5.6: EPR generation and distribution techniques. a) EPR pair generator is shared
among all nodes, b) The Tx node generates the entanglement and transmits it to the Rx side, c)
Both nodes generate photons which meet in the middle to generate entanglement.

of a laser beam which is directed toward a non-linear crystal (see Fig. 5.6a).
After this, each photon is sent to one of the communicating nodes.

– Several EPR pair generators are shared among all cores (several teleportations
can be performed in parallel), replicating the same process as before.

– An entangling device allocated for every link between a given pair of nodes. This
could be practically implemented by means of any of these two techniques:

∗ EPR generation at source node (see Fig. 5.6b). The entanglement is in this
case generated when an atom in an optical cavity placed at each node is
excited by a laser pulse. This generates a photon whose polarization is en-
tangled with some internal state of the atom. The photon is then transferred
to the receiving node distributing thus the entanglement.

∗ EPR generation at both end-points (see Fig. 5.6c). This third scheme repli-
cates the previous one but this time both nodes produce a photon, which
they send to the other node. Both photons meet at a beam-splitter, where
they are measured, effectively entangling both nodes at their “communication
atoms”.

Using any of these configurations and techniques depends on the qubit technology
employed and other considerations. Although all of them preserve the same function-
ality and have similar behavior, for our highly-constrained multi-core environment we
assume from now on the first configuration (a single EPR pair generator shared among
all nodes).

• A quantum optical network connecting the EPR pair generation facilities and the
cores.
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Each of the cores integrates NCORE
Q physical qubits, and has NP transducer ports for the

quantum interconnection with other cores, allowing for the same number of parallel transfers.
Each of the ports has a qubit buffer attached to it. The total number of qubits in the core
dedicated to buffer/communication tasks is NCOMM

Q , leaving NCOMP
Q = NCORE

Q −NCOMM
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for computation.
The quantum teleportation process can be illustrated using the circuit diagram from

Fig. 5.5c, which is the most common representation for quantum algorithms. However,
this depiction does not show clearly the physical location of each phase, nor the inter-
dependencies and operations latencies in the process. In Fig. 5.7a, a “localized” version is
shown, where each color represents a different location in the network. Furthermore, Fig.
5.7b shows the corresponding time diagram which breaks down the delays of the teleportation
process. Latency is indeed crucial, as it is directly correlated to the decoherence of qubits.

In our model, a qubit transfer proceeds as follows: when a given qubit q holding a
quantum state |ϕ⟩ has to be moved to a different core, the controller checks whether any of
the NP communication ports are free. If not, the qubit needs to wait in the communication
buffer as long as there is any available position, to leave computing space for other parallel
operations needing it. In case the buffer is also full, we give up on the operation and assume
that the communication of that qubit will not be possible. The control system would then
have to decide whether the computation has to restart or the whole operation flow has to
stop and wait till the communication subsystem is freed up.

When a communication port becomes available, the controller triggers the entangled
pair generator in order to start the EPR pair generation and distribution. This process
deserves a little more attention: let us dive into it.

5.3.1 Entanglement generation and distribution

Generating a pair of entangled photonic qubits typically implies a probabilistic photon pair
emission and subsequent entanglement by forcing them to interfere with a beam splitter.
This process’ success can be usually confirmed (a.k.a heralded) via the detection of the two
photons at the output [151]. Therefore, the process of entangling two qubits is divided into
three main phases:

A Double Full-Stack Architecture for Multi-Core Quantum Computers 72



1. Generating a pair of photons

2. Coupling them together to form a Bell basis (also called EPR pair)

3. Distribute both of them among the two end nodes.

The probabilistic nature of this process calls for a more detailed analysis. Following,
for instance, recent results on entanglement generation for ion traps [143, 227] (the process
is similar for other qubit technologies) we can first look at how the total operation time is
distributed among these three sub-processes:

1. Single-photon generation is a quite mature technology with single-photon lasers that
can realize high photon rates at around 100 MHz.

2. Achieving (and detecting) entanglement of the two qubits is a hard task that requires
several different processes to concur in order to be successful (e.g. producing the
correct Bell states, state preparation, excitation, detection...). Usually, it decreases
the final entangled photon rate to 1 in 1000 laser-emitted photons.

3. Successfully sending photons over a fiber can be safely assumed to happen without any
loss, i.e. as a deterministic process, especially when working at very short distances,
such as in a multi-core environment.

Therefore, the photon coupling sub-process implies the actual bottleneck in the whole
EPR generation process.

Figure 5.8: EPR generation experimental sequence. Figure extracted from [143]

In order to analyze the probability distribution of the photon entangling process, we
can look at a recent example, extracted from a recent article [143]. In Fig. 5.8, we see the
working cycle of the EPR pair generator, formed by a 100 microseconds cooling phase and
a series of entanglement attempts. Each attempt is divided into:

• A turn-on latency time

• State preparation (followed by a safety delay)

• Pulsed excitation

• A short detection window

• Time for decision branching based on the outcome of the attempt
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This is called an entanglement attempt because it does not produce always an entangled
pair1. This failure may happen for several reasons:

• Only two out of the four possible Bell states are valid for the heralding process (de-
tecting entanglement), and we have failed to produce those

• The state preparation has failed

• The excitation pulse has not been successful

• Other technology-related failures

• The entangled pair was correctly produced, but the detection failed

As all of them are success/failure processes, we may well say that our probability P of
having a successful entangled pair generation attempt follows:

P = f
(∏

∀i
pi

)
(5.3.1)

where the different pi correspond to the success probability for the concatenated processes
explained above.

Therefore, generating an EPR pair (attempting it until we obtain a success) can be
basically reduced to a Bernoulli trial (i.e. success/failure experiment), being P the success
probability.

This implies that the time to have a successful attempt follows a geometric probability
distribution function, i.e.:

P (X = k) = p · (1− p)(k−1) (5.3.2)

, where X is the random variable describing the number of attempts, and k, is the kth
attempt, being it the first success. The average number of attempts, till we have a success,
will then be:

E[X] =
1− p

p
(5.3.3)

And the probability of having a generation time (i.e. time to success) larger than
n · Tattempt (i.e. n attempts, being Tattempt is the time that a complete attempt takes to be
done) is:

P (X > n) = (1− p)n (5.3.4)

That is, the probabilistic nature of the entanglement process leads to an unbounded
time to generate the EPR pair, hence affecting the overall waiting time (and as we know,
that means more decoherence inserted into the computation). The error probability of this
operation will depend on the EPR generator distribution probability distribution function

1This scheme remains valid for most of the EPR generator techniques, be it produced in a centralized
generator or by coupling photons obtained at the end nodes, no matter the qubit technology.
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Figure 5.9: Maximum qubit rate in quantum teleportation. a) Time sequence of qubit
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to cases where there are bottlenecks either at Tx or at Rx.

and how the quantum network layer manages this type of failure. Observe that the rest of the
entire teleportation process can be said to be deterministic, so putting effort into improving
this specific functionality can have a great effect on overall communications performance.

5.3.2 Qubit teleportation delay

With this probabilistic nature of the EPR pair generation process in mind, we can hence
assume that it takes a non-deterministic time with mean TEPR (Fig. 5.9), after which the
entangled photons can be sent to the Tx and Rx nodes. We assume an ideal optical channel
with no photon loss and with a fixed delay TDIST = d/c′ related to the distance d between
the EPR pair generator and the nodes, and the speed of light in the optical medium c′ = c0/n
with n the refractive index of the material, and c0 the speed of light in the void. As we are
assuming that the EPR pair generator is shared among all cores, TEPR will depend also on
its utilization by the other cores in the network (i.e. it may include waiting times due to
busy EPR pair generator).

On the Tx side, the pre-processing involving the entangled qubit and the qubit to be
transferred takes a fixed delay TPRE , typically composed by the delay of applying a CNOT
gate, a Hadamard gate, and the measurement on both qubits. The resulting classical bits
are sent to the Rx node, in a process assumed error-less and taking a fixed time TCLAS .
At Rx, each of these bits controls whether an X or a Z gate (or both) should be applied
to the received entangled qubit. Therefore, this post-processing takes on average TPOST =
1/2 · (TX + TZ).

Consequently, in the general case, a single qubit transfer will take TTX , which corre-
sponds to the critical path on the time diagram in Fig. 5.9,

TTX = TEPR + TDIST + TPRE + TCLAS + TPOST . (5.3.5)
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5.3.3 Maximum qubit transfer rate

This communication process consists of various consecutive operations on a middle node (the
EPR generator) and at both the Tx and Rx nodes. From a communications perspective, it is
essential to compute the maximum qubit transfer rate (RMAX) when the system is operated
continuously. This will depend on the ratios among the different timing components in Eq.
(5.3.5).

The EPR pair generation and distribution acts as the quantum channel. Thus, the rate
at which such generation happens is the first and fundamental bottleneck, hence having a
transfer rate upper-bounded by the time to generate an EPR (see Fig. 5.9b), so that

RMAX ≤ 1

TEPR
. (5.3.6)

That is, the pre- and post-processing and Rx and Tx can be hidden without affecting the
actual rate. However, the equality will hold only when the pre- and post-processing do not
become a bottleneck. In any of these cases, if we force the EPR generator to continuously
work at REPR = 1/TEPR, either the Tx or the Rx side will be busy when receiving the
EPR photon, thus losing it. Both bottlenecks could be solved by having a EPR receiving
buffer to which the arriving photon is immediately swapped, but in such a qubit-constrained
environment we have chosen to avoid this assumption. For the sake of simplicity, let us study
in the case NP = 1 which is the threshold for these bottlenecks:

• Pre-processing bottleneck: Both Tx and EPRTx qubits have to be operated and
measured before a new entangled pair is received, hence we will have no bottleneck iff
TPRE < TEPR (see Fig. 5.9c).

• Post-processing bottleneck: The Rx qubit has to wait for the classical bits and
operate two single-qubit gates, hence we will have no bottleneck iff TPRE + TCLAS +
TPOST < TEPR (see Fig. 5.9d).

Observe that the second inequality (Rx) implies the first one (if TEPR is greater than
TPRE + TCLAS + TPOST , it is also greater than TPRE). That is, the post-processing at Rx
has to wait for the T side to end the pre-processing, hence the Rx bottleneck prevails.
With this in mind, the rate RMAX is:

RMAX =

{
(TPRE + TCLAS + TPOST )

−1 if TPRE + TCLAS + TPOST > TEPR

TEPR
−1 otherwise

(5.3.7)

5.3.4 Simulation Results

Modeling quantum teleportation process for multi-core quantum networks from a commu-
nications perspective has let us understand its performance and determined its delay and
maximum rate. Departing from the theoretical analysis to perform a set of simulations will
allow us to: i) validate the effects of delays and losses on the teleportation fidelity and error
rate using experimental values, ii) explore the behavior of a simulated multi-core environ-
ment under stress, by executing a randomly distributed quantum circuit under varying ratios
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Table 5.1: Notation, symbol definitions and values used in simulations of Fig. 5.10, taken from
recent superconducting qubit technology used in [130] and [228]

Notation Meaning Value

NCORES Number of cores/chips 2

NCORE
Q Number of qubits per chip 1024

NCOMP
Q Computation qubits in a chip [1,1023]

NCOMM
Q Communication qubits in a chip 1024 - NCOMP

Q

NP Number of inter-core ports per chip 1

TEPR Mean of EPR pair generation time 103 ns

TDIST EPR pair distribution time 0.01 ns

TPRE Pre-processing time 390 ns

TCLAS Classical transfer time 0.02 ns

TPOST Post-processing time 30 ns

TTX Total time of quantum transfer 1420 ns

λ Inter-core qubit rate [105,108]

RMAX Maximum qubit transfer rate 106 qbps

n Refractive index of the optical medium 1.5

of communication and computation qubits, and iii) dimension the network requirements for
different architecture topologies.

For this task, we have used the NetSquid simulator for quantum networks [70]. Although
it has been designed having in mind large-scale quantum communications and the QI, it
is fully functional and adaptable to short-range multi-core quantum architectures. It has
allowed us to simulate a realistic setting, with quantum memories and processors, EPR
pair generators as well as classical and quantum links. The simulation includes the whole
operation on qubits and each step of the teleportation process, taking into account qubit
decoherence, quantum gates latencies, communication delay models, etc. under realistic
assumptions.

In the first set of simulations, we have modeled two independent quantum cores con-
nected to an EPR pair generator and interconnected also directly through a classical link (see
Fig. 5.10a). Apart from the processing and networking capabilities, we have implemented
a quantum First-In First-Out (FIFO) buffer for the qubit transfer, in order to explore the
effects of long qubit waiting times on the fidelity of the qubit communication when the link
is stressed and qubits need to wait for the EPR pair generator to be free. We have also
implemented the teleportation protocol on each node, adding the buffer management. Both
quantum nodes and EPR generator work with parameters summarized in Table 5.1, taken
from recent superconducting qubit technology used in [130] and [228].

In order to stress the system for high communication rates, we have started our analysis
with a focus on a single teleportation link among two nodes. We have introduced a constant
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Figure 5.10: Stress test of a quantum teleportation channel at multi-core scales. The 2D input
design space is swapped both in traffic (λ) and size of the quantum buffer (NCOMM

Q )

rate (λ) qubit transmission process at the Tx node (Alice), which translates into a constant
traffic arriving at the Tx waiting buffer.

The DSE over the λ input qubit rate and the buffer size at the Tx node (NCOMM
Q )

is shown in Fig. 5.10b. From top to bottom, the successful number of teleportations per
second, average communication latency, average fidelity, and the percentage of qubit losses
are shown. Interestingly enough, observe how the latency and fidelity plots are mirrored,
validating the direct relationship between communication latency and overall error.

See how the system saturates for λ > 106 (the maximum teleportation rate). As the
system complies with the pre-processing and post-processing inequalities, the link capacity
is bounded by the EPR generator instead of the pre- or post-processing operations. Greater
input traffic only translates into a higher loss rate, without any improvement on any other
performance metric. The exception is the case when there is no buffer (NCOMM

Q = 1): in
that case, the absence of a buffer implies losing any arrival while a teleportation is in process,
affecting the overall rate, which tops at around 5·105. Observe that having large buffers does
not make the difference in terms of losses, but it does in terms of fidelity: for a saturated
system, larger buffers mean longer average waiting times, and that implies lower overall
fidelity, which implies worse performance. Therefore, it is sufficient to have a minimum
buffer to avoid as many losses as possible without losing too much fidelity: observe that a
buffer with capacity 1 leads to optimum performance for all cases.

In the analysis just presented, we have focused on the size of the buffer and the re-
quired teleportation rate. Looking from a higher perspective, we would now like to study
the dimensioning and distribution of computation and communication in a full multi-core
quantum architecture. In particular, the scarce resources available cause a trade-off on where
to assign qubits: computation or communication. In principle, if the core has a low amount
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of communication qubits (NCOMP
Q >> NCOMM

Q ), it will be able to compute a reasonable
amount of operations without needing to communicate with other cores. However, for al-
gorithms with a high rate of inter-core operations, the constrained resources for comms will
affect the performance of the overall computation. On the other hand, if the core has fewer
computation qubits in order to have better communications (NCOMM

Q >> NCOMP
Q ), we

will need a greater amount of cores interconnected for computing large algorithms.

Table 5.2: Notation, symbol definitions and values used in simulations of Fig. 5.11, also with
reference to values from [130] and [228]

Notation Meaning Value

NCORES Number of cores/chips 256

NCORE
Q Number of qubits per chip [64,1024]

NQ Total number of qubits in the quantum computer NCORES ·NCORE
Q

NCOMP
Q /NCOMM

Q Computation to communication qubit ratio [0.1,0.9]

NP Number of inter-core ports per chip 1

NG Number of single- and two-qubit gates in the circuit n.d.∗

N2Q
G Number of two-qubit gates 0.8 ·NG

TEPR Mean of EPR pair generation time 103 ns

TDIST EPR pair distribution time 0.01 ns

TPRE Pre-processing time 390 ns

TCLAS Classical transfer time 0.02 ns

TPOST Post-processing time 30 ns

TTX Total time of quantum transfer 1420 ns

Texec Upper-bound of the execution time of the circuit n.d.∗

λcore Inter-core qubit traffic per core [105,108]

λqubit Total qubit traffic per qubit n.d.∗

n Refractive index of the optical medium 1.5

∗ This parameter is only used for theoretical development in Eqs. 5.3.8 and 5.3.9.

To validate and extract more conclusions around this, we have performed an analysis
on the issue simulating the execution of a quantum algorithm on a multi-core quantum
computer. The random algorithm is described with two ratios: the number of gates per
qubit NG/NQ and the proportion of two-qubit gates N2Q

G /NG. Because of the randomness
of the algorithm, the two-qubit gates are uniformly distributed among all qubits and over
time. Then every qubit is involved in an equal amount of two-qubit gates, equally distributed
along time following a rate λqubit:
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λqubit =
#2-qubit gates/#computation qubits

execution time

=

2 ·NG/NQ ·N2Q
G /NG

NCOMP
Q ·NCORES

Texec

=
2 ·N2Q

G /NQ

NCOMP
Q ·NCORES · Texec

(5.3.8)

where Texec is the upper bound of the time it takes to execute the whole algorithm.
Therefore, we can compute the equivalent λcore (the inter-core qubit rate required from

any of the cores when executing the algorithm) for each of the cores as the total traffic
from all the computation qubits in the core (NCOMP

Q ) which destination is outside the core
(hence requires teleportation):

λcore = λqubit ·NCOMP
Q · qubits outside own core

total number of qubits

=
2 ·N2Q

G /NQ

NCOMP
Q ·NCORES · Texec

·NCOMP
Q ·

NCOMP
Q · (NCORES − 1)

(NCOMP
Q ·NCORES − 1)

=
2 ·N2Q

G /NQ

NCORES · Texec
·
NCOMP

Q · (NCORES − 1)

(NCOMP
Q ·NCORES − 1)

(5.3.9)

Observe that for big architectures (high NCOMP
Q and NCORES), λcore ∼ λqubit ·NCOMP

Q .
In our simulations, we have assumed a single EPR generator connected to all cores.

Having a constant λcore for all cores, the optimal sharing strategy is equivalent to a Time
Division Multiplexing (TDM). Therefore, each core sees the EPR generator as a source with
an observed TEPR equal to NCORES times the actual TEPR.

To explore the computation/communications ratio, we have assigned a fixed role to
each of the qubits in a core: either it is used for computation or for the buffer. Therefore,
changing the ratio of NCOMP

Q /NCOMM
Q effectively changes the λcore (check also Eq. 5.3.9),

as well as the buffering capabilities.
In Fig. 5.11, we show the corresponding exploration over the communication to com-

putation qubit ratio, for the values of Table 5.2. This implies that the actual size of the
algorithm being executed gets smaller as we increase the ratio. The bottom plot corresponds
to the λcore for each ratio. On the rest of the plots, from top to bottom, the successful num-
ber of teleportations per second, average communication latency, average fidelity, and the
percentage of qubit losses are shown. The saturation point (check fidelity and latency sub-
plots) in this case implies a computation to communication ratio that is producing too much
traffic for the communication network and hence degrades the overall performance. There-
fore, for each value of NCORE

Q (total number of qubits per core), the optimum ratio would
correspond to the maximum ratio for which the system does not saturate. For instance, for
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Figure 5.11: Designing the computation to communications qubit ratio. A multi-core system with
256 cores computation to communications ratio is designed by testing the performance of a random
algorithm with 80% two-qubit gates.

512 qubits per core, we should have 40% of the qubits reserved for computation, while the
rest would be reserved for communication buffering purposes.

5.3.5 Conclusions

Quantum communications pose completely new challenges that are fostering innovative re-
search, especially on large-scale communications, such as QI applications. However, more
attention should be paid to multi-core quantum computing, which is a key approach for
quantum computing scalability and hence its ultimate success.

In this chapter, we have investigated the critical trade-offs, particularities, and opti-
mal designs of short-range quantum communications for these architectures. In particular,
we have shown how waiting times and latencies can greatly affect quantum communication
quality, and have stressed such a communication system to validate its capacity bounds,
which we have previously analytically modeled. Also, we have tested how a quantum al-
gorithm (the random case) may behave in a many-core scenario. In particular, due to the
scarce amount of qubits available, we have explored and obtained the optimal share of qubits
among the computation and communication roles. Interesting design insights and specific
parameters have been obtained for different cases.

In the next chapters, we will dive into studying the behavior of structured well-known
algorithms, together with the impact of multi-core algorithm mapping and architecture
topology. This research line can be followed up in the near future by exploring environ-
ments with a larger number of EPR generators and inter-core ports, as well as analyzing
other communication techniques, such as teleported gates or different EPR generation and
distribution architectures.
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Chapter 6

Analyzing and Co-designing
Multi-core Quantum Communications
for Scalable Quantum Computing

It is now a good moment to face the third of the questions raised at the beginning of this
thesis and summarized in Section 2.3.1: How could we improve inter-core communications
in order to have fast/efficient multi-core quantum architectures? In the previous chapter
we have been able to dive into this key design element of multi-core quantum architectures
(inter-core communications), and we have even been able to determine some dimensioning of
such a system, analyzing it under stress. However, we have studied it under generic assump-
tions of constant traffic and random algorithms, which gives us only partial information and
hence limits our ability to optimize the system any further.

Indeed, blindly optimizing the communications in any system is difficult: every piece
of information about the structure, behavior, frequency, expected usage, etc. can provide
valuable information for the design of the network. Not only for being able to cope with
the expected requirements in an efficient way but also for avoiding over-dimensioning the
resources. The constrained environment we are working on is not different and needs to
leverage any extra knowledge of the specific requirements of real usage for better optimizing
the whole system.

In order to adequately design a communications system it is typically useful to use mod-
els from queuing theory, i.e. to study them as server systems (and their related parameters:
queue length, service rate, capacity, etc.) [229]. For exploring such systems it is crucial to
know as much as possible about the expected load. In a communication network, the load
is called traffic, and can be described by means of its space and time distribution, maximum
expected rate, etc. Of course, these parameters are difficult to know a priori, hence charac-
terizing the traffic in a given system/environment a posteriori shall be a useful analysis for
further design improvements and optimization of the network. We can reasonably expect
that quantum networks may benefit from this same approach, though we need to take into
account the specific characteristics of quantum communications, as we have reviewed in the
previous chapter.
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Once we have some knowledge of the traffic load in our quantum multi-core system (work
presented in Sections 6.1 to 6.3.3.1), we could use that information to adequately manage the
network for improving its performance already during the execution of the quantum circuit.
In the second part of this chapter, we have explored such an idea by designing and testing
the first multi-core quantum computer simulator. Through a curated implementation of the
communication layers, we have been able to test how controlling communication operations
might help to improve overall computing performance. We have done this through a QoS-
fashioned prioritization MAC protocol specifically designed for multi-core quantum inter-
core networks (see Section 6.4 and therein). By designing a MAC protocol focused on
computing improvement, we are effectively entangling quantum multi-core network design
with the knowledge of various layers of the multi-core quantum architecture following the
constant call in this thesis for a co-design approach. In the post-NISQ era, when resources
in QC will be less scarce, we might go for abstracting lower and upper layers for a more
robust design, but that is a luxury that only high-performing and well-established systems
can afford.

In the following, we detail our advances in such quantum traffic characterization by
providing a spatiotemporal analysis of inter-core quantum networks, which allows us to
assess the impact of the quantum algorithm, mapping process, and architecture on the
actual execution. Our results suggest that conscious design and optimization of offline and
online network management (such as the communications control layer design we present
also here) in multi-core quantum architectures may help to solve current issues in the amount
and distribution (over time and space) of inter-core quantum data transfers.

6.1 Characterizing the Spatio-Temporal Qubit Traffic within
multi-core Quantum Computers

The first step to this co-design approach is to perform traffic characterization. To this aim,
in the following, we present a technique to perform a spatio-temporal analysis of the traffic
from quantum circuits running in multi-chip quantum computers. Specifically, we focus on
the qubit traffic resulting from operations that involve qubits residing in different cores, and
hence quantum communication across chips, while also giving importance to the amount of
intra-core operations that occur in between those communications. Using specific multi-core
performance metrics and a complete set of benchmarks, our analysis enables us to develop
network strategies for improving multi-core quantum computer performance, such as the
communications control layer design we present in Section 6.4.

6.1.1 Using traffic analysis for performance analysis

In classical multi-core computers, the design of its internal NoC has become of extreme
importance due to its impact on the performance of the entire processor. Since the design
of any network requires an understanding of the traffic it needs to serve, considerable efforts
have been spent over the years to characterize multi-core systems and the applications that
run on them.

Early works by Soteriou et al. [230] and Barrow et al. [231] analyzed a variety of mul-
tiprocessors between 16 and 32 cores running standard benchmark suites such as SPEC or
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PARSEC. In the former, the temporal burstiness, spatial hotspotness, and source-destination
distance were studied, whereas, in the latter, the focus was more on analyzing the memory-
sharing patterns leading to such traffic characteristics.

Subsequent studies pushed the analyses to larger systems up to 64 cores and delved
into particular aspects, such as the time-varying characteristics of the traffic [232], which is
often periodic as analyzed in [233]. This is due to the iterative nature of most algorithms
running in multiprocessors, which further suggests that traffic is predictable. Further, the
work in [234,235] focused on multicast traffic only, demonstrating that such a subset of the
workload is also bursty and predictable.

These workload characterization studies had several impacts on the NoC field. In
particular, they allowed to:

• study aspects such as the correlation between particular traffic characteristics and
on-chip network congestion [233],

• create synthetic traffic generators better reflecting real workloads for the evaluation of
NoC designs [230,232,235], and eventually,

• guide the design of improved topologies, routing policies, or congestion control mech-
anisms at the chip scale.

A pertinent question is then whether a similar approach can be used to characterize the
workload of quantum processors. Before answering that question, though, it is important
to see the main differences between both worlds. In classical shared-memory architectures,
most of the traffic is an implicit consequence of the memory accesses produced by a multi-
threaded application and, hence, very hard to infer from compiled code. On the other hand,
quantum traffic in multi-core quantum communications comes from very well-known (and
in principle controllable by design) sources, i.e. the quantum circuit being executed, the
architecture topology we are using, etc. Moreover, communication primitives are explicit in
the compiled code so that the traffic becomes not predictable, but rather known beforehand.
Another difference is that due to the no-cloning theorem, it is hard to envisage the need for
multicast communication at least resulting directly from the need to move the quantum
state of qubits. Other than that, the metrics used in classical computing or the insight
gained through analysis of its workloads, such as the iterative nature of communication, can
still be useful in the quantum world.

6.2 A qubit traffic analysis software tool

Building a tool for analyzing traffic during the execution of quantum circuits in multi-core
quantum architectures calls for firstly understanding where the traffic comes from and what
are the main sources and stakeholders of traffic during the whole process.

In a generic multi-core quantum platform, qubits are constantly moving around. Indeed,
whenever two distant qubits (even if they are on the same core) are to be operated by
means of a two-qubit gate, they must be moved to adjacent positions. This implies that
quantum circuits involve constant qubit traffic, both in and between cores (you can go
back to Section 2.1 to review this idea). To showcase how this affects computation and
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Figure 6.1: Qubit traffic in multi-core quantum architectures. a) Inter-core traffic, by
pairs of communicating nodes, b) intra-core operations (qubit gates) per core, c) distribution of the
execution time in computing and communicating in Cuccaro adder scaled in multi-core architectures.
Observe the small amount of time in which computation and communications are allowed to be done
in parallel.

communication distribution among cores, in Figs. 6.1a and 6.1b a simulated example based
on a real quantum circuit is shown: specifically, the aggregated node-to-node and intra-node
traffic of a sample execution of the Quantum Fourier Transform (QFT) circuit of 128 qubits
on an 8-core platform with 16 qubits per core. Observe the high total count of teleportations
among cores, and the existence of some hotspots, attracting most of the communication and
computation (cores 0 and 1).

In addition, inter-core communication is slower than intra-core communication opera-
tions: latencies are from 5× to 100× longer [14, 51]. This, together with the generally high
dependency between gates, leads to almost idle execution intervals following high-intensity
ones, as well as low parallelism between computation and communication operations. In the
same example as before, see in Fig. 6.1c the time distribution of computation (execution
of qubit gates) and communication (teleportation operations) when scaling Cuccaro adder
circuit in multi-core architectures. Most of the time, the dependencies present in the cir-
cuit make the processor idle while waiting for teleportations to end (in the example, only
during about 10% of the execution are there simultaneous computation and communication
operations).
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Figure 6.2: Flow diagram of the qubit traffic analysis tool

Therefore, knowing that all this communications overhead impacts the reliability of the
computation, we would desire to minimize these movements and equalize the traffic. Let us
quickly review the three main stakeholders involved in traffic generation and control:

• The quantum circuit. The number and time-wise distribution of two-qubit gates
will impact on the qubit traffic during execution.

• The processor’s topology. A scarcely connected processor leads to a higher commu-
nications overhead (in waiting times due to bottleneck links) when mapping two-qubit
gates into the circuit. In particular, in a multi-core scenario, the lower the ratio of
the number of qubits per core to the number of cores, the higher the need for costly
inter-core qubit communications.

• The compiler algorithm (mapper and scheduler). When compiling the quantum
circuit into a physical platform, optimizations can be applied to allow for minimizing
the traffic overhead.

Therefore, we have developed a software tool that, given a quantum circuit and a
target many-core quantum platform, allows us to extract the qubit traffic by tracing all
qubits along the execution and registering all the gates they participate in and the moves
they are involved in.

The process, graphically explained in Fig. 6.2, consists on the following steps:

1. generation of the quantum circuit with the corresponding qubit input length,

2. compilation of the quantum circuit on the target platform, always having the same
number of physical qubits as the qubits involved in the quantum circuit and the re-
quired number of cores, and

3. parsing of the resulting cQASM code in order to obtain the trace of each of the qubits.
That information may be used for analysis purposes in studying traffic burstiness,
hotspots, and other related metrics.

6.2.1 Extending the Qmap mapper for OpenQL

In order to evaluate the communication costs, we have mapped the previously presented
benchmarks into different multi-core quantum architectures. To this purpose, we used the
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OpenQL quantum programming framework [82] and the Qmap mapper [27] embedded in it.
In this work, we have modified the Qmap mapper, which is meant for single-core resource-
constrained quantum processors, and extended it to make it compatible with multi-core
architectures following a proposal from Baker et al. [14]

The main modifications are the following:

1. Together with the definition of each core’s description (gate latencies, qubit connectiv-
ity constraints, supported operations, etc.), the configuration file includes the topology
specification of the multi-core architecture (how many cores, inter-core connectivity,
and number of qubits/core) as well as the inter-core communication latency.

2. During the initial placement, a single core can be assigned multiple qubits.

3. An inter-core qubit transfer operation has been defined and is inserted during the
routing process when necessary (i.e. inter-core operations).

The modularity of the OpenQL library, with the integrated QMap mapper, has allowed
us to develop a many-core specific module, including the definition of the architecture, with
the already named assumptions and restrictions, and the teleportation gate.

6.2.2 Looking at a quantum circuit in a different way

Seeing the execution from this perspective gives us some insights into the performance of
both the algorithm itself and the mapper, as we may easily observe how strong dependencies
that block execution are dealt with, the efficiency of the overall execution, idling periods,
distribution of the job among the available cores and qubits, as well as analyzing the “life”
of any qubit along the execution.

Let us analyze a single example with our tool to see how these things may be observed
and analyzed. We will use a small example for better visualization: Grover’s main routine
for 16 qubits running in a 4-core platform (4 qubits per core). In Fig. 6.3 we present
some graphical views of the execution to help us in the analysis. See in Fig. 6.3a the
distribution of gate executions (in red) and teleportations (in white) versus the idling times
(in black). The x-axis is the timeline of the execution (time goes from left to right) and the
y-axis corresponds to the physical qubits in the system (ordered by core), i.e. the physical
“placeholders” where the quantum states are stored. The amount of dependencies among
operations involves a high execution inefficiency, as most of the time qubits are idle, waiting
for a single operation (either a quantum gate or a teleportation) to finish. The qubits in
the bottom-most core are clearly accumulating the result and do the most computation
and communication. However, while looking at physical qubits is helpful for going after
hot cores and qubits that are concentrating the most operations and communications, it is
not as advantageous for analyzing how the qubit and gate dependencies are causing these
inefficiencies.

Hence, let us now look at Fig. 6.3b, where the y-axis is now the virtual qubits (i.e. the
quantum data entity): it is much easier to see the logical operation of the algorithm more
clearly. Now we can observe the dependencies better and can differentiate virtual qubits
that are expected to last with a coherent state for almost all the computation (e.g. qubit
9), whereas others are almost of no use (e.g. qubit 15). This shall be helpful for going
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Figure 6.3: Execution trace of Grover’s main routine for 16 qubits. a) on physical qubits
and b) on virtual qubits. Computation, communication, and idling times are represented in red,
white, and black colors respectively.

back to the original circuit and looking for disentangling core dependencies that hold the
entire execution back, checking which physical topology could fit better the algorithm, or
establishing an ideal target qubit coherence time that might withstand the requirements of
the algorithm (or simply mapping longer-lived virtual qubits to the best behaving physical
qubits in the platform).

These and other conclusions can be extracted using our tool, making it easier to give
design guidelines for the algorithm, the architecture designer, and the compiler engineer.

6.3 Experimental results on quantum algorithm traffic analy-
sis

In the previous section, we have focused on analyzing a single execution, seeing that several
straightforward conclusions can be extracted. However, by aggregating these qualitative
observations into numerical metrics and, in the future, using DSE techniques, we can obtain
even more interesting insights.
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6.3.1 Simulation set up and architectural space

In this section, we have restricted the exploration to a smaller set of examples, which can
be enlarged for a wider analysis in future work.

In particular, we have used multi-core architectures with the following fixed character-
istics:

• The cores are interconnected via a classical network for exchanging classical messages
and measurements.

• All nodes are connected via optical channels to an EPR pair generator instrumental
for qubit teleportation.

• The teleportation operation is assumed by the compiler as deterministically time-
bound (set to 1000 ns, around 4 times more than a SWAP gate, in order to stress
the system, as suggested in the results of our analysis in Section 7.1.5) , and always
performed as a SWAP operation, i.e. the two qubits involved are swapped after the
teleportation operation.

• The connectivity inside every core is full, i.e. any qubit can perform a 2-qubit gate
with any other in the same core. This is done to “isolate” in the analysis the inter-core
communication from the intra-core computation, which does not involve extra-SWAPs.

• The rest of the gate and qubit parameters are taken from recent superconducting qubit
technology used in [130] and [228].

The exploration has been done by analyzing various algorithms (both real applications
and random benchmarks, see below) and different platform configurations, varying the num-
ber of cores and number of qubits per core. In all cases, the circuits compiled in a given
platform occupy all physical qubits available.

6.3.2 The selected algorithms

As benchmarks for assessment of communication overhead for multi-core architectures and
their scalability, we opted for several algorithms that have the potential to show compu-
tational advantage when run on quantum in comparison to classical computers, such as
QFT, Grover’s search algorithm and Cuccaro Adder. These algorithms, however, have a
specifically defined structure that makes them scale with the number of qubits in a steady,
sometimes even linear way (e.g. Grover’s), in terms of their parameters like the number of
gates or two-qubit gate percentage. For that reason, we additionally used randomly gener-
ated algorithms as well as QV circuits [236], where we could have more influence on their
parameters for any size of the circuit, and therefore probe our architecture in a worst-case
scenario. The random algorithms we used were generated with uniformly chosen gates from
a limited gate set with a uniform distribution of those gates among qubits. QV circuits
are used in general for probing even single-core architectures, as they are the most complex
version of a synthetic circuit with the highest two-qubit gate density (forces all qubits to be
engaged in a two-qubit gate in each circuit layer).
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Figure 6.4: Average number of teleportations per timeslice in all benchmarks assuming 8 qubits
per core and either 8 or 16 cores.

6.3.3 Space-time explorations

Following the literature on traffic analysis for multi-core scenarios (see Section 6.1.1), we
have performed our exploration of the selected benchmarks in a three-phase fashion: first,
studying the temporal distribution of the quantum data transfers; then, focusing on their
spatial distribution, and finally, summarizing both analyses in a spatiotemporal joint explo-
ration.

For the temporal traffic distribution, we have studied the inter-core communication
trends for the different algorithms. In Fig. 6.4, the moving average of the number of
teleportations per timeslice in every circuit, together with the overall mean, is plotted for
all algorithms. Two different cases are studied (8 and 16 cores, both with 8 qubits per
core). Observe that both Cuccaro and Grover suffer from a high inter-core data transfer
burst at the start, which may easily stress the system and cause a bottleneck on loaded or
poorly connected architectures. Both of them, together with QFT, have a quite low average
number of concurrent teleportations (around 1), which is mostly related to the dependencies
among operations in the code, forcing an almost linear, non-parallel, execution (as already
observed in Fig. 6.1). Random and QV cases are good to stress the system, as they have
more relaxed dependencies and allow for a higher teleportation rate. This communications
requirements scale with the number of cores: this does not seem to be the case for Grover,
Cuccaro, and QFT, which may facilitate scaling on large multi-core architectures.

For the spatial traffic analysis, i.e. how evenly is the overall traffic distributed among
the cores, we have focused on whether the compiled circuit creates hotspots (cores attracting
most communications). Hotspotness may be a natural consequence of most circuits, that
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Figure 6.5: Inter-core traffic as the ratio of the number of teleportations for every pair of commu-
nicating nodes over total teleportations in all benchmarks assuming 8 cores with 16 qubits per core.

e.g. concentrate the result on a given variable, but it results in network congestion. In
Fig. 6.5, the inter-core traffic is presented for all benchmarks, for the 8 cores, 16 qubits
per core case. The random and QV cases are quite uniform, as expected, while that is also
the case for QFT. Being a core part of some key quantum algorithms, avoiding network
bottlenecks in QFT on multi-core architectures is relevant for their overall computational
performance. Still, some minor hotspots (cores 0 and 1) can be detected, and probably
further optimizations in the compiler could fix that. Grover and Cuccaro present a very
similar behavior, which most probably has to do with the initial burst and flaws in the qubit
mapping.

Finally, a joint spatio-temporal analysis is performed, using results as plotted in Fig.
6.6. A wider exploration is performed, for a core count ranging from 2 to 16 cores (8 qubits
per core). We have used covariance (standard deviation σ over the mean) of both spatial
and temporal traffic. For the spatial hotspotness we have used the number of teleportations
per core over the whole execution, and for the temporal burstiness, we have used the number
of teleportations per timeslice. Observe that there are two different regions: random and
QV have low burstiness, while the rest are on the high burstiness end. Burstiness results
in network inefficiencies due to unexpected bottlenecks and calls for overdimensioning the
network capacity. See also that in general, the spatial hotspotness is specially high for
Cuccaro, and that Grover scales quickly while QFT does it in a more controlled way.
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Figure 6.6: Summary of burstiness and hotspotness of all the evaluated benchmarks and core
counts assuming 8 qubits per core.

6.3.3.1 Conclusions

In this exploration, we have substantiated the interest in qubit traffic analysis for efficient
multi-core quantum architectures and presented a tool for carrying out this characteriza-
tion. We have showcased how spatio-temporal analysis may help in quantum algorithms
classification, and optimization of compilers for multi-core quantum architectures, as well
as in highlighting the communications requirements for a given application and target ar-
chitecture. For instance, we have been able to prove the good conditions of QFT’s main
routine for scalability, while Grover’s search could be improved (either in compilation time
or in the design of its initial phase).

6.4 In pursuit of online quantum computation improvement
via communication protocols

In the first part of this chapter, we have been able to study and analyze the qubit traffic
behavior of specific quantum circuits for a variety of multi-core quantum architectures.
Detecting high hotspotness or burstiness provides us with a valuable source of information
for improving multi-core compilers or exploring the most fitting architectures for certain
algorithm structures. However, it is basically an a posteriori design feedback. This implies
slower design improvement times, poor scalability, and adaptability to generic algorithms or
architectures, as the problems detected might be very well dependent on the characteristics
of the specific architecture or algorithm under study.

The goal of the rest of the chapter is to investigate whether it might be possible to
implement a system that is able to detect and improve those communication inefficiencies
while the execution is ongoing for an overall performance enhancement.

It might be difficult to precisely equalize temporal bursts or spatial hotspots, but since
we know that any improvement of the communication latencies impacts directly quantum
computational performance, the goal will be to design a communications control layer fo-
cused on enhancing transmission efficiency in a QoS fashion as a strong foundation to build
on future iterations.
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We have already shown how the main bottleneck in the multi-core architecture used
for our previous studies (see Fig. 5.5) resides in the entanglement / EPR pair distribution.
This distribution process can be seen as a channel reservation or as a shared medium access:
whenever a pair of nodes want to communicate, they have to ask the EPR pair generator for
an entangled pair that enables them to start a teleportation. This request implies a waiting
time, that depends mainly on the efficiency of the EPR generation process and on the size
of the waiting queue (i.e. the amount of other node pairs waiting for an EPR pair).

What if, instead of attending those requests in a FIFO fashion, we look at some prop-
erties and details of each of those requests in order to prioritize those operations involving
qubits that might need faster communication due to, e.g. being a computational hotspot
or having suffered higher amounts of decoherence due to longer uptime? In this way, we
would place our QoS communications control system at the link layer, precisely at the en-
tanglement distribution. In fact, we could properly call this a MAC protocol, in charge of
distributing entanglement, i.e. letting the nodes in the network access the medium.

6.4.1 Existing quantum MAC policies

Quantum communications have only recently become practical, and hence most of the ex-
isting research is based upon lab experiments on quantum-aided classical secure communi-
cations [36,217,218], entanglement links on quantum chip [34,38], or the foundations of the
QI [5, 39, 41, 143, 148]. However, only a few studies exist that investigate control layers and
protocols for improving quantum communications. In particular, two almost simultaneous
recent papers developed a full quantum network stack with very similar approaches [42,43].
Both also proposed several communication protocols.

In [42], the network stack they propose is divided into the physical layer (for the physical
connection among nodes), connectivity layer (in charge of generating entanglement among
nodes), link layer (for generating graph states of several nodes in the network), and network
layer (for interconnection of several graph states). In this way, they base their architecture
on multipartite entanglement for improved reliability. Apart from networking protocols
for routing entanglement and some proposals for improving the reliability of the network
quantum state in the presence of node failures, they introduce some auxiliary protocols for
entanglement creation and distribution, but none of them include a QoS perspective, neither
a mechanism for pure MAC operation. As highlighted in [43], these high-level protocols do
not take into account the impact of classical control.

The work presented in [43] represents an outstanding effort for formalizing an overar-
ching proposal attached to a practical technology, aiming at turning experimental work on
entanglement generation and distribution into a well-defined service for the future develop-
ment of the QI. Apart from a different approach to the full network stack, it includes two
main protocols: MHP (Midpoint Heralding Protocol), for entangled EPR pairs creation at
the physical layer, and QEGP (Quantum Entanglement Generation Protocol), placed at the
link layer. Both protocols are interrelated in an elaborated scheme including a control layer,
quantum memory management, fidelity estimation, and, very interestingly, a scheduler that
may implement different scheduling strategies for prioritizing entanglement requests depend-
ing on its final application. We could consider this a first step towards a quantum MAC
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protocol, though it is limited by the static definition of classes of traffic, with no online
information extracted for a fine-grained selection of the priorities.

6.4.2 Design and implementation of a simulated fully-fledged multi-core
communications network

In order to be able to develop and test our own communication protocols, we need a simulator
that lets us tweak and design every aspect of the qubit transmission. For that, we have based
our own multi-core quantum computer simulation tool upon the NetSquid simulator already
used in Section 5.3.4 [70], by implementing on top of it all the needed components and
control layers.

This work has a value of its own, as it will let us further explore these architectures
while no experimental devices are available. In the following, we will detail the system
arrangement and the global execution flow. In the next section, we will further enter into
the details of the design choices and communications protocols we have implemented in the
simulator.

6.4.2.1 The multi-core system framework

Following our architecture presented in the previous chapter (see Fig. 5.5), we assume
a system composed of several identical quantum cores that are able to perform pair-wise
qubit transfers among the nodes by using a shared EPR pair generation device. A layered
diagram of our design for the multi-core architecture can be seen in Fig. 6.7. All nodes are
connected to this EPR pair generator via direct photonic links. They are able to classically
send messages to any other node via an all-to-all classical network interconnecting them.

Every quantum core has the same number of physical qubits. Two of these qubits have
a specific communications role, while the rest are exclusively used to compute. We assume
all-to-all connectivity within the quantum core, i.e. all qubits can inter-operate directly with
any other qubit in the core. The two communication qubits are used in the teleportation
qubit transfer as buffers for the EPR photons and the temporary qubits that are generated
during the process.

The EPR pair generator is a network node composed of three main devices: the physical
layer EPR factory, an input optical switch receiving the EPR requests, and an output
optical switch for routing the generated EPR pairs. Following the suggestion in [43], this
communication midpoint is also in charge of coordinating the communication control layer,
as we will explain shortly.

All the elements in the system are modeled including realistic operation delays, classical
and quantum noise in the optical links, qubits, and gate operations. These delay and noise
models can be customized in order to represent different technologies and scenarios. At the
present time, we have not yet included yield effects and variability on qubit fabrication, nor
any type of qubit operation crosstalk.

6.4.2.2 Execution flow

The global execution flow of our simulator is shown in Fig. 6.8. Following the logic from
NetSquid, each quantum core, as well as the EPR pair generator, is a network node having
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Figure 6.7: Layered diagram of the designed architecture for the multi-core computer simulator.
Observe that each processor has its own control agent for the code execution. The communications
control logic is placed at the EPR pair generator, where the requests queue stores the pending
entanglements to be served. The physical layer (divided into classical and quantum) and the link
layer form the multi-core network layer.

its own control agent. We assume that the whole multi-core architecture is single-threaded,
i.e. it is fully devoted to running in isolation a single quantum circuit. Using our adapted
version of OpenQL for multi-core architectures, the quantum circuit is first compiled. The
output, which is a monolithic code with references to all nodes, is further parsed and divided
into disjoint code chunks, each one exclusively containing the code referring to a single
node while keeping the inter-core qubit transfer instructions in both affected nodes. The
timing information from the compiler schedule is discarded, as within the simulator the
synchronization between nodes and gate dependencies are kept dynamically via handshakes
and the node control logic.
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Each code chunk is assigned to a different node, and all of them start executing their
instructions. The quantum processor logic is directly in charge of intra-core qubit initial-
ization and other single- and two-qubit gates. Whenever teleportation is needed for qubit
transfer, the protocol in 6.4.3.1 is executed. The measurements and other information are
signaled to the control layer for execution logs and results.

6.4.3 A QoS-enabled communications control layer

In order to explore an online control mechanism for inter-core quantum communications, we
need to know and monitor in detail every aspect of these qubit transmissions within our sim-
ulator. In the present section, we will describe the quantum teleportation implementation,
the EoDGen (Entanglement on Demand Generation) protocol, and the implementation of a
MAC protocol based upon QoS and qubit metrics.

6.4.3.1 The quantum teleportation implementation

As the main quantum communication primitive for inter-core qubit transfer in our simulator,
hereafter we will explain some details of its implementation.

Contrary to the assumption taken in [172], where they consider entanglement a con-
tinuous resource, we have preferred to keep it as an on-demand system, attending to the
currently achievable entangled photon generation rates. Moreover, as a way to guarantee
efficient qubit memory management, we have assumed that every teleportation transfer im-
plies a SWAP operation. That is, the two qubits involved are swapped, to avoid the need for
a high amount of ancilla qubits in quantum circuits with unbalanced transmissions between
nodes.

Whenever a node has to execute a qubit transfer, it starts the teleportation SWAP
process (see also Fig. 6.9). Given that the qubit transfer can be characterized with the
qubit pair ⟨q0, q1⟩, where q0 is the globally unique ID of the quantum state to be transferred
from node A to node B, and q1 is the globally unique ID of the quantum state which will
be swapped with q0, the teleportation protocol proceeds as follows:

1. Cores synchronization handshake. First, core A (the initiator node) sends a
classical message of type CONNECTION_REQUEST to the core B, identifying itself as
the initiator node and attaching the destination qubit ID q1. When core B is ready
for the transmission (it has finished the executions of all previous instructions up to
the symmetric teleportation operation ⟨q0, q1⟩), it responds to core A with another
classical message, labeled CONNECTION_OK. This need for synchronization is solved in
the proposal from [43] with a min_temp parameter for avoiding the early start of the
entanglement distribution. Using a handshake is a more flexible and distributed way
to achieve this. After the handshake protocol is successful, both cores are ready to
proceed with the teleportation.

2. Entanglement request. The initiator node, once receives the CONNECTION_OK mes-
sage, sends a EPR_REQUEST to the EPR generator in order to ask for an entangled
photon pair. This control message has to contain, at least, the following fields:

• sender_ID - the initiator node ID.
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• connect_to_ID - the destination node ID.

• timestamp - time instant when the request was made.

This request is processed by the EPR generator logic, which confirms the request with
an ACK message, and eventually (depending on the number of requests in the queue,
the physical entangled photon rate, etc.) it sends the two photons of the entangled
pair to cores A and B.

3. Teleportation pre-processing. As explained in the previous chapter, the telepor-
tation follows by applying, at the initiator node (core A), a CNOT gate between the
communication qubit qCOMM and q0, and a Hadamard gate on q0. After that, both
qubits are measured, and the classical result is sent to core B.

4. Teleportation post-processing. As soon as the core B receives the message with
the pair of classical values from core A, it conditionally applies an X gate and a Z gate
on the communication qubit qCOMM at this side, completing thus the qubit transfer.

5. Qubit swapping. To balance the communication operations and facilitate memory
management, the communication qubit qCOMM (now containing q0) is swapped with
the second ancilla communication qubit qAUX , finishing thus the teleportation and
preparing the symmetric operation to complete the teleportation SWAP.
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6. Symmetric teleportation. Now it is time for core B to transfer the quantum state
q1 to core A (into the qubit previously containing q0). The process is the same as in
steps 2–4. As soon as q1 is ready, qAUX state is moved into it to finalize the process.

6.4.3.2 The Entanglement on Demand Generation protocol

Having a single EPR generator involves needing to be very careful with EPR requests man-
agement, as this node becomes the main bottleneck. Although this assumption is realistic
to this day, it is a hard constraint that will need to be confronted with more flexible alterna-
tives. However, it also poses an interesting communication problem with shared resources,
time constraints, and a noisy environment. In the following, we describe the protocol we
have designed for handling this issue in a flexible and efficient way.

As soon as they are received, all EPR requests are stored in the global requests queue,
and the ACK message is sent to the initiator node. If the queue is found to be empty, the
EPR generation control logic triggers the physical layer EPR factory in order to start the
generation. We have chosen this behavior instead of continuously triggering the factory to
facilitate cooling times and thus improve generated entanglement. It is also different from
what is proposed in [43]: their midpoint heralding protocol is in charge of polling the link
layer to know whether there is a need for EPR pairs, but this is mainly due to the different
approach in dividing the protocol among the different layers.

Whenever an EPR pair is generated, the EPR generation control logic asks the internal
scheduler which of the EPR requests in the queue has to be served first, depending on the
implemented policy. This is also different from the QEGP proposal from [43], though we
follow their idea of designing the communication midpoint as the master of the requests
queue, centralizing also the scheduling mechanism. As soon as the request has been served
to both involved nodes, the request is popped out of the queue.

If the queue remains non-empty, then the EPR generation control logic triggers the
physical layer EPR factory in order to start the generation again.

6.4.3.3 Managing EPR requests queue for improving QoS: the LifeEstimate
policy

Our modular design lets us control the qubit traffic in a flexible way, as we have a scheduler
right at the key point of any inter-core communication: the EPR pair distribution.

By simply designing the scheduler policy, we are in fact enabling a MAC protocol that
controls traffic prioritization. For instance, a FIFO policy (i.e. no prioritization) could
be used as the base case. Nevertheless, we could instead use some parameters from every
request for reordering the queue.

To do so, we can extend the EPR_REQUEST fields in order to collect some context infor-
mation on the qubits, the nodes, or the circuit itself.

A first approach, following the work in [43], would be to add a traffic class field, and
therefore favor any specific type of traffic when selecting the EPR request to be served, by
simply assigning a higher priority (using a scalar) to the class(es) to be prioritized.

However, our approach enables us to add dynamic information to the equation: what
if we add data about the number of operations performed, the number of operations still to
go, the lifetime... of the affected qubits?
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Reordering a queue implies lowering the expected waiting time for those elements being
favored: in our scenario, time is equivalent to added decoherence, hence we could try to
prioritize those requests involving qubits that have suffered more from decoherence. This can
be estimated by looking at the sources of decoherence: i) the number of quantum operations
applied to that qubit and ii) the time already passed since the qubit was initialized. Then,
we need to track that information to keep it up to date, as well as add those items to the
request message.

To do so, we have modified the system control layer to keep, for every qubit, three items
of information, and have included them in the EPR_REQUEST fields:

• The number of operations already performed on each qubit, attached to the request
as ops_done_q0 and ops_done_q1.

• The number of operations still pending for each qubit, attached to the request as
ops_to_go_q0 and ops_to_go_q1.

• The time instant when the qubit was initialized, attached to the request as init_-
timestamp_q0 and init_timestamp_q1.

Using this information, we have designed a scheduling policy for our QoS-centered
quantum MAC protocol, which we have called “LifeEstimate”. It prioritizes the pair of qubits
that are expected to have the largest overall lifetimes. The estimation of their lifetimes θ̂T
is obtained as follows:

θ̂T =
∑
q0,q1

θ̂∗T + (TNOW − Tinit) (6.4.1)

where TNOW is the current timestamp, Tinit is the time instant when the qubit was initial-
ized, and θ̂∗T is the estimated time left, which is computed from the number of operations
to go (NOPS

∗) and the estimate for the average time per operation (TOP ):

θ̂∗T = NOPS
∗ · TOP (6.4.2)

being TOP the result of dividing the number of operations already performed on that qubit
by its lifetime up to this moment.

It is now time to test this queue-prioritization MAC protocol proposal on our simulator
to check whether it actually is able to improve the overall performance.

6.4.4 Experimental results: facing the trouble with the dependencies
dead-lock

In order to test the effect of applying qubit traffic online control through a prioritization
policy for MAC, we have thoroughly run tests on various architecture configurations on top
of our multi-core quantum computer simulation.

In particular, we have chosen to use randomly generated algorithms with some mod-
ifiable parameters that could let us force the system into extreme scenarios. As we have
observed in Section 6.3.3, random algorithms provide us with dense traffic while having low
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hotspotness and burstiness (see Fig. 6.6). This favors our testing by focusing the com-
munications issues in a constant high throughput among all pairs of nodes, hence in the
bottleneck at the EPR pair generation.

To allow for high variability in the random algorithm within the circuit test set (i.e.
avoiding the effect of the law of the large numbers), each random circuit sample is defined
by four sets of random variables:

• Init time. Each qubit in the circuit has a random init timestamp, to allow for
varying qubit lifetimes within the same circuit.

• Idle state probability. Each qubit in the circuit will be in an idle state (no
operation) at a given circuit cycle with probability p_idle.

• Two-qubit gate probability. Each qubit in the circuit will be executing a two-
qubit gate with another qubit at a given circuit cycle with probability p_2qubitgates.
The two-qubit gate probability is the same for all qubits in the same core.

• Inter-core gate probability. Each qubit in the circuit will be executing a two-
qubit gate with a qubit from another core (i.e. executing a teleportation SWAP) at
a given circuit cycle with probability p_2qubitgates * p_intercore. The inter-core
gate probability is the same for all qubits in the same core.

Following the execution flow as explained previously, we partition this random circuit
(which makes use of all available qubits in the multi-core quantum processor) among all
cores, and let it execute completely. For the comparison among different traffic prioritization
policies of the MAC protocol, we run the exact same random circuit samples with each of
the policies on the test.

In order to be able to measure the performance of the computation, we measure all
qubits at the end of their respective lifetimes and collect all values. In order to be able
to check the fidelity of this result, we implement another trick: every single-qubit gate and
two-qubit gate does not affect the quantum state, as they are implemented as logical identity
gates. However, the decoherence and gate errors are indeed applied. Therefore, we can test
every qubit fidelity by comparing the measured value with the initial value. We then define
the overall circuit fidelity as the arithmetic mean of the fidelities of all qubits.

After setting up these experiments, we have run a wide set of them, for architectures
with up to 16 cores with 1024 qubits per core, and also some extreme cases of up to 1024
single-qubit cores. We have explored also different decoherence and gate error parameters,
ranging from current experimental values (e.g. values from Sycamore quantum processor)
to some orders of magnitude lower figures. The EPR pair technological parameters have
also been explored, varying its final entangled photon rates. The explored variable space is
summarized in Table 6.1.

Despite the fact that this exploration is wide enough, and after reviewing and repeating
the simulations, checking again the system, and looking for any point of failure of the
system, we have found that no improvement is made in the system performance when using
a prioritization policy as a MAC protocol for the inter-core quantum communications. See,
for instance, Fig. 6.10, where a representative sample of the actually explored space is shown.
In particular, two different scenarios of varying EPR generation rates are shown, each of
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Table 6.1: Notation, symbol definitions and values used in simulations for the present section, with
reference to values from [81,143,227,237]

Notation Meaning Value (range)

NCORES Number of cores/chips 1 - 1024

NCORE
Q Number of qubits per chip 1 - 1024

NQ Total number of qubits in the quantum computer NCORES ·NCORE
Q

L Length of the quantum circuit in execution cycles 100

Tinit Init time per qubit ∼ U(0, L)

p_idle Idle state probability ∼ U(0, 1)

p_2qubitgates Two-qubit gate probability ∼ U(0, 1)

p_intercore Inter-core gate probability ∼ U(0, 1)

REPR EPR pair generation rate 102 − 108 Hz

e1 single-qubit gate error probability 0.0 - 0.015 [81]

e2 two-qubit gate error probability 0.0 - 0.036 [81]

er measurement/readout error probability 0.0 - 0.031 [81]

T1 Amplitude damping for the memory noise model 2 · 103 − 2 · 1018 [237]

T2 Phase damping for the memory noise model 103 − 1018 [237]

them on an increasing number of cores, each with 128 qubits per core. Each plot represents
the change in overall fidelity when increasing the qubit coherence time (T2), comparing FIFO
and LifeEstimate policies.

With the naked eye, these bar plots show no difference between both, but even when
looking at the difference (LifeEstimate - FIFO) on a greater scale (green bars and green
axis), that intuition is confirmed: with our current parameters and on the whole design space
explored, no improvement can be said to exist when applying prioritization to teleportation
operations involving qubits with longer expected lifetimes. It is to be said that we have
explored variations of the LifeEstimate policy, but the same results were extracted.

In order to figure out what the matter was, we analyzed in detail the simulation traces,
coming out with a compelling finding: if we look at the comparison between the total exe-
cution time and the total number of operations (quantum gates) when operating a circuit
under FIFO policy and LifeEstimate policy, we observe that even our proposed policy is ef-
fectively reordering many times the queue, the average amount of time spent in the quantum
operations stays the same, and consequently the average qubit lifetime remains unaffected.
That is, the qubit that has been favored by the MAC protocol has to spend that saved
waiting time later on. We can observe that from the global circuit perspective in Fig. 6.11:
the average time per operation (including teleportation transfers) remains the same when
applying LifeEstimate. The same conclusion can be extracted when looking at the total
circuit execution time.
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Figure 6.10: Comparing LifeEstimate and FIFO policies for queue prioritization on the proposed
MAC protocol. All the scenarios show no visible trends nor differences in overall fidelity between
both policies. The green bars and axis represent the difference (overall fidelity using LifeEstimate
minus overall fidelity using FIFO) at a larger scale.

Where is this persistent blocking coming from? The qubit waiting times do not come
only from pending EPR requests: qubits are constantly waiting for other qubits. Remember
that the quantum circuit, like any orderly set of instructions, usually has some dependen-
cies among instructions that prevent some of them from being executed before others have
already been successfully done. Our random quantum circuits, and more specifically its
dependencies, behave as a tight crew from which no component can be separated. Even if
at a certain moment we could advance the execution of an operation (in our case, a tele-
portation), that will only imply swapping it with idle time that the involved qubits had to
spend anyway some cycles later. Eventually, all qubits will wait for the last operation to
finish: no qubit left behind.

In fact, applying priorities in a queue only improves the overall performance in several
cases:
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Figure 6.11: Performance comparison between LifeEstimate and FIFO policies in var-
ious scenarios. The black diagonal line in both plots is the identity line. a) Average time per
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• When working with clearly differentiated classes of packets/clients, we can indeed
locally provide better service to a certain class (at a cost for the lower priority classes),
as in Internet traffic QoS.

• when working with varying (and long) serving times (as in operating systems task
scheduling), where we interfere with the service to avoid starvation by implementing
some sort of fair share policy (time division, Round Robin, etc.)

• we have deadlines to meet, and therefore we can establish priorities based on them
(also used in task scheduling).

However, we are facing a scenario where we cannot establish different client classes (all
teleportations are equally important), the expected service times are the same for all of them
(the service is always a teleportation SWAP), and it is not evident to implement deadlines,
as we are in fact working always in an ASAP scenario (except for the init operations, which
we prefer to delay as much as possible).

Therefore, the proposed approach is not able to deal with dependencies. But all this
apparently useless experiment opens up the door for an enticing research line: the easiest
way to “break” dependencies in any computer is to allow for multi-programming. In the
first part of this chapter, we have looked at some circuits with their qubits idling almost
half of the time: we believe that “filling” those unused cycles with other quantum circuits
running in parallel will power up the scalability of quantum computers. In the case of
multi-core quantum processors, a MAC protocol at the entanglement distribution link layer
as the one we have presented will enhance the efficiency and overall performance of such a
multi-threaded system.
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Chapter 7

Scaling of Multi-Core Quantum
Architectures: A Simulation-based
Structured Analysis

We have already presented in Chapter 4 DSE, a powerful tool for exploring the design space
of multi-core quantum computers approach and its potential as a scalability-enabler for QC.
However, the analysis carried out in that chapter is limited to a behavioral analytical model
without realistic qubit error models nor any detail on specific quantum gates or quantum
communications technology performance. Nevertheless, it has served us to learn how such
exploration technique might help us in testing QC scalability as well as providing design
parameters and guidelines more fitting to each architecture and computing scenario.

In Chapters 5 and 6, we have been able to dive into each of the layers of the QC stack,
getting into the details of the inter-core communications, with enticing findings and conclu-
sions on its weaknesses and strengths. With this knowledge in the backpack, in this chapter
we aim at answering this thesis’ big questions, but now with the aid of fully-detailed explo-
rations based on our developed multi-core compiler and QC simulator. These explorations,
which take into account actual quantum circuits, runtime issues, and the advantages and
disadvantages of a variety of architecture configurations, as well as quantum noise models,
help us to provide experimentalists with design guidelines enabling them to build scalable
multi-core QC.

We have structured this chapter as follows. First, we have presented a detailed DSE-
based study on determining, for any given multi-core configuration, the threshold value for
the inter-core quantum communications latency, which, as we have observed in previous
chapters, is a fundamental piece for the success of multi-core quantum architectures. With-
out the need for a costly simulation, our analysis is carried out by comparing information
from compiled code for single- and multi-core quantum architectures. This study provides a
focused metric for benchmarking this development, which is still in its initial stage, helping
to optimize the technology push in the most efficient direction.

On the other hand, thanks to our development of a simulator specific to multi-core
quantum architectures (go back to Section 6.4.2 to revisit the details), in the second part
of this chapter we replicate the scalability analysis performed in the last part of Chapter
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4. This time, the analysis is run by means of a fully-fledged simulator, covering the full
QC stack, from the qubit to the application layer. This includes accurate quantum noise
models, actual quantum gates, quantum circuit execution, etc. In this way, we close the loop
of the thesis by highlighting the promising scalability design regions for multi-core quantum
architectures.

7.1 A communications-aware code-based approach

Developing efficient quantum interconnects for low-error high-rate qubit transfers is key to
enabling scalability of the promising multi-core quantum architectures. This has been suffi-
ciently remarked on by the conclusions of the two previous chapters. Avoiding bottlenecks
in quantum inter-core communications implies studying the trade-off between their implicit
overhead and the gain in the size of the algorithms that can be executed on them. Profiling
this design junction will help not only to determine the viability of multi-core computing
but also to characterize the decision threshold where the communications cost of distributing
quantum computation among several cores pays off.

Studies on this trade-off are available [14,66–69], although the different approaches are
centered in different specific goals: purely analytical study [66, 69] focused in compiler op-
timizations [14] or not comparing the many-core exploration with the baseline single-core
performance [67, 68]. In particular, none of them allows us to answer any of these key
questions: how fast should inter-core communications be in order to allow many-core archi-
tectures to supersede traditional single-core quantum processors? For a given interconnect
technology, which is the minimum architectural configuration (number of cores, number of
qubits per core...) that we need in order to pay off the communication costs?

This is the aim of the present section. We attempt to do so by performing a DSE of
the architectural and technological variables that configure multi-core quantum computers
specifically affecting this trade-off. We have used the OpenQL [82] compiler and QMap
mapper [27] for several random and real application benchmarks to compute their actual
computing performance for different multi-core configurations, comparing it with the tradi-
tional single-core results.

Let us now dive into some key items for the analysis: architectural assumptions and
performance metrics, chosen benchmarks, compilation framework, and problem formulation.
See in Fig. 7.1 a flow diagram of the design exploration process.

7.1.1 Modeling Assumptions

Multi-core quantum topology: We assume the quantum computer to be composed of
one or several interconnected cores, which could be compared to any current NISQ quantum
computer; that is, a computing core consisting of some tens or hundreds of qubits. In order
to keep the focus on the effect of inter-core communication, we have assumed all-to-all intra-
core connectivity, i.e. every physical qubit can interact with any other as long as they are
placed in the same core. As in [51] and [31], full connectivity is also assumed among the
cores, meaning that qubits placed in different cores are at “one hop” distance, as there is an
entangled pairs generator which is shared among all cores.
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Figure 7.1: Flow diagram of the evaluation framework used for the DSE

Inter-core communication: As in previous chapters, we have chosen quantum tele-
portation as the inter-core communication primitive. It is a firm candidate for this role
and has been already demonstrated with several technologies [142, 146, 148, 238]. Quantum
teleportation is based on the properties of entangled pairs of qubits, that are shared among
two entities and enable them to communicate a quantum state, through a few simple op-
erations and some classical communication, without the need to send the physical qubit,
hence increasing the success rate. You will find more details on quantum teleportation and
entanglement distribution in Section 5.3.

7.1.2 Communication overhead sources in multi-core quantum architec-
tures

The optimization task on quantum mappers (already explained in Section 3.4), which aims
at translating the hardware-agnostic quantum circuits to executable programs, has to deal
mainly with qubit-to-qubit connectivity constraints [29] through its main three steps (i.e.
initial placement, qubit routing and scheduling of quantum operations).

These mapping techniques can be applied and extended when scaling the architecture to
multiple cores as the connectivity among cores is also limited. In this case, virtual qubits can
be mapped to a physical qubit in any core. Ideally, qubits with a high degree of interaction
should be placed in the same core. When two qubits that are in different cores need to
interact, they will have to be moved to the same core. Therefore, multi-core architectures
require not only intra-core qubit movement operations (e.g. SWAP gates) but also inter-core
communication operations such as quantum teleportation or qubit shuttling.

Depending on the interconnect topology of the multi-core architecture, the restrictions
on inter-core communications will vary. As in the single-core case, this limitation will result
in an increase in quantum operations. In addition, inter-core communication is slower and
more error-prone than intra-core communication operations: latencies are from 5× to 100×
longer, and the error rates are on average 10× to 100× worse for quantum teleportation
than for two-qubit gates [14, 51, 57]. All of these overhead sources need to be analyzed as
they will substantially affect the algorithm execution and reliability of the final results.
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7.1.3 Selected Benchmarks

With the aim of evaluating the communications overhead in multi-core quantum architec-
tures and its potential for solving the scalability issue, we have used the QFT and Grover’s
search algorithm as benchmarks [14,16]. These benchmarks, however, have a specific struc-
ture and scale in a predefined steady manner, which limits our control over their parameters.
For instance, the number of gates for Grover’s algorithm scales in a linear manner with the
number of qubits, whereas its percentage of two-qubit gates (after decomposition) is around
30%.

In order to overcome this limitation, additionally we decided to use synthetically gener-
ated benchmarks in the form of random circuits. These can provide the necessary freedom to
explore algorithm parameters like the number of qubits, gates, and the percentage of two-
qubit gates mentioned previously. The importance of using the family of random circuit
benchmarks was pointed out by some previous works as well [14, 207–209, 239–241], which
also introduced various ways of generating them. They differ in type of randomness, shape
(width vs. depth), gate density per layer, etc. In our case, we opted for random circuits
that are generated by uniformly selecting gates from a predefined set and uniformly selecting
qubits (one or two qubits for single- or two-qubit gates, respectively) to apply those gates
on. Beforehand, we had to decide on the percentage of two-qubit gates, as this parameter
is the one that defines the amount of qubit interactions. We chose the two extreme values
of 20% and 80% to showcase the impact of communication.

For the compilation process, as in the previous chapter, we have used OpenQL [82] and
a modified version of the Qmap mapper [27] embedded in it, extended to make it compatible
with multi-core architectures following a proposal from Baker et al. [14].

7.1.4 Problem Formulation

We are considering multi-core architectures as an approach that may help to unleash the
QC potential, which is right now limited by the number of qubits of current processors.
In the present study, we are focusing on the trade-off between inter-core communications
overhead and the implicit gain in computational power (number of integrated qubits) in this
approach. For that, we need to formally define the metrics of interest for the DSE as the
first step for stating the DSE problem. You can revisit Section 4.3 for a detailed explanation
of how to correctly define a DSE analysis.

In this case, the problem requiring the exploration (i.e. inter-core communications cost
VS computational capabilities trade-off in multi-core quantum computers) facilitates the
selection of the adequate metrics:

• Quantum circuit size (computational capabilities): as we are working with ac-
tual quantum circuits compiled with multi-core architectures, instead of just comparing
the number of qubits integrated into the single-core and multi-core architectures, we
can directly make use of the size of the algorithm being compiled, which is related not
only to the number of qubits it requires but also to the number of quantum operations
involved.

• Execution latency overhead (inter-core communications cost): in order to do a
technology-agnostic analysis with higher validity, we have modeled the communications

A Double Full-Stack Architecture for Multi-Core Quantum Computers 108



performance through the definition of the upper-bound delay of the inter-core qubit
transfer. This affects directly the instructions scheduling process of the compiler,
causing the corresponding overall execution overhead that we want to examine.

Of course, considering only one of these two metrics would not be fair for the compar-
ison: in terms of latency, the single-core processor will always outperform the many-cores
approach, and, conversely, considering only available computing space will favor the increase
in number of cores due to the current limitation in integrating many qubits in a single core.

This metric selection helps us to focus the analysis on determining the decision threshold
between monolithic single-core and multi-core quantum architectures, for which we do not
need to consider other elements that might produce similar effects in both approaches (single-
and multi-core). That is, no decoherence and other quantum noise models are considered:
the latency overhead is the main hurdle of inter-core communications when compared to
intra-core operations and deserves an isolated study. This does not imply that they should
not be included in larger analyses. In fact, we have added the effects of quantum decoherence
and gate errors from accurate models in the scalability analysis we present in the second
part of this chapter.

In any case, it is key to note that in quantum communications latency and error rate
are tightly coupled: the more time is consumed in the data transfer, the higher will be
the decoherence effect on the resulting error (assuming no error correction or entanglement
distillation techniques). Also, correcting errors and dealing with them incurs higher execu-
tion latency. Accordingly, the present study, although focused on latency overhead, gives
guidelines that are applicable as well for real-world error-prone systems.

Our analysis, with reference to the selected metrics, depends on three different aspects
of the problem: the architecture configuration, the application-specific parameters, and the
technology specifications. According to our modeling assumptions, we can narrow down
these dependencies to five variables, grouped into these three aspects:

• Architecture. Number of qubits per core (NCORE
Q ) and number of cores (NCORES).

• Application. The total number of qubits (NALG
Q )1 and gates (NG) required by the

algorithm and 2-qubit gates fraction (N2Q
G /NG), as these are the ones that might need

for inter-core teleportations when the involved qubits are in different cores.

• Communications. The ratio between the inter-core communication latency and the
cost of an intra-chip communication operation (LCOMM/LCORE).

Now we have collected all the elements to start the definition of the FoM, which, to
avoid collisions with the one defined in Chapter 4, will be called Γ′. Based on the variables
under study, the definition of both metrics follows: i) Quantum circuit size (computational
capabilities) and ii) Execution latency overhead (inter-core communications cost):

Quantum circuit size: the product of its number of qubits and its number of gates.

JQSIZE = NG ·NALG
Q (7.1.1)

1Observe that NALG
Q might be different from the available total number of qubits NQ
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Execution latency overhead: the ratio between the execution latency 2 of a given
circuit on a multi-core architecture (Lmulti−core) and the execution latency when that same
circuit is run on an equivalent (same number of total qubits) idealistic single-core counterpart
(Lsingle−core). This execution latency accounts for the total number of processor cycles the
code takes, after performing the platform-specific compilation (i.e., mapping and instructions
scheduling).

JCOMMS =
Lmulti−core

Lsingle−core
(7.1.2)

Taking into account the simplicity of the current exploration in terms of performance
metrics, we can simply use as the multiplicative aggregation function f a ratio among the two
metrics, without the need for normalizing any of them: in this case, the trade-off between
two metrics facilitates the observation of trends without the need of further mathematical
formulation. Hence, the proposed FoM for this exploration has been defined as:

Γ′ =
JQSIZE

JCOMMS
= f

(
NCORE

Q , NCORES , N
ALG
Q , NG, N

2Q
G ,

LCOMM

LCORE

)
(7.1.3)

This exploration let us perform further optimization, as we are looking in the design
space for the points where multi-core architectures perform better than single-core proces-
sors. That is to say, to find the maximum performance Γ′ for any given architecture con-
figuration (number of qubits per core NCORE

Q and the number of cores NCORES), for every
application (i.e. number of gates NG, 2-qubit gates fraction N2Q

G /NG and number of qubits
required by the algorithm NALG

Q ) and for fixed communication overhead (LCOMM/LCORE).
This can be summarized in the formulation below:

min
LCOMM

LCORE
(7.1.4)

s.t. Γ′ (NCORE
Q , NCORES

)
≥ Γ′ (NCORE

Q , 1
)

NALG
Q , NG = const

In our exploration, intra- and inter-core topology, qubit implementation, and intercon-
nect technology are assumed to be fixed, while the application-specific parameters vary on
every benchmark.

7.1.5 Latency ratio threshold experimental results

We have performed an in-depth exploration of the design space, sweeping all the input
variables in wide ranges. Standard benchmarks (QFT, Grover’s) have their own profile in
terms of number of gates (NG) and 2-qubit gates fraction (N2Q

G /NG), both of which depend
on the size of the input (number of qubits required, NALG

Q ), which we have varied from 10
to 3000. In the random case, we have fixed the number of gates, while sweeping the number
of qubits in the same range, as a way to keep constant the number of independent variables
modifying the output performance. Aiming at the future high-scaling multi-core computers,

2Note that this latency is different from the qubit communication latencies LCOMM and LCORE .
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Figure 7.2: Full-blown variable exploration of multi-core quantum architectures for the random
benchmark (80% of gates are two-qubit operations). From top to bottom, the size of the algorithm
(qubits× gates), communications overhead, and FoM Γ′ are plotted against the number of qubits of
the algorithm, and the number of cores of the architecture, varying the number of qubits per core
(and the total number of physical qubits accordingly). In this benchmark, the number of gates has
been fixed, while the number of qubits of the algorithm increases along the size of the architecture.

we have explored ranging from modest sizes (2 cores and 10 qubits per core) to 16 cores and
1024 qubits per core. Finally, we have characterized costly inter-core communications with
latencies ratio (LCOMM/LCORE) that starts from 10 and goes up to 1000, in order to stress
the analysis in the most crucial point. A summary of these input parameters can be found
in Table 7.1.

Table 7.1: Design Space Exploration variables and parameters (notation and values for each bench-
mark)

Notation QFT Grover’s Random 20 % Random 80 %

NG O(NALG
Q )

2 O(NALG
Q ) 3000 3000

N2Q
G /NG ∼ 50% ∼ 30% 20% 80%

NALG
Q [10, 3000]

NCORES [1, 16]

NCORE
Q {16, 64, 256, 1024}

LCOMM/LCORE {10, 100, 1000}
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In Fig. 7.2, the full-blown variable space exploration for a single benchmark (the random
benchmark with 80% of 2-qubit gates) is shown. The design space is projected onto the two
architecture-related dimensions, i.e. total number of qubits and number of cores available
in the computer. From top to bottom, the FoM Γ′ components are shown (the algorithm
size is plotted in the first row, right below the communications overhead can be found, and
the aggregated final metric is on the last row). In this way, we can see the effects of both
parameters on the performance.

On the left side, we can see the different clusters of lines in the communications overhead
plot (in the middle), for the three different ratios of LCOMM/LCORE : the performance scales
linearly with the inter-core latency. This does not benefit the multi-core approach, as the
single-core processor performs always better. Very importantly, observe that the single-core
curve is discontinued at 103 qubits, as that is the forecasted approximate upper limit (number
of qubits in a single core) for current qubit integration technologies [2]. This allows multi-core
architecture performance to grow past that limit, achieving single-core levels of performance
by increasing the number of qubits and number of cores, for the same qubit technology.
Moreover, we expect that errors (not modeled in this analysis) will explode with the number
of qubits per core (i.e. most of these errors come from the crosstalk and other interferences,
thus aggravated in the single-core case, as we are integrating higher numbers of qubits in
the same core). For a fixed number of cores, the communications overhead decreases slowly
(as more qubits are fitted inside the same core, fewer inter-core movements are needed), and
thus the performance increases. Note also that the communications overhead is higher than
the LCOMM/LCORE , as the overhead accounts as well for delays in instructions scheduling
that are a byproduct of longer qubit transportation waiting times.

In this case, it is interesting to observe in both plots the concave trend of the com-
munications overhead, which after a maximum point between 10 and 100 qubits, starts a
monotonic descent. This is due to having less percentage of inter-core communication as we
increase the number of qubits per core along with the size of the algorithm.

The bottom-right plot contains the most valuable information in this first wide explo-
ration: we can see from left to right the cost of going from single-core to multi-core (see the
steep descent of the performance in the interval [1, 2], and most importantly, how the multi-
core architecture, as the number of cores is increased (i.e. parallelism), recovers performance
until almost reaching single-core performance values with 16 cores working together. That
is, adding cores allows increasing the number of available physical qubits for computation,
breaking the single-core qubit integration limit, and overcoming the latency overhead from
inter-core communications. This sheds light on the potential of multi-core architectures.

The same full-blown exploration for QFT, Grover’s, and the low-communication random
benchmark are also shown in Fig. 7.3, and compared to the already seen high-communication
random benchmark (tagged as ‘random 80%’). The lowest performance is that of the ran-
dom algorithms, as the two-qubit gates are distributed uniformly, without any structure,
among all qubits: even the best efforts coming from the mapper in the low-communication
benchmark are not capable of decreasing inter-core qubit interaction overhead. QFT shows a
steeper increase in performance as the architecture grows: even having a moderate amount
of qubit communication (see Table 7.1), its structure allows the mapper to distribute it
properly. Note that its minimum performance is the worst, but it also shows the higher
maximum, surpassing the single-core performance with as few as 4 cores. In a nutshell,
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multi-core architectures benefit from highly structured pieces of quantum code, which are
frequently used in many well-known algorithms.

Having explored the design space in this way, we have been able to see, for different
architectures, applications, and inter-core communication performance, the point of balance
where multi-core architectures supersede single-core performance. Therefore, let us now
explore this the other way around, looking for the decision threshold where the inter-core
communication adoption in multi-core architectures starts to pay off and exceed single-core
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performance. This decision threshold will depend on the application and the architecture.
See in Fig. 7.4, left plot, the graphical representation of the decision threshold finding
for a specific application and several architectures, as the crossing point of the performance
single-core line (which is flat, as it does not depend on the inter-core communication latency)
with the performance curves of different architectures. In Fig. 7.4, right plot, the decision
thresholds curves for a wide range of architectures are shown. Observe that, for instance,
a quantum computer with 4 cores and 256 total qubits will outperform the corresponding
single core’s performance if LCOMM < 2.1×LCORE (take into account that the benchmark
shown is communication intensive). Note also that, even though the use of more cores implies
higher inter-core qubit communication, the more cores we use, the lower the communication
performance (i.e. the higher the maximum LCOMM/LCORE ratio) is required.

7.1.6 Discussion

The presented exploration of the multi-core quantum architectures space has let us find the
threshold where these distributed architectures outperform single-core traditional quantum
processors, focusing on a highly specific technology parameter such as the inter-core commu-
nication latency (more precisely, the ratio between the intra-core latency and the inter-core
latency). Together with these results, which indicate upper bounds for inter-core communi-
cation technology performance, we have shown that multi-core architectures, in addition to
breaking the qubit integration limits of single-core quantum computers, exploit parallelism
for widely used well-known structured quantum algorithms.

Adding to this work some other important constraints, such as qubit control and oper-
ation, connectivity-constrained intra-core topology as well as intra- and inter-core operation
error rates will let us refine the obtained results, which pave the way to exposing compelling
design guidelines on these architectures using standard quantum applications.

7.2 The first fully-fledged simulation-based multi-core quan-
tum computers scalability analysis

After such promising results, in this second part of the chapter we aim at culminating the
thesis by reproducing the DSE exploration for a scalability analysis on multi-core quantum
architectures already presented in Chapter 4, now backed by a fully-fledged simulation in-
cluding accurate quantum noise models and actual execution of quantum circuits. In fact,
every layer in the double full-stack is present in the simulation. Showcasing this tool lets
us foresee the advantages of utilizing advanced design tools even in the early stages of the
development of QC.

In the following, we describe in detail the scope of the simulated model, define the
adequate performance metric for this analysis, and present some results.

7.2.1 Traversing the double full-stack through simulation

As we already did with the DSE study in Chapter 4, it is convenient in order to set the
stage to review the design space to be explored. Specifically, we are going to go over the
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entire double full-stack for multi-core QC, layer by layer, as an orderly way to check how
our simulator models the variables and parameters as defined in Section 4.3.1.

We have used the same simulator presented in Section 6.4.2: a fully-fledged model based
on the NetSquid package, which we have developed to implement a functional simulation
of a detailed multi-core quantum computer, from the qubit level (with its corresponding
decoherence model) to the quantum and classical networking among the different cores.
This simulator is capable of executing a given quantum circuit, aided by a modified version
of OpenQL for the compilation and mapping process.

Observe that this time, as opposed to the analysis in Chapter 4, with the simulated
model we cover not only the physical computing and communication layers (qubit, core and
network), but also the runtime/compiler and application ones.

7.2.1.1 Qubit layer

Although NetSquid is a simulation package focused on large-scale quantum networking, it
includes accurate models for operating with qubits, as well as modeling quantum decoherence
on them and adding quantum noise to qubit gates. Every aspect at the single-qubit control
level can be customized, which has allowed us to cover in detail this layer’s most important
variables and parameters for our exploration of the design space:

• Coherence time. The coherence time τc (i.e. an upper bound for the time we can
operate and read out the state of the qubit) has been modeled by means of the T1 and
T2 constants (also called amplitude and phase damping, respectively). In this memory
noise model typically T2 is approximately two times the value of T1, reducing it into
a one-dimension variable. For having a reference from recent experimental values, we
have studied in detail refs. [237], [130], and [242] as in the previous chapter (see Table
7.2 for more details on the explored range).

• Quality factor - single qubit gates. Control operations quality, conveyed by the
quality factor QF , is limited by the already reviewed coherence time, and the gate
latency LG (i.e. the time spent in performing a qubit gate), as QF = τc/LG. In
our simulator, using state-of-the-art superconducting qubit values as a reference [130],
we have set the single-qubit gate latency to 30 ns, while the measurement operation
latency is set to 300 ns.

• Single-qubit gate fidelity. The single-qubit gate fidelity (FG) is affected not only
by the decoherence noise but also by the cumulative errors from manipulating qubits
when applying gates and other control operations. In our model, we have included a
random dephasing noise model for the gate operations (following error model analysis
from [215]). For this, we have followed experimental values from a state-of-the-art
superconducting quantum processor such as the one presented in [81], taking both its
single-qubit gate and measurement error probabilities as the probabilities of dephasing
after each of these operations are applied.
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7.2.1.2 Core layer

In the simulation, the core layer is simulated with quantum processing nodes containing a
set of qubits and a set of defined qubit gates. This let us also implement an accurate model
for the execution of quantum instructions in each core, with their corresponding quantum
noise models and possible topology limitations. However, it is not feasible to model crosstalk
effects yet (i.e. qubit perturbations due to neighboring operations). Considering this would
help in observing how putting together too many qubits in the same chip makes things
worse. Moreover, we have not considered either fabrication variability or yield effects.

• Two-qubit gate fidelity. Similarly to what has been described for the single-qubit
gate noise model, a dephasing effect is implemented following values from [81] when
applying two-qubit gates.

• Quality factor - two-qubit gates. In our simulation, we have included a CNOT gate
as the single available two-qubit gate, which can also be used for two-qubit swapping.
This gate’s latency has been set, according to state-of-the-art experimental values [130]
to 60 ns.

• Number of qubits per core. Through our simulated model, we have been able to
explore up to 1024-qubit cores, although the total number of qubits that can be sim-
ulated is of course limited to the memory and processing capabilities of the processor
running the simulation, as well as by the simulation time constraints.

• Number of communication qubits per core. Out of the NCORE
Q qubits, as we

already mentioned in the experiments from the second part of Chapter 6, two of them
are reserved for inter-core communications. They are used in the teleportation qubit
transfer as buffers for the EPR photons and the temporary qubits that are generated
during the process.

• Intra-core topology. In order to focus on the multi-core architecture and facilitate
the compiler’s task to enable the simulation of larger architectures, we have assumed
all-to-all connectivity within each core. That is, every pair of qubits within a core can
directly interoperate by means of a CNOT gate, in any direction.

• Quantum intra-core communication latency. As we are considering an all-to-all
intra-core topology, the time it takes to communicate qubits within the chip (i.e. to
move them around in order to be able to apply a two-qubit gate between two given
qubits) is 0: there is no need to move qubits around inside the core.

• Qubit intra-core transfer rate. Following the previous reasoning, due to the as-
sumptions made, this rate is infinite in our model.

7.2.1.3 Network layer

As explained in Section 6.4.2.1, we have focused on a multi-core network centered on a shared
EPR pair generator, which controls the entanglement distribution for the qubit transfers
among any pair of nodes by using quantum teleportation.
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• Number of cores. Depending on the number of qubits per core, we have been able to
simulate up to 128 cores, though the main exploration has been carried out on smaller
sets of 8, 16, or 32 cores.

• Total number of qubits. Up to architectures implementing 16000 qubits have been
simulated. Although this might seem a big number for the state-of-the-art experimen-
tal devices, we need in fact larger sets of qubits for fully-fledged QC. However, within
the evident limitations of a classical simulation of a quantum computer, this num-
ber of qubits allows us to extract some practical conclusions for the design of future
multi-core quantum computers.

• Inter-core topology. The optically-enabled star topology among all nodes and the
EPR pair generator (at the center of the star) allows for an effective all-to-all inter-core
connectivity once the entanglement is distributed, as the classical multi-core network
connects also directly all pairs of cores.

• Quantum inter-core communication latency. The inter-core qubit transfer prim-
itive is quantum teleportation, which latency has been modeled in Section 5.3.2. In our
simulator, following the SWAP teleportation protocol described in 6.9, we have mod-
eled realistic EPR distribution, classical communication, and pre- and post-processing
delays.

• Qubit inter-core transfer rate. Following our study in Section 5.3.3, this inter-core
qubit commmunication rate is typically limited by the EPR pair generation frequency.
Nonetheless, in the present exploration, we have not applied any EPR generation
output error, in order to simplify this first fully-fledged analysis: EPR generation
delays provide already a sufficient source of qubit decoherence. Therefore, we have
explored different scenarios with varying REPR in order to see its effects on the overall
performance.

7.2.1.4 Runtime/compiler layer

The present analysis is not limited to the physical modeling of both the computing and
communication physical implementations of the multi-core quantum computer. On the
contrary, the developed extension to NetSquid allows us to fully run a quantum circuit on
top of the architecture.

In order to be able to do so, we need a compiler for quantum circuits which may allow
us to distribute the circuit among the different cores, which we have implemented as an
extension to OpenQL as explained in Section 6.2.1.

On the other hand, the compiled code has to comply with the input requirements for
quantum processors in NetSquid, not capable of executing directly a QASM input. There-
fore, we have developed a tool for parsing the compiled output from our modified version of
OpenQL in order to generate the different sets of code for each core. Then, the execution
logic implemented on top of each core is in charge of interpreting each instruction and exe-
cuting the corresponding physical instruction. You can revisit Fig. 6.8 to see a diagram of
this execution flow.
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7.2.1.5 Application layer

This layer corresponds to the uppermost quantum circuit logic. As it is hardware-agnostic,
there are no specific items related to the novelty of multi-core quantum computers to deal
with here. In any case, our simulator, being able to execute any quantum circuit input,
enables the possibility of exploring some cross-layer optimizations of the execution from
the application layer (e.g. applying QoS class-like policies as suggested at the end of the
previous chapter).

In order to have a uniform benchmark for this first fully-fledged scalability analysis,
we have chosen the same random benchmark used in the second part of Chapter 6 for the
possibility it offers to control some parameters that let us force the system into extreme
scenarios.

7.2.2 A simulation-based model for a DSE scalability analysis of multi-
core quantum architectures

Although the detailed study presented in Section 4.3.2 has given us a wide perspective of
the potential of a technology-agnostic multi-core quantum computer performance explo-
ration, it is basically a preliminary approach, limited to an analytical FoM, not related to
any previously existing well-known quantum metric or simulations based upon experiment-
supported models. Now, with the aid of a fully-fledged multi-core architecture simulator,
we can develop a simulation-based perfected model to supersede it.

Let us first review the metrics chosen in Chapter 4 for our behavioral model as a
reference, in order to identify how to define them in the current scenario: i) Qubit quality, ii)
aggregated fidelity in a quantum core, iii) computational power, iv) performance degradation
due to qubit single-core integration limit and v) inter-core communications performance.

Observe that, now that we have a simulated model, most of these behavioral metrics
become variables influencing the overall performance. In particular, qubit layer quality
metrics (coherence time, single-qubit gate latencies and error rates), as well as aggregated
fidelity in intra-core operations (due mainly to two-qubit gate latencies and error rates),
degradation due to qubit integration limits (inter-qubit crosstalk and controllability issues)
and inter-core communications performance can be aggregated into the overall fidelity of
the circuit, as they might affect in different ways to this overarching performance metric.

On the other hand, computational power/capabilities is still of the utmost importance
for a scalability analysis, setting a trade-off with the limitations of the multi-core approach
as we have seen in the previous section. There is no information in knowing that an unknown
circuit has been executed resulting in a high-fidelity result: this will be more valuable the
larger the circuit may be (in terms of number of qubits used and number of operations
performed). Therefore, we have considered the following two metrics:

Computational effort: the total number of gates executed in the quantum circuit.

JQSIZE = NG (7.2.1)

Overall fidelity: the average fidelity F (·) of all qubits (qi) used in the circuit. This
performance metric encompasses the effects from all the error models at the qubit and core
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Table 7.2: Notation, symbol definitions and values used in simulation-based scalability analysis,
with reference to values from [81,143,227,237]

Notation Meaning Value (range)

NCORES Number of cores/chips {1, 2, 4, 8, 16}

NCORE
Q Number of qubits per chip 16 - 1024

NQ Total number of qubits in the quantum computer NCORES ·NCORE
Q

NG Total number of gates ∝ NQ

L Length of the quantum circuit in execution cycles [100, 250]

Tinit Init time per qubit ∼ U(0, L)

p_idle Idle state probability ∼ U(0, 1)

p_2qubitgates Two-qubit gate probability ∼ U(0, 1)

p_intercore Inter-core gate probability ∼ U(0, 1)

REPR EPR pair generation rate 106, 107, 108 Hz

e1 single-qubit gate error probability 0.015 [81]

e2 two-qubit gate error probability 0.036 [81]

er measurement/readout error probability 0.031 [81]

T1 Amplitude damping for the memory noise model 2 · T2 [237]

T2 Phase damping for the memory noise model 106, 108, 1010, 1012 ns [237]

level, as well as the inefficiencies at the inter-core networking level.

JF =
1

NQ
·
∑
∀qi

F (qi) (7.2.2)

As both metrics complement each other to produce an overall performance metric and
their effect on the overall trends can be easily told, we can use the multiplicative approach
used in Eqs. 4.3.12 and 7.1.3, defining the new FoM Γ′′ as the product of the two defined
metrics, after normalizing JQSIZE to the [0, 1] interval (note that JF is already bounded
within that same interval), with their corresponding weights γi [189]:

Γ′′ =
(
JF
)γF ·

(
JQSIZE

)γQSIZE (7.2.3)

7.2.3 Scalability analysis

In order to replicate the scalability analysis, now based upon a fully-fledged simulation
model, we have performed a wide exploration of the design space, varying the multi-core size
and networking parameters, as well as the fundamental qubit quality models. In particular,
we have pivoted the analysis on the following parameters: number of cores, number of qubits
per core, decoherence, and gate error rates, and the EPR pair generation rate. The explored
variable space is summarized in Table 7.2.
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Figure 7.5: Design Space Exploration for REPR = 106 Hz and T2 = 106 ns

We show three samples of such exploration in Figs. 7.5, 7.6 and 7.7, corresponding to
three different technological points, going from almost state-of-the-art to an improvement of
several orders of magnitude. In these three figures, the 3D plotting of Γ′′ is shown versus NQ

and NCORES on the left side, while the disaggregation of the FoM on both axes is shown on
the right side. In this way, we can see clearly how each metric affects to the overall result.
Remember that Γ′′ is not to be interpreted as a numerical result, but just as an aggregation
of metrics of interest: even though most of the time single-core cases may not have high
values for Γ′′, that is due to the lower computational capability (JQSIZE) and not because
of having low fidelity results.

Fig. 7.5 let us see that with these low-performing technology parameters, there is still
no chance for multi-core to result in any gain when compared to single-core. Observe how
the maxima are basically around the lowest NCORE

Q with degradation of performance when
pushing up the number of cores.

Going up in the technology (see Fig. 7.6) implies a good step up (observe that the
color map in the 3D and heatmap plots is common to all three figures in order to facilitate
the analysis). In this case, the performance improves uniformly providing a greater region
of efficient multi-core architectures: see for instance cases with 8 cores and 1024 qubits, 4
cores with 256-1024 qubits, or 2 cores and 256-512 qubits. Naturally, larger core sizes imply
lower fidelities but observe that the optimum values in terms of Γ′′ for NCORE

Q for a specific
number of cores is different from 16 qubits (the most conservative value).

Finally, stretching technology up to 1000 seconds of decoherence time and almost 1
GHz of entanglement generation rate (see Fig. 7.7), we have the higher performing plat-
forms already in the 1024 qubits per core side, with a maximum around 2 and 4 cores.
However, observe that even though the towering technology gap from the previous plot, the
performance is somewhat saturated in the same range of values (here the absence of a qubit

A Double Full-Stack Architecture for Multi-Core Quantum Computers 120



NQ

16
64

256
1024

4096
16384

NCORES
1

2
4

8
16

Γ 00

16 64 256 1024 4096 16384

NQ

1

2

4

8

16

N
CO

RE
S

0

2

4

6

8

J Q
SI
ZE

1e−1

NC = 1
NC = 2
NC = 4

NC = 8
NC = 16

0.76

0.78

0.80

0.82

0.84

J F

102 103 104

NQ

Γ
00

NCORE
Q = 16

NCORE
Q = 32

NCORE
Q = 64

NCORE
Q = 128

NCORE
Q = 256

NCORE
Q = 512

NCORE
Q = 1024

1 2 4 8 16

NCORES

REPR = 107 Hz, T2 = 108 ns

Figure 7.6: Design Space Exploration for REPR = 107 Hz and T2 = 108 ns
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Figure 7.7: Design Space Exploration for REPR = 108 Hz and T2 = 1012 ns

crosstalk model in the simulation is also helping to not having a decrease in performance for
larger core sizes). Importantly, in this case, the speed-up when adding cores to the system
actually pays off, having an increasing trend in that direction.

An interesting complementary analysis is that of a technology gap analysis. As for
every technology parameter set we have found a varying optimal region, it is of high interest
to study how those “high-performing architectures” regions evolve with the improvement of
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Figure 7.8: Multi-Core Quantum Technology Gap Analysis for REPR = 108 Hz

technology. To do so, we have done a specific study, which is showcased in Fig. 7.8. In
this plot, which is done for a static value of REPR, simulations for increasing values of T2

are shown, by only drawing the “architecture area” where that technology performs over the
75% quartile of all simulations (in terms of Γ′′).

Observe how for increasing values of T2 the optimal architecture range increases. Very
importantly, the right-most part of the plot is almost completely filled for T2 = 1012 ns,
i.e. multi-core-enabled quantum computer scalability will be effective for such technology
parameters.

7.2.4 Discussion

The importance of these analyses is not related to the exact trends or figures obtained, but
to the tool they provide to us for running the exploration for any given technology and
extracting critical conclusions which we have been looking for throughout this whole work.
In particular, think of e.g. IBM and their scalability roadmap [1]: how might they know
where to invest more efforts, time, and money, whether in the inter-core communications
technology, or in the qubit decoherence time, or else in the two-qubit gate fidelities, etc?
Such an analysis as the one we have just presented greatly facilitates this task which is
crucial for a rapid and efficient design of the future of QC.
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Chapter 8

Conclusions

At the beginning of this thesis, (see section 2.3.1) we raise three fundamental questions that
could focus the research of this thesis. After having gone through the development and
results of this work, it is now the perfect moment to review them and check how much we
have been able to answer them:

1. Will the multi-core approach unlock the current monolithic single-core quantum com-
puters’ scalability bottlenecks? In the different analyses we have performed (see es-
pecially the most complete results in Chapter 7), we have explored the multi-core
quantum architecture space observing that current technology is not yet ready for
these architectures. However, we have been able to provide some figures (and most
importantly, reusable tools) in order to find the thresholds and regions where these dis-
tributed architectures outperform single-core traditional quantum processors. When
exploring technology improvements, we have been able to prove that these architec-
tures will effectively enable QC scalability. We have also shown that multi-core archi-
tectures, in addition to breaking the qubit integration limits of single-core quantum
computers, exploit parallelism for widely used well-known structured quantum algo-
rithms. Of course, improving simulation models and amplifying exploration to other
qubit technologies, parameters, or architectures will provide us with more valuable
information on this matter.

2. For a given technology used to implement (or a specific application to be executed on) a
multi-core quantum architecture, which is the optimal architectural configuration? In
the different explorations carried out along this work (Chapters 4-7), we have always
explored different architectural configurations in terms of the number of cores and the
number of qubits, though future research will for sure include other types of inter-
core communication, intra-core topologies, and other elements. In any case, for our
explorations, we have been able to detect architectures and algorithms that pair better
than others, depending on the circuit structure and multi-core topology: in particular,
tightly inter-qubit dependent algorithms impose a hard challenge for having efficient
executions on multi-core platforms.

3. How could we improve inter-core communications in order to have fast/efficient multi-
core quantum architectures? Most specifically in Chapters 5 and 6, we have inves-
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tigated critical trade-offs, overhead, particularities and optimal designs in quantum
inter-core communication for these architectures. With a thorough analytical study of
the quantum teleportation circuit, we have shown how waiting times and latencies can
greatly affect quantum communication quality, and have tested how a quantum algo-
rithm may behave in a many-core scenario. In particular, due to the scarce amount
of qubits available, we have explored and obtained the optimal share of qubits among
the computation and communication roles. For the chosen inter-core teleportation
technology and configuration (single EPR pair generator shared among all nodes for
quantum teleportation) it is evident to quickly cause inefficiency due to bottlenecks,
that could be improved with faster entanglement generation rates or parallelizing sev-
eral EPR pair generators. Other inter-core communication technologies should be
explored, as this is a critical point of failure in these architectures.

Most importantly, on top of these specific answers, we have contributed in several ways
to the foundations of multi-core quantum computing design and research:

• Double full-stack layered architecture for multi-core quantum computers:
as a key part of our proposal, entangling quantum communications and computing
within the design of a multi-core platform is part of the cross-layer approach we need
in order to enable QC scalability. This vision is substantiated by the great dependency
between communication latencies, execution times and cumulative qubit decoherence
in the current NISQ era.

• DSE-based system-wide optimization proposal: using such a structured design
technique might facilitate once-for-all design guidelines unifying the still separated
quantum computer’s parts into a consolidated solution with optimal technologies and
parameters for every situation. All the presented explorations are in fact more valu-
able for the code implemented to perform them than the results themselves, as the
code can be reused and improved with actual parameters and data coming from ex-
perimentalists, helping them to get their investment and research focus right on the
optimal spots detected in the DSE explorations.

• Analytical and simulated models of multi-core quantum computing perfor-
mance: In Chapters 4 and 7 we have presented both behavioral and simulated models
for testing multi-core quantum computer performance, based on FoM functions that
allow us to focus on specific metrics with high flexibility. Such models can be easily
improved in the future and allow for clean analysis of QC performance.

• Fully-fledged multi-core quantum computing simulator: in order to develop
the fully-fledged explorations in Chapter 7, as well as to study different communication
protocols in the second part of Chapter 6, we have developed (based upon the NetSquid
library) a full reusable multi-core quantum computer simulator capable of running
quantum circuits and including the modeling of qubit decoherence, gate errors, actual
communication latencies and inefficiencies, etc.

• Qubit traffic analysis tool: In order to visualize and extract performance metrics
specific to the inter-core qubit traffic for different algorithms and architectures, we
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have developed a reusable tool for exploring and analyzing multi-core communication
networks. This might help, among other things, to develop better multi-core quantum
compilers and to compare topologies and circuit efficiency.

• First approach to a MAC layer protocol for improving QC performance:
the entanglement between quantum communications and computation suggests that
improving communications performance directly impacts the overall multi-core quan-
tum computer’s efficiency. Although in our first approach, we have had to face the
hurdle of qubit gates dependency, we have been able to study different approaches for
controlling inter-core communications from an interesting QoS/MAC design view.

8.1 Future work

The present thesis has opened several promising research lines that have interesting branches
and follow-ups to be investigated yet. In particular, the multi-core quantum computer sim-
ulator, as a key tool for design exploration and research on such approach to QC architec-
tures, is to be improved by adding constraints to intra-core qubit topology, a model of qubit
crosstalk and inter-core communication technologies and architectures other than the one
we have already implemented for this thesis.

The qubit traffic and communications overhead analysis, as well as the full DSE scalabil-
ity and technology gap exploration, will benefit from including more well-known structured
algorithms, as well as new multi-core mapping proposals that might show higher efficiency
(e.g. [243]).

We plan to use the qubit traffic analysis and multi-core quantum simulator tools to
do further explorations with larger sets of benchmarks and a range of target architectures,
as well as complement this analysis with fully-fledged simulations that may shed light on
online quantum network management for error mitigation. Also, it is worth exploring which
structural parameters in quantum circuits are the reason behind most inefficiencies found
(data transfer bursts, hotspots, code dependencies...). This in-depth analysis might help us
improve our inter- and intra-core communication strategy and later on give us the guidelines
for multi-core device design that is more compatible with specific types of algorithms.

Promising outcomes are to come from the exploration of the inter-core communications
control protocol from the point of view of the MAC layer, where we will try to overcome
the complexity of inter-qubit dependencies-related blockages. We believe such a protocol
can be a key part of developing the dynamic scheduling of quantum circuit execution from
a communications perspective.
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Appendix A

Derived Publications

The contributions of this thesis have been adapted, submitted and/or published both in
journals and conferences. The publications related to the work of this thesis are as follows:

• S. Rodrigo, S. Abadal, C. G. Almudever, and E. Alarcón, “Efficient exploration of
design guidelines for scalable multi-core quantum computers on a fully-fledged simu-
lator,” in preparation

• M. Bandic, L. Prielinger, J. Nüßlein, A. Ovide, S. Rodrigo, S. Abadal, H. van Someren,
G. Vardoyan, E. Alarcón, C. G. Almudever et al, “Mapping quantum circuits to mod-
ular architectures with QUBO,” arXiv preprint arXiv:2305.06687, 2023

• A. Ovide, S. Rodrigo, M. Bandic, H. Van Someren, S. Feld, S. Abadal, E. Alarcón, and
C. G. Almudever, “Mapping quantum algorithms to multi-core quantum computing
architectures,” arXiv preprint arXiv:2303.16125, 2023.

• S. Rodrigo, D. Spanò, M. Bandic, S. Abadal, H. Van Someren, A. Ovide, S. Feld,
C. G. Almudever, and E. Alarcón, “Characterizing the spatio-temporal qubit traf-
fic of a quantum intranet aiming at modular quantum computer architectures,” in
Proceedings of the 9th ACM International Conference on Nanoscale Computing and
Communication, 2022.

• S. Rodrigo, S. Abadal, C. G. Almudever, and E. Alarcón, “Modelling short-range
quantum teleportation for scalable multi-core quantum computing architectures,” in
Proceedings of the 8th ACM International Conference on Nanoscale Computing and
Communication, 2021.

• S. Rodrigo, S. Abadal, E. Alarcón, M. Bandic, H. van Someren, and C. G. Almudever,
“On double full-stack communications-enabled architectures for multi-core quantum
computers,” in IEEE micro, 41(5), 48-56, 2021.

• S. Rodrigo, M. Bandic, S. Abadal, H. van Someren, E. Alarcón, and C. G. Almudever,
“Scaling of multi-core quantum architectures: a communications-aware structured gap
analysis,” in Proceedings of the 18th ACM International Conference on Computing
Frontiers, 2021.
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• S. Rodrigo, S. Abadal, E. Alarcón, and C. G. Almudever, “Will quantum computers
scale without inter-chip comms? A structured design exploration to the monolithic vs
distributed architectures quest,” in 2020 XXXV Conference on Design of Circuits and
Integrated Systems (DCIS), November 2020.

• S. Rodrigo, S. Abadal, E. Alarcón, and C. G. Almudever, “Exploring a double full-
stack communications-enabled architecture for multi-core quantum computers,” arXiv
preprint arXiv:2009.08186, 2020.
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