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Resumen

La epidemiologı́a es una ciencia relativamente joven pero en constante
evolución. Los enormes avances tecnológicos de las últimas décadas han
permitido a los epidemiólogos modernos plantearse preguntas cientı́ficas
cada vez más ambiciosas. Esto ha originado grandes cantidades de datos,
lo que a su vez ha llevado a una explosión de nueva metodologı́a estadı́sti-
ca. En esta tesis presentamos cuatro artı́culos que tratan sobre el análisis
de datos epidemológicos complejos. En el primer artı́culo estudiamos la
utilidad y validez de dos tests computerizados para cuantificar la Memoria
de Trabajo y la Atención. Para ello nos servimos de Redes Bayesianas pa-
ra inferir la estructura subyacente de interdependencias entre un conjunto
de variables que comprenden proxies sociodemográficos y de desarrollo
neurológico. Los resultados demuestran que ambos tests tienen buenas pro-
piedades psicométricas y permiten obtener una mejor comprensión de la
estructura subyacente de los datos. Los artı́culos 2 y 3 tratan sobre el estudio
de efectos de pequeña magnitud de contaminantes ambientales en el neuro-
desarrollo de niños y niñas prepúber. En el artı́culo 2 estudiamos el impacto
sobre el neurodesarrollo de diversos contaminantes como por ejemplo el
dióxido de nitrógeno o las partı́culas ultrafinas. Nuestros resultados apuntan
a que algunos de estos contaminantes son potencialmente perniciosos para
el desarrollo neurológico. En el artı́culo 3 exploramos más detalladamente el
rol de uno de estos contaminantes (la materia particulada 2.5 o PM2.5). Para
ello nos valemos de la factorización no negativa de matrices para estimar las
fuentes de los diferentes componentes hallados en PM2.5. Tanto en el artı́cu-
lo 2 como en el artı́culo 3 aplicamos modelos de efectos mixtos con varios
efectos aleatorios anidados para tener en cuenta la naturaleza jerárquica y
correlacionada de los datos. Por último, en el artı́culo 4 presentamos nuestro
propio método para el análisis de datos de expresión RNA-Seq y, más espe-
cificamente, para la detección de genes diferencialmente expresados entre
dos o más condiciones. Primero utilizamos ejemplos reales para mostrar por
qué la metodologı́a previamente existente basada en las distribuciones de
Poisson o Binomial Negativa no es suficientemente flexible para capturar la
distribución real de los datos de expresión obtenidos mediante RNA-Seq. A
continuación explicamos nuestro método basado en la familia de distribu-
ciones Poisson-Tweedie. Por último demostramos que la flexibilidad de la
Poisson-Tweedie permite a nuestro método capturar con mayor precisión
las dinámicas de la expresión de dichos datos.
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Abstract

Epidemiology is a relatively young and rapidly evolving science. Re-
cent technological breakthroughs have allowed modern epidemiologists
to raise increasingly ambitious research hypotheses. This has originated vast
amounts of data, which in turn has lead to an explosion of new statistical
methodology. In this thesis we present four papers on the analysis of com-
plex epidemiology data. In paper 1 we study the utiliy and validity of two
computerized tests for the quantification of Working Memory and Attention.
We use Bayesian Networks to learn about the structure of interdependencies
between a set of variables comprising sociodemographic and neurodevel-
opmental proxies. The results show that both tests have good psychometric
properties and allow us to have a better understanding of the underlying
structure of the data, which can then be incorportated into posterior analyses.
Papers 2 and 3 deal with the study of small magnitude effects of environmen-
tal pollutants on the neurodevelopment of prepuber children. In paper 2 we
study the impact on neurodevelopment of several pollutants such as nitrogen
dioxide or ultrafine particles. Our results suggest that these pollutants are
potentially harmful for the neurodevelopment. In paper 3 we explore in
detail the role of one of these pollutants (particulate matter 2.5 or PM2.5).
We use nonnegative matrix factorization to conduct a source apportionment
to estimate the levels of the different components present in PM2.5. In both
papers we apply mixed effects models with several nested random effects
to account for the hierarchical and correlated nature of the data. Finally,
in paper 4 we present our own method for the analysis of RNA-Seq data
and, more specifically, for the detection of differentially expressed genes
across two or more conditions. We first use real data examples to show why
the previously existing methods based on Poisson and Negative Binomial
distributions are not able to capture the real distribution of expression data
obtained via RNA-Seq. We then explain our method, which relies on the
Poisson-Tweede family of distributions. We end by showing that our method
is able to capture more precisely the dynamics of expression of RNA-Seq
data.

Keywords: epidemiology, DAG, Bayesian Networks, Mixed-effects, multi-
level, transcriptomics, RNA-seq
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Introduction

Epidemiology is traditionally defined as the study of the distribution and
determinants of health-related states or events in specified populations and
the application of this study to the control of health problems, Szklo and
Nieto (2007). The ancient Greek physician Hippocrates, who is regarded as
the father of medicine, is the first person known to have studied the relation-
ship between disease occurrence and environmental effects. Although some
outstanding epidemiologic studies were conducted before the 20th century
(the most relevant being John Snow’s investigations into the causes of a 19th
century cholera outbreak in London) it was not until the second half of the
20th century that modern epidemiology, as we know it today, emerged.

During the 1940s, several large-scale epidemiologic studies were launched,
some of which had profound influences on health. For example, the Framing-
ham Heart Study, initiated in 1949, importantly contributed to understanding
the aetiology of cardiovascular disease, Dawber et al. (1957). Those years
saw also the publication of many epidemiologic studies on the effects of
tobacco use on health which eventually led to the turning point report, Smok-
ing and Health, United-States (1964), the first one to openly denounce the
adverse effects of tobacco on health. This was one of the first studies to gain
wide public attention. Since that report epidemiologic research increasingly
gained public recognition.

The explosion of epidemiologic activity led to disagreements about basic
conceptual and methodological points, which in turn lead to a rapid growth
in the understanding and synthesis of epidemiologic concepts, Rothman
et al. (2008). For instance, the early studies on smoking and lung cancer
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were not only important for their important findings, but also because they
proved the validity and utility of case-control studies, while controversies
regarding their design led to further develop the epidemiologic theory. Other
studies, such as the Framingham Heart study, stimulated the development of
the most popular modeling method in epidemiology today: multiple logistic
regression, Cornfield (1962).

As the complexity of new epidemiological studies grew bigger, so did the
need for novel statistical methodology. The surge of epidemiologic activity
in the late 20th century, together with the rapid advance in computational
technology, lead to an explosion of new statistical techniques. Bayesian
statistics, for example, were previously viewed as unfavorable by many
statisticians mainly due to the enormously big required computational power.
The advent of powerful computers made feasible the use of computationally
heavy algorithms such as Markov Chain Monte Carlo (MCMC), Hastings
(1970). As a result, since the 1990s, Bayesian statistics have increasingly
gained popularity and have even become the de facto method in some
specific fields such as in variable selection in biomedicine or in small areas
analysis.

The technological breakthroughs of the last decades have not been lim-
ited to the field of computation. Many other advances have radically affected
epidemiology and, in consequence, have also revolutionized statistics. These
include, among others, the development and rapid popularization of geno-
typing and expression microarray technologies, the emergence of improved
exposure assessment devices and the advent of Big Data.

The present work consists of a compendium of published papers on
statistical methodologies and applications to face some of these arising
challenges. These papers deal with some of the main issues to consider in
the design and analysis of epidemiologic studies. In the first paper Bayesian
Networks are used to study the relevance and relationship of several variables
previous to their analysis and inclusion in models. In the next two papers,
multilevel models are applied to account for the hierarchical structure of the
data. Finally, paper 4 deals whith the analysis of transcriptomic data as a
mean to improve the characterization of genetic predisposition and to offer
a more refined way to identify differentially expressed genes. We will now
proceed to separately introduce each of these four papers.
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Bayesian Networks

The advances in the field of epidemiology have allowed epidemiologists
to ask more complex and ambitious research questions. This, naturally,
has led to richer science but it has also posed many new technical difficul-
ties. One of these problems is the need to establish a priori the interde-
pendencies between the studied variables in order to discern all possible
causating/confounding/effect-modifying/mediating effects.

Most statistical analyses in epidemiologic studies are organized around
three different sets of variables: exposures, outcomes and confounders.
While exposures and outcomes are normally determined by the research
hipothesis under investigation, confounders are not so clearly defined and
need to be first identified in order to account for them in the subsequent
analyses. Causal diagrams known as Directed Acyclic Graphs (DAGs) have
been proposed to study the relationship between these sets of variables,
Greenland et al. (1999). DAGs are a useful way of representing biases other
than confounding, such as selection and recall bias. Their main advantage is
that, while being visual and intuitive, they are also mathematically rigorous,
Hernán et al. (2002).

While DAGs are useful as a graphical representation of the inter-relationships
of a set of variables, they do not naturally incorporate uncertainty. The rela-
tionships between variables described by DAGs are not established in terms
of probabilistic distributions. As a result, DAGs are mainly useful when
summarizing one’s qualitative beliefs about the casual structure but cannot
be directly applied to learn the casual structure of a set of variables from
observational data. In order to be able to do this DAGs must be refined by
adding probabilistic dependencies between connected nodes.

A Bayesian Network (BN, Pearl (1985)) is a graphical model that com-
pactly describes the dependency structure between a given set of variables.
It consists of a DAG that encodes the conditional dependencies between the
variables and a set of local probability distributions associated to each of
the variables. Nodes in DAGs represent variables (X = (X1, . . . , Xn)) and
arrows represent conditional dependence assertions. We will say that a node
Xj is a parent of another node Xi if there is a directed edge from Xj to Xi.
The local independencies of the graph can be interpreted as following: each
node Xi is conditionally independent of its nondescendants given its parents.
More formally,

∀Xi (Xi ⊥ {Xj : Xi ̸∈ Πj}|Πi)
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where Πi represents the set of parent nodes of Xi.
As a result, the local probability of a node conditioned on the rest of the

nodes can be explicited as

P (Xi|(X\Xi)) = P (Xi|Πi)

Applying the chain rule of probability we obtain the expression of the
joint probability distribution for the whole Bayesian Network:

P (X) =
n∏

i=1

P (Xi|Πi)

A BN can accommodate both discrete and continuous variables and
different probability distributions for each of them. However, in most cases
the inference becomes intractable if we do not restrict to certain distributions.
The most common approach, and the one we will use in our present work,
is to consider all variables to be discrete. Therefore, nodes can be modeled
with multinomial distributions and Dirichlet (multivariate generalization of
the beta distribution) priors.

A Bayesian measure of the goodness of fit of a Bayesian Network G is
its posterior probability given the observed data D. Using Bayes’ Theorem:

P (G|D) =
P (D|G)P (G)∑
G P (D|G)P (G)

The problem of searching for the Bayesian Network that best fits our
data is that the number of possible graphs grows super-exponentially with
the number of variables, Chickering et al. (2004). As a result, it is practically
impossible to compute exactly this posterior probability. Therefore, instead
of the exact expression of the posterior probability we will use a proportional
one:

P (G|D) ∝ P (D|G)P (G) = P (D,G)

This leads to a closed form for the scoring function of a BN. But the
search of the highest scoring graph given our data is far from trivial. Even
for small domains, it is unfeasible to list all possible BNs with their cor-
responding score. Therefore, a convenient search method that ensures
pseudo-optimality of the obtained BN is needed. In our study, to gain valid-
ity, we have applied three different search methods: greedy search, structure
MCMC and order MCMC.
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The greedy search method, also known as hill climbing, is a heuristic
method that is widely used due to its speed and simplicity. However, it rarely
yields good results because it easily gets trapped in local optima. The method
starts with a user prespecified BN and it looks for the perturbation that most
improves its score. Perturbations are normally defined as deleting, adding or
reversing an edge. This is repeated until a graph with no possible improving
perturbation is found, i.e., until a local optima is found. There is no possible
way to ensure the optimality or pseudo-optimality of the resulting Bayesian
Network. Nevertheless, we decided to include this method in our analyses
for illustrative purposes only.

Structure MCMC is based on a Metropolis-Hastings random-walk over
the space of possible graphs. In each iteration a perturbation of the graph
(adding, deleting or reversing an edge) is randomly chosen and the score of
the perturbed graph is updated. The main difference with the greedy search
is that this method is able to escape from local optima, as it sometimes
accepts updated graphs with worse scores. The problem is that, given the
vast space of possible graphs, it could take a large number of iterations to
converge, i.e., to reach an optimal or pseudo-optimal BN. Though there is
no proper way to assess the optimality of the obtained solutions, one can
parallely run separate instances (normally called chains) of the structure
MCMC with different starting graphs. If the resulting BNs are similar or
equal for all chains (usually denoted as chain mixing) we will say that they
converged. This, of course, is not a foolprof guarantee of the optimality
of the solution but, if done with a sufficiently large number of chains, it is
normally enough to ensure the robustness and reliability of the results.

Order MCMC is also based on a Metropolis-Hastings random-walk but,
instead of traversing the space of possible graphs, it searches in the order
space. By order space we refer to the topological order of graphs based on
the parenting of its nodes. We can define ≺ as a total order and will say that
a graph G is consistent with ≺ if

Xi ∈ Πj in G =⇒ i ≺ j

Obviously, there are many possible graphs consistent with a given order
and viceversa: there can be many different consistent orders for a certain
graph. As a result, searching for the best order given some data is not
enough, as many graphs will be consistent with it. But, as the order space
is significantly smaller than the graph space, the problem of searching for
an optimal or pseudo-optimal Bayesian Network can be simplified by first
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looking for the best order and afterwards looking for the best graph that
is consistent with the obtained order. Though, as in the case of structure
MCMC, there is no way to assess the optimality of the obtained solution,
running separate instances of the algorithm and checking the similarity
between the obtained BNs is a good way to ensure convergence of the
method.

Summarizing, BNs can be applied to observational data with the aim of
finding the casual structure that best describes the interdependencies between
variables. This turns them in an immensely useful tool for epidemiologists
as a mean of understanding the complex structure of the observed data. This
knowledge can then be incorporated into subsequent analyses.

In the first presented paper we apply BNs to learn about the complex
structure of interdependencies between a set of variables comprising socio-
demographic and neurodevelopmental proxies as part of the BREATHE
project.

Mixed-effects models

In recent years epidemiological studies have become increasingly more
complex. This can be attributed to factors that include modern technologi-
cal advances, the emergence of macrostudies and even multicenter studies
possibilitated by multinational financing institutions such as the National
Institute of Health (NIH) or the European Research Council (ERC), more
ambitious research questions such as the study of small magnitude environ-
mental/genetic effects or the concurrent study of individual and contextual
(groupal) exposures. As a consequence, new statistical methodology has
emerged to cope with these new complexities.

Historically, the emphasis of epidemiology has suffered a profound
shift from an ecological to an individual perspective. In the 19th century,
public health was essentially ecological, i.e., it focused on relating the
environmental and community characteristics to health and disease. But
later, during the 20th century, as the importance of chronic diseases grew,
emphasis shifted to individual-level factors. As a result, the study of the
causes of disease changed from the environment as a whole to specific
factors and individual behaviors. This change of paradigm was accompanied
by a progressive individualization of risk, which in turn helped to support
the idea that risk is individually determined rather than socially determined,
Diez-Roux (1998).

The late 20th century saw a growth of literature on the potential impor-
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tance of ecological variables such as area-based measures of socioeconomic
status. As a consequence, several renowned epidemiologists advocated for
a new paradigm aiming to integrate these different levels, thus leading to a
more public health-oriented epidemiology. This new approach facilitated
the popularization of already existing statistical methodology especially
designed to deal with the hierarchical/multilevel nature of the produced data.
One of these methodologies was Mixed-effects modeling, also known as
Multilevel modeling.

Mixed-effects models (and their extension, Generalized Mixed-effects
models) extend linear models by allowing a wide variety of correlation
patterns or variance-covariance structures to be explicitly modeled, Pinheiro
and Bates (2000). The standard linear model assumes independently sampled
observations by considering a unique random effect, i.e., the error term.
As a result, it is not appropriate when modeling hierarchical data (data
collected via sampling at two or more levels, one nested within the other)
or longitudinal data (repeated measurements). Mixed-effects models allow
to take account of dependencies in hierarchical, longitudinal and other
dependent data by including more than one source of random variation, i.e.,
more than one random effect.

In its simplest form the linear mixed-effects (LME) model can be ex-
pressed as

yi = Xiβ + Zibi + ϵi

where yi represents the response vector for the i-th group, β is the vector of
fixed effects, bi is the vector of random effects, Xi and Zi are fixed-effects
and random-effects regressor matrices respectively and ϵi is the within-group
error vector. This model is useful when the data presents a single level of
grouping.

The formulation for single-level LME models can be easily extended
to incorporate multiple, nested levels of random-effects. This is of special
interest when the data to be modelled is organized hierarchically. While
the single-level LME models only allow a unique level of grouping, the
multilevel LME models can accommodate as many nested grouping levels
as desired. In our case, the experimental design of the BREATHE project
was based on 2 nested levels of grouping: individuals within schools and
several repeated measurements within each individual*. The multilevel LME

*For more information about the BREATHE project refer to the Introduction to the
BREATHE project in page 85.
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with two nested random effects can then be formulated as

yij = Xijβ + Zi,jbi + Zijbij + ϵij

where yij are the response vectors at the innermost level of grouping (i refers
to the first-level grouping and j to the second-level grouping within firs-
level group i), Xij are the fixed-effects model matrices, bi are the first-level
random effects, bij are the second-level random effects with corresponding
model matrices Zi,j and Zij , and ϵij are the within-group errors.

Papers 2 and 3 deal with the study of small magnitude effects of environ-
mental pollutants on the neurodevelopment of prepuber children as part of
the BREATHE project. This project relies on a nested cohort design where
the outcome variables have repeated measurements and the explanatory
variables can be individual or groupal. Moreover, while most of the outcome
variables are normally distributed, some of them are counts and need to be
modelled using a Poisson or Negative Binomial distribution. To cope with
all these difficulties, we decided to use Mixed-effects models. In Paper 2,
we applied this modelling technique to explore the association of several
pollutants with different neurodevelopment proxies. In Paper 3, we further
explored the role of one of this pollutants (PM2.5) by first categorizing it into
its possible different sources and then applying Mixed-effects modeling to
individually study the association of each of them with neurodevelopmental
deceleration.

Differential expression

One of the biggest revolutions in, not only epidemiology, but in the whole
biomedical sciences has been the advent of OMICS. The word OMICS
refers to many fields of study in biological sciences, all of them ending with
the -omics suffix. These include, among others, genomics (the study of the
structure, function, evolution and mapping of genomes), transcriptomics
(the study of gene expression), proteomics (the study of proteins) and epige-
netics (the study of changes in organisms caused by modification of gene
expression rather than the alteration of the genetic code itself).

Since their inception, OMICS data have played a major role in epidemi-
ologic studies. The first available OMICS data were derived in the 1970s
using Sanger sequencing, Sanger et al. (1977). This technology allows
to determine the nucleotide sequences in DNA. The availability of DNA
sequencing allowed epidemiologic researchers to add and include genetic
information in their studies. Despite being a revolutionary technique, Sanger
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sequencing is slow and very expensive. As a result, it was not normally
feasible to use it on large scale epidemiologic studies.

Some years later, in the 1990s, microarrays were developed. A microar-
ray is a two-dimensional array normally used to measure the expression
levels of large numbers of genes simultaneously or to genotype multiple re-
gions of a genome, although it can also be used with other types of OMICS
data such as proteomics. The processing of microarrays is significantly
cheaper and faster than that of Sanger sequencing and, as a result, this
technology rapidly became popular in epidemiologic studies. Unfortunately,
microarrays also present some serious limitations; mainly that they heavily
rely upon existing knowledge about the genome sequence, as each microar-
ray can only provide information about the genes that are included in the
array, Wang et al. (2009).

At the onset of the 21st century a new set of highly efficient, rapid
and low cost DNA sequencing platforms arose commonly named Next
Generation Sequencing (NGS). NGS relies on massively parallel sequencing
of millions of small fragments of DNA. While Sanger sequencing required
over a decade to sequence an entire human genome, using NGS this could
be achieved within a single day. Furthermore, not only can NGS be used
to obtain the whole genome sequence of an individual (or organism) but
it can also be applied to the transcriptome (including mRNAs, non-coding
RNAs and small RNAs). In particular, RNA-seq refers to the profiling of
RNA sequences using NGS technology. It is the first sequencing-based
method that allows to survey the entire transcriptome in a high-throughput
and quantitative manner.

The study of RNA-seq data is of particular interest in the field of epidemi-
ology. RNA-seq measures the expression level of genomic loci (specific
position on a chromosome where a particular gene or genetic marker is
located). Thus, a natural application of RNA-seq in epidemiology is the
study of differentially expressed regions between two or more groups (such
as, for instance, the study of differentially expressed genes between healthy
and cancerous cells).

RNA-seq offers a significant improvement over previous transcriptome
surveying methods such as microarrays but it also poses many new statistical
challenges. One of the main challenges is related to the probability distribu-
tion of the produced data. Microarrays are measured in signaling terms and,
therefore, can be modeled using a normal distribution, Ritchie et al. (2015).
On the other hand, RNA-seq produces counts which need to be modelled
using an appropriate discrete distribution. The first proposed methods were
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based on the Poisson distribution but they soon proved to be inadequate due
to the inability of this distribution to cope with some oddities presented by
RNA-seq data (mainly overdispersion and zero-inflation). Later, methods
based on the Negative-Binomial distribution were developed but, although
these methods proved to be significantly better than those based on the Pois-
son distribution, they still lacked flexibility to cope with the complexities of
RNA-seq data.

Two of the most widely used methods for the analysis of RNA-seq
data are edgeR (together with voom) and DESeq (and its successor DESeq2).
edgeR, Robinson et al. (2010), is based on the Negative Binomial distribution
assuming that mean and variance are related by σ2 = µ+ αµ2, where α is
a proportionality constant estimated from the data that remains the same
throughout the experiment. This mean-variance relationship is too simplistic
and thus is not flexible enough for capturing the wide dynamic range of
RNA-seq count data. Later, the authors of edgeR (who also happen to be
the authors of limma, one of the most popular methods for the analysis of
expression microarrays) presented voom, a method for better estimating
the mean-variance relationship based on their previous microarray method
limma.

DESeq, Anders and Huber (2010), extended the edgeR method by allow-
ing a more general, data-driven relationships of variance and mean. For each
gene i under condition ρ(j) they proposed a mean-variance relationship that
can be expressed as σ2

ij = µij + s2jνi,ρ(j) where νi,ρ(j) is a smooth function
of a condition-dependent per-gene value and the experimental condition of
the sample. This mean-variance relationship is more flexible that the one
used by edgeR, thus giving better results. Later, the authors presented an
updated version of the method called DESeq2, Love et al. (2014), in which
they added shrinkage estimation for dispersions and fold changes to improve
stability and interpretability of estimates.

In Paper 4 we present our own method for the analysis of RNA-seq data
based on the Poisson-Tweedie (PT) family of distributions. This family of
distributions unify several over-dispersed count data distributions such as
the Poisson, Negative-Binomial, Poisson Inverse Gaussian or Pólya - Aeppli,
among others. More specifically, the Poisson-Tweedie distribution can be
defined from its probability generating function:

GY (y|a, b, c) = exp

{
b

a
((1− c)a − (1− cy)a)

}
when a ̸= 0, while when a = 0 its probability generating function can be
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expressed as

lim
a→0

GY (y|a, b, c) =
[
(1− c)

(1− cy)

]b
The parameters (a, b, c) can be reparameterized into (µ, ϕ, a), where

µ denotes de mean, ϕ = σ2/µ is the dispersion index and a is the shape
parameter. a can be used to define specific count-data distributions that are
particular cases of the PT family of distributions, the most relevant of them
being:

Value of a Distribution

a = 1 Poisson
a = 0 Negative-Binomial
a = 1

2
Poisson inverse Gaussian

a = −1 Pólya-Aeppli
a → −∞ Neyman type A

The use of the PT family of distributions instead of the Poisson or NB
distributions allows to better capture the wide diversity of expression profiles
arising from extensively replicated RNA-seq experiments. For example, a
RNA-seq expression profile with a wide dynamic range will most likely lead
to a heavy tail in the distribution. In such a case, PIG has a heavier tail than
NB and this would make it more appropriate. Another similar scenario in
which the PT outperforms the Poisson or NB distributions is the existence
of (possibly extreme) zero-inflation.

Another advantage of using the PT distribution is its mean-variance
relationship which, using the parameterization of Kokonendji et al. (2004),
can be expresssed as

σ2 = µ(1 + µp−1 exp{(2− p)ϕp})

where p denotes the shape parameter of that specific parameterization. It
follows that, whereas the NB distribution is only capable of capturing a
quadratic mean-variance relationship, the PT family is able to generalize
this relationship to any order. As a result, the PT is more convenient when
dealing with count data with variable overdispersion.

In paper 4 we show that the PT distribution can outperform the Poisson
or NB distributions using both real and simulated data. Our method is also

11



openly available as an R package in the Bioconductor repositories (package
tweeeDEseq).
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Abstract

Background

Air pollution is a suspected developmental neurotoxicant. Many schools are located in

close proximity to busy roads, and traffic air pollution peaks when children are at school. We

aimed to assess whether exposure of children in primary school to traffic-related air pollut-

ants is associated with impaired cognitive development.

Methods and Findings

We conducted a prospective study of children (n = 2,715, aged 7 to 10 y) from 39 schools in

Barcelona (Catalonia, Spain) exposed to high and low traffic-related air pollution, paired by

school socioeconomic index; children were tested four times (i.e., to assess the 12-mo de-

velopmental trajectories) via computerized tests (n = 10,112). Chronic traffic air pollution

(elemental carbon [EC], nitrogen dioxide [NO2], and ultrafine particle number [UFP; 10–700

nm]) was measured twice during 1-wk campaigns both in the courtyard (outdoor) and inside

the classroom (indoor) simultaneously in each school pair. Cognitive development was as-

sessed with the n-back and the attentional network tests, in particular, working memory

(two-back detectability), superior working memory (three-back detectability), and inatten-

tiveness (hit reaction time standard error). Linear mixed effects models were adjusted for

age, sex, maternal education, socioeconomic status, and air pollution exposure at home.

Children from highly polluted schools had a smaller growth in cognitive development

than children from the paired lowly polluted schools, both in crude and adjusted models
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(e.g., 7.4% [95% CI 5.6%–8.8%] versus 11.5% [95% CI 8.9%–12.5%] improvement in work-

ing memory, p = 0.0024). Cogently, children attending schools with higher levels of EC,

NO2, and UFP both indoors and outdoors experienced substantially smaller growth in all

the cognitive measurements; for example, a change from the first to the fourth quartile in in-

door EC reduced the gain in working memory by 13.0% (95% CI 4.2%–23.1%). Residual

confounding for social class could not be discarded completely; however, the associations

remained in stratified analyses (e.g., for type of school or high-/low-polluted area) and after

additional adjustments (e.g., for commuting, educational quality, or smoking at home), con-

tradicting a potential residual confounding explanation.

Conclusions

Children attending schools with higher traffic-related air pollution had a smaller improve-

ment in cognitive development.

Introduction
Air pollution is a suspected developmental neurotoxicant [1]. In animals, inhalation of diesel
exhaust and ultrafine particles results in elevated cytokine expression and oxidative stress in
the brain [2,3] and altered animal behavior [4,5]. In children, exposure to traffic-related air pol-
lutants during pregnancy or infancy, when the brain neocortex rapidly develops, has been relat-
ed to cognitive delays [6–8].

Children spend a large proportion of their day at school, including the period when daily
traffic pollution peaks. Many schools are located in close proximity to busy roads, which in-
creases the level of traffic-related air pollution in schools and impairs children’s respiratory
health [9]. There is currently very little evidence on the role of traffic-related pollution in
schools on cognitive function [10]. Though the brain develops steadily during prenatal and
early postnatal periods, resulting in the most vulnerable window [1], high cognitive executive
functions essential for learning [11] develop significantly from 6 to 10 y of age [12]. The brain
regions related to executive functions such as working memory and attention—largely the pre-
frontal cortex and the striatum [13]—have shown inflammatory responses after traffic-related
air pollution exposure [2,14]. We aimed to assess the relationship between long-term exposure
to traffic-related air pollutants at school and cognitive development measurements in primary
school children within the BREATHE (Brain Development and Air Pollution Ultrafine Parti-
cles in School Children) project.

Methods

Funding
The research leading to these results received funding from the European Research Council
under ERC Grant Agreement number 268479 for the BREATHE project.

Design
Forty schools in Barcelona (Catalonia, Spain) were selected based on modeled traffic-related ni-
trogen dioxide (NO2) values [15]. Low- and high-NO2 schools were paired by socioeconomic vul-
nerability index and type of school (i.e., public/private). A total of 39 schools agreed to participate
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and were included in the study (Fig. 1). Participating schools were similar to the remaining
schools in Barcelona in terms of socioeconomic vulnerability index (0.46 versus 0.50, Kruskal-
Wallis test, p = 0.57) and NO2 levels (51.5 versus 50.9 μg/m

3, p = 0.72).
All school children (n = 5,019) without special needs in grades 2 through 4 (7–10 y of age)

were invited to participate, and families of 2,897 (59%) children agreed. All children had been
in the school for more than 6 mo (and 98% more than 1 y) before the beginning of the study.
All parents or guardians signed the informed consent form approved by the Clinical Research
Ethical Committee (No. 2010/41221/I) of the Institut Hospital del Mar d’Investigacions Mèdi-
ques–Parc de Salut Mar, Barcelona, Spain.

Fig 1. Map of Barcelona and the schools by high or low air pollution by design. Black dots indicate the
locations of schools with high air pollution, and white dots indicate the locations of schools with low air
pollution, based on NO2 levels.

doi:10.1371/journal.pmed.1001792.g001
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Outcomes: Cognitive Development
Cognitive development was assessed through long-term change in working memory and atten-
tion. From January 2012 to March 2013, children were evaluated every 3 mo over four repeated
visits, using computerized tests in series lasting approximately 40 min in length. We selected
working memory and attention functions because they grow steadily during preadolescence
[12,16]. The computerized tests chosen (the n-back task on working memory [12] and the at-
tentional network test [ANT] [17]) have been validated with brain imaging [13,17] and in the
general population [18]. Groups of 10–20 children were assessed together, wearing ear protec-
tors, and were supervised by one trained examiner per 3–4 children. For the n-back test, we
examined different n-back loads (up to three back) and stimuli (colors, numbers, letters, and
words). For analysis here, we selected two-back and three-back loads for number and word
stimuli as they showed a clear age-dependent slope in the four measurements and had little
learning effect. Numbers and words activate different brain areas. The two-back test predicts
general mental abilities (hereafter called working memory), while the three-back test also pre-
dicts superior functions such as fluid intelligence (hereafter called superior working memory)
[19]. All sets of n-back tests started with colors as a training phase to ensure the participant’s
understanding. The n-back parameter analyzed was d prime (d0), a measure of detection sub-
tracting the normalized false alarm rate from the hit rate: (Zhit rate − Zfalse alarm rate) × 100. A
higher d0 indicates more accurate test performance. Among the ANTmeasures, we chose hit re-
action time standard error (HRT-SE) (standard error of reaction time for correct responses)—a
measure of response speed consistency throughout the test [20]—since it showed very little
learning effect and the clearest growth during the 1-y study period among all the ANTmeasure-
ments. A higher HRT-SE indicates highly variable reactions related to inattentiveness.

Exposures: Direct Measurements of Traffic-Related School Air Pollution
Each pair of schools was measured simultaneously twice during 1-wk periods separated by
6 mo, in the warm and cold periods of the year 2012. Indoor air in a single classroom and out-
door air in the courtyard were measured simultaneously. The pollutants measured during class
time in schools were real-time concentrations of black carbon (BC) and ultrafine particle num-
ber (UFP; 10–700 nm in this study) concentration, measured using the MicroAeth AE51
(AethLabs) and DiSCmini (Matter Aerosol) meters, respectively, and 8-h (09:00 to 17:00 h)
particulate matter< 2.5 μm (PM2.5) measured using a high-volume sampler (MCV). Details of
PM2.5 filter chemical analysis are described elsewhere [21]. Given the high correlation between
continuous BC and elemental carbon (EC) in PM2.5 filters (r = 0.95), only EC was considered
here. Weekday NO2 was measured with one passive tube (Gradko). We selected EC, NO2, and
UFP given their relation to road traffic emissions in Barcelona, particularly EC [21,22]. In con-
trast, school’s PM2.5 was poorly related to traffic because of the relevance of specific school
sources in our study [21,23] and was not included here.

Outdoor and indoor long-term school air pollution levels were obtained by averaging the
two 1-wk measures. To achieve a better spatial long-term average, EC and NO2 were also ad-
justed for temporal variability. Seasonalized levels were obtained by multiplying the daily con-
centration at each school by the ratio of annual average to the same day concentration at a
fixed air quality background monitoring station in Barcelona, operationed continuously
throughout the year, as detailed elsewhere [23]. Seasonalized measures had a stronger correla-
tion between the first and the second campaign than non-seasonalized measures (e.g., r = 0.73
versus 0.61 for indoor EC and r = 0.64 versus 0.62 for indoor NO2). In contrast, seasonalized
UFP had a poorer correlation between the two measurement campaigns than non-seasonalized
UFP (r = 0.38 versus 0.70 for outdoor UFP and r = 0.17 versus 0.40 for indoor levels).

Traffic Air Pollution and Brain Development
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Therefore, non-seasonalized UFP was selected in this study. The correlations between the tem-
porally adjusted annual concentrations of EC and NO2 at each school and the land use regres-
sion annual estimate of BC at each school were 0.73 and 0.74, respectively, indicating good
capture of the long-term average concentrations at these schools.

Contextual and Individual Covariates
Socio-demographic factors were measured using a neighborhood socioeconomic vulnerability
index (based on level of education, unemployment, and occupation in each census tract, the
finest spatial census unit, with median area of 0.08 km2) [24] according to both the school and
home address, as well as through parents’ responses to the BREATHE questionnaire on family
origin, gestational age and weight, breastfeeding, parental education, occupation, marital sta-
tus, smoking during pregnancy, environmental tobacco smoke at home, commuting mode,
and use of computer games. Standard measurements of height and weight were performed to
define overweight and obesity [25]. Attention deficit hyperactivity disorder (ADHD) symp-
toms (ADHD/DSM-IV Scales, American Psychiatric Association 2002) were reported by
teachers. Parents completed the Strengths and Difficulties Questionnaire (SDQ) on child be-
havioral problems [26].

Noise in the classroom before children arrived to school (hereafter called noise) was mea-
sured as the best marker of traffic noise exposure and was included here as a covariate. Data
were obtained from comprehensive noise measurements conducted during the second 1-wk
campaign of air pollution sampling. Three consecutive 10-min measurements of equivalent
sound pressure levels (in A-weighted decibels) at different distributed locations within the
classroom were performed over two consecutive days using a calibrated SC-160 sound level
meter (CESVA; ±1.0 dB tolerance [type 2], range: 30–137 dB). As we aimed to register traffic
and background noise levels, any unusual sounds were deleted, and measurements were con-
ducted before children arrived to school (before 9:00 A.M.). For robustness, we averaged the
30-min measurements from the two consecutive days, though they showed high reproducibili-
ty. Short-term noise measurements as short as 5 min have been shown to represent long-term
averages [27].

Exposure at home to NO2 and BC (PM2.5 absorbance) at the time of the study was estimated
at the geocoded postal address of each participant using land use regression models, details of
which are explained elsewhere [15]. Similarly, school and residential surrounding greenness
was measured in buffers of 100 m around the address based on the Normalized Difference Veg-
etation Index (NDVI) derived from Landsat 5 Thematic Mapper data. Residential history was
reported by parents. The longest held address was used in 174 children (5.9%) who lived in two
homes over the study period. Distance from home to school was estimated based at the geo-
coded postal address of each participant and school.

Statistical Analysis
A total of 2,715 (93.7%) children with complete data (i.e., repeated outcome at least twice and
individual data on maternal education and age) were included. They performed 10,112 (93.1%)
tests. Because of the multilevel nature of the data (i.e., visits within children within schools), we
used linear mixed effects models with the cognitive parameters (test performance) from the
four repeated visits as outcomes and random effects for child and school. Age (centerd at visit
1) was included in the model in order to capture the growth trajectory of cognitive test perfor-
mance. An interaction between age at each visit and school air pollution was included to cap-
ture changes in growth trajectory associated with school air pollution exposure. The main
effect of air pollution (AP), which was also included in the model, captures the baseline (visit
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1) differences in cognitive function that are associated with air pollution (model 1):

Ysit ¼ b0 þ b1ðAget � Age1Þ þ b2AP þ b3ðAget � Age1ÞAP þ us þ viðsÞ þ esit ð1Þ

where Ysit is the cognitive test result for subject i in school s at visit t, t = {1,2,3,4}; us is random
effects at school level, assumed to be normally distributed with mean 0 and variance s2

u; vi(s) is
random effects associated with subject i in school s, assumed to be normally distributed with
mean 0 and variance s2

v ; and εsit is the model residuals, assumed to be normally distributed
with mean 0 and variance s2

e .
This model was further adjusted for potential confounders selected with directed acyclic

graphs. Based on all socio-demographic and contextual covariables mentioned above, we used
the program DAGitty 2.0 [28], with a priori definition of the temporal direction of the events,
to draw causal diagrams. The final adjusted model (model 2) included additional coefficients
for sex, maternal education (less than/primary/secondary/university), residential neighbor-
hood socioeconomic status, and air pollution exposure at home:

Ysit ¼ b0 þ b1ðAget � Age1Þ þ b2AP þ b3ðAget � Age1ÞAP þ b4Sex
þ b5Mat educ primary þ b6Mat educ secondary þ b7Mat educ university
þ b8Neighborhood socioeconomic status þ b9Air pollution exposure at home þ us

þ viðsÞ þ esit
ð2Þ

The interactions between age and maternal education and socioeconomic status were unrelated
to cognitive development (p = 0.33) and were not included in the models. Other variables such
as quality of the test (i.e., room density and noise) and hour, day of the week, temperature, and
humidity at test performance were not included in the final model after assessing their inclu-
sion in the multivariate model and obtaining no change in the school air pollution coefficient
(i.e.,<1%).

School air pollution exposure was first treated as a dichotomous variable based on the high/
low air pollution classification of schools used in the design stage. In a second step, we fitted
the same models but replaced the binary air pollution variable by the direct measurements of
air pollution levels either inside or outside the schools as quantitative exposures. Linearity of
the relation between air pollution and cognitive tests was assumed since using multiple polyno-
mial models did not improve model fit. Furthermore, to assess whether a part of our observed
associations was due to potential residual confounding, models were adjusted for all covariates
referred to above, both individual (e.g., smoking at home or commuting [distance and walking
mode]) and contextual (e.g., greenness or noise). Sensitivity analyses were also conducted to as-
sess effect modification by high-/low-air-pollution school, type of school, and residential
neighborhood socioeconomic status in order to explore the potential for residual confounding,
and by sex, maternal education, ADHD symptoms, and obesity in order to assess susceptibility.
Both stratified analyses and modeling of the third-order interaction term with age, air pollu-
tion, and the third variable in the regression models were conducted.

Sample size was calculated based on a previous study that showed differences in executive
function (mean 100, standard deviation 15) of four points by carbon particle interquartile
range [6]. One would need 800 individuals to detect a difference of four points between the
first and last categories of air pollution exposure (assuming exposure is divided into four
groups according to quartiles) with a statistical power of 80% and alpha = 0.05. We tripled the
number of individuals to be able to detect associations within three strata (n = 2,400). Analyses
were conducted using R (3.0.2; R Foundation for Statistical Computing) and replicated with
Stata 12 (StataCorp). Statistical significance was set at p< 0.05.

Traffic Air Pollution and Brain Development
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Results
Children were on average 8.5 y old at baseline, and 50% were girls. The cognitive parameters
improved during the 1-y follow-up period (Table 1). On average, working memory increased
by 19.0%, superior working memory increased by 15.2%, and inattentiveness decreased by
19.2% (all p< 0.001 for linear trend). The magnitude of the 12-mo change was similar in boys
and girls, with the exception of superior working memory (numbers), with a lower growth in
girls (p = 0.001). The cognitive parameters at baseline were negatively associated with maternal
education, but not their yearly change (Table 2).

Traffic-related air pollution levels were highly variable between schools (Table 3). EC levels
were similar outdoors and indoors, while outdoor levels of NO2 and UFP were higher than in-
door levels. EC showed a high penetration into the classrooms (indoor/outdoor ratio 94.1%
[95% CI 85.7%–102.4%]), which was lower for NO2 (64.5% [95% CI 59.3%–69.7%]) and UFP
(70.4% [95% CI 63.5%–77.3%]). Outdoor NO2 levels at schools were higher than urban back-
ground levels. Both during the warm and cold seasons, EC and NO2 had strong indoor–out-
door correlations, while the correlation was moderate for UFP (Table 4). EC had a strong
correlation with NO2 and with UFP during the warm and cold seasons both outdoors and in-
doors. EC indoors and UFP outdoors showed the highest correlation between the two seasons.
In relation to the covariates, EC and NO2 were not correlated with the socioeconomic vulnera-
bility index of the school (r = 0.10 and 0.00 for EC and −0.08 and −0.15 for NO2 for outdoors
and indoors, respectively, all p> 0.30). Correlations between modeled BC and NO2 at home
and measured EC and NO2 at school were weak (r = 0.27, p< 0.001, and r = 0.35, p< 0.001,
respectively). Noise was moderately correlated with traffic pollutants (r = 0.46, p = 0.01, and
r = 0.43, p = 0.01, for indoor EC and NO2, respectively).

High- and low-exposed schools were comparable in terms of socioeconomic status, al-
though low exposed schools had a higher socioeconomic vulnerability index (i.e., more de-
prived), were more likely to be public, had higher greenness, and were farther from the busy
roads than high-exposed schools (Table 5). Quality of education was identical. However, chil-
dren attending low-exposed schools had slightly better maternal education; had less behavioral
problems, obesity, and foreign origin; had more siblings and residential greenness; and lived
farther from the school and commuted less by walking than children from high-polluted
schools (Table 5).

Association of High Versus Low Traffic Exposure with Cognitive
Development
The difference in 12-mo change in working memory between the low- and high-exposed
schools was statistically significant (Table 6). At baseline the difference in working memory

Table 1. Description of the cognitive outcomes in children.

Visit n Age (Mean) Working Memory
(Two-Back Numbers, d0)

Superior Working Memory
(Three-Back Numbers, d0)

Inattentiveness (HRT-SE,
Milliseconds)

1 2,511 8.5 y 221 (131, 363) 112 (59, 188) 267 (202, 336)

2 2,593 8.7 y 222 (131, 392) 123 (59, 190) 248 (184, 318)

3 2,518 9.1 y 236 (131, 392) 129 (59, 190) 243 (181, 314)

4 2,447 9.4 y 263 (153, 392) 129 (64, 212) 224 (163, 291)

Data are median (25th, 75th percentiles).

doi:10.1371/journal.pmed.1001792.t001
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between low- and high-exposure schools was 5.3 points, while after 1 y this difference had in-
creased to 9.9 points (Table 6), which represents a 4.1% (95% CI 1.5%–6.8%, p = 0.0024) in-
crease in the difference in working memory. Thus, children from high-air-polluted schools had
lower improvement in cognitive development compared to children from the paired low-pollut-
ed schools (e.g., 7.4%, 95% CI 5.6%–8.8%, versus 11.5%, 95% CI 8.9%–12.5%, 12-mo increase in
working memory) (Fig. 2). Similar effects were found for the other cognitive parameters (Fig. 3).

Association of Direct Measurements of Traffic Air Pollution with
Cognitive Development
Table 6 gives the adjusted air pollution coefficients at baseline and per 12-mo change for all the
cognitive parameters. Children attending schools with higher levels of EC, NO2, and UFP both
in the courtyard and in the classroom had worse cognitive parameters at baseline than children
attending schools with lower air pollution. All the coefficients were negative for working mem-
ory and positive for inattentiveness, indicating impairment, though the differences were not
statistically significant. The growth in cognitive parameters during the 1-y follow-up was also
reduced in the schools exposed to higher air pollution levels, which in consequence amplified

Table 2. Cognitive outcomes by maternal education.

Cognitive Outcome Non-University (n = 1,125) University (n = 1,590) p-Value‡

Working memory (two-back numbers, d0)

Baseline 207 (128) 239 (122) <0.001

12-mo change 30 (161) 29 (153) 0.759

Superior working memory (three-back numbers, d0)

Baseline 108 (100) 127 (100) <0.001

12-mo change 18 (132) 20 (130) 0.746

Inattentiveness (HRT-SE, milliseconds)

Baseline 283 (92) 263 (88) <0.001

12-mo change −34 (93) −41 (86) 0.055

Data are mean (standard deviation).
‡Kruskal-Wallis test.

doi:10.1371/journal.pmed.1001792.t002

Table 3. Description of the air pollutants at the 39 schools.

School Air Pollutant Minimum Percentile Maximum

25th 50th 75th

EC outdoor 0.58 1.03 1.32 1.73 3.89

EC indoor 0.44 0.86 1.26 1.78 3.47

NO2 outdoor 25.9 35.1 48.5 57.4 84.5

NO2 indoor 11.5 20.5 29.8 38.6 65.6

UFP outdoor 11,939 16,27 22,157 28,257 51,146

UFP indoor 8,034 11,096 14,407 19,968 26,665

Units are micrograms per cubic meter (EC and NO2) or number per cubic centimeter (UFP). Median NO2 at the reference urban background station =

41 μg/m3.

doi:10.1371/journal.pmed.1001792.t003

Traffic Air Pollution and Brain Development
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the differences between schools at the end of follow-up. The detrimental association of air pol-
lution with change in the cognitive parameters was observed for all the outcomes and pollut-
ants, being statistically significant for almost all of them. Thus, for example, after 1 y of follow-
up, the difference in working memory for a change from the first to the fourth quartile of in-
door EC had increased by 6.2 (95% CI 2.0–11.0) points (p = 0.004) (13.0% [95% CI 4.2%–

23.1%] of the total growth). When the stimulus was words instead of numbers, the results were
very similar for superior working memory (Table 7). Fig. 4 shows the change in working mem-
ory in 1 y as a function of both outdoor and indoor pollutant levels. The points in the figure
represent the crude estimates of change in cognitive parameters for each school along with the
school air pollution levels, while the line represents the regression line obtained from the final
adjusted model. Fig. 4 illustrates the negative relationship between change in cognitive function
and air pollution levels, and depicts a good fit between the crude values and the adjusted slope.
Similar findings were seen for the other cognitive parameters (Figs. 5 and 6).

Sensitivity Analyses
The crude and the adjusted models with high- versus low-air-pollution schools and with the di-
rect measures of air pollutants gave similar results (Fig. 3; S1 Table). Further adjustment for
the individual socioeconomic factors included in Table 5, ADHD or behavioral symptoms, res-
idential greenness, and school noise and greenness did not materially change associations be-
tween high/low air pollution; EC, NO2, and UFP; and 12-mo change in cognitive parameters.
Similarly, results remained unchanged after adjusting for high-/low-air-pollution area, com-
muting, smoking at home (S2 Table), educational quality, and participation rate per school.

In stratified analysis, associations of cognitive parameters with EC (Table 8), NO2, and UFP
were similar in high-air-pollution schools and low-air-pollution schools, as well as according
to neighborhood socioeconomic status and obesity. In contrast, detrimental associations were
stronger in general in boys than in girls, in children from more highly educated mothers, in
children from private schools, and in children with ADHD symptoms, though differences were
not significant (p for interaction> 0.1 in the mixed effects linear models), and the detrimental
associations occurred in all the groups. Given that development was significantly lower in
grade 4 for all tasks, we repeated the analyses stratifying by grade, and the results were homoge-
neous. Moreover, in order to control for the “summer learning loss” phenomenon occurring
between the two academic years, we excluded tests done in the second academic year that did

Table 4. Correlation coefficients (Spearman) between air pollutants by season.

EC (out) NO2 (out) UFP (out) EC (in) NO2 (in) UPF (in)

EC (out) 0.58*** 0.73*** 0.62*** 0.82*** 0.53** 0.49**

NO2 (out) 0.63*** 0.49** 0.51** 0.61*** 0.71*** 0.34

UPF (out) 0.61*** 0.61*** 0.72*** 0.49** 0.30 0.57***

EC (in) 0.86*** 0.69*** 0.63*** 0.73*** 0.66*** 0.61***

NO2 (in) 0.45** 0.70*** 0.43* 0.58*** 0.64*** 0.39*

UFP (in) 0.41* 0.42* 0.65*** 0.62*** 0.38* 0.40*

Below diagonal, cold season (November–March); above diagonal, warm season (April–October). Correlations between the two seasons in the diagonal.

*p < 0.05

**p < 0.01

***p < 0.001.

out, outdoors (courtyard); in, indoors (classroom).

doi:10.1371/journal.pmed.1001792.t004
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not result in a notable change in our observed associations. Furthermore, we excluded the first
exam, to prevent a potential practice effect, and the association, if anything, became stronger
for working memory and superior working memory (S3 Table). Finally, sequential exclusion of
school pairs one by one from the models did not change the results, suggesting that exceptional
influential cases were not affecting the results.

Table 5. Population and school characteristics by school traffic (from original design).

Characteristic Low Traffic High Traffic p-Value‡

Schools

Number 20 19

School socioeconomic vulnerability index 0.52 (0.24) 0.41 (0.16) 0.055

School greenness (NDVI) 0.31 (0.10) 0.15 (0.03) <0.001

Type of school, public 55% 42% 0.421

Educational quality (PISA 2012) 3.9 (1.3) 3.9 (1.8) 0.790

Noise level in classroom (decibels) 37.2 (4.9) 40.1 (5.0) 0.068

Distance to busy road (meters) 369 (357) 118 (178) <0.001

EC outdoor (μg/m3) 1.13 (0.39) 1.82 (0.70) <0.001

NO2 outdoor (μg/m
3) 40.5 (9.6) 56.1 (11.5) <0.001

UFP outdoor (number/cm3) 18,043 (5,702) 28,745 (8,326) 0.001

Children

Number 1,355 1,360

Girls 49% 51% 0.318

Foreign origin (non-Spanish) 11% 19% <0.001

Maternal education, university 62% 55% <0.001

Paternal education, university 58% 48% <0.001

Maternal occupation, unemployed 17% 19% 0.036

Paternal occupation, unemployed 8% 12% <0.001

Marital status, married 86% 84% 0.053

Home socioeconomic vulnerability index 0.43 (0.22) 0.47 (0.19) <0.001

Home greenness (NDVI) 0.022 (0.09) 0.017 (0.005) <0.001

Commuting to school, walking 33% 73% <0.001

Distance from home to school (meters) 2,430 (2,359) 1,028 (1,577) <0.001

Behavioral problems (SDQ) 7.9 (5.0) 8.9 (5.4) <0.001

Overweight/obese 25% 30% 0.002

Computer games weekend, �1 h 69% 72% 0.081

Siblings, yes 83% 75% <0.001

Adopted child 4% 4% 0.793

Secondhand smoke at home 12% 14% 0.069

Smoking during pregnancy 10% 10% 0.785

Gestational age < 37 wk 8% 7% 0.497

Birth weight < 2,500 g 9% 10% 0.994

Breastfeeding, no 18% 18% 0.272

Data are number, percent, or mean (standard deviation).
‡Kruskal-Wallis and Chi-square tests.

PISA, Programme for International Student Assessment.

doi:10.1371/journal.pmed.1001792.t005
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Discussion
This large study with repeated and objective measures demonstrated that cognitive develop-
ment is reduced in children exposed to higher levels of traffic-related air pollutants at school.
This association was consistent for working memory, superior working memory, and inatten-
tiveness, and robust to several sensitivity analyses. The association was observed both when the
exposure was treated as high/low traffic-related air pollution and when using specific pollutants
including outdoor and indoor EC, NO2, and UFP, which are largely traffic-related [21,22].
Changes in the developmental trajectory could resemble those suggested for the adverse impact
of urban air pollution on lung function development [29]. Mechanisms of air-pollution-in-
duced neurotoxicity have been explored [30]. The findings provide strong support for air pollu-
tion being a developmental neurotoxicant and point towards the primary school age as a
particularly vulnerable time window for executive function development.

A strength of this study is the longitudinal ascertainment of executive function trajectories
that specifically develop during school age and the direct measures of air pollution. A concern,
however, is potential residual confounding by socio-demographic characteristics, although in
European cities, the relationship between proximity to traffic and economically disadvantaged
areas is not always evident [31]. In the city of Barcelona, the highest air pollution was observed
in the “Eixample,” a wealthy central area of the city where most of our schools with high traffic
were selected [23]. We paired by design high- and low-traffic schools by socioeconomic charac-
teristics and type of school, and although there was an inverse relation between school pollu-
tion and socioeconomic vulnerability index, such differences between schools after matching
became small. In addition to the association of cognitive parameters observed with high- com-
pared to low-exposed schools, we also observed a consistent association of cognitive parame-
ters with specific pollutants whose relation with socio-demographics was weak and in some
cases nonexistent. Furthermore, cognitive development was unrelated to social determinants in
our study, in contrast to cognitive function at baseline. Besides, the associations remained in

Table 6. Difference in cognitive development, at baseline and 12-mo change, by school air pollution exposure (high/low group or interquartile
range increase) in 2,715 children and 10,112 tests from 39 schools.

Cognitive Outcome High/Low Traffic Outdoor (Courtyard) Indoor (Classroom)

EC NO2 UFP EC NO2 UFP

Units per interquartile
range

— 0.7 μ g/m3 23.3 μg/m3 6,110 counts 0.92 μg/m3 18.1 μg/m3 8,872 counts

Working memory
(two-back numbers, d0)

Baseline −5.3 (−16, 5.1) −5.8 (−12, 0.56) −7.5 (−16, 0.99) −6.4 (−14, 1.5) −3.0 (−11, 4.8) −6.1 (−14, 1.9) −1.3 (−13, 9.9)

12-mo change −9.9 (−16, −3.5)* −4.1 (−8.0, −0.2)* −6.6 (−12, −1.2)* −4.9 (−10, 0.22) −6.2 (−11, −2.0)* −5.6 (−11, −0.44)* −7.9 (−15, −1.3)*

Superior working memory
(three-back numbers, d0)

Baseline −1.4 (−10, 7.1) 0.25 (−5.2, 5.7) 1.5 (−5.8, 8.8) −0.95 (−7.4, 5.6) 1.4 (−5.0, 7.9) 1.3 (−5.4, 8.0) −0.078 (−9.1, 8.9)

12-mo change −5.8 (−11, −0.74)* −4.4 (−7.6, −1.3)* −6.7 (−11, −2.3)* −5 (−9.1, −0.96)* −5.8 (−9.2, −2.4)* −5.1 (−9.2, −0.91)* −6.0 (−11, −0.75)*

Inattentiveness
(HRT-SE, milliseconds)

Baseline 5.2 (−6.2, 17) 1 (−6.3, 8.4) 4.8 (−5.0, 14) 4.5 (−4.0, 13) 6.8 (−1.7, 15) 7.0 (−1.8, 16) 6.2 (−5.8, 18)

12-mo change 5.2 (0.68, 9.7)* 3.8 (1.0, 6.6)* 3.8 (−0.10, 7.6) 3.9 (0.31, 7.6)* 3.8 (0.79, 6.8)* 2.6 (−1.0, 6.3) 4.6 (−0.13, 9.2)

Difference (95% CI) in the 12-mo change adjusted for age, sex, maternal education, residential neighborhood socioeconomic status, and air pollution

exposure at home; school and individual as nested random effects.

*p < 0.05.

doi:10.1371/journal.pmed.1001792.t006
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the stratified analyses (e.g., for type of school or high-/low-polluted area) and after additional
adjustment (e.g., for commuting, educational quality, or smoking at home), contradicting a po-
tential residual confounding explanation.

Other potential limitations are the potential misclassification error of the UFP exposures.
Seasonalized measures of UFP showed the lowest correlation among the pollutants between
the first and the second campaign and weaker associations with the cognitive parameters
(e.g., −4.0 [95% CI −8.6 to 0.49] for indoor UFP and working memory) than non-seasonalized
UFP, which is probably because of its large geographical and temporal instability due to con-
stant and rapid secondary formation [22]. In contrast, EC and NO2 showed very similar associ-
ations with cognitive parameters using both seasonalized and non-seasonalized measures.
Another potential limitation is non-response. A total of 182 out of the initial 2,897 children
(6%) were excluded because of incomplete data on individual variables. When these children
were included in the analysis in models that did not require the complete dataset (i.e., a model
not adjusted for maternal education), results were identical. Another level of non-response re-
fers to children (41%) from families that did not want to be part of the study, although they
were invited. This non-response affects representativeness rather than internal validity, given
that the participation rate per school was unrelated to the school social gradient and that ad-
justment for participation rate did not change the results. Based on the results from one school,
participants had less neuropsychological problems than non-participants, which likely made
them less susceptible to air pollution effects. Therefore, any effect observed in the present study

Fig 2. Working memory development by high- or low-traffic-air-pollution school.Dashed line = high
traffic air pollution; continuous line = low traffic air pollution; gray shading indicates 95% CIs. Adjusted for age,
sex, maternal education, residential neighborhood socioeconomic status, and air pollution exposure at home;
school and individual as nested random effects in 2,715 children and 10,112 tests from 39 schools.

doi:10.1371/journal.pmed.1001792.g002
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would likely be a conservative estimate for extrapolation to the entire population. A third limi-
tation relates to the lack of measurements in preceding periods. However, all children had been
in their school for more than 6 mo before the beginning of the study, and when we limited the
study to children with more than 2 y in the school (94% of the children), associations remained
the same. We interpreted these associations as chronic effects (i.e., due to exposures longer
than 6 mo) since it is unlikely that the geographical pattern of air pollution occurring during

Fig 3. Crude and adjusted cognitive development by high- or low-air-pollution school.Dashed line = high air pollution; continuous line = low air
pollution. The first column depicts the crude values, the second the crude trajectories from a model that included individual and school as random effects, and
the third a model adjusted for age, sex, maternal education, residential neighborhood socioeconomic status, and air pollution exposure at home; school and
individual as nested random effects in 2,715 children and 10,112 tests from 39 schools.

doi:10.1371/journal.pmed.1001792.g003
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the study period had changed in the last 2 y. Finally, indoor assessment was limited to a single
classroom. This is not a problem for the indoor assessment of pollutants such as EC, given the
high correlation between outdoor and indoor levels and similar coefficients for the association
with cognition between outdoor and indoor exposures. However, it could be a problem for
school noise since the correlation between outdoor and indoor noise was strongly dependent
on the street orientation of the classroom (ranging from 0.07 for classrooms facing away from
the street to 0.70 for classrooms facing the street). However, residual confounding by noise was
unlikely given the weak correlation between the pollutants and noise measured in the same
classrooms, and the robustness of the coefficients for the different pollutants after adjusting for
noise and for the interaction between noise and age.

This study addresses the role of traffic air pollution in schools on cognitive development.
Previous studies on the effects of polluted air at schools were a study in two schools in Quan-
zhou (China) on attention disorders [10], two studies on aircraft noise that secondarily as-
sessed the association between NO2 and cognitive function [32,33], and an ecological study in
Michigan (US) on industrial pollution and school failure [34]. Other studies in children have
evaluated the effect of maternal personal air pollution exposure or maternal/child exposure at
home [35]. We found here an association between traffic-related air pollution exposure at
school and cognitive development during primary school age, independent of residential air
pollution and beyond the effects related to home exposures in early life found by previous stud-
ies. Total cumulative exposure in school, home, and commuting and the different time win-
dows of exposure are not addressed here, but the continuous monitoring of BC and physical
activity with personal samplers in 54 of our children showed that exposure at school was signif-
icantly higher than at home and did not change by commuting mode. This higher exposure
level at school could be attributed to peaks of pollution occurring during school time, and
higher inhaled dose during school time due to exercise and physical activity at schools. Besides,
the fact that children at schools in the most polluted area traveled a shorter distance from
home suggests a shorter commute, which could explain the lack of confounding after adjusting
for commuting distance and mode. We could not disentangle the time frame of the exposures
occurring under the long-term school exposure measured here. However, in the case of inat-
tentiveness, in contrast to what was seen for working memory, the association at baseline was
larger than at follow-up. Given that inattentiveness develops earlier than working memory

Table 7. Difference in cognitive development for tests using words, at baseline and 12-mo change, by school air pollution exposure (high/low
group or interquartile range increase) in 2,715 children and 10,112 tests from 39 schools.

Cognitive Outcome High/Low Traffic Outdoor (Courtyard) Indoor (Classroom)

EC NO2 UFP EC NO2 UFP
Working memory
(two-back words, d0)

Baseline −8.4 (−19, 1.9) −3.7 (−10, 2.9) −3.3 (−12, 5.6) −5.0 (−13, 3.0) −4.1 (−12, 3.5) −4.3 (−12, 3.8) −4.3 (−15, 6.4)

12-mo change −4.7 (−11, 1.7) −1.7 (−5.6, 2.3) −3.4 (−8.9, 2.1) −3.1 (−8.2, 2.0) −2.3 (−6.6, 2.0) 0.60 (−4.6, 5.8) −5.4 (−12, 1.2)

Superior working
memory (three-back
words, d0)

Baseline −1.8 (−8.5, 4.9) 0.25 (−4.0, 4.5) 0.96 (−4.8, 6.7) −0.67 (−5.9, 4.6) 0.88 (−4.0, 5.7) 0.096 (−5.2, 5.4) 0.40 (−6.7, 7.5)

12-mo Change −5.9 (−11, −0.89)* −4.9 (−8.0, −1.8)* −6.8 (−11, −2.5)* −5.7 (−9.7, −1.7)* −5.4 (−8.7, −2.0)* −3.9 (−8.0, 0.14) −3.9 (−9.1, 1.3)

Difference (95% CI) in the yearly change adjusted for age, sex, maternal education, residential neighborhood socioeconomic status, and air pollution

exposure at home; school and individual as nested random effects.

*p < 0.05

doi:10.1371/journal.pmed.1001792.t007

Traffic Air Pollution and Brain Development

PLOSMedicine | DOI:10.1371/journal.pmed.1001792 March 3, 2015 14 / 24



[12], this finding could suggest that the adverse effect of air pollution could have preceded the
study period, and that the lower improvement in scores may be associated with previous
exposures, too.

Among the individual traffic-related pollutants, we found an adverse association between
EC and child cognitive development. EC comes almost exclusively from diesel vehicles in Bar-
celona, with an ambient air mode of around 30–40 nm, in the UFP range [22]. EC and traffic-

Fig 4. Workingmemory development and long-term exposure to traffic-related air pollutants. Each dot depicts a school, with size proportional to the
number of children. The cognitive development per school was estimated in a model with school and individual as random effects. The slope of the red line
depicts the change in cognitive development as a function of the air pollutants, adjusted for age, sex, maternal education, residential neighborhood
socioeconomic status, and air pollution exposure at home; school and individual as nested random effects in 2,715 children and 10,112 tests from 39
schools. Gray shading indicates 95% CIs. out, outdoors (courtyard); in, indoors (classroom).

doi:10.1371/journal.pmed.1001792.g004
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derived metals were an important fraction of indoor and outdoor quasi-ultrafine particles
(PM0.25) in our study schools [36]. We observed a high penetration of EC into the classrooms
(indoor/outdoor ratio 94%) and similar associations of indoor and outdoor EC with cognitive
development. Although the indoor/outdoor ratio was weaker (70%) for UFP, we also found
cognitive associations with UFP. These findings remained after adjustment for traffic noise at
school, pointing towards UFP as a neurotoxic traffic component, which is coherent with the

Fig 5. Superior workingmemory and long-term exposure to traffic-related air pollutants. Each dot depicts a school, with size proportional to the
number of children. The cognitive development per school was estimated in a model with school and individual as random effects. The slope of the red line
depicts the change in cognitive development as a function of the air pollutants, adjusted for age, sex, maternal education, residential neighborhood
socioeconomic status, and air pollution exposure at home; school and individual as nested random effects in 2,715 children and 10,112 tests from 39
schools. Gray shading indicates 95% CI. out, outdoors (courtyard); in, indoors (classroom).

doi:10.1371/journal.pmed.1001792.g005
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numerous and consistent findings in animal studies that UFP may cause disruption of the
blood–brain barrier, microglial activation, and brain inflammation [14].

Evidence points towards chronic microglial stimulation and altered innate immune re-
sponse and inflammation as the key neurotoxic mechanisms of UFP [14,29,37]. UFP has been
shown to cause microglial inflammation following either brain UFP deposition or systemic in-
flammation originating in UFP-exposed organs such as the lungs [36]. Microglial stimulation

Fig 6. Inattentiveness development and long-term exposure to traffic-related air pollutants. Each dot depicts a school, with size proportional to the
number of children. The cognitive development per school was estimated in a model with school and individual as random effects. The slope of the red line
depicts the change in cognitive development as a function of the air pollutants, adjusted for age, sex, maternal education, residential neighborhood
socioeconomic status, and air pollution exposure at home; school and individual as nested random effects in 2,715 children and 10,112 tests from 39
schools. Gray shading indicates 95% CI. out, outdoors (courtyard); in, indoors (classroom).

doi:10.1371/journal.pmed.1001792.g006
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affects neurons, and UFP has been shown to decrease neuronal glutamatergic function and dis-
rupt synapses [38]. Similarly, airborne metals have been shown to alter dopamine function
[39]. The underlying brain mechanisms are beyond the present study, but the observation of
associations with executive functions, the lack of confounding by ADHD or behavior, and the
association among children without ADHD suggests a general brain dysfunction.

Boys appeared more susceptible to air pollution, although both boys and girls showed an ad-
verse association of school air pollution with cognitive development. Although results could be
due to chance, in animals, males were more susceptible to airborne metals than females, which
may be because of sex-specific altered dopamine function [39]. The possible higher vulnerabili-
ty of children with ADHD could also indicate abnormalities related to dopamine [40]. Stratifi-
cation by maternal education or type of school showed a larger association among students
with the most educated mothers and those from private schools. This resembles what has been
observed with other hazards for neurodevelopment such as genetic effects [41], presumably be-
cause fewer adverse factors play a role among students with educated mothers or in private
schools, thus causing less interference with the factors under study.

The observed association between air pollution and cognitive development was strong. For
example, an increase from the first to the fourth quartile in indoor EC resulted in a 13.0% re-
duction in the growth of working memory. In contrast, the association at baseline was smaller
(1.9%). Part of this larger association during primary school may be a matter of bigger magni-
tude of exposure to traffic pollution in schools, but it could indicate that some executive func-
tions are particularly vulnerable during primary school age, as has also been seen for lead [42].
The long-term effect probably occurs over the period of maximum development of these exec-
utive functions, resulting in a notable cumulative effect by the end of this period in preadoles-
cence. The observed association was consistent across cognitive measurements, though it was
more evident for superior working memory, which is a good predictor of learning achievement
[19]. Impairment of high cognitive functions has severe consequences for school achievement
[11]. Thus, reduced cognitive development in children attending the most polluted schools
might result in a disadvantage in mental capital, which may have a long-lasting life
course effect.

Overall, we have shown that children attending schools with higher levels of exposure to
traffic-related air pollutants had a smaller growth in cognitive development over time, suggest-
ing that traffic-related air pollution in schools negatively affects cognitive development. This
may have consequences for learning, school achievement, and behavior. With regard to air pol-
lution regulation, the present study shows that the developing brain may be vulnerable to cer-
tain traffic-related air pollutants.
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muting, and smoking at home.
(DOCX)

Traffic Air Pollution and Brain Development

PLOSMedicine | DOI:10.1371/journal.pmed.1001792 March 3, 2015 19 / 24



S3 Table. Difference (and 95% CI) in cognitive development (12-mo change) by school air
pollution exposure (high/low group or interquartile range increase) in 2,715 children and
10,112 tests, after excluding some child-visits.
(DOCX)

S1 Text. STROBE checklist.
(DOCX)

Acknowledgments
We acknowledge all the families participating in the study for their altruism and particularly to
the schools Antoni Brusi, Baloo, Betània–Patmos, Centre d’Estudis Montseny, Col�legi Shalom,
Costa i Llobera, Escola El Sagrer, Els Llorers, Escola Pia de Sarrià, Escola Pia Balmes, Escola
Concertada Ramon Llull, Escola Lourdes, Escola Tècnica Professional del Clot, Ferran i Clua,
Francesc Macià, Frederic Mistral, Infant Jesús, Joan Maragall, Jovellanos, La Llacuna del
Poblenou, Lloret, Menéndez Pidal, Nuestra Señora del Rosario, Miralletes, Ramon Llull, Rius i
Taulet, Pau Vila, Pere Vila, Pi d’en Xandri, Projecte, Prosperitat, Sant Ramon Nonat–Sagrat
Cor, Santa Anna, Sant Gregori, Sagrat Cor Diputació, Tres Pins, Tomàs Moro, Torrent d’en
Melis, and Virolai. We also acknowledge the ESCAPE project for the design and supervision
modeling of air pollution. Furthermore, Xavier Mayoral did the technical development of the
n-back test; Cecilia Persavento, Judit Gonzalez, Laura Bouso, and Pere Figueras contributed to
the field work; and Michelle Turner contributed to the copyediting.

Author Contributions
Conceived and designed the experiments: JS XQ. Performed the experiments: MAP JF MLV
ESGMF IR MV TMAAMNNSG. Analyzed the data: ME RGE XBMCMAPMF. Contributed
reagents/materials/analysis tools: MNME XB. Wrote the paper: JS MEMAP JF IR MLV ESG
MF RGE XBMVMC TMAA NSGMN XQ. Agree with manuscript results and conclusions:
JS ME MAP JF IR MLV ESGMF RGE XBMVMC TMAA NSGMN XQ. All authors have
read, and confirm that they meet, ICMJE criteria for authorship.

References
1. Grandjean Ph, Landrigan Ph J (2014) Neurobehavioural effects of developmental toxicity. Lancet Neu-

rol 13: 330–338. doi: 10.1016/S1474-4422(13)70278-3 PMID: 24556010

2. Gerlofs-Nijland ME, van Berlo D, Cassee FR, Schins RP, Wang K, et al. (2010) Effect of prolonged ex-
posure to diesel engine exhaust on proinflammatory markers in different regions of the rat brain. Part
Fibre Toxicol 7: 12. doi: 10.1186/1743-8977-7-12 PMID: 20478040

3. Bos I, De Boever P, Int Panis L, Sarre S, Meeusen R (2012) Negative effects of ultrafine particle expo-
sure during forced exercise on the expression of Brain-Derived Neurotrophic Factor in the hippocam-
pus of rats. Neuroscience 223: 131–139. doi: 10.1016/j.neuroscience.2012.07.057 PMID: 22867973

4. Yokota S, Takashima H, Ohta R, Saito Y, Miyahara T, et al. (2011) Nasal instillation of nanoparticle-rich
diesel exhaust particles slightly affects emotional behavior and learning capability in rats. J Toxicol Sci
36: 267–276. PMID: 21628955

5. Fonken LK, Xu X, Weil ZM, Chen G, Sun Q, et al. (2011) Air pollution impairs cognition, provokes de-
pressive-like behaviors and alters hippocampal cytokine expression and morphology. Mol Psychiatry
16: 987–995. doi: 10.1038/mp.2011.76 PMID: 21727897

6. Suglia SF, Gryparis A, Wright RO, Schwartz J, Wright RJ (2008) Association of black carbon with cogni-
tion among children in a prospective birth cohort study. Am J Epidemiol 167: 280–286. PMID:
18006900

7. Perera FP, Li Z, Whyatt R, Hoepner L, Wang S, et al. (2009) Prenatal airborne polycyclic aromatic hy-
drocarbon exposure and child IQ at age 5 years. Pediatrics 124: e192–e202. doi: 10.1542/peds.2009-
0334 PMID: 19706576

Traffic Air Pollution and Brain Development

PLOSMedicine | DOI:10.1371/journal.pmed.1001792 March 3, 2015 20 / 24



8. Guxens M, Aguilera I, Ballester F, Estarlich M, Fernández-Somoano A, et al. (2012) Prenatal exposure
to residential air pollution and infant mental development: modulation by antioxidants and detoxification
factors. Environ Health Perspect 120: 144–149. doi: 10.1289/ehp.1103469 PMID: 21868304

9. McConnell R, Islam T, Shankardass K, Jerrett M, Lurmann F, et al. (2010) Childhood incident asthma
and traffic-related air pollution at home and school. Environ Health Perspect 118: 1021–1026. doi: 10.
1289/ehp.0901232 PMID: 20371422

10. Wang S, Zhang J, Zeng X, Zeng Y, Wang S, et al. (2009) Association of traffic-related air pollution with
children’s neurobehavioral functions in Quanzhou, China. Environ Health Perspect 117: 1612–1618.
doi: 10.1289/ehp.0800023 PMID: 20019914

11. Alloway TP, Alloway RG (2010) Investigating the predictive roles of working memory and IQ in academ-
ic attainment. J Exp Child Psychology 106: 20–29.

12. Anderson P (2002) Assessment and development of executive function (EF) during childhood. Child
Neuropsychol 8: 71–82. PMID: 12638061

13. Thomason ME, Race E, Burrows B, Whitfield-Gabrieli S, Glover H, et al. (2009) Development of spatial
and verbal working memory capacity in the human brain. J Cogn Neurosci 21: 316–332. doi: 10.1162/
jocn.2008.21028 PMID: 18510448

14. Block ML, Calderón-Garcidueñas L (2009) Air pollution: mechanisms of neuroinflammation and CNS
disease. Trends Neurosci 32: 506–516. doi: 10.1016/j.tins.2009.05.009 PMID: 19716187

15. WangM, Beelen R, Basagana X, Becker T, Cesaroni G, et al. (2013) Evaluation of land use regression
models for NO2 and particulate matter in 20 European study areas: the ESCAPE project. Environ Sci
Technol 47: 4357–4364. doi: 10.1021/es305129t PMID: 23534892

16. Rueda MR, Rothbart MK, McCandliss BD, Saccomanno L, Posner MI (2005) Training, maturation, and
genetic influences on the development of executive attention. Proc Natl Acad Sci U S A 102: 14931–
14936. PMID: 16192352

17. Rueda MR, Fan J, McCandliss BD, Halparin J D, Gruber DB, et al. (2004) Development of attentional
networks in childhood. Neuropsychology 42: 1029–1040.

18. Forns J, Esnaola M, López-Vicente M, Suades-González E, Alvarez-Pedrerol M, et al. (2014) The n-
back test and the attentional network task as measures of child neuropsychological development in epi-
demiological studies. Neuropsychology 28: 519–529. doi: 10.1037/neu0000085 PMID: 24819069

19. Shelton JT, Elliott EM, Matthews RA, Hill BD, Gouvier WD (2010) The relationships of working memory,
secondary memory, and general fluid intelligence: working memory is special. J Exp Psychol Learn
MemCogn 36: 813–820. doi: 10.1037/a0019046 PMID: 20438278

20. Conners CK, Multi-Health Systems (2000) Conners’Continuous Performance Test II: computer pro-
gram for Windows technical guide and software manual. North Tonwanda (New York): Multi-Health
Systems.

21. Amato F, Rivas I, Viana M, Moreno T, Bouso L, et al. (2014) Sources of indoor and outdoor PM2.5 con-
centrations in primary schools. Science Total Environ 490: 757–765. doi: 10.1016/j.scitotenv.2014.05.
051 PMID: 24907610

22. Reche C, Viana M, Rivas I, Pandolfi M, Amato F, et al. (2014) Outdoor and indoor UFP in primary
schools across Barcelona. Science Total Environ 493: 943–953. doi: 10.1016/j.scitotenv.2014.06.072
PMID: 25003584

23. Reche C, Viana M, Rivas I, Bouso L, Àlvarez-Pedrerol M, et al. (2014) Child exposure to indoor and out-
door air pollutants in schools in Barcelona, Spain. Environ Int 69: 200–212. doi: 10.1016/j.envint.2014.
04.009 PMID: 24875803

24. Ministry of Public Works (2012) Atlas of urban vulnerability in Spain: methodology and contents. Ma-
drid: Ministry of Public Works.

25. de Onis M, Garza C, Onyango AW, Rolland-Cachera MF (2009) WHO development standards for in-
fants and young children. Arch Pediatr 16: 47–53. doi: 10.1016/j.arcped.2008.10.010 PMID: 19036567

26. Goodman R (2001) Psychometric properties of the strengths and difficulties questionnaire. J Am Acad
Child Adolesc Psychiatry 40: 1337–1345. PMID: 11699809

27. Basner M, BabischW, Davis A, Brink M, Clark C, et al. (2014) Auditory and non-auditory effects of
noise on health. Lancet 383: 1325–1332. doi: 10.1016/S0140-6736(13)61613-X PMID: 24183105

28. Textor J, Hardt J, Knuppel S (2001) DAGitty: a graphical tool for analyzing causal diagrams. Epidemiol-
ogy 22: 745.

29. GaudermanWJ, Avol E, Gilliland F, Vora H, Thomas D, et al. (2004) The effect of air pollution on lung
development from 10 to 18 years of age. N Engl J Med 351: 1057–1067. PMID: 15356303

30. Calderón-Garcidueñas L, Solt AC, Henríquez-Roldán C, Torres-Jardón R, Nuse B, et al. (2008) Long-
term air pollution exposure is associated with neuroinflammation, an altered innate immune response,

Traffic Air Pollution and Brain Development

PLOSMedicine | DOI:10.1371/journal.pmed.1001792 March 3, 2015 21 / 24



disruption of the blood-brain barrier, ultrafine particulate deposition, and accumulation of amyloid beta-
42 and alpha-synuclein in children and young adults. Toxicol Pathol 36: 289–310. doi: 10.1177/
0192623307313011 PMID: 18349428

31. Vrijheid M, Martinez D, Aguilera I, Ballester F, Basterrechea M, et al. (2012) Socioeconomic status and
exposure to multiple environmental pollutants during pregnancy: evidence for environmental inequity?
J Epidemiol Community Health 66: 106–113. doi: 10.1136/jech.2010.117408 PMID: 20974841

32. van Kempen E, Fischer P, Janssen N, Houthuijs D, van Kamp I, et al. (2012) Neurobehavioral effects of
exposure to traffic-related air pollution and transportation noise in primary schoolchildren. Environ Res
115: 18–25. doi: 10.1016/j.envres.2012.03.002 PMID: 22483436

33. Clark C, Crombie R, Head J, van Kamp I, van Kempen E, et al. (2012) Does traffic-related air pollution
explain associations of aircraft and road traffic noise exposure on children health and cognition? A sec-
ondary analysis of the United Kingdom sample from the RANCH project. Am J Epidemiol 176: 327–
337. doi: 10.1093/aje/kws012 PMID: 22842719

34. Mohai P, Kweon BS, Lee S, Ard K (2011) Air pollution around schools is linked to poorer student health
and academic performance. Health Aff (Millwood) 30: 852–862. doi: 10.1377/hlthaff.2011.0077 PMID:
21543420

35. Guxens M, Sunyer J (2012) A review of epidemiological studies on neuropsychological effects of air
pollution. Swiss MedWkly 141: w13322. doi: 10.4414/smw.2011.13322 PMID: 22252905

36. Viana M, Rivas I, Querol X, Alastuey A, Sunyer J, et al. (2014) Indoor/outdoor relationships of quasi-ul-
trafine, accumulation and coarse mode particles in school environments: chemical composition and
sources. Atmos Chem Phys Discuss 14: 4459–4472.

37. Block ML, Elder A, Auten RL, Bilbo SD, Chen H, et al. (2012) The outdoor air pollution and brain health
workshop. Neurotoxicology 33: 972–984. doi: 10.1016/j.neuro.2012.08.014 PMID: 22981845

38. Morgan TE, Davis DA, Iwata N, Tanner JA, Snyder D, et al. (2011) Glutamatergic neurons in rodent
models respond to nanoscale particulate urban air pollutants in vivo and in vitro. Environ Health Per-
spect 119: 1003–1009. doi: 10.1289/ehp.1002973 PMID: 21724521

39. Curtis JT, Hood AN, Chen Y, Cobb GP, Wallace DR (2010) Chronic metals ingestion by prairie voles
produces sex-specific deficits in social behavior: an animal model of autism. Behav Brain Res 213: 42–
49. doi: 10.1016/j.bbr.2010.04.028 PMID: 20433873

40. Biederman J, Faraone SV (2005) Attention deficit hyperactivity disorder. Lancet 366: 237–248. PMID:
16023516

41. Turkheimer E, Haley A, Waldron M, D’Onofrio B, Gottesman II (2003) Socioeconomic status modifies
heritability of IQ in young children. Psychol Sci 14: 623–628. PMID: 14629696

42. Hornung RW, Lanphear BP, Dietrich KN (2009) Age of greatest susceptibility to childhood lead expo-
sure: a new statistical approach. Environ Health Perspect 117: 1309–1312. doi: 10.1289/ehp.0800426
PMID: 19672413

Traffic Air Pollution and Brain Development

PLOSMedicine | DOI:10.1371/journal.pmed.1001792 March 3, 2015 22 / 24



Editors' Summary

Background

Human brain development is a complex and lengthy process. During pregnancy, the basic
structures of the brain are formed, and the neural circuits that will eventually control
movement, speech, memory, and other cognitive (thinking) functions, as well as the func-
tion of many organs, begin to be established. By the time of birth, the brain is about a quar-
ter of its adult size, and the neural circuits that control vital bodily functions such as
breathing are well developed. By contrast, the cerebral cortex—the brain region that is in-
volved in thought and action—is poorly developed. Much of the development of the cere-
bral cortex happens during the first two years of life. For example, babies usually learn to
crawl at about nine months. Other aspects of brain function take longer to develop. Thus,
the cognitive functions that are essential for learning undergo considerable development
between the ages of 6 and 10 years, and further brain changes occur during adolescence.

WhyWas This Study Done?

Exposure to the air pollutants produced by the combustion of fossil fuels by vehicles dur-
ing pregnancy or infancy has been associated with delays in cognitive development. More-
over, experiments in animals suggest that traffic-related air pollution is a developmental
neurotoxicant—a factor that disrupts brain development. However, although many
schools are located next to busy roads and although traffic-related air pollution levels peak
during school hours, it is not known whether exposure of school-age children to traffic-re-
lated air pollutants impairs their cognitive development and thus their ability to learn.
Here, in a prospective cohort study (the BREATHE study), the researchers assess whether
exposure of children aged 7–10 years to traffic-related air pollutants in schools in Barce-
lona, Spain, is associated with impaired cognitive development. A prospective cohort
study is an observational investigation that studies groups (cohorts) of individuals who
differ with respect to a specific factor to determine how exposure to this factor affects
specific outcomes.

What Did the Researchers Do and Find?

The researchers used computerized tests to measure the development of working memory
(the system that holds multiple pieces of transitory information in the mind where they
can be manipulated), superior working memory (working memory that involves continu-
ous updating of the working memory buffer), and attentiveness every three months over a
12-month period in 2,715 primary school children attending 39 schools exposed to high
or low levels of traffic-related air pollution and paired by socioeconomic index. That is, the
researchers compared three cognitive development outcomes in the children attending
each school where exposure to air pollution was high with the same outcomes in children
attending a school with a similar socioeconomic index where exposure to pollution was
low; school pairing was undertaken to avoid “confounding” by social class, a factor that is
known to affect cognitive development. Statistical analyses of these data indicated that the
increase in cognitive development over time among children attending highly polluted
schools was less than that among children attending paired lowly polluted schools, even
after adjusting for additional factors that affect cognitive development. Thus, for example,
there was an 11.5% 12-month increase in working memory at the lowly polluted schools
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but only a 7.4% 12-month increase in working memory at the highly polluted schools.
Other analyses indicated that children attending schools with higher levels of traffic-relat-
ed air pollutants in either the courtyard or in the classroom experienced a substantially
smaller increase over the 12-month study in all three cognitive measurements than those
attending schools with lower levels of pollutants.

What Do These Findings Mean?

These findings suggest that, compared with attendance at schools exposed to low levels of
traffic-related air pollution, attendance at schools exposed to high levels of traffic-related
air pollution is associated with a smaller increase in cognitive development over a 12-
month period among 7- to 10-year-old children in Barcelona. The accuracy of these find-
ings may be limited by residual confounding. That is, the children attending schools where
traffic-related pollution is high might have shared other unknown characteristics that af-
fected their cognitive development. Importantly, these findings do not prove that traffic-
related air pollution causes impairment of cognitive development. Rather, they suggest
that the developing brain may be vulnerable to traffic-related air pollution well into middle
childhood, a conclusion that has implications for the design of air pollution regulations
and for the location of new schools.

Additional Information

Please access these websites via the online version of this summary at http://dx.doi.org/10.
1371/journal.pmed.1001792.

• The US Centers for Disease Control and Prevention provides information about child
development, including information about middle childhood (in English and Spanish)

• Tox Town is an interactive site that provides information about toxic chemicals and en-
vironmental health risks, including air pollution

• The US Environmental Protection Agency provides information about air pollution
near roadways and health

• Wikipedia has pages on cognitive development and on air pollution (note that Wikipe-
dia is a free online encyclopedia that anyone can edit; available in several languages)

• MedlinePlus provides links to additional resources about air pollution (in English and
Spanish)

• The Centre for Research in Environmental Epidemiology website provides more infor-
mation about the BREATHE study
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Introduction
Particulate matter (PM) air pollution is 
known to produce adverse health effects with 
important consequences at the population 
level (Brunekreef and Holgate 2002; Lim 
et al. 2012; WHO 2013). Although the most 
well-established evidence for a deleterious role 
of PM concerns cardiovascular and respiratory 
diseases, emerging evidence suggests that PM 
exposure can also affect neuro development 
and cognitive function (Block et al. 2012; 
WHO 2013). This is supported by animal 
studies showing neuro inflammation and 
neuro pathological damage in the brain as well 
as alterations in learning and memory func-
tions in response to air pollution exposure 
(Block et al. 2012).

Particulate matter is a complex mixture 
of different components originating from 
different sources. A better understanding of 
which components and sources of PM are 
responsible for the health effects is very impor-
tant from the regulatory point of view. Using 
chemical speciation of PM measurements 
and source apportionment techniques, it is 
now possible to estimate the concentration 

attributable to different sources (e.g., traffic, 
biomass burning, industry, or natural sources) 
(Viana et al. 2008). Recent studies have 
examined the role of source-specific pollution 
on health outcomes, mostly cardiovascular and 
respiratory mortality or hospital admissions. 
Most of the evidence for harmful effects of 
air pollution refers to traffic-related air pollu-
tion, although the effects of other sources 
such coal combustion, shipping, road dust, 
or desert dust have also been documented 
(Cassee et al. 2013; Ostro et al. 2011; WHO 
2013). The biological mechanisms leading to 
neuro development effects may be different 
from those described for cardiovascular and 
respiratory effects, and the chemical composi-
tion of the particles, their size, or their surface 
area can play a relevant role. For example, 
suggested mechanisms include disruptions of 
the nasal and olfactory barrier and the blood–
brain barrier allowing direct access of ultrafine 
particles to the brain. PM was seen in olfac-
tory bulb neurons in children autopsies and 
PM-associated metals such as nickel (Ni) or 
vanadium (V) were detected in the brains of 
dogs (Calderón-Garcidueñas et al. 2003, 2008).

In a recent longitudinal study of school-
children, we reported that cognitive develop-
ment over 1 year showed a slower increase 
among children attending schools with high 
traffic-related air pollution levels compared 
with children in less polluted schools (Sunyer 
et al. 2015). In that study, the air pollution 
markers used were nitrogen dioxide (NO2), 
elemental carbon, and ultrafine particle 
number. Interestingly, fine particle (PM with 
aerodynamic diamater ≤ 2.5 μm; PM2.5) mass 
concentrations at the studied schools were 
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Background: A few studies have reported associations between traffic-related air pollution 
exposure at schools and cognitive development. The role of PM components or sources other than 
traffic on cognitive development has been little explored.

oBjectives: We aimed to explore the role of PM sources in school air on cognitive development.

Methods: A cohort of 2,618 schoolchildren (average age, 8.5 years) belonging to 39 schools in 
Barcelona (Spain) was followed up for a year. Children completed computerized tests assessing 
working memory, superior working memory, and inattentiveness during four visits. Particulate 
matter ≤ 2.5 μm (PM2.5) was measured during two 1-week campaigns in each school, both outdoors 
and in the classroom. Source apportionment resulted in nine sources: mineral, organic/textile/chalk, 
traffic, secondary sulfate and organics, secondary nitrate, road dust, metallurgy, sea spray, and heavy 
oil combustion. Differences in cognitive growth trajectories were assessed with mixed models with 
age-by-source interaction terms.

results: An interquartile range increase in indoor traffic-related PM2.5 was associated with reduc-
tions in cognitive growth equivalent to 22% (95% CI: 2%, 42%) of the annual change in working 
memory, 30% (95% CI: 6%, 54%) of the annual change in superior working memory, and 11% 
(95% CI: 0%, 22%) of the annual change in the inattentiveness scale. None of the other PM2.5 
sources was associated with adverse effects on cognitive development.

conclusions: Traffic was the only source of fine particles associated with a reduction in cognitive 
development. Reducing air pollution from traffic at primary schools may result in beneficial effects 
on cognition.

citation: Basagaña X, Esnaola M, Rivas I, Amato F, Alvarez-Pedrerol M, Forns J, López-Vicente M, 
Pujol J, Nieuwenhuijsen M, Querol X, Sunyer J. 2016. Neurodevelopmental deceleration by urban 
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not correlated with traffic pollution, and most 
of the contribution to PM2.5 levels was due 
to mineral and organic sources (Amato et al. 
2014). PM2.5 levels are the universal indicator 
of air quality because of their overwhelming 
adverse association with many health indica-
tors (WHO 2013). Here, we aim to explore 
the role of all the different sources of PM2.5 in 
school air on cognitive development.

Methods

Design and Population

A cohort of schoolchildren in Barcelona 
(Spain) was followed up for a year (study 
period: January 2012–March 2013) as part 
of the BREATHE (BRain dEvelopment 
and Air polluTion ultrafine particles in 
scHool childrEn) project. Cluster sampling 
was performed by first selecting 40 schools 
and then inviting all students without special 
needs in grades 2 through 4 (7–10 years of 
age) to participate. Using a map of NO2 levels 
in the city, pairs of one high-pollution and 
one low-pollution school matched by socio-
economic vulnerability index (census tract–
level indicator based on level of education, 
unemployment, and occupation) and type of 
school (i.e., public/private) were selected. A 
total of 39 schools (18 pairs and 1 trio) agreed 
to participate and were included in the study 
(Sunyer et al. 2015). Participating schools were 
similar to the remaining schools in Barcelona 
in terms of the socioeconomic vulnerability 
index (Sunyer et al. 2015). Families of 2,897 
children (59% of those eligible) agreed to 
participate in the study. All parents or guard-
ians signed the informed consent form 
approved by the Clinical Research Ethical 
Committee (No. 2010/41221/I) of the 
IMIM-Parc de Salut MAR, Barcelona, Spain.

Outcomes: Cognitive Development
Cognitive development was assessed through 
long-term change in working memory and 
attention, because these functions grow 
steadily during pre-adolescence (Anderson 
2002; Rueda et al. 2005). Children were eval-
uated every 3 months over four repeated visits 
using computerized tests. The computerized 
versions chosen [the n-back task on working 
memory (Anderson 2002) and the attentional 
network task (ANT) (Rueda et al. 2004)] 
were validated with brain imaging (Rueda 
et al. 2004; Thomason et al. 2009) and in the 
general population (Forns et al. 2014).

Briefly, in the n-back task, subjects 
are presented a sequence of stimuli in the 
screen (e.g., a number), one at a time, and 
they need to respond (i.e., hit a button) only 
when the current stimulus matches the one 
presented n steps before. In the present study, 
we analyzed only 2-back task as a measure 
of working memory and 3-back task as a 

measure of superior working memory, and 
used only the numbers stimuli, although other 
tests were also administered. These choices 
were based on good properties observed for 
these tests in the same cohort (e.g., clear age-
dependent slope and little learning effect) 
(Sunyer et al. 2015). For each of these two 
tests, we measured detectability (d prime, 
d´), which is the normalized proportion of 
correctly identified targets minus the normal-
ized proportion of false alarm hits, d´ = (z hit 
rate – z false alarm rate). A higher d´ indicates 
more accurate test performance. In ANT, 
subjects have to respond whether the central 
fish in a row is pointing to the left or right 
by pressing the corresponding button on the 
mouse. We used hit reaction time standard 
error (HRT-SE), a measure of response speed 
consistency, throughout the test (Sunyer 
et al. 2015). A high HRT-SE indicates highly 
variable reactions and is considered a measure 
of inattentiveness. 

Air Pollution Exposure
Air pollution measurements were taken 
simultaneously for each pair of schools during 
two 1-week periods separated by 6 months 
(sampling campaign 1: January–June 2012; 
sampling campaign 2: September 2012–
February 2013). Only a pair of schools was 
measured each week. High-volume samplers 
(MCV SA, Barcelona, Spain) for particulate 
matter < 2.5 μm (PM2.5) were installed indoors 
in a classroom and outdoors in the playground 
during school hours (0900–1700 hours) from 
Monday through Thursday. A detailed descrip-
tion of the measurement campaigns and the 
instruments can be found elsewhere (Amato 
et al. 2014). Briefly, filters from samplers 
were divided in different pieces to determine 
concentrations of major and trace elements 
via inductively coupled plasma mass spec-
trometry and atomic emission spectrometry 
(ICP-MS and ICP-AES); concentrations of 
sulfate, nitrate, and chloride ions via ion chro-
matography (IC) and ammonium via a specific 
electrode; and concentrations of organic 
carbon (OC) and elemental carbon (EC) via a 
thermal-optical transmission  technique (TOT).

All measurements (including indoor 
and outdoor measurements) were pooled to 
conduct the source apportionment analysis, 
because this was shown to provide the best 
results in these data (Amato et al. 2014). 
Source apportionment was performed using 
a constrained positive matrix factorization 
(PMF) model based on 33 chemical species. 
PMF is a weighted least-squares technique 
that allows accounting for the uncertainty 
associated with the analytical procedure, and 
was run by means of the Multilinear Engine 
program, which allowed the handling of 
a priori information such as the source profile 
of local road dust and sea spray (Amato et al. 

2014). This technique returned a solution 
that identified nine main factors/sources 
responsible for the variability of PM2.5 mass 
concentrations with an R2 of 0.95. The nine 
sources were identified as mineral, organic/
textile/chalk, traffic (that included exhaust 
and non-exhaust contributions), secondary 
sulfate and organics, secondary nitrate, road 
dust (resuspended street dust), metallurgy, 
sea spray, and heavy oil combustion (mostly 
from shipping in the study area and period). 
The elements identifying the sources are 
 summarized in Table 1.

Outdoor and indoor long-term total and 
source-specific PM levels were obtained by 
averaging the two 1-week measures of each 
school. To minimize the effect of meteorology 
and other seasonal effects in the results, we 
conducted paired statistical analyses (described 
below) to restrict comparisons between schools 
that were measured simultaneously.

Contextual and Individual 
Covariates
Soc iodemographic  f ac tor s  inc luded 
 questionnaire- based parents’ responses on 
parental education, marital status, environ-
mental tobacco smoke at home, and a neigh-
borhood socioeconomic status vulnerability 
index (Sunyer et al. 2015) calculated both at 
the school and home addresses. Exposure to 
traffic PM2.5 at home was estimated at the 
geocoded postal address using available maps 
based on land use regression models (Eeftens 
et al. 2012; Sunyer et al. 2015). Noise levels 
in the classroom before children arrived (as 
a measure of traffic-related noise) were also 
measured (Sunyer et al. 2015).

Statistical Analysis
Due to the multilevel nature of the data (i.e., 
visits within children within schools), we used 
linear mixed-effects models with the four 
repeated cognitive parameters as outcomes 
and random effects for child and school. Age 

Table 1. Main elements identifying the estimated 
sources.

Source Identifying species (tracers)
Mineral Al, Mg, Li, Fe, Ca, Ti, Rb
Traffic EC, Cu, Sb, Sn, Fe
Organic/textile/chalk OC, Ca, Sr
Secondary sulfate 

and organics
SO4

2–, NH4
+

Secondary nitrate NO3
–

Road dust Ca, Fe, Cu, Sb
Metallurgy Zn, Pb, Cd, Mn, Cu
Sea spray Na, Cl–
Heavy oil combustion V, Ni

Abbreviations: Al, aluminum; Ca, calcium; Cd, cadmium; 
Cl–, chloride ion; Cu, copper; EC, elemental carbon; 
Fe,  iron; Li, lithium; Mg, magnesium; Mn, manganese; 
Na, sodium; NH4

+, ammonium cation; Ni, nickel; NO3
–, 

nitrate; OC, organic carbon; Pb, lead; Rb, rubidium; 
Sb, antimony; Sn, tin; SO4

2–, sulfate; Sr, strontium; 
Ti, titanium; V, vanadium; Zn, zinc.
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at each visit (centered at visit 1) was included 
in the model to capture the growth trajectory 
of the cognitive test. An inter action between 
age and school concentrations of individual 
PM sources was included to capture changes 
in growth trajectory associated with school air 
pollution exposure. The latter was the effect of 
interest in this study. Potential confounders 
were identified using directed acyclic graphs 
(DAG) as described elsewhere (Sunyer et al. 
2015), and they included sex, maternal educa-
tion (primary or less/secondary/university), 
residential neighborhood socioeconomic 
status, and air pollution exposure at home. 
Indicators of school pair were included in the 
model to restrict comparisons within pairs of 
schools measured during the same days, thus 
removing potential differences in air pollution 
levels between schools that were attributable 
to meteorology or seasonality. The model 
equation was the following,

Ypsit = β0p + β1(Agepsit – Agepsi1)  
 + β2(PM_source)ps  
 + β3(Agepsit – Agepsi1) × (PM_source)ps  
 + Zη + ups + vpsi + εpsit, 

where Ypsit is the cognitive test result for subject 
i in school s (belonging to pair p) at visit t, 
t = (1,2,3,4), β0p are pair-specific intercepts, 
Z is a matrix including all confounders, η is a 
vector of parameters associated to confounders, 
ups are random effects at school level, assumed 
normally distributed with mean 0 and variance 
σu

2, vpsi are random effects associated with 
subject i in school s, assumed normally distrib-
uted with mean 0 and variance σv

2, and εpsit 
are the model residuals assumed normally 
distributed with mean 0 and variance σe

2. 
Deviations from linearity were assessed with 
generalized additive mixed models. Analyses 
were repeated without the pair indicator and 
also with further adjustment for total PM2.5 
levels and the interaction between age and 
total PM2.5 (Mostofsky et al. 2012). The inter-
actions between age and maternal education 
(p > 0.15 for all outcomes) and age and socio-
economic status (p > 0.5 for all outcomes) were 
unrelated to cognitive development and were 
not included in the models.

Models included only PM2.5 concentra-
tions from a single source at a time, and 
separate models were fitted for each source. 
Likewise, separate models were fitted for indoor 
and outdoor concentrations. Regression coef-
ficients were rescaled to represent the change 
in the outcome associated with an interquartile 
range change in source-specific PM2.5 levels.

We also provided the results using tracers 
(chemical elements identifying the source) 
instead of sources for those PM2.5 sources 
showing significant or suggestive adverse 
effects on cognition. Statistical significance 
was set at p < 0.05.

Results
Table 2 summarizes the characteristics of 
the selected schools with respect to the high 
versus low air pollution indicator used at the 
design stage. Schools with high air pollution 
showed lower area-level deprivation and less 
greenness, had a lower percentage of public 
schools and higher indoor noise levels, were 
closer to busy roads, and their students 
tended to live closer to the school. Education 
quality was equivalent in the two groups.

The average age of participants at baseline 
was 8.5 years. A total of 2,618 (90.3%) 
children had data on the three outcomes in 
at least one visit. Children without data on 
cognitive outcomes more often attended 
public schools (54% vs. 33%), but there 
were no differences in terms of school vulner-
ability index (0.45 vs. 0.42). Around half of 
the children were girls and they attended 2nd, 
3rd, and 4th grade (37%, 36%, and 27%, 
respectively) in the first visit. Thirty-four 
percent of them attended a public school, and 

the rest attended a private school (Table 3). 
More than half of the mothers (58.9%) had 
a university education, whereas 12.5% had at 
most achieved primary education. Thirty-one 
percent of them lived in areas of high depri-
vation according to the socioeconomic status 
vulnerability index. More details of the study 
population can be found elsewhere (Sunyer 
et al. 2015).

During the 1-year follow-up, working 
memory increased on average by 13.0%, 
superior working memory by 16.5%, and 
inattentiveness decreased by 14% (Table 3). 
At baseline, lower scores were observed for 
girls, children attending public schools, 
children from mothers with low education, 
and children living in more deprived areas. 
Children from public schools showed a greater 
change in superior working memory over 
follow-up than those from private schools. 
Change over follow-up was not significantly 
associated with other characteristics in crude 
analyses (Table 3).

Table 2. Characteristics of selected schools according to the air pollution indicator used at the design 
stage (city map of NO2 levels).

Characteristic Low air pollution High air pollution
Number 20 19
Socioeconomic vulnerability index 0.52 ± 0.24 0.41 ± 0.16
School greenness (NDVI) 0.31 ± 0.10 0.15 ± 0.03
Public school (%) 55 42
Education quality (PISA 2012) 3.9 ± 1.3 3.9 ± 1.8
Noise level in classroom (dB) 37.2 ± 4.9 40.1 ± 5.0
Distance to busy roads (m) 369 ± 357 118 ± 178
Average distance to children home (m) 2,432 ± 2,338 1,048 ± 1,613

Abbreviations: NDVI, Normalized Difference Vegetation Index; PISA, Programme for International Student Assessment. Data 
are number, percent, or mean ± SD. This table is a partial reproduction of published work (Table 5 in Sunyer et al. 2015). 

Table 3. Mean (± SD) of cognitive outcomes by characteristics of participants.

Characteristics n (%)a

Working memory (WM) 
(2-back numbers,  

d´ × 100)

Superior WM  
(3-back numbers,  

d´ × 100)
Inattentiveness 
(HRT-SE, ms)

Baseline Change Baseline Change Baseline Change
All 2,618 (100) 224 ± 126 30 ± 156 118 ± 100 20 ± 130 272 ± 90 –38 ± 89
Sex

Male 1,316 (50.3) 229 ± 129 25 ± 155 123 ± 103 16 ± 129 261 ± 89* –35 ± 89
Female 1,302 (49.7) 220 ± 122 35 ± 157 113 ± 96 23 ± 132 284 ± 89 –41 ± 88

Type of school
Public 860 (32.8) 215 ± 129* 36 ± 149 111 ± 102* 32 ± 126* 274 ± 91 –39 ± 89
Private 1,758 (67.2) 229 ± 124 27 ± 159 121 ± 99 14 ± 132 271 ± 89 –38 ± 89

Maternal education
Primary or less 337 (12.9) 188 ± 134* 25 ± 162 82 ± 91* 25 ± 130 308 ± 88* –40 ± 92
Secondary 743 (28.4) 213 ± 124 32 ± 160 118 ± 102 14 ± 132 274 ± 90 –31 ± 93
University 1,538 (58.7) 237 ± 122 30 ± 153 126 ± 100 21 ± 130 264 ± 88 –41 ± 85

SES vulnerability at home
Less deprived 980 (37.4) 233 ± 124* 29 ± 151 127 ± 102* 18 ± 131 265 ± 89* –38 ± 87
Middle deprived 807 (30.8) 227 ± 125 27 ± 159 116 ± 98 27 ± 131 274 ± 92 –37 ± 91
High deprived 831 (31.7) 212 ± 128 34 ± 159 110 ± 100 15 ± 130 281 ± 88 –39 ± 89

School Pair
Low polluted 1,328 226 ± 125 36 ± 154 120 ± 100 23 ± 131 272 ± 89 –42 ± 86
High polluted 1,290 222 ± 126 24 ± 158 116 ± 100 16 ± 130 273 ± 90 –34 ± 91

Residential PM2.5 from traffic
1st quartile 635 224 ± 128 32 ± 157 121 ± 101 17 ± 125 275 ± 94 –38 ± 83
2nd quartile 662 229 ± 124 22 ± 159 117 ± 103 21 ± 139 272 ± 90 –38 ± 86
3rd quartile 659 224 ± 126 37 ± 150 123 ± 98 15 ± 128 271 ± 89 –41 ± 93
4th quartile 662 220 ± 125 29 ± 157 111 ± 98 25 ± 129 271 ± 86 –37 ± 92

aNumber of participants with data at baseline. *p < 0.05 when testing equality between groups.
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The median of school-averaged PM2.5 
mass concentrations was 28 μg/m3 outdoors 
and 36 μg/m3 indoors. Mineral (27%) was 
the source contributing the highest concen-
tration to outdoor PM2.5 levels, followed by 
traffic (17%), organic/textile/chalk (16%), 
sulfate (14%), nitrate (13%), and smaller 
contributions of road dust (4%), metallurgy 
(4%), sea salt (3%), and heavy oil combus-
tion (2%) (Figure 1). Indoor concentrations 
were in general smaller and followed the same 
ordering than outdoor sources, except for 
organic/textile/chalk, with a strong indoor 
origin and representing the highest contri-
bution to indoor PM2.5 (45%). Table 4 
describes the variation of concentrations by 
source across schools. Mineral exhibited the 
largest variation, with schools below the 25th 
percentile having mineral concentrations that 
represented at most 5.5% of the total levels, 
whereas in schools above the 75th percentile 
mineral contributed > 34% of the total PM2.5 
levels. The indoor organic/textile/chalk source 
also showed large variations between schools. 
The interquartile range for the traffic source 
was higher for indoor than for outdoor levels, 
probably reflecting the effect of class orienta-
tion on infiltration (Amato et al. 2014). More 
details on source apportionment results can 
be found elsewhere (Amato et al. 2014).

Correlations between indoor and outdoor 
levels of the same sources were generally 

greater than 0.7 (see Table S1). Exceptions to 
this pattern were organic/textile/chalk, with 
indoor–outdoor correlation close to zero; road 
dust, with a correlation of 0.14; and to a lesser 
extent mineral, with a correlation of 0.64. The 
highest correlations between school levels of 
outdoor sources were in the 0.5–0.6 range, 

including the correlations of mineral with 
organic/textile/chalk, sea salt, and road dust, 
and the pairs metallurgy–secondary nitrate, 
heavy oil combustion–secondary sulfate, 
and road dust–organic/textile/chalk. With 
regard to indoor sources, the pairs of sources 
mentioned above for outdoor levels showed 

Figure 1. Average source concentrations (A) and percent of PM2.5 concentrations (B) inside (indoor) and outside (outdoor) of schools. Error bars indicate 
mean ± SD.

Table 4. Description of source contributions to PM2.5 in terms of mass and as a percentage of total 
PM2.5 mass.

Source

Concentration (μg/m3) Percent

Percentile

IQR

Percentile

IQR25th 50th 75th 25th 50th 75th
Outdoor PM2.5 22.6 28.1 35.8 13.2 — — — —

Mineral 1.2 2.6 12.7 11.5 5.5 11.3 33.7 28.2
Traffic 4.1 5.2 6.8 2.7 12.9 20.5 26.1 13.3
Organic/textile/chalk 2.3 4.8 7.1 4.7 10.8 14.7 20.2 9.4
Secondary sulfate and organics 2.6 4.5 5.7 3.1 10.3 13.7 24.7 14.4
Secondary nitrate 1.9 3.2 5.1 3.2 7.1 11.3 15.6 8.5
Road dust 0.6 1.1 1.8 1.2 2.3 4.3 5.5 3.2
Metallurgy 0.9 1.2 1.5 0.6 3.1 3.9 5.4 2.3
Sea spray 0.5 0.7 1.1 0.6 1.8 2.3 3.5 1.7
Heavy oil combustion 0.5 0.6 0.8 0.4 1.6 2.2 2.8 1.1

Indoor PM2.5 29.2 35.6 41.5 12.3 — — — —
Mineral 2.0 3.9 7.2 5.2 6.5 11.6 20.6 14.1
Traffic 3.0 4.4 6.8 3.8 9.7 12.7 20.0 10.3
Organic/textile/chalk 12.3 15.3 20.1 7.8 37.2 44.8 48.9 11.6
Secondary sulfate and organics 2.3 3.6 5.4 3.1 7.2 10.7 15.0 7.8
Secondary nitrate 0.9 1.1 1.9 1.0 2.6 3.8 5.3 2.8
Road dust 0.5 1.3 2.1 1.6 1.7 3.3 5.2 3.5
Metallurgy 0.7 0.9 1.2 0.5 2.0 2.8 3.3 1.3
Sea spray 0.6 0.7 1.0 0.5 1.7 2.0 2.7 1.1
Heavy oil combustion 0.4 0.6 0.7 0.3 1.1 1.4 2.0 0.9

IQR, interquartile range.
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similarly high correlations, whereas secondary 
nitrate also showed high correlations with 
secondary sulfate and heavy oil combustion, 
and traffic showed a negative correlation of 
–0.52 with road dust (see Table S2).

Figure 2 (see also Table S3) displays the 
change in cognitive outcomes over the follow-
up period for an interquartile range increase in 
source-specific PM2.5 concentrations. Results 
in unadjusted analyses were fairly similar to 
adjusted ones (see Table S3). Changes from 
the first to the third quartile in the indoor 
traffic source were associated with a significant 
reduction in working memory of –5.6 [95% 
confidence interval (CI): –10.7, –0.5], equiva-
lent to 22% of the annual change experienced 
by the participants (see Table S3); a reduction 
of superior working memory of –5.1 (95% CI: 
–9.2, –1.1), equivalent to 30% of the annual 
change; and an increase of 3.6 (95% CI: 
0.0, 7.1) in inattentiveness scale, equivalent to 
11% of the annual change. Associations were 
smaller for outdoor concentrations of traffic 
PM2.5, although results were still significant 
for superior working memory and inattentive-
ness. No significant associations were found for 
PM2.5 mass concentrations from other sources, 
except for a positive association for outdoor 
concentrations of PM2.5 from mineral origin 
and superior working memory. Outdoor levels 
of PM2.5 from heavy oil combustion showed 
deleterious effects on inattentiveness and 
working memory (p = 0.05 and 0.09, respec-
tively). No important deviations from linearity 
were detected (data not shown). When 
analyses were repeated excluding the school 
pair indicator or adjusting by environmental 
tobacco smoke exposure at home or traffic-
related noise at school results were almost the 
same (data not shown). Further adjustment 
for total PM2.5 levels produced only minimal 
changes in the results (see Table S4).

Figure S1 provides the results when using 
the tracers for traffic, organic/textile/chalk, 
secondary nitrate, and heavy oil combus-
tion. EC was significantly associated with all 
outcomes, while copper (Cu) and antimony 
(Sb) showed significant associations only for 
inattentiveness. No significant associations were 
found for tin (Sn), iron (Fe), nitrate (NO3

–), V, 
Ni, OC, calcium (Ca) or strontium (Sr).

Discussion
In a longitudinal study assessing cognitive 
development of schoolchildren during 1 year, 
we found that children attending schools with 
high levels of traffic-related PM2.5 showed a 
slower cognitive development. None of the 
other PM2.5 sources (mineral, organic/textile/
chalk, sulfate, nitrate, road dust, metallurgy, 
and sea spray) showed a deleterious association 
with cognitive development, although asso-
ciations for heavy oil combustion were also 
suggested. Associations with traffic pollution 

were stronger when considering indoor levels 
and these associations were detected for 
working memory, superior working memory, 
and inattentiveness. These results suggest 
that fine particles from traffic may produce 
neurotoxic effects, and that exposure to such 
particles at primary schools can result in a 
deceleration of cognitive development.

Our previous study was the first to relate 
primary school levels of air pollution to cogni-
tive development (growth) in a longitudinal 
setting (Sunyer et al. 2015). A few other 
studies have related air pollution exposure at 
schools to neurobehavioral function at a single 
point in time (van Kempen et al. 2012; Wang 

et al. 2009), although others found no associa-
tion (Clark et al. 2012). Other cross-sectional 
studies related personal or residential air pollu-
tion exposure with cognitive outcomes, and 
most of them reported positive associations 
(Chiu et al. 2013; Franco Suglia et al. 2008; 
Grahame et al. 2014; Guxens et al. 2014; 
Guxens and Sunyer 2012; Perera et al. 2012). 
Our study is the first to perform source appor-
tionment of PM and examine the relation-
ship of each individual source with cognitive 
development in children. In our study, PM 
from traffic was the only source associated 
with a slower cognitive development, which 
agrees with our previously published result 

Figure 2. Change (95% CI) in cognitive growth per interquartile range increase in school source-specific 
PM2.5 mass concentrations. Models were adjusted for age, sex, maternal education, residential neigh-
borhood socioeconomic status, residential PM2.5 levels from traffic and school pair; school and subject 
included as nested random effects. Working memory measured with 2-back Numbers, d´ × 100. Superior 
working memory measured with 3-back numbers, d´ × 100. Inattentiveness measures with HRT-SE, ms. 
Black diamonds (♦): indoor concentrations; open circles (o): outdoor concentrations.

−0.10

−0.05

0.00

0.05

−0.05

0.00

0.05

−5.0

−2.5

0.0

2.5

5.0

7.5

W
orking m

em
ory (W

M
)

Superior W
M

Inattentiveness

M
in

er
al

Tr
af

fic

O
rg

an
ic

/T
ex

til
e/

C
ha

lk

Se
co

nd
ar

y 
su

lp
ha

te
 a

nd
 o

rg
an

ic
s

Se
co

nd
ar

y 
ni

tra
te

R
oa

d 
du

st

M
et

al
lu

rg
y

Se
a 

sp
ra

y

H
ea

vy
 o

il 
co

m
bu

st
io

n



Neurodevelopment and source-specific particles

Environmental Health Perspectives • volume 124 | number 10 | October 2016 1635

on the effects of EC in this same cohort 
(Sunyer et al. 2015). Although the traffic 
source includes also non-exhaust particles, the 
correlation of the source with EC was 0.89. 
Most of the previous studies used markers of 
traffic air pollution such as EC or black carbon 
(BC), NO2, PM2.5 absorbance, or polycyclic 
aromatic hydrocarbons (PAHs) (Chiu et al. 
2013; Franco Suglia et al. 2008; Grahame 
et al. 2014; Guxens et al. 2014; Guxens and 
Sunyer 2012; Perera et al. 2012).

The role of PM sources other than 
traffic on cognitive development has been 
little explored, although some studies exist 
on industrial pollution. An ecological study 
in Michigan (USA) found an increased 
percentage of school failure in schools with 
higher levels of industrial pollution (Mohai 
et al. 2011). Other studies in children have 
found that manganese (Mn) concentrations 
from mining and industry were associated 
with impaired verbal intellectual function and 
motor skills (Lucchini et al. 2012). In our 
study area, air pollution from industry sources 
was low, which may be the reason why we 
did not find associations with this source. 
Besides, industry emissions depend strongly 
on industry type, so associations are expected 
to vary by study setting. Our results in relation 
to heavy oil combustion were inconclusive. We 
found an association of outdoor levels of heavy 
oil combustion with two of the outcomes, 
but chance could not be excluded due to 
the p-values at the limit of significance and 
the lack of association with indoor levels or 
with Ni and V, the main elements defining 
this source. Unexpectedly, we found that 
exposure to mineral particles was beneficial for 
superior working memory. This finding was 
not observed for indoor levels and we do not 
know of other studies that investigated the link 
between mineral particles and cognitive devel-
opment. This result could be a chance finding. 
Schools with higher mineral concentrations 
had sandy playgrounds, so an alternative expla-
nation is that they also have more greenness, 
which can have beneficial effects on cognitive 
development (Dadvand et al. 2015). However, 
further adjustment for greenness did not 
change the mineral results (data not shown).

When examining the effects of chemical 
elements (tracers of sources) on cognitive 
development, the most consistent results were 
found for EC. Cu and Sb were significantly 
associated only with inattentiveness. There 
is still debate on which specific components 
linked to traffic produce health effects, but 
there seems to be some consensus in that the 
health effects are not produced by EC alone, 
but by other  co- emissions such as semi-volatile 
organic compounds (SVOCs) and PAHs that 
are adsorbed onto the EC core (Grahame 
et al. 2014). In our study, we also found some 
suggestions for deleterious effects of particles 

from heavy oil combustion, which goes along 
with the hypothesis of particles from combus-
tion being harmful for the brain. Thus, our 
findings of slower cognitive development 
associated with exposure to EC may have 
implications beyond the effects of traffic emis-
sions. For example, biomass burning can also 
be an important source of EC/BC and PAHs 
(Grahame et al. 2014), and the high concen-
trations of indoor pollution from biomass 
burning in developing countries could have 
important effects on the cognitive development 
of exposed children. In our study area, PM 
mass concentrations from biomass burning 
were negligible and this question could not be 
investigated (Reche et al. 2012).

Toxicological studies support the neuro-
toxic effects of motor exhaust particles 
(Grahame et al. 2014). The main biological 
mechanisms involve proinflammatory and 
inflammatory effects in the brain following 
brain deposition of particles or as a result of 
systemic inflammation produced by deposi-
tion of particles in the respiratory tract and 
alteration of blood–brain barrier function 
(Block et al. 2012; Calderón-Garcidueñas 
et al. 2008; Grahame et al. 2014). The brain 
may be especially vulnerable to oxidative stress, 
and diesel particles (highly enriched in EC) 
have been shown to activate microglia, which 
can produce neurotoxicity via oxidative stress 
(Block et al. 2012; Grahame et al. 2014). 
Fine particles from other vehicle sources such 
as brakes could also contribute to the effects 
beyond motor exhaust, given the association 
observed for elements generated by brakes 
abrasion with inattentiveness in our study 
and their established potential neurotoxicity 
(Bandmann et al. 2015). Ni and V, which 
could also lead to oxidative stress, were not 
associated with cognition in our study.

Our study had several strengths, including 
its longitudinal design with repeated outcome 
measurements and the direct measurements 
of air pollution both indoors and outdoors at 
schools. The study also had some limitations, 
such as a relatively small number of schools 
and the possibility of residual confounding by 
socioeconomic characteristics. The latter was 
extensively explored in our previous study, 
and all analyses suggested the observed effects 
were not attributable to residual confounding 
(Sunyer et al. 2015). In our analyses, schools 
were matched by socioeconomic characteris-
tics and type of school, thus reducing poten-
tial differences, and although children from 
more educated families attended schools with 
lower air pollution levels, differences were 
small. Because of the observational nature of 
the study, it cannot be ruled out that children 
attending schools with high levels of pollu-
tion shared other unmeasured characteristics 
(e.g., not captured socioeconomic dimensions, 
different level of social interaction) that affected 

their cognitive development. Differences in 
cognition were already present at the beginning 
of the study. This would still be consistent with 
our hypotheses, because the cognitive functions 
studied were already developing in the previous 
years and children were already exposed to 
school air pollution. Importantly, we observed 
that these differences widened during the study 
period, but we could not ignore that children 
of more-polluted schools were already in a 
slower cognitive trajectory because of early-life 
 exposures or socioeconomic factors.

Air pollution levels were based on direct 
measurements at schools on two different 
seasons. Although this may represent an 
improvement over previous papers, which used 
models to estimate air pollution concentrations 
at schools, our estimations were still imper-
fect estimates of annual concentrations. This 
measurement error is unlikely to be related to 
school characteristics, in which case it would 
bias the results toward the null. Another 
limitation was that, in order to increase the 
statistical power of source apportionment, this 
was applied to the joint set of all indoor and 
outdoor measurements, which may generate 
some artifacts in source identification. Our 
data could also be affected by other issues in 
source estimation, such as imperfect separa-
tion of road dust and the mineral sources. 
Uncertainty in source estimation, if properly 
accounted for, would widen our confidence 
intervals (Kioumourtzoglou et al. 2014). We 
did not have data on other pollutants such 
as gases or volatile compounds that may 
be related to cognitive effects, but these are 
expected to be correlated with the estimated 
sources. Further studies in different settings 
are needed to assess the generalizability of these 
results. Finally, it is worth mentioning that we 
examined working memory and inattentive-
ness, but not other domains of cognition such 
as visuospatial ability or language. 

Conclusions
This study aimed to investigate whether 
levels of PM at schools were associated with 
cognitive development separately for each 
PM source. We found that levels of PM from 
traffic were associated with important reduc-
tions in cognitive growth over a 1-year period 
in primary school children. Future studies 
should examine whether the effects observed 
at primary school age are long-lasting and 
have consequences over the life course.
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Abstract

Background: High-throughput RNA sequencing (RNA-seq) offers unprecedented power to capture the real
dynamics of gene expression. Experimental designs with extensive biological replication present a unique
opportunity to exploit this feature and distinguish expression profiles with higher resolution. RNA-seq data analysis
methods so far have been mostly applied to data sets with few replicates and their default settings try to provide the
best performance under this constraint. These methods are based on two well-known count data distributions: the
Poisson and the negative binomial. The way to properly calibrate them with large RNA-seq data sets is not trivial for
the non-expert bioinformatics user.

Results: Here we show that expression profiles produced by extensively-replicated RNA-seq experiments lead to a
rich diversity of count data distributions beyond the Poisson and the negative binomial, such as Poisson-Inverse
Gaussian or Pólya-Aeppli, which can be captured by a more general family of count data distributions called the
Poisson-Tweedie. The flexibility of the Poisson-Tweedie family enables a direct fitting of emerging features of large
expression profiles, such as heavy-tails or zero-inflation, without the need to alter a single configuration parameter.
We provide a software package for R called tweeDEseq implementing a new test for differential expression based
on the Poisson-Tweedie family. Using simulations on synthetic and real RNA-seq data we show that tweeDEseq
yields P-values that are equally or more accurate than competing methods under different configuration parameters.
By surveying the tiny fraction of sex-specific gene expression changes in human lymphoblastoid cell lines, we also
show that tweeDEseq accurately detects differentially expressed genes in a real large RNA-seq data set with
improved performance and reproducibility over the previously compared methodologies. Finally, we compared the
results with those obtained from microarrays in order to check for reproducibility.

Conclusions: RNA-seq data with many replicates leads to a handful of count data distributions which can be
accurately estimated with the statistical model illustrated in this paper. This method provides a better fit to the
underlying biological variability; this may be critical when comparing groups of RNA-seq samples with markedly
different count data distributions. The tweeDEseq package forms part of the Bioconductor project and it is available
for download at http://www.bioconductor.org.
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Background
High-throughput gene expression profiling across sam-
ples constitutes one of the primary tools for character-
izing phenotypes at molecular level. One of the main
advantages of the rapidly evolving massive scale cDNA
sequencing assay for this purpose (RNA-seq [1]), over
the hybridization-based microarray technology, is a much
larger dynamic range of detection. However, the extent to
which this feature is fully exploited depends entirely on
the way the resulting data is analyzed when addressing a
particular biological question. For instance, in the identi-
fication of genes that significantly change their expression
levels between groups of samples, also known as differen-
tial expression (DE).
For DE analysis, after some pre-processing steps that

include the alignment of the sequenced reads to a ref-
erence genome and their summarization into features of
interest (e.g., genes), raw RNA-seq data is transformed
into an initial table of counts. This table should then be
normalized [2-4] in order to adjust for both technical
variability and the expression properties of the samples,
such that the estimated normalization factors and offsets
applied to the RNA-seq count data describe as accurately
as possible the relative number of copies of each feature
throughout every sample. As opposed to the continu-
ous nature of log-scale fluorescence units in microarray
data, RNA-seq expression levels are defined by discrete
count data, and therefore, require specific DE analysis
techniques.
Detection of DE genes using RNA-seq data was firstly

based on using models assuming a Poisson distribution
[5] with one single parameter, the mean, which simulta-
neously determines the variance of the distribution. Given
that the observed variation in read counts is much larger
than the mean (overdispersion), researchers have pro-
posed the use of negative binomial (NB) distributions
[6-8] which are defined by two parameters: the mean and
the dispersion. However, the larger power of RNA-seq
to capture biological variability can potentially introduce
into count data not only overdispersion, but also oddities
such as zero-inflation (i.e., in lowly expressed genes, the
proportion of zero counts may be greater than expected
under an NB distribution) and heavy tail behavior (i.e., a
large dynamic range within the same expression profile),
specially when many biological replicates are available.
Under these circumstances even a two-parameter NB dis-
tribution may not provide an adequate fit to the data (see
Figure 1). In turn, this may lead to incorrect statistical
inferences resulting in lists of DE genes with a potentially
increased number of false positive calls and poor repro-
ducibility. To overcome this problem, methods based on
the NB distribution [6-11] use sophisticated moderation
techniques that borrow information across genes and
exploit the mean-variance relationship in count data to

improve the estimation of the NB dispersion parameter.
This requires, however, that the parameter configuration
is calibrated for the most appropriate moderation regime
which may depend on features such as sample size, the
magnitude of the fold-change, the variability of expres-
sion levels, the fraction of genes undergoing differential
expression and the overall expression level.
In this paper we propose to approach this problem

by using other count data distributions that fit expres-
sion profiles better than the NB without the need to
alter configuration parameters. The rest of the paper is
organized as follows. Using a large RNA-seq data set of
HapMap lymphoblastoid cell lines (LCLs) derived from
n = 69 unrelated Nigerian (YRI) individuals [12], we
start by assessing the goodness of fit of extensively repli-
cated expression profiles to the NB distribution, show-
ing a lack of fit for an important fraction of genes. We
illustrate how a more flexible family of count-data prob-
ability distributions, called the Poisson-Tweedie, provides
a better fit to these expression profiles. We provide data
supporting the hypothesis that the lack of fit to NB distri-
butions may be related to the dynamics of gene expression
unveiled by RNA-seq technology. We then introduce a
new test for differential expression analysis in RNA-seq
data based on the Poisson-Tweedie family of distribu-
tions. We demonstrate with simulations on synthetic and
real RNA-seq data how a single run of our approach pro-
vides P-values that are equally or more accurate than
NB-based competing methods calibrated with a variety
of configuration parameters. Finally, by surveying the tiny
fraction of sex-specific gene expression changes in LCL
samples, we approach the problem of assessing accu-
racy in DE analysis with real RNA-seq data and show
that, in the context of extensively replicated RNA-seq
experiments, tweeDEseq yields better performance than
competing NB-based methods without the need to make
an informed decision on the configuration of parameters.
This improvement is reported in terms of precision and
recall of DE genes and reproducibility of the significance
levels with respect to matching microarray experiments.

Results and discussion
The results we provide in this paper are based on data
from a previously published large RNA-seq experiment
[12] and on our own simulated count data. We down-
loaded and pre-processed the HapMap LCL raw RNA-seq
data, consisting of n = 69 samples from unrelated YRI
individuals, with our own pipeline (see Methods). The
resulting table of counts consists of 38,415 genes by 69
samples. We filtered out genes with very low expres-
sion levels and used different normalization methods
[2,4] (see Methods) to ensure that the results described
below do not depend on this fundamental step. In fact,
we have observed that normalized counts can lead to
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Figure 1 Fit of different count data distributions to diverse RNA-seq gene expression profiles. Fit of different count data distributions to the
female (a, c, e) and male (b, d, f) RNA-seq expression profiles of genes EEF1A2 (a, b), SCT (c, d) and NLGN4Y (e, f). All plots show the empirical
cumulative distribution function (CDF) of counts (black dots) and the CDF estimated by a pure negative binomial model (black dashed line), a
Poisson-Tweedie model (red line) obtained with tweeDEseq and several moderated negative binomial models obtained with different parameter
configurations of DESeq and edgeR. Estimated dispersions, and shape in the case of tweeDEseq, are indicated in the legend. Above the legend,
the P-value of the test of goodness-of-fit to a negative binomial distribution is shown. According to this test, expression profiles in panels (a, b, c
and e) do not follow a negative binomial distribution. Female samples display non-negative binomial features such as a heavy-tail (a, c) and
zero-inflation (c, e). Gene NLGN4Y is documented in the literature as a gene with sex-specific expression, while the other two are not (EEF1A2 is a
housekeeping gene and SCT is an endocrine hormone peptide in chromosome 11 that controls secretions in the duodenum).
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quite different MA-plots depending on the normalization
method, thus potentially affecting DE detection power
and accuracy (Figure 2).
The statistical methods proposed in this paper are

implemented in a package for the statistical software
R, called tweeDEseq which forms part of the Biocon-
ductor project [13] at http://www.bioconductor.org. We
have also created an experimental data package, called
tweeDEseqCountData, which contains the previously
described data set and is also available at the same URL.
All results presented in the paper were obtained using
these and other packages from R version 2.15.1 and Bio-
conductor version 2.11, and can be reproduced through
the scripts available as Additional file 1 to this article.

Review of competing methods
There is currently a large body of literature on DE anal-
ysis methods for RNA-seq data [5-11,14], nearly all of
them based on the NB distribution and developed to
deliver their best performance with few replicates. Anders
et al. (2010) [7] argued that for large number of individ-
uals “... questions of data distribution could be avoided
by using non-parametric methods, such as rank-based
permutation tests”. However, rank-based methods require
similar count data distributions between sample groups.
Due to the large variability across groups [15] captured
by RNA-seq data, this assumption will most likely be

broken in this context. For example, panels e-f in Figure 1
illustrate the case of gene NLGN4Y (ENSG00000165246),
a gene located in the male-specific region of chromo-
some Y and reported to have sex-specific expression,
which shows remarkably different count data distribu-
tions betweenmale and female samples. Permutation tests
are also underpowered since distribution tails are not
well estimated (due to the large dynamic range), which is
important when correcting for multiple testing.
In this paper we will focus our comparisons on the

two most widely used methods for DE analysis of RNA-
seq data, edgeR [6,8,10] (version 3.0.8) and DESeq [7]
(version 1.10.1) and explore those parameter configu-
rations in these methods that we found most relevant
for large RNA-seq data sets, according to the available
documentation. Both, edgeR and DESEq, assume that
expression profiles from RNA-seq data follow an NB
distribution and borrow information across genes to
first estimate a common dispersion parameter. Then,
for each gene, they estimate its genewise dispersion and
moderate it towards the common one. The way in which
this moderation takes place depends on the method and
its configuration parameters. DESeq [7] allows switch-
ing between common (sharingMode="fit-only")
and genewise (sharingMode="gene-est-only")
dispersions. It provides a straightforward strategy
(sharingMode="maximum", default configuration) to
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Figure 2 Count data normalization.MA-plots of the count data corresponding to the YRI samples from Pickrell [12] et al. (2010) after applying the
following normalization methods: (a) raw count data without any normalization; (b) normalization with the edgeR [2] package; and (c)
normalization with the cqn [4] package. The x-axis (A) shows the average expression throughout female and male samples in log2 scale and the
y-axis (M) shows the magnitude of the log2-fold change between female and male samples.
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choose between common and genewise dispersions by
taking the largest value for each gene. edgeR allows one
to calibrate, using the prior.df parameter, the transi-
tion from a purely genewise dispersion estimate (small
values of prior.df) to the common one (large values
of prior.df) by using an empirical Bayes approach. By
default prior.df=20 which implies that a large weight
is given to the common dispersion. However, accord-
ing to the documentation, if the number of samples is
large, the common dispersion becomes less important
in the moderation step. Additional options in DESeq
and edgeR that may be relevant in the context of large
RNA-seq data sets are, in the case of DESeq, whether
dispersions are estimated from the entire pool of sam-
ples (method="pooled", its default) or separately per
sample group (method="per-condition"). In the
case of edgeR, whether the DE test is performed using
a likelihood ratio test (glmLRT() function) or a quasi-
likelihood F-test [8] (glmQLFTest() function), after
dispersions are estimated. Table 1 summarizes these eight
combinations of methods and parameter configurations
and contains the key to the terms used in some figures to
distinguish among them.

Different gene expression dynamics require different
distributional assumptions on count data
We assessed the goodness-of-fit of every expression pro-
file in the LCL RNA-seq data to an NB distribution
(see Methods) by means of quantile-quantile (Q-Q) plots
(Figure 3) and about 10% of the genes show a substantial
discrepancy with respect to the NB distribution in the
counts (see right y-axis in Figure 3). Such a discrepancy
is absent from data simulated from NB distributions with
a similar number of genes including a small fraction of
them changing between two conditions (Additional file 2:
Figure S1).
This result suggests that NB distributions may be too

restrictive for an important fraction of expression pro-
files in large RNA-seq data sets. Among the possible
causes underlying the lack of fit of those genes to an

NB distribution, a clear candidate is that the presence of
many samples can potentially introduce features such as
zero-inflation or heavy-tails (see Figure 1). So far, exten-
sive biological replication in RNA-seq experiments has
been the exception rather than the rule. However, it is
becoming increasingly clear [15] that in the coming years
larger RNA-seq data sets will be required to justify scien-
tific conclusions and provide reproducible results. There-
fore, we can expect to see more often gene expression
profiles with emerging features, such as zero-inflation and
heavy tails, that challenge RNA-seq methods based on the
NB distribution.
We propose to address this problem by adopting the

Poisson-Tweedie (PT) family of distributions [16] to
model RNA-seq count data directly. PT distributions are
described by a mean (μ), a dispersion (φ) and a shape
(a) parameter (see Methods) and include Poisson and NB
distributions, among others, as particular cases [16]. An
important feature of this family is that, while the NB dis-
tribution only allows a quadratic mean-variance relation-
ship, the PT distributions generalizes this relationship to
any order [17]. We have implemented a maximum likeli-
hood procedure for the estimation and simulation of these
parameters from count data. These procedures are avail-
able in the tweeDEseq package through the functions
mlePoissonTweedie(), dPT() and rPT().
Figure 1 illustrates the flexibility of the PT distribu-

tion to accurately fit different gene expression profiles
obtained from the un-normalized LCL RNA-seq data
set. Left and right panels correspond to female and
male samples, respectively and each row corresponds
to a different gene: EEF1A2 (ENSG00000101210), SCT
(ENSG00000070031) andNLGN4Y (ENSG00000165246),
respectively. Among these three genes, only NLGN4Y
has been reported in the literature to have sex specific
expresssion, while the other two are likely to lack such
property since EEF1A2 is a housekeeping gene and SCT
is an endocrine hormone peptide in chromosome 11 that
controls secretions in the duodenum. Each plot shows the
empirical cumulative distribution of observed counts as

Table 1 Methods and parameter configurations compared in this paper

Key Software Configuration parameters

DESeqPgO DESEq method="pooled", sharingMode="per-condition"

DESeqPmax DESEq method="pooled", sharingMode="maximum"

DESeqCgO DESEq method="per-condition", sharingMode="per-condition"

DESeqCmax DESEq method="per-condition", sharingMode="maximum"

edgeRdf20 edgeR common/trended/tagwise moderation regime with prior.df=20 (default)

edgeRdf1 edgeR common/trended/tagwise moderation regime with prior.df=1

edgeRqlfDf20 edgeR common/trended/tagwise moderation regime with prior.df=20 (default) and quasi-likelihood
F-tests

edgeRqlfDf1 edgeR common/trended/tagwise moderation regime with prior.df=1 and quasi-likelihood F-tests
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Figure 3 Goodness of fit to the negative-binomial distribution. Quantile-quantile (Q-Q) plots of the goodness-of-fit of RNA-seq expression
profiles from Pickrell [12] et al. (2010) to a negative-binomial (NB) distribution. The right y-axis indicates the quantile of the observed distribution.
Columns correspond to different normalization methods where (a, d) correspond to raw un-normalized counts, (b, e) normalization with edgeR
and (c, f) normalization with cqn. The top row (a, b, c) contains the Q-Q plots of the χ2 goodness-of-fit statistic while the bottom row (d, e, f)
contains the same Q-Q plot mapped to a normalized Z-statistic to improve the visibility of the left tail of the distribution. Independently on how
count data are normalized, about 10% of the expression profiles show a substantial discrepancy to the NB distribution.

well as the parametric cumulative distributions obtained
through the estimation of parameters of the methods
compared in this paper under different configurations.
Note that the estimated dispersion parameter φ is identi-
cal between the two sample groups for edgeR and DESeq
(pooled) as these approaches estimate φ irrespective from
the sample groups. The P-value for testing whether the
data follow an NB distribution (H0 : a = 0), indicated
above the legend, reveals that in several sample groups
(panels a-c, e) this hypothesis is rejected (P < 0.05). In
those cases, methods based on the NB distribution pro-
duce dispersion parameters that do not fit the data as
accurately as the PT distribution. More concretely, heavy-
tails present in panels a,c severely hamper the estimation
of the pure NB and the common dispersion. These can be
improved using a parameter configuration more suited to
large sample sizes. However, this results in a poor estimate
of zero-inflation in panels c-e.
The main difference between the PT and NB distri-

butions lies in the additional “shape” parameter a of
the PT distribution which provides further flexibility
(see Methods). Using the LCL data processed with

different normalization methods, we show in Figure 4
all values of the shape parameter a for every gene as
function of its mean expression level, illustrating the
huge variability of this parameter in RNA-seq count
data. This wide range of values involves distinct possi-
ble distributional assumptions [16] beyond Poisson and
NB, such as Poisson-Inverse Gaussian, Pólya-Aeppli or
Neyman type A. Similarly to the MA-plots of Figure 2,
the cqn normalization method seems to make the largest
impact on count data and, in this case, on the shape
parameter.
We have investigated whether this diversity of count

distributions underlying RNA-seq data is related to
different expression dynamics in genes. Using the
test for the goodness of fit to an NB distribution
(see Methods) we have considered as NB those genes that
do not reject the null hypothesis at P > 0.2 and as clear-
cut non-NB genes those with P < 2−16. By mapping
all these genes to the Gene Expression Barcode catalog
[18] (see Methods) we obtained an independent and unbi-
ased estimation of their expression breadth. The results
in Figure 5 suggest that the expression breadth of non-
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Figure 4 Distribution of the Poisson-Tweedie shape parameter as function of the mean expression level. Estimated Poisson-Tweedie shape
parameter a as function of the mean expression level for each gene. Red dashed lines indicate the value of a corresponding to each specific
distribution within the Poisson-Tweedie family, denoted by Pois (Poisson), PIG (Poisson-Inverse Gaussian), NB (negative binomial), PA (Pólya-Aeppli)
and NtA (Neyman type A). The right y-axis indicates the percentage of genes around specific a values bounded by dotted grey lines. Data from
Pickrell [12] et al. (2010) are shown without any normalization (a), normalized with edgeR [2] (b), and normalized with cqn [4] (c).

NB genes approaches that of housekeeping genes closer
than NB genes do, irrespective of the normalization
method.
In fact, Fisher’s exact tests for enrichment of non-NB

genes among human housekeeping genes are significant

(P < 1.24−6) for every normalization method (see
Additional file 2: Table S1). These observations sug-
gest that genes with different expression dynamics can
produce different count data distributions, and under-
score the flexibility of the PT statistical model to capture
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Figure 5 Expression dynamics of genes with different count data distributions. Empirical cumulative distributions of the breadth of
expression estimated through the Barcode [18] database, for genes that do not reject the null hypothesis of a negative-binomial (NB) distribution in
a test for the goodness of fit at P > 0.2 (green lines), genes that do reject such a null hypothesis at P < 2−16 (blue lines) and housekeeping genes
retrieved from literature [19] (red lines). Data from Pickrell [12] et al. (2010) are shown without any normalization (a), normalized with edgeR [2] (b)
and normalized with cqn [4] (c). These plots show that, independently of the normalization method, non-NB genes at such significance level of
discrepancy with respect to the NB distribution approach closer the expression dynamics of housekeeping genes than genes with expression
profiles following the NB distribution.
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these dynamics revealed by extensively-replicated RNA-
seq experiments.

Accurately testing differential expression
For the purpose of a DE analysis between two groups of
samples, we have developed a two-sample PT-test for dif-
ferences in means (see Methods) implemented through
the function tweeDE() in the tweeDEseq package. We
will assess the accuracy of this PT-based test using the
LCL data as well as synthetic count data from two dif-
ferent simulation studies. The first simulation study with
synthetic data provides an assessment of the type-I error
rate under four different scenarios involving distinct count
data distributions between sample groups (see Additional
file 2: Table S2 for a description of them). Here we com-
pare tweeDEseq with the configurations of edgeR and
DESeq which are closer to a straightforward NB model.
Additional file 2: Figures S2 to S5 show that tweeDEseq
properly controls the nominal probability of a type-I
error while edgeR, DESeq and non-parametric tests
(U Mann-Withney and permutation) fail to do so
when data are not simulated from NB distributions. As
expected, these methods perform correctly when data
are generated under an NB model (see Additional file 2:
Figure S5) as expected. Additional file 2: Figure S6
also shows that in the calculation of very low P-
values, tweeDEseq clearly outperforms permutations
tests. In order to provide a practical recommendation
on the minimum sample size required by tweeDEseq
to yield accurate results we have estimated the prob-
ability of a type-I error across different sample sizes.
Additional file 2: Figure S7 indicates that 15 sam-
ples per group should be sufficient for tweeDEseq
to correctly control for a nominal significance level
α = 0.05.
In the second simulation study we have first assessed

the accuracy of the P-value distribution under the null
hypothesis of no differential expression with real RNA-seq
data by making repeatedly two-sample group compar-
isons within males and within females samples such that
we recreate the null hypothesis of no DE with real RNA-
seq data and no DE gene should be expected to be found.
The raw P-value distributions from such analysis should
ideally be uniform.
We have formally tested this hypothesis for every gene

by means of a Kolmogorov-Smirnov (KS) goodness-of-fit
test to a uniform distribution and examine the resulting
P-value distribution by means of Q-Q plots displayed in
Figure 6. Under the null hypothesis that all genes are not
DE, the KS P-values should lie along the diagonal of the
Q-Q plot. The figure, however, shows large discrepancies
to this criterion by some of themethods and configuration
parameters, indicating that they may not be adequate for
large RNA-seq data sets.

The method introduced in this paper, tweeDEseq,
is consistently closer to the diagonal than every other
method throughout the two male and female com-
parisons and the two normalization methods. More
informally, the visual inspection of the histograms of
raw P-values given in Additional file 2: Figure S8 also
reveals that tweeDEseq provides P-value distributions
closer to the uniform under the null hypothesis of no
DE simulated from extensively replicated real RNA-seq
data.
As other authors have shown, in the context of anal-

ysis of RNA-seq data with very limited sample size [8],
small deviations from uniformity of P-values under the
null hypothesis can substantially affect FDR estimates
of DE genes. We have also assessed the calibration of
P-values and false discovery rates (FDR) with synthetic
count data of similar dimensions to the RNA-seq LCL
data set, concretely with p = 20, 000 genes and n = 70
samples. Working with this type of data allows to assess
FDR estimates for a known subset of DE genes under
a variety of simulated scenarios, which we defined by
considering the combination of three different amounts
of DE genes (100, 1000 and 2000) and three different
magnitudes of fold-change (1.5, 2 and 4-fold). Similarly
to [8], data were simulated from a hierarchical gamma-
Poisson model with and without simulated library factors
(see Methods).
From every simulated data set, raw P-values for the

two-sample DE test were obtained with each method and
configuration parameters. Using the qvalue Bioconduc-
tor package [21] we estimated q-values and the fraction of
DE genes from each P-value distribution. Q-values pro-
vide a nominal estimation of the FDR for each gene and
in Figures 7 and 8 we show the empirical FDR (eFDR)
as a function of the nominal q-values for the simulations
with constant and variable library factors, respectively.
The dashed diagonal line indicates a correct calibration
of P-values whose nominal FDR equals the observed
eFDR. Lines above the diagonal correspond to liberal
DE analysis methodologies and below to conservative
ones.
To facilitate the comparison of methods across all sim-

ulated data sets we have calculated the mean squared
error (MSE) between the eFDR and the nominal FDR and
ranked the methods by increasing MSE. In Tables 2 and 3
we can find the MSE values and in Tables 4 and 5 the cor-
responding ranks of the methods according to the MSE
values. As it follows from the rankings in Tables 4 and 5,
tweeDEseq provides the best calibrated P-values inmost
of the simulated data sets.
The previous calculations of q-values with the qvalue

package [21] provide us also with estimates π̂0 of the
fraction of genes under the null hypothesis of no differ-
ential expression. This, in turn, allows one to derive an
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Figure 6 Quantile-quantile (Q-Q) plots for the goodness-of-fit of null-hypothesis P-values to an uniform distribution. Using the results
displayed in Additional file 2: Figure S8 and performing as described by Leek et al. (2007) [20], for each gene, the distribution of P-values throughout
the 100 simulations was tested for its goodness-of-fit to an uniform distribution using a Kolmogorov-Smirnov test. Q-Q plots in this figure show for
all genes the resulting P-values of the previous test which, under the null hypothesis of no differential expression, should be uniformly distributed
too and lead to lines lying on the diagonal. Panels a-b show results from female vs female comparisons and c-d from male vs male comparisons,
while a,c correspond to un-normalized data and b,d to data normalized with the cqn [4]. The method introduced in this paper, tweeDEseq, is on
average closer to the diagonal throughout the four simulations, closely followed by DESeq when sharingMode="gene-est-only" and
either method="per-condition" or method="pooled".

estimated number of DE genes as p(1 − π̂0) with p being
the total number of genes. In principle, more precise P-
values both under the null and the alternative hypotheses
should provide more accurate estimates of the number of
DE genes. We show such an assessment for the previous
simulations in Additional file 2: Figures S9 and S10. To
summarize those results we have divided each estimate of
the number of DE genes by their actual simulated num-
ber of DE genes and aggregate those ratios throughout
the different simulation scenarios to ease the comparison
among the methods. We find this comparison in Figure 9
and it follows that tweeDEseq produces P-values that
lead to the most accurate estimation of the number of
DE genes, closely followed by edgeR with prior.df=1
when library factors are not held constant. In both set-
tings, DESeq leads to extremely conservative estimates of
the number of DE genes.

Identification of sex-specific gene expression in
lymphoblastoid cell lines
Assessing performance of DE analysis methods without
using simulated data is a challenging problem due to the
difficulty of knowing or ensuring the exact differential
concentration of RNA molecules in the analysed samples.
In this respect, sex-specific expression constitutes a use-
ful system to assess the accuracy of DE detection methods
due to the vast literature on genes contributing to gender-
specific traits. For this reason, in order to illustrate the
accuracy of tweeDEseqwith real RNA-seq data, we have
searched for genes changing significantly their expres-
sion between female and male individuals of the RNA-seq
experiments on LCLs analyzed in this paper. Again, we
have compared different normalization procedures and
parameter configurations of edgeR and DESeq. Next
to considering the raw un-normalized data and the data
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Figure 7 Empirical FDR values for simulated data with constant library factors. Empirical FDR values on the y-axis as function of nominal
q-values on the x-axis calculated from data simulated with p = 20, 000 genes, n = 70 samples and constant library factors. Each row and column
corresponds, respectively, to a different number of DE genes and magnitude of the fold-change. The method introduced in this paper,
tweeDEseq, is consistently closer to the diagonal than other methods throughout the different simulations.

normalized with cqn, TMM normalization was used for
edgeR and tweeDEseq, while DESeq was used with its
own normalization method. We have used a single signifi-
cance cutoff of FDR < 0.1 at which genes were called DE.
Since LCLs come from a non-sexually dimorphic tissue
and are outside their original biological context, the frac-
tion of sex-specific expression changes we could expect
should be rather small.
In an attempt to verify the accuracy of these lists of DE

genes between female and male individuals, we searched
for genes reported in the literature to be potential con-
tributors to sexually dimorphic traits. This list of genes

with documented sex-specific expression was obtained
from genes in chromosome X that escape X-inactivation
[22] and from genes in the male-specific region of the
Y chromosome [23] (see Methods). This resulted in a
gold-standard set of 95 genes mapping to Ensembl Gene
Identifiers (release 63), which we shall denote by XiE
and MSY genes, depending on their origin. For every
predicted set of DE genes by each combination of DE
detection method and normalized data set, we calculated
precision and recall with respect to the gold-standard, and
the F-measure which summarizes the trade-off between
these two diagnostics.
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Figure 8 Empirical FDR values for simulated data with variable library factors. Empirical FDR values on the y-axis as function of nominal
q-values on the x-axis calculated from data simulated with p = 20, 000 genes, n = 70 samples and variable library factors. Each row and column
corresponds, respectively, to a different number of DE genes and magnitude of the fold-change. The method introduced in this paper,
tweeDEseq, is consistently closer to the diagonal than other methods throughout the different simulations.

In Figure 10 we can see that tweeDEseq pro-
vides better performance than the other competing
methods under different parameter configurations. The
improvement is small with respect to the second best-
performing method and parameter configuration but we
would like to emphasize that tweeDEseq does not
require any informed decision on a parameter config-
uration, as opposed to edgeR and DESeq. To assess
the robustness of this figure, we have run this compar-
ative assessment with a more stringent filter on lowly
expressed genes and, as Additional file 2: Figure S11
shows, tweeDEseq keeps performing better than the

other methods, this time however only when data are
normalized.
In Additional file 2: Table S3 we report the complete list

of 55 DE genes detected by tweeDEseq from the data
normalized with cqn, which is when it yields the best
precision-recall tradeoff. More than a half of genes in this
list (32) are located in either the X or Y chromosomes
and where the first 10 with largest fold-change contain 7
from the gold-standard set of MSY and XiE genes. Among
the other 3, we find TTTY15, a testis-specific non-coding
transcript from the Y chromosome and the other two lack
functional annotation in Ensembl release 63.
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Table 2 Mean squared error of false discovery rates under constant library factors

#DE Rank 1.5-fold change 2-fold change 4-fold change

MSE Method MSE Method MSE Method

1 0.050 DESeq - Pmax 0.050 DESeq - Pmax 0.031 tweeDEseq

2 0.122 tweeDEseq 0.053 tweeDEseq 0.037 DESeq - Cmax

3 0.155 DESeq - Cmax 0.065 DESeq - Cmax 0.070 DESeq - Pmax

4 0.257 DESeq - PgOn 0.104 DESeq - PgOn 0.072 DESeq - PgOn

100 5 0.306 edgeR - QLF Df1 0.138 edgeR - QLF Df1 0.430 edgeR - QLF Df1

6 0.313 edgeR - QLF (def) 0.177 edgeR - QLF (def) 0.452 edgeR - QLF (def)

7 0.558 edgeR - (def) 0.336 edgeR - (def) 0.790 edgeR - (def)

8 0.755 edgeR - Df1 0.431 edgeR - Df1 0.957 edgeR - Df1

9 9.688 DESeq - CgOn 6.232 DESeq - CgOn 5.133 DESeq - CgOn

1 0.008 tweeDEseq 0.004 tweeDEseq 0.004 tweeDEseq

2 0.008 DESeq - Cmax 0.008 DESeq - PgOn 0.007 DESeq - PgOn

3 0.016 DESeq - PgOn 0.015 DESeq - Cmax 0.014 DESeq - Cmax

4 0.043 edgeR - QLF Df1 0.087 DESeq - Pmax 0.081 DESeq - Pmax

1000 5 0.045 edgeR - QLF (def) 0.413 edgeR - QLF (def) 0.429 DESeq - CgOn

6 0.082 DESeq - Pmax 0.459 edgeR - QLF Df1 21.358 edgeR - QLF (def)

7 0.105 edgeR - (def) 0.532 DESeq - CgOn 22.208 edgeR - (def)

8 0.155 edgeR - Df1 0.639 edgeR - (def) 23.401 edgeR - QLF Df1

9 0.735 DESeq - CgOn 0.835 edgeR - Df1 25.004 edgeR - Df1

1 0.002 DESeq - PgOn 0.001 DESeq - PgOn 0.000 DESeq - PgOn

2 0.002 tweeDEseq 0.001 tweeDEseq 0.001 tweeDEseq

3 0.025 DESeq - Cmax 0.031 DESeq - Cmax 0.036 DESeq - Cmax

4 0.053 edgeR - QLF (def) 0.090 DESeq - Pmax 0.093 DESeq - Pmax

2000 5 0.056 edgeR - QLF Df1 0.183 DESeq - CgOn 0.140 DESeq - CgOn

6 0.093 DESeq - Pmax 1.444 edgeR - QLF (def) 34.551 edgeR - QLF (def)

7 0.113 edgeR - (def) 1.702 edgeR - QLF Df1 35.365 edgeR - (def)

8 0.169 edgeR - Df1 1.724 edgeR - (def) 35.468 edgeR - QLF Df1

9 0.271 DESeq - CgOn 2.219 edgeR - Df1 36.929 edgeR - Df1

Data in this table correspond to the mean squared error (MSE) values between the empirical false discovery rates (eFDR) and the nominal q-values obtained from the
simulation study shown in Figure 7 in which library factors were held constant.

Reproducibility with respect to microarray data
The YRI LCL samples we have analyzed have been previ-
ously assayed using microarray chips [24] and this enables
a comparison between the gene expression read out of
both technologies. In particular, we wanted to assess the
degree of reproducibility of the significance levels of DE.
While there may be many aspects from both technolo-
gies that can potentially bound the extent to which we
can reproduce rankings of DE, we postulate that more
accurate P-values in DE genes should lead to higher repro-
ducibility of significance levels of DE genes.
With this purpose, we applied limma [25] on the

microarray data and called genes DE at 10% FDR, just as
we did with RNA-seq data, and then compared the− log10
units of the raw P-values from DE genes called in RNA-
seq by each DE detection method to the − log10 P-value

units from genes called DE by limma. In Additional file 2:
Figure S12 we show this comparison for every gene that
is called DE either by limma in microarray data or by
the other compared method in RNA-seq data. Although
we can observe a significant linear relationship between
P-values in every compared method, the low fraction of
variability explained by the fitted linear model (R2 < 0.25)
in every of those comparisons indicates a rather poor level
of reproducibility for every method.
A closer look to genes in that figure indicates that the

lack of reproducibility mostly comes from genes called
DE by one method and technology but not by the other
(dots close to zero in either the x or the y-axis). There
may be many reasons, unrelated to the DE detection
method itself, why a gene is not called simultaneously DE
in two completely independent RNA-seq and microarray
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Table 3 Mean squared error of false discovery rates under variable library factors

#DE Rank 1.5-fold change 2-fold change 4-fold change

MSE Method MSE Method MSE Method

1 0.030 DESeq - Pmax 0.059 DESeq - Cmax 0.046 tweeDEseq

2 0.099 tweeDEseq 0.064 tweeDEseq 0.055 DESeq - Pmax

3 0.189 DESeq - Cmax 0.072 DESeq - Pmax 0.057 DESeq - Cmax

4 0.194 DESeq - PgOn 0.116 DESeq - PgOn 0.106 DESeq - PgOn

100 5 0.258 edgeR - QLF Df1 0.129 edgeR - QLF Df1 0.124 edgeR - QLF Df1

6 0.348 edgeR - QLF (def) 0.129 edgeR - QLF (def) 0.153 edgeR - QLF (def)

7 0.581 edgeR - (def) 0.273 edgeR - (def) 0.290 edgeR - (def)

8 0.667 edgeR - Df1 0.420 edgeR - Df1 0.380 edgeR - Df1

9 8.882 DESeq - CgOn 6.429 DESeq - CgOn 5.217 DESeq - CgOn

1 0.005 tweeDEseq 0.006 tweeDEseq 0.008 tweeDEseq

2 0.009 DESeq - Cmax 0.012 DESeq - Cmax 0.010 DESeq - Cmax

3 0.013 DESeq - PgOn 0.012 DESeq - PgOn 0.011 edgeR - QLF Df1

4 0.016 edgeR - QLF Df1 0.016 edgeR - QLF Df1 0.013 edgeR - QLF (def)

1000 5 0.019 edgeR - QLF (def) 0.017 edgeR - QLF (def) 0.024 DESeq - PgOn

6 0.054 edgeR - (def) 0.051 edgeR - (def) 0.045 edgeR -(def)

7 0.083 DESeq - Pmax 0.082 DESeq - Pmax 0.067 DESeq - Pmax

8 0.087 edgeR - Df1 0.083 edgeR - Df1 0.077 edgeR - Df1

9 0.700 DESeq - CgOn 0.545 DESeq - CgOn 0.529 DESeq - CgOn

1 0.003 tweeDEseq 0.004 tweeDEseq 0.005 DESeq - Cmax

2 0.003 DESeq - PgOn 0.006 edgeR - QLF Df1 0.017 edgeR - QLF (def)

3 0.006 edgeR - QLF Df1 0.006 edgeR - QLF (def) 0.018 edgeR - QLF Df1

4 0.007 edgeR - QLF (def) 0.007 DESeq - PgOn 0.023 tweeDEseq

2000 5 0.025 DESeq - Cmax 0.024 DESeq - Cmax 0.029 DESeq - Pmax

6 0.028 edgeR - (def) 0.026 edgeR - (def) 0.053 edgeR - (def)

7 0.049 edgeR - Df1 0.047 edgeR - Df1 0.088 edgeR - Df1

8 0.091 DESeq - Pmax 0.077 DESeq - Pmax 0.092 DESeq - PgOn

9 0.267 DESeq - CgOn 0.238 DESeq - CgOn 0.465 DESeq - CgOn

Data in this table correspond to the mean squared error (MSE) values between the empirical false discovery rates (eFDR) and the nominal q-values obtained from the
simulation study shown in Figure 8 in which library factors were variable.

Table 4 Rankings of methods by themean squared error of false discovery rates under constant library factors

Method #DE = 100 #DE = 1000 #DE = 2000

1.5 FC 2 FC 4 FC 1.5 FC 2 FC 4 FC 1.5 FC 2 FC 4 FC

tweeDEseq 2 2 1 1 1 1 2 2 2

DESeq - PgOn 4 4 4 3 2 2 1 1 1

DESeq - Pmax 1 1 3 6 4 4 6 4 4

DESeq - CgOn 9 9 9 9 7 5 9 5 5

DESeq - Cmax 3 3 2 2 3 3 3 3 3

edgeR - (def) 7 7 7 7 8 7 7 8 7

edgeR - QLF (def) 6 6 6 5 5 6 4 6 6

edgeR - Df1 8 8 8 8 9 9 8 9 9

edgeR - QLF Df1 5 5 5 4 6 8 5 7 8

Data in this table correspond to the rankings of every method by the mean squared error (MSE) values shown in Table 1.
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Table 5 Rankings of methods by themean squared error of false discovery rates under variable library factors

Method #DE = 100 #DE = 1000 #DE = 2000

1.5 FC 2 FC 4 FC 1.5 FC 2 FC 4 FC 1.5 FC 2 FC 4 FC

tweeDEseq 2 2 1 1 1 1 1 1 4

DESeq - PgOn 4 4 4 3 3 5 2 4 8

DESeq - Pmax 1 3 2 7 7 7 8 8 5

DESeq - CgOn 9 9 9 9 9 9 9 9 9

DESeq - Cmax 3 1 3 2 2 2 5 5 1

edgeR - (def) 7 7 7 6 6 6 6 6 6

edgeR - QLF (def) 6 6 6 5 5 4 4 3 2

edgeR - Df1 8 8 8 8 8 8 7 7 7

edgeR - QLF Df1 5 5 5 4 4 3 3 2 3

Data in this table correspond to the rankings of every method by the mean squared error (MSE) values shown in Table 2.

experiments on the same biological material, such as dif-
ferent isoforms being probed in the microarray and sum-
marized in RNA-seq or differences in sample preparation.
Therefore, for our current goal of assessing reproducibil-
ity of DE detection methods, we believe it makes sense to
restrict this comparison to those genes that are called DE
by both, limma in microrray data and the corresponding
method in RNA-seq data.
We can find this restricted comparison in Figure 11

which reveals that in this case only tweeDEseq attains
a significant (P < 0.05) linear fit with respect to the P-
values from limma with a level of reproduciblity (R2 =

0.6) substantially larger (46% increase) than the second
best method (DESeq - PgO) with R2 = 0.41.
Finally, we have carried out a comparison between the

entire output of DE genes obtained with tweeDEseq in
RNA-seq data with the entire output DE genes obtained
with limma in microarray data. In Figure 12 we show
the resulting volcano plots where we have highlighted
with black dots those genes that are exclusively profiled
by each technology. As the figure suggests, many more
of these genes occur in RNA-seq than in microrray, one
remarkable case being the XIST gene which shows the
largest fold-change and significance level and corresponds
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Figure 9 Estimation of the number of differentially expressed (DE) genes from simulated data. Boxplots of ratios of estimated to true
numbers of DE genes obtained from data simulated from a hierarchical gamma-Poisson model with constant (a) and variable (b) library factors. This
figure summarizes the results in Additional file 2: Figures S9 and S10 reporting estimated numbers of DE genes under different simulated scenarios
of number or true DE genes and fold-change. The horizontal dash line at ratio one corresponds to the best performance where the estimated
number of DE genes matches the true number.
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Figure 10 Precision and recall comparison on the LCL RNA-seq
data. Precision (y-axis) and recall (x-axis) values for genes called DE at
1% FDR by different DE detection methods and configuration
parameters. The right y-axis indicates values of the F-measure shown
by dot lines. As the figure shows, tweeDEseq provides higher
F-measure values than other methods indicating a better
precision-recall tradeoff.

to the X-inactive specific non-coding RNA gene which
acts as one of the key regulators in silencing one of the
copies of chromosome X in females. Blue and red cir-
cles denoteMSY and XiE genes, respectively. As expected,
all MSY and XiE DE genes report significantly higher
expression in males and females, respectively, except for
the XiE gene NLGN4X in RNA-seq, likely due to low
expression from the inactive X chromosome in female
samples [26]. Surprisingly the volcano plots show that
limma on this microarray data set is able to detect a
few more such genes than tweeDEseq on RNA-seq
data. Last, but not least, an important difference between
the volcano plots of Figure 12 is the fact that expres-
sion changes larger than 2-fold in these microarray data
are nearly synonymous of statistical significance while
with RNA-seq a sizeable fraction of genes with 2-fold or
larger changes show very poor significance levels. This is
likely due to the larger variability of gene expression mea-
surements in RNA-seq experiments with many samples
and underscores the importance of using methods that
properly assess the statistical significance of the observed
changes.

Conclusions
The increased amount of biological variability revealed
by extensive replication in RNA-seq experiments brings
new challenges to the task of identifying genes whose

change in expression is both, biologically and statistically
significant. In microarray data, large fold-changes derived
from large data sets were nearly synonymous of statisti-
cal significance. The volcano plots in Figure 12 and the
examples of specific genes in Figure 1 illustrate why this
is not true anymore with RNA-seq count data. Those
figures unveil that one of these new challenges is to dis-
tinguish statistically significant changes among those that
are already large in magnitude. In this paper we pro-
vide an approach to this problem by using the PT family
of distributions, showing that it captures a much richer
diversity of expression dynamics in RNA-seq count data
than the statistical models based in the NB distributions
alone (see Figures 4 and 5). We have implemented a
two-sample PT-test in a software package for R, called
tweeDEseq, for detecting DE genes and demonstrated
with simulations that produces more accurate P-value dis-
tributions that lead to better calibrated q-values and FDR
estimates.
We have made an attempt to assess DE detection

accuracy with real RNA-seq data by comparing male
and female LCL samples normalized with three different
methods and comparing the results to a gold-standard set
of genes with documented sex-specific expression. This
assessment also shows that tweeDEseq provides a bet-
ter precision-recall tradeoff than the compared NB-based
methods (see Figure 10 and Additional file 2: Figure S11).
We have also made a comparison with matching sam-
ples hybridised on microarray chips which allowed us to
verify that tweeDEseq yields a higher degree of repro-
ducibility of significance levels with respect to microrray
data.
All these different comparative assessments have been

performed against two of the most widely currently
used methods for DE analysis of RNA-seq data, edgeR
and DESeq, under four different parameter configura-
tions each, since their default parametrisation is tailored
towards very limited sample size. Making an informed
decision on what is the most appropriate setup is not
trivial for the non-expert user and, for this reason, it is
important to underscore that tweeDEseq is competitive
with all of the methodologies that follow from the differ-
ent configurations of edgeR and DESeqwithout the need
to set a single parameter.
The fact that the volcano plots from tweeDEseq and

limma, derived from RNA-seq and microarray data,
reveal that limma is able to find a larger number of DE
genes from the gold-standard, suggests a long way still
ahead of us to fully exploit the RNA-seq technology for
DE. Not only regarding experimental aspects, but also sta-
tistical ones such as properly detecting and adjusting for
unwanted sources of non-biological variability, for which
there is currently no well-established available techniques,
as in the case of microarray data.
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Figure 11 Reproducibility of differential expression (DE) betweenmicroarray and RNA-seq. Raw P-values of differential expression in − log10
scale for DE genes called at 10% FDR by both, limma (y-axis), from microarray data, and the other compared DE detection method applied on
RNA-seq data (x-axis). A regression line is depicted in red. On the bottom-right corner of each panel, ρ indicates the Pearson correlation whereas R2

and P indicate, respectively, the coefficient of determination and P-value of the test for zero regression coefficient, of the − log10 p-values of limma
as function of those from the compared RNA-seq method. Only tweeDEseq provides a significant (p < 0.05) level of reproducibility between
P-values of DE genes reported by both, limma on microarray data and the compared RNA-seq method, attaining also the highest ρ and R2 values.
Blue dots indicate genes with documented sex-specific expression.

Other applications of high-throughput sequencing tech-
nology that output counts of molecules, like in Copy
Number Variation (CNV) analysis, could potentially ben-
efit of models based on the PT-distribution. It is our
perception that richer count data models of this kind will
become increasingly necessary to draw accurate conclu-
sions from data as technology brings us closer the actual
biology of the cell.

Methods
Pre-processing of RNA-seq data
We have analyzed data from Pickrell et al. (2010) [12]
that sequenced RNA from LCLs in 69 Nigerian (YRI) [12]
individuals. Raw reads were downloaded from http://eqtl.
uchicago.edu/RNA_Seq_data/unmapped_reads and pre-
processed using the GRAPE pipeline [27]. This pipeline
consists of first mapping the reads to the human genome
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Figure 12 Comparison of DE analyses betweenmicroarray and RNA-seq. Volcano plots of DE analyses performed on matching LCL samples
profiled with RNA-seq (a) and gene expression microarrays (b). The x-axis corresponds to log2 fold-changes between female and male individuals
while the y-axis corresponds to − log10 P-value of significance. RNA-seq data were analysed with tweeDEseq while microarray data were analysed
with limma. Grey dots indicate genes common to both, the RNA-seq and the microarray gene expression matrices, while black dots indicate genes
occurring exclusively in one of the two data sets. Blue and red circles indicate genes documented in the literature with sex-specific expression,
concretely belonging to the male-specific region of chromosome Y and escaping X-chromosome inactivation in females, respectively.

version hg19 using the GEM mapper software [28]. Sec-
ond, mapped reads were summarized into gene-level
counts according to the GENCODE annotation version 3c
[29] with Ensembl release 63 gene identifiers, by select-
ing those reads that mapped either completely within
an exon or spanning a junction. This resulted in an
initial table of counts of 38,415 Ensembl genes. This
table of counts form part of the experimental data pack-
age tweeDEseqCountData available at http://www.
bioconductor.org under the name pickrell1.
The table of counts was filtered to discard lowly

expressed genes by keeping only those with an average
of more than 0.1 counts per million (CPM) through-
out the samples. The results shown in Additional file 2:
Figure S11 were obtained by applying a more stringent
minimum cutoff of 0.5 CPM. When we applied a normal-
ization method that adjusted for gene length and G+C
content (see below), genes without this information were
also discarded. When the minimum CPM was 0.1, then
31,226 genes were kept when no normalization method
or edgeR-TMM was applied and when cqn was applied
then 27,438 were kept (see pg. 5 and 6 from Additional
file 1). When the minimum CPMwas 0.5 then these num-
bers decreased to 19,166 and 18,009 genes, respectively.
Three approaches to normalizing the table of counts

from the LCL data have been considered. The first one

is to work with the initial table of raw counts without
any kind of normalization, the second one is to apply
TMM [2] normalization as implemented in the edgeR
[30] package, the third one is to use the methodology
implemented in the cqn [4] Bioconductor package which
adjusts for sample-specific effects of gene length and G+C
content of every gene. When using the DESeq method
for DE analysis in the LCL samples, the TMM normal-
ization procedure was replaced by its own normalization
procedure.
Raw counts were transformed into filtered and nor-

malized counts for the purpose of producing MA-plots
(Figure 2), assessing goodness of fit to the NB distribu-
tion (Figure 3), examining the relationship between mean
expression level and the shape parameter of the PT distri-
bution (Figure 4) and doingDE analysis with tweeDEseq.
In the case of DESeq raw counts were transformed into
normalized counts only when used with the cqn normal-
ization method.
In the case of edgeR-TMM normalization, counts

were transformed following the steps that the function
exactTest() in edgeR takes: calculate normalization
factors with the TMMmethod (calcNormFactors()),
estimate effective library sizes and adjust counts to
effective library sizes obtaining non-integer normalized
pseudocounts (equalizeLibSizes()) which were
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subtracted by 0.5 and then raised to the smallest inte-
gers not less than these pseudocounts (ceiling()).
These steps are written together in the function
normalizeCounts() from the tweeDEseq package.
In the case of cqn, normalization offsets are calculated

by the function cqn() as log2 RPMs, which are added
to original raw log2 RPMs. These are rolled back to abso-
lute numbers and “unlogged” obtaining non-integer nor-
malized pseudocounts which, analogously to the edgeR-
TMM case, were subtracted by 0.5 and then raised to
the smallest integers not less than these pseudocounts
(ceiling()). The rationale behind subtracting 0.5 to
the pseudocounts instead of directly truncating or raising
to the next integer value, is to try to approach as much
as possible the correct proportion of zero counts in the
normalized data.
However, when performing DE analysis with edgeR,

or with DESeq and its own normalization procedure,
the specific recommendations made by the correspond-
ing software authors were followed. More concretely,
raw counts were not transformed in order to preserve
their sampling properties and normalization adjustments
entered the DE analysis through the corresponding nor-
malization factors and offsets arguments within the func-
tions that test for DE (see scripts for details in Additional
file 1).

Pre-processing of microarray data
The microarray LCL data from [24] was processed from
the raw CEL files available at http://www.ncbi.nlm.nih.
gov/geo under accession GSE7792. Firstly, we only con-
sidered YRI samples. Secondly, data was processed using
the Bioconductor oligo package. Quality assessment was
performed by calculating NUSE and RLE diagnostics
(Bolstad et al., 2005) and discarding those samples that
either of the two reported diagnostics was considered
below a minimum quality threshold. Third, using the
RMA algorithm (Irizarry et al., 2003) implemented in the
rma() function from the oligo package with argument
target="core", expression values were background
corrected, normalized and summarized into Affymetrix
transcript clusters. Fourth, most samples formed part
of family trios and only samples belonging to father
or mother were kept. Fifth, using the getNetAffx()
function from the oligo package, Ensembl Transcript
identifiers well obtained for each Affymetrix transcript
cluster identifier. Sixth, using the bioconductor package
biomaRt, Ensembl Transcript identifiers were translated
into Ensembl Gene identifiers, resolving multiple assign-
ments by keeping the Ensembl Gene identifier that had a
match in the Ensembl Gene identifiers forming the table of
counts of the [12] RNA-seq data, or choosing one arbitrar-
ily, otherwise. Seven, duplicated assignments of the same
Ensembl Gene identifier to multiple Affymetrix transcript

cluster identifiers were resolved by keeping the transcript
cluster with largest expression variability measured by its
interquartile range (IQR).
At this point an expression data matrix of 16,323

Ensembl Genes by 74 samples was obtained and using
the scanning date of each CEL file, samples were grouped
into 5 batches, out of which one containing only three
male samples was discarded leaving a total of 71 sam-
ples distributed into 4 balanced batches across gender.
Batch effect was removed by using the QR-decomposition
method implemented in the removeBatchEffect()
function from the Bioconductor package limma [25]
while keeping the sex-specific expression effect by setting
the gender sample indicator variable within the design
matrix argument. Finally, samples and genes were further
filtered to match those from the RNA-seq table of counts.

Matching RNA-seq andmicroarray expression data
matrices
To perform the analyses summarized in Figure 11 and
Additional file 2: Figure S12 we further filtered the
previously pre-processed RNA-seq and microarray gene
expression matrices to match both Ensembl Gene iden-
tifiers and individual HapMap identifiers. This resulted
in two gene expression data matrices of equal dimension
with 15,194 genes and 36 samples.We only considered the
RNA-seq data normalized with the cqn package.
To perform the analyses summarized in Figure 12 we

built two other gene expression data matrices where, as
before, samples were restricted to those 36 that matched
between RNA-seq and microarray data but genes were
not, leading to a RNA-seq and microarray gene expres-
sion data matrices of 27,438 and 16,323 Ensembl Genes by
36 samples, respectively. Genes were not matched since
the purpose of these analyses was to gather insight into
the differences and challenges in detecting DE genes using
RNA-seq with respect to microarray gene expression data
with many replicates.

Functional annotations
Functional annotations for Ensembl genes forming
the tables of counts, were retrieved from http://
jun2011.archive.ensembl.org with R and the
biomaRt Bioconductor package. Gene length and G+C
content annotations, used with the cqn normalization
method, were obtained by downloading all human cDNAs
from ftp://ftp.ensembl.org/pub/release-63/fasta/homo_
sapiens/cdna/Homo_sapiens.GRCh37.63.cdna.all.fa.gz
and calculating the length and G+C content of the longest
cDNA for each Ensembl gene.
The gold-standard list of genes with sex-specific expres-

sion was built with genes reported in the literature that,
in one hand, escape chromosome X inactivation [22] and,
on the other hand, belong to the male-specific region of
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chromosome Y [23]. In both cases, gene symbols were
first translated into Ensembl gene identifiers and then fur-
ther filtered to keep only those included in the set of
Ensembl gene identifiers release 63. This resulted in a
gold-standard list of 95 genes with sex-specific expression.
The list of housekeeping genes was retrieved from the

literature [19] and mapped to Ensembl genes release 63,
resulting in a final set of 669 housekeeping genes. The
expression breadth reported in Figure 5 was obtained
through the Barcode Gene Expression catalog [18] which
uses information from 18,656 publicly available microar-
ray samples from 131 tissue types, of the HG-U133 Plus
2.0 Affymetrix chip, to estimate the proportion of tis-
sue types in which a given probeset is expressed in more
than half the samples. After discarding unreliable probes
(annotated with high-entropy in the catalog), we use these
values as surrogates for expression breadth by mapping
Affymetrix probeset identifiers to the genes in our table
of counts through the hgu133plus2.db Bioconductor
annotation package, leading to 16,292 genes with expres-
sion breadth values.When two ormore probesetsmapped
to the same gene, the maximum value was taken for that
gene.
All these functional data are included in the exper-

imental data package tweeDEseqCountData avail-
able at http://www.bioconductor.org under the keywords
annotEnsembl63, genderGenes and hkGenes.

Poisson-Tweedie distributions
Poisson-Tweedie (PT) distributions have been studied by
several authors [31-34] and unify several over-dispersed
count data distributions (see Figure one in [34]). This fam-
ily of distributions can be defined by a probability generat-
ing function and mass probabilities have to be computed
using a recursive algorithm [31,34]. El-Shaarawi et al.
(2011) [34] compared different recursions and parameter-
izations of this family providing an algorithm to compute
the PT probability distribution function. In the R package
tweeDEseq we have developed a fast implementation,
written in the C programming language, of this recursive
algorithm.We briefly describe here the PT family of distri-
butions as well as how we have used it to analyze RNA-seq
count data in the context of a differential expression (DE)
analysis.
Following El-Shaarawi et al. (2011) [34], let Y ∼ PT

(a, b, c) be a PT random variable with vector of parameters
θ = (a, b, c)T defined in the domain

� = (−∞, 1]×(0,+∞)×[ 0, 1) . (1)

The PT random variable Y has a probability generating
function (pgf ) of the form:

GY (y|a, b, c) = exp
{
b
a
(
(1 − c)a − (1 − cy)a

)}
, (2)

when a �= 0, while when a = 0, then:

lim
a→0

GY (y|a, b, c) =
[

(1 − c)
(1 − cy)

]b
. (3)

Using this parameterization, the following recursive
algorithm can be used to compute the PT probability
distribution function [34]:

p0 =
{
eb[(1−c)a−1]/a, a �= 0,
(1 − c)b, a = 0, (4)

p1 = bcp0, pk+1 = 1
k + 1

⎛
⎝bcpk +

k∑
j=1

jrk+1−jpj

⎞
⎠ ,

k = 1, 2, . . .
(5)

where

r1 = (1 − a)c, rj+1 =
(
j − 1 + a
j + 1

)
crj, j = 1, 2, . . .

(6)

and pi denotes the probability of observing i counts.
For the sake of interpretability, we reparameterize θ =

(a, b, c) to θ = (μ,φ, a), where μ denotes the mean, φ =
σ 2/μ is the dispersion index (σ 2 is the variance), and a the
shape parameter that is used to define some count data
distributions that are particular cases of PT such as Pois-
son or negative binomial. The relationship between both
parameterizations is the following:

c = φ − 1
φ − a

, b = μ(1 − a)(1−a)

(φ − 1)(d − a)−a . (7)

The PT model includes not only Poisson (a = 1) and neg-
ative binomial (NB) (a = 0) but also other distributions
that have been used to analyze count data such as Poisson-
Inverse Gaussian (PIG) (a = 1

2 ), Pólya-Aeppli (P-A)
(a = −1) or Neyman type A (a → −∞). Therefore, the
PT distribution family unifies several diverse count data
distributions, including different overdispersed distribu-
tions such as NB or PIG. These distributions can model
different scenarios as, for instance, a RNA-seq expression
profile with a wide dynamic range leading to a heavy tail
in the distribution. In such a case, PIG has a heavier tail
than NB and this would make it more appropriate for such
a gene. Note that an extremely heavy tail implies overdis-
persion, but the converse does not hold; hence the NB
distribution is not adequate to model RNA-seq expression
profiles of genes with a wide dynamic range due to their
intrinsic biological variability [15].
Given a certain parameterization Kokonendji et al.

(2004) [17] prove that the mean-variance relationship for
the PT family can be expressed as:

σ 2 = μ
(
1 + μp−1 exp

{
(2 − p)
p

})
(8)
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where p is the shape parameter of that specific parame-
terization. It follows that, whereas the NB distribution is
only able to capture a quadratic mean-variance relation-
ship, the PT family is able to generalize this relationship
to any order. As a result, it is more convenient to use the
PT model when dealing with count data which presents
variable overdispersion.

Parameter estimation for Poisson-Tweedie distributions
We need to estimate the parameter vector θ̂ = (μ̂, φ̂, â)
to develop, on the one hand, a test of goodness-of-fit to
an NB distribution and, on the other hand, a two-sample
PT-test for differences in means. This latter test is used
for detecting differentially expressed genes. Without loss
of generality, let ygk be the number of counts for gene g in
sample k, derived from pre-processing RNA-seq data. We
assume that ygk follows the PT distribution:

ygk ∼ PT(μg ,φg , ag) . (9)

In practice, we do not know the parameters θg =
μg ,φg , ag , but we can estimate them from data by maxi-
mum likelihood when the sample size is sufficiently large
so that it guarantees the desirable large sample properties
of unbiasedness and minimum variance of the maximum
likelihood estimate (MLE). In the Additional file 2: Sup-
plementary Information we provide a simulation study
in order to estimate the minimum number of samples
per group that approximately meets this requirement (see
Additional file 2: Figure S7).
We obtained the MLE θ̂ using a quasi-Newton method

with constraints. We have implemented such a procedure
using the optim function in R. In order to guarantee
good convergence, we consider as initial parameters the
moment estimates of μg and φg , and ag = 0. We choose
this value for ag because it corresponds to an NB model
that is the natural cut-point of PT’s parameter space.

Goodness-of-fit to a negative binomial distribution
In the framework of PT distributions we can formulate a
test of the goodness of fit to an NB distribution by consid-
ering H0 : a = 0 versus Ha : a �= 0. Using a likelihood
ratio test (LRT), the testing statistic is [34]

T = max(μ̂,φ̂,â) �(μ̂, φ̂, â|y0, . . . , ym)

max
(μ̂,φ̂)

�(μ̂, φ̂|y0, . . . , ym)
, (10)

where numerator and denominator correspond to the
likelihood functions for the PT and NB models, respec-
tively. Since the PT model has just one parameter more
than the NB model, the quantity 2 logT ∼ χ2

1 under the
null hypothesis, as n grows large, and it can be used to
decide whether count data follow a NB distribution by
means of a Q-Q plot (see Additional file 2: Figure S2) or
by calculating the corresponding P-value.

Test to determine differentially expressed genes
For a given gene, let us assume that we observe
c1, c2, . . . , cn counts for n individuals and that we tab-
ulate these counts into a contingency table with cells,
y0, y1, . . . , ym where m = max{c1, . . . , cn}. Therefore, yc
represents the number of observations with c counts.
Then, the log-likelihood can be written as follows

log �(θ̂ |y0, . . . , ym) =
m∑
i=0

yi li(θ̂) , (11)

where li(θ̂) = log[ pi(θ̂)] and pi(θ̂) denotes the mass prob-
ability at i with i = 0, 1, . . . ,m and is computed using
the recurrence given in equation (6). El-Shaarawi et al.
(2011) [34] indicate that when regularity conditions hold,
that is, when θ is an interior point of the parameter space
�, asymptotic normality of θ̂ can be assumed. Therefore,
the negative inverse Hessian matrix of the log-likelihood
at the MLE θ̂ corresponds to the estimated covariance
matrix of θ̂ . In particular, for theμ parameter we have that

Var(μ) = −E
[

∂2

∂μ2 log �(θ̂ |y0, . . . , ym)

]−1
. (12)

Consequently, if we are interested in comparing the mean
counts for two sample groups, denoted by μA and μB, a
two-sample PT-test for themean with null hypothesisH0 :
μA
μB

= 1, which we perform in logarithmic scale as H0 :
log(μA) = log(μB), can be built by calculating the PT-
statistic:

T = μ̂A − μ̂B√
Var(μA) + Var(μB)

, (13)

The PT-statitic, T, follows a standard normal distri-
bution under the null hypothesis. Therefore, the (1 −
α)% percentile of a N(0, 1) distribution is used to deter-
mine whether the observed differences between the two
groups are statistically significant or not by providing a
corresponding P-value that can be later on corrected for
multiple testing using, for instance, Benjamini-Hochberg’s
FDR [35].

Simulation of RNA-seq data
The results shown in Figure 6 recreating the null hypoth-
esis of no DE with real RNA-seq data were performed
by dividing the LCL data into two separate data sets of
male and female samples. From each data set we boot-
strapped 100 times two groups of 20 samples uniformly
at random, thus obtaining on the one hand, group pairs
of female samples and, on the other hand, group pairs
of male samples. On each bootstrapped data set we per-
formed the two-sample test for DE detection of every
method between the groups of female versus female sam-
ples and male versus male samples. We also considered
two versions of the data, one with the raw un-normalized
counts and the other with the counts normalized with the
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cqn package [4]. In principle, there are no DE genes to be
discovered from these comparisons, and therefore, under
the null hypothesis of no DE, the P-value distribution for
any given gene throughout the 100 bootstrapped data sets
should be uniform.
The simulations shown in Figures 7, 8 and 9 contained

synthetic RNA-seq data generated from a gamma-Poisson
mixture model in a similar way to other published studies
[8]. Under this model, we first draw dispersion parameters
φg for every gene g at random from a gamma distribu-
tion Gamma(k = 2, θ = 0.7) and means according to
three different fold-changes (1.5, 2 and 4) where half of
the genes were up-regulated and the other half down-
regulated. The λgi Poisson parameter for every gene g and
sample i was drawn at random from a gamma distribution
Gamma(k = a, θ = 1/(φ − 1)) with a = fμgk/(φ − 1)
and f ≈ N(0, σ) corresponding to library factor which
was either constant (σ = 0) or variable (σ = 0.5). Counts
were simulated for each gene g from the resulting mixture
gamma-Poisson distribution with parameters λgi for each
sample i. Note that the resulting marginal distribution
from the gamma-Poisson is a negative-binomial.

Software availability
• Project name: tweeDEseq
• Project home page: http://www.bioconductor.org/

packages/release/bioc/html/tweeDEseq.html
• Operating system(s): Platform independent
• Programming language: R and C
• Other requirements: R 3.0.0
• Licence: GNU GPL
• Any restrictions tu use by non-academics: no

restrictions
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Additional file 2: Supplementary materials. PDF file including
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Introduction to the BREATHE project

Papers 1, 2 and 3 were developed as part of the BREATHE (BRain dEvel-
opment and Air polluTion ultrafine particles in scHool childrEn) project.
Before summarising each of the papers contained in this thesis, we have
deemed appropriate to first make a brief introduction to this project.

The BREATHE project was a longitudinal study funded by the Euro-
pean Research Council conducted from January 2012 to March 2013 in
39 schools in Barcelona (Catalonia, Spain). Its main research goal was
to study the association between air pollution and cognitive development
of schoolchildren. The study design considered 39 schools in Barcelona
selected based on their traffic-related nitrogen dioxide (NO2) values, pairing
low and high NO2 schools by socieconomic vulnerability index and type of
school (i.e. public/private) to avoid residual social confounding. All school
children (n = 5019) without special needs in grades 2 through 4 (7-10 years
of age) were invited to participate and 2897 (59%) of them agreed.

Cognitive development was assesed through long-term change in work-
ing memory and attention. Children were evaluated every 3 months over
four repeated visits using computerized tests. The computerized tests cho-
sen were the n-back task on working memory, Anderson (2002), and the
attentional network task (ANT), Rueda et al. (2004).

Exposure to traffic-related air pollution (TRAP) was measured in each
pair of schools simultaneously twice during 1 week periods separated by 6
months. The pollutants measured were real-time concentrations of Black
Carbon (BC), ultrafine particle number (UFP) concentration, particulate mat-
ter < 2.5 µm (PM2.5) and NO2. Exposure to TRAP at home was estimated
using land use regression (LUR) models previously obtained as part of the
ESCAPE project, Wang et al. (2013).

Socio-demographic factors were measured using a neighborhood socioe-
conomic vulnerability index based on level of education, unemployment and
occupation in each census tract. Parents answered a questionnaire on family
origin, gestational age and weight, breastfeeding, smoking during pregnancy
and many other possibly confusing or mediating variables.

All things considered, it is important to note that the resulting data
presented a complex structure. On the one hand, some variables had up to 4
repeated measurements (e.g. the cognitive development outcomes) while
some others were measured just once (e.g. socio-economic status). On the
other hand, we had both individually measured exposures (e.g. home TRAP)
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and groupally measured ones (e.g. school TRAP).
For more information on the BREATHE project please visit the official

web site of the project: https://breathe.isglobal.org/.
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Summary of Paper 1

Paper 1 was developed as part of the BREATHE project (refer to Introduction
to the BREATHE project for more information about it). In this paper we
aimed to evaluate the psychometric properties and criterion validity of the
n-back and ANT computerized tests used to assess the working memory
and attention function, respectively. The main outcomes of the n-back test
were d′ scores (in broad terms, z scores of the difference between the correct
and incorrect response rates) for 3 different difficulty levels and hit reaction
time (HRT). The outcomes measured for ANT were incorrect responses,
omissions, alerting, orienting and conflict.

Besides the listed test outcomes, other education and socio-demographic
variables were considered: grade, sex, school performance, ADHD diagno-
sis, SDQ (Strengths and Difficulties Questionnaire) and maternal education.

Regarding the statistical analyses we first performed univariate descrip-
tive statistics of the main outcomes and covariates. Then, we studied the
pyschometric properties of both n-back and ANT tests using two different
methods: Cronbach’s alpha coefficient to study internal consistency and
exploratory factor analysis (EFA) to study the factorial structure. To study
the criterion validity of the n-back and ANT tests we studied the bivariate
association between the outcomes and each preselected variables. Finally,
the relationship between outcomes and the rest of covariates were also stud-
ied using Bayesian Networks (BN), Pearl (1985). From now on we will just
focus on this last part, as we find it to be the most relevant from a statistical
and methodological perspective.

A BN is a graphical model that describes compactly the dependency
structure between a set of variables. It consists of a directed acyclic graph
(DAG) that encodes the conditional dependencies between the variables and
a set of local probability distributions associated to each of the variables.
The variables are represented by the nodes of the DAG and the edges encode
the conditional dependences. Our goal was to find the BN that best fitted our
data in order to understand the complex interdependency structure between
all considered variables. We calculated four DAGs, one for each n-back
level of difficulty, including the d′ scores for the four different stimuli, and
one for ANT measures.

A BN can accommodate both discrete and continuous variables. How-
ever, in most cases the inference becomes intractable if we do not restrict
to certain distributions. The most common approach, and our choice in
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this paper, was to consider all variables to be discrete. Therefore, nodes
can be modeled with multinomial distributions and Dirichlet (multivariate
generalization of the beta distribution) priors. As our goal was to find the
DAG that best describes our data, we first need some kind of score to order
all possible BNs according to their goodness of fit to our data. We decided
to use the K2 score, Cooper and Herskovits (1992), for its simplicity and
appropriateness when dealing with discrete data.

When looking for the BN that best fits our data it is important to note that
the number of possible DAGs grows super-exponentially (2O(n2)), Chicker-
ing et al. (2004)) as the number of variables (nodes) increases, thus making
it unfeasible to calculate the score of all possible BNs. To solve this we used
a Metropolis-Hastings random walk, Hastings (1970), over the whole DAG
space. Moreover, to achieve greater validity, we decided to also use three
alternative structure discovery methods: an order-based approach, Friedman
and Koller (2000), the greedy hill-climbing method, Gamez et al. (2011),
and exact Bayesian structure discovery, Koivisto (2006). All this was done
using our own custom-made R package: BayNet, Esnaola (2013).

Figure 1 shows the four DAGs that resulted from applying Bayesian
Model Averaging, Hoeting et al. (1999), to the posterior distributions ob-
tained via the Metropolis-Hastings random walk over the DAG space. These
results were validated when applying the other three alternative structure
discovery methods. We observed that the three different DAGs for n-back
showed similar structure: the four d′ scores were strongly interrelated with
one another. In addition, of all the preselected variables, we observed that
these four scores were most strongly dependent on children’s grade and
school performance. Sex, maternal education, ADHD symptomatology,
and behavioral problems were also associated with d′ scores, though indi-
rectly. The DAG for the ANT measures showed that the three attentional
networks and incorrect responses were dependent on omissions. Similarly
to the n-back DAGs, grade, and school performance showed the strongest
dependencies with ANT measures. Sex, maternal education, ADHD symp-
tomatology, and behavioral problems were also related to ANT measures,
but less strongly. Additionally, child’s sex and incorrect responses were
robustly related.

The primary aim of our study was to determine whether the n-back
and ANT are valid measures of child neuropsychological development for
use in epidemiological studies. Our results demonstrated good criterion
validity for the n-back d′ scores by showing strong associations with a set
of variables selected a priori based on previous knowledge. In addition, d′
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Figure 1: DAGs of the statistical dependencies between n-back and ANT outcomes
and a set of preselected variables using Bayesian Networks.
Sex = Child’s sex; ADHD = Attention Deficit and Hyperactivity Symptomatology;
Meduc = Maternal education; SDQ = Strengths and Difficulties Questionnaire;
Schoo = School performance; Grade = Child?s grade; d′wor = d′score for words;
d′num = d′score for numbers; d′let = d′score for letters; d′col = d′score for colors;
Omiss = omissions; Error = Incorrect responses; Confl = Conflict Score; Orien =
Orienting Score; Alert = Alerting Score.
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scores also showed local and global statistical dependencies with all of these
preselected variables. With regard to the ANT, we observed that the most
sensitive outcomes were incorrect responses, omissions, and the conflict
score. Direct measures of error (incorrect responses and omissions) showed
consistent associations with all preselected variables such as age, sex, school
performance, maternal education, as well as with clinical measures of ADHD
clinical criteria and behavioral problems.

Our results show that both the n-back and ANT are valid and relatively
easy-to-apply tests for measuring child neuropsychological development in
epidemiological studies. Most of the measures obtained in the n-back (d′)
and the ANT (incorrect responses, omissions, and conflict score) associated
with working memory and attention capacities showed good psychometric
properties, good criterion validity, and acceptable statistical dependencies.
Thus, we recommend their use in large epidemiological studies.
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Summary of Paper 2

Paper 2 was developed as part of the BREATHE project (refer to Introduction
to the BREATHE project for more information about it). In it we studied
the association between Traffic Related Air Pollution (TRAP) and child
neurodevelopment.

Air pollution is a suspected developmental neurotoxicant, Grandjean
and Landrigan (2014). In children, exposure to traffic-related air pollutants
during pregnancy or infancy, when the brain neocortex rapidly develops, has
been related to cognitive delays, Guxens et al. (2012). Children spend a large
proportion of their day at school, including the period when daily traffic
pollution peaks. Considering all this, our goal was to assess the relationship
between long-term exposure to traffic-related air pollutants at school and
cognitive development measurements in primary school children.

As outcomes of our models, for the n-back test we selected two-back
and three-back loads for number and word stimuli as they showed a clear
age-dependent slope in the four measurements and had little learning effect.
The two-back test predicts general mental abilities, while the three-back test
also predicts superior functions such as fluid intelligence.

Regarding the exposures, outdoor and indoor long-term school air pollu-
tion levels were considered. To achieve a better spatial long-term average,
elemental carbon (EC) and nitrogen dioxide (NO2) were adjusted for tem-
poral variability. We decided not to seasonalize ultrafine particles (UFP)
because seasonalized UFP had a poorer correlation between the two mea-
surement campaigns than non-seasonalized UFP.

A total of 2715 children with complete data (i.e. repeated outcome
at least twice and individual data on maternal education and age) were
included in the study. In total, we had 10112 outcome observations (3.72
test outcomes per individual on average). Because of the multilevel nature
of the data (i.e., visits within children within schools), we used linear mixed-
effects models with the cognitive parameters (test performance) from the
four repeated visits as outcomes and random effects for child and school.
Age (centered at visit 1) was included in the model in order to capture the
growth trajectory of cognitive test performance. An interaction between
age at each visit and school air pollution was included to capture changes
in growth trajectory associated with school air pollution exposure. The
main effect of air pollution (AP), which was also included in the model,
captures the baseline differences in cognitive function that are associated
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with air pollution. This model was further adjusted for potential confounders
selected with directed acyclic graphs. The final adjusted model included
additional coefficients for sex, maternal education , residential neighborhood
socioeconomic status, and air pollution exposure at home:

Ysit = β0 + β1(Aget − Age1) + β2AP + β3(Aget − Age1)AP + β4Sex
+β5Mat educ primary + β6Mat educ secondary + β7Mat educ university
+β8Neighborhood socioeconomic status + β9Air pollution exposure at home

+us + vi(s) + εsit

where Ysit represents the cognitive test result for subject i in school s at visit t,
t = {1, 2, 3, 4}; us are random effects at school level, assumed to be normally
distributed with expectation 0 and variance σ2

u; vi(s) are random effects
associated with subject i in school s, assumed to be normally distributed
with expectation 0 and variance σ2

v ; and εsit are the model residuals, assumed
to be normally distributed with expectation 0 and variance σ2

ε . All models
were fitted using the lme4 R package, Bates et al. (2015).

Table 1 shows the adjusted air pollution coefficients at baseline and per
12-month change for all the studied cognitive outcomes. Children attending
schools with higher levels of EC, NO2 , and UFP both in the courtyard and
in the classroom had worse cognitive parameters at baseline than children
attending schools with lower air pollution. All the coefficients were negative
for working memory and positive for inattentiveness, indicating impairment,
though the differences were not statistically significant. The growth in cogni-
tive parameters during the 1-year follow-up was also reduced in the schools
exposed to higher air pollution levels, which in consequence amplified the
differences between schools at the end of follow-up. The detrimental associ-
ation of air pollution with change in the cognitive parameters was observed
for all the outcomes and pollutants, being statistically significant for almost
all of them.

Figure 2 shows the change in working memory in 1-year as a function of
both outdoor and indoor pollutant levels. The points in the figure represent
the crude estimates of change in cognitive parameters for each school along
with the school air pollution levels, while the line represents the regression
line obtained from the final adjusted model. This figure illustrates the
negative relationship between change in cognitive function and air pollution
levels, and depicts a good fit between the crude values and the adjusted
slope.
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Figure 2: Working memory development and long-term exposure to traffic-related
air pollutants. Each dot depicts a school, with size proportional to the number of
children. The cognitive development per school was estimated in a model with
school and individual as random effects. The slope of the red line depicts the
change in cognitive development as a function of the air pollutants, adjusted for
age, sex, maternal education, residential neighborhood socioeconomic status, and
air pollution exposure at home; school and individual as nested random effects in
2715 children and 10112 tests from 39 schools. Gray shading indicates 95% CIs.
out, outdoors (courtyard); in, indoors (classroom).
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We performed sensitivity analyses to rule out posible confounding due
to not included variables. We further adjusted our models for other indi-
vidual socio-economic factors, ADHD or behavioral symptoms, residential
greenness, and school noise. Results remained unchanged, indicating that
our results are robust. In stratified analyses, stratifying for high/low TRAP
schools, neighborhood socio-economic status and obesity did not alter our
results. In contrast, detrimental associations were stronger in general in boys
than in girls, in children from more highly educated mothers, in children
from private schools, and in children with ADHD symptoms, though dif-
ferences were not significant. All this considered, we concluded that our
findings were robust.

Our study demonstrated that cognitive development is reduced in chil-
dren exposed to higher levels of traffic-related air pollutants at school. This
association was consistent across all considered neurodevelopment outcomes.
The findings provide strong support for air pollution being a developmental
neurotoxicant and point towards the primary school age as a particularly
vulnerable time window for executive function development. Overall, we
have shown that children attending schools with higher levels of exposure to
traffic-related air pollutants had a smaller growth in cognitive development
over time, suggesting that traffic-related air pollution in schools negatively
affects cognitive development. This may have consequences for learning,
school achievement, and behavior. With regard to air pollution regulation,
the present study shows that the developing brain may be vulnerable to
certain traffic-related air pollutants.
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Summary of Paper 3

Paper 3 was developed as part of the BREATHE project (refer to Introduction
to the BREATHE project for more information about it). In it we studied the
role of PM2.5 (particulate matter of diameter < 2.5µm) sources in school
air on cognitive development.

In paper 2 we reported that cognitive development over 1 year showed a
slower increase among children attending schools with high traffic-related
air pollution levels compared with children in less polluted schools. In that
study, the air pollution markers used were nitrogen dioxide (NO2), elemental
carbon (EC), and ultrafine particle (UFP) number. Interestingly, PM2.5 mass
concentrations at the studied schools were not correlated with traffic air
pollution, and most of the contribution to PM2.5 levels was due to mineral
and organic sources. PM2.5 levels are the universal indicator of air quality
because of their overwhelming adverse association with many health indica-
tors (WHO 2013). In this paper, we aim to explore the role of all the different
sources of PM2.5 in school air on cognitive development.

Source Identifying species (tracers)
Mineral Al, Mg, Li, Fe, Ca, Ti, Rb
Traffic EC, Cu, Sb, Sn, Fe
Organic/textile/chalk OC, Ca, Sr
Secondary sulfate and organics SO4-, NH4+
Secondary nitrate NO3-
Road dust Ca, Fe, Cu, Sb
Metallurgy Zn, Pb, Cd, Mn, Cu
Sea spray Na, Cl-
Heavy oil combustion V, Ni

Table 2: Main elements identifying the estimated sources.

We conducted a source apportionment analysis to estimate the levels of
the different components present in PM2.5. This was performed using a
constrained positive matrix factorization (PMF) model based on 33 chemical
species. PMF is a weighted least squares technique that allows accounting
for the uncertainty associated with the analytical procedure. This technique
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returned a solution that identified nine main factors/sources responsible for
the variability of PM2.5 mass concentrations with an R2 of 0.95. The nine
identified sources together with their elemental composition are shown in
table 2.

Similarly to the analyses in paper 2, we used linear mixed-effects models
with the four repeated cognitive parameters as outcomes and random effects
for child and school to accommodate the multilevel nature of the data (i.e.
visits within children within schools). Age at each visit (centered at visit 1)
was included in the model to capture the growth trajectory of the cognitive
test. An interaction between age and school concentrations of individual
PM sources was included to capture changes in growth trajectory associated
with school air pollution exposure. The latter was the effect of interest
in this study. Potential confounders were identified using directed acyclic
graphs (DAG) and they included sex, maternal educa- tion (primary or
less/secondary/university), residential neighborhood socioeconomic status,
and air pollution exposure at home. Indicators of school pair were included
in the model to restrict comparisons within pairs of schools measured during
the same days, thus removing potential differences in air pollution levels
between schools that were attributable to meteorology or seasonality. The
model equation was the following,

Ypsit = β0p + β1(Agepsit − Agepsi1) + β2(PM2.5 source)ps
+β3(Agepsit − Agepsi1)× (PM source)ps

+Zη + ups + vpsi + εpsit

where Ypsit is the cognitive test result for subject i in school s (belonging
to pair p) at visit t, β0p are pair-specific intercepts, Z is a matrix including
all confounders, η is a vector of parameters associated to confounders,
ups are random effects at school level, assumed normally distributed with
expectation 0 and variance σ2

u, vpsi are random effects associated with
subject i in school s, assumed normally distributed with expectation 0 and
variance σ2

v , and εpsit are the model residuals assumed normally distributed
with expectation 0 and variance σ2

e .
Figure 3 displays the change in cognitive outcomes over the follow-up

period for an interquartile range increase in source-specific PM 2.5 concen-
trations. Changes from the first to the third quartile in the indoor traffic
source were associated with a significant reduction in working memory
of -5.6 [95% confidence interval (CI): -10.7, -0.5], equivalent to 22% of
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the annual change experienced by the participants; a reduction of superior
working memory of -5.1 (95% CI: -9.2, -1.1), equivalent to 30% of the
annual change; and an increase of 3.6 (95% CI: 0.0, 7.1) in inattentiveness
scale, equivalent to 11% of the annual change.

Figure 3: Change (95% CI) in cognitive growth per interquartile range increase
in school source-specific PM 2.5 mass concentrations. Black diamonds: indoor
concentrations; open circles: outdoor concentrations.
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Summarising the results, we found that children attending schools with
high levels of traffic-related PM 2.5 showed a slower cognitive development.
None of the other PM 2.5 sources (mineral, organic/textile/ chalk, sulfate, ni-
trate, road dust, metallurgy, and sea spray) showed a deleterious association
with cognitive development, although associations for heavy oil combustion
were also suggested. Future studies should examine whether the effects
observed at primary school age are long-lasting and have consequences over
the life course.
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Summary of Paper 4

In paper 4 we presented our method for the analysis of expression profiles
arising from extensively replicated RNA-seq experiments.

RNA-seq is a technique to quantify the amount of RNA in a biological
sample by direct ultra-high-throughput sequencing of cDNA (also known as
Next Generation Sequencing). The resulting sequence reads are individually
mapped to the source genome and counted to obtain the number and density
of reads corresponding to RNA from each known exon, splice event or new
candidate gene. One of the main advantages of RNA-seq over previous
hybridization-based microarray technology is a much larger dynamic range
of detection. However, the extent to which this feature is fully exploited
depends entirely on the way the resulting data is analyzed when addressing
a particular biological question. For instance, in the identification of genes
that significantly change their expression levels between groups of samples,
also known as differential expression (DE).

Detection of DE genes using RNA-seq data was firstly based on using
models assuming a Poisson distribution, which assumes that the mean and
variance of the distribution are identical. Given that the observed variation in
read counts is much larger than the mean (overdispersion), researchers have
proposed the use of negative binomial (NB) distributions which are defined
by two parameters: the mean and the dispersion. However, the larger power
of RNA-seq to capture biological variability can potentially introduce into
count data not only overdispersion, but also oddities such as zero-inflation
(i.e., in lowly expressed genes, the proportion of zero counts may be greater
than expected under an NB distribution) and heavy tail behavior (i.e., a
large dynamic range within the same expression profile), especially when
many biological replicates are available. Under these circumstances even
a two-parameter NB distribution may not provide an adequate fit to the
data (see Figure 4). In turn, this may lead to incorrect statistical inferences
resulting in lists of DE genes with a potentially increased number of false
positive calls and poor reproducibility. To overcome this problem, methods
based on the NB distribution use sophisticated moderation techniques that
borrow information across genes and exploit the mean-variance relationship
in count data to improve the estimation of the NB dispersion parameter.

In this paper we propose to approach this problem by using other count
data distributions that fit expression profiles better than the NB without the
need to alter configuration parameters. We illustrate how a more flexible
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Figure 4: Fit of different count data distributions to diverse real RNA-seq gene
expression profiles. All plots show the empirical cumulative distribution function
(CDF) of counts (black dots) and the CDF estimated by a pure negative binomial
model (black dashed line), a Poisson-Tweedie model (red line) obtained with
tweeDEseq and several moderated negative binomial models obtained with different
parameter configurations of DESeq and edgeR. Estimated dispersions, and shape in
the case of tweeDEseq, are indicated in the legend. Above the legend, the P-value
of the test of goodness-of-fit to a negative binomial distribution is shown.
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family of count-data probability distributions, called the Poisson-Tweedie,
provides a better fit to these expression profiles. We then introduce a new test
for differential expression analysis in RNA-seq data based on the Poisson-
Tweedie family of distributions. By surveying the tiny fraction of sex-
specific gene expression changes in LCL samples, we approach the problem
of assessing accuracy in DE analysis with real RNA-seq data and show that,
in the context of extensively replicated RNA-seq experiments, our method
yields better performance than competing NB-based methods (edgeR and
DESeq).

Poisson-Tweedie (PT) distributions unify several over-dispersed count
data distributions. This family of distributions can be defined by a probability
generating function and mass probabilities have to be computed using a
recursive algorithm. In the R package tweeDEseq we have developed a fast
implementation, written in the C programming language, of this recursive
algorithm. The PT model includes not only Poisson and negative binomial
(NB) but also other distributions that have been used to analyze count data
such as Poisson-Inverse Gaussian (PIG), Plya-Aeppli or Neyman type A.
These distributions can model different scenarios as, for instance, a RNA-
seq expression profile with a wide dynamic range leading to a heavy tail in
the distribution. For the purpose of a DE analysis between two groups of
samples, we have developed a two-sample PT-test for differences in means.

Figure 4 illustrates the flexibility of the PT distribution to accurately fit
different gene expression profiles. Each plot shows the empirical cumula-
tive distribution of observed counts as well as the parametric cumulative
distributions obtained through the estimation of parameters of the methods
compared in this paper under different configurations. As it can be observed,
PT is able to correctly capture the distribution in each of the 6 cases, whereas
methods based on the NB (edgeR and DESeq) fail to do so in some of the
cases.

Regarding the results of the DE analyses, Figure 5 shows the precis-
sion and recall comparison on the LCL RNA-seq data. As it can be seen,
tweeDEseq provides higher F -measure values than the other two NB based
methods, thus indicating a better precission-recall tradeoff.

Summarising, the increased amount of biological variability revealed by
extensive replication in RNA-seq experiments brings new challenges to the
task of identifying genes whose change in expression is both, biologically
and statistically significant. In this paper we propose using the PT family of
distributions, showing that it captures a much richer diversity of expression
dynamics in RNA-seq count data than the statistical models based in the NB
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distributions alone.

Figure 5: Precision and recall comparison on the LCL RNA-seq data. Precision
(y-axis) and recall (x-axis) values for genes called DE at 1% FDR by different DE
detection methods and configuration parameters. The right y-axis indicates values
of the F-measure shown by dot lines.
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Conclusions

Recent advances in epidemiology are driving the development of new sta-
tistical methodology. In this thesis we have presented a compendium of
published papers dealing with the application and development of some of
these methods. We will first discuss each paper’s specific conclusions and
then move into more general conclusions.

Conclusions to Paper 1

In paper 1 we applied Bayesian Networks to learn about the complex struc-
ture of interdependencies between a set of variables comprising both sociode-
mographic and neurodevelopmental proxies. The obtained results allowed
to demonstrate that both the n-back and the ANT are valid and relatively
easy-to-apply tests for measuring child neuropsychological development
in epidemiological studies. Thus, the use of Bayesian Networks proved to
be of great usefulness for the posterior statistical analyses as it allowed us
to detect mediating and confusing variables. Regarding the validity of our
results, it must be noted that, due to the vast number of possible DAGs, there
is no proper way to assess the optimality of the obtained results. However,
having obtained almost identical results when using three alternative and
fundamentally different search methods proves that our results are reliable
and robust. We recommend this approach when studying the validity of the
results in future Bayesian Network structure search analyses.

As for the limitations of the analysis, it should be emphasized that all
considered variables had to be discrete. As a result, continuous variables
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had to be discretized before conducting the analysis, thus losing potentially
significant information. This could be circumvented by expanding the
probabilistic structure of the considered Bayesian Networks. For instance,
instead of using the multinomial distribution for modeling each node’s
conditional dependencies, one could use a mixture of discrete and continuous
distributions. The problem with this approach is that it adds a significant
amount of necessary computations to each iteration of the structure search
algorithms, thus rendering them impractical for a moderate number of
variables (nodes).

The use of BNs poses many challenges due to the associated method-
ological and computational complications. However, the rapid development
of computing technology together with the refinement of current estima-
tion methodologies are allowing to apply BNs in many other settings such
as OMICS pathway analysis, image processing or decision making. The
versatile nature of BNs together with their ability to capture both local and
global variable inter-relationships offer unprecedented opportunities in the
modeling of complex data, thus giving them the potential to revolutionize
many research fields.

Conclusions to Papers 2 and 3

In paper 2 we studied whether exposure of children in primary school to
traffic-related-air pollution is associated with impaired cognitive develop-
ment. Our results showed that cognitive development is reduced in children
exposed to higher levels of traffic-related air pollutants at school. These find-
ings were consistent across the different analysed pollutants. Nevertheless,
it should be noted that residual confounding for social class could not be
fully discarded, even when adjusting for neighborhood socio-economical
index, maternal education and other similar socio-economical proxies. How-
ever, found associations remained in stratified and sensitivity analyses, thus
rendering highly unlikely the possibility of residual confounding.

In paper 3 we explored the role of PM sources in school air on cognitive
development. We found that, among all the different PM sources, traffic
was the only one associated with a reduction in cognitive development. We
also found an association between outdoor levels of heavy oil combustion
and two of the outcomes but chance could not be excluded due to the lack
of association when analysing Nickel and Vanadium, the main elements
defining this source. Unexpectedly, we also found that exposure to mineral
particles was beneficial for superior working memory. This could be a
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chance finding, but it could also be explained by the fact that schools with
higher mineral concentrations have more greenness, which has already been
demonstrated to be beneficial for cognitive development in school children.
All these results are in line with our findings in paper 2.

The methodology in both papers 2 and 3 heavily rely on Linear Mixed-
effects Models. Not only are LMMs able to satisfactorily capture the mul-
tilevel nature of the data, but they also have the capacity to incorporate
complex correlation structures. These two things are key aspects in cur-
rent and future epidemiologic studies, which are increasingly growing in
complexity.

Conclusions to Paper 4

In paper 4 we presented tweeDEseq, a method for the analysis of RNA-seq
data based on the Poisson-Tweedie family of distributions. Using both real
and simulated data, we showed that, in the context of extensively replicated
RNA-seq experiments, our method outperforms mainstream competing
methods based on the Poisson or Negative-Binomial distributions. Having
three parameters, the Poisson-Tweedie family of distributions is able to ac-
commodate many of the diverse oddities arising from these experiments such
as zero-inflation or heavy-tail behaviour. Conversely, methods based on the
Poisson or Negative-Binomial distributions struggle when adjusting for such
oddities due to their lack of flexibily. We also assessed our method’s repro-
ducibility by comparing its results against those obtained from microarrays.
tweeDEseq is openly available as an R package in the Bioconductor
repositories. Regarding our method’s limitations, it should be noted that
there is no closed form for the density function of the Poisson-Tweedie
family of distributions. As a result, the parameter estimation process is not
trivial and might present problems when one or more parameters are close
to their boundary.

Since our paper was published, our method has been compared against
other state of the art RNA-seq methods. Tang et al. (2015) evaluated sev-
eral methods for differential expression analysis on multi-group RNA-seq
count data. In it, they mention that “the Poisson-Tweedie model well cap-
tures the biological variation (especially for zero-inflation and heavy tail
behavior) when many biological replicates are available”, thus concluding
that “Poisson-Tweedie may be the first choice four count data with many
biological replicates”.

The use of the PT family of distributions can have a great impact in
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the short and mid term, as the amount of biological variability increases
due to the use of extensively replicated RNA-seq experiments. Also, other
applications of high-throughput sequencing technology that output counts of
molecules, like in Copy Number Variation (CNV) analysis, could potentially
benefit of models based on the PT family of distributions. We believe that
richer count data models of this kind will become increasingly necessary to
draw accurate conclusions from data as technology brings us closer to the
actual biology of the cell. Furthermore, it should be noted that the possible
applications of the PT family of distributions are not limited to the medical
and health sciences. Other research fields such as econometrics or geology
can greatly benefit from its flexibility modeling count data.

General conclusions

Overall, the present work has dealt with some of the main issues to consider
in the design and analysis of modern epidemiologic studies. Firstly, we have
shown how helpful Bayesian Networks can be in the design and first steps
of a statistical analysis, as they allow to have a wide picture of the interde-
pendencies between a set of variables. Secondly, we have demonstrated the
power of Mixed-effects models when dealing with complex hierarchichal
data. Finally, we have presented our method for the analysis of RNA-seq
data, which is encompassed within the analysis of OMICs in the context
of epidemiological studies. However, one should bear in mind that, far
from being solved, many of the challenges arising from new epidemiologic
studies are still to be fathomed.
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Future work

In this thesis we have introduced statistical methodology and application
for the analysis of complex epidemiology data. More specifically, we have
presented applications of Bayesian Networks, Mixed-effects models and the
Poisson-Tweedie family of distributions to particular scenarios arising in
current epidemiology studies. Although this manuscript shows the useful-
ness and appropriateness of such methods, many challenges still need to be
overcome. This section discusses possible future work to address some of
these issues.

Bayesian Networks

Bayesian Networks are a powerful tool to visualize and model complex
relationships. Although this method has already proven its value in a wide
range of applications it still poses many challenges, mainly due to its asso-
ciated computational complexity. Many solutions have been proposed to
overcome these difficulties (for instance, the previously explained Order
MCMC) but it still unfeasible for current methodologies to accommodate
a moderate number of variables with the possibility of having different
underlying propability distributions.

Recent and expected future advances in computational technology offer
a promising way to tackle these issues. Nonetheless, we believe that instead
of blindly relying on future technological progress, the focus should be
put on the improvement of present-day methodologies. As most of the
computational problems occur during the calculation of the exact analytical
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joint probabilities, a possible solution might be to use a numerical score as
an alternative to the exact probability. A proper definition of such a score
would greatly improve the performance of Bayesian Networks and at the
same time would render a quasi-optimal solution.

Mixed-effects models

In this thesis we have shown the potential of Mixed-effects models in the con-
text of multilevel epidemiology data. More precisely, we have satisfactorily
applied Linear Mixed-effects Models (LMMs) to complex data comprising
of both repeated and unrepeated individual measurements together with
ecological or groupal variables.

Future research on the topic should consider the potential non-linear
associations between exposures and outcomes using more complex corre-
lation structures. A possible way to achieve this would be to use Nested
Nonlinear Mixed-effects Models. Another possibility could be to apply Gen-
eralized Estimating Equations (GEEs), a method that allows to estimate the
parameters of a Generalized Linear Model (GLM) with unknown correlation
between outcomes.

From a more epidemiologic perspective, it will be important that future
research further investigate the role of socioeconomic status to fully dismiss
potential residual confounding by social class. This is a key point in this
and other similar epidemiologic studies because both the outcome and
exposures are usually highly correlated with the socioeconomic background
of individuals. But, to success in this task, efforts must be directed at
achieving a much better characterization of social class, possibly using many
different proxy variables.

Differential expression

The study of differential expression has been revolutionised by the advent of
Next Generation Sequencing technologies. RNA-seq offers an unprecented
power to capture the real dynamics of gene-expression but, as the number of
replicates grows, so does the underlying complexity of expression profiles.
In this thesis we have presented a new method relying on the Poisson-
Tweedie family of distributions for the analysis of differential expression
using RNA-seq data.

Being a relatively young discipline in the world of science, RNA-seq
is still in a development phase. As a result, considerable challenges and
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issues arise that need to be effectively solved. Most of them are related to
the experimental technologies needed for sequencing, library preparation,
amplification, etc. But many others are more data related and would fall
into the realm of the so called “Data Science”. For instance, the limited
amounts of material available per cell might lead to high levels of uncertainty
about observations and appropriate statistic techniques would be needed to
account for this variability. Sometimes amplification is used to generate
more material, thus adding noise to the resulting data and this issue must also
be taken into account in the analyses. Furthermore, the increase in resolution
provided by the rapid development of the Next Generation Sequencing
technologies results in multidimensional data, calling for scalable data
analysis models and methods.

Regarding the Poisson-Tweedie family of distributions, we are of the
opinion that the obtained results are promising and warrant further investiga-
tion. Future research should further develop its applications to the analysis of
RNA-seq data. A natural progression would be to focus on the development
of GLM models that accept the Poisson-Tweedie family as the distribution
of the outcome variable. We have already devoted efforts to this task and
have an effective initial model fitting algorithm although it still presents
some issues when the parameter estimates get close to the boundaries of
the parametric space. Once these issues have been circumvented, it would
also be of interest to further develop the model into a Poisson-Tweedie
Mixed-effects model, thus combining the covered methodologies of Papers
2, 3 and 4 of this thesis. We believe that the potential applications of this
method in future epidemiology studies would be enormous.

Finally, in future research, more focus is needed to test the potential
applications of the Poisson-Tweedie family of distributions to other research
fields that heavily rely on count data such as econometrics, sociology or
environmental sciences. We are aware that there have already been some
attempts to apply the PT in several different contexts but, although some
results are promising, they are still in a developmental phase and still require
considerable efforts before they can be regarded as realistic alternatives to
the current state of the art methods.
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Appendix: other related published papers

I. Green spaces and cognitive development in pri-
mary schoolchildren
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Exposure to green space has been associated with better physical
and mental health. Although this exposure could also influence
cognitive development in children, available epidemiological
evidence on such an impact is scarce. This study aimed to assess
the association between exposure to green space and measures of
cognitive development in primary schoolchildren. This study was
based on 2,593 schoolchildren in the second to fourth grades (7–10
y) of 36 primary schools in Barcelona, Spain (2012–2013). Cognitive
development was assessed as 12-mo change in developmental
trajectory of working memory, superior working memory, and in-
attentiveness by using four repeated (every 3 mo) computerized
cognitive tests for each outcome. We assessed exposure to green
space by characterizing outdoor surrounding greenness at home
and school and during commuting by using high-resolution (5 m ×
5 m) satellite data on greenness (normalized difference vegetation
index). Multilevel modeling was used to estimate the associations
between green spaces and cognitive development. We observed
an enhanced 12-mo progress in working memory and superior
working memory and a greater 12-mo reduction in inattentiveness
associated with greenness within and surrounding school bound-
aries and with total surrounding greenness index (including green-
ness surrounding home, commuting route, and school). Adding a
traffic-related air pollutant (elemental carbon) to models explained
20–65% of our estimated associations between school greenness
and 12-mo cognitive development. Our study showed a beneficial
association between exposure to green space and cognitive devel-
opment among schoolchildren that was partly mediated by reduc-
tion in exposure to air pollution.

neurodevelopment | greenness | cognition | built environment | school

Contact with nature is thought to play a crucial and irre-
placeable role in brain development (1, 2). Natural envi-

ronments including green spaces provide children with unique
opportunities such as inciting engagement, risk taking, discovery,
creativity, mastery and control, strengthening sense of self, in-
spiring basic emotional states including sense of wonder, and
enhancing psychological restoration, which are suggested to in-
fluence positively different aspects of cognitive development (1–
3). Beneficial effects of green spaces on cognitive development
might accrue from direct influences such as those above, with
green space itself exerting the positive influence or through in-
direct, mediated pathways. The ability of green spaces to miti-
gate traffic-related air pollution (TRAP) (4) could lead to a
beneficial impact of green spaces on cognitive development,
because exposure to TRAP has been negatively associated with
cognitive development in children (5). Further to TRAP, green
spaces can also reduce noise (6), which itself too has been neg-
atively associated with cognitive development (7). Moreover,
proximity to green spaces, particularly parks, has been suggested
to increase physical activity (8), and higher levels of physical

activity are related to improved cognitive development (9).
Outdoor surrounding greenness has also been reported to enrich
microbial input from the environment (10), which may positively
influence cognitive development (10). Through these pathways,
exposure to green space, including outdoor surrounding greenness
and proximity to green spaces, could influence cognitive de-
velopment in children, yet the available population-based evidence
on the association between such exposure and cognitive develop-
ment in children remains scarce.
The brain develops steadily during prenatal and early post-

natal periods, which are considered as the most vulnerable
windows for effects of environmental exposures (11). However,
some cognitive functions closely related with learning and school
achievement—such as working memory and attention—develop
across childhood and adolescence as an essential part of cogni-
tive maturation (12–14). We therefore hypothesized a priori that
exposure to green space in primary schoolchildren could en-
hance cognitive development. Accordingly, our study aimed to
assess the association between indicators of exposure to green
space and measures of cognitive development, including working
memory (the system that holds multiple pieces of transitory in-
formation in the mind where they can be manipulated), superior
working memory (working memory that involves continuous
updating of the working memory buffer), and inattentiveness in
primary schoolchildren. As a secondary aim, we also evaluated
the mediating role of a reduction in air pollution as one of the
potential mechanisms underlying this association.

Significance

Green spaces have a range of health benefits, but little is known in
relation to cognitive development in children. This study, based on
comprehensive characterization of outdoor surrounding green-
ness (at home, school, and during commuting) and repeated
computerized cognitive tests in schoolchildren, found an improve-
ment in cognitive development associated with surrounding
greenness, particularly with greenness at schools. This association
was partly mediated by reductions in air pollution. Our findings
provide policymakers with evidence for feasible and achievable
targeted interventions such as improving green spaces at schools
to attain improvements in mental capital at population level.
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Methods
Study Setting. We undertook this study in Barcelona, Spain, a port city sit-
uated on the northeastern part of the Iberian Peninsula. It has a Mediter-
ranean climate characterized by hot and dry summers, mild winters, and
maximum precipitation and vegetation during autumn and spring. This study
was conducted in the context of the brain development and air pollution
ultrafine particles in school children (BREATHE) project. Of the 416 schools in
Barcelona, 37 schools were initially selected to obtain maximum contrast in
TRAP levels (i.e., nitrogen dioxide: NO2), of which 36 accepted to participate
and were included in the study (SI Appendix, Fig. S1). Participating schools
were similar to the remaining schools in Barcelona in terms of the neigh-
borhood socioeconomic vulnerability index (0.46 versus 0.50, Kruskal–Wallis test
P = 0.57) and NO2 levels (51.5 versus 50.9 μg/m3, Kruskal–Wallis test P = 0.72).

All schoolchildren (n = 4,562) without special needs in the second to
fourth grades (7–10 y) of these schools were invited to participate by letters
or presentations in schools for parents, of which 2,623 (58%) agreed to take
part in BREATHE. All children had been in the school for more than 6 mo
(and 98% more than 1 y) before the beginning of the study. All parents or
guardians signed the informed consent and the study was approved (No.
2010/41221/I) by the Clinical Research Ethical Committee of the Parc de Salut
Mar, Barcelona.

Outcome: Cognitive Development. Cognitive developmentwas assessed through
12-mo change in developmental trajectory of working memory and at-
tention. We selected these functions because they grow steadily during
preadolescence (15, 16). We used computerized n-back test for assessing
working memory (15) and computerized attentional network test (ANT)
(17) for evaluating attention.

From January 2012 to March 2013, children were evaluated every 3 mo
over four repeated visits by using computerized tests in sessions lasting
∼40 min in length. Groups of 10–20 children wearing ear protectors were
assessed together and supervised by one trained examiner per 3–4 children.
For the n-back test, we examined different n-back loads (up to three-back)
and stimuli (colors, numbers, letters, and words). For analysis here, we se-
lected both two-back and three-back loads for number and word stimuli
because they showed a clear age-dependent slope in the four measurements
(4). The two-back predicts general mental abilities (i.e., working memory)
whereas the three-back also predicts superior functions such as fluid in-
telligence (i.e., superior working memory) (18). All sets of n-back tests star-
ted with colors as a training phase to ensure participants’ comprehension of
the test. The n-back parameter analyzed was d prime (d′), a measure of
detection subtracting the normalized false alarm rate from the hit rate
[(Z hit rate − Z false alarm rate) ×100]. A higher d′ indicates more accurate
test performance. Given that our final findings for numbers and words were
similar, here we only show results for numbers. Among the ANT measures,
we chose hit reaction time standard error (HRT-SE) (SE of RT for correct re-
sponses), a measure of response speed consistency throughout the test (19),
because it showed a clear growth during the 1-y study period. A higher HRT-SE
indicates highly variable reactions related to inattentiveness.

Exposure to Green Space. Our assessment of exposure to green space was
based on a comprehensive characterization of outdoor surrounding green-
ness (photosynthetically active vegetation) encompassing greenness sur-
rounding home, greenness surrounding commuting route between home
and school (hereafter referred to as commuting greenness), and greenness
within and around school boundaries.

To assess outdoor surrounding greenness we applied normalized differ-
ence vegetation index (NDVI) derived from RapidEye data at 5 m × 5 m
resolution. NDVI is an indicator of greenness based on land surface re-
flectance of visible (red) and near-infrared parts of spectrum (20). It ranges
between −1 and 1, with higher numbers indicating more greenness. The
RapidEye Imagery is acquired from a constellation of five satellites 630 km
above ground in sun-synchronous orbits. We generated our NDVI map by
using the image obtained on July 23, 2012, that was available for our study
region during our study period (SI Appendix, Fig. S1).
Residential surrounding greenness. Residential surrounding greenness was ab-
stracted as the average of NDVI in a buffer of 250m (21, 22) around the home
address of each study participant. For 174 children (5.9%) who shared two
homes, we used the address where the child spent most of her/his time.
Commuting greenness. Data on the main mode of commute to and from school
was obtained from parents via questionnaires. Approximately 60% of par-
ticipants reported walking as the main mode of commuting, whereas the
38% reported commuting by motor vehicles (private car, bus, motorcycle, or
tram). The remaining 2% reported the underground metro train as the main
mode of transport, for whom we assumed no exposure to greenness during

commuting. For participants reporting walking as the main mode of com-
muting, we identified the shortest walking route to school and for partici-
pants reporting motor vehicles as the main mode of commuting, we
identified the shortest driving route to school, based on street networks
(network distance) by using network analyst extension from ArcGIS software
v10. We defined commuting greenness as the average of NDVI in a 50-m
buffer around the commuting route.
School greenness. To assess greenness within school premises, we first digitized
the school boundaries and then averaged NDVI values within those
boundaries. To assess greenness surrounding schools, we averaged NDVI
values across a 50 m buffer around the school boundaries.
Total surrounding greenness index.We developed a total surrounding greenness
index by averaging residential surrounding greenness (250-m buffer), com-
muting greenness, and greenness within school boundaries weighted by the
daytime (12 h a day) that children were assumed to spend at home (3 h),
commuting (1 h), and school (8 h). To avoid double-counting in developing
this index, we abstracted as the average NDVI over commute corridor beyond
the 250-m home buffer and 50-m school buffer.

Main Analyses. Data on 9,357 tests from 2,593 (99%) children were available
for analysis. Because of the multilevel nature of the data (i.e., multiple visits
for each child within schools), we used linear mixed effects models with the
four repeated cognitive parameters as outcomes (one test at a time), each
measure of exposure to green space (one at a time) as fixed effect predictor,
and child and school as random effects (5). An interaction between age at
each visit and the indicator of exposure to green space was included to
capture changes in 12-mo progress in cognitive trajectory associated with
greenness exposure (5). The main effect of exposure to green space, which
was also included in the model, captured the baseline (visit 1) differences in
cognitive function that were associated with exposure to green space before
the first visit. This model was further adjusted for potential confounders
identified a priori: age (centered at visit 1), sex, and indicators of socioeco-
nomic status (SES) at both individual and area levels. Maternal education (no
or primary/secondary/university) was used as the indicator of individual-level
SES and Urban Vulnerability Index (23), a measure of neighborhood SES at
the census tract (median area of 0.08 km2 for the study region) was applied
as the indicator of area-level SES. Linearity of the relation between exposure
to green space and cognitive tests was assumed because generalized addi-
tive mixed models did not show any nonlinearity of associations. We esti-
mated the change in average outcome scores associated with one
interquartile range (IQR) increase (based on all study participants) in average
NDVI. Statistical significance was set at P < 0.05. R statistical package was
used to carry out the analyses.

Mediating Role of Traffic-Related Air Pollution. We hypothesized that re-
duction in TRAP levels could be one of the potential mechanisms underlying
the association between greenness exposure and cognitive development. To
quantify such a mediating role, we calculated the percent of the associations
between greenness and cognitive development explained by TRAP as [1 −
(βgm/βg)] × 100, where βgm was the regression coefficient for the greenness
exposure in a fully adjusted model including the mediator (i.e., TRAP) and βg
was the regression coefficient in the fully adjusted model without including
the mediator (24).

We focused on the associations between school greenness and cognitive
development because they were the strongest among our evaluated asso-
ciations (Results) and also because of the availability of data on levels of air
pollutants at BREATHE schools that were monitored as part of the BREATHE
project. Such a high-quality monitored data were not available for TRAP
levels at homes or during commuting. Among the TRAPs monitored in the
BREATHE framework, we chose indoor levels of elemental carbon (EC) for
this mediation analyses. EC is mainly generated by fossil fuel combustion and
is considered as a tracer of road traffic emissions in Barcelona (25). In other
BREATHE analyses, we had observed that indoor EC was associated with
adverse impacts on cognitive development (5) and EC levels were reduced in
schools with higher greenness (4). Detailed description of TRAP sampling
methodology at the BREATHE schools has been published (25, 26).

Results
Children were on average 8.5 y old at baseline and 50% were
girls. Regarding maternal education, 13% of mothers had no or
only primary school, 29% secondary school, and 58% university
education. Further characteristics of the study participants are
presented in SI Appendix, Table S1. Average working memory
increased by 22.8%, superior working memory by 15.2%, and
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inattentiveness decreased by 18.9% during the follow up (Table 1).
At baseline, higher maternal education was associated with better
cognitive function (SI Appendix, Table S2). For 12-mo progress,
whereas higher maternal education was associated with larger re-
duction in inattentiveness, improvements in working memory and
superior working memory were not associated with maternal edu-
cation (SI Appendix, Table S2). The median (IQR) of our estimated
surrounding greenness for all participants and across strata of ma-
ternal education are presented in Table 2 and SI Appendix, Table
S2, respectively. The Spearman’s correlation coefficient among
residential, school, and commuting surrounding greenness varied
from 0.46 (between surrounding greenness at home and greenness
within school boundaries) to 0.80 (between commuting and school
surrounding greenness) (SI Appendix, Table S3).

Main Analyses. We observed an enhanced 12-mo progress in
working memory and superior working memory and a greater
12-mo reduction in inattentiveness associated with greenness within
and surrounding school boundaries and with the total surrounding
greenness index (Table 2, Fig. 1, and SI Appendix, Fig. S2). Com-
muting greenness was also associated with improved 12-mo progress
in working memory and superior working memory, although the
association for superior working memory was only marginally sta-
tistically significant. We did not observe any association between
residential surrounding greenness and cognitive measurements
(Table 2). None of the indicators of outdoor greenness were asso-
ciated with baseline cognitive measurements (Table 2).
The findings for n-back tests with “word” stimuli were con-

sistent with the aforementioned results for “number” stimuli (SI
Appendix, Table S4). The association between commuting green-
ness and 12-mo progress in superior working memory, which had
borderline statistical significance for the three-back test using
number stimuli, was statistically significant for the test using
word stimuli.
To explore the possibility of an impact of green space exposure

on other ANT measures than inattentiveness, we repeated the
main analyses by using alerting, orienting, and executive pro-
cessing (one at a time) abstracted from ANT as outcome. We did
not observe any statistically significant association for these
outcomes with any of indicators of green space exposure (SI
Appendix, Table S5), which was consistent with our observation
that these measures did not show any clear growth during the
study period.
We conducted a number of sensitivity analyses as described in

SI Appendix that showed the robustness of our findings to al-
ternative definition of total surrounding greenness index and
commuting greenness and to including a range of relevant
covariates in models (e.g., socioeconomic indicators and condi-
tion of venue at the time of cognitive tests).

Mediating Role of Traffic-Related Air Pollution. The Spearman’s
correlation coefficients between school EC levels and greenness
within and surrounding school boundaries were −0.62 and −0.66
(P < 0.01), respectively. Adding EC to models explained 20–65%
of associations between school greenness and 12-mo progress in

cognitive functions (Table 3). Including EC reduced effect sizes
in all models. EC made the associations between school surrounding
greenness and superior working memory and between greenness
within and surrounding school boundaries and inattentiveness much
smaller and statistically nonsignificant (Table 3).

Discussion
To our knowledge, this is the first epidemiological study to re-
port on the impact of exposure to green space on cognitive de-
velopment in schoolchildren. School and total surrounding
greenness index were associated with enhanced 12-mo progress
in indicators of working memory and superior working memory
and greater 12-mo reduction in inattentiveness. Commuting
greenness was also associated with better 12-mo progress in
working memory. Adding EC to our models explained 20–65%
of our estimated associations between green spaces and 12-mo
cognitive development.

Interpretation of Results. Over a 12-mo period, we observed that
an IQR exposure increment in total surrounding greenness index
was associated with a 5% increase in the progress of working
memory, a 6% increase in the progress of the superior working
memory, and a 1% reduction of inattentiveness. Among our
assessed exposure measures, we observed the strongest associa-
tions for greenness within or surrounding school boundaries.
Children spend a considerable part of their active daily time at
schools and “green exercise” has been related to better mental
health (27). Furthermore, the combination of physical activity in
school with daily peaks of TRAPs in urban areas that often coincide
with school time could result in a considerable inhaled dose of air
pollutants at school. Consistently, in our other BREATHE analysis
of the impact of TRAPs on cognitive development using the same
measures of cognitive development as in this study, we also ob-
served stronger associations for levels at school compared with
those at home (5). Therefore, the ability of school greenness in
reducing pollutant levels (4) might explain, in part, why we observed
the strongest associations for school greenness.
We found some indications for an enhanced 12-mo progress in

working memory associated with commuting greenness. Because
of the strong correlation between greenness surrounding school
boundaries and commuting greenness, it was not possible to
determine the independent impact of commuting greenness (i.e.,
whether commuting greenness is a surrogate for school sur-
rounding greenness). Therefore, our findings for commuting
greenness should be interpreted with caution. To the best of our
knowledge, this study is the first reporting on the potential im-
pact of commuting greenness on health in general and on cog-
nitive development in particular. We hypothesize that green
exercise and visual access to greenness might underlie such an
association, if any.
The beneficial associations for 12-mo progress in cognitive

functions were stronger than those at baseline. Baseline esti-
mates reflected the association between cognitive test scores at
the first visit and the cumulative green space exposure preceding
the study period, whereas our exposure assessment was based

Table 1. Description of the cognitive outcomes in children [median (25th–75th %)]

Visit n
Age

(mean), y
Working memory (WM)
(two-back numbers), d′*

Superior WM
(three-back numbers), d′*

Inattentiveness
(ANT HRT-SE)†, ms

First visit 2,278 8.5 206 (129, 360) 112 (53, 171) 271 (205, 338)
Second visit 2,425 8.7 221 (129, 392) 112 (59, 190) 250 (186, 321)
Third visit 2,347 9.1 234 (129, 392) 128 (59, 190) 247 (183, 317)
Fourth visit 2,307 9.4 253 (152, 392) 129 (64, 210) 228 (165, 294)

*The n-back d′ is a measure of detection subtracting the normalized false alarm rate from the hit rate [(Z hit rate − Z false alarm rate) × 100].
†Hit reaction time SE (HRT-SE), SE of reaction time for correct responses as a measure of response speed consistency throughout the test.
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on the home address of participants and the school they were
attending during the study period, not including potential prior
different addresses or schools to their current ones. Part of our
observed larger estimates for 12-mo progress might therefore
reflect better characterization of exposure, but it could also be
due to the window of vulnerability for these high executive func-
tions that develop significantly during the primary school age
(12–14). This window of vulnerability might also explain why we
observed the strongest associations for 12-mo progress in superior
working memory that develops considerably during this period.
We did not observe any statistically significant difference in

12-mo progress in working memory and superior working
memory (for which we found associations with green space ex-
posure) between strata of maternal education. Moreover, further
adjustment of our analyses for other indicators of SES like pa-
rental employment, marital status, and ethnicity (SI Appendix, SI
Methods) did not change the interpretation of our findings no-
tably. Furthermore, removing SES indicators (maternal educa-
tion and neighborhood SES) from our fully adjusted models did
not result in a considerable change in the interpretation of our
findings (SI Appendix, Table S6). Additionally, we did not ob-
serve any statistically significant effect modification by maternal
education or neighborhood SES for our associations (P > 0.1).
These observations might suggest that our results were unlikely
to have been affected by residual SES confounding.

Available Evidence and Potential Underlying Mechanisms. We are
not aware of previous epidemiological studies on the impact of
green space exposure on cognitive development in schoolchildren;
therefore, it is not possible to compare our findings with those of
others. Our findings, however, are consistent with several previous
observations. Residential surrounding greenness has been related
to better mental health including lower risk of depression and
anxiety in children (28). Higher school greenness has been asso-
ciated with better student performance at schools (29). Experi-
mental studies have shown walking in nature or watching photos
of nature could improve directed-attention abilities in adults (30)
and have “therapeutic effects” on attention deficit hyperactivity
disorder symptoms in children (31–34). Our previous cross-sec-
tional analysis of BREATHE participants showed a protective
impact of home and school greenness on behavioral problems
including hyperactivity and inattention (35). That analysis was
based on behavioral screening questionnaires rated by teachers
and parents. In those questionnaires behavioral aspects that
characterized hyperactivity/inattention were modestly correlated
(Spearman’s correlation coefficients ranging between 0.18 and 0.23)
with the ANT inattentiveness score (at baseline) used in this study.
A study by Wells (2000) reported that relocation to residences with
higher “naturalness” improved cognitive function in a sample of 17

children (36). In an analysis of BREATHE schools, we observed
that higher greenness inside and surrounding school boundaries was
associated with lower TRAPs levels at schools (5), in line with our
other study showing lower levels of personal exposure to TRAPs
(based on personal monitors) associated with higher residential
surrounding greenness in Barcelona (22). Another BREATHE
analysis, using the same cognitive measures as the current study,
demonstrated that higher levels of TRAPs at school were associated
with diminished 12-mo cognitive progress (5). Thus, reduction of
exposure to TRAPs associated with higher greenness could have
partly underlain our observed associations. Consistently, in the
current analysis we observed that including a TRAP (EC) in our
models could explain one-fifth to two-thirds of the associations,
suggesting that our observed beneficial associations between green-
ness exposure and cognitive development could have been partly
mediated by reduction in exposure to TRAPs. These findings could
also suggest that other mechanisms may account for 35–80% of our
observed associations that was not explained by reduction in TRAP
exposure. Higher ambient noise has been related with adverse im-
pacts on cognitive development (7). The ability of green spaces to

Fig. 1. Twelve-month progress (with 95% confidence bands) in superior
working memory for participants with the first (low greenness) and third
(high greenness) tertiles of greenness within the school boundaries.

Table 2. Adjusted difference (95% confidence interval) in baseline and 12-mo progress of working memory, superior working
memory, and inattentiveness per one interquartile range (IQR) change in greenness

Surrounding greenness

Working memory†

(2-back number stimuli, d′)
Superior working memory†

(3-back number stimuli, d′)
Inattentiveness†

(HRT-SE, ms)

Median (IQR) Baseline Progress Baseline Progress Baseline Progress

Home 0.091 (0.053) 0.2 (-3.8, 4.2) 0.7 (-2.6, 4.1) 0.6 (-2.5, 3.7) −0.1 (-2.7, 2.6) 2.0 (-1.4, 5.4) −0.7 (-3.1, 1.7)
School

Within 0.094 (0.085) 0.3 (−6.8, 7.4) 9.8 (5.2, 14.0)* 0.9 (−5.0, 6.8) 6.9 (3.4, 10.0)* −4.0 (−12.0, 4.0) −3.4 (−6.6, −0.2)*
Surrounding‡ 0.100 (0.120) 3.2 (−4.3, 11) 9.5 (4.5, 15.0)* 1.5 (−4.8, 7.8) 6.3 (2.3, 10.0)* −5.1 (−14.0, 3.6) −3.7 (−7.3, −0.1)*

Commuting 0.100 (0.062) 1.5 (−3.5, 6.6) 4.9 (1.0, 8.8) * 3.5 (−0.6, 7.5) 3.1 (0.0, 6.1) 0.2 (−4.5, 4.9) −1.2 (−4.0, 1.7)
Total surrounding

greenness index
0.094 (0.073) 0.0 (−6.9, 6.5) 9.8 (5.0, 15.0)* 1.7 (−4.4, 7.8) 6.7 (2.8, 11.0)* −2.4 (−9.8, 4.9) −3.9 (−7.4, −0.4)*

*P < 0.05.
†Difference adjusted for age, sex, maternal education, and residential neighborhood socioeconomic status with school and subject as nested random effects.
‡Fifty-meter buffer around school boundaries.
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reduce noise (6) might therefore explain a part of our observed
associations (37). Moreover, proximity to green spaces has been
reported to increase physical activity (38), and physical activity has
been associated with better cognitive function in children (9). Fur-
thermore, parental psychological stress and depression have been
reported to be adversely associated with cognitive development in
their children (39) and exposure to green space has been associated
with evidence of stress restorative effects and reduced depression in
adults (3, 28). A growing body of evidence also suggests that a failure
of the immunoregulatory pathways due to a reduced exposure to
macroorganisms and microorganisms in Westernized populations
might play a role in impairment of brain development (10, 40) with
childhood as a particular window of vulnerability (41). Therefore,
the ability of outdoor surrounding greenness to enhance immuno-
regulation-inducing microbial input from the environment (10)
could have been another mechanism underlying our observed as-
sociation between greenness exposure and cognitive development.

Implications for Policymakers.Approximately one-half of the world
population lives in cities, and it is projected that by 2030, three of
every five persons will live in urban areas worldwide (42). Urban
areas are characterized by a network of nonnatural built-up in-
frastructures with increased pollutant levels and less green en-
vironments (43). Children’s exposure to these pollutants such as
air pollution and noise has been associated with detrimental
impacts on their cognitive development. Our findings suggest for
a beneficial impact of green space exposure on cognitive de-
velopment, with part of this effect resulting from buffering
against such urban environmental pollutants. This impact was
more evident for surrounding greenness at school and for
working memory and superior working memory, which are pre-
dictors of learning and academic attainment (44). Schoolchildren
with a superior working memory progress of less than one-10th
of a percentile (45) of the distribution can be classified as im-
paired superior working memory progress. Our results suggest that
if schools increased greenness within their boundaries by the ob-
served IQR (Fig. 1), then 8.8% of children with impaired superior
working memory progress would move out of this category. Our
findings, therefore, hold importance for policymakers when trans-
lating evidence into feasible and achievable targeted interventions
such as improving greenness at schools, given that improved cog-
nitive development in children attending schools with more green-
ness could result in an advantage in mental capital, which, in turn,
would have lasting effects through the life-course.

Strengths and Limitations of Study. This study was based on re-
peated computerized tests of cognitive development to quantify
different aspects of cognitive development in study participants.
These tests have been reported to have acceptable internal
consistency, reasonable factorial structure, and good criterion
validity and statistical dependencies for use in general population
(46). We applied one of the most comprehensive approaches to
date to assess exposure to green space by characterizing the
outdoor surrounding greenness at home and school and during
commuting by using high-resolution (5 m × 5 m) satellite data
on greenness, enabling us to account for small-area green spaces
(e.g., home gardens, street trees, and green verges) in a stan-
dardized way.
Our study also faced some limitations. The generalizability of

our findings might have been affected by selection bias in that
those participants participated in BREATHE were different
from those not participated with respect to SES. Approximately
58% of mothers in our study population had a university degree,
which was higher that the regional average of 50% among
women between 25 and 39 y old living in Barcelona (47). We did
not, however, observe any indication of effect modification by
maternal education in our associations. Moreover, the Urban
Vulnerability Index of the schools was not associated with school
participation rate (Spearman’s correlation coefficient = −0.09, P =
0.61); these observations might suggest that the socioeconomic
status was less likely to be a major predictor of participating in
the study. Similarly, school greenness was not associated with
participation rate at schools (Spearman’s correlation coefficients
of −0.06 with P value = 0.72 for greenness within school
boundaries and 0.13 with P value = 0.43 for greenness sur-
rounding schools). Our exposure assessment focused on expo-
sure during the school age, overlooking other potential windows
of susceptibility such as prenatal and preschool periods. In-
vestigating these windows of susceptibility presents an opportu-
nity for future studies. By using an NDVI map obtained at a
single point in time (2012), we effectively assumed that the
spatial distribution of NDVI across our study region remained
constant over the study period (2012). The findings of our pre-
vious studies support the stability of the NDVI spatial contrast
over seasons and years (21, 48). Finally, data were not available
for some potentially relevant confounders, such as parental
mental health status.

Conclusions
Exposure to outdoor surrounding greenness was associated with
a beneficial impact on cognitive development in schoolchildren.

Table 3. Difference (95% confidence interval) in 12-mo cognitive trajectory per one
interquartile range change in greenness estimated by main analyses and models further
including school indoor elemental carbon (EC) interaction with age

Outcomes/exposures Main analyses†,‡ Further adjusted for EC‡ % explained

Working memory
Within school 9.8 (5.2, 14.0)* 8.7 (2.5, 15.0)* 20.4
Surrounding school 9.5 (4.5, 15.0)* 6.9 (0.9, 13.0)* 27.4

Superior working memory
Within school 6.9 (3.4, 10.0)* 4.9 (0.1, 9.8)* 29.0
Surrounding school§ 6.3 (2.3, 10.0)* 3.3 (-1.5, 8.1) 47.6

Inattentiveness
Within school −3.4 (-6.6, -0.2)* −1.2 (-5.6, 3.2) 64.7
Surrounding school −3.7 (-7.3, -0.1)* −1.8 (-6.1, 2.5) 51.4

*P < 0.05.
†Adjusted for age, sex, maternal education, and residential neighborhood socioeconomic status with school and
subject as nested random effects.
‡Estimates per 0.085 and 0.120 change respectively in greenness within and surrounding school boundaries (i.e.,
1-interquartile change).
§Fifty-meter buffer around school boundaries.
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These associations were only partly mediated by reduction in
TRAP levels, suggesting that other mechanisms likely underlie
this association. Our observed beneficial associations were
consistent for working memory, superior working memory, and
inattentiveness and were more evident for greenness at school.
Further studies are warranted to replicate our findings in
other settings with different climates and to investigate other
cognitive functions with different windows of susceptibility
such as prenatal and preschool periods.
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Abstract

Background

Road traffic noise is a prevalent and known health hazard. However, little is known yet about

its effect on children’s cognition. We aimed to study the association between exposure to

road traffic noise and the development of working memory and attention in primary school

children, considering school-outdoor and school-indoor annual average noise levels and

noise fluctuation characteristics, as well as home-outdoor noise exposure.

Methods and findings

We followed up a population-based sample of 2,680 children aged 7 to 10 years from 38

schools in Barcelona (Catalonia, Spain) between January 2012 to March 2013. Children

underwent computerised cognitive tests 4 times (n = 10,112), for working memory (2-back

task, detectability), complex working memory (3-back task, detectability), and inattentive-

ness (Attention Network Task, hit reaction time standard error, in milliseconds). Road traffic

noise was measured indoors and outdoors at schools, at the start of the school year, using

standard protocols to obtain A-weighted equivalent sound pressure levels, i.e., annual aver-

age levels scaled to human hearing, for the daytime (daytime LAeq, in dB). We also derived

fluctuation indicators out of the measurements (noise intermittency ratio, %; and number of

noise events) and obtained individual estimated indoor noise levels (LAeq) correcting for

classroom orientation and classroom change between years. Home-outdoor noise expo-

sure at home (Lden, i.e., EU indicator for the 24-hour annual average levels) was estimated

using Barcelona’s noise map for year 2012, according to the European Noise Directive

(2002). We used linear mixed models to evaluate the association between exposure to

noise and cognitive development adjusting for age, sex, maternal education,
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socioeconomical vulnerability index at home, indoor or outdoor traffic-related air pollution

(TRAP) for corresponding school models or outdoor nitrogen dioxide (NO2) for home mod-

els. Child and school were included as nested random effects.

The median age (percentile 25, percentile 75) of children in visit 1 was 8.5 (7.8; 9.3)

years, 49.9% were girls, and 50% of the schools were public. School-outdoor exposure to

road traffic noise was associated with a slower development in working memory (2-back

and 3-back) and greater inattentiveness over 1 year in children, both for the average noise

level (e.g., −4.83 points [95% CI: −7.21, −2.45], p-value < 0.001, in 2-back detectability per

5 dB in street levels) and noise fluctuation (e.g., −4.38 [−7.08, −1.67], p-value = 0.002, per

50 noise events at street level). Individual exposure to the road traffic average noise level in

classrooms was only associated with inattentiveness (2.49 ms [0, 4.81], p-value = 0.050,

per 5 dB), whereas indoor noise fluctuation was consistently associated with all outcomes.

Home-outdoor noise exposure was not associated with the outcomes. Study limitations

include a potential lack of generalizability (58% of mothers with university degree in our

study versus 50% in the region) and the lack of past noise exposure assessment.

Conclusions

We observed that exposure to road traffic noise at school, but not at home, was associated

with slower development of working memory, complex working memory, and attention in

schoolchildren over 1 year. Associations with noise fluctuation indicators were more evident

than with average noise levels in classrooms.

Author summary

Why was this study done?

• Exposure to aircraft noise has been associated with impaired cognitive development in

schoolchildren, and experiments have also observed that animals exposed to moderate

or high noise levels for 4 to 30 days suffer changes in the brain.

• Road traffic noise is the most common noise source and many children are exposed to it

at school; however, it is still unclear whether it affects children’s cognitive development,

including important aspects such as working memory or attention.

• Moreover, while previous studies have assessed exposure to the average noise level out-

side the school, none have assessed whether the noise peaks of fluctuating traffic and

exposure to noise inside the classroom could affect children’s cognition.

What did the researchers do and find?

• We carried out a cohort study to assess whether school exposure (inside and outside

classrooms) and home exposure to road traffic noise were associated with the develop-

ment of working memory and attention over 12 months in 2,680 children aged 7 to 10

years from 38 schools in Barcelona, Spain.
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• We assessed long-term exposure to road traffic noise outside and inside the school with

measurements (average noise levels and noise fluctuation) and at home with Barcelona’s

noise map (outdoor average noise levels).

• We used computerised tests every 3 months over 12 months to measure the develop-

ment of working memory (the system that keeps and manipulates transitory informa-

tion), complex working memory (it further involves continuous updating of the

working memory), and inattentiveness in children.

• We observed that higher exposure to road traffic noise outside and inside the school,

but not at home, was associated with a slower development of working memory and a

slower improvement of inattentiveness over 12 months. Inside the classroom, associa-

tions were more evident for exposure to noise fluctuation than to average noise levels.

What do these findings mean?

• These findings suggest that, in children aged 7 to 10 years in Barcelona, higher exposure

to road traffic noise at school relates to poorer development of attention and working

memory. These are important for learning.

• The findings might not be applicable to other populations and need replication in other

locations.

• These findings are of public health relevance given the large number of children exposed

to road traffic noise in schools and support the implementation of environmental noise

policies that protect the school environment.

Introduction

Road traffic noise is the most prevalent environmental and transportation noise source in

Europe [1]. Transportation noise is the second most detrimental environmental factor for ill

health in Europe, just after air pollution [2,3]. Such health impact is supported by an increasing

number of epidemiological studies in adults; however, little is known yet about the effects in

children [4–6].

One of the first adverse effects of noise on children could relate to cognitive development,

given that childhood is a vulnerable period for brain maturation [7]. It is suggested that noise

may impact cognitive abilities directly or lead to impaired attention, frustration, learned help-

lessness, arousal, or tuning out, which could impact performance and learning in the long

term [8]. The impact of noise on cognition is supported by animal experiments in rats in

which subchronic exposure to white noise (4 hours/day, 100 dB, up to 30 days) led to electro-

encephalographic changes in the occipital and prefrontal regions (relevant for executive func-

tions) [9,10] and to reduced dendrite number in the hippocampus (relevant for learning and

memory) [10]. An experiment exposing mice to average noise levels closer to environmental

noise levels (72 dB continuous aircraft noise, up to 4 days) further observed increased oxidative

stress in the brain, particularly in the frontal cortex [11].
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In schoolchildren, there is substantial evidence for the association between exposure to air-

craft noise and decreased cognitive development, particularly for reading comprehension,

achievement tests, and long-term memory, according to longitudinal studies, intervention

studies, and recent systematic reviews [5,8]. However, the available evidence for the association

between exposure to road traffic noise and children’s cognition is still limited and based only

on cross-sectional studies [5,8]. In specific, it is unclear how noise could affect working mem-

ory or attention, which are essential for learning and school attainment [12,13] and which

develop actively between 6 to 10 years of age as a result of cognitive maturation [14–16]. To

our knowledge, only 5 cross-sectional studies from 3 different projects have examined the

association between exposure to road traffic noise and tests of attention and they used different

tests yielding mixed results [17–21]. Another 5, all part of the same cross-sectional RANCH

study (road traffic and aircraft noise exposure and children’s cognition and health), evaluated

the association between exposure to road traffic noise and tests of working memory and

reported no effects [19–23]. All of these studies except Cohen and colleagues [17], evaluated

school-outdoor road traffic noise levels, using measured or modelled A-weighted equivalent

noise levels (LAeq), which were representative of annual average noise levels. Cohen and col-

leagues [17] only assessed home-outdoor road traffic noise exposure, but using floor level as a

proxy of noise exposure. Van Kempen and colleagues [20,21] assessed both school-outdoor

and home-outdoor average levels of road traffic noise, and only observed associations between

school-outdoor noise exposure and worse attention.

Importantly, none of the few previous studies have evaluated indoor road traffic noise levels

in the classroom, where repeated exposure to noise could affect concentration, learning, and

cognition [7]. Moreover, studies have focused on exposure to average noise levels, whereas the

role of noise fluctuation (i.e., the presence of peaks and noise intermittency) on children’s cog-

nition remains unknown. Indirect evidence in adults indicates an association of noise fluctua-

tion with endothelial dysfunction [24] and higher annoyance in people exposed to greater

road traffic noise intermittency [25]. Finally, only 2 RANCH studies adjusted associations for

coexposure to traffic-related air pollution [21,22], which has been also related with cognitive

impairment in children [26]. In conclusion, there is a need for longitudinal studies and of

novel, comprehensive assessments of children’s exposure to noise at school and home in order

to understand the effects of exposure to road traffic noise on children’s cognitive development.

We hypothesise that school and home exposure to road traffic noise impairs the develop-

ment of working memory and attention in children. The aim of the present study was to assess

the association between exposure to road traffic noise indoors and outdoors at schools,

accounting both for the annual average noise level and the noise fluctuation characteristics,

with the development of working memory and inattentiveness over 12 months in primary

schoolchildren, based on the BREATHE project (Brain Development and Air Pollution Ultra-

fine Particles in School Children), a cohort study of children in Barcelona. The study also

assessed the association between home-outdoor long-term exposure to road traffic noise with

the development of working memory and inattentiveness.

Methodology

Study population and design

This longitudinal study was carried out in the city of Barcelona, within the context of the

BREATHE project (2011 to 2016). The BREATHE project aimed to study how air pollutants,

including noise pollution, affected children’s cognition. Barcelona is a densely populated city

in northeast of Spain, in which the main source of noise is road traffic noise. In Barcelona, a

total of 53% of the population are exposed to road traffic noise levels above the recommended
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levels by the World Health Organization (24-hour EU noise indicator: Lden� 53 dB) [4,27].

The BREATHE project assessed 2,897 children aged 7 to 10 years who were followed up

through 2 academic courses between years 2012 and 2013 with a total of 4 visits and who

attended 39 schools in Barcelona (Catalonia, Spain). Schools were selected based on the range

of estimated outdoor levels of traffic-related nitrogen dioxide (NO2) [28] in Barcelona, which

would therefore also represent the range of noise as another traffic-related factor. We paired

schools with low and high NO2 levels by socioeconomic vulnerability index (SES) and type of

school (i.e., private/public). In specific, we identified schools in Barcelona with low to moder-

ate NO2 levels (maximum 51 μg/m3, mean of the city) estimated with a land use regression

model [28] and searched schools with higher NO2 levels but of similar type and SES (S1

Table). The participating schools were representative of the rest of schools in Barcelona in

terms of neighbourhood socioeconomic vulnerability index (0.46 versus 0.50, Kruskal–Wallis

test, p-value = 0.570) and NO2 levels (51.5 versus 50.9 μg/m3, Kruskal–Wallis test, p-

value = 0.720). We invited all children from second to fourth grade who had no special needs

and a 59% of families agreed to participate. All children had attended the same school for at

least 6 months and a 98% for more than 1 year. In the present study, we excluded 1 school due

to incomplete noise data. This study did not have a prespecified analysis plan.

All the participating children’s parents or guardians signed and provided the informed con-

sent. The research procedures were explained in detail to the children, who could ask any ques-

tion. All included children provided their assent. The study received ethical approval by the

Clinical Research Ethical Committee (No. 2010/41221/I) of the Institut Hospital del Mar

d’Investigacions Mèdiques–Parc de Salut Mar, Barcelona, Spain, and the FP7-ERC-2010-AdG

Ethics Review Committee.

This study is reported as per the Strengthening the Reporting of Observational Studies in

Epidemiology (STROBE) guideline (S1 STROBE Checklist).

Noise exposure assessment

Measured average noise levels at school. Environmental campaigns started in January

2012 and were performed twice, 6 months apart, during the cold and hot seasons. School pairs

were assessed simultaneously. Road traffic noise was measured indoors (in classrooms) in the

first campaign and indoors/outdoors 6 months later during the second campaign, following

ISO 1996–2 (2007) for long-term environmental noise assessment based on short-term mea-

surements. As part of this protocol, we carried out supervised time-stamped 30-min record-

ings of A-weighted equivalent noise levels (LAeq, in dB) during 2 consecutive weekdays before

lessons started, using a calibrated CESVA SC160 device (type II microphone). We took simul-

taneous measurements indoors in 1 classroom (LAeq,in) and outdoors in the playground

(LAeq,playgr.), followed right after by a street recording in front of the school (LAeq,street).

Windows were closed during the measurement. Noise artefacts were subtracted to obtain

clean road noise measurements. The 2-day mean of the measurements at each location during

the second campaign, which assessed all school environments, was used as the exposure

estimate.

Postprocessing analysis further confirmed the validity of the short-term noise protocol

(ISO 1996–2) and the use of the 2-day mean to represent long-term (i.e., annual) means.

Indoor noise measurements exhibited high reproducibility, i.e., intraclass correlation between

the 2-day mean of each campaign = 0.89 and of the mean of the 2 campaigns = 0.94 (p-

values< 0.001, 1-way random effects model). Moreover, the LAeq, street average was highly

correlated (Spearman’s rank r = 0.86, Pearsons’ r = 0.85, p-values < 0.001) with the annual

average noise levels for the daytime (Lday) obtained at the same location from the 2012
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Strategic Noise Map for Barcelona derived under the EU Directive 2002/49/EC [29]. The noise

map was published in year 2012 and represents average noise levels before year 2012.

To provide individual indoor average noise levels for each child during the study period

(LAeq,in-indiv.), we further modelled indoor average levels of road traffic noise for all class-

rooms (adjusted R2 = 67.7%; see S1 Text), based on data on the floor level of classrooms, room

orientation (classroom oriented towards: indoor area, outdoor courtyard, or directly to the

street), outdoor levels of road traffic noise, the type of courtyard (open, semi-open, built), and

the type of windows, among others, and accounted for child’s change of classroom between

school years.

Measured noise fluctuation at school. We calculated the average number of individual

noise events (NE) at each of the measured locations, i.e., street (NE, street), playground (NE,

playgr.), and indoors (NE, in) as defined by [30] and previously used [24]. A noise event was

labelled as a noise peak whose maximum noise level exceeded 3 dB above the total LAeq level

during the measurement period [30]. Subsequently, noise intermittency ratio at the measured

locations (IR, street; IR, playgr.; and IR, in) was calculated as the ratio between the LAeq noise

level of the noise events for period T (Leq,T,events) and the total LAeq noise level for the same

period T (Leq,T,tot), both expressed in sound energy (unit: percent) (Eq 1).

IR ¼
100:1Leq;T;events

100:1Leq;T;tot x 100 ð1Þ

These fluctuation metrics were designed by Wunderli and colleagues [30], after the original

planning of the current study. These metrics were calculated from the original noise measure-

ment data.

Modelled average noise levels at school and home. We assigned exposure to road traffic

noise as annual average road traffic noise levels at the geocoded noise measurement location in

front of the school and at the geocoded home address of each participant, using the 2012 Stra-

tegic Noise Map of Barcelona, derived under the European Directive 2002/EC/49 [29]. Assign-

ment of modelled noise levels was only possible in the 34 schools and 2,346 home addresses

that fell within the boundaries of the city noise map, which excludes the outskirts of the city

where 4 schools and some children’s homes were located. Specifically, at schools, we estimated

the A-weighted equivalent noise levels for the daytime (Lday, from 7 AM to 9 PM) to account

for children’s exposure during the academic time window. At home, we estimated the standard

EU indicator for the 24 hours, i.e., the A-weighted equivalent noise levels for the 24 hours

(Lden) with 5 dB and 10 dB penalties for the evening (9 PM to 11 PM) and nighttime (11 PM

to 7 AM) to account for the children’s exposure during the nonacademic hours, weekends,

and holidays during the year.

Outcomes

From January 2012 to March 2013, children were visited 4 times (every 3 months) to carry out

computerised psychometric measurements for working memory and inattentiveness in ses-

sions of approximately 40 minutes. Tests were performed at schools by trained fieldworkers,

who noted any incidents (including noise in the room) during the test. All children wore ear-

phones to perform the tasks, which limited any influence of external noise stimuli on their

outcomes.

We assessed 2 cognitive functions that develop rapidly during preadolescence, namely:

working memory, assessed through the n-back task [14,31] and inattentiveness, assessed

through the Attentional Network Test (ANT) [32,33]. Both tests have been validated as mea-

sures of neuropsychological development [32,34,35].
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Working memory and attention are essential for learning and school attainment [12,13].

Working memory functions permit the maintenance and manipulation of information over

short periods of time, and complex working memory requires continued, effective processing

of information held in working memory stores. It underlies many other aspects of cognition,

including learning, problem solving, reasoning, mathematics, and language comprehension

[31]. Attention includes processes such as selectively attending to specific stimuli, focusing for

prolonged periods on a task or incoming stimuli, or regulating and monitoring actions

[14,36].

The experimental tasks were created for the project using the psychology experiment com-

puter program E-Prime version 2.0 (Psychology Software Tools) and have been previously

described [34,36,37].

In the n-back task, children observed a series of stimuli presented in the centre of the lap-

top’s screen, and they were instructed to press a specific keyboard button whenever a given

stimulus was the same as the one presented n trials previously (1-, 2-, and 3-back). Participants

completed 3 blocks (1-, 2-, and 3-back) for each stimulus. Each block consisted of 25 trials,

and blocks were separated by a short break (5 to 20 seconds). The first 3 trials of each block

were never a target, and 33% of stimuli of the following trials were targets. The completion of a

target was followed by a motivational sound (“woo hoo!”) and a smiling face [37].

In the ANT, the screen showed a row of 5 yellow fish appearing either above or below a fixa-

tion point. Children were invited to “feed” the central fish as quickly as possible by pressing

either the right or the left arrow key depending on the direction in which the target fish was

pointing while ignoring the flanker fish, which pointed in either the same (congruent) or

opposite (incongruent) direction than the middle fish. Visual signals informed about the

approach of the target only (alerting cue) or about the approach of the target as well as its loca-

tion (orienting cue) [38]. Each correct answer was followed by a simple animation sequence

(the target fish blowing bubbles) and a recorded sound (“woo hoo!”). Incorrect responses were

followed by a single tone and no animation of the fish [32]. A session consisted of 16 practice

trials and 4 experimental blocks, each with 32 trials (128 trials in total) [36].

For the current study, we selected the following specific indicators because they showed lit-

tle learning effect and an incremental growth in the repeated measurements during the study

period. For the n-back test, we selected 2 loads (2-back and 3-back) and the numbers stimuli

[26]. The 2-back test (or working memory hereafter) predicts general mental abilities, whereas

the 3-back test (or complex working memory hereafter) is more complex to perform for chil-

dren and could predict superior functions such as fluid intelligence [39]. All sets of n-back

tests started with colours as a training phase and followed by the number stimuli. We evaluated

the n-back parameter d prime (d0), a measure of detectability, obtained by subtracting the nor-

malised false alarm rate from the hit rate: (Zhit rate−Zfalse alarm rate) × 100. A higher d0 indicates

more accurate test performance, i.e., better working memory or complex working memory

performance. For the ANT, we selected the hit reaction time standard error (HRT-SE). This is

a measure of response speed consistency for correct responses throughout the test [40]. As

such, a higher HRT-SE indicates a highly variable reaction, thus more inattentiveness (i.e.,

poorer sustained attention).

Covariates

We collected questionnaire information from parents about maternal and paternal education,

marital status, occupation, family origin, gestational age at delivery, birth weight of the child,

smoking during pregnancy, breastfeeding, siblings, adoption, and use of computer games.

Area-level socioeconomic position (SES) at school and at home was derived using the
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neighbourhood socioeconomic vulnerability index (area-level SES) at census tract level

(median area of 0.08 km2), a combined measure of 21 indicators covering 4 main dimensions:

socioeconomic vulnerability, sociodemographic vulnerability, housing vulnerability, and sub-

jective perception of vulnerability [41]. We measured height and weight and defined over-

weight and obesity using standard procedures [42]. We also collected information about the

type of school (public/private) and assessed school educational quality as the sum of the school

level (low, middle, high score) obtained in the basic competences of languages (Spanish and

Catalan) and maths in the 2010/2011 Programme for International Student Assessment [43],

which was self-reported by schools. Parents also completed the Strengths and Difficulties

Questionnaire (SDQ) on child behavioural problems [44].

We accounted for annual average traffic-related air pollution (TRAP) levels outdoors and

indoors at school by deriving a TRAP index consisting of 2 main traffic-related air pollutants in

Barcelona, namely elemental carbon (EC) and NO2 [45–47]. In parallel to noise measurements,

these air pollutants were measured simultaneously indoors (in the classroom) and outdoors (in

the courtyard) for each school pair. Measurements were carried out over two 1-week campaigns,

which corresponded to the cold and warm seasons. EC was obtained with thermal-optical analy-

ses [45] of the particulate matter<2.5 μm filters (high volume samples, quartz microfiber filters

for sampling) deployed from 9 AM to 5 PM. Weekly NO2 concentrations were measured with

passive NO2 samplers (NO2 diffusion tube, Gradko International, United Kingdom). Annual

concentrations were obtained by averaging the two 1-week measures after temporal adjustment

by the ratio of the annual average to the weekly concentrations measured at a fixed background

air quality monitoring station in Barcelona [47]. Individual exposure to traffic-related air pollu-

tion at home was estimated as annual average NO2 levels at the geocoded postal addresses using

land use regression models for the pollutants, as explained elsewhere [28].

Statistical analyses

We included a total of 2,680 (92.5%) children with complete data (i.e., with information at

least for 1 outcome and school noise exposure and with data on age, sex, maternal education,

and TRAP exposure), representing 9,984 (93.6%) tests. To account for the multilevel nature of

the data, we used linear mixed effects models with the 4 repeated cognitive measures as out-

comes (for each 2-back, 3-back, and HRT-SE), each noise exposure variable (one for each sep-

arate model) as a fixed effect predictor and child and school as nested random effects. To

model the changes in the 12-month cognitive development associated with noise exposure, we

further included an interaction term between age and the studied noise exposure variable [26].

As part of this model, we also reported the baseline effect (visit 1), namely the cross-sectional

association between noise exposure and the cognitive outcome before the evaluation of the

12-month change in cognitive development. All models were further adjusted for potential

confounders, as previously used [26]: age (years), sex (girl versus boy), maternal education

(none/primary/secondary/university) as an indicator of household SES, urban vulnerability

index as an indicator of residential neighbourhood-level SES, and outdoor or indoor TRAPs

for models using outdoor or indoor noise at school, respectively, and for NO2 at home for

models using noise at home.

Moreover, we carried out stratified analyses to evaluate whether the trajectories of the cog-

nitive outcomes over 1 year differed in children attending schools with low and high outdoor

and indoor road traffic noise levels, using a cutoff of 55 dB for low/high outdoor noise levels,

according to the EU definitions [1], and a cutoff of 30 dB for indoor noise according to the

WHO guidelines for classroom noise levels [48]. The stratified models were adjusted for the

same covariates of the linear mixed effects models described in the previous paragraph.
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Sensitivity analyses

To assess the robustness of the evaluated associations to residual confounding, we further

adjusted the main models for (one at a time) type of school (public versus private), paternal

education (none/primary/secondary/university), foreign origin (child or the 2 parents born

outside Spain/the child and at least 1 parent born in Spain), marital status (married or stable

couple/others), overweight (non-overweight: body mass index< 85th percentile/overweight

or obese: body mass index� 85th percentile of WHO definition) [42], computer games during

weekends (2 hours or less/>2 hours), siblings (Yes/No), adoption (Yes/No), smoking during

pregnancy (Yes/No), preterm birth (<37 weeks/�37 weeks), birth weight (<2.5 kg/�2.5 kg),

breastfeeding (Yes/No), socioeconomical vulnerability index at school (range: 0 to 1), school

education quality (range: 0 to 6), and behavioural problems (range: 0 to 32). We also controlled

for the paired design by including the school pair as a random effect (upon request during

peer review). We also adjusted the studied associations at school for exposure to road traffic

noise at home in the subsample living within the geographical limits covered by the 2012 Stra-

tegic Noise Map of Barcelona (n = 2346).

To compare our outdoor noise results with previous studies, which used modelled noise

levels at street level instead of measurements, and to further assess the representativeness of

our measurements for long-term exposure (i.e., annual averages), we repeated the main analy-

ses by replacing the measured noise indicator (LAeq, street) by the modelled annual average

level of road traffic noise for the daytime (Lday) estimated at the same location (n = 34

schools).

We reported the estimated change in the evaluated outcomes for a 5 dB, 50 events, and 10%

increase in the noise level, number of noise events, and intermittency ratio, respectively. The

statistical significance level used was p< 0.05, 2-sided. Analyses were performed with R statis-

tical package (Version 3.4.2, R Foundation for Statistical Computing, Vienna, Austria) and

Stata (Release 14. College Station, TX: StataCorp LP, United States).

Results

As shown in Table 1, a total of 2,508, 2,563, 2,493, and 2,420 children participated in visits 1 to

4, respectively, which represented a total participation of 2,680 children and 9,984 repeated

outcome measurements. The median (percentile 25, percentile 75: p25; p75) age of the chil-

dren in visit 1 was 8.5 (7.8; 9.3) years, and in visit 4, it was 9.4 (8.7; 10.2) years. During the

12-month period of the study, children’s median (p25; p75) working memory (detectability)

increased from 221 (131; 363) to 263 (153; 392) points, complex working memory

Table 1. Median (percentiles 25 and 75) of children’s age and cognitive outcomes (working memory and inattentiveness) at each of the 4 repeated visits.

Visit n Age 2-back numbers (d0)a 3-back numbers (d0)b ANT HRT-SE (ms)c

p50 (p25, p75) p50 (p25, p75) p50 (p25, p75) p50 (p25, p75)

1 2,508 8.5 (7.8, 9.3) 221 (131, 363) 112 (59, 171) 267 (201, 337)

2 2,563 8.7 (8.0, 9.5) 221 (131, 392) 123 (59, 190) 248 (184, 317)

3 2,493 9.1 (8.4, 9.8) 235 (131, 392) 129 (59, 190) 243 (181, 315)

4 2,420 9.4 (8.7, 10.2) 263 (153, 392) 129 (64, 212) 223 (162, 291)

aWorking memory: 2-back number stimuli (d’).
bComplex working memory: 3-back number stimuli (d0). d0: detectability, a higher value indicates better working memory.
cInattentiveness: HRT-SE (ms) of the Attention Network Task, a higher value indicates greater inattentiveness.

ANT, Attentional Network Test; HRT-SE, hit reaction time standard error.

https://doi.org/10.1371/journal.pmed.1004001.t001
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(detectability) from 112 (59; 171) to 129 (64; 212) points, and inattentiveness (HRT-SE)

decreased from 267 (201; 337) to 223 (162; 291) milliseconds.

The school- and individual-level characteristics of the study sample are presented in

Table 2. Among others, a total of 49.0% of the sample were girls, 58.7% of the children had

mothers, and 53% had fathers with high educational level (i.e., university) and the mean (stan-

dard deviation: SD) neighbourhood socioeconomic vulnerability index at residential level was

0.4 (0.2) points. Out of the 38 participating schools, 50% were public schools. Schools’ mean

(SD) road traffic noise levels were the highest in the street (LAeq,street), and decreased in the

playground (LAeq,playgr) and even further indoors (LAeq,in) and for individual exposure in

the child’s classroom (LAeq,in-indiv), respectively: 63.6 (6.3) dB, 53.5 (5.4) dB, 38.6 (5.2) dB,

and 37.5 (4.1) dB. Schools’ mean (SD) noise intermittency ratio in the street (IR, street) was

higher than in the playground (IR, playgr) and indoors (IR, in), respectively: 52.8 (16.2) %,

20.8 (11.3) %, and 25.0 (13.2) %. Similarly, the mean (SD) total number of noise events in the

street (NE, street) was greater than in the playground (NE, playgr) and indoors (NE, in),

respectively: 178.1 (59.6), 92.7 (49.0), and 102.6 (58.4) events. The same patterns were observed

for school-outdoor versus school-indoor air pollution levels of EC, respectively: 1.5 (0.7) μg/

m3 and 1.4 (0.6) μg/m3 and NO2, respectively: 48.2 (13.2) μg/m3 and 31.6 (13.1) μg/m3.

School’s mean (SD) road traffic noise levels based on modelled estimates in the street was 65.6

(6.5) dB. Home-outdoor mean (SD) exposure to average road traffic noise (Lden) was 63.8

(7.8) dB and to NO2 it was 54.6 (17.9) μg/m3. Bivariate analyses (S2 Table) stratified by the

median of LAeq,street at schools showed no statistically significant differences across percent-

age of public schools, neighbourhood socioeconomic vulnerability index at school or working

and complex working memory at baseline. As main differences, schools with LAeq,street

below the median (<63.5 dB) compared to those equal or above the median had less children

with inattentiveness at visit 1 [median (interquartile range, IQR) = 262.3 (134.5) versus 271.9

(142.1), p-value< 0.012, Kruskal–Wallis test] and behavioural problems [median (IQR) = 7.0

(7.0) versus 8.0 (7.0), p-value < 0.001, Kruskal–Wallis test], had more girls (62.9% versus

54.1%, p-value < 0.001, χ2 test), schools with higher educational quality [median (IQR) = 5.0

(3.0) versus 3.0 (2.0), p-value < 0.001, Kruskal–Wallis test], mothers with higher educational

level (57.1% versus 48.7%, < 0.001, χ2 test) and similarly for partners, and lower neighbour-

hood socioeconomic vulnerability index at home [median (IQR) = 0.4 (0.4) versus 0.5 (0.3),

p-value< 0.001, Kruskal–Wallis test].

Pearson correlations between school-noise indicators were generally low or moderate (S3

Table), with some exceptions of high correlations between outdoor average noise levels (LAeq,

street versus LAeq,playgr, r = 0.74, p-value < 0.001), between playground indicators of inter-

mittency ratio and number of noise events (IR,playgr versus NE,playgr, r = 0.82, p-

value < 0.001), and between indoor indicators of intermittency ratio and number of noise

events (IR,in versus NE,in, r = 0.83, p-value< 0.001). Correlations between street and play-

ground (i.e., outdoor) noise indicators were higher than between outdoor and indoor noise

indicators [r range (p-value), respectively = 0.32 (0.059) to 0.74 (<0.001) versus 0.14 (0.426)

to 0.44 (<0.001)], except for IR,street which exhibited, overall, low correlation with other

indicators. Regarding air pollution, the correlation between outdoor and indoor TRAPs was

high (r = 0.79, p-value < 0.001). The correlation between outdoor TRAP and outdoor noise

indicators at school was moderately high with LAeq [r range (p-value): r = 0.68 (<0.001)

to 0.70 (<0.001)], moderate with NE [r range (p-value): 0.40 (0.014) to 0.41 (0.012)] and low

with IR [r range (p-value): −0.15 (0.384) to 0.28 (0.094)]. Similar magnitudes were observed

for the correlation between indoor TRAP and indoor noise indicators in the classroom. The

correlation between home-outdoor average noise levels (Lden) and NO2 was r = 0.33

(p-value< 0.001). Finally, there was no correlation between outdoor exposure to noise at
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Table 2. School- and individual-level characteristics of the study sample.

Variables Mean (SD) or %

School-level variables (n = 38)

Type of school, public 50.0%

School socioeconomic vulnerability index (n) 0.5 (0.2)

School education quality (PISA 2012, n) 3.9 (1.6)

Outdoor average noise level (LAeq, dB), street 63.6 (6.3)

Outdoor average noise level (LAeq, dB), playground 53.5 (5.4)

Indoor average noise level (LAeq, dB) 38.6 (5.2)

Outdoor noise intermittency ratio (IR, %), street 52.8 (16.2)

Outdoor noise intermittency ratio (IR, %), playground 20.8 (11.3)

Indoor noise intermittency ratio (IR, %) 25.0 (13.2)

Outdoor noise events (NE, n), street 178.1 (59.6)

Outdoor noise events (NE, n), playground 92.7 (49.0)

Indoor noise events (NE, n) 102.6 (58.4)

Outdoor elemental carbon level (EC, μg/m3) 1.5 (0.7)

Indoor elemental carbon level (EC, μg/m3) 1.4 (0.6)

Outdoor nitrogen dioxide level (NO2, μg/m3) 48.2 (13.2)

Indoor nitrogen dioxide level (NO2, μg/m3) 31.6 (13.1)

Outdoor average noise level (Lday, dB) (modelled)a 65.6 (6.5)

Individual-level variables (n = 2,680)

Age (years) 8.5 (1.4)

Girls 49.9%

Maternal education, university 58.7%

Paternal education, university 53.3%

Foreign origin (non-Spanish) 14.9%

Marital status, married 85%

Overweight, Yes 27.6%

Computer games weekend,>1 hour 70.4%

Siblings, Yes 79.0%

Adopted child, Yes 3.9%

Smoking during pregnancy, Yes 10.2%

Birth� 37 weeks 92.1%

Birth weight� 2.5 kg 90.0%

Breastfeeding, Yes 82.0%

Behavioural problems (SDQ) 8.4 (5.2)

Home socioeconomic vulnerability index (n) 0.4 (0.2)

Individual indoor average noise level in classroom (LAeq, dB) 37.5 (4.1)

Home-outdoor average noise level (Lden, dB) (modelled)b 63.8 (7.8)

Home-outdoor average NO2 level (μg/m3) (modelled) 54.6 (17.9)

an = 34.
bn = 2,346.

Data are mean (standard deviation) or percentage (%).

LAeq: A-weighted equivalent noise levels; Lday: LAeq for the daytime (7 AM to 9 PM); Lden: LAeq for the 24 hours

with 5 dB and 10 dB penalties for the evening (9 PM to 11 PM) and nighttime (11 PM to 7 AM), respectively; PISA:

Programme for International Student Assessment; SDQ: Strengths and Difficulties Questionnaire.

https://doi.org/10.1371/journal.pmed.1004001.t002
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school and at home for any of the noise indicators [r range (p-value): −0.03 (0.165) to 0.02

(0.287)].

Association of exposure to road traffic noise with working memory

outcomes and inattentiveness

The adjusted models for the association between exposure to road traffic noise at school and

home and working memory, complex working memory and inattentiveness are shown in

Table 3. Unadjusted models are shown in S4 Table.

Associations with average noise levels: School and home. At baseline, i.e., cross-section-

ally, we observed some statistically significant associations (S4 Table) between average noise

levels at school and the cognitive outcomes, which disappeared in adjusted models (Table 3),

except for an association between street average noise levels and complex working memory, β
= −3.92 points (95% CI: −7.74, −0.09, p-value = 0.045) per 5 dB and a general tendency in the

expected direction in the estimated magnitudes for school average noise levels in the street,

playground, and indoors in the classroom.

Regarding the 12-month change, both in unadjusted (S4 Table) and adjusted models (see

Table 3), school-outdoor average noise levels (both at street level and at the playground) were

consistently associated with a slower development of working memory, complex working

memory, and with a slower improvement of inattentiveness over 12 months, which reached

statistical significance except for the association between playground noise and inattentiveness.

For example, a 5-dB increase in street average noise levels was related to a 12-month change of

−4.83 points (95% CI: −7.21, −2.45, p-value < 0.001) in 2-back detectability, −4.01 points (95%

CI: −5.91, −2.10, p-value< 0.001) in 3-back detectability, and 2.07 ms (95% CI: 0.37, 3.77, p-

value = 0.017) in HRT-SE.

Table 3. Estimated effect (β) and 95% confidence intervals (95% CI) in working memory outcomes and inattentiveness at baseline and their 12-month change in

association to school and home exposure to road traffic noise (n = 2,680 children, 9,984 repeats).

Road traffic noise indicators Working memory (2-back numbers, d’) Complex working memory (3-back numbers, d’) Inattentiveness (Attention Network Task, HRT-SE[ms])

Baseline, β (95% CI) p-value 12-month change, β (95% CI) p-value Baseline, β (95% CI) p-value 12-month change, β (95% CI) p-value Baseline, β (95% CI) p-value 12-month change, β (95% CI) p-value

SCHOOL (MEASURED)

Average level (LAeq, per 5 dB)

Street −1.98 (−6.27, 2.32) 0.367 −4.83 (−7.21, −2.45) <0.001 −3.92 (−7.74, -0.09) 0.045 −4.01 (−5.91, −2.10) <0.001 4.22 (−1.45, 9.90) 0.145 2.07 (0.37, 3.77) 0.017

Playground −0.66 (−5.81, 4.49) 0.801 −3.68 (−6.76, -0.61) 0.019 −3.62 (−8.30, 1.06) 0.130 −4.41 (−6.89, −1.94) <0.001 5.64 (−1.04, 12.32) 0.098 1.99 (−0.20, 4.17) 0.075

Indoor −2.65 (−7.79, 2.48) 0.311 0.14 (−3.38, 3.66) 0.937 −1.94 (−6.52, 2.63) 0.405 −0.44 (−3.25, 2.38) 0.762 5.77 (−0.03, 11.58) 0.051 1.11 (−1.37, 3.59) 0.381

Individual indoor 0.02 (−4.17, 4.20) 0.994 −1.95 (−5.61, 1.71) 0.296 0.00 (−3.53, 3.52) 0.999 −0.80 (−3.78, 2.19) 0.601 1.28 (−1.52, 4.07) 0.371 2.41 (0.00, 4.81) 0.050

Intermittency ratio (per 10%)

Street 1.03 (−1.53, 3.58) 0.431 0.71 (−1.29, 2.71) 0.486 1.34 (−1.08, 3.75) 0.278 −0.66 (−2.25, 0.94) 0.419 −2.08 (−5.38, 1.21) 0.216 0.43 (−1.00, 1.87) 0.554

Playground −0.72 (−4.55, 3.10) 0.710 −2.59 (−5.45, 0.27) 0.075 −3.07 (−6.45, 0.31) 0.075 −3.42 (−5.71, −1.13) 0.003 −0.31 (−5.36, 4.74) 0.904 3.76 (1.71, 5.81) <0.001

Indoor 1.65 (−1.67, 4.97) 0.330 −2.27 (−4.67, 0.13) 0.063 0.15 (−2.89, 3.19) 0.923 −2.76 (−4.66, -0.85) 0.005 −1.45 (−5.46, 2.56) 0.479 3.05 (1.34, 4.76) <0.001

Number of events (per 50)

Street 0.58 (−3.21, 4.36) 0.765 −4.38 (−7.08, −1.67) 0.002 −1.08 (−4.61, 2.44) 0.547 −3.99 (−6.16, -1.82) <0.001 −0.25 (−5.15, 4.65) 0.920 2.13 (0.18, 4.08) 0.032

Playground −0.68 (−4.84, 3.48) 0.749 −2.68 (−5.71, 0.35) 0.082 −3.04 (−6.85, 0.78) 0.119 −3.03 (−5.46, -0.61) 0.014 −0.77 (−6.70, 5.16) 0.800 2.22 (0.07, 4.37) 0.043

Indoor 2.04 (−2.39, 6.46) 0.367 −2.72 (−5.45, 0.01) 0.051 −1.18 (−5.14, 2.78) 0.559 −3.22 (−5.39, −1.04) 0.004 −1.27 (−6.55, 4.01) 0.636 3.15 (1.20, 5.11) 0.002

SCHOOL & HOME (MODELLED)

Average level (LAeq, per 5 dB)

School street, Ldaya −2.98 (−8.78, 2.82) 0.314 −6.17 (−8.84, −3.49) <0.001 −4.15 (−9.14, 0.85) 0.104 −4.91 (−7.03, −2.78) <0.001 3.42 (−4.45, 11.29) 0.394 2.81 (0.89, 4.74) 0.004

Home street, Ldenb 0.00 (−2.39, 2.40) 0.997 1.35 (−0.83, 3.53) 0.224 0.75 (−1.11, 2.61) 0.430 0.40 (−1.32, 2.12) 0.648 0.72 (−1.25, 2.68) 0.474 −0.52 (−2.06, 1.01) 0.505

an = 34.
bn = 2,346.

Linear mixed models adjusted for age, sex, maternal education, socioeconomical vulnerability index at home, outdoor or indoor TRAP at school or outdoor NO2 at

home, respectively, for models with the corresponding noise indicators (i.e., outdoors or indoors at school or outdoors at home). Child and school included as nested

random effects. The 12-month change models include the term age × corresponding noise indicator to estimate the change; d0: detectability, a higher value indicates

better working memory; HRT-SE: hit reaction time standard error, a higher value indicates greater inattentiveness; LAeq: A-weighted equivalent noise levels; Lday:

LAeq for the daytime (7 AM to 9 PM); Lden: LAeq for the 24 hours with 5 dB and 10 dB penalties for the evening (9 PM to 11 PM) and nighttime (11 PM to 7 AM),

respectively; NO2: nitrogen dioxide; TRAP: traffic-related air pollution.

https://doi.org/10.1371/journal.pmed.1004001.t003

PLOS MEDICINE Exposure to road traffic noise and cognitive development in schoolchildren: A cohort study

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1004001 June 2, 2022 12 / 22



Regarding school-indoor average noise levels, individual average noise exposure in class-

rooms was associated with a slower improvement of inattentiveness in unadjusted models and

was borderline significant in adjusted models and of similar magnitude to results with outdoor

levels: β = 2.41 ms (95% CI: 0.00, 4.81, p-value = 0.050) per 5 dB (adjusted model). In contrast,

no association with indoor noise levels was present for working memory and complex working

memory (e.g., −0.80 points; 95% CI: −3.78, 2.19, p-value = 0.601, in the 12-month change in

3-back detectability per 5 dB). Indoor average noise levels based on measurements in 1 class-

room were not associated with any of the outcomes, although the estimated magnitude was in

the expected direction (e.g., 1.11 ms (95% CI: −1.37, 3.59, p-value = 0.381) in the 12-month

change in HRT-SE per 5 dB) (Table 3).

There was no association between home-outdoor average noise levels (Lden) and any of the

cognitive outcomes.

Associations with noise fluctuation indicators at school. Both school-outdoor and

indoor exposure to noise intermittency and to noise events were associated with slower devel-

opment in the cognitive outcomes in children over 12 months in unadjusted (S4 Table) and

adjusted models (Table 3). Some associations were observed at baseline in unadjusted models

(S4 Table); however, they disappeared after further adjustment (Table 3).

Regarding intermittency ratio (Table 3), a 10% increment in playground IR was associated

with a 12-month change of −2.59 points (95% CI: −5.45, 0.27, p-value = 0.075) in 2-back

detectability, −3.42 points (95% CI: −5.71, −1.13, p-value = 0.003) in 3-back detectability, and

3.76 ms (95% CI: 1.71, 5.81, p-value< 0.001) in HRT-SE, and a 10% increment in indoor IR

was associated with a 12-month change of −2.27 points (95% CI: −4.67, 0.13, p-value = 0.063)

in 2-back detectability, −2.76 points (95% CI: −4.66, −0.85, p-value = 0.005) in 3-back detect-

ability, and 3.05 ms (95% CI: 1.34, 4.76, p-value < 0.001) in HRT-SE. Street IR was not associ-

ated with any of the outcomes.

Associations were also observed for street, playground, and indoor NE with a slower devel-

opment in 2-back and 3-back detectability and a slower improvement of inattentiveness over

12 months, which were statistically significant except for playground and indoor NE with

2-back detectability (Table 3). For instance, increments in exposure of 50 noise events at street,

playground, and indoor level were associated, respectively, with a 12-month change of −4.38

points (95% CI: −7.08, −1.67, p-value = 0.002), −2.68 (95% CI: −5.71, 0.35, p-value = 0.082),

and −2.72 (95% CI: −5.45, 0.01, p-value = 0.051) in 2-back detectability, and −3.99 points (95%

CI: −6.16, −1.82, p-value< 0.001), −3.03 (95% CI: −5.46, −0.61, p-value = 0.014), and −3.22

(95% CI: −5.39, −1.04, p-value = 0.004) in 3-back detectability, and 2.13 ms (95% CI: 0.18,

4.08, p-value = 0.032), 2.22 (95% CI: 0.07, 4.37, p-value = 0.043), and 3.15 (95% CI: 1.20, 5.11,

p-value = 0.002) in HRT-SE.

Trajectories of working memory and inattentiveness at schools above and

below recommended noise levels

As shown in Fig 1, children who attended schools with high road traffic noise at street level

(�55 dB) had a slower development of working memory, complex working memory, and a

slower improvement of inattentiveness over 12 months than those attending quieter schools in

adjusted models. Similar trends with slightly weaker differences between groups were observed

for schools exposed to high noise at the playground. Finally, children who attended schools

with high road traffic noise in the classroom (�30 dB) had a slower improvement of inatten-

tiveness over 12 months than those who attended schools with quieter classrooms.
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Sensitivity analyses

When using modelled (Lday) instead of measured average road traffic noise levels at the school

street (see bottom of Table 3), we observed the same consistent associations with a slower

development of all the cognitive outcomes over 12 months.

Associations between the different road traffic noise indicators at school and the develop-

ment of cognitive outcomes were robust to additional adjustment for other potential con-

founders (S5–S7 Tables) and to the inclusion or exclusion of traffic-related air pollution in the

adjustment sets. Although in certain adjustment sets the associations of indoor intermittency

ratio and indoor number of noise events with working memory gained significance and the

association between individual indoor LAeq and inattentiveness lost significance, the esti-

mated magnitudes of effect remained unchanged.

Discussion

In the current study, exposure to road traffic noise at school, but not at home, was associated

with a slower development of working memory and of complex working memory, and with a

slower improvement of inattentiveness over 1 year in schoolchildren. Exposure to road traffic

noise (at school and home) was not associated with the cognitive outcomes cross-sectionally

(i.e., at the baseline visit). Both the school-outdoor average level and fluctuation characteristics

Fig 1. Annual trajectories of working memory, complex working memory, and inattentiveness in children attending schools with low and high average road traffic

noise levels (LAeq, dB) outdoors in street and playground or indoors in 1 classroom (indoor level) or in each child’s classroom considering change of room between

years (individual indoor level). Y axis: point estimate (beta coefficient), error bars (95% confidence intervals). Predictions for working memory (2-back number stimuli,

d0), complex working memory (3-back number stimuli, d0), and inattentiveness (HRT-SE, ms) adjusted at the means of age, sex, corresponding road traffic noise indicator,

age�road traffic noise indicator, maternal education, socioeconomical vulnerability index at home and outdoor or indoor TRAP at school for models including outdoor or

indoor noise levels, respectively. Child and school included as nested random effects. d0: detectability, a higher value indicates better working memory; HRT-SE: hit

reaction time standard error, a higher value indicates greater inattentiveness; LAeq: A-weighted equivalent noise levels; TRAP: traffic-related air pollution.

https://doi.org/10.1371/journal.pmed.1004001.g001
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of noise were associated with a deceleration in the studied cognitive outcomes. In contrast, in

the classroom, the noise fluctuation characteristics were more robustly associated with all cog-

nitive outcomes, whereas average levels were only associated with greater inattentiveness.

Finally, children attending schools exposed to outdoor road traffic noise levels�55 dB had a

slower development of working and complex working memory and greater inattentiveness

and those with classroom levels�30 dB had greater inattentiveness over 12 months, compared

to children exposed to lower outdoor (<55 dB) and indoor (<30 dB) noise levels, respectively.

Associations with working memory (2-back detectability) were generally in the expected

direction but only reached statistical significance in relation to street-level indicators (average

noise and number of events). This could relate to the fact that the 2-back detectability test was

less challenging for children, thus potentially less sensitive to capture changes in development

than complex working memory (3-back detectability) for which associations with noise indica-

tors were statistically significant.

As we observed, while individual exposure to the annual average noise level in the class-

room was only associated with inattentiveness, exposure to intermittent noise and to a greater

number of noise events in the classroom was associated both with greater inattentiveness and

slower complex working memory and also marginally with slower working memory develop-

ment. These findings support the hypothesis that the noise characteristics beyond the average

noise level, i.e., its fluctuation, might be more relevant for children’s neurodevelopment in the

classroom. They also support the importance of carrying out detailed indoor noise exposure

assessment in studies of the cognitive effects of noise, to move closer to the personal exposure

inside the classroom. In other words, the peaks of road traffic noise that propagate into the

classroom (and their frequency) could be further disruptive for children’s working memory

and attention development during concentration at school even when the average noise level

in the classroom is lower and may only affect attention. The relevance of the same fluctuation

characteristics of noise was previously observed for the effects of transportation noise on car-

diovascular outcomes [24]. These results suggest that noise fluctuation should be further inves-

tigated and that policy recommendations to protect children’s health may have to consider

noise fluctuation in addition to average noise levels. We did not observe associations between

exposure to road traffic noise at home and the studied cognitive outcomes, which is in line

with the only previous study assessing both school and home exposure [20,21]. This could sug-

gest that exposure to noise at school, rather than at home, may be more detrimental by affect-

ing vulnerable windows of concentration and learning processes [8]. Another complementary

explanation may relate to a greater degree of exposure misclassification for noise exposure at

home, as we could only assign outdoor average noise levels at the home address, as commonly

done in previous studies. Moreover, we could not estimate fluctuation measures, which were

relevant indicators associated with cognitive development at school.

We observed very few associations between exposure to road traffic noise at school and the

cognitive outcomes at baseline. The baseline results represent the cross-sectional association

between exposure to noise and cognitive outcomes during the first visit. The general lack of

associations at baseline could partly indicate that the children’s long-term noise exposure years

before baseline was not captured with our exposure assessment, given that we did not have his-

torical information about exposure of children in previous schools, although a 98% of children

had attended the same school for at least 1 year. Alternatively, the more consistent associations

with the 12-month development might respond to the vulnerable window of effects of the

studied cognitive functions, which develop significantly during primary school age [14–16].

Finally, inconsistencies in the baseline results could be partly inherent to the cross-sectional

nature of the observation, and would be in line with the mixed findings of previous cross-sec-

tional studies [17–23].

PLOS MEDICINE Exposure to road traffic noise and cognitive development in schoolchildren: A cohort study

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1004001 June 2, 2022 15 / 22



Comparison with previous literature

There is limited evidence for the association between road traffic noise and cognitive develop-

ment in children, including working memory and attention, which are crucial for learning and

school attainment [12,13] and which are actively developing during primary school age [14].

The few studies so far were all cross-sectional and used diverse outcome tests, which precludes

direct comparison with the current study. The multicentric and cross-sectional RANCH

study, carried out in 2,844 schoolchildren of 9 to 10 years of age in the Netherlands, Spain, and

the UK in 2002, observed associations between annual average noise levels of road traffic noise

outdoors at schools (daytime LAeq) and cognitive performance, in terms of reading compre-

hension and episodic memory [19,23]. In line with our study, they observed associations

between school-outdoor road traffic noise levels at school, but not at home, and inattention in

the 553 children in the Netherlands, based on the Switching Attention Test [20,21]. However,

the RANCH project did not find associations with working memory, assessed with a modified

version of The Search and Memory Task [19–23], or with sustained attention [19,20,22],

assessed with a modified version of the Toulouse–Pieron test [19]. Finally, 2 small studies, one

studying exposure to road traffic noise at home in 73 children and another one at 2 schools,

found respectively no [17] and suggestive [18] associations with tests of attention. None of the

aforementioned studies evaluated exposure to road traffic noise indoors in the classroom or

noise fluctuation measures.

Biological mechanisms

Our results support the general hypothesis that childhood may be a vulnerable period in which

external stimuli such as noise could affect the rapid cognitive development that is occurring

[7]. There are several suggested pathways on how noise may affect cognitive development in

children. One suggested pathway is that noise may affect cognition by impairing attention [8],

which is in line with our findings with inattentiveness. It is also suggested that noise could

directly impair children’s cognitive abilities, or act indirectly through frustration, learned help-

lessness, increased arousal, or tuning out, which could impact performance and learning in the

long term under repeated noise exposure [8]. The effects of noise on cognition are further sup-

ported by animal experiments showing that exposure to environmental noise levels (72 dB, air-

craft, up to 4 days) increases oxidative stress in the frontal cortex [11] and subchronic

exposure to white noise (4 hours/day, 100 dB, up to 30 days) leads to brain changes in occipital

and prefrontal regions [9,10] and in the hippocampus [10], which are relevant for executive

functions, learning, and memory. Overall, the suggested pathways and our results support the

hypothesis that the effects of noise on cognition, here executive functions, such as working

memory, and attention, may be greater during activities that involve concentration or atten-

tion and that may affect learning.

Strengths and limitations

The major strength of this study was the longitudinal design with repeated cognitive evalua-

tions, which allowed to study for the first time the association between exposure to road traffic

noise and the development in the cognitive functions of working memory and attention in

schoolchildren. We also used validated computerised tests that could capture different dimen-

sions of cognition and executive functions that are developing in primary schoolchildren [34].

Moreover, to our knowledge, this study performed the most extensive and detailed noise expo-

sure assessment of road traffic noise to date, including exposure in different microenviron-

ments at school (at street level, playground, and indoors in the classroom), assessing not only

average noise levels but also fluctuation characteristics of noise at school (i.e., intermittency
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ratio and number of noise events), and exposure to average road traffic noise levels outdoors at

home. Furthermore, our road traffic noise measurement protocol yielded representative esti-

mates of the annual average noise levels during the study period, as shown by the high correla-

tion between the annual average noise levels from Barcelona’s Strategic noise map published

in 2012 and our school measurements at the street level in 2012 (Spearman’s rank r = 0.86,

Pearson’s r = 0.85), the consistent results found with these 2 exposures (modelled and mea-

sured) and also the high intraclass correlation (ICC = 0.94) between indoor noise measure-

ments in the 2 campaigns, which were performed 6 months apart.

Among the limitations, our study did not assess past noise exposure. However, all children

had attended the same school at least for 6 months and 98% had attended for more than 1

year. In turn, it is unlikely that road traffic noise levels were different during the previous

years, as it would require drastic changes in traffic. The lack of association between exposure

to noise at home and the cognitive outcomes could partly relate to the greater exposure mis-

classification expected with the residential assignment of modelled noise levels at the home

address. Another limitation is the potential lack of external validity of our results, given that

58% of the participating mothers had a university degree compared to a 50% of women

between 25 and 39 years of age in the region [49]. However, maternal education did not seem

to determine participation, given that the participation rate was independent of the school-

area socioeconomic level (Spearman’s rank correlation = −0.09, p-value = 0.61). Besides, we

could not study children with specific needs, as this would require a larger sample size to have

statistical power. Furthermore, residual confounding is always a possibility, although we

adjusted for multiple potential confounders and results were robust to additional adjustments

in sensitivity analysis. Finally, air pollution could be an important confounder of the studied

association, given that it has been associated with impaired cognitive development [26]. In the

current study, we adjusted our analyses for TRAP. Moreover, the correlation between TRAPs

and the measured noise fluctuation indicators was moderate or low, which further supports

that the observed associations between road traffic noise and deceleration in working memory

and attention development were independent of air pollution.

Public health relevance

At least 1 in every 5 Europeans are exposed to high road traffic noise levels (Lden� 55 dB) [1].

In Barcelona, more than half of the population are affected by road traffic noise levels above

those recommended by the WHO (Lden� 53 dB) [4,27], and in the current study, more than

half of the schools were also exceeding the recommended WHO thresholds both outside and

inside classrooms. The current findings suggest that exposure to road traffic noise is associated

with a slower development of the cognitive functions of working memory and attention in pri-

mary schoolchildren of Barcelona, which are essential for learning and school attainment

[12,13]. Given the expected large number of children exposed to road traffic noise at schools,

particularly in urban areas, the application of policies to reduce road traffic noise at schools (out-

side and inside classrooms) could substantially benefit cognitive development, at least working

memory and attention, and future health. Furthermore, the current findings add to the previous

evidence about the adverse effects of school exposure to aircraft noise on other dimensions of

children’s cognition [5,8], and also to our previous findings for the associations of air pollution

[26,50,51] with working memory and attention in the same cohort of children. Together, this evi-

dence indicates that efficient interventions to protect the school environment should target trans-

portation and consider not only cleaner air but also quieter school environments.

In conclusion, exposure to road traffic noise at school, but not at home, was associated with

slower working memory, complex working memory, and attention development, in primary
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school children. Associations were observed both for school-outdoor average noise levels and

noise fluctuation indicators, although in classrooms, noise fluctuation was more consistently

associated with all cognitive outcomes than average noise levels. Finally, slower development

of working memory, complex working memory, and attention was observed in children

attending schools exposed to outdoor road traffic noise levels above�55 dB and to classroom

levels�30 dB, compared to children exposed to lower outdoor (<55 dB) and indoor (<30 dB)

noise levels, respectively. Further longitudinal studies are needed to replicate these findings in

different populations and settings, to assess different microenvironments and noise fluctuation

metrics and to study other cognitive functions developing over the first years of life.
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Sebastian-Galles, Jesus Pujol, Payam Dadvand, Jordi Sunyer.
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