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Abstract

The theory of statistical signal processing Þnds a wide variety of applications in the Þelds of

data communications, such as in channel estimation, equalization and symbol detection, and

sensor array processing, as in beamforming, and radar systems. Indeed, a large number of

these applications can be interpreted in terms of a parametric estimation problem, typically

approached by a linear Þltering operation acting upon a set of multidimensional observations.

Moreover, in many cases, the underlying structure of the observable signals is linear in the

parameter to be inferred. This dissertation is devoted to the design and evaluation of statistical

signal processing methods under realistic implementation conditions encountered in practice.

Traditional statistical signal processing techniques intrinsically provide a good performance

under the availability of a particularly high number of observations of Þxed dimension. Indeed,

the original optimality conditions cannot be theoretically guaranteed unless the number of sam-

ples increases asymptotically to inÞnity. Under this assumption, a statistical characterization

can be often afforded by using the large-sample theory of sample covariance matrices. In prac-

tice, though, the application of these methods to the implementation of, for instance, training

schemes in communication systems and adaptive procedures for radar detection problems, must

rely on an observation window of Þnite length. Moreover, the dimension of the received signal

samples (e.g. number of array sensors in multi-antenna systems) and the observations window

size are most often comparable in magnitude. Under these situations, approaches based on the

classical multivariate statistical analysis signiÞcantly lose efficiency or cannot even be applied.

As a consequence, the performance of practical solutions in some real situations might turn out

to be unacceptable.

In this dissertation, a theoretical framework for characterizing the efficiency loss incurred

by classical multivariate statistical approaches in conventional signal processing applications

under the practical conditions mentioned above is provided. Based on the theory of the spectral

analysis of large-dimensional random matrices, or random matrix theory (RMT), a family of new

statistical inference methods overcoming the limitations of traditional inferential schemes under

comparably large sample-size and observation dimension is derived. SpeciÞcally, the new class of

consistent estimators generalize conventional implementations by proving to be consistent even
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for arbitrarily high-dimensional observations (i.e., for a limited number of samples per Þltering

degree-of-freedom).

In particular, the proposed theoretical framework is shown to properly characterize the

performance of multi-antenna systems with training preambles in the more meaningful asymp-

totic regime deÞned by both sample size and dimension increasing without bound at the same

rate. Moreover, the problem of optimum reduced-rank linear Þltering is reviewed and extended

to satisfy the previous generalized consistency deÞnition. On the other hand, a double-limit

asymptotic characterization of a set of vector-valued quadratic forms involving the negative

powers of the observation covariance is provided that generalizes existing results on the limiting

eigenvalue moments of the inverse Wishart distribution. Using these results, a new generalized

consistent eigenspectrum estimator based on the inverse-shifted power method is derived that

uniquely relies on the SCM and does not require matrix eigendecomposition. The effectiveness

of the previous spectral estimator is demonstrated upon its application to the construction of an

improved source power estimator that is robust to inaccuracies in the knowledge of both noise

level and true covariance matrix.

In order to alleviate the computation complexity issue associated with practical implemen-

tations involving matrix inversions, a solution to the two previous problems is afforded in terms

of the positive powers of the SCM. To that effect, a class of generalized consistent estimators of

the covariance eigenspectrum and the power level are obtained on the Krylov subspace deÞned

by the true covariance matrix and the signature vector associated with the intended parame-

ter. In practice, Þltering solutions are very often required to robustly operate not only under

sample-size constraints but also under the availability of an imprecise knowledge of the signature

vector. Finally, a signal-mismatch robust Þltering architecture is proposed that is consistent in

the doubly-asymptotic regime.



Resum

La teoria del processat estadístic del senyal troba un ampli ventall d�aplicacions en els camps

de les comunicacions de dades, com per exemple en els problemes d�estimació i equalització del

canal, y en la detecció de símbols, així com també en el processat amb agrupacions de sensors,

com per exemple en el problema de conformació de feix i en sistemes de radar. Certament,

un gran nombre d�aquestes aplicacions poden ser interpretades com un problema d�estimació

paramètrica, típicament resolt mitjançant una operació de Þltrat lineal actuant sobre un conjunt

d�observacions multidimensionals. A més, en molts casos, l�estructura subjacent dels senyals

observables és lineal en el paràmetre a inferir. Aquesta dissertació està dedicada al disseny i

avaluació de mètodes de processat estadístic del senyal en condicions d�implementació realistes

trobades a la pràctica.

Les tècniques tradicionals de processat estadístic del senyal proporcionen un rendiment sat-

isfactori donada la disponibilitat d�un nombre particularment elevat d�observacions de dimensió

Þnita. En efecte, les condicions d�optimalitat originals no poden garantir-se en teoria a menys

que el nombre de mostres disponibles augmenti de forma asimptòtica. En base a aquesta suposi-

ció, en ocasions es pot obtenir una caracterització estadística fent ús de la teoria de grans mostres

per a matrius de covariança mostral. A la pràctica, no obstant, l�aplicació d�aquests mètodes

a la implementació de, per exemple, esquemes d�entrenament en sistemes de comunicacions i

procediments adaptatius per a problemes de detecció radar, ha de basar-se necessariament en

una Þnestra d�observació de longitud Þnita. A més, la dimensió de les mostres rebudes (per

exemple, nombre de sensors de l�agrupació en sistemes multi-antena), i el tamany de la Þnestra

d�observació són sovint comparables en magnitud. En aquestes situacions, els plantejaments

basats en l�anàlisi estadístic multivariant clàssic perden eÞciència de forma signiÞcativa, o ni

tan sols poden ésser aplicats. Com a conseqüència, la Þabilitat d�implementacions pràctiques en

certes situacions reals pot resultar inacceptable.

En aquesta tesi es proporciona un marc teòric per a la caracterització de la pèrdua d�eÞciència

que els enfocs estadístics clàssics experimenten en aplicacions típiques del processat del senyal

en les condicions pràctiques mencionades amb anterioritat. En base a la teoria de l�anàlisi es-

pectral de matrius aleatòries de grans dimensions, o teoria de matrius aleatòries (RMT), es con-
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strueix una família de mètodes d�inferència estadística que superen les limitacions dels esquemes

d�estimació tradicionals per a un tamany de mostra i dimensió de la observació comparativament

grans. EspecíÞcament, els estimadors de la nova classe obtinguda generalitzen les implementa-

cions d�ús comú essent consistents Þns i tot per a observacions amb dimensió arbitràriament

gran (per exemple, per un nombre limitat de mostres per grau de llibertat de Þltrat).

En particular, el marc teòric proposat és emprat per a caracteritzar de forma adequada

el rendiment de sistemes multi-antena amb preàmbuls d�entrenament en un règim asimptòtic

més coherent deÞnit per un tamany i dimensió de les mostres que creixen sense límit amb raó

constant. A més, el problema de Þltrat òptim de rang reduït és revisat i extès de forma que es

satisfaci la deÞnició anterior de consistència generalitzada. Per altra banda, es proporciona una

caracterització asimptòtica en el doble límit d�un conjunt de formes quadràtiques de les potències

negatives de la covariància de l�observació que generalitza els resultats existents referents als

moments negatius de la distribució de Wishart. Per mitjà d�aquests resultats, es deriva un

estimador consistent generalitzat de l�espectre d�autovalors basat en el mètode de la potència

inversa amb desplaçament que fa ús únicament de la matriu de covariància mostral i que no

requereix descomposició de la matriu en valors singulars. L�efectivitat de l�estimador espectral

anterior es demostra mitjançant la seva aplicació a la construcció d�un estimador de potència de

font millorat que és robust a imprecisions en el coneixement del nivell de soroll i de la matriu

de covariància real.

Amb el propòsit de reduir la complexitat computacional associada a implementacions pràc-

tiques basades en la inversió de matrius, s�aborda una solució als problemes anteriors en termes

de les potències positives de la matriu de covariança mostral. A tal efecte, s�obtenen una classe

d�estimadors consistents generalitzats de l�espectre de la matriu de covariança i del nivell de

potència en el subespai de Krylov deÞnit per la covariànça real i el vector de signatura associat

al paràmetre d�interès. A la pràctica, amb freqüència es requereixen solucions de Þltrat robustes

en front a no només restriccions en el tamany de la mostra, sino també a la disponibilitat d�un

coneixement imprecís del vector de signatura. Com a contribució Þnal, es proposa una arqui-

tectura de Þltrat robust a constriccions de la signatura que és consistent en el règim doblement

asimptòtic de referència al llarg de la tesi.



Resumen

La teoría del procesado estadístico de la señal halla un amplio abanico de aplicaciones en los

campos de las comunicaciones de datos, como por ejemplo en los problemas de estimación y

ecualización del canal, y en la detección de símbolos, así como también en el procesado con

arreglos de sensores, como por ejemplo en el problema de conformación de haz y en sistemas

de radar. Ciertamente, un gran número de estas aplicaciones pueden ser interpretadas como un

problema de estimación paramétrica, típicamente resuelto mediante una operación de Þltrado

lineal actuando sobre un conjunto de observaciones multidimensionales. Además, en muchos

casos, la estructura subyacente de las señales observables es lineal en el parámetro a inferir.

Esta disertación está dedicada al diseño y evaluación de métodos de procesado estadístico de la

señal en condiciones de implementación realistas encontradas en la práctica.

Las técnicas tradicionales de procesado estadístico de la señal proporcionan un rendimiento

satisfactorio dada la disponibilidad de un número particularmente elevado de observaciones de

dimensión Þnita. En efecto, las condiciones de optimalidad originales no pueden garantizarse en

teoría a menos que el número de muestras disponibles aumente de forma asintótica. En base a

esta suposición, en ocasiones se puede obtener una caracterización estadística haciendo uso de la

teoría de grandes muestras para matrices de covarianza muestral. En la práctica, no obstante, la

aplicación de estos métodos a la implementación de, por ejemplo, esquemas de entrenamiento en

sistemas de comunicaciones y procedimientos adaptativos para problemas de detección radar,

debe necesariamente basarse en una ventana de observación de longitud Þnita. Además, la

dimensión de las muestras recibidas (por ejemplo, número de sensores del arreglo en sistemas

multi-antena), y el tamaño de la ventana de observación son a menudo comparables en mag-

nitud. En estas situaciones, los planteamientos basados en el análisis estadístico multivariante

clásico pierden eÞciencia de forma signiÞcativa, o ni siquiera pueden ser aplicados. Como conse-

cuencia, la Þabilidad de implementaciones prácticas en ciertas situaciones reales puede resultar

inaceptable.

En esta tesis se proporciona un marco teórico para la caracterización de la pérdida de eÞ-

ciencia que los enfoques estadísticos clásicos experimentan en aplicaciones típicas del procesado

de la señal en las condiciones prácticas mencionadas con anterioridad. En base a la teoría del
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análisis espectral de matrices aleatorias de grandes dimensiones, o teoría de matrices aleatorias

(RMT), se construye una familia de métodos de inferencia estadística que superan las limita-

ciones de los esquemas de estimación tradicionales para un tamaño de muestra y dimensión de

la observación comparativamente grandes. EspecíÞcamente, los estimadores de la nueva clase

obtenida generalizan las implementaciones al uso siendo consistentes incluso para observaciones

con dimensión arbitrariamente grande (por ejemplo, para un número limitado de muestras por

grado de libertad de Þltrado).

En particular, el marco teórico propuesto es empleado para caracterizar de forma adecuada el

rendimiento de sistemas multi-antena con preámbulos de entrenamiento en un régimen asintótico

más acorde deÞnido por un tamaño y dimensión de las muestras que crecen sin límite con

razón constante. Además, el problema de Þltrado óptimo de rango reducido es revisado y

extendido de forma que se satisfaga la deÞnición anterior de consistencia generalizada. Por

otro parte, se proporciona una caracterización asintótica en el doble límite de un conjunto de

formas cuadráticas de las potencias negativas de la covarianza de la observación que generaliza

los resultados existentes referentes a los momentos negativos de la distribución de Wishart.

Por medio de estos resultados, se deriva un estimador consistente generalizado del espectro

de autovalores basado en el método de la potencia inversa con desplazamiento que hace uso

únicamente de la matriz de covarianza muestral y que no requiere descomposición de la matriz

en valores singulares. La efectividad del estimador espectral anterior se demuestra mediante su

aplicación a la construcción de un estimador de potencia de fuente mejorado que es robusto a

imprecisiones en el conocimiento del nivel de ruido y de la matriz de covarianza real.

Con el propósito de reducir la complejidad computacional asociada a implementaciones prác-

ticas basadas en la inversión de matrices, se aborda una solución a los problemas anteriores en

términos de las potencias positivas de la matriz de covarianza muestral. A tal efecto, se obtienen

una clase de estimadores consistentes generalizados del espectro de la matriz de covarianza y

del nivel de potencia en el subespacio de Krylov deÞnido por la covarianza real y el vector de

Þrma asociado al parámetro de interés. En la práctica, con frequencia se requieren soluciones

de Þltrado robustas frente no sólo a constricciones en el tamaño de la muestra, sino también a

la disponibilidad de un conocimiento impreciso del vector de Þrma. Como contribución Þnal, se

propone una arquitectura de Þltrado robusto a constricciones de la Þrma que es consistente en

el régimen doblemente asintótico de referencia a lo largo de la tesis.
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Notation

In general, uppercase boldface letters (A) denote matrices, lowercase boldface letters (a) denote

(column) vectors and italics (a) denote scalars and generic non-commutative random variables.

Calligraphic letters will denote sets, or subspaces with dimension given by a subscripts.

AT ,A∗,AH Transpose, complex conjugate and Hermitian (i.e., complex conjugate trans-

pose) of a matrix A, respectively.

A−1,A# Inverse and Moore-Penrose pseudoinverse of A, respectively.

A1/2 Positive deÞnite Hermitian square-root of A, i.e. A1/2A1/2 = A.

Tr [A] Trace of a matrix A.

Vec [A] Column vector formed stacking the columns of A on top of one another.

ρ (A) Spectral radius of a square M × M matrix A with eigenvalues λm,m =

1, . . . ,M , i.e. ρ (A) = max1≤m≤M (|λm|).

kAk , kAktr
kAkF , kAkW

Induced (spectral or strong), trace, Frobenius and weak norm, respectively, of a

squareM×M matrix A, i.e. kAk = ¡ρ ¡AHA¢¢1/2, kAktr = Tr h¡AHA¢1/2i,
kAkF =

¡
Tr
£
AHA

¤¢1/2 and k·kW = 1
M1/2 kAkF .

kak Euclidean norm of a vector a, i.e. kak = ¡aHa¢1/2.
kakW Weighted norm of a, i.e. kakW =

¡
aHWa

¢1/2 (with Hermitian positive deÞnite
W).

[a]i The kth entry of a vector a (corresponding to the ith row and the jth column).

[A]i,j The entry of a matrix in row i of column j of a matrix A (row and column

indices begin at 1).

A ≥ B, A > B The matrix A−B is positive semideÞnite and positive deÞnite respectively.

IM The M ×M identity matrix.
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0M×N An M ×N matrix with all-zero entries.

C,N,R,Z The set of all natural, integer, real and complex numbers, respectively.

CM ,RM The set of M-dimensional vectors with entries in C and R, respectively.

C+ The set {z ∈ C : Im {z} > 0}.

R+ The set of all strictly positive real numbers.

CM×N ,RM×N The set of M ×N matrices with entries in C and R, respectively.

C[x],R[x] The set of polinomials in x with coefficients in C and R, respectively.

C[[x]],R[[x]] The set of formal power series in x with coefficients in C and R, respectively.£
z−l
¤ {f (z)} The operator extracting the coefficient of z−l in the series expansion of a f (z).

T (m,k) The set of all k-tuples of natural numbers (m1, . . . ,mk) satisfying 1m1+2m2+

. . .+ kmk = k such that m = m1 + . . .+mm, with m,k ∈ N.

j Imaginary unit (j =
√−1).

Re {·} , Im {·} Real and imaginary part, respectively.

|a| , sign (a) Absolute value and sign of a real valued a.

[a]+ Maximum between a (real valued) and zero.

Pr [A] Probability of a certain event A.

E [·] Mathematical expectation.

EB [·] Mathematical expectation with respect to the statistics in B.

E [· |F ] Conditional expectation given the σ-Þeld F .

# {·} Cardinality of a set.

log (·) Natural logarithm.

δ0 (·) Dirac delta.

δm,n Kronecker delta.

IΩ Indicator function over the set Ω.



NOTATION xix

R
X g (x)µ (dx) Lebesgue integral of a function g with respect to a measure µ.R
X g(x)dF (x) Lebesgue-Stieltjes integral of a function g with respect to a function F of

bounded variation.

a.s.→ Convergence with probability one (or a.s. convergence).

a ³ b Both quantities a, b are asymptotic equivalents, i.e., |a− b| a.s.→ 0.

sup Supremum (lowest upper bound). If the set is Þnite, it coincides with the

maximum (max).

supp (f) Support of a probability density (nonnegative Lebesgue integrable) function

f .
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Acronyms

a.s. almost surely.

AV Auxiliary Vector.

AWGN Additive White Gaussian Noise.

BER Bit Error Rate.

BLUE Best Linear Unbiased Estimator.

CDF Cumulative Distribution Function.

CDMA Code Division Multiple Access.

CG Conjugate Gradient.

CGM Conjugate Gradient Method.

CH Cayley-Hamilton.

CLT Central Limit Theorem.

CS Cross-Spectral.

CSI Channel State Information.

DCRCB Doubly-Consistent Robust Capon Beamformer.

DCRCB Doubly-Constrained Robust Capon Beamformer.

DL Diagonal Loading.

DoA Direction of Arrival.

DoF Direction of Arrival.

DS-CDMA Direct Sequence Code Division Multiple Access.

EVD Eigenvalue Decomposition.

GMRES Generalized Minimal Residual Method.

GSA General Statistical Analysis.

GSC Generalized Sidelobe Canceller.

GML Gaussian Maximum Likelihood.

i.i.d. independent and identically distributed.

LCMV Linearly Constrained Minimum Variance.

LHS Left Hand Side.

LMMSE Linear Minimum Mean Square Error.

MAI Multiple Access Interference.

MIMO Multiple Input Multiple Output.
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ML Maximum Likelihood.

MOE Minimum Output Energy.

MSE Mean Square-Error.

MMSE Minimum Mean Squared Error.

MSINR Maximum Signal-to-Interference Ratio.

MSWF Multi-Stage Wiener Filter.

MV Minimum Variance.

MVUE Minimum Variance Unbiased Estimator.

NCRCB Norm-Constrained Robust Capon Beamformer.

PCA Principal Component Analysis.

PCF Partial Cancellation Factor.

PDF Probability Density Function.

PIC Parallel Interference Cancellation.

POR Power of R.

PPIC Partial Parallel Interference Cancellation.

RCB Robust Capon Beamformer.

RHS Right Hand Side.

RMT Random Matrix Theory.

RX Receiver.

SCM Sample Covariance Matrix.

SDM Steepest Descent Algorithm.

SINR Signal to Interference plus Noise Ratio.

SLLN Strong Law of the Large Numbers.

SMI Sample Matrix Inversion.

SNR Signal-to-Noise Ratio.

SOI Signal of Interest.

SOI Source of Interest.

SOS Second-Order Statistics.

SVD Singular Value Decomposition.

TX Transmitter.

ULA Uniform Linear Array.

WBE Welch Bound Equality.

w.r.t. with respect to.



FOREWORD and Research
Motivation

Despite its long history and a solid evolution towards a mathematically well founded science,

signal theory still face nowadays extremely important challenges, both in the scientiÞc as well

as in its application aspects. The theory of statistical signal processing Þnds a wide variety of

applications in the Þelds of data communications, such as in channel estimation, equalization and

symbol detection, and sensor array processing, as in beamforming as well as in radar and sonar

systems. Alternatively, although not emphasized throughout this work, inferential methods

from mathematical statistics are also extensively applied to signal processing problems in other

disciplines such as astrophysics, biomedicine, seismology, and many other Þelds of interest for

the scientiÞc and engineering community. Indeed, a large number of these applications can

be interpreted in terms of a parametric estimation problem, typically approached by a linear

Þltering operation acting upon a set of multidimensional observed samples. Moreover, in many

cases, the underlying structure of the observable signals is linear in the parameter to be inferred.

This dissertation is concerned with the general and certainly fundamental problem of discrete-

time linear Þltering of noisy signals aimed at the estimation of a linearly described unknown

random parameter.

Most commonly applied estimation methods rely on the second-order statistics of the ob-

served random vector process, particularly often via an inverse operation. In practice, the lack

of true covariance information leads to implementations based on the empirical statistics of the

received data samples. This fact immediately reveals the functional relevance of the sample

covariance matrix (SCM) to practical estimation problems in signal processing. Unfortunately,

two particular problems related to SCM-based implementations can be readily identiÞed: the

sample-support requirements and the computational complexity. In addition, these problems

are quickly aggravated as the observation dimension becomes higher. Clearly, in cases requiring

the covariance matrix to be inverted, an increasingly larger computational complexity is to be

expected due to the inversion operation. Moreover, a particularly limited number of samples

of relatively large dimension may especially contribute to a severe degradation of the estima-

tion performance. In order to mitigate these limitations, a number of different schemes have

been proposed in the engineering literature that can be essentially categorized into two broad

xxiii
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families: diagonal loading regularization techniques and linear reduced-rank Þltering methods.

While the actual complexity problem has been increasingly relaxed over the past three decades

due to the advent of modern computational methods and devices, despite its unquestionable

interest in practice, little analytical insight can still be drawn from the broad literature about

estimation problems characterized by the availability of a Þnite number of samples of arbitrarily

high dimension.

In order to extend conventional approaches and review classical techniques under more gen-

eral conditions, a signiÞcant effort has been recently placed by the mathematical statistics com-

munity on the study of high-dimensional data analysis methods as well as the optimal statistical

inference under the more meaningful limiting regime deÞned by both the size of the data set

and the data dimension going to inÞnity at a Þxed rate (see [Bai05, Sri07, Joh07, Rao07] and

references therein). Classical procedures are then obtained as special cases in the new framework

(see also [Hal05] and cited work therein for high dimension, low sample-size data analysis and

its application to statistical classiÞcation in genetics and medical imaging). Due to the relevance

of the eigenvalue spectrum of the observation covariance matrix, of special interest for optimum

signal processing are high-dimensional statistical data analysis and inferencial methods based

on the theory of the spectral analysis of large-dimensional random matrices, or random matrix

theory (RMT). In particular, this rather sophisticated branch of the mathematical theory of

multivariate statistical analysis provides a characterization of the asymptotic behaviour of the

eigenvalue spectrum of certain random matrix models.

In this dissertation, a RMT-based theoretical framework for characterizing the efficiency

loss incurred by classical multivariate statistical approaches in conventional signal processing

applications under the practical conditions mentioned above is provided. Of special interest are

limiting results concerning SCM-type random matrices that are derived under the aforedeÞned

double-asymptotic regime. While this class of results does allow for a limiting description in

terms of only the eigenvalues, optimal signal processing solutions in practice usually depend as

well upon the set of matrix eigenvectors. Therefore, an extension of some recently published

results from random matrix theory is afforded in this thesis that is key for the theoretical

characterization and further development of classical signal waveform and power estimation

methods discussed throughout the dissertation. The limitations of current architectures has

been analyzed and new robust and more convenient alternatives have been proposed, solving the

structural limitations of traditional solutions. SpeciÞcally, a new class of generalized consistent

estimators is introduced that allows for a considerably improved performance under a limited

number of observations per Þltering degree of freedom. In particular, the proposed estimators

are derived such as to consistently represent an arbitrarily accurate approximation of the actual

parameter as not only the number of samples but also the observation dimension increases

without bound at the same rate. Consequently, the new constructions generalize traditional

implementations that prove to be consistent only for an increasing sample size of strictly Þxed
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dimension.

Optimum Linear Filtering

A large number of signal processing applications can be interpreted in terms of a Þltering

problem on a set of multidimensional observations in order to extract a certain parameter of

interest. In many of these applications, the underlying structure of the observations is linear

in the parameter to be estimated. Under the assumption of a linear signal model, a number

of estimators derived from different criteria and relying on the second-order statistics of the

observed samples are identiÞed as equivalent. For the sake of clarity of presentation, let us

consider a collection of N observations
©
y (n) ∈ CM

ª
that are to be processed by a linear Þlter

w. The output of the Þlter can be expressed aswHy (n). In the following, we review the classical

optimum solutions for the Þlter w. In order to review optimum choices of w, let us consider the

following linear data model that properly deÞnes the structure of a vast number of estimation

problems in statistical signal processing, namely,

y (n) = x (n) s+ n (n) ,

where x (n) is the unknown parameter to be estimated, which is observed in noise with a given

(unknown) interference n (n) ∈ CM after being operated upon by s ∈ CM , a known signature
vector associated with the parameter. A natural criterion to design a linear estimator of the

desired parameter consists in trying to eliminate the undesired contribution from the observed

data while keeping the desired component undistorted. This criterion can be formulated as an

optimization problem in terms of a linear transformation acting on the covariance matrix of the

observations, namely,

arg min
w∈CM

wHRw subject towHs = γ,

where γ ∈ C is a Þxed constant value. The optimal Þlter is found as the solution of a standard

linearly constrained quadratic optimization problem, conventionally obtained by the method of

Lagrange multipliers as

wopt = γ
∗ R−1s
sHR−1s

,

where (·)∗ denotes complex conjugation. The previous Þltering structure is known in the engi-
neering literature as the linearly constrained minimum variance (LCMV) Þlter. For the special

case of a real constant γ = 1, it is also known as the minimum variance distortionless response

(MVDR) Þlter. Formally, this intuitive criterion may be formulated from a statistical estimation

perspective as the problem of constructing a linear estimator minimizing the mean square-error

(MSE), i.e.,

MSE(�x) = E
n
|x− �x|2

o
= var(�x) + [bias(�x)]2 .

The problem of obtaining a linear transformation minimizing MSE(�x) under the unbiasedness

constraint is equivalent to the optimization problem above, and the result is usually referred to
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as the best linear unbiased estimator (BLUE). Interestingly enough, when the observations are

Gaussian or have a linear model structure, the minimum variance unbiased estimator (MVUE)

of the desired parameter turns out to be linear [Kay93]. Thus, in these cases both BLUE and

MVUE are equivalent.

Next, we consider an alternative metric deÞned in terms of the ratio between the power of the

desired and undesired components, respectively, at the output of the Þlter, and that is usually

motivated from the application point of view. In the engineering literature, the signal of interest

(SOI) and the noise are conventionally assumed to be independent and jointly distributed wide-

sense stationary random processes, with mean zero and SOI power and noise covariance given,

respectively, by E [x∗ (n)x (n)] = σ2xδm,n and E
£
n (m)nH (n)

¤
= RNδm,n. Then, from the above

assumptions, the covariance matrix of the observations takes the form

R = E
n
(y−E{y}) (y−E {y})H

o
= σ2xss

H +RN .

Then, we deÞne the so-called signal-to-interference-plus-noise ratio (SINR) as

SINR(w) =
σ2x
¯̄
wHs

¯̄2
wHRNw

=

Ã
wHRw

σ2x |wHs|2
− 1
!−1

,

which allows us to formulate the optimum estimator problem as

wopt = argmax
w

SINR(w).

Equivalently, all previous estimation solutions can be shown to maximize the SINR at the output

of the discrete-time linear Þlter. It is worth noting that the linear transformation obtained from

the Bayesian minimum mean squared error (MMSE) criterion, namely wLMMSE = R
−1s, is also

equivalent in terms of the SINR to the previous Þltering solutions.

Before concluding our review, we consider the two fundamental applications of the previous

signal model motivating the research work in this thesis: the problems of signal waveform estima-

tion and signal power estimation in the contexts of symbol detection in wireless communications

and spatial Þltering in sensor array signal processing.

Classical examples of estimation problems in the engineering literature based on the second-

order statistics of the received observations are those of multiuser symbol detection in code-

division multiple access (CDMA) systems and the coherent reception of sources using an antenna

array. In these two cases, the signature vector includes (possibly distorted by the channel versions

of) the spreading sequence of the desired user in a CDMA application and the spatial steering

vector of the intended source in array processing. Classical Þltering solutions for linear multiuser

detection [Ver98] are based on the knowledge of the spreading sequences of all users as well as

information about their channels and the background noise level. In some scenarios, like for

example in the downlink, it is unrealistic to assume that a particular user will have access to the

information of the rest of the system. In these situations, the detection task is better approached
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from a point of view of multiple access interference (MAI) suppression [Hon95, Mad94]. The

linear MMSE interference-suppresion receiver [Poo98] is equivalent to wLMMSE = R
−1s, whereR

is the covariance matrix of the received observations. On the other hand, the MVDR beamformer

is proportional to the column vector wMVDR = R
−1s, regardless of whether the signal of interest

is present or not in the received signal, where R is here the covariance matrix of the array

observation.

Under general operation conditions, the implementation of the previous waveform estima-

tors requires the knoledge of the received signal amplitude, or, equivalently, the SOI power.

Alternatively, the analogous problem of estimating the amplitude of a number of received users

or sources is also of special interest in the Þelds of wireless communications and array process-

ing, as, for instance, in the computation of the SINR required for power control algorithms. If

the knowledge of the signature vector associated to all received signals is available, maximum

likelihood (ML) methods usually deliver rather accurate power estimate (see e.g. [Ott93]). If,

as in many practical situations, only the signature vector associated with the intended user or

signal is known, from the minimum variance Þltering formulation above, the SOI power can be

approximated by E
h
|�x (n)|2

i
= wHRw. In particular, in the array processing literature, the

Capon SOI power estimate is deÞned as

σ2CAPON =
1

sHR−1s
.

Finally, a related problem in sensor array signal processing is the estimation of the density

of the power angular spectrum, usually with the purpose of estimating the direction of arrival

(DoA) of the different sources [Sto05]. Consider a (Þnite) record of N spatial samples obtained

with an array of M sensors or antennas {ym (n) , n = 1, . . . , N,m = 1, . . . ,M} . A number of

K different sources are supposed to impinge in the antenna array from different directions. We

are now concerned with the problem of Under the assumption of narrowband signals and linear

array elements, the array observation y (n) =
h
y1 (n) · · · yM (n)

iT
is additively decomposed as

y (n) =
KX
k=1

sk (n)a (θk) + n (n) ,

where sk (n) is the symbol transmitted by the kth source at the discrete-time instant n, a (θk)

is its spatial signature vector (also steering vector or array transfer vector) and n (n) is additive

noise. Here, θk denotes the kth source�s direction of arrival, which is the parameter of interest in

this problem. In order to identify a possible arrival from a certain direction θ, Capon�s method

chooses a spatial Þlter h such that the power at its output is minimized subject to the constraint

that the frequency ωk is passed undistorted, i.e.,

arg min
h∈CM

hHRh subject tohHa (θ) = 1,

where R is the covariance matrix of the array observation y (n). The solution to the Þlter design
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problem is

hopt =
R−1a (θ)

aH (θ)R−1a (θ)
.

Then, the power at the Þlter output, i.e. the power of the input data centered at the spatial

frequency parametrized by θ, is 1/aH (θ)R−1a (θ). Furthermore, assuming constant unit gain
over the Þlter bandpass and zero outside, and denoting by β the bandwidth of the Þlter hopt, the

value of the (spatial) power spectral density can be Þnally approximated by 1/βaH (θ)R−1a (θ).
Different criteria may be used to determine the value of the bandwidth. A choice of β is proposed

in [Lag86] that results in a normalization of the output power by the squared norm of the Þlter

solution, i.e.,

β = khk2 = aH (θ)R−2a (θ)
[aH (θ)R−1a (θ)]2

.

Applying this normalization, the Capon DoA estimates are obtained as the locations of the K

largest peaks of the following spatial spectrum estimate

E
h¯̄
hHy (n)

¯̄2i
=
aH (θ)R−1a (θ)
aH (θ)R−2a (θ)

.

After the previous review on the statistical signal theory of relevance for the dissertation, in

the following we describe, chapter by chapter, the contributions of this thesis.

Thesis Outline and Contribution

In Chapter 1, the technical background on the mathematical tools underlying the theo-

retical framework developed throughout the thesis is introduced. In particular, the Stieltjes

transform method is revised, and a new result concerning the asymptotic convergence of the

eigenvalues and eigenvectors of a class of general random matrix ensembles is introduced. As

an example of the importance and practical interest of the study of the asymptotics of spectral

functions of not only random matrix eingevalues but also the associated eigenvectors in an ap-

propriate double-limit regime underlying the entire dissertation, an analytical characterization

of the transient regime of a training-based multiple-input multiple-output (MIMO) system ex-

ploiting the full diversity order of an arbitrarily correlated MIMO fading channel via optimal

beamforming and combining is presented. The focus is on practical scenarios where no channel

state information is available at either transmitter or receiver and the length of the training

phase is comparable in magnitude to the system size.

A related technical contribution has been published in:

� F. Rubio, D. Guo, M. Honig, X. Mestre, On Optimal Training and Beamforming in Un-
correlated MIMO Systems with Feedback, Conference on Information Sciences and Systems

(CISS 2008), Princeton, NJ, USA, March 19-21, 2008.

Other contributions on the study of the performance analysis of wireless communications

systems via RMT tools can be found in
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� F. Rubio, X. Mestre, Asymptotic performance of code-reference spatial Þlters for multicode
DS/CDMA, IEEE International Conference on Acoustics, Speech, and Signal Processing.

Philadelphia (USA), March 18-23, 2005, and

� F. Rubio, X. Mestre, A comparative study of different self-reference beamforming archi-

tectures for multicode DS/CDMA, XI National Symposium of Radio Science. Poznan

(Poland) April 7-8, 2005,

where the negative moments of the Marcenko-Pastur distribution are used to analytically

characterize the output signal-to-interference-plus-noise ratio and the asymptotic covariance of

three different code-reference spatial Þlters for multicode DS/CDMA systems, and

� F. Rubio, X. Mestre, Semi-blind ML channel estimation for MC-CDMA systems with

code-multiplexed pilots, VI IEEE Workshop on Signal Processing Advances in Wireless

Communications, New York (USA) June 5-8, 2005,

where the performance of an iterative ML channel estimator for MC-CDMA systems is ad-

dressed relying on results about the asymptotic distribution of the spectrum of large-dimensional

Fourier matrices.

After an introductory theoretical analysis conÞrming the practical interest of the theoretical

framework, an improved estimator of the optimal reduced-rank linear minimum mean-square

error (MMSE) Þlter is derived in Chapter 2 that is consistent for arbitrarily high-dimensional

observations. The proposed implementation results from an enhanced approximation of the

MMSE Þlter coefficients on the reduced-dimensional subspace. The new Þlter construction

generalizes traditional Þlter realizations based on directly replacing the theoretical covariance

matrix by its sample estimate, and being consistent when all dimensions in the model but the

number of samples remain bounded.

Part of the results concerning the application of the proposed method can be found in:

� F. Rubio, X. Mestre, On the design of practical reduced-rank DS-CDMA receivers, 49th

IEEE Globecom Conference, San Francisco, California (USA), 27 November-1 December,

2006.

� F. Rubio, X. Mestre, Design of reduced-rank MVDR beamformers under Þnite sample-

support, 4th IEEE Workshop on Sensor Array and Multi-channel Processing (SAM 2006).

Waltham, Massachusetts (USA), July 12-14, 2006.

� F. Rubio, X. Mestre, Analysis of multi-stage receivers under Þnite sample-support, 31st
IEEE International Conference on Acoustics, Speech, and Signal Processing. Toulouse

(France), May 14-19, 2006.

� F. Rubio, X. Mestre, Consistent reduced-rank LMMSE estimation with a limited number of
samples per observation dimension. Submitted to IEEE Transactions on Signal Processing.
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Traditional estimators based on the eigendecomposition of the sample covariance matrix are

known to be particularly sensitive to Þnite sample-size situations. In order to illustrate the

application of the proposed framework to common spectral estimation problems, an estimator

of the eigenspectrum of the array observation covariance matrix is presented in Chapter 3

that builds upon the well-known power method and allows for an improved performance in the

low sample-size, relatively large observation dimension regime. A family of scalar estimation

problems involving the negative powers of arbitrarily correlated Wishart matrices is then char-

acterized and further exempliÞed through the fundamental problem of source power estimation

in sensor array signal processing. In particular, an extension of the Capon method delivering

remarkably accurate approximations provided that there is available a precise knowledge of the

noise variance, is consistently approximated using the SCM in an asymptotic regime that allows

to take into consideration a limited number of samples per array sensor.

This technical contribution has been submitted to:

� F. Rubio, X. Mestre, On the estimation of the covariance eigenspectrum of array sample

observations, 5th IEEE Workshop on Sensor Array and Multi-channel Processing (SAM

2008).

� F. Rubio, X. Mestre, On the Eigenspectrum Inference of Array Covariance Matrices and

the Problem of Source Power Estimation. In preparation.

In order to relax the computational complexity related to the previous class of estimators,

the focus is turned in Chapter 4 into more practically affordable solutions based on the posi-

tive powers of the unknown second-order statistics of the observed samples. In particular, the

application of Krylov subspace methods to two fundamental problems in sensor array signal

processing is considered, namely the problem of estimating the power of an intended source and

the estimation of the principal eigenspace and dominant eigenmodes of a structured observation

covariance matrix. SpeciÞcally, a generalized consistent estimation of a certain class of power

functions is proposed that allows for an implementation of Krylov subspace methods achiev-

ing both a moderate computational complexity and an improved performance under limited

sample-size and relatively large observation dimension.

Part of the contribution can be found in:

� F. Rubio, X. Mestre, Improved consistent estimation in Krylov subspaces, in Proc. Asilo-
mar Conference on Signals, Systems and Computers 2007, PaciÞc Grove, CA, USA, Nov.

4-7, 2007.

� F. Rubio, X. Mestre, Generalized consistent estimation on low-rank Krylov subspaces of
arbitrarily high dimension. Submitted to IEEE Transactions on Signal Processing.

Finally, in Chapter 5, the consistency of sample robust Capon beamforming (RCB) solu-

tions that are constructed under signature-mismatch constraints from a set of received array
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observations is revised. Particular emphasis is placed on the class of robust Þlters heuristically

modeling the adverse effects of practical Þnite sample-size conditions as due to an imperfect

knowledge of the effective spatial signature. In contrast, and as in practice, a small sample-size

relative to the array dimension is identiÞed as the actual source of Þlter estimation errors under

unknown second-order statistics. Accordingly, a new alternative approach to RCB design is

proposed in this dissertation that explicitly addresses both the signature-mismatch problem and

the limitations due to a Þnite sample-size.

This technical contribution has been submitted to:

� F. Rubio, X. Mestre, Generalized consistent robust Capon beamforming for arbitrarily large
arrays. Submitted to 2008 European Signal Processing Conference (EUSIPCO-2008).

� F. Rubio, X. Mestre, A Class of Doubly-Consistent Robust Capon Beamformers. In prepa-
ration.

Some concluding remarks and topics for future work are provided in theAfterword, followed

by two Appendices on some asymptotic convergence results of particular signiÞcance for the

developments throughout the thesis and a precursor on the combinatorics of set partitions.
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Chapter 1

Technical Background and
Mathematical Tools

In this chapter, a brief exposition of the main mathematical techniques used in this thesis is given.

After introducing the elements of the theory of the spectral analysis of large-dimensional random

matrices, a review of the Stieltjes transform approach to the study of the asymptotic spectrum

of a class of random matrix models is provided. Finally, Girko�s general statistical analysis of

large observations is shortly outlined. In particular, the theory of G-estimation allows us to

derive estimators of certain functions of the eigenvalue spectrum of the theoretical covariance

matrix that are given in terms of the spectrum of its sample estimate and are consistent in the

double-limit regime considered throughout the dissertation.

1.1 Preliminaries on Random Matrix Theory

In order to motivate our fundamental exposition about the spectral properties of large dimen-

sional random matrices, consider the M ×M complex Hermitian matrix M, with eigenvalues

λ1 (M) ≤ λ2 (M) ≤ . . . λM (M) and associated eigenvectors em, m = 1, . . . ,M . Because the

entries ofM are random variables, so are its eigenvalues and eigenvectors. A key element in the

study of the spectrum of random matrices of increasing dimensions is the empirical distribution

function of the eigenvalues, which is deÞned for the spectrum ofM as

FMM (λ) =
1

M

MX
m=1

I(λm(M)≤λ). (1.1)

Clearly, as deÞned in (1.1), FMM (λ) is a random (right-continuous nondecreasing) probability

distribution function, possibly atomic, i.e., with discontinuities at discrete points. The major

driving idea behind random matrix theory relies on the fact that, for a certain class of random

1



2 CHAPTER 1. TECHNICAL BACKGROUND AND MATHEMATICAL TOOLS

matrix ensembles, as the dimension of the matrix increases without bound with a Þxed aspect

ratio, the empirical distribution function FMM (λ) converges almost surely towards a well-deÞned

limiting probability distribution function (possibly defective)1 with a compactly supported den-

sity.

In order to establish the limiting spectral distribution of a given random matrix ensemble,

two approaches have been essentially reported in the RMT literature (see [Bai99] for a thorough

review and also the monograph on the spectral analysis of large-dimensional random matrices

[Bai06]). On the one hand, the moment method has been succesfully applied to the Wigner

matrix ensemble, the sample covariance and F matrices, and, more recently, to Toeplitz, Hankel

and Markov matrices (see [Bai99, Section 2] for arguments in connection to Wigner, SCM and

F matrices, as well as [Bry06] for the results concerning Toeplitz, Hankel and Markov matrices).

In the following, we discuss the more relevant and practically useful approach based on the

Stieltjes transform.

Definition 1 (Stieltjes transform of probability measures) Let G be a probability distribution

function on R. Then, the Stieltjtes transform of G is deÞned as

mG (z) =

Z
R

dG (λ)

λ− z , z ∈ C+. (1.2)

Only compactly supported measures will be hereafter considered. References dealing with the

Stieltjes transform of probability measures and its properties include [Akh61, Chapter 6][Akh65,

Sections 3.1-2][Kre77, Appendix][Lax02, Chapter 32][Hia00, Chapter 3][Ger03] (see also [Hac07,

Proposition 2.2]). In particular, the following properties hold:

(P1) mG (z) is an analytic function on C+. Moreover, mG (C+) ⊂ C+, mG (z) = mG (z̄),
and limy→∞− j ymG (j y) = 1.

See e.g. [Rud87, Theorem 10.7] for a proof.

(P2) mG (z) satiÞes

|mG (z)| ≤ 1

Im {z} , (1.3)

Im {mG (z)} > 0. (1.4)

Let us write z = x+ j y. Indeed, regarding (1.3), note that¯̄̄̄
1

λ− z
¯̄̄̄
≤ 1q

(λ− x)2 + y
≤
¯̄̄̄
1

y

¯̄̄̄
,

1 I.e., with total variation less than one. Convergence of such sub-probability measures will be regarded as vague

convergence. Alternatively, we will talk about weak convergence of proper probability measures and convergence

in distribution when regarded to a random variable.
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and, accordingly,

|mG (z)| ≤ 1

y

Z
R
dG (λ) ≤ 1

y
.

Moreover, on the other hand, observe that

y =

Z
R
Im

½
1

λ− z
¾
dG (λ)

=

Z
R
Im

½
λ− z∗
|λ− z|2

¾
dG (λ)

=

Z
R

y

(λ− x)2 + ydG (λ) ,

which is strictly positive, as (1.4) states.

(P3) (Probability measures over R+) If G (0) = 0, then mG (z) is analytic over C − R+.
Moreover, if z ∈ C+ then zmG (z) ∈ C+, and the following holds [Hac07, Proposition 2.2]:

|mG (z)| ≤


1

|Im{z}| if z ∈ C−R
1
|z| if z ∈ (−∞, 0)

1
dist(z,R+) if z ∈ C−R+,

where dist stands for Euclidean distance.

(P4) Let m (z) be a function satisfying (P1). Then, there is a probability distribution H

function such that m (z) is its Stieltjes transform. Moreover, if, as in (P3), zm (z) ∈ C+ for
z ∈ C+, then H (0) = 0, and m (z) has an analytic continuation on C−R+.

See [Kre77, Appendix].

(P5) (Stieltjes inversion formula) For any continuity points a < b of G, we have

G (b)−G (a) = lim
y→0+

1

π

Z b

a
Im {mG (x+ j y)} dx. (1.5)

To see (1.5), note Þrst thatZ b

a

1

π
Im {mG (x+ j y)} dx = 1

π

Z b

a

Z
R

y

(u− x)2 + y2dG (u) dx (1.6)

=
1

π

Z
R

Z b

a

y

(u− x)2 + y2dxdG (u) (1.7)

=
1

π

Z
R

µ
arctan

µ
b− x
y

¶
− arctan

µ
a− x
y

¶¶
dG (u) , (1.8)

where (1.6) is showed in (P2), the equality in (1.7) follows from Fubini�s theorem and the integral

in (1.8) results from the fact
Z

dx
1+x2 = arctan (x). Then, since the integrand in (1.8) is bounded,

from the dominated convergence theorem we have

lim
y→0+

µ
arctan

µ
b− x
y

¶
− arctan

µ
a− x
y

¶¶
= πI[a,b], (1.9)
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for any two continuity points a < b of G. Therefore, using (1.9), we indeed have Þnally

lim
y→0+

Z b

a

1

π
Im {mG (x+ j y)} dx =

Z b

a
dG (u) = G (b)−G (a) .

The convenience of using the Stieltjes transform in order to study the limiting behavior

of a matrix eigenvalue spectrum is evident from the following property, namely establishing a

method to prove convergence of the empirical spectral distribution from the convergence of the

associated Stieltjes transform. More speciÞcally,

(P6) If {Gn} is a sequence of probability distribution functions and the sequence of associated
Stieltjes transforms {mGn (z)} converges pointwise to m (z) for z ∈ C+, then there exists a
probability distribution function G with Stieltjes transform mG = m, such that {Gn} converges
weakly to G. More generally,

{Gn}→ G⇔ {mGn (z)}→mG.

Indeed, the sufficiency part follows from the Helly-Bray theorem (see e.g. [Rao73, Section

2c.4]), whereas the necessary condition can be argued using Helly�s selection theorem (see e.g.

[Chu01, Theorem 4.3.3]), by extracting a subsequence of {Gn} converging toGwith an associated
Stieltjes transform that is, by (P4) and (P5), in one-to-one correspondance with mG (z) (see

for instance [Ger03, Theorem 1]).

Thus, as weak convergence of probability measures can be established from their Fourier

transform via Lévy�s convergence theorem, the limiting behavior of the empirical spectral dis-

tribution of a matrix with increasing dimensions can be equivalently determined by its Stieltjes

transform representation. An important advantage of using the latter is that the eigenvalue den-

sity function can be easily recovered from the Stieltjes transform of the distribution function.

In particular,

(P7) [Sil95c, Theorem 1.1] If, for xo ∈ R, the limit limz∈C+:z→∞ Im {mG (z)} exists
and is denoted as Im {mG (xo)}, then G is differentiable at xo and its derivative is equal to
1
π Im {mG (xo)}, i.e.,

dG (x)

dx
= lim
y→0+

1

π
Im {mG (x+ j y)} . (1.10)

The fundamental connection between the Stieltjes transform and the spectrum of random

matrices is now apparent if we consider as the probability distribution function the empirical

distribution function of the eigenvalues of a certain random matrix ensamble. Furthermore, the

convenience of using the Stieltjes transform in order to study the limiting behavior of a matrix

eigenvalue spectrum essentially relies on its representation in terms of the matrix resolvent,

namely, for the matrix M, Q (z) = (M− zIM)−1. In particular, from the spectral theorem for
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Hermitian matrices, we can write

1

M
Tr [Q (z)] =

1

M
Tr
h
(M− zIM)−1

i
=
1

M

MX
m=1

1

λm (M)− z =
Z

R

dFMM (λ)

λ− z ,

which is the Stieltjes transform of FMM , i.e., mFMM (z).

Consider further the eigenvalue moments of the spectral distribution ofM, namely,

MM
k =

Z
R
λkdFMM (λ) =

1

M
Tr
h
Mk

i
, k = 1, 2, . . . . (1.11)

The Stieltjes transform representation of a spectral distribution function can also be used to

obtain the eigenvalue moments of the matrix ensamble without the need for integration. Indeed,

observe that

MM
k = − 1

k!
lim
z→0

∂k

∂zk

n
z−1mFMM

¡
z−1

¢o
.

Hence, as for empirical spectral distributions, the asymptotic convergence of the eigenvalue

moments can be established from the limit of the sequence of Stieltjes transforms for an ever

increasing M . In particular, in Chapter 4, the Stieltjes transform is applied as a moment

generating function in order to obtain the asymptotic eigenvalue moments of SCM-type matrices

with outer correlations (cf. Appendix A). Next, a review of the Stieltjes transform representation

as a power series expansion is provided that can help in answering a fundamental question in the

context of the study of the asymptotic behavior of matrix spectral distributions: Is it possible

to Þnd the limiting empirical distribution function of sums and products of matrix ensembles in

terms of their individual asymptotic spectrum?

1.1.1 Power series representation of Stieltjes transforms

Consider a spectral distribution function G, with Stieltjes transform mG (z). Since

1

z − λ =
1

z

∞X
k=0

µ
λ

z

¶k
,

by the linearity of the integral, we can write the Stieltjes transform of G as

mG (z) = −
∞X
k=0

1

zk+1

Z
R
λkdG (λ) ,

which is the Laurent series expansion of the integrand (or Taylor series about ∞). Note that
due to the compactness assumption on the eigenvalue density, the power series expansion of the

Stieltjes transform is guaranteed to be holomorphic at inÞnity. Let MG
k be, with some abuse of

notation, the kth eigenvalue moment of G. Then,

mG (z) = −1
z

∞X
k=0

MG
k

zk
. (1.12)
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The Laurent series mG (z) has an inverse for composition, say kG (z), with an expansion [Voi92,

Remark 3.3.3]

kG (z) = −1
z
−

∞X
k=0

RGk+1 z
k. (1.13)

Analogously to the classical moment-cumulant problem, the series expansion coefficients RGk are

usually regarded as the cumulants associated with the spectral distribution function G. From

their correspondance through a compositional inverse operation, the moments and cumulants of

a spectral distribution can be found in terms of each other via the Lagrange inversion formula (cf.

Appendix B). In Chapter 5, the relation between eigenvalue moments and cumulants is exploited

in order to characterize the limiting behavior of a vector-valued deÞned empirical distribution of

the eigenvalues and associated eigensubspaces of SCM-type matrices (see discussion in Appendix

B on the appropriate combinatorial framework).

Consider now two independent random matrix ensembles, namly obtained from M-

dimensional complex Hermitian matrices X and Y, with empirical eigenvalue distribution func-

tions FMX and FMY , respectively. We further assume that, as M → ∞, with probability one,
FMX → FX and FMY → FY, where FX and FY are proper probability distribution functions with

compactly supported density. Suppose we are interested in the asymptotic spectrum of the en-

sembles X+Y and XY. In the case of classical (commutative) random variables, a closed-form

expression of the probability density function of the sum and the product of two ensembles is

known to exist, and is namely given for two absolutely continuous random variables X and Y

by [Roh76]

fX+Y (s) =

Z +∞

−∞

Z s−x

−∞
fX,Y (x, y) dydx, (1.14)

and

fXY (s) =

Z +∞

−∞
fX,Y

³
x,
s

x

´ 1

|x|dx, (1.15)

respectively, where fX , fY , fX+Y and fXY are the probability density function of X, Y , X + Y

and XY , and fX,Y is the joint probability density function of the random variables. If X and Y

are independent, the expresion in (1.14) reduces to the convolution of the corresponding densities.

Moreover, under the condition of independence, the result in (1.15) can be implemented via the

Mellin transform, since the transform of the product of densities is the product of density

transforms [Spr79].

The previous results are not applicable in the context of spectral distributions, since the

algebra of Hermitian matrices gives rise to a non-commutative probability space. However,

consider the power series expansion

rG (z) =
∞X
k=0

RGk+1 z
k, (1.16)
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where we have used the same notation as above. The series expansion in (1.16) is regarded as

the R-transform in the literature of free probability theory [Voi92], and is related to the Stieltjes

transform as

rG (z) = m
h−1i
G (−z)− z−1. (1.17)

Interestingly enough, it turns out that, under certain conditions on the matrix ensembles (such

as i.i.d. Gaussian matrix elements and unitarily invariance) the limiting spectral distribution

of the sum of two matrices can be found from the sum of the R-transforms of the individual

ensembles. In particular, if FX and FY satisfy the kind of conditions mentioned above2, we have

rFX+Y (z) = rFX (z) + rFY (z) ,

where FX+Y is the limiting distribution function of the eigenvalues of X +Y. Consequently,

from (1.17), the asymptotic spectral distribution can be obtained by Þrst recovering its Stieltjes

transform via

mFX+Y

¡
rG (−z)− z−1

¢
= z, (1.18)

and then applying the Stieltjes inversion formula in (P5).

Consider again the distribution function G and the following formal power series, namely,

χG (z) =
∞X
k=1

MG
k zk. (1.19)

In particular, observe that (1.19) can be found in terms of the Stieltjes transform of G as

χG (z) = −z−1mG
¡−z−1¢− 1. (1.20)

Additionally, consider further the series expansion

sG (z) =
1 + z

z
χ
h−1i
G (z) , (1.21)

which is regarded as the S-transform in the context of free probability [Voi87]. Analogously to the

R-transform and the addition of matrix spectra, the limiting spectral distribution of the product

of two random matrix ensembles can be directly obtained, under the conditions mentioned above,

from the product of the S-transforms of the limiting individual spectral distribution. More

precisely, under the previous conditions,

sFXY
(z) = sFX

(z) sFY
(z) ,

2Namely, if the limiting empirical spectral distributions FX and FY deÞne two mutually free (non-commutative)

random variables, where the notion of freeness can be thought of as a deÞnition of statistical independence in

non-commutative probability spaces. Equivalently, if FMX and FMY deÞne two random variables, X and Y, that

are asymptotically free. See e.g. [Tul04] for examples of free random matrix ensembles appearing in engineering

applications.
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where FXY is the limiting distribution function of the eigenvalues of XY. Thus, the asymptotic

spectral distribution can be obtained, as before, by Þrst recovering its Stieltjes transform from

(1.21) and (1.20), and Þnally using the Stieltjes inversion formula.

In principle, the limiting spectral distribution of random ensembles resulting from linear

operations on matrix models with arbitrary known limiting spectra can be obtained using the R-

transform and the S-transform as outlined above. However, operative problems may quickly arise

when calculating the inverse functions in (1.17), (1.18) and (1.21), as a closed-form expression

may be in many situations not possibly obtained. Moreover, the statistical assumptions on the

matrix ensemble deÞnition that must be satisÞed in order for the conditions on the individual

limiting distributions to be fulÞlled may represents a practical limitation. Finally, still more

restrictive is the fact that an expression of the limiting Stieltjes transform is assumed to be

available for Þnding the R- and S-transforms.

In the application of RMT to engineering problems in signal processing and wireless com-

munications, the analytical description of the asymptotic spectrum of a certain random matrix

models of much practical interest can be usually afforded by means of solely Stieltjes transform

methods. Accordingly, on the one hand, the Gaussian distributional assumption as well as the

existence and availability of an explicit closed-form expression of the Stieltjes transform of the

matrix ensemble can be relaxed. On the other hand, the asymptotic convergence analysis of the

ensemble spectrum can be extended to a more general class of spectral functions including also

the associated eigensubspaces. Clearly, by considering as well the convergence and asymptotic

behavior of the matrix eigenvectors, the range of application of the obtained results is expanded

to cover a broader family of statistical signal processing problems.

In the following, we provide a brief compilation of known existing results obtained via the

Stieltjes transform based approach about the asymptotic eigenvalue spectrum of some random

matrix models.

1.1.2 Examples of random matrix ensembles

Throughout the next results, the sequences of random matrices are assumed to be deÞned on

a common probability space. Moreover, the matrix Ξ will denote an M ×N complex random

matrix, such that the real and imaginary parts of the entries are i.i.d. random variables with

mean zero, variance 1/2 and bounded moments, and X = N−1/2Ξ. Furthermore, deÞne c ,
limN→∞M/N and β = c−1.

Theorem 1.1 [Yin86][Sil95a, Theorem 1.1] (Sample covariance matrix with outer correlations)

Let R be a M ×M Hermitian non-negative deÞnite matrix, whose eigenvalues are uniformly

bounded for all M and have an empirical distribution function that converges almost surely,
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as M → ∞, to a nonrandom distribution function H. DeÞne B = R1/2XXHR1/2 with R1/2

denoting any Hermitian square-root of the matrix R. Then, asM,N →∞, with c < +∞, almost
surely, the empirical distribution function of B, say FMB , converges weakly to the distribution

function FB with associated Stieltjes transform mF (z) such that, for each z ∈ C+, m = mF (z)

is the unique solution in the set {m ∈ C : − (1− c) /z + cm ∈ C+} to the following equation,
namely,

m =

Z
dH (λ)

λ (1− c− czm)− z . (1.22)

In particular, observe that the random matrix B resembles the sample estimate of the co-

variance matrix of a collection of multidimensional observations. Indeed, let {y (n)}, n =

1, . . . , N , be a sequence of i.i.d. M-dimensional vector samples with mean zero and covari-

ance E
£
y (m)yH (n)

¤
= Rδm,n. The minimum variance unbiased estimator of the theoretical

covariance matrix R is the sample covariance matrix, namely [And03, Mui82]

�R =
1

N

NX
n=1

y (n)yH (n) ≡ 1

N
YYH , (1.23)

where we have deÞned Y =
h
y (1) . . .y (N)

i
∈ CM×N . Furthermore, note that we can write

the nth sample observation statistically equivalently as y (n) = R1/2Ξ, so that �R = 1
NYY

H =
1
NR

1/2ΞΞHR1/2 = R1/2XXHR1/2 = B. If the entries of Ξ are normally distributed (in which

case �R is also the ML estimator of R), then we have N−1 �R ∼WM (N,R), i.e., the (normalized)

SCM N−1 �R follows a central Wishart distribution with N degrees of freedom and mean NR.

Example 1 (Sample covariance matrix with outer correlations) R has dimension M = 40

eigenvalues 1, 2.5, 4 and 4.5 with same multiplicity. The number of samples to construct �R is

N = 400. In Figure 1.1, the empirical histogram and the theoretical limiting spectral density are

compared.

As a special case of the result in Theorem (1.1), consider the standard (uncorrelated) central

Wishart matrix, i.e., R = IM . Then, the integral in (1.22) yields

m =
1

λ (1− c− czm)− z ,

so that the Stieltjes transform can be obtained as the solution of the following canonical equation,

namely,

czm2 − (1− c− z)m+ 1 = 0,
which is a second-degree polynomial in m, with coefficients being polynomials in z and whose

solution in C+ is given as a function of z by

m =
1− c− z +

q
(z − 1− c)2 − 4c
2cz

. (1.24)
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Figure 1.1: Limiting spectral density and normalized histogram of �R in Example 1
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Figure 1.2: Marÿcenko-Pastur density for the three different aspect ratios of the matrix X in

Example 2

Moreover, from (P5) and (P6) the eigenvalue density function can be found as

pB (x) =

 1
2πcx

p
(b− x) (x− a) if a ≤ x ≤ b,

0 otherwise
(1.25)

and has a point mass 1 − c−1 at the origin if c > 1, where a = (1−√c)2 and b = (1 +
√
c)
2.

Indeed, note that the imaginary part of m = mF (z) goes to zero as z approaches the real line

and lies outside the interval [a, b], and, therefore, (P7) applies. The function in (1.25) is the

density function of the Marÿcenko-Pastur law, whose moments are given in Corollary 4.4. In

particular, for c = 1, the kth moment is equal to the Catalan number C (k) (cf. Appendix B).

Example 2 (Marÿcenko-Pastur law) X has dimensions M and N such that their ratio is c is

equal to 0.5, 1 and 5. Figure 1.2 illustrates the density of the Marÿcenko-Pastur law for the

previous three cases.

Alternatively, let again R = IM and consider the matrix ensemble B−1 =
¡
XXH

¢−1
. In

order to Þnd the limiting spectral distribution of B−1, observe that, from (1.19) and (1.20), we

have

−1
z
m

µ
−1
z

¶
= 1+

∞X
k=1

Mk z
k,



12 CHAPTER 1. TECHNICAL BACKGROUND AND MATHEMATICAL TOOLS

for general Stieltjes transform m (z) and Mk the kth moment of the associated distribution.

Then, noting that the kth moment of B is the −kth moment of B−1, it is easy to verify that

−1
z
mF

µ
−1
z

¶
= −zmG (z)− 1,

where mF (z) is the Stieltjes transform of the limiting spectral distribution of B and mG (z) is

that of the limiting spectrum of B−1. Consequently, without further calculation we have that

mG (z) =
1

z2
mF

µ
−1
z

¶
− 1
z
.

Obviously, the density function of the associated distribution can also be obtained from pB (x)

in (1.25) without the need of integration by using the fact that [Pap91, pag. 94]

pB−1 (x) =
1

x2
pB

µ
1

x

¶
,

and considering c ∈ (0, 1), to guarantee the existence of the inverse, as

pB (x) =

 1
2πcx2

p
(xb− 1) (1− ax) if 1

b ≤ x ≤ 1
a ,

0 otherwise

Furthermore, observe that the spectrum of R1/2XXHR1/2 and that of RXXH coincides.

Then, letW be a matrix deÞned equivalently as X and independent of the latter (with possibly

different aspect ratio). The special case deÞned by R =
¡
WWH

¢−1
is known as the general

multivariate F matrix, and its limiting eigenvalue distribution was obtained in [Sil85] via the

method of moments.

Finally, consider the matrix
¡
XXH

¢1/2
. As before, direct transformation of the density

function of the Marÿcenko-Pastur law by using [Pap91, pag. 96]

pB1/2 (x) = 2xpB

¡
x2
¢I[0,∞),

yields

pB (x) =

 1
πc

p
(b− x2) (x2 − a) if √a ≤ x ≤ √b,

0 otherwise,
(1.26)

which, for c = 1, is regarded in the RMT literature as quarter circle law [Wig67].

Example 3 (Quarter Circle Law) X has dimensions M = N = 100, so that c = 1. In Figure

1.3, the empirical histogram and the theoretical limiting spectral density are compared.

Theorem 1.2 [Mar67][Sil95b, Theorem 1.1] Consider a N×N Hermitian matrix A with empir-

ical spectral distribution converging, almost surely, vaguely to a nonrandom (possibly defective)

probability distribution function A. Moreover, suppose T is a N×N real diagonal matrix, whose
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Figure 1.3: Limiting spectral density and normalized histogram of matrix ensemble in Example

3

empirical spectral distribution converges almost surely to a deterministic probability distribution

function T as N → ∞. Furthermore, deÞne B = A + XHTX. Then, as M,N → ∞, with
c < +∞, almost surely, the empirical spectral distribution of B converges vaguely to a non-

random distribution function FB with associated Stieltjes transform mF (z) such that, for each

z ∈ C+, m = mF (z) is the unique solution in C+ to the following equation, namely,

m = mA

µ
z − c

Z
τ

1 + τm
dT (τ)

¶
. (1.27)

From (1.27), some straightforward connections with the spectral results obtained above can

be readily established. For instance, consider the case in which A = 0N×N . Then, mA (z) = −1
z

and we simply have

mF (z) =
1

c

Z
τ dT (τ)
1+τm − z

. (1.28)

From (1.28), a functional inverse for the Stieltjes transform mF (z) can be easily found as

z = − 1
m
+ c

Z
τ dT (τ)

1 + τm
. (1.29)

All of the analytical behavior of the limiting distribution can be extracted from (1.29) [Sil95c].

Moreover, consider the Marÿcenko-Pastur distribution (i.e., T = IN ). Then, the Stieltjes trans-

form m = mF (z) solves the following simpliÞcation of equation (1.29), namely,

z = − 1
m
+

c

1 +m
,
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resulting in the quadratic equation

zm2 − (z + 1− c)m+ 1 = 0,

with solution in C+ is given by

m =
β − 1− z +p(z − a) (z − b)

2z
. (1.30)

Again, since the imaginary part of m = mF (z) vanishes as z approaches R and lies outside the

interval [a, b], from (P7) the limiting distribution has a density given, for x 6= 0, by

pB (x) =

 1
2πx

p
(b− x) (x− a) if a ≤ x ≤ b,

0 otherwise,
(1.31)

with a mass at 1− β at zero when β < 1.

Alternatively, the Stieltjes transform and distribution function in (1.30) and (1.31), respec-

tively, can also be directly obtained from the corresponding expressions in (1.24) and (1.25).

Indeed, note that, for any matrix C ∈ CM×N , with M/N → c, the spectra of CHC and CCH

differ by |M −N | zero eigenvalues, and so can their associated empirical eigenvalue distribution
functions be related as

FCHC (x) = (1− c) I[0,∞) + cFCCH (x) , (1.32)

where FCHC and FCCH are the spectral distribution functions of the matrices CHC and CCH ,

respectively. Consequently, we further have that

mCHC (z) = −
1− c
z

+ cmCCH (z) , (1.33)

where mCHC (z) and mCCH (z) are correspondingly deÞned. Thus, using the relations in (1.32)

and (1.33) along with the Stieltjes transform and density function of the Marÿcenko-Pastur dis-

tribution, equations (1.30) and (1.31) can be equivalently obtained. More generally, using the

identity in (1.33), it can be seen that (1.22) and (1.27) are equivalent. Hence, it is apparent

that the restriction on T being a diagonal matrix can be dropped in order to broaden the class

of matrix ensembles for which Theorem 1.2 holds.

Theorem 1.3 [Pau07, Theorem 1] Consider the class of matrices of the form B =

R1/2XTXHR1/2 with R1/2 and T deÞned as in Theorem 1.1 and Theorem 1.2, respectively.

Then, with probability one, as M,N → ∞, with c < +∞, the empirical spectral distribution of
B converges weakly to a probability distribution function FB with associated Stieltjes transform

mF (z) such that, for each z ∈ C+, m (z) = mF (z) is given by

m (z) =

Z
1

a

Z
b

1+cbedT (b)− z
dH (a) , (1.34)
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where e = e (z) is the unique solution in C+ to the following equation, namely,

e =

Z
a

a

Z
b

1+cbedT (b)− z
dH (a) , (1.35)

In particular, in the case of the entries of X being Gaussian distributed, B can be

thought of as modelling the sample covariance matrix of a collection of multidimensional

observations with spatio-temporal correlations deÞned by R and T, respectively, namely,

B = 1
NYY

H , where Y = R1/2ΞT1/2 ∈ CM×N is matrix-variate normal distributed, i.e.,

Y ∼ CMNM×N (0M×N ,R,T), or, equivalently, Vec (Y) ∼ CNMN (0MN ,R⊗T) and E [B] =
Tr [T]R (see e.g. [Kol05, Chapter 2]).

In general, observe that, if we let R = IM , then we have e (z) = m (z) and equation (1.34)

yields the Stieltjes transform in (1.28).

Alternatively, if we instead have T = IN , then we Þnd thatm = mF (z) is the unique solution

to

m (z) =

Z
1

a 1
1+ce(z) − z

dH (a) . (1.36)

Indeed, from Lemma A.7, if we deÞne

w (z) = 1− c− czm (z) , (1.37)

it can be easily checked that

w (z) = 1− c− z c
M
Tr
h
(w (z)R− zIM)−1

i
=

1

1 + c
M Tr

h
R (w (z)R− zIM)−1

i ,
so that we have

w (z) ≡ 1

1 + ce (z)
,

establishing the fact that equations (1.22) and (1.36) coincide. In particular, note that, if

additionally R = IM , then we have e (z) = m (z) and, accordingly,

1− c− czm (z) ≡ 1

1 + cm (z)
.

1.1.3 Description of asymptotic spectrum of SCM-type matrices

In this dissertation, random matrix ensembles with a SCM-type structure will be of most rele-

vance, as we shall be interested in parameter estimation methods relying upon the second-order

statistics of the set of received observations. For the purposes of statistical inference based on

the sample estimate of the true covariance matrix, an analytical characterization of the eigen-

value support of the SCM is often of required. In the following, we brießy summarize some
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recently existing results on the asymptotic behavior of the support of the spectral distribution

of the random matrix ensemble introduced in Theorem 1.1 (see [Mes06a] for further details). In

particular, some notational deÞnitions of convenience are introduced that will be repetedly used

in our developments in the sequel.

From the one-to-one correspondance between the Stieltjes transform and the spectral dis-

tribution of a random matrix ensemble, in order to study the behavior of the support of the

limiting eigenvalue density of B = �R in Theorem 1.1, one may proceed by characterizing the

solutions to m = mF (z). To that effect, we note that the limiting Stieltjes transform in (1.22)

can be written as

m =
1

M

MX
m=1

1

λm (R) (1− c− czm)− z (1.38)

=
(1− c) f − z

czf
, (1.39)

where we have deÞned the new variable f in terms of m as

f =
z

1− c− czm . (1.40)

From (1.39) and (1.40), it can be easily checked that f and m are the inverse of each other for

z 6= 0, and establish a bijection between the set {m ∈ C : m 6= (1− c) /cz} and {f ∈ C : f 6= 0}.
Then, inserting (1.39) into (1.38), we see that in order to Þnd the solutions of the limiting

Stieltjes transform equation m, we can equivalently look at the solutions in f to

f

Ã
1− c

M

MX
m=1

λm (R)

λm (R)− f

!
= z. (1.41)

Indeed, using the deÞnition of w (z) in (1.37), observe that we can rewrite w (z) as

w (z) = 1− c− z c
M
Tr
h
(w (z)R− zIM)−1

i
= 1− c

"
1

M

MX
m=1

1 +
z

w (z)λm (R)− z

#

= 1− c

M

MX
m=1

w (z)λm (R)

w (z)λm (R)− z .

Consequently, from (1.40), we have

w (z) = 1− c

M

MX
m=1

λm (R)

λm (R)− f (z) , (1.42)

so that we get fw = z as in (1.41).

Using the previous deÞnitions, a direct characterization of the eigenvalue support can be

afforded as follows. Let us deÞne the following function of f , namely,

Φ (f) = f

Ã
1− c

M

MX
m=1

λm (R)

λm (R)− f

!
. (1.43)
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Figure 1.4: Limiting eigenvalue density for the random SCM-type ensamble in Example 1. The

splitting phenomena of eigenvalue clusters is illustrated as a function of the sample support N .

Then, interestingly enough, it turns out that the support of the eigenvalue density can be

described by using Φ (f) in (1.43) as the union of Q intervals, namely
£
x−1 , x

+
1

¤∪ . . .∪ hx−Q, x+Qi,
where

x−q = Φ
¡
f−q
¢
, x+q = Φ

¡
f+q
¢
, (1.44)

and f−1 < f+1 ≤ f−2 < f+2 ≤ . . . ≤ f−Q < f+Q are the unique real-valued solutions in f to

Φ0 (f) = 0, or, equivalently,

1

M

MX
m=1

µ
λm (R)

λm (R)− f
¶2
=
1

c
. (1.45)

The previous procedure for the analytical characterization of the theoretical asymptotic

density of the eigenvalue spectrum can be illustrated by using Figure 1.4, where the density

function associated with the random SCM-type ensamble in Example 1 is depicted for different

values of the ratio M/N . The eigevalue cluster splitting characterized by (1.44) is exempliÞed

by letting the number of sample observations grow for a Þxed observation dimension (i.e., by

decreasing the ratio c). Indeed, given two consecutive eigenvalues, there exists a minimum

number of samples per observation dimension that guarantees the corresponding eigenvalue
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clusters can be predicted from the minima of the function (namely, the solutions to Φ00 (f) = 0)
and the location of the horizontal bar given by the ratio N/M .

cluster to split. SpeciÞcally, consider the kth eigenvalue of R. It turns out that the cluster of

the asymptotic eigenvalue distribution corresponding to this eigenvalue can be ensured to be

separated from the clusters associated with adjacent eigenvalues if and only if

N

M
>
1

M

MX
m=1

µ
λm (R)

λm (R)− ξ
¶2
, (1.46)

where is the kth real-valed solution to Φ00 (f) = 0, i.e.,

1

M

MX
m=1

λ2m (R)

(λm (R)− f)3
= 0.

In Figure 1.5, the LHS of (1.45), obtained from Φ0 (f) = 0, is depicted for the SCM ensemble

in Example 1. The cluster splitting behavior described by (1.46) for a particular sample support

(N) can be predicted from the location of the minima of the displayed function.

Finally, Figure 1.6 shows the solutions to Φ (f) = 0, namely the LHS of

1

M

MX
m=1

λm (R)

λm (R)− f =
1

c
. (1.47)

In particular, the equation in (1.47) represents a canonical equation whose roots will be of
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special interest in our estimation framework. Furthermore, the function w (z) in (1.37) and its

equivalent representation in (1.42), as well as f (z) = z/w (z), will prove very useful for the

derivation of the estimators proposed in this thesis (see motivational remarks in Section 1.3.3).

1.1.4 Vector-valued spectral distributions

The asymptotic convergence results outlined above are concerned with the behavior of matrix

eigenvalue spectra. Very often, performance analyses and algorithm designs in statistical signal

processing and wireless communications can be relied on the eigenvalues of a certain random

matrix model, so that the previous results are of unquestionable practical interest, as it can be

drawn from the vast engineering literature that is based on Theorems 1.1 to 1.3. However, in

many other situations, the characterization of an objective function is required that depends

upon not only the eigenvalues but also the associated eigensubspaces. For instance, consider

the following quantity, namely, sHR−1s, where R is the covariance matrix of, for example, a

set of observed samples, and s is a given (nonrandom) signature vector. As it will be clariÞed

in the subsequent section, the proposed estimation methods in this thesis will be based on

the correction of the limit in the doubly-asymptotic regime of the corresponding traditional

estimator based on the SCM.

In particular, consider the limit of the random quantity sH �R−1s. Let the SCM be de-

composed as �R = �Q�Λ�Q
H
, where �Λ is a diagonal matrix with the eigenvalues of �R and �Q

is the matrix with the associated eigenvectors. From the spectral theorem, it is clear that

sH �Q�Λ
−1 �QHs. Thus, it is obvious that, in order to establish the limit of sH �R−1s, not only the

asymptotic behavior of the SCM spectrum but also that of the sample eigenvectors is required.

While there are fairly many results in the literature of RMT about the eigenvalues of random

matrices of increasing dimensions, not much has been reported about the eigenvectors.

Building on the fact that the eigenvectors of a Wishart matrix are Haar distributed, that is,

they follow a uniform distribution over the group of unitary matrices, the following result can

be established.

Theorem 1.4 [Sil86, Theorem 2] LetW be a N ×N standard complex central Wishart matrix

with eigendecompositionW = UAUH , such that y =
h
y1 · · · yN

i
= Ux has a uniform distrib-

ution over the unit sphere
©
x ∈ RN : kxk = 1ª (i.e., if z ∼ CN (0, IN ), then y ∼ z/ kzk). If the

entries of W have all moments Þnite, then for every t ∈ [0, 1],
XN (t)√
N

→ 0,

almost surely, as N →∞, where

XN (t) =

r
N

2

btNcX
n=1

y2n −
1

N
∼
r
N

2

1

kzk2
btNcX
n=1

|{z}n|2 −
kzk2
N

,
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where b·c denotes the greatest integer function.

Observe that, equivalently, we have
btNcX
n=1

y2n → t.

almost surely, as N → ∞. The previous result is like a law of large numbers, showing some

degree of similarity in the large matrix limit to the uniformity over the unit sphere in the Þnite

case.

In order to extend the asymptotic convergence results reviewed above to the study of the

limiting behavior of random quantities involving the eigensubspaces of a certain random matrix

ensemble, it will be convenient to deÞne the following empirical distribution function based on

the spectrum as well as the associated eigenspace of a random matrix M ∈ CM×M , namely,

HM
M (λ) =

MX
m=1

|am|2 I(λm(M)≤λ), (1.48)

where am = {a}m, a =Ux, with U being the matrix of eigenvectors ofM and x being deÞned

as in Theorem 1.4. Clearly, HM
M (λ) in (1.48) is a random probability distribution function, with

a Stieltjes transform given by

mH (z) = x
H (M− zIM)−1 x. (1.49)

Note that (1.48) represents a weighted version of the empirical eigenvalue distribution function

in (1.1), with the weights non-trivially characterizing the asymptotic convergence of the random

quantity in (1.48), or, equivalently, the associated Stieltjes transform in (1.49). In particular, if

am =
1
M , m = 1, . . . ,M , then HM

M (λ) in (1.48) and FMM (λ) in (1.1) clearly coincide.

The following result extends the spectral convergence theorems introduced previously in this

chapter (cf. Section 1.1.2) to the convergence of the Stieltjes transform of the more general

distribution function in (1.48).

Theorem 1.5 Let B = A +R1/2XTXHR1/2 with the matrices A and R1/2XTXHR1/2 be-

ing deÞned as in Theorems 1.2 and 1.3, respectively. Moreover, consider a nonrandom matrix

Θ ∈ CM×M with uniformly bounded Frobenius norm for all M . Then, with probability one, as

M,N →∞, with c < +∞, for each z ∈ C+,¯̄̄
Tr
h
Θ
³
(B− zIM)−1 − (A+ x (z)R− zIM)−1

´i¯̄̄
→ 0, (1.50)

where

x (z) =
1

M
Tr
h
T (IM + ceT)−1

i
, (1.51)

and e = e (z) is the unique solution in C+ to the following equation, namely,

e =
1

M
Tr
h
R (A+ x (z)R− zIM)−1

i
. (1.52)
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Corollary 1.1 (Asymptotic convergence of eigenvectors) Let Θ = a2a
H
1 , with a1,a2 ∈ CM

two deterministic vectors with uniformly bounded Euclidean norm for all M . Then, the result

establishes the asymptotic convergence of the class of vector-valued Stieltjes transforms deÞned

by (1.49), with M being equal to the family of random matrix ensambles deÞned by B 3.

Corollary 1.2 (Limiting Stieltjes transform of spectral distributions) Let Θ = 1
M IM . Then, if

A = 0M×M , (1.50) is equivalent to the convergence result in Theorem 1.3; if R = IM , (1.50)

coincides with the result in Theorem 1.2; Þnally, if A = 0M×M and T = IN , we get (1.22).

Proof. In the following, we give a sketch of the proof of Theorem 1.5 that shall summarize the

key elements and techniques involved in the derivations of the convergence results in Theorems

1.1 to 1.3.

Let us Þrst write

R1/2XTXHR1/2 =
1

N

NX
n=1

tnR
1/2ξnξ

H
n R

1/2 ≡ 1

N

NX
n=1

yny
H
n ,

where ti = {T}i,i, and deÞne
Bn = B− 1

N
yny

H
n .

For the sake of notational convenience, we will use the following deÞnitions in our derivations,

Q (z) = (B− zIM)−1 ,
Qn (z) = (Bn − zIM)−1 ,
P (z) = (A+ x (z)R− zIM)−1

Furthermore, deÞne

x (z) =
1

N

NX
n=1

tn
1 + tn

c
M Tr [RQ (z)]

.

Now, consider the equality

B− zIM = A− (zIM − x (z)R) + 1

N
R1/2ΞTΞHR1/2 − x (z)R.

We will proceed by factoring the difference of inverses as

P (z)−Q (z) = P (z)
µ
1

N
R1/2ΞTΞHR1/2 − x (z)R

¶
Q (z) ,

3From the assumptions on a1,a2, it is clear that simple normalization of the vectors by their norm yields a

random sub-probability distribution function FMM (λ) in (1.48), being a proper distribution if a1 = a2.
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where we have used the resolvent identity, i.e., A−1 −B−1 = B−1 (A−B)A−1. Furthermore,
we expand the middle factor asµ
1

N
R1/2ΞTΞHR1/2 − x (z)R

¶
Q (z) =

1

N

NX
n=1

tnR
1/2ξnξ

H
nR

1/2Q (z)− x (z)RQ (z)

=
1

N

NX
n=1

tnR
1/2ξnξ

H
nR

1/2Q (z)− tnRQ (z)

1 + tn
1
N Tr [RQ (z)]

=
1

N

NX
n=1

tnR
1/2ξnξ

H
nR

1/2Qn (z)

1 + tn
1
N ξ

H
n R

1/2Q (z)R1/2ξn
− tnRQ (z)

1 + tn
1
N Tr [RQ (z)]

,

where, in the last equality, we have used the Sherman-Morrison formula as

Q(z) = Qn(z)− 1

N

tnQn(z)R
1/2ξnξ

H
nR

1/2Qn (z)

1 + tn
1
N ξ

H
nR

1/2Qn (z)R1/2ξn
. (1.53)

Now, observe that we can write¡
ΞΞH − x (z)R¢Q (z) =

=
tn

1 + tn
1
N Tr [RQ (z)]

1

N

NX
n=1

tn
¡
1
N Tr [RQ (z)]− 1

N ξ
H
nR

1/2Qn (z)R1/2ξn
¢

1 + tn
1
N ξ

H
nR

1/2Qn (z)R1/2ξn
R1/2ξnξ

H
nR

1/2Qn (z)

+
tn

1 + tn
1
N Tr [RQ (z)]

1

N

NX
n=1

R1/2ξnξ
H
n R

1/2Qn (z)−RQn (z)

+
tn

1 + tn
1
N Tr [RQ (z)]

1

N

NX
n=1

RQn (z)−RQ (z) .

Consequently, noting from Lemma A.8 that¯̄̄̄
¯ tn

1 + tn
1
N Tr [RQ (z)]

¯̄̄̄
¯ < +∞,

we just need to show that, as M,N →∞ with M/N → c < +∞, almost surely,¯̄̄̄
¯ 1N

NX
n=1

Tr
h
Θ1

³
R1/2ξnξ

H
nR

1/2Qn (z)−RQn (z)
´i¯̄̄̄¯→ 0 (1.54)¯̄̄̄

¯ 1N
NX
n=1

aH (RQn (z)−RQ (z))b
¯̄̄̄
¯→ 0 (1.55)¯̄̄̄

¯ 1N
NX
n=1

µ
1

N
Tr [RQ (z)]− 1

N
ξHn R

1/2Qn (z)R
1/2ξn

¶
tnaHR1/2ξnξ

H
nR

1/2Qn (z)b

1 + tn
1
N ξ

H
n R

1/2Qn (z)R1/2ξn

¯̄̄̄
¯→ 0

(1.56)

where we have deÞned �Θ = P (z)Θ.

In particular, the result in (1.54) follows directly from Lemma A.5, using C = �ΘR
1/2

and

Un (z) = R1/2Qn.
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Let us now consider (1.55). As before, applying (1.53) we just need to show¯̄̄̄
¯ 1N

NX
n=1

tn

1 + tn
1
N ξ

H
nR

1/2Qn (z)R1/2ξn

1

N
ξHnR

1/2Qn (z) �ΘQn(z)R
1/2ξn

¯̄̄̄
¯→ 0

According to Lemma A.2, it is enough to prove that

max
1≤m,n≤N

E

"¯̄̄̄
¯ 1N tnξHnR1/2Qn (z) �ΘQn(z)R1/2ξn1 + tn

1
N ξ

H
n R

1/2Qn (z)R1/2ξn

¯̄̄̄
¯
p#
≤ C

N1+δ
, (1.57)

for some constants C, δ > 0 and p > 1 not depending on N . Using the Cauchy-Schwarz

inequality, we can write the expectation in (2.78) as

E

"¯̄̄̄
¯ 1N tnξHnR1/2Qn (z) �ΘQn(z)R1/2ξn1 + tn

1
N ξ

H
n R

1/2Qn (z)R1/2ξn

¯̄̄̄
¯
p#

≤ E1/2
¯̄̄̄¯ tn

1 + tn
1
N ξ

H
nR

1/2Qn (z)R1/2ξn

¯̄̄̄
¯
2p
E1/2

"¯̄̄̄
1

N
ξHnR

1/2Qn (z) �ΘQn(z)R
1/2ξn

¯̄̄̄2p#
.

Again, we note that, from Lemma A.8,¯̄̄̄
¯ tn

1 + tn
1
N ξ

H
n R

1/2Qn (z)R1/2ξn

¯̄̄̄
¯ < +∞,

and so is also its expectation bounded. Therefore, we just need to show

max
1≤m,n≤N

1

Np
E1/2

·¯̄̄
ξHnR

1/2Qn (z) �ΘQn(z)R
1/2ξn

¯̄̄2p¸ ≤ C

N1+δ
, (1.58)

but this holds for p ≥ 2 , since the expectation in (1.58) is bounded for p ≥ 1 from Lemma A.4.

Finally, the convergence in (1.56) can be similarly proved following the same line of reasoning

as for (1.55).

Corollaries 1.1 and 1.2 establish the asymptotic convergence of the eigenvalues and associated

eigensubspaces of a broad class of random matrix ensembles through the characterization of the

limiting behavior of appropriately deÞned Stieltjes transforms. The double-limit asymptotics of

the spectrum of certain random matrix models has been extensively used in the literature for

the performance characterization and design of communication systems. In this dissertation, we

focus on the performance and consistent estimation of traditional statistical signal processing

methods in the dobly-asymptotic regime. To that effect, an explicit characterization of the

limiting convergence of the eigenvectors of sample covariance matrices that is less common in

the literature will be required.

Before proceeding with a short introduction to our generalized consistent estimation frame-

work, in the following section we provide and example of application of the limiting characteri-

zation of the eigenvectors of random matrices to a typical problem in wireless communications.
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In particular, the limiting eigensubspace characterization of the random matrix ensamble un-

derlying the type of information-plus-noise covariance matrices, and complementing the model

in Theorem 1.5 is studied.

1.2 Application example of the limiting convergence of random

eigenspaces

In this section, an analitycal characterization of the transient regime of a training-based multiple-

input multiple-output (MIMO) system exploiting the full diversity order of an arbitrarily corre-

lated MIMO fading channel via optimal beamforming and combining is presented. No channel

state information is assumed to be available at either the transmitter or the receiver side, so

that the design of the optimal transmit beamformer and receive combiner is necessarily based

on a Þnite collection of samples observed during a training phase. The focus is on practical

scenarios where the length of the training sequence is comparable in magnitude to the system

size. In these situations, the performance of the MIMO system can be expected to suffer from

a considerable degradation. In order to characterize the actual performance under the previous

realistic conditions, a large-system performance analysis is proposed that builds upon the theory

of large-dimensional random matrices. In particular, the asymptotic spectral characterization

of information-plus-noise covariance matrices in [Doz07b, Theorem 1.1] is extended to the case

involving also the eigensubspaces. The proposed method is numerically validated in the context

of a typical MIMO application.

1.2.1 Diversity Analysis of MIMO Systems with Limited Training

The performance of MIMO channels can be signiÞcantly enhanced if the channel state is known

to the transmitter, the receiver, or both. Alternative blind techniques applied in order to avoid

channel training may often incur in a nonnegligible loss of performance and a fairly increased

computational complexity. In practice, the coefficients of a MIMO channel often vary over time

and need to be estimated. If the channel state varies slowly, one may carry out some mea-

surements in order to learn the channel statistics and estimate (or predict) its instantaneous

realization. Typically, the channel coefficients are measured at the receiver by having the trans-

mitter send known training vectors. Knowledge of the channel at the receiver can be sent to the

transmitter via feedback channels [Lov04].

The impact of the realistic availability of an imprecise channel state information (CSI) in

the capacity due to multiplexing gains predicted for MIMO systems is summarized in [Gol03].

On the other hand, the tradeoff between the time and the power allocated to training operation

and data transmission was evaluated in [Has03]. In particular, the authors provide the optimum
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number of pilots and training power allocation of a training-based MIMO system in the sense

of maximizing a lower-bound on the Shannon capacity over the class of ergodic block-fading

(memoryless and uncorrelated) channels, as a function of the number of transmit and receive

antennas, the received signal-to-noise ratio (SNR) and the length of the fading coherence time.

Earlier related contributions include [Mar99b], as well as [Mar99c, Zhe02], where the number

of channel uses available for training and the optimal input distribution achieving capacity

at high SNR over unknown block-fading uncorrelated MIMO channels with a Þnite coherence

time interval is investigated. Furthermore, the effects of pilot-assisted channel estimation on

achievable data rates over frequency-ßat time-varying channels is analyzed in [Sam03]. Along

with the time-division multiplexing training scheme considered in the previous works, a tight

lower-bound on the maximum mutual information of a MIMO system using superimposed pilots

is derived in [Col07].

Much less effort has been placed in understanding the consequences of the lack of CSI on

the achieved diversity gain of an unknown MIMO channel that is learned by means of a training

sequence of Þnite length. Indeed, perfect knowledge of the channel realization can be used in

general to modulate each transmitted symbol onto a beamforming vector matched to the channel

in order to improve the received SNR. In particular, if the MIMO channel is completely known

to the transmitter, the evident choice of the beamforming vector is the right eigenvector of the

channel matrix corresponding to the maximum singular value in amplitude, which maximizes

the received SNR. In [Rub08], the problem of optimal transmit beamforming maximizing the

received SNR over unknown MIMO channels with given Gaussian statistics is addressed.

In the following application example, we will focus on the problem of achieving full diversity

gain over an unknown, arbitrary block-fading MIMO channel by optimal transmit beamforming

and receive combining. We assume a certain given amount of channel uses is allocated for training

purposes at the beginning of each coherence interval, such that both sides can learn the channel

from a sequence of known training beams. Instead of following the generally suboptimal approach

consisting of obtaining an intermediate estimate of the channel matrix to be used for further

processing, we pursue the direct estimation of both optimal (channel-adapted) beamformer

vector and receive combiner using the sequence of pilots during the so-called training phase. In

particular, we are interested in the actual empirical performance obtained from a limited number

of training samples per degree-of-freedom. To that effect, we provide a large-system analysis of

such a training-based MIMO scheme that allows us to consider, as in practice, the number of

transmit and receive antennas, as well as the length of training sequence to be comparable in

magnitude.

The application example is structured as follows. In Section 1.2.2, the problem of pilot-

aided transmiter and receiver estimation is addressed. Section 1.2.3 provides a large system

performance analysis of the transient estimation regime, which is numerically validated in Section



1.2. APPLICATION EXAMPLE OF THE LIMITING CONVERGENCE OF RANDOM
EIGENSPACES 27

1.2.4. After the Þnal discussion in Section 1.2.5, the derivation of the asymptotic convergence

results are given in the appendices.

1.2.2 Channel model and transceiver estimation

Consider the linear vector channel model corresponding to a MIMO transmission system with

M receive antennas and K transmit antennas, namely, the received signal is expressed as

y (n) =Hx (n) + n (n) , n = 1, 2, . . . (1.59)

where x (n) ∈ CK represents the transmitted signal, n (n) ∈ CM is the background noise, and

H ∈ CM×K models an arbitrary MIMO channel matrix. The noise process is assumed to be

wide-sense stationary, with independent and identically distributed (i.i.d.) standarized complex

Gaussian4 vector entries such that E
h
n (l)n (m)H

i
= σ2nδl,mIM , where δl,m is the Kronecker

delta function. SpeciÞcally, one wishes to modulate a sequence of transmitted symbols x (n)

onto a (unit-norm) beamforming vector v ∈ CK (x (n) = vx (n)), so that the received signal

becomes

y (n) =Hvx (n) + n (n) , n = 1, 2, . . . (1.60)

As mentioned above, the purpose of using multiple antennas here is to enhance through

beamforming the SNR at the receiver side and after matched Þltering, namely,

SNR =

¯̄
uHHv

¯̄2
σ2n

, (1.61)

where u ∈ CM represents the receiver matched to the MIMO channel. In particular, the receiver

and transmiter vectors maximizing the SNR are resp. the right and left top singular vectors of

H =UΣVH , henceforth denoted by u1 and v1. Accordingly, the maximum achievable SNR is

max
k

½
SNRk =

σ2k
σ2n

¾
= SNR1 =

σ21
σ2n

, (1.62)

where σ2k = [Σ]2k,k is the power over the kth channel eigenmode and SNRk is its associated

signal-to-noise ratio.

We assume that no CSI is available at either the transmitter or the receiver side, and that a

sequence ofN Þxed pilot beams b (n) ∈ CK consuming a certain given amount of training energy
are available for transceiver estimation purposes. Accordingly, the received signal becomes

(x (n) = b (n))

y (n) =Hb (n) + n (n) , n = 1, 2, . . .

4A random variable is standarized complex Gaussian if its real and imaginary parts are i.i.d. with mean zero

and variance 1/2.
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By collecting the column vector observations at different instants of time in a matrixY ∈ CM×N ,
we can rewrite

Y= [y (1) , . . . ,y (N)]

=HB+N, (1.63)

where we have deÞned

B= [b (1) , . . . ,b (N)] ,

N= [n (1) , . . . ,n (N)] .

In the following, we consider the problem of empirical estimation of the optimal transceiver

given a Þxed training energy budget (i.e., power allocation strategy across pilot beams and

length of training phase), namely,

{u,v} = arg max
u,v:kBk2

F≤E
E [SNR|y (1) , . . . ,y(N)] ,

where E determines the constraint on the total energy consumed by training. In particular, note

that the total energy constraint will be related to the power allocated to the beamvector pilots

sended during the training phase, as well as the lenght of this training window (i.e., number of

training beams). Furthermore, for estimation purposes, observe that u1 is the top eigenvector of

HHH , whereas v1 is the top eigenvector of HHH. The achieved system performance based on

pilot-assisted transceiver estimation clearly depends on the selection of training beams. In this

work, we will focus on the more relevant case in practice of orthogonal training. In particular,

we assume that the training phase is deÞned by a set of orthogonal (unitary) beams satisfying

the training budget constraint, such that BBH = E/KIK . In other words, the training se-

quences (colum vectors of B) satisfy the Welch-bound equality (WBE) [Wel74, Ver98]. In the

multiuser detection literature, WBE signature sequences are known to maximize the sum ca-

pacity achieved by overloaded symbol-synchronous code-division multiple-access channels with

equal average-input-energy constraints [Mas93, Rup94]. The optimality of WBE sequences for

transmit beamforming schemes maximizing the received SNR is discussed in [Rub08]. For the

purposes of statistically analyzing the effect of limited training in the performance of pilot-

assisted MIMO systems, it will be in order to assume in the sequel the following model for the

training matrix, namely, B = E/KUH , where the columns of U ∈ CN×K are orthogonal, such

that UHU = IK .

Receiver estimation. Since the top eigenvector of HHH is equal to the principal eigen-

vector of the covariance matrix of the received observations, namely,

R = E
£
y (n)yH (n)

¤
= E/KHHH + σ2nIM ,
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the problem of estimating u1 can be directly approached by equivalently Þnding an estimator of

the top eigenvector of R. To that effect, we may use the sample estimate of the latter, namely

the sample covariance matrix (SCM), i.e.,

�R =
1

N

NX
n=1

y (n)yH (n) =
1

N
YYH . (1.64)

From the strong law of large numbers, the SCM is a consistent estimator of the theoretical

covariance matrix. Note that, as the length of the training phaseN increases, the SCM converges

to its average E
h
�R
i
= R. In fact, the SCM is the minimum variance unbiased estimator of R

[And03]. Moreover, for Gaussian observations, the maximum-likelihood (ML) estimator of the

principal eigenvector of R is the corresponding eigenvector of �R [Mui82].

Transmitter estimation. In order to Þnd an estimator of the optimum transmitter, con-

sider the following construction based on the (known) training vectors, namely,

�C =
1

N

³
B#
´H
YHYB#, (1.65)

where (·)# denotes the Moore-Penrose pseudoinverse, i.e., B# =
¡
BBH

¢−1
B. Indeed, note

that, as N goes to inÞnity, almost surely, �C→ C, where

C=E
h
�C
i

=
1

N
HHH+ σ2n

MK

EN
IK .

In the following section, we provide an analytical characterization of the performance of a

training-based MIMO system under the realistic assumption of a training phase length compa-

rable in magnitude with the system dimension.

1.2.3 Large system performance analysis

In this section, we are interested in assessing the performance of a training-based MIMO system

under a limited training budget. In particular, we will concentrate on the effect of a bounded

ratio between training sample-size and number of degrees of freedom. In this work, in order to

study the effect of the energy budget limitation as essentially due to a Þnite training sequence

length, we assume a Þxed power allocation across training beams given by kb (n)k2 = 1, n =

1, . . . , N .

Using the principal eigenvectors of �R and �C, denoted in the sequel by �u1 and �v1, respectively,

as the estimators of resp. the optimum receiver and transmitter maximizing the SNR, we are



30 CHAPTER 1. TECHNICAL BACKGROUND AND MATHEMATICAL TOOLS

interested in evaluating the performance loss incurred in practice by the use of the estimated

solutions, namely,

dSNR =

¯̄̄̄
¯
K∧MX
k=1

p
SNRk �u

H
1 ukv

H
k �v1

¯̄̄̄
¯
2

. (1.66)

Observe that the lack of an accurate estimate will contribute to the spread of power over the

different orthogonal subchannels (similar to a linear programming suboptimal solution to the

power allocation problem). In order to analitically characterize the performance measure in

(1.66), it is enough to characterize the projection of the transceiver estimate obtained from a

Þnite training sample-support onto the eigensubspaces spanned by the different right and left

singular vectors. Indeed, for an unlimited training energy budget, as N →∞ (inÞnite training

phase length), we clearly have �uH1 ukv
H
k �v1 → 1δ1,k, and, accordingly,

dSNR → SNR1.

The (Þnite-dimensional) statistical analysis of the quantity in (1.66) for Þnite system-size and

limited training energy is rather intricate, and only an asymptotic characterization in the large-

sample regime might be affordable [And03, Mui82]. Therefore, we focus on a large-system

analysis of (1.66) and let not only the number of training samples (N), but also both the

number transmit (K) and receive (M) antennas (i.e., the system dimension) go to inÞnity at a

constant rate, deÞned by α = M/N and β = K/N . Since the previous asymptotic framework

better matches realistic deployment conditions in practice, we may expect our results to more

approppriately model the system performance in a practical setting characterized by a limited

amount of training beams per degree-of-freedom.

Regarding the projections in the summation in (1.66) involving the estimates �u1 and �v1, we

may rely on the following procedure based on the power method for Þnding the eigenvalues and

associated eigenvectors of an arbitrary Hermitian matrix. In particular, let us concentrate for

instance on the top eigenvector of �R as the estimate of the optimal receiver. Then, consider the

following quantity, namely,

υH
³
�R− ξIM

´−1
ukµ

υH
³
�R− ξIM

´−2
υ

¶1/2 , (1.67)

where υ ∈ CK is any vector with a non-zero component in the direction of �u1 and ξ = λ1
³
�R
´
+Y,

with λ1
³
�R
´
being the maximum eigenvalue of �R and Y being a small strictly positive constant.

Indeed, �uH1 uk can be arbitrarily well approximated by the expression in (1.67) for an arbitrarily

small Y > 0. For the purpose of analysis, we can use υ = uk (as M,N go to inÞnity, with

probability one, �u1 has a non-zero component in the direction of uk, for each k). Then, we
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Þnally have

uHk

³
�R− ξIM

´−1
ukµ

uHk

³
�R− ξIM

´−2
uk

¶1/2 . (1.68)

Note that an equivalent procedure follows for the optimal combiner at the receiver side by

replacing the sample covariance matrix �R with the matrix �C in (1.65), and uk with vk. In

particular, using the previous procedure, an arbitrarily well approximated SNR estimate in

(1.66) can be obtained as

dSNR (ξ1, ξ2) =

¯̄̄̄
¯̄̄̄
¯
K∧MX
k=1

p
SNRk

uHk

³
�R− ξ1IM

´−1
ukµ

uHk

³
�R− ξ1IM

´−2
uk

¶1/2 vHk

³
�C− ξ2IK

´−1
vkµ

vHk

³
�C− ξ2IK

´−2
vk

¶1/2
¯̄̄̄
¯̄̄̄
¯
2

,

(1.69)

where ξ1 = λ1
³
�R
´
+ Y1 and ξ2 = λ1

³
�C
´
+ Y2, with Y1 and Y2 being two two arbitrarily small

strictly positive constants.

For the purposes of validating the proposed analytical characterization, we consider a

Rayleigh MIMO channel matrix with particularly low-rank, such that the highest eigenmode

alone essentially characterizes the full diversity gain that can be achieved over the channel.

Note that, apart from simplifying the numerical validation, such a scenario renders specially

relevant the accurate analysis and estimation of the diversity gain achieved by a MIMO system.

Thus, as an approximation of dSNR (ξ1, ξ2), we consider

gSNR (ξ1, ξ2) =

¯̄̄̄
¯̄̄̄
¯
p

SNR1
uH1

³
�R− ξ1IM

´−1
u1µ

uH1

³
�R− ξ1IM

´−2
u1

¶1/2 vH1

³
�C− ξ2IK

´−1
v1µ

vH1

³
�C− ξ2IK

´−2
v1

¶1/2
¯̄̄̄
¯̄̄̄
¯
2

, (1.70)

In particular, we build upon the fact that the expression in (1.68) is given in terms of the

resolvent of �R. Interestingly enough, the so-called Stieltjes transform of the empirical eigenvalue

distribution function of this matrix is also deÞned in terms of its resolvent. Hence, we may

resort to the theory of the spectral analysis of large-dimensional random matrices in order to

analytically characterize resolvent-type expressions of �R as a function of its limiting spectral

distribution. In particular, the following theorem provides an analytical characterization of the

asymptotic behavior of the spectrum of �R.

Theorem 1.6 [Doz07b, Theorem 1.1] Let �R = 1
N (S+N) (S+N)

H , where N is a M × N
complex random matrix, whose entries have independent and identically distributed real and

imaginary parts, with mean zero, variance σ2/2 and bounded moments, and S a M ×N complex

matrix, such that the empirical distribution function of the eigenvalues of N−1SSH converges

almost surely to the probability distribution function of the eigenvalues of the nonrandom matrix
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Ψ ∈ CM×M , as M,N → ∞ with M/N → c < +∞. Moreover, consider two M-dimensional
deterministic complex vectors a,b with uniformly bounded Euclidean norm for all M . Then,

with probability one, in the previous asymptotic regime, the Stieltjes transform of the empirical

eigenvalues distribution function of �R converges as¯̄̄̄
¯ 1M Tr

·³
�R− zIK

´−1¸− 1

M
Tr

"µ
1

1 + σ2cm
Ψ+ σ2w (z) IM − zIM

¶−1#¯̄̄̄¯→ 0, (1.71)

where

w (z) = 1− c− czm, (1.72)

and m = m (z) is the solution for any z ∈ C+ of the following functional equation in m, namely,

m =
1

M
Tr

"µ
1

1 + σ2cm
Ψ+ σ2w (z) IM − zIM

¶−1#
. (1.73)

Furthermore, since, for any M ×N random matrix B, the Stieljtes transforms of BBH and

BHB are related as

mBBH (z) = −1− c
z

+ cmBHB (z) , (1.74)

the result in Proposition 1.6 can be used to characterize the asymptotic spectrum of �C.

The result in Theorem 1.6 can be easily extended to the case in which N is matrix-variate

normal distributed with arbitrary spatio-temporal correlations. The latter is a special case

corresponding to a Kronecker correlation structure of the more general result in [Hac07], where

a random matrix N with an arbitrary variance proÞle is considered.

Note that the asymptotic convergence established by (1.71) concerns only the spectrum of

the matrix �R. However, both numerator and denominator in (1.68) are given as functions of

also the eigensubspaces of the matrix. Thus, an extension of Theorem 1.6 characterizing the

asymptotic behavior of vector-valued quadratic forms of the resolvent of �R is required. The

following proposition provides an asymptotic description of the spectrum and the eigenvectors

of the matrix �R.

Proposition 1.1 Let �R be deÞned as in Theorem 1.6. Furthermore, consider two M-

dimensional deterministic complex vectors a1,a2 with uniformly bounded Euclidean norm for

all M . Then, as M,N →∞, M/N → c < +∞ , almost surely for any z ∈ C+,¯̄̄̄
¯aH1 ³�R− zIK´−1 a2 − aH1

µ
1

1 + σ2cm
Ψ+ σ2 (1− c− czm) IM − zIM

¶−1
a2

¯̄̄̄
¯→ 0, (1.75)

where m is given in Theorem 1.6.

Proof. See Appendix A.
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Hence, from the properties of the Stieltjes transform of probability measures outlined in

Section, an asymptotic equivalent of (1.68) can be obtained as

Corollary 1.3 Let a1 = a2 = u1 in Proposition 1.1 and consider σ2 = 1, and z = ξ, with

ξ = λ1
³
�R
´
+ Y, Y > 0. Then, as M,N →∞, M/N → c < +∞ ,

u1
³
�R− ξIM

´−1
u1µ

uH1

³
�R− ξIM

´−2
u1

¶1/2 ³ U1 (ξ)

(U2 (ξ))
1/2
, (1.76)

where

U1 (ξ) =u
H
1 T

−1u1, (1.77)

U2 (ξ) = ζ (ξ)u
H
1 T

−2u1, (1.78)

with

T =
1

1 + cm
Ψ+w (ξ) IM − ξIM ,

and

ζ (ξ) =
1 + cm

1 + cm− 1
N Tr [T

−1] + (w (ξ)− ξ (1 + cm)) 1N Tr [T−2]
.

Proof. See Appendix B.

Finally, based on the results in Proposition 1.1 and Corollary 1.3, we have the following

asymptotic limit for the proposed approximation in (1.66) of the SNR in (1.70), namely,

Proposition 1.2 Under the previous statistical assumptions, for SNRk uniformly bounded for

all k, as M,N →∞, M/N → c < +∞ ,

gSNR (ξ1, ξ2) ³
¯̄̄̄
¯pSNR1

U1 (ξ1)

(U2 (ξ1))
1/2

V1 (ξ2)

(V2 (ξ2))
1/2

¯̄̄̄
¯
2

, (1.79)

where V1 and V2 are deÞned equivalently to, respectively, U1 and U2 for the covariance matrix
�C.

Proof. See Appendix C.

In the following section, we numerically evaluate the accuracy of the approximant asymp-

totic equivalent (1.79) in describing the transient regime of pilot-aided MIMO transceivers with

limited training.
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Figure 1.7: Simulated and theoretically predicted SNR performance of MIMO system with

empirically estimated optimal transceiver. K = 10,M = 8.

1.2.4 Numerical results

In this section, we numerically validate the analytical characterization of the transient SNR

performance of a training-based MIMO system. SpeciÞcally, we assume that both optimal

transmit beamformer and receive combiner are empirically estimated from a Þnite collection

of channel observations during a training phase of given length as described in Section 1.2.2.

In particular, the empirical performance in terms of averaged received SNR conditioned to the

available training samples, i.e., E [SNR (N + 1)|y (1) , . . . ,y (N)], is compared with the large-
system performance approximation afforded in Section 1.2.3. Figure 1.7 shows both numerically

simulated and theoretically approximated SNR performance for a MIMO system with K =

10 transmit antennas and M = 8 receive antennas, versus the length of the training phase

(normalized by K). The noise variance is assumed to be one.
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1.2.5 Concluding remarks

In this section, we have presented an analitycal characterization of the transient regime of

a training-based MIMO system exploiting the full diversity order of an arbitrarily correlated

MIMO fading channel via optimal beamforming and combining. Since no channel state infor-

mation is in practice available at either the transmitter or the receiver side, the design of the

optimal transmit beamformer and receive combiner is most often based on a Þnite collection of

samples observed during a training phase. If the length of the training sequence is comparable

in magnitude to the system size, the performance of the MIMO system can be expected to suf-

fer from a considerable degradation. While the Þnite-size statistical analysis of the problem is

rather involved, the characterization based on the limiting behavior in the large-sample asymp-

totic regime does not provide any insight into the transient performance. In order to shed some

light on the actual performance under the previous practical conditions, we have proposed a

large-system SNR performance analysis that build upon the theory of large-dimensional random

matrices. In particular, our results are based on an extension of the asymptotic spectral char-

acterization of information-plus-noise covariance matrices to the case involving also the eigen-

subspaces via certain vector-valued quadratic forms of the resolvent. A power-iteration-based

approach allows for a limiting description of the projection of the sample principal eigenvec-

tor onto the true principal eigenspaces. The proposed method is numerically validated in the

context of a typical application of training-based MIMO systems.

1.3 General Statistical Analysis

In this section, we deal with the problem of statistical inference for general, arbitrarily large-

dimensional observations, which is namely the ultimate motivation for the present dissertation.

In the following, we shortly summarize the basic idea underlying the proposed estimation ap-

proach based on RMT, and then outline the fundamentals of Girko�s general statistical analysis

of observations of large dimensions. In particular, GSA has served as a motivating approach to

the inferential methods proposed in this thesis.

1.3.1 Statistical inference based on the SCM

In this dissertation, we shall be interested in parametric statistical methods based on the second-

order statistics of a collection of observed samples. More speciÞcally, a class of theoretically

optimal solutions given in terms of the true covariance matrix (and, therefore, from the spectral

factorization theorem, as a function of its eigenvalues and eigenvectors) will be approximated

or estimated using the SCM. In particular, we propose a familly of estimators of the previous

spectral functions of the covariance matrix that are consistent for an arbitrarily large observation
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dimension. Note that by imposing such a condition we are likely to obtain a better estimation

performance in realistic scenarios, namely characterized in practice by the number of samples

available and the observation dimension being comparable in magnitude. A possible approach

consists of analyzing the behavior of the traditional estimator, consistent in the conventional

limiting regime where the size of the sample increases without bound whereas its dimension

remains Þxed, in a more meaningful asymptotic regime that allows for both sample size and

dimension to go to inÞnity at the same rate. Then, based on the limiting behavior established, a

correction may be introduced in order for the newly found estimator to converge to the original

quantity depending on the true covariance matrix.

1.3.2 G-estimation

We present next the basic rationale behind Girko�s general statistical analysis of observations of

large dimensions [Gir95, Gir98].

Let us begin with the key elements. In GSA, an instance of the Stieltjes transform is deÞned

on the Þeld of the real numbers and associated with a weighted version of the empirical eigenvalue

distribution function of the SCM. By SCM, denoted as �R, we will hereafter mean the random

matrix ensemble in Theorem 1.22. Moreover, R will denote the theoretical covariance matrix.

We introduce the so-called real-valued Stieltjes transform (also known as η-transform in the

engineering literature [Tul04, Section 2.2.2]) of a distribution function, say G, deÞned as

rG (x) =

Z
dG (λ)

1 + λx
, x ∈ R, x ≥ 0. (1.80)

Note that, as for the characterization of the Stieltjes transform in Section 1.1.1 as a MGF,

observe that we can write

rG (x) =
∞X
k=0

(−x)kMG
k ,

where is the kth moment of G.

Interestingly enough, the real-valued Stieltjes transform in (1.80) turns out to be of special

interest for the characterization of the asymptotic behavior of certain spectral function of R in

terms of the eigenspectrum of �R. In particular, let FMM (λ) in (1.1) and HM
M (λ) in (1.48) be

deÞned in terms of the eigenvalues and eigenvectors of R, and let rF (x) and rH (x), denote their

respective real-valued Stieltjes transforms, i.e.,

rF (x) =
1

M
Tr
h
(IM + xR)−1

i
, (1.81)

and

rH (x) = a
H
1 (IM + xR)−1 a2, (1.82)
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where a1,a2 ∈ CM are two nonrandom vectors with uniformly bounded Euclidean norm for

all M . Furthermore, observe that, when z is restricted to the real negative axis, the following

relations hold, namely,

rF (x) =
1

x
mF

µ
−1
x

¶
, rH (x) =

1

x
mH

µ
−1
x

¶
.

Assume that a given quantity depending on R through different combinations of the Stieltjes

transforms of rF (x) and rH (x) is to be estimated. If the true covariance matrix R is directly

replaced by its sample estimate �R, only consistency in the classical sense, i.e. as the number

of samples go to inÞnity, can be guaranteed. Since both the number of samples and the dimen-

sion of the observations are most often in practice comparable in magnitude, an (asymptotic)

approximation of the given quantity in a double-limit regime considering a Þxed constant ratio

between both M and N will turn out to better resemble realistic situations. In the sequel,

consistency related to this doubly-asymptotic regime will be referred to as M,N-consistency, as

a generalization of classical N-consistency. In particular, note that M,N-consistent estimators

are clearly consistent for arbitrarily high-dimensional observations.

According to General Statistical Analysis, M,N-consistent estimators of quantities deÞned

in terms of Stieltjes transforms of the type shown above can be found by simply identifying

a uniformly consistent estimator of the generic (real-valued) Stieltjes transform in (1.80) un-

der the same asymptotic conditions. From this basic estimator of the real Stieltjes transform,

M,N-consistent estimators of more complicated quantites relying on rF (x) and rH (x) as build-

ing blocks can be readily derived without any assumption on the actual distribution of the

observations (other than zero-mean, bounded moments and circularity).

SpeciÞcally, it is proved in [Gir98] that the limiting real-valued Stieltjes transforms of FMM (λ)

and HM
M (λ) converge as M,N →∞, with M/N → c < +∞, as

rF (x) ³ 1

M
Tr

·³
IM + θ (x) �R

´−1¸
, (1.83)

and

rH (x) ³ xH
³
IM + θ (x) �R

´−1
x, (1.84)

respectively, where θ (x) is the unique positive solution to the following canonical equation,

namely,

θ (x)

µ
1− c+ 1

N
Tr

·³
IM + θ (x) �R

´−1¸¶
= x. (1.85)

In the theory of GSA, the RHS of (5.27) and (5.28) are regarded as G2-estimator and G25-

estimator, respectively (see e.g. [Gir98, Chapter 14]). Clearly, if the sample-size increases

and the observation dimension remains constant (c → 0), the estimator is equivalent to its N-

consistent counterpart from classical estimation theory. This approach was used in [Mes06c] (see

also [Mes05, Chapter 4]) to estimate the (asymptotically) optimum parameter of a diagonally

loaded minimum variance beamformer under Þnite sample-support.
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1.3.3 Generalized Consistent Estimation

In the following, a systematic approach to obtain the previously introduced G-estimators is

presented. It is based on the inversion of the intrinsic relationship between the asymptotic

spectrum of R and the limiting Stieltjes transform of the SCM spectrum.

More precisely, observe that, from the asymptotic limit of the Stieltjes transform of the

empirical spectral distribution function of �R (cf. Theorem 1.1), the following relations are

straightforward for each z ∈ C+, namely,

�w (z) ³ w (z) , (1.86)

�f (z) ³ f (z) , (1.87)

as M,N →∞, with c < +∞, where we have deÞned

�w (z) = 1− c− cz 1
M
Tr

·³
�R− zIM

´−1¸
(1.88)

= 1− c

M

MX
m=1

λm
³
�R
´

λm
³
�R
´
− z

, (1.89)

and
�f (z) =

z

�w (z)
, (1.90)

respectively. In particular, the expression in (1.89), namely the estimator of the canonical

equation in (1.47), will be of special use for the description of our generalized estimators.

The previous asymptotic equivalents are deÞned for each z ∈ C+. For the purposes of

establishing our framework for the generalized consistent estimation of spectral functions of

R, an extended asymptotic convergence for z ∈ R will be needed. Indeed, according to the

estimation procedure that we follow (to be described below), we will be interested in evaluating

the limiting Stieltjes transform of the spectrum of �R, noted here as mR̂ (z) (that we recall is

expressed in terms of the spectrum of R) at x ∈ R outside the limiting eigenvalue support.

Essentially, by expressing the searched functions of R in terms of a limiting Stieltjes transform

associated with �R, an M,N-consistent estimator of the original quantity can be immediately

found in terms of the SCM. We develop on these ideas later in this section, but, Þrst, consider

the following extension of the limit of mR̂ (z) on R as the solution, for z = x+ j y, and y → 0+,

to

m (x) =
1

M

MX
m=1

1

λm (R) (1− c− cxm (x))− x . (1.91)

The roots m = m (x) of the polynomial equation in (1.91) can be uniquely deÞned as follows. If

m ∈ C+, then the root is unique and x belongs to the interior of the eigenvalue density support.
In this case, the strictly positive imaginary part of the limiting solution determines, by Property
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(P7) in Section 1.1, a nonzero contribution to the eigenvalue density function. Otherwise, all

the solutions of m are real, such that x lies outside the support, and there is a unique root such

that
1

M

MX
m=1

µ
λm (R) (1− c− cxm (x))

λm (R) (1− c− cxm (x))− x
¶2
≤ 1

c
. (1.92)

In particular, equality in (1.92) holds for values of x belonging to the boundary of the density

clusters deÞned in Section 1.1.3 from the unique real-valued solution in f to Φ0 (f) = 0.

Furthermore, regarding the evaluation of f (z) for z ∈ R, the value of f (x) for x outside the
limiting eigenvalue density support can be similarly found as the unique root of the polynomial

equation Φ (f) = x, such that Φ0 (f) ≥ 0, or, equivalently,

1

M

MX
m=1

µ
λm (R)

λm (R)− f
¶2
≤ 1

c
,

with equality holding under the same conditions as discussed above.

For the sake of clarity of exposition, with some abuse of notation, we will denote by mR (z)

and mR̂ (z) the Stieltjes transforms of the spectrum of R and �R, respectively. According to

the approach proposed by Girko, the spectral function of R to be estimated is Þrst expressed in

terms of the Stieltjes transform of the spectral distribution of R, namely,

mR (z) =
1

M

MX
m=1

1

λm (R)− z .

Thus, an M,N-consistent estimator of the original function can be found by just replacing

mR (z) by its G-estimator. Now, theM,N-consistent estimator ofmR (z) is obtained as follows.

Observe that, from the limiting Stieltjes transform of �R in (1.22), i.e., the solution m = mR̂ (z)

for M,N →∞, with M/N → c < +∞, to

mR̂ (z) =
1

M

MX
m=1

1

λm (R)
¡
1− c− czmR̂ (z)

¢− z ,
we can write

mR̂ (z)
¡
1− c− czmR̂ (z)

¢
=
1

M

MX
m=1

1

λm (R)− z
1−c−czmR̂(z)

=mR (ω) |ω=f(z), (1.93)

where, as previously deÞned,

f (z) =
z

1− c− czmR̂ (z)
.

Equation (1.93) provides an implicit relationship between the limiting distribution of the true

eigenvalues (associated with mR (ω)) and the asymptotic distribution of the sample eigenvalues
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(associated with a particular solution of mR̂ (z)). Thus, building upon the fact that mR̂ (z)

is readily M,N-consistently estimated by the Stieltjes transform of the empirical distribution

function of the sample eigenvalues, i.e.,

mR̂ (z) ³
1

M
Tr

·³
�R− zIM

´−1¸
, (1.94)

the idea behind G-estimation is to invert (1.93) in order to express mR (ω) in terms of mR̂ (z).

SpeciÞcally, assume that the equation f (z) = ω has a single solution in z, denoted as z = f−1 (ω).
In this case, according to (1.93), bR (ω) can be expressed univocally as

mR (ω) = mR̂

¡
f−1 (ω)

¢ ¡
1− c− cf−1 (ω)mR̂

¡
f−1 (ω)

¢¢
, (1.95)

and an M,N-consistent estimator of mR (ω) can be obtained by directly replacing mR̂ (z) in

(1.95) with the RHS of (1.94).

Example 4 Consider the estimation of the quantity 1
M tr

£
R−1

¤
. An estimator simply replacing

the true covariance matrix by its sample estimate does not appropriately approximate the quantity

in the large observation dimension regime. In order to derive a G-estimation following the

previous approach, note that the previous quantity can be expressed as mR (0). Now, the equation

f (z) = 0 has a unique solution (z = 0) and, consequently, a G-estimator may be constructed

using (1.95) as mR̂ (z)
¡
1− c− czmR̂ (z)

¢ |z=f−1(0)=0 = (1− c) 1M tr
h
�R−1

i
.

Example 5 Assume now that the quantity MR
(−2) =

1
M Tr

£
R−2

¤
is to be estimated. First, note

that the spectral function 1
M Tr

£
R−2

¤
can be written in terms of mR (ω) as

1

M
Tr
£
R−2

¤
=
1

M

MX
m=1

1

λ2m (R)

=
∂

∂ω

(
1

M

MX
m=1

1

λm (R)− ω

)¯̄̄̄
¯
ω=0

=
∂

∂ω
{mR (ω)}

¯̄̄̄
ω=0

.

Thus, as in the previous example, the M,N-consistent estimator can be constructed replacing

mR (ω) with its G-estimator, i.e.,

\MR
(−2)=

∂

∂ω

n
mR̂

³
�f−1 (ω)

´³
1− c− cf−1 (ω)mR̂

³
�f−1 (ω)

´´o¯̄̄̄
ω=0

=(1− c)2 1
M
Tr
h
�R−2

i
− c (1− c)

µ
1

M
Tr
h
�R−1

i¶2
,

after applying the chain rule, the inverse function theorem and the fact that z = f (z) has a

single solution z = 0 whenever c < 1.
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In Chapter 3, a general expression for the M,N-consistent estimator of the negative eigenvalue

moments of an observation covariance matrix R, i.e., MR
(−k), k = 1, 2, . . ., is derived.

In the case of functions depending on the eigenvectors of the covariance matrix as well, an

equivalent approach can be used. In particular, assume that the function to be estimated can

be expressed in terms of the Stieltjes transform of a certain vector-valued distribution function

of the eigenvalues and eigenvectors of R (cf. Section 1.1.4), say,

υR (z) , aH1 (R− zIM)−1 a2,
where, without loss of generality, a1 and a2 are two nonrandom vectors with unit Euclidean

norm. In this case, the procedure to derive a M,N-consistent estimator boils down to Þnding a

G-estimator of υR (ω). Let υR̂ (z) be deÞned as υR̂ (z) , aH1

³
�R− zIM

´−1
a2. From Theorem

1.5, we know that

υR̂ (z) ³ υR (z) ,

or, equivalently,

υR̂ (z) ³
f (z)

z
aH1 (R− f (z) IM)−1 a2,

as M,N → ∞ with M/N → c < +∞. Thus, in order to estimate υR (ω), we can alternatively

address the estimation of

υR (ω) = υR (z) (1− c− czmR (z)) ,

with ω = f (z). Consequently, if ω = f (z) has a unique solution, we have

υR (ω) ³ υR̂ (z)
¡
1− c− czmR̂ (z)

¢¯̄
z= �f−1(ω)

,

so that the RHS of () is then an M,N-consistent estimator of υR (ω).

Example 6 Assume that we need to estimate the quantity ϕ (R) =
©
R−1

ª
i,j
. First, observe

that ϕ (R) can be expressed as a function of υR (ω), with a1 = ei and a2 = ej, as©
R−1

ª
i,j
= eHi R

−1ej

=
MX
m=1

eHi qm (R)q
H
m (R)ej

λm (R)

=
MX
m=1

eHi qm (R)q
H
m (R) ej

λm (R)− ω

¯̄̄̄
¯
ω=0

= υR (ω)|ω=0 ,
where em is the M-dimensional unit-vector with mth element 1 and all others 0. Now, the

M,N-consistent estimator can be constructed replacing υR (ω) with its G-estimator, i.e.,

�ϕ (R) = υR̂ (z)
¡
1− c− czmR̂ (z)

¢¯̄
z= �f−1(0)

=(1− c) υR̂ (0)

= (1− c)
n
�R−1

o
i,j
,
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after using the fact that z = f (z) has a single solution z = 0 whenever c < 1.

Example 7 (Whitening Þlter) Consider the estimation of the quantity ϕ (R) =
©
R−1/2

ª
i,j
.

Using the following integral representaiton of the square-root, namely,

1√
x
=
2

π

Z ∞

0

1

x+ t2
dt, x > 0,

the quantity ϕ (R) can be expressed in terms of υR (ω), with a1 = ei and a2 = ej, as©
R−1

ª
i,j
=
2

π

Z ∞

0
eHi
¡
R+ t2IM

¢
ej dt

=
2

π

Z ∞

0
υR

¡−t2¢ dt.
If c < 1, observe that f (z) = −t2 has a unique solution for any t ∈ R. Hence, the M,N-
consistent estimator can be constructed replacing υR (ω) with its G-estimator, i.e.,

�ϕ (R) =
2

π

Z ∞

0
υR̂ (z)

¡
1− c− czmR̂ (z)

¢¯̄
z= �f−1(−t2) dt

2

π

Z ∞

0

MX
m=1

eHi qm
³
�R
´
qHm

³
�R
´
ej

λm
³
�R
´
− �f−1 (−t2)

1− c− cz 1
M

MX
k=1

1

λk

³
�R
´
− �f−1 (−t2)

 dt.

The applicability of this approach is limited to situations in which the function f (z) = ω is

invertible. Unfortunately, this equation does not happen to be invertible in many cases where,

in fact, the equation might not have a solution at all. In this dissertation, we will approach

the construction of M,N-consistent estimators of general vector-valued spectral functions of

R appearing in optimum parameter estimation procedures in statistical signal processing by

resorting to the characterization of the limiting Stieltjes transform of the SCM spectrum, without

relying on an explicit function inversion.
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Appendix 1.A Proof of Proposition 1.1

In order to prove Proposition 1.1, we follow the lines of the proof of [Doz07b, Theorem 1.1].

Consider a matrix Ξ = [ξ1, . . . , ξN ] ∈ CM×N such that N = σ2Ξ and let us deÞne S =

[s1, . . . , sN ]. Furthermore, consider also a random matrix Y = [y1, . . . ,yN ] such that

�R =
1

N
YYH = �Ri +

1

N
yiy

H
i ,

where the matrix �Ri is deÞned as

�Ri = �R− 1

N
yiy

H
i .

For the sake of notational convenience, we will use the following deÞnitions in our derivations

Q (z) =
³
�R− zIM

´−1
,

Qi (z) =
³
�Ri − zIM

´−1
,

P (z) = (Ω− zIM)−1 ,
Pi (z) = (Ωi − zIM)−1 .

where we have deÞned

Ω =
1

1 + σ2cm (z)
Ψ− σ2 (1− c− czm (z)) ,

Ωn =
1

1 + σ2cmi (z)
Ψ− σ2 (1− c− czmi (z)) ,

with mi (z) being deÞned in terms of �Ri. As in the proof of [Doz07b, Theorem 1.1], we proceed

by factoring the difference of inverses and expanding the middle factor as

P (z)−Q (z) = P (z)
³
�R−A

´
Q (z)

= P (z)

µ
σ2cmi (z)

1 + σ2cmi (z)

1

N
SSH +

1

N
σ2ΞSH +

1

N
σ2SΞH +

1

N
σ2ΞΞH + σ2w (z)

¶
Q (z)

=
1

N

NX
i=1

P (z)

µ
σ2cmi (z)

1 + σ2cmi (z)
sis

H
i + σ

2ξis
H
i + σ

2siξi
H + σ2ξiξi

H + σ2w (z)

¶
Q (z) ,

where w (z) = 1− c− czm (z), and, in the Þrst equality, we have used the resolvent identity, i.e.,
A−1−B−1 = B−1 (A−B)A−1. Further, we apply the vectors a1 and a2 and apply the matrix
inversion lemma as

Q(z) = Qi(z)− 1

N

Qi(z)yiy
H
i Qi(z)

1 + 1
Ny

H
i Qi(z)yi

, (1.96)

to obtain

aH1 (P (z)−Q (z))a2 = aH1 (Ψ− zIM)−1 a2 − aH1
³
�R− zIM

´−1
a2

=
1

N

NX
i=1

W
(1)
i +W

(2)
i +W

(3)
i +W

(4)
i +W

(5)
i ,
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where

W
(1)
i =

1

αi

µ
σ2cm (z)

1 + σ2cm (z)

¶
[(1 + γi + ωi) �ρi − (ρi + βi) �γi] ,

W
(2)
i =

1

αi

h
(1 + γi + ωi)

�βi − (ρi + βi) �ωi
i
,

W
(3)
i =

1

αi
[(1 + ρi + βi) �γi − (γi + ωi) �γi] ,

W
(4)
i =

1

αi

h
(1 + ρi + βi) �ωi − (γi + ωi) �βi

i
,

W
(5)
i =

1

αi
σ2aH1 P (z)Q (z)a2,

with the following notation, namely,

ρi =
1
N s

H
i Qi (z) si, �ρi = a

H
1 P (z) sis

H
i Qi (z)a2,

ωi = σ2
1
N ξi

HQi (z) ξi, �ωi = σ
2aH1 P (z) ξiξi

HQi (z)a2,

βi = σ
2 1
N s

H
i Qi (z) ξi, �βi = σ

2aH1 P (z) ξis
H
i Qi (z)a2,

γi = σ
2 1
N ξi

HQi (z) si, �γi = σ
2aH1 P (z) siξi

HQi (z)a2,

as well as

αi = 1+
1

N
yHi Qi (z)yi,

Furthermore, after simpliÞcation, we get

aH1 (Ψ− zIM)−1 a2 − aH1
³
�R− zIM

´−1
a2 =

1

N

NX
i=1

1

αi

³
�ωi −W (5)

i

´
(1.97)

+
1

N

NX
i=1

1

αi

1

1 + σ2cm (z)

¡
σ2cm (z)− ωi − γi

¢
�ρi

(1.98)

+
1

N

NX
i=1

1

αi

·
1

1 + σ2cm (z)
(ρi + βi) �γi + �γi

¸
(1.99)

+
1

N

NX
i=1

1

αi
�βi, (1.100)

Hence, in order to prove the result in (1.71), it is enough to prove that the quantities in (1.97)-

(1.100) vanish almost surely. This is afforded in the following. Before proceeding further,

note from Lemma A.8 the following bounds (see [Doz07b] for further details), namely, for any

i = 1, 2, . . . , N and any M ,

1

|αi| ≤
|z|

Im {z} ,
1

|b (z)| ≤
|z|

Im {z} (1.101)

and

kQi (z)k ≤ 1

Im {z} , kP (z)k ≤ 1

Im {z} , kPi (z)k ≤ 1

Im {z} , (1.102)
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Proof of (1.97). Let us Þrst rewrite (1.97) as

1

N

NX
i=1

1

αi

³
�ωi −W (5)

i

´
=
1

N

NX
i=1

σ2

αi
aH1 (P (z)−Pi (z)) ξiξiHQi (z)a2 (1.103)

+
1

N

NX
i=1

σ2

αi

¡
aH1 Pi (z) ξiξi

HQi (z)a2 − aH1 Pi (z)Qi (z)a2
¢

(1.104)

+
1

N

NX
i=1

σ2

αi
aH1 (Pi (z)−P (z))Qi (z)a2 (1.105)

+
1

N

NX
i=1

σ2

αi
aH1 P (z) (Qi (z)−Q (z))a2. (1.106)

According to Lemma A.2 and from the absolutely boundness of σ2/αi (cf. Equation (1.101)),

in order to prove the almost sure convergence to zero of (1.103) it is enough to show that

max
1≤i≤N

E
h¯̄
aH1 (P (z)−Pi (z)) ξiξiHQi (z)a2

¯̄pi ≤ C

N1+δ
,

for some constants C, δ > 0 and p > 1 not depending on N . To that effect, we can use Lemma

A.3 with C = Qi (z)a2aH1 (P (z)−Pi (z)) as

E
h¯̄
uHn Cun −Tr [C]

¯̄pi ≤ Kp ³Ep/2
h
|ξ|4
i
+ E

h
|ξ|2p

i´ ¡
aH2 Q

2
i (z)a2

¢p/2 ³
aH1 (P (z)−Pi (z))2 a1

´p/2
≤ C

³
Ep/2

h
|ξ|4
i
+ E

h
|ξ|2p

i´ ka2kp
Imp {z}

ka1kp
Np

.

Hence, convergence is proved by choosing p ≥ 2. Furthermore, note that similar reasoning can
be used to show that (1.105) vanishes almost surely. On the other hand, Lemma (A.5) can

be directly applied with Ui = Qi (z) and C = a2aH1 Pi (z) in order to prove the convergence of

(1.104). Regarding (1.106), using the Sherman-Morrison inversion formula as in (1.96), we can

write
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H
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Now, (1.107) tends clearly to zero by Lemma A.2 with p ≥ 2 since, using Lemma A.4 with

A = Qi(z)a2a
H
1 P (z)Qi(z), we note that

E
h¯̄
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HQi(z)a2
¯̄2i
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Regarding (1.108) and, equivalently, (1.109), we can use the Cauchy-Schwarz inequality to write

(p = 2q)
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Thus, using Lemma A.4 with A = Qi(z)P (z)a1a
H
1 P (z)Qi(z), the result can be proved by

choosing p > 2. Finally, considering again (1.96) and (1.101), we may prove that (1.110) vanish

almost surely by equivalently proving the following, namely,¯̄̄̄
¯ 1N

NX
i=1

1

N
aH1 P (z)

µ
Q(z) +

1

N
Qi(z)yiy

H
i Qi(z)

¶
sis

H
i

µ
Q(z) +

1

N
Qi(z)yiy

H
i Qi(z)

¶
a2

¯̄̄̄
¯→ 0.

To that effect, it is enough to show¯̄̄̄
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since the result for the other three terms follows by using similar arguments as previously in the

proof of the convergence of (1.107) to (1.109). Thus, observe that
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Thus, the convergence follows from the Borel-Cantelli lemma by choosing p ≥ 2.

Proof of (1.98). From (1.101) and¯̄̄̄
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we just need to prove that, almost surely,¯̄̄̄
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Let us Þrst focus on (1.112), which can be clearly reduced to proving the following, namely,¯̄̄̄
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Now, the result in (1.114) is direct by Lemma A.5, whereas (1.115) can be proved similarly as

the convergence of (1.110).
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On the other hand, regarding the result in (1.113), let us Þrst deÞne ηk =

aH1 P (z) skξk
HQk (z)a2, and consider the Þltration {Fk} generated by the random vectors

{ξ1, . . . , ξk}. Now, we observe that the process {ηk} is a martingale difference sequence adapted
to {Fk}. Then, we can use the Burkholder inequality and note that, on the one hand, applying
the Cauchy-Schwarz inequality, we get
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E
h¯̄
aH1 P (z) skξk

HQk (z)a2
¯̄pi ≤ E1/2

h¯̄
sHk P (z)a1a

H
1 P (z) sk

¯̄piE1/2
h¯̄
ξk
HQk (z)a2a

H
2 Qk (z) ξk

¯̄pi
< +∞

Then, we Þnally have that
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so that the result can be readily proved by applying the Borel-Cantelli lemma with p > 2.

Proof of (1.99) and (1.100). Considering (1.101), we prove separately
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Regarding (1.116), we note that E
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for some constants C, δ > 0 and p > 1 not depending on N . Indeed, (1.118) holds and is shown

in [Doz07b, pp. 688]. To see that, observe that we can write the expectation as
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The Þst term in the RHS of (1.119) can is bounded by Lemma A.3, whereas for the second one

we may use the fact, from Lemma A.9, that

¯̄̄̄
¯Tr

"³
�Ri − zIM

´−1 −µ�Ri + 1

N
yiy

H
i − zIM

¶−1#¯̄̄̄¯ ≤
¯̄̄̄
¯̄̄ 1

Ny
H
i

³
�Ri − zIM

´−2
yi

1 + 1
Ny

H
i

³
�Ri − zIM

´−1
yi

¯̄̄̄
¯̄̄ ≤ 1

Im {z} .



48 CHAPTER 1. TECHNICAL BACKGROUND AND MATHEMATICAL TOOLS

Hence, the convergence in (1.116) can be proved by using p ≥ 2. On the other hand, regarding
(1.117), using again E
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H
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< +∞, we just have to show that (p = 2q)
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for some constants C, δ > 0 and p > 1 not depending on N , which is also proved in [Doz07b,

pp. 689]. Indeed, the expectation is bounded by Lemma A.3 for q ≥ 2, and so is the result in
(1.117) proved according to Lemma A.2 by choosing p ≥ 4.

Appendix 1.B Proof of Corollary 1.3

The result in (1.77) follows directly from Proposition 1.1, since, by analytic continuation, the

asymptotic limit of the Stieltjes transform can be evaluated at any x ∈ R−{0} (see also [Doz07a,
Theorem 2.1]).

On the other hand, in order to obtain (1.78), let us Þrst deÞne
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we just need to differente the limiting Stieltjes transform as
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Therefore, we can write

b0 (z) =
b3 (z) 1N Tr

h
(Ψ+ t (z) IM)

−2
i

1− 1
N Tr

h
(Ψ+ t (z) IM)

−1
i
+ b (z) (1− c− 2zb (z)) 1N Tr

h
(Ψ+ t (z) IM)

−2
i ,

so that,

m0 (z) =
b3 (z) 1

M Tr
h
(Ψ+ t (z) IM)

−2
i

1− 1
N Tr

h
(Ψ+ t (z) IM)

−1
i
+ b (z) (1− c− 2zb (z)) 1N Tr

h
(Ψ+ t (z) IM)

−2
i .

Consequently, we Þnally get

vH
³
�R− zIM

´−2
v

¯̄̄̄
z=ξ

= ζ (z)uH1 (Ψ+ t (z) IM)
−2 u1

¯̄̄
z=ξ

,

where we have deÞned

ζ (z) =
b3 (z)

1− 1
N Tr

h
(Ψ+ t (z) IM)

−1
i
+ b (z) (1− c− 2zb (z)) 1N Tr

h
(Ψ+ t (z) IM)

−2
i .

Appendix 1.C Proof of Proposition 1.2

Let us deÞne γ1 = SNR
1/2
1 . Clearly, in order to prove (1.79) in Proposition 1.2, it is enough

to show that the following quantity vanishes almost surely, as M,N → ∞, M/N → c < +∞ ,

namely,
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Indeed, since all quantities in the sums (1.122) and (1.123) are uniformly bounded for all

K,M,N , this can be readily shown using Lemma A.2 and the Cauchy-Schwarz inequality.





Chapter 2

Generalized Consistent
Reduced-Rank LMMSE Filtering

2.1 Summary

An improved estimator of the optimal reduced-rank linear minimum mean-square error (MMSE)

Þlter is derived that is consistent for arbitrarily high-dimensional observations. The new Þlter

construction generalizes traditional Þlter realizations based on directly replacing the theoreti-

cal covariance matrix by its sample estimate, and being consistent when all dimensions in the

model but the number of samples remain bounded. Our solution not only generalizes the con-

ventional estimator, but also turns out to appropriately characterize Þnite sample-size situations

deÞned in practice by a limited number of samples per observation dimension. The proposed

implementation results from an enhanced consistent estimation of the MMSE Þlter coefficients

on the reduced-dimensional subspace. Results are based on the theory of spectral analysis of

large-dimensional random matrices. In particular, we build on the analytical description of the

asymptotic spectrum of sample-covariance-type matrices in the limiting regime deÞned as both

the number of samples and the observation dimension grow without bound at the same rate.

As a result, the implementation of the linear MMSE estimator based on the proposed Þlter is

empirically shown via simulations to present a superior performance under Þnite sample-size

scenarios, avoiding the breakdown on the mean-square error as the selected rank increases.

2.2 Introduction

The theory of linear minimum mean-square error (LMMSE) estimation has found a wide variety

of applications in the Þelds of communications, such as in channel estimation, equalization and

51
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symbol detection, and array processing, as in beamforming and radar/sonar. Indeed, a large

number of these applications can be interpreted in terms of a parameter estimation problem,

typically approached by a linear Þltering operation acting upon a set of multidimensional ob-

servations. Moreover, in many cases, the underlying structure of the observable signals is linear

in the parameter to be estimated. In this chapter, we are concerned with the general and fun-

damental problem of discrete-time linear Þltering of noisy signals aimed at the estimation of a

linearly described unknown random parameter. The MMSE solution to this problem is well-

known to rely on the second-order statistics of the observed process, namely the observation

covariance matrix, via an inverse operation.

In practice, the lack of true covariance information leads to a LMMSE Þlter implementation

based on the empirical statistics of the received data samples. This fact suggests the use of the

sample matrix inversion algorithm (SMI), consisting in simply replacing the theoretical covari-

ance matrix by its sample estimate, namely the sample covariance matrix (SCM). However, two

problems related to the SMI realization of the optimum LMMSE estimator may be readily iden-

tiÞed: the computational complexity and the sample-support requirements. These problems are

quickly aggravated as the observation dimension becomes higher. On the one hand, an increas-

ingly large covariance matrix needs to be inverted. On the other hand, a particularly limited

sample-support would especially contribute to a severe degradation of the performance of the

estimator implementation. Therefore, the number of samples required to properly approximate

the theoretical covariance matrix is considerably increased.

Existing methods proposed in the literature to mitigate the limitations of Þlter imple-

mentations under Þnite sample-size situations are categorized into two broad families. In

the array processing literature, diagonal loading has been extensively analyzed and applied

as a natural complement of the SMI technique [Abr81, Tre02, Li05]. This regularization ap-

proach renders it feasible to invert originally ill-posed sample covariance matrices and allows

for an efficient reduction of the number of adaptive degrees of freedom (and hence the effec-

tive sample-size requirements) by adding to the SCM a small constant loading factor. Simi-

larly, reduced-rank methods, primarily developed with the aim of reducing the computational

complexity of the subsequent processing by approximating the optimal solution in a lower-

dimensional subspace, have also been widely proposed in the literature as a means to effec-

tively lessen the sample-size requirements. Reduced-rank linear estimation and Þltering (cf.

[Sch91, Section 8.4][Joh93]) have been clasically discussed for the detection of CDMA signals

[Mos96, Pad99, Guo99, Guo00, Gra01, Hon02], originally for situations where the processing

gain is much larger than the signal subspace dimension. In array and radar signal processing

applications, rank-reduction methods have been used in order to enable an accurate calculation

of the Þlter coefficients with a relatively small amount of observed data under complexity con-

straints (see e.g. [Gol97a, Gol97b, Gol97c, Zul98, Gol99, Gue00, Pec00] and the much earlier

work [Erm93]). Beamforming algorithms derived from an optimization space of reduced dimen-
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sion are summarized in [Tre02, Section 6.8], whereas contributions to the theory of adaptive

Þlters can be found in [Bur02, Xia05]. Additionally, reduced-dimensional approaches were also

investigated in [Str96], where a subspace tracking algorithm based on power iterations was ap-

plied to the adaptive Þltering problem, as well as in [YH01] for the estimation of reduced-rank

multivariate linear regressions (see also references therein). Finally, other applications include

channel equalization [Cho00], Jammer suppression in satellite systems [Myr00] and model order

reduction and quantization [Sch91, Sch98, Sch06].

Early applications of reduced-rank methods to engineering problems (see e.g. [Tuf82, Tuf93])

consisted of directly replacing the covariance matrix by a lower-rank approximation obtained

from its principal components analysis1 (PCA) [Hot46]. In fact, the approximation of the co-

variance of an observed input random vector obtained from the truncation of its eigen-expansion

can be readily identiÞed as the covariance matrix associated with the MMSE estimator of the

random observation on the reduced-dimensional subspace [Chu05]. However, this approach is

merely based on the covariance matrix (or its sample estimate) and takes no further signal struc-

ture into account. In order to obtain an approximation of the MMSE estimator of the unknown

parameter, a reduced-rank Þlter should be instead obtained that minimizes a mean-square error

measure involving not only the covariance matrix, but also the particular signal structure of

the observations. In this sense, a reduced-rank Wiener Þlter is derived based on projected in-

stances of the received observations onto a lower-dimensional subspace. Different reduced-rank

methods can be identiÞed depending on the selected projection subspace. The cross-spectral

method (CSM), originally reported in [Gol97a], proposed to select the subspace basis through

the enumeration of the covariance eigenvectors maximizing the correlation with the intended

signal signature. This procedure takes into consideration the structure of the signal model in

order to further minimize the approximation mean-square error (MSE). The multistage Wiener

Þlter (MSWF) was conceived in [Gol98] as an extension of the CSM and consists of different

stages that are concatenated in the form of a chain of generalized sidelobe cancelers (GSC)

[Tre02] in order to successively explore a number of orthogonal directions of maximal correla-

tion with the desired signal. An important breakthrough in the understanding of the MSWF

was made in [Gol98], where the projection space is recognized as the Krylov subspace spanned

by the covariance matrix of the input signals and the cross-correlation between the observations

and the desired signal. As it turns out, the aforementioned Krylov subspace is the optimum

linear projection space in the sense of minimizing the approximation MSE [Saa96]. This fact

allowed the research community to rapidly establish the connection between this direct approach

and well-known iterative algorithms. In particular, the conjugate gradient method (CG) can be

employed in order to provide numerically stable solutions through the recursive construction of

an orthonormal basis for the Krylov subspace (see e.g. [Vor03b] and also [Sch03a], and refer-

1 In signal processing, PCA is known as Karhunen-Loéve transform (KLT) [Kar46], and both are immediately

related to the eigendecomposition of the covariance matrix.
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ences herein, for the engineering literature). Finally, the performance of the previous projection

methods under Þnite sample-support can be related to the behaviour of Tikhonov regularization

techniques (diagonal loading) via their representation in the spectral domain in terms of the

so-called Þlter-factors [Han97].

In practice, the performance of the MMSE estimator is highly determined by the accuracy of

the available empirical statistics, i.e., the error incurred in the estimation of the covariance ma-

trix from a Þnite number of observations. This error will be especially large in high-dimensional,

relatively low sample-support scenarios. Despite its unquestionable interest in practice, little

analytical insight can still be drawn from the broad literature about estimation problems char-

acterized by the availability of a limited number of samples of arbitrarily high dimension. In this

chapter, a class of reduced-rank LMMSE estimators uniquely based on the SCM is derived that

are consistent under more general conditions than the conventional implementation. In particu-

lar, our estimator generalizes conventional Þlter realizations, consistent in the classical sence, by

guaranteeing consistency even for arbitrarily high-dimensional observations. To that effect, the

proposed Þltering structure minimizes the empirical mean-square error for an arbitrary number

of samples per observation dimension. This is accomplished by approximating the empirical

performance measure in terms of the spectrum of the SCM in a doubly-asymptotic regime de-

Þned when both the number of samples and their dimension grow without bound at the same

rate. This asymptotic regime is in agreement with the characterization of Þnite sample-support

situations, namely in the sense that the ratio between the actual sample-size and the existing

Þltering degrees of freedom is allowed to remain Þnite. For our purposes, we resort to the theory

of the spectral analysis of large random matrices (or random matrix theory) [Tul04], that studies

the limiting behaviour of the spectrum of certain random matrix models as their dimension grow

large with a given (Þnite) aspect ratio. In particular, our approach is rooted in Girko�s general

statistical analysis (GSA) of observations of large dimension [Gir98] (or G-analysis), aimed at

(asymptotically) approximating a certain class of functions of the spectrum of covariance-type

matrices by (asymptotically) equivalent spectral functions of the SCM. An analogous approach

has been used in [Mes06a] for the estimation of the eigenvalues of covariance matrices and their

associated subspaces from their sample estimates under the assumption of observations of arbi-

trarily high dimension. Similarly conceived work, reporting a doubly-consistent G-estimator of

the optimum loading factor of a diagonally-loaded Capon beamformer, was published in [Li05]

(see also [Mes06c]).

The article is organized as follows. Section 2.4 outlines the theory of optimum linear MMSE

estimation on a subspace of reduced dimension. Extending on the classical implementation,

an alternative approach is introduced at the end of the section leading to a Þlter construction

that is consistent for arbitrarily high observations. This approach is used to derive an improved

realization of the reduced-rank LMMSE estimator. In Section 2.5, an asymptotically equivalent

expression of the key elements describing the Þlter performance is derived that is used in Section
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2.6 to obtain the consistent optimal reduced-rank Þlter. The performance of the new estimator

under non-asymptotic conditions is evaluated in Section 2.7 via numerical simulations. Finally,

after some concluding remarks in Section 2.8, pertinent proofs and derivations are provided in

the appendices.

2.3 Reduced-rank approaches to low sample-support

In this section we review existing rank-reduction techniques for linear Þltering. Motivated by

the two problems addressed above, these reduced-rank methods perform a certain Þltering oper-

ation on an instance of the received signal that is projected onto a lower-dimensional subspace.

Equivalently, the observed data may be thought as being compressed to a lower dimensional

subspace upon the action of a pre-Þltering matrix whose columns are the basis vectors of the

reduced-rank subspace. SpeciÞcally, let SD ∈ CM×D be a matrix whose columns form a basis

for a particular D-dimensional subspace, where D < M , and M is the observation dimension.

The transformed lower-dimensional received signal is then

�y (n)= SHDy (n) .

The objective is now to obtain a Þlter �w that minimizes the reduced-rank MSE2. This is accom-

plished by the (reduced-rank) Wiener Þlter solution, given by

�w = �R
−1
�s =

¡
SHDRSD

¢−1
SHDs, (2.1)

where �R = SHDRSD and �s = SHDs. On the other hand, the reduced-rank (D-dimensional)

approximation of the M-tap linear MVDR/MMSE Þlter is

wRR= SD �w = SD
¡
SHDRSD

¢−1
SHDs. (2.2)

Finally, the reduced-rank MMSE is

MMSE = 1−�sH �R−1�s = 1− sHSD
¡
SHDRSD

¢−1
SHDs. (2.3)

Next, we discuss brießy the reduced-dimensional Þltering operation in different projection

spaces.

2.3.1 Eigen-based methods

The Þrst approach to dimension-reduction was based on principal components analysis (PCA).

According to this method, a pre-Þltering matrix composed of the eigenvectors belonging to the

2Note that the mean squared error as regarded here refers to the Bayesian risk
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principal eigenvalues of the observation covariance matrix is applied to the received samples in

order to obtain a transformed signal of lower dimensionality. Consider an observation covariance

matrix with the following structure, namely, R = SPSH + σ2IM . This deÞnition exempliÞes

perfectly the PCA method and applies directly to a typical array signal processing application

or a synchronous DS-CDMA system, where S ∈ CM×K is the signatures matrix and P ∈
RK×K is diagonal and contains the powers associated to the K sources or users. The columns

of S (assumed linearly independent) span the K-dimensional signal-subspace (actually signal-

plus-interference), assuming K < M . The eigenvectors of R that correspond to the smallest

M − K eigenvalues (equal to σ2) span the noise-subspace, which is orthogonal to the signal-

subspace. Basically, rank-reduction based on PCA relies on the separation of the signal and

noise subspaces associated with the covariance matrix and selects the signal components with

largest power without distinguishing between desired and interference signals. Thus, by choosing

D ≥ K, this method retains full-rank MMSE performance. However, the performance can

degrade considerably as D decreases below the dimension of the signal subspace, since there is

no guarantee that the associated subspace will retain most of the desired signal energy.

In order to overcome this problem, the cross-spectral (CS) method was introduced in

[Gol97a, Gol97b] as an extension of the linearly constrained (MMSE) Wiener beamformer in

array signal processing. In applications where a desired signal is not explicitly available, such as

in spatial-reference Þltering techniques (unlike temporal-reference methods), the Wiener Þlter

can be formulated as an optimization problem with multiple linear constraints. The MVDR

Þlter may be then regarded as the special case of a single constraint.

In the array processing literature, two equivalent representations may be considered [Sch91].

First, the direct-form processor performs a conventional Þltering operation referred to as elemen-

space processing. On the other hand, when the number of sensors is large, it may be approppriate

to create a set of beams as a preliminary step to further processing (beamspace-processing).

Depicted in Figure 2.1, this second representation is referred to as the generalized sidelobe-

canceller (GSC) and is especially convenient to identify the possibility of rank-reduction by

implementing a transformation from the element-space (related to Þxed weights in Figure 2.1) to

the beamspace (related to adjustable weights in Figure 2.1) such that the number of auxialiary

beams is less than the number of sensors or antennas. The CS method was conceived as an

extension of the GSC that selects the columns of the blocking matrix (denoted by B in Figure

2.1) as the set of eigenvectors yielding the largest CS metric, chosen to minimize the MSE

considering not only the statistics of the observation but also its relation to the desired signal

(i.e. the parameter signature). In particular, this measure is used to determine the smallest

number of degrees of freedom D that are needed in order to estimate linearly with little loss

(minimum MSE) a scalar random process from a set ofM correlated complex random processes.

According to the CS method, and considering the deÞnition of SD for eigendecomposition-based

methods, a set of D eigenvectors {qd} of the covariance matrix R is to be chosen in order to
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Figure 2.1: Block diagram of Generalized Sidelobe Canceller

minimize (2.3):

MMSE=1− sHSD
¡
SHDRSD

¢−1
SHDs

=1− sHSDΛ−1D SHDs

=1−
X
d∈C

¯̄
qHd s

¯̄2
λd

,

where C is the index set of the selected eigenvectors and ΛD is a diagonal matrix containing

the corresponding set of eigenvalues {λd}. Thus, as opposed to PCA methods, this technique
can perform well for D < K since it takes into account the energy in the subspace contributed

by the desired signature. Both PCA and CS methods admit a representation as a direct-form

or GSC-form processor, although their performance under rank-reduction is different depending

on the implementation.
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2.3.2 Multistage Wiener filter

The multistage Wiener Þlter (MSWF) proposed in [Gol98] was motivated by a continuation of

the original representation of the CS method as a GSC processor (see Figure 2.1). Contrary

to eigendecomposition-based methods, both direct-form and GSC-form representations of the

MSWF are equivalent for any selected rank (see [Zul98] and discussion in Appendix B of [Gol98]).

After the Þrst beamspace processor, different stages are concatenated in the form of a chain of

GSCs in order to construct recursively the pre-Þltering matrix. From the output of the blocking

matrix at each stage, a new basis vector is obtained that is orthogonal to the previous Þlter in

the sequence (i.e. in its nullspace). At each stage, a matched Þlter is chosen to guarantee that

its output is maximally correlated with the output of the previous stage (whitening innovation).

Consequently, it is straightforward to show that the optimum sequence of Þlters can be obtained

as

si =

³Qi−1
k=1Bk

´
Rsi−1°°°³Qi−1

k=1Bk

´
Rsi−1

°°° , (2.4)

where s0 = s and, in the case of orthonormal Þlters, the kth blocking matrix is deÞned as

Bk = IM − sksHk . Accordingly, using the MSWF representation as a chain of GSCs, the pre-
Þltering matrix can be written as

SD =

·
s1B1s2 · · ·

³QD
k=1Bk

´
sD

¸
=

·
s1 s2 · · · sD

¸
,

where the second equality holds due to the orthonormality impossed to the Þlters and the cor-

responding deÞnition of the blocking matrices. It is shown in [Gol98] that the MSWF recursion

in (4.15) tri-diagonalizes the covariance matrix R at any stage. In other words, the projected

covariance matrix (i.e. SHDRSD) takes the form of a tri-diagonal matrix.

An important breakthrough in understanding of the MSWF was made in [Hon01], where

the inherent connection with Krylov subspaces is identiÞed. Honig et. al. showed that the

D-rank MSWF solution lies on the D-dimensional Krylov subspace spanned by the covariance

matrix of the observations and the parameter signature vector, which is deÞned as the column

space of the (Krylov) matrix
·
sRs · · · RM−1s

¸
. In the following, this subspace will be referred

to as KD (R, s). Thus, although solely motivated by statistical reasoning, the reduced-rank
MSWF solution can be regarded as an approximation of the Wiener Þlter obtained by forcing

the solution to lie on KD (R, s) or, equivalently, as an approximation in this subspace of the
solution of a system of linear equations, namely Rw = s. More descriptively, the inverse of

the covariance matrix R−1 is approximated by a matrix polynomial of order D− 1 (see further
the next section). Having established this, the solution for the Þlter sequence may be obtained

by directly computing an orthonormal basis for KD (R, s). In fact, the recursive algorithm in
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(4.15) is nothing else than the well-known Gram-Schmidt Arnoldi algorithm [Gol96] to compute

an orthonormal basis of the Krylov subspace spanned by R and s. This algorithm is known

as the GMRES algorithm when applied to solve a system of linear equations [Tre97]. For an

arbitrary square matrix R, the Arnoldi algorithm returns a transformed Hessenberg matrix

SHDRSD. On the other hand, if R is Hermitian, as it is the case here, the algorithm outputs

a Hermitian Hessenberg matrix or, equivalently, Hermitial tri-diagonal matrix. Note that it is

in agreement with the fact that the MSWF tri-diagonalizes the covariance matrix. Moreover,

the fact that R is Hermitian can be exploited to obtain the sequence of Þlters by the Lanczos

algorithm. In [Joh00], an order-recursive version of the MSWF based on the Lanczos algorithm

is presented that updates the reduced-rank Þlter and MSE at each step. Finally, since R is also

positive deÞnite, the Conjugate Gradient (CG) algorithm [Tre97] can be applied to compute the

solution for the orthonormal basis in an iterative fashion. In brief, the CG algorithm can be

identiÞed as a solver of quadratic (non-linear) optimization problems which, unlike the Newton�s

method that optimizes a quadratic function in a single but computationally-intensive step, may

take up to M low-complexity iterations to Þnd the optimal solution. The CG algorithm returns

the exact solution of the linear system Rw = s, after M iterations. However, contrary to direct

methods (e.g. Gaussian elimination), the algorithm may be terminated after D < M iterations

to obtain an approximate solution of the system in KD (R, s).

2.3.3 Polynomial expansion linear filtering

Another natural approach to dimension-reduction in the line of the above interpretation of the

reduced-rank MSWF solution can be derived from a result of the following theorem.

Theorem 2.1 (Cayley-Hamilton) Let pR (λ) = det (R− λIM) =
PM
l=0 alλ

l be the characteristic

polynomial of R. Then

pR (R) =
MX
l=0

alR
l = 0.

Proof. See [Hor85].

Hence, it follows that if det (R) 6= 0, its inverse R−1 can be expressed as a polynomial in R of

orderM−1. Then, the fundamental Þlter solution may be rewritten using the Cayley-Hamilton
(CH) theorem in terms of a polynomial expansion as

wCH = R
−1s =

M−1X
l=0

clR
ls, (2.5)

where cl = −al+1/a0. A D-rank solution clearly lying in KD (R, s) can be obtained now by
constraining the polynomial to be of order D − 1. In this case, the coefficients must be found
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according to some optimality criterion, usually to minimize MSE or, equivalently, maximize

SINR. From (3.10), the SINR for the CH-based Þlter can be expressed as

SINR =

PD−1
i=0

PD−1
j=0 ωiωjs

HRi+j+1s¯̄̄PD−1
i=0 ωis

HRis
¯̄̄2 − 1


−1

=

µ
ωHBω

ωHAω
− 1
¶−1

,

where ω ∈ RD is a column vector with the polynomial coefficients to be optimized, A = vvH ,

where [v]k = sHRk−1s, and the elements of the matrix B are [B]k,l = sHRk+l+1s. Thus, the

vector of coefficients maximizing the output SINR is straightforwardly found as the eigenvector

associated with the minimum eigenvalue of the generalized eigenproblem Bωo = λoAωo, or,

equivalently, ωo = B−1v. Using this expression of the optimal vector of coefficients ωo a

reduced-rank Þlter is obtained that is equivalent to the solution given in (2.2), i.e.

wRR =
D−1X
i=0

ωiR
is = SDωo = SD

¡
SHDRSD

¢−1
SHDs = SDB

−1v.

Although the scalar estimation solution based on the CH theorem is clearly equivalent to the

MSWF, polynomial expansion linear Þltering was independently introduced in a previous con-

tribution [Mos96]. A much earlier work on adaptive arrays [Erm93] (see reference [3] for the

original contribution in Russian) proposed the representation of the inverse of the covariance

matrix in terms of a power basis related to the minimum polynomial of R.

2.3.4 Auxiliary-vector algorithm

The auxiliary-vector (AV) method [Pad97] parallels also beamspace processing techniques as the

GSC but, founded solely on statitical signal processing principles, does not attempt any matrix

inversion, eigendecomposition or diagonalization. An extension to complex linear spaces is

presented in [Pad99], where, as in the previous earlier work, the issue of reduced-rank Þlter design

for small-sample-support adaptation was directly discussed. Basically, a set of (unit-norm)

auxiliary vectors, required to be mutually orthonormal and also orthogonal to the signature

vector, are chosen to maximize the magnitude of the statistical cross-correlation between the

output of the previous Þlter in the sequence and the projection of the input data onto the

auxiliary vector itself. A recursive conditional optimization (one-by-one) of the Þlter taps is

performed based on scalar auxiliary vector weights that are chosen to minimize the new Þlter

output variance. Given that the true covariance matrix is available, the sequence of Þlters

converges to the optimum Þlter. When R is substituted by �R in the recursively generated

sequence of Þlters, the corresponding Þlter estimators offer a means for effective control over the

Þlter estimator bias versus covariance tradeoff. Starting from the zero-variance, high-bias (for

non-white inputs) matched-Þlter estimate, the solution evolves all the way up to the unbiased, yet

high-variance for short data record sizes. In [Che02], the AV-algorithm is shown to be equivalent
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to the MSWF or, correspondingly to the CH-based solution. In [Pad01], the orthogonality

condition among auxiliary vectors is relaxed, and therefore the length of the generated sequence

of Þlters is not limited to the vector space dimension. This extension is shown in [Pad01] to

outperform the previous existing reduced-rank methods. Finally, in [Qia03], a procedure to

select the best AV estimator in the sequence directly from the input data is presented.

2.3.5 Iterative methods

Before concluding this section, we introduce a class of methods resembling the iterative algo-

rithms for the solution of linear systems that are related to reduced-rank approximations of the

optimum solution.

In order to approximate the linear MVDR/MMSE solution, we address the iterative solution

of Rw = s. The Jacobi iteration [Axe94] is given by

wk+1 = s+ (I−R)wk, (2.6)

with w0 = s. Furthermore, the solution after k iterations can be shown by induction to admit

the following compact equivalent expression:

wk =
kX
i=0

(I−R)i s.

This is equivalent to implementing the matrix inversion operation via the series expansion

R−1 = lim
P→∞

PX
p=1

(I−R)p−1 ,

whose convergence is guaranteed if the covariance matrix R has spectral radius smaller than

two. Obviously, this condition turns out to be quite restrictive in many cases of interest and fast

convergence is in practice hardly guaranteed. In order to improve the convergence capabilities

of the Jacobi iteration, a sequence of parameters can be introduced in (2.6) as

wk+1= τks+ (I− τkR)wk
=wk + τk (s−Rwk) . (2.7)

These parameters are usually chosen to improve the convergence speed of the method. The Þlter

expression in (2.7) is regarded as Þrst-order iterative solution. If τk = τ for all k, the method

is called stationary. In this case, a closed-form expression for the Þlter after k iterations is also

found as

wk = τ
kX
i=0

(I− τR)i s. (2.8)
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Finally, a direct connection to gradient-like methods for unconstrained optimization problems

can be readily established. Consider as a (quadratic) cost-function the expression of MSE for

the Þltering estimation problem at hand, namely

MSE = E
n¯̄
b−wHy¯̄2o = 1−wHs− sHw +wHRw.

The steepest-descent method (SDM) [Lue84] gives the following recursion to minimize MSE

wk+1 = wk − µ∂MSE

∂w∗k
,

where µ is a positive real-valued constant, usually referred to as step-size, and the gradient

takes the expression of ∂MSE
∂w∗

k
= Rwk−s. Hence, the Þlter expression after k + 1 iterations can

be written as

wk+1 = wk + µ (s−Rwk) ,
which is equivalent to the stationary version of the Þrst-order iterative solution, where the

parameter τ is replaced by the step-size µ. The introduction of a variable step-size leads to the

original iteration in (2.7). As before, the solution after k iterations can be expressed in this case

as the following non-recursive (one-shot) Þlter

wk =
kX
i=1

µi

kY
j=i+1

¡
I− µjR

¢
s.

As the MSWF and CH-based solutions, the previous implementations of the optimum Þlter based

on iterative methods for solving linear systems or, more generally, unconstrained optimization

problems can be shown to lie on KD (R, s) after D iterations. In particular, for stationary (or

Þxed step-size) methods, the solution after D iterations can be rewritten replacing each term of

the sum in (2.8) by its binomial series expansion as

wD =
DX
i=0

iX
j=0

µ
i

j

¶
(−1)j τ j+1Rjs,

which clearly lies on KD (R, s). Regarding the optimality of the solution minimizing the

quadratic function MSE (w), it is worth noting that if the vicinity of the cost function mini-

mum has the shape of a long, narrow valley, the CG algorithm reaches the (global) optimal

solution in far fewer steps than would be the case using the SDM.

Filtering schemes based on iterative solutions of linear systems and their convergence prop-

erties were extensively studied in [Gra01] in the context of multiuser detection in DS-CDMA

systems. Departing from a symbol-mached Þlter model of the received CDMA signal, the con-

ventional (linear) parallel interference cancellation (PIC) receiver is shown to be equivalently

formulated in terms of the code-correlation matrix as a Jacobi iteration. Furthermore, this

receiver using soft decisions to compute the data estimates of all users in parallel is shown to
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converge to the decorrelator receiver. Motivated by a reduction of the bias in the decision sta-

tistic, the previous PIC receiver is improved by only partially cancelling the interference from

data estimates for each user, at each stage. The linear multistage partial PIC (PPIC) receiver

is equivalent to a Þrst-order stationary iterative method, where the parameter is regarded as

the partial cancellation factor (PCF) (see [Tri00], where the PCF is optimized to minimize the

bit-error-rate (BER), and references therein). By including the knowledge of the noise variance

in the iteration (complete covariance knowledge), an iterative receiver is obtained that converges

to the linear MMSE multiuser detector. Guo et al. in [Guo99, Guo00] identiÞed the connection

between the PPIC and the SDM for updating adaptive Þlter tap-weights to minimize MSE. Fur-

thermore, they showed that a number of stages equal to the dimension of the signal subspace is

merely required for the equivalent one-shot Þlter to be identical to the linear MMSE Þlter. Fol-

lowing the principles of the SDM, they derived the corresponding one-shot cancellation Þlter of

a weighted linear multistage PIC with variable step-size, and devised techniques for optimizing

the choice of weights with respect to the MSE for a given number of stages.

2.4 Reduced-Rank Linear MMSE Estimation

The structure of a vast number of statistical estimation problems arising in signal processing

and communications can be properly described by deÞning the observable variable according to

the following linear system model

y (n) = x (n)h+ n (n) , (2.9)

where the signal waveform x (n) represents the unknown parameter to be estimated, received

in a colored noise n (n) ∈ CM after being operated upon by the known signature vector h ∈
CM . In this chapter, as conventionally assumed, x (n) and n (n) are two independent and

jointly distributed wide-sense stationary random processes. Furthermore, both signal and noise

processes have mean zero and covariance E
h
x (m)x (n)H

i
= δm,nP and E

h
n (m)n (n)H

i
=

δm,nRN , respectively, where δm,n is the Kronecker delta function, P is the signal-of-interest

power and RN is the covariance matrix of the background noise and interference component.

For the sake of ease of notation, and withough loss of generality, we assume P = 1, so that the

magnitude of the power associated with each parameter is modeled within the corresponding

signature vector. In particular, the observation y (n) ∈ CM may be modeling the matched Þlter

output sufficient statistic for the received unknown symbols in, for instance, a CDMA multiuser

detector, where the columns of h is the effective user signature associated with a certain desired

user; an array processor, where h contains the angular frequency information (steering vectors)

related to the intended source, represented by the entries of x (n).

The MMSE estimator �x (n) of the parameter x (n) is found as the output of the linear

transformation by w ∈ CM of the observations that minimizes the mean-square error measure,
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namely,

MSE (w) = E
h
kx (n)− �x (n)k2

i
= E

h°°x (n)−wHy (n)°°2i .
The linear MMSE Þlter solution is obtained as [Sch91]

wMMSE = R
−1h,

where R ∈ CM×M is the covariance matrix of the observed process, i.e.,

R = E
n
(y−E {y}) (y−E {y})H

o
= hhH +RN . (2.10)

Accordingly, the achieved MMSE is

MSE (w) = 1− 2Re©wHhª+wHRw = 1− hHR−1h+MSEexcess (wMMSE,w) , (2.11)

where MSEexcess (wMMSE,w) = (wMMSE −w)HR (wMMSE −w) is the excess mean-square error.
Note that minimizing MSE (w) is equivalent to minimizing the distance MSEexcess (wMMSE,w).

An alternative performance measure particularly spread across the communications literature is

the so-called signal-to-interference-plus-noise ratio (SINR), deÞned as

SINR (w) =

¯̄
wHh

¯̄2
wHRNw

=

Ã
wHRw

|wHh|2 − 1
!−1

. (2.12)

Clearly, the problem of maximizing SINR (w) is equivalent to that of minimizing MSE (w), and

both optimum solutions are related as

SINR (wMMSE) =
1−MSE (wMMSE)

MSE (wMMSE)
,

with a maximum (MSINR) at the output of the MMSE Þlter equal to hHR−1N h.

Assume we are now interested in approximating the MMSE estimator on a subspace of arbi-

trary dimension. The rationale behind this approach is often a reduction of the computational

complexity of the Þlter implementation. For instance, most standard iterative algorithms search-

ing for the Wiener Þlter in a recursive yet less computationally expensive manner are indeed

based on a succession of such approximations. Equivalently, a similar procedure referred to as

beamspace processing [Tre02, Section 3.10] is employed in array processing in order to reduce

the number of adaptive channels in applications where the number of interfering sources is much

less than the number of adaptive weights (adaptive degrees of freedom).

More speciÞcally, let the Wiener solution be written using the Cayley-Hamilton theorem

[Hor85] as

w = R−1h (2.13)

=
M−1X
m=0

υmR
mh =Mυ, (2.14)
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where M ∈ CM×M is a Krylov matrix deÞned as

M =
h
hRh · · · RM−1h

i
, (2.15)

and the entries of the vector υ = [υ1, · · · , υM ]T are υm = −am+1/a0, with {am}m=0,...,M being

the set of coefficients of the characteristic polynomial of R3. Clearly, the optimum MMSE Þlter

lies on the column space of M, namely the Krylov space generated by the covariance matrix

and the parameter signature. More interestingly, the coefficients linearly combining the columns

of M can be interpreted as a set of new degrees of freedom that can be possibly exploited to

further reduce the computational effort. In the literature, a truncated version of the optimum

Þlter representation in (2.14) has been extensively reported, namely,

�wD =
DX
d=1

ωdR
d−1h, (2.16)

where the coefficients of the polynomial expansion {ωd}d=1...D are found to minimize MSE (�wD).

In practice, a dimension (or rank), equal to D << M , namely spanning a D-dimensional Krylov

subspace (denoted in the sequel as KD) can be used with little performance loss and a substantial
complexity reduction. On the other hand, it is a well-known fact in the literature that a reduced-

rank Wiener Þlter equivalent to that in (2.16) can be alternatively obtained through properly

orthogonalizing the total space enclosing the optimum solution (see [Gol98]).

The optimality of the previous procedure in the MMSE sense is considered next. Formally

stated, the problem of optimum reduced-rank linear Þltering under the MMSE criterion can be

decoupled into the optimal selection of both the estimation subspace and the reduce-rank Þlter.

The solution to these two problems can be found as follows.

Let SD ∈ CM×D be an arbitrary full-rank matrix and assume the estimation subspace HD
is deÞned as the column space of SD. Then, the Þlter minimizing MSE (w) on HD, namely,

wD = arg min
w∈HD

E
h°°x (n)−wHy (n)°°2i ,

can be found as the optimum linear combination of the columns of SD in the MMSE sense, i.e.,

wD = SDωD, where

ωD = argmin
ω

E
h¯̄
x (n)−ωHSHDy (n)

¯̄2i
(2.17)

is the vector of optimum coefficients of such combination. Then, the Þlter minimizing MSE (w)

over HD is given by
wD = SD

¡
SHDRSD

¢−1
SHDh. (2.18)

Note that the Þlter in (2.18) represents the best approximation to wMMSE on HD in the

norm inducing the distance MSEexcess (wMMSE,w) in (2.11) [Saa96]. Furthermore, observe that
3Note that the coefficients {am}m=0,...,M can be also obtained in terms of (traces of) the powers of R from

the application of Newton�s identities [Hor85] to the characteristic polynomial of the covariance matrix.



66 CHAPTER 2. GENERALIZED CONSISTENT REDUCED-RANK LMMSE FILTERING

(2.18) represents a canonical transformation for extracting a reduced-rank approximation to the

solution of the system Rw = h, establishing a general framework for the derivation of most

existing iterative techniques for solving linear systems of equations [Gra01].

On the other hand, regarding the estimation subspace, the following lemma establishes the

optimality of the Krylov matrix in (2.15) as the one whose columns provide the sequence of

expanding subspaces minimizing the MSE for an arbitrary rank D. (The full-rank MMSE is

assumed to be uniquely achieved in the case D = K.)

Lemma 2.1 Let H1,H2, . . . be a sequence of estimation subspaces of increasing dimension.
Under the assumption H1 , span {h}4, and over all possible choices of HD, the (D-rank)
MMSE achieved on the Dth subspace in the sequence is minimized on HD = KD, i.e.,

KD = argminHD

min
w∈HD

MSE (w) .

Proof. Note that, given H1 , span {h}, the optimum HD can be found as the D-th element of
a sequence of subspaces minimizing MSE (w) and expanding one dimension at a time. Indeed,

as the dimension of the approximation subspace increases, the norm of the mean-square error

decreases most rapidly in the opposite direction of its gradient, namely

− ∂

∂w∗
MSE (w) = h−Rw.

Thus, in order for the expanded subspace to minimize the objective function, we must ensure

− ∂

∂w∗
MSE (w) ∈ HD+1,

at the reduced-rank Þlter w achieving the MMSE in HD. However, since − ∂
∂w∗MSE (w) ∈

span {h,Rw}, it is straightforward to see by iterating the induction process started at H1 =
span {h} that HD+1 = RHD and, accordingly, HD+1 = KD+1.

In conclusion, the optimum reduced-rank LMMSE Þlter is given by the expression in (2.18),

where the columns of the subspace matrix SD spans the Krylov subspace deÞned in Lemma 2.1.

Furthermore, the MMSE achieved on the reduced-rank subspace is

MSE (wD) = 1− hHSD
¡
SHDRSD

¢−1
SHDh.

A further major motivation for the reduced-rank Þltering approach, namely the one by

which we are driven in this chapter, is to avoid the performance degradation associated with

Þlter implementations due to a limited sample-size. Indeed, in practically affordable realizations

of the optimum reduced-rank Þlter based on a collection of received observations, the theoretical

covariance matrix deÞning the optimum Krylov approximation subspace derived in Lemma 2.1 is
4This choice is usually motivated by the matched Þlter solution.
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not available. Instead, a sample estimate is mandatorily to be employed, which leads unavoidably

to a decrease in the Þlter performance quality. The direct substitution in (2.18) of the true

covariance matrix by the SCM has been extensively regarded in the literature as the Þlter

construction implementing the optimum approximation of the reduced-rank LMMSE Þlter based

on the received observations. Certainly, this Þlter estimator can be readily shown to be consistent

in the classical sense, i.e., it converges stochastically to the true optimum Þlter as the sample-

size tends to inÞnity whereas all other dimensions in the signal model remain constant. In

fact, aditionally to the complexity reduction mentioned above associated with the suboptimal

reduced-rank solution, such an implementation has already proved to enhance the performance

in Þnite sample-size scenarios.

Interestingly enough, the subspace coefficients (i.e., the degrees of freedom afforded by the

reduced-rank approach) can be alternatively used to provide a further improved approximant

of the optimum solution under limited sample-support constraints. Indeed, if all dimensions

are used to approximate the optimum Þlter (i.e., D = M), the Krylov matrix constructed

by replacing R in the optimum SD in Lemma 2.1 with the SCM (N ≥ M), has clearly full-

rank with probability one5. Consequently, the range of �SM deÞnes, in principle6, the total

space of dimension M embedding the optimum Þlter. In particular, regarding the (practically

meaningful) case in which D <M , we concentrate on Þlter constructions of the form w = �SDω

and focus on the set of coefficients minimizing the following empirical performance measure,

namely,

ÿωD = argmin
ω

MSE
³
�SDω

´
, (2.19)

where we have deÞned
�SD =

h
h �Rh · · · �RD−1h

i
,

with �R being the SCM, i.e.,

�R =
1

N

NX
n=1

y (n)yH (n) . (2.20)

Hence, the Þlter construction designed using the extra degrees of freedom available as in (2.19)

takes the form

ÿwD = �SDÿωD = �SD
³
�SHDR�SD

´−1
�SHDh, (2.21)

attaining the following minimum of the mean-square error performance measure, namely,

MSE (ÿwD) = 1− hH�SD
³
�SHDR�SD

´−1
�SHDh. (2.22)

5Note that in practice, almost surely, the signature vector h has a non-zero component in every direction

deÞning the eigenspace of R̂.
6As a conclusion of the power method [Mey00], the Krylov matrix M becomes quickly rank-deÞcient as its

columns get linearly dependent converging towards the dominant eigenvector of R. In practice, an orthogonal

basis for the Krylov subspace is rather selected in one way or another in order to improve the numerical stability.
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The expression in (2.22) constitutes a lower-bound on the mean-square error achieved in practice

by any possible Þlter implementations of the form w = �SDω. Observe that the optimum Þlter

coefficients in (2.19) can be expressed as

ÿωD = ÿB−1�v, (2.23)

where, for k, l = 1, . . . , D, we have deÞned
£
ÿB
¤
k,l
= hH �Rk−1R�R

l−1
h and [�v]k = hH �Rk−1h.

Therefore, the problem of properly approximating the optimum coefficients ÿωD is equivalent to

that of Þnding a good approximation of the quantities
n
hH �RiR�R

j
h
o
i,j=0,...,D−1

, involving both

the true covariance matrix as well as its sample estimate.

In this chapter, we take a step further into the construction of optimal approximations of the

reduced-rank LMMSE Þlter and try to derive an improved solution based on properly estimating

the entries of the matrix ÿB. Since the Þnite-dimensional statistical analysis of these quantities

is rather intricate, we will approach the problem via their approximation in an appropriate

asymptotic regime. Note that a limiting regime based on large-sample theory provides us with

asymptotically exact candidates only for an inÞnite number of samples, as it is assumed whenever

the SCM is used to directly replace the true covariance matrix. However, the sample-size can

never be considered in practice to be inÞnitely larger than any other dimension in the signal

model. Hence, we consider instead an approximation regime that better models a Þnite sample-

size situation (characterized by the fact that both the number of observations available and their

dimension are comparable in magnitude) and focus on a doubly-asymptotic regime assuming that

both dimension and size of the sample increase without bound at the same rate.

In order to derive a solution according to the framework introduced above, we make use of

random matrix theory to obtain a set of (asymptotically optimum) approximants of the previous

key quantities in terms of the SCM. In particular, we follow a two-step strategy by Þrst providing

an asymptotically equivalent expression of the entries of ÿB (involving both the true covariance

matrix and its sample estimate) as a function of the spectrum of R, and afterwards obtain a

consistent estimator of these spectral functions based on the knowledge of �R.

2.5 Asymptotic Analysis of the Proposed Filter Structure

Much work has been published over the last years on the asymptotic weighting [Mül01, Hac04,

Li04b, Cot05] and performance analysis [Hon01, Lou03] of reduced-rank CDMA receivers min-

imizing the MSE based on the Krylov subspace introduced above (see also [Pan07] for PCA

eigensubspaces). In most cases, the analysis relies on the statistical modeling of the actual

structure of the observation covariance matrix in terms of a random transmission channel. In

the previous works, both the Þlter weights and the asymptotic performance of the receiver are

obtained as a function of the distributions of the signatures and noise, as well as some other
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intrinsic system parameters, such as the Þlter length and the signal subspace dimension. Here,

on the contrary, we deal with the practical problem of designing MMSE estimators based on

empirical statistics when the only available knowledge about the signal structure is the signature

associated with the unknown parameter. To that effect, we Þnd the set of optimum (subspace

Þlter) coefficients minimizing the MSE over an approximation subspace constructed from the

received samples.

As an intermediate step, in this section we derive the asymptotic expression of the scalar

quantites
n
hH �RiR�R

j
h
o
i,j=0,...,D−1

in terms of only the true covariance matrix R and under

the assumption that not only the sample-size N but also the observation dimensionM increases

without bound with a Þxed ratio between them (M/N → c). The rationale behind this strategy

is twofold. First, an expression characterizing the large-system performance of the reduced-

rank LMMSE estimator for a limited sample-size per Þltering degrees of freedom is obtained

as a function of the set of weights, the number of samples per observation dimension and the

covariance matrix of the input signals. On the other hand, the latter functions of R can be

consistently estimated using the spectrum of the sample covariance matrix �R (cf. Section 2.6),

consequently providing a practical procedure for the calculation of the optimum MMSE Þlter

weights. Under this asymptotic framework, the Stieltjes transform from random matrix theory

allows us to characterize the asymptotic distribution of the eigenvalues of �R in terms of the lim-

iting eigenvalue distribution of R. Throughout the chapter, the following statistical assumptions

of purely technical interest regarding the signal model are used:

(As1) The observation vectors y (n) can be statistically modeled as y (n) =R1/2u (n), where

u (n) ∈ CM , n = 1, . . . , N , is a collection of i.i.d. random vectors, whose entries have zero mean

real and imaginary parts with variance 1/2 and bounded higher moments.

(As2) The matrix R has uniformly bounded spectral radius for all M .

Thus, for the subsequent analysis, the SCM in (2.20) will be modeled according to (As1) as

�R =
1

N
R1/2UUHR1/2, (2.24)

where the matrix U ∈ CM×N is constructed using as columns the vectors u (n) , n = 1, . . . , N .

We are now ready to proceed with the presentation of the asymptotic approximation of the

term hH �RiR�R
j
h in the reduced-rank empirical performance measure involving only the true

covariance matrix. The basic idea behind our approach builds on the following identity, that

can be obtained directly from the Cauchy integral formula in two complex variables, namely

hH �RiR�R
j
h =

1

(2π j)2

I
Γ

I
Γ
zi1z

j
2 η (z1, z2) dz1dz2, (2.25)

where

η (z1, z2) = h
H
³
�R− z1IM

´−1
R
³
�R− z2IM

´−1
h, (2.26)
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and the region Γ is deÞned by a simply closed contour enclosing all the eigenvalues of �R.

From (2.25) and the dominated convergence theorem, the problem of obtaining an asymptotic

equivalent of hH �RiR�R
j
h reduces to that of Þnding the limiting expression of the integrand in

(2.25). Indeed, the integrand in (2.25) can be shown to be almost surely bounded for all large

M ,N over a compact subset containing the integration contour. Thus, we are allowed to invoke

the dominated convergence theorem and integrate directly the limiting expression in order to

obtain the asymptotic value of hH �RiR�R
j
h. An asymptotic equivalent of η (z1, z2) in (2.26) is

provided by the next theorem.

Theorem 2.2 Let �R = R
1/2
ΞΞHR1/2 with R1/2 the positive square-root of the deterministic

Hermitian positive deÞniteM×M matrixR, with uniformly bounded eigenvalues λ1 ≤ . . . ≤ λM .
Let also Ξ denote an M ×N complex random matrix, such that the real and imaginary parts of

the entries of
√
NΞ are independent and identically distributed with mean zero, variance 1/2 and

bounded moments. Finally, consider also anM-dimensional deterministic complex vector h with

uniformly bounded Euclidean norm for all M . Then, for any z1, z2 ∈ C+, η (z1, z2) ³ η̄ (z1, z2),
where

η̄ (z1, z2) =
f (z1)− f (z2)

z1 − z2 hH (w (z1)R− z1IM)−1R (w (z2)R− z2IM)−1 h, (2.27)

and we have further deÞned

f (z) =
z

w (z)
, w (z) = 1− c− czb (z) , (2.28)

with b (z) = b being the unique solution to the following equation in the set

{b ∈ C : − (1− c) /z + cb ∈ C+}:

b =
1

M

MX
m=1

1

λm (1− c− czb)− z .

Proof. See Appendix A.

Corollary 2.1 (Asymptotic reduced-rank empirical MMSE) In the doubly-asymptotic

regime deÞned above, the MMSE lower-bound in (2.22) converges as

MSE (�wD) ³ MSE = 1− v̄HB̄−1v̄,

where, for k, l = 1, . . . , D,

£
B̄
¤
k,l
=

1

(2π j)2

I
Γ

I
Γ
zk1z

l
2 η̄ (z1, z2) dz1dz2,

and [v̄]k is the asymptotic limit of h
H �Rkh (cf. Chapter 4).
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Observe that the limiting performance measure found by substituting, for i, j = 0 . . . D− 1,
every hH �RiR�R

j
h in (2.22) by the asymptotic equivalents obtained in this section extends

previous performance analyses to the case of sample observations of comparably large size and

dimension. Under the conventional assumption of a number of samples inÞnitely larger than the

observation dimension (i.e., c = 0), our general asymptotic performance measure coincides with

that in the existing literature.

In the following section, an estimator of the quantities
n
hH �RiR�R

j
h
o
i,j=0,...,D−1

, or (asymp-

totically) equivalently of their limits above, is derived using the asymptotic description of the

spectrum of sample covariance matrices, that is consistent even when the number of samples

per observation dimension remains bounded.

2.6 Consistent MMSE Estimator

Conventionally, the construction of LMMSE Þlters from a collection of received observations

is based on directly replacing the true covariance matrix with the SCM. Estimators obtained

following this procedure are consistent as the number of samples grows large without bound.

However, Þlter operation conditions in practical Þnite sample-size situations are characterized

by a limited number of samples per observation dimension. Under this practical contraint, the

conventional estimator of the subspace coefficients ÿωD in (2.23) is no longer consistent. Here,

in order to improve the estimation performance under realistic conditions, we propose a more

general estimator of ÿωD that is consistent for arbitrarily high-dimensional observations (i.e., for

a bounded sample-support per degree-of-freedom).

In order to construct the proposed generalized LMMSE Þlter, we depart from the asymptotic

analysis in Section 2.5. The asymptotic approximations based on the (unknown) true covariance

matrix obtained in the previous section are motivated by the fact that certain spectral functions

of R may be arbitrarily well approximated in the previous asymptotic regime by quantities de-

pending only on the spectrum of the sample covariance matrix �R. In particular, approximations

of this type can be found by resorting to the theory of general statistical analysis developed

by Girko in e.g. [Gir98, Chapter 14]. G-analysis provides a systematic approach to derive es-

timators of a certain class of spectral functions of the theoretical covariance matrix that are

consistent even in situations characterized by a collection of arbitrarily large-dimensional obser-

vations (namely ressembling the double-limiting regime hereby considered). As a consequence,

G-estimators can be identiÞed as M,N-consistent as opposed to traditional N-consistent esti-

mators. The following theorem extends the theory of GSA with an M,N-consistent estimator

of the set of spectral functions in (2.25) derived in Section 2.5.
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Theorem 2.3 Let �R, R and h be deÞned as in Theorem 2.3. Then,

hH �RiR�R
j
h ³ 1

c2

MX
k=1

MX
l=1

µikµ
j
l

ηkηl

MX
m=1

�λm
¯̄
hH�em

¯̄2³
�λm − µk

´³
�λm − µl

´ , (2.29)

where �λm and �em are the mth eigenvalue and mth eigenvector of �R, respectively,

ηp =
1

M

MX
m=1

�λm³
�λm − µp

´2 ,
and µp, p = 1, . . . ,M , are the real-valued solutions of the following equation in µ

1

M

MX
m=1

�λm
�λm − µ

=
1

c
.

Proof. See Appendix G.

Remark 2.1 The RHS of (2.29) is a strongly consistent estimator of the quantity in the LHS.

Therefore, the proposed implementation of the reduced-rank LMMSE Þlter can be con-

structed as ùwD = �SDùωD, where

ùωD = ùB−1�v,

and, for k, l = 1, . . . ,D,
h
ùB
i
k,l
is deÞned by the consistent estimator of hH �Rk−1R�R

l−1
h given

by (2.29).

2.7 Evaluation of non-asymptotic estimator performance

In this section, the goodness of the new generalized estimator is evaluated under non-asymptotic

conditions via numerical simulations. Essentially, it will be empirically shown that particularly

the fact that the proposed implementation generalizes the traditional estimator (by proving

to be consistent even for arbitrarily high-dimensional observations) traduces to an improved

performance also in the Þnite sample-size regime.

Throughout the following exposition, the proposed realizable construction of the optimum

reduced-rank LMMSE Þlter is compared with the conventional counterpart obtained by directly

replacing the covariance matrix with its sample estimate. In all the simulations, the covariance

matrix is modeled according to (2.10), whereas the SCM in (2.20) is modeled as in (2.24). The

dimension of the signal subspace is chosen as a fraction of the observation dimension, namely

K = αM . Furthermore, all vector signatures are generated as realizations of a complex random

vector with i.i.d. entries having real and imaginary parts of mean zero and unit variance.
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Figure 2.2: Normalized mean squared error incurred in the proposed and conventional estimation

of the individual entries of B.
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Figure 2.3: Estimator convergence for an increasing number of samples

Finally, the noise power is Þxed to σ2n = 1, and the desired and the K − 1 nuisance signatures
are received with a power of 10 dB and 15 dB, respectively, over the noise ßoor. In order to

assess the comparative performance of the M,N-consistent estimator ùB, we Þrst evaluate the

error incurred by using both approximations when estimating the individual entries of the matrix
ÿB. Figure 2.2 shows the normalized mean-square error achieved by the proposed (bottom) and

the conventional (top) estimators, namely¯̄̄̄
¯̄̄
£
ÿB
¤
i,j
−
h
ùB
i
i,j

[B]i,j

¯̄̄̄
¯̄̄
2

and

¯̄̄̄
¯̄̄
£
ÿB
¤
i,j
−
h
�B
i
i,j

[B]i,j

¯̄̄̄
¯̄̄
2

,

respectively. The averaged error over 100 realizations is depicted for the case of M = 8, N = 10

and K = 6. On the other hand, the consistency of both estimators as the number of samples

grows large is illustrated in Figure 2.3, where the normalized squared Frobenius norm of the

error matrix for the proposed and conventional estimators of the matrix ÿB, namely°°°ÿB− ùB°°°2
F

kBk2F
and

°°°ÿB− �B°°°2
F

kBk2F
,

respectively, is averaged over 300 realizations with M = 4, K = 3 and D = 2, and all signa-

tures received 5 dB over the noise ßoor. Clearly, a higher convergence rate can be appreciated
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Figure 2.4: Averaged MSE of the estimation of Q1 (w) and Q2 (w)

regarding the proposed estimator.

It is a well-known fact in the literature that the optimum linear reduced-rank estimator min-

imizing the MSE simultaneously achieves the maximum output SINR. Indeed, observe that also

the Þlter in (2.21) does attain the optimum tradeoff between minimizing MSE and maximizing

SINR (MSINR). In practice, under non-asymptotic conditions, the approximation error incurred

by the estimator of ÿB prevents the MMSE and MSINR criteria to be simultaneously attained.

In order to assess the effect of the errors in the estimation of the individual entries of ÿB in

the practically achieved estimation accuracy, it will be in order to deÞne Q1 (w) = wHh and

Q2 (w) = wHRw. Accordingly, we can rewrite both performance measures as

MSE (w) = 1− 2Re {Q1 (w)}+Q2 (w) , SINR (w) =

µ
Q2 (w)

Q21 (w)
− 1
¶−1

. (2.30)

Clearly, as argued above, if w = ÿwD, Q1 (ÿwD) = Q2 (ÿwD) = �vH ÿB−1�v and both perfor-

mance measures are simultaneously optimized, whereas, for an estimated Þlter construction,

the achieved MMSE is asymmetrically traded off against the achieved MSINR obtained at the

output of the reduced-rank Þlter. Before evaluating the effect of the approximation error of the

previous quantities on the performance tradeoff, the distance (in terms of the mean square-error)
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Figure 2.5: Conventional and proposed Þlter performance tradeoff (M = 30 and N = 40).

from each quantity to its actual value meeting the MMSE and MSINR criteria simultaneously

is illustrated in Figure 2.4 for the case M = 16 and N = 20 averaged over 100 realizations.

An increasing error around one order of magnitude larger can be observed for the conventional

estimators of Q1 (ÿwD) and Q2 (ÿwD).

The proposed and the conventional reduced-rank LMMSE estimators are compared in terms

of the achieved performance. In particular, curves representing the MSE and SINR performance

of both estimators are depicted versus rank selection along with the performance bound attained

by �wD and the reduced-rank optimum (clairvoyant) case. Figure 2.5 shows the achieved MSE

and SINR in the case of M = 30 and N = 40. Even though both the conventional and the

proposed implementation of the optimum reduced-rank Þlter attain an improved output SINR

of around 5 dB with respect to the matched Þlter, the conventional realization experiences a

sharp degradation in terms of MSE, whereas the proposed Þlter is even able to reduce the

error. The Þlter performance for a rank-deÞcient SCM, speciÞcally for M = 30 and N = 20

(c > 1), is shown in Figure 2.6. In this Þgure, an even superior enhancement in terms of MSE

performance gap (namely twice as high as in the previous Þgure) can be appreciated. Finally,

an improved estimation accuracy can be observed for the large-signal case in Figure 2.7,where

the performance of the proposed estimator closely resembles the bound performance.
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Figure 2.6: Conventional and proposed Þlter performance tradeoff (M = 30 and N = 20).
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The M,N-consistency associated with the subspace coefficient estimator introduced in the

previous section allows for a reasonable Þlter performance under fairly less stringent conditions

on the number of samples per observation dimension, thereby outperforming the conventional

M-consistent reduced-rank LMMSE Þlter in Þnite sample-size situations. The last and Þnal

section summarizes the contribution of the chapter.

2.8 Conclusion

The construction of optimum approximations of the LMMSE estimator on a reduced-dimensional

subspace is a fundamental problem in many disciplines and, particularly, in communication the-

ory and signal processing applications. Realizable implementations of the reduced-rank LMMSE

Þlter derived as a function of the unknown second-order statistics of the input observations are

traditionally based on the direct substitution of the theoretical covariance matrix for its sam-

ple estimate, namely the SCM. Given a matrix with column space spanning the approximation

subspace, we use the coefficients linearly combining its columns as a set of degrees of free-

dom available for Þlter design. Building upon the conventional implementation of the optimal

Krylov subspace matrix in terms of the SCM, an improved construction of the reduced-rank

LMMSE Þlter is proposed that is consistent under more general conditions than the conven-

tional implementation. In particular, the proposed estimator generalizes conventional Þlter

realizations, consistent in the classical sence, by guaranteeing consistency even for arbitrarily

high-dimensional observations. Our results are based on a general description in the previous

doubly-asymptotic regime of the spectrum of SCM-type random matrix models that is also ap-

plicable to the undersampled case. Accordingly, this asymptotic regime is in perfect agreement

with realistic deployment settings in practice, characterized by a bounded ratio between sample

and system sizes, in the sense that it allows for the possibility of the number of received obser-

vations and the number of Þltering degrees of freedom being comparable in magnitude. As a

result, the proposed generalized LMMSE estimator is shown via numerical simulation to present

a superior performance under Þnite sample-size situations avoiding the degradation in terms of

MSE performance as the selected rank value increases.
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Appendix 2.A Proof of Proposition 2.2

Throughout the following proof, all limiting expressions must be understood in the asymptotic

regime deÞned when both M and N go to inÞnity at the same rate Þxed by the constant

c = M/N . In order to proof Theorem 2.2, we proceed by decomposing η (z1, z2) as a sum

involving η̄ (z1, z2) and a Þnite number of quantities vanishing almost surely as M,N → ∞.
Consider a random matrix Y = [y1, . . . ,y2] such that

�R =
1

N
YYH = �Rn +

1

N
yny

H
n = �Rmn +

1

N
ymy

H
m +

1

N
yny

H
n ,

where the matrices �Rn and �Rmn are deÞned as

�Rn = �R− 1
N
yny

H
n ; �Rmn = �R− 1

N
yny

H
n −

1

N
ymy

H
m.

For the sake of notational convenience, we will use the following deÞnitions in our derivations

Q (z) =
³
�R− zIM

´−1
, (2.31)

Qn (z) =
³
�Rn − zIM

´−1
, (2.32)

P (z) = (w (z)R− zIM)−1 . (2.33)

First, we observe that

η (z1, z2) = h
HQ (z1)RQ (z2)h

= hH (Q (z1)−P (z1))R (Q (z2)−P (z2))h+ hHP (z1)RP (z2)h
+ hH (Q (z1)−P (z1))RP (z2)h+ hHP (z1)R (Q (z2)−P (z2))h.

DeÞne the vectors h1 = PH1 h and h2 = P2h. Then, using the fact that (cf. Section 1.1)

hHQ (z1)Rh1 ³ hHP (z1)Rh1
hH2 RQ (z2)h ³ hH2 RP (z2)h,

we can write

η (z1, z2) ³ hH (Q (z1)−P (z1))R (Q (z2)−P (z2))h+ hH1 Rh2
= hH1

³
w(z1)R− �R

´
Q (z1)RQ (z2)

³
w(z2)R− �R

´
h2 + h

H
1 Rh2

=
1

N2

NX
n=1

NX
m=1

hH1
¡
w(z1)R− ynyHn

¢
Q (z1)RQ (z2)

¡
w(z2)R− ymyHm

¢
h2 + h

H
1 Rh2,

(2.34)

where, in the Þrst equality, we have used the resolvent identity, i.e., A−1 − B−1 =

B−1 (A−B)A−1.
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DeÞne further

�ωn (z) =
1

1 + 1
Ny

H
n Qn(z)yn

.

Observe now that the RHS of (2.34) can be equivalently written as

η (z1, z2) ³ hH1 Rh2 (2.35)

+

Ã
w(z1)− 1

N

NX
n=1

�ωn (z1)

!
hH1 RQ (z1)RQ (z2)Rh2

Ã
w(z2)− 1

N

NX
m=1

�ωn (z2)

!
(2.36)

+

Ã
w(z1)− 1

N

NX
n=1

�ωn (z1)

!
hH1 RQ (z1)RQ (z2)

1

N

NX
m=1

¡
�ωn (z2)R− ymyHm

¢
h2

(2.37)

+
1

N

NX
n=1

hH1
¡
�ωn (z1)R− ynyHn

¢
Q (z1)RQ (z2)Rh2

Ã
w(z2)− 1

N

NX
m=1

�ωn (z2)

!
(2.38)

+
1

N2

NX
n=1

NX
m=1

hH1
¡
�ωn (z1)R− ynyHn

¢
Q (z1)RQ (z2)

¡
�ωn (z2)R− ymyHm

¢
h2.

We can prove that the expressions in (2.36), (2.37) and (2.38) vanish asymptotically almost

surely. Indeed, the convergence for (2.36) is readily given by the fact that (cf. Section 1.1)

1

N

NX
n=1

�ωn (z1) ³ w(z), (2.39)

since, clearly, °°°°h�R− zIMi−1°°°° ≤ 1

Im {z} < +∞, (2.40)

and, consequently,¯̄
hH1 RQ (z1)RQ (z2)Rh2

¯̄ ≤ kh1k kh2k kRk3 1

Im {z1}
1

Im {z2} < +∞.

Furthermore, the following convergence result is proved in Appendix B, namelyÃ
w(z1)− 1

N

NX
n=1

�ωn (z1)

!
Tr

"
ΘRQ (z1)RQ (z2)

1

N

NX
m=1

¡
�ωn (z2)R− ymyHm

¢# ³ 0, (2.41)

where Θ ∈ CM×M is an arbitrary matrix with uniformly bounded spectral radius. Using (2.41)

with Θ = h2h
H
1 , the convergence of (2.37), and equivalently (2.38), can be readily stated. In

conclusion, we have

η (z1, z2) ³ 1

N2

NX
n=1

NX
m=1

hH1
¡
�ωn (z1)R− ynyHn

¢
Q (z1)RQ (z2)

¡
�ωn (z2)R− ymyHm

¢
h2+h

H
1 Rh2.
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Moreover, using the matrix inversion lemma to write

Q(z) = Qn(z)− 1

N

Qn(z)ynyHn Qn(z)

1 + 1
Ny

H
n Qn(z)yn

, (2.42)

we see that

1

N

NX
n=1

¡
�ωn (z1)R− ynyHn

¢
Q (z1) =

1

N

NX
n=1

RQ (z1)− ynyHn Qn(z1)
1 + 1

Ny
H
n Qn(z1)yn

. (2.43)

Using (2.43), we observe that

η (z1, z2) ³ hH1 Rh2
1

N2

NX
n=1

NX
m=1

�ωn (z1) �ωm (z2)h
H
1 R (Q(z1)−Qn(z1))R (Q(z2)−Qm(z2))Rh2 (2.44)

+
1

N2

NX
n=1

NX
m=1

�ωn (z1) �ωm (z2)h
H
1

¡
R− ynyHn

¢
Qn(z1)R (Q(z2)−Qm(z2))Rh2 (2.45)

+
1

N2

NX
n=1

NX
m=1

�ωn (z1) �ωm (z2)h
H
1 R (Q(z1)−Qn(z1))RQm(z2)

¡
R− ymyHm

¢
h2

(2.46)

+
1

N2

NX
n=1

NX
m=1

�ωn (z1) �ωm (z2)h
H
1

¡
R− ynyHn

¢
Qn(z1)RQm(z2)

¡
R− ymyHm

¢
h2.

(2.47)

In Appendices C and D, the following asymptotic equivalents are stated, respectively,

1

N2

NX
n=1

NX
m=1

�ωn (z1) �ωm (z2)Tr [ΘR (Q(z1)−Qn(z1))R (Q(z2)−Qm(z2))R] ³ 0 (2.48)

and

1

N2

NX
n=1

NX
m=1

�ωn (z1) �ωm (z2)Tr
£
Θ
¡
R− ynyHn

¢
Qn(z1)R (Q(z2)−Qm(z2))R

¤ ³ 0, (2.49)

where Θ ∈ CM×M is an arbitrary matrix with uniformly bounded spectral radius. With Θ =

h2h
H
1 , the results in (2.48) and (2.49) can be used to show that both (2.44) and (2.45), and

equivalently (2.46), respectively, vanish with probability one. In addition, a further result (cf.

Appendix E)

1

N2

NX
m=1

NX
n=1

�ωn (z1) �ωn (z2)Tr
£
Θ
¡
R− ymyHm

¢
Qn(z1)RQm(z2)

¡
R− ymyHm

¢¤
³ cw (z1)w (z2)Tr [ΘR] 1

M
Tr [RQ(z1)RQ(z2)] , (2.50)
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whereΘ ∈ CM×M is an arbitrary matrix with uniformly bounded spectral radius, can be applied

with Θ = h2h
H
1 to write the following asymptotic equivalent

η (z1, z2) ³ hH1 Rh2 + cw (z1)w (z2)hH1 Rh2
1

M
Tr [RQ(z1)RQ(z2)] . (2.51)

Now,

1

M
Tr [Q (z1)RQ (z2)R] =

=
1

M
Tr [(Q (z1)−P (z1))R (Q (z2)−P (z2))R] + 1

M
Tr [P (z1)RP (z2)R]

+
1

M
Tr [(Q (z1)−P (z1))RP (z2)R] + 1

M
Tr [P (z1)R (Q (z2)−P (z2))R] . (2.52)

Both quantites in (2.52) are asymptotically equivalent to zero with probability one. To see this,

note that the singular value decomposition of RP (z2)R can be used to rewrite

1

M
Tr [(Q (z1)−P (z1))RP (z2)R] = 1

M

MX
k=1

vHk (Q (z1)−P (z1)) sk, (2.53)

where {sk} and {vk}, k = 1, . . . ,M , are the sets of M left and right singular vectors, including,

with some abuse of notation, the magnitude of the singular values of the decomposed matrix.

Note that {sk} and {vk} have by assumption uniformly bounded Euclidean norm for all M .

The RHS of (2.53) can be shown to asymptotically vanish almost surely by Lemma A.2, since

it can be bounded as (cf. Appendix F)

max
1≤k≤N

E
h¯̄
vHk (Q (z1)−P (z1))uk

¯̄pi ≤ C

N1+δ
, (2.54)

for some constants C, δ > 0 and p > 1 not depending on N . In conclusion,

1

M
Tr [Q (z1)RQ (z2)R] ³ 1

M
Tr [(Q (z1)−P (z1))R (Q (z2)−P (z2))R]+ 1

M
Tr [P (z1)RP (z2)R] .

Now, using the resolvent identity, the Þrst term can be rewritten as

u (z1, z2) =
1

M
Tr [(Q (z1)−P (z1))R (Q (z2)−P (z2))R]

=
1

M
Tr
h
P (z1)

³
w(z1)R− �R

´
Q (z1)RQ (z2)

³
w(z2)R− �R

´
P (z2)R

i
=
1

N

1

N

NX
n=1

NX
m=1

1

M
Tr
£
R1
¡
w(z1)R− ynyHn

¢
Q(z1)RQ(z2)

¡
w(z2)R− ymyHm

¢
R2
¤
.

where we have deÞnedR1 = R1/2P (z1) andR2 = P (z2)R1/2. Similarly as in (2.35), we observe
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that

u (z1, z2) =
1

M
Tr

"
R1

Ã
w(z1)− 1

N

NX
n=1

�ωn (z1)

!
RQ(z1)RQ(z2)

Ã
w(z2)− 1

N

NX
m=1

�ωn (z2)

!
RR2

#
(2.55)

+
1

N

NX
m=1

1

M
Tr

"
R1

Ã
w(z1)− 1

N

NX
n=1

�ωn (z1)

!
RQ(z1)RQ(z2)

¡
�ωm (z2)R− ymyHm

¢
R2

#
(2.56)

+
1

N

NX
n=1

1

M
Tr

"
R1
¡
�ωn (z1)R− ynyHn

¢
Q(z1)RQ(z2)

Ã
w(z2)− 1

N

NX
m=1

�ωn (z2)

!
RR2

#
(2.57)

+
1

N

1

N

NX
n=1

NX
m=1

1

M
Tr
£
R1
¡
�ωn (z1)R− ynyHn

¢
Q(z1)RQ(z2)

¡
�ωm (z2)R− ymyHm

¢
R2
¤
.

(2.58)

The Þrst term in the RHS of the previous expression is asymptotically zero almost surely. Indeed,

the convergence of (2.55) can be stated again straightforwardly using (2.39) and the fact that

the quantity 1
M Tr [R1RQ(z1)RQ(z2)RR2] is clearly bounded. The expression in (2.56) and,

equivalently, (2.57) vanishes also asymptotically with probability one (see Appendix B with

Θ = R2R1 for a proof).

Hence, the next asymptotic equivalent of u (z1, z2) follows

1

N2

NX
n=1

NX
m=1

1

M
Tr
£
R1
¡
�ωn (z1)R− ynyHn

¢
Q(z1)RQ(z2)

¡
�ωm (z2)R− ymyHm

¢
R2
¤
.

Using as before (2.43), we equivalently write u (z1, z2) asymptotically as

1

N2

NX
n=1

NX
m=1

�ωn (z1) �ωm (z2)
1

M
Tr [R1R (Q(z1)−Qn(z1))R (Q(z2)−Qm(z2))RR2] (2.59)

+
1

N2

NX
n=1

NX
m=1

�ωn (z1) �ωm (z2)
1

M
Tr
£
R1
¡
R− ynyHn

¢
Qn(z1)R (Q(z2)−Qm(z2))RR2

¤
(2.60)

+
1

N2

NX
n=1

NX
m=1

�ωn (z1) �ωm (z2)
1

M
Tr
£
R1R (Q(z1)−Qn(z1))RQm(z2)

¡
R− ymyHm

¢
R2
¤
(2.61)

+
1

N2

NX
n=1

NX
m=1

�ωn (z1) �ωm (z2)
1

M
Tr
£
R1
¡
R− ynyHn

¢
Qn(z1)RQm(z2)

¡
R− ymyHm

¢
R2
¤
.

(2.62)

The quantities (2.59) to (2.61) vanish with probability one. The proof follows from (2.41)

and (2.48) using Θ = R2R1 (cf. Appendices C and D). Regarding (2.62), using (2.50) with
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Θ = R2R1, it is straighforward to show that

u (z1, z2) ³ cw (z1)w (z2) 1
M
Tr [R2R1R]

1

M
Tr [RQ(z1)RQ(z2)] .

Hence,

1

M
Tr [Q (z1)RQ (z2)R] ³ 1

M
Tr [R2R1R]+cw(z1)w(z2)

1

M
Tr [R2R1R]

1

M
Tr [Q (z1)RQ (z2)R] ,

and, consequently,

1

M
Tr [Q (z1)RQ (z2)R] ³

1
M Tr [P (z2)RP (z1)R]

1− cw(z1)w(z2) 1M Tr [P (z2)RP (z1)R]
.

Inserting the asymptotic equivalent of 1
M Tr [Q (z1)RQ (z2)R] into (2.51), we conclude

η (z1, z2) ³ hHP (z1)RP (z2)h

1− cw(z1)w(z2) 1M Tr [P (z2)RP (z1)R]
. (2.63)

Regarding the denominator, we may decompose the quantity w(z1)w(z2) 1M Tr [P (z2)RP (z1)R]

in partial fractions as

w(z1)w(z2)
1

M

MX
m=1

λ2m
(w(z1)λm − z1) (w(z2)λm − z2) =

= w(z1)w(z2)
1

M

MX
m=1

λ2m
z1w(z2)− z2w(z1)

·
w(z1)

w(z1)λm − z1 −
w(z2)

w(z2)λm − z2

¸

=
1

f (z1)− f(z2)
1

M

MX
m=1

·
λ2m

λm − f (z1) −
λ2m

λm − f (z2)
¸
,

with the aim of Þnally writing

1− cw(z1)w(z2) 1
M
Tr [P (z2)RP (z1)R]

=
1

f (z1)− f(z2)

"Ã
f (z1)− c 1

M

MX
m=1

λ2m
λm − f (z1)

!
−
Ã
f(z2)− c 1

M

MX
m=1

λ2m
λm − f (z2)

!#

=
1

f (z1)− f(z2)

"Ã
z1 − c

M

MX
m=1

λm

!
−
Ã
z2 − c

M

MX
m=1

λm

!#
=

z1 − z2
f (z1)− f(z2) . (2.64)

Plugging (2.64) into the denominator of (2.63) yields the result we wanted to prove.

Appendix 2.B Proof of (2.41)

DeÞne

a(N)n =
1

N

NX
n=1

Tr
£
Θ
¡
�ωn (z1)R− ynyHn

¢
Q (z1)RQ (z2)R

¤
,
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and

b(N)n = w(z1)− 1

N

NX
n=1

1

1 + 1
Ny

H
n Qn(z1)yn

.

We give a proof based on the direct application of Lemma A.1 to the quantity a(N)n b
(N)
n . Since

b
(N)
n ³ 0 (cf. Equation (2.39)), it is enough to show that a(N)n is stochastically bounded almost

surely [Fel66], namely a(N)n ³ t, where t is a random variable bounded for all M,N .

An alternative proof based on martingale differences can be obtained according to Lemma

A.2 by showing that

max
1≤n≤N

E
h¯̄̄
a(N)n b(N)n

¯̄̄pi ≤ C

N1+δ
,

for some constants C, δ > 0 and p > 1 not depending on N . To that effect, we just have to

apply the Cauchy-Schwarz inequality and show, on the one hand,

max
1≤n≤N

E
·¯̄̄
b(N)n

¯̄̄2p¸ ≤ C

N1+δ
, (2.65)

and, on the other, E
·¯̄̄
a
(N)
n

¯̄̄2p¸
< +∞. The inequality in (2.65) can be proved to hold using

Burkholder�s inequality. The boundness of the last expectation will result from the following

derivations.

We next prove a(N)n ³ t, with t being a random variable bounded for all M,N . According

to (2.43), we may write a(N)n as

1

N

NX
n=1

�ωn (z1)Tr [ΘR (Q(z1)−Qn(z1))RQ (z2)R] (2.66)

+
1

N

NX
n=1

�ωn (z1)Tr
£
Θ
¡
R− ynyHn

¢
Qn(z1)RQ (z2)R

¤
. (2.67)

We Þrst prove the following statement regarding (2.66), namely

1

N

NX
n=1

�ωn (z1)Tr [ΘR (Q(z1)−Qn(z1))RQ (z2)R] ³ 0. (2.68)

For that purpose, we note Þrst that, using (2.42), the LHS of (2.68) can be written as

NX
n=1

ω2n (z1)
1

N
Tr
£
ΘRQn(z1)yny

H
n Qn(z1)RQ (z2)R

¤
.

Since we know that

|�ωn (z)| =
¯̄̄̄
¯ 1

1 + 1
Ny

H
n Qn(z)yn

¯̄̄̄
¯ < |z|

|Im {z}| < +∞, (2.69)

in order to establish (2.68), it is enough from Lemma A.2 to show that

max
1≤n≤N

1

Np
E
h¯̄
yHn Qn(z1)RQ (z2)RΘRQn(z1)yn

¯̄pi ≤ C

N1+δ
,
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for some constants C, δ > 0 and p > 1 not depending on N . To that effect, we prove that the

expectation is bounded for p > 1. First, applying (2.42) and the Jensen inequality, we write the

expectation as

E

"¯̄̄̄
¯yHn Qn(z1)R

Ã
Qn(z2)− 1

N

Qn(z2)yny
H
n Qn(z2)

1 + 1
Ny

H
n Qn(z2)yn

!
RΘRQn(z1)yn

¯̄̄̄
¯
p#

≤ 2p−1
n

E
h¯̄
yHn Qn(z1)RQn(z2)RΘRQn(z1)yn

¯̄pi
+E

·¯̄̄̄
�ωn (z2)

1

N
yHn Qn(z1)RQn(z2)yny

H
n Qn(z2)RΘRQn(z1)yn

¯̄̄̄p¸¾
.

The Þrst term can be readily shown to be bounded by using Lemma A.4. As for the second

one, considering (2.69) and using the Cauchy-Schwarz inequality, we may write

E
·¯̄̄̄
�ωn (z2)

1

N
yHn Qn(z1)RQn(z2)yny

H
n Qn(z2)RΘRQn(z1)yn

¯̄̄̄p¸
≤
µ |z2|
Im {z2}

¶p
E1/2

h¯̄
yHn Qn(z2)RΘRQn(z1)yn

¯̄2piE1/2
"¯̄̄̄
1

N
yHn Qn(z1)RQn(z2)yn

¯̄̄̄2p#
.

Now, both expectations can be seen to be bounded by directly applying Lemma A.4.

We next proceed to prove the convergence of (2.67) to a bounded random quantity. First,

using the matrix inversion lemma as in (2.42), we rewrite the LHS of (2.67) as

1

N

NX
n=1

Tr

"
Θ
¡
R− ynyHn

¢
Qn(z1)R

Ã
Qn (z2)− 1

N

Qn (z2)yny
H
n Qn (z2)

1 + 1
Ny

H
n Qn(z2)yn

!
R

#
. (2.70)

Further, it follows from Lemma A.5 that, asymptotically, (2.70) can be equivalently written as

1

N

NX
n=1

�ωn (z2)
1

N
Tr
£
Θ
¡
yny

H
n −R

¢
Qn(z1)RQn (z2)yny

H
n Qn (z2)R

¤
. (2.71)

On the one hand, considering (2.69) and using Lemma A.2 together with Lemma A.4, we Þnd

that
1

N

NX
n=1

�ωn (z2)
1

N
Tr
£
ΘRQn(z1)RQn (z2)yny

H
n Qn (z2)R

¤ ³ 0.
Thus, in the asymptotic regime considered here, (2.71) is equivalent to

1

N

NX
n=1

�ωn (z2)
1

N
yHn Qn (z2)RΘyny

H
n Qn(z1)RQn (z2)yn. (2.72)

On the other hand, using again the fact that �ωn (z2) is absolutely bounded and (see next)

1

N

NX
n=1

ξny
H
n Qn (z2)RΘyn ³ 0, (2.73)
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where we have deÞned

ξn =
1

N
yHn Qn(z1)RQn (z2)yn −

1

N
Tr [RQn(z1)RQn (z2)] ,

we obtain the following asymptotic equivalent of (2.72), namely

1

N

NX
n=1

�ωn (z2)y
H
n Qn (z2)RΘyn

1

N
Tr [RQn(z1)RQn (z2)] . (2.74)

To see (2.73), we just need to show that

max
1≤n≤N

E
h¯̄
ξny

H
n Qn (z2)RΘyn

¯̄pi ≤ C

N1+δ
,

for some constants C, δ > 0 and p > 1 not depending on N . Using the Cauchy-Schwarz

inequality, we Þnd that

E
h¯̄
ξny

H
n Qn (z2)RΘyn

¯̄pi ≤ E1/2
h¯̄
yHn Qn (z2)RΘyn

¯̄2piE1/2
h
|ξn|2p

i
.

Now, Lemma A.4 can be used to show the Þrst expectation to be bounded. Regarding the

second expectation, we can apply Lemma A.3 in order to obtain

E
h
|ξn|2p

i
≤ K2p kCk2p E

h
|ξ|4p

i½ 1

Np
+

1

N2p−1

¾
,

where we have used kCpk2W ≤ kCpk2 = kCk2p and, by Jensen�s inequality, Ep
h
|ξ|4
i
≤ E

h
|ξ|4p

i
for any p > 1. Accordingly, we just need to choose p ≥ 2 to prove the result in (2.73), since, by
assumption,

kCk ≤ 1

|Im {z1}|
1

|Im {z2}| kRk
2 < +∞.

Finally, we may use the fact that

Tr [ΘRQn (z2)R] ³ Tr [ΘRQ (z2)R] ,

and
1

N
Tr [RQn(z1)RQn (z2)] ³

1

N
Tr [RQ(z1)RQ (z2)] , (2.75)

where all four terms are bounded for all M,N , together with Lemma A.5 in order to express

(2.74) asymptotically as

Tr [ΘRQ (z2)R]
1

N
Tr [RQ(z1)RQ (z2)]

1

N

NX
n=1

�ωn (z2)

≤ |z2|
Im {z2} Tr [ΘRQ (z2)R]

1

N
Tr [RQ(z1)RQ (z2)] < +∞.
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Appendix 2.C Proof of (2.48)

By Lemma A.2, as well as the fact that ωn (z) is absolutely bounded for all M,N , it suffices to

prove that

max
1≤m,n≤N

E
·¯̄̄̄
1

N2
yHmQm (z2)RΘRQn(z1)yny

H
n Qn(z1)RQm(z2)ym

¯̄̄̄p¸
≤ K

N1+δ
, (2.76)

for some constants K, δ > 0 and p > 1 not depending on N . Using the Cauchy-Schwarz

inequality in the linear space ofM ×M complex square matrices equipped with the weak norm,

the expectation in the LHS of (2.76) can be written as

E
·¯̄̄̄
1

N
Tr [AnBn]

¯̄̄̄p¸
≤ E1/2

·µ
1

N
Tr
£
AnA

H
n

¤¶p¸
E1/2

·µ
1

N
Tr
£
BnB

H
n

¤¶p¸
, (2.77)

where we have deÞned An = RΘRQn(z1)yny
H
n Qn(z1)R and Bn = 1

NQm(z2)ymy
H
mQm (z2).

Regarding the Þrst factor in (2.77), the Cauchy-Schwarz inequality can be used to write

E
·¡
yHn Q

H
n (z1)RΘR

2ΘRQn(z1)yn
¢pµ 1

N
yHn Qn(z1)R

2QHn (z1)yn

¶p¸
≤ E1/2

h¯̄
yHn Q

H
n (z1)RΘR

2ΘRQn(z1)yn
¯̄2piE1/2

"¯̄̄̄
1

N
yHn Qn(z1)R

2QHn (z1)yn

¯̄̄̄2p#
,

that can be readily found to be bounded using Lemma A.4. Hence, according to the second

factor in (2.77), it remains to show that

max
1≤m≤N

1

Np/2
E

"µ
1

N
yHmQm (z2)Q

H
m(z2)ym

¶2p#
≤ K 0

N1+δ
,

but this is straightforward using Lemma A.4 for p > 2.

Appendix 2.D Proof of (2.49)

According to Lemma A.2, using the matrix inversion lemma as in (2.42), the absolutely bound-

ness of ωn (z) (cf. Equation (2.69)) and the Jensen inequality, the proof of (2.49) reduces to

show that

max
1≤m,n≤N

E
·¯̄̄̄
1

N
yHmQm(z2)RΘ

¡
R− ynyHn

¢
Qmn(z1)ym

1

N
yHmQmn(z1)RQm(z2)ym

¯̄̄̄p¸
≤ K

N1+δ
,

(2.78)

for some constants K, δ > 0 and p > 1 not depending on N . Using the Cauchy-Schwarz

inequality, the expectation in (2.78) can be bounded above by

E1/2
"¯̄̄̄
1

N
yHmQm(z2)RΘ

¡
R− ynyHn

¢
Qmn(z1)ym

¯̄̄̄2p#
E1/2

"¯̄̄̄
1

N
yHmQmn(z1)RQm(z2)ym

¯̄̄̄2p#
.

(2.79)
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The second factor of the RHS of (2.79) is clearly bounded by Lemma A.4. Regarding the Þrst

one, using Jensen�s inequality we Þnd that

E1/2
"¯̄̄̄
1

N
yHmQm(z2)RΘRQmn(z1)ym

¯̄̄̄2p#
≤ 1

Np
K 0, (2.80)

and, further,

E1/2
"¯̄̄̄
1

N
yHmQm(z2)RΘyny

H
n Qmn(z1)ym

¯̄̄̄2p#
≤ 1

Np
K 00 +

1

N2p
K 000. (2.81)

The inequality in (2.80) is straightforward, for the expectation

E
h¯̄
yHmQm(z2)Rh2h

H
1 RQmn(z1)ym

¯̄2pi is bounded by Lemma A.4. To see (2.81), we ap-

ply the matrix inversion lemma on Qm(z2) and, using again the Jensen inequality, the bound

in (2.69) and the Cauchy-Schwarz inequality, it is straigthforward to Þnd that

E

"¯̄̄̄
1

N
yHmQm(z2)RΘyny

H
n Qmn(z1)ym

¯̄̄̄2p#
≤

≤ K
½
1

N2p
E
h¯̄
yHmQm(z2)RΘyny

H
n Qmn(z1)ym

¯̄2pi
+
1

N4p
E1/2

h¯̄
yHn Qmn(z2)RΘyn

¯̄4piE1/2
h¯̄
yHn Qmn(z1)ymy

H
mQmn(z2)yn

¯̄4pi¾
,

whereby we readily identify, from Lemmas A.4 and A.5, that all three expectations are bounded.

Hence, it remains to choose p > 1 to Þnally prove the result.

Appendix 2.E Proof of (2.50)

In the analysis of the convergence of (2.50), two different cases regarding the double index can

be identifed:

� Case (m = n). In this case we have

1

N

NX
n=1

�ωn (z1) �ωn (z2)
1

N
Tr
£
Θ
¡
R− ynyHn

¢
Qn(z1)RQn(z2)

¡
R− ynyHn

¢¤
. (2.82)

We expand the argument of the trace and observe that all resulting terms but the following

asymptotic equivalent of (2.82) can be be neglected in the limiting regime, namely

1

N

NX
n=1

�ωn (z1) �ωn (z2)
1

N
yHn Qn(z1)RQn(z2)yny

H
n Θyn. (2.83)

This can be checked by directly applying Lemma A.2 together with Lemmas A.4 and A.5

upond considering the bound in (2.69). On the other hand, using the previously proved
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fact that (cf. Equation (2.73))

1

N

NX
n=1

ξny
H
n Θyn ³ 0,

along with (2.69), we can regard (2.83) in the asymptotic regime as

1

N

NX
n=1

�ωn (z1) �ωn (z2)y
H
n Θyn

1

N
Tr [RQn(z1)RQn(z2)] . (2.84)

On the other hand, using (2.75) as well as

1

N

NX
n=1

yHn Θyn {�ωn (z1) �ωn (z2)−w (z1)w (z2)} ³ 0, (2.85)

we can equivalently write (2.84) asymptotically as

w (z1)w (z2)
1

N
Tr [RQ(z1)RQ(z2)]

1

N

NX
n=1

yHn Θyn. (2.86)

To see (2.85), we deÞne Þrst τn = �ωn (z1) �ωn (z2) − w (z1)w (z2) and write the LHS of
(2.85) as

1

N

NX
n=1

τn
¡
yHn Θyn −Tr [ΘR]

¢
+Tr [ΘR]

1

N

NX
n=1

τn, (2.87)

where, clearly, both τn and Tr [ΘR] are bounded by assumption. The convergence of the

Þrst summation in (2.87) can be proved using Burkholder�s inequality (cf. Lemma A.5).

As for the second term, we write the sum as e.g.

1

N

NX
n=1

�ωn (z1) (�ωn (z2)−w (z2)) + 1

N

NX
n=1

(�ωn (z1)−w (z1))w (z2) ,

and eventually realize that both terms vanish asymptotically from (2.39). Furthermore,

direct application of the SLLN allows us to Þnally write (2.86) as

w (z1)w (z2)Tr [ΘR]
1

N
Tr [RQ(z1)RQ(z2)] ,

which is already the result we wanted to establish.

� Case (m 6= n). From (2.82), we have to show for this remaining case that the summation

converges to zero almost surely, i.e.

1

N2

NX
n,m=1
n6=m

�ωn (z1) �ωn (z2)Tr
£
Θ
¡
R− ynyHn

¢
Qn(z1)RQm(z2)

¡
R− ymyHm

¢¤ ³ 0. (2.88)

Expanding the expression inside the summation upon applying the matrix inversion lemma

on Qn(z1) and Qm(z2) and considering (2.69), we can use again Lemmas A.2, A.4 and
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A.5 in order to (asymptotically) neglect vanishing terms and Þnally replace (2.88) with

the following asymptotic equivalent

1

N

NX
n=1

η(1)n +
1

N

NX
n=1

η(2)n +
1

N

NX
n=1

η(3)n +
1

N

NX
m=1

η(4)m , (2.89)

where we have deÞned

η(1)n =
1

N

NX
m=1
m6=n

Tr
£
Θ
¡
R− ynyHn

¢
Qnm(z1)RQnm(z2)R

¤
, (2.90)

η(2)n =
1

N

NX
m=1
m6=n

Tr
£
Θ
¡
yny

H
n −R

¢
Qnm(z1)RQnm(z2)ymy

H
m

¤
, (2.91)

η(3)n =
1

N

NX
m=1
m6=n

Tr
£
Θ
¡
R− ynyHn

¢
Qnm(z2)ymy

H
m

¤ 1
N
yHmQnm(z2)RQnm(z2)ym, (2.92)

η(4)m =
1

N

NX
n=1
n6=m

Tr
£
Θyny

H
n Qnm(z1)

¡
R− ymyHm

¢¤ 1
N
yHn Qnm(z1)RQnm(z1)yn. (2.93)

Now, observe that the sequences (2.90) to (2.93) satisfy the martingale difference sequence

condition, namely

E
h¯̄̄
η
(l)
k

¯̄̄i
< +∞, E

h
η
(l)
k

¯̄̄
F(l)k−1

i
= 0, (2.94)

l = 1, . . . ,M , where
n
F(l)k

o
is the increasing sequence of σ-Þelds generated by

n
η
(l)
k

o
,

k = 1, . . . ,M . The condition in (2.94) can be easily veriÞed using the Cauchy-Schwarz

and Jensen inequalities together with Lemmas A.4 and A.5. Consequently, we are allowed

to use the Burkholder inequality as applied throughout the proof of Theorem 2.2 in order to

show the almost sure convergence to zero of the normalized sums in (2.89), or equivalently

(2.88).

Appendix 2.F Proof of (2.54)

The proof follows essentially the same arguments as in the proof of [Bai07, Theorem 1]. From

Section 1.1 and the dominated convergence theorem, it follows that

E
£
vHk Q (z1)uk

¤→ vHk P (z1)uk.

Using the previous fact, we just need to equivalently prove that

E
h¯̄
vHk Q (z1)uk − E

£
vHk Q (z1)uk

¤¯̄pi ≤ C

N1+δ
.
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Now, let Fj be deÞned as the σ-Þeld generated by the random sequence {u1, . . . ,uj} and Ej [·]
the conditional expectation given the σ-Þeld Fj , namely Ej [·] = E [· |Fj ]. Then, considering the
two extreme cases, namely

EN
£
vHk Q (z1)uk

¤
= vHk Q (z1)uk,

E0
£
vHk Q (z1)uk

¤
= E

£
vHk Q (z1)uk

¤
,

regarding both trivial σ-Þelds, namely the one generated by all random elements and the empty

set, respectively, as well as the following identity

Ej
£
vHk Qj (z1)uk

¤− Ej−1
£
vHk Qj (z1)uk

¤
= 0,

we can write

vHk Q (z1)uk − E
£
vHk P (z1)uk

¤
= EN

£
vHk Q (z1)uk

¤− E0
£
vHk Q (z1)uk

¤
=

NX
j=1

Ej
£
vHk Q (z1)uk

¤− Ej−1
£
vHk Q (z1)uk

¤
=

NX
j=1

Ej
£
vHk (Q (z1)−Qj (z1))uk

¤− Ej−1
£
vHk (Q (z1)−Qj (z1))uk

¤
= −

NX
j=1

{Ej − Ej−1}
·
ωj (z1)

1

N
yHj Qj(z1)ukv

H
k Qj(z1)yj

¸

= −
NX
j=1

Ej
£
βjωj (z1)

¤− {Ej − Ej−1}
"
γjωj (z1)

1
Ny

H
j Qj(z1)ukv

H
k Qj(z1)yj

1 + 1
N Tr

£
RQj(z1)

¤ #
,

where we have deÞned βj =
1
Ny

H
j Qj(z1)ukv

H
k Qj(z1)yj − 1

Nv
H
k Qj(z1)RQj(z1)uk and γj =

1
Ny

H
j Qj(z1)yj +

1
N Tr

£
RQj(z1)

¤
Note further that the random series coefficients form a mar-

tingale difference sequence, since, clearly

Ej−1
£
Ej
£
vHk (Q (z1)−Qj (z1))uk

¤¤
= Ej−1

£
vHk (Q (z1)−Qj (z1))uk

¤
.

Hence, we can use the Burkholder inequality to write
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E
h¯̄
vHk Q (z1)uk − E

£
vHk P (z1)uk

¤¯̄pi ≤
≤ Kp

E


 NX
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N
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H
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N
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H
k Qj(z1)yj
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≤ E


 NX
j=1

(
K 0
pEj−1

h¯̄
Ej
£
βj
¤¯̄2i

++K00
pEj−1

"¯̄̄̄
{Ej − Ej−1}

·
γj
1

N
yHj Qj(z1)ukv

H
k Qj(z1)yj

¸¯̄̄̄2#)p/2


+K 000
p

NX
j=1

E
·¯̄̄̄
1

N
yHj Qj(z1)ukv

H
k Qj(z1)yj

¯̄̄̄p¸

≤ E


 NX
j=1

(
K 0
pEj−1

h¯̄
βj
¯̄2i
++K00

pEj−1

"¯̄̄̄
γj
1

N
yHj Qj(z1)ukv

H
k Qj(z1)yj

¯̄̄̄2#)p/2


+K 000
p

NX
j=1

1

Np
E
h¯̄
yHj Qj(z1)ukv

H
k Qj(z1)yj

¯̄pi

≤ 1

Np/2

 NX
j=1

n
K0
pEj−1

h¯̄
βj
¯̄2i
++K 00

pEj−1
h¯̄
γjy

H
j Qj(z1)ukv

H
k Qj(z1)yj

¯̄2iop/2

+
1

Np
K 000
p

NX
j=1

E
h¯̄
yHj Qj(z1)ukv

H
k Qj(z1)yj

¯̄pi ≤ K 0

Np/2
+

K 00

Np−1 ,

where we have repeatedly used the Jensen inequality as well as (2.69) and¯̄̄̄
¯ 1

1 + 1
N Tr

£
RQj(z1)

¤ ¯̄̄̄¯ ≤ |z|
|Im {z}| < +∞,

together with the fact, from Lemma A.4, that all expectations in the last inequality are bounded.

Thus, the result is proved by choosing p > 2.

Appendix 2.G Proof of Proposition 2.3

In order to prove (2.29), note Þrst that the two factors of η̄ (z1, z2) in (2.27) can be written as

hH (w (z1)R− z1IM)−1R (w (z2)R− z2IM)−1 h

=
MX
m=1

λm
¯̄
hHem

¯̄2
(w (z1)λm − z1) (w (z2)λm − z2) =

z1hH (w (z1)R− z1IM)−1 h− z2hH (w (z2)R− z2IM)−1 h
z1w (z2)− z2w (z1) ,
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and
f (z1)− f (z2)

z1 − z2 =
1

z1 − z2
z1w (z2)− z2w (z1)
w (z1)w (z2)

.

Now, using the asymptotic equivalent of w (z) in (2.39), namely w (z) ³ �w (z) = 1− c− cz�b (z)
(c.f. Section 1.1), as well as hH (w (z)R− zIM)−1 h ³ hH

³
�R− zIM

´−1
h, we Þnd that

η̄ (z1, z2) ³ 1

�w (z1) �w (z2)
hH

³
�R− z1IM

´−1
�R
³
�R− z2IM

´−1
h.

Thus, we have to solve for the integral

1

(2π j)2

I
Γ

I
Γ
zi1z

j
2

h (z1, z2)Ã
1− c

M

MX
m=1

�λm
�λm − z1

!Ã
1− c

M

MX
m=1

�λm
�λm − z2

!dz1dz2, (2.95)

where we have deÞned h (z1, z2) = hH
³
�R− z1IM

´−1
�R
³
�R− z2IM

´−1
h and also used that

�w (z) = 1− c

M
Tr

·
�R
³
�R− zIM

´−1¸
.

To that effect, we may Þrst concentrate on

1

2π j

I
Γ

P (z1)

Q (z1)
dz1, (2.96)

where we have deÞned numerator and denominator as P (z1) = zi1h (z1, z2) and Q (z1) = �w (z1),

respectively. In this case, the integrand has M simple poles at µk, k = 1, . . . ,M , namely

solutions to the following equation in µp

1

M

MX
m=1

�λm
�λm − µp

=
1

c
. (2.97)

Note that the solutions of (2.97) are such that 0 ≤ µ1 < �λ1 < µ2 < �λ2 < · · · < µM < �λM , with

µ1 = 0 if and only if c > 1. Moreover, using the characterization of the (asymptotic) support of

the eigenvalue density of the SCM in [Mes06a] (see also outline in Section 1.1), all M poles can

be seen to be located inside the eigenvalue support of �R as M,N →∞ , and, correspondingly,

to belong to the region of integration. Thus, the integral may be obtained as the sum of the

residues at each one of all these poles. Now, since P (µk) 6= 0, Q (µk) = 0 and Q0 (µk) 6= 0, we
may obtain the residue at each pole as (see e.g. [Mar99a])

Res

µ
P (z1)

Q (z1)
, µk

¶
=
P (µk)

Q0 (µk)
= − µikh (µk, z2)

c

M
Tr

·
�R
³
�R− µkIM

´−2¸ ,
and, hence, solve for (2.96) as

1

2π j

I
Γ

P (z1)

Q (z1)
dz1 = −

MP
k=1

µik
h (µk, z2)

c

M
Tr

·
�R
³
�R− µkIM

´−2¸ .
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Further, we continue
1

2π j

I
Γ

R (z2)

S (z2)
dz2,

upon deÞning

R (z2) = −zj2
MX
k=1

µik
h (µk, z2)

c

M
Tr

·
�R
³
�R− µkIM

´−2¸ ,
and S (z2) = �w (z2). Similarly as before, we have

Res

µ
R (z2)

S (z2)
, µl

¶
=
R (µl)

S0 (µl)
= µjl

MX
k=1

µik
h (µk, µl)

c

M
Tr

·
�R
³
�R− µkIM

´−2¸ c
M
Tr

·
�R
³
�R− µlIM

´−2¸ ,
and conclude with

hH �RiR�R
j
h =

MX
l=1

MX
k=1

µjlµ
i
k

h (µk, µl)

c

M
Tr

·
�R
³
�R− µkIM

´−2¸ c
M
Tr

·
�R
³
�R− µlIM

´−2¸ ,
as we wanted to prove. Alternatively, the integral in (2.95) can be directly obtained via the

Cauchy�s integral formula for two complex variables (see e.g. [Hor73]).



Chapter 3

Covariance Eigenspectrum Inference
and the Problem of Signal Power
Estimation

3.1 Summary

The fundamental problem of source power estimation in sensor array processing is addressed

in this chapter. The emphasis is on the empirical power estimation problem under practical

conditions characterized by a Þnite sample-size and a relatively large array dimension. In such

scenarios, classical Þlter implementations based on the observed array samples usually suffer

from a considerable performance degradation. Essentially, the loss in estimation accuracy is

due to the fact that the sample estimate only represents a reliable approximation of the true

covariance matrix for an increasing number of array samples of strictly Þxed dimension. In order

to tackle this fundamental limitation, an improved source power estimator is proposed that

builds upon an extension of the Capon method delivering remarkably accurate approximations

provided a precise knowledge of the noise variance is available. In particular, based on Stieltjes

transform methods from random matrix theory, a power estimator is proposed that is consistent

for arbitrarily large arrays. In the unknown noise power level case, an estimator of the minimum

eigenvalue of the array observation covariance matrix is proposed that builds upon well-known

power methods and can be approprietly analyzed with the Stieltjes transform of the sample

covariance spectrum. Our power estimator is shown via numerical simulations to generalize and

outperform the classical implementation.
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3.2 Introduction

3.2.1 Statistical Inference of Signal Power Level

The statistical estimation of the signal power of a received source impinging on an antenna

array from a certain given direction is a fundamental problem in sensor array signal processing

[Tre02]. Indeed, the received power level of an intended source is required for the implementa-

tion of the minimum variance as well as the minimum mean-square error Þltering solutions for

the estimation of its signal waveform. On the other hand, the analogous problem of estimating

the amplitude of a number of received users is also of special interest in the Þeld of wireless com-

munications, namely, for the computation of the signal-to-interference-plus-noise ratio (SINR)

required for power control algorithms, as well as for the implementation of multiuser detectors in

code-division multiple access (CDMA) systems, either in forward or reverse link transmissions.

Maximum likelihood techniques have been traditionally proposed in the literature as optimal

solutions being only hindered by their associated computational complexity and their sensibility

to an inaccurate knowledge of the signal signatures in practice. In array processing applications,

the Capon power estimator has been widely applied to the case of uncorrelated signal transmis-

sions in order to obtain a suboptimal yet low-complex minimum variance power estimate.

Under the assumption of temporarily and spatially white noise, a power estimation solution

was proposed in [McC02] that, based on subspace-Þtting concepts, improves on the minimum

variance source power estimator under the assumption of knowledge of the array covariance

matrix and the noise power level. In practice, neither the second-order statistics of the received

array observations nor the noise variance are available. More importantly, exact approximations

of these two quantities by a consistent estimator are theoretically only affordable for an inÞnite

number of observed samples. However, the practical implementation of the power estimators

introduced above must be necessary accomplished under the constraint of a limited number of

noisy array observations, and so may the estimator performance suffer from a severe degradation

even rendering power estimates of an unacceptable quality.

In order to enhance the estimator performance under Þnite sample-size situations, we will

proceed by following a two-level reÞnement of the traditional construction of the previous sub-

space estimator. More speciÞcally, we rely on the Taylor expansion of the source of interest

(SOI) power approximant in terms of the estimates of the noise variance and a set of vector-

valued functions of the negative powers of the covariance matrix. In particular, the previous

series expansion provides us with an extra number of Þltering degrees of freedom to be possibly

exploited in order to alleviate the effects of an imprecise input data (as e.g. an erroneous noise

variance or an inaccurate sample estimate of the covariance matrix). Only the received array

samples and the spatial signature vector associated with the intended user are considered to be
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available. Under this assumption, relying on the whiteness assumption on the noise process, the

noise power is estimated as the minimum eigenvalue of the sample estimate of the observation

covariance matrix, namely the sample covariance matrix (SCM). Indeed, for Gaussian obser-

vations, the latter is the maximum likelihood (ML) estimator of the true minimum eigenvalue

[And03, Mui82].

Furthermore, in order to improve the estimation performance, the Þlter expansion is approx-

imated via a generalized consistent estimator that is consistent for arbitrarily high dimensional

array observations, or, equivalently, for a limited number of samples per Þltering degree of

freedom (i.e., number of array sensors). Consequently, the proposed SOI power estimator gen-

eralizes conventional constructions appropriately approximating the true power level only for an

increasingly large number of samples of Þxed dimension. In particular, an improved estimation

performance is to be expected in realistic setups since, as in practice, the observation size and

dimension are assumed to be comparable in magnitude. For our purposes, we resort to the

theory of the spectral analysis of large dimensional random matrices, or random matrix theory

(RMT). SpeciÞcally, we build upon the asymptotic characterization based on Stieltjes transform

methods of the eigenvalue spectrum of SCM-type matrices in the double-limiting regime deÞned

as both the number samples and the observation dimension increase without bound at the same

rate. Also based on RMT tools, a similar implementation of the previous source power estimator

has been proposed in [Mes07].

Next, we address the problem of inferring the eigenvalue spectrum of the array observa-

tion covariance matrix is reviewed and, particularly, the consistent estimation of the minimum

eigenvalue in the previous doubly-asymptotic regime.

3.2.2 Eigenspectrum Estimation in Signal Processing Applications

The solution of a large number of estimation problems addressed in statistical signal processing

relies on the second-order statistics of a set of multidimensional observations [Sch91]. Indeed,

the covariance matrix of the received signals plays a fundamental role in most sensor array sig-

nal processing applications. In many situations, the eigenspectrum of this matrix, especially the

extremal part, i.e., maximum and/or minimum eigenmodes and their associated eigensubspaces,

is required (for instance, in eigen-Þltering problems and principal component analysis). The

algebraic symmetric eigenvalue problem is since long a thoroughly reviewed topic in the math-

ematical literature of numerical multivariate analysis [Par80, Wil88]. However, as mentioned

above, since the true covariance matrix of the array observations is unknown, a collection of

received signals must be used to compute a sample estimate, and so is the eigenspectrum of the

theoretical covariance matrix in practice necessarily inferred from the spectrum of the sample

covariance matrix.
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In many practical situations, a sufficiently large number of samples is not a tenable assump-

tion under realistic operation conditions, being hardly justiÞed by a sample-size that is usually

not much (or even) larger than the dimension of the array observations. Consequently, the

eigenvalue estimates obtained via the eigendecomposition of the sample covariance matrix are

often a rather imprecise approximation of the true covariance spectrum. Moreover, this loss

in estimation performance is clearly more apparent in high dimensional, relatively low sample

support scenarios.

For our purposes of estimating the SOI power level under the alternative more plausible

assumption of a sample size and dimension being comparable in magnitude, we consider an

estimator of the minimum eigenvalue of the theoretical covariance matrix that, unlike the tradi-

tional estimator based on the direct eigendecomposition of the SCM, is consistent in the doubly

asymptotic regime introduced above. In particular, we build on classical power methods, which

are particularly well posed for a convenient application of known Stieltjes transform based re-

sults on the asymptotic convergence of resolvents of SCM-type matrices. Also based on results

from RMT, in [Eve00] a Bayesian estimation framework is provided for the inference of the

eigenvalues of covariance matrices from limited sample data, that is based on results from RMT.

Related contributions from the statistics community that are also based on the spectral analysis

of large-dimensional random matrices are [Rao07, Kar07]. In particular, our approach is similar

to that presented in [Mes06a], but allows for less restrictive application requirements.

The rest of the chapter is organized as follows. Section 3.3 presents the class of power

methods in which the generalized consistent noise power estimator is based. In Section 3.4, the

problem of source power estimation is presented. Section 3.5 reviews the performance of classical

SCM-based implementations in the more suitable doubly asymptotic regime considered in this

work. An improved consistent estimation is proposed in Section 3.6 and numerically evaluated

in Section 3.7. After the Þnal conclusions in Section 3.8, the main derivations are provided in

the appendices.

3.3 A class of power methods

The family of power methods essentially develop the fundamental mechanism driving a matrix to

a diagonal form by detecting a certain class of invariant subspaces. Basically, the power method

is based on the observation that if we multiply a given vector by a certain diagonalizable matrix,

then each eigenvector component in the vector is multiplied by the corresponding eigenvalue.

This fact constitutes the basis of an iterative procedure delivering the dominant eigenpair of a

particular matrix. Since the covariance matrix in most signal processing applications is deÞned

as a Hermitian (strictly) positive deÞnite matrix, we will here focus on the class of power

methods for the symmetric eigenvalue problem [Par80, Gol96]. Let R ∈ CM×M be a covariance
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matrix and let λm (R), qm (R), m = 1, . . . ,M , denote, respectively, the mth eigenvalue andmth

eigenvector of R, such that λ1 (R) > . . . > λM (R). We further consider an arbitrary vector

v ∈ CM such that, choosing the eigenvectors of R as a complete set of orthonormal vectors, we

can write

v =
MP
m=1

γmqm (R) ,

where γm 6= 0, m = 1, . . . ,M1. According to the power method, the sequence

Rv,R (Rv) ,R
¡
R2v

¢
, . . ., converges to a vector pointing in the direction of the principal eigen-

vector of R. The iteration vectors wk = Rk−1v are conventionally scaled in order to prevent
over- or underßow. Then, normalizing by the vector Euclidean norm, it turns out that

λ1 (R) = lim
k→∞

wHk Rwk
wHk wk

(3.1)

= lim
k→∞

vHR2k−1v
vHR2k−2v

. (3.2)

The convergence of the limit in (3.2) to the principal eigenvalue can be readily seen to depend

upon the ratio λ2 (R) /λ1 (R). Equivalently, the same idea can be applied to the matrix R−1

in order to approximate the minimum eigenvalue and its associated eigenvector. The previous

convergence rate can be increased applying a scalar shift as (R− αIM), such that the ratio
between the Þrst two dominant eigenvalues becomes smaller. The shifted version of the power

method can also be used to approximate other than the principal eigenvalue with some limita-

tions. Alternatively, a modiÞcation consisting in the joint application of these two variants is

mostly employed as a plausible method to improve the speed of convergence and approximate

interior eigenmodes without limitations. The iteration is given by the RHS of (3.1), where now

wk = (R− αIM)−k+1 v and the approximant converges to the eigenvalue closest to α. The
convergence can be straightforwardly shown to become quadratic and can even be improved on

to cubic with the introduction of an updated shift (Rayleigh quotient iteration).

In order to estimate the extreme eigenvalues and their associated eigen-subspaces, we use

the following function of the eigenspectrum of R, namely

λα (R) =
vH (R− αIM)−k+1R (R− αIM)−k+1 v

vH (R− αIM)−2k+2 v
, (3.3)

which corresponds to the previous Rayleigh quotient iteration with Þxed shift α, chosen as an

initial candidate arbitrarily close to the approximated eigenmode. Thus, the eigen-subspace

associated with the searched eigenvalue is spanned by the approximate eigenvector wk. For the

sake of application purposes, observe that

λα (R) = α+
vH (R− αIM)−2k+3 v
vH (R− αIM)−2k+2 v

(3.4)

1This condition can be relaxed to only the coefficient associated with the intended eigenvector being non-zero.



102 CHAPTER 3. COVARIANCE EIGENSPECTRUM AND POWER ESTIMATION

In particular, consider the approximation of the minimum eigenvalue of the covariance matrix

(or, equivalently, the noise variance). Clearly, since the noise variance is strictly positive (indeed,

the matrix R is Hermitian positive deÞnite), in order to approximate λM (R), we use α = 0 and

deÞne from (3.4)

σ2ISPM (k) =
vHR−2k+3v
vHR−2k+2v

, (3.5)

for a positive integer k, where v is an arbitrary randomly generated vector. Considerably

accurate approximations can be obtained using up to the fourth negative power of the covariance

matrix.

3.4 Enhanced Power Estimation under Sample-Size Constraints

Consider a collection of N multivariate observations
©
y (n) ∈ CM

ª
obtained by sampling across

an antenna array with M sensors, namely, {ym (n) , n = 1, . . . ,N,m = 1, . . . ,M}, such that
y (n) =

·
y1 (n) · · · yM (n)

¸T
. A number of K different sources are supposed to impinge on the

antenna array from different directions. Under the assumption of narrowband signals and linear

antenna elements, the array observation y (n) =
·
y1 (n) · · · yM (n)

¸T
∈ CM can be additively

decomposed as

y (n) = x (n) s+ n (n) , (3.6)

where x (n) ∈ C models the signal waveform (or fading channel coefficient) associated with

a given signal of interest at the nth discrete-time instant and s ∈ CM is its spatial signa-

ture vector (also steering vector or array transfer vector); furthermore, n (n) ∈ CM is the

additive contribution of the interfering sources and background noise, which can be additively

decomposed as n (n) =
PK−1
k=1 xk (n) sk + υ (n), where, for k = 1, . . . ,K − 1, xk (n) ∈ C and

sk ∈ CM are, respectively, the interfering signal processes and associated steering signatures, and

υ (n) ∈ CM is the system noise and out-of-system interference. Conventionally, the signals and

the noise are assumed to be independent and jointly distributed wide-sense stationary random

processes, with SOI power and noise covariance given, respectively, by E [x∗ (n)x (n)] = σ2xδm,n
and E

£
n (m)nH (n)

¤
= Rnδm,n. Note that this model analogously encompasses a broad range

of system conÞgurations described by the general vector channel model in signal processing and

wireless communications.

In this work, we focus on the problem of estimating the signal waveform of the intended

source and, speciÞcally, on the statistical approximation of the SOI power using optimal spatial

Þltering techniques. In particular, the Capon beamformer is obtained from the following linearly

constrained quadratic optimization problem, namely, [Sto05]

wCAPON = arg min
w∈CM

wHRw subject towHs = 1, (3.7)
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where R is the theoretical covariance matrix of the array observation, which under the previous

statistical assumptions is given by

R = σ2xss
H +Rn. (3.8)

The solution to (5.2) can be straigthforwardly found as

wCAPON =
R−1s
sHR−1s

. (3.9)

Indeed, the Þltering solution in (3.9) is known to maximize the SINR, deÞned for a Þlterw ∈ CM

as

SINR (w) =
σ2x
¯̄
wHs

¯̄2
wHRnw

=

Ã
wHRw

σ2x |wHs|2
− 1
!−1

. (3.10)

On the other hand, knowledge of the spatial signature vectors corresponding to the sources

in the scenario can be conveniently exploited by classical ML methods in order to estimate the

power of the SOI (see e.g. [Ott93]). Here, as stated above, we consider methods only relying on

the knowledge of the desired source. In this case, from the signal model above, the SOI power

can be approximated by E
h
|�x (n)|2

i
= wHRw. Hence, with some abuse of notation, the Capon

SOI power estimate is deÞned as

σ2CAPON =
1

sHR−1s
. (3.11)

The rationale behind this procedure is that a natural (indirect) solution for the SOI power

approximant must be possibly obtained by minimizing the power of the interference-plus-noise

received contribution in (5.2) while keeping the intended signal unchanged, such that the SINR

is maximized.

Different direct interpretations of the solution in (3.11) have been reported in the literature.

Based on the formulation in [Mar83] of the classical Capon beamforming problem, the optimum

power approximant is directly obtained in [Sto03] by recasting the problem into the following

covariance-Þtting form, namely

σ2CAPON = maxσ
σ subject toR− σssH > 0, (3.12)

from which the optimum solution is derived as the argument of the the largest possible scaled

version of SOI covariance that can be a part of R under the constraint of preserving the positive

deÞnite signal structure associated with the residual covariance matrix.

In [Lag08], the quantity scaling the (rank-one) SOI signature covariance matrix is identiÞed

with the Lagrange multiplier associated with the equality constraint in (5.2). In fact, the La-

grange multiplier associated with the optimum linear transformation is given by the solution in

(3.11) to the power estimation problem. More interestingly, this interpretation provides a di-

rect connection between the optimum SOI power estimate (along with the associated signature
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vector) and the eigenspectra of R. Indeed, σ2CAPON can be equivalently found as the maximum

generalized eigenvalue of the matrix pencil
©
R, ssH

ª
, being the associated generalized eigenvec-

tor proportional to wSINR = R
−1s. Hence, similar to (3.12), the power estimation problem can

be reformulated as

σ2CAPON = max
λ
λ subject toλM

¡
R− λssH¢ = 0, (3.13)

where λM
¡
R− λssH¢ denotes the minimum eigenvalue of the matrix R− λssH .

Interestingly enough, the problem formulation in (3.13) turns out to be of signiÞcant impor-

tance, since it suggests a straightforward reÞnement leading to an improvement of the minimum

variance power estimation method. Assume the noise covariance matrix is E
£
υ (m)υH (n)

¤
=

σ2υIMδm,n. Then, an enhanced power estimate can be obtained by setting the minimum eigen-

value of the resulting spectrum substruction to the value of the noise variance [Lag08], i.e.

σ2SSMUSIC = max
λ
λ subject toλM

¡
R− λssH¢ = σ2υ. (3.14)

The solution to (3.14) accepts a closed-form expression, which is given by

σ2SSMUSIC =
1

sH (R− σ2υIM)# s
. (3.15)

This SOI power estimate was also derived in [McC02] by taking advantage of the signal-plus-

noise structure of the input covariance matrix and its subspace decomposition. Moreover, note

that the connection to the classical Capon power estimate can be readily found by expanding

the previous solution in its Taylor series about zero as

σ2SSMUSIC (D) =
1

DX
d=0

(σ2υ)
d sHR−(d+1)s

, (3.16)

such that

σ2SSMUSIC = lim
D→∞

σ2SSMUSIC (D) .

Indeed, the Capon power estimate is the approximation of the improved solution given by the

Þrst-term of the expansion.

In view of the lack of exact knowledge of the noise power level, note that a further approxi-

mation can be obtained as

σ2SSMUSIC (D,k) =
1

DX
d=0

¡
σ2ISPM (k)

¢d
sHR−(d+1)s

, (3.17)

where σ2ISPM is the noise variance approximant given in (3.5) for a given k.

Unfortunately, usually neither the true covariance matrix nor the noise variance are accu-

rately known in practice, so that their values are necessarily to be inferred from the received array
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observations. Consequently, in a practical setup, the best approximation of the true σ2SSMUSIC

in (4.10) in terms of the expansion in (3.17) is given for a Þnite (often small) order D.

Conventional implementations of statistical inference methods based on the second-order

statistics of the array observations usually rely on the direct substitution of the true covariance

matrix for the SCM, deÞned by

�R =
1

N

NX
n=1

y (n)yH (n) . (3.18)

Classically, such an approach has been traditionally reported in the literature as optimal. In-

deed, as discussed above, such estimators can be readily shown to be consistent in the classical

sense, i.e., they converge stochastically to the true quantity as the sample-size tends to inÞnity

whereas all other dimensions in the signal model remain constant. However, contrary to this

conventionally implicit assumption, practical operation conditions are characterized by a sample

size and dimension being comparable in magnitude. In these situations, the performance of the

previous methods may unavoidably suffer from a considerable degradation. In the next section,

we provide a characterization of the performance of sample estimates in the regime deÞned by

a comparatively large sample size and dimension.

3.5 Asymptotic Performance Analysis of Sample Estimators

In this section, we provide an asymptotic characterization of the traditional SCM-based imple-

mentation of the power level approximant in (3.17) in a limiting regime deÞned by not only

the number of samples (N) but also the observation dimension (M) going to inÞnity at a con-

stant rate. To that effect, we resort to the theory of the spectral analysis of large-dimensional

random matrices or RMT. SpeciÞcally, we build upon results involving the Stieltjes transform

of spectral probability measures, a fundamental building block allowing us to characterize the

asymptotic eigenspectrum of the SCM in terms of the limiting spectral distribution of the the-

oretical covariance matrix. For our purposes, not only the asymptotic spectrum but also the

limiting behavior of the associated eigensubspaces are of interest. In particular, we obtain the

asymptotic limit of the quantities sH �R−ks, k = 1, 2, . . ., describing the sample estimate version
of (3.17), as both the number of samples N and the observation dimension M increase without

bound with M/N → c < +∞.
For instance, an approximation in the previous double-asymptotic regime of the output

SINR of a diagonally-loaded minimum variance distorsionless response (MVDR) beamformer is

afforded in [Mes06c] that allows for an improved estimation of the diagonal loading parameter.

Indeed, note that a meaningful extension to the more general problem in practice of SINR

estimation under an unknown power level of the desired source can be readily obtained by

additionally providing an estimate of the source power.
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From the statistical characterization of the signal model in (5.1), observe that we can statis-

tically model the observed samples as y (n) = R1/2u (n), where u (n) ∈ CM , n = 1, . . . , N , is a
collection of i.i.d. random vectors, whose entries have zero mean real and imaginary parts with

variance 1/2 and bounded higher moments. Therefore, the SCM in (5.10) can be modeled as

�R =
1

N
R1/2UUHR1/2, (3.19)

where the matrixU ∈ CM×N is constructed using as its columns the vectors u (n) , n = 1, . . . ,N .
Furthermore, the following assumptions of purely technical interest will be used in our deriva-

tions:

(As1) The vector s has uniformly bounded Euclidean norm for all M .

(As2) The matrix R has uniformly bounded spectral radius for all M .

Without loss of generality, we consider normalized versions of the steering vectors with

Euclidean norm equal to 1. In particular, note that the previous consideration allows (As1)

and (As2) to be trivially fulÞlled for Þnite signals and noise variance. In the sequel, given two

quantities a, b, a ³ b will denote the fact that both quantities are asymptotic equivalents, i.e.,
|a− b| a.s.→ 0, with a.s. denoting almost sure convergence.

DeÞne the kth eigenvalue moment of the SCM and the theoretical covarince matrix as

�m(−k) , 1
M Tr

h
�R−k

i
and m(−k) , 1

M Tr
£
R−k

¤
, respectively.

Proposition 3.1 Let R be aM×M Hermitian non-negative deÞnite matrix, whose eigenvalues

are uniformly bounded for all M , and deÞne �R = R1/2XXHR1/2, with R1/2 denoting any

Hermitian square-root of the matrix R and X a M ×N complex random matrix, such that the

real and imaginary parts of the entries of N−1/2X are i.i.d. random variables with mean zero,

variance 1/2 and bounded moments. Moreover, consider two nonrandom vectors a,b ∈ CM with

uniformly bounded Euclidean norm for all M . Then, as M,N → c < +∞,

aH �R−kb ³
kX
l=1

µT (l, k) a
HR−lb, (3.20)

and
1

M
Tr
h
�R−k

i
³

kX
l=1

µT (l, k)
1

M
Tr
h
R−l

i
. (3.21)

where µT (l, k) can be recursively obtained in terms of the eigenvalues and eigenvectors of R as

µT (l, k) = ηT (l, k)
kX
i=1

ζS (i, l) , (3.22)

with

ζS (l, k) =
X
σ

(−1)|σ|+1 ηS
¡
b+1 , b

−
1

¢
ηS
¡
b+2 , b

−
2

¢ · · ·
ηS
¡
b−1 , b

−
1

¢
ηS
¡
b+1 , b

+
1

¢
ηS
¡
b−2 , b

−
2

¢
µt
¡
b+2 , b

+
2

¢ · · · ,
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where the sum is over all partitions σ of the set {l, . . . , k − 1} in contiguous intervals such
that σ ,

©¡
b−1 , b

+
1

¢
,
¡
b−2 , b

+
2

¢
. . . , (b−r , b+r )

ª
, for an r ≤ k − 1 and such that b+i = b−i+1 for each

i = 1, . . . , r; ηS (l, k) = −k! �m(l−k), if l 6= k, and ηS (l, k) = k! (1− c) ≡ k!β, if l = k, and
ηT (l, k) = l!

X
t=(l1,...,lk)∈T (l,k)

ξP (t) φ
l1
1 · · ·φlkk ,

where T (l, k) is the set of partitions of k ∈ N in l parts,

ξP (t) =
l!

l1!l2! · · · lk!1!l12!l2 · · · k!lk ,

φq = q

q−1X
n=1

n!

βn+1

X
t∈T (n,q−1)

(−1)n+n1+...+nq−1

µ
n

n1, n2, . . . , nq−1

¶
�mn1

(−1) · · · �m
nq−1

(−q+1).

Proof. See Appendix 3.9.

Hence, in order to obtain the asymptotic limit of the traditional SCM-based construction

of the signal power estimate σ2SSMUSIC (D, k) in (3.17), it is enough to replace each a
H �R−kb ,

k = 1, 2, . . ., by the RHS of (3.20). Clearly, we have that

Remark 3.1 The convensional SCM-based estimator of the signal power approximant

σ2SSMUSIC (D,k) is not consistent for arbitrarily large-dimensional array observations.

In order to alleviate the negative effects of a limited sample-support and comparably large

array observation dimension, in the next section we introduce a class of generalized consistent

estimators of the previous power approximant that are strongly consistent for arbitrarily large

arrays (or, equivalently, for a limited number of observations per degree-of-freedom). Before

presenting the generalized consistent estimator, we brießy discuss an important special case of

the result in Proposition 3.1.

3.5.1 Asymptotic Moments of the Inverse Wishart Distribution

From the next general result (3.21) in Proposition 3.1 regarding the asymptotic eigenvalues

moments of inverse Wishart matrices with arbitrary correlation follows, the following expression

follows for the negative moments of the Marçenko-Pastur distribution, namely,

MMP
(−k) =

kX
l=1

µS (l, k) . (3.23)

The characterization of the limiting moments in (3.23) can also be obtained from the in-

verse moments of the complex central Wishart distribution (see [Gra03]) by letting the matrix

dimension and the number of degrees of freedom go to inÞnity with a Þxed aspect ratio (see also

[Tul04, Section 2.3.3])2. As indicated in [Mai00], the analytical characterization of the moments
2Note that M−1R̂ ∼WM (N,R).
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of SCM-type matrices is very often of interest in the study of the statistical properties of parame-

ter estimators in statistical signal processing. For instance, the Þrst and second order moments

of the SCM were obtained in [Xia05] with the aim of evaluating the large-system output SINR

of the recursive least-square Þlter.

3.6 Extremal Eigenspectrum Inference and Consistent Power

Estimation

In this section, we present an generalized consistent estimator of the SOI power estimate

σ2SSMUSIC (D,k) in (3.17) based on a SCM constructed from arbitrarily high-dimensional ar-

ray observations. To that effect, note that it is enough to consider the estimation of sHR−ks,
k = 1, 2, . . .. In particular, based on RMT results on the asymptotic spectrum of the SCM, a

function of the negative moments of �R is obtained that converges to sHR−ks as M,N → ∞,
with M/N → c < +∞. We will refer to these estimators as M,N-consistent as a generalization
of traditional N-consistent estimators.

In this context, we make use of the Stieltjes transform from RMT that allows us to char-

acterize the asymptotic distribution of the eigenvalues of �R in terms of the limiting eigenvalue

distribution of R.

Proposition 3.2 Consider the assumptions and deÞnitions in Proposition 3.1. Then, as

M,N → c < +∞,

aHR−kb ³
kX
l=1

µS (l, k) a
H �R−lb, (3.24)

and
1

M
Tr
h
�R−k

i
³

kX
l=1

µS (l, k)
1

M
Tr
h
R−l

i
, (3.25)

where

µS (l, k) = ηS (l, k)
lX
i=1

ζT (i, k) .

Proof. See Appendix 3.9.

As an example, the coefficients deÞning the estimators in (3.24) and (3.25), for k = 1, 2, 3,
are given in Table 4.1.

Clearly, the RHS of (3.24) and (3.25) are strongly consistent estimators of the respective

LHS. Moreover, a construction of the SOI power estimate σ2SSMUSIC (D, k) obtained by replacing

sHR−ks with the M,N-consistent estimator in (3.24) can be readily shown to be consistent
even for an arbitrarily high dimensional array observation. In particular, note that the proposed
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Table 3.1: Example estimator coefficients: k = 1, 2, 3, 4.
µS (1, 1) = β − − −
µS (1, 2) = −β �m(−1) µS (2, 2) = β

2 − −
µS (1, 3) =

!
�m2

(−1)
− β �m(−2)

"
β µS (2, 3) = 2 �m(−1)β

2 µS (3, 3) = β
3 −

µS (1, 4) =
!
�m2

(−1) + 3β �m(−2) − β2 �m(−3)

"
β µS (2, 4) =

!
3 �m2

(−1) − 2β �m(−2)

"
β2 µS (3, 4) = −3 �m(−1)β

3 µS (4, 4) = β
4

implementation does not make any assumption on spectrum separation regarding the asymptotic

eigenvalue density of the SCM (see further [Mes06a, Mes07]).

3.7 Simulation results

In this section, we numerically evaluate the performance of the proposed SOI power level es-

timator estimator and compare the results with those obtained by directly replacing the true

theoretical covariance matrix and the noise variance with the SCM and its minimum eigen-

value, respectively. Throughout this section, the previous methods will be referred to as pro-

posed and conventional. We assume an array observation covariance matrix taking the form

R = SPSH + σ2υIM , where P is a diagonal matrix containing the power level associated with

each source and σ2υ is the noise variance.

Let us Þrst consider the numerical evaluation of the power method based minimum eigenvalue

(resp. noise variance) estimator. In Figure 3.1, the histograms obtained from the conventional

and proposed eigenvalue estimates over 100 runs are depicted. We have assumed a number of

N = 50 sample observations are collected with an array of M = 10 sensors, and describing an

scenario with K = 3 sources, one of them received 10dB over the noise level, whereas the rest

are received 5dB above the level of the Þrst signal. The noise variance is σ2υ = 0.1. From the

empirical probability density function, the variance of the proposed estimator is observed to be

larger than that of the conventional estimator. However, the latter is shown to be clearly biased

whereas the proposed one can be seen to approximate on average the eigenvalue to be estimated.

Regarding the eigenspace associated with the estimated eigenvalue, in order to uniquely

assess the goodness of the eigenvector estimate, we evaluate the following distance function

deÞned in terms of an eigenprojection matrix onto the spectrum of R, namely

O (n) = vH (R− αIM)−k+1EsEHs (R− αIM)−k+1 v, (3.26)

for k = 3, where the columns of the matrix Es ∈ CM×K span the signal subspace of R. Note

that the signal subspace is orthogonal to the noise subspace embedding the true eigenvector to

be estimated. Hence, a smaller magnitude of the measure in (3.26) should indicate a better

estimation performance. The results are shown in Figure 3.2, where a superior performance of
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Figure 3.1: Conventional and proposed estimates of the smallest eigenvalue (M = 10, N = 50

and K = 3).
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Figure 3.2: Orthogonality factor for conventional and proposed eigenvector estimates

the proposed estimator can be appreciated.

Let us now consider the approximation of (3.17). In Figure 3.3, performance curves are

depicted for both implementations of the theoretical estimator in (3.16), along with the direct

implementation of (4.10) in terms of the SCM and its minimum eigenvalue (referred to as

traditional method). We have assumed that the observation dimension is equal to M = 8 and

that K = 2 signals are being received, both with a power level 10dB over the noise level σ2υ = 1.

An expansion order of D = 1 for the implementation of (3.16) and value of k = 3 for the

estimation of the noise variance have been used. Averaged results over 1000 realizations are

shown.

3.8 Conclusions

We have addressed the fundamental problem of source power estimation in sensor array signal

processing. Traditional estimators are based on the second-order statistics of the array obser-

vations (as e.g. Capon beamformer) and the background noise power (e.g. ML estimator).

SpeciÞcally, we have focused on the empirical estimation problem in practical scenarios charac-



112 CHAPTER 3. COVARIANCE EIGENSPECTRUM AND POWER ESTIMATION

20 30 40 50 60 70 80 90 100
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Number of samples (N)

S
ig

na
l P

ow
er

True
Optimal
Conventional
Traditional
Proposed

Figure 3.3: Average SOI power estimates obtained with the proposed, conventional and tradi-

tional methods. True SOI power level and theoretical improved estimates are shown for reference.
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terized by a Þnite sample-size and a relatively large array observation dimension. Under such

conditions, classical Þlter implementations based on the direct substitution of the true unknown

covariance matrix by the SCM may incur a severe performance degradation, as they only prove

to be consistent for an increasing number of samples of strictly Þxed dimension. In particular,

we have built upon an extension of the Capon power estimator that allows for a considerably

improved source power estimate provided a precise knowledge of the noise variance is available.

In order to avoid the performance degradation due to inaccuracies in the approximation of the

observation covariance matrix and the noise power level, we consider an expansion of the opti-

mal solution is terms of their estimates. In particular, the previous quantities are consistently

approximated in an asymptotic regime deÞned by a limited number of samples per array dimen-

sion. As a noise power estimator, an approximant of the minimum eigenvalue of the covariance

matrix based on the shifted inverse power method has been considered. The motivation to this

choice is that such an approximant can be appropriately analyzed and consistently estimated

using Stieltjes transform methods from random matrix theory. By assuming that the array

dimension can be comparable in magnitude to the sample-size, unlike the estimator directly

based on the eigendecomposition of the SCM, a signiÞcantly improved estimation accuracy of

the proposed power estimator can be obtained in practical Þnite sample-support scenarios.
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Appendix 3.A Proof of Propositions 3.1 and 3.2

3.9 Proof of Propositions 3.1 and 3.2

The following lemma will be useful in proving Propositions 3.1 and 3.2.

Lemma 3.1 Let R be a M ×M Hermitian non-negative deÞnite matrix, whose eigenvalues

are uniformly bounded for all M , and deÞne �R = R1/2XXHR1/2, with R1/2 denoting any

Hermitian square-root of the matrix R and X a M ×N complex random matrix, such that the

real and imaginary parts of the entries of N−1/2X are i.i.d. random variables with mean zero,

variance 1/2 and bounded moments. Moreover, consider two nonrandom vectors a,b ∈ CM with

uniformly bounded Euclidean norm for all M . Then, as M,N → c < +∞,
kX
l=0

ηT (l, k) a
HR−(l+1)b ³

kX
l=0

ηS (l, k) a
H �R−(l+1)b, (3.27)

where ηS (l, k) = −k! �m(l−k), if l 6= k, and ηS (l, k) = k! (1− c), if l = k, and

ηT (l, k) = l!
X

t=(l1,...,lk)∈T (l,k)
ξP (t) φ

l1
1 · · ·φlkk ,

where T (l, k) is the set of partitions of k ∈ N in l parts,

ξP (t) =
l!

l1!l2! · · · lk!1!l12!l2 · · · k!lk ,

and

φq = q

q−1X
n=1

n!

βn+1

X
t=(l1,...,lq−1)∈T (n,q−1)

(−1)n+n1+...+nq−1

µ
n

n1, n2, . . . , nq−1

¶
�mn1

(−1) · · · �m
nq−1

(−q+1).

Proof. Recall from Section 1.1 the following results regarding the asymptotic behavior of the

eigenvalues and eigenvectors of SCM-type matrices as M,N → c < +∞, for all z ∈ C+, namely,

1

M
Tr

·³
�R− zIM

´−1¸ ³ 1

M
Tr
h
(w (z)R− zIM)−1

i
,

where w (z) = 1 − c − czm (z) and m = m (z) is the unique solution in the set

{m ∈ C : − (1− c) /z + cm ∈ C+} to the following equation, namely,

m =
1

M

MX
m=1

λm (R)

λm (R) (1− c− czm)− z .

Furthermore, for two M dimensional deterministic vectors a,b with uniformly bounded Euclid-

ean norm for all M ,

aH
³
�R− zIM

´−1
b ³ aH (w (z)R− zIM)−1 b. (3.28)
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Equivalently, if we consider f (z) = z/w (z), we have

w (z) ³ �w (z) , (3.29)

f (z) ³ �f (z) , (3.30)

where

�w (z) = 1− c− cz 1
M
Tr

·³
�R− zIM

´−1¸
(3.31)

= 1− c

M

MX
m=1

λm
³
�R
´

λm
³
�R
´
− z

, (3.32)

and
�f (z) =

z

�w (z)
. (3.33)

By analytic continuation, it can be proved that the convergence results above hold for z =

x ∈ R outside the limiting eigenvalue support of �R. Then, in order to prove the lemma, using

aH (R− f (z) IM)−1 b ³ �w (z)aH
³
�R− zIM

´−1
b, (3.34)

we just need to consider

∂k

∂xk
aH (R− f (x) IM)−1 b

¯̄̄̄
x=0

³ ∂k

∂xk
�w (x)aH

³
�R− xIM

´−1
b

¯̄̄̄
x=0

. (3.35)

On the one hand, we have

∂k

∂xk

½
�w (x)aH

³
�R− xIM

´−1
b

¾
=

kX
l=0

µ
k

l

¶
∂l

∂xl
{ �w (x)} ∂

k−l

∂xk−l

½
aH
³
�R− xIM

´−1
b

¾
.

Then, using (β , 1− c)
∂l

∂xl
{ �w (x)}

¯̄̄̄
x=0

=

β, l = 0

−l! �m(−l), l > 0,
and

∂k−l

∂xk−l

½
aH
³
�R− xIM

´−1
b

¾¯̄̄̄
x=0

= (k − l)! aH �R−(k−l+1)b, q ≥ 0,

it follows that

∂k

∂xk

½
�w (x)aH

³
�R− xIM

´−1
b

¾¯̄̄̄
x=0

=
kX
l=0

ηS (l, k) a
H �R−(l+1)b, (3.36)

with ηS (l, k) = −k! �m(l−k), l 6= k, and ηS (l, k) = k! (1− c), l = k.

On the other hand, regarding the LHS of (3.35), we can write the kth derivative of the

composite function g (f (x)) = aH (R− f (x) IM)−1 b as
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∂k

∂xk

n
aH (R− f (x) IM)−1 b

o
=

kX
l=1

∂l

∂xl
{g (f)}

X
t=(l1,...,lk)∈T (l,k)

ξP (t)
kQ
i=1

³
f (i) (x)

´li
. (3.37)

Now, using
∂l

∂xl
{g (f (x))}

¯̄̄̄
x=0

= l! aHR−(l+1)b, l ≥ 0,

we can rewrite (3.37) as

∂k

∂xk

n
aH (R− f (x) IM)−1 b

o¯̄̄̄
x=0

=
kX
l=1

ηT (l, k) a
HR−(l+1)b, (3.38)

where we have deÞned

ηT (l, k) = l!
X

t=(l1,...,lk)∈T (l,k)
ξP (t) φ

l1
1 · · ·φlkk , (3.39)

and

φq =
∂q

∂xq
{f (x)}

¯̄̄̄
x=0

.

Regarding φq, from (5.17), we may write

φq =
∂q

∂xq

½
x

�w (x)

¾¯̄̄̄
x=0

= q
∂q−1

∂xq−1

½
1

�w (x)

¾¯̄̄̄
x=0

,

and, further,

∂q−1

∂xq−1

½
1

�w (x)

¾¯̄̄̄
x=0

=

q−1X
n=1

n!

βn+1

X
t=(n1,...,nk)∈T (n,q−1)

κt

µ
n

n1, n2, . . . , nq−1

¶
�mn1

(−1) · · · �m
nq−1

(−q+1),

with κt = (−1)n+n1+...+nq−1 , and where we have used the fact that

∂n

∂ �wn

½
1

�w

¾¯̄̄̄
x=0

=
n! (−1)n
βn+1

.

Finally, the result follows from (3.36) and (3.38).

Now, observe that the expression in (3.27) can be recurrently inverted in order to obtain

either the asymptotic limit in Proposition 3.1 and the M,N-consistent estimator in Proposition

3.2. We elaborate on the generalized consistent estimator and note that an equivalent derivation

follows for asymptotic performance analysis.

Let us deÞne

γS (k) =
kX
l=0

ηS (l, k) a
H �R−lb, (3.40)
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aHR−2b=
1

ηT (1, 1)
γS (1) ,

aHR−3b=− ηT (1, 2)

ηT (2, 2) ηT (1, 1)
γS (1) +

1

ηT (2, 2)
γS (2) ,

aHR−4b=−
µ

ηT (1, 3)

ηT (3, 3) ηT (1, 1)
− ηT (1, 2) ηT (2, 3)

ηT (3, 3) ηT (2, 2) ηT (1, 1)

¶
γS (1)−

ηT (2, 3)

ηT (3, 3) ηT (2, 2)
γS (2)

+
1

ηT (3, 3)
γS (3) ,

aHR−5b=
µ

ηT (1, 3) ηT (3, 4)

ηT (4, 4) ηT (3, 3) ηT (1, 1)
+

ηT (1, 2) ηT (2, 4)

ηT (4, 4) ηT (2, 2) ηT (1, 1)
− ηT (1, 2) ηT (2, 3) ηT (3, 4)

ηT (4, 4) ηT (3, 3) ηT (2, 2) ηT (1, 1)

− ηT (1, 4)

ηT (4, 4) ηT (1, 1)

¶
γS (1)−

µ
ηT (2, 4)

ηT (4, 4) ηT (2, 2)
− ηT (2, 3) ηT (3, 4)

ηT (4, 4) ηT (3, 3) ηT (2, 2)

¶
γS (2)

− ηT (3, 4)

ηT (4, 4) ηT (3, 3)
γS (3) +

1

ηT (4, 4)
γS (4) ,

where the pattern is obvious, namely

aHR−kb =
k−1X
l=1

ζT (l, k) γS (l) ,

with

ζt (n, l) =
X
σ

(−1)|σ|+1 ηT
¡
b+1 , b

−
1

¢
ηT
¡
b+2 , b

−
2

¢ · · ·
ηT
¡
b−1 , b

−
1

¢
ηT
¡
b+1 , b

+
1

¢
ηT
¡
b−2 , b

−
2

¢
ηT
¡
b+2 , b

+
2

¢ · · · ,
where the sum is over all partitions σof the set {n, . . . , l − 1} in contiguous intervals such that
σ ,

©¡
b−1 , b

+
1

¢
,
¡
b−2 , b

+
2

¢
. . . , (b−r , b+r )

ª
, for an r ≤ l − 1 and such that b+i = b−i+1 for each i =

1, . . . , r. Finally, using (3.40), we obtain the expression of µS (l, k) in the proposition.





Chapter 4

Estimation on Low-Rank Krylov
Subspaces of Arbitrary Dimension

4.1 Summary

In this chapter, the problem of Krylov subspace estimation using a limited number of received

data samples is addressed. The focus is on signal processing applications where the Krylov

subspace is deÞned from the unknown second-order statistics of the observed samples and the

signature vector associated with the desired parameter. In particular, the consistency of tradi-

tionally optimal estimators is revised and analytically characterized under a more meaningful

asymptotic regime, where not only the number of samples but also the observation dimension

grow without bound at the same rate. Furthermore, an improved construction of Krylov sub-

space methods is proposed that is based on the generalized consistent estimation of a set of

vector-valued quadratic functions of the covariance matrix powers. To that effect, results on the

estimation of spectral covariance functions are borrowed from random matrix theory in order to

approximate the previous quantities depending upon not only the spectrum of the covariance

matrix but also the associated eigenspace. As a result, a new class of estimators is derived that

generalizes conventional Þlter implementations by proving to be consistent for observations of

arbitrarily high dimension. The proposed estimators are shown to outperform traditional con-

structions via the numerical evaluation of two fundamental problems in sensor array processing,

namely the problem of estimating the power of an intended source and the estimation of the

principal eigenspace and dominant eigenmodes of a structured covariance matrix.

119
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4.2 IIntroduction

Linear estimation over Krylov subspace expansions [Saa96, Vor03b] has found a wide variety

of applications in different areas of statistical signal processing. In particular, iterative lin-

ear approximations of the minimum variance unbiased estimator (MVUE) and the minimum

mean-square error (MMSE) estimator on low-dimensional subspaces are extensively applied to

inference problems in the Þelds of communications, such as in channel estimation, equaliza-

tion and symbol detection, and sensor array signal processing, as in adaptive beamforming and

passive radar/sonar. In the literature, Krylov subspace expansions for optimum Þltering are

well-known to be dual to the problem of iterative search for quadratic minimization [Die07].

More speciÞcally, the Krylov subspace deÞned by the observation covariance matrix and the

signature vector associated with the signal of interest (SOI) is identiÞed in [Hon01] as the

span describing the expansion of the orthogonal multistage Wiener Þlter (MSWF) introduced

in [Gol98] as, essentially, a concatenation of Þltering stages based on the generalized sidelobe

canceller (GSC) [Sch91]. In [Wei02], and more generally in [Sch03a], the equivalence between

the previous iterative subspace Wiener Þlter and the conjugate gradient method (CGM) (see

e.g. [Lue84, Section 8.3]) is ascertained. Indeed, the CGM is known to yield numerically stable

solutions of symmetric positive linear systems (as well as unconstrained quadratic optimization

problems) through the recursive construction of an orthonormal basis for the associated Krylov

subspace. Furthermore, the previously deÞned Krylov subspace turns out to represent the op-

timum linear projection space in the sense of minimizing the squared error norm of the Þlter

approximation [Lue84, Gol96].

In practice, implementations of the optimum (full-rank) estimator based on the above sub-

space Þltering solutions are usually considered due to their robustness against the two major

problems related to the direct conventional realization: the computational complexity associated

with the matrix inversion operation and the sample-support requirements for the estimation of

the unknown covariance matrix. Interestingly enough, rank-reduction based on Krylov sub-

spaces enables a decrease of the approximation subspace dimension without performance loss.

Indeed, contrary to dimension reduction based on the eigendecomposition of the covariance ma-

trix, Krylov subspace methods can be shown to achieve optimum (full-rank) performance for a

number of iterations or rank lower than the dimension of the signal subspace. In [Ge04], this fact

is exempliÞed in the context of arbitrarily loaded code-division multiple access (CDMA) systems

employing Gold spreading codes, as well as in sensor array signal processing applications, where

the number of sources within a beamwidth is identiÞed as the relevant measure of convergence

rate characterizing angle-dependent data dimensionality reduction.

Classical examples of reduced-rank linear estimation on Krylov subspaces have been re-

ported in the literature for sensor array signal processing applications, particularly for adaptive
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beamforming and passive radar/sonar in, for instance, [Gue00, San03, Ge06, San07] and the

much earlier works [Erm93, Erm94]; moreover, contributions to the theory of adaptive Þlter-

ing, equalization and interference cancellation can be found in [Bur02, Xia05] and, respectively,

[Hon06, Mou07, Dum07] and [Hon02]; applications to the vector channel model underlying the

problem of CDMA multiuser detection and the design of MIMO linear transceivers have been

proposed in e.g. [Lou03, Li04b, Tri05, Cot05]. Finally, other signal processing applications of

Krylov subspace methods in the engineering literature include the estimation of the principal

eigenspace of covariance matrices with signal-plus-noise structure [Xu94], as well as the estima-

tion of the error variance of the Bayesian minimum mean-square error (MMSE) estimate [Sch00]

and the covariance low-rank approximation problem in oceanographic remote sensing [Sch03b].

As mentioned above, the practical realization of the optimum Krylov subspace estimator

relies on the sample estimate of the (unknown) theoretical covariance matrix. For a reason-

ably large number of data samples, the sample covariance matrix (SCM) approximates the true

covariance with plausibly low estimation error. However, the performance loss incurred by a

covariance approximation based on a particularly limited number of samples is quickly aggra-

vated as the observation dimension becomes higher, since the number of required observations

is considerably increased. Equivalently, a severe degradation of the Þlter performance can be

expected in scenarios characterized by a low number of Þltering degrees of freedom when the

sample-support is comparably small. Essentially, the previous observations are due to the fact

that the convergence rate of classical consistent estimators based on the SCM is signiÞcantly

reduced in situations where the sample size and dimension are comparable in magnitude.

In this chapter, we provide a characterization of the performance of Krylov subspace infer-

ential methods under a bounded number of samples per degree-of-freedom. Furthermore, a class

of reduced-rank estimators is proposed that generalize traditional implementations by proving

to be consistent for observations of arbitrarily high dimension. This fact is shown via numerical

simulations to translate into an improved performance in practical Þnite sample-size scenarios.

In particular, we evaluate the proposed estimators for the sensor array processing applications of

minimum variance estimation of the SOI power and the identiÞcation of the principal eigenspace

of the array covariance matrix.

The chapter is organized as follows. In Section 4.3, the deÞnition of Krylov subspace is

introduced and the two subspace estimation problems addressed in the chapter are described.

In Section 4.4, an asymptotic performance characterization of Krylov subspace methods under

a comparably large sample size and dimension is provided. Section 4.5 presents the proposed

generalized consistent estimator, which is numerically evaluated in Section 4.6 in the context

of the applications of source power approximation and estimation of the covariance principal

eigenspaces. After a short discussion and the concluding remarks in Section 4.7, the theoretical

framework for the derivations in the chapter is developed in the appendices.
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4.3 Linear estimation on Krylov subspaces

In this section, we review the linear signal model underlying a typical array processing appli-

cation and introduce the associated Krylov subspace of interest for estimation purposes. Two

fundamental applications are then presented, namely the problem of linearly estimating the

power and signal waveform of an intended source via the subspace equivalent representation of

classical minimum variance methods and the problem of inferring the principal eigenpair of the

covariance matrix of the array observations.

Consider a collection of multivariate observations
©
y (n) ∈ CM

ª
obtained by sampling across

an antenna array with M sensors, namely, {ym (n) , n = 1, . . . ,N,m = 1, . . . ,M}, such that
y (n) =

·
y1 (n) · · · yM (n)

¸T
. The received signals can be most generally modeled as

y (n) = x (n) s+ n (n) , (4.1)

where x (n) ∈ C is the signal waveform transmitted by the source of interest at the discrete-

time instant n, s ∈ CM is the associated steering signature vector and n (n) ∈ CM is the

additive contribution of the interference and system noise. Conventionally, the signal and

interference-plus-noise components are assumed to be independent and jointly distributed wide-

sense stationary random processes, with signal power and noise covariance given, respectively,

by E [x∗ (n)x (m)] = σ2xδm,n and E
£
n (m)nH (n)

¤
= Rnδm,n, where δl,m is the Kronecker delta

function. Note that this model analogously encompasses a broad range of system conÞgurations

described by the general vector channel model in signal processing and wireless communica-

tions. Of particular interest is the special case in which the vector n (n) can be decomposed

into a linear interference contribution and an additive temporally and spatially white noise

process as n (n) =
PK−1
k=1 xk (n) sk + v (n), where xk (n) ∈ C and sk ∈ CM are, respectively,

the information process and effective signature associated with the kth interfering signals, and

v (n) ∈ CM is a circularly symmetric complex Gaussian noise vector, with mean zero and vari-

ance E
£
v (m)vH (n)

¤
= σ2nIMδm,n. SpeciÞcally, under the previous statistical assumptions, the

covariance matrix of the array observations takes on the following common structure, namely,

R = E
n
(y−E{y}) (y−E {y})H

o
= σ2xss

H + SIPIS
H
I + σ

2
nIM ≡HHH + σ2nIM , (4.2)

where SI =
h
s1 · · · sK−1

i
∈ CM×K−1 and {PI}i,j = E

h
x∗j (n)xi (n)

i
. The covariance matrix R

in (4.2) admits a spectral decomposition into mutually orthogonal signal and noise subspaces

given by

R =UsΛsU
H
s + σ

2
nUnU

H
n , (4.3)

where Λs ∈ CK×K is a diagonal matrix containing the signal eigenspectrum, the range space

of Us ∈ CM×K is the associated signal subspace and the columns of Un ∈ CM×(M−K) span
the noise subspace. Indeed, the structure deÞned by the signal subspace and its orthogonal
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complement has been efficiently exploited in eigendecomposition methods in spectral analysis

and array processing [Tre02, Sto05].

Consider now the following (full-rank) matrix, namely,

SD =

·
sRs · · · RD−1s

¸
. (4.4)

The columns of the so-called Krylov matrix SD span a corresponding Krylov subspace of rank

D (denoted in the sequel by KD (R, s)), that will be of special assistance in deriving efficient
representations of the solution to the two fundamental array processing problems in the sequel.

Note that the following holds in a Krylov subspace expansion, namely,

KD (R, s) ⊆ KD+1 (R, s) . (4.5)

Moreover, since the columns of SD are linearly independent and the signature vector s is orthog-

onal to the noise subspace, it is clear from (4.5) that KD (R, s) spans the signal subspace for
D ≤ K. In the literature of numerical methods, Krylov subspaces have served as building blocks
for subspace iterative algorithms solving large symmetric eigenvalue problems [Saa96, Vor03b],

with the aim of approximating Hermitian matrices of particularly high dimension through the

identiÞcation of the dominant eigensubspaces. Rather than in the approximation problem, the

array covariance in (4.2) is exactly expressed as a low-rank matrix plus a shift (hereafter, we

assume K < M). Thus, this structure can be appropriately exploited by Krylov methods (cf.

Section 4.3.1). Alternatively, Krylov methods generalize the standard power iteration by ex-

tracting the best approximation (in the Euclidean norm) of a certain eigenpair from a Krylov

subspace of given rank. This procedure is known as Rayleigh-Ritz projection [Par80], and can

in fact be applied to many situations of practical interest, where only some extreme eigenvalues

(often at one end of the spectrum) are required (cf. Section 4.3.2).

Before presenting the two applications in this section, the following simply veriÞed invariance

properties of Krylov subspaces are in order [Par80]:

(IP1) Scaling: KD (αR, βs) = KD (R, s) , α, β ∈ C, α 6= 0, β 6= 0.

(IP2) Translation: KD (R− µIM , s) = KD (R, s) , µ ∈ C.

(IP3) Similarity: KD
¡
QHRQ,QHs

¢
= QHKD (R, s) ,QHQ = IM .

4.3.1 Minimum variance source power estimation

Consider the problem of estimating the signal waveform of a given source of interest via a linear

transformation of the received observations, i.e., �x (n) = wHy (n). The optimum minimium

variance distortionless response1 (MVDR) Þlter can be obtained by solving for the following
1In signal processing applications, minimum variance unbiased estimators are usually implemented using the

linear additive structure of the underlying signal model as minimum variance distortionless response (MVDR) or,
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linearly-constrained quadratic optimization problem, namely,

wMVDR = arg min
w∈CM

wHRw subject towHs = 1. (4.6)

The solution to (4.6) can be easily obtained applying the method of Lagrange multipliers as

wMVDR =
R−1s
sHR−1s

. (4.7)

The optimum MVDR Þlter is clearly conÞned to a subspace of dimension K <M . Indeed, using

(4.3), we have that

wMVDR =
UsΛ

−1
s U

H
s s

sHUsΛ
−1
s UH

s s
,

Furthermore, from the above deÞnition of source power, an estimate of the SOI power can be

obtained as E
h
|�x (n)|2

i
. Indeed, the so-called Capon source power estimate is equivalently found

as

σ2CAPON = min
w∈CM

wHRw subject towHs = 1, (4.8)

which is straightforwardly seen to return a Þlter solution identical to wMVDR and a SOI power

approximant given by

σ2CAPON =
1

sHR−1s
. (4.9)

The rationale behind this procedure is that a natural (indirect) solution for the SOI power

estimate must be possibly obtained by minimizing the power of the received interference-plus-

noise contribution in (5.2) while keeping the intended signal unchanged.

An improved SOI power estimate was alternatively obtained in [McC02] by taking advan-

tage of the signal-plus-noise structure of the array covariance matrix in (4.2) and its subspace

decomposition, namely,

σ2SSMUSIC =
1

sH (R− σ2nIM)# s
. (4.10)

We now turn our attention to an alternative representation of the solutions (5.5) and (4.10).

As noted above, interestingly enough, the optimum Þltering operation can be equivalently for-

mulated as being performed on a projected instance of the received observation onto the range

space of the Krylov matrix SD in (4.4), with D ≤ K. Indeed, it can be shown that the Þlter in
(4.7) is conÞned to a subspace of dimension equal to the number of distinct signal eigenvalues

of R. To see this, we shortly recall here two useful deÞnitions from linear algebra2.

Definition 2 Let R ∈ CM×M denote a Hermitian matrix with eigenvalues λ1 (R) ≤ λ2 (R) ≤
· · · ≤ λM (R). The minimum polynomial of R is the unique monic polynomial m (λ) of minimal

degree such that m (R) = 0M×M .

more generally, linearly constrained minimum variance (LCMV) Þlters [Sch91, Tre02].
2The arguments that follow hold when R is replaced by Rn in the deÞnition of SD, as it can be straighforwardly

checked by using the matrix inversion lemma.
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The Cayley-Hamilton theorem guarantees that the degree of m (λ) is bounded by M . We

remark that the deÞnition of minimum polynomial applies more generally to square non-

diagonalizable matrices, even though we have here restricted ourselves only to matrices admiting

a spectral decomposition. In this latter case, the next necessary and sufficient condition holds,

namely [Mey00, Chapter 7.11]

m (λ) = (λ− λ1) (λ− λ2) · · · (λ− λL) ,

where {λ1, . . . , λL}, L ≤M , is the set of distinct eigenvalues of R.

Definition 3 Consider also a vector s ∈ CM . Then, the minimum polynomial of R with respect

to s is deÞned to be the monic polynomial v (λ) of minimal degree such that v (R) s = 0M .

It is apparent that v (λ) is precisely the right algebraic object describing the properties of

Krylov subspace methods. Indeed, according to the deÞnition of the observation covariance

matrix in (4.2), note that we may use the spectral factorization theorem in order to state

R−1s =
L−1X
l=1

λ−1l Pls,

where the matrix Pl ∈ CM×M is the spectral projector onto the eigenspace associated with the

lth distinct eigenvalue (observe that the projection space associated with PL is exactly the noise

subspace, so that we therefore have PLs = 0M). In particular, note that L− 1 is the degree of
the minimum polynomial v (λ) related to KD (R, s).

Alternatively, a class of reduced-rank Þlters can be obtained from the previous projective

formulation of the optimal Þlter on KD (R, s). In particular, for D < K, we have wD = SDωD,
where

ωMVDR (D) = arg min
ωD∈CM

ωHDS
H
DRSDωD subject toωHDS

H
Ds = 1, (4.11)

with the optimum coefficients linearly describing the reduced-rank MVDR Þlter on KD (R, s)
being given by

ωMVDR (D) =

¡
SHDRSD

¢−1
SHDs

sHSD
¡
SHDRSD

¢−1
SHDs

. (4.12)

Additionally, the best approximation of the SOI power estimate in (5.5) on KD (R, s) is given
by

σ2CAPON (D) =
1

sHSD
¡
SHDRSD

¢−1
SHDs

. (4.13)

In fact, as mentioned above, the reduced-rank MVDR Þlter deÞned by (4.12) is the solution

extracted from a subspace of rank D that is optimal in the sense of minimizing the mean-

square error norm for each increasing dimension starting with the matched Þlter basis vector

and terminating at the (full-rank) MVDR Þlter in (4.7). The statement follows by a subspace



126 CHAPTER 4. LOW-RANK KRYLOV SUBSPACE ESTIMATION

expansion argument after noting the fact in (4.5) and searching for the best approximation in

the least-squares norm for a given rank (see [Lue84, Chapter 8][Gol96, Section 9.1.1] for further

details). A construction of the reduced-rank SOI power estimate in (4.13) based on a conjugate

gradient recursion was proposed in [San03] (see also [Sch02]). Note that the rank D should be

large enough to include the information in the observed sample on the SOI parameter, yet small

enough to maintain good detection performance in a practical setting where the estimator is

constructed from a collection of sample observations (see discussion in Section 4.5). From the

discussion above, the reduced-rank version of the Þlter in (4.7) is given by

wMVDR (D) =
SD
¡
SHDRSD

¢−1
SHDs

sHSD
¡
SHDRSD

¢−1
SHDs

.

Furthermore, the full-rank Þlter is given by wMVDR = wMVDR (D), with D = L− 1, namely the
number of distinct signal eigenvalues.

Moreover, from the shift-invariance property of Krylov subspaces (cf. IP2), an equivalent

Krylov subspace representation of the improved power estimate in (4.10) can be similarly ob-

tained on KD (R, s) as

σ2SSMUSIC (D) =
1

sHSD
¡
SHD (R− σ2nIM)S

¢#
SHs

. (4.14)

Observe that, since the degree of the minimum polynomial of R wrt. s is invariant to the shift

in R − σ2nIM , it is clear that KD
¡
R− σ2nIM , s

¢
= KD

¡
HHH , s

¢
= KD (R, s) and the exact

Krylov subspace representation is conÞned to a space of the same dimension D = L−1 (see also
discussion in [Xu90, Lemma 2]). As before, for D < K we have a Krylov-subspace reduced-rank

version of σ2SSMUSIC. Note that the previous equivalent representations of the optimum SOI

power estimators avoid both the inversion as well as the eigendecomposition of the covariance

matrix, possibly leading to a considerable reduction of the computational complexity.

4.3.2 Estimation of the principal eigenspace of the array observations

Many applications in sensor array signal processing rely essentially on the estimation of the

principal eigenspectrum of the covariance matrix of the array observations. In fact, rathen than

a complete knowledge of the signal and noise eigensubspaces, it is often the case that only

some eigenvalues (and the associated eigenspaces) at one of the extremes of the spectrum are

of interest. As pointed out above, Krylov subspaces can be utilized to extract arbitrarily good

approximations of the principal eigenpair of a structured Hermitian matrix as the one in (4.2).

In particular, let �SD be an orthonormal matrix deÞned as

�SD =

·
s1 s2 · · · sD

¸
,
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where the columns are obtained recursively as

si+1 =

Qi
k=1

¡
IM − sksHk

¢
Rsi°°°Qi

k=1

¡
IM − sksHk

¢
Rsi

°°° =
Pi
k=1

¡
IM − sksHk

¢
Rsi°°°Pi

k=1

¡
IM − sksHk

¢
Rsi

°°° , i = 1, 2, . . . (4.15)

with s1 = s
ksk . Clearly, a simple subspace expansion argument can be used as before in order to

show that the columns of �SD span the subspace KD (R, s). Then, we have the following lemma3.

Lemma 4.1 [Par80] Let D = K and consider the matrix M = �SHDR
�SD ∈ CK×K , with

eigenvalues λ1 (M) ≤ λ2 (M) ≤ · · · ≤ λK (M), and associated eigenvectors {qk (M)},
k = 1, . . . ,K. Moreover, consider the matrix Z =

·
z1 z2 · · · zK

¸
= �SDQ ∈ CM×K, with

Q =

·
q1 (M)q2 (M) · · · qK (M)

¸
. Then,

λk (M) =λM−K+k (R) , (4.16)

zk ≡qM−K+k (R) . (4.17)

Essentially, the invariance property of Krylov subspaces to unitary transformations (cf.

IP3) can be used to prove the statement of the lemma as follows. SpeciÞcally, since the

columns of �SD are known from the discussion above to span the signal subspace, we clearly

have M = �SHDR
�SD = �SHDUsΛsU

H
s
�SD. Indeed, the previous operation represents a similar-

ity transformation of the K-dimensional signal subspace, so that the signal eigenvalues remain

invariant in (4.16). Thus, regarding (4.17), the matrix �SD�SHD deÞnes an orthogonal projector

that represents a change of basis on the same linear space. In fact,M is exactly the symmetric

Hessenberg matrix returned by the Lanczos tridiagonalization algorithm when used in order to

provide an orthonormal basis for KD (R, s) (see e.g. [Gol96]). Lemma 4.1 provides a method to
extract the signal eigenvalues and eigenvectors of the observation covariance matrix. In the liter-

ature of numerical analysis, the eigenvalues ofM and the columns of Z are regarded as the Ritz

eigenvalues and Ritz eigenvectors, respectively, delivered namely by the Ritz-Rayleigh procedure

[Par80], which can be seen as a rank-revealing procedure providing the best approximation to

the true eigenpairs whenever D < K. Consequently, we can use the Ritz-Rayleigh procedure as

a low-complexity method to estimate the principal eigenspace of the array covariance without

matrix inversion or eigendecomposition by solely using its positive powers. Moreover, since R

and −R generate the same subspaces (cf. IP1), the left part of the spectrum can be equally well

approximated. Accordingly, the previous method can be equivalently used to extract the noise

subspace associated with the array covariance matrix, deÞned as the orthogonal complement of

columns space of Z.

In practice, the theoretical covariance matrix deÞning the Krylov subspace that describes

the previous estimation problems is most often not available. Consider for instance the problem
3For the sake of notational convenience, we assume without loss of generality that all signal eigenvalues of the

covariance matrix have single multiplicity.
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of SOI power estimation. In particular, we may write σ2CAPON (D) =
¡
vHB−1v

¢−1, where we
have deÞned B = SHDRSD and v = S

H
Ds. On the other hand, note that [B]i,j = s

HRi+j−2s and
[v]i = s

HRi−1s, for i, j = 1, . . . ,D. Indeed, both the SOI power estimate in (4.14) as well as the
solution to the principal eigenspace approximation problem in Lemma 4.1 can be equivalently

expressed in terms of the vector-valued quadratic forms sHRks, k = 0, . . . ,D − 1. Hence, the
problem of implementing in practice the Krylov subspace methods introduced above reduces to

the problem of estimating the previous key quantities using a SCM computed from a collection

of observed data samples as

�R =
1

N

NX
n=1

y (n)yH (n) . (4.18)

Traditionally, implementations of Krylov subspace methods that are based on the direct

substitution of the true covariance matrix for the SCM has been unquestionably regarded in the

literature as fairly optimal. Indeed, such estimators can be readily shown to be consistent in the

classical sense, i.e., they converge stochastically to the true quantity as the sample-size tends to

inÞnity whereas all other dimensions in the signal model remain constant. However, contrary

to this conventionally implicit assumption, practical operation conditions are characterized by a

sample size and dimension being comparable in magnitude. In these situations, the performance

of the previous methods may unavoidably suffer from a considerable degradation. In the next

section, we provide a characterization of the performance of sample Krylov-subspace estimates

in the low sample-size, relatively high-dimensional observation regime.

4.4 Asymptotic Performance Analysis of Sample Estimates

In this section, we derive an asymptotic expression of the estimators in Section 4.3 when con-

structed using the available SCM under the realistic assumption of an array sample observation

of comparably large size and dimension. To that effect, we resort to the theory of the spectral

analysis of large-dimensional random matrices, or random matrix theory (RMT). SpeciÞcally,

we build upon results involving the Stieltjes transform of spectral probability measures. This

fundamental building block allows us to characterize the asymptotic eigenspectrum of the SCM

in terms of the limiting spectral distribution of the theoretical covariance matrix as all dimen-

sions of the random matrix model increase without bound at a constant rate. For our purposes,

not only the asymptotic spectrum but also the limiting behavior of the associated eigensub-

spaces are of interest. In particular, we obtain the asymptotic limit of the quantities sH �Rks,

k = 1, . . . ,D, describing the sample Krylov-subspace estimates, as both the number of samples

N and the observation dimension M increase without bound with M/N → c < +∞.

From the statistical characterization of the signal model in (5.1), observe that we can statis-

tically model the observed samples as y (n) = R1/2u (n), where u (n) ∈ CM , n = 1, . . . , N , is a
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collection of i.i.d. random vectors, whose entries have zero mean real and imaginary parts with

variance 1/2 and bounded higher moments. Therefore, the SCM in (5.10) can be modeled as

�R =
1

N
R1/2UUHR1/2, (4.19)

where the matrixU ∈ CM×N is constructed using as its columns the vectors u (n) , n = 1, . . . ,N .
Furthermore, the following assumptions of purely technical interest will be used in our deriva-

tions:

(As1) The vector s has uniformly bounded Euclidean norm for all M .

(As2) The matrix R has uniformly bounded spectral radius for all M .

In the sequel, given two quantities a, b, a ³ b will denote the fact that both quantities are
asymptotic equivalents, i.e., |a− b| a.s.→ 0, with a.s. denoting almost sure convergence. DeÞne the

kth eigenvalue moment of the SCM and the theoretical covarince matrix as �mk , 1
N Tr

h
�Rk
i

and mk , 1
N Tr

£
Rk
¤
, respectively. The following result regarding the asymptotic convergence

of the eigenvalue moments of SCM-type matrices will be of interest.

Lemma 4.2 (Asymptotic moments of sample covariance matrices with outer correlations) Let
�R be deÞned as in (5.11). Then, as M,N →∞, with M/N → c < +∞,

�mk ³ 1

k + 1

kX
l=1

µ
k + 1

l

¶ X
i1+···+il=k

i1,...,il∈{1,...,k}

mi1 · · ·mil. (4.20)

Proof. See Appendix A.

The asymptotic eigenvalue moments of SCM-type matrices are also independently studied

in [Li01] using the combinatorics of the lattice of non-crossing partitions (cf. Appendix B) in

the context of linear multiuser detection, as well as in [Xia05], where the limiting problem is

formulated in terms of a combinatorial coloring problem and the results are used to analyze the

transient behavior of adaptive least square Þlters. In appendix A, we provide a more direct and

standard derivation solely based on the properties of the Stieltjes transform. Furthermore, we

have the following non-trivial generalization involving also the eigensubspaces of the SCM.

Proposition 4.1 With the previous deÞnitions and under the assumptions above, as M,N →
∞, with M/N → c < +∞,

sH �Rks =
kX
l=1

η (l, k) sHRls, (4.21)

where

η (l, k) =
X

t∈T (l,k)

µ
l

l1, l2, . . . , lk

¶
�ml21 �m

l3
2 · · · �mlkk−1,

and �mk, k = 1, . . . ,D, is given in Lemma 4.2 in terms of the eigenvalue spectrum of R.
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Proof. See Appendix B.

Hence, on the basis of the previous result, we may claim the following

Corollary 4.1 Traditional SCM-based estimators of Krylov subspace solutions are not consis-

tent for arbitrarily large-dimensional array observations.

In fact, the accurate approximation of optimal Krylov subspace solutions based on observa-

tion data records of Þnite size represents the major problem in practical implementations. As

mentioned above, under unknown second-order statistics, reduced-rank solutions may indeed

outperform the optimum (full-rank) Þlter. In particular, two considerations happen to prove

especially relevant regarding the improvement in estimation quality achieved by a Krylov pro-

jection method acting on a subspace of particularly reduced dimension. On the one hand, the

selection of a higher rank determines the need to estimating functions of powers of the SCM

of higher order, namely having associated an increased variance. On the other hand, a certain

degree of robustness against the non-stationarity of the observed process can be expected from

low-rank Þltering solutions, as the underlying reduced-dimensional Krylov subspace parameter-

ized by the spatial parameters of the SOI may not change so rapidly over the processing interval

time [Ge06]. Moreover, adaptive beamforming methods based on Krylov subspaces of reduced-

dimension are also shown in [Ge06] to beneÞt from a further level of robustness to an inaccurate

model-order selection.

In order to alleviate the effects of a limited sample-support and comparably large array ob-

servation dimension, in the next section we introduce a class of generalized consistent estimators

that are strongly consistent for arbitrarily large arrays (or, equivalently, for a limited number of

observations per degree-of-freedom).

4.5 Consistent estimation under sample-size limitations

In this section, we provide an improved estimator of the key quantities sHRks describing the

Krylov subspace methods presented in Section 4.3 that is consistent for a limited number of

observations per array element. Moreover, the proposed estimators are consistent under more

general conditions than traditional ones, in the sense that they converge to the original spec-

tral function of the true covariance matrix as not only the number of samples N but also

the observation dimension M go to inÞnity at a constant rate, i.e., as M,N → ∞, with
M/N → c < +∞. We will refer to these estimators as M,N-consistent as a generalization
of traditional N-consistent estimators. In particular, we build upon results from Girko�s theory

of general statistical analysis (GSA) or G-analysis [Gir98], namely providing us with a set of

estimators of certain functions of the spectrum of R in terms of solely the eigenvalues of �R. The
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following proposition provides the building blocks of the proposed generalized consistent Krylov

subspace estimator.

Proposition 4.2 With the previous deÞnitions and under the assumptions above, as M,N →
∞, with M/N → c < +∞,

1

M
Tr
h
Rk
i
³

kX
l=1

µS (l, k)
1

M
Tr
h
�Rl
i
, (4.22)

and

sHRks ³
kX
l=1

µS (l, k) s
H �Rls, (4.23)

with

µS (l, k) = (−1)k+l
l!

k!

X
t=(l1,...,lk)∈T (l,k)

ξP (t) θ
l1
1 θ

l2
2 · · · θlkk ,

where T (l, k) is the set of partitions of k ∈ N in l parts, and

ξP (t) =
l!

l1!l2! · · · lk!1!l12!l2 · · · k!lk ,

Furthermore, the quantities θ1, θ2, . . ., are deÞned as

θk+1 =
kX
l=1

(−1)l l!
X

t∈T (l,k)
ξP (t) ψ

l1
1 ψ

l2
2 · · ·ψlkk , k = 1, 2, . . . ,

with θ1 = 1 and

ψk =
kX
l=1

(−1)n (k + 1)!

(k − l + 1)!
X

t∈T (l,k)

µ
l

l1, l2, . . . , ll

¶
�ml11 �m

l2
2 · · · �mlll .

Proof. See Appendix C.

Corollary 4.2 For any Þnite k = 1, 2, . . ., the RHS of (4.23) is a strongly consistent estimator

of the scalar quantity sHRks.

As an example, the coefficients deÞning the estimators in (4.22) and (4.23), for k = 1, 2, 3,

are given in Table 4.1.

A recurrent formula for the computation of (4.22) and (4.23) is also given in Appendix C.

Hence, by replacing in the Krylov subspace solutions described in Section 4.3 the key quantities

sHRks, k = 1, 2, . . . ,D, with the RHS of (4.23), an estimator is obtained that is consistent

even for a Þnite number of samples per Þltering degree-of-freedom. Consequently, the proposed

estimators generalize the conventional notion of estimation consistency by allowing for arbitrarily

high-dimensional observations without approximation performance degradation. Finally, note
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Table 4.1: Example estimator coefficients: k = 1, 2, 3, 4.

µS (1, 1) = 1 − − −
µS (1, 2) = − �m1 µS (2, 2) = 1 − −
µS (1, 3) = 2 �m

2
1 − �m2 µS (2, 3) = −2 �m1 µS (3, 3) = 1 −

µS (1, 4) = 5 �m
3
1 + 5 �m1 �m2 − �m3 µS (2, 4) = 5 �m

2
1 − 2 �m2 µS (3, 4) = −3 �m1 µS (4, 4) = 1

that the class ofM,N-consistent eigenvalue moment estimators in (4.22) is of interest by itself for

the signal processing community, since they can be used to improve the performance of reduced-

rank MVDR/MMSE Þltering schemes in systems with random signatures (see references in

[Tul04, Section 3.1.6] and also [Rub06]) as well as for the purpose of eigenspectrum estimation4.

In the next section, we evaluate the performance of the estimator in (4.23) via numerical

simulations in a typical array processing scenario. In particular, the performance of the two

applications of Krylov subspace methods in Section 4.3 are evaluated under both proposed and

conventional implementations.

4.6 Numerical evaluations

In order to numerically evaluate the proposed generalized consistent estimators, we consider a

typical array processing scenario described by the observation covariance matrix structure in

(4.2). Throughout the simulations, we will denote by proposed the implementations relying

on our generalized M,N-consistent estimator, whereas those based on the N-consistent direct

substitution of the true covariance matrix for the SCM will be regarded as conventional. We

assume two sources impinging on a uniform linear array withM = 30 sensor elements separated

half a wavelength apart. The angles of arrival are 10 and 20 degrees, respectively, and both

sources are received with the same power equal to 10dB above the noise ßoor. First, an improved

performance in the estimation of the moments sHRks, k = 3, . . . , 5, is demonstrated in Figure

4.1, where an averaged squared error several orders of magnitude smaller for the proposed

estimator can be appreciated, especially for low sample-supports.

Figure 4.2 illustrates the performance of both the conventional and proposed implementations

of the SOI power estimate in (4.14) (cf. Section 4.3.1). An additional source is assumed to

impinge on the array from an angle of 15 degrees and equal power. The full-rank solutions

are shown versus different sample sizes, along with the traditional Capon SOI power estimate

involving the inversion of the SCM as in (5.5). Again, an improved convergence associated with

4Note that the spectrum of a Hermitian positive matrix can also be recovered in terms of (traces of) its powers

from the application of Newton�s identities [Mey00] to the characteristic polynomial of the matrix.
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Figure 4.1: Averaged square-error of the estimation of sHRks, k = 3, 4, 5, (normalized by true

moment value) versus number of samples. K = 2, M = 30.
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Figure 4.3: Averaged square-error in the estimation of σ2SSMUSIC (normalized by actual SOI

power) versus number of samples. K = 3, M = 30.

the proposed estimator can be observed. Additionally, the averaged empirical square-norm of

the error is shown in Figure 4.3 normalized by the true source power.

Regarding the problem of estimating the covariance principal eigenspace from a limited

number of data samples (cf. Section 4.3.2), the histogram obtained from 5000 realizations of

both proposed and conventional estimators of the largest eigenvalue of R obtained from the

Rayleigh-Ritz procedure is shown in Figure 4.4. A third estimate obtained from the direct

computation of the maximum eigenvalue of �R (denoted as traditional) is also depicted for

the purpose of comparison. A sample-size of N = M = 30 is considered. Observe that the

conventional and traditional eigenvalue estimators are increasingly biased, although they present

a smaller variance. Finally, the averaged empirical square-norm of the estimation error versus

an increasing number of samples is illustrated in Figure 4.5 normalized by the actual value of

the dominant eigenmode.
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4.7 Conclusion

In many parameter estimation problems in statistical signal processing, subspace methods based

on the Krylov space deÞned by the observation covariance matrix and the effective SOI signature

vector are known to allow for a reduction of the computational complexity as well as for provid-

ing a certain degree of robustness against Þnite sample-size constraints. In this chapter, we have

addressed the statistical inference problem of estimating Krylov subspace solutions based on the

unknown second-order statistics of a collection of received observations. The classical asymptotic

regime under which consistency of traditionally optimal estimators is guaranteed does not often

match realistic Þltering operation conditions, namely characterized by a Þnite sample-size, and

a relatively large observation dimension. Based on a more meaningful asymptotic regime, where

not only the number of samples but also the observation dimension grow without bound at the

same rate, we have shown using RMT that a signiÞcantly biased behavior of the conventionally

implemented estimators is to be expected in practice. Building upon results from Girko�s GSA

on the asymptotic limit of certain spectral functions of the SCM in terms of the theoretical co-

variance, a correction has been afforded by Þnding a class of generalized consistent estimators of

the key quantities sHRks. We have also provided a closed-form expression as well as a recurrent

formula for the M,N-consistent estimators of the eigenvalue moments of the covariance matrix.

An improved performance has been demonstrated via the numerical simulation of two typical

array processing applications, namely the problem of SOI power estimation and the estimation

of the principal eigenspace and dominant eigenmodes of a structured observation covariance ma-

trix. Finally, by not requiring matrix inversion or eigendecomposition, the proposed estimators

present a moderate computational complexity, similar to that of the theoretical solution and

essentially due to the calculation of some matrix powers of low degree.
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Appendix 4.A Asymptotic eigenvalue moments of SCM-type

matrices with outer correlations

We Þrst recall a result regarding the compositional inverse operation of formal power series (see

e.g. [Sta97]).

Theorem 4.1 (Lagrange inversion formula) Consider the formal power series f (z) =P
n≥1 fnz

n, with f1 6= 0, and let g (z) =
P
n≥1 gnz

n be its inverse for composition, i.e.,

f (g (z)) = g (f (z)) = z. Then,

gn = [z
n] {g (z)} = £z−1¤½ 1

nf (z)n

¾
, (4.24)

where
£
z−l
¤
denotes the operator extracting the coefficient of z−l in a series expansion.

Corollary 4.3 Let f (z) be deÞned by f (z) = zφ (f (z)), with φ (0) 6= 0. Then,

fn =
£
z−n

¤ {f (z)} = 1

n

£
zn−1

¤ {φ (z)n} . (4.25)

A fundamental result in RMT (see [Sil95a]) establishes the weak convergence of the empirical

eigenvalue distribution function of �R towards a limiting nonrandom distribution function with

compactly supported density, as M/N → ∞, M/N → c < +∞. The convergence is given in
terms of the Stieltjes transform, deÞned for a probability distribution function F (λ) on C as

SF (z) =

Z
1

λ− z dF (λ) , (4.26)

and being analytic on C \ supp (dF (λ)), where supp (·) denotes the density (compact) sup-
port. For our purposes, it will be of interest to deÞne the matrix B = ΞHRΞ ∈ CN×N , where
Ξ =

√
NU ∈ CM×N . In particular, it is proved in [Sil95c] that the Stieltjes transform of the

empirical distribution function of the eigenvalues of B can be obtained as the solution of the

following functional equation, namely,

S = −
µ
z − c

Z
λdH (λ)

1 + λS

¶−1
, (4.27)

in the sense that for every z ∈ C+, S is the unique solution in C+ to (4.27), and where H (λ)
is the (nonrandom) limiting empirical distribution function of the eigenvalues of R. Note that

the spectra of �R and B differ by |M −N | zero eigenvalues. Thus, if F (λ) and G (λ) are

the limiting spectral distribution functions of �R and B, respectively, it can be stated that

G (λ) = (1− c) I[0,∞) + cF (λ), where IΩ denotes the indicator function over the set Ω. As
it is well-known, the Stieltjes transform can be regarded as an eigenvalue-moment generating

function (see e.g. [Tul04, Section 2.2.1]). Indeed, since

1

z − λ =
1

z

∞X
k=0

µ
λ

z

¶k
,
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by the linearity of the integral, we get

SG (z) = −
∞X
k=0

1

zk+1

Z
λkdG (λ) ,

which is the Laurent series expansion of the integrand (or Taylor series about ∞), and where
SG (z) is the Stieltjes transform of the probability distribution function G (λ). Note that due

to the compactness assumption on the eigenvalue density, the power series expansion of the

Stieltjes transform is guaranteed to be holomorphic at inÞnity. Thus, using the fact that

�mk =
1

N
Tr
h
�Rk
i
=
1

N
Tr

·³
R1/2ΞΞHR1/2

´k¸
=
1

N
Tr
h
Bk
i
, (4.28)

i.e., �mk ³
Z
λkdG (λ), with some abuse of notation, we have

SG (z) = −1
z
−

∞X
k=1

�mk
zk+1

. (4.29)

Then, from the characterization of the Stieltjes transform of G (λ) in (4.29) as an eigenvalue-

moment generating function, and its limiting solution in (4.27) in terms of H (λ), we can obtain

an asymptotic expression for the moments �mk as a function of the spectrum of the true covariance

matrix. To that effect, let us deÞne

η (z) = −SG
¡
z−1

¢
=

∞X
k=0

�mkz
k+1 =

∞X
k=1

�mk−1zk =
∞X
k=1

ukz
k, (4.30)

where we have deÞned uk = �mk−1. Using the deÞnition of η (z), we observe that

z =
η (z)

1 + c

Z
λη (z)

1− λη (z)dH (λ)
=

η (z)

φ (η (z))
,

where

φ (x) = 1 + c

Z
λx

1− λxdH (λ) .

Furthermore, note that, since φ (0) 6= 0, we may apply the Lagrange inversion formula in Corol-
lary 4.3 to obtain the coefficients uk in (4.30) as

uk =
1

k

h
xk−1

i
φ (x)k . (4.31)

Hence, we get

φ (x) = 1− c+ c
Z

1

1− λxdH (λ)

= 1− c+ c
Z ∞X

k=0

(λx)i dH (λ)

= 1− c+
∞X
k=0

mix
i,
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where we have used the fact that
Z
dH (λ) = 1

M Tr
£
R0
¤
= 1. Since φ (x) consists of positive

powers only, we can express (4.31) as

uk =
1

k

·
∂

∂xk−1
n
φk (x)

o¸
x=0

, (4.32)

with u1 = φ (0) = 1.

In order to obtain derivatives of higher order, we can use the binomial formula to write

µ
1 + c

Z
λx

1− λxdH (λ)
¶k
=

kX
j=0

µ
k

j

¶µZ
λx

1− λxdH (λ)
¶j

=1+
kX
j=1

µ
k

j

¶µZ
λx

1− λxdH (λ)
¶j

=1+
kX
j=1

µ
k

j

¶µZ
1

1− λxdH (λ)− 1
¶j

=1+
kX
j=1

µ
k

j

¶X
i≥0
ximi

j

=1+
kX
j=1

µ
k

j

¶X
i1≥1

· · ·
X
ij≥1

xi1+···+ijmi1 · · ·mij

According to (4.32), we are particularly interested in the term xk−1, which is the term such that
i1 + · · ·+ ik = k − 1. Consequently, we can write

uk =
1

k

kX
j=1

µ
k

j

¶ X
i1+···+ij=k−1
i1,...,ij∈{1,...,k}

mi1 · · ·mij .

Note that only the Þrst k − 1 terms of the binomial summation contribute effectively, i.e.,

uk =
1

k

k−1X
j=1

µ
k

j

¶ X
i1+···+ij=k−1
i1,...,ij∈{1,...,k}

mi1 · · ·mij .
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Hence, we Þnally Þnd that

�mk =uk+1

=
1

k + 1

kX
j=1

µ
k + 1

j

¶ X
i1+···+ij=k

i1,...,ij∈{1,...,k}

mi1 · · ·mij

=
1

k

kX
j=1

µ
k

j

¶
k

k + 1− j
X

i1+···+ij=k
i1,...,ij∈{1,...,k}

mi1 · · ·mij

=
kX
j=1

µ
k

j

¶
1

k + 1− j
X

i1+···+ij=k
i1,...,ij∈{1,...,k}

mi1 · · ·mij .

Recursive formula

DeÞne further

θk (j) =
X

i1+···+ij=k
i1,...,ij∈{1,...,k}

mi1 · · ·mij , (4.33)

such that

�mk =
kX
j=1

µ
k

j

¶
1

k + 1− j θk (j) .

In order to derive a recursive formula for θk (j), we will use the relation between the moments of

a probability measure and its Boolean cumulants [Spe95]. As classical cumulants linearize the

convolution of probability measures, Boolean cumulants linearize the Boolean convolution as

deÞned in [Spe95]. Let mk be the moments of a probability measure with distribution function

Q (λ) and Stieltjes transform SQ (z). For such a probability measure, the Boolean cumulants

are deÞned as the coefficients of the following series, namely,

BQ (z) = − 1

SQ (z)
= z −

∞X
k=1

bkz
1−k.

As for the classical and non-crossing cumulants, the moments can be written as a polynomial

in terms of the Boolean cumulants. In particular, the coefficient for bl11 b
l2
2 · · · blkk in mk is equal

to the multinomial coefficient. Indeed, the combinatorial framework described in Appendices

B and C applies also in the case of the Boolean cumulants, being the underlying enumerative

structure governed by the lattice of interval partitions. Moreover, this relation can be inverted

as

bk =
kX
j=1

(−1)j+1 θk (j) . (4.34)
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(A straightforward inversion is possible on the lattice of interval partitions, since it is isomorphic

to the Boolean lattice of all subsets with Möbius function equal to a sign [Cam94].) More

interestingly, the following recurrence holds

mk =
kX
i=1

bimk−1, (4.35)

where b1 = m1 and b0 = 0. From (4.34) and (4.35), the next recursive formula can be found

θk (j) =

k−j+1X
i=1

miθk−i (j − 1)

θk (1)=mk. (4.36)

Corollary 4.4 (Eigenvalue moments of Marchenko-Pastur law) As a special case, when R =

IM the classical formula for the moments of the Marçenko-Pastur distribution is obtained. In-

deed, using

mk = c

Z
λkdH (λ) = c, k = 0, 1, 2, . . . , (4.37)

we have

θk (j) =
X

i1+···+ij=k
i1,...,ij∈{1,...,k}

mi1 · · ·mij =
µ
k − 1
j − 1

¶
cj, (4.38)

which is justiÞed as follows. Each term in the sum above can be characterized by a string of the

form

11 · · · 1| {z }
i1

011 · · · 1| {z }
i2

01 · · · 1011 · · · 1| {z }
in

, (4.39)

whre the number of ones is n and the number of zeros is k− 1. Thus, the number of terms that
contribute effectively to the sum will be given by the number of possible sortings of the k − 1
zeros into the n− 1 positions available. In conclusion,

�mk =
1

k

kX
j=1

µ
k

j

¶
cj

k

k + 1− j
µ
k − 1
j − 1

¶
=
1

k

kX
j=1

µ
k

j

¶µ
k

j − 1
¶
cj, (4.40)

which is the classical formula for the kth moment of the Marchenko-Pastur distribution [Ora97].

Checking with combinatorial moment-cumulant formula

In the following, we establish the connection between the formula (4.20) in Proposition 4.2

and the asymptotic expression obtained in the combinatorial framework presented in Appendix

B (as alternatively derived in [Li01]).

To that effect, it is enough to evaluate the polynomial in the non-crossing cumulants (or

equivalently the eigenvalue moments of R) as indeterminates. In particular, using (4.53), we
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can write

�mk =
kX
l=1

Ndis (l, k)
X

i1+···+il=k
1≤i1≤···≤il≤k

mi1mi2 · · ·mik , (4.41)

where the second summation enumerates the blocks {i1, . . . , ik} constituting the (non-crossing)
partition. (Note that ii = 0makes no sense in this setup as it represents an empty block that has

no meaning in the deÞnition of the partition type, whereas ii ≤ n necessarily, since no block in
the partition may certainly have cardinality larger than n.) In (4.41), the index set {i1, . . . , ik}
is equipped with a partial order relation in order to avoid taking into account combinations of

the indexes that are equivalent by permutation. If this condition is relaxed, we have

�mk =
kX
l=1

Ndis (l, k)

k!

X
i1+···+il=k

mi1mi2 · · ·mik .

Now, looking at the coefficients of the summation over k, observe that

Ndis (l, k)

k!
=

k!

(k − l + 1)!l! =
1

k + 1

(k + 1)k!

(k + 1− l)!l! =
1

k + 1

µ
k + 1

l

¶
=

µ
k

l

¶
1

k + 1− l .

This is exactly the coefficient of θk (j) in (4.33), since all partitions of equal type by permutation

are being considered in the enumeration of the k partitions.

Appendix 4.B Proposition 4.1

We Þrst introduce some useful concepts regarding the combinatorics of set partitions that will

be of notational convenience throughout the appendix.

Definition 4 Let l, k ∈ N, such that l ≤ k. We deÞne T (l, k) as the set of k-tuples (l1, . . . , lk)
satisfying 1l1 + 2l2 + . . .+ klk = k with l = l1 + . . .+ lk.

Additionally, for any t = (l1, . . . , lk) ∈ T (l, k), we deÞne

ξP (t) =
l!

l1!l2! · · · lk!1!l12!l2 · · · k!lk , ξNC (t) =
k!

(k − l + 1)!
1

l1!l2! · · · lk! .

With this notation, the higher-order derivatives of a composite function can be written in a

compact form as

∂n

∂xn
{f (g (x))} =

nX
k=1

f (k) (g (x))
X

t∈T (n,k)
ξP (t)

nQ
i=1

³
g(i) (x)

´mi

. (4.42)

Furthermore, let us recall the following result giving the coefficients of a composition of two

formal power series in terms of the coefficients of the two series (see e.g. [Sta97]).
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Lemma 4.3 DeÞne the formal power series f (z) = 1 +
∞P
n=1

fn
n! z

n, g (z) =
∞P
n=1

gn
n! z

n and h (z) =

1 +
∞P
n=1

hn
n! z

n, such that f (g (z)) = h (z). Then, the kth coefficient of the formal power series

composition h (z) can be obtained as

hk =
kX
l=1

fl
X

t∈T (l,k)
ξP (t) g

l1
1 g

l2
2 · · · glkk . (4.43)

We depart from the result stated in Proposition 4.2, where the following M,N-estimators

are provided, namely,

1

M
Tr
h
Rk
i
³

kX
l=1

µS (l, k)
1

M
Tr
h
�Rl
i
, sHRks ³

kX
l=1

µS (l, k) s
H �Rls, k = 0, 1, 2, . . . , (4.44)

where the coefficients µS (l, k) are given in terms of the eigenvalue-moments of the SCM. The

relation in (4.44) can be straightforwardly inverted as

1

M
Tr
h
�Rk
i
³

kX
l=1

µT (l, k)
1

M
Tr
h
Rl
i
, sH �Rks ³

kX
l=1

µT (l, k) s
HRls, k = 0, 1, 2, . . . , (4.45)

for a set of coefficients µT (l, k) depending on the moments of the theoretical covariance ma-

trix. The asymptotic limit of 1
M Tr

h
�Rk
i
is provided by Lemma 4.2, since, clearly, 1

M Tr
h
�Rk
i
=

c−1 �mk. However, the expression in (4.20) does not help us to Þnd the coefficients µT (l, k) describ-
ing the asymptotic convergence of the eigenvalue moments of the SCM, as well as, accordingly,

the limit of sH �Rks, k = 0, 1, 2, . . ., in (4.45). Thus, we provide an alternative representation of

the (unique) limit in (4.20) revealing the structure of the expressions in (4.45).

Consider the formal power series expansion in (4.29). In order to avoid dealing with cum-

bersome negative signs, we deÞne G (z) = −SG (z). The Laurent series G (z) has an inverse for
composition K (z), with an expansion [Bia03]

K (z) =
1

z
+

∞X
k=1

�rk z
k−1. (4.46)

Analogously to the classical moment-cumulant problem, the coefficients �rk are usually regarded

as the cumulants associated with the spectral distribution of the SCM. In the problem at hand,

the cumulants turn out to be of special interest due to its relation with the eigenvalue moments

of the theoretical covariance matrix. In particular, it can be shown that �rk ³ mk (cf. Appendix
B and also [Li01]). Moreover, using the fact that G (K (z)) = z, the eigenvalue-moments of

the SCM can be obtained using the Lagrange inversion formula in Theorem 4.1 in terms of the

eigenvalue-cumulants, i.e.,

�mk =
1

k + 1

£
z−1

¤
K (z)k+1 .
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In particular, for t = (l1, l2, . . . , lk) ∈ T (l, k), the coefficient of �rl11 �rl22 · · · �rlkk in �mk is equal to

ξNC (t). Hence, we can write

�mk =
kX
l=1

X
t∈T (l,k)

ξNC (t) �r
l1
1 �r

l2
2 · · · �rlkk . (4.47)

A unifying combinatorial interpretation of the functional relation between cumulants and

moments is afforded by Speicher�s work [Nic06], founded on the theory of lattices of non-crossing

partitions. Indeed, as the relation between classical moments and cumulants in probability

theory happens to be ruled by the lattice of all partitions, the structure of (4.47) is governed by

the lattice of non-crossing partitions.

Let us now deÞne M (z) and C (z) as the following two formal power series, namely,

M (z) = 1 +
∞X
n=1

�mn z
n, (4.48)

and

C (z) = 1 +
∞X
n=1

�rn z
n. (4.49)

From (4.48) and (4.49), we have that M (z) = 1
zG
¡
1
z

¢
and C (z) = zK (z). Now, we observe

that C (zM (z)) =M (z). To see that, deÞne ω = 1
z and note that

C (zM (z)) = C

µ
1

ω
M

µ
1

ω

¶¶
= C (G (ω)) = G (ω)K (G (ω)) =M

µ
1

ω

¶
=M (z) .

Furthermore, deÞne

�M (z) = zM (z) =
∞X
n=1

�mn z
n,

with �mn = �mn−1 and �m0 = 1. Then, since �M (z) has no constant term, we can use the formula

in (B.9) for the composition of two formal power series in order to identify

�mk =
kX
l=1

η (l, k) �rl, (4.50)

with

η (l, k) =
X

t∈T (l,k)

µ
l

l1, l2, . . . , lk

¶
�ml21 �m

l3
2 · · · �mlkk−1.

An alternative expression for the coefficients η (l, k) in (4.50) is given in [Nic06], where a recurrent

version of the moment-cumulant formula in (4.47) is obtained using speciÞc properties of the

lattice of non-crossing partitions, as

η (l, k) =
X

i1,i2,...,il∈{0,1,...,k−l}
i1+i2+···+il=k−l

�mi1 �mi2 · · · �mil . (4.51)

Using the fact that �rk ³ mk, we readily have that µT (l, k) = η (l, k).
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Appendix 4.C Proof of Proposition 4.2

In order to obtain anM,N-estimator in (4.22), we can directly exploit the inverse functional re-

lation between the cumulants and the moments of the spectral distribution of the SCM presented

in Appendix B. Indeed, using the fact that K (G (z)) = z, we have

�rk = − 1

k − 1
£
z−1

¤
G (z)−k+1 .

SpeciÞcally, by recovering the coefficients of �ml11 �m
l2
2 · · · �mlkk in �rk for all t = (l1, l2, . . . , lk) ∈

T (l, k), we get

�rk =
kX
l=1

(−1)1+l (k − 2 + l)!
(k − 1)!

X
t∈T (l,k)

1

l1!l2! · · · lk! �m
l1
1 �m

l2
2 · · · �mlkk . (4.52)

Speicher�s framework introduced in Appendix B allows for a combinatorial interpretation of

(4.52) as the explicit inversion of the relation in (4.47), which can be systematically obtained

using the Möbius inversion formula (see e.g. [Sta97]) on the lattice of non-crossing partitions.

In particular, the Möbius function of the lattice of non-crossing partitions is given by [Nic06]

α (t) = sl11 · · · slkk ,

with sn+1 = (−1)nCn being the nth (signed) Catalan number. (Note that a similar procedure
applies for the classical moment-cumulant formula if we replace ξNC (t) with ξP (t) and use the

Möbius function of the lattice of all partitions [Sta97].) Indeed, it can be readily checked that

α (t) ≡ (−1)1+l (k − 2 + l)!
l1!l2! · · · lk! (k − 1)! .

Interestingly enough, the spectral cumulants of the SCM can be proved to be equivalent to

�rk ³ mk. (4.53)

To see that, we may use the formula in (4.20) for the asymptotic expression of �mk in terms of

the eigenvalue moments of R provided by Lemma 4.2 in order to replace the moments �mk in

(4.52). The result follows from an induction argument. Hence, using (4.53) in (4.52), we directly

obtain an M,N-estimator of 1
M Tr

£
Rk
¤
.

In order to Þnd an expression for the coefficients µS (l, k) deÞning not only the M,N-

estimator of 1
M Tr

£
Rk
¤
but also the estimator of the vector-valued quadratic forms sHRks,

we follow the approach by Girko in [Gir98, Chapter 14]. First, note that we can express the kth

eigenvalue moment as

1

M
Tr
h
Rk
i
= (−1)k k!−1 ∂

k

∂xk
1

M
Tr
h
(IM + xR)−1

i¯̄̄̄
x=0

. (4.54)
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Girko�s approach consists of replacing the nonrandom quantity 1
M Tr

h
(IM + xR)−1

i
in (4.54),

namely the so-called real Stieltjes transform of R in the framework of GSA (also known as the

η-transform in the engineering literature [Tul04]) by its M,N-consistent estimator in terms of
�R. Thereafter, the expression is differentiated as above in order to obtain the estimator of the

eigenvalue moment. G-analysis provides us with anM,N-consistent estimator of the real-valued

Stieltjes transform of R, namely the G2-estimator, given by (cf. Section 14.2 in [Gir98])

G2 =
1

M
Tr

·³
IM + θ (x) �R

´−1¸ ³ 1

M
Tr
h
(IM + xR)−1

i
,

with θ (x) being the positive solution of the following canonical equation, namely,

θ (x)h (θ (x)) = x, (4.55)

where

h (θ) = 1− c+ 1

N
Tr

·³
IM + θ�R

´−1¸
.

Only a (trivial) expression for the estimators of the Þrst two moments are given by Girko in

[Gir98]. In the following, we build upon these ideas and derive an explicit formula for moments

of arbitrary order. Moreover, we extend the previous approach in order to equivalently prove

(4.23).

For our purposes we can make use of the following identity, namely,

sHRks = (−1)k k!−1 ∂
k

∂xk
sH (IM + xR)−1 s

¯̄̄
x=0

, (4.56)

where now we can use the M,N-consistent estimator for the quadratic forms of resolvents of

covariance matrices (cf. Section 14.25 in [Gir98])

sH (IM + xR)−1 s ³ sH
³
IM + θ (x) �R

´−1
s. (4.57)

The RHS of (5.28) is regarded in the GSA literature as G25 estimator. Thus, from (4.56) and

(B.4), an expression for the estimator of sHRks is obtained as

sHRks ³
kX
l=1

µ (l, k) sH �Rls, (4.58)

where we have deÞned

µ (l, k) = (−1)k+l l!
k!

X
t∈T (l,k)

ξP (t) θ
l1
1 θ

l2
2 · · · θlkk , (4.59)

and

θi =
∂i

∂xi
θ (x)|x=0 . (4.60)

In the following lemma, we derive an explicit closed-form expression for the coefficients θi,

i = 0, 1, 2, . . .. (Note that, since h (θ) is always different from zero, we straightforwardly Þnd

that θ0 = θ (0) = 0 and θ1 = 1.)
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Lemma 4.4 With the previous deÞnitions, the coefficients θk, k > 1, are given by

θk+1 =
kX
l=1

(−1)l l!
X

t∈T (l,k)
ξP (t) ψ

l1
1 ψ

l2
2 · · ·ψlkk ,

where

ψk =
kX
l=1

(−1)l (k + 1)!

(k − l + 1)!
X

t∈T (l,k)

µ
l

l1, l2, . . . , ll

¶
�ml11 �m

l2
2 · · · �mlll .

Proof. From the deÞnition in (4.60), the ith coefficient can be recovered from the formal power

series expansion of θ (x) as i!
£
xi
¤
θ (x) around 0. Now, let (4.55) be written as

θ (x) = xφ (θ (x)) ,

where we have deÞned

φ (u) =
1

h (u)
=

1

1− c+ 1
N Tr

·³
IM + u�R

´−1¸ .
Since φ (0) = 1 6= 0, we may use the version of the Lagrange inversion formula in Colorary 3 in
order to obtain the series coefficients from

£
xi
¤
θ (x) =

1

i

£
ui−1

¤
φ (u)i .

Hence, we have

θi= i!
£
xi
¤
θ (x)

=
£
ui−1

¤
φ (u)i

=
∂i−1

∂ui−1
n
φ (u)i

o¯̄̄̄
u=0

. (4.61)

In order to obtain (4.61), we further deÞne φ (u)k = f (g (h (u))), with f (y) = 1
y and g (v) = v

k,

and apply (B.4) using
∂l

∂gl
{f (g)}

¯̄̄̄
u=0

= (−1)l l!,

∂l

∂hl

n
g (h) = hk+1

o¯̄̄̄
u=0

=
(k + 1)!

(k − l + 1)! ,

and
∂l

∂ul

½
h (u) = 1− c+ 1

N
Tr

·³
IM + u�R

´−1¸¾¯̄̄̄
u=0

= (−1)l l! �ml,

to Þnally obtain the result in the lemma.
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Observe that the ith coefficient turns out to be related to �mk, k = 1, . . . , i−1. In particular,
for i = 2, 3, 4, we have

θ(2)=2 �m1

θ(3)=12 �m21 − 6 �m2
θ(4)=24 �m3 − 120 �m1 �m2 + 120 �m31.

Finally, we realize that the coefficients θk can also be obtained recursively by directly differ-

entiating both sides of (4.55) i times and letting x = 0. Indeed, from

∂i

∂xi
{θ (x)h (θ (x))} =

iX
υ=0

µ
i

υ

¶
∂υ

∂xυ
{θ (x)} ∂

i−υ

∂xi−υ
{h (θ (x))} ,

the values of θi, i > 1, can be readily shown to obey the following recurrent relation, namely,

θi =
i−1X
υ=1

i!

υ!
(−1)i−υ+1 ùmi−υ θυ, (4.62)

where ùmk is the M,N-consistent estimator of mk (note that the RHS of (4.62) only depends on

θr, r < i− 1).

The result in Proposition 4.2 follows by letting µS (l, k) = µ (l, k).



Chapter 5

Doubly-Consistent Robust Spatial
Filtering under Signature Mismatch

5.1 Summary

In this chapter, the consistency of sample robust Capon beamforming (RCB) solutions that are

constructed under signature-mismatch constraints from a set of received array observations is

revised and improved. Particular emphasis is placed on the class of robust Þlters heuristically

modelling the adverse effects of practical Þnite sample-size conditions as due to an imperfect

knowledge of the effective spatial signature. In contrast, and as in practice, a small sample-size

relative to the array dimension is identiÞed in this chapter as the actual source of Þlter estimation

errors under unknown second-order statistics. Accordingly, a new alternative approach to RCB

design is proposed in this work that explicitly addresses both the signature-mismatch problem

and the limitations due to a Þnite sample-support. To that effect, based on results borrowed

from random matrix theory (RMT) on the estimation of spectral functions of the observation

covariance matrix, a class of RCB estimators is derived that generalizes conventional imple-

mentations by proving to be consistent even for a limited number of samples per observation

dimension. As a result, an improved performance is demonstrated via numerical simulations in

the context of source power estimation.

5.2 Introduction

The Capon spectral estimator has been widely applied in the array processing literature to the

problem of detecting a given number of radiating sources by using an array of passive sensors

[Sto05]. This type of problem Þnds applications in radar and sonar systems, communications,

151
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astrophysics, biomedical signal processing, seismology, underwater surveillance and many other

Þelds. The derivation and properties of the Capon method as a spatial spectrum estimator is

entirely analogous to the case dealing with the estimation problem of the power spectrum of

time data series. When used as a (spatial-reference) beamformer, the knowledge of the array

manifold and the second-order statistics of the array output signal is exploited in order to enhance

angular response of the minimum variance distorsionless-response (MVDR) spatial Þlter towards

the direction of the source-of-interest (SOI), while nulling out the unwanted contribution from

interfering sources. In the array signal processing problem, the power and the direction of arrival

(DoA) of the signals impinging on the antenna array are obtained from the evaluation of the

estimated angular spectrum.

Under perfect knowledge of the source spatial signature and assuming an inÞnite number

of snapshots is available in order to estimate the theoretical covariance matrix of the received

observations, the Capon beamformer is known to offer better resolution and interference rejection

capabilities than existing data-independent beamformers. However, these two assumptions are

quickly violated in realistic scenarios and so is the Þlter performance known to suffer from a

severe degradation in practical implementations [Ger99]. Regarding the Þrst type of mismatch,

the assumption of perfect knowledge of the SOI steering vector is usually not satisÞed due

to e.g. inaccuracies in the angular (pointing) information, mutual coupling between antenna

elements and small array response (calibration) errors. In this situations, the MVDR beamformer

may suppress the SOI as an interference, which results in a underestimated SOI power and

a drastically reduced signal-to-interference-plus-noise ratio (SINR). Consequently, signiÞcant

effort has been devoted during the past years to the problem of improving the performance

of optimum Þlters under imprecise knowledge of the steering signature vector. In order to

speciÞcally cope with the detrimental effects due to this problem, different robust designs of the

Capon beamformer particularly involving a diagonal loading factor [Tre02] and essentially based

on the vast mathematical theory of optimization have been recently presented in the literature

(see [Li05]).

As for the second source of error, an insufficient sample-support may cause a considerable

mismatch between the true and the sample covariance matrix (SCM). In order to consider also

the negative consequences of a having a limited number of observed samples available, the main

stream of proposed methods heuristically model the small-sample constraint as also due to spatial

signature errors. However, the practical implementation of the optimal robust solution relies

on the sample estimate of the unknown second-order statistics, namely the sample covariance

matrix (SCM). The SCM represents a suitable approximation of the actual array covariance

matrix under the assumption of a sufficiently large ratio between sample size and dimension 1.

1 Indeed, the SCM is the minimum variance unbiased estimator of the theoretical covariance matrix (as well

as the maximum likelihood estimator for Gaussian observations). Moreover, the SCM is a consistent estimator

whenever the observation dimension remains bounded as the sample-size grows without bound.
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Hence, in practice, the major source of errors in the statistical estimation of Þltering solutions can

be actually identiÞed with a low sample-size relative to the dimension of the array observation.

Improving on the traditional presumption of an inÞnite sample-support for array covariance

approximation, a consistent estimator of the optimum diagonal loading factor has been reported

in [Mes06c] (see also [Li05, Chapter 4]) that is consistent even for arbitrarily large arrays.

In this chapter, we follow a similar approach as in [Mes06c] and propose a new alternative

RCB design that explicitly addresses both the signature-mismatch problem and the limitations

due to a limited sample-size. For our purposes, motivated by Girko�s general statistical analysis

(GSA) of large-dimensional observations [Gir95] and provide a class of RCB estimators that

generalizes conventional implementations by proving to be consistent for ar high-dimensional

observations for a limited number of samples per observation dimension. Consequently, the

proposed construction generalizes conventional RCB implementations that, based on directly

replacing the theoretical covariance matrix with its sample estimate As a result, an improved

performance in the context of source power estimation is numerically demonstrated.

The chapter is organized as follows. In Section 5.3, a class of robust Capon beamformers

is introduced that is particularly suitable for problem of power spectral estimation. In Section

5.4, an asymptotic performance characterization of the conventional SCM-based RCB imple-

mentation in the limiting regime deÞned by both sample size and dimension going to inÞnity,

is provided. Section 5.5 presents the proposed generalized consistent estimator of a family of

RCB solutions, which is numerically evaluated in Section 5.6 in the context of the SOI power

spectrum. After a short discussion and the concluding remarks in Section 5.7, the theoretical

framework for the derivation of the results in the chapter is provided.

5.3 Robust Capon spatial filtering

Consider a collection of N multivariate observations
©
y (n) ∈ CM

ª
obtained by sampling across

an antenna array with M sensors, namely, {ym (n) , n = 1, . . . , N,m = 1, . . . ,M}, such that
y (n) =

·
y1 (n) · · · yM (n)

¸T
. A number of K different sources are assumed to impinge on the

antenna array from different directions. Under the assumption of narrowband signals and linear

antenna elements, the array observation y (n) =
·
y1 (n) · · · yM (n)

¸T
∈ CM can be additively

decomposed as

y (n) = x (n) s+ n (n) , (5.1)

where x (n) ∈ C models the signal waveform (or fading channel coefficient) associated with

a given signal of interest at the nth discrete-time instant and s ∈ CM is its spatial signa-

ture vector (also steering vector or array transfer vector); furthermore, n (n) ∈ CM is the

additive contribution of the interfering sources and background noise, which can be additively
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decomposed as n (n) =
PK−1
k=1 xk (n) sk + v (n), where, for k = 1, . . . ,K − 1, xk (n) ∈ C and

sk ∈ CM are, respectively, the interfering signal processes and associated steering signatures, and

v (n) ∈ CM is the system noise and out-of-system interference. Conventionally, the signals and

the noise are assumed to be independent and jointly distributed wide-sense stationary random

processes, with SOI power and noise covariance given, respectively, by E [x∗ (n)x (n)] = σ2xδm,n
and E

£
n (m)nH (n)

¤
= Rnδm,n.

In this work, we focus on the problem of estimating the signal waveform of the intended

source and, speciÞcally, on the statistical approximation of the SOI power using optimal spatial

Þltering techniques. In particular, the Capon beamformer is obtained from the following linearly

constrained quadratic optimization problem, namely, [Sto05]

wCAPON = arg min
w∈CM

wHRw subject towHs = 1, (5.2)

where R is the theoretical covariance matrix of the array observation, which under the previous

statistical assumptions is given by

R = σ2xss
H +Rn. (5.3)

The solution to (5.2) can be straigthforwardly found as

wCAPON =
R−1s
sHR−1s

. (5.4)

Furthermore, from above, the SOI power can be approximated by E
h
|�x (n)|2

i
= wHRw. Hence,

with some abuse of notation, the Capon SOI power estimate is deÞned as

σ2CAPON =
1

sHR−1s
. (5.5)

The rationale behind this procedure is that a natural (indirect) solution for the SOI power

approximant must be possibly obtained by minimizing the power of the interference-plus-noise

received contribution in (5.2) while keeping the intended signal unchanged.

The Capon SOI power estimate in (5.5) is well-known to signiÞcantly outperform solutions

obtained from data-independent beamforming methods, provided that the actual SOI spatial

signature is precisely known. However, in the case that only an inaccurate version of the SOI

steering vector is available, as it usually happens in practice, a relatively signiÞcant performance

degradation is in constrast to be expected. In order to alleviate this problem, a number of robust

adaptive beamforming techniques has been proposed in the literature that provide a generaliza-

tion of the original Capon beamformer above with the purpose of allowing for an improved esti-

mation performance even under an imprecise knowledge of the SOI spatial signature. In partic-

ular, different robust solutions have been published over the past recent years that extend on the

diagonal loading approach by providing an optimum loading level based on pressumed informa-

tion about the uncertainty of the array steering vector [Li03, Vor03a, Sha03, Li04a, Lor05, Bec07]
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(see also [Hon95, Wan98a, Wan98b, Mad98] for a related approach against code signature wave-

form mismatch in the context of code-division multiple-access (CDMA) multiuser detection).

More speciÞcally, the imperfectly known spatial signature is most often assumed to belong to

an uncertainty ellipsoidal set, according to which the corresponding amount of diagonal loading

is explicitely calculated.

As in [Sto03], we are here interested in the problem of estimating directly the power of the

SOI as in (5.5) robustly against a mismatch in the spatial signature. Building upon a contrained-

covariance-Þtting direct derivation of the Capon SOI power estimate provided in [Sto03], a robust

Capon estimate is proposed in [Li03] that uniquely relies on the available imperfect knowledge

about the steering vector and the pressumed uncertainty level. In particular, assuming that

the steering vector is contained in an ellipsod described by a given positive deÞnite matrix

C ∈ CM×M and centered at a nominal steering vector �s ∈ CM , the solution is given by the
expression in (5.5), with the unknown steering vector being replaced by

so = arg min
s∈CM

sHR−1s subject to (s−�s)H C−1 (s−�s) ≤ 1. (5.6)

In [Li03], the solution of the optimization problem in (5.6) is found for an uncertainty set

C = YIM , yielding as a constraint the sphere ks−�sk ≤ Y, with Y ∈ R+ being a given user

parameter. Thus, the optimum robust steering vector is obtained as

so =
³
IM − (IM + λoR)

−1
´
�s, (5.7)

where the parameter λo is found as the real positive solution of the following equation in λ,

namely,

g (λ) = Y, (5.8)

where we have deÞned

g (λ) = �sH (IM + λR)−2�s.

Note that g (λ) is a monotonically decreasing function of λ for λ > 0 (see [Li03] for further

details). Hence, using the available erroneous version of the true steering vector in (5.7), the

robust estimate of the SOI power is given by

σ2CAPON =
1

sHo R
−1so

. (5.9)

The previous approach to robust Capon beamforming can be extended to a broader class of

solutions including an additional norm-constraint (or white-noise gain constraint) on the weight

vector as classically proposed in order to optimally select an appropriate diagonal-loading factor

(see [Hud81]). Based equivalently on the formulation in [Sto03] of the Capon beamforming

problem, a doubly-constrained RCB is proposed in [Li04a] that is similarly obtained as a function

of the spectrum of the covariance matrix and the associated eigensubspaces as well as the given
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parametrization of the uncertainty region (see also discussion in [Sto05, Section 6.5] and [Li05,

Chapter 3]).

In practice, the array observation covariance matrix is most often not available, and so must

the RCB necessarily rely on its sample estimate, namely the sample covariance matrix (SCM),

i.e.,

�R =
1

N

NX
n=1

y (n)yH (n) . (5.10)

The SCM is known to be a consistent estimator of the theoretical covariance matrix when

the number of samples available for its computation is inÞnitely larger than the size of the

array. Obviously, such an assumption does hardly match realistic scenario conditions given in a

practical setting. Consequently, a considerable performance degradation is to be expected when

implementing the RCB solution above by directly replacing the true covariance matrix with the

SCM.

In the next section, we provide a characterization of the performance of sample estimates in

an asymptotic regime deÞned by a comparatively large sample size and dimension.

5.4 Asymptotic Convergence of Conventional Implementations

In this section, we derive the asymptotic expression of the power level approximant in (5.9)

in Section 5.3 when constructed using the available SCM under the realistic assumption of an

array sample observation of comparably large size and dimension. To that effect, we resort to

the theory of the spectral analysis of large-dimensional random matrices or RMT. SpeciÞcally,

we build upon results involving the Stieltjes transform of spectral probability measures. This

fundamental building block allows us to characterize the asymptotic eigenspectrum of the SCM

in terms of the limiting spectral distribution of the theoretical covariance matrix as all dimensions

of the random matrix model increase without bound at a constant rate. For our purposes, not

only the asymptotic spectrum but also the limiting behavior of the associated eigensubspaces

are of interest.

Before presenting the main result of this section, observe that, from (5.1) and the statistical

assumptions in Section 5.3, we can statistically model the observed samples as y (n) =R1/2u (n),

where u (n) ∈ CM , n = 1, . . . ,N , is a collection of i.i.d. random vectors, whose entries have

zero mean real and imaginary parts with variance 1/2 and bounded higher moments. Thus, the

SCM in (5.10) will be modeled in the subsequent derivations as

�R =
1

N
R1/2UUHR1/2, (5.11)

where the matrixU ∈ CM×N is constructed using as its columns the vectors u (n) , n = 1, . . . ,N .
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For technical reasons, we assume that the nominal steering vector is normalized, such that

k�sk = 1.

The next two propositions characterize the asymptotic behavior of the conventional SCM-

based construction of the RCB.

Proposition 5.1 Let �R be given by (5.11). Moreover, consider an M dimensional nonrandom

vectors �s with uniformly bounded Euclidean norm for all M . Then, as M,N → c < +∞, the
solution in λ to

�sH
³
IM + λ�R

´−2
�s = Y,

converges to the solution in λ to the following equation, denoted as λ̄o, for η = − 1
λ , namely,

ηf1 (η) f2 (η)�s
H (R− f1 (η) IM)−2�s+ η (ηf2 (η)− f1 (η))�sH (R− f1 (η) IM)−1�s = Y,

where

f2 (η) =
1

1− c
M

MX
m=1

µ
λm (R)

λm (R)− f1 (η)
¶2 ,

and f = f1 (η) is the solution in f to the following equation, namely,

f =
η

1− c
M

MX
m=1

λm (R)

λm (R)− f

.

Proof. See Appendix A.

Regarding the asymptotic convergence of the direct SCM-based implementation of the SOI

power estimate, we have

Proposition 5.2 Let �R, �s and λ̄o be deÞned as in Proposition 5.1. Moreover, deÞne �so =µ
IM −

³
IM + λ̄o �R

´−1¶
�s. Then, as M,N → c < +∞, we have for η = − 1

λ ,

1

�sHo �R
−1�so

³ f2 (η)�sH (R− f1 (η) IM)−1R (R− f1 (η) IM)−1�s,

where f1 (η) and f2 (η) are given in Proposition 5.1.

Proof. See Appendix B.

Clearly, from Propositions 5.1 and 5.2, the estimators of the optimum robust parameter and

the robust power estimate are not consistent for arbitrarily large dimensional array observations.

In order to further improve the power estimaton performance under situations characterized by

a large array, or, equivalently, a relatively small number of observations, in the next section we

derive an estimator of the RCB solution in (5.9) that is consistent even in the case of a limited

number of samples per observation dimension.
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5.5 Improved consistent RCB estimation

In this section, we propose a generalized consistent estimator of (5.9) for comparatively large

sample size and dimension. The new RCB estimator generalizes the conventional implementation

based on directly replacing the covariance matrix by its sample estimate by being consistent

even for comparably large sample size (N) and dimension (M). To that effect, as in Section 5.4,

we resort to Stieltjes transform methods dealing with the asymptotic spectrum of SCM-type

matrices. SpeciÞcally, we derive an estimator of the optimum parameter λo as well as the class

of spectral functions of R deÞned by (5.9) that is consistent in the asymptotic regime described

by M,N →∞, with M/N → c < +∞. We will refer to this estimators as M,N-consistent as a
generalization of traditional N-consistent estimators.

The following two propositions provide asymptotic equivalents of the optimum parameter

deÞning the robust steering vector in (5.7) and the SOI power estimate in (5.9), respectively, as

a function of only the SCM.

Proposition 5.3 Let Y, �s, R, λo and �R be deÞned as above. Under the previous statistical

assumptions, as M,N →∞, with M/N → c < +∞, we have that λo ³ ùλ, where
ùλ =

ùη

g2 (ùη)
, (5.12)

where ùη is the solution to the following equation in η, namely, ùg (η) = Y, where

ùg (η) =

η2
·
g2 (η)�s

H
³
�R− ηIM

´−2
�s− g1 (η)�sH

³
�R− ηIM

´−1
�s

¸
g2 (η) + ηg1 (η)

, (5.13)

and

g1 (η) =
1

N
Tr

·
�R
³
�R− ηIM

´−2¸
,

g2 (η) = 1− c

M
Tr

·
�R
³
�R− ηIM

´−1¸
.

Proof. See Appendix C.

Note that the function ùg (η) is also monotonically decreasing for η smaller than the minimum

eigenvalue of �R. Moreover, regarding the estimation of the robust SOI power approximant, we

have

Proposition 5.4 Under the assumptions and deÞnitions above, as M,N → ∞, with M/N →
c < +∞, we have that σ2CAPON ³ ùσ2CAPON, where

ùσ2CAPON =

1

ùµùλ

µ
g1 (ùµ)

λo
− 1
¶

�sH
³
�R− ùµIM

´−1
�R
³
�R− ùµIM

´−1
�s
, (5.14)
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where ùλ is given in Proposition 1 and ùµ is the solution to the following equation in µ, namely,

µ = −1
ùλ
g2 (µ) .

Proof. See Appendix D.

Therefore, based on the result in Proposition 5.3, we can establish that

Corollary 5.1 The random quantity ùσ2CAPON in (5.14) is a strongly consistent estimator of

σ2CAPON.

5.6 Numerical evaluations

In the following, we consider the typical array processing application concerning the estimation

of the SOI power. Instead of relying on the availability of an accurately known SOI spatial sig-

nature, we assume that an erroneous measurement or estimate of the steering vector is available

and allow for a certain degree of uncertainty level in its knowledge. In particular, we numer-

ically compare the performance of both the conventional (based on the direct substitution of

R with �R) and proposed (based on Propositions 5.3 and 5.4) implementations of the robust

Capon power estimate in (5.9). SpeciÞcally, we consider a scenario consisting of K = 5 sources

impinging on an array with M = 30 sensor elements from angles (degrees) {0, 20, 30, 50, 60}
and powers (dB) {10, 5, 30, 10, 25} over the noise level σ2n = 1. Moreover, a number of observed
samples equal to N = 20 is assumed to be available for SCM computation (note that N < M).

Finally, the constant scalar deÞning the uncertainty level is Þxed to Y = 1.

Figure 5.1 shows the simulations results for the estimation of the optimum parameter λo. In

particular, the empirical probability density function (PDF) of both conventional and proposed

estimators is depicted versus the theoretical value of λ obtained by solving equation (5.8) using

the true covariance matrix. Observe that, even in the considered adverse (undersampled) esti-

mation conditions, an apparent nearly unbiased behavior and a lower variance can be empirically

appreciated for the proposed estimator against a highly biased and variant performance of the

conventional implementation.

On the other hand, in Figure 5.2 the normalized histograms of the robust SOI power esti-

mate obtained via the conventional as well as the proposed methods are depicted. The actual

SOI power value is also shown. As before, the conventional estimator is characterized by an

empirically observed unbiased behavior against the conventional implementation. Finally, re-

garding the algorithmic complexity, the leading computational constraint representing the bulk

of the computation of the proposed generalized M,N-consistent estimator essentially involves

implementing the EVD of the SCM. Thus, the number of required arithmetic operations is of

the same order of magnitude as that corresponding to the original N-consistent RCB solution.
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Figure 5.1: Normalized histogram of conventional and proposed estimates of λo under a number

of realizations of the SCM versus actual value from theoretical covariance matrix.
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Figure 5.2: Normalized histogram of a number of realizations of the conventional and proposed

estimates of (5.9) versus actual SOI power value
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5.7 Conclusions

In this chapter, the consistency of robust Capon beamforming solutions have been revised and

an improved alternative to the conventional implementation of the RCB has been proposed that

is consistent for an arbitrary number of samples per array element. We have focused on the

problem of avoiding the performance degradation observed in practice and associated with RCB

implementations based on an erroneous SOI spatial signature vector and the sample approxi-

mation of the theoretical covariance matrix of the array observations. In the array processing

literature, adverse effects of a practical Þnite sample-support are most often heuristically mod-

elled as also due to an imperfect knowledge of the SOI steering information. On the contrary,

and as it happens to be the case in realistic settings, a small sample-size relative to the array

dimension is identiÞed in this work as the actual source of Þlter estimation errors under unknown

second-order statistics. Thus, the problem of improving the RCB performance under practical

non-ideal operation conditions has been distilled to the separate optimization of the beamformer

design under signature-mismatch constraints and the generalized consistent estimation of the

optimal robust solution. Accordingly, a new alternative approach to RCB design is proposed

in this work that explicitly addresses both the signature-mismatch problem and the limitations

due to a Þnite sample-size. To that effect, we have resorted to the theory of the spectral analysis

of large-dimensional random matrices in order to derive an estimator that generalizes conven-

tional implementations by proving to be consistent even for a limited number of samples per

observation dimension. Interestingly enough, the proposed RCB construction nearly presents

the same computational complexity than the conventional RCB based on the direct application

of the SCM, as well as the traditional SMI implementation of the standard Capon beamformer.

As a result, an improved performance is demonstrated via numerical simulations in the context

of a typical application of SOI power estimation.
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Appendix 5.A Proof of Proposition 5.1

Recall from Section 1.1 the following results regarding the asymptotic behavior of the eigenvalues

and eigenvectors of SCM-type matrices as M,N → c < +∞, for all z ∈ C outside the limiting

eigenvalue support of �R, namely,

1

M
Tr

·³
�R− zIM

´−1¸ ³ 1

M
Tr
h
(w (z)R− zIM)−1

i
,

where w (z) = 1 − c − czm (z) and m = m (z) is the unique solution in the set

{m ∈ C : − (1− c) /z + cm ∈ C+} to the following equation, namely,

m =
1

M

MX
m=1

λm (R)

λm (R) (1− c− czm)− z .

Furthermore, for two M dimensional deterministic vectors a,b with uniformly bounded Euclid-

ean norm for all M ,

aH
³
�R− zIM

´−1
b ³ aH (w (z)R− zIM)−1 b. (5.15)

Equivalently, if we consider f (z) = z/w (z), we have

w (z) ³ �w (z) , (5.16)

f (z) ³ �f (z) , (5.17)

where

�w (z) = 1− c− cz 1
M
Tr

·³
�R− zIM

´−1¸
(5.18)

= 1− c

M

MX
m=1

λm
³
�R
´

λm
³
�R
´
− z

, (5.19)

and
�f (z) =

z

�w (z)
, (5.20)

respectively.

In order to prove Proposition 5.1, observe that

�sH
³
IM + λ�R

´−2
�s =

1

λ2
∂

∂z

½
�sH
³
�R− zIM

´−1
�s

¾¯̄̄̄
z=− 1

λ

.

On the other hand, note that

�sH
³
�R− zIM

´−1
�s ³ 1

w (z)
�sH (R− f (z) IM)−1�s, (5.21)
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where we can express w (z) as

w (z) =
1

1− c
M

MX
m=1

λm (R)

λm (R)− f (z)

.

Thus, the result follows by replacing �sH
³
�R− zIM

´−1
�s with its asymptotic equivalent in (5.21),

after differentiating and noting that

f 0 (z) =
1

1− c
M

MX
m=1

µ
λm (R)

λm (R)− f (z)
¶2 .

Appendix 5.B Proof of Proposition 5.2

In order to prove Proposition 5.2, observe Þrst that

�sHo �R
−1�so = �sH

µ
�R+

1

λ
IM

¶−1
�R

µ
�R+

1

λ
IM

¶−1
�s,

so that we can write

�sHo �R
−1�so = �sH

³
�R− zIM

´−1
�R
³
�R− zIM

´−1
�s

¯̄̄̄
z=− 1

λ

.

Then, the limiting expression can be readily obtained from the following asymptotic equivalent

of �sH
³
�R− zIM

´−1
�R
³
�R− zIM

´−1
�s that can be derived following the lines of the proof in

Appendix G of Chapter 2, namely,

�sH
³
�R− zIM

´−1
�R
³
�R− zIM

´−1
�s ³ f 0 (z)�sH (R− f (z) IM)−1R (R− f (z) IM)−1�s,

and using the results outlined at the beginning of Appendix A.

Appendix 5.C Proof of Proposition 5.3

Based on the results in Appendix A, we let f (z) = − 1
λ and write (5.8) as

f (z)2�sH (R− f (z) IM)−2�s = Y. (5.22)

Furthermore, we note that the identity in (5.22) can be written as

f (z)2

f 0 (z)
∂

∂z

n
�sH (R− f (z) IM)−1�s

o
= Y. (5.23)



164 CHAPTER 5. DOUBLY CONSISTENT ROBUST CAPON BEAMFORMERS

Moreover, the LHS of (5.23) can be (asymptotically) equivalently expressed as

f (z)2

f 0 (z)
∂

∂z

n
�sH (R− f (z) IM)−1�s

o
³
�f (z)2

�f 0 (z)
∂

∂z

½
�w (z)�sH

³
�R− zIM

´−1
�s

¾
. (5.24)

The RHS of (5.24) depends only on the SCM and deÞnes an asymptotically equivalent equation

(5.8) that can be expressed, after some analysis and deÞning z = η, as ùg (η) = Y, with ùg (η)

being given by (5.13) in Proposition 5.3. Thus, the M,N-consistent estimator of the optimum

parameter can be obtained by Þrst solving for the value of η satisfying ùg (η) = Y, denoted by ùη,

and then Þnding an asymptotic equivalent of − 1
f(ùη) (cf. (5.12) in Proposition 5.3).

Appendix 5.D Proof of Proposition 5.4

First, observe that

sHo R
−1so = �sH (R− f (z) IM)−1R (R− f (z) IM)−1�s, (5.25)

where we have Þxed f (z) = − 1
λo
. As in Appendix B, an asymptotic equivalent of the RHS of

(5.25) can be found as

�sH (R− f (z) IM)−1R (R− f (z) IM)−1�s ³ 1
�f 0 (z)

�sH
³
�R− zIM

´−1
�R
³
�R− zIM

´−1
�s. (5.26)

Then, using (5.26), along with λo ³ ùλ (cf. Proposition 5.3) and

�f 0 (z) =
1− �f (z) �w0 (z)

�w (z)
,

with

�w0 (z) =
1

N
Tr

·
�R
³
�R− zIM

´−2¸
,

we obtain the solution in (5.14).

A Þnal remark about the optimality of the previous procedure is in order. The almost surely

pointwise convergence stated in (5.15) can be in fact extended to uniform convergence (outside

the eigenvalue support) by Egoroff�s lemma [Dud02]. Then, by the Weierstrass convergence

theorem [Ahl78], the limit of the RHS of (5.15) is also an analytic function (see alternatively

Vitali�s theorem on the uniform convergence of sequences of uniformly bounded holomorphic

functions towards a holomorphic function [Rud87, Hil62]. Consequently, we are allowed to

directly differentiate the RHS of (5.15) as in (5.24) in order to Þnd the proposed estimator.

Finally, observe that the sequence
n
ùλM = ùλ

o
in Proposition 5.3 certainly converges towards λo

for an increasing M , as it follows indeed from the previous argumentation (i.e., the solutions of

the proposed asymptotic equivalent of equation (5.8) converge to the actual solution of (5.8)).
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Appendix 5.E Proof of Proposition 5.3 and Proposition 5.4 using

GSA

Recall from Section 1.3 the following convergence results based on the deÞnition of the real-

valued Stieltjes transform, namely, for x ∈ R+,

1

M
Tr
h
(IM + xR)−1

i
³ 1

M
Tr

·³
IM + θ (x) �R

´−1¸
, (5.27)

and

�sH (IM + xR)−1�s ³ �sH
³
IM + θ (x) �R

´−1
�s, (5.28)

as M,N → ∞, with M/N → c < +∞, where θ (x) is the positive solution of the following
canonical equation, namely,

θ (x)

µ
1− c+ 1

N
Tr

·³
IM + θ (x) �R

´−1¸¶
= x. (5.29)

In particular, note that

f (z)w (z) = f (z)

µ
1− c+ 1

N
Tr
h
(IM − f (z)R)−1

i¶
= z,

with z being restricted to the real negative axis, resembles the canonical equation in (4.55) for

θ (x) = f
¡− 1

x

¢
.

Regarding the result in Proposition 5.3, note Þrst that

g (λ) = �sH (IM + λR)−2�s = �sH (IM + λR)−1�s+
∂

∂x

n
�sH (IM + xR)−1�s

o¯̄̄̄
x=λ

.

Consequently, if we deÞne

rH (x) = �s
H
³
IM + θ (x) �R

´−1
�s,

we may use (5.28) in order to Þnd an (asymptotically exact) approximation of g (λ) in terms of

rH (x) as

g (λ) ³ t (λ) + x ∂
∂x
{rH (x)}

¯̄̄̄
x=λ

, (5.30)

and solve for the optimum parameter by letting the RHS of (5.30) be equal to Y. Note that only

the available sample estimate �R (as well as the given nominal steering vector �s and the user

parameter Y) is involved in the calculation of the approximant of λo. In fact, such approximation

clearly represent an M,N-consistent estimator of λo.

A major difficulty appears from the fact that, in the computation of the optimum parameter

(usually following an interative procedure), an update of the solution θ (x) to the canonical

equation in (4.55) is required at each step. An alternative derivation of the M,N-consistent

estimator of λo is provided next that avoids the previous computational requirement.
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Finally, concerning the proof of Proposition 5.4, Þrst note that the denominator of (5.9) can

be written using the matrix inversion lemma as

sHo R
−1so = �sH

µ
R+

1

λo
IM

¶−1
R

µ
R+

1

λo
IM

¶−1
�s. (5.31)

Thus, using the estimator in (5.28), an M,N-consistent estimator of (5.31) can be readily

obtained as

sHo R
−1�s ³ − x2 ∂

∂x
{t (x)}

¯̄̄̄
x=λo

= ùλ
2
θ0
³
ùλ
´
�sH
³
IM + θ

³
ùλ
´
�R
´−1

R
³
IM + θ

³
ùλ
´
�R
´−1

�s,

where ùλ is the asymptotic equivalent of λo given in Proposition 5.3 and θ
³
ùλ
´
is the solution to

the canonical equation in (5.29) at x = ùλ, with Þrst-order derivative

θ0
³
ùλ
´
=

1

1− c+ 1
N Tr

·³
IM + θ

³
ùλ
´
�R
´−1¸− θ ³ùλ´ 1

N Tr

·³
IM + θ

³
ùλ
´
�R
´−1

R
³
IM + θ

³
ùλ
´
�R
´−1¸ .



AFTERWORD and Upcoming
Research Topics

This dissertation has dealt with the practical application of statistical signal processing to the

fundamental problems of optimal signal waveform and power estimation in wireless communi-

cations and sensor array processing. In particular, special emphasis has been placed on the

analysis and design under situations characterized by a Þnite sample-size, and a relatively large

observation dimension. Based on the theory of the spectral analysis of large-dimensional random

matrices, an analytical framework has been developed throughout this thesis that allowed us to

derive a family of new statistical inference methods overcoming the limitations of traditional in-

ferential schemes under the previous conditions. SpeciÞcally, a class of consistent estimators has

been proposed that generalizes conventional implementations by proving to be consistent even

for arbitrarily high-dimensional observations (i.e., for a limited number of samples per Þltering

degree-of-freedom).

In particular, the new theoretical framework have been shown to properly characterize the

performance of multi-antenna and multi-channel signal processing systems with training pream-

bles in the more meaningful asymptotic regime. Moreover, the problem of optimum reduced-rank

linear Þltering has been reviewed and extended to satisfy the generalized consistency deÞni-

tion. On the other hand, a double-limit asymptotic characterization of a class of vector-valued

quadratic forms involving the negative powers of the observation covariance matrix has been pro-

vided that generalizes existing results on the limiting eigenvalue moments.of the inverse Wishart

distribution. Using these results, a new generalized consistent eigenspectrum estimator based

on the inverse-shifted power method has been derived that uniquely relies on the SCM and does

not require eigendecomposition operation. The effectiveness of the previous spectral estimator

has been demonstrated upon its application to the construction of an improved source power

estimator that is robust to inaccuracies in the knowledge of both the noise level and the true

covariance matrix.

In order to alleviate the computation complexity issue associated with practical implementa-

tions involving matrix inversions, a solution to the two previous problems was afforded in terms
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of the positive powers of the SCM. To that effect, a class of generalized consistent estimators of

the covariance eigenspectrum and the power level were obtained on the Krylov subspace deÞned

by the true covariance matrix and the signature vector associated with the intended parame-

ter. In practice, Þltering solutions are very often required to robustly operate not only under

sample-size constraints but also under the availability of an imprecise knowledge of the signature

vector. As a Þnal contribution of this thesis, a signal-mismatch robust Þltering architecture has

been proposed that is consistent in the doubly-asymptotic regime characterizing a sample of

comparably large size and dimension.

In conclusion, the application of random matrix theory to reviewing and characterizing the

performance and accuracy of traditional statistical signal processing techniques in situations

where the sample size and dimension are comparable in magnitude, as well as to designing

and evaluating suitable statistical inference methods appropriately operating in this general

regime undoubtedly represents a promising line of prominent current and future research. In

the following, some topics of upcoming work are shortly outlined.

First-order analysis of optimal signal processing schemes

under general SCM structure

Throughout this dissertation, results from random matrix theory have been extended and ap-

plied in order to provide an asymptotic Þrst-order characterization of traditional signal process-

ing architectures. Based on a more meaningful double-limit regime, the conventional consistency

deÞnition has been reviewed and a class of new statistical signal processing schemes has been

provided to overcome the inherent limitations of system implementations under low sample-

support, relatively high-dimensional observations. The proposed statistical inference methods

rely on a certain structure of the sample covariance matrix, namely resulting from the signal

and noise processes being jointly distributed. However, in many scenarios of unquestionable

practical relevance, the signal waveform cannot be assumed to be distributed according to the

law from which the noise process is drawn. For instance, this is the case of a transmission in

Gaussian noise of a sequence of symbols modeled as discrete random variables drawn from a

Þnite probability space. In these situations, the information-plus-noise-type model represents

a more suitable random matrix model for the SCM. Hence, a new family of results regarding

the asymptotic characterization of optimum signal processing schemes based on second-order

statistics can be obtained that further generalize the existing Þndings.

Large-system performance analysis of training-based communication architectures

Chapter 1 presents an asymptotic characterization of the transient SNR performance of

pilot-aided MIMO systems under the assumption of a training phase length and a system size

of comparable magnitude. The training beamvector sequence is assumed to satisfy the WBE.

Along with the case of orthogonal training, of theoretical interest for comparison purposes is
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also the case of i.i.d. pilot beamvector entries. This study allows for an analytical insight

into the actual degree of diversity gain achieved over arbitrary block-fading MIMO channels

in practice. More stress has been deÞnintely laid in the wireless communication literature on

the performance characterization of energy-constrained MIMO systems with limited training in

terms of the mutual information measure. In this context, the theoretical framework developed

in this thesis can be used to properly investigate the actual capacity gains from the statistical

inference perspective in the large-system regime.

Statistical characterization of linear filtering and subspace methods

in signal processing systems

The asymptotic characterization of traditional signal processing systems provided in this

work is essentially based on the derivation of asymptotic equivalents obtained from a Þrst-order

limiting analysis in the general regime. Moreover, the inferential methods proposed throughout

the thesis basically come off as consequence of inverting the limiting results from this Þrst-order

analysis. However, as intuitively expected, such a Þrst-order asymptotic characterization does

not prove to effectively explain crucial details describing the behavior of empirical procedures

and practical signal processing schemes. As an example, although random matrix theory tools

have proved to properly characterize the limiting behavior of statistical subspace MUSIC-like

inferential methods, the performance breakdown effect of subspace-based parameter estimation

methods escape to this characterization. Thus, the need for a more sophisticated study of

the ßuctuations of the limiting solutions is apparent. To that effect, CLT-like results recently

appeared in the literature can be applied with some extensions in order to characterize the

variance and the distribution of the previous methods [Mes06d, Mes06a].
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Appendix A

Asymptotic Convergence Results

In this appendix, we provide some results on the asymptotic convergence of random sequences

that are repeatedly used in the proofs throughout the dissertation. In the following presentation,

basic elements from probability theory are involved, such as random variables inequalities, as

well as the notion of convergence with probability one (or almost surely) of random sequences.

For a textbook treatment of the fundamentals, see e.g. [Ash99, Bil95, Chu01, Dud02, Dur95].

The following result generalizes the concept of stochastic convergence of random sequences

under certain operations. In particular, it involves the convergence of stochastic sequences under

the application of continuous maps, such as additions and multiplications in linear spaces (see

e.g. [Ser80, p. 24]). In the literature, the original result for convergence in distribution is

regarded as continuous mapping or Mann-Wald theorem.

Lemma A.1 (Convergence of transformed random sequences) Let x1,x2, . . . and x be random

vectors in Cp deÞned on a certain probability measure space (Ω,F ,P). Furthermore, let g :
Cp → Cq be a Borel-measurable function and assume that g is continuous almost everywhere or,
equivalently, with Px-probability one on a set A 1. Here, a complex-valued function is said to be

measurable if both its real and imaginary parts are measurable, integrable functions. Then,

xN ³ x⇒ g (xN) ³ g (x) .

Proof. The assertion follows immediately from the deÞnitions of almost sure convergence

and continuity (see e.g. [Bar66, p. 78, Exercise 7.R]). Let Ω0 = {ω : xn (ω)→ x (ω)} and
Ω1 = {ω : x (ω) ∈ A}. Thus, for ω ∈ (Ω0 ∩Ω1), (Px-)continuity of g ensures that g (xn (ω)) →
g (x (ω)) (see e.g. [Mun00, p. 130, Theorem 21.3] and [Apo73, p. 78, Theorem 4.16]). Note that

(Ω0 ∩Ω1)c = Ωc0 ∪ Ωc1, which has probability zero because P (Ωc0) = P (Ωc1) = 0. It follows that
Ω0 ∩Ω1 has probability one and the result is proved.

1The set A ⊆ Cp of continuity points of g in Cp has measure one, where the measure is the probability

distribution Px induced by x in Cp, i.e. Px (A) = P (x ∈ A) = 1.
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For example, zN ³ z in C2 implies e.g. z1N + z2N ³ z1 + z2 and z1Nz2N ³ z1z2, where

z1N , z2N are the the entries of the vector zN and z1, z2 are the corresponding elements of z.

Lemma A.2 a) Let
n
y
(N)
1 , . . . , y

(N)
N

o
denote a collection of (possibly dependent) random vari-

ables such that

max
1≤m≤N

E
h¯̄̄
y(N)m

¯̄̄pi ≤ Ca
N1+δa

,

for some constants Ca, δa > 0 and p ≥ 2 not depending on N . Then,

1

N

NX
m=1

¯̄̄
y(N)m

¯̄̄
→ 0,

almost surely as N →∞.

b) (Double array) Let X(N)
m,n, m, n = 1, . . . , N denote a double array of (possibly dependent)

random variables such that

max
1≤m,n≤N

E
h¯̄̄
X(N)
m,n

¯̄̄pi ≤ Cb
N1+δb

,

for some constants Cb, δb > 0 and p ≥ 2 not depending on N . Then,

1

N2

NX
m=1

NX
n=1

¯̄̄
X(N)
m,n

¯̄̄
→ 0,

almost surely as N →∞.

Proof. Note that, given Y > 0, the Chebyshev inequality implies that

Pr

"
1

N

NX
m=1

¯̄̄
y(N)m

¯̄̄
> Y

#
≤ 1

Yp
E

"Ã
1

N

NX
m=1

¯̄̄
y(N)m

¯̄̄!p#
.

On the other hand, using Jensen�s inequality and the convexity of f (x) = |x|p for p ≥ 2, we

have

E

"Ã
1

N

NX
m=1

¯̄̄
y(N)m

¯̄̄!p#
≤ 1

N

NX
m=1

E
h¯̄̄
y(N)m

¯̄̄pi
.

Consequently,

Pr

"
1

N

NX
m=1

¯̄̄
y(N)m

¯̄̄
> Y

#
≤ 1

Yp
1

N

NX
m=1

E
h¯̄̄
y(N)m

¯̄̄pi ≤ 1

Yp
max

1≤m≤N
E
h¯̄̄
y(N)m

¯̄̄pi ≤ 1

Yp
Ca

N1+δa
.

The result in a) follows from the Borel-Cantelli lemma. In order to prove b), exactly the same

line of reasoning can be followed with y(N)m = 1
N

PN
n=1

¯̄̄
X
(N)
m,n

¯̄̄
. In particular, we just need to

note that

E

"Ã
1

N2

NX
m=1

NX
n=1

¯̄̄
X(N)
m,n

¯̄̄!p#
≤ 1

N2

NX
m=1

NX
n=1

E
h¯̄̄
X(N)
m,n

¯̄̄pi
,
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so that we Þnally have

Pr

"
1

N2

NX
m=1

NX
n=1

¯̄̄
X(N)
m,n

¯̄̄
> Y

#
≤ 1

Yp
1

N2

NX
m=1

NX
n=1

E
h¯̄̄
X(N)
m,n

¯̄̄pi ≤ 1

Yp
max

1≤m,n≤N
E
h¯̄̄
X(N)
m,n

¯̄̄pi ≤ 1

Yp
Cb

N1+δb
,

and the result is equivalently proved using the Borel-Cantelli lemma.

Lemma A.3 ([Bai98, Lemma 2.7]) Let un denote an M-dimensional random vector with i.i.d.

complex random entries with zero mean and unit variance and C an M ×M complex matrix.

Then, we have, for any p ≥ 2,

E
h¯̄
uHn Cun −Tr [C]

¯̄pi ≤ Kp ·³E
h
|ξ|4
i
Tr
£
CCH

¤´p/2
+ E

h
|ξ|2p

i
Tr
h¡
CCH

¢p/2i¸
,

where ξ denotes a particular entry of un and Kp is a given constant that does not depend on C.

Lemma A.4 Let un be a random vector deÞned as in Lemma A.3 and A an M ×M complex

matrix such that kAktr is uniformly bounded for all M . Then, for any Þnite p,

E
h¯̄
uHnAun

¯̄pi
< +∞, (A.1)

for all M .

Proof. First, we use the Jensen inequality in order to write

E
h¯̄
uHn Aun

¯̄pi
< 2p−1

n
E
h¯̄
uHnAun −Tr [A]

¯̄pi
+ |Tr [A]|p

o
. (A.2)

Then, the second term in the RHS of (A.2) is bounded by assumption since, clearly, |Tr [A]| ≤
kAktr. The Þrst term is bounded by Lemma A.3, since kAkF ≤ kAktr.

Remark A.1 The following two cases of special interes in our derivations are included in

Lemma A.4, namely A = baH and A = 1
MB, where a,b ∈ CM are two determistic vectors

with uniformly bounded Euclidean norm and B is an M ×M complex matrix with uniformly

bounded spectral radius.

Lemma A.5 (SLLN for sequences of non-independent variables) Let un be an M-dimensional

random vector as deÞned in Lemma A.3 and Un an M ×M complex random matrix depending

on all vectors of the set {u1, . . . ,un−1,un+1, . . . ,uN} and with bounded spectral norm for all

M . Let further consider an arbitrary matrix C such that kCkF is uniformly bounded for all M .
Then,

1

N

NX
n=1

uHnUnCun ³ Tr [UnC] . (A.3)
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Proof. Let us Þrst rewrite (A.3) as
1

N

NX
n=1

ηn ³ 0,

where we have deÞned ηn = u
H
nUnCun−Tr [UnC]. We note that {ηn} is a martingale difference

sequence with respect to the increasing σ-Þelds {Fn}, where Fn is generated by the random
vectors {u1, . . . ,un}. Indeed, observe that

E [ηn |Fn−1 ] = E
£
uHn UnCun |Fn−1

¤− E [Tr [UnC] |Fn−1 ] = 0,

since

E
£
unu

H
n Un |Fn−1

¤
= E [Un |Fn−1 ] .

Consequently, we can apply the Burkholder inequality [Bur73], namely

E

"¯̄̄̄
¯
NX
n=1

ηn

¯̄̄̄
¯
p#
≤ Kp

E

Ã NX
n=1

E
h
|ηn|2 |Fn−1

i!p/2+ E

"
NX
n=1

|ηn|p
# ,

for any p ≥ 2 and some constant Kp. Applying Lemma A.3 we can write, for p = 2q and q ∈ N,

E
h
|ηn|2q

i
= E

h¯̄
uHnUnCun −Tr [UnC]

¯̄2qi
≤ K

³
Eq
h
|ξ|4
i
+ E

h
|ξ|4q

i´
,

where ξ denotes a particular entry of un, and we have used the following inequality involving

the Frobenius and strong norm, namely

kUnCkF ≤ kUnk kCkF , (A.4)

which is uniformly bounded by assumption for all M . On the other hand, using again Lemma

A.3,

E
h
|ηn|2 |Fn−1

i
= E

h¯̄
uHn UnCun −Tr [UnC]

¯̄2 |Fn−1 i ≤ KE
h
|ξ|4
i
.

Therefore,

E

¯̄̄̄¯ 1N
NX
n=1

ηn

¯̄̄̄
¯
2q
 ≤ 1

N2q

³
K
³
NE

h
|ξ|4
i´q

+NK 0
³

Eq
h
|ξ|4
i
+ E

h
|ξ|4q

i´´
=

1

Nq
K00+

1

N2q−1K
000,

and the result is readily proved by direct application of the Borel-Cantelli lemma with q > 1.

Lemma A.6 Let um,un be two independent random vectors deÞned as in Lemma A.3 and S,T

be two M ×M complex matrices with, respectively, uniformly bounded trace and spectral norm.

Then, for any Þnite p,

E
h¯̄
uHmSunu

H
n Tum

¯̄pi
< +∞, (A.5)

for all M .
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Proof. In order to prove the result in (A.5), we are forced to resort to complex martingale

difference techniques and the Burkholder inequality as in Lemma A.5. For that purpose, we

begin using the singular value decomposition of T to write

uHmSunu
H
n Tum =

MX
k=1

vHk umu
H
mSunu

H
n sk,

where {σk} , {sk} and {vk}, k = 1, . . . ,M , are the sets of M singular values and left and right

singular vectors of the matrix T, having by assumption uniformly bounded absolute value and

Euclidean norm, respectively, for all M . Further, we deÞne ζk = v
H
k umu

H
mSunu

H
n sk − vHk Ssk

and observe, using Jensen�s inequality, that proving (A.5) is equivalent to showing that

E

"¯̄̄̄
¯
MX
k=1

ζk + v
H
k Ssk

¯̄̄̄
¯
p#
≤ K

(
E

"¯̄̄̄
¯
MX
k=1

ζk

¯̄̄̄
¯
p#
+ |Tr [ST]|p

)
< +∞.

Hence, since |Tr [ST]|p ≤ (Tr [|ST|])p ≤ (ρ (T)Tr [|S|])p = kTkp kSkptr < +∞, the problem in

(A.5) is reduced to

E

"¯̄̄̄
¯
MX
k=1

ζk

¯̄̄̄
¯
p#
< +∞. (A.6)

where we have deÞned ζk = v
H
k umu

H
mSunu

H
n sk − vHk Ssk. Now, let us consider the sequence of

increasing σ-Þelds {Gn} generated by the random variables {ζ1, . . . , ζn}, n = 1, . . . ,M . Since

E [ζk |Gk−1 ] = 0,

we note that the sequence{ζk}, k = 1, . . . ,M , forms a martingale difference with respect to

{Gn}. Therefore, we may apply Burkholder�s inequality to bound the expectation in (A.6) as

E

"¯̄̄̄
¯
MX
k=1

ζk

¯̄̄̄
¯
p#
≤ Kp

E

Ã MX
k=1

E
h
|ζk|2 |Gk−1

i!p/2+ E

"
MX
k=1

|ζk|p
# .

Furthermore, using Jensen�s inequality, we have for any q > 1 that

E [|ζk|q] ≤ K
n

E
h¯̄
uHn skv

H
k umu

H
mSun −Tr

£
skv

H
k umu

H
mS
¤¯̄qi

+ E
h¯̄
uHmSskv

H
k um −Tr

£
Sskv

H
k

¤¯̄qio
.

(A.7)

Now, we apply Lemma A.3 and Þnd that

E

Ã MX
k=1

E
h
|ζk|2 |Gk−1

i!p/2 ≤ KEp/2
h
|ξ|4
i

E
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uHmT

HTumu
H
mSS

Hum +Tr
£
SSHTHT

¤¢p/2i
.

Noting that Tr
£
SSHTHT

¤
=
°°SHT°°

F
≤ kSkF kTk ≤ kSktr kTk < +∞ and using the binomial

theorem along with the Cauchy-Schwarz inequality, we can Þnally write

E

Ã MX
k=1

E
h
|ζk|2 |Gk−1

i!p/2 ≤ KEp/2
h
|ξ|4
i p/2X
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h¡
uHmT

HTum
¢2liE1/2
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uHmSS

Hum
¢2li

< +∞,
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since all expectations are readily identiÞed to be bounded by Lemma A.4. On the other hand,

by the law of iterated expectations,

E [g (um,un)] = E [E [g (um,un) |un ]] ,

where, here g (um,un) =
¯̄
vHk umu

H
mSunu

H
n sk − vHk umuHmSsk

¯̄q. Hence, the second expectation
on the RHS of (A.7) can be bounded using Jensen�s inequality and Lemma A.3 as

MX
k=1

E [|ζk|p] ≤ K
³

Ep/2
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|ξ|4
i
+ E

h
|ξ|2p

i´n
E
h¡
uHmT

HTum
¢p/2 ¡

uHmSS
Hum

¢p/2i
+
°°SHT°°p/2

F

o
< +∞,

where we have followed the same arguments as above.

Lemma A.7 Let B be a M ×M complex Hermitian matrix and deÞne

B =
1

N

NX
n=1

yn y
H
n ,

Bn = B− 1

N

NX
n=1

yn y
H
n .

Then, for any z ∈ C+ and c ∈ R such that c =M/N ,

1− c− cz 1
M
Tr
h
(B− zIM)−1

i
=
1

N

NX
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1

yHn (Bn − zIM)−1 yn
.

Proof. First, note that
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1

M
Tr
h
(B− zIM) (B− zIM)−1

i
=
1

M
Tr

"
1

N

NX
n=1

yn y
H
n (B− zIM)−1 − z (B− zIM)−1

#

=
1

M

NX
n=1

1

N
yHn

µ
Bn +

1

N
yn y

H
n − zIM

¶−1
yn − z

1

M
Tr
h
(B− zIM)−1

i
=
1

M

NX
n=1

1
N y

H
n (Bn − zIM)−1 yn

1 + 1
N y

H
n (Bn − zIM)−1 yn

− z 1
M
Tr
h
(B− zIM)−1

i
, (A.8)

where, in the last equality, we have used the Sherman-Morrison inversion formula for rank-one

matrix updates. Furthermore, by expanding the sum in (A.8), we get

1 =
N

M
− 1

M

NX
n=1

1

1 + 1
N y

H
n (Bn − zIM)−1 yn

− z 1
M
Tr
h
(B− zIM)−1

i
. (A.9)

Finally, multiplying both sides in (A.9) by c and rearranging terms, we obtain the result in the

lemma.
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Lemma A.8 [Sil95a, Lemma 2.3] For z ∈ C+ let m1 (z), m2 (z) be Stieltjes transforms of any
two probability distribution functions. Moreover, let A and B be two M ×M complex matrices,

with A Hermitian non-negative deÞnite, and r ∈ CM . Then,°°°(m1 (z)A+ IM)−1°°° ≤ maxµ 4 kAk
Im {z} , 2

¶
, (A.10)

¯̄̄
Tr
h
B
³
(m1 (z)A+ IM)

−1 − (m2 (z)A+ IM)−1
´i¯̄̄

≤M |m2 (z)−m2 (z)| kAk kBk
µ
max

µ
4 kAk
Im {z} , 2

¶¶2
, (A.11)

¯̄̄
rH (m1 (z)A+ IM)

−1 r− rH (m2 (z)A+ IM)−1 r
¯̄̄

≤ |m2 (z)−m2 (z)| kAk krk2
µ
max

µ
4 kAk
Im {z} , 2

¶¶2
. (A.12)

Lemma A.9 [Sil95b, Lemma 2.6] Let A and B be two M × M complex matrices, with B

Hermitian, τ ∈ R and r ∈ CM . Then, for z ∈ C+,¯̄̄
Tr
h³
(B− zIM)−1 −

¡
B+ τrrH − zIM

¢−1´
A
i¯̄̄
≤ kAk
Im {z} , (A.13)

Lemma A.10 [Mes06b, Lemma 7] Let X will denote an M ×N complex random matrix, such

that the real and imaginary parts of the entries of N−1/2Ξ are i.i.d. random variables with

mean zero, variance 1/2 and bounded moments. Moreover, let R be a M × M Hermitian

non-negative deÞnite matrix, whose eigenvalues are uniformly bounded for all M , and deÞne
�R = R1/2XXHR1/2 with R1/2 denoting any Hermitian square-root of the matrix R, such that
�R = 1

N

PN
n=1 yn y

H
n , and �Rn = �R− 1

N yn y
H
n . Then, for any z ∈ C+,¯̄̄̄

¯̄̄ 1

1 + 1
N y

H
n

³
�Rn − zIM

´−1
yn

¯̄̄̄
¯̄̄ ≤ |z|

Im {z} , (A.14)
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¶
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Appendix B

Combinatorics of Set Partitions

In this appendix, we recall some results regarding the problem of combinatorial enumeration on

lattices of set partitions.

Given a Þnite set [n] = {1, . . . , n}, we will be interested in the enumeration of the set of
all partitions, denoted henceforth by P (n), as well as a speciÞc subset of P (n), namely the set

of non-crossing partitions NC (n) [Kre72]. Both the set of all partitions and the set of non-

crossing partitions have a lattice structure when partially ordered (see further [Sta97, Cam94]

for deÞnitions on set partitions and partial ordered sets). Some notational aspects regarding

the deÞnition of a generic partition are introduced next. We will note a partition as π ,
{B1, . . . , Bk} ∈ L (n), where L (n) is one of the two lattices deÞned above, and say that the
partition π consists of |π| = k non-empty blocks with cardinalities |Bl| = il, l = 1, . . . , k. From
the number of blocks total, up to k blocks with different cardinality may be identiÞed. The

type of a partition is speciÞed by deÞning, for each i ∈ Z+, the number mi of blocks having
cardinality i. Thus, if π has k non-empty blocks, the following equalities hold true

m1 +m2 + . . .+mn= k (B.1)

1m1 + 2m2 + . . .+ nmn=n. (B.2)

For our purposes, it will also be of interest to deÞne the set of possibly different types of a

partition of an n-set characterized by having k blocks, denoted by T (k, n). The elements of

T (k, n) can be found as the solutions to the system of linear Diophantine equations deÞned

by (B.1) and (B.2). Using m1 = k − (m2+, . . . ,mn) and substituting in (B.2), the problem is

reduced to Þnding the solutions to the following (non-negative) integer equation, namely,

1m2 + 2m3 + . . .+ (n− 1)mn = n− k,
which are given by the partitions of the integer k −m. Note that ml = 0, for l > n − k + 1.
Accordingly, the number of elements in T (k, n) equals the number of integer partitions p (n− k),
with p (1) = 1, p (2) = 2, p (3) = 3, p (4) = 5, p (5) = 7, p (6) = 11, . . ..
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In particular, the number of elements in P (n) is given by the Bell number B (n), which

satisÞes the recursion

B (n+ 1) =
nX
k=0

µ
n

k

¶
B (k) .

Furthermore, the number of k-block partitions of an n-set is given by the Stirling number of

second kind, denoted here as S (k, n), and deÞned in closed-form as

S (k, n) =
1

k!

kX
j=1

(−1)k−j
µ
k

j

¶
jn.

Clearly, the following identity must hold, namely, B (n) =
Pn
k=1 S (k, n). Additionally, when

the partition type t = {m1,m2, . . . ,mn} ∈ T (k, n) is speciÞed, the number partitions of the
same type is delivered by the Faa di Bruno�s coefficient, namely,

ξP (t) =
m!

m1!m2! · · ·mn!1!m12!m2 · · · k!mn
.

Indeed, observe that

S (k, n) =
X

t∈T (k,n)
ξP (t) ,

where the sum runs over all the elements in T (k, n).

The previous combinatorial characterization of the lattice of all partitions of a set allows us

to write the expression for the higher-order derivatives of a composite function (Faa di Bruno�s

formula) in a compact form as

∂n

∂xn
{f (g (x))}=

X
π∈P (n)

f (|π|) (g (x))
nQ

B∈π
g(|B|) (x) (B.3)

=
nX
k=1

f (k) (g (x))
X

t∈T (n,k)
ξP (t)

nQ
i=1

³
g(i) (x)

´mi

. (B.4)

Regarding the lattice of non-crossing partitions, the total number of elements in NC (n) is

counted by the Catalan number, deÞned by

C (n) =
1

n+ 1

µ
2n

n

¶
. (B.5)

Moreover, the number of partitions with k blocks is given by the Narayana number [Kre72] as

N (k, n) =
1

n

µ
n

k

¶µ
n

k − 1
¶
. (B.6)

The number of non-crossing partitions of a certain type can be found as

ξNC (t) =
n!

(n− k + 1)!
1

m1!m2! · · ·mn! . (B.7)
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Again, the following identity must hold, namely, C (n) =
Pn
k=1N (k, n), and we observe that

N (k, n) =
X

t∈T (k,n)
ξNC (t) .

As a last remark, in (B.6) and (B.7), blocks with equal number of elements are indistinguishable.

In the case blocks are considered distinguishable, the number of partitions with k blocks from a

set of n elements is

Ndis (k, n) =
n!

(n− k + 1)! . (B.8)

Next, we recall two results regarding the operation with formal power series that will be

of special interest for the derivations in the sequel. In particular, the following lemma and

subsequent theorem give the coefficients of a composition of two formal power series resp. a

compositional inverse1 in terms of the coefficients of the two series (see e.g. [Sta97, Gou83]).

Lemma B.1 DeÞne the formal power series f (z) = 1+
∞P
n=1

fn
n! z

n, g (z) =
∞P
n=1

gn
n! z

n and h (z) =

1 +
∞P
n=1

hn
n! z

n, such that f (g (z)) = h (z). Then, the coefficients of the formal power series

composition h (z) can be obtained as

hn =
nX
k=1

fn
X

t∈T (k,n)
ξP (t) g

l1
1 g

l2
2 · · · glkn . (B.9)

In effect, when considered as the (convergent) series expansion of a function rather than a

formal power series, the coefficients hn are clearly the nth derivative of the composite function

h (z) = f (g (z)) evaluated at z = 0. The later observation can be used to derive the combina-

torial interpretation of the classical moment-cumulant formula. Indeed, the coefficients of the

moments as polynomials in the cumulants are precisely those occurring in the Faà di Bruno�s

formula in (B.3).

Theorem B.1 (Lagrange inversion formula) Consider the formal power series f (z) =P
n≥1 fnz

n, with f1 6= 0, and let g (z) =
P
n≥1 gnz

n be its inverse for composition, i.e.,

f (g (z)) = g (f (z)) = z. Then,

gn = [z
n] {g (z)} = £z−1¤½ 1

nf (z)n

¾
, (B.10)

where
£
z−l
¤
denotes the operator extracting the coefficient of z−l in a series expansion.

Proof. Since g (f (z)) = z, we may write

1 =
∂

∂z

X
k≥1

gkf (z)
k

 =
X
k≥1

gkkf (z)
k−1 f 0 (z) .

1See [Hen74] for the algebraic deÞnition of formal power series, and the existence (and uniqueness) of their

functional composition and the compositional inverse.
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On the other hand, we equivalently have

1

nf (z)n
=
X
k≥1

k

n
gkf (z)

k−1−n f 0 (z) .

Further, observe that£
z−1

¤½ 1

nf (z)n

¾
=
X
k≥1

k

n
gk
£
z−1

¤n
f (z)k−1−n f 0 (z)

o
. (B.11)

Now, evaluating the argument of the coefficient extraction operator as

f (z)k−1−n f 0 (z) =


1
k−n

∂
∂z

n
f (z)k−n

o
, k 6= n

f 0(z)
f(z) , k = n,

and using £
z−1

¤ ©
h0 (z)

ª
=0 (B.12)£

z−1
¤ ©
h0 (z) /h (z)

ª
=m, (B.13)

for h (z) a formal Laurent series h (z) =
P
n≥m hnz

n, m ∈ Z, hm 6= 0, we Þnd that

£
z−1

¤n
f (z)k−1−n f 0 (z)

o
=

0, k 6= n1, k = n.
(B.14)

The equality in (B.12) is trivial. To see (B.13), we write h (z) = zm (hm + hm+1z + . . .) such

that h−1 (z) = z−m (g0 + g1z + . . .) with g0 = 1/hm. Then, we noting that

h0 (z)
h (z)

= z−m (g0 + g1z + . . .)h0 (z) = z−m (g0 + g1z + . . .)

X
n≥m

nhnz
n−1
 ,

we Þnally get £
z−1

¤½h0 (z)
h (z)

¾
=
£
zm−1

¤
(g0 + g1z + . . .)h

0 (z) = g0mhm =m.

By pluging (B.14) in (B.11), we Þnally obtain the result in the theorem.

Corollary B.1 Let f (z) be deÞned by f (z) = zφ (f (z)), with φ (0) 6= 0. Then,

fn =
£
z−n

¤ {f (z)} = 1

n

£
zn−1

¤ {φ (z)n} .
Proof. DeÞne the formal power series ψ (z) = z/φ (z). Since

ψ (f (z)) =
f (z)

φ (f (z))
= z,

we can regard f (z) as the compositional inverse of ψ (z). Thus, by just applying the Lagrange

inversion formula in (B.10) we readily obtain

[zn] {f (z)} = £z−1¤½ 1

nψ (z)n

¾
=
£
z−1

¤½φ (z)n
nzn

¾
=
1

n

£
zn−1

¤ {φ (z)n} .
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