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RESUM DE LA TESI

En aquesta tesi s’estudien els metodes de codificacié d’imatges i seqiiencies de video des del
punt de vista de la forma en que el sistema visual huma percep i entén la informacié visual. La
relevancia d’aquest estudi ve donada pel paper tan important que tenen els senyals d’imatge
en la civilitzacié actual i pel gran volum de dades que representen les fonts d’informacié visual
pels sistemes que les han de processar.

S’han estudiat tres aproximacions per a la codificacié de textures en un esquema avancat
de compressié fonamentat en aspectes de percepcié visual. La primera aproximacié es basa en
les transicions de la imatge i estudia la interpolacié d’arees suaus a partir de les esmentades
transicions. La segona contempla I’ extraccid, seleccié i codificacié de detalls significatius per
al sistema, visual huma. Finalment, la tercera aproximacié estudia la representacié eficient de
les textures fines i homogenies, que donen una apariéncia natural a les imatges sintetitzades
aconseguint elevades tasses de compressié. Per a 'aplicacié d’aquestes técniques a la cod-
ificacié d’imatge i video, es proposa un model d’imatge de tres components adaptat a les
caracteristiques perceptuals de la visi6 humana.

Les aproximacions de codificacié objecte de ’estudi han portat al disseny de tecniques
noves d‘analisi i codificacié d’imatge. A partir d’eines no lineals de tractament obtingudes
de ’entorn de la Morfologia Matematica, s’han desenvolupat tres tecniques de codificacié de
textures. En concret,

e Un metode d’interpolacié “morfologica” orientat a la resolucié del problema d’interpolacié
de senyals bidimensionals a partir de conjunts arbitraris de punts dispersos.

e S’ha introduit de manera experimental un criteri subjectiu empiric per a la ordenacié i
seleccié de detalls en les imatges, segons un criteri perceptual.

e Finalment, s’ha investigat ’aplicacié d’una tecnica classica, la codificacié “subbanda”,
a l'interior de regions de forma arbitraria, resultant en un nou metode de codificacié de
textures anomenat “Region-based subband coding”.

Aquestes técniques han estat novedoses en el camp de codificacié d’imatge entre les anome-
nades tecniques orientades a objectes o de Segona Generacié. Tanmateix, el model d’imatge
estudiat, es troba en la linia de les iltimes propostes en ’entorn de 'MPEG4, el futur standard
per a comunicaci6é d’imatge a baixa velocitat, que contempla la possibilitat de la manipulacié
de continguts.
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SUMMARY

This thesis studies image and video sequence coding methods from the point of view of the
way the human visual system perceives and understands visual information. The relevance
of such study is due, on the one hand, to the important role that visual signals have in our
civilization and, on the other hand, to the problem of representing the large amount of data
that image and video processing systems have to deal with.

Three different approaches have been investigated for the coding of image textures in
an advanced compression scheme relying in aspects of visual perception. The first approach
is based on image transitions and the interpolation of smooth areas from such transitions.
The second one, considers the extraction, selection and coding of meaningful image details.
Finally, the third approach studies the efficient representation of homogeneous fine textures
that give a natural appearance to the reconstructed images at high compression levels. In
order to apply these techniques for still image and video coding, a three component model of
the image, that matches the perceptual properties of the human vision, is put forward.

The coding approaches subject of research have leaded to the design of three new image
analysis and coding techniques. Using non-linear tools from the framework of Mathematical
Morphology, three texture coding techniques are developed. In particular,

e A “morphological” image interpolation method aimed at the problem of scattered data
interpolation.

e An empirical subjective criterion for the ranking and selection of image details according
to visual perception.

e The application of a conventional image coding technique, subband coding, to the coding
of arbitrarily shaped image regions (region-based subband coding).

These are new texture coding techniques in the field of object-oriented and Second Genera-
tion image and video coding schemes. Furthermore, the model of the image that has been
investigated follows the line of the last proposals in the framework of MPEG4, the forthcom-
ing coding standard for low bit-rate visual communications, which considers the possibility
of content-based manipulation and coding of visual information.



As a bandwidth compression device, the retina extracts visual information which
is important to us for survival; its job is to extract just the information necessary
and some discriminations to be made about objects in the outside world [...]. It
is worth knowing that in animals which are prey rather than predators, many of
these discriminations are made in the retina layer. This enables such animals to
react more quickly to sudden attacks by their predators, and their retinas exhibit
a great deal more neural interconnections than ours as a result. As a predator,
man has had the luzury of being able to think about his visual world.

[..]

Nature has evolved our visual system in a long series of trials and failures span-
ning many millions of years. The laws of physics governing image formation and
detection have presumably been the same over this span of time, and the evolution
of vision had to work under these laws just as the image processing engineer does
today. By taking this view we should not be surprised that an image-processing
algorithm based on human vision often will provide a good physical solution to the
problem as well. Rather, we should expect it to.

The Role of Human Visual Models in Image Processing
DoucGLAS J. GRANRATH
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Chapter 1

Introduction

The ever tighter weave of communications, computing, networking and entertainment services
has assumed a dominant role in our everyday life. The increasing availability of personal
workstations and advanced communication channels fosters the vision of a world in which
any kind of information flows freely among a variety of systems. However, despite the rapid
progress in mass-storage density and digital communication systems performance, demand
for data transmission bandwidth and storage capacity continue to outstrip the capabilities
of available technologies. The growth of data-intensive digital audio and video applications
and the increasing use of bandwidth-limited media such as radio and satellite links have not
only sustained the need for more efficient ways to encode these signals, but have made signal
compression central to digital communication and signal-storage technology.

In particular, the important role that image signals play in our civilization is being trans-
ferred to this new world of information technologies. Digital image and video applications
require high transmission rates, large storage capacities and fast processing equipment, if the
image data is handled in its raw form. Typical television images, for instance, generate data
rates exceeding 100 Mbit/s. The emergence of new visual communication systems poses the
problem of how to compress such a huge amount of information into a limited bit-rate for
transmission or storage purposes. Examples include communication systems ranging from
bit-rates about 20 Mbit/s to rates below 64 kbit/s; from high definition television, aimed at
the highest visual quality [30], to very low bit-rate applications [58] such as video-phones,
mobile image communications, electronic newspapers, surveillance systems or communication
aids for the deaf, where it is impossible to reach the target compression while still keeping
high quality of the decoded images.
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International standardization efforts related to the different application areas have been
made, resulting in a number of well-known standards: MPEG-2 [112] for digital television
broadcasting at rates above 2 Mbit/s, MPEG-1 [56] for digital video rates of 1.5 Mbit/s and
H.261 [61] or the forthcoming standard H.263 [42] for low and very-low bit-rate (less than
64 kbit/s) services related to visual telephony. In addition, the flexibility of new commu-
nication systems and the success of multimedia databases require interactive capabilities for
content-based access and manipulation of audio-visual information. Besides compression, new
content-based functionalities are currently under research within the framework of the future
MPEG-4 coding standard [70].

1.1 The problem of image compression

The problem of compression is often referred to as low bit-rate coding or coding for short.
The primary design objective in image compression is to minimize the average number of bits
used to represent a given image or video sequence in digital form. Digital image compression
techniques have made impressive progress in recent years. In the most demanding very low
bit-rate applications, compression systems seem to be confronted with the awesome challenge
of ‘getting something for nothing’. For example, a compression ratio of 50:1 simply means
that 98% of the original data in the image has been eliminated.

Compression can be achieved by removing unnecessary information about the images.
However, the only type of information that can be removed without noticing any degradation
in image quality are:

e redundant information, which can be accurately predicted

e information that the human visual system cannot perceive.

1.1.1 Lossless and lossy image coding techniques

Lossless compression techniques aim at the exact reconstruction of the original images. This
can be done if only redundant information is discarded. Redundancy is a characteristic related
to factors such as predictability, randomness and smoothness of image data. Due to statistical
properties of spatial distributions of luminance and color signals in natural images, little
information can be predicted without distortion. Therefore, lossless compression systems
seldom reach significant values of compression.
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Strictly speaking, lossless image coding techniques should not allow any loss in signal to
noise ratio (SNR). Nevertheless, if an average viewer cannot detect any difference when the
original and the reconstructed compressed images are seen under normal viewing conditions,
the compression system is said to be visually lossless [38]. Visually lossless compression can
only be done by leaving out unnecessary information, i.e., either redundant information or
information that the human visual system cannot perceive.

As we seek lower bit-rates in the digital representation of images, it is imperative to design
the compression algorithm both to reduce redundancy in the input image and to remove
the least relevant information from a perceptual point of view. Among lossy compression
techniques, those which put special emphasis on the second operation are the most appropriate
for very low bit-rate coding applications. When quality losses cannot be avoided in the
reconstructed images, the compression system should do its best in order to make such losses
hardly perceptible.

In this thesis, we have investigated several image and video coding techniques which take
into account the perceptual point of view. The particular contributions in this field are
summarized at the end of this chapter. Let us first present an overview of the main concepts
involved in perceptual coding that have led us to the study of such techniques.

1.1.2 Perceptual coding

Central to the idea of visually lossless compression is the notion of distortion masking. When
the distortion introduced in the coding process is properly distributed, it can be masked by
the original image content. Perceptibility of distortion can be zero even if the objectively
measured local SNR is modest or low. Ideally, if the noise level at all pixels in the image
is exactly at the level of the just noticeable distortion (JND), the compression system would
yield perfect (subjective) image quality at the lowest possible rate. Such rate is a fundamental
limit that has been called perceptual entropy by Jayant et al in [46].

The ideal just noticeable distortion provides the image being coded with a threshold
level of error visibility, below which reconstruction errors are imperceptible. Supposing that
transparent coding cannot be achieved due to a tight bit-rate budget, rather than JND a
supra-threshold generalization of such perceptual threshold would be required. The distortion
presented in the reconstructed image is then called minimally noticeable distortion (MND)
[46]. It should be minimally perceptible and (should appear to be) uniformly distributed over
the image.

A coding algorithm based on the criterion of minimizing the perceived error is called a
perceptual coding algorithm. The approach of taking into account the human visual system
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in the coding scheme is known as second generation image coding [54]. The essential task
of perceptual coding is thus to effectively adapt the coding scheme to the sensitivity of the
human eye. This allows the removal of perceptually redundant information for realizing high
quality at low bit-rates. For obtaining moderate quality at even lower bit-rates, minimally
perceptible image features will have to be removed by the coding system as well.

Measures of perceptual fidelity

To assess the quality of the reconstructed images, an effective fidelity criterion is needed. The
peak signal to noise ratio (PSNR) is a widely used measure of image quality based on the
computation of the mean squared error (MSE) between the original and the reconstructed
images:

255
vMSE

It however cannot accurately reflect the perceptual quality of the reconstructed image —at least
the simple computation of the PSNR for the whole image— and, particularly, at low bit-rates
[62]. Nevertheless, the application of the PSNR measure in some contexts may be useful.
Later in this chapter, the PSNR will actually be proposed as a valid measure of image fidelity
in the context of perceptual image models. Some examples are in order here to illustrate the
performance of the PSNR measure in its raw form.

The images presented in Figs. 1.1 and 1.2 are intended to show that the perceived distor-
tion depends on the distribution and type of the introduced errors. In the first row of both
figures two original images are shown: a synthetic image presenting a sharp radial transition,
which will be called winding slope in the following, and a detailed area of the face from the
popular image of Lenna. The six images displayed below, numbered from 1 to 6, present
different types of distortion, namely: blurring, random noise, the distortion introduced by
contour-oriented [12] and segmentation-based [94] coding techniques and two images showing
block effects resulting from the JPEG coding algorithm [122].

Tables 1.1 and 1.2 show the PSNR values for the reconstructed versions of winding slope
and Lenna’s face, respectively. Whenever possible, the reconstructed images have been gen-
erated in order to get similar reconstruction PSNR values. This is the case for the first three
images in both cases. When the distortion has been introduced by a particular coding scheme,
the bit-rates measured in bits per pixel (bpp) are given.

Let us focus now on the subjective perception of distortion in the images shown in Figs. 1.1
and 1.2. From the observation of these images, it is worthwhile to realize the sensitivity of
our visual system to the rendering of image contours. This is a property that has been
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original image
winding slope

1. blurring 2. random noise

4. distortion
introduced by
region-oriented
coding

3. distortion
introduced by
contour-oriented
coding

Figure 1.1: Different types of distortion in a synthetic image

5. blockiness (A) 6. blockiness (B)
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original image
Lenna’s face

1. blurring 2. random noise

4. distortion
introduced by
region-oriented
coding

3. distortion
introduced by
contour-oriented
coding
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Table 1.1: PSNR values for Fig. 1.1

Type of distortion PSNR value [dB]| bit-rate [bpp]
1. blurring 25.9

2. random noise 26.0

3. contour 26.0 0.03

4. region 35.9 0.04

5. blockiness (A) 284 0.30

6. blockiness (B) 24.8 0.29

Table 1.2: PSNR values for Fig. 1.2

Type of distortion PSNR value [dB] bit-rate [bpp]
1. blurring 20.6

2. random noise 20.8

3. contour 20.7 0.11

4. region 26.2 0.15

5. blockiness (A) 25.7 0.30

6. blockiness (B) 22.7 0.29
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investigated in depth in psycho-visual studies [21], [66], in order to characterize the image
features that are responsible for the formation of perception in the human visual system. In
this sense, the blurred images (1) seem to give less information than the others. On the other
hand, the presence of false contours (4, 5, 6) is a type of distortion rather ‘confusing’ for the
eye. Furthermore, the visual system easily masks random noise (2) and large errors in smooth
areas (3), distortions that do not cause excessive trouble.

For high distortion levels, such as those in the previous examples, it can be said that the
PSNR (or the MSE) is not adequate as a measure of visual fidelity. In some cases, there
is considerably discrepancy between subjective judgment and PSNR values (compare these
values for images 3 and 4 or image 5 and images 2, 3). Specially noticeable is the PSNR value
of the coded segmentation of Fig. 1.1. Nevertheless, the MSE is a commonly used fidelity
criterion mainly for two reasons:

- its mathematical tractability and

- the fact that small values of MSE correspond to subjective high quality reconstructions.

Compression systems based on the minimization of the MSE measure by means of rate-
distortion optimization algorithms have been reported with very good results for applications
at high, moderate and low bit-rates using conventional image coding techniques such as vector
quantization [105], subband coding [114], wavelets [84] and DCT [83].

At very low bit-rates, when significant quality losses are unavoidable, image coding tech-
niques based on the minimum mean square error (MMSE) criterion usually produce specific
types of visible distortion. The MSE criterion hardly discerns these coding errors from other
and less visible distortion effects. The study of subjective measures of distortion seem to be
the only answer in very low bit-rate applications.

1.2 Image compression based on human visual perception

The study of perceptual measures of distortion has been a main topic of research of the image
coding community, hoping that a major breakthrough in image coding should rely on the use
of such empirical measures. However, a second perceptual approach based on the definition
of perceptual image models for visual signals seems to be more promising for very low bit-rate
applications. This section is devoted to a brief overview of both. The two approaches have
many points in common because both pursue an identical target. They are usually applied in
a joint manner to image and video coding, and actually complement each other. Both points
of view are explained separately in the following only for presentation purposes.
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1.2.1 The point of view of perceptual measures of distortion

From the early years of image coding, a variety of methods have been proposed to incor-
porate certain psycho-visual properties of the human visual system into image compression
algorithms [39], [73], [71], [19], [51], [20]. A comprehensive review of perceptual signal coding
techniques has been presented by Jayant et al in a recent paper [46].

Some efforts have been directed to incorporate the sensitivity of the human visual system
to spatial frequency components. Frequency sensitivity, is a global property dependent only
on the image size and viewing conditions. It is described by the modulation transfer function
(MTF) of the human eye, which has been obtained through psycho-visual experiments [21]. A
similar property is contrast sensitivity. The human visual perception is sensitive to luminance
contrast rather than to the absolute luminance [45], as indicated by Weber’s law [71]. Both
properties can be exploited via pre- and post-processing, by defining an homomorphic model
[46] for perceptual coding such that, rather than weighting the distortion, the system weights
the input and transforms it into a (perceptually flat) domain where an unweighted error
measure is useful.

The main problem of the former approach is that it does not go far enough utilizing the
masking properties of human vision. Our visual system is highly non-linear and presents
important local properties such as lateral inhibition [21] which are difficult to measure. These
properties depend on the local scene content, i. e., background intensity, activity of luminance
changes, dominant spatial frequency and, in particular, the presence of important luminance
transitions in the neighborhood [66], [117].

In order to achieve the highest subjective quality at a given bit-rate, all these properties of
the human visual system must be exploited. The mapping of their effects to the JND/MND
image profiles requires the existence of effective perceptual measures obtained from extensive
subjective experimentation. The methods based on the JND/MND concepts have been very
successful in transparent coding of audio signals [47], [49]. For image applications, proposals
for visual fidelity criteria such as the peak signal to perceptible noise ratio (PSPNR) recently
reported in [20], have been made. However, although such measures significantly improve the
rendition of coding algorithms, no image coding scheme has yet sufficiently integrated these
psycho-visual effects to offer a simple and efficient method to measure the coding impairment.

The target framework defined by Jayant et al [46] is based on thorough perceptual distortion-
rate functions, so that the methods for rate-distortion optimization taken from the field of
Information Theory could be applied straightforward in a perceptually flat image coding do-
main. Nevertheless, due to the lack of effective measures for the evaluation of image quality,
this perceptual ‘information-theory-based’ approach is not likely to make significant advances
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in the near future on image compression algorithms.

Actually, most conventional coding methods use perceptual properties of the visual system;
for instance, in the design of quantization tables for DCT coefficients. However, methods such
as predictive coding, transform coding, subband coding or vector quantization are basically
information-theory based, in the sense that image signals are considered as random signals
and compressed by exploiting their stochastic properties. The high non-stationarity of image
signals compromises the complete success of such conventional coding methods at low bit-
rates, even if improved measures of perceptual fidelity are found. A qualitative change in the
representation of visual signals is required in order to better exploit the perceptual properties.

Current standards for image compression [122], [112], [56] already exploit some aspects of
visual perception but it is generally accepted that only the study of image models strongly
related to the human visual system will lead to the highest compression values needed for very
low bit-rate applications. These so-called perceptual image models and second generation
coding techniques permit a graceful degradation of the perceived quality of reconstructed
images at low bit-rates, without the unnatural artifacts (blockiness, ringing and blurring) of
waveform coding techniques.

1.2.2 The approach based on perceptual image models

A promising approach to perceptual image coding is based on the definition of perceptual
image models. Let us take the broadest sense of the word to mean by ‘model’ any perceptual
2-D or 3-D image coding model. Many different proposals have been presented so far that
would fit within this large category, some of them relatively new in the image coding field.

Opposite to conventional coding methods which efficiently represent signal waveforms,
perceptual image models represent image signals using structures which, in some sense, take
into account the 2-D or 3-D physical (spatial) properties of the scene. A major advantage of
these models is that they describe image contents by means of explicit structural features or
elements of the model such as contours, regions and surfaces called image primitives. Some
examples of 2-D perceptual models are those described in [54], [77], [12], [25], [1], [123], [97] and
[85]. 3-D image models are often related to different application areas such as animation [33].
Some research groups are well-known from their work in the application of 3-D model-based
techniques to image coding schemes. Overviews of 3-D model-based techniques techniques
are given in [59] and [3].

A possible classification of coding techniques based on perceptual image models is repro-
duced in table 1.3. This table has been generated from the information in two original sources
[59] and [2]. It only reports some sample examples and does not try to be a complete account
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Table 1.3: A possible classification of coding schemes based on perceptual models

Source model elements image coding schemes coding of sequence motion
region-oriented regions contour/texture coding affine motion, warping
edge-oriented edges sketch/texture coding primitive motion
mesh oriented cells mesh/texture coding nodes motion
surfaces,
3D model-oriented volumesz object-based coding 3-D glob‘al/ local
parametric motion
3-D models

of perceptual image models. Conventional waveform coding techniques could be included as
well in this table, as these techniques make use of visual properties for image coding. How-
ever, it is difficult to justify that a single pixel —for instance in DPCM coding— or a square
block of pixels —as used in vector quantization or transform techniques— can be considered
as a visual primitive of a perceptual model of the image. Of course, many types of hybrid
techniques are also possible and some are often used (i. e. block-based motion compensated
prediction for inter-frame coding).

In perceptual image models, the items of visual information are mapped into elements of
the model representing meaningful primitives in the original images such as edges, regions, ob-
jects or movements. The number and type of the extracted primitives is defined depending on
the available bit-rate (quantization) and then fed to the entropy coder in order to extract the
remaining redundant information. The extraction of the image primitives is often performed
a priori —on a perceptual basis— according to empirical knowledge about image formation.
Visual elements often considered significant are sharp transitions [12], homogeneous regions
[97], contrasted objects over flat surfaces [1], high curvature lines [90], motion coherence [123],
etc. The conventional source encoding process of mapping—quantization—entropy-coding [72]
can be then improved by a coding scheme as given in Fig. 1.3, which refers to the application
of the perceptual model in the representation (mapping) step of the visual information prior
to the quantization and entropy coding steps.

Within the context of perceptual model-based representation, the design of perceptual
measures of visual distortion is not such an important issue. For very-low bit-rate applications
even if only a limited number of visual primitives or model elements can be synthesized
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Figure 1.3: Encoding process based on a perceptual model of the image

in the reconstructed image, the resulting distortion artifacts appear to be more ‘natural’.
At extremely low bit-rates [77] sketch-like, patch-work like or articulated-volume-like effects
occur, often giving the impression of schematic views of the original images drawn by a painter
or a cartoonist.

Coding schemes based on perceptual models even can make use of the ‘non-perceptual’
PSNR fidelity criterion for the rate-distortion optimization of the model-based representa-
tion [69]. The visually significant elements of the model used in the mapping stage have
already forced the introduction of perceptual constraints, so that the distortion artifacts that
may appear in the reconstructed image are better tolerated. For instance, when region-
oriented image models are applied in segmentation-based coding schemes, the presence of
contours in the reconstructed image is guaranteed by the partition structure, which is the
main element of the image model. The PSNR measure in the (assumed to be) homogeneous
regions is then perceptually significant.

1.3 Investigated approach

In the framework of this thesis, the characteristics of existing perceptual image models have
suggested the study of related image and video coding techniques. The interaction of visual
primitives, such as edges or regions of the perceptual models, with several conventional coding
techniques has been investigated. The efficiency of waveform coding methods in exploiting
stochastic properties of image signals, for instance, has been taken into account for the coding
of homogeneous textures.
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More precisely, we limit ourselves to the study and development of three perceptually moti-
vated texture coding techniques that complement each other in a combined edge-oriented /re-
gion-oriented perceptual model of the image. The investigated texture coding techniques
are, namely: morphological interpolation, which is based on image transitions taken as visual
primitives from which smooth areas may be generated in edge-oriented models, detail coding,
that looks at the efficient coding of small meaningful features for the human visual system,
and region-based subband coding, aimed at the coding of fine homogeneous textures in the
context of region-oriented models.

These techniques have been initially developed for the compression of grey-level and color
still images and applied later for texture coding of both intra and inter-frames of video
sequences within two different segmentation-based video coding schemes [97] and [22].

The reason for the study of such texture coding techniques is that most coding schemes
based in perceptual image models have devoted more attention to the coding of their distinc-
tive structural primitives —mainly regions and contours, in 2-D models— than to the homoge-
neous textures present in image data. Structural primitives are usually based on perceptually
selected sub-signals, chosen because of their importance in the subjective process of image
understanding. However, they may represent minority subclasses from the point of view of
energy or from the point of view of the fraction of pixels involved. The performance of some
conventional waveform coding techniques such as subband coding, achieving remarkable com-
pression results, has not been fully exploited yet for the coding schemes using perceptual
image models. This often happens because of the difficulties of adapting such conventional
coding techniques to image models. The final balance of bit-rates, for instance, between
contour (model element) and texture information in the coded images, shows the effective
application of texture coding techniques in compression schemes based on perceptual image
models.

1.3.1 Image model

The model of the image proposed for compression purposes is, in principle, an edge-oriented
image model inspired in ‘sketch-based’ coding techniques [12], [25], [24], [86], [90]. The struc-
tural primitives of sketch models are strong edges, defined as alignments of ‘high curvature
pixels’ of the image in the previously mentioned works. Sketch coding was first introduced by
Carlsson [12]! as an image compression method intended to represent grey level still images
based on the coding of geometric and grey level information of the image contours (sketch-

! Carlsson cited a previous idea of Pearson and Robinson [76], [77] who proposed line drawings as economical
but recognizable representations (‘cartoons’) for visual communications at very low bit-rates (4.8-19.2 kbit/s),
with application, for instance, as visual aids for deaf people
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data). Carlsson proposed an interpolation method allowing the reconstruction of a simplified
(smoothed) version of the image from this information alone at high compression ratios (30—
75). The resulting reconstruction could be improved by the coding of the residual texture by
means of some waveform coding technique?. Sketch-oriented image models will be reviewed
in more detail in chapter 2.

In the present work, the basic concept of sketch-based coding techniques has been applied
in combination with a segmentation-based coding scheme, as a texture coding technique of
the region-oriented image model. This means that both closed and open contours (regions and
edges) are possible primitives of the image model. Closed contours define region boundaries,
whereas open contours are the strong edges that will be taken as sketch-data. The charac-
teristics of the particular image model will be discussed in more detail in chapter 2. Let us
explain in the following the reasons that have led to the choice of this perceptual model.

Why strong edges

Images and video signals are highly non-stationary sources. They contain a wealth of segments
of flat or slowly changing intensity, as well as edges and textured regions. In general [46],
images may be characterized as being composed of large homogeneous regions —flat, sloping
or textured areas— and strong edges having small spatial support. Pixel-to-pixel correlation
is very high inside such regions, but not across the edges. The primary aim of image coding
schemes is the extraction of this spatial redundancy. Pixel-oriented coding techniques working
at low bit-rates generally present the problems near strong edges. They either fail to extract
the redundant information or show ‘perceptually’ annoying artifacts such as ringing, blurring
or jagged edges. This results either in low compression ratios or in low image quality for high
compression applications.

The properties of the Human Visual System, in particular the special role of strong edges
in our perception of images and their interaction with areas of smooth intensity variation,
have been pointed out by researchers of the field of image perception [21] and early visual
processing [66], [9]. An important function of coding algorithms from the point of view of
visual perception is to render edge information faithfully. Perception-based image models
and perceptual coding techniques have been proposed as a solution to this challenge. In
particular, edge-oriented and region-oriented image models fully exploit the information about
the edge structure of the images, its perceptual significance and the masking effect of sharp
transitions. This produces clear subjective improvements over conventional waveform coding
coding techniques, which are especially noticeable at low and very-low bit-rates.

2Carlsson proposed to use a Laplacian pyramid coding technique
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Other components of the perceptual model

Strong edges and region boundaries are not sufficient for the reconstruction of high quality
coded images. The coding result obtained from strong edges is called the strong edge com-
ponent and it is valid only for high compression/moderate quality applications. However,
the strong edge component images are rather smooth and lack textures. In the sketch-based
coding schemes mentioned above, fine texture information is coded in a second (residual) com-
ponent of the image model. Examples of texture coding techniques that have been employed
are: pyramidal coding [12], wavelet coding [24] and DCT-based transform coding [86].

In this work, fine textures are coded as well from the residue of the strong edge component
in the texture component of the proposed perceptual model. However, from the point of view
of coding efficiency, a region-oriented image model may result in a better performance than
a sketch-oriented image model. Segmentation-based coding schemes rely on a partition of
the image in non-overlapping regions whose textures may be coded independently. Such cod-
ing schemes bring the possibility of developing improved waveform coding techniques for the
coding of the residual texture information. In particular, we have adapted an efficient wave-
form coding technique such as subband coding for the independent coding of the individual
contents of each region in a segmentation-based coding scheme.

Finally, it has been found that there is a particular type of image features which are not
coded efficiently by any of the previous components. These features are small image details.
They can be treated neither as textures —due to their small support and lack of homogeneity,
periodicity, etc.— nor as contours —because of their short length and often isolated positions,
what makes them expensive to code. A third component, the detail component has been
defined to encode such features.

To summarize, a three-component perceptual image model is proposed. Each component
of the model is coded by one of the investigated texture coding techniques:

e a strong edge component, coded by a morphological interpolation technique
e a details component, for which a purpose-designed coding technique has been defined,

e a texture component, coded by region-based subband analysis.

1.4 Organization and contributions

The organization of this thesis is as follows. Chapter 2 briefly overviews some perceptual
edge-oriented and region-oriented image models to which the proposed coding technique is
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related. The ‘structural’ primitives defining such models justify the use of image analysis
techniques strongly related to the physical image structure. Mathematical morphology pro-
vides an excellent set of processing tools that have been used extensively in the present work.
In particular, appendix A is devoted to review the definition of some of the tools that will be
used in the sequel.

Chapters 3, 4, 5 describe each one of the investigated texture coding techniques: morpho-
logical interpolation, detail coding and region-based subband coding. The application of these
techniques is illustrated by means of various coding results on still images. Their advantages
and drawbacks are discussed and compared to existing texture coding schemes. As subband
coding is a well-known image coding technique, chapter 5 emphasizes its application in the
framework of a region-oriented scheme for the coding of the contents of arbitrarily shaped
regions. In appendix B, a set of filter banks proposed for subband analysis and synthesis
are reviewed with special stress on the quadrature mirror filter bank. The reasons that have
made us select these filters for the application to region-based subband coding are discussed
in this appendix.

Chapter 6 presents the results of applying the above texture coding techniques to the
coding of still images and video sequences in a segmentation-based video coding scheme that
is briefly described in appendix C. Finally, chapter 7 is devoted to the conclusions and future
lines of research.

Contributions of this work
To the best of our knowledge, the contributions of this work are summarized below.

e The proposal of a new interpolation method to perform spatial interpolation from arbi-
trary initial sets. Morphological interpolation is an interpolation technique based on a
geodesic distance transformation intended to solve the problem of image interpolation
from scattered data sets. It is more efficient in terms of computation time than linear
interpolation techniques based on linear diffusion. Compared to other distance-based
interpolation techniques, it has the advantage of diminishing its computation time as
the number of initial pixels with different values increases, contrarily to interpolation
techniques based on distance maps.

e The use of the watershed algorithm for the extraction of sketch data from the morpho-
logical Laplacian by means of the definition of a proper set of markers.

e The proposal of a explicit perceptual criterion for the selection of meaningful details
in video sequences, including features such as shape, contrast, size, activity of the
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background and temporal persistence.

e The adaptation of the Relative Address Element Designate (READ) code [130] for
the coding of the position and shape information of image details in video sequences®.
The proposed improvement consists in adaptively selecting the reference line among
the previously coded lines in the current image or among the neighboring lines in the
previous image (in temporal order).

e The proposal of a region-based subband analysis scheme for arbitrarily shaped image
regions, along with the definition of region-based strategies for the bit-allocation, quan-
tization and buffering of the analyzed subband data that fully exploit the edge structure
of the segmented image.

e An effective modification of the symmetric signal extension technique proposed by
Barnard [5] that results in a significant reduction of the variance of high frequency
bands in the subband coding scheme. As a consequence, the high frequency subbands
may be coded at lower rates and/or with smaller quantization errors.

e Finally, the proposal of a combined sketch-oriented /region-oriented model of the image
for the coding of the textures of intra and inter-frames of video sequences in the frame-
work of a segmentation-based video coding algorithm [22] that performs rate-distortion
optimization in order to select an optimized partition structure and a set of texture
coding techniques to be applied to the different regions.

3As explained in chapter 4, the READ coding is a differential run-length encoding technique proposed for
the coding of binary images in facsimile transmission. It codes the runs indicating the positions of the black-
to-white or white-to-black transitions in the current line differentially with respect to those of the previous
(reference) line.
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Chapter 2

Perceptual image models

Strong edges are sharp transitions of image signals that can be represented by geometric
features (lines, curves). Such features are to a great extent responsible for the formation of
perception in the human visual system [21]. The ability with which the eye interprets line
drawings has been considered as a proof of the existence of special mechanisms in the visual
system sensitive to geometric structure [9]. The images presented in Fig. 2.1 are intended to
illustrate this point. These are ‘sketch’ representations extracted from original images that
may be recognized only from their geometric structure.

The perception of geometric structures of images forms the basis of a theory of early visual
processing put forward by Marr [66, ch. 2]. He proposed that, at the early stages of visual
processing, the eye is able to extract visual primitives at different levels of resolution. Among
these primitives Marr includes edges, bars, blobs, termination points, etc. that can be defined
in very concrete or rather abstract ways (e.g. zero-crossings or a cloud of dots). They form
what is called the primal sketch.

Figure 2.1: Two sketch images

19
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The interesting suggestion made in the framework of Marr’s theory is that the primal
sketch is the only information that is used in subsequent visual processing. For coding pur-
poses, this would imply that if a coding system is able to describe the primitives at the
different resolution levels in the primal sketch, the image could be coded without perceived
distortion. However, from the point of view of image coding, Carlsson [12] has questioned the
completeness of a primal sketch representation. He argued that there exist non-trivial images
that do not contain any contours as defined in the primal sketch.

Most model-based coding techniques rely on the description of visual primitives located at
the position of grey level discontinuities (sharp transitions) in image signals. Region-oriented
image models used in segmentation-based coding schemes, are aimed at the extraction of the
objects’ contours. Edge-oriented image models employed in sketch-based schemes code the
transitions individually —without grouping them together to define regions. Mesh-oriented
image models are used in coding schemes that tend to locate mesh nodes at points with high
gradient values. The correct characterization of such transitions fulfills the important premise
on which perceptual coding models are based: the matching of the image model to the visual
perception process of the human visual system.

This chapter briefly overviews two types of image models based on the description of
image transitions as structural primitives of visual signals. In particular, edge-oriented image
models are compared with region-oriented ones, and several proposals of sketch-based coding
schemes relying on edge-oriented models are reviewed. A three component perceptual model
is put forward in section 2.2.

2.1 Overview of perceptual image coding models

The aim of this section is to compare two types of perceptual models for image coding:
region-oriented and edge-oriented models. Elements of both models will be used in the model
proposal described in section 2.2. Other perceptual image models not described here are, for
instance, mesh-oriented image models [123].

2.1.1 Region-oriented image models

A well-known model of the image is the region-oriented model [54] resulting from segmentation
techniques. A segmentation process “divides an image into a set of homogeneous and con-
nected regions related to the objects in the scene” [64]. This results in a partition of the image
usually represented by a label image, where each label corresponds to a different region. The
perceptual approach of region-oriented coding techniques is based on the assumption that
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winding slope Lenna’s face

Figure 2.2: Open contour features in synthetic (left) and natural images (right)

the regions describe objects perceived by the observer. In segmentation-based coding tech-
niques the image is represented as a set of mutually exclusive spatial regions. The regions are
separately coded as homogeneous distributions of textures. Their contents are either approx-
imated by smooth functions (e.g. polynomial approximations) or coded using conventional
waveform coding techniques [7]. The discontinuities in between are coded by means of contour
following techniques [34], [65].

A dual representation such as the contour/texture description defined in a region-oriented
model of the image presents some limitations. Objects can be found in an image that do not
correspond to the basic idea of region employed in segmentation-based schemes. There can
be very significant contours that are not necessarily closed. This can be seen, for instance,
in the two original images of the examples given in chapter 1, which are repeated in Fig. 2.2.
It is worthwhile to observe that similar features to the vertical open contour in the synthetic
image winding slope are met in natural images as well, such as the shadows in Lenna’s face.
Of course, these images are very simple and the coded results that will be shown in the
following cannot be extrapolated to the general case. They have been chosen, however, to
better illustrate the advantages of edge-oriented image coding models in two examples where
these models present clear advantages.

Open contour image features may not be represented accurately by regions of closed
contours. The partition of the image resulting from a segmentation process requires all the
contours to be closed curves in order to obtain mutually exclusive spatial regions. This may
force the introduction of false contours. False contours often present random behavior due
to the fact that these contours do not follow sharp transitions, what makes them strongly
dependent of texture noise.

At very low bit-rates, false contours can make the coding process inefficient. This point is
illustrated for the previous examples through the application of a segmentation-based coding
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Figure 2.3: Partition results and low bit-rate coded segmentation

technique [94]. For both images, the partition resulting from the segmentation algorithm is
shown in the first row of Fig. 2.3!. Notice that the segmentation has been forced to give only a
small number of regions. If other segmentation algorithms with different homogeneity criteria
had been applied, the resulting partitions could have been different from the ones presented
in this figure. Nevertheless, if it is desirable to have contours located at the perceived edges of
the presented images, as it is usually the case in order to apply texture coding techniques for
the coding of the interiors of the ‘homogeneous’ regions? of the partition, some false contours
would have resulted.

The coded segmentation is shown in the second row of Fig. 2.3. The interior of the
regions has been coded with a smooth approximation, using fourth order cosine basis [37] (25
coefficients). The compression ratios are 200 (0.03 bpp) and 57 (0.15 bpp) for winding slope
and Lenna’s face, respectively. The constraint of mutually exclusive spatial regions forces the
coding of some false contours. For instance, the two curves in the segmentation of winding
slope or the contour crossing the cheek of Lenna’s face.

For high compression applications, contours are expensive to code. To increase the coding
efficiency, either the false contours should be simplified (or even removed) or more efficient

!The lines separating the partition labels have been drawn in order to better illustrate the location of
contours. Actually, contour pixels are placed between every two pixels belonging to different regions, at a finer
resolution.

2And, therefore, without sharp transitions in the interiors
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(and complex) texture coding techniques for the coding of the inside should be used. This
would also improve region-oriented coding schemes at lower compression ratios, where the
usual problem is over-segmentation (excess of contours).

2.1.2 Edge-oriented image models

In order to have very efficient coding schemes, more flexible representations than a partition
into regions should be introduced. The edge-oriented image models used in sketch-based
coding schemes provide an alternative description for strong edges, which is less rigid than
that of closed contours. The main differences of the coded edge information in sketch-based
coding schemes are:

e Not only the spatial position of the transition is coded, but also the grey level or color
gap it involves. This approach leads to a structural image primitive carrying both
spatial and amplitude information about the transition.

e The constraint of closed contour is removed. Strong edges may be represented without
the restriction (and the resulting cost) of being closed. However, this implies that
contour tracing algorithms must introduce more initial and final points for the coding
of such edges. A trade-off must be found between the cost of false contours and that of
extreme points.

e Edge pixels are points located in the same grid of the original image. Therefore, contours
are lines of pixels of the image.

The images winding slope and Lenna’s face have been coded by means of a sketch-based
coding scheme [12]. The results are shown in Fig. 2.4. The extracted sketch-data are the
lines shown in the first row. In this case, both position and amplitude information are
presented in these images. Amplitude values have been coded as first order polynomial
approximations (lines with a certain slope) of the values of the original image along the
extracted edge primitives. The reconstructed textures are obtained from the coded amplitudes
at the transition points by means of an interpolation algorithm [13]. The compression values
are similar to those of the coded segmentation, namely: 280 (0.02 bpp) for the first image
and 71 (0.11 bpp) for the second one. Certainly, these examples are not representative of
a general class of images. The coding results cannot be generalized and have to be treated
with some care. Anyway, they illustrate the possibilities of the use of open contours as an
interesting and promising representation based on edge primitives.
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A number of sketch-based image coding schemes have been reported in the literature [129],
[32], [12], [25], [24], [1], [86], [90]. The most representative in the context of this thesis are
reviewed in the sequel.

An early sketch-based coding scheme for TV pictures

One of the earliest systems which may be considered as a sketch-based representation is due to
Yan and Sakrison [129]. They reported a coding scheme for television pictures that efficiently
encoded sharp transitions along horizontal scan lines. The amplitude values of each scan
line were described by means of a two component model; the first component being a step-
like discontinuous function and the second, the residual textures. The positions where the
breakpoints of the discontinuous functions occurred were encoded in terms of run-lengths and
the amplitude steps were quantized and entropy coded. The remaining textures were coded by
means of a Fourier transform coder. Although this coding system did not thoroughly exploit
the two-dimensional correlation of sketch data, the authors pointed out the usefulness of the
separation in two components. They concluded that perceptually improved results could be
obtained by coding image transitions separately in a explicit representation.
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The two-component model of Carlsson

A well known sketch coding scheme is due to Carlsson [12]. He proposed a two component
model for the coding of still images based on the sketch concept. The extraction of sketch
information (sharp transitions) is performed by a Laplacian-Gaussian operator [66, ch. 2]. A
contour following technique [34] codes the position information, with some geometric con-
straints in order to decrease the number of bits per contour point. Then, the grey level values
for pixels on both sides of the edges are approximated with second order polynomials. The cor-
relation of these pixels is exploited by using a differential coding scheme. A two-dimensional
interpolation algorithm based on linear diffusion (Laplacian smoothing) performs image re-
construction from sketch data. Finally, the residual texture component is coded by means of
the Laplacian pyramid coding scheme [10].

Carlsson showed coding examples with ‘intelligible’ reconstructed images for compression
ratios in the range 65-75 (0.12-0.10 bpp). However, he found that in some cases irrelevant
details and strong noise were strong enough to be extracted as contours, and the performance
of the coding algorithm decreased. Carlsson suggested that only the perceptually relevant
contours should be extracted to improve the performance of his method.

A three component sketch model

Some authors have considered the smooth texture information generated from the sketch data
as a separate component of the perceptual model. This is the case for the model reported by
Eddins and Smith [26]. They motivated their model by the problem of reducing edge ringing in
subband coders. The components of this model are a severely down-sampled low-pass version
of the original image and two high-pass components: the edge component, derived from the
output of an edge operator along major image contours, and a texture component, formed by
high frequency variations away from those contours. The discrete Laplacian is used as an edge
strength operator. The edge amplitude profiles are coded by means of spline interpolation
functions. An ‘inverse’ edge operator is defined to reconstruct the high pass frequencies of
the image from the sum of the edge and texture information. Although the authors had not
yet developed the edge component coder, they showed that the three component model was
a flexible and complete image representation.

The ‘perceptually motivated’ model of Ran and Farvardin

Ran and Farvardin have investigated a three component image model as well [86]. The
three components of the model, namely, primary, smooth and texture, are motivated by
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psycho-visual observations. Various experiments have been studied in order to mathematically
formulate the interaction between strong edges and areas of smooth intensity variation [85].
A key concept of their work is the generation of a ‘stressed’ image by means of space-variant
low-pass filtering. The results from such experiments suggest the characterization of strong
edges as the high curvature energy pixels of the stressed image.

Contour tracing techniques have been proposed in order to locate the strong edges of the
primary component by looking at high curvature pixels in the prefiltered (stressed) image. The
authors claim that this strategy provides superior performance than the Laplacian-Gaussian
operator for edge extraction. Besides, the space-variant low-pass filter is used as well in the
generation of the low pass component from the coded edge information. This filter can be
considered as an adaptive Laplacian smoothing operator minimizing a measure of ‘energy
variation’ which corresponds to the curvature values at non-edge pixels.

For the coding of the primary component, edge positions are described by means of the
Freeman code [34], whereas amplitude values along strong edges are quantized to a constant
value. Ran and Farvardin have reported that this quantization gives rise to little perceptual
degradation, assuming that the contour tracing algorithm breaks the contours at the points
where a threshold variation is found. The smooth and texture components are added and
coded together by means of an adaptive DCT coding scheme®. The authors suggest the
separate coding of these components to improve coding performance, but they report that
performance is similar to the coding of the sum because of the overhead needed for encoding

the classification information for DCT quantizers.

Ran and Farvardin attribute the improved perceptual quality of the coding result of the
three component model to the separate encoding of the primary component. It is worth
noticing that the primary component in the coded images they show contains a small number
of coded edges. Most of the contents of the image are thus coded by the adaptive DCT
scheme as smooth/texture component. The adaptivity of a two stage classification of image
blocks and the use of an efficient bit allocation algorithm contributed to yield a very good
compression performance of their model.

An edge-based description of images

Contrarily to the above scheme, Grattoni [40] and Cumani [25] propose an edge-only rep-
resentation of images. They propose an elaborate method of contour detection based on
zero crossings of second derivative operators. Image reconstruction is done from the informa-

3Ran and Farvardin reported results employing a subband coding scheme as well, but the results achieved
with the adaptive DCT coding were the best.
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tion of positions and amplitudes of edge pixels by means of Laplacian smoothing. Although
the reconstructed images lack of fine texture information these authors have proven that a
(subjectively) faithful reconstruction is obtained from edge information alone.

A model based on ‘ridge’ and ‘valley’ primitives

Robinson [90] has defined ridge and valley primitives as the structural elements of the coding
model. As in the previous case, this model consists of only one component and is intended
for high compression purposes (around 50:1). The reconstructed images lack of textures but
they present fair quality reconstructions from a perceptual point of view.

Robinson proposes the use of the extrema of the Laplacian-Gaussian operator as image
primitives rather than Laplacian zero crossings. If the image amplitudes are seen as surface
heights in a relief, the maxima of the Laplacian operators locate valleys, whereas the minima
locate ridges. Robinson argues that, although ridges and valleys do not form closed curves,
they are less noisy than zero crossings because the extrema of the Laplacian do not follow
points of very rapid change in amplitude with respect to the position as zero crossings do.

Furthermore, this author employs a natural neighbor interpolation scheme for the re-
construction of the images from the sketch data [106]. He claims that this method produces
smoothly interpolated images and it is ideal for this application, but very demanding from the
computational point of view. Robinson concludes that more efficient interpolation schemes
are needed for the problem of scattered data interpolation in the reconstruction of the smooth
areas from sketch data.

2.2 Proposal of a perceptual image model

Discussion

The advantages of edge-oriented over region-oriented image coding models have been pointed
out with the examples given at the beginning of section 2.1. Basically, edge-oriented image
models provide a more flexible representation than the partition resulting from segmentation
processes. This permits, on the one hand, to avoid the coding of false contours and to prevent
false contour effects in the coded reconstructions. On the other hand, edge-oriented image
models allow the generation of more complex smooth components by interpolation from sketch
data than those resulting from smooth functions such as polynomials or low order cosine basis
[37]. However, edge-oriented coding models present significant disadvantages with respect to
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region-oriented models. Let us mention some of them:

e An edge-oriented image representation is a lower level representation than the region-
oriented one. This is stated in the sense that regions are intended to model objects,
whereas edges ‘only’ describe image discontinuities. From the point of view of coding
efficiency, there are cases where it could be better to keep the contours ‘open’; as
has been shown in the previous examples. However, region-oriented schemes are most
suitable to get a high level (object-based) representation of the image?.

e A second drawback of edge-oriented models is found in the coding of motion in video
sequences. Although some efforts have been made for the motion estimation (primitive-
matching) and compensation of edge-like primitives [131] currently reported region-
oriented motion estimation/compensation schemes seem to be more robust [99].

e A third drawback that can be argued against edge-oriented coding models is the fact
that such representations do not permit the coding of homogeneous textures in separate
regions. Instead, the textures are spread over the whole image in the residual texture
component. This prevents, for instance, the local optimization of texture coding algo-
rithms for individual regions containing distinct homogeneous textures. Therefore, an
unequal distribution of bit-rates over different areas of the image is not so straightfor-
ward as in the region-oriented representation case.

These considerations lead to the following question: is it possible to unify in a single framework
the advantages of both region-oriented and edge-oriented models?

Example

Up to the author’s knowledge, the perceptually meaningful concept of a sketch representation
has not been defined in the rigid scheme of a partition into regions. A possible application of
the sketch concept in the framework of a region-oriented model is proposed in the following.
It is illustrated for the same images winding slope and Lenna’s face in the example of Fig. 2.5.

In this example, the partition structure is kept and the sketch data (edges) are defined
as the pixels located at the boundaries of the regions. More precisely, the boundary pixels
of each region form a boundary line which is broken into boundary segments at the points
where a new neighboring region is encountered®. The mean value of the region is computed

4In line with content-based descriptions currently investigated for the forthcoming MPEG4 coding stan-
dard [70]

5That is, at pixels located at the region boundaries having neighboring pixels that belong to more than two
different regions.
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Figure 2.5: Example of application of the sketch concept within a partition

and the difference between the pixels located at each boundary segment and this value is
approximated by a second order cosine function. The images in the central row show such
coded differences®. The interpolation from the approximated amplitudes at the boundary
segments yields the results shown in the bottom row of Fig. 2.5.

Please notice that the effect of false contours is greatly diminished in this reconstructed
image compared to the coded segmentation results that were shown in Fig. 2.3. The improve-
ment may be explained from the fact that only information at the region boundaries is used.
Therefore, edge amplitudes are correctly adjusted whereas the reconstruction may yield large
errors in smooth areas. As reported from psycho-visual observations [21], such errors are less
noticeable if the contour information is correctly represented. On the contrary, the coding

5Middle grey corresponds to zero level; these images have been stretched from -64 to +64 in order to better
illustrate the variations along the boundary segments.
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of textures by means of smooth polynomial or cosine functions equally approximates all the
points of the region.

For the example of Fig. 2.5, the cost of the coded sketch representation has been kept
at the same rate than the coded segmentation of Fig. 2.3. The cost of the coded amplitude
values is actually small in smooth regions (recall that only the differences with respect to the
mean of the region are coded) and a little larger in complex regions. This example shows that
interpolative coding from the amplitudes of the pixels located at region boundary segments
may be applied as a texture coding technique in a segmentation-based coding scheme. The
compression is not as efficient as in the sketch-based representation presented in Fig. 2.4
but, in compensation, the potential advantages of a region-oriented representation are kept.
An additional advantage is that rather complex low-frequency textures can be generated by
interpolation from the sketch information only.

Model proposal

The aim of this section is to describe the choice of a particular proposal for a perceptual image
model, taking into account both the experiences in our own research and the advantages and
disadvantages of the above referenced perceptual image coding models. The perceptual model
that is proposed consists of three components. Namely a strong edge component, a details
component and a texture component. The coding techniques studied in chapters 3, 4 and 5 are
related to this model proposal. Such techniques will be applied as texture coding techniques
in the framework of a segmentation-based video coding scheme.

e Strong edge component

This component of the model is based on the sketch concept of interpolative coding.
The sketch data (edge information) is extracted from the original images at the location
of sharp transitions. From this initial information alone a reconstruction of the image
is obtained by means of an interpolation technique. Such reconstruction is able to
efficiently represent complex textures in some areas of the image and, in addition, it
decreases the visibility of false contours. A computationally efficient morphological
interpolation method will be proposed in chapter 3.

The strong edge component is applied to the coding of still images and intra-frame
images in video sequences. Examples of sketch coding using both open and closed
contours will be shown for still images. In the case of video sequences, we will restrict
the application of the strong edge component in a segmentation-based coding scheme
with regions of closed contours. This choice is motivated by the availability of region-
based motion estimation and motion compensation coding schemes, whereas the motion
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compensation and coding of edge-like primitives has not yet reached the maturity of the
analysis of motion in region-oriented models. In inter-frame images, it has been found
that, when the prediction error shows edge-like features, the interpolation from region
boundary segments also gives good coding results.

e Details component

Small image features are sometimes lost in low bit-rate coding systems because they are
supposed to be the least significant information for the observer. However, some of these
features may be of great importance for the subjective judgment of the coded images. In
video-telephone sequences, for instance, some facial shapes and shadows are especially
significant even being smaller or dimmer than other features of the image. However, if
all small features were to be coded, their cost would be rather high. It would imply
the accurate transmission of high frequency components in the texture component or a
large number of small contours in the strong edge component. Nevertheless, a number of
meaningful small features must be coded —even at very low bit-rates— in order to match
their perceptual significance. Failure to code these features would certainly affect the
perceived quality of the reconstructed images.

The details component has been devised for the extraction and selection of small fea-
tures in image and video signals. The selection is based on an explicit criterion relying
on the perceived parameters of such features. It takes into account parameters such as
the shape, contrast, size, background activity and temporal persistence of the extracted
details. An efficient coding algorithm for the coding of the details’ positions is employed
for this component. In inter-frame mode, significant details are tracked through con-
secutive frames along the time and their positions coded with reference to the previous
ones. The detail coding technique is presented in chapter 4.

e Texture component
The third component of the model is computed as the residue of the coding of the
two previous components. At this stage, only fine homogeneous textures remain. A
waveform coding technique (subband coding) has been adapted for the coding of such
textures in a segmentation-based coding scheme. The new technique, explained in
chapter 5 is known as region-based subband coding and may be applied both for inter
and intra-frame images.

At this point, it can be argued that region-based subband coding could be applied as well
for the coding of smooth textures of the strong edge component, making unnecessary
such component. However, this choice has the drawback of presenting larger ringing
effects” at the boundaries of the region than the proposed one.

"A typical distortion of subband coders
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Chapter 3

Image coding using morphological
interpolation

Interpolative coding techniques are based on the coding and transmission of a subset of pixels
of the original image so that, on the receiver side, the remaining pixels have to be interpolated
from the transmitted information alone [72]. The reconstructed image is usually approximated
by smooth, continuous functions with some permissible error at the interpolated positions.
The subset of transmitted pixels, called the initial set in the following, may be either a
regular sampling grid or any arbitrary set of points. In the latter case, both the amplitudes
and positions of the pixels of the initial set should be coded and transmitted.

The application of interpolative techniques to image coding relies on the selection of a
proper set of initial pixels. The initial pixels should, at the same time, allow a good restoration
of the image by interpolation and lead to a compact representation. Given that interpolation
methods only generate smooth surfaces, the initial pixels must be selected so that the main
transitions between these surfaces are kept. Obviously, regular sampling grids are not suitable
for this purpose. The selection of the initial set in an interpolative coding framework is a
problem of data-dependent sampling of two-dimensional signals. For a given reconstruction
(interpolation) method, this problem can be stated as follows:

e What are the best locations at which to take samples of a given image? Here best means
that the image interpolated from those samples is as close as possible to the original.

e What is the minimum number of samples required to represent the image such that it
can be reconstructed by interpolation within a given error tolerance?

33
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The problem of finding the optimal initial set is an ill-posed problem because the solution
is data-dependent, matched to the particular input image. Global numerical optimization
is impractical, given the large number of candidate structures. Robinson and Ren have
investigated the above questions in a recent paper [91] concluding that this problem should
be addressed by means of an heuristic shape-driven search, tending to place initial samples in
the neighborhood of significant image transitions. More precisely, they suggest that second
derivative extrema to some extent characterize the features of interest. Strong edges are image
features that give rise to extrema of the second derivative!. According to Robinson and Ren,
the locations of such features should be taken as starting points for optimization algorithms
aimed at the solution to the problem of selecting the samples of the initial set.

Link to perceptual image models

The above considerations link interpolative coding techniques and most perceptual models
that have been proposed for image compression. Generally speaking, the problem of image
coding derives precisely from the fact that images, in general, contain sharp transitions.
As discussed in chapter 2, sharp transitions represent non-stationarities in the image where
traditional waveform coders, designed for the extraction of spatial redundancy in homogeneous
(stationary) areas, do not work properly. Furthermore, sharp transitions —strong edges— play
a key role in our perception of visual information. For such reason, perceptually motivated
image models are especially aimed at the explicit representation of these non-stationarities.

In segmentation-based coding schemes, the explicit representation consists of the geometric
description of the contours of the ‘objects’ present in the image. Contours resulting from a
segmentation process are closed curves, usually placed along the main image transitions, that
define a partition of the image into a set of regions. The contents of the regions are coded by
means of texture coding techniques.

Based on the importance of strong edges in the visual perception process, sketch-based
coding schemes employ a model of the image relying on strong edges. The idea behind the
sketch description is that, at very low bit-rates, textures between contours do not have to be
represented explicitly in order to obtain an intelligible reconstruction of the original image
[77]. The image is assumed to be mainly made of areas of constant or smoothly changing
intensity separated by the discontinuities produced by strong edges. Under this assumption, a
grey level image can be reconstructed from the sole information about the geometric structure
of the transitions and the amplitudes of the transition pixels.

! Actually, Robinson and Ren describe luminance ‘surface’ features such as edges, valleys, ridges and roofs as
good candidates for sample placement algorithms. In a later paper [90], Robinson has reported a coding scheme
based on ridge and valley image primitives that proves the adequacy of these features for image representation.
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Therefore, in sketch-based coding schemes the coded information consists of the shapes
of the discontinuities and the values of the pixels located on both sides of such structures.
In practice, this information, also known as sketch data, may be efficiently represented by
coding, for instance, the position, width and height (amplitude step) of the significant image
transitions. The reconstruction is posed, then, as a problem of scattered data interpolation
from arbitrary initial sets —the sketch data— under certain smoothness constraints.

The aim of this chapter is to present a fast interpolation algorithm, called morphological
interpolation, intended to perform spatial interpolation from any set of initial pixels. After re-
viewing various existing methods proposed for scattered data interpolation, the new technique
is described in section 3.3. Morphological interpolation is based on morphological (non-linear)
operators, namely geodesic dilation and the morphological Laplacian. This operators may be
efficiently implemented in order to obtain fast reconstruction from sparse initial sets. Morpho-
logical interpolation is more efficient in terms of computation time than linear interpolation
techniques based on diffusion processes, which apply iterative space-variant filtering to the
initial image. Diffusion processes have been widely used for interpolative coding from sketch
data. Comparative figures of computation time will be given to assess the efficiency of the
morphological interpolation technique.

Several strategies for the selection of the initial set are investigated in section 3.4 at the
end of the chapter. The application of morphological interpolation is illustrated by means
of a sketch-based coding scheme aimed at very low bit-rates. Finally, a cost-effective image
representation based on networks of lines is proposed. Networks of lines are interesting because
they can be efficiently coded using derivative chain code techniques. The coded images will be
proposed as well as the strong edge component of the perceptual model for image compression
that has been introduced in the previous chapter.

3.1 The interpolation problem

The problem of spatial interpolation from arbitrary initial sets can be stated as follows.

Let I be a two-dimensional grey scale image containing the initial set S, as shown in
Fig. 3.1. D; C Z? denotes the definition domain of I:

D;cz?* — {0,1,...,N}
I
p — I(p)

The points of the initial set, S C Dj, are supposed to take discrete values in the range
[0, N — 1], N being an arbitrary positive integer, and all other pixels p are arbitrarily set to
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Figure 3.1: An example of initial set

the highest value N:

) sp if pesS
I(p) = { 0 otherwise

The purpose is to determine the numerical values at the interpolated positions (the pixels set
to N) by using the known values at the points of the initial set. In other words, we want to
find an exact interpolant R : Dy — {0,1,..., N — 1}, such that:

R(p):{sp if peS

Tp otherwise

The interpolant must satisfy a number of conditions which, among other things, make
it relate naturally to the initial data and make it reasonably smooth, so that there is a
good chance that the reconstructed image looks very much like the original one from which
the initial values where drawn. Sibson [106] has outlined some desirable properties of any
scattered data interpolation method:

1. The interpolant should be at list continuously differentiable (C'). C! functions are
visually smooth and have smooth contour lines. Functions which are not continuously
differentiable do not look smooth. Higher-order smoothness properties than C'' do not
appear to be detectable by the eye except in special cases.

2. The dependence of the interpolant on the initial values should be very simple; it is better
if it can be actually linear, so that if, for example, all the initial values are multiplied
by a scalar, the interpolant is also multiplied by that scalar.

3. The dependence of the interpolant on the positions of the initial pixels should be rea-
sonably well-behaved; at least, continuity is desirable, so that the interpolant does not
jump from one state to another in response to a small change in the values or positions
of the pixels of the initial set.
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4. The interpolant should be localized, in that in some suitable sense only initial pixels
which are reasonably near neighbors should influence the interpolated value at a given
point.

5. The method should be computationally feasible on a reasonably large scale. Localization
can allow very large problems to be split and the results fitted together.

6. Finally, one should expect the interpolation method to recover exactly some simple
functions such as constants, first degree functions and perhaps quadratic functions.
The more ambitious interpolants in this sense are less localized.

3.2 Existing interpolation methods

Interpolation from sketch data is difficult using simple linear interpolation filters because
of the high dependency of the result with respect to the spatial distribution of the initial
pixels. For instance, cubic B-splines in two dimensions [82] are attractive candidates for
image interpolation because of their properties of continuity and smoothness at sample points.
Splines do perform well for regular sampling grids, but they should be adapted by some means
to the geometry of an arbitrary distribution of sample points. An overview of some techniques
proposed to solve the problem of scattered data interpolation is given below.

Linear diffusion methods

Several authors [12], [40], [1], [85] have proposed methods based on successive over-relaxation
as a solution to the interpolation problem. These methods consist of an iterative smoothing
by means of linear filtering. The values of the pixels of the of the initial set are kept unchanged
through the filtering process. The evolution of the image with the successive iterations along
the time can be described as a discrete approximation to the heat conduction (or diffusion)
equation or by means of partial differential equations (PDE’s) [100]. The progressive smooth-
ing is interpreted as a diffusion process whereby the amplitude values at the initial points
are diffused into the areas to be interpolated. This fact has an interesting connection with
curve/surface evolution theory in computer vision. It has been shown that the number of
extrema of a given function can never increase over the time provided that the evolution is
governed by the heat equation [52]. This means that new structures cannot be generated and
the interpolated image will only contain the contours present in the initial set, thus satisfying
the smoothness constraint imposed to the interpolation [12].
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Figure 3.2: Typical kernel used for diffusion processes

Linear diffusion methods result in very smooth image reconstructions from the initial set.
However, the main drawback of these methods is the high computational load, which strongly
depends on the configuration of the initial set. The practical implementations make use of
iterative space-variant filtering operations that converge rather slowly to the final interpolated
image. A typical filter kernel used for interpolation by diffusion methods is shown in Fig. 3.2.
Convergence is guaranteed for values of the relaxation parameters 0 < a < 2. Computation
times of more than one thousand seconds on computer workstations have been reported for
the interpolation of a single 256 x 256 image [85]. In order to speed up the convergence of
the iterative smoothing algorithm, Carlsson [12] proposes the use of multi-resolution grids to
reduce the average distance between the points of the initial set in the first iterations of the
diffusion process.

Methods based on distance transformations

A second approach to the interpolation problem is to use a purely geometric process, as the one
proposed in [110]. This is a contour-specific technique based on distance transformations. It
was initially developed to interpolate topographic surfaces from level lines in order to produce
raster spatial distributions of terrain altitudes, called digital elevation models (DEM’s). In
this framework, the mentioned technique results particularly efficient. Efficient algorithms
were proposed in [110] for implementation. The author reported execution times of 200 s
for the interpolation of a entire 512 x 512 input image of contour lines. In addition to the
improvements in computational efficiency, this technique produces better spatial distributions
than other geometric processes intended for the interpolation of DEM’s.

The interpolation based on distance transformations is computed by a linear combination
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of the values h; of the connected components of constant value of the initial set. These
values are weighted by the inverse of the distance d; from the connected components to the
interpolated position. That is [110], [95]:

oo 2ihi/di (3.1)
> 1/ di

This equation assumes a constant slope of the interpolated function along the line linking a

pixel to the components of the initial set. The distance function was proposed to be computed

by means of geodesic distance transformations in a Euclidean metric, what enabled the precise

calculation of distance values for all the pixels to be interpolated whatever the structure of

contour lines.

In practice, the implementation of this ‘geometric’ interpolation algorithms relies on the
generation of a distance map starting from each connected component. However, if there is a
large number of such components in the initial set (or if the pixels of the connected components
do not have constant amplitude values), the computation time spent in the generation of the
distance maps from each connected component of constant value may be rather large.

The method of inverse distance weighting was proposed as an interpolative coding tech-
nique for image compression in [68]. A generalization used to estimate a grey level function
starting from an arbitrary set of connected components of constant value (and not only from
the level lines of the original function) has been reported in [95].

Finite element methods

Another solution to the interpolation problem relies on a finite element approach [106]. The
original image can be split up into polyhedral cells containing the initial points, for instance
using Dirichlet tessellation/Delaunay triangulation algorithms. Then, the interpolation can
be performed by fitting together smooth functions across the cells, known as finite elements
or shape functions.

The technique employed for the reconstruction of the cells of the ‘active mesh’ scheme
reported in [123] in intra-frame mode is an example of interpolation based on the finite
element approach. In this example, the nodal positions and their pixel values form the initial
set. This method is suitable for initial sets consisting of isolated points, where a tessellation is
straightforward, but not for arbitrary initial sets with groups of connected pixels of different
amplitudes, as in the image shown in Fig. 3.1.
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Natural neighbor interpolation

Other methods intended to solve the problem of scattered data interpolation from arbitrary
initial sets have been discussed by Sibson in [106]. Methods such as kriging [8] or natural
neighbor interpolation also present the problem of a high computational load. Using natural
neighbor interpolation, Sibson reported computation times larger than 10 seconds for raster
sizes of only 25 x 25 [106, p. 33].

In particular, the natural neighbor interpolation method has been used by Robinson for
image coding in [90], and he concludes his paper proposing the development of more efficient
interpolation schemes as a future line of research.

3.3 The morphological interpolation technique

The target of the morphological interpolation algorithm is to approximate the amplitudes of
the unknown pixels of the image by fitting a surface on a subset of pixels of known values (the
initial set). Such surface is constrained to be maximally smooth between the known pixels,
in the sense that pixel to pixel variations in the interpolated area should be minimized.

A suitable strategy for spatial interpolation from sparse sets is the geometric approach
of the methods based on distance transformations. Assume that the initial set is composed
of the connected components R; of known amplitude values (h;) shown in the schematic
representation of Fig. 3.3. As defined by eq. 3.1, the interpolation at the unknown points z
may be computed as the average of the amplitudes of the connected components weighted
by the inverse of the distances d; to each of them. With such weighting, the amplitudes
of the nearest components have stronger influence than those of the distant ones, and the
interpolated amplitudes change slowly in the areas in between.

3.3.1 Geodesic distance weighting

The use of geodesic distance transformations has been proposed for the distance weighting
factors d; of eq. 3.1 [110]. The geodesic distance is defined in this case within the set of
unknown pixels, i. e., as the length of the shortest path joining two points which is completely
included in this set. An important advantage of the geodesic distance for interpolative coding
purposes is that it allows the preservation of the transitions imposed by the initial set. This is
illustrated as well in Fig. 3.3. Let us suppose that the brightest component Ry represents the
upper edge of a spatial transition. The darkest component R3 represents the lower edge. The
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Figure 3.3: Interpolation of pixel & by inverse distance weighting

influence of the amplitude values of the lower edge at pixel x is given by the inverse of the
geodesic distance ds, (dashed line), which is larger than the Euclidean distance d3. Therefore,
the interpolated value at pixel x will be mainly influenced by the initial pixels of the upper
edge (component Rs) given that the weights assigned to Rs —located on the other side of the
transition at a larger geodesic distance— will be much smaller. As a result, the use of the
geodesic distance allows the preservation of the transition indicated by the two components
Ry and Rj3, corresponding to the upper and lower edges.

3.3.2 Two-step iterative algorithm

As pointed out in section 3.2, interpolation methods based on distance transformations re-
quire the generation of a number of distance maps equivalent to the number of connected
components of constant amplitude value present in the initial set. For an initial image as
the one shown in Fig. 3.1 (p. 36), where amplitude values are not constant between neigh-
boring pixels, the implementation based on distance maps is rather inefficient. Furthermore,
the larger the number of pixels contained in the initial set, the longer the computation time
required for the interpolation, what does not seem to be reasonable.

An alternative interpolation algorithm has been investigated as a solution to the problem
of spatial interpolation in such cases. Morphological interpolation approximates the result of
inverse distance weighting methods by means of an efficient two-step procedure. The proposed
implementation handles at the same time both position and amplitude information of the
pixels of the initial set. It performs an intuitive smoothing of the areas to be interpolated
without the need to generate distance maps (which were obtained from position information
only). The resulting interpolation is not so smooth as in the linear diffusion case but, as will
be shown in the examples, the smoothing is sufficient for application in the framework of
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Figure 3.4: A simple initial set with two components of constant value

interpolative coding techniques.

Starting from the set of initial pixels, the two steps of the morphological interpolation

algorithm, namely geodesic propagation and smoothing, are successively iterated until con-
vergence. A very simple example of initial set has been chosen in order to illustrate the
description of the algorithm. It is shown in Fig. 3.4, and consists of two small geometric
figures of constant grey level. Of course, this is an easy case for the interpolation based on
distance maps. It has been chosen for a more clear illustration of the morphological interpo-
lation algorithm and to make possible the comparison of the performance of both methods.
The morphological interpolation technique will be applied afterwards to the initial set that
was presented in Fig. 3.1. Later in this chapter, examples with more complex images will be
shown.

e Geodesic propagation step

Instead of computing maps of geodesic distances from all the unknown pixels to ev-
ery point of the initial set, the amplitude values of the known pixels are propagated
‘geodesically’ to fill the empty areas of the image. Fig. 3.5 shows several intermediate
images corresponding to the geodesic propagation step.

The geodesic propagation is implemented by means of a FIFO queue. First, the initial
image is scanned in order to find all the ‘empty’ neighbors of the initial pixels (at geodesic
distance 1). The grey level value of the neighbor in the initial set is given to each one
of these pixels and then its position is put into the queue. If the pixel happens to
have more than one neighboring initial pixel, the amplitude is chosen randomly among
them. During the propagation, one pixel is extracted from the queue and its amplitude
is propagated to all the empty neighbors whose locations in turn are put into the queue.
The process stops when the queue is empty. Therefore, each pixel is treated only once
in order to perform a complete geodesic propagation.

Progressive smoothing step
At the positions where two or more propagation fronts originated from initial pixels
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of different amplitudes meet, the process stops and a false transition is created. The
false transitions appearing outside the set of initial pixels are smoothed in the second
step. The morphological Laplacian? is used as a transition detector in order to obtain
these false transitions. Pixels on both sides of the false transitions compose the set of
secondary pizels. A grey level value equal to the average of the intensity values on both
sides of the transition is then assigned to each secondary pixel. This is the smoothing
step. Secondary pixels will be used in the next iteration of the algorithm in order to
smooth out these transitions.

The position of the false transitions is actually known a priory from the positions of the
initial set3. In a more complex initial set where these components may not have constant
amplitude values, the morphological Laplacian performs a more efficient detection of the
false transitions than if they were to be tracked through the propagation process. In
addition, a threshold may be employed to locate only the false transitions with a large
amplitude step.

e Jteration
Then, a second iteration is performed: the propagation step propagates the grey level
values from the sets of initial and secondary pixels. The propagation creates new
false transitions which define a new set of secondary pixels where grey level values are
smoothed again. Note that this new set of secondary pixels generally does not include
the previous secondary pixels. This process of 1) propagation of values from initial and
secondary pixels, and 2) smoothing of the grey levels at the false transitions, is iterated

2See appendix A for the definition of the morphological Laplacian

3In such a simple case as the initial set of Fig. 3.4, the false transitions form the geodesic ‘SKIZ’ of the
complement of the initial set, i. e. the boundaries of the geodesic zones of influence of the connected components
of the initial set.

distance 4 distance 12 distance 24 (distance 72)

Figure 3.5: Intermediate images and result of the geodesic propagation



44 CHAPTER 3. MORPHOLOGICAL INTERPOLATION

until convergence. Fig. 3.6 shows several iterations of algorithm. Please observe the
progressive smoothing of the false transitions. After a few number of iterations, the
algorithm quickly converges to the final interpolated image.

3.3.3 Evaluation of the interpolation results

The interpolation result presented in the last row of Fig. 3.6 is very similar to the results
obtained with other methods. For comparison, the interpolations with linear diffusion and
inverse distance weighting (through the generation of distance maps) are shown in Fig. 3.7.
To better appreciate the similarity, the difference images are shown in Fig. 3.8, stretched
from £32 to £128 and shifted by 128. The differences are partly due to numerical errors
(the calculations have been made with integer values) and to the fact that the morphological
interpolation algorithm does not iterate until idempotence. It is stopped when the difference
between two iterations is smaller than a given threshold. The variances of the difference images
are given on top of each image. Taking as a reference the linear result, the morphological
interpolation and the interpolation obtained with distance maps are the most similar.

The interpolation for this simple example is obtained more efficiently with the methods
based on distance transformations than with the proposed algorithm and, clearly, in both
cases more efficiently than in the linear diffusion case. However, this simple initial set image
was only chosen to illustrate the description of the algorithm. The initial sets of interest would
rather be like the one presented in Fig. 3.1, i. e. composed of linear features whose pixels do
not have constant amplitude values. In such case, the methods based on the generation of
distance maps would not be very efficient. The techniques employed in interpolative image
coding with these images (sketch data) are usually based on linear diffusion algorithms.

The two steps of the morphological interpolation algorithm for the initial image shown
in Fig. 3.1 are illustrated in Figs. 3.9 and 3.10. Notice that the propagation fronts generate
surfaces with a certain degree of shading, due to amplitude changes along the lines of the
initial set. In this case, interpolation algorithms based on distance transformations should
have computed as many distance maps as connected components of constant value exist along
each line. On the other hand, the morphological interpolation algorithm can be applied as
before, and convergence is attained even with a smaller number of iterations than in the
previous example of Fig. 3.4.

The interpolation result is compared in Fig. 3.11 with the interpolation resulting from
linear diffusion techniques. Some slight differences can be observed between these images. It
can be said that linear diffusion interpolation looks ‘smoother’ than morphological interpo-
lation, but the smoother look of linear diffusion results has been reported by some authors



3.3. THE MORPHOLOGICAL INTERPOLATION TECHNIQUE

1st iteration

2nd iteration

3rd iteration

4th iteration

16th iteration

Figure 3.6: Smoothing iterations: left, initial and secondary pixels; right, propagation

initial and secondary

(from the initial set)

A AL
REEEEy

propagation

first propagation

2nd propagation

3rd propagation

4th propagation

5th propagation

16th propagation

45



46 CHAPTER 3. MORPHOLOGICAL INTERPOLATION

morphological (M) distance maps ( linear diffusion (

Figure 3.7: Comparison of interpolation techniques

-M Var 374 L- var 396 M- var 717

Figure 3.8: Differences between the interpolated results of Fig. 3.7
(the images are stretched from +32 to £128 and shifted by 128)
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Figure 3.9: Geodesic propagation in a natural image: initial pixels and intermediate images
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Figure 3.10: Three iterations (2nd, 4th and 8th) of the progressive
smoothing step in a natural image. Left image: result of the first
geodesic propagation, middle column: initial and secondary pixels,
right column: geodesic propagation from these pixels
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Figure 3.11: Comparison of morphological interpolation and linear diffusion results

[24] as a reconstruction artifact called ‘china doll’ appearance. The morphological interpo-
lation algorithm has been forced to stop the iterations before idempotence in order to avoid
such undesired effect. Apart from this, the results obtained with both techniques are very
similar from the perceptual point of view in most images. Therefore, for interpolative coding
purposes, the slight differences in reconstruction quality are not a distinctive property.

Algorithm efficiency

The ability to handle simultaneously the positions and amplitudes of the pixels of the initial
set permits the application of the morphological interpolation method on any arbitrary dis-
tribution of pixels. Actually, the computation time decreases as the number of initial points
increases. This behavior is also found in interpolation algorithms applying linear diffusion.
However, morphological interpolation is much faster than linear diffusion algorithms.

The efficiency of the morphological interpolation algorithm in terms of computational load
is illustrated in tables 3.1 and 3.2. Comparative figures of execution time* are given for the
previous examples, both for the morphological interpolation algorithm and for interpolation
by linear diffusion. Please notice the drastic reduction in the number of iterations needed for
the morphological technique. Each pixel of the image to be interpolated is treated hundreds of
times less. Furthermore, each iteration of the morphological interpolation does not require any
multiplication, decreasing the time of each individual iteration compared to the linear filtering
technique. This explains the reduced execution time of the described non-linear interpolation
process. Clearly, there is no need of multi-grid techniques for speeding up convergence when

4Note: CPU times were computed on a Sun SPARC10 workstation
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Table 3.1: Execution times of morphological interpolation and linear diffusion (Fig. 3.6)

Interpolation technique: Execution time [sec] No. of iterations
linear diffusion 312.8 4980
multi-grid diffusion 53.3 equivalent to 795
morphological interpolation 2.8 16

Table 3.2: Execution times of morphological interpolation and linear diffusion (Fig. 3.10)

Interpolation technique: Execution time [sec] No. of iterations
linear diffusion 458.3 2980
multi-grid diffusion 60.3 equivalent to 376
morphological interpolation 2.4 13

the morphological interpolation algorithm is used.

3.4 Interpolation and sketch image coding

Several approaches using interpolative coding techniques for ‘perceptually motivated’ com-
pression applications have been reviewed in chapter 2. Perhaps the most well known being
those of Carlsson [12], Ran and Farvardin [86] and Robinson [90]. The underlying image model
is based on the perceptual concept of the ‘raw primal sketch’ [66]. The coded information
(sketch data) consists of the geometric structure of the sharp transitions and the amplitudes
at the edge pixels of such transitions.

For very low bit-rate applications, the decoder has to reconstruct the smooth areas of the
image using only the coded sketch data. The reconstruction process is performed from this
arbitrary initial set by means of a scattered data interpolation technique. As interpolation
algorithms are designed to approximate the areas spanning among transitions by ‘smooth’
functions, they do not render the fine textures adequately. For coding applications at higher
bit-rates, the residual texture information is separately coded by means of a waveform coding
technique, for instance, pyramidal, transform or subband coding, in a different component of
the image model.
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The performance of such perceptual model has been thoroughly investigated [86], proving
its utility for most coding applications and showing subjective improvements over DCT-based
methods, such as JPEG, at low bit-rates. However, one of the important drawbacks is the
large computation time spent in the interpolation process. Morphological interpolation is
proposed as an efficient alternative for fast reconstruction from sketch data that gives similar
interpolation results.

3.4.1 The problem of finding the optimal initial set

Robinson and Ren [91] have developed optimization algorithms aimed at the solution of the
distortion-constrained and sample-constrained problems of interpolative image coding. The
distortion-constrained problem consists in finding the minimum number of sample points nec-
essary to obtain a reconstruction of the original image by interpolation within a given error
bound. The sample-constrained problem can be stated in a similar way: to seek out the posi-
tions of a constrained number of samples that yield the optimal interpolated reconstruction
in the mean squared error sense.

The solution to these problems obviously exists, but it is hard to obtain. Global op-
timization of the initial set is infeasible, due to the huge number of possible combinations
that should be tested, even for a small image. The solutions proposed by Robinson and Ren
are heuristic-driven search schemes. In the sample-constrained case, starting from a given
sampling structure, they propose a sequential algorithm that moves sample positions in order
to improve monotonically the signal to noise ratio (SNR) of the interpolated image. In the
distortion-constrained case, an iterative sample removal procedure is used to minimize the
number of samples for a given SNR. These algorithms provide good results with confidence
of near optimality.

The observation of the behavior of sample placement optimization algorithms confirms
that transition points are important for the sampling of a two-dimensional signal. The best
candidate sampling structures (initial sets) for image interpolation are located at points with
largest curvatures. Actually, the extrema of the second derivative is often a superset of the
initial pixels resulting from these optimization algorithms [91].

However, a scattered sample representation relying on these results cannot be used straight-
forward for an economical representation of the image. In terms of raw data, the storage
required for the amplitude values and locations of the pixels of the initial set would be larger
than the one required for just the values of the original image.
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Figure 3.12: Location of edge brims using Laplacian extrema.
Left: upper and lower brims. Right: morphological Laplacian of
the cameraman image (Note: mid grey corresponds to zero level)

A sample experiment

As pointed out in appendix A, an estimate of the signal second derivative can be computed
using the morphological Laplacian. This is a non-linear approximation to the Laplace operator
in continuous space that was first studied in [116] for edge detection. The morphological
Laplacian is greater than zero at the lower edge of the transitions and smaller than zero at
the upper edge. It cancels out in flat surfaces or slanted planes without convexity changes.

The extrema of the second derivative locate the points with largest curvature values. These
points occur at the upper and lower sides of the transitions, bringing information about the
transition width and the intensity change. The left drawing in Fig. 3.12 is an illustration of
the one-dimensional case. In the two-dimensional case of the image cameraman (Fig. 3.12,
right), the set of points where the morphological Laplacian reaches significant values mainly
corresponds to the perceived image contours.

The strategy of selecting pixels with large curvature values for interpolative coding was
proposed by Carlsson in [12], and has been employed later by several researchers [25], [15],
[13], [90]. The results of the previously mentioned optimization algorithms also suggest the
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validity of such strategy for the initial set.

The following experiment has been carried out for a close examination of this idea. In the
left image of Fig. 3.13, a set of pixels having absolute values of the morphological Laplacian
above a certain threshold is shown. If we attempt to reconstruct the rest of pixels of the
smooth areas in between, the result will be the one presented in the right image. Morpho-
logical interpolation has been used as the reconstruction technique but in this section we will
concentrate on the selection of the pixels for the initial set.

About one tenth of the pixels of the original cameraman have been used as initial pixels
for the interpolation result shown in the example. The peak signal to noise ratio (PSNR)
of the interpolated image is only 23 dB but the subjective quality is not bad. This may be
explained because our attention is primarily drawn to the strong transitions which have been
correctly placed and reproduced.

This experiment suggests that it is possible to obtain a smooth approximation of the
original image from the amplitudes and positions of pixels having large curvature values.
Furthermore, the morphological Laplacian performs as an effective enhancement operator for
the detection of such set of initial pixels. Some alternatives of initial sets will be proposed in
the following which are more suitable for coding purposes than a simple thresholding of the
Laplacian image.

3.4.2 Application to the coding of the primary component

The former example has shown the possibility of performing interpolative coding from a set
of initial pixels with large Laplacian values. However, the application of this idea to image
coding relies on the selection of a proper set of initial pixels. The initial set should lead to
a compact representation and, at the same time, allow a good approximation of the original
image by interpolation. In the current section, two coding strategies using morphological
interpolation are presented. In the first one, the initial set consists of isolated points, whereas
in the second one the components of the initial set are networks of lines.

Coding by isolated points

This example deals with an image representation involving isolated points. Here, the objective
is to select the smallest number of points leading to a good restoration of the image. One
possible solution consists in using an iterative selection process.

In the first iteration, the pixels of absolute maximum and minimum amplitudes are se-
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Figure 3.13: Morphological interpolation from pixels with large
curvatures: left, initial image (10% pixels); right, interpolation
result
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Table 3.3: Compression ratio for the example of coding by isolated points

Iteration No. of points Compression
1 10 451
10 55 125
25 93 75
50 183 40
75 270 30
100 382 20

lected. A first reconstruction by morphological interpolation is performed and the residue
with the original frame is computed. From this residue, a second set of maximum and min-
imum points are selected. They are used together with the first set of pixels to compute a
second restoration. This process is iterated in order to reach a sufficient quality of the re-
stored image. Fig. 3.14 illustrates various iteration steps. The iterative selection process has
been performed using the small image of Lenna’s face to avoid the computational load of the
repeated interpolations from a small number of initial points in a larger image. In this case,
the computational load increases exponentially with the image size, and even morphological
interpolation would require large interpolation times. The whole simulation of 100 iterations
for this small image was performed in a CPU time of 165 s in a SPARC10 workstation. The
iteration numbers of the presented images are respectively of 1, 10, 25, 50 75 and 100. For
each iteration, initial pixels, interpolated image and residue are shown. Notice how isolated
points are introduced and the progressive quality improvement in the interpolated image.

The coding of the positions of the isolated points is performed by an Elias code [29]. The
amplitude values are simply stored in a buffer following the scanning order and entropy coded
by arithmetic coding [126]. Table 3.3 gives the number of isolated points together with the
compression ratios for the reconstructions shown in Fig. 3.14.

Coding by maximum and minimum curvature lines

The drawbacks of the former strategy are, on the one hand, the high computational load of the
iterated reconstruction processes —even using morphological interpolation— and, on the other
hand, the fact that for more complex images requiring a larger number of initial points for
a faithful reconstruction, the representation consisting of isolated points may not be efficient
at all. Nevertheless, this example has shown that the set of initial points leading to a good
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Figure 3.14: Morphological interpolation from a set of isolated
points. For each row: initial set (left), interpolated image (center)
and residue (right). Compression ratios: 451, 125, 75, 40, 30, 20
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restoration of the image by interpolation are somehow aligned in the areas of largest curvature
values, as suggested by the experiment of Fig. 3.13. The advantage of the placement of initial
samples in these areas was also inferred from the behavior of the optimization algorithms
studied by Robinson and Ren [91].

A natural coding strategy could be to group these points in a network of lines. Networks
of lines are interesting for coding because they can be efficiently coded using derivative chain
code techniques. The lines of largest curvature are called upper and lower edge brims by
some authors [85]. Edge brims may be be obtained as the ‘crest’ and ‘valley’ lines of a
second derivative operator. These lines do look promising for the characterization of visual
information from a perceptual point of view. Robinson [90] claims that edge brims are less
noisy than Laplacian zero-crossings, which follow the transition midpoints. Edge brims do
not show so many random fluctuations because they do not represent a very rapid change in
value with respect to position as transition midpoints do.

Extraction of ‘edge brims’ using the watershed

The edge brims of an image may be detected by computing the watershed of the Laplacian
and of its dual with an appropriate set of markers. The watershed operator is one of the
major decision tools in mathematical morphology. It is aimed precisely at the detection of
the crest (or divide lines) of the image, seen as the surface of an imaginary relief. A large
number of algorithms have been proposed for the efficient computation of the watershed. The
most efficient ones are based on immersion simulations and rely on hierarchical queues. The
reader is referred to [121] for further details on the watershed algorithm.

In order to obtain the edge brims, the watershed is applied twice to the Laplacian image
with a set of markers formed by the union of two of the following sets:

- markers of the connected components of negative Laplacian values
- markers of the connected components of positive Laplacian values
- markers of the flat areas of the original image larger than a given size

In the case of the cameraman image, the morphological Laplacian has been already shown
in Fig. 3.12 (right). The sets of markers are presented in Fig. 3.15. For the extraction of
the lower brims (divide lines of the Laplacian), two first sets of markers are used (flat areas
and Laplacian valleys). For the upper brims (valley lines of the Laplacian), the markers are
formed by the union of the first and the third set (flat areas and Laplacian peaks) and the
watershed is applied on the dual of the Laplacian image. The last image of Fig. 3.15 shows
the result of the two applications of the watershed. The white and black lines correspond,
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respectively, to the crest and valley lines of the Laplacian or, likewise, to the positions of the
lower and upper edge brims of the initial image. Please notice that some pieces of contour
have been removed from the watershed result either because the Laplacian was not significant
enough at these positions or because the lines were too short. The necessary thresholds have
been chosen on an empirical basis. This result can be seen as a simplified version of the
Laplacian image of Fig. 3.12 with the advantage that it can be coded efficiently.

If the initial set is composed of the pixels at the positions indicated by the watershed lines
shown in Fig. 3.15 and the intensity values are approximated with first order polynomials,
the interpolation results in the right image of Fig. 3.16. The reconstruction PSNR is in this
case 20 dB, only 3 dB smaller than that of Fig. 3.13.

The geometric structure of the brim lines may be coded at low cost by means of a contour-
following technique [65]. The amplitudes of the initial pixels in these lines must be coded also
with a few number of bits. Given that intensity values along edge brims should keep rather
constant, a simple approximation may be employed to code the values within each brim line.
In the current example, a derivative chain code technique [65] has been used to code the pixels’
positions. The starting points of the open contour chains are separately coded by means of an
Elias code. The amplitude values have been coded by means of a polynomial approximation.
More precisely, the network of brim lines is broken at each triple point (points with more
than two branches). Then, the amplitudes of the pixels located under the resulting curves
are approximated by a first order polynomial. The two coefficients defining each polynomial
are quantized, entropy coded and transmitted.

In the example of Fig. 3.16, the overall bit-rate is 0.17 bits per pixel (bpp). The number
of brim ‘pieces’ is 132: 72 upper brims and 60 lower brims (displayed in black and white in
the last image of Fig. 3.15). Table 3.4 gives the proportion of this rate spent in the coding of
position (shape and starting points of coded brims) and amplitude information®.

A second example of coding by brim lines is the interpolated image Lenna’s face used to
illustrate the morphological interpolation algorithm in section 3.3. The extracted brims were
shown in Fig. 3.1 and the interpolation result in Fig. 3.10. In that case, the reconstruction
bit-rate was 0.11 bpp (21% amplitudes, 59% shape and 20% starting points).

5The number of bits per pixel (bpp) shown in the table has been computed by dividing the number of bits
employed by the total number of pixels of the image, even in the case of contour information
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Figure 3.15: Extraction of lower and upper edge brims. Upper left:
markers of negative Laplacian components. Upper right: markers
of positive Laplacian components. Lower left: markers of flat areas
of the image. Lower right: extracted edge brims
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Figure 3.16: Interpolation from lower and upper edge brims: left:
initial set; right, interpolation result at 0.17 bpp

Table 3.4: Compression rates for the example of Fig. 3.16

Type of information bits per pixel coding technique
amplitude 0.024 bpp (14%) polynomial approx.
shape 0.136 bpp (80%) chain-code
starting points 0.015 bpp ( 6%) Elias coding

TOTAL 0.169 bpp (100%) —
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3.5 Discussion

In this chapter interpolative coding techniques have been approached from the point of view
of perceptual coding by means of sketch-oriented image models. Sketch-based coding schemes
are faced with two major problems: the selection of the sketch data and the interpolation
process for the reconstruction of the image from such initial set. Two techniques based on
morphological operators have been presented intended to solve these problems: the morpho-
logical interpolation method and the extraction of sketch data from a Laplacian image using
the watershed algorithm. Up to the author’s knowledge, both solutions are computationally
more efficient than the ones reported in the literatureS. The morphological interpolation tech-
nique performs a faithful reconstruction of the smooth areas from sketch data. The proposed
method benefits from the properties of geometric interpolation methods (inverse distance
weighting) and can be applied to any configuration of the initial set (as diffusion processes)
without the large computational load of such methods. The extraction of sketch features by
means of the watershed algorithm is more efficient and robust than contour tracing methods
for edge extraction [12], [86].

The interpolation result of figure 3.16 corresponds to the strong edge component of the
perceptual model that has been proposed in chapter 2. It consists of the strong edges and
smooth areas of the image generated by interpolation from the positions and amplitudes of
the pixels of the initial set, i.e. the lower and upper brims of strong edges. The residue of this
component contains fine textures and small details. The techniques described in the following
chapters are proposed for the coding of this residue.

S Actually, the whole process of feature extraction and coding for the image of Fig. 3.16 takes 15.3 seconds
of CPU in a SPARC10. The CPU time measured only for the interpolation by linear diffusion from the same
initial set (using multi-grid techniques to speed up convergence) is of 6 min. 13 sec.
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Chapter 4

Coding of image details

In very low bit-rate image and video coding schemes, small visual features —details— are usually
lost in the coding process because they are supposed to be the least significant information
from the observer point of view. Occasionally, such details may be of great importance for the
subjective judgment of the coded images. In video-telephone sequences, for instance, small
facial shapes and shadows are specially significant even being smaller or dimmer than other
features of the image. However, if all the details were to be coded, their cost in bits would
be rather high. Let us take, for example, transform coding techniques. The coding of small
details would imply the accurate transmission of high frequency coefficients in many image
blocks. If the example taken is a segmentation-based coding scheme, without an accurate
selection procedure, the segmentation process would probably yield over-segmented images in
order to properly represent all the small details. Nevertheless, a number of meaningful details
should be coded —even at very low bit-rates— in order to match their perceptual significance
for the visual system [18]. Failure to code these details would certainly affect the perceived
quality of the reconstructed images.

Three aspects of the problem of coding small image details will be discussed in this chapter:
detail extraction, detail selection and detail coding. All these aspects are critical issues, but
the key point is the perceptual selection step. Detail selection must be performed according to
perceptual criteria, so that the system should be able to find which details are most significant
to the visual perception of a human observer. Two approaches are possible from this point of
view: one is the design of a knowledge-based coding system, intended to find specific image
details that will be important in particular coding applications, for example, the mouth or the
eyes of the speaker in video conference sequences. A second approach [14], not so application
dependent as the previous one, consists in the design of a complex perceptual criterion as a

63



64 CHAPTER 4. CODING OF IMAGE DETAILS

combination of visual parameters of the detail such as size, contrast, etc. This criterion may
be used to mark the details that would be more wisible for the observer at the lower (physical)
perception level regardless of their meaning at a higher (recognition) level. It is known, for
instance, that a simple blob can be better perceived in a flat area of the image than when it is
located over a highly textured background. The texture of the neighboring area of the detail,
as well as any other objective measure derived from perceptual considerations, is thus a good
candidate to be used as a parameter of the perceptual criterion. This second approach is the
one that will be investigated in the present work.

In the paper by Jayant et al [46], perceptual coding has been stated as an imperative
issue for the design of high compression algorithms. They put forward the need to “minimize
perceptual meaningful measures of signal distortion [...] for realizing high quality at low bit
rates”. Such measures should consider factors such as perceptual masking effects in order
to find the exact level of just-noticeable distortion that corresponds to perfect subjective
quality at the lowest possible bit-rate. In the very low bit-rate coding framework, lossless (or
perceptually lossless) coding is not the target issue. In practice, for most of the input still
images and video sequences, lossy coding becomes necessary in order to keep the coder output
at the desired bit-rate. Lossy coding is perfectly acceptable if the information to be discarded
is of little visual significance, i. e. of a rather ‘indistinct’ aspect. Defining the degree of visual
significance of each image detail —from a perceptual point of view— would be of great help
for the coding system to select the details that should be coded and the ones that should be
discarded for coding.

In this work, instead of using perceptual measures of distortion, the extracted details are
ranked according to several explicit measures of their perceptual significance. In a later step,
some of the perceptually most significant details will be straightforward selected for coding.
The empirical sense of such ranking is emphasized, but also its usefulness for the design of
high compression algorithms, where the ultimate decision about which components of the
visual content of the image must be coded depending on the available bit-rate, may be better
made with the help of perceptual measures.

This chapter is organized as follows. Section 4.1 discusses why small image details have
been selected as the target for this work and proposes a morphological method for the extrac-
tion of such features from images and video sequences. In section 4.2, the use of perceptual
criteria for detail selection is explained. Section 4.3 describes the coding techniques that
have been used for the selected details. Finally, section 4.4 presents an application of the
detail coding algorithm in a segmentation-based very-low bit-rate video coding framework.
Chapter 6 will present the detail coding technique in the unified framework of the perceptual
model defined in chapter 2.
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4.1 Detail extraction

The problem of extracting small image details from images and video sequences does not have
an obvious solution. If the discussion is placed in the framework of object-oriented coding
techniques performing image segmentation, it will turn out that small significant regions are
not easy to obtain. A segmentation algorithm will make use of certain homogeneity criteria in
order to group neighboring pixels of the image into segments or regions where the parameters
defining such criteria have uniform values [82]. These parameters often rely in statistical
measures performed over the amplitudes of the pixels of the region. When the size of the
region decreases, the number of pixels contributing to the measure of the parameters is small
and, therefore, the resulting measure is less reliable. Then, it is difficult to distinguish between
true visual details —where the measure is homogeneous and different from the neighboring
pixels— and non-stationarities of the local texture, that occur rather often inside textured
areas of natural images. Segmentation algorithms keep a weak balance between the situation
where most small details do not result in individual regions, and over-segmentation results
where in addition to true details many regions are broken due to small deviations of the
homogeneity measure.

In order to extract significant details from digital images, a technique strongly related
to the physical image structure is required. Such a technique should deal with the shapes
contained in the video signal rather than with the signal statistics for a better matching of
the visual perception process. Mathematical morphology [104] provides tools that give a good
insight into the structure of the images.

A morphological operator based on the top-hat transform [67] is able to find contrasted
details and to extract these details successfully. This operator has been applied for coding
purposes both to still images [18] and to the frames of a video sequence in intra-frame mode.
Then, its use has been extended to deal with moving details in inter-frame mode [14]. A brief
overview of the basic morphological operators that will be used in the sequel for the definition
of the detail extraction technique can be found in Appendix A.

4.1.1 Morphological operators for detail extraction

The morphological top-hat transform is defined as the difference between the identity operator
and the morphological opening or, in the dual case, between the closing and the identity.
They extract from the original image bright or dark contrasted components smaller than
the structuring element. However, the top-hat also extracts spurious components from the
contours of larger objects that have been modified by the morphological opening or closing. To
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avoid the extraction of spurious components, one may also choose the reconstruction top-hat,
computed from an opening or closing by reconstruction.

Let us call x; the values of the original image on the points ¢ of the definition space.
The morphological top-hat tht; and the dual (black) top-hat btht; are defined as follows:

thti = T; — 'Yn($1)
bthti = (pn(fL‘Z) — T (4.1)

(rec)

whereas the reconstruction top-hat tht and the dual (black) reconstruction top-hat

bthtl(-rec) are given by the following expressions:

thtz(reC) =1 — ,Y(rec) (%(%),%)
btht\") = o(re9) (5, (2;), 2:) — a4 (4.2)

A synthetic image composed of geometric elements and one frame of the original sequence
car-phone are shown in Fig. 4.1. The synthetic image will serve to better identify the effects
of the morphological operators in the natural one. Figs. 4.2 and 4.3 respectively present
the smoothing characteristics of the morphological open-close filters ¢y and the open-
close by reconstruction ("¢9)~(7¢) and the corresponding top-hat operators Id — ¢y and
Id — p(rec)y(rec)  Notice the changes produced by morphological open-close filters along the
contours of the large objects that remain after the filtering stage in the left images of Fig. 4.2.
This produces spurious components in the morphological top-hat that do not correspond
exactly to ‘objects’ in the image. Rather they are part of larger objects, as the small extensions
of the contours in the synthetic image or the seams and the shoulders of the jacket in the
natural one. These spurious components may not be considered ‘true’ image details. If
the reconstruction top-hat is used, the contour shapes of large objects are preserved, but
some shapes of the extracted details remain sometimes visible on the filtered image after
the reconstruction process. They simply get the same grey value as the neighboring objects,
becoming an extension of them. This effect is clear in the filtered images of Fig. 4.3. There
has been an incomplete extraction process for the details of the synthetic example and, for
instance, the tree that can be seen through the window of the car gets the amplitude level of
the bushes in the background.

In order to overcome the drawbacks of both top-hat operators, a new morphological trans-
form has been proposed by Meyer in [68]. It is based on the detection of ‘true’ details from
the reconstruction top-hat and the computation of its real amplitude values from the mor-
phological top-hat. A marker image indicates the position of the pixels of the reconstruction
top-hat whose amplitudes are over a certain contrast threshold A. This image is called the
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Figure 4.1: A synthetic image and one original frame of the car-phone sequence

marker of bright details mkr; and is defined as follows:

. (rec)
mk:n-—{ 255 if tht("™) > ) (4.3)

- 0 otherwise

The image of bright details detw; is then obtained by geodesic reconstruction of this marker
image under the morphological top-hat:

detw; = ) (mkr;, tht;) (4.4)

The image of dark details detb; is obtained in a similar way means of the dual operators.
Finally, the difference of detw; and detb; results in an image containing both bright and
dark details, called det;. The extracted details are thus:

det; = detw; — detb; (4.5)
and the smoothed image smt; is then computed by subtracting det; from the original:
deti = detwi - detbi (46)

The use of the reconstruction top-hat to obtain the marker images guarantees, on the one
hand, that the artifacts due to contour smoothing —not present in the reconstruction top-hat—
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Figure 4.2: Morphological open-close of size 2 (left) and morpho-
logical top-hat: Id — ¢~ (right) of the images in Fig. 4.1
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Figure 4.3: Open-close by reconstruction of size 2 (left) and re-
construction top-hat: Id — ¢(rec)y(rec) (right) of the images in
Fig. 4.1
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Figure 4.4: Smoothed image smt after detail extraction (left)
and extracted details det (right)

will not be reconstructed and, on the other hand, that the extracted details will get the true
amplitude values from the morphological top-hat. Fig. 4.4 illustrates the application of this
detail extraction operator to the original images of Fig. 4.1. It is worthwhile to observe that
it performs the detail extraction perceptually, in the sense that the extracted components
approximately correspond to perceived visual features. There are not spurious components
due to contour smoothing and the extracted details disappear completely from the smoothed
images. Moreover, in the smoothed images the locations of these details are filled up with
the amplitudes of the neighboring pixels, so that they seem to be replaced by the (intuitive)
underlying background.

4.1.2 Detail extraction from video sequences

In order to deal with moving details in video sequences, we propose the extension to the
temporal dimension of the technique for still images described in the previous section. The
details of the first frame of the sequence are obtained as explained above. Then, the extraction



4.1. DETAIL EXTRACTION 71

algorithm follows the temporal changes of the extracted details in the forthcoming frames in
inter-frame mode.

As illustrated in Fig. 4.5, in inter-frame mode some new details appear in each new frame,
some details disappear and most of them are kept but may vary their attributes of shape,
position and amplitude. The extraction process should track the preserved details in the
current frame and identify the new ones. To this end, the details obtained in frame ¢t—1 are
used as additional markers in frame ¢ for the geodesic reconstruction process defined in
eq. 4.4. Let us assume that the extracted bright details in the previous frame are denoted by
detw; ;1. The marker for bright details in frame ¢ is in this case:

(4.7)

ks, — 255 if thtg;ec)>)\ or detw;;—1 >0
b 0 otherwise

To obtain the bright details in frame t of the video sequence the marker is reconstructed under
the top-hat as in eq. 4.4 (dark details will be obtained, as usual, by the dual morphological
operators):

detw; ; = ’y(rec) (mkri ¢, tht;+) (4.8)

The target of this marking is twofold: on the one hand, it allows to follow each particular
detail through the temporal dimension by means of an additional sequence of label images.
This labeling will be explained in more detail in the sequel. On the other hand, the marking
contributes to the temporal stability of the extraction process, because it forces the continua-
tion of the old details in the current frame. Of course, if any of these details is not present any
more, its reconstruction will not be possible because it will not appear in the reference image
tht; ;. The marking is necessary just in case the amplitude of an old detail goes below the
threshold A but does not disappear (simply becomes dimmer). Such detail, that would not
be extracted in intra-frame mode, will be obtained now in the current frame and its temporal
continuity will be kept.

Notice that, in the previous discussion, one important assumption has been made about
the temporal connectivity of details: two bright (or dark) details extracted from consecutive
frames are supposed to be the same if they are ‘connected’ through the temporal dimension.
That is, if both details were projected into the same temporal plane, let us say in ¢t = 0,
they would have at least one pixel in common. This temporal connectivity criterion is rather
simple, but it is efficient to decide whether a particular detail continues in consecutive frames.
Nevertheless, it prevents fast moving small details from being connected through consecutive
frames and, thus, from being extracted as only one feature across the time dimension. The
minimum speed in pixels per frame at which a moving detail will be disconnected is precisely
its width in the direction of the movement. Actually, the extraction of fast moving details
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Figure 4.5: Illustration of the temporal variation of moving video details

will not be a great problem, because they will be extracted as separate new details if they are
significant enough. Motion information obtained from the evolution of the details in previous
frames could be used to connect such details at the expense of a considerable increase of the
complexity of the extraction method.

A second possible problem regarding temporal connectivity comes up when one detail is
split into two or more spatially disconnected components in the new frame. Then a decision
has to be made in order to choose which one will be taken as the continuation of the same
detail in the current frame and which one will be assumed to be a new detail. A simple
similarity criterion such as the number of common points of the projections in ¢ = 0 of these
components and the detail in the previous frame can be used in this case.

4.2 Perceptual ranking and selection of details

In most natural images, the number of details extracted in each frame is often large. However,
not all the extracted details are of equal importance in terms of their contribution to the
perceived image quality. As pointed out in the introduction, the coding scheme must be able
to identify and code those details that are the most significant to the human eye. Therefore,
the detail selection step should be performed according to perceptual criteria. The available
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bit-rate at the output of the coder sets a severe limit on how many details can be coded
by the system. In very low bit-rate video coding, the experience shows that selection ratios
of one detail out of ten are the common situation. The highest the compression, the most
important the selection step for the overall performance of the coding scheme. For instance,
if it is possible the coding of, let us say, only twelve details per frame, a powerful and robust
detail selection algorithm will be necessary in order to decide which twelve details among
the extracted one hundred and twenty are the most significant for the visual system. This
decision should be taken at each frame. The accuracy of the selection step becomes then of
capital importance for the visual quality of the reconstructed images.

The selection of visual details plays a decisive role in any object-oriented coding scheme.
Most systems perform this selection in an implicit way, by tuning certain parameters that
directly affect the feature extraction step. In segmentation-based coding, for example, if the
homogeneity criterion is relaxed, some regions are merged into larger ones, so that the decision
contours separating the ‘objects’ disappear and do not need to be coded, what implies that the
different objects are considered the same. In the present work, however, an explicit perceptual
criterion is used for the detail selection step.

4.2.1 Design of an explicit perceptual criterion for the selection step

The design of the selection step relies on the answer to the following question:
e What objective parameters make some details most visible for the observer?

Candidates for the answer are, of course, the size and the contrast of the detail. Details are
meaningful if they show some significant contrast over the background, even if they are small.
Details showing low contrast levels will be wvisible only if they have some significant size. A
possible measure of the interaction of both parameters may be given by what could be called
the energy of the detail, defined as the product of the average contrast by the size. On the
other hand, the masking effect of the surrounding background should also be considered [21].
Details located near sharp edges of the image will be masked by the strong visual effects
of such edges. The texture of the background will also affect the perception of the detail:
tiny details over smooth areas may be easily perceived, whereas a stronger visual stimulus is
necessary to excite the visual perception over a highly textured background. Furthermore, the
perception of the detail is affected by the luminance of the background according to Weber’s
law[71]. More parameters of visual details may be included in this list. Interesting ones
are the dynamics [41] of the details, considered as image extrema, and the average distance
to significant features in the neighborhood [21]. Both measures give and idea of the global
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importance of the detail with respect to other features in the image. The dynamics is able
to distinguish regional extrema from local extrema of the image, whereas large values for
the average distance indicate that the detail is important because there are not significant
features nearby that could mask its perception.

Up to now, only spatial parameters of still image details have been discussed for perceptual
considerations. When dealing with video sequences, temporal measures are of great help
to assess the perceptual significance of moving details. Details presenting a certain degree
of persistence through a certain number of frames are, of course, much more likely to be
significant than those details appearing only for a short period of time. The temporal behavior
of details would be an important parameter to be considered for the detail selection step.

4.2.2 Empirical formula for detail selection

In practice, parameters like those proposed above should merge in a complex perceptual
criterion including also mutual interdependences and masking effects [66]. With this criterion,
the coding scheme would try to imitate the performance of the human visual system in the
perceptual importance given to each detail. As the mechanism of the visual perception is very
complex and by no means completely known, only rough approximations to this target may
be attempted. The aim of this section is to prove the usefulness of such approximation for
the selection step in critical situations where severe selection of the information to be coded
must be carried out.

The extracted details are first labeled in order to take independent perceptual measures
for each one. The size of a given detail of label k in the current frame will be the number
of pixels affected by label k in the label image. The contrast of the same detail can be
measured as the average value of the pixels in the detail image det;; under the respective
label. Measures of texture activity or proximity of strong edges may be considered in the
neighborhood of each label by, for instance, taking the variance of the gradient under a dilated
version of the labels. Moreover, if the labeling is consistent with the temporal connection of
the details between consecutive frames, it is possible to keep a record of the evolution of the
parameters of each detail along the time. The cumulative measures stored in such variables
from preceding frames would serve to assess the temporal behavior of each detail.

Several tests have been made with empirical combinations of perceptual parameters. A
practical measure that gives good subjective selection results is the one described in the
sequel. Being lab;; the sequence of label images for the extracted details at frame ¢, the
following parameters may be defined in the current frame:
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e size parameter for detail k:
sizys = count;(lab;; = k) (4.9)
e contrast parameter for detail k:
congy = mean;(det;y, 1 : lab;y = k) (4.10)
e energy parameter for detail k:
Eryt = 8124 - CONgy (4.11)
e activity of the surrounding background:

Ap+ = variance; (grad; s, i : 0p(lab;¢) = k) (4.12)

The previous parameters are combined in the following expression in order to obtain an
empirical measure of perceptual significance for the detail &k in frame t:

e empirical measure of perceptual significance

Ent

At

ranky; = + B - ranky 1 (4.13)

The constant [ takes values in the interval [0,1] and is used to tune the balance between
the spatial parameters obtained for each detail in the current frame and the temporal evolution
of these parameters in previous frames. Values of [ close to one will increase the relative
importance of the temporal persistence of the detail, whereas for the value ( = 0, only the
spatial parameters measured in the current frame are used to assess the visual importance of
the detail. In intra-frame mode 3 is set to 0, whereas in inter-frame mode the best results
have been obtained for values of (3 close to 1.

4.2.3 Actual selection of details

Once the empirical measure of perceptual significance ranky; has been estimated for the
extracted details of the current image, the problem of selecting the most significant ones
is already solved. Details resulting with the highest values for such empirical measure are
selected straightforward. If the available bit-rate for detail coding is high, more details will
be selected for coding, but if only a small number of them can be coded, the ability of the



76 CHAPTER 4. CODING OF IMAGE DETAILS

Figure 4.6: 150 extracted details (left), image of rank values (cen-
ter) and 19 selected details (right)

empirical ranking of details to imitate the performance of the visual perception will be really
put to test.

An example illustrating the selection from the rank values obtained with the empirical
formula of eq. 4.13 is shown in Fig. 4.6. The rank values are represented as grey level values
of the detail labels in the center image. The higher the rank, the brighter the label appears
in this image. Notice that, except for the subjective meaning of some of the details due to a
higher level of recognition, the ranking is not very far from the result of a manual classification
of the extracted details performed by a human observer according to their ‘visual’ importance.

4.3 Coding of selected details

The coding of small features in still images and small visual moving components in video
sequences is a rather troublesome task for any video coding scheme. That is the reason
why most very low bit-rate coders skip the problem of coding small details or simply encode
some rough approximation of them. In this section a proposal for the efficient coding of the
selected details is presented. The coding strategy may sometimes benefit from psycho-visual
properties in order to increase the efficiency without significant quality degradation. Three
types of data are coded for the temporal section of each selected image detail in a given frame:

- amplitude values,
- position

- and shape.
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The exact amplitude levels of small details are not very accurately perceived by the visual
system, because they are mainly formed by high frequency components and the sensibility of
the eye to these components is not very high [21]. Therefore, the amplitude levels Y, R-Y
and B-Y of the signals defining the color of the detail are PCM coded with a few bits in the
first frame where the detail appears. In the following frames, DPCM coding of these values is
performed: the coded levels are updated by computing and coding only significant variations
of the amplitude values of the detail in the current frame with respect to the previous coded
value. Finally, the coded amplitudes of the extracted details are stored in a buffer in the
order of the details labels and an arithmetic coder is applied for the entropy coding of the
symbols of this buffer.

The bulk of the coding effort, however, is devoted to the shape and position information
of image details. In intra-frame mode, contour coding techniques like chain-code [34] may be
used to encode spatial information of detail labels. It has been found that chain-code is not
very efficient when details are smaller enough to have more contour pixels than inside (texture)
pixels. In addition, as detail contours are usually not connected among them, the coding of
the coordinates of the initial points for each contour severely penalties chain-code techniques.
Furthermore, the extension of chain-code to inter-frame mode is not straightforward.

The coding of this type of spatial information could be performed very efficiently by means
of run-length coding techniques. In particular, a modification of the relative element address
designate coder (READ) described in [130] allowing the extension of multi-dimensional run-
length coding to the temporal dimension is proposed. In intra-frame mode, READ coding
of small image details has been proved to be 20% more efficient than chain-code. READ
coding consists in coding the runs in the first line of the image and, in the following lines, the
differential runs with respect to the transition positions in the preceding line (reference line)
are encoded. A detailed explanation of this technique can be found in [130].

However, it is in inter-frame mode, where the proposed modification of READ coding
shows its utility. The displacements of detail labels between two frames are estimated to
perform motion compensation of the details before coding. Then, once motion compensation
is applied, the READ coder has several reference lines available in order to compute differential
runs for the coding of the current line:

- the previous line in the scanning order, as usual
- and the closest lines from the previous frame.

Fig. 4.7 gives an illustration of these possibilities. The reference line that produces the shorter
codes for the differential lengths is chosen and one new symbol indicating which line has been
selected as reference is introduced in the output buffer. In practice, the coder results in
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Figure 4.7: Motion compensated adaptive READ coding for image details

an adaptive READ method with several pass modes and temporal modes in addition to the
common vertical, horizontal and pass modes.

4.4 Examples of application

The detail extraction, selection and coding technique that has been presented in the previous
sections may be used as the complement of an object-oriented coding scheme for image se-
quences. A segmentation-based coding scheme will be used as the basic system to illustrate
the coding of details.

The reference coding system is based on a three dimensional morphological segmentation
algorithm. It was originally developed for still image coding [96] and later extended to video
sequences [94]. A contour-texture approach is used for the coding of the regions resulting
in the segmented sequence. In particular, it is able to produce coded sequences of different
qualities at different bit-rates.

Fig. 4.8 shows two sample coded frames for the car-phone sequence. Only the lumi-
nance component is shown, but the bit-rates include both the luminance and chrominance
components for a frame rate of 5 Hz, which is often used in very low bit-rate video cod-
ing applications. A cost-efficient texture coding technique has been used for the interior of
the regions [37]. It approximates textures of the regions by a weighted sum of orthogonal
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Figure 4.8: Two coded frames of the sequence car-phone at
21 Kbit/s (top row) and 40 Kbit/s (bottom row)

cosenoidal basis functions of low order. The sequence in the top row has been coded at 21
kbit/s: 14 Kbit/s for contour information, 6 Kbit/s for textures and 1 Kbit/s for motion. The
sequence in the bottom row has been coded at 40 Kbit/s: 28 Kbit/s for contour information,
9.5 Kbit/s for texture and 2.5 Kbit/s for motion. The rate of 30 Kbit/s has been found to
be the minimum necessary bit-rate for the system to encode significant details such as those
appearing in the face of the man. The perceptual quality improvement at this bit-rate is
significant, but the cost has been rather high.

The detail extraction, selection and coding scheme explained in this chapter has been used
to improve the perceived quality of the segmentation at a lower cost. The system carefully
analyzes the perceptual significance of each one of the new details that may be selected for
coding. This results in a high coding rendition because only the most meaningful details from
the perceptual point of view are considered. Fig. 4.9 shows the improved results obtained by
adding an average number of 20 details to the segmentation result of the top row of Fig. 4.8.
The details shown in Fig. 4.9 were coded at 4.2 Kbit/s. Table 4.1 presents the distribution
of this rate among the different types of coded information.

The reconstructed image of Fig. 4.9 has been coded using a total bit-rate of 21 + 4.2 =
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Figure 4.9: Some selected details (top) included in the coded seg-
mentation shown in the first row of Fig. 4.8 result in a subjectively
improved reconstruction at 25.2 kbit/s (bottom)

Table 4.1: Rate figures for the 20 coded details

DATA TYPE rate (kbit/s)
position (READ) 2.9
motion vectors 0.4
amplitudes 0.9
details rate 4.2

total rate (whole sequence) 25.2
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25.2 kbit/s instead of the 40 kbit/s required for the coding result of the bottom row of
Fig. 4.8. From these results it can be seen that the perceptual selection of image details
is able to increase significantly the rendition of the coding scheme. A different strategy for
quality improvement may be to employ a more complex texture coding technique in order
to improve the rendition of the regions’ interiors. Observe that this could be efficient from
the point of view of coding but presents two disadvantages: first, it would give the same
importance to all the small features that are missing in the whole image and, second, it would
introduce ‘waveform-like’ coding artifacts in the texture of the regions. The identification of
the individual details guarantees the selection and coding of each one of the missing image
features according to a complex measure of its visual significance.

Discussion

The novelty of the coding strategy presented in this chapter is precisely the study of the
visual significance of image details by means of explicit perceptual measures obtained from
objective, local properties of each individual feature. The results prove that such measures
deserve consideration in advanced coding schemes based perceptual image models. Meaningful
image details may improve the subjective quality of the reconstructed images at a minimum
cost.

Morphological operators are useful shape-oriented analysis tools that can be used in the
spatial-temporal domain for detail extraction. Once extracted, a perceptual selection is per-
formed in order to keep only the most significant details. An efficient coding technique has
been proposed for the coding of these details, which is based on motion compensation and
relative addressing run-length coding. Results using the proposed technique in a more general
three component model will be presented in chapter 6.
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Chapter 5

Region—based subband coding

Subband coding is based on the decomposition of the input image into frequency bands.
Each band is decimated and coded separately, using a quantizer and a bit-rate accurately
matched to the statistics and visual importance of that band. The use of quadrature mirror
filters (QMF) in the analysis/synthesis stages makes possible an alias-free reconstruction of
the original signal.

The main advantage of subband coding schemes is that the quantization noise generated
in a particular band is largely limited to that band in the reconstruction, not being allowed
to spread to other bands. Moreover, by varying the bit assignment among the subbands, the
noise spectrum can be shaped according to the subjective perception of noise by the Human
Visual System[46]. This leads naturally to a pleasing image reconstruction from the point
of view of perceptual image compression. In addition, the subband decomposition allows
straightforward progressive multi-resolution transmission.

The first use of subband analysis for image coding is often attributed to Schreiber [102],
who reported in 1959 the system known as Synthetic Highs, but Schreiber himself [101] cites
Kretzmer [53] as the first to use subband coding for television signals. They showed that
fewer bits per sample could be used for the higher- than for the lower-frequency bands in
most natural images. A similar scheme, the Laplacian pyramid, was presented by Burt and
Adelson in 1983 [11]. Pyramidal coding was introduced as a non-causal predictive coding
scheme, where a low-pass prediction of each pixel is obtained as a local weighted average
based on a symmetric neighborhood centered at the pixel itself. Then, the prediction error
image containing high-pass frequency information was quantized and entropy coded and the
same decomposition procedure recursively applied on the down-sampled low-pass image.

83
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Subband schemes obtained greater data compression than sequential (causal) prediction
techniques and were simpler to implement than transform techniques. However, the concept
of quadrature mirror filtering was not applied to image signals until the theoretical extension
of one-dimensional (1-D) QMF filtering to multi-dimensional signals was treated by Vetterli
[118]. In particular, the application of subband coding to images by means of two-dimensional
(2-D) QMF separable filter banks was introduced by Woods and O’Neil in [128]. The ad-
vantages of 2-D QMF filtering techniques to the subband image coding approach are based
on:

1. Subsampling the high frequency (or prediction error) images is possible in order to
obtain a critically sampled decomposition!. This reduces by a factor of 3/4 the to-
tal number of samples before quantization and coding with respect to the Laplacian
pyramid scheme.

2. The frequency selectivity characteristics of the filter bank allows the extraction of the
spatially oriented structural redundancy typically found in natural images.

These two facts definitely improved the compression ratios achieved by the pyramidal scheme,
offering superior coding performance to that of the early subband systems and bringing forth
new possibilities for directional decomposition and edge-oriented perceptual coding systems
as the one already presented by Kunt et al in [54].

Nowadays, subband coding [127] is a powerful method of image and video compression,
able to compete successfully with the well-established block transform methods which have
been the state of the art for the past two decades. Subband coding does not produce the
blocking artifacts that arise when block processing is performed in high compression transform
coders. Unfortunately, the human eye is very sensitive to this type of distortion and, therefore,
block coders are not appropriate for low bit-rate image coding. However, at low bit-rates
subband coding presents a distinct type of distortion due to the Gibbs phenomenon of linear
filters. This distortion, called ‘ringing effect’, is visible around high-contrast contours and can
also be very annoying. Although it is possible to reduce the ringing effect by an appropriate
design of the subband filters [109], [27], it is not possible to find linear subband filters without
any ringing effect.

To avoid ringing artifacts, morphological filters [132], [93] can be used. Morphological
multi-resolution analysis decomposes the image into different filtered images, each containing
objects, for instance, of a specific size or a specific contrast. The filtered images are obtained

LA filter bank is said to be critically sampled if the total number of samples in the subband signals is equal
to the total number of samples in the original signal [23]
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by simply computing the residues of a cascade of open-closings. However, its major disad-
vantage for coding purposes is that, if perfect reconstruction is required, no down-sampling
can be applied [43] and, hence, all the filtered images are of the same size as the original
image. In morphological pyramidal schemes [113], [111], down-sampling is performed after
each open-closing, but the interpolation error has to be fed back into the ‘high-resolution’ fil-
tered images in order to obtain a lossless decomposition. Nevertheless, these schemes cannot
compete with linear subband coding of images where critical sampling is performed.

Several proposals have been made of image decompositions using critically sampled mor-
phological filter banks [78], [79], [31], even preserving the perfect reconstruction property
[16], [28]. These schemes do not present any ringing effect, but the quantization on the high
resolution images obtained with morphological filters yields poorly represented textured re-
gions in comparison with their linear counterparts. To overcome such problem, an adaptive
decomposition has been introduced in [28] which selects linear filters on textured regions and
morphological filters otherwise.

In this chapter, we present a different approach that may be employed to avoid ringing
artifacts around high contrast edges. Linear filter banks (QMF) are proposed for the subband
analysis and reconstruction stages, but the filtering procedure is modified so that it can be
applied inside relatively homogeneous regions, usually separated by strong edges. Pixels
belonging to one region, on one side of the edge, will not be filtered together with pixels
of the neighboring region located on the other side. Therefore, oscillations of the filtered
image around strong edges will be less noticeable. This approach leads to feature-based [17]
or region-based [55], [5] subband coding.

One of the main advantages of subband coding over transform coding techniques is that it
makes possible to adapt the coding process over arbitrarily shaped objects extracted from each
subband. But the advantages of applying the subband decomposition inside homogeneous
regions, and the underlying perceptual model behind it, go well beyond than only solving the
problem of ringing effects.

The most significant characteristics of a region-based subband coding scheme are described
in section 5.1. The application of separable subband analysis filters on arbitrarily shaped
regions, requires one-dimensional subband decomposition of arbitrary length signals. Section
5.2 describes how to solve the problems at the boundaries of limited extension signals (such
as image regions) due to the effect of the filter when crosses the signal border (or region
boundary). Next, the quantization and bit-allocation problems are discussed in section 5.3.
The last section of the chapter, is devoted to some illustrative examples of region-based
subband coding and its performance is compared with other texture coding approaches that
have been proposed in segmentation-based compression schemes.
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5.1 Advantages of region—based subband coding

Conventional waveform coding techniques aim at the extraction of the spatial redundancy
present in natural images. Pixel-to-pixel correlation is very high inside homogeneous regions,
but not across the edges or sharp transitions. Pixel-based coding techniques generally fail
near strong edges (as conventional subband coding does) either not extracting the redundant
information or showing annoying artifacts if they try to do so. This results in low compression
ratios or in low image quality for high compression applications.

The special role of strong edges in our perception of images has been pointed out in
chapters 1 and 2. An important function of coding algorithms is to render edge information
faithfully, regardless of the fact that strong edges usually have small spatial support. Edge-
based or region-based coding techniques are proposed as a solution to this challenge. Region-
based subband analysis fully exploits the information about the edge structure of the images.
Ringing artifacts around sharp transitions are clearly diminished compared to conventional
subband coding schemes, whereas the ability of subband coding for the coding of homogeneous
regions is kept. This produces clear subjective improvements which are especially noticeable
at low and very-low bit-rates.

Both the characteristics of natural images and the perception properties of the human
eye should be considered in the design of the coding scheme. Let us cite the most significant
characteristics of region-based subband coding in this context:

e Subband analysis may be performed taking into account the proximity of strong edges.
The image signal may be filtered on one side and up to the transition, either using
space-variant filters or properly extending the signal values before filtering.

e Similarly, the quantizer steps can be varied depending on the proximity of the considered
edges. Different sets of quantizers for the image subbands can be applied as well for
regions having different contents: flat, smooth, textured or highly textured regions.

e A careful analysis of the type of information that is actually coded in the quantized
subbands of a conventional linear subband decomposition reveals that it mainly corre-
sponds to the strong transitions of the original image. The transition information is
spread over several frequency bands, resulting in an important cost for the coding sys-
tem and, in spite of this fact, the reconstruction of the main transitions at low bit-rates
is rather poor. The separate filtering and coding of the pixels at both sides of the tran-
sition will result in a reduced contribution of edge features to the zeroth-order entropy
of the higher frequency subbands after quantization, thus allowing higher compression
ratios.
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e However, the positions of the separating contours should be coded, so that at the decoder
end the synthesis filters may perform the reciprocal subband reconstruction. Of course,
the overhead contour bits will increase the bit-rate. A trade-off between small-and—
highly—homogeneous regions with many contour pixels and large—and—less—homogeneous
ones needing a smaller amount of contour information should be found. The cost of
taking into account a given contour should be considered and a decision on a rate-
distortion basis should be made in order to solve such trade-off.

e Region-based subband analysis yields a twofold decomposition: in the spatial and in
the frequency domains. Rate-constrained quantizer optimization may be performed on
both domains independently. The number of bits for coding are distributed over the
frequency bands of each region, with the only constraint of the total available bit-rate.

Therefore, the coding of the region-based frequency decomposition can be made fully
adaptive to the information contents of each region and, besides, also adaptive to the subjec-
tive perception of such contents by the visual system. The coder will be free to vary all the
parameters involved in the analysis and coding stages at the cost of some overhead informa-
tion. Namely, the type of filters and length of the filter responses, the number of recursive
levels, the structure of the decomposition for each level —i.e., the width and depth of the
frequency decomposition tree—, the set of quantizers applied to the various subbands of each
region and, finally, the bit-allocation strategy which may be modified, by varying the measure
of distortion employed, according to the perceptual importance of the region given its size,
texture contents or the strength of neighboring edges.

The issues related to filter design, quantization and bit-allocation, will be treated in the
following sections, whereas the discussion concerning the edge structure (or the partition)
considered in the spatial domain is left to chapter 6.

5.2 Subband filters and signal extension

In general, a subband coder consists of two stages: 1) the analysis filter bank along with
decimation operators, used for the filtering and down-sampling steps; and 2) a coder which
encodes the subband images for the purpose of storage or transmission by means of quanti-
zation and entropy coding. At the decoder end, the reciprocal blocks are found, i.e. entropy
decoder, inverse quantizer and the synthesis filter bank with interpolators for the up-sampling
operation. Let us consider in this section the analysis/synthesis filter bank.
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Figure 5.1: Two-dimensional subband analysis/synthesis filter bank

5.2.1 QMF filter bank

Fig. 5.1 represents a 4-channel 2-D subband analysis—synthesis system without the coding
stage. Let H;(z1,22) and G;(z1,22) be the z-transforms of filters h;(m,n) and g;(m,n) for
i = 1,2,3,4. In a relatively straightforward manner (see appendix B, section B.3), it can be
shown that the following set of conditions are sufficient for an alias-free reconstruction of the
two-dimensional input signal xz(m,n) at the receiver side:
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The set of two-dimensional filters H;(z1, z2) satisfying these conditions is known as 2-
D quadrature mirror filter bank. These filters are expressed in function of the separable
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filter H(z1,22). The separability of H(z1,z22), stated in the last equation, reduces the two-
dimensional filtering problem to one-dimensional filtering, so that conventional 1-D QMF
techniques can be used.

Appendix B is devoted to the analysis of the 1-D QMF filter bank. Quadrature mirror fil-
ters are designed to perform exact cancellation of aliasing in the reconstructed image &(m,n).
QMF’s are not perfect reconstruction filters (unless the order is one or less), but they have
linear phase and the distortion can be made very small. Other proposals of filter banks for
subband analysis and synthesis are also discussed in appendix B. The filters proposed by
Smith and Barnwell [109], called conjugate quadrature filters (CQF’s), have the perfect re-
construction property, but non-linear phase. Besides, the larger oscillations (ripples) of the
step response of CQF filters produce more ringing effects than QMF’s. Another approach,
the wavelet decomposition [88], performs a smoother (regular) filtering of the original images.
‘Wavelet’ filters present high attenuation without oscillations in the stop-band, but their cut-
off frequency is low thus resulting in a certain amount of blurring distortion along the edges.
Finally, the family of filters called asymmetrical filter banks (AFB’s) proposed by Egger and
Li [27] are linear phase and perfect reconstruction, but they have smaller frequency selectivity
and are not free of the ringing effect either.

We have chosen the set of 8-TAP QMF Johnston filters, designated as 8 A in [48], to
implement the region-based subband decomposition. The characteristics of the frequency
responses of these filters are given in appendix B. Johnston filters have been widely used
in the context of subband image coding and have good reconstruction properties. These
filters are FIR, even in length and linear phase. In addition, due to the symmetry property
of the coefficients of the low-pass/high-pass filter pairs (p. 167, eq. B.1.3), the convolution
operations can be implemented efficiently with the ‘polyphase’ structure [119], what reduces
the computational load by 50 percent.

5.2.2 2-D Separable ‘pyramid’ subband decomposition

The filters H;(z1, z2) defined by eqs. 5.1-5.4 are related through the separable filter H(z1, 22).
When these relations hold, the separability property of eq. 5.5 is a necessary and sufficient
condition for the cancellation of the 2-D aliased components (p. 173, eq. B.21). Furthermore,
separable QMF filters are much more efficient in terms of computational load.

In order to obtain a four band decomposition as the one shown in Fig. 5.1, the basic
frequency splitting step of the 2-band 1-D QMF filter bank is applied twice, along the rows
and along the columns of the input image. The decomposition of the input image can be
extended to more than four bands by repeating the analysis process on each sub-band in a
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Figure 5.2: Ten-band pyramid subband decomposition

tree-structured manner. Fig. 5.2 shows an example of a 2-D separable QMF filter bank that
provides a 10-band ‘pyramid’ subband decomposition. It is a non-uniform decomposition of
the frequency spectrum where only the lowest band is further decomposed by the 2-D QMF
system. At each level of the decomposition, the four bands are named with one letter within
the set of L, V, H and D, according to their frequency contents:

- ‘L’ stands for the low-low frequency band,
‘H’, for the high-horizontal band,

‘V’, for the high-vertical band and

‘D’, for the diagonal band.

A number following the letter indicates the decomposition level where the subband has been
obtained. As illustrated in the idealized frequency diagram of Fig. 5.3, such a cascaded
application of the QMF filter bank partitions the frequency domain into octave-spaced ori-
ented subbands. The higher frequency bands may be further decomposed as well but, for low
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bit-rate applications, a finer decomposition of the highest frequency bands leads to greater
distortion effects, whereas the compression gain obtained is not significant enough to justify
such distortion [35]. This can be explained because of the weak correlation observed in the
high-pass filtered subbands.

5.2.3 Region-based subband analysis

Let us assume now that the original image has been divided into regions, which ideally
correspond to the objects in the scene. Then, the texture inside each region may be coded
independently by a subband coding scheme. The available bit-rate may be distributed inside
each region over the different subbands, according to their frequency contents. The bit-rate
may be distributed also among the partition information and the region contents (textures),
according to their relative importance, and among the regions as well, if there exists any
criterion —subjective or imposed— that marks some of them as more relevant than the others.
The regions may be rather large, thus reducing the coding overhead of transmission of the
partition information.

As pointed out at the beginning of this chapter, from the point of view of subband coding
it is actually more interesting for the segmentation to be aimed at the location of the region
boundaries, along the sharp amplitude transitions or strong edges of the image, than at the
objects themselves. If the pixels at both sides of sharp transitions belong to different regions,
the subband coding scheme will be able to represent efficiently the remaining less important
edges and fine textures with good reconstruction quality (without significant ringing artifacts)
even at low bit-rates.

The standard filtering techniques for subband analysis and synthesis, cannot be used
straightforward to code the texture of arbitrarily shaped objects. The reason is that a k-level
decomposition requires the regions to consist of rectangular blocks of sizes a2 x 32F, where
«a and 3 are two positive integers. In such case, k steps of 2:1 critical down-sampling can
be conveniently carried out. In general, such rectangular regions will not correspond to the
shape of the objects in a scene.

The result of a segmentation process is a partition represented by a label image, with each
label corresponding to a different region. In order to perform subband analysis of a given
region, the decomposition of the label image has to be defined beforehand. The standard 2-D
separable subband filter bank decomposes the input image into four bands, L, V, H and D, in
the frequency domain, as shown in Fig. 5.3, corresponding to four 4:1 critically sub-sampled
sub-images in the spatial domain. Now, we wish to decompose the image into four bands, so
that, in the spatial domain, the sub-image corresponding to each subband is subdivided into
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Figure 5.3: Ideal partition of the frequency domain by pyramid subband decomposition
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input subbands

Figure 5.4: Decomposition of the label image

regions as well. Four ‘child’ regions of the decomposition correspond to one ‘parent’ region
of the original image. There are two conditions that the decomposition of the label of the
parent region into four child labels should fulfill:

e [t must be ‘invertible’, so that the parent label can be losslessly reconstructed from the
four children.

e The total number of pixels of the four child labels must be equal to the size of the parent
label (critical sampling condition).

This can be achieved by the method depicted in Fig. 5.4. The original label image is sub-
sampled four times by 4:1 to get the labels of the four sub-bands. The three sub-sampling
schemes used for the high-frequency sub-bands are shifted in space by one pixel either right,
down or both, so that for each block of 2 x 2 pixels of the parent label the upper-left pixel
is put into the L band, the upper-right in the H band, and so on. Notice that for such
an irregular shape (with respect to its size), the child regions are rather dissimilar, but the
total number of pixels with the given label remains the same. Moreover, since decimators
are space-variant operators, two regions of identical shape can be divided over the subband
images into different children depending on their position in the image.

The decomposition method described above guarantees critical sampling and ‘perfect re-
construction’ of the parent labels. With respect to the region contents, i.e. the texture, there
exist a number of different techniques for the extension of finite length signals that enables
to apply separable subband coding on arbitrarily sized regions. However, up to the author’s
knowledge, only one method of signal extension allows critically sampled subband decompo-
sition of arbitrary length signals while preserving the perfect reconstruction property. Making
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use of filter separability, it can be applied to arbitrarily shaped 2-D regions. This method, due
to Barnard et al [4], is a signal-adaptive symmetric extension method that will be explained
in the sequel.

5.2.4 Symmetric signal extension for perfect reconstruction
through critical sampling [4]

Separable filter banks can be used for the filtering and down-sampling of arbitrarily shaped
regions,, so that the filtering and down-sampling is performed per segment line. A segment
line is defined to be a horizontal (or vertical, in the case of column filtering) sequence of
connected pixels with the same label. Initially, a one dimensional filtering is considered, but
the results hold for higher dimensions.

Extension of 1-D finite length signals for subband coding

The problem of signal extension for subband coding of images has been considered by different
researchers [50], [108] in order to solve the following problem:

Applying subband filters directly to images, by linearly convolving the rows and
the columns and decimating, increases the overall number of pixels. The problem
is that the linear convolution of an N x N image with an L x L filter results in a
larger image of size (N 4+ L —1) x (N + L —1) with an aggregate number of pixels.
This is generally undesirable in a compression application because of the increase
in the number of samples to be coded and transmitted. The critical subsampling
principle is not fulfilled because the image is enlarged at the borders. For example,
some simple calculations show that a 10-band pyramid subband decomposition by
8-TAP QMTF filters leads to a total of 73.056 pixels to be coded for a 256 x 256
image when the L — 1 additional pixels generated at the image borders are not
truncated at each level. The increase in the number of samples is about 12 percent,
but with 16-TAP filter banks, the increase is 25 percent. Obviously, for smaller
images —as the regions obtained in a segmentation are smaller— the increase of
the number of pixels would make such coding technique completely useless. If the
number of samples is enforced to be equal to that of the input image, the subband
images must be truncated (windowed down to N x N samples) and, then, the
information loss leads to distortion of the reconstructed signal.

To alleviate this problem, the input image signal has to be extended in an appropriate
way before separable filtering, so that the information loss is minimized. Five types of signal
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extension can be considered for a 1-D signal of even length N [50]:

1. zero padding: the signal is assumed to be zero outside its support
2. circular extension: the signal is periodically replicated with period N

3. replication of boundary values: the signal is made continuous at the ends by repeating
the first and the last sample values to infinity

4. symmetric extension: similar to circular extension, but this time the period is 2IV. This
is achieved by extending the signal by its mirror image, whereby it becomes symmetric
around the boundaries, and then periodically replicating the result.

5. doubly symmetric extension: the signal is made symmetric not only in space but also
in amplitude by taking the border point as a symmetry axis in the amplitude-space
coordinates of the representation plane.

The two first methods create a discontinuity at the signal borders, whereas methods 3-5
maintain continuity. For method 5, the first derivative is continuous at the boundary as well.
It can be shown [108] that perfect reconstruction? is possible if, after filtering a signal of
length N, the low-pass and the high-pass subband signals can be determined from a subset
of N/2 samples. This is easily achieved with periodic extension methods 2-5 if linear phase
filters are used in the analysis/synthesis system®. From a frequency domain perspective,
the circular extension method can be modeled in terms of the product of DFT’s and the

symmetric extension method can be thought of in terms of a kind of 2N-point DCT [108].

The only methods that achieve aliasing cancellation are, thus, the circular extension
method (2) and the symmetric extension methods (4, 5). However, for the circular exten-
sion method, the discontinuity introduced in the borders of the signal yields artificially high
amounts of energy in the high-pass band, compromising the coding gain of the subband
scheme. On the other hand, the doubly symmetric extension presents a higher computational
load but does not show significant improvements with respect to the symmetric one. It has
been found [108] that for low-bit-rate coding applications, the symmetric extension method
performs the best.

2Tn the sense of alias cancellation and optimization of the overall response of the system, as carried out in
the design of QMF filter banks

3Given that, then, the filtered and down-sampled signals are also periodic and/or symmetric.
Some well known properties of signal theory apply here. First, the impulse response of linear phase filters
presents symmetry characteristics. It must be either symmetric (even symmetry) or anti-symmetric (odd
symmetry)[63, p. 198]. Second, the response of a linear system to a periodic input signal, is a periodic signal
as well with the same period [63, p. 309]. And, third, if the input signal is a symmetric function and the
analysis filter presents a symmetric impulse response, then the filtered signal is also symmetric. If the filter is
anti-symmetric, then the output is necessarily anti-symmetric[63, p. 43].
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Nevertheless, when the signal length is not a multiple of 2¥ and the number of samples in
the decomposition is required to be kept constant (critical sampling), none of these methods
preserve the perfect reconstruction property. The perfect reconstruction may be achieved by
the adaptive symmetric extension proposed by Barnard et al in [4]. Their signal-dependent
symmetric extension method makes possible the subband decomposition of 1-D signals of any
length N up to any level k and, in principle, up to N subbands of length 1, without losing the
perfect reconstruction property. Of course, due to the arbitrary lengths of the segment lines
obtained from the region labels, this method fits the needs of region-based subband coding.

Application of symmetric signal extension to ‘segment lines’

Although the symmetric periodic extension technique developed by Barnard et al [4] depends
on both the signal values and the properties of the impulse response of the filters, only
its implementation for a particular filter bank of separable symmetric filters will be shown
here. Let us assume that the QMF filter bank presents the symmetry properties expressed in
eq. B.1.3 of p. 167. Thus, the low-pass filter is of even length and linear-phase and its impulse
response is symmetric. The corresponding high-pass filter is anti-symmetric.

The segment lines can be divided into four classes, depending on the possible combinations
of the parity of the column (or row) number at which the segment line starts and ends. There
are two possibilities for the start- and end-points of a segment lines, namely even start/odd
start and odd end/even end. The even-start odd-end case is illustrated in Fig. 5.5.

The top rows show the original pixel values, which are denoted by lower case letters.
Outside the signal support (indicated by the lines below the values) the signal is symmetrically
extended by mirroring, which is visualized by using the same lower case letters when the same
signal values appear. The symmetry axis lies halfway between two samples. This results in a
smooth extension so that no sharp transitions are introduced.

The rows in the middle represent the filter positions for the convolution operation. The
filter coeflicients are written in upper case letters and symmetry is symbolized in the way
the letters are repeated. For each filter position, the inner product is computed with the
filter and the part of the extended signal in the top row, directly above the filter. The values
resulting from the inner products are put in the central row. For example, k is the result
of the inner product of the low-pass filter in its first position with the part of the signal
denoted by ¢, b, ...,e. The down-sampling is illustrated by the ‘asterisks’ of the central row.
The values outside the support of the down-sampled signal show which results would have
been obtained if the convolution would have been computed over more positions than those
of the down-sampled signal support. Since the filters are symmetric, it can be observed that
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Figure 5.5: Filtering a segment line with even start and odd end pixels
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no new values appear. The symmetry of the analysis signals is even for the (symmetric)
low-pass filter and odd for the (anti-symmetric) high-pass filter. Thus, perfect reconstruction
is possible because all the information in the subbands is contained in the samples of the
down-sampled signal support.

In the synthesis stage, the subband signals are extended as shown in the central rows and
up-sampled with zeros. Note that the filters are non-causal. With the proper choice of filter
delays, the total delay of the system is made zero.

Even end case Now consider that the input segment line for the current label ends at an
even position. For the explanation of this case, we will refer to Fig. 5.5 as well. According
to the label-splitting method depicted in Fig. 5.4, if sample h does belong to the neighboring
label then the rightmost sample w of the high-pass signal will be occupied by a certain
value resulting from the analysis of such neighboring label. The extension method, in this
case, consists of adding one specific sample h and, then, the signal is extended as explained
above. The value of the sample h in the extension will be chosen so that the subband sample
w (which is not coded) becomes a fixed value. This fixed value is signal-dependent and,
therefore, contains no information about the signal. As both the receiver and the transmitter
know this fixed value beforehand, it does not need to be transmitted and so, the number
of samples in the subbands equals the length of the original signal. In other words, critical
sampling is fulfilled.

The fixed value of the sample represented by w in the high-pass subband of Fig. 5.5 is a
result of the high-pass filter in the last four pixel positions, and forms a linear equation with
one unknown variable h. The value for w can be fixed to zero due to the zero mean of the
high-pass filter, so that, h is uniquely determined.

w=(-A+Bh+(A-C)g+(-B+D)f+Ce—-Dd=0 (5.6)

then,
(A-C)g+ (-B+D)f+Ce—Dd

h= A-B

(5.7)

In the synthesis stage, a zero value will be used instead of w and symmetric extension will be
performed as explained above.

Odd start case Next, consider that the input segment line for the current label starts at
an odd position. Barnard’s solution and the method presented here differ slightly in this case.
While they perform a shift to the right of the input signal in order to consider the segment
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line as an even start case, we apply the same strategy than in the previous case, but in a
somewhat different manner. The advantage of this modification will be explained below.

Referring to Fig. 5.5, if sample a does not belong to the current label, then, according to
the label-splitting method, the leftmost sample k of the low-pass signal will be occupied by
a certain value resulting from the analysis of the neighboring label. The extension method
in this case, consists of adding one specific sample a and then extending the signal as before.
The value of sample a in the extension will be chosen so that the subband sample k& (not
coded) becomes a fixed value known beforehand.

The fixed value of sample k in the low-pass subband is a result of the low-pass filter in the
first four pixel positions. Let us assume a value k = z for this sample. The sample a needed
for the extension can be computed as follows:

k=(A+C)b+(B+D)c+ (A+ Bla+Cd+De=x (5.8)

thus,
—(A+C)Yb— (B+D)ce—Cd—D
g 1A+ O (B+D)e e (5.9)
A+ B
The value for a can be fixed to any value according to the statistics of a low-pass subband
signal. If this signal is assumed to be smooth, the value for £ may be taken to be equal to its

neighbor pixel [, then

_ (~A+B-0+(A-B—D)c+(A—C)d+ (B - D)e+Cf+ Dg (5.10)
a= (A+B)— (C+ D) '

The disadvantage of this value for sample a is that 6 samples are needed, what increases the
computational load. In addition, it will be difficult to define this value for segment lines of
length shorter than 6. Given that samples f and g are at a rather large distance from sample
a, instead of their actual signal values, they may be taken to be f = e and g = d. With this,
a kind of second symmetric extension is performed inside the signal itself, and a becomes
(-A+B-C)b+(A—B—-D)c+(A-C+D)d+ (B—C+ D)e

‘= (A+B)— (C+D) (5.11)

Moreover, taking into account the values of the filter coefficients, the last term in the numera-
tor of eq. 5.11 has only one percent of the weight of the other three terms. Therefore, sample e
may be obviated and only three samples b, ¢ and d are needed. Of course, this computational
advantage will be at the expense of a certain loss, though small compared to the quantization
loss. If perfect reconstruction is required, a may always be computed through eq. 5.9. In the
synthesis stage, the value of [ will be used instead of k before symmetric extension.
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Special cases Some special cases arise when the segment line is of length N =2 or N = 1.
A detailed study of these two cases yields the following conclusions:

- For signal length N = 2, after applying the extension method, the value of the low-
pass sample results in the average of both samples and the high pass sample is half the
difference of their values.

- For signal length N = 1 and even start of the segment line, the signal cannot be further
decomposed. The extension and filtering yields its value in the low-pass band and
nothing (the not transmitted zero sample w) in the high pass. Thus, the sample is
simply copied to the low-pass band.

- For signal length N = 1 and odd start of the segment line, the label splitting method
places the label of the sample in the high-pass band. This sample is called a single.
After the extension, filtering and down-sampling the single will result in a zero value,
because of the zero mean of the high-pass filter, and, therefore, its information will be
lost.

A solution to the problem of single samples is to keep the value and copy it directly into the
high-pass band. Such sample contains low-pass information, and will be quantized separately.
Quantization and bit-allocation of the remaining high-pass samples will be performed without
the singles. This guarantees that the singles do not disturb the statistics of the high-pass
signals.

Advantages The advantages of the variant of Barnard’s method presented, besides the
possible computational efficiency for odd start cases, are the following:

e the fact of not shifting the segment line preserves the continuity of low-pass features in
the second spatial dimension

e the value of k assumed for the low-pass band constrains the values of I, m and n —which
also depend on the value of a— to be smooth, so that further decomposition of the
low-pass band is worthwhile, even near the region boundaries.

Similar symmetric extensions may be computed for 2-D signals for non-separable filters,
at the cost of extra computational complexity. The extra samples depend then on each other,
and their computation requires, in that case, solving a linear system of as many dimensions
as the filter length.
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5.3 Bit allocation and perceptual quantization

The main ability of subband coding is the compression of visual information by allocating
different numbers of bits to the quantizers applied to each subband based on perceptual
criteria. In principle, bit allocation is a rate-constrained optimization problem of, given a
total bit-rate, optimally assigning such quantizers to the subbands (sources) to be coded.
The optimality of the solution is taken as an overall distortion measure of the reconstruction
error. The only assumption that optimal bit allocation algorithms [105], [124], [84], [87] make
about the rate and distortion measures R and D is to be additive. That is, they can be
written as separate sums of, respectively, the individual rates r, and distortions d, of the
subbands n =1,..., N:

N N
D=)Y d, R=Y (5.12)
n=1 n=1

The distortion d,, may be the result of any arbitrary distortion measure (not only the mean
squared error as it is normally used). In addition, no restrictions are imposed on the possible
choice of quantizers. They can be of any type, and even vector quantizers.

The squared error is an additive measure over the subbands, since the filtering and up-
sampling performed at the synthesis stage are linear operations. That is, the total squared
error distortion can be computed either on the reconstructed region or as the sum of the
individual squared error distortions introduced by the quantizers in each subband, assuming
normalized linear filters?. This situation is called a case of independent quantization by
Ramchandran et al in [83]. They have shown that at optimality (for normalized filters) each

subband should present the same ratio between distortion and rate®.

The result of the optimization algorithm for a given bit-rate consists of a set of N quantiz-
ers, one for each subband. In order to find the best set of quantizers, one could calculate the
R and D values for all possible combinations of M quantizers over the N bands to obtain M
different (R, D) pairs. By analogy to rate-distortion theory, where R(D) curves are known
to be convex, if we represent the (R, D) pairs by their R(D) plot, the optimal bit allocations
can be defined as those points that lie on the lower convex hull of all possible bit allocations
[124]. For the particular case of subband coding, the number of possible bit allocations is
rather large. Typical values for the number of bands and quantizers could be N = 10 and
M = 10, and it is not reasonable to compute 10'° combinations to find the convex hull.

4Normalized linear filters filters which preserve energy. If the filters are not normalized, but only linear,
the individual distortion terms should be weighted accordingly to the filter gains.

5 Actually, they have investigated the case of an open-loop Laplacian pyramid scheme, which is a particular
case of subband coding without down-sampling of the high frequency bands (not preserving the critical sampling
condition).
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The bit allocation algorithms referred above are designed to solve this problem but do
not require the calculation of all possible bit allocations. Only the N x M = 100 individual
measures of r, and d,, for each subband are necessary. An interesting fast implementation is
the one proposed by Westerink et al in [124]. It allows the search of the optimal quantizer
set for a given rate, starting from the lowest distortion combination and progressing in the
direction of increasing distortion or, vice-versa, from the smallest rate and in the direction of
increasing distortion.

5.3.1 Bit allocation for region-based subband coding

If subband analysis has been performed over a given segmentation mask, then the bit al-
location problem can be formulated over smaller sources (which correspond to the objects
in the image) whose rate and distortion measures are additive as well. As discussed before,
each subband will be divided into regions according to the label splitting method of section
5.2.3. Thus, the quantizers may be chosen for each region of each subband. The capability
of adapting the quantizers to the spatial contents of the image as well as to the frequency
content is what makes region-based subband coding attractive.

On the one hand, this possibility represents an increase in the complexity of the bit
allocation algorithm. Depending on how many regions have been defined in the label image,
the computation of the rate and distortion measures r,(7) and d, () for all bands n, regions
1 =1,...,5 and associated quantizers may be rather large. Despite the large number of
values d,, (i), they can be efficiently computed because each one will be over a small number
of pixels (assuming that the measure is additive over the pixels as well). However, the rate
values r,(7) must be computed at the output of the quantization buffers either by directly
applying an entropy coder or by a close estimation of their performance from the statistics of
the quantized images. Since such measure is clearly non-additive over the samples, it should
be computed independently for each case.

On the other hand, the choice of quantizers for each region and subband must be trans-
mitted to the decoder. This may represent a significant amount of overhead information, as it
is the case with any coding system with a high degree of flexibility. For example, in the case
of 10-bands and 10 possible quantizers, about 30 bits per region are necessary to specify the
optimal quantizer set, independently of the size of the region. Only the overhead information
regarding the quantization choice (the bulk of the overhead information is assumed to be the
contour information) would amount to 0,1 bpp for a small region of 300 pixels. Therefore,
the set of possible quantizers has to be restricted in some way for very low bit-rate coding
applications.
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Interaction with segmentation

The interaction of the bit-allocation strategy with the segmentation result is an important
issue that must be pointed out before the definition of a suitable strategy for bit-allocation
in a region-based subband coding scheme. From the rate-distortion point of view, the gain
obtained in some cases through the separate coding of two regions —by adapting the filters
with the symmetric extension technique and the quantizer selected for each region— may not
be worthwhile. For a given distortion value, the savings in bit-rate could be smaller than the
increase in the overhead data due to contour information and quantizer choices. In such case,
it may be better the merging of the two regions than the independent subband analysis and
corresponding coding of each one. A similar reasoning can be used for the opposite case of
splitting two regions.

Only when the optimization algorithm for the bit allocation is applied, the parameters
needed in order to take this kind of decisions are available. However, any change in the
label image, would imply to repeat the subband analysis process, the quantization, the rate-
distortion computations and, finally, to re-apply the bit allocation algorithm. The interaction
of subband coding with segmentation is managed by a higher level rate-distortion optimization
algorithm [87], [69], [75]. Subband coding can be applied and optimized for each region
independently by means of a lower level rate-constrained optimization algorithm.

Two-level rate-distortion optimization This algorithm is explained in in more detail
in appendix C. The higher level algorithm works with several hierarchical segmentation
proposals (called the partition tree). The candidate regions of these proposals are coded with
the texture coding technique (here, subband coding) at different target rates. From the rate-
distortion figures resulting from the coding of each candidate region, and for a given overall
target rate, the decision of the higher level algorithm results in a specific segmentation of the
input image and an optimal set of rate-distortion pairs for each region.

Therefore, the bit-allocation strategy for subband coding may be confined to each individ-
ual region with a given set of rate constraints. If the regions are meant to represent different
objects in the scene, they may be coded independently. The quantizer choice for the subbands
of one region do not influence the coding of the neighboring regions, given that their spatial
domains are disjoint.
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5.3.2 Perceptual considerations for bit allocation

As pointed out in the introduction of the current section, the optimal solution of the bit
allocation problem results in a distribution of the available bit-rate over the subbands such
that each band presents the same distortion. This forces the choice of quantizers to be adapted
to the frequency contents of the region. However, it has been said that the bit allocation
should be made adaptive to the frequency contents of the regions based on perceptual criteria.
This condition is not likely to be reached if the only possibility consists of having the same
distortion for all the frequency bands.

The distortion measure d,, (i) for subband n of region i may be any measure of distortion,
provided that it is additive over the subbands of that region. Therefore, one possible solution
to obtain a ‘perceptually-motivated’ bit allocation over the subbands is to use a ‘perceptual’
measure of distortion. Such measure should be, at least, frequency-dependent, i.e. based on
the frequency response of the human visual system, so that different weights should be given
to the errors introduced by the quantizers in the different subbands. By using these weights,
the subband system may be designed so that the noise remains below the just noticeable
level (JND) of perception because of its spatial frequency distribution. For very low bit-rate
applications, where a certain amount of distortion must be tolerated, the noise should be
distributed so that it should be minimal and equally ‘visible’ at all frequencies. This is known
as a minimally noticeable distortion (MND) profile [46]. Subband coding schemes provide
a natural framework for rate-constrained allocation with ‘unequal’ distortion values on the
subbands if perceptually-weighted distortion measures are used.

The frequency sensitivity of the human visual system, described by its modulation trans-
fer function (MTF), has been employed in different works in order to obtain perceptually-
weighted measures of distortion for subband coding [92], [80], [20]. The homomorphic model
proposed in the introduction of this report (sectionl.2.1, p. 9) that transforms the image in a
perceptually flat domain where the unweighted error measure (MSE) is useful, can be achieved
by tuning the gains of the subband analysis filters according to the MTF before quantization
and using reciprocal factors in the synthesis stage.

As pointed out in chapter 1, the main problem of the previous approach is that the MTF
is a global property of the images and does not consider the masking properties related to
the local scene content. In order to achieve the highest subjective quality at a given bit-rate,
these properties of our visual system must be utilized. Directional edge decompositions [54]
and ‘geometrical’ vector quantizers proposed for subband coding [81] are examples of coding
systems that follow this second approach of considering local properties of the scene.

Object-oriented and edge-oriented coding systems exploit the masking effect of sharp
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transitions based on a certain model of the image. Region-based subband coding can be
considered among these ones. The fact of considering the information about the location
of sharp transitions in the label image can be made available to the quantizers in order to
perform spatially adaptive quantization. A similar approach has been reported in [55], where
edge features appearing in the subband images are adaptively quantized.

Some constraints must be imposed to the bit allocation algorithm in order to introduce
perceptual criteria in the coding of subband regions. These constraints may be classified as
frequency (global) constraints and spatial (local) constraints.

Frequency constraints

Perhaps the most interesting result of the subjective measures of the MTF is that the sensi-
tivity of the eye for frequency gratings oriented at a diagonal direction is about 3 dB less than
for vertically and horizontally oriented gratings [80]. In order to get a perceptually consistent
distribution of the distortion among frequency subbands, the possibilities to be tested by the
optimization algorithm are restricted to quantizer sets having coarse quantization parameters
for the highest frequency subbands and even coarser for the diagonal subbands.

Spatial constraints

The proximity to region boundaries must be considered as well. This can be done by com-
puting the distortion of the subbands for all pixels of the label except for those located at
a certain distance of the region transitions. Quantization errors produced at such pixels —
usually larger than in other locations due to the proximity of the sharp transition— are not
considered in the distortion measure®. Such perceptual distortion computation is performed
for regions having a certain minimal size compared to the number of border pixels”.

5.3.3 Design of perceptual quantizers

Woods [128] proposed the use of DPCM to encode the image subbands. Based on auto-
covariance measurements of each subband, other authors have shown that only the low-pass
subband presents large coefficients in its auto-covariance matrix [36], [125] in a one level

5The considered pixels are those whose neighbors belong to a different region (border pixels). The distortion
measure is computed ‘per pixel’. Therefore, from the point of view of the distortion measure, the border pixels
are assumed to have the same averaged quantization error than the rest.

7So that the measure of distortion measured from non-border pixels is statistically significant.
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subband decomposition. Therefore, only this band could really benefit from DPCM encoding,
while the other bands may be encoded using PCM. For higher level subband decompositions,
the prediction gain of DPCM over PCM is smaller [35]. In addition, the portion of pixels in the
low-pass subband may be actually very small (about 1.5 percent in a 10-band decomposition).
In that case, DPCM coding of the low pass subband is not worthwhile.

An optimal approach for PCM coding, in the minimum mean squared error sense, is to
design a quantizer matching the probability density function of the input image (close to
Laplacian in the case of the high-pass subbands). However, it has been observed [36] that
such a quantizer is not suitable in the perceptual sense. This observation leads to the design
of quantizers for the subband coding with the following characteristics (see Fig. 5.6):

a center dead zone +d where the input values are mapped to zero to eliminate picture
noise

a limited quantization range between two thresholds +t¢ to cover moderate contrast
changes

uniform quantization with L levels within the active range

two saturation values +y for pixel values above or below the thresholds +t.

The quantizer is the part of the overall system where the perceptual coding may be explic-
itly implemented. The quantization function defines the levels of just-noticeable distortion
and multiples of those, so that the visibility of the introduced distortion is minimal. A bank
of quantizers parameterized through the values of +d, 4+t and L is used by the bit allocation
algorithm in order to perform optimization of the quantizer set to be applied to the subbands.
This leads to a solution that may not be optimal, in the minimum mean squared error sense,
but shows less noticeable artifacts.

Quantizers for color signals

The encoding of color images directly in the RGB domain is not very efficient. It is necessary to
choose a proper color domain and a corresponding error criterion. A compact representation
of color images in energy terms is achieved by transformations such as the PAL television
signals YUV or the NTSC signals YIQ [98]. These representations are known to match the
human visual perception properties of hue and saturation [82]. Their suitability for subband
coding has been investigated by Westerink et al in [125]. The mean squared error measure
they propose for the YUV color domain is the following;:

Dypy = E[(Y = Y)| +03E [(U - U)] + 03B [(V - V)] (5.13)
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Figure 5.6: Parameters of the employed quantizers
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The weights applied to the mean squared error of the color components have been optimized
from test experiments. These weights indicate the subjective trade-off between color errors
and luminance errors. Taking the measure Dyyy for the bit allocation algorithm leads
to a proportional division of bits between the chrominance and the luminance components
according to these weights.

Furthermore, the spatial frequency response of the visual system to color signals shows
that the cut-off frequency for the chrominance components is smaller than for the luminance
component [82]. This fact has been used to justify a drastic reduction of the high frequency
information for the UV components. The CCIR recommendation 601 and the CCITT com-
mon image format (CIF) for example, define digital video formats where the luminance and
chrominance signals are sampled at the ratio 4:2:2. Actually, the energy of the chrominance
high frequency bands after subband analysis is very low and, for high compression appli-
cations, the optimization algorithm hardly allocates any bit to these bands. Therefore the
chrominance high frequency subbands are simply not encoded [35], [125].

Buffering of quantizer outputs

The output of subband quantizers must be entropy coded to benefit from the highly picked
distribution of quantization values. Variable word length entropy coders such as the Huffman
coder [44] and run-length coding [130] have been frequently used in subband coding schemes.
In [57] the advantages of using arithmetic coding [126] for the high frequency subbands, due
to the contour-like appearance of the features present in such bands, have been discussed. We
propose the use of arithmetic coding for the buffers resulting from the quantized subbands
as well. However, the pixels belonging to each region in a given subband must be grouped
together before coding, to let the coder extract the redundant information due to the homo-
geneity of the texture content of such region. The subband pixels must be scanned in order to
put them in the buffer before entropy coding. The scanning procedure is illustrated in Fig. 5.7.
The idea for the vertical scanning of the horizontal band has been taken from Gharavi [35].
Such technique follows the vertical edge features appearing in the horizontal band so that the
entropy coder yields a better performance. We did not find any improvement in diagonally
scanning the diagonal band, as suggested by Gharavi. A possible explanation could be the
presence of both diagonal directions in the edge features appearing in this subband.
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subbands

Figure 5.7: Procedure for scanning region-based subband pixels

V:

5.4 Examples of region—based subband coding

This section is devoted to some examples of application of the region-based subband coding
technique. The original image that has been chosen contains both sharp transitions and
homogeneous regions with fine textures or smooth areas, so that the main questions discussed
so far can be clearly illustrated.

5.4.1 Subband coding of a single region

In the first example, one single region has been extracted from a segmentation of the cam-
eraman image. The original content of the region and its label are shown in Fig. 5.8. Notice
that the content of this region is not very homogeneous. Besides the high frequency texture
of the grass, some sharp contours appear within the region, as well as some objects in the
background with a little blurring.

Subband analysis is performed with a 10-band (3-level) pyramid subband decomposition.
Separable 2-D QMF Johnston filters are applied inside the region. When the convolution win-
dow crosses the region borders, the symmetric extension technique for segment lines explained
in section 5.2.4 (p. 96) is used. The label splitting method of subsection 5.2.3 is applied to
the image label in parallel, so that the pixels resulting for each subband are labeled as well.
The results of the analysis are presented in Fig. 5.9.

Notice that some pixels can be disconnected from the main label in the subbands. This is
due to the down-sampling procedure and cannot be avoided. If these pixels become ‘singles’ in
the high-pass band or isolated pixels in the low-pass band, they will not be further processed
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Figure 5.9: Analysis labels for a single region and the corresponding subband images
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by the filters. The high-pass subband images have been stretched from +32 to +128 and
shifted by 128 so that their contents can be more clearly shown. It can be seen that the sharp
transitions contained in the interior of the region are spread over several frequency bands.
On the other hand, the pixels located at the steep slopes of the edges placed at the borders
of the region® also yield significant amplitude values in the high frequency subbands.

The decomposition of Fig. 5.9 is almost lossless, because, as indicated in appendix B,
Johnston QMF filters are optimized to be nearly a perfect reconstruction filter bank. The
synthesis from the non-quantized subbands yields a reconstruction mean squared error of 0.29
for the given example, partly due to the nearly perfect reconstruction property and partly, to
numerical errors of the finite precision arithmetic operations.

The next step of the subband coding scheme is quantization. The quantized subbands
are shown in Fig. 5.10 for two optimized sets of quantizers. The quantized subband images
are displayed using the representation values for each quantizer level, stretched and shifted as
explained for Fig. 5.9. The optimization has been performed according to the perceptual bit
allocation technique described in section 5.3 for two target rates of 0.8 and 0.4 bits per pixel.
The acronym ‘bppr’ indicates bits per pixel of the region. The imposed rate constraints are
rather low for the texture information of such a complex region. Notice that most of the high
frequency pixels have been set to zero by the quantizers.

The quantized subbands of each decomposition level are independently scanned and writ-
ten into four different buffers. According to the subband names given in Figs. 5.2 and 5.3,
these buffers contain, respectively,

- the first level high-frequency bands V1, D1 and H1,
the second level high-frequency bands V2, D2 and H2,
the third level high-frequency bands V3, D3 and H3,
and the lowest frequency band L3.

The horizontal bands, H1, H2 and H3, are scanned in the vertical direction to benefit from
the redundancy of the vertical structures appearing in these bands. The buffers are entropy
coded with a first order arithmetic coder. The contributions of each subband level to the final
bit-rates, in bppr, for the two cases of Fig. 5.10, are given in table 5.1. It has been proved
empirically that further decomposition of any of the resulting subbands does not yield any
reduction of the given rates with respect to the current decomposition.

8The contours separating two regions in the label image have zero pixels width. Therefore, the edge pixels
of a sharp transition between two regions are distributed between the two labels. This generates border pixels,
either belonging to one region or to the other, whose statistics differ from those of the homogeneous interior
of the region.
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Figure 5.10: Quantized subbands for target rates of 0.8 and 0.4 bits per pixel of the region

Table 5.1: Subband rates in bits per pixel (bppr) of the region

TARGET RATE 0.8 bppr 0.4 bppr

Ist buffer: bands V1, D1, Hl ~ 0.37 bppr (46%) 0.10 bppr (26%)
2nd buffer: bands V2, D2, H2  0.22 bppr (27%) 0.16 bppr (42%)
3rd buffer: bands V3, D3, H3  0.13 bppr (16%) 0.07 bppr (17%)
4th buffer: lowest band L3 0.09 bppr (11%)  0.05 bppr (13%)

PSNR 25.7dB 23.1 dB
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Figure 5.11: Reconstructed images for target rates 0.8 bppr and 0.4 bppr

At the decoder side, the region content are synthesized from the information contained
in the subband buffers. After entropy decoding and inverse quantization, the synthesis filter
bank is applied to the subband images. The label splitting is reversed in order to reconstruct
the original region and, when needed, pixel values a and w fixed by the symmetric extension
technique, are used as explained in section 5.2.4.

The reconstructed region contents are shown in Fig. 5.11 and the PSNR ratios for the two
images, in table 5.1. At the rate of 0.4 bits per pixel, the ringing artifacts are clearly visible
in the neighborhood of the strong transitions in the interior of the region, as happens in any
conventional subband coding scheme working at low bit-rates. It is interesting to observe the
rendering of the fine textures in both images. At the lowest rate, most of the fine texture
information has been filtered out by the coding system, assuming that such information is
less important from a perceptual point of view.

5.4.2 Subband coding of a segmented image

Let us proceed now to the coding of the whole segmented image. The original image and the
segmentation labels are shown in Fig. 5.12. The segmentation has been performed with the
morphological segmentation technique described in [94]. The label image is coded by means
of an efficient chain code technique [65] that yields a total amount of 5072 bits (about 0.08
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Figure 5.12: Original image and segmentation labels

bpp) for the contour information.

Subband analysis is performed for all the 18 regions of the label image. The result of the
label splitting procedure is shown in Fig. 5.13 and the subband images, in Fig. 5.14. For a
comparison of the performances of region-based subband analysis and conventional subband
analysis (without regions), the analyzed image without considering the label information is
also shown in Fig. 5.14 (right image). Please notice that the transition information has been
reduced in the subbands for the region-based analysis case. This can be observed, for example,
in bands H2 and H3.

Both analysis images shown in Fig. 5.14 are quantized. Then, the bit allocation algorithm
is run. The rate-constrained optimization gives an optimal quantizer set consisting only of
10 quantizers for the 10 subbands in the conventional case. In the region-based analysis case,
such optimization is performed independently for each region by the lower level algorithm
described in sub-section 5.3.1 (bit allocation among frequency bands). The higher level opti-
mization algorithm decides the rate constraints to be applied for the independent coding of
each region. In this way, an optimal distribution of bits among the regions is achieved (spatial
bit allocation). To summarize, the optimal quantizer sets for the subbands are found on the
whole image basis in the conventional case, whereas in the region-based case they are defined
on a region basis. This is the key for the adaptive capability of region-based subband coding.

The overall target rate has been fixed to 0.5 bits per pixel in both cases. The reconstructed
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Figure 5.13: Subband decomposition of the label image

Figure 5.14: Subband analysis: region-based (left) and conventional (right)
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Figure 5.15: Subband coding results at 0.5 bpp: region-based (left) and conventional (right)

images are shown in Fig. 5.15. The whole bit rate is devoted to the subband contents in the
conventional subband coding example. Its distribution among the different subbands is given
in table 5.2. In the region-based example, only about 0.41 bits per pixel can be allocated to
the subbands, because the rest is devoted to the overhead data: contour coding and quantizer
choices. Table 5.3 gives the actual bit-rate values allocated for texture and overhead data.
The distribution among the subbands varies according to the frequency contents of each region
and also spatially among the regions.

In the conventional subband coding reconstruction, both ringing and blurring are present

Table 5.2: Subband rates in bits per pixel (bpp) for the conventional case

TARGET RATE 0.5 bpp

bands V1, D1, H1  0.08 bpp (16%)
bands V2, D2, H2 0.18 bpp (37%)
)
)

bands V3, D3, H3 0.10 bpp (20%
lowest band L3 0.13 bpp (27%

PSNR 26.9 dB
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Table 5.3: Bit allocation for the region-based subband coding case

TARGET RATE 0.5 bpp
quantizers choice 0.020 bpp ( 4%)
contour 0.077 bpp (15%)
texture 0.410 bpp (81%)
averaged frequency distribution:
bands V1, D1, H1 44%
bands V2, D2, H2 21%
bands V3, D3, H3 21%
lowest band L3 14%
PSNR 29.5 dB

along the sharp transitions and in high frequency details respectively. These effects are less
visible in the region-based coded reconstruction. It is interesting to notice the reduced ringing
effects along the sharp transitions located at the boundaries of the regions of the label image.
Otherwise, either blurring or ringing are present, as happens along the left contour of the
highest building in the background, which does not coincide with a transition between two
regions. The overall quality of the region-based subband coding reconstruction is superior
both from the point of view of the subjective perception and the objective PSNR, measure.
The fact that the filtering takes place inside relatively homogeneous regions, has been one of
the main reasons for the observed improvements. Since filtering across sharp edges is avoided,
the high-pass subbands are expected to contain less energy than for the conventional subband
coding scheme. Furthermore, quantization errors do not influence neighboring regions, so that
the ringing artifacts near sharp edges will be much less. Finally, the adaptive capability over
spatial regions of the bit allocation algorithm is decisive to favor the important regions of the
image, i.e. those regions with complex texture contents.

5.4.3 Comparison with other texture coding techniques

High compression requirements for images containing complex information contents lead to
significant losses in all known image coding schemes [46]. In such cases, the simplification
of the image resulting from a segmentation-based model for image coding is better tolerated
than less natural artifacts, as ringing, blockiness and blurring, resulting from waveform image
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Table 5.4: Rates and PSNR figures for the compared techniques at 0.5 bpp

RBSBC SADCT
18 regions  0.50 bpp 29.5 dB || 14 regions 0.53 bpp 26.6 dB

RBDCT RBWVD
192 regions 0.52 bpp 26.2 dB || 23 regions 0.56 bpp 26.7 dB

Table 5.5: Rates and PSNR figures for the compared techniques at 0.35 bpp

RBSBC SADCT
13 regions  0.35 bpp 25.7 dB || 10 regions 0.37 bpp 22.5 dB

RBDCT RBWVD
110 regions 0.36 bpp 25.2 dB || 28 regions 0.37 bpp 24.3 dB

coding techniques. This is due to the best matching of the image model —consisting of a
partition into regions— to the perception characteristics of the visual system. From this point
of view, the previous comparison of conventional subband coding versus region-based subband
coding is not very fair.

In this section, the performance of region-based subband coding will be compared with
other proposed texture coding techniques for region-based coding. Two target rates of 0.5
and 0.35 bpp have been selected for the experiments. The results are shown in Figs. 5.16 and
5.17. The actual rates and PSNR values are given in tables 5.4 and 5.5. The techniques are
used in the same segmentation-based coding scheme [22].

Each texture coding technique is able to code efficiently the textures up to a given degree
of complexity. Each one has a different amount of overhead information as well due to
the coding of adaptive parameters for each region. The higher level optimization algorithm
selects the best trade-off between texture and overhead information (contour and adaptive
parameters) on a rate-distortion basis. Therefore, the optimal number of regions yielded by
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Figure 5.16: Performance comparison at 0.5 bpp: region-based
subband coding (upper left), shape-adaptive DCT (upper right),
region-based DCT (lower left) and region-based discrete wavelet
transform (lower right)
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Figure 5.17: Performance comparison at 0.35 bpp: region-based
subband coding (upper left), shape-adaptive DCT (upper right),
region-based DCT (lower left) and region-based discrete wavelet
transform (lower right)
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the optimization algorithm for a given rate may be different for each one of the presented
techniques. Except for the third technique, the ratio texture/overhead is between 75%/25%
and 85%/15% for all of them. Let us make some remarks on the performances of each
technique.

Region-Based Subband Coding (RBSBC): The results of the technique presented in
the current work will be compared with the three reference techniques described below.
Regarding the new result at 0.35 bpp shown in the upper left image of Fig. 5.17, notice
the graceful degradation of both textures and sharp transitions with the decreasing
bit-rate.

Shape Adaptive DCT (SADCT): This technique has been reported by Sikora and Makai
in [107]. They apply the basic DCT coding scheme to square blocks which are com-
pletely included in the interior of the region, whereas for blocks crossing the region
borders, a particular orthogonal set of separable DCT basis is used. At the highest
bit-rate, it presents block artifacts in homogeneous textures, as can be observed in the
grass. Some noise is also present in the proximity of sharp transitions. At the lowest
bit-rate, for such a complex image, the blockiness is visible almost everywhere.

Region-Based DCT (RBDCT): The second reference technique is due to Gilge and has
been reported in [37]. A set of cosine functions, orthogonal with respect to the shape of
each region, is generated using Gram-Schmidt orthogonalization. The drawback of this
method is the high computational load required for the generation of a large number
of orthogonal basis for large regions. Therefore, only a set of 25 basis functions have
been generated performing a least squares approximation of the complete set. This
reduced set of functions is able to reconstruct only smooth textures and, thus, a finer
segmentation is needed in order to obtain an acceptable result. In the lower right image
of Fig. 5.16, the contour information is about 43% of the total. For the lowest bit-rate
example shown in Fig. 5.17, it is about 50%. Please notice the poor rendition of the fine
textures of the grass. There are some missing objects as well. For instance, one of the
buildings of the background, the antennas in the highest building or some details of the
camera are missing. These objects have not been properly segmented and the texture
coding technique could not reconstruct them correctly as textures inside the regions.

Region-Based Wavelet Decomposition (RBWYVD): This technique has been reported
in [22]. The main differences with the region-based discrete wavelet transform intro-
duced by Barnard in [5] is the fact that the filters employed here are non-separable 2-D
wavelet basis. The drawbacks of wavelet basis filters regarding subband decompositions
have been pointed out in appendix B. The non-linear phase characteristics of these
operators and the regularity of the frequency response produce local artifacts along the
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edges in form of blurring. This can be observed in the walls of the highest building,
which do not coincide with region transitions. A different kind of artifacts, due to lack
of high frequency information, can be observed in the fine textures of the grass.

5.5 Analysis of the results of region—based subband coding

The results shown in Figs. 5.16 and 5.17 assess the superior reconstruction quality of the
region-based subband coding scheme with respect to different techniques that have been
proposed for texture coding. Although the results shown in this chapter have been only on
the cameraman, similar results are obtained with other images. Chapter 6 will show results
with different images in a complete perceptual segmentation-based model. Let us outline in
this section the main conclusions that can be drawn from these results.

e The performance of the selected filter bank and the structure of the 10-band pyramid
decomposition have proven to be good choices, as discussed throughout this chapter.

e The actual adaptation to the region contents and the ability to extract redundant in-
formation of the RBSBC scheme is better than for block-based coding, as the SADCT
scheme, because the units of data to be coded (the regions) are more suited to the actual
image contents than blocks.

e RBSBC has a smaller computational load than RBDCT through orthogonal basis. The
superior performance of RBSBC with respect to the high frequency information inside
the regions, as fine textures and details, has been clearly shown.

e Contrary to the problems for the coding of high frequency information of the RBWVD
scheme, the rendering of the sharp transitions and highly textured areas is improved
by RBSBC because of a better approximation of the perfect reconstruction property in
presence of coarse quantization of the subbands.

e The results of the RBSBC scheme show significant objective and subjective (perceptual)
improvements with respect to the current techniques normally used for region-based
texture coding. These improvements hold for a wide range of bit-rates and for different
types of images. Fig. 5.18 shows the reconstructed images at different target rates
for both the original images cameraman and Lenna. The extension of RBSBC to the
coding of color images and inter-frame images in video sequences (motion-compensated
prediction error images) will be presented in chapter 6.
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Table 5.6: Rates and PSNR figures for RBSBC at different target rates (in brackets)

CAMMAN (0.80) CAMMAN (0.25)
30 regions 0.83 bpp 32.7 dB || 26 regions 0.27 bpp 24.6 dB
LENNA (0.50) LENNA (0.20)
33 regions 0.46 bpp 33.2 dB || 18 regions 0.12 bpp 26.8 dB

e Nevertheless, region-based subband coding still shows significant drawbacks, as can be
observed from the presented results. There are visible ringing effects in the neighbor-
hood of sharp image transitions and bad rendition of small details. The more complex
perceptual image model that has been proposed in chapter 2 complements the region-
based subband coding technique aiming at the solution of such problems.

We would like to highlight the novelty of the presented region-based subband coding
scheme. Related works in this area are those of Kwon and Chellappa [55] and Barnard et
al [5]. The work of Kwon and Chellappa does not start from a segmentation of the original
image. Instead, they realize a statistical analysis of the energy in the high frequency subbands
in order to find edge features and perform spatially adaptive quantization. Concerning the
work of Barnard et al, they employ a region-based discrete wavelet transform but do not
optimize the segmentation, which is performed manually. The results of the RBWVD method
presented here [22] are similar to those reported in [5]. An important difference is the analysis
filter bank. First, because we use QMF’s instead of wavelets and, second, for the symmetric
extension technique. The variation to the original idea of Barnard [4] for the symmetric
extension in the low pass-band that has been presented in section 5.2.4 results in a significant
reduction of ringing effects for the reasons explained therein. Barnard himself observes an
‘unexpected higher variance’ [5, section 4, p. 1237] of the high-pass subbands, attributed to
the fact that his extension method ‘is not preserving the statistics’ of the subbands. We have
shown in Fig. 5.14 that the proposed extension method effectively reduces the amplitudes of
the transition pixels in the high-pass subbands, being the responsible for better performance
of the presented region-based scheme.
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Figure 5.18: RBSBC reconstructed images at different rates. First
row, cameraman at 0.83 and 0.27 bpp. Second row, Lenna at 0.46
and 0.12 bpp



Chapter 6

Application to image and video
coding

Three perceptually motivated texture coding techniques have been investigated in preceding
chapters, namely:

e a morphological interpolation technique for the reconstruction of smooth textures with
application to sketch-based image coding schemes

e the extraction, selection and coding of small visual details taking into account their
perceptual significance for the human visual system,

e a waveform image coding technique (subband coding) which has been adapted for the
coding of homogeneous textures in a region-oriented model of the image.

These techniques are aimed at high compression ratios. This is the case of sketch-based image
representations, or the individual coding of small visual features when a severe selection is
necessary, or also the case of the representation of homogeneous textures in the framework of
region-oriented image models. It is worthwhile to notice that the three techniques make use of
structural primitives of visual signals. In particular, sharp image transitions are represented
explicitly as edges, detail labels or partition contours.

These techniques have been independently shown. In this chapter, they will be combined
together as the different components of a perceptual image model. First, the results of the
application to still image coding are presented. In Section 6.1, the three coding techniques
are combined gradually, following the heuristic reasons that led us to the particular image
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Figure 6.1: Amplitude profile across a sharp transition between two regions A and B

model that is proposed. Section 6.2 discusses the application of the texture coding techniques
to video sequences, both in intra and in inter-frame mode.

6.1 Perceptual coding of still images

The results presented in chapter 5, show that the application of subband coding in the interior
of the regions of a segmentation-based coding scheme, significantly improves the coding rendi-
tion with respect to the application of subband coding as a waveform coding technique to the
whole image. Such improvement is due, on the one hand, to the adaptive distribution of the
available rate among the regions depending on their texture contents and, on the other hand,
to the decrease of ringing effects along the sharp transitions represented by region contours,
because subband filters are applied separately on both sides of the transitions.

Nevertheless, the ringing effects have not been completely eliminated using the region-
based subband coding scheme. These effects are still visible in the coded cameraman images
at low bit-rates presented in Fig. 5.17 (upper left) and Fig. 5.18 (upper right). The reason
for such ringing effects is explained in the following with the aid of the drawing of Fig. 6.1.
The drawing represents the amplitude profile of a perpendicular section across an imaginary
transition of the image.

Let us assume that the transition represented in the drawing is described by a contour
of the partition separating the labels A and B. Subband filters perform separate frequency
analysis and synthesis within the regions A and B on both sides of the transition. The texture
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contents of the regions are assumed to be homogeneous. However, as the label contours have
zero width, the edges of the transition are included either inside region A or inside region
B. This produces high frequency components of the analyzed texture of the region in the
proximity of the contour position. The coarse quantization of such high frequencies is mainly
responsible for the ringing effects.

6.1.1 Introducing the strong edge component

In order to avoid the ringing effects, the amplitude profile of the sharp transitions and the
texture contents of the regions should be coded separately. This leads to a two-component
image model with a strong edge component representing sharp transitions (from which the
smooth areas can be interpolated) and a residual texture component, as proposed in most
sketch-based coding schemes.

Open contours approach

Fig. 6.2 presents the coded strong edge component and the residual texture component (not
coded). The strong edge component on the left side was already presented in Fig. 3.16 of
chapter 3 (p. 60), and it is repeated here for convenience. It has been obtained by mor-
phological interpolation from the upper and lower edge brims defined as the lines of largest
curvature. The structural primitives of the image model are the positions and amplitudes of
a set of ‘open contour lines’ (the sketch data). The coded sketch data represents a cost in
bits per pixel of 0.17 bpp.

The residual image presented on the right hand side of Fig. 6.2 is simply the difference
between the original image and the strong edge component. It contains the texture infor-
mation, some errors in the neighborhood of the transitions and a number of small details.
Conventional subband coding (without region segmentation) can be applied for the coding of
this texture component. Fig. 6.3 (left) shows the subband analysis of the texture component.
Please compare this frequency decomposition with the ones presented in Fig. 5.14 (on p. 115).
The subband decomposition of the texture component does not present the high frequency
information produced by the transitions. Even compared with the case of the region-based
subband decomposition (Fig. 5.14, left) such high frequency information has been clearly
reduced.

The information available from the strong edge component may be exploited for the coding
of the textures. In this example, a quantization mask has been generated taking into account
the position of the sharp transitions that have been coded for the strong edge component.
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Figure 6.2: Strong edge component (0.17 bpp) and residual texture (not coded)

This mask is shown in Fig. 6.3 (right). The quantization mask allows a coarse quantization
of the high frequency subbands at these positions, avoiding the disturbance produced by
the errors along the transitions. Such errors are due to the approximated representation
performed by means of the strong edge component, and appear as texture information in the
residual image. However, as these errors are masked by the transitions themselves, they do
not need to be accurately represented in the texture component.

The left image of Fig. 6.4 presents the texture component coded at 0.15 bpp. Observe that
at such low bit-rate, only some smooth textures have been correctly represented. The details
missing in the strong edge component have not been very well coded either. The result of
adding the coded texture component to the strong edge component of Fig. 6.2 (left) is shown in
the right image. The total rate for the addition of the two components is 0.17+0.15=0.32 bpp.
This result can be compared with the results of conventional subband coding at 0.5 bpp and
region-based subband coding at 0.35 bpp that were presented in the previous chapter. These
results are shown again in Fig. 6.5 for an easier comparison.

The advantages of the separate coding of strong edges and residual textures in a two-
component image model can be observed in the almost complete elimination of the ringing
effects along the transitions that have been correctly represented in the strong edge compo-
nent. However, with respect to the region-based coding result of Fig. 6.5 the rendition of the
textured areas is poorer, such as in the area of the grass. This is due to the fact that the bit
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Figure 6.4: Subband coding of the texture component (0.15 bpp)
and two-component reconstruction at 0.32 bpp
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Figure 6.5: Conventional subband coding at 0.5 bpp and region-
based subband coding at 0.35 bpp (from the previous chapter)

allocation for the subbands of the texture component cannot be performed adaptively as it
was in the region-based coding scheme. The representation of strong edges by open contour
features (edge brims) in the sketch-based model lacks of the ‘watertight’ structure of a division
into mutually exclusive spatial regions provided by the segmentation process. Therefore, the
independent assignment of bits to different regions of the image cannot be done and —except
for the differences in the quantization step near the strong edges— all the areas of the image
are equally considered by the subband coder.

This observation suggests that, in the context of coding, a description of the sharp tran-
sitions by means of closed contour features may be more useful. Most of the closed contours
of a partition into regions give also a perceptual representation of the image. Even if some
of the coded contours are ‘false contours’ —in the sense that they do not represent real image
transitions but are necessary to close some regions— the benefits of a partition by means of
regions with closed contours may compensate the coding of such false contours from the point
of view of coding efficiency.
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region contours

Figure 6.6: Interpolation of region contents from the amplitudes at the boundary pixels

Closed contours approach (region-oriented)

The example presented in section 2.2 of chapter 2 has introduced the possibility of a sketch-
based representation of the strong edges in a region-oriented framework. In this example,
edge brims are defined at the region contours. More precisely, the edge brims are composed
of the pixels located on both sides of the contours separating different regions. This allows a
smooth reconstruction of the textures of the interior of the regions by interpolation from the
amplitudes of the pixels located at the region boundaries. The drawing on Fig. 6.6 illustrates
this coding strategy.

The two sides of each contour separating two regions define the edge brims used for the
interpolation of the interiors of the region. These brims will be called region brims in the
following. Region brims span between the positions of two triple points (represented by small
circles in the drawing of Fig. 6.6). The estimate of the amplitudes of region brims is made
from the pixels of the region located at a certain distance (2 or less) from the boundary. The
amplitude average of the region is computed and the difference between the pixel values of
each brim and this average is approximated by a second order cosine function.

An example of texture coding by interpolation from region brims is shown in Fig. 6.7.
This image is taken now as the strong edge component of the model. The resulting bit-rate is
0.15 bpp, including the partition information. The segmentation technique is the same that
was explained in chapter 5 for the region-based subband coding technique.
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Figure 6.7: Partition of the cameraman image (31 regions) and
strong edge component interpolated from ‘region brims’ (0.15 bpp)

6.1.2 Introducing the details component

The strong edge component shown in Fig. 6.7 could be used as a coarse approximation of the
image for high compression applications. However, the lack of some significant details gives
an unnatural aspect to this image. In order to improve the coding rendition of the strong
edge component there exist several strategies:

- the segmentation may be refined until we get the desired precision in the representation
of the objects by introducing new regions

- the residual texture may be coded, using a given texture coding technique, in order to
represent the residual information

- a purpose-designed technique may be applied to obtain the features of interest.

The strategy of refining the segmentation often consists in increasing the degree of homo-
geneity defined in the segmentation process for the extraction of the regions. The more rigid
the homogeneity criterion, the larger the number of resulting regions. However, the possibility
of getting an over-segmented partition is not desirable, given the cost of the coding of a large
number of contours.
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A more convenient strategy would be the second one. Those objects whose contours are
not represented in the partition, are coded as textures inside the segmented regions. However,
texture coding techniques assume that the interiors of the regions are homogeneous —smooth
or with periodical or somehow repeated texture patterns— and the non-extracted contours
are seen as spurious transitions. This will result in a poor coding rendition at the contours
of such objects. This is even worse if the object is a blob of small size. This effect can be
observed, for instance, in the two-component reconstruction of Fig. 6.4. The antennae on
top of the high building in the background, that were coded in the texture component as a
‘texture’ of the sky, have not been properly represented.

In some applications, the individual extraction of the ‘missing objects’ and the selection
of the most significant ones by means of a consistent criterion can give better results. The
detail coding technique explained in chapter 4 is aimed at the extraction of small objects
which are visually meaningful. The application of detail coding in this example is illustrated
in Figs. 6.8-6.10. Fig. 6.8 (left) shows the coding residue of the strong edge component
presented in Fig. 6.7. The details extracted from this residue are shown in the right image.
Fig. 6.9 presents the result of the ranking and selection of the extracted details. As in the
examples of detail ranking of chapter 4, the brighter the label, the more significant the detail.
A budget of 2000 bits permits the selection of the first 25 ranked details for coding. The
selected details are presented in the right image of Fig. 6.9 with the coded amplitude values.

Fig. 6.10 shows the reconstruction obtained with the strong edge component of Fig. 6.7
and the details component of Fig. 6.9. Please notice the perceptual significance of the coded
details. The total bit-rate is 0.15+0.03=0.18 bpp, what yields a compression ratio of 45 for
this coded image. The right image presented in Fig. 6.10 is the new coding residue of the
two-component reconstruction.

6.1.3 Region-based subband coding of the residual textures

The fact that the coded details are removed from the coding residue makes easier the coding
of the remaining homogeneous textures in the texture component. In addition, the partition
structure of the region-oriented image model used in the strong edge component allows the
coding of the different regions at different bit-rates. As explained in the previous chapter, a
rate-constrained optimization is performed by a higher level optimization algorithm [69] for
the subband coding of the textures of these regions. Furthermore, given the rate constraint
and a set of quantizers (or texture coding techniques), the optimization algorithm can derive
useful information in order to obtain the optimal segmentation from a set of possibilities that
are analyzed in the partition tree. This rate-constrained optimization scheme is explained in
more detail in appendix C.
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Figure 6.8: Coding residue of the strong edge component of

Fig. 6.7 (right) and extracted details

ﬂ;-f‘_:;—-\. -
L -
P S
i s
‘_’/ - - . - o
» o »
| L

= L.

1 £
Figure 6.9: Ranking of the extracted details and 25 selected details
coded with 2000 bits (0.03 bpp)
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Figure 6.10: Two-component coding (strong edges + details) of
the cameraman image at 0.18 bpp and coding residue

The residual texture of the right image of Fig. 6.10 is therefore coded by the region-
based subband coding technique. The coded texture component at 0.15 bpp is shown in
the left image of Fig. 6.11. This rate is devoted only to texture information. The partition
information has been already coded in the strong edge component. The addition of the
texture component to the previous two-component reconstruction (Fig. 6.10, left) yields the
final result of Fig. 6.11. The total rate for this three-component coding is thus 0.33 bpp. The
distribution of the rates among the three components is summarized in Table 6.1. This image
can be compared with the result of region-based subband coding only presented in Fig. 6.5
(right). The buildings in the background or some details in the tripod, for instance, are better
represented in this case. The three component image model yields quality improvements with
respect to the ringing artifacts and the coding rendition of the small details.

6.1.4 Three-component coding of color images

An example of application of the three component model in the context of color images is
shown in Fig. 6.12. An original frame from the foreman sequence is shown in the top left
image. The partition into regions is presented in the top right. The extracted details have
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Figure 6.11: Subband coded textures at 0.15 bpp and three-
component coding (strong edges + details + texture) at 0.33 bpp

Table 6.1: Component rates for the reconstruction of Fig. 6.11

Coded component number of bits component rate [bpp]

strong edges:

amplitudes 2712

partition 7200

total 9912 0.15
details:

amplitudes 248

positions 1808

total 2056 0.03
textures:

quantizers 544

subbands 9144

total 9688 0.15

total rate: 0.33
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been also included in this image. As the details are displayed with the coded colors, they
can be clearly distinguished from the contours of the partition. There are 18 details that
have been extracted, as in the previous example, from the coding residue of the strong edge
component. The morphological operators for detail extraction described in chapter 4 have
been applied to a weighted combination of the values of the luminance Y and the color signals
U and V, so that not only luminance details but also salient color features are extracted.

The bottom left image of Fig. 6.12 displays the reconstruction obtained from the strong
edge component and the details component. Observe that the smooth textures are mixed in
some regions, such as the face. This is a drawback of the reconstruction from edge brims that
occurs when some contours are not present in the partition. In this case, the piece of the
contour corresponding to the right side of the man’s face is missing. The amplitudes of the
edge brims of the large region including the face and the shadowed area of the building are
mixed by the morphological interpolation technique. The reconstructed amplitude values are
a mixture of both areas, i. e. part of the building gets the redish color of the face and the
face gets the dark color of the shadow. This effect can be partly reduced by the coding of the
residue of this two-component reconstruction in the texture component.

The bottom right image of Fig. 6.12 shows the three-component reconstruction. It is
obtained from the combination of the strong edge component, the details component and the
coded textures (the texture component is not shown). The rate distribution among the coded
components for this example is given in table 6.2. The total bit-rate in this case is 0.27 bpp.

The figures given in table 6.2 include the cost of the color information. The bits spent
for the amplitudes of the color components are about 7% of the total bit-rate. Each texture
component deals with the color information in a specific manner. The following list describes
the particularities of each texture coding technique for the coding of color images:

e Strong edge component

The amplitude values of the color signals U and V at the positions of the edge brims
are represented with lower order approximation (first order functions) than luminance
amplitudes. The smooth color information of each region is reconstructed by interpola-
tion from these coded amplitudes. Morphological interpolation is independently applied
for the reconstruction of the luminance signal Y and the color signals U and V. The
interpolation algorithm is applied to the same set of region brims with the different
coded amplitude values of Y, U and V.

e Details component
In the details component, the averaged values of signals U and V inside each detail label
are also more coarsely quantized than the luminance amplitudes. This may done given
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Figure 6.12: Three component coding of the foreman image: top
left, original image; top right, regions of the partition and ex-
tracted details; bottom left, strong edge component and details;
bottom right, three-component coding (strong edges + details
+ texture) at 0.12 + 0.04 4+ 0.11= 0.27 bpp

that the color information is not so accurately perceived for such small visual features
[82].

e Texture component
As indicated in section 5.3.3 when the design of perceptual quantizers for subband
coding was discussed, the highest frequency bands corresponding to color signals may
be simply discarded. In addition, quantization errors in color signals are given smaller
weights than luminance quantization errors by the bit allocation algorithm. This results
in a rate of the coded color texture component much smaller than the rate allocated to
the luminance signal.
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Table 6.2: Component rates for the reconstruction of Fig. 6.11

Coded component number of bits component rate [bpp]

strong edges:

amplitudes 872

partition 2152

total 3024 0.12
details:

amplitudes 192

positions 928

total 1120 0.04
textures:

quantizers 488

subbands 2328

total 2816 0.11
total rate: 0.27

6.2 Application to video sequences

The main difference in the coding of video sequences with respect to the coding of still images
is that video coders have to deal with motion. Scene motion may be described by simple
spatial displacements of the structural primitives of the image model (such as blocks, regions
or edges) or by more complex 2D or 3D motion models which are able to characterize not only
translation displacements but also the deformations of the object projections in the camera
plane produced by the motion of the objects in the 3D scene. Affine motion models, for
instance, are able to describe tilt or zoom (motion in the z axis) whereas 3D motion models
can describe complex movements such as rotation.

The analysis of scene motion (motion estimation) permits the coding of most temporal
variations in the video signal as spatial ‘movements’ of the contents of the previous frames.
If the motion parameters are coded and transmitted to the receiver, the decoder is able
to reconstruct the current frame from the information that was already coded in previous
frames using these parameters (motion compensation). For most areas of the image, only some
changes in luminance that cannot be accurately described by the motion parameters are coded
as spatial information. This is known as inter-frame coding mode, and consists in the coding
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of the difference between the original frame and its motion-compensated reconstruction.

On the other hand, the areas of the image that cannot be predicted from the information
available in previous frames have to be coded separately. This happens, for instance, for the
whole image in the first frame of the video sequence or when a scene change occurs. In these
cases, the whole frame is coded as a still image in intra-frame coding mode. Intra-frame coding
is also applied in some areas of other frames. Typical situations where intra-frame coding
is required are, for example, the newly appearing objects in the scene or the backgrounds
uncovered by the moving objects.

In this thesis, we have not studied the problems related to motion in video sequences.
However, the segmentation-based video coding scheme employed for the application of the
texture coding techniques [22] performs motion estimation and compensation using an affine
model of the motion of the segmented regions. The projection step (see appendix C) tracks
the evolution of the regions along the time and the textures of the regions that can be correctly
predicted from the previous frames are coded in inter-frame mode. The textures of the new
regions appearing in each frame or those regions where motion compensated coding is not
efficient —in terms of rate-distortion— are coded in intra-frame mode.

Therefore, this section deals with the application of the investigated texture coding tech-
niques to the coding of region textures in video sequences. For the case of intra-frame coding,
these techniques and the image model are applied as in the case of still images. Let us briefly
discuss the differences in the application of the three texture coding techniques in the case of
inter-frame coding.

Inter-frame region-based subband coding of textures

Region-based subband texture coding was already applied to the coding residue of the two
first components of the model (strong edges and details) for still image coding. Therefore,
its application to the coding residue (or prediction error) of the motion compensated region
textures does not represent significant differences.

Inter-frame residual textures may present different statistical properties that will affect the
quantization steps and the bit allocation among the subbands. However, as the region-based
subband coding technique adapts these parameters to the contents of the coded region by
means of the rate-constrained optimization algorithm, as explained in section 5.3 (p. 101), the
only requirement is that such algorithm must be provided with an adequate set of quantizers
that can match the properties of the inter-frame textures. Gharavi has proposed in [35] to
use quantizers with the same characteristics that the one described in section 5.3.3 (Fig. 5.6).
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From the experience obtained in the application to the inter-frame case, we have observed
that the optimal quantizers for inter-frame textures tend to have larger dead-zones and smaller
quantization steps. Therefore, we have extended the set of available quantizers to include the
ones with appropriate characteristics for inter-frame coding.

Morphological interpolation and inter-frame coding

Morphological interpolation does not seem to be adequate, in principle, for inter-frame texture
coding. This technique has been proposed for the coding of the strong edge component,
containing the strong edges and smooth areas. Such texture contents are present in original
images but not in residual textures. At the most, inter-frame prediction error images are
almost zero in the regions where motion-compensation has successfully predicted the texture
contents. The residual textures of these regions can be simply approximated by lower order
smooth functions such as polynomials, cosines or even the average value.

The application of morphological interpolation for the coding of these textures from the
residual values at the positions of the region brims has been considered as an alternative
coding technique. Morphological interpolation yields a smooth reconstruction of such textures
which is cost-efficient and able to compete successfully in terms of rate-distortion with the
previously mentioned smooth functions for the coding of inter-frame textures. The reason
for this result, is that motion-compensation prediction errors sometimes present edge-like
features which are very localized at the boundaries of some regions. The reconstruction of
these errors by interpolation from the nearest region brim produces a localized reconstruction
of these residual features.

On the other hand, the application to inter-frame coding of a two-component model
consisting of the strong edge and texture components has not given significant improvements
from the point of view of the reconstruction PSNR. Nevertheless, we have observed that
this two-component coding of inter-frame textures yields reconstructed images with smaller
ringing artifacts. This can be explained, as before, because of the edge-like features of the
motion-compensated prediction error in the boundaries of the regions.

Detail coding in video sequences

The detail coding technique can be applied for the coding of details in video sequences as
explained in section 4.1.2 of chapter 4. Actually, the temporal persistence of a given detail
through consecutive frames of the original sequence has been taken as a parameter to assess
its perceptual significance.
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A drawback of the detail coding technique is the temporal connectivity assumption that
was made in order to track details along the time. This forces the extraction of such details
frame by frame, even if temporal subsampling is applied for very low bit-rate video coding
applications, with the added computational load of the extraction process. Details are ex-
tracted in all the frames of the original video sequence to allow the ‘temporal marking’ (see
eq. 4.7 on p. 71), but the amplitudes and positions of these details are not coded in the
skipped frames. However, even performing such tracking, fast moving details are not ade-
quately tracked. This makes the detail coding technique efficient only in the case of smooth
motion of the original sequences, for example in the typical head and shoulders images of
video-conference applications.

6.2.1 Video coding results

Two original color video sequences in QCIF format have been chosen for the application of
the texture coding techniques. The segmentation-based video coding scheme is explained in
appendix C. For the sequence foreman, a target rate of 42 kbit/s and a frame rate of 5 Hz
have been chosen. The coding scheme is applied for this sequence with the following texture
coding techniques:

e in intra-frame mode:

- morphological interpolation only (strong edge component)
- region-based subband coding only
- morphological interpolation and region-based subband coding (two-component model)

e in inter-frame mode:

- morphological interpolation only
- region-based subband coding only.

This original sequence presents significant motion. In particular, an important amount of
camera motion occurs in the first frames because the man is handling the camera himself,
then the camera pans to the right towards a building under construction.

As in the case of still image coding, the rate-constrained optimization algorithm decides
both the partition structure for each frame and the texture coding technique applied for the
coding of the regions. This decision is performed on the basis of the rates and distortion
values resulting from the application, both in intra-frame and inter-frame mode, of each one
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Figure 6.13: Results on video sequences: foreman (frame No. 132).
First row: original, partition and decision map. Second row: pre-
diction error in inter-frame regions, coded prediction error and
coded frame (45 kbit/s)

of the texture coding techniques (with different possibilities of coding accuracy for the case
of region-based subband coding) to every region of the partition proposals analyzed in the
partition tree. The optimization algorithm selects the optimal partition proposal and the set
of coding techniques that result in the smaller distortion for a given rate.

The coding results for two frames of the sequence foreman are presented in Figs. 6.13
and 6.14. The images in the first row are, respectively, the original frame, the partition and
the decision map. The second row shows the prediction error in inter-frame regions, the
coded prediction error and the final coded image, with the intra-frame coded regions and
the inter-frame coded textures added to the motion-compensated prediction. The decision
map indicates the texture coding technique employed in the coding of each region. Dark grey
corresponds to the two-component coding (interpolation and subband), light grey, subband
coding only and white is reserved for morphological interpolation only.

The decision map of frame No. 132 (Fig. 6.13, top right) indicates that the large region
in the center of the image has been coded in intra-frame mode. In this frame, the man turns
his head to the right with a sudden movement. The optimization algorithm has chosen to
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Figure 6.14: Results on video sequences: foreman (frame No. 216).
First row: original, partition and decision map. Second row: pre-
diction error in inter-frame regions, coded prediction error and
coded frame (45 kbit/s)
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Figure 6.15: Previous frame (No. 210) for the motion compensa-
tion of the coded image in Fig. 6.14. Left: original. Right: coded

code this region in intra-frame. Most of the regions in intra-frame mode, are coded using the
two-component model, with morphological interpolation for the region brims and subband
coding of the residual textures. Except for one region of the building, the other regions are
coded in inter-frame mode using region-based subband coding only, with different bit-rates
for each one of the regions. For example, the region of the helmet is coded with compression
120, i. e. 0.066 bppr!, whereas the other regions are coded with compressions ranging from
36 (the bottom right region) to 88 (the top right), 0.22 to 0.09 bppr.

The coded frame No. 216 in Fig. 6.14 has been chosen because of the large motion involved
(this is the last one of the frames where the cammera pan occurs). The previous original and
coded frames are displayed in Fig. 6.15 in order to show the motion involved. Recall that the
motion compensated prediction is obtained from the coded frame on the right of Fig. 6.15.
Almost all the regions of this frame were coded in intra mode. Please notice the the differences
in the texture part of trees of the coded image in the bottom right of Fig. 6.14. In the area
already coded in the previous frame and that is used for the motion-compensated prediction,
the residual texture coding performed by the region-based subband coding technique in inter-
frame mode improves the quality of the textures with respect to the part that is coded in
intra-mode.

The time evolution of the bit-rate, PSNR values, number of regions and portion of pixels
where region-based subband coding is applied are shown in the plots of Fig. 6.16 as a function
of the frame number for the sequence foreman. The bit-rate, for instance, is allowed to be
rather high for the first coded frame (15000 bits) and gradually tends to the targeted value.
This rate is the total rate of the coded sequence, including partition information (20%), color
and luminance texture information (73%), choice of the texture technique for each region

The symbol bppr stands for bits per pixel of the region, as introduced in chapter 5
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(1.5%) and motion parameters (5.5%).

The PSNR values are not constrained at all and present significant variations depending

on the motion of the scene and the contents of each frame?.

The initial number of regions is 27 and tends to decrease in the frames with slow motion,
given that most of the regions can be motion compensated with similar motion parameters
and this allows the merging of such regions. When a sudden motion occurs, as in the fast
camera motion mentioned above starting at frame 150, the number of regions, that have
decreased down to 5 regions at this point, progressively increases.

The last plot of Fig. 6.16 shows the portion of textures coded using the subband tech-
nique, i. e., either region-based subband coding only or two-component coding (morphological
interpolation 4+ subband) in intra-frame mode. Most of the textures coded by morphological
interpolation only are motion prediction errors of regions with slow motion. Some regions
containing smooth textures in the original image are also coded using the strong edge com-
ponent only in intra-frame mode. However, the average portion of subband coded textures is
above 68% of the total pixels of the sequence.

In the previous coding example using the foreman sequence the details component has
not been introduced because the sequence presents too much motion. As explained above,
this does not allow the correct extraction and tracking of the details along the time. If the
details component had been coded with this sequence, this would have resulted in a lack of
temporal stability of the extracted details, i. e. most of them would have not been kept coded
from frame to frame and would appear and disappear in consecutive frames.

A second QCIF color sequence presenting less motion than the former, the car-phone
sequence, is taken to show the application of the details component. In this case, the target
bit-rate is 30 kbit/s, the frame rate is also 5 Hz and a certain number of details is selected
for coding in each frame. The results are shown in Fig. 6.17. The images of this figure are
ordered as before, except for the center image of the bottom row, where the extracted details
have been superimposed to the coded residual textures. Notice that only one eye of the man
is coded as a detail in this frame. This is due to the fact that, though it was extracted by the
morphological operator, it is not ranked high enough to be selected. Actually, this detail is
less contrasted than the ones that are selected from the residue of the strong edge component.
Therefore, it is left for the the subband coding technique to be coded as a texture of the image.

2The optimization algorithm [69] allows to set a minimum threshold quality at the expense of not reaching
the target compression in some complex frames. This threshold has been set to 20.0 dB in the current
simulation, in order to obtain a smoother control of the bit-rate
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Figure 6.17: Results on video sequences: car-phone (frame No. 48).
First row: original, partition and decision map. Second row: pre-
diction error in inter-frame regions, coded prediction error (and
details) and coded frame (30 kbit/s)
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The time evolution of the bit-rate, PSNR values, number of regions and bit-rate devoted
to the coding of details are shown in the plots of Fig. 6.18 for the sequence car-phone. In this
case, the bit-rate includes the rate for the details component. The behavior of the plotted
figures may be explained as before. The car-phone sequence does not present a sudden camera
motion as the foreman sequence. Therefore, except for the first frame coded with a higher
number of bits (12000 bits), the PSNR values are kept rather constant between 30 and 32 dB
(notice the scaling of the Y axis in the corresponding plot). It is worthwhile to notice the
behavior of the modified READ coding for the coding of detail positions, that improves its
performance along the time, as shown in the bottom right plot.
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Chapter 7

Conclusions

The work of this thesis has been devoted to the study of perceptual image and video coding
techniques. Perceptual image coding is based on the efficient representation of visual informa-
tion using image models strongly related to the manner the Human Visual System perceives
and understands visual information. The relevance of this research is due to the important
role that images and video play in our civilization at the present time.

A ‘perceptually motivated’ model is put forward for coding applications. The first compo-
nent of the model is formed by the strong edges and smooth areas of the image. The second
component contains the small features or details that are meaningful for the visual system.
Finally, the third component of the model is aimed at the representation of the fine textures
of the image. We would like to highlight that we are aware that the proposed model is far
for being a complete perceptual coding model for images and video sequences. The research
effort has been directed to the development of the texture coding techniques that have been
presented throughout this thesis. Each one of these techniques offers interesting possibilities
in the framework of perception-based image compression schemes. Each one has proven to
be efficient in the framework it was designed for. A great effort to fit them in a perceptual
image model is still necessary in order to select whether the best match is the one that has
been proposed or not. However, we hope that the reader will not be deceived for the lack
of such optimized model. In our opinion, the results justify that the work which has been
carried out so far has yield encouraging results.

Three texture coding techniques have been investigated. The first one is based on “strong
edges” or significant spatial transitions in the image and the interpolation of smooth areas.
The second one deals with the small image details. The third technique efficiently represents
the fine textures of the image. Results both on still images and video sequences have been
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presented to assess the performance of these techniques. It has been shown that perceptual
considerations have to be taken into account in the design of efficient image coding systems.

7.1 Summary of developments

The three main contributions of this thesis are listed below. We would like to stress the
novelty of the texture coding techniques that have been investigated.

e Morphological interpolation
A new interpolation method based on morphological operators has been proposed. From
the point of view of computational efficiency, morphological interpolation is, at least,
one order of magnitude faster that existing methods for scattered data interpolation,
while yielding similar visual coding results. It has been applied to the coding of the
primary component of the perceptual image model.

A feature extraction technique based on the morphological watershed has been proposed
for the extraction of the strong edges of the images.

e Region based subband coding

The application of subband coding techniques to arbitrary shaped image regions has
been proposed. A symmetric signal extension technique has been developed for the
analysis and synthesis filter banks. The results assess the superior reconstruction quality
of the region-based subband coding scheme with respect to different techniques that
have been proposed for texture coding. Region-based subband analysis fully exploits
the information about the edge structure of the images. This produces clear subjective
improvements over conventional subband coding, which are especially noticeable at low
and very-low bit-rates. Region-based subband analysis yields a twofold decomposition:
in the spatial and in the frequency domains. Rate-constrained quantizer optimization
may be performed on both domains independently, so that the coding of the region-
based frequency decomposition can be made fully adaptive to the information contents
of each region and, besides, to the subjective perception of such contents by the visual
System.

e Perceptual extraction, ranking and selection of image details
A new method for coding small meaningful image features in very low bit-rate image
and video coding applications has been presented. Small visual features improve the
subjective quality of the reconstructed images at a minimum cost. The features are ex-
tracted using morphological operators in the spatial-temporal domain. Once extracted,
a perceptual selection is performed in order to keep only the most significant ones. An
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efficient coding technique has been proposed for the coding of these features, which is
based on motion compensation and relative addressing. The novelty of the scheme is
the analysis of the perceptual significance of image features. The results prove that
explicit perceptual measures of visual components should be considered in advanced
second generation in order to reach the target compression for very low bit-rates video
coders.

The integration of the above mentioned techniques in a perceptual model of the image
has been studied. The application of the perceptual model to images and video sequences
has yield encouraging results. For video sequences presenting moderate motion, such as
foreman or car-phone, bit-rates of the order of 35 to 45 kbit/s have been obtained with good
perceptual quality, and PSNR values about 30 dB. The segmentation-based coding scheme
that has been employed allows the adaptation of the coding techniques to the image contents
and the available bit-rate. As the bit-rate decreases, morphological interpolation (strong
edge component) prevails over region-based subband coding. The perceived quality decreases
gradually and annoying artifacts such as ringing, blurring or false contours appear smoothly.
At higher bit-rates, the quality of the images improves significantly because of the efficiency
of the region-based subband coding scheme increasing the rendition of the coded textures.

7.2 Current work and future research lines

Currently, the research effort is devoted to the validation of the perceptual three-component
model of the image. As pointed out at the beginning of this chapter, heuristic reasons have
led us to the choice of this perceptual model. However, extensive study is still necessary to
validate the perceptual model. Regarding the particular coding techniques, further lines of
research as the ones listed below can be addressed:

e The application of the morphological interpolation algorithm to other fields different
from image coding. Actually, a formulation of the implemented algorithm in terms of
non-linear Partial Differential Equations (PDE’s) is in progress at the time of writing.
Geometric PDE’s became a major topic of research in the past years. The advantages
of PDE’s or curve/surface evolution approaches in image analysis is that they allow
to think about image processing in the continuous domain. The problem in hand is
then approached as an image deformation task. This may yield novel solutions to
classical problems such as edge detection, filtering, anisotropic diffusion, and so on. The
idea implemented in morphological interpolation in order to speed up linear diffusion
processes may be translated to similar problems in this field.
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e The study of morphological interpolation as a reconstruction filter for ‘subband’ coding.

The initial steps in this direction have already been done. The advantage of morpho-
logical interpolation as a reconstruction operator is that it enables image interpolation
from any structure of the sampled set. Therefore, the progressive down-sampling of the
original image can be performed in any order, i. e. not only the conventional progressive
decimation of 4:1. This allows a particular progressive reconstruction by interpolation
of the original image starting from, for example, a single point and progressively adding
new points taken from the reconstruction residues. This can be applied for the coding
of region textures if an ordering of the region points is established a priory.

The improvement of the detail extraction step including motion information in order to
track the details along the time and not only using temporal connectivity.

The study of different signal extension techniques for region-based subband coding.
Higher order extensions than symmetric extension present higher computational load
and it has been found [108] that for low bit-rate applications simple symmetric extension
has good performance. However, further research from the point of view of computing
the missing samples as has been implemented in this thesis for region-based subband
coding is still necessary for higher order extensions.



Appendix A

Morphological operators

In order to address the problem of extracting significant features from digital images, analysis
techniques strongly related to the physical image structure are required. Such techniques
should deal with the ‘shapes’ contained in the image or in the video signal. Mathematical
morphology provides processing tools that give a good insight into the structure of the images
for feature extraction purposes.

Mathematical morphology is a non-linear processing technique originated from the work
of Matheron and Serra [103], [104]. The morphological theory has sound mathematical foun-
dations, but it can be used successfully with a very intuitive approach. Its original aim was
to characterize physical properties by means of visual information. Although many signals
combine additively, visual signals obey a very different way of composition. The physical
world around us is generally made of opaque objects. Objects in the scened are ‘ordered’ in
the sense that the nearest object is located before than the one located behind it. Therefore,
the first prerequisite that a visual-like transformation must fulfill is to preserve the existing
ordering relations between every pair of objects; i.e., it must be increasing instead of linear.
The two notions are incompatible.

A review of some morphological operators that are used through this thesis is given in this
appendix. The specific use of the watershed algorithm for the extraction of strong edges in
order to perform the coding of the strong component of still images by means of open contour
features is explained along with the applications of the morphological interpolation technique
in chapter 3, and the morphological operator for the extraction of image details is explained
in the corresponding section of chapter 4
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A.1 Basic definitions

In mathematical morphology, the useful operations are those preserving the ordering relation
defined in the working structure, a complete lattice, and commuting with the fundamental
laws, the ‘sup’ and the ‘inf’. These operations are said to be increasing transformations. Let
us briefly state these concepts in the following.

A complete lattice is a set P such that,

1. a partial ordering relation < is defined:

A<A
A<B,B<A = A=B
A<B,B<C = A<B (A1)

2. for each family of elements {X;} € P, a ‘sup’ and and ‘inf’ exist:

inf : maximum lower bound A {X;} (A.2)

sup : minimum upper bound V {X;} (A.3)

The increasing property states that if an ordering relation holds for two elements X; and
X which are input to the transformation v, the same ordering is kept for the output, i.e.,

The basic operations preserving the ordering relation are dilation and erosion:

Dilations S(V{X;}) =Vv{i(X;)} commute with the sup (A.5)
Erosions e (MXi}) =N {e(Xy)} commute with the inf. (A.6)

Examples of lattices are the lattice of subsets P(E) of a set F, with the partial ordering
defined by the inclusion law, or the lattices of real numbers or integer numbers, where the
order is the natural order between levels (total ordering).

Originally, mathematical morphology was defined on sets, and later was extended to deal
with numerical functions. The link between sets and functions is established by defining a
function as a stack of decreasing sets. Each set is the intersection between the function and
a plane of constant level:

XiN)={zeR, f(z)>A} & f(z) = Sup{\ such that =€ XN} (A7)
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Then, if f is a function, the following inclusion holds:
Yu<AeR, Xf()\) C Xf(,u) (A8)

Therefore, any increasing transformation applied level by level to the family (stack) of sets
parameterized by A will result in another stack of sets (another function) preserving the
ordering defined in the above equation A.8. Taking into account this equivalence between sets
and functions, ‘grey level” morphological operators have been defined to deal with functions
and, in particular, with any signal x; defined on the points ¢ of an N-dimensional space such
as a grey level image.

For comparison, in linear signal processing, the useful operations are also those preserving
the working structure, in this case the vectorial space, and commuting with the fundamen-
tal laws, the addition and the scalar product. The resulting operation is linear instead of
increasing: the convolution.

(0 (Z aiXi> = Zaﬂb (Xi). (A.9)

Linear filtering techniques modify the object intensities and, therefore, the estimated loca-
tion of their corresponding contours. Morphological filters examine the geometrical structure
of images by probing their micro-structure with certain elementary form, the structuring ele-
ment, in the manner in which it fits into the image structure. Thus, the analysis is geometric
in nature, and derives quantitative measures from this point of view.

Some basic definitions that are used through the chapters of the this thesis report are
reviewed in the current appendix. The reader is referred to [103] and [104] for a complete
explanation of the concepts of mathematical morphology.

A.2 DMorphological filters

Morphological filters are defined as increasing and idempotent transformations. Being in-
creasing, they preserve the ordering relation in the working space. The idempotence property
limits the information loss by transforming in a single pass any original signal into an invari-
ant signal. Morphological opening and closing are examples of morphological filters. They
are based on the operations of dilation and erosion, which are defined below.

If ; and yi denote two signals defined in an N-dimensional space, EY, the erosion &, and
dilation é,, of x; by a window or flat structuring element B of size n are given by:
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e crosion
Yi = en (1) = Inf ] (A.10)
e dilation
Yi = On (i) = sup [z;1x] (A.11)
keB

where i indicates the location of the current sample and k defines the distance to adjacent
samples within the window. From a practical point of view, all the morphological filters in
this appendix use a square structuring element whose square size is represented by n.

Morphological opening =, and closing ¢, of size n are based on dilation and erosion
definitions:

e morphological opening
Yi = Yn (i) = 6n (€n (1)) (A.12)

e morphological closing
Yi = Pn (xz) =E&n (5n (331)) (A.13)

Opening and closing are dual filters in the sense that the result of the closing is also
the complement of the result of the opening applied to the complement of the signal. The
opening (resp. closing) simplifies the original signal by removing the small bright (resp. dark)
components where the structuring element does not fit. In addition, the contours of the large
image components are often modified to fit the shape of the structuring element. In order
to allow a perfect preservation of the contour information, a reconstruction process must to
be used [104]. Its goal is to restore the contour of the objects that have not been totally
eliminated by the opening or the closing. Let us describe this reconstruction process.

Two dual reconstruction processes may be defined. After an opening, a positive recon-
struction is defined based on geodesic dilation, whereas in the case of closing, it is a negative
reconstruction relying on geodesic erosion. Both geodesic operators need an input signal z;
and a reference signal r;. Their definitions are given for unitary size (the smallest window
size in digital case) usually taken as a 3 x 3-window in image processing:

e geodesic dilation of size 1

Yi = 5(1) (l‘i, ’l“i) = inf [51 (:L‘l) ,’l"l'] (A.14)

e geodesic erosion of size 1

yi = e® (x4,13) = sup [e1 (x;) , 7] (A.15)
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These elementary geodesic dilation and erosion operators allow the introduction of the
reconstruction processes, which are defined as iterated geodesic dilations or erosions. In
practice, the unitary operations are iterated until idempotence, that is, until no change is
observed in the output signal. Practical implementation of these operators may be done by
means of efficient algorithms based on list structures that avoid any iterating process and
lead to extremely fast algorithms [120].

e positive reconstruction
yi =~ (24,7;) = 60 (6(1) ( 6 () ,m-) ,m’) (A.16)
e negative reconstruction

yi = o) (z4,1;) = W) (8(1) ( o eW (@)L ri> ,m’) (A.17)

In morphological image processing, the function to be rebuilt by the reconstruction process
is a ‘marker’ image for significant components of the reference image, whose locations are
known but their exact shapes are not. Markers are, indeed, binary images identifying the
presence of desired components. The original contours of these components will be found
by means of the reconstruction process applied to the marker image, taking the original
image as the reference function. Finally, the opening by reconstruction 4("¢?) and closing by
reconstruction go(“c) are given by:

e opening by reconstruction
yi =37 (en (), 2) (A.18)

e closing by reconstruction

yi = o) (60 (), 3) (A.19)

Their simplification effects in the filtered images are smaller than those of the morpholog-
ical opening and closing. Large bright (resp. dark) objects which have not been completely
eliminated by the morphological opening (resp. closing) are rebuilt to their original shape by
the geodesic process so that their contours are preserved.

A.3 The morphological Laplacian

The morphological Laplacian, L(f), is defined as the residue of the gradient by dilation, g* (),
and the gradient by erosion, g~ ():
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9" (i) = 8(2:) — @ (A.20)
g (@) = xi — e(xi) (A.21)
L(zi) = g" (i) — g~ (22) (A.22)

The morphological Laplacian is greater than zero at the lower edge of the transitions and
smaller than zero at the upper edge. In flat surfaces or slanted planes without convexity
changes, it cancels out. Indeed, it can be shown that the morphological Laplacian is an
approximation of the signal second derivative.
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Quadrature Mirror Filters

The two-channel quadrature mirror filter (QMF) bank, shown in Fig. B.1, is one of the
earliest and most commonly employed structures for subband coding [23]. The analysis bank
is composed of two frequency selective filters: a low-pass filter Hy(z) and a high-pass filter
H,(z), which split the incoming sequence x(n) into a low-pass signal zo(n) and a high-pass
signal x1(n). The name quadrature mirror filter derives from the fact that the response of
H;(z) is the mirror-image of the response of Hy(z) with respect to frequency 7/2, which is a
quarter of the sampling frequency.

To preserve the system sampling rate, both channels are critically decimated by factors
of two. The decimated signals are typically encoded and transmitted. At the receiver end,
the signals are decoded and passed through the interpolators. The decimator-interpolator
cascade causes aliasing and imaging. The purpose of the analysis filters Hy(z) and Hi(z) is
to avoid the aliasing effect due to decimation (down-sampling), whereas the synthesis filters
Fy(z) and Fi(z) eliminate the ‘images’ caused by interpolation (up-sampling). As a result, the
signals vp(n) and vy (n) are good approximations of zo(n) and x1(n) and the reconstruction
X (2) resembles X (z) closely.

In order to avoid aliasing, the responses of Hp(z) and Hj(z) must be disjoint. On the
other hand, to ensure the reconstruction of the input signal, the the set of filters of the
analysis bank should cover the whole frequency range. The only obvious solution is to make
the responses very sharp, approximating the ideal response, but it is well-known that sharp
cut-off filters require very high order, are highly sensitive to quantization and often cause
instability problems (if IIR).

The classic QMF solution adopted in order to overcome this problem is to permit aliasing
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zo(n) vo(n)
Hy(2) 2:1— % —1:2 Go(2) T
Hi(2) 21— $§ — 122 Gi(2) -

z1(n) vi(n)

Figure B.1: Two-channel Quadrature Mirror Filter bank

at the output of the decimators by designing the analysis filters with their responses overlap-
ping slightly around 7/2. Then, the synthesis filters Fy(z) and F}(z) are chosen such that the
imaging produced by the interpolators cancels the aliasing effect. In fact, exact cancellation
is possible. In the following, the filter design equations for the QMF filter bank are reviewed.
Some proposed solutions for subband frequency splitting are also presented and compared.
The last section discusses the extension of one-dimensional QMF filtering techniques for image
signals.

B.1 Analysis of the 1-D QMF filter bank

The QMF filter bank is a multi-rate digital filter bank, where decimators and interpolators
change the sampling rate throughout the system. The input-output relation for a two-fold
decimator can be written in the z-transform domain as follows [63, ch. 2, section 6]:

Y(z)==

: (X (%) + X (=212)] (B.1)

The ‘aliasing’ effect is due to the second term in eq. B.1, which is a shifted version (or alias)
of the first term by an amount of 27 in the frequency domain. On the other hand, a two-fold
interpolator causes shrinking in the frequency axis, known as ‘imaging’ effect, that can be
expressed with the following simple equation:

Y(2) = X(2?) (B.2)

In the case of the two-band filter bank shown in Fig. B.1, and based on the relations B.1
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and B.2, the system equations can be written as follows:
X(2)=T(2)X(2) + A(z) X (—=2) (B.3)

with T'(z) being the distortion function

T(:) = 1 [Ho()Go(2) + Ha(2)Ga(2)] (B.4)
and A(z), the aliasing term
Az) = % [Ho(=2)Go(2) + Hi(—2)G1(2)] (B.5)

Note that it is not possible to write down an expression for X (z)/X(z) that is independent
of X(z) itself. This is not surprising since the QMF bank is not invariant, as the decimators
and interpolators are (time- or space-) variant systems [115].

B.1.1 Exact aliasing cancellation

The term A(z) in B.5 represents the effects of aliasing and imaging. This term can be made
to disappear simply by choosing the synthesis filters to be

Go(z) = Hl(—Z) Gl(z) = —Ho(—z) (B.G)

Once the aliasing is cancelled, i.e. A(z) = 0, the QMF bank becomes a linear and invariant
system with overall transfer function

X = TE) = [HEH(-2) - () ol
= SIFG) - F(-2) B.7)

where F'(z) is defined as the product filter

F(z) = Hy(2)Hi(—2) (B.8)

In order to obtain an efficient implementation (see section B.1.3 below) QMF’s are defined
to be related by a frequency shift of 7, i.e,

Hi(z) = Ho(—2) (B.9)
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For this class of analysis/reconstruction filter pair, the product filter becomes F(z) = H3(z)
or F(—z) = H2(z) and the transfer function

T(2) = 5 [H3(2) — B} ()] = 5 [H3 () — HA(~2)] (B.10)
In summary, the choice of the filters according to
Hl(z) = Ho(—z) G()(Z) = Ho(z) Gl(z) = —Ho(—z) (B.ll)

leads to complete cancellation of aliasing.

B.1.2 Perfect reconstruction property

Ideally, the transfer function T'(z) should be a pure delay of the form T'(z) = 279 so that the
reconstructed signal is a delayed version of z(n). In this case, the filter bank fulfills the perfect
reconstruction property. Since T'(z) is in general not a delay, it is called distortion function.
The quantity |T'(e/*)| is the amplitude distortion and arg [T(e/*)] is the phase distortion.

Because of the importance of phase in images [60, pp. 31-39], and thus to avoid phase
distortion in subband coding schemes, linear phase filters are often desirable. Clearly, if Hy(2)
and H;(z) are linear phase filters, then 7'(z) given by B.10 has linear phase as well. Assuming
Hy(z) to be a linear phase low-pass FIR filter of order N — 1, it can be expressed [63, ch. 4,
section 5] as Ho(e/?) = e 7wWN=1/2[, (e/¥), where Hy,.(e/*) is the (real-valued) amplitude
response. Then, the frequency response T'(e/“) takes the form:

i e_jw(N_l) i _ (7w
T(eM) = ——5— [H§ (") = ()" H, (/)]
—jw(N-1) | .
— 62“Ho(e”’)‘z—(—I)N_l‘Hl(eJ“)ﬂ (B.12)

If the length N of the filter is odd (order N-1, even) then, at the frequency w = 7/2, the
response T'(e/*) given by B.12 is zero and this implies severe amplitude distortion. Accord-
ingly, with the choice of filters as in B.11, the linear phase FIR filter Hy(z) must be even in
length. The residual amplitude distortion is then

()| = % UHO(ej“’)'Z + ’Hl(ejw)ﬂ (B.13)

In the case of linear phase filters, exact reconstruction requires ]Ho(ej“’)|2 + |H1(ej“’)‘2 to
be constant for all w. In general, for the filters defined in B.11, the perfect reconstruction

condition is stated as follows: ‘ '
Hg(ej“’) — le(ej‘“) =2 (B.14)
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Table B.1: Parameters of Johnston’s 8 TAP(A) QMF filters

parameter value
normalized transition band 0.14
pass-band ripple 0.06 dB
stop-band rejection 31 dB
phase characteristic linear
perfect reconstruction nearly
regularity (zeros at z = —1)  none

There exist two simple cases where this condition is satisfied. The first is the case where
the analysis filters are infinitely long, ideal half-band filters. Obviously, the resulting anal-
ysis/synthesis system is distortion-less but not very useful for real implementations. The
second case occurs when Hy(e’“) and Hy(e’*) are of order one of less. For example,

Ho(2) = —=(L+ 27 Hi(z) = —=(1 -2 (B.15)
z)=— z 2)=—(1—-2 .
0 NG 1 NG
Although these filters form a perfect reconstruction filter bank, they lack the frequency re-
solving power of higher order filters. Higher order QMF’s will never permit reconstruction to
be exact, although the distortion can be made to be very small.

B.1.3 Johnston filters

The set of QMF filters designed by Johnston [48] have been widely used in the image coding
community, partially because of the simplicity of the design technique and the published
tables of filter coefficients. With the restrictions expressed in B.11, Johnston designed a set
of filter banks based on the minimization of a weighted sum of the reconstruction error and
the stop-band energy. Johnston QMF’s are FIR, even in length and linear phase. They
perform exact aliasing cancellation and have good reconstruction properties. The frequency
responses of the 8 TAP low-pass and high-pass Johnston filters are shown in Fig. B.2. Notice
the 3 dB point at a quarter of the sampling frequency. Some features of the 8 TAP (A) filters
designed by Johnston are given in the table B.1.

When applied in a two-band system, Johnston filters result in an overall system response
with only a negligible degree of distortion. The amplitude distortion |T (ej‘“)| of the 8 TAP
QMF filter bank is shown in Fig. B.3. As this magnitude is not constant for all w, the filters
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Figure B.2: Frequency responses of the 8 TAP Johnston QMF filters
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Figure B.3: Overall amplitude response of the 8 TAP Johnston QMF filter bank

are not perfect reconstruction filters, but they approximate the target expressed in B.14.
Johnston’s QMF solution has the advantage that it can be implemented in an efficient way
because the coefficients of high-pass and low-pass filters are identical in magnitude but may
have a different sign:

ha(n) = (=1)"ho(n) (B.16)

This coefficient property is derived from the fact that QMF filter are frequency shifted
versions of each other (B.9), which may be formally exploited by using the implementation
known as polyphase structure [119]. The polyphase implementation has the effect of reducing
the number of multiplications by 50 percent.

B.2 Other solutions for the filter bank

Besides QMF filters, a number of different filtering techniques have been proposed for the
analysis/synthesis filter banks of the classical subband coding scheme. Some of them are
reviewed in this section and compared against the classical QMF solution.
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o Conjugate Quadrature Filters

There exist a class of FIR filters [109], called conjugate quadrature filters (CQF’s), that
preserves the perfect reconstruction property of B.14 and also allows for the design of
realizable filter banks with arbitrary frequency resolution. These filters are designed
by removing the constraint in B.9 whereas the alias cancellation condition stated in
B.6 is kept. The design technique consists of directly designing the product filter F'(2)
of B.8, and then factoring the result into separate analysis/synthesis filter banks (e.g.,
minimum and maximum phase components). CQF filters are constrained to have the
same magnitude response, which is exactly the square root of Fy(e’*), so that the
product filter is designed to be the square of the desired analysis filter magnitude.

Conjugate quadrature filter analysis/reconstruction is distortion free, and CQF’s have
higher filter quality than QMF filters. In fact, they may be designed to be optimal
filters with equi-ripple characteristic in the frequency intervals of interest according
to the minimax or Chebishev criterion [74]. However, CQF’s have non-linear phase
and, since they are not frequency shifted versions of each other, these filters cannot be
realized using the polyphase structure. In addition, in presence of quantization, CQF’s
present more Gibbs effects (ringing) than QMF’s [6]. This is explained by the the larger
oscillations or ripples of the filter response near the Nyquist frequency.

IIR Filters

The superior magnitude characteristics associated with IIR filters can be exploited in
subband filter banks [108]. The main advantage of IIR systems is the lower computa-
tional complexity. IIR filters can achieve dramatic computational efficiency gains over
FIR systems (beyond 10 to 1) for comparable performances. Although IIR filter banks
are often sensitive to finite word length effects and numerical accumulation errors, they
can be designed to have low numerical sensitivity.

The main arguments against using IIR filters for subband coding of images is that they
have non-linear phase and they show greater ringing distortion at low bit-rates [108].
As discussed below (see section B.2.1), the ringing distortion is directly related to the
amplitude of the ripples in the step response of the low-pass filters, which produce
pronounced overshoots followed by decaying ripples in the low-pass filtered signal tran-
sitions. By contrast, the step response of QMF’s tend to have ripples with somewhat
smaller amplitude and distributed on both sides of the step transition.

‘Wavelet’ Filters

CQF’s and IIR filters were initially developed for speech processing and, according
to the needs of this field, they are very selective but not ‘smooth’ in the frequency
domain. The main difference of wavelet filters with traditional subband coding is that
wavelet filters are chosen to be regular [89]. ‘Regularity’ can be interpreted as a flatness
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condition of the frequency response at half the sampling frequency. The regularity
criterion brought by wavelet theory over filter banks has been found to be relevant
for image coding applications [88]. Daubechies’ orthonormal wavelets bases filters are
deduced from ‘maximally flat’ low-pass filters, with maximum number of zeroes at
z = —1. Filters designed this way are CQF with high regularity (smoothness) and
low selectivity. Actually, Daubechies’ filters are not selective at all, but they present
high attenuation with no oscillation and their phase behavior is the closest to linear for
perfect reconstruction filters. In order to increase selectivity while keeping smoothness
in the stop-band, Rioul [88] proposed a design algorithm for filters between Daubechies’
and Smith/Barnwell CQF’s in terms of regularity and selectivity.

o Asymmetrical Filter Banks

QMEF’s and CQF’s constrain the filters Hy(z) and Hi(z) to have the same magnitude
response in order to obtain a symmetrical decomposition of the frequency spectrum.
On the contrary, the wavelet decomposition is obtained using a highly asymmetrical
tree, although it yields a good frequency partition. Based on the observation that high-
frequency information of natural images are edges, which have a very limited spatial
support, whereas the low-frequency information comes from homogeneous regions that
have a large spatial extension, Egger and Li [27] have recently proposed subband coding
of images using asymmetrical filter banks (AFB). AFB’s consist of a very short high-
pass analysis filter and a longer low-pass counterpart. These filters are linear phase,
maximally regular and of unequal length. AFB’s present good step response of the
longer low-pass filters, whereas the length of the proposed high-pass filters is very short,
producing very few oscillations of the filtered image around the edges. This results in
a reduced entropy of the high-pass subbands and makes the quantization error very
localized around the edges and diminishes the ringing effects. Egger and Li have exper-
imentally verified that AFB’s give better visual quality than classical QMF filter banks,
although their frequency selectivity is small.

B.2.1 Discussion

The performance of linear filters for subband image coding is characterized by the presence
of ringing effects. The source of this distortion can be seen as the impact of the filters in
terms of their step response. At low bit-rates, when quantization is carried out at the output
of the analysis stage, the fine structure in the high frequency bands is often lost or, at best,
severely distorted. Thus, a step edge being received by the synthesis filter in the low-pass
channel produces the step response of the low-pass filter at the output. The low-pass step
response inherently contains ripples, which are associated with the Gibbs phenomenon. At



170 APPENDIX B. QUADRATURE MIRROR FILTERS

higher bit-rates, the fine grain structure in the high-pass channel would also produce ripples,
which tend to cancel the ripples in the low-pass synthesis channel resulting in a smooth image
edge. Therefore, the ringing distortion is directly related to the step response of the synthesis
filter. If the amplitude of the ripples in the synthesis filter step response is reduced, the
ringing will be reduced as well.

The design of filters with optimal magnitude response characteristics, as CQF’s, implies
the necessity of step response ripples. In the light of the alternation principle [74, p. 468], it is
impossible to achieve small step response ripples and good low-pass frequency characteristics
in a single filter. Some balance between frequency domain and step response characteristics
may be achieved, but subband coding with linear filters will always present ringing distortion
to some extent.

In addition, symmetrical perfect reconstruction filter banks (CQF’s) do not present linear
phase, what is true for IIR filters as well. Non-linear phase filters produce distortion that
often takes the form of pixel intensity oscillations (ringing) in the vicinity of image edges [108,
p. 130]. In general, subjective preference is given to FIR filters which have linear phase.

The wavelet approach is found at the other extreme of the design of optimal filter magni-
tude responses. Wavelet filters are designed to be smooth (regular) in the frequency domain.
The regularity effects take place in the stop-band, where they present greater attenuation
than QMF’s and CQF’s. However, some local artifacts arise along the edges due to the regu-
larity constraint. More distortion in form of blurring is is introduced due to the lower cut-off
frequency of wavelet filters.

Some authors [57] have reported the advantages of using short kernel filter banks in order
to minimize ringing effects. Although the amplitude distortion of non-perfect reconstruction
QMTF filter banks can be made very small with the use of long kernels, long filters may increase
the computational complexity, while not providing significant coding gain. The use of long
kernel filters for video and image applications is discouraged [57]. These type of filters may be
suitable for a small number of bands. However, their application to high compression image
coding, which necessitates the decomposition in a large number of narrow bands, may affect
the coding efficiency due to their poor frequency responses. In the case of high compression,
excessive coding noise can have a greater effect on the cancellation of aliasing due to the large
overlap between the neighboring bands.

An interesting comparison of filter banks for subband coding of images has been reported
in [6]. The study is limited to eight tap FIR filters, which allow to limit computation time
and lead to reasonable selectivity. The authors conclude that in a subband coding scheme
the main filter families studied give the same kind of performance and that the influence
of the phase characteristic, the regularity and the selectivity are not significant enough to
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justify an adaptation of the coding process to the analysis/decomposition filters. Sixteen tap
filters produced similar results. The effective differences observed were mainly due to the
phase characteristic. Eight tap QMF filters were reported to give good results when the high
frequency sub-images are cancelled, what often occurs in low bit-rate applications.

Finally, the recently proposed asymmetrical filter banks show only small empirical im-
provement regarding the ringing effects and cannot be implemented as efficiently as QMEF’s.
Actually, the same authors have proposed an adaptive subband decomposition scheme [28]
that, in order to get rid of the annoying ringing distortion, switches from AFB’s to morpho-
logical filter banks when non-textured regions or strong edges are encountered. Such adaptive
scheme benefits from the superior performance of linear filters in textured areas.

B.3 Extension to two-dimensional signals

For two-dimensional signals, solutions based on separable filtering are the most computation-
ally efficient and generally the most attractive. Separability enables to treat 2-D systems in
terms of 1-D filtering concepts. ‘Separability’ is used here in a general sense and refers to any
2-D filter which can be implemented in terms of series of 1-D filtering operations performed
along linearly independent image lines. One popular and straightforward implementation of
2-D separable filtering consists of first applying 1-D filtering and decimation to the rows of
the image and then applying the same procedure to the columns of the resulting images. This
results in a basic four-band decomposition as shown in Fig. B.4.

In addition to the computational benefits of separable filtering, all the desirable 1-D
reconstruction properties carry over directly. This is clearly true since the rows and columns
are sequentially reconstructed with 1-D filter banks. Similar properties have been derived for
filter banks that are separable in a less restrictive sense than row/column separability. The
general framework of multi-dimensional subband filter banks (separable and not separable)
has been treated by Vetterli [118].

Similarly to the one-dimensional case, a two-dimensional signal x(m,n) sub-sampled by
2 along each axis results in a signal y(m,n) that presents shifted versions of the spectrum
X(z1,22) in the frequency domain (aliasing). The input-output relation of the 4:1 2-D or-
thogonal decimator can be written as follows:

1
Y(azm) = 7 [X(&@ ) + X (@7 -2 + X (42 + X (27, -2 317)

The relation for the reciprocal 4:1 interpolator is expressed with the following z-transform:

Y (21, 29) = X (23, 23) (B.18)
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Figure B.4: Subband analysis/synthesis with separable filters
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In the case of the four-band 2-D filter bank shown in Fig. 5.1 of chapter5 (page 88) and
with the symmetry constraints stated in eqs. 5.1-5.4, the system equations are [118]:

X(Zl, ZQ) = T(Zl, Zg)X(Zl, ZQ) + A(Zl, ZQ)X(-Zl, —Zz) (B.19)
with T'(z1, z2) being the distortion function

T(Zl, 22) = i [Hz(zl, 22) — Hz(zl, —Zg) — HQ(—Zl, 22) + HQ(—Zl, —22)} (B.QO)

and A(z1, z2) the aliasing term

A(z1,22) = = [H(z1,22)H(—21, —22) — H(21, —22) H(—21, 22)] (B.21)

DN |

A necessary and sufficient condition for the cancellation of the aliased components A(z1, 22)
in B.21 is the separability of the filter stated in eq. 5.5. Let us rewrite this equation below
along with its expression for the impulse response of filter h(ni,no):

H(z1,22) = Hz, (21)H,(22) h(ni,n2) = hn, (n1)hny (n2) (B.22)

In that case, the aliasing is cancelled and the system transfer function results:

% [H,,(z1)H,,(22) — H, (—21)H , (22)

—H, (21)Hzy (—22) + Hay (—21) Hz,y (—22)] (B.23)

T(z1,22) =

In order to obtain perfect reconstruction, assuming that both filters hy,, (n1) and hy,(n2)
are even length and linear phase, the following condition should be met:

H., (e/*")H,, (e7?)

—H., (ej(wl +7r))HZ2 (eij)

_Hzl (ejW1 )HZ2 (ej(an—Hr))

+H,, (@, (e7(@2Fm)) = 4 (B.24)

If sum of the squared magnitudes of the frequency responses is equal to a constant, the signal
is perfectly reconstructed. Since the filter is separable, the sum of the one-dimensional filters
has to be equal to a constant and thus conventional 1-D QMF’s can be used, i.e.,

2 jw 2 (w147 2 jw 2 | (wo+T
HZ (/1) — HZ (/1 F7)) = HZ, (/) — HZ,(e2F7)) = 2 (B.25)
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Appendix C

Segmentation-based
rate-constrained optimization

This appendix briefly describes the segmentation scheme for the coding of images and video
sequences that has been employed in chapters 5 and 6. This coding scheme [22], named
SESAME in the context of the MPEG4 proposal, is based on rate-constrained optimization
of both the partition structure and the bit-allocation for the coding of the region contents.
For a more detailed explanation for the optimization algorithm, the reader is referred to [69].

C.1 Principle and structure of the segmentation-based scheme

The segmentation algorithm does not make any assumption about the scene content, no a
priori information is considered. The scene can have an arbitrary number of objects with
arbitrary relations, positions and motions. This leads to a partition that should be signal
dependent. Therefore, it results from an analysis of the sequence.

The representation of objects by partitions does not only involve the definition of object
contours at one instant but also their time evolution. Indeed, one should be able to recognize
that one region (or one object) proceeds from a given region (or object) in the previous frames.
In other words, one should be able to track regions and objects in time. This approach discards
all techniques that define partitions independently from one frame to another one. The coding
strategy cannot rely on a fixed topology of the partition. The partition has to evolve with the
modifications of the scene content: regions are to be introduced in the partition when new
objects appear in the scene. Regions are to be removed when objects disappear in the scene.
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The general structure of the segmentation-based coding scheme is presented in Figure C.1.
The encoding process relies on three sets of functions: Partition functions, Bit allocation
function and Coding functions.

Decision

Decision coding

Bit Allocation ‘
Function

Partition
Tree

Frmer ]

Partition
coding

Projection

Time T-1 ¢

Texture
coding

Partition Functions Coding Functions

Figure C.1: General structure of the SESAME scheme

e Partition functions As discussed before, the sequence representation relies on signal-
dependent partitions. Moreover, following the sequence evolution, regions should be
tracked and the partition topology may be modified. This set of requirements is imple-
mented by the partition functions. In fact, two processing steps can be distinguished
(see Figure C.1): the Projection which tracks the time evolution of the regions, and the
Partition tree which deals with the modifications of the partition topology (elimination
and introduction of regions).

e Bit allocation function This function is implemented by the block called Decision. In
order to get an efficient content- based representation, the problem of bit allocation has
been carefully studied. The Bit allocation function optimizes the repartition between
the various types of information to be coded and transmitted. In the SESAME proposal,
it concerns mainly motion, partition, grey level and color information. As a result, the
Decision block defines the coding strategy, that is, the region to be coded and the type of
coding to be applied on each region. The Decision block has to select the best strategy
in terms of regions and coding techniques among a set of possibilities. The Decision
is made based on Rate-Distortion theory concepts and is explained in more detail in
section C.2.
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e Coding functions The last set of functions actually codes the information necessary
to restore the sequence on the receiver side. They deal with the encoding of the cod-
ing strategy (Decision coding), the motion information (Motion coding), the partition
(Partition coding) and the grey and color level pixel values (Texture). The partition
and the texture should be motion compensated. This explains why the Motion coding
block is located before the Partition and texture coding blocks.

C.2 Partition tree and rate-constrained optimization

The partition tree consists of a set of hierarchical partition proposals as shown in Fig. C.2.
These partitions are obtained by merging and splitting regions from the projected partition
(in inter-frame mode, this the partition of the current after motion compensation).

Upper levels
<
- @
Q,
3

Projected o

partition — ™
%mmtmi on
e

Figure C.2: Partition tree

Lower levels

The rate-constrained optimization algorithm decides in the decision process both the par-
tition structure for each frame and the texture coding technique applied for the coding of the
regions. This decision is performed on the basis of the rates and distortion values resulting
from the application, both in intra-frame and inter-frame mode, of each one of the texture
coding techniques to every region of the partition proposals analyzed in the partition tree.
The optimization algorithm selects the optimal partition proposal and the set of coding tech-
niques that result in the smaller distortion for a given rate. An example of optimal partition
selected from the partition tree is illustrated in Fig. C.3
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Figure C.3: Decision process

The decision process corresponds to the higher level bit-allocation algorithm mentioned
in chapter 5. For a given overall target rate, the decision of the higher level algorithm
results in a specific segmentation of the input image and an optimal set of rate-distortion
pairs for each region. This decision is made using an minimization algorithm relying on
Lagrange multipliers, which converts the constrained optimization problem of selecting the
set regions and texture coding techniques that yield the smallest distortion at a given rate
in an unconstrained problem of minimizing the Lagrangian cost. The first reference of bit
allocation for completely arbitrary inputs and discrete quantizer sets was given by [105].
Then, the extension for more general temporally and spatially dependent coding scenarios
was addressed in [83]. Finally, the application in the framework of segmentation-based coding
was given in [87].

With the resulting optimal rates, the region-based subband coding bit-allocation algorithm
(lower level) decides, in each region, the quantization steps for the different subbands of the
frequency decomposition.
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