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-Podrias decirme, por favor, qué camino he de tomar para salir de aqui?
-Depende mucho del punto adonde quieras ir -contesté el Gato.

-Me da casi igual dénde -dijo Alicia.

-Entonces no importa qué camino sigas -dijo el Gato.

-...siempre que llegue a alguna parte -anadié Alicia, a modo de explicacién.
-Ah!, seguro que lo consigues -dijo el Gato-, si andas lo suficiente.

-Would you tell me, please, which way I ought to go from here?

-That depends a good deal on where you want to get to -said the Cat.

-I don’t much care where -said Alice.

-Then it doesn’t matter which way you go -said the Cat.

-...80 long as I get somewhere -Alice added as an explanation.

-Oh!, you’re sure to do that -said the Cat-, if you only walk long enough.

Alicia en el pais de las maravillas,
Alice’s Adventures in Wonderland,
CARROLL, Lewis (Charles Lutwidge Dodgson) (1832-1898)
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Abstract

Synthetic Aperture Radar (SAR) systems have emerged, during the last decades, as a useful tool to gather
and to analyze information from the Earth’s surface. Owing to its coherent nature, this type of systems
can collect electromagnetic scattering information with a high spatial resolution, but, on the other hand,
it yields also speckle. Despite speckle is a true electromagnetic measurement, it can be only analyzed as a
noise component due to the complexity associated with the scattering process. A noise model for speckle
exists only for single channel SAR systems. Consequently, the work presented in this thesis concerns the
definition and the comprehensive validation of a novel series of multidimensional speckle noise models,
together with their application to optimal speckle noise reduction and information extraction.

First, a speckle noise model for the Hermitian product complex phase component is derived in the
spatial domain and translated, subsequently, to the wavelet domain. This analysis is especially relevant
to interferometric SAR data. This model demonstrates, on the one hand, that the wavelet transform
itself is an interferometric phase noise filter that maintains spatial resolution. On the other hand, it
makes possible a high spatial resolution coherence estimation. In a second part, a speckle noise model for
the complete Hermitian product is proposed. It is proved that speckle is due to two noise components,
with multiplicative and additive natures, respectively. The multidimensional speckle model, relevant for
polarimetric SAR data, is finally derived by extending the Hermitian product noise model.

From a multidimensional speckle noise reduction point of view, this noise model allows to prove that
the covariance matrix entries can be processed differently without corrupting the signal properties. On the
other hand, it allows to redefine, and to extend, the principles under which an optimum multidimensional
speckle noise model has to be set out. On the basis of these principles, a novel polarimetric speckle noise
reduction algorithm is proposed.

KEYWORDS

Synthetic Aperture Radar (SAR), Multidimensional SAR imagery, SAR Interferometry, SAR Po-
larimetry, Polarimetric SAR Interferometry, Speckle Noise, Speckle Noise Modelling, Speckle Noise Fil-
tering, Coherence Estimation, Wavelet Transform
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