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Chapter 2

SAR Remote Sensing

2.1 Synthetic Aperture Radar

Synthetic Aperture Radar (SAR) is a coherent, microwave imaging technique for producing a high spatial

resolution representation of the Earth’s surface reflectivity. The previous sentence reveals the importance

of SAR systems in Remote Sensing nowadays.

SAR technology has some special characteristics that differentiate it from other remote sensing tech-

niques, for instance optical imaging or radiometry. First of all, a SAR system gathers Earth’s surface

information within the microwave region of the spectra, hence, it has the capability to retrieve infor-

mation which only manifests in this spectral region. In addition, as these systems are active, i.e., they

provide their own illumination source, they are independent of natural processes as the day/night cy-

cle or weather effects. Nevertheless, despite this difference, SAR technology has to be understood as

complementary to other remote sensing techniques.

A SAR system is able to retrieve scene’s reflectivity information. Due to a special complex processing

technique, this reflectivity information is characterized by a very high spatial resolution. Therefore, this

advantage or feature has to be maintained independently of the processing applied to data, in order to

offer it to potential final users. Despite the SAR processing is performed in the complex plane, information

from the final SAR images can only be extracted from amplitude. As it will be shown, phase information

will be very important for the case of multidimensional SAR systems. Indeed, phase will be a valuable

observable in terms of information content.

2.1.1 Basic Concepts on SAR

In a simple radar system, a pulsed microwave transmitter generates a high power radar pulse which is

directed to the antenna through a microwave circulator. The radar antenna directs the pulse to the object

of interest, which scatters off part of the energy to the antenna. The received energy at the antenna is

redirected to the radar’s receiver through the circulator to be recorded or processed. Generally, the radar

is mounted on a moving platform, normally a plane or a satellite. As the radar moves along its flight

direction, referred as azimuth or along-track dimension, it images a swath along the ground. The antenna

beam is normally pointed slant-wise towards the ground, perpendicularly to the flight direction, defined

as range or across-track dimension.

The radar’s range resolution is defined as the minimum range separation of two points that can be

separated and distinguished by the radar in the range dimension. Therefore, the range resolution δr
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Figure 2.1: Synthetic Aperture Radar concept.

depends on the radar’s pulse duration τp or inversely on the signal bandwidth B

δr =
cτp
2

=
c

2B
(2.1)

where c denotes the propagation speed of Electromagnetic (EM) waves. In order to obtain a sufficient

Signal to Noise Ratio (SNR) with short times τp, high energy pulses should be generated. As a big peak

power cannot be achieved with practical transmitters, pulse compression techniques are employed [47].

These techniques are based on modulated long pulses to achieve large radiated energies, but simultane-

ously achieving the range resolution of short pulses. This is accomplished by means of frequency or phase

modulation to widen the signal bandwidth B. The received pulse is processed in a matched filter [48,49],

compressing the long pulse to a duration 1/B. All radar systems resolve targets in the range dimension

in the same way. The way in which targets are resolved in the azimuth dimension makes the difference

between SAR systems and other type of radars.

For a conventional radar, the antenna beam has an angular spread θa in the azimuth dimension

proportional to

θa ∝
λ

Da
(2.2)

where λ is the wavelength and Da represents the antenna length in the azimuth dimension. Therefore,

the resolution in the azimuth dimension δa becomes

δa = r0
λ

Da
(2.3)

where r0 represents the range distance between the antenna and the scatterer. For space applications,

high spatial resolutions (i.e., tens of meters) can only be achieved using unpractical large antennas.

The azimuth resolution can be improved employing the synthetic aperture concept [50, 6, 51]. The

SAR principle is based on using the platform’s forward motion to construct a much longer effective

antenna. This is done transporting the actual antenna to positions in which it can act as an individual

element of a long linear array, giving finer resolutions in azimuth as shown by Fig. 2.1. Similarly, as for

real aperture radar, the antenna beam spread θsa, corresponding to a synthetic antenna with a length

Le in the azimuth dimension, at a particular range r0, is

θsa =
λ

2Le
. (2.4)
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The factor 2 accounts for the phase shift due to the two-way trip between the antenna and the scatterer.

The azimuth resolution δa that can be achieved with the synthetic aperture is

δa = r0
λ

2Le
. (2.5)

The maximum length of the synthetic aperture Le, for a target at a range r0, is limited by the amount

of time the radar beam illuminates that target. This length corresponds to

Le <
λR

Da
. (2.6)

Consequently, the maximum achievable azimuth resolution δa with a synthetic aperture becomes

δa >
Da

2
. (2.7)

It is worth to note, that for a SAR system, the azimuth resolution depends neither on the target’s range

position r0 nor on the wavelength λ. It only depends on the azimuth antenna dimension Da, in such a

way that the smaller the antenna the better the resolution. The explanation for this rather surprising

result lies in the fact that the length of the effective antenna is larger for farther scatterers than for closer

ones.

2.1.2 SAR Impulse Response

The process to obtain a final SAR image is divided into two steps. The first step is the data acquisition

process, in which EM pulses are transmitted by the system’s antenna, scattered off by the imaged surface,

received and finally recorded. The radar signal at this point is known as raw data. This signal, as it will

be shown, does not have a direct relation with the surface’s reflectivity. In order to obtain the reflectivity

image it is necessary to focus the raw data signal through the so-called image formation process.

To understand completely the process to obtain a complex SAR image makes convenient to derive

the SAR impulse response, that is, to obtain the response of a SAR system to a single or point scatterer,

embracing, both, the acquisition, as well as the image formation processes. Finally, a complete image

can be obtained as the superposition of the contributions of an arbitrary number of single scatterers. In

this section, a strip map geometry for a SAR system, as presented by Fig. 2.2, will be considered. In
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Figure 2.2: SAR stripmap geometry.
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this configuration, the radar sensor moves at a constant velocity v along a straight trajectory, at a fixed

attitude H (assuming no attitude errors), in the x dimension (azimuth or slow-time dimension). The

radar will be assumed to point perpendicularly to one side of the flight line defining the second dimension r

(range or fast-time dimension). Alternative SAR configurations for improved spatial resolution (spotlight

SAR mode [52]) or for increased coverage (ScanSAR mode [53]) are also possible.

SAR data are defined in a two-dimensional space. There exist several ways to define its orthogonal di-

mensions. The first convention deals with time coordinates, defining the space as (t, τ), that is, slow-time

and fast-time coordinates, respectively. The second convention takes into account spatial coordinates. In

this case the signal space is defined as (x, r), azimuth and range respectively. In this text, the space con-

vention will be employed as it allows to relate any expression with the position of a particular scatterer.

Nevertheless, both conventions are related by

r = c 2τ (2.8)

x = v t. (2.9)

The time scales of these two dimensions differ from each other in several orders of magnitude allowing,

on the one hand, to treat them as mutually independent and, on the other hand, to neglect the effect of

the sensor’s motion during the travelling time of a particular EM pulse. This assumption is often referred

as star-stop approximation.

A point scatterer is defined in the two-dimensional space (x, r) as a Dirac’s delta at the scatterer

position (x0, r0)

σs(x0, r0) =
√
σejθδ(x− x0, r − r0) (2.10)

where δ(x, r) is the two-dimensional Dirac’s function. The function σs(x0, r0) denotes the complex scat-

tering amplitude, where σ is the complex radar cross section (RCS) [54, 47, 55] and θ is the scattering

phase. The RCS is a measure of the strength of scattering from discrete reflecting objects, depending

therefore, on its size, material, as well as on the imaging geometry, wavelength and polarization.

The SAR antenna transmits a series of EM pulses at a certain Pulse Repetition Frequency (PRF),

modulated to a frequency carrier ωo. In this text, only a singular pulse will be studied, as it is straight-

forward to obtain the response to a train of pulses. As it was pointed out within Section 2.1.1, phase

coded EM pulses are employed to obtain high range resolution

st(t) = A(t) exp(j(ωot+ ψ(t))) (2.11)

where A(t) represents the pulse amplitude and ψ(t) is the pulse phase coding. st(t) denotes the complex

representation of the transmitted pulse. The pulse given by Eq. (2.11) interacts with a point scatterer,

Eq. (2.10), located at (x0, r0). Assuming free-space propagation, the received echo can be written as

sr(x, r; r0) = σs(x0, r0)w(x− x0, r0)A

(
2

c
(r −R(x− x0; r0))

)
(2.12)

· exp

(
j

(
ω0

(
2

c
(r −R(x− x0; r0)

))
+ jψ

(
2

c
(r −R(x− x0; r0))

))

where R(x − x0; r0) represents the sensor-to-scatterer distance (i.e., the range history), w(x − x0, r0)

denotes the illumination given by the antenna pattern (also including the range attenuation, system

losses, system gain, etc...). After quadrature down-conversion [48], the carrier frequency ω0 is removed

and the received pulse, Eq. (2.12), becomes

sr(x, r; r0) = σs(x0, r0)w(x− x0, r0)A

(
2

c
(r −R(x− x0; r0))

)

· exp

(
jψ

(
2

c
(r −R(x− x0; r0))

))
exp

(
−j 4π

λ
R(x− x0; r0)

)
. (2.13)
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The expression given by Eq. (2.13) shows the way a SAR system encodes the signal returned by a

point scatterer located at the position (x0, r0). Therefore, the point scatterer response of the SAR data

acquisition system becomes

ha(x, r; r0) = w(x, r0)A

(
2

c
(r −R(x; r0))

)
exp

(
jψ

(
2

c
(r −R(x; r0))

))
exp

(
−j 4π

λ
R(x; r0)

)
. (2.14)

The previous expression can be divided into the convolution of two simpler transfer functions

ha(x, r; r0) = ha1(x, r; r0) ∗ ha2(r) (2.15)

ha1(x, r; r0) = w(x, r0) exp

(
−j 4π

λ
R(x, r0)

)
δ(r −R(x, r0))

ha2(r) = A

(
2r

c

)
exp

(
jψ

(
2r

c

))

where ∗ is the convolution operator. The transfer function ha2(r) depends only on the range dimension

r. The range history R(x; r0) introduces a coupling between the range dimension r and the azimuth

dimension x. The first effect of this double dependence is that the returned echo will not follow a

straight line at the position r0, but it will be placed within the hyperbolic curve defined by R(x; r0). This

deviation from a straight line in the raw data is called Range Cell Migration (RCM). The range history

R(x; r0) has a second noticeable effect on ha1(x, r; r0) since it introduces an azimuth dependent phase

history in a very sensitive way, called azimuth chirp. The SAR image formation process exploits this

sensitive phase structure, performing a deconvolution in azimuth, to resolve different scatterers within

the synthetic aperture. The existing coupling between range and azimuth makes SAR data processing a

two-dimensional, non-separable problem.

The data acquisition point scatterer response of a SAR system, Eq. (2.14), spreads the complex

reflectivity information about a single scatterer to an extensive region of the (x, r) plane. Hence, the

raw data signal Eq. (2.13) has rather little relation with the scatterer reflectivity given by Eq. (2.10).

To recover the point scatterer reflectivity, it is necessary to remove the effect of the acquisition process,

Eq. (2.15), that is, to collect all the contributions of a particular scatterer and to focus them as good as

possible.

The SAR data focusing process is most often divided into a range compression and an azimuth

compression [6, 56]. Usually, matched filtering techniques [48,49] are employed for this purpose, since it

exist an exact knowledge about the transfer function to compensate, Eq. (2.14). Under the start-stop

approximation, assuming no Doppler effects on individual pulses, the range compression can be simply

performed, in a pulse by pulse basis, correlating the received pulse with the complex response ha2(r)

located at the correct range position

Ac(t) =

∫ ∞

−∞
ha2(t− τ)A(τ) exp (jψ(τ)) dτ. (2.16)

Most often, linear chirp pulses are employed [47], in which the instantaneous frequency changes linearly

with time

st(t) = 1[0,τ ] exp (j(ωot+ αt2/2)) (2.17)

where 1[0,τ ] is a rectangular pulse of duration τ and α is the chirp rate related with the pulse bandwidth

B by ατ ' B. In this case, the matched filter response is found to be

Ac(t) =
sin(παt(τ − |t|))

παt
, |t| ≤ τ

' τ
sin(πατ t)

πατ t
= τsinc(πατ t). (2.18)

The expression sin(x)/x is the sinc(x) function, with a zero to zero width of 2/B.
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After applying the range compression process, Eq. (2.16), to the raw data signal, Eq. (2.13), the

following signal is obtained

src(x, r; r0) = σs(x0, r0)w(x− x0, r0)Ac

(
2

c
(r −R(x− x0; r0))

)
exp

(
−j 4π

λ
R(x− x0; r0)

)
. (2.19)

The second step into the image formation process is the azimuth compression. This step has to compen-

sate for the range-azimuth dependent phase history, Eq. (2.15). The reference signal is derived from the

expression ha1(x, r; r0) in Eq. (2.15). The range history R(x, r0), for a particular azimuth position, has

the expression

R(x− x0, r0) =
√
r20 + (x− x0)2 =

√
r20 + v2(t− t0)2 (2.20)

where the azimuth dimension is expressed now in time coordinates t. This function expresses an hy-

perbolic curve in the plane (t, τ) with the apex at the position t0. The hyperbolic expression can be

simplified to a parabolic curve, determined by the Taylor expression expanded at the point (t0, r0), where

the target is located at the center of the antenna beam

R(x− x0, r0) ' r0 +
v2

2r0
(t− t0)

2 (2.21)

(t0, r0) are known as zero-Doppler coordinates.

The azimuth processing is performed correlating the received signal Eq. (2.19) with the expected

signal for the point being processed. The reference signal ha1(x, r; r0) for a particular point (x1, r1) was

found in Eq. (2.15). If wref is defined as the reference azimuth weighting function, the complex output

image S(x1, r1) is found as

S(x1, r1) =

∫ ∞

−∞

∫ ∞

−∞
src(x, r; r0)h

∗
a1(x− x1, r; r1) dxdr (2.22)

=

∫ ∞

−∞

∫ ∞

−∞
σs(x0, r0)w(x − x0, r0)Ac

(
2

c
(r −R(x− x0; r0))

)
exp

(
−j 4π

λ
R(x− x0; r0)

)

· wref (x− x1; r1)δ (r −R(x− x1; r1)) exp

(
j
4π

λ
R(x− x1; r1)

)
dxdr

= σs(x0, r0)

∫ ∞

−∞
wref (x− x1; r1)w(x − x0, r0)Ac

(
2

c
(R(x− x1; r1) −R(x− x0; r0))

)

· exp

(
j4π

R(x − x1; r1) −R(x− x0; r0)

λ

)
dx

where S(x, r) represents the final SAR image. Assuming that r1 and r0 are nearly equal, the range

difference can be obtained, using Eq. (2.21), as

R(x− x1; r1) −R(x− x0; r0) ' ∆r − x∆x

r0
+

1

2r0
(x2

1 − x2
0) (2.23)

where ∆r = r1 − r0 and ∆x = x1 − x0. In order to derive the SAR impulse response, the following

approximations will be assumed [57]:

· Since the antenna bandwidth is much wider than the impulse response

w(x− x0, r0)wref (x− x1, r1) ' w(x− x0, r0)wref (x− x0, r0) = weff (x− x0, r0). (2.24)

· The series expansion of the range history Eq. (2.23) is valid to evaluate range-azimuth dependent

phase history

exp

(
j4π

R(x− x1; r1) −R(x− x0; r0)

λ

)
. (2.25)
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· The first term of the range history Eq. (2.23) is valid to describe the range difference when (x0, x0)

and (x1, x1) are not much different

Ac

(
2

c
(R(x− x1, r1) −R(x− x0, r0))

)
= Ac

(
2

c
∆r

)
. (2.26)

Taking Eq. (2.22), with the approximations given in Eqs. (2.24), (2.25) and (2.26), the complex

output image S(x1, r1) has the expression

S(x1, r1) = σs(x0, r0)Ac

(
2

c
∆r

)
exp

(
j
4π

λ
∆r

)∫ ∞

−∞
weff (x− x0, r0) exp(−j 2πfx) dx (2.27)

where f = 2∆x/λr0 has been employed. As it can be deduced from Eq. (2.27), the response in azimuth

depends on the Fourier transform of the product of the real and the processor antenna bandwidths. Thus,

wide beams will give narrow responses. For the sake of simplicity, a square shaped antenna bandwidth

will be assumed. For an antenna with an azimuth length Da at the wavelength λ, the Fourier transform

of the beam is

∫ λr0
2Da

− λr0
2Da

weff (x− x0, r0) exp(−j 2πfx) dx =
λr0
Da

sin(πf λr0Da
)

πf λr0Da

w =
λr0
Da

sinc

(
2π

∆x

Da

)
. (2.28)

Using Eqs. (2.18), (2.27) and (2.28), taking into account the resolution definitions in range, Eq. (2.1),

and azimuth Eq. (2.7), the output SAR complex image, for a point scatterer located at the coordinates

(x0, r0), has the expression

S(x, r) = σs(x0, r0) exp

(
j
4π

λ
(r − r0)

)
sinc

(
π(r − r0)

δr

)
sinc

(
π(x− x0)

δa

)
. (2.29)

Therefore, the impulse response of the SAR chain, embracing the data acquisition, as well as the image

formation processes, is proportional to the expression

h(x, r) ∝ exp

(
j
4π

λ
r

)
sinc

(
πr

δr

)
sinc

(
πx

δa

)
. (2.30)

The SAR system response, embracing the acquisition and the focussing processes, can be therefore

assumed as a rectangular filter with a range bandwidth equal to 2B/c and an azimuth bandwidth equal

to 2/Da [6, 56,58]. In the process of deriving the Eq. (2.30), the constant phase term from range delay,

exp(j 4πr/λ), has been assigned to the SAR system. This phase term can also be assigned to the scene,

introduced as exp(−j 4πr/λ). Thus, the SAR impulse response is simply proportional to

h(x, r) ∝ sinc

(
πr

δr

)
sinc

(
πx

δa

)
. (2.31)

Fig. 2.3 shows which is the aspect of the SAR impulse response at different points of the processing

chain.

2.1.3 SAR Imaging System Model

As shown in the previous section, the SAR impulse response effect is to convolve the scene’s reflectivity

with a low-pass filter. Since the spatial dimensions of this filter are not equal to zero, the concept of

resolution cell can be defined as the area given by the SAR impulse response, i.e., the area δa × δr. For

a real situation, the received echo is not due to a single scatterer, but to the combination of the echoes

of an arbitrary number of point scatterers inside this resolution cell [59, 55]. All these small scatterers

are located at random positions inside the resolution cell, radiating perhaps random complex echoes.
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(a) (b) (c)

(d)

Figure 2.3: SAR raw data focusing steps for a point scatterer. (a) Raw data (phase). (b) Data after range

compression. (c) Range cell migration detail. (d) Data after azimuth compression (SAR two-dimensional

impulse response).

Scene

Resolution Cell Point scatterer

Figure 2.4: Distributed scatterer scheme.

The randomness involved within the scattering process makes evident that it can be only characterized

statistically [57, 55, 60]. These scatterers, as shown by Fig. 2.4, characterized by having a random

behavior, are called distributed or partial scatterers, as opposed to point scatterers Eq. (2.10), in which

the scattering behavior is completely deterministic.

The set of point scatterers defining a distributed scatterer can be described, in a three-dimensional

space, by means of the complex reflectivity function ũ(x, y, z) [57, 61, 62]. As mentioned in the previous

paragraph, this reflectivity function has a random nature. The development of the SAR system model

only needs ũ(x, y, z) as a function describing the reflectivity of each point scatterer. The statistical

properties of ũ(x, y, z) will be studied in the following.

In order to arrive to a simple model characterizing the SAR system, it is necessary to assume linearity

in the scattered field. There exist several approximations in the classical scattering theory allowing to

know the scattered field by a complex scatterer. Within the Kirchhoff approximation, for instance,
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Figure 2.5: Distributed scatterer imaging geometry.

the scattered field is replaced by its geometrical optics approximation [63]. The development of the

SAR system model will be based, on the other hand, on the Born approximation, or single scattering

approximation [64, 63]. In this case, the total scattered field will be assumed to be the superposition

of the scattered field by each simple scatterer, neglecting thus, high order interactions, as for instance

double reflections.

A SAR system, as seen in Section 2.1.2, gathers reflectivity data in the range-azimuth space. The

first step a SAR system performs is to transform the three dimensional reflectivity function ũ(x, y, z)

into the two-dimensional SAR system space (x, r), as presented by Fig. 2.5. This step can be seen as a

projection function

ũ(x, r) =

∫
ũ(x, y0 + r sin θ, z0 − r cos θ)r dθ (2.32)

where θ denotes the angle between the sensor-to-scatterer line and the z-axis. Under the Born scattered

field approximation, the linear operation characterizing the SAR imaging process is a geometric projection

of the reflectivity function ũ(x, y, z) given by Eq. (2.32) followed by a convolution with the SAR point

response Eq. (2.31)

S(x, r) =

(∫ ∞

−∞
ũ(x, y0 + r sin θ, z0 − r cos θ)r dθ

)
∗ ∗h(x, r). (2.33)

The projection process Eq. (2.33) does not affect the azimuth dimension x. On the contrary, it

introduces several distortions in the range dimension r. The SAR systems gathers information along the

r dimension, also known as slant range and not in the y dimension over the Earth’s surface, known as

ground range. Therefore, the integration over the angle θ, for a particular range coordinate, provokes all

the scatterers located at this particular range to be integrated together and mapped within the same SAR

image position. For terrain slopes tilted towards the SAR system, the projection makes them to appear

contracted (foreshortening) in the image, while terrain slopes tilted away from the SAR get stretched.

Once the terrain slope is equal or even exceeds the look angle θ, the projection becomes ambiguous, for

instance, a mountain peak may be mapped onto the same pixel as some point in a valley. This effect is

known as layover. For terrain slope angles minor than θ − π/2, radar shadow is observed.

The complex SAR image, under the Born approximation, can be written as

S(x, r) =

∫ ∞

−∞

∫ ∞

−∞
ũ(x′, r′) exp(−j2kr′)h(x− x′, r − r′) dx′ dr′. (2.34)

In this equation, the variables (x, r) refer to the image dimensions, whereas the prime co-ordinates (x′, r′)
indicate the position of a particular scatterer within the resolution cell, as shown by Fig. 2.5. At the

same time, Eq. (2.34) can be rewritten as a volume integral

S(x, r) =

∫

V ′
ũ(x′, y′, z′) exp(−j2kr′(y′, z′))h(x− x′, r − r′(y′, z′)) dV ′. (2.35)
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In order to obtain a simple expression for Eq. (2.35), having an easy interpretation about the effect of the

SAR impulse response, it is helpful to develop a planar wave approximation for the reflected waves [63,65].

The cylindrical wave expressed by the phase term exp(−j2kr′) in Eq. (2.35) can be approximated by a

planar wave considering only a sufficiently small neighborhood about an expansion point. The range r′,
which refers to any scatterer within the resolution cell, can be approximated as

r′ ' r +
−→
k · −→r ′

s (2.36)

where r represents the center of the resolution cell,
−→
k = k[0, sin(θ),− cos(θ)]T and −→r ′

s is the position vec-

tor of a particular scatterer respect to the resolution cell center. The variable k is the wavenumber equal

to 2π/λ and T denotes transpose. Finally, substituting the cylindrical wave by its planar approximation,

the complex SAR image becomes

S(x, r) = exp(−j2kr)
∫

V ′
ũ(x′, y′, z′) exp(−j2−→k · −→r ′

s)h(x − x′, r − r′(y′, z′)) dV ′

=

{
exp(−j2kr)

∫
ũ(x, y0 + r sin(θ), z0 − r cos(θ))r dθ

}
∗ ∗h(x, r). (2.37)

2.1.4 SAR Image Statistics

Most of natural targets have a very complex structure. Consequently, the knowledge of the scattered

field would only be possible if a complete description of the scene was available, which is impossible in

practice. Thus, this type of scatterers can only be described statistically. There exist two main types of

wave scattering processes for distributed or partial scatterers: surface and volume scattering [66]. The

former is produced when an EM wave reaches the boundary surface between two media and the scattering

takes only place at the surface’s boundary. In this case, the surface is described by the surface height

standard deviation and the surface correlation length. On the contrary, volume scattering occurs when

the EM wave penetrates into the lower medium. The scattering within a volume is mainly caused by

randomly located dielectric discontinuities in the volume. This type of scatterers is described by statistical

parameters as the average dielectric constant or the scatterer density. Apart from the mentioned factors,

the scattering process depends also on other scatterer parameters as the composition, material, water

content, etc...

SAR systems are mainly employed for natural scenes observation. Owing to the complexity of such

a targets, the scattered EM wave has also a complex behavior [59,67,60]. Hence, the scattering process

is also analyzed statistically. Most of the techniques focused on finding the scattered wave problem try

to find the average scattered field as a function of the incident wave and the statistical properties of the

scatterer.

The resolution cell dimensions are very large compared with the wavelength of the illuminating EM

wave. Hence, as described in Section 2.1.3, the scattered field for a particular image pixel can be seen as

being originated by the contribution of many elementary scattered waves. The monochromatic coherent

nature of SAR systems makes all these elementary waves to interfere between them constructively as

well as destructively, causing the SAR image to look noisy and grainy. Such a phenomenon is defined as

speckle [6,8,7,68]. Despite being an electromagnetic measurement, speckle can be treated as a noise-like

process as is will be shown in the following. The speckle is a common effect appearing in all those science

disciplines based on imaging systems with a coherent illumination as laser optics [5, 3, 4], ultrasound

imaging [69] or X-ray imaging.

Summarizing, due to the lack of knowledge about the detailed structure of the scatterer being imaged

by the SAR system, it is necessary to discuss the properties of the scattered field statistically. The

statistics of concern are defined over an ensemble of objects, all with the same macroscopic properties,

but differing in the internal structure. For a given SAR system imaging a particular scatterer, for
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instance a rough surface, the exact value of each pixel can not be predicted, but only the parameters of

the distribution describing the pixel values. Therefore, for a SAR image, the actual information per pixel

is very low as individual pixels are simply random samples from distributions characterized by a set of

parameters.

In Section 2.1.2, it has been established that the SAR imaging process can be modelled as a two-

dimensional low-pass filter applied to the scene’s reflectivity, Eq. (2.37). The complex SAR image S(x, r)

can be modelled as

S(x, r) =

∫ ∞

−∞

∫ ∞

−∞
σs(x

′, r′)h(x− x′, r − r′) dx′ dr′ (2.38)

where h(x, r) denotes the coherent SAR impulse response and σs(x
′, r′) describes each one of the point

scatterers inside the resolution cell. This model might be reasonable for those cases in which this point

scatterer description is valid, as for instance, the scattering from raindrops or vegetation-covered surfaces

having leaves small compared with the wavelength. On the contrary, this model is not valid for continuous

targets. In these cases, it is helpful to apply the concept of effective scattering center [55], in which

the continuous target is analyzed in a discrete way, e.g: the facet-model for surface scattering [59, 55].

Assuming the scattering from any complex target to be originated by a set of discrete sources, Eq. (2.38)

can be written as

S(x, r) =

N∑

k=1

σs(xk, rk)h(x− xk, r − rk) (2.39)

where the SAR impulse response h is supposed to be finite, embracing N point scatterers. Eq. (2.39)

can be rewritten by using

σs(xk, rk) =
√
σk exp(j θ′sk) (2.40)

h(x− xk, r − rk) = hk exp(j ϕk) (2.41)

θsk = θ′sk + ϕk (2.42)

and the complex description, where r denotes amplitude and θ is the phase

S(r, θ) = <{S} + j ={S} = r exp(j θ) (2.43)

as

r exp(j θ) =
N∑

k=1

hk
√
σk exp(j θsk) (2.44)

<{S} =

N∑

k=1

hk
√
σk cos(θsk) (2.45)

={S} =

N∑

k=1

hk
√
σk sin(θsk). (2.46)

In [57], it was proved that the effect of the SAR system, through the amplitude hk, is just to change the

distribution of the amplitudes of the individual contributors to the complex sum Eq. (2.44). Therefore,

this complex sum can be analyzed as

r exp(j θ) =
N∑

k=1

Ak exp(j θsk) (2.47)

<{S} =

N∑

k=1

Ak cos(θsk) (2.48)

={S} =

N∑

k=1

Ak sin(θsk) (2.49)
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where Ak = hk
√
σk. The complex sum given by Eq. (2.47), also known as two-dimensional random

walk [70,71] can be seen graphically in Fig. 2.6.

q

qsk

Ak

r

©

¦

Figure 2.6: Two-dimensional random walk modelling the returned echo from a distributed scatterer.

To obtain the statistics of the complex SAR image S(x, r) is based on certain assumptions concerning

the behavior of the elementary complex scattered waves Ak exp(j θsk). These assumptions are crucial, as

all the statistics concerning SAR images are based on them [59,4]:

· The amplitude Ak and the phase θsk of the kth elementary phasor (i.e., elementary scattered

wave) are statistically independent of each other and from the amplitudes and phases of all other

elementary phasors. This fact states that the elementary scattering centers are uncorrelated and

that the strength of a given scattered component bears no relation to its phase.

· The phases of the elementary contributions are equally likely to lie anywhere in the primary interval,

[−π, π).

These two assumptions are justified in the case of a SAR image provided the resolution cell dimensions

to be larger than the EM wave wavelength. The first assumption is accomplished as the propagation

phase delay is independent from the scattered wave strength. The second point is reasonable since the

resolution cell dimensions are larger than the wavelength, introducing a very large range of total phase

shift for point scatterers, leading to the phase to be uniformly distributed when folded in the interval

[−π, π). From the second assumption, it can be established that the phase due to the deterministic SAR

impulse response ϕk does not have effect over the final phase distribution as it is randomized by the

uniform phase distribution of the point scatterers θ′sk .

When the number of scatterers inside the resolution cell N is large, provided that Ak cos(θsk) and

Ak sin(θsk) satisfy the Central Limit Theorem [72], the quantities <{S} and ={S} are normally distributed

[59,3,4,72], that is, they follow a zero-mean, Gaussian probability density function (pdf). The Gaussian

pdf parameters can be obtained on the basis of the individual scatterers model. The mean values of <{S}
and ={S} are obtained as

E {< {S}} =

N∑

k=1

E {Ak cos(θsk)} =

N∑

k=1

E {Ak} E {cos(θsk)} = 0 (2.50)

E {= {S}} =
N∑

k=1

E {Ak sin(θsk)} =
N∑

k=1

E {Ak} E {sin(θsk)} = 0 (2.51)

where E{·} expresses the ensemble average. Using the same arguments, the variance values are obtained

as

E
{
<2 {S}

}
=

N∑

k=1

E
{
A2
k

}
E
{
cos2(θsk)

}
=
N

2
E
{
A2
k

}
(2.52)

E
{
=2 {S}

}
=

N∑

k=1

E
{
A2
k

}
E
{
sin2(θsk)

}
=
N

2
E
{
A2
k

}
. (2.53)
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Besides, the correlation between <{S} and ={S} is

E {< {S}= {S}} =
N∑

k=1

N∑

l=1

E {Ak Al}E {cos(θsk) sin(θsl)} = 0. (2.54)

This result follows from the symmetry of the phase pdf of the elementary scatterers [59]. If <{S} is

renamed as x and ={S} is renamed as y, their pdfs are respectively

px(x) =
1√
πσ2

exp

(
−
(x
σ

)2
)

x ∈ (−∞,∞) (2.55)

py(y) =
1√
πσ2

exp

(
−
( y
σ

)2
)

y ∈ (−∞,∞) (2.56)

where σ2/2 = (N/2)E
{
A2
k

}
, as it was shown by Eqs. (2.52) and (2.53). The pdfs px(x) and py(y)

correspond to zero-mean Gaussian distributions, denoted by N (0, σ2/2). Consequently, a SAR image

S = x + jy is described by a zero-mean, complex, Gaussian pdf with the properties given from Eq.

(2.50) to Eq. (2.54) and denoted in the following as Nc(0, σ
2/2). From Eqs. (2.55) and (2.56), it is

straightforward to derive the amplitude pdf pr(r), where r =
√
x2 + y2, and the phase pdf pθ(θ), where

θ = arctan(y/x)

pr,θ(r, θ) =
2r

2πσ2
exp

(
− r2

σ2

)
(2.57)

pr(r) =
2r

σ2
exp

(
− r2

σ2

)
r ∈ [0,∞) (2.58)

pθ(θ) =
1

2π
θ ∈ [−π, π). (2.59)

As it can be seen, the amplitude and phase distributions are separable. pr(r) is known as a Rayleigh

distribution, whereas the phase is uniformly distributed. This fact is very important as it indicates

that the SAR image phase is scatterer independent, that is, it has no information about the scatterer.

The mean value of a Rayleigh distribution equals E{r} =
√
πσ2/2, and a variance σ2

r = (1 − (π/4))σ2.

Another commonly used statistic is the Coefficient of Variation (CV), defined as the standard deviation

divided by the mean [7]. Hence, for the amplitude r, the CV has a value equal to
√

(4/π) − 1. Normally,

interest is focused on the intensity, i.e., I = r2. Introducing this change of variable into Eq. (2.57), the

intensity distribution becomes

pI(I) =
1

σ2
exp

(
− I

σ2

)
I ∈ [0,∞) (2.60)

which is an exponential distribution. Its mean value equals E{I} = σ2, and the standard deviation is

σ2
I = σ2. Therefore, the intensity has a CV equal to 1. Fig. 2.7 gives some examples of the distributions

of the amplitude r, intensity I and phase θ for complex SAR images for several values of σ.

The validity of the statistical distribution for the SAR images, is subjected to the assumptions taken

to arrive to the zero-mean, Gaussian model for the SAR image real and imaginary parts, Eqs. (2.55) and

(2.56), which will be referred as Gaussian scattering assumption in the following [59,55]. It is important

to note here, that concerning the process to arrive to this model, any assumption was taken with respect

to the pdfs of the quantities Ak and θsk . The crucial point for the development of the Gaussian Scattering

Model was to assume the number of scatterers N large enough to fulfill the Central Limit Theorem.

When the number of scatterers N is large enough, as it has been shown in the previous paragraphs,

the amplitude is described by a Rayleigh pdf and the phase is uniformly distributed. This situation is

referred as fully developed speckle [13, 55]. In this case, the speckle noise is understood as the random

variation with a Rayleigh distribution around the mean value E{r} =
√
πσ2/2. To determine the value
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Figure 2.7: Complex SAR image distributions for several values of σ. (a) Amplitude. (b) Intensity. (c)

Phase.

of N that makes the Central Limit Theorem to be fulfilled is impossible as no information about the

distributions of Ak and θsk is available. Besides, the value of N is not constant. For a general value of

N , the square of the intensity CV has the value

σ2
I

E{I}2
= 1 +

2var{N}
E{N}2

+
1

E{N}

(
var{A2

i }
E{A2

i }2
− 1

)
. (2.61)

If the individual scatterers are Rayleigh distributed or if E{N} is large, Eq. (2.61) becomes

σ2
I

E{I}2
= 1 +

2var{N}
E{N}2

. (2.62)

In many occasions, the value of N is assumed to follow a Poison distribution [7]. In this case, the Eq.

(2.61) becomes

σ2
I

E{I}2
= 1 +

2

E{N} . (2.63)

Thus, provided that E{N} → ∞, the SAR image can be modelled by Nc(0, σ
2/2). In all these cases, any

variation from 1 will mean that the Gaussian Scattering Model will not be valid.

For high spatial resolution SAR images, the Gaussian Scattering Model is not fulfilled when a few

strong scatters are present within the resolution cell (e.g., urban areas). This case is referred, therefore,

as partially developed speckle [13]. In the extreme case of an isolated point target, the value of this pixel

is dominated by the deterministic impulse response of the SAR system, as shown in Eq. (2.29).

The validity of the Gaussian Scattering Model for SAR imagery has been largely demonstrated. Many

studies in the literature support the Gaussian distribution for experimental SAR data [9, 57,73].

2.1.5 Speckle Second Order Statistics

In the previous section, the reflectivity scene has been modelled as a large number of point scatterers,

which are independent and randomly located in space. Hence, a complex backscattering coefficient per

area, ũ(x, y), can be modelled by

ũ(x, r) =

N∑

k=1

√
σk exp(jθsk)δ(x − xk, r − rk) (2.64)

where δ(x, r) is the two-dimensional Dirac delta function, and N represents the number of scatterers in

a particular scene area.
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As mentioned, due to the complexity involved in the scattering process, it is impossible to predict the

scattered field exact value. Only the average scattered power can be predicted. In order to describe it,

the differential scattering coefficient or average scattering coefficient per unit area is defined as [55]

σ0 = E
{ σ

∆A

}
(2.65)

where ∆A denotes an spatial area. Here the expectation E{·} is assumed to be calculated in the spatial

domain. The concept of average scattering coefficient is defined for surface scattering. When the dom-

inant scattering mechanism is a volume scattering, a similar coefficient to σ0, called volume scattering

coefficient, and denoted by σv(x, r), has been also defined [74].

To arrive to the reflectivity scene model given by Eq. (2.64) it has been assumed: a large number

of scatterers per area and that these scatterers are independent with uniformly distributed phase. With

these assumptions, the process ũ(x, r) can be described by a zero-mean, complex, Gaussian pdf. The

process ũ(x, r) can not be observed itself, but it has been established that this process observed through

a SAR system, which has a linear impulse response, can be modelled as a zero-mean, complex, Gaussian

process. Therefore, it can be considered that ũ(x, r) is also a zero-mean, complex, Gaussian process [57].

The process ũ(x, r) is described by the autocorrelation function

E {ũ(x1, r1)ũ
∗(x2, r2)} = Rũ(x1, r1, x2, r2) = σ0(x2, r2)δ (x1 − x2, r1 − r2) . (2.66)

For an homogeneous scene, the autocorrelation becomes

Rũ(x1, r1, x2, r2) = σ0δ (x1 − x2, r1 − r2) (2.67)

with the corresponding spectral density function

Gũ(fx, fr) =

∫ ∞

−∞
Rũ(x, r) exp(−jπ(xfx + rfr)) dxdr = σ0. (2.68)

The autocorrelation and spectral density functions given by Eqs. (2.67) and (2.68) respectively, close

the model for the reflectivity scene. As it has been highlighted, the reflectivity scene can be modelled as

a collection of uncorrelated point scatterers, randomly located and described by a zero-mean, complex,

Gaussian pdf and in the autocorrelation function given by Eq. (2.67).

The effect of the SAR system has been already seen in the previous sections. The main effect is to

convolve the scene reflectivity with a two-dimensional low-pass filter. Now, the reflectivity scene model

shown before, will be employed to characterize the complex SAR image autocorrelation function. The

previous section showed that the SAR system impulse response has no effect on the first-order statistics of

the SAR image, which can be modelled by Nc(0, σ
2/2). On the contrary, the second order statistics of the

SAR image are completely determined by the SAR system impulse response. From signal processing, the

autocorrelation and spectral density functions of the output signal S(x, r) of a linear system characterized

by the impulse response h(x, r), excited by the signal ũ(x, r) are respectively [72]

RS(x, r) =

∫ ∞

−∞

∫ ∞

−∞
Rũ(x− x′, r − r′)h(x′, r′) dx′ dr′ (2.69)

GS(fx, fr) = Gũ(fx, fr) |H(fx, fr)|2 (2.70)

where H(fx, fr) denotes the Fourier transform of the impulse response h(x, r). Using the autocorrelation

function given by Eq. (2.66), the autocorrelation and the spectral density functions of the SAR image

S(x, r) are

RS(x, r) = σ0Rh(x, r) (2.71)

GS(fx, fr) = σ0 |H(fx, fr)|2 . (2.72)
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where

Rh(x, r) =

∫ ∞

−∞

∫ ∞

−∞
h(s, t)h∗(s − x, t− r) ds dt (2.73)

The average backscattering in a given pixel can be obtained introducing the expression of the SAR

impulse response given by Eq. (2.31) within the Eq. (2.72) and integrating for the complete space, hence

σ =

∫ ∞

−∞

∫ ∞

−∞
|H(fx, fr)|2 σ0 dfx dfr = σ0δxδr. (2.74)

Therefore, the value of any SAR image pixel has been divided in two contributions. First, the pixel

will contain a deterministic-like RCS value (σ) proportional to the average backscattering coefficient

(weighted by the resolution cell dimensions), Eq. (2.74). Second, the pixel value will contain a random

contribution, which is the speckle, governed by Nc(0, σ
2/2) and characterized by the autocorrelation

function given by Eq. (2.71).

2.1.6 SAR Speckle Multiplicative Noise Model

The value of each SAR image pixel has been divided into two contributions: a deterministic-like RCS

value, which corresponds to the incoherent power of the area under study, modulating a random stationary

speckle process. It is important to clarify that the speckle noise is not a random process, it is a true

electromagnetic measurement. Despite this deterministic nature, the speckle value can not be predicted

due to its complexity, fact that in turn allows the speckle to be interpreted as a noise-like process which

degrades the deterministic component σ.

To assume the speckle as a noise process allows to define a noise model for the speckle and the

deterministic signal component. Given the exponential pdf of the intensity image, Eq. (2.60), and

introducing the change of variable I = σ2z, the following distribution is obtained

pz(z) = exp(−z) z ∈ [0,∞) (2.75)

The previous equation states that the value of the pixel intensity can be regarded as a deterministic value,

containing information about the incoherent scattered power, multiplied by a unit mean exponentially

distributed speckle noise. This is the reason why many times speckle is referred as intensity multiplicative

noise component [3,8,12,75]. The phase of a SAR image, as it has been shown in Section 2.1.4, is uniformly

distributed. Hence, it makes no sense to introduce a deterministic phase term in the formulation of the

complex reflectivity, as it would be completely randomized by the uniform probability density function

of the phase component.

As a consequence, the SAR image S(x, r) can be described by the following noise model

S(x, r) =
√
σ0n exp(jθ) (2.76)

where n denotes the multiplicative speckle component in amplitude, characterized by E{n} = 1 and

var{n} = 1 and θ is the additive component of speckle in phase uniformly distributed. The component

bearing the useful information σ is independent from the noise term n exp(jθ).

The speckle multiplicative noise model is only valid when the amplitude or the intensity of a SAR

image is considered. Due to the uniformity of the speckle phase noise, this model can not be further

employed for multidimensional SAR imagery.

2.2 SAR Interferometry

Up to this point, interest has been concerned with the formation and the properties of single SAR images.

The main feature of a SAR system, in front of conventional radar systems, is the azimuth resolution
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increase on the basis of carrying out a recording of complex data, as well as a coherent processing of such

a data. As it has been made evident in the previous section, despite the SAR images complex nature, its

phase does not carry information at all. On the other hand, SAR images are contaminated by speckle, a

noise-like signal, although it is a true electromagnetic measurement.

In this section, interest will be focused on combining different SAR images leading to multichannel or

multidimensional SAR imagery. Any change in the sensor’s geometry, in the operating frequency, in the

employed polarization or in the reflectivity scene will produce a change within the SAR image. In those

cases in which the changes give rise to correlated images, the phase difference between the SAR images

will contain useful information. When SAR images are completely correlated, each of the individual

images is contaminated by speckle, but the phase relation between them will contain useful information

free of degrading factors.

There exist two main types of multidimensional SAR imagery: SAR Interferometry (InSAR) [76] and

SAR Polarimetry (PolSAR) [77]. The combination of these two data types, which is called Polarimetric

SAR Interferometry (PolInSAR) [42], is based on combining the advantages of each technique. This

section will be focused specially in InSAR, whereas PolSAR and PolInSAR will be considered later.

Despite being out of the scope of this work, there exist another way to combine different SAR images

called differential interferometry (DinSAR) [78]. In this case, SAR images are combined in order to show

up topographic changes.

SAR Interferometry is basically based on the creation of an interferogram by using two complex SAR

images of the same area, but acquired from slightly different positions. Therefore, the imaging geometry

changes from the first SAR image to the second one. This change produces the phase difference between

both SAR images to contain information about the scene’s topography. This system configuration is

also called Across-Track interferometry, in contrast with Along-Track interferometry [79, 80]. The two

complex SAR images can be acquired either, simultaneously using two antennas in the same platform

(single-pass interferometry), or sing the same system in repeated passes over the same scene (repeat-pass

interferometry [44,45]). In the later case, the phase difference between both SAR images will also depend

on possible scatterer variations between the different passes.

2.2.1 SAR Interferometry Geometric Approach

In this section, a geometric approach for SAR interferometry is presented. The use of this approach

makes possible to see the relationship between the surface and the sensor geometries in order to obtain

the information contained within the SAR images phase difference. This approach is based on several

simplifications as to consider a flat Earth or not considering signal spectral properties. Hence, the

approximation is not valid for satellite geometries with large swaths or for airborne geometries. Detailed

developments on SAR interferometry can be found in [14,76,81,82,83].

The interferometric SAR system is based on the geometry shown by Fig. 2.8. Each of the SAR

platforms, denoted by T1 and T2 respectively, acquires a SAR image as it has been explained in Section

2.1. The two antennas are separated by a given baseline B, observing the same point P at range r from

the first platform and at range r + ∆r from the second one. For the geometric approach, the observed

point P will be assumed to be a point scatterer characterized by Eq. (2.10). Therefore, the two SAR

images are

S1(x1, r1) = |S1(x1, r1)| exp(jθ1(x1, r1)) (2.77)

S2(x2, r2) = |S2(x2, r2)| exp(jθ2(x2, r2)). (2.78)

Both SAR images observe the reflectivity scene from two different locations. Therefore, a given pixel

of the first SAR image does not correspond to the same reflectivity contained in the pixel of the second

image. There exist several techniques developed to solve this problem, known as image co-registering.
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Figure 2.8: Interferometric SAR system geometry.

In a classical approach, both images are registered, with a pixel accuracy, by using cross correlation

techniques. In many cases, these techniques are not enough to obtain quality interferograms. To fulfill

the quality requirements, sub-pixel registration techniques are employed [19, 84]. Once the SAR image

pixels refer to the same area, the complex interferogram is defined as

S1(x1, r1)S
∗
2(x2, r2) = |S1(x1, r1)| |S2(x2, r2)| exp(j(θ1(x1, r1) − θ2(x2, r2))). (2.79)

Owing to the fact that both SAR images observe the same point scatterer P from slightly different

positions, the phase of each SAR image can be written, taking into account the geometry depicted by

Fig. 2.8, as

θ1(x1, r1) = −j 4π
λ
r + θs1 (2.80)

θ2(x1, r1) = −j 4π
λ

(r + ∆r) + θs2. (2.81)

Assuming that the phases due to the scatterer, θs1 and θs2, are equal, the interferometric phase (i.e., the

phase difference) is a very sensitive measure for the range difference

∆φ = θ2 − θ1 =
4π

λ
∆r (2.82)

Owing to the circular nature of any phase measurement, the interferometric phase given by Eq. (2.82)

is ambiguous within integer multiples of 2π. The removal of this ambiguity, i.e., the estimation of the

absolute phase will be addressed later in this section.

To derive the information content in ∆φ, it is necessary to see the dependence of ∆r on the different

parameters of the imaging geometry given by Fig. 2.8. Assuming this geometry

(r + ∆r)2 = (r −Br)
2 +B2

n (2.83)

where

Bn = B cos(θ − α) (2.84)

Br = B sin(θ − α). (2.85)

Br is called the parallel baseline, whereas Bn is the perpendicular baseline. In a spaceborne SAR system,

the contribution of the term ∆r2 can be neglected in front of the parameter r. Therefore, ∆r can be

simplified as

∆r =
B2

2r
+B sin(θ − α). (2.86)
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Figure 2.9: InSAR geometry.

The geometric approach for InSAR is based on a spaceborne system. In such a case, the difference

between the baseline B and the range r is about several orders of magnitude, allowing to neglect the first

addend in Eq. (2.86). Hence, ∆r can be approximated by

∆r ≈ B sin(θ − α). (2.87)

With the previous approximation, the phase difference ∆φ, can be written as

∆φ ≈ 4π

λ
B sin(θ − α). (2.88)

Eq. (2.88) corresponds to the phase of a single pixel in the interferogram. However, this phase is not

useful as the wavelength is so short that the phase is wrapped, apart from the fact that it also contains

range information. Due to this ambiguity, the phase difference between two adjacent pixels, P and P ′

will be studied in the following

∆ (∆φ) =
4π

λ
∆ (∆r) . (2.89)

Fig. 2.9 shows the geometry to obtain ∆ (∆φ). The viewing geometry changes form the pixel P to P ′,
introducing a variation in the range ∆r as well as a change in the viewing angle by a factor ∆θ. Hence,

the phase difference between both pixels can be written, using Eq. (2.88), as

∆ (∆φ) =
4π

λ
[B sin(θ − α) −B sin(θ + ∆θ − α)] . (2.90)

As the angle difference ∆θ is small, it can be neglected compared with the term θ − α. Likewise, the

small angle approximation can be used for the sine function, sin (∆θ) ≈ ∆θ. On the basis of these

approximations, the phase difference between two pixels, Eq. (2.90), becomes

∆ (∆φ) =
4π

λ
∆θB cos (θ − α) =

4π

λ
∆θBn. (2.91)

As it has been pointed out previously, the SAR system gathers reflectivity data referred to the slant-

range coordinate system, denoted by (x, r). In order to derive the expression of the term ∆φ it is very

important to take into account this geometry. The derivation of ∆φ will be divided into two components

∆ (∆φ) = ∆ (∆φ)flat + ∆ (∆φ)topography . (2.92)

The fist component is devoted to take into account the range difference between both pixels, whereas the

second one accounts for the height difference projected into the slant-range coordinate system.

First of all, it will be assumed that both pixels, P and P ′, lie at the same height. Assuming that the

difference in the viewing angle ∆θ is small, it is possible to obtain the approximation r sin(∆θ) ≈ r∆θ =

∆r/ tan(θ), allowing to write the phase difference, ∆ (∆φ)flat, in the following way

∆ (∆φ)flat =
4π

λ

Bn
r

∆r

tan(θ)
. (2.93)
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Figure 2.10: InSAR geometry.

The previous equation states that a flat earth generates a linear interferometric phase pattern, called Flat

Earth Component. Therefore, if the goal is to obtain a phase term proportional to the scene topography,

the flat earth component must be removed from the interferometric phase.

The second component is ∆ (∆φ)topography. In this case, the pixels P and P ′ will be assumed to lie

at the same range r, but located at a different position in the z axis, see Fig. 2.10. In this case, the

phase difference term will only account for the phase difference induced by the topography. As in the

previous case, the phase difference ∆θ is assumed small enough to apply the small phase approximation

for the sine function, r sin(∆θ) ≈ r∆θ = ∆z/ sin(θ). Finally, the phase difference term proportional to

the topography in Eq. (2.92) is

∆ (∆φ)topography =
4π

λ

Bn
r

∆z

sin(θ)
. (2.94)

The use of the previous equation in order to retrieve the topographic information from the scene under

observation has to be done taking into account two points. First of all, Eq. (2.94) is only valid for the

absolute phase difference, and not for a wrapped version of it. Hence, the difference phase obtained

from the interferogram has to be unwrapped in order to obtain a height absolute value [85]. Second, the

topographic phase information, Eq. (2.94), is not an absolute height measurement as it only gives height

differences between adjacent pixels. This makes necessary the knowledge about the absolute height, at

least in one pixel, in order to refer the rest of the phase image to this pixel.

The topographic interferometric phase given by Eq. (2.94), which is derived from the interferogram,

Eq. (2.79), is a wrapped phase difference, that is, only values in the range [−π, π) are known, whereas

the integer number of cycles is unknown. In a wrapped interferometric phase image, the phase period

between −π and π is known as fringe. As a result, it can be known which is the height information

encoded in a 2π cycle of phase, called height ambiguity

∆h2π =
λ sin(θ)r

2Bn
. (2.95)

The height ambiguity given by Eq. (2.95) depends mainly on the wavelength λ and the normal baseline

Bn. In order to extract some conclusions about the best parameters to obtain the interferogram, it is

valuable to derive the height sensitivity

∂(∆ (∆θ))

∂ (∆h)
=

4π

λ

Bn
r sin(θ)

. (2.96)

As Eq. (2.96) states, the height sensitivity is high for large normal baselines and decreases with large

wavelengths. The baseline cannot be increased arbitrarily, as the correlation between the pair of SAR

images would decrease, whose effect, called baseline decorrelation, would be to increase phase noise [86].
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2.2.2 Interferometric SAR System Model

In the previous section, assuming a simplified SAR system geometry, as well as deterministic scatterers,

it has been shown that the interferometric phase can be related with the topography of the scene under

observation. Since most of the targets observed by a SAR system are distributed scatterers, it is necessary

to increase the complexity of the interferometric SAR system model in order to derive the response of

such a system to this type of scatterers.

A distributed scatterer has been defined within Section 2.1.5 as a set of randomly located point

scatterers, characterized by the average scattering coefficient σ0 for two-dimensional scatters, or by the

volume scattering coefficient σv for volume scatterers. The former one can be assumed as a particular

case of the volume scattering coefficient. From now, a scattering volume will be assumed. In this case,

the volume scattering is characterized by the autocorrelation function

Rũ
(−→r ,−→r ′) = E

{
ũ(−→r )ũ∗(−→r ′)

}
= σv (−→r ) δ

(−→r −−→r ′) (2.97)

where −→r represents the location vector [x, y, z]T and ũ(−→r ) = ũ(x, y, z) denotes the random volume

reflectivity function. δ(−→r ) denotes the Dirac’s delta function in the space.

Since in this case, the reflectivity function has a random component, interest is focused on the average

interferometric response, instead of the interferometric phase response for a particular pixel. Hence,

taking into account the two complex SAR images S1(x1, r1) and S2(x2, r2), the average interferometric

response is given by

E {S1(x1, r1)S
∗
2(x2, r2)} . (2.98)

Apart from the autocorrelation function given by Eq. (2.97), it may happen the scattering to change

between the two acquisitions. This effect can be very clear with repeat-pass interferometry. In this case,

it is assumed that the scatterer autocorrelation function is given by

Rũ1ũ2
(−→r 1,

−→r 2) = E {ũ1(
−→r 1)ũ

∗
2(
−→r 2)} = σve (−→r 1) δ (−→r 1 −−→r 2) (2.99)

where σve(
−→r ) is the volume scattering coefficient of scatterers common to both images [87, 88]. It can

be interpreted as the temporarily stable scattering contribution; those contributions changing between

observations are cancelled in the average process.

Within Section 2.1.3, it was found which is the SAR system response to a distributed scatterer. Before

to derive the average interferometric response, it has to be taken into account that the two SAR images,

S1(x1, r1) and S2(x2, r2), are taken from slightly different look angles. Therefore, the system coordinates,

under which each of the SAR images are defined, are different. However, the difference in look angle

∆θ = θ1 − θ2 ' Bn/r is small enough that a single coordinate system (x, r) oriented at θ = (θ1 − θ2)/2

can be considered. This consideration can not be taken in the term exp(−j2−→k · −→r ′
s), as it requires the

distinction between the two wavevectors
−→
k 1 and

−→
k 2. Using Eq. (2.37), the response for each of the SAR

images are

S1(x1, r1) = exp(−j2k1r1)

∫

V ′
ũ(x′, y′, z′) exp(−j2−→k 1 · −→r ′)h1(x1 − x′, r1 − r′) dV ′ (2.100)

S2(x2, r2) = exp(−j2k2r2)

∫

V ′
ũ(x′, y′, z′) exp(−j2−→k 2 · −→r ′)h2(x2 − x′, r2 − r′) dV ′. (2.101)

As it has been performed in the previous section, the first step to obtain the interferogram is to register

the pair of SAR images. The registration forces the azimuth coordinates to be x = x1 = x2, whereas it

forces the range coordinate to be r2 = r1 −Br. After registering the SAR image S2(x2, r2) to S1(x1, r1),

Eqs. (2.100) and (2.101) are

S1(x, r1) = exp(−j2k1r1)

∫

V ′
ũ(x′, y′, z′) exp(−j2−→k 1 · −→r ′)h1(x− x′, r1 − r′) dV ′ (2.102)
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S2(x, r2) = exp(−j2k2r2)

∫

V ′
ũ(x′, y′, z′) exp(−j2−→k 2 · −→r ′)h2(x− x′, r2 − r′) dV ′. (2.103)

In the previous equations, it has been considered that each of the SAR images have been derived with

a different SAR system response, h1 and h2 respectively. SAR system conditions may change between

acquisitions, but without loss of generality, it can be assumed that h = h1 = h2. Therefore, assuming a

distributed scatterer defined by (2.99), the average interferometric response may be written as

E {S1(x, r1)S
∗
2(x, r2)} = exp(−j2(k1r1 − k2r2))

∫

V ′
σve(

−→r ′) exp(−j2(−→k 1 −
−→
k 2) · −→r ′) (2.104)

· h1(x− x′, r1 − r′)h∗2(x− x′, r2 − r′) dV ′

= exp(−j2(k1r1 − k2r2))

·
∫

V ′
σve(

−→r ′) exp(−j2(−→k 1 −
−→
k 2) · −→r ′)|h1(x− x′, r1 − r′)|2 dV ′.

The first term exp(−j2(k1r1−k2r2)) is the deterministic component of the interferometric phase contain-

ing the information about the topography, as developed within Section 2.2.1, Eqs. (2.86) and (2.87). The

integral component within Eq. (2.104) produces the interferogram to be random as a consequence of the

scatterer randomness. In the same way as it has been shown for single SAR images, the data randomness

produces a degradation of the useful information; in this case, the topographic height information.

2.2.3 Interferometric SAR Data Statistics

Within Sections 2.1.4 and 2.1.5 a statistical model for single SAR images was introduced. Assuming a

distributed scatterer as a set of randomly located point scatterers, characterized by an average volume

scattering coefficient σv, SAR images can be assumed to be described as Nc(0, σ
2/2). This model rep-

resents an idealization of the reality which offers the possibility to work with a relatively simple model.

This model will be used as a starting point to derive the statistical description for InSAR data.

As mentioned within preceding sections, InSAR is based on the interaction between two SAR images

of the same scene, in which the acquisition geometry has changed. First, a two-dimensional complex

scatterer vector, containing both SAR images, is defined as

k = [ S1 S2 ]T . (2.105)

As is has been presented within Section 2.1.4, S1 and S2 are described by zero-mean, complex, Gaussian

pdfs, Nc(0, σ
2/2). Therefore, k can be assumed to be described by a bivariate, zero-mean, complex,

Gaussian pdf [89,21,7, 72,22] N (0, [C])

pk(k) =
1

π2|[C]| exp(−k∗T [C]−1k) (2.106)

where ∗T denotes the transpose complex conjugate. The previous distribution is completely characterized

by the 2 by 2 complex covariance matrix [C], which in this case is defined as

[C] = E{kk∗T } =

[
σ1 ψρ

ψρ∗ σ2

]
. (2.107)

The parameter σk is defined as the backscattering coefficient in the kth image, E{|Sk|2}, whereas ψ =√
σ1σ2 represents a measure of the average power in the two channels. The parameter ρ is the correlation

coefficient between both SAR images

ρ = |ρ| exp(jφx) =
E{S1S

∗
2}√

E{|S1|2}E{|S2|2}
=
E{S1S

∗
2}√

σ1σ2
. (2.108)
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The correlation coefficient absolute value is simply called coherence. There is no a clear agreement about

the symbol representing the correlation coefficient. Some authors denote it with the symbol γ for the

particular case of InSAR. The symbol ρ is mainly employed to describe PolSAR data. In this text, in

order to describe the correlation properties in the most general way, the symbol ρ has been chosen to

describe the correlation coefficient for InSAR data, as well as for PolSAR data. The diagonal terms of the

covariance matrix refer to the intensity properties of each of the complex SAR images. The first-order

statistics of these terms have been studied within Section 2.1.4. Thus, attention will now be confined to

the properties of the covariance matrix off-diagonal terms S1S
∗
2 = r1r2 exp(j(θ1 − θ2)). If the amplitude

is denoted by z = r1r2 and the phase φ = θ1 − θ2, the joint pdf for the amplitude and phase is [22]

pz,φ(z, φ) =
2z

πψ2(1 − |ρ|2) exp

(
2|ρ|z cos(φ− φx)

ψ(1 − |ρ|2)

)
K0

(
2z

ψ(1 − |ρ|2)

)
(2.109)

where K0(z) is the modified Bessel function of the third kind. The phase distribution can be obtained

integrating out the amplitude variable z. Therefore the phase pdf is [5, 21,90,20,22,91]

pφ(φ) =
(1 − |ρ|2)

2π

{
β(1

2π + arcsin(β))

(1 − β2)3/2
+

1

1 − β2

}
φ ∈ [−π, π) (2.110)

where β = |ρ| cos (φ− φx). The phase difference distribution pφ(φ) is unimodal, symmetric and modulus

2π about its mode, which occurs at φx. As Eq. (2.110) shows, the phase difference distribution only

depends on the coherence |ρ|. For a coherence close to 1, the distribution resembles a delta function

located at φx, whereas for a coherence close to zero, the distribution is very close to a uniform distribution.

Fig. 2.11 shows this behavior. The fist conclusion which can be extracted from this behavior is that the

phase difference φ appears noisy for low coherences. For the extreme case in which the coherence is zero,

the phase difference does not contain useful information.

An important point that has to be taken into consideration with respect to the phase difference

distribution is the circular nature of the phase. The phase difference given by the argument of the

interferogram, Eq. (2.79), is only a value within the interval [−π, π). Thus, this behavior has to be

carefully considered when the phase difference distribution is employed. If the distribution given by Eq.

(2.110) is considered in a 2π interval about φx, the mean and variance values have the expressions [7,22]

E{φ} = φx (2.111)

var{φ} =
π2

3
− π arcsin(|ρ|) + arcsin2(|ρ|) − 1

2
Li2(|ρ|2) (2.112)
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Figure 2.11: Interferometric phase statistics. (a) Effect of coherence |ρ|. (b) Effect of φx for |ρ| = 0.9.
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where Li2(·) denotes the Euler’s dilogarithm. On the contrary, if the phase difference pdf is assumed to

lie in the interval [−π, π), the mean and variance values take the form [7,22]

E{φ} = φx +
|ρ| sin(φx)√

1 − |ρ|2 cos2(φx)
arccos(|ρ| cos(φx)) (2.113)

var{φ} =
1 − |ρ|2

1 − |ρ|2 cos2(φx)

{
π2

4
− π arcsin(|ρ| cos(φx)) + (arcsin(|ρ| cos(φx)))2

}

+
1

2

∞∑

n=1

1 − |ρ|2n
n2

. (2.114)

Therefore, when the phase difference is assumed as a wrapped measurement in the interval [−π, π), to

describe the statistics in terms of the mean and the variance fails in order to obtain the useful information

φx. This handicap can be overcome if the mean and the variance are calculated using unwrapped data.

At the same time, this fact presents the problem that phase unwrapping can be incorrect due to the

presence of phase residues [85]. As it will be shown later, this fact has important consequences when

phase noise has to be reduced. The other possible way to overcome this problem, is to analyze the

problem in the complex plane.

2.2.4 Interferometric SAR Coherence

It has been shown that the phase pdf is governed by the coherence |ρ|, as shown by Eq. (2.110). The

coherence |ρ| can be expressed in terms of the scatterer properties, as well as the system properties.

Without loss of generality, it can be assumed that x = 0 and r = 0 in Eq. (2.104). First, for each of the

complex SAR images, the signal intensities are

I1 = E{S1S
∗
1} =

∫

V ′
σvS1

|h(−x′,−r′1)|2 dV ′ (2.115)

I2 = E{S2S
∗
2} =

∫

V ′
σvS2

|h(−x′,−r′2)|2 dV ′. (2.116)

For the sake of simplicity, it can be assumed that both intensities are equal, that is, σv = σvS1
=

σvS2
. To obtain a more realistic signal model, it can be assumed that each of the image intensities

is also contaminated by thermal noise introduced by the SAR system components [89, 92]. The noise

intensities, denoted by N1 and N2 respectively, are uncorrelated with the SAR images. Getting rid of the

deterministic components of the phase difference, assuming a thermal noise component and introducing

Eqs. (2.104), (2.115) and (2.116) to Eq. (2.108), the correlation coefficient takes the expression

ρ =

∫
V ′ σve(

−→r ′) exp(−j2(−→k 1 −
−→
k 2) · −→r ′)|h(x − x′, r1 − r′)|2 dV ′

∫
V ′ σv|h(−x′,−r′)|2 dV ′ +N

. (2.117)

The correlation coefficient ρ can be decomposed as the product of different contributions [89, 92]. Each

of these components contributes with a magnitude less or equal than 1. Therefore, in order to reduce the

noise content within the phase difference it is mandatory to reduce, or even, to eliminate each one of these

effects. In [92], the correlation coefficient was decomposed in three dominant terms. The expressions of

each of these terms are:

· The first term takes into account the decorrelation introduced by the thermal additive noises. In

this case

ρSNR =

∫
V ′ σv(

−→r ′)|h(−x′,−r′)|2 dV ′
∫
V ′ σv(

−→r ′)|h(−x′,−r′)|2 dV ′ +N
=

1

1 + 1
SNR

. (2.118)

When the noise power is zero, there is no decorrelation due to thermal noise, therefore, ρSNR = 1.

On the contrary the lower the signal to noise ration (SNR), the higher the decorrelation and the

higher the phase noise content.
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· As mentioned previously, the scatterer features may change between the pair of SAR acquisitions.

In Eq. (2.99), the term σve accounts for the common scattering mechanisms between acquisitions.

Therefore

ρtemporal =

∫
V ′ σve(

−→r ′)|h(−x′,−r′)|2 dV ′
∫
V ′ σv(

−→r ′)|h(−x′,−r′)|2 dV ′ . (2.119)

For those situations in which there is no variation on the scattering mechanism between the pair

of acquisitions, i.e., σv = σve, ρtemporal = 1. On the contrary, if there is no common scattering

mechanisms between acquisitions ρtemporal = 0.
· The third term has a crucial importance in SAR interferometry. This term takes into account the

fact that the two SAR images are taken from slightly different look angles.

ρspatial =

∫
V ′ σve(

−→r ′) exp(−j2(−→k 1 −
−→
k 2) · −→r ′)|h(−x′,−r′)|2 dV ′

∫
V ′ σve(

−→r ′)|h(−x′,−r′)|2 dV ′ . (2.120)

This term has its origin in the fact that due to the difference in the look angle, the coherent addition

from the echoes due to the individual scatterers varies. It should be mentioned that this term is

inherent to InSAR. It is easy to see that the effect of this term can be removed making
−→
k 1 =

−→
k 2,

but then, no information about surface’s topography would be available as both SAR images would

contain exactly the same information.

The term ρspatial can be better understood if a simplification is applied to the term (
−→
k 1 −

−→
k 2) · −→r ′.

Assuming ∆k = k1 − k2, which makes possible to define k1 = k + ∆k/2 and k2 = k − ∆k/2 and the

difference in the look angle to be ∆θ ' sin(∆θ) = Bn/r, allows to rewrite the phase term accounting for

the difference in look angle as

exp(−j2(−→k 1 −
−→
k 2) · −→r ′) (2.121)

= exp

(
−j2

{(
k cos(θ)Bn

r
+ ∆k sin(θ)

)
y′ +

(
k sin(θ)Bn

r
+ ∆k cos(θ)

)
z′
})

.

The previous equation shows that ρspatial can be further split into two new terms. The first term has the

following expression

ρrange =

∫
σve(

−→r ′) exp(−j2(k cos(θ)Bn
r + ∆k sin(θ))y′)|h(−x′,−r′)|2 dx′ dy′∫
|h(−x′,−r′)|2 dx′ dy′

. (2.122)

This contribution can be reduced making ∆k = −(kBn)/(r tan(θ)). The first option to make ρrange = 1 is

to allow a central frequency change of the SAR system in each of the SAR surveys. Such a configuration

is known as a tunable SAR system [86]. For practical purposes, the variation in the look angle generates

a shift and a stretch of the imaged terrain spectra [86, 93]. However, if the relative system bandwidth

is small, the stretch can be neglected, and only a frequency shift can be assumed [86, 93]. As a conse-

quence, the decorrelation induced by the difference in look angle can be removed if those non-common

spectral bandwidth are filtered out. This process is called Wavenumber Shift Filtering [86]. The second

contribution can be rewritten as

ρvolume =

∫
z′ σve(z

′) exp(−j2(k sin(θ)Bn
r + ∆k cos(θ))z′) dz′∫

z′ σve(z
′) dz′

. (2.123)

This term accounts for the decorrelation induced by a finite distributed scatterers in the z dimension [86].

Through the use of ρvolume, it is possible to derive information about the scatterer’s structure in the z

dimension [42].

As it has been developed in the previous paragraphs, the coherence information can be split in four

dominant terms into the following way

ρ = ρSNR ρtemporal ρspatial = ρSNR ρtemporal ρrange ρvolume. (2.124)
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The first term is purely due to the SAR system, whereas the rest of the terms are due to the scatter’s

nature. Hence, the terms due to the scatterer are affected by any change within the SAR system that

produces to gather information in a different way. For example, these decorrelation terms are affected

by the wave polarization.

Apart from the decorrelation effects mentioned here. It is possible to define other different decor-

relation sources. In this case, these are due to incorrect processing of the SAR images or incorrect

interferogram formation. A clear example is the registration step, as an incorrect image co-registering

introduces decorrelation effects between the pair of SAR images.

2.2.5 Phase Difference Noise Model

As it has been presented throughout this section, InSAR is based on the information contained in the

interferometric phase, Eq. (2.79), which is calculated as the complex Hermitian product phase of a pair

of SAR images. As it has been explained within Section 2.1.6, the multiplicative speckle noise model

can not be employed to study the speckle noise effects over the phase difference, as the phase for each of

the SAR images is modelled as a uniform distribution within the interval [−π, π), eliminating any useful

information.

The distribution of the phase difference, see Eq. (2.110), has its mode at φx. If the phase difference is

assumed to lie within the interval [−π, π), the expectation, as well as the variance are clearly biased. On

the other hand, if the phase difference is analyzed in the interval [φx−π, φx+π), the expectation and the

variance give more clear information. As given by Eq. (2.111), the expectation is just the distribution

mode φx, which contains the topographic information. Besides, the variance gives information about the

spread of the distribution around φx, i.e., it gives information about the noise content. As a result of

all these facts, the phase difference can be characterized by an additive noise model within the interval

[φx − π, φx + π) [94]

φ = φx + v (2.125)

where φ is the measured phase difference, φx is the phase without noise and v is the phase zero-mean

noise with a standard deviation σv. The noise power σ2
v is given by Eq. (2.112).

The phase difference noise model has to be carefully applied. First of all, this model can only be

applied over the real plane. On the other hand, this model is only valid, as mentioned, within the interval

[φx−π, φx+π). As the interferometric phase is always wrapped within [−π, π), is it necessary to unwrap

the phase in a neighborhood of the pixel under study in order to use the model. One of the main problems

caused by phase noise are the phase residues, which hinder the unwrapping process itself.

2.3 SAR Polarimetry

This section is devoted to present the basis of SAR Polarimetry (PolSAR). Equally as it has been

presented with InSAR, PolSAR represents an increase of information by acquiring more than one SAR

image. Also, whenever the SAR images are correlated it will be possible to retrieve scatterer properties

from the phase difference measurement.

In the case of PolSAR data, the information increase is obtained on the basis of wave polarization

diversity. The main feature of a transverse electromagnetic wave is the vectorial nature of the EM field

which is known as polarimetry. Therefore, combining the polarization of the illuminating wave with the

antenna polarization in which the scattered wave is recorded, it is possible to increase the number of

information channels. The main advantage of the polarization diversity is the possibility to derive the

scatterer response to any wave polarization state from the response to a pair of orthogonal polarization

states, offering the possibility to optimize, for instance, the polarization state for maximum received

power.
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2.3.1 Wave Polarization

The Maxwell Equations

In 1864, J.C. Maxwell established and synthesized preceding results obtained by M. Faraday, A. Ampère

and K. F. Gauss about the interaction between the electric field, the magnetic field and currents, gen-

eralizing them to variable regimes in time. The Maxwell equations represent the starting point to solve

electromagnetic problems as they govern the generation and propagation of electromagnetic waves, as

well as the interaction of these waves with the matter. For electromagnetic sources in a non-conducting,

lossless, isotropic media, the Maxwell equations can be written as

∇ · −→E (−→r , t) =
ρ(−→r , t)
ε0εr

(2.126)

∇ · −→B (−→r , t) = 0 (2.127)

∇×−→
B (−→r , t) − ε0εrµ0µr

∂
−→
E (−→r , t)
∂t

= µ0
−→
J (−→r , t) (2.128)

∇×−→
E (−→r , t) = −∂

−→
B

∂t
(2.129)

where:

· −→
E is the electric field intensity vector.

· −→
B is the magnetic field induction vector.

· ρ is the electric charge density.

· −→
J is the density current vector.

· ε0 is the electric permittivity in the vacuum.

· εr is the relative electric permittivity of the media.

· µ0 is the magnetic permeability in the vacuum.

· µr is the relative magnetic permeability of the media.

As shown by the Maxwell equations, all the terms referring to fields,
−→
E and

−→
B , as well as the sources

terms, ρ and
−→
J , are defined for any time t and for any space point −→r , which depends on the specific

coordinate system. A deeper treatment about Maxwell equations can be found in [95,96].

Wave Equation

A fundamental aspect of the Maxwell equations for the electromagnetic field is the existence of solutions

consisting in progressive waves which represent the energy transport form one point to another [95, 96].

In the absence of sources, the fields which are solution of the Maxwell equations, also satisfy the wave

equation

∇2Ψ − 1

v2

∂2Ψ

∂t2
= 0 (2.130)

where Ψ represents the fields
−→
E (−→r , t) or

−→
B (−→r , t). The velocity v, which is a characteristic constant of

the media, is defined as

v =
1√

ε0εrµ0µr
=

c√
εrµr

(2.131)

where c represents the speed of light in the vacuum.

As presented within the previous section, the electromagnetic fields have a time dependence. For a

sinusoidal time dependence, it is said that the electric field is time-harmonic or monochromatic

−→
E (−→r , t) =

−→
E 0(

−→r ) cos(ωt+ ϕ(−→r )) (2.132)
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where w = 2πf is the angular frequency in rad/s.
−→
E 0(

−→r ) is the real electric field amplitude, whereas

ϕ(−→r ) represents a phase term. Harmonic or monochromatic fields are important as they allow to in-

troduce a complex notation whose main consequence is the possibility to eliminate the time dependence

from Maxwell equations. The complex representation for the electric field
−→
E (−→r , t) can be introduced as

follows

−→
E (−→r , t) =

−→
E 0(

−→r ) cos(ωt + −→ϕ (−→r )) = <
{−→
E 0(

−→r ) exp(j(ωt + −→ϕ (−→r )))
}

= <{E(−→r ) exp(jωt)} = <{E(−→r , t)} (2.133)

where <{·} denotes the real part of a complex number. The vector E(−→r ) represents the time independent

complex electric field amplitude or simply complex amplitude.

For a monochromatic wave propagating in the direction given by the vector
−→
k , expressed in a given

space coordinate system, the wave equation, Eq. (2.130), is satisfied by any function of the form

Ψ(−→r , t) = Ψ+(ωt −−→
k · −→r ) + Ψ−(ωt+

−→
k · −→r ) (2.134)

where
−→
k = kk̂, k̂ representing the unit vector in the propagation direction and k is the wave number,

whose expression is

k =
2π

λ
=
ω

c
. (2.135)

The solutions given by Eq. (2.134) are called transversal plane electromagnetic waves or simply TEM

waves. Following the IEEE convention [97], the term (ωt − −→
k · −→r ) indicates a wave propagating in the

positive sense of the direction given by
−→
k , whereas the term (ωt +

−→
k · −→r ) propagates in the negative

sense. For the case of a wave propagating in the positive sense of the vector
−→
k , the complex electric field

amplitude has the form

E(−→r ) =
−→
E 0(

−→r ) exp(−j−→k · −→r ). (2.136)

For such a this wave, the electric and magnetic fields reside inside the perpendicular plane to
−→
k . At

the same time, the electric and magnetic fields are mutually orthogonal within this plane, which is also

known as equiphase plane as all the points on it have the same phase.

Wave Polarization

TEM waves have a transverse vectorial character, which is also known as polarization. Polarimetry

characterizes the space-time variation of the electric
−→
E (−→r , t) and magnetic

−→
B (−→r , t) field vectors. As it

is a physical observable, polarimetry is independent of the space coordinate system used to describe it.

Often, the cartesian coordinate system [x̂, ŷ, ẑ] is employed to simplify the wave description. In

this case, the propagation vector
−→
k is chosen collinear to ẑ, therefore, the electric and magnetic fields

are confined in the plane defined by the orthogonal vectors x̂ and ŷ. This is called the wave-oriented

coordinate system or Forward Scattering Alignment (FSA) convention. For a monochromatic TEM wave,

the electric field cartesian components are

−→
E (−→z , t) = Ex(

−→z , t)x̂ + Ey(
−→z , t)ŷ = E0x cos(ωt − kz − δx)x̂ + E0y cos(ωt− kz − δy)ŷ (2.137)

where δx and δy represent two constant phase terms. Eq. (2.137) can be also expressed in a vector form

−→
E (−→z , t) =

[
Ex
Ey

]
=

[
E0x cos(ωt− kz + δx)

E0y cos(ωt− kz + δy)

]
. (2.138)

The two field components Ex and Ey verify the equation

(
Ex
E0x

)2

+

(
Ey
E0y

)2

− 2
ExEy
E0xE0y

= sin2(δ) (2.139)
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where δ = δx − δy. The previous equation gives the locus described by the electric field vector
−→
E (−→z , t)

tip along time for any value of z. The electric field tip, describes in the most general case an ellipse,

called polarization ellipse, whose shape does not depends neither on time nor space. Fig. 2.12 presents

the polarization ellipse for a particular polarization state.

f

a

t

a

b

A

x

y$

$z$

E(z,t=0)3

E0x

E0y

Figure 2.12: Polarization ellipse.

Any elliptic polarization state is defined by the following set of parameters:

· Orientation in space of the polarization ellipse plane. This orientation is given by the polarization

ellipse plane normal vector. For the sake of simplicity it is assumed to be ẑ.

· Orientation angle φ. This is the angle between the ellipse major axis and the direction defined by

the positive x̂. Its value is in the range [−π/2, π/2].
· Ellipticity angle τ . This angle represents the ellipse aperture. Its value lies in the range [−π/4, π/4].

· The polarization sense or handedness. Determines the sense in which the polarization ellipse is

described. This parameter is given by the sign of the ellipticity angle τ . Following the IEEE

convention [97], the polarization ellipse is right-handed if the electric vector tip rotates clockwise

for a wave observed in the direction of propagation, given by
−→
k . On the contrary, it is said to be

left-handed. Therefore, for τ < 0 the polarization sense is right-handed whereas for τ > 0 it is

left-handed.

· The polarization ellipse amplitude A. For a major and minor ellipse axes amplitudes a and b

respectively, A =
√
a2 + b2.

· The absolute phase α representing the initial phase with respect to the phase origin for t = 0. It

belongs to the range [−π, π).

Table 2.1 presents the values of the different polarization ellipse parameters for a set of polarization

states.

Generally speaking, the polarization state is completely characterized by three independent parame-

ters: the orientation angle, the ellipticity angle (whose sign gives the polarization sense) and the ellipse

amplitude.

Linear horizontal Linear vertical Right hand circular Left hand circular

φ 0 π/2 [−π/2, π/2] [−π/2, π/2]

τ 0 0 −π/4 π/4

Table 2.1: Polarization states.
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Wave Polarization Description

As shown before, the polarization state has been described by three independent parameters based on

angle measurements. The polarization state can be also described by two different sets of parameters.

As it has been presented, the wave vector components given by Eq. (2.138), can be also expressed by

a vector complex formulation

E(−→r , t) =

[
E0x exp(jδx)

E0y exp(jδy)

]
exp(j(ωt − kz)). (2.140)

The real electric field can be recovered by

−→
E (−→z , t) = <{E(−→z , t)} . (2.141)

A simple wave description can be obtained obviating the propagation term within Eq. (2.140) by evalu-

ating it at z = 0 and eliminating the time dependence. In the plane z = 0, the electric field
−→
E (z = 0)

can be represented by

E(0) = E(z = 0) =

[
Ex
Ey

]
=

[
E0x exp(jδx)

E0y exp(jδy)

]
. (2.142)

The vector E(0) is called the Jones vector of a wave [98, 30, 31, 32]. This vector is a concise complex

description of a plane, uniform, monochromatic TEM wave with a given polarization state. The Jones

vector only contains information concerning the polarization state as the propagation information has

been eliminated. It is worth to mention here, that the Jones vector is a C2 vector, that is, a two-

dimensional complex vector and not a two-dimensional vector in the real space.

The Jones vector describes completely the polarization ellipse shape, as well as the rotation sense of the

electric field vector. On the contrary, handedness information can not be included within the Jones vector

as it does not contain propagation information. This problem has been solved by introducing the concept

of directional Jones vector [99,100,101]. In this case, the propagation direction information is introduced

by the symbols ’+’ and ’−’, in such a way that E+ indicates the Jones vector for a wave propagating

in the positive sense of
−→
k , whereas E− corresponds to the Jones vector of a wave propagating in the

negative sense of
−→
k . The locus of the polarization ellipse, including the sense of rotation, is independent

from the propagation direction. For a Jones vector of a wave propagating in the positive sense of
−→
k ,

E+, the vector E− with the same Jones vector but for opposite direction of propagation, has the same

locus of the polarization ellipse with the same orientation angle and the same sense of rotation but with

opposite ellipticity τ− = −τ+. A Jones vector for a wave propagating in the direction −−→
k with the same

polarization is obtained from E+ by taking the complex conjugate

Polarization {E−} = Polarization {E+} if and only if E− = E∗
+ (2.143)

This is true for any linear orthonormal polarization basis. Complex conjugation changes the sign of the

phase difference δ and, hence, the sense of rotation but leaves invariant the ellipticity due to the opposite

direction of propagation.

Sir G. Stokes, introduced a polarization state description based on four real measurable quantities in

the field of optics polarization [102]. These four measurable quantities g0, g1, g2 and g3, are called the

stokes parameters, which are function of the Jones vector components. These four parameters can be

arranged in a vector form, leading to the Stokes vector [103,98]

g =




g0
g1
g2
g3


 =




|Ex|2 + |Ey|2
|Ex|2 − |Ey|2
2<{E∗

xEy}
2={E∗

xEy}


 . (2.144)
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As in the case of the Jones vector, the Stokes vector is a polarization state vector and not a polarization

vector, as it does not contain wave propagation. Contrary to Jones vector, Stokes vector is a real

representation of the polarization state, g ∈ R4. Despite the Stokes vector belongs to R4, only three

components are independent for totally polarized waves

g2
0 = g2

1 + g2
2 + g2

3 . (2.145)

The stokes parameters g1, g2 and g3 can be interpreted as the cartesian coordinates of a point on a sphere

of radius g0. Therefore, it is possible to map any polarization state to a point of a three dimensional

sphere known as the Poincaré sphere [104].

Totally and Partially Polarized Waves

Previously, interest was focused on describing monochromatic waves, whose polarization state does not

change in time. These waves are also defined as totally polarized waves. On the other hand, it may

happen that the parameters defining the polarization state have a time dependence, i.e.,

E =

[
Ex
Ey

]
=

[
E0x(t) exp(jδx(t))

E0y(t) exp(jδy(t))

]
. (2.146)

In general, the parameters E0x(t), E0y(t), δx(t) and δy(t) will have a random time variation, hence, the

polarization ellipse is no longer stable in time. On the contrary, the polarization ellipse has a random

variation in shape. Those waves in which the electric field tip describes a trajectory around an average

ellipse are called partially polarized waves, whereas those waves in which it describes a complete random

trajectory are defined as unpolarized waves [105, 98]. In the latter case, it is not possible to identify an

average polarization ellipse.

As the polarization state varies randomly along time, it does no have information for a particular

time. On the contrary it is necessary to derive the average polarization state of the wave. Thus, the

polarization state, as information source, takes only sense from a statistical point of view. The first

consequence of this fact is that only those wave polarization descriptors allowing the introduction of

statistics are suitable to describe the wave polarization [105,98].

The polarization state for totally polarized waves is completely characterized by the Jones vector.

This vector is no longer valid to describe partially polarized waves as it varies along time [105, 98]. On

the contrary, it is possible to describe the average polarization state of a partially polarized wave by using

the wave coherency matrix [J ], defined as [98]

[J ] = E
{
EE∗T} =

[
E {ExE∗

x} E
{
ExE

∗
y

}

E {EyE∗
x} E

{
EyE

∗
y

}
]

(2.147)

where E{·} represent the statistical expectation. As defined, the wave coherency matrix is a 2 by 2

complex Hermitian matrix containing all the Jones vector second moments.

Partially polarized waves can also be described by the Stokes vector. In this case, as all the stokes

vector elements are intensities, it is possible to obtain the average value of these terms

g =




g0
g1
g2
g3


 =




E
{
|Ex|2

}
+E

{
|Ey|2

}

E
{
|Ex|2

}
−E

{
|Ey|2

}

2E {< {E∗
xEy}}

2E {= {E∗
xEy}}


 . (2.148)

In the case of partially polarized waves, the four stokes parameters are no longer dependent

g2
0 ≥ g2

1 + g2
2 + g2

3 . (2.149)



40 CHAPTER 2. SAR REMOTE SENSING

A partially polarized wave can range from a totally polarized to a totally unpolarized state. The

degree of polarization Dp measures the ratio between the totally polarized energy and the total energy

of the wave [98]. This parameter can be expressed as a function of the wave covariance matrix elements

or as a function of the Stokes vector parameters

Dp =

√
1 − 4|[J ]|

tr([J ])2
=

√
g2
1 + g2

2 + g2
3

g0
(2.150)

where tr(·) denotes the matrix trace. The degree of polarization ranges from 0 to 1. For Dp = 1, it

means that the wave is completely polarized, whereas for Dp = 0 the wave is unpolarized. For any value

between 0 and 1, the instantaneous polarization state has an average state.

In the case of an scattered wave by the Earth’s surface and recorded by a SAR system, it is important

to clarify the concept of wave polarization in this scenario. As presented before, the Earth’s surface has

been modelled as a set of randomly located point scatterers. For each resolution cell, the recorded wave

is the coherent addition of the scattered waves by each of the point scatterers. As the arrangement of

point scatterers varies from resolution cell to resolution cell, the received wave polarization state is also

random and different from cell to cell. Due to this fact, the received waves can be considered partially

polarized in space. Thus, if the goal is to characterize such a scatterer, it has to be done statistically, as

this type of analysis will allow to derive the mean scatterer behavior.

2.3.2 Wave Scattering

A single-channel SAR system has been described within Section 2.1. This system is based on sending an

EM wave to posteriorly record the scattered version by the Earth’s surface. By this process, it is possible

to gather information about the surface scattering behavior. This information is the radar cross section,

Eq. (2.10), for deterministic or point scatterers, or the scattering coefficient, Eq. (2.65), for random or

distributed scatterers.

The complexity increases in the case of PolSAR systems, as more information channels are available.

For the case of point scatterers, the polarimetric problem does not present too much difficulties. The

problem comes when polarimetry is employed to gather information about distributed scatterers. In

this case, the randomness involved within the scattering process makes polarimetric information to be

only useful from an statistical point of view. Besides, this randomness will produce PolSAR data to be

contaminated by speckle noise. In this case, the speckle noise problem becomes more difficult, as the

polarimetric information channels have a correlation degree, which at the same time is an important

source of information about the scatterer.

The concept of polarimetric wave scattering can be analyzed from two different perspectives. In both

cases, the starting point is the same, an illuminating wave with certain polarization properties. In most

of the cases, this wave is totally polarized. On the one hand, it consists in finding the expressions of the

scattered fields for a given scatterer. On the other hand, for a given scattered wave, the problem consists

in deriving information about the polarimetric properties of the scatterer. The next sections deal with

the second of the problems.

2.3.3 The Scattering Matrix

Previous to formally define the scattering matrix, it is important to describe the global scenario in which

a PolSAR system images a particular scatterer. First of all, a global cartesian coordinate system [x̂, ŷ, ẑ]

with its origin located within the scattered is defined. All the transverse components of the different

fields will be referred to this coordinate system. Without loss of generality, it is possible to assume that

the SAR system consists of two antennas, i.e., a transmitting and a receiving antennas, located at any

point in the space. When the transmitting and receiving antennas are located in different positions, the
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scattering process is referred as forward scattering or bistatic configuration, whereas if both antennas are

located at the same point is known as backscattering or monostatic configuration. The transverse electric

field vector can be described with two orthogonal polarization states. It will be assumed that these two

orthogonal polarization states are the linear horizontal polarization, denoted by ĥ, and the linear vertical

polarization, denoted by v̂, which define the linear polarization basis {ĥ, v̂}. Therefore, the illuminating

field consists of the components Eih and Eiv. The transverse components of the illuminating field are

referred to the local coordinate system centered within the transmitting antenna [ĥi, v̂i, k̂i]. At this

point, there exist two different conventions about the definition of the scattered field coordinate system

[ĥs, v̂s, k̂s]. The first convention called Forward Scattering Alignment or FSA is defined relative to the

propagating wave, therefore it is also known as wave oriented coordinate system. The second convention,

Backward Scattering Alignment or BSA, is defined with respect to the radar antennas in accordance

with the IEEE standard [97], which defines the polarization state of an antenna to be the polarization of

the wave radiated by the antenna, even when it is used as a receiving antenna. Fig. 2.13 depicts both

situations. As a consequence, the equivalences between the coordinate systems of the illuminating and

transmitting fields are, for the backscattering direction

FSA Convention BSA Convention

ĥs = −ĥi

v̂s = v̂i

k̂s = −k̂i

ĥs = ĥi

v̂s = v̂i

k̂s = k̂i

(2.151)

Under the BSA convention, the illuminating and scattered electric fields components are expressed

under the same coordinate system. In order to related both electric fields under the FSA convention,

ĥs = −ĥi has to be taken into account. For the BSA convention, assuming the following illuminating

and scattered fields

Ei = Eihĥi + Eivv̂i (2.152)

Es = Eshĥs + Esvv̂s (2.153)

it is possible to relate the different field components, under the far field assumption, by a 2 by 2 dimen-

sionless complex matrix of the scatterer, [S], as [105,67,27,26]

[
Esh
Esv

]
=

exp(−jkr)
r

[
Shh Shv
Svh Svv

] [
Eih
Eiv

]
(2.154)

or equivalently

Es =
exp(−jkr)

r
[S]Ei (2.155)

where r indicates the distance between the scatterer and the receiving antenna, and k is the wavenumber

of the illuminating wave. The scattering matrix [S] relates the Jones vector of the illuminating field, a
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Figure 2.13: Reference system. (a) FSA convention. (b) BSA convention.
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wave propagating in the positive sense of
−→
k i, with the scattered field Jones vector, a wave propagating

in the negative sense of
−→
k i. By using the concept of directional Jones vectors, presented within Section

2.3.1 and eliminating the propagation constant, Eq. (2.155) can be written as follows

Es
+ = [S]Ei

− (2.156)

Es
+ = [S]Ei

+
∗

(2.157)

Es
−
∗ = [S]Ei

−. (2.158)

Eq. (2.155), known as field equation, represents the first cornerstone of the polarimetric radar theory.

The scattering matrix can be also defined under the FSA convention. Considering ĥs = −ĥi

[S]FSA =

[
1 0

0 −1

]
[S]BSA. (2.159)

The propagation factor exp(−jkr)/r is eliminated in the following as it does not affect the polarization

information. From now, it will be assumed that [S] is expressed under the BSA convention. Generally, the

[S] matrix is referred as the coherent scattering matrix for a bistatic system under the BSA convention.

For the monostatic case under the same convention [S] is known as Sinclair matrix, whereas it is referred

to the FSA convention [S] is known as Jones matrix.

The scattering matrix elements Spq are called complex scattering amplitudes. These components

are understood as the coefficients relating the illuminating field component with q̂ polarization with the

scattered field in p̂ polarization. These components contain basically the same information as the radar

cross section, Eq. (2.10), but introducing polarization dependence and phase information. Indeed, these

coefficients are function of frequency, imaging geometry, polarization as well as the physical scattering

properties [55,91].

Up to now, the scattering matrix has been derived for the most general configuration in which the

transmitting and receiving antennas are located at different positions. For a monostatic configuration, in

which both antennas are located at the same position, some simplifications can be introduced. Through

the reciprocity theorem [106,77], it is possible to derive the following equivalences

Svh = Shv (2.160)

for the BSA convention, and

Svh = −Shv (2.161)

for the FSA convention. In general, the bistatic scattering matrix may contain up to seven real inde-

pendent parameters (four amplitudes and three relative phases). Because of the relations given by Eq.

(2.160) or Eq. (2.161), the backscattering scattering matrix contains only up to five real independent

quantities (three amplitudes and two relative phases).

The Scattering Vector

As shown by Eq. (2.154), the scattering matrix describes the scattering polarimetric properties by a 2

by 2 complex matrix. This information can be arranged in a vector form, which is known as scattering

vector. By a vectorization operator V ([S]) [107,108]

k4 = V ([S]) =
1

2
tr ([S]H) = [k0, k1, k2, k3]

T (2.162)

where T indicates transpose and tr(·) indicates the matrix trace. It is important to note that k4 ∈ C4.

In this case, H is a 2 by 2 complex matrix basis which is constructed as an orthogonal set under the

Hermitian inner product. The introduction of the target vector concept will allow to extract polarimetric

information from [S] for distributed scatterers [36].
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The first orthogonal matrices set H employed to obtain a target vector is the lexicographic basis. In

this case, the basis is obtained as the straightforward lexicographic ordering of the elements of [S]

HL =

{[
2 0

0 0

]
,

[
0 2

0 0

]
,

[
0 0

2 0

]
,

[
0 0

0 2

]}
. (2.163)

Using HL as a decomposition basis, the scattering vector obtained is

k4L = [Shh, Shv, Svh, Svv]
T . (2.164)

This vector k4L is the conventional scattering vector. Its main advantage is that its elements correspond

directly to the scattering matrix entries. The second decomposition basis is the one known as Pauli basis

HP =

{√
2

[
1 0

0 1

]
,
√

2

[
1 0

0 −1

]
,
√

2

[
0 1

1 0

]
,
√

2

[
0 −j
j 0

]}
. (2.165)

In this case, the obtained scattering vector has the expression

k4P =
1√
2

[Shh + Svv, Shh − Svv, Shv + Svh, j (Shv − Svh)]
T . (2.166)

The main advantage of the vector k4P is that its components can be directly related with elementary

scattering mechanisms.

One important parameter of the scattering vectors is the norm of the vector ‖k‖, which in this case

receives the name of span. The span is the total scattered power, therefore it has to be independent

from the matrix basis H. For this reason, a factor of 2 and a factor of
√

2 have been included within Eq.

(2.163) and Eq. (2.165), respectively. The span is defined as

Span ([S]) = ‖k4L‖2 = k4Lk
∗T
4L = |Shh|2 + |Shv|2 + |Svh|2 + |Svv |2 . (2.167)

The scattering vectors, Eq. (2.164) and Eq. (2.166), can be simplified in the backscattering case by [36]

k3L =
[
Shh,

√
2Shv, Svv

]T
(2.168)

k3P =
1√
2

[Shh + Svv , Shh − Svv , 2Shv]
T . (2.169)

Both vectors belong to C3. In the case of the vector k3L a
√

2 coefficient in introduced in order to keep

the span.

Scattering Matrix for Distributed Scatterers

Up to this point, interest has been focused on defining the scattering matrix for point scatterers. This

type of scatterers are stable in time and/or space. Therefore, the polarimetric properties of the scattered

wave do not change in time or space. As both, the illuminating and the scattered waves are totally

polarized, the scattering matrix is able to describe the scatterer polarimetric properties. This situation

changes radically for distributed or partial scatterers. For a scene model consisting in randomly located

point scatterers, it has been shown in Section 2.3.1 that the scattered Jones vector is not able to describe

the scattered wave polarimetric properties, since it has a random variation in time and/or space. Thus,

since the scattering matrix [S] relates the Jones vector of the illuminating and the scattered waves,

this matrix is no longer valid to describe the polarimetric properties of a distributed scatterer, as its

components are also random processes.

A polarimetric SAR system measures the four elements of the scattering matrix for each cell of

resolution as four complex SAR images. In Section 2.1.4 it was shown that the complex SAR image can
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be modelled by Nc(0, σ
2/2), Eqs. (2.55) and (2.56). Hence, the four complex scattering matrix channels

can be also modelled as zero-mean, complex, Gaussian pdfs, Nc(0, σ
2/2). The important point in the

case of PolSAR data, which was already shown for InSAR data, is the presence of a correlation between

the scattering matrix elements.

Assuming k = k3L or k = k4L, the vector k is described by a multivariate, zero-mean, complex,

Gaussian pdf, with the covariance matrix [C] properly defined in each case [109,21,22]

pk(k) =
1

πQ|[C]| exp
(
−k∗T [C]−1k

)
(2.170)

where Q = 3 for a monostatic configuration (k3L), whereas Q = 4 for a bistatic SAR configuration

(k4L). The multivariate, zero-mean, complex, Gaussian pdf presented in Eq. (2.170), and symbolized by

N (0, [C]), is completely determined by the complex, Hermitian, positive semidefinite covariance matrix

[72], defined as

[C] = E{k3Lk
∗T
3L} (2.171)

for the monostatic configuration, and

[C] = E{k4Lk
∗T
4L} (2.172)

for a bistatic configuration. A general theorem for multivariate, complex, Gaussian pdfs states that the

nth order central product moment is zero if n is odd, and it is equal to a sum of products of covariances

when n is even [110,72,111]. As a result, the covariance matrix [C] characterizes completely the statistics

of the scattering matrix [S]. The matrix [C], contains indeed, power information about the elements of

the scattering matrix and information concerning the correlation structure of these elements.

An important point to be mentioned is that E{k} = 0, hence, information can not be extracted from

[S] in a direct way. In order to obtain information, allowing to characterize the random behavior of the

scattering matrix, it is necessary to do it over higher moments, i.e., the covariance matrix.

2.3.4 The Covariance and Coherency Matrices

Most of natural targets, due to their complex structure, can not be considered as perfect scatterers

producing totally polarized waves. As a result, this type of scatterers can not be completely characterized

by the scattering matrix [S]. The logical step to characterize distributed scatterers is to obtain the

information of interest from higher moments. This step has been already taken to describe partially

polarized waves, see Section 2.3.1, describing them by the stokes vector or by the wave covariance matrix.

Hence, distributed scatterers will be described by means of second moments.

The first way to describe partially polarized waves has been to use the real stokes vector. If the

polarization properties of the illuminating wave, as well as the properties of the scattered one are described

by means of stokes vectors, these vectors can be related by the Müeller matrix [M ] [112]. This matrix

receives the name of Kennaugh matrix for a monostatic SAR configuration. As it has been done with

the EM waves, the Müeller or Kennaugh matrices are able to describe distributed scatterers within the

real space.

The second formulation employed to describe the polarization properties of partially polarized EM

waves is the complex wave covariance matrix. It is possible to establish a parallel formulation for the

distributed scatterers case, describing them by the scatterer, complex, covariance matrix. Using the

scattering vector with respect to the lexicographic matrices basis, Eqs. (2.164) or (2.168), the Hermitian,

positive semidefinite, scatterer covariance matrix is defined as

[C4] = E{k4Lk
∗T
4L} =




E{ShhS∗
hh} E{ShhS∗

hv} E{ShhS∗
vh} E{ShhS∗

vv}
E{ShvS∗

hh} E{ShvS∗
hv} E{ShvS∗

vh} E{ShvS∗
vv}

E{SvhS∗
hh} E{SvhS∗

hv} E{SvhS∗
vh} E{SvhS∗

vv}
E{SvvS∗

hh} E{SvvS∗
hv} E{SvvS∗

hv} E{SvvS∗
vv}


 (2.173)
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for a bistatic configuration, whereas for a monostatic configuration is

[C3] = E{k3Lk
∗T
3L} =




E{ShhS∗
hh}

√
2E{ShhS∗

hv} E{ShhS∗
vv}√

2E{ShvS∗
hh} 2E{ShvS∗

hv}
√

2E{ShvS∗
vv}

E{SvvS∗
hh}

√
2E{SvvS∗

hv} E{SvvS∗
vv}


 . (2.174)

The matrices [C4] and [C3], as presented in Section 2.3.3, characterize completely the scattering matrix

randomness. The advantage of the covariance matrix is that it contains, in a direct way, the Hermitian

products between the elements of the scattering matrix. In a similar way, it is possible to define a

coherency matrix [T ] by using the scattering vector obtained through the Pauli matrices basis [36]. For

a bistatic configuration this matrix is defined as

[T4] = E{k4Pk∗T
4P } (2.175)

whereas for a monostatic configuration is

[T3] = E{k3Pk∗T
3P }. (2.176)

The advantage of the coherency matrix it that its elements can be more easily related with simple physical

scattering mechanisms.

Both, the conventional scattering vector and the scattering vector obtained from the Pauli basis are

derived from the scattering matrix, hence, they contain the same information. In the same way, the

covariance and the coherency matrices contain the same information, as they only differ on the way the

information is arranged. The equivalences between the covariance and coherency matrices are [36]

[T4] =
1

2




1 0 0 1

1 0 0 −1

0 1 1 0

0 j −j 0


 [C4]




1 1 0 0

0 0 1 −j
0 0 1 j

1 −1 0 0


 (2.177)

[T3] =
1

2




1 0 1

1 0 −1

0
√

2 0


 [C3]




1 1 0

0 0
√

2

1 −1 0


 . (2.178)

The covariance and the coherency matrices are full rank matrices for the case of distributed scatterers, i.e.,

matrices of rank 4 for a general formulation and rank 3 for the backscattering case. After the expectation

process, the symmetric relation between the scattering matrix and the covariance and coherency matrices

is lost [36]. This relation is only maintained in the case of point scatterers.

A general 4 by 4 covariance or coherency matrix contains up to sixteen real independent parameters.

Equally, for the backscattering case, these matrices contain up to nine independent real parameters.

On the other side, the scattering matrix can only contain seven independent parameters in the most

general case, whereas only five for the monostatic case. These differences in the number of independent

parameters contained in the matrices makes evident the inability of the scattering matrix to describe

scattering processes in the case of distributed or partial scatterers. As is has been presented previously,

this inability is due to the impossibility of the scattering matrix to describe the correlation properties of

its elements.

2.3.5 Covariance Matrix Statistics

For distributed scatterers, the identification and classification of the scatterer structure can only be

done by second moments. Section 2.3.3 showed that the conventional scattering vectors, k3L or k4L are

distributed as N (0, [C3]) and N (0, [C4]), respectively. The direct link between the scattering matrix [S]

and the covariance matrix [C] makes possible to derive the statistics of this matrix. The work presented
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in this text is based on describing distributed scatterers by means of the covariance matrix. Hence, only

the statistical model of [C] will be presented. As the matrices [C], [T ] and [M ] are equivalent descriptors

for distributed scatterers, it makes sense to analyze one of them, extending the results to the rest.

The covariance matrix is defined on the basis of the expectation operator E{·} for wide-sense station-

ary processes. Therefore, the covariance matrix has to be estimated, i.e., the ensemble average of each of

the covariance matrix elements has to be estimated. Under the assumption that the processes Spq, Srs
and SpqS

∗
rs are:

· Wide-sense stationary, i.e., the space averages of each process converge to a finite limit.

· Ergodic in mean, i.e., the different space averages of each process converge to the same limit: the

ensemble average.

the ensemble average can be substituted by the spatial average [113]

〈SpqS∗
rs〉 =

1

N

N∑

k=1

SpqkS
∗
rsk

(2.179)

where N indicates the number of averaged pixels. The previous conditions refer to the calculation of the

covariance matrix for wide-sense stationary processes. The first condition is not fulfilled for real SAR

images as they are non-stationary processes. Therefore, the stationarity condition has to be relaxed in

such a way that the SAR image has to be considered as a locally stationary process. This means that the

statistics have to be considered fixed for the local area where the spatial average is calculated, that is,

the N pixels belong to the same statistical class. If the process is not locally stationary, the value given

by the spatial average is meaningless. As a result, statistics have to be calculated by using a moving

window.

The estimation of the covariance matrix elements by averaging the covariance matrices of N pixels

is called a multilook process, which is the maximum likelihood estimator of the covariance matrices, Eq.

(2.173) or Eq. (2.174). The multilook average presents two important drawbacks. First, the estimated

values are clearly dependent on the number of averaged pixels in such a way that the larger the number

of averaged pixels the better the covariance matrix estimation [113]. On the other hand, this spatial

average process introduces a reduction on the spatial resolution with the clear loss of image details, so

that the larger the number of averaged pixels the larger the loss in spatial resolution.

The estimated covariance matrix [Z], for a monostatic SAR configuration in the linear polarization

basis {ĥ, v̂}, is defined as [114,21,7, 22]

[Z] =
1

N

N∑

k=1

[Ck] = 〈k3Lk
∗T
3L〉 =




〈ShhS∗
hh〉

√
2〈ShhS∗

hv〉 〈ShhS∗
vv〉√

2〈ShvS∗
hh〉 2〈ShvS∗

hv〉
√

2〈ShvS∗
vv〉

〈SvvS∗
hh〉

√
2〈SvvS∗

hv〉 〈ShhS∗
vv〉


 (2.180)

where [Ck] = k3Lkk
∗T
3Lk

is the covariance matrix calculated for the kth pixel of the SAR image. The matrix

[Z] is often referred as N -look PolSAR data. Based on the multivariate, zero-mean, complex, Gaussian

distribution for the target vector k, the estimated covariance matrix [Z] is statistically described by the

complex Wishart distribution W([C], N) [114]

p[Z] ([Z]) =
NQN |[Z]|N−Q exp

(
−Ntr

(
[C]−1[Z]

))

K(N,Q) |[C]|N
(2.181)

where K(N,Q) is the function

K(N,Q) = π(1/2)Q(Q−1)Γ(N) · · ·Γ(N −Q+ 1) (2.182)

Q represents the dimension of the vector k. Therefore for a general case Q = 4, whereas for the

backscattering case Q = 3.
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An important particular case of the distribution given by Eq. (2.181) is the distribution for one-look

imagery, i.e., N = 1. In this case, the covariance matrix is simply obtained as the scattering vector

Hermitian product for each image pixel. As no estimation process is applied, due to data randomness, it

can be stated that useful information, i.e., the average information is damaged by this randomness. As

for one-dimensional SAR imagery, this random component is a true electromagnetic measurement known

as speckle, but it can only be analyzed by statistical means due to its complexity.

All the covariance matrix elements are the Hermitian product of two scattering matrix elements

SpqS
∗
rs = |SpqS∗

rs| exp(j(θpq − θrs)) (2.183)

where the indices p, q, r and s belong to the orthogonal linear polarization basis {ĥ, v̂}. Indeed, they

could belong to any orthogonal polarization basis, as shown in the following. Besides, the statistical

properties of the products SpqS
∗
rs are independent of the number of channels Q. As a result, all the

matrix covariance elements share the same statistical properties, allowing to analyze one elements and

extending the results to the rest of the covariance matrix elements [21,22].

2.3.6 Polarimetric SAR Speckle

From Sections 2.3.3 as well as 2.3.5, it follows that PolSAR data can be interpreted as the contribution

of two different components. From one side, there is a useful signal component containing information

about the scattering process. This information is basically contained within the data average value. On

the other hand, these data are damaged by a random contribution, which in this case is also known as

speckle noise. Again, it is important to mention that speckle is a true electromagnetic measurement, but

it has to be analyzed as a noise-like signal due to the complexity involved within the imaging process.

The most obvious way to find a noise model for the covariance matrix is to extend the multiplicative

speckle noise already presented for one-dimensional SAR images, Section 2.1.6. For such a case, each of

the scattering matrix elements is assumed to follow

Spq =
√
σpqnpq exp(jθpq) (2.184)

where n is the speckle noise, σpq is the local RCS (proportional to the backscattering coefficient given in

Eq. (2.64)) and θpq represents the true phase measurement. Then

〈SpqS∗
rs〉 =

〈√
σpqσrs exp(j(θpq − θrs))

〉
〈npqn∗rs〉 . (2.185)

In order to recover the true information from Eq. (2.185) it is necessary that speckle noise averages out,

setting 〈npqn∗rs〉 = 1 for pq = rs and zero otherwise. A complex Gaussian variable with this covariance

structure is degenerate in the sense that this matrix is a diagonal matrix. This would produce the speckle

noise to be the same in all the SAR images, which is not true [7]. Besides, the jointly Gaussian nature has

turned out. The non-validity of this extension lies on assuming the SAR channel’s phase to be uniformly

distributed, which means that posterior uses of the phase are not possible.

InSAR data phase was assumed to be described by an additive phase noise as presented within

Section 2.2.3. The previous section presented that InSAR and PolSAR phase differences are described

by the same distribution. As in both cases, the data randomness is described by the same distribution,

the additive nature of phase noise for InSAR data, can be also extended for PolSAR data. As stated

previously, the difference in both cases would be the type of information contained in the average phase.

Besides, the phase noise power will depend on the coherence value.

2.3.7 Change of Polarization Basis

Throughout all the previous development, it has been assumed that PolSAR data was referred to the

linear orthogonal polarization basis {ĥ, v̂}. Several reasons can be adduced in favor of this choice. The
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first one is the simplicity, in comparison with other possibilities, of the required hardware to work with

this set of polarizations. But, the most important reason is the possibility to derive the scatterer response

to any polarization state from the response to a pair of orthogonal polarizations [115]. Techniques based

on this fact are generally known as polarization basis change techniques. A clear application of them are

those methodologies based on looking for the best polarization state for a given goal, as for instance, to

look for the polarization state maximizing the returned power [116,117,118].

In Section 2.3.1, the polarization state of a electromagnetic wave was described in the polarization

basis {ĥ, v̂}
E

(ĥ,v̂)
=
〈
E

(ĥ,v̂)
, ĥ
〉

ĥ +
〈
E

(ĥ,v̂)
, v̂
〉

v̂ (2.186)

where 〈·〉 represents the inner product. In a general way, any polarization state can be expressed as the

combination of two elliptical polarization state which are orthogonal

E(û1,û2) =
〈
E(û1,û2), û1

〉
û1 +

〈
E(û1,û2), û2

〉
û2. (2.187)

As a result, if the cartesian basis {ĥ, v̂} is denoted by B1 and the general elliptical basis {û1, û2} as B2,

the Jones vector in the basis B2 can be obtained as function of the Jones vector in the basis B1

EB2 = [UB1→B2]EB1. (2.188)

[UB1→B2] is the complex matrix expressing the change of basis. In order to maintain invariant all the

wave polarimetric properties, this matrix has to be unitary, i.e., [U ]−1 = [U ]∗T . It is straightforward, from

the previous results, to derive the expression of the scattering matrix [S] given in a different polarization

basis. Taking into consideration Eqs. (2.156) to (2.158)

Es
+,B1 = [SB1]E

i
−,B1 = [SB1](E

i
+,B1)

∗ ⇒
[UB2→B1]E

s
+,B2 = [SB2][UB2→B1]

∗(Ei
+,B2)

∗. (2.189)

By using the properties of the matrix [U ], the expression of the scattering matrix in the new polarimetric

basis is

[SB2] = [UB1→B2][SB1][UB1→B2]
T . (2.190)

The previous equation is defined as the consimilarity transformation [100, 119]. By using the same

consideration, it can be demonstrated that a transformation matrix can be also defined for the scatterer

vector formulation of the scattering matrix k4L,B2 = [U4]k4L,B1. All the previous transformations are

valid for the case of point scatterers, but it can be extended to distributed scatterers descriptors. The

covariance matrix has been defined as the Hermitian product of the scatterer vector, Eqs. (2.172) and

(2.171). As a consequence, introducing the basis change matrix [U4]

[C4,B1] = E{k4L,B1k
∗T
4L,B1} = E{([U4]k4L,B2) ([U4]k4L,B2)

∗T }
= [U4]E{k4L,B2k

∗T
4L,B2}[U4]

∗T = [U4][C4,B2][U4]
∗T

[C4,B2] = [U4]
∗T [C4,B1][U4]. (2.191)

As before, in order to maintain all the polarimetric properties within all the bases, [U4] is unitary, i.e.,

[U4]
−1 = [U4]

∗T . Independently of the employed descriptor, the polarimetric basis change matrices are

completely deterministic, not being affected by the ensemble average.

2.4 Polarimetric SAR Interferometry

The two previous sections have shown the potential of SAR technology to gather information about

the Earth’s surface. In this sense, InSAR data are valuable to derive topographic information, whereas

PolSAR data give information concerning the nature of the scattering mechanism. In addition to all the
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advantages which these two SAR techniques offer, this section is dedicated to present the basics of the

technique called Polarimetric SAR Interferometry (PolInSAR) [42,43,120].

Apart for terrain topography, InSAR data can be employed to retrieve geo- and bio-physical param-

eters of the scatterer under observation. The main drawback deriving these parameters is the underes-

timation of the inversion problem. Several alternatives, in order to increase the system diversity, and

therefore to solve the underestimation have been proposed within the literature. These solutions can be

classified in the basis of how they increase the number of independent system variables: by temporal

diversity [121, 122], by baseline diversity [87, 74, 46] or by frequency diversity [45, 122]. PolInSAR solves

the system underestimation by means of using PolSAR data. In addition, all the previous procedures

can be combined in order to increase the number of parameters [123,124,125].

PolSAR data have been shown as a powerful tool to identify different scattering centers inside a

resolution cell by means of the so-called target decomposition techniques [36]. The role of interferometry

is, therefore, to locate these scattering centers in the vertical dimension. As a result, the combination of

interferometry and polarimetry allows to retrieve scatterer information linked with the vertical dimension.

PolInSAR data has been successfully employed for vegetation height estimation [42] or for buried mine

detection [126].

2.4.1 Vector Interferometry

An InSAR system measures the terrain complex reflectivity from two slightly different positions, separated

by a certain baseline. With this configuration, a scatterer vector has been defined by Eq. (2.105). The

Hermitian product of this complex vector allows to extract the information related with the terrain’s

topography. On the other hand, a PolSAR system measures the scattering matrix [S] for a given resolution

cell. The vectorization of the information contained within the scattering matrix, see section 2.3.3, allows

to introduce the concepts of covariance and coherency matrices, whose expressions for a monostatic SAR

configuration are respectively given by Eqs. (2.174) and (2.176). The covariance and coherency matrices

can be extended by using InSAR data. Since this text is based on representing the scatterers by means

of the covariance matrix, only the formulation with it will be given. The reader is directed to [42] for

the coherency matrix based formulation. To provide a polarimetric SAR system with interferometric

capabilities makes possible to extend the ideas of covariance and coherency matrices to cover all the

available information. As a result, a PolInSAR system measures the scattering matrices from the same

resolution cell from two positions separated by a given baseline. Denoting the scattering vector from the

first acquisition point k3L as k1 and the corresponding to the second one as k2, the 6 by 6 Hermitian

extended covariance matrix is defined, in a parallel way as it was performed with scalar interferometry,

as

[C6] = E

{[
k1

k2

] [
k∗T

1 k∗T
2

]}
=

[
[C11] [Γ12]

[Γ12]
∗T [C22]

]
. (2.192)

The matrices [C11] and [C22] are the standard 3 by 3 complex covariance matrices containing fully

polarimetric information for each acquisition. On the contrary, the matrix [Γ12] contains interferometric

as well as polarimetric information. The diagonal of this matrix contains the interferograms obtained

with each one of the orthogonal polarizations, as well as the interferogram obtained with the cross-polar

polarimetric terms. The rest of the Hermitian terms contain polarimetric as well as interferometric

information by means of crossed terms.

As it has been presented throughout all this chapter, SAR data for distributed or partial scatter-

ers are characterized by a random behavior called speckle, that, despite being a true electromagnetic

measurement, acts as a noise-like signal, making useful information to have sense only from a statistical

point of view. As a consequence, this useful information has to be estimated from the real SAR data.

PolInSAR data is also affected by the noise-like speckle. Within section 2.1.4, it was demonstrated that

each SAR image can be independently described by a zero-mean, complex, Gaussian pdf Nc(0, σ
2/2).
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Sections 2.2.3 and 2.3.3 showed that the scatterer vectors, independently of the information content, can

be modelled as a zero-mean, multivariate, complex Gaussian pdf N (0, [C]), completely characterized,

from a statistical point of view, by a covariance matrix. This matrix contains all the second moments of

the scattering matrix elements. As a consequence, the extended scattering vector, defined as [ k1 k2 ]T

is modelled by a six-dimensional, zero-mean, complex, Gaussian pdf N (0, [C6]). This distribution, as for

the InSAR and PolSAR data cases, is characterized, for a monostatic radar configuration, by a 6 by 6

covariance matrix. This matrix is precisely the extended matrix shown by Eq. (2.192).

Equally as for PolSAR data, as the covariance matrix contains all the useful information, it is necessary

to estimate it, i.e., speckle noise has to be reduced. Therefore, the extended covariance matrix will be

also described by the Wishart distribution, Eq. (2.181), but taking into consideration that it now reflexes

six-dimensional data. Despite the dimension increase, all the extended covariance matrix elements will

share the same statistical properties, already presented within section 2.3.5. The first consequence of this

parallelism, is that there is not a speckle noise model for the extended covariance matrix.

2.4.2 Information Extraction

For natural targets, PolInSAR data is completely determined by the complex 6 by 6 extended covariance

matrix. The different information products contained in this matrix can be extracted by defining two

normalized complex vectors w1 and w2 [42], which can be interpreted as two scattering mechanisms

characterized by a single scattering matrix [36]. This two vectors are employed as projection vectors,

that is, the scattering vectors k1 and k2 are respectively projected over w1 and w2

u1 = w∗T
1 k1 u2 = w∗T

2 k2 . (2.193)

The terms u1 and u2 are therefore combinations of the scattering vector elements, k1 and k2. The role of

the vectors w1 and w2 is just to extract the information of interest from the PolInSAR data in order to

define InSAR data out from the extended covariance matrix. If u1 and u2 are written in a vector, as it was

done in Eq. (2.105), the expected Hermitian product, allowing to extract interferometric information, is

[C] = E

{[
S1

S2

]
[S∗

1S
∗
2 ]

}
=

[
w∗T

1 [C11]w1 w∗T
1 [Γ12]w2

w∗T
2 [Γ12]

∗T
w1 w∗T

2 [C22]w2

]
. (2.194)

This matrix has the same properties as Eq. (2.107). The diagonal elements of the previous matrix

contain the intensities of the SAR images S1 and S2 obtained as a projection of the PolSAR data over

the scattering mechanisms w1 and w2. On the contrary, the off-diagonal elements contain the Hermitian

products combining the scattering mechanisms w1 and w2. As the scattering mechanisms w1 and w2 are

different, the information contained within the off-diagonal elements is affected by interferometric as well

as polarimetric contributions. Therefore, the phase of the correlation coefficient will be affected by the

topography but also by polarimetric contributions. Finally, the amplitude of the correlation coefficient,

or interferometric coherence, can be split into [123]

ρ = ρint ρpol. (2.195)

The term ρint accounts for all the interferometric coherence terms presented within section 2.2.4, whereas

ρpol accounts for the polarimetric coherence terms. Only when w1 = w2, ρpol becomes one, and ρ only

accounts for interferometric coherence terms.


