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Juan Manuel López Sánchez

Barcelona, June 2, 2003



Chapter 3

Wavelet Analysis

3.1 Introduction

The wavelet transform has become an important tool of mathematical analysis, with a wide and ever

increasing range of applications, in recent years. There exist various reasons behind the growing success

of this tool. From the applications point of view, the wavelet transform has been employed to solve

already existing problems in a wide range of scientific disciplines, as for instance, differential equations,

numerical analysis, signal processing, to mention only a few. But perhaps, the main motive is the fact

that the wavelet analysis theory represents the culmination of the attempts of workers in several fields

to design new tools to solve problems in their areas. Consequently, the wavelet analysis theory has not

to be understood as an isolated mathematical theory, but as a theory which collects and links studies

originated in different scientific disciplines.

The aim of this chapter is not to present the complete wavelet analysis theory in a rigorous way.

On the contrary, it shall be presented in an expository approach, with the sufficient level of precision

to make the ideas and implications behind this theory easy to understand. References shall be given

throughout, pointing to more details when needed. Overview texts can be found in [127, 128, 129, 130,

131, 132], whereas more precise and detailed descriptions of the wavelet analysis theory can be found

in [133,134,135,24,132,23].

There exist different ways in which the wavelet theory can be introduced, ranging from a rigorous and

abstract mathematical form to a conceptual one. But, no matter how the wavelet theory is presented,

one idea as to be kept in mind: Divide et Vinces, which can be translated as Divide and Conquer.

Wavelet analysis theory involves representing a general function f in terms of simpler ones, as fol-

lows: f =
∑

n∈Z
cnψn, where ψn stands for simple functions, also called elementary building blocks or

atoms. Behind this basic idea, there are some important theories and techniques that have been proved

of crucial importance in mathematical sciences and engineering. The most influential theory is by far,

Fourier analysis. The existing amount of techniques based on the Fourier series or on the Fourier trans-

form indicates its potential for functional analysis. However, it is well known in the mathematical and

engineering communities, that Fourier analysis is not well suited for certain types of analysis, i.e., the

properties of the set of elementary functions {ψn}n∈Z are not appropriated for the problem under study.

Time-frequency analysis of signals cannot be directly performed with Fourier analysis as it sacrifices time

information in order to secure frequency information. The wavelet analysis theory was born as a response

to find new tools for time-frequency analysis. The origins of the wavelet theory have to be found around

the middle 1950s in the Calderón-Zygmund theory, as an area of harmonic analysis. This theory studies
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52 CHAPTER 3. WAVELET ANALYSIS

how to break complex functions into simpler ones. The functions {ψn}n∈Z are designed in such a way

that they provide time and frequency location information about the function under analysis.

In the early 1980s, J.O. Strömberg discovered the first orthogonal wavelet in the context to measure

the size and smoothness of functions [136]. Independently, A. Grossmann and J. Morlet studied the

wavelet transform in its continuous form [137, 138]. In the middle 1980s, several groups started to

establish a bridge between the continuous and discrete worlds, making possible the idea to substitute

the Fourier theory to analyze functions in a more suitable time-frequency frame. During the middle

1980s and the early 1990s, several scientist discovered new orthogonal wavelets. S. Mallat and Y. Meyer

presented the concept of multiresolution analysis [139], offering a systematic framework to understand

these orthogonal expansions. At the same time, they introduced the fast wavelet transform to perform

the Discrete Wavelet Transform, leading simultaneously to a link between the wavelet transform and the

quadrature mirror filtering theory. Finally, I. Daubechies provided the final link between the continuous

and discrete wavelet transforms [135].

As stated at the introduction of this thesis, SAR imagery is characterized by being non-stationary

signals with a high-spatial resolution. Another important characteristic is the presence of speckle noise.

Consequently, the reduction of this noise term is highly constrained by the necessity to maintain the

spatial properties of the SAR images. The wavelet theory presented in this chapter represents a complete

different topic from SAR imagery, but as it will be demonstrated in the following chapters, both can be

considered as complementary. The reason behind this complementariness is that the wavelet analysis

theory represents an optimum vehicle to deal with the SAR imagery spatial features is an simple and

efficient way. The aim of this chapter is to present the wavelet analysis theory with the sufficient level of

detail to exploit its potential for SAR imagery processing.

In the following, f and g represent general functions. These functions depend on x which can be

understood as time or space.

3.2 Fourier Analysis

In 1822 J. Fourier introduced in his mathematical theory of heat the concept that any periodic function

can be decomposed in a series of harmonically related sinusoids. This work opened the door to analyze

any periodic function on the basis of its frequency content. A clear application of the Fourier analysis

can be found in signal analysis, in which is common to come across the problem of separating noise from

useful information. In most of the cases, noise is due to some high frequency process whereas useful

information has its support within the low frequency region of the spectra. Fourier analysis allows to

decrease, or even to reject, high frequency components due to noise, without hardly damaging useful

information.

The Fourier analysis theory is based on decomposing any periodical function in the set of complex

exponentials {ejnx}n∈Z. The properties of the Fourier series, as in the case of any other function analysis

theory, are directly linked to the properties of the set of simple functions in which any complex function

is decomposed.

3.2.1 The Spaces L
1(R) and L

2(R)

Before to formally describe the concepts involved in the Fourier, as well as in the wavelet analysis theories,

it is convenient to delimitate the class of functions or signals of interest. Most of the physical processes

in nature are finite energy phenomena. Therefore, any function or signal associated to these phenomena

shall be characterized by some constrains. Finite energy signals are represented by square integrable

functions. In the following, two important classes of functions shall be formulated.
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Let (χ, S, µ) be a measure space and consider the set of functions Γ1 of all complex valued functions

f whose absolute values are integrable over χ

∫
|f |dµ <∞. (3.1)

Eq. (3.1) is not a norm on Γ1 [140, 24]. Given the subset Γ0 of Γ1, defined as Γ0 = {f ∈ Γ1|f = 0}
almost everywhere, the factor space Γ1/Γ0 is the set of all equivalence classes under the assumption that

f is equivalent to g if f = g almost everywhere. Consequently, Eq. (3.1) is a norm in Γ1/Γ0 [140, 24],

which is denoted as L1(χ, µ) or simply L1(χ). This space, with the norm defined by Eq. (3.1), is not an

Euclidean space since the norm cannot be defined from a scalar product. The extension to L2(χ) will

address this issue.

Let (χ, S, µ) be a measure space and consider the set of functions Γ2 of all complex valued functions

f whose squares are integrable over χ ∫
|f |2 dµ <∞. (3.2)

As in the case of L1(χ), L2(χ) is defined as the factor space Γ2/Γ0. This measure space taken together

with the inner product defined as

〈f, g〉 =

∫
fg∗ dµ (3.3)

where g∗ stands for the complex conjugate of g, forms a Hilbert space. As a result, the space L2(χ) has

an orthogonal basis. Let f ∈ L2(χ) and {en}∞n=1 be an orthonormal basis of L2(χ), then the Fourier

coefficients of f with respect to this basis are given by f̂(n) = 〈f, en〉 n = 1, 2, . . .. Moreover

∑

n∈Z

|cn|2 = ‖f‖2 (3.4)

where ‖f‖ is the norm of f , defined as
√

〈f, f〉, see Eq. (3.3). Eq. (3.4) is also known as Parseval’s

identity.

Throughout all this work, interest will be focused on real and complex valued functions in time.

Consequently, the spaces L1(χ) and L2(χ) are particularized to L1(R) and L2(R). Another important

case is when the field χ is formed by the positive integers. In this case, the spaces are represented

by `1{Z} and `2{Z}, which respectively denote absolute value summable and square summable series.

Finally, SAR images are defined within a two-dimensional space. In this case, they will be represented by

finite energy functions or series in two-dimensional spaces, respectively denoted by L2(R2) and `2(Z2).

3.2.2 Fourier Series

The remarkable result behind the Fourier analysis theory is that any periodic function, or any compactly

supported function (finite support) can be expressed as an infinite series of complex exponentials. A

periodic, one-dimensional, function f is defined as a function such that f(x+T ) = f(x) ∀x ∈ R, where T

stands for the function’s period. Without loss of generality, it is possible to derive a 2π-periodic function,

f(Tx/2π), as a way to analyze T -periodic functions. Similarly, any compactly supported function f can

be transformed into a 2π-periodic function, f2π =
∑∞

k=−∞ f(Tx2π − Tk).

The space of square integrable functions within the interval [0, 2π), denoted by L2([0, 2π)) is a Hilbert

space with the inner product defined as given by Eq. (3.3). The functions cos(x) and sin(x) belong to

L2([0, 2π)). If ejx is defined as ejx = cos(x) + j sin(x), it is clear that ejx also belongs to L2([0, 2π)). Let

en(x) = ejnx, then en(x) ∈ L2([0, 2π)) ∀n ∈ Z. It is easy to verify that

〈en, em〉 =

{
1 if n = m

0 otherwise
. (3.5)
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Consequence of that, the family of functions {en}n∈Z is an orthonormal basis of the space L2([0, 2π)).

Hence, any function f ∈ L2([0, 2π)) can be expanded into a Fourier series as

f(x) =
∑

n∈Z

cnen (3.6)

where the series coefficients cn are obtained in the following way

cn = 〈f, en〉 =

∫

R

fe∗n dµ =
1

2π

∫ 2π

0
f exp(−jnx) dx. (3.7)

An important aspect that arises in the representation given by Eq. (3.6) is wether or not the series

converges to f for any value of x. The Dirichlet conditions guarantee the uniform convergence of the

series to f , except for those points in which f is discontinuous [24, 141]. At these points, the series

converges to the midpoint of the discontinuity. In summary, if f is a periodic function and satisfies the

Dirichlet conditions, it can be represented by the Fourier series, where the series coefficients are given by

Eq. (3.7).

The map f → cn creates an isomorphism of L2([0, 2π)) onto `2(Z). Thus, both representations of the

function f contain the same information. Whereas the function expressed in the space L2([0, 2π)) gives

details about its time or space behavior, the function represented in the Fourier coefficients space `2(Z)

gives information about its frequency content. Nevertheless, since the function is integrated over all the

time domain, the expansion coefficients {cn}n∈Z do not contain time or space information. This prevents

to use the Fourier series for those cases in which the function f has a variant frequency behavior in time

or space.

Unlike the Fourier series of functions in L2([0, 2π)), the Fourier series of functions in L1([0, 2π)) does

not always converge [24]. This issue also reappears when the Fourier transform is introduced.

3.2.3 Fourier Transform

In the previous section, interest was concentrated on periodic or compactly supported functions. Consider

now, a compactly supported function f with a support of length T . As presented previously, a periodic

function fT can be constructed. Clearly, fT = f in the limit T → ∞. If the set of complex exponentials

{en}n∈Z are now considered for a T -periodic function, i.e., en(x) = ej2πnx/T , defining ω = 2π/T , the

expression of f as a Fourier series, Eq. (3.6), under proper conditions [24,141], is

f(x) =
1

2π

∫ ∞

−∞

(∫ ∞

−∞
f(x) exp(−jωx) dx

)
exp(jωx) dω. (3.8)

The Fourier transform of a non-periodic function f , is defined consequently as

f̂(ω) =

∫ ∞

−∞
f(x) exp(−jωx) dx. (3.9)

As it can be deduced from Eq. (3.8), the original function f can be recovered from its Fourier transform

f̂(ω) as

f(x) =
1

2π

∫ ∞

−∞
f̂(w) exp(jωx) dω. (3.10)

One requires uncountably many frequencies to describe the spectra of functions in L1(R) and L2(R).

Nevertheless, the quantity f̂(ω), as a function of ω, describes the spectral characteristics of f completely.

For non-periodic functions, it makes no sense to talk about Fourier series in L1(R) or L2(R), since ejωx is

not in L1(R) and L2(R), hence any nontrivial combination of such functions is also not in these spaces.

The Fourier transform of a function f ∈ L2(R) is defined as an isomorphism L2(R) → L2(R). The

inverse Fourier transform can be also seen as an isomorphism of L2(R) onto itself. This is not true for
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a function f ∈ L1(R), as the Fourier transform is not an isomorphism of L1(R) onto itself. This issue

provokes that the inverse Fourier transform may not be always defined [24].

The Fourier transform presents the same handicap as the Fourier series of removing any time or space

information of the function f in the Fourier transform f̂(w). As it is clear from Eq. (3.9), any time or

space detail is integrated over all the domain. The first consequence of this issue is that also the Fourier

transform is not suitable to study any function particularity localized in time or space.

3.2.4 Time-Frequency Analysis

Let f ∈ L2(R) be an analog signal with finite energy ‖f‖2. As presented in the previous section, the

Fourier transform f̂(ω) gives the spectrum of the signal. Besides, as it has been highlighted, it is necessary

to have the signal defined over all the time or space domain in order to derive the information relative

to a single frequency ω. Moreover, since all the time or space domain is integrated, no time or frequency

information is available in the frequency domain. From a practical point of view, these issues make the

Fourier analysis theory not suitable for non-stationary signals analysis.

For a spectral analysis to be useful it is necessary to go beyond the Fourier analysis theory. What

it is desired is to decompose a function f in a way making possible to identify simultaneously transient

phenomena in time, that is time localization, and the presence of particular frequencies, that is frequency

localization. These new concepts of function analysis are covered by the so-called time-frequency analysis

techniques.

The abstract ideas of time-frequency plane and time-frequency atoms are two useful idealizations of

concepts in which time-frequency analysis is based on [128]. The time-frequency plane is a representation

in which time and frequency are indicated along the horizontal and vertical axes, respectively. On the

other hand, a time-frequency atom is a signal ψγ ∈ L2(R) (γ stands for a possible parameter) which is

well concentrated both in time and frequency. A time-frequency atom is, hence, represented in the time-

frequency plane as a rectangle with its sides finite and parallel to the axes. The idea of time-frequency

transforms is to divide the time-frequency plane into small regions defined by a set of time-frequency

atoms {ψγ}γ∈Γ, where Γ represents the space of the parameter γ. Hence, each of the time-frequency

atoms ψγ captures the time-frequency properties of a given signal f for a particular area of the time-

frequency plane. Fig. 3.1 gives a representation of the time-frequency plane, as well as the time-frequency

atoms associated with several signals. Some important issues arise at this point:

· Which have to be the properties of each particular signal ψγ?, but also, which have to be the

characteristics of the set of functions {ψγ}γ∈Γ for a suitable tiling of the time-frequency phase?

· Does the tiling of the time-frequency plane by {ψγ}γ∈Γ characterizes completely the signal f?.

· Is it possible to recover f from the time-frequency plane tiling in a stable manner?

All these questions are answered by time-frequency analysis theories. Nevertheless, some preliminary

answers can be stated. For a practical point of view, it is convenient the set {ψγ}γ∈Γ to have an internal

structure, which facilitates calculations. Moreover, as it can be deduced, it exist an infinite number of

possibilities to divide the time-frequency plane, i.e., an infinite number of possibilities to select the set

{ψγ}γ∈Γ. Consequently, it should be ideally selected by taking into consideration the properties of the

function f .

The selection of the function ψγ is not arbitrary. This function is selected in such a way that its

energy is concentrated in a small region of the time-frequency plane, see Fig. 3.1. The dimensions of

ψγ in the time and frequency axes, schematically represented by the length of the rectangle covering the

same region in the time-frequency plane have to be chosen in such a way that they fulfill the Heisemberg’s

Uncertainty Principle [128,23,24]. Informally stated, this principle says that a signal’s feature (frequency

component) and the features’s location (position at which that frequency component is found) cannot be
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Figure 3.1: Representation of the time-frequency plane and the time-frequency atoms associated with three

different functions.

measured to an arbitrary degree of precision simultaneously. Let x0 and ω0 be the average location of ψγ
in the time and frequency axes of the time-frequency plane respectively defined as

x0 =
1

‖ψγ‖2

∫ ∞

−∞
x|ψγ(x)|2 dx (3.11)

ω0 =
1

2π‖ψγ‖2

∫ ∞

−∞
ω|ψ̂γ(ω)|2 dω (3.12)

and ∆x and ∆ω defined as the variances around these average values

∆x =
1

‖ψγ‖2

∫ ∞

−∞
(x− x0)

2|ψγ(x)|2 dx (3.13)

∆ω =
1

2π‖ψγ‖2

∫ ∞

−∞
(ω − ω0)

2|ψ̂γ(ω)|2 dω. (3.14)

The Heisemberg’s Uncertainty Principle states that ∆x∆ω ≥ 1/4.

Windowed Fourier techniques are an attempt to overcome the drawbacks present in the classical

Fourier theory [23, 24]. Let w be a window function, i.e., a compactly supported function, such its

Fourier transform ŵ is also a compactly supported function. For w taken as a real symmetric function,

w is translated by u and modulated by the frequency ω

wu,ω = exp(jωx)w(x − u). (3.15)

Thus, the resulting windowed Fourier transform for f ∈ L2(R) is

T f(u, ω) = 〈f,wu,ω〉 =

∫ ∞

−∞
f(x)w(x− u) exp(jωx) dx. (3.16)

This transform is also called the short time Fourier transform, since the multiplication of f by the window

w(t − u) localizes the Fourier integral in the neighborhood of x = u. When the window function is a

Gaussian function, the short time Fourier transform is called the Gabor transform [142], which attains

the equality given by the Heisemberg’s Uncertainty Principle. Fig. 3.2 presents the way the short time

Fourier transform tiles the time-frequency plane. As it can be observed, this division is not adapted to the

time-frequency plane. For low-frequencies, it would be desirable to have windows covering a wide time

interval in order to capture this information. On the contrary, higher frequencies need a narrower time

support to collect the desirable information. Consequently, the windows should have a narrow frequency

support for low frequency and a wider one for high frequencies, as stated by the Heisemberg’s Uncertainty

Principle.
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Figure 3.2: Tiling of the time-frequency plane carried out by the Fourier transform (a) and the short time

Fourier transform (b).

3.3 Wavelet Analysis

Previous to introduce the wavelet transform, it will be helpful to revise, and to extend, some ideas already

introduced. The Fourier series, the Fourier transform, but specially the short time Fourier transform allow

to analyze a given function f ∈ L2(R) in the frequency domain. It is possible to affirm that the Fourier

analysis theory permits to examine this function at different detail levels. The wavelet transform pretends

to extend this idea in a way that a particular function feature can be analyzed at different levels of detail

or resolutions, also called scales in the following. This analysis can be partially done by the short time

Fourier transform, but as explained, it is not adapted to the time-frequency plane nature. The wavelet

analysis theory gives an answer to this problem by decomposing a given function into a basis of simple

functions which are well localized, both in time and frequency.

3.3.1 Continuous Wavelet Transform

Given a function ψ ∈ L2(R) which satisfies the condition

∫ ∞

−∞
ψ(x) dx = 0 (3.17)

with ‖ψ‖=1 and centered in x = 0, the function ψa,b(x) is defined as

ψa,b(x) =
1√
a
ψ

(
x− b

a

)
(3.18)

where a, b ∈ R, a 6= 0. The function ψ is called the mother wavelet or simply wavelet, whereas the

functions {ψa,b}a,b∈R are called wavelets. The continuous wavelet transform of a function f ∈ L2(R), also

denoted by CWT, is defined as

Wf(a, b) = 〈f, ψa,b〉 =

∫ ∞

−∞
f(x)

1√
a
ψ∗
(
x− b

a

)
dx. (3.19)

Eq. (3.19) can be also written as a convolution

Wf(a, b) = f ∗ ψa(b) (3.20)

where ψa(x) = 1√
a
ψ∗(−x/a). The parameter b is called the translation parameter, whereas a is called

the dilation parameter. This parameter can be also interpreted as the inverse of the frequency ω. Owing

to Eq. (3.17), the Fourier transform of the function ψ, denoted by ψ̂(ω), satisfies ψ̂(0) = 0. Considering



58 CHAPTER 3. WAVELET ANALYSIS

x,b

g,a
-1

xa+b

g

a
Ag

a

Axa

Figure 3.3: Time-frequency plane tiling done by the continuous wavelet transform at discrete positions of

the translation parameter b and the dilation parameter a.

Eq. (3.20), thus, the CWT can be seen as a filtering of f by dilated band-pass filters, whose impulse

response are given by the wavelets, Eq. (3.18).

The issue arising at this point is wether or not it is possible to recover the function f from the

transformed values Wf(a, b). In other words, wether it is possible or not to define an inversion formula.

If the wavelet function ψ satisfies the admissibility condition

Cψ =

∫ ∞

−∞

|ψ̂(ω)|2
|ω| dω <∞ (3.21)

then, any f ∈ L2(R) satisfies

f(x) =
1

Cψ

∫ ∞

0

∫ ∞

−∞
Wf(a, b)

1√
a
ψ

(
x− b

a

)
db

da

a2
(3.22)

which is called the inverse continuous wavelet transform of f , denoted by ICWT. For a ψ satisfying the

admissibility condition, Eq. (3.17) results.

The wavelet function ψ is defined in such a way that both, ψ and ψ̂ are window functions, allowing

to define its centers and variances as shown by Eqs. (3.11), (3.12), (3.13) and (3.14). The wavelets

{ψa,b}a,b∈R are centered at the positions xa + b, with a time width equal to ∆xa. The corresponding

Fourier transforms have their centers at the positions ω/a whereas they have a frequency width of ∆ω/a.

This means that the CWT obtains the information relative to f in the time dimension in a window of

width ∆xa centered at xa + b, and in the frequency dimension with a window of width ∆ω/a centered

at ω/a. Consequently, the frequency support of ψ is larger for high frequencies than for low frequencies,

whereas its time support is low for high frequencies and larger for low frequencies. As it can be deduced,

the region of influence of the functions {ψa,b}a,b∈R, i.e., the dimensions and position of the time-frequency

atoms in the time-frequency plane, is adapted to the nature of this plane. Fig. 3.3 depicts the behavior

of the functions {ψa,b}a,b∈R, schematically represented by rectangles.

The CWT presents two clear advantages in front of the Fourier transform. First of all, the CWT has

better time-frequency location properties as a result of using a set of functions {ψa,b}a,b∈R, which have a

compact support both in time and frequency. Moreover, these functions are in L2(R). The CWT is not

suitable to analyze the properties of discrete series, as for instance, SAR imagery. For this reason, it is

necessary to explore the possibility to obtain a discrete set of the support given by the parameters a and

b, from which it was possible to completely characterize a given function.

3.3.2 Discrete Wavelet Transform

The discrete wavelet transform theory has its foundations within the frame theory [143, 144], which

analyzes the completeness, stability and redundancy of linear discrete representations. Let f ∈ L2(R) be



3.3. WAVELET ANALYSIS 59

an arbitrary function, it can be expanded in a discrete basis of L2(R) as follows

f =
∑

j,m∈Z

〈f, ψaj ,bm〉ψ̃aj ,bm (3.23)

where {ψaj ,bm}aj ,bm∈Z and {ψ̃aj ,bm}aj ,bm∈Z are two bases of the space L2(R). Eq. (3.23) represents the

most general way to obtain such a decomposition, in which the decomposition basis, {ψaj ,bm}aj ,bm∈Z, is

different from the reconstruction one, {ψ̃aj ,bm}aj ,bm∈Z and both bases are redundant. As Section 3.2.4

hinted at, two crucial issues referring the linear expansion depicted by Eq. (3.23) arise at this point:

· Does the sequence 〈f, ψaj ,bm〉 completely characterizes the function f?, and

· It is possible to recover f from this sequence in a stable manner?.

The answer to the previous questions needs to introduce of the idea of frame. A sequence {ψaj ,bm}aj ,bm∈Z

in a Hilbert space H, is called a frame, if and only if, for all f ∈ H

A‖f‖2 ≤
∑

j,m∈Z

|〈f, ψaj ,bm〉|2 ≤ B‖f‖2 (3.24)

where the frame bounds A and B are independent from f . In the frame theory, {ψaj ,bm}aj ,bm∈Z receives

the name of frame, whereas the basis {ψ̃aj ,bm}aj ,bm∈Z is known as a dual basis. Consequence of Eq.

(3.24), any function f ∈ H, can be expressed as the following linear expansions

f =
∑

j,m∈Z

〈f, ψaj ,bm〉ψ̃aj ,bm =
∑

j,m∈Z

〈f, ψ̃aj ,bm〉ψaj ,bm. (3.25)

For H = L2(R), I. Daubechies [135] gave the necessary and sufficient conditions, on a wavelet ψ, under

which the discrete set {ψaj ,bm}aj ,bm∈Z satisfies Eq. (3.24), and therefore is a basis of L2(R). A particular

case occurs for A = B = 1, hence, the frame basis and the dual basis are equal.

Having in mind the concept of the time-frequency plane, a general frame, as a basis of L2(R), should

cover the complete plane. Therefore, any sampling of the continuous parameters a and b should be done

in such a way that the discrete wavelet family resulting from this sampling forms a basis of L2(R). In the

frequency dimension, these functions are centered at the positions ω0/a with a spread equal to ∆ω/a.

In order to obtain a full coverage, it is therefore necessary, to sample it at the positions {aj0}j∈Z, with

a0 > 1 [135,23,24]. The time domain is uniformly sampled at intervals proportional to the scale aj0. As

a consequence, the components of the discrete set {ψj,m}j,m∈Z have the expressions

ψj,m(x) =
1

a
j/2
0

ψ

(
x− aj0b0m

aj0

)
j,m ∈ Z (3.26)

with b0 > 0. Given the previous set {ψj,m}j,m∈Z, and provided that it is a frame of L2(R), any function

f ∈ L2(R) can be decomposed as a series

f =
∑

j,m∈Z

〈f, ψj,m〉ψj,m (3.27)

where 〈f, ψj,m〉 is obtained as

Wf(j,m) = 〈f, ψj,m〉 =

∫ ∞

−∞
f(x)

1

a
j/2
0

ψ∗
(
x− aj0b0m

aj0

)
dx. (3.28)

This equation receives the name of discrete wavelet transform or DWT, which is very similar to the

expression of the CWT, Eq. (3.19). It is important to notice that Eq. (3.28) represents a mapping from

L2(R) onto `2(Z2). The DWT is obtained through a continuous process performed by the integration

process. Moreover, the dimensionality of the space supporting the discrete wavelet values, referred in the
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following as transformed or wavelet domain, has increased with respect to the time or space domain (also

referred as original domain of the function f). The conceptual reason which explains this issue is that,

in the original domain only time or space information is available, whereas the transformed domain is

able to give time or space information (within the parameter m) as well as frequency or scale information

(within the parameter j).

Of special importance is the case in which the parameter a0 = 2 and b0 = 1 [145,146]. This particular

case is referred as dyadic discrete wavelet transform or simply discrete wavelet transform, in which the

wavelets have the following expressions

ψj,m(x) =
1√
2j
ψ

(
x− 2jm

2j

)
j,m ∈ Z. (3.29)

The advantage of this particular case lies in the fact that fast computations of the DWT are possible,

but also a link between the DWT and certain filtering schemes is possible.

Before to continue, it is helpful to summarize the ideas behind sampling the CWT. Under the proper

conditions, a sampling based on translations and dilatations of the wavelet ψ ∈ L2(R) makes possible to

obtain a discrete basis for the space L2(R). Therefore, it is possible to express any function f ∈ L2(R)

as a linear combination of the components of this basis. The properties of this linear expansion depend

on the characteristics of the wavelet function ψ (properties as individual function), but also on how the

continuous set of wavelet functions {ψa,b}a,b∈R, obtained from translations and dilations of the function

ψ, see Eq. (3.18), is sampled to derive the discrete set {ψj,m}j,m∈Z as basis of L2(R). As it has been

shown, the wavelet theory is derived without assuming a particular wavelet function ψ, but only the

properties a function should have to be a wavelet.

The next section is focused on the description of a large subclass of wavelets that arise from certain

structures in L2(R) called multiresolution analysis. These wavelets yield discrete families of dilations and

translations that are orthonormal basis for L2(R). Nevertheless, there exist other possibilities to derive

such a basis. For instance, it is possible to select the basis to be redundant. One example of wavelets

obtained through this process are those obtained through the à trous algorithm [147]. The principal

feature of this algorithm is that the time or space dimension is redundant.

3.3.3 Multiresolution Analysis

As stated previously, the properties of the wavelet basis {ψj,m}j,m∈Z depend on the properties of the

wavelet function ψ as well as on the way the family of translations and dilations, {ψa,b}a,b∈R is sampled.

Consequently, it exist a wide range of possibilities to select a particular basis {ψj,m}j,m∈Z for L2(R).

The particular choice of {ψj,m}j,m∈Z, originated by the so-called multiresolution analysis structures in

L2(R) [148], has a crucial importance as it allows to derive orthonormal wavelet bases for L2(R).

A multiresolution analysis of L2(R), called in the following MRA, is a sequence of closed subspaces

{Vj}j∈Z of L2(R) satisfying the following properties [149,150]:

(a) Vj+1 ⊂ Vj ∀j ∈ Z; (Nesting property).

(b) lim
j→−∞

Vj = Closure
(⋃∞

j=−∞ Vj

)
= L2(R); (Density of the union in L2(R)).

(c) lim
j→∞

Vj =
⋂∞
j=−∞ Vj = {0}.

(d) f(x) ∈ Vj ⇔ f(x/2) ∈ Vj+1 ∀j ∈ Z; (Scaling property).

(e) f(x) ∈ Vj ⇔ f(x− 2jm) ∈ Vj ∀j ∈ Z; (Invariance under integral translations).

(f) ∃φ ∈ V0 producing {φ0,m}m∈Z to be an orthonormal basis of V0, where φj,m(x) = 2−j/2φ(2−jx−
m) ∀j,m ∈ Z; (Existence of a scaling function).
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From the previous conditions, any space Vj is an scaled version of a central space V0. Moreover, as

{φ0,m}m∈Z is an orthonormal basis for V0, due to (e) and (f), {φj,m}j,m∈Z is an orthonormal basis for

Vj . The function φ receives the name of scaling function, as the family of translations and dilations of

it generates orthonormal bases for the spaces {Vj}j∈Z, which as it will be shown, represent spaces of

different detail level or scale spaces. To avoid confusion in the following, 2j shall be referred as the scale

parameter whereas 2−j shall denote the resolution.

Starting from the nesting and scaling properties of the spaces {Vj}j∈Z, any component of Vj+1 can

be expressed as a linear combination of the elements of the orthonormal basis of Vj

φj+1 =
∑

m∈Z

hmφj,m (3.30)

where hm = 〈φj+1, φj,m〉, and
∑

m∈Z
|hm|2 = 1 from the orthonormality condition. Taking the conditions

(d) and (f), both φj+1 and φj are related with the scaling function φ, allowing to rewrite Eq. (3.30) as

a function of φ
1√
2j+1

φ
( x

2j+1

)
=
∑

m∈Z

hm
1√
2j
φ

(
x− 2jm

2j

)
. (3.31)

Let {hm}m∈Z be a discrete filter with a Fourier transform ĥ(ω) =
∑∞

m=−∞ hme
jmω, then, one can obtain

the Fourier transform of Eq. (3.31), for j = 1, as

φ̂(2ω) =
1√
2
ĥ(ω)φ̂(ω). (3.32)

As it can be deduced, the orthonormal basis for Vj+1 is obtained by filtering the basis corresponding to

the space Vj with a filter whose Fourier transform is ĥ(ω). Eq. (3.32) can be obtained for a general scale

j, assuming j > 0

φ̂(2−j+1ω) =
1√
2
ĥ(2−jω)φ̂(2−jω). (3.33)

By recursion, the following result can be obtained

φ̂(ω) =




J∏

j=1

ĥ(2−jω)√
2


 φ̂(2−Jω). (3.34)

If φ̂(ω) is continuous at ω = 0, then lim
J→∞

= φ̂(0), so

φ̂(ω) =




∞∏

j=1

ĥ(2−jω)√
2


 φ̂(0). (3.35)

The previous recursion formula contains a key result for wavelet analysis theory. Eq. (3.35) states that

the continuous scaling function φ̂(ω), can be directly extracted from the discrete filter ĥ(ω), establishing

a first bridge between the continuous and discrete worlds. The convergence of the product given by Eq.

(3.35) is studied in [151,149].

From the condition (f) of an MRA in L2(R), the basis {φ(x −m)}m∈Z is an orthonormal basis, i.e.,

〈φ(x − p), φ(x − q)〉 = δ[p − q]. The orthonormality condition can be also obtained within the Fourier

domain as ∞∑

k=−∞
|φ̂(ω + 2kπ)|2 = 1. (3.36)

Introducing Eq. (3.32) within Eq. (3.36), ĥ(ω) satisfies [152,153,24]

|ĥ(ω)|2 + |ĥ(ω + π)|2 = 2 (3.37)

ĥ(0) =
√

2. (3.38)
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One can also conclude that ĥ(π) = 0. Hence, ĥ(ω) has a low-pass filter behavior. As the scaling function

Fourier transform φ̂(ω) can be directly derived from ĥ(ω), see Eq. (3.35), it can be though as a low-pass

filter in the continuous domain

φ̂(ω) =
∞∏

j=1

ĥ
( ω

2j

)
. (3.39)

At this point, the set of spaces {Vj}j∈Z can be seen as a set of approximation spaces at scales 2j , in which

as j → −∞, the spaces contain more details of L2(R). Moreover, these spaces are obtained through a

recursive low-pass filtering, in such a way that the space Vj+1 is a low-pass version of the space Vj , that

is, it contain less details of L2(R).

The MRA is now employed as starting point to obtain the wavelet function ψ leading to an orthonor-

mal wavelet basis {ψj,m}j,m∈Z for L2(R) [135, 23, 139]. The procedure to obtain the wavelet function ψ

is very similar to the one employed to derive the scaling function φ. The step of passing from the space

Vj to the space Vj+1 involves a loss of detail or resolution. A new space Wj+1 can be introduced as the

orthogonal complement of Vj+1 in Vj as follows

Vj = Vj+1 ⊕ Wj+1 (3.40)

where ⊕ stands for the direct sum. The space Wj+1 contains the necessary details for going from the

resolution space Vj+1 to Vj, hence for j 6= j′ and j, j′ ∈ Z, Wj is orthogonal to Wj′ . By iterating Eq.

(3.40), one can arrive to
∞⊕

j=−∞
Wj = L2(R). (3.41)

Similarly as it was done for the space Vj+1, as Wj+1 ⊂ Vj , any function ψ ∈ Wj+1 can be obtained as

a linear combination of the basis elements of the space Vj

ψj+1 =
∑

m∈Z

gmφj,m (3.42)

where gm = 〈ψj+1, φj,m〉 and
∑

m∈Z
|gm|2 = 1. On the other hand, as Wj+1 ⊂ Vj and Wj+2 ⊂ Vj+1, a

scaling equation can be also defined for the wavelet function ψ [152,153,24]

ψj,m(x) =
1√
2j
ψ

(
x− 2jm

2j

)
. (3.43)

By introducing Eq. (3.43) into (3.42), a similar equation to Eq. (3.31) can be written for the wavelet

function
1√
2j+1

ψ
( x

2j+1

)
=
∑

m∈Z

gm
1√
2j
φ

(
x− 2jm

2j

)
. (3.44)

The Fourier transform of the previous equation, for the particular case j = 1 is

ψ̂(2ω) =
1√
2
ĝ(ω)φ̂(ω) (3.45)

where ĝ(ω) =
∑∞

m=−∞ gme
jmω. Let’s assume the coefficients {gm}m∈Z to be the coefficients of a discrete

filter, therefore, Eq. (3.45) can be also though as corresponding to an equation of a filter with a frequency

response equal to ĝ(ω). For a general 2j , Eq. (3.45) takes the form

ψ̂(2−j+1ω) =
1√
2
ĝ(2−jω)φ̂(2−jω). (3.46)

In the same way as it was shown for the scaling function, it is possible to verify that the continuous

wavelet function ψ̂(ω) can be derived as [152,153,24]

ψ̂(ω) = ĝ(
ω

2
)

∞∏

j=2

ĥ
( ω

2j

)
. (3.47)
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The conditions under which the basis {ψj,m}m∈Z of the space Wj, for ψ̂ given by Eq. (3.47), is an

orthonormal basis, but also is orthogonal to the basis of the space Vj ,{φj,m}j,m∈Z, are

|ĝ(ω)|2 + |ĝ(ω + π)|2 = 2 (3.48)

ĝ(ω)ĥ∗(ω) + ĝ(ω + π)ĥ∗(ω + π) = 0. (3.49)

From the applications point of view, it is desired ψ and ψ̂ to have compact support [135, 131]. This is

guaranteed if the filters h and g have a finite number of non-zero coefficients, which is equivalent with the

fact that ĥ(ω) and ĝ(ω) are trigonometric polynomials. Assuming finite responses for h and g, together

with the conditions given by Eqs. (3.37), (3.38), (3.48) and (3.49), one can prove that they are satisfied

by the function ĝ(ω) = e−jωĥ∗(ω + π) [152,153,24], whose inverse Fourier transform is

gm = (−1)1−mh1−m. (3.50)

One can now see the filter given by the coefficients gm as a high-pass filter, and to demonstrate the

conditions ĝ(0) = 0 and ĝ(π) =
√

2. Finally, as {ψj,m}m∈Z is an orthonormal basis for the space Wj ,

by Eq. (3.41), the basis {ψj,m}j,m∈Z is a basis of L2(R), i.e., this basis spans L2(R). Consequently, any

function f ∈ L2(R) can be expressed as a linear combination of the elements of the basis {ψj,m}j,m∈Z.

The results presented within this section can be considered as one of the cornerstones of the wavelet

analysis theory. First, it is possible to define an orthonormal wavelet basis {ψj,m}j,m∈Z which spans

L2(R). A second important issue is the relation that has been established between the discrete and

continuous worlds. The discrete filter given by g has been shown to be related with the orthonormal

wavelet basis of the spaces Wj. Hence, as it shall be presented in the following, it defines the linear

expansion of a function f ∈ L2(R). The coefficients of this linear expansion are obtained by the so-called

discrete wavelet transform (DWT). Moreover, the filter g also defines the continuous wavelet function

ψ and thus, the continuous wavelet transform (CWT). As one can see, there is a clear and concise link

between the continuous and discrete wavelet transforms. On the contrary, this links is not present in the

Fourier analysis theory.

The MRA theory is applied in the following to analyze any function f ∈ L2(R). The MRA allows

also to introduce a fast discrete wavelet transform algorithm, which can be related with the quadrature

mirror filtering (QMF) theory.

3.3.4 Fast Discrete Wavelet Transform

The space of interest, L2(R), can be studied in two different ways. First, within it, a MRA can be

defined as a set of closed subspaces {Vj}j∈Z, which satisfies the conditions presented at the beginning

of Section 3.3.3. These spaces represent different detail levels or resolutions of L2(R). A complementary

set of subspaces {Wj}j∈Z can be obtained in such a way that each particular space Wj is the orthogonal

complement of Vj in Vj−1. These spaces represent the details contained in Vj−1, but not in Vj. As

stated by Eq. (3.41), L2(R) is obtained as the direct sum of the spaces {Wj}j∈Z. The spaces {Wj}j∈Z

are spanned by orthonormal basis. Consequently, L2(R) is also spanned by an orthonormal basis.

Given a function f ∈ L2(R), let PVjf to represent its projection into the space Vj and PWjf to

represent its projection into Wj. By taking Eq. (3.40)

PVjf = PVj+1f + PWj+1f. (3.51)

As it has been demonstrated previously, an orthonormal basis {φj,m}m∈Z can be obtained for the space

Vj , and an orthonormal basis {ψj,m}m∈Z can be defined for Wj. Let’s define the space projections as

PVjf =
∑

m∈Z

〈f, φj,m〉φj,m =
∑

m∈Z

aj[m]φj,m (3.52)

PWjf =
∑

m∈Z

〈f, ψj,m〉ψj,m =
∑

m∈Z

dj [m]ψj,m (3.53)
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where aj[m] and dj[m] represent the coefficients of these expansions. The coefficients dj[m] are indeed

the values obtained by the DWT as defined in Eq. (3.28) for the dyadic case. Any φj+1,p ∈ Vj+1 ⊂ Vj

can be decomposed in the orthonormal basis {φj,n}n∈Z, see Eq. (3.30)

φj+1,p =
∑

m∈Z

〈φj+1,p, φj,m〉φj,m (3.54)

where

〈φj+1,p, φj,m〉 =

〈
1√
2
φ
(x

2

)
, φ(x−m− 2p)

〉
= h[m− 2p]. (3.55)

Similarly, since ψj+1,p ∈ Wj+1 ⊂ Vj, see Eq. (3.42)

ψj+1,p =
∑

m∈Z

〈ψj+1,p, φj,m〉φj,m (3.56)

where

〈ψj+1,p, φj,n〉 =

〈
1√
2
ψ
(x

2

)
, φ(x−m− 2p)

〉
= g[m− 2p]. (3.57)

Finally, if one computes the inner product of any function f ∈ L2(R) in each side of Eqs. (3.54) and

(3.56), the following results are obtained [139,23]

aj+1[p] =
∑

m∈Z

h[m− 2p]aj [m] = aj ∗ h[2p] (3.58)

dj+1[p] =

∞∑

m∈Z

g[m− 2p]aj [m] = aj ∗ g[2p] (3.59)

where x[n] = x[−n]. Using the same arguments, the inner product of f ∈ L2(R) with the components of

the basis of Vj is obtained as

aj [p] =
∑

m∈Z

h[p − 2m]aj+1[m] +
∑

m∈Z

g[p − 2m]dj+1[m] = ǎj+1 ∗ h[p] + ďj+1 ∗ g[p] (3.60)

where x̌ is obtained from x by adding one zero between the successive values of x. The coefficients aj[p] and

dj[p] represent the projection coefficients of a function f ∈ L2(R) in the spaces Vj and Wj respectively.

Eqs. (3.58) and (3.59), called analysis or decomposition equations, state that the expansion coefficients

can be obtained in a recursive way through a filtering process. Eq. (3.60), called reconstruction equation,

shows that the analysis process is invertible. The most important issue at this point is that the discrete

wavelet coefficients dj [p] can be obtained through a filtering process, without the necessity of the wavelet

function ψ, and that the original function can be also reconstructed. Therefore, Eqs. (3.58), (3.59) and

(3.60) represent a way to derive a fast discrete wavelet transform, also known as Mallat algorithm [139,23].

As Fig. 3.4 depicts, the analysis step splits the coarse approximation coefficients aj[p] at the scale 2j

into a coarse approximation given by aj+1[p], obtained by a low-pass filter and a down-sampling, and the

difference details, or wavelet coefficients gj+1[p], obtained by a high-pass filter and a down-sampling. The

original coefficients aj [p] can be recovered by the complementary process. Fig. 3.4 presents an scheme of

the filtering processes performing a discrete wavelet transform.

The direct sum of the spaces {Wj}j∈Z, as presented, leads to L2(R), i.e., they span the space of square

integrable functions. The coefficients dj[p] are the projection of the function f in the spaces {Wj}j∈Z,

therefore, these coefficients are the coefficients of the discrete wavelet transform or DWT.

The process of obtaining the coefficients dj [p] starts with j = −∞, that is, the space L2(R), and

finishes with j = ∞. From a practical point of view, in the case of real signals, it is impossible to arrive

to these limits. Let’s assume that the transformation process starts in the coarse approximation space

V0. In this case, the projection of the function f in this space is needed. Quite often, discrete signals
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Figure 3.4: Iterated two branch filter bank to calculate the DWT. (a) Fast DWT. (b) Fast IDWT. This

scheme calculates the wavelet transform with two scales: aj represent the coarse approximation coefficients

whereas dj are the detail or wavelet coefficients.

are obtained through a finite resolution device that averages and samples a given continuous process.

Therefore, without loss of generality, the available discrete signal can be considered as a discrete signal

belonging to V0, that is, the coefficients a0[p] [24, 131]. On the other hand, the transformation process

can not be iterated until j = ∞, as generally the processed signal has a finite support. For instance, for

a signal of length N , only log2(N) iterations can be performed. The last iteration contains a coefficient

aj , which contains the signal components, from j = log2(N) to j = −∞. Quite often, one stops the

transformation process at a given scale 2j . As it can be deduced in this case, the coefficients aj[p], which

are approximation coefficients, play a support role as they allow to stop the transformation process at

any scale 2j .

As it is clear from Fig. 3.4 the fast discrete wavelet transform is based on iterating a basic cell of

filters recursively over the low-frequency branch. This basic cell of filters is composed by a low-pass

filter h and a high-pass filter g, both followed by a downsampling by 2. This scheme corresponds to the

classical multirate filter banks with perfect reconstruction, which is possible by quadrature mirror filters

(QMF) [23,25,154]. The so-called conjugate mirror filters (CMF) allow to perform such a decomposition

with finite impulse response filters, leading to compactly supported orthonormal wavelets [25].

3.3.5 Two-dimensional Wavelet Transform

SAR imagery can be assumed to belong to the space L2(R2). Accordingly, it is necessary to define a two-

dimensional wavelet transform algorithm. Despite non-separable wavelets exist in the space L2(R2) [155],

separable schemes are preferable as computationally efficient algorithms can be defined to calculate

the two-dimensional wavelet transform. A two-dimensional signal f(x1, x2) is said to be separable if

f(x1, x2) = f(x1)f(x2), where x1 and x2 represent the two signal dimensions, assumed to be independent.

Consequently, the two-dimension discrete wavelet transform can be obtained as an extension of the one-

dimensional algorithm applied independently to each one of the signal dimensions. As it shall be shown

in this section, the two-dimensional fast discrete wavelet transform is obtained by applying the Mallat

algorithm independently to the image’s rows and columns [139,23].

A separable orthonormal wavelet basis of L2(R2) can be obtained by means of products of the one-

dimensional scaling function φ and the one-dimensional wavelet function ψ. Therefore, the orthonormal

wavelet basis of L2(R2) can be expressed as {ψj1,m1 , ψj2,m2}j1,j2,m1,m2∈Z. The previous basis depends on

the scale parameters j1 and j2, and on the location parameters n1 and n2. Despite this type of bases

exist, bases in which j1 = j2 are more suitable as information from different scales is not mixed.

A separable two-dimensional MRA of L2(R2) can be straightforwardly defined from a MRA of L2(R).

For the one-dimensional MRA case, L2(R) is divided into a set of nested subspaces {Vj}j∈Z, which

represent different levels of detail or resolution. The space V0 is defined as the central space of the MRA.
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A separable two-dimensional space V2
0 can be obtained as the tensor product of spaces

V2
0 = V0 ⊗ V0. (3.61)

Thus, the projection of a function f(x1, x2) ∈ L2(R2) into this space, denoted by PV2
0

is

PV2
0

=
∑

m1,m2∈Z

a0[m1,m2]φ0,m1φ0,m2 (3.62)

where a0[m1,m2] stands for the linear expansion coefficients, whereas the scaling functions φ0,m1 and

φ0,m2 belong to V0. Using the same argument, any approximation space of a MRA of L2(R2) V2
j , can

be derived through the tensor product space

V2
j = Vj ⊗ Vj . (3.63)

If {Vj}j∈Z is a multiresolution approximation of L2(R), then, {V2
j}j∈Z, obtained through a tensor product

of spaces, is a separable multiresolution analysis of the space L2(R2) [23]. Since V2
j = Vj ⊗ Vj , and

{φj,m}j,m∈Z is an orthonormal basis for Vj , the separable basis for V2
j is obtained as [23]

{
φj,m(x1, x2) = φj,m1(x1)φj,m2(x2) =

1

2j
φ

(
x1 − 2jm1

2j

)
φ

(
x2 − 2jm2

2j

)}

m1,m2∈Z

. (3.64)

As for the one-dimensional case, a detail space W2
j+1 can be defined as the orthogonal complement of

V2
j+1 in V2

j

V2
j = V2

j+1 ⊕ W2
j+1. (3.65)

By using Eq. (3.63), Eq. (3.65) can be rewritten as follows

Vj ⊗ Vj = (Vj+1 ⊗ Vj+1) ⊕ W2
j+1. (3.66)

The one-dimensional spaces Vj can be also decomposed as stated by Eq. (3.40). Therefore, by using the

distributive property of the operator ⊕ with respect to ⊗, the space W2
j+1 is obtained as

W2
j+1 = (Vj+1 ⊗ Wj+1) ⊕ (Wj+1 ⊗ Vj+1) ⊕ (Wj+1 ⊗ Wj+1) = Q1

j+1 ⊕ Q2
j+1 ⊕ Q3

j+1. (3.67)

Since {φj,m}m∈Z and {ψj,m}m∈Z are orthonormal bases of Vj and Wj, the basis

{φj,m1(x1)ψj,m2(x2), ψj,m1(x1)φj,m2(x2), ψj,m1(x1)ψj,m2(x2)}m1,m2∈Z
(3.68)

is a basis of the space W2
j . Since the space L2(R2) can be decomposed in orthogonal detail spaces as

follows

L2(R2) =

∞⊕

j=−∞
W2

j (3.69)

the basis

{φj,m1(x1)ψj,m2(x2), ψj,m1(x1)φj,m2(x2), ψj,m1(x1)ψj,m2(x2)}j,m1,m2∈Z
(3.70)

is a basis of L2(R2).

As it has been shown, the space V2
j can be decomposed into a coarse approximation space V2

j+1,

whose orthonormal basis is defined by Eq. (3.64), and in a detail subspace W2
j+1. The detail space

can be, at the same time, decomposed into the direct sum of three orthogonal subspaces Q1
j+1, Q2

j+1

and Q3
j+1 as it can be concluded from Eq. (3.67). The basis of these three subspaces are obtained in a

separable way from the one-dimensional functions φ and ψ. As these functions are mutually orthogonal,
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Figure 3.5: Separable two-dimensional filter bank which calculates the two-dimensional DWT for separable

dimensions. (a) Fast two-dimensional DWT. (b) Fast two-dimensional IDWT. The coefficients aj represent a

coarse approximation of the original signal whereas dk
j are the wavelet coefficients.

the product of them shall also lead to orthogonal functions. Then, the space W2
j basis is composed by

three sets of orthogonal functions or three wavelets

ψ1
j (x1, x2) = φj(x1)ψj(x2) (3.71)

ψ2
j (x1, x2) = ψj(x1)φj(x2) (3.72)

ψ3
j (x1, x2) = ψj(x1)ψj(x2). (3.73)

The Fourier transform of the function φ has a low-pass behavior, whereas the Fourier transform of ψ

has a high-pass behavior. Hence, it can be concluded that the functions given by Eqs. (3.71), (3.72)

and (3.73) are sensitive to different spatial frequencies. The function ψ1
j (x1, x2) is sensitive to horizontal

details, hence, it is rewritten as ψHj (x1, x2). At the same time, ψ2
j (x1, x2) is sensitive to vertical details,

being rewritten as ψVj (x1, x2). Finally, the function ψ3
j (x1, x2) is sensitive to diagonal details, therefore,

it is denoted by ψDj (x1, x2).

In brief, the previous paragraphs state that given a function f(x1, x2) ∈ L2(R2), it can be projected

into the separable detail space V2
j . The projection into this space is given by the addition in four

additional subspaces as follows

PV2
j

= PV2
j+1

+ PQH
j+1

+ PQV
j+1

+ PQD
j+1
. (3.74)

As these projections are derived from a separable scheme in which the spatial dimensions are assumed

independent, the two-dimensional fast wavelet transform is obtained by independently applying the Mallat

algorithm to each one of the spatial dimensions, see Fig 3.5. The one-dimensional Mallat algorithm states

that the transformed coefficients can be obtained by recursively iterating a basic cell, containing a low-

and a high-pass filter followed by downsampling of a factor of 2, to the approximation coefficients. In

the two-dimensional case, as the basic cell is iterated two times to derive the wavelet coefficients for each

wavelet scale 2j , four sets of coefficients are derived. One corresponding to the coarse approximation

coefficients, denoted by aj [m1,m2], and three sets of detail or wavelet coefficients denoted by dHj [m1,m2],

dVj [m1,m2] and dDj [m1,m2]. The analysis and reconstruction processes of the two-dimensional fast wavelet

transform can be seen in Fig. 3.5.
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3.3.6 Discrete Wavelet Packet Transform

The interest of analyzing a given function in a time-frequency framework of the spaces L2(R) or L2(R2)

has lead to the construction of orthonormal bases for these spaces whose components are characterized

for having a compact support, both in time or space and frequency. These ideas represent an extension

of the Fourier analysis theory. This property allows to study particular function features at a given level

of resolution. As it has been described by the two previous sections, the wavelet bases for the spaces

L2(R) or L2(R2) perform a particular time-frequency plane tiling, in such a way that time resolution

is higher for high frequencies than for low frequencies. What it would be desirable when analyzing a

given function is the possibility to study a particular detail at a particular level of resolution. In terms

of the time-frequency plane, it means the possibility to derive an arbitrary tiling for this plane, based

on the signal properties, in order to obtain the maximum level of resolution, both in time and frequency

at any desired point. The discrete wavelet transform has been obtained through a dyadic tiling of the

time-frequency plane. This division of the time frequency plane has been shown to be connected with

the multiresolution analysis and the perfect reconstruction filtering theory. An arbitrary tiling of the

time-frequency can be derived by extending the ideas of wavelet and multiresolution analysis.

The multiresolution analysis, for the space L2(R) as well as for L2(R2), together with the idea of

wavelet, showed the possibility to decompose any of the approximation spaces {Vj}j∈Z as the direct sum

of a coarse approximation space Vj+1 and a detail or wavelet space Wj+1, see Eqs. (3.40) and (3.65).

As a result, the union of the orthonormal bases of the spaces {Wj}j∈Z or {W2
j}j∈Z are respectively

orthonormal bases of the spaces L2(R) or L2(R2). The idea at the bottom of the wavelet packet transform,

denoted by WPT, is to also split the detail spaces {Wj}j∈Z in the one-dimensional case, or the spaces

{Qk
j}j∈Z,k∈{H,V,D} for the two-dimensional case. R. R. Coifman, Y. Meyer and M. V. Wickerhouser [156]

proved that if {θj(x−2jm)}m∈Z is an orthonormal basis of the space Uj, given h and g as a pair of finite

conjugate mirror filters such that

θ0
j+1(x) =

∞∑

m=−∞
h[n]θj(x− 2jm) (3.75)

θ1
j+1(x) =

∞∑

m=−∞
g[n]θj(x− 2jm). (3.76)

The family {θ0
j+1(x− 2j+1m), θ1

j+1(x− 2j+1m)} is an orthonormal basis of Uj . Consequently, a wavelet

packet transform is obtained by iterating the basic cell of filters defined for the fast wavelet transform,

not only at the coarse approximation branch, but also at the detail branch. This issues means, that the

Mallat algorithm can be also extended to calculate the fast wavelet packet transform [23]. However, it

is not necessary to split every subspace at every scale. The splitting of a subspace can be done based

on deterministic criteria but also depending on the signal properties, adapting thus, the time-frequency

plane to the particularities of a given signal. This special procedure receives the name of best basis

selection [157, 129], as the orthonormal basis in which a particular function is projected depends on the

function itself.

The wavelet packet concept can be also straightforwardly extended to the L2(R2) case using, as in

the one-dimensional case, the tensor product of spaces. In this case, the wavelet transform receives the

name of wavelet packet quad-three.

3.4 Construction of Wavelets

As it is clear from what has been presented throughout this chapter, the definition of the wavelet theory, as

well as its associated concepts, has been performed without the necessity to give a particular expression

for the wavelet function ψ. The only restriction a wavelet function has to fulfill is the admissibility
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condition, Eq. (3.21), which ensures the existence of an inversion formula for the CWT. This condition

is not too much restrictive respect to the choice for the wavelet function. As a consequence, additional

constraints have to be imposed on the wavelet function in order to obtain transformation schemes with

particular features. A clear example has been given in the case of orthonormal linear expansions of

a function f ∈ L2(R). In this case, the wavelet function has to be orthogonal to its time and scale

translations.

A wavelet function can be classified on the basis of its particular properties. These properties shall

determine, for instance, the properties of the DWT, or the wavelet series, associated with a particular

wavelet function. Hence, one can deduce that the wavelet function has to be selected depending on the

particular function’s feature.

3.4.1 Wavelet Function’s Properties

Most applications based on the wavelet analysis theory try to exploit its capability to concentrate the

energy of a function in a reduced set of wavelet coefficients. As it has been already mentioned, the

ability to concentrate the function’s energy depends on the properties of the wavelet function ψ, on the

properties of the basis extracted out of ψ, {ψj,m}j,m∈L2(R), but also, on the characteristics of the function

under analysis. In the following, the main properties of the wavelet functions shall be analyzed in order

to give some guidelines to select the suitable wavelet function for a particular goal.

Orthogonal Wavelets

Multiresolution analysis in L2(R) has demonstrated that wavelet series expansions are related with perfect

reconstruction filtering theory. Under the proper selection of these filters, see Section 3.3.3, it is possible

to derive a wavelet mother function ψ, from which, a family of orthonormal wavelets {ψj,m}j,m∈Z can

be obtained. Orthogonality (also orthonormality) is a convenient property in many signal processing

applications, as it is possible to relate the L2(R)-norm directly with the value of the discrete wavelet

coefficients, i.e., the Parseval theorem, Eq. (3.4), holds. This is important as errors present in the

original data will not grow under the transformations and stable calculations are possible. Moreover,

orthogonal wavelet bases give rise to non-redundant representations of functions.

The handicap an orthogonal wavelet presents is the non existence of compactly supported, linear

phase (symmetric wavelet), orthogonal wavelets, except for the Haar wavelet [135]. This wavelet has

some characteristics that make it not suitable to be applied with smooth functions. The importance of

linear phase lies in the fact that, in the absence of it, the reconstruction process can induce distortions.

Returning to the case of interest, the wavelet function ψ has been shown to be determined by the scaling

function φ or the discrete sequence {hm}m∈Z. Indeed, let φ be a real-valued scaling function, associated

with a real-value, compactly supported sequence {hm}m∈Z, φ is a linear phase function if the sequence

{hm}m∈Z is symmetric, that is hM−m = hm ∀m ∈ Z and all the zeros of the associated polynomial

H(ejω) =
M∑

m=0

hne
jωn (3.77)

that lie on the unit circle have even multiplicities [135,24]. Thus, the scaling function has linear phase if

ĥ(ω) has linear phase. By using Eq. (3.45), it can be concluded that ψ has linear phase if ĝ(ω) has also

linear phase.

The lack of linear phase for compactly supported wavelet function can be solved in two different

ways. First, by allowing the wavelet and the scaling function to be complex functions [158,159]. Second,

orthogonality is a strong condition on the wavelet functions, therefore by relaxing it, compactly supported

wavelet functions with linear phase can be obtained. An important class of compactly supported wavelets

with linear phase are the biorthogonal wavelet functions.
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Figure 3.6: Two-branch filter bank which calculates the biorthogonal wavelet transform. The fast biorthogo-

nal wavelet transform is calculated by the pair of filters (h, g). The fast inverse biorthogonal wavelet transform

is calculated by the filters (h̃, g̃).

Biorthogonal Wavelets

Orthogonal compactly supported wavelet bases for L2(R), based on multiresolution analysis theory, can

be obtained by iterating a two-branch filter bank with the same filters in the analysis and reconstruction

steps. This condition can be relaxed by allowing different filters in the analysis and the reconstruction

steps of the Mallat algorithm. When the discrete wavelet transform was introduced in Section 3.3.2, it was

shown that linear expansions of functions in which the analysis and the reconstruction bases are different

are possible within the frame theory. In this case, two dual bases were defined, leading to two dual linear

expansions, see Eq. (3.25). Under proper orthogonality constrains over these bases, biorthogonal wavelet

bases can be derived.

As in the case of multiresolution analysis, biorthogonal wavelet bases can be directly related with

perfect reconstruction filter-bank schemes. M. Vetterli demonstrated that it is possible to obtain com-

pactly supported, perfect reconstruction filters in those cases in which analysis and reconstruction filters

are different [25,160]. In such a case, the pair of analysis filters are denoted by (h, g) and the reconstruc-

tion filters are denoted by (h̃, g̃). Fig. 3.6 depicts a two-branch perfect reconstruction filter bank with

biorthogonal filters.

M. Vetterli gave the conditions under which, the filter bank presented in Fig. 3.6 performs a perfect

reconstruction [160]

ĥ∗(ω)
̂̃
h(ω) + ĥ∗(ω + π)

̂̃
h(ω + π) = 2 (3.78)

ĝ∗(ω)̂̃g(ω) + ĝ∗(ω + π)̂̃g(ω + π) = 2 (3.79)

ĝ∗(ω)
̂̃
h(ω) + ĝ∗(ω + π)

̂̃
h(ω + π) = 0 (3.80)

ĥ∗(ω)̂̃g(ω) + ĥ∗(ω + π)̂̃g(ω + π) = 0. (3.81)

Multiresolution analysis showed that perfect reconstruction filter banks can be understood as expansions

in `2(Z). As a consequence, the pairs of filters (h, g) and (h̃, g̃) are associated with two different MRAs

of L2(R) which are defined by the pairs of functions (φ,ψ) and (φ̃, ψ̃). The functions (φ̃, ψ̃) are called the

dual scaling function and the dual wavelet function, respectively. Consequently, it is possible to define

two wavelet families {ψj,m}j,m∈Z and {ψ̃j,m}j,m∈Z [161, 135]. These two bases are biorthogonal bases of

L2(R) if the following biorthogonality conditions are satisfied
〈
φ(x), φ̃(x−m)

〉
= δ[m] (3.82)

〈
ψj,m, ψ̃j′,m′

〉
= δ[m−m′]δ[j − j′]. (3.83)

These biorthogonality conditions can be also written in terms of the associated spaces with the MRA’s.

Therefore, for Vj = Vj+1 ⊕ Wj+1 and Ṽj = Ṽj+1 ⊕ W̃j+1, the biorthogonal conditions given in Eqs.

(3.82) and (3.83) lead to [23]

Wj ⊥ Ṽj , W̃j ⊥ Vj , W̃j ⊥ Wj (3.84)

Finally, the pair of filters (h, g) and (h̃, g̃) can be changed in the analysis and reconstruction steps of the

Mallat algorithm, leading to two different function’s expansions

f =
∑

j,m∈Z

〈f, ψj,m〉ψ̃j,m =
∑

j,m∈Z

〈f, ψ̃j,m〉ψj,m. (3.85)
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Compactly Supported Wavelets

If the scaling function and the wavelet function are compactly supported functions, the pair of filters

(h, g) associated to the corresponding MRA will have a finite number of non-zero coefficients. From a

point of view of the discrete wavelet transform, only a finite number of operations are needed in order

to calculate it. For those cases in which the filters have very long responses, or even are infinite impulse

responses, a fast decay is desired as this response can be reasonably approximated by a finite impulse

response.

The ability of the wavelet transform to produce high amplitude coefficients is associated with the

effective filter’s length. If a given function has a singularity at a position x0 inside the support of the

wavelet ψj,m, it may be possible that 〈f, ψj,m〉 has a large amplitude. As a consequence, if the wavelet

functions has a support of length K, at each scale 2j , there are K wavelets ψj,m whose support includes

x0. Hence, the number of high amplitude coefficients is reduced with short support wavelets.

Vanishing Moments

An important characteristic of the wavelet functions are the number of vanishing moments. A wavelet

function ψ is said to have p vanishing moments if

∫ ∞

−∞
xkψ(x) dx = 0 0 ≤ k < p. (3.86)

The first consequence that can be extracted form the definition of a vanishing moment is that the

wavelet function is orthogonal to polynomials of degree p− 1. Consequently, if a function can be locally

approximated by a Taylor polynomial of degree k, if k < p, the discrete wavelet transform will produce

small value coefficients [23]. The definition of vanishing moment can be also obtained in the Fourier

domain. In this case let ψ to have p vanishing moments, as a result the Fourier transform ψ̂(ω) and its

p− 1 derivatives are zero at ω = 0 [23,24]. In the same way, the filter ĥ(ω) and its p− 1 derivatives are

zero at ω = π. Vanishing moments are specially important in singularity detection and characterization

by means of the continuous wavelet transform [162].

Despite there is not a clear relation between the number of vanishing moments and the support of the

wavelet function, Daubechies, under the orthogonality constraint, demonstrated that a wavelet function

with p vanishing moments has a minimum support of length 2p − 1 [149, 135]. Daubechies wavelets are

optimal wavelets as they have the minimum support for a given number of vanishing moments. As a

result, it exist a trade-off between the number of vanishing moments and the wavelet support. For a

smooth function, it would be desirable a wavelet function with a high number of vanishing moments in

order to increase the number of small value coefficients. But for irregular functions, it is desirable to

reduce the wavelet support in order to minimize the number of large amplitude coefficients.

3.4.2 Examples of Wavelets

As one can see from what has been presented up to this moment, there exist a large number of functions

that fulfill the conditions to be a wavelet function. Depending on the constraints imposed on the wavelet

function, as for instance orthogonality, this number can be reduced. But, even in this case, the number

of possibilities is large. In the following, some important families of wavelet functions are presented.

Haar Wavelet

The Haar wavelet function is obtained with a MRA of piecewise constant functions. The scaling function

is defined as the box function in time, i.e., φ(x) = 1[0,1]. The filter {hm}m∈Z, determined by the
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corresponding multiresolution analysis is

hm =

{
1√
2

m = 0, 1

0 otherwise
(3.87)

Therefore, the wavelet function has the expression ψ(x) = 1[0,1/2] −1[1/2,1]. The Haar wavelet is the only

compactly supported, symmetric, orthogonal wavelet. The main drawback of this wavelet is that it is not

suitable to approximate smooth functions as it is a irregular function with only one vanishing moment.

Shannon Wavelet

The Shannon wavelet represents a dual respect to the Haar wavelet. The Shannon wavelet corresponds

to a scaling function which is a box in frequency, i.e., φ̂(ω) = 1[−π,π). The low pass filter is found to be

ĥ(ω) =
√

21[−π/2,π/2). Using Eq. (3.47) it can be seen, that the wavelet function has the expression

ψ(x) =
sin 2π(x− 1/2)

2π(x− 1/2)
− π(x− 1/2)

π(x− 1/2)
. (3.88)

It can be demonstrated that the Shannon wavelet has an infinite number of vanishing moments. The

main problem of the Shannon wavelet is that it presents a very low decay which tends to increase the

number of high amplitude coefficients.

Daubechies Wavelets

The Daubechies wavelets represent perhaps, the most known family of wavelet functions. These wavelets

make possible to derive orthonormal bases for the space L2(R) with minimum length for a given number

of vanishing moments [149, 135]. As shown by Eq. (3.30), compactly supported wavelets are obtained

with a finite impulse response filter {hm}m∈Z. As a consequence, ĥ(ω) is a trigonometric polynomial

function. Let ψ be a wavelet function with p vanishing moments, it has been shown that ĥ(ω) must have

a zero of order p at ω = π, so, h̃(ω) takes the form [135]

ĥ(ω) =
√

2

(
1 + e−jω

2

)p
R(e−jω). (3.89)

For h having M non zero coefficients, R(e−jω) is a polynomial of degree m = M − 1 − p. The problem

here lies on finding the polynomial R(e−jω) such ĥ(ω) satisfies Eq. (3.37). By using the Bezout theorem

for polynomials, I. Daubechies derived the expression for this type of wavelets.

Multiresolution analysis states that the continuous wavelet function can be obtained by the iteration

of a two-band filter bank at the low-pass branch of the analysis step. From a practical point of view, this

iteration is not given to the infinite, therefore it was suggested that it would be desirable that finitely

iterated wavelet fulfills some regularity conditions, i.e., the iterated wavelet has to be continuous with

several continuous derivatives. The regularity of the wavelet function can be translated to the filter h by

introducing a flatness condition at the frequency ω = π as the number of zeros at this point. Daubechies

wavelets give rise, therefore, to maximally flat filters.

The main disadvantage of the Daubechies wavelets is the lack of symmetry or antisymmetry, that is,

the lack of linear phase [24]. The previous construction does not have a unique solution for a given length

N . A different alternative is based on selecting the most symmetric wavelet which leads to wavelets with

almost linear phase [163]. This type of wavelets are known as symlets.
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Maximally Frequency Selective Wavelets

By introducing a flatness condition in the filter design of h as the number of zeros at ω = π, maximally

flat filters or orthogonal regular wavelets are derived. From a signal processing point of view, maximally

flat filters have very poor frequency selectivity properties [164]. Maintaining the length of the filter in M

coefficients, if the flatness constraint is reduced by reducing the number of zeros at ω = π, it is possible to

use these new degrees of freedom to impose frequency selectivity constrains. In [164], Rioul and Duhamel

gave a Remez Exchange algorithm to derive orthonormal wavelets with improved frequency selectivity

properties, increasing as a consequence the number of orthogonal wavelet families.

Spline Biorthogonal Wavelets

By removing orthonormality condition in the design of the wavelet basis for L2(R), it is possible to

obtain biorthogonal families of wavelets. The main advantage of this type of construction is the increase

of freedom in order to design the associated filters to the multiresolution analysis. In the orthogonal

case, the filter design is reduced to the design of the low-pass filter coefficients h[m], as the rest of the

filters are derived from it. In the biorthogonal case, as different filters are designed for the analysis and

reconstruction steps, there is more freedom to fix criteria as the filter support or the number of vanishing

moments.

Let ĥ(ω) be

ĥ(ω) =
√

2 exp

(−jεω
2

)(
cos

ω

2

)p
(3.90)

with ε = 0 for p even and ε = 1 for p odd, the scaling function is a box spline of degree p − 1. As the

wavelet function is a combination of spline boxes, it is also a compactly supported function.

The number of vanishing moments of ψ, p̃ is a free parameter with the same parity as p. From

Eq. (3.90), A. Cohen, I. Daubechies and Feauveau demonstrated that the dual low-pass filter has the

following frequency response [151]

̂̃
h(ω) =

√
2 exp

(−jεω
2

)(
cos

ω

2

)p̃ q−1∑

k=0

(
q − 1 + k

k

)(
sin

ω

2

)2k
. (3.91)
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