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Chapter 4

Interferometric Phasor Noise Model

4.1 Introduction

As it has been evidenced in Chapter 2, SAR technology is an important tool to gather information

concerning the Earth’s surface. Depending on the SAR system configuration, collected data can be

related with different surface’s properties among which topography, soil moisture or vegetation height have

a particular importance. This information is not directly contained within SAR data. As a consequence,

inversion processes have to be designed for its extraction [36,165]. The inversion process has to deal with

the inherent complexity of the electromagnetic scattering process. Electromagnetic scattering models

have to be employed to extract the physical parameters of interest from the radar observables, as for

instance the interferometric phase in the case of InSAR or the covariance matrix in PolSAR. Nevertheless,

the estimation of these observables is not a trivial task due to the presence of speckle noise [7, 166,167].

Speckle noise in SAR imagery is a major problem as it hinders obtaining relevant information. Section

2.1.6 at Chapter 2 showed that speckle noise can be modelled as a multiplicative noise term for the

SAR image intensity. Within Section 2.2.5 at the same chapter, it was demonstrated that under proper

conditions, speckle noise can be modelled as an additive noise component for the phase difference between

a pair of correlated SAR images. On the contrary speckle noise models do not exist for multidimensional

SAR imagery as PolSAR or PolInSAR.

This chapter concerns the definition of a new speckle noise model for the interferometric phase differ-

ence coded at the complex plane as a unit amplitude phasor. In addition, this model will be also derived

within the transformed wavelet domain. The main reason behind the use of the wavelet theory for this

problem is the possibility to estimate relevant interferometric information with a high spatial resolution.

Furthermore, the theory presented in the following establishes a basis to define a general speckle noise

model for multidimensional SAR data, as it will be presented at the next chapter.

In order to avoid confusion, whenever necessary, the imaginary number
√
−1 will be indicated as j,

whereas the wavelet scale will be denoted by 2j .

4.2 Interferometric Phasor Noise Model

Speckle noise, for single SAR images, is modelled as a complex noise term with Rayleigh distributed

amplitude and uniformly distributed phase. The main consequence of this model is that speckle noise has a

multiplicative nature for the amplitude and an additive nature for the phase. However, the multiplicative

75



76 CHAPTER 4. INTERFEROMETRIC PHASOR NOISE MODEL

noise model can not be extended for those cases in which information is extracted from the combination

of SAR images as InSAR, PolSAR and PolInSAR, since it prevents the use of the phase difference as a

source of useful information.

It has been proved that the interferometric phase difference between two SAR images S1 and S2,

under the assumption of Gaussian scattering, is described by the probability density function (pdf) given

in Eq. (2.110). This pdf can be also derived as a marginal density from the multivariate complex Wishart

distribution, whose general expression is given by Eq. (2.181). The interferometric phase distribution

is a bell-shaped curve with its mode located at φx. Within the phase interval [φx − π, φx + π), the

interferometric phase noise can be modelled by an additive noise term [168,94]

φ = φx + v (4.1)

where φ represents the measured interferometric phase, φx denotes the true interferometric phase, and v

is the signal independent additive noise component. However, the interferometric phase is only measured

within the interval [−π, π). Consequently, it is necessary to unwrap it in order to make use of the noise

model given by Eq. (4.1) [94].

A different approach consists on defining a noise model in the complex plane, i.e., an interferometric

phase noise model valid within the interval [−π, π), independently of the position of the phase mode

φx. In the complex plane, the measured interferometric phase φ can be expressed as the unit amplitude

complex phasor

ejφ = <{ejφ} + j={ejφ} = cos (φ) + j sin (φ) . (4.2)

In the following, ejφ is referred as the measured interferometric phasor or simply interferometric phasor,

whereas ejφx is called the true interferometric phasor [169]. Since the trigonometric functions cos(·) and

sin(·) of the measured interferometric phase φ are periodic, it follows

cos(φ) = cos(φx + v) = cos(φx + v − 2πk) ∀k ∈ Z (4.3)

sin(φ) = sin(φx + v) = sin(φx + v − 2πk) ∀k ∈ Z. (4.4)

This makes possible to consider the additive interferometric phase noise model in the interval [−π, π),

provided the phase φ to be the argument of cos(·) or sin(·). The rest of this section concerns the definition

of a interferometric phasor noise model.

Using the formulas for the addition and difference of angles with trigonometric functions, the real

and imaginary parts of the interferometric phasor can be decomposed as

cos(φ) = cos(φx) cos(v) − sin(φx) sin(v) (4.5)

sin(φ) = cos(φx) sin(v) + sin(φx) cos(v). (4.6)

As it can be observed, the true interferometric phase φx has been separated from the noise term v.

Therefore, the noise term v can be considered as being distributed according to Eq. (2.110), assuming

φx = 0 rad. If the useful signal φx, as well as the phase noise v are considered homogeneous, the terms

cos(φx) and sin(φx) can be assumed to be constant values, whereas cos(v) and sin(v) are homogeneous

random processes.

The noise terms in the complex plane, defined as v1 = cos(v) and v2 = sin(v), are described by the

following pdfs

pv1 (v1) =
1

π
√

1 − v2
1

(1−|ρ|2)
[
(1−|ρ|2v21)

1/2
+|ρ|v1(π−arccos(|ρ|v1))

]

(1−|ρ|2v21)
3/2 v1 ∈ [−1, 1] (4.7)

pv2 (v2) = 1

π
√

1−v22

(1−|ρ|2)
[
(1−|ρ|2(1−v22))

1/2
+|ρ|

√
1−v22(π

2
−arccos(|ρ|

√
1−v22))

]

(1−|ρ|2(1−v22))
3/2 v2 ∈ [−1, 1] (4.8)

where |ρ| denotes the coherence between the SAR images S1 and S2. A detailed derivation of these

distributions is contained in Appendix A. In the following, a complete analysis of the noise terms v1 and

v2 is presented.
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4.2.1 Analysis of v1

The term cos(v), denoted in the following as v1, can be considered as the real part of the interferometric

phasor noise within the complex plane. The pdf of this term depends only on the coherence value |ρ|,
as it can be observed from Eq. (4.7). If the interferometric phase is analyzed within the real interval

[φx − π, φx + π), the coherence gives information about the noise content, in such a way that the smaller

the coherence the larger the phase noise variance. Nevertheless, the effect of coherence over the pdf of v1
is completely different. First of all, the limits of pv1(v1) as a function of the coherence are

lim
|ρ|→0

pv1(v1) =
1

π
√

1 − v2
1

v1 ∈ [−1, 1] (4.9)

lim
|ρ|→1

pv1(v1) = δ(v1 − 1) v1 ∈ [−1, 1]. (4.10)

Figure 4.1a depicts pv1(v1) for the complete range of coherences, where the limits given by Eqs. (4.9) and

(4.10) can be clearly identified. Consequently, the coherence value varies the symmetry of the distribution

of v1 within the interval [−1, 1].

−1
−0.5

0
0.5

1

0
0.2

0.4
0.6

0.8
1
0

2

4

6

8

10

12

p v 1(v
1)

|ρ| v
1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

|ρ|

N
c
 |ρ|

(a) (b)

Figure 4.1: (a) Evolution of pv1
(v1) as a function of the coherence value |ρ|. (b) Mean value of v1, Nc.

The variation of the distribution’s symmetry has a clear effect on the moments of v1. Appendix

B contains a detailed derivation of the mean value of v1, whose value, for single-look SAR imagery,

follows [170,169]

Nc = E{v1} =
π

4
|ρ| 2F1

(
1

2
,
1

2
; 2; |ρ|2

)
(4.11)

where 2F1(a, b; c; z) represents the Gauss hypergeometric function [171], see Appendix B for its definition.

Figure 4.1b depicts the plot of the parameter Nc. From this figure, one can notice that despite the

complex dependence of Nc on |ρ|, both parameters present similar values. A first consequence that can

be extracted is that Nc may be employed as a new quality parameter, since it gives the same type of

information that the coherence offers.

As it has been performed for the expression of the mean value of v1, the variance, σ2
v1 , can be obtained

by deriving the second moment of v1. Appendix B contains the detailed derivation of σ2
v1 , where it can

be seen the complexity of its expression, which includes an infinite series of hypergeometric functions.

From a practical point of view, this expression gives no clear insights concerning the dependence of σ2
v1

on the coherence. Hence, it is worthwhile to find an approximation to the value of σ2
v1 with a simpler

expression. Figure 4.2a gives the graphic of the actual value of σ2
v1 . As it can concluded from this figure,
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the exact variance value can easily be approximated by the following family of functions

σ2
v1 ∝ 1

2
(1 − |ρ|2)α (4.12)

where α controls the shape of the function. By minimizing the square error between the actual value of

σ2
v1 and the value given by Eq. (4.12) it is found that a minimum square error is attained for α = 0.79.

Figure 4.2 shows the true and the approximated values of σ2
v1 , as well as the error between both curves

for α = 0.79. As it can be observed in Fig. 4.2, the approximation presents a small absolute error.

Any random variable with a non-zero mean value, can be expressed as the addition of this mean value

plus a zero-mean random variable [72]. Consequently, v1 can be written as follows

v1 = Nc + v′1 (4.13)

where v′1 denotes a zero-mean random variable with a variance equal to

σ2
v′1

=
1

2
(1 − |ρ|2)0.79. (4.14)
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Figure 4.2: (a) Actual and approximated values for σ2

v1
. (b) Approximation absolute error. In both cases

α = 0.79.

4.2.2 Analysis of v2

Similarly, the term sin(v), denoted as v2 in the following, can be considered as the imaginary part of

the interferometric phase noise in the complex plane. As it can be observed from the pdfs given by Eqs.

(4.7) and (4.8), the term v2 has a different behavior compared with v1. The limits of pv2(v2) with the

coherence are

lim
|ρ|→0

pv2(v2) =
1

π
√

1 − v2
2

v2 ∈ [−1, 1] (4.15)

lim
|ρ|→1

pv2(v2) = δ(v2) v2 ∈ [−1, 1]. (4.16)

Fig. 4.3 represents pv2(v2) for the complete range of coherences. It can be observed, that for low

coherences pv1(v1) and pv2(v2) present a very similar behavior due to the uniform distribution of the

interferometric phase difference. On the contrary, as the coherence increases, pv1(v1) is concentrated

around v1 = 1, whereas pv2(v2) is concentrated around v2 = 0, since the interferometric phase noise
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Figure 4.3: Evolution of pv2
(v2) as a function of coherence value |ρ|.

becomes a delta function around v = 0 rad. Hence, the moments of v2 will present a different dependence

comparing them with the moments of v1.

The distribution pv2(v2), as given by Fig. 4.3, is symmetric for any coherence value. Consequently,

its mean value, denoted by Ns, is always equal to zero. On the other hand, the variance value, called

σ2
v2 , can be easily derived from σ2

v1 by considering the equality E{cos2(v)} = σ2
v1 +N2

c

σ2
v2 = E{sin2(v)} = E{1 − cos2(v)} =

(
1 −N2

c

)
− σ2

v1 . (4.17)

Once again, the expression of σ2
v2 presents a complicate dependence with respect to the coherence, by

considering the expressions of Nc and σ2
v1 , which makes a difficult task to extract any type of conclusion.

Fig. 4.4a presents the graphic of σ2
v2 as a function of the coherence |ρ|. Also in this case, an approximate

curve for the actual value of σ2
v2 has been found. Owing to the dependence of σ2

v2 on the coherence,

the same family of functions employed to approximate σ2
v1 , see Eq. (4.12), has been selected. Also, a

minimum square error criteria has been adopted to find the value of α which best approximates σ2
v2 . In

this case, the minimum is attained for α = 0.58. Fig. 4.4 presents the graphic of this approximation, as

well as the absolute error between the actual and the approximate values of σ2
v2 . As it can be seen from

Fig. 4.4b, this error presents very small values.

Therefore, the random process v2, which will be denoted by v′2 in the following to maintain the

parallelism with v1, can be analyzed as a zero-mean random process with a variance given by

σ2
v′2

=
1

2
(1 − |ρ|2)0.58. (4.18)

It is worth to remark that within Section 4.2.1 it has been proved that v1 can be decomposed as

v1 = Nc+ v′1. Consequently, v′1 can be considered as a noise source which corrupts the useful information

content, given by Nc. Section 4.2.2 showed that, since v2 has a mean value equal to zero, it can be only

considered as a noise source. These decompositions are now introduced within Eqs. (4.5) and (4.6) as

follows

cos(φ) = Nc cos(φx) + v′1 cos(φx) − v′2 sin(φx) (4.19)

sin(φ) = Nc sin(φx) + v′1 sin(φx) + v′2 cos(φx). (4.20)

The parameterNc, as well as the processes v′1 and v′2 have been exclusively derived from the interferometric

phase noise v. Therefore, in principle, they are considered as noise components which corrupts the useful

signal given by cos(φx) and sin(φx). Since v′1 and v′2 are zero-mean random variables, one can prove that
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Figure 4.4: (a) Exact and approximated values for σ2

v2
. (b) Approximation absolute error. In both cases

α = 0.58.

despite the second and third addends of Eqs. (4.19) and (4.20) contain useful information 1, this is lost.

Assuming an homogeneous interferometric phase, as well as homogeneous noise

E{v′1 cos(φx) − v′2 sin(φx)} = E{v′1} cos(φx) − E{v′2} sin(φx) = 0 (4.21)

E{v′1 sin(φx) + v′2 cos(φx)} = E{v′1} sin(φx) + E{v′2} cos(φx) = 0. (4.22)

Therefore, as these terms do not contain information at all, two new noise terms can be defined as follows

vc = v′1 cos(φx) − v′2 sin(φx) (4.23)

vs = v′1 sin(φx) + v′2 cos(φx). (4.24)

These two noise terms have, as it will be presented in the following, a more similar behavior between

them than v1 and v2 have.

With the introduction of the noise terms vc and vs, the real and imaginary parts of the interferometric

phasor, Eqs. (4.5) and (4.6), can be written as [170,169]

<{ejφ} = Nc cos(φx) + vc (4.25)

={ejφ} = Nc sin(φx) + vs. (4.26)

These two equations represent the noise model for the real and imaginary parts of the measured interfer-

ometric phasor. The useful information, given by cos(φx) and sin(φx) is first affected by the term Nc in

a multiplicative way. Additionally, this product is also contaminated by the additive noise terms vc and

vs. Consequently, this new interferometric phasor noise model is characterized for being a linear noise

model.

The noise terms vc and vs have a double dependence. On the one hand, the variance of these terms

depend on the interferometric phase φx, as it can be deduced from Eqs. (4.23) and (4.24). On the other

hand, the variance depends also on the coherence |ρ|, as the terms v′1 and v′2 depend on it. By considering

vc and vs as zero-mean value terms, it follows that their variances can be obtained as

σ2
vc = E

{(
v′1 cos(φx) − v′2 sin(φx)

)2}
= σ2

v′1
cos2(φx) + σ2

v′2
sin2(φx) (4.27)

σ2
vs = E

{(
v′1 sin(φx) + v′2 cos(φx)

)2}
= σ2

v′1
sin2(φx) + σ2

v′2
cos2(φx) (4.28)

1Given by the parameters cos(φx) and sin(φx)
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where the equality E{v′1v′2} = E{(v1−Nc)v2} = 0 has been included. The values of σ2
vc and σ2

vs will vary,

for any coherence value, between the values of σ2
v′1

and σ2
v′2

according to the value of φx. Hence, since

σ2
v′1

and σ2
v′2

present similar values, the dependence of vc and vs on φx can be cancelled out by properly

approximating the value of their respective variances. As proved in Appendix C, σ2
vc and σ2

vs can be

approximated by the family of curves given by Eq. (4.12). In this case, the exponent α is the average

value of the exponents of the curves of σ2
v′1

and σ2
v′2

. Hence

σ2
vc = σ2

vs =
1

2
(1 − |ρ|2)0.685 (4.29)

Selecting this curve, first, the average error with respect to the actual values of σ2
vc and σ2

vs is minimized,

and second, the additive noise terms in the real and imaginary parts will present the same behavior [169].

Fig. 4.5 presents the curves of σ2
v′1

and σ2
v′2

as well as the approximation for σ2
vc and σ2

vs .
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The interferometric phasor noise model, represented by Eqs. (4.25) and (4.26), can be also expressed

as a sum of complex phasors

ejφ = Nce
jφx + (vc + jvs). (4.30)

Fig. 4.6 displays a representation of Eq. (4.30). The amplitude of the true interferometric phasor is

multiplied by the parameter Nc. Therefore, this parameter affects the amplitude but not the phase of

the true interferometric phasor. On the contrary, the additive noise phasor vc + jvs affects both, the

amplitude and the phase of the true interferometric phasor. Since the term Nce
jφx contains information

concerning coherence and phase, it will be called in the following as Modulated Coherence Term.

©

¦
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jfx

v +jvc s

Figure 4.6: Representation of the interferometric phasor noise model.
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4.2.3 Interferometric Phasor Noise Model Validation

A new noise model for the interferometric phasor, whose expression is given by Eq. (4.30), has been

proposed in the previous section. In the following, a validation of this model is performed by using both,

simulated as well as real InSAR data. On the one hand, simulated data are employed as it offers the

possibility to reproduce any signal condition and access to the original signal, which is pretended to be

recovered, is feasible. On the other hand, the noise model is also tested with real InSAR data.

Interferometric Phasor Noise Model Validation: Simulated InSAR Data

An homogeneous SAR image, under the assumption of fully developed speckle for distributed scatterers,

can be modelled by Nc(0, σ
2/2). On the other hand, InSAR data are generated from the combination

of correlated SAR images acquired from slightly different positions, in such a way that the degree of

correlation determines the phase difference noise power. Consequently, InSAR data can be simulated as

follows [172,37]:

· First, the complex, two-dimensional array of independent, zero-mean, Gaussian distributed vari-

ables

k′ = [ S1 S2 ]T (4.31)

is generated, where S1 = S11 + jS12 and S2 = S21 + jS22. The components S11, S12, S21 and S22

denote independent, zero-mean Gaussian distributed variables, N (0, σ2).

· The second step consists in the generation of correlated, zero-mean, complex Gaussian variables

from the set of uncorrelated variables. The generation of these correlated variables is based on the

method presented in [172], where the vector of correlated components is obtained as

k = σS1

[
1 0

ρ∗
√
γ
√
γ(1 − |ρ|2)

] [
S1

S2

]
(4.32)

where
σS1 = E{|S1|2} γ = E{|S2|2}

E{|S1|2} ρ =
E{S1S∗

2}√
E{|S1|2}E{|S2|2}

(4.33)

The parameters σS1 and γ refer to the power of each one of the SAR images. These parameters

can be set to 1 as interest is focused on the phase of the product S1S
∗
2 . The coefficient ρ refers to

the complex correlation coefficient between both SAR images. Therefore, it is possible to simulate

InSAR data for any correlation coefficient setting its amplitude to any value between 0 and 1,

and setting an arbitrary value for the interferometric phase φx. As homogeneous data will be

simulated, ρ is constant for the complete image. Nevertheless, non homogeneous InSAR data can

be also simulated.

· The simulated interferometric phase is taken as the phase of the complex conjugated product S1S
∗
2 ,

whose value, free of noise effects, is φx.

The previous algorithm has been employed to simulate InSAR data for different values of the complex

correlation coefficient. In all the cases, simulated data correspond to 512 by 512 pixel SAR images.

The process to test the validity of the proposed noise model, given by Eqs. (4.25) and (4.26), consists

in comparing real statistics obtained from simulated data with those proposed by the noise model in

the basis of a Monte-Carlo method. On the one hand, real statistics are obtained over 7 by 7 pixel

non-overlapped windows. The size of these windows provide sufficient statistics to calculate the mean

and the variance of data [113]. The mean value corresponds to the products Nc cos(φx) and Nc sin(φx)

for the real and imaginary parts of the interferometric phasor respectively. The variance of the additive

noise terms vc and vs, is approximated by Eq. (4.29). The validity test allows to analyze also the effects

of this approximation.
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The first test consists in the simulation of an interferometric phase of value φx = π/4. The interest

of this value lies in the fact that no error is introduced on σ2
vc and σ2

vs , since cos2(φx) = sin2(φx) =

1/2. The results corresponding to this test are presented in Fig. 4.7. Respect to the mean values, a

complete agreement between the theoretical data, given by the solid line, and the values obtained from

the simulated data is observed. Error bars represent the standard deviation of the mean value estimator,

which corresponds to the sample mean in the 7 by 7 pixel windows [72,173]. No differences are observed

between the real and imaginary parts. The variance of the additive noise terms vc and vs has been

estimated by the classical sample variance estimator in 7 by 7 pixel windows [72, 173]. As it can be

observed from Figs. 4.7c and 4.7d, the values given by the approximation introduced by Eq. (4.29), are

very close to the actual values.
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Figure 4.7: Monte-Carlo analysis to test the validity of the interferometric phasor noise model. Solid lines

represent actual values, whereas dashed lines represent the approximated values for the variances σ2

v′

1

and σ2

v′

2

.

Error bars represent the variances of the calculated statistics. (a) Real part mean value (Nc cos(φx)). (b)

Imaginary part mean value (Nc sin(φx)). (c) Real part variance. (d) Imaginary part variance. It is important

to notice that the mean values (a) and (b) present a maximum value close to 0.7 as a consequence of the

homogeneous interferometric phase.

The agreement between the statistics of the simulated interferometric phase, calculated with the

sample estimators, and the statistics given by the proposed noise model have been also quantitatively

measured by a first order least squares regression analysis. The interpretation of each one of the coeffi-

cients of this analysis can be found in Appendix D. In this case, for each one of the 7 by 7 pixel windows,

the coherence value is calculated, from which the theoretical values of the mean and the variance, re-



84 CHAPTER 4. INTERFEROMETRIC PHASOR NOISE MODEL

a0 a1 s r

Mean -0.001 1.003 0.056 0.976<{ejφx}
Variance (σ2

vc
) 0 1.003 0.056 0.970

Mean -0.040 1.048 0.058 0.935={ejφx}
Variance (σ2

vs
) -0.039 1.046 0.058 0.935

Table 4.1: Least squares regression analysis of the statistics corresponding to the simulated interferometric

phase φx = π/4.

a0 a1 s r

Mean 0.002 1.002 0.056 0.984<{ejφx}
Variance (σ2

vc
) 0 1.005 0.056 0.762

Mean -0.057 1.062 0.070 0.913={ejφx}
Variance (σ2

vs
) -0.021 1.032 0.045 0.959

Table 4.2: Least squares regression analysis of the statistics corresponding to the simulated interferometric

phase φx = 0.

spectively given by Eqs. (4.11) and (4.29), are obtained. Table 4.1 shows the full agreement between

the real statistics and the theoretical values derived from the estimated coherence value. The values

corresponding to the least squares regression lines, a0 and a1, correspond to a complete mach between

actual and estimated values, for the mean as well as for the variances. Moreover, the deviation around

these regression lines presents low values. Finally, the coefficient of correlation r, which gives an overall

measurement of the correlation between real and theoretical values, presents very high values in all the

cases. Of especial interest is the coefficient of correlation corresponding to the regression analysis of the

variance values. Despite the approximation introduced in the value of the variance, a total agreement

with the actual values is obtained.

The accuracy and the effects of the approximation introduced for the values of the variances σ2
vc

and σ2
vs is now examined by two additional analysis. First of all, an interferometric phase of value

φx = 0 has been simulated for the complete range of coherences in a similar way as it has been shown

above. The interest on simulating the value of this phase lies in the fact that the actual values of σ2
vc

and σ2
vs present the maximum deviation with respect to the approximated values given by Eq. (4.29).

Therefore, a regression analysis is employed to compare the exact statistics obtained from the data and

the corresponding approximate values. Table 4.2 presents the results of this regression analysis. As it

can be observed, the correlation between the approximated values of σ2
vc and σ2

vs and their actual values

are high, as it can be deduced from the coefficient of correlation r.

A second analysis has consisted of simulating a 1024 by 1024 pixel homogeneous interferometric

phase with a coherence |ρ| = 0.7. In this case, the interferometric phase corresponds to a constant

slope producing a 400 pixel phase fringes. In this situation, the coherence calculation does not present

underestimation problems [113] and the interferometric phase φx contains all the possible values in the

range [−π, π). The actual mean and variance values are estimated by the usual sample estimators in a 7

by 7 pixel window. Fig. 4.8 presents the standard deviation values as a function of the mean value, for

the real part of the interferometric phasor. Also, the theoretical relations for the cases in which cos(φx)

is equal to 0, ±1, ±.5 and ±
√

3/2 are included. According to Fig. 4.8, it can be observed that the

actual value of σvc is almost independent of the phase value cos(φx). The curvature at the extremes

of the cloud of points is due to the dependence between Nc and σvc , since both terms depend on the

coherence value [169]. This fact helps to confirm the approximation of σ2
vc and σ2

vs as the mean value of

the variances σ2
v′1

and σ2
v′2

, Eq. (4.29), due to its similar values.
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Figure 4.8: Representation of the term σvc
as a function of the mean value Nc cos(φx) for a 1024 by 1024

interferometric phase with an slope producing 400-pixel fringes, with a coherence equal to 0.7.

Interferometric Phase Noise Model Validation: Real InSAR Data

In addition to the validation process presented within the previous section, the proposed noise model for

the interferometric phasor has been also tested over real InSAR data [170, 169]. The data employed in

this section correspond to a 1024 by 1024 pixel, X-band, single pass interferogram of Mt. Etna (Italy)

with an approximate baseline of 80 cm, see Fig. 4.9. These data were acquired by the E-SAR system,

operated by the German Aerospace Center (DLR).

ra
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0
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3

Figure 4.9: Mt. Etna X-band interferometric phase.

As it has been performed in the simulated data case, the interferometric phasor noise model is tested

by comparing the mean and standard deviation obtained from data, with the theoretical values derived

from the corresponding coherence value. The mean values, as it can be seen from Eqs. (4.25) and (4.26)

depend on the phase value φx. Hence, for the purpose of simplifying the analysis, only those cases in

which cos(φx) is equal to 0, 0.5 and 0.9 for the real part model and sin(φx) is equal to 0, 0.5 and 0.9

for the imaginary part model have been considered. The calculated statistics, as well as the theoretical

values given by the proposed model are presented in Fig. 4.10 for the real and imaginary parts of

the interferometric phasor. As it can be seen, the actual values completely fit the theoretical relation

between the mean and the standard deviation, confirming the validity and accuracy of the proposed

model to describe the behavior of the interferometric phasor.
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Figure 4.10: Interferometric phasor noise model validation over Mt. Etna data. Dashed lines represent the

theoretical relation between the mean and the variance values of the interferometric phasor components. The

clouds of points represent the real values calculated by the 7 by 7 pixel sample estimators. (a) Real part

interferometric phasor components. (b) Imaginary part interferometric phasor components.

4.2.4 Multilook Interferometric Phasor Noise Model

The measured interferometric phasor noise model given by Eq. (4.30) concerns noise description for single-

look data. Sometimes, on the contrary, SAR data are not available with this format but as multilook

data, which is obtained at the expense of spatial resolution. Hence, the ideas introduced throughout

this section with the objective to describe the noise processes for single-look data, are extended for the

description of the multilook interferometric phasor.

The pdf corresponding to the multilook interferometric phase can be derived from the complex

Wishart distribution W([C], N), see Eq. (2.181) at page 46. This distribution describes the statis-

tical behavior of correlated SAR images. Considering a non-diagonal element S1S
∗
2 of the covariance

matrix and integrating over the amplitude, the expression of the multilook interferometric phase is

pφ(φ) =
Γ(N + 1/2)(1 − |ρ|2)Nβ
2
√
πΓ(N)(1 − β2)N+1/2

+
(1 − |ρ|2)N

2π
2F1(N, 1; 1/2;β

2) φ ∈ [−π, π) (4.34)

where β = |ρ| cos(φ−φx) and N represents the number of looks. As for the single-look case, the previous

distribution has its mode at φx. It is important to notice, that the dependence of Eq. (4.34) on the

phase φ and on the mode φx is independent of the number of looks. Consequently, for the multilook case,

the measured interferometric phase can be still be expressed as the addition of an information bearing

component, φx, plus an independent noise term v, see Eq. (4.1) [94]. The effect of the number of looks

is to change the behavior of the noise term v in such a way that the larger the number of looks the lower

the noise variance around the phase mode φx, for the phase considered at the interval [φx − π, φx + π).

The main consequence of the maintenance of the additivity of the noise model for the interferometric

phase φx is, that, the introduced interferometric phasor noise model for single-look data, Eq. (4.30), is

equally valid for multilook data. However, the value of Nc, as well as the statistical properties of the

additive noise terms vc and vs need additional revision.

Appendix B presents the derivation of the parameter Nc for an arbitrary number of looks. Fig. 4.11

shows the evolution of Nc respect to the coherence and with respect to the number of looks. As it can

be observed, the parameter Nc is a quality measure of the phase, as it depends both on the coherence

and on the number of looks. For values close to one it indicates that phase is not affected by noise.

This is accomplished for data presenting a large coherence value or by increasing the number of averaged

pixels. In any case, given the number of looks, it is possible to recover the exact value of the coherence

by inverting the expression of Nc.
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Figure 4.11: Evolution of the parameter Nc as a function of the coherence |ρ| and the number of looks

N . The dashed line represents the coherence, whereas solid lines represent Nc for a given number of looks,

indicated by the number at each curve.

The number of looks also affects the behavior of the noise terms v′1 and v′2, see Sections 4.2.1 and 4.2.2.

By construction, these two terms present a mean equal to zero for any number of looks. As it has been

made evident for the single-look case, σ2
v′1

and σ2
v′2

present complex expressions difficult to handle. The

introduction of the number of looks within the interferometric phase difference pdf, Eq. (4.34), makes

the Gauss hypergeometric function to appear, which complicates even more the final expressions for σ2
v′1

and σ2
v′2

. For this reason, numerical integration techniques have been employed to obtain the values of

σ2
v′1

and σ2
v′2

as a function of the number of looks and the coherence, see Fig. 4.12. As presented by Eqs.
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Figure 4.12: Variances of terms v′
1

and v′
2

as a function on the number of looks (indicated by the numbers)

and the coherence. (a) Real part noise variance σ2

v′

1

. (b) Imaginary part noise variance σ2

v′

2

.

(4.23) and (4.24), the noise terms v′1 and v′2 are combined to form two new noise terms denoted by vc
and vs. The way v′1 and v′2 are combined depends on the interferometric phase value φx. Nevertheless,

the closeness of the values σ2
v′1

and σ2
v′2

for the whole coherence range, has made possible, for single-look

data, to get rid of this dependence by assuming vc and vs to have the same variance value and equal to

the mean value of σ2
v′1

and σ2
v′2

. In the case of multilook data this construction is still possible. Therefore,

the interferometric phasor noise model, derived in this section and given by Eq. (4.30), is equally valid

for multilook interferometric data.
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The only point to consider with this generalization is the fact that the larger the number of looks, the

larger the difference between the values of σ2
v′1

and σ2
v′2

, as it can be seen in Fig. 4.12. This fact makes the

approximated values of σ2
vc and σ2

vs to present a larger error with respect to the actual values. The reason

behind this behavior is the dependence of the noise terms vc and vs on the value of the interferometric

phase, see Eqs. (4.27) and (4.28). Therefore, the larger the number of looks, the larger the difference

between the behavior of the noise terms vc and vs, making necessary to take into consideration this

difference in the case a noise reduction technique is applied.

As a final conclusion, it can be observed from Figs. 4.11 and 4.12 that, even for a large number of

looks, the noise content at low-coherence areas is still high. This indicates that to extract information

from low-coherence areas is difficult. A way to extract this information could be to increase the number

of looks, whose main consequence would be an important loss of spatial resolution. Hence, in these

situations it is necessary to consider more advanced techniques in order to extract useful information

with a minimum loss of spatial resolution.

4.3 Wavelet Interferometric Phasor Noise Model

The aim of the previous section has been to introduce, and to validate, a new linear noise model for the

measured interferometric phasor. The availability of this noise model has made possible to identify noise

sources and to determine how they degrade the useful signal component. Consequently, this section is

focused on examining which is the best use of the interferometric phasor noise model from the point of

view of information extraction.

As it has been presented throughout Chapter 3, the wavelet analysis theory, and specially the discrete

wavelet transform (DWT), are powerful tools to analyze non homogeneous functions in a space-frequency

frame. The development which will be presented in this section shows the suitability of the wavelet theory

for the interferometric phasor noise problem. Previous to this analysis, it is valuable to present a brief

summary underlying the main reasons which justify the use of the wavelet theory in this case [169]:

· The wavelet transform is employed as it will offer the possibility to use the parameter Nc as an

important source of interferometric information. Indeed, this parameter will be shown to be valid

for the derivation of coherence information.

· The main advantage of SAR systems, compared with other remote sensing techniques, is the ca-

pability to obtain information from the Earth’s surface, whatever the weather conditions and the

day/night cycle, with a high spatial resolution. The main drawback, on the contrary, is the presence

of speckle noise which makes the obtention of useful information a not evident task. Owing to these

reasons, any process designed to reduce speckle noise has to maintain the spatial properties and

the details of the data, that is, it has to maintain the spatial resolution. The wavelet transform is

employed, therefore, to estimate the interferometric information with high spatial resolution.

This section concerns, therefore, the study of the interferometric phasor in the wavelet domain. First of

all, a one-dimensional model for the true interferometric phasor is derived, from which a one-dimensional

noise model for the interferometric phasor in the wavelet domain is presented. Subsequently, an extension

to the two-dimensional case is derived and analyzed.

4.3.1 True Interferometric Phasor Model

For natural scenes, the interferometric phase is a non-homogenous and complex signal containing in-

formation related with topography, but also spatial details as for instance man-made structures. This

complexity makes unattainable to derive a simple noise model for the interferometric phasor at the wavelet

domain. In order to obtain this model, a simplification of the interferometric phase, which makes possible

to perform a concise analysis about the interferometric phasor at the wavelet domain is introduced [170].



4.3. WAVELET INTERFEROMETRIC PHASOR NOISE MODEL 89

An interferogram is created as the complex conjugate product S1S
∗
2 , see Eq. (2.79) at page 26, where

S1 and S2 represent each one of the complex SAR images. At Section 2.2.4, it was shown that both

SAR images represent two frequency shifted versions of the terrain spectra. This shift, denoted by ∆ω

and called Wavenumber Shift [86], is proportional to the imaging geometry and to the local terrain’s

topography. Therefore, the interferogram’s Fourier transform corresponds, ideally, to a delta function

at the frequency ∆ω. At the space domain, the interferogram corresponds to a phasor at the frequency

∆ω. Hence, the interferometric phase difference φx, at the real plane, consists in a constant slope signal,

whose slope is proportional to ∆ω. In fact, the measured interferometric phase does not correspond to

a constant slope signal, but to a wrapped version within the interval [−π, π) as a consequence of the

periodic nature of the measured interferometric phase.

For the sake of simplicity, the one-dimensional interferometric phase difference signals are considered.

In such a case, the non-wrapped interferometric phase can be modelled as a constant slope signal

ζx[m] =
2π

N
m (4.35)

where m is the spatial coordinate and 2π/N denotes the slope 2, which represents the Wavenumber Shift

∆ω. The real interferometric phase difference φx is measured in a wrapped form, hence

φx[m] = mod{ζx[m] + π, 2π} − π (4.36)

where mod{·, 2π} refers to the modulus operation, in this case 2π-modulus. The signal φx[m] in Eq.

(4.36) is ideally represented by a sawtooth signal, whose values range from −π to π, with a N -pixel

period. Fig. 4.13a depicts a one-dimensional interferometric phase with a 25-pixel period. Fig. 4.13b

presents the Fourier transform amplitude of this interferometric phase, whereas Fig. 4.13c shows the

Fourier transform amplitude of cos(φx). The wrapped nature of the interferometric phase makes the

useful signal to occupy the whole spectra. On the contrary, the signal cos(φx) occupies only a small

portion of it. From a point of view of noise reduction, by assuming white noise, the signal φx and the

noise share all the spectra, making difficult to reduce noise without altering the useful signal. On the

contrary, it is easier to reduce noise in the case of cos(φx), which corresponds to the first harmonic of the

wrapped phase φx, since this signal shares only a small portion of the spectra with the noise. It can be

concluded, in the light of this result, that it is worthwhile to define a noise model for the interferometric

phasor [170].
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Figure 4.13: Example of an ideal one-dimensional interferometric phase with a 25-pixel period. (a) Wrapped

interferometric phase φx. (b) Fourier transform amplitude of φx. (c) Fourier transform amplitude of cos(φx).

For a one-dimensional signal, by considering Eq. (4.36), the true interferometric phasor can be

modelled as follows

ejφx[m] = ej
2π
N
m = cos

(
2π

N
m

)
+ j sin

(
2π

N
m

)
. (4.37)

2N > 2
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This model can be easily extended to the two-dimensional case by assuming the interferometric phase to

be separable [174]. In this case, considering m and n as the two spatial coordinates, the interferometric

phase can be obtained as φx[m,n] = φ1
x[m] + φ2

x[n]. Therefore, the interferometric phasor is obtained as

ejφx[m,n] = ej
2π
Nm

mej
2π
Nn

n =

[
cos

(
2π

Nm
m

)
+ j sin

(
2π

Nm
m

)][
cos

(
2π

Nn
n

)
+ j sin

(
2π

Nn
n

)]
. (4.38)

The quantities 2π/Nm and 2π/Nn denote the signal slopes, or Wavenumber Shifts in each spatial dimen-

sion.

As mentioned previously, the interferometric phasor model attempts to consider only the topographic

component of the interferometric phase. But, as it has been emphasized at the introduction, the main

advantage a SAR systems offers is precisely the capability to obtain spatial details. Therefore, it seems

that there is a contradiction between the simplicity of the proposed model and the complexity of the

signal being modelled. On the one hand, the simplicity of the model for the true interferometric phasor is

precisely what allows the interferometric phasor noise model to be modelled in the wavelet domain. On

the other hand, the impossibility of the model to consider spatial details is overcome by the capability

of the wavelet transform to consider and to represent these details.

4.3.2 One-dimensional Wavelet Interferometric Phasor Noise Model

Combining the true interferometric phasor model, Eq. (4.37), with the model for the measured interfer-

ometric phasor, Eqs. (4.25) and (4.26), it follows

<{ejφ}[m] = Nc cos

(
2π

N
m

)
+ vc (4.39)

={ejφ}[m] = Nc sin

(
2π

N
m

)
+ vs. (4.40)

Eqs. (4.39) and (4.40) represent the departure point to define a one-dimensional interferometric phasor

noise model at the wavelet domain. Until now, it has been assumed that the sole term containing

useful information is the true interferometric phasor exp(j2πm/N). Now, the modulated coherence

term Nc exp(j2πm/N) is considered as useful signal. The reason which explains this change is that the

wavelet transform will make possible to obtain directly the parameter Nc, which has been shown to be

proportional to the coherence |ρ|, see Section 4.2.1.

The DWT of a one-dimensional signal is obtained by recursively applying a two-branch filter bank

at the low-frequency branch, see Section 3.3.4 at Chapter 3, known as Mallat algorithm. At the wavelet

scale 2j , two sets of coefficients are available. The first set, {aj}j∈Z, contains the coarse approxima-

tion coefficients, which represent a low-pass version of the original signal at the frequency interval

ω ∈ [−2−jπ, 2−jπ). The second set, denoted by {dj}j∈Z, is the set of wavelet coefficients which con-

tain information about the original signal at the frequency interval ω ∈ [−2j−1π,−2−jπ)∪ [2−jπ, 2j−1π).

The iterative process to obtain these sets of coefficients is shown at Fig. 4.14. In each case the equivalent

filter is also given.

The properties of the wavelet coefficients depend directly on the wavelet filters h, g employed to

calculate the DWT with the Mallat algorithm. Therefore, in order to be independent of the wavelet

filter, an idealization of the transformation process is assumed by considering the Shannon family of

wavelets [169]. This family leads to the following bank of filters

h(ω) =

{ √
2 ω ∈ [−π/2, π/2)

0 otherwise
(4.41)

g(ω) =

{ √
2 ω ∈ [−π,−π/2) ∪ [π/2, π)

0 otherwise
(4.42)
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Figure 4.14: Equivalent iterated filters for the one-dimensional DWT at the wavelet scale 2j. (a) Iteration

process to derive the residue coefficients {aj}j∈Z and the equivalent filter, ĥT,j(ω). (b) Iteration process to

derive the wavelet coefficients {dj}j∈Z and the equivalent filter, ĝT,j(ω). In each case, the index T,j refers to

the equivalent filter response at the scale 2j.

where h(ω) and g(ω) refer, respectively, to a low-pass and a high-pass filter. These filters represent an

idealization of the frequency behavior of any wavelet filter, described by Eqs. (3.37), (3.38), (3.48) and

(3.49) at Chapter 3, for orthogonal wavelets.

Modulated Coherence Transformation

The DWT of the modulated coherence term, Nc exp(j2πm/N), is now obtained. The wavelet transform

of this phasor depends mainly on the value of the frequency 2π/N , since it determines in which wavelet

scale the transformed modulated coherence term is contained.

First, the case in which the Wavenumber Shift frequency 2π/N ∈ [−2−jπ, 2−jπ), i.e., it is concen-

trated at a coarse approximation band, is considered. For the particular wavelet scale 2j , the coarse

approximation coefficients {aj}j∈Z are non-zero, whereas the wavelet coefficients {dj′}j′∈Z for j′ ≤ j are

zero. Since the Shannon filters remove aliasing frequencies [23], the coarse approximation coefficients,

assuming the equivalent filter introduced at Fig. 4.14a, are obtained at the frequency domain as [141]

âj(ω) =
1

2j
ĥT,j

( ω
2j

)
â0

( ω
2j

)
. (4.43)

By considering the low-pass frequency Shannon filter, Eq. (4.41), the equivalent low-pass filter has the

frequency response

ĥT,j(ω) =
√

2
j
1[−2−jπ,2−jπ) (4.44)

where 1[a,b) represents the boxcar function, which equals one within the interval ω ∈ [a, b) and zero

otherwise. The signal a0[m] = Nc cos(2πm/N) represents the real part of the true interferometric phasor,

whose Fourier transform â0(ω) is

â0(ω) =
Nc

2

[
δ

(
ω +

2π

N

)
+ δ

(
ω − 2π

N

)]
. (4.45)

By introducing Eqs. (4.44) and (4.45) into Eq. (4.43) and calculating the inverse Fourier transform of

it, one can prove that the coarse approximation coefficients real part has the expression

<{aj[m]} =
√

2
j
Nc cos

(
2j

2π

N
m

)
. (4.46)

In a similar way, it can be demonstrated that the coarse approximation coefficients imaginary part follows

the expression

={aj[m]} =
√

2
j
Nc sin

(
2j

2π

N
m

)
. (4.47)
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The second case of interest corresponds to those situations in which the Wavenumber Shift frequency

has a value making 2π/N ∈ [−2−j+1π,−2−jπ) ∪ [2−jπ, 2−j+1π), that is, it is contained in a wavelet

band. In this situation, the coefficients {dj}j∈Z have a value different from zero, whereas the coefficients

{aj}j∈Z and {dj′}j′∈Z for j′ < j are zero. The wavelet coefficients {dj}j∈Z are obtained with the equivalent

processing chain depicted at Fig. 4.14b, hence, presenting a slightly different behavior with respect to

the coarse approximation coefficients. First of all, the iterated equivalent filter, denoted by ĝT,j(ω),

considering wavelet Shannon filters, has the expression

ĝT,j(ω) =
√

2
j
1ω∈[−2−j+1π,−2−jπ)∪[2−jπ,2−j+1π). (4.48)

Therefore, as in the coarse approximation coefficients case, the equivalent filter multiplies the useful signal

component by the term
√

2
j
. On the contrary, the subsampling by 2j introduces an additional modulation

process since its input corresponds to a band-pass signal [141]. Since the Mallat algorithm employed to

calculate the DWT performs a dyadic division of the frequency domain, the signal modulation produces

also an inversion of the signal spectra [141]. The real part of the wavelet coefficients corresponding to

the input signal Nc cos(2πm/N) for 2π/N ∈ [−2−j+1π,−2−jπ) ∪ [2−jπ, 2−j+1π), have the expression

<{dj [m]} =
√

2
j
Nc cos

(
2(π − 2j−1 2π

N
)m

)
. (4.49)

Equivalently, the imaginary part of the wavelet coefficients corresponding to the DWT of Nc sin(2πm/N)

follows

={dj [m]} =
√

2
j
Nc sin

(
2(π − 2j−1 2π

N
)m

)
. (4.50)

Interferometric Noise Phasor Transformation

In order to determine the noise model for the wavelet interferometric phasor it is necessary to determine

also the DWT of the noise terms vc and vs in Eqs. (4.39) and (4.40). These random processes, as well

as their respective DWTs, cannot be characterized by deterministic expressions. Therefore, the analysis

is performed by considering their respective spectral density functions.

At Section 4.2, a complete characterization of the first and second moments for vc and vs was pre-

sented. Therefore, by assuming non-correlated white noises, their respective spectral density functions

are

Gvcvc(ω) = σ2
vc1[−π,π) (4.51)

Gvsvs(ω) = σ2
vs1[−π,π). (4.52)

In the following, vwc and vws are referred as the coefficients at the wavelet domain corresponding to the

DWTs of the noise terms vc and vs, respectively. As it has been performed for the useful signal term,

the characteristics of these transformed noises are analyzed both, for the coarse approximation and the

wavelet bands, since both bands are characterized by different processing chains.

The first case concerns the analysis of the interferometric phase noise terms for the coarse approxi-

mation band at a given wavelet scale 2j . The coarse approximation coefficients, before the downsampling

process, are obtained as the product of the input signal with the equivalent low-pass filter ĥT,j(ω). There-

fore, considering v̂′c(ω) the product of v̂c(ω) with the filter ĥT,j(ω), the spectral density function of v̂′c(ω)

at the coarse approximation band of the wavelet scale 2j , has the expression

Gv′cv′c(ω) = Gvcvc(ω)|ĥT,j(ω)|2 = σ2
vc2

j1[−2−jπ,2−jπ). (4.53)

Since E{vc} = 0, but also, due to the fact that the wavelet coefficients have, by definition, a mean equal

to zero, see Eq. (3.17), the variance of v′c can be derived as follows

σ2
v′c

=
1

2π

∫ π

−π
Gv′cv′c(ω) dω =

1

2π

∫ π

−π
σ2
vc2

j1[−2−jπ,2−jπ) dω = σ2
vc . (4.54)
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The process after the downsampling, referred as vwc , due to the equivalence E{a2
j} = E{vwc 2} = E{v′c2},

is a random process with the same variance as the input process vc. By considering the decorrelation

properties of the DWT [23], it can be assumed that the noise term vwc has, therefore, the following spectral

density function

Gvwc vwc (ω) = σ2
vc1[−π,π). (4.55)

Equally, the spectral density function of vws , which corresponds to the coarse approximation coefficients

at the wavelet scale 2j of the noise term vs, has the expression

Gvws vws (ω) = σ2
vs1[−π,π). (4.56)

For a wavelet band, the process to derive the expressions of Gvwc vwc (ω) and Gvws vws (ω) is equivalent to

the case of the coarse approximation band, but considering the band-pass filter ĝT,j(ω) instead of the

low-pass filter ĥT,j(ω). The spectral density function at the output of the filter ĝT,j(ω) corresponds to

the spectral density function of a band-pass signals. If the noise term vc is now considered, the spectral

density function of the signal at the filter’s output v′c follows

Gv′cv′c(ω) = Gvcvc(ω) |ĝT,j(ω)|2 = σ2
vc2

j1[−2−j+1π,−2−jπ)∪[2−jπ,2−j+1π). (4.57)

By integrating Eq. (4.57), it can be found that also in this case σ2
v′c

= σ2
vc . Despite the downsampling pro-

cess introduces a modulation, the equivalence E{d2
j} = E{vwc 2} = E{v′c2} remains valid. Consequently,

the spectral density functions of the noise terms vwc and vws at any wavelet band, at any wavelet scale 2j ,

are

Gvwc vwc (ω) = σ2
vc1[−π,π) (4.58)

Gvws vws (ω) = σ2
vs1[−π,π). (4.59)

As it will be demonstrated later in this chapter, the wavelet transform affects the distribution of the noise

terms vc and vs. But, the most interesting results is that, despite the pdfs are changed, the power of the

noise terms vwc and vws remains the same as the power of the original domain noise terms, vc and vs.

The introduction of a simple model for the true interferometric phasor, see Section 4.3.1, has made pos-

sible to derive a noise model for the interferometric phasor at the wavelet domain. As it has been demon-

strated, the interferometric phasor’s behavior at the scale dimension is determined by the Wavenumber

Shift. If the value of the Wavenumber Shift is within the frequency range of a coarse approximation

band, for a given number of wavelet scales, the coarse approximation coefficient’s phase contains a coarse

and downsampled version of the original interferometric phase φx. On the contrary if the Wavenumber

Shift presents a value in the frequency range of a wavelet band, the phase of the wavelet coefficients

contain a band-pass filtered, downsampled and frequency inverted version of the original interferometric

phase φx, as a consequence of the band-pass signal downsampling. Independently of the position at the

scale dimension, the modulated coherence term is multiplied by
√

2
j
, which is induced by the wavelet

transformation process. It has been also presented that the DWT does not change the power of the

additive noise terms vwc and vws , despite their pdfs do. As the DWT is a linear process, the DWT of the

interferometric phasor at the original domain, Eqs. (4.39) and (4.40), has the following expression for

the complex coarse approximation coefficients

aj[m] =
√

2
j
Nc exp

(
j2j

2π

N
m

)
+ (vwc + jvws ) (4.60)

whereas the complex wavelet coefficients have the expression

dj [m] =
√

2
j
Nc exp

(
j2(π − 2j−1 2π

N
)m

)
+ (vwc + jvws ). (4.61)
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From these expressions it is possible to observe that the DWT increases the modulated coherence ampli-

tude and maintains the variance of the additive noise terms. Consequently, it can be clearly concluded

that the transformation process improves the quality of the useful signal component [169]. This improve-

ment can be measured by the Signal to Noise Ratio (SNR), which measures the ratio between the useful

signal power and the noise power [48]. For a coarse approximation band, considering the Wavenumber

shift 2π/N to be within the frequency range of it, the SNR is

SNRaj =
E{|

√
2
j
Nce

j2j 2π
N
m|2}

E{|vwc + jvws |2}
= 2j

N2
c

σ2
vwc

+ σ2
vws

= 2j
N2
c

σ2
vc + σ2

vs

. (4.62)

The SNR for a signal located at a wavelet band has the same expression

SNRdj = 2j
N2
c

σ2
vc + σ2

vs

. (4.63)

To sum up, the wavelet transformation process increases the SNR of the modulated coherence term at

the wavelet domain for a fixed value of Nc (a fixed coherence value), in such a way that the larger the

number of wavelet scales, the larger the improvement.

4.3.3 Two-dimensional Wavelet Interferometric Phasor Noise Model

SAR imagery consist in two-dimensional signals. Therefore, the one-dimensional interferometric pha-

sor noise model at the wavelet domain has to be extended for two-dimensional signals. This extension

has also to consider the particularities of the process employed to obtain the DWT, in this case, the

two-dimensional Mallat algorithm, see Section 3.3.5. This section, hence, regards the definition of the

two-dimensional noise model for the interferometric phasor at the wavelet domain, whose complex ar-

gument consists of a two-dimensional interferometric phase φx[m,n]. This new noise model is derived

by considering an ideal two-dimensional interferometric phasor signal, already introduced by Eq. (4.38),

since it allows to characterize, in a very efficient way, the interferometric phasor within the wavelet

domain. Finally, the noise model will be generalized by considering an arbitrary interferometric phase.

A complete description of the measured interferometric phasor at the original domain is obtained

by combining the separable two-dimensional true interferometric phasor model, Eq. (4.38), with the

interferometric phasor noise model Eqs. (4.25) and (4.26), from where it follows

<{ejφ}[m,n] = Nc cos

(
2π

Nm
m+

2π

Nn
n

)
+ vc (4.64)

={ejφ}[m,n] = Nc sin

(
2π

Nm
m+

2π

Nn
n

)
+ vs. (4.65)

In this case, the parameter Nc, as well as the additive noise terms vc and vs refer to two-dimensional

signals.

The two-dimensional DWT is calculated by applying, in a separable way, the one-dimensional DWT

to each one of the input signal dimensions. The difference with the one-dimensional DWT is that, at

any wavelet scale 2j , four sets of transformed coefficients, instead of two, are available. The first set,

{aj}j∈Z, contains a coarse approximation of the input signal. On the contrary, the three sets of wavelet

coefficients, denoted by {dHj , dVj , dDj }j∈Z, contain details of the input signal at different ranges of spatial

frequencies. In this case, the Shannon family of wavelet filters is also employed as a way to derive a

general expression for the interferometric phasor noise model in the wavelet domain, whatever the filter

employed to calculate the DWT. Fig. 4.15 presents an scheme of the two-dimensional DWT. At each

final branch, at a given wavelet scale 2j , the corresponding equivalent iterated filter is also depicted.
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Figure 4.15: Equivalent iterated filters for the two-dimensional DWT at the wavelet scale 2j. The index m

refers to the row dimension, whereas n refers to the column dimension.

Before to obtain the noise model at the wavelet domain for the interferometric phasor, the following

conventions are included. With respect to the ranges of spatial frequencies associated with the wavelet

filters and the wavelet scales, the next notation is introduced

ωL
j,k = ωk ∈ [−2−jπ, 2−jπ) (4.66)

ωB
j,k = ωk ∈ [−2−j+1π,−2−jπ) ∪ [2−jπ, 2−j+1π) (4.67)

where j refers to the wavelet scale coordinate, k ∈ {m,n} to the spatial coordinates, and L and B denote

low and band-pass frequencies respectively. On the other hand, the equivalent responses of the iterated

filters involved in the process to calculate the two-dimensional DWT are employed with the following

notation, see Fig. 4.15

ĥT,j(ωm, ωn) = ĥT,j(ωm)ĥT,j(ωn) = 2j 1ωL
j,m

1ωL
j,n

(4.68)

ĝHT,j(ωm, ωn) = ĥT,j(ωm)ĝT,j(ωn) = 2j 1ωL
j,m

1ωB
j,n

(4.69)

ĝVT,j(ωm, ωn) = ĝT,j(ωm)ĥT,j(ωn) = 2j 1ωB
j,m

1ωL
j,n

(4.70)

ĝDT,j(ωm, ωn) = ĝT,j(ωm)ĝT,j(ωn) = 2j 1ωB
j,m

1ωB
j,n

(4.71)

where the responses ĥT,j(ω) and ĝT,j(ω), corresponding to the Shannon wavelet filters, represent the

one-dimensional responses at each frequency dimension, ωm and ωn. Additionally, the responses of the

three wavelet filters, ĝHT,j(ωm, ωn), ĝ
V
T,j(ωm, ωn) and ĝDT,j(ωm, ωn) are expressed by ĝlT,j(ωm, ωn), where

l ∈ {H,V,D}.

Two-dimensional Modulated Coherence Phasor Transform

From Eqs. (4.64) and (4.65), which consist of the real and imaginary parts of the interferometric phasor

in the original domain, the first addend is taken, as it has been assumed for the one-dimensional case, as

the useful signal term. Consequently, these signals are considered the approximation coefficients a0[m,n],

at the wavelet scale 20 [23].

The first case to analyze is produced in those situations in which, given a wavelet scale 2j, the

Wavenumber Shift at the dimension ωm is within the range frequency ωL
j,m and the Wavenumber Shift at

the dimension ωn is also in a low frequency range, that is ωL
j,n. This produces the coefficients aj [m,n] to

contain information from the input true interferometric phasor, whereas the wavelet coefficients dkj′ [m,n],

for k ∈ {H,V,D} and j′ ≤ j are zero. The coarse approximation coefficients are obtained by filtering

the input signal a0[m,n] with the iterated two-dimensional low-pass filter ĥT,j(ωm, ωn) followed by a

downsampling by 2j in each dimension, as shown in Fig. 4.15. The input signal, defined as the product

of the true interferometric phasor by Nc, is modelled as a separable function, i.e. a0[m,n] = a1
0[m]a2

0[m],

see Eq. (4.38). Therefore, since the wavelet filter, as well as the input signal are separable functions,
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the value of the coarse approximation coefficients, at the wavelet scale 2j , is obtained at the frequency

domain as

âj(ωm, ωn) =
1

2j
1

2j
ĥT,j

(ωm
2j

)
ĥT,j

(ωn
2j

)
â1

0

(ωm
2j

)
â2

0

(ωn
2j

)
. (4.72)

The final expression of Eq. (4.72) can be obtained as a simple extension of the results obtained for

the one-dimensional case. Hence, the inverse Fourier transform of Eq. (4.72) is simply the product of

the inverse Fourier transforms at each spatial dimension. Considering the true interferometric phase

model Eq. (4.38) multiplied by the parameter Nc as the true interferometric phasor, the inverse Fourier

transform of Eq. (4.72), which corresponds to the coarse approximation coefficients, is [169]

aj [m,n] = 2jNc exp

(
j2j

2π

Nm
m

)
exp

(
j2j

2π

Nn
n

)
. (4.73)

Now, the interest is on obtaining the expression for the wavelet coefficients dlj [m,n] for l ∈ {H,V,D}.
In those situations in which the Wavenumber Shifts at each spatial dimension, for a given wavelet scale

2j , have values producing the two-dimensional Wavenumber Shift to be inside the frequency range of

one of the three wavelet bands at the scale 2j , Eqs. (4.69), (4.70) and (4.71), the wavelet coefficients

corresponding to this band contain information about the original signal. On the contrary, the coarse

approximation coefficients aj [m,n], the wavelet coefficients corresponding to the remaining wavelet bands

at the same wavelet scale 2j , and the wavelet coefficients dlj′ [m,n] for l ∈ {H,V,D} and j′ < j, are zero.

For an arbitrary wavelet band, the Fourier transform of the wavelet coefficients dlj[m,n], considering

separability for the input signal, has the expression

d̂lj(ωm, ωn) =
1

2j
1

2j
ĝlT,j

(ωm
2j
,
ωm
2j

)
â1

0

(ωm
2j

)
â2

0

(ωn
2j

)
(4.74)

where l ∈ {H,V,D}. As in this case also, all the components are separable signals, the expression of

the wavelet coefficients at the wavelet band dlj[m,n] can be obtained by employing the results deduced

for the one-dimensional case. In order to derive a compact expression for the wavelet coefficients, the

following convention for the phase is assumed

φLx [p] = 2j
2π

Np
p (4.75)

φBx [p] = 2

(
π − 2j−1 2π

Np

)
p. (4.76)

Therefore, the expression of the wavelet coefficients at any wavelet band l ∈ {H,V,D} and wavelet scale

2j follows [169]

dlj [m,n] = 2jNc exp(jφl1x [m]) exp(jφl2x [n]) (4.77)

where

l = H ⇒ l1 = L, l2 = B (4.78)

l = V ⇒ l1 = B, l2 = L (4.79)

l = D ⇒ l1 = B, l2 = B. (4.80)

A brief comparison between the expressions of the two-dimensional coefficients at the wavelet domain, Eqs.

(4.73) and (4.77), with the equivalent expressions for the one-dimensional case, Eqs. (4.46), (4.47), (4.49)

and (4.50), shows the complete similarity between them, except for the fact that the two-dimensional

wavelet transform introduces a larger multiplying factor, 2j instead of
√

2
j
.

Two-Dimensional Interferometric Phasor Noise Transform

In order to derive the complete noise model for the interferometric phasor at the wavelet domain, it is also

necessary to obtain the two-dimensional DWT of the additive noise terms vc and vs at Eqs. (4.64) and
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(4.65). Both noise components are assumed to be spatially non-correlated terms. Hence, their spectral

density functions are

Gvcvc(ωm, ωn) = σ2
vc1ωm∈[−π,π)1ωn∈[−π,π) (4.81)

Gvsvs(ωm, ωn) = σ2
vs1ωm∈[−π,π)1ωn∈[−π,π). (4.82)

The procedure to characterize these noise components in the wavelet domain, also denoted by vwc and

vws , is very similar to the one employed for the one-dimensional case. In the following, v′c and v′s denote

the signals at the output of the equivalent iterated filters presented in Fig. 4.15 for the signals vc and vs
respectively.

The noise power at the coarse approximation band, given by the coefficients aj [m,n], is obtained by

integrating the spectral density functions corresponding to the filtered additive noise terms v′c and v′s.
For the real part case v′c, the corresponding spectral density function has the expression

Gv′cv′c(ωm, ωn) = Gvcvc(ωm, ωn)|ĥT,j(ωm, ωn)|2 = σ2
vc2

2j1
ω
L
j,m

1
ω
L
j,n
. (4.83)

The noise power corresponding to it, v′c, is found by integrating the previous spectral density function

σ2
v′c

=
1

2π

1

2π

∫ π

−π

∫ π

−π
Gvw′

c vw′
c

(ωm, ωn) dωm dωn

=
1

2π

1

2π

∫ π

−π

∫ π

−π
σ2
vc2

2j1ωL
j,m

1ωL
j,n

dωm dωn = σ2
vc . (4.84)

Since the downsampling process at both dimensions of the input signal does not alter the noise variance,

one can conclude from the result obtained at Eq. (4.84), that the spectral density function of the

additive noise terms, for a coarse approximation band at the wavelet domain, considering the decorrelation

properties of the DWT, have the expressions

Gvwc vwc (ωm, ωn) = σ2
vc1ωm∈[−π,π)1ωn∈[−π,π) (4.85)

Gvws vws (ωm, ωn) = σ2
vs1ωm∈[−π,π)1ωn∈[−π,π). (4.86)

Since the noise terms vc and vs have white spectral density functions, see Eqs. (4.81) and (4.82), all the

coefficients at the wavelet domain are affected by noise whatever the useful signal content. Therefore,

also the transformed additive noise terms vωc and vωs properties have to be investigated for the wavelet

coefficients dlj [m,n], for l ∈ {H,V,D}. All the wavelet filters ĝlT,j(ωm, ωn), for a given wavelet scale 2j ,

have the same amplitude, equal to 2j , and occupy the same area over the two-dimensional frequency

space, which equals to (2π/2j)2. Considering these values, the variance of the real part additive noise

term, vc, after filtering it with any iterated wavelet filter, equals to

σ2
v′c

=
1

2π

1

2π

∫ π

−π

∫ π

−π
Gvwc vwc (ωm, ωn)ĝ

l
T,j(ωm, ωn) dωm dωn = σ2

vc (4.87)

for l ∈ {H,V,D}. This result is also valid for the imaginary part of the additive noise vs. Consequently,

at any wavelet band, the spectral density at the wavelet domain, corresponds also to Eqs. (4.85) and

(4.86).

As a brief conclusion of this section, it has been demonstrated that also in the case of the two-

dimensional case, the DWT does not alter the variance of the additive noise terms of the interferometric

phasor noise model, despite, as it will be presented, their distributions are.

From the results obtained in the previous two sections, one can finally derive the expression for the

two-dimensional interferometric phasor in the wavelet domain, whose model, for the original or spatial
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domain is given by Eqs. (4.64) and (4.65). Therefore, the complex coarse approximation coefficients

behavior, at any wavelet scale 2j , are described by the following model

aj[m,n] = 2jNc exp

(
j

2π

Nm
m

)
exp

(
j
2π

Nn
n

)
+ (vwc + jvws ) (4.88)

where the two-dimensional additive noises vwc and vwc are completely described by the spectral density

functions given by Eqs. (4.85) and (4.86). With respect to the expression of the noise model for the

wavelet coefficients, the different content of spatial frequencies at each one of the three possible wavelet

bands has to be considered. Taking the convention employed to describe the frequency content at the

wavelet domain, Eqs. (4.75) and (4.76), the discrete complex wavelet coefficients have the following noise

model expression

dlj [m,n] = 2jNc exp(jφl1x [m]) exp(jφl2x [n]) + (vwc + jvws ) (4.89)

where l refers to H, V or D respectively for the horizontal, vertical and diagonal wavelet detail bands.

As it has been assumed throughout this section, the first additive term of the noise model Eqs. (4.88)

and (4.89), which contains the true interferometric phase information as well as the noise parameter

Nc, is taken as useful signal. The effect of the two-dimensional wavelet transform can be quantitatively

measured by the Signal to Noise Ratio. If this ratio is calculated for the coarse approximation coefficients,

the following value is obtained

SNRaj =
E{|2jNce

j2j 2π
Nm

mej2
j 2π
Nn

n|2}
E{|vwc + jvws |2}

= 22j N2
c

σ2
vc + σ2

vs

. (4.90)

In the case of the wavelet coefficients dlj [m,n], for l ∈ {H,V,D}, one can demonstrate that the SNR has

the same value

SNRdlj
= 22j N2

c

σ2
vc + σ2

vs

. (4.91)

As it can be observed, the two-dimensional DWT increases the SNR by a larger factor than the one-

dimensional DWT does. One important conclusion which can be extracted from Eqs. (4.90) and (4.91)

is that the improving effect introduced by the two-dimensional DWT does not depend neither on the

signal location at the scale dimension nor on its spatial location.

4.4 Generalized Wavelet Interferometric Phasor Noise Model

As it can be observed at a glance, the topography of any natural surface is characterized by being ex-

tremely heterogeneous and containing numerous spatial details. These details can be completely natural

or, on the contrary, to be man-made structures. The SAR systems spatial resolution, typically in the

range of a few meters, makes SAR data to be sensitive to these details. As a result, the interferometric

phase difference signal does not only contain the topographic component, but also the information con-

cerning the spatial details. The immediate conclusion which can be extracted from these facts is that

the interferometric phase is a complex and very heterogeneous signal.

Within the first part of this chapter, Section 4.2, a general noise model for the measured interferometric

phasor has been obtained. This model has allowed to identify how the true interferometric phasor is

damaged by noise, without introducing any restriction on the signals to analyze. Subsequently, this model

has been employed to obtain a new noise model for the interferometric phasor in the wavelet domain.

This model is based, on the contrary, on assuming the interferometric phase to follow a particular signal

model, see Section 4.3.1. The two-dimensional interferometric phase φx[m,n] is assumed to be a separable

signal. Furthermore, each of its components, φ1
x[m] and φ2

x[n], are considered sawtooth signals with a

given period, and whose values range from −π to π. The aim of this model for the interferometric

phase has been to represent the topographic component. Beyond the fact that this model represents a
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simplification of the reality, it allows to obtain a noise model for the interferometric phasor in the wavelet

domain. Therefore, the wavelet noise model for the interferometric phasor has to be judged from two

different points of view. On the one hand, its simplicity has made possible to understand the behavior,

but also to characterize the measured interferometric phasor in this domain. But, on the other hand,

its effectiveness to represent real signals. Consequently, the interferometric phasor noise model in the

wavelet domain has to be generalized to consider any interferometric phase.

As shown, the nature of the noise model in the wavelet domain depends clearly on the properties of the

interferometric phase φx, since it determines the position of a given signal feature at the scale or frequency

dimension. The low-frequency components of the interferometric phase will appear concentrated on

the coarse approximation coefficients aj [m,n]. Those components with higher frequency content will

appear at the different wavelet bands dlj [m,n], for l ∈ {H,V,D}, depending on its spatial frequency

nature, in such a way that the higher the frequency content the lower the wavelet scale where they

will be concentrated. For the coarse approximation coefficients, the true interferometric phase in the

wavelet domain φwx contains a coarse version of the true interferometric phase φx, whereas for the wavelet

coefficients it represents a band-filtered and frequency inverted version of φx. The interferometric phasor

noise model expressions at the wavelet domain, Eqs. (4.88) and (4.89), can be merged to obtain a general

noise model as follows [169]

DWT2D{e jφ}[j,m, n] = 2jNc exp(jφwx ) + (vwc + jvws ). (4.92)

Let’s analyze each of the terms within the previous equation. The components vwc and vws are additive

noise terms for the real and imaginary parts of the coefficients in the wavelet domain. The variances

of these noise terms do not depend on the wavelet scale 2j , being equal to the variances of the noise

terms in the original domain, vc and vs, respectively. The term φwx , which is defined in the following as

the wavelet interferometric phase [169], contains information about the true interferometric phase φx.

The characteristics of this phase depend on the wavelet band 2j , but also on the wavelet scale aj [m,n]

or dlj [m,n], for l ∈ {H,V,D}. Finally, coherence information is included through the parameter Nc.

It has to be mentioned that the terms Nc, φ
w
x , vwc and vws also depend on the spatial coordinates m

and n. Therefore, the interferometric information given by Nc exp(jφwx ) is analyzed, due to the wavelet

transform nature, in a space-frequency frame.

The availability of a new noise model for the interferometric phasor in the wavelet domain has made

possible to analyze the signal, as well as the noise components, in the wavelet domain. This noise

model has been developed for the real and imaginary parts of the coefficients aj [m,n] and dlj [m,n], for

l ∈ {H,V,D}, at the wavelet domain. But, as it is analyzed in the following, the amplitude and the

phase of such coefficients can be related with more physical quantities than the real and imaginary parts

are. Some of the results which are going to be presented in the following have been already shown

throughout this section. Before to analyze the amplitude and the phase of the coefficients in the wavelet

domain, an analysis of these quantities in the space domain is presented. By simple observation of the

interferometric phasor noise model, Eq. (4.30), it can be deduced that at the space domain, the phase is

just the noisy interferometric phase. The way in which the noise model for the interferometric phasor has

been defined determines also that the amplitude is constant and equal to one. Therefore, no information

can be extracted from it.

In the wavelet domain, an expression for the intensity of the transformed coefficients can be derived

trough the generalized noise model for the interferometric phasor. The expression given by Eq. (4.92) is

valid for any transformed coefficient aj [m,n] or dlj [m,n], for l ∈ {H,V,D}. In this case, the difference

between the coefficients is on the information contained within the term Nc exp(jφwx ). The expectation

of the coefficient intensity at the wavelet domain, considering the useful signal and the noise components
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Figure 4.16: Effect of the number of wavelet scales for the DWT on the intensity of the coefficients at the

wavelet domain. In this case, the intensity is normalized by 22j. The numbers indicate the number of wavelets

scales j. The infinite indicates an infinite number of scales, hence, the intensity is directly equal to N2
c .

to be homogeneous, is found to be

E

{∣∣∣DWT2D{e jφ}
∣∣∣
2
}

= E
{
(2jNc cos(φwx ) + vwc )2

}
+ E

{
(2jNc sin(φwx ) + vws )2

}

= 22jN2
c + σ2

vwc
+ σ2

vws
= 22jN2

c + σ2
vc + σ2

vs . (4.93)

The previous equation shows the importance of the information included in the intensity of the coefficients

at the wavelet domain. The intensity depends on the variance of the additive noise terms σ2
vc and σ2

vs , but

also on the parameter N2
c , which embodies coherence information. The weight of the term N2

c compared

with the noise variances depends on the wavelet scale 2j , since it is multiplied by 22j . The important

consequence is that the larger the wavelet scale, the more negligible the noise terms with respect to N2
c .

This effect can be clearly seen in Fig. 4.16, which represents the intensity value normalized by 22j . What

it is surprising from this figure is that for a three-scale DWT, the effect of the additive noise terms can

be considered negligible in front of N2
c , and therefore, the intensity of the transformed coefficients can be

directly related with coherence information. This important consequence justifies, therefore, to consider

the parameter Nc as a useful signal components despite it is purely generated by the additive noise

component of the interferometric phase. Therefore, the wavelet transform, introduces an improvement of

the useful signal term, as it has been already shown at Eqs. (4.90) and (4.91), allowing to directly derive

coherence information from the signal in the wavelet domain [175].

The analysis of the intensity value of the coefficients at the wavelet domain, Eq. (4.93), needs

additional study. Going back, the value of Nc is given by Eq. (4.11), whereas the values of the noise

variances σ2
vc and σ2

vs are given by Eq. (4.29). From these expressions, one can observe that they depend

on the coherence value |ρ| in such a way that σ2
vc + σ2

vs ≤ 1 and N2
c + σ2

vc + σ2
vs = 1. As mentioned

in Chapter 3, one of the main properties of the wavelet transform is its capability to introduce space

resolution within the frequency domain. Furthermore, the coefficients in the wavelet domain located at

different wavelet scales, are related since they provide information, at different frequency ranges, of the

same spatial area [176,23]. In the case of the Mallat algorithm, a hierarchical relation can be established

among the coefficients at different scales, as it can be observed in Fig. 4.17.

Given the intensity value of a coefficient in the wavelet domain, Eq. (4.93), the values of σ2
vc and

σ2
vs depend on the coherence of the spatial location described by the wavelet coefficient. The maximum

value occurs for zero coherence areas, where σ2
vc + σ2

vs = 1. On the other hand, as given by Eq. (4.92),

the term 22jN2
c corresponds to the intensity of the wavelet interferometric phasor exp(jφwx ). As a result,

the intensity value at the wavelet domain is affected by this phasor, in such a way that the amplitude
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Figure 4.17: Hierarchical relation among the coefficients of the wavelet domain at different wavelet scales,

but containing information about the same area of the original image.

2jNc is modulated by the component exp(jφwx ). This effect produces that if a given coefficient in the

wavelet domain is in a space-frequency location where interferometric phase exists, its average intensity

is equal to 22jN2
c + σ2

vc + σ2
vs . On the contrary, the average intensity is only proportional to σ2

vc + σ2
vs ,

which depends, as explained, on the coherence value.

Summarizing, the intensity of a given wavelet coefficient has two components. The first one depends

on the variances of the additive noise terms, in such a way that the lower the coherence the higher the

variances. The second components is the intensity of the term 2jN2
c exp(jφwx ). Therefore, this intensity

term has to be understood as a modulated coherence, which is precisely modulated by the interferometric

phase φwx . Owing to the analysis capabilities of the wavelet theory, one can conclude that it will allow to

analyze the interferometric information, both coherence a phase, in a space-frequency frame.

The phase in the wavelet domain φwx has been defined as the wavelet interferometric phase. From the

generalized model for the interferometric phasor at the wavelet domain, Eq. (4.92), one can extract the

expression of the phase component for a given coefficient at the wavelet domain

arg
{
DWT2D(ejφ)

}
= arctan

(
2jNc sin(φwx ) + vws
2jNc cos(φwx ) + vwc

)
(4.94)

where arg{·} refers to the complex argument or phase. Observing Eq. (4.94), it can be noticed that

provided the value 2jNc to be high enough, the argument of the coefficient is basically the value φwx , that

is, the original wavelet interferometric phase information. Obviously, the type of information contained

in the phase depends on the wavelet band nature. On the other hand, if the value of the parameter

2jNc is close to zero, the argument of the coefficient is arctan(vws /v
w
c ). Owing to the fact that vwc and

vws are noise processes, the phase of these coefficients can be consider to contain only noise. Before to

conclude this section, it is worthwhile to summarize what has been presented until this point. In Section

4.2, a model for the interferometric phasor in the original domain has been proposed and validated. As

shown, this model, by itself, is not very useful since very little information can be extracted from it. The

noise model for the interferometric phasor has been transformed to the wavelet domain, where it has

been shown that relevant interferometric information can be extracted. Basically speaking, the DWT is

able to locate interferometric information, both coherence and phase, in a space-frequency frame. The

useful interferometric information at the wavelet domain has to be understood as a modulated coherence

information. Consequently, the overall behavior of the wavelet domain coefficients can be summarized

as follows [169]:

· The position in the scale dimension gives frequency information about the interferometric phase

signal.

· The position in the space dimension gives spatial location about the frequency content.

· The coefficient value gives two information in a local space-frequency area. If the intensity has a high

value, that is a high value of 2jNc, the phase contains information about topography and coherence

information can be extracted from phase. These coefficients are defined as signal coefficients. On

the contrary, if the intensity is low, that is, Nc is equal to zero, the phase contains only noise. These

coefficients are defined as noise coefficients.



102 CHAPTER 4. INTERFEROMETRIC PHASOR NOISE MODEL

4.5 Wavelet Interferometric Phasor Statistics

As stated before, Eq. (4.92) represents a noise model for the interferometric phasor in the wavelet

domain. This model can be employed for a wide range of data processing techniques, as for instance

noise reduction. In many cases, these techniques are also based on the knowledge of the data pdf. This

section concerns the definition of a proper statistical model for the interferometric phasor in the wavelet

domain, considering the particularities of the transformation process and the signal to transform [177].

The development of the interferometric phasor noise model in the wavelet domain was based on a

simple signal model for the true interferometric phasor. Let’s φx an interferometric phase corresponding

to a constant slope being described by Eq. (4.38). In the wavelet domain, the transformed terms cos(φwx )

and sin(φwx ) are deterministic. In addition, if the coherence is assumed to be constant, the statistical

properties of the noise terms vc and vs are homogeneous, producing Nc to be also constant. Under these

circumstances, the useful signal terms in the wavelet domain, 2jNc exp(jφwx ), is deterministic, being the

terms vwc and vws the sole components with a random behavior. It has been demonstrated that due to the

frequency properties of the measured interferometric phasor, noise affects all the wavelet bands whereas

the useful signal term is only concentrated in one scale. This situation allows to analyze noise separately

from signal.

The DWT is obtained as the convolution of the input signal with a filter bank. Therefore, the

transformed signal can be seen as a weighted sum. By the Central Limit Theorem (CLT) [72], the weighted

sum of identically distributed random variables are well approximated by a Gaussian distribution. The

noise terms vc and vs do not have a Gaussian distribution, but the terms vwc and vws , by the CLT, should

be approximately zero-mean Gaussian distributed with variance values given by Eqs. (4.21), (4.22) and

(4.29), respectively. This distribution is valid for those coefficients which contain only noise. On the

contrary, those coefficients affected also by useful signal contain the deterministic term 2jNc exp(jφwx ).

Hence, these coefficients can be seen as the addition of a deterministic term plus a zero-mean, complex

Gaussian distributed noise. Denoting the real and imaginary parts of a coefficient in the wavelet domain

by x and y respectively, and also considering σ = σvwc = σvws , the joint pdf of the real and the imaginary

part is

px,y(x, y) =
1

2πσ2
exp

(
−(x− 2jNc cos(φ

w
x ))2

2σ2

)
exp

(
−(y − 2jNc sin(φwx ))2

2σ2

)
. (4.95)

The decorrelation properties of the DWT allows to assume the real and imaginary parts to be uncor-

related. The joint pdf of the amplitude r and phase θ, can be obtained by introducing the following

equivalences r =
√
x2 + y2 and θ = arctan(y/x). Hence

pr,θ(r, θ) =
r

2πσ2
exp

(
−(r cos(θ) − 2jNc cos(φwx ))2

2σ2

)
exp

(
−(r sin(θ) − 2jNc sin(φwx ))2

2σ2

)
. (4.96)

The pdf of the amplitude r is found by integrating Eq. (4.96) over θ

pr(r) =
r

σ2
exp

(
−r

2 + 22jN2
c

2σ2

)
I0

(
r2jNc

σ2

)
r ∈ [0,∞). (4.97)

This pdf is known as Rice distribution after S. O. Rice derived it in the context of communication

theory [71]. The shape of the Rice distribution is governed by the SNR ratio, which in this case has

the expression 2jNc/σ. For low values of SNR, the Rice distribution tends to a Rayleigh distribution,

whereas for high values it tends to a Gaussian pdf, N (µ, σ2).

In the same way, the pdf of the phase can be found by integrating Eq. (4.96) over r. For simplicity

reasons, φwx is assumed to be equal to zero. Therefore

pθ(θ) =
1

2π
exp

(
−22jN2

c

2σ2

)[
1 +

2jNc

σ

√
π

3
cos(θ) exp

(
22jN2

c cos2(θ)

2σ2

)(
1 + erf

(
2jNc cos(θ)√

2σ

))]

θ ∈ [−π, π) (4.98)
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Figure 4.18: Effect of the number of wavelet scales j over the wavelet coefficients distributions. In all the

cases the quotient Nc/σ corresponds to a coherence equal to 0.6, which is approximately equal to 0.66. As

observed, the larger the wavelet scale the higher the mean amplitude and the lower the phase noise content.

(a) Amplitude distribution. (b) Phase distribution.

where erf(·) is called the error function3. This distribution is also controlled by the SNR ratio 2jNc/σ in

such a way that for low SNR values pθ(θ) is close to a uniform distribution whereas for high values it is

controlled by a Gaussian distribution.

This distribution model completely matches with the generalized noise model for the interferometric

phasor at the wavelet domain, developed at Section 4.4. In those cases in which the coefficients contain

useful information, that is 2jNc 6= 0, the amplitude contains information about coherence (within the

term Nc), whereas, the phase contains information about the wavelet interferometric phase φwx . The

higher the SNR ratio 2jNc/σ, the lower the noise content both in amplitude and phase. The most

important fact is that the SNR is controlled by the coherence value, by means of Nc/σ, but also by the

factor 2j which is introduced by the wavelet transformation process. At Fig. 4.18, one can observe the

effect of the number of wavelet scales for a coherence equal to 0.6.

For SAR images from natural scenes, access to the original data is not possible as a consequence

of speckle noise. Therefore, in order to test the statistical model which has been proposed, simulated

interferometric phase images are employed. The method to synthesize these images has been already

presented at Section 4.2.3. In this case, a simulated ramp producing 20-pixel fringes with a coherence

|ρ| = 0.6 has been generated. A 3-scale DWT, calculated with 20-coefficient Daubechies filters, has been

applied. In this case, useful signal appears concentrated on the coarse approximation band. Therefore, all

the wavelet bands are only affected by noise. A Kolmogorov-Smirnov (KS) [178] test has been applied to

test the Gaussian distribution of the wavelet coefficients real part. Also the kurtosis [178], as a measure

of Gaussian behavior is included. Table 4.3 presents the results of this test. As it can be observed for

all the wavelet bands, the significance levels for the KS test present high values. These results, together

with the fact that in all the cases the kurtosis values are close to 3, confirm that these coefficients can

be assumed to be described by a Gaussian pdf.

For the coarse approximation coefficients, the same analysis is applied. But, since in this case the

coefficients contain the signal due to the interferometric phase ramp, a KS test under the assumption of

a Rice distribution is applied. The significance level in this case corresponds to a value of 95, 27% with a

kustosis equal to 3.08. This result confirms that the amplitude of those coefficients at the wavelet domain

containing useful information are described by a Rice distribution.

3The error function is defined as erf(x) = 2√
π

∫ x
0

exp(−t2) dx
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Horz. det. band (H) Vert. det. band (V) Diag. det. band (D)

Kurtosis KS sig.lev. Kurtosis KS sig.lev. Kurtosis KS sig.lev.

Scale 21 2.98 87.93% 2.98 79.83% 2.94 98.34%

Scale 22 3.03 95.78% 2.97 86.08% 3.00 66.15%

Scale 23 3.08 82.87% 2.95 85.32% 3.00 82.87%

Table 4.3: Kurtosis and KS significance levels, under a Gaussian assumption, for the real part of the simulated

complex interferometric phase ramp at the wavelet domain.

In this case, the distribution tests have been applied on the real part of the data. The same level of

agreement is obtained for the imaginary part. Additional tests with different levels of coherence have also

been performed. In all the cases, the KS tests have shown that the real and imaginary parts of the wavelet

coefficients can be described by Gaussian distributions if they do not contain useful information, producing

the amplitude to be rayleigh distributed. On the contrary, in those cases in which the coefficients contain

useful information, the KS test have shown that intensity can be described by a Rice distribution. Finally,

it can be concluded that the noise terms vwc and vws can be considered to be Gaussian distributed noises,

N (0, σ2
vwc

) and N (0, σ2
vws

) respectively.

The topographic model assumed previously (i.e.: constant slope) does not take into account spatial

details, which are important, for instance, in urban areas. As no information is available about the

distribution of the topographic phase φx, an a priori model for the spatial details is not available in

the spatial domain. This drawback can be overcome in the wavelet domain. As mentioned before, the

DWT can be interpreted as a weighted sum of random variables. Therefore, DWT2D {Nc cos (φx)} and

DWT2D {Nc sin (φx)} can be supposed to be determined, as a first approximation, by a Gaussian pdf.

Test with real InSAR data show clear deviations from this behavior [177]. To take into account this

deviation from gaussian behavior, a double stochastic model is proposed for the wavelet coefficients x

px (x) =

∫ ∞

0
px (x|σ2) pσ2

(
σ2
)

dσ2 (4.99)

where px (x|σ2) represents the gaussian distribution of the wavelet coefficients and pσ2

(
σ2
)

is a generalized

gamma pdf modelling the variability of the variance through the phase image. px (x) can not be obtained

in a general form. Numerical integration of (4.99) indicates that px (x) can be assumed to be a generalized

gaussian pdf [177].

4.6 A Study Case: Mt. Etna (Italy)

As it has been presented throughout the development at the previous sections, it has been possible

to define a new noise model for the interferometric phasor in the wavelet domain. The availability of

such a noise model has allowed to derive diverse results, among which it is important to underline the

potential offered by the wavelet analysis theory to extract relevant interferometric information in the

wavelet domain.

The present section concerns the study of this set of results by employing a real interferometric

phase image. The phase image corresponds to a 512 by 512 pixel, X-band interferogram of Mt. Etna

(Italy) taken by the E-SAR system which is operated by the German Aerospace Center (DLR). The

corresponding interferometric phase can be observed at Fig. 4.19a. The phase image can be divided in

three main regions. The upper right-hand corner corresponds to a medium to high coherence area with

a given slope. The middle region contains a steeper topography with lower coherence. Finally, the down

left-hand corner corresponds to a shadow area, therefore only noise is present. In this case the coherence

is approximately zero as it can be seen at the coherence image, Fig. 4.19b. The DWT has been applied

to the interferometric phasor obtained from the interferometric phase of Mt. Etna. In this case, the

depth of the DWT corresponds to three wavelet scales, i.e.: 2j = 23, since noise effects are negligible in
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Figure 4.19: Mt. Etna Interferogram. (a) Phase. (b) Coherence.

the intensity of the wavelet coefficients. A 10 coefficient Daubechies filters have been employed to obtain

the DWT. Fig. 4.20 presents the different results in the wavelet domain. The first column corresponds

to the complete signal in the wavelet domain, whereas the second one corresponds to a zoom of the

third wavelet scale, which are from left to right and from top to bottom the bands a3[m,n], dH3 [m,n],

dV3 [m,n] and dD3 [m,n]. The first row contains the values of the real part of the coefficients, the second

one corresponds to the amplitude and the third one contains the phase of the wavelet coefficients.

At a first sight, it can be observed that useful information is concentrated on the lower frequency

wavelet bands, where it can be seen that the real part coefficients present larger values. This effect is

evident on the amplitude images, Figs. 4.20c and 4.20d. As it has been demonstrated theoretically, it

can be seen that intensity contains coherence information, whereas the corresponding phase information

is very similar to the original interferometric phase. From Fig. 4.20f, it can be seen that the coarse

approximation coefficients phase is proportional to the original interferometric phase. The middle part of

the interferometric phase image appears on the wavelet band dV3 [m,n], since it presents an steeper slope

which has the largest Wavenumber Shift at the whole image. The corresponding amplitude presents large

values confirming that the useful information at the wavelet domain has to be understood as a modulated

coherence. The phase information, in this case, does not correspond to the original interferometric phase

as a consequence of the downsampling and frequency inversion of a band-pass signal. Finally, those

wavelet coefficients which do not depend on the useful signal component present low intensities values

and the phase does not contain information at all.

Of special importance is the fact that it is possible to derive coherence information in the wavelet

domain, through the amplitude of the wavelet coefficients. If the original coherence presented in Fig.

4.19b is compared with the amplitude information in the wavelet domain given by Figs. 4.20c and

4.20d, one can observe the similarity between both quantities. For the wavelet images case, amplitude

corresponds to a division of the original coherence in a space-frequency frame, where the position in the

wavelet scale dimension is controlled by the interferometric phase.
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Figure 4.20: DWT of the interferometric phasor corresponding to the Mt. Etna data. The DWT consists

of three transformed scales calculated with the Daubechies wavelet filter of the coefficients. (a) DWT of the

interferometric phasor’s real part, <{DWT2D{ejφ}}. (b) Zoom corresponding to the third wavelet scale. (c)

Wavelet coefficients amplitude, |DWT2D{ejφxw}|. (d) Zoom corresponding to the third wavelet scale. (e)

Wavelet interferometric phase arg
{
DWT2D{ejφ}

}
. (f) Zoom corresponding to the third wavelet scale.
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4.7 Summary

This chapter concerns the study, analysis and validation of a noise model for the interferometric phasor,

that is, the unit amplitude phasor whose argument consists in the interferometric phase difference, both,

in the original and in the wavelet domain.

The interferometric phase additive noise model in the real plane, as a result of the Gaussian scattering

assumption, permits to separate, in the complex plane, useful information from those terms which contain

only noise. The detailed analysis of the probability density functions associated with the interferometric

phasor has allowed to establish a novel noise model for this phasor. The useful information term, which

has been defined as the modulated coherence term, contains the true interferometric phase, but also

the interferometric coherence information through the parameter Nc. This useful term is damaged by a

complex additive noise term, whose real and imaginary parts have a mean equal to zero and a variance

which decreases with increasing coherences. The noise model is tested quantitatively with simulated

and real interferometric SAR data. Finally, the validity of the model has been extended to multilook

interferometric SAR data.

Since interferometric SAR data are characterized by a high spatial resolution, it is necessary to remove

phase noise without destroying this important property. As explained in Chapter 1, the wavelet analysis

theory is employed as the mathematical tool to perform this task. Consequently, in order to derive an

optimum noise reduction algorithm, but also, to understand how the useful information is divided in the

wavelet domain, the interferometric phasor noise model has been translated to this new domain. The

process to obtain this model has made necessary to idealize both: the signal to transform and the discrete

wavelet transform itself. On the basis of these idealizations, it has been demonstrated that the amplitude

of the complex wavelet coefficients is basically determined by the interferometric coherence, whereas the

phase depends on the interferometric phase. The most important result is to prove that the wavelet

transform itself can be considered as a interferometric phase filter. This filtering process is obtained

at the expense of spatial resolution, but the relevant issue is that this spatial resolution loss can be

recovered in the inverse transformation process. Therefore, this loss does not represent a main drawback.

This improving effect introduced by the discrete wavelet transform, proved through the noise model, has

been ratified by the fact that the complex wavelet coefficient are described by a Rice probability density

distribution, when only topography is considered.

This set of new noise models have been derived on the basis of the interferometric phase signal to

contain only a well defined topography. This is not the case for real interferometric phases due to the

phase image details, which can not be modelled efficiently, since they represent a very heterogeneous

component. As it will be demonstrated in subsequent chapters, the wavelet transform’s capability to

represent these details makes not necessary to model them. One can conclude that the wavelet analysis

theory itself permits to bridge the gap between what the interferometric phase noise model represents

and what the real interferometric signal contains.
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