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realment una missió impossible. La veritat és que no tinc res que retreure a la meva doble
maternitat, és una de les coses més maques que et pot passar a la vida. Però sı́ que és veritat
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Per la gent del meu grup: Jordi, t’he d’agrair que mica en mica anessis ampliant el nostre
bigrup fins a convertir-lo en el que és ara: un conjunt de cracks!! Per l’Alfons. Gràcies
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Abstract

One of the most promising areas of biomedical and pharmaceutical research is computer
assisted molecular design, which is based on the modelization of the chemical entities re-
sponsible of the pharmacological activity and the search of mathematical models describ-
ing the relationship between the physicochemical properties and the biological activity of
such entities.

In general, the success of these techniques depends critically on the quality of the molec-
ular description and, in particular, on the fact that this description should be appropiate to
represent the molecular interaction phenomenon that we intend to describe. In this sense,
methodologies based on the molecular interaction potential (MIP) offer important advan-
tages with respect to other techniques. MIPs are interactions of the studied molecule with
one or several selected chemical entities and they are useful tools for the comparison of
series of compounds displaying related biological behaviours. As it will be shown here,
structure-activity studies benefit from a detailed comparative analysis of MIP distributions
of prospective drugs.

This project aims to develop tools for computer assisted molecular design based on
the characterization and comparison of MIPs of different compounds. To this end, the
molecular similarity program MIPSim (Molecular Interaction Potentials Similarity analy-
sis) (Cáceres et al., 16, 568-569, Bioinformatics, 2000) has been further developed and ap-
plied to different biological and pharmacological problems.

MIPSim analyzes and compares MIP distributions of series of biomolecules. One of the
objectives of MIPSim is to obtain automatic structural alignments of series of biomolecules
based on their MIP distributions. This can be used to stablish hypothesis about their rel-
ative orientation at the functional site, which is sometimes non-evident when only taking
into account structural features. MIPSim can evaluate MIPs by classical or quantum meth-
ods, thanks to its interfaces to programs GRID and GAMESS respectively.

This thesis includes four scientific studies which demonstrate the applicability of MIP
similarity through MIPSim to study molecules of biological interest. MIPSim has been used
to study alignments of biomolecules, to explore the electrostatic properties of enzymes and
catalytic antibodies, to help in searching MIP-based docking and finally, to perform a 3D-
QSAR study based on a MIP alignment.





Introduction

1.1 Biomolecular interactions: energetic considerations

Understanding how proteins work is critical to achieve an accurate understanding of bi-
ological processes(1). Proteins participate through virtually the whole cell machinery(2):
proteins named enzymes catalyze chemical reactions, regulatory proteins control gene ex-
pression, proteins named hormones accept/transmit intercellular signals, imuno proteins
recognize/bind other molecules, etc...

Underlying every biological process there is a multitude of proteins binding to and
modifying each other, forming complex frameworks and assemblies, and catalyzing reac-
tions. Most protein functions depend on their interactions with other molecules. These
may be other proteins, nucleic acids, solvent molecules such as water, metal ions or or-
ganic molecules. Life is, thus, based on molecular interactions(3). Three types of protein
interactions are particularly relevant(4):

• Protein-nucleic acid interactions. Proteins that bind to DNA and RNA mediate a
number of processes, including regulation of gene expression, gene transcription,
DNA replication, mRNA intron splicing or mRNA translation.

• Protein-small molecule interactions. The function of some proteins is to bind a target
molecule or a set of target molecules and to perform some action. Enzymes bind to
substrate molecules and then catalyze chemical reactions that would otherwise occur
too slowly to be biologically useful. Some proteins involved in cellular signaling bind
a signal molecule and undergo a conformational change leading to further signaling
or changes in cellular processes.

• Protein-protein interactions. Many proteins function by forming active complexes
with each other. Protein-protein interactions are also involved in, e.g., antibody-
antigen binding, large scale organismal motion and cell adhesion.

The strengths of protein-molecule interactions vary widely. In some cases, these are
very tight; in others, there are weak and short-lived(5). But the binding most often shows
great specificity, in the sense that each protein molecule can usually bind just one or a few
molecules out of the many thousands of different types it encounters. The substance that is
bound by the protein is referred to as a ligand for that protein (from the Latin word ligare,
meaning ”to bind”) and the protein is referred as receptor(5). Binding interactions define
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how well the compound attaches to the receptor by first being recognized as complemen-
tary to the receptor structure in shape and electronic structure.

The binding site of a protein consists of a cavity formed by a specific arrangement
of amino acids. The chemical properties of a protein depend almost entirely on its ex-
posed surface residues(5). In addition, protein-ligand binding may involve conformational
changes in the protein and/or the ligand. The binding usually occurs in the presence of
solvent, typically water, and interactions with solvent molecules must then be taken into
account(6). All this makes the study of biomolecular interactions by means of computa-
tional methods a hard task.

In order to stablish a connection between proteins and their interaction with ligands by
means of the underlying physico-chemical context we need accurate enough structural in-
formation on proteins and protein-ligand complexes. The characterization of the structure
and the energetics of molecular complexes is thus a key factor for understanding biological
functions.

1.1.1 Energy vs free energy

In order to study protein-ligand interactions it is important to start by defining some of the
terms related with our quantitative measure of the interactions.

We want to know about the relationship between the microscopic specific interactions
in the active site and the macroscopic properties that our system will produce in a real
situation inside a solution. In order to achieve such objective we need to characterize en-
ergetically the system and to pass from this energetic information for every conformation
of the system to values comparable to experimental data. This is done through the use of
statistical mechanics.

In this section we will briefly introduce the concepts of energy and free energy, which
in short refer to single (microscopic) or to average (macroscopic) properties of the system
being considered. This distinction is important for the proper treatment of the information
obtained from the methods developed and applied in this thesis.

1.1.1.1 Energy and entropy

The thermodynamic state (macroscopic state) of a system is usually defined by a small
set of parameters (thermodynamical variables), for example, temperature, T , pressure P ,
total energy E, number or particles N , volume V . If the thermodynamical variables are
independent they are called state variables. A function that can be expressed with state
variables is called a state function. The variation of a state function is independent of the
process, only depends on the initial and final state.

Energy is a fundamental quantity that every physical system possesses; it allows us to
predict how much work (W ) the system could be made to do, or how much heat (q) it can
exchange.

The first law of thermodynamics formalizes the general principle of physics that energy
is conserved. It says that the total inflow of energy into a system must equal the total
outflow of energy from the system, plus the change in the energy contained within the
system.
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∆U = q +W (1.1)

When a system gains energy by a thermal radiation or conduction as a result of a tem-
perature differential, it is absorbing a positive quantity of heat q. In chemistry, heat is the
amount of energy which is absorbed or released by a given chemical reaction. When the
system gains energy by other methods, for example, by the operation of external mechani-
cal forces, a positive quantity of work W is being done on the system (or negative quantity
of work is being done by the system).

The observed proportionality of heat and work for any cyclic process requires that the
total internal energy U is a state function. The increase in such energy when a system
changes from state A to state B is independent of the way in which the change is brought
about. It is simply the difference between the final and the initial energy,

∆U = UB − UA (1.2)

Internal energy involves energy on the microscopic scale, depending on a certain con-
figuration of the microstate. One have to take into account the kinetic energy of the linear
motion, rotational and vibrational kinetic energy and potential energy associated with the
intermolecular attractive forces(7).

The second law of thermodynamics says that in any reversible process (it is possible to
invent a means of restoring every system concerned to its original condition) the increase
in entropy ∆S of a system, or part of a system, is equal to the heat it absorbs divided by
the absolute temperature.

∆S = qrev/T (1.3)

where q is the heat received by the reservoir and T is the temperature. This property only
depends on the initial and final states, then it is also a state function.

In the case of a substance in internal equilibrium and subject only to changes brought
about by reversible exchange of heat with an external reservoir and reversible expansion
work against an external restraining pressure, the heat absorbed is T∆S and the work
absorbed is −P∆V .

Relationship between entropy and the number of microstates compatible with a certain
energy will be explained in the section 1.1.1.3.

1.1.1.2 The Gibbs free energy

Gibbs(8) in 1875 defined two new functions as follows:

Enthalpy:

dH ≡ dU + PdV + V dP (1.4)

Gibbs energy or free energy:

dG ≡ dU − TdS + PdV + V dP = dH − TdS (1.5)
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dH and dG are state functions since all the quantities entering their definitions are so.
Hence, for any constant-pressure process with no work other than that of volume change,
the enthalpy increase is exactly the heat absorbed. For this reason dH is sometimes called
the heat content.

Applying the definition of Gibbs free energy to an isothermal process:

∆G = ∆H − T∆S (1.6)

where ∆H is the enthalpy change and ∆S is the entropy change, both of them thermody-
namic properties.

The third law of thermodynamics says that for any substance in a perfect crystalline
state, the entropy is zero in the limit when T tend to zero. The third law provided a means
of obtaining the absolute entropy of each substance in a reaction. If such entropy values
are available for each reactant and each product, then ∆S may be calculated and combined
with a calorimetrically determined ∆H according to the equation above in order to obtain
∆G. Thus, the third law opened a great new opportunity for the prediction of ∆G.

Reaction free energy (Gibbs function) is the magnitude that describes the spontaneity of
thermic processes, that is, the tendency of molecular systems to associate and/or to react.
The Gibbs free energy predicts whether a process carried out at constant temperature T ,
and constant applied pressure P can occur spontaneously (∆G < 0), cannot occur sponta-
neously (∆G > 0) or it is in equilibrium (∆G = 0) under the prescribed conditions.

Let us now consider the process of forming an interaction or complex from two un-
bound biomolecules. In particular, we will consider from this point the binding process of
a protein and a small molecule. We can associate the theoretical free energy for the process
of binding, ∆Gbind, from the experimentally determined association constant (see section
1.1.2)) as:

∆Gbinding = −RTlnKa (1.7)

1.1.1.3 Boltzmann law and partition function

Predicting free energies represents a very important aspect in chemical, biological and
pharmaceutical sciences. Free energy calculations are generally formulated in terms of esti-
mating the relative free energy differences, between two equilibrium states. This is of great
importance in many applications, because it is normally the difference in the thermody-
namic properties between two such states that is of interest (reactants, products, transition
states, association and dissociation of molecules).

But before describing in detail how we can evaluate computationally the value of ∆G,
an introduction to statistical mechanics, the discipline that allows us to connect macro-
scopic thermodynamic properties with the microscopic behaviours of the matter, is re-
quired. Matter consist of a very large number of atoms and molecules and their behavior
follows statistical factors. Statistical mechanics(7) is a tool used to interpret macroscopic
properties of a system based on the statistical treatment of the microscopic states consistent
with those macroscopic properties.

A system is said to be in thermodynamical equilibrium if its macroscopic variables are
not dependent on the variable time. Even if a macroscopic system is in equilibrium, there
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exist fluctuations at the microscopic scale. A microstate is a microscopic state of a system
specified by coordinates and velocities of every particle. An ensemble is a collection of all
possible systems which have different microscopic states but have an identical macroscopic
or thermodynamic state. Depending on the macroscopic properties (N is the number of
particles, V the volume, E the total energy, µ the chemical potential, T the temperature) we
can describe different ensembles, among others:.

• microcanonical (isolated system): N , V , E fixed.

• canonical (isothermal system): N , V , T fixed.

• grand canonical (open system): µ, V , T fixed.

There exists a finite number of microestates compatible with every macrostate of the sys-
tem; this is the thermodynamical probability. Boltzmann hypothesis says that all accessible
microstates of a system have identical probability. Let us assume that we deal with a sys-
tem of noninteracting N particles. In order to make the problem tractable, we segreate the
N particles into groups of Ni particles, each of which has the same energy Ei. By using
probability theory one can arrive to the so-called Boltzmann distribution law:

Pi =
exp−βEi∑
i exp−βEi

(1.8)

whereEi is the total energy of every microstate i. Boltzmann distribution is the most proba-
ble distribution ofN molecules among all microstates subject to the constraints that volume
V and temperature T are constant (canonical ensemble). β controls the total energy by the
relative distribution over high and low energy states:

β =
1

kBT
(1.9)

and kB is the Boltzmann constant.1

The canonical partition function is:

Z =
∑

i

exp−βEi (1.10)

The partition function measures how the particles are distributed over the available energy
states. It gives an indication of the average number of states that are thermally accessible to
a molecule for a given temperature of the system. At very low temperatures, only the low
energy states are accessible. We define ground state (GS) as the state with minimum Ei.
Partition function Z is used to compute thermodynamical properties (the expected value
for an observable) knowing the distribution of microstates:

< X >=
∑

i

xiPi (1.11)

1

kB = R
NA

= 1.38x10−23J.K−1 = 3.30x10−27Kcal.K−1 where R is the ideal gas constant and NA is Avogadro
number
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where < X > is the mean of a macrostate variable (thermodynamic property). xi is the
microstate variable and Pi is the probability (see equation 1.8).

Now we are able to compute macroscopic properties knowing the microscopic vari-
ables. Once we know the macroscpic properties we can compute differences between them
in different states. For example, it is possible to estimate the relative free energy differences.

1.1.1.4 Potential energy surfaces and free energy calculations

We move now to develop the concepts introduced in the previous sections in the frame-
work of protein-ligand interactions.

Initially receptor and ligand are both solvated by water molecules. When they bind
together, they are stabilized by intermolecular interactions while other processes (solvent
rearrangement or restriction of degrees of freedom) may occur simultaneously. A useful
interpretative tool to understand how this process (and others) occurs is the definition of
a unique potential energy surface (PES) for the complete systems of protein, ligand and
solvent.

PES describes energy of a molecule in terms of its structure. It is generally used in
quantum mechanics and statistical mechanics to model chemical reactions and interactions
in simple chemical and physical systems(9).

Evaluation of free energies requires the exploration of all the points of the configura-
tional space of the system (of all the PES). This step is called sampling. Sampling all the
relevant conformations of a complex system can be challenging or even an unfeasible task
in general. However, it is possible to perform conformational analysis on such complex PES
by adopting some of the advanced algorithms that have been developed around molecular
dynamics (MD) or Monte Carlo (MC) techniques. Among the methods developed for the
calculation of relative free energies of binding we just cite here the most relevant:

• Free energy perturbation (FEP)(10) calculations are mathematical procedures to grad-
ually convert one chemical species to another in a thermodynamic cycle. The FEP
technique combined with MD or MC simulation is employed to evaluate reaction free
energy profiles. However, FEP calculations become quite complicated and computa-
tionally expensive for structurally dissimilar inhibitors and for calculation of absolute
free energies of binding.

• Linear Response Approximation(LRA)(11; 12) is used taking into account that the
electrostatic effects in solution have a linear response approximation to the changes
in polarity of the solute. This technique is very used in complexation energies of
ligands with receptors and enzymes.

• The Linear Interaction Energy method(LIE)(11; 13), which develops the LRA ex-
panding the linearity concept to the non-electrostatic interactions, only considers two
states: ligand solvated with water and ligand bind to receptor and requires no trans-
formation processes. The main idea is to consider constribution from electrostatic and
non-electrostatic interactions to the total binding energy separately. The polar part
can be treated using the electrostatic LRA while the non-polar contribution must be
calculated using an empirical formula calibrated against a set of experimental bind-
ing data.
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Both the quality of the PES and the amount of sampling performed are important fac-
tors in the quality of the evaluated free energies. However, even the most sophisticated
techniques show a difficult convergence of the results, which makes them of limited use
for the study of a big number of interactions at the same time, a typical case when we are
screening for compounds targetting a given receptor, for example.

1.1.2 Transition state theory used as framework for protein-small
molecule interactions

In this thesis we discuss interactions of small molecules with proteins. As we have intro-
duced before, proteins are molecules that can participate in different ways in biological
processes and, thus, their interaction with small molecules responds to different aims. As
ligands can activate or inhibit biochemical processes, it is necessary to, first, describe the
physicochemical framework we will use through the text, in order to clearly contextualize
all types of interactions. A useful framework for this discussion is provided by transition
state theory (TST) which we will describe shortly.

TST is one of the most successful theories in chemistry. It gives the framework of chem-
ical reaction rate theory and today it is the general name for many theories based in whole
or in part on it(14).

Classically, the fundamental assumption(15) of this theory is that there exist a hyper-
surface (called transition state TS) in phase space with two properties:

• it divides space into a reactant region and a product region, and

• trajectories passing through this ”dividing surface” in the products direction orig-
inated at reactants and will not reach the surface again before being thermalized
or captured in a product state. This second assumption is is often called the no-
recrossing assumption or the dynamical bottleneck assumption.

In addition to the fundamental assumption, TST invariably makes two further quantum
mechanical assumptions:

• The reactants are equilibrated in a canonical (fixed-temperature) or microcanonical
(fixed-total energy) ensemble.

• The reaction is electronically adiabatic (the Born-Oppenheimer separation of elec-
tronic motion from intermolecular motions is valid) in the vicinity of the dynamical
bottleneck.

TST suggests that as reactant molecules approach each other closely they are momen-
tarily in a less stable state than either the reactants or the products. In this less stable state,
the atoms rearrange themselves, original bonds are weakened and new bonds are partially
formed.

This increase in potential energy corresponds to an energy barrier over which the re-
actant molecules must pass if the reaction is to proceed. The arrangment of atoms at the
maximum of this energy barrier is called the activated complex or transition state and it
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is a transitory intermediate state between reactant and product. The combination can ei-
ther go on to form products or fall apart to return to the unchanged reactants. The energy
difference between the reactants and the potential energy maximum is referred to as the
activation energy. Activation energy is the excess energy over the GS that must be acquired
by a chemical system in order for the reaction to proceed.

The rate constant at a given temperature T is

kT = γ(T )
1
βh

exp−β∆G‡ (1.12)

The magnitude ∆G‡ is the free energy difference between the GS and the TS. The transmis-
sion coefficient γ is a correction term that stands for all the approximations assumed in the
TST. h is Planck constant.2 The most expensive and problematic task is the computation
of the free energy difference ∆G‡, which must be calculated along a predefined reaction
coordinate.

Using TST as our framework we can distinguish two types of interactions, between
a protein and a ligand: interactions related with the GS and interactions with the TS. Of
course, TS interactions will occur only in enzymes, but the generalization of these two
states to all types of proteins is a useful tool for the discussion in the following paragraph.

1.1.2.1 Ground state

Ground state (GS) is the lowest allowed energy state of an atom molecule in a physical
system. Here we understand GS as the reactant state. Protein interactions in GS usu-
ally happen between receptors and stable small molecules called ligands. Receptor is the
macromolecule of an organism that interacting with a ligand produces a biological effect.
In order to understand the biological meaning of this type of interactions we need to turn
to experimental methods.

Receptor is the macromolecule of an organism that interacting with a ligand produces
a biological effect.

We need to take into account two fundamental properties of a ligand in order to study
the receptor-ligand binding:

• Affinity: defined as the ability of a ligand to bind an specific receptor and form ligand-
receptor complex.

• Intrinsic activity: defined as the ability of the ligand to induce a biological effect after
binding.

Depending on these properties, we can define three types of ligands:

• Agonist: ligand with great affinity for the receptor and high intrinsic activity. It gen-
erates a response similar to the natural ligand.

2h = 6.626x10−34J.s.
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• Antagonist: ligand with affinity for the receptor but with no intrinsic activity (it
has not pharmacological response). These ligands diminish or inhibit, depending
on dose, the effect of agonists impeding the receptor-ligands union or impeding the
generation of the secundary reactions to form the complex receptor-ligands. These
two types of mechanisms of action are used to describe two types of antagonists:

– Competitive antagonists: agonist and antagonist compete for the union to the
same binding site at the receptor.

– Non-competitive antagonists: the agonist binds to a receptor in a different site
of the agonist, but this site is necessary for the agonist to make its effect.

• Partial agonist or mixed antagonist: it has high affinity for the receptor but its in-
trinsic activity is lower than the agonist or the natural ligand. It causes an agonist
or antagonist respose, depending on the concentration of pure agonist. Then, at low
concentrations of pure agonist, the partial agonist can increment the agonist effect,
while at high concentrations of pure agonist, the partial agonist act as an antagonist.

Ariens(16), Stephenson(17) and Furchgott(18) said that the effect of a ligand is propor-
tional to the number of complexes ligand-receptors and also depend on the intrinsic activity
of the ligand.

Ligand-receptor interaction follows the mass action law:

R+ L ⇀↽ RL (1.13)

Equation of association ligand(L)-receptor(R):

vass = [R][L]Kon (1.14)

where vass is the association rate, [R] is the concentration of receptors, [L] the concentration
of ligands and Kon the reaction constant.

Equation of dissociation ligand(L)-receptor(R):

vdiss = [RL]Koff (1.15)

where vdiss is the dissociation rate, [RL] is the concentration of ligand-receptor complexes
and Koff is the reaction constant.

At equilibrium, association rate is equal to dissociation rate.

[R][L]Kon = [RL]Koff (1.16)

Deffining dissociation constant Kd at equilibrium:

Kd =
[R][L]
[RL]

=
1

Ka
(1.17)

where Ka is the equilibrium constant for association.

Clark’s theory asssumes that(19):

• Ligand-receptor binding is reversible.
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• The effect of a ligand is proportional to the number of occupied receptors.

• The effect of a ligand is maximum when all the receptors are occupied.

Nowadays we know that this theory is not exactly the reality, but in certain experimental
conditions, these postulates are valid and they enable to extract quantitative conditions for
the interactions ligand-receptor. Assuming Clark’s theory(19) we can deduce the fraction
of occupied receptors:

[RL]
[Bmax]

=
[L]

Kd + [L]
(1.18)

where Bmax is the maximum association:

Bmax = [R] + [RL] (1.19)

Interpreting equation 1.18 we can compute the occupation at binding sites:

• If [L]=0; [RL]
[Bmax] = 0

• If [L]=Kd; [RL]
[Bmax] = 0.5→ 50% of occupation.

• If [L] →∞; [RL]
[Bmax] = 1→ 100% of occupation.

Then, Kd, the equilibrium dissociation constant of a ligand at equilibrium is the concen-
tration of a ligand that produces binding to 50% of receptors.

Printing [RL] in function of [L] we obtain figure 1.1.

Figure 1.1: Curve dose-response. [RL] in function of [L] results and hyperbolic function

This model is only valid assuming that all receptors are equally accessible to ligands.
Also it ignores any states of partial binding and assumes that binding is reversible. Also,
the model does not take into account cooperativity: binding of a ligand to one binding site
does not alter the affinity of another binding site.

In presence of competitive antagonists, the curve 1.1 moves to the right but there are
not changes in the slope or in the maximum effect. Adding more agonists always we arrive
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to maximum. In presence of non-competitive antagonists, the slope diminishes and also
the maximum effect.

In the case of agonists, we can define EC50 (effective concentration) as the concentra-
tion of ligands necessary to arrive to 50% of the maximum response. It measures the activity
of the ligand. For antagonist we define IC50 (inhibitory concentration) as the concentration
necessary to block 50% of the response.

Kd is more useful than EC50 or IC50, because it is independent on the system, they are
only dependent of the receptor and the ligand.

Another way to express activity is pIC50:

pIC50 = − log IC50 (1.20)

It is a measure for the binding affinity of the test compound to the receptors present in the
cell membrane. If pIC50 is high, activity is higher.

However, there is another measure for binding, free energy: ∆G,

∆G = −RTlnKa (1.21)

If activity is high, binding energy decreases exponentially.

Concerning to the experimental activity, high quality and reliable biological data is re-
quired. The methods to evaluate biological activity are increasing in complexity: in silico
methods, accounting for electronic and general molecular properties, in vitro methods,
which provide a satisfactory description at cellular level, and in vivo methods, suitable to
more detailed studies on specific organs and individuals. A precondition for the biological
activity of a molecule is a high affinity to the binding site.

1.1.2.2 Transition state

For reactions involving more than three or four atoms, knowledge of the complete potential
surface as a function of all 3N−6 nuclear coordinates (N is the number of atoms) is usually
out of the question, and the effort is most often focused on determining special features of
the PES: absolute and local minima, and saddle points that separate them.

Enzymes, catalyze biochemical reactions by binding tightly and specifically to their tar-
get molecules, called substrates, in the TS of the reaction. Almost every chemical reaction
in a cell is catalyzed by these kind of proteins. Enzymatic reactions are involved in most bi-
ological processes. Enzymes accelerate a great variety of metabolic reactions allowing cells
to carry out reactions that otherwise would not occur on biologically useful time scales.
There is, therefore, broad interest in understanding the origin of what makes enzymes so
efficients.

Many proposals have been put forward to rationalize the catalytic power of enzymes,
but some of these are problematic or difficult to analyze quantitatively. Although muta-
tion experiments have been extremely useful for identifying catalytic factors, they cannot
identify the mechanism of the catalysis uniquely.

Nearly a century ago, the lock-and-key description of enzyme action was formulated
by Emil Fischer(20). This simple metaphor conveys the basic principle of catalysis: that
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each enzyme possess and ”active site” tailored for recognition and stabilization of the rate-
limiting transition state of the reaction it promotes. Enzymes just bind tightly and specif-
ically to their target molecules called substrates. General statements suggest that the en-
zyme binds the TS better than the GS. But the real question is how this differential binding
is accomplished and which catalytic groups are responsible.

To discuss this rate enhancement we will consider a generic enzymatic reaction and the
corresponding reaction in water in Figure 1.2. To evaluate enzyme catalysis quantitatively,
we first must choose a good reference. The most obvious reference is the uncatalysed reac-
tion in water. So that the question becomes how the structured environment in the enzyme
accelerates the reaction relative to the same process in a solvent cage.

Figure 1.2: Comparing the free energy surfaces for an enzyme reaction and the correspond-
ing reaction in solution. The substrate is designated by L (ligand) and the reactive part ot
the enzyme by L’

The main question addressed is the origin of the difference between ∆g‡cat and ∆g‡w,
where ∆g‡cat and ∆g‡w are, respectively, the activation barriers of the catalyzed reaction in
enzyme and uncatalyzed reaction in water(21; 22). The fact that the activation barrier is
reduced by the enzyme was stated by Pauling long ago(23).

The immune system is a rich source of highly efficient catalysts form common organic
synthesis reactions. These catalysts are antibodies that have been identified in the immune
system using small molecules known as haptens. Antibodies are inmune responses to an
antigen with high specificity. They have high affinity and specificity binding to an antigen.
An antigen is a substance that provokes or is recognized by an antibody.

One generalized idea is that one could design antibodies that catalyze as enzymes cre-
ating TS analogs: stable molecules that simulates electronic structure of TS to get affinity.
These TS analogs could be used to elicit antibodies with catalytic and selective function.
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It is implicity assumed that a proper transition state analog (TSA) can elicit a catalytic an-
tibody (CA) with optimal binding to specific haptens. Then, we could create antibodies
that catalyze in a similar way as enzymes. This idea was reviewed in (24; 25). To induce
a binding site with a topology and stereoelectronic environment suitable for catalysis, a
stable molecule which mimics the structure of the short-lived transition state of the target
reaction is employed as a hapten. Transition state, ideally, it is the structure that a hapten
should mimic. TSA approach employs antigens that are designed and prepared as TSAs
of the target reactions. Alternatively, haptens carrying apoint charge have been employed
in order to recruit a complementary charged amino acid in the antibody active site to per-
form catalysis, which has been termed the ”bait and switch” strategy, since the haptens
designed according to this strategy serve as bait for eliciting catalytic functions during the
immunization process, which is then switched for the substrate.

By exploiting the highly specific antigen binding properties of antibodies, experimental
strategies have been devised to produce antibodies that catalyze chemical reactions. But
CAs produced by TSA present low rate enhancement as compared to the corresponding
enzymes. It appeared early on that antibody catalysts are limited in their capability to
accelerate chemical reactions as natural enzymes in terms of efficiency(26). Best catalytic
antibodies approach efficiency of the least efficient enzymes. Generating antibody cataly-
sis that achieve enzymatic efficiency remains a challenging task, which has long been the
source of a great interest both in the design of more effective haptens form immunization.

Abzymes (catalytic antibodies) are antibodies with variable regions possessing enzy-
matic activity. Also, a number of artifical enzymes or designer abzymes are being devel-
oped with any desired enzyme activity and specificity. There are two approaches used to
develop the artifical abzyme: produce antibodies against a stabilized transition state or use
molecular biology and site-directed mutagenesis.

Theozymes are theoretical catalysts, constructed by computing the optimal geometry
for transition state stabilization by model functional groups. They may be used to quan-
titate the relative stabilization of reactants and transition states by biological and non-
biological catalysts.

One of the main problems is elucidating the origin of the catalytic power of enzymes
is the difficulty of dissecting different energy contributions by direct experiments. The
most effective way of determining the origin of enzyme catalysis is the use of computer
simulation approaches. While conventional understanding of enzyme catalysis typically
focuses on transition state stabilization, other proposals suggest that substrate strain or
conformational effects are more important. There are two main groups of strategies to
explain how enzymes work:

• Ground state destabilitzation (GSD).
The idea that enzymes work by increasing their GS(27) free energy has been fre-
quently advanced(27; 28; 29). The most popular form of this proposal invokes nonpo-
lar active sites, i.e., substrate destabilization by desolvation(29; 30; 31; 32; 33). It says
that enzymes work by providing a non-polar environment that destabilizes highly
charged GSs. Other alternatives for GSD may involve repulsive electrostatic interac-
tions between the enzyme and the reacting region of the substrate; GSD by desolva-
tion or Circe effect (the utilization of attractive forces to lure a substrate into a site in
which it undergoes a transformation of structure). Near attack conformation (NAC)
can be considered as a particular example of GSD.
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• TS stabilization by electrostatic effects.

The idea that enzymes stabilize the TS primarily by electrostatic effects is consistent
with numerous mutation experiments, which have shown that mutations of residues
that stabilize the TS charge distribution in the native protein lead to increases in ∆g‡cat.
In reactions in water, the solvent must pay a significant reorganization energy to ori-
ent the polar environment towards the TS charges. In enzymes, the active site dipoles
associated with polar groups, internal water molecules, and ionized residues are al-
ready partially oriented toward the transition-state charge center(21; 34). Computer
simulation studies have shown that the most important catalytic factor is stabilization
of the TS by electrostatic preorganization of the enzyme active site, and that other ef-
fects are usually relatively small.

Non-equilibrium solvation, dynamical effects, quantum mechanical tunneling, entropic
effects and other factors also have been used to explain enzyme catalysis.

1.1.3 Molecular interaction potentials and fields

Molecular interaction potentials (MIP) are scalar properties showing the potentiality of a
chemical probe to interact with a given molecule. The probes typically reflect the chemical
characteristics of a binding partner. The simplest probe is a proton and in such cases the
potential is called molecular electrostatic potential (MEP, or MESP)(35). In more complex
cases the probe can be a small molecule or a chemical group. Molecular interaction fields
(MIF), on the the other hand, are vector quantities, and in this case one needs to worry
about their magnitude and direction. In the case of the electrostatic field E:

~E = −~∇V (1.22)

Which shows the relationship between the field and the potential. The electrostatic poten-
tial at field point ~r due to a point charge Q at the coordinate origin is:

V (~r) =
Q

4πε0
1
r

(1.23)

In our studies we have worked with MIPs, as we evaluate the capacity of interaction
between a target molecule and a chemical probe and not an actual (energy) interaction
between charges. In some studies both names are used indistinctively, MIP or MIF, and we
will treat them as synonymous in what follows.

MIP can be computed analytically by means of quantum mechanics methodologies (see
section 3.1.1.1 for more detailed information) or using the laws of molecular mechanics (see
3.1.1.2). Often, the target-probe energy is computed at regular intervals, inside a box that
surround the molecule or the regions to be studied.

MIP are used in two ways: on proteins they identify the regions where a ligand would
bind favorably whereas on ligands they allow to determine the kind of interaction that the
ligands can make with the receptor binding site.

By using computer graphics, MIP can be displayed as 3D isoenergy contours. Con-
tours of large positive energies indicate regions from which the probe would be repelled,
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while those of large negative energies correspond to energetically favorable binding re-
gions. These regions can be exploited in the design of ligands to bind with high affinity
and specificity to particular molecules.

1.2 Protein-ligand interactions in drug design

Most drugs that are nowadays used in human therapy interact with certain macromolecu-
lar biological targets, i.e. with enzymes, receptors, ion channels, and transporters. Molecules
evolve their activity through specific binding to a macromolecular receptor. One of the
main goals of drug research is to discover ligands that are predicted to interact favourably
and bind strongly to its receptor active site, without interfering with the operation of other
biomacromolecules in the living organism. Alternatively, this procedure can be reversed
to search for hosts that interact strongly with a given ligand. Whereas most drugs are lig-
ands, only a few ligands are drugs, because even small variations in chemical structure can
influence whether the compound will be curative, physiologically inert, or toxic.

The basic aspects of ligand-protein interaction may be summarized under the term
”molecular recognition” and concern the specificity as well as stability of ligand binding.
Many therapeutic agents act by binding specifically and tightly to a particular macromolec-
ular target such as a receptor protein or a nucleic acid. Nowadays, computer-aided predic-
tion and intelligent molecular design make a large contribution to the constant search of
improving protein inhibitors or activators.

Molecular modeling is one of the key techniques used during the drug discovery pro-
cess. In molecular modeling, a molecule is represented by a set of atoms and its coordinates.
This model is the starting point for molecular simulations in different conditions and for
the computing of molecular properties using molecular mechanics.

The goal of structure-activity modelling is analyse and detect the determining factors
for the measured activity for a particular system, in order to have an insight of the mecha-
nism and behaviour of the studied system. The factors governing the events in a biological
system are represented by a multitude of physicochemical descriptors, determined empiri-
cally in the past but, more recently, they can be calculated by using computational methods.
Interactions between a ligand and a molecule usually are controled by the molecular inter-
action potentials.

Drug design can be approached in one of two different ways: receptor-based or non-
receptor-based.

Receptor-based or direct approaches depend on the availability of 3D structure of the
target protein in order to simulate in silico and to evaluate the most favourable conditions
for interaction of ligands with their binding site. That opened an avenue to deriving com-
putational methods to predict the binding orientation of ligands inside protein cavities, a
process that is generally referred to as molecular docking. The molecular docking prob-
lem can be defined as follows: given the atomic coordinates of two molecules, predict their
correct bound association. In its most general form, no additional data is provided. In prac-
tice, however, additional biochemical information may be given, in particular knowledge
of the binding sites. In addition it also provided the structural basis for understanding the
principles of protein-ligand recognition at a molecular level and deriving scoring schemes
for the estimation of ligand binding affinities(36).
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Nonreceptor-based or ligand-based approaches are used when the 3D structure is not
known. Rational drug design must be achieved in an indirect way by developing an empir-
ical model to describe the structure-activity relationships (SAR) for a data set of bioactive
compounds. These model can be used to design new compounds with improved activity.

Of course, both approaches complement each other and can be combined-depending on
how much biostructure information is available or becomes available during the project.

1.2.1 Receptor-based drug design. Direct methodologies

The receptor-based approach is a design strategy for new chemical that applies when a reli-
able model of the receptor site is available. The 3D structures of protein complexes provide
many insights on protein interactions, allowing more rational approaches toward drug de-
velopment and the treatment of disease. Structural information from protein-ligand com-
plexes provides key structural information on their bioactive conformation and orientation
into the cavity.

The first phase is to determine the structure of the binding site using standard struc-
tural analysis from X-ray diffraction, nuclear magnetic resonance (NMR), homology mod-
elling, or calculations involving molecular mechanics and molecular dynamics techniques.
These structures represent snapshots of the protein-ligand recognition process and provide
a valuable source of information to further understand the rules that govern the interaction
between proteins and ligands(36).

In the absence of structural information, homology of the unknown receptor sequence
with known structures that have been identified through database searches may be a good
starting point. A homology model is a model of a protein, whose 3D structure is unknown,
built from, e.g., the X-ray coordinate data of similar proteins or using alignment techniques
and homology arguments. Then one have a model of the receptor site which identifies few
specific interactions that are responsible for the binding.

The availability of the 3D coordinates of a protein opened an avenue to deriving com-
putational methods to predict the binding orientation of ligands inside protein cavities, a
process that is generally referred to as molecular docking(37; 38; 39).

The next phase is to search databases for new ligands that may bind to the chosen re-
ceptor. The results of the database search may be used directly or modified to produce
candidates for further study. On the assumption that similar ligands will adopt similar
binding modes, a new wave of developments in docking methods(40; 41; 42; 43) permits
now the explicit incorporation of information extracted from protein-ligand complexes to
actively guide the binding mode of new compounds into protein cavities (enzyme or other
binding site), resulting in more accurate binding mode predictions. Prediction of the bind-
ing constants is usually performed using Gibbs free energy perturbation studies. Finally,
the candidates are synthetised and tested in the laboratory.

1.2.1.1 Experimental determination of biomolecular 3D structures

Knowledge of the detailed molecular architecture of proteins has been a source of insight
into how proteins recognize and bind other molecules, how they function as enzymes,
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how they fold, and how they evolved. Protein structure determines function, given that
the specificity of active sites and binding sites depends on the precise 3D conformation.

In the seventies, the development of X-ray crystallography and NMR provides the first
3D structures of the biological targets (hemoglobin and myoglobin (44; 45)), sometimes
as complexes with a ligand bound. This new source of structural information opened the
door to the structure-based drug design. In 1977 was created the Brookhaven database,
known as PDB (Protein Data Bank(46)), where one can find all the published experimental
structures. There is an increasing number of structures present in the PDB containing a co-
crystallized drug-like molecule bound to the protein cavity. There are special databases in
order to search these types of complexes, like PDBsum or Relibase. The number of proteins
with a known 3D structure is increasing rapidly, and structures produced by structural
genomics(47) initiatives are beginning to become publicly available.

NMR spectroscopy and X-ray crystallography are two of the most important experi-
mental techniques for elucidating the conformation of proteins.

NMR spectroscopy technique depends on the fact that certain atomic nuclei are intrin-
sically magnetic. A family of structures generated from NMR structure analysis indicates
the range of conformations for the protein in solution. At present, NMR spectroscopy can
determine the structures of only relatively small proteins, but its resolving power is certain
to increase. The NMR method is especially useful when a protein of interest has resisted
attempts at crystallization, a common problem for many membrane proteins.

X-ray crystallography provides the finest visualization of protein structure currently
available. This technique can reveal the precise 3D positions of most atoms in a protein
molecule. The use of X-rays provides the best resolution because its wavelength is about
the same length as that of a covalent bond. The technique requires that all molecules be
precisely oriented, so the first step is to obtain crystals of the protein of interest. This is
sometimes the great difficult to apply this methodology. There are still many proteins,
especially membrane proteins, that have so far resisted all attempts to crystallize them.

1.2.1.2 Computational prediction of target binding modes

If the target has pharmacological interest probably have been cristalized joined to several
ligands. In this case have have great information about the binding modes of different
ligands in the active site of the protein and we can align new ligands knowing the previous
information. We need to discover the biological interactions between target and ligand
(with mutagenesis experiments) and using molecular modelling programs to dock both
molecules. This type of programs try to join experimental data and molecular models in
order to find the best model.

On the other hand exist other automatic methods to explore possible binding modes
of new ligands to the target. This programs are called docking programs(37; 38; 39; 48).
Docking tries to predict the binding modes (whether a given conformation and orientation
of a ligand fits the active site of the protein) between the ligand and protein. The objective
of molecular docking is to obtain the lowest free energy of binding. This is of fundamental
importance in modern structure-based drug design.

Docking small-molecular-weight ligands to therapeutically relevant macromolecules
has become a major computational method for predicting protein-ligand interactions and
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guide lead optimization. From the pioneering work of Kuntz(49), numerous docking pro-
grams based on very different physicochemical approximations have been reported(37; 38;
48). They use an exhaustive exploration of different binding modes (posing), evaluating
the intermolecular interactions at every position. Finally the program obtains a collection
of solutions ranked based on a scoring function. This two steps have been solved in several
ways in every one of the knowed docking programs.

The biological activity of a ligand also depends on its flexibility. Molecules with several
rotatable bonds may adopt many different geometries. If a frozen conformation differs
from the bioactive conformation of the flexible lead or if the added atoms interfere with the
binding, biological activity will be more or less destroyed.

1.2.1.2.1 Sampling the orientation of the ligand in the receptor cavity. In this process
one have to determine whether a given conformation and orientation of a ligand fits the
active site. On finding binding modes target-ligand ideally one have to consider all the
possible combinations of translation and rotation degrees. Another important issue is to
consider the ligand flexibility and protein flexibility. This is a complex problem to solve in
a short computational time.

The two critical elements in a search procedure are speed and effectiveness in covering
the relevant conformational space.

Early docking methods were primarily based on the lock and key principle(20) and
thus focused mainly on the use of geometric criteria to assess the degree of shape com-
plementarity between ligand and binding site(49; 50). However, it was soon realized that
chemical complementarity between ligand and binding site had to be also taken into ac-
count in docking approaches to reduce the number of physically unrealistic solutions being
obtained on the basis of shape alone.

Nowadays there are programs that look for chemical and geometrical similarity be-
tween the ligand and a binding-site template (SLIDE) that define points for favorable
interactions(51) with the protein surface atoms. Another programs(43) use and idealized
active site. The construction is based on protein residues that constitute the active site.

On the beggining there were programs that did not consider any kind of flexibility in
the ligand and the proteins. Then it was a rigid docking(49; 50; 52; 53). The increase in
computer power has permitted recent docking methods to account for ligand flexibility(54;
55; 56; 57; 58; 59; 60; 61) and receptor flexibility(62; 63; 64; 65; 51; 66; 67; 68).

Treatment of ligand flexibility can be divided into three basic categories: systematic
methods (incremental construction(49; 54; 69), conformational search in databases); ran-
dom or stochastic methods (Monte Carlo(58), genetic algorithms(56), tabu search(70)); and
simulation methods (molecular dynamics, energy minimization). They fall into two basic
categories: those in which the ligand molecule is either incrementally built or flexed during
the search and those in which rigid precomputed conformers from a database are oriented
in the target binding site(71). The first category includes methods that employ Monte Carlo
sampling(72), Monte Carlo simmulated annealing (QXP, AUTODOCK 2.4, LigandFit(73)),
genetic and evolutionary algorithms(56; 74; 58; 75), systematic search techniques(69), and
incremental construction(76; 54; 49; 77). The second group includes rigid docking of flex-
ibases, in which individual conformers are separately docked and scored and only the
best-scoring conformer of each molecule is saved(78), and rigid docking of conformational
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ensembles(71) generated by overlaying related conformers.

The treatment of protein flexibility is less advanced than that of ligand flexibility. Ac-
counting for protein flexibility in protein-protein docking algorithms is challenging, and
most algorithms therefore treat proteins as rigid bodies or permit side-chain motion only,
as implemented in GOLD(56). Another method of treating protein flexibility is to use en-
sembles of protein conformations (rather than a single one) as the target for docking(63).
Another strategy is to sum different conformations ot the target in a unique difuse confor-
mation, like it is implemented in FlexX(54) or AUTODOCK(58). More recently have been
introduced programs that include partially protein flexibility like QXP(72).

1.2.1.2.2 Scoring ligand-receptor interaction. A search algorithm may produce an im-
mense number of solutions, unmanageable for any practical need. The purpose of the
scoring function is to discriminate between correct native solutions with low RMSD from
the crystal complex and others within a reasonable computation time.

Scoring functions(79; 80) applied to single conformations of the docked complex is a
more empirical approach to affinity prediction. They are generally based on identifying
individuals points of intermolecular interaction such as hydrogen bonds, ionic interactions
and hydrophobic interactions, as well as entropy estimates, in a given conformation of the
receptor-ligand complex and assigning a binding energy score to each contributing factor.
Finding the binding mode and ranking the solutions involve scoring. The pose score is
often a rough measure on the fit of a ligand into the active site. To determine the rank
score is necessary to estimate binding energies. Docking methodologies are designed to
predict the biological activity through the evaluation of interactions between compounds
and potential targets.

The scoring function should be fast enough to allow its application to a large number
of potential solutions and, in principle, effectively discriminate between native and non-
native docked conformations.

Free-energy simulation techniques have been developed for quantitative modeling of
protein-ligand interactions and the prediction of binding affinity. However, these expen-
sive calculations are impractical for the evaluation of large numbers of protein-ligand com-
plexes and are not always accurate. Scoring functions implemented in docking programs
make various assumptions and simplifications in the evaluation of modelled complexes.
Docking methodologies try to estimate binding energy between ligand and receptor at ev-
ery position. Essentially, three types or classes of scoring functions are applied: force-field-
based, empirical and knowledge-based scoring functions.

A force-field is a function expressing the energy of a system as a sum of diverse molec-
ular mechanics therms. Force fields usually quantify the sum of two energies, the receptor-
ligand interaction energy and internal ligand energy. Interactions between ligand and re-
ceptor are most often described by using vdW and electrostatic energy terms. Standard
force-field scoring functions have major limitations, because they were originally formu-
lated to model enthalpic gas-phase contributions to structure and energetics, and no not
include solvation and entropic terms. There are docking programs that incorporate a full
force field, like GROUP (included in GRID(81)) or simplified force fields as in QXP and
AUTODOCK which use AMBER(82). Also CHARMM(83) used in DARWIN(84).

The knowledge-based scoring functions estimate free energies of molecular interactions
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from databases(85; 86; 87; 88). The approach essentially involves converting inter-atomic
distance distributions found in protein-ligand complexes into pair-potential functions for
the different pairs of protein-ligand atom types using statistical mechanics. An estima-
tion of the free energy of interaction betweeen a ligand and a protein is then obtained by
adding the contributions from protein/ligand atom pairs within a certain distance. An ex-
ample is Potential mean force (PMF)(85) and DrugScore(86). The major attraction of many
knowledge-based scoring functions is their computational simplicity, which permits effi-
cient screening of large compound databases. Furthermore, such a statistical approach
implicitly incorporates physical effects not yet fully understood from a theoretical point of
view, for examle, solvation and polarization.

The most rapid methods for estimating binding free energies are so-called empirical
scoring approaches. These are based on simple energy functions ((89; 69; 90) or on the fre-
quency of occurrence of different atom-atom contact pair in complexes of known structure
(85; 86), respectively. In statistical potentials we can assign a value to every interaction us-
ing empirical parameters. Then we sum that values for all the interactions and we obtain
an empirical estimation of binding energy. This methodology is used in FlexZ(54). Pose
clustering(54) is a method from pattern recognition applied to ligand orientation based on
physico-chemical interactions. We have to differentiate between empirical (statistical po-
tentials) and knowledge-based scoring functions. The term ”empirical scoring function”
stresses that these quality functions approximate the free energy of binding, as a sum of
weighted interactions that are described by simple geometrical functions of the ligand and
receptor coordinates. These approaches are very fast, but usually at the cost of accurancy.

Most empirical scoring functions are calibrated with a set of experimental binding affini-
ties obtained from protein-ligand complexes. The docking problems are not solved yet
and none of the currently available programs are perfect in predicting the correct binding
modes(91).

1.2.2 Ligand-based drug design. Indirect methodologies

1.2.2.1 Correlating structural properties and biological activity

Ligand design is the design of ligands using structural information about the target to
which they should bind, often by attempting to maximize the energy of the interaction.
Often enough, no structural information on a particular receptor protein is available. How-
ever, frequently a considerable number of different ligands is known together with their
measured binding affinities towards a receptor under consideration.

We assume that similar interaction capabilities are related with similar biological activi-
ties. Ligand-based design starts with a group of ligands that have known binding constants
or biological activities. Structurally similar compounds with high activity, with no activity,
and with a range of intermediate activities are required. The first phase is to determine the
structure of the ligands. The next phase is to generate a query for database searching.

In drug design it is attempted to correlate structural molecular properties (descriptors)
of drug molecules with their biological activity (i.e. physicochemical properties, biological
activities, toxicity, etc.) for a set of similar compounds, by means of statistical methods. As
a result of this methodology called Quantitative Structure-Activity Relationship (QSAR),
a simple mathematical model that connects experimental measures with a set of chemical
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descriptors for a set of compounds is stablished. The parameters used in QSAR should be
meningful, and easily interpretable, in physical terms. The model derived should have a
good predicitive capabilities as possible to predict the studied biological or physicochem-
ical behaviour for new compounds. In QSAR there is no underlying theory about the re-
lationship between activity and structure. For this reason, QSAR models are empirical
models which provide an approximate solution. It is important to remark the difference
between correlation and causation. A satisfactory QSAR correlation dos not mean that a
particular descriptor causes the efficient action of a compound. The lack of evidence on
causation might be complemented by additional information on the various mechanisms
leading to the biological activity. QSAR techniques include from chemical measurements
and biological assays to the statistical techniques and interpretation of results.

Since the introduction of the Hansch equation(92) in the 1960s, the number of algo-
rithms available for quantitative structure activity (QSAR) studies has increased explo-
sively. Since long, medicinal chemists used this concept to modify the structures of biolog-
ically active compounds(93; 94; 95; 96). QSAR attempt to find what features of a molecule
affect its activity and what can be modified to enhance their properties. Hence, for a series
of biologically active molecules, any systematic variation in chemical structure from one to
another is expected to be reflected in a proportional analogous variation in the biological
response.

QSAR expresses a multivariate mathematical relationship between a set of physico-
chemical properties or descriptors xi, and a experimental function or biological activity,
yi:

yi = xibi + ei (1.24)

where bi are the linear slopes that express the correlation of the particular molecular prop-
erty xi with the activity yi of the compound i and ei is a constant.

The slopes and the constant are often calculated using regression analysis. The indepen-
dent variables, so-called descriptors, are usually physicochemical properties that describe
some aspects of the chemical structure, which may be either experimentally or theoreti-
cally determined. The improper choice of independent variables can result in poor QSAR
models.

Many mathematical descriptions have been used in drug design, and more specifically
in the field of quantitative structure-activity relationship (QSAR). Goodford(81) introduced
the concept of molecular interaction field (MIF) and the work of Cramer et al.(97) who in-
troduced the 3D chemical structure into the description of the compounds and hence devel-
oped the concept of 3D-QSAR, QSAR based on 3D models because they allow for the simu-
lation of directional forces:hydrogen bonds, metal-ligand contacts, polarization effects, and
the interaction between electric diples. Three-dimensional quantitative structure-activity
relationships (3D-QSAR) involves the analysis of the quantitative relationship between the
biological activity of a set of compounds and their 3D properties using statistical correlation
methods. These new techniques, which introduce 3D parameters in the description of com-
pounds, allow calculations extensive to the space surrounding the molecules and require
the alignment of the molecules to a common pharmacophore (a 3D space representation of
the collection of common functional groups within the group of active compounds, com-
plementary to the geometry of the receptor site).
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Molecular interaction potentials have been used in 3D-QSAR. MIP identify regions
where certain chemical groups can interact favorably, suggesting positions where a lig-
and should place similar chemical groups. Regions showing favorable energy of inter-
action represent positions where groups of a potential receptor would interact favorably
with the ligand. Using different probes, one can obtain for a certain ligand a set of such
positions which defines a virtual receptor site. This abstract entity defines an ideal comple-
mentary site for a certain chemical compound and represents its potential ability to bind a
biomolecule.

In summary, the objectives of QSAR models are to allow the prediction of biological
activities of untested and sometimes yet unavailable compounds, and to provide insight
of which relevant and consistent chemical properties are determinant for the biological
activity of compounds.

These indirect methodologies have serious limitations. First, the ligands must bind to
the target protein at the same location and preferably adopt the same binding mode. Sec-
ond, models generated on the basis of molecular superpositions allow only to interpolate
between the data, i.e., a region of space which is not occupied by any of the compounds
cannot be judged. Finally 3D molecular models are usually restricted to low energy con-
formations since the number of accessible conformers of a molecule increases dramatically
with the conformational energy tolerated.

1.2.2.2 Biomolecular similarity

Assuming conservation of the binding mode, when a variety of substructures appears in
a particular site of a series of active molecules for a particular target, they are normally
a reflection of the characteristics of the chemical substituents allowed in that particular
protein site. This property is commonly referred to as bioisosterism(98; 99). Since they
interact with the same protein environment, bioisosteric chemical fragments should have a
certain degree of similarity.

When an active compound is already known, similar compounds(95) can be searched in
a database hopping that such compounds will have similar biological properties. Similarity
methods have the ability to score target ligands on the basis of their relative superposition
with respect to a reference ligand. The main applications are selection of compounds with
similar activity to a given compound (similarity analysis), derivation of Structure-Activity
Relations (SARs). Similarity analysis is also used in a reverse way to select the most diverse
subset (diversity selection) from a given set of compounds. Sometimes exists a similarity
paradox, where a small change in the chemical structure leads to a drastic change in the
biochemical activity.

Similarity between chemical compounds is perceived often intuitively based on expert
judgement: similar backbone and almost the same functional groups or atoms.

When similarity is measured with respect to some feature, this feature has to be rele-
vant to the activity of interest. Some measures of similarity are more relevant than others. A
vast number of methods of quantitative molecular structure description (topology, shape,
physicochemical properties, quantum chemical descriptions, etc.) and comparison (simi-
larity coefficients) have been proposed and applied to date.
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1.2.2.2.1 Descriptors used in biomolecular similarity calculations. There are different
features considered for quantifying the similarity between molecules:

• Topology(100; 101) These methods are based on representation of chemical com-
pounds as molecular graphs and limited to extraction and processing of 2D topo-
logical information (molecular fingerprints). The simplest descriptors are counts of
individual atoms, bonds, rings, pharmacophore points, degree of connectivity indices
between atoms(102). Two-dimensional fragment descriptors (atom-centered, bond-
centered, ring-centered fragments) have been studied in detail(103). The simplest
of distance-based descriptors are distances between atoms or between functional
groups. Angle-based descriptors are based on generalized valence angles and tor-
sion angles. Potential pharmacophore points are a generalized mix of distance and
angle descriptors(104).

Figure 1.3: The figure shows the representation of a chemical graph of camphor

• Physicochemical properties(56; 105; 106; 107) Physicochemical properties are macro-
scopic descriptions of the substances. Examples are molecular weight, octanol-water
partition coefficient (log P), total energy, heat of formation, ionization potential and
molar refractivity. These properties are widely used in assessing similarity between
chemicals(95; 108; 109; 110).

• Pharmacophoric points(111). Provides a mapping of pharmacophoric features across
the set of molecules.

• Shape(112; 113; 114; 115; 116) This description is considered important because of
hypothesized lock and key interaction with receptors. Descriptors such as vdW vol-
ume and surface area can reflect the size of substituents, but they contain very lit-
tle information about shape. Other methods compute the common-overlap steric
volume(117) between pairs of molecules. Also we can use geometrically invariant
molecular surface descriptors(118). Shape calculations are slower than others, since
very fine grids are required to obtain precise results.

• Field(72; 97; 119; 120; 121; 122) It is a comparison of reactive properties of molecules,
like electrostatic potentials and fields(123; 124; 125; 126; 127; 128). The molecular
electric field (MEF) is less frequently used, but it is important because the scalar
product of the field and a dipole gives the energy of the dipole at a given point(129).
Dipolar interactions are important in ligand-macromolecule binding and in solva-
tion. Gasteiger et al.(130) describe an approach based on neural networks. Apaya
et al.(131) provide an approach on the basis of the matching of local extrema of the
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Figure 1.4: Pharmacophoric points of captopril

Figure 1.5: Molecular shape of tridium complex representing the vdW radii

MEP. Blaney et al.(132) calculate MEP on a regular grid and is mapped to the sur-
face of a sphere by gnomic projection. Two rigid structures can be compared by
calculating differences of MEP values at points on the sphere. Mestres et al.(133)
use two types of Gaussian-based molecular fields to evaluate molecular similarities.
An atom-centered steric-volume field and an united-atom point-charge electrostatic
potential(134) are used to represent the steric and electrostatic features of a molecule,
respectively. Tervo et al.(135) have constructed recently fast grid-based algorithm for
rigid-body molecular superposition and similarity searching. It aligns molecules us-
ing field information derived from charge distributions and van der Waals shapes of
the compounds.

1.2.2.2.2 Similarity correlation coefficients. There is a number of different correlation
coefficients that might be appropiate depending on the kinds of variables being studied
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Figure 1.6: Typı̀cal MEP distribution of planar molecules

(continuous or discrete). All of them measure the degree to which two variables are related.

In our work usually we use molecular interaction potentials, then our variable should
be continuous, but in some cases can be useful to transform the continuous MIP into dis-
crete variables.

Continuum variables.

If we have continuum distributions (V α
i ,V β

i ) we can analyze their similarity with:

• PEARSON index(136). The similarity is obtained as a covariance between the two
distributions normalized by the square of the variance of each one:

sα,β
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i − V̄ α)(V β
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α
i − V̄ α)2
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β
i − V̄ β)2

(1.25)

where V̄ ξ is the mean of values V ξ
i .

The asumption of the Pearson correlation coefficient is that there is a bivariate normal
distribution. This means that for each value of V α

i there is a normal distribution of V β
i

and for each V β
i there is a normal distribution of V α

i . Pearson correlation coefficient
measures the strenght and direction of a linear relationship between the V α

i and V β
i

variables. This coefficent goes between−1 and 1. If the distributions are proportional
Pearson value is 1, if they are independent, the value is 0 and −1 if they are inverse
proportional.

• COSINUS index(137). Similar to Pearson, but without centering the variables:
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(1.26)

The value of the coefficient lies within the interval [0,1]. The involved molecules can
be considered to be more similar as this index approaches to 1, and dissimilar if it
approaches to 0.

Carbó et al.(138) substituted sumatories for integrals and this index has been used to
compare electronic density distributions:
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Sα,β
k Carbo =

∫
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√∫

(ρβ)2dv
(1.27)

Also the technique has been extended to compare molecular electrostatic potentials
and electric fields(124; 139; 140; 141).

• HODGKIN index(124). When comparing two sets of potentials with different values
but one being proportional to the other, Pearson index (eq. 1.2.2.2.2) would yield a
perfect correlation. This can be avoided by using the Hodgkin index defined as:
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(1.28)

where m is the number of points of the tridimensional grid and V̄ ξ is the mean value
of the distribution V ξ

i .

Thus the formula gives a total similarity of both shape and magnitude of the distribu-
tion. The use of Hodgkin similarity index is particularly important for calculating the
MEP and MEF similarity because the shape of the distributions is similar but not the
magnitudes as well. This index varies in the range of values from 0 to 1. It gets the
value of 1 when the distributions in the two molecules are identical. It can be shown
that the Hodgkin index will always be less than or equal to the Cosinus index (eq.
1.26).

• SPEARMAN index (136; 142). The MIPs in the grid points are ranked according to
their values. The similarity is computed using these ranks:

sα,β
k Spearman = 1− 6

m∑
i=1

(rankα
i − rankβ

i )
2

m(m2 − 1)
(1.29)

where m is the number of points to compute.

The nonparametric (distribution-free) rank statistic proposed by Spearman in 1904
is a measure of the strength of the associations between two non-linear variables.
When normal distribution is not satisfied Spearman is the nonparametric analog of
the usual Pearson correlation coefficient (eq. 1.25). It is calculated by converting each
variable to ranks and calculating the Pearson correlation coefficient between the two
sets of ranks. Spearman index values are between −1 and 1. It is very useful and it is
not altered significantly for big MIP values.

• GAUSSIAN index(143; 119; 126; 120; 144)

Kearsley and Smith(119) describe an alignment function for the superposition of two
rigid molecules that comprises a double sum over all possible atom pairs between
both molecules:
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(1.30)
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where nξ (ξ = α, β) is the number of points in each grid box selected for the compar-
ison, V ξ

i is the potential value in the grid point for molecule ξ and rij is the distance
between two points. The smoothing parameter α determines the attenuation range of
this distance dependence. With small values of α also remote parts of each molecule
will influence the alignment. Kearsley and Smith indicate that the parameter selec-
tion is crucial for the produced alignments and the relative ranking of the different
solutions.

Figure 1.7: Calculation of Gaussian index. It superposes two molecules computing a double
sum over all possible atom pairs

Binary variables.

Sometimes continuum variables can be transformed to dicotomic (binary variables)
classifying them in two groups with a certain criterion. We can create a contingency ta-
ble 2x2:

V α with value < A V α with value > A

V β with value < A a b
V β with value > A c d

There are a lot of similarity coefficients for binary distributions. Some of these coeffi-
cients are:

• Simple matching coefficient(145).
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sα,β
k SM =

a+ d

a+ b+ c+ d
(1.31)

• Russel and Rao coefficient(146).

sα,β
k RR =

a

a+ b+ c+ d
(1.32)

• Jaccard coefficient(147).

sα,β
k J =

a

a+ b+ c
(1.33)

• Rogers and Tanimoto coefficient(148).

sα,β
k RT =

a+ d

a+ 2(b+ c) + d
(1.34)

All of them have a value that lies in the range of [0,1]

1.2.2.3 The alignment problem

When series of compounds need to be compared on the basis of their MIP, the comparison
cannot be performed directly. Unfortunately, the values of each MIP are sensitive to the
orientation of the structure used to generate the MIP. Then, a previous step of structural
alignment (overlapping of functional groups of molecules in the space) of the compounds
is required. However, 3D-QSAR methods usually require an accurate superposition of
structures, which has proven to be their greatest weakness, as this procedure usually re-
quires considerable human intervention and is generally regarded to be the most arduous
and time-consuming phase of these analysis. This severily limits the efficiency of 3D-QSAR
techniques when dealing with large libraries of molecules. The relevant chemical features
of the ligands can be readily extracted in order to derive a pharmacophore model. Several
active compounds can be aligned in order to visualize or determine a pharmacophore in
the absence of a receptor model. This pharmacophore, a template of functional groups in
the desired positions, may then be used to develop new compounds or to use as a receptor
model. QSAR studies may provide an estimate of the binding affinity of a novel ligand
towards the receptor under consideration.

Several assumptions are made in the development of alignment methodologies. Fore-
most is that the set of structures all interact at the same active site on the target macro-
molecule through the same active site groups. Another assumption is that the active site
is not greatly distorted in different ways by the binding of the various structures. More-
over, structures are maintainded in a rigid preselected low-energy conformations during
the alignment analysis. The template molecule may be a lead compound, or a desired
structure that is complementary to a receptor molecule. One want to find the conforma-
tional resemblance to the template. Possible active conformers of the molecule should be
rotated to be aligned with the other molecules in the study. In applying this strategy, the
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minimum energy conformers are assumed to bind most favorably in the receptor site al-
though, in fact, there is no a priori reason to exclude higher energy conformers as the source
of activity.

Structural alignment is a complex task, specially if the compounds to align are struc-
turally diverse. Actually, the amount of similarity between the compounds may influ-
ence the choice of the method used to overlay the compounds. The principal methods
for molecule superposition mainly differ in the treatment of conformational flexibility,
the optimization algorithm used and the definition of molecular similarity. Lemmen and
Lengauer(149) have a good review about methods to align molecules.

Algorithmic methods for aligning molecules are:

• Directed tweak technique(150). By the use of local coordinates for the handling of
rotatable bonds it is possible to formulate analytical derivatives of the objective func-
tion. With a gradient-based local optimizer flexible rms-fits are obtained extremely
fast.

• Volume overlap optimization. Molecules are represented by a set of spheres(151) or
Gaussians(122; 133; 152; 153) or MIP(126), and the overlap between them is quantified
by means of a similarity measure.

• Clique detection(154). Structures are represented by point sets. Depending on a dis-
tance tolerance, the algorithm generates a so-called distance compatibility graph. The
matching procedure uses clique detection(155) to determine overall valid distance
constraints.

• Distance geometry(156). Molecules are described in a translation and rotation in-
variant fashion. Conformational flexibility can be addressed, as well, by providing
distance intervals for all atom pairs.

• Genetic algorithms(157). GA are a class of computational problem-solving approaches
that adapt the principles of biological competition and population dynamics. Model
parameters are encoded in a chromosome and stochastically varied. Chromosomes
yield posible solutions to a given problem and are evaluated by a fitness function.
The chromosomes that correspond to the best intermediate solutions are subjected to
crossover and mutation operations analogous to gene recombination and mutation
to produce the next generation. The information content of the chromosomes, in this
case, are the orientational degrees of freedom and a coding of the torsional degrees
of freedom and a coding of the torsional degrees of freedom in the case of considered
molecular flexibility. The fitness function usually is a similarity function.

• Geometric hashing(158; 159). The technique comes from the field of computer vision.
It is based on the encoding of a set of geometric information in a hashtable which
is invariant under rotation and translation. During the structural matching the hash
table is queried with structural features from the molecule to align. The position in
the hash-table that receives most queries corresponds to a transformation which is
more likely to superimpose essential structural features of the two molecules.

• RMS-fitting(160) of rigid-body objects which is possible when a common structural
core is shared by the compounds of the series.
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Alignment-based strategies are powerful but limited by the intrinsic problems of the
method. The description is highly specific since each variable corresponds to a tiny re-
gion of 3D space, therefore, relevant regions of the field can be easily identified, which
makes easier the interpretation of the models and the design o new compounds. However,
the quality of the model depends strongly on the quality of the alignment. This means
that little inconsistencies in the alignment can affect largely the quality of the models. The
alignment is always biased towards a given solution since multiple solutions are generally
available. For these reasons, alignment independent methods were developed. The idea of
these methods is to retain the MIP information that is relevant to explain the desired prop-
erties. The information is compacted in a reduced set of descriptors that capture certain 3D
molecular features which makes easier its analysis.

An alternative approach tries to circumvent the superposition problem by using QSAR
descriptors which are sensitive to the 3D structure of the molecule but do not require struc-
tural superposition. These methodologies use autocorrelation functions and neural net-
works to create coordinate independent QSAR descriptor or inherently coordinate inde-
pendent descriptors.

We call alignment-free descriptor any type of 3D molecular descriptor that is transla-
tional and rotational invariant, i.e. it is insensitive to the position and orientation of the
molecular structures in the space and does not require the structural superimposition of
the compounds studied. Such as the approaches suggested by Broto(161), Gasteiger et
al.(162; 163), and Clementi et al.(164). Recently, a number of procedures have been pro-
posed that eliminate the requirement of superposition between molecules(165; 166; 167).
There are examples of alignment-independent applications for developing a virtual recep-
tor site(168; 169; 170).

If alignment is such an important drawback, one might ask why alignment-free descrip-
tors are not more popular. The main reason is related to the difficulties of understanding
the descriptors and interpreting the results in terms that can aid in the design of novel
compounds.

All the alignment methods concentrate on features that are more or less directly as-
sociated and extrapolated from the spatial positions of the individual atoms. However,
molecules recognize each other by their surfaces and field properties. Thus, alignment
methods that map and compare common shape and field properties appear to be better
suited to reveal relevant alignments(171).

1.3 MIPSim: Molecular Interaction Potentials Similarity anal-
ysis. Overview of previous studies

Sometimes the structural similarity is not evident and sometimes the earliest procedure to
relate the electrostatic pattern of molecules was the visual comparison of graphical repre-
sentations of the MEP distributions(172; 173), which has been widely used in structure-
activity studies in order to find similarities between molecules interacting with the same
biological receptor(174; 175). This procedure had the disadvantage of its subjectiveness.
Our team developed in the past several techniques to perform objective comparisons be-
tween MEP distributions(176; 177).

The development of MIPSim (Molecular Interaction Potentials Similarity Analysis) in
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our group began on 1988 with a program, called MEPMIN(177) which allowed to find au-
tomatically the MEP minima of a molecular system. Then, on 1991(139; 178) arrived the
MEPCOMP program which provided automatically an electrostatic alignment between MEP
distributions. MEP distributions were computed with GAUSSIAN 86. The similarity was
measured with Spearman rank correlation coefficient between the MEP values of each
molecule computed at the points of a 3D grid around them. The maximization procedure
was driven by a gradient method. MIPSimwas capable to find non evident structural align-
ment between molecules(139), but compatible with experimental data. There were two
versions of the program, the first version MEPCOMP that considered the molecules in fixed
conformations allowing the use of any definition of MEP. At each step of the maximization
procedure defined the grid of points within a volume obtained by the union of volumes de-
fined around each molecule. The first study was to find the relative position of methotrex-
ate and dihydrofolic acid when these molecules dock into dihydrofolate reductase, their
common receptor(139). Also it was tested comparing several arylalkylamines(178; 179).
The modification of this program, in order to take into account the conformational flex-
ibility of the molecules to be compared, gave rise to the development of the MEPCONF
program(179). MEPCONF took one of the molecules as reference, defined the volume to be
considered around this reference molecule, and found the maximum electrostatic similar-
ity moving either the relative position of the second molecule and a set of conformational
degrees of freedom of this molecule.

The second step arrived in 1993(180). The computational package MEPSIM integrated
the previously described programs into a common interface. MEPSIM included improved
new versions of the programs and other modules. Module MEPPLA which supplied MEP
values for the points of a grid defined on a plane which is specified by a set of three points.
The results of this module could easily be converted into MEP maps using third-parties
graphical software. Also the module MEPPAR(181; 180), another modification of MEPCOMP
in order to compute the MEP similarity between two molecules, but only taking into ac-
count a particular plane and scaned relative positions of the two molecules (this was very
useful in order to compare π systems in aromatic rings). MEPSIM created input files from
output files of external programs (GAUSSIAN 86 and AMPAC/MOPAC) to obtain MEP distri-
butions. One of the most important applications of MEPSIM was a theoretical study on the
metabolism of caffeine by cytochrome P-450 1A2 and its inhibition(182).

At 2000 arrived the new version of MEPSIM called MIPSim (Similarity analysis of molec-
ular interaction potentials)(126). MIPSim is a computational package designed to anal-
yse and compare 3D distributions of molecular interaction potentials (MIP) of series of
biomolecules. MIPSim incorporates other Molecular Interaction Potentials (MIP) in addi-
tion to the MEP. MIPs have been extensively used for the comparison of series of com-
pounds in structure-activity relationship studies. MIPSim makes calls to GAMESS(183)
(see section 3.1.1.1.3) for the quantum mechanical computation of MEP, and the GRID
program(81) for MIP calculations (see section 3.1.1.2.1). Also, MIPSim includes an inter-
face with the statistical package GOLPE(184), with the purpose of using MIPSim results in
the generation of 3D-QSAR models.

In the new MIPSim(126) there are two principal modules: MIPMIN and MIPCOMP.
MIPMIN characterize the points around a molecule where MIP reaches a minimum value
in comparison with those of its surroundings. It computes MIP values in the points of
a homogeneous 3D grid around the molecule and looks for those points having smaller
values that all the surrounding ones. Finally, an optimization algorithm refines the min-
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ima values and positions. MIPMIN provides the geometrical relationships between them.
Also, MIPMIN can compute several molecules in a single run. MIPCOMP compares pairs of
molecules on the basis of their 3D MIP distributions computed in a common grid of points
defined around the molecules. Also, MIPCOMP can perform an exploration of the maximum
similarity alignments by starting from a series of randomly generated positions and opti-
mizing them. When the relative position of the molecules changes, their grids of points fail
to coincide in space. Then MIPSim incorporated a similarity index, which copes with non-
coincident grids(144). It is a Gaussian correlation coefficient. In order to visualize the re-
sults, MIPSim has a tool to transform its outputs into InsightII(185) and gopenmol(186)
formats. The new MIPSim was applied to agonists of the neuronal nicotine acetylcholine
receptor (nAChR) and it was found that MIP superpositions were in agreement with those
suggested by the pharmacophore features(187).



Hypothesis and objectives

Hypothesis:

• Methodologies based on MIP offer important advantages to explain biomolecular in-
teractions with respect to other techniques that only take into account the structure
of the ligand and not the complex interaction with the environment.

• MIP based similarity approaches appear to be well suited for obtaining relevant molec-
ular alignments, as they are directly associated with the activity of the molecule
through its interaction capacity.

• The use of MIPs allows one to take into account different types of interactions be-
tween the considered molecules and their common, but not explicitly considered,
receptor.

• Electrostatic effects play an important role in enzymatic reactions. The calculation
of MIPs can be a valuable tool to assess the activity of a given TS or TSA. Based
on the idea that the largest catalytic effect of enzymes is related to th e electrostatic
complementarity of the active site we can obtain the most favourable electrostatic
environment to stabilize the charge distribution of a TS. This might be eventually
useful for the design of better enzyme inhibitors.

• Computational and statistical tools that study the similarity between biomolecules
are useful for the analysis of the structure-activity relationships and can improve the
design of new drugs, specially if we do not have cristalographic information.

Objectives:

There are two types of objectives. In one hand, the development of methodologies in-
side MIPSim and on the other hand scientific objectives, which in order to be accomplished
require the above mentioned developments.

1. The development of MIPSim, implementing and improving computer methodologies
to compute MIP and to compare them, and also to include algorithms to study the
conformational flexibility.

2. Demonstrating that MIP and MEP are useful tools to perform structural alignments
for molecules of pharmacological interest.
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3. Extending MIPSim capabilities to study enzyme reactivity.

4. Exploring the origin of the low rate enhancement of CAs as compared to the corre-
sponding enzymes examining electrostatic similarities.

5. Exploring the use of MIPs as scoring function in docking procedures, in order to find
fingerprints describing the interaction between the target and the ligand.

6. Showing that 3D-QSAR studies improves by proper MIP-based alignments.



Methods

This chapter is the most important of all the thesis, because it gives a great description
of the program MIPSim. Also, this chapter describes other methodologies used in this
thesis. Some of them had to be modified or developed, some others only used as already
implemented algorithms in program packages.

3.1 Methodologies used inside MIPSim

MIPSim(126) is a computational system for the automatic exploration of biomolecular sim-
ilarities on the basis of molecular interaction potentials (MIP). MIPSim it is specially pow-
erful when interfacing to other well-known external programs:

• The quantum package GAMESS(183).

• A molecular interaction potential evaluator, GRID(81).

• Statistical tools needed for the derivation of 3D-QSAR models, GOLPE(184).

• Visualization packages: gOpenMol(188), InsightII(185) and LINK3D(189).

One of the most useful descriptors on the ligand-protein interactions is the interaction en-
ergy of one molecule with a chemical functional group. In order to obtain the interaction
energies the space around the molecule is discretized in a grid of points and at every point
of the grid is evaluated the interaction energy between a chemical probe on every point of
this grid and the molecule. Then it is possible to simulate interactions of this molecule with
the receptor. In this section the acronym MIP refers to both classical (GRID(81) or point
charges based) and quantum (GAMESS(183), MEP based) molecular interaction potentials.

MIPSim includes the following main modules:

• MIN: Automatically finds the MIP minima of a molecular system. It supplies the
Cartesian coordinates of these minima, their values and all the geometrical relation-
ships between them (distances, angles and dihedral angles). This is done by first
defining a grid box containing the molecule. Then the MIP is computed on those grid
points and the program looks for the positions with smaller values in the grid. These
positions may be later refined by the use of some of the built-in optimization proce-
dures. Several molecules can be processed by MIN in a single run. At the same time,
each molecule can be analyzed using different chemical descriptors.
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• COMP: This module compares pairs of chemical structures taking into account the
MIP distribution around both molecules, giving a correlation index to show the sim-
ilarity between both distributions. This similarity index can be used in combination
with the built-in optimization procedures in the module to find the relative position
that maximizes this MIP-based similarity. During the alignment optimization pro-
cess, one molecule is kept fixed (static molecule) while the other is free to move in
terms of translation and rotation (mobile molecule). The mobile molecule attains, at
the end of the optimization, the best position relative to the static one. The function
evaluated during the optimization is the similarity function between the distribu-
tion of all required properties (i.e., subsets of 3D descriptors, that, in addition, may
be given different weights) in both molecules. As the free molecule moves, its box
definition moves with it, so the two grid boxes fail to coincide in space. In this situa-
tion, recalculation of the property’s value on new, coincident, points would be com-
pulsory, as standard similarity correlation indexes correlate values from the same
point. However, this strategy, that is indeed available in MIPSim, is too expensive
in general, specially if the property to compare is the quantum MEP distribution.
MIPSim incorporates a modified similarity index, which copes with non-coincident
grids boxes(144). In such index, the sum of squares for each pair of points is weighted
by its proximity(119; 120). Thus, correlation between proximate points will have more
influence on the index than correlation between distant points. This strategy skips the
necessity to recalculate function values and the optimizations can be faster. The op-
timization procedure can be carried out by means of both gradient search algorithms
and a GA(190), or a combination of them. As in MIN, COMP module can handle more
than two structures at a time. In such cases, this module can compare all pairs of
molecules, providing as a result the corresponding distance matrix, or compare the
first one to all the others. Consideration of molecular flexibility is currently under
development and further development.

3.1.1 Calculation of MEP and MIP inside MIPSim

Molecular interaction fields can be computed with quantum methodologies (Molecular
Electrostatic Potential, MEP) or using Molecular Mechanics (Molecular Interaction Poten-
tials, MIP). In MIPSim we use GRID(81) program to compute these MIPs and GAMESS(183)
package to compute the MEP.

3.1.1.1 Quantum MEP

3.1.1.1.1 Molecular wavefunction. Chemical properties of atoms and molecules are de-
termined by the electronic structure(191). Quantum chemistry tries to find it studying
molecular wavefunction that contains all the information about a given chemical. If we
know wavefunction(192) of a molecular system is a good starting point in order to describe
it (structure, activity...). This knowledge requires good mathematical tools. Using quantum
mechanics it is possible to derive properties that depend upon the electronic distribution
and to investigate chemical reactions in which bonds are broken and formed. In opposition
to classical mechanics, the motion of the electrons is not along a trajectory, instead the elec-
trons are spread through space like a wave. For each specific location there is a probability
to find the electrons at this position. The probability of finding the electrons depends on the
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value of the wavefunction. The higher the square of the wavefunction in a region of space
the higher is the probability to find the electrons in that region. The Schrdinger equation
allows to find the wavefunction of a collection of electrons.

Using quantum mechanical postulates we can make two assumptions: consider only
stationary states(193) and Born-Oppenheimer approximation(194). Using both approxima-
tions we obtain Schrodinger’s equation independent of time:

HΨ(r,R) = EΨ(r,R) (3.1)

where H is the hamiltonian operator (the sum of kinetic and potential energy), Ψ is the
wavefunction and E is the energy of the system. r and R are the coordinates for electrons
and for nuclei, respectively. This equation is still mathemically complex and it is necessary
to make more approximations.

First approximation is to consider polielectronic wavefunction as a product of mono-
electronic wavefunctions that depend explicitly on the spatial coordinates which are the
molecular orbitals(195). Due to antisimetry Pauli’s principle(193), the product of simple
molecular orbitals is not an acceptable function. It has to be antisimetrized expressing it as
Slater determinants(196).

Second approximation is to consider only restricted determinants. These restricted de-
terminants at closed layer have the molecular orbitals paired, sharing both members of the
same pair the same spatial part (molecular orbital) and differing on the spin part (atomic
orbital). Then, every molecular orbital is occupied by two electrons.

Third approximation is LCAO (Linear Combination of Atomic Orbitals)(197). Intro-
duced by Roothaan on 1951(198), consist on expressing molecular orbitals as linear combi-
nation of functions centered on the nucleous called atomic orbitals. It expresses the approx-
imation of the molecular orbital function as a linear combination of atomic orbitals chosen
as the basis functions.

Φi =
N∑
µ

Cµiφµ (3.2)

where Φi is the molecular orbital, N is the number of atomic orbitals of the system, Cµi

are the coefficients of the linear combination and φµ are the atomic orbitals.

These approximations are useful for simplifying the methodology but they lower the
accurancy of calculations. The principal problem is that an unique Slater determinant does
not take into account the electronic correlations, interactions between electrons. These limit
called Hartree-Fock’s (HF) limit, is precisely the energy that we can get using a monodeter-
minant function. The difference betweeen these energy and non-relativistic experimental
energy is correlation energy.

Shrodinger’s equation3.1, can be splited in:

H = Te + Tn + V (r,R) = Hel + Tn (3.3)

where Te is the kinetic energy of electrons, Tn the kinetic energy of nuclei, V is the total
potential energy of electrons and nuclei and Hel is the electronic hamiltonian, defined as
the total hamiltonian minus the kinetic energy of nuclei Tn.
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This equation cannot be solved because the nuclear and electronic coordinates are cou-
pled. Born-Oppenheimer approximation(194) consist into separate both movements: elec-
trons and nuclei, taking into account that nuclei are more heavier than electrons and they
move slower. Empirical observations of molecular spectroscopy show that the total en-
ergy of a molecule can be viewed as a sum of several approximately non-interacting parts.
So, this is a good approximation. Then it is possible to split Shrodinger’s equation in two
equations:

HelΦi(r;R) = Ui(R)Φi(r;R) (3.4)

[Tn + Ui]Γi(R) = EΓi(R) (3.5)

The nuclear kinetic terms vanishes. We can whink of the nuclei as being fixed at arbi-
trary locations, and then solve the Schrdinger equation for the wavefunctions of the elec-
trons alone. Equation3.4 is the electronic Shrodinger’s equation, where Φi are the electronic
wavefunctions that depend on the nuclear coordinates only as a parameter. Ui is the po-
tential energy of the electronic state i, and contains the kinetic energy of the electrons and
potential energy of the electrons and nuclei. Equation3.5 is the nuclear part and Γi is the
nuclear wavefunction.

The global wavefunction can be written as a linear combination of the electronic wave-
functions and the coefficients are the nuclear wavefunctions. So, the total wave function
of the system should belong to a full space created fromt he tensorial product between the
nuclear space and electronic space.

Ψ(r,R) =
N∑
i

Γi(R)Φi(r;R) (3.6)

where N is the number of orbitals in the system.

Using this approximation we do not take into account coupled terms of nuclear and
electronic movement. Then, if it is not possible to eliminate this terms, we cannot apply
this approximation(199).

Resolution of equation3.4 only can be done in an approximate way, due to bielectronic
terms in the electronic hamiltonian Hel.

The method to solve it is called Hartree-Fock(200) or Self Consistent Field (SCF). The
idea is to consider that every electron can move in a field which is the sum of the field due
to the nucleous and the mean field of all the other electrons. With this idea we can express
Hel as a sum of monoelectronic hamiltonians. In order to compute the mean field of all
the other electrons we need the wavefunction of the system. Then our calculation have to
be iterative. Eckart’s theorem(201) guarantees that if a test function that fulfil the contour
conditions, we never obtain an energy less than the correct function of the fundamental
state E0. Then the computed energy always has a value greater than the real one and its
comparison with experimental is a good way to know the proximity to the correct solution.

According to the molecular orbital theory, the electrons spread throughout the whole
molecule, and it is posible to define its wavefunction by a linear combination of the atomic
orbitals.

E0 ≤
< Φ | H | Φ >

< Φ | Φ >
(3.7)
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Applying the variational methodology(202), the electronic energy can be written :

Eel =
N∑
i

2fiHi +
N∑
i

N∑
j

[αij < ii | jj > +βij < ij | ij >] (3.8)

where N is the number of molecular orbitals, αij , βij , and fi are state parameters and they
only depend on the electronic state. Their value can be 0, 1

2 , or 1, Hi are the monolectronic
integrals , and < ii | jj > are the bielectronic integrals of repulsion and < ij | ij > are the
exchange integrals created from the antisymmetry principle.

These results are only valid considering closed layer. If we consider other cases (excited
states) we have to consider open layer and to use other approximations.

Then, the general expression3.8 can be reduced(200) to:

Eel = 2
N∑
i

Hi +
N∑
i

N∑
j

(2Jij −Kij) (3.9)

where N is the number of molecular orbitals of the system, Hi is the monoelectronic term
that represents the enegy of an electron in a molecular orbital Φi in the field created by the
nuclei, Jij =< ii | jj > is the Coulomb integral or the bielectronic term and contains the
repulsive interactions betweeen the charge distributions ΦiΦi and ΦjΦj ,Kij =< ij | ij > is
the exchange integral that takes into account he attractive interacions between the electrons
of paralel spins in orbitals Φi and Φj .

Restricting that molecular orbitals have to be ortonormalized in the variational principle
and using Lagrange multiplicators, we arrive to the monoelectronic equation:

Fiφi(1) = εiφi(1) (3.10)

where εi is the energy of the electron 1 in the orbital φi and F is the Fock operator. In order
to know F we have to know first the solution. Then the resolution have to be iterative using
initial wavefunctions.

Fock operator is:

Fµσ = Hµσ +
∑

j

(2 < µσ | jj > − < µj | σj >) (3.11)

where j is extended to all the occupied molecular orbitals.

Solving iteratively the Roothaan’s equations we obtain coefficients for the best molecu-
lar orbitals: ∑

Cσµ[Fσµ − εiSσµ] = 0 (3.12)

or writted in matricial form:

FC = CSE (3.13)

where F is the Fock matrix, C is the coefficients matrix and S is the recovered matrix and
E is the energies matrix. S is defined as
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Sµσ =< µ | σ > (3.14)

Usign equation 3.2 to develop orbital j, equation 3.11 can be written as:

Fµσ = Hµσ +
∑
δτ

Pδτ (< µσ | δτ > − < µδ | στ >) (3.15)

where Pδτ is an element of the density matrix defined as:

Pδτ = 2
N∑
i

cδicτi (3.16)

where N is the number of occupied orbitals.

Usually we solve the problem iteratively:

• Compute the integrals and the recovered matrix (S).

• Supose a coefficients matrix (C) as a test.

• Compute density matrix (P ) with equation 3.16.

• Find the Fock matrix (F ) using equation 3.15.

• Solve equation 3.13, obtaining energies matrix (E) and a new coefficients matrix (C ′).

• Compute one more time density matrix (P ′) with new C ′.

• If the differencies of the new P ′ with P are large, we return to compute F . The process
finalize when we arrive at consistency (when the energy between two iterations is less
than a certain prestablished value).

Then, using the Born-Oppenheimer(194) and Hartree-Fock approximations we can sta-
blish equations that enable knowing the description of molecular orbitals and the enegy of
a molecule. Exist two methodologies to compute these equations: ab initio and semiempir-
ics.

Ab initio methods.

Ab initio calculations are quantum chemical calculations using exact equations with no
approximations which involve the whole electronic population of the molecule. Methods of
quantum mechanical calculations independent of any experiment other than the determi-
nation of fundamental constants. The methods are based on the use of the full Schrodinger
equation to treat all the electrons of a chemical system. In practice, approximations are nec-
essary to restrict the complexity of the electronic wavefunction and to make its calculation
possible.

This methodology computes energy evaluating all the mono and bielectronic integrals
of Roothaan 3.2. It is not introduced any experimental parameter and we only consider
Born-Oppenheimer(194) and Hartree-Fock aproximations.

In Roothaan’s equation molecular orbitals are expressed as a linear combination of
atomic orbitals, which are the basis functions. The basis will have a radial and an angular
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part. The angular is almost never commented because it is always the same (s,p,d,f,...).
The radial part decides how far o how close is the electron with respect to the nucleous.
Depending on how many basis we compute the solution is more or less exact. If we take
infinit basis functions, SCF-MO , we obtain the more exact solution. Working with infinit
basis functions it is impossible, then we have to choose a finit number of basis.

• Hydrogenoid orbitals. Hydrogenoid orbitals are those obtained from the exact solu-
tion of hydrogen atom, but we do not use it due to the complexity of the integrals
when someone use a great number of the principal quantic number.

• STO Slater type orbitals These orbitals have a radial dependency proportional to
exp−(δr), where δ is the Slater exponent and r is the distance to the considered point,
representing the electronic density in the bond zone.

• GTF Gaussian type functions These functions can be integrated analytically. They
have a radial dependency propotional to exp−(αr2), where α is the gaussian expo-
nent and r is the distance to the considered point. These functions do not explain
correctly the electronic density in the bond zone, then, we have to use a linear combi-
nation of different gaussian functions:

– Minimum basis. We take a function or a linear combination of functions for ever
atomic orbital occupied. In this case we take as a standard basis STO−NG(203)
, where every Slater’s atomic orbital is represented by N gaussians.

– Double zet basis. Every atomic orbital is doubled in two groups of gaussians of
differents exponents and we get more dispersion. Standard basis of this type are
N −21G andN −31G(204), where it is used a linear combination ofN gaussians
for all internal orbitals, and for the valence orbitals are a combination of two
groups, one of two or three gaussians and the other another gaussian.

– Triple zet basis. To double zet basis we introduce polarization functions. Then,
we add a non-occupied exterior orbital. Standar basis of this type are : N−21G∗,
N−31G∗,N−21G∗∗, andN−31G∗∗. One asterisk indicate polarization functions
for heavy atoms and two asterisks polarization functions for hydrogens and for
heavy atoms.

Specific implementations of this type of methodologies include: GAMESS and GAUSSIAN
98 packages. On section 3.1.1.1.3 it will be a great explanation of GAMESS(183) package.

Semiempirical methods

Ab initio methods are good but sometimes they are slow. In order to accelerate these cal-
culations we try to simplify Fock’s operator3.11(205), estimating some of the experimental
parameter and neglecting some of them.

Semi-empirical methods are molecular orbital calculations using various degrees of ap-
proximation and using only valence electrons. In this methods, certain integrals are set
equal to parameters that have been chosen to lead to the best fit to experimental quantities.

The methods which use parameters derived from experimental data to simplify compu-
tations. The simplification may occur at various levels: simplification of the Hamiltonian
(e.g. as in the Extended Hckel method), approximate evaluation of certain molecular inte-
grals (see, for example, zero differential overlap), simplification of the wave function (for
example, use of p electron approximation as in Pariser-Parr-Pople).
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We never consider all the elecrons in this type of calculations:

• AVE methods. We consider only valence electrons. In this case, only the valence
electrons are considered explicitly, so there will be only basis functions for them.
then, the nucleous in the electronic Hamiltonian has a lowered effective charge due
to the screening by the core-electrons. There are the Pople methods (CNDO (Com-
pletely Neglect Differential Overlap)(192; 206), INDO(207) and NDDO(208)) and De-
war methods (MINDO(209)(Modified Intermediate Neglect of Differential Overlap),
MNDO (Modified Neglect of Diatomic Overlap)(210) and AM1(Austin Model)(211)).
The difference between Pople and Dewar methods is the treatment of the repulsion
integrals between two centers and the attractions between the core (nucleous and in-
ternal layer electrons) and the valence electrons(210). INDO (Intermediate Neglect
Differential Overlap) does not describe correctly molecules with heteroatoms. That
was corrected with NDDO (Neglect of Diatomic Diferential Overlap), but this one
does not reproduce very well hidrogen bonds. A third generation of semiempiric
programs, AM1 was born on 1985. AM1 calculations are semi-empirical molecular
orbital calculations developed at the University of Austin in Texas (AM1 = Austin
Model 1). These calculations involve the valence electrons of the atoms of the molecule.
They are a further development of MNDO calculationsAM1 has been tested with
other theoretical methods and with experimental values and it is possible to obtain
very good results.

• π methods. We only consider π electrons.

Also, we can consider interelectronic repulsion (SCF) or not (independent electrons).

The easiest semiempiric approximations ignore the dependency of Fock matrix respect
to the electronic wavefunctions, estimating their value with a certain algorism and making
an unique cycle of calculations (Huckel method).

All the semiempiric methods use SCF and ZDO (zero differential overlap: considered
zero the product between two basis functions.) Then we do not have to calculate al large
number of bielectronic integrals.

Molecular descriptors are terms that characterize a specific aspect of a molecule. Wave-
function is a good molecular descriptor in order to describe biomolecular interactions. Us-
ing wavefunction we can obtain other molecular descriptors very useful like electronic
density associated to each nucleous(212). These atomic charges can be used directly or for
calculating an approximate molecular electrostatic potential(213). Molecular orbitals can
be used to compute dipolar moments and molecular electrostatic potential (MEP).

The total energy of the system enables to make conformational analysis(214; 215) and
to search the reaction surfaces.

The quantum mechanical postulates assume that the wavefunction and the density
function contain all the information of a system. The statement, applied to a chemical
compound, means that all the information about any molecule could be extracted from
the electron density. Bond creation and bond breaking in chemical reactions, as well as
the shape changes in conformational processes, are expressed by changes in the electronic
density of molecules. The electronic density fully determines the nuclear distribtion and
its changes account for all the relevant chemical information about the molecule. In princi-
ple, quantum chemical theory should be able to provide precise quantitative descriptions
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of molecular structures and their chemical properties. The disadvantage of these methods
has been that even an approximate solution of the Schrodinger equation can be extremely
complex for all but the simplest systems. Long computational times have been required for
meaningful calculations and the size of the system , which can be studied, has been lim-
ited. Quantum chemical methods allow derivation of molecular descriptors from the total
molecular wavefunction and charge distribution(216). Other approaches include compar-
ing electronic density between compounds or analyzing topological features of the electron
density(217; 218).

In drug design, quantum mechanic calculations have a full range of application. For ex-
ample a precise energy minimization of molecular structures, location of transition struc-
tures, computation of molecular descriptors such as the dipolar moment, partial charge
distribution for molecular mechanics simulation and molecular electrostatic potential com-
putation.

3.1.1.1.2 Molecular electrostatic potentials. We are interested in the MEP because elec-
trostatic interactions are especially important for molecular recognition and, thus, they are
relevant in order to obtain an indirect picture of the biological receptor.

MEP are electrostatic properties of a molecule based on the charge density as calculated
directly from the molecular wavefunction. The electrostatic potential (scalar with dimen-
sions of energy) is calculated at a point in the vicinity of a molecule. The spatial derivative
is the electric force (vector) acting on a unit positive charge at that point caused by the
nuclei and the electrons of the molecule.

Molecular electrostatic potential (MEP) is the potential generated by the charge dis-
tribution of the molecule. Using a classical approximation, the difference of electrostatic
potentials between two points A and B is

∫ B

A

~Edr = V ( ~rA)− V ( ~rB) (3.17)

When ~r tend to infinite we assign V (∞) = 0. Then the potential is the energy that we need
to carry a positive charge from infinite to our point, considering an electric field.

If the system is a set of puntual charges, we use superposition principle, then:

V (R) =
∑

i

qi

| ~ri − ~R |
(3.18)

where ~ri is the position vector of each puntual charge qi.

If we consider a continuous distribution we have:

V (R) =
∫

V olume

1

| ~r − ~R |
Γ(~r)dv (3.19)

where Γ(~r) is the charge density function.

Using quantum mechanics approximation we consider wavefunctions ψ(~r) to describe
a particle, where ~r is the position vector and the product ψ(~r)∗ψ(~r)dv is the probability
to find the particle in the volume element in the position ~r. ψ(~r)∗ψ(~r)dv is the electronic
density function.
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Then, the charge density in a certain point ~R is:

Γ(~R) =< Ψ(~r) | δ(~r − ~R) | Ψ(~r) > (3.20)

where δ(~r − ~R) is the Dirac’s delta function, that verify the properties:

δ(x− a) = 0 if ~r 6= ~R

δ(x− a) = 1 if ~r = ~R

Then, for a polielectronic system, the electrostatic potential is:

Ve(~R) =
∫

V olume

1

| ~r − ~R |
< Ψ(~r) |

n∑
i=1

δ(~ri − ~R) | Ψ(~r) > dv (3.21)

This is the contribution of electrons, but we have to consider nuclei contributions. Consid-
ering Born-Oppenheimer approximation(194), nuclei do not move , then:

VN (~R) =
∑
α

Zα

| ~Rα − ~R |
(3.22)

where α is the number of atoms.

For a molecule the electrostatic potential will be:

V (~R) =
∑
α

Zα

| ~Rα − ~R |
−

∫
V olume

1

| ~r − ~R |
< Ψ(~r) |

n∑
i=1

δ(~ri − ~R) | Ψ(~r) > dv (3.23)

Molecules are treated as closed layer, then they have two electrons in every occupied molec-
ular orbital and using LCAO(197). We can write:

Γ(~R) = 2
∑

i

∑
δ

∑
τ

CδiCτiφ
∗
δ(~r)φτ (~r) (3.24)

and defining (δ, τ) of the density matrix (P) as equation3.16 , then, the electronic density in
R is:

Γ(~R) =
∑
δτ

Pδτφ
∗
δ(~r)φτ (~r) (3.25)

Then, the MEP is:

V (~R) =
∑
α

Zα

| ~Rα − ~R |
−

∑
δτ

Pδτ < φδ(~r) |
1

| ~r − ~R |
| φτ (~r) > (3.26)

MEP value is more accurate if we use ab initio methods in order to compute wavefun-
cions. In our case we use GAMESS(183) program (see section 3.1.1.1.3) to compute MEP.
These potentials consider the molecule in vacuum. If we want to consider the molecule in
dissolution, the major problem is how to use the dielectric medium.
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An easy way, but very rough in order to compute MEP is the puntual charge
methodology(213). We consider the approximation that the molecule as a system of pun-
tual charges is situated on the nucleous coordinates, and their value is the excess or default
of charge over every center.

Then:

V (~R) =
∑
α

qα

| ~Rα − ~R |
(3.27)

where qα is the excess or default amount of charge over the nucleous α and ~Rα is the
position of nucleous α.

3.1.1.1.3 Program GAMESS. The General Atomic and Molecular Electronic Structure
System (GAMESS(183)) is a general ab initio molecular quantum chemistry package. Also,
includes semiempirical wave functions.

GAMESS package offers a wide range of quantum mechanical wave functions, capable
of treating systems ranging from closed-shell molecules through bond-breaking reactions.
These wave functions may be combined with various run types to perform chemically im-
portant tasks, ranging from geometry optimization to transition state location to reaction
path following.

GAMESS can compute a wide range of quantum chemical computations like:

• The first and second derivatives of the potential, which are the electric field and the
electric field gradient.

• Molecular properties: multipoles moments, electrostatic potentials, electron density
and spin density.

• Analytic energy gradients for any of the SCF or DFT wavefunctions used for auto-
matic geometry optimization.

• Searches for saddle points or reaction path following on the potential energy surface.

• Traces the intrinsic reaction path from the saddle point towards products, or back to
reactants.

• Solvent effects may be modeled by the discrete Effective Fragment Potentials, or con-
tinuum models such as the Polarizable Continuum Model.

3.1.1.2 Classical MIP

Usually is hard to obtain the energy of a molecular system. This is the reason that in parallel
to the methods of Quantum Chemistry were obtained similar results introducing qualita-
tive chemical knowledge about molecular structure into a parametric function. That is, the
strenght of a chemical bond between two atoms, dispersion forces, hydrogen bonds, elec-
trostatics. All these interactions could be put together as a sum of analytical functions that
give as a result a parametric energy function of the nuclear coordinates. This energy func-
tion is called an empirical force field and the strategy is the Molecular Mechanics (MM).
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Historically there are several analytical functions that describe the inter and intramolec-
ular interactions. However it is not until the end of sixties and the beginning of seventies
with the help of the emerging computers that some useful results are obtainded. These
Molecular Mechanics parametric functions need to be parametrized according to the ex-
perimental results or ab initio calculations.

Molecular mechanics is the calculation of molecular conformational geometries and en-
ergies using a combination of empirical force fields. A force field is a method to compute
geometrical and energy characteristics of molecular entities on the basis of empirical poten-
tial functions the form of which is taken from classical mechanics. Current generation force
fields (or potential energy functions) provide a reasonably good compromise between ac-
curacy and computational efficiency. They are often calibrated to experimental results and
quantum mechanical calculations of small model compounds. A force field will be charac-
terized by the number and functional type of the energy terms and by the way the param-
eters are obtained. Good force fields have transferable parameters, which means that the
parameter can be transfered from one molecule to another without the need to derive new
parameters for each new molecule studied. A force field is a set of equations representing
the potential energy surface with respect to changes in the geometry of the molecule.

Molecular mechanics methods are based on the following principles:

• Nuclei and electrons are lumped into atom-like particles.

• Atom-like particles are spherical (radii obtained from measurements or theory) and
have a net charge (obtained from theory).

• Interactions are based on springs and classical potentials.

• Interactions must be preassigned to specific sets of atoms.

• Interactions determine the spatial distribution of atom-like particles and their ener-
gies.

The system is described with the nuclei positions and the charge distribution is consid-
ered to remain constant. We are going to assume that the energy of the system is separable
in different terms. The usual separation is the following: bonded and non-bonded interac-
tions.

Bonded atoms interact through stretching, bending and torsion. The stretching energy
estimates the energy associated with vibration about the equilibrium bond lenght. The
bending energy the energy associated with vibrat ion about the equilibrium bond angle.
There exist several expressions for every term. Some force fields incorporate crossing terms
to account for the coupling between two different interaction types.

The non-bonded energy represents the pair-wise sum of the energies of all possible
interacting non-bonded atoms. Non-bonded atoms (greater than two bonds apart) interact
through vdW attraction, steric repulsion, and electrostatic attraction/repulsion.

• Van der Waals energy. Van der Waals attraction occurs at short range, and rapidly
dies off as the interacting atoms move apart by a few Angstroms. Repulsion occurs
when the distance between interacting atoms becomes even slightly less than the sum
of their contact radii.
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These effects are often modeled using a 6-12 equation (Lennard-Jones equation):

EvdW =
∑

i

∑
j>i

4ε[(
σij

rij
)12 − (

σij

rij
)6] (3.28)

where rij is the distance between the two non-bonded atoms. ε is the well depth
of the potential and σ is the collision diameter of the respective atoms i and j. The
exp(12) term of the equation is responsible for small-distance repulsion, whereas the
exp(6) provides an attractive term which approaches zero as the distance between
the two atoms increases. When rij is small, the first term generates a dominating
repulsion corresponding to a large positive value of EvdW . The A parameter can be
obtained from atomic polarizability measurements, or it can be calculated quantum
mechanically. The B parameter is typically derived from crystallographic data so as
to reproduce observed average contact distances between different kinds of atoms in
crystals of various molecules.

• Electrostatic energy. The electrostatic contribution is modeled using a Coulombic
potential.

Eel =
∑

i

∑
j>i

1
4πε

qiqj
rij

(3.29)

where rij is the distance between the two non-bonded atoms. qi and qj are the par-
tial atomic charges. ε is the dielectric constant of the medium, which represents the
environment around them (water and protein). A typical approximation is assign
values to ε depending on the distance rij(219). The electrostatic energy is a function
of the charge on the non-bonded atoms, their interatomic distance, and a molecular
dielectric expression that accounts for the attenuation of electrostatic interaction by
the environment (e.g. solvent or the molecule itself).

Apart from energy minimization, molecular dynamics and conformational analysis, force
fields have a wide range of application in drug design. The GRID(81) force field is par-
ticularly useful to compute molecular interaction fields (MIF)(see section 3.1.1.2.1 for more
detailed explanation of GRID program). In drug design MIF have two types of applications:
in structure based design MIF are essentially used to find sites of favorable interaction for
a chemical group in a protein binding site. In ligand based design MIF provide a virtual
receptor sites which represents the type of interactions that a compound can make. All the
molecular mechanics calculations can be computed considering all the surroundings of the
target or only taking into account a discrete number of points arround it. This methodology
is used in many programs.

3.1.1.2.1 Program GRID. MIPSim interacts with GRID(81) in order to compute MIPs.
Programm GRID is a computational procedure for determining energetically favourable
binding sites on molecules of known structure. It may be used to study individual molecules
such as drugs, molecular arrays such as membranes or crystals, and macromolecules such
as proteins, nucleic acids, glycoproteins or polysaccharides. It calculates interaction ener-
gies between a chemical group (probes) and another molecule (target).
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Figure 3.1: Evaluation of MIP. At every point of the grid is computed the MIP between the
chemical probe and the molecular atom

A 3D grid points is stablished around the molecule. GRID(81) computes interaction
energies between various atomic probes or functional groups and the surface of a protein
at equally distributed grid points.

In the GRID force field, only non-bonded interactions are considered. The force field
contains a van der Waals term (vdW), an electrostatic term, and a hydrogen bond term.
Then, the non-bonded interaction energy E of the probe at each position is:

E =
∑

Elj +
∑

Eel +
∑

Ehb +
∑

Ew (3.30)

Each individual term in the summations relates to one pairwise interaction between the
probe and a all extended atoms of the protein.

The term Elj is due to vdW interactions: Lennard-Jones function (see equation 3.28)

Elj =
A

d12
− B

d6
(3.31)

The interacting atoms are a distance d apart, and the energy variables A and B are calcu-
lated from the Van der Waals radius, polarizability and effective number of electrons of the
atoms(219). These values are tabulated in datafile GRUB of GRID.

The term Eel is the electrostatic interaction energy (see equation 3.29) The electrostatic
interaction for GRID program is defined as:

Eel =
pqK

M
[
1
d

+
M −W

(M +W )
√
d2 + 4PQ

] (3.32)

where p and q are the electrostatic charges on the probe group and the pairwise target atom,
and K is a combination of geometrical factors and natural constants. The macromolecular
target and the surrounding water have dielectrics of M and W respectively, and the depth
of the charges p and q in the target phase is P and Q. For small molecules the target phase
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is effectively absent, and P and Q are both zero. A GRID force field peculiarity is that the
value of the dielectric constant changes with the local environment of the probe.

The term Ehb is hydrogen bond function which represents the directionality and the
strenght of the hydrogen bonds. The standard hydrogen bond interaction is computed
from:

Ehb = (
C

d8
− D

d6
)F (U,U ′, U ′′...).F ′(Q) (3.33)

where F and F ′ are functions; U , U ′, U ′′... are angles and distances defining the geomet-
rical arrangement of the atoms engaged in hydrogen bonding and their neighbours; and
Q depends on the charges of the interacting atoms. Energy variables C and D are com-
puted from the hydrogen bond radii and hydrogen bond energies of the atoms, which are
tabulated in datafile GRUB.

The term Ew takes into account interactions with water molecules. In some situations
a water molecule may form a bridge between target and probe. Such water bridges can
significantly stabilize the overall target-probe interaction, and a keyword may be used in
order to simulate this effect.

However an entropic term was needed for the hydrophobic probe. Entropic terms are
also required for conformationally flexible targets and for the detection of selectively un-
favourable sites. GRID contains basic concepts to include side chain flexibility.

Program GRIN is used to prepare and check an input file, grinkout, needed for GRID
program. A table of parameters, GRUB, is needed in order to evaluate the Lennard-Jones
and other empirical energy functions, and program GRIN inside GRID appends these pa-
rameters to the atomic coordinates of the protein. The parameters in GRUB are based on
the extended atom concept(83; 220). Grinkout file is a list of target atoms in the correct
sequence with their coordinates and energy variables.

.PDB

.KOUT

.KONT

.MOL2
gmol2

grin

grid

GREAT

Figure 3.2: GRID files. When using MIPSIM/GRID, the user must specify the PDB in the
correct format by using gmol2
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The GRID program takes grinkout as an input file, which defines the properties of
the target, and computes interaction energies. GRID can accept several different grinkout
files each containing one target. GRID contains more than 60 probes of different types.
Contour surfaces at appropiate energy levels are calculated for each probe. In our studies,
we have used the hydrophobic probe (DRY), the amide nitrogen probe (N1, hydrogen bond
acceptor) and the sp2 carbonyl oxygen probe (O, hydrogen bond donor).

The results from GRID can be displayed by program GVIEW or by other computer graph-
ics if appropriate hardware and software are available. GVIEW is the application of GRID
used to visualize MIFs. The molecular shape of the target, and the interaction energies of
the chosen probe, can then be viewed simultaneously. Contours at negative energy levels
delineate regions at which ligand binding should be particularly favoured. Positive energy
levels normally define the surface of the target. The application can be also used to export
the data to standard formats and to print or save the images in Postscript or RGB format.

Program GREAT integrates programs GRIN and GRID. GREATER is a Graphical User
Interface (GUI) for the GRID package. It provides GUI access to most of the functionality
of programs GRIN and GRID and also to program GREAT which was the predecessor of
GREATER. Furthermore the interactive GUI of GREATER is closely integrated with GVIEW,
and this helps the user to visualize the structure of the target and the results of the GRID
computation simultaneously.

Statistical analyses can extract other important information from the results. GOLPE(184)
is one of the programs which can be used in order to analyse GRID maps statistically for
QSAR or 3D-QSAR analyses(221). GOLPE (Generating Optimal Linear PLS Estimations) it
is an advanced variable selection technique in partial least squares (PLS) used in 3D-QSAR
studies to handle very large data sets. GOLPE can also accept grinkout as input files with
the structure of the targets.

The best-known application of GRID in Structure-Based Drug Design(222) shows the
potentiality of the approach. Moreover GRID can be used to understand the structural
differences related to enzyme selectivity, a fundamental field in the rational design of
drugs(223).

3.1.2 Optimization strategies inside MIPSim

Finding stationary points (minima, maxima, and saddle points) on energy surfaces is im-
portant in chemical physics because they correspond to equilibrium geometries and tran-
sition states and because the classical equations of motion connecting such points can be
used to describe reactions.

Because the similarity depends on the relative arrangement of two molecules, a con-
figurational searching method, is required to maximize the overlap and finally obtain op-
timized similarity indexes. The methods that require up to first derivatives of the energy
with respect to the nuclear coordinates are mainly steepest descent and conjugate gradient
methods. Also we can use GA.

Gradient optimization procedures have been proven to be very effective in MIN and
COMP module.
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3.1.2.1 Steepest descent

It was first developed by Courant(224), Curry(225) and Householder(226). Since the mag-
nitude of the gradient indicates the steepness of the local slope, the energy of the system
can be lowered by moving each atom in response to the force acting on it. This is the ba-
sis of the steepest descent methodology, where the displacement of the geometry ∆qk at
iteration k may be obtained from the gradient gk at the current geometry.

∆qk = −αk
gk

|gk|
(3.34)

where αk is the step lenght determined by trust radius or line search.

This algorithm presupposes that the gradient of the function can be computed. Also,
it has the severe drawback of requiring a great many iterations for functions which have
long, narrow valley structures. In such cases, a conjugate gradient method is preferable.

3.1.2.2 Conjugate gradients

It was first developed by Hestenes and Stiefel(227). In conjugate gradient method the dis-
placement is computed from the gradient at the current point plus the scaled previous
displacement.

∆qk = αk(− gk

|gk|
+ γk∆qk−1) (3.35)

where the scaling factor γk is computed using the previous gradient vectors. There are
several expressions for this factor, the easiest form is the Fletcher-Reeves(228).

γk =
gkgk

gk−1gk−1
(3.36)

It uses conjugate directions instead of the local gradient for going downhill. If the vicin-
ity of the minimum has the shape of a long, narrow valley, the minimum is reached in far
fewer steps than would be the case using the method of steepest descent. As the steepest
descent method, it presupposes that the gradient of the function can be computed.

3.1.2.3 Simplex

The Nelder -Mead(229) method or Simplex method is a numerical method for minimizing
an objective function in a many dimensional space.

The method uses the concept of a simplex, which is a polytope of N + 1 vertices in
N dimensions; a line segment on a line, a triangle on a plane, a tetrahedron in 3D space
and so forth. The method finds a locally optimal solution to a problem with N variables
when the objective function varies smoothly. The method generates a new test position by
extrapolating the behaviour of the objective function measured at each test point arranged
as a simplex. The algorithm then chooses to replace one of these test points with the new
test point and so the algorithm progresses. The simplest step is to replace the worst point
with a point reflected through the remainingN+1 points considered as a plane. If the point
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is better than the best current point, then we can try stretching exponentially out along this
line. One the other hand, if this new point is not much better than the previous value then
we are stepping across a valley, so we shrink the simplex towards the best point.

3.1.2.4 Genetic algorithms

Genetic algorithms (GA) are computational problem-solving methods that mimic some of
the principal characteristics of biological evolution and genetic reproduction(230; 231; 232;
233).

A GA creates a randomly-chosen set of individuals, known as a population, each of
which contains a representation of a possible problem solution. This solution is encoded
into a linear string that is normally referred to as a chromosome. The effectiveness of the
solution encoded by each of the chromosomes in a population is measured by the fitness
function, and the GA manipulates the chromosomes so as to maximize the value of the
fitness function. Chromosomes are manipulated by mutation (where the chromosomal
material may be altered slightly in a random fashion) and crossover (where new chil chro-
mosomes are crated by taking some chromosomal material from one parent, and some from
the other) operators.

An implementation of a GA begins with a population, typically random of chromo-
somes. One then evaluates these structures and allocates reproductive opportunities in
such a way that those chromosomes which represent a better solution to the target problem
are given more chances to reproduce than those chromosomes which are poorer solutions.

3.2 Miscellanea of methodologies used outside MIPSim

Sometimes we do not know how the ligand is posed inside the protein and which is its
active conformation. Then it is useful to create different conformations for every molecule
in order to score, subsequently with another program, for the best possible active confor-
mation.

3.2.1 Conformational sampling

For a ligand to bind a receptor, and thereby initiate a biological effect, it generally has to
adopt a conformation which is in some way complementary to its target protein. This
protein-bound conformation is termed the bioactive conformation. It is often a non-trivial
task to determine it, since most drug-like molecules have numerous low-energy conforma-
tions. Today, several methods are available for generating conformational ensembles.

3.2.1.1 Catalyst

CATALYST(234) supports two methods of conformational generation termed BEST and
FAST. It has an algorithm(235) designed to sample as diverse a set of conformations as
possible. BEST is reported to be more thorough, in particular when handling flexible ring
systems. FAST is more approximate, and therefore requires substantially less CPU time.
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Catalyst uses the CHARMM force field(236), which does not include any electrostatic terms.
BEST employs conjugate-gradient minimization in both torsion and Cartesian space, in
conjunction with poling. The default setting is to collect a maximum of 250 conformations
within an energy cut-off of 20 kcal/mol.

3.2.1.2 Omega

OMEGA(237) (Optimized Molecular Ensemble Generation Application) supports a so-called
torsion-driving beam search for generating ensembles of conformers. It is a rule-based
method that generates conformations extremely rapidly. By contrast with stochastic meth-
ods (GA or simulated annealing), the results are completely reproducible. OMEGA decon-
structs the molecule into fragments with rotatable bonds, and uses certain build-up prin-
ciples to generate a conformational ensemble. It does not minimize bond leghts or bond
angles. All heavy atoms are superimposed to test for duplicate structures, and an rmsd
deviation of 0.8Å is default. OMEGA includes a simple force field called the Clean force
field. This force field includes torsion and non-bonded components. Any structure with
an energy of more than 10 kcal/mol above the current global minimum is discarded. The
default limit is to collect 75 conformations.

3.2.2 Multiobjective optimization strategies. FFSQP software

FFSQP Version 3.7(238) is a code for solving constrained nonlinear optimization problems,
generating iterates satisfying all inequality and linear constraints. FFSQP(FORTRAN Fea-
sible Sequential Quadratic Programming) is a set of FORTRAN subroutines for the mini-
mization of the maximum of a set of smooth objective functions (possibly a single one, or
even none at all) subject to nonlinear equality and inequality constraints, linear equality
and inequality constraints, and simple bounds on the variables.

If there is no objective function, the goal is to simply find a point satisfying the con-
straints. If the initial guess provided by the user is infeasible for nonlinear inequality con-
straints and linear constraints, FFSQP first generates a point satisfying all these constraints
by iterating on the problem of minimizing the maximum of these constraints. The user
must provide subroutines that define the objective functions and constraint functions and
may either provide subroutines to compute the gradients of these functions.

FFSQP implements two algorithms(239; 240; 241) based on Sequential Quadratic Pro-
graming (SQP), modified so as to generate feasible iterates.

3.2.3 Superposition of molecules and proteins

3.2.3.1 Superposition of molecules based on atoms. SUPERB routine

SUPERB is a routine writed in FORTRAN based on the rotate routines by J. Villà-Freixa
implemented in the rotate.f program by Corchado and Villà-Freixa, part of POLIRATE. This
program used the Chen(242) algorithm for the minimums calculation to superpose two
different geometries based on a group of atoms. These two groups of atoms may or not be
common. The only requisite is that they are of the same size. To see an example of input
file of SUPERB program see section C.11 in Annexes chapter.
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3.2.3.2 Multiple protein sequence alignment. STAMP package

STAMP(243) (STructural Alignment of Multiple Proteins) is a package for the alignment of
protein sequence based on 3D structure. It provides not only multiple alignments and the
corresponding ”best-fit” superimpositions, but also a systematic and reproducible method
for assessing the quality of such alignments.

STAMPmakes extensive use of the Smith Waterman algorithm(244; 245). This is a widely
used algorithm which allows fast determination of the best paht through a matrix contain-
ing a numerical measure of the pairwise similarity of each position in one sequence to each
position in another sequence.

At the heart of the method is the Argos and Rossmann(246) equation for expressing the
probability of equivalence of residue structural equivalence.

In section C.12 in Annexes one can see more details about using STAMP.

3.2.4 Calculations on solvation free energy. Langevin dipoles cal-
culations inside CHEMSOL program

Quantum mechanical studies of chemical processes in solutions have to take into account
the effect of the environment. One can take one of the following three options:

• All-atom models or explicit solvation models. They represent explicitly all the sol-
vent and/or proteins atoms. Some examples are free energy perturbation (FEP)(247)
or thermodynamic integration(248). Such approaches require very large amounts of
computer time and involve convergence problems. Also, these models depend on the
chosen force field parameters.

• Continuum model(249). The system is partitioned at different shells. A core and a
first sphere of the environment (directly involved in chemical changes) are modeled
explicitly, while the outer environment is represented by a continuum approximation.
Some disadvantages are an spherical solute-solvent boundary with uncertain radius
and no reflect adequately specific features of solute-solvent interactions.

• Langevin dipoles (LD) model(250; 21; 251; 252; 253). It represents solvent molecules
by a fixed cubic lattice of dipoles that would account for the main physics of the
solute-solvent interaction. This approach is an intermediate between fully explicit
and implicit treatments of the solvent. It does not have to assume an arbitrary di-
electric constant (the dielectric is just the vacuum dielectric constant). It uses trans-
ferable atomic parameters calibrated using observed solvation energies. Charges are
obtained using ab initio calculations. Dipolar models can capture the main physics
of polar solvents and that reproducing the average polarization of the solvent should
suffice for a reasonable evaluation of solvation effects. The close relationship between
the LD model and more rigorous microscopic models has been demonstrated(253;
254)

Warshel and Levitt presented in 1976(251) the first practical simplified model for mi-
croscopic electrostatic calculations in proteins and solutions by representing the solvation
behaviour of water by a simple cubic lattice of LD. Program CHEMSOL(255; 256) is designed
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Figure 3.3: Spatial representation of LDs using solvation of TS in chorismate mutasa reac-
tion

for the calculations of solvation free energies by using LD model of the solvent and ab initio
calculations. CHEMSOL have been used in studies of the chemical reactivity(257; 258; 259),
binding(260), and conformational flexibility(261) in aqueous solution. It has been proved
to be useful and robust for modeling solvation in solution and proteins.

The LD solvation model is based on the evaluation of interactions between the electro-
static field of the solute and point dipoles placed on a cubic grid placed around the solute
atoms. This grid of dipoles is surrounded by a dielectric continuum. The solute electro-
static field is generated from the point charges placed at the atomic nuclei.

Point dipoles are centered at the 3Å simple cubic grid that is transformed into the denser
1Å cubic grid near the vdW surface of the solute. The boundary between the inner and
outer grids is formed by points that lie at the distance of 2Å from the vdW surface of the
solute. The outer grid points are constructed up to the distance of 20Å from the vdW sur-
face of the solute. Dipoles are placed only in locations where they can really contribute to
the electrostatic part of the solvation free energy. Regions of very small field are discarded.
This selection is done by using the screened electric field,

~Ej
D

=
∑

i

Qi ~rij
d(rij)r3ij

(3.37)

where i are the solute points, j are the grid points, Qi the atomic charges of solute points.
Atomic charges are evaluated by fitting to the MEP obtained from ab initio calculations
using GAUSSIAN 98(262) program. rij is the distance between solute points and grid points.
d is a function of rij ,

d(rij) =

√
2 + rij

1.7
(3.38)
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The criterion | ~Ej
D
| < 0.0015e/Å2 was used to select small fields.

The values of free energy of solvation, ∆Gsol depend upon the position of the center of
the grid. It is essential to carry out LD calculations for several different grids to obtain a
stable mean value of ∆Gsol.

∆Gsol = ∆GES + ∆GBULK + ∆GV DW + ∆GPHOB + ∆GRELAX (3.39)

• ∆GES is the electrostatic part of the solvation energy. There exist two options:

– ILD (Iterative LD). Dipoles are allowed to interact with each other. The jth

dipole, ~µj becomes polarized along the vector of the total electrostatic field ~Ej ,
evaluated as a sum of the unscreened contributions from the solute charges Qi

and from LD determined in the preceding (n− 1)th iteration.

~Ej = ~Ej
0

+
∑
k 6=j

[r2jk~µ
(n−1)
k − ( ~rjk~µ

(n−1)
k ) ~rjk]

r5jk

(3.40)

where ~Ej
0

is the field of the solute in vacuum,

~Ej
0

=
∑

i

Qi ~rij
r3ij

(3.41)

Calculations between dipoles separated by less than 2.5Å are excluded.

– NLD (Non-iterative LD). Dipoles do not interact with each other. The field that
determines the magnitude of the LD is given by equation 3.37.

∆GES is evaluated as energy of LD in the electrostatic field generated by the solute
atoms:

∆GILD
ES = 332KILD

ES

∑
j

( ~µj
ILD. ~Ej

0
) (3.42)

∆GNLD
ES = 332KNLD

ES

∑
j

( ~µj
NLD. ~Ej

D
) (3.43)

where KES is a constant needed to polarize the solvent molecules.

The extent of the dipole polarization ~µj is given by the Langevin function(263; 264),
which exhibits linear behavior for smaller fields and reaches saturation for large
fields.

~µj = ~µ0(cothx−
1
x

) (3.44)

and x is:

x =
~µ0| ~Ej

i |
KBT

(3.45)
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where ~
Ej

i is the electrostatic field and is taken as equation 3.40 in the ILD approach

and equation 3.41 in the NLD approach. Vector ~µ0 is a constant in the direction of ~Ej
i

and KB is the Boltzmann constant and T the temperature.

• ∆GBulk are the contributions from the solvent region that is outside the solvent region
filled with LD. We use Born and Onsager’s formulas for ionic and neutral solutes,
respectively:

∆GBulk(ionic) = −166(1− 1
ε
)
Q2

R
(3.46)

∆GBulk(neutral) = −166
2ε− 2
2ε+ 1

µ2

R3
(3.47)

where R is the radius of the LD region and Q and µ are the charge and dipole of
solute, respectively. ε is the dielectric constant of the solvent (ε = 80 for water).

• ∆GPhob is the solvation contribution for nonpolar solutes (hydrophobic term). It is
related to magnitude of the nonpolar molecular surface, which is proportional to the
number of LD that lie within 1.5Å from the vdW surface of the solute.

∆GPhob = KPhob

∑
j

f(Vj) (3.48)

where Vj is the magnitude of the electrostatic potential at the jth grid point.

• ∆GvdW is the solvation contribution for nonpolar solutes (vdW term).

∆GvdW = KvdW

∑
i

∑
j

CiNj [2(
ri
rij

)9 − 3(
ri
rij

)6] (3.49)

where i are the solute atoms and j are the grid points. ri are the atomic vdW radii
and rij is the distance between the ith atom and the jth grid point. Ci are London
coefficients, Nj a normalization factor and KvdW is a constant parameter.

• ∆GRelax is the solute-polarization term. This term takes into account the polarization
of the solute electron density interacting with the LD. Tt uses gas-phase charges:

∆GRelax = Krelax

∑
Vi∆qi (3.50)

Krelax is a constant. Vi are the values of the solvent-induced electrostatic potentials
evaluated as:

Vi = −332
∑

j

( ~µj . ~rij)
dr3ij

(3.51)

where d is the screening factor defined in 3.38 for NLD method and 1 for the ILD
method. The electrostatic potential of the solute was calculated from the HF/6-31G*
wave function polarized using the polarized continuum method (PCM) of Tomasi
and co-workers(265; 266) implemented in the Gaussian 94 program(262).

For more information about CHEMSOL input and output files you can see section C.8 in
Annexes chapter.
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3.2.5 Statistical tools in 3D-QSAR methodologies

As we have seen, QSAR are mathematical relationships linking chemical structure and
pharmacological activity in a quantitative manner for a series of compounds. QSAR models
must be capable not only of generalizing within a congeneric series (i.e. interpolate among
compounds in the data set) but of correctly predicting activities for compounds outside the
chemical space represented by the training set.

Once the compounds are aligned, thousands of variables are generated by the calcula-
tion of MIPs. Multivariate techniques are required to handle such amount of data, in this
work Principal Component Analysis(267) (PCA) is used as a descriptive method whereas
the Projection on Latent Structure or Partial Least Square (PLS) is used as a regression
method. PCA and PLS project multivariate data into a space of lower dimensions, and
indeed providing insight to visualize, classify, and model large sets of data.

3.2.5.1 Principal component analysis

Usually, in 3D-QSAR studies, the data file contains less than one hundred of objects and
several thousands of variables. There are so many variables that by looking at them directly,
no one can discover patterns, trends, clusters, etc.in the objects. The PCA is a technique
extremely useful to summarize all the information contained in these variables and put it
in a form understandable by human beings.

PCA is a data reduction (dimensionality reduction) method using mathematical tech-
niques to identify patterns in a data matrix. The main element of this approach consists on
the construction of a small set of new orthogonal, i.e., non-correlated, variables (Principal
Components PC) derived from a linear combination of the original variables that express
the main information of them.

The PCA works by decomposing the original matrix of variables X as the product of
two smaller matrices:

• The loading matrix (P ), which contains information about the variables. It contains
a few vectors, the PCs which are obtained as lineal combinations of the original X
variables.

• The score matrix (T ), which contains information about the objects. Each object is
described in terms of their projections onto the PCs, instead of the original variables.

PCA method aims to extract the maximum amount of variance of the initial variables.
To such an extent, the original descriptors are described by means of:

X = TP + E (3.52)

The information not contained in matrices P and T remains as unexplained X variance in
a residual matrix (E) which has exactly the same dimensionality as the original X matrix.

PC have to explain the maximum variance. They also have to be orthogonal between
them. These PC describe the data in order of decreasing variance. The first axis, the so-
called first PC, describes the maximum variation in the whole data set; alternatively, it
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can be also pictured as the direction of greatest variance. The second PC describes the
maximum remaining variance, and so forth, with each axis orthogonal, that is, linearly
independent, to the preceding axis. User can decide how many PCs should be extracted
(dimensionality of the model). Each PC extracted increases the amount of information
(variance) explained by the model. From a practical point of view it does not matter to
extract a large number of PCs if the user has no way to interpret the results.

We can represent the relative position of the objects in the space of the principal com-
ponents. These plots are useful to identify clusters of objects and single objects that behave
in a peculiar way (outliers). Also, the position of the objects in the plots may serve to in-
terprete the PCs. Also we can represent the original variables in the space of the PCs. The
loading of a single variable indicates how much this variable participates in defining the
PC. Variables contributing very little to the PCs have small loading values and are plotted
around the center of the plot. On the other hand, the variables which contribute most are
plotted around the borders of the plot. The position of the observations on the new space
is given by the scores and the orientation of the plane in relation to the original variables is
indicated by the loadings.

In 3D-QSAR, PCA is useful to highlight the locations around the molecules or the de-
scriptors which contain similar information or, in the opposite, which cointains completely
independent information. It is useful for knowing how different are one from another and
why they are different. The grid-plot of loadings enables to identify the areas in the space
that contribute most to a certain PC. When the meaning of the PCs is understood, the grid
plot highlights the areas around the molecules associated to this meaning.

3.2.5.2 Partial least squares

PLS is used to reduce the dimensionality of the descriptor set to a small number of or-
thogonal latent variables (LV) correlated with the property being modeled. These variables
possess the maximum amount of information relevant for the problem. In 1987, Wold(268)
proposed the use of PLS analysis to correlate the field values with the biological activities.
The PLS regresion method(269) carries out regression using LV from the independent and
dependent data that are along their axes of greatest variation and are most highly corre-
lated.

The goal of PLS is to explain one or more Y dependent variables in terms of a num-
ber of explanatory X variables (predictors). It is typically applied when the independent
variables are correlated or the number of independent variables exceeds the number of
observations.

Y = f(X) + E (3.53)

As for PCA the X matrix is decomposed as the product of the weight matrix W and the
score matrix T . The weight matrix contains the LV, which are obtained as linear combina-
tions of the original X variables. The loading of a single variable indicates how much of
this variable is included in the LV. Each LV is orthogonal to each other. The scores matrix
contains information about the objects. Each object is described in terms of the LV, instead
of the original variables.
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The PLS algorithm optimizes the values of the LV under two constraints: The LV have
to represent the structure fo the X matrix and the Y matrix and the LV have to maximize
the fitting between X and Y .

It is possible to build many different models that fulfill the equation. Among them,
the best one will be able to calculate Y values that correspond to the experimental ones,
even for molecules not included in building the model. These models are predictive and
can be used to calculate reliable estimations of Y values for new molecules, prior to their
availability. If we try to improve too much the fitting, the model will explain also the noise.
This phenomenon is called overfitting and it is very dangerous, because overfitted models
seem to be very good, but they often prove to be useless to predict the Y of objects not
included in the training set. Typically, the model is fit for part of the data (the training set),
and the quality of the fit is judged by how well it predicts the other part of the data (the
prediction set).

The best way to really evaluate the quality of the regression model is cross-validation
(108; 97). In the most common Leave-One-Out (LOO) cross validation, one object (i.e., one
biological activity value) is eliminated from the training set and a PLS model is derived
from the residual compounds. This model is used to predict the biological activity value
of the compound which was not included in the model. The same procedure is repeated
after elimination of another object until all objects have been eliminated once. The sum
of the squared differences, between these outside-predictions and the observed Y values
is a measure for the internal predictivity fo the PLS model. This is called the Standard
Deviation of Error or Prediction (SDEP). SDEP and the predictive correlation coefficient
(q2) are calculated in order to avaluate the goodness of prediction of the model.

SDEP =

√∑ (Y − Y ′)2

N
(3.54)

q2 = 1− [
∑

(Y − Y ′)2∑
(Y − Ȳ )2

] (3.55)

where Y is the experimental value and Y ′ the predicted value and N the number of
objects. q2 it is used as a diagnostic tool and is by definition smaller or equal than the overall
r2 for a model. The closer to the unity, the better predictiviness is achieved. As reference
values, the commonly accepted values for a satisfactory QSAR model are r2 greater than
0.8 and q2 greater than 0.5.

These parameters can be used to determine the number of descriptors of the optimal
model. Conversely to the classical adjustment coefficient, r2, which augments with the
progressive addition of parameters into the regression, the q2 coefficient presents a curve
with a maximum that corresponds to the optimum number of parameters and after this
maximum, the curve decreases monotonally. This means that the increase of the number of
parameters of the model always improves the adjustment of data but it is not related to the
predictivity of the model. As a reference value, if r2 - q2 is less than 0.3, this may indicate
the presence of outliers, the selection of irrelevant descriptors, an insufficient number of
data points, or the obtaining of an overfitted model, among others.

The definitive validity of the model is examined by mean of external validation, which
evaluates how well the equation generalizes. The training set is used to derive an adjust-
ment model that is after used to predict the activities of the test set members.
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3.2.5.3 Pretreatment of data

Before applying multivariate analysis methods, and for the sake of quality of results, a
previous treatment of the data is required. Depending on the method to be used and the
amount of data available, the data set needs to be transformed by means of pre-processing
methods in order to enhance the information.

The results of projection methods depend on the normalization of data. Descriptors
with small absolute values have a small contribution to overall variance; this biases to-
wards other descriptors with higher values, and leads to biased results. With appropriate
scaling, equal weights are asigned to each descriptor, so that the more important variables
in the model can be focussed. In order to give all variables the same importance, they are
standardized by autoscaling. The standard procedure consist of normalizing each variable
to mean centring and variance scaling. These transformations are recommended for ease
of interpretation and numerical stability, but do not lead to changes in the coefficients or
weights of variables and does not alter the interpretation of the results.

The PLS and PCA methods are sensitive to the scaling of the variables. Sometimes we
have data showing very different variance. Using GOLPE(184) software, the chosen data
organization allows to apply Block Unscaled Weights (BUW) scaling in order to normalize
the importance of probe interactions in the final PCA model. This methods scales each
single probe-protein interaction field separately, whereas the relative scales of variables
within each block remain unchanged.

3.2.5.4 Variable selection

Usually not all the variables contribute in the same way to explain the Y matrix, and some
of the variable only add noise to the model. The quality of the models may be increased by
the appropiate variable selection(270). Another reason for selecting variables is to simplify
the PLS models, in order to make their interpretation simpler.

We have used GOLPE procedure for obtain PLS models. It involve the following steps:

• Obtain a initial PLS model. Usually it may be necessary to apply a preselection to
remove the variables which contain little or redundant information for the model.
In GOLPE this preselection is done choosing variables according to their positions in
the loading space following a D-optimal design criterion(271; 272). This algorithm
works in this space selecting the variables with higher spread and less correlation,
and therefore, containin more complementarity information.

• Build the design matrix and evaluate the individual contribution of each variable to
the predictivity of the model. In this step, one of the main problem, is to find the
most efficient way to evaluate the individual effect of each variable in the predictiv-
ity of the models. The strategy used by GOLPE is to make a ”design matrix” following
Fractional Factorial Design (FFD) scheme. FFD is an experimental design technique,
using a reduction factor in order to limit the number of experiments to a lower num-
ber than obtained by factorial design. The idea is to remove some variables from the
model and see if the model is improved or not. Since it would be too time-consuming
to test every combination of variables to know its impact on the model, a design ma-
trix is used instead. The effect of a variable in the model is equal to the average SDEP
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for all models that include the variable minus the average SDEP for the models that
do not include it. The statistical significance of the effect of a variable is validated by
comparing the effect of this variable with the average effect of dummy variables by
mean of a Student t test.

• Remove from the X-matrix the variables which do not contribute to increase the
predicitivity and obtaina new PLS model.

GOLPE offers the possibility to generate groups of neighbor variables in the 3D-space
which represent the same chemical and statistical information. These groups can be used
in the variable selection procedure, in such a way that the ”groups” replace the role of the
individual variables in each step of the procedure.

The SRD(221) grouping algorithm it is used to group variables. In this algorithm, the
variables containing more information (seeds) are extracted from the data set, following
a D-optimal design criterion. Every variable is assigned to the nearest seed, following
a criteria of Euclidean distance in the 3D space. Then we obtain a group, the so called
Voronoi polyhedra. The Voronoi polyhedra can be used directly as groups or neighboring
groups can be re-aggregated in order to merge groups containing the same information.

3.2.6 Accuracy of a prediction. Matthews correlation coefficient

Once a data set is obatined, the problem arises of defining a measure for the quality of a
particular prediction. One straightforward measure of accuracy is the Matthews Correla-
tion Coefficient (MCC)(273). MCC is defined as:

MCC =
(TP.TN − FP.FN√

(TP + FP )(TN + FN)(TP + FN)(FP + TN)
(3.56)

where TP are the number of true positives, TN , true negatives, FP , false positives and
FN , false negatives.

It is a measure that accounts for both over and under predictions. These numbers can
be counted for any given threshold value that separates the two groups. The value is close
to 1 if the members of the group close mostly all above the threshold value, while the non-
members score below. It is around zero, if the two groups score about equally on both sides
of the threshold value (no separation). This coefficient takes into account the sensibility. It
gives a value between 1 (very predictive) and −1 (anti-predictive), with a value of zero
representing no useful information. Thus values of the Matthews correlation below about
0.5 are unlikely to be of great interest, and values below zero are unlikely to occur.
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In this section there are two important issues. The first one is the new developments imple-
mented in MIPSim program during these three years and the second one are the scientific
results derived from these new developments and applications of the program MIPSim.
These results are presented chronologically and in the form and format of research papers.
Thus, the contributions of this PhD work can directly be learned from the original publica-
tions.

4.1 Development of MIPSim program

Along these years we have developed new features inside the MIPSim program in order
to make it more useful and user-friendly for the users. Also we have developed new tools
that open new challenges for the future.

4.1.1 Introduction of new similarity coefficients

In Introduction chapter we have explained which kind o similarity coefficients are imple-
mented in MIPSim. In these three years we have introduced some useful similarity coeffi-
cients.

• Hodgkin(124) similarity index. When we compare two distributions with potentials
α and β with different values but with a certain proportionality, Pearson gives a per-
fect correlation for them. Then, it is useful to compare, in this cases, with Hodgkin
similarity index defined as equation 1.28 in Introduction chapter.

• Gaussian(143; 119; 126; 144) similarity index (see section 1.2.2.2.2), now can be evalu-
ated not only based on potential values as we have defined in equation 1.30 in Intro-
duction chapter, also based on ordered potential ranks of these potentials.
This Gaussian similarity index based on ranks is defined as in equation 1.30, but
now V ξ

i is the ordered rank of potential value in the grid point for molecule ξ. The
smoothing parameter α is taken as 0.5, value that we have found suitable in previous
studies (143; 126).

We have tested if similarity matrix for a set of molecules computing all versus all compar-
isons is symetric. With Spearman and Pearson index have to be exact, but not for Gaussian
index.
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Also we have improved the calculation algorithms of the coeficients implemented in
the past in MIPSim like Pearson and Spearman.

We have tested the symetry of similarity matrix with Spearman and Pearson index.
With Gaussian index this symetry is not exact for definition.

4.1.2 Combination of different similarity coefficients

.

Sometimes it is interesting to ponderate different values of similarity based on different
electrostatic potentials derived from a set of probes computed on the molecules to compare.
We can evaluate the different coefficient of similarity of every probe k we are interested in.
Final similarity coefficient can be computed as:

Sα,β =
∑m

k=1 w
α,β
k sα,β

k∑m
k=1 w

α,β
k

(4.1)

where wα,β
k are the weights for every particular similarity coefficient sα,β

k and m is the
number of probes. The unique condition is that the sum of weights wα,β

k is 1.

One can see in section C.5 in Annexes chapter how to compute this combination of
similarity coefficients in MIPSim.

We have applied this weighted similarity value in studies of comparison of xantine and
adenine(274).

For the evaluation of the most favourable weights to use in studies where exist struc-
tural information ligand-receptor, we have developed a protocol which obtains the optimal
weights for a particular molecular type(275).

4.1.3 Introduction of new definitions of MIP

We have implemented potentials that consider solvation of molecules, using quantum me-
chanics (PCM) and molecular mechanics (LD) and we have obtained great results(143).

We have begun to develop, with the great contribution of H. Gutiérrez-de-Terán, POLSAR
program (see section C.10 in Annexes chapter). It is an adaptation of CHEMSOL(see section
3.2.4) program designed as scoring function for screening the ability of TSA to mimic TS in
order to elicit catalytic antibodies. It is possible to screen the feasible synthetic candidates
on ligand databases by using LD approaches.

We have calibrated parameters with a test set of neutral and ionic solutes in aque-
ous solution(255). Charge distribution is computed by GAUSSIAN 98 from the PCM B3-
LYP/HF/6-31G*.

4.1.4 Selection of energy intervals

Sometimes is interesting to choose a certain interval of energies to compare depending
on the MIP probe we are interested in: usually we work with different significative GRID
probes that describe globally a molecule (see section 3.1.1.2.1):
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DRY: probe representing hydrophobic interactions.

O: hydrogen bon acceptor carbonyl oxygen probe.

N1: hydrogen bond donor amide nitrogen probe.

These three probes are chosen because they represent the most characteristic non bond-
ing interactions found in biological receptors. We have computed MIP for these three
probes in some molecules of our studies in order to know which are the limits of the inter-
action energy for every probe.

Figure 4.1: Intervals of energy for N1 probe of GRID

Figure 4.2: Intervals of energy for O probe of GRID

One can see in section C.6 of Annexes chapter how to compute this comparison of dif-
ferent intervals of energy in MIPSim.

We have applied this selection of intervals in the study of catalytic antibodies(143) and
in a MIP-based alignment of HIVRT inhibitors(275).

4.1.5 Conformational flexibility: TORS module

We have designed and implemented some strategies of exploration of the conformacional
degrees of freedom of the molecules we want to compare. On the other hand, for the explo-
ration of the conformational flexibility, specially in great series of molecules and without
the manual intervention of the user, it is necessary the development of an algorithm of au-
tomatization of the description of the molecular structures, using the 3D coordinates of the
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Figure 4.3: Intervals of energy for DRY probe of GRID

molecules. We try to focus on the chemistry of atoms of the ligand and not in rotamers
databases to perform an automatic research of rotatable bonds.

We have introduced a preliminary option in MIPSim that enables to generate all possi-
ble 3D conformations of a flexible ligand. MIPSim does this using TORS module. MIPSim
can find all the rotatable bonds in a ligand and generate conformations. User can select the
bond to rotate and the rotation pass. Once the user have the conformations it is possible to
explore the optimal superposition taking into account the ligand flexibility.

This is the protocol used in rotatable bonds perception and rotation:

• Perform a list with all the connection between atoms based on vdW radii and the
atom type (connectivities between atoms).

• Calculate the number of fragments (different molecules) and atoms in every frag-
ment.

• Compute the connectivity of each atom in our file and the number of atoms with each
connectivity.

• Count the number of rings in each fragment.

• Detect the neighbours of every atom.

Performs a table where one can find which neighbour has every atom in every bond
and a table of neighbours of every atom in our molecule depending on connectivity. Also,
assign a name to every atom that tell us the connectivity of it: C4, HH, O2...

We have implemented a rudimentary routine to rotate a bond knowing an angle and
both atoms. This is done in MIPSim using cilyndrical coordinates. A point can be localized
using cilyndrical coordinates (r, θ, z):

x = rcosθ (4.2)

y = rsinθ (4.3)

z = z (4.4)

or
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r =
√
x2 + y2 (4.5)

θ = atan
y

x
(4.6)

z = z (4.7)

Figure 4.4: Cilyndrical coordinates

Figure 4.5: Rotations generated in two bonds fo the molecule dpcpx(8-ciclopentil-1,3-
dipropilxantina

TORS finally writes all pdb files with all the different new conformations.

In section C.7 of Annexes one can find information about how to write a .key file in
order to perform rotations with TORS module.

At the moment, user have to point out the atoms that form the rotatable bond in order
to integrate conformational flexibility in the search of the optimal superposition of MIPs.
That implies an explicit knowledgement of every system and it is difficult to find similarity
in big databases.

4.2 Benchmarking and profiling of MIPSim

In order to study and improve the benchmark of MIPSim we have created different test
files. All of them compute important features in the program: comparison of molecules
with the COMP module . Calculation of MIP with GRID with several probes and MEP with
GAMESS. In these tests we perform different capabilites of MIPSim program as the calcula-
tion of MIP minima with MIN module and the comparison of MIP distributions with COMP
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module. MIP are computed with classical and quantum methodologies in order to test
the interface with programs GRID and GAMESS. Also there are performed comparisons of
different intervals of energy depending on the probe for different probes. We test all the op-
timization methodologies implemented in mipsim and the different similarity coefficients
and combinations between them. In some tests are tested the visualization tools compatible
with MIPSim. Also is tested the interface with GOLPE in order to use statistical tools.

A lot of MIPSim algorithms have been improved in order to decrease the time of cal-
culation and to minimize the computational cost. We have used a compilator very useful
for the detection of some routines with a big computational cost. You can see C.4 section in
Annexes for a more detailed information.

4.3 Technological platforms development

4.3.1 OS platforms

We have adapted MIPSim code in order to work in different plattforms like Linux(Red-Hat
9.0), SGI (IRIX 6.5) and Alpha (True 64). The adaptation to Alpha plattform enables users
to work in a supercomputer center as CESCA (Centre de Supercomputació de Catalunya)
with MIPSim.

4.3.2 User interface

We have created the first version of the graphical interface of MIPSim using C++ and QT
libraries (in colaboration with Cristina Herraiz). Interface enables to launch calculations in
an easy way for non-advanced users.

4.3.3 Visualization tools

Outputs of MIPSim can be visualized with different graphic programs. In particular, now
it is possible, thanks to Cristina Herrantz, to use LINK3D(189). LINK3D is a visualization
program and supports secure synchronous remote colaboration between scientists working
in Drug Discovery and Development.

4.3.4 MIPSim web site

MIPSim web site has been improved in colaboration with J.A. de los Cobos. We have
introduced new elements like a download section of the MIPSim package and detailed
information of the program and its posibilities. MIPSim distributes two different licenses:
one for the academic environment and the other for the comercial environment.

http://diana.imim.es/software/mipsim/index.html
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4.4.1 Comparison of biomolecules by MIP alignment

Rodrigo, J., Barbany, M. et al., J. Braz. Chem. Soc., 13, 795-799 (2002) abstract, full text and
pdf

One example of an application of MIPSim is the comparison of xantine and adenine.
In this paper was used carbonyl oxygen and the amide nitrogen as GRID probes for MIP
distributions. The most important contribution at this work was the combination of several
similarities in only one global weighted similarity as we have seen in equation 4.1.

MIPSim can perform six alignments with a great similarity coefficient with biological
and chemical coherence: the coincidence of the hydrogen bond acceptor and the donor
bond acceptor and the heterocycles.

http://www.scielo.br/scielo.php?script=sci_abstract&pid=S0103-50532002000600010&lng=en&nrm=iso&tlng=en
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532002000600010&lng=en&nrm=iso&tlng=en
http://www.scielo.br/scielo.php?script=sci_pdf&pid=S0103-50532002000600010&lng=en&nrm=iso&tlng=


Rodrigo J, Barbany M, Gutiérrez-de-Terán H, 
Centeno NB, De-Càceres M, Dezi C, Fontaine F, 
Lozano JJ, Pastor M, Villà J, Sanz F. 
Comparison of biomolecules on the basis of 
Molecular Interaction Potentials. 
J. Braz. Chem. Soc. [online]. 2002, vol.13, 
n.6, pp. 795-799. 

http://www.scielo.br/scielo.php?script=sci_abstract&pid=S0103-50532002000600010&lng=en&nrm=iso&tlng=en
http://www.scielo.br/scielo.php?script=sci_abstract&pid=S0103-50532002000600010&lng=en&nrm=iso&tlng=en
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4.4.2 On the use of MIPSim for characterizing the activity of catalytic
antibodies

Barbany, M. et al., ChemBioChem, 4, 277-285 (2003) abstract, full text and pdf

TSA used produces CAs with relatively low rate enhancement as compared to the corre-
sponding enzymes, when these exist. The present work explores the origin of the problem,
by developing two approaches that examine the similarity of the TSA and the correspond-
ing TS. Both approaches focus on electrostatic effects that have been found to play a major
role in enzymatic reactions(22; 276). The first method uses molecular interaction potentials
to study the similarity between TS and the corresponent TSA, using MIPSim program. We
analyze similarity and differencies of the electrostatic distribution between TSA and TS us-
ing MIN and COMP module and computing molecular interaction potentials with GRID and
molecular electrostatic potential with GAMESS. We have identified the regions where the
electrostatic potentials of the TS and TSA differ, in particular, the region of the carboxylate
group and of the bonds being broken and formed.

The second method, more quantitative, generates a grid of LD(21) polarized by TSA.
Then, it is used to bind TS. It represents the main physics of the solute-solvent interaction
(explicit solvent). This is computed by CHEMSOL program (see section 3.2.4). We use the
potential generated by each grid to evaluate the solvation energy of the TS and the TSA. It
was found that the environment preorganized to stabilize the TSA is not as proficient in sta-
bilizing the TS because the environment preorganized specifically to stabilize the TS. The
difference in solvation free energy of the TS charge distribution solvated by dipoles pre-
organized to solvate the TS in the geometry of TS, and the geometry of TSA corresponds
qualitatively with the observed difference in proficiency of the enzyme and catalytic an-
tibody. These findings suggest that catalytic antibodies raised against the TSA may not
stabilize the TS effectively. TS is more stabilized by the enzyme than the corresponding
TSA. The comparison of free energy of binding of TS with the grid of LD with the binding
energy of TS in the enzymatic environment give a good estimation of CA efficiency.

It is demonstrated that the relatively small changes in charge and structure between
the TS and TSA are sufficient to account for the difference in proficiency between the CA
and the enzyme. Apparently the environment that was preorganized to stabilize the TSA
charge distribution does not provide a sufficient stabilization to the TS.

Chorismate mutase (CM) catalyses the Claisen rearrangement of chorismate to prephen-
ate. This reaction is a key step in the shikimate pathway for biosynthesis of phenylananine
and tyrosine in bacteria, fungi, and higher plants(277). This enzymatic rearrangement has
been the focus of major effort in recent years, including analysis of its relationship to cat-
alytic antibodies that catalyze the same reaction(26; 278; 279; 280; 281) and extensive sim-
ulation studies(282; 283; 284; 285; 286; 287; 288; 289; 290). The advantatge of this reaction
is that there is no formation of an enzyme covalent intermediate in the reaction. Thus, the
reactions in water and the enzyme are both kinetically first order and directly comparable.

http://www3.interscience.wiley.com/cgi-bin/abstract/104086357/ABSTRACT
http://www3.interscience.wiley.com/cgi-bin/abstract/104086357/HTMLSTART
http://www3.interscience.wiley.com/cgi-bin/abstract/104086357/PDFSTART


Barbany M, Gutiérrez-de-Terán H, Sanz F, Villà-
Freixa J, Warshel A. 
On the generation of catalytic antibodies by 
transition state analogues. 
Chembiochem. 2003 Apr 4;4(4):277-85. 
 

http://www3.interscience.wiley.com/journal/104086357/abstract?CRETRY=1&SRETRY=0
http://www3.interscience.wiley.com/journal/104086357/abstract?CRETRY=1&SRETRY=0
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4.4.3 MIPSim as scoring function in protein-ligands docking

Barbany, M. et al., Proteins: Structure, Function and Bioinformatics, 56, 585-594 (2004) abstract,
full text and pdf. Supplementary material.

MIP describe particular roles in the intermolecular recognition. MIPSim performs a
mixture of MIPs to generate a smooth similarity function based on a combination of weighted
MIP. We have complexes inhibitor-protein. Then we perform a superposition using STAMP.
Then, we obtain ligands in the biological conformation. Then, we try to find interaction
fingerprints assigning weights to every MIP. Finally we dock new ligands using MIPSim
alignment procedure and similarity as scoring function.

http://www3.interscience.wiley.com/cgi-bin/abstract/108563911/ABSTRACT
http://www3.interscience.wiley.com/cgi-bin/abstract/108563911/HTMLSTART
http://www3.interscience.wiley.com/cgi-bin/abstract/108563911/PDFSTART
http://www.mrw.interscience.wiley.com/suppmat/0887-3585/suppmat/v56.html


Barbany M, Gutiérrez-de-Terán H, Sanz F, Villà-
Freixa J. 
Towards a MIP-based alignment and docking in 
computer-aided drug design. 
Proteins. 2004 Aug 15;56(3):585-94. 
 

http://www3.interscience.wiley.com/journal/108563911/abstract
http://www3.interscience.wiley.com/journal/108563911/abstract
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4.4.4 3D-QSAR study of hERG inhibitors

Barbany, M. et al. In preparation.

One of the most important problems in structure-activity studies is to obtain good align-
ments of molecules that share the same binding site in order to obtain a good 3D-QSAR
model. There are several ways to perform alignments: using pharmacophoric points,
chemical features, shape and molecular interaction potentials (MIP). MIPSim performs
structural alignments for a series of biomolecules using their MIPs.

The hERG potassium channel is expressed in the human heart. The channel is a key
effector of cardiac repolarization and contributes to the QT interval measured by the elec-
trocardiogram. Inhibition of hERG can lead to a prolongation of the QT interval, widely
considered a critical risk factor for arrhythmia. Thus, hERG inhibition represents an im-
portant safety consideration in drug discovery.

In the present study we obtain structural alignments for a series of drugs that are known
to inhibit the hERG potassium channel with different degrees of activity. To validate our
MIP based alignments, we use them in 3D-QSAR study using the GRID/GOLPE protocol.
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Abstract

The hERG potassium channel (human ether-a-go-go-related gene) is expressed in the human heart. The channel is a key

effector of cardiac repolarization and contributes to the QT interval measured by the electrocardiogram. Inhibition of hERG

can lead to a prolongation of the QT interval, widely considered a critical risk factor for arrhythmia. A chemically diverse

series of drugs have been withdrawn from the market due to their hERG blocking properties. Thus, hERG inhibitory effects

represent an important safety consideration in drug discovery.

MIPSIM is a program that analyzes and compares molecular interaction potentials (MIP) distributions for a series of

biomolecules. MIPSIM performs structural alignments for a series of biomolecules using their MIPs.

In the present study we obtain structural alignments for a series of drugs that are known to inhibit the hERG potas-

sium channel with a rank of activities. To validate our MIP based alignments, we use them in a 3D-QSAR study using the

GRID-GOLPE protocol. Also, we try to test the predictiity of our model based on similarity values.

Our objective is to demonstrate that MIPs are more useful to obtain good alignments in order to create a predicitivity

model than a pharmacophoric manual alignment.

Keywords hERG potassium channel; structure-activity relationships; molecular interaction potentials.
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1 Introduction

The potassium channel encoded by the human ether-a-go-go

related gene (hERG) gives rise to the rapid component of the

delayed rectifier K+ channel current.1 The hERG K+ chan-

nel plays a crucial role for normal action potential repolariza-

tion in the heart. It has been used as a therapeutic target for

anti-arrhythmic agents, but a wide range of noncardiac drugs

also inhibit the hERG K+ channel, resulting in a drug-induced

long QT syndrome (LQTS) that can cause sudden cardiac

death.2,3 The protein product of hERG is a potassium chan-

nel that when inhibited by some drugs may lead to cardiac

arrhythmia.4 Mutations in the hERG (Human ether-a-go-go

related gene) K+ channel cause inherited long QT syndrome

(LQT), a disorder of cardiac repolarization that predisposes

affected individuals to lethal arrhythmias.2,3 Acquired LQT

is far more common and is most often caused by block of

cardiac hERG K+ channels by commonly used medications,

including antiarrhythmic, antihistamine,5,6 antibiotic7 and an-

tipsychotic8,9 drugs. It is unclear why so many structurally di-

verse compounds block hERG channels. It is therefore impor-

tant to assess the hERG blocking potential of novel chemical

structures as early as possible during the drug discovery pro-

cess. We use here a set of molecules taken from an organized

list of QT-prolonging compounds for which hERG K+ chan-

nel inhibition had been reported and for which IC50 values

for inhibition expressed in mammalian cells were available.10

Table 1: QT-Prolonging Drugs

inhibitor structure activity IC50 (nM)

Astemizole 0.9

Cisapride 6.5

E-4031 7.7

Dofetilide 9.5-15

Sertindole 14

Pimozide 182
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Table 1: QT-Prolonging Drugs

inhibitor structure activity IC50 (nM)

Haloperidol 28.1

Droperidol 32.2

Thioridazine 35.7

Terfenadine 56-204

Verapamil 143

Domperidone 162

Loratadine 173

Halofantrine 196.9

Mizolastine 350

Bepridil 550

Azimilide 560

3
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Table 1: QT-Prolonging Drugs

inhibitor structure activity IC50 (nM)

Mibefradil 1430

Chlorpromazine 1470

Imipramine 3400

Granisetron 3730

Dolasetron 5950

Perhexiline 7800

Amitriptyline 10000

Diltiazem 17300

Sparfloxacin 18000-34400

Glibenclamide 74000

Grepafloxacin 50000-104000

Sildenafil 100000

Moxifloxacin 103000-129000

Gatifloxacin 130000

2 Objectives

Since none of the existing in vitro tests to assess the QT-

prolonging potential of a compound has an absolute predic-

tive value,11 the availability of in silico methods in the early

phase of drug development would dramatically increase the

screening rate and would also lower the costs compared to

4
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experimental assay methods.

One of the most important problems in structure-activity

relationship studies is to obtain good alignments of molecules

that share the same binding site in order to obtain a good 3D-

QSAR model. There are several ways to perform alignments:

using pharmacophoric points, chemical features, shape and

molecular interaction potentials (MIP).

MIPSIM12 is a program that analyzes and compares MIP

distributions for a series of biomolecules. MIPSIM also per-

forms molecular alignments on the basis of MIP distributions.

In this work we use MIPSIM12 as both: a tool to optimize the

alignment13 between molecules of interest, as a first step to-

wards the generation of a 3D-QSAR model using tools like

GRID-GOLPE14 and a method to easily correlate, for a given

new molecule, similarity of the new molecule with activity.

This program has been used with success in several stud-

ies13,15,16 showing that the MIPs are good features for per-

forming superpositions.

For our study, first we use the conformations and final

alignment performed by Cavalli et al.17 gave us with great

kindness. On a different study we create conformations for

every inhibitor and we perform a manual alignment. For both

systems it is performed a MIPSIM alignment based on sim-

ilarity of molecular interaction potentials and finally created

3D-QSAR models using GRID-GOLPE procedure.

As a final study we try to test the predictability of a model

based only on similarity of MIPs.

3 Methods

3.1 Conformational exploration

As at the moment the structure of the hERG channel is un-

known, not only the shape of characteristics of the binding

site are missing, but also the 3D-structure of the active form

of any given inhibitor.

Thus, we need a tool to explore the conformational flexi-

bility of each ligand in table 1 prior to proceed further. In this

work we make use of program OMEGA18 to do such confor-

mational exploration. OMEGA supports a so-called torsion-

driving beam search for generating ensembles of conform-

ers, which allows the program to generate conformations in

a fast way. OMEGA generates conformations extremely fast.

By contrast with stochastic methods,19,20 the results are com-

pletely reproducible. OMEGA deconstructs the molecule into

fragments with rotatable bonds, and uses certain build-up

principles to generate a conformational ensemble. OMEGA

does not minimize bond leghts or bond angles. All heavy

atoms are superimposed to test for duplicated structures, with

a default RMSD criterion of 0.8 Å. OMEGA includes a sim-

ple force field called the Clean force field. Any structure with

an energy of more than 5 kcal/mol above the current global

minimum is discarded.

3.2 Superposition

In order to create a 3D-QSAR model of our series of

molecules we need first to create an structural alignment of

the selected conformers. In this study two approaches have

been taken: a manual alignment based on pharmacophoric

points and an alignment based on molecular interaction po-

tentials (MIP).

3.2.1 Manual alignment

Using the conformations created by OMEGA we superpose all

of them respect to astemizole (see table 1). We choose this

template because this molecule is one of the most potent long

QT-inducing drugs, and hERG channel blockers. The astem-

izole crystal structure was directly retrieved from the Cam-

bridge Structure Database (CSD).21

Several pharmacophoric points, similars to Cavalli et al,17

on the astemizole molecule were defined to superpose ev-

eryone of the conformations created for every inhibitor. We

superpose them (using certain atoms) using the program

SUPERB developed in our group (based on the Chen method-

ology22) to superpose two different geometries based on a
5
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group of atoms. We select the conformation of every com-

pound with the minimum RMSD versus astemizole.

Initially, three pharmacophoric points on the astemizole

molecule were defined, namely, the basic nitrogen of the

piperidine cycle (N) and atoms of the two close aromatic moi-

eties (called by Cavalli et al. C0 and C1). Also, a fourth phar-

macophoric point (defined as the centroid C2) of the phenyl

ring belonging to the N-(p-methoxyphenylethyl) substituent

of astemizole. Not all the molecules displayed all four phar-

macophoric points, and in such cases, the superimposition

was based on the available points or it was guided by other

functions present on some molecules. Particularly, in the case

of compounds 2, 5-8,12-15, 17 and 18, the halogen atom lo-

cated in the para position on one phenyl ring (C0) was used

to reinforce the fit. As regards the quinolones, which are the

least potent hERG channel blockers considered in this study,

their structures were quite different from the structure of the

template, which implied that they were superposed to astem-

izole buy first anchoring the molecular skeleton to the ba-

sic piperazine N atom. This oriented the centroid of the 4-

piperidione ring onto C0.

3.2.2 MIPSIM alignment.

MIPSIM is a computational package designed to analyze and

compare 3D distributions of molecular interaction potentials

(MIPs) of series of biomolecules. In particular, MIPSIM

can obtain similarity indices and calculate superpositions of

molecules based on a single MIP or a combination of them.

With a protocol based on pairwise comparisons,mipcomp

module in MIPSIM can evaluate several MIPs in a grid box

around each molecule and then compare the MIPs of both

molecules on the basis of similarity indexes. Using the simi-

larity index as scoring function, the program can perform an

automatic search of the best relative orientation between the

two molecules. At every orientation of the mobile molecule

and for every MIP k, the similarity index s
α,β
k is calculated by

a Gaussian coefficient12,15,23 in equation 1.

s
α,β
k =

∑nα

i=1

∑nβ

j=1
V α

i V
β
j exp(−ar2

ij)
√

∑nα

i=1

∑nα

j=1
V α

i V α
j exp(−ar2

ij)
√

∑nβ

i=1

∑nβ

j=1
V

β
i V

β
j exp(−ar2

ij)
(1)

where nξ (ξ = α, β) is the number of points in each grid

box selected for the comparison, V
ξ
i is the potential value in

the grid point i for molecule ξ and rij is the distance between

two points. The smoothing parameter a is set to 0.5, value

that has been found to work well in previous studies.12,15 Fol-

lowing this procedure we can evaluate a different similarity

index for every GRID probe we are interested in and obtain

the global similarity index using Equation 2.

Sα,β =

∑m

k=1
w

α,β
k s

α,β
k

∑m

k=1
w

α,β
k

(2)

where w
α,β
k are the weights of every particular similarity in-

dex s
α,β
k and m is the number of GRID probes.

Using the conformers selected in the last calculation and

performing an exploration of the best superposition using

astemizole as the static molecule, we obtain new positions for

every compound.

We chose three representative probes that cover a wide

range of possible protein-ligand interactions with weights of

0.33 for every probe: O (hydrogen bond acceptor group), N1

(hydrogen bond donor group), and DRY (hydrophobic inter-

actions). For each comparison vs astemizole several initial

random orientations were calculated and from each of them

the conjugated gradient optimization protocol in MIPSIM

found what it considered the best orientation. In this study,

ten tests starting from, respectively, ten initial random rela-

tive orientations between static and mobile molecules were

performed for each comparison. MIPSIM selects the best

compound that makes similarity higher.

6
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3.3 3D-QSAR models

The next step is to create a 3D-QSAR model for this set of

inhibitors. After the two alignments in previous section have

been generated, we create two different GRID-GOLPE mod-

els depending of the alignment used. The first one is based on

pharmacophoric points and the other one is based on Molec-

ular Interaction Potentials. This procedure is followed for the

two alignments.

We use GOLPE 4.5 in IRIX. We performed a Principal

Component Analysis (PCA) and Partial Least Squares (PLS).

Data pretreatment included zeroing of the values between -

0.1 and 0.1, exclusion of variables with standard deviance less

than 0.1 and exclusion of N-level variables. Also, we perform

an scaling BUW of variables.

We compute Smart Region Definition (SRD).24 SRD pro-

cedure works by extracting a subset of highly informative X

variable and then partitioning the space around the molecules

amongs them. Then we compute a fractional factorial de-

sign (FFD) variable selection using leave-one-out procedure

as PLS validation.

3.4 Predictivity of the model

The data test set used in this paper is taken from Aronov et

al.25 We choose six of the positive inhibitors and four of the

negative inhibitors of hERG K+ channel. In order to take into

account the flexibility of them, conformers are created using

the Confirm module of Catalyst 4.9.26 Fast conformation gen-

eration uses a heuristic method that quickly builds a geomet-

rically diverse conformatinal model for the molecule.

Comparing every one of the conformers for every

molecule in the test set we compare them using MIPSIMwith

the 10 first more potent inhibitors from Cavalli et al.17 Per-

forming a PLS analysis we try to create a model that is useful

in order to detect positive inhibitors and negative inhibitors

and negative inhibitors of hERG K+ channel.

4 Results

4.1 Conformational exploration

Using OMEGA, we collect a maximum of 20 conformations

for every compound using the defaults value of the program.

In figure 1 we can see the number of conformations cre-

ated for every one of the compounds.

Figure 1: Number of conformations for every one of the hERG inhibitors

7
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4.2 Alignment procedures

4.2.1 Alignment based on pharmacophoric points

Using pharmacophoric points cited in the paper of Cavalli et

al.17 we have aligned all hERG inhibitors(figure 2).

Figure 2: Best superposition of all hERG inhibitors based on pharmacophoric points

4.2.2 Alignment of Cavalli refined with MIP based su-

perposition using MIPSIM

Using the conformers selected in the last calculation and per-

forming an exploration of the best superposition using astem-

izole as the static molecule, we obtain new positions for every

compound. The alignment can be seen in figure 3.

4.3 3D-QSAR study

4.3.1 3D-QSAR model created with the superposition

based on pharmacophoric points

We create a 3D-QSAR model using GOLPE and the superpo-

sition based on pharmacophoric points as the training set. Ac-

cording to the SRD methodology we use in this case 2 com-

ponents and computing PLS model we obtain results in table

2 for r2. Performing the leave-one-out validation for PLS we

obtain the q2 shown in table .

We can observe that q2 is very low. This means that the

8
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Figure 3: Best superposition of all hERG inhibitors based on MIPs computed by MIPSIM

model is not very good to predict the activity of the com-

pounds.

These results are not directly comparable with those in

Cavalli et al., due to the fact that, even following a similar

protocol for the generation of conformers and their superpo-

sitions in both Cavalli et al. and this paper, the details of

such a manual superposition can provoke (as in fact they do) a

very different final 3D-QSAR model. This is the reason why

it is needed a more automatic and reproducible way to per-

form such an alignment. In the next section it is shown how

MIPSIM can help in this step.

Table 2: PLS results

LV XAcc SDEC r2

0 0 1.44 0

1 18.09 1.09 0.43

2 40.95 0.97 0.55

9
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Table 3: PLS results

LV SDEP q2

0 1.49 -0.07

1 1.33 0.15

2 1.17 0.34

4.3.2 3D-QSAR model using a MIP based superposition

model

Then we create a 3D-QSAR model using PLS implemented

in GOLPE. We obtain a r2 that can be shown in table 4. Per-

forming the leave-one-out validation we obtain the q2 shown

in table 5. We can observe that q2 is higher than the last

GRID-GOLPE calculation. This means that the model is bet-

ter to predict the activity of the compounds.

Table 4: PLS results

LV XAcc SDEC r2

0 0 1.44 0

1 11.25 0.53 0.86

2 18.06 0.28 0.96

Table 5: PLS results

LV SDEP q2

0 1.49 -0.07

1 0.79 0.70

2 0.62 0.81

5 Conclusions

We have demonstrated that a good alignment of biomolecules

is a crucial step in 3D-QSAR studies in order to obtain a good

predictable model. In this sense, the execution of detailed and

objective comparative analysis of MIP distributions is useful

to obtain good alignments. We can observe the improvement

in PLS study when using MIPSIM alignment.

One of the possible studies to perform would be to per-

form all pairwise comparions of all the conformations for

every compound in order to find the active conformation of

hERG inhibitors. We assume that the active conformation

will be those who have the best similarity of MIPs between

the most active compounds. Once we know the active con-

formation for every compound we can perform a 3D-QSAR

modeling. It could detect side effects as early as possible dur-

ing drug development.
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Conclusions

1. We have further developed critical aspects of MIPSim. It is possible now to compute
new similarity coefficients in MIPSim as well as new MIP descriptors. It is now pos-
sible to obtain global similarity coefficients based on weighted similarity for different
potentials derived from a set of probes. It has also become possible to select different
energy intervals depending on the MIP considered. Finally, a preliminary version of
the flexible similarity tool has been introduced.

2. The development of a conveniently weighted combination of similarity indexes has
proved to be useful to perform similarity alignments between adenine and xantine
using this combination of coefficients with different probes chosen from a priori chem-
ical and biological knowledge.

3. We have shown that the electrostatic preorganization theory in enzyme reactivity can
be demonstrated by means of the use of simple MEPs.

4. The use of MEP in reactivity studies allows us to take into account the features of the
potential in cases where classical probes cannot be used (bonds that are being broken
or formed). We have illustated the origin of the low enhancement of CAs compared
to the corresponding enzymes. We demonstrated that a relative small difference be-
tween the charge distributions of the TSA and TS leads to significant differences in
the polarization of the corresponding complementary environment.

5. We have developed a methodology that tries to find the structural alignment of series
of molecules in their biological conformation using protein-ligand structural infor-
mation and MIP. MIPSim was capable to find biological alignments with good exper-
imental agreement in a series of DHFR and non nucleoside HIV-1 retrotranscriptase
inhibitors using similarity of MIPs as scoring function.

6. In series of hERG potassium channel inhibitors, we have confirmed that the best cor-
relation between the structure and function of biological molecules is provided by
the comparison of molecules aligned based on their MIPs. The subsequent 3D-QSAR
study by means of the GRID/GOLPE protocol has shown the improvement of the pre-
dictivity of the model when using such consistent approach.





List of abbreviations

3D Three-Dimensional

BUW Block Unscaled Weights

CA Catalytic Antibody

CoMFA Comparative Molecular Fields Analysis

DNA Deoxyribonucleic Acid

FEP Free Energy Perturbation

FFD Fractional Factorial Design

GA Genetic Algorithm

GOLPE Generating Optimal Linear PLS Estimation

GRIND Grid-INdependent Descriptors

GS Ground State

GSD Ground-State Destabilization

GUI Graphical User Interface

HF Hartree Fock

ILD Iterative Langevin Dipoles

LCAO Linear Combination of Atomic Orbitals

LD Langevin Dipoles

LIE Linear Interaction Energy

LOO Leave-One Out

LRA Linear Response Approximation

LV Latent Variable

mRNA Messenger Ribonucleic Acid



116 A. List of abbreviations

MC Monte Carlo

MCC Matthews Correlation Coefficient

MD Molecular Dynamics
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MIF Molecular Interaction Field
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M. Barbany, J. Villà-Freixa, H. Gutiérrez-de-Terán and F. Sanz
Comparison of biomolecules on the basis of molecular interaction potentials.
The new version of the MIPSim package
XVIIth International Symposium on Medicinal Chemistry, Barcelona (Spain) (2002)

Molecular Interaction Potentials (MIP) are useful tools for the comparison of series of
compounds displaying related biological behaviours. Structure-activity studies need a de-
tailed comparative analysis of MIP distributions for the pharmaceutical interest in the de-
sign of new drugs.

The MIPSim package(126) allows the automatic analysis of the similarity between molec-
ular interaction potentials distributions in series of biomolecules. MIPSim can evaluate
MIPs by classical or quantum methods, by interfacing with GRID and
GAMESS programs, respectively. MIPSim can perform an automatic search of the relative
position of series of compounds that maximize their similarity. This can be used to stablish
hyphotesis about their relative orientation at the receptor site, which is sometimes non-
evident when only taking into account structural features. The new version of MIPSim
presented here, incorporates several definitions of similarity coefficients and allows the
combination of different similarity measures into a single one. In addition, new tools for
automatic exploration of conformational flexibility during the similarity search have been
implemented.

The new features of the program are tested on a series of HIV-1 reverse transcriptase
inhibitors.



COMPARISON OF BIOMOLECULES ON THE BASIS OF
MOLECULAR INTERACTION POTENTIALS. 

THE NEW VERSION OF THE MIPSIM PACKAGE.
          Montserrat Barbany, Jordi Villà, Hugo Gutiérrez-de-Terán, Ferran Sanz

                        Computational Structural Biology Laboratory
                                  Research Group on Biomedical Informatics (GRIB)-IMIM/UPF

                            Pg. Marítim, 37-49, 08003 Barcelona (Spain)

The current version of the MIPSim package (1):

1) Allows the computation of Molecular Interaction Potentials (MIPs) distributions by classical or quantum methods, by interfacing with GRID(2) and 
GAMESS(3) programs respectively.

2) Performs an automatic search of the relative position of series of compounds that maximizes the similarity of their MIPs.

3) Allows the combination of several similarity measures into a single one: 

MIPSim is a useful tool for the comparison of series of compounds displaying related biological behaviours. It provides hypothesis about the sometimes non 
evident orientations at the receptor site.
 
We present here several tests using the well-known series of HIV-1 reverse transcriptase inhibitors.

METHODOLOGY

COMPLEXES
inhibitor-protein

LIGANDS IN BIOLOGICAL 
CONFORMATION

RESULTS

Evolution of GRID probes throughout the generations of GA
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MIPSim generates similar superpositions (see rmsd values in the above table)
to those obtained by STAMP using inhibitor-protein complexes.

In the present series, the best solution is obtained with a combination of
85.9% C3, 9.7% DRY, 4% OH and 0.4% N1. This combination is consistent
with the importance of the shape/hydrophobic interactions in the HIV-1 reverse
transcriptase inhibitors.

CONCLUSIONS

INTRODUCTION

MIPSim superposition displaying the C3 MIP contour      
(-2 kcal/mol).

STAMP superposition displaying the C3 MIP contour    
(-2 kcal/mol).

Inhibitors superposition generated by STAMP

MIPSim 2.0.19 (module MIPCOMP)
Several GRID(2) probes considered:
1 N1 (hydrogen bond acceptor)
2 OH (hydrogen bond donor)
3 DRY (hydrophobic)
4 C3 (shape/hydrophobic)
5 Simcomb (50%OH-50%N1)
6 Optimization of {ωi} in Simcomb obtained by genetic  
algorithm (5)

STAMP 4.2  package (4)
It provides superpositions based on structures of 
inhibitor-protein complexes.

INHIBITORS SUPERPOSITIONS
comparison with rmsd
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M. Barbany, H. Gutiérrez-de-Terán, F. Sanz and J. Villà-Freixa
Similarity between transition state analogs and the corresponding
transition states on the basis of Molecular Interaction Potencials and Langevin Dipoles.
Theoretical biophysics symposium, Donostia (Spain) (2003)

It is implicity assumed that a proper transition state analog (TSA) can elicit a catalytic
antibody (CA) with optimal binding to specific haptens. In most cases it was found that
these CAs produced by TSA, present low rate enhancement as compared to the correspond-
ing enzymes. This poster ilustrates the origin of this problem, applying two methodologies
that examine the similarity of the TSA and the corresponding transition state (TS).

Both approaches focus on electrostatic effects, that have been found to play a major role
in enzymatic reactions(291). The first method makes use of molecular interaction potentials
for computing the similarity between the TSA and the TS using MIPSim package(126).
The second generates a grid of Langevin dipoles(21), which are polarized by the TSA, and
then uses this grid to bind the TS. The comparison of the resulting binding energy with
the binding energy of the TS in the enzyme environment, provides and estimate of the
proficiency of the given CA.

This methods have been used to examine the origin for the difference between the cat-
alytic power of the 1F7 CA and the enzyme chorismate mutase.
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M. Barbany, J. Villà-Freixa, F. Sanz and S. Boyer
Using MIPSim and 3D-QSAR to study binding modes of HERG K+ Channel Inhibitors.
EuroQSAR 2004, Istambul (Turkey) (2004)

The HERG potassium channel (human ether-a-go-go-related gene) is experessed in the
human heart. The channel is a key effector of cardiac repolarization and contributes to the
QT interval measured buy the electrocardiogram. Inhibition of HERG can lead to a prolon-
gation of the QT interval, widely considered a critical risk factor for arrythmia. A chem-
ically diverse series of drugs have been withdrawn from the market due to their HERG
blocking properties. Thus, HERG inhibitory effects represent an important safety consid-
eration in drug discovery.

MIPSim(126) is a program that analyzes and compares molecular interaction potential
(MIP) distributions for a series of biomolecules. MIPSim performs structural alignments for
a series of biomolecules using their MIPs. This program has been used with sucess in both
the alignment of pharmacologically relevant series of molecules(274) and even in studies
of the role of electrostatics in catalytic antibodies action(143). Recently we have developed
a methodology(275) that tries to find the structural alignment of series of biomolecules
in their biological conformation using protein-ligand structural information. MIPSim was
capable to find biological alignments with good experimental agreement in a series of non
nucleoside HIV-1 retrotranscriptase inhibitors.

In the present study we obtain structural alignments for a series of drugs(292) that are
known to inhibit the HERG potassium channel with a rank of activities. To validate our
MIP based alignments, we use them in a 3D-QSAR study using the GRID/GOLPE protocol.



MONTSERRAT BARBANY1 JORDI VILLÀ-FREIXA1,* FERRAN SANZ1 SCOTT BOYER2,*

1 Research Unit on Biomedical Informatics (GRIB), Institut Municipal d’Investigació Mèdica (IMIM), Universitat Pompeu Fabra (UPF), Barcelona, Spain
2 Safety Assessment Group at AstraZeneca, Mönldal, Sweden

Summary The alignment problem The biological system

MIPSim(1) is a program that analyzes and compares molecular in-
teraction potential (MIP) distributions for a series of biomolecules.
MIPSim performs structural alignments using their MIPs.

The HERG potassium channel (human ether-a-go-go-related gene)
is expressed in the human heart. The channel is a key effector of
cardiac repolarization and contributes to the QT interval measured
by the electrocardiogram. Inhibition of HERG can lead to a
prolongation of the QT interval, widely considered a critical
risk factor for arrhythmia. Thus, HERG inhibition represents an
important safety consideration in drug discovery.

In the present study we obtain structural alignments for a series of
drugs(5) that are known to inhibit the HERG potassium channel
with different degrees of activity. To validate our MIP based align-
ments, we use them in a 3D-QSAR study using the GRID/GOLPE
protocol.

One of the most important problems in structure-activity
studies is to obtain good alignments of molecules that share
the same binding site in order to obtain a good 3D-QSAR
model.
There are several ways to perform alignments: using phar-
macophoric points, chemical features, shape and Molecular
Interaction Potentials (MIPs).

Alignment using type of atoms. Alignment using MIPs.

MIPSim(1) is a program that analyzes and compares MIP
distributions for a series of biomolecules. MIPSim also per-
forms molecular alignments on the basis of MIP distribu-
tions.
This program has been used with success in several stud-
ies(2,3,4) showing that the MIPs are good features for per-
forming superpositions.

A chemically diverse series of drugs has been withdrawn from the market due to their
HERG blocking properties. Thus, HERG inhibitory effects represent an important
safety consideration in drug discovery.
In the present study we try to obtain structural alignments for a series of drugs(5) that
are known to inhibit the HERG potassium channel with different degrees of activity.

HERG K+ Channel Blocking Activity of Compounds.

Methodology Results

1. Generation of conformations using OMEGA.
We created a maximum of 20 conformations for every compound using a minimum RMSD of 0.8 Å and
not including any structure with an energy of more than 5 kcal/mol above the current global minimum.

2. Structural alignment using pharmacophoric points.
We superimposed the conformations of every compound with respect to the crystal structure of Astemi-
zole, retrieved from the Cambridge Structure Database using our program SUPERB (based on Chen(7)
algorithm to superpose two different geometries based on a group of atoms). We choosed the superposi-
tions having lower RMSD vs Astemizole.

3. MIP based alignment using MIPSim(1).
Using the similarity index as scoring function, MIPSim can perform an automatic search of the best
relative orientation between two molecules. At every orientation of the mobile molecule and for every
MIP

�
, the similarity index ����� �� is calculated by a Gaussian coefficient(1,8):
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where .-/ ( / 	1032)4 ) is the number of points in each grid box selected for the comparison, �65� is the po-
tential value in the grid point 7 for molecule / and " � � is the distance between two points. The smoothing
parameter  is set to 0.5, value that has been found to work well in previous studies(2,3,4). Following
this procedure we can evaluate a different similarity index for every GRID(6) probe we are interested in
and obtain the global similarity: 8

�$� � 	
�+9� �,�*: ��� �� ����� ���
9� ��� : ��� �� (2)

where : ��� �� are the weights of every particular similarity index �;��� �� and < is the number of GRID probes.

GRID interaction energies for a certain probe.

In this study we choosed : ��� �� of 0.33 for three GRID probes: O (hydrogen bond donor), N1 (hydrogen
bond acceptor), DRY (hydrophobic).

4. GRID/GOLPE studies.
Data pretreatment included zeroing of the values between -0.1 and 0.1, exclusion of variables with stan-
dard deviance less than 0.1 and exclusion of N-level variables.
We performed a Principal Component Analysis (PCA) and Partial Least Squares (PLS modelling).

.

1. Structural alignment using the same pharmacophoric points of Cavalli et al.(5)
GRID/GOLPE model using the structural superposition gives an =?> of 0.92 choosing
two components and a maximum @ > (leave-one-out validation) of 0.22.

Best superposition of HERG inhibitors based
on pharmacophoric points.

Best superposition of HERG inhibitors based on
MIPs computed by MIPSim.

2. Structural alignment using MIPSim alignment.
Using the conformers selected in the last calculation and performing an exploration
of the best superposition using Astemizole as the static molecule, we obtained new
positions for every compound.
GRID/GOLPE model using the structura superposition gives an = > of 0.95 choosing
two components and a maximum @ > (leave-one-out validation) of 0.48.
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Conclusions Next future

1. A good alignment of biomolecules is a crucial step
in 3D-QSAR studies in order to obtain a good pre-
dictable model.

2. In this sense, the execution of detailed and objec-
tive comparative analysis of MIP distributions is
useful to obtain good alignments.

3. Limited results in predictability are due to a not
optimal generation of the set of conformers, but we
can observe the improvement in PLS study when
using a MIPSim alignment.

1. To perform all pairwise comparisons of all the con-
formations for every compound in order to find the
active conformation of HERG inhibitors. We as-
sume that the active conformations will be those
who have the best similarity of MIPs between the
most active compounds.

2. Once we know the active conformation for every
compound we can perform a 3D-QSAR modeling.
It could detect side effects as early as possible dur-
ing drug development.
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XIX Reunió de la Xarxa de Quı́mica Teòrica, Universitat de Girona (Spain) (July 2003)





Annexes

C.1 MIPSim installation procedure

Current version of MIPSim use GAMESS as a function evaluator for quantum MEP. Similarly
MIPSim uses GRID as a function evaluator for classical MIP. Users have to acquire a copy of
both programs. MIPSim is distributed as executable files and GAMESS and GRID are used
as external programs.

MIPSim is distributed as a compressed file, called MIPSIM ’version’ ‘uname‘.tar.gz ’ver-
sion’ is the version of the program and the ‘uname‘ stands for the operating system being
used. This file must be uncompressed using:

gzip -d MIPSIM_2.4_‘uname‘.tar.gz

and untarred by using:

tar xvf MIPSIM_2.4_‘uname‘.tar

Once the file has been uncompressed and untarred, a tree of directories will be created
with the following structure:

MIPSIM/bin
MIPSIM/testfiles
MIPSIM/doc

These directories include:

• Test-run files and the needed utilities for running and checking them:

MIPSIM/testfiles/shrunall
MIPSIM/testfiles/shchecktests
MIPSIM/testfiles/shcleanalldemo
MIPSIM/testfiles/shclean
MIPSIM/testfiles/shsavetests

• Execution scripts:

MIPSIM/bin/mipsim_rc
MIPSIM/bin/mipsim
MIPSIM/bin/shmipsim
MIPSIM/bin/shgamess
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• MIPSim executables :

MIPSIM/bin/mipmin.2.4.x
MIPSIM/bin/mipcomp.2.4.x

• A series of README files with further useful information.

C.2 Setting up MIPSim

The first step in setting up the program is to add the path for the binary files in your .login
file. In csh or tcsh this is done by adding the lines:

setenv MIPSIM\_PATH "<where_mipsim_has_been_installed>"
setenv PATH "$MIPSIM\_PATH/bin:$PATH"

If the sh on ksh is used, the following lines are needed

MIPSIM_PATH="<where_mipsim_has_been_installed>"
export $MIPSIM_PATH
PATH=$MIPSIM_PATH/bin:$PATH
export $PATH

In order for the program to run it must know the location of the external software. This
information is read in the form of environmental variables. In particular, MIPSim will look
for the file

$MIPSIM_PATH/bin/mipsim_rc

that will contain the definition of these environmental variables. This file is provided in
the distribution and may require modifications by the system administrator in order to
properly run MIPSim. Next, the program will source the file called (if it exists):

$HOME/.mipsim_rc

Finally, MIPSim will source the:

./.mipsim_rc file

This is, in the current working directory, in case this file has been created. Note that
the parent mipsimi rc file does not starts with ”.”, and the opposite occurs with the user-
specified .mipsim rc files.

$MIPSIM_PATH/bin/mipsim_rc

A complete list of environmental variables is in the file distributed with the program. A
typical mipsim rc is given below:
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# directory for output of \mipsim(OUTDIR).
setenv MIPSIM_OUTPUT .
# directory for \gamess\ temporary files
setenv GAMESS_TMP_DIR .
# \gamess\ complete path
setenv GMSDIR /usr/local/modelling/mipsim_tests/gamess
setenv GMSVERNO 01 #executable is gamess.$VERNO.x
# directory for scratch information for program \mipsim.
setenv MIPSIM_SCRATCHDIR /tmp/$USER
#GRID, GRIN and GRUB complete path
setenv GRDDIR /usr/local/modelling/grid21
setenv GRDCOMMAND $GRDDIR/grid
setenv GRNCOMMAND $GRDDIR/grin
setenv GRUCOMMAND $GRDDIR/grub.dat

Requirements to run MIPSim calculations:

• Directory MIPSIM PATH/bin must be in the user’s PATH environment variable.

• There must be a KEYFILE (*.key) in the current directory. This is the input file for
MIPSim, where the user must specify, among other information, which MODULE
wants to run. A simple example of KEYFILE is given below.

• The coordinate files listed in the KEYFILE.

Suppose we have written a KEYFILE named ’example.key’ as this:

module=min property=gms_mep
Title of the work
molecule1.pdb
molecule2.xyz

We then will just type:

$ mipsim [-ds] example

This will launch MIPSim. Initially, MIPSim creates a new directory called, in this case,
’example’ where it will copy all the relevant files and run the calculations. This directory
will be called OUTDIR in this document. At the end of the run, the main output files are
located in OUTDIR, while the scratch files will be located in the directories specified in the
mipsim rc configuration files.

MIPSim includes some utilities to transform output data to other molecular modeling
and QSAR packages. The key files are the PTS files (.pts) and the SUMMARY file (.sum).
Currently MIPSim supports format conversions to:

• InsightII: MIPSim writes ASCII ’.grd’ potential files.

• gOpenMol: MIPSim writes binary ’.plt’ potential files.

On the other hand, one can obtain potential files converted to InsightII, gOpenMol
or GOLPE formats directly from MIPSim runnings.
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C.3 MIPSim keyfile

Syntax in KEYFILE must be as follows:

1 ROUTE BLOCK: One or more lines for the keywords
-- blank line --
2 TITLE BLOCK: Title of the job.
-- blank line --
3 LIST BLOCK: list of molecules to be computed (one per line)
-- blank line --
4 SPECIFIC BLOCK: list of specific keywords per molecule (optional, one per line).\\
It must start with a number identifying the molecule with specific keywords.

It is mandatory to specify the keyword MODULE in the ROUTE BLOCK. The last block
in the input file is used to specify keywords for each particular molecule. These lines are
optional and the effect of using them is overwriting the information in the main block of
keywords. Finally, an example of input file could be:

module=comp property=(gms_mep,grd_oh)
out_link3d
cmp_allvsfirst
cmp_interval=(-10,10)
comparison of two water molecules and a OH- with \gamess.
wat1.pdb
wat2.pdb
oh.pdb
1 gms_pcm
3 gms_icharg=-1

C.4 Profiling of MIPSim

Profiler used in MIPSim is PGI. Profiling is a three step process:

• Compilation. Compiler switches cause special profiling calls to be inserted in the
code and data collection libraries to be linked in.

• Execution. The profiled program is invoked normally, but collects call counts and
timing data during execution. When the program terminates, a profile data file is
generated (pgprof.out).

• Analysis. The PGPROF tool interprets the pgprof.out file to display the profile data
and associated source files. The PGPROF profiler is invoked as follows:

pgprof[options][-I srcdir][datafile]

The following list shoes driver switches that cause profile data collection calls to be
inserted and libraries to be linked in the executable file:

• -Mprof=func Insert calls to produce a pgprof.out file for function level data.

• -Mprof=lines Insert calls to produce a pgprof.out file which contains both function
and line level data.
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C.5 Combination of different similarity coefficients

We can see in an example .key file of MIPSim how to use these keywords:

cmp_weight=(0.3,grd_oh)
cmp_weight=(0.2,grd_n2)

In the last example, it is choosed automatically for the third probe the weight value of
0.5 in order to obtain a sum of weights of value 1.

C.6 Comparison of intervals of energy

MIPSim now enables the comparison of different intervals of energy for every probe in the
comparison. The keywords used in a .key file of MIPSim are:

cmp_interval=(-4,-1,grd_oh)
cmp_interval=(-3,-1,grd_n1)
cmp_interval=(-6,-2,grd_n2)

C.7 Tors module input

In TORS module rotatable bonds and the angle of rotation can be selected in input file .key:

module=tors
property\_ptc\_mep

TST tors.

1 trs\_conform trs\_conform\_at= (1-2,3-6) trs\_conform\_angl=(45-30)

where 1 is the molecule one want to rotate (in this case the number 1), trs conform enable
or not to perform rotation, trs conform angl tell us the angle of rotation (in degrees) and
trs conform at are the limits of the rotatable bond.

C.8 Technical aspects of CHEMSOL

CHEMSOL (see section 3.2.4 is a program designed for calculations of solvation free energies
using Langevin Dipoles. It contains the files:

• cs, simple script to run the .ps file

• cs21.f, source file

• cs21 manual.ps, a manual in postscript.

• cs.arc, the archive file

• test1.cs, input file with one sets of charges and default vdW radii (protonated cyto-
sine)
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• test2.cs, input file with two sets of charges and user-defined vdW radii (methanol)

• vdw.par, standar parameter file

• Atomic charges

Atomic charges are obtained by fitting to the electrostatic potential of the solute calcu-
lated from the PCM B3-LYP/6-31*//HF/6-31G* wavefunction. A possible command
line for the calculation of atomic charges using the GAUSSIAN 94 program is

B3LYP 6-31G* scrf=tomasi iop(1/11=200) population=(mk,dipole)

...

80. 400

and for GAUSSIAN 98:

B3LYP 6-31G* scrf=oldpcm iop(1/11=200) population=(mk,dipole)

....

80. 400

• The parameter input file (vdw.par)

The file contains the values of the selected parameters of the LD model. The first
number on the left indicate if we want NLD or ILD. 1 for NLD and 0 for ILD. Another
parameters are Van der Waals radii for selected atoms and London coefficients.

• The CHEMSOL input file (example.cs)

The solute structure (Cartesian coordinates) and charge distribution (atomic point
charges) need to be specified on input. An example input file for methanol:

title
- number of atoms in the solute molecule, number of different structures
- empty line
- title for the substructure (only if there are more than one different
structure, otherwise empty line)

- empty line
- atom name, nuclear charge, atomic charge (gas phase), cartesian coordinates
(x,y,z) (format(1x,a8,f8.1, 2f10.4,3f9.4))

- empty line
- keyword (pcm) It is used if corrections for solute polarization are
to be evaluated explicitely.

- atom name, nuclear charge, atomic charge (pcm), cartesian coordinates
(x,y,z) (format(1x,a8,f8.1, 2f10.4,3f9.4))

- empty line

• Output data

A single output line is appended in the end of the output file called cs.arc.

• lgvn Electrostatic part of the solvation free energy in kcal/mol.

• vdW London dispersion part of the free energy of solvation (kcal/mol).
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• −TdS Hydration entropy (kcal/mol).

• Relax Contribution of solute polarization to the solvation free energy.

• Born Continuum correction for a finite size of the sphere of point dipoles.

• dHsolv Hydration enthalpy.

• dGsolv Hydration free energy.

The total solvation free energy:

∆G = ∆Hsolv − T∆S = lgvn+ vdW +Born− T∆S (C.1)

All the energies are expressed in kcal/mol

C.9 PDLDSMALL program

This program performs simple Langevin Dipoles (LD) calculations and provides a simple
estimate of solvation free energies.

In this program, the subroutine solvate evaluates solvation energies using the fixed
centered langevin dipoles method, buids the grid of dipoles, places langevin dipoles at
grid points, stores the langevin dipoles, calculates dipole-field interaction and the energy
spent in polarizing the solvent.

C.10 POLSAR program

Adaptation of program CHEMSOL designed as a scoring function for screening the ability
of TSA to mimic TSs in order to elicit catalytic antibodies. Parameters are calibrated with a
test set of neutral and ionic solutes in aqueous solution.(255). Developed by H.Gutiérrez-
de-Terán.

Implement simple CHEMSOL for fast evaluation of activities in a series of ligands. The
idea is to use the same trick we have done for the CA paper as a tool for fast evaluation
of differences from a given target. The study should be complemented with vdW interac-
tions and/or with the definition of new vdW ”vectorial field” that may be added to the
Langevin term. If this works it can be an extremely interesting improvement, providing a
very efficient tool to discriminate between initial molecules by means of energy criteria.

∆G solvation:

∆Gsolv = ∆GES + ∆GBULK + ∆GvdW + ∆GvdWphob (C.2)

∆GES is non-iterative langevin dipoles (NILD).

∆GBULK is Born-Onsager’s approximation due to outer continuum dielectric.

∆GvdW−phob Contribution due to vdW and hydrophobic interactions.

Charge distribution computed by Gaussian 94 from the PCM B3-LYP/6−31G∗//HF/6−
31G∗
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C.11 SUPERB input file

This is an example of SUPERB input file:

fixedmol.xyz
mobilmol.xyz
list of atoms in molec 1 to superpose
list of atoms in molec 2 to superpose

C.12 STAMP input

In order to superpose pdbs with STAMP we proceed as follows:

First, be sure you have the correct definition of environmental variables:

setenv STAMPDIR /usr/local/modelling/structure/stamp/stamp.4.3/defs
setenv PATH "$STAMPDIR/../bin/linux:$PATH"

Then, create the STAMP imput file using PDBC note that first it is a good idea to locate in
the PDB the chains we are really interested in. PDBC finds and reports information about
PDB files given a chain identifier. Note too that the first structure is the one that is going to
remain unrotated. This can be important in some cases.

pdbc -d 1hcl >! cdk2.domains
pdbc -d 1fina >> cdk2.domains
pdbc -d 1finc >> cdk2.domains
pdbc -d 1hck >> cdk2.domains
pdbc -d 1b38 >> cdk2.domains

Then one have to run STAMP:

stamp -l cdk2.domains -rough -n 2 -prefix cdk2

Then perform the tranformations to the original PDB files. Tranform outputs the corre-
sponding set of coordinates given a list of transformations.

transform -f cdk2.4 -het -g -o superb.pdb

C.13 Future developments

Tasks to be developed/implemented in MIPSim:

• Modify algorithms to add Fast Fourier Transform (FFT)(144) methods in COMP mod-
ule, cause time is critical in some of the routines.

• Implement an eigenvalue following routine for optimization in MIN in order to locate
all stationary points (minima and higher order stationary points) in the electrostatic
potential map of a given molecule.

• Implement similarity based on the electric field(124).
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• Add multipole analysis and introduce implementations of multipole-based similari-
ties.

• Fix de use of static memory in MIPSim calculations. Now, the size of the program is
still big due to the arrays depending on the number of field points.

Applications:

• Study of MAO inhibitors.

• Systematic study of catalytic antibodies.

C.14 This LATEX thesis template

This thesis layout largely derives from the LATEX 2ε template created by Robert Castelo.
However, it has been extensively modified and, maybe, improved. Here, I provide some
comments on it and the source code for download. R. Castelo wrote his own thesis style file
(mythesis.sty) to handle fonts and control section title layout. LATEX 2ε is a document
preparation system, powerful, robust and able to achieve professional results. However,
the learning curve may be stiff, thus, an initial template is given here for your convenience.

This file (Makefile), also derived from R. Castelo’s equivalent, is read to produce a
PDF version of your thesis just by typing make pdf in the command line. It is aware
of any change you make in any of the child directories and LATEX files that compose your
document. It also reruns itself to update the references section. It needs the make program
in your system, though it is usually installed by default.

This body section of the document (mythesis.tex) is simply a call of the independent
chapter files (*.tex) your thesis consist of (each of them nicely placed in its own directory).
It also calls, at the very beginning, the preamble file.
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104, 11308.

[288] Martı́, S.; Andrés, J.; Moliner, V.; Silla, E.; Tuñon, I.; Bertrán, J. 2001, 3, 207-212.
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