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Foreword

Recently a number of papers argue for modelling expectations as some type
of adaptive learning algorithm. This provides foundations for rational expec-
tations models, since under certain conditions adaptive agents can eventually
learn a rational expectations equilibrium; this way one can limit focus on the
equilibria which are learnable under some type of learning rule. My thesis
builds on the results of the least squares learning literature, which models
individual agents as econometricians: agents are running least squares regres-
sions using available data in order to form their expectations. Of course there
are many ways to depart from rationality, and this makes the model hardly
falsifiable. Therefore in the first chapter of my thesis I examine whether least
squares learning is a reasonable departure from rationality: I show that the
presence of learners in an economy can be rationalized even in coexistence
with rational agents. In this chapter I also build on the literature “fore-
casting with expert advice” to model how agents dynamically select between
forecasting algorithms. In the second chapter, I argue that learning is not
only learning about coefficients and not only a useful tool for equilibrium se-
lection but have important implications for policy design: optimal monetary
policy under learning introduces new features of policy behavior that are not
present under rational expectations.

Chapter 1

Learning with Expert Advice

Surveys of inflation forecasts show that expectations combine forward-looking
and backward-looking elements. This contradicts ”conventional wisdom”:
in the presence of rational agents adaptive agents would be driven out of
the market. In the first chapter of the thesis, I rationalize this finding in
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an equilibrium framework. My model has two types of agents: one having
rational expectations and the other using adaptive learning. The proportion
of these agents in the population evolves according to their past forecasting
performance. I show that (1) Even an underparametrized learning algorithm
survives competition with rational expectations; (2) The presence of rational
agents speeds up the convergence of the learning algorithm. This finding is
particularly interesting since it is often argued that learning has such slow
convergence that doubt is cast as to the validity of the final limit. In sum,
these findings strengthen the case for using learning models enriched with
rational agents to model expectations.

Chapter 2

Optimal Monetary Policy when Agents are Learn-

ing

joint with Sergio Santoro

Most studies of optimal monetary policy under learning rely on optimality
conditions derived for the case when agents have rational expectations. In the
second chapter of the thesis we derive optimal monetary policy in an econ-
omy where the Central Bank knows, and makes active use of, the learning
algorithm agents follow in forming their expectations. In this setup, mone-
tary policy can influence future expectations through its effect on learning
dynamics, introducing an additional tradeoff between inflation and output
gap stabilization. Specifically, the optimal interest rate rule reacts more
aggressively to out-of-equilibrium inflation expectations and noisy cost-push
shocks than would be optimal under rational expectations: the Central Bank
exploits its ability to “drive” future expectations closer to equilibrium. This
optimal policy closely resembles optimal policy when the Central Bank can
commit and agents have rational expectations. Monetary policy should be
more aggressive in containing inflationary expectations when private agents
pay more attention to recent data. In particular, when beliefs are updated
according to recursive least squares, the optimal policy is time-varying: after
a structural break the Central Bank should be more aggressive and relax the
degree of aggressiveness in subsequent periods. The policy recommendation
is robust: under our policy the welfare loss if the private sector actually has

v



rational expectations is much smaller than if the Central Bank mistakenly
assumes rational expectations whereas in fact agents are learning.

vi



Chapter 1

Learning with Expert Advice

The importance of forward-looking behavior in economic decision making
has long been recognized in economics. However the modelling of expecta-
tions remains a matter of controversy. Rational expectations is criticized for
placing unreasonable computational and informational demands on economic
agents. Moreover, a vast empirical literature on testing survey data rejects
rational expectations1 and economic models with rational expectations often
perform very badly when tested on data2. These criticisms highlight the
importance of seeking alternative ways to model expectations.

However, once we depart from fully rational expectations, there are many
ways to do so. Thus, agents should be allowed to endogenously choose be-
tween them, and abandon their ad-hoc expectation rule, if they could do
better. “payoffs of optimizers ...exceed those of non-optimizers...Normally,
one would expect this to exert some pressure, however slight, on the popula-
tion composition...non-optimizers would be driven to extinction in the long
run” 3. Indeed, early literature on rational expectations motivated ratio-
nal expectations saying that if agents did not behave rationally they would
disappear from the market.

Least squares learning departs from rationality in a way that still at-
tributes a lot of rationality to agents: they “behave as working economists
or econometricians” 4 5. Still, the choice of a learning algorithm is necessar-

1See for example, Lovell (1986) , Baghestani (1992) Ball and Croushore (1995)
2See Roberts (2001)
3Sethi and Franke (1995) pp.584
4Sargent (1993) p.22.
5For a survey of adaptive learning and boundedly rational modelling see Marimon
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ily arbitrary, and subject to the caveat raised above: agents would abandon
their learning rule when they have access to a better forecasting algorithm.

Another problem with least squares learning is that although it can con-
verge to the rational expectations equilibrium slow convergence can signifi-
cantly affect finite sample behavior of the economy. In this sense slow con-
vergence might even cast doubt on the validity of the final limit.

In our paper we address these criticisms of least squares learning. We
raise the question: “What happens if agents follow least squares learning
but they have access to the forecast of an ’expert’ who can actually do bet-
ter?” This expert will have rational expectations, in the sense that he will
know the structure of the underlying economy and also the algorithm used
by the learners. Both least squares and rational forecasts will be costless.
We establish a sort of ’forecasting competition’ between the least squares
learner and the rational agent in a self referential model, and examine how
agents switch between the forecasting rules, whether the learner survives and
whether the economy converges to the rational expectations equilibrium or
a different equilibrium. We are also interested in whether the presence of
a well informed rational agent alters convergence properties of learning. In
particular, how conditions of stability change and whether the presence of
an expert can “help”to increase the rate of convergence.

Our paper uses dynamic predictor selection, the ratio of learners and
rational agents in the population is not imposed exogenously, but depends
on past performance. Whoever made the better forecasts in the past will have
a higher weight in the population. An important feature of this weighting is
that heterogeneity can be an equilibrium outcome.

We propose a simple weighting algorithm that is analytically tractable
for least squares learning; thus it gives a clear intuition about convergence
results. In the limit it measures how the relative forecasting success of one
predictor over the other is appreciated. In the limiting case when agents
pay attention to even tiny differences in forecasting performance, weights
correspond to the probability of one predictor having better forecasts than the
other. In Adam (2004) agents also use the forecast error to choose between
predictors. A major difference is that in Adam (2004) agents switch to either
one or the other predictor, while in our paper agents use a combination
of the forecasting models, adjusting their weights only partially. This is
appropriate in a stochastic environment as: if today one predictor was better,

(1996).
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there is a positive probability that the other predictor will produce a smaller
forecast error next period. A recent survey Branch (2004) provides evidence
for a similar expectation formation: agents adjust their weight on predictors
dynamically as a function of the relative mean squared forecasting errors.

Our weighting algorithm is linked to a recent approach in learning theory,
known as “prediction with expert advice”. This literature considers problems
of sequential decision making under uncertainty. Prediction with expert ad-
vice avoids making assumptions about the data generating process. Instead,
the decision maker competes with a wide set of forecasting experts, and the
goal is to design decision algorithms that are almost as good as the best ex-
pert in a wide benchmark class. In other words, the goal of the predictor is
not to minimize his loss function, but to minimize his relative loss (or regret)
compared to the best“expert” in a fixed, possibly infinite, set of experts. The
main focus is to provide general upper bounds on the cumulative regret 6 7.

In addition to the weighting algorithm, our paper differs in two main
respects from previous papers with endogenous weighting. First, we use
different types of predictors and second, we assume all of them are costless.

We consider two types of agents: a rational agent and a least squares
learner. In Brock and Hommes (1997) and Sethi and Franke (1995) there are
costly rational and costless naive predictors. Results of Brock and Hommes
(1997) are generalized by Branch (2002) by expanding the set of predictors
with simple adaptive agents. Thus, our least squares learners exhibit more
rationality than naive agents and simple adaptive agents in these papers.
Adam (2004) and Branch and Evans (2004) are examples for learning with
endogenous weighting. In Adam (2004) agents choose between two learning
algorithms. Branch and Evans (2004) build a heterogeneous learning model
where learners are constrained to underparametrize.

Also, in contrast to Brock and Hommes (1997), Sethi and Franke (1995)
and Branch (2002) our agents do not have to pay for the forecasts of the

6In the terminology of this literature experts in our paper would be the two forecasting
algorithms (forecasting with least squares regression and rational expectations). To avoid
confusion we will call only the rational agent to be an expert. (In the terminology of
this literature predictors in our paper are “simulatable experts”: functions that use data
accessible to the forecaster himself, thus the forecaster can simulate the experts‘ future
reactions.)

7This idea of forecasting with the use of expert advice is applied in several branches of
economic theory (for a summary see Cesa-Bianchi and Lugosi (2006)). In game theory,
the concept of correlated equilibria takes experts to be pure strategies; in finance, portfolio
choice models regard experts as different portfolio strategies.
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rational agent. In Sethi and Franke (1995) costly optimization of the rational
agent is needed to guarantee survival of naive agents, with costless rational
forecasts naive agents are driven out of the economy. In Brock and Hommes
(1997) coexistence may prevail under zero optimization cost when agents do
not fully optimize 8. We believe that assuming zero cost for the rational
predictor is realistic. For example the central bank inflation forecasts are
typically publicly available and the closest to rationality.

One main result of our paper is that least squares learners can survive
forecasting competition even with a costless rational predictor, and even if
agents pay attention to any infinitesimal difference in the forecasting per-
formance of the learning algorithm and the rational agents. This means
that with a positive probability least squares forecasts are closer than the
the rational expert’s forecasts to the actual outcome, even in the limit. In
other words the weights on least squares learning will not collapse to zero,
in equilibrium both learners and rational agents are present in the popula-
tion. Interestingly, this conclusion holds even if the learning algorithm is
underparametrized. This result rationalizes empirical work on survey expec-
tations which suggest that in reality expectations combine backward- and
forward-looking elements.

A second main result is that the presence of a rational agent increases
the rate of convergence of least squares learning. This is important since
in practice slow convergence can mean no convergence at all: for example,
when there are regime shifts or changes in policy and it takes several years
for agents to learn the new equilibrium. We believe our speed of conver-
gence results also support modelling adaptive learning together with rational
expectations, since the slow convergence problem can be avoided. 9

We close the introduction by discussing some related empirical and the-
oretical research that supports the relevance of our setup.

Recent work on survey inflation expectations detect a behavior similar to
the equilibrium of our model. For instance Roberts (1998), Baak (1999) and
Chavas (2000) detect an intermediate degree of rationality: inflation expec-
tations can be well approximated by a weighted average of forward-looking
and backward-looking expectations. Moreover, modelling expectations as a
weighted average of adaptive and rational expectations is supported by an-

8In the terminology of this literature: agents choose between predictors with a finite
intensity of choice

9For research on speed of convergence of least squares learning see Marcet and Sargent
(1995), of Bayesian learning see Vives (1993).
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other strand of empirical literature. These papers show that the empirical
performance of standard models improves when: instead of rational expec-
tations they are modelled as a mixture of backward-looking and forward-
looking expectations (see Roberts (2001) or with survey expectations (see
Roberts (1997)) 10.

Our paper supports modelling expectations in line with the empirical ev-
idence -as a mixture of backward- and forward looking expectations- with
showing that the coexistence of these expectations can be the limiting out-
come11.

Section 1 presents the model. Section 2 establishes properties of the
equilibrium and conditions of convergence to the equilibrium. Section 3 ex-
amines speed of convergence. We establish speed of convergence results to
least squares learning, and derive the conditions under which the presence of
a well informed expert can speed up convergence. Then, section 4 provides
some numerical results on finite sample speed of convergence with Monte
Carlo simulations.

1.1 The Model

The starting point of the analysis is a simple self-referential model. We
keeping the model simple and focus on the expectations side.

Let the endogenous variable p be the price level. Assume it is determined
by the price level expected for the next period and by the nominal money
stock m. The money stock is exogenous and follows an AR(1) process.

pt = λẼtpt+1 + mt (1.1)

mt = %mt−1 + εt % ∈ [0, 1), ε ∼ iid N(0, σ2
ε) (1.2)

10Survey evidence is subject to the caveat that survey respondents may not have in-
centives to provide accurate information. So survey expectations are at best a noisy
measure of inflation expectations and at worst tell us nothing about actual inflation ex-
pectations. However it may boost confidence in the usefulness of survey expectations that
they are helpful in modelling inflation and in predicting wages and interest rates (Roberts
(1995),Roberts (1997), Englander and Stone (1989)).

11Modelling expectations as a mixture of adaptive and rational agents was argued for
example, by Sethi and Franke (1995), Roberts (1997), Caroll (2003). Modelling expec-
tations as a mixture of learning and rational agents was argued for example, by Nunes
(2004).
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Equation (1.1) and (1.2) together with the assumptions about the expec-
tation term completely determine the price level. There are several economic
models that fit this model: for example, the cobweb model or a simple ver-
sion of the Cagan model of inflation (Cagan (1956))12.

We assume that there are two types of agents: one following least squares
learning (henceforth LS) and one having rational expectations (henceforth
RE). The rational agent is rational not in the sense of the traditional ra-
tional expectations equilibrium (this would provide very bad forecasts) but
he is rational within the learning equilibrium: he knows the structure of the
economy and forms expectations conditioning on the forecasts of learners.
The expectation of the least squares learner we denote by ELS and the ex-
pectation of the rational agent by ERE. The aggregate expectation about
the price level of next period Ẽtpt+1 is formed as an average of the forecasts
of the two types of agents:

Ẽtpt+1 = ωtE
LS
t pt+1 + (1− ωt)E

RE
t pt+1 ωt ∈ [0, 1] (1.3)

Predictor weights - ω - evolve over time, depending on the past forecasting
performance of the two types of agents. The representative agent evaluates
the forecasting performance of the two competing predictors - LS and RE
- and dynamically adjusts the weights that he applies to each predictor. He
does not have any sophisticated model at hand. He simply observes the
forecasts of two predictors, and assigns weights according to how well they
have forecasted previously. For example, agents could simply read the official
inflation forecasts of the central bank and of the ministry of finance, and then
decide which one to believe more. If the ministry of finance continuously
underestimated inflation compared to good forecasts from the central bank,
agents will believe the ministry’s forecasts to be less reliable, and assign a
lower weight to its forecasts.

The model can be also interpreted as a heterogeneous agents model. Then
the weights are population weights, and the model has an evolutionary inter-
pretation: the type with more successful forecasts will be more the dominant
type. An example for this could be a population of firms choosing between

12The basic model of asset pricing under risk neutrality takes the same form, with pt

interpreted as the price of stock, mt as its dividend. λ = 1
1+r is the one period discount

factor, r the rate of return on the riskless asset.
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two pricing algorithms. If one pricing algorithm performs worse than the
other, more and more firms would switch to the better one. To avoid confu-
sion, throughout the paper we will resort mainly to the representative agent
interpretation.

The representative agent adjusts the predictor weights in every period.
The weight on LS evolves in a recursive fashion: weight in period t equals
the weight in the previous period, adjusted by a measure of the forecasting
performance of LS in t − 1. Adjusting the weights only partially is suitable
in a stochastic environment: when even if today one predictor was closer to
the true outcome, with a positive probability it will be the worse one next
period. The forecasting performance is measured by the function F , which
compares the forecast error of LS and RE; and the time t weight on LS is
adjusted towards the value of F taken in time t− 1.

ωt = ωt−1 +
1

t

{
F [ (ERE

t−1pt − pt)
2 − (ELS

t−1pt − pt)
2 ]− wt−1

}
, (1.4)

where F : R→ [0, 1], forx ≤ yF (x) ≤ F (y)

GivenELS
0 p1, E

RE
0 p1, ω0 = 1.

A key feature of F that the “expert” literature imposes is symmetry
around 0, formally

F (x) = 1− F (−x)

First, let us first consider an example of F as an indicator function which
takes the value 1 whenever LS has a smaller or equal forecast error, 0 when
RE has a smaller forecast error. Then F at time t−1 simply indicates whether
LS was better or not, and ω measures how many times LS forecasted better
than RE in the past. In the limit ω has a very intuitive interpretation, ω
converges to the probability that LS has smaller forecast error than RE.

For some theorems we need continuity of F , which together with the
symmetry condition implies F (0) = 0.5.

As F (·) is monotone, a better LS forecast implies a bigger F . When the
LS agent is better F (·) is higher then 0.5, and the weight on LS is adjusted
towards a higher value then the weight on RE. Similarly, when RE is better
F (·) is lower than 0.5, and the weight on LS is adjusted towards a number
lower than 0.5. When RE and LS make equally good forecasts F (·) takes the
value 0.5 and their weight is adjusted towards 0.5.

When F is the indicator function, any infinitesimal difference between
forecast errors is rewarded. Also, any small difference is rewarded in the

7



same way as bigger differences in forecast errors. By choosing another func-
tional form for F we can also give a measure to how the representative agent
evaluates the relative forecasting success of LS. Let us consider an example:
F1 : CDF of N (0, σ2

1) and F2 : CDF of N (0, σ2
2), σ1 < σ2. Then, whenever

LS makes a better forecast F1 gives a higher value than F2, so F1 adjusts
the weight of LS to a greater degree than F2. A different example could be
F (x) = 1

π
arctan(αx) + 1

2
, α > 0. Then the larger α is, the more a good

forecasting performance is rewarded in F . In the limiting case F (·) is an
indicator function 13 taking the value 1 whenever LS is better, 0.5 when LS
and RE made equal forecasts and 0 whenever the rational agent is better; in
this case any infinitesimal difference in forecasting performance is considered
important.

Similar dynamic expectation formation was found by Branch (2004) in the
Michigan Survey of inflationary expectations. He found evidence that agents
switch predictor use as the relative mean squared errors change: agents’
predictor choices respond negatively to increases in relative mean square
error.

The dynamic predictor selection algorithm developed in this paper has
the advantage that the joint dynamics of the learning algorithm and the
weight can be analytically examined with stochastic approximation, which
makes the intuition clearer. The first papers in dynamic predictor selec-
tion used either a multinomial logit 14 (see for example, Brock and Hommes
(1997)) or an algorithm which closely resembles the replicator dynamic in
evolutionary game theory (see Sethi and Franke (1995)); in a learning envi-
ronment none of these algorithms allow using stochastic approximation 15.
Learning algorithms with dynamic predictor selection were examined before
in Branch and Evans (2004) who used multinomial logit law of motion, and
the competing forecasting algorithms were misspecified models. They show
that intrinsic heterogeneity is possible, where in equilibrium agents use sev-
eral underparametrized forecasting rules.

13The normal density function in the limit of zero variance is the Dirac delta function;
the cumulative distribution function of it is the unit step function. The value at 0 is often
set to 0.5 by convention. Considering the function F (x) = 1

π arctan(αx) + 1
2 , α > 0, with

α → ∞, it is easy to show that for x > 0 the limit is 1, for x < 0 the limit is 0 and for
x = 0 the limit is 0.5 (with the convention limα→∞ 0 α = 0).

14In a random utility model, under certain assumptions on shocks, the limiting proba-
bility that a given individual chooses an alternative is given exactly by multinomial logit.

15In these papers competing predictors were a rational and a naive agent.
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Our modelling choice for the relative predictor success is the most recent
relative forecast error. In the above mentioned papers the underlying econ-
omy (1.1)-(1.2) is the cobweb model and they use last period relative profit
16 as a fitness measure. In Brock and Hommes (1997) this yields similar
results to choosing the relative forecast error. Similarly our results remain
unchanged with relative profit 17.

For the analytical proofs we choose F (·) to be the CDF of the normal
distribution with 0 mean and σ2 variance, similar results obtain with other
examples of F (·) mentioned in this section.

1.1.1 Least Squares Learning

This section describes the learning algorithms used to model the first type
of agents.

Note that under rational expectations the MSV solution of (1.1) (1.2) is
Etpt+1 = %

1−λρ
mt. So a learning algorithm has a chance to learn the MSV

rational expectations equilibrium only if it conditions its expectations on
m. We consider two different learning algorithms. The first, which is less
“clever”, uses only past price levels to formulate the forecast. The second,
which is more sophisticated takes into account that the price level should
depend on m, and an other, .

Denote the less sophisticated algorithm by LS1. He observes only past
price levels, thus the best he can do is to run regression on a constant, i.e.
take averages of past price levels.

LS1 Etp
LS1
t+1 = αt αt =

Pt−1
i=1 pi

t−1
(1.5)

Or in a recursive formulation

αt = αt−1 +
1

t
(pt−1 − αt−1). (1.6)

This learner can not converge to the rational expectations equilibrium,
since he is running an underparametrized regression (not conditioning m).

16Except Branch and Evans (2004) who use unconditional expected relative profit. This
choice allows them to consider the fixed point of a map rather than a solution to a difference
equation as in Brock and Hommes (1997).

17When (1.1) is developed from profit maximizing firms with quadratic cost function.
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Still, he can do quite well, he can learn the true unconditional expectation
of the price level.

The second learning algorithm is ’more clever’, he also observes the money
supply m and runs his regression in the Minimum State Variable (MSV) form
(henceforth LS2). So LS2 correctly hypothesizes that the last period‘s money
supply is a leading variable of the price level today. He runs a regression of
price on lagged money supply, and then makes his forecast of next period‘s
price level with his latest estimated coefficient and the current period‘s money
supply 18.

LS2 Etp
LS2
t+1 = βtmt βt =

Pt−1
i=1 pimi−1Pt−1
i=1 m2

i−1

(1.7)

The recursive formulation of the regression coefficient is

βt = βt−1 +
1

t− 1

1

Rt−1

mt−2 (pt−1 −mt−2βt−1) (1.8a)

Rt = Rt−1 +
1

t

(
m2

t−1 −Rt−1

)
(1.8b)

where Rt is the moment matrix19.

1.1.2 Rational Expert

Our next modelling choice concerns the second type of agents the rational
experts. Again, we consider two specifications, one more sophisticated than
the other. Rational expectations in this context does not mean forecast-
ing the rational expectations equilibrium. In the presence of learners the
traditional REE forecast would perform very badly. First, because the the
economy might converge to a different equilibrium. Second, because even if
the economy converges to the REE these forecasts would be wrong during the
transition. We assume rational expectations are rational within the learning
equilibrium: rationals know the model with its parameters, the stochastic
process of m, and condition their expectations on the LS forecasts. The
difference between the more and less clever rational agent is that the first

18Equilibrium remains unchanged if a constant is also included in the regression.
19Rt =

Pt
i=1 mim

′
i

t
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observes the evolution of the weights while the second does not. So, the less
clever rational has a misperception about the economy.

We assume the less clever expert, RE1 hypothesizes that the whole popu-
lation follows least squares learning, i.e. ωt = 1 ∀t. He would be fully rational
only if the weight on least squares learners turned out to be 1 in every period.
In the simulations we indeed set the initial weight on LS to 1, thus at the
beginning RE1 is rational and remains close to rationality in the first periods
when the ratio of LS agents is still high. RE1 can be interpreted as an agent
who investigated a lot in discovering the true parameters of the economy but
considers himself too small to influence expectations. One could hypothesize
for example that a forecasting agency must have the capacity to investigate
thoroughly the underlying economy, but does not believe or does not know
exactly how his forecasts are influencing aggregate expectations, i.e. to what
extent agents “believe” his forecast.

Expert RE1 forms his expectations in the following way. Using ωt = 1
and ELS

t pt+1 in (1.1) he can calculate pt = λELS
t pt+1 + mt. He knows m

follows an AR(1) process (equation (1.2)), and forms his forecast as:

ERE1
t pt+1 = λELS

t pt+1 + %mt (1.9)

Notice that for simplicity we assume the rational agent is myopic, in the
sense that he assumes that the expectation of LS he observes today remains
unchanged in the next period: ELS

t pt+1 = ELS
t+1pt+2.

When the least squares learner runs a regression on a constant ELS1
t pt+1 =

αt the forecast of RE1 is

ERE1
t pt+1 = λαt + %mt (1.10)

When the least squares learners regress p on m ELS2
t pt+1 = βtmt the

forecast of RE1 is

Etp
RE1
t+1 = Et[(λβt + 1)mt+1] = (λβt + 1)ρmt (1.11)

Next consider the more clever expert. RE2 knows exactly how his fore-
casts are followed by agents: he observes the weights denoted to him and
the least squares learner. Think for example, of a central bank, who does
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not have full credibility, but it has to gain credibility by publishing its fore-
casts, and making good forecasts. In this interpretation the weight on the
rational agent will be higher when private agents give a bigger credibility to
its forecasts. Furthermore, this central bank can investigate the ’credibility’
of his forecasts (observes what is the weight of its forecast in private sec-
tors expectations) and uses this knowledge it to improve his future forecasts.
Again, we assume he is myopic and thinks expectation of LS and weights
remain unchanged in the next period, mathematically ELS

t pt+1 = ELS
t+1pt+2

and ωt = ωt+1. One can find his forecasting function with guess and verify
20. In general the guess should be pt = a(ωt)E

LS
t pt+1 + b(ωt)mt. When the

LS expectations are in the form ELS
t pt+1 = βtmt it is equivalent to guess

pt = c(ωt)mt.
With ELS1

t pt+1 = αt it can be easily verified that a = λωt

1−λ(1−ωt)
and b =

1
1−λ%(1−ωt)

. Thus forecast of RE2, using Etmt+1 = %mt is:

ERE2
t pt+1 =

λωt

1− λ(1− ωt)
αt +

1

1− λ%(1− ωt)
%mt (1.12)

With ELS1
t pt+1 = βtmt it can be similarly verified that c(wt) = 1+λωtβt

1−λ% (1−ωt)
21. The forecast of RE2, using Etmt+1 = %mt is:

ERE2
t pt+1 =

1 + λωtβt

1− λ% (1− ωt)
%mt (1.13)

Summing up, our model consists of the underlying economy, equations
(1.1) and (1.2) and the aggregate inflationary expectation, equation (1.3).
This latter in turn is based on the forecasts of two types of predictors: least
squares learners and rational agents. Predictor weights evolve according to
their past performance, equation (1.4). We examine convergence properties
conditional on how sophisticated these forecasts are: whether the rational
agent observes the weight or not, and the least squares learner has a correctly
specified regression (1.8) or an underparametrized regression (2.8). We ex-
amine whether the introduction of a well informed expert implies different
model behavior compared to the standard least squares learning case. Does
it converge to a different equilibrium? What are the equilibrium weights on

20This method is used, with the guess of Nunes (2004), where he models constant gain
learning with rational expectations in a New Keynesian framework, with fixed weights.

21Or equivalently pt = λωt

1−λ% (1−ωt)
ELS

t pt+1 + 1
1−λ% (1−ωt)

mt
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least squares learners and rational agents? Is its rate of convergence different
from that of LS learning?

1.2 Equilibrium under Least Squares Learn-

ing with Rational Experts

In this section we examine convergence of our economy. As a benchmark
we compare convergence of LS1 and LS2. After adding rational agents there
are several interesting questions to be examined. Establishing convergence
results for the weights answers whether least squares learning ’survives’ in
the presence of rational agents. Further, we examine whether the presence of
rational agents modifies the equilibrium and the conditions of convergence.
We also examine how different specifications for the rational agents affect
our results.

1.2.1 Benchmark: Convergence Under Least Squares
Learning

As a benchmark we now study the economy without rational agent (ωt =
1∀t). The two learning algorithms can potentially learn very different equi-
libria depending on their specification. LS1 is not conditioning on the state
variable m, so the equilibrium he can achieve is a restricted perceptions equi-
librium 22. Since LS1 is only taking averages of past inflation , the best he
can achieve is to find the true unconditional expectation of the price level.
LS2 on the other hand is running a regression in the MSV form, therefore
has a ’chance’ to learn the MSV rational expectations equilibrium.

The model with only LS2 learners is examined by several papers, for a
proof of convergence we refer to these23. It can be shown that βt converges to
the rational expectations solution βf = %

1−λ%
(henceforth βRE), given λ% < 1.

Further, the equilibrium is the MSV rational expectations equilibrium

pt =
%

1− λ%
mt. (1.14)

22In a restricted perceptions equilibrium expectations are optimal within a restricted
class misspecified beliefs. See Evans and Honkapohja (2001a).

23See for example, Marcet and Sargent (1989).
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When the economy is populated only with LS1 agents aggregate ex-
pectations are given by their Perceived Law of Motion (henceforth PLM)
ELS1

t pt+1 = αt. Using this expectation in (1.1) gives the Actual Law of
Motion (henceforth ALM) for the economy

pt = λαt + mt (1.15)

Heuristically an equilibrium α is one where agents perceptions about the
future price level become justified by the actual outcome; i.e. the possible
resting point of α is the fixed point of a mapping from the PLM to the ALM.
In the appendix we show that αt converges to αf = 0 if λ < 1. Thus, the
equilibrium is pt = mt, which is different from the equilibrium with LS2

agents.
The interesting thing in this simple exercise is to see how the equilibrium

is intrinsically different depending on the learning algorithm agents follow.

1.2.2 Least Squares Learning in the MSV form -LS2-
in the Presence of a Rational Expert

We now introduce a rational agent and examine how the economy evolves
with endogenous weighting: what are the equilibrium weights, how the pres-
ence of an expert affects the equilibrium and the conditions for convergence.
Let us first examine the case when LS learning is specified in the MSV form.

Let us first consider a population with LS2 and RE1 agents. Recall that
this expert knows that initially all agents follow LS2, knows the underlying
economy, so at the beginning he is indeed able to calculate rational expec-
tations. However, he does not observe further evolution of the weights and
mistakenly thinks in all periods the whole population consists of learners. It
follows from the the evolution of the weights that there is an interesting feed-
back from RE1’s forecast to his forecasting performance. If RE1 has more
accurate forecasts he will be more credible, his weight will increase. On the
other hand, a higher weight on him (and a smaller weight on LS) will cause
his forecasts to deteriorate as he thinks weight on LS is 1 in all periods.
His equilibrium weight will be a fixed point where these two opposite effects
cancel each other.

To find the equilibrium we have to determine the Actual Law of Motion of
the economy. For this one has to substitute the PLM of the learner (1.7) and
the rational agent (1.11), into aggregate expectations (1.3), then aggregate
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expectations to the underlying economy (1.1). It can be easily shown that
for the economy with LS2 and RE1 The Actual Law of Motion for the price
level is

pt = [λ (ωtβt + (1− ωt)(λβt + 1)%) + 1] mt (1.16)

The ALM for the population with LS2 and RE2 is identical to the per-
ception of RE2:

pt =
1 + λωtβt

1− λ% (1− ωt)
mt. (1.17)

This is not surprising, since RE2 knows everything to calculate the current
price level, in this sense he is fully rational24.

In equilibrium agents perceptions should become true, i.e. the equilibrium
is a fixed point of a mapping from the PLM to the ALM. Since agents are
forecasting one period ahead price level we have to compare the ALM of pt

to the PLM ELS
t−1pt.

25.

Proposition 1. Let the economy (1.1)-(1.4) be populated with
i.) LS2 and RE1

ii.) or LS2 and RE2

then the vector [βt, ωt] converges to [βRE, 1
2
], where βRE = %

1−λ%
is the β

corresponding to the rational expectations equilibrium if
i.) λ ∈ (−2

%
, 1

%
)

ii.) λ < 1
%
.

Proof. See the Appendix.

The above propositions show that even though LS2 has much less infor-
mation than a rational agent, he will not die out as in the limit ωt → 1

2
. In

24To forecast pt+1, RE2 could even do better in the following sense. Since RE2 observes
the weights he can calculate pt and the current forecasting error of LS. Then using (1.8)
in principle he could calculate how β will be updated next period. However, this would
lead to a complicated solution for the rational expectation. Since solving this is not in the
focus of the paper, we apply the simplifying assumption that rational agents are myopic.

25For details see the Appendix.
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equilibrium half of the population will be learners and the other half will be
rationals. The intuition behind is that in the limit the expectations of the
learner and the expert are negligibly close to each other. As the shocks are
symmetric around the mean, in the limit the learner and the expert have
the same probability of producing the better forecast 26. This way shocks
guarantee that in some periods learners in other periods rationals get closer
to the actual outcome.

The above propositions also state a striking difference between an econ-
omy with RE1 and RE2: compared to the benchmark with only LS2 agents,
RE2 does not alter the condition for convergence while RE1 does. There
is a range of coefficient values λ < −2

%
for which LS2 converges without an

expert, but in the presence of RE1 the LS2 does not converge. An exam-
ple for an economy where λ can be negative is the cobweb model27. In the
cobweb model, with naive expectations, supply lags behind the price, and
this introduces periodic fluctuations and might also introduce instability. In
our model the source of instability is different: the presence of a rational
agent who places too high weight on learners forecast (ωt = 1∀t in our case)
introduces a non-linearity, the rational agent perceives that the price level
will depend negatively on the LS forecast, but the actual price will depend
negatively also on his forecast. When λ is very low, the aggregate effect of
LS forecasts on the price level might turn out to be positive and explosive.
In other words the presence of a rational agent who does not have correct
perceptions might introduce instability.

1.2.3 Least Squares Learning About a Constant -LS1-
in the Presence of a Rational Expert

Now let us turn to LS1 when least squares learners are running an under-
parametrized regression, with PLM ELS1

t pt+1 = αt. Previously we showed
that for λ < 1 learning converges to αf = 0: the true unconditional expec-
tation of the price under rational expectations. This section, as the previous
one, considers convergence in the presence of a rational expert.

With expert RE1, the Actual Law of Motion of the economy is obtained
by substituting the forecast of the learner (1.5) and the forecast of RE1 (1.10)

26See proof of proposition 2 footnote 42
27The cobweb model was identified by the Hungarian economist, Nicholas (Miklos)

Kaldor.
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into aggregate expectations (1.3), and (1.3) into the price level equation (1.1).
The Actual Law of Motion with expert RE1 is:

pt =
(
λωt + λ2 (1− ωt)

)
αt + (λ% (1− ωt) + 1) mt (1.18)

The ALM with the second expert is obtained similarly by using (1.5),
(1.12), (1.3) and (1.1). The ALM in this case is equal to what RE2 perceives
about p:

pt =
λωt

1− λ(1− ωt)
αt +

1

1− λ%(1− ωt)
mt (1.19)

Proposition 2. Let the economy (1.1)-(1.4) be populated with
i.) LS1 and RE1

ii.) or LS1 and RE2.
Then [αt, ωt] converges to a fixed point [0, ωf ]

i.) In the first case ωf is the solution of

ω =

∫∫
F ( m2%2 − 2m%(m% + ε)[λ%(1− ω) + 1] ) dφm dφε

and the fixed point is stable if the following condition holds:

λ ∈ (
−1

1− ωf

, 1) and
2|λ|%2

√
2πσ

σ2
ε

1− %2

(
% +

2
√

1− %2

π

)
< 1

ii.)In the second case ωf is the solution of the following equation

ω =

∫∫
F

(
− %2m2 + 2%mε

(1− λ(1− ω))2

)
dφmdφε .

and the fixed point is stable if

λ < 1 and
2|λ|

(1− λ(1− ωf ))3

σ2
ε√

2πσ(1− %2)

(
%2 +

2
√

1− %2

π

)
< 1.

Where F is the c.d.f. of N(0, σ), φm, φε are distribution functions of m and ε.

When % = 0 the equilibrium weight both in case i.) and ii.) is ωf =∫∫
F (0) dφmdφε = 0.5.
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Proof. See the Appendix.

Propositions 2 states analytical upper bounds for conditions of stabil-
ity, since closed form solutions cannot be established28. With Monte carlo
simulation (Tables 1.4 and 1.5)we show that these upper bounds are indeed
always satisfied29, thus conditions for stability simplify to:

i.) λ ∈ (
−1

1− ωf

, 1) (1.20)

ii.) λ < 1 (1.21)

The most surprising result of Proposition 2 is that the weight on LS1 is
strictly positive even in the limit. In other words even an underparametrized
learning algorithm survives forecasting competition with a rational agent 30.
Of course LS1 is a worse predictor then a rational agent (when % 6= 0),
but he is still quite clever in the sense that he eventually learns the true
unconditional expectation of p under rational expectations. Thus in the
limit there is a positive probability that LS1 makes a forecast that is closer
to the actual outcome than the rational agent’s forecast.

When % = 0, m is a random noise, so conditioning on m does not help
forecasting more then just taking averages of p: the weights of LS1 will be
equal to the weights of the rational expert, ωf = 0.5. Figure 1.1 shows that
when % 6= 0 the underparametrized learning algorithm naturally performs
worse than a rational agent: the equilibrium weight on LS1 is never bigger
than the equilibrium weight on the expert.

An interesting result of Proposition 2 is that the equilibrium weights
depend on the persistence of autoregressive process 31. Figure 1.1 shows that
the higher is % the smaller is the weight on LS1. The intuition behind this

28This is necessary since in both cases one eigenvalue of the Jacobian does not have a
closed form solution.

29We examined 0 ≤ % ≤ 0.9, −2 < λ < 1. Tables 1.4 and 1.5 summarize results
0 < λ < 1.

30This result holds true also for σ →∞, so if the representative agent pays attention to
any small difference in forecasting performance.

31For LS1 finding the exact value of equilibrium weight cannot be derived analytically.
Solving for ωf is a complicated fixed point problem of a function inside the normal cu-
mulative distribution function. (See Appendix.) Since the latter does not have a closed
form solution we cannot give exact analytical results. However it is easy to get numerical
solutions.
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is simple: the more persistent is m, the longer time it takes for a shock on
m to die out, so the LS1 makes a bigger mistake by not using data on m to
forecast. So, a more persistent stochastic process for m makes the forecasts
of LS1 worse compared to RE who conditions on m.

In the limit LS1 learns the same restricted perceptions equilibrium as
without the presence of a rational agent: αf = 0. A result similar to the
previous section is that a rational agent with a misspecified model might
introduce instability. The presence of RE1 again decreases the parameter set
for which convergence to the equilibrium applies. RE2 on the other hand
does not affect stability conditions: convergence of LS1 with or without RE2

has the same condition.
However, the equilibrium changes; the equilibrium depends on the speci-

fication of the rational expert, and on the equilibrium weight.
The equilibrium under LS1 and RE1 is: pt = (λ%(1 − ωf ) + 1)mt, thus

the equilibrium will be different from the MSV solution.
Interestingly, the equilibrium can get close to the MSV rational expec-

tation solution with a correctly specified expert. With LS1 and RE2 the
equilibrium is: pt = 1

1−λ%(1−ωf )
mt.When % is sufficiently high, so that ωf is

close to zero, the equilibrium will be close to the rational equilibrium. In
other words, when the persistence of m is very high, LS1 forecasters will
perform so badly that experts will dominate the equilibrium.

In this section we have shown that with dynamic predictor selection, when
the weights on predictors are adjusted depending on their last forecasting per-
formance, learning survives even in the presence of a costless rational agent.
Surprisingly, this is true even if the learning algorithm is underparametrized.
This happens because the underparametrized learning algorithm learns the
true unconditional mean of inflation; in the limit the price level varies around
its mean, thus the forecasts of the learner will be better than the rational
forecast with a positive probability.

We have also shown that the equilibrium depends intrinsically on the
type of agents in the economy. When the learning algorithm nests the MSV
rational expectations equilibrium, the economy indeed converges to this equi-
librium. When the learning algorithm is underparametrized, the equilibrium
will be different. In this case, the forecasting performance of the learning
algorithm will depend on the stochastic characteristics of the variable that is
missing from its regression; its forecasting performance will in turn determine
its population weight, and thus the equilibrium.
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Stability of learning might change in the presence of a rational agent.
When a well informed rational agent is present it does not alter convergence
properties. However when the rational agent has a misperception he may
induce instability.

1.3 Speed of Convergence

In the previous section we have shown that the presence of a rational agent
does not alter to where the beliefs of learners converge (even though the equi-
librium itself might change), as long as the stability conditions are satisfied.
Still, there can be differences in how quickly learning does converge. This
section will examine whether an ’expert advice’ can speed up convergence of
least squares learning.

Learning is often criticized for its slow convergence, which can cause prob-
lems for economic decision making on several grounds. Slow convergence im-
plies that the asymptotic distribution for test statistics can be very different
when agents follow LS learning compared to when agents have rational expec-
tations. When speed of convergence to rational expectations is very slow, the
confidence intervals will be larger than the confidence intervals from classical
econometrics. This means that an econometrician who derives confidence in-
tervals assuming agents are rational will reject the null hypothesis too often
if agents actually follow LS learning. Also, when learning converges slowly,
expectations will be out of the rational equilibrium for a considerable time.
Then making decisions based on rational expectations when expectations ac-
tually follow learning would be erroneous, even if we know that in the long
run learning converges to the rational expectations equilibrium and learning
had been present for a long time.

In this section first we derive analytical speed of convergence results, then
we provide finite sample rate of convergence results by Monte Carlo simula-
tions. Throughout this section we assume convergence is not an issue: we
set λ ∈ (0, 1) thus conditions for convergence are always met.

1.3.1 Analytical speed of convergence results

We examine speed of convergence applying the theorem of Benveniste and
P. (1990) (theorem 3, page 110).
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Let θt be the vector of parameter estimates, Xt the state vector, and γt the
deterministic sequence of gains. The function Q expresses the way in which
the estimates of θ are updated from period t − 1 to t. In our case γt = 1

t
.

With LS1 θt = [at, ωt, Rt] and with LS2 θt = [βt, ωt, Rt]. The state vector
is Xt = [mt−2, εt−1]. Q is the updating term in the recursive formulation in
equations θ (2.8),(1.8),(1.4) respectively.

From the recursive formulation

θt = θt−1 + γtQ(t, θt−1, Xt)

define

h(θ) = E[Q(θ,Xt)]

for fixed θ. Let θf be such that h(θf ) = 0. The theorem of Benveniste et al.
concludes that if the Jacobian of h(θ) evaluated at θf has all eigenvalues less
than −1

2
in real part then

t0.5(θt − θf )
D
−→ N(0, P )

where the matrix P satisfies

[
1

2
hθ(θf )

]
P + P

[
1

2
hθ(θf )

]′
+ EQ(θ, Xt)Q(θ,Xt)

′ = 0

Thus if the above conditions are met we have root t convergence to θf .
Moreover, for higher eigenvalues of the Jacobian convergence is slower, in the
sense that the asymptotic variance-covariance is higher. So even when there
is root-t convergence, higher eigenvalues of hθ(θf ) imply slower convergence.

Benchmark: if there is only least squares learning

To understand better the theorem of Benveniste et al. and also as a point
of comparison, let us first examine speed of convergence under LS2. Substi-
tuting the ALM of inflation (1.14) into (1.8), the recursive formulation for
θ = [β R], it is easy to show:

h

(
β
R

)
=

[
1
RMm[(λβ + 1)%− β]
Mm −R

]

Where E[mt−2mt−2] = σ2
ε

1−%2 = Mm. The Jacobian of h(θ) is
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∂h(θ)

∂θ
=

[
1
RMm(λ%− 1) −1

R2 Mm[(λβ + 1)%− β]
0 −1

]

We have to evaluate this at the fixed point θf = [βRE Mm]. The two eigen-
values are: -1 and λ%− 1. For

√
t convergence these have to be smaller than

−1
2
, so under LS2 we need λ% < 1

2
. 32

Similar calculations for LS1 yield: for
√

t convergence under LS1 we need
λ < 1

2
.

One immediate difference between LS1 and LS2 is that the persistence
of the autoregressive process influences speed of convergence in the latter
but not in the former. When least squares learning does not condition on
m the stochastic properties of m will have no effect on how quickly learning
gets to the equilibrium. On the other hand when least squares learning
conditions on m the more persistent is m the less information can be gained
from variations in m (the PLM will be closer to the ALM) and the slower
learning will converge to the equilibrium.

Speed of convergence of learning with an ’expert’

We now derive analytical speed of convergence results of least squares learn-
ers in the presence of a rational expert.

Learning in the MSV form:LS2

In Section 1.3.1 we derived that for root-t convergence of LS2 λ% < 1
2

has to
hold. We now examine how this condition changes when the learner has an
’expert’ advice at hand. Analytical results are derived in Proposition 3 and 4
in the Appendix. Here we summarize the conditions for speed of convergence
in Table 1.1.

Table 1.1: Conditions for
√

t convergence - learning in the MSV form

LS2 LS2 with RE1 LS2 with RE1

λ% < 1
2

1
2
λ% + 1

2
λ2%2 < 1

2
λ% < 2

3

Results show that in the presence of an expert root-t convergence applies
for a wider range of coefficients. With RE1, least squares learning in the

32For further discussion see Marcet and Sargent (1995).
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MSV form has
√

t convergence if 1
2
λ% + 1

2
λ2%2 < 1

2
, while in the presence

of RE2 if λ% < 2
3
. For % = 0.7 for example, LS2 has

√
t convergence for

λ < 0.71, while in the presence of RE1 upper bound for λ increases to 0.88
and the presence of RE2 increases it even further to 0.95.

Learning about a constant:LS1

In the Appendix Propositions 5 and 6 derive sufficient analytical conditions
for

√
t convergence of LS1 in the presence of a rational agent. Since one

eigenvalue does not have closed form solution, we use Monte Carlo simula-
tions - see Table 1.4 and 1.5 - and show that this eigenvalue is indeed always
smaller than −1

2
, thus a necessary and sufficient condition for

√
t convergence

of LS1 is that the other eigenvalue should be smaller than −1
2
. Results are

summarized in Table 1.2.

Table 1.2: Conditions for
√

t convergence - learning about a constant

LS1 LS1 with RE1 LS1 with RE1

λ < 1
2

λωf + λ2(1− ωf ) < 1
2

λ < 1
1+ωf

Similarly to the case of LS2, the presence of an expert increases speed of
convergence of LS1. We can see this using ωf ∈ [0, 1].

In the case of RE1 λωf + λ2(1− ωf ) < 1
2
hastohold. It is easy to see that

λωf + λ2(1− ωf ) is increasing in ωf and has its maximum at 1
2

λωf + λ2(1− ωf ) <
1

2
. (1.22)

Thus we can conclude that the presence of RE1 increases speed of conver-
gence of LS1: in the presence of RE1 the LS1 algorithm has square root-t
convergence on a wider parameter set.

With RE2 using ωf ∈ [0, 1] we have

1

2
<

1

1 + ωf

; (1.23)

thus LS1 has root-t convergence on a wider parameter set when RE2 is also
present in the economy. Moreover, using (1.24) and (1.23) we can conclude
that
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λωf + λ2(1− ωf ) <
1

1 + ωf

; (1.24)

the cleverer the expert advice is the more it increases the convergence speed
of LS1.

For % = 0 there is a closed form solution for the weight ωf = 0.5 (see
Proposition 2), so we also have closed form solutions for speed of conver-
gence. LS1 in the presence of RE1 has

√
t convergence if λ < 0.61 and in the

presence of RE2 if λ < 0.66.

It is interesting to examine the role of % in speed of convergence results.
A result already known in the literature is that the more persistent the
stochastic process is the slower is the convergence of LS learning in the MSV
form. Marcet and Sargent (1995) derived analytically this result for the same
model with LS2. Timmermann (1996) found the same result numerically33.
Our results show that this remains true in the presence of a rational expert.

However, when learning does not condition on the stochastic process m
this previous result is reversed: with a rational expert the more persistent is
m the quicker learning will converge to the equilibrium. The intuition behind
this result is simple. LS1 does not condition its forecast on m, so when the
economy is populated only with LS1 agents, its speed of convergence does
not depend on the autoregressive parameter of m. However, in the presence
of a rational agent % affects the speed of convergence through the equilibrium
weight. The more persistent the money process is the bigger mistake it is
not to condition on it: a higher % leads to a lower equilibrium weight on LS1

(see Figure 1.1). A lower weight of the learner means that the ’expert’ - who
in turn conditions on m - has higher influence on the actual law of motion
of inflation. Through the forecasts of the ’expert’ m has higher and more
persistent influence on inflation, and the least squares learner will discover
he is ’doing the wrong thing’ sooner. In other words his Perceived Law of
Motion of the learner will be very different from the Actual Law of Motion
and this leads to a higher speed of convergence.

Analytical results of this section show that speed of convergence of least
squares learning is faster when learners have access to the forecast of a well

33Timmermann (1996) examined a stock pricing equation with learning where the ex-
ogenous process was an autoregressive dividend process. By simulations he found that a
more persistent dividend process results slower convergence of learning.
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informed expert. Moreover convergence is faster when the rational expert
has a better information set. Learning in the MSV form has slower speed of
convergence the more persistent the autoregressive process m is. This finding
is parallel to the findings of Marcet and Sargent (1995) and Timmermann
(1996). Our results show that this result remains true in the presence of a
rational agent with dynamic predictor selection when learning conditions on
the exogenous process, but is reversed when learning does not condition on
m. The speed of convergence of an underparametrized learner who does not
condition on m does not depend on the persistence of m; while in the pres-
ence of a rational agent and with endogenous weights, an underparametrized
learning algorithm can even converge faster with a more persistent m.

1.3.2 Simulations

The previous section derived analytical results for speed of convergence, but
analytical results are available only if the eigenvalues are smaller than 1

2
.

Therefore in this section we show some numerical results on finite sample
rate of convergence.

Following the methodology of Marcet and Sargent (1995) we use Monte
Carlo simulations. We assume that there is a δ for which

tδ(βt − βf )
D
−→ F (1.25)

for some non-degenerate well-defined distribution F with mean zero and vari-
ance σ2

F . Then tδ(βt − βf ) → 0 for δ < δ and we will call δ the rate of
convergence of βt. Intuitively, the faster βt is converging to βf , the higher tδ

has to be to ensure that the product on the left hand side of 1.25 converges
to a proper distribution.

Equation 1.25 implies that E[tδ(βt − βf )]
2 → σ2

F as t →∞. Therefore

E[tδ(βt − βf )]
2

E[(tk)δ(βtk − βf )]2
→ 1

which implies that

(Eβt − βf )
2

E(βtk − βf )2
→ k2δ as t →∞
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This justifies using

δ =
1

log(k)
log

[
E(βt − βf )

2

E(βtk − βf )2)

]1/2

for large t in finite samples, as an approximation for the rate of convergence.
Given t and k the expectations involved can be approximated by Monte

Carlo simulation: calculating a large number of independent realizations of
length t and tk and calculating the mean square difference from βf .

For the simulations we calculated the rates of convergence with 1000
independent realizations. For initial conditions we set the least squares β
and R equal to their limiting point β0 = βf (or a = af ), R0 = 1

1−%2 . The
initial weight on the least squares learner was set equal to 1. Several seeds of
the random number generator were tried, rates of convergence were maximum
0.03 from each other for the long sample, and 0.06 in the short sample.

In the simulations we use % = 0.9; with this % the cutoff values of λ
for root-t convergence are summarized in Table 1.3. For example, when the
economy is populated with LS2 and RE2 agents and % = 0.9, λ has to be
smaller than 0.74 for root-t convergence.

Table 1.3: Conditions for
√

t convergence with % = 0.9
Alone with RE1 with RE2

LS1 λ < 0.5 λ < 0.685 λ < 0.82
LS2 λ < 0.55 λ < 0.61 λ < 0.74

Tables 1.7 and 1.6 summarize simulation results.The estimated δs are pre-
sented, for

√
t convergence these have to be higher than 0.5.

The simulations in general coincide with the analytical results. Rate
of convergence of least squares learning is higher with expert advice. Also
convergence is faster the better is the information set of the rational agent 34.
Simulations also show that a rational agent speeds up convergence more when
learning is misspecified compared to when learning is correctly specified.

From the simulation results one can observe that convergence is very slow
for high values of λ, and the higher is λ the slower is the convergence. This
confirms the theorem of Benveniste and P. (1990), the higher the eigenvalues
of hθ(θf ) the slower is the rate of convergence. Also rate of convergence can

34Finite sample rate of convergence of LS1 is lower than the analytical results suggested.
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be slower than 1
2
, when the conditions in the Benveniste et al. theorem do

not hold.

Conclusion

Modelling expectations remains a controversy: rational expectations is crit-
icized for assuming too much knowledge about agents; adaptive learning,
which is an alternative, is criticized for being ad hoc and for having slow
convergence to the rational equilibrium. Our paper addressed these criti-
cisms of learning: we examined what happens when agents are learning but
have access to the advice of somebody who has better forecasts. We also
examined how the presence of such an expert increases speed of convergence
of learning. We developed a self referential model with two types of agents:
learners and rationals.

We proposed a new dynamic predictor selection, where weights on the
two types evolved dynamically depending on their relative forecasting per-
formance in the previous period. In other words, agents gradually use more
and more the better predictive performance of the rational expert when the
expert generates better forecasts. One can think about a central bank that
does not have any credibility, but can gradually gain credibility by providing
good forecasts.

Our paper showed that the coexistence of learners and rationals can be
rationalized in an equilibrium framework: if agents forecast with a learning
algorithm and have access to forecasts of a rational agent, they will not rush
to abandon their ad hoc learning rule, even if rational forecasts are costless.
Surprisingly, learning survives forecasting competition with a rational agent
even if it is underparametrized. The equilibrium intrinsically depends on the
type of agents in the economy. With an underparametrized learning algo-
rithm the economy does not converge to a rational expectations equilibrium.
These results coincide with recent surveys of inflation expectations, which
find that expectations are well approximated as being a weighted average of
forward-looking and backward-looking expectations. We believe our results
strengthen the case for modelling expectations as a mixture of adaptive and
forward looking expectations. Especially, since it is well documented that
modelling expectations this way improves empirical performance of standard
models.

Our second main result is: the presence of a rational expert ’helps’ learn-
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ing algorithms to converge faster. The more rationality the expert possesses
the higher is the speed of convergence. This result is also confirmed by finite
sample simulations. This result might further strengthen the case for using
learning models enriched with rational agents to model expectations, because
the criticisms against learning’s slow convergence can be weakened.

Since learning and rational expectations imply different policy implica-
tions, we also find it important for future research to examine policy impli-
cations of modelling expectations as a mixture of them.

We have also shown that a rational agent might even induce instabil-
ity: when rational agents have a misperceived model, and expectations have
a negative feedback on the actual outcome, for example as in the cobweb
model. In this sense making the forecasts of the rational ’expert’ accessible
for learners might even worsen the situation. When welfare loss is associated
with being out of the steady state (like in the New Keynesian framework) a
diverging economy clearly leads to huge welfare losses35. A practical example
might be an economy with learners and a central bank with rational expec-
tations. If the central bank were to hesitate between making its forecasts
public or not, our paper suggests the answer depends on how confident the
central bank is about the underlying economy. On the one hand publishing
central bank forecasts can help agents learn the equilibrium faster, but when
the central bank forecast is based on a misperceived model publishing it it
might introduce instability.

35Ferrero (2003) shows that in the New Keynesian framework when the central bank
target coincides with the steady state, higher speed of convergence is always beneficial.
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Tables and Graphs

Table 1.4: Derivative δ
δω

E[F (·)] evaluated at the fixed point, LS1 with
RE1

%
λ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0 0.000 0.001 0.004 0.006 0.008 0.012 0.016 0.0172 0.0146
0.235 0 0.001 0.003 0.008 0.014 0.018 0.026 0.033 0.0313 0.0225
0.37 0 0.001 0.005 0.012 0.021 0.027 0.039 0.045 0.0379 0.0244
0.505 0 0.001 0.007 0.016 0.026 0.034 0.049 0.053 0.0397 0.0254
0.64 0 0.001 0.008 0.020 0.032 0.041 0.058 0.058 0.0388 0.0267
0.775 0 0.002 0.010 0.024 0.036 0.047 0.065 0.060 0.0369 0.0283
0.91 0 0.002 0.011 0.027 0.040 0.053 0.071 0.060 0.0351 0.0299
0.955 0 0.002 0.012 0.028 0.041 0.055 0.072 0.060 0.0346 0.0304

σ = σε = σm = 1.
For stability derivatives have to be smaller than 1.
For root-t convergence, smaller than 0.5.

Table 1.5: Derivative δ
δω

E[F (·)] evaluated at the fixed point, LS1 with
RE2

%
λ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0 0.001 0.003 0.005 0.006 0.005 0.006 0.008 0.009 0.009
0.235 0 0.003 0.007 0.012 0.012 0.010 0.013 0.019 0.020 0.019
0.37 0 0.004 0.012 0.020 0.017 0.013 0.018 0.027 0.026 0.030
0.505 0 0.005 0.019 0.030 0.020 0.013 0.022 0.035 0.029 0.042
0.64 0 0.006 0.031 0.040 0.022 0.007 0.025 0.042 0.030 0.049
0.775 0 0.010 0.050 0.050 0.026 -0.001 0.033 0.045 0.031 0.045
0.91 0 0.025 0.073 0.056 0.032 -0.003 0.049 0.043 0.036 0.025
0.955 0 0.034 0.079 0.055 0.034 0.000 0.057 0.044 0.041 0.014

σ = σε = σm = 1.
For stability derivatives have to be smaller than 1.
For root-t convergence, smaller than 0.5.
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Table 1.6: Speed of convergence of ls learning in the MSV form (in short and
long sample)

LS2 With RE1 With RE2

λ t=200 to 800 t=2000 to 10,000 t=200 to 800 t=2000 to 10,000 t=200 to 800 t=2000 to 10,000

0.1 0.6026 0.5190 0.6024 0.5171 0.6024 0.5171
0.145 0.6050 0.5225 0.6053 0.5191 0.6054 0.5189
0.19 0.6059 0.5272 0.6081 0.5216 0.6084 0.5213
0.235 0.6043 0.5329 0.6105 0.5249 0.6111 0.5242
0.28 0.5989 0.5389 0.6121 0.5290 0.6133 0.5277
0.325 0.5887 0.5436 0.6122 0.5338 0.6146 0.5318
0.37 0.5732 0.5447 0.6102 0.5391 0.6146 0.5361
0.415 0.5523 0.5397 0.6052 0.5443 0.6128 0.5404
0.46 0.5264 0.5272 0.5966 0.5481 0.6089 0.5441
0.505 0.4964 0.5069 0.5836 0.5488 0.6023 0.5463
0.55 0.4633 0.4800 0.5660 0.5442 0.5928 0.5458
0.595 0.4281 0.4481 0.5430 0.5331 0.5798 0.5412
0.64 0.3915 0.4128 0.5150 0.5142 0.5632 0.5304
0.685 0.3541 0.3755 0.4821 0.4880 0.5422 0.5133
0.73 0.3164 0.3369 0.4444 0.4555 0.5176 0.4889
0.775 0.2784 0.2976 0.4031 0.4175 0.4879 0.4571
0.82 0.2406 0.2580 0.3579 0.3745 0.4527 0.4188
0.865 0.2028 0.2182 0.3089 0.3252 0.4130 0.3746
0.91 0.1651 0.1782 0.2581 0.2695 0.3703 0.3255
0.955 0.1276 0.1383 0.2038 0.2133 0.3244 0.2703

% = 0.9, σ = σε = σm = 1.
.

1.4 Appendix

1.4.1 Convergence Proofs

Stochastic Approximation

Throughout our convergence proofs we build on technical results of stochastic
approximation. So first let us briefly describe this method. Let us consider the
following stochastic recursive algorithm (SRA)

θt = θt−1 + γtQ(θt−1, Xt) ,

where θt is a vector of parameter estimates, Xt is the state vector, and γt is a
deterministic sequence of gains. The function Q expresses the way in which the
estimates of θ are updated from period t− 1 to t.

If Q and Xt satisfy some technical assumptions (See Evans and Honkapohja
(2001b) Chapter 6 36 ) the stochastic approximation approach associates an ordi-
nary differential equation (ODE) with the SRA form

36Ljung’s Theorems 4 and 2. Ljung (1977)
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Table 1.7: Speed of convergence of ls learning about a constant (in short and
long sample)

LS1 With RE1 With RE2

λ t=200 to 800 t=2000 to 10,000 t=200 to 800 t=2000 to 10,000 t=200 to 800 t=2000 to 10,000

0.1 0.4661 0.5032 0.4713 0.5052 0.4716 0.5054
0.145 0.4610 0.5013 0.4697 0.5048 0.4704 0.5050
0.19 0.4546 0.4987 0.4676 0.5041 0.4690 0.5046
0.235 0.4467 0.4951 0.4650 0.5033 0.4673 0.5042
0.28 0.4371 0.4900 0.4616 0.5021 0.4653 0.5036
0.325 0.4255 0.4830 0.4573 0.5005 0.4629 0.5029
0.37 0.4117 0.4735 0.4519 0.4983 0.4601 0.5020
0.415 0.3956 0.4607 0.4450 0.4952 0.4567 0.5008
0.46 0.3769 0.4442 0.4363 0.4908 0.4524 0.4992
0.505 0.3558 0.4233 0.4252 0.4844 0.4472 0.4972
0.55 0.3320 0.3980 0.4112 0.4752 0.4407 0.4943
0.595 0.3057 0.3685 0.3937 0.4617 0.4324 0.4902
0.64 0.2769 0.3352 0.3720 0.4426 0.4219 0.4842
0.685 0.2459 0.2986 0.3452 0.4161 0.4081 0.4752
0.73 0.2128 0.2595 0.3127 0.3809 0.3899 0.4613
0.775 0.1778 0.2185 0.2739 0.3364 0.3654 0.4396
0.82 0.1412 0.1761 0.2283 0.2827 0.3320 0.4058
0.865 0.1032 0.1328 0.1759 0.2209 0.2850 0.3532
0.91 0.0639 0.0888 0.1167 0.1523 0.2182 0.2739
0.955 0.0237 0.0444 0.0512 0.0781 0.1202 0.1590

% = 0.9, σ = σε = σm = 1.
.

dθ

dτ
= h(θ(τ)) ,

where h(θ) is obtained as

h(θ) = lim
t→∞EQ(θ, Xt(θ))

for a fixed θ provided this limit exists. τ denotes “notional” or “artificial” time.
According to the results established by stochastic approximation theory, if this

ODE has an equilibrium point37 θf which is locally asymptotically stable38 , then
θf is a possible point of convergence of the algorithm. If θf is not a locally stable
equilibrium point of the ODE, then θf is not a possible point of convergence of
the SRA, i.e. Pr(θ → θf ) = 0.

37θf is an equilibrium point if h(θf ) = 0
38θf is locally stable if all eigenvalues of the derivative matrix (Jacobian) Dh(θf ) have

negative real parts.
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Figure 1.1: Equilibrium ω of LS1 in the presence of rational agent RE1

Convergence of α

Claim 1. Let αt evolve according to (2.8) in the model (1.1)-(1.2). Then αt

converges to 0 given λ < 1

Proof. It can be easily verified that h(θ) is

da

dτ
= λa− a , (1.26)

thus the only possible fixed point is a = 0, which is stable if λ < 1.
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Proof of Proposition 1 part i.)

Let the economy (1.1)-(1.4) be populated with two types of agents LS2 and
RE1. [βt, ωt] converge to [βRE , 1

2 ] if λ ∈ (−2
% , 1

%), where βRE = %
1−λ% is the β

corresponding to the rational expectations equilibrium.

Proof. Both β and ω and R evolve over time, their joint dynamical system can be
analyzed with the theory of stochastic approximation.

From equations (1.7), (1.11) and (1.16) in (1.4), and (1.8) our model in SRA
form is:

βt = βt−1 +
1
t

1
Rt−1

mt−2{[ λ[ωt−1βt−1 + (1− ωt−1)(λβt−1 + 1)%] + 1 ]%mt−2(1.27)

− βt−1mt−2 + [λ[ωt−1βt−1 + (1− ωt−1)(λβt−1 + 1)%] + 1]εt−1}
Rt = Rt−1 +

1
t

(
m2

t−1 −Rt−1

)
(1.28)

ωt = ωt−1 +
1
t

{
F ( (ERE

t−1pt − pt)2 − (ELS
t−1pt − pt)2 )− wt−1

}
, (1.29)

where F (·) denotes the c.d.f. of N(0, σ2) 39. Using the notation of section 1.4.1:
θt−1 = [βt−1, ωt−1, Rt−1]. γt is 1

t , Xt = [mt−2, εt−1] and Q(θt−1, Xt) are the terms
multiplying 1

t
4041.

Using the results of stochastic approximation we can consider the asymptotic
behavior of the mean of Q(θ, Xt) for a fixed θ, which gives a system of associated
ordinary differential equations (ODE).

39For an interpretation of F (·) see page 7. The choice of F (·) does not alter the proof
as long as it is differentiable.

40In equation (1.27) the original tracking parameter is γt = 1
t−1 . Rewriting it in the

standard SRA form with γt = 1
t results a second-order complementary term which does

not affect the associated ODE.
41The regularity conditions A1, A.2, A.3 are easy to verify (we use notation of Evans

and Honkapohja (2001b)). To verify assumption A.2. we have to restrict Rt−1 to be
bounded away from 0 thus the domain for θt = (βt, Rt, ωt) is (R, D = (RL,∞), [0, 1])
where RL ≥ ε > 0. This is a natural restriction since Rt is the sample moment of
m. Assumption A.3. is satisfied since Q(θ, x) is twice continuously differentiable with
bounded second derivatives. Assumptions B.1. and B.2. are satisfied since m is an AR(1)
process and ε is white noise.
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Claim 2. The system of ODEs is

∂β

∂τ
=

1
R

Mm[C(θ)%− β] (1.30)

∂R

∂τ
= Mm −R (1.31)

∂ω

∂τ
=

∫∫
F ((A(θ)2 −B(θ)2)m2 − 2C(θ)(A(θ) + B(θ))mε) dφm dφε − ω ,(1.32)

where Mm is the variance of the limiting distribution of m. φm and φε are the
density functions of m and ε respectively. m and ε denote realizations of mt−1 and
εt drawn from these distributions. A(θ) = β − C(θ)%, B(θ) = (λβ + 1)%− C(θ)%.
C(θ) = [λ[ωβ + (1− ω)(λβ + 1)%] + 1].

Proof. Let us fix θ = [β R ω] and simplify (1.29) using the notation

(ERE
t−1pt − pt)2 − (ELS

t−1pt − pt)2 = (A(θ)mt−1 − C(θ)εt)2 − (B(θ)mt−1 − C(θ)εt)2

= (A(θ)2 −B(θ)2)m2
t−1 − 2C(θ)(A(θ) + B(θ))mt−1εt .

Then,

lim
t→∞E{F ( (A(θ)2 −B(θ)2)m2

t−1 − 2C(θ)(A(θ) + B(θ))mt−1εt )} = (1.33)
∫∫

F ((A(θ)2 −B(θ)2)m2 − 2C(θ)(A(θ) + B(θ))mε) dφm dφε . (1.34)

This gives us equation (1.32).
To get equation (1.30)-(1.31) fix θ in equations (1.27)-(1.28) and use E[mt−2mt−2] =

σ2
ε

1−%2 = Mm and E[mt−2εt−1] = 0.

Equilibrium
Next let us examine the equilibrium points of the system of differential equa-
tions (1.30)-(1.32). From equation (1.31) the possible convergence point for Rt =
Pt

i=1 mi

t

2
is Rf = Mm. Then from equation (1.30) the equilibrium β is the rational

expectations equilibrium

βf =
λ(1− ω)%2 + %

1− ωλ%− (1− ω)λ2%2
=

(λ(1− ω)% + 1)%
(λ(1− ω)% + 1)(1− λ%)

=
%

1− λ%
. (1.35)
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Finally, to find ωf we need to calculate the fixed point of ω using βf = %
1−λ% , Rf =

Mm. Let us denote {θ∗ = [βf , Rf , ω] : ω ∈ [0, 1]}. Notice that B(θ∗) = A(θ∗) = 0.
Thus (1.32) at θ∗ is

∫∫
F (0) dφm dφε − ω =

∫∫
1
2

dφmdφε − ω =
1
2
− ω .

The first equality comes from F (0) = 0.5, the second from
∫

dφm =
∫

dφε = 1.
Thus the fixed point of ω is ωf = 1

2 .
Our result is that the fixed point of (1.30)-(1.32) is42.

θf = [βf , Rf , ωf ] =
[

%

1− λ%
,Mm,

1
2

]
.

Stability of the fixed point
It remains to show that θf is a locally stable equilibrium point of (1.30)-(1.32). For
this we have to find the eigenvalues of the derivative matrix (Jacobian) evaluated
at θf , Dh(θ)|θf

. θf is locally stable if all eigenvalues have negative real parts.

Dh(θ) =

[
Mm

R
[λ%ω + λ2%2(1− ω)− 1] −Mm

R2 [λ%(ωβ + (1− ω)(λβ + 1)%) + %− β] Mm
R

[λ%β − λ%2(λβ + 1)]

0 −1 0
∂
RR

F (·) dφm dφε

∂β
0

∂
RR

F (·) dφm dφε

∂ω
− 1

]

Claim 3.
∂

∫∫
F (·) dφm dφε

∂ω

∣∣∣∣
θf

= 0

Proof. Using (1.32) 43

δ

δω

∫∫
F ((A(θ)2 −B(θ)2)m2 − 2C(A(θ) + B(θ))mε) dφm dφε = (1.36)

∫∫
δ

δω
[(A(θ)2 −B(θ)2)m2 − 2C(A(θ) + B(θ))mε]×

f((A(θ)2 −B(θ)2)m2 − 2C(θ)(A(θ) + B(θ))mε) dφm dφε ,

where δC(θ)
δω = λ[β − %(λβ + 1)], δA(θ)

δω = δB
δω = −% δC(θ)

δω . Next we evaluate (1.36)
at the fixed point, θf . Note that A(θf ) = B(θf ) = 0 and C(θf ) = λβf + 1.

42 Notice that to obtain this result only the symmetry of the distribution of ε is needed.
43We can interchange the integral and the derivative since F (·) is a continuous function

R→ [0, 1] (thus measurable).
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Since at the fixed point (βf − (λβf + 1)%) = 0,(1.36) at θf is
∫∫

−2C(θf )(−2%λ[βf − (λβf + 1)%])]mε f(0m− 0mε) dφm dφε = 0 ,(1.37)

thus (1.36) at the fixed point is 0.

Claim 4.
∂

∫∫
F (·)dφmdφε

∂β

∣∣∣∣
θf

= 0

Proof.

δ

δβ

∫∫
F ((A(θ)2 −B(θ)2)m2 − 2C(θ)(A(θ) + B(θ))mε) dφm dφε =(1.38)

∫∫
δ

δβ
[(A(θ)2 −B(θ)2)m2 − 2C(θ)(A(θ) + B(θ))mε]×

f((A(θ)2 −B(θ)2)m2 − 2C(θ)(A(θ) + B(θ))mε) dφm dφε

where δC(θ)
δβ = λ[ω − (1− ω)λ%], δA(θ)

δβ = 1− % δC(θ)
δβ and δB(θ)

δβ = λ%− % δC(θ)
δβ .

At the fixed point (1.38) becomes

∫∫
−2C(θf )[1 + λ%− 2%λ[ωf + (1− ωf )λ%]]mε f(0) dφm dφε . (1.39)

Using ωf = 0.5 and βf = %
1−λ% (1.39) can be further simplified to44

∫∫
−2(1 + λ%)mε f(0) dφm dφε = −2(1 + λ%)

1
σ
√

2π

∫∫
mε dφm dφε = 0

From Claim 3 and 4 it follows that the Jacobian at θf is

Dh(θ)|θf
=




λ%1
2 + λ2%2 1

2 − 1 0 0
0 −1 0
0 0 −1


 .

θf is locally stable if all eigenvalues are negative. Clearly the last two eigenvalues
are negative. The first one is negative if λ%1

2 +λ2%2 1
2−1 < 0. This condition holds

if λ ∈ (−2
% , 1

%), where % ∈ [0, 1) by assumption.

44Recall that m and ε are independent and f(0) = 1
σ
√

2π
e

0
2σ2 .
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Proof of Proposition 1 part ii.)

Let the economy (1.1)-(1.4) be populated with two types of agents LS2 and RE2.
[βt, ωt] converge to [βRE , 1

2 ] if λ < 1
% , where βRE = %

1−λ% is the β corresponding to
the rational expectations equilibrium.

Proof. The proof goes similarly to proof of Proposition (1) part . i.) We have to
find the fixed point of θ = [β R ω]. Forecasts of pt by the least squares learner
and the rational agent are

ELS2
t−1 pt = βt−1mt−1 ERE2

t−1 pt =
1 + λωt−1βt−1

1− λ%(1− ωt−1)
%mt−1 ,

and the ALM of inflation is

pt =
1 + λωtβt

1− λ%(1− ωt)
(%mt−1 + εt) .

Introducing the notation C = 1+λωβ
1−λ%(1−ω)

(ERE
t−1pt − pt)2 − (ELS

t−1pt − pt)2 = C(θ)2ε2 − ((β − %C(θ))mt−1 − C(θ)εt)2 .

Substituting these into (1.4), (1.8) the associated system of ordinary differential
equations, dθ

dτ = h(θ), is:

∂β

∂τ
=

1
R

Mm[%
1 + λωβ

1− λ%(1− ω)
− β] (1.40)

∂R

∂τ
= Mm −R (1.41)

∂ω

∂τ
=

∫∫
F (2(β − %C(θ))C(θ)mε− (β − %C(θ))2m2) dφm dφε − ω ,(1.42)

where Mm is the variance of the limiting distribution of m. φm and φε are the
density functions of m and ε respectively. m and ε denote realizations of mt−1

and εt drawn from these distributions.

Equilibrium

From equation (1.41) the possible convergence point for Rt =
Pt

i=1 mi

t

2
is Rf =

Mm. Then from equation (1.40) the equilibrium β is the rational expectations
equilibrium %

1−λ% . Finally, to find ωf let us denote {θ∗ = [βf , Rf , ω] : ω ∈ [0, 1]}.
Notice that β − %C(θ∗) = 0. Thus (1.42) at θ∗ is
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∫∫
F (0) dφm dφε − ω =

∫∫
1
2

dφmdφε − ω =
1
2
− ω .

Thus, fixed point of ω is 1
2 . The fixed point of (1.40)-(1.42) is

θf = [βf , Rf , ωf ] =
[

%

1− λ%
,Mm,

1
2

]
.

Stability
To obtain stability conditions of θf we will use the following two claims.

Claim 5.
∂

∫∫
F (·)dφmdφε

∂β

∣∣∣∣
θf

= 0

Proof.

δ

δβ

∫∫
F [2(β − %C(θ))C(θ)mε− (β − %C(θ))2m2] dφm dφε = (1.43)

∫∫
[2(1− %

δC(θ)
δβ

)C(θ)mε + 2(β − %C(θ))
δC(θ)

δβ
mε− 2(β − %C(θ))(1− δC(θ)

δβ
)m2]×

f [2(β − %C(θ))C(θ)mε− (β − %C(θ))2m2] dφm dφε,

where δC(θ)
δβ = λω

1−λ%(1−ω) . At the fixed point βf − %C(θf ) = 0, thus at the fixed
point (1.43) becomes

∫∫
[2(1− %

λ1
2

1− λ%1
2

)
1 + 1

2
λ%

1−λ%

1− 1
2λ%

mεf [0] dφm dφε = (1.44)

4
1

2− λ%

∫∫
mε dφm dφε = 0,

where the last equality follows from the independence of m and ε45.

Claim 6.
∂

∫∫
F (·)dφmdφε

∂ω

∣∣∣∣
θf

= 0

45Recall that m and ε denote realizations of mt−1 and εt drawn from the distributions
φm and φε.
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Proof.

δ

δω

∫∫
F [2(β − %C(θ))C(θ)mε− (β − %C(θ))2m2] dφm dφε = (1.45)

∫∫
[−2%

δC(θ)
δω

)C(θ)mε + 2(β − %C(θ))
δC(θ)

δω
mε− 2(β − %C(θ))(−δC(θ)

δω
)m2]×

f [2(β − %C(θ))C(θ)mε− (β − %C(θ))2m2] dφm dφε,

where δC(θ)
δω = λβ−λ2%β−λ%

(1−λ%(1−ω))2
. At the fixed point βf−%C(θf ) = 0 and (1.46) becomes

∫∫
[−2%

λ%
1−λ% − λ2%2

1−λ% − λ%

(1− 1
2λ%

)2)C(θf )mε]f [0] dφm dφε =
∫∫

0 mεf [0] dφm dφε = 0 .

Using claims 5 and 6, the Jacobian of (1.40)-(1.42) evaluated at θf is

Dh(θ)|θf
=




λ%
2−λ% − 1 0 0

0 −1 0
0 0 −1


 .

θf is a stable fixed point of (1.40)-(1.42) if the eigenvalues of the Jacobian evaluated
at θf are eigenvalues. Clearly the last two eigenvalues are negative. The first
eigenvalue is negative if λ%

2−λ% < 1, which can be simplified to λ% < 146.

Proof of proposition 2 part i.)

Let the economy (1.1)-(1.4) be populated with two types of agents LS1 and RE1.

[αt, ωt] converge to a fixed point [0, ωf ], if λ ∈ ( −1
1−ωf

, 1) and 2|λ|%2
√

2πσ

σ2
ε

1−%2

(
% + 2

√
1−%2

π

)
<

1.
ωf is the solution to the equation ω =

∫∫
F ( m2%2 − 2m%(m% + ε)[λ%(1 − ω) +

1] ) dφm dφε. F is the c.d.f. of N(0, σ), φm, φε are distribution functions of m and

ε.

Proof. The proof goes similarly to proof of Proposition (1). We have to find the
fixed point of θ = [a ω]. Using equation (1.5), (1.10) and (1.18) in (1.4) and (2.8),
the associated system of ordinary differential equations, dθ

dτ = h(θ), is:

46 λ%
2−λ% < 1 holds also for λ > 2

% , however in this case Lipshitz conditions do not hold
for (1.40) and stochastic approximation cannot be used.
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∂a

∂τ
= (λω + λ2(1− ω))a− a (1.46)

∂ω

∂τ
=

∫∫
F (·) dφm dφε − ω , (1.47)

where F (·) = F ( (a[λ− λω− λ2(1−ω)] + m%− (m% + ε)[λ%(1−ω) + 1])2− (a[1−
λω − λ2(1− ω)]− (m% + ε)[λ%(1− ω) + 1])2 ).

Equilibrium

From equation (1.46) it is easy to see that the possible convergence point of a is
0. Then, using αf = 0 from (1.47) it follows that ωf is the solution of

ω =
∫∫

F ( m2%2 − 2m%(m% + ε)[λ%(1− ω) + 1] ) dφm dφε . (1.48)

There is no closed form solution. The existence of the solution follows from the
fact that the right hand side of (1.48) is continuous function on a compact set ,
mapping from ω ∈ [0, 1] to [0, 1].

Stability

θf = [0 ωf ] is a locally stable equilibrium point of (1.46)-(1.47) if the eigenval-
ues of the derivative matrix (Jacobian) evaluated at θf , Dh(θ)|θf

are negative in
modulus.

The Jacobian at θf is

Dh(θ)|θf
=

[
λωf + λ2(1− ωf )− 1 0

∂
RR

F (·)dφmdφε

∂a

∣∣∣
θf

∂
RR

F (·)dφmdφε

∂ω

∣∣∣
θf

− 1

]
,

where
∂

∫∫
F (·)dφmdφε

∂a

∣∣∣∣
θf

= (1.49)

∫∫
(2m%[λ− λω − λ2(1− ω)]− 2(m% + ε)...

[λ%(1− ω) + 1][λ− 1])f( m2%2 − 2m%(%m + ε)[λ%(1− ω) + 1] )dφmdφε (1.50)
∂

∫∫
F (·)dφmdφε

∂ω

∣∣∣∣
θf

= (1.51)

∫∫
2λ%2(%m + ε)mf( m2%2 − 2m%(%m + ε)[λ%(1− ωf ) + 1] )dφmdφε .
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This is a lower triangular matrix, the eigenvalues are the diagonal elements.
The first eigenvalue is negative if λωf+λ2(1−ωf ) < 1, which is true if λ ∈ ( −1

1−ωf
, 1).

The following Claim shows that a sufficient condition for second eigenvalue to be

negative is 2|λ|%2
√

2πσ

σ2
ε

1−%2

(
% + 2

√
1−%2

π

)
< 1.

Claim 7. ∂
RR

F (·)dφmdφε

∂ω

∣∣∣
θf

< 1 if 2|λ|%2
√

2πσ

σ2
ε

1−%2

(
% + 2

√
1−%2

π

)
< 1

Proof. From equation (1.51)
∫∫

2λ%2(%m + ε)mf( m2%2 − 2m%(%m + ε)[λ%(1− ωf ) + 1] )dφmdφε < (1.52)

2%2

∫∫
|λ(%m + ε)m|f(0)dφmdφε <

2|λ|%2

∫∫
( %m2 + |mε| )

1√
2πσ

dφmdφε ≤

2|λ|%3σ2
m√

2πσ
+

2|λ|%2

√
2πσ

∫∫
|m||ε|dφmdφε .

∫ |m|dφm has a closed form solution:

∫
|m|dφm = 2

∫ ∞

0
m

1√
2πσm

e
− m2

2σ2
m =

2√
2πσm

[
−σ2

me
−m2

σ2
m

]∞

0

=
2σm√

2π
. (1.53)

Thus an upper bound for (1.52) is

2|λ|%2

√
2πσ

(
%σ2

m +
2σmσε

π

)
.

Using σ2
m = σ2

ε
1−%2

∂
∫∫

F (·)dφmdφε

∂ω

∣∣∣∣
θf

<
2|λ|%2

√
2πσ

σ2
ε

1− %2

(
% +

2
√

1− %2

π

)
.

From this, the claim follows.
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Proof of Proposition 2 part ii.)

Let the economy (1.1)-(1.4) be populated with two types of agents LS1 and RE2.
[at, ωt] converge to a fixed point [0, ωf ] if λ < 1 and

2|λ|
(1−λ(1−ωf ))3

σ2
ε√

2πσ(1−%2)

(
%2 + 2

√
1−%2

π

)
< 1.

Where ω =
∫∫

F
(
− %2m2+2%mε

(1−λ(1−ω))2

)
dφmdφε. F is the c.d.f. of N(0, σ), φm, φε are distribu-

tion functions of m and ε.

Proof. The proof goes similarly to proof of (1). We have to find the fixed point of
θ = [a ω]. Substituting (1.5), (1.12) and (1.19) into (1.4) and (2.8), the associated
system of ordinary differential equations, dθ

dτ = h(θ), is:

∂a

∂τ
=

λω

1− λ(1− ω)
a− a (1.54)

∂ω

∂τ
=

∫∫
F

((
ε

1− λ(1− ω)

)2

−
(

(1− λ)a
1− λ(1− ω)

− %m + ε

1− λ(1− ω)

)2
)

dφmdφε − ω .(1.55)

Equilibrium

From equation (1.54) it is easy to see that the possible convergence point of a is
0. Then, using αf = 0 from (1.55) it follows that ωf is the solution of

ω =
∫∫

F

(
− %2m2 + 2%mε

(1− λ(1− ω))2

)
dφmdφε . (1.56)

Stability

θf = [0 ωf ] is a locally stable equilibrium point of (1.54)-(1.55) if the eigenval-
ues of the derivative matrix (Jacobian) evaluated at θf , Dh(θ)|θf

are negative in
modulus.

The Jacobian at θf is

Dh(θ)|θf
=




λωf

1−λ(1−ωf ) − 1 0
∂
RR

F (·)dφmdφε

∂a

∣∣∣
θf

∂
RR

F (·)dφmdφε

∂ω

∣∣∣
θf

− 1


 ,
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where

∂
∫∫

F (·)dφmdφε

∂a

∣∣∣∣
θf

= (1.57)

∫∫
2

%m + ε

1− λ(1− ωf )
f

(
− %2m2 + 2%mε

(1− λ(1− ω))2

)
dφmdφε

∂
∫∫

F (·)dφmdφε

∂ω

∣∣∣∣
θf

= (1.58)

∫∫
2

[ −ε2λ

(1− λ(1− ωf ))3
+

(%m + ε)2λ
(1− λ(1− ωf ))3

]
f

(
− %2m2 + 2%mε

(1− λ(1− ωf ))2

)
dφmdφε .

The first eigenvalue is negative if λ < 147. The second eigenvalue is negative if
∂
RR

F (·)dφmdφε

∂ω

∣∣∣
θf

< 1. The following theorem shows a sufficient condition for this

to hold.

Claim 8. ∂
RR

F (·)dφmdφε

∂ω

∣∣∣
θf

< 1 if 2|λ|
(1−λ(1−ωf ))3

σ2
ε√

2πσ(1−%2)

(
%2 + 2

√
1−%2

π

)
< 1

Proof. From equation (1.58)

∫∫
2

[ −ε2λ

(1− λ(1− ωf ))3
+

(%m + ε)2λ
(1− λ(1− ωf ))3

]
f

(
− %2m2 + 2%mε

(1− λ(1− ωf ))2

)
dφmdφε <(1.59)

2|λ|
(1− λ(1− ωf ))3

∫∫
%2m2 + 2%|εm|f(0)dφmdφε =

2|λ|
(1− λ(1− ωf ))3

1√
2πσ

[%2σ2
m +

2σmσε

π
] .

Using σ2
m = σ2

ε
1−%2

∂
∫∫

F (·)dφmdφε

∂ω

∣∣∣∣
θf

<
2|λ|

(1− λ(1− ωf ))3
σ2

ε√
2πσ(1− %2)

(
%2 +

2
√

1− %2

π

)
.

From this, the claim follows.

47 λωf

1−λ(1−ωf ) < 1 holds also for λ > 1
1−ωf

, however in this case Lipshitz conditions do
not hold for (1.54) and stochastic approximation cannot be applied.
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1.4.2 Speed of convergence proofs

LS2 with RE1

Proposition 3. Let the economy (1.1)-(1.4) be populated with two types of agents
LS2 and RE1. Then LS2 has

√
t convergence if 1

2λ% + 1
2λ2%2 < 1

2 .

Proof. Speed of convergence of LS2 with RE1

In the proof of Proposition 1 part i.) we have already derived:

Dh(θ)|θf
=




λ%1
2 + λ2%2 1

2 − 1 0 0
0 −1 0
0 0 −1


 .

This is a diagonal matrix, the eigenvalues are the diagonal elements. Clearly the
las two eigenvalues are smaller than −1

2 . The first one is smaller than −1
2 if

1
2λ% + 1

2λ2%2 < 1
2 .

LS2 with RE2

Proposition 4. Let the economy (1.1)-(1.4) be populated with two types of agents
LS2 and RE2. Then LS2 has

√
t convergence if λ% < 2

3 .

Proof. Speed of convergence of LS2 with RE2

In the proof of proposition 1 part i.) we derived

Dh(θ)|θf
=




λ%
2−λ% − 1 0 0

0 −1 0
0 0 −1


 .

For root-t convergence all eigenvalues have to be smaller than −1
2 , which holds if

λ% < 2
3 .

LS1 with RE1

Proposition 5. Let the economy (1.1)-(1.4) be populated with two types of agents
LS1 and RE1. Then sufficient conditions for

√
t convergence of LS1 are

λωf + λ2(1− ωf ) <
1
2

(1.60)

2|λ|%2

√
2πσ

σ2
ε

1− %2

(
% +

2
√

1− %2

π

)
<

1
2

. (1.61)
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Proof. Speed of convergence of LS1 with RE1

Using derivations in the proof of Proposition 2 part i.):

Dh(θ)|θf
=

[
λωf + λ2(1− ωf )− 1 0

∂
RR

F (·)dφmdφε

∂a

∣∣∣
θf

∂
RR

F (·)dφmdφε

∂ω

∣∣∣
θf

− 1

]

With ∂
RR

F (·)dφmdφε

∂ω

∣∣∣
θf

< 2|λ|%2
√

2πσ

σ2
ε

1−%2

(
% + 2

√
1−%2

π

)
.

This is a lower triangular matrix, the eigenvalues are the diagonal elements.
For root-t convergence the eigenvalues have to be smaller than −1

2 , which holds if

λωf + λ2(1− ωf ) <
1
2

(1.62)

2|λ|%2

√
2πσ

σ2
ε

1− %2

(
% +

2
√

1− %2

π

)
<

1
2

. (1.63)
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LS1 with RE2

Proposition 6. Let the economy (1.1)-(1.4) be populated with two types of agents
LS1 and RE2. Then LS1 has

√
t convergence if

λ(1 + ωf ) < 1 (1.64)

2|λ|
(1− λ(1− ωf ))3

σ2
ε√

2πσ(1− %2)

(
%2 +

2
√

1− %2

π

)
<

1
2

(1.65)

Proof. Speed of convergence of LS1 with RE2

Using derivations in the proof of Proposition 2 part ii.):

Dh(θ)|θf
=




λωf

1−λ(1−ωf ) − 1 0
∂
RR

F (·)dφmdφε

∂a

∣∣∣
θf

∂
RR

F (·)dφmdφε

∂ω

∣∣∣
θf

− 1


 ,

with ∂
RR

F (·)dφmdφε

∂ω

∣∣∣
θf

< 2|λ|
(1−λ(1−ωf ))3

σ2
ε√

2πσ(1−%2)

(
%2 + 2

√
1−%2

π

)
.

This is a lower triangular matrix, the eigenvalues are the diagonal elements.
For root-t convergence the eigenvalues have to be smaller than −1

2 , which holds if

λ(1 + ωf ) < 1 (1.66)

2|λ|
(1− λ(1− ωf ))3

σ2
ε√

2πσ(1− %2)

(
%2 +

2
√

1− %2

π

)
<

1
2

. (1.67)

46



Chapter 2

Optimal Monetary Policy
When Agents Are Learning

2.1 Introduction

Monetary policy makers can affect private-sector expectations through
their actions and statements, but the need to think about such things
significantly complicates the policymakers’ task. (Bernanke (2004))

How should optimal monetary policy be designed? A particularly influential
framework used in studying this question is the dynamic stochastic general equi-
librium economy where money has real effects due to nominal rigidities, sometimes
referred to as the “New Keynesian” model. Many papers have explored optimal
monetary policy in this framework, under the assumption that both agents and
policymakers have rational expectations.1 More recently, the literature has started
to explore the robustness of these optimal policies when some of the assumptions
of the standard New Keynesian setup are relaxed.2 An important aspect of this
robustness analysis is to model more carefully the process through which the pri-
vate sector forms expectations. This issue is particularly relevant given that there
is a large body of evidence which suggests that agents’ forecasts are not consistent
with the paradigm of rational expectations.3 In response, a growing theoretical lit-

1See Clarida, Gali, and Gertler (1999) for a survey on this literature, and Woodford
(2003) for an extensive treatise on how to conduct monetary policy via interest rate rules.

2Wieland (2000a) and Wieland (2000b) look at the effects of parameter uncertainty;
Aoki (2002) and Orphanides and Williams (2002) explore monetary policy with for data
uncertainty, Levin, Wieland, and Williams (2003) and Hansen and Sargent (2001) study
model uncertainty.

3See Roberts (1997), Forsells and Kenny (2002) and Adam and Padula (2003).
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erature explores the robustness of the optimal policies, which were derived under
rational expectations, when instead agents update their expectations according
to a learning algorithm.4 A typical result in this literature is that interest rate
rules that are optimal under rational expectations may lead to instability under
learning.

Earlier research uses either ad hoc policy rules, as for example Orphanides and
Williams (2005a), or optimality conditions derived under rational expectations, like
Evans and Honkapohja (2003b), Evans and Honkapohja (2003a) and Evans and
Honkapohja (2002). In this paper, we take a normative approach, and address the
issue of how in a New Keynesian setup, a rational Central Bank should optimally
conduct monetary policy, if the private sector forms expectations following an
adaptive learning model.

We are able to analytically derive optimal monetary policy in our theoretical
model. One important feature of the optimal policy is that the Central Bank should
act more aggressively towards inflation that what a rational expectations model
suggests. Earlier work in the literature that uses ad hoc rules has shown similar
results computationally (see Ferrero (2003), Orphanides and Williams (2005a),
Orphanides and Williams (2005b)); here we establish that these results extend to
the case when the central bank uses the optimal policy, and provide a formal proof.
The intuition for the result is that aggressively driving inflation close to equilibrium
helps private agents to learn the true equilibrium value of inflation at a faster
pace. As is well-known, even with rational expectations the central bank cares
about price stability due to nominal rigidities. When, in addition expectations of
nominal variables are sluggish because of learning, our results show that monetary
policy should be even more aggressive towards inflation. Being aggressive towards
inflation generates a welfare cost in terms of an increased volatility of the output
gap. We show analytically that the optimal policy involves a more volatile output
gap then the rational expectations benchmark; this holds true even if the Central
Bank puts a high weight on output gap stabilization.

A second important feature of the optimal policy is that it is time consistent,
and qualitatively resembles the commitment solution under rational expectations
in the sense that the optimal policy is unwilling to accommodate noisy shocks.
As a consequence the impulse response of a cost push shock is also similar to the

4For an early contribution to adaptive learning applied to macroeconomics, see Cagan
(1956), Phelps (1967), for early applications to the Muth market model see Fourgeaud,
Gourieroux, and Pradel (1986) and Bray and Savin (1986). The modern literature on this
topic was initiated by Marcet and Sargent (1989), who were the first to apply stochastic
approximation techniques to study the convergence of learning algorithm. Important
earlier contributions to the literature on convergence to the rational equilibrium are Bray
(1982) and Evans (1985).
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commitment case. The contemporaneous impact of a cost push shock on inflation
is small (compared to the case of discretionary policy rational expectations), and
inflation reverts to the equilibrium in a sluggish manner. In both instances this
pattern comes from the Central Bank’s (CB) ability to directly manipulate private
expectations, even if the channels used are quite different. Under commitment the
policy maker uses a credible promise about the future to obtain an immediate
decline in inflation expectations and thus in inflation; the inertia in the optimal
solution is due to the commitments carried over from previous periods. In contrast,
under learning the pattern results from the sluggishness of expectations: the CB
influences private sector’s belief through its past actions, and the inertia comes
from the past realizations of the endogenous variables. We observe a smaller
initial response of inflation relative to the RE discretionary case because optimal
policy reacts less to the cost push-shock to ease private agents learning. In this
sense, we can say that the ability to manipulate future private sector expectations
through the learning algorithm plays a role similar to a commitment device under
RE, hence easing the short-run trade-off between inflation and output gap.

An analogous investigation, when the model is characterized by a Phillips
Curve à la Lucas and private agents follow a constant gain algorithm is performed
in Sargent (1999), Chapter 5. A parallel paper of Gaspar, Smets, and Vestin
(2005) provides a numerical solution to optimal monetary policy under constant
gain learning in the New Keynesian framework with indexation to lagged inflation
among firms. They show that an optimally behaving Central Bank aims to de-
crease the limiting variance of the private sector’s inflationary expectations and
show that optimal policy qualitatively resembles the commitment solution under
rational expectations. In their framework private agents estimate the persistence of
inflation. Another important result they find is that, when the degree of estimated
persistence is high the central bank should be more aggressive.

The ability to derive analytical solutions allows us to contribute to this litera-
ture in several respects. We derive that optimal policy should be more aggressive
when private agents heavily discount past data and place more weight on cur-
rent data. Under constant gain learning this implies that the incentive to decrease
volatility of inflationary expectations is more pronounced when the gain parameter
is higher. The intuition behind this is: under constant gain learning expectations
remain volatile even in the limit, and this limiting variance is higher with a high
gain parameter; this volatility in expectations causes welfare losses even in the
limit, so it is optimal to conduct monetary policy against it. We also show that
optimal policy at the same time allows for higher volatility in output gap expec-
tations. The reason for this is that optimal policy allows for higher variability of
the output gap, which translates to higher volatility of output gap expectations.
Of course, allowing a higher variance in output gap also causes welfare losses. We
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analytically determine the extent to which output gap losses should be tolerated.
Our next contribution is to derive optimal policy under decreasing gain learn-

ing. We show that our main results are robust to the changing the gain parameter:
(1) optimal policy is aggressive on inflation even at the cost of higher output gap
volatility, (2) optimal policy under learning qualitatively resembles optimal policy
under rational expectations when the Central Bank is able to commit. A new re-
sult is that when beliefs are updated according to a decreasing gain algorithm, the
optimal policy is time-varying, reflecting the fact that the incentives for the Cen-
tral Bank to manipulate agents’ beliefs evolve over time. After a structural break,
for example the appointment of a new central bank governor, the Central Bank
should be more aggressive in containing inflationary expectations and decrease the
extent of this aggressiveness in subsequent periods. The intuition for this result
is that in the first periods after the appointment of a new governor, agents pay
more attention to monetary policy actions (place more weight on current data),
therefore an optimally behaving central bank should make active use of this by
aggressively driving private sector expectations close to the equilibrium inflation.

Finally, we show that when the Central Bank (CB) is uncertain about the
nature of expectation formation (within a set relevant for the US economy) the
optimal learning rules derived in our paper are more robust than the time con-
sistent optimal rule derived under rational expectations. Optimal learning rules
provide smaller expected welfare losses even if the Central Bank assigns only a very
small probability to learning and a very high probability to rational expectations
in how it believes the private sector forms its expectations.

The rest of the paper is organized as follows: in Section 2.2 we analyze optimal
policy under constant gain learning where there is no exogenous cost-push shock;
in Section 2.3 we study how the introduction of the cost-push shock affects our
results; Section 2.4 relaxes the assumptions that expectations follow constant gain
learning, and show that out main results remain valid under decreasing gain learn-
ing; Section 2.5 relaxes the assumption that the policy maker can perfectly observe
the fundamental shocks and the beliefs of the agents; Section 2.6 concludes.

2.2 The Model without a cost push shock

We will consider the baseline version of the New Keynesian model, which is by
now the workhorse in monetary economics; in this framework, the economy is
characterized by two structural equations5. The first one is an IS equation:

5For the details of the derivation of the structural equations of the New Keynesian
model see, among others, Yun (1996), Clarida, Gali, and Gertler (1999) and Woodford
(2003).
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xt = E∗
t xt+1 − σ−1(rt −E∗

t πt+1 − rrt) + gt (2.1)

where xt, rt and πt denote time t output gap6, short-term nominal interest rate
and inflation, respectively; σ is a parameter of the household’s utility function,
representing the intertemporal elasticity of substitution, gt is an exogenous de-
mand shock and rrt is the natural real rate of interest, i.e. the real interest rate
that would hold in the absence of any nominal rigidity. Note that the operator
E∗

t represents the (conditional) agents’ expectations, which are not necessarily
rational. The above equation is derived by loglinearizing the household’s Euler
equation, and imposing the equilibrium condition that consumption equals output
minus government spending .

The second equation is the so-called New Keynesian Phillips Curve (NKPC):

πt = βE∗
t πt+1 + κxt (2.2)

where β denotes the subjective discount rate, and κ is a function of structural
parameters; this relation is obtained by assuming that the supply side of the
economy is characterized by a continuum of firms that produce differentiated goods
in a monopolistically competitive market, and that prices are staggered à la Calvo
(Calvo (1983)) 7.

The model with cost push shock will be examined in the next section. We exam-
ine the case without cost push separately, because in this case learning introduces
an inflation-output gap tradeoff which is not present under rational expectations
(see below).

The loss function of the Central Bank (CB) is given by:

E0

∞∑

t=0

βt(π2
t + αx2

t ) (2.3)

where α is the relative weight put by the CB on the objective of output gap
stabilization8.

6Namely, the difference between actual and natural output.
7In other words, in each period firm i can reset the price with a constant probability

1 − θ, and with probability θ it keeps the same price as in the previous period. If firms
take this structure into account when deciding the optimal price it can be shown (See
Yun (1996)) that the aggregate inflation is given by (2.2). κ is decreasing in the level of
stickiness, the longer are prices fixed in expectation the smaller the effect of the output
gap is on inflation.

8As is shown in Rotemberg and Woodford (1998), equation (2.3) can be seen as a
quadratic approximation to the expected household’s utility function; in this case, α is a
function of structural parameters.
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2.2.1 Benchmark: discretionary solution under ratio-
nal expectations and under learning

A key feature of this model is that, if expectations are rational (i.e., if E∗
t = Et),

there is no trade-off between inflation and output gap stabilization; in fact, follow-
ing Gali (2003), we can solve forward equation (2.2) and impose a boundedness
condition on π, obtaining:

πt = κEt

∞∑

s=0

βsEtxt+s

Therefore, if the CB stabilizes output gap in every period, under RE inflation
will also be equal to zero every period; moreover, this plan is time-consistent, in
the sense that the optimal plan chosen by the CB if optimizing at period t+1 will
be equal to the continuation of the optimal plan set when optimizing at t. The
absence of inflation bias is due to the fact that, differently from Barro and Gordon
(1983) and all the subsequent literature, the target for output chosen by the CB
is the natural level of output, and not a higher level; in other words, the target for
output gap is zero, as shown in (2.3). To restore an inflation stabilization/output
gap stabilization trade-off it is necessary to modify the NKPC introducing a so-
called cost-push shock9.

The lack of an inflation-output gap tradeoff can be also seen from the dis-
cretionary solution. Under discretion private agents take into account how the
monetary policy adjusts its policy, given that the monetary authority is free to
reoptimize every period. The discretionary rational expectation equilibrium thus
has the property that the Central Bank has no incentive to change its policy (it is
time consistent).

Since the Central Bank can not credibly manipulate beliefs, in the optimization
it takes expectations as given. The policy problem is to choose a time path for the
nominal interest rate rt

10 to engineer a time path of the target variables πt and
xt such that the social welfare loss (2.3) is minimized, subject to the structural
equations (2.1) and (2.2), and given the private sectors expectations.

9For a discussion of this point, see Gali (2003).
10We have chosen the nominal interest rate to be the instrument variable for easier

interpretation (as in real life it is usually a primary instrument of central banks). We
could have equally chosen πt or xt.
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min
{πt,xt,rt}∞t=0

E0

∞∑

t=0

βt(π2
t + αx2

t ) (2.4)

s.t. (2.1), (2.2)
Etπt+1, Etxt+1 given for ∀ t

Because there are no endogenous state variables, problem (2.4) reduces to a
sequence of static optimization problems. As shown in Clarida, Gali, and Gertler
(1999), and the optimality condition to this problem (at time t) is

xt = −κ

α
πt . (2.5)

Under rational expectations (henceforth RE) solving for the fixed point in expec-
tations results that the Central Bank can set πt = xt = 0 in all periods.

Under non-rational expectations (E∗), using (2.5) the optimal allocations are:

πt =
αβ

α + κ2
E∗

t πt+1 (2.6a)

xt = − κβ

α + κ2
E∗

t xt+1 . (2.6b)

and solving for rt from the structural equations (2.1) and (2.2) yields

rt = rrt + δEH
π E∗

t πt+1 + δEH
x E∗

t xt+1 + δEH
g gt (2.7)

where:
δEH
π = 1 + σ κβ

α+κ2

δEH
x = σ

δEH
g = σ

and E∗
t denote non-rational expectations. Throughout the paper we denote the

coefficients by EH referring to the paper Evans and Honkapohja (2003b), where
the authors derive a rule analogous to (2.7)11. In the terminology introduced in
Evans and Honkapohja (2003b), Evans and Honkapohja (2003a) (EH hereafter),
this is an expectations-based reaction function. EH show that this rule guarantees
not only determinacy under RE, but also convergence to the RE equilibrium when
expectations E∗

t evolve according to least squares learning.
However, a rational Central Bank, knowing that private agents follow learning,

could do even better. In other words the solution (2.7) under learning is not a full

11In particular, Evans and Honkapohja (2003a) derive a rule in a framework where a
cost push shock is present.
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optimum. In the next section we show how optimal monetary policy is modified
when the CB optimizes taking into account its effect on private expectations.

2.2.2 Constant Gain Learning

We will assume that private sector’s expectations are formed according to the
adaptive learning literature12; in particular, we assume that agents’ Perceived
Law of Motion (PLM) is consistent with the Law of Motion that the CB would
implement under RE: in other words, both inflation and output gap are assumed
to be constant, and agents use a learning algorithm to find out this constant.
Throughout this subsection we will assume that expectations evolve following a
constant gain algorithm:

E∗
t πt+1 ≡ at = at−1 + γ(πt−1 − at−1) (2.8)

E∗
t xt+1 ≡ bt = bt−1 + γ(xt−1 − bt−1) (2.9)

where γ ∈ (0, 1).
The use of constant gain algorithms to track structural changes is well known

from the statistics and engineering literature13. Analogously, private agents would
be likely to use constant gain algorithms if they confidently believe structural
changes to occur. This algorithm implies that past data are geometrically down-
weighted, in other words agents ’believe more’ current data. This approach is
closely related to using a fixed sample length, or rolling window regressions.

In Section 2.4 we will relax this assumption, and examine how optimal policy
changes when agents follow decreasing gain learning.

To analyze the optimal control problem faced by the CB, we use the standard
Ramsey approach, namely we suppose that the policymakers take the structure of
the economy (equations (2.1) and (2.2)) as given; moreover, we assume that the
CB knows how private agents’ expectations are formed, and takes into account its
ability to influence the evolution of the beliefs. Hence, the CB problem can be
stated as follows:

min
{πt,xt,rt,at+1,bt+1}∞t=0

E0

∞∑

t=0

βt(π2
t + αx2

t ) (2.10)

s.t. (2.1), (2.2), (2.8), (2.9)
a0, b0 given

12For an extensive monograph on this paradigm, see Evans and Honkapohja (2001b).
13See for example Benveniste and P. (1990), Part I. Chapters 1. and 4.
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This optimization problem is linear quadratic, the Bellman equation holds, thus
the resulting policy is time consistent 14.

The first order conditions at every t ≥ 0 are:

λ1t = 0 (2.11)
2πt − λ2t + γλ3t = 0 (2.12)

2αxt + κλ2t − λ1t + γλ4t = 0 (2.13)

Et

[
β

σ
λ1t+1 + β2λ2t+1 + β (1− γ) λ3t+1

]
= λ3t (2.14)

Et [βλ1t+1 + β (1− γ) λ4t+1] = λ4t (2.15)

where λit, i = 1, ..., 4 denote the Lagrange multipliers associated to (2.1), (2.2),
(2.8) and (2.9), respectively. The necessary conditions for an optimum are the
first order conditions, the structural equations (2.1)-(2.2) and the laws of motion
of private agents’ beliefs, (2.8)-(2.9). Combining equation (2.11) and (2.15), we
get:

λ4t = β (1− γ) Et [λ4t+1]

which can be solved forward, implying that the only bounded solution is:

λ4t = 0 (2.16)

If we put together equations (2.11)-(2.14) and (2.16), we derive the following op-
timality condition:

κ

α
πt + xt = βEt

[
βγxt+1 + (1− γ)

(κ

α
πt+1 + xt+1

)]
(2.17)

Inflation-Output Gap Tradeoff

A crucial difference from the rational expectations case is that under learning
there is an inflation-output gap tradeoff even without a cost push shock. From
equation (2.2) we can see that, if at is different from zero, inflation and output
gap cannot be set contemporaneously equal to zero, as in the RE case. Hence, the
fact that the expectations are not rational, introduces a trade-off between inflation
and output gap stabilization that is not present under RE. In particular, we have

14A problem solved at t is said to be time consistent for t + 1 if the continuation from
t + 1 on of the optimal allocation chosen at t solves in t + 1; moreover, in period zero it is
time consistent if the problem in period t is time consistent for t + 1 for all t ≥ 0.
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the contemporaneous presence of two trade-offs. There is an intratemporal trade-
off between stabilization of inflation at t and output gap at t, determined by the
presence of the nonzero term βat in the Phillips Curve (2.2). There is an additional
intertemporal trade-off between optimal behavior at t and stabilization of output
gap at t+1, which is generated by the ability of the CB to manipulate future values
of a. This can be seen from iterating forward the optimality condition (2.17):

κ

α
πt + xt = β2γEt

[ ∞∑

s=1

[β (1− γ)]s−1 xt+s

]
.

Hence, for a given positive value of xt, the optimal disinflation is less harsh
with respect to the one implied by (2.5), provided that future output gaps are
also expected to be positive. A smaller deflation in turn guarantees that future
inflationary expectations will be closer to the rational expectations equilibrium of
inflation, zero.

Let us summarize our first result for later reference:

Result 1. Learning introduces an intertemporal trade-off not present under ratio-
nal expectations.

As a result of the intertemporal trade-off, when the CB can manipulate expec-
tations, it renounces to optimally stabilize the economy in period t, in exchange
for a reduction in future inflation expectations that allows an ease in the future
inflation output gap trade-off embedded in the Phillips Curve.

Optimal allocations

To derive the optimal allocations, we can use (2.2) to substitute out xt in (2.17),
then using the evolution of inflationary expectations (2.8)we get:

πt +
α

κ2
[πt − βat]− βEt

[ α

κ2
(1− γ (1− β)) [πt+1 − βat+1] + (1− γ) πt+1

]
= 0

(2.18)
Hence, at an optimum, the dynamics of the economy can be summarized by stack-
ing equations (2.8), (2.9) and (2.18), obtaining the trivariate system15:

Etyt+1 = Ayt (2.19)

15Once we have the equilibrium laws of motion for [πt, at, bt], we can use (2.1) and (2.2)
to derive the equilibrium rt and xt.
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where yt ≡ [πt, at, bt]′, and:

A ≡




κ2+α+αβ2γ(1−γ(1−β))
αβ(1−γ(1−β))+κ2β(1−γ)

−αβ(1−β(1−γ)(1−γ(1−β)))
αβ(1−γ(1−β))+κ2β(1−γ)

0
γ 1− γ 0
γ
κ −βγ

κ 1− γ




The three boundary conditions of the above system are:

a0, b0 given
lim
t→∞ |Etπt+1| < ∞ . (2.20)

The last one is due to the fact that, if there exists a solution to the problem (2.10)
when the possible sequences {πt, xt, rt} are restricted being bounded, then this
would also be the minimizer in the unrestricted case16.

Since A is block triangular, its eigenvalues are given by 1 − γ and by the
eigenvalues of:

A1 ≡
(

κ2+α+αβ2γ(1−γ(1−β))
αβ(1−γ(1−β))+κ2β(1−γ)

−αβ(1−β(1−γ)(1−γ(1−β)))
αβ(1−γ(1−β))+κ2β(1−γ)

γ 1− γ

)
(2.21)

In the Appendix we show that A1 has one eigenvalue inside and one outside the unit
circle, which implies (together with (1−γ) ∈ (0, 1)) that we can invoke Proposition
1 of Blanchard and Kahn (1980) to conclude that the system (2.19)-(2.20) has one
and only one solution. In other words, there exists one and only one stochastic
process17 for each of the three variables of y such that (2.20) is satisfied. Moreover,
note that y1t ≡ [πt, at]′ does not depend on bt; therefore, the processes for inflation
and a that solve (together with the process for b) the system (2.19)-(2.20) are also
a solution of the subsystem:

Ety1t+1 = A1y1t

together with the boundary conditions:

a0 given, lim
t→∞ |Etπt+1| < ∞

Since A1 has the saddle path property, we can express the equilibrium law of
motion for inflation as:

16For a proof, see the Appendix.
17Since the system (2.19) does not depend on the only source of randomness in this

economy (i.e., g), in equilibrium the process followed by the endogenous variables turns
out to be deterministic, see below.
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πt = ccg
π at (2.22)

Following the adaptive learning terminology, we call (2.22) the Actual Law of
Motion (ALM) of inflation.

We provide a characterization of ccg
π in the following Proposition:

Proposition 1. Let ccg
π be the feedback coefficient defined in (2.22); then, the

following holds:
-if γ ∈ (0, 1), we have that 0 < ccg

π < αβ
α+κ2 ;

-if γ = 0, i.e. if expectations are constant, we have that ccg
π = αβ

α+κ2 .

Proof. See the Appendix.

Under the optimal policy (OP) a positive at increases current inflation, but less
than proportionally, since αβ

α+κ2 < 1.
As is shown in the Appendix, ccg

π depends on all the structural parameters;
in particular, its dependence on the constant gain γ is not necessarily monotonic.
In fact, a higher value of γ has two effects on ccg

π : on one hand, it increases the
effect of current inflation on future expectations, increasing the incentive for the
CB to use this influence (i.e., it would determine a lower ccg

π ); on the other hand, it
reduces the impact of current expectations on future expectations, thus reducing
the benefits from a reduction of the expectations, so that there is an incentive to
set a higher ccg

π . In Figure 2.4 we show a numerical example with the calibration
found in Woodford (1996), i.e. with β = 0.99, σ = 0.157, κ = 0.024 and α = 0.04;
in this case, the first effect dominates, so that ccg

π is a monotonically decreasing
function of γ.

Using the structural equation (2.2) we can derive the optimal allocation of the
output gap:

xt = ccg
x at (2.23)

where:

ccg
x =

ccg
π − β

κ

ccg
π < αβ

α+κ2 (see Proposition 1) implies ccg
x < − κβ

α+κ2 ; if the private sector expects
inflation to be positive, the optimal CB response will imply a negative output
gap, i.e. the policymaker will contract economic activity (using the interest rate
instrument) in order to attain an actual inflation sufficiently smaller than the
expected one. Using (2.22) and (2.23) in (2.1) we can derive the nominal interest
rate:
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rt = rrt + δcg
π at + δcg

x bt + δcg
g gt (2.24)

where:

δcg
π = 1− σ ccg

π −β
κ

δcg
x = σ

δcg
g = σ

The interest rate rule (2.24) is an expectations-based reaction function, which is
characterized by a coefficient on inflation expectations that is decreasing in ccg

π : an
optimal ALM for inflation that requires a more aggressive undercutting of inflation
expectations (a lower ccg

π ) calls for a more aggressive behavior of the CB when it
sets the interest rate (a higher coefficient on inflation expectations in the rule
(2.24)). Moreover, the coefficients on bt and gt are such that their effects on the
output gap in the IS curve are fully neutralized.

Since ccg
π,t < β (see Proposition 1) δcg

π,t is always bigger than 1. In response to
a rise in expected inflation optimal policy should raise the nominal interest rate
sufficiently to increase the real interest rate. An increase in the real rate has a
negative effect on current output; this reflects the intertemporal substitution of
consumption. Then a contraction in output will decrease current inflation through
the Phillips Curve (2.2), and consequently through Equation (2.8) inflationary
expectations in the next period will decrease. This criteria is also emphasized in
Clarida, Gali, and Gertler (1999) under the discretionary rational expectations
solution; since this holds both under RE and learning it provides a very simple
criteria for evaluating monetary policy18.

Asymptotically, the system will converge to the RE equilibrium, with inflation
and output gap equal to zero, and so do the corresponding expectations; this can
be seen from the autonomous, linear, homogeneous system of first-order difference
equations (2.19). The asymptotic properties of this kind of systems are well-
known19, and with two eigenvalues inside and one outside the unit circle, and the
set of boundary conditions (2.20), we have only one non-explosive solution, which
is such that in the long run the system converges to the trivial solution yt = 0.

18Clarida, Gali, and Gertler (2000) estimate that the pre-Volcker area violated this
simple criteria.

19See for example Agarwal (2002).
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2.3 Introduction of a cost-push shock

In this section we will change the model, introducing an additional term in the
Phillips Curve, called a cost-push shock20, so that equation (2.2) becomes:

πt = βE∗
t πt+1 + κxt + ut (2.25)

where ut ∼ N(0, σ2
u) is a white noise21. In the New Keynesian literature, this shock

is introduced to generate a trade-off between inflation and output gap stabilization;
because of this, πt and xt cannot be set contemporaneously equal to zero in every
period. Moreover, the full commitment solution of the optimal monetary policy
under RE turns out to be time inconsistent, even if the CB does not have a target
for output gap larger than zero. Hence, the time-consistent discretionary solution
will be suboptimal, giving rise to what is sometimes called as stabilization bias.
There is, however, a crucial difference with the traditional inflation bias problem:
the discretion and the commitment solution are not only different in the coefficients
of the equilibrium laws of motion of aggregate variables, but even the functional
form of these laws of motion differs between the two cases; in particular, under
discretion inflation and output gap are linear functions of the cost-push shock
only, under commitment an additional dependence on lagged values of output gap
is introduced22.

2.3.1 Benchmark: discretionary solution under ratio-
nal expectations and under learning

As shown in Clarida, Gali, and Gertler (1999), when the cost-push shock is iid the
discretionary optimal policy implies that the RE solutions for πt and xt are:

πRE
t =

α

κ2 + α
ut (2.26a)

xRE
t = − κ

κ2 + α
ut . (2.26b)

Using optimality conditions of the discretionary rational expectations problem
with non-rational expectations (E∗

t ) one can derive the following ALM for inflation
and output gap:

20For interpretations of this shock, see among others Clarida, Gali, and Gertler (1999),
Erceg, Levin, and Henderson (2000), Woodford (2003).

21Note that the cost-push shock is usually assumed to be an AR(1); we instead assume
it to be iid to make the problem more easily tractable, see below.

22See Woodford (2003), Clarida, Gali, and Gertler (1999) and McCallum and Nelson
(1999).
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πt =
αβ

α + κ2
at +

α

α + κ2
ut (2.27a)

xt = − κβ

α + κ2
at − κ

α + κ2
ut . (2.27b)

Evans and Honkapohja (2003b) derives the expectations based interest rate rule
that implements this allocation:

rt = rrt + δEH
π E∗

t πt+1 + δEH
x E∗

t xt+1 + δEH
g gt + δEH

u ut (2.28)

where:
δEH
π = 1 + σ κβ

α+κ2

δEH
x = σ

δEH
g = σ

δEH
u = σ κ

α+κ2 .

This rule guarantees determinacy under RE, and also convergence to the discre-
tionary RE equilibrium when expectations E∗

t evolve according to least squares
learning23.

2.3.2 Constant Gain Learning

At the presence of cost push shocks an additional problem arises in designing the
optimal monetary policy when agents are learning: namely which PLM the agents
are learning. As we explained above the actual law of motion of the discretion and
the commitment solution have different functional forms. For analytical simplicity,
in this paper we will restrict our attention to the discretionary case. In particu-
lar, we assume that agents believe that inflation and output gap are continuous
invariant functions of the cost-push shock only, πt = π(ut) and xt = x(ut)24; this
hypothesis, together with the iid nature of the shock, implies that the conditional
and unconditional expectations of inflation and output gap coincide, and are per-
ceived by the agents as constants. Hence, it is natural to assume that agents will
estimate them using their sample means: the stochastic recursive algorithms (2.8),
(2.9)25.

23See Evans and Honkapohja (2003b).
24In the terminology of Evans and Honkapohja (2001b) Chapter 11, the PLM is a noisy

steady state.
25To be precise, in the algorithms (2.8), (2.9) the observations are weighted geometri-

cally, while in the normal sample average they all receive equal weight.
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We can now follow a procedure analogous to the one used in the model without
cost-push shock. The optimality condition we get is the same as before, Equation
(2.17).

With cost push shocks, there is a well known intratemporal tradeoff between
inflation and the output gap present under RE; the presence of learning introduces
an additional intertemporal tradeoff (Result 1 holds). We can isolate the two
tradeoffs from the optimality condition. When γ = 0 (which implies constant
expectations) (2.17) implies:

κ

α
πt + xt = βEt

[κ

α
πt+1 + xt+1

]
.

This can be solved forward, yielding the unique bounded solution:

κ

α
πt + xt = 0 , (2.29)

which is identical to the optimality condition derived in the RE optimal mone-
tary policy literature when the CB sets the optimal plan taking private sector’s
expectations as given (i.e., in the discretionary case). Clarida, Gali, and Gertler
(1999) describe this relation as implying a ‘lean against the wind’ policy: in other
words, if output gap (inflation) is above target, it is optimal to deflate the economy
(contract demand below capacity). Because of the presence of the cost push shock
in the Phillips Curve, the Central Bank cannot set πt and xt equal to zero every
period; so an intratemporal tradeoff between inflation and output gap is present
(even in the limit). When γ > 0 iterating forward (2.17) show the presence of an
intertemporal tradeoff, just like in Section 2.2.2. When the current output gap is
positive, the Central Bank will decrease inflation less then under RE; the Central
Bank renounces to fully stabilize the current economy, in exchange of easing future
inflation-output gap tradeoffs.

Stacking (2.17) with the Phillips Curve (2.25) and the algorithms (2.8)-(2.9),
we can show that at the optimum the economy evolves according to:




Etπt+1

at+1

bt+1


 = A




πt

at

bt


 +



− α

αβ(1−γ(1−β))+κ2β(1−γ)

0
−γ

κ


ut (2.30)

(where A is defined as in the previous section), plus the boundary conditions (2.20).
The system (2.30)-(2.20) is in the form studied in Blanchard and Kahn (1980), so
that we can use their results. In particular, since there are two predetermined
variables and one non-predetermined, and A has one eigenvalue outside the unit
circle and two inside, there exists one and only one solution. Moreover, also the
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system:
(

Etπt+1

at+1

)
= A1

(
πt

at

)
+

(
− α

αβ(1−γ(1−β))+κ2β(1−γ)

0

)
ut (2.31)

(where A1 is defined as in the previous section) respects the Blanchard-Kahn
conditions for existence and uniqueness of a (bounded) solution, and this unique
solution can be written as26:

πt = ccg
π at + dcg

π ut (2.32)

Combining Etπt+1 = ccg
π at+1 with the optimality condition (2.17) and the Phillips

Curve (2.25), and making use of the law of motion of inflation expectations (2.8),
we derive the values of the coefficients ccg

π and dcg
π , which are summarized in the

next Proposition.

Proposition 2. Let the economy evolve according to the system (2.30), (2.20);
then the ALM for inflation is:

πt = ccg
π at + dcg

π ut

where ccg
π is the same given in Proposition 1, and:

dcg
π =

α

κ2 + α + αβ2γ2(β − ccg
π ) + βγ (1− γ) (αβ − (κ2 + α) ccg

π )
The ALM for output gap and the interest rate rule are given by:

xt = ccg
x at + dcg

x ut (2.33)

rt = rrt + δcg
π at + δcg

x bt + δcg
g gt + δcg

u ut (2.34)

where ccg
x , δπ, δcg

x , δcg
g are the same as in (2.24), and:

dcg
x = dcg

π −1
κ

δcg
u = −σ dcg

π −1
κ

Plugging (2.32) into (2.8), we get:

at+1 = at + γ(ccg
π − 1)at + γdcg

π ut

= (1− γ(1− ccg
π )) at + γdcg

π ut

which is a stationary27 AR(1); thus, as is well-known in the literature on adaptive
learning, the contemporaneous presence of random shocks in the ALM and of
constant gain specification of the updating algorithm, prevents the expectations
from converging asymptotically to a precise value: instead, we have that at ∼
N

(
0,

γ2(dcg
π )2

1−(1−γ(1−ccg
π ))2 σ2

u

)
.

26See Blanchard and Kahn (1980), Proposition 1.
27In fact, since 0 < ccg

π < 1, it immediately follows that 0 < (1− γ(1− ccg
π )) < 1.
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2.3.3 Comparison with the myopic rule

In this section we state results regarding how optimal monetary policy under con-
stant gain learning differs from myopic rules used earlier in the literature, where
myopic means a rule that considers expectations as given in the optimization prob-
lem: in particular we refer to rule (2.28), derived in Evans and Honkapohja (2003b)
(henceforth EH).

It is clear that the coefficients on the output gap expectations and on the
demand shock are the same in rule (2.28) as in rule (2.34), while the other two
coefficients are typically different. Proposition 1 implies δcg

π,t > δEH
π : the interest

rate response of OP to out-of-equilibrium inflation expectations is more aggressive
than the interest rate response of EH. This is due to the fact that when the CB
takes into account its ability to influence agents’ beliefs, it optimally chooses to
undercut future inflation expectations more than what a myopic CB would do.

From Proposition 1 and 2 it also follows that δcg
u,t > δEH

u : optimal policy reacts
more aggressively also to cost push shocks. After a positive cost push shock the
optimally behaving Central Bank raises the interest rate more aggressively than
the myopic one, this in turn decreases output, which has a negative effect on
inflation. Thus conducting an aggressive interest rate rule in response to the cost
push shock, decreases the influence of the cost push shock on inflation, and this in
turn will ease agents learning about the true equilibrium level of inflation.

The inflation and output gap allocations implemented by the two different
interest rate rules are also different. Under constant gain learning optimal alloca-
tions are characterized by (2.32) and (2.33). Under EH allocations are given by
(2.27) with E∗

t πt+1 = at.
From Proposition 1 we know that the feedback coefficient under optimal policy

ccg
π is smaller than under the EH rule, in order to undercut inflation expectations

more. Also the response to the cost push shock is of lesser magnitude when (2.34)
is used instead of (2.28) (in fact, ccg

π < αβ
κ2+α

implies that dcg
π < α

κ2+α
), because the

CB is less willing to accommodate noisy shocks, in order to make easier for the
private sector to learn what is the long-term value of the conditional expectations
of inflation.

Under OP both coefficients in the ALM of xt are higher in absolute value
than under EH. This implies that the CB allows a higher feedback from out of
equilibrium expectations and noisy cost push shocks to the output gap then a
myopic policymaker.

The difference between OP and the myopic policy can be summarized as fol-
lows:

Result 2. When the CB takes into account its influence on private agents learning
it is optimal to decrease the effect of out of equilibrium expectations on inflation
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(engineering an aggressive interest rate reaction to inflationary expectations) and
increase the effect of out of equilibrium expectations on the output gap compared
to the myopic policy.

This way optimal policy undercuts future private sector expectations more
aggressively than the myopic policy.

Result 3. When agents are learning an optimally behaving policymaker accommo-
dates less the effect of noisy shocks to inflation compared to a myopic policymaker,
even if it translates into a more volatile output gap.

This way optimal policy makes it easier for the private sector to learn what is
the “true” value of the conditional expectations of inflation.

Similarity to the commitment solution

From Result 2 and 3 it follows that the impact of a given nonzero cost push shock
drives inflation (output gap) closer to (further from) target when agents are learn-
ing, relative to the discretionary RE case. Interestingly, this behavior qualitatively
resembles the optimal RE equilibrium under commitment within a simple class of
policy rules derived in Clarida, Gali, and Gertler (1999): if the CB can commit to
a policy rule that is a linear function of ut, the solution can be characterized, when
compared to the discretionary equilibrium, by inequalities analogous to the ones
summarized in the results stated above. However, the (constrained) commitment
solution differs from the discretionary one only when the cost-push shock is an
AR(1); if u -and consequently, the equilibrium processes for inflation and output
gap- is iid, the two solutions coincide, since future (rational) expectations of the
agents cannot be manipulated by the CB. Instead, if expectations are backward-
looking, the future beliefs can be manipulated also when the shock is iid: the
current actions of the CB influence future beliefs through (2.8) and (2.9) even if
the shock is iid.

In both instances this behavior results from the CB’s ability to directly ma-
nipulate private expectations, even if the channels used are quite different. In
fact, under commitment the policy maker uses a credible promise on the future to
obtain an immediate decline in inflation expectations and thus in inflation. Under
learning we observe a smaller initial response of inflation relative to the RE dis-
cretionary case because optimal policy reacts less to the cost push-shock to ease
private agents learning. In this sense, we can say that the ability to manipulate fu-
ture private sector expectations through the learning algorithm plays a role similar
to a commitment device under RE, hence easing the short-run trade-off between
inflation and output gap.
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Another similarity to the commitment solution is the sluggish behavior of infla-
tion after an initial cost push shock. The source of inertia under RE commitment
and learning is quite different. Under commitment the policy maker carries com-
mitments made in the past (in other words commits to behave in a past dependent
way). Under learning the pattern results from the sluggishness of expectations.

As a result of these two similarities, the impulse response function of inflation
to a cost push shock will be also similar under OP and RE commitment. Figure
2.5 displays the impulse response function of inflation to a unit shock under OP
and discretionary RE policy. In the optimal RE discretionary policy, inflation rises
on impact and immediately reverts to the steady state once the shock dies out.
Instead, under learning the policy maker engineers a smaller initial response of
inflation; in subsequent periods inflation gradually converges back to the steady
state value. Clarida, Gali, and Gertler (1999) and Gali (2003) show a similar
disinflation path for the Ramsey policy: a smaller initial inflation compared to the
discretionary case, in exchange for a more persistent deviation from the steady
state later28 This behavior of Ramsey policy leads to welfare gains over discretion
due to the convexity of the loss function; this preference for slower but milder
adjustment to shocks is at the heart of the stabilization bias.

The similarity to the RE commitment solution resembles the analysis carried
out in Sargent (1999), Chapter 5, which shows that in the Phelps problem under
adaptive expectations29, the optimal monetary policy drives the economy close to
the Ramsey optimum. Moreover, when the discount factor β equals 1, optimal
policy under learning replicates the Ramsey equilibrium. In our case, optimal pol-
icy under learning cannot replicate the commitment solution even for β going to
1. This result follows from the particular nature of the gains from commitment;
commitment calls for an ALM with a different functional form to the discretionary
case30. In the Phelps problem, on the other hand, the Phillips Curve is such that
the discretion and commitment outcome of inflation has the same functional form,
but different coefficients. However, also in our case an increase in the discount
factor makes the optimal disinflationary path under learning getting closer to the
commitment solution. This can be seen in Table 2.1, where we summarize the
behavior of inflation in response to a unit cost push shock when the model’s pa-
rameters are calibrated as in Woodford (1996), apart from β which takes several
values. As β goes to 1 the initial response of inflation is milder and the path back

28A difference is that commitment policy under RE engineers a sequence of negative
inflation after the first period, while a positive sequence under learning.

29Phelps (1967) formulated a control problem for a natural rate model with rational
Central Bank and private agents endowed with a mechanical forecasting rule, known to
the Central Bank.

30See Clarida, Gali, and Gertler (1999).
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to the steady state longer.

Table 2.1: Path of inflation for different βs after an initial cost push shock
beta 0.5 0.6 0.7 0.8 0.9 1.0

1 0.99 0.99 0.98 0.98 0.96 0.91
2 0.44 0.52 0.61 0.69 0.75 0.73
3 0.24 0.33 0.44 0.55 0.66 0.66

10 0.00 0.01 0.04 0.12 0.27 0.33
50 0.00 0.00 0.00 0.00 0.00 0.01

Woodford (1996) calibration. Cost push shock u0 = 1 in the first period,
starting from a0 = 0, π0 = 0, x0 = 0, with γ = 0.2

Welfare Loss Analysis

To have a quantitative feeling of the welfare gains that the use of the optimal rule
(2.34) instead of the EH rule (2.28) implies, we present a numerical welfare loss
analysis.

Since welfare losses in utility terms are hard to interpret we report consumption
equivalents: for a given monetary policy rule we calculate the cumulative utility
losses resulting from deviations from the steady state allocation and then express
what is the equivalent percentage decrease of the steady state consumption that
results to the same cumulative utility loss (For details of the calculation see the
Appendix.). We use the calibration of Woodford (1996): β = 0.99, κ = 0.024,
α = 0.048 and σ = 0.157. We perform Monte Carlo with a simulation length 10,000
and a cross sectional sample size of 1000, with the initial condition a0 = b0 = 0.
Cost push shocks are drawn from a normal distribution with 0 mean and variance
0.131.

Table 2.2 reports consumption equivalents for a range of tracking parameters.
For small tracking parameters the results are in the range of Lucas’ original es-
timates32: consumption losses resulting from cyclical fluctuations are small. For
higher tracking parameters the consumption equivalents are also higher, which
results from the fact in the presence of a cost push shock, constant gain learn-
ing does not settle down to RE, but converges to a limiting distribution and the
limiting variance of inflation expectation increases in γ (keeping other coefficients

31Note that the demand shock does not appear in the actual law of motion of the
endogenous variables.

32 See Lucas (1987).
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constant). This is illustrated in Figure 2.7. A higher variance of inflationary ex-
pectations in turn results in higher variance of inflation and output gap both under
OP (see equation (2.32) and (2.33)) and under EH (see equation (2.27)), thus a
higher welfare loss equivalent permanent consumption reduction.

Since both inflation and output gap variance can be expressed as a linear
function of the variance of the cost push shock, clearly the absolute value of con-
sumption equivalents are also increasing with the variance of the cost push shock
but the ratio of consumption equivalents under OP and EH should not be sensitive
to the choice of σ2

u. In Table 2.3 we report consumption equivalents for σ2
u = 0.6,

an estimate of Milani (2005). We can observe that consumption equivalents are
higher, but the ratio of them are not sensitive to the variance of the cost push
shock.

Optimal policy decreases consumption equivalents relative to the myopic rule
(2.28) (see the third column in Table 2.2 and 2.3). Even for tracking parameters
bellow 0.0533 the gain from using an optimal interest rate rule (2.34) compared to
the EH rule (2.28) is around 1−3%. The gain in consumption equivalents is higher
the higher is the gain parameter. For a very high tracking parameter γ = 0.9 the
welfare loss in consumption terms of not using the optimal rule is twice as large
as under OP. This follows from the fact that, optimal policy takes into account
that expectations have a limiting variance while the EH policy is myopic in the
sense that considers expectations to be fixed34. As a result, optimal policy aims
to decrease the limiting variance of inflationary expectations while EH does not,
and the higher is the tracking parameter the bigger is the decrease in the limiting
variance OP engineers compared to EH (see Figure 2.7).

It is interesting to examine the composition of welfare losses coming from in-
flation variation and output gap variation. For this we calculate the equivalent
permanent consumption decrease for welfare losses caused by only inflation vari-
ation or output gap variation respectively, and report the ratios of OP and EH
in Table 2.4. The table demonstrates Results 2 and 3: optimal policy focuses on
decreasing inflation variation even at the cost of higher output gap variation. The
higher is the tracking parameter, the higher is the incentive of the Central Bank
to focus on lowering inflation variance and allowing for an increase in output gap

33Estimates for the US are typically in this range. 0.0187 is the estimation of Milani
(2005) with Bayesian estimation, for a calibration of the tracking parameter see Orphanides
and Williams (2004).

34It is worth noting that the EH rule is designed to ensure learnability of the optimal
RE in a decreasing gain environment, and its performance under constant gain is never
considered in the EH paper; however, it can be useful to employ a constant gain version of
their rule to illustrate potential advantages of fully optimal monetary policy over a myopic
rule.
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Table 2.2: Consumption equivalents under optimal policy (OP) and myopic
policy (EH) under constant gain learning, σ2

u = 0.1
Tracking parameter pOP pEH pOP /pEH

0.0187 0.0129 0.0129 0.9990
0.05 0.0148 0.0151 0.9759
0.08 0.0171 0.0185 0.9243
0.1 0.0188 0.0213 0.8830
0.3 0.0371 0.0619 0.5996
0.5 0.0554 0.1122 0.4935
0.9 0.0910 0.2217 0.4106

Woodford (1996) calibration

Table 2.3: Consumption equivalents under optimal policy (OP) and myopic
policy (EH) under constant gain learning, σ2

u = 0.6
Tracking parameter pOP pEH pOP /pEH

0.0187 0.0787 0.0788 0.9990
0.05 0.0898 0.0920 0.9759
0.08 0.1041 0.1127 0.9243
0.1 0.1145 0.1297 0.8830
0.3 0.2256 0.3763 0.5996
0.5 0.3369 0.6824 0.4936
0.9 0.5537 1.3476 0.4108

Woodford (1996) calibration

deviation from the flexible price equilibrium. For γ = 0.9 compared to EH an
optimally behaving Central Bank engineers a 78% lower welfare loss in inflation
when it properly conditions on expectation formation, permitting at the same time
15 times more variation in output gap.

Moreover, it is worth noting that the use of a myopic rule under constant
gain learning allows for the autocorrelation of inflation to rise, thus increasing the
persistence of a shock’s effect on inflation expectations. This problem arises from
the relatively weak response to inflation expectations which feeds back to current
inflation and, in turn, into subsequent expectations and inflations. The optimal
rule’s strong feedback to inflation expectations dampens this interaction between
inflation and expectations35.

35It can be easily derived that the autocorrelation of inflation under constant gain with
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Table 2.4: Ratio of consumption equivalents of losses due to inflation and
output gap variations using OP and EH under constant gain learning

Tracking parameter Inflation Output gap
0.0187 0.9962 1.2296

0.05 0.9441 3.6263
0.08 0.8511 7.0185
0.1 0.7853 9.0290
0.3 0.4187 15.6711
0.5 0.3073 16.0060
0.9 0.2286 15.5719

Woodford (1996) calibration

This section has shown that optimal policy under learning is characterized by a
more aggressive interest rate reaction to out-of-equilibrium expectations and to
the cost push shock than would be optimal when the Central Bank does not make
active use of its influence on expectations. This aggressive behavior guarantees that
inflation will deviate less from its equilibrium value, thus private agents can learn
the true equilibrium level of inflation faster than under myopic policy. Helping
inflationary expectations is beneficial, even at the cost of allowing higher deviations
in output gap expectations and a higher output gap volatility. Welfare gains from
using the optimal policy are particularly pronounced when private agents use a
high tracking parameter (i.e. discount more past data) for forecasting. This result
indicates that properly conditioning on private agents expectation formation is
especially important in a nonconvergent environment, i.e. when agents follow
constant gain learning.

2.4 Decreasing Gain Learning

In this section we relax the assumption of constant gain learning and show that our
main results remain valid also with decreasing gain learning (henceforth DG) and
show that the time varying nature of expectations imply that during the transition
the optimal policy should be time varying even in a stationary environment.

Using a constant gain parameter γ is appropriate when agents believe struc-

EH is EπEH
t πEH

t−1 =
(

αβ
α+κ2

)2 (
1− γ + γ αβ

α+κ2

)
σ2

aEH
+ αβ

α+κ2

(
α

α+κ2

)2

γσ2
u while under the

optimal rule EπOP
t πOP

t−1 = (ccg
π )2 (1− γ + γccg

π )σ2
aOP

+ ccg
π (dcg

π )2 γσ2
u. We have already

seen that σ2
aOP

< σ2
aEH

, ccg
π < αβ

α+κ2 and dcg
π < α

α+κ2 , thus EπOP
t πOP

t−1 < EπEH
t πEH

t−1 .
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tural changes to occur. If instead the private sector confidently believes that the
environment is stationary it is more reasonable to model their learning behavior
with a decreasing gain rule, namely an algorithm of the form:

E∗
t πt+1 ≡ at = at−1 + t−1(πt−1 − at−1) (2.35)

E∗
t xt+1 ≡ bt = bt−1 + t−1(xt−1 − bt−1) (2.36)

where the only difference with (2.8)-(2.9) is the substitution of γ with t−1.
An updating scheme of this form is equivalent36 to estimating inflation and

output gap every period with OLS37.

2.4.1 Without cost push shock

Let us first consider the economy without cost push shock. Then the problem of
the CB becomes:

min
{πt,xt,rt,at+1,bt+1}∞t=0

E0

∞∑

t=0

βt(π2
t + αx2

t ) (2.37)

s.t. (2.1), (2.2), (2.35), (2.36)
a0, b0 given

The optimization can be solved in a way analogous to the constant gain case;
hence, the dynamics of the system can be summarized by the optimality condition:

κ

α
πt + xt = βEt

[
β

1
t + 1

xt+1 +
κ

α
πt+1 + xt+1

]
(2.38)

Iterating it forward we get:

κ

α
πt + xt = Et

[ ∞∑

s=1

βs+1 1
t + s

xt+s

]
.

Similarly to Section 2.2 our result is that learning introduces an an intratemporal
tradeoff between inflation and output that is not present under RE in an economy
without a cost push shock and an additional intertemporal tradeoff that is not

36Under certain conditions on the values used to initialize the algorithm, see Evans and
Honkapohja (2001b).

37Note that, since inflation and output gap are assumed by the learners to be constant,
the OLS is just the sample averages of the two.
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present in general under rational expectations (Result 1). From the latter it follows
that during the transition for a given positive value of xt, the optimal disinflation is
less harsh with respect to the one implied by (2.5) (optimizing taking expectations
as given) provided that the series on the right hand side is expected to be positive.
The intuition behind is that when the CB makes active use of the expectation
formation, it renounces its ability to optimally stabilize the economy in period t,
in exchange for a reduction in future inflation expectations (in absolute value) and
this allows an ease in the future inflation-output gap trade-off embedded in the
Phillips Curve.

To derive the optimal allocations, we can use (2.2) to substitute out xt in
(2.38), then using the evolution of inflationary expectations (2.35)we get:

Et [πt+1] = A11,tπt + A12,tat, (2.39)

where:

A11,t ≡
κ2 + α + αβ2 1

t+1

(
1 + β 1

t+1

)

αβ(1 + β 1
t+1) + κ2β

A12,t ≡ −
αβ

[
1− β

(
1− 1

t+1

) (
1 + β 1

t+1

)]

αβ(1 + β 1
t+1) + κ2β

.

Hence, at an optimum, the dynamics of the economy can be summarized by stack-
ing equations (2.35), (2.36) and (2.39), and obtaining the trivariate system:

Etyt+1 = Atyt (2.40)

where yt ≡ [πt, at, bt]′, and:

At ≡




A11,t A12,t 0
1

t+1 1− 1
t+1 0

1
t+1

κ −β 1
t+1

κ 1− 1
t+1


 .

The three boundary conditions of the above system are (2.20), the same as in
section 2.2.2.

We can find the solution with the method of undetermined coefficients, with
the guess38:

38This guess corresponds to the unique solution under constant gain learning. A proof of
uniqueness of a bounded solution for decreasing gain learning is not worked out completely
yet.

72



πt = cdg
π,tat. (2.41)

The sequence
{

cdg
π,t

}
must satisfy the non-linear, non-autonomous first order

difference equation:

cdg
π,t =

cdg
π,t+1

(
1− 1

t+1

)
−A12,t

A11,t − cdg
π,t+1

1
t+1

(2.42)

Of course, there exist infinite sequences that satisfy equation (2.42), one for each
initial value cdg

π,0. However, since the boundary conditions require πt to stay
bounded, we will concentrate on the solutions that do not explode.

Proposition 3. Let
{

cdg
π,t

}
be defined by (2.42), and assume it is bounded; then,

lim
t→∞ cdg

π,t exists, and is given by:

lim
t→∞ cdg

π,t =
αβ

α + κ2

Moreover, for any t < ∞, we have:

cdg
π,t <

αβ

α + κ2

Proof. See the Appendix.

Thus Result 2 holds during the transition: when the CB takes into account its
influence on expectations it is optimal to decrease the effect of out-of-equilibrium
expectations on inflation compared to the myopic policy (see (2.6)), in order to
undercut future inflation expectations by a larger amount. This relaxes the fu-
ture inflation-output gap trade-off embedded in the Phillips Curve. The ALM for
output gap is:

xt = cdg
x,tat cdg

x,t =
cdg
π,t − β

κ
(2.43)

If the private sector expects inflation to be positive, the optimal CB will contract
economic activity more than EH39 (using the interest rate instrument); the CB is
ready to pay a short-term cost represented by a wider current output gap in order
to contain future inflationary expectations.

39 From cdg
π,t < αβ

α+κ2 it follows that cdg
x,t < − κβ

α+κ2 . Compare with the ALM under EH
(2.6).
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The nominal interest rate rule is as follows:

rt = rrt + δdg
π,tat + δdg

x bt + δdg
g gt (2.44)

where:
δdg
π,t = 1− σ

cdg
π,t−β

κ

δdg
x = σ

δdg
g = σ

Since cdg
π,t < β (see Proposition 3) δdg

π,t is always bigger than 1. In response to
a rise in expected inflation optimal policy should raise the nominal interest rate
sufficiently to increase the real interest rate. The following proposition pertains to
the characteristics of the optimal rule compared to the myopic EH rule (2.7):

Proposition 4. Assume that t < ∞; then, δdg
π,t > δEH

π . Moreover, we have:
- lim
t→∞ δdg

π,t = δEH
π .

Result 4 under CG is parallelled by our results under DG: the optimal interest
rate rule should react more aggressively to out of equilibrium expectations than
the EH rule. A CB that knows how its behavior affects private sector expectations
should contain more inflationary expectations than a CB that takes expectations
as given.

An interesting result is that the coefficient on inflation expectations in the in-
terest rate rule (2.44) is time-varying, reflecting the fact that the Central Bank’s
incentives to manipulate agents’ beliefs evolve over time. This implies that during
the transition optimal policy should be time varying even in a stationary environ-
ment.

In Figure 2.1, we show how this coefficient depends on time when the param-
eters are calibrated according to Clarida, Gali, and Gertler (2000): κ = 0.075,
α = 0.3, σ = 1/4. δdg

π,t is always above its limiting level (see analytical proof in
Proposition 4), moreover, it decreases over time. Numerical analysis on the grid
β = 0.99 and α ∈ [0.01, 2], κ ∈ [0.01, 0.5] shows that this decreasing behavior of
δdg
π,t is a robust feature of the model 40. We find that after the 4th period (from

the 4th to the 5th period and so on) δdg
π,t is always decreasing, while in the first 4

periods δdg
π,t might be increasing (hump-shaped) for a combination of low values of

α and high values of κ (see Figure 2.3 ) 41. We summarize our new results as:

40We have chosen the grid to include typical calibrated values for the US and the EURO
area.

41In fact, δdg
π,t is always decreasing also for other calibrations widely adopted in the

New Keynesian Literature, like those taken from Clarida, Gali, and Gertler (2000) and
McCallum and Nelson (1999).
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Result 4. Optimal policy is time varying even in a stationary environment. It is
more aggressive initially, and as time evolves reacts less and less aggressively to
out of equilibrium expectations.

To get an intuition, suppose that a structural break occurs. For example there
is a policy change because a new central bank governor is appointed, agents know
that monetary policy has changed and try to learn how this affects the equilibrium.
In this situation is convenient for the CB to react more aggressively to out-of-
equilibrium inflation beliefs in the first periods, when agents pay more attention
to new information and the CB’s possibilities of influencing private expectations
are greater. This behavior is beneficial even at the cost of larger short-term losses in
terms of output gap variability. As time passes, the expectations will be influenced
to a lesser extent by the last realization of inflation, hence determining a CB
reaction that closely resembles the optimizing behavior when policymakers cannot
manipulate expectations.

The asymptotic behavior of inflation beliefs is given by the following Proposi-
tion:

Proposition 5. Let πt = cdg
π,tat, where cdg

πt is given by (2.42); then, at → 0.

Proof. See the Appendix.

Combining this result with the boundedness of cdg
π,t, the ALM for inflation (2.41)

and output gap (2.43) tell us that both these variables go to zero asymptotically,
restoring the RE allocations. Optimal policy naturally chooses a non-explosive
solution (it is E-stable), and drives expectations to the rational expectations equi-
librium.

Note that the policy function does not depend on the period when the cb
optimizes, even if it is not time invariant. Thus, the optimal policy characterized
above is time consistent, in the sense of Lucas and Stokey (1983) and Alvarez,
Kehoe, and Neumeyer (2004).

2.4.2 With Cost Push Shock

In this section we introduce a cost push shock in the New Keynesian Philips Curve.
Proceeding with the same analysis as before, we get the same optimality con-

dition (2.38). Substituting out xt using the Phillips Curve (2.25), and using the
evolution of inflation expectations (2.35) we can show that at the optimum the
economy evolves according to:

Et [πt+1] = A11,tπt + A12,tat + P1,tut (2.45)
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where A11 and A12 are the same as in (2.39), and

P1,t ≡ − α

αβ(1 + β 1
t+1) + κ2β

.

Stacking together this condition, and the two learning algorithms (2.35) and (2.36),
we again have a trivariate system. We can guess and verify that the ALM for
inflation is of the form:

πt = cdg
π,tat + ddg

π,tut (2.46)

which implies that Etπt+1 = cdg
π,t+1at+1; substituting this expression in (2.45), and

making use of the law of motion of inflation expectations (2.35), we obtain that
the sequence

{
cdg
π,t

}
is identical to (2.42) and

{
ddg

π,t

}
must satisfy:

ddg
π,t =

P1,t

cdg
π,t+1

1
t+1 −A11,t

. (2.47)

The solution of
{

cdg
π,t

}
is again characterized by Proposition 3. From Propo-

sition 3 and (2.47) it follows that 0 < ddg
π,t < α

α+κ2 , a positive cost push shock
increases inflation, but less than under myopic policy (compare with (2.27)). The
ALM for output gap and the nominal interest rate rule are given by:

xt = cdg
x,tat + ddg

x,tut (2.48)

rt = rrt + δdg
π,tat + δdg

x bt + δdg
g gt + δdg

ut ut (2.49)

where cdg
x,t, δ

dg
π,t, δ

dg
x , δdg

g are the same as in (2.44), and

ddg
x,t =

ddg
π,t−1

κ

δdg
ut = −σ

ddg
π,t−1

κ .

Since the cost push shock is a new state variable, it enters the interest rate rule.
δdg
ut is characterized by the following proposition:

Proposition 6. Assume that t < ∞; then, δdg
ut > δEH

u . Moreover, we have:
- lim
t→∞ δdg

ut = δEH
u .
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The inequality δdg
ut > δEH

u is parallel to Result 5: during the transition the
optimal policy engineers more aggressive interest rate movements in response to
cost push shock variations than EH, and this way it accommodates less the effect
of noisy shocks on inflation compared to EH.

δdg
ut is positive and decreasing over time (see Figure 2.2)42. Thus monetary pol-

icy should react to the cost push shock in a similar fashion as to out of equilibrium
expectations (see Result 4):

Result 5. Optimal policy reacts aggressively to cost push shocks initially, and
dampens its aggressiveness later.

In response to a positive cost push shock, the Central Bank raises interest rate
to contract the output and thus reduce inflation, and future inflationary expecta-
tions.

The asymptotic properties of the ALM (2.46),(2.48) depend on the limiting
behavior of at, which is given by the stochastic recursive algorithm:

at+1 = at + (t + 1)−1
(
(cdg

πt − 1)at + ddg
π,tut

)
(2.50)

We study its properties in the Appendix, where we use the stochastic approx-
imation techniques43 to prove the following Proposition:

Proposition 7. Let at evolve according to (2.50); then, at → 0 a.s.

This result, together with the boundedness of cdg
π,t, implies that cdg

π,tat goes to
zero almost surely; moreover, it is easy to see that ddg

π,t → α
κ2+α

, so that we can
conclude that πt → α

κ2+α
v almost surely, where v is a random variable with the

same probability distribution as ut. The equilibrium corresponds to the discre-
tionary rational expectations equilibrium. Optimal policy ’helps’ private agents to
learn the rational discretionary REE44.

From Proposition 4 and 6 it follows that the optimal policy converges to the
myopic policy; since expectations converge to a constant it is intuitive that in the
limit OP behaves as if expectations were fixed. Bellow we provide a numerical

42Since δdg
u,t < 1 from (2.49) it follows that the change of δdg

u,t through time is identical
to that of δdg

π,t and the numerical analysis of Section 2.4.1 also applies here.
43For an extensive monograph on stochastic approximation, see Benveniste and P.

(1990); the first paper to apply these techniques to learning models is Marcet and Sargent
(1989).

44Note that the PLM of private agents does not nest the commitment REE, only the
discretionary REE, so agents have a ’chance’ to learn only the latter.
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analysis on how the difference during the transition translates into welfare losses.
Similarly to Section 2.3.3 we report consumption equivalents45.

Tables 2.5 and 2.6 show that similarly to the constant gain case in the long run
OP engineers a lower consumption equivalent then the EH policy, and OP engineers
lower variation of inflation at the cost of allowing higher variation in output. The
last row of the first column in Table 2.5 shows that if we start the economy from
the steady state, a0 = 0, in the long run the consumption equivalent of OP is
about 10% lower then that of EH. Table 2.6 reports reports the composition of
these losses: if we start the economy in the steady state optimal policy engineers an
inflation variation 20 percent lower then EH and allows a 3-9 times higher welfare
loss due to output gap variations.

These long run gains of OP result from the different transition path towards
the steady state this policy engineers compared to EH.

Let us first examine the path of expectations. Both OP and EH are E-stable
under learning, so guarantee that expectations converge to the discretionary REE,
the difference is the speed of convergence. Figure 2.6 shows a typical realization
of the evolution of expectations under OP and EH. We can observe that inflation
expectations converge faster and output gap expectations converge more slowly
with our rule than with the EH one. This is a consequence of the intertemporal
tradeoff (Result 1): when the CB does take into account its influence on the
learning algorithm, it has an incentive to undercut future inflation beliefs. The
way the central bank can achieve this, is to keep inflation close to the steady
state; since inflationary expectations are formed as averages of past inflation data,
this policy undercuts future inflation expectations. Because of the intratemporal
tradeoff between inflation and output, the cost of keeping inflation close to the
steady state is a wider output gap and consequently a slower convergence of b to
its RE value.

We report how the ratios of OP and EH consumption equivalents evolve during
the transition in Table 2.5. In the first periods the optimal interest rate rule (2.49)
yields ex-post higher cumulative welfare losses expressed in consumption terms
than the EH rule; later, however, our rule starts generating smaller welfare losses.
These findings are consistent with our finding that a CB that follows the optimal
rule (2.49) reacts to out-of-equilibrium inflation expectations more aggressively
than in the EH case, in order to undercut more future expectations, even if this
means allowing a wider output gap in the short run. This implies that in the
first periods, when this more aggressive behavior has not yet generated a pay-off
in terms of a smaller |a| sufficient to offset the costly output gap variability, our

45 We report the permanent percentage decrease in the steady state consumption that
is equivalent to the cumulative welfare losses up to time T under OP as a ratio of the same
measure under EH (See Appendix.). Results are obtained by Monte Carlo simulations.
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rule performs worse than the EH one; as soon as inflation expectations become
small enough, this initial disadvantage is more than compensated. This pattern
is magnified by the time-varying behavior of δdg

π,t that we characterized above:
the coefficient on inflation expectations in (2.49) is particularly large in the first
periods, hence determining large output gap variations and large welfare losses in
the short run, and large gains from the contraction of |a| in the medium and long
run.

Since the main advantage of OP is that it helps private agents’ inflationary
expectations to converge faster, the advantage of OP over EH increases the further
away initial expectations are from the steady state. The different columns of
Table 2.5 report ratios of consumption equivalents for different initial inflationary
expectations. The higher is a0 the bigger is the consumption cost of OP compared
to EH in the first periods: OP allows for higher welfare losses in order to keep
inflation closer to the SS in order to help inflationary expectations converge faster.
As time goes on, inflation expectations converge closer to 0 under OP than under
EH; the further away a0 is from the SS, also the further away future inflation
expectations remain from the SS under EH. Consequently the inflation output gap
tradeoff remains worse under EH and consumption equivalents remain also higher
then under OP. The bigger is a0 the bigger is the gain in decreasing inflation
variation of OP over EH, and the higher is the output gap variation OP allows
compared to EH (See Table 2.6)46.

In this section we have proved that our main results do not depend on what
type of learning algorithm private agents follow. Our new results are that under
decreasing gain learning optimal policy should be time varying: more aggressive
on inflation initially and less in subsequent periods. In the limit, expectations
converge to the discretionary rational expectations equilibrium, and optimal policy
will be equivalent to the myopic policy. Numerical simulations confirmed that
optimal policy under learning engineers dramatically lower welfare losses compared
to myopic policy. In the next section we direct out attention to differences between
optimal policy under the two learning algorithms, and argue why it is of interest
to examine both learning algorithms.

2.5 Extensions

Up to now, we have supposed that the CB perfectly observes all the relevant state
variables of the system, namely the exogenous shocks and the agents’ beliefs. In

46Similarly to Section 2.3.3 ratios of consumption equivalents do not depend on the
choice of σ2

u.
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Table 2.5: Path of cumulative consumption equivalent ratios under decreas-
ing gain, using OP and EH

pOP /pEH

T a0 = 0 a0 = 1 a0 = 2 a0 = 3
1 2.086 4.145 4.327 4.362
5 1.511 2.241 2.325 2.344

10 1.279 1.574 1.609 1.617
20 1.104 1.116 1.117 1.118
26 1.057 0.993 0.986 0.984
27 1.050 0.978 0.969 0.967
40 0.997 0.841 0.821 0.817
43 0.989 0.820 0.799 0.795
49 0.975 0.786 0.763 0.758

10,000 0.899 0.583 0.542 0.533

Woodford (1996) calibration

this section we show that our main results extend to a more general framework,
where either the shocks or the expectations are not observable. In particular, to
make the problem non-trivial, throughout this section we modify the structural
equations (2.1) and (2.25) with the introduction of unobservable shocks, so that
the model is now given by:

xt = E∗
t xt+1 − σ−1(rt −E∗

t πt+1 − rrt) + gt + ex,t (2.51)

and:
πt = βE∗

t πt+1 + κxt + ut + eπ,t (2.52)

where we assume that the CB can observe πt and xt only with a lag, and that ex,t

and eπ,t are independent white noise that are not observable, not even with a lag.
The rest of the setup is identical to subsection 3.1.

2.5.1 Measurement Error in the Shocks

We start with the case in which the monetary authority can observe gt and ut only
with an error; in particular, we assume that it receives the noisy signals g∗t and
u∗t , where:

g∗t = gt + εt, εt ∼ N(0, σ2
ε )

u∗t = ut + ηt, ηt ∼ N(0, σ2
η)
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Table 2.6: Ratio of welfare losses using OP and EH under decreasing gain
learning due to inflation and output gap variations

a0 = 0 a0 = 1 a0 = 2 a0 = 3
Inflation

pOP 0.016 0.054 0.166 0.353
pEH 0.019 0.125 0.439 0.961

pOP /pEH 0.838 0.432 0.379 0.368

Output gap
pOP 0.029 0.411 1.547 3.434
pEH 0.005 0.031 0.110 0.241

pOP /pEH 6.044 13.188 14.100 14.279

Woodford (1996) calibration

To make the problem non-trivial, we also assume that the CB can observe πt and
xt only with a lag. Note that the shocks do not depend on the policy followed
by the CB; hence, the separation principle applies, namely, the optimization of
the welfare criterion and the estimation of the realizations of the shocks can be
solved as separate problems. As is well known, the above signal-extraction problem
implies that the expected values of the shocks given the signals are47:

E [gt/g∗t ] ≡ ECB
t gt = σ2

g

σ2
ε +σ2

g
g∗t ≡ ζgg

∗
t

E [ut/u∗t ] ≡ ECB
t ut = σ2

u
σ2

η+σ2
u
u∗t ≡ ζuu∗t

Moreover, the separation principle implies that certainty equivalence holds in de-
signing the optimal interest rate rule, which turns out to be identical to (2.49),
with gt and ut replaced by ECB

t gt and ECB
t ut, respectively:

rt = rrt + δdg
π,tat + δdg

x bt + δdg
g ζgg

∗
t + δdg

ut ζuu∗t
= rrt + δdg

π,tat + δdg
x bt + δdg

g ζggt + δdg
g ζgεt + δdg

ut ζuut + δdg
ut ζuηt

We can combine the above equation with (2.51) and (2.52) to obtain the ALM for
inflation and output gap:

πt = µ1
atat + µ1

ggt + µ1
εεt + µ1

utut + µ1
ηtηt + κex,t + eπ,t

xt = µ2
atat + µ2

ggt + µ2
εεt + µ2

utut + µ2
ηtηt + ex,t

47E.g., see Hamilton (1994).
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where:
µ1

at = cdg
π,t, µ2

at = cdg
x,t

µ1
g = κ (1− ζg) , µ2

g = 1− ζg

µ1
ε = −κζg, µ2

ε = −ζg

µ1
ut =

(
ddg

π,t − 1
)

ζu + 1, µ2
ut =

(
ddg

π,t−1

κ

)
ζu

µ1
ηt =

(
ddg

π,t − 1
)

ζu, µ2
ηt =

(
ddg

π,t−1

κ

)
ζu

As a consequence of the measurement error, inflation and output gap now depend
on a wider set of state variables; however, it is easy to see that the main findings
of the preceding section go through in this modified environment. First of all,
the separation principle trivially implies that when the CB takes into account
the effect of its decisions on future beliefs, the optimal policy is more aggressive
against out-of-equilibrium inflation expectations, compared to the case in which
the private sector’s expectations are considered as exogenously given48; moreover,
the analysis of convergence of learning algorithms to the optimal discretionary RE
equilibrium49 does not change in this modified environment.

2.5.2 Heterogenous Forecasts

As argued in Honkapohja and Mitra (2005) (HM hereafter), the hypothesis that
the CB can perfectly observe private sector’s expectations is subject to several
criticisms50; it is therefore natural to verify the robustness of our results when
this assumption is relaxed. In what follows, we assume that the optimal interest
rate rule takes the same form as (2.49), but the agents’ forecasts for inflation
and output gap, at and bt, are replaced by the CB internal forecasts, aCB

t and
bCB
t

51; in particular, we suppose that the CB and the private sector forecasts have
the same form, and are updated according to the same algorithm, which is given
by (2.35)-(2.36). The only difference is given by the initial beliefs. Note that this
setup corresponds to a situation where the CB, in solving its optimization problem,

48For a description of the optimal policy when the CB does not consider its effect on
future beliefs, and there is measurement error in the shocks, see Evans and Honkapohja
(2003b) section 4.2.

49Note that the optimal RE equilibrium is now different from the baseline case, since
inflation and output gap depend also on gt, εt, ηt, and the unobservable shocks ex,t and
eπ,t.

50For example, private expectations and their forecasts produced by different institutions
do not necessarily coincide.

51This approach is developed in HM, where it is applied to the EH rule and to a simple
Taylor rule. Evans and Honkapohja (2003a) use this method in a setup where the CB
follows the expectations based interest rule derived in Evans and Honkapohja (2002).
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knows the adaptive algorithm used by the agents to form their expectations, but
cannot observe the actual values of these expectations; instead, the CB has a tight
prior on a0 and b0

52, and forms its internal forecasts accordingly. Plugging the
interest rate rule into the structural equations (2.51) and (2.52), we get the ALM:

πt = ν1
aat + ν1

aCBt
aCB

t + ν1
b bt + ν1

bCBbCB
t + ν1

utut + κex,t + eπ,t

xt = ν2
aat + ν2

aCBt
aCB

t + ν2
b bt + ν2

bCBbCB
t + ν2

utut + ex,t
(2.53)

where:

ν1
a = β + κσ−1, ν2

a = σ−1

ν1
aCBt

= −κσ−1

(
1− σ

cdg
π,t−β

κ

)
, ν2

aCBt
= −σ−1

(
1− σ

cdg
π,t−β

κ

)

ν1
b = κ, ν2

b = 1
ν1

bCB = −κ, ν2
bCB = −1

ν1
ut = ddg

π,t, ν2
ut = ddg

x,t

Again, our main results are unaffected by this change in the CB information
set, both for t < ∞ and for t → ∞. In fact, since the parameters in the optimal
rule are the same as in rule (2.49), the results summarized in Propositions 4 and 6
are still valid. On the other hand, we can study E-stability of the system extending
Proposition 2 in HM to a time-varying environment. In particular, it is easy to
show53:

Corollary 1. Consider the model (2.53); it is E-stable if and only if the corre-
sponding model with homogenous expectations is E-stable.

Since E-stability of the homogenous expectations model is ensured by Propo-
sition 7, we conclude that also system (2.53) is E-stable, and it converges to the
optimal discretionary RE equilibrium54.

2.6 Conclusions

In this paper we analyzed the optimal monetary policy problem faced by a CB that
tries to exploit its ability to influence future beliefs of the agents, when they follow
adaptive learning to form their expectations. We have shown that monetary policy

52In other words, it believes that a0 = aCB
0 and b0 = bCB

0 with probability one, where
aCB
0 and bCB

0 are given.
53The proof is available from the authors upon request.
54In fact, the system we are analyzing falls into the class for which E-stability and

convergence of real time learning are equivalent, see Evans and Honkapohja (2001b).

83



should be aggressive on inflation, and the reason for this is that in this way private
agents learn the true value of steady state inflation faster. We have shown that
optimal policy can be implemented by an aggressive interest rate policy, and also
that this behavior is optimal even at the cost of higher welfare losses from output
gap volatility. We conclude by describing several areas where future research would
be useful.

We have shown that learning introduces an additional tradeoff between infla-
tion and output gap stabilization that is not present under rational expectations,
namely an intertemporal tradeoff which is generated by the central banks ability
to influence future expectations. We analytically show that because of this in-
tertemporal tradeoff, during the transition optimal policy qualitatively resembles
the commitment solution under rational expectations. In this sense the Central
Bank’s desire to influence future expectations by its current action acts as a com-
mitment device.

Optimal policy naturally chooses an E-stable policy, but even though during
the transition optimal policy resembles the commitment solution under rational
expectations, in our setup it drives expectations to the discretionary rational ex-
pectations solution. The reason for this is that agents expectation formation does
not nest the commitment solution under rational expectations. Under rational
expectations commitment calls for an ALM with a different functional form than
the discretionary case (see Clarida, Gali, and Gertler (1999)).

It would very interesting to explore the possibility of reaching the commitment
solution with adaptive learning algorithms. This question is particularly interest-
ing as from the backward looking nature of these learning algorithms it follows
that such policies are time consistent.

Our analysis was restricted to examining optimal policy given a certain learning
algorithm. It would be interesting to examine how monetary should be conducted
with endogenous expectation formation, in other words when private agents would
change their expectation formation depending on their perception about the un-
derlying economy. Endogenous expectation formation could be formulated for
example along the lines of Marcet and Nicolini (2003) where agents dynamically
switch between predictor use depending on the last forecast error. An alternative
way would be to to model expectation formation as in Molnar (2005) where agents
do not switch predictor use, but always a weighted average of predictor forecasts
and adjust the weight on predictors dynamically depending on the relative fore-
casting performance.
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2.7 Appendix

2.7.1 Constant Gain Learning

Lemma 1. Let the set of all the real bounded sequences be defined as follows:

M∞ ≡ {{zt} ∈ R∞ : {zt} is bounded}
and let:

G ≡ {{πt, xt, rt, at+1, bt+1} ∈ M∞ ×M∞ ×M∞
+

}

If there exists a sequence
{
π∗t , x∗t , r∗t , a∗t+1, b

∗
t+1

} ∈ G that solves the problem:

min
{πt,xt,rt,at+1,bt+1}∈G

E0

∞∑

t=0

βt(π2
t + αx2

t ) (2.54)

s.t. (2.1), (2.2), (2.8), (2.9)
a0, b0 given

then
{
π∗t , x∗t , r∗t , a∗t+1, b

∗
t+1

}
solves also (2.10).

Proof. Let
{

π̂t, x̂t, r̂t, ât+1, b̂t+1

}
be an arbitrary unbounded sequence that satisfies

the constraints of (2.10), and such that:

V̂ ≡
∞∑

t=0

βt(π̂2
t + αx̂2

t ) < ∞ (2.55)

Let {π̂n
t } be defined as:

{π̂n
t } ≡ {π̂0, π̂1, ..., π̂n, π̂n, π̂n, ...}

and
{

x̂n
t , r̂n

t , ân
t+1, b̂

n
t+1

}
are defined accordingly to respect the constraints of

(2.10); clearly,
{

π̂n
t , x̂n

t , r̂n
t , ân

t+1, b̂
n
t+1

}
is bounded, so that:

V̂ n ≥ V ∗, ∀n
Since this is true for any n, it must be true also in the limit, i.e.:

lim
n→∞ V̂ n ≥ V ∗

if lim
n→∞ V̂ n exists. However, it is easy to see that lim

n→∞ V̂ n = V̂ ; since
{

π̂t, x̂t, r̂t, ât+1, b̂t+1

}

was arbitrary, it proves the statement 55.
55Note that the condition (2.55) can be imposed without any loss of generality, since

any
{

π̂t, x̂t, r̂t, ât+1, b̂t+1

}
that does not respect it, for sure cannot do better than{

π∗t , x∗t , r
∗
t , a∗t+1, b

∗
t+1

}
.
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Lemma 2. Let A11 be given by equation (2.21) in the text; then it has an eigen-
value inside and one outside the unit circle.

Proof. First of all, we recall a result of linear algebra that we will use in the
proof, i.e. that a necessary and sufficient condition for a 2 by 2 matrix to have an
eigenvalue inside and one outside the unit circle, is that56:

|µ1 + µ2| > |1 + µ1µ2|

where µ1, µ2 are the eigenvalues of the matrix; in the case of A11, the above
condition can be written equivalently:

κ2 + α + αβ2γ (1− γ (1− β))
κ2β (1− γ) + αβ (1− γ (1− β))

+ 1− γ >

1 +
κ2 + α + αβ2γ (1− γ (1− β))

κ2β (1− γ) + αβ (1− γ (1− β))
(1− γ) +

αβ (1− β (1− γ) (1− γ (1− β)))
κ2β (1− γ) + αβ (1− γ (1− β))

γ

where we have used the fact that the trace is equal to the sum of the eigenvalues,
and that the determinant is equal to the product. After simplifying the above
inequality, we get:

−γ > −γ

(
κ2 + α + αβ2γ (1− γ (1− β))− αβ (1− β (1− γ) (1− γ (1− β)))

κ2β (1− γ) + αβ (1− γ (1− β))

)

so that all we have to prove is that:

κ2 + α + αβ2γ (1− γ (1− β))− αβ (1− β (1− γ) (1− γ (1− β)))
κ2β (1− γ) + αβ (1− γ (1− β))

> 1

Some tedious algebra shows that this is equivalent to the following expression:

κ2 (1− β (1− γ)) + α (1− β) (1− β (1− γ (1− β))) > 0

which is always true, since β and γ are supposed smaller than one.

We now prove Proposition 1. First of all, we can guess that inflation follows
the ALM (2.22)57 and use the optimality condition (2.18) and the method of
undetermined coefficients to verify that ccg

π must satisfy the following quadratic
expression:

p2 (ccg
π )2 + p1c

cg
π + p0 = 0

56LaSalle (1986).
57Which we showed in the text that is the functional form that inflation will have at

the optimum.
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where:

p2 ≡ γ
[
κ2β (1− γ) + αβ (1− γ (1− β))

]

p1 ≡ (1− γ)
[
κ2β (1− γ) + αβ (1− γ (1− β))

]− [
κ2 + α + αβ2γ (1− γ (1− β))

]

p0 ≡ αβ (1− β (1− γ) (1− γ (1− β)))

The above polynomial can be equivalently rewritten as follows:

ccg
π = −p0 + p2 (ccg

π )2

p1
≡ f(ccg

π )

We will prove that the function f(·), defined on the interval [0, 1], is a contraction,
so that it admits one and only one fixed point; moreover, since the two roots of
the quadratic expression have the same sign (it is due to the fact that both p2 and
p0 are positive), it follows that the other candidate value for ccg

π is greater than
one, which is not compatible with the boundary conditions58.

First of all, we show that f(·), when defined on the interval [0, 1], takes values
on the same interval.

Lemma 3. f(ccg
π ) is strictly monotone increasing on the interval [0, 1].

Proof. Note that:

f ′(ccg
π ) =

2γ[αβ(1− γ(1− β)) + κ2β(1− γ)]
κ2 + α + αβ2γ (1− γ (1− β))− (1− γ)[κ2β (1− γ) + αβ (1− γ (1− β))]

ccg
π

which is positive if and only if the denominator is positive:

κ2 + α + αβ2γ (1− γ (1− β))− (1− γ)[κ2β (1− γ) + αβ (1− γ (1− β))] ≶ 0

After rearranging:

κ2
(
1− β(1− γ)2

)
+ α[1− β(1− γ)(1− γ(1− β))] + αβ2γ (1− γ (1− β)) ≶ 0

which is always positive. Thus we have proved that f(ccg
π ) is strictly monotone

increasing on the interval [0,1].

Lemma 4. f(ccg
π ) : [0, 1] → [0, 1]

Proof. Since f(ccg
π ) is strictly monotone increasing it suffices to show that f(0) > 0

and f(1) < 1.

f(0) =
αβ (1− β (1− γ) (1− γ (1− β)))

κ2 + α + αβ2γ (1− γ (1− β))− (1− γ)[κ2β (1− γ) + αβ (1− γ (1− β))]

58Since it would imply an exploding inflation.
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where the denominator is positive (see the preceding proof), and also the numer-
ator is trivially positive. Thus f(0) > 0.

f(1) =
γ

[
κ2β (1− γ) + αβ (1− γ (1− β))

]
+ αβ (1− β (1− γ) (1− γ (1− β)))

κ2 + α + αβ2γ (1− γ (1− β))− (1− γ)[κ2β (1− γ) + αβ (1− γ (1− β))]

After rearranging, we get:

f(1) ≶ 1 ⇐⇒ 0 ≶ κ2 (1− β (1− γ)) + α (1− β) (1− β (1− γ (1− β)))

but, as we argued above, the RHS of the last inequality is always positive; hence,
f(1) < 1.

To show that f(·) is a contraction, it suffices to show that its derivative is
bounded above by a number smaller than one: in fact, by the Mean Value Theorem,
we now that for any a, b, there exists a c ∈ (a, b) such that:

|f(a)− f(b)| ≤ ∣∣f ′(c)∣∣ |a− b|

and if |f ′(c)| ≤ M < 1 for any c ∈ [0, 1], we have the definition of a contraction.

Lemma 5. For any x ∈ [0, 1], 0 < f ′(x) ≤ f ′(1) < 1.

Proof. First of all, note that:

f ′(x) =
2γ[αβ(1− γ(1− β)) + κ2β(1− γ)]

κ2 + α + αβ2γ (1− γ (1− β))− (1− γ)[κ2β (1− γ) + αβ (1− γ (1− β))]
x

is positive and increasing in x, so that max
x∈[0,1]

f ′(x) = f ′(1); after some algebraic

manipulation, we get:

f ′(1) ≶ 1 ⇐⇒ (1− βγ)β (1− γ (1− β))+βγ (1− γ (1− β))−1 ≶ κ2

α

(
1− β

(
1− γ2

))

Since β, γ ∈ (0, 1), we have:

(1− βγ) β (1− γ (1− β))+βγ (1− γ (1− β))−1 < 1−βγ+βγ (1− γ (1− β))−1 < 0

so that f ′(1) will be smaller than one (κ2

α

(
1− β

(
1− γ2

))
is always positive).

Moreover, we prove the following result.

Lemma 6. Let f(·) be defined as above; then, f
(

αβ
κ2+α

)
≤ αβ

κ2+α
.
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Proof. Note that:

f

(
αβ

κ2 + α

)
=

αβ (1− β (1− γ) (1− γ (1− β)))
κ2 + α + αβ2γ (1− γ (1− β))− (1− γ)[κ2β (1− γ) + αβ (1− γ (1− β))]

+
γ

[
κ2β (1− γ) + αβ (1− γ (1− β))

]

κ2 + α + αβ2γ (1− γ (1− β))− (1− γ)[κ2β (1− γ) + αβ (1− γ (1− β))]

(
αβ

κ2 + α

)2

R αβ

κ2 + α

if and only if:
(
κ2 + α

)
αβ (1− β (1− γ) (1− γ (1− β))) + γ

[
κ2β (1− γ) + αβ (1− γ (1− β))

] αβ
κ2+α

κ2 + α + αβ2γ (1− γ (1− β))− (1− γ)[κ2β (1− γ) + αβ (1− γ (1− β))]
R 1

For γ = 0 it is easy to verify that f
(

αβ
κ2+α

)
= αβ

κ2+α
. If γ > 0, since the αβ

α+κ2 < β,
the LHS of the above inequality is smaller than:
(
κ2 + α

)
αβ (1− β (1− γ) (1− γ (1− β))) + βγ

[
κ2β (1− γ) + αβ (1− γ (1− β))

]

κ2 + α + αβ2γ (1− γ (1− β))− (1− γ)[κ2β (1− γ) + αβ (1− γ (1− β))]

which is equal to one; in fact:
(
κ2 + α

)
(1− β (1− γ) (1− γ (1− β))) + βγ[κ2β (1− γ) + αβ (1− γ (1− β))]

κ2 + α + αβ2γ (1− γ (1− β))− (1− γ)[κ2β (1− γ) + αβ (1− γ (1− β))]
R 1

is equivalent to:

− (
κ2 + α

)
β (1− γ) (1− γ (1− β)) + (1− γ (1− β)) [αβ (1− γ (1− β)) + κ2β (1− γ)]

R αβ2γ (1− γ (1− β))

But the LHS can simplified as:

κ2 (β (1− γ) (1− γ (1− β))− β (1− γ) (1− γ (1− β))) +
αβ (1− γ (1− β)) (1− γ (1− β)− (1− γ))

which is equal to:
αβ2γ (1− γ (1− β))

Summing up, we showed that (if γ > 0) the following holds:
(
κ2 + α

)
(1− β (1− γ) (1− γ (1− β))) + βγ[κ2β (1− γ) + αβ (1− γ (1− β))]

κ2 + α + αβ2γ (1− γ (1− β))− (1− γ)[κ2β (1− γ) + αβ (1− γ (1− β))]
= 1

which implies that:

f

(
αβ

κ2 + α

)
<

αβ

κ2 + α
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We are now ready to prove the Proposition.

Proof of Proposition 1. Combining the Lemmas 4 and 5 we obtain that f(·)
is a contraction when defined on the interval [0, 1]; moreover, by Lemma 6 we get
that f , when defined on [0, αβ

κ2+α
], takes values on the same interval. This result,

together with Lemma 5 and with the inequality αβ
κ2+α

< 1, implies that f(·) is
a contraction also when defined on the interval [0, αβ

κ2+α
] and, therefore, that the

optimal ccg
π must be between zero and αβ

κ2+α
.

Finally, note that when γ = 0, f(ccg
π ) collapses to αβ

κ2+α
, which proves also the

last statement of the Proposition.

2.7.2 Decreasing Gain Learning

Proof of Proposition 3. To prove the first part of the statement; first of all,
note that if we solve forward the following difference equation:

cdg
π,t = βcdg

π,t+1 +
αβ

κ2 + α
(1− β)

we obtain one and only one bounded solution, i.e.:

cdg
π,t =

αβ

κ2 + α
∀t

Moreover, we can rewrite the difference equation defining cdg
πt as:

A11,tc
dg
π,t − cdg

π,t+1 ≡ Gt = − 1
t + 1

cdg
π,t+1 −A12,t +

1
t + 1

cdg
π,tc

dg
π,t+1

If cdg
π is bounded, it is easy to show that G has a limit:

lim
t→∞Gt = − lim

t→∞A12,t =
α

κ2 + α
(1− β)

We can also show that the difference equation defined by G converges to:

β−1cdg
π,τ − cdg

π,τ+1

Summing up, in the limit we have that cdg
π evolves according to:

cdg
πτ = βcdg

πτ+1 +
αβ

κ2 + α
(1− β)

which, as we argued before, has one and only one bounded solution:

cdg
πτ =

αβ

κ2 + α
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We prove the second part of the statement by contradiction. Assume that
there exists a T < ∞ such that cdg

π,t ≥ αβ
α+κ2 ; we show that this implies cdg

π,t > αβ
α+κ2

for any t > T . First of all, we can write:

cdg
π,T+1

(
1− 1

T+1

)
−A12,T

A11,T − cdg
π,T+1

1
T+1

= cdg
π,t ≥

αβ

α + κ2

Rearranging and simplifying, this turns out to be equivalent to:
(

1− 1
T + 1

(
1− αβ

α + κ2

))
cdg
π,t+1 ≥

αβ

α + κ2
A11,T + A12,T (2.56)

Note that the RHS is equal to:

αβ

α + κ2
A11,T + A12,T =

αβ

αβ(1 + β 1
t+1) + κ2β

[
β

(
1 + β

1
t + 1

) (
1− 1

T + 1

(
1− αβ

α + κ2

))]

=
αβ

α + κ2
(
1 + β 1

t+1

)−1

(
1− 1

T + 1

(
1− αβ

α + κ2

))

>
αβ

α + κ2

(
1− 1

T + 1

(
1− αβ

α + κ2

))

where the last inequality is due to the fact that
(
1 + β 1

t+1

)−1
< 1; putting together

the last inequality and (2.56), we get:

cdg
π,t+1 >

αβ

α + κ2

Then, we can apply the above argument to cdg
π,t+2 as well and, proceeding by

induction, conclude that cdg
π,t > αβ

α+κ2 for any t > T . An immediate consequence is

that lim
t→∞ cdg

π,t > αβ
α+κ2 , which is a contradiction with the result stated in first part

of the Proposition, namely lim
t→∞ cdg

π,t = αβ
α+κ2 . Hence, we have shown that there is

no t < ∞ such that cdg
π,t ≥ αβ

α+κ2 .

Proof of Proposition 5. Recall that, as shown in Proposition 3, we have lim
t→∞ cdg

π,t =
αβ

α+κ2 ; since 0 < αβ
α+κ2 < 1, for any C with αβ

α+κ2 < C < 1, there exists a T such

that, for any t ≥ T we will have 0 < cdg
π,t < C; moreover, using the ALM for πt,
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the law of motion of inflation expectations after T can be rewritten as59:

at+1 = at + (t + 1)−1(cdg
π,t − 1)at < at + (t + 1)−1(C − 1)at

where the RHS of the inequality converges to zero, as shown in Evans and Honkapo-
hja (2000). It is also easy to show that, ∀t ≥ T we have at+1 ≥ 0; thus, invoking
the Policemen Theorem, we conclude that lim

t→∞ at = 0, i.e. inflation expectations
converge to their RE value.

Finally, we prove Proposition 7. First of all, we will briefly describe some
results of stochastic approximation60 that we will exploit in the proof.

Let’s consider a stochastic recursive algorithm of the form:

θt = θt−1 + γtQ (t, θt−1, Xt) (2.57)

where Xt is a state vector with an invariant limiting distribution, and γt is a
sequence of gains; the stochastic approximation literature shows how, provided
certain technical conditions are met, the asymptotic behavior of the stochastic
difference equation (2.57) can be analyzed using the associated deterministic ODE:

dθ

dτ
= h (θ(τ)) (2.58)

where:
h (θ) ≡ lim

t→∞EQ (t, θ, Xt)

E represents the expectations taken over the invariant limiting distribution of Xt,
for any fixed θ. In particular, it can be shown that the set of limiting points of
(2.57) is given by the stable resting points of the ODE (2.58).

Proof of Proposition 7. Note that our equation (2.50) is a special case of (2.57),
where the technical conditions are easily shown to be satisfied; moreover, it is also
easy to see that:

h (a) = lim
t→∞(cdg

π,t − 1)a =
(

αβ

α + κ2
− 1

)
a

which has a unique possible resting point at a∗ = 0. Since αβ
α+κ2 < 1, we have that

a∗ is globally stable, which proves the statement.

59Without loss of generality, we are assuming that aT > 0; if the opposite were true, a
similar argument applies.

60Ljung (1977), Benveniste and P. (1990) provide a recent survey.
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2.7.3 Comparison with EH Rule

Proof of Propositions 4 and 6. First of all, note that:

δdg
π,t ≷ δEH

π ⇐⇒ σ
β − cdg

π,t

κ
≷ σ

κβ

α + κ2

where the second inequality can be rewritten as:

β

κ
− κβ

α + κ2
≷

cdg
π,t

κ

Rearranging the terms, we get:

δdg
π,t ≷ δEH

π ⇐⇒ αβ

α + κ2
≷ cdg

π,t

Since we have shown in Proposition 3 that t < ∞ implies cdg
π,t < αβ

α+κ2 , we conclude

that δdg
πt > δEH

π . Using a similar argument, it is easy to show that:

δdg
ut ≷ δEH

u ⇐⇒ α

α + κ2
≷ ddg

π,t

which implies, since

dcg
π =

α

κ2 + α + αβ2γ2(β − ccg
π ) + βγ (1− γ) (αβ − (κ2 + α) ccg

π )
<

α

α + κ2
,

that δdg
ut > δEH

u whenever t < ∞. Finally, note that Proposition 3 also showed that
lim
t→∞ cdg

π,t = αβ
α+κ2 , which trivially yields lim

t→∞ δdg
π,t = δEH

π and lim
t→∞ δdg

ut = δEH
u .

2.7.4 Derivations of Consumption Equivalents

In this section we follow derivations of Adam and Billi (2006).
Woodford (2003) chapter 6 shows that the second order approximation of the

representative agents discounted utility flow is given by

U = −Ȳ UcL
P , (2.59)

where Ȳ denotes the steady state level of output associated with zero inflation
in the absence of disturbances, Uc is the marginal utility of consumption at Ȳ and

LP =
1
2

σ + ω

α

∞∑

i=1

βi(π2
t+i + x2

t+i) ,
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where (σ) is the households Arrow-Pratt Measure of relative risk aversion and
ω is the elasticity of a firm’s real marginal cost with respect to its own output, LP

denotes L generated under a policy rule P.
Assuming a permanent reduction in consumption from Ȳ by p ≥ 0 percent, a

second order approximation of the utility loss is

1
1− β

(
−UcȲ

p

100
+

Ucc

2

(
Ȳ

p

100

)2
)

=
−UcȲ

1− β

(
p

100
+

UccȲ

2Uc

(
Ȳ

p

100

)2
)

=

−UcȲ

1− β

(
p

100
+

σ

2

(
Ȳ

p

100

)2
)

,

where Ucc is the second derivative of utility of utility with respect to consumption
evaluated at Ȳ . Equating this utility loss to (2.59), the welfare loss generated
under policy rule P gives

p

100
+

σ

2

(
Ȳ

p

100

)2
− (1− β)(LP ) = 0 .

The percentage loss in steady state consumption equivalent to the decrease in
utility generated by following rule P is

p = 100σ

(
−1 +

√
1 +

2(1− β)(LP )
σ

)
.

Since x and π are expressed in percentage points we have to rescale the losses
and use

p = 100σ

(
−1 +

√
1 +

2(1− β)(LP )σ
1002

)
. (2.60)
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2.8 Figures
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Figure 2.1: Interest rate rule coefficient on inflation expectations under de-
creasing gain learning.
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Figure 2.2: Optimal versus myopic interest rate rule: coefficient of the cost
push shock
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Figure 2.3: Values of α and κ for which δdg
π is increasing in the first 4 periods.

From the 4th period on δdg
π is always decreasing. (β = 0.99)
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Figure 2.4: Feedback parameter in the ALM for inflation as a function of γ.
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Figure 2.5: Impulse response of inflation for an initial cost-push shock u = 1.
Solid line: optimal policy under learning and private agents following learning
with γ = 0.9. Dashed line: optimal discretionary policy under RE with
private agents have rational expectations. Initial conditions: a0 = 0, π0 = 0,
x0 = 0.
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decreasing gain learning
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