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Foreword

Building on the seminal paper of Marcet and Sargent (1989), in the last fif-
teen years adaptive learning emerged as a widely used alternative to rational
expectations in modelling the formation of agents beliefs. This paradigm
assumes that agents behave as econometricians: they have in mind a model
of the economy, and estimate its coefficients using observed data. Most of
this literature is mainly concerned about the asymptotic properties of the
learning algorithms, and in particular if -and under which conditions- a ra-
tional expectations equilibrium in a given model can be achieved as a limit
point of an adaptive scheme. This property has been often invoked also as
an equilibrium selection device: if a rational expectations equilibrium is such
that a small departure from it makes the system diverge forever, then it may
not be an economically relevant equilibrium. Much less effort has been de-
voted to investigate the implications of the introduction of learning along the
transition to the limit of the adaptive algorithm. In particular, it may have
relevant consequences both from a positive point of view, helping to explain
stylized facts, and from a normative point of view, possibly changing, with
respect to the rational expectations framework, the advices that a benevolent
planner should follow. My thesis applies the tools of the adaptive learning
literature to otherwise standard monetary models with monopolistic compe-
tition, focusing on some consequences that this assumption on agents beliefs
may have also along the transition to the limit of the adaptive algorithm.
In the first chapter I take a positive point of view and investigate to what
extent adaptive learning can help a simple flexible prices model to match
certain empirical features, which are difficult to replicate in the rational ex-
pectations, staggered price Calvo model, which is by now the workhorse in
most of the monetary literature. I found that when the source of stickiness in
firms’ pricing behavior is given by backward-looking expectations, the model
generates inflation and output dynamics that are broadly consistent with
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several stylized facts. As a side issue, I also highlight the importance of en-
dogenizing the free parameters that the use of adaptive algorithms introduce
into the setup, linking them to some optimal behavior of the agents. In the
rest of the thesis I take a normative approach, and reassess some monetary
policy issues when the rational expectations hypothesis is relaxed. In the
second chapter, I study the optimal monetary policy problem for a fully ra-
tional central bank, when the private sector forms its beliefs according to an
adaptive learning algorithm. I show that this assumption on the expectations
formation is not just an embellishment of the model, but it has potentially
relevant policy implication for the monetary authority. In the third chapter
I assume that a fraction of agents has rational expectations, and the rest are
learners, and investigate the consequences of this framework for the design
of monetary policy: in particular, I show that, when the central bank follows
simple interest rate rules, the possibility of the resulting equilibrium being
indeterminate or explosive is potentially affected by the presence in the econ-
omy of a fraction of agents endowed with backward-looking expectations.

Chapter 1

Adaptive Learning and Inflation Dynamics in

a Flexible Price Model

In most of the recent macroeconomics literature, the sticky reaction of prices
in response to changes in aggregate conditions has been modelled following
the highly influential contribution of Calvo (1983). However, this approach
has difficulties in accounting for some well-established stylized facts, like the
sluggish and delayed response of inflation to demand shocks, and the positive
correlation between real output and the rate of change of inflation. In this
paper, we will investigate the possibility of a simple flexible prices and mo-
nopolistic competition model to match this features, when the expectations
of the firms are formed following the adaptive learning literature. The main
result is that, with reasonable parameters values, this setup can considerably
improve the performance of the Calvo model, generating inflation and out-
put dynamics that are broadly consistent with the two stylized facts above
mentioned; moreover, also the inflation autocorrelation is not at odds with
what is empirically observed. As a side issue, I also studied the relationship
between the gain parameter in the updating scheme of the beliefs and infla-
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tion autocorrelation to show how, keeping this parameter free to assume any
value, we could make the model match almost any empirical pattern, hence
stressing the importance of endogenizing this coefficient, linking it to some
optimal behavior of the agents.

Chapter 2

Optimal Monetary Policy when Agents are Learn-

ing

joint with Krisztina Molnár

Most studies of optimal monetary policy under learning rely on optimal-
ity conditions derived for the case when agents have rational expectations.
In this paper, we derive optimal monetary policy in an economy where the
Central Bank knows, and makes active use of, the learning algorithm agents
follow in forming their expectations. In this setup, monetary policy can
influence future expectations through its effect on learning dynamics, intro-
ducing an additional trade-off between inflation and output gap stabilization.
Specifically, the optimal interest rate rule reacts more aggressively to out of
equilibrium inflation expectations and noisy cost-push shocks than would be
optimal under rational expectations: the Central Bank exploits its ability
to “drive” future inflation expectations closer to equilibrium. This optimal
policy qualitatively resembles optimal policy when the Central Bank can
commit and agents have rational expectations. Monetary policy should be
more aggressive in containing inflation expectations when private agents pay
more attention to recent data. In particular, when beliefs are updated ac-
cording to recursive least squares, the optimal policy is time-varying: after a
structural break the Central Bank should be more aggressive and relax the
degree of aggressiveness in subsequent periods. The policy recommendation
is robust: under our policy the welfare loss if the private sector actually has
rational expectations is much smaller than if the Central Bank mistakenly
assumes rational expectations whereas in fact agents are learning.
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Chapter 3

Monetary Policy with Heterogenous Expecta-

tions

When agents have rational expectations, monetary policy literature has em-
phasized the importance of the Taylor principle, namely a reaction of the
Central Bank to inflation sufficiently aggressive. We assume heterogeneous
expectations, in the sense that a fraction of agents has rational expectations,
and the rest has backward-looking expectations, updated according to the
adaptive learning literature. We address determinacy issues related to the
use of different policy rules, with the interest rate responding to current, past
or (expected) future values of inflation and output gap. We show that the
Taylor principle retains its validity as a criterion to assess the desirability of
a monetary policy rule, in the sense that it is a necessary condition for deter-
minacy. However, the complete characterization of the determinacy region
shows differences related to the timing of the endogenous variables in the
Taylor rule: when the interest rate reacts to current values of inflation and
output gap, the determinacy region is the same under rational and heteroge-
neous expectations; when it responds to past realizations (forecasts of future
values) of the same variables, the determinacy region is smaller (larger) under
heterogeneous expectations than under rational expectations. Finally, when
the equilibrium is determinate, the learners’ beliefs settle down to a station-
ary distribution around the rational expectation values of the endogenous
variables. The policy implication is that the Central Bank should not pursue
a passive monetary policy, but the computation of the maximum aggressive-
ness consistent with a determinate equilibrium requires a deep understanding
of how the private sector forms its expectations.

vii



Chapter 1

Adaptive Learning and
Inflation Dynamics in a
Flexible Price Model

1.1 Introduction

In most of the recent macroeconomics literature, the sticky reaction of prices
in response to changes in aggregate conditions has been modelled following
the highly influential contribution of Calvo (1983). In particular, it is as-
sumed that, in each period, firms face a constant probability to reset prices
optimally. Due to its appealing analytical tractability, this approach has be-
come the workhorse of most of monetary policy literature (see for example
Clarida et al. (1999)).

However, this model has difficulties in explaining some well-established
stylized facts: in particular, two robust features of data are a sluggish and
delayed response of inflation to demand shocks (e.g., see Christiano et al.
(2005)), and a positive correlation between real output and the rate of change
of inflation (the so-called acceleration phenomenon, see Mankiw and Reis
(2002)). Both of these patterns are not replicated by the Calvo-type stag-
gered price settings; the main theoretical reason is the fact that, despite
of the stickiness of price level, inflation can respond rapidly to exogenous
shocks.

In this chapter, we propose a different source of intrinsic stickiness in
firms’ pricing behavior: in particular, we assume that firms do not have an
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exact knowledge of the “true” economic model, but form their expectations
according to their most recent estimates of the law of motion of the unknown
aggregate variables. This approach is typical of the adaptive learning liter-
ature, which has received an increasing attention in recent years (see Evans
and Honkapohja (2001) for an extensive monograph).

Up to now, most effort in this literature has been devoted to the issue
of stability under learning, namely under which conditions a rational expec-
tations equilibrium is a limiting point of the learning process; only recently
there have been attempts to evaluate quantitatively the effect of introducing
adaptive learning into a macro or finance model, and to test the ability of this
framework to explain empirical facts1. This may be due to the caveat that
learning can introduce too many degrees of freedom in the model, allowing
the researcher to match any pattern of data just playing with the learning
algorithm.

The aim of this chapter is to build a simple flexible price model of monop-
olistic competition, augmented by the adaptive learning formation of agents’
expectations, and to investigate (via numerical simulations) whether this is
able to outperform the staggered price model in replicating the above men-
tioned features of data. In doing so, we will try to use a learning scheme
with a basis in a payoff-maximizing choice of the agents, in order to make
less severe the potential criticism toward ad hoc learning procedures. To as-
sess the goodness of fit of the model, we will use some techniques to evaluate
calibrated dynamic general equilibrium stochastic models presented in the
survey of Canova and Ortega (2000).

It is worth noting that the approach we will develop in this chapter is
conceptually linked to the one of Mankiw and Reis (2002), who assume that
firms are free to reset prices in each period, but that information diffuses
slowly among them; in their model, in each period firms face a constant
probability to update their information set.

The rest of the chapter is organized as follows. In Section 1.2 we present
some stylized facts, emphasizing that they can be hardly reconciled with the
Calvo model. In Section 1.3 we present the model, and discuss some issues
related to the additional degrees of freedom introduced by the presence of
learning. Section 1.4 shows the results of the simulations. In Section 1.5 we

1See Timmermann (1993) and Timmermann (1996) for applications to the stock mar-
ket, Marcet and Nicolini (2003) for a model that aims to explain hyperinflations in South
american countries, and Sargent (1999) for and explanation of the change in the U.S.
inflation pattern.
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check that our findings are robust to changes in the variable tracked by the
firms, and Section 1.6 concludes.

1.2 Stylized Facts and Calvo Model

In recent work on monetary policy issues, the standard tool to model the
firms’ pricing behavior has been the so-called Calvo model: in each period,
firms have a constant probability to reset their price optimally, and they do
so taking into account that such a price will last for an unknown number of
periods. Since this probability is independent of the last time a specific firm
has reset its price, this approach leads to an analytically tractable framework
which constitutes one of the building blocks of what Clarida et al. (1999)
call the New Keynesian Science of Monetary Policy.

Besides its theoretical appeal, this approach has done well in replicat-
ing certain empirical patterns (like, for example, the high autocorrelation
of inflation); nevertheless, it has shown many difficulties in explaining some
well-established stylized facts that are also common wisdom of policymakers.
In particular, we will concentrate on two features of the Calvo model that
are at odds with empirical evidence:

• many empirical investigations (and conventional wisdom of central bankers)
show that nominal shocks have a sluggish and delayed effect on in-
flation, and that the impulse response of inflation is hump-shaped2.
Instead, the Calvo model is characterized by a monotonic decreasing
impulse response function3;

• another widely documented empirical fact is a positive relationship
between real output and the growth rate of inflation. This pattern,
that Mankiw and Reis (2002) call acceleration phenomenon, has been
shown through the use of scatterplots by many economists4, and has
been confirmed by Mankiw and Reis (2002) calculating the correlation
between real output and the growth rate of inflation for U.S. data.
Instead, the Calvo model predicts a slightly negative value for this
statistics.

2See Christiano et al. (1998) and (2005).
3For more details, see the Appendix.
4See, e.g. Abel and Bernanke (1998) and Blanchard (2000).
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Both of these shortcomings are originated by the fact that in the base-
line version of the Calvo model inflation is a purely forward looking-variable,
without any intrinsic source of inertia; to overcome this problem, there have
been many attempts to improve the empirical fit of the New Keynesian frame-
work through the introduction of some source of inertia in the Phillips curve5.

Some alternative avenues to reconcile monetary theory with data have
been tried. In particular, some recent papers have abandoned the approach
of assuming that firms face some kind of constraint on their possibility of
resetting each period their prices; instead, they assume that prices are fully
flexible, but that the information set of the firms is somehow constrained.

In this spirit, Mankiw and Reis (2002) introduced the so-called “sticky
information Phillips curve”: in their model, the information is supposed to
spread slowly across the economy, so that each firm faces every period a con-
stant probability to update its information set. Since it is free to reset prices
every period, the firm would set prices such that its expected profit, given
the latest update of the information set, is maximized. In Mankiw and Reis
(2002), the authors show that this alternative assumption can outperform
the Calvo model in a simple business cycle framework6.

Another example of this new strand of literature is the model of Woodford
(2001) where, following the pioneering idea of Phelps (1970) and the highly
influential paper of Lucas (1972), the firms are assumed not to be able to ob-
serve correctly the level of the aggregate variables, and to take their decisions
on the basis of their subjective expectations. The main difference with the
Lucas’ model is that the information constraint is not simply a one-period
delay in the aggregate variables’ observability, but, following Sims (2003), “a
limited capacity of the private decision-makers to pay attention to all of the
information in their environment”. In this way, the agents’ decision process
is converted into a signal-extraction problem: in fact, letting qt be the nom-
inal income, each firm i can observe in period t only the private signal zt(i)
of the form:

zt(i) = qt + vt(i)

where vt(i) is an idiosyncratic noise term. Woodford uses this model to
study the impulse response functions of inflation and output, and finds that

5For example, Rotemberg and Woodford (1997) have introduced a decision delay for
some price setters, and Christiano et al. (2005) have added various other source of nominal
rigidity together with price stickiness, like adjustment costs and wage stickiness.

6For an application of the sticky information Phillips curve to optimal monetary issues,
see Ball et al. (2005).
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it can replicate data patterns better than the Calvo approach, at least for a
reasonable region of the parameters’ space.

One of the most common ways to model the economic behavior in a world
characterized by constraints on the information sets and bounded rationality
is the adaptive learning7. This approach typically deals with agents that does
not know the “correct” model of the world, but use data to estimate it like an
econometrician would do. Following this line of reasoning, the most natural
way to model how the individuals do their estimations is to assume that they
have a mental model of the law of motion of the relevant variables in the
economy (the “perceived law of motion”, or PLM), and that they estimate
its parameters via OLS8. Given these estimates, the endogenous variables
will follow what is called the “actual law of motion” (ALM). Calling φt the
N -dimensional vector of parameters estimates, Rt the matrix of its second
moments, zt the regressors and pt the endogenous variables, it can be shown
that, with the appropriate initial conditions, the updating algorithm:

φt = φt−1 + t−1R−1
t−1zt−1(p

′
t − z′t−1φt−1) (1.1)

Rt = Rt−1 + t−1(zt−1z
′
t−1 −Rt−1)

delivers the same sequence of estimates {φt}∞t=0 as the standard OLS tech-
niques applied period by period; for this reason, it is called recursive least
squares algorithm (RLS). Given these estimates, the ALM (in case of a linear
model) is:

pt = T
′
(φt−1)zt−1 + εt

where the function T : RN → RN is the mapping from the estimated coeffi-
cients to the actual coefficients determined by the estimates, and εt is a white
noise. The appealing feature of this formulation is that it can be studied with
the tools of stochastic approximation9, with the result that for large classes
of models the asymptotic dynamics are governed by the stability properties
of a deterministic ordinary differential equation; in particular we have that a
rational expectations equilibrium is (locally) stable under adaptive learning

7For extensive monographs, see Sargent (1993) and Evans and Honkapohja (2001).
8Note that the PLM may or may not be of the same functional form of the rational

expectations solution of the model.
9For an extensive monograph on stochastic approximation, see Benveniste et al. (1990).
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if it is a (locally) stable rest point of the ordinary differential equation1011:

dφ

dτ
= T (φ)− φ

Since a rational expectation equilibrium is a rest point of the T -mapping, RLS
learning has often been invoked to argue that assuming rational expectations
is not a too restrictive hypothesis (at least in the limit), and a lot of effort
has been devoted to study the learnability of equilibriums in widely used
economic models.

There are also other adaptive algorithms employed in the literature; one
of the most used alternatives is to substitute in (1.1) the factor t−1 with a
constant gain (or tracking parameter) 0 < γ < 1. Since in this case the
estimates always react to any new shock (also asymptotically), the system
never converges to a fixed value, but under some technical conditions it can
settle down as a normal distribution, whose support shrinks to zero as γ
approaches zero12.

There have been some effort in trying to reconcile inflation data with
monetary models applying the adaptive learning techniques. In Orphanides
and Williams (2004b), the authors assume an ad hoc model with a Phillips
curve which includes a lag of inflation as an explanatory variable, and a
demand relation that expresses output gap as a function of the real interest
rate deviation from its equilibrium value, and study the design of the optimal
policy in a setting of adaptive learning through a constant gain algorithm.

More closely related to this work is the paper of Williams (2003), who
introduce adaptive learning (both in the RLS and the constant gain versions)
in a standard New Keynesian framework with monopolistic competition and
staggered prices à la Calvo. He analyzes to what extent the introduction of
adaptive learning matters for business cycle statistics; he found that, quan-
titatively, this change is of second-order importance. However, in his model
he still assumes that the agents optimize taking into account the Calvo con-
straint on the pricing resetting possibility.

Moreover, Sargent (1999) shows how a mispecification by the policymak-
ers of the “true” structural relations of the economy, coupled with constant

10In the adaptive learning terminology, an equilibrium which is a stable solution of the
differential equation reported below is defined an E-stable equilibrium.

11For the derivation of this result, see Marcet and Sargent (1989) and Evans and
Honkapohja (2001), Chapter 6 and 8.

12For more on constant gain, see below Section 3.1.
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gain learning, may lead to a system that oscillates most of the time around
the high inflation equilibrium (the time-consistent one, according to Barro
and Gordon (1983)), occationally moving towards the low inflation time-
inconsistent (or Ramsey) equilibrium, when a suitable sequence of shocks
occurs.

We aim to do a first step towards the construction of a bridge between the
adaptive learning literature and the other limited information approaches, in
assuming no price stickiness, and instead taking the imperfect information
as the main source of inertia in the model. We will therefore introduce
adaptive learning in a monopolistic competitive, flexible prices setting, with
an exogenous process for nominal output, and compare its performance to
that of an analogous model where firms behave according to Calvo model.

1.3 The Model

The production side is characterized by a continuum of firms that produce
differentiated goods in a competitive monopolistic framework. The demand
side is characterized by a representative consumer with rational expectations,
who solves the following problem:

maxE0

∞∑
t=0

βtU(Ct, Nt) (1.2)

s.t.

∫ 1

o

PitCitdi+Mt = Mt−1 +WtNt +

∫ 1

0

Πitdi− Tt

where Cit and Pit denotes the demand of good i and its price, respectively,
Mt is the money stock hold at the end of period t, Tt are transfers from
government, Nt is labor supply, Wt is nominal wage, Πit is the profit from
the sell of good i13, and Ct represents the CES aggregate of consumption:

Ct =

[∫ 1

0

C
θ−1

θ
it di

] θ
θ−1

As shown in Dixit and Stigliz (1977), maximizing the CES index of consump-
tion subject to a certain level of overall expenditure leads to the demand

13We are assuming that firms are owned by the representative consumer.
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schedule for good i:

Cit =

(
Pit
Pt

)−θ
Ct

where:

Pt =

[∫ 1

0

P 1−θ
it di

] 1
1−θ

Moreover, consumer faces a cash-in-advance constraint14:

PtCt ≤Mt

which is assumed to be binding. Doing so, we can close the model with the
simplest possible specification for the demand side of the economy, i.e. the
quantity theory. This is different from the specification used as a standard
framework of monetary policy evaluation, which derives an IS relationship
from a money-in-utility setup; otherwise, it is useful to simplify the analysis
in this early stage, and such a simplifying assumption has been already used
in many of the papers that propose alternatives to the Calvo model15. The
extention of this approach to a more standard specification of the demand
side of the economy is left as future work.

Assuming separability of the U(·) function between its arguments, it is
easily shown that:

Wt

Pt
= −UN(Nt)

UC(Ct)
≡ G(Ct, Nt)

We assume that each firm produce a differenciated good according to the
strictly increasing and concave production function:

Yit = AtF (Nit)

where At denotes a technology indicator, and Nit is firm i labor demand, and
Yit good i output. In equilibrium, market clearing implies:

Yit = Cit, Yt = Ct

14Note that, in writing this constraint, we are implicitly assuming that at time t the
money market closes before the opening of commodity markets.

15It is common to Mankiw and Reis (2002), Ball et al. (2005), and Woodford (2001); in
a learning framework, a similar assumption has been used by Adam (2005).
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so that the demand schedule can be rewritten as:

Yit =

(
Pit
Pt

)−θ
Yt (1.3)

To model firms’ behavior, we make the same distinction between the
optimization and the inference problem underlined in Townsend (1983). In
particular we assume:

• firms can freely reset prices in each period, but they can observe aggre-
gate variables only with a one period delay; so, in each period firm i’s
optimization problem is given by the static expected profit maximiza-
tion:

max
Pit

Ei
t [PitYit −WtNit] (1.4)

where Ei
txt is firm i’s (in general non rational) expectations of xt, formed

using time t information set. This maximization is done subject to the de-
mand schedule (1.3). As is shown in Woodford (2003), maximizing (1.4)
subject to (1.3) yields an optimality condition that can be expressed, once
loglinearized around the full-information equilibrium, as:

pit = Ei
tpt + ξEi

tyt

where xt ≡ logXt, yt = log(Yt/Y
N
t ) (here Y N

t represents potential output),
and ξ is a function of the elasticities of the marginal cost function with
respect to its arguments. Taking logs of (1.3), and assuming that Ei

t is a
linear operator, we can write:

Ei
tyt = yit + θ

(
pit − Ei

tpt
)

where yit = log(Yit/Y
N
t ); using the above equation to substitute out Ei

tyt,
we get:

pit = Ei
tpt +

ξ

1− θξ
yit

Integrating over i, and assuming homogeneous expectations, we obtain:

pt = E∗
t pt +

ξ

1− θξ
yt (1.5)
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Equation (1.5) can be rewritten as:

pt =
1− ξθ

1 + ξ(1− θ)
E∗
t pt +

ξ

1 + ξ(1− θ)
qt (1.6)

where qt = yt + pt. To close the model, we need a process for nominal
output16, and a rule for expectations formation; the first one is given by an
AR(1) process for the growth rate of nominal output17:

∆qt = (1− ρ)g + ρ∆qt−1 + ut (1.7)

where ut is an i.i.d. shock. Substituting out qt from (1.6) using (1.7)18, we
get:

pt =
1− ξθ

1 + ξ(1− θ)
E∗
t pt +

ξ(1− ρ)

1 + ξ(1− θ)
g +

ξ(1 + ρ)

1 + ξ(1− θ)
qt−1 (1.8)

− ξρ

1 + ξ(1− θ)
qt−2 +

ξ

1 + ξ(1− θ)
ut

It can be easily shown that the minimum state variable (MSV) solution of
the model given by (1.7)-(1.8) under rational expectations is19:

pt = (1− ρ)g + (1 + ρ)qt−1 − ρqt−2 +
ξ

1 + ξ(1− θ)
ut

• The inference problem is modelled following the literature of adaptive
learning20. In particular, we assume that agents do not know the exact
MSV solution of the model given by (1.7)-(1.8) but, instead, form their
expectations according to the perceived law of motion (PLM):

pt = at−1 + bt−1qt−1 + ct−1qt−2 + ηt (1.9)

16Because of the cash-in-advance constraint, money and nominal output are equivalent.
17See for analogous processes Woodford (2001), or Mankiw and Reis (2002). More-

over, Christiano et al. (1998) argue that an AR(1) process for growth rate of money is
empirically plausible.

18Since agents do not observe contemporaneous nominal output, we write the law of
motion for price level in terms of observable variables.

19I.e., E∗t = Et.
20See Evans and Honkapohja (2001).
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where the vector φt−1 ≡ (at−1, bt−1, ct−1)
′ denotes the estimates of model

parameters computed by agents using information available on aggregate
variables at time t21; these estimates are updated according to the recursive
algorithm:

φt = φt−1 + γtR
−1
t−1zt−1(pt − φ′t−1zt−1) (1.10)

Rt = Rt−1 + γt(zt−1z
′
t−1 −Rt−1)

where zt = (1, qt, qt−1)
′ and {γt} is a sequence of nonincreasing values called

“gain parameters”. The precise path followed by this sequence will be de-
scribed in the next subsection. Equation (1.9) implies that:

E∗
t pt = at−1 + bt−1qt−1 + ct−1qt−2 (1.11)

which can be plugged into (1.8) to obtain the actual law of motion (ALM):

pt =

(
1− ξθ

1 + ξ(1− θ)
at−1 +

ξ(1− ρ)

1 + ξ(1− θ)
g

)
+

(
1− ξθ

1 + ξ(1− θ)
bt−1+(1.12)

ξ(1 + ρ)

1 + ξ(1− θ)

)
qt−1 +

(
1− ξθ

1 + ξ(1− θ)
ct−1 −

ξρ

1 + ξ(1− θ)

)
qt−2

+
ξ

1 + ξ(1− θ)
ut

Given (1.12), the T -mapping is:

T (a) =
1− ξθ

1 + ξ(1− θ)
a+

ξ(1− ρ)

1 + ξ(1− θ)
g (1.13)

T (b) =
1− ξθ

1 + ξ(1− θ)
b+

ξ(1 + ρ)

1 + ξ(1− θ)

T (c) =
1− ξθ

1 + ξ(1− θ)
c− ξρ

1 + ξ(1− θ)

which can be easily shown to imply that the MSV solution under rational
expectations is E-stable.

Equation (1.12), together with the process for nominal output (1.7) and
the stochastic recursive algorithm (1.10), constitutes our model.

21I.e., the sequence {pi, qi, qi−1}t−1
i=1 .
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1.3.1 The Gain Parameter

At this stage of the analysis, it is necessary to be explicit about the form
taken by the γt’s in (1.10). In the learning literature there are two main
strategies used to calibrate them, corresponding to two different hypothesis
of how the agents conceive the world:

• decreasing gain: assume that it is a decreasing sequence with the prop-

erties that
∞∑
t=0

γt = ∞ and
∞∑
t=0

γ2
t < ∞, as we would obtain setting

γt = t−1. In this case, equation (1.10) becomes a particular case of the
RLS algorithm (1.1), assigning the same weight to every observation.
This last remark means that a decreasing gain is a reasonable assump-
tion if agents think that the model’s parameters are constant over time,
so that each observation has the same information content;

• constant gain: assume that γt = γ, where γ is a small positive constant.
In this case, our algorithm does not deliver the same estimates as the
OLS anymore, since past data are downweighted. The assumption
behind this behavior is that agents believe structural changes to occur,
even if they are able neither to model them nor to predict in which
period they will take place. As a result, they will update their estimates
given their belief that more recent data embed more information on the
structure of the economy. As mentioned in Section 2, this specification
of the gain sequence prevents the parameters’ estimates to converge to
any particular value, since they will be significantly influenced by any
new shock.

In what follows, we will employ the constant gain specification; before
proceeding, however, there are two logical problems that we have to take
into account.

First of all, in the standard adaptive learning setup, the agents take
their decisions treating their expectations as if they correspond to the “true”
model. If this kind of behavior can be justified in a decreasing gain case22,
it seems to contrast with the basic assumption that motivates constant gain,

22Actually, the fact that the ALM has time varying parameters, can arise mispecification
issues in a context of decreasing gain learning, as noted in Bray and Savin (1986); for
a time-varying parameters estimation approach in an adaptive learning approach, see
McGough (2003).
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i.e. that agents are convinced that economic structure shifts over time. In
Tetlow and von zur Muehlen (2004) this issue is investigated in the context of
the Sargent (1999) model; they allow policy makers to make their decisions
taking into account model uncertainty in a Bayesian way23. Their conclusion
is that this method does not yields results quantitatively different from the
Sargent’s more standard approach.

Another relevant question that we now should address is how to calibrate
γ. In particular, this choice is potentially subject to a high degree of ar-
bitrariness, that could allow the model to replicate any empirical pattern
we want: in fact, as pointed out in Marcet and Nicolini (2003), the pres-
ence of too many degrees of freedom in designing the learning algorithms has
always made this class of models hardly falsifiable, hence preventing many
researchers from using them to match data. The introduction in the setup of
an additional exogenous parameter, that could in principle be used to make
the model behave as we want, makes this criticism particularly sound, and
the “wilderness of irrationality” particularly dangerous.

A possible way out of both these pitfalls is to endogenize the value of γ,
making it the outcome of some optimal choice of the agents. The way we
have decided to do it is using standard game-theoretic concepts. We assume
that firms are interested in minimizing the mean square error (MSE) of their
forecasted inflation; in this case, we can define a misspecified equilibrium as
a value γ∗ of the gain parameter which minimizes the MSE of an individual,
when all the rest of the economy update its expectations using the same γ∗.
More formally, we look for a fixed point of the function:

γ∗ = arg min
γ

1

T

T∑
t=1

[pt(γ̂)− E∗
t pt(γ)]

2 ≡ f(γ̂) (1.14)

where T is the time horizon taken into account (in our case, 100 periods).
This is an equilibrium in the sense that no agent has an incentive to deviate
from this strategy, and is misspecified in the sense that agents behave as
if they perceive the economy as a time varying parameters system, when
the “true” model is characterized by constant structural parameters24. This
approach is closely related to the concept of equilibrium in learning rules of

23In other words, taking into account the standard errors of the estimates.
24Note that, as we point out below, it is not necessary that each agent believes the

economy to be time varying, but only that in his opinion all the other agents have this
belief.
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Evans and Honkapohja (1993), and to the internal consistency requirement
introduced in Marcet and Nicolini (2003).

Note that, in this way, the tracking parameter is not freely chosen any-
more, but becomes a function of the other structural parameters of the econ-
omy, solving the second problem above mentioned; moreover, it implies that
even if an individual agent does not think that the model is really time-
varying, he will play according to the misspecified equilibrium if he thinks
that the other agents will do the same25. Hence, this kind of approach al-
lows us to deal also with the first problem that we discussed above26. If we
model the choice of the gain parameter in this way, standard issues of how
the agents could end up coordinating on a certain equilibrium (even with
bounded rationality) arise, but they are far beyond the scope of this chapter.

As an additional remark, observe that in Orphanides and Williams (2004b),
where a constant gain algorithm is implemented, γ is left as a free parameter,
and the behavior of the model for different values of it is studied.

Moreover, a technical remark on the asymptotic behavior of parameters’
estimates under constant gain learning is to be done: as above mentioned,
under certain conditions, they will converge in distribution to a normal with
an E-stable equilibrium as a mean; unfortunately, in this model one of the
sufficient conditions required to obtain this result is not satisfied27. However,
very long simulations of the model (10000 periods) show that the parame-
ters’ estimates really converge to a neighborhood of the rational expectations
values after a few periods (less than the fifty that we usually discard at the
beginning of each simulation), around which they keep oscillating.

It is interesting to note that the problem that is behind the construction
of the best-reply function f(•) (i.e., the minimization of the MSE with re-
spect to the constant gain used by an individual that cannot influence the
non-stationary process that is trying to track) is similar to the framework
analyzed in Chapter 4, Part I of Benveniste et al. (1990). In that con-
text, the authors study how to derive analytically the value of the tracking
parameter that minimizes the expected value of the square of the distance
between the sequence of the actual values of the time-varying coefficients of
the process to track, and the estimated values of these coefficients. First

25This is a typical coordination problem.
26Notice that some kind of myopic behavior from the agents’ side must be assumed

since, even if playing γ∗ minimize the MSE in finite time, it makes convergence to the
rational expectations equilibrium impossible.

27In particular, the law of motion of the state variables [qt−1, qt−2] contains a unit root.
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of all, they decompose the objective function into the sum of the distance
between the mean dynamics of the two sequences, and the variance of their
distance. Moreover, they show that the optimal choice of γ is the result of a
compromise between tracking and accuracy : in other words, higher (lower)
values of the gain parameter reduce (increase) the distance between the mean
dynamics of the two sequences, thus reducing (increasing) the magnitude of
the MSE, and increase (reduce) the variance of the distance between the two
sequences, hence increasing (reducing) the MSE.

These results cannot be directly applied to our model for the same reason
we outlined above, when we talked about the asymptotic behavior of para-
meters’ estimates. However, these tools provide useful insights on how our
model would behave: in fact, we observe that an increase (decrease) of γ̂, on
one hand, does not influence the mean dynamics of the time-varying coeffi-
cients of pt (which are given by the rational expectations values, as mentioned
above), while on the other hand it increases (decreases) the variance of these
coefficients. Loosely applying the concepts sketched above, the best-reply
of the individual firm would be to reduce γ∗; hence, we can expect f(•) to
be a decreasing function. And this is exactly what we obtained, when we
computed a numerical approximation of f(•)28.

1.4 Numerical Results

1.4.1 Calibration Strategy

We need to calibrate five parameters (ξ, θ, ρ, g), plus the initial conditions φ0

for the RLS algorithm; the chosen values are summarized in Table 1.1.

Table 1.1: Baseline calibration
ξ θ ρ g a0 b0 c0
0.15 6 0.7 0 (1− ρ)g 0.05 −0.05

The parameter γ is a function of these other seven coefficients, as clarified
in the previous section.

The value for ξ is suggested in Woodford (2003) as an empirically plausible
value for U.S. economy, and is used also in Woodford (2001); it also lies in the
range of values examined in Mankiw and Reis (2002). θ is chosen according to

28See next section.
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the standard New Keynesian literature, while ρ is chosen to match empirical
facts (see below). The choice to set the trend g to zero is justified by the aim
to concentrate on the model’s behavior at business cycle frequency.

We now need to be more explicit on the strategy adopted to set the value
of the tracking parameter. First of all, note that neither a formal proof of
the existence and the uniqueness of a fixed point of the expression (1.14)29,
nor an analytical expression of γ∗ as a function of the parameters’ vector
(ξ, θ, ρ, g, a0, b0, c0)

′ have been obtained; hence, we had to search for a numer-
ical approximation of this equilibrium30. We used the following procedure:
first of all, we set up a grid of 19 values (0.05, 0.1, 0.15,...,0.95), then we draw
1000 realizations of the nominal output shock {ui}150

i=1; then, we computed
the corresponding sequences {pi}150

i=1 using a fixed value of γ̂. Then, we throw
away the first fifty values of each sequence, to dampen the influence of initial
conditions, compute the empirical MSE for each {pi} and for each possible
γ, average across all realization, and look for the γ for which the resulting
value is minimum. This procedure has been repeated for all the 19 possible
values of γ̂, and we got that the only fixed point is at γ∗ = 0.55.

Note that this value is much higher than those used in Orphanides and
Williams (2004b)31; in Figure 1.1 we have plotted the evolution over time of
the parameters’ estimates in one of the 10000 stochastic simulations that we
performed to analyze the behavior of our model (see subsections below). As
we can observe in Figure 1.1, we have a very rapid convergence to a neighbor-
hood of the rational expectations equilibrium, followed by wide oscillations
around it. This last feature is due to the very high value of the tracking
parameter, which makes the estimates of the parameters very sensible to any
new shock.

To conclude, the expectations has been initialized at values that have
the same sign as the rational expectations parameters, but that deliver the
desired hump-shaped impulse response for inflation; for values closer than
those to the rational expectations, would yield a peak response only two
periods after the nominal shock.

29As is instead derived, in a simpler context, in Evans and Ramey (2006).
30However, since the values obtained numerically for γ∗ are a monotonic decreasing

function of γ̂, as explained in the previous section, this makes us conjecture that the
“true” equilibrium exists and is unique.

31The largest value of the tracking parameter that they adopt is 0.1.
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1.4.2 Persistence of Monetary Shocks

A well-known shortcoming of the Calvo staggered price framework is that,
even if prices responds sluggishly to monetary shocks, inflation does not:
the highest effect of the shock is experienced in the first period, and then it
monotonically decays.

In a framework similar to the one developed in the previous section, this
drawback of the Calvo model can be easily seen starting from the well known
New Keynesian Phillips Curve32:

πt = kyt + βEtπt+1 (1.15)

where β denotes the subjective discount rate, Et[·] is the rational expectations
operator, and k is a function of the parameters ξ, β and α, where the latter
indicates the probability that a given firm does not review its price in a given
period; the exact form of this function of parameters is not important for our
purposes: the only relevant point is that it assumes positive values, as shown
in Woodford (2001).With a nominal demand process like (1.7), it can be
shown that inflation can be written in terms of an MA(∞) process, whose
coefficients are a monotonic decreasing sequence, independently of the values
of the parameters33; this result has an immediate consequence in terms of the
impulse response function: as claimed before, the peak effect of a monetary
shock is reached on impact, and the inflation returns monotonically towards
the pre-shock value.

This is at odds with what is empirically observed, and with what is con-
sidered conventional wisdom; in fact, there is an extensive literature34 that
stresses the fact that the maximum effect of a monetary shock is reached
between 1 and 2 years after the impact of the shock.

As shown in Figure 1.2, with a value of ρ of 0.7, our model is able to
generate some persistence of the nominal shock; in particular, the peak effect
of the shock is reached after three periods. Even if it is not as much as in
data, nevertheless it is a better performance than the Calvo model. The
reason is straightforward: since agents do not know the exact model, when
they observe a discrepancy between the actual and the forecasted inflation,
they are not aware how much of it is due to the presence of a shock, and
how much to an imprecise estimate of the parameters; hence, they react with

32For the derivation, see for e.g. Woodford (2001).
33For the proof, see the Appendix.
34See, e.g. Adam (2005) and Christiano et al. (2005).
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more caution than what would be optimal for a Calvo-agent, and smooth
their reaction over more than one period. Formally, we can observe from
equation (1.6):

∆pt ≡ πt =
1− ξθ

1 + ξ(1− θ)

(
E∗
t pt − E∗

t−1pt−1

)
+

ξ

1 + ξ(1− θ)
∆qt

which can be rewritten as:

πt =
1− ξθ

1 + ξ(1− θ)

(
E∗
t πt − E∗

t−1πt−1

)
+

1− ξθ

1 + ξ(1− θ)
πt−1 +

ξ

1 + ξ(1− θ)
∆qt

(1.16)
This equation makes explicit the fact that adaptive learning has intro-

duced a backward-looking element in the inflation dynamics; this element
would disappear only in the case in which the agent comes from a period of
no forecasting error (i.e., in the case of πt−1 = E∗

t−1πt−1).
Even if the model can generate more realistic dynamics, it still has to be

improved to match data better. Moreover the impulse response of Figure 1.2
is clearly dependent on the initial conditions; so we could consider different
initial conditions, like extracting them from an assumed prior distribution, or
introducing a “training period”35, i.e. a period during which the economy is
run in the rational expectations equilibrium, and after which the agents use
OLS to estimate the coefficients; this estimates would constitute the initial
conditions for the impulse response exercise. Unfortunately the model has
problems in replicating an enough hump-shaped impulse response function
for inflation with initial conditions too close to the rational expectations
equilibrium, since the backward-looking element above mentioned is too weak
to ensure enough delay in the inflation response to the shock. However, at
least two periods of delay in the peak effect of the shock can be obtained for
a wide range of initial conditions.

We are also interested in checking whether the inflation inertia generated
by adaptive learning (and captured by equation (1.16)) is enough to match
empirical data on first order autocorrelation of inflation; in particular, we
consider the value of 0.76 reported in Mankiw and Reis (2002), who compute
first order autocorrelation of the CPI using Hodrick-Prescott filtered U.S.
data. Since the model cannot be solved analytically, the population value of
any statistic is not available. Hence, the only way is to perform stochastic
simulations, and then to compare the value of the statistic for this simulated

35See Williams (2003).
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sample with the empirical one. In doing so, a standard problem arises: since
we want to assess how “close” is our model to reality, we need a metric.
Our choice, following the approach outlined in Canova and Ortega (2000),
is to perform 10000 stochastic simulations of the model, reporting not only
the mean of the simulated statistic of interest (i.e., the first order autocor-
relation of inflation), as is usually done, but to use information on all the
simulated distribution. In other words, we check whether the actual value
lies between the 5TH and the 95TH percentiles36. It turns out (see Figure
1.3) that 0.76 almost coincides with the 95TH percentile of the simulated dis-
tribution, denoting the capacity of adaptive learning to generate a realistic
degree of inflation inertia, even without any other source of rigidity.

This result is more remarkable, if we take into account the extremely
high value of γ we are using: in fact, we would expect that a learning scheme
so sensitive to every forecast error would induce a more erratic behavior
of inflation expectations, hence dampening the possibility of the model of
replicating the empirical value of inflation autocorrelation. More properly,
we can think about increasing the value of γ as a trade-off: in fact, a value
too small of the tracking parameter would nullify the role of learning37, while
a value too large would make the expectations “overreact”, introducing noise
in the inflation process. To confirm this conjecture, we performed stochastic
simulations of the model for different values of the constant gain, and for each
of them we computed the median and the 95TH percentile, plotting the results
in Figure 1.4. A quick inspection of the figure shows that the highest values
of both are reached when γ = 0.05; for every level of the tracking larger than
this, the first order autocorrelation generated by the model starts declining
monotonically. In Figure 1.5 we have plotted the evolution over time of the
parameters’ estimates of one of the simulations conducted with γ = 0.05; it
is evident just by comparing Figure 1.5 and Figure 1.1 how the smaller value
of the constant gain let the estimates vary in smoother waves than those
observed for γ = 0.55, when we had a very “nervous” behavior. Moreover,
the estimates of the coefficients on qt−1 and qt−2 tend to change in a negligible
way and to keep close to the rational expectations equilibrium value, when
agents have had enough time to learn.

The pattern displayed in Figure 1.4 could help explaining why Orphanides

36In a sense, we are taking our model as a null hypothesis; for a survey of these techniques
to evaluate calibrated dynamic stochastic general equilibrium models, see Canova and
Ortega (2000).

37In the limit, for γ = 0, we would have φt = φt−1.
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and Williams (2004b) observe that inflation persistence is increasing in the
value of γ: actually, they assumed magnitudes of the gain parameter so
small38 that their simulations moved along the increasing side of Figure 1.4.
Actually, we see that, setting exogenously the constant gain39 would have
allowed us to obtain a better performance in replicating the empirical pat-
terns.

The fact that our approach was able to generate a first order autocorre-
lation of inflation broadly consistent with data, even with an endogenously
determined value for the constant gain, strengthen the result.

1.4.3 Acceleration Phenomenon

The hump-shaped impulse response function of inflation is not the only em-
pirical pattern which is difficult to reconcile with the Calvo model; another
example is the widely documented positive and significant correlation be-
tween the level of real output and the growth rate of inflation40. This same
pattern is reported also in Mankiw and Reis (2002), who computed this cor-
relation for Hodrick-Prescott filtered U.S. data for CPI inflation, obtaining a
value of 0.38. On the other hand, the Calvo model does not exhibit this pat-
tern; the main reason is the interaction between a monotonically decreasing
impulse response of inflation, and a positive response of real output (at least
in the short run) to the nominal shock. These two features generate (after a
positive shock) the contemporaneous presence for many periods of decreasing
inflation and high output, thus explaining the negative correlation. To check
formally this intuition, Mankiw and Reis (2002) calculated the population
cross-correlation corr(yt, πt+2− πt−2) for a Calvo-type staggered price model
for a wide range of values of the key parameters, always obtaining negative
numbers.

To check whether our model can instead match this feature of the data, we
followed a procedure analogous to that outlined in the previous subsection,
performing 10000 stochastic simulations, and then computing the simulated
distribution of corr(yt, πt+2−πt−2) (which is plotted in Figure 1.6); the mean
of this distribution is 0.4, very “close” to the actual value of 0.38. To evaluate
how “close” it is, we need a metric; we choose to check whether 0.38 lies

38The largest value they assume is 0.1.
39In particular, giving it a value of 0.05.
40See, e.g. Abel and Bernanke (1998) and Blanchard (2000), who use a scatterplot to
document this phenomenon.
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between the 5TH and the 95TH percentiles of the simulated distribution.
These percentiles are equal to 0.24 and 0.54, which implies that our model is
broadly consistent with this empirical pattern. Moreover, we obtained that
no one of the draws has delivered a negative value of corr(yt, πt+2 − πt−2)

41,
denoting a stark difference with respect to the Calvo model.

1.5 An Alternative Specification

The previous results have been obtained assuming that firms form their ex-
pectations on current prices regressing p on nominal output lagged of one and
two periods (plus a constant). It seems reasonable, since individual profits
depend on the difference between individual and aggregate price level, so that
we can expect agents to estimate the law of motion of the relevant aggregate
variable (i.e., the price level), and then forecasting its current value.

As a robustness check, we will try also a different approach. In particular,
we want to check whether the previous results42 have been driven by the
fact that the price level is a nonstationary variable; hence, we will assume
now that firms estimate the law of motion of the inflation rate (which is
stationary), and that they forecast its current level using the most recent
estimates of this law of motion; then, given the value of pt−1 (which is known
at time t) and the identity:

E∗
t πt ≡ E∗

t pt − pt−1

they obtain E∗
t pt, which is used in their decision process. To derive the PLM,

note that from equation (1.8) we get:

πt =
1− ξθ

1 + ξ(1− θ)
E∗
t pt +

ξ(1− ρ)

1 + ξ(1− θ)
g +

ξ(1 + ρ)

1 + ξ(1− θ)
qt−1

− ξρ

1 + ξ(1− θ)
qt−2 +

ξ

1 + ξ(1− θ)
ut − pt−1

=
1− ξθ

1 + ξ(1− θ)
E∗
t πt +

ξ(1− ρ)

1 + ξ(1− θ)
g +

ξ(1 + ρ)

1 + ξ(1− θ)
qt−1

− ξρ

1 + ξ(1− θ)
qt−2 −

ξ

1 + ξ(1− θ)
pt−1 +

ξ

1 + ξ(1− θ)
ut

41Note that, on the contrary of what is observed for inflation persistence, the acceleration
phenomenon is a robust feature of the model, since it holds for a wide range of values of
ρ.

42In particular, the very high value of the tracking parameter.
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which implies a PLM of the form:

πt = ãt−1 + b̃t−1qt−1 + c̃t−1qt−2 + d̃t−1pt−1 + ηt

and the ALM:

πt =

(
1− ξθ

1 + ξ(1− θ)
ãt−1 +

ξ(1− ρ)

1 + ξ(1− θ)
g

)
+

(
1− ξθ

1 + ξ(1− θ)
b̃t−1+(1.17)

ξ(1 + ρ)

1 + ξ(1− θ)

)
qt−1 +

(
1− ξθ

1 + ξ(1− θ)
c̃t−1 −

ξρ

1 + ξ(1− θ)

)
qt−2(

1− ξθ

1 + ξ(1− θ)
d̃t−1 −

ξ

1 + ξ(1− θ)

)
pt−1 +

ξ

1 + ξ(1− θ)
ut

It is easy to see that this model has a unique rational expectations equi-
librium given by:

πt = (1− ρ)g + (1 + ρ)qt−1 − ρqt−2 − pt−1 +
ξ

1 + ξ(1− θ)
ut

which is equivalent to say:

pt = (1− ρ)g + (1 + ρ)qt−1 − ρqt−2 +
ξ

1 + ξ(1− θ)
ut

In other words, the two forecasting strategy are equivalent under rational
expectations.

To see what changes under constant gain learning, we repeated the same
exercises described in the previous section. First of all, we looked for the
equilibrium value of the tracking parameter in this new context, obtaining
γ∗ = 0.15. A couple of remarks are now necessary:

• this value is considerably lower than the 0.55 obtained in the previous
section. The reasons why it is so are still an open question. A possible
explanation would be that now agents are trying to forecast a stationary
variable;

• the best reply function is monotonically decreasing also under this al-
ternative specification, making us conjecture that this is a common
feature of this kind of models.
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Even with these different assumptions on how firms forecast the aggre-
gate level of prices, the adaptive learning approach does well in accounting
for inflation dynamics43. In fact, setting the initial condition of d̃ in a small
enough neighborhood of the rational expectations value44, the shape of the
impulse response function is analogous to the one obtained previously. More-
over, the 5TH and the 95TH percentiles of the simulated distribution of the
first order autocorrelation of inflation are 0.57 and 0.79, respectively, so that
they include the actual value of 0.76.

Also the correlation between the level of real output and the growth rate of
inflation implied by the model is consistent with the one empirically observed:
in fact, the 5TH and the 95TH percentiles of the simulated distribution are
0.18 and 0.46, respectively, so that 0.38 is included between them, but zero
is not.

1.6 Conclusions and Future Research

The starting point of this chapter is the difficulty of the Calvo model to
replicate some well-established empirical facts. In particular, this model
per se is not able to generate an hump-shaped impulse response function for
inflation, nor a positive correlation between real output and inflation growth.
To reconcile this approach with empirics, additional sources of inertia have
been introduced by the New Keynesian literature.

However, a new line of research has been recently developed, whose key
points are flexible prices coupled with some form of boundedly rational be-
havior; this chapter shares this modelling strategy, and aims to investigate
the properties of a simple flexible prices, monopolistic competitive setup
augmented by non-rational expectations, modelled following the adaptive
learning approach.

The main result is that, with reasonable parameters values, this setup can
considerably improve the performance of the Calvo model, generating infla-
tion and output dynamics that are broadly consistent with the two stylized
facts above mentioned; moreover, also the inflation autocorrelation is not at
odds with what is empirically observed.

43In all the simulations, we used the same set of realizations of the shock that we used
in the baseline case, in order to make the comparison consistent.

44In particular, for d̃ ∈ (−0.6,−1.5).
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As a side issue, we studied the relationship between the constant gain and
inflation autocorrelation to show how, keeping this parameter free to assume
any value, we could make the model match almost any empirical pattern,
hence stressing the importance of endogenizing this coefficient, linking it to
some optimal behavior of the agents.

As future research, we could possibly extend the model modifying the
demand side under two respects: first of all, we could make the consumer’s
problem fully dynamic, dispensing with the cash-in-advance constraint and
introducing a riskless bond in the budget constraint, in order to obtain an
Euler equation as an optimization condition, from which we could derive an
IS schedule; on the other hand, we could introduce adaptive learning also on
the consumer’s side, in a way consistent with what we assume for the firms.

Another interesting issue would be to remove the exogeneity assumption
for money, and to suppose instead that the monetary authority pursues an
optimal policy; Orphanides and Williams (2004b) went in this direction, but
considered only the optimal rule in the restricted class of linear rules, while,
as they pointed out, the “true” optimal rule is a nonlinear function of the
states of the system (including the time-t estimates). Moreover, they used
an exogenously determined constant gain, when it would be preferable to
implement an endogenous one.

1.7 Appendix

In this section we will prove the statements made in the text about the
impulse response function of the Calvo price setting model.

First of all, we will solve the model formed by the New Keynesian Phillips
Curve (equation (1.15)) and the nominal demand process that we have used
throughout this chapter (equation (1.7)), finding the MA(∞) representation
of the inflation process. Then, we will prove that the coefficients of this
MA(∞) representation (and, therefore, the impulse response function) are a
monotonic decreasing sequence.

To begin with, recall the New Keynesian Phillips Curve:

πt = kyt + Etπt+1

where we have set β = 1 for notational simplicity; since β is usually calibrated
at 0.99, it does not seem a restrictive assumption; k is a function of structural
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parameters which assumes positive values. For any arbitrary sequence{qt}∞t=0

for the nominal output,the only stationary solution is45:

pt = λpt−1 + (1− λ)2

∞∑
j=0

λjqt+j (1.18)

We now assume that qt follows the process given by (1.7), which can be
represented in an MA(∞) form as46:

∆qt =
∞∑
j=0

ρjut−j

so that:

qt =
∞∑
k=0

∞∑
j=0

ρjut−j−k

To derive the process of inflation, we follow Mankiw and Reis (2002) and
guess that it is stationary, so that can be represented in the MA(∞) form:

πt =
∞∑
j=0

ϕjut−j

and the price level is the non-stationary process:

pt =
∞∑
k=0

∞∑
j=0

ϕjut−j−k

where the {ϕj} are unknown. Plugging this guess into equation (1.18), and
taking into account the particular process considered for nominal output, we
get:

∞∑
k=0

∞∑
j=0

ϕjut−j−k = λ
∞∑
k=0

∞∑
j=0

ϕjut−1−j−k+(1−λ)2

∞∑
j=0

λj
∞∑
i=0

∞∑
k=max{j−i,0}

ρiut+j−i−k

45See the appendix of Mankiw and Reis (2002).
46We omit the constant term in the process for nominal output, since we calibrate it to

zero throughout the chapter.
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Matching coefficients, we get:

ϕ0 = (1− λ)2

∞∑
j=0

λj
j∑
i=0

ρi =
1− λ

1− ρλ
(1.19)

for the coefficient on ut, and for an arbitrary m > 1:

ϕm = (λ−1)
m−1∑
j=0

ϕj+
[
(1− λ)2/(1− ρ)

] [
1/(1− λ)− ρm+1/(1− ρλ)

]
(1.20)

Now that the sequence of MA coefficients {ϕj} as been characterized, it
is possible to show that it is monotonic decreasing. First of all, we will show
that ϕ1 − ϕ0 < 0; in fact, using (1.20):

ϕ1 − ϕ0 = (λ− 2)ϕ0 +
(1− λ)2

(1− ρ)(1− λ)
− (1− λ)2ρ2

(1− ρ)(1− ρλ)

= (λ− 2)
1− λ

1− ρλ
+

(1− λ)2

(1− ρ)(1− λ)
− (1− λ)2ρ2

(1− ρ)(1− ρλ)

Simple algebra shows that:

ϕ1 − ϕ0 =
(1− λ) [−(1− ρ)2 + λ− 2λρ+ λρ2]

(1− ρ)(1− ρλ)

=
(1− λ) [−(1− ρ)2 + λ(1− ρ)2]

(1− ρ)(1− ρλ)

Since λ < 1, λ(1− ρ)2 − (1− ρ)2 is less than zero, and so is ϕ1 − ϕ0.
Now, observe that for any m ≥ 2, from (1.20) we obtain:

ϕm − ϕm−1 = (λ− 1)

(
m−1∑
j=0

ϕj −
m−2∑
j=0

ϕj

)
+

(1− λ)2 (ρm − ρm+1)

(1− ρ)(1− ρλ)

or, equivalently:

ϕm = λϕm−1 +
(1− λ)2ρm

(1− ρλ)
(1.21)

Now we will show directly that also ϕ2−ϕ1 is less than zero; in fact, from
(1.21) we get:

ϕ2 − ϕ1 = (λ− 1)ϕ1+
(1− λ)2ρ2

(1− ρλ)
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Using equation (1.20) for m = 2 to substitute out ϕ1, and equation (1.19)
to substitute out for ϕ0, we can write:

ϕ2 − ϕ1 =
(
ρ2 + 1− λ

) 1− λ

1− ρλ
+

(1− λ)2

(1− ρλ) (1− ρ)
ρ2 − 1− λ

1− ρ

Simple algebra shows that this expression is negative if and only if ρ2 (2− λ− ρ)+
2ρλ−λ−ρ ≡ H(λ, ρ) is negative; but this function is always negative valued,
provided that ρ < 1, which is a stationarity condition always assumed. In
fact, we have that:

∂

∂λ
H(λ, ρ) = −ρ2 − 1 + 2ρ

which is negative whenever ρ 6= 147; so, it is sufficient to check that H(·) is
negative valued when λ has the minimum admittable value (i.e., zero). Note
that:

H(0, ρ) = ρ2 (2− ρ)− ρ ≷ 0 ⇔ ρ (2− ρ)− 1 ≷ 0

But the last expression is −ρ2 − 1 + 2ρ, which we have already see that
is negative; thus, we conclude that ϕ2 − ϕ1 is negative whenever ρ < 1.

To prove that also the rest of the sequence is decreasing, we proceed by
induction: we assume that ϕm−1−ϕm−2 < 0 for an arbitrary m ≥ 3; we want
to show that ϕm − ϕm−1 < 0 as well. Using equation (1.20) we get:

ϕm − ϕm−1 = λ(ϕm−1 − ϕm−2) +
(1− λ)2

(1− ρλ)

(
ρm − ρm−1

)
Since ϕm−1 − ϕm−2 < 0 for the induction hypothesis, and ρm − ρm−1 < 0

because 0 ≤ ρ < 1, we conclude that ϕm − ϕm−1 < 0.

47In fact, the discriminant of this quadratic expression is zero, so that it has only one
root at ρ = 1.

27



1.8 Figures
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Figure 1.1: Simulated parameters’ estimates for γ=0.55.
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Figure 2: Impulse response function for inflation

Figure 1.2: Impulse response function for inflation
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Figure 1.3: Simulated distribution of first order autocorrelation of inflation
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Figure 1.5: Simulated parameters’ estimates for γ=0.05.
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Figure 1.6: Simulated distribution of correlation between real output and
inflation growth
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Chapter 2

Optimal Monetary Policy when
Agents are Learning

2.1 Introduction

Monetary policy makers can affect private-sector expectations through
their actions and statements, but the need to think about such
things significantly complicates the policymakers’ task. (Bernanke
(2004))

How should optimal monetary policy be designed? A particularly influ-
ential framework used in studying this question is the dynamic stochastic
general equilibrium economy where money has real effects due to nominal
rigidities, sometimes referred to as the “New Keynesian” model. Many pa-
pers have explored optimal monetary policy in this framework, under the
assumption that both agents and policymakers have rational expectations.1

More recently, the literature has started to explore the robustness of these
optimal policies when some of the assumptions of the standard New Keyne-
sian setup are relaxed.2 An important aspect of this robustness analysis is
to model more carefully the process through which the private sector forms
expectations. This issue is particularly relevant given that there is a large

1See Clarida et al. (1999) for a survey on this literature, and Woodford (2003) for an
extensive treatise on how to conduct monetary policy via interest rate rules.

2Wieland (2000a) and Wieland (2000b) look at the effects of parameter uncertainty;
Aoki (2006) explores monetary policy with data uncertainty, Levin et al. (2003) and
Hansen and Sargent (2001) study model uncertainty.
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body of evidence which suggests that agents’ forecasts are not consistent with
the paradigm of rational expectations.3 In response, a growing theoretical
literature explores the robustness of the optimal policies, which were derived
under rational expectations, when instead agents update their expectations
according to a learning algorithm.4 A typical result in this literature is that
interest rate rules that are optimal under rational expectations may lead to
instability under learning.

Earlier research uses either ad hoc policy rules, as for example Orphanides
and Williams (2005a), or optimality conditions derived under rational expec-
tations, like Evans and Honkapohja (2003a), Evans and Honkapohja (2003b)
and Evans and Honkapohja (2006). In this chapter, we take a normative
approach, and address the issue of how in a New Keynesian setup, a rational
Central Bank should optimally conduct monetary policy, if the private sector
forms expectations following an adaptive learning model.

We are able to analytically derive optimal monetary policy in our the-
oretical model. One important feature of the optimal policy is that the
Central Bank should act more aggressively towards inflation that what a ra-
tional expectations model suggests. Earlier work in the literature that uses
ad hoc rules has shown similar results computationally (see Ferrero (2003),
Orphanides and Williams (2004b), and Orphanides and Williams (2005a));
here we establish that these results extend to the case when the central bank
uses the optimal policy, and provide a formal proof. The intuition for the
result is that aggressively driving inflation close to equilibrium helps private
agents to learn the true equilibrium value of inflation at a faster pace. As
is well-known, even with rational expectations the central bank cares about
price stability due to nominal rigidities. When, in addition expectations
of nominal variables are sluggish because of learning, our results show that
monetary policy should be even more aggressive towards inflation. Being
aggressive towards inflation generates a welfare cost in terms of an increased
volatility of the output gap. We show analytically that the optimal policy in-

3See Roberts (1997), Forsells and Kenny (2002) and Adam and Padula (2003).
4For an early contribution to adaptive learning applied to macroeconomics, see Cagan

(1956), Phelps (1967), for early applications to the Muth market model see Fourgeaud et
al. (1986) and Bray and Savin (1986). The modern literature on this topic was initiated
by Marcet and Sargent (1989), who were the first to apply stochastic approximation tech-
niques to study the convergence of learning algorithm. Important earlier contributions
to the literature on convergence to the rational equilibrium are Bray (1982) and Evans
(1985).
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volves a more volatile output gap then the rational expectations benchmark;
this holds true even if the Central Bank puts a high weight on output gap
stabilization.

A second important feature of the optimal policy is that it is time con-
sistent, and qualitatively resembles the commitment solution under rational
expectations in the sense that the optimal policy is unwilling to accommodate
noisy shocks. As a consequence the impulse response of a cost push shock is
also similar to the commitment case. The contemporaneous impact of a cost
push shock on inflation is small (compared to the case of discretionary policy
rational expectations), and inflation reverts to the equilibrium in a sluggish
manner. In both instances this pattern comes from the Central Bank’s abil-
ity to directly manipulate private expectations, even if the channels used are
quite different. Under commitment the policy maker uses a credible promise
about the future to obtain an immediate decline in inflation expectations and
thus in inflation; the inertia in the optimal solution is due to the commit-
ments carried over from previous periods. In contrast, under learning the
pattern results from the sluggishness of expectations: the Central Bank in-
fluences private sector’s belief through its past actions, and the inertia comes
from the past realizations of the endogenous variables. We observe a smaller
initial response of inflation relative to the rational expectations discretionary
case because optimal policy reacts less to the cost push-shock to ease private
agents learning. In this sense, we can say that the ability to manipulate fu-
ture private sector expectations through the learning algorithm plays a role
similar to a commitment device under rational expectations, hence easing
the short-run trade-off between inflation and output gap.

An analogous investigation, when the model is characterized by a Phillips
Curve à la Lucas and private agents follow a constant gain algorithm is per-
formed in Sargent (1999), Chapter 5. A parallel paper of Gaspar et al. (2005)
provides a numerical solution to optimal monetary policy under constant gain
learning in the New Keynesian framework with indexation to lagged inflation
among firms. They show that an optimally behaving Central Bank aims to
decrease the limiting variance of the private sector’s inflationary expectations
and show that optimal policy qualitatively resembles the commitment solu-
tion under rational expectations. In their framework private agents estimate
the persistence of inflation. Another important result they find is that, when
the degree of estimated persistence is high the central bank should be more
aggressive.

The ability to derive analytical solutions allows us to contribute to this
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literature in several respects. We derive that optimal policy should be more
aggressive when private agents heavily discount past data and place more
weight on current data. Under constant gain learning this implies that the in-
centive to decrease volatility of inflationary expectations is more pronounced
when the gain parameter is higher. The intuition behind this is: under con-
stant gain learning expectations remain volatile even in the limit, and this
limiting variance is higher with a high gain parameter; this volatility in ex-
pectations causes welfare losses even in the limit, so it is optimal to conduct
monetary policy against it. We also show that optimal policy at the same
time allows for higher volatility in output gap expectations. The reason for
this is that optimal policy allows for higher variability of the output gap,
which translates to higher volatility of output gap expectations. Of course,
allowing a higher variance in output gap also causes welfare losses. We ana-
lytically determine the extent to which output gap losses should be tolerated.

Our next contribution is to derive optimal policy under decreasing gain
learning. We show that our main results are robust to the changing the gain
parameter: (1) optimal policy is aggressive on inflation even at the cost of
higher output gap volatility, (2) optimal policy under learning qualitatively
resembles optimal policy under rational expectations when the Central Bank
is able to commit. A new result is that when beliefs are updated according
to a decreasing gain algorithm, the optimal policy is time-varying, reflecting
the fact that the incentives for the Central Bank to manipulate agents’ be-
liefs evolve over time. After a structural break, for example the appointment
of a new central bank governor, the Central Bank should be more aggres-
sive in containing inflationary expectations and decrease the extent of this
aggressiveness in subsequent periods. The intuition for this result is that in
the first periods after the appointment of a new governor, agents pay more
attention to monetary policy actions (place more weight on current data),
therefore an optimally behaving central bank should make active use of this
by aggressively driving private sector expectations close to the equilibrium
inflation.

Finally, we show that when the Central Bank is uncertain about the na-
ture of expectation formation (within a set relevant for the US economy) the
optimal learning rules derived in this chapter are more robust than the time
consistent optimal rule derived under rational expectations. Optimal learn-
ing rules provide smaller expected welfare losses even if the Central Bank
assigns only a very small probability to learning and a very high probabil-
ity to rational expectations in how it believes the private sector forms its
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expectations.
The rest of the chapter is organized as follows. in Section 2.2 we briefly

recall the discretionary optimal policy when expectations are rational, and
analyze optimal policy under constant gain learning ; Section 2.3 relaxes
the assumption that expectations follow constant gain learning, and show
that our main results remain valid under decreasing gain learning. Section
2.4 relaxes the assumption that the policy maker can perfectly observe the
fundamental shocks and the beliefs of the agents, and argues that the optimal
policy rule derived in the previous Sections is robust to uncertainty about
the agents’ expectations formation mechanism. Section 2.5 concludes.

2.2 The Baseline Model

We will consider the baseline version of the New Keynesian model, which is by
now the workhorse in monetary economics; in this framework, the economy
is characterized by two structural equations5. The first one is an IS equation:

xt = E∗
t xt+1 − σ−1(rt − E∗

t πt+1 − rrt) + gt (2.1)

where xt, rt and πt denote time t output gap6, short-term nominal interest
rate and inflation, respectively; σ is a parameter of the household’s utility
function, representing risk aversion, gt is an exogenous demand shock and rrt
is the natural real rate of interest, i.e. the real interest rate that would hold in
the absence of any nominal rigidity. Note that the operator E∗

t represents the
(conditional) agents’ expectations, which are not necessarily rational. The
above equation is derived loglinearizing the household’s Euler equation, and
imposing the equilibrium condition that consumption equals output minus
government spending .

The second equation is the so-called New Keynesian Phillips Curve (NKPC):

πt = βE∗
t πt+1 + κxt + ut (2.2)

where β denotes the subjective discount rate, κ is a function of structural
parameters, and ut ∼ N(0, σ2

u) is a white noise cost-push shock7; this relation

5For the details of the derivation of the structural equations of the New Keynesian
model see, among others, Yun (1996), Clarida et al. (1999) and Woodford (2003).

6Namely, the difference between actual and natural output.
7Note that the cost-push shock is usually assumed to be an AR(1); we instead assume

it to be iid to make the problem more easily tractable, see below.
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is obtained under the assumption that the supply side of the economy is
characterized by a continuum of firms that produce differentiated goods in a
monopolistically competitive market, and that prices are staggered à la Calvo
(Calvo (1983))8. The coefficient κ is decreasing in the level of stickiness: the
longer are prices fixed in expectation the smaller is the effect of the output
gap on inflation.

The standard New Keynesian literature imposes the existence of rational
expectations (RE), namely that E∗

t = Et). Under this assumption, the full
commitment solution of the optimal monetary policy turns out to be time
inconsistent, even if the Central Bank (CB) does not have a target for output
gap larger than zero. In other words, even if we rule out the possibility of the
inflation bias discussed in Barro and Gordon (1983) and all the subsequent
literature, there are potential welfare gains associated with the presence of
a credible commitment device for the CB. Hence, the time-consistent dis-
cretionary solution is suboptimal, giving rise to what is sometimes called as
stabilization bias. There is, however, a crucial difference with the traditional
inflation bias problem: the discretion and the commitment solution are not
only different in the coefficients of the equilibrium laws of motion of aggre-
gate variables, but even the functional form of these laws of motion differs
between the two cases; in particular, under discretion inflation and output
gap are linear functions of the cost-push shock only, under commitment an
additional dependence on lagged values of output gap is introduced9.

The loss function of the Central Bank (CB) is given by:

E0

∞∑
t=0

βt
(
π2
t + αx2

t

)
(2.3)

where α is the relative weight put by the CB on the objective of output gap
stabilization10.

8In other words, the probability that firm i in period t can reset the price is constant
over time and across firms.

9See Woodford (2003), Clarida et al. (1999) and McCallum and Nelson (1999).
10As is shown in Rotemberg and Woodford (1997), equation (2.3) can be seen as a

quadratic approximation to the expected household’s utility function; in this case, α is a
function of structural parameters.
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2.2.1 Benchmark: discretionary solution under ratio-
nal expectations and under learning

Let’s assume that the CB takes the private sector beliefs as given. In Kreps
(1998) terminology, this is equivalent to suppose that the monetary authority
is an anticipated utility maximizer.

The policy problem is to choose a time path for the nominal interest rate
rt

11 to engineer a law of motion of the target variables πt and xt such that
the social welfare loss (2.3) is minimized, subject to the structural equations
(2.1) and (2.2), and given the private sectors expectations.

min
{πt,xt,rt}∞t=0

E0

∞∑
t=0

βt
(
π2
t + αx2

t

)
(2.4)

s.t. (2.1), (2.2)
E∗
t πt+1, E

∗
t xt+1 given for ∀ t

Because there are no endogenous state variables, problem (2.4) reduces
to a sequence of static optimization problems. As shown in Clarida et al.
(1999), the optimality condition to this problem (at time t) is

κ

α
πt + xt = 0. (2.5)

Combining (2.5) with the structural equations, one can derive the following
law of motion for inflation and output gap:

πEHt =
αβ

α+ κ2
E∗
t πt+1 +

α

α+ κ2
ut (2.6)

xEHt = − κβ

α+ κ2
E∗
t πt+1 −

κ

α+ κ2
ut . (2.7)

and the interest rate rule that implements this allocations:

rt = rrt + δEHπ E∗
t πt+1 + δEHx E∗

t xt+1 + δEHg gt + δEHu ut (2.8)

11We have chosen the nominal interest rate to be the instrument variable for easier
interpretation (as in real life it is usually a primary instrument of central banks). We
could have equally chosen πt or xt.

40



where:
δEHπ = 1 + σ κβ

α+κ2

δEHx = σ
δEHg = σ
δEHu = σ κ

α+κ2 .

Throughout the chapter we denote the coefficients by EH referring to the
paper Evans and Honkapohja (2003a) (EH hereafter), where the authors de-
rive a rule analogous to (2.8). In the terminology introduced in Evans and
Honkapohja (2003a), Evans and Honkapohja (2003b), this is an expectations-
based reaction function; they show that this rule guarantees not only deter-
minacy under RE, but also convergence to the RE equilibrium when expec-
tations E∗

t evolve according to least squares learning.
If the agents have RE (i.e., if E∗

t = Et), Clarida et al. (1999) show that
the solution of (2.4) yields:

πREt =
α

κ2 + α
ut

xREt = − κ

κ2 + α
ut .

Under RE, the assumption that the monetary authority takes private sector
beliefs as given has a precise motivation in terms of lack of credibility12: if the
CB is free to reoptimize every period, agents take it into account ignoring any
promise it makes on the future. As a result, the discretionary RE equilibrium
has the property that the CB has no incentive to change its policy (it is time
consistent).

If private agents follow learning, a fully rational CB could do better than
(2.8). In the next section we show how optimal monetary policy is modified
when the CB optimizes taking into account its effect on private expectations.

2.2.2 Constant Gain Learning

We now assume that private sector’s expectations are formed according to
the adaptive learning literature13; we assume that agents do not know the
exact process followed by the endogenous variables, but recursively estimate
a Perceived Law of Motion (PLM) consistent with the law of motion that the

12In the literature this case is known as optimal policy under discretion.
13For an extensive monograph on this paradigm, see Evans and Honkapohja (2001).
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CB would implement under RE. As explained above, the optimal allocations
of the discretion and the commitment solution under RE have different func-
tional forms, and are therefore associated with different PLMs. For analytical
simplicity, in this chapter we will restrict our attention to the discretionary
case. In particular, we assume that agents believe that inflation and output
gap are continuous invariant functions of the cost-push shock only, πt = π(ut)
and xt = x(ut)

14; this hypothesis, together with the iid nature of the shock,
implies that the conditional and unconditional expectations of inflation and
output gap coincide, and are perceived by the agents as constants. Hence,
it is natural to assume that agents estimate them using their sample means.
Throughout this section we will assume that expectations evolve following
the algorithm15:

E∗
t πt+1 ≡ at = at−1 + γ (πt−1 − at−1) (2.9)

E∗
t xt+1 ≡ bt = bt−1 + γ (xt−1 − bt−1) (2.10)

where γ ∈ (0, 1) is the gain parameter, constant through time.
The use of constant gain algorithms to track structural changes is well

known from the statistics and engineering literature16. Analogously, private
agents would be likely to use constant gain algorithms if they confidently
believe structural changes to occur. This algorithm implies that past data
are geometrically downweighted, in other words agents ‘trust more’ recent
data. This approach is closely related to using a fixed sample length, or
rolling window regressions.

In Section 2.3 we will relax this assumption, and examine how optimal
policy changes when agents follow decreasing gain learning.

To analyze the optimal control problem faced by the CB, we use the
standard Ramsey approach, namely we suppose that the policymakers take
the structure of the economy (equations (2.1) and (2.2)) as given; moreover,
we assume that the CB knows how private agents’ expectations are formed,
and takes into account its ability to influence the evolution of the beliefs.
Hence, the CB problem can be stated as follows:

14In the terminology of Evans and Honkapohja (2001) Chapter 11, the PLM is a noisy
steady state.

15To be precise, in the algorithms (2.9), (2.10) the observations are weighted geometri-
cally, while in the normal sample average they all receive equal weight.

16See for example Benveniste et al. (1990), Part I. Chapters 1. and 4.
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min
{πt,xt,rt,at+1,bt+1}∞t=0

E0

∞∑
t=0

βt
(
π2
t + αx2

t

)
(2.11)

s.t. (2.1), (2.2), (2.9), (2.10)
a0, b0 given

This optimization problem is linear quadratic, the Bellman equation holds,
thus the resulting policy is time consistent 17.

The first order conditions at every t ≥ 0 are:

λ1t = 0 (2.12)

2πt − λ2t + γλ3t = 0 (2.13)

2αxt + κλ2t − λ1t + γλ4t = 0 (2.14)

Et

[
β

σ
λ1t+1 + β2λ2t+1 + β (1− γ)λ3t+1

]
= λ3t (2.15)

Et [βλ1t+1 + β (1− γ)λ4t+1] = λ4t (2.16)

where λit, i = 1, ..., 4 denote the Lagrange multipliers associated to (2.1),
(2.2), (2.9) and (2.10), respectively. The necessary conditions for an optimum
are the first order conditions, the structural equations (2.1)-(2.2) and the laws
of motion of private agents’ beliefs, (2.9)-(2.10). Combining equation (2.12)
and (2.16), we get:

λ4t = β (1− γ)Et [λ4t+1]

which can be solved forward, implying that the only bounded solution is:

λ4t = 0 (2.17)

If we put together equations (2.12)-(2.15) and (2.17), we derive the following
optimality condition:

κ

α
πt + xt = βEt

[
βγxt+1 + (1− γ)

(κ
α
πt+1 + xt+1

)]
(2.18)

17A problem solved at t is said to be time consistent for t + 1 if the continuation from
t+ 1 on of the optimal allocation chosen at t solves in t+ 1; moreover, in period zero it is
time consistent if the problem in period t is time consistent for t+ 1 for all t ≥ 0.
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Inflation-Output Gap Tradeoff

We can solve forward (2.18), obtaining the unique bounded solution:

κ

α
πt + xt = β2γEt

[
∞∑
s=1

[β (1− γ)]s−1 xt+s

]
(2.19)

From this relation we can isolate two trade-offs faced by the CB in designing
the optimal policy. When γ = 0, namely when expectations are constant
and, consequentely, cannot be manipulated by the monetary authority, (2.19)
collapses to:

κ

α
πt + xt = 0 , (2.20)

which is identical to the optimality condition derived in the RE optimal
monetary policy literature when the CB sets the optimal plan taking private
sector’s expectations as given (i.e., in the discretionary case). When a cost-
push shock is present, (2.20) represents a well known intratemporal trade-
off between stabilization of inflation at t and output gap at t: because of
the nonzero term ut in the Phillips Curve (2.2), πt and xt cannot be set
contemporaneously equal to zero in every period. Clarida et al. (1999)
describe (2.20) as implying a ‘lean against the wind’ policy: in other words,
if output gap (inflation) is above target, it is optimal to deflate the economy
(contract demand below capacity).

Under learning (i.e., when γ > 0), it turns out that the CB faces an addi-
tional intertemporal trade-off between optimal behavior at t and stabilization
of output gap at t + 1, generated by its ability to manipulate future values
of a. In fact (2.19) implies that, for a given positive value of xt, the optimal
disinflation is less harsh with respect to the one implied by (2.5), provided
that future output gaps are also expected to be positive. A smaller defla-
tion in turn guarantees that future inflationary expectations will be closer to
the rational expectations equilibrium of inflation, zero. As a result, the CB
renounces to optimally stabilize the economy in period t, in exchange for a
reduction in future inflation expectations that allows an ease in the future
inflation output gap trade-off embedded in the Phillips Curve.

Let us summarize our first result for later reference:

Result 1. Learning introduces an intertemporal trade-off not present under
rational expectations.
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Optimal allocations

We can combine the conditions for an optimum to characterize analytically
the optimal allocations implemented by the CB; the results are summarized
in the following Proposition.

Proposition 1. There exists a unique solution of the control problem (2.11),
and the policy function for inflation associated to it has the form:

πt = ccgπ at + dcgπ ut (2.21)

The coefficient ccgπ can be characterized as follows:

-if γ ∈ (0, 1), we have that 0 < ccgπ <
αβ

α+ κ2
,

-if γ = 0, i.e. if expectations are constant, we have that ccgπ =
αβ

α+ κ2
,

and:

dcgπ =
α

κ2 + α+ αβ2γ2(β − ccgπ ) + βγ (1− γ) (αβ − (κ2 + α) ccgπ )

Proof. See the Appendix.

Following the adaptive learning terminology, we call (2.21) the Actual Law
of Motion (ALM) of inflation.
Under the optimal policy (OP) a positive at increases current inflation, but
less than proportionally, since αβ

α+κ2 < 1. As is shown in the Appendix, ccgπ
depends on all the structural parameters; in particular, its dependence on the
constant gain γ is not necessarily monotonic. In fact, a higher value of γ has
two effects on ccgπ : on one hand, it increases the effect of current inflation on
future expectations, increasing the incentive for the CB to use this influence
(i.e., it would determine a lower ccgπ ); on the other hand, it reduces the impact
of current expectations on future expectations, thus reducing the benefits
from a reduction of the expectations, so that there is an incentive to set a
higher ccgπ . In Figure 2.1 we show a numerical example with the calibration
found in Woodford (1999), i.e. with β = 0.99, σ = 0.157, κ = 0.024 and
α = 0.04; in this case, the first effect dominates, so that ccgπ is a monotonically
decreasing function of γ.

45



Using the structural equation (2.2) we can derive the optimal allocation
of the output gap:

xt = ccgx at + dcgx ut (2.22)

where:

ccgx =
ccgπ − β

κ

dcgx =
dcgπ − 1

κ

ccgπ < αβ
α+κ2 (see Proposition 1) implies ccgx < − κβ

α+κ2 ; if the private sector
expects inflation to be positive, the optimal CB response will imply a negative
output gap, i.e. the policymaker will contract economic activity (using the
interest rate instrument) in order to attain an actual inflation sufficiently
smaller than the expected one. Using (2.21) and (2.22) in (2.1) we can
derive the nominal interest rate:

rt = rrt + δcgπ at + δcgx bt + δcgg gt + δcgu ut (2.23)

where:

δcgπ = 1− σ c
cg
π −β
κ

δcgx = σ
δcgg = σ

δcgu = −σ d
cg
π −1
κ

The interest rate rule (2.23) is an expectations-based reaction function,
which is characterized by a coefficient on inflation expectations that is de-
creasing in ccgπ : an optimal ALM for inflation that requires a more aggressive
undercutting of inflation expectations (a lower ccgπ ) calls for a more aggres-
sive behavior of the CB when it sets the interest rate (a higher coefficient
on inflation expectations in the rule (2.23)). Moreover, the coefficients on bt
and gt are such that their effects on the output gap in the IS curve are fully
neutralized.

Since ccgπ,t < β (see Proposition 1) δcgπ,t is always bigger than 1. In response
to a rise in expected inflation optimal policy should raise the nominal interest
rate sufficiently to increase the real interest rate. An increase in the real
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rate has a negative effect on current output; this reflects the intertemporal
substitution of consumption. Then a contraction in output will decrease
current inflation through the Phillips Curve (2.2), and consequently through
equation (2.9) inflationary expectations in the next period will decrease. This
criterion -also known as the “Taylor principle”- is emphasized in Clarida et
al. (1999) under the discretionary rational expectations solution; since this
holds both under RE and learning it provides a very simple criterion for
evaluating monetary policy18.

Plugging (2.21) into (2.9), we get:

at+1 = at + γ(ccgπ − 1)at + γdcgπ ut

= (1− γ(1− ccgπ )) at + γdcgπ ut

which is a stationary19 AR(1); thus, as is well-known in the literature on
adaptive learning, the contemporaneous presence of random shocks in the
ALM and of constant gain specification of the updating algorithm, prevents
the expectations from converging asymptotically to a precise value: instead,

we have that at ∼ N

(
0,

γ2(dcg
π )

2

1−(1−γ(1−ccg
π ))

2σ2
u

)
.

2.2.3 Comparison with the EH rule

In this section we state results regarding how optimal monetary policy under
constant gain learning differs from rules used earlier in the literature, where
the CB is treated as an anticipated utility maximizer (i.e., it considers ex-
pectations as given in the optimization problem); in particular we refer to
rule (2.8), derived in EH.

It is clear that the coefficients on the output gap expectations and on the
demand shock are the same in rule (2.8) as in rule (2.23), while the other
two coefficients are typically different. Proposition 1 implies δcgπ > δEHπ : the
interest rate response of OP to out-of-equilibrium inflation expectations is
more aggressive than the interest rate response of EH. This is due to the fact
that when the CB takes into account its ability to influence agents’ beliefs, it
optimally chooses to undercut future inflation expectations more than what
it would do otherwise.

18Clarida et al. (2000) estimate that the pre-Volcker era violated this simple criterion.
19In fact, since 0 < ccg

π < 1, it immediately follows that 0 < (1− γ(1− ccg
π )) < 1.
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From Proposition 1 it also follows that δcgu > δEHu : optimal policy reacts
more aggressively also to cost push shocks. After a positive cost push shock
the optimally behaving CB raises the interest rate more aggressively than in
the case of an anticipated utility maximizer CB; this in turn decreases out-
put, which has a negative effect on inflation. Thus conducting an aggressive
interest rate rule in response to the cost push shock, decreases the influence
of the cost push shock on inflation, and this in turn will ease agents learning
about the true equilibrium level of inflation.

An analogous difference emerges when we compare the allocations imple-
mented by the two different interest rate rules; under constant gain learning
optimal allocations are characterized by (2.21) and (2.22), while EH alloca-
tions are given by (2.6) with E∗

t πt+1 = at.
From Proposition 1 we know that the feedback coefficient under optimal

policy ccgπ is smaller than under the EH rule, in order to undercut inflation
expectations more. Also the response to the cost push shock is of lesser
magnitude when (2.23) is used instead of (2.8) (in fact, ccgπ < αβ

κ2+α
implies

that dcgπ < α
κ2+α

), because the CB is less willing to accommodate noisy shocks,
in order to make easier for the private sector to learn what is the long-term
value of the conditional expectations of inflation.

On the other hand, under OP both coefficients in the ALM of xt are higher
in absolute value than under EH, hence allowing a higher feedback from out
of equilibrium expectations and noisy cost push shocks to the output gap.

The difference between (2.8) and (2.23) can be summarized as follows:

Result 2. When the CB takes into account its influence on private agents
learning it is optimal to decrease the effect of out of equilibrium expectations
on inflation (engineering an aggressive interest rate reaction to inflationary
expectations) and increase the effect of out of equilibrium expectations on
the output gap compared to the EH policy; moreover, it accommodates less
the effect of noisy shocks to inflation compared to the EH policy, even if it
translates into a more volatile output gap.

Similarity to the commitment solution

From Result 2 it follows that the impact of a given nonzero cost push shock
drives inflation (output gap) closer to (further from) target when agents are
learning, relative to the discretionary RE case. Interestingly, this behavior
qualitatively resembles the optimal RE equilibrium under commitment within
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a simple class of policy rules derived in Clarida et al. (1999): if the CB can
commit to a policy rule that is a linear function of ut, the solution can be char-
acterized, when compared to the discretionary equilibrium, by inequalities
analogous to the ones summarized in the results stated above. However, the
(constrained) commitment solution differs from the discretionary one only
when the cost-push shock is an AR(1); if u -and consequently, the equilib-
rium processes for inflation and output gap- is iid, the two solutions coincide,
since future (rational) expectations of the agents cannot be manipulated by
the CB. Instead, if expectations are backward-looking, the future beliefs can
be manipulated also when the shock is iid: the current actions of the CB
influence future beliefs through (2.9) and (2.10) even if the shock is iid.

In both instances this behavior results from the CB’s ability to directly
manipulate private expectations, even if the channels used are quite different.
In fact, under commitment the policy maker uses a credible promise on the
future to obtain an immediate decline in inflation expectations and thus in
inflation. Under learning we observe a smaller initial response of inflation
relative to the RE discretionary case because optimal policy reacts less to
the cost push-shock to ease private agents learning. In this sense, we can say
that the ability to manipulate future private sector expectations through the
learning algorithm plays a role similar to a commitment device under RE,
hence easing the short-run trade-off between inflation and output gap.

Another similarity to the commitment solution is the sluggish behavior
of inflation after an initial cost push shock. The source of inertia under RE
commitment and learning is quite different. Under commitment the policy
maker carries commitments made in the past (in other words commits to
behave in a past dependent way). Under learning the pattern results from
the sluggishness of expectations.

As a result of these two similarities, the impulse response function of infla-
tion to a cost push shock will be also similar under OP and RE commitment.
Figure 2.2 displays the impulse response function of inflation to a unit shock
under OP and discretionary RE policy. In the optimal RE discretionary
policy, inflation rises on impact and immediately reverts to the steady state
once the shock dies out. Instead, under learning the policy maker engineers
a smaller initial response of inflation; in subsequent periods inflation grad-
ually converges back to the steady state value. Clarida et al. (1999) and
Gali (2003) show a similar disinflation path for the Ramsey policy : a smaller
initial inflation compared to the discretionary case, in exchange for a more
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persistent deviation from the steady state later20 This behavior of Ramsey
policy leads to welfare gains over discretion due to the convexity of the loss
function; this preference for slower but milder adjustment to shocks is at the
heart of the stabilization bias.

The similarity to the RE commitment solution resembles the analysis car-
ried out in Sargent (1999), Chapter 5, which shows that in the Phelps prob-
lem under adaptive expectations21, the optimal monetary policy drives the
economy close to the Ramsey optimum. Moreover, when the discount factor
β equals 1, optimal policy under learning replicates the Ramsey equilibrium.
In our case, optimal policy under learning cannot replicate the commitment
solution even for β going to 1. This result follows from the particular nature
of the gains from commitment; commitment calls for an ALM with a differ-
ent functional form with respect to the discretionary case22. In the Phelps
problem, on the other hand, the Phillips Curve is such that the discretion
and commitment outcome of inflation has the same functional form, but
different coefficients. However, also in our case an increase in the discount
factor makes the optimal disinflationary path under learning getting closer
to the commitment solution. This can be seen in Table 2.1, where we sum-
marize the behavior of inflation in response to a unit cost push shock when
the model’s parameters are calibrated as in Woodford (1999), apart from β
which takes several values. As β goes to 1 the initial response of inflation is
milder and the path back to the steady state longer.

Welfare Loss Analysis

To have a quantitative feeling of the welfare gains that the use of the optimal
rule (2.23) instead of the EH rule (2.8) implies, we present a numerical welfare
loss analysis.

Since welfare losses in utility terms are hard to interpret we report con-
sumption equivalents: for a given monetary policy rule we calculate the cu-
mulative utility losses resulting from deviations from the steady state allo-
cation and then express what is the equivalent percentage decrease of the

20A difference is that commitment policy under RE engineers a sequence of negative
inflation after the first period, while a positive sequence under learning.

21Phelps (1967) formulated a control problem for a natural rate model with rational
Central Bank and private agents endowed with a mechanical forecasting rule, known to
the Central Bank.

22See Clarida et al. (1999).
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Table 2.1: Paths of inflation for different βs after an initial cost push shock
beta 0.5 0.6 0.7 0.8 0.9 1.0

1 0.99 0.99 0.98 0.98 0.96 0.91
2 0.44 0.52 0.61 0.69 0.75 0.73
3 0.24 0.33 0.44 0.55 0.66 0.66

10 0.00 0.01 0.04 0.12 0.27 0.33
50 0.00 0.00 0.00 0.00 0.00 0.01

Woodford (1999) calibration. Cost push shock u0 = 1 in the first period,
starting from a0 = 0, π0 = 0, x0 = 0, with γ = 0.2

steady state consumption that results in the same cumulative utility loss
(For details of the calculation see the Appendix.). We use the calibration
of Woodford (1999): β = 0.99, κ = 0.024, α = 0.048 and σ = 0.157. We
perform Monte Carlo with a simulation length 10,000 and a cross sectional
sample size of 1000, with the initial condition a0 = b0 = 0. Cost push shocks
are drawn from a normal distribution with 0 mean and variance 0.123.

Table 2.2 reports consumption equivalents for a range of tracking para-
meters. For small tracking parameters the results are in the range of Lucas’
original estimates24: consumption losses resulting from cyclical fluctuations
are small. For higher tracking parameters the consumption equivalents are
also higher, which results from the fact in the presence of a cost push shock,
constant gain learning does not settle down to RE, but converges to a lim-
iting distribution and the limiting variance of inflation expectation increases
in γ (keeping other coefficients constant). This is illustrated in Figure 2.3. A
higher variance of inflationary expectations in turn results in higher variance
of inflation and output gap both under OP (see equation (2.21) and (2.22))
and under EH (see equation (2.6)), thus a higher welfare loss equivalent
permanent consumption reduction.

Since both inflation and output gap variance can be expressed as a linear
function of the variance of the cost push shock, clearly the absolute value
of consumption equivalents are also increasing with the variance of the cost
push shock, but the ratio of consumption equivalents under OP and EH are
not sensitive to the choice of σ2

u
25.

23Note that the demand shock does not appear in the actual law of motion of the
endogenous variables.

24See Lucas (1987).
25We performed the welfare loss analysis also in the case of σ2

u = 0.6, an estimate of
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Optimal policy decreases consumption equivalents relative to the rule
(2.8) (see the third column in Table 2.2). Even for tracking parameters below
0.0526 the gain from using an optimal interest rate rule (2.23) compared to
the EH rule (2.8) is around 1− 3%. The gain in consumption equivalents is
higher the higher is the gain parameter. For a very high tracking parameter
γ = 0.9 the welfare loss in consumption terms of not using the optimal rule
is twice as large as under OP. This follows from the fact that, optimal policy
takes into account that expectations have a limiting variance while the EH
policy considers expectations to be fixed27. As a result, optimal policy aims
to decrease the limiting variance of inflationary expectations while EH does
not, and the higher is the tracking parameter the bigger is the decrease in
the limiting variance OP engineers compared to EH (see Figure 2.3).

Table 2.2: Consumption equivalents using OP and EH under constant gain
learning

Tracking parameter pOP pEH pOP/pEH

0.0187 0.0129 0.0129 0.9990
0.05 0.0148 0.0151 0.9759
0.08 0.0171 0.0185 0.9243
0.1 0.0188 0.0213 0.8830
0.3 0.0371 0.0619 0.5996
0.5 0.0554 0.1122 0.4935
0.9 0.0910 0.2217 0.4106

Woodford (1999) calibration

It is interesting to examine the composition of welfare losses coming from
inflation variation and output gap variation. For this we calculate the equiv-
alent permanent consumption decrease for welfare losses caused by only in-
flation variation or output gap variation respectively, and report the ratios of
OP and EH in Table 2.3. The table demonstrates Results 2: optimal policy

Milani (2005), obtaining the same ratio of consumption equivalents under OP and EH.
26Estimates for the US are typically in this range. 0.0187 is the estimation of Milani

(2005) with Bayesian estimation, for a calibration of the tracking parameter see Orphanides
and Williams (2004a).

27It is worth noting that the EH rule is designed to ensure learnability of the optimal
RE in a decreasing gain environment, and its performance under constant gain is never
considered in the EH paper; however, it can be useful to employ a constant gain version
of their rule to illustrate potential advantages of fully optimal monetary policy.
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focuses on decreasing inflation variation even at the cost of higher output gap
variation. The higher is the tracking parameter, the higher is the incentive
of the Central Bank to focus on lowering inflation variance and allowing for
an increase in output gap deviation from the flexible price equilibrium. For
γ = 0.9 compared to EH an optimally behaving Central Bank engineers a
78% lower welfare loss in inflation when it properly conditions on expectation
formation, permitting at the same time 15 times more variation in output
gap.

Table 2.3: Ratio of consumption equivalents of losses due to inflation and
output gap variations using OP and EH under constant gain learning

Tracking parameter Inflation Output gap
0.0187 0.9962 1.2296

0.05 0.9441 3.6263
0.08 0.8511 7.0185
0.1 0.7853 9.0290
0.3 0.4187 15.6711
0.5 0.3073 16.0060
0.9 0.2286 15.5719

Woodford (1999) calibration

Moreover, it is worth noting that the use of the rule (2.8) under constant
gain learning allows for the autocorrelation of inflation to rise, thus increas-
ing the persistence of a shock’s effect on inflation expectations. This problem
arises from the relatively weak response to inflation expectations which feeds
back to current inflation and, in turn, into subsequent expectations and infla-
tions. The optimal rule’s strong feedback to inflation expectations dampens
this interaction between inflation and expectations28.

This section has shown that optimal policy under learning is characterized
by a more aggressive interest rate reaction to out-of-equilibrium expectations
and to the cost push shock than would be optimal when the CB does not
make active use of its influence on expectations. This aggressive behavior

28It can be easily derived that the autocorrelation of inflation under constant gain with

EH is EπEH
t πEH

t−1 =
(

αβ
α+κ2

)2 (
1− γ + γ αβ

α+κ2

)
σ2

aEH
+ αβ

α+κ2

(
α

α+κ2

)2

γσ2
u while under the

optimal rule EπOP
t πOP

t−1 = (ccg
π )2 (1− γ + γccg

π )σ2
aOP

+ ccg
π (dcg

π )2 γσ2
u. We have already

seen that σ2
aOP

< σ2
aEH

, ccg
π < αβ

α+κ2 and dcg
π < α

α+κ2 , thus EπOP
t πOP

t−1 < EπEH
t πEH

t−1 .
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guarantees that inflation will deviate less from its equilibrium value, thus pri-
vate agents can learn the true equilibrium level of inflation faster than under
EH policy. Helping inflationary expectations is beneficial, even at the cost of
allowing higher deviations in output gap expectations and a higher output
gap volatility. Welfare gains from using the optimal policy are particularly
pronounced when private agents use a high tracking parameter (i.e. discount
more past data) for forecasting. This result indicates that properly condi-
tioning on private agents expectation formation is especially important in a
nonconvergent environment, i.e. when agents follow constant gain learning.

2.3 Decreasing Gain Learning

In this section we relax the assumption of constant gain learning and show
that our main results remain valid also with decreasing gain learning (hence-
forth DG) and show that the time varying nature of expectations imply that
during the transition the optimal policy should be time varying even in a
stationary environment.

Using a constant gain parameter γ is appropriate when agents believe
structural changes to occur. If instead the private sector confidently be-
lieves that the environment is stationary it is more reasonable to model their
learning behavior with a decreasing gain rule, namely an algorithm of the
form:

E∗
t πt+1 ≡ at = at−1 + t−1(πt−1 − at−1) (2.24)

E∗
t xt+1 ≡ bt = bt−1 + t−1(xt−1 − bt−1) (2.25)

where the only difference with (2.9)-(2.10) is the substitution of γ with t−1.
An updating scheme of this form is equivalent29 to estimating inflation and
output gap every period with OLS30.

The problem of the CB is now:

29Under certain conditions on the values used to initialize the algorithm, see Evans and
Honkapohja (2001).

30Note that, since inflation and output gap are assumed by the learners to be constant,
the OLS is just the sample averages of the two.
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min
{πt,xt,rt,at+1,bt+1}∞t=0

E0

∞∑
t=0

βt(π2
t + αx2

t ) (2.26)

s.t. (2.1), (2.2), (2.24), (2.25)
a0, b0 given

(2.27)

The optimization can be solved in a way analogous to the constant gain
case; hence, the dynamics of the system can be summarized by the optimality
condition:

κ

α
πt + xt = βEt

[
β

1

t+ 1
xt+1 +

κ

α
πt+1 + xt+1

]
(2.28)

Iterating it forward we get:

κ

α
πt + xt = Et

[
∞∑
s=1

βs+1 1

t+ s
xt+s

]
.

Similarly to Section 2.2 our result is that learning introduces an intratemporal
tradeoff between inflation and output that is not present under RE in an
economy without a cost push shock and an additional intertemporal tradeoff
that is not present in general under rational expectations (Result 1). From
the latter it follows that during the transition for a given positive value of
xt, the optimal disinflation is less harsh with respect to the one implied by
(2.5) (optimizing taking expectations as given) provided that the series on
the right hand side is expected to be positive. The intuition behind is that
when the CB makes active use of the expectation formation, it renounces
its ability to optimally stabilize the economy in period t, in exchange for a
reduction in future inflation expectations (in absolute value) and this allows
an ease in the future inflation-output gap trade-off embedded in the Phillips
Curve.

To derive the optimal allocations, we can use (2.2) to substitute out xt
in (2.28), then using the evolution of inflationary expectations (2.24)we get:

Et [πt+1] = A11,tπt + A12,tat + P1,tut (2.29)

where:
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A11,t ≡
κ2 + α+ αβ2 1

t+1

(
1 + β 1

t+1

)
αβ(1 + β 1

t+1
) + κ2β

A12,t ≡ −
αβ
[
1− β

(
1− 1

t+1

) (
1 + β 1

t+1

)]
αβ(1 + β 1

t+1
) + κ2β

.

P1,t ≡ − α

αβ(1 + β 1
t+1

) + κ2β

Hence, at an optimum, the dynamics of the economy can be summarized
by stacking equations (2.24), (2.25) and (2.29), and obtaining the trivariate
system:

Etyt+1 = Atyt + Ptut (2.30)

where yt ≡ [πt, at, bt]
′, and:

At ≡

 A11,t A12,t 0
1
t+1

1− 1
t+1

0
1

t+1

κ
−β 1

t+1

κ
1− 1

t+1

 , Pt =

 P1,t

0

−
1

t+1

κ

 .

We can find the solution with the method of undetermined coefficients,
with the guess31:

πt = cdgπ,tat.+ ddgπ,tut (2.31)

The sequence
{
cdgπ,t

}
must satisfy the non-linear, non-autonomous first

order difference equation:

cdgπ,t =
cdgπ,t+1

(
1− 1

t+1

)
− A12,t

A11,t − cdgπ,t+1
1
t+1

(2.32)

and the sequence
{
ddgπ,t

}
is defined as:

ddgπ,t =
P1,t

cdgπ,t+1
1
t+1

− A11,t

.

31This guess corresponds to the unique solution under constant gain learning. A proof of
uniqueness of a bounded solution for decreasing gain learning is not worked out completely
yet.
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Of course, there exist infinite sequences that satisfy equation (2.32), one for
each initial value cdgπ,0. However, since the boundary conditions require πt
to stay bounded, we will concentrate on the solutions that do not explode.
The properties of the coefficients in (2.31) are characterized in the following
Proposition.

Proposition 2. Let
{
cdgπ,t

}
be defined by (2.32), and assume it is bounded;

then, lim
t→∞

cdgπ,t exists, and is given by:

lim
t→∞

cdgπ,t =
αβ

α+ κ2

Moreover, for any t <∞, we have:

cdgπ,t <
αβ

α+ κ2

Proof. See the Appendix.

Thus Result 2 holds during the transition: when the CB takes into ac-
count its influence on expectations it is optimal to decrease the effect of
out-of-equilibrium expectations on inflation compared to equation (2.6), in
order to undercut future inflation expectations by a larger amount. This
relaxes the future inflation-output gap trade-off embedded in the Phillips
Curve. The ALM for output gap is:

xt = cdgx,tat + ddgx,tut (2.33)

where:

cdgx,t =
cdgπ,t − β

κ

ddgx,t =
ddgπ,t − 1

κ

If the private sector expects inflation to be positive, the optimal CB will con-
tract economic activity more than EH32 (using the interest rate instrument);

32From cdg
π,t <

αβ
α+κ2 it follows that cdg

x,t < − κβ
α+κ2 . Compare with the ALM under EH

(2.6).
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the CB is ready to pay a short-term cost represented by a wider current
output gap in order to contain future inflationary expectations.

Note that the policy function does not depend on the period when the
cb optimizes, even if it is not time invariant. Thus, the optimal policy char-
acterized above is time consistent, in the sense of Lucas and Stokey (1983)
and Alvarez et al. (2004).

The nominal interest rate rule is as follows:

rt = rrt + δdgπ,tat + δdgx bt + δdgg gt + δdgutut (2.34)

where:

δdgπ,t = 1− σ
cdg
π,t−β
κ

δdgx = σ
δdgg = σ

δdgut = −σ d
dg
π,t−1

κ

Since cdgπ,t < β (see Proposition 2) δdgπ,t is always bigger than 1. In response
to a rise in expected inflation optimal policy should raise the nominal interest
rate sufficiently to increase the real interest rate. The following proposition
pertains to the characteristics of the optimal rule compared to the EH rule
(2.8):

Proposition 3. Assume that t <∞; then:
-δdgπ,t > δEHπ , δdgut > δEHu .
Moreover, we have:
- lim
t→∞

δdgπ,t = δEHπ , lim
t→∞

δdgut = δEHu .

Proof. See the Appendix.

Result 2 under CG is parallelled by our results under DG: the optimal
interest rate rule should react more aggressively to out of equilibrium expec-
tations than the EH rule. A CB that knows how its behavior affects private
sector expectations should contain more inflationary expectations than a CB
that takes expectations as given.

An interesting result is that the coefficient on inflation expectations in the
interest rate rule (2.34) is time-varying, reflecting the fact that the Central
Bank’s incentives to manipulate agents’ beliefs evolve over time. This implies
that during the transition optimal policy should be time varying even in a
stationary environment.
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In Figure 2.5, we show how this coefficient depends on time when the
parameters are calibrated according to Woodford (1999). δdgπ,t is always above
its limiting level (see analytical proof in Proposition 3), moreover, it decreases
over time. Numerical analysis on the grid β = 0.99 and α ∈ [0.01, 2], κ ∈
[0.01, 0.5] shows that this decreasing behavior of δdgπ,t is a robust feature of
the model 33. We find that after the 4th period (from the 4th to the 5th
period and so on) δdgπ,t is always decreasing, while in the first 4 periods δdgπ,t
might be increasing (hump-shaped) for a combination of low values of α and
high values of κ (see Figure 2.7 ) 34. We summarize our new results as:

Result 3. Optimal policy is time varying even in a stationary environment.
Initially it reacts more aggressively to both out of equilibrium expectations
and cost push shocks and dampens its aggressiveness later.

To get an intuition, suppose that a structural break occurs. For example
there is a policy change because a new central bank governor is appointed,
agents know that monetary policy has changed and try to learn how this af-
fects the equilibrium. In this situation is convenient for the CB to react more
aggressively to out-of-equilibrium inflation beliefs in the first periods, when
agents pay more attention to new information and the CB’s possibilities of in-
fluencing private expectations are greater. This behavior is beneficial even at
the cost of larger short-term losses in terms of output gap variability. As time
passes, the expectations will be influenced to a lesser extent by the last real-
ization of inflation, hence determining a CB reaction that closely resembles
the optimizing behavior when policymakers cannot manipulate expectations.

The inequality δdgut > δEHu is parallel to the second part of Result 2:
during the transition the optimal policy engineers more aggressive interest
rate movements in response to cost push shock variations than EH, and this
way it accommodates less the effect of noisy shocks on inflation compared to
EH. δdgut is positive and decreasing over time (see Figure 2.6)35. In response to
a positive cost push shock, the Central Bank raises interest rate to contract
the output and thus reduce inflation, and future inflationary expectations.

33We have chosen the grid to include typical calibrated values for the US and the EURO
area.

34In fact, δdg
π,t is always decreasing also for other calibrations widely adopted in the

New Keynesian Literature, like those taken from Clarida et al. (2000) and McCallum and
Nelson (1999).

35Since δdg
u,t < 1 from (2.34) it follows that the change of δdg

u,t through time is identical
to that of δdg

π,t.
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The asymptotic properties of the ALM (2.31),(2.33) depend on the lim-
iting behavior of at, which is given by the stochastic recursive algorithm:

at+1 = at + (t+ 1)−1
(
(cdgπt − 1)at + ddgπ,tut

)
(2.35)

We study its properties in the Appendix, where we use the stochastic
approximation techniques36 to prove the following Proposition:

Proposition 4. Let at evolve according to (2.35); then, at → 0 a.s.

This result, together with the boundedness of cdgπ,t, implies that cdgπ,tat goes

to zero almost surely; moreover, it is easy to see that ddgπ,t → α
κ2+α

, so that we
can conclude that πt → α

κ2+α
v almost surely, where v is a random variable

with the same probability distribution as ut. The equilibrium corresponds to
the discretionary rational expectations equilibrium. Optimal policy ’helps’
private agents to learn the rational discretionary REE37.

From Proposition 3 it follows that the optimal policy converges to the
EH policy; since expectations converge to a constant it is intuitive that in
the limit OP behaves as if expectations were fixed. Bellow we provide a
numerical analysis on how the difference during the transition translates into
welfare losses. Similarly to Section 2.2 we report consumption equivalents38.

Tables 2.4 and 2.5 show that similarly to the constant gain case in the
long run OP engineers a lower consumption equivalent then the EH policy,
and OP engineers lower variation of inflation at the cost of allowing higher
variation in output. The last row of the first column in Table 2.4 shows that
if we start the economy from the RE equilibrium, a0 = 0, in the long run the
consumption equivalent of OP is about 10% lower then that of EH. Table
2.5 reports the composition of these losses: the optimal policy engineers an
inflation variation 20 percent lower then EH and allows a 3-9 times higher
welfare loss due to output gap variations.

These long run gains of OP result from the different transition path to-
wards the RE equilibrium this policy engineers compared to EH.

36For an extensive monograph on stochastic approximation, see Benveniste et al. (1990);
the first paper to apply these techniques to learning models is Marcet and Sargent (1989).

37Note that the PLM of private agents does not nest the commitment REE, only the
discretionary REE, so agents have a ’chance’ to learn only the latter.

38We report the permanent percentage decrease in the steady state consumption that is
equivalent to the cumulative welfare losses up to time T under OP as a ratio of the same
measure under EH (See Appendix.). Results are obtained by Monte Carlo simulations.
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Let us first examine the path of expectations. Both OP and EH are
E-stable under learning, so guarantee that expectations converge to the dis-
cretionary REE, the difference is the speed of convergence. Figure 2.8 shows
a typical realization of the evolution of expectations under OP and EH. We
can observe that inflation expectations converge faster and output gap ex-
pectations converge more slowly with our rule than with the EH one. This
is a consequence of the intertemporal tradeoff (Result 1): when the CB does
take into account its influence on the learning algorithm, it has an incentive
to undercut future inflation beliefs. The way the central bank can achieve
this, is to keep inflation close to its RE value; since inflationary expectations
are formed as averages of past inflation data, this policy undercuts future in-
flation expectations. Because of the intratemporal tradeoff between inflation
and output, the cost of keeping inflation closer to its RE value is a wider
output gap and consequently a slower convergence of b to its RE value.

We report how the ratios of OP and EH consumption equivalents evolve
during the transition in Table 2.4. In the first periods the optimal interest
rate rule (2.34) yields ex-post higher cumulative welfare losses expressed in
consumption terms than the EH rule; later, however, our rule starts gener-
ating smaller welfare losses. These findings are consistent with our finding
that a CB that follows the optimal rule (2.34) reacts to out-of-equilibrium
inflation expectations more aggressively than in the EH case, in order to un-
dercut more future expectations, even if this means allowing a wider output
gap in the short run. This implies that in the first periods, when this more
aggressive behavior has not generated yet a pay-off in terms of a smaller |a|
sufficient to offset the costly output gap variability, our rule performs worse
than the EH one; as soon as inflation expectations become small enough, this
initial disadvantage is more than compensated. This pattern is magnified by
the time-varying behavior of δdgπ,t that we characterized above: the coefficient
on inflation expectations in (2.34) is particularly large in the first periods,
hence determining large output gap variations and large welfare losses in the
short run, and large gains from the contraction of |a| in the medium and long
run.

Since the main advantage of OP is that it helps private agents’ inflation-
ary expectations to converge faster, the advantage of OP over EH increases
the further away initial expectations are from the RE values. The different
columns of Table 2.4 report ratios of consumption equivalents for different
initial inflationary expectations. The higher is a0 the bigger is the consump-
tion cost of OP compared to EH in the first periods: OP allows for higher
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Table 2.4: Path of cumulative consumption equivalent ratios under decreas-
ing gain, using OP and EH

pOP/pEH

T a0 = 0 a0 = 1 a0 = 2 a0 = 3
1 2.086 4.145 4.327 4.362
5 1.511 2.241 2.325 2.344

10 1.279 1.574 1.609 1.617
20 1.104 1.116 1.117 1.118
26 1.057 0.993 0.986 0.984
27 1.050 0.978 0.969 0.967
40 0.997 0.841 0.821 0.817
43 0.989 0.820 0.799 0.795
49 0.975 0.786 0.763 0.758

10,000 0.899 0.583 0.542 0.533
Woodford (1999) calibration

welfare losses in order to keep inflation closer to the SS in order to help
inflationary expectations converge faster. As time goes on, inflation expec-
tations converge closer to 0 under OP than under EH; the further away a0 is
from the equilibrium, also the further away future inflation expectations re-
main from the equilibrium under EH. Consequently the inflation output gap
tradeoff remains worse under EH and consumption equivalents remain also
higher then under OP. The bigger is a0 the bigger is the gain in decreasing
inflation variation of OP over EH, and the higher is the output gap variation
OP allows compared to EH (See Table 2.5)39.

In this section we have proved that our main results do not depend on what
type of learning algorithm private agents follow. Our new results are that
under decreasing gain learning optimal policy should be time varying: more
aggressive on inflation initially and less in subsequent periods. In the limit,
expectations converge to the discretionary RE equilibrium, and optimal pol-
icy is equivalent to the one derived under the assumption of constant expec-
tations. Numerical simulations confirmed the relevance of the welfare gains
induced by the implementation of the optimal policy.

39Similarly to Section 2.2 ratios of consumption equivalents do not depend on the choice
of σ2

u.
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Table 2.5: Ratio of consumption equivalents of losses due to inflation and
output gap variations using OP and EH under decreasing gain learning

a0 = 0 a0 = 1 a0 = 2 a0 = 3
Inflation

pOP 0.016 0.054 0.166 0.353
pEH 0.019 0.125 0.439 0.961

pOP/pEH 0.838 0.432 0.379 0.368
Output gap

pOP 0.029 0.411 1.547 3.434
pEH 0.005 0.031 0.110 0.241

pOP/pEH 6.044 13.188 14.100 14.279
Woodford (1999) calibration

2.4 Robustness Analysis

Up to now, we have supposed that the CB perfectly observes all the relevant
state variables of the system, namely the exogenous shocks and the agents’
beliefs. In this section we show that our main results extend to a more general
framework, where either the shocks or the expectations are not observable.
In particular, to make the problem non-trivial, throughout this section we
modify the structural equations (2.1) and (2.2) with the introduction of un-
observable shocks, so that the model is now given by:

xt = E∗
t xt+1 − σ−1(rt − E∗

t πt+1 − rrt) + gt + ex,t (2.36)

and:
πt = βE∗

t πt+1 + κxt + ut + eπ,t (2.37)

where we assume that the CB can observe πt and xt only with a lag, and
that ex,t and eπ,t are independent white noise that are not observable, not
even with a lag. The rest of the setup is identical to Section 2.3.

2.4.1 Measurement Error in the Shocks

We start with the case in which the monetary authority can observe gt and ut
only with an error; in particular, we assume that it receives the noisy signals
g∗t and u∗t , where:

g∗t = gt + εt, εt ∼ N(0, σ2
ε )

u∗t = ut + ηt, ηt ∼ N(0, σ2
η)
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Note that the shocks do not depend on the policy followed by the CB; hence,
the separation principle applies, namely, the optimization of the welfare cri-
terion and the estimation of the realizations of the shocks can be solved as
separate problems. As is well known, the above signal-extraction problem
implies that the expected values of the shocks given the signals are40:

E [gt | g∗t ] ≡ ECB
t gt =

σ2
g

σ2
ε +σ2

g
g∗t ≡ ζgg

∗
t

E [ut |u∗t ] ≡ ECB
t ut = σ2

u

σ2
η+σ2

u
u∗t ≡ ζuu

∗
t

Note that in the above equation we are not using all the available information;
to keep the problem simpler, we assume that the posterior beliefs of the CB,
ECB
t gt and ECB

t ut, are not fully rational, but are instead conditional only on
the signals. In other words:

ECB
t gt ≡ E [gt | g∗t ]

ECB
t ut ≡ E [ut |u∗t ]

Moreover, the separation principle implies that certainty equivalence holds
in designing the optimal interest rate rule, which turns out to be identical to
(2.34), with gt and ut replaced by ECB

t gt and ECB
t ut, respectively:

rt = rrt + δdgπ,tat + δdgx bt + δdgg ζgg
∗
t + δdgut ζuu

∗
t

= rrt + δdgπ,tat + δdgx bt + δdgg ζggt + δdgg ζgεt + δdgut ζuut + δdgut ζuηt

We can combine the above equation with (2.36) and (2.37) to obtain the
ALM for inflation and output gap:

πt = µ1
atat + µ1

ggt + µ1
εεt + µ1

utut + µ1
ηtηt + κex,t + eπ,t

xt = µ2
atat + µ2

ggt + µ2
εεt + µ2

utut + µ2
ηtηt + ex,t

where:
µ1
at = cdgπ,t, µ2

at = cdgx,t
µ1
g = κ (1− ζg) , µ2

g = 1− ζg
µ1
ε = −κζg, µ2

ε = −ζg
µ1
ut =

(
ddgπ,t − 1

)
ζu + 1, µ2

ut =

(
ddg

π,t−1

κ

)
ζu

µ1
ηt =

(
ddgπ,t − 1

)
ζu, µ2

ηt =

(
ddg

π,t−1

κ

)
ζu

40 E.g., see Hamilton (1994).
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As a consequence of the measurement error, inflation and output gap now
depend on a wider set of state variables; however, it is easy to see that the
main findings of the preceding section go through in this modified environ-
ment. First of all, the separation principle trivially implies that when the
CB takes into account the effect of its decisions on future beliefs, the optimal
policy is more aggressive against out-of-equilibrium inflation expectations,
compared to the case in which the private sector’s expectations are consid-
ered as exogenously given41; moreover, the analysis of convergence of learning
algorithms to the optimal discretionary RE equilibrium42 does not change in
this modified environment.

2.4.2 Heterogenous Forecasts

As argued in Honkapohja and Mitra (2005) (HM hereafter), the hypothesis
that the CB can perfectly observe private sector’s expectations is subject
to several criticisms. For example, private sector expectations and their
forecasts produced by different institutions do not necessarily coincide. In
this case, the CB could use a proxy for the agents’ beliefs. In what follows,
we assume that the optimal interest rate rule takes the same form as (2.34),
but the agents’ forecasts for inflation and output gap, at and bt, are replaced
by the CB internal forecasts, aCBt and bCBt

43; in particular, we suppose that
the CB and the private sector forecasts have the same form, and are updated
according to the same algorithm, which is given by (2.24)-(2.25). The only
difference is given by the initial beliefs. Note that this setup corresponds
to a situation where the CB, in solving its optimization problem, knows the
adaptive algorithm used by the agents to form their expectations, but cannot
observe the actual values of these expectations; instead, the CB has a tight
prior on a0 and b0

44, and forms its internal forecasts accordingly. Plugging

41For a description of the optimal policy when the CB does not consider its effect on
future beliefs, and there is measurement error in the shocks, see Evans and Honkapohja
(2003a) section 4.2.

42Note that the optimal RE equilibrium is now different from the baseline case, since
inflation and output gap depend also on gt, εt, ηt, and the unobservable shocks ex,t and
eπ,t.

43 This approach is developed in HM, where it is applied to the EH rule and to a simple
Taylor rule. Evans and Honkapohja (2003b) use this method in a setup where the CB
follows the expectations based interest rule derived in Evans and Honkapohja (2006).

44In other words, it believes that a0 = aCB
0 and b0 = bCB

0 with probability one, where
aCB
0 and bCB

0 are given.
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the interest rate rule into the structural equations (2.36) and (2.37), we get
the ALM:

πt = ν1
aat + ν1

aCBta
CB
t + ν1

b bt + ν1
bCBb

CB
t + ν1

utut + κex,t + eπ,t
xt = ν2

aat + ν2
aCBta

CB
t + ν2

b bt + ν2
bCBb

CB
t + ν2

utut + ex,t
(2.38)

where:

ν1
a = β + κσ−1, ν2

a = σ−1

ν1
aCBt = −κσ−1

(
1− σ

cdg
π,t−β
κ

)
, ν2

aCBt = −σ−1

(
1− σ

cdg
π,t−β
κ

)
ν1
b = κ, ν2

b = 1
ν1
bCB = −κ, ν2

bCB = −1

ν1
ut = ddgπ,t, ν2

ut = ddgx,t

Again, our main results are unaffected by this change in the CB infor-
mation set, both for t < ∞ and for t → ∞. In fact, since the parameters
in the optimal rule are the same as in rule (2.34), the results summarized in
Proposition 3 are still valid. On the other hand, we can study E-stability of
the system extending Proposition 2 in HM to a time-varying environment.
In particular, it is easy to show45:

Corollary 1. Consider the model (2.38); it is E-stable if and only if the
corresponding model with homogenous expectations is E-stable.

Since E-stability of the homogenous expectations model is ensured by
Proposition 4, we conclude that also system (2.38) is E-stable, and it con-
verges to the optimal discretionary RE equilibrium46.

2.4.3 Policy Advice

We have seen that assuming adaptive learning instead of RE fundamentally
changes the Ramsey solution for optimal policy. However assuming that the
CB knows the exact learning algorithm followed by private agents, is clearly
a strong assumption to make. Therefore in this section we examine what is
the policy recommendation when the monetary authority is uncertain about
the nature of private sector expectations.

45The proof is available from the authors upon request.
46In fact, the system we are analyzing falls into the class for which E-stability and

convergence of real time learning are equivalent, see Evans and Honkapohja (2001).
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In particular we aim to define consistent policy advice on a relevant set of
private agents’ expectation formation. First we investigate the issue of how
monetary policy in the US should behave when the FED is uncertain about
expectation formation, but its uncertainty is restricted to a set which would
be reasonable given the empirical evidence. Then we examine the policy rec-
ommendation on a set of more volatile learning algorithms.

Empirical evidence on learning is relatively scarce, and mainly focuses on
the US. For the US constant gain algorithms with a small tracking parameter
is a good approximation for the data. With Bayesian estimation of the New
Keynesian model with adaptive learning Milani (2005) finds γ to be 0.0187,
he also finds γ to be stable through time. Orphanides and Williams (2005b)
take a different approach, they calibrate γ on the Survey of Professional
Forecasters and find that tracking parameters between 0.01 and 0.04 fit well
survey expectations.

Let us conduct an experiment, and suppose that the FED is uncertain
about how private sector forms its expectations, but relying on the empirical
literature listed above it can define a relevant set of expectations to be:
constant gain with a small gain, and RE47. Moreover, it has no probability
distribution over these two possible realizations of the agents’ expectations
formation mechanism; instead, we use robust control theory and look for the
policy that minimizes the maximum loss48. We perform numerical Monte
Carlo analysis to examine welfare losses when private expectations are taken
from this set and the CB interest rate rule is either an optimal rule for a given
small gain parameter or the EH rule (2.8), derived in Evans and Honkapohja
(2003a). In order to present the results in a compact way, for a given private
expectation we compare consumption equivalents of using the optimal rule
to the consumption equivalents of using a wrong rule and report increases in
consumption equivalents. Note that when the structural equations are given
by (2.36) and (2.37), the ALM for inflation and output gap depend also on
the non observable shocks eπ,t and ex,t; hence, the values of the welfare losses
are functions of the variances of these shocks too. However, it is easy to see

47Rational expectations means, substituting the interest rate rule in the IS curve (2.36),
and then using it and the Phillips Curve (2.37) to solve for the fixed point in expectations.
Under all interest rate rules listed above, this results Etπt+1 = Etxt+1 = 0.

48For an extensive treatise on the use of robust control techniques in economics, see
Hansen and Sargent (2006).
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that the ranking between different rules is independent of these variances49.
Thus, since any parametrization of the non observable terms would be equally
arbitrary and would deliver the same results in terms of relative performance
of alternative rules, in tables 2.6-2.7 we consider the extreme case with the
variances of eπ,t and ex,t that go to zero.

Table 2.6 reports results when initial expectations coincides with RE:
a0 = 0. In this case, constant gain expectations with a small gain will
be really close to the rational forecasts. We can think of this economy as
populated by agents who are making only very small mistakes compared to
the rational forecasts.

Table 2.6: Consumption equivalents under the optimal or a wrong rule, initial
inflation expectations at RE

Expectations 0.0187 0.02 0.03 0.04 RE
Interest rate rule
γ = 0.0187 0.01302 0.01307 0.01353 0.01412 0.01265
γ = 0.02 0.01302 0.01307 0.01353 0.01412 0.01265
γ = 0.03 0.01302 0.01307 0.01352 0.01410 0.01265
γ = 0.04 0.01303 0.01308 0.01353 0.01409 0.01265
EH 0.01303 0.01308 0.01359 0.01426 0.01265
Maximum percentage increase EH EH EH EH γ = 0.04
compared to optimal rule 0.09 0.12 0.47 1.18 0.02
Woodford (1999) calibration. Starting from RE: a0 = 0.
Consumption equivalents for a given underlying private sector expectation formation
and a given interest rate rule.

The main result is that the worst case scenario is using the EH rule when
private agents are learning. A min-max rule (following Hansen and Sargent
(2006)), which minimizes the maximum loss is always a learning rule.

Under RE all of these rules lead to a determinate equilibrium. The EH
rule provides smaller losses than optimal learning rules (see last line of table
2.6), and the reason for this is that learning rules allow for too high volatility
in the output gap 50.

49In other words, the variances of eπ,t and ex,t do not alter the ordinal properties of the
loss function; to see this, an inspection of equation (2.47) in the Appendix suffices.

50We would like to note, that since learning rules decrease volatility of inflation and
allow for higher volatility in the output gap, for small values of alpha (a small weight on
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However, losses under RE caused by mistakenly using an optimal learning
rule are smaller than losses due to using the EH rule when agents are learning.

When private agents are learning and the FED uses a bad learning rule,
consumption equivalents increase but the loss is always smaller then losses
of using the EH rule. The bigger is the misperception of the monetary policy
about γ the bigger is the increase in consumption equivalents. When for
example agents follow constant gain with γ = 0.04 and the central bank
uses an optimal rule with γ = 0.03 consumption equivalent is 0.03% higher
than it is when the optimal interest rate rule is used. While if the FED
uses γ = 0.02 which is further from the true tracking parameter, the loss
increases to 0.17%. The percentage increase in loss achieved using the EH
rule is 1.18%, which is bigger then with any of the learning rules.

When we initialize the economy at the RE equilibrium, beliefs stay close
to the RE. This way our analysis does not take into account an advantage
of the optimal learning rules, which is that it helps private agents to learn
faster the rational expectations forecasts. Therefore in table 2.7 we report
numerical results for a0 = 1. Our results show that the gain of using a
learning rule over the EH rule is much bigger in this case, since the EH
rule increases consumption equivalents compared to the optimal policy by
3 − 11%. Learning rules on the other hand result in smaller losses under
learning, even if they are misspecified.

We now assume that the monetary authority is able to formulate a prob-
ability distribution over the mechanism used by the private sector to form
its forecasts. In particular, let’s assume that the prior of the FED is that
with probability p private agents follow constant gain learning with a given
tracking parameter, and with probability 1 − p agents have RE. Then we
can calculate the expected welfare loss of using EH p times the consumption
equivalent under constant gain learning with EH rule, and 1 − p times con-
sumption equivalent of using EH under RE. Then we can find a cut-off value
of p for which the expected loss in consumption terms of using the OP rule
is less than the welfare loss of the EH rule.

A surprising result is that the cutoff value of p is between 1−1.5%51. This
means that it is optimal to use the learning rule even if the CB attributes
only a very small 1− 2% probability (or higher) to agents following learning

output gap in the welfare loss function) learning rules even outperform the discretionary
rule under rational expectations (EH).

51Cutoff values for p are slightly lower when we initialize the economy out of RE.

69



Table 2.7: Consumption equivalents under the optimal or a wrong rule, initial
inflation expectations out of RE

Expectations 0.0187 0.02 0.03 0.04 RE
Interest rate rule
γ = 0.0187 0.1249 0.1240 0.1175 0.1120 0.0127
γ = 0.02 0.1250 0.1240 0.1173 0.1116 0.0127
γ = 0.03 0.1257 0.1245 0.1167 0.1102 0.0127
γ = 0.04 0.1271 0.1258 0.1170 0.1098 0.0127
EH 0.1287 0.1282 0.1246 0.1215 0.0127
Maximum percentage increase EH EH EH EH γ = 0.04
compared to optimal rule 2.99 3.37 6.75 10.64 0.02
Woodford (1999) calibration. Starting from RE: a0 = 1.
Consumption equivalents for a given underlying private sector expectation formation
and a given interest rate rule.

and a very high probability to RE.
In sum, our “policy advice” for the FED is to choose an optimal learning

rule even if it attributes only very small probability to learning.

Evans and Ramey (2006) shows that in an economy with a high proba-
bility of structural changes it is optimal to use constant gain algorithms with
high tracking parameters. Therefore we could perform the same analysis on
a set of constant gain algorithms with much higher tracking parameters. In
this case the results52 are even more against the use of the EH rule. For
example, when agents follow CG with γ = 0.2 and a0 = 0 using the EH rule
results in 40% higher losses compared to the optimal learning rule. This is
intuitive, because the higher is the gain parameter, the bigger is the influence
that monetary policy can have on expectations if the CB makes active use
of the learning algorithm; thus, the EH rule makes a bigger mistake when it
does not take this into account53.

Interestingly, different assumptions on the initial beliefs yields different
solutions to the min-max problem: the robust rule is always a learning rule,
as we stressed above, but when a0 = 0 the min-max corresponds to the op-

52Available from the authors upon request.
53The cutoff value of p is between 1-2 percent. Thus the CB should use a learning rule

even if it attributes only a very small probability to learning.
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timal rule when γ is the largest in the set, and when a0 = 1 to the optimal
rule when γ is the smallest. This reflects the tension between tracking and
accuracy present in any adaptive algorithm, and analyzed in Benveniste et
al. (1990): a higher γ implies a better tracking of the mean dynamics of the
underlying process, and a larger variance around this mean dynamics. If the
process starts close to the mean dynamics (in our model, the RE equilib-
rium), the second effect would prevail over the first one, inducing a positive
relation between γ and the welfare losses; consequently, for any rule used by
the CB, the maximum losses are attained when the gain parameter is the
largest possible (0.04), and the robust rule coincides with the optimal one
for that value of γ. If the process starts far from the mean dynamics, the
opposite line of reasoning applies.

In this subsection we presented numerical evidence suggesting that, when
the CB is insecure as to whether agents have RE or are learning, it should
use an optimal learning rule, unless it attaches a tiny probability to agents
following learning; we are aware that a full-fledged robustness analysis would
require a larger set of possible expectations’ formation mechanisms, but this
is beyond the scope of this paper.

2.5 Conclusions

In this paper we analyzed the optimal monetary policy problem faced by a
CB that tries to exploit its ability to influence future beliefs of the agents,
when they follow adaptive learning to form their expectations.

We have shown that in this framework the implications for policymaking
go beyond the asymptotic learnability criterion. In the short run the optimal
policy under learning resembles more the commitment solution under ratio-
nal expectations then the discretionary solution under rational expectations.
Both the commitment solution under rational expectations and the Ramsey
solution under learning aims to anchor inflation expectations, thus it accom-
modates less the effect of noisy supply shocks on inflation. The intuition
behind is simple and stems from the presence of a new intertemporal infla-
tion output trade-off, that is not present under rational expectations. Under
learning the central bank has to take into account how its policy affects
future inflation expectations, since out of equilibrium expectations worsen
the future inflation output trade-offs. As a result optimal policy is aggres-
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sive towards inflation, in order to induce private agents to learn faster the
equilibrium expected value of inflation.

In the long run the equilibrium depends on how private agents learn.
Even though during the transition optimal policy resembles the commitment
solution under rational expectations, in our setup it drives expectations to
the discretionary rational expectations solution. The reason for this is that
agents expectation formation does not nest the commitment solution under
rational expectations. Under rational expectations commitment calls for an
ALM with a different functional form than the discretionary case (see ?).

For future research it would be very interesting to explore the possibility
whether optimal policy under adaptive learning car drive the economy to
the commitment solution under rational expectations. This question is par-
ticularly interesting as from the backward looking nature of these learning
algorithms it follows that such policies are time consistent, so the commit-
ment solution could be reached in a time consistent fashion.

A large body of research in learning focused on how to design rules that
are stable under learning; a typical result is that a strong reaction to out of
equilibrium inflation expectations is necessary. We would like to note that
under optimal policy examining E-stability is not necessary, since optimal
policy naturally chooses an E-stable solution; moreover optimal policy is
similar to the consensus reached in earlier papers on the desirability of the
monetary policy being aggressive towards inflation, in order to anchor private
agents’ inflation expectations.

An additional message of our paper for policy conduct is that optimal
policy should closely monitor private sectors expectations. Actually this
is what is happening in real life: central banks do pay close attention to
private expectations. Under rational expectations this is not justified, since
expectations are pinned down by the model and the monetary policy rule,
however once we depart from rationality expectations become a natural state
variable.

Since optimal policy depends on the way private agents learn, we think
a particularly important area of future research would be to estimate how
agents learn. Even if expectations are not rational, expectations should be
endogenous, one should allow agents to abandon their ad hoc learning rule if
they can do better. Empirical research on examining differences in learning
behavior in different environments is still missing. It would be also interesting
to examine how monetary policy should be conducted with endogenous ex-
pectation formation, in other words when private agents would change their
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expectation formation depending on their perception about the underlying
economy. Endogenous expectation formation could be formulated for exam-
ple along the lines of Marcet and Nicolini (2003) where agents dynamically
switch between different predictors depending on the last forecast error. An
alternative way would be to model expectation formation as in Molnar (2006)
where agents do not change the predictor used, but always use a weighted av-
erage of the forecasts generated by different predictors, and adjust the weight
on predictors dynamically depending on the relative forecasting performance.

73



2.6 Appendix

2.6.1 Constant Gain Learning

In this section we give the outline of the derivation of the inflation law of
motion (2.21), and prove Proposition 1.

We start from the optimality condition (2.18), that we recall below:

κ

α
πt + xt = βEt

[
βγxt+1 + (1− γ)

(κ
α
πt+1 + xt+1

)]
Using the Phillips curve (2.2) and the evolution of inflationary expectations
(2.9), we get:

Et [πt+1] = A11πt + A12at + P1ut (2.39)

where:

A11 ≡ κ2 + α+ αβ2γ (1− γ (1− β))

αβ (1− γ (1− β)) + κ2β (1− γ)

A12 ≡ −αβ (1− β (1− γ) (1− γ (1− β)))

αβ (1− γ (1− β)) + κ2β (1− γ)
.

P1 ≡ − α

αβ (1− γ (1− β)) + κ2β (1− γ)

Hence, at an optimum, the dynamics of the economy can be summarized
by stacking equations (2.9), (2.10) and (2.39), and obtaining the trivariate
system:

Etyt+1 = Ayt + Put (2.40)

where yt ≡ [πt, at, bt]
′, and:

A ≡

 A11 A12 0
γ 1− γ 0
γ
κ

−βγ
κ

1− γ

 , P =

 P1

0
−γ
κ

 .

The three boundary conditions of the above system are:

a0, b0 given
lim
s→∞

|Etπt+s| <∞ . (2.41)

The last one is due to the fact that, if there exists a solution to the prob-
lem (2.11) when the possible stochastic processes {πt, xt, rt, at+1, bt+1} are
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restricted to be bounded, then this would also be the minimizer in the unre-
stricted case54.

Since A is block triangular, its eigenvalues are given by 1− γ and by the
eigenvalues of:

A1 ≡
(
A11 A12

γ 1− γ

)
(2.42)

In the following Lemma 1 we show that A1 has one eigenvalue inside and one
outside the unit circle, which implies (together with (1 − γ) ∈ (0, 1)) that
we can invoke Proposition 1 of Blanchard and Kahn (1980) to conclude that
the system (2.40)-(2.41) has one and only one solution. In other words, there
exists one and only one stochastic process for each of the three variables of
y such that (2.41) is satisfied. Moreover, note that y1t ≡ [πt, at]

′ does not
depend on bt; therefore, the processes for inflation and a that solve (together
with the process for b) the system (2.40)-(2.41) are also a solution of the
subsystem:

Ety1t+1 = A1y1t + (P1, 0)′ ut

together with the boundary conditions:

a0 given, lim
s→∞

|Etπt+s| <∞

By Lemma 1, we can invoke Proposition 1 of Blanchard and Kahn (1980) to
conclude that the law of motion for inflation can be written in the form:

πt = ccgπ at + dcgπ ut

as stated in Proposition 1.

Lemma 1. Let A1 be given by equation (2.42) in the text; then it has an
eigenvalue inside and one outside the unit circle.

Proof. First of all, we recall a result of linear algebra that we will use in the
proof, i.e. that a necessary and sufficient condition for a 2 by 2 matrix to
have an eigenvalue inside and one outside the unit circle, is that55:

|µ1 + µ2| > |1 + µ1µ2|
54The proof is available from the authors upon request.
55LaSalle (1986).
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where µ1, µ2 are the eigenvalues of the matrix; in the case of A11, the above
condition can be written equivalently:

κ2 + α+ αβ2γ (1− γ (1− β))

κ2β (1− γ) + αβ (1− γ (1− β))
+ 1− γ >

1 +
κ2 + α+ αβ2γ (1− γ (1− β))

κ2β (1− γ) + αβ (1− γ (1− β))
(1− γ) +

αβ (1− β (1− γ) (1− γ (1− β)))

κ2β (1− γ) + αβ (1− γ (1− β))
γ

where we have used the fact that the trace is equal to the sum of the eigen-
values, and that the determinant is equal to the product. After simplifying
the above inequality, we get:

−γ > −γ
(
κ2 + α+ αβ2γ (1− γ (1− β))− αβ (1− β (1− γ) (1− γ (1− β)))

κ2β (1− γ) + αβ (1− γ (1− β))

)
so that all we have to prove is that:

κ2 + α+ αβ2γ (1− γ (1− β))− αβ (1− β (1− γ) (1− γ (1− β)))

κ2β (1− γ) + αβ (1− γ (1− β))
> 1

Some tedious algebra shows that this is equivalent to the following expression:

κ2 (1− β (1− γ)) + α (1− β) (1− β (1− γ (1− β))) > 0

which is always true, since β and γ are supposed smaller than one.

We now prove the rest of Proposition 1. First of all, we can guess that
inflation follows the ALM (2.21) and use the optimality condition (2.39) and
the method of undetermined coefficients to verify that ccgπ must satisfy the
following quadratic expression:

p2 (ccgπ )2 + p1c
cg
π + p0 = 0

where:

p2 ≡ γ
[
κ2β (1− γ) + αβ (1− γ (1− β))

]
p1 ≡ (1− γ)

[
κ2β (1− γ) + αβ (1− γ (1− β))

]
−
[
κ2 + α+ αβ2γ (1− γ (1− β))

]
p0 ≡ αβ (1− β (1− γ) (1− γ (1− β)))

and that:

dcgπ =
α

κ2 + α+ αβ2γ2(β − ccgπ ) + βγ (1− γ) (αβ − (κ2 + α) ccgπ )
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The polynomial in ccgπ can be equivalently rewritten as follows:

ccgπ = −p0 + p2 (ccgπ )2

p1

≡ f(ccgπ )

We will prove that the function f(·), defined on the interval [0, 1], is a con-
traction, so that it admits one and only one fixed point; moreover, since the
two roots of the quadratic expression have the same sign (it is due to the
fact that both p2 and p0 are positive), it follows that the other candidate
value for ccgπ is greater than one, which is not compatible with the boundary
conditions56.

First of all, we show that f(·), when defined on the interval [0, 1], takes
values on the same interval.

Lemma 2. f(ccgπ ) is strictly monotone increasing on the interval [0, 1].

Proof. Note that:

f ′(ccgπ ) =
2γ[αβ(1− γ(1− β)) + κ2β(1− γ)]

κ2 + α+ αβ2γ (1− γ (1− β))− (1− γ)[κ2β (1− γ) + αβ (1− γ (1− β))]
ccgπ

which is positive if and only if the denominator is positive:

κ2 +α+αβ2γ (1− γ (1− β))− (1− γ)[κ2β (1− γ) +αβ (1− γ (1− β))] ≶ 0

After rearranging:

κ2
(
1− β(1− γ)2

)
+α[1−β(1− γ)(1− γ(1−β))]+αβ2γ (1− γ (1− β)) ≶ 0

which is always positive. Thus we have proved that f(ccgπ ) is strictly monotone
increasing on the interval [0,1].

Lemma 3. f(ccgπ ) : [0, 1] → [0, 1]

Proof. Since f(ccgπ ) is strictly monotone increasing it suffices to show that
f(0) > 0 and f(1) < 1.

f(0) =
αβ (1− β (1− γ) (1− γ (1− β)))

κ2 + α+ αβ2γ (1− γ (1− β))− (1− γ)[κ2β (1− γ) + αβ (1− γ (1− β))]

56Since it would imply an exploding inflation.
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where the denominator is positive (see the preceding proof), and also the
numerator is trivially positive. Thus f(0) > 0.

f(1) =
γ [κ2β (1− γ) + αβ (1− γ (1− β))] + αβ (1− β (1− γ) (1− γ (1− β)))

κ2 + α+ αβ2γ (1− γ (1− β))− (1− γ)[κ2β (1− γ) + αβ (1− γ (1− β))]

After rearranging, we get:

f(1) ≶ 1 ⇐⇒ 0 ≶ κ2 (1− β (1− γ)) + α (1− β) (1− β (1− γ (1− β)))

but, as we argued above, the RHS of the last inequality is always positive;
hence, f(1) < 1.

To show that f(·) is a contraction, it suffices to show that its derivative
is bounded above by a number smaller than one: in fact, by the Mean Value
Theorem, we now that for any a, b, there exists a c ∈ (a, b) such that:

|f(a)− f(b)| ≤ |f ′(c)| |a− b|

and if |f ′(c)| ≤M < 1 for any c ∈ [0, 1], we have the definition of a contrac-
tion.

Lemma 4. For any x ∈ [0, 1], 0 < f ′(x) ≤ f ′(1) < 1.

Proof. First of all, note that:

f ′(x) =
2γ[αβ(1− γ(1− β)) + κ2β(1− γ)]

κ2 + α+ αβ2γ (1− γ (1− β))− (1− γ)[κ2β (1− γ) + αβ (1− γ (1− β))]
x

is positive and increasing in x, so that max
x∈[0,1]

f ′(x) = f ′(1); after some alge-

braic manipulation, we get:

f ′(1) ≶ 1 ⇐⇒ (1− βγ) β (1− γ (1− β))+βγ (1− γ (1− β))−1 ≶
κ2

α

(
1− β

(
1− γ2

))
Since β, γ ∈ (0, 1), we have:

(1− βγ) β (1− γ (1− β))+βγ (1− γ (1− β))−1 < 1−βγ+βγ (1− γ (1− β))−1 < 0

so that f ′(1) will be smaller than one (κ
2

α
(1− β (1− γ2)) is always positive).
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Moreover, we prove the following result.

Lemma 5. Let f(·) be defined as above; then, f
(

αβ
κ2+α

)
≤ αβ

κ2+α
.

Proof. Note that:

f

(
αβ

κ2 + α

)
=

αβ (1− β (1− γ) (1− γ (1− β)))

κ2 + α+ αβ2γ (1− γ (1− β))− (1− γ)[κ2β (1− γ) + αβ (1− γ (1− β))]
+

+
γ [κ2β (1− γ) + αβ (1− γ (1− β))]

κ2 + α+ αβ2γ (1− γ (1− β))− (1− γ)[κ2β (1− γ) + αβ (1− γ (1− β))]

(
αβ

κ2 + α

)2

R
αβ

κ2 + α

if and only if:

(κ2 + α)αβ (1− β (1− γ) (1− γ (1− β))) + γ [κ2β (1− γ) + αβ (1− γ (1− β))] αβ
κ2+α

κ2 + α+ αβ2γ (1− γ (1− β))− (1− γ)[κ2β (1− γ) + αβ (1− γ (1− β))]
R 1

For γ = 0 it is easy to verify that f
(

αβ
κ2+α

)
= αβ

κ2+α
. If γ > 0, since the

αβ
α+κ2 < β, the LHS of the above inequality is smaller than:

(κ2 + α)αβ (1− β (1− γ) (1− γ (1− β))) + βγ [κ2β (1− γ) + αβ (1− γ (1− β))]

κ2 + α+ αβ2γ (1− γ (1− β))− (1− γ)[κ2β (1− γ) + αβ (1− γ (1− β))]

which is equal to one; in fact:

(κ2 + α) (1− β (1− γ) (1− γ (1− β))) + βγ[κ2β (1− γ) + αβ (1− γ (1− β))]

κ2 + α+ αβ2γ (1− γ (1− β))− (1− γ)[κ2β (1− γ) + αβ (1− γ (1− β))]
R 1

is equivalent to:

−
(
κ2 + α

)
β (1− γ) (1− γ (1− β))+(1− γ (1− β)) [αβ (1− γ (1− β))+κ2β (1− γ)] R αβ2γ (1− γ (1− β))

But the LHS can simplified as:

κ2 (β (1− γ) (1− γ (1− β))− β (1− γ) (1− γ (1− β)))+αβ (1− γ (1− β)) (1− γ (1− β)− (1− γ))

which is equal to:
αβ2γ (1− γ (1− β))

Summing up, we showed that (if γ > 0) the following holds:

(κ2 + α) (1− β (1− γ) (1− γ (1− β))) + βγ[κ2β (1− γ) + αβ (1− γ (1− β))]

κ2 + α+ αβ2γ (1− γ (1− β))− (1− γ)[κ2β (1− γ) + αβ (1− γ (1− β))]
= 1
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which implies that:

f

(
αβ

κ2 + α

)
<

αβ

κ2 + α

We are now ready to prove the Proposition.

Proof of Proposition 1. Combining the Lemmas 3 and 4 we obtain that
f(·) is a contraction when defined on the interval [0, 1]; moreover, by Lemma
5 we get that f , when defined on [0, αβ

κ2+α
], takes values on the same interval.

This result, together with Lemma 4 and with the inequality αβ
κ2+α

< 1, implies

that f(·) is a contraction also when defined on the interval [0, αβ
κ2+α

] and,

therefore, that the optimal ccgπ must be between zero and αβ
κ2+α

.

Finally, note that when γ = 0, f(ccgπ ) collapses to αβ
κ2+α

, which completes
the proof.

2.6.2 Decreasing Gain Learning

In this section we prove Propositions 2 and 4.

Proof of Proposition 2. To prove the first part of the statement, note
that if we solve forward the following difference equation:

cdgπt = βcdgπt+1 +
αβ

κ2 + α
(1− β)

we obtain one and only one bounded solution, i.e.:

cdgπt =
αβ

κ2 + α
∀t

Moreover, we can rewrite the difference equation defining cdgπt as:

Gt ≡ A11,tc
dg
π,t − cdgπ,t+1 = − 1

t+ 1
cdgπ,t+1 − A12,t +

1

t+ 1
cdgπ,tc

dg
π,t+1 ≡ Ft

If cdgπ is bounded, it is easy to show that F has a limit:

lim
t→∞

Ft = − lim
t→∞

A12,t =
α

κ2 + α
(1− β)
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We can also show that the difference equation defined by G converges to:

β−1cdgπ,τ − cdgπ,τ+1

Summing up, in the limit we have that cdgπ evolves according to:

cdgπτ = βcdgπτ+1 +
αβ

κ2 + α
(1− β)

which, as we argued before, has one and only one bounded solution:

cdgπτ =
αβ

κ2 + α

We prove the second part of the statement by contradiction. Assume that
there exists a T < ∞ such that cdgπT ≥ αβ

α+κ2 ; we show that this implies

cdgπt >
αβ
α+κ2 for any t > T . First of all, we can write:

cdgπ,T+1

(
1− 1

T+1

)
− A12,T

A11,T − cdgπ,T+1
1

T+1

= cdgπT ≥
αβ

α+ κ2

Rearranging and simplifying, this turns out to be equivalent to:(
1− 1

T + 1

(
1− αβ

α+ κ2

))
cdgπT+1 ≥

αβ

α+ κ2
A11,T + A12,T (2.43)

Note that the RHS is equal to:

αβ

α+ κ2
A11,T + A12,T =

αβ

αβ(1 + β 1
t+1

) + κ2β

[
β

(
1 + β

1

t+ 1

)(
1− 1

T + 1

(
1− αβ

α+ κ2

))]
=

αβ

α+ κ2
(
1 + β 1

t+1

)−1

(
1− 1

T + 1

(
1− αβ

α+ κ2

))
>

αβ

α+ κ2

(
1− 1

T + 1

(
1− αβ

α+ κ2

))
where the last inequality is due to the fact that

(
1 + β 1

t+1

)−1
< 1; putting

together the last inequality and (2.43), we get:

cdgπT+1 >
αβ

α+ κ2
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Then, we can apply the above argument to cdgπT+2 as well and, proceeding

by induction, conclude that cdgπt >
αβ
α+κ2 for any t > T . An immediate con-

sequence is that lim
t→∞

cdgπt >
αβ
α+κ2 , which is a contradiction with the result

stated in first part of the Proposition, namely lim
t→∞

cdgπt = αβ
α+κ2 . Hence, we

have showed that there is no t <∞ such that cdgπt ≥ αβ
α+κ2 .

Finally, we prove Proposition 4. First of all, we briefly describe some
results of stochastic approximation57 that we will exploit in the proof.

Let’s consider a stochastic recursive algorithm of the form:

θt = θt−1 + γtQ (t, θt−1, Xt) (2.44)

where Xt is a state vector with an invariant limiting distribution, and γt
is a sequence of gains; the stochastic approximation literature shows how,
provided certain technical conditions are met, the asymptotic behavior of
the stochastic difference equation (2.44) can be analyzed using the associated
deterministic ODE:

dθ

dτ
= h (θ(τ)) (2.45)

where:
h (θ) ≡ lim

t→∞
EQ (t, θ,Xt)

E represents the expectations taken over the invariant limiting distribution
of Xt, for any fixed θ. In particular, it can be shown that the set of limiting
points of (2.44) is given by the stable resting points of the ODE (2.45).

Proof of Proposition 4. Note that our equation (2.35) is a special case
of (2.44), where the technical conditions are easily shown to be satisfied;
moreover, it is also easy to see that:

h (a) = lim
t→∞

(cdgπ,t − 1)a =

(
αβ

α+ κ2
− 1

)
a

which has a unique possible resting point at a∗ = 0. Since αβ
α+κ2 < 1, we have

that a∗ is globally stable, which proves the statement.

57Ljung (1977), Benveniste et al. (1990) provide a recent survey.
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2.6.3 Comparison with EH Rule

Proof of Proposition 3. First of all, note that:

δdgπ,t ≷ δEHπ ⇐⇒ σ
β − cdgπ,t

κ
≷ σ

κβ

α+ κ2

where the second inequality can be rewritten as:

β

κ
− κβ

α+ κ2
≷
cdgπ,t
κ

Rearranging the terms, we get:

δdgπ,t ≷ δEHπ ⇐⇒ αβ

α+ κ2
≷ cdgπ,t

Since we have shown in Proposition 2 that t < ∞ implies cdgπ,t <
αβ
α+κ2 , we

conclude that δdgπt > δEHπ . Using a similar argument, it is easy to show that:

δdgut ≷ δEHu ⇐⇒ α

α+ κ2
≷ ddgπ,t

which implies, since

dcgπ =
α

κ2 + α+ αβ2γ2(β − ccgπ ) + βγ (1− γ) (αβ − (κ2 + α) ccgπ )
<

α

α+ κ2
,

that δdgut > δEHu whenever t <∞. Finally, note that Proposition 2 also showed
that lim

t→∞
cdgπ,t = αβ

α+κ2 , which trivially yields lim
t→∞

δdgπ,t = δEHπ and lim
t→∞

δdgut =

δEHu .

2.6.4 Derivations of Consumption Equivalents

In this section we follow derivations of Adam and Billi (2006).
Woodford (2003) chapter 6 shows that the second order approximation

of the representative agents discounted utility flow is given by

U = −Ȳ UcLP , (2.46)

where Ȳ denotes the steady state level of output associated with zero
inflation in the absence of disturbances, Uc is the marginal utility of con-
sumption at Ȳ and
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LP =
1

2

σ + ω

α

∞∑
i=1

βi(π2
t+i + x2

t+i) ,

where (σ) is the households Arrow-Pratt Measure of relative risk aversion
and ω is the elasticity of a firm’s real marginal cost with respect to its own
output, LP denotes L generated under a policy rule P.

Assuming a permanent reduction in consumption from Ȳ by p ≥ 0 per-
cent, a second order approximation of the utility loss is

1

1− β

(
−UcȲ

p

100
+
Ucc
2

(
Ȳ

p

100

)2
)

=
−UcȲ
1− β

(
p

100
− UccȲ

2Uc

(
Ȳ

p

100

)2
)

=

−UcȲ
1− β

(
p

100
+
σ

2

(
Ȳ

p

100

)2
)
,

where Ucc is the second derivative of utility of utility with respect to con-
sumption evaluated at Ȳ . Equating this utility loss to (2.46), the welfare loss
generated under policy rule P gives

p

100
+
σ

2

(
Ȳ

p

100

)2

− (1− β)(LP ) = 0 .

The percentage loss in steady state consumption equivalent to the de-
crease in utility generated by following rule P is

p = 100σ

(
−1 +

√
1 +

2(1− β)(LP )

σ

)
.

Since x and π are expressed in percentage points we have to rescale the
losses and use

p = 100σ

(
−1 +

√
1 +

2(1− β)(LP )σ

1002

)
. (2.47)
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2.7 Figures
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Figure 2.1: Feedback parameter in the ALM for inflation as a function of γ.
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Figure 2.2: Impulse response of inflation for an initial cost-push shock u = 1.
Solid line: optimal policy under learning and private agents following learning
with γ = 0.9. Dashed line: optimal discretionary policy under RE with
private agents have rational expectations. Initial conditions: a0 = 0, π0 = 0,
x0 = 0.
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Figure 2.3: Variance of inflationary expectations
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Figure 2.4: Variance of output gap expectations
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Figure 2.5: Interest rate rule coefficient on inflation expectations under de-
creasing gain learning.
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Figure 2.6: Interest rate rule coefficient on the cost push shock under de-
creasing gain
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Figure 2.7: Values of α and κ for which δdgπ is increasing in the first 4 periods.
From the 4th period on δdgπ is always decreasing. (β = 0.99)
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Figure 2.8: Evolution inflation and output gap expectations under the op-
timal (solid line) and the EH rule (dashed line), when private agents follow
decreasing gain learning
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Chapter 3

Monetary Policy with
Heterogenous Expectations

3.1 Introduction

Since the seminal paper of Taylor (1993), it has become standard practice
to assume that the monetary authority uses as instrument the short term
nominal interest rate, and moves it in reaction to realized (or expected)
changes on inflation and output gap. The performance of this type of simple
monetary policy rules (also known as “Taylor rules”1) in a dynamic stochastic
general equilibrium microfounded framework, where money has real effects
due to nominal rigidities. This kind of models typically involves private
sector expectations of future realizations of endogenous variables; modelling
the formation process of these expectations is therefore a crucial issue.

When private agents have rational expectations (RE), many researchers2

have focused on the possibility that, under certain conditions, a policy rule
gives rise to a multiplicity of equilibria, characterized by self-fulfilling beliefs.
This situation can give rise to large fluctuations, with negative consequences
on social welfare, and is therefore deemed as undesirable. A typical result
of this strand of literature is that a property that characterizes a “good”
monetary policy is a response of the interest rate to inflation sufficiently

1Throughout the rest of this chapter, we treat the terms “Taylor rule”, “interest rate
rule” and “policy rule” as interchangeable.

2See, among others, Bernanke and Woodford (1997), Woodford (1999) and (2003),
Clarida et al. (1999).
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strong; in particular, if the Taylor rule shows no dependence on the output
gap, determinacy requires a response to inflation more than proportional.
This aggressive behavior is termed as “Taylor principle”.

Over the last decade adaptive learning emerged as an alternative approach
to modelling private sector expectations3. In particular, the main focus has
been on the conditions that ensure stability under learning of the relevant
RE equilibrium, namely, on the possibility to achieve RE as the limit of
an adaptive learning scheme, when the initial beliefs of the agents are out of
equilibrium. Examples in this line are Evans and Honkapohja (2003a), Evans
and Honkapohja (2003b), Evans and Honkapohja (2006) and Honkapohja and
Mitra (2005).

Bullard and Mitra (2002) try to combine the two approaches: they assess
under which conditions different monetary policy rules are desirable, in the
sense that they satisfy two key requirements: determinacy of the equilibrium,
when agents have RE, and learnability of the RE equilibrium if agents’ beliefs
evolve according to an adaptive learning algorithm. Their results show that,
under many (but not all) specifications of the interest rate rule, the Taylor
principle retains its validity as a criterion to assess the quality of the monetary
policy, since it is necessary to ensure both determinacy and learnability.
Their analysis is conducted in the two extreme cases, namely when the agents
are either all rational or all learners

However, as argued also in Nunes (2004), there is ample empirical evi-
dence documenting that the dynamics of private sector beliefs, when proxied
by surveys, are better explained by a combination of rational and backward-
looking expectations. Early results in this spirit can be found in Roberts
(1997) and (1998), where the expectations of US agents collected in the Michi-
gan and Livingston surveys are shown to be inconsistent with the hypothesis
of purely rational expectations; instead, they provide evidence in favor of
an intermediate degree of rationality, with a fraction of the agents endowed
with a simple form of backward-looking expectations. More recently, Carroll
(2003) uses the same surveys to test a model where households derive their
expectations from news media, which, in turn, report expectations of profes-
sional forecasters; the results he gets point in the direction of intermediate
rationality4. More recent examples for US data are Adam and Padula (2003)
and Erceg and Levine (2003). Also in the Euro area households expectations

3For an extensive monograph on adaptive learning, see Evans and Honkapohja (2001).
4In a related paper, Branch (2001) shows that the Michigan survey is consistent with

the hypothesis of heterogeneous agents who form their forecasts according to different non-
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show this form of intermediate rationality, as documented in Forsells and
Kenny (2002).

The aim of this chapter is to analyze a framework where the expectations
formation scheme is fairly general: in particular, we assume that a fraction
of private agents has RE, and the rest has backward-looking expectations,
updated according to the adaptive learning literature. We consider the base-
line version of the New Keynesian model, which is by now the workhorse in
monetary economics, and modify the structural equations to allow for hetero-
geneous expectations. To close the model we assume that the Central Bank
follows a Taylor-type rule rule, with the interest rate responding to present,
past or (expected) future values of inflation and output gap; we evaluate the
determinacy of the associated equilibrium and the stability of the beliefs of
the backward-looking agents, comparing our results with those derived for
the polar cases in the existing literature.

Our first contribution is the conclusion that in this extended framework
the Taylor principle retains its validity as a criterion to assess the desirability
of a monetary policy rule: in fact, irrespectively of the particular Taylor rule
used and of the fraction of backward-looking agents, the Taylor principle is a
necessary condition for determinacy. However, when we fully characterize the
determinacy properties of the model under the heterogeneous expectations
hypothesis, the particular specification assumed for the Taylor rule matters.
If the interest rate reacts to current values of inflation and output gap, the
equilibrium is determinate under the same conditions valid when all agents
are rational; instead, the introduction of backward-looking agents increases
the set of values of the policy coefficients associated with determinacy if the
interest rate responds to the forecasts of future inflation and output gap, and
reduces it if the interest rate responds to past inflation and output gap.

Moreover, the dynamics when determinacy fails to hold can be quite dif-
ferent from the homogeneous rational expectations model: in fact, if the
fraction of backward-looking agents is sufficiently large, the model shows in-
stability (i.e., explosive equilibrium), instead of indeterminacy (i.e., multiple
bounded equilibria).

Finally, we find a tight link between the asymptotic properties of the
learning agents’ beliefs, and the determinacy properties of the model: in
particular, when the equilibrium is determinate, the learners’ beliefs settle

rational predictors; the fraction of agents that chooses a predictor depends on its relative
mean squared error.
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down to a stationary distribution around the rational expectation values of
the endogenous variables.

The results of this chapter have a twofold implication for policymaking.
On one hand, the standard prescription that a Central Bank should follow
the Taylor principle holds under fairly general assumptions on the expecta-
tions formation mechanism of the private sector, and on the specification of
the interest rate rule. On the other hand, given that the policymaker should
be aggressive, how much aggressiveness is desirable5 depends on the degree of
rationality embedded in the agents’ beliefs, and on the timing of the endoge-
nous variables in the Taylor rule; hence, a deep understanding of how the
private sector forms its expectations should be a priority for any monetary
policy authority.

The rest of the chapter is organized as follows. Section 3.2 outlines the
model under general assumptions on the beliefs of the private sector, while
Section 3.3 reviews the results obtained in the literature when expectations
are rational. Section 3.4 states our main results about the dynamic properties
of the system when expectations are heterogeneous. Section 3.5 investigates
how the beliefs of the backward-looking agents behave asymptotically, and
Section 3.6 concludes.

3.2 The Model

We consider the baseline version of the New Keynesian model; the economy
is characterized by two structural equations6. The first one is an IS equation:

xt = E∗
t xt+1 − σ−1(rt − E∗

t πt+1) + rrt (3.1)

where xt, rt and πt denote time t output gap7, short-term nominal interest
rate and inflation, respectively; σ is a parameter of the household’s utility
function, representing the intertemporal elasticity of substitution, and rrt is
the natural real rate of interest, i.e. the real interest rate that would hold
in absence of any nominal rigidity. Note that the operator E∗

t represents the
(conditional) agents’ expectations, which are not necessarily rational. The
above equation is derived loglinearizing the household’s Euler equation.

5In the context of this chapter “desirable” has no link with optimality issues; it simply
implies that determinacy conditions hold.

6See, among others, Yun (1996), Clarida et al. (1999) and Woodford (2003).
7Namely, the difference between actual and natural output.
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The second equation is the so-called New Keynesian Phillips Curve (NKPC):

πt = βE∗
t πt+1 + kxt + ut (3.2)

where β denotes the subjective discount rate, k is a function of structural
parameters, and ut is a cost-push shock8; this relation is obtained assuming
that the supply side of the economy is characterized by a continuum of firms
that produce differentiated goods in a monopolistically competitive market,
and that prices are staggered à la Calvo: in other words, in each period firm
i can reset the price with a constant probability 1−θ, and with probability θ
it keeps the same price as in the previous period. If firms take this structure
into account when deciding the optimal price, it can be shown9 that the
aggregate inflation is given by (3.2). The exogenous shocks are assumed to
follow the process:(

rrt
ut

)
=

(
ρr 0
0 ρu

)(
rrt−1

ut−1

)
+

(
εrt
εut

)
(3.3)

where 0 < ρi < 1 and εit ∼ N (0, σ2
i ), for i = r, u.

As is common practice in recent monetary policy literature, we assume
that the instrument of the central bank (CB) is the short term nominal
interest rate, which is set according to a rule; several rules have been proposed
in the literature, with the interest rate reacting to current, past and future
expected values of the endogenous variables10:

rt = r (E∗
t yt+1, yt, yt−1)

where yt = [xt, πt]
′.

To close the model, we need to specify: (i) the formation process of private
sector expectations, and (ii) the functional form of r (·). For (i) we postulate
that a fraction 1 − µ of the agents have nonrational expectations, updated
through adaptive learning, and a fraction µ has RE11. In other words, the

8For interpretations of this shock, see among others Clarida et al. (1999), Erceg et al.
(2000), Woodford (2003).

9See Yun (1996).
10In this chapter we consider only rules that do not include an explicite dependence on

the lagged interest rate, following the original paper of Taylor (1993); however, extending
the analysis to take into account the empirically documented interest rate smoothing by
monetary authority is a relevant issue for future research.

11This coexistence of rational and learners is already present in Molnar (2006) and Nunes
(2004).
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expectations are defined as:

E∗
t πt+1 = µEtπt+1 + (1− µ) Êtπt+1

E∗
t xt+1 = µEtxt+1 + (1− µ) Êtxt+1

where the learners beliefs are updated according to the constant gain algo-
rithm:

Êtπt+1 ≡ at = at−1 + γ(πt−1 − at−1) (3.4)

Êtxt+1 ≡ bt = bt−1 + γ(xt−1 − bt−1) (3.5)

with γ ∈ (0, 1). Note that learners have a Perceived Law of Motion (PLM)
that is consistent with the law of motion that CB would implement in the
discretionary optimal RE solution12: in other words, the conditional expecta-
tions of both inflation and output gap are assumed to be constant. Structural
equations can be rewritten accordingly as:

xt = µEtxt+1 + (1− µ) bt − σ−1(rt − µEtπt+1 − (1− µ) at) + rrt (3.6)

and:
πt = µβEtπt+1 + (1− µ) βat + kxt + ut (3.7)

Turning to (ii), we follow most of recent literature in assuming a linear spec-
ification13:

rt = αfΨE
∗
t yt+1 + αcΨyt + αlΨyt−1

where α ≡ [αf , αc, αl]
′ is a point in the closed three-dimensional simplex,

and Ψ ≡ [ψx, ψπ] is a vector of policy coefficients. For analytical simplicity
we concentrate on the extreme cases of α being one of the vertices of the
simplex. Thus, the function r (·) can be indexed by i = f, c, l:

rt = ri (E
∗
t yt+1, yt, yt−1) =


ΨE∗

t yt+1, if i = f
Ψyt, if i = c
Ψyt−1, if i = l

(3.8)

12See Clarida et al. (1999).
13When expectations are not rational, we have to make explicit assumptions on the

forecasts of y targeted by the monetary authority, since they could be either the CB
expectations, or the private sector’s beliefs; in this chapter we follow Bernanke and Wood-
ford (1997) in assuming that the interest rate reacts to the predictions formulated by the
private sector.
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3.3 Traditional Results

In this section we briefly recall the main findings on equilibrium determinacy
in RE New Keynesian models under interest rate rules. Hence, we set µ = 1,
which implies that E∗

t = Et, and that the economy is described by the system:

xt = Etxt+1 − σ−1(rt − Etπt+1) + rrt
πt = βEtπt+1 + kxt + ut
rt = ri (Etyt+1, yt, yt−1)

(3.9)

plus the law of motion of the shocks (3.3).
Let’s define with wt the vector [xt, πt, rt]

′, and with wRi ≡
{
wRit
}∞
t=0

a
rational expectations equilibrium associated with the economy in the case
µ = 1, namely a stochastic process that satisfies the system (3.9)-(3.3) at all
t, with the interest rate set according to (3.8).

Definition 1. The determinacy region DR
i ⊂ R2

+ associated to the economy
(3.9)-(3.3) is defined as:

DR
i =

{
Ψ ∈ R2

+ : there exists one and only one bounded wRi
}

Note that the concept of determinacy that we use in this chapter is local
in nature: the model is log-linearized around a steady state, which implies
that the results we obtain are reasonable only in a neighborhood of the steady
state.

Extending some well-known results, one can prove the following Proposi-
tion.

Proposition 5. Let k < σ
β

(1− β2); then, the determinacy region is given
by:

DR
i = DR

i ∩D
R

i

where DR
i , D

R

i ⊆ R2
+ are half-spaces defined as:

(i) DR
i = DR =

{
Ψ ∈ R2

+ : k (ψπ − 1) + (1− β)ψx > 0
}

for i = f, c, l;

(ii) D
R

i =
{
Ψ ∈ R2

+ : k (ψπ − 1) + (1 + β)ψx < 2σ (1 + β)
}

for i = f, l,

and D
R

c = R2
+ for i = c.

Proof. This Proposition simply reorganize the results presented in Bullard
and Mitra (2002), with the difference that the condition k < σ

β
(1− β2) rules

out the possibility that, for i = l, determinacy regions includes also the
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portion of parameters’ space given by
(
R2

+ −DR
)
∩
(
R2

+ −D
R

i

)
; we could

dispose of this condition at the expense of reduced analytical tractability.

In other words, we have that a necessary condition for determinacy is
a reaction to inflation sufficiently strong to rule out self-fulfilling expecta-
tions (i.e., the Taylor principle); moreover, if the interest rate responds to
future (past) endogenous variables, a monetary policy too hawkish leads to
indeterminacy (explosiveness).

3.4 Determinacy with Heterogeneous Expec-

tations

In this section we go back to the more general case 0 < µ ≤ 1. We can stack
together equations (3.6)-(3.8) and (3.4)-(3.5), obtaining the system:

Aiwt = BiEtwt+1 + Ciθt + ηt

θt+1 = (1− γ) θt + γyt

where θt = [bt, at]
′, ηt = [rrt, ut]

′ and the matrices Ai, Bi and Ci depend on
the interest rule adopted. The above system can be rewritten compactly as:

Mizt = NiEtzt+1 + Pηt (3.10)

where zt = [w′t, θ
′
t]
′ and:

Mi =

(
Ai −Ci
γI (1− γ) I

)
, Ni =

(
Bi 0
0 I

)
, P =

(
I
0

)
where I is the identity matrix. Note that, if µ = 1, the system collapses
to the standard New Keynesian model with RE; its determinacy properties
have been analyzed in the previous section.

If instead µ ∈ (0, 1), the economy defined by (3.10)-(3.3) has richer dy-
namics. Let’s define with zHi ≡

{
zHit
}∞
t=0

a stochastic process that solves the
system (3.10)-(3.3) at all t, with the interest rate set according to (3.8). We
seek to characterize the set DH

i , which is defined as follows.

Definition 2. The determinacy region associated to the economy (3.10)-
(3.3), denoted by DH

i , is defined as:

DH
i =

{
Ψ ∈ R2

+ : there exists one and only one bounded zHi
}
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A first important result is that, if the Phillips curve is not too steep,
the Taylor principle remains a sensible criterion to assess the desirability of
a policy rule; in fact, a CB that wants to stabilize the economy has to be
tough on inflation not only when all the private sector is characterized by
RE, but also when there is an arbitrary large fraction of backward-looking
agents as is stated in the following Proposition.

Proposition 6. Let k < k, where:

k =

[
σ (1− β)

(
1 + βµ

β
+ βγ

1− µ

2− γ

)]
β (1 + µ (1− γ))

β (1 + µ (1− γ)) + (1− β) (1− γ) (1− µ)

Then DH
i ⊆ DR, where DR is the set defined in Proposition 5.

Proof. See the Appendix.

Note that the above result holds for every i: independently of the partic-
ular Taylor rule used, a unique bounded equilibrium cannot be implemented
by a “passive” monetary policy. On the other hand, as implied by the fol-
lowing Proposition, the upper contour of the determinacy region depends
crucially on the type of rule that the CB is committed to.

Proposition 7. Let k < k; then, the following holds:
(i) DH

c = DR
c ;

(ii) DH
f ⊃ DR

f ;
(iii) DH

l ⊂ DR
l .

Proof. See the Appendix.

In other words, if the CB adopts the forward-looking (backward-looking)
Taylor rule, the determinacy region is larger (smaller) than in the homo-
geneous expectations case. To get an intuition, it can be useful to start
from the reason why, in the model analyzed in the previous section, a policy
too hawkish drives the economy out of the determinacy region when i = f .
As emphasized in Bernanke and Woodford (1997) and in Woodford (2003)
among others, when the interest rate reacts too aggressively to changes in in-
flation forecasts, it determines a “policy overkill” effect that ends up inducing
an oscillating equilibrium driven purely by self-fulfilling expectations. The
introduction in the setup of a backward-looking term, given by the learners
beliefs, helps to pin down the equilibrium, dampening sunspot fluctuations,
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and even eliminating them when Ψ ∈ DH
f − DR

f . When the Taylor rule is
already backward-looking (i.e., if i = l) this mechanism works in the oppo-
site direction: if the rule is aggressive, a positive (negative) value of past
inflation results in an high (low) level of the nominal and real interest rate,
depressing (expanding) economic activity and yielding a negative (positive)
contemporaneous inflation, which feeds back in the subsequent period’s pol-
icy rule. Hence, the system enters a cycle, which is explosive if the rule is too
aggressive; when an additional backward-looking component is introduced in
the economy, the waves of the cycle are amplified, widening the region of the
policy coefficients space associated with explosive dynamics.

3.4.1 Dynamics out of the Determinacy Region

In this section we characterize the equilibrium dynamics out of the determi-
nacy region; in particular, when the interest rate responds to contemporane-
ous values of inflation and output gap, we can prove the following result.

Proposition 8. Let i = c, k < k and Ψ ∈ R2
+ − DR, where DR is the set

defined in Proposition 5; then there exists a µi ∈ (0, 1) such that for any
µ ∈ (µi, 1] the system (3.10)-(3.3) is indeterminate, and for any µ ∈ (0, µi)
it is explosive.

Proof. See the Appendix.

This result stems again from the backward-looking nature of learners be-
liefs, which works against possible sunspot equilibria; hence, if the proportion
of adaptive agents is sufficiently high, a loose monetary policy would not trig-
ger self-fulfilling expectations, but would put the economy on an explosive
path, with very different welfare implications. We have not been able to prove
a similar result for i = f, l so far, but numerical simulations support the idea
that it holds also when the Taylor rule is backward or forward looking.

On the other hand, the consequences of an overly aggressive Taylor rule
when i = f, l are analogous to the homogeneous RE case: if the rule is
forward-looking, the equilibrium is indeterminate; if it is backward-looking,
the economy enters an explosive cycle.
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3.5 Dynamics of Learners Beliefs

In most of the existing literature on learning and monetary policy, the hy-
pothesis of homogeneous expectations makes determinacy and learnability
two separate problems: when agents are rational, the concern is determinacy,
when they are learning, the concern is convergence to RE. In our framework,
we can naturally analyze the two issues together.

In particular, having characterized the conditions for determinacy, we now
answer the question of what are the corresponding asymptotic properties of
the learners beliefs; we show them in the following Proposition.

Proposition 9. Let’s assume that the policy rule is such that a bounded
solution to (3.10)-(3.3) exists and is unique, i.e. Ψ ∈ DH

i ; then θt converges
in distribution to a process θ∗ ∼ N (0,Σi), where the variance-covariance
matrix Σi is a function of the structural parameters.

Proof. See the Appendix.

The intuition is straightforward: if the system stays bounded, then it
cannot admit a diverging path of the backward looking beliefs. When Ψ is
out of the determinacy region, the results are less clear-cut. On one hand, if
the system is explosive, it is possible to show that also θ explodes, but this
poses the question of the plausibility of the assumption that learners keep
forming the expectations using a PLM consistent with constant values of
inflation and output gap; on the other hand, if the system is indeterminate,
the issue of learnability of stationary sunspots emerges. The study of this
possibility, for example using the results shown in Honkapohja and Mitra
(2004), is beyond the scope of this chapter.

3.6 Conclusions

A well-known result in monetary economics is that, when expectations are
rational, a simple interest rate rule can lead to an indeterminate or explosive
solution; in particular, the reaction of the interest rate should obey the Taylor
principle, namely it should be sufficiently aggressive to rule out sunspot equi-
libria and, when the interest rate responds to realized past (expected future)
values of inflation and output gap, it should not be too aggressive, in order to
avoid a “policy overkill” effect that would trigger explosive (indeterminate)
cycles.
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The main contribution of this chapter is to show that, in a generalized
framework where a fraction of the agents has rational expectations, and the
rest has backward-looking expectations updated according to the adaptive
learning literature, the design of the monetary policy should be concerned
about the same issues: on one hand, it should follow the Taylor principle, on
the other, when the interest rate responds to realized past (expected future)
values of inflation and output gap, it should not be too aggressive. However,
the magnitude of this upper bound differs from the case of homogeneous
rational expectations: it is more binding when the Taylor rule is backward-
looking, and less binding when it is forward-looking.

When the Taylor rule fails to hold, the model can show either instability
or indeterminacy, depending on how large is the fraction of backward-looking
agents.We also demonstrate that when the equilibrium is determinate, the
learners’ beliefs settle down to a stationary distribution around the rational
expectation values of the endogenous variables.

The results of this chapter have a twofold implication for policymaking.
On one hand, the standard prescription that a Central Bank should follow
the Taylor principle holds under fairly general assumptions on the expecta-
tions formation mechanism of the private sector, and on the specification of
the interest rate rule. On the other hand, given that the policymaker should
be aggressive, how much aggressiveness is desirable depends on the degree of
rationality embedded in the agents’ beliefs, and on the timing of the endoge-
nous variables in the Taylor rule; hence, a deep understanding of how the
private sector forms its expectations should be a priority for any monetary
policy authority.
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3.7 Appendix

3.7.1 Determinacy

First of all, we state the following Lemma, which summarizes some well
known results.

Lemma 6. Let λ1, λ2 lie in the complex plane, then14:

• the λi’s (i = 1, 2) are both inside the unit circle if and only if the
following conditions are satisfied:

|λ1 + λ2| < |1 + λ1λ2|
|λ1λ2| < 1

• the λi’s (i = 1, 2) are both outside the unit circle if and only if the
following conditions are satisfied:

|λ1 + λ2| < |1 + λ1λ2|
|λ1λ2| > 1

• the λi’s (i = 1, 2) are one inside and one outside the unit circle if and
only the following condition is satisfied:

|λ1 + λ2| > |1 + λ1λ2|

Proof. See LaSalle (1986).

To prove Propositions 6 and 7, we begin noting that existence and unique-
ness of bounded solutions to the system (3.10)-(3.3) hinge on the eigenvalues
of the matrix Qi ≡ N−1

i Mi; in particular, since there are three predetermined
and two forward-looking variables, we can invoke the results of Blanchard and
Kahn (1980) to say:

• if Qi has three eigenvalues inside and two outside the unit circle, then
there exists one and only one bounded solution to (3.10)-(3.3);

• if Qi has more than three eigenvalues inside the unit circle, then there
exist a multiplicity of bounded solutions to (3.10)-(3.3);

14In what follows, we rule out the non-generic case of λi’s on the unit circle.
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• if Qi has less than three eigenvalues inside the unit circle, then (3.10)-
(3.3) admits no bounded solution.

When i = c, f , the matrix Mi has a row of zeros, and we can concentrate
on the eigenvalues of the matrix Q̂i ≡ N̂−1

i M̂i, where M̂i and N̂i are given
by:

M̂i =

(
Âi −Ĉi
γI (1− γ) I

)
, N̂i =

(
B̂i 0
0 I

)
and Âi, B̂i and Ĉi are obtained from the system (3.6)-(3.7), after using the
Taylor rule to substitute out r.

Proof of Proposition 6. We want to show that, if Ψ ∈ DH
i , then Ψ ∈ DR.

This is equivalent to say that, if Ψ /∈ DR, then Ψ /∈ DH
i . We prove this

statement separately for the three possible values of i.

• i = c. Note that the eigenvalues of Q̂c are the roots of the characteristic
polynomial:

pc (λ) ≡ ac4λ
4 + ac3λ

3 + ac2λ
2 + ac1λ+ ac0

where15:

ac4 = 1

ac3 = −k + σ (1 + β + 2βµ (1− γ)) + βψx
βµσ

ac2 =
1

βµ2σ
[σ + σµ (2 (1− γ) + β (2 + µ (1− γ (4− γ)))) + ψx+

+2βµψx (1− γ) + k (2µ (1− γ) + ψπ)]

ac1 = − 1

βµ2σ

[
σ
(
2 + µ+ βµ+ γ2µ (1− β + 2βµ)− γ

(
1 + 3µ+ β

(
1− µ+ 2µ2

)))
+ψx (2− γ (2− β) + βµ (1− γ (3− γ))) + k (µ+ γ (1− µ (3− γ)− 2ψπ) + 2ψπ)]

ac0 =
1

βµ2σ
[(−1 + γ (1− β (1− µ))) (σ (−1 + γµ)− ψx (1− γ))− k (1− γ)

(−ψπ + γ (−1 + µ+ ψπ))]

15The Mathematica routines used to obtain the expressions for the coefficients are avail-
able from the author upon request.
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We can use the solution formula of the quartic equation to group the
four roots of pc (·) in two couples, characterized by the following con-
ditions:

λc1λc2 =
1

2βµσ
[k (1− γ) + σ (1− γ + β (1 + γ − 2γµ)) + (1− γ) (βψx

−
√
k2 + (βψx − σ (1− β))2 + 2k (σ + βσ + βψx − 2βσψπ)

)]
λc1 + λc2 =

1

2βµσ
[k + σ (1 + β + 2βµ (1− γ)) + βψx

−
√
k2 + (βψx − σ (1− β))2 + 2k (σ + βσ + βψx − 2βσψπ)

]
and:

λc3λc4 =
1

2βµσ
[k (1− γ) + σ (1− γ + β (1 + γ − 2γµ)) + (1− γ) (βψx

+

√
k2 + (βψx − σ (1− β))2 + 2k (σ + βσ + βψx − 2βσψπ)

)]
λc3 + λc4 =

1

2βµσ
[k + σ (1 + β + 2βµ (1− γ)) + βψx

+

√
k2 + (βψx − σ (1− β))2 + 2k (σ + βσ + βψx − 2βσψπ)

]
To determine for each λcj whether it lies inside or outside the unit
circle, we combine the above conditions with Lemma 616. Let’s start
from the group (λc3, λc4); the condition λc3 + λc4 ≷ 1 + λc3λc4 is easily
shown to be equivalent to:

0 ≷ −γ
(
k + σ (1− β) + βψx +

√
k2 + (βψx − σ (1− β))2 + 2k (σ + βσ + βψx − 2βσψπ)

)
The RHS of the above inequality is always negative, so we conclude17:

λc3 + λc4 > 1 + λc3λc4
16An inspection of the signs of the characteristic polynomial’s coefficients, combined

with the Descartes’ rule, allows us to conclude that all the roots of p (·) lie in the right
half of the complex plane.

17We have implicitly assumed that the radicand in the RHS of the inequality is pos-
itive; the case of a negative radicand, and hence of an imaginary term, can be easily
accomodated.
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Hence, for any value of µ, and independently of the Taylor principle
being satisfied or not, one eigenvalue of the group (λc3, λc4) lies inside
the unit circle, and the other outside.

Let’s consider the other group; the condition λc1 + λc2 ≷ 1 + λc1λc2 is
equivalent to:

0 ≷ −γ
(
k + σ (1− β) + βψx −

√
k2 + (βψx − σ (1− β))2 + 2k (σ + βσ + βψx − 2βσψπ)

)
To determine the sign of the RHS, note that, if ψπ = −(1−β)ψx

k
+ 1 (i.e.,

if k (ψπ − 1) + (1− β)ψx = 0):

k2+(βψx − σ (1− β))2+2k (σ + βσ + βψx − 2βσψπ) = (k + σ (1− β) + βψx)
2

which means that:

k+σ (1− β)+βψx−
√
k2 + (βψx − σ (1− β))2 + 2k (σ + βσ + βψx − 2βσψπ) = 0

Consequently, if ψπ <
−(1−β)ψx

k
+1 (i.e., if the Taylor principle does not

hold):

k2+(βψx − σ (1− β))2+2k (σ + βσ + βψx − 2βσψπ) > (k + σ (1− β) + βψx)
2

and:

0 < −γ
(
k + σ (1− β) + βψx −

√
k2 + (βψx − σ (1− β))2 + 2k (σ + βσ + βψx − 2βσψπ)

)
which is equivalent to say that λc1 + λc2 < 1 + λc1λc2, namely that
λc1 and λc2 lie both either inside or outside the unit circle. Note that
this conclusion holds for any value of µ. Putting together the result for
(λc1, λc2) and the one for (λc3, λc4), we prove that when k (ψπ − 1) +
(1− β)ψx < 0, i.e. when Ψ /∈ DR, the system (3.10)-(3.3) admits
either infinite or zero bounded solutions.

• i = f . The proof goes through analogously to the case i = c, with the
characteristic polynomial given by:

pf (λ) ≡ af4λ
4 + af3λ

3 + af2λ
2 + af1λ+ af0
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where18:

af4 = 1

af3 =
k (ψπ − 1) + σ (−1− β (1 + 2µ (1− γ)) + 2βµ (1− γ)) + ψx + 2βµ (1− γ)ψx

βµ (σ − ψx)

af2 =
1

βµ2 (σ − ψx)
[σ + σµ (2 (1− γ) + β (2 + µ (1− γ (4− γ)))) +

+ (2− 2γ (1− β) + βµ (1− γ (4− γ)))ψx − 2k (1− γ) (ψπ − 1)]

af1 = − 1

βµ2 (σ − ψx)

[
σ
(
2 + µ+ βµ+ γ2µ (1− β + 2βµ)− γ

(
1 + 3µ+ β

(
1− µ+ 2µ2

)))
+ (µ+ γ (1 + µ (−3 + γ + 2β (1− γ) (1− µ))))ψx + k (γ + µ− γµ (3− γ)) (ψπ − 1)]

af0 =
1

βµ2 (σ − ψx)
[(−1 + γ (1− β (1− µ))) (σ (−1 + γµ) + γ (1− µ)ψx)− kγ (1− γ)

(1− µ) (ψπ − 1)]

• i = l. The system is governed by the eigenvalues of Ql; since it is a
5× 5 matrix, it’s eigenvalues cannot in general be derived analytically,
so that the type of analysis carried out when i = c, f is not applica-
ble. However, we can draw conclusions studying the coefficients of the
characteristic polynomial:

pl (λ) ≡ al5λ
5 + al4λ

4 + al3λ
3 + al2λ

2 + al1λ+ al0

18The Mathematica routines used to obtain the expressions for the coefficients are avail-
able from the author upon request.
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where:

al5 = −1

al4 =
k + σ (1 + β + 2βµ (1− γ))

βµσ

al3 =
1

βµ2σ
[βµψx − 2kµ (1− γ)− σ (1 + µ (2− 2γ + β (2 + µ (1− γ (4− γ)))))]

al2 =
1

βµ2σ

[
σ
(
2 + µ+ βµ+ γ2µ (1− β + 2βµ)− γ

(
1 + 3µ+ β

(
µ− 1 + 2µ2

)))
−ψx (1 + 2βµ (1− γ)) + k (µ+ γ − γµ (3− γ)− ψπ)]

al1 =
1

βµ2σ
[σ (1− γµ) (−1 + γ − βγ + βγµ) + ψx (2− γ (2− β) + βµ (1− γ (3− γ)))

+k (1− γ) (2ψπ − γ (1− µ))]

al0 =
1

βµ2σ
[(1− γ) (ψx (−1 + γ (1− β (1− µ)))− kψπ (1− γ))]

Using the Descartes’ Rule of Signs we obtain that there exists exactly
one negative real root, while the other four are either real positive, or
complex conjugates; moreover, note that:

pl (1) = − 1

βµ2σ
γ2 [k (ψπ − 1) + (1− β)ψx]

pl (0) = − 1

βµ2σ
(1− γ) [kψπ (1− γ) + (1− γ + βγ (1− µ))ψx]

pl (−1) =
1

βµ2σ

[
2σ (1 + µ (1− γ))

(
(1 + βµ) + βγ

1− µ

2− γ

)
+ (k − βψx) γ (1− µ)

− (2− γ) (k (ψπ − µ) + (1 + βµ)ψx)]

Examining the above relations, one can show that:

pl (1) ≷ 0 ⇐⇒ k (ψπ − 1) + (1− β)ψx ≶ 0

pl (0) < 0

pl (1) > 0 =⇒ pl (−1) > 0

where the last implication makes use of the hypothesis k < k. Hence,
if the Taylor principle does not hold (k (ψπ − 1) + (1− β)ψx < 0), we
have that the negative real root lies inside the unit circle (since pl (−1)
and pl (0) have the opposite sign) and there is either one or three real
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positive roots in the unit circle (since pl (0) and pl (1) have the opposite
sign); in turn, this implies that the roots configuration in the complex
plane is one of the following:

- four roots inside the unit circle (one real negative, three real positive)
and one outside;

-two roots inside the unit circle (one real negative, one real positive) and
three outside;

- four roots inside the unit circle (one real negative, one real positive, and
two complex conjugates) and one outside.

In any of these cases, the condition of existence and uniqueness of bounded
solution is not met.

Proof of Proposition 7. We prove the three statements separately.
(i) By Proposition5, we know that DR

c = DR; moreover, we have already

shown in the proof of Proposition 6 that two of the eigenvalues of Q̂c, namely
λc3 and λc4, are always one inside and one outside the unit circle. Hence, all
we need to prove is that, when the Taylor principle holds, also λc1 and λc2 are
one inside and one outside the unit circle. Recall that λc1 + λc2 ≷ 1 + λc1λc2
is equivalent to:

0 ≷ −γ
(
k + σ (1− β) + βψx −

√
k2 + (βψx − σ (1− β))2 + 2k (σ + βσ + βψx − 2βσψπ)

)
where the radicand is such that:

k2+(βψx − σ (1− β))2+2k (σ + βσ + βψx − 2βσψπ) ≷ (k + σ (1− β) + βψx)
2

if and only if:

ψπ ≶
− (1− β)ψx

k
+ 1

In other words, when the Taylor principle holds (i.e., ψπ >
−(1−β)ψx

k
+1), the

term:

−γ
(
k + σ (1− β) + βψx −

√
k2 + (βψx − σ (1− β))2 + 2k (σ + βσ + βψx − 2βσψπ)

)
is always negative, which in turns implies that λc1 + λc2 > 1 + λc1λc2; by
Lemma 6, we conclude that when the Taylor principle holds, the system
admits one and only one bounded solution, i.e. DH

c = DR
c = DR.
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(ii) We begin noting that the characteristic polynomial of Q̂f is such that
the following relations hold19:

pf (1) =
1

βµ2 (σ − ψx)
γ2 [k (ψπ − 1) + (1− β)ψx]

pf (0) =
1

βµ2 (σ − ψx)
[(1− γ + βγ (1− µ)) ((1− γµ)σ − γ (1− µ)ψx)−

k (ψπ − 1) γ (1− µ) (1− γ)]

pf (−1) =
1

βµ2 (σ − ψx)
[(2− γ + βγ + 2βµ (1− γ)) ((1 + µ (1− γ)) 2σ−

(γ + 2µ (1− γ))ψx)− k (ψπ − 1) (2− γ) (γ + 2µ (1− γ))]

In the case of homogenous (rational) expectations, the above equations col-
lapse to:

pf (1)|µ=1 =
1

β (σ − ψx)
γ2 [k (ψπ − 1) + (1− β)ψx]

pf (0)|µ=1 =
1

β (σ − ψx)
(1− γ)2 σ

pf (−1)|µ=1 =
1

β (σ − ψx)
[(2− γ) (1 + β) ((2− γ) 2σ−

(2− γ)ψx)− k (ψπ − 1) (2− γ)2]
Note that pf (−1)|µ=1 > 0 if and only if Ψ ∈ DR

f ; next, we show that the set:

D
H

f =
{
Ψ ∈ R2

+ : pf (−1) > 0
}

is such that D
H

f ⊇ D
R

f , where D
H

f = D
R

f if and only if µ = 1. To do so, we
consider the hyperplanes defined by pf (−1) = 0 and pf (−1)|µ=1 = 0, solve
them with respect to ψπ, obtaining the linear equations:

ψRπ,f = δR0,f + δR1,fψx

ψHπ,f = δH0,f + δH1,fψx

It is easy to show that ψHπ,f − ψRπ,f > 0 when 0 < µ < 1, and (obviously)
ψHπ,f − ψRπ,f = 0 when µ = 1; this means that for any value of ψx, the

19In the rest of the proof we assume that σ > ψx; the opposite case can be easily
accomodated.
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corresponding value of ψπ on the hyperplane corresponding to pf (−1) = 0 is
larger than the one on the on the hyperplane corresponding to pf (−1)|µ=1 =
0. This conclusion, together with the fact that pf (−1) is decreasing in ψπ

(for any value of µ) leads to the conclusion that D
H

f ⊇ D
R

f . We now prove

that DH
f = DR∩DH

f . First of all, note that when Ψ /∈ DH

f , the signs of pf (1),
pf (0) and pf (−1) can be either -,+,+, or -,-,+20. In the first case, there is a
negative real root in the unit circle (pf (0) and pf (−1) have opposite signs),
a negative real root outside the unit circle (since pf (0), which is equal to
the product of the roots of pf (·), is positive), and two other roots which
can be: (a) real positive, in which case they have to be either both inside or
both outside the unit circle (pf (0) and pf (1) have the same sign); (b) real
negative, in which case they have to be either both inside or both outside
the unit circle (pf (0) and pf (−1) have opposite signs, and one of the first
two roots is already between 0 and -1); (c) complex conjugates, in which
case they have to be either both inside or both outside the unit circle. In all
these configurations, the determinacy condition (two eigenvalues inside and
two outside the unit circle) fails to hold. When the signs are -,-,+, instead,
there is a positive real root in the unit circle (pf (0) and pf (1) have opposite
signs), and three other roots which can be21: (a) three real negative, in which
case they have to be either all outside the unit circle, or two inside and one
outside (pf (0) and pf (−1) have the same sign); (b) two real negative, and
one real positive, in which case the positive root has to be outside the unit
circle, and the negative ones have to be either both inside or both outside the
unit circle; (c) two complex conjugates and one real, in which case the real
root must be negative (pf (0) is negative) and outside the unit circle (pf (0)
and pf (−1) have the same sign), and the complex conjugates ones have to be
either both inside or both outside the unit circle. In all these configurations,
the determinacy condition (two eigenvalues inside and two outside the unit
circle) fails to hold. Having examined all the possible cases, we conclude that

Ψ /∈ D
H

f =⇒ Ψ /∈ DH
f . Combining this result with Proposition 6, we have

that DH
f ⊆ DR ∩DH

f .
Next, we show that the four roots of pf (λ) are such that, if Ψ ∈ DR

f , the

20On one hand, as a consequence of the hypothesis k < k, Ψ /∈ D
H

f implies that the
Taylor principle holds (namely, pf (1) > 0); on the other hand, it is possible to show that,
as ψπ increases, pf (1) becomes negative before pf (0).

21In what follows, we repeatedly use the fact that pf (0), which is equal to the product
of the roots of pf (·), is negative.
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following relations:

(|λf1 + λf2|)2 > (|1 + λf1λf2|)2 (3.11)

(|λf3 + λf4|)2 > (|1 + λf3λf4|)2

hold for any 0 < µ ≤ 1. For µ = 1, they are trivially true22; we want to show
that they are true also when 0 < µ ≤ 1. Note that, for a complex number
X = A+ iB, the expression (|X|)2 is equal to A2 +B2, and for a real number
(|X|)2 = (X)2. We start computing:

λf1λf2 =
1

2βµ (σ − ψx)
[σ (1− γ + β (1 + γ − 2γµ))− k (1− γ) (ψπ − 1)− 2βγ (1− µ)ψx

(1− γ)

(
−ψx −

√
k2 (ψπ − 1)2 − 2k (ψπ − 1) (σ + βσ − ψx) + (ψx − σ (1− β))2

)]
λf1 + λf2 =

1

2βµ (σ − ψx)
[σ (1 + β + 2βµ (1− γ))− k (ψπ − 1)− ψx − 2βµ (1− γ)ψx

−
√
k2 (ψπ − 1)2 − 2k (ψπ − 1) (σ + βσ − ψx) + (ψx − σ (1− β))2

]
and we distinguish two cases: λf1λf2 and λf1 + λf2 are real, or λf1λf2 and
λf1 + λf2 are complex23. In the first case, we derive:

∂

∂µ
(λf1 + λf2)

2 = 2 (λf1 + λf2)

[
(2β (σ − ψx))

2 (1− γ)µ

(2βµ (σ − ψx))
2 −

−(2β (σ − ψx))
2 µ

(2βµ (σ − ψx))
2 (λf1 + λf2)

]

and:

∂

∂µ
(1 + λf1λf2)

2 = 2 (1 + λf1λf2)

[
(2β (σ − ψx))

2 (1− γ)µ

(2βµ (σ − ψx))
2 −

−(2β (σ − ψx))
2 µ

(2βµ (σ − ψx))
2 (1 + λf1λf2)

]
22In fact, they ensure determinacy of the equilibrium which, by Proposition 5, holds for

any Ψ ∈ DR
f when µ = 1.

23It is easy to show the case of one expression real, and one complex, is not possible.
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Letting:
Λr

1,2 ≡ (λf1 + λf2)
2 − (1 + λf1λf2)

2

we have:

∂

∂µ

[
Λr

1,2

]
=

2

µ

[
(1− γ) ((λf1 + λf2)− (1 + λf1λf2))− Λr

1,2

]
(3.12)

which is a first order, linear nonhomogeneous ordinary differential equation,
whose general solution is:

Λr
1,2 =

1

µ

(
Kr

1,2 lnµ+ Cr
1,2

)
(3.13)

where Cr
1,2 is a constant of integration, andKr

1,2 = (1− γ)µ ((λf1 + λf2)− (1 + λf1λf2))
is a constant independent of µ. Plugging (3.13) into (3.12), we get:

∂

∂µ

[
Λr

1,2

]
= − 1

µ2

[
Cr

1,2 +Kr
1,2 (1− lnµ)

]
It is easy to show that:

Cr
1,2 = Λr

1,2

∣∣
µ=1

> 0

where the last inequality holds by assumption, and that Kr
1,2 > 0 whenever

Ψ ∈ DR; the signs of the constants Cr
1,2 and Kr

1,2 imply that, for 0 < µ ≤ 1,

the derivative ∂
∂µ

[
Λr

1,2

]
is negative. Hence, when Ψ ∈ DR the expression Λr

1,2

is always positive for 0 < µ ≤ 1.
Let’s turn to the case of λf1λf2 and λf1 + λf2 complex; we can write:

∂

∂µ
(|λf1 + λf2|)2 = 2Re (|λf1 + λf2|)

[
(2β (σ − ψx))

2 (1− γ)µ

(2βµ (σ − ψx))
2 −

−(2β (σ − ψx))
2 µ

(2βµ (σ − ψx))
2 Re (|λf1 + λf2|)

]
− 2 (Im (|λf1 + λf2|))2 1

µ

and:

∂

∂µ
(|1 + λf1λf2|)2 = 2Re (|1 + λf1λf2|)

[
(2β (σ − ψx))

2 (1− γ)µ

(2βµ (σ − ψx))
2 −

−(2β (σ − ψx))
2 µ

(2βµ (σ − ψx))
2 Re (|1 + λf1λf2|)

]
− 2 (Im (|1 + λf1λf2|))2 1

µ
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Letting Λc
1,2 ≡ (|λf1 + λf2|)2 − (|1 + λf1λf2|)2, the above formula implies:

∂

∂µ

[
Λc

1,2

]
=

2

µ

[
(1− γ) Re ((λf1 + λf2)− (1 + λf1λf2))− Λc

1,2

]
Proceeding as in the real case, we get:

∂

∂µ

[
Λc

1,2

]
= − 1

µ2

[
Cc

1,2 +Kc
1,2 (1− lnµ)

]
where Cc

1,2 = Λc
1,2

∣∣
µ=1

> 0 andKc
1,2 = (1− γ)µRe((λf1 + λf2)− (1 + λf1λf2)) >

0 whenever Ψ ∈ DR. Hence, when Ψ ∈ DR the expression Λc
1,2 is always pos-

itive for 0 < µ ≤ 1.
Along the same line of reasoning, we get that the expression:

(|λf3 + λf4|)2 − (|1 + λf3λf4|)2

is positive whenever Ψ ∈ D
R

f . We conclude that conditions (3.11) hold for
0 < µ ≤ 1, when Ψ ∈ DR

f ; combining this result with the one proved above,
we get:

DR ∩DH

f ⊇ DH
f ⊇ DR

f

By continuity of the eigenvalues, we can also say24:

DR ∩DH

f ⊇ DH
f ⊃ DR

f

which proves the statement (ii) of Proposition 7.
(iii) We begin proving that the set:

D
H

l =
{
Ψ ∈ R2

+ : pl (−1) > 0
}

where pl (−1) has been defined in the proof of Proposition 6, is such that

D
H

l v D
R

l , where D
H

l = D
R

l if and only if µ = 1. To do so, we proceed as in
the case i = f , and compute the hyperplanes defined by the linear equations:

ψRπ,f = δR0,f + δR1,fψx

ψHπ,l = δH0,l + δH1,lψx

24We conjecture that DH
f ⊆ DR∩DH

f , which is also supported by numerical simulations,
but we could not prove it yet.
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It is easy to show that ψHπ,l−ψRπ,f < 0 when 0 < µ < 1, and (obviously) ψHπ,l−
ψRπ,f = 0 when µ = 1; this means that for any value of ψx, the corresponding
value of ψπ on the hyperplane corresponding to pl (−1) = 0 is larger than
the one on the on the hyperplane corresponding to pl (−1)|µ=1 = 0. This
conclusion, together with the fact that pl (−1) is decreasing in ψπ (for any

value of µ) leads to the conclusion that D
H

l v D
R

l . Next, we show that if

Ψ /∈ DH

l , then Ψ /∈ DH
l . To begin with, note that Ψ /∈ DH

l ⇐⇒ pl (−1) < 0;
this fact, together with pl (0) < 0, implies that the negative real root lies
outside the unit circle. To analyze the other four roots, we can study the
auxiliary polynomial h (ν) = pl (λ), where 1 + ν = λ. Clearly, any negative
root of h (·) corresponds to a root of pl (λ) smaller than one; the coefficients
of h (·) are:

h5 = al5

h4 = 5al5 + al4

h3 = 10al5 + 4al4 + al3

h2 = 10al5 + 6al4 + 3al3 + al2

h1 = 5al5 + 4al4 + 3al3 + 2al2 + al1

h0 = al5 + al4 + al3 + al2 + al1 + al0

Using the Descartes’ Rule of Signs we obtain that there are at most three
roots of h (·) in the left half of the complex plane, and at most two in the
right half, or, equivalently, at most three roots of pl (·) smaller than one,
and at most two larger than one25; if all the roots are real, we have that
exactly two roots of pl (·) are larger than one, and three are smaller, which
implies26 that there are at least three roots outside the unit circle, and the
determinacy condition fails to hold; if four roots are complex, we can have
either zero, two or four of them inside the unit circle, but in any of these cases
the determinacy condition fails to hold. If two roots are complex conjugates,
they can be either both inside or both outside the unit circle, and also two
of the real roots can be either both inside or both outside the unit circle27;
together with the existence of a negative real root smaller than minus one,
this implies again that we can have either zero, two or four roots inside the

25This result, for the moment, is only numerical.
26Recall that we already know that one root is smaller than -1.
27This can be shown observing that, when Ψ /∈ DH

l , pl (1), pl (0) and pl (0) have all the
same sign (they are all negative).
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unit circle, but in any of these cases the determinacy condition fails to hold.

Having examined all the possible cases, we conclude that Ψ /∈ D
H

l =⇒ Ψ /∈
DH
l . Combining this result with the one proved in Proposition 6, we get

Ψ /∈ DH

l ∩DR =⇒ Ψ /∈ DH
l . Since we also showed that D

H

l ⊂ D
R

l , which is

equivalent to say that D
H

l ∩DR ⊂ DR
l , we conclude that DH

l ⊂ DR
l .

We now prove Proposition 8.

Proof of Proposition 8. We have shown in the proof of Proposition 6 that
if ψπ < −(1−β)ψx

k
+ 1 (i.e., if the Taylor principle does not hold), we have

λc1 +λc2 < 1+λc1λc2; by Lemma 6, this means that (λc1, λc2) lie both inside
the unit circle, if λc1λc2 < 1, or both outside, if λc1λc2 > 1. Observe that:

λc1λc2 ≷ 1

is equivalent to:

0 ≷ 2βµσ (1 + γ)− (1− γ)

(
k + σ + βψx −

√
k2 + (βψx − σ (1− β))2 +

+2k (σ + βσ + βψx − 2βσψπ)
)
− βσ (1 + γ)

Let the RHS of the above inequality be defined as g (µ); note that d
dµ
g =

2βσ (1 + γ) > 0, and that:

g (1) = 2βγσ − (1− γ)

(
k + σ + βψx −

√
k2 + (βψx − σ (1− β))2 +

+2k (σ + βσ + βψx − 2βσψπ)
)

> 0

where the last inequality follows from the fact that 2βγσ > 0, and that, as
argued in the proof of Proposition 6:

k+σ (1− β)+βψx−
√
k2 + (βψx − σ (1− β))2 + 2k (σ + βσ + βψx − 2βσψπ) < 0

118



when the Taylor principle is violated. Moreover, we have:

g (0) = − (1− γ)

(
k + σ + βψx −

√
k2 + (βψx − σ (1− β))2 + 2k (σ + βσ + βψx − 2βσψπ)

)
−βσ (1 + γ)

< − (1− γ)

(
k + σ + βψx −

√
k2 + (βψx − σ (1− β))2 +

+2k (σ + βσ + βψx − 2βσψπ)
)

< − (1− γ)

(
k + σ (1 + β) + βψx −

√
k2 + (βψx − σ (1− β))2 + 2k (σ + βσ + βψx)

)
= − (1− γ)

(
k + σ (1 + β) + βψx −

√
(k + σ (1 + β) + βψx)

2 + (βψx − σ (1− β))2

− (βψx + σ (1 + β))2
)

= − (1− γ)

(
k + σ (1 + β) + βψx −

√
(k + σ (1 + β) + βψx)

2 − 4βσ (βψx + σ)

)
< 0

Summing up, we showed that:
(i) d

dµ
g > 0,

(ii) g (0) < 0,
(iii) g (1) > 0.
Thus, we can invoke the Intermediate Value Theorem to conclude that

there exists one and only one µ ∈ (0, 1) such that, for any µ ∈ (µ, 1]:

g (µ) > 0 ⇐⇒ λ1λ2 < 1

and for any µ ∈ (0, µ):

g (µ) < 0 ⇐⇒ λ1λ2 > 1

Putting together this result with the fact that (λc3, λc4) lie always one inside
and one outside the unit circle28, we conclude that, for µ ∈ (µ, 1] (µ ∈ (0, µ))

violation of the Taylor principle implies that three eigenvalues of Q̂c lie inside
(outside) the unit circle; hence, the Proposition is proved.

28See the proof of Proposition 6.
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3.7.2 Learnability

Proof of Proposition 9. Let’s start from the case i = c, f . Note that, if the
system is determinate, we can apply the results of Blanchard and Kahn
(1980) to write the resulting equilibrium in the form:

zt = Riθt + Siηt

Focusing on the upper block of the above system, we have:

yt = R1
i θt + S1

i ηt (3.14)

which we can use in the law of motion for θ obtaining:

θt =
(
I2 − γ

(
I2 −R1

i

))
θt−1 + γS1

i ηt−1

Furthermore, we can write the conditional (at t) expectations of yt+s, s ≥ 0,
as:

Etyt+s = R1
i

(
I2 − γ

(
I2 −R1

i

))s
θt + S1

iEtηt+s

which stays bounded, as s→∞, iff (I2 − γ (I2 −R1
i )) has all the eigenvalues

inside the unit circle; note that this is also the condition that ensures that θt
converges to a stationary and ergodic distribution θ∗ ∼ N (0,Σi), where the
variance-covariance matrix is given by:

vec (Σi) =
(
I4 −

(
I2 − γ

(
I2 −R1

i

))
⊗
(
I2 − γ

(
I2 −R1

i

)))−1
γ2
(
S1
i ⊗ S1

i

)
vec (Ω)

where Ω is the variance-covariance matrix of the exogenous shocks η.
In the case i = l, the same line of reasoning applies, with the only differ-

ence that now the vector of predetermined variables is given by θ̂t = [θ′t, rt]
′,

so that the limiting multivariate normal distribution is the three-dimensional
process θ̂∗ ∼ N (0,Σl); hence, θ∗ is simply the marginal of θ̂∗.
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