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Abstract
This thesis analyzes market risk factors in commodity and currency markets.

It focuses on the impact of extreme events on the prices of financial products

traded in these markets, and on the overall market risk faced by the investors.

The first chapter develops a simple two-factor jump-diffusion model for valu-

ation of contingent claims on commodities in order to investigate the pricing

implications of shocks that are exogenous to this market. The second chapter

analyzes the nature and pricing implications of the abrupt changes in exchange

rates, as well as the ability of these changes to explain the shapes of option-

implied volatility smiles. Finally, the third chapter employs the notion that

key results of the univariate extreme value theory can be applied separately to

the principal components of ARMA-GARCH residuals of a multivariate return

series. The proposed approach yields more precise Value at Risk forecasts than

conventional multivariate methods, while maintaining the same efficiency.

Resumen
El objetivo de esta tesis es analizar los factores del riesgo del mercado de las

materias primas y las divisas. Está centrada en el impacto de los eventos ex-

tremos tanto en los precios de los productos financieros como en el riesgo total

de mercado al cual se enfrentan los inversores. En el primer captulo se intro-

duce un modelo simple de difusión y saltos (jump-diffusion) con dos factores

para la valuación de activos contingentes sobre las materias primas, con el ob-

jetivo de investigar las implicaciones de shocks en los precios que son exógenos

a este mercado. En el segundo caṕıtulo se analiza la naturaleza e implicaciones

para la valuación de los saltos en los tipos de cambio, aśı como la capacidad

de éstos para explicar las formas de sonrisa en la volatilidad implicada. Por

último, en el tercer caṕıtulo se utiliza la idea de que los resultados principales

de la Teoria de Valores Extremos univariada se pueden aplicar por separado

a los componentes principales de los residuos de un modelo ARMA-GARCH

de series multivariadas de retorno. El enfoque propuesto produce pronósticos

de Value at Risk más precisos que los convencionales métodos multivariados,

manteniendo la misma eficiencia.





Contents

Foreword xii

1 Contingent Claims on Commodities 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Valuation Model . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Prices of Contingent Claims . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Prices of Forward and Futures Contracts . . . . . . . . . 9

1.3.2 Implied Convenience Yield . . . . . . . . . . . . . . . . . 13

1.3.3 European Options on Futures . . . . . . . . . . . . . . . 16

1.3.4 Futures Hedge . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 Calibration of the Model . . . . . . . . . . . . . . . . . . . . . . 19

1.4.1 Calibration Procedure . . . . . . . . . . . . . . . . . . . 19

1.4.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Appendix A: Risk-neutral processes . . . . . . . . . . . . . . . . . . . 42

ix



Risks in Commodity and Currency Markets

Appendix B: Price of a forward contract . . . . . . . . . . . . . . . . 45

Appendix C: Derivation of formula for the price of a European call

option on commodity futures . . . . . . . . . . . . . . . . . . . . 48

2 The Role of Jumps in Foreign Exchange Rates 51

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.2 Model Specification and Estimation

Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.2.2 Estimation Methodology . . . . . . . . . . . . . . . . . . 56

2.3 Estimation Results . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.3.2 Estimation of the auxiliary model . . . . . . . . . . . . . 66

2.3.3 EMM estimation . . . . . . . . . . . . . . . . . . . . . . 68

2.4 Option pricing implications . . . . . . . . . . . . . . . . . . . . 78

2.4.1 The impact of jumps on implied volatility patterns . . . 78

2.4.2 Risk premia and volatility smiles implicit in the cross-

sectional currency options data . . . . . . . . . . . . . . 86

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Appendix A: The risk-neutral version of the model . . . . . . . . . . 90

Appendix B: Closed-form solution for the price of a European cur-

rency option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3 Risk Management under Multivariate EVT 97

x



3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.2 Theoretical Framework and Estimation

Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.2.1 Theoretical Framework . . . . . . . . . . . . . . . . . . . 102

3.2.2 Estimation Methodology . . . . . . . . . . . . . . . . . . 106

3.3 Data and Empirical Results . . . . . . . . . . . . . . . . . . . . 121

3.3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

3.3.2 Empirical Results . . . . . . . . . . . . . . . . . . . . . . 125

3.4 Backtesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Bibliography 154



Foreword

The motivation of this thesis is to explore the market risk factors in com-

modity and currency markets. In particular, it focuses on the impact of ex-

treme events on the prices of financial products traded in these markets. It

is also an attempt to develop a comprehensive framework for the assessment

of the overall market risk faced by investors that would include the risk of

extreme losses.

The thesis consists of three essays. In Chapter 1, I develop a simple two-

factor jump-diffusion model for pricing of contingent claims on commodities

in order to investigate the pricing implications of shocks that are exogenous to

the market. The model is constructed such that it explicitly accounts for the

key features of commodity prices: the mean reversion, the correlation with the

risk-free interest rate and, most importantly, the possibility of abrupt jumps

that affect the prices substantially. For the proposed model, I provide a closed

form solution for the price of a forward and a futures contract on a commodi-

ty, as well as a semi-closed form solution for the price of European options on

commodity futures. Furthermore, I derive an expression for the optimal hedg-

ing ratio of a dynamic futures hedge. The model parameters are calibrated by

adapting the maximum likelihood technique to account for jumps in the spot

price. The empirical results based on the futures prices and treasury yields

indicate that, in addition to the principal risk factor related to everyday supply

and demand patterns, which is commodity spot price diffusion, other factors

cannot be neglected. Specifically, the market data for some commodities im-

plies that investors require substantial premia for the exposure to the jump

risk. These additional premia are comparable to the one originating from the

diffusion and higher than the interest rate risk premia.

Chapter 2 is related to the role of jump risk in foreign exchange rates. It

analyzes the nature and pricing implications of jumps, the abrupt changes in
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the exchange rates. I propose a general stochastic-volatility jump-diffusion

type of model of exchange rate dynamics that contains several popular models

as its special cases. I use the efficient method of moments to estimate the model

parameters from the spot exchange rates of Euro, British Pound, Japanese Yen

and Swiss Franc with respect to the U.S. Dollar. The results indicate that any

reasonably descriptive continuous-time model of exchange rates must allow for

jumps with a bimodal distribution of jump sizes and in some cases jump

frequencies that depend on volatility. In the second part of the chapter, I

investigate the option pricing implications of jumps. Although the ex-post

estimates of jump probabilities show that jumps occur irregularly and rarely,

the jump component is crucial for explaining the shapes of implied volatility

”smiles”. The risk premia calculated from the cross-sectional currency options

data suggest that the exchange-rate jump risk appears to be priced by the

market.

The risk of extreme events in currency markets can be also assessed using an

alternative approach. In Chapter 3, I develop an efficient method based on mul-

tivariate extreme value theory to measure the market risk of a portfolio. The

approach employs the notion that some key results of the univariate extreme

value theory can be applied separately to a set of orthogonal random variables,

provided they are independent and identically distributed. Such random vari-

ables can be constructed from the principal components of ARMA-GARCH

conditional residuals of a multivariate return series. The model’s forecasting

ability is then tested on a portfolio of foreign currencies. The results indicate

that the generalized Pareto distribution of peeks over treshold of residuals

performs well in capturing extreme events. In particular, model backtesting

shows that the proposed multivariate approach yields more precise Value at

Risk forecasts than the usual methods based on conditional normality, condi-

tional t-distribution or historical simulation, while maintaining the efficiency

of conventional multivariate methods.

xiii



Risks in Commodity and Currency Markets

xiv



Chapter 1

Valuation of Contingent Claims

on Commodities under

Mean-Reverting Jump Diffusion

1.1 Introduction

The stochastic behavior of commodity prices plays a central role in valua-

tion of financial contingent claims on commodities and investments to extract

them. As pointed out by Schwartz (1997), models that assume constant in-

terest rates and constant convenience yields fail to capture one of the basic

properties in the behavior of commodity prices – the mean reversion. The

mean-reverting nature of commodity prices is now a well-established empir-

ical fact.1 It also has a firm microeconomic ground. Namely, in an equilib-

rium setting one would expect that when prices are relatively high, supply

will increase since the suppliers with higher input costs will enter the market,

thereby putting a downward pressure on prices. Conversely, when prices are

relatively low, supply will decrease since some of the suppliers with higher in-

put costs will exit the market, thereby putting an upward pressure on prices.

1See, for example, Pindyk and Rubinfeld (1991) or Pilipovic (1998).
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This specific interaction of relative prices and supply induces the mean rever-

sion. A series of articles discusses the mean-reverting property of commodity

prices. See, for example, Gibson and Schwartz (1990), Brennan (1991), Cor-

tazar and Schwartz (1994), Bessembinder, Coughenour, Seguin, and Smoller

(1995), Schwartz (1997), Pindyk (2001), Cortazar and Schwartz (2003), and

Lei and Fox (2004).

A basic model for commodity pricing takes into account only one risk

factor – the spot price. Since geometric Brownian motion (GBM) has un-

boundedly increasing variance as time horizon increases, it cannot capture the

mean-reverting property. Schwartz (1997) (with a reference to unpublished

manuscript by Ross (1995)) proposes a process of the Ornstein-Uhlenbeck

type for the logarithm of commodity spot price. Earlier, Gibson and Schwartz

(1990) suggested a two-factor model for pricing contingent claims on oil. In

their model, the first stochastic factor is the spot price of oil, described by

the GBM. The second stochastic factor is the convenience yield, which can be

defined as the benefit obtained from holding the spot (i.e. physical) commodity

that is not obtained from holding the futures contract (see Brennan (1991)).

The benefits typically include the ability to keep production process running

or to profit from temporary local shortages of the commodity. Although such

benefits depend on the individual storing the commodity, the equilibrium fu-

tures price will depend on an equilibrium convenience yield obtained from

competition between potential storers. Apart from benefits and storage costs,

the convenience yield also implicitly accounts for the cost of insuring the com-

modity. In the Gibson and Schwartz (1990) model, the convenience yield is

considered to be mean reverting and positively correlated with the spot price.

The extension of this model allows for a stochastic interest rate (see Schwartz

(1997)). As Crosby (2005) points out, these two- and three-factor models,

although based on a GBM for the spot price, implicitly account for the mean

reversion property as long as both interest rate and convenience yield are gov-

erned by a mean reverting process. The best feature of these models is their

full tractability, since they allow for closed form solutions for futures prices and

2
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for a linear relation between the logarithm of futures prices and the underlying

factors.

However, simplicity of factor models is not without a cost: they fail to

capture another very important feature. Namely, the price processes for many

commodities are influenced by the arrival of important new information that

has more than a marginal effect on price. Such abrupt changes were first

considered by Merton (1976) in a model for stock prices. By including a Poisson

jump component to the usual GBM, Merton obtained a closed form solution

for the price of a European call option on a dividend-paying stock. Hilliard

and Reis (1998) apply the same model for the spot prices of commodities

within the framework of a three-factor model with stochastic convenience yields

and interest rates. Jump-diffusion processes have also been used in models

for commodity prices in Deng (1998), Clewlow and Strickland (2000), and

Benth, Ekeland, Hauge, and Nielsen (2003). A potential drawback of all these

models is that they explicitly specify the dynamics of convenience yield. As

convenience yield is not directly observable, there is no empirical evidence that

would support any of the chosen dynamics. Therefore, any results derived from

such models may rely too much on correct specification for the convenience

yield. There is also no evidence that different classes of commodities would

follow the same convenience yield dynamics.

Crosby (2005) proposed a general model for pricing of commodity deriva-

tives that incorporates wide range of empirical facts and avoids explicit mod-

eling of the convenience yield. The model specifies stochastic processes for the

futures price and the interest rate, accounting for features such as jumps with

a magnitude that depends on time to delivery, volatility skews and seasonali-

ty, or time-varying long-run equilibrium level in the term structure. Although

very intuitive, this model cannot deliver any closed-form solution for values of

derivative contracts. Its application is therefore restricted to numerical pro-

cedures such as Monte Carlo simulation. Also, no calibrating techniques were

developed for it to date.

3
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In this chapter I develop a simple two-factor model for pricing contingent

claims on commodities. I assume a frictionless arbitrage-free market that

trades continuously. I propose a joint stochastic process for the commodity

spot price and the short interest rate, taking into account possible correlation

between them. The spot price is considered to follow a process of a geometric

Ornstein-Uhlenbeck type, with additional compensated Poisson jumps. On

the other hand, the term structure of interest rates is modeled by a Vasicek

process. In this way, I am able to account for the key features of the contingent

claim pricing factors explicitly. These key factors are: (1) mean reversion in

commodity spot prices; (2) abrupt jumps with more than a marginal effect

on commodity prices; (3) mean reversion in the interest rate; (4) correlation

between marginal changes in the interest rate and the commodity spot prices.

Seasonality, which is another prominent feature of commodity prices, is not

explicitly modeled. Rather, I calibrate the model using deseasonalized time

series.

The model allows for a closed form solution for the price of a forward and a

future contract, as well as a series expansion for the price of a European option

on futures. Furthermore, I derive an expression for the optimal hedging ratio of

a dynamic futures hedge involving calendar spreads. Under proposed setting,

the returns on commodity prices will be affected by three distinct risk factors:

the diffusive shocks in the spot prices, the diffusive shocks in the interest rate,

and the price jumps.

Even though I do not use the convenience yield as an explicit pricing factor,

it is implicitly embedded in the model. Casassus and Collin-Dufresne (2005)

use a similar approach, although in a different framework. In this way, the

model can be calibrated more efficiently, by using only two time series related

to assets that are actually traded – the prices of futures contracts and the

yields on Treasury bills. Usually, factor models of this sort are calibrated with

the Kalman filter technique. By taking the full advantage of the analytical

tractability of the model developed in this chapter, I introduce much simpler

estimation procedure that is based on the maximum likelihood technique and

4
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does not require filtering. I use historical data for yields on U.S. 3-Month

Treasury Bills and prices of futures contracts on several commodities during

past 16 years to calibrate the model. The commodity data consists of weekly

observations for six exchange-traded commodities: Brent crude oil, natural

gas, copper, gold, wheat and pork bellies. The empirical results of this chapter

indicate that all three risk factors are significant for commodity pricing. They

are also priced differently. The jump risk (which occurs due to combined

uncertainty in timing and magnitude of the jumps) carries an important part

of the overall risk premium.

The remainder of the chapter is organized as follows. The valuation model

is developed in Section 1.2. Section 1.3 provides closed form solutions for

the values of various contingent claims (forward and futures contracts, implied

convenience yield, and European option on futures) and calculates the optimal

hedging ratio. Section 1.4 describes the procedure for empirical estimation of

the model parameters and reports the obtained values, along with associated

market prices of risk. Section 1.5 discusses model implications and extensions,

and concludes.

1.2 Valuation Model

I construct a two-factor model for contingent-claim valuation. The first factor

is the spot price of commodity, the second is the term structure of interest

rates. The spot price of commodity is assumed to follow a process of geomet-

ric Ornstein-Uhlenbeck (GOU) type, with discrete jumps. Following Clewlow,

Strickland, and Kaminski (2001), I add a Poisson jump component to the

Schwartz (1997) model and assume that the spot price dynamics under phys-

ical (i.e., data-generating) probability measure P is governed by the following

stochastic differential equation:

dSt
St

= [a (m− lnSt)− λk] dt+ σdWt + (Ut − 1)dqt. (1.1)

5
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Here, dW is the standard Wiener process, while dq is the Poisson process with

parameter λ. Using the same specification as in Merton (1976), I suppose

the following characterization of the Poisson process: The jumps are serially

uncorrelated; the probability of a jump occurring once during a time interval

of length dt is λdt+ O(dt); the probability of a jump not occurring during the

same time interval is 1−λdt+O(dt); the probability of a jump occurring more

than once in dt is O(dt). Conditionally on the Poisson event occurring, a new

random variable Ut measuring the size of its impact is drawn from a known

distribution. The size of this random jump is equal to Ut − 1, with expected

value εt (Ut+ − 1) = k. Here, ε denotes the expectation with respect to the

distribution of U . The contribution of each jump to the price change between

instants t and t+dt is thus StUt. Subtraction of λkdt in equation (1.1) centers

dq around its expectation, and hence the expected return from t to t + dt is

simply equal to a (m− lnSt) dt, so the process is clearly mean reverting. The

parameter a > 0 measures the speed of mean reversion to the long run mean

log price, m.

The total change in the spot price is therefore composed of two types of

changes. The first one is affected by temporary imbalances between supply

and demand or any new information that causes a marginal change in the

price level. This component is modeled by a mean reverting process of GOU

type with a standard Brownian diffusion. The second type of change comes

from arrival of important new information that has more than a marginal effect

on price. This change is typically characterized by low frequency and sudden

occurrence. Typical examples are shocks due to wars or natural disasters,

supply shocks in markets with cartelized commodities (such as oil), but also

endogenous commodity market shock that cause abnormal returns in a very

short period of time.2 I will assume that, due to a different nature of the

mechanism behind, the processes dW and dq are uncorrelated.

2The episode of Amaranth’s $6 billion loss is perhaps the best example of the latter.
Much of this loss came from positions the fund had in natural gas futures, which plummeted
around September 15, 2006.

6
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It is worth noting that jumps in the spot price lead to distributions that

have degrees of skewness and kurtosis different from those of the log-normal

distribution. These distributions can lead to values of derivative contracts that

differ considerably from those obtained with the corresponding GBM process.

The second factor I use for pricing is the short interest rate. We conjecture

that the term structure follows the Vasicek (1977) model,

drt = b (r̄ − rt) dt+ θdZt, (1.2)

where dZ is a standard Wiener process different from the one in equation (1.1).

However, I will assume that the two diffusions are correlated in general. I take

this into account by setting dWtdZt = ρdt. The process in equation (1.2)

is assumed to be AOU merely for the sake of simplicity, since in this way

we are able to cast our model easily into a vector form (see Section 4). Of

course, there is a multitude of plausible models for the short interest rate. For

example, Cox, Ingersoll, and Ross model (see Cox, Ingersoll, and Ross (1985)),

or a model from the Heath, Jarrow, and Morton family (see Heath, Jarrow,

and Morton (1992)), have been widely used throughout the literature. Since I

tend to focus here on commodity price dynamics, it is reasonable to conjecture

that the choice of interest rate model is not so essential.

Under assumed dynamics, given by equations (1.1) and (1.2), any position in

commodity derivative contract will be affected by four sources of risk. These

are the spot price diffusive risk associated with the diffusion process dW ,

interest rate diffusive risk driven by dZ, spot price jump-time risk whose origin

is the random timing of jump events dq, and finally spot price jump-size risk

driven by U .

The usual no-arbitrage approach to valuation of contingent claims involves

calculation of expected values in a risk-neutral world.3 According to the Fun-

damental Theorem of Asset Pricing, the market will be arbitrage-free if and

3An alternative approach is preference-based equilibrium pricing.
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only if there exists an equivalent martingale measure (see Harrison and Pliska

(1981) or Elliot and Kopp (2005)). Furthermore, if the market is complete this

measure will be unique. In general, the two additional sources of uncertainty,

namely the random spot price jump times and random jump sizes, make the

market incomplete with respect to the risk-free bank account, the commod-

ity spot contract, and the finite number of option contracts. Consequently,

the state-price density (the ”pricing kernel”) will not be unique.4 However,

by modeling the jump process as in equation (1.1) we entangle two jump-risk

components into one, thereby restoring the uniqueness of the risk-neutral mea-

sure. To express the price dynamics under such a measure P∗, the stochastic

processes in equations (1.1) and (1.2) have to be transformed, respectively, to

dS∗t
St

= [a (m∗ − lnSt)− λ∗k∗] dt+ σdW ∗
t + (Ut − 1)dq∗t , (1.3)

and

dr∗t = b (r̄∗ − rt) dt+ θdZ∗t . (1.4)

Expressions (1.3) and (1.4) are derived in Appendix A. The transformed Wiener

processes satisfy dW ∗
t dZ∗t = ρdt. The parameters x̄∗, r̄∗, λ∗, and k∗ are related

to x̄, r̄, λ, and k via

m∗ = m− σ

a
(ξ1 + ρξ2) (1.5)

r̄∗ = r̄ − θ

b
(ρξ1 + ξ2) (1.6)

λ∗ = λeξ3 (1.7)

1 + k∗ = (1 + k)eξ4ω
2

(1.8)

where ξ1 though ξ4 are parameters that measure the market prices of risk and

ω2 is the variance of lnU (cf. Section 3 and Appendix A). By comparing the

risk-neutral processes (1.3) and (1.4) to their P-equivalents, (1.1) and (1.2),

we can see that the pricing factors appreciate with the following risk premia:

4In a preference-based model, the state-price density arises from marginal rates of sub-
stitution evaluated at equilibrium consumption streams.

8
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• Premium for the spot price diffusive risk: σ(ξ1 + ρξ2)/a.

• Premium for the interest rate diffusive risk: θ(ρξ1 + ξ2)/b.

• Overall premium for the jump risk: λk − λ∗k∗.

Finally, by applying Itô’s lemma to xt = lnSt we can rewrite equation (1.1)

in the form of a Vasicek process with a jump component. The dynamics of

this component under the risk neutral measure P∗ is given by

dx∗t = [a (x̄∗ − xt)− λ∗k∗] dt+ σdW ∗
t + lnUtdq

∗
t , (1.9)

where x̄∗ = m∗ − σ2/2a.

1.3 Prices of Contingent Claims

1.3.1 Prices of Forward and Futures Contracts

In this section I derive analytical results for prices of basic contingent claims

on commodities in the framework of the proposed two-factor model. I start by

computing the price at t of a unit (default-free) discount bond maturing at T :

B(t, T ) = E∗t
[
exp

(
−
∫ T

t

rsds

)]
. (1.10)

The integral∫ T

t

rsds = (T − t)r̄∗ +
1− e−b(T−t)

b
(rt − r̄∗) + θ

∫ T

t

1− e−b(T−s)

b
dZ∗s (1.11)

is a normal random variable conditionally on information available at t, be-

ing the sum of a constant, a measurable random variable, and an Itô inte-

gral. Therefore, the expression inside the expectation in equation (1.10) is a

moment-generating function of a normal distribution, and I obtain the usual

9
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expression from the Vasicek (1977) model:

lnB(t, T ) = −r̄∗τ − (rt − r̄∗)
1− e−bτ

b
+

θ2

2b2

(
τ − 2

1− e−bτ

b
+

1− e−2bτ

2b

)
,

(1.12)

where τ = T − t is the residual maturity.

Next, using the Feynman-Kac theorem5, the forward price from t to T can

be calculated as

G(t, T ) =
E∗t
[
e−

R T
t rsdsST

]
B(t, T )

=
1

B(t, T )
E∗t
[
exp

(
xT −

∫ T

t

rsds

)]
. (1.13)

The first equality, which also follows from a no-arbitrage argument, simply

states that the discounted forward price from t to T should be the same as

the expected discounted spot price at T . By integrating the equation (1.3), xT

can be expressed in the closed form as

xT = x̄∗−(x̄∗ − xt) e−aτ+σ
∫ T

t

e−a(T−s)dW ∗
s +

∫ T

t

e−a(T−s) lnUsdq
∗
s−λ∗k∗

1− e−aτ

a
.

(1.14)

Using the assumption of independence between Wiener and Poisson processes,

the expression (1.13) for the forward price can be written as

G(t, T ) =
1

B(t, T )
E∗t
[
exp

(
x0
T −

∫ T

t

rsds

)]
E∗t
[
exp

(∫ T

t

e−a(T−s) lnUsdq
∗
s − λ∗k∗

1− e−aτ

a

)]
, (1.15)

where x0
T is the integral of equation (1.3) without the jump component (k∗ =

λ∗ = 0):

x0
T = x̄∗ − (x̄∗ − xt) e−aτ + σ

∫ T

t

e−a(T−s)dW ∗
s . (1.16)

5See, for example, Duffie (1992).

10
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To calculate the last expectation in equation (1.15), note first that the integral

in it can be written as∫ T

t

e−a(T−s) lnUsdq
∗
s =

∫ τ

0

e−a(τ−s′) lnUs′dq
∗
s′ = e−aτ

νt,T∑
j=1

easj lnUsj , (1.17)

where sj ∈ (0, τ) are the moments in time (starting from t) when Poisson jumps

occur (see Appendix B for the derivation). Under P∗ the total number νt,T of

jumps between t and T will be a Poisson variable with parameter λ∗(T − t) =

λ∗τ . Following Merton (1976), I will first assume that, for any t,

lnUt

∣∣∣ νt = n ∼ N
(
n(γ∗0 − ω2/2), nω2

)
i.i.d. n = 0, 1, (1.18)

where νt ≡ νt,t+dt. In other words, if a Poisson jump happens between t and

t + dt (an event that happens with a probability λ∗dt under P∗), then lnUt

will be a normal random variable with expectation γ∗0 − ω2/2 and variance

ω2. As ε∗t (Ut) = 1 + k∗, it must be that γ∗0 = ln(1 + k∗). For finite time

intervals, however, the corresponding distribution will depend on the fact that

the underlying diffusion part of the process for St is GOU, rather than GBM as

in Merton (1976). In the following I will assume that, given there are exactly

n jumps in (t, T ), the sum in (1.17) is also normally distributed under P∗:

e−aτ
νt,T∑
j=1

easj lnUsj

∣∣∣ νt,T = n ∼ N
(
n(γ∗τ − ω2/2), nω2

)
i.i.d., (1.19)

where

γ∗τ = ln (1 + k∗) . (1.20)

Specification (1.18) is then the instantaneous equivalent of (1.19), obtained if

we let τ → dt. Using (1.19), we obtain (see Appendix B for the derivation):

lnG(t, T ) = x̄∗ − (x̄∗ − xt) e−aτ +
1

2
σ2 1− e−2aτ

2a

− ρσθ

b

[
1− e−aτ

a
− 1− e−(a+b)τ

a+ b

]
+ λ∗k∗

(
τ − 1− e−aτ

a

)
.

11
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(1.21)

Note that the terms proportional to θ2 in the numerator and the denominator

of equation (1.15) cancel out.

Price of a futures contract at time t with expiry at T can be also obtained

from the Feynman-Kac theorem:

F (t, T ) = E∗t [ST ] . (1.22)

Intuitively, in the absence of arbitrage the futures price today on a contract

expiring at T should be the same as today’s expectation of the spot price at

T . The basic difference between a forward and a futures contract is that they

have different timing of cash flows. Although the net cash flows over the life

of the contract are the same, in a forward contract money is exchanged only

at the settlement date, whereas in a futures contract there is an exchange

on a daily basis between the two parties through a system of margin calls.

Also, in a (theoretical) forward contract, two counter-parties ex-ante assume

symmetric risk; in a futures contract the counter-party risk is entirely taken by

the exchange. The forward price is obtained by equating its present value with

the present value of the spot contract at the settlement date. Cox, Ingersoll,

and Ross (1981) prove that in general the two prices will be equal if the interest

rates are deterministic. This clearly holds in the proposed model: if rs is

constant the integral in equation (1.15) is deterministic and cancels out with

B(t, T ). Using this fact, by setting θ = 0 in equation (1.21) we directly obtain

lnF (t, T ) = x̄∗−(x̄∗ − xt) e−aτ+
1

2
σ2 1− e−2aτ

2a
+λ∗k∗

(
τ − 1− e−aτ

a

)
. (1.23)

With a slight abuse of notation, it is easy to verify that F (t, T ) ≡ F (St; t, T )

given by equation (1.23) solves the following partial differential equation

∂F (St; t, T )

∂t
+ [a (m∗ − lnSt)− λ∗k∗]St

∂F (St; t, T )

∂St
+

1

2
σ2S2

t

∂2F (St; t, T )

∂S2
t

12



Contingent Claims on Commodities

+λ∗ε∗t [F (StUt; t, T )− F (St; t, T )] = 0

with terminal boundary condition F (ST ;T, T ) = ST .

1.3.2 Implied Convenience Yield

Unlike financial assets, commodities are more than investment goods. They

are often used for consumption or for industrial processes. This is why the

notion of convenience yield is introduced for commodities. Convenience yield

is the premium associated with holding the physical commodity rather than a

contingent claim on it. The holding of an underlying good may become more

profitable when market movements are irregular. For example, this happens if

a good is in a short supply at a given moment. Then its relative scarcity drives

the short term prices up, a phenomenon often called the ”inverted market”.

I do not use the convenience yield as an explicit pricing factor. There are

two main reasons for this. Firstly, all the relevant price dynamics can be

captured through the modeling of spot prices alone, and secondly, convenience

yield is a theoretical construct introduced in order to explain backwardation in

commodity futures. For any practical purposes it is more suitable to develop a

model which works only with factors that are traded. However, the convenience

yield is implicitly contained in the model. To derive the expression for the

convenience yield, note that in the cost of carry model the following relation

must hold:

CC(t, T ) = y(t, T )−∆(t, T ),

where CC(t, T ) is the spot cost-of-carry rate at t implied by a futures contract

maturing at T , y(t, T ) is the yield at t on a unit discount bond maturing at

T , while ∆(t, T ) is the spot convenience yield implied by the futures contract

(see Miltersen (2003)). The instantaneous implied forward convenience yield

13
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at t for a contract maturing at T can be calculated via relation

δ(t, T ) =
∂ [(T − t)∆(t, T )]

∂T
. (1.24)

Since

CC(t, T ) =
1

T − t
ln

[
F (t, T )

St

]
,

we have

δ(t, T ) = −∂ [lnB(t, T ) + lnF (t, T )− xt]
∂T

= r̄∗ − (r̄∗ − rt) e−bτ −
1

2
θ2

(
1− e−bτ

b

)2

−a (x̄∗ − xt) e−aτ −
1

2
σ2e−2aτ − λ∗k∗

[
aτ −

(
1− e−aτ

)]
.(1.25)

As t → ∞, the spot price and the interest rate converge in expectation to

their long run equilibrium levels, x̄∗ and r̄∗, respectively. But then δ(t, T ) will

converge to r̄∗ − θ2/2b2. This implies that the convenience yield also exhibits

mean reversion, which is a feature of many models that use explicit dynamics

for δ(t, T ).

I can express δ(t, T ) through the values of the bond price and the futures

price only. I first use equations (1.12) and (1.23) to express rt and xt, respec-

tively, through lnB(t, T ) and lnF (t, T ):

rt = r̄∗ +
b

1− e−bτ

[
lnB(t, T ) + r̄∗τ − θ2

2b2

(
τ − 2

1− e−bτ

b
+

1− e−2bτ

2b

)]
,

(1.26)

xt = x̄∗ + eaτ
[
lnF (t, T )− x̄∗ − 1

2
σ2 1− e−2aτ

2a
− λ∗k∗

(
τ − 1− e−aτ

a

)]
.

(1.27)

Then, substituting these expressions into equation (1.25), we get δ(t, T ) in

terms of observable variables, lnF (t, T ) and lnB(t, T ).

14
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The intuition behind results given by equation (1.25) is the following. Sup-

pose that the term structure is flat (rt ≡ r, b = θ = 0). Then,

F (t, T ) = Ste
(r−δ)(T−t).

If commodity is held mostly for investment purposes, δ would be smaller than

r. In this case F (t, T ) > St, so it is more profitable to have a long position

in a futures contract than hold the commodity itself. The described situation

is usually known as ”contango”. On the other hand, if commodity is held

primarily for consumption, the convenience yield is higher than the risk-free

rate. In some situations it can be greater than r, so that F (t, T ) < St. Thus,

it may be better to own the physical commodity than the futures contract.

This is usually referred to as ”backwardation”. Backwardation is a usual

trademark of, say, energy commodities or industrial metals. For example, the

market data indicate that crude oil is most of the time in backwardation,

which is a consequence of typically high risk of supply shortage, moderately

high transportation and storage costs, high consumption levels, and low value

as a collateral for borrowing. In contrast, contango is typically observable in

futures on investment commodities, such as gold or silver. These commodities

have very low risk of being in short supply, very low transportation costs, low

consumption levels relative to inventory, no risk of spoilage or loss whatsoever,

no seasonality patterns in consumption or production, and finally they have

very high value as a collateral.

When the futures curve is plotted against times to delivery, most of the

commodities have a relatively stable long end and a rapidly changing short

end. This is because the long end is more closely related to marginal costs of

production, whereas the short end is governed by short-term supply and de-

mand dynamics. Short end of the curve is usually used to cover unanticipated

demand.
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1.3.3 European Options on Futures

The value at time 0 of a European call option with strike price K, expiring at

t, on a futures contract expiring at T is given by

C(0, t, T ) = E∗0
[
e−

R t
0 rsds max {F (t, T )−K, 0}

]
. (1.28)

Denoting by ν0,t the number of Poisson jumps occurring within the time inter-

val (0, t) and applying the rule for conditional expectation, we get

C(0, t, T ) =
∞∑
n=0

E∗0
[
e−

R t
0 rsds max {F (t, T )−K, 0}

∣∣∣ν0,t = n
]

P∗ (ν0,t = n)

=
∞∑
n=0

e−λ
∗t (λ

∗t)n

n!
E∗0
[
e−

R t
0 rsds max {F (t, T )−K, 0}

∣∣∣ν0,t = n
]
.(1.29)

The presence of Poisson jumps causes the distribution of the spot price to

be more skewed and leptokurtic than the log-normal. Option values are thus

markedly changed by the jumps, since they are heavily influenced by one tail

of the distribution.

Under the assumption (1.19) of log-normally distributed sizes of Poisson

jumps Ut, the call price will be given by a series expansion of the form:

C(0, t, T ) = (1.30)

B(0, t)
∞∑
n=0

e−λ
∗t (λ

∗t)n

n!

{
F (0, T )H(t, T )eϕ(n,t,T )N [d1(n, τ)]−KN [d2(n, τ)]

}
,

where N(·) is the probability function of a standard normal distribution,

H(t, T ) = exp

{
−ρσθe

−aτ

b

[
1− e−at

a
− 1− e−(a+b)t

a+ b

]}
, (1.31)

ϕ(n, t, T ) = n

[
e−aτ

(
γ∗τ −

1

2
ω2

)
+ e−2aτ 1

2
ω2

]
− λ∗k∗e−aT

[
T

1− e−aT
− t

1− e−at
+

e−at

a(1− e−at)

]
, (1.32)
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d1(n, τ) =
ln [F (0, T )H(t, T )/K] + ϕ(n, t, T ) + v(n, τ)/2√

v(n, τ)
, (1.33)

d2(n, τ) = d1(n, τ)−
√
v(n, τ), (1.34)

v(n, τ) = e−2aτ

(
σ2 1− e−2aτ

2a
+ nω2

)
. (1.35)

The proof is given in Appendix C. Although solution for the call price given

by equation (1.30) is not a closed-form one, it has the form of a simple series

expansion. Analogous result were obtained by Merton (1976) and Hilliard

and Reis (1998) for the price of European call option on stock and commodity

futures, respectively, when the underlying security follows a GBM with Poisson

jumps. equation (1.32) implies that, as n increases, ϕ(n, t, T ) cannot grow

faster than n [e−aτ (γ∗τ − ω2/2) + e−2aτω2/2]. This, in turn, means that all the

terms in the sum on the right hand side of equation (1.30) are of the form

zn/n!, where z is a positive number. Given that N(·) is bounded, the series is

clearly convergent and for any practical purposes it can be approximated by a

finite sum.

When commodity spot prices follow GBM (a → 0, x̄∗ → ∞, and ax̄∗ →
const.) and interest rates are deterministic (θ = 0), equation (1.30) reduces

to the futures call formula of Bates (1991). On the other hand, when jump

component is absent (k∗ = λ∗ = ω = 0) I recover the result of Miltersen and

Scwartz (1998).

Formula for the price of a European put option on futures, P (0, t, T ), can

be obtained by analogy. It is straightforward to show that

P (0, t, T ) = (1.36)

B(0, t)
∞∑
n=0

e−λ
∗t (λ

∗t)n

n!

{
KN [−d2(n, τ)]− F (0, T )H(t, T )eϕ(n,t,T )N [−d1(n, τ)]

}
.
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1.3.4 Futures Hedge

Consider the minimum-variance hedge of a risk-averse investor. Duffie (1989)

shows that optimal hedge ratio for an investor with mean-variance utility can

be broken into two of the following portions: one reflecting speculative demand

(which varies across individuals according to their risk aversion) and another

reflecting a pure hedge (which is the same for all mean-variance utility hedgers).

Because the former is both difficult to estimate and often close to zero, Duffie

argues that it is reasonable to focus attention on the pure hedge.

Without loss of generality, assume that an investor at time t has taken

a long position in a single spot contract and a short position in ht futures

contracts. The change in the worth of such a portfolio from t to t+ dt, under

the risk-neutral measure P∗, will be equal to

dP ∗t = dS∗t − htdF ∗t . (1.37)

By taking the P∗-variance of both sides of equation (1.37) conditional on the

information available at t, we obtain

var∗t (dP ∗t ) = var∗t (dS∗t )− 2htcov∗t (dS∗t , dF
∗
t ) + h2

tvar∗t (dF ∗t ) . (1.38)

This expression is minimized by choosing a hedge ratio of

hF
t =

cov∗t (dS∗t , dF ∗t )

var∗t (dF ∗t )
. (1.39)

To compute hF
t one first needs to find the stochastic differential equation for

dF ∗t . To do so, I apply Itô’s lemma to F (t, T ) obtained from equation (1.23)

and get

dF ∗

F
= −λ∗k∗

(
1− e−aτ

)
dt+ e−aτ [σdW ∗

t + (Ut − 1)dq∗t ] . (1.40)
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The instantaneous optimal hedging ratio for dynamic futures hedge is thus

hF
t =

St
F (t, T )

eaτ . (1.41)

Naturally, this ratio is truly optimal only for the interval (t, t+dt), after which

it has to be updated to take into account the corresponding price changes.

I can easily generalize expression (1.41) to find an optimal hedging ratio for

any calendar-spread hedge. If I assume that an investor at time t has taken a

long position in one futures contract with maturity T1 and a short position in

ht futures contracts with maturity T2 > T1, the optimal hedging ratio would

be given by

hF cal.
t =

F (t, T1)e−aT1

F (t, T2)e−aT2
.

1.4 Calibration of the Model

1.4.1 Calibration Procedure

The empirical implementation of our model requires time-series observations

for the state variables, namely the spot price and the short interest rate. In

practice, these are seldom directly observable. However, the model can be

casted in the state space form and the Kalman filter may be applied to es-

timate the parameters. The original Kalman filter approach is based on a

supposition of normally distributed, serially uncorrelated, disturbances in the

state variable. The model for the spot price of commodity developed in this

chapter does not satisfy this assumption since the Poisson process distorts the

distribution of return innovations. However, as shown in Harvey (1994), even

if the disturbances belong to the family of affine jump diffusion, the Kalman

filter recursion can still be applied under some approximations. The problem

is that estimations with Kalman filter typically require a lot of computational

time. Duan (1994) shows that when the transformation from unobservable to
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observable state variables is on an element-to-element basis, a simple maxi-

mum likelihood estimation can be applied. Namely, if for every t we can write

Yt = Ft (Xt, ψ), where Ft is a one-to-one mapping and ψ is the set of unknown

parameters, then we can relate the likelihood function of observed variables to

the likelihood function of the unobserved ones and the Jacobian matrix of the

transformation:

lnLobs (Y, ψ) = lnLun

(
X̃(ψ), ψ

)
+ ln

∣∣∣∣∣∣∣det


∂Ft

(
X̃(ψ), ψ

)
∂X

−1

∣∣∣∣∣∣∣ , (1.42)

where Y = {Yt}Nt=1, X = {Xt}Nt=1, and X̃t(ψ) = F−1
t (Yt, ψ) for every t =

1, 2, . . . , N (N being the length of the time series).

The general state space form applies to multivariate time series of observable

variables (in this case, futures prices and bond prices for various maturities)

related to unobservable ones (in this case spot prices6 and short interest rates)

via measurement equation. The measurement equation can be obtained from

equations (1.23) and (1.12) by rewriting them in a discrete-time vector form:

Yt = αt + βtXt, (1.43)

where

Yt =

[
lnF (t, T )

y(t, T )

]
,

Xt =

[
xt

rt

]
,

αt =

 x̄∗ (1− e−aτ ) + 1
2
σ2 1−e−2aτ

2a
+ λ∗k∗

(
τ − 1−e−aτ

a

)
r̄∗
(

1− 1−e−bτ
bτ

)
− θ2

2b

(
1− 21−e−bτ

bτ
+ 1−e−2bτ

2bτ

)  ,
6Spot contracts are seldom traded in a standardized form on exchanges. Exceptions,

however, do exist when transportation costs are negligible. For example, Dubai Crude
standard is regularly traded both on the spot and on the futures markets. Otherwise, the
price of futures contract closest to maturity is often quoted as the ”spot price”.
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βt =

[
e−aτ 0

0 1−e−bτ
bτ

]
.

Here, I used the continuously compounded yield y(t, T ) = −[lnB(t, T )]/(T−t)
rather than the bond price B(t, T ).

The unobservable state variables are generated via the transition equation,

which is simply a discrete-time version of the stochastic processes for the state

variables under the physical probability P, equations (1.9) and (1.2):

Xt = c+ dXt−1 + εt. (1.44)

Here,

c ≡ c(νt) =

[
(ax̄− λk) 1−e−a∆t

a

r̄
(
1− e−b∆t

) ]
+ νt

[
γ0 − ω2/2

0

]
,

d =

[
e−a∆t 0

0 e−b∆t

]
,

where νt ∈ {0, 1}, γ0 = ln(1 +k), and ∆t is the time interval between consecu-

tive observations (in years). The error term εt is normally distributed under P,

conditionally on knowing whether the Poisson event occurs at t (i.e., νt = 1)

or not (νt = 0):

εt|νt = n ∼ N

([
0

0

]
, V(n)

)
, n = 0, 1, (1.45)

where

V(n) =

[
σ2 1−e−2a∆t

2a
+ nω2 ρσθ 1−e−(a+b)∆t

a+b

ρσθ 1−e−(a+b)∆t

a+b
θ2 1−e−2b∆t

2b

]
.

Therefore, conditionally on knowing νt, Xt will follow a VAR(1) process. Note

that transition equation is expressed through parameters x̄, r̄, λ, and k, rather

than the ones adjusted for the market price of risk. The reason is that equa-

tion (1.44) describes the joint process for commodity spot price and the interest
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rate under the physical (i.e. data-generating) measure P. As we cannot observe

xt and rt directly, we have to estimate x̄, r̄, λ, and k indirectly through their

risk-adjusted counterparts x̄∗, r̄∗, λ∗, and k∗. Their relationship is given by

equations (1.5)–(1.8). I assume that ξ1 through ξ4 are constant, although more

generally they should depend on the business cycle and be correlated with the

level of inventories. In summary, the set of parameters to be determined by

estimation is

ψ = {a, b, x̄∗, r̄∗, λ, k, λ∗, k∗, σ, θ, ρ, ω, ξ1, ξ2} .

Under Bernoulli approximation for the Poisson jumps (that is, assuming

νt ∈ {0, 1}), the log-likelihood function for the unobserved data can be written

as

lnLun (X(ψ), ψ) = (1.46)
N−1∑
t=1

ln
[
e−λ∆tf (Xt+1, ψ|Xt, νt+1 = 0) +

(
1− e−λ∆t

)
f (Xt+1, ψ|Xt, νt+1 = 1)

]
,

where f(·) is a conditional probability density function. Since xt is normally

distributed conditionally on knowing the exact number of Poisson jumps at

t + 1, and rt is unconditionally normal, the conditional probability density

functions will be given by

f (Xt+1, ψ|Xt, νt+1 = n) =

1√
2π det V(n)

exp

{
−1

2
[Xt+1 − µt+1(n)]′ [V(n)]−1 [Xt+1 − µt+1(n)]

}
,

where

µt+1(n) = Et(Xt+1|νt+1 = n) = c(n) + dXt.

Applying the result given by equation (1.42), we can write the log-likelihood
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function for the observed data as

lnLobs (Y(ψ), ψ) = (1.47)
N−1∑
t=1

ln
[
e−λ∆tf

(
X̃t+1, ψ|Xt, νt+1 = 0

)
+
(
1− e−λ∆t

)
f
(
X̃t+1, ψ|Xt, νt+1 = 1

)]
+ a

N−1∑
t=1

τt −
N−1∑
t=1

ln

(
1− e−bτt
bτt

)
,

where τt is the residual maturity on the contract at time t, and

X̃t = β−1
t (Yt − αt) .

Maximization of the right hand side of equation (1.47) then yields the set of

estimates for the unknown parameters, ψ̃.

1.4.2 Data

The futures data I used for calibration consisted of weekly observations for fu-

tures prices of six commodities: two energy goods (Brent crude oil and natural

gas), one industrial metal (copper), one precious metal (gold), one agricultur-

al good (wheat), and one meat commodity (frozen pork bellies). I summarize

these data in Table 1.1. The interest rate data consisted of yields on 3-Month

Treasury Bills. All time series were obtained from Thomson Financial’s Datas-

tream and covered the same period – from May 29, 1991 to May 31, 2006, with

784 observations. The data were sampled on Wednesdays.7 The weekly sam-

pling frequency is chosen in order to reduce spurious market microstructure

distortions and avoid weekend and other seasonal day-of-the-week effects. Fur-

thermore, a higher sampling frequency would make estimation of mean jump

frequency and mean jump size more difficult and more subject to noises in the

data.

7If Wednesday was a holiday, Thursday data was used.
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Table 1.1: Commodity Futures: Data Summary

Commodity Exchange Unit Contract size Average price†

Brent Crude Oil ICE $/ barrel 1,000 25.26 (0.46)
Natural Gas NYMEX $/ mmBtu 10,000 3.56 (0.09)
Copper COMEX ¢/ lb 25,000 103.88 (1.45)
Gold COMEX $/ troy oz. 100 353.90 (2.39)
Wheat CBOT ¢/ bushel 5,000 338.66 (2.34)
Pork Bellies CME ¢/ lb 40,000 66.23 (0.73)

† Standard errors in parentheses.

Trading period: May 29, 1991 – May 31, 2006.
Abbreviations: ICE – International Commodity Exchange, London. NYMEX – New York Mercantile
Exchange. COMEX – Commodity Exchange, New York. CBOT – Chicago Board of Trade.
CME – Chicago Mercantile Exchange.
mmBtu – millions of British thermal units.

For different commodities and different time periods distinct specific futures

contracts had to be used. The reason is that any futures contract has a limited

time window when it is traded. Since prices of futures contracts are typically

stacked in overlapping time series, a continuous series that spans many different

contracts has to be created. Several methods are common for generating such

continuous series (Rougier (1992)). I have chosen to consistently keep track of

tenors that are second-to-closest to maturity. Since the contracts have a fixed

maturity date, the time to maturity changes as time progresses. This is shown

in Figure 1.1. Time to maturity for all the contracts in the sample was thus

ranging between 12 and 33 trading days, with a mean of 22.45 and a standard

deviation of 6.38.

Figures 1.2 through 1.8 show the plots of the time series used for calibration.

Figure 1.2 displays the yield on 3-Month Treasury Bills, while Figures 1.3–1.8

show futures prices for different commodities. Some features, such as mean

reversion or appearance of sudden jumps and dips, are clearly visible.
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Figure 1.1: Time to maturity of the futures contracts used in the estimation.

Figure 1.2: Yield on 3-month U.S. Treasury Bills, in percent.
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Figure 1.3: Price of the continuous series of futures contracts on Brent crude
oil (USD per barrel).

Figure 1.4: Price of the continuous series of futures contracts on natural gas
(USD per million of Btu).
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Figure 1.5: Price of the continuous series of futures contracts on copper (USD
cents per pound).

Figure 1.6: Price of the continuous series of futures contracts on gold (USD
per troy ounce).
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Figure 1.7: Price of the continuous series of futures contracts on wheat (USD
cents per bushel).

Figure 1.8: Price of the continuous series of futures contracts on pork bellies
(USD cents per pound).
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1.4.3 Results

The estimation is performed on inflation-adjusted deseazonalized time series of

futures prices and the corresponding data on T-bills. I deflated each series of

the futures prices with the CPI values obtained by interpolation of monthly da-

ta. Tables 1.2 through 1.7 summarize the results for the estimated parameters

obtained by maximum likelihood technique described in Subsection 1.4.1. For

each commodity, I give the comparison between the model and its two restric-

tions. Restriction 1 is a model without jumps (λ = k = ω = 0), while restric-

tion 2 also excludes the interest rate dependence (b = r̄ = θ = ρ = 0). In the

latter case the model reduces to the one-factor model of Schwartz (1997). For

the baseline model and the two restrictions I report the values of log-likelihood

function (LL) and Akaike information criterion (AIC) for each commodity.

Table 1.8 compares the likelihood ratios across the nested models. The

critical values for χ2 distribution at 1% confidence level when number of degrees

of freedom is equal to 5, are given for comparison. (Here, d = 5, 5, and 10,

respectively, count the degrees of freedom obtained when passing from more

restricted model to a less restricted one.) Clearly, for all the commodities in the

dataset both of the restrictions have to be rejected. In other words, a proper

description of the commodity price dynamics has to include both the interest

rate and the jumps. Also, in a two-factor model without the jump component

Brownian diffusion alone cannot capture the whole dynamics of the spot price.

As Akaike info criteria suggest, the two-factor model has similar explanatory

power for all commodities in the sample.

As expected, all spot prices display significant mean reversion, which can

be also seen in Figures 1.3 through 1.8. The fastest mean reversion is observed

for natural gas and pork bellies: the characteristic times, measured as 1/a, are

around 31 weeks. Copper has the slowest mean reversion with characteristic

time of about one year.

Another interesting result are small and typically negative correlations be-
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tween interest rates and spot price returns of some commodities. (The values

of ρ range from −0.0490 for gold to +0.0035 for wheat.) Similar numerical

values were obtained by Schwartz (1997) with a three factor model for crude

oil, gold, and copper. Economical reasons behind negative correlations are the

following. High interest rates reduce the demand or increase the supply for

storable commodities through a variety of channels. This may happen either

due to increase of incentives for extraction of commodity today rather than

tomorrow, or due to decrease in firms’ desire to carry inventories (especially

oil), or simply due to the fact that when interest rates increase the speculators

are encouraged to shift out of their commodity contracts into treasury bills.

These mechanisms work to reduce the market price of commodities, as indeed

happened in the early 1980s. A decrease in real interest rates has the opposite

effect, lowering the cost of carrying inventories and raising commodity prices,

as was the case during 2001–2004 period.

Several interesting observations follow from the estimates of the jump pa-

rameters. For example, the frequency of jumps λ∗ ranges between 0.1146 and

0.2684, or from about 6 to 14 abnormal weekly jumps per year. Apart from

unexpected timing, jumps have also sizes that take a wide range of possible

values. For example, natural gas has the largest standard deviation of jump

sizes (ω = 0.0894). The 95 percent confidence interval of U − 1 is therefore

quite wide: roughly between −17 and +18 percent. The average jump size

is positive (k = 0.0094), indicating that the long-run jump compensation is

negative. On the other hand, gold has the narrowest jump size confidence

interval, between −1.3 and +1.8 percent, with a positive average jump size

(k = 0.0027).
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Table 1.2: Estimated Parameters: Brent Crude Oil

Parameter Model Restriction 1 Restriction 2

a 1.5911 (0.6650) 1.3259 (0.6268) 1.1049 (0.4579)
b 2.0130 (0.2306) 2.3228 (0.1455) -
x̄∗ 3.1947 (0.4319) 3.1989 (0.4933) 3.1964 (0.7915)
r̄∗ 0.0378 (0.0011) 0.0379 (0.0015) -
λ∗ 0.1556 (0.0114) - -
k∗ 0.0015 (0.0010) - -
λ 0.2849 (0.0496) - -
k 0.0019 (0.0021) - -
σ 0.2986 (0.0677) 0.2488 (0.0944) 0.2073 (0.6934)
θ 0.0174 (0.0015) 0.0192 (0.0022) -
ρ −0.0263(0.0019) −0.0219(0.0026) -
ω 0.0208 (0.0226) - -
ξ1 0.1613 (0.0894) 0.1346 (0.1013) 0.1490 (0.0800)
ξ2 0.1186 (0.4512) 0.1192 (0.6191) -

LL 6599.27 6589.52 2091.32
AIC 13170.53 13151.05 4154.63

(Standard errors in parentheses)
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Table 1.3: Estimated Parameters: Natural Gas

Parameter Model Restriction 1 Restriction 2

a 1.6740 (0.3099) 1.1160 (0.1857) 1.1142 (0.1398)
b 1.0800 (0.4824) 2.1600 (0.7586) -
x̄∗ 1.1619 (0.2868) 1.1387 (0.2983) 1.1243 (0.4137)
r̄∗ 0.0371 (0.0006) 0.0364 (0.0007) -
λ∗ 0.1146 (0.0043) - -
k∗ 0.0094 (0.0031) - -
λ 0.2637 (0.0150) - -
k 0.0281 (0.0171) - -
σ 0.4509 (0.0882) 0.3006 (0.1215) 0.2802 (1.2950)
θ 0.0114 (0.0007) 0.0172 (0.0069) -
ρ −0.0055 (0.0007) −0.0046 (0.0010) -
ω 0.0894 (0.0224) - -
ξ1 0.2134 (0.0229) 0.2166 (0.0513) 0.2707 (0.0622)
ξ2 0.1624 (0.9470) 0.3248 (0.5882) -

LL 6589.22 6572.84 1855.81
AIC 13150.43 13117.67 3683.63

(Standard errors in parentheses)
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Table 1.4: Estimated Parameters: Copper

Parameter Model Restriction 1 Restriction 2

a 1.2742 (0.5122) 1.1584 (0.5340) 1.2268 (0.9231)
b 2.5245 (0.9121) 2.2950 (0.5178) -
x̄∗ 4.6128 (0.2809) 4.6047 (0.2506) 4.6184 (0.3943)
r̄∗ 0.0355 (0.0041) 0.0352 (0.0041) -
λ∗ 0.2304 (0.0078) - -
k∗ 0.0024 (0.0008) - -
λ 0.2902 (0.0249) - -
k 0.0036 (0.0035) - -
σ 0.2034 (0.1560) 0.1849 (0.1606) 0.1541 (0.0711)
θ 0.0211 (0.0092) 0.0192 (0.0089) -
ρ −0.0308 (0.0091) −0.0385 (0.0092) -
ω 0.0169 (0.0065) - -
ξ1 0.4803 (0.1227) 0.5337 (0.1276) 0.5337 (0.5440)
ξ2 0.4493 (0.2816) 0.4992 (0.3589) -

LL 6595.51 6580.98 2312.65
AIC 13163.03 13133.97 4597.30

(Standard errors in parentheses)
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Table 1.5: Estimated Parameters: Gold

Parameter Model Restriction 1 Restriction 2

a 1.1326 (0.2425) 1.0296 (0.8582) 0.8972 (1.0983)
b 2.5424 (1.8600) 2.3113 (1.2827) -
x̄∗ 5.8889 (0.8369) 5.8890 (0.8646) 5.8738 (1.7478)
r̄∗ 0.0349 (0.0087) 0.0345 (0.0095) -
λ∗ 0.1620 (0.0117) - -
k∗ 0.0027 (0.0019) - -
λ 0.2490 (0.0404) - -
k 0.0040 (0.0098) - -
σ 0.1170 (0.0144) 0.1064 (0.0165) 0.0887 (0.0705)
θ 0.0211 (0.0021) 0.0192 (0.0023) -
ρ −0.0490 (0.0196) −0.0613 (0.0220) -
ω 0.0080 (0.0060) - -
ξ1 0.6220 (0.3610) 0.6126 (0.3743) 0.7657 (1.8183)
ξ2 0.5513 (0.7912) 0.6126 (1.1261) -

LL 6589.55 6575.90 2743.61
AIC 13151.10 13123.80 5459.21

(Standard errors in parentheses)
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Table 1.6: Estimated Parameters: Wheat

Parameter Model Restriction 1 Restriction 2

a 0.9854 (0.4268) 0.8958 (0.2789) 0.7465 (0.1181)
b 2.5422 (1.6166) 2.3111 (1.5254) -
x̄∗ 5.8908 (0.7310) 5.8899 (1.0358) 5.8905 (1.7239)
r̄∗ 0.0384 (0.0093) 0.0383 (0.0142) -
λ∗ 0.2684 (0.0176) - -
k∗ 0.0005 (0.0006) - -
λ 0.3383 (0.0690) - -
k 0.0007 (0.0005) - -
σ 0.1212 (0.0130) 0.1102 (0.0204) 0.0918 (0.0711)
θ 0.0211 (0.0018) 0.0192 (0.0027) -
ρ 0.0035 (0.0027) 0.0029 (0.0045) -
ω 0.0092 (0.0061) - -
ξ1 0.0703 (0.0375) 0.0781 (0.0638) 0.0728 (0.1998)
ξ2 0.0524 (0.0327) 0.0582 (0.0660) -

LL 6584.42 6571.47 2712.66
AIC 13140.84 13114.94 5397.31

(Standard errors in parentheses)
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Table 1.7: Estimated Parameters: Pork Bellies

Parameter Model Restriction 1 Restriction 2

a 1.6433 (0.6073) 1.4939 (0.6202) 1.2449 (0.8914)
b 2.5553 (1.8095) 2.3230 (1.5197) -
x̄∗ 4.2042 (0.4889) 4.2061 (0.6791) 4.2099 (0.5163)
r̄∗ 0.0378 (0.0092) 0.0376 (0.0144) -
λ∗ 0.2579 (0.0170) - -
k∗ 0.0010 (0.0006) - -
λ 0.4054 (0.0103) - -
k 0.0012 (0.0008) - -
σ 0.2177 (0.0377) 0.1979 (0.0608) 0.1649 (0.1456)
θ 0.0211 (0.0017) 0.0192 (0.0025) -
ρ −0.0220 (0.0017) −0.0183 (0.0027) -
ω 0.0216 (0.0168) - -
ξ1 0.2369 (0.1184) 0.2154 (0.1691) 0.1795 (0.3305)
ξ2 0.1383 (0.0437) 0.1537 (0.0874) -

LL 6612.60 6596.38 2276.85
AIC 13197.19 13164.76 4525.70

(Standard errors in parentheses)
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Table 1.8: Likelihood Ratios

Commodity Model / Restr. 1 Restr. 1 / Restr. 2

Brent Crude Oil 19.49 8996.41
Natural Gas 32.76 9434.05
Copper 29.06 8536.67
Gold 27.31 7664.58
Wheat 25.90 7717.63
Pork Bellies 32.43 8639.06

χ2
5 (p = 0.01) 15.09

Table 1.9 shows the values of three types of risk premia implied by the mod-

el (cf. Section 2). The values are stated in percentage points. As expected,

investors are more compensated for being exposed to diffusive risk contained

in the spot price movements than to the corresponding interest rate risk. The

spot price diffusive-risk premium is highest for copper (7.45%), which is rea-

sonable given its inelastic and slow responses to longer periods of increases or

decreases in price. Diffusive risk explains more than 95 percent of the overall

risk premium for crude oil, copper and gold. On the other hand, the interest

rate diffusive risk pays substantially lower premia. This is mostly because the

volatility of the interest rate is, in some cases, an order of magnitude lower

than the volatility of the spot price: θ is estimated to be around 0.02, whereas

the lowest volatility of the spot price is that of gold with σ = 0.1170.

Market prices also carry important information about investors’ expecta-

tions of abnormal movements in the future. This is mirrored through very

high jump-risk premia for some of the commodities in the sample. The values

of these premia are comparable to the diffusive return risk. Of the commodities

chosen, natural gas has the highest combined jump-time/jump-size premium

of 1.74%, followed by pork bellies (1.49%). The highest value obtained for nat-
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Table 1.9: Risk Premia (percentage points)

Spot price Interest rate Jump risk
Commodity diffusive risk diffusive risk (overall)

Brent Crude Oil 2.97 0.07 0.12
Natural Gas 5.72 0.22 1.74
Copper 7.45 0.06 0.25
Gold 6.15 0.05 0.12
Wheat 0.87 0.04 0.25
Pork Bellies 3.10 0.13 1.49

ural gas comes from the highest disproportion between the risk-neutral mean

jump size (k∗) and the actual one (k) among all six commodities. This differ-

ence is directly related to the volatility of jump size (cf. Appendix A), which

is highest for natural gas.

The significance of jumps indicates the presence of a systemic and non-

diversifiable risk component. To explore the economic interpretation of this

component, let us analyze what drives the combined jump premium. The

combination of a high uncertainty of jump size and a high uncertainty of jump

occurrence is reflected on the two components of the jump risks. Firstly, it

increases the jump-time risk through a large difference between ”physical” λ,

and the one perceived by the market, λ∗, which is relevant for derivatives pric-

ing. Secondly, it increases jump-size risk by driving a large difference between

k and k∗. As the empirical results suggest, the differences between λ and λ∗

are typically much greater than the differences between k and k∗. Therefore,

most of the commodity risk premium can be attributed to compensation for

investors’ aversion towards rare events that cause the jumps. In a similar con-

text of rare-event uncertainty embedded in stock options, Pan (2002) estimates

that the premium demanded by equity investors for this type of risk is around

3.5% per year. Liu, Pan, and Wang (2005) attribute a part of the jump risk
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to the uncertainty aversion in the sense of Knight (1921) and Ellsberg (1961).

To complete the exposition of numerical results, in Tables 1.10 and 1.11 I

report the values of European call and put options on futures, obtained using

equations (1.30) and (1.36), respectively. The sum in these two equations

converge to precision of 10−4 after only four or five terms. For each commodity

I use the point estimates of parameters obtained by calibration. The strike

prices chosen are arbitrary, the maturity of each option is t = 150 trading days,

while the prices of futures contracts are those quoted on June 1, 2006. Futures

contracts, which are different from the ones used to calibrate the parameters,

were selected such that their delivery dates were as close as possible to March 1,

2007. Times to maturity are also shown in the table. Yield on the 3-Month T-

Bills was 4.71%. I also report the premia to option prices due to Poisson jumps.

These premia (when measured relative to the total price) are particularly high

for deep in- or out-of-the-money options, but also for commodities with high

expected jump frequencies and/or volatile jump sizes. Good examples are

Brent and natural gas.

Table 1.10: Prices of European call options on commodity futures

Commodity K F (0, T ) T C(0, t, T ) Jump premium

Brent Crude Oil 70.00 72.31 273 3.2164 0.5125
Natural Gas 10.50 10.14 270 0.2523 0.0459
Copper 310.00 326.85 273 18.1683 2.9954
Gold 650.00 652.70 270 10.7545 1.6507
Wheat 472.50 468.75 267 6.0518 1.1481
Pork Bellies 85.00 84.25 267 1.2901 0.2877
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Table 1.11: Prices of European put options on commodity futures

Commodity K F (0, T ) T P (0, t, T ) Jump premium

Brent Crude Oil 70.00 72.31 273 0.9657 0.1520
Natural Gas 10.50 10.14 270 0.5940 0.0837
Copper 310.00 326.85 273 1.7228 0.2666
Gold 650.00 652.70 270 7.9771 1.0037
Wheat 472.50 468.75 267 9.6699 1.7566
Pork Bellies 85.00 84.25 267 2.0139 0.4373

1.5 Conclusion

The chapter presents a simple two-factor model for valuation of contingent

claims on commodities. The logarithm of the spot price is modeled by an

Ornstein-Uhlenbeck process with compensated Poisson jumps. The interest

rate is considered to follow the Vasicek process. The stochastic processes

chosen are such that they are the minimal ones capturing the desired dynamics,

yet providing closed form solutions. By transforming the factor dynamics in

a way that the processes are expressed under the risk-neutral measure I have

obtained the closed form solutions for the price of a forward and a future

contract, and a formula for the price of a European option on commodity

futures in form of a series expansion. Furthermore, I have derived an expression

for the optimal hedging ratio of a dynamic futures hedge by applying the

minimum-variance hedging. Full analytical tractability of the model allowed

for parameter estimation via usual maximum likelihood technique, adapting

it to account for jumps in the spot price. In this way I avoid computationally

intensive Kalman filter procedure.

The principal advantages of the proposed model over the ones in the lit-

erature are the following. First, it takes into account the most important
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Table 1.12: European option prices on natural gas futures as a func-
tion of moneyness

K/F (0, T ) C(0, t, T ) Jump premium P (0, t, T ) Jump premium

0.7 0.2925 0.0440 0.0000 0.0000
0.8 0.1956 0.0298 0.0004 0.0001
0.9 0.1048 0.0166 0.0068 0.0011
1.0 0.0392 0.0068 0.0384 0.0055
1.1 0.0095 0.0019 0.1058 0.0148
1.2 0.0015 0.0004 0.1951 0.0275
1.3 0.0002 0.0001 0.2910 0.0414

stylized facts for prices of commodities and bonds. Second, it avoids explicit

specification of dynamics of the convenience yield. Third, and perhaps most

important, it allows for the closed form solution for basic contingent claims:

forward and futures price, and price of a European option on futures. Finally,

the calibration can be done in a ”natural” fashion, i.e. it requires only the data

for commodity futures and bond yields.

The estimations using the actual data indicate that, in addition to spot price

diffusion, interest rate diffusion and jumps cannot be neglected when derivative

contracts on commodities are priced. Furthermore, the values of market prices

of risks implied by the model indicate that for some commodities jump risk

pays very high premia. These values are comparable to the premia originating

from the spot price diffusion, and they are certainly much greater than the

ones originating from the interest rate diffusion.

Both the analytical results and parameter estimations, however, may be

sensitive to the fact that the stochastic nature of the spot price volatility is

neglected. Setting up and solving a more general model that allows for con-

ditional heteroskedasticity in both the spot price and the interest rate would
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be a natural extension of the results presented in this chapter. In this way,

the discrete-time approximation of the model will belong to the ARCH family

and become applicable for more robust value-at-risk estimations. Addition-

al generalization should allow for time-dependent long-run equilibrium levels.

The justification for this generalization can be sought in the possibility of non-

cointegrated supply and demand series, which is the case with some extracted

commodities such as crude oil. While commodities such as industrial metals

and cultivated agricultural goods have, to a fair extent, cointegrated supply

and demand, similar observation is unlikely to hold for energy commodities

where demand is growing while at the same time the global supply is gradual-

ly diminishing.

The results of this chapter can be also readily generalized to include nu-

merical pricing techniques for contracts with more complex payoff functions.

Examples of interest include American or exotic options on futures, multiperi-

od budgeting decisions, or dynamic optimization in the real-option setup.

Appendix A: Risk-neutral processes

To find the risk-neutral equivalents of equations (1.1) and (1.2), note that we

can split the dynamics for the commodity spot price into

dSt
St

=

(
dSt
St

)
diff

+ dJt, (1.48)

where (
dSt
St

)
diff

= a (m− lnSt) dt+ σdWt (1.49)

is the diffusion part, while

dJt = (Ut − 1)dqt − λkdt (1.50)
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is the jump part of the stochastic process followed by St. Let us focus on

the diffusion part first. Equation (2.18), together with (1.2), follows a joint

Brownian diffusion, since dW and dZ are correlated. Define

dBt =

[
dWt

dZt

]
. (1.51)

To find the risk-neutral equivalent dB∗ of (2.20), which would be a martingale

under an equivalent measure P∗, we first write the Radon-Nikodým derivative

of P∗ with respect to the physical measure P:

Lt ≡
dP∗

dP
= exp

[
−
∫ t

0

ξs · dBs −
1

2

∫ t

0

(ξs · dBs) (dBs · ξs)
]
,

where

ξs =

[
ξ1

ξ2

]
is predictable at s (Bingham and Kiesel (2004)). Then, by Girsanov’s theorem,

a P∗-Brownian motion has the form

dB∗t = dBt (1 + dBt · ξt) .

Therefore,

dBt = dB∗t − dBt (dBt · ξt)

= dB∗t −

[
1 ρ

ρ 1

][
ξ1

ξ2

]
dt,

which implies [
dWt

dZt

]
=

[
dW ∗

t − (ξ1 + ρξ2) dt

dZ∗t − (ρξ1 + ξ2) dt

]
for all t. Hence, the processes(

dS∗t
St

)
diff

= a
[
m− σ

a
(ξ1 + ρξ2)− lnSt

]
dt+ σdW ∗

t
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and

dr∗t = b

[
r̄ − θ

b
(ρξ1 + ξ2)− rt

]
dt+ σdZ∗t

contain diffusions that are martingales under P∗.

On the other hand, the jump component, equation (2.19), is a P-martingale,

since

Et(dJt) = Et [(Ut − 1)dqt]− λkdt

= εt(Ut − 1)λdt− λkdt

= 0.

By applying Girsanov’s theorem for point processes (Elliot and Kopp (2005))

and using the normality assumption (1.18), we find

dq∗t = dqt − εt
{

exp

[
ξ3 + ξ4 lnUt − ξ4

(
γ0 −

1

2
ω2

)
+

1

2
ξ2

4ω
2

]
− 1

}
λdt

= dqt −
{
εt [exp (ξ4 lnUt)] exp

[
ξ3 − ξ4

(
γ0 −

1

2
ω2

)
+

1

2
ξ2

4ω
2

]
− 1

}
λdt

= dqt − (eξ3 − 1)λdt.

Define λ∗ = λeξ3 . Then,

dq∗t = dqt + λdt− λ∗dt.

Girsanov’s theorem applied to dJ then yields

dJ∗t = dJt − Et

[{
exp

[
ξ3 + ξ4 lnUt − ξ4

(
γ0 −

1

2
ω2

)
+

1

2
ξ2

4ω
2

]
− 1

}
(Ut − 1)dqt

]
= dJt − εt

[{
exp

[
ξ3 + ξ4 lnUt − ξ4

(
γ0 −

1

2
ω2

)
+

1

2
ξ2

4ω
2

]
− 1

}
(elnUt − 1)

]
λdt

= dJt −
(
eξ3+ξ4ω2+γ0 − eξ3 − eγ0 + 1

)
λdt.
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Define 1 + k∗ ≡ eξ4ω
2+γ0 = (1 + k)eξ4ω

2
. The process

dJ∗t = dJt −
[
(1 + k∗)eξ3 − eξ3 − (1 + k)

]
λdt

= (Ut − 1)dqt − λ∗k∗dt

is then a martingale under P∗, with E∗t (dJ∗t ) = 0. Putting everything together,

the processes

dS∗t
St

= a
[
m− σ

a
(ξ1 + ρξ2)− lnSt

]
dt+ σdW ∗

t + (Ut − 1)dqt − λ∗k∗dt

and

dr∗t = b

[
r̄ − θ

b
(ρξ1 + ξ2)− rt

]
dt+ σdZ∗t

represent the risk-neutral equivalents of (1.1) and (1.2).

Appendix B: Price of a forward contract

To show that equation (1.21) is equivalent to equation (1.15), note first that

the diffusion part of the log spot price,

x0
T = x̄∗ − (x̄∗ − xt) e−a(T−t) + σ

∫ T

t

e−a(T−s)dW ∗
s , (1.52)

is distributed normally under P∗, with mean

E∗t
(
x0
T

)
= x̄∗ − (x̄∗ − xt) e−a(T−t)

and variance

var∗t
(
x0
T

)
= var∗t

[
σ

∫ T

t

e−a(T−s)dW ∗
s

]
= σ2

∫ T

t

e−2a(T−t)ds′
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= σ2 1− e−2a(T−t)

2a
.

Here I have applied the isometry of Itô integral to calculate the variance.

Similarly, we find

cov∗t

(
x0
T ,

∫ T

t

rsds

)
= σθE∗t

[∫ T

t

e−a(T−s)dW ∗
s

∫ T

t

1− e−b(T−s)

b
dZ∗s

]
= ρσθ

∫ T

t

e−a(T−s) 1− e−b(T−s)

b
ds

= ρσθ

[
1− e−a(T−t)

a
− 1− e−(a+b)(T−t)

a+ b

]
.

Hence,

E∗t
[
exp

(
x0
T −

∫ T

t

rsds

)]
= E∗t

[
exp

(
x0
T

)]
E∗t
[
exp

(
−
∫ T

t

rsds

)]
· exp

[
cov∗t

(
x0
T ,−

∫ T

t

rsds

)]
= exp

[
x̄∗ − (x̄∗ − xt) e−aτ +

1

2
σ2 1− e−2aτ

2a

]
B(t, T )

· exp

[
−ρσθ

(
1− e−aτ

a
− 1− e−(a+b)τ

a+ b

)]
. (1.53)

Next, to compute the expectation

E∗t
[
exp

(∫ T

t

e−a(T−s) lnUsdq
∗
s − λ∗k∗

1− e−aτ

a

)]
we use the fact that the integral over dq∗s can be written as

∫ T

t

e−a(T−s) lnUsdq
∗
s =

νt,T∑
j=1

∫ T

t

e−a(T−s) lnUsδ(s−sj)ds = e−aτ
νt,T∑
j=1

easj lnUsj ,

where δ(s− sj) is the Dirac distribution, i.e. a Riemann-integrable infinity at

instants sj when jumps occur, and zero otherwise. The jumps are counted by
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a discrete variable j, and the total number νt,T of jumps in (t, T ) is a Poisson

random variable under P∗. Under the assumption of normality, equation (1.19),

we find

E∗t
[
exp

(∫ T

t

e−a(T−s) lnUsdq
∗
s

)]
= E∗t

[
exp

(
e−aτ

νt,T∑
j=1

easj lnUsj

)]

=
∞∑
n=0

ε∗t

[
exp

(
e−aτ

νt,T∑
j=1

easj lnUsj

)∣∣∣νt,T = n

]
P∗(νt,T = n)

=
∞∑
n=0

exp
[
n(γ∗τ − ω2/2) + nω2/2

]
P∗(νt,T = n)

=
∞∑
n=0

exp (nγ∗τ ) P∗(νt,T = n)

=
∞∑
n=0

(
1 + k∗

e−aτ

1− e−aτ

)n
e−λ

∗τ (λ∗τ)n

n!

= eλ
∗k∗τ .

Using the obtained expressions and equation (1.53) we get

G(t, T ) =
1

B(t, T )
exp

[
x̄∗ − (x̄∗ − xt) e−aτ +

1

2
σ2 1− e−2aτ

2a

]
B(t, T )

· exp

[
−ρσθ

(
1− e−aτ

a
− 1− e−(a+b)τ

a+ b

)]
· exp

[
λ∗k∗

(
τ − 1− e−aτ

a

)]
. (1.54)

Taking the logarithm of both sides of equation (1.54) yields equation (1.21).
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Appendix C: Derivation of formula for the price

of a European call option on commodity futures

First, note that equation (1.29) is equivalent to

C(0, t, T ) =
∞∑
n=0

e−λ
∗t (λ

∗t)n

n!
(1.55)

·E∗0
{
e−

R t
0 rsds

[
F (t, T )−K

∣∣∣ F (t, T ) > K, ν0,t = n
]}

.

From equations (1.23) and (1.14) we infer that

lnF (t, T ) = lnF (0, T )

+ e−a(T−t)
[
σ

∫ t

0

e−a(t−s)dW ∗
s +

∫ t

0

e−a(t−s) lnUsdq
∗
s

]
− 1

2
σ2e−2a(T−t) 1− e−2at

2a

+ λ∗k∗e−aT
[

T

1− e−aT
− t

1− e−at
+

e−at

a(1− e−at)

]
.

Let

Q = lnF (t, T )−
∫ t

0

rsds.

Then

Q = lnF (0, T ) + e−a(T−t)
[
σ

∫ t

0

e−a(t−s)dW ∗
s −

1

2
σ2e−a(T−t) 1− e−2at

2a

]
+ e−a(T−t)

∫ t

0

e−a(t−s) lnUsdq
∗
s + λ∗k∗

[
(T − t)e−a(T−t)

1− e−a(T−t) − Te−aT

1− e−aT

]
+ lnB(0, t)− θ2

2b2

(
t− 2

1− e−bt

b
+

1− e−2bt

2b

)
− θ

∫ t

0

1− e−b(t−s)

b
dZ∗s

so that

E∗0
[
eQ
∣∣∣ F (t, T ) > K, ν0,t = n

]
= E∗0

[
exp

(
−
∫ t

0

rsds

)]
E∗0
[
elnF (t,T )

∣∣∣ F (t, T ) > K, ν0,t = n
]

48



· exp

{
−cov∗0

[
lnF (t, T ),

∫ t

0

rsds
∣∣∣ F (t, T ) > K, ν0,t = n

]}
= B(0, t)E∗0

[
elnF (t,T )+lnH(t,T )

∣∣∣ F (t, T ) > K, ν0,t = n
]
,

where

lnH(t, T ) = −cov∗0

[
lnF (t, T ),

∫ t

0

rsds
∣∣∣ F (t, T ) > K, ν0,t = n

]
= −ρσθe−aτ

∫ t

0

e−a(t−s)dW ∗
s

∫ t

0

1− e−b(t−s)

b
dZ∗s

= −ρσθe
−aτ

b

[
1− e−at

a
− 1− e−(a+b)t

a+ b

]
.

Now, lnF (t, T ) + lnH(t, T ) is distributed normally with mean

ln[F (0, T )H(t, T )] + ϕ(n, t, T )− v(n, τ)/2

and variance v(n, τ), where ϕ(n, t, T ) and v(n, τ) are given by equation (1.32)

and (1.35), respectively. Hence,

E∗0
[
eQ
∣∣∣ F (t, T ) > K, ν0,t = n

]
= B(0, t)F (0, T )H(t, T )eϕ(n,t,T )N [d1(n, τ)],

(1.56)

with d1(n, τ) being given by equation (1.33).

Similarly, we find that

E∗0
[
e−

R t
0 rsds

∣∣∣F (t, T ) > K, ν0,t = n
]

= B(0, t)P∗
[
F (t, T ) > K

∣∣∣ ν0,t = n
]

= B(0, t)N [d2(n, τ)], (1.57)

where N [d2(n, τ)] is defined by equation (1.34). Substituting (1.56) and (1.57)

into (1.55) we finally obtain equation (1.30).
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Chapter 2

The Role of Jumps in Foreign

Exchange Rates

2.1 Introduction

Our knowledge about the complexity of underlying risk factors in exchange rate

processes parallels the increase in the number of studies on time series and op-

tion prices. The complexity suggests that investment decisions in currency

markets will be adequate only if they build upon fairly reasonable specifica-

tions of the exchange rate dynamics. Specifically, currency derivatives such

as forward rates, options or currency swaps will be very sensitive to volatility

dynamics and to higher moments of return distributions.

It is now widely accepted that the exchange rate volatility is time-varying

and that the distributions of returns are fat-tailed (see, for example, Bates

(1996a,b) and the references cited therein). Figure 2.1, for example, displays

the daily relative changes of the exchange rate of Euro with respect to U.S. Dol-

lar, from January 2005 to September 2008. The time-varying nature of volatil-

ity is responsible for the interchanging periods of high and low variations in

returns. On the other hand, the outliers are manifested through relatively rare
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but large spikes, or ”jumps”. The presence of outliers and the extent of skew-

ness are critical for derivatives pricing, as well as hedging and risk management

decisions.
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Figure 2.1: EUR/USD exchange rate. Daily returns for January 2005–
September 2008.

Bates (1988) and Jorion (1988) were among the first to assert that the out-

liers in exchange rate series can be accounted for by combining a continuous-

and a discrete-time process. Many studies have later documented the statis-

tical significance of jumps in exchange rates. Bates (1996b), Jiang (1998),

Craine, Lochstoer, and Syrtveit (2000) and Doffou and Hilliard (2001) find

that jumps are important components of the currency exchange rate dynam-

ics, even when conditional heteroskedasticity is taken into account. Moreover,

several authors had reported that neglecting one of the exchange rate prop-

erties usually leads to a significant overestimation of importance of another

risk factor (see Jiang (1998) for a discussion). A number of empirical studies

revealed other important stylized facts about the exchange rates. For ex-

ample, Olsen, Müller, Dacorogna, Pictet, Davé, and Guillaume (1997) show

that exchange-rate returns in general exhibit non-stable, symmetric, fat-tailed

distributions with finite variance and negative first-order autocorrelation and
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heteroskedasticity.1

This chapter studies the nature of jumps in foreign exchange rates, as well

as their implications to the option pricing. I propose a general continuous-time

stochastic volatility model with Poisson jumps of time-varying intensity. The

model conveniently captures all the stylized facts known to the literature. The

special cases of the model are several popular benchmarks, such as the Black

and Scholes (1973) model, the Merton (1976) model, the stochastic volatility

model of Taylor (1986) and the stochastic-volatility jump-diffusion model of

Bates (1996b). To estimate the model parameters, I use daily interbank spot

exchange rates of Euro, British Pound, Japanese Yen and Swiss Franc with

respect to the U.S. Dollar, the four most important exchange rates in terms of

currency turnover. The inference framework is based on the efficient method

of moments procedure of Gallant and Tauchen (1996).

The results confirm that both stochastic volatility and jumps play a criti-

cal role in the exchange rate dynamics. Moreover, a correctly specified model

should include a bimodal distribution of jump sizes. Depending on the ex-

change rate, a model with the volatility-dependent jump intensity may out-

perform a model with a constant intensity. The proposed general model al-

so allows for a closed-form solution for the price of European-style currency

options. It is capable to accommodate the shapes of Black-Scholes implied

volatilities observed in the actual data. This indicates that the dominant

empirical characteristics of exchange rate processes seem to be priced by the

market.

The remainder of the chapter is organized as follows: Section 2.2 develops a

model specification for exchange rates and describes the estimation methodolo-

gy. Section 2.3 describes the data and provides the estimation results. Section

2.4 considers the option pricing implications of jumps. Concluding remarks

1The economic literature dealing with jump processes and their pricing implications has
been growing ever since the seminal work of Merton (1976). Examples include Ball and
Torous (1985), Bates (1991), Bates (1996a), Bates (1996b), Chernov, Gallant, Ghysels, and
Tauchen (1999), Pan (2002) and Andersen, Benzoni, and Lund (2002).
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are given in Section 2.5.

2.2 Model Specification and Estimation

Methodology

2.2.1 Model

The model is constructed to capture the salient features of exchange rate dy-

namics and incorporate the majority of popular models used in the literature

as its special cases. I will assume that the instantaneous exchange rate St

solves
dSt
St

= µdt+
√
Vt dW1,t + (eut − 1) dqt − λtk̄dt, (2.1)

where the instantaneous variance Vt follows a mean-reverting diffusion given

by the ”square-root” specification of Heston (1993):

dVt = (α− βVt) dt+ σ
√
Vt dW2,t. (2.2)

The stochastic processes W1,t and W2,t are standard Brownian motions on the

usual probability-space triple (Ω,Ft,P), where P is the ”physical”, or the data-

generating measure. The correlation between W1,t and W2,t is ρ, which can be

written as

dW1,tdW2,t = ρdt. (2.3)

The term (eut − 1) dqt in equation (2.1) is the jump component. The returns

jump at t if the Poisson counter (or jump ”flag”) dqt is equal to one, which

happens with probability λtdt. Jump intensity λt may change over time. In

particular, jumps may be more likely in periods of high volatility. I will there-

fore allow the intensity to be a linear function of the instantaneous variance,

λt = λ0 + λ1Vt. (2.4)
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The random variable ut in equation (2.1) determines the relative magnitude

of a jump. The processes dqt and ut are independent, both are serially un-

correlated, and both are uncorrelated with diffusions dW1,t and dW2,t. Also,

neither dqt nor ut are measurable with respect to Ft.

It is reasonable to assume that distribution of jump sizes is not concentrated

around zero. This is actually not the case in most of the jump-diffusion speci-

fications in the literature: jump sizes are usually modeled as random variables

from a unimodal distribution. Since jumps can be both positive and negative,

their unconditional expected size is typically close to zero. Unimodal jump-size

distributions imply that majority of jumps will be relatively small in magni-

tude, which is exactly the opposite of their nature. They will also tend to

increase kurtosis by adding more mass at the center of the return distribution

instead of adding it to the tails. In this way, the effect of fat tails is achieved

through normalization of the probability density function. In such specifica-

tions, most of the jumps are difficult to distinguish from returns generated by

diffusion, which may lead to an overestimation of jump frequencies. Johannes

(2004), for example, estimates a jump-diffusion interest rate model and finds

jump intensities that are between 0.05 and 0.10, but detects only 5 jumps per

year, which corresponds to an intensity of around 0.02.

I will therefore assume that the variable ut, which determines the size of the

jump, comes from a mixture of two normal distributions, one centered around

a positive value, the other around a negative value:

ut ∼ p N
(
ln(1 + k)− ω2/2, ω2

)
+ (1−p) N

(
ln(1− k)− ω2/2, ω2

)
. (2.5)

Hence, p has the meaning of the probability that the jump is positive, k is the

expected size of a positive jump, while −k is the expected size of a negative

jump. At time t, the expected contribution of jumps to return dSt/St is

Et [(eut − 1) dqt] = λtk̄dt,
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where

1 + k̄ ≡ p(1 + k) + (1− p)(1− k).

Therefore, the return process is constructed such that the jumps are on average

compensated by the last term in equation (2.1). I use Et(·) to denote the

conditional expectation given the information available at time t, instead of a

more cumbersome E(·|Ft).

The outlined model specification has a form of a stochastic volatility jump-

diffusion process with bimodal distribution of jump sizes (hereafter: SVJD-

B).2 It has a convenient feature that it contains several popular jump- and

pure-diffusion benchmark models as its special cases. For example, by setting

p = 1 and λ1 = 0 we obtain the usual SVJD specification of Bates (1996b)

or Bates (2000). A stochastic volatility model without jumps (SV) of Taylor

(1986) is obtained by setting all jump parameters (λ0, λ1, p, k and ω) to zero.

Merton (1976) diffusion model with constant variance is obtained by setting

all stochastic-volatility parameters (α, β, ρ, λ1) to zero, introducing a constant

jump intensity (λt = λ0, λ1 = 0) and constraining the distribution of jump

sizes to be unimodal (p = 1). Finally, the Black and Scholes (1973) model

(BS) is obtained by setting all jump parameters to zero, α, β and ρ to zero,

and (with a slight abuse of notation) by fixing Vt = σ2.

2.2.2 Estimation Methodology

Estimation of a continuous-time model, such as one given by equations (2.1)–

(2.2), is never straightforward when we bring it to discretely sampled data.

The main difficulty lies in the fact that closed-form expressions for a discrete

transition density are seldom available. The presence of unobservable state

variables, such as stochastic volatility, makes this task even more arduous. In

principle, some form of maximum likelihood estimation might be feasible (see,

2To the best of my knowledge, the bimodal assumption for the distribution of jump sizes
was previously used only in a numerical valuation of real options in Dias and Rocha (2001).
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for example, Lo (1988)), but it is based on computationally very demanding

numerical procedures that involve integration of latent variables out of the

likelihood function. The problem becomes even more difficult when jumps are

introduced into the model.

A number of alternatives to the maximum likelihood technique have been

proposed to overcome the issue of computational inefficiency. Examples of

simulation-based inference for jump-diffusion models can be found in Ander-

sen, Benzoni, and Lund (2002), Duffie, Pan, and Singleton (2000) and Cher-

nov, Gallant, Ghysels, and Tauchen (1999). Simulation approaches based on

the method of moments are a useful tool whenever it is possible to alleviate

the problem of inefficient inference, which can be done by careful selection of

moment conditions. For example, Pan (2002) uses the simulated method of

moments (SMM) of Duffie and Singleton (1993) and matches sample moments

with the simulated ones to estimate risk premia embedded in options on a

stock market index. The efficient method of moments (EMM) of Gallant and

Tauchen (1996) refines the SMM approach by a convenient choice of moment

conditions: they are obtained from the expected score of the auxiliary model.

The auxiliary model is a discrete-time model whose purpose is to approximate

the sample distribution. Hence, there are at least two good features of the

EMM approach: first, it will achieve the efficiency of the maximum likelihood

technique under reasonable assumptions, and second, the objective function

can be used to test for overidentifying restrictions, as with an ordinary gener-

alized method of moments.

Several jump-diffusion models were developed to describe the exchange rate

dynamics. Bates (1996b), for example, estimates the parameters of an SVJD

model from the prices of Deutsche Mark options traded on the Philadelphia

Stock Exchange. More recently, Maheu and McCurdy (2006) proposed a

discrete-time model of foreign exchange rate returns with jumps. Their es-

timation is based on a Markov Chain Monte Carlo technique. Although this

method is a powerful inference tool, its implementation always has to be tai-

lored for a particular choice of model, making it difficult to compare with other
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specifications.

I use the EMM to estimate the proposed SVJD-B model (2.1)–(2.2) and to

compare it with the alternatives. As pointed out by Andersen, Benzoni, and

Lund (2002), the EMM procedure critically relies on the correct specification of

the auxiliary model. The auxiliary model should approximate the conditional

distribution of the return process as close as possible. If the score of the

auxiliary model asymptotically spans the score of the true model, the EMM

will be asymptotically efficient (see Gallant and Long (1997) for the proof).

Therefore, any auxiliary model should capture the dominant features of the

return dynamics in a discrete-time series. Specifically, it should be able to

take into account the presence of autocorrelation and heteroskedasticity, as

well as to model any excess skewness and kurtosis. A semi-nonparametric

(SNP) specification for the auxiliary model by Gallant and Nychka (1987) is

based on the notion that higher-order moments of distribution can be captured

with a polynomial expansion.

Given that a set of data is stationary, an ARMA term is sufficient to de-

scribe the conditional mean, while an ARCH-type term should be able to filter

out conditional heteroskedasticity. I choose the EGARCH model of Nelson

(1991) in order to capture both heteroskedasticity and potential presence of

asymmetric responses of conditional variance to positive and negative returns.

Finally, to accommodate the presence of fat tails in the return distribution,

I augment the conditional probability density function of the auxiliary model

by a polynomial in standardized returns.

The semi-nonparametric (SNP) estimation step is performed via quasi-

maximum likelihood technique on the fully specified auxiliary model. I fol-

low Andersen, Benzoni, and Lund (2002) and assume that auxiliary model

follows an ARMA(r,m)-EGARCH(p,q)-Kz(Kz)-Kx(Kx) process with a proba-

bility distribution function of the form:

fK(yt|Ft−1;ϕ) =
[PK(zt, xt)]

2∫
[PK(z, x)]2φ(z)dz

φ(zt)√
ht

(2.6)
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where yt ≡ ln(St/St−1) is a vector of log-returns that follows an ARMA(r,m)

process

yt = µ+
r∑
i=1

biyt−i + εt +
m∑
i=1

ciεt−i. (2.7)

The residuals εt are assumed to be normally distributed conditionally on the

information available one time step before:

εt|Ft−1 ∼ N (0, ht). (2.8)

The corresponding standardized residuals are zt = εt/
√
ht, and xt is the vector

of their lags. The standard normal probability density function is labeled by

φ(·). The conditional variance ht follows an EGARCH(p,q) process of the form

lnht = ω +

p∑
i=1

βi lnht−i +

q∑
j=1

αj

(
|zt−j| −

√
2

π

)
+

q∑
j=1

θjzt−j. (2.9)

In equation (2.6), the full set of parameters is labeled by ϕ. Finally, PK(·) is

a nonparametric polynomial expansion given by

PK(z, x) =
Kz∑
i=0

Kx∑
j=0

(
aijx

j
)
zi, a00 = 1. (2.10)

Here, as in Andersen, Benzoni, and Lund (2002), the coefficients in expansion

depend on lags x. This expansion is designed to capture any excess kurtosis

in returns, but also to accommodate additional skewness that has not already

been represented by the EGARCH term. I use the Bayesian information cri-

terion (BIC) to select the best fitting model for each series.

The EMM estimation step works in the following way. Given the set of

parameters

ψ = {µ, α, β, σ, ρ, λ0, λ1, p, k, ω},

I simulate the sample of exchange rates {S̃t}Tsim
t=1 and instantaneous variances

{Ṽt}Tsim
t=1 using the specification given by the continuous-time model (2.1)–(2.2).
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The EMM estimator of model parameters ψ is defined as

ψ̂ = arg min
ψ

m(ψ, ϕ̂)′ W m(ψ, ϕ̂), (2.11)

where m(ψ, ϕ̂) is the expectation of the score function and ϕ̂ is the quasi-

maximum likelihood estimate of the set of SNP parameters. The expectation

of the score is evaluated as the sample mean across simulations,

m(ψ, ϕ̂) =
1

Tsim

Tsim∑
t=1

∂ ln fK(ỹt|Ft−1; ϕ̂)

∂ϕ
,

where ỹt ≡ ln(S̃t/S̃t−1). The weighting matrix W is a consistent estimate of

the inverse asymptotic covariance matrix of the auxiliary score.

To reduce the effects of discretization, I sample at time intervals of 1/10

of a day. At each run, two antithetic samples were created for the purpose

of variance reduction, each of length 100, 000 × 10 + 20, 000. To eliminate

the effects of initial conditions, I discard the ”burn-in” period of the first

20,000 simulated points. The final sample of Tsim = 100, 000 daily log-returns,

{ỹt}Tsim
t=1 , was obtained by adding up the groups of 10 elements in the simulated

sample.

2.3 Estimation Results

2.3.1 Data

The results are based on average daily interbank spot exchange rates of Euro,

British Pound, Japanese Yen and Swiss Franc with respect to the U.S. Dollar,

from January 4, 1999 to September 30, 2008, a sample of 2542 observations. All

four time series, obtained from Thomson Financial’s Datastream, are shown

in Figure 2.2. The JPY/USD exchange rate is expressed per 100 Yens. Table

3.1 provides summary statistics for the exchange rate levels St and the cor-
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responding daily returns, computed as yt = ln(St/St−1). Daily sampling is

chosen in order to capture high-frequency fluctuations in return processes that

may be critical for identification of jump components, while avoiding to model

the intraday return dynamics, abundant with spurious market microstructure

distortions and trading frictions.

Table 2.1: Summary Statistics
Daily interbank spot exchange rates of Euro, British Pound, Japanese Yen
and Swiss Franc with respect to the U.S. Dollar, from January 4, 1999 to
September 30, 2008 (2542 observations).

Panel A: Daily exchange rate levels

Currency Mean Variance Skewness Kurtosis

EUR 1.1511 0.0376 0.2234 2.1992
GBP 1.7103 0.0376 0.0661 1.7385
JPY 0.8774 0.0030 −0.0339 2.2511
CHF 0.7380 0.0121 0.1375 2.1955

Panel B: Daily returns (percent)

Currency Mean Variance Skewness Kurtosis

EUR 0.0084 0.3539 −0.0267 4.5420
GBP 0.0040 0.2338 0.0757 4.1778
JPY 0.0026 0.3493 0.2267 4.8656
CHF 0.0088 0.4012 0.1411 4.2532

I perform several preliminary test on the data. The values of skewness and

kurtosis in Table 3.1 indicate that both the levels and returns deviate from

normality. This is also confirmed by Jarque-Bera and Kolmogorov-Smirnov

tests (not reported), whose p-values are at most of the order of 10−3. Table

3.2 shows the results of Ljung-Box test for the autocorrelation of returns, up

to order 10 (Panel A). The null hypotheses of no autocorrelation in returns

cannot be rejected. The absence of a significant short-run return predictability

is consistent with high efficiency of the currency market. The autocorrelation

in the squared returns is, on the other hand, highly significant in all four series,

indicating the presence of heteroskedasticity (Panel B). The correlation coef-
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Figure 2.2: Daily exchange rate levels: January 4, 1999 to September 30, 2008.
The JPY/USD rate is expressed per 100 Yens.

ficients between squared returns and their lags (not reported) are all positive,

confirming the notion of clustering – the periods of high volatility are likely to

be followed by high volatility.

Table 3.3 reports the results of the unit root tests. The values of the Aug-

mented Dickey-Fuller (ADF) and Phillips-Perron (PP) statistics indicate that

the unit root hypothesis is convincingly rejected in favor of stationary returns

(the critical values of ADF and PP statistics at 5 and 1 percent confidence
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Table 2.2: Autocorrelation
Ljung-Box test for autocorrelation of returns and squared returns up to 10th

lag.

Panel A: Autocorrelation of returns

Currency Q statistic p-value

EUR 3.9867 0.9479
GBP 9.4858 0.4867
JPY 6.8611 0.7385
CHF 12.7326 0.2390

Panel B: Autocorrelation of squared returns

Currency Q statistic p-value

EUR 111.5435 < 10−5

GBP 105.7946 < 10−5

JPY 81.5108 < 10−5

CHF 42.7107 < 10−5

are −3.41 and −3.96, respectively). The stationarity is a prerequisite for any

method of moments approach that is critically relying on stability of the data-

generating process.

Finally, I report the results of the Jiang and Oomen (2008) swap-variance

test for detection of jumps in returns and squared returns, Table 2.4. The

swap-variance test exploits the impact of jumps on the third and higher order

moments of asset returns. The test is based on the statistic

T√
Ω

(SwVT −RVT ) ∼ N (0, 1),

where

SwVT = 2
T∑
t=2

(Rt − yt)

is twice the accumulated difference between discretely and continuously com-
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Table 2.3: Stationarity
Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) tests for the pres-
ence of unit roots, based on the regression

yt = c+ δt+ φyt−1 +
10∑
L=1

bL∆yt−L + εt,

H0 : φ = 1, δ = 0.

Currency ADF statistic PP statistic

EUR −15.8257 −50.4768
GBP −15.2648 −48.0508
JPY −14.6802 −49.2301
CHF −15.6345 −50.9751

5% crit. value −3.41 −3.41
1% crit. value −3.96 −3.96

pounded returns, Rt = St/St−1 − 1 and yt = ln(St/St−1), respectively,

RVT =
T∑
t=2

y2
t

is the realized variance, and Ω is the asymptotic variance of the test statistic.

The robust estimator of Ω is given by

Ω̂ =
1

9

µ6

µ6
1

T 3

T − 5

T−6∑
s=1

6∏
t=1

|ys+t|,

with µk = E(|y|k). The null hypothesis of the swap-variance test is that St

follows a process without jumps. Intuitively, the test statistic reflects the

cumulative gain of a variance swap replication strategy which is known to be

minimal in the absence of jumps but substantial in the presence of jumps. If

the underlying process is continuous, the difference between SwVT and RVT
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should asymptotically go to zero. The results of the test indicate that in all

four series the jumps in returns are highly significant (Panel A), whereas the

jumps in squared returns are not (Panel B). This implies that it is not necessary

to overparameterize the model by introducing discontinuities into the process

for conditional variance.

Table 2.4: Presence of jumps
Swap-variance jump test, based on the test statistics

T√
Ω̂

(SwVT −RVT ) ∼ N (0, 1),

where

SwVT = 2
T∑
t=2

(Rt − yt) , RVT =
T∑
t=2

y2
t ,

Rt = St/St−1 − 1, yt = ln(St/St−1),

Ω̂ =
1

9

µ6

µ6
1

T 3

T − 5

T−6∑
s=1

6∏
t=1

|ys+t|, µk = E(|y|k),

H0 : St follows a process without jumps.

Panel A: Jumps in returns

Currency Swap-var stat. p-value

EUR −6.9228 < 10−5

GBP −10.9712 < 10−5

JPY −5.9042 < 10−5

CHF −7.9779 < 10−5

Panel B: Jumps in squared returns

Currency Swap-var stat. p-value

EUR −0.0254 0.9797
GBP −0.0259 0.9794
JPY −0.0220 0.9824
CHF −0.0210 0.9833
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2.3.2 Estimation of the auxiliary model

Table 2.5 reports the results of the SNP step. It shows the quasi-maximum

likelihood parameter estimates ϕ̂, along with their standard errors. I ran the

estimations across the possible combinations (r,m, p, q,Kx, Kz), allowing each

of the parameters to take values between 0 and 10. The selection criterion

based on the BIC indicates that the best-fitting auxiliary models have the

form ARMA(0,0)-EGARCH(1,1)-Kz(Kz)-Kx(0), with Kz being 8, 7, 6 and 7

for the Euro, Pound, Yen and Franc exchange rate, respectively.3 Table 2.5 also

shows the total number of SNP parameters n, as well as the optimal values of

log-likelihood functions, LL. The absence of the ARMA term is not surprising

given that the data exhibit no significant autocorrelation. Also, in all four cases

heteroskedasticity is entirely captured by the first lags of conditional variance

and return innovations in the EGARCH terms, as p = 1 and q = 1. The values

of EGARCH parameter β governing the persistence are close to the boundary

of covariance stationary region, but still significantly within the boundaries.

The parameter θ is relatively small and – with the exception of Swiss Franc

– statistically insignificant. This indicates that the ”leverage” effect does not

play such an important role in dynamics of exchange rates. The terms Kx that

should take into account heterogeneity in the polynomial expansion are always

insignificant (Kx = 0), which indicates that the EGARCH leading terms pick

up all the serial dependence in the returns.

3The actual values of BIC are not reported, but are available upon request.
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Table 2.5: Estimates of the Auxiliary Model

EUR GBP JPY CHF

µ 0.0558 0.0844 −0.0588 0.0737
(0.0350) (0.0493) (0.0443) (0.0434)

ω −0.0065 −0.0437 −0.0263 −0.0021
(0.0034) (0.0162) (0.0242) (0.0035)

β 0.9945 0.9799 0.9731 0.9969
(0.0018) (0.0078) (0.0093) (0.0016)

α 0.0675 0.0583 0.1239 0.0401
(0.0119) (0.0149) (0.0288) (0.0096)

θ 0.0047 −0.0023 0.0203 0.0161
(0.0063) (0.0080) (0.0144) (0.0064)

a10 −0.1275 −0.1671 0.0684 −0.1815
(0.0588) (0.0776) (0.0646) (0.0606)

a20 −0.1274 −0.0274 −0.1407 −0.0980
(0.0521) (0.0582) (0.1172) (0.0632)

a30 0.0743 0.0701 −0.0187 0.0852
(0.0240) (0.0206) (0.0161) (0.0206)

a40 0.0330 0.0119 0.0237 0.0205
(0.0184) (0.0122) (0.0237) (0.0130)

a50 −0.0141 −0.0130 0.0024 −0.0126
(0.0039) (0.0033) (0.0014) (0.0035)

a60 −0.0013 0.0004 −0.0004 −0.0002
(0.0024) (0.0009) (0.0017) (0.0009)

a70 0.0008 0.0006 0.0005
(0.0002) (0.0002) (0.0002)

a80 0.0000
(0.0001)

Model 001180 001170 001160 001170
n 13 12 11 12

LL 9597.85 10048.37 9568.58 9402.97

(Standard errors in parentheses.)
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2.3.3 EMM estimation

Once we have the optimal score parameters ϕ̂ obtained from the SNP model,

we can estimate the main step of the EMM procedure. The EMM param-

eter estimates ψ̂ obtained from the SVJD-B and the competing models are

summarized in Tables 2.6–2.9. Standard errors are given in the parentheses.

Tables also report the results of Hansen’s test of overidentifying restrictions:

chi-squares, degrees of freedom and p-values.

We can draw several important conclusions from these estimates. First,

as expected, stochastic volatility is important: the constant-volatility Merton

and Black-Scholes models can be overwhelmingly rejected in all four cases.

Second, jumps are statistically significant, since SVJD-B and SVJD specifica-

tions outperform the SV model without jumps. The SV model is also strongly

rejected at any reasonable level of significance for Euro and Franc. Third, the

usual SVJD specification is outperformed by the SVJD-B model with bimodal

distribution of jump sizes given by equation (2.5). The SVJD model may as

well be rejected at significance levels less than 0.05. Fourth, the dependence

of jump intensity on volatility levels as given by the affine specification (2.4) is

important, but the alternative of constant jump intensity (λ1 = 0) cannot be

easily rejected. For example, for the Yen exchange rate the restricted model

is significant at 0.05 level, while the fully specified SVJD-B model is not. The

constant term λ0 is by an order of magnitude greater than the affine coefficient

λ1. Finally, the correlation between return and volatility is important: the es-

timated values of ρ are significant and negative. The restriction ρ = 0 may

not be rejected only for the Euro exchange rate. As suggested by Andersen,

Benzoni, and Lund (2002), a negative correlation between return diffusion and

volatility can explain part of the skewness in returns.
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The values of the leading intensity term λ0 roughly indicate that jumps

should on average occur between 7 and 10 times per year, depending on the

exchange rate. Although jumps are rare, their significance implies that they

cannot be ruled out. Positive jumps are more likely on average, with the ex-

ception of the British Pound, where about 63 percent of jumps are negative.

The unconditional mean of jump sizes, k̄ = (2p − 1)k, is close to zero and

positive, except for the Pound, where p < 0.5. This asymmetry captures a

part of the skewness of the unconditional return distribution. The confidence

bounds for jump sizes can be obtained from the values of the standard devi-

ation ω. For example, positive jumps in the Euro exchange rate happen with

probability 0.52 and have magnitudes that are in the 95-percent confidence

interval of [0.61, 2.36] percent.

Using the estimated parameters, we can infer the ex-post probability of a

jump on a given date implied by the actual data. Following Johannes (2004),

I use a Gibbs sampling technique to compute the filtering distribution of jump

times and jump sizes. The Gibbs sampler iteratively samples from the filtering

distribution of variances

π(Vt+∆t|Vt, qt+∆t, ut+∆t, yt+∆t, yt; ψ̂),

the filtering distribution of jump times

π(qt+∆t|ut+∆t, yt+∆t, yt, Vt+∆t, Vt; ψ̂),

and the filtering distribution of jump sizes

π(ut+∆t|qt+∆t, yt+∆t, yt, Vt+∆t, Vt; ψ̂),

all of which are know distributions, where {yt}Tt=1 is the observed time series

of daily returns and ψ̂ are the estimated SVJD-B parameters. In each iter-

ation j, the algorithm produces a sequence {{V (j)
t }Tt=1, {q

(j)
t }Tt=1, {u

(j)
t }Tt=1}

of conditional variances, jump flags and jump sizes, which are draws from
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the joint distribution π(Vt+∆t, qt+∆t, ut+∆t|yt+∆t, yt, Vt; ψ̂). The algorithm con-

verges quickly since there is no parameter uncertainty. Hence, I work with at

most 10, 000 iteration steps and discard the ”burn-in” period of the first 2,000

iterations.

Figures 2.3–2.6 display the results. They show daily returns yt (top panel),

jump probabilities (middle panel) and ex-post jump sizes (bottom panel), for

the four exchange rates between January 3, 2005 and September 30, 2008.

The algorithm identified numerous observations that have a high probability

of being a jump. The average number of events with jump probability over 0.5

is roughly between 8 per year (for GBP) and 11 per year (for EUR), which is

close to the values obtained from the EMM estimates over the full samples. The

bimodal nature of the jump size distribution in the SVJD-B model guarantees

that most of the identified jumps will be significant in size. This is an important

feature of the model. For example, when the probability of a jump in the Euro

exchange rate is greater than 0.5, the expected sizes fall within two bounds: the

negative one, [−1.45,−0.41] percent, and the positive one, [0.53, 1.72] percent.

In the usual SVJD specification with unimodal distribution of jump sizes most

of the jumps are difficult to identify. This is because majority of them have

a magnitude that is relatively close to the unconditional expectation, which is

often very small.

Some jumps are isolated events, while others tend to cluster and lead to

higher volatility and even more jumps. The highest concentration of jumps

is in 2008, of which most coincide with the events related to the sub-prime

mortgage crisis. Other jumps often coincide with the important news related

to macroeconomy or asset markets. Consider, for example, the Euro exchange

rate (Figure 2.3). Eight jumps happened on the dates when the U.S. Commerce

Department issued reports about trade balance, unemployment levels, retail

sales or GDP growth. Five jumps coincide with the announcements by the

U.S. Federal Reserve or the European Central Bank regarding monetary policy,

and two of them with important fiscal policy moves made by the U.S. Senate.

Ten jumps coincide with unusually large stock market movements in the United
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States or Europe, three with the unexpected earnings announcements by some

of the major U.S. corporations, and one with the Société Générale $7 billion

trading fraud. The strong co-movement of the currency market and the stock

market is consistent with the findings of Cao (2001). These results, although

far from being conclusive, reinforce the intuition based on Merton (1976, 1990)

that jumps provide a mechanism through which unanticipated information

about the most important determinants of the underlying process enter the

market.
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Figure 2.3: EUR/USD exchange rate: Returns, ex-post jump probabilities and
expected jump sizes for January 2005–September 2008.
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Figure 2.4: GBP/USD exchange rate: Returns, ex-post jump probabilities and
expected jump sizes for January 2005–September 2008.
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Figure 2.5: JPY/USD exchange rate: Returns, ex-post jump probabilities and
expected jump sizes for January 2005–September 2008.
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Figure 2.6: CHF/USD exchange rate: Returns, ex-post jump probabilities and
expected jump sizes for January 2005–September 2008.

2.4 Option pricing implications

2.4.1 The impact of jumps on implied volatility patterns

The main empirical issue in option pricing is to find an appropriate model that

will be consistent both with the observed dynamics of the underlying asset as

well as with the observed option prices. The U-shaped patterns of implied

volatilities, the so-called ”volatility smiles”, obtained from the actual data are

difficult to reconcile with a great number of return models. This is also true

for exchange rates, where any specification that does not allow for jumps fails

to accommodate observed implied volatility patterns, even when stochastic

nature of volatility is taken into account.
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In this section I illustrate the effect of jumps on currency option prices.

A suitable property of the SVJD-B model is that it can yield a closed-form

solution for the price of European-style options. Options can be priced if the

model specification is written in the risk-neutral form. Introducing the usual

change of measure, the risk-neutral counterparts of the processes for the return

and the instantaneous variance, equations (2.1) and (2.2), become

dSt
St

= µ∗tdt+
√
Vt dW ∗

1,t + (eut − 1) dqt − λ∗t k̄∗dt, (2.12)

dVt = (α− β∗t Vt) dt+ σ
√
Vt dW ∗

2,t, (2.13)

where µ∗t = rt− rft is the domestic-foreign interest rate differential. Stochastic

processes W ∗
1,t and W ∗

2,t are now standard Brownian motions under the risk-

neutral probability measure P∗, having the same correlation coefficient as under

the physical measure P, that is dW ∗
1,tdW

∗
2,t = ρdt. The mean-reversion speed

of the instantaneous variance β∗t and the expected jump size λ∗t k̄
∗dt depend

on the market prices of volatility and jump risk, respectively. The explicit

relationships are derived in Appendix A. The instantaneous risk premia are:

premium for the return diffusion risk = µ− µ∗t ,

premium for the volatility risk = (β − β∗t )Vt,

overall premium for the jump risk = λtk̄ − λ∗t k̄∗.

The overall jump-risk premium consists of the combined premia for the un-

certainty about the arrival of a jump and the uncertainty about the size of a

jump.

At time t, the price of a European-style call option with the value of the

underlying exchange rate equal to St, time to maturity τ and strike price X,

is given by

Ct(St, Vt, τ,X; ψ̂) = e−r
f
t τStP1(St, Vt, τ,X; ψ̂)− e−rtτXP2(St, Vt, τ,X; ψ̂).

(2.14)
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Closed-form expressions for the functions P1 and P2 are given in Appendix B.

Various effects of stochastic volatility and jumps on option prices are illus-

trated in Figures 2.7–2.9. The graphs show generic examples, calculated for

European-style call options on EUR/USD exchange rate. The curves represent

the Black-Scholes implied volatilities

σimp = BSImpVol(St, Ct, rt, r
f
t , τ,X). (2.15)

The implied volatilities σimp were obtained numerically, by substituting the

values of Ct calculated with the formula (2.14) into equation (2.15). The set

of parameters ψ̂ in (2.14) are the EMM estimates given in Table 2.6. The

independent variable in Figures 2.7–2.9 is the relative moneyness, defined as

the ratio of intrinsic value of option to the underlying exchange rate, i.e. (St−
X)/St. All option prices Ct are computed for St = 1.1512, the sample average

of the EUR/USD exchange rate. The U.S. and the Eurozone risk-free interest

rates are set to rt = 0.02 and rft = 0.05, respectively. The instantaneous

volatility
√
Vt is fixed at the annualized long-run mean of 11.1433 percent.

Figure 2.7 displays the pricing effect of stochastic volatility and jumps,

when there is no premium for volatility and jump risk (β∗t = β, λ∗t = λt and

k̄∗ = k̄). The SV model produces a ”smirk” pattern (dashed line), which is

more pronounced for shorter maturities. This is indicative of a model in which

the probability that the call option price will change significantly is low if the

option is deep out of the money. The smirk effect wanes with maturity since the

probability of moving towards higher prices increases with the remaining life

of the option, while at the same time the probability of staying in the money

decreases. In the SVJD-B model (full line), the jump component adds an

upward tilt to the implied volatility, creating a familiar ”smile” pattern. The

smile virtually disappears at longer maturities. This effect has the following

simple intuition. Jumps are not important for options with longer maturities,

as they tend to be compensated in the long run. However, in the short run, the

chance for a compensation is small. Therefore, jumps will make an impact on
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price as maturity date approaches: a deep-out-of-the-money option will have

a non-negligible probability of ending up in the money only if the underlying

exchange rate has a tendency to make sudden large jumps.

Figure 2.8 shows the effect of volatility risk premium implied by the SVJD-

B model when jump risks premium is set to zero (λ∗t = λt and k̄∗ = k̄).

The instantaneous premium for volatility risk is measured by the difference

between the speed of mean reversion β and its risk neutral counterpart β∗t .

I set the premium to 0 (full lines), 2 percent (dashed lines) and −2 percent

(dotted lines). The graphs indicate that the volatility premium has little to

no effect on short-maturity options. This is because unexpected changes of

the underlying exchange rate over short time periods are mostly picked up by

jumps, and if the jump risk premium is zero the exposure to the volatility

risk alone has a negligible effect on option prices. At longer maturities, the

exchange rate has more time to drift across the moneyness and hence the

volatility risk becomes increasingly important. Positive premia decrease the

long-run mean of the risk-neutral volatility, pushing the option prices down,

and vice versa.

The impact of jump risk premium is shown in Figure 2.9. Now, the volatility

premium implied by the SVJD-B model is set to zero (β∗t = β), while the risk-

neutral jump intensities take the values λ∗t = λt = 0.03 (full line), λ∗t = 0.05

(dashed line) and λ∗t = 0.07 (dotted line). The risk-neutral expected jump

size is set equal to its ”physical” value, k̄∗ = k̄ = 0.067 percent. These values

imply annual jump risk premia of 0, 0.5 and 1.0 percent, respectively. Even

with relatively small premia, the effects are significant: a change in the risk-

neutral jump intensity produces the twists in volatility smiles. The twists are

more pronounced at short option maturities and show an asymmetric behavior.

First, they are directed upward for out-of-the-money options and downward

for in-the-money options. Second, the increase in implied volatility of out-of-

the-money options is greater than the decrease of in-the-money options. A

positive jump risk premium implies that the buyers require to be compensated

for holding an option that is in the money to account for the risk of a negative
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jump. At the same time, they are willing to pay more for an out-of-the-money

option, since higher jumps probabilities increase the chance to profit.
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Figure 2.7: The effect of stochastic volatility and jumps on option prices.
Black-Scholes implied volatilities are calculated from option prices generated by
SVJD-B and SV models for the EUR/USD exchange rate. Model parameters are
given in Table 2.6. The risk premia for the volatility and jump risks are set to zero.
Panels display different times to maturity: 1 week, 1 month and 6 months.
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Figure 2.8: The effect of volatility risk premium on option prices. Black-
Scholes implied volatilities are calculated from option prices generated by the SVJD-
B model for the EUR/USD exchange rate. Model parameters are given in Table 2.6.
Annual volatility risk premia are set to 0, 2 and −2 percent. Panels display different
times to maturity: 1 week, 1 month and 6 months.
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Figure 2.9: The effect of jump risk premium on option prices. Black-Scholes
implied volatilities are calculated from option prices generated by the SVJD-B model
for the EUR/USD exchange rate. Model parameters are given in Table 2.6. Annual
jump risk premia are set to 0, 0.5 and 1.0 percent. Panels display different times to
maturity: 1 week, 1 month and 6 months.
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2.4.2 Risk premia and volatility smiles implicit in the

cross-sectional currency options data

The SVJD-B model can fully accommodate the implied volatility patterns ob-

served in the actual data. As an illustration, I use a cross section of European-

style call options on Euro that were traded on the Philadelphia Stock Ex-

change (PHLX) on August 6, 2008. The PHLX currency options are settled in

U.S. Dollars and expire on Saturday following the third Friday of the month.

There were six available maturities: August 2008, September 2008, October

2008, December 2008, March 2009 and June 2009. The underlying exchange

rate was St = 1.5409 and the available strikes went from 1.2700 to 1.6600,

in steps of 0.0050, although some strike/maturity combinations had no open

interest. There were 247 options in the cross section in total.

In order to match the model-implied options prices with the observed ones

we need the risk-neutral parameter estimates. I use the yield on 3-month

Treasury bill as a proxy for the U.S. risk-free rate and the 3-month Euribor as

a proxy for the Eurozone risk-free rate. Their respective values on August 6,

2008 were rt = 1.4800 percent and rft = 5.0289 percent. Hence, the annualized

risk-neutral drift rate was µ∗t = −3.5489 percent. This implies an annual

premium for the return diffusion risk of 12.28 percent.

The remaining risk-neutral parameters, β∗t , λ
∗
0, λ∗1, k̄∗, as well as the instan-

taneous variance, Vt, can be obtained by solving

min
{Vt,β∗t ,λ∗0,λ∗1,k̄∗}

∑
i

wi(BSImpVolmodel
i − BSImpVoldata

i )2, (2.16)

wi =
(
Cask
i − Cbid

i

)−1
.

The estimator is designed to minimize the weighted squared difference between

the Black-Scholes implied volatilities obtained from the data and the SVJD-B

model. For every contract i, the point estimates of BSImpVoldata
i are obtained

from the average values of volatilities implied by the bid and the ask price.
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To account for the differences in liquidity, the weights wi are set equal to the

reciprocal of the bid-ask spread of a given option contract. In this way, the

contracts with higher liquidity will carry more weight in the estimation. The

results of the optimization (2.16) are given in the left panel of Table 2.10.

The Pearson’s chi-square statistic indicates that the fit is highly significant.

Figure 2.10 displays the market- and model-implied volatilities for four selected

maturities. The error bars correspond to implied volatilities calculated from

the bid and ask market prices, while the smooth lines are obtained from the

SVJD-B model using the parameter estimates given in Tables 2.6 and 2.10.

Parameter values imply annual risk premia of −2.30 and 0.16 percent for the

volatility and jump risk, respectively (see the right panel of Table 2.10).

Table 2.10: Option-implied parameters
The left panel shows the instantaneous variance and risk-neutral parameters
estimated from the cross section of currency option prices that were traded
on PHLX on August 6, 2008. The right panel shows the corresponding risk
premia.

Parameter Value

Vt 0.0106
(0.0015)

β∗t 0.0248
(0.0047)

λ∗0 0.0332
(0.0017)

λ∗1 0.0027
(0.0002)

k̄∗ 0.0007
(0.0001)

χ2[246] 0.2973

(Standard errors in parentheses.)

Premium Value (%)

Return diff. risk 12.28
(4.98)

Volatility risk −2.30
(0.76)

Jump risk 0.16
(0.03)

(Standard errors in parentheses.)

87



Risks in Commodity and Currency Markets

!!"#$ !!"# !!"!$ ! !"!$ !"# !"#$
!

$

#!

#$

%!

%$

&!

&$

'(
)
*+
,-
./
0
*1
2+
*+
23
.4
)
,5
6,
7
28

Sep. 2008 (45 days to expiry)

!!"#$ !!"# !!"!$ ! !"!$ !"# !"#$
!

$

#!

#$

%!

%$

&!

&$

Oct. 2008 (73 days to expiry)

!!"#$ !!"# !!"!$ ! !"!$ !"# !"#$
!

$

#!

#$

%!

%$

&!

&$

'(
)
*+
,-
./
0
*1
2+
*+
23
.4
)
,5
6,
7
28

9,*12+/,.(07,37,::

Dec. 2008 (136 days to expiry)

!!"#$ !!"# !!"!$ ! !"!$ !"# !"#$
!

$

#!

#$

%!

%$

&!

&$

9,*12+/,.(07,37,::

Mar. 2009 (227 days to expiry)

Figure 2.10: Black-Scholes market- and model-implied volatilities. Four
selected maturities of European-style call option contracts on Euro. The error bars
correspond to implied volatilities calculated from the bid and ask market prices
quoted on PHLX on August 6, 2008. The smooth lines are obtained from the
proposed SVJD-B model with instantaneous variance and risk-neutral parameters
given in Table 2.10. Parameter values imply a volatility risk premium of −2.30
percent and a jump risk premium of 0.16 percent.
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The premium for the return diffusion risk has the highest absolute value of

the three, which is plausible given that the diffusion is responsible for most

of the everyday changes. Volatility risk premium is negative and significant.

The negative premium is a sign that investors are willing to pay more for

exposure to the volatility uncertainty, which is reasonable given that higher

volatility increases the option premium. The negative volatility risk premium is

consistent with the findings of Bates (1996b). It is also implied in the prices of

options on stock market indices (see, for example, Chernov and Ghysels (2000)

or Pan (2002)). Finally, the jump risk premium is positive and significant,

although an order of magnitude smaller than the volatility premium. Since

jumps are very rare this is not surprising. However, the statistical significance

of the jump risk premium indicates that the fear of jumps is important and

seems to be priced by the market.

2.5 Conclusion

This chapter confirms the crucial role of stochastic volatility and jumps in

exchange rate processes, at least in the four major U.S. Dollar-based spot

exchange rates. The inference procedure based on the efficient method of

moments shows that all pure-diffusion models are misspecified. These models

are not able to capture the events in the tails of return distributions nor to

accommodate the implied volatility patterns obtained from the actual options

data. A stochastic volatility model with jump sizes from a bimodal distribution

is able to fully remove the misspecification and yield an option pricing formula.

The filtering distributions of jump times inferred from the data indicate

that jumps occur in irregular patterns, on average between eight and eleven

times a year, depending on the exchange rate. In general, the jump probability

weakly depends on volatility. On the other hand, jump events tend to coincide

with the arrival of important news to the currency market. They also appear

to be more frequent in the periods of turbulence in the stock market. This
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observation points to the importance of a deeper understanding of jumps in

foreign exchange rates that goes beyond statistical significance.

Finally, jumps have a large impact on the prices of foreign currency options.

They remove the distinct asymmetry of Black-Scholes implied volatility pat-

terns characteristic for models without jumps. Moreover, the proposed general

model is capable to accommodate the smile patterns observed in the actual

data. Estimates of the risk-neutral model parameters obtained from the cross-

sectional options data indicate that jump risk appears to be priced by the

market.

Appendix A: The risk-neutral version of the

model

Given that the diffusion and the jump process are independent of each other,

we can split the return dynamics into the pure-diffusion part and the pure-

jump part:
dSt
St

=

(
dSt
St

)
diff

+ dJt, (2.17)

where (
dSt
St

)
diff

= µdt+
√
Vt dW1,t (2.18)

and

dJt = (eut − 1) dqt − λtk̄dt. (2.19)

Let us focus on the diffusion part first. Pure-diffusion return (2.18) and the

instantaneous volatility Vt follow a joint Brownian diffusion, since W1 and W2

are correlated. Define

dWt =

[ √
Vt dW1,t

σ
√
Vt dW2,t

]
, (2.20)
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for all t. To find the risk-neutral equivalent dW∗ of (2.20) that would be a

martingale under an equivalent measure P∗, we first write the Radon-Nikodým

derivative of P∗ with respect to the physical measure P:

dP∗

dP
= exp

[
−
∫ t

0

ξs · dWs −
1

2

∫ t

0

(ξs · dWs) (dWs · ξs)
]
,

where

ξs =

[
ξ1,s

ξ2,s

]
is predictable at s (see Bingham and Kiesel (2004)). Then, by Girsanov’s

theorem, a P∗-Brownian motion has the form

dW∗
t = dWt (1 + dWt · ξt) .

Therefore,

dWt = dW∗
t −

[
1 ρσ

ρσ σ2

][
ξ1,t

ξ2,t

]
Vtdt,

which implies that we can substitute[ √
Vt dW1,t

σ
√
Vt dW2,t

]
=

[ √
Vt dW ∗

1,t − (ξ1,t + ρσξ2,t)Vtdt

σ
√
Vt dW ∗

2,t − (ρσξ1,t + σ2ξ2,t)Vtdt

]

into (2.1) and (2.2). Hence, the processes(
dSt
St

)
diff

= µ∗tdt+
√
Vt dW ∗

1,t

and

(α− β∗t Vt) dt+ σ
√
Vt dW ∗

2,t

both contain diffusions that are (jointly) martingales under P∗, as long as

µ∗t = µ− (ξ1,t + ρσξ2,t)Vt
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and

β∗t = β − ξt,

where ξt ≡ ρσξ1,t + σ2ξ2,t. The no-arbitrage argument in the form of covered

interest parity requires that µ∗tdt = E∗t (dSt/St) = (rt − rft )dt. This constraint

implies that at each t, ξ1,t and ξ2,t will not be independent given the values of

the interest rates. A common assumption of constant elasticity of substitution

in the utility function of the representative agent, as in Bates (1996b), will

correspond to the case where ξt is constant in time.

The jump component in equation (2.19) is a P-martingale by construction:

Et(dJt) = Et [(eut − 1)dqt]− λtk̄dt

= Et(e
ut − 1)λtdt− λtk̄dt

= 0.

The second equality follows from measurability of Vt with respect to Ft. Define

dNt = dqt − λtdt.

By applying Girsanov’s theorem for point processes (Elliot and Kopp (2005)),

the risk-neutral version of dN will be

dN∗t = dNt − Et

[
ea+but

Et(ebut)
− 1

]
λtdt

= dNt − (ea − 1)λtdt

= dqt − λ∗tdt,

where the market prices of jump risk a and b are measurable with respect to

Ft, and λ∗t ≡ eaλt. Girsanov’s theorem applied to dJ then yields

dJ∗t = dJt − Et

[(
ea

ebut

Et(ebut)
− 1

)
(eut − 1)

]
λtdt

= (eut − 1)dqt − λ∗t
[
ebω

2Q(b+ 1)

Q(b)
− 1

]
dt,
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where

Q(Φ) = p(1 + k)Φ + (1− p)(1− k)Φ.

Therefore, the process

dJ∗ = (eut − 1)dqt − λ∗t k̄∗dt

will be a martingale under P∗ as long as

k̄∗ = ebω
2Q(b+ 1)

Q(b)
− 1.

Parameter a captures the inability of the market to time the arrival of jumps,

while b measures the uncertainty related to the jump size and, possibly, the

model uncertainty. Liu, Pan, and Wang (2005) also argue that a significant

part of the jump risk premium should come from the uncertainty aversion in

the sense of Knight (1921) and Ellsberg (1961).

Putting everything together, the processes

dSt
St

= µ∗tdt+
√
VtdW

∗
1,t + (eut − 1) dqt − λ∗t k̄∗dt,

dVt = (α− β∗t Vt) dt+ σ
√
VtdW

∗
2,t,

with dW ∗
1,tdW

∗
2,t = ρdt, represent the risk-neutral equivalents of (2.1) and (2.2).

The market risk premia are the following:

premium for the return diffusion risk = µ− µ∗t
premium for the volatility risk = (β − β∗t )Vt = − ξtVt

overall premium for the jump risk = λtk̄ − λ∗t k̄∗.
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Appendix B: Closed-form solution for the price

of a European currency option

Given the risk-adjusted model (2.12)–(2.13), the price at t of a European call

option with residual maturity τ = T − t and strike price X is given by

Ct(St, Vt, τ,X; ψ̂) = e−rtτE∗t [max (ST −X, 0)]

= e−r
f
t τStP1 − e−rtτXP2,

where E∗t (·) denotes the expectation with respect to the risk-neutral probability

measure P∗ and conditional on the sigma-algebra Ft. P1 and P2 have the

usual Black-Scholes interpretation of the expected value of the underlying asset

conditionally on the option being in the money, and probability of being in

the money, respectively. The closed-form expressions for P1 and P2 can be

obtained by following the calculation steps similar to those in Bates (1996b).

The results are

Pj =
1

2
+

1

π

∫ ∞
0

imag
(
Fj(iΦ)e−iΦx

)
Φ

dΦ,

Fj(Φ;V, τ) = exp {Aj(τ ; Φ) +Bj(τ ; Φ)V + λ∗0τCj(Φ)} ,

Aj(τ ; Φ) = µ∗t τΦ− ατ

σ2
(ρσΦ− βj − γj)

−2α

σ2
ln

[
1 +

1

2
(ρσΦ− βj − γj)

1− eγjτ

γj

]
,

Bj(τ ; Φ) = − Φ2 + (3− 2j)Φ + 2λ∗1Cj(Φ)

ρσΦ− βj + γj(1 + eγjτ )/(1− eγjτ )
,

Cj(Φ) = (1 + k̄∗)2−j
[
Q(Φ; p, k∗)e(1/2)ω2(Φ2+(3−2j)Φ) − 1

]
− k̄∗Φ,

γj =
√

(ρσΦ− βj)2 − σ2 [Φ2 + (3− 2j)Φ + 2λ∗1Cj(Φ)],

βj = β∗t + ρσ(j − 2),

Q(Φ; p, k∗) = p(1 + k)Φ + (1− p)(1− k)Φ,

x = ln(X/St),
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µ∗t = rt − rft ,

for j = 1, 2. By setting p = 1 and λ∗1 = 0 we obtain the option pricing formula

given in Bates (1996b) for currency options, or in Bates (2000) for options on

a stock market index.
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Chapter 3

An Efficient Method for Market

Risk Management under

Multivariate Extreme Value

Theory Approach

3.1 Introduction

Sometimes extreme times indeed call for extreme measures. Events like finan-

cial crises and market crashes have increased awareness of the need to quantify

risk and assess the probability and extent of extremely large losses. Currently,

the most popular tool used by financial institutions to measure and manage

market risk is Value at Risk (VaR). VaR refers to the maximum potential

loss over a given period at a certain confidence level. Originally intended as

a reporting tool for senior management, it started becoming prevalent in the

risk management world in 1994, when JPMorgan published the methodology

behind its RiskMetrics system. Soon after, books by Jorion (1996) and Dowd

(1998) introduced VaR to academic parlance and gave it more formal theoret-

ical ground. VaR quickly entered other core areas of banking such as capital
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allocation, portfolio optimization or risk limitation. With its increasing im-

portance, VaR was easily adopted by the regulators as well. In particular, the

Basel II capital requirements for market risk are based on VaR.

In spite of being established an industry and regulatory standard, VaR is

often criticized for not being a coherent risk measure.1 Namely, VaR is not

strictly sub-aditive, since there might be situations in which VaR(X + Y ) >

VaR(X) + VaR(Y ), as shown for example in Artzner, Delbaen, Eber, and

Heath (1999), Acerbi and Tasche (2002) or Breuer, Jandacka, Rheinberger, and

Summer (2008). Furthermore, VaR completely ignores statistical properties of

losses beyond the specified quantile of the profit-loss distribution, i.e. the tail

risk. In order to overcome these drawbacks, Artzner, Delbaen, Eber, and Heath

(1997) proposed the Expected Shortfall (ES) as an alternative risk measure. It

is defined as the conditional expectation of loss beyond a fixed level of VaR. As

such, ES takes into account tail risk and satisfies the sub-aditivity property,

which assures its coherence as a risk measure.

VaR and ES are usually estimated in analytical, simulation or historical

framework. Analytical approach relies upon the assumption that returns or

return innovations follow a known distribution, such as normal. Since financial

time series commonly exhibit significant autocorrelation and heteroskedastic-

ity, one typically models the conditional rather than the unconditional distri-

bution of returns. However, many empirical results, such as McNeil (1997),

da Silva and de Melo Mendez (2003) and Jondeau and Rockinger (2003), show

that the normality assumption fails in explaining extreme events, even when

autocorrelation and heteroskedasticity are taken into account. This follows

from the fact that the high-frequency empirical returns are characterized by

heavier tails than those implied by the normal distribution, as well as by a sub-

stantial skewness. In order to overcome these problems, a leptokurtic and/or

skewed distribution, such as (standard or skewed) Student’s t, may be used

instead. However, empirical results based on the t-distribution have shown

1A coherent risk measure satisfies properties of monotonicity, sub-additivity, homogeneity
and translational invariance.

98



Risk Management under Multivariate EVT

only a limited success. Alternatively, we can estimate VaR and ES via a sim-

ulation. The simulation method is quite useful, if not the only one available,

when the underlying risk factors have non-linear payoffs, which is the case

with options, for example. However, any simulation has to be based on a pre-

specified model of dynamics of the underlying factors, thus the VaR and ES

estimates will critically rely on a correct model specification with properly and

precisely calibrated parameters.

To avoid ad-hoc assumptions of (un)conditional return distribution or dy-

namics of the underlying risk factors, the historical simulation (HS) is often

used as an alternative. The HS employs historical data from recent past, there-

by allowing for the presence of heavy tails without making assumptions about

the probability distribution or dynamics of returns. This non-parametric ap-

proach is conceptually simple as well as easy to implement. Moreover, it

entirely overcomes the problem of model risk. Unfortunately, it suffers from

some serious drawbacks. First, any extrapolation beyond past observations

will be inaccurate, especially if the historical series is relatively short. If we

try to mitigate this problem by considering longer samples, we will practically

neglect the time-varying nature of volatility, as well as volatility clustering. In

that case, the HS approach would not properly capture the risk in a sudden

period of extremely high volatility – the VaR and ES estimates would change

only marginally.

Beyond these traditional approaches, there is an alternative which uses the

Extreme Value Theory (EVT) to characterize the tail behavior of the distri-

bution of returns. By focusing on extreme losses, the EVT successfully avoids

tying the analysis down to a single parametric family fitted to the whole dis-

tribution. Although there is a history of use of EVT in the insurance industry,

its application to market risk calculations began about a decade ago. Mc-

Neil (1999), Bensalah (2000), Smith (2000), Nyström and Skoglund (2002b)

and Embrechts, Klüppelberg, and Mikosch (2008) survey the mathematical

foundations of EVT and discuss its applications to both financial and insur-

ance risk management. The empirical results show that EVT-based models
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provide more accurate VaR estimates, especially in higher quantiles. For ex-

ample, McNeil (1997), Nyström and Skoglund (2002b), Harmantzis, Chien,

and Miao (2005) and Marinelli, d’Addona, and Rachev (2007) show that EVT

outperforms the estimates of VaR and ES based on analytical and historical

methods.

EVT approach thus seems like a natural choice for risk measurement: its

implementation is relatively easy and is based on a few assumptions required

for the asymptotics to work. Regrettably, this elegance comes with a price,

as the straightforwardness is limited to the univariate EVT. In practice, the

number of assets in a typical portfolio is large. We usually deal with a multi-

tude of risk factors and hence our measurement method requires a multivariate

approach. However, defining a multivariate model for the evolution of risk fac-

tors under extreme market conditions has so far been a daunting task. A

seemingly obvious technique involves a multivariate version of the EVT, based

on the multidimensional limiting relations (see Smith (2000)), but model com-

plexity increases greatly with the number of risk factors. Alternatively, the

joint distribution of returns can be seen as a product of marginal distributions

and a copula. McNeil and Frey (2000) and Nyström and Skoglund (2002a),

for example, describe the copula approach to assessment of the extreme co-

dependence structure of risk factors. Not only that this technique introduces

an additional model risk, inherent in the assumption of a specific analytical

form of the co-dependence function, but it also becomes quite intractable with

increase in dimensionality. Moreover, a typical copula method for multivariate

EVT, such as the one described in Nyström and Skoglund (2002a), requires an

additional simulation step in order to retrieve the innovations from the joint

distribution, given the fitted marginals and parameters of the copula.

This chapter introduces a multivariate EVT method for risk measurement

that is based on separate estimations of the univariate model. A key assump-

tion of the univariate EVT is that extreme returns are independent and iden-

tically distributed. Instead of estimating the joint n-dimensional distributions

(using copulas or otherwise), the proposed method works with n orthogonal
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series of conditional residuals that are approximately independent and identi-

cally distributed. These residuals are obtained from the principal components

of the joint return series that are free of any autocorrelation, heteroskedastic-

ity and asymmetry. The latter is achieved by assuming that the joint return

process follows a stationary n-dimensional model from the ARMA-GARCH

family. To render the method free of any unnecessary distributional assump-

tion, the ARMA-GARCH parameters are estimated by a generalized method

of moments.

As an illustration, the technique is applied to a sequence of daily interbank

spot exchange rates of Euro, British Pound, Japanese Yen and Swiss Franc with

respect to the U.S. Dollar. The VaR and ES estimates are compared to the

actual losses. The results indicate that the method performs well in jointly

capturing extreme events in all four series. It also yields more precise VaR

and ES estimates and forecasts than the usual methods based on conditional

normality, conditional t-distribution or historical simulation.

The remainder of the chapter is organized as follows: Section 3.2 presents

the theoretical background behind the EVT approach and the estimation

methodology used in this chapter. Section 3.3 describes the data and pro-

vides an example of estimation. Section 3.4 shows the back-tests of the model

and its forecasting ability, and compares these results to the ones correspond-

ing to the usual methods applied in risk modeling. Concluding remarks are

given in Section 3.5.
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3.2 Theoretical Framework and Estimation

Methodology

3.2.1 Theoretical Framework

This subsection outlines some basic results of the univariate extreme value

theory. First, I formally define the two risk measures used throughout the

chapter, VaR and ES. Next, I present two most important results of EVT

that concern the asymptotic distributions of the order statistics and of the

exceedances over a given treshold.

Definition 1 Let {Xi}ni=1 be a set of independent and identically distributed

random variables with distribution function

F (x) := P{Xi ≤ x}

for any i. Value at Risk is the q-th quantile of the distribution F :

VaRq := F−1(q),

where q ∈ (0, 1) and F−1 is the inverse of F . Similarly, the Expected Shortfall

is the expected value of X, given that VaR is exceeded:

ESq := E[X|X > VaRq].

In order to compute VaR and ES we have to be able to assess the upper and

lower tails of the distribution function F . Hence, it is natural to consider the

order statistics

Mn = max{X1, X2, . . . , Xn},

mn = min{X1, X2, . . . , Xn}.
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Both Mn and mn are random variables that depend on the length n of the

sample. In analogy with the Central Limit Theorem, we will be interested in

the asymptotic behavior of these random variables as n → ∞. Since mn =

−max{−X1,−X2, . . . ,−Xn} it is sufficient to state all the results for Mn, that

is, focus on observations in the upper tail of the underlying distribution. The

results for the lower tail will be straightforward to generalize.

The following theorem is a limit law first derived heuristically by Fisher and

Tippett (1928) and later from a rigorous standpoint by Gnedenko (1943).

Theorem 1 Let {Xi}ni=1 be a set of n independent and identically distribut-

ed random variables with distribution function F and suppose that there are

sequences of normalization constants, {an} and {bn}, such that, for some non-

degenerated limit distribution F ∗, we have

lim
n→∞

P
(
Mn − bn
an

≤ x

)
= lim

n→∞
[F (anx+ bn)]n = F ∗(x), x ∈ R.

Then, there exist ξ ∈ R, µ ∈ R and σ ∈ R+ such that F ∗(x) = Γξ,µ,σ(x) for

any x ∈ R, where

Γξ,µ,σ(x) := exp

[
−
(

1 + ξ
x− µ
σ

)−1/ξ

+

]

is the so-called generalized extreme value (GEV) distribution.

The GEV was first proposed by von Mises (1936) in this form. The 1/ξ is

referred to as the tail index, as it indicates how heavy the upper tail of the

underlying distribution F is. When ξ → 0, the tail index tends to infinity and

Γξ,µ,σ(x)→ exp [− exp (−(x− µ)/σ)].

The sign of ξ defines the three fundamental types of extreme value distri-

butions:

• If ξ = 0, the distribution is called the Gumbel distribution. In this case, the

distribution spreads out along the entire real axis.
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• If ξ > 0, the distribution is called the Fréchet distribution. In this case, the

distribution has a lower bound.

• If ξ < 0, the distribution is called the Weibull distribution. In this case, the

distribution has an upper bound.

Many of the well known distributions may be divided between these three class-

es of GEV distribution according to their behavior in the tail. For example,

normal, gamma and log-normal distributions converge to Gumbell distribution

(ξ = 0); Student’s t, Pareto, log-gamma and Cauchy converge to Fréchet dis-

tribution (ξ > 0); uniform and beta converge to Weibull distribution (ξ < 0).

The subset of all distributions F that converge to a given type of extreme value

distribution is called the domain of attraction for that type. Some characteri-

zations of a domain of attraction are given in Nyström and Skoglund (2002b).

More details on GEV distribution and domains of attraction can be found, for

example, in Embrechts, Klüppelberg, and Mikosch (2008).

EVT is sometimes applied directly – for example, by fitting GEV to the

maxima of the series, see Smith (2000). An alternative approach is based on

exceedances over treshold. The following theorem, first stated by Picklands

(1975), gives the asymptotic form of conditional distribution beyond a very

high treshold.

Theorem 2 Let {Xi}ni=1 be a set of n independent and identically distributed

random variables with distribution function F . Define

Fu(y) := P (X ≤ u+ y | X > u) =
F (u+ y)− F (u)

1− F (u)
, y > 0

to be the distribution of excesses of X over the treshold u. Let xF be the end

of the upper tail of F , possibly a positive infinity. Then, if F is such that the

limit given by Theorem 1 exists, there are constants ξ ∈ R and β ∈ R+ such

that

lim
u→xF

sup
u<x<xF

|Fu(x)−Gξ,β(x− u)| = 0,
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where

Gξ,β(y) := 1−
(

1 + ξ
y

β

)−1/ξ

+

(3.1)

is known as the generalized Pareto (GP) distribution.

There is a close analogy between Theorems 1 and 2 because ξ is the same

in both, and there is a one-to-one correspondence between GEV and GP dis-

tributions, given by

1−Gξ,β(x) = − ln Γξ,0,σ(x),

see Balkema and de Haan (1974), Davison and Smith (1990) and Nyström and

Skoglund (2002b).

The application of EVT involves a number of challenges. First, the pa-

rameter estimates of the GEV and GP limit distributions will depend on the

number of extreme observations used. Second, the choice of a treshold should

be large enough to satisfy the conditions that permit the application of The-

orem 2, i.e. u → xF , while at the same time leaving a sufficient number of

observations to render the estimation feasible. There are different methods

of making this choice, and some of them are examined in Bensalah (2000).

Finally, Theorems 1 and 2 hold only if the extreme observations X are inde-

pendent and identically distributed. Therefore, we cannot apply the results of

EVT to returns on financial assets directly, since a typical financial time series

exhibits autocorrelation and heteroskedasticity. Moreover, the EVT approach

described in this subsection applies only to a single time series, whereas in

practice we often deal with multidimensional series. The following subsection

describes how to overcome these issues.
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3.2.2 Estimation Methodology

Estimating Independent Univariate Excess Distributions

Theorem 2 states that for a large class of underlying excess distributions (name-

ly, those satisfying Theorem 1), the distribution of exceedances over treshold

converges to a generalized Pareto as the treshold is raised. Thus, the GP dis-

tribution is the natural model for the unknown excess distribution. The excess

distribution above the threshold u may be therefore taken to be exactly GP

for some ξ and β:

Fu(y) = Gξ,β(y), (3.2)

for any y satisfying 0 ≤ y < xF − u.

Assuming that we have a set of realizations {zt,i}Tt=1, we can choose a sen-

sible treshold u and estimate parameters ξ and β. If there are Nu out of a

total of T data points that exceed the threshold, the GP will be fitted to the

Nu exceedances. In the literature, several estimators have been used to fit the

parameters of the GP distribution. Two most popular ones are the maximum

likelihood (ML) and the Hill estimator. The ML estimator is based on the as-

sumption that if the tail under consideration exactly follows a GP distribution,

then the likelihood function can be written in a closed form. The estimators

of the parameters ξ and β are then obtained using the standard ML approach.

Provided that ξ > −1/2 the ML estimator of the parameters is consistent and

asymptotically normal as the number of data points tends to infinity. The

alternative is based on a combination of the ML method and the following

semi-parametric result.

Theorem 3 Suppose {Xt}Tt=1 are independent and identically distributed ran-

dom variables with distribution function F , and

lim
k→∞

1− F (kx)

1− F (k)
= x−1/ξ, x ∈ R+, ξ > 0.
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Then, for x > 0,

lim
T→∞

P
(
MT − bT

aT
≤ x

)
= Γξ,0,1(x),

where bT = 0 and aT = F (1− 1/T ).

When estimating ξ one may, assuming a priori that ξ > 0, conjecture that the

tail behaves as in Theorem 3 and obtain an ML estimator of the parameter ξ.

This estimator is referred to as the Hill estimator, see Danielsson and de Vries

(1997).

Nyström and Skoglund (2002b) have shown that ML typically performs

better than the Hill estimator in terms of relative bias and relative standard

deviation. In addition, ML has a useful property of being almost invariant to

the choice of threshold. This is in sharp contrast to the Hill estimator which

is very sensitive to this choice. Also, the Hill estimator is designed specifically

for the heavy-tailed case whereas the ML method is applicable to light-tailed

data as well.

Estimating Tails of Univariate Distributions

By setting x = u + y and combining Theorem 2 and expression (3.2) we can

write

F (x) = (1− F (u))Gξ,β(x− u) + F (u),

for x > u. This formula shows that we may easily interpret the model in

terms of the tail of the underlying distribution F (x) for x > u. Thus, the only

additional element we require to construct a tail estimator is an estimate of

F (u). For this purpose, I use the method of historical simulation (HS) and

take the obvious empirical estimator, F̂ (u) = 1−Nu/T . By setting a threshold

at u, we are assuming that we have sufficient observations exceeding u for a

reasonable HS estimate of F (u), but for observations beyond u the historical
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method would be unreliable. Alternatively, we can find Nu that is closest to a

predetermined F (u). Thus, for example, in a sample of T = 1000 observations,

F̂ (u) = 0.90 will correspond to Nu = 100. The treshold is then set to u = X900,

if {Xt}Tt=1 are ordered from the lowest to the highest.

Combining the HS estimate F̂ (u) with the ML estimates of the GP param-

eters, we obtain the tail estimator:

F̂ (x) = 1− Nu

T

(
1 + ξ̂

x− u
β̂

)−1/bξ
, x > u. (3.3)

Note that when the scale parameter β tends to infinity, Gξ,β(·) vanishes and

the tail estimator converges to the empirical one for any x. Thus, the tail

estimator in (3.3) can be viewed as the HS estimator augmented by the tail

behavior, which is captured by the GP distribution.

Estimating Univariate VaR and ES

For a given upper-tail probability q > F (u) the VaR estimate is calculated by

inverting the tail estimation formula (3.3) to get

V̂aRq = u+
β̂

ξ̂

[(
T

Nu

(1− q)
)−bξ
− 1

]
. (3.4)

This is a quantile estimate, where the quantile is an unknown parameter of

an unknown underlying distribution. The confidence interval for V̂aRq can be

obtained using a method known as the profile likelihood.

Once we have V̂aRq, the point estimator of ES can be obtained from

ÊSq =
1

1− ξ̂

(
V̂aRq + β̂ − ξ̂u

)
, (3.5)

(see, for example, McNeil (1999)). As the tail index increases (equivalently, as

ξ̂ → 0), the ES becomes progressively greater than VaR.
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It is now easy to generalize the results for the VaR and ES such that they

hold in the lower tail as well. Let u+ ≡ u be the upper-tail treshold, and let the

lower-tail treshold u− be defined symmetrically, that is by F (u−) = 1−F (u+).

Then, for a given upper-tail probability q+ > F (u+) or a given lower-tail

probability q− < F (u−) the general form of the VaR estimate is

V̂aRq± = u± ±
β̂±

ξ̂±

[(
T

Nu±

(1− q±)

)−bξ±
− 1

]
, (3.6)

where the subscript + (−) refers to parameters in the upper (lower) tail. Sim-

ilarly, the general form of the ES estimate is

ÊSq± =
1

1− ξ̂±

(
V̂aRq± ± β̂± − ξ̂±u±

)
. (3.7)

It is important to stress that the interpretation of VaR and ES may vary,

depending on the meaning of the set of variables {Xt}Tt=1. Usually, in the risk

modeling context these variables represent profits and hence are expressed in

monetary units.

Orthogonalization

The ultimate goal is to apply the EVT approach to a portfolio consisting of n

assets. Before we can use any of the results of EVT outlined in Subsection 3.2.1,

we have to construct a set of cross-sectionally uncorrelated random variables.

A natural choice is to work with the principal components of the unconditional

covariance matrix of the log returns.

Definition 2 Define εt to be an n-dimensional random vector whose compo-

nents εt,i have zero mean for each i = 1, 2, . . . , n. Let V∞ = E(εtε
′
t) be

the n-by-n unconditional covariance matrix of εt. Denote by Λ the diagonal

matrix of the eigenvalues of V∞,

Λ := diag(λ1, λ2, . . . , λn),
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ordered by descending values, λ1 ≥ λ2 ≥ . . . ≥ λn. (The matrix V∞ is positive

definite, hence λi > 0 for any i.) Let P be the corresponding orthogonal matrix

of normalized eigenvectors, so that the eigenvalue decomposition of V∞ is given

by

V∞ = PΛP′.

Let further

L := PΛ1/2.

In other words, L is an n-by-n matrix whose singular value decomposition is

given by the product of an orthogonal matrix P, a diagonal matrix Λ1/2, and

the n-by-n identity matrix 1n. Then,

zt = L−1εt, (3.8)

is called the vector of principal components of εt, for any t. The i-th element

of the vector zt is called the i-th principal component of εt.

Note that

E (zt) = L−1E (εt) = 0

and

var (zt) = E (ztz
′
t)

= L−1E (εtε
′
t) L−1′

= L−1V∞L−1′

= 1n, (3.9)

since V∞ = LL′. Hence, zt are cross-sectionally uncorrelated and each com-

ponent has a unit variance.

Since εt = Lzt, each coordinate of εt can be written as a linear combination
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of the principal components,

εt,i =
n∑
j=1

Lijzt,j, i = 1, 2, . . . , n,

where Lij are the elements of L. The fraction of total variation in εt explained

by the j-th principal component is

λj∑n
k=1 λl

.

This property leads to another convenient feature of the principal compo-

nent approach. Namely, if low-ranked components do not add much to the

overall explained variance, which is often the case in financial time series, we

can work with a reduced number of m principal components, where m < n.

The first m components will then explain∑m
j=1 λj∑n
k=1 λl

. 1

of the variation in εt. In that case, L is replaced by a n-by-m matrix Lm,

where

Lm := PmΛ1/2
m , (3.10)

Pm is a n-by-m matrix of the first m normalized eigenvectors, and

Λ := diag(λ1, λ2, . . . , λm)

is a diagonal matrix of the first m eigenvalues. The m-dimensional vector of

the first m principal components of εt is then given by

zt = L−1
m εt, (3.11)

for any t.
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Filtering

Orthogonalization transforms a cross-sectionally correlated series into a set

of uncorrelated ones. We also have to filter out any serial correlation and

volatility clustering. As a net result we will obtain sequences of orthogonal,

serially uncorrelated and identically distributed conditional residuals.

Specifically, I will assume that for each asset i = 1, 2, . . . , n the log returns

yt,i := ln(St,i/St−1,i) at time t follow an ARMA(r,m) process

yt,i = µi +
r∑
s=1

bs,iyt−s,i + εt,i +
m∑
s=1

θs,iεt−s,i. (3.12)

For each t and i, the residuals εt,i are serially uncorrelated random variables

with a continuous density function of zero mean. Conditionally on the infor-

mation available at t− 1, the vector of residuals,

εt := [εt,1 εt,2 . . . εt,n]′,

has a zero mean and a covariance matrix Vt. That is,

E (εt|Ft−1) = E (εt) = [0 0 . . . 0]′ =: 0, (3.13)

var (εt|Ft−1) = E (εtε
′
t|Ft−1) =: Vt, (3.14)

where, for any t, the matrix Vt is positive definite and measurable with re-

spect to the information set Ft−1, a σ-field generated by the past residuals

{εt−1, εt−2, . . . , ε1}. Note that the vector form of the ARMA process given

by equation (3.12) then reads

yt = µ+
r∑
s=1

bsyt−s + εt +
m∑
s=1

θsεt−s, (3.15)

where yt and µ are vectors with elements indexed by i = 1, 2, . . . , n, while

bs := diag (bs,1, bs,2, . . . , bs,n)
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θs := diag (θs,1, θs,2, . . . , θs,n)

are n-by-n diagonal matrices of ARMA coefficients.

To capture the volatility clustering, I will assume that the conditional

covariance matrix follows a model from the GARCH family. The standard

GARCH(p,q) model is sufficient to capture most of the clustering, and – to

some extent – excess kurtosis. However, it has a drawback of being symmet-

ric, in the sense that negative and positive shocks have the same impact on

volatility. There is a strong empirical evidence that the positive and neg-

ative innovations to returns exhibit different correlations with innovations to

volatility. This asymmetry can be captured, for example, by assuming that the

conditional residuals follow an asymmetric distribution, such as skewed Stu-

dent’s t. Alternatively, we can model the asymmetry explicitly in the equation

followed by the conditional covariance matrix. In order to keep the estima-

tion method free of any distributional assumptions I opt for the alternative

approach. As Glosten, Jagannathan, and Runkle (1993), I will assume that

the conditional covariance Vt follows a multivariate asymmetric GARCH(p,q),

also known as multivariate GJR-GARCH(p,q):

Vt = Ω +

p∑
s=1

AsEt−s +

p∑
s=1

ΘsIt−sEt−s +

q∑
s=1

BsVt−s, (3.16)

where Ω, A1, . . . , Ap, Θ1, . . . , Θp, B1, . . . , Bq are constant, positive

semidefinite n-by-n matrices,

Et := εtε
′
t,

and

It := diag(sgn(−εt,1)+, sgn(−εt,2)+, . . . , sgn(−εt,n)+),

for any t. As usual, the coefficients in matrices As in (3.16) measure the ex-

tent to which volatility shocks in previous periods affect the current volatility,

while As + Bs measure the rate at which this effect fades away. The terms
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proportional to matrices Θs capture the impact of asymmetric return shocks

to volatility. For any t, the unconditional covariance matrix of εt is given by

V∞ :=

(
1n −

p∑
s=1

(
As +

1

2
Θs

)
−

q∑
s=1

Bs

)−1

Ω.

Hence, covariance stationarity of the GJR-GARCH(p,q) process (3.16) is as-

sured by setting the matrix

1n −
p∑
s=1

(
As +

1

2
Θs

)
−

q∑
s=1

Bs

to be positive definite.

It is worth noting that there are many plausible and often implemented al-

ternatives to asymmetric GARCH model of Glosten, Jagannathan, and Runkle

(1993), such as EGARCH model of Nelson (1991). I have chosen to work with

the Glosten, Jagannathan, and Runkle (1993) specification for the sake of

simplicity.

Cross-sectional correlations are reflected in the off-diagonal terms of matri-

ces Vt and Et. This in turn makes the matrices Ω, A1, . . . , Ap, Θ1, . . . , Θp,

B1, . . . , Bq non-diagonal. In total, one would have to estimate (1+2p+q)(n+

1)n/2 different parameters. Clearly, this number explodes as we increase the

number of assets in the portfolio. However, this is only one facet of the prob-

lem. The other is that we cannot apply the results of univariate EVT to

conditional residuals εt,i directly.

For that matter, we can work in the orthonormal basis of principal compo-

nents by applying the linear transformation (3.8) to the conditional residuals

εt. In the orthonormal basis of principal components, equation (3.15) and

(3.16) for the ARMA(r,m)–GJR-GARCH(p, q) process then read:

ŷt = µ̂+
r∑
s=1

b̂sŷt−s + zt +
m∑
s=1

θ̂szt−s (3.17)
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and

V̂t = Ω̂ +

p∑
s=1

ÂsÊt−s +

p∑
s=1

Θ̂sÎt−sÊt−s +

q∑
s=1

B̂sV̂t−s, (3.18)

where ŷt := L−1yt for any t, µ̂ := L−1µ, and

M̂ := L−1ML−1′

for any M ∈ {b̂; Ω, A1, . . . , Ap, Θ1, . . . , Θp, B1, . . . , Bq} and any

M ∈ {Vt, Et, It}t≥max{p,q}. In particular,

Êt := L−1EtL
−1′ = ztz

′
t

and

Ît := L−1ItL
−1′ = diag(sgn(−zt,1)+, sgn(−zt,2)+, . . . , sgn(−zt,n)+).

Equation (3.13) implies

E (zt|Ft−1) = L−1E (εt) = 0. (3.19)

On the other hand, let

V̂t := var (zt|Ft−1)

= E (ztz
′
t|Ft−1)

= L−1VtL
−1′

be the conditional covariance matrix of principal components. Since the prin-

cipal components zt are orthogonal, it is reasonable to assume that the matrix

V̂t is diagonal (see, for example, Alexander (2001)). Then, the process given

by equation (3.18) can be estimated separately for each principal component.
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This gives a set of n independent scalar equations of the form

V̂t,i = Ω̂i +

p∑
s=1

Âs,iÊt−s,i +

p∑
s=1

Θ̂s,iÎt−s,iÊt−s,i +

q∑
s=1

B̂s,iV̂t−s,i, (3.20)

where, in general, M̂i := M̂ii is the i-th diagonal element of the matrix M̂,

i being 1, 2, . . . , n for the first, second, . . ., n-th principal component, respec-

tively.

Once we estimate the set of parameters {Ω̂, Â1, . . . , Âp, Θ̂1, . . . , Θ̂p, B̂1, . . . , B̂q}
we can apply the inverse transformation

Vt := LV̂tL
′ (3.21)

for t ≥ max{p, q}, to retrieve the series of conditional covariance matrices in

the original basis of log returns. This allows us to estimate VaR and ES in a

multivariate framework, for an arbitrary portfolio.

Note that it is straightforward to generalize the above approach to the case

of m < n principal components. Using definition (3.10), we can transform

any n-by-n matrix M into the basis of the first m principal components via

transformation

M̂ := L−1
m ML−1′

m ,

yielding an m-by-m matrix M̂. Equations (3.18) and (3.20) maintain the same

form.

GMM Estimation

Estimation of the GJR-GARCH(p, q) parameters in the basis of principal com-

ponents can be performed in several ways. Let us focus on the set of scalar

equations (3.20). Under the additional assumption of a known conditional

distribution for the residuals, it is straightforward to set up the likelihood

function for the entire ARMA(r,m)–GJR-GARCH(p, q) model. This gives the

116



Risk Management under Multivariate EVT

ML estimator for the set of parameters{
µ̂, b̂1, . . . , b̂r, θ̂1, . . . , θ̂m; Ω̂, Â1, . . . , Âp, Θ̂1, . . . , Θ̂p, B̂1, . . . , B̂q

}
.

In the principal component framework, there are (1 + r + m + 1 + 2p + q)n

parameters in total to be estimated.

However, as indicated earlier, it is desirable to have an estimator which

avoids specific assumptions about the conditional distribution, while main-

taining the efficiency of the ML (or quasi-ML) estimator. Such an estimator

is based on the Generalized Method of Moments (GMM). Instead of making

distributional assumptions, it proceeds by postulating conditional moments.

Here, I will briefly outline its implementation. The details of the GMM ap-

proach to ARMA-GARCH models can be found, for example, in Skoglund

(2001).

For a fixed t and any principal component i define

et :=
[
zt z2

t − V̂t
]′
,

where, with a slight abuse of notation, I use zt = zt,i and V̂t = V̂t,i. Let the

score be given by

gt(ψ) := F′t(ψ)et,

where Ft is an instrumental variable function. The GMM estimator of uni-

variate ARMA(r,m)–GJR-GARCH(p, q) parameters ψ is defined as

ψ̂ = arg min
ψ

m(ψ)′ W m(ψ), (3.22)

where

m(ψ) :=
1

T

T∑
t=1

gt(ψ)

is the sample analog of the expected score, while the weighting matrix W is

a consistent estimate of the inverse asymptotic covariance matrix of the score.
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The set of moment conditions is given by

E [gt(ψ)] = 0.

An efficient choice of instrumental variable function and weighting matrix

corresponds to setting

Ft(ψ) = Σ−1
t Jt(ψ),

where Σt := var (et|Ft−1),

Jt(ψ) :=
∂et
∂ψ′

is the Jacobian matrix, and

W =
1

T

T∑
t=1

gt(ψ)gt(ψ)′,

see Newey and McFadden (1994). Standard errors can be calculated in a usual

way from a consistent estimate of the Fisher information matrix. A recursive

semi-closed form solution for gt can be found in Skoglund (2001), Nyström and

Skoglund (2002b) and Nyström and Skoglund (2002b), for a particular (and

common) case of ARMA(1, 0)–GJR-GARCH(1, 1) process.

It is worth noting that the application of the GMM estimator requires an

initial guess on the third and fourth moments of zt. Therefore, in order to

obtain an initial estimator of the set of parameters ψ, it is convenient to

use the quasi-ML estimator to obtain the initial consistent estimates (i.e., to

assume conditional normality of residuals).

Forecasting

A one-step-ahead forecast of the transformed log return vector can be obtained
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from (3.17):

E (ŷt+1|Ft) = µ̂+
r∑
s=1

b̂sŷt−s+1. (3.23)

Using the fact that principal components zt are independent, we can write the

forecast for an arbitrary time horizon h ≥ 1:

E (ŷt+h|Ft) = µ̂+
r∑
s=1

b̂sE (ŷt−s+h|Ft)

= µ̂+
h∑
s=1

b̂sŷt−s+h +
r∑

s=h+1

b̂sE (ŷt−s+h|Ft) . (3.24)

Equation (3.24) is recursive and the last term contains the forecasts for 1, 2, . . . , h−
1 steps ahead.

Next, from equation (3.18), it follows that a one-step-ahead forecast of

conditional covariance in the basis of principal components is given by

E
(
V̂t+1|Ft

)
= V̂t+1

= Ω̂ +

p∑
s=1

ÂsÊt−s+1 +

p∑
s=1

Θ̂sÎt−s+1Êt−s+1 +

q∑
s=1

B̂sV̂t−s+1,

since V̂t+1 is measurable with respect to the information available at t. A

two-steps-ahead forecast is

E
(
V̂t+2|Ft

)
= Ω̂ +

p∑
s=1

(
Âs +

1

2
Θ̂s

)
V̂t−s+1 +

q∑
s=1

B̂sV̂t−s+1,

which can be obtained by substituting the matrices known up until and in-

cluding time t. Iteratively, we can derive a covariance forecast for an arbitrary

horizon. Applying the inverse transformation (3.21), we can obtain the covari-

ance forecast in the original basis of log returns.
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Given the upper- and lower-tail quantiles q±, the confidence interval [z−t+h,i, z
+
t+h,i]

for the forecast of the value of i-th principal component h steps ahead is given

by

z±t+h,i = F−1
i (q±)

√
V̂t+h,i, (3.25)

where, F−1
i (·) is the inverse of the univariate probability function followed by

the set of random variables {zt,i}Tt=1. It can be obtained by inverting the tail

estimator (3.3). As before, V̂t+h,i stands for the i-th diagonal element of the

matrix V̂t+h.

Estimating Multivariate VaR and ES

Our final goal is to estimate VaR and ES for a portfolio of n assets. Denote by

a the vector of portfolio positions, in monetary units.2 Then, h-steps-ahead

portfolio VaR is defined by

VaRq± = a′L
[
E (ŷt+h|Ft) + z±t+h

]
, (3.26)

where z±t+h is the vector whose i-th component is given by (3.25). The intuition

behind formula (3.26) is the following. The first term,

a′L E (ŷt+h|Ft) = a′E (yt+h|Ft) ,

represents the expected return on the portfolio for h steps ahead. The second

term is determined by the vector Lz±t+h, which defines the confidence intervals

in the n-dimensional space of log returns. Hence, the second term a′Lz±t+h
is the confidence interval for portfolio returns around their mean, for h steps

ahead and at a confidence level defined by q±.

In analogy with equations (3.26) and (3.5), the h-steps-ahead portfolio ES

2This, among other things, facilitates the treatment of short positions, when portfolio
weights may not be well defined.
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is given by

ESq± = a′Lz̃±t+h, (3.27)

where

z̃±t+h,i = F̃−1
i (q±)

√
V̂t+h,i

and

F̃−1
i (q±) =

1

1− ξ±
[
F−1
i (q±)± β± − ξ±u±

]
.

3.3 Data and Empirical Results

3.3.1 Data

The empirical results that follow are based on average daily interbank spot

exchange rates of Euro, British Pound, Japanese Yen and Swiss Franc with

respect to the U.S. Dollar, from January 4, 1999 to September 30, 2008, a

sample of 2542 observations. The four time series were obtained from Thom-

son Financial’s Datastream. Table 3.1 provides summary statistics for the

exchange rate levels and the corresponding daily log returns (in percent), com-

puted as yt = 100 ln(St/St−1). Daily sampling is chosen in order to capture

high-frequency fluctuations in return processes that may be critical for iden-

tification of rare events in the tails of distribution, while avoiding to model

the intraday return dynamics, abundant with spurious market microstructure

distortions and trading frictions.

I perform several preliminary test on the data. The values of skewness and

kurtosis in Table 3.1 indicate that both the levels and returns deviate from nor-

mality. This is also confirmed by Jarque-Bera and Kolmogorov-Smirnov tests

(not reported), whose p-values are at most of the order of 10−3. Table 3.2

shows the results of Ljung-Box Q-statistics for the autocorrelation of returns,

up to order 10 (Panel A). The null hypotheses of no autocorrelation in returns

cannot be rejected. The absence of a significant short-run return predictability
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Table 3.1: Summary Statistics

Daily interbank spot exchange rates of Euro, British Pound, Japanese Yen
and Swiss Franc with respect to the U.S. Dollar, from January 4, 1999 to
September 30, 2008 (2542 observations).

Panel A: Daily exchange rate levels

Currency Mean Variance Skewness Kurtosis

EUR 1.1511 0.0376 0.2234 2.1992
GBP 1.7103 0.0376 0.0661 1.7385
JPY 0.8774 0.0030 −0.0339 2.2511
CHF 0.7380 0.0121 0.1375 2.1955

Panel B: Daily returns (percent)

Currency Mean Variance Skewness Kurtosis

EUR 0.0084 0.3539 −0.0267 4.5420
GBP 0.0040 0.2338 0.0757 4.1778
JPY 0.0026 0.3493 0.2267 4.8656
CHF 0.0088 0.4012 0.1411 4.2532

is consistent with high efficiency of the currency market. The autocorrelation

in the squared returns is, on the other hand, highly significant in all four series,

indicating the presence of heteroskedasticity (Panel B). The correlation coef-

ficients between squared returns and their lags (not reported) are all positive,

confirming the notion of clustering – the periods of high volatility are likely to

be followed by high volatility.

Table 3.3 reports the results of the unit root tests. Both Augmented Dickey-

Fuller (ADF) and Phillips-Perron (PP) statistics indicate that the unit root

hypothesis is convincingly rejected in favor of stationary returns (the critical

values of ADF and PP statistics at 5 and 1 percent confidence are −3.41 and

−3.96, respectively).
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Table 3.2: Autocorrelation

Ljung-Box test for autocorrelation of returns and squared returns up to 10th

lag.

Panel A: Autocorrelation of returns

Currency Q statistic p-value

EUR 3.9867 0.9479
GBP 9.4858 0.4867
JPY 6.8611 0.7385
CHF 12.7326 0.2390

Panel B: Autocorrelation of squared returns

Currency Q statistic p-value

EUR 111.5435 < 10−5

GBP 105.7946 < 10−5

JPY 81.5108 < 10−5

CHF 42.7107 < 10−5
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Table 3.3: Stationarity

Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) tests for the pres-
ence of unit roots, based on the regression

yt = c+ δt+ φyt−1 +
10∑
L=1

bL∆yt−L + εt,

H0 : φ = 1, δ = 0.

Currency ADF statistic PP statistic

EUR −15.8257 −50.4768
GBP −15.2648 −48.0508
JPY −14.6802 −49.2301
CHF −15.6345 −50.9751

5% crit. value −3.41 −3.41
1% crit. value −3.96 −3.96
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3.3.2 Empirical Results

I apply the method described in Section 3.2 to the exchange rate data. The

ex-post analysis of autocorrelations in principal components and squared prin-

cipal components have shown that it is sufficient to use an ARMA(1, 0)–GJR-

GARCH(1, 1) model to obtain independent and identically distributed residu-

als. Hence, the estimation steps are the following. First, estimate

yt = µ+ byt−s + εt. (3.28)

Then, calculate the unconditional variance matrix V∞ of the residuals εt and

apply the eigenvalue decomposition following Definition 2 to obtain the prin-

cipal components zt. The conditional covariance matrix of the principal com-

ponents then follows

V̂t = Ω̂ + ÂÊt−1 + Θ̂Ît−1Êt−1 + B̂V̂t−1. (3.29)

Next, to obtain the GJR-GARCH(1, 1) parameters

ψ :=
{

Ω̂, Â, Θ̂, B̂
}
,

run the GMM estimation (3.22) separately for each principal component. Since

there are four exchange rates in the sample, there are 4 × 4 = 16 parameters

in total to be estimated from the GMM step if we work with a full set of four

principal components.

Once we have the ARMA(1, 0)–GJR-GARCH(1, 1) parameters, we can com-

pute the forecasts, as well as VaR and ES for an arbitrary portfolio, following

formulas (3.26) and (3.27). Note that, in general, parameter estimates change

in time as we move through the time series. Hence, a proper dynamic method

for VaR and ES forecasting would involve regular updating of parameters.

I illustrate the method by running a dynamic estimation over the sample

period. To have sufficient observations for the estimation runs, I start from
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January 1, 2004. For each of the remaining 1239 daily observations, I calculate

one-step-ahead forecasts of VaR and ES. As an example, the estimation details

are shown in Tables 3.4–3.7 and Figures 3.1–3.4, for January 1, 2008.

Table 3.4 shows the summary of the principal component analysis. The first

principal component explains almost 70 percent of joint variations in the four

exchange rates.

Table 3.4: Principal Components

Variance explained by each of the four principal components (PCs). Estimation
period is January 4, 1999 – December 31, 2007.

PC 1 PC 2 PC 3 PC 4

Eigenvalue 0.9283 0.2682 0.1036 0.0269

Variance explained 0.6995 0.2021 0.0781 0.0202
Cumulative 0.6995 0.9017 0.9798 1.0000

Table 3.5 summarizes the results of the univariate parameter estimation.

For each principal component i, the table shows the values of ARMA(1,0)–

GJR-GARCH(1,1) parameters obtained by the GMM estimation, along with

their standard errors. Clearly, mean stationarity is satisfied, since |̂bi| < 1 for

every i. Also, it is easy to check that the GARCH parameters are very close but

still within the bounds of covariance-stationary regime, as Âi + Θ̂i/2 + B̂i < 1.

The constant terms Ω̂i appear to be insignificant; however, the corresponding

unconditional variances V̂∞,i = Ω̂i/[1− (Âi + Θ̂i/2 + B̂i)] are significant.

Table 3.6 displays the estimates of the upper- and lower-tail parameters of

the univariate GP distribution, ξ± and β±. Following the procedure described

in Subsection 3.2.2, these parameters are estimated separately for each of the

principal components, as the exceedances can be assumed to be not only inde-

pendent and identically distributed, but also orthogonal. The upper and lower

tresholds, u+ and u−, are determined by F (u+) = 0.90 and F (u−) = 0.10, re-

spectively. This gives a sufficient number of observations in the tails to render

126



Risk Management under Multivariate EVT

Table 3.5: ARMA-GARCH Estimates

Parameter estimates in the ARMA(1,0)–GJR-GARCH(1,1) model, in the basis
of principal components. Estimation period is January 4, 1999 – December
31, 2007.

Parameter PC 1 PC 2 PC 3 PC 4

µ̂i 0.0018 0.0043 0.0034 −0.0002
(0.0000) (0.0000) (0.0000) (0.0000)

b̂i 0.0212 0.0777 0.0910 0.0093
(0.0077) (0.0112) (0.0136) (0.0443)

Ω̂i 0.0005 0.0039 0.0016 0.0016
(0.0092) (0.0215) (0.0179) (0.0407)

Âi 0.0216 0.0446 0.0361 0.1593
(0.0069) (0.0238) (0.0210) (0.0594)

Θ̂i 0.0030 0.0162 0.0007 −0.0942
(0.0002) (0.0001) (0.0001) (0.0001)

B̂i 0.9751 0.9218 0.9350 0.6337
(0.0201) (0.0185) (0.0196) (0.0139)

(Standard errors in parentheses.)

the ML estimation of the parameters possible. The inverse of the tail index,

ξ±, is significant and negative for the first principal component, which corre-

sponds to Weibull distribution. The other values of ξ± are statistically not

different from zero, with an exception of the upper tail of the fourth principal

component, where ξ+ is significant and positive. The scale parameter β± has

values that range between 0.52 and 0.70. Also, the asymmetry between the

upper and the lower tail implied by the parameters is apparent.

Using formula (3.1) and the values in Table 3.6, we can plot the function

Gξ,β(·) for the distribution of excesses of zt,i over the upper and lower tresholds,

u+ and u−. Figures 3.1–3.4 show the graphs for the tail behavior of each of the

four principal components. I compare the empirical with the GP distribution

function, as well as with the normal and Student’s t distributions calibrated
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across the sample, using the parameter estimates prior to January 1, 2008.

Clearly, GP distribution drastically outperforms the alternatives in explaining

the tail behavior.

Table 3.6: Parameters of the Univariate GP Distribution

Upper- and lower-tail parameters of the univariate generalized Pareto distri-
bution, estimated separately for each of the standardized ARMA-GARCH or-
thogonal residuals. The upper and lower tresholds are determined by the quan-
tiles corresponding to probabilities of 0.90 and 0.10, respectively. Estimation
period is January 4, 1999 – December 31, 2007.

Upper tail

Parameter PC 1 PC 2 PC 3 PC 4

ξ̂+ −0.1096 0.0544 0.0058 0.1804
(0.0612) (0.0703) (0.0755) (0.0752)

β̂+ 0.6397 0.5153 0.5724 0.5386
(0.0573) (0.0497) (0.0575) (0.0536)

Lower tail

Parameter PC 1 PC 2 PC 3 PC 4

ξ̂− −0.2030 0.0570 −0.0293 0.0239
(0.0575) (0.0714) (0.0572) (0.0625)

β̂− 0.7013 0.6765 0.6379 0.6031
(0.0605) (0.0658) (0.0556) (0.0548)

(Standard errors in parentheses.)
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Figure 3.1: First principal component. Upper and lower tails of standardized
residuals.
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Figure 3.2: Second principal component. Upper and lower tails of standardized
residuals.
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Figure 3.3: Third principal component. Upper and lower tails of standardized
residuals.
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Figure 3.4: Fourth principal component. Upper and lower tails of standardized
residuals.
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Finally, I compute the one-day VaR and ES forecasts for an equally weighted

portfolio of currencies using formulas (3.26) and (3.27), for January 1, 2008.

The results are summarized in Table 3.7. The forecasts are given for the

confidence levels of 90, 95, 99 and 99.9 percent. The values for VaR and

ES are reported in percent. The lower- (upper-) tail values are applicable

for the losses associated with holding a long (short) position in the portfolio.

Evidently, the distributional asymmetry is reflected in pronounced differences

between the risk measures in the upper and lower tail.

Table 3.7: VaR and ES Forecasts

One-day upper- and lower-tail VaR and ES forecasts for January 1, 2008, for
an equally weighted portfolio of currencies and for several confidence levels.

Upper tail

CL 0.90 0.95 0.99 0.999

VaR 0.5294 0.6947 1.0750 1.6101
ES 0.7284 0.8924 1.2694 1.7994

Lower tail

CL 0.90 0.95 0.99 0.999

VaR −0.4212 −0.5923 −0.9203 −1.2495
ES −0.6790 −0.8251 −1.1026 −1.3743

3.4 Backtesting

Any risk management model needs to be tested before we can successfully

apply it in practice. A variety of tests has been proposed to evaluate the

accuracy of a VaR model. These tests are constructed to give an assessment of

adequacy of the proposed models in predicting the size and frequency of losses.

The standard backtests of VaR models compare the VaR forecasts for a given

horizon with the actual portfolio losses. In its simplest form, the backtesting
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procedure consists of calculating the absolute or relative number of times that

the actual portfolio returns fall outside the VaR estimate, and comparing that

number to the confidence level used.

Model backtesting is also important for financial institutions that are sub-

jected to regulatory requirements. Since the late 1990s, regulatory guidelines

require that banks with substantial trading activity have to set aside capital to

insure against extreme portfolio losses. The size of the set-aside, or market risk

capital requirement, is directly related to a measure of portfolio risk. In most

of developed markets, the present regulatory framework follows the recommen-

dations of Basel II, the second of the accords issued by the Basel Committee

on Banking Supervision. The purpose of Basel II (initially published in June

2004) and its subsequent amendments was to create an international standard

that can be used by national banking regulators. Currently, there are two gen-

eral methodologies for assessment of market risk capital requirements under

Basel II. The first one is the so-called Standardized Approach (SA), and is

based on a set of simple rules on how to calculate minimum capital require-

ments using basic cross-sectional information about the assets in the bank’s

trading book. The more advanced approach is the Internal Models Method

(IMM), which is based on VaR, and – being more precise – typically yields low-

er capital requirements. Specifically, the minimum capital requirement under

IMM is defined as

MCRt := max
{

VaRt, (M + Pt)VaR
}

+ SRCt,

where VaRt is the ten-days-ahead VaR forecast at 99 percent confidence level,

VaR is the average of these forecasts over the past 60 trading days, M is a

multiplication factor set by national regulators (usually equal to 3), Pt is the

penalty associated with the backtesting results, while SRCt is the specific risk

capital charge. The penalty Pt is determined by classifying the number of

violations I of one-day 99-percent VaR in the previous 250 trading days into

three distinct categories:

• Pt = 0, if I ≤ 4 (green zone);
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• Pt = (I − 4)/5, if 5 ≤ I ≤ 9 (yellow zone);

• Pt = 1, if 10 ≤ I (red zone).

Hence, a VaR model with more violations leads to a greater capital require-

ment.

The Basel II ”traffic-light” approach to backtesting represents the only as-

sessment of VaR accuracy prescribed in the current regulatory framework.

Although its simple implementation is suitable for informational purposes,

this approach merely counts the breaches of the 99-percent confidence level

and fails to discard any model that, for example, overestimates the risk, or

performs poorly when compared to other confidence levels. The ability of

a backtest to discard all the models that systematically overstate as well as

understate the risk is known as the unconditional coverage property. Christof-

fersen (1998) points out that the problem of determining the accuracy of a VaR

model can be reduced to the problem of determining whether the sequence of

breach counts satisfies both the unconditional coverage and independence. The

latter property refers to intuition that the previous history of VaR violations

must not convey any information about the future violations.

Some of the earliest VaR backtests proposed in the literature focused on

the property of unconditional coverage, that is, whether or not the reported

VaR is violated more or less than α percent of the time, where 1 − α is the

confidence level. Kupiec (1995), for example, proposed a proportion of failures

(POF) test that examines how many times VaR forecasts are violated over

a given span of time. If the number of violations differs significantly from α

times the size of the sample, then the accuracy of the underlying risk model

is called into question. Using a sample of T observations, Kupiec (1995) test

statistic takes the form,

POF := 2 ln

[(
1− α̂
1− α

)T−I(α)(
α̂

α

)I(α)
]
, (3.30)
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where

α̂ :=
I(α)

T
,

I(α) :=
T∑
t=1

It(α),

where It(α) is an indicator function taking the value one if the actual return

at t breaches the forecasted value of VaR for the confidence level determined

by α, and zero if it stays within the VaR bounds. Hence, if the proportion of

VaR violations, α̂, is exactly equal to α then the POF statistic takes the value

zero, indicating no evidence of any inadequacy in the underlying VaR measure.

As the proportion of VaR violations differs from α, the POF statistic grows,

indicating that the proposed VaR measure either systematically understates or

overstates the underlying level of risk. The POF statistic given by (3.30) is a

likelihood ratio and hence converges in distribution to a χ2 with I(α) degrees

of freedom.

Figure 3.5 shows the comparison between actual returns (dots) and VaR

forecasts (continuous lines) for different confidence levels for an equally weight-

ed portfolio of four currencies, for the period January 1, 2004 – September 30,

2008. The forecasts are computed using the formula (3.26), both for the low-

er and the upper tail of the return distribution in order to take into account

losses both of a long and a short position, respectively. Table 3.8 summarizes

the backtesting results, comparing the expected number of violations with the

actual ones. The actual violations were compared across different multivariate

models (EVT, conditional normality and conditional t-distribution), as well

as the univariate historical simulation. The multivariate normal and t models

applied here follow the orthogonal GARCH approach of Alexander (2001). In

other words, these forecasts were also obtained using the ARMA(1,0)–GJR-

GARCH(1,1) filtering of principal components, except that the estimation of

the covariance matrices was performed across the entire sample (thereby in-

cluding both the center and the tails of the distribution) via ML method
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assuming normally- or t-distributed conditional residuals. The number of vio-

lations by quantiles clearly shows that HS markedly deviates from the expected

values. The multivariate normal underestimates, while the multivariate t mod-

el overestimates the tail risk. At the same time, the multivariate EVT appears

to yield much better forecasts. This is also verified formally by means of the

Kupiec (1995) test, see Table 3.9. Clearly, all the models give predictions that

are within statistically significant bounds for confidence levels of 90 and 95 per-

cent, except for the normal model in the upper tail at 95 percent confidence

level. However, the HS model performs poorly at all higher confidence levels,

the multivariate t at 99 percent confidence, while the multivariate normal falls

short in explaining the upper-tail returns above 99 percent level, and both the

upper- and lower-tail extreme returns above 99.9 percent level. On the other

hand, VaR forecasts based on the proposed multivariate EVT method violate

the corresponding confidence bounds by a number of times that is not sta-

tistically different from the expected one. The only exception is perhaps the

extreme confidence interval of 99.9 percent, where we observe no violations in

the upper tail and one violation in the lower tail, compared to the expectation

of 1.239, so for an appropriate sense of statistical significance at these extreme

return regions we might need an even longer backtesting sample.
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Table 3.8: VaR Backtesting: Violations by Quantiles

Expected versus the actual number of violations obtained by several models
for an equally weighted portfolio of currencies, between January 1, 2004 and
September 30, 2008 (a total of 1239 observations).

Upper tail

Method Number of violations

CL = 0.90 CL = 0.95 CL = 0.99 CL = 0.999

EVT 109 56 12 0
Normal 144 89 31 16
t 121 49 11 0
HS 235 166 70 21

Expected 123.9 61.95 12.39 1.239

Lower tail

Method Number of violations

CL = 0.90 CL = 0.95 CL = 0.99 CL = 0.999

EVT 88 48 9 1
Normal 118 67 19 8
t 86 40 7 0
HS 219 142 54 28

Expected 123.9 61.95 12.39 1.239

(p-values in parentheses.)
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Table 3.9: VaR Backtesting: Kupiec Test

The Kupiec (1995) POF test statistics and p-values obtained by several models
for an equally weighted portfolio of currencies, between January 1, 2004 and
September 30, 2008 (a total of 1239 observations).

Upper tail

Method Number of violations

CL = 0.90 CL = 0.95 CL = 0.99 CL = 0.999

EVT 2.0665 0.6207 0.0125 2.4792
(< 10−4) (< 10−4) (< 10−4) −−

Normal 3.4620 11.0174 19.9238 52.5198
(< 10−4) (0.4564) (0.0626) (∼ 1.0)

t 0.0759 3.0602 0.1637 2.4792
(< 10−4) (< 10−4) (0.2022) −−

HS 90.1083 128.6208 129.9539 79.6643
(< 10−4) (0.0142) (∼ 1.0) (∼ 1.0)

Lower tail

Method Number of violations

CL = 0.90 CL = 0.95 CL = 0.99 CL = 0.999

EVT 12.7273 3.5725 1.0354 0.0494
(< 10−4) (< 10−4) (0.0006) (0.1760)

Normal 0.3167 0.4226 3.0626 16.3572
(< 10−4) (< 10−4) (< 10−4) (0.9625)

t 14.2719 9.3110 2.8099 2.4792
(< 10−4) (< 10−4) (0.0980) −−

HS 67.6349 81.0498 77.1940 121.6632
(< 10−4) (< 10−4) (0.9791) (∼ 1.0)

(p-values in parentheses.)
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By examining a variety of different quantiles instead of a single one, some

types of backtests can detect violations of the independence across a range of

different VaR levels, while satisfying the unconditional coverage property. A

variety of such tests has been proposed during the past decade, and Campbell

(2005) gives a good review of these and other backtesting methods. An example

of such a test is Pearson’s test for goodness of fit. This test is based upon the

number of observed violations at a variety of different VaR levels, separated

into bins on the unit interval. The Pearson’s test statistic is given by

Q :=
K∑
k=1

(
Nobs
k −N exp

k

)2

N exp
k

, (3.31)

where Nobs
k and N exp

k are, respectively, the observed and the expected number

of violations in the k-th bin. The Q statistic converges in distribution to a

χ2 with K − 1 degrees of freedom, K being the number of bins. The results

of the Pearson’s test for the currency portfolio are summarized in Table 3.10,

for the set of bins given by α ∈ [0.00, 0.001) ∪ [0.001, 0.01) ∪ [0.01, 0.05) ∪
[0.05, 0.10)∪[0.10, 1.00]. They show that models based on conditionally normal

or t-distributed residuals, as well as the HS model, can be rejected in favor of

the proposed multivariate EVT alternative.
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Table 3.10: VaR Backtesting: Pearson’s Test

Pearson’s test statistics and p-values obtained using VaR forecasts for an equal-
ly weighted portfolio of currencies between January 1, 2004 and September 30,
2008 (a total of 1239 observations). The partition of the unit interval used was
α ∈ [0.00, 0.001) ∪ [0.001, 0.01) ∪ [0.01, 0.05) ∪ [0.05, 0.10) ∪ [0.10, 1.00].

Method Lower tail Upper tail

EVT 0.4170 1.3142
(0.0189) (0.1410)

Normal 38.5252 7.5773
(∼ 1.0) (0.8917)

t 2.2298 2.0934
(0.3064) (0.2814)

HS 123.1067 146.7974
(∼ 1.0) (∼ 1.0)

(p-values in parentheses.)
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3.5 Conclusion

This paper develops an efficient procedure for estimation of Value at Risk

and expected shortfall based on a multivariate extreme value theory approach.

The method is based on separate estimations of the univariate EVT model. It

works with a set of orthogonal conditional residuals, obtained from the princi-

pal components of the joint return series. Autocorrelation, heteroskedasticity

and asymmetry that are inherent in the original return series can be removed

by assuming an ARMA process for the conditional mean and an asymmetric

GARCH process for the conditional variance of the principal components. In

this way, we can obtain a set of independent and identically distributed ran-

dom variables, which is a prerequisite for any univariate EVT approach. The

tails of the univariate distributions are modeled by a generalized Pareto distri-

bution of peeks over treshold, while the interiors are fitted with an empirical

distribution function. Furthermore, the method can be free of any unnecessary

distributional assumption since the estimation of the ARMA-GARCH parame-

ters can be performed via a generalized method of moments. Also, the method

is free of estimation of a joint multivariate distribution, which would require a

technique such as copula approach with simulations.

As an illustration, the method is applied to a sequence of daily interbank

spot exchange rates of Euro, British Pound, Japanese Yen and Swiss Franc with

respect to the U.S. Dollar. The forecasts of VaR and ES are backtested through

a comparison with the actual losses over an out-of-the-sample period of four

years and three quarters. The backtesting results indicate that the proposed

multivariate EVT method performs well in forecasting the risk of a portfolio

of four currencies. It certainly gives more precise estimate of VaR than the

usual methods based on conditional normality, conditional t-distribution or

historical simulation, while having the efficiency of an orthogonal GARCH

method.
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