
DEPARTAMENT D’ASTRONOMIA I METEOROLOGIA

Near-relativistic electron events.

Monte Carlo simulations of solar

injection and interplanetary transport

Memòria presentada per

Neus Àgueda Costafreda
per optar al grau de Doctora

per la Universitat de Barcelona.

Barcelona, 20 de febrer de 2008





A Parker interplanetary magnetic field

In the ecliptic plane, the Parker interplanetary magnetic field can be expressed in polar coor-

dinates, �B = (Br, BΦ), by

Br = B0

(r0
r

)2
(A.1)

BΦ = −Br

(
Ω

u

)
r

where Ω is the sidereal solar rotation rate, u is the solar wind speed, r0 is the radius at which

the field is completely frozen into the solar wind, and B0 = B(r0). This radius is greater

than the conventional ’source surface’ where it is assumed that �B is purely radial. Thus the

azimuthal component decreases with 1/r while the radial component decreases as 1/r2. The

sign of B0 determines the polarity.

The field strength of �B, B = |�B|, decreases with r as

B(r) = B0

(r0
r

)2 √
1 +

r2

a2
(A.2)

where a = u/Ω. The angle ψ between the magnetic field direction and the radius vector from

the Sun is given by

secψ(r) =

√
1 +

r2

a2
(A.3)

i.e. tanψ = rΩ/u. Thus

dz = secψ dr (A.4)

An important propagation parameter is the focusing length, L, given by the parallel scale

length of the fractional variation of the field,

1

L
= − 1

B
dB
dz

=

(
1

r

)
2 + r2/a2

(1 + r2/a2)3/2
(A.5)
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Thus L � r/2 for r2/a2 � 1 but L � r2/a for r2/a2 � 1.

A.1 Length of a field line

The length of a field line is the integral of the differential distance dz. A simple formula for

the length of the field line is obtained by transforming the variable of integration

r
a
= sinh ε =⇒

√
1 +

r2

a2
= cosh ε (A.6)

and
dr
a
= cosh ε dε (A.7)

Making use of Equation (A.7) to express Equation (A.4) in an integral form, we obtain

z
a
=

∫
dr
a

√
1 +

r2

a2
=

∫
cosh2 ε dε =

1

2

∫
(1 + cosh 2ε) dε (A.8)

where we have used the identity sinh 2u = 2 sinh u cosh u. Integrating,

z
a
=

1

2
(ε + sinh ε cosh ε) + C (A.9)

where C is the integration constant. Since ε → 0 and z → 0 as r/a → 0, we can set the

constant of integration to 0 and define the length of the field line "from the center of the Sun"

(r = 0) as

z =
a
2
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⎤⎥⎥⎥⎥⎥⎦ (A.10)

From the identity ε = ln(cosh ε + sinh ε), we can also write
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)
= ln
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a
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Therefore the general expression for the distance along the field line from the center of the

Sun is given by

z(r) =
a
2
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⎤⎥⎥⎥⎥⎥⎦ (A.12)

Note that at small distances, r2/a2 � 1, z � r, whereas in the limit r2/a2 � 1, we have
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z � r2/2a. We noted above that for r2/a2 � 1, the scale distance of the field is given by

L � r/2; thus L � z/2. For large distances, however, L � r2/a which implies that L � 2z.

A.2 Particle transverse kinetic energy change

In collisionless plasmas, the first adiabatic invariant, Γ = p2
⊥/2B, remains constant in a slowly

varying magnetic field. Thus, if the particle speed remains constant, the quantity sin2 α/B is

also constant; here α is the pitch-angle of the particle, i.e. the angle between the particle

velocity and the magnetic field vector. Then, (1 − μ2)/B is the invariant of the motion, where

μ = cosα. Thus, if the particle is initially at position r = r0 with pitch-angle cosine μ = μ0, it

will reach position r with pitch-angle cosine

μ(r) = ±
√
1 − B(r)

B(r1)
(1 − μ2

1
). (A.13)

Taking Equation (A.2) and substituting, we obtain

μ(r) = ±
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣1 − (1 − μ20)

(
r20
r2

) √
1 + r2/a2√
1 + r2

0
/a2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (A.14)

The sign of μ(r) is the same as that of μ0, unless μ0 < 0 and the particle has mirrored at

rm < r.

A.3 Transit time along the field line

The differential distance along the particle’s full trajectory, ds, can be expressed as a function

of the differential distance along the field line by

ds =
1

μ
dz (A.15)

or as a function of the differential time ds = v dt. Taking Equation (A.4) and substituting in

Equation (A.15), we have

ds =
dz
μ
=

√
1 + r2/a2

μ
dr (A.16)

for a particular choice of sign of the pitch-angle cosine. Then, substituting Equation (A.14)

and integrating we obtain (E. Roelof; 2003, private communication)
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s(r, μ; r0, μ0)
a

=
1 + k2

2
sinh ι cosh ι + 2k

√
1 + k2 sinh ι +

ι

2
(1 + 3k2) (A.17)

where

2k =
x20(1 − μ20)√

1 + x2
0

where x0 =
r0
a

(A.18)

and

ι = ln

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
√
1 + r2/a2 − k +

√
r2/a2 − 2k

√
1 + r2/a2

√
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (A.19)

Thus, the trajectory path length Δs(r, μ; r0, μ0) between the initial position, r0, (where the

particle has pitch-angle cosine μ0) and r is given by

Δs(r, μ; r0, μ0) = |s(r, μ; r0, μ0) − s(r0, μ0; r0, μ0)| (A.20)

if r > rm, and the time elapsed in the propagation is

Δt(r, μ; r0, μ0) =
Δs(r, μ; r0, μ0)

v
(A.21)

A.4 Mirror point position

The mirror point position of a particle travelling along the magnetic field line with initial

position r0 and pitch-angle cosine μ0 (μ0 < 0), is given by (E. Roelof; 2003, private commu-

nication)

rm = a

√(
k ±
√
1 + k2

)2 − 1 (A.22)
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