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Introduction

Algebraic geometry is a mixture of the ideas of two
Mediterranean cultures. It is the superposition of the
Arab science of the lightning calculation of the solutions of
equations over the Greek art of position and shape. This
tapestry was originally woven on European soil and is still
being re�ned under the in�uence of international fashion.
Algebraic geometry studies the delicate balance between
the geometrically plausible and the algebraically possible.
Whenever one side of this mathematical teeter-totter
outweighs the other, one immediately loses interest and runs
o� in search of a more exciting amusement.

George R. Kempf. Algebraic Varieties.

London Mathematical Society Lecture Notes Series 172.

Abstract

Abelian varieties are some of the most studied higher dimensional
algebraic varieties. In the complex case, they are constructed by quo-
tienting Cg by an integral lattice, so they have a simple topological
structure. However, on one hand there are many open problems con-
cerning their geometry and, on the other hand, they are very useful to
study other algebraic varieties.

Historically, in the context of algebraic geometry, the �rst example
of higher dimensional abelian varieties are Jacobian varieties of non-

ix
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rational curves. Jacobian varieties have a natural principal polariza-
tion coming from the intersection product on the curve. Prym varieties
are another classical example of abelian varieties already studied by
Wirtinger in the late XIX century. They have also a natural principal
polarization so they are principally polarized abelian varieties (ppav for
short).

A principal polarization, i.e. a positive line bundle (modulo algebraic
equivalence) with one section, gives rise to a duality theory on abelian
varieties that resembles the classical duality theory on the projective
space. Given a subscheme Y on a ppav, its theta-dual T (Y ) is the set
parameterizing all the divisors representing the principal polarization
that contain the given subscheme. A priori, this is just a set, but we can
endow it with a natural scheme structure already introduced by Pareschi
and Popa in [PP6].

Jacobian and Prym varieties are constructed from curves and they
carry on some special subvarieties coming from the geometry of the
curve. For example in the Jacobian case, the symmetric product of the
curve C(d), for d less than the genus of the curve, maps birationally to a
subvarietyWd in the Jacobian JC. These are the simplest Brill-Noether
loci. The curve itself, is embedded in its Jacobian via the Abel-Jacobi
map (case d = 1). Prym varieties are constructed from étale double
covers of curves. When the base curve is non-hyperelliptic, the covering
curve is embedded in the Prym variety via the Abel-Prym map. One of
the goals of Chapter III is to compute the schematic theta-dual of these
special geometrical subvarieties.

In the Jacobian case we obtain that T (Wd) = Wg−d−1 up to transla-
tion, where g is the genus of the curve. This result was already obtained
by Pareschi and Popa in [PP6, �8.1] using cohomological classes to con-
trol the schematic structures. Our approach is based on the work of
Polishchuk [Po2] and avoids using cohomological classes, controlling di-
rectly the sheaves involved in the de�nition of the schematic theta-dual.

In the Prym case, we compute the schematic theta-dual of the Abel-
Prym curve. It turns out to be V 2, the second Prym-Brill-Noether locus
as de�ned in [W3, (1.2)]. This locus has codimension 3 inside the Prym
variety.

Why are these computations interesting? These special geometrical
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subvarieties inside the Jacobians and Prym varieties re�ect geometric
properties of the curves involved in their construction. Also, they have
a special behavior as subvarieties of a ppav hopefully allowing to detect
Jacobian and Prym varieties among all ppavs. To distinguish Jacobian
(or Prym) varieties among all ppavs is known as the �geometric� Schot-
tky problem. For example, the cohomological class of [Wg−d] = [Θ]d/d!
and a long standing conjecture states that the only ppavs (A,Θ) that
have a subvariety representing this minimal cohomological class for some
d > 1 are Jacobian varieties and one sporadic case, intermediate Jaco-
bians of cubic threefolds. This conjecture is only completely solved in
the case d = dimA− 1 (this is the well-known Matsusaka-Ran criterion
[Mat, Ra]). Pareschi and Popa have used the schematic theta-duality
and the sheaves involved in its de�nition to propose in [PP6] a symmet-
ric approach to this conjecture that allows to get some results for d = 2.

Observe that the case d = dimA − 1 is not only a Schottky type
result, but also a Torelli statement. That is, it allows us to recover the
curve from its Jacobian and the principal polarization. However, in the
Prym case, Donagi's construction [Do] shows that, even a Torelli result
is not possible for Prym varieties in full generality. Indeed, di�erent
(in the sense of moduli) étale double coverings of curves give rise to
isomorphic polarized Prym varieties. This is not the general behavior,
but recently Izadi and Lange have shown that there are examples for
arbitrarily high Cli�ord index [IL], disproving a conjecture by Donagi.
However, we think that to know the schematic theta-dual of the Abel-
Prym curve and its properties could be a good tool to understand the
geometry of the Prym variety.

Going back to the Matsusaka-Ran criterion, we have said that it
gives a Torelli statement. More precisely, it assures that an irreducible
curve generating the Jacobian variety, with degree g = dim JC is an
Abel-Jacobi curve, i.e. a translate of C embedded into its Jacobian.
Moreover, g is the minimal degree of a non-degenerate irreducible curve
in a ppav of dimension g. In the projective space, the non-degenerate
curves of minimal degree are the rational normal curves. A classical
result due to Castelnuovo, says that a �nite collection of points in the
projective space which is in linearly general position, but in special po-
sition with respect to quadrics, is contained in a unique rational normal
curve.

Pareschi and Popa [PP4] have discovered that the, a priori naïf, anal-
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ogy between projective spaces and ppavs (A,Θ), where the role played
by the hyperplanes in the projective space is played by divisors alge-
braically equivalent to Θ, goes further. In fact, they have seen that
divisors algebraically equivalent to 2Θ in a ppav and quadrics in the
projective space, play the same role with respect to curves of minimal
degree. The Castelnuovo result of Pareschi and Popa says that in a
ppav of dimension g, the existence of a collection of g+2 distinct points
in general position with respect to Θ, but special with respect to 2Θ,
implies that A is the Jacobian of a curve C. Moreover, the g + 2 points
have to be contained in an Abel-Jacobi curve. Thus, Abel-Jacobi curves
play the role of rational normal curves, and the analogue of Casteln-
uovo's result contains a Schottky statement. As a corollary, they also
get a Torelli statement, recovering the curve as the intersection of all
divisors algebraically equivalent to 2Θ that contain the given g+2 points.

The purpose of Chapter IV is to extend this Pareschi and Popa [PP4]
result to possibly non-reduced subschemes as Eisenbud and Harris did
in the projective case [EH]. We remark that, already the fact that a
�nite subscheme general with respect to Θ, but special with respect to
2Θ, is contained in a smooth curve (i.e. is curvilinear) is not obvious.

While in chapthers III and IV we have studied ppavs constructed
from curves and coverings of curves and how can they be distinguished
among all ppavs, in Chapter V we will move to the context of bira-
tional geometry and pluricanonical maps. There, the role played in our
methods by the Abel-Jacobi map and the Jacobian variety will be sub-
stituted by its higher dimensional analogue, i.e. the Albanese map and
the Albanese variety. In this context, the natural generalization of the
non-rational curves are the irregular varieties, that is, varieties whose
Albanese variety is not trivial. However, we must say that the Albanese
variety, constructed in the complex case from the Hodge structure, and
as the dual of the Picard variety in the general case, it is not principally
polarized in general. Moreover, the Albanese map is not necessarily an
embedding. Anyway, the study of the Albanese variety and the Albanese
map gives a lot of geometrical information on the original variety X. For
example, the dimension of a generic �ber of the Albanese map controls
the vanishing of the higher cohomologies of a general paracanonical line
bundle of X (see [GL1, GL2]). In particular, when the Albanese map
is generically �nite onto its image (we will say the X is of maximal Al-
banese dimension), the canonical Euler characteristic of X is positive or
zero.
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In the study of complex projective algebraic varieties, the natural
maps that are provided by the di�erential forms de�ned in the variety,
have a special importance. Observe that, the Albanese map can be con-
structed from the di�erential 1-forms in our original variety and maps
X to a complex torus. Whereas, the di�erential n-forms (where n is
the dimension of X) produce a map to a projective space, known as the
canonical map. The multiples of the canonical linear series produce in
this way the pluricanonical maps. So, these are the classical and canon-
ical ways to represent general algebraic varieties into better behaved
algebraic varieties.

An interesting problem is to study how the properties of the Albanese
map are related with the properties of the pluricanonical maps. Since
both are constructed from di�erential forms in our original variety X,
there is certainly a relation between them, eventhough its geometrical
consequences are not obvious.

Varieties of general type are those whose m-th pluricanonical map,
for m big enough, induces a birational equivalence between X and its
image (here m denotes the multiple of the canonical linear series). In
this case, is common to say abusively that the m-th pluricanonical map
is birational. Almost by de�nition, pluricanonical maps are an essen-
tial tool to study varieties of general type. There are two related main
problems on this subject.

One problem is to give a bound on m depending only on the di-
mension of X for which the m-th pluricanonical map is birational. The
existence of this bound in any dimension has been proved by Hacon-
McKernan [HM] and independently by Takayama [Ta] using the previ-
ous work of Kawamata, Siu and Tsuji in the ambient of the Minimal
Model Program. Already in [HM], they pose the problem to �nd ex-
plicit (hopefully small) values of this minimal m for each dimension. In
the case of surfaces, this had already been solved sharply by Bombieri
[Bo] showing that the 5-th pluricanonical map is enough to ensure the
birationality. In the case of threefolds, Chen and Chen [CC] have proved
that m = 73 is enough.

The second problem is to classify or, at least, give geometrical or nu-
merical restrictions for varieties whose m-th pluricanonical map is non-
birational for low m. In the case of surfaces, this problem was also stud-
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ied by Bombieri in [Bo], where he gave sharp numerical conditions for
the birationality of the tetracanonical and tricanonical map. The numer-
ical classi�cation started by Bombieri of surfaces whose bicanonical map
is non-birational, was not sharp. Since then, lots of e�orts have been
devoted to classify completely the minimal surfaces with non-birational
bicanonical map (see for example [CCM, CFM, CM1, CM2, Xi]).

The study of the birationality of them-th pluricanonical map for low
m, in any dimension but restricted to irregular varieties was initiated
by Chen and Hacon. For example, they show in [CH1] that, if X is a
variety of general type and whose Albanese map is generically �nite on
its image, then χ(ωX) > 0 implies that the tricanonical map is bira-
tional. A similar result was obtained later by Pareschi and Popa. They
introduced a new invariant for irregular varieties, the generic vanishing
index gv(ωX), and they proved that irregular varieties with gv(ωX) > 1
have very ample tricanonical map away from the exceptional locus of
the Albanese map (see [PP3]).

The main purpose of the second part of this Thesis is to study the bi-
canonical map of irregular varieties. First, let us recall what is known in
the surface case. Assume that S is an irregular surface whose bicanonical
map is non-birational. It is common to say that S presents the stan-
dard case if it admits a �bration by curves of genus 2. Indeed, suppose
that S admits a �bration by curves of genus 2. Then, the bicanonical
system of the surface restricts to a subsystem of the bicanonical map
of the general �ber. Since the bicanonical map of a curve of genus 2 is
non-birational, the bicanonical map of S cannot certainly be birational.
Bombieri already showed that if S does not present the standard case,
then the autointersection of the canonical divisor is small, i.e. K2

S 6 10.
Hence, surfaces with non-birational bicanonical map, but not present-
ing the standard case, are contained in a �nite number of components
of the moduli space of surfaces of general type. There are two examples
of such surfaces:

(a) symmetric products of a curve of genus 3 (classical);
(b) double covers of principally polarized abelian surface branched at

a divisor D ∈ |2Θ| (as it was observed by Catanese).

Suppose that S has non-birational bicanonical map and does not present
the standard case. Then, in a sequel of articles (see mainly [CCM, CM1,
CM2]), it is shown that the Euler characteristic of S is χ(ωS) = 1. More-
over, if the irregularity q(S) > 3, then S has to be birationally equivalent
to one of the surfaces in case (a). If the irregularity q(S) = 2, then S
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must be birationally equivalent to one of the surfaces in case (b).

Observe that the symmetric product of a curve of genus 3 can be seen
as the theta-divisor of the curve of genus 3. In this sense, examples (a)
and (b) generalize to arbitrary dimension, giving the following irregular
varieties whose bicanonical map is non-birational:

(a') theta-divisors of an indecomposable ppav, and
(b') double covers of a ppav (A,Θ) branched along a reduced divisor of

the linear series |2Θ|.

The �rst part of Chapter V will be devoted to give a numerical
criterion to ensure the birationality of the bicanonical map of irreg-
ular varieties. Indeed, we get an analogue result of that of Pareschi
and Popa for the tricanonical map, that is, we see that irregular va-
rieties with gv(ωX) > 2 have birational bicanonical map. Thus, if X
is an irregular variety whose bicanonical map is non-birational, then
gv(ωX) 6 1. Roughly speaking, the standard case, (a') and (b'), can be
seen as boundary (gv(ωX) = 1) or sub-boundary (gv(ωX) = 0) exam-
ples of this criterion.

As we have already pointed out, in the case of surfaces, examples (a)
and (b) are the only ones not presenting the standard case and q(S) > 2.
Moreover, the symmetric product S of a curve of genus 3 has gv(ωS) = 1
and the double cover of principally polarized abelian surface branched
along a reduced divisor in |2Θ| has gv(ωS) = 0. In the second part of
Chapter V, we will try to see whether this behavior extend to higher
dimensions. More precisely, we will try to see whether examples (a')
and (b') are the only cases without irregular �brations, whose bicanon-
ical map is non-birational and q(X) > dimX. To make precise the
assumption that an irregular variety has no irregular �brations, we use
the notion of primitive varieties introduced by Catanese [Ca]. In fact,
we show that primitive varieties admit only very special �brations to
other irregular varieties.

On one hand, we prove that ifX is a primitive variety whose bicanon-
ical map is non-birational and q(X) > dimX, then X is birationally
equivalent to a theta-divisor of an indecomposable ppav (see [BLNP]).
This characterize the primitive boundary cases of the numerical criterion
for the bicanonical map, that is, primitive varieties with non-birational
bicanonical map and gv(ωX) = 1.
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On the other hand, we start the study of primitive varieties of gen-
eral type whose bicanonical map is non-birational and q(X) = dimX.
Under additional hypotheses we show that the only possibility is that
X is birationally equivalent to a double cover of a ppav (A,Θ) branched
along a reduced divisor of |2Θ|. This corresponds to primitive varieties
of general type with non-birational bicanonical map and gv(ωX) = 0,
which is the sub-boundary case with respect to the general criterion.

Thus, eventough Albanese varieties are not necessarily principally
polarized, we see that the �atomic� cases of varieties whose bicanon-
ical map is non-birational are constructed from principally polarized
Albanese varieties.

Finally, we would like to emphasize that the techniques used through-
out this Thesis are based on the Fourier-Mukai transform.
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Summary

We want to give a concise, but precise overview of the Thesis. So, in what follows,
the highlighted propositions and theorems are the main results of this Thesis. Their
numbering corresponds to the order in which they will appear in the sequel (chapter
in roman, section and numbering). To state them properly and make this short
summary self-contained, let us introduce the Fourier-Mukai transform. We would
also like to take this opportunity to show the main technical tools that will be used
in this Thesis.

The Fourier-Mukai transform

The Fourier-Mukai transform appears in the early 80's in the work of Mukai [M2]
to study the moduli of deformations of Picard sheaves. It is constructed using the
Poincaré line bundle in A × Pic0A and the projections p : A × Pic0A → A and
q : A× Pic0A→ Pic0A. We use the following notation,

RΦP : Db(A)→ Db(Pic0A), where RΦP( · ) = Rq∗(p∗( · )⊗P),

and Db(X) is the bounded derived category of coherent sheaves on X. Mukai
proves in [M2, Thm. 2.2] that it gives an equivalence of categories between Db(A)
and Db(Pic0A), although A and Pic0A are, in general, non-isomorphic. The proof
of this equivalence is based on the properties of the Poincaré line bundle P.

More generally, given two varieties X and Y , we can substitute the Poincaré line
bundle by an object in the derived category of the product X × Y , and we can
consider the generalized Fourier-Mukai transform between the derived categories of
X and Y . In particular, given a variety that has a morphism to an abelian variety a :
X → A, Pareschi and Popa studied in a sequence of articles (see [PP8, PP3, PP7])
the generalized Fourier-Mukai transform from the derived category of X to the
derived category of Pic0A, i.e.

RΦPa : Db(X)→ Db(Pic0A), where RΦPa( · ) = Rq∗(p∗( · )⊗Pa)

and Pa = (a× id)∗P. When X is an abelian variety we recover the original Fourier-
Mukai transform. Pareschi and Popa have also introduced the following invariant

De�nition I.1.9 ([PP7, Def. 3.1]). Given a coherent sheaf F on X, the generic
vanishing index of F (with respect to a : X → A) is

gva(F) := min
i>0

{
codimPic0 A(suppRiΦPa F)− i

}
.

When a is the Albanese map, we omit it in the notation.
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The name of this invariant comes from the Generic Vanishing Theorem of Green
and Lazarsfeld [GL1, Thm. 1] that shows that,

if X is a compact, connected, Kähler manifold and it admits a map
a :X→A to a complex torus A, whose generic �ber has dimension k,

}
then gva(ωX)>−k.

Pareschi and Popa have shown, using commutative algebra, that the generic van-
ishing index of F controls some (local) properties of the Fourier-Mukai transform of
the dual of F , broadly extending a Green-Lazarsfeld's conjecture for the canonical
sheaf [GL2, Prob. 6.2].

- On one hand, they have used the Auslander-Buchsbaum Theorem [Ma, Thm.
19.1] to show that given a coherent sheaf F on X we have the following
equivalence (see [PP8, Thm. A])

gva(F) > 0 if, and only if, RiΦPa R∆F = 0, for all i 6= dimX,

where R∆F = RHom(F , ωX) is the Grothendieck dual of F .

- On the other hand, based on the Evans-Gri�th Syzygy Theorem [EG, Cor.
1.7], they have found a dictionary between the non-negative values of the
generic vanishing index and the local properties of the Fourier-Mukai trans-
form of the dual sheaf. More precisely, for every m > 0

gva(F) > m if, and only if, RdΦPa R∆F is a m-th syzygy sheaf,

where d = dimX (see [PP7, Cor. 3.2]).

These two theorems are either essential for the proofs of the main results of this
Thesis or as a motivation for some calculations. Therefore, they will often be men-
tioned. However, although they provide a very interesting duality dictionary, they
have a mild geometrical content. As Pareschi and Popa have already done in their
articles, we will use geometric inputs to obtain geometrical results. Roughly speak-
ing, in the context of abelian varieties we will use the original Mukai Equivalence
Theorem [M2, Thm 2.2] and, in the context of irregular varieties we will use the
Generic Vanishing Theorems of Green and Lazarsfeld [GL1, GL2].

Principally polarized abelian varieties

Going back to the original setting of the Fourier-Mukai transform, when (A,Θ)
is a principally polarized abelian variety (ppav), the polarization provides an iso-
morphism φΘ between the abelian variety and its dual. Then, the Fourier-Mukai
transform can be seen as an autoequivalence,

RS : Db(A)→ Db(A), where RS = φ∗Θ ◦ RΦP .
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A �rst step to understand the Fourier-Mukai transform of a sheaf F is to study the
set-theoretical support RiS F . By the Base Change Theorem, it is contained in the
sets

V i(F) =
{
a ∈ A hi(F ⊗ φΘ(a)) > 0

}
known as the cohomological support loci of F , i.e. suppRiS F ⊆ V i(F).

Pareschi and Popa have shown in [PP6] that, if an arbitrary curve C on a ppav
(A,Θ) ful�ls the condition gv(IC/A(Θ)) > 0, then it must be an Abel-Jacobi curve
inside its Jacobian. Thus, they give a Torelli and a �geometric� Schottky result
based on the generic vanishing index of the ideal sheaf of the curve twisted by
Θ. In the Prym case, given an étale double cover π : C̃ → C, when the curve
C is non-hyperelliptic, we also have an Abel-Prym embedding C̃ ↪→ P . However,
Donagi's construction shows that in some cases is not possible to recover C̃ from
P and its principal polarization. In order to study what happens in the Prym case
and in collaboration with Sebastian Casalaina-Martin and Filippo Viviani, we have
computed in [CLV] the cohomological support loci for ideal sheaf of an Abel-Prym
curve twisted by Ξ and by 2Ξ.

Proposition III.2.7 and III.2.12 ([CLV, Thm. 3.1 and 4.2]). Let (P,Ξ) be the
Prym variety associated to the étale double cover π : C̃ → C, where C is non-
hyperelliptic. Consider C̃ ↪→ P the Abel-Prym embedding. Then,

(a) V 1(I eC(Ξ)) = V 0(I eC(Ξ)) with dimV 0(I eC(Ξ)) = dimP − 3.
(b) V 2(I eC(Ξ)) = P−.

Hence, gv(I eC(Ξ)) = −2.

(c) V 0(I eC(2Ξ)) = P if g > 4 and V 0(I eC(2Ξ)) is a point q0 if g = 3.
(d) V 1(I eC(2Ξ)) = V 2(I eC(2Ξ)) = {q0}.

Hence, gv(I eC(2Ξ)) = dimP − 2.

To prove (d) we have used an argument of Beauville as stated in [IvS, Lemma 2.4].

Theta-duality

In the previous proposition, the set V 0(I eC(Ξ)) has a special meaning. More gen-
erally, given a subvariety Y ⊂ A of a ppav (A,Θ), V 0(IY (Θ)) can be seen as the
divisors algebraically equivalent to Θ that contain Y . This is provided by the iso-
morphism given by the principal polarization. Thus, we have in (A,Θ) a duality
theory similar to the duality theory of the projective space, where divisors alge-
braically equivalent to Θ play the role of hyperplanes in the projective space. The
set V 0(IY (Θ)) is known as the set-theoretical theta-dual of Y . This classical point
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of view of the �theta-duality� mainly takes into account the set-theoretical struc-
ture of the theta-dual and the original variety Y . Our point of view is to consider
the following natural scheme-theoretic structure on the theta-dual provided by the
Fourier-Mukai transform.

De�nition II.2.1 ([PP6, �4]). Let Y ⊂ A be an arbitrary subscheme. The
schematic theta-dual of Y is,

T (Y ) = supp ((−1A)∗RgS(R∆(IY (Θ)))) ,

where we denote by supp the Fitting support (e.g. [Ei]).

This de�nition was proposed by Pareschi and Popa in [PP6, �4] and will be one of
the leitmotif of Chapters III and IV.

In Chapter III we compute the theta-dual of the simplest Brill-Nother lociWd ⊂ JC
(Proposition III.1.9)

T (Wd) = Wg−d−1 up to translation in JC.

This result was already obtained by Pareschi and Popa in [PP6, �8.1] using the
cohomological classes of the Brill-Nother loci to control the schematic structure of
T (Wd). Our approach is based on the work of Polishchuk [Po2] and we only work
with the ideal sheaves and their Fourier-Mukai transform.

In the case of Prym varieties, we compute the theta-dual of the Abel-Prym curve.

Theorem III.2.9. Let (P,Ξ) be the Prym variety associated to the étale double
cover π : C̃ → C, where C is non-hyperelliptic. Consider C̃ ↪→ P the Abel-Prym
embedding. Then, we have the schematic equality (up to translation in P )

T (C̃) = V 2,

where V 2 is the second Prym-Brill-Noether locus as de�ned in [W3, (1.2)].

A geometric Schottky problem

As we pointed out in any g-dimensional ppav (A,Θ) we have a duality theory as
in the projective space. Pareschi and Popa discovered that the analogy between
divisors algebraically equivalent to Θ and hyperplanes extends also to divisors al-
gebraically equivalent to 2Θ and quadrics in the projective space in the following
sense. They de�ne in [PP4] that a collection of g + 2 distinct points are in theta-
general position, if there exist a theta-translate containing g of them, and avoiding
the remaining ones. Then, they show that, if g + 2 distinct points in theta-general
position on A impose less that g + 2 conditions on general 2Θ-translates, then A is
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the Jacobian of a curve C, and the g+2 points are contained in an Abel-Jacobi curve.

This resembles the classical Castelnuovo result in projective geometry, that says
that a �nite collection of points in Pr which is in linearly general position, but in
special position with respect to quadrics, is contained in a unique rational curve.
This classical result was extended by Eisenbud and Harris in [EH] to possibly non-
reduced subschemes.

In the same spirit as Eisenbud and Harris, in collaboration with M. Gulbrand-
sen [GL], we extended this Pareschi and Popa result to possibly non-reduced sub-
schemes. We say that a �nite subscheme Γ is in theta-general position if, for every
pair Γ′′ ⊂ Γ′ of subschemes of Γ satisfying deg Γ′ − 1 = deg Γ′′ ≤ g, there exists
a theta-translate containing Γ′′ but not Γ′. This is an analogous de�nition for lin-
early general position in the projective space. Then, the main result in [GL] is the
following theorem.

Theorem IV.6.1. Let Γ ⊂ A be a theta-general �nite subscheme of length g + 2,
imposing less than g + 2 conditions on general 2Θ-translates. Then the following
holds:

(a) Schottky: The principally polarized abelian variety (A,Θ) is isomorphic to a
Jacobian J(C) of a curve C, with its canonical polarization.

(b) Castelnuovo: The subscheme Γ is contained in an Abel-Jacobi curve, i.e. the
image of an Abel-Jacobi map C → J(C).

(c) Torelli: The curve C equals the scheme theoretic intersection of all 2Θ-
translates containing Γ.

We remark that, already the fact that a subscheme Γ as in the theorem is contained
in a non-singular curve (i.e. Γ is curvilinear) is not obvious. On the other hand,
the converse to the theorem is easier, since a �nite degree g + 2 subscheme Γ of a
curve C imposes less than g+2 conditions on general 2Θ-translates in the Jacobian.

The Schottky part of the theorem depends on the characterization of Jacobians by
(possibly degenerated) trisecants to the Kummer variety (see [W2]). Furthermore,
our approach di�ers from that of Pareschi and Popa by our systematic use of the
Fourier-Mukai transform.

Irregular varieties

We say that a variety X is of general type if for some m > 0 the rational map
associated to the linear system |mKX |

ϕm = ϕ|mKX | : X 99K PN = |mKX |∨
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gives a birational equivalence between X and its image through ϕm. In this sit-
uation, we will abusively say that ϕm is birational. The maps ϕm are called the
pluricanonical maps of X and they are essential for the study of general type vari-
eties, almost by de�nition. We will focus in the problem of classifying or, at least,
giving numerical restrictions for varieties whose m-th pluricanonical map is non-
birational for low m.

In the case of surfaces, this problem was almost completely solved by Bombieri in
[Bo]. He proves that, if S is minimal surface of general type and pg(S) > 1,

- for m > 5, ϕm is birational;

- if ϕ4 is non-birational, then K2
S = 1 and pg(S) = 2;

- if ϕ3 is non-birational, then either K2
S = 2 and pg(S) = 3 or K2

S = 1 and
pg(S) = 2.

For ϕ2, the numerical classi�cation started by Bombieri of surfaces whose bicanoni-
cal map is non-birational, was not sharp. Since then, lots of e�orts due to Catanese,
Ciliberto, Francia, Mendes Lopes, Pardini, Xiao Gang and others, have been de-
voted to classify completely the minimal surfaces with non-birational bicanonical
map.

Suppose that S is a minimal surface of general type whose bicanonical map is non-
birational. The paradigmatic case (known as the standard case) is when S admits
a �bration to a curve such that the general �ber is a curve of genus 2. Since the
bicanonical system of S restricts to the bicanonical system of the general �ber and
ϕ|2KC | is non-birational for a curve of genus 2, then ϕ|2KS | cannot be birational.
This kind of �brations were studied carefully by Xiao Gang in [Xi]. When we
suppose that S does not present the standard case, we have two di�erent behaviors
depending on q(S) = h1(S,OS),

(a) if q(S) = 0 and pg > 4, Du Val had already proposed a list in [Du] that
has been checked with modern techniques by C. Ciliberto, P. Francia and
M. Mendes Lopes in [CFM];

(b) if q(S) > 0, we have two subcases,

(b1) if pg(S) > 3, then S is birationally equivalent to the symmetric product
of a curve of genus 3 [CCM, Thm A].

(b2) if pg(S) = 2, then S is birationally equivalent to a double cover of a
principally polarized abelian surface (A,Θ) branched along a smooth
divisor in |2Θ| (see [CM2, Thm 1.1]).

The modern techniques to attack this problem are Reider's method, Bombieri-
Francia's restriction method and various techniques involving the Albanese map
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and continuous systems of curves on a surface.

Going back to arbitrary dimension, we will extend, in some sense, the techniques
involving the Albanese map and continuous systems of canonical divisors to higher
dimensional varieties. Then, it is natural to restrict ourselves to irregular varieties,
i.e. varieties with q(X) = h1(X,OX) > 0. For these varieties, the Albanese variety
is non-trivial (it has dimension q(X)) and the generalized Fourier-Mukai transform
RΦPa plays an important role.

Let X be a smooth projective complex variety with gv(ωX) > 1. Pareschi and Popa
have shown1 in [PP3, Thm. 6.1, Rem. 6.5] that ω3

X⊗α is very ample away from the
exceptional locus of the Albanese map for every α ∈ Pic0X. This result is sharp, in
the sense that there are varieties of general type and maximal Albanese dimension,
such that gv(ωX) > 1 and whose bicanonical map is not birational. Let us show
the three paradigmatic constructions.

The �rst one is a generalization to higher dimensional varieties of case (b1) for
surfaces.

Example A. Let (A,Θ) be an indecomposable ppav, and let X → Θ be a desingu-
larization of Θ. The bicanonical map of X has degree 2 and it is not birational.
Observe that, χ(ωX) = gv(ωX) = 1 and X is clearly of maximal Albanese dimension
and general type.

The second one is a generalization to higher dimensional varieties of case (b2) for
surfaces .

Example B. Let (A,Θ) be an indecomposable ppav. Without loss of generality, we
can assume as above that Θ is symmetric, i.e. Θ = (−1)∗Θ. Consider a covering
h : X̃ → A (�nite and surjective morphism) of A branched along a divisor in |2Θ|.
The bicanonical map of X has degree 2 and it is not birational. Observe that,
χ(ωX) = 1 and gv(ωX) = 0

The third example shows how can we construct other examples from the previous
ones and it is a generalization to higher dimensional varieties of the standard case
for surfaces.

Example C. Let f : X → Y be a �bration, i.e. a surjective morphism with con-
nected �bers, and suppose that the general �ber F has non-birational bicanonical
map. Since the bicanonical map of X restricts to a subsystem of the bicanonical

1As we have already mentioned a similar result was obtained previously by Chen and Hacon in
[CH1, Thm. 4.4], saying that if X is a variety of general type and maximal Albanese dimension,
then χ(ωX) > 0 implies that the rational map associated to ω3

X is birational.
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map of F , the bicanonical map of X cannot be birational.
Therefore, if a variety X has a �bration whose general �ber has non-birational bi-
canonical map, then X has non-birational bicanonical map.

In the case of surfaces, the previous outlined results (see [CM1, CFM, CM2]) show
that when S has non-birational bicanonical map and q(S) > 2, it falls in one of the
previous Examples A, B or C.

Thus, the result of Pareschi and Popa regarding the tricanonical map, the behavior
of the bicanonical map in the case of surfaces, and the three shown examples justify
our aim to,

- give an analogous numerical restriction to that of Pareschi and Popa for va-
rieties such that the rational map associated to ω2

X ⊗ α is not birational for
some α ∈ Pic0X;

- classify varieties (of maximal Albanese dimension) such that the bicanonical
is non-birational.

For the �rst question we obtain the following answer.

Theorem V.5.1. Let X be a smooth projective complex variety. If gv(ωX) > 2,
then the rational map associated to ω2

X ⊗ α is birational onto its image for every
α ∈ Pic0X.

This numerical criterion, based on the generic vanishing index, implies also the
following Corollary

Corollary V.5.2. Let X be a smooth projective complex variety of maximal Al-
banese dimension such that the bicanonical map is not birational. Then 0 6 gv(ωX) 6
1. Moreover, it admits a �bration onto a normal projective variety Y with 0 6
dimY < dimX, any smooth model Ỹ of Y is of maximal Albanese dimension, and

1. either, the general �bers map onto divisors in a �xed abelian variety
2. or the general �bers map onto a �xed abelian variety.

In any case,
q(X)− dimX 6 q(Ỹ )− dimY + gv(ωX).

Observe that we are allowing dimY = 0, so we can distinguish between to cases:

(i) When dimY > 0 we have an actual �bration. For surfaces, this corresponds
to the standard case and the general �bers are curves of genus 2 that

1. either they are embedded into a �xed abelian surface via the Abel-Jacobi
map,

2. or they are coverings branched in two points of a �xed elliptic curve.
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In arbitrary dimension, it is expected that, when dimY > 0, the bicanonical
map of the general �ber is non-birational.

(ii) When dimY = 0, we have that

1. either X maps to a divisor in its Albanese variety,
2. or X maps onto its Albanese variety.

To show that this situation is analogous to what happens in dimension 2,
i.e. that Examples A and B provide the only possible constructions, it remains
to show the following properties.

In case 1, the Albanese map is birational (it follows easily that AlbX is a
ppav and X is birationally equivalent to a theta-divisor.)

In case 2, the Albanese map is generically (2 : 1), the AlbX is a ppav and
the corresponding covering is branched along a reduced divisor in |2Θ|.

Before focussing in case (ii) to see the progresses made in this Thesis, let us outline
the main ingredients on the proof of the previous theorem.

The proof of Theorem V.5.1 is based in the following birationality criterion proved
in collaboration with M.A. Barja, J.C. Naranjo and G. Pareschi in [BLNP].

Theorem V.4.9 ([BLNP, Thm. 4.13]). Let X be an irregular variety with a map
to an abelian variety a : X → A, such that gva(ωX) > 1. Let U0 be the complement
of V 1

a (ωX) in Pic0A and

Ba(p) = {α ∈ U0 p ∈ Bs(ωX ⊗ a∗α)} .

Suppose that for general p in X, codimPic0 A Ba(p) > 2, then ω2
X ⊗a∗α is birational

for all α ∈ Pic0A. In particular, ω2
X is birational.

The proof of this theorem is based on the generic vanishing theorems of Green
and Lazarsfeld ([GL1, GL2]), some results of Kollár concerning the higher direct
images of the canonical sheaf ([K1, K2]) and the continuously globally generation
introduced by Pareschi and Popa ([PP1, PP3]). We also use broadly the dictionary
established by Pareschi and Popa between the non-negative values of the generic
vanishing properties of the canonical sheaf and the properties of the generalized
Fourier-Mukai transform of the structural sheaf. Moreover a new geometrical tool
comes in to substitute Mukai Equivalence Theorem.

Proposition V.3.2 ([BLNP, Prop. 6.1]). Let X be a smooth variety of dimension
d, equipped with a non-trivial morphism to an abelian variety a : X → A (over any
algebraically closed �eld k) such that the map a∗ : Pic0A→ Pic0X is an embedding.
Then

RdΦPa(ωX) ∼= k(0̂),



xxvi

where Pa = (a× id)∗P and P is the Poincaré line bundle on A× Pic0A.

When X itself is an abelian variety (or a complex torus), we recover a well-known
result proved by Mumford in [Mu2, pg. 128] that is crucial in the proof of the
Mukai Equivalence Theorem. As a �rst consequence we obtain a characterization
of abelian varieties (see Propostion V.3.9 or [BLNP, Prop. 4.10]).

Primitive varieties

We would like to classify varieties of maximal Albanese dimension and non-birational
bicanonical map that do not admit �irregular �brations� (so they must fall in case
(ii) in the previous discussion). First, let us formalize which kind of varieties are
we talking about.

De�nition V.6.1 ([Ca, Def. 1.24]). An irregular Kähler manifold such that
dimV i(ωX) = 0 for all i > 0 is called primitive.

As we have already claimed, the �brations to maximal Albanese dimension varieties
that primitive varieties admit are very special.

Proposition V.6.3. Let f : X → Y be a �bration from a primitive variety X to a
variety Y whose Albanese map is generically �nite onto its image. Then

(a) Y is birational to an abelian variety.
(b) Let F be a general smooth �ber and ρ : Pic0X → Pic0 F the restriction map.

Then
ker ρ = f∗ Pic0 Y.

When X is a primitive variety gv(ωX) = q(X)−dimX. If X is of maximal Albanese
dimension gv(ωX) > 0 by Green-Lazarsfeld's Theorem [GL1, Thm. 1]. Recall that,
as in the case of surfaces, we expect that primitive varieties of general type with
maximal Albanese dimension and non-birational bicanonical map have to be

- either birationally equivalent to a theta-divisor as in Example A (that has
gv(ωX) = 1)

- or birationally equivalent to a double cover of a ppav branched along a reduced
divisor in |2Θ| like in Example B (that has gv(ωX) = 0).

Hence it is natural to split the study in two cases, when q(X) > dimX we expect
Example A and when q(X) = dimX we expect Example B.

Primitive varieties with q(X) > dimX. In this case, in collaboration with
M.A. Barja, J.C. Naranjo and G. Pareschi, we achieve the full classi�cation of
primitive varieties with q(X) > dimX and non-birational bicanonical map. Thus,
we get the expected result:
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Theorem V.6.7 ([BLNP, Thm. A]). Let X be primitive smooth complex projective
variety such that dimX < q(X). The following are equivalent

(a) the bicanonical map of X is non-birational,

(b) X is birationally equivalent to a theta-divisor of an indecomposable principally
polarized abelian variety.

Recall that, by our numerical criterion (see Theorem V.5.1) we already know that
gv(ωX) = 1 and X maps to a divisor in its Albanese variety. The key point in prov-
ing the previous result is to see that the classi�cation of primitive varieties with
gv(ωX) = 1 and non-birational bicanonical map is equivalent to the classi�cation
of primitive varieties with χ(ωX) = gv(ωX) = 1 (these are the boundary exam-
ples with χ(ωX) = 1 of the higher-dimensional Castelnuovo-de Franchis inequality
proven by Pareschi and Popa in [PP7, Cor. 4.1]).

Then, we conclude the proof of the previous result by extending a cohomological
characterization of theta-divisors due to Hacon and Pardini [HP1, Prop. 4.2] that
has been proved independently, with a di�erent proof, by Lazarsfeld and Popa [LP,
Prop. 3.13].

Proposition V.6.4 ([BLNP, Prop. 3.1]). Let X be a d-dimensional compact Kähler
manifold such that:

(a) X is primitive;

(b) d < q = q(X);
(c) χ(ωX) = 1.

Then AlbX is a principally polarized abelian variety and the Albanese map alb: X →
AlbX maps X birationally onto a theta-divisor.

Primitive varieties with q(X) = dimX. It is remarkable that in this situation,
even in the case of surfaces, the equivalence between the classi�cation of primitive
varieties of general type with χ(ωX) = 1 and primitive varieties of general type
with non-birational bicanonical map, is no longer true. Indeed, there are primitive
varieties with χ(ωX) = 1, dimX = q(X) and birational bicanonical map. The �rst
known example of this fact, was pointed out by Chen and Hacon in [CH2], where
they construct a minimal surface S with χ(ωS) = 1, q(S) = 2 and K2

S = 5. This
surface is birational to a triple cover of an abelian surface A and its bicanonical
map is birational.

This example shows that the problem of classifying primitive varieties of general
type with non-birational bicanonical map and q(X) = dimX is more subtle.
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We concentrate and work out the case of Galois abelian covers. That is, when X of
maximal Albanese dimension and q(X) = dimX, the Albanese map is generically
�nite and surjective. We suppose that Alb(X) is simple, that the Stein factorization
of the Albanese map factors through a Galois abelian cover and it has rational
singularities. In this situation, we show that the unique case where the bicanonical
map of X is non-birational, occurs when X is birationally equivalent to a double
cover over a ppav branched along a reduced divisor in the linear series |2Θ|.

Theorem V.6.13. Let X be a primitive smooth complex variety of general type,
q(X) = dimX and suppose AlbX is simple. Then, the following are equivalent,

(a) the bicanonical map of X is non-birational and the �nite part of the Stein
factorization of alb: X → AlbX is an abelian Galois cover with rational
singularities,

(b) X is birationally equivalent to a double cover of an indecomposable principally
polarized abelian variety (A,Θ), branched along a reduced divisor in |2Θ|.

In fact, almost the same argument that we use in the previous theorem, proves the
the following Proposition.

Proposition V.6.16. Let X be a primitive smooth complex variety of general type
and q(X) = dimX. Then, the following are equivalent,

(a) the �nite part of the Stein factorization of alb: X → AlbX is an abelian
Galois cover, has rational singularities and χ(ωX) = 1,

(b) X is birationally equivalent to a double cover of an indecomposable principally
polarized abelian variety (A,Θ), branched along a reduced divisor in |2Θ|.

These two results, show that we have to �nd the di�culties and interesting examples
like Chen-Hacon's surface in the non-abelian case. However, we expect that the key
point to study the primitive varieties of general type and q(X) = dimX with non-
birational bicanonical map, is the type of singularities that are allowed in the Stein
factorization. So, we end with the following conjecture,

Conjecture V.6.17. Let X be a primitive smooth complex variety of general type
and q(X) = dimX. Then, the following are equivalent,

(a) the bicanonical map of X is non-birational,
(b) the �nite part of the Stein factorization of alb: X → AlbX has canonical

singularities and χ(ωX) = 1,
(c) X is birationally equivalent to a double cover of an indecomposable principally

polarized abelian variety (A,Θ), branched along a reduced divisor in |2Θ|.



Chapter

I

Fourier-Mukai

Preliminaries

Introduction

The Fourier-Mukai transform was introduced by Mukai in his seminal paper [M2] to
study the moduli of deformations of Picard sheaves. In general, an abelian variety
and its dual are non-isomorphic. However, he introduced an equivalence of cate-
gories between their derived categories. This equivalence is based on the Poincaré
line bundle and its properties (see Theorem I.2.1).

More generally, given two varieties X and Y , if we substitute the Poincaré line
bundle by an object in the derived category of the product X × Y , we can consider
the generalized Fourier-Mukai transform between the derived categories of X and
Y . In this sense, the Fourier-Mukai is the derived version of the notion of a corre-
spondence, which has been studied for all kinds of cohomology theories (e.g. Chow
groups, singular cohomology, etc.) for many decades.

In a sequence of articles (see [PP8, PP3, PP7]), Pareschi and Popa studied the gen-
eralized Fourier-Mukai transform from the derived category of an irregular variety
and the derived category of its Picard variety (see �1 for a more precise de�nition).
In particular, when X is an abelian variety they have the Mukai's original trans-
form. Using results of commutative algebra they have given an interpretation of
some (local) properties of the Fourier-Mukai transform in terms of the generic van-
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ishing theorems introduced by Green and Lazarsfeld in [GL1, GL2]. On one hand,
they have used the Auslander-Buchsbaum Theorem to show that we have an equiv-
alence between the fact that a sheaf has non-negative generic vanishing index (see
De�nition I.1.9) and the fact that the Fourier-Mukai transform of its Grothendieck
dual is a sheaf (see Theorem I.1.10). One implication was a conjecture of Green
and Lazarsfeld [GL2, Prob. 6.2] that was already proven by Hacon [Ha, Thm. 1.5].
On the other hand they have found a dictionary between the non-negative values of
the generic vanishing index and the local properties of the Fourier-Mukai transform
of the dual sheaf in the sense of Grothendieck (see Theorem I.1.16), based on the
Evans-Gri�th Syzygy Theorem. These two theorems are essential for the main re-
sults of the subsequent chapters and will be referred frequently. However, although
they provide a dictionary between properties, they have a mild geometrical content.
As Pareschi and Popa have already done in their articles, we will use two geometric
inputs to obtain geometrical results. On one hand, the original Mukai Equivalence
Theorem I.2.1 in abelian varieties (that we recall in �2). And, on the other hand,
the Generic Vanishing Theorems of Green and Lazarsfeld that will be recalled and
used in Chapter V.

This chapter is of expository nature, so almost none of the results are proved and
they are only stated for easy reference in the subsequent chapters. The exposition is
in�uenced by the point of view of Giuseppe Pareschi and his work in collaboration
with Mihnea Popa.
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1 Generalized Fourier-Mukai transforms and

generic vanishing

This preliminary chapter works in two di�erent settings. We can suppose that X
is a smooth1 projective, reduced and irreducible variety over on an arbitrary alge-
braically closed �eld. Or we can assume that X is a compact, connected, Kähler
manifold over the complex numbers C.

Let X be a variety of dimension d, equipped with a morphism to an abelian variety
(resp. complex torus) A,

a : X → A.

Let Pic0X denote the identity component of the Picard group scheme of X and
we will denote by AlbX the Albanese variety (resp. Albanese torus) of X and
alb : X → AlbX the Albanese map. AlbX and Pic0X are dual to each other [BL,
Prop. 11.11.6]. Its dimension is called the irregularity of X and it is denoted by
q(X) = dim AlbX = dim Pic0X.

Let P be a Poincaré line bundle on A× Pic0A. We will denote

Pa = (a× idPic0 A)∗P, (1.1)

the induced Poincaré line bundle in X × Pic0A by a. When a = alb, the Albanese
map of X, then the map alb∗ identi�es Pic0(AlbX) to Pic0X and the line bundle
Palb is identi�ed to the Poincaré line bundle of X. We will simply denote P = Palb.

In the sequel we will consider often the derived category of X, Db(X) that by
de�nition is the bounded derived category of the abelian category Coh(X), i.e.
Db(X) := Db(Coh(X)) (see [Hu, Ch. 1-3] for a short introduction to derived cate-
gories and specially to the derived category of coherent sheaves). We will use the
abuse of notation F ∈ Db(X), meaning F ∈ Ob(Db(X)).

Letting p and q the two projections of X×Pic0A, we consider the left exact functor

ΦPa(F) = q∗(p∗F ⊗ Pa),

and its right derived functor between bounded from below derived categories,

RΦPa : D+(X)→ D+(Pic0A).

Since for every sheaf F , RΦPa(F) ∈ Db(Pic0A), this right derived functor induces

1In fact, we could suppose only X being Cohen-Macaulay, since the Grothendieck-Verdier
duality works for Cohen-Macaulay schemes (see [Co, Thm. 4.3.1]).
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an exact functor (see [Hu, Cor. 2.68])

RΦPa : Db(X)→ Db(Pic0A). (1.2)

We will simply call RΦPa the Fourier-Mukai transform associated to Pa. For some
authors, this functor does not deserve the name of Fourier-Mukai transform since,
in general, it is not an equivalence of categories. They would call RΦPa the integral
transform with kernel Pa.

The functors RΦPa and RΦP are related by the following formula.

Proposition I.1.1. RΦPa ∼= RΦP ◦Ra∗.

Proof. RΦPa( · ) = Rq∗(p∗X( · )⊗ (a× id)∗P)
L+PF∼= Rq∗(R(a× id)∗(p∗X( · ))⊗P) ∼=

BC∼= Rq∗(p∗A(Ra∗( · ))⊗ P) = RΦP ◦Ra∗( · ),

where: L = Leray, PF = projection formula and BC = Base Change, in the derived
category.

De�nition I.1.2 (Base-change property). Given F ∈ Db(X), we will say that the
sheaf RiΦPa F has the base-change property in a neighborhood W of α ∈ Pic0A, if
it is locally free in W and

RiΦPa F ⊗ k(β) ∼= Hi(X,F ⊗ β) for all β ∈W,

where Hi(X, · ) is the i-th cohomology sheaf of the functor RΓ(X, · ).

We remark that for F ∈ Db(X), Hi(X,F) will always mean the i-th cohomology
sheaf of RΓ(X,F).

If hi+1(X,F⊗α) is constant in a neighborhood of α ∈ Pic0A, then, both Ri+1ΦPa F
and RiΦPa F have the base-change property in a neighborhood of α. When F is a
sheaf this follows from [Mu2, Cor. 2, pg. 50]. The more general case F ∈ Db(X)
follows from [EGA3, �7.7].

Sometimes we will have to consider the analogous derived functor RΦP−1
a

: Db(X)→
Db(Pic0A) as well. By the Seesaw Theorem [Mu2, Cor. 6, pg. 54], P−1 = (1A ×
(−1)Pic0 A)∗P and we have the following immediate corollary.

Corollary I.1.3. RΦP−1
a

= (−1Pic0 A)∗ ◦ RΦPa .

Changing the order of the projections we have another left exact functor

ΨPa(F) = p∗(q∗F ⊗ Pa)
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and its induced exact functor between bounded derived categories is

RΨPa : Db(Pic0A)→ Db(X). (1.3)

In what follows, we will adopt the following notation for the dualizing functor

R∆F = RHom(F , ωX).

We will often use the Grothendieck-Verdier duality (see [Co, Thm. 4.3.1] for a
complete proof in a more general case).

Theorem I.1.4 (Grothendieck-Verdier duality). Let f : X → Y be a morphism of
smooth schemes over a �eld k of relative dimension d. Then, we have the following
functorial isomorphism of functors in the derived category,

R∆Y ◦Rf∗ ∼= Rf∗ ◦ R∆X [d].

When f : X → {point} we get as a corollary the Grothendieck-Serre duality.

Corollary I.1.5 (Grothendieck-Serre duality). Let X be a smooth scheme over
a �eld k of dimension d. If F ∈ Db(X), then we have the following functorial
isomorphism,

Hi(X,F)∗ ∼= Hd−i(X,R∆F),

where Hi(X, · ) is the i-th cohomology sheaf of the functor RΓ(X, · ) and ∗ denotes
the dual as a k-vector space.

However, when we refer to the Grothendieck-Verdier duality of the Fourier-Mukai
transform we will basically mean the following functorial isomorphism, that we state
for easy reference.

Proposition I.1.6 (Grothendieck-Verdier duality). We have the following functo-
rial isomorphism of functors in the derived category,

R∆ ◦RΦPa ∼= RΦP−1
a
◦R∆[d],

where the left dualizing functor is RHom( · ,OPic0 A) since ωPic0 A
∼= OPic0 A, and

the right one is RHom( · , ωX).

Remark I.1.7. Given an object F ∈ Db(X), when we take cohomology on the
isomorphism provided by the Grothendieck-Verdier duality we have the following
isomorphism,

Ext i(RΦPa F ,OPic0 A) ∼= Rd+iΦP−1
a

R∆F .

De�nition I.1.8. Given a coherent sheaf F on X, its i-th cohomological support
locus with respect to a is

V ia (F) =
{
α ∈ Pic0A hi(F ⊗ a∗α) > 0

}
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Again, when a is the Albanese map of X, we will omit the subscript, simply writing
V i(F).

By base change, these loci contain the set-theoretical support of RiΦPa F , i.e.

suppRiΦPa F ⊆ V ia (F).

A way to measure the size of all the V ia (F)'s is provided by the following invariant
introduced by Pareschi and Popa.

De�nition I.1.9 ([PP7, Def. 3.1]). Given a coherent sheaf F on X, the generic
vanishing index of F (with respect to a) is

gva(F) := min
i>0

{
codimPic0 A V

i
a (F)− i

}
.

The Auslander-Buchsbaum Theorem [Ma, Thm. 19.1], gives a �rst basic result
that, in the most useful case, relates the positivity of the generic vanishing index
to the fact that the Fourier-Mukai transform of its Grothendieck dual is a sheaf (in
cohomological degree d).

Theorem I.1.10 ([PP8, Thm. A],[PP7, Thm. 2.2]). Let F be a coherent sheaf on
X. The following are equivalent,

(a) gva(F) > −k for k > 0;

(b) RiΦPa(R∆F) = 0 for all i 6= d− k, . . . , d.

De�nition I.1.11. If gva(F) > 0 the sheaf F is said to be a GV-sheaf (generic
vanishing sheaf).

In [M2, Def. 2.3] Mukai introduced the following notation

De�nition I.1.12. (a) We say that the weak index theorem holds for a coherent
sheaf F on X or that F is a WITi-sheaf (with respect to a) if, and only if,

RjΦPa F = 0 for all j 6= i.

This i is called the index of F . We denote the coherent sheaf RiΦPa F by F̂ .
(b) We say that the index theorem holds for F or that F is a ITi-sheaf (with

respect to a) if, and only if,

V ja (F) = ∅ for all j 6= i.

By the base change theorem in cohomology, ITi implies WITi. Moreover the
Fourier-Mukai transform of a sheaf satisfying IT is locally free.
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With this nomenclature, Theorem I.1.10 says that, if F is a GV-sheaf, then the
full transform RΦPa(R∆F) is a sheaf concentrated in degree d, i.e. R∆F is a
WITd-sheaf, and we usually denote

R̂∆F = RdΦPa(R∆F).

Observe that, when F is a coherent sheaf, since RjΦPa F = 0 and RjΦPa(R∆F) = 0
vanish for j > d, both RdΦPa F = 0 and RdΦPa(R∆F) = 0 have the base-change
property at all α ∈ Pic0A.

Note that, if F is a GV-sheaf, then Hi(F ⊗ a∗α) = 0 for all i > 0 and general α ∈
Pic0A. Therefore, by deformation-invariance of χ, the generic value of h0(F ⊗a∗α)
equals χ(F), in particular χ(F) > 0. Since, by base-change, the �ber of R̂∆F at a
general point α ∈ Pic0A is isomorphic to Hd(R∆F ⊗ a∗α) ∼= H0(F ⊗ a∗α−1)∗ (by
Grothendieck-Serre duality I.1.5), the (generic) rank of R̂∆F is

rk(R̂∆F) = χ(F). (1.4)

Via base-change, Theorem I.1.10 yields to,

Corollary I.1.13 ([Ha, Thm. 1.2], [PP8, Prop. 3.13]). If gva(F) > −k, for any
k > 0 then,

V da (F) ⊆ · · · ⊆ V k−1
a (F) ⊆ V ka (F).

From Grothendieck-Verdier duality I.1.6 and Theorem I.1.10 it follows that,

Corollary I.1.14 ([PP8, Rem. 3.12], [PP7, Pf. of Cor. 3.2]). If gva(F) > 0 then

Ext iOPic0 A
(R̂∆F ,OPic0 A) ∼= RiΦP−1

a
(F) ∼= (−1Pic0 A)∗RiΦPa(F).

The previous corollary and base-change leads to the following result of Pareschi-
Popa that allows us to descend the irreducible components of V 0

a (F) through the
chain of inclusions of Corollary I.1.13. In [PP8, Prop. 3.15] this result appears with
an unnecessary hypothesis as Pareschi pointed out to us in a private communication.

Corollary I.1.15. Let F be a GV-sheaf. Let W be an irreducible component of
V 0
a (F), and let k = codimPic0 AW . Then W is also a component of V ka (F). In

particular, it follows that k 6 d.

Proof. Since R̂∆F has the base-change property, it is supported at V da (R∆F) =
−V 0

a (F) (by Grothendieck-Serre duality I.1.5). Hence −W is a component of the
support of R̂∆F . Let α be a general point of W . By Corollary I.1.14, RiΦPa F =
(−1Pic0 A)∗ Ext i(R̂∆F ,OPic0 A) and from well-known properties of Ext 's it follows
that, in a suitable neighborhood of α ∈ Pic0A, RiΦPa F vanishes for i < k and is
supported atW for i = k. Therefore, by base-change,W is contained in V ka (F) (and
in fact it is a component since, again by Theorem I.1.10, codimV ka (F) > k).
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A deeper result of Pareschi-Popa, based on the Evans-Gri�th Syzygy Theorem [EG,
Cor. 1.7], gives a dictionary between the value of gva(F) and the local properties
of the transform R̂∆F .

Theorem I.1.16 ([PP7, Cor. 3.2]). Assume that F is a GV-sheaf (with respect to
a). Then the following are equivalent

(a) gva(F) > m;

(b) R̂∆F is a m-th syzygy sheaf.

We recall the de�nition of a m-th syzygy sheaf.

De�nition I.1.17. A coherent sheaf F on X is called a m-th syzygy sheaf if locally
there exists an exact sequence

0→ F → Em → . . .→ E1 → G → 0

with Ej locally free for all j. It is well-known for example that �rst syzygy sheaf is
equivalent to torsion-free, and second syzygy sheaf is equivalent to re�exive. Every
coherent sheaf is declared to be a 0-th syzygy sheaf, while a locally free sheaf is
declared to be an ∞-syzygy sheaf.

Hence, the next corollary is a particular case of the previous theorem, but we
emphasize it, as this will be the most used case (maybe the only one).

Corollary I.1.18. Assume that F is a GV-sheaf (with respect to a). Then,

gva(F) > 1 if and only if, R̂∆F is torsion-free
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2 Mukai's equivalence on abelian varieties

Assume that X coincides with the abelian variety or complex torus A (and the
map a is the identity). In this special case, according to the notation introduced
in �1, P = Pa = P denotes the Poincaré line bundle on A× Pic0A. Then Mukai's
theorem asserts that RΦP is an equivalence of categories. More precisely, denoting
RΨP : Db(Pic0A) → Db(A) the functor in (1.3) and g = dimA, we have the
following precise equivalence.

Theorem I.2.1 ([M2, Thm. 2.2]).

RΨP ◦RΦP = (−1)∗A[g], RΦP ◦RΨP = (−1)∗Pic0 A[g].

For the proof we refer to the original paper of Mukai or to [Hu, Thm. 9.19]. We
remark that a key point in both proofs is the fact that RΦP OA = k(0̂)[g].

The Fourier-Mukai transform of ample line bundles in abelian varieties was explicitly
computed by Mukai in [M2]

Proposition I.2.2. Consider L a line bundle on A.

(a) L is an ample line bundle if, and only if, L is an IT0-sheaf.
(b) If L is an ample line bundle, then

φ∗LL̂
∼=
⊕
h0(L)

L−1,

where φL : A→ Pic0A is the isogeny a 7→ t∗aL⊗ L−1.
(c) In particular, when L gives a principal polarization in A, i.e. L is an ample

line bundle and h0(L) = 1, then

φ∗LL̂
∼= L−1,

and φL : A ∼→ Pic0A is an isomorphism. So we usually identify A ∼= Pic0A
via φL and abusing notation we simply write L̂ ∼= L−1.

Remark I.2.3. As we have noticed at the beginning, we remark that all the results
of the present chapter are algebraic, and work on algebraically closed �elds of any
characteristic.
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II Principally Polarized

Abelian Varieties

Preliminaries

Introduction

Principally polarized abelian varieties are quite well-behaved and relatively easy to
study. Since the polarization provides an isomorphism between the abelian variety
and its dual, the Fourier-Mukai transform can be seen as an autoequivalence. More
precisely, Mukai's has showed (see [Hu, �9.3]) that the elements of the group Sl2(Z)
act naturally as autoequivalences on the derived category of a principally polarized
abelian variety (up to shifts). Moreover, Orlov has given a complete description of
the group of all autoequivalences of the derived category of an abelian variety (see
[Hu, Prop. 9.55]).

In this �rst section, �1 we will �x the notation for principally polarized abelian
varieties that we will use in Chapters III and IV. In particular, we will consider the
Fourier-Mukai transform as an autoequivalence, using the isomorphism provided by
the principal polarization. We will also introduce the notation that we will use in
Chapter IV for the relative Fourier-Mukai transform.

Finally, as we have already said, the principal polarization gives an isomorphism
between the abelian variety and its dual. This allow us to study a duality theory
similar to the duality theory of the projective space, where the role played by hyper-
planes in the projective space is now played by divisors representing the principal
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polarization. That is, given a subvariety Z of a principally polarized abelian variety
(A,Θ), we say that the theta-dual of Z is the set of all translates of Θ that contain
Z. This classical point of view of the theta-duality mainly takes into account the set-
theoretical structure of the theta-dual and the original variety Z. Our point of view
is to consider the natural scheme-theoretic structure on the theta-dual provided by
the Fourier-Mukai transform (see 2.1 for a precise de�nition). This de�nition was
proposed by Pareschi and Popa in [PP6] and will be one of the leitmotif of Chapters
III and IV.
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1 Principally polarized abelian varieties

Throughout this chapter, (A,Θ) denotes a principally polarized abelian variety
(ppav for short) over an algebraically closed �eld k. We choose a symmetric divisor
Θ that represents the principal polarization and we assume that is irreducible. For
each point a ∈ A we denote by ta : A→ A the translation map.

ta : A −→ A
p 7−→ p+ a.

The points in the dual abelian variety Â are denoted by Greek letters, and are
identi�ed with homogeneous line bundles on A. There is a canonical isomorphism

φΘ : A −→ Â
a 7−→ OA(t−1

a Θ−Θ).
(1.1)

The dual abelian variety Â inherits a natural theta-divisor Θ̂ that corresponds to
Θ under φΘ.

For each homogeneous line bundle α ∈ Â, we let Θα denote the unique e�ective
divisor whose associated line bundle is OA(Θ)⊗ α. If α = φΘ(a), then we have

Θα = t−1
a Θ. (1.2)

Thus the collection of Θα for varying α is also the collection of Θ-translates. Since
we will frequently identify Â and A via φΘ, we will also denote by Θa the theta-
translate t−1

a Θ, where a is a point in A. We observe that in the literature Θa is
sometimes denoted by Θ− a and, on the other hand, Θa sometimes denotes Θ + a.

We will identify A with Â via the isomorphism φΘ : A→ Â. Then, one may consider
the Fourier-Mukai transform as an autoequivalence Db(A)→ Db(A). When we use
the identi�cation of A with Â via φΘ, we will use the original Mukai notation RS. To
be precise, RS is the Fourier-Mukai transform with kernel the Mumford line bundle
M = (id×φΘ)∗P = m∗OA(Θ)⊗ p∗OA(−Θ)⊗ q∗OA(−Θ), where m : A×A→ A is
the group law on the abelian variety and p, q are the two projections. Equivalently,

RS = φ∗Θ ◦ RΦP : Db(A)→ Db(A).

In this setting we have the following exchange property between the translation by
an element a ∈ A and the tensor product by elements a seen as an element in Pic0A
via the identi�cation φΘ.

Lemma 1.1 ([M2, (3.1)]).

RS ◦t∗a ∼= (⊗α) ◦ RS and RS ◦(⊗α) ∼= t∗a ◦ RS where α = φΘ(a).
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With this notation Proposition I.2.2 has the following form.

Proposition 1.2 ([M2, Prop. 3.11]). RS(OA(Θ)) ∼= OA(−Θ).

1.1 Relative Fourier-Mukai transform

For an arbitrary base scheme S, we similarly de�ne a relative Fourier-Mukai trans-
form RSS : Db(A× S)→ Db(A× S), by

RSS(F) = Rp23∗(p∗13F ⊗ p∗12M ) (1.3)

where pij denotes the projection from A × A × S onto its i'th and j'th factors
and M = (id×φΘ)∗P = m∗OA(Θ)⊗ p∗OA(−Θ)⊗ q∗OA(−Θ) is the Mumford line
bundle. Then the weak index theorem and the Fourier-Mukai transform F̂ of a
WIT sheaf F on A × S can be de�ned as above with RS replaced by RSS . The
base change theorem in cohomology yields to the following result.

Lemma 1.3. Let F be a coherent sheaf on A×S, and let i be the maximal number
such that RiSS(F) 6= 0. Then, for any base extension f : S′ → S, we have

f∗bA(RiSS(F)) ∼= RiSS′(f∗AF),

where we write fX for the product of the identity map on a scheme X with f .

Proof. This is again [Mu2, Cor. 2 and Cor. 3, pg. 50-52].

In particular, if we have a WIT sheaf F on A× S, then for any closed point s ∈ S,
the Fourier-Mukai transform of the �ber F ⊗ k(s) is the �ber F̂ ⊗ k(s) of the
Fourier-Mukai transform of F .
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2 Theta-duality

Let Y ⊂ A be an arbitrary subscheme. The set-theoretical theta-dual of Y is,{
a ∈ A Y ⊆ t−1

a Θ
}

(2.1)

where the inclusion Y ⊆ t−1
a Θ is required to hold scheme theoretically. When Y

is reduced, the set T (Y ) is clearly an intersection of theta-divisors and hence, it is
closed. We want to provide T (Y ) with a natural schematic structure.

De�nition 2.1 ([PP6, �4]). Let Y ⊂ A be an arbitrary subscheme. The schematic
theta-dual of Y is,

T (Y ) = supp ((−1A)∗RgS(R∆(IY (Θ)))) ,

where we denote by supp the Fitting support (e.g. [Ei]).

Let F is a coherent sheaf on a scheme X, and let

E1
ψ→ E0 → F → 0 (2.2)

be an exact sequence with E1 ∼= O⊕mX and E0 ∼= O⊕nX free sheaves (when X is not
locally noetherian, m could be in�nite). Then recall that the Fitting ideal Fitti F
of the sheaf F is the ideal given locally as the ideal generated by the (n− i)× (n− i)
minors of ψ for any presentation of F as above. By Fitting's Lemma (e.g. [Ei, Cor-
Def. 20.4]) this is independent of the presentation (2.2) chosen. The zero locus of
Fitt0 F ⊆ X is called the Fitting support of F . It is easy to see that the annihilator
support is contained in the Fitting support (e.g. [Ei, Prop. 20.7]) and, in general,
they are not equal.

Basically, we prefer the Fitting support instead of the annihilator support to de�ne
the schematic theta-dual because the Fitting support commutes with arbitrary base-
change.

Proposition 2.2 (e.g. [Ei, Cor. 20.5]). Let f : X → Y morphism and let F be a
coherent sheaf on Y . Then Fitti(f∗F) = f∗ Fitti(F), so supp f∗F = f−1(suppF)
as schemes.
In particular, if X is a subscheme of Y and f is the inclusion

Fitti(F ⊗OX) = Fitti(F)⊗OX and supp(F ⊗OX) = suppF ∩X.

The previous de�nition 2.1 is motivated by the following lemma that shows that
the underlying subset of T (Y ) coincides with the set de�ned in (2.1).

Lemma 2.3 ([PP6, Lemma 4.1]). For any a ∈ A there is a canonical identi�cation

(−1A)∗RgS(R∆(IY (Θ)))⊗OA,a k(a) ∼= H0(A, IY (Θa))∨.
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Hence, in any case, T (Y ) is a closed subscheme of A.

Recall that OA(Θa) = O(Θ)⊗ φΘ(a) (see (1.2)).

More precisely, Pareschi and Popa show that (−1A)∗RgS(R∆(IY (Θ))) is a line
bundle on T (Y ).

Corollary 2.4 ([PP6, Cor. 4.3]). Let Y be an arbitrary scheme, then

(−1A)∗RgS(R∆(IY (Θ))) ∼= OT (Y )(Θ).

Remark 2.5. From the previous corollary and using the Grothendieck-Verdier du-
ality (see Remark I.1.7) and Corollary I.1.3, we have also

Hom(RS(IY (Θ)),OA) ∼= OT (Y )(Θ).

Example 2.6. Set theoretically it is clear that the theta-dual T (a) of a point a ∈ A
is the divisor Θa, that is, t−1

a (Θ). Scheme theoretically, we deduce this equality by
applying the Fourier-Mukai transform to the sequence

0→ Ia(Θ)→ OA(Θ)→ k(a)→ 0.

By Proposition 1.2, we get that R0S Ia(Θ) ⊂ OA(−Θ). Since OA(−Θ) is torsion-
free and R0S Ia(Θ) is a torsion sheaf, it must be zero. So, Ia(Θ) is WIT1 and

0→ OA(−Θ)→ Pa → Îa(Θ)→ 0,

where Pa is the homogeneous line bundle on A corresponding to a. Thus, Îa(Θ) =
OΘa ⊗ Pa and by Corollary I.1.14,

(−1A)∗RgS(R∆(Ia(Θ))) ∼= Ext1(Îa(Θ),OA) ∼= OΘa(Θ).

Observe also that RiS(R∆(Ia(Θ))) = 0 for all i 6= g.

The schematic theta-dual respects the usual properties of the set-theoretical duality.

Lemma 2.7. Let Y ⊆ Y ′ be an inclusion of subschemes of A. Then T (Y ′) ⊆ T (Y ).

Proof. We have the exact sequence 0 → IY ′(Θ) → IY (Θ) → IY/Y ′(Θ) → 0.
Then we have the following triangle in the derived category RS R∆ IY ′/Y (Θ) →
RS R∆ IY (Θ) → RS R∆ IY ′(Θ). Taking (hyper)cohomologies we have the follow-
ing long exact sequence

. . .→ RgS R∆ IY (Θ)
%→ RgS R∆ IY ′(Θ)→ Rg+1S R∆ IY ′/Y (Θ)→ . . . .

The support of Rg+1S R∆ IY ′/Y (Θ) is contained in V g+1(R∆ IY ′/Y (Θ)) that, by
Grothendieck-Serre duality I.1.5, is −V −1(IY ′/Y (Θ)) = ∅. Hence, % is surjective
and

T (Y ′) = suppRgS R∆ IY ′(Θ) ⊆ suppRgS R∆ IY (Θ) = T (Y ).
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Given any subscheme Y ⊂ A, we want to prove that Y ⊆ T (T (Y )). This is a
natural property for a duality theory. In order to prove it scheme-theoretically we
will need some preliminary lemmas.

Lemma 2.8. Let Y be a subscheme of A and consider ∆Y ⊂ Y ×Y be the diagonal
subscheme. Then I∆Y /A×Y (p−1

1 Θ) is a relative WIT1 sheaf. More precisely,

RSY
(
I∆Y /A×Y (p−1

1 Θ)
) ∼= L|m−1

Y Θ [−1],

where L is the restriction to A× Y of the line bundle m∗OA(Θ)⊗ p∗1OA(−Θ) and
mY : A× Y → A is the restricted group law.

Proof. Consider the standard short exact sequence

0→ I∆Y /A×Y (p−1
1 Θ)→ OA×Y (p−1

1 Θ)→ O∆Y
(p−1

1 Θ)→ 0,

and its Fourier-Mukai transform

0→ p∗1OA(−Θ)→ R0SY O∆Y
(p−1

1 Θ)→ R1SY
(
I∆Y /A×Y (p−1

1 Θ)
)
→ 0,

where R0SY
(
I∆Y /A×Y (p−1

1 Θ)
)

= 0 since it is a torsion sheaf included in a line
bundle.

Observe that, using notation as in (1.3), we get

RiSY O∆Y
(p−1

1 Θ) = Rip23∗(p∗13O∆Y
(p−1

1 Θ)⊗ p∗12M )
∼= Rip23∗(p∗13O∆Y

⊗ p∗12m
∗OA(Θ))⊗ p∗1OA(−Θ), (2.3)

where the subindices of the projections indicate the factor where we project. Now,
consider the following commutative diagram

∆13

p̄23

∼=

((
��
j

//

��

A×A× Y
p13

��

p23
// A× Y

∆Y
� � // A× Y.

Then, the previous chain of isomorphisms (2.3) continues

RiSY O∆Y
(p−1

1 Θ) ∼= Rip23∗(j∗O∆13 ⊗ p∗12m
∗OA(Θ))⊗ p∗1OA(−Θ)

∼= Rip23∗(j∗O∆13 ⊗ p∗12m
∗OA(Θ))⊗ p∗1OA(−Θ)

∼= Rip̄23∗(j∗p∗12m
∗OA(Θ))⊗ p∗1OA(−Θ).
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Observe that, p̄23 = p23 ◦ j is an isomorphism and p12 ◦ j induces an isomorphism of
∆13 in its image Y ×A. The composition of both isomorphisms give Y ×A ∼= A×Y .
Hence,

RiSY O∆Y
(p−1

1 Θ) =

{
m∗YOA(Θ)⊗ p∗1OA(−Θ) = L if i = 0
0 otherwise,

since m∗YOA(Θ) = m∗OA(Θ)⊗OA×Y .

Then, R1SY
(
I∆Y /A×Y (p−1

1 Θ)
)
is L restricted to the unique section of the following

line bundle,
p∗1OA(Θ)⊗ L ∼= m∗OA(Θ)|A×Y ∼= OA×Y (m−1

Y Θ).

Before proving Y ⊆ T (T (Y )), we prove the following preliminar inclusion.

Corollary 2.9. T (Y )×Y ⊆m−1
Y Θ, where mY :A×Y → A is the restricted group

law.

Proof. Let ∆Y ⊂ Y × Y be the diagonal subscheme.

0→ p∗1(IY/A(Θ))→ I∆Y /A×Y (p−1
1 Θ)→ I∆Y /Y×Y (p−1

1 Θ)→ 0.

Then we have the following triangle in the derived category

RSY R∆(I∆Y /Y×Y (p−1
1 Θ))→ RSY R∆(I∆Y /A×Y (p−1

1 Θ))→ p∗1 RS R∆(IY/A(Θ)).

Taking (hyper)cohomologies we have the following long exact sequence

. . .→ RgSY R∆(I∆Y /A×Y (p−1
1 Θ))

%→ p∗1 R
gS R∆(IY/A(Θ))→

Rg+1SY R∆(I∆Y /Y×Y (p−1
1 Θ))→ . . . .

The support of Rg+1SY R∆(I∆Y /Y×Y (p−1
1 Θ)) is contained in

V g+1(R∆(I∆Y /Y×Y (p−1
1 Θ))) = −V −1((I∆Y /Y×Y (p−1

1 Θ))) = ∅

by Grothendieck-Serre duality I.1.5. Hence, % is surjective and

T (Y )× Y = supp p∗1 R
gS R∆(IY/A(Θ))

⊆ suppRgSY R∆(I∆Y /A×Y (p−1
1 Θ))

GV d= suppHom(RSY (I∆Y /A×Y (p−1
1 Θ)),OA×Y )

= supp Ext1(R1SY (I∆Y /A×Y (p−1
1 Θ)),OA×Y ) Lem. 2.8

= supp Ext1(L|m−1
Y Θ ,OA×Y ) Lem. 2.8

= m−1
Y Θ,
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where GV d stands for Grothendieck-Verdier duality I.1.6.

We will need the following spectral sequence.

Lemma 2.10. Let Z be a subscheme of A. Then, for any sheaf E on A, there exists
a fourth quadrant spectral sequence

Ei,j2 = Ext iA((−1A)∗R−jS(R∆ IZ(Θ)), E)⇒ Ri+j+gq∗(p∗IZ⊗m∗OA(Θ)⊗q∗E(−Θ)).

Proof. Let E be a sheaf on A. We claim that, by Grothendieck-Verdier Duality I.1.4

RHomA((−1A)∗RS(R∆ IZ(Θ)), E) ∼= Rq∗(p∗IZ ⊗m∗OA(Θ)⊗ q∗E(−Θ))[g].

Indeed, if we denote M = m∗OA(Θ) ⊗ p∗OA(−Θ) ⊗ q∗OA(−Θ) the kernel of RS,
we have

RHomA((−1A)∗RS(R∆ IZ(Θ)), E) = RHomA(Rq∗(p∗R∆ IZ(Θ)⊗M−1), E)
GV d∼= Rq∗(RHomA×A(p∗R∆ IZ(Θ)⊗M−1, q∗E [g]))
∼= Rq∗(HomA×A(OA×A, p∗IZ(Θ)⊗M ⊗ q∗E))[g]
∼= Rq∗(p∗IZ ⊗m∗OA(Θ)⊗ q∗E(−Θ))[g]

Therefore we have a fourth quadrant spectral sequence (see [Hu, Ex. 2.70 ii)])

Ei,j2 = Ext iA((−1A)∗R−jS(R∆ IZ(Θ)), E)⇒ Ri+j+gq∗(p∗IZ⊗m∗OA(Θ)⊗q∗E(−Θ)).

Now we are ready to prove the desired inclusion.

Proposition 2.11. For any subscheme Y ⊂ A, we have a schematic inclusion

Y ⊆ T (T (Y )).

Proof. Firstly, suppose that Y is irreducible and let E be a sheaf on A. By Lemma
2.10 we have a fourth quadrant spectral sequence

Ei,j2 = Ext iA((−1A)∗R−jS(R∆ IZ(Θ)), E)⇒ Ri+j+gq∗(p∗IZ⊗m∗OA(Θ)⊗q∗E(−Θ)).

Clearly the term Ei,j2 is non-zero only if i > 0. Assuming i > 0, in the case
i+ j+ g = 0, i.e. −j = i+ g we have that R−jS(R∆ IZ(Θ)) is non-zero if and only
if −j = g, i.e. i = 0. In conclusion for i + j + g = 0 the only non-zero E2-term
is E0,−g

2 = HomA(RgS(R∆ IZ(Θ)), E) = HomA(OT (Z)(Θ), E) (see Corollary 2.4).
Since the di�erentials from and to E0,−g

2 are zero, we get that

HomA(OT (Z)(Θ), E) = E0,−g
2 = E0,−g

∞
∼= q∗(p∗IZ ⊗m∗OA(Θ)⊗ q∗E(−Θ)).
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Taking global sections, we get the isomorphism (functorial in E)

HomA(OT (Z)(Θ), E) ∼= H0(A×A, p∗IZ ⊗m∗OA(Θ)⊗ q∗E(−Θ)). (2.4)

Let Z = T (Y ) and consider E = OY (Θ) in the previous functorial isomorphism.
We claim that

HomA(OT (T (Y ))(Θ),OY (Θ)) = HomA(OT (T (Y )),OY ) 6= 0 (2.5)

implies Y ⊆ T (T (Y )). Indeed, since we are assuming Y irreducible, h0(OY ) = 1,
and every non-zero map OA → OY is surjective. Suppose that f is a non-zero map

OT (T (Y ))
f→ OY . Then the composition OA � OT (T (Y ))

f→ OY is non-zero, hence
surjective which implies f surjective and Y ⊆ T (T (Y )).

Due to the functorial isomorphism (2.4), the condition (2.5) is equivalent to 0 6=
H0(A×A, p∗IT (Y ) ⊗m∗OA(Θ)⊗ q∗OY )) = H0(A× Y, IT (Y )×Y ⊗m∗YOA(Θ)), i.e.

T (Y )× Y ⊆ m−1
Y (Θ),

where mY : A × Y → A is the restricted group law . This inclusion follows from
Corollary 2.9.

Now, let Y =
⋃
Z a decomposition of Y in irreducible components Z. By Lemma

2.7, Z ⊆ T (T (Z)) ⊆ T (T (Y )). Since T (T (Y )) contains all the irreducible compo-
nents of Y ,

Y =
⋃
Z ⊆ T (T (Y )).



Chapter

III

Jacobian and Prym

Varieties

Introduction

Jacobian varieties JC of non-rational curves C provide positive-dimensional exam-
ples of principally polarized abelian varieties (see [BL, �11.1]). Jacobian varieties
encode a lot of geometric information of the corresponding curve, so they are a good
tool to study them. In particular, we have the Abel-Jacobi embedding i : C → JC
that exhibits the curve canonically embedded (up to translation) in its Jacobian.
Moreover, for any curve we can consider the d-th symmetric product of a curve
C(d), whose image for the corresponding Abel-Jacobi map σd : C(d) → JC are the
simplest Brill-Noether lociWd(C), which encode the information about the positive
dimensional complete linear series. For d = 1 we recover the curve embedded in
JC. The lociWd(C) have a natural scheme structure provided by the Fitting ideals.

In the �rst section of this chapter we will study the schematic theta-dual of the Brill-
Nother loci Wd(C) (Proposition 1.9). This computation has already been done by
Pareschi and Popa in [PP6], but our method is di�erent since they use the coho-
mological classes of the Brill-Nother loci and we restrict ourselves to work with the
ideal sheaves and their Fourier-Mukai transform instead. Our approach is based on
the work of Polishchuk [Po2]. In fact, we use the work of Polishchuk to get explicitly
the Fourier-Mukai transform of IWd/JC(Θ) (see Proposition 1.10). As a byproduct
we obtain the cohomological support loci of the ideal sheaves of the Brill-Nother
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loci in the Jacobian variety twisted by the principal polarization (see Proposition
1.11).

The Prym variety P associated to an étale double cover π : C̃ → C provides an-
other classical example of principally polarized abelian variety (see [Mu3] or III.�2).
When the curve C is not hyperelliptic (in particular, its genus is greater than 2), we
have that the Abel-Prym map j : C̃ → P is an embedding that exhibits the curve
canonically embedded (up to translation) in a principally polarized abelian variety.

In the second section of this chapter we will study the schematic theta-dual of the
Abel-Prym curve j(C̃) (Theorem 2.9). To complete the picture for the Abel-Prym
curve we also include the computation of the cohomological support loci of the
ideal sheaves of the Abel-Prym curve in the Prym variety twisted by the principal
polarization Ξ (Proposition 2.7) and twice the principal polarization 2Ξ (Propo-
sition 2.12). These two results has been obtained in collaboration with Sebastian
Casalaina-Martin and Filippo Viviani in [CLV].
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1 Jacobian Varieties

Throughout this section, we work over an algebraically closed �eld k of arbitrary
characteristic.

Let C be a smooth curve of genus g > 0 and let (JC,Θ) be its Jacobian variety,
where Θ is a divisor representing the natural principal polarization that arises from
the intersection product on the integral homology of the curve (see [BL, �11.1]). In
this case, the identi�cation provided by φΘ (II.1.1) is known as the Abel Theorem
that identi�es Pic0 C with JC. From now on, we will use this identi�cation, so we
will also identify the Poincaré line bundle on JC × Pic0 C with the Mumford line
bundle in JC × JC or Pic0 C × Pic0 C.

When working with Jacobian varieties is quite common to use the homogeneous va-
rieties Picd C which are (non-canonically) isomorphic to Pic0 C. For example, one
de�nes a Poincaré line bundle of degree d for C as a line bundle Pd on C × Picd C
which, for each L in Picd C, restricts to L on C ∼= C × {L}.

Let Ld be any line bundle in Picd C and let

tL−1
d

: Picd C −→ Pic0 C

L 7−→ L⊗ L−1
d .

Then, we can take Pd = (idC × tL−1
d

)∗P0⊗ p∗Ld, where P0 is a Poincaré line bundle

on C × Pic0 C and p : C × Pic0 C → C is the �rst projection (see [ACGH, IV.�2]).
Recall that we can take P0 = (i× id)∗P where

i : C −→ Pic0 C
p 7−→ OC(p− p0)

is the Abel-Jacobi embedding once we have identi�ed JC ∼= Pic0 C and �xed an
arbitrary point p0 ∈ C. Thus, we have that P0, and all the Pd, are normalized at
the same point p0, i.e. the point such that i(p0) = 0 ∈ Pic0 C. Then,

Lemma 1.1. RΦPd( · )∼= t∗
L−1
d

◦RΦP◦i∗( · ⊗Ld) as functors from Db(C) to Db(PicdC).

Proof. This is basically the same proof as Propostion I.1.1,

RΦPd( · ) = Rqd∗(p
∗( · )⊗ (i× tL−1

d
)∗P ⊗ p∗Ld) ∼= Leray and Proj. Form.

∼= Rqd∗(R(i× tL−1
d

)
∗
(p∗( · ⊗ Ld))⊗ P) ∼= Base Change

∼= t∗
L−1
d

Rq∗(p∗A(Ri∗( · ⊗ Ld))⊗ P) = i is closed immersion

∼= t∗
L−1
d

RΦP ◦ i∗( · ⊗ Ld).
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1.1 Symmetric products and Brill-Noether loci

Denote by Pd a �xed Poincaré line bundle of degree d for C, and by qd : C×Picd C →
Picd C the second projection. In the language of Fitting ideals1 we de�ne

IW r
d (C)/Picd C = Fittg−d+r−1(R1qd∗Pd). (1.1)

This de�nition gives a natural schematic structure to the set-theoretic Brill-Noether
loci

W r
d (C) =

{
L ∈ Picd C h0(C,L) > r + 1

}
,

(see [ACGH, Rem. IV.3.2]).

It is common to denote simplyWd(C) = W 0
d (C). If we consider the d-fold symmetric

product C(d) which is a smooth projective variety (e.g. [Po1, Prop. 16.2]) and the
usual map,

σd : C(d) −→ Picd C
p1 + . . .+ pd 7−→ OC(p1 + . . .+ pd),

we have the following relation,

Proposition 1.2 ([ACGH, Prop. IV.3.4]). As schemes, σd−1(Wd) = C(d).

De�nition 1.3. (a) Given a line bundle L on C, we de�ne the symmetric power
L(d) of L on C(d) as the quotient of L�d by the action of the symmetric group
Sd.
That is, if πd : Cd → C(d) is the quotient by Sd, then L(d) is such that
π∗dL

(d) ∼= L�d.

(b) We also de�ne by Fd(L) the derived push-forward of L(d) under the natural
morphism σd : C(d) → Picd C.

(c) Finally, we de�ne Rdp as the image of the following map

sp = sdp : C(d−1) −→ C(d)

D 7−→ p+D.

We have the following properties concerning the previous de�nitions,

Lemma 1.4. (a) OC(d)(mRdp) ∼= (OC(mp))(d) for every m ∈ Z.
(b) [Po2, Lemma 3.2 ii)] If deg(L) > −1 then Fd(L) is a sheaf on degree 0 in

Picd C, i.e. Riσd∗L(d) = 0 for i > 0.

1We use the indexing system of [Ei], instead of those used in [ACGH]. Observe that there is a
shift by 1 in the two di�erent presentations. That is, [Ei]'s i-th Fitting ideal is [ACGH]'s (i+1)-th
Fitting ideal.
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Proof. (a) If πd : Cd → C(d) is the quotient by Sd, then it is easy to see that
π∗dR

d
p
∼= (OC(p))�d.

We have the following description of the canonical line bundle on C(d).

Lemma 1.5 (e.g. [Po2, Lemma 3.3]). For every d > 1 one has an isomorphism

ωC(d) ∼= (σd)∗(O(Θ))((g − d− 1)Rdp),

where we have identi�ed Pic0 C with Picd C via d · p.

The schemesWd are reduced, irreducible, normal and Cohen-Macaulay (see [ACGH,
Cor. IV.4.5]), hence it make sense to consider its canonical sheaf ωWd

. Since C(d)

is smooth, the map σd : C(d) → Wd is a resolution of singularities. Moreover, the
�bers of σd are projective spaces, so that Riσd∗OC(d) = 0 for all i > 0 and Wd has
rational singularities. Then

ωWd
∼= (σd)∗ωC(d) e.g. [K4, Cor. 11.9]
∼= Fd(OC((g − d− 1)p))(Θ) Lemma 1.4(a). (1.2)

Hence we can interpret Fd(OC((g − d − 1)p)) as ωWd
(−Θ). In fact, the sheaves

Fd(L) are intimately related to the geometry of Wd. The following result of Pol-
ishchuk shows that Fd(OC((g−d)p)) is a WITd sheaf with respect the Fourier-Mukai
transform on JC and computes its transform.

Theorem 1.6 ([Po2, Thm. 0.2]). Assume that 1 6 d 6 g − 1. Then one has the
following isomorphisms in the derived category Db(JC),

(−1)∗RS(Fd(OC((g − d)p))) ∼= Fg−d(OC(−p))(Θ)[−d] ∼= R∆(Fg−d(OC(dp))),

where we have identi�ed Pic0 C and Picd C via d · p.

Remark 1.7. Observe that, in particular, the previous theorem includes two van-
ishing theorems since it says that Ext i(Fg−d(OC(dp)),OJC) = 0 for all i 6= d and
Fd(OC((g − d)p)) is a WITd sheaf.

We have previously interpreted Fd(OC((g − d − 1)p)) as ωWd
(−Θ). But the last

theorem deals with Fd(OC((g− d)p)). The next proposition shows that the dual of
Fd(OC((g − d)p)) is the ideal sheaf of Wd−1 inside Wd translated by theta.

Proposition 1.8. For every 1 6 d 6 g − 1,

IWd−1/Wd
(Θ) ∼= R∆ (Fd (OC ((g − d)p))) [g − d].

Moreover, IWd−1/Wd
(Θ) is a WITd sheaf and RdS IWd−1/Wd

(Θ) ∼= Fg−d(OC(dp)).
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Proof. By the previous Theorem 1.6, R∆(Fd(OC((g − d)p))) is a sheaf in degree
g − d. Hence it is enough to compute Extg−d(Fd(OC((g − d)p)),OJC).

Extg−d(Fd(OC((g − d)p)),OJC) = σd∗(ωC(d)(−(g − d)Rdp)) GVd and Lem. 1.4

= σd∗(OC(d)(−Rdp))(Θ) Lem. 1.5

= σd∗(IspC(d−1)/C(d))⊗O(Θ) Def. of Rdp,

where GVd stands for Grothendieck-Verdier duality I.1.7. Since Wd is normal
(e.g. [ACGH, Cor. IV.4.5]) and σd : C(d) → Wd is a resolution of singularities,
we have that σd∗OC(d) = OWd

. So the standard short exact sequence shows that
σd∗(IspC(d−1)/C(d)) = IWd−1/Wd

. Hence,

Extg−d(Fd(OC((g − d)p)),OJC) = IWd−1/Wd
(Θ).

Moreover,

RS IWd−1/Wd
(Θ) ∼= RS R∆(Fd(OC((g − d)p)))[g − d]

= (−1A)∗RS RS Fg−d(OC(dp))[g − d] by Thm. 1.6

= Fg−d(OC(dp))[−d] by Thm. I.2.1.

1.2 Theta-dual of the Brill-Nother loci

The following proposition describes the theta-dual of the Brill-Nother lociWd. This
computation was also done by Pareschi and Popa in [PP6, Ex. 4.5, �8.1], but they
prove it in an indirect way by checking the equality of their cohomological classes.
We directly study the sheaves involved in the de�nitions.

Proposition 1.9. Let C be a smooth projective of genus g > 0. Then, for every
0 6 d 6 g − 1,

T (t∗L(Wd)) = t∗κ−LWg−d−1 ⊂ Pic0 C,

where κ is a theta-characteristic and L is any line bundle in Picd C used to identify
Picd C with Pic0 C.

Proof. We have Θ = (Wg−1)κ = (Wd)L + (Wg−d−1)κ−L in Picg−1 C and it is easy
to see that set-theoretically T ((Wd)L) = (Wg−d−1)κ−L (e.g. [Mar, Lem. 2]). Now
we deal with the scheme structure. We will omit the translates that allow us to
work directly in JC ∼= Pic0 C.

OT (Wd)(Θ) = (−1)∗RgS R∆(IWd
(Θ)) Cor. II.2.4

= Hom(RS IWd
(Θ),OJC) Rem. II.2.5.
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Now, we proceed by induction on d. For d = 0, it is clear T (W0) ∼= Wg−1 (see
Example 2.6). Consider the following exact sequence,

0→ IWd
(Θ)→ IWd−1(Θ)→ IWd−1/Wd

(Θ)→ 0.

Then,

. . .→ Hom(RS IWd−1/Wd
(Θ),OJC)→ Hom(RS IWd−1(Θ),OJC)→

→ Hom(RS IWd
(Θ),OJC)→ Ext1(RS IWd−1/Wd

(Θ),OJC)→ . . . (1.3)

By induction we have

Hom(RS IWd−1(Θ),OJC) ∼= OWg−d(Θ),

and by Proposition 1.8, Grothendieck-Verdier duality I.1.6 and Theorem 1.6, we
also have

R∆ RS IWd−1/Wd
(Θ) = R∆ RS R∆ (Fd (OC ((g − d)p))) [d− g] Prop. 1.8

= (−1)∗RS (Fd (OC ((g − d)p))) [d] GV-duality I.1.6

= R∆(Fg−d(OC(dp)))[d] Thm. 1.6

= IWg−d−1/Wg−d(Θ) Prop. 1.8.
(1.4)

Hence, (1.3) becomes

. . .→ Ext−1(RS IWd
(Θ),OJC)→

→ IWg−d−1/Wg−d(Θ)
ψ→ OWg−d(Θ)→ Hom(RS IWd

(Θ),OJC)→ 0.

Since ψ is generically surjective (set-theoretically we already know that the sheaf
Hom(RS IWd

(Θ),OJC) is supported onWg−d−1) and IWg−d−1/Wg−d(Θ) is a torsion-
free sheaf on Wg−d (irreducible and reduced), ψ is injective and

Hom(RS IWd
(Θ),OJC) ∼= OWg−d−1(Θ).

1.3 The cohomological support loci of IWd
(Θ)

The following proposition computes the Fourier-Mukai transform of the sheaves
IWd

(Θ), where Wd are the Brill-Noether locus of a smooth projective curve C of
genus g > 0.

Proposition 1.10. For any 1 6 d 6 g − 1, IWd
(Θ) is a GV-sheaf that satis�es

WITd+1 and

Rd+1S IWd
(Θ) ∼= ωWg−d−1(−Θ) ∼= Fg−d−1(dp).
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Proof. We can proceed by descending induction.
It is clear that for d = g − 1, we have IWg−1(Θ) ∼= OJC . Hence, IWg−1(Θ) it is a
GV-sheaf that satis�es WITg, and RdS IWg−1(Θ) = k(0). Observe that,

Ext i(RS IWg−1(Θ),OJC) = Extg+i(RgS IWg−1(Θ),OJC) = 0 for all i 6= 0. (1.5)

By (1.4), we also have that Ext i(RS IWd−1/Wd
(Θ),OJC) = 0 for all i 6= 0.

Suppose the statement of the proposition true by d and we want to prove it for
d− 1.
By induction on the long exact sequence (1.3) we have that

Ext i(RS IWd−1(Θ),OJC) = 0 for all i 6= 0.

By Grothendieck-Verdier duality I.1.6, this is equivalent to Rg+iS(R∆ IWd−1(Θ)) =
0 for all i 6= 0, i.e. R∆ IWd−1(Θ) is a WITg sheaf. On one hand, this implies that
IWd−1(Θ) is a GV-sheaf by Theorem I.1.10. On the other hand,

OWg−d = OT (Wd−1) Prop. 1.9

= (−1)∗RgS R∆ IWd−1(Θ) Cor. II.2.4

= (−1)∗RS R∆ IWd−1(Θ)[g] R∆ IWd−1(Θ) is a WITg sheaf

= R∆ RS IWd−1(Θ) GV-duality I.1.6.

Since R∆ is an involution on Db(JC), we deduce that R∆OWg−d(Θ) = RS IWd−1(Θ).
By [ACGH, Cor. IV.4.5], Wg−d is Cohen-Macaulay and g − d pure-dimensional,
which means that

RiS IWd−1(Θ) = Ext i(OWg−d(Θ),OJC) = 0 for i 6= d and

RdS IWd−1(Θ) = Extd(OWg−d(Θ),OJC) = ωWg−d(−Θ)
= Fg−d((d− 1)p) by (1.2).

The following result was already obtained by Pareschi and Popa in [PP1, Thm. 4.1].

Proposition 1.11. For any 1 6 d 6 g − 1,

(a) Set-theoretically, V i(IWd
(Θ)) = Wg−d−1 for any 0 6 i 6 d+ 1.

(b) IWd
(nΘ) is IT0, for every n > 2.

Proof. From the de�nition of set-theoretical theta-dual it is clear that V 0(IWd
(Θ)) =

Wg−d−1. By Proposition 1.10 and base change, V d+1(IWd
(Θ)) = Wg−d−1. Hence,

the �rst assertion follows from [PP8, Prop 3.13], because IWd
(Θ) is a GV-sheaf
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which implies that (see Corollary I.1.13)

V d+1(IWd
(Θ)) ⊆ V d(IWd

(Θ)) ⊆ . . . ⊆ V 1(IWd
(Θ)) ⊆ V 0(IWd

(Θ)).

The second statement is simply [PP1, Thm. 4.1] or we can deduce it directly from
the fact that IWd

(Θ) is a GV-sheaf using [PP6, Lemma 3.1].
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2 Prym Varieties

2.1 Notation and basic de�nitions

Throughout this section, we work over an algebraically closed �eld k of characteristic
di�erent from 2. The basic results of these preliminaries are due to Mumford [Mu3].

Let π : C̃ → C be an étale double cover of irreducible smooth projective curves of
genus g̃ and g, respectively. By the Hurwitz formula, we get that g̃ = 2g − 1. We
denote by σ the involution on C̃ associated to the above double cover. Consider the
norm map

Nm : Pic(C̃) −→ Pic(C)
O eC(

∑
j rjpj) 7−→ OC(

∑
j rjπ(pj)),

and observe that Nm(Picd C̃) = Picd C.

The kernel of the norm map has two connected components

ker Nm = P ∪ P ′ ⊂ Pic0 C̃,

where P is the component containing the identity element and is, by de�nition, the
Prym variety associated to the étale double cover π. The above components P and
P ′ have the following explicit description

P =
{
O eC(D − σD) D ∈ Div2N (C̃), N > 0

}
,

P ′ =
{
O eC(D − σD) D ∈ Div2N+1(C̃), N > 0

}
.

It is often useful to consider the inverse image of the canonical line bundle of C via
the norm map. This also has two connected components

Nm−1(ωC) = P+ ∪ P− ⊂ Pic2g−2(C̃) = Picg̃−1(C̃),

which have the following explicit description

P+ =
{
L ∈ Nm−1(ωC) h0(L) ≡ 0 mod 2

}
,

P− =
{
L ∈ Nm−1(ωC) h0(L) ≡ 1 mod 2

}
.

The above varieties P ′, P+ and P− are isomorphic to the Prym variety P . The
translations given by �xed elements give the isomorphisms between P and its tor-
sors. For example

tL′0 : P −→ P ′

L 7−→ L⊗ L′0,

for a �xed L′0 ∈ P ′ gives an isomorphism between P and P ′.
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Principal polarization of the Prym variety. There is a principal polarization
[Ξ] ∈ NS(P ) induced by the principal polarization [Θ̃] ∈ NS(JC̃). One of the
primary motivations for considering P+ is the existence of a canonically de�ned
divisor Ξ+ whose class in the Neron-Severi group of P is [Ξ]:

Ξ+ =
{
L ∈ P+ ⊂ Picg̃−1(C̃) | h0(L) > 0

}
⊂ P+.

In fact, for some representative of divisor Θ̃ over Picg̃−1(C̃) such that [Θ̃] is the

principal polarization of JC̃, we have Θ̃
∣∣∣
P+

= 2Ξ+.

The Abel-Prym map. The canonical Abel-Prym map is de�ned as

 : C̃ −→ P ′

p 7−→ O eC(p− σp). (2.1)

If C̃ is hyperelliptic then the image of C̃ via the Abel-Prym map is a smooth hy-
perelliptic curve D and the Prym variety P is isomorphic to the Jacobian JD of
D ([BL, Cor. 12.5.7]). On the other hand, if C is hyperelliptic but C̃ is not,
then the Prym variety P is the product of two hyperelliptic Jacobians (see [Mu3]).
Therefore, since we are mostly interested in the case of an irreducible non-Jacobian
principally polarized abelian variety, we will assume throughout this chapter that
C is not hyperelliptic (and in particular g > 3). Note that under this hypothesis,
the Abel-Prym map (2.1) is an embedding ([BL, Cor. 12.5.6]).

Since the Abel-Prym curve C̃ ⊂ P ′ and the canonical representative of the principal
polarization Ξ+ ⊂ P+ lie canonically in di�erent spaces, the cohomological support
loci for the twisted ideal sheaf I eC(nΞ+) is only de�ned up to a translation.

Fixing the isomorphism between torsors. Let us �x the isomorphisms that
we will use to move from one torsor to another.

Terminology/Notation 2.1. We �x L+
0 ∈ P+ such that h0(C̃, L+

0 ) = 0 and we
will denote Ξ = Ξ+

L+
0
. We will also �x L′0 = O eC(p0 − σp0) ∈ P ′ such that we will

embed C̃ in P by composing the canonical Abel-Prym map with the translation by
t−L′0 , that is, by substracting L′0. We will denote this non-canonical Abel-Prym
map by

j : C̃ −→ P
p 7−→ p− σp− p0 + σp0.

(2.2)

Finally, let L−0 = L+
0 ⊗ L′0

−1 ∈ P−. Observe that h0(C̃, L−0 ) = 1.
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Notation for the Fourier-Mukai transform on Prym varieties. We will
simply denote by RS the Fourier-Mukai transform

RS : Db(P )→ Db(P ).

In this section when we need the Fourier-Mukai transform on JC̃ we will denote it
by RSJ eC : Db(JC̃)→ Db(JC̃).

2.2 Dimension of the theta-dual of an Abel-Prym curve C̃

We want to study the theta-dual of C̃ in the Prym variety P . Set-theoretically this
can be identi�ed canonically with the set:

T (C̃) =
{
L ∈ P− h0(P ′, I eC/P ′(Ξ+

L)) > 0
}
⊂ P−,

that is, in P−, T (C̃) is independent of the choices (see Terminology/Notation 2.1).

Once we have �xed our isomorphisms between the torsors and the Prym variety, we
recall that we have already endowed this set with a natural scheme structure (see
De�nition II.2.1). Up to translation from P to P−,

T (C̃) = supp
(
Rg−1S(R∆(I eC/P (Ξ)))

)
.

We will see that the theta-dual T (C̃) can be described in terms of the following
standard Brill-Noether loci :

De�nition 2.2 ([W3, (1.2)]). We de�ne V r ⊂ P− (resp. V r ⊂ P+) if r is even
(resp. odd) as

V r :=
{
L ∈ Nm−1(ωC) h0(L) > r + 1, h0(L) ≡ r + 1 mod 2

}
.

These Brill-Noether loci can be endowed with a natural scheme structure. Following
Welters (see [W3]) we de�ne2

V r = W r
g̃−1(C̃) ∩ P+ if r is odd,

V r = W r
g̃−1(C̃) ∩ P− if r is even.

For example, the �rst odd cases are V 1 = Ξ+ ⊂ P+ and V 3 ⊂ P+, the stable
singularities of Ξ (see [Mu3, pg. 343]). The �rst even cases are V 0 = P− and
V 2 = T (C̃) ⊂ P− as we will see next. First, we obtain the set-theoretical equality.

2We recall that De Concini and Pragacz [DP] de�ne a more reduced natural schematic structure
on V r.
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Lemma 2.3 ([CLV, Lem. 2.1]). We have the set-theoretic equality

T (C̃) = V 2.

Proof. An element L ∈ P− belongs to T (C̃) if and only if C̃ ⊂ Ξ+
L , which, by the

de�nition of C̃ ⊂ P ′, is equivalent to h0(C̃, L ⊗ O eC(σp − p)) > 0 for every p ∈ C̃.
By Mumford's parity trick (see [Mu3]), this happens if and only if h0(C̃, L) > 3,
that is L ∈ V 2.

To compute the dimension of the theta-dual T (C̃) = V 2 we will need the Jacobi
Inversion Theorem for Prym varieties, which describes the restriction of the trans-
lates of the theta-divisor to the Abel-Prym curve. Although it is a classical result,
we give a proof in our �canonical setting�.

Proposition 2.4 (Jacobi Inversion Theorem for Prym varieties). Given any L ∈
P−, there is an isomorphism of line bundles

OP ′(Ξ+
L)
∣∣ eC ∼= σ∗L.

Moreover, if L is a closed point in P− \ V 2, then we have an equality of divisors(
Ξ+
L

)
| eC = C̃ ∩ Ξ+

L = σD,

where D is the unique divisor in |L|,

Proof. Suppose �rst that L is a closed point in P− \ V 2, i.e. h0(C̃, L) = 1. Write
|L| = D = p1 + . . .+pg̃−1, where pi ∈ C̃. Since pi is a �xed point of the linear series
|L|, we have that h0(C̃, L⊗O eC(−pi + σpi)) = 2, which implies that

σD ⊂ C̃ ∩ Ξ+
L =

(
Ξ+
L

)∣∣ eC .
Using that C̃ · Ξ+

L = g̃ − 1, we get the desired second equality. Now consider the
maps

C̃ × P− (,id)−→ P ′ × P− µ−→ P+,

where  is the Abel-Prym map and µ is the multiplication map. Let P be the
Poincaré line bundle on C̃ × P−, trivialized over the section {p} × P− for some
p ∈ C̃. Consider the line bundle on C̃ × P− given by L := ( × id)∗(µ∗OP+(Ξ+)).
We can trivialize L along the given section {p} × P− by tensoring with the pull
back from P− of the divisor Ξ+

σp−p. It is easy to check that the �bers of (σ× id)∗P
and L over C̃ × {L} are given by{

(σ × id)∗P| eC×{L} = σ∗L,

L| eC×{L} = OP ′(Ξ+
L)
∣∣ eC .
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By what was proved above, if L is a closed point in P− \ V 2 then the two �bers
agree. By the Seesaw Theorem [Mu2, Cor. 6, pg. 54], (σ × id)∗P ∼= L and we get
the desired �rst equality.

Now we want to study the dimension of T (C̃) = V 2.

Theorem 2.5 ([CLV, Thm. 2.2]). For any étale double cover C̃ → C as above with
C non-hyperelliptic of genus g, it holds that

dim(V 2) = dim(P )− 3 = g − 4.

For g = 3, the Theorem says that V 2 = ∅. We start with the following Lemma,
which is similar to [Mu3, Lemma p. 345].

Lemma 2.6 ([CLV, Lem. 2.3]). If Z ⊆ V 2 is an irreducible component, and
dimZ ≥ g − 3, then for a general line bundle L ∈ Z, there is a line bundle M on
C with h0(M) ≥ 2, and an e�ective divisor F on C̃ such that L ∼= π∗M ⊗O eC(F ).

Proof. Let Z and L be as in the statement. Suppose that h0(L) = r + 1 for r > 2
even, so that L ∈W r

g̃−1 −W
r+1
g̃−1 . From the hypothesis, we get that

dimTLW
r
g̃−1 ∩ TLP− ≥ g − 3 = dim(P−)− 2. (2.3)

The Zariski tangent space to W r
g̃−1 at L is given by the orthogonal complement to

the image of the Petri map (e.g. [ACGH, Prop. 4.2]):

H0(C̃, L)⊗H0(C̃, σ∗L)→ H0(C̃, ω eC),

where we have used that ω eC = π∗(ωC) = L⊗ σ∗L. On the other hand, the tangent

space to the Prym is by de�nition TLP
− = H0(C̃, ω eC)−, the (−1)-eigenspace of

H0(C̃, ω eC) relative to the involution σ. Therefore, it is easy to see that the inter-
section of the Zariski tangent spaces TLW r

g̃−1 ∩ TLP− is given as the orthogonal
complement to the image of the map

v0 : ∧2 H0(C̃, L)→ H0(C̃, ω eC)−

de�ned by v0(si ∧ sj) = siσ
∗sj − sjσ∗si.

The inequality (2.3) is equivalent to codim(ker v0) ≤ 2. On the other hand, the
decomposable forms in ∧2H0(C̃, L) form a subvariety of dimension 2r−1 > 3, and so
there is a decomposable vector si∧sj in ker v0. This means that siσ∗sj−sjσ∗si = 0,
or in other words that sj

si
de�nes a rational function h in C. We conclude by taking

M = OC((h)0) and F the be the maximal common divisor between (si)0 and
(sj)0.

Proof of Theorem 2.5. The dimension of T (C̃) = V 2 is at least g − 4 by the theo-
rem of Bertram ([Be], see also [DP]). Suppose, by contradiction, that there is an
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irreducible component Z ⊆ V 2 such that dimZ = m ≥ g − 3. Then, by applying
the preceding Lemma 2.6 for the general element L ∈ Z,

L ∼= π∗M ⊗O eC(B)

where M is an invertible sheaf on C such that h0(M) > 2, and B is an e�ective
divisor on C̃ such that Nm(B) ∈

∣∣KC ⊗M⊗−2
∣∣. The family of such pairs (M,B)

is a �nite cover of the set of pairs {M,F} where:

• M is an invertible sheaf on C of degree d > 2 such that h0(M) > 2,
• F is an e�ective divisor on C of degree 2g − 2 − 2d > 0, such that F ∈∣∣KC ⊗M⊗−2

∣∣.
By Marten's theorem applied to the non-hyperelliptic curve C (see [ACGH, Pag.
192]), the dimension of the above family of line bundles M is bounded above by

dim(W 1
d ) < d− 2. (2.4)

Fixing a line bundle M as above, the dimension of possible F satisfying the second
condition is bounded by Cli�ord's theorem,

h0(KC ⊗M⊗−2)− 1 6 g − 1− d, (2.5)

By putting together the inequalities (2.4) and (2.5), we get that the dimension m
of our family of pairs {M,F} is bounded above by m < d− 2 + g − 1− d = g − 3,
contradicting our hypothesis.

2.3 The cohomological support loci of I eC(Ξ)

In this section we compute the cohomological support loci for the ideal sheaf I eC(Ξ),
which can be identi�ed with the auxiliary canonical loci

Ṽ i(I eC(Ξ+)) =
{
L ∈ P− hi(P ′, I eC(Ξ+

L) > 0
}
⊂ P−, (2.6)

where we denote by Ξ+
L ⊂ P ′ the translate t∗LΞ+ of the canonical theta-divisor Ξ+

as in (II.1.2).

The relation between Ṽ i(I eC(Ξ+)) and the non-canonical loci V i(I eC/P (Ξ)) is easy

to work out. Recall that in Terminology/Notation 2.1, we have �xed L+
0 ∈ P+

such that h0(C̃, L+
0 ) = 0 and L′0 = O eC(σp0 − p0) ∈ P ′. Moreover, we denote by

L−0 = L+
0 ⊗ L′0

−1 ∈ P− and Ξ = Ξ+

L+
0
. We use the non-canonical Abel-Prym map

j : C̃ −→ P
p 7−→ p− σp− p0 + σp0.

(2.7)
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Then, it is easy to see that the isomorphism tL−0
: P → P− gives

V i(I eC(Ξ)) = t−1

L−0
(Ṽ i(I eC(Ξ+))).

Proposition 2.7 ([CLV, Thm. 3.1]). The cohomological support loci for I eC(Ξ) are

(a) Ṽ 0(I eC(Ξ+)) = Ṽ 1(I eC(Ξ+)) = T (C̃) and

(b) Ṽ 2(I eC(Ξ+)) = P−.

Proof. The equality Ṽ 0(I eC(Ξ+)) = T (C̃) is just the de�nition of the theta-dual of

C̃. Consider the exact sequence de�ning the ideal sheaf I eC twisted by the divisor
Ξ+
L , for L ∈ P−:

0→ I eC(Ξ+
L)→ OP ′(Ξ+

L)→ ∗O eC(Ξ+
L)→ 0.

By taking cohomology and using the vanishing Hj(P ′,OP ′(Ξ+
L)) = 0 for j > 0, we

get the emptiness of Ṽ i(I eC(Ξ+)) for i > 3 and the two exact sequences,

0→ H0(I eC(Ξ+
L))→ H0(OP ′(Ξ+

L))
ψL→ H0(O eC(Ξ+

L))→ H1(I eC(Ξ+
L))→ 0,

0→ H1(O eC(Ξ+
L))→ H2(I eC(Ξ+

L))→ 0.

Using the second exact sequence and the Proposition 2.4, we get that

Ṽ 2(I eC(Ξ+)) =
{
L ∈ P− h1(C̃, σ∗L) > 0

}
.

Since L ⊗ σ∗L = ω eC , by Serre duality we have that h1(C̃, σ∗L) = h0(C̃, L), which
is greater than 0 for all L ∈ P− by the de�nition of P−. This proves assertion (b).

Consider now the �rst above exact sequence. Since H0(P ′,OP ′(Ξ+
L)) = 1 and

Ṽ 1(I eC(Ξ+)) consists of the elements L such that the map ψL is not surjective, we
get using again Propostion 2.4 and Lemma 2.3

Ṽ 1(I eC(Ξ+)) =
{
L ∈ P− h1(C̃,O eC(Ξ+

L)) > 1
}
∪
{
L ∈ P− h0(P ′, I eC(Ξ+

L)) = 1
}

= V 2 ∪ T (C̃) = T (C̃).

2.4 Schematic theta-dual of an Abel-Prym curve C̃

To prove the schematic equality T (C̃) = V 2, we will also need the following Lemma
that is of independent interest (see for example [Na, Prop. 3.1]).

Lemma 2.8. For every L+ ∈ P+, its direct image by the non-canonical Abel-
Prym map j∗L

+ is a WIT1 sheaf with respect to the Fourier-Mukai transform
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RS : Db(P ) → Db(P ). Moreover, we can relate its Fourier-Mukai transform with
the Fourier-Mukai transform in the Jacobian of C̃. More precisely,

R1S(j∗L+) ∼=
(
R1SJ eC(i∗L+)

)∣∣
P
,

where j : C̃ → P is an Abel-Prym map, j(p) = p− σp− p0 + σp0 and i : C̃ → JC̃ is
an Abel-Jacobi map i(p) = p− p0.

Proof. First we will see that j∗L+ is WIT1. We choose an e�ective divisor D on C̃
of su�ciently high degree m� 0 and we consider the short exact sequence

0→ j∗(L+)→ j∗(L+)(D)→ j∗ (L+)(D)
∣∣
D
→ 0.

Its Fourier-Mukai transform is

0→ R0S j∗(L+)→ R0S
(
j∗(L+)(D)

)
→ R0S

(
j∗ (L+)(D)

∣∣
D

)
→ R1S j∗(L+)→ 0.

For D of su�ciently high degree m� 0, the two middle sheaves are locally free. On
the other hand, for a general α ∈ P , more precisely for α 6∈ ΞL+ , h0(C̃, L+⊗α) = 0.
Hence R0S j∗(L+) is a torsion-sheaf. So R0S j∗(L+) = 0, and j∗(L+) is a WIT1

sheaf.

The same argument shows that i∗(L+) satis�es WIT1 with respect to RSJ eC . In-
deed, the Fourier-Mukai transform of the short exact sequence 0 → i∗(L+) →
i∗(L+)(D)→ i∗ (L+)(D)|D → 0 is

0→ R0SJ eC i∗(L+)→ R0SJ eC (i∗(L+)(D)
)
→

→ R0SJ eC (i∗ (L+)(D)
∣∣
D

)
→ R1SJ eC i∗(L+)→ 0.

For D of su�ciently high degree m� 0, the two middle sheaves are locally free. On
the other hand, for a general α ∈ JC̃, more precisely for α 6∈ Θ̃L+ , h0(C̃, L+⊗α) = 0.
Hence R0SJ eC i∗(L+) is a torsion-sheaf. So R0SJ eC i∗(L+) = 0, and i∗(L+) is a WIT1

sheaf with respect to RSJ eC .
Claim. In the derived category Db(JC̃), we have

RS ◦Rj∗ ∼= (OP⊗) ◦ RSJ eC ◦Ri∗.

Admitting the claim for the moment we �nish the proof of the Proposition. The
claim applied to L+ says that RS(j∗L+) ∼= OP⊗RSJ eC(i∗L+). Then,

R1S(j∗L+) ∼= RS(j∗L+)[1] ∼=
(
OP⊗R1SJ eC(i∗L+)[−1]

)
[1]

∼= OP ⊗R1SJ eC(i∗L+) ∼= R1SJ eC(i∗L+)
∣∣
P
.

Proof of the Claim. By the projection formula in the derived category the right-
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hand side is RSJ eC ◦ (q∗OP⊗) ◦ Ri∗. So by Proposition I.1.1 we have to prove
that

RΦPj ∼= RΦPi ,

where Pj = (j×id)∗P̃ (P̃ is the Poincaré line bundle in P×P ) and Pi = (i×ı)∗P (P
is the Poincaré line bundle in Pic0 C × Pic0 C and ı : P ↪→ Pic0 C is the inclusion).
We want to compare Pj and Pi.

- For L ∈ P , we have Pj | eC×{L} = j∗L = L because j∗ : P → Pic0 C̃ is the
natural inclusion.

- For L ∈ P , we have Pi| eC×{L} = i∗L = L since i is the Albanese map of C̃, so
i∗ is the identity.

- Pj |{p0}×P = P̃
∣∣∣
{j(p0)}×P

= OP .

- Pi|{p0}×P = ı∗(P|{i(p0)}×P ) = ı∗OPic0 C = OP .

Therefore, the claim follows from the Seesaw Theorem [Mu2, Cor. 6, pg. 54].

Now, we are ready to prove the main result of this section.

Theorem 2.9. We have the scheme-theoretic equality

T (C̃) = V 2.

Proof. By Lemma 2.3 we already know the set-theoretic equality that holds in P−

without any choices. Now, in order to avoid all the translations that could com-
plicate the Fourier-Mukai argument, we will work up to translation on P using the
�xed isomorphisms like in Terminology/Notation 2.1.

By Remark II.2.5,
OT ( eC)(Ξ) = Hom(RS(I eC(Ξ)),OP ),

so we want to compute this last sheaf, or construct a comprehensible short exact
sequence where it appears.

Consider p0 the point in C̃ that we have used to de�ne the non-canonical Abel-Prym
map (2.2) and the following short exact sequence in P

0→ I eC/P (Ξ)→ I0/P (Ξ)→ j∗Ip0/ eC(Ξ)→ 0, (2.8)

where we have used that j(p0) = 0 ∈ P . We will work out the Fourier-Mukai trans-
form of this exact sequence and its dual. The transforms of the leftmost sheaf will
provide the sheaves that we want to understand. The middle sheaf is easy to work
with. And the rightmost sheaf can be work out in the Abel-Prym curve.
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First, let us study the Fourier-Mukai transform of j∗Ip0/ eC(Ξ). Recall that our

choices were L′0 = O eC(p0 − σp0) ∈ P ′, L+
0 ∈ P+ and then, L+

0 = L−0 ⊗ L′0 (see
Terminology/Notation 2.1). First, we observe that by the Jacobi Inversion Theorem
2.4 j∗O eC(Ξ) = j∗(σ∗L−0 ⊗ (L′0)−1). Since (L′0)−1 = σ∗L′0, we have j∗O eC(Ξ) =
j∗(σ∗L+

0 ) Hence,
j∗Ip0/ eC(Ξ) = j∗(σ∗L+

0 ⊗O eC(−p0)). (2.9)

Claim 1. j∗Ip0/ eC(Ξ) is a WIT1 sheaf.
Using (2.9) we construct the following exact sequence in P ,

0→ j∗Ip0/ eC(Ξ)→ j∗(σ∗L+
0 )→ k(0)→ 0, (2.10)

where we have used that j∗ is an exact functor and j(p0) = 0. By the previous
Lemma 2.8, j∗(σ∗L+

0 ) is a WIT1 sheaf (observe that σ∗L+
0 ∈ P+, since σ is an

isomorphism, hence it does not change the parity of the number of sections). This
proves Claim 1, i.e. j∗Ip0/ eC(Ξ) is a WIT1 sheaf.

Now, apply the Fourier-Mukai transform to the short exact sequence (2.8) using
Example II.2.6 to describe R1S(I0/P (Ξ)) as OΞ,

0→ R1S(I eC/P (Ξ))→ OΞ → R1S(j∗Ip0/ eC(Ξ))→ R2S(I eC/P (Ξ))→ 0.

The set-theoretic support of R1S(I eC/P (Ξ)) is included in V 1(I eC/P (Ξ)) that has
codimension 3 in P (see Proposition 2.7 and Theorem 2.5). Hence, from the exact
sequence we get R1S(I eC/P (Ξ)) = 0. Thus, we have already computed that the
Fourier-Mukai transform of the exact sequence (2.8) is simply

0→ OΞ → R1S(j∗Ip0/ eC(Ξ))→ R2S(I eC/P (Ξ))→ 0. (2.11)

In particular, we have seen that I eC/P (Ξ) satis�es WIT2, so

RS(I eC/P (Ξ)) = R2S(I eC/P (Ξ))[−2]. (2.12)

Now, we apply the functor RHom( · ,OP ) to (2.11). We get

Hom(R2S(I eC/P (Ξ)),OP ) ∼= Hom(R1S(j∗Ip0/ eC(Ξ)),OP ) (2.13)

and,

0→ Ext1(R2S(I eC/P (Ξ)),OP )→ Ext1(R1S(j∗Ip0/ eC(Ξ)),OP )→ OΞ(Ξ)→

→ Ext2(R2S(I eC/P (Ξ)),OP )→ Ext2(R1S(j∗Ip0/ eC(Ξ)),OP )→ 0. (2.14)

Let us compute some terms of this last long exact sequence.
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Claim 2. Ext2(R2S(I eC/P (Ξ)),OP ) = OT ( eC)(Ξ).
By Remark II.2.5,

OT ( eC)(Ξ) ∼= Hom(RS(I eC/P (Ξ)),OP )
∼= Hom(R2S(I eC/P (Ξ))[−2],OP ) by (2.12), I eC/P (Ξ) is WIT2

∼= Ext2(R2S(I eC/P (Ξ)),OP ). (2.15)

In particular, by Theorem 2.5, we have

codimP Ext2(R2S(I eC/P (Ξ)),OP ) > 3. (2.16)

Claim 3. Ext1(R2S(I eC/P (Ξ)),OP ) = 0.
Observe that, Ext1(R2S(I eC/P (Ξ)),OP ) = Ext−1(RS(I eC/P (Ξ)),OP ) that by Gro-

thendieck-Verdier duality I.1.6 is Rg−1S R∆(I eC/P (Ξ)). By base change, we have

that suppRg−1S R∆(I eC/P (Ξ)) ⊆ V g−1(R∆(I eC/P (Ξ))) = −V 1(I eC/P (Ξ)) (the last
equality, follows from Grothendieck-Serre duality I.1.5), so

codimP Ext1(R2S(I eC/P (Ξ)),OP ) > 3, (2.17)

by Proposition 2.7 and Theorem 2.5.
Since P is smooth, the functor RHom( · ,OP ) is an involution on Db(P ). Thus there
is a fourth quadrant spectral sequence

Ei,j2 :=Ext i
(
(Ext−j(R2S(I eC/P (Ξ)),OP),OP

)
⇒ Hi+j=

{
R2S(I eC/P (Ξ)) if i+j=0
0 otherwise.

We have the following

codimP supp Ext1(R2S(I eC/P (Ξ)),OP ) > 3, by (2.17)

codimP supp Ext2(R2S(I eC/P (Ξ)),OP ) > 3, by (2.16)

Ext i(R2S(I eC/P (Ξ)),OP ) = 0 for all i > 2.

Recall that Ext l(F ,OP ) = 0 for all l < codimP suppF . Then the previous spectral
sequence yields to the following short exact sequence

0→ R2S(I eC/P (Ξ))→ Hom(Hom(R2S(I eC/P (Ξ)),OP ),OP )→

→ Ext3(OT ( eC)(Ξ),OP )→ 0. (2.18)

By (2.10) and Claim 1,

0→ OP → R1S(j∗Ip0/ eC(Ξ))→ R1S(j∗(L+
0 ))→ 0. (2.19)
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And suppR1S(j∗(L+
0 )) ⊆ V 1(j∗(L+

0 )) = Ξ. Therefore, R1S(j∗Ip0/ eC(Ξ)) has (generic)
rank 1. By (2.13), Hom(Hom(R2S(I eC/P (Ξ)),OP ),OP ) is a re�exive sheaf of rank
1, hence a line bundle. Thus, dualizing (2.18) we get Claim 3, i.e.

Ext1(R2S(I eC/P (Ξ)),OP ) = 0.

Claim 4. Ext2(R1S j∗Ip0/ eC(Ξ),OP ) = 0.
We will prove the claim by constructing quite big diagrams that will be useful in
the sequel. Consider D an e�ective divisor on C̃ of su�ciently high degree m � 0
and the following diagram

0

��

0

��
0 // j∗Ip0/ eC(Ξ) //

��

j∗(σ∗L+
0 ⊗O eC(D − p0)) //

��

j∗OD // 0

0 // j∗(L+
0 ) //

��

j∗(σ∗L+
0 ⊗O eC(D)) //

��

j∗OD // 0

k(0)

��

k(0)

��
0 0

Observe that j∗OD and k(0) are IT0 sheaves since they are supported in dimension
0. For D of su�ciently high degree m � 0, the sheaves j∗(σ∗L+

0 ⊗ O eC(D − p0))
and j∗(σ∗L+

0 ⊗ O eC(D)) are IT0. If we apply the Fourier-Mukai transform to the
previous diagram we obtain the following commutative diagram

0

��
0

��

OP

��
0 // E2

M //

��

E1 // R1S Ip0/ eC(Ξ) //

��

0

0 // E0
N //

��

E1 // R1S j∗(σ∗L+
0 ) //

��

0

OP

��

0

0

(2.20)
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where the sheaves Ei are locally free of rank rk E0 = rk E1 = m and rk E2 = m− 1.
The top short exact sequence implies Claim 4, i.e.

Ext2(R1S j∗Ip0/ eC(Ξ),OP ) = 0.

Combining Claims 2, 3 and 4 with (2.14) we get

0→ Ext1(R1S(j∗Ip0/ eC(Ξ)),OP )→ OΞ(Ξ)→ OT ( eC)(Ξ)→ 0.

Hence Ext1(R1S(j∗Ip0/ eC(Ξ)),OP ) ∼= IT ( eC)/Ξ(Ξ). Now, we will focus on the equa-

tions of T (C̃) inside Ξ, that is, we will look for IT ( eC)/Ξ(Ξ) instead of OT ( eC)(Ξ). If
we dualize the diagram (2.20) we obtain

0

��
0

��

Hom(R1S Ip0/ eC(Ξ),OP )

��
OP

��

OP

��
0 // E∨1

Nt // E∨0 //

��

Ext1(R1S j∗(σ∗L+
0 ),OP )

��

// 0

0 // Hom(R1S Ip0/ eC(Ξ),OP ) // E∨1
Mt

// E∨2

��

// IT ( eC)/Ξ(Ξ) //

��

0

0 0
(2.21)

From the last row of the previous diagram (2.21) we have the following exact se-
quence on Ξ,

E∨1 ⊗OΞ

Mt|Ξ // E∨2 ⊗OΞ
// IT ( eC)/Ξ(Ξ) // 0.

Recall that rk E1 = rk E2 + 1 = m. Hence T (C̃) corresponds to the determinantal
scheme where M t|Ξ drops rank. That is,

IT ( eC)/Ξ
∼= Fitt1

(
IT ( eC)/Ξ(Ξ)

)
= Fitt1

(
Ext1(R1S j∗Ip0/ eC(Ξ),OP )⊗OΞ

)
∼= Fitt1

(
Ext1(R1S j∗Ip0/ eC(Ξ),OP )

)
⊗OΞ by Prop. II.2.2.

The determinants ofM t are the same of those ofM . So, going back to the �rst hor-
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izontal short exact sequence in (2.20) we get Fitt1

(
Ext1(R1S j∗Ip0/ eC(Ξ),OP )

)
=

Fitt2

(
R1S j∗Ip0/ eC(Ξ)

)
i.e.

IT ( eC)/Ξ = Fitt2

(
R1S j∗Ip0/ eC(Ξ)

)
⊗OΞ.

The Fitting ideals are computed locally (in fact, they can be computed locally
because they commute with arbitrary base change, see Proposition II.2.2). Choose
a covering of P by open a�ne subsets such that, in any of these open subsets, the
�rst vertical short exact sequence of diagram (2.20) splits. Then, we can choose
basis such that in these open sets the matrices representing M and N are

N =
(

M ∗
0 · · · 0 1

)
.

Hence, diagram (2.20) shows that Fitt2

(
R1S j∗Ip0/ eC(Ξ)

)
= Fitt2

(
R1S j∗(σ∗L+

0 )
)

i.e.
IT ( eC)/Ξ

∼= Fitt2

(
R1S j∗(σ∗L+

0 )
)
⊗OΞ.

Therefore, we have IT ( eC)/Ξ in terms of L+ that by Lemma 2.8 allows us to jump to

the Jacobian. More precisely, by Lemma 2.8 R1S j∗(σ∗L+
0 ) ∼= R1SJ eC i∗(σ∗L+

0 ) ⊗
OP , so

IT ( eC)/Ξ
∼=
(
Fitt2(R1SJ eC i∗(σ∗L+

0 ))⊗OJ eC OP
)
⊗OP OΞ by Prop. II.2.2

∼= I(W 2
g̃−1( eC)∩P )/P ⊗OP OΞ by Def. (1.1)

∼= IV 2/Ξ by Def. 2.2.

So we have proved the schematic equality V 2 = T (C̃) (up to translation).

2.5 The cohomological support loci of I eC(2Ξ)

In this section we determine the cohomological support loci of the ideal sheaf
I eC(2Ξ+). In the proof of the next Theorem, we will need to know that the set

S(C̃) of theta-characteristics of C̃ has a point in P−. It is not much more work to
show the stronger lemma below.

Lemma 2.10 ([CLV, Lem. 4.1]). A theta-characteristic L ∈ S(C̃) belongs to
Nm−1(ωC) = P+ ∪ P− if and only if it is the pull-back of a theta-characteristic
M on C. Moreover, it holds that∣∣∣S(C̃) ∩ P−

∣∣∣ =
∣∣∣S(C̃) ∩ P+

∣∣∣ = 22g−1.
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Proof. If M is a theta-characteristic on C, then π∗(M) ∈ S(C̃) ∩Nm−1(ωC) as{
Nm(π∗(M)) = M⊗2 = ωC ,

π∗(M)⊗2 = π∗(M⊗2) = π∗(ωC) = ω eC .
Conversely, if L⊗2 = ω eC and Nm(L) = ωC , then

L⊗ L = ω eC = π∗(ωC) = π∗(Nm(L)) = L⊗ σ∗L,

which implies that L = π∗(M) for some M ∈ Pic(C). By applying the Norm map,
we obtain ωC = Nm(L) = Nm(π∗(M)) = M⊗2.
Moreover, if we denote by η0 the line bundle of order two on C satisfying π∗(O eC) =
OC ⊕η0, then the pull-back π∗(M) of a theta-characteristic M on C belongs to P−

if and only if h0(C,M) 6≡ h0(C,M ⊗ η0) mod 2 (and to P+ otherwise), as follows
from the formula H0(C̃, π∗(M)) = H0(C,M)⊕H0(C,M ⊗ η0).
Now, �x a theta-characteristic M0 of C. Then all the theta-characteristics of C are
of the form M0⊗ η for a unique η ∈ J2(C), where J2(C) is the group of the 22g line
bundles of C whose square is trivial. Consider the following map

q0 : J2(C) −→ Z/2Z
η 7−→ h0(M0 ⊗ η ⊗ η0)− h0(M0 ⊗ η) mod 2

The Riemann-Mumford relation (see [Mu1, p. 182]) yields

q0(η) = q0(η0) + ln e2(η, η0),

where e2 : J2(C)×JC → {±1} is the Riemann skew-symmetric bilinear form (recall
that char(k) 6= 2) and ln is de�ned by ln(+1) = 0 and ln(−1) = 1. From the non-
degeneracy of the form e2 and the fact that η0 6= OC , it follows that the function

J2(C) −→ {±1}
η 7−→ e2(η0, η)

takes half the times the value +1 and half the value −1. This concludes our proof.

The next proposition is a generalization of [IvS, Lemma 2.4], where Izadi and van
Straten prove it for the case of genus four curves. They attribute the idea of the
proof to Beauville.

Proposition 2.11 ([CLV, Prop. 4.3]). If L ∈ P− is not a theta-characteristic,
then the restriction map

φL : H0(P ′,OP ′(2Ξ+
L))→ H0(C̃,O eC(2Ξ+

L))

is surjective.
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Proof. We start by proving that a general α ∈ Ξ+
L ⊂ P ′ satis�es

(a) (−1)∗(α) = α−1 6∈ Ξ+
L ,

(b) |L⊗ α| is a pencil without base points.

The �rst assertion follows from the fact that Ξ+
L is not symmetric. Indeed, Ξ+

L is
symmetric if and only if L is a theta-characteristic (see [BL, Thm. 11.2.4]), which
we have excluded by hypothesis.
The fact that the complete linear series |L⊗ α| is a pencil for a general α ∈ Ξ+

L

follows from the fact that a generic element L ∈ Ξ+ has h0(L) = 2.
Now we want to see that the linear system |L⊗ α| has no base points for a general
α ∈ Ξ+

L . Consider the incidence variety

Ξ+
L × C̃

I = {(α, p) | p is a base point of |L⊗ α|}
?�

OO

p1

ttiiiiiiiiiiiiiiiiiiii

p2

**TTTTTTTTTTTTTTTTTTTT

Ξ+
L C̃

For every point q ∈ C̃, the following injection

p−1
2 (q) −→ V 2

α 7−→ α⊗ L⊗O(−q + σq)

is well-de�ned since q is a �xed point of |L⊗ α|. Therefore, by Theorem 2.5, the
�bers of p2 have dimension at most g− 4 and hence I has dimension at most g− 3.
Since the dimension of Ξ+

L is g − 2, this implies that the �rst projection is not
dominant and hence the conclusion.
Now we want to �nd elements in H0(P ′,OP ′(2Ξ+

L)) that form a basis when we
restrict them to H0(C̃,O eC(2Ξ+

L)). From Proposition 2.4 and the fact that L is not a

theta-characteristic, we get that h0(C̃,O eC(2Ξ+
L) = h0(C̃, σ∗L⊗2) = g̃−1. We begin

by choosing an α ∈ Ξ+
L ⊂ P− satisfying the two conditions above. In particular,

from the condition (2), we can choose an e�ective divisor Lα =
∑

16i6g̃−1 xi ∈
|L⊗ α| such that all the points xi are distinct.3

We de�ne the following e�ective divisors in P−

Lα,j := Lα − xj + σxj = σxj +
∑
i 6=j

xi for j = 1, . . . , g̃ − 1.

3The multiple points correspond to rami�cation points of the morphism to P1 induced by a
pencil inside |L⊗ α|.
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By condition (2), we get that h0(P ′,OP ′(Lα,j)) = 1 and therefore, by Proposition

2.4,
(

Ξ+
Lα,j

)
| eC = σLα,j .

Next, consider the line bundle L⊗α−1⊗O eC(xj−σxj) ∈ P−. Since h0(C̃, L⊗α−1) =
0 by condition (1), using Mumford's parity trick we deduce that

h0(C̃, L⊗ α−1 ⊗O eC(xj − σxj)) = 1.

De�ne L′α,j to be the unique e�ective divisor of
∣∣L⊗ α−1 ⊗O eC(xj − σxj)

∣∣. By

Proposition 2.4, we get that
(

Ξ+
L′α,j

)∣∣∣ eC = σL′α,j .

Summing up, we have constructed g̃ − 1 couples of divisors (Lα,j , L′α,j) satisfying
OP ′(Ξ+

Lα,j
+ Ξ+

L′α,j
) ∼= OP ′(2Ξ+

L),(
Ξ+
Lα,j

+ Ξ+
L′α,j

)∣∣∣ eC = σLα,j + σL′α,j .

It remains to show that the g̃−1 divisors σLα,j +σL′α,j corresponds to independent

sections on H0(C̃, 2 · σL). This will follow from the next,

Claim: σxj 6∈ σLα,j + σL′α,j and σxj ∈ σLα,k + σL′α,k for every k 6= j.
By the de�nition of the Lα,j and using that σ has no �xed points, we get that
σxj 6∈ σLα,j while σxj ∈ σLα,k for every k 6= j. Finally, observe that σ∗O eC(L′α,j)⊗
O eC(xj − σxj) = σ∗(L ⊗ α−1) which by condition (1) has no sections. This can
happen only if σL′α,j − σxj is not e�ective, or in other words σxj 6∈ σL′α,j .

Now we are ready to compute the cohomological support loci for the ideal sheaf I eC
twisted by 2Ξ. In this case is not so clear what should be the canonical cohomological
support loci of I eC(2Ξ).

Proposition 2.12 ([CLV, Thm. 4.2]). The cohomological support loci for the ideal
sheaf I eC(2Ξ) are

(a) V 0(I eC(2Ξ)) = P if g > 4 and V 0(I eC(2Ξ)) is a point q0 = ω eC ⊗ σ∗(L−0 )−2 if
g = 3.

(b) V 1(I eC(2Ξ)) = V 2(I eC(2Ξ)) = {q0}.

Proof. Consider the exact sequence de�ning the ideal sheaf I eC twisted by the divisor
2Ξ+

L with L ∈ P−:

0→ I eC(2Ξ+
L)→ OP ′(2Ξ+

L)→ ∗O eC(2Ξ+
L)→ 0.

By taking cohomology and using the vanishing Hj(P ′,OP ′(2Ξ+
L)) = 0 for j > 0, we
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get the emptiness of V i(I eC(2Ξ)) for i > 3 and two exact sequences

0→ H0(I eC(2Ξ+
L))→ H0(OP ′(2Ξ+

L))
φL→ H0(O eC(2Ξ+

L))→ H1(I eC(2Ξ+
L))→ 0,

0→ H1(O eC(2Ξ+
L))→ H2(I eC(2Ξ+

L))→ 0.

By Proposition 2.4, we have that O eC(2Ξ+
L) = σ∗L2 and therefore the second exact

sequence implies that

V 2(I eC(2Ξ)) =
{
L ∈ P h1(C̃, σ∗(L−0 )2 ⊗ L) > 0

}
=
{
L ∈ P ω eC = σ∗(L−0 )2 ⊗ L)

}
,

that is non-empty because S(C̃) ∩ P− 6= ∅ according to Lemma 2.10. Hence we
denote q0 = ω eC ⊗ σ∗(L−0 )−2. Moreover, from the Proposition 2.11 and the �rst
exact sequence, we have that V 1(I eC(2Ξ)) ⊆ {q0}.
In order to determine V 0(I eC(2Ξ)), we consider the �rst above exact sequence. If
g > 4, then we have the inequality

h0(P,OP (2Ξ)) = 2g−1 > 2g − 1 = g̃ > h0(C̃,O eC(2Ξ)),

from which we conclude that

V 0(I eC(2Ξ)) = P if g > 4.

On the other hand, if g = 3 and L is not a theta-characteristic, then the map φL is
a surjection (see Proposition 2.11) between two spaces of the same dimension and
therefore an isomorphism. This implies that

V 0(I eC(2Ξ)) ⊆
{
L ∈ P ω eC = σ∗(L−0 )2 ⊗ L)

}
if g = 3.

We deduce that in any case the ideal I eC(2Ξ) is a GV-sheaf and hence, by Corollary
I.1.13 we get that

{q0} = V 2(I eC(2Ξ)) ⊆ V 1(I eC(2Ξ)) ⊆ V 0(I eC(2Ξ)),

which gives the desired conclusion.





Chapter

IV

A Geometric

Schottky Problem

Introduction

There is a classical result in projective geometry, due to Castelnuovo, saying that
a �nite collection of points in Pr which is in linearly general position, but in spe-
cial position with respect to quadrics, is contained in a unique rational normal curve.

Pareschi and Popa [PP4] have discovered an analogy for a g-dimensional princi-
pally polarized abelian varieties (A,Θ), where, as for the theta-duality, divisors al-
gebraically equivalent to Θ play the role of hyperplanes, and divisors algebraically
equivalent to 2Θ play the role of quadrics. The Castelnuovo result of Pareschi and
Popa says that if we have g + 2 distinct points on A, in a suitable sense general
with respect to Θ, but special with respect to 2Θ, then A is the Jacobian of a curve
C, and the g + 2 points are contained in an Abel-Jacobi curve, i.e. a translate of
C embedded into its Jacobian. Thus, Abel-Jacobi curves play the role of rational
normal curves, and the analogue of Castelnuovo's result contains a Schottky state-
ment. Moreover, as a corollary they also get a Torelli statement.

We extend this Pareschi and Popa result [PP4] to possibly non-reduced subschemes
(see Theorem 6.1). We remark that, already the fact that a subscheme Γ as in the
theorem is contained in a non-singular curve (i.e. Γ is curvilinear) is not obvious.
On the other hand, the converse to the theorem is easy, as we explain in Section 3.1:
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A �nite degree g + 2 subscheme Γ of a curve C imposes less than g + 2 conditions
on general 2Θ-translates in the Jacobian.

In the �rst section of this chapter we introduce some preliminaries on �nite schemes
�xing our notation and terminology. In Section �2, we study the theta-dual of a
�nite scheme, giving special attention to the case of the theta-dual of a non-reduced
point of degree 2 in an arbitrary principally polarized abelian variety and in the
particular case of Jacobian varieties. We also de�ne the theta-general position as
an analogue of linearly general position on projective spaces.

In Section �3, we start the study of the dependence locus, i.e. the locus parame-
terizing the α's such that a �xed �nite subscheme Γ does not impose independent
conditions on |2Θ⊗ α|. We say that Γ is superabundant when this locus is the
whole variety A. We prove that if Γ is superabundant and in theta-general posi-
tion, it has at least degree g + 2.

The fourth section is the technical core of this chapter. We show that theta-general
superabundant �nite schemes Γ of degree g + 2 are very special. In particular, we
prove that they are curvilinear. The way to study them is to establish schematic
inclusions among theta-duals and dependence loci of subschemes of Γ. In Sec-
tion �5 we give another schematic inclusion that yields to the construction of a
1-dimensional family of trisecants.

Finally, in Section �6 we state and prove the above mentioned main theorem of
this chapter. Its Schottky part depends on the characterization of Jacobians by de-
generate trisecants to the Kummer variety due to Welters [W2]. The Castelnuovo
part follows from one of the schematic inclusions proved in Section �4. The Torelli
statement is consequence of the previous ones by the original argument of Pareschi
and Popa.

Our approach di�ers from that of Pareschi and Popa by our systematic use of the
Fourier-Mukai transform and the control of the schematic structures involved in the
proofs.

The results of this chapter of the Thesis has been obtained in collaboration with
Martin Gulbrandsen and are still unpublished [GL].
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1 Preliminaries of �nite schemes

In this chapter the ambient space will be a principally polarized abelian variety
(A,Θ) over an algebraically closed �eld k of characteristic di�erent from 2. The
dimension of A will always be denoted by g.

Γ will usually denote a �nite subscheme in A. Hence, Γ = SpecR, where R is an
Artin ring. By the structure theorem for Artin rings, R =

⊕
Rm, where the sum is

taken over all the maximal ideals m of R. We will denote the degree of Γ by deg Γ,
i.e the dimension of R as a k-vector �eld. Since R is an Artin ring and k is an
algebraically closed �eld, Γ has a composition series, i.e. a series of subschemes

Γ1 ⊂ Γ2 ⊂ · · · ⊂ Γd = Γ,

where Γi has degree i (e.g. [Ei, Thm. 2.13]).

Suppose that (R,m) is a local Artin ring. We will denote by Soc(R) = (0 : m) the
socle of R, i.e. the elements in R annihilated by its maximal ideal m. We will say
that SpecR is Gorenstein if, and only if, R is Gorenstein, i.e. the socle Soc(R) is
one dimensional as a vector space (e.g. [Ei, Thm. 21.5]).

We will say that an arbitrary �nite scheme Γ, not necessarily supported in a unique
point, is Gorenstein if, and only if, any component of Γ is Gorenstein. In other
words, Gorenstein means that the choice of a closed point b ∈ Γ uniquely deter-
mines a subscheme Γ′ ⊂ Γ, such that deg Γ′ + 1 = deg Γ and supp IΓ′/Γ = b.

A �nite scheme Γ = SpecR supported at a unique closed point is called curvilinear
if the maximal ideal of the (necessarily local) ring R is generated by one element;
or, equivalently, if its Zariski tangent space has dimension zero or one. (The name
comes from the fact that these are exactly the schemes that can be contained in a
non-singular curve).

We will say that an arbitrary �nite scheme Γ, not necessarily supported in a unique
point, is curvilinear if, and only if, any component of Γ is curvilinear.

Eisenbud and Harris prove in [EH, Lemma 1.4], that a local Gorenstein Artin ring
(R,m) gives a curvilinear �nite scheme Γ = SpecR if, and only, if dimk(m)(0 : m2) 6
2. Geometrically, this corresponds to the fact that a �nite scheme is curvilinear if,
and only if,

- it is Gorenstein, i.e. the choice of a closed point b ∈ Γ uniquely determines a
subscheme Γ′ ⊂ Γ, such that deg Γ′ + 1 = deg Γ and supp IΓ′/Γ = b,

- and, any subscheme Γ′ of Γ of codegree 1 is Gorenstein, i.e. the choice of a
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closed point (possibly equal to b) a ∈ Γ′ uniquely determines another sub-
scheme Γ′′ ⊂ Γ′, such that deg Γ′′ + 1 = deg Γ′ and supp IΓ′′/Γ′ = a.

We will usually deal with coherent sheaves supported on a �nite subscheme. In
particular, since the �nite subschemes are a�ne, these sheaves will not feel the
twist by a line bundle. Hence, when a sheaf is supported in a �nite subscheme, we
will systematically omit the eventual twisting line bundle.

1.1 Residual subschemes

First, we want to study some simple properties of �nite schemes.

De�nition 1.1. Let Γ be a �nite scheme and Γ′ ⊂ Γ a subscheme. The residual
subscheme of Γ′ in Γ is the support

Γ′′ = supp IΓ′/Γ

of the ideal of Γ′ in Γ. If IΓ′/Γ is a principal ideal, then we say that Γ′′ is well-formed .

Remark 1.2. When the residual subscheme is well-formed, we may identify IΓ′/Γ

with the structure sheaf OΓ′′ , so have a short exact sequence

0→ OΓ′′ → OΓ → OΓ′ → 0.

Indeed, suppose that A is the artinian module OΓ and I = (f) is the principally
generated ideal IΓ′/Γ. Then there is a natural isomorphism I ∼= A/Ann(I), coming
form the usual exact sequence

0→ Ann(I)→ A
f ·→ I → 0.

Hence OΓ′′
∼= IΓ′/Γ. In particular, there is an equality

[Γ] = [Γ′] + [Γ′′] (1.1)

between the underlying zero-cycles.

Remark 1.3. (a) If the union Γ′∪Γ′′ denotes the subscheme de�ned by the prod-
uct of the corresponding ideals, then it is immediate from the de�nition of the
residual subscheme (not necessarily well-formed) that

Γ ⊂ Γ′ ∪ Γ′′.

(b) In particular, if D is an e�ective divisor containing Γ′, then there is an in-
clusion of ideals

IΓ′′(−D) ⊂ IΓ.
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That is, if D is an e�ective divisor containing Γ′, then there is a non-trivial
section of H0(A, IΓ′(D)) which de�nes an inclusion OA ⊂ IΓ′(D). Tensoring
by OA(−D) and multiplying by IΓ′′ on both sides of the inclusion, we obtain

IΓ′′(−D) ⊂ IΓ′′ · IΓ′ ⊂ IΓ.

Example 1.4. If Γ′ has degree deg Γ− 1, then the ideal IΓ′/Γ is isomorphic to the
residue �eld k(x) of the unique closed point x where Γ′ and Γ di�er. Thus x is the
residual point of Γ′ in Γ, and it is well-formed.

Example 1.5. If Γ is curvilinear, and Γ′ ⊂ Γ is arbitrary, then the residual sub-
scheme Γ′′ is well-formed. In fact, it is uniquely determined by (1.1).

Example 1.6. If Γ = Spec k[x, y]/(x2, xy, y2) and Γ′ is the origin, then it is clear
that the data given does not distinguish any degree 2 subscheme of Γ. Indeed, the
residual subscheme is just the origin again, so it is not well-formed.

Lemma 1.7. If Γ is Gorenstein, and Γ′ ⊂ Γ has degree deg Γ−2, then the residual
subscheme Γ′′ of Γ′ in Γ is well-formed.

Proof. If Γ′ and Γ di�er at two distinct points x and y, then the ideal of Γ′ in Γ is
just k(x)⊕ k(y) and thus Γ′′ = {x, y}.
On the other hand, if Γ′′ and Γ di�er at a single point x, then locally at x, we have

Γ = Spec(R)

for a local Artin Gorenstein ring R. The ideal of Γ′′ in R is two dimensional as a
vector space. Hence it is either a principal ideal, or it is generated by two linearly
independent elements of the socle of R. The Gorenstein assumption rules out the
latter possibility, so the ideal of Γ′′ in R is principal.

Remark 1.8. Already in the slightly simple case in Example 1.4, the viewpoint, that
the residual point is de�ned as the support of the relative ideal, has the advantage
that the de�nition works well in families: Thus, if S is an arbitrary base scheme,
and Z ′ ⊂ Z are two �at and �nite schemes over S of degree d− 1 and d, then the
support of the ideal IZ′/Z de�nes a section S → Z of the structure map. We call
this the residual section of Z ′ in Z.

We view the residual subscheme Γ′′ as a complement to Γ′ in Γ. The following
proposition, where Γ′′ does not need to be well-formed, �ts well with this intuition.
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Proposition 1.9. Let Γ′ ⊂ Γ be �nite subschemes with residual subscheme Γ′′, and
let D be an e�ective divisor satisfying D ∩ Γ = Γ′. Then, for any other e�ective
divisor E, we have

Γ ⊂ D + E if and only if Γ′′ ⊂ E.

Proof. The statement is local, so let I and I ′ be the ideals of Γ and Γ′ in some
a�ne chart. The quotient I ′/I is the relative ideal of Γ′ in Γ. Let d and e be local
equations for D and E. We want to show that de ∈ I if and only if e annihilates
I ′/I. The hypothesis D ∩ Γ = Γ′ says that

(d) + I = I ′

and so (the image of) d generates I ′/I. Thus e annihilates I ′/I if and only if the
image of ed in I ′/I vanishes, which means that ed ∈ I as claimed.

1.2 Intermediate subschemes

Let Γ′′ ⊂ Γ be �nite subschemes of degrees d and d + 2, with well-formed residual
subscheme S, of degree 2. If Γ were a disjoint union Γ = Γ′′ ∪ S, then there is an
obvious family of subschemes parameterizing all the degree d + 1 subschemes of Γ
that contain Γ′′, namely

Γ′′S ⊂ (Γ′′ × S) ∪ S1 ⊂ ΓS

where we write ΓS for the product Γ × S and S1 ⊂ S × S is the diagonal. Such a
family exists in general: Denoting by S2 ⊂ S×S the residual section to the diagonal
S1 ⊂ S × S, we have the following:

Proposition 1.10. Let Γ′′ ⊂ Γ be �nite schemes of degrees d and d+2, and assume
the residual subscheme S is well-formed. Then there exists Z an intermediate S-
scheme,

Γ′′S ⊂ Z ⊂ ΓS

which is �at and �nite of degree d+1 over S, and such that S1 is the residual section
of Γ′′S in Z, and S2 is the residual section of Z in ΓS.

Proof. Let A be the a�ne coordinate ring of Γ, and let I = IΓ′/Γ ⊂ A be the ideal
corresponding to Γ′′. Thus the subscheme S ⊂ Γ corresponds to IS/Γ = Ann(I),
and ΓS has coordinate ring OΓS = A ⊗k (A/Ann(I)). Let J denote the kernel of
the multiplication map

I ⊗k (A/Ann(I))→ I.

Then the family Z de�ned by the ideal J has the required properties: Let B =
(A ⊗k (A/Ann(I)))/J be the coordinate ring of Z. Then there is the following
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commutative diagram

0

��

0

��
J

��

J

��
0 // I ⊗A/Ann(I) //

��

A⊗A/Ann(I) //

��

A/I ⊗A/Ann(I) // 0

0 // I //

��

B //

��

A/I ⊗A/Ann(I) // 0

0 0

with exact rows and columns. By well-formedness (see Remark 1.2), I ∼= A/Ann(I) =
OS , hence J can be seen also as the kernel of the multiplication map OS ⊗k OS →
OS , so J is the ideal of the diagonal inside S × S (or Γ× S).
B is a �at A/Ann(I)-module since I is principal, hence �at and A/I ⊗ A/Ann(I)
is trivially �at. It follows that B is �at of degree d + 1 as an A/Ann(I)-module.
The rest is straight forward.
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2 Theta-dual of �nite schemes and theta-general

position

Let Γ be a �nite subscheme of a principally polarized abelian variety (A,Θ). We
want to study in detail the theta-dual T (Γ) (see section II.2 to recall its de�nition).

Consider the short exact sequence

0→ IΓ(Θ)→ OA(Θ)→ OΓ → 0.

By dimension reasons, OΓ is IT0. By Proposition 1.2, the sheaf OA(Θ) is also IT0

and its Fourier-Mukai transform is the line bundle OA(−Θ). Since R0S(IΓ(Θ)) is
a torsion sheaf included in a line bundle it is 0. Hence, IΓ(Θ) satis�es WIT1. Thus
the Fourier-Mukai transform gives a short exact sequence

0→ OA(−Θ) FΓ−−→ ÔΓ → ÎΓ(Θ)→ 0. (2.1)

We recall that T (Γ) is the Fitting support supp Ext1(ÎΓ(Θ),OA) (see De�nition
II.2.1 and Remark II.2.5). By base change, since OΓ is IT0, ÔΓ is locally free. Hence

T (Γ) is precisely the locus where ÎΓ(Θ) fails to be locally free, or equivalently, the
zero locus of FΓ. Therefore, for a �nite subscheme we have the following equivalent
de�nition of theta-dual.

De�nition 2.1. The theta-dual T (Γ) of a �nite subscheme Γ ⊂ A is the closed
subscheme of A de�ned by the vanishing of FΓ in (2.1).

Example 2.2. When Γ = {p1, . . . , pd} is �nite collection of distinct points, T (Γ) =⋂d
i=1 T (pi) =

⋂d
i=1 Θpi .

Remark 2.3. Let Γ a �nite scheme of degree d. Since FΓ in (2.1) is locally a
matrix d×1, and T (Γ) is de�ned as the vanishing locus of F , it is clear that T (Γ) is
locally de�ned by d equations. This implies, for example, that if S is a �nite scheme
of degree 2, T (S) has codimension 2.
Moreover if, Γ ⊂ Γ′ is a subscheme of degree d + 1, then T (Γ′) ⊆ T (Γ) (compare
with Lemma II.2.7) and for each reduced and irreducible component W of T (Γ),
the intersection T (Γ′) ∩W either equals W or has codimension 1 in W , since it is
locally de�ned by one equation.
In particular if Γ is a �nite scheme of degree d 6 g − 1, every component of T (Γ)
has at least dimension 1, and for Γ ⊂ Γ′, T (Γ) \ T (Γ′) is empty or it has at least
dimension 1 too.

Theta-dual of a non-reduced scheme of degree 2. Already the �rst example
of theta-dual of a non-reduced subscheme is interesting.



2. Theta-dual of �nite schemes and theta-general position 59

Example 2.4. Let S be a non-reduced scheme of degree 2 supported at b. Then
T (S) is the scheme of zeroes of the corresponding section s ∈ H0(OΘb(Θb)). Indeed,
T (S) is precisely the locus where ÎS(Θ) fails to be locally free. From the typical
exact sequence 0 → IS(Θ) → Ib(Θ) → k(b) → 0, we have the following exact
sequence:

0→ k̂(b)→ ÎS(Θ)→ Îb(Θ)→ 0.

That is, by Example II.2.6,

0→ Pb
ψ→ ÎS(Θ)→ OΘb ⊗ Pb → 0. (2.2)

Hence, the extension ÎS(Θ) correspond to a non-zero (by the non-reduceness of
S) section of Ext1(OΘb ,OA) ∼= H0(Ext1(OΘb ,OA)) ∼= H0(OΘb(Θb)), and the locus

where ÎS(Θ) fails to be locally free correspond to the locus where the section van-
ishes. We can consider the tangent vector v ∈ H0(TA) ∼= H1(OA) ∼= H0(OΘ(Θ)) ∼=
H0(OΘb(Θb)) and the section s is the image of v through this sequence of isomor-
phisms.

Let us compute precisely ÎS(Θ). From exact sequence (2.1) and Remark 2.3, observe
that

codimA Ext i(ÎS(Θ),OA) > i+ 1 for all i > 0.

By a well-known result (e.g. [PP7, Lem. A.5]), ÎS(Θ) is a torsion-free sheaf of

generic rank 1, hence an ideal sheaf. By De�nition 2.1, the locus where ÎS(Θ) fails
to be locally free is exactly T (S), so we have that ÎS(Θ) = IT (S) ⊗L, where L is a
line bundle.
By the previous exact sequence (2.2), it is clear that ψ is the multiplication by a

section in H0(ÎS(Θ)⊗ P−1
b ) that vanishes of Θb. Hence L ⊗ P−1

b
∼= O(Θb) and

ÎS(Θ) = IT (S)(Θ2b). (2.3)

In fact, the exact sequence (2.2) twisted by P−2
b corresponds to the exact sequence,

0→ IΘb/A(Θ)→ IT (S)/A(Θ)→ IT (S)/Θb(Θ)→ 0. (2.4)

Moreover, this result is coherent with the theta-dual of two distinct points S =
{a, b}. In this case the Fourier-Mukai transform of 0 → IS(Θ) → O(Θ) → k(a) ⊕
k(b)→ 0, is the Koszul exact sequence,

0→ O(−Θ)→ Pa ⊕ Pb → ÎS(Θ)→ 0.

So we also have ÎS(Θ) = IΘa∩Θb(Θa+b) = IT (S)(Θa+b).
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When (A,Θ) is the Jacobian of a curve C with the canonical polarization we have
an explicit description of the theta-dual of an arbitrary subscheme of degree 2.

Example 2.5. Let (A,Θ) be the Jacobian of a curve C of genus g = g(C). For
any two distinct points p, q in C ↪→ Pic1 C, we have the following scheme-theoretic
equality in Picg−1(C)

Wg−1 ∩ (Wg−1)q−p = (Wg−2)−p ∪ (−Wg−2)q−K ,

where K is a canonical divisor of C. Recall that we are using Da = t∗aD = D − a
and we use the same convention for any subvariety in A (compare with [Mu4, pg.
77]). Hence, when S = {a, b} is a reduced scheme of degree 2 supported in two
distinct points

T ({a, b}) = (Wg−2)α ∪ (−Wg−2)−β ,

with α and β depending linearly on a, b and the theta-characteristic chosen to
translate the previous inclusion to Pic0 C.
When S is a non-reduced scheme of degree 2 supported at b and included in C,
consider the �at family over C of the schemes T ({a, b}) varying a ∈ C. For a 6= b
we have seen that the �ber over b is (Wg−2)α ∪ (−Wg−2)β . Then, taking the �at
limit we get,

T (S) = (Wg−2)β ∪ (−Wg−2)−β ,

where β depends linearly on b and the theta-characteristic chosen to translate the
previous inclusion to Pic0 C.

Theta-general position Given a pair Γ′ ⊂ Γ of �nite subschemes of A, we de�ne
T (Γ′,Γ) as the scheme-theoretic closure of T (Γ) \ T (Γ′) in T (Γ), i.e.

T (Γ′,Γ) = T (Γ) \ T (Γ′).

Thus, the underlying set of T (Γ′,Γ) is the closure of the underlying set of T (Γ′)\T (Γ)
which consists of the points a ∈ A satisfying

Γ′ ⊂ Θa 6⊃ Γ.

Next we de�ne theta-genericity: Recall that a �nite subscheme Γ in Pr is in linearly
general position if every subscheme Γ′ ⊆ Γ of degree d 6 r + 1 spans a linear
subspace of dimension d − 1. Equivalently, for any pair of Γ′′ ⊂ Γ′ of subschemes
of Γ, such that

deg Γ′ − 1 = deg Γ′′ 6 r,

there exists a hyperplane containing Γ′′ but not Γ′. Phrased in this way, the con-
dition of linear independence can be carried over to (A,Θ), with theta-translates
replacing hyperplanes.
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De�nition 2.6. A �nite subscheme Γ is theta-general if, for every pair Γ′′ ⊂ Γ′ of
subschemes of Γ satisfying

deg Γ′ − 1 = deg Γ′′ 6 g,

there exists a theta-translate containing Γ′′ but not Γ′.

Note that the condition on Γ′′ ⊂ Γ′ is just that T (Γ′′,Γ′) is non-empty.
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3 Superabundance and dependence loci

Let D ⊂ A be an ample divisor. In later sections, D will be taken to be 2Θ. We are
concerned with the number of independent conditions imposed by a �nite subscheme
Γ on the linear system D. By this we mean the codimension of H0(A, IΓ(D)) in
H0(A,OA(D)). The expected number of conditions imposed is the degree of Γ.
Since D is ample, its higher cohomology spaces vanish, so there is an exact sequence

0→ H0(A, IΓ(D))→ H0(A,OA(D))→ H0(A,OΓ)→ H1(A, IΓ(D))→ 0,

which shows that the H1(A, IΓ(D)) measures the failure of Γ to impose deg Γ in-
dependent conditions.

We will in fact study the number of independent conditions imposed by Γ on all the
linear systems associated to H0(A,OA(D)⊗α) for α ∈ Â. Note that, if α = φD(a),
then this is the translated linear system |t∗aD|.

De�nition 3.1. The superabundance of a �nite subscheme Γ ⊂ A with respect to
D is the value

ω(Γ, D) = dimH1(A, IΓ(D)⊗ α)

for general α ∈ Â. Equivalently, it is the minimal value of the right-hand side, over
α ∈ Â. The subscheme Γ is superabundant if its superabundance is non-zero.

It is also useful to study the locus of points α ∈ Â such that Γ does not impose
independent conditions on H0(A,OA(D)⊗ α).

De�nition 3.2. The dependence locus ∆(Γ, D) is the support of

R1S(IΓ(D)).

Remark 3.3. Note that RiS(IΓ(D)) vanishes for all i > 1. Hence, by base change,
the �ber of R1S(IΓ(D)) at a is

H1(A, IΓ(D)⊗ φΘ(a))

which is non-zero precisely when Γ fails to impose independent conditions on t−1
a D.

Remark 3.4. Using the relative Fourier-Mukai transform over a base S, we can
replace Γ by a family Z ⊂ A × S, �at and �nite over S, and de�ne the relative
dependence locus ∆S(Z,D) as the support of R1SS(IZ(p∗1D)). By the Base Change
Lemma II.1.3, the �ber of ∆S(Z,D) over a point s ∈ S is just the dependence locus
∆(Zs, D) of the �ber Zs.

Consider a pair of �nite subschemes Γ′ ⊂ Γ of degrees d′ and d. Hence, we have an
exact sequence

0→ IΓ(D)→ IΓ′(D)→ IΓ′/Γ → 0, (3.1)
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where the rightmost sheaf has �nite support, and hence doesn't feel the twist by D.
Then, twisting by α and taking cohomologies we have that,

h0(IΓ′(D)⊗ α)− h0(IΓ(D)⊗ α) = (d− d′) + h1(IΓ′(D)⊗ α)− h1(IΓ(D)⊗ α)

Therefore, if Γ fails to impose d independent conditions on H0(A,OA(D) ⊗ α)
(i.e. h1(IΓ(D) ⊗ α) > 0), then either already Γ′ fails to impose d′ independent
conditions, or we have

h0(IΓ′(D)⊗ α)− h0(IΓ(D)⊗ α) < d− d′. (3.2)

We formalize this observation in the schematic setting as follows. Apply the Fourier-
Mukai transform to the exact sequence (3.1). We obtain a right exact sequence

ÎΓ′/Γ
φ−→ R1S(IΓ(D))→ R1S(IΓ′(D))→ 0. (3.3)

Then, we make the following schematic de�nition of the locus of the α that ful�lls
condition (3.2).

De�nition 3.5. Given a pair Γ′ ⊂ Γ of �nite subschemes, their mutual dependence
locus is the closed subscheme

∆(Γ′,Γ, D) = supp
(
ker
(
R1S(IΓ(D))� R1S(IΓ′(D))

))
⊆ A,

or supp(Im (φ)) where φ is the map in (3.3).

Remark 3.6. Using the base change theorem in cohomology, one can check that
as a topological space, the mutual dependence locus ∆(Γ′,Γ, D) is the closure of

φ−1
Θ

({
α ∈ Â α satis�es (3.2)

})
.

Remark 3.7. Observe that ∆(∅,Γ, D) is just the dependence locus ∆(Γ, D).
If Γ′ ⊂ Γ, then we have R1S(IΓ(D))� R1S(IΓ′(D)) (see (3.3)), so

∆(Γ, D) \∆(Γ′, D) ⊆ ∆(Γ′,Γ, D).

Lemma 3.8. Let Γ′′ ⊂ Γ′ ⊂ Γ be a triple of �nite subschemes. Then we have

∆(Γ′′,Γ, D) ⊆ ∆(Γ′′,Γ′, D) ∪∆(Γ′,Γ, D).

In particular, in the case Γ′′ = ∅, we have

∆(Γ, D) ⊆ ∆(Γ′, D) ∪∆(Γ′,Γ, D).
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Proof. Apply the Fourier-Mukai transform to the diagram

0

��
0

��

IΓ′/Γ

��
0 // IΓ(D) //

��

IΓ′′(D) // IΓ′′/Γ //

��

0

0 // IΓ′(D) //

��

IΓ′′(D) // IΓ′′/Γ′ //

��

0

IΓ′/Γ

��

0

0

to obtain,

0

��

0

��
ker ν1

��

ker ν1

��
0 // ker ν2

��

// R1S(IΓ(D))
ν2 //

ν1

��

R1S(IΓ′′(D)) // 0

0 // ker ν3

��

// R1S(IΓ′(D))
ν3 //

��

R1S(IΓ′′(D)) // 0

0 0

where the left vertical short exact sequence relates the three sheaves whose support
de�ne ∆(−,−, D).

Lemma 3.9. Let Γ ⊂ A be a �nite subscheme, and let Γ(a) denote the component
of Γ supported in a. Then we have an inclusion of schemes

∆(Γ, D) ⊆
⋃
a∈Γ

∆(Γ \ Γ(a),Γ, D),
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where the union is taken in the sense of product of ideals. Moreover, this inclusion
is an equality of the underlying sets.

Proof. The structure sheaf of Γ has a direct sum decomposition

OΓ =
⊕
a

OΓ(a)

and the relative ideal sheaf IΓ\Γ(a)/Γ can be identi�ed with the summand OΓ(a).
Apply the Fourier-Mukai transform to the short exact sequence

0→ IΓ(D)→ O(D)→ OΓ → 0

to obtain the surjective boundary map

ÔΓ
// R1S(IΓ(D)) // 0

⊕
a ÔΓ(a)

P
a ψa

88qqqqqqqqqqq

with a decomposition as shown. Now ∆(Γ, D) is the Fitting support of R1S(IΓ(D)),
whereas ∆(Γ \ Γ(a),Γ, D) is the support of Im (ψa). The claim follows.

3.1 Theta-general superabundant subschemes of minimal de-

gree

From here on, we �x D = 2Θ and drop any reference to D from the notations. Thus
we let ∆(Γ) = ∆(Γ, 2Θ), ω(Γ) = ω(Γ, 2Θ) etc.

It is to be expected that the superabundance ω(Γ) vanishes as long as Γ has small
degree. We begin by establishing that the minimal degree of a theta-general super-
abundant subscheme is g + 2.

Proposition 3.10. Let Γ ⊂ A be a theta-general �nite subscheme of degree at most
g + 1. Then ω(Γ) = 0.

Proof. Choose a composition series of Γ, i.e. a series of subschemes

Γ1 ⊂ Γ2 ⊂ · · · ⊂ Γd = Γ,

where Γi has degree i. By theta-genericity there exists, for each i, a theta-translate
Θa containing Γi−1 but not Γi. Thus, for general b ∈ Â, the divisor Θa + Θb also
contains Γi−1, but not Γi. This shows that for general x (= a+ b), the inclusion

H0(A, IΓi(2Θ)⊗ Px) ⊂ H0(A, IΓi−1(2Θ)⊗ Px)
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is strict, and so H0(A, IΓ(2Θ)⊗Px) indeed has codimension d in H0(A,OA(2Θ)⊗
Px).

Remark 3.11. The above bound is sharp: On a Jacobian A there exist superabun-
dant subschemes of degree g + 2. In fact, by Riemann-Roch, an Abel-Jacobi curve
C ⊂ A imposes g + 1 independent conditions on H0(A,OA(2Θ) ⊗ Px) for any x.
Hence a �nite subscheme Γ of C, no matter how big, cannot impose more than g+1
conditions. See Pareschi-Popa [PP4, Example 3.7] for a more precise statement.
Our main Theorem 6.1 below says that subschemes of Abel-Jacobi curves are the
only (theta-general) examples of superabundant subschemes of degree g + 2.

Corollary 3.12. Let Γ ⊂ A be a theta-general, superabundant �nite subscheme of
degree g+ 2, and let Γ′ ⊂ Γ have degree g+ 1. Then any theta-translate containing
Γ′ also contains Γ, i.e. T (Γ′,Γ) = ∅.

Proof. By the same argument as in the proof of the proposition, the existence of a
theta-translate Θa containing Γ′ but not Γ, would imply that Γ imposes one more
condition on general 2Θ-translates than Γ′, hence Γ could not be superabundant.

Corollary 3.13. Let Γ ⊂ A be a theta-general, superabundant �nite subscheme of
degree g + 2. Then Γ is Gorenstein, i.e. each component of Γ is the spectrum of a
Gorenstein ring.

Proof. Let Γ0 ⊂ Γ be a component, so Γ0 = SpecR for local Artin ring R. We need
to show that the socle Soc(R), i.e. the elements in R annihilated by its maximal
ideal, is one dimensional as a vector space. For contradiction, assume f, g ∈ Soc(R)
are linearly independent elements. Noting that the ideal generated by any collection
of socle elements coincides with the vector space they span, the ideals (f, g) and
(f) in R determine subschemes

Γ′′ ⊂ Γ′

in Γ, of degree g and g+ 1, respectively (precisely, Γ′ is the union of Γ \Γ0 with the
subscheme of Γ0 de�ned by (f), and similarly for Γ′′). By theta-genericity, there
exists a theta-translate Θa containing Γ′′ but not Γ′. Let ϑ ∈ R be a local equation
for Θa. Then ϑ is a socle element, since ϑ ∈ (f, g), and hence de�nes a subscheme
Z ⊂ Γ of degree g + 1. But then Z is contained in Θa, and Γ is not, contradicting
the previous corollary.
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4 Dependence loci and theta-duality

In the previous section we have seen that a theta-general �nite subscheme of degree
at most g+1 is not superabundant (Proposition 3.10) and that this bound is sharp,
because any theta-general subscheme Γ of degree > g + 2 inside an Abel-Jacobi
curve is superabundant (see Remark 3.11). To prove that any theta-general, super-
abundant �nite subscheme of degree g+ 2 has to be inside an Abel-Jacobi curve we
will have to prove strong relations among theta-duals T (Γ′) and dependence loci
∆(Γ′′) of �nite subschemes Γ′,Γ′′ ⊆ Γ. This section contains the technical core of
the chapter.

The easiest relation comes from the following lemma.

Lemma 4.1. Let Γ′ ⊂ Γ be �nite subschemes of A of such that deg Γ′ = deg Γ− 1,
and let a denote the residual point. Then we have an inclusion of schemes

∆(Γ′,Γ) ⊆ Θa−y

for all closed point y ∈ T (Γ′) \ T (Γ).

Proof. Since Θy contains Γ′, but not Γ, we have a commutative diagram

0 // IΓ
// IΓ′

// k(a) // 0

0 // Ia(−Θy)
?�

OO

// O(−Θy)
?�

OO

// k(a) // 0

with exact rows (where the middle vertical inclusion follows from Remark 1.3(b)).
Twist with 2Θ, use that 2Θ − Θy is linearly equivalent to Θ−y, and apply the
Fourier-Mukai transform to arrive at the commutative diagram

Pa
φ // R1S(IΓ(2Θ)) // R1S(IΓ′(2Θ)) // 0

Pa // F

OO

// 0

with exact rows, and where F is the Fourier-Mukai transform of the WIT1 sheaf
Ia(Θ−y). By Example II.2.6, we have that F ∼= Pa|Θa−y . By de�nition, ∆(Γ′,Γ)
is the (Fitting) support of Imφ. Since the image of φ is a quotient of F , it follows
that the support of φ is contained in the support of F , which gives the claim.

A �rst consequence is the following lemma that bounds the codimension of ∆(Γ)
for a theta-general Γ of degree at most g.



68 IV. A Geometric Schottky Problem

Lemma 4.2 (Compare with [PP4, Lem. 3.12]). Let Γ be a theta-general �nite
subscheme of A of degree at most g. Then ∆(Γ) has codimension at least 2.

Proof. We will prove it by induction on the degree d > 0 of Γ. Let Γ′ ⊂ Γ be
subscheme of degree d−1. Its theta-dual T (Γ′) is locally de�ned by d−1 equations,
hence has positive dimension everywhere. The inclusion T (Γ) ⊂ T (Γ′) is strict by
theta-genericity, so T (Γ′) \ T (Γ) has positive dimension. By Lemma 4.1, it follows
that ∆(Γ′,Γ) has codimension at least 2. Then, we apply induction using inclusion
∆(Γ) ⊆ ∆(Γ′)∪∆(Γ′,Γ) from Lemma 3.8. The �rst step of the inclusion follows by
de�nition, since ∆({a}) = ∆(∅, {a}).

4.1 Curvilinearity

Any theta-general, superabundant �nite subscheme of degree g + 2 is curvilinear
which is a consequence of the following lemma. Eventhough, the Lemma gives more
information than that.

Lemma 4.3. Assume Γ is a theta-general and superabundant �nite subscheme of
A of degree g + 2. Let Γg ⊂ Γg+1 ⊂ Γ be any �nite subschemes of Γ of degrees
indicated by the subscripts. Then the following hold.

(a) There exists a unique theta-translate Θx containing Γg but not Γ.
(b) The dependence locus ∆(Γg+1) is set-theoretically Θb−x, where x is as above

and b is the residual point of Γg ⊂ Γg+1. Moreover, the schematic divisorial
part of ∆(Γg+1) is Θb−x.

Remark 4.4. By Corollary 3.12, the theta-translate Θx in part (a) cannot contain
Γg+1. Thus Θx is also the unique theta-translate containing Γg but not Γg+1.

First, we prove the announced consequences.

Corollary 4.5. Let Γ ⊂ A be a theta-general, superabundant �nite subscheme of
degree g + 2. Then Γ is curvilinear.

Proof. By Corollary 3.13 Γ is Gorenstein, so it su�ces to show that every subscheme
Γg+1 ⊂ Γ of degree g+ 1 is also Gorenstein. In other words, Gorenstein means that
the choice of a closed point b ∈ Γ uniquely determines a subscheme Γg+1 ⊂ Γ with
residual point b. If also the choice of a closed residual point a ∈ Γg+1 uniquely
determines Γg ⊂ Γg+1, then Γ is curvilinear [EH, Lemma 1.4].
Thus we suppose that Γ1

g and Γ2
g are two subschemes of Γg+1 of degree g with

residual point b. By the �rst part of the Lemma, there are unique points x1 and x2

such that Γig is contained in Θxi , but Γg+1 is not. By the second part of the lemma,
we have set-theoretically

∆(Γg+1) = Θb−x1 = Θb−x2
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and so x1 = x2. Call this point x. Then Θx contains both Γ1
g and Γ2

g, but not Γg+1,
which is impossible unless Γ1

g = Γ2
g.

The proof of Lemma 4.3 takes up the rest of this subsection. We will begin by
establishing the following relative statement. By Corollary 3.13 Γ is Gorenstein, so
by Lemma 1.7, the residual scheme S′ of Γg ⊂ Γ is well-formed. This allows us
to consider Z the intermediate scheme between Γg × S′ and Γ× S′ constructed in
Proposition 1.10.

Lemma 4.6. Let Γ be as in Lemma 4.3. Consider Γg ⊂ Γg+1 ⊂ Γ any subschemes
of degrees indicated by the subscripts and Θx a theta-translate containing Γg, but
not Γ. Then, we have the following schematic inclusions,

m−1
S′ (Θ−x) ⊆ ∆S′(Z) ⊆ m−1

S′ (Θ−x) ∪ p−1
1 ∆(Γg),

where S′ is the residual scheme of Γg in Γ, mS′ : A×S′ → A is the restricted group
law, p1 : A× S′ → A the �rst projection and Z is the intermediate scheme between
Γg × S′ and Γ × S′ constructed in Proposition 1.10. The union on the right-hand
side is scheme-theoretically de�ned by taking the product of the corresponding ideals.

Proof. As before, we let S1 ⊂ S′ × S′ be the diagonal, with residual section S2, all
considered as subschemes of AS′ = A × S′. Since Γ is Gorenstein (see Corollary
3.13), S′ is well-formed by Lemma 1.7 and S1 are also well-formed (see Example
1.4).

So we have the following short exact sequence (see Proposition 1.10)

0→ IΓ×S′ → IZ → OS2 → 0.

By Corollary 3.12, we have Γ∩Θx = Γg. So by Remark 1.3(b), we have the following
inclusion,

0 // IΓ×S′ // IZ // OS2
// 0

IS1(−p∗1Θx)
?�

OO (4.1)

and the composition IS1(−p∗1Θx) ↪→ IZ → OS2 is surjective, otherwise it would be 0
and IS1(−p∗1Θx) would be included in IΓ×S′ . This contradicts Corollary 3.12, since
it implies that Z ⊂ p−1

1 Θx∩Γ×S. One deduces that there is an exact commutative
diagram
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0 0

p∗1IΓg/Θx

OO

p∗1IΓg/Θx

OO

0 // IΓS′

OO

// IZ //

OO

OS2
// 0

0 // IS′×S′(−p∗1Θx)

OO

// IS1(−p∗1Θx)

OO

// OS2
// 0

0

OO

0

OO

Now twist this last diagram by 2Θ, note that 2Θ−Θx is linearly equivalent to Θ−x,
and apply the Fourier-Mukai transform. This gives the following exact commutative
diagram

0 0

p∗1(R1S(IΓg/Θx(2Θ)))

OO

p∗1(R1S(IΓg/Θx(2Θ)))

OO

ÔS2

τ // p∗1(R1S(IΓ(2Θ)))

OO

ρ // R1SS′(IZ(2p∗1Θ))

OO

// 0

0 // ÔS2

σ // p∗1( ̂IS′(Θ−x))

µ

OO

// L|m−1
S′ (Θ−x)

ν

OO

// 0
(4.2)

where L|m−1
S′ (Θ−x) is the Fourier-Mukai transform of IS1(p∗1Θ−x) by Lemma II.2.8.

The Fitting supports of the two sheaves occurring as the domain and codomain of ρ
are the dependence loci ∆S′(ΓS′) and ∆S′(Z). The �rst of these equals all of AS′ ,
as Γ is superabundant, and the latter is the locus we want to understand.

Since ÔS2 is a torsion-free sheaf of rank one (in fact, it is an invertible sheaf) and
the map τ is generically surjective, we have that τ is injective. By Example 2.4 and

Lemma II.1.1, ̂IS′(Θ−x) is IT (S′)−x(Θr) for some r. In particular, it is torsion-free
of (generic) rank 1, so the same argument as for τ , shows that µ is injective and
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chasing through the diagram we have that also ν is injective.

Now, the right columns yields to

m−1
S′ (Θ−x) ⊆ ∆S′(Z) ⊆ m−1

S′ (Θ−x) ∪ supp p∗1 R
1S(IΓg/Θx(2Θ)).

By Corollary 3.12, we have Γ ∩Θx = Γg. That is

0→ OA(−Θx)→ IΓg → IΓg/Θx → 0.

Twisting this exact sequence by 2Θ and applying the Fourier-Mukai transform over
S′, we obtain

R1S(IΓg (2Θ)) ∼= R1S(IΓg/Θ−x(2Θ)),

since R1S(OA(Θx)) = 0. Thus the second inclusion is also proved.

Proof of part (a) of Lemma 4.3. Let Θx be a theta-translate containing Γg but not
Γ, and choose any intermediate subscheme Γg+1. The Lemma says in particular
that we have inclusions

Θb−x ⊆ ∆(Γg+1) ⊆ Θb−x ∪∆(Γg), (4.3)

where b is the residual point of Γg in Γg+1. Since ∆(Γg) has codimension at least 2
in A (see Lemma 4.2), this says that ∆(Γg+1) consists of the divisor Θb−x possibly
together with components of higher codimension. In particular, we can recover x
from the given data Γ and it is unique.

Having established part (a) of Lemma 4.3, and in view of Remark 4.4, we know
that T (Γg,Γg+1) contains a unique closed point x.

Lemma 4.7. Let Γ be as in Lemma 4.3, let

Γ1 ⊂ Γ2 ⊂ · · · ⊂ Γ

be a composition series of Γ, and let x be the unique closed point in T (Γg,Γg+1).
Then x is in T (Γi,Γi+1) for all i 6 g.

Proof. For each reduced and irreducible component W of T (Γi), the intersection
T (Γi+1) ∩W either equals W or has codimension 1 in W (see Remark 2.3). The
closure of T (Γi) \ T (Γi+1) is the union of those components W of T (Γi) that are
not completely contained in T (Γi+1). But since set-theoretically T (Γg,Γg+1) is a
point x, i.e. it has codimension g in A, it follows that there exists a component
Wi ⊂ T (Γi) for each i, such that

W1 ⊃W2 ⊃ · · · ⊃Wg = {x}

and such that Wi+1 has codimension 1 in Wi. Thus Wi is also a component of the
closure of T (Γi) \ T (Γi+1), and it does contain x.
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Proof of part (b) of Lemma 4.3. For each point p in the support of Γg+1, let Γg+1(p)
denote the component supported at p. By Lemma 3.9, we have

∆(Γg+1) ⊆
⋃

p∈Γg+1

∆(Γg+1 \ Γg+1(p),Γg+1). (4.4)

We claim that each ∆(Γg+1\Γg+1(p),Γg+1) is a theta-translate. Let d be the degree
of Γg+1(p). Choose a composition series that starts (from above) by removing the
component Γg+1(p), i.e.

Γ1 ⊂ · · · ⊂ Γg ⊂ Γg+1,

where Γ1 = Γg+1 \ Γg+1(p) and such that the residual point of Γj in Γj+1 is p for
j > g − d. By Lemma 3.8, we have

∆(Γg+1 \ Γg+1(p),Γg+1) ⊆
⋃

j>g−d

∆(Γj ,Γj+1)

and by Lemma 4.1,

∆(Γj ,Γj+1) ⊆ Θp−y for every closed point y ∈ T (Γj) \ T (Γj+1).

Since x is in the closure of all the T (Γj) \ T (Γj+1), we conclude that we have the
following set-theoretical inclusion

∆(Γg+1 \ Γg+1(p),Γg+1) ⊆ Θp−x.

Now we have inclusions

Θb−x ⊆ ∆(Γg+1) ⊆ ∆(Γg+1 \ Γg+1(p)) ∪∆(Γg+1 \ Γg+1(p),Γg+1)
⊆ ∆(Γg+1 \ Γg+1(p)) ∪Θp−x

and all components of the dependence locus ∆(Γg+1 \ Γg+1(p)) have codimension
greater than 1. It follows that the reduced structure of ∆(Γg+1 \ Γg+1(p),Γg+1)
is the theta-translate Θb−x. As this holds for all p, we see by (4.4) that the re-
duced structure of ∆(Γg+1) is contained in Θb−x. And by (4.3) it is clear that the
schematic divisorial part of ∆(Γg+1) is Θb−x since all the components of ∆(Γg) have
codimension greater than 1.

4.2 Sums of theta-duals and dependence loci

The following Lemma will be the key step to proof the Castelnuovo statement in
Theorem 6.1.
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Lemma 4.8. Assume that Γ ⊂ A is theta-general and superabundant �nite sub-
scheme of degree g + 2. Let Σk ⊂ Γg+1 ⊂ Γ be two �nite subschemes of degree
indicated by the subscripts, and let x be the residual point to Γg+1 in Γ. Now,

(a) Let l = g+1−k. Then, there exists unique subschemes Σk+1,Λl and Λl+1 ⊂ Γ
(not necessarily contained in Γg+1) such that the underlying zero cycles satisfy

[Γg+1] = [Σk] + [Λl] [Σk+1] = [Σk] + x [Λl+1] = [Λl] + x.

(b) Moreover, there is an inclusion of schemes

T (Σk,Σk+1) + T (Λl,Λl+1) ⊆ ∆(Γg+1),

where the left-hand side denotes the scheme-theoretic image of T (Σk,Σk+1)×
T (Λl,Λl+1) under the group law m : A×A→ A.

Proof. (a) The equalities of zero cycles de�ne the various �nite subschemes uniquely,
as Γ is curvilinear by Corollary 4.5.

(b) Since formation of Fitting ideals commute with Base Change II.2.2, it su�ces
to show that

T (Σk,Σk+1)× T (Λl,Λl+1) ⊆ supp(ν∗R1S(IΓg+1(2Θ))), (4.5)

where
ν : T (Σk)× T (Λl)→ A

is the restriction of the group law.

To understand the right-hand side of (4.5), we begin with the short exact sequence

0→ IΓ(2Θ)→ IΓg+1(2Θ)→ k(x)→ 0. (4.6)

Instead of �rst applying Fourier-Mukai, and then pulling back by ν, we encode both
operations in the functor T sending a sheaf F on A to the sheaf

T (F) = p23∗(p∗1(F)⊗ (1× ν)∗M )

on T (Σk)×T (Λl), where M = (id×φΘ)∗P = m∗OA(Θ)⊗p∗OA(−Θ)⊗q∗OA(−Θ) is
the Mumford line bundle. In standard terminology, T (or its total derived functor)
is the Fourier-Mukai transform with kernel

(1× ν)∗M ∼= p∗12(M |A×T (Σk))⊗ p
∗
13(M |A×T (Λl)

).

Applying T to (4.6), we get a long exact sequence

0→ T (IΓ(2Θ))→ T (IΓg+1(2Θ))→ T (k(x))→
→ R1T (IΓ(2Θ))→ R1T (IΓg+1(2Θ))→ . . .
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Observe that, if F is a sheaf on A and p is maximal such that RpS(F) 6= 0, then
Base Change II.1.3 shows that ν∗RpS(F) ∼= RpT (F) and RjT (F) = 0 for all j > p.
Using this, we can rewrite the last few terms in the long exact sequence, and obtain

0→ T (IΓ(2Θ))→ T (IΓg+1(2Θ))
φ−→ ν∗Px → (4.7)

→ ν∗R1S(IΓ(2Θ))→ ν∗R1S(IΓg+1(2Θ))→ 0.

As Γ is superabundant, the support of R1S(IΓ(2Θ)) is all of A, so the support of
its pullback by ν is all of T (Σk)× T (Λl).

We want to show that the homomorphism labelled φ in the long exact sequence
is surjective over (T (Σk) \ T (Σk+1)) × (T (Λl) \ T (Λl+1)), that is supp cokerφ ⊆
T (Σk+1)× T (Λl+1). Then, since

0→ cokerφ→ ν∗R1S(IΓ(2Θ))→ ν∗R1S(IΓg+1(2Θ))→ 0

and supp ν∗R1S(IΓ(2Θ)) = T (Γi)× T (Λj), it will follow that

(T (Σk) \ T (Σk+1))× (T (Λl) \ T (Λl+1)) ⊆ supp ν∗R1S(IΓg+1(2Θ)),

which will imply the desired inclusion (4.5) by de�nition.

Claim 1. The morphism labelled φ in the long exact sequence (4.7) is surjective
over (T (Σk) \ T (Σk+1))× (T (Λl) \ T (Λl+1)).

Proof of Claim 1. By the de�nition of Σk and Λl and Remark 1.3 we have the
commutative diagram

IΣk(Θ)⊗ IΛl(Θ)

����

� � // IΓg+1(2Θ)

����
k(x)⊗ k(x) k(x),

where the vertical arrows are the evaluation maps at x as in (4.6). If we apply the
functor T to the previous diagram, we get

T (IΣk(Θ)⊗ IΛl(Θ))

��

// T
(
IΓg+1(2Θ)

)
��

T (k(x)⊗ k(x)) ν∗Px.

(4.8)



4. Dependence loci and theta-duality 75

Recall that, considering projections from A× T (Σk)× T (Γj),

T (IΣk(Θ)⊗ IΛl(Θ)) =

= p23∗

(
p∗1IΣk(Θ)⊗ p∗12 M |A×T (Σk) ⊗ p

∗
1IΛl(Θ)⊗ p∗13 M |A×T (Λl)

)
= p23∗ (G1 ⊗ G2) , (4.9)

where G1 = p∗12(p∗1IΣk(Θ)⊗ M |A×T (Σk)) and G2 = p∗13(p∗1IΛl(Θ)⊗ M |A×T (Λl)
).

Consider now the following natural map

p23∗(G1)⊗ p23∗(G2)
%→ p23∗(G1 ⊗ G2). (4.10)

To understand the domain of %, we de�ne the functor T ′, sending a sheaf F on A
to the sheaf

T ′(F) = p2∗(p∗1(F)⊗ M |A×T (Σk)),

in other words T ′ is the Fourier-Mukai transformation with kernel M |A×T (Σk)

and analogously the functor T ′′ as the Fourier-Mukai transformation with kernel
M |A×T (Λl)

. With this notation we can rewrite the left-hand side sheaf in (4.10) as
p∗1T ′(IΣk(Θ))⊗ p∗2T ′′(IΛl(Θ)) and using (4.9), the morphism % becomes

p∗1T ′(IΣk(Θ))⊗ p∗2T ′′(IΛl(Θ))
%→ T (IΣk(Θ)⊗ IΛl(Θ)).

Analogously we have a natural morphism,

p∗1(Px|T (Σk))⊗ p
∗
2(Px|T (Λl)

) = p∗1T ′(k(x))⊗ p∗2T ′′(k(x))
%′→ T (k(x)⊗ k(x)).

Since T (k(x)⊗k(x)) = ν∗Px, %′ is the restriction of the isomorphism p∗1Px⊗p∗2Px →
m∗Px.

Therefore, if we consider diagram (4.8) composed with the natural maps % and %′

we get the following commutative diagram of sheaves on T (Σk)× T (Λl)

p∗1T ′(IΣk(2Θ))⊗ p∗2T ′′(IΛl(2Θ)) //

��

T (IΓg+1(2Θ))

φ

��
p∗1(Px|T (Σk))⊗ p∗2(Px|T (Λl)

) ν∗Px.

(4.11)

We want to see that the left vertical arrow is surjective on (T (Σk) \ T (Σk+1)) ×
(T (Λl) \ T (Λl+1)) proving thus the claim. More precisely, we will see that

T ′(IΣk(2Θ))→ Px|T (Σk)
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is surjective on T (Σk) \ T (Σk+1) and analogously T ′′(IΛl(2Θ)) → Px|T (Λl)
is sur-

jective on T (Λl) \ T (Λl+1).

Claim 2. T ′(IΣk(2Θ))→ Px|T (Σk) is surjective on T (Σk) \ T (Σk+1).

Proof of Claim 2. Associated to Σk ⊂ Σk+1 there is a commutative diagram

0

��

0

��
0 // IΣk+1(Θ) //

��

IΣk(Θ) //

��

k(x) // 0

O(Θ)

��

O(Θ)

��
0 // k(x) // OΣk+1

//

��

OΣk
//

��

0

0 0

If we apply functor T ′ to the previous diagram we get the following commutative
diagram,

0 // T ′(IΣk+1(Θ)) //

��

T ′(IΣk(Θ))

∼=
��

ED

BC
GF

@A
//

Ô(Θ)
∣∣∣
T (Σk)

ψk+1

��yyr r r r r r

Ô(Θ)
∣∣∣
T (Σk)

ψk 0

��

0 // Px|T (Σk)
// ÔΣk+1

∣∣∣
T (Σk)

��

// ÔΣk

∣∣∣
T (Σk)

��

// 0

Px|T (Σk)
// ̂IΣk+1(Θ)

∣∣∣
T (Σk)

��

// ÎΣk(Θ)
∣∣∣
T (Σk)

��

// 0

0 0
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Recall that T (Σj) is the vanishing locus of Ô(Θ) → ÔΣj by De�nition 2.1. Hence
the two vertical maps ψk+1 and ψk vanish respectively along T (Σk+1) and T (Σk).
Since we are restricted to T (Σk), ψk = 0. Therefore, there is an induced (dashed in

the diagram) map Ô(Θ)
∣∣∣
T (Σk)

→ Px|T (Σk) whose vanishing locus is still T (Σk+1).

Moreover, this latter map is identi�ed with the �snake map� in the above diagram.
We conclude that there is a map

T ′(IΣk(Θ))→ Px|T (Σk)

between line bundles on T (Σk). Since Px|T (Σk) is a line bundle over T (Σk), the
fact that the map vanishes precisely along T (Σk+1) is equivalent to say that it is
surjective over T (Σk) \ T (Σk+1).

Similarly, de�ning T ′′ as the Fourier-Mukai transform with kernel M |A×T (Λl)
, we

obtain a map
T ′′(IΛl(Θ))→ Px|T (Λl)

between line bundles on T (Λl), which is surjective over T (Λl)\T (Λl+1). The tensor
product of these two maps �ts into diagram (4.11) proving Claim 1, i.e that φ is
surjective over (T (Σk) \T (Σk+1))× (T (Λl) \T (Λl+1)), so the lemma is established.
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5 Trisecants

We want to construct trisecants to the Kummer variety associated to A. I.e. let

ψ : A→ PN , with N = 2g − 1, (5.1)

be the map corresponding to the linear system |2Θ|. If l is a line in PN , we will
say that l is a trisecant to the Kummer variety associated to A if ψ−1(l) contains a
�nite subscheme of degree 3.

In fact, we will construct a 1-dimensional family of trisecants, that is, a 1-dimensional
subset of

V =
{

2ξ | ξ + Y ⊂ ψ−1(l) for some line l ⊂ PN
}

where Y is a speci�c subscheme of degree 3 that we will specify below. Then, the
well-known Gunning-Welters criterion will lead us to a Schottky-type result and the
multiplication by 2 in V is just to interpret V as an Abel-Jacobi curve (see [W2,
Thm. 0.5]).

To obtain the trisecants, we need �rst to relate the dependence loci ∆(Γg−1,Γg+1)
and ∆(Γg−1,Γg). Recall that by Remark 2.3, T (Γg−1)\T (Γg) has at least dimension
1.

Lemma 5.1. Let Γg−1 ⊂ Γg ⊂ Γg+1 be �nite subschemes of degrees indicated by
the subscripts, such that the residual subscheme S of Γg−1 in Γg+1 is well-formed.
For each closed point y ∈ T (Γg−1) \ T (Γg) there is an inclusion of schemes

Θa−y ∩∆(Γg−1,Γg+1) ⊂ T (S)−y ∪∆(Γg−1,Γg)

where the union is de�ned by the products of the corresponding ideals and a is the
residual point of Γg−1 in Γg.

Proof. It is rather easy to check that the inclusion holds set theoretically. To prove
it scheme-theoretically, we need to relate the maps of locally free sheaves whose
degeneracy loci de�ne the various schemes involved. This forces us to draw rather
large diagrams, but it is relatively straight forward.

Let a be the residual point of Γg−1 in Γg and c the residual point of Γg in Γg+1. Since
Γg−1 ⊂ Θy we have, by Remark 1.3, inclusions IS(−Θy) ⊂ IΓg+1 and Ia(−Θy) ⊂
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IΓg . These give rise to a commutative diagram

0 // IΓg+1� _
// IΓg−1

// OS // 0

0 // IS(−Θy)� _

��

+ �
99sssss

//

��

O(−Θy)
, �

99ttttt
// OS

{{{{
{{{{

//

����

����

0

0 // IΓg
// IΓg−1

// k(a) // 0

0 // Ia(−Θy) //
+ �

99sssss
O(−Θy) //

, �
99ttttt

k(a)

{{{{
{{{{

// 0

with exact rows.

Now twist the diagram with 2Θ, use that 2Θ − Θy is linearly equivalent to Θ−y,
and apply the Fourier-Mukai transform. This produces a similar diagram

ÔS
M // R1S(Ig+1(2Θ)) // R1S(IΓg−1(2Θ)) // 0

ÔS

����

sssssss
sssssss //

����

̂IS(Θ−y)

����

99sssss
//

����

0

Pa
N // R1S(Ig(2Θ)) // R1S(IΓg−1(2Θ)) // 0

Pa //

sssssss

sssssss ̂Ia(Θ−y) //

99sssss

0.

where the kernels of the vertical maps from ÔS and ̂IS(Θ−y) are Pc.
If we consider locally free F such that the following diagram preserves the exactness
of the rows1,

F
f1 // ÔS

M // ImM // 0

O(Θ)⊗ P−y

::tttttt
f3 // ÔS

����

tttttt
tttttt

//

����

̂IS(Θ−y)

����

:: ::ttttt
//

����

0

F
f2

// Pa
N // ImN // 0

O(Θ)⊗ P−y
f4

//

99ssssss
Pa //

sssssss
sssssss ̂Ia(Θ−y)

99 99sssss
// 0

we can verify the inclusion by locally representing the maps fi by matrices, since
∆(Γg−1,Γg+1) and ∆(Γg−1,Γg) are de�ned by the maximal minors of f1 and f2,

1We can take F to be locally the generators of R0S(Ig−1(2Θ)).
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respectively, whereas T (S)−y and Θa−y are, respectively, the loci where f3 and f4

vanish.

F

„
r1 . . . rn
s1 . . . sn

«
// ÔS

`
a1 a2

´
��

O(Θ)⊗ P−y

0BBB@
u1
.

.

.

un

1CCCA 77pppppppp
„
b1
b2

«
// ÔS

����

pppppppp

pppppppp

F `
t1 . . . tn

´ // Pa

O(Θ)⊗ P−y
(h)

//

77ooooooo
Pa

ooooooooo

ooooooooo

We want to see that the generators of the product of ideals bk · tl are contained in
the ideal generated by h and the 2× 2 minors of f1. For example,

b1 · t1 = b1(a1r1 + a2s1)
= (u1r1 + . . .+ unrn)(a1r1 + a2s1)
= (u1r1 + . . .+ unrn)a1r1 + (u1r1 + . . .+ unrn)a2s1

= (u1r1 + . . .+ unrn)a1r1 + (u1s1 + . . .+ unsn)a2r1 + a2

n∑
i=1

ui(ris1 − r1si)

= r1(a1b1 + a2b2) + a2

n∑
i=1

ui(ris1 − r1si)

= r1h+ a2

n∑
i=1

ui(ris1 − r1si).

The following Corollary is a direct consequence of Lemmas 4.1, 4.2, 4.3 and 5.1.
Recall that by Remark 2.3, T (Γg−1) \ T (Γg) has at least dimension 1.

Corollary 5.2. Assume Γ is a theta-general and superabundant �nite subscheme
of A. Then for any subschemes

Γg−1 ⊂ Γg ⊂ Γg+1 ⊂ Γ

of degrees indicated by the subscripts, consider S the residual schemes of Γg−1 in
Γg+1 and a (resp. b) the residual point of Γg−1 in Γg (resp. Γg in Γg+1). Then,
for every pair of closed points y, y′ ∈ T (Γg−1) \ T (Γg) we have

Θa−y ∩Θb−x ⊆ T (S)−y ∪Θa−y′ , (5.2)

where x is the only closed point in T (Γg,Γg+1).
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Proof. On one hand, by Remark 3.7, ∆(Γg+1) \∆(Γg−1) ⊆ ∆(Γg−1,Γg+1). Since
by Lemma 4.3 ∆(Γg+1) contains Θb−x and by Lemma 4.2 ∆(Γg−1) has at least
codimension 2, we have that Θb−x ⊆ ∆(Γg−1,Γg+1).
On the other hand, by Lemma 4.1 ∆(Γg−1,Γg) ⊂ Θa−y′ for every y′ ∈ T (Γg−1) \
T (Γg).
Then, inclusion (5.2) follows from Lemma 5.1.

Now we are ready to obtain a unidimensional family of trisecants in our principally
polarized abelian variety.

Proposition 5.3. Assume Γ is a theta-general and superabundant �nite subscheme
of A. With the same notation as the previous Corollary 5.2 and for any �xed closed
point y′ ∈ T (Γg−1)\T (Γg) such that y′ 6= x+ b−a, consider Y = {a+ (x− y′), S}.
Then, we have the following set-theoretical inclusion,

−γ − (T (Γg−1) \ T (Γg)) ⊂ V =
{

2ξ | ξ + Y ⊂ ψ−1(l) for some line l ⊂ PN
}

where γ = a+ b− y′ and ψ : A → PN , with N = 2g − 1, is the map corresponding
to the linear system |2Θ| as in (5.1).

Proof. The residual scheme S is well-formed by Corollary 3.13. Let y′ ∈ T (Γg−1) \
(T (Γg) ∪ {x+ b− a}) Since y′ 6= x ∈ T (Γg) and b 6= a + (x − y′), we have that
S ∩ {a+ (x− y′)} = ∅. Hence, Y is well-de�ned and has at least to di�erent closed
points. Thus we deal separately with two possible cases (observe that we can avoid
the most technical case Y ∼= Spec k[ε]/ε3),

i) Y ∼=
∑3
i=1 Spec k, that is a 6= b.

In this case, Y = {a, b, a+ (x− y′)}, hence T (S) ⊆ Θa ∩Θb. So the inclusion
(5.2) becomes

Θa−y ∩Θb−x ⊆ Θb−y ∪Θa−y′ ,

that implies the following 3 points in the Kummer variety: ψ
(
a+ 1

2 (−y − γ)
)
,

ψ
(
b+ 1

2 (−y − γ)
)
and ψ

(
a+ (x− y′) + 1

2 (−y − γ)
)
are collinear (see [BL,

Prop. 11.9.3]), where γ = a+ b− y′.

ii) Y ∼= Spec(k[ε]/ε2)+Spec k, i.e. S is a non-reduced scheme supported in a = b.
In this situation, the inclusion (5.2) becomes Θa−y ∩Θa−x ⊆ T (S)−y ∪Θa−y′ ,
or equivalently

Θ ∩Θy−x ⊆ T (S)−a ∩Θy−y′ .

Let s ∈ H0(OΘ(Θ)) be the section corresponding to T (S)−a (see Example
2.4). We will also denote θt a section of H0(O(Θt)). Then s · θy−y′ vanish on
Θ ∩Θy−x. By the usual exact sequence,

0→ H0(OΘ(Θx−y′))
θy−x→ H0(OΘ(Θ + Θy−y′))→ H0(OΘy−x∩Θ(Θ + Θy−y′)),
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we get that in H0(OΘ(Θ + Θy−y′)),

θx−y′ · θy−x = (const.)θy−y′ · s.

Thus, using [W2, proof of Thm. 0.5, case ii)] we get that, the line l pass-
ing through ψ

(
a+ 1

2 (−y − γ)
)
and ψ

(
a+ (x− y′) + 1

2 (−y − γ)
)
is tangent at

ψ
(
a+ 1

2 (−y − γ)
)
, where γ = 2a−y′. More precisely, 1

2 (−y−γ)+S ⊂ ψ−1(l).
Since Y = {a+ (x− y′), S}, this leads us to 1

2 (−y − γ) + Y ⊂ ψ−1(l).

Remark 5.4. Observe that, since we are avoiding to use case iii) in the proof of
[W2, Thm. 0.5], everything works over a algebraically closed �eld of characteristic
di�erent from 2 by [W2, Rem. 0.7].



6. A Schottky-Castelnuovo-Torelli theorem 83

6 A Schottky-Castelnuovo-Torelli theorem

The main result of this chapter is the following theorem.

Theorem 6.1. Let Γ ⊂ A be a theta-general �nite subscheme of degree g + 2,
imposing less than g + 2 conditions on general 2Θ-translates. Then the following
holds:

(a) Schottky: The principally polarized abelian variety (A,Θ) is isomorphic to a
Jacobian J(C) of a curve C, with its canonical polarization.

(b) Castelnuovo: The subscheme Γ is contained in an Abel-Jacobi curve, i.e. the
image of an Abel-Jacobi map C → J(C).

(c) Torelli: The curve C equals the scheme-theoretic intersection of all 2Θ-
translates containing Γ.

First we prove the Schottky statement,

Proof of part (a) of Theorem 6.1. Since T (Γg−1,Γg) is of dimension at least 1 (see
Remark 2.3), the Gunning-Welters Criterion (see [W2, Thm. 0.5]) implies that the
algebraic subset V of Proposition 5.3 is a smooth irreducible curve, and A is its
Jacobian (see also Remark 5.4).

Then we prove the Castelnuovo statement,

Proof of part (b) of Theorem 6.1. By part (a) of Theorem 6.1, we know that A =
J(C) is a Jacobian of some curve C. Let i be maximal such that there exists a de-
gree i subscheme Γi ⊂ Γg+2 = Γ, which is contained in a translate of ±C. Replace
C with this translate of ±C, and �x such Γi ⊂ C. By [W1, Thm 3.1], i > 2 and
the claim is that i = g + 2.

By contradiction, assume i 6 g+1. Then Γi is contained in a degree g+1 subscheme
Γg+1 ⊂ Γ, which we �x. Let x be the residual point to Γg+1 in Γ, and

- let Γ′i+1 ⊂ Γ be a subscheme (we call it Γ′i+1 to remark that it is not necessarily
contained in Γg+1),

- and let Λj ⊂ Λj+1 ⊂ Γ be subschemes where j = g + 1− i,
such that the underlying zero cycles satisfy,

[Γg+1] = [Γi] + [Λj ] [Γ′i+1] = [Γi] + x [Λj+1] = [Λj ] + x,

see Lemma 4.8(a). Then by Lemma 4.8(b) there is an inclusion of schemes

T (Γi,Γi+1) + T (Λj ,Λj+1) ⊆ ∆(Γg+1). (6.1)
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Observe that j = g + 1− i 6 g − 1. Now we use that C and Wg−2 are theta-duals
of each other (see Proposition III.1.9). Both C and Wg−2 are de�ned up to trans-
lation; as we have �xed C, we may just as well �x Wg−2 as T (C). From Lemma
II.2.7 and Proposition II.2.11, we infer that the inclusion Γi ⊂ C is equivalent to
Wg−2 ⊆ T (Γi). So T (Γi,Γi+1) contains Wg−2.

If i > 2, or equivalently j < g − 1, then T (Λj ,Λj+1) has dimension at least 2.
Then Wg−2 + T (Λj ,Λj+1) necessarily equals all of A. Indeed, it is well-known that
Wg−2 is geometrically non-degenerate (see [Ra, �.II]), i.e. Wg−2 intersects every
2-dimensional subvariety of A. Thus the left-hand side in (6.1) is A, which is a
contradiction, since ∆(Γg+1) has codimension one.

The case i = 2, j = g − 1 is more subtle. By Example 2.5, the theta-dual T (Γ2)
is the union of two translates of ±Wg−2 (the two copies may coincide, when C is
hyperelliptic, in which case T (Γ2) is a multiplicity two scheme structure on this
Wg−2). More precisely,

T (Γ2) ∼= (Wg−2)α ∪ (−Wg−2)−β ,

for some α and β depending linearly on Γ2. By minimality of i, neither of these are
contained in T (Γ3), so T (Γ2,Γ3) equals T (Γ2).

By Proposition 5.3 and the proof of part (a) of Theorem 6.1, the locus T (Λg−1,Λg)
is a translate of −C. LetW = (Wg−2)α andW ′ = (−Wg−2)−β . Thus, the left-hand
side of (6.1) contains a translate of the divisor (W ∪W ′)− C. By Lemma 4.3, the
divisorial part of the right-hand side of (6.1) is a theta-translate. So we have an
inclusion

(W ∪W ′)− C ⊆ Θ−d

for some point d, which says that (W ∪ W ′)d is contained in T (−C). But, by
Proposition III.1.9, the latter is just −Wg−2, which is integral, so it cannot contain
a translate of W ∪W ′, and we have a contradiction.

Finally, we observe that the proof of part (c) of Theorem 6.1 is exactly the same as
[PP4, Cor. 4.3].
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Chapter

V

Bicanonical map

Introduction

Pluricanonical maps are a basic tool to study varieties of general type. The pur-
pose of this chapter is to study the birationality of the bicanonical map of irregular
varieties of higher dimension.

In the �rst section, we recall the generic vanishing theorems of Green and Lazars-
feld ([GL1, GL2]), some results of Kollár concerning the higher direct images of the
canonical sheaf ([K1, K2]) and the continuously globally generation introduced by
Pareschi and Popa in a sequence of articles (see for example, [PP1, PP3]). The
conclusions of the generic vanishing theorems are expressed with a single invariant,
the generic vanishing index of the canonical sheaf (see De�nition 1.3). Using the
dictionary established by Pareschi and Popa (see Chapter I) we can interpret the
generic vanishing properties of the canonical sheaf as local properties of the gener-
alized Fourier-Mukai transform of the structural sheaf.

In section �2 we prove a criterion for the global generation of the product of a line
bundle and a coherent sheaf. This is based on the Pareschi and Popa notion of
continuous global generation (De�nition 2.2). In section �3 we compute the top
Fourier-Mukai transform of the canonical sheaf of an irregular variety X (Propo-
sition 3.2). When X itself is an abelian variety (or a complex torus) we recover a
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well-known result, proven by Mumford in [Mu2, pg. 128], that is crucial in the proof
of the Mukai Equivalence Theorem. In fact, this result substitute as a geometric
input for a general irregular variety, the Mukai Equivalence Theorem. As a �rst
consequence we obtain a characterization of abelian varieties (see Propostion 3.9).

Combining the results of the previous section, in section �4 we prove a birational-
ity criterion for the bicanonical map asserting, roughly speaking, that the non-
birationality of the bicanonical map implies that, for general α ∈ Pic0X, the linear
series |ωX ⊗ α| has a base divisor (see Theorem 4.9 and Corollary 4.11). Using
this base divisors, we construct an idempotent endomorphism of Pic0X. This gives
strong geometric constraints to Pic0X in the case that this endomorphism is not
the identity.

The consequences of the birationality criterion allow us to give a numerical criterion
based on the generic vanishing index for the birationality of the bicanonical map of
an irregular variety (see Theorem 5.1). This numerical criterion implies also that
varieties of maximal Albanese dimension and non-birational bicanonical map admit
a �bration to a maximal Albanese dimension variety (possibly a point) whose �bers
map onto a subvariety of codimesion at most 1 in a �xed abelian variety (Corollary
5.2).

In section �6, we focus our attention on primitive varieties (De�nition 6.1). The
�brations to a maximal Albanese dimension variety that primitive varieties admit
are very special. Namely, they have to be surjective onto an abelian variety and
the kernel of the restriction map from Pic0X to the Pic0 of the general �ber has
to be connected (see Proposition 6.3). Then, we can characterize varieties bira-
tionally equivalent to a theta-divisor in a principally polarized abelian variety, as
those primitive varieties that have χ(ωX) = 1 and irregularity bigger than the di-
mension (Proposition 6.4). This result extends a cohomological characterization of
theta-divisors due to Hacon and Pardini [HP1, Prop. 4.2] and has been proved inde-
pendently, with a di�erent proof, by Lazarsfeld and Popa [LP, Prop. 3.13]. We use
this characterization to show that a primitive variety with irregularity bigger than
the dimension, has non-birational bicanonical map if, and only if, it is birationally
equivalent to a theta-divisor in a principally polarized abelian variety (Theorem 6.7).

Finally we study the case of primitive varieties with irregularity equal to the di-
mension and non-birational bicanonical map. Under these hypotheses, the Albanese
map is surjective and generically �nite. Moreover, an example of Chen and Hacon
(see Example 6.10) shows that in this case the problem is more subtle since we
cannot expect that the classi�cation of varieties of non-birational bicanonical map
coincides with those of varieties with χ(ωX) = 1.
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When the Stein factorization of the Albanese map factors through an Galois abelian
cover, the Stein factorization has only rational singularities and the Albanese va-
riety is simple, we show that the non-birationality of the bicanonical map of X
implies that X must be birationally equivalent to a double cover over a principally
polarized abelian variety branched along a reduced divisor in the linear series |2Θ|
(Theorem 6.13). We also show that in this particular case, this example is also
the only one with χ(ωX) = 1 (see Proposition 6.16). We end up with a conjecture
about what we expect on the general case with q(X) = dimX (see Conjecture 6.17).

Sections �1-4 and also �6.1 and �6.2 are joint work with Miguel Ángel Barja, Joan
Carles Naranjo and Giuseppe Pareschi and are included in the preprint [BLNP].
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1 Irregular varieties

The following will be the main setting of this chapter. Except otherwise stated, we
will work over the complex numbers C.

De�nition 1.1. Let X be a compact, connected, Kähler manifold of dimension d
and let Pic0X denote the identity component of the Picard group of X. We will
denote by AlbX the Albanese torus of X and alb : X → AlbX the Albanese map.
AlbX and Pic0X are dual to each other [BL, Prop. 11.11.6]. Its dimension is called
the irregularity of X and it is denoted by q(X) = dim AlbX = dim Pic0X.

(a) X is irregular if q(X) > 0.

(b) X is of maximal Albanese dimension if alb: X → AlbX has generically �nite
�bers.

In addition, in some results we will require X to be projective, specially when we
use Kollár's Theorems 1.8. Also the cohomological criterion for continuously global
generation (see Theorem 2.6) in abelian varieties needs the projective assumption.

When X is irregular , i.e. Pic0X is not the trivial group, Green and Lazarsfeld
[GL1, GL2] showed that the cohomological support loci of the canonical line bundle
(see Def. I.1.8) are relevant invariants in the study of the geometry of X. We recall
here the de�nition for the convenience of the reader.

De�nition 1.2. Let X be a Kähler compact manifold equipped with a morphism
to a complex torus, a : X → A. We de�ne the cohomological support loci of X with
respect to a as

V ia (ωX) =
{
α ∈ Pic0A hi(X,ωX ⊗ a∗α) > 0

}
.

Following the criterion of section I.�1, when A is the Albanese torus AlbX and a
the Albanese map alb, we will omit it and we will simply write V i(ωX).

We also particularize the generic vanishing index to the canonical line bundle (see
De�nition I.1.9). Pareschi and Popa showed that this invariant encodes a lot of the
information coming from the morphism a : X → A. In particular, when a is the
Albanese map, encodes some geometric structure of X.

De�nition 1.3. Let X be a Kähler compact manifold equipped with a morphism
to a complex torus, a : X → A. We de�ne the generic vanishing index of X with
respect to a as

gva(ωX) := min
i>0

{
codimPic0 A V

i(ωX)− i
}
.
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As above, when A is the Albanese torus AlbX and a is the Albanese map alb we
will omit it, and we will simply write gv(ωX).

The next theorem is due to Green and Lazarsfeld [GL1, Thm. 1]. We state it using
the generic vanishing index notation and the remark of Ein and Lazarsfeld [EL,
Rem. 1.6].

Theorem 1.4. Let X be a compact, connected, Kähler manifold and assume that
the generic �ber of a : X → A has dimension k. Then gva(ωX) > −k.

When a : X → A is a generically �nite morphism onto its image, the previous
theorem says that gva(ωX) > 0. This result has been generalized by Hacon-Pardini
to the direct images of the canonical sheaf through a �bration, although here we
need the projectivity assumption.

Theorem 1.5 ([HP2, Thm. 2.2]). Let X and Y be smooth projective varieties.
Let moreover f : X → Y be a surjective morphism and a : Y → A a generically
�nite morphism. Then gva(Rif∗(ωX ⊗ α)) > 0, for all i > 0 and all torsion point
α ∈ Pic0X.

The following theorem is due to Green and Lazarsfeld [GL2, Thm 0.1] with an
important addition due to Simpson [S, �4,6,7]

Theorem 1.6. Let X be a compact Kähler manifold, and W an irreducible com-
ponent of V i(ωX) for some i. Then,

(a) There exists a torsion point β ∈ Pic0X and a subtorus B of Pic0X such that
W = t∗βB.

(b) There exists a normal variety Y of dimension 6 d− i, such that any smooth
model of Y has maximal Albanese dimension and a morphism with connected
�bres f : X → Y such that B is contained in f∗ Pic0 Y .

Remark 1.7. It is useful to recall that the morphism f : X → Y in the second
part of the previous theorem, arises as the Stein factorization of the morphism π ◦
alb: X → Pic0W , where π : AlbX → Pic0W is the dual map of the inclusion W ⊆
Pic0X. Hence, the key point of the second part of the theorem is the dimensional
bound for Y .

The following theorem is a summary of three theorems due to Kollár ([K1, Thm.
2.1 and Prop. 7.6], [K2, Thm 3.1]). Here we need X and Y to be projective.

Theorem 1.8. Let f : X → Y a surjective map between to complex projective
varieties of dimension d and d− k and assume that X is smooth and Y is reduced.
Then

(a) Rif∗ωX is torsion-free for all i > 0.



92 V. Bicanonical map

(b) Rif∗ωX = 0 for all i > k.
(c) In the derived category of Y ,

Rf∗ωX ∼=
k⊕
i=0

Rif∗ωX [−i].

(d) When Y is also smooth and f has connected �bers, Rkf∗ωX = ωY .

Remark 1.9. Hacon-Pardini pointed out in [HP2, Thm 2.1] that the previous The-
orem also holds when we replace ωX by ωX ⊗ α, where α ∈ Pic0X is a torsion
point.

The following result of Pareschi shows that the converse of Theorem 1.4 is also true

Proposition 1.10 ([BLNP, Prop. 1.9]). Let X be a smooth complex projective
d-dimensional variety equipped with a morphism to a complex torus, a : X → A.
Then

gva(ωX) > −k if, and only if, dim a(X) > d− k.

Such statement was proved independently by Lazarsfeld-Popa (compare with [LP,
Prop. 1.5]).

Proof. The left implication is Green-Lazarsfeld Generic Vanishing Theorem 1.4.
Now, let e = d− dim a(X). Let

X
b→ Y

c→ A

be the Stein factorization of a. Since the V ia (ωX) are birational invariants, we can
assume that Y is smooth. By Kollár's theorem 1.8(c), the Leray spectral sequence
of b splits:

Hi(ωX ⊗ b∗(c∗α)) ∼=
i⊕
l=0

H l(Ri−lb∗(ωX)⊗ c∗α). (1.1)

Moreover, again by a result of Kollár (Theorem 1.8(d)),

Reb∗(ωX) = ωY . (1.2)

Assume that dimY < dimX−k, i.e. e > k, and we want to arrive to contradiction.
From (1.1) for i = e and (1.2) it follows that V ea (ωX) contains V 0

c (ωY ). The
fact that gva(ωX) > −k implies that codimV 0

c (ωY ) > e − k > 0. Since c : Y →
A is generically �nite, the above mentioned Green-Lazarsfeld Generic Vanishing
Theorem yields to gvc(ωY ) > 0. Hence, by Theorem I.1.10, RΦPc(OY ) is a sheaf
(in cohomological degree equal to dimY ), denoted ÔY . Since V 0

c (ωY ) is a proper
subvariety of Pic0A, ÔY must be a torsion sheaf. Therefore, by Corollary I.1.18,
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there is a i > 0 such that codimPic0 A V
i
c (ωY ) = i. Since, again by (1.1) and

(1.2), V ic (ωY ) is contained in V e+ia (ωX), it follows that codimPic0 A V
e+i
a (ωX) = i <

e− k + i, a contradiction.



94 V. Bicanonical map

2 Continuous global generation

The notion of continuous global generation is a useful notion related to global gener-
ation. It was introduced by Pareschi-Popa in [PP1] and applied to various geometric
problems in [PP1, PP2, PP3]. See also the survey [PP5].

We will use the following basic notation,

Terminology/Notation 2.1. (a) Given a line bundle L, Bs(L) will denote its
base locus.

(b) Given a coherent sheaf F , τ(F) will denote the torsion part of F , that is the
maximal torsion subsheaf of F .

Let F be a coherent sheaf on an irregular variety X, and let T be a subset of Pic0A.
Then we have the continuous evaluation map associated to the pair (F , T ):

evT,F :
⊕
α∈T

H0(X,F ⊗ a∗α−1)⊗ a∗α→ F .

De�nition 2.2. Let p be a point of X. The sheaf F is said to be continuously
globally generated at p (CGG at p for short), with respect to the morphism a, if the
map evU,F is surjective at p, for all open sets U ⊆ Pic0A. When possible, we will
omit the reference to the morphism a, and say simply CGG at p.

Remark 2.3. If L is a line bundle, then L is CGG at p if, and only if, the locus
of α ∈ Pic0A such that p is not a base point of L⊗ a∗α is a Zariski open subset of
Pic0A.

We will also need the following weaker version. This is in fact a variant of the weak
continuous global generation of [PP2]. However, for technical reasons we prefer to
give the following de�nition, which is natural in view of Proposition 2.5(b) and
Theorem 2.6(b) below.

De�nition 2.4. Let p be a point of X and let F be a GV-sheaf. Let R̂∆F be the
transform of the dual of F and let τ(R̂∆F) be its torsion sheaf . Then F is said
to be essentially continuously globally generated at p (ECGG at p for short), with
respect to the morphism a, if the map evT,F is surjective at p, for all subsets of the
form T = U ∪ S, where U is a non-empty Zariski open subset of Pic0A and S is
the underlying subset of supp τ(R̂∆F). As above, when possible, we will omit the
reference to the morphism a, and say simply ECGG at p.

Obviously CGG at p implies ECGG at p. Moreover, we will say simply that a sheaf
is CGG (resp. ECGG), when it is CGG (resp. ECGG) for all p.
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The structure sheaf of an abelian variety X is an easy example of a line bundle
which is not CGG at any point, since for any open subset U of Pic0X not con-
taining the identity point 0̂, the map evU,OX is zero, but it is ECGG. In fact it
is well-known that in this case ÔX = C(0̂) ([Mu2, III.�13]). Hence the underlying
subset of the support of τ(ÔX) = C(0̂) is the identity point

{
0̂
}
, and all evaluation

maps evU∪{0̂},OX are trivially surjective at all points. A generalization of this ex-

ample is provided by Corollary 3.8(b) below.

A useful relation between continuous global generation and the usual global gener-
ation is provided by the following.

Proposition 2.5 ([PP2, Prop. 2.4]). Let F and L be respectively a coherent sheaf
and a line bundle on X, and let p be a point of X.

(a) If both F and L are continuously globally generated at p then F ⊗L⊗ a∗β is
globally generated at p for any β ∈ Pic0A.

(b) Assume that L is CGG at p and that F is ECGG at p. Let τ(R̂∆F) be the
torsion sheaf of R̂∆F , and assume that the underlying set S of the support
of τ(R̂∆F) is �nite. For any β ∈ Pic0A, if p 6∈

⋃
α∈S+β

Bs(L ⊗ a∗α), then
F ⊗ L⊗ a∗β is globally generated at p.

Proof. (a) By Remark 2.3 there is an open subset Vp of Pic0A such that p is not
a base point of L⊗ a∗α for all α ∈ Vp, i.e. the evaluation map at p : H0(L⊗
a∗α)→ (L⊗a∗α)p is surjective for all α ∈ Vp. Since F is CGG at p, it follows
that the map

evVp,F : ⊕α∈Vp H0(F ⊗ a∗β ⊗ a∗α−1)⊗H0(L⊗ a∗α)→ (F ⊗ L⊗ a∗β)p

is surjective. This proves the assertion, since the above map factors trough
H0(F ⊗ L⊗ a∗β).

(b) The proof is the same with the di�erence that now if we use the continuous
evaluation map evTp with Tp = Vp ∪ (S+β). If p 6∈

⋃
α∈S+β

Bs(L ⊗ a∗α),
then the evaluation map H0(L⊗ a∗α)→ (L⊗ a∗α)p is also surjective for all
α ∈ S+β .

As for the usual global generation, in many applications it is useful to have a
criterion ensuring that, if the higher cohomology of a given sheaf F satis�es certain
vanishing conditions, then F is CGG or ECGG. The following criterion, which
applies to sheaves on abelian varieties, is due to Pareschi-Popa. In the reference a
sheaf F on an abelian variety A such that gv(F) > 1 is called M -regular . Bearing
in mind this terminology, the �rst part of the following theorem is [PP1, Prop. 2.13]
or [PP3, Cor. 5.3]. The proof of the second part essentially follows the proof of
[PP2, Thm. 4.1].
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Theorem 2.6 ([BLNP, Thm. 4.5]). Let F be a sheaf on an abelian variety A.

(a) If gv(F) > 1 then F is CGG.

(b) If gv(F) > 0 and supp τ(R̂∆F) is a reduced scheme1, then F is ECGG.

The main point is the following,

Lemma 2.7 ([BLNP, Lem. 4.6]). Let F be a GV-sheaf on an abelian variety A.
Let R̂∆F be the transform of the dual of F and let τ(R̂∆F) be its torsion sheaf.
Let L be an ample line bundle on A. Then, for all su�ciently high n ∈ N, and
for any subset T ⊆ Pic0A, the Fourier-Mukai transform ΦP induces a canonical
isomorphism

H0(A, coker evT,F ⊗ Ln) ∼= (kerψT,F )∗,

where ψ is the natural evaluation map,

ψT,F : Hom(L̂n, R̂∆F)→
∏
α∈T
Hom(L̂n, R̂∆F)⊗ C(α). (2.1)

Proof. Let T ⊆ Pic0A be any subset. The map H0(evT ⊗ Ln) is the �continuous
multiplication map of global sections�:

mT
F,Ln :

⊕
α∈T

H0(F ⊗ a∗α−1)⊗H0(Ln ⊗ a∗α)→ H0(F ⊗ Ln).

A standard argument with Serre vanishing shows that, if n is big enough,

H0(coker(evT,F )⊗ Ln) ∼= coker(mT
F,Ln).

By Grothendieck-Serre duality I.1.5, the dual of mT
F,Ln is

Extq(Ln,R∆F)→
∏
α∈T

HomC
(
H0(Ln ⊗ a∗α), Hq((R∆F)⊗ a∗α)

)
. (2.2)

Let us interpret such map via the Fourier-Mukai transform. Concerning the source,
Mukai's Theorem I.2.1 provides the isomorphism

HomDb(A)(L
n,R∆F [q]) ∼= HomDb(Pic0 A)(RΦP(Ln),RΦP(R∆F)[q])

∼= HomDb(Pic0 A)(L̂n, R̂∆F)

(here q = dimA) i.e., since L̂n is locally free,

ExtqA(Ln,R∆F) ∼= HomPic0 A(L̂n, R̂∆F). (2.3)

1Here we can consider the annihilator support, instead of the Fitting support (e.g. [Ei]). Thus,
the hypothesis is weaker.
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Note that, besides L̂n, also R̂∆F has the base change property, since Hd+1(F ⊗
a∗α) = 0 for all α ∈ Pic0A, see [Mu2, Cor. 3, pg. 53]. This means that, in the target
of the map (2.2), we have that H0(Ln⊗a∗α) (respectively Hq((R∆F)⊗a∗α))) are
isomorphic to the �ber at the point α of L̂n (resp. of R̂∆F). Hence also the sheaf
Hom(L̂n, R̂∆F) has the base change property and the Fourier-Mukai isomorphism
(2.3) identi�es the map (2.2) to the evaluation map of the sheaf Hom(L̂n, R̂∆F)
at points in T :

Hom(L̂n, R̂∆F)→
∏
α∈T
Hom(L̂n, R̂∆F)⊗ C(α).

Now we are ready to proof the previous theorem.

Proof of Theorem 2.6. (a) By Theorem I.1.10 we can assume that R̂∆F is torsion-
free. Then the evaluation map ψU,F is injective for all open subsets U ⊆
Pic0A, so H0(coker evU,F ⊗ Ln) = 0 for n � 0. From Serre's theorem it
follows that coker evU,F = 0.

(b) By Nakayama's Lemma, given a non-zero global section s ∈ Hom(L̂n, R̂∆F),
we have that s(α) ∈ Hom(L̂n, R̂∆F) ⊗ C(α) vanishes for all α in an dense
subset T ⊂ Pic0A, only if T does not meet a component of the support of the
torsion part τ(R̂∆F) or this support is non-reduced. The second possibility
is excluded by hypothesis. So if we consider subsets of the form T = U ∪
supp τ(R̂∆F), the map ψT,F is injective. ThereforeH0(coker evT,F⊗Ln) = 0.
Hence, by Serre's theorem, coker evT,F = 0.

To apply Theorem 2.6 to geometric situations we will need to control the torsion
sheaf of the Fourier-Mukai transform of a sheaf F such that gva(F) = 0. This
control is provided by the following proposition.

Proposition 2.8. Let X be a d-dimensional variety, equipped with a surjective
morphism to an abelian variety a : X → A. Suppose that F is a coherent sheaf such
that:

(a) codimV ia (F) > i+ 1 for all i such that 0 < i < d;

(b) V da (F) is a �nite set.

Then R∆F is a WITd object in Db(X). Moreover, if τ(R̂∆F) is the torsion sub-
sheaf of R̂∆F , we have a surjective morphism

Extd(RdΦPa F ,OPic0 A)� τ(R̂∆F).



98 V. Bicanonical map

Proof. Hypothesis (a) and (b) ensure that gva(F) > 0. Therefore, by Theorem
I.1.10, R∆F is a WITd object, that is, its transform R̂∆F is concentrated in de-
gree d.

Now we want to control τ(R̂∆F). The argument is similar to the proof of [PP3,
Prop. 2.8]. Since Pic0A is smooth, the functor RHom( · ,OPic0 A) is an involution
on Db(Pic0A). Thus there is a fourth quadrant spectral sequence

Ei,j2 := Ext i
(

(Ext−j(R̂∆F ,OPic0 A),OPic0 A

)
⇒

Hi+j = Hi+jR̂∆F =

{
R̂∆F if i+ j = 0
0 otherwise.

By duality (Corollary I.1.14), dim supp(Ext i
(
R̂∆F ,OPic0 A)

)
= dim suppRiΦPa F

and, by base-change, suppRiΦPa F ⊆ V ia (F). Thus, assumption (a) implies that for
all l such that 0 < l < d we have codim supp

(
Ext l(R̂∆F ,OPic0 A)

)
> l. Therefore

Ext i
(
Ext−j(R̂∆F ,OPic0 A),OPic0 A

)
= 0 for all (i, j) such that i+ j ≤ 0, except for

(i, j) = (0, 0) and (i, j) = (d,−d). Hence the only non-zero Ei,−i∞ terms are Ed,−d∞
and E0,0

∞ , and we have the exact sequence

0→ Ed,−d∞ → H0 = R̂∆F → E0,0
∞ → 0. (2.4)

The di�erentials coming into E0,0
p are always zero, so we get an inclusion,

E0,0
∞ ⊆ E

0,0
2 = R̂∆F

∗∗

and (2.4) is identi�ed to the natural exact sequence

0→ τ(R̂∆F)→ R̂∆F → R̂∆F
∗∗
.

Hence the torsion τ(R̂∆F) is canonically isomorphic to Ed,−d∞ . Since the di�eren-
tials going out of Ed,−dp are always zero, we get a surjection

Ed,−d2
∼= Extd(RdΦPa F ,OPic0 A)� Ed,−d∞

∼= τ(R̂∆F).
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3 Applications to the canonical sheaf

3.1 The top Fourier-Mukai transform of the canonical sheaf

As we have seen in the previous section, to control the torsion part of a GV-sheaf F
under hypothesis of the Proposition 2.8, it would be very useful to compute exactly
RdΦPa(F). We will do this computation when F = ωX and X is any irregular
variety over an arbitrary algebraically closed �eld k.

Lemma 3.1. Let X be a smooth variety of dimension d, equipped with a non-trivial
morphism to an abelian variety a : X → A (over any algebraically closed �eld k).
Then, there exists a fourth quadrant spectral sequence

Ei,j2 = Ext iPic0 A(R−jΦPa(ωX), E)⇒ Ri+j+dq∗(HomX×Pic0 A(Pa, q∗E)).

Proof. Let E be a sheaf on Pic0A. By Grothendieck-Verdier duality I.I.1.4,

RHomPic0 A(RΦPa(ωX), E) ∼= Rq∗(HomX×Pic0 A(Pa, q∗E))[d]. (3.1)

Indeed,

RHomPic0 A(RΦPa(ωX), E) = RHomPic0 A(Rq∗(p∗ωX ⊗ Pa), E)
GV d∼= Rq∗(RHomX×Pic0 A(p∗ωX ⊗ Pa, p∗ωX ⊗ q∗E [d]))
∼= Rq∗(HomX×Pic0 A(Pa, q∗E))[d].

Therefore we have a fourth quadrant spectral sequence (see [Hu, Ex. 2.70 ii)])

Ei,j2 = Ext iPic0 A(R−jΦPa(ωX), E)⇒ Ri+j+dq∗(HomX×Pic0 A(Pa, q∗E)).

Proposition 3.2 ([BLNP, Prop. 6.1]). Let X be a smooth variety of dimension
d, equipped with a non-trivial morphism to an abelian variety a : X → A (over any
algebraically closed �eld k) such that the map a∗ : Pic0A→ Pic0X is an embedding.
Then

RdΦPa(ωX) ∼= k(0̂),

where Pa = (a× id)∗P and P is the Poincaré line bundle on A× Pic0A.

Remark 3.3. When X itself is an abelian variety (or a complex torus) we recover
a well-known result (see [BL, Cor. 14.1.6] for an elementary proof in the complex
case and [Hu, pg. 202], [Mu2, pg. 128] for arbitrary characteristic). This fact is
crucial in the proof of Mukai Equivalence Theorem I.2.1.

Proof. The top cohomological support locus is V d(ωX) =
{

0̂
}
. By base change
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[Mu2, Cor. 3, pg. 53], it follows that, for α ∈ Pic0A,

RdΦPa(ωX)⊗ k(α̂) ∼=

{
k(0̂) if α = 0̂
0 otherwise.

(3.2)

It follows that RdΦPa(ωX) is a sheaf set-theoretically supported at 0̂. It remains to
prove that the schematic support is also 0̂.

Let B = OPic0 A,0̂ and m its maximal ideal. By Nakayama's lemma, (3.2) implies

that RdΦPa(ωX) is supported only at 0̂ and that RdΦPa(ωX) ∼= B/J , where J is a
m-primary ideal.

Claim. Pa|X×Spec B/J is trivial.

Proof of the Claim. Let E be a sheaf on Pic0A. By Lemma 3.1 we have a fourth
quadrant spectral sequence

Ei,j2 = Ext iPic0 A(R−jΦPa(ωX), E)⇒ Ri+j+dq∗(HomX×Pic0 A(Pa, q∗E)).

Clearly the term Ei,j2 is non-zero only if i > 0. Assuming i > 0, in the case
i + j + d = 0, i.e. −j = i + d we have that R−jΦPa(ωX) is non-zero if and only if
−j = d, i.e. i = 0. In conclusion for i + j + d = 0 the only non-zero E2-term is
E0,−d

2 = HomPic0 A(RdΦPa(ωX), E). Since the di�erentials from and to E0,−d
2 are

zero, we get that

HomPic0 A(RdΦPa(ωX), E) = E0,−d
2 = E0,−d

∞
∼= q∗(HomX×Pic0 A(Pa, q∗E)).

Taking global sections, we get the isomorphism (functorial in E)

HomPic0 A(RdΦPa(ωX), E) ∼= HomX×Pic0 A(Pa, q∗E). (3.3)

Using the previous isomorphism twice, once for E = B/J and the other for E = k(0̂),
by functoriality we get the commutative diagram

B/J

��

Hom
(
B/J,B/J

)
��

Hom
(
Pa|X×SpecB/J ,OX×SpecB/J

)
��

k(0̂) Hom
(
B/J, k(0̂)

)
Hom

(
Pa|X×{0̂} ,OX×{0̂}

)
.

(3.4)

Since Pa|X×{0̂} is trivial, we can take an isomorphism h ∈ Hom(Pa|X×{0̂} ,OX×{0̂}).
By the diagram above, h lifts to a morphism h̄ : Pa|X×SpecB/J → OX×SpecB/J .

Since h̄ is a map between invertible sheaves on X × SpecB/J which is an isomor-
phism when restricted to X ×

{
0̂
}
, h̄ is an isomorphism. Therefore Pa|X×SpecB/J
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is trivial. The Claim is proved.

At this point the Proposition follows since the smooth point 0̂ of Pic0A is the
maximal subscheme Z of Pic0A such that Pa|X×Z is trivial ([Mu2] �10). This in
turn follows from the well-known fact ([Mu2] �13) that the smooth point 0̂ of Pic0A
is the maximal subscheme Z of Pic0A such that P|A×Z is trivial, combined with the
fact that a∗ Pic0A → Pic0X is an embedding. However, we provide an equivalent
but self-contained argument. Let us consider the functor RΨPa : Db(Pic0A) →
Db(X), de�ned by RΨPa(·) = Rp∗(Pa⊗q∗(·)) in (I.1.3). Since Pa = (a×idPic0 A)∗P,
it follows that

RΨPa
∼= La∗ ◦ RΨP . (3.5)

The Claim implies, by the Künneth formula, that

RΨPa(B/J) = R0ΨPa(B/J) = O⊕rX , (3.6)

where r = lengthB/J . On the other hand, by [M1, Lemma 4.8], RΨP(B/J) =
R0ΨP(B/J) := U , where U is a unipotent vector bundle on A of rank r, i.e. a
vector bundle having a �ltration 0 = U0 ⊂ U1 ⊂ · · · ⊂ Ur−1 ⊂ Ur = U , such that
Ui/Ui−1

∼= OA. By (3.5) and (3.6) it follows that a∗U is trivial. The �ltration of
U , pulled back via a, induces the �ltration of the trivial bundle:

0 ⊂ a∗U1 ⊂ · · · ⊂ a∗Ur−1 ⊂ a∗Ur = O⊕rX ,

where a∗Ui/a∗Ui−1
∼= OX . Since h0(X, a∗Ui) ≤ i for all i, the fact that a∗Ur is

trivial implies easily, by descending induction on i, that

h0(X, a∗Ui) = i for all i. (3.7)

This in turn implies that the sequence

0→ a∗Ui−1 → a∗Ui → OX → 0

splits for all i (the coboundary map H0(OA) → H1(Ui−1) is zero). In particular
the extension

0→ OX → a∗U2 → OX → 0

is split. But the natural pullback map

H1(OA) ∼= Ext1(OA,OA)→ Ext1(OX ,OX) ∼= H1(OX) (3.8)

is identi�ed with the di�erential at 0̂ of the map a∗ : Pic0A→ Pic0X. Since a∗ is
assumed to be an embedding, (3.8) is injective. Hence also the extension

0→ OA → U2 → OA → 0

is split. This yields to hn(U) > 2. But this is impossible since, by Mukai's inversion,
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RΦP(U) = Û [−n] ∼= (−1Pic0 A)∗B/J [−n], and therefore, by base change, Hn(U) ∼=
(B/J)⊗ k(0̂) ∼= k(0̂). In conclusion r = length(B/J) = 1, i.e. B/J ∼= k(0̂).

3.2 Torsion part of the Fourier-Mukai of the structural sheaf

By Corollary I.1.18 when gva(ωX) > 1, ÔX is torsion-free. However, even when
gva(ωX) = 0 we can control the torsion part of ÔX in some particular cases. More
precisely, since we have already computed RdΦPa ωX for an irregular variety (The-
orem 3.2), to compute τ(ÔX) we will need only to impose the hypothesis of Propo-
sition 2.8 adapted to the canonical sheaf.

Hypothesis 3.4. Let X be a variety of dimension d, equipped with a morphism to
an abelian variety a : X → A such that:

(a) codimV ia (ωX) > i+ 1 for all i such that 0 < i < d;

(b) the map a∗ Pic0A→ Pic0X is an embedding.

Remark 3.5. Note that the hypothesis (a) is slightly weaker than gva(ωX) > 1. In
fact, Hypothesis (a) is equivalent to gva(ωX) > 1 unless dimX = dimA, i.e. the
morphism a is surjective. Observe also that in any case hypothesis (a) implies that
gva(ωX) > 0. Hence, by Proposition 1.10 a : X → A is generically �nite onto its
image and X is of maximal Albanese dimension.

Then, the following result is a corollary of Proposition 2.8 and Theorem 3.2.

Corollary 3.6 ([BLNP, Prop. 4.8]). Under Hypothesis 3.4, assume moreover that
dimX = dimA, i.e. that the morphism a is surjective. Then OX is a WITd sheaf
and ÔX has a non-trivial torsion subsheaf. More precisely, the torsion part τ(ÔX)
is isomorphic to the one-dimensional skyscraper sheaf C(0̂).

Proof. We can apply Proposition 2.8 to F = ωX noting that R∆ωX = OX .
Since dimX = dimA, Hypothesis 3.4(b) implies that gva(F) < 1 so, by Corollary
I.1.18, the sheaf ÔX has a non-trivial torsion subsheaf. Now, by Proposition 3.2,
RdΦPa(ωX) ∼= C(0̂). Hence Ed,−d2 = Extd(RdΦPa ωX ,OPic0 A) ∼= Extd(C(0̂),OPic0 A) =
C(0̂) and

Extd(RdΦPa ωX ,OPic0 A) = C(0̂)� τ(ÔX).

As we already know that τ(ÔX) 6= 0, it follows that τ(ÔX) ∼= C(0̂).

Remark 3.7. If we take the Fourier-Mukai transform RqΨP of the injection C(0̂) =
τ(â∗OX) ↪→ â∗OX , we recover the natural injection OA → a∗OX .

Corollary 3.8 ([BLNP, Cor. 4.11]). Assume Hypothesis 3.4 and that X is of
general type.
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(a) If dimX < dimA then a∗ωX is CGG.

(b) If dimX = dimA, i.e. a is surjective, then a∗ωX is ECGG, with
{

0̂
}
as

underlying subset of supp τ(R∆(a∗ωX)).

Proof. By Grauert-Riemenschneider vanishing (and projection formula), Ria∗(ωX⊗
a∗α) = 0 for i > 0. Therefore the Leray spectral sequence degenerates giving

V ia (ωX) = V i(a∗ωX). (3.9)

(a) If dimX < dimA then gv(a∗ωX) > 1. Therefore, a∗ωX is CGG by Theorem
2.6(a). As remarked before, this part of the result was already well-known
[PP3, Prop. 5.5].

(b) If dimX = dimA then τ(ÔX) ∼= C(0̂) (Corollary 3.6). Hence, by Theorem
2.6(b), a∗ωX is ECGG.

3.3 Characterization of abelian varieties

As a �rst consequence we get a characterization of abelian varieties (this is mainly
[BLNP, Prop. 4.10]).

Proposition 3.9. The following are equivalent:

(a) X is a smooth projective variety of maximal Albanese dimension such that
dimV 0(ωX) = 0;

(b) Hypothesis 3.4 holds, and X is not of general type;

(c) Hypothesis 3.4 holds, and χ(ωX) = 0;
(d) the morphism a : X → A is birational.

Proof. It is clear that item (d) implies the other items.

(a)⇒ (c): Since X is of maximal Albanese dimension by Theorem 1.4, gv(ωX) > 0.
By Corollary I.1.13, Hypothesis 3.4 are clearly satis�ed.

(b)⇒ (c): The morphism a is generically �nite (Prop. 1.10). In this case it is well-
known that χ(ωX) > 1 implies that X is of general type (by [CH1, Thm. 4.4],
one knows even that the tricanonical map of X is birational).

(c)⇒ (d): Since χ(ωX) = 0 then, by (I.1.4), ÔX is a torsion sheaf. By Corollary
I.1.18 it follows that gv(ωX) = 0. We already know that this, together with
Hypothesis 3.4, is equivalent to the fact that the morphism a is surjective.
Therefore, by Corollary 3.6, ÔX = C(0̂). By Proposition I.1.1

C(0̂) = ÔX = R̂a∗OX ,

where the hat on the left is the transform RΦPa (from X to Pic0A) and
the hat on the right is the transform RΦP (from A to Pic0A). By Mukai's
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Theorem I.2.1

OA = RΨP(C(0̂)) = RΨP(RΦP(Ra∗OX)[d]) I.2.1= (−1)∗ARa∗OX

whence Ra∗OX = OA. In particular, a has degree 1.
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4 Birationality of the bicanonical map

We recall the following theorems:

Theorem 4.1 ([CH1, Thm. 4.4]). Let X be of general type and maximal Albanese
dimension. If χ(ωX) > 0, then the rational map associated to ω3

X is birational.

Theorem 4.2 ([PP3, Thm. 6.1, Rem. 6.5]). Let X be a smooth projective complex
variety with gv(ωX) > 1. Then ω3

X ⊗ α is very ample away from the exceptional
locus of the Albanese map for every α ∈ Pic0X.

Remark 4.3. In the articles of Ein, Lazarsfeld, Pareschi and Popa it is common
to express the condition that gv(ωX) > 1 by saying that X is of maximal Albanese
dimension and the Albanese image of X is not ruled by tori. If X is a maximal
Albanese dimension variety with gv(ωX) < 1, then by Theorem 1.4 gv(ωX) = 0.
Let T ⊆ V k(ωX) an irreducible component of codimension k. Then by Theorem
1.6, the general �ber of a(X) → Pic0 T is a subtorus of AlbX. Hence, if X is of
maximal Albanese dimension and the Albanese image of X is not ruled by tori, in
particular, gv(ωX) > 1.
To compare Theorem 4.2 with its original formulation in [PP3, Thm. 6.1, Rem.
6.5] we also point out that the hypothesis gv(ωX) > 1 already implies that X is of
general type (Proposition 3.9) and maximal Albanese dimension (Proposition 1.10).

These two results are sharp, since there are varieties of general type and maxi-
mal Albanese dimension, such that gv(ωX) > 1 (hence χ(ωX) > 0), such that the
bicanonical map is not birational. Let us show the three paradigmatic constructions.

The �rst two examples is what one expects to be the building blocks of all other
cases.

Example 4.4. Let (A,Θ) be an indecomposable principally polarized abelian va-
riety, and let X → Θ be a desingularization of Θ. Without loss of generality,
we can assume that Θ is symmetric, i.e. Θ = (−1)∗Θ. The restriction map
H0(A,OA(2Θ)) → H0(Θ,OΘ(2Θ)) = H0(Θ, ω2

Θ) is surjective. Hence the pro-
jective map associated to ω2

Θ has degree two, since x and −x have the same image.
By a result of Ein-Lazarsfeld, Θ is normal and has rational singularities [EL, Thm.
1]. Hence Θ has canonical singularities (e.g. [K4, Thm. 11.1(1)]), and therefore
H0(X,ω2

X) ∼= H0(Θ, ω2
Θ). It follows that the bicanonical map of X has degree 2

and it is not birational.
Observe that, χ(ωX) = gv(ωX) = 1 andX is clearly of maximal Albanese dimension
and general type (since ω3

X is birational).

The second example veri�es gv(ωX) = 0 but it ful�lls Hypothesis 3.4 and χ(ωX) = 1.
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Example 4.5. Let (A,Θ) be an indecomposable principally polarized abelian va-
riety. Without loss of generality, we can assume as above that Θ is symmetric, i.e.
Θ = (−1)∗Θ. Consider a covering h : X̃ → A (�nite and surjective morphism) of
A branched along a reduced divisor B ∈ |2Θ|. Observe that, since B ∈ |2Θ| is
a reduced divisor, X̃ is a normal variety and ωX̃ = h∗OA(Θ) is locally free. By
[K3, Thm 17.13], (A,Θ) is a log canonical pair. Then by [KM, Prop. 5.20] (X̃, 0)
is also a log canonical pair, that is, X̃ has canonical singularities. Therefore, for
any smooth variety X birationally equivalent to X̃, H0(X,ω2

X) ∼= H0(X̃, ω2
X̃

) and

we can check the birationality of the bicanonical map directly on X̃. On the other
hand, the universal property of AlbX implies clearly that A = AlbX.

Now consider the involution ı given by multiplication by −1 in A. Observe that, as
the image of ϕ|2Θ| is isomorphic to the Kummer variety (i.e the quotient A/ı), any
B ∈ |2Θ| is symmetric with respect to ı. This implies that the involution ı lifts to an
involution  on X̃ that commutes with the involution σ de�ned by the double cover.
That is, we can think locally X̃ inside A×A1 as de�ned by the equation t2− s = 0
where (s)0 = B and observe that ı∗s = s. Or we can recall the global construction
of X̃ as the divisor in L = SpecOA SymL−1 (where L is OA(Θ) possibly translated
by a 2-torsion point) of the section T 2 − p∗s ∈ H0(L, p∗O(B)).

Moreover, ωX̃ = O(R), where R is the rami�cation locus, and ω⊗2

X̃
= h∗O(B). So

H0(X̃, ω⊗2

X̃
) ∼= H0(A,O(B)⊕L). Hence the invariant and antiinvariant eigenspaces

of H0(X̃, ω2
X̃

) with respect to the involution σ are:

H0(X̃, ω2
X̃

)+ ∼= H0(A,OA(Θ)) and H0(X̃, ω2
X̃

)− ∼= H0(A,OA(2Θ)).

And both are invariant by . Hence the bicanonical map of X̃ factors through the
quotient by  and is not birational. Indeed we have the following commutative
diagram

X̃ 77

h(2:1)

����

(2:1)

ϕ|ω2
X̃
|

// // X̃/ ⊆ PN1 =
∣∣∣ω2
X̃

∣∣∣∨
(2:1)

����
Aı 88

(2:1)

ϕ|B|
// // K = A/ı ⊆ PN2 = |2Θ|∨ .

It follows that the bicanonical map of X has degree 2 and it is not birational. Ob-
serve that, χ(ωX) = 1 and gv(ωX) = 0, since dimX = q(X) = codimPic0 X

{
0̂
}

=
codimPic0 X V

dimX(ωX). However, V i(ωX) =
{

0̂
}

for all 0 < i 6 dimX, so
codimV i(ωX) = q(X) = dimX > i + 1 for all i such that 0 < i < dimX and
Hypothesis 3.4 are ful�lled. It is clear that X has maximal Albanese dimension and
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it is of general type, since the canonical sheaf it is the pull-back of an ample line
bundle Θ by a �nite morphism.

The third example shows how can we construct other examples from smaller building
blocks.

Example 4.6. Let f : X → Y be a �bration, i.e. a surjective morphism with
connected �bers, and suppose that the general �ber F has non-birational bicanonical
map. Since the bicanonical map of X restricts to a subsystem of the bicanonical
map of F , the bicanonical map of X cannot be birational.
Thus, we can say that if a variety X has a �bration, whose general �ber has non-
birational bicanonical map, then X has non-birational bicanonical map.

In the case of surfaces we have the following theorem, which shows that the previous
three examples are the only possible cases that can occur when q(S) > 2.

Theorem 4.7. (a) ([CM1, Thm. 1.1]). Let S be a complex irregular surface of
general type with χ(ωS) > 2 and non-birational bicanonical map. Then S has
a pencil of curves of genus 2.

(b) (Corollary of [CFM, Thm. A]). Let S be a complex irregular surface of general
type with q(S) > 3 and non-birational bicanonical map. Suppose that S has
not a pencil of curves of genus 2. Then S is birational to a theta-divisor in a
principally polarized abelian threefold.

(c) ([CM2, Thm. 1.1]). Let S be a complex irregular surface of general type with
q(S) = 2 and non-birational bicanonical map. Suppose that S has not a pencil
of curves of genus 2. Then S is birational to a double cover of a principally
polarized abelian surface (A,Θ) branched along a smooth divisor B ∈ |2Θ|.

Observe that curves of genus 2 are also theta-divisors in a principally polarized
abelian surface (the Jacobian of the curve of genus 2). Thus, in the case of surfaces,
the previous results show that when q(S) > 2 and S does not present the case of
Example 4.6, we are in the case of Example 4.4 or Example 4.5.

Summarizing:

• The behavior of the tricanonical map for varieties of maximal Albanese di-
mension varieties and arbitrary dimension (see Theorems 4.2 and 4.1),

• the behavior of the bicanonical map in the case of surfaces (see Theorem 4.7)
and

• Examples 4.4, 4.5 and 4.6 in arbitrary dimension,

justify our aim to study and classify varieties with gv(ωX) > 1 (or, slightly more
general, varieties that ful�ll Hypothesis 3.4) and such that the rational map
associated to ω2

X ⊗ α is not birational for some α ∈ Pic0X.

We introduce a piece of notation that we will use in the sequel.
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Terminology/Notation 4.8. (a) We denote U0 the complement in Pic0A of the
closed subset V 1

a (ωX). Since, by Corollary I.1.13, V 1
a (ωX) ⊇ · · · ⊇ V da (ωX),

it follows that, for all α ∈ U0, h0(ωX ⊗ a∗α) takes the minimal value, i.e.
χ(ωX).

(b) Given a point p ∈ X, we denote Ba(p) the subset (closed in U0)

Ba(p) = {α ∈ U0 p ∈ Bs(ωX ⊗ a∗α)} .

(c) We will say that a line bundle �is birational� to mean that the associated ra-
tional map to projective space is birational onto its image.

4.1 Birationality criterion

The statement we are aiming at is,

Theorem 4.9 ([BLNP, Thm. 4.13]). Let X be a variety of general type satisfying
Hypothesis 3.4. Suppose that for general p in X, codimPic0 A Ba(p) > 2, then ω2

X ⊗
a∗α is birational for all α ∈ Pic0A. In particular, ω2

X is birational.

Remark 4.10. When dimX < dimA the general type assumption is a consequence
of Hypothesis 3.4 by Remark 3.5 and Theorem 4.2 that, not only implies the ample-
ness of ωX , but gives an e�ective bound.
When dimX = dimA, recall that by Proposition 3.9, being of general type is equiv-
alent to χ(ωX) > 0.

Proof of Theorem 4.9. We �rst recall some basic facts about the Fourier-Mukai
transform of the sheaves Ip ⊗ ωX . First of all, if p does not belong to exc(a)
then

Ria∗(Ip ⊗ ωX ⊗ a∗α) = 0 for i > 0. (4.1)

This follows immediately from the exact sequence

0→ Ip ⊗ ωX → ωX → Op ⊗ ωX → 0 (4.2)

and the Grauert-Riemenschneider vanishing theorem. Hence, as for the canonical
sheaf (see the proof of Corollary 3.6), the Leray spectral sequence yields to

V ia (Ip ⊗ ωX) = V i(a∗(Ip ⊗ ωX)). (4.3)

By sequence (4.2), tensored by a∗α, it follows that

V ia (Ip ⊗ ωX) = V ia (ωX) for all i > 2. (4.4)

Concerning the case i = 1 we have the surjection

H1(Ip ⊗ ωX ⊗ a∗α)� H1(ωX ⊗ a∗α),
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which is an isomorphism if, and only if, p is not a base point of ωX ⊗ a∗α. In other
words

V 1
a (Ip ⊗ ωX) = Ba(p) ∪ V 1

a (ωX).

Therefore the hypothesis about Ba(p) ensures that

codimV 1
a (Ip ⊗ ωX) > 2. (4.5)

Now we distinguish two cases:

(a) dimX < dimA. In this case, by Hypothesis 3.4, together with (4.3), (4.4)
and (4.5), gv(a∗(Ip ⊗ ωX)) > 1. Hence, by Theorem 2.6(a), a∗(Ip ⊗ ωX) is
CGG. Therefore Ip ⊗ ωX itself is CGG outside exc(a) (with respect to a).
Since the same is true for ωX (Corollary 3.8(a)), it follows from Proposition
2.5(a) that, for general p ∈ X and for all α ∈ Pic0A, Ip⊗ω2

X⊗a∗α is globally
generated outside exc(a). This means that the projective map associated to
ω2
X ⊗ a∗α is birational.

(b) dimX = dimA, i.e. the map a is surjective. Again by Hypotheses 3.4, (4.4)
and (4.5), the sheaf Ip ⊗ ωX satis�es,

codimV i(Ip ⊗ ωX) > i+ 1 for all i such that 0 < i < d

while

V d(Ip ⊗ ωX) =
{

0̂
}

and RdΦPa(Ip ⊗ ωX) = RdΦPa(ωX) = C(0̂).

Therefore we can apply Proposition 2.8, using the same arguments as in Corol-
lary 3.6 and proving that the torsion of RHom(a∗(Ip),OA) is C(0̂). Hence, by
Theorem 2.6(b), a∗(Ip⊗ωX) is ECGG. It follows that, for p not belonging to
exc(a), the sheaf Ip⊗ωX is ECGG away of exc(a). Let W be the non-empty
open set of points p ∈ X such that ωX is CGG at p. In view of Remark 2.3,
W is the complement of the intersection of all base loci Bs(ωX ⊗ a∗α−1), for
α ∈ Pic0A such that h0(ωX⊗a∗α−1) is minimal, i.e. equal to χ(ωX). Now let
α ∈ Pic0A. It follows from Proposition 2.5(b) that, if q is not a base point of
ωX⊗a∗α (and does not lie in exc(a)), then Ip⊗ω2

X⊗a∗α is globally generated
at q. Denoting Uα the complement of exc(a) ∪ Bs(ωX ⊗ a∗α), we conclude
that for all p ∈ Uα ∩W the sheaf Ip ⊗ ω2

X ⊗ a∗α is globally generated at all
points of Uα ∩W . As above, this means that the projective map associated
to ω2

X ⊗ a∗α is an isomorphism on Uα ∩W .

Consider the relative base locus

Ba = {(p, α) ∈ X ⊗ U0 p is a base point of ωX ⊗ a∗α} .

equipped with the projections on the two factors, p and q. Ba has a natural sub-
scheme structure given by the image of the relative evaluation map q∗(q∗L)⊗L−1 →
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OX×U0 , where L = (p∗ωX ⊗ Pa)|X×U0
.

Corollary 4.11 ([BLNP, Cor. 4.14]). Let X be a variety of general type satisfying
Hypothesis 3.4. Suppose that there exists α ∈ Pic0A such that ω2

X ⊗ a∗α is not
birational.
Then, for every β ∈ U0, the �ber of q : Ba → U0, Bs(ωX ⊗ a∗β), has codimension
one. Moreover X is covered by the divisorial components of Bs(ωX ⊗ a∗β), for β
varying in U0.

Note that it makes sense to speak of the base locus of ωX⊗a∗α since, by Proposition
3.9, the hypotheses of both the Theorem and the Corollary imply that χ(ωX) > 0,
whence h0(ωX ⊗ a∗α) > 0 for all α ∈ Pic0A.

Proof of Corollary 4.11. Let Ba the closed subvariety of X × U0 de�ned as

Ba = {(p, α) ∈ X ⊗ U0 p is a base point of ωX ⊗ a∗α} ,

with the scheme structure given by the relative evaluation map. By base change,
in any �ber over α ∈ U0, we have the evaluation map H0(ωX ⊗ a∗α) ⊗ (ωX ⊗
a∗α)−1 → OX . Hence any �ber of Ba → U0 is of codimension at least 1 because
h0(ωX ⊗ a∗α) > χ(ωX) > 0.
On the other hand, since we are assuming that ω2

X ⊗ a∗α is not birational for
some α ∈ Pic0X, then for a general p ∈ X we have that codimBa(p) = 1 by
Theorem 4.9. Since Ba(p) is the �ber of the projection p : Ba → X it follows that
codimX×U0 Ba = 1. By semicontinuity of the �ber dimension, we have that all the
�bers of the other projection q : Ba → Pic0A have at least codimension 1 in X.

Recall that by Theorem 4.9, under the hypothesis of the previous Corollary 4.11,
Ba has codimension 1 and that its divisorial part is dominant on X and surjects on
U0 via the projections p and q.

Terminology/Notation 4.12. Under the hypothesis of the previous Corollary
4.11, let Y be the subscheme of the relative base locus

Y ⊆ Ba = {(p, α) ∈ X ⊗ U0 p is a base point of ωX ⊗ a∗α} ,

de�ned as the union of the divisorial components of Ba that dominate U0. Let Y be
its closure in X × Pic0X.

(a) For α ∈ U0, we will denote by Fα the (scheme-theoretic) �ber of the projection
Y → U0 (In fact, it coincides with the �ber of q : Y → U0).

(b) For p ∈ X let Dp be the �ber of the projection Y → X.

Since we have restricted Y to be the union of the divisorial components of Ba that
dominate U0 we have the following interpretation of the �bers of the projections p
and q restricted to Y.
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Remark 4.13. Under the hypothesis of the previous Corollary 4.11 and using Ter-
minology/Notation 4.12 observe that:

(a) |ωX ⊗ a∗α| has a base divisor for all α ∈ U0. More precisely, at a general
point α ∈ U0, Fα is the �xed divisor of ωX ⊗ a∗α:

|ωX ⊗ a∗α| = |Mα|+ Fα

where |Mα| is the (possibly empty) mobile part.

(b) Dp is the closure of the union of the divisorial components of the locus of
α ∈ U0 such that p ∈ Bs(ωX ⊗ a∗α).

4.2 Decomposition

Keeping the Terminology/Notation 4.8 and 4.12, we have the following strong con-
straint on the Albanese and Picard variety of X on varieties of non-birational bi-
canonical map. Since, by Hypothesis 3.4, a∗ : Pic0A→ Pic0X is an embedding, in
the next two lemmas, we will drop a∗ from the notation.

Lemma 4.14. Under the hypotheses of Corollary 4.11 and using Terminology/No-
tation 4.8 and 4.12, consider a �xed point α0 ∈ U0, and the map

fα0 : U0 → Pic0X α 7→ OX(Fα − Fα0).

It induces an idempotent homomorphism f : Pic0A→ Pic0X, i.e.

f2 = f and Pic0X ∼= ker f × ker(id−f).

Moreover dim ker(id−f) > 0.

Proof. We consider the Abel-Jacobi map

fα0 : U0 → Pic0X α 7→ OX(Fα − Fα0)

where α0 is �xed in U0. Since it is a map between abelian varieties, it extends to a
morphism from Pic0A→ Pic0X. By rigidity,

f := fα0 − fα0(0̂) : Pic0A→ Pic0X

is a homomorphism. Note that f does not depend on α0 since, given another suit-
ably general α1 ∈ U0, fα1 − fα0 is a translation.

It remains to be proven that f is an idempotent homomorphism. Let α, β ∈ U0.
We have that

OX(Mα)⊗OX(Fβ) = ωX ⊗ α⊗ f(β ⊗ α−1). (4.6)
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This follows by de�nition of f since the left-hand side is isomorphic to

OX(Mα + Fα)⊗OX(Fβ − Fα) = ωX ⊗ α⊗ f(β ⊗ α−1).

Let W ⊆ U0 the open set such that for every α ∈ W , Fα is the �xed divisor of

|ωX ⊗ α| (see Remark 4.13). Consider the map (α, β)
f̄7→ α⊗f(β⊗α−1) and (α, β) ∈

f̄−1(W ) ∩ p−1
1 (W ). Then, the �xed divisors of ωX ⊗ α and ωX ⊗ α ⊗ f(β ⊗ α−1)

are, respectively, Fα and Fα⊗f(β⊗α−1) (i.e. |Mα| and
∣∣Mα⊗f(β⊗α−1)

∣∣ have no base

divisors). It follows from (4.6) that |Mα|
·Fβ
↪→
∣∣ωX ⊗ α⊗ f(β ⊗ α−1)

∣∣, so
Fβ = Fα⊗f(β⊗α−1).

Hence f(β) = f(α⊗ f(β ⊗ α−1)). This means that f(f(β ⊗ α−1)) = f(β ⊗ α−1)
for general α and β in U0, hence f2 = f . This gives the splitting of the exact
sequence 0̂→ ker f → Pic0A→ Imf → 0̂ and the identi�cation Imf ∼= ker(id−f).
Moreover, the abelian subvariety ker(id−f) is positive-dimensional since otherwise
the �xed divisor of ωX ⊗α would be constant for general α ∈ U0, contradicting the
last sentence in Corollary 4.11.

We will use the Greek letter α to denote an element in Pic0X and β ⊗ γ to denote
an element in Pic0X seen as an element in Pic0X ∼= ker f × ker(id−f), that is,
β ∈ ker f and γ ∈ ker(id−f). We will recall the de�nition each time it appears but
we hope that this notation make the reading easier.

Lemma 4.15. Under the hypotheses of Corollary 4.11, consider the decomposition
Pic0X ∼= ker f × ker(id−f) de�ned in Lemma 4.14, then there are two (e�ective)
divisors M and F on X such that

ωX = OX(M + F ),

and the following properties:

(a) For all (β, γ) ∈ ker f × ker(id−f) such that β ⊗ γ ∈ U0, |OX(F )⊗ γ| is
contained in the �xed divisor of ωX ⊗ β ⊗ γ;

(b) for (β, γ) such that β⊗γ is su�ciently general in U0, |OX(F )⊗ γ| is the �xed
divisor of |ωX ⊗ β ⊗ γ|. Hence, for such (β, γ), |OX(M)⊗ β| is the mobile
part of |ωX ⊗ β ⊗ γ|.

(c) Suppose, moreover that f(V 1
a (ωX)) 6= ker(id−f). Then h0(OX(M) ⊗ β) =

χ(ωX) for all β ∈ ker f .

Proof. Fix β̄ such that U0 ∩
({
β̄
}
× ker(id−f)

)
is non-empty. Then, for β̄ ⊗ γ ∈

U0∩
({
β̄
}
× ker(id−f)

)
the line bundleOX(Fβ̄⊗γ)⊗γ−1 =: OX(F ) does not depend

on γ. We also de�ne OX(M) := ωX(−F ).



4. Birationality of the bicanonical map 113

(a) For (β, γ) ∈ ker f × ker(id−f) such that β ⊗ γ ∈ U0, let E ∈ |OX(F )⊗ γ|.
ThenOX(Fβ⊗γ−E) ∼= OX(Fβ⊗γ−Fβ̄⊗γ) = f(β⊗β̄−1) = OX . Since Fβ⊗γ is a
�xed divisor of |ωX ⊗ β ⊗ γ|, also E = Fβ̄⊗γ is a �xed divisor in |ωX ⊗ β ⊗ γ|.

(b) If β ⊗ γ is su�ciently general in U0, we know that there are no other base
divisors, i.e. Fβ̄⊗γ = Fβ⊗γ is the �xed divisor of |ωX ⊗ β ⊗ γ| (see Remark
4.13).
Hence, |OX(M)⊗ β| =

∣∣ωX ⊗ β ⊗ γ ⊗OX(−Fβ̄⊗γ)
∣∣ that is the mobile part

of |ωX ⊗ β ⊗ γ|, since Fβ̄⊗γ is its �xed divisor.

(c) By assumption we can choose γ̄ ∈ ker(id−f) such that ker f × {γ̄} ⊆ U0.
Therefore h0(ωX ⊗ β ⊗ γ̄)= χ(ωX) for all β ∈ ker f . And by item (a), h0(ωX⊗
β ⊗ γ̄) = h0(OX(M)⊗ β).

We could have seen the decomposition given in Lemma 4.14 in the Albanese variety.

Lemma 4.16. Since the Albanese map is de�ned up to a translation in AlbX, we
can assume that there is a point, say p̄, such that alb(p̄) = 0 in AlbX. Under the
hypotheses of Corollary 4.11, consider the homomorphism

g : AlbX → A

arising from the universal property of the Albanese variety from the map p 7→
OPic0 A(Dp−Dp̄), where Dp is the divisor in Pic0A de�ned in Terminology/Notation
4.12.
The homomorphism g : AlbX → A is the dual homomorphism of f : Pic0A →
Pic0X of Lemma 4.14. Hence,

g2 = g and AlbX ∼= ker g × ker(id−g).

Proof. Given Y ⊂ X1×X2 be of pure dimension dimX1 + dimX2− 1 dominant on
each factor. The natural morphisms given by the �bers of Y AlbX1 → Pic0X2 and
AlbX2 → Pic0X1 are determined by the linear maps at the level of tangent spaces:
h1 : H0(X1,Ω1

X1
)∗ → H1(X2,OX2) and h2 : H0(X2,Ω1

X2
)∗ → H1(X1,OX1). Both

morphisms are de�ned using Hodge theory and Künneth formula as follows: the
class [Y ] ∈ H2(X1 ×X2,Z) represents in H2(X1 ×X2,C) an element η belonging
to the (1, 1) part of the Künneth decomposition

η = η1 + η2 ∈ (H1,0(X1)⊗H0,1(X2))⊕H0,1(X1)⊗H1,0(X2)).

Then the map h1 is induced by

η1 ∈ (H1,0(X1)∗∗ ⊗H0,1(X2)) = Hom(H1,0(X1)∗, H0,1(X2)),

and analogously for h2. Since η is an integral class, is invariant by conjugation, so
η2 = η1. This yields h2 = h1 which implies the statement.
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Remark 4.17. We have seen that ker(id−g) ∼= Pic0(ker(id−f)) and ker g ∼=
Pic0(ker f).

It follows from Lemma 4.16 that

AlbX ∼= B × C,

where we will call B = Pic0(ker f) = ker g and C = Pic0(ker(id−f)) = Im g. Hence
the Poincaré line bundle P on AlbX × Pic0X is

P ∼= PB � PC . (4.7)

Keeping in mind that P , the Poincaré line bundle onX×Pic0X is (alb× idPic0 X)∗P,
the next lemma provides a description of

((g ◦ alb)× f)∗PC = (alb× idPic0 X)∗(OB×Pic0 B � PC),

which is �half� Poincaré line bundle.

Since the Albanese map is de�ned up to a translation in AlbX, we can assume that
there is one point, say p̄, such that alb(p̄) = 0 in AlbX.

Lemma 4.18 ([BLNP, Lem. 5.2]). Under the hypotheses of Corollary 4.11, con-
sider the projections f and g as de�ned in Lemmas 4.14 and 4.16. Then we have
the following explicit description of the pull-back of the Poincaré line bundle PC on
C = Im g = Pic0(ker(id−f)),

((g ◦ alb)× f)∗PC ∼= OX×Pic0 X(Y)⊗ p∗OX(−F )⊗ q∗OPic0 X(−Dp̄),

where Dp are de�ned in Notation/Terminology 4.12, F is de�ned in Lemma 4.15
and p̄ is such that alb(p̄) = 0 in AlbX.

Proof. By the de�nition of Y and Lemma 4.15 we have that the line bundle

OX×Pic0 X(Y)⊗ p∗OX(−F )⊗ q∗OPic0 X(−Dp̄),

- restricted to X × {β ⊗ γ} is isomorphic to

OX(Fβ⊗γ − F ) = OX(F )⊗ γ ⊗OX(−F ) = γ

for all (β, γ) ∈ ker f × ker(id−f) su�ciently general in U0;
- restricted to {p̄} × Pic0X is isomorphic to OPic0 X(Dp) ⊗ OPic0 X(−Dp), i.e.
trivial.

On the other hand,
((g ◦ alb)× f)∗PC

- restricted to X × {β ⊗ γ} is isomorphic to

(g ◦ alb)∗ PC |C×{f(β⊗γ)} = (g ◦ alb)∗ PC |C×{γ} = (g ◦ alb)∗γ = γ



4. Birationality of the bicanonical map 115

for all (β, γ) ∈ ker f × ker(id−f);
- restricted to {p̄} × Pic0X is isomorphic to f∗ PC |{0}×Pic0 C = f∗OPic0 C =
OPic0 X , i.e. trivial.

Then, the Lemma follows from the see-saw principle.
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5 The bicanonical map of irregular varieties

The next theorem gives a su�cient numerical condition for the birationality of the
bicanonical map, analogous to Pareschi-Popa Theorem 4.2 for the tricanonical map.

Theorem 5.1. Let X be a smooth projective complex variety. If gv(ωX) > 2,
then the rational map associated to ω2

X ⊗ α is birational onto its image for every
α ∈ Pic0X.

As a �rst corollary we have the following result.

Corollary 5.2. Let X be a smooth projective complex variety of maximal Albanese
dimension such that the bicanonical map is not birational. Then 0 6 gv(ωX) 6 1.
Moreover, it admits a �bration onto a normal projective variety Y with 0 6 dimY <
dimX, any smooth model Ỹ of Y is of maximal Albanese dimension, and

• either, the general �bers map onto divisors in a �xed abelian variety
• or the general �bers map onto a �xed abelian variety.

In any case,
q(X)− dimX 6 q(Ỹ )− dimY + gv(ωX).

Before giving the proof of the previous results we would like to see how they �t into
the case of surfaces and their relation with other related results.

In the case of surfaces, we classically know the case when dimY > 0 as the standard
case, i.e. we have a �bration by curves of genus 2 (see Theorem 4.7(a)). These curves
are either mapped into their Jacobian as divisors or they are coverings branched at
two points of a �xed elliptic curve. When dimY = 0 we have that

- X is mapped to a divisor in its Albanese variety like in Theorem 4.7(b) or
Example 4.4 or

- X is mapped onto its Albanese variety like in Theorem 4.7(c) or Example 4.5.

Anyway, the case of surfaces is easier mainly because the only possible �brations to
positive dimensional varieties are �brations onto curves. In this case, we have the
following remark.

Remark 5.3. Let X be a smooth variety that admits a relatively minimal non-
isotrivial �bration f : X → B onto a curve B of genus g > 3. Suppose now that the
bicanonical map of X is non-birational and let F be the general �ber of the �bration.
Then the bicanonical map of F is non-birational.

Proof of the Remark. Suppose that the bicanonical map of X is non-birational and
X → B is a relatively minimal �bration which is not isotrivial. Since X → B
is a relatively minimal �bration, ωX/B is a nef line bundle (see [Oh, Thm. 1.4])
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and, since it is not isotrivial, ωX/B is big (see [Oh, Cor. 1.5]). Then, consider the
following short exact sequence,

0→ ω2
X ⊗O(−F )→ ω2

X → ω2
F → 0.

Observe that ω2
X ⊗O(−F ) ∼= ωX ⊗ ωX/B ⊗O((2g − 3)F ). F is a �ber, so O(F ) is

nef. By the previous discussion ωX/B ⊗O((2g − 3)F ) is a nef and big line bundle.
Then by Kawamata-Viehweg Vanishing Theorem H1(ω2

X ⊗O(−F )) = 0, so

H0(ω2
X)� H0(ω2

F ). (5.1)

By Fujita's Theorem [Fu], if q(X) > g, there exists an inclusion OB ↪→ f∗ωX/B .
Observe that in our situation q(X) > g holds trivially, because if not, AlbX →
JB would be an isogeny and the �bers of X would not be of maximal Albanese
dimension contradicting Proposition 3.9. So, h0(f∗ωX/B) = h0(ωX/B) > 0. Hence
also h0(ω2

X/B) > 0 and there exists an inclusion f∗ω2
B ↪→ ω2

X . Therefore,

H0(f∗ω2
B) ↪→ H0(ω2

X),

and ϕ|ω2
X | factors through ϕ|f∗ω2

B|. Even more, we have the following commutative

diagram

X

f

��

ϕ|ω2
X | // //______

ϕ|f∗ω2
B|

$$H
H

H
H

H
H

H X̃ ⊆ PN1 =
∣∣ω2
X

∣∣∨
f̃

��
B ϕ|ω2

B|
// //______ B̃ ⊆ PN2 =

∣∣ω2
B

∣∣∨.
Then, since ω2

B is birational (because g(B) > 3) and ω2
X is non-birational, the ratio-

nal map induced by the subsystem Im (H0(ω2
X) → H0(ω2

F )) cannot be birational.
By (5.1), H0(ω2

F ) = Im (H0(ω2
X)→ H0(ω2

F )), so the bicanonical map of the general
�ber F cannot be birational.

This kind of results shows that, roughly speaking, the only problematic �brations
in the case of surfaces are the �brations by curves of genus 2. However, in higher
dimensions the results on the positiveness of the higher direct images of the canoni-
cal line bundle are not so strong as the Fujita's Theorem is and this direct approach
to the problem is not so easy.

When we consider the known results in surfaces, another question that arises in
higher dimensions is whether the Euler characteristic χ(ωX) gives conditions on the
birationality of the bicanonical map (see Theorem 4.7(a) for the case of surfaces).
The next result of Pareschi and Popa shows that the generic vanishing index gives
a lower bound to Euler characteristic.
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Theorem 5.4 ([PP7, Cor. 4.1]). Let X be a compact Kähler manifold of maximal
Albanese dimension. Then

χ(ωX) > gv(ωX).

Thus, the class of varieties with 0 6 gv(ωX) 6 1 contains all maximal Albanese
dimension varieties that, either have non-birational bicanonical map, or χ(ωX) 6 1.
Maximal Albanese dimension varieties of general type and χ(ωX) = 0 are quite
special and were discovered by Ein and Lazarsfeld [EL]. They do not exist in di-
mension 6 2, showing also that the higher dimensional case should be more di�cult
in general.

What do we know about maximal Albanese dimension varieties of general type
and gv(ωX) = χ(ωX) = 1? Theta-divisors, i.e. a divisor representing a principal
polarization in an Abelian variety, provide examples of varieties with gv(ωX) =
χ(ωX) = 1 in any dimension. In fact, the products of theta-divisors are the only
known examples of such varieties. The following result of Hacon and Pardini gives
constraints to varieties of maximal Albanese dimension and χ(ωX) = 1.

Theorem 5.5 ([HP2, Thm. 3.1]). Let X be a smooth projective variety of maximal
Albanese dimension. If χ(ωX) = 1, then q(X) 6 2 dimX. If in addition q(X) =
2 dimX, then X is birational to a product of curves of genus 2.

We have the analogous result for �brations onto curves (compare with Remark 5.3).
That is, suppose that X is a smooth variety with χ(ωX) = 1 that admits a �bration
onto a curve of maximal Albanese dimension. Then, if the base curve has genus
> 2, the general �ber F reproduces the behavior of X, i.e. χ(ωF ) = 1.

Remark 5.6. Let X be a maximal Albanese dimension smooth variety with χ(ωX) =
1, that admits a �bration f : X → B onto a curve B of genus g > 2 and let F be
its general �ber. Then χ(ωF ) = 1.

Proof. By [HP2, Thm 2.4],

χ(ωX) > χ(ωB) · χ(ωF ).

Therefore, if χ(ωX) = 1, B must be a curve of genus 2 and χ(ωF ) 6 1. Since,
F is of maximal Albanese dimension by Green-Lazarsfeld Vanishing Theorem 1.4,
χ(ωF ) > 0. By [HP2, Prop. 2.5], if χ(ωF ) = 0, then χ(ωX) = 0, contradicting the
hypothesis. Therefore, χ(ωF ) = 1.

So there is a parallelism in the behavior of smooth varieties with gv(ωX) = 1 and
non-birational bicanonical map and varieties with gv(ωX) = χ(ωX) = 1. How-
ever, there clearly exist varieties with maximal Albanese dimension, non-birational
bicanonical map and χ(ωX) > 1 or q(X) > 2 dimX.
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Example 5.7. We can consider for example the product X = Θ × Y of a theta-
divisor Θ with any variety Y chosen appropriately in order to increase arbitrarily
either χ(ωX) or q(X) − 2 dimX, but the bicanonical map of X would never be
birational (see Examples 4.4 and 4.6).

Example 5.8. We could have also considered a product of X = Z ×Y , where Z is
a double covering of a principally polarized abelian variety (A,Θ) branched along a
reduced divisor in |2Θ| as in Example 4.5, and Y is any variety chosen appropriately
in order to increase arbitrarily either χ(ωX) or q(X) − 2 dimX. As above, by 4.6
the bicanonical map of X would never be birational.

However, these varieties admit a �bration onto a lower-dimensional variety Y of
maximal Albanese dimension. We will see in the next section �6 that, when we
do not allow this kind of �brations, varieties with gv(ωX) = 1 and non-birational
bicanonical map have χ(ωX) = 1 (proof of Theorem 6.7 below) and that, when
q(X) > dimX, we have only one class of such varieties, namely theta-divisors in
principally polarized abelian varieties (see Proposition 6.4 below). So, in absence
of �brations and q(X) > dimX the problem of classifying the boundary examples
of Theorem 5.1 and χ(ωX) = 1 in Theorem 5.4, are equivalent. The main subject
of the following section �6 is to study what happens in absence of �brations.

Proofs

We go back to the proofs of Theorem 5.1 and Corollary 5.2.

Proof of Theorem 5.1. Assume that gv(ωX) > 1 and the bicanonical map is not
birational and we will see that gv(ωX) = 1.
Since gv(ωX) > 1, then Hypothesis 3.4 are full�lled. Furthermore, the assumption
that there exists α ∈ Pic0X such that ω⊗2

X ⊗ α is non-birational, places ourselves
in the hypotheses of Corollary 4.11. Thus we can freely use Notation/Terminology
4.12 and Lemma 4.15. Moreover, Lemma 4.18 yields to the following short exact
sequence on X × Pic0X

0→((g◦alb)×f)∗P−1
C
·Y→p∗OX(F )⊗q∗OPic0X(Dp̄)→(p∗OX(F )⊗q∗OPic0X(Dp̄))|Y →0,

where p, q are the projections of X × Pic0X.
Recall that ((g ◦ alb) × f)∗PC = (alb× idPic0 X)∗(OB×Pic0 B � PC). We apply the
functor Rdq∗( · ⊗(alb× idPic0 X)∗(P−1

B �OC×Pic0 C)), that is, we tensor by the other
�half� Poincaré line bundle (see (4.7)) and we take the top direct image. We get

· · · → RdΦP−1(OX)→
→ Rdq∗

(
p∗OX(F )⊗ (alb× idPic0 X)∗(P−1

B �OC×Pic0 C)
)
⊗OPic0 X(Dp̄)→

→ Rdq∗
(
(p∗OX(F )⊗q∗OPic0X(Dp̄))|Y ⊗(alb×idPic0X)∗(P−1

B �OC×Pic0 C)
)
→ 0.
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Recall that RΦP−1 ∼= (−1)∗
Pic0 X

RΦP (see Corollary I.1.3). Then we have the
following short exact sequence,

0→ (−1)∗Pic0 XÔX
µ→ E(Dp̄)→ T → 0 (5.2)

where:

(a) By base change, E = Rdq∗(p∗OX(F )⊗ (alb× idPic0 X)∗(P−1
B �OC×Pic0 C)) is

a coherent sheaf of rank h0(OX(M) ⊗ β) by a general β ∈ ker f , that is, by
Lemma 4.15(b), χ(ωX).
Recall that B = ker g and b : X → B is b = (id−g) ◦ alb. We have the
following commutative diagram

Pic0X

pb̂
��

X × Pic0X
qoo alb× id//

id×pb̂
��

AlbX × Pic0X

pb×pb̂
��

Pic0B X × Pic0Bq
oo

b×id
// B × Pic0B

where we have denoted pb : AlbX → B and pb̂ : Pic0X → Pic0B the
corresponding projections (see lemmas 4.14 and 4.16). Abusing notation, we
call q either the projection X×Pic0X → Pic0X or X×Pic0B → Pic0B and
p the projections X × Pic0X → X or X × Pic0B → X. Then

E = Rdq∗(p∗OX(F )⊗ (alb× id)∗(P−1
B �OC×Pic0 C))

= Rdq∗(p∗OX(F )⊗ (alb× id)∗(pb × pb̂)
∗P−1

B

= Rdq∗(p∗OX(F )⊗ (id×pb̂)
∗(b× id)∗P−1

B comm. on the right square

= Rdq∗(id×pb̂)
∗(p∗OX(F )⊗ (b× id)∗P−1

B ) abuse of notation on p

= p∗
b̂
Rdq∗(p∗OX(F )⊗ (b× id)∗P−1

B ) �at base change

= p∗
b̂
RdΦP−1

b
(OX(F )),

following the notation of (I.1.1) and (I.1.2).

(b) The map µ is injective since it is a generically surjective map of sheaves of the
same rank (recall that rk ÔX = χ(ωX)) and, as gv(ωX) > 1, the source ÔX
is torsion-free (Corollary I.1.18).

(c) T = Rdq∗
(
(p∗OX(F )⊗q∗OPic0 X(Dp̄))|Y ⊗(alb×idPic0 X)∗(P−1

B �OC×Pic0 C)
)

is supported at the locus of the α ∈ Pic0X such that the �ber of the projec-
tion q : Y → Pic0X has dimension d, i.e. it coincides with X. Such locus is
contained in V 1(ωX), therefore, since gv(ωX) > 1, codim supp T > 2.

(d) µ is Rdq∗(ms), wherems is the multiplication by the section de�ning Y. Hence
by base change Rdq∗(ms)⊗ C(α) = Hd(ms|q−1{α}) where q is the projection
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q : Y → Pic0X. When q−1 {α} = X, ms|q−1{α} = 0, so in these points

Rdq∗(ms)⊗ C(α) = 0.

Claim T 6= 0.
Suppose that T = 0, so µ is an isomorphism. Taking Extd( · ,OPic0 X) we get

k(0̂) = RdΦPa ωX Prop. 3.2

= Extd(E ,OPic0 X)⊗O(−Dp̄) Extd(µ,OPic0 X) and Cor. I.1.14

= p∗
b̂
Extd(RdΦPb(OX(F )),OPic0 B)⊗O(−Dp̄) item (a) and [Hu, (3.17)],

which implies that codimAlbX B = dim ker(id−f) = 0 contradicting Lemma 4.14.

Hence we can assume that T 6= 0. Let τ(E(Dp̄)) be the torsion part of E(Dp̄) and

Ẽ(Dp̄) the quotient of E(Dp̄) by its torsion part. Hence Ẽ(Dp̄) is torsion-free. Now
consider the following compostion

(−1)∗
Pic0 X

ÔX
µ //

µ̃ $$JJJJJJJJ
E(Dp̄)

����

Ẽ(Dp̄).

Since µ̃ is generically surjective and (−1)∗
Pic0 X

ÔX is torsion-free (recall that, by
assumption, gv(ωX) > 1), we have that µ̃ is injective. Completing the diagram we
get,

0

��

0

��
τ(E(Dp̄))

��

τ(E(Dp̄))

��
0 // (−1)∗

Pic0 X
ÔX

µ // E(Dp̄)

����

// T //

��

0

0 // (−1)∗
Pic0 X

ÔX
µ̃ // Ẽ(Dp̄)

��

// T̃ //

��

0

0 0

(5.3)
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Claim T̃ 6= 0.
If T̃ = 0, then the middle horizontal short exact sequence splits. But, for α a closed
point in the support of T (by the previous claim we know that T 6= 0), µ⊗C(α) = 0
by item (d), so µ cannot split. Therefore T̃ 6= 0.

Let k = codimPic0 X supp T̃ > 2 (see item (c)). Then,

codimPic0 X supp Extk(T̃ ,OPic0 X) = k.

Now, we take Ext i( · ,OPic0 X) to the bottom row of (5.3) using Corollary I.1.14

. . .→ Rk−1ΦPa ωX → Ext
k(T̃ ,OPic0 X)→ Extk(Ẽ(Dp̄),OPic0 X)→ . . .

Since Ẽ(Dp̄) is torsion-free, codimPic0 X supp Extk(Ẽ(Dp̄),OPic0 X) > k. Therefore,
we must have codimPic0 X suppRk−1ΦPa ωX = k and gv(ωX) 6 1.

Proof of Corollary 5.2. By the previous Theorem 5.1 and Proposition 1.10 it is
clear that 0 6 gv(ωX) 6 1. Now, the proof is the same as the proof of [PP7,
Thm. B]. Let i > 0 such that codimPic0 X V

i(ωX) − i = gv(ωX), and let V be
an irreducible component of V i(ωX) of maximal dimension, by Green-Lazarsfeld's
Theorem 1.6(a), V is translate of an abelian subvariety T . Then, let Y be the
normal variety constructed in Remark 1.7 and let Ỹ be any desingularization. The
general �ber F of X → Y , maps to T via the Albanese map of X. Thus, by Green-
Lazarsfeld's Theorem 1.6(b), we have q(X) − q(Ỹ ) 6 codimPic0 X V

i(ωX) = dimT
and dimF = dimX − dimY > i. In conclusion, since codimPic0X V

i(ωX)− i =
gv(ωX),

q(X)− dimX 6 q(Ỹ )− dimY + 1

and
i 6 dimF 6 dimT = codimV i(ωX),

so the general �ber, either maps to a divisor on T or surjectively to T .
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6 Primitive varieties

Theorem 1.6 and Remark 1.7 show that the existence of a positive dimensional
component in some V i(ωX) for i > 0, implies the existence of a �bration onto a
smooth lower-dimensional variety Y of maximal Albanese dimension. Choosing the
�bration suitably, we can suppose that dimV i(ωY ) = 0 for all i > 0. This justi�es
the following de�nition due to Catanese [Ca, Def. 1.24].

De�nition 6.1. An irregular Kähler manifold such that dimV i(ωX) = 0 for all
i > 0 is called primitive.

Remark 6.2. If X is a primitive variety gv(X) = q(X)−dimX. So, by Proposition
1.10, a primitive variety is of maximal Albanese dimension if, and only if, q(X) >
dimX. Moreover,

gv(ωX) > 1⇔ q(X) > dimX

gv(ωX) = 0⇔ q(X) = dimX.

The following Proposition shows that a primitive variety only admits very special
�brations onto varieties of maximal Albanese dimension.

Proposition 6.3. Let f : X → Y be a �bration from a primitive variety X to a
maximal Albanese dimension variety Y . Then

(a) Y is birational to an abelian variety.
(b) Let F be a general smooth �ber and ρ : Pic0X → Pic0 F the restriction map.

Then
ker ρ = f∗ Pic0 Y.

Proof. Suppose that the general �ber of f : X → Y is of dimension k.

(a) By Kollár's theorem 1.8(c), the Leray spectral sequence of f splits, which
yields to f∗V 0(Rkf∗ωX) ⊆ V k(ωX). Since X is primitive, dimV 0(Rkf∗ωX) =
0. After passing to a desingularization of Y we assume that Y is smooth, and
then by another result of Kollár Rkf∗ωX ∼= ωY (Theorem 1.8(d)). Hence Y
is a maximal Albanese dimension with dimV 0(ωY ) = 0 and, by Proposition
3.9, is birational to an abelian variety.

(b) We know that ker ρ is the disjoint union of torsion translates of f∗ Pic0 Y .
Suppose that α ∈ ker ρ−f∗ Pic0 Y . We can assume that α is torsion. Since α ∈
ker ρ, hk(F, (ωX ⊗ α)|F ) = hk(F, ωF ) ∼= h0(F,OF ) 6= 0. Hence Rkf∗(ωX ⊗
α) 6= 0 and, by Theorem 1.5, gv(Rkf∗(ωX⊗α)) > 0. Hence, V 0(Rkf∗(ωX⊗α))
is non-empty since, if it were empty, by Corollary I.1.13, all the cohomological
support loci would be empty and the Mukai Equivalence Theorem I.2.1 will
lead us to Rkf∗(ωX⊗α) = 0. If V 0(Rkf∗(ωX⊗α)) were positive dimensional,
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by Hacon's Remark 1.9 on Kollár's splitting, V k(ωX⊗α) would be also positive
dimensional contradicting the assumption that X is primitive. Then, there
exists β ∈ V 0(Rkf∗(ωX ⊗ α)) an isolated point. By Corollary I.1.15, since
dimY = q(Y ) we have that β ∈ V q(Y )(Rkf∗(ωX ⊗ α)). Let d = dimX =
q(Y ) + k. Again by Remark 1.9, Hd(ωX ⊗ α⊗ f∗β) 6= 0, so α ∈ f∗ Pic0 Y .

This result was already well-known in the case of surfaces by the complete under-
standing of the positive dimensional components of V 1(ωS) (see [B, Cor. 2.3]).

6.1 Characterization of theta-divisors among primitive varieties

In this section we will prove an improvement of Hacon-Pardini's cohomological
characterization of theta-divisors [HP1, Prop. 4.2]. Indeed, we characterize the
boundary cases of Theorem 5.4 with χ(ωX) = 1 which are primitive varieties.

Proposition 6.4 below has also been proved independently, with a di�erent proof,
in [LP, Prop. 3.13]. An algebraic version, valid in any characteristic, is provided
by Corollary 6.6 below.

Proposition 6.4 ([BLNP, Prop. 3.1]). Let X be a d-dimensional compact Kähler
manifold such that:

(a) X is primitive;

(b) d < q = q(X);
(c) χ(ωX) = 1.

Then AlbX is a principally polarized abelian variety and the Albanese map alb: X →
AlbX maps X birationally onto a theta-divisor.

As an immediate corollary we have the following result (see Remark 6.2 and Theo-
rem 5.4)

Corollary 6.5. Let X be a compact Kähler manifold such that:

(a) X is primitive;

(b) gv(ωX) = χ(ωX) = 1.

Then AlbX is a principally polarized abelian variety and the Albanese map alb: X →
AlbX maps X birationally onto a theta-divisor.

Proof of Proposition 6.4. By hypothesis (a) and (b) gv(ωX) > 1. Therefore, by

Corollary I.1.18, ÔX is torsion-free. Since, by (I.1.4), rk ÔX = χ(ωX)
(c)
= 1, we get
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that ÔX is an ideal sheaf twisted by a line bundle of Pic0X:

ÔX = IZ ⊗ L.

By base change, the support of Z is contained in the union of the V i(ωX) for
i > 0 which are assumed, by (a), to be �nite sets. Therefore Ext i(ÔX ,OPic0 X) =
Ext i+1(OZ ,OPic0 X) = 0 for i+ 1 6= q. On the other hand, by Proposition 3.2, and
Corollary I.1.14 it follows that

Extd(ÔX ,OPic0 X) ∼= (−1Pic0 X)∗RdΦP (ωX) ∼= C(0̂). (6.1)

This implies:

(a) d = q − 1.
(b) OZ = C(0̂). Indeed, Ext i(C(0̂),OPic0 X) is zero for i < q(X) and equal to

C(0̂) for i = q(X).

Since RHom(·,OPic0 X) is an involution, (b) follows from (6.1). In conclusion

ÔX = I0̂ ⊗ L,

where L is a line bundle on Pic0X and I0̂ is the ideal sheaf of the (reduced) point
0̂.
By Proposition I.1.1

RΦP (OX) = RΦP(R alb∗OX) = I0̂ ⊗ L[−q + 1].

Therefore, by Mukai's Inversion Theorem I.2.1

RΨP(I0̂ ⊗ L) = (−1)∗Pic0 XR alb∗OX [−1]. (6.2)

In particular,

R0ΨP(I0̂ ⊗ L) = 0 and R1ΨP(I0̂ ⊗ L) ∼= alb∗OX (6.3)

Applying ψP to the standard exact sequence

0→ I0̂ ⊗ L→ L→ O0̂ ⊗ L→ 0, (6.4)

and using (6.3) we get,

0→ R0ΨP(L)→ OAlbX → alb∗OX (6.5)

whence R0ΨP(L) is supported everywhere (since alb∗OX is supported on a divisor).
It is well-known that this implies that L is ample. Therefore RiΨP(L) = 0 for i > 0.
Therefore, by sequence (6.4), RiΨP(I0̂ ⊗ L) = 0 for i > 1. By (6.2) and (6.3), this
implies that Ri alb∗(OX) = 0 for i > 0. Furthermore, (6.5) implies easily that
h0(L) = 1, i.e. L is a principal polarization. Therefore, via the identi�cation
AlbX ∼= Pic0X provided by φL, we have R0ΨP(L) ∼= L−1 (see Proposition I.2.2).
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Since the arrow on the right in (6.5) is onto, it follows that alb∗OX = OD, where
D is a divisor in |L|. Since we already know that alb is generically �nite (see
Propostion 1.10), this implies that alb is a birational morphism onto D.

Note that the proof is entirely algebraic, except for the use of Propostion 1.10, since
all the other results used are in section I.�1 and we recall Remark I.2.3. Therefore,
the following statement holds,

Corollary 6.6 ([BLNP, Cor. 3.2]). let X be a smooth projective variety over any
algebraically closed �eld such that:

(a) X is a primitive variety, i.e. dimV i(ωX) = 0 for all i > 0;
(b) d = dimX < dim AlbX and the Albanese map of X is generically �nite, and
(c) χ(ωX) = 1.

Then AlbX is a principally polarized abelian variety and the Albanese map alb: X →
AlbX maps X birationally onto a theta-divisor.

6.2 The bicanonical map of primitive varieties with q(X)>dimX

As we have showed in section �5, for smooth projective varieties without �irregular�
�brations, the problem of classifying those with gv(ωX) = 1 and non-birational
bicanonical map seems related to the classi�cation problem of those with χ(ωX) =
gv(ωX) = 1. As we have announced, in this section we will show that for primitive
varieties and q(X) > dimX or gv(ωX) > 1, the problem of classifying varieties
with non-birational bicanonical map is equivalent to the problem of classifying the
boundary examples of Theorem 5.4 with χ(ωX) = 1. As we have already done the
classi�cation of the boundary examples of Theorem 5.4 with χ(ωX) = 1 in Corollary
6.5, we will be able to classify primitive varieties with q(X) > dimX (equivalently
gv(ωX) > 1) and non-birational bicanonical map.
The following Theorem that is the main result in [BLNP].

Theorem 6.7 ([BLNP, Thm. A]). Let X be a primitive smooth complex projective
variety such that dimX < q(X). The following are equivalent

(a) the bicanonical map of X is non-birational,
(b) X is birationally equivalent to a theta-divisor of an indecomposable principally

polarized abelian variety.

As an immediate corollary we have the following result (see Remark 6.2) that inter-
prets the previous theorem as the classi�cation of the primitive boundary examples
of Theorem 5.1.

Corollary 6.8. Let X be a primitive smooth complex projective variety such that the
bicanonical map of X is non-birational. If gv(ωX) = 1, then AlbX is a principally
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polarized abelian variety and the Albanese map alb: X → AlbX maps X birationally
onto a theta-divisor.

Proof of Theorem 6.7. Example 4.4 shows implication (b)⇒ (a) .
Implication (a)⇒ (b) follows from Proposition 6.4 once we prove that χ(ωX) = 1.

Claim χ(ωX) = 1.
We will freely use Notation/Terminology 4.12 and Lemma 4.15. First, note that the
hypothesis dimX < q(X), implies that gv(ωX) > 1. On the other hand, Lemma
4.18 yields to the short exact sequence on X × Pic0X

0→((g◦alb)×f)∗P−1
C
·Y→p∗OX(F )⊗q∗OPic0X(Dp̄)→ (p∗OX(F )⊗q∗OPic0X(Dp̄))|Y→0,

where p, q are the projections of X × Pic0X.
Recall that ((g ◦ alb) × f)∗PC = (alb× idPic0 X)∗(OB×Pic0 B � PC). We apply the
functor Rdq∗( · ⊗(alb× idPic0 X)∗(P−1

B �OC×Pic0 C)), that is, we tensor by the other
�half� Poincaré line bundle (see (4.7)) and we take the top direct image. We get

· · · → RdΦP−1(OX)→
→ Rdq∗

(
p∗OX(F )⊗ (alb× idPic0 X)∗(P−1

B �OC×Pic0 C)
)
⊗OPic0 X(Dp̄)→

→ Rdq∗
(
(p∗OX(F )⊗q∗OPic0X(Dp̄))|Y ⊗(alb×idPic0X)∗(P−1

B �OC×Pic0 C)
)
→ 0

Recall that RΦP−1 ∼= (−1)∗
Pic0 X

RΦP (see Corollary I.1.3). Then we have the
following short exact sequence,

0→ (−1)∗Pic0 XÔX
µ→ E(Dp̄)→ T → 0 (6.6)

where:

(a) Since X is primitive V 1(ωX) is a �nite set of points. By Lemma 4.14 we
know that dim ker(id−f) > 0, so f(V 1(ωX)) 6= ker(id−f) and by Lemma
4.15(c) h0(OX(M) ⊗ β) = hd(OX(F ) ⊗ β−1) is constant equal to χ(ωX)
for all β ∈ ker f = Pic0B. Then, by base change, E = Rdq∗(p∗OX(F ) ⊗
(alb× idPic0 X)∗(P−1

B � OC×Pic0 C)) is a locally free sheaf of rank χ(ωX) on
Pic0X.

(b) The map µ is injective, since it is a generically surjective map of sheaves of
the same rank (recall that rk ÔX = χ(ωX)) and, as gv(ωX) > 1, the source
ÔX is torsion-free (Corollary I.1.18).

(c) T = Rdq∗
(
(p∗OX(F )⊗ q∗OPic0 X(Dp̄))|Y ⊗ (alb×idPic0X)∗(P−1

B �OC×Pic0 C)
)

is supported at the locus of the α ∈ Pic0X such that the �ber of the projec-
tion q : Y → Pic0X has dimension d, i.e. it coincides with X. Such locus is
contained in V 1(ωX) that, since X is primitive, is a �nite set.
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(d) µ is Rdq∗(ms), wherems is the multiplication by the section de�ning Y. Hence
by base change Rdq∗(ms)⊗ C(α) = Hd(ms|q−1{α}) where q is the projection
q : Y → Pic0X. When q−1 {α} = X, ms|q−1{α} = 0, hence in these points
dimC(T ⊗ C(α)) = χ(ωX).

From (6.6), the fact that E is locally free and supp T is a �nite scheme it follows that
Ext i(ÔX ,OPic0 X) ∼= Ext i+1(T ,OPic0 X) = 0 if i 6= q(X) − 1. On the other hand,
by Corollary I.1.14 and Proposition 3.2, Extd(ÔX ,OPic0 X) ∼= C(0̂). It follows that
d = q(X) − 1 and that T = C(0̂). The assertion follows since the dimension of
T ⊗ C(0) is equal to χ(ωX).

Corollary 6.9. Let X be a primitive variety such that ω2
X ⊗α is not birational for

some α ∈ Pic0X and that dimX < q(X). Then, the morphism f de�ned in Lemma
4.14 is injective. i.e. Pic0X = ker(id−f), f = idPic0 X and g = idAlbX .

6.3 The bicanonical map of primitive varieties with q(X)=dimX

In this section we want to study primitive varieties with non-birational bicanonical
map such that dimX = q(X). In this case gv(ωX) = 0 because V d(ωX) =

{
0̂
}
(see

Remark 6.2).

It is remarkable that in this case, even in the case of surfaces, there are primitive
varieties with χ(ωX) = 1, gv(ωX) = 0 and birational bicanonical map.

Example 6.10 ([CH2]). Chen and Hacon have constructed in [CH2] a minimal
surface S with χ(ωS) = 1, q(S) = 2 and K2

S = 5. This surface is birational to a
triple cover of an abelian surface A. When A is a simple abelian surface, S does
not have a pencil of curves of genus 2. Since a double cover S̃ branched along a
reduced divisor in |2Θ| has K2

S̃
= 4, the surface constructed by Chen and Hacon

is a di�erent example of variety with gv(ωX) = 0 and χ(ωX) = 1 and by Theorem
4.7(c), its bicanonical map is birational.

This example shows that the problem of classifying primitive varieties with non-
birational bicanonical map and q(X) = dimX is more subtle. Indeed, it is not
equivalent to classify primitive varieties with χ(ωX) = 1 and q(X) = dimX.

We will focus and work out the case of Galois abelian covers with rational singular-
ities.

Abelian covers

We will focus on the case where the Albanese map is essentially an abelian Galois
cover (see [Pa] or [Mu2, II.�7]). More precisely, we will require that the Albanese
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map is generically �nite onto AlbX, and the �nite part of its Stein factorization is
an abelian Galois cover. We need to control the singularities of the Stein factoriza-
tion.

First we recall the de�nition of an abelian Galois cover.

De�nition 6.11 ([Pa, Def. 1.1]). Let Y be a reduced and irreducible scheme. An
abelian Galois cover of Y with group G is a �nite map π : X → Y together with a
faithful action of G on X such that π exhibits Y as the quotient of X via G.

If we assume X to be normal and Y to be smooth, then π is �at and the action of
G induces a splitting:

π∗OX =
⊕
ρ∈G∗

L−1
ρ , (6.7)

where G∗ is the group of characters of G and L−1
ρ is the line bundle corresponding

to the eigenspace of π∗OX where the group acts via the character ρ.

First we will need the following technical lemma, consequence of the work of Pardini
in [Pa].

Lemma 6.12. Let X be a normal variety and let π : X → Y be an abelian Galois
cover with group G. Suppose that

Lρ ∼= OY (D) for all ρ ∈ G∗ − {0} ,

where Lρ are those de�ned in (6.7) and D is an irreducible divisor such that h0(D) =
1. Then π : X → Y is a double cover branched along a reduced divisor in |2D|.

Proof. The compatibility conditions for the abelian covers [Pa, Thm 2.1] tell us that

Lρ ⊗ Lρ′ ∼= Lρ+ρ′ ⊗
⊗
H∈C

⊗
ψ∈SH

OY (εH,ψρ,ρ′DH,ψ),

where

(a) DH,ψ are e�ective divisors.

(b) C is the set of cyclic quotients of G∗.

(c) SH is the set of generators of H.

(d) Given H ∈ C and a generator ψ ∈ SH we de�ne by iH,ψρ ∈ {0, . . . , |H| − 1}
the integer (that depends on H and ψ) such that ρ|H = ψi

H,ψ
ρ . Then

εH,ψρ,ρ′ =

{
0, iH,ψρ + iH,ψρ′ < |H|
1, otherwise.
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In our situation Lρ = OY (D) for every ρ 6= 0. So, for every non-trivial ρ, ρ′ such
that ρ+ ρ′ 6= 0,

D =
∑
H∈C

∑
ψ∈SH

εH,ψρ,ρ′DH,ψ.

Recall that we are assuming that D is an e�ective irreducible divisor with h0(D) =
1. Therefore, for every ρ, ρ′ such that ρ + ρ′ 6= 0, ∃!(H,ψ) such that εH,ψρ,ρ′ 6= 0.
Moreover, for this (H,ψ), DH,ψ = D. Since X is normal, by [Pa, Cor. 3.1],
∃!(H,ψ) such that DH,ψ = D. Hence

∃!(H,ψ) such that for every non-opposite and non-trivial ρ, ρ′, εH,ψρ,ρ′ = 1 (6.8)

Suppose that there exist, H ∈ C of order m = |H| > 2. First observe that |SH | > 2,
since �xed an isomorphism H ∼= Z/mZ, 1 and m − 1 are two di�erent generators.
Then, for any generator ψ ∈ SH consider ρ ∈ G∗ such that iH,ψρ = m− 1. Then it

is clear, that ρ 6= 0, iH,ψ2ρ = m− 2 6= 0 so 2ρ 6= 0 and 2(m− 1) > |H|, so εH,ψρ,ρ = 1.
Since |SH | > 2, we get a contradiction with (6.8).

Therefore all the cyclic quotients ofG∗ are of order two. SoG∗ ∼= Z/2Z× n. . . ×Z/2Z.
And every cyclic quotient H ∈ C is isomorphic to Z/2Z and has a unique generator,
so we omit the reference to ψ ∈ SH in the notation. In fact, since G∗ → H is a
morphism of Z/2Z-vector spaces it splits and we have as many non-trivial cyclic
quotients as non-trivial elements in G∗, that is, 2n − 1. Moreover, for each cyclic
quotient H half of the elements of G∗ are sent to 0 in H and the other half is sent
to the generator of H. So if n > 1 we have more than one non-trivial cyclic quotient
H and for each H we have two di�erent non-trivial elements ρ, ρ′ ∈ G∗ such that
iHρ = iHρ′ = 1, so εHρ,ρ′ = 1 contradicting (6.8). So |G∗| = 2.

Hence π : X → Y is a double cover and, being X normal, its branch locus is a
reduced divisor B ∈

∣∣L⊗2
ρ

∣∣ = |2D| (see again [Pa, Cor 3.1]).

Now we are ready to prove the following theorem.

Theorem 6.13. Let X be a primitive smooth complex variety of general type,
q(X) = dimX and suppose AlbX is simple. Then, the following are equivalent,

(a) the bicanonical map of X is non-birational and the �nite part of the Stein
factorization of alb: X → AlbX is an abelian Galois cover with rational
singularities,

(b) X is birationally equivalent to a double cover of an indecomposable principally
polarized abelian variety (A,Θ), branched along a reduced divisor |2Θ|.

Recall that by Proposition 3.9, since X is of general type, χ(ωX) > 0.
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Proof. Example 4.5 shows the implication (b)⇒ (a). Hence we have only to prove
(a)⇒ (b).
Lemma 4.18 yields to the standard short exact sequence on X × Pic0X

0→((g◦alb)×f)∗P−1
C
·Y→p∗OX(F )⊗q∗OPic0X(Dp̄)→(p∗OX(F )⊗q∗OPic0X(Dp̄))|Y→0,

where p, q are the projections of X × Pic0X.
Recall that ((g ◦ alb) × f)∗PC = (alb× idPic0 X)∗(OB×Pic0 B � PC). We apply the
functor

Rdq∗( · ⊗ (alb× idPic0 X)∗(P−1
B �OC×Pic0 C)),

that is, we tensor by the other �half� Poincaré line bundle (see (4.7)) and we take
the top direct image. We get

· · · → RdΦP−1(OX)→
→ Rdq∗

(
p∗OX(F )⊗ (alb× idPic0 X)∗(P−1

B �OC×Pic0 C)
)
⊗OPic0 X(Dp̄)→

→ Rdq∗

(
(p∗OX(F )⊗q∗OPic0 X(Dp̄)⊗ (alb×idPic0X)∗(P−1

B �OC×Pic0C))
∣∣
Y

)
→0

Recall that RΦP−1 ∼= (−1)∗
Pic0 X

RΦP (see Corollary I.1.3). Then we have the
following short exact sequence,

0→ kerµ→ (−1)∗Pic0 XÔX
µ→ E(Dp̄)→ T → 0 (6.9)

where:

(a) E = Rdq∗(p∗OX(F ) ⊗ (alb× idPic0 X)∗(P−1
B � OC×Pic0 C)). Since X is prim-

itive V 1(ωX) is a �nite set of points. By Lemma 4.14 dim ker(id−f) >
0, so f(V 1(ωX)) 6= ker(id−f) and by Lemma 4.15(c) h0(OX(M) ⊗ β) =
hd(OX(F ) ⊗ β−1) is constant equal to χ(ωX) for all β ∈ ker f = Pic0B.
Then, by base change, E is a locally free sheaf of rank χ(ωX) on Pic0X.

(b) Since the map µ is a generically surjective map of sheaves of the same rank (re-
call that rk ÔX = χ(ωX)), kerµ is a torsion sheaf. So kerµ ⊆ τ((−1)∗

Pic0 X
ÔX)

that by Corollary 3.6 it is C(0̂). Since kerµ 6= 0 because then ÔX would be
torsion-free, which is impossible by Corollary I.1.18, we have kerµ ∼= C(0̂).

(c) T =Rdq∗

(
(p∗OX(F )⊗ q∗OPic0 X(Dp̄)⊗(alb×idPic0X)∗(P−1

B �OC×Pic0 C))
∣∣
Y

)
is

set-theoretically supported at the locus of the α ∈ Pic0X such that the �ber
of the projection q : Y → Pic0X has dimension d, i.e. it coincides with X.
Such locus is contained in V 1(ωX) that, since X is primitive, is a �nite set.

(d) µ is Rdq∗(ms), wherems is the multiplication by the section de�ning Y. Hence
by base change Rdq∗(ms)⊗ k(α) = Hd(ms|q−1{α}) where q is the projection
q : Y → Pic0X. When q−1 {α} = X, ms|q−1{α} = 0, hence in these points
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dimC(T ⊗ C(α)) = χ(ωX).

Hence we have the following exact sequence,

0→ C(0̂)→ (−1)∗Pic0 XÔX
µ→ E(Dp̄)→ T → 0. (6.10)

Until now we have only used thatX is a primitive variety andX → Alb is generically
�nite. Consider, now the Stein factorization of X → AlbX, that is

X
alb //

u
��@

@@
@@

@@
AlbX

X̃

falb

<<xxxxxxxxx

where X̃ is a normal variety u is a birational map (a desingularization of X̃).

By assumption ãlb is an abelian Galois cover with group G and Ru∗OX = OX̃ since
X̃ has rational singularities. Hence, by (6.7), we have that

R alb∗OX = ãlb∗OX̃ =
⊕
ρ∈G∗

L−1
ρ , (6.11)

where G∗ is the group of characters of G and L−1
ρ is the line bundle corresponding

to the eigenspace of ãlb∗OX̃ where the group acts via the character ρ.

Since gv(ωX) > 0, R alb∗OX =
⊕

ρ∈G∗ L
−1
ρ is a WITd sheaf. Hence, the line

bundles Lρ are ample or topologically trivial. But since τ(ÔX) = C(0̂), only L0
∼=

OX is topologically trivial and for ρ ∈ G∗ − {0}, Lρ is ample. In particular, since
any ample line bundle in an abelian variety has sections, h0(Lρ) > 1 for all ρ ∈ G∗.
Moreover, it is clear that the inclusion C(0̂) ↪→ (−1)∗

Pic0 X
ÔX in exact sequence

(6.10), splits and we have,

0→
⊕

ρ∈G∗−{0}

RdΦP L−1
ρ → E(Dp̄)→ T → 0. (6.12)

Dualizing, we get that Extd(T ,OPic0 X) = 0, so T = 0. Hence, the exact sequence
(6.10) becomes a short exact sequence that splits,

0→ C(0̂)→ (−1)∗Pic0 XÔX
µ→ E(Dp̄)→ 0. (6.13)
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Dualizing we get that

E∨(−Dp̄) ∼= R0ΦP ωX ∼=
⊕

ρ∈G∗−{0}

R0ΦP Lρ, (6.14)

and comparing ranks we have that,

χ(ωX) =
∑

ρ∈G∗−{0}

h0(Lρ). (6.15)

Recall now that AlbX is a simple abelian variety, so ker f in Lemma 4.14 is trivial
and

E = Rdq∗(p∗OX(F )) = O⊕χ(ωX)

Pic0 X
. (6.16)

Now we go back to exact sequence (6.13) with (6.16),

0→ C(0̂)→ (−1)∗Pic0 XÔX
µ→
⊕
χ(ωX)

OPic0 X(Dp̄)→ 0.

By (6.12), we have
⊕

χ(ωX)OPic0 X(Dp̄) ∼=
⊕

ρ∈G∗−{0}R
dΦP L−1

ρ , so taking coho-
mologies we get

χ(ωX) · h0(Dp̄) = deg alb−1 = |G| − 1, (6.17)

since Lρ is ample and h0(Pic0X,RdΦP L−1
ρ ) = rkL−1

ρ = 1 (see Theorem I.2.1,
Corollary I.1.14 and Proposition I.2.2).

Thus,

|G| − 1 = χ(ωX) · h0(Dp̄) by (6.17)

=
∑

ρ∈G∗−{0}

h0(Lρ) · h0(Dp̄) by (6.15),

so h0(Dp̄) = h0(Lρ) = 1 for all ρ ∈ G. Dp̄ is a principal polarization, so via the
identi�cation AlbX ∼= Pic0X provided by φDp̄ , we have RdΨP(−Dp̄) ∼= Dp̄ (see
Proposition I.2.2). Hence ⊕

χ(ωX)

O(Dp̄) ∼=
⊕

ρ∈G∗−{0}

Lρ.

Tensoring by O(−Dp̄) we get
⊕

χ(ωX)OAlbX
∼=
⊕

ρ∈G∗−{0} Lρ ⊗O(−Dp̄), so∑
ρ∈G∗−{0}

h0(Lρ ⊗O(−Dp̄)) = χ(ωX).

Since |G| − 1 = χ(ωX) and h0(Lρ ⊗O(−Dp̄)) 6 h0(Lρ) = 1 for all ρ ∈ G, we have
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h0(Lρ ⊗O(−Dp̄)) = 1 for all ρ ∈ G∗ − {0}. Therefore,

Lρ ∼= OAlbX(Dp̄) for all ρ ∈ G∗ − {0} .

Since we are assuming that AlbX is simple abelian variety and h0(Dp̄) = 1, Dp̄
has to be an irreducible divisor by the Decomposition Theorem of abelian varieties
(e.g. [BL, Thm. 4.3.1]).

By the previous Lemma 6.12, deg alb = 2 and X is birationally equivalent to a
double cover of a principally polarized abelian variety branched along a reduced
divisor in |2Dp̄|.

Remark 6.14. As Example 4.5 shows, it is clear that the implication (b) ⇒ (a)
does not need to assume that AlbX is simple.

From the previous proposition, we have the following immediate corollary

Corollary 6.15. Let X be a primitive smooth complex variety of general type with
q(X) = dimX and suppose AlbX is simple. If the �nite part of the Stein factoriza-
tion of alb: X → AlbX is an abelian Galois cover with rational singularities and
the bicanonical map of X is non-birational, then χ(ωX) = 1.

Proof. Let h : X → A be a double cover branched along a reduced divisor B ∈ |2Θ|.
Then,

χ(ωX) = χ(ωX ⊗α) = h0(ωX ⊗α) = h0(h∗O(Θ)⊗α) = h0(O(Θ)⊗α) +h0(α) = 1,

for a general α ∈ Pic0X = Pic0A.

In fact we have also the following Proposition.

Proposition 6.16. Let X be a primitive smooth complex variety of general type
and q(X) = dimX. Then, the following are equivalent,

(a) the �nite part of the Stein factorization of alb: X → AlbX is an abelian
Galois cover, has rational singularities and χ(ωX) = 1,

(b) X is birationally equivalent to a double cover of an indecomposable principally
polarized abelian variety (A,Θ), branched along a reduced divisor in |2Θ|.

Proof. If χ(ωX) = 1 the consequences of the birationality criterion, Corollary 4.11,
are trivially satis�ed. The rest of section �4, from Corollary 4.11 and beyond, follows
from the consequences of Corollary 4.11. Hence, following the proof of Theorem 6.13
we get again the short exact sequence (6.13)

0→ C(0̂)→ (−1)∗Pic0 XÔX
µ→ E(Dp̄)→ 0.
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Now, we proceed like in the proof of Theorem 6.13 until equality (6.15) that directly
tells us

1 =
∑

ρ∈G∗−{0}

h0(Lρ),

so |G| = 2 and h0(Lρ) = 1. Observe that, until equality (6.15) we have not used
that AlbX is simple so we can avoid this assumption. Moreover, this way we take
an easy shortcut that allows us to avoid Lemma 6.12.

The other implication follows from the same calculation as Corollary 6.15.

These two results, show that we have to �nd the di�culties and interesting examples
like Chen-Hacon's surface (Example 6.10) in the non-abelian case. However, we
expect that the key point to study the primitive varieties of general type and q(X) =
dimX with non-birational bicanonical map, is the type of singularities that are
allowed in the Stein factorization. So, we end with the following conjecture,

Conjecture 6.17. Let X be a smooth primitive variety of general type and q(X) =
dimX. Then, the following are equivalent,

(a) the bicanonical map of X is non-birational,
(b) the �nite part of the Stein factorization of alb: X → AlbX has canonical

singularities and χ(ωX) = 1,
(c) X is birationally equivalent to a double cover of an indecomposable principally

polarized abelian variety (A,Θ), branched along a reduced divisor in |2Θ|.
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