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Chapter 1

Introduction

1.1 Motivation

Over the last decades, technological advances have led to great transformations
in medical applications. Current capture devices are able to scan any part of the
body with millimetric precision, providing accurate information of the patient’s
anatomy. Not surprisingly, medical image processing has became a priority task
at the present time in any medical scenario. However, despite the advantages in-
troduced by these new technologies, there are still many aspects that need further
development. A lot of research is being done in different aspects such as the au-
tomation of medical image processing in order to reduce the manual intervention,
the development of acceleration techniques to reduce the processing time required
to deal with the large amount of data obtained from the devices, the improvement
of image quality in order to facilitate a more accurate interpretation of the data and
assist practitioners in diagnosis.

Amongst the different research topics related with medical image processing,
our research is focused in in two of them, registration and segmentation:

• The registration process consists in aligning, in a common model, two
or more datasets (or images) containing different information of a patient.
Since the information from the two images is usually complementary, its
integration provides valuable information for diagnosis. For instance, the
registration of magnetic resonance (MR) images and positron emission to-
mography (PET) images permits the experts to analyze the anatomy and
functionality of internal structures simultaneously. Applications of medi-
cal image registration include diagnosis of cancer, cardiac studies, different
neurological disorders including Alzheimer’s disease or schizophrenia, etc.
Registration is also utilized to prepare and simulate complex surgical pro-
cedures, to verify a treatment by comparing the pre- and post-intervention
images or to analyze growth monitoring.

Image registration is based on the search of a transformation that maps each
point of one image to the corresponding anatomical point of another image

1



Chapter 1. Introduction

by optimizing a certain similarity measure. The four principal elements in-
volved in the registration process are: the similarity metric, the optimizer,
the transformation, and the interpolator [113].

The new image modalities, which give to the specialists complementary in-
formation of the patient’s disease, have led the registration process to an
emerging focus of research. Current investigations are focused on the de-
velopment of new methods that improve the results in terms of robustness,
accuracy, and computational time.

• The segmentation process can be described as the identification of structures
(for instance, representing organs or pathologies) in an image. It consists in
subdividing an image into its constituent parts, a significant step towards
image understanding [55]. The demand for automatic or semiautomatic im-
age interpretation tools designed to manage the large amount of information
made available by current imaging technologies has led segmentation to be
a main focus of research in medical image processing.

Image segmentation plays an important role in medical imaging applications
such as the delineation of anatomical structures, the identification of lesions
or tumors, and the monitoring of a lesion volume. Therefore, the accuracy of
these methods is a critical issue, since the diagnosis or treatment decisions
are taken from their results.

Segmenting anatomical structures on medical images is a challenging prob-
lem due to the complexity and variability of human anatomy. Other diffi-
culties appear in practice, especially when dealing with inherently noisy im-
ages or with low spatial resolution. Even though most of the structures are
easily detected by an expert, they cannot always be detected automatically.
Therefore, in most cases user intervention is required to separate adjacent
structures of similar image intensities.

Most of the contributions of this thesis are based on Information Theory (IT).
This theory deals with the transmission, storage and processing of information [138]
and it is used in fields such as physics, computer science, mathematics, statistics,
economics, biology, linguistics, neurology, learning, computer graphics, etc. [39,
48]. In particular, IT provides powerful tools for medical image registration [91,
156, 144] and segmentation [118, 74, 18, 61]. In this thesis, the two most ba-
sic information-theoretic measures (Shannon entropy and mutual information) are
used to propose new registration and segmentation techniques. Entropy expresses
the information content or the uncertainty of a random variable, and is used as a
measure of diversity of a probability distribution. Mutual information expresses
the information transfer in a communication channel, and is used as a measure
of dependence or correlation between two random variables. Both measures can
be utilized to capture different aspects of the image registration and segmentation
processes.

2



Chapter 1. Introduction

Despite the large number of algorithms dealing with image registration and
segmentation, a lot of research can be done to improve the performance, accuracy,
and robustness of these techniques. Although the methods proposed throughout
the thesis can be applied to any kind of 2D or 3D images, we focus our interest in
medical images due to, in part, their great impact in the improvement of the quality
of life.

1.2 Objective

The main goal of this thesis is the development of new registration and segmenta-
tion techniques that support and enhance computer aided diagnosis tools. To reach
this objective we aim to:

1. Improve the registration process in terms of accuracy, robustness and
performance.
One of the key aspects, and maybe the most important, of the registration
process is the performance of the metric that quantifies the similarity be-
tween two or more images. Currently, the most used similarity metrics for
multimodal image registration are both mutual information (MI) [91, 156]
and normalized mutual information (NMI) [144]. However, MI-based meth-
ods have a number of well-known drawbacks, such as grid [154] and inter-
polation effects [91, 151]. Another limitation of these methods is that the
computation of the joint histogram is habitually calculated from the corre-
spondence between individual voxels in the two images, without taking into
account any spatial information. To overcome these limitations, our main
objective is to explore new similarity metrics and to deal with some aspects
closely related to their computation.

2. Introduce new information-theoretic measures and algorithms for im-
age segmentation.
Some information-theoretic based segmentation algorithms have been pro-
posed in the literature [118, 74, 18, 61]. In this thesis, we will study new
techniques, such as the information bottleneck algorithm and the excess en-
tropy measure, proposed in the IT field, analyzing its suitability for 3D image
processing. Basically, our objective is twofold. On the one hand, to explore
new information channels involved in the information bottleneck method,
which can incorporate spatial or multimodal information. On the other hand,
to study the use the structural information contained in an image as a crite-
rion to automatically define the threshold levels.

3. Evaluate the obtained results in a clinical environment.
An important step towards the development of new computer aided diag-
nosis tools is the validation of proposed techniques in a real environment.
Therefore, an essential part of our work is devoted to the evaluation of the

3
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techniques in medical practice. Such an evaluation is carried out at the Josep
Trueta’s Hospital of Girona in collaboration with a team of clinical experts
who determine the pathologies to study.

1.3 Thesis Outline

This dissertation is organized into eight chapters. The first two chapters are in-
troductory and deal with previous work. The next three chapters are focused on
different aspects of the registration process and the following two chapters tackle
the segmentation process. Finally, a concluding chapter is presented. In more de-
tail:

• Chapter 2: Background
In this chapter, an introduction of the topics needed to develop this thesis is
outlined. First, since the application of the proposed method will be focused
on medical applications, an introduction to the characteristics and the differ-
ent types of medical images is presented. Second, a brief overview of the
main concepts of Information Theory is given. Finally, an state of the art of
the main image processing techniques is presented, giving special attention
to the registration and segmentation processes.

• Chapter 3: Image Registration based on Global Lines and High-dimen-
sional Normalized Mutual Information
In this chapter, a new stochastic sampling approach to compute a 3D image
histogram using uniformly distributed random lines is proposed. This sam-
pling strategy is introduced to compute the similarity between two images,
optimizing the computational time and reducing some undesired artifacts.
Moreover, the information channel used for image registration can be gen-
eralized using this sampling strategy, considering blocks of voxels instead
of individual voxels. That is, while the standard methods only consider the
channel between individual voxels, this generalization considers blocks of
voxels, taking into account the spatial distribution of the samples. The am-
biguity and high-dimensionality that appears when dealing with the voxel
neighbourhood is solved using uniformly distributed random lines and re-
ducing the number of bins of the images.

• Chapter 4: Image Registration by Compression
In this chapter, a new framework for image registration based on compres-
sion is presented. The basic idea underlying our approach is the conjecture
that two images are correctly registered when we can maximally compress
one image given the information in the other. The contribution of this chap-
ter is twofold. First, we show that the image registration process can be dealt
with from the perspective of a compression problem. Second, we demon-
strate that the similarity metric, introduced by Li et al., performs well in
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image registration. Two different versions of the similarity metric have been
used: the Kolmogorov version, computed using standard real-world com-
pressors, and the Shannon version, calculated from an estimation of the en-
tropy rate of the images.

• Chapter 5: Multiresolution Image Registration Based on Tree Data Struc-
tures

This chapter presents a new approach for image registration based on the
partitioning of the source images in binary-space (BSP) and quadtree struc-
tures. These partitioned images have been obtained with a maximum mutual
information gain algorithm. Two different approaches to compute the sim-
ilarity metric are proposed: one uses simplified images and the other deals
directly with the tree data structures. Multimodal registration experiments
with regularly downsampled images, and BSP and quadtree partitioned im-
ages show an outstanding accuracy and robustness by using BSP images,
since the grid effects are drastically reduced. The obtained results indicate
that BSP partitioning can provide a suitable framework for multiresolution
registration.

• Chapter 6: Image Segmentation using Information Bottleneck Method

In this chapter, several new image segmentation algorithms based on a hard
version of the information bottleneck method are presented. With this me-
thod, a compact representation of a variable can be obtained from another
variable and the definition of an information channel. First, the definition
of an information channel between the image histogram and the image re-
gions leads to two different image segmentation algorithms: split-and-merge
and histogram clustering. In addition, the definition of another information
channel between two multimodal images leads to a histogram bin clustering
method. With this last approach, two different algorithms are proposed: a
one-sided clustering algorithm, where only one image is segmented, and a
co-clustering algorithm, where both images are simultaneously segmented.
Several experiments on 2D and 3D images show the behavibour of the pro-
posed algorithms.

• Chapter 7: Segmentation using Excess entropy

In this chapter, a novel information-theoretic approach for thresholding-based
segmentation that uses the excess entropy to measure the structural informa-
tion of an image and to locate the optimal thresholds is presented. This ap-
proach is based on the conjecture that the optimal thresholding corresponds
to the segmentation with maximum structure, i.e., maximum excess entropy.
The contributions of this chapter are severalfold. First, the excess entropy
as a measure of the spatial structure of an image is introduced. Second, an
adaptive thresholding method based on the maximization of excess entropy
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is introduced. Third, the use of uniformly distributed random lines to over-
come the main drawbacks of the excess entropy computation is proposed.
Finally, experimental results show the good performance of our segmenta-
tion method.

• Chapter 8: Conclusions

The conclusions of this thesis are presented, as well as some indications
about our current and future research. In addition, the publications related
with this thesis are summarized.

Moreover, two appendix chapters describe the two modules developed in the
scope of this thesis to assist radiologist in diagnosis of two different pathologies.
They have not been included as standard chapters since they deal with more applied
problems, while the research contributions of them are not so important. In more
detail:

• Appendix A: StarStroke: a tool to Assist Acute Stroke Diagnosis

In this chapter, a framework developed to assist and support treatment and
diagnosis of acute stroke patients is presented. The current clinical study
is based on manual image editing and manual segmentation of diffusion-
weighted imaging (DWI) and perfusion weighted imaging (PWI) by an in-
tegrated framework with registration, segmentation, manipulation and visu-
alization strategies specifically designed for the DWI/PWI processing. A
robust and accurate technique to register DWI/PWI data which uses an ac-
celeration strategy based on uniformly distributed random lines that reduces
considerably the processing time is described. Then, a segmentation method
based on PWI-DWI fused data to detect stroke and hypoperfusion areas that
reduces the manual intervention of radiologist is proposed. With our ap-
proach, the clinical study of an acute stroke patient is reduced from 15/20
minutes to 5 minutes, including the manual editing.

• Appendix B: A New Method for Hematoma and Edema Quantification
using CT

In this chapter, an automated method for brain hematoma and edema seg-
mentation, and volume measurement using computed tomography imaging
is presented. The method combines a region growing approach to segment
the hematoma and a level set segmentation technique to segment the edema.
The main novelty of this method is the strategy applied to define the propa-
gation function required by the level set approach. To evaluate the method,
18 patients with brain hematoma and edema of different size, shape and lo-
cation were selected. The obtained results demonstrate that the proposed
approach provides objective and reproducible segmentations that are similar
to the results obtained manually. Moreover, the processing time is reduced
to 4 minutes, while the manual segmentation is about 10 minutes.
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1.4 Main contributions

In this section, the principal contributions of this thesis are described. We also
indicate the papers related to each contribution.

The main contributions in medical image registration are:

• The introduction of a new sampling strategy based on uniformly distributed
random lines. This sampling technique has been used to decrease the compu-
tational cost of image registration and to capture the spatial relations between
individual samples. Based on [9].

• The incorporation of spatial information in the similarity metric. This has
been done by generalizing the concept of mutual information considering
voxel blocks instead of individual voxels, as the standard methods do. Based
on [7].

• The proposal of a new similarity metric paradigm based on the idea that
registration can be seen as a compression problem: the registration posi-
tion is reached when then compression of one image is maximum when the
other image is known. Experimental results show the sensitivity of this new
paradigm. Based on [10].

• The study of the performance of different image simplification schemes in
order to define a general multi-resolution framework. This preliminary study
demonstrates that the binary space partition of a 3D image is an appropriate
option for this general multiresolution scheme. Based on [11].

The main contributions in the medical image segmentation context are:

• A new general framework for image segmentation based on a hard version
of the information bottleneck method. Three different algorithms are pre-
sented: split-and-merge, histogram clustering, and multimodal clustering.
Based on [122, 8].

• The introduction of a new measure of image structure and its application to
image segmentation. The maximization of this measure is the basis of a new
thresholding method. Based on [12, 150].

• The development of a new application to assist the clinicians in acute stroke
diagnosis. This application incorporates both registration and segmentation
methods. Some of the methods presented in this thesis have been imple-
mented within this software. Based on [108, 5].
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Chapter 2

Background

In the last decades, image processing has acquired great importance
due to the large development of imaging technology and computa-
tional capabilities. Medical imaging technologies have also developed
similarly, enabling us to obtain images with more resolution and new
image modalities that give complementary information to the special-
ists. These technological advances have meant that a great number of
researchers focus their work on developing new methods in order to
automatically process this large amount of data to make the clinician’s
work easier. In this context, information theory has been applied to
develop a large variety of image processing methods. In this chapter,
the basic concepts of this dissertation are introduced. First, a quick
overview of medical image features is carried out. Then, the main
information theory concepts are reviewed and, finally, the main infor-
mation processing methods are presented, giving special attention to
image registration and segmentation.

2.1 Medical Imaging

The medical imaging pipeline defines the different steps that are required to obtain
medical images. This ranges from patient scanning to the representation of the
medical images on the screen. In this section, all the steps of this pipeline are de-
scribed. The most important medical image modalities and the basic nomenclature
related to our research are also presented.

2.1.1 Medical Image Pipeline

Over the last decades, medical imaging has become standard for routine patient
diagnosis care. The capabilities of medical imaging devices to scan functional and
anatomical information of the internal structures of the patient and to represent it
by images have made these images crucial in medical diagnosis and treatment.
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Figure 2.1: The medical imaging pipeline describes the process from data acquisi-
tion to picture generation.

Currently, different medical imaging modalities can be obtained from medi-
cal scanning devices. However, despite the differences between these images, the
process required to obtain them can be described by a common pipeline. In this
section, the three steps of this pipeline: patient scanning (or image acquisition),
data processing and information retrieval are described. In Figure 2.1, these three
steps of the medical imaging pipeline are represented.

2.1.1.1 Data acquisition

The medical imaging pipeline starts with a scanning process that captures the in-
formation of the patient using a specialized device. There are many different ac-
quisition devices which are being constantly improved. Amongst them are com-
puted tomography (CT), magnetic resonance (MR), position emission tomography
(PET), and single photon emission computed tomography (SPECT). The informa-
tion provided by each device is based on its own physical principles. Therefore,
each type of data is a measure of a different property, either anatomical or func-
tional, and it is provided at a specific spatial intensity resolution and scale with a
given range of capture error (see Section 2.2)

Commonly, the acquired data are represented as a set S of samples (x, y, z, v),
where the value v corresponds to some property of the patient at a certain 3D lo-
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(a) Rectilinear grid (b) Curvilinear grid (c) Unstructured grid

Figure 2.2: Different grid structures.

cation (x, y, z). This property can be represented by a scalar, a vector or a tensor.
In some cases, the measured property v changes along the time and, in this case,
each sample is represented as (x, y, z, t, v). Since a uniform standard format to
represent them does not exist, the datasets are characterized in terms of their ge-
ometry and topology (see Figure 2.2). Following this characterization, datasets can
be classified as:

• Rectilinear, when data samples are distributed on regular grids which parti-
tion the physical domain into identical rectangular hexahedral cells.

• Curvilinear, when data samples lie on regular grids defined in computational
space, (i.e. the rectilinear grid defining the logical organization), and a warp-
ing function is defined to give a sample position in the physical space.

• Unstructured or irregular, when data points have no regular structure. Sam-
ples are given as a list of physical space location plus the measured field
values. The cell connectivity is specified explicitly and the cells can be of an
arbitrary shape, such as tetrahedra, hexahedra, and prisms.

Due to the regular distribution of the sampled data obtained from medical de-
vices, the most widely used representation scheme in medical applications is the
spatial enumeration model or voxel model [76], which is a rectilinear representa-
tion. The voxel model is based on the decomposition of the 3D space into a regular
set of identical cubical cells, known as voxels, whose edges are parallel to the co-
ordinate axis. This spatial structure allows for voxels to be directly represented by
a 3D point (i, j, k), where 1 ≤ i, j, k ≤ n, being n the number of voxels per axis
from which the whole geometrical and topological information may be retrieved.
Each voxel is associated with a set of values. According to the location of these
values, two different approaches can be considered:

• The cell approach, which represents samples at the eight corner vertices of
each voxel. The behavibour inside the voxel is estimated through an interpo-
lation of the vertices values. There are many possible interpolation functions.
One of the most common is the piecewise function known as first order in-
terpolation, or trilinear interpolation.
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• The voxel approach assigns one sample value at the center of the voxel. The
inside of the voxel is considered homogeneous.

The majority of acquisition devices (CT, MRI, PET, etc.) scan data by follow-
ing a planar distribution and so output sequences of slices (images) with a regular
distribution are returned. Therefore, the definition of the voxel model from these
data is not difficult, since it is only required to correctly set the slices on a 3D
regular grid.

2.1.1.2 Data processing

Acquisition devices convey increasingly vast and detailed information for clinical
or research applications. The examination and interpretation of these data require
some data processing techniques to communicate information more effectively and
enhance its interpretation. To assist visual interpretation of medical images, the
second step of the medical imaging pipeline, the data processing, includes different
techniques which are applied according to the features of the original datasets and
user requirements. Next, some of the most representative techniques are outlined:

• Resampling and restructuration

Each manufacturer and each acquisition modality has an in-house image
structure and particular noise characteristics, as well as artifacts introduced
by the particular capturing mechanisms. It is necessary, therefore, to resam-
ple and restructure data in order to define the representation scheme. Such
an operation is specific to both particular datasets and the hardware used to
generate the information.

• Filtering

Usually, images are affected by some undesirable effects as noise or artifacts,
commonly produced in the acquisition process. Filters are applied in the
images to minimize these effects. Amongst these filters, we highlight the
gaussian filters, which have a blurring effect, and the anisotropic diffusion
filters, which preserve the edges of the image.

• Registration

The goal of image registration is to determine the spatial transformation that
will bring the images to be registered into correspondence. Such an operation
is of special interest in clinical practice since it allows us to combine in
a single model the information acquired with different devices, at different
times or from different patients. Image registration allows us, for instance, to
complement different data in order to complete the anatomical representation
or combine functional information with anatomical representation. Such a
capability is of special interest if we are interested in performing studies
between different patients and carrying out studies along the time or intra-
patient studies.
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• Segmentation and classification

The values in a volume dataset are used to represent different properties of
matter. Segmentation is defined as the division of an image into coherent
regions using some local image characteristic criteria. In medical imaging,
segmentation is used for analyzing anatomical structure and tissue types,
spatial distribution of function and activity, and pathological regions. Since
segmentation requires classification of pixels, it is often treated as a pattern
recognition problem and addressed with related techniques.

2.1.1.3 Information retrieval

In the last step of the pipeline, the information required by the doctor has to be
projected onto the screen. Such information depends on user requirements and it
can be an image, a set of parameters, the visualization of a region of interest, flows
of a determined fluid, plots of selected features, ratios, etc. Although the user may
only be interested in a set of numerical parameters, in most cases, information
retrieval is by means of an image, requiring visualization techniques to obtain it.

At a broad level, the visualization process requires two different steps to be car-
ried out: the mapping and the rendering. The mapping process transforms abstract
data into geometric primitives like points, surfaces or voxels and their associated
graphic attributes like color, transparency, etc. Mapping is the main core of this
visualization process as it decides which geometric primitive should be generated
and what should be assigned to its attributes.

In the context of medical imaging, the three main approaches in which mapping
strategies can be grouped are:

• Slicing

Slicing reduces the 3D visualization into a 2D visualization problem. This
technique considers volume samples distributed on a plane (or slice) that
intersect the volume model. Although, the orientation of the plane can be
any one in most cases, the one parallel to the coordinate planes is selected.
To represent the data contained in the plane, different strategies can be used,
color maps, contour extraction, etc. This method is used to obtain rapid
exploration of volume data.

• Surface fitting

Surface fitting techniques generate the polygonal approximation of an iso-
surface, i.e. the surface that approximates the volume dataset points with a
given property, known as the isovalue. This is a good approach for objects
with sharply determined borders, like bones in CT, but it is inadequate for
amorphous objects which are difficult to represent by thin surfaces. The most
popular approach in this group is the marching cubes algorithm, proposed by
Lorensen et al. [90].
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• Direct volume rendering

When volumetric data are modeled using a surface rendering technique, a
dimension of information is lost. In response to this, volume rendering tech-
niques were developed to capture the entire 3D data in a 2D image. Vol-
ume rendering aims to visualize all the data and not only a subset. A direct
volume renderer requires every sample of the model to be mapped to both
opacity and color values. This is done with a transfer function which can be
a simple ramp, a piecewise linear function or an arbitrary table. Once this
assignment is carried out, a rendering technique determines how colors have
to be composed to obtain the final image.

The rendering process generates the image by using the geometric primitives
from the mapping process. Following the classification of mapping strategies, the
rendering methods can be grouped in three approaches:

• Slice rendering approach

In clinical practice, this is the most popular approach, since it allows for a
rapid exploration of the model. The data contained in a plane traversing the
model is represented as a grey scale or color map. Although only 2D views
are possible, this approach is used extensively and it is easy to obtain and
interpret. An extension of this approach is the multiplanar reconstruction,
which combines slices located in three different orientations, is used.

• Surface rendering approach

In general, surfaces are represented as triangular meshes. In the simplest
surface rendering form, the triangles are passed onto the renderer without
specific normal vectors at the vertices. Then the renderer will apply the
shader (e.g. flat, Gouraud or Phong shading). It is also possible to assign
the normal vector at the triangle vertices. The normal is equal to the gra-
dient vector of the isosurface. This gradient vector can be easily calculated
by central differences at each vertex and then linear interpolation gives the
gradient.

• Volume rendering approach

The volume rendering approach displays data directly as a transparent cloudy
object, without any intermediate conversion, assigning attributes like color,
opacity or gradient vector to each volume element [82, 158, 159]. Volume
rendering techniques require an illumination model to determine how the
data volume generates, reflects, scatters, or occludes light. An analysis of
the main proposed optical models is presented by Max [100].

Volume rendering techniques can be classified into three main groups: object-
order, image-order or domain-order. Object-order volume rendering tech-
niques use a forward mapping scheme where the volume data are mapped

14



Chapter 2. Background

onto the image plane. In image-order algorithms, a backward mapping scheme
is used. Rays are cast from each pixel to the image plane through the volume
data to determine the final pixel value. In a domain-based technique, spatial
volume data are first transformed into an alternative domain, such as com-
pression, frequency, and wavelet and then a projection is generated directly
from that domain.

Some of the most representative volume rendering techniques are [102]:

– Volume Ray Casting. This technique can be derived directly from the
rendering equation [72]. In this technique, a ray is generated for each
desired image pixel. Using a simple camera model, the ray starts at
the center of the projection of the camera and passes through the image
pixel on the imaginary image plane floating in-between the camera and
the volume to be rendered. The ray is clipped by the boundaries of
the volume in order to save time. Then the ray is sampled at regular
or adaptive intervals throughout the volume. The data is interpolated
at each sample point, the transfer function applied to form an RGBA
sample, the sample is composited onto the accumulated RGBA of the
ray, and the process repeated until the ray exits the volume. The RGBA
color is converted to an RGB color and deposited in the corresponding
image pixel. The process is repeated for every pixel on the screen to
form the completed image. It provides very high quality results and is
usually considered to give the best image quality. Volume ray casting is
classified as image-order algorithm, as the computation emanates from
the output image, not the input volume data.

– Splatting. Splatting was proposed by Westover [159], and it works
by representing the volume as an array of overlapping basis functions,
commonly Gaussian kernels with amplitudes scaled by the voxel val-
ues. An image is then generated by projecting these basis functions
to the screen. The screen projection of these radially symmetric basis
functions can be efficiently achieved by the rasterization of a precom-
puted footprint lookup table. Here, each footprint table entry stores the
analytically integrated kernel function along a traversing ray. A major
advantage of splatting is that only voxels relevant to the image must
be projected and rasterized. This can tremendously reduce the volume
data that needs to be both processed and stored [103]. However, de-
pending on the zooming factor, each splat can cover up to hundreds of
pixels which need to be processed.

– Shear Warp. In this technique, the viewing transformation is trans-
formed such that the nearest face of the volume becomes axis aligned
with an off-screen image buffer with a fixed scale of voxels to pix-
els. The volume is then renderered into this buffer using the far more
favourable memory alignment and fixed scaling and blending factors.
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(a) (b) (c)

Figure 2.3: Different examples of image rendering techniques: (a) slicing, (b) sur-
face rendering and (c) volume renderning.

Once all the slices of the volume have been rendered, the buffer is
then warped into the desired orientation and scale in the displayed im-
age [78]. This technique is relatively fast in software at the cost of less
accurate sampling and potentially worse image quality compared to ray
casting. There is memory overhead for storing multiple copies of the
volume, enabling us to have near axis aligned volumes. This overhead
can be mitigated using run length encoding.

– Texture Mapping. The use of 3D texture mapping was popularized by
Cabral [23] for non-shaded volume rendering. The volume is loaded
into texture memory and the hardware rasterizes polygonal slices par-
allel to the viewplane. The slices are then blended back to front. Com-
modity PC graphics cards are fast at texturing and can efficiently ren-
der slices of a 3D volume, with realtime interaction capabilities. These
slices can either be aligned with the volume and rendered at an angle
to the viewer, or aligned with the viewing plane and sampled from un-
aligned slices through the volume. Volume aligned texturing produces
images of reasonable quality, though there is often a noticeable transi-
tion when the volume is rotated.

Some examples of the three basic rendering approaches are represented in Fig-
ure 2.3. It is important to remark that, when the visualization involves more than
one feature per voxel, as occurs after a registration process, the visualization pro-
cess varies considerably. Basically, two main strategies to solve this problem have
been proposed. The first consists in fusing all the models into only one, combining
the intensity values of all the images, and then the classical approaches can be ap-
plied. The second carries out the mapping step taking into account all the features
and, at each step of the rendering process, it has to determine which information
has to be rendered.
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2.1.2 Medical Image Modalities

Medical imaging modalities are based on various physical phenomena, such as
x-ray attenuation, magnetized hydrogen nuclei, and sound reflections. Each phe-
nomenon evaluates a certain characteristic (water density, blood diffusion, etc.),
that indirectly allows for the inspection of the internal body structures. The choice
of the image modality depends on the part of the body to be explored, the patient
disease, its cost, and some patient incompatibilities.

Imaging modalities can be divided into two categories:

• Structural (anatomical and morphological)

The main purpose of these modalities is to capture characteristics such as
size, shape, texture, position, color, and composition of anatomical struc-
tures. Examples of this imaging modality are: computed tomography, mag-
netic resonance, X-ray, ultrasound, etc.

• Functional (physiological and biochemical)

These kinds of images measure some characteristics such as flow perfusion,
metabolism, and chemistry. Usually, these images are used to study which
parts of the body are activated by a certain stimulus. Examples of these
imaging modalities are: PET, SPECT, fMR, etc.

A more detailed description of the most representative imaging modalities is
now given.

2.1.2.1 Computed Tomography (CT)

This modality consists in irradiating an area of the body with X-rays emissions
from different angles. These emissions are back captured after crossing the body
and the quantity of radiation absorbed is measured [15]. The quantity of emission
is proportional to the type of crossed tissue.

The resolution of the final image depends on some parameters of the acquisi-
tion machine. The output is a set of 2D images, usually from 30 to 50 correspond-
ing to axial, coronal or sagittal slices of the body. The resolution of images goes
from 256×256 to 2048×2048. The values are sampled at a distance ranging from
0.5 to 2 mm and the distance between planes goes from 1 to 10 mm.

The quantification of X-rays emission in each sample provides an integer num-
ber that represents the type of tissue corresponding to the real object at that point.
The CT units of measure used are Housenfeld (Hu). The origin of the range values
are four basic densities: air (-1000 Hu), fat (-300 to -100 Hu), water (0 Hu) and
bone (around 200 Hu). The rest are calculated from them (muscle 10 to 70 Hu,. . . ).

CT is used in applications in which the high intensity contrast of different struc-
tures is required. This type of image is used for all the body, like the brain, the
colon, or the extremities. Thanks to the high contrast and resolution of the re-
sulting image, different structures can be easily segmented, giving high quality
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(a) (b) (c)

Figure 2.4: Different examples of CT images: (a) head, (b) abdominal and (c)
thorax images.

3D reconstructions. One of the main applications is virtual colonoscopy, giving
doctors the opportunity to navigate within the colon without have to introduce a
catheter inside the patient. In Figure 2.4, some CT images from different parts of
the body are shown.

2.1.2.2 Magnetic Resonance (MR)

MR is based on the behaviour of atoms with an even number of protons and neu-
trons in a magnetic field [15], particularly hydrogen and oxygen atoms. Hydrogen
is the most abundant element and with a higher concentration variation in the ner-
vous system tissues. Traditional MR images reflect the density of hydrogen, gen-
erally in the human body in the form of water or fat. To be more exact, MR signal
intensity reflects the density of mobile hydrogen nuclei modified by the chemical
environment. Depending on the physical measure of this phenomenon, different
image modalities, as T1, T2, or FLAIR, are obtained.

Modifications of the magnetic field lead to modalities different from the tradi-
tional magnetic resonance imaging:

• MRA (Magnetic Resonance Angiography) captures the presence of flows,

• fMRI (Functional Magnetic Resonance Imaging) measures functional as-
pects,

• DWI (Diffusion-Weighted Imaging) reflects microscopic random motion of
water molecules,

• DTI (Diffusion Tensor Imaging), similarly than DWI, reflects microscopic
random motion of water molecules assigning at each voxel a tensor instead
of a single value, and

• PWI (Perfusion-Weighted Imaging) measures the passage of MR contrast
through brain tissue.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.5: Different MR image modalities: (a) MR-T1, (b) MR-T2, (c) FLAIR,
(d) MR Angiography, (e) functional MRI, (f) diffusion weighted imaging, (g) dif-
fusion tensor imaging, and (h) perfusion weighted imaging.

The images obtained by MR usually have a lower resolution than CT scans,
and, for example, typical voxel dimensions are 1×1×3 mm. The data associated
to each point of the image represent tissue density, but they have arbitrary units.
MR images are usually applied in the analysis of organs and soft tissues, since they
differentiate clearly the tissues with slightly different densities. On the contrary, in
these modalities, the contrast of large body structures, like bones, is not as high as
CT images. Figure 2.5 illustrates different MR image modalities.

2.1.2.3 Nuclear tomographies (PET, SPECT)

This image modality is based on the measure of the distribution of a radioactive
source in the body. A radioactive substance is first injected to the patient who is
introduced into a device that detects the radiation emitted by the region of the body
under study. It measures the density of the property during physiological activities
and, therefore, it is used for the acquisition of functional data.

The two main nuclear tomography techniques are: SPECT (Spectral Positron
Emission Computed Tomography) and PET (Positron Emission Tomography). The
property measured is the metabolic activity. They give a stack of tridimensional
images with a resolution of 256 × 256 or 512 × 512. Each pixel corresponds to a
real width of 2 to 10 mm. and the space between slices is about 3 mm. The units
of measure are Curies (Ci). In Figure 2.6, different images of these modalities are
plotted.
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(a) (b) (c) (d)

Figure 2.6: Different Functional image modalities: (a-b) PET and (c-d) SPECT.

2.2 Information Theory

In 1948, Claude Shannon published “A mathematical theory of communication” [138]
which marks the beginning of information theory. In this paper, he defined mea-
sures such as entropy and mutual information1, and introduced the fundamental
laws of data compression and transmission.

In this section, we present some basic concepts of information theory. A very
good reference is the text by Cover and Thomas [39]. Other main references used
in this thesis are Blahut [16], Lubbe [155] and Yeung [162].

2.2.1 Entropy

After representing a discrete information source as a Markov process, Shannon
asks himself: “Can we define a quantity which will measure, in some sense, how
much information is “produced” by such a process, or better, at what rate informa-
tion is produced?” [138].

His answer is: “Suppose we have a set of possible events whose probabilities
of occurrence are p1, p2, . . ., pn. These probabilities are known but that is all we
know concerning which event will occur. Can we find a measure of how much
“choice” is involved in the selection of the event or of how uncertain we are of the
outcome?

If there is such a measure, say H(p1, p2, . . . , pn), it is reasonable to require of
it the following properties:

1. H would be continuous in the pi.

2. If all the pi are equal, pi = 1
n , then H should be a monotonic increasing

function of n. With equally likely events there is more choice, or uncertainty,
when there are more possible events.

3. If a choice is broken down into two successive choices, the original H should
be the weighted sum of the individual values of H . The meaning of this is
illustrated in Figure 2.7.

1In Shannon’s paper, the mutual information is called rate of transmission.
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Figure 2.7: Grouping property of the entropy.

On the left, we have three possibilities p1 = 1
2 , p2 = 1

3 , p3 = 1
6 . On the

right, we first choose between two possibilities each with probability 1
2 , and

if the second occurs, we make another choice with probabilities 2
3 , 1

3 . The
final results have the same probabilities as before. We require, in this special
case, that H(1

2 , 1
3 , 1

6) = H(1
2 , 1

2) + 1
2H(2

3 , 1
3). The coefficient 1

2 is because
this second choice only occurs half the time.”

After these requirements, he introduces the following theorem: “The only H
satisfying the three above assumptions is of the form:

H = −K
∑

x∈X
p(x) log p(x), (2.1)

where K is a positive constant”. When K = 1 and the logarithm is log2, informa-
tion is measured in bits.

Shannon calls this quantity entropy, as “the form of H will be recognized as
that of entropy as defined in certain formulations of statistical mechanics where pi

is the probability of a system being in cell i of its phase space”. There are other
axiomatic formulations which involve the same definition of entropy [39].

The Shannon entropy is the classical measure of information, where informa-
tion is simply the outcome of a selection among a finite number of possibilities.
Entropy also measures uncertainty or ignorance.

Thus, the Shannon entropy H(X) of a discrete random variable X with values
in the set X = {x1, x2, . . . , xn} is defined as

H(X) = −
∑

x∈X
p(x) log p(x), (2.2)

where p(x) = Pr[X = x], the logarithms are taken in base 2 (entropy is expressed
in bits), and we use the convention that 0 log 0 = 0, which is justified by continuity.
We can use interchangeably the notation H(X) or H(p) for the entropy, where p
is the probability distribution {p1, p2, . . . , pn}. As − log p(x) represents the infor-
mation associated with the result x, the entropy gives us the average information
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Figure 2.8: Binary entropy.

or uncertainty of a random variable. Information and uncertainty are opposite. Un-
certainty is considered before the event, information after. So, information reduces
uncertainty. Note that the entropy depends only on the probabilities.

Some other relevant properties [138] of the entropy are

1. 0 ≤ H(X) ≤ log n

• H(X) = 0 if and only if all the probabilities except one are zero, this
one having the unit value, i.e., when we are certain of the outcome.

• H(X) = log n when all the probabilities are equal. This is the most
uncertain situation.

2. If we equalize the probabilities, entropy increases.

When n = 2, the binary entropy (Figure 2.8) is given by

H(X) = −p log p− (1− p) log(1− p), (2.3)

where the variable X is defined by

X =
{

1 with probability p
0 with probability 1− p.

If we consider another random variable Y with probability distribution p(y)
corresponding to values in the set Y = {y1, y2, . . . , ym}, the joint entropy of X
and Y is defined as

H(X, Y ) = −
∑

x∈X

∑

y∈Y
p(x, y) log p(x, y), (2.4)

where p(x, y) = Pr[X = x, Y = y] is the joint probability.
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Also, the conditional entropy is defined as

H(X|Y ) = −
∑

y∈Y

∑

x∈X
p(x, y) log p(x|y), (2.5)

where p(x|y) = Pr[X = x|Y = y] is the conditional probability.
The Bayes theorem expresses the relation between the different probabilities:

p(x, y) = p(x)p(y|x) = p(y)p(x|y). (2.6)

If X and Y are independent, then p(x, y) = p(x)p(y).
The conditional entropy can be thought of in terms of a channel whose input

is the random variable X and whose output is the random variable Y . H(X|Y )
corresponds to the uncertainty in the channel input from the receiver’s point of
view, and vice versa for H(Y |X). Note that in general H(X|Y ) 6= H(Y |X).

The following properties are also met:

1. H(X, Y ) ≤ H(X) + H(Y )

2. H(X, Y ) = H(X) + H(Y |X) = H(Y ) + H(X|Y )

3. H(X) ≥ H(X|Y ) ≥ 0

2.2.2 Mutual Information

The mutual information between two random variables X and Y is defined as

I(X, Y ) = H(X)−H(X|Y )
= H(Y )−H(Y |X)

= −
∑

x∈X
p(x) log p(x) +

∑

y∈Y

∑

x∈X
p(x, y) log p(x|y)

=
∑

x∈X

∑

y∈Y
p(x, y) log

p(x, y)
p(x)p(y)

. (2.7)

Mutual information represents the amount of information that one random variable,
the output of the channel, gives (or contains) about a second random variable, the
input of the channel, and vice versa, i.e., how much the knowledge of X decreases
the uncertainty of Y and vice versa. Therefore, I(X,Y ) is a measure of the shared
information between X and Y .

Mutual information I(X,Y ) has the following properties:

1. I(X, Y ) ≥ 0 with equality if, and only if, X and Y are independent.

2. I(X, Y ) = I(Y, X)

3. I(X, Y ) = H(X) + H(Y )−H(X, Y )
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Figure 2.9: Venn diagram of a discrete channel.

4. I(X, Y ) ≤ H(X)

The relationship between all the above measures can be expressed by the Venn
diagram, as shown in Figure 2.9.

The relative entropy or Kullback-Leibler distance between two probability dis-
tributions p(x) and q(x), that are defined over the set X , is defined as

DKL(p‖q) =
∑

x∈X
p(x) log

p(x)
q(x)

, (2.8)

where, from continuity, we use the convention that 0 log 0 = 0, a log a
0 = ∞ if

a > 0, and 0 log 0
0 = 0.

The relative entropy is “a measure of the inefficiency of assuming that the dis-
tribution is q when the true distribution is p” [39].

The relative entropy satisfies the information inequality DKL(p‖q) ≥ 0 , with
equality only if p = q. The relative entropy is also called discrimination and it is
not strictly a distance, since it is not symmetric and does not satisfy the triangle
inequality. Moreover, we have to emphasize that the mutual information can be
expressed as

I(X, Y ) = DKL({p(x, y)}‖{p(x)p(y)}). (2.9)

2.2.3 Entropy Rate of a Markov Chain

The joint entropy of a collection of n random variables is given by

H(X1, . . . , Xn) = H(X1) + H(X2|X1) + . . . + H(Xn|Xn−1, . . . , X1). (2.10)

The entropy rate or entropy density of a stochastic process {Xi} is defined by

h = lim
n→∞

1
n

H(X1, X2, . . . , Xn)

= lim
n→∞H(Xn|Xn−1, . . . , X1), (2.11)

representing the average information content per output symbol 2 [39]. It is the
“uncertainty associated with a given symbol if all the preceding symbols are known”

2At least, h exists for all stationary stochastic processes.
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and can be viewed as “the intrinsic unpredictability” or “the irreducible random-
ness” associated with the chain [51].

In particular, a Markov chain can be considered as a chain of random variables
complying with

H(Xn|X1, X2, . . . , Xn−1) = H(Xn|Xn−1). (2.12)

An important result is the following theorem: For a stationary Markov chain, with
stationary distribution wi, the entropy rate or information content is given by

h = lim
n→∞

1
n

H(X1, X2, . . . , Xn)

= lim
n→∞H(Xn|Xn−1)

= H(X2|X1) = −
n∑

i=1

wi

n∑

j=1

Pij log Pij , (2.13)

where wi is the equilibrium distribution and Pij is the transition probability from
state i to state j.

In addition, the excess entropy or effective measure complexity [41, 56, 139,
148] of an infinite chain is defined by

E = lim
n→∞(H(X1, X2, . . . , Xn)− nh), (2.14)

where h is the entropy rate of the chain and n is the length of this chain. The
excess entropy can be interpreted as the mutual information between two semi-
infinite halves of the chain. “Another way of viewing this, is that excess entropy
is the cost of amnesia – the excess entropy measures how much more random the
system would become if we suddenly forgot all information about the left half of
the string” [50].

2.2.4 Important Inequalities

Some of the above properties can be deduced from the inequalities presented in
this section [39]. In addition, these will also play an important role in obtaining
fundamental results in this thesis.

2.2.4.1 Jensen’s inequality

A function f(x) is convex over an interval (a, b) (the graph of the function lies
below any chord) if for every x1, x2 ∈ (a, b) and 0 ≤ λ ≤ 1,

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2). (2.15)

A function is strictly convex if equality holds only if λ = 0 or λ = 1. A function
f(x) is concave (the graph of the function lies above any chord) if−f(x) is convex.
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For instance, x log x for x ≥ 0 is a strictly convex function, and log x for x ≥ 0
is a strictly concave function [39].

Jensen’s inequality: If f is convex on the range of a random variable X , then

f(E[X]) ≤ E[f(X)], (2.16)

where E denotes expectation. Moreover, if f(x) is strictly convex, the equality im-
plies that X = E[X] with probability 1, i.e., X is a deterministic random variable
with Pr[X = x0] = 1 for some x0.

One of the most important consequences of Jensen’s inequality is the informa-
tion inequality DKL(p‖q) ≥ 0. Other previous properties can also be derived from
this inequality.

Observe that if f(x) = x2 (convex function), then E[X2]− (E[X])2 ≥ 0. So,
the variance is invariably positive.

If f is substituted by the Shannon entropy, which is a concave function, we
obtain the Jensen-Shannon inequality [19]:

JS(π1, π2, . . . , πn; p1, p2, . . . , pn) ≡ H

(
n∑

i=1

πipi

)
−

n∑

i=1

πiH(pi) ≥ 0, (2.17)

where JS(π1, π2, . . . , πn; p1, p2, . . . , pn) is the Jensen-Shannon divergence of prob-
ability distributions p1, p2, . . . , pn with prior probabilities or weights π1, π2, . . . , πn,
fulfilling

∑n
i=1 πi = 1. The JS-divergence measures how ‘far’ are the probabilities

pi from their likely joint source
∑n

i=1 πipi and equals zero if and only if all the
pi are equal. It is important to note that the JS-divergence is identical to I(X, Y )
when πi = p(xi) and pi = p(Y |xi) for each xi ∈ X , where p(X) = {p(xi)} is the
input distribution, p(Y |xi) = {p(y1|xi), p(y2|xi), . . . , p(ym|xi)}, n = |X |, and
m = |Y| [19, 141].

2.2.4.2 The log-sum inequality

Log-sum inequality: If a1, a2, . . . , an and b1, b2, . . . , bn are non-negative numbers,
then

n∑

i=1

ai log
ai

bi
≥ (

n∑

i=1

ai) log
∑n

i=1 ai∑n
i=1 bi

, (2.18)

with equality if and only if ai
bi

= constant.
Note that the conditions in this inequality are much weaker than for Jensen’s

inequality.
From this inequality, certain results can be derived:

1. DKL(p‖q) is convex in the pair (p, q).

2. H(X) is a concave function of p.

3. If X and Y have the joint pdf p(x, y) = p(x)p(y|x), then I(X, Y ) is a
concave function of p(x) for fixed p(y|x) and a convex function of p(y|x)
for fixed p(x).
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2.2.4.3 Data processing inequality

Data processing inequality: If X → Y → Z is a Markov chain, then

I(X, Y ) ≥ I(X,Z). (2.19)

This result demonstrates that no processing of Y , deterministic or random, can
increase the information that Y contains about X .

2.2.5 Entropy and Coding

Other ways of interpreting the Shannon entropy are possible:

• As we have seen in section 2.2.1, − log pi represents the information asso-
ciated with the result xi. But − log pi can also be interpreted as the surprise
associated with the outcome xi. If pi is small, the surprise is large; if pi is
large, the surprise is small. Thus, the entropy

H(X) = −
n∑

i=1

pi log pi

is the expectation value of the surprise [50].

• Entropy is also related to the difficulty in guessing the outcome of a random
variable. Thus, it can be seen [39, 50] that

H(X) ≤ questions < H(X) + 1, (2.20)

where questions is the average minimum number of binary questions to de-
termine X . This idea agrees with the interpretation of entropy as a measure
of uncertainty and also with the next interpretation.

• A fundamental result of information theory is the Shannon source coding
theorem, which deals with the encoding of an object in order to store or
transmit it efficiently [39, 50]. “Data compression can be achieved by as-
signing short descriptions to the most frequent outcomes of the data source
and necessarily longer descriptions to the less frequent outcomes” [39]. For
instance, Huffman instantaneous coding 3 is optimal and fulfils the following
theorems:

– Similarly to (2.20), we have

H(X) ≤ ` < H(X) + 1, (2.21)

where ` is the expected length of the optimal binary code for X .

3A code is called a prefix or instantaneous code if no codeword is a prefix of any other codeword.
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– If we encode n identically distributed random variables X with a bi-
nary code, the Shannon source coding theorem can be enunciated in
the following way:

H(X) ≤ `n < H(X) +
1
n

, (2.22)

where `n is the expected codeword length per unit symbol. Thus, by
using large block lengths, we can achieve an expected codelength per
symbol arbitrarily close to the entropy [39].

– For a stationary stochastic process, we have

H(X1, X2, . . . , Xn)
n

≤ `n <
H(X1, X2, . . . , Xn)

n
+ 1 (2.23)

and thus, by definition of entropy rate h (2.11),

lim
n→∞ `n → h. (2.24)

Thus, the entropy rate is the expected number of bits per symbol re-
quired to describe the stochastic process.

We can conclude that the entropy of a random variable is a measure of the
amount of information required on average to describe it.

2.3 Image processing

Advances in medical imaging have lead to the development of more sophisticated
image processing techniques in order to satisfy new user requirements. In this
section, two of the most representative image processing techniques: registration
and segmentation are reviewed.

2.3.1 Image Registration

Registration is a fundamental task in image processing used to match two or more
images or volumes obtained at different times, from different devices or from dif-
ferent viewpoints. Basically, it consists in finding the geometrical transformation
that enables us to align volumes into a unique coordinate space. In medical ap-
plications it is of special interest since it allows us to integrate complementary
information in a single model. The integration of information from different imag-
ing modalities is difficult and, in most cases, dependent on the data we have to
deal with. In the scope of this thesis we will focus on multimodal rigid registration
techniques, multimodal since images are from different image modalities and rigid
because only transformations that consider translations and rotations are allowed.

In this section, the main components of the image registration pipeline are
presented. A classification of the most representative registration methods that
have been proposed is also given. To end the section, the main challenges in the
registration field are described.
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Figure 2.10: The main components of the registration framework are the two input
images, a transformation, a metric, an interpolator, and an optimizer.

2.3.1.1 The image registration pipeline

The image registration pipeline starts with the selection of the two images to be
registered. One of the two images is defined as the fixed image and the other one
as the moving image. Given these images, registration is treated as an optimization
problem with the goal of finding the spatial mapping that will bring the moving
image into alignment with the fixed one. This process can be described as a process
composed of four basic elements [79, 113]: the transformation, the interpolator,
the metric and the optimizer (see Figure 2.10). The transformation component
represents the spatial mapping of points from the fixed image space to points in the
moving image space. The interpolator is used to evaluate moving image intensity
at non-grid positions. The metric component provides a measure of how well the
fixed image is matched by the transformed moving image. This measure forms
the quantitative criterion to be optimized by the optimizer over the search space
defined by the parameters of the transformation. Each of these components is now
described in more detail .

1. Spatial transformation. The registration process consists in reading the in-
put data models, defining the reference space (i.e. its resolution, positioning
and orientation of the objects) for each of these models, and establishing the
correspondence between them (i.e. how to transform the coordinates from
one data model to the coordinates of the other data model).

The spatial transformation defines the spatial relationship between both im-
ages. Basically, two groups of transformations can be considered:

• Rigid or affine transformations. These transformations are defined as
geometrical transformations that preserve all distances. They also pre-
serve the straightness of lines (and the planarity of surfaces) and all
nonzero angles between straight lines. These kinds of transformations
are mainly used in intrapatient registration, i.e., the registration of im-
ages of the same patient.
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• Nonrigid or elastic transformations. Using these kinds of transforma-
tions, the straightness of the lines are not ensured. These transforma-
tions are very useful for interpatient registration, i.e., the registration
between different subjects. The fusion of intrapatient volumes allows
the researchers to obtain the atlas of a given population, which permits
us to establish the general templates of diseases like schizophrenia or
Alzheimer’s.

In this thesis, rigid image registration is our reference point.

2. Interpolation. The interpolation strategy determines the intensity value of a
point at a non-grid position. When a general transformation is applied to an
image, the transformed points cannot coincide with the regular grid. So, an
interpolation scheme is needed to estimate the values at these positions.

Several interpolation schemes have been introduced [80]. The most common
are:

• Nearest neighbour interpolation: the intensity of each point is given
by the one of the nearest grid-point.

• Trilinear interpolation: the intensity of a point is obtained from the
linear-weighted combination of the intensities of its neighbours.

• Splines: the intensity of a point is obtained from the spline-weighted
combination of a grid-point kernel [153].

• Partial volume interpolation: the weights of the linear interpolation
are used to update the histogram, without introducing new intensity
values [35].

3. Metric. The metric evaluates the similarity (or disparity) between the two
images to be registered. Several image similarity measures have been pro-
posed. They can be classified depending on the used features which are:

• Geometrical features. A segmentation process detects some features
and, then, they are aligned. These methods obtain subvoxel accuracy
and they do not have high computational cost. Nevertheless, there is a
great dependence on the initial segmentation results.

• Correlation measures. The intensity values of each image are analyzed
and the alignment is achieved when a certain correlation measure is
maximized. Usually, a priori information is used in these metrics.

• Intensity occurrence. These measures depend on the probability of
each intensity value and are based on information theory [138].

Despite this variety of measures, this last group has become the most pop-
ular. Due to the importance of the similarity measure in our research, a
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classification of registration techniques according to this parameter will be
given in Section 2.3.2.

4. Optimization. The optimizer finds the maximum (or minimum) value of
the metric varying the spatial transformation. A lot of numerical methods
have been developed in order to obtain the global extreme of a non analyt-
ical function. The following methods are the most used in medical image
registration: Powell’s method, gradient descent, one-plus-one evolutionary,
and the simplex method. The choice of method will depend on the imple-
mentation criteria and the measure features (smoothness, robustness, etc.).

2.3.2 Similarity metrics

The registration metric characterizes the similarity (or disparity) of both images for
a given transformation. It is considered that the two models are registered when
this similarity (or disparity) function is maximum (or minimum).

The registration methods that have been proposed can be classified into two
main groups according to the information considered to compute the measure:
(i) feature-based registration, which uses previously segmented objects from the
images to achieve the alignment and (ii) voxel-based methods, which use the whole
data. A more detailed description of both groups is given below.

2.3.2.1 Feature-based registration

Measures based on geometric features minimize spatial disparity between selected
features from the images (e.g. distance between corresponding points). The main
difference between the methods of these group is the feature selected for the reg-
istration, which can be points, surface, intrinsic features such as landmarks, or ex-
trinsic measures such as implanted markers. According to the features, two main
categories of algorithms can be considered:

• Point-based registration algorithms

The basis of these algorithms is the selection of a set of points in each of
the images and then the minimum euclidian distance between them gives the
best alignment. The set of selected points can be:

– Anatomical landmarks. Usually, these anatomical points are set manu-
ally, requiring expert support and are quite time-consuming [64].

– Skin affixed markers. This method is automatic and non-invasive, but
during the exploration the markers can experience small movements,
affecting the final results.

– Bone implanted markers. This method avoids the previously mentioned
problem of the movement of the markers, but it is very invasive for the
patient [99].
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Since, in general, the point sets of each image do not exactly coincide, an it-
erative algorithm is performed until the distance between these sets of points
is minimal [57]. These methods are used extensively in the medical scenario
due to their simplicity.

• Segmented-based registration algorithms

Segmentation-based registration algorithms are based on the alignment of
segmented structures, which in most cases correspond to object surfaces of
the images. The segmentation process takes an image and separates its el-
ements into connected regions, which present the same desired property or
characteristic. Below, some of the most representative methods of this group
used in medical applications are described.

The most popular approach is the head-hat algorithm [110]. This method
segments the skin surfaces of both images and tries to fit one with the other
one, similar to a hat on a head. Another approach is presented in [87], where
a crest or valley-like features are assumed in the image, as with MR or CT
images.

The segmentation-based algorithms are generally accurate and fast if a good
choice of features is performed. The main drawback of this approach is that
the registration accuracy is limited to the accuracy of the segmentation step,
which, in the case of functional data such as PET, is almost impossible to
be carried out due to its noisy nature. In theory, segmentation-based regis-
tration is applicable to images of many areas of the body, but in practice the
application areas have been limited to neuroimaging and orthopedic imag-
ing. Moreover, feature-based registration requires specialized segmentation
and feature extraction for each application. In addition, as not all voxels
are used, the methodology is not immune to noise and is sensitive to out-
liers. The main advantages of the segmentation-based methods are that these
can yield subvoxel accuracy, giving more accurate results than the intensity-
based approach. They are faster than the intensity-based registration as they
use a lower number of features and the optimization procedure needs less
iterations.

2.3.2.2 Voxel-based similarity measures

The alternative to the feature-based approach is the intensity-based registration.
This approach assumes some relation between the optical densities of voxels and
operates directly on the image grey values without prior data reduction by the user
nor segmentation. The registration is implicitly performed by the definition of a
function which evaluates the quality of alignment and thereby controls the opti-
mization procedure. The information used for the alignment is not restricted to any
specific feature and therefore this approach is more flexible than the feature-based
one.
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There are two different methodologies distinguishing the methods in this group:

• Intensity-based methods

These methods base the alignment on the evaluation of the intensity values
considering the images aligned when the differences between grey values
are minimal. This restriction is ideal in cases where two images are iden-
tical except for noise. Thus, most of the techniques of this group has been
developed for monomodal registration. A known relation between the inten-
sity values in the datasets to be registered is assumed, which is not valid for
a general multimodal registration. An important aspect to be considered is
that the proposed functions are only computed on the overlap area between
both image, which varies for different transformations.

Some of the functions that have been proposed to describe the relation be-
tween grey values are [144]:

– The sum of absolute value differences. This is the simplest and most di-
rect measure of similarity of two image values. This measure is defined
as

S(A,B) =
∑

x∈A
⋂

B

|IA(x)− IB(x)|, (2.25)

where IA(x) and IB(x) represent the intensity at a point x of the image
A and B, respectively. When this measure is applied we assume that
the image values are calibrated to the same scale.

– Correlation. In the alignment of two images of the same modality,
registration results in a strong linear relationship between correspond-
ing values in the two images. A measure of similarity would be the
correlation, which determines the fit of a line to the distribution of cor-
responding values. Correlation is expressed as

C(A, B) =
∑

x∈A
⋂

B

IA(x)× IB(x). (2.26)

The main limitations of this measure are:

∗ Its dependence on the number of points over which it is evaluated.
This tends to favour transformations yielding large overlap. The
normalized cross-correlation solves this problem simply by divid-
ing correlation by the number of points.

∗ Its dependence on the intensity values, which tends to favour high
intensity values. As a solution to this second limitation a better
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measure of alignment was proposed: the correlation coefficient.
The correlation coefficient is a measure of the residual errors from
the fitting of a line to the data by minimization of the least squares.

– Variance of intensity ratio. The correlation measure was widely used
until the mid-1980’s for 2D registration. In the 90’s several researchers
started looking for alternatives. One of these alternatives proposed by
Woods et al. [161] developed a 3D registration algorithm based on local
intensity variances.
Woods et al. introduced a registration measure for multimodal images
based on the assumption that regions of similar tissue (similar grey
values) in one image would correspond to regions in the other image
that also consist of similar grey values. Ideally, the ratio of the grey
values for all corresponding points in a certain region in both images
varies little. Consequently, the average variance of this ratio for all
regions is minimized to achieve registration.

• Methods based on the occurrences of intensity values

The basic idea behind these methods is that two values are related or similar
if there are many other examples of those values occurring together in the
overlapping image volume. These measures are a class of more generic sta-
tistical measures which only look at the occurrence of image values and not
at the values themselves.

Most of these techniques are based on the feature space or joint histogram.
The joint histogram is a two-dimensional plot of the corresponding grey val-
ues in the images showing the combinations of grey values in each of the two
images for all corresponding points. The joint histogram is constructed by
counting the number of times a combination of grey values occurs. For each
pair of corresponding points (x, y), where x is a point in the first image and
y a point in the second image, the entry (IA(x), IB(y)) in the joint histogram
is increased.

The joint histogram depends on the alignment of the images. When the
images are correctly registered, corresponding anatomical structures over-
lap and the joint histogram will show certain clusters for the grey values of
those structures. Conversely, when the images are misaligned, structures in
one image will overlap with structures in the other image that are not their
anatomical counterparts. In Figure 2.11, the joint histogram plots of an MR-
PET image pair in the registration position (a) and with a lateral translation
of 2 mm (b), 4 mm (c), and 10 mm (d) are shown. Note how the intensity of
the clusters for corresponding anatomical structures will decrease and new
combinations of grey values emerge. This will be manifested in the joint
histogram by a dispersion of the clustering. This property is exploited by
defining measures of clustering or dispersion which have to be maximized
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(a) (b)

(c) (d)

Figure 2.11: Joint histogram plots of a MR (horizontal scale) and PET (vertical
scale) test image pair in the registration position (a) and with a lateral translation
of 2 mm (b), 4 mm (c), and 10 mm (d). Images obtained from [145].

and minimized respectively. Most of these measures are based on informa-
tion theory. For a detailed description of this theory see the previous section.
In the information theory context, the registration of two images is repre-
sented by an information channel X → Y , where the random variables X
and Y represent the images. Their marginal probability distributions, p(x)
and p(y), and the joint probability distribution, p(x, y), are obtained by sim-
ple normalization of the marginal and joint intensity histograms of the over-
lapping areas of both images [93].

Some of the measures based on the occurrences of intensity values are

– Moments of the joint probability distribution. The joint probability tells
us the proportion of times one or more variables hold some specific
values. The computation of the moments of the joint probability distri-
bution was first proposed by Hill [62] from visual examination of the
effects of misregistration on the feature space. Empirically, as the im-
ages approach the registration position, the values of the peaks in the
joint probability distribution increase in height and the values on the
regions of the probability distribution which contain lower counts de-
crease in height. Therefore, the registration process has to re-arrange
the voxels so that they occur with their most probable corresponding
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value in the other image. One possible approach to quantify this shift
from lower probabilities in the joint probability distribution to a smaller
number of higher probabilities is to measure skewness (or the third mo-
ment) in the distribution of probabilities in the joint histogram.
The skewness characterizes the degree of asymmetry of a distribution
around its mean. It is a pure number that characterizes only the shape
of the distribution [117].

– Joint entropy. In the joint histogram of two images, grey values dis-
perse with misregistration and the joint entropy is a measure of this
dispersion. By finding the transformation that minimizes their joint en-
tropy, images should be registered [34, 146]. The main drawback of
this method is its high sensitivity to the overlap area.

– Mutual information (MI). Another measure is mutual information which
is less sensitive to the overlap area. The more dependent the datasets
are, the higher the MI between them. Registration is assumed to cor-
respond to the maximum mutual information: the images have to be
aligned in such a manner that the amount of information they contain
about each other is maximal [92, 157].
In the image registration context, Studholme [144] proposed a normal-
ized measure of mutual information defined by

NMI(X, Y ) =
H(X) + H(Y )

H(X, Y )
= 1 +

I(X,Y )
H(X,Y )

, (2.27)

which is more robust than MI , due to its greater independence of the
overlap area.

To conclude this section, the most relevant properties of the intensity-based
registration approach are summarized. The main feature of intensity-based
registration is its generality; it can be applied to any dataset with no previous
pre-processing nor segmentation. Moreover, as all the voxels are considered
on the alignment process, the method is quite immune to noise and is insen-
sitive to outliers. As voxels are used as the features in registration, it is very
difficult to obtain a sub-voxel registration accuracy. Maes et al. [91] attempts
to reach sub-voxel accuracy by interpolating densities between neighbouring
voxels. However, careless interpolation introduces artifacts through fictitious
density values.

The convergence of intensity-based registration is in general very slow. Sev-
eral strategies have been proposed to speed up the process, first registering
at lower resolutions and then increasing the resolution. Due to the consid-
erable computational cost required by these methodologies, multi-resolution
and multi-scale approaches are incorporated to the process in order to speed
up the convergence of this method.
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Point-based Landmarks [64]

Feature-based registration Skin implants [99]

registration Segmentation-based Head-hat method [110]

registration Crest or valley features [87]

Absolute differences [144]

Intensity-based Correlation [144]

registration Normalized cross-correlation

Correlation coefficient

Voxel-based Variance of intensity ratio [161]

registration Moments of joint probability

Occurrence-based Joint entropy [93]

registration Mutual Information [92, 157]

Normalized

Mutual Information [144]

Table 2.1: The main image registration similarity metrics.

In Table 2.1 a summary of the explained methods is presented. This is only
a small part of the several proposed approaches. More extensive surveys are pre-
sented in [44, 63, 116].

2.3.3 Challenges in image registration

Advances in clinical imaging have lead to the development of new imaging reg-
istration techniques in order to satisfy requirements demanded by clinical experts.
This fact has lead registration to be an active focus of research.

In this section, the main problems currently being addressed by image registra-
tion researchers are briefly summarized.

Robustness and accuracy

To evaluate the behaviour of a registration method robustness and accuracy are
the main parameters to be considered. The first parameter, robustness, refers to
how the method behaves with respect to different initial states, i.e. different initial
positions of the images, image noise, modality of the images, etc. The second
parameter, accuracy, refers to how the final method solution is closer to the ideal
solution. In the multimodal rigid registration framework, certain methods achieve a
reasonable robustness and accuracy, but a lot of research is being currently done in
this area. Constantly, new measures and new interpolation schemes appear trying
to improve the robustness and the accuracy of the standard measures.
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Artifacts

In the registration process, the interpolator algorithm plays an important role, since
usually the transformation brings the point to be evaluated into a non-grid position.
This importance is greater when the grid size coincides in both images, since the
interpolator pattern is repeated for each point. When the mutual information or
its derivations, which are the most common measures used in multimodal image
registration, are computed, their value is affected by both the interpolation scheme
and the selected sampling strategy, limiting the accuracy of the registration. The
fluctuations of the measure are called artifacts and are well studied by Tsao [151].

Speed-up

One of main user requirements when using registration techniques is speed. Users
desire results as fast as possible. The large amount of data acquired by current cap-
ture devices makes its processing difficult in terms of time. Therefore, the defini-
tion of strategies able to accelerate the registration process is fundamental. Several
multiresolution frameworks have been proposed achieving better robustness and
speeding up the process.

2.3.4 Image Segmentation

Image segmentation is the process of labeling each voxel in a image dataset accord-
ing to certain parameter or features. In the case of medical images, the segmen-
tation considers the tissue type or the anatomical structure contained in the voxel.
Since a segmented image provides richer information than the original one,it is an
essential tool in medical environments. It is used to improve visualization of med-
ical imagery, to perform quantitative measurements of image structures, to build
anatomical atlases, to research shapes of anatomical structures, or to track anatom-
ical changes over time. Segmentation is considered a very difficult task and a lot
of research is being done to develop automatic segmentation techniques. The main
aspects that make this process so difficult are the imaging process itself and the
anatomy that is represented in the images. The imaging process is chosen so that
its interactions with the tissues of interest will provide clinically relevant informa-
tion about the tissue in the resulting output image. But this does not mean that
the anatomical feature of interest will be particularly separable from its surround-
ings. The second aspect that makes segmentation difficult is the complexity and
variability of the anatomy that is being imaged. It may not be possible to locate or
delineate certain structures without detailed anatomical knowledge. For this rea-
son, in most of medical applications, segmentation is carried out manually by an
expert radiologist. This is a very time consuming task and also sensitive to subjec-
tive errors.

To overcome these limitations, a lot of research is being done to develop new
segmentation methods as accurate as manual editions but reducing user interaction
as much as possible. Unfortunately, the automatic process is not easy since the
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regions to be segmented vary with the anatomy being imaged. Consequently, most
proposed methods are anatomy specific assuming usually some a priori informa-
tion that must either be built into the system or provided by a human operator.
In this section, we briefly describe some of the main proposed segmentation al-
gorithms. In the image processing literature, we can find a lot of segmentation
methods and also very diverse ways of classifying them [55, 112, 53]. Never-
theless, we present in this section a classification of the automatic segmentation
processes into two groups: the global segmentation methods, where all image vox-
els (or pixels) are collected in some clusters, and the local segmentation methods,
where only a region is taken into account classifying the voxels (or pixels) inside or
outside of this region. To end the section, main challenges in image segmentation
are described.

2.3.4.1 Global segmentation

These methods are also referred to as classification methods, since each point is
classified into a cluster, usually depending on its intensity value and the intensity
of its neighbours, and not on its position in the image. Global methods are very
useful for tissue segmentation and morphological studies since a whole image seg-
mentation is required and a manual process is extremely time-consuming. In most
cases, some information of the image modality, such as default tissue intensity, is
needed to start the segmentation process.

The main global segmentation methods can be classified in these groups:

• Thresholding

This segmentation scheme relies upon the selection of a range of inten-
sity levels, called threshold values, for each material class. These intensity
ranges are exclusive to a single class, and span the dynamic range of the im-
age. Subsequently a feature is classified by selecting the class in which the
value of the feature falls within the range of feature values of the class. The
determination of more than one threshold value is a process called multi-
thresholding.

The selection of the threshold generally depends on the visual identification
of a peak in the histogram corresponding to a material class, and the selection
of a range of intensities around the peak to include only the material class. A
possible criterion is to assign the histogram minima as the threshold values.
More refined criteria are summarized in [129, 137].

• Segmentation by image enhancement

In image processing terminology, an operation for image enhancement im-
proves the quality of the image in a particular manner, either subjectively or
objectively. This segmentation model assumes that a material class ideally
has a single intensity, and that noise and scanning artifacts corrupt this level
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to produce the distribution of intensities observed for a material class. Thus,
by the application of image enhancement techniques for reducing noise and
smoothing the image, the enhanced image approximates the ideal image (the
segmented one).

A class of filters known as nonlinear anisotropic diffusion filters can be use-
ful for image enhancement [111]. This class of filters performs smoothing
while preserving edges.

The two main drawbacks of this segmentation approach are the following.
First, the structures that do not have strong edge on all sides are smoothed,
leading to large classification errors when subsequent labelling is applied.
Second, large numbers of iterations of the filters are required before regions
of similar tissue have nearly the same intensity

• Segmentation by unsupervised clustering

Clustering methods are algorithms that operate on an input dataset, grouping
data into clusters based on the similarity of the data in these clusters. Clus-
tering algorithms are unsupervised classifiers, assigning states from scratch.
They are also useful for data exploration, allowing a user to discover patterns
of similarities in a dataset.

A well-known clustering algorithm is the k-means [58]. The k-means algo-
rithm accepts as input the number of clusters to organize data within, initial
location of cluster centers, and a dataset to cluster. The number of clusters in
which the algorithm fits the data is specified to the algorithm, and represents
a parameter the user desires to experiment with, or, also, the expected or
desired number of classes to discern from the data. There are no conditions
upon which data is excluded or included in consideration to fit into a class;
all data provided as input are classified. A given sample or feature measure-
ment is assigned exclusively to one class (fuzzy k-means clustering assigns
a degree of membership to each data item for each class).

The algorithm is an iterative algorithm, assigning a class at each iteration to
each data element. The algorithm iteration ceases when there are no changes
in the classification solution. Each iteration consists in classifying the dataset
by comparison of the dataset to the current cluster centers. A data item
is assigned to the same class as a cluster center if the Euclidian distance
between the data item and the cluster center is the least distance between
the data item and all the cluster centers. Following class assignment, cluster
centers are updated by computation of the centroid of the dataset classified
as the same class.

Another popular approach is the Markov random fields [86], which is not
a segmentation method by itself, but it is often incorporated into clustering
segmentation algorithms such as the k-means algorithm under a Bayesian
prior model. This method assumes that most voxels belong to the same struc-
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ture as its neighbours. The segmentation is then obtained by maximizing the
a posteriori probability of the segmentation given the image data using it-
erative methods such as iterated conditional modes or simulated annealing.
The main problem of this method is the high sensitivity to the parameters.
Nevertheless, they are widely used in medical image classification.

2.3.4.2 Local segmentation

The main objective of the local segmentation methods is to classify each voxel into
inside or outside the region of interest. These methods focus their attention on the
spatial distribution of voxels and are very specific to the problem to be solved. Most
of them assume some region features as shape, intensity or texture. These methods
are widely used in medical image segmentation due to their accurate results, and
are used extensively to segment diseases, as tumors or strokes, or structures, as the
corpus callosum in the brain or the left ventricle in the heart.

Two main approaches exist: in the first one, all voxels of an initial region
are taken into account to iteratively modify this region until it converges to the
desired one, and in the second one, only the boundary conditions of the region are
considered, deforming the region with some particular criteria.

• Region-based segmentation

The most popular and simple algorithm of the region-based segmentation is
the region growing. The region growing method extracts the region of in-
terest assuming a predefined connection criterion [165]. This criterion can
be based on intensity information and/or edges in the image. In its simplest
form, region growing requires a seed point or region that is manually selected
by an operator, and extracts all pixels connected to the initial seed with the
same intensity value. Then, some different criteria have appeared based on
an intensity range, gradient threshold, contrast or texture [53]. In medical
applications, region growing is not often used alone but within a set of im-
age processing operations, particularly for the delineation of small, simple
structures such as tumors and lesions. Its main disadvantages are that it re-
quires manual interaction to obtain the initial region and there is no subvoxel
accuracy. Moreover, it can only segment connected regions.

Another popular approach is the split-and-merge method [69], that tackles
the problem in the opposite way to the region growing algorithm. This ap-
proach starts from the entire image and subdivides it into smaller regions
where the image is not homogeneous. To divide the image, different strate-
gies can be adopted: octrees (where each region is subdivided into eight
equal regions), BSP (where an optimal partition plane is selected to divide
the region), etc. After this first splitting step, the neighbour regions that are
homogeneous in a certain criterion are merged.
A similar approach is the watershed method. This method treats the im-
age as a topographic surface, being the intensity of the height of each point.
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First, the gradient image is computed and a high number of seed points are
placed, usually automatically, in the “valley” points. Then, these seed points
are “flooded” until the whole image is completed. Each “flooded” region is
the result of the segmentation. However, in practice, this process produces
an important over-segmentation due to noise or local irregularities in the gra-
dient image. To avoid this over-segmentation, a merging step is added at the
end of the method.
Despite the fact that the use of the split-and-merge methods in realistic and
biological image segmentation is very common, they are not much used in
medical applications.

• Edge-based segmentation

In edge-based segmentation approaches, the image to be segmented is de-
scribed in terms of the boundaries between different regions. In this ap-
proach, deformable models have been extensively studied and widely used
in medical image segmentation. For instance, in Chapter B of the appendix,
this kind of segmentation is used in order to determine the edema region
surrounding a hematoma lesion in a CT image. For that reason, edge-based
segmentation methods are introduced here in more detail than the previous
methods.

Deformable models are curves or surfaces defined within an image domain
that can move under the influence of internal forces, which are defined
within the curve or surface itself, and external forces, which are computed
from image data [142]. The internal forces are designed to keep the model
smooth during the deformation, while the external forces are defined to move
the model towards an object boundary or other desired features within the
image. There are two main types of deformable models: parametric de-
formable models and geometric deformable models. The first ones represent
the boundary in its parametric form during the deformation, not requiring
high computational cost. On the other hand, the change of the curve topol-
ogy is not possible in most cases. The geometric models represent curves
and surfaces as a level set of a higher-dimensional scalar function and their
parametrizations are computed only after the curve computation. Thus, a
priori topology is not assumed.

– Parametric deformable models. In the parametric deformable mod-
els methods, two different formulations exist: an energy minimizing
formulation and a dynamic force formulation. For both cases, the de-
formable parametric contour can be defined as X (s) = (X(s),Y(s)),
s ∈ [0, 1].
In the first formulation, the curve X (s) moves through the spatial do-
main trying to minimize the following energy functional:

E(X ) = S(X ) + P(X ), (2.28)

42



Chapter 2. Background

where S(X ) is the internal energy functional and P(X ) is the potencial
energy functional. The first term is defined by

S(X ) =
1
2

∫ 1

0
α(s)

∣∣∣∣
∂X
∂s

∣∣∣∣
2

+ β(s)
∣∣∣∣
∂2X
∂s2

∣∣∣∣
2

ds, (2.29)

and controls the contour tension and rigidity, i.e, the coherence of the
curve. The second term is computed integrating a potential energy
function P(x, y) along the contour:

P(X ) =
∫ 1

0
P(X (s)). (2.30)

This potential energy function is derived from the image data and takes
smaller values at object boundaries as well as other features of interest.
Thus, this second term pulls the contour to the desired object bound-
aries.
The dynamic force formulation arises from the necessity to use more
general external forces. According to Newton’s second law, the dy-
namics of a contour X (s, t) must satisfy

µ
∂2X
∂t2

= Fdamp(X ) + Fint(X ) + Fext(X ), (2.31)

where µ is a coefficient that has a mass unit and Fdamp is a damping
(or viscous) force defined as −γ∂X/∂t, with γ being the damping co-
efficient. In the image segmentation context, the µ parameter is often
set to zero, becoming the previous equation

γ
∂X
∂t

= Fint(X ) + Fext(X ). (2.32)

The internal forces control the coherence of the curve, similar to the
previous formulation, while external forces can be either potential forces
or non-potential forces. These external forces are often expressed as
the superposition of several different forces, each one depending on the
feature that we want to be highlighted. A wide study of these forces is
presented in [142].
Although these two formulations yield similar results, the first formu-
lation has the advantage that its solution satisfies a minimum principle,
which is mathematically more satisfactory, whereas the second formu-
lation has the flexibility of allowing for the use of more general types
of external forces.
One of the first approaches, and probably the most popular, is the
snakes algorithm [75]. Snakes are planar deformable contours that are
useful in several image analysis tasks. They are often used to approxi-
mate the locations and shapes of object boundaries in images based on
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the reasonable assumption that boundaries are piecewise continuous or
smooth. For more information, an interesting survey of the parametric
deformable model methods can be found in [101].

– Geometric deformable models
In the geometric deformable models, introduced in the image segmen-
tation context in [25], curves and surfaces are evolved using only geo-
metric measures, dissociating the curve evolution from its parametriza-
tion. Then, topology changes can be handled automatically. During the
last years, several investigations have been done in this direction, with
the level sets method [106] as one of the most popular approaches.
The main difference of this method compared to the parametric ones
is that, instead of wrapping the curve, it deforms, at each iteration, a
certain higher-dimensional function previously defined, depending on
the a priori information of the model. Being mathematically more ac-
curate, we can define a level set function φ(x, y, t) with the contour
X (s, t) as its zero level set. Then,

φ(X (s, t), t) = 0 (2.33)

and, if this equation is derived with respect to t, we obtain

∂φ

∂t
+∇φ · ∂X

∂t
= 0, (2.34)

where∇φ denotes the gradient of φ. Assuming that φ is negative inside
the zero level and positive outside, the equation can be rewritten as

∂φ

∂t
= −∇φ · ∂X

∂t
= |∇φ|∂X

∂t
·N(X ), (2.35)

where N(X ) is the inward unit normal to the level set curve.
Thus, the evolution of the curve can be written as

∂φ

∂t
= V(κ)|∇φ|, (2.36)

where V(κ) is the speed function and κ the level set curvature defined
as κ = ∇ · ∇φ

|∇φ| [142].
Several speed functions have been proposed depending on the features
which rely on the segmentation process (see [136] for a detailed dis-
cussion on this topic). An interesting approach is proposed in [61, 60],
where the speed function depends on some information theoretic con-
cepts as the conditional entropy and mutual information.

A summary of the segmentation methods is shown in Table 2.2.
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Global segmentation

Thresholding [129, 137]

Enhanced-based segmentation [111]

Unsupervised clustering [58, 86]

Local segmentation

Region Growing [165]

Region-based Split-and-merge [69]

segmentation Watersheds [123]

Parametric deformable

Edge-based models [75, 101, 142]

segmentation Geometric deformable

models [25, 106, 142]

Table 2.2: The main image segmentation methods.

2.3.4.3 Challenges in image segmentation

Image segmentation is an open problem that probably will never be solved at all.
Despite the big evolution of the segmentation algorithms in the last decades, there
is no universal segmentation method and most of the existing algorithms solve only
few particular problems. This is due to the difficulty to include a priori information
in a segmentation algorithm, although this problem is in most cases obvious for
human perception. Current algorithms usually require human interaction and are
very sensitive to the initial parameters. Moreover, they are not able to segment any
kind of images, and are very sensitive to image “outliers”, as noise or blurring.
The image resolution is usually another parameter to be taken into account in order
to obtain a correct segmentation, due to the partial volume effect, i.e., one pixel (or
voxel) represents two or more regions. Therefore, the main image segmentation
challenge is probably to develop a general method able to segment any kind of
image, robust to the image imperfections as noise, artifacts, blurring, etc. and
completely automatic, i.e., without any human interaction during the segmentation
process. Even though we are conscious that this objective is difficult to reach,
our purpose is to contribute to the development of better algorithms than enhance
the existing ones, reducing human interaction as far as possible, and making them
more robust to image noise.

45



46



Chapter 3

Image Registration based on
Global Lines and
High-dimensional Normalized
Mutual Information

One of the key aspects in 3D-image registration is the computation
of the similarity metric. Some of the most commonly used measures,
like mutual information or normalized mutual information, require the
computation of the joint intensity histogram between the two images.
In this chapter we propose a new approach to compute this histogram
using uniformly distributed random lines to sample stochastically the
overlapping volume between two 3D-images. This method provides
us with an accurate, robust and fast mutual information-based regis-
tration. The interpolation effects are drastically reduced, due to the
stochastic nature of the line generation, and the alignment process
is also accelerated. Despite the fact that the mutual information-
based measures have been successfully used as an effective similar-
ity measure for multimodal image registration, a drawback is that the
joint histogram is only calculated from the correspondence between
individual voxels in the two images. To tackle this problem, the mu-
tual information-based similarity measures referring to the correspon-
dence between voxel blocks in multimodal rigid registration is gener-
alized. With this approach the spatial information is taken into ac-
count in the similarity metric computation. The ambiguity and high-
dimensionality that appears when dealing with the voxel neighbour-
hood is solved using uniformly distributed random lines and reducing
the number of bins of the images. Experimental results show a sig-
nificant improvement with respect to the standard normalized mutual
information.
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3.1 Introduction

Recently, several similarity measures have been proposed to solve the multimodal
image registration problem. Among them, mutual information (MI) [91, 156] and
normalized mutual information (NMI) [144] are the most commonly used since
they produce satisfactory results in terms of accuracy, robustness and reliability.
However, MI-based methods have a number of well-known drawbacks, such as
grid [154] and interpolation effects [91, 151]. In particular, the way of estimat-
ing the probability distributions, the choice of the interpolator and the sampling
strategy have a great influence on the accuracy and robustness of the registration
results. Another limitation of these methods is that the computation of the joint
histogram is calculated from the correspondence between individual voxels in the
two images. In this sense, the spatial distribution of the samples is not taken into
account. For instance, because of this the swapping of voxels in the overlap area
of the two images does not change the MI value.

Therefore, one of the key aspects of the similarity calculation process is the
computation of the joint histogram. As proposed in [91], this step is usually done
by taking all the points of the reference image and the corresponding values of the
transformed floating image (see Section 2.3.1). In general, an interpolation scheme
is needed to estimate these transformed values at non-grid positions. This interpo-
lation provokes undesirable artifacts when the voxel grids have coinciding period-
icities [115, 151], reducing the robustness and accuracy of the MI-based methods.
Moreover, to accelerate the matching process, different multiresolution and mul-
tisampling schemes have been proposed. In particular, downsampling techniques
are used to speed up the registration process [116].

As mentioned before, the spatial information is not taken into account in the
standard methods. In recent years, different approaches have considered a region-
based correlation to compute image similarity [126, 114, 128, 127, 66]. These
approaches deal with gradient magnitude or high-dimensional vectors in order to
incorporate spatial information on the similarity measure.

In this chapter, a new approach to compute MI-based similarity measures by
using uniformly distributed random lines is introduced. This method accelerates
the alignment and almost suppresses the interpolation artifacts due to the stochas-
tic nature of the process. Several experiments show clearly the suitability of our
approach to speed up the registration process and to improve its accuracy and ro-
bustness. An MI-based framework that uses structural information in an image
is also proposed. A high dimensional information channel which incorporates
the spatial information by considering the voxel neighbourhood probabilities is
defined. Then, the standard similarity measures, MI and NMI, are extended to
consider the correspondence between regions of voxels in multimodal rigid reg-
istration. The problems that appear when dealing with the voxel neighbourhood
are tackled using uniformly distributed random lines and reducing the number of
bins of the histograms. Experimental results over real medical data analyze the be-
haviour of our approach when neighbour intensity values are considered, showing
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better accuracy and robustness.
This chapter is organized as follows. In Section 3.2, background and related

work is surveyed. In Section 3.3, the use of uniformly distributed random lines
for image registration is presented. In Section 3.4, a method to compute the inten-
sity histogram based on these random lines is proposed and the registration results
obtained using this method over different multimodal images are analyzed. In Sec-
tion 3.5, the high-dimensional normalized mutual information measure for image
registration which considers the spatial information of both images is presented.
Experimental results are given in Section 3.6. Finally, our conclusions are pre-
sented in Section 3.7.

3.2 Background and Related Work

In this section some basic topics related with this chapter are examined. First, some
high-dimensional information-theoretic measures are reviewed [39, 49]. Then, dif-
ferent methods for the histogram estimation as well as some recent approaches
which incorporate spatial information in the information-theoretic similarity mea-
sures for image registration are presented.

3.2.1 Information-theoretic measures

The definition of block entropy and entropy rate is now reviewed. The notation
used here is inspired by the work of Feldman and Crutchfield [49]. Given a chain
. . . X−2X−1X0X1X2 . . . of random variables Xi taking values in X , a block of
L consecutive random variables is denoted by XL = X1 . . . XL. The probability
that the particular L-block xL occurs is denoted by p(xL). The Shannon entropy
of length-L sequences or L-block entropy is defined by

H(XL) = −
∑

xL∈XL

p(xL) log p(xL), (3.1)

where the sum runs over all possible L-blocks. The entropy rate is defined by

h = lim
L→∞

H(XL)
L

, (3.2)

and it can be written as
h = lim

L→∞
h(L),

where
h(L) = H(XL)−H(XL−1) = H(XL|XL−1 . . . X1)

is the entropy of a symbol conditioned on a block of L− 1 adjacent symbols. The
entropy rate of a sequence measures the average amount of information per symbol
x and the optimal achievement for any possible compression algorithm [39].
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3.2.2 Histogram estimation

MI is a basic concept in information theory, which is usually used to measure the
statistical dependence between two random variables A and B, and is defined by

I(X,Y ) =
∑∑

p(x, y)log
p(x, y)

p(x)p(y)
,

where pXY (x, y) is the joint probability density function (pdf) and pX(x) and
pY (y) are the marginal pdf’s. In the context of image registration, the random
variables X and Y correspond to the reference and floating images, respectively,
and registration is achieved by maximizing the MI. The normalization of MI, de-
fined by

NMI(X, Y ) =
H(X) + H(Y )

H(X, Y )
= 1 +

I(X,Y )
H(X, Y )

,

is more robust than MI due to its greater independence of the overlap area [144].
All these methods are based on the same four steps: the superposition of the

reference and floating images, the computation of the pdf’s, the computation of the
similarity metric, and the optimization of the metric by reorienting the images. In
this section we focus on the technique to estimate the marginal and the joint pdf’s.
To compute them, two different methods are usually applied: the Parzen window
method [107, 156] and the binning method [91].

3.2.2.1 Parzen window estimation

Given an instance of the random sample, Parzen-windowing [107] estimates the
pdf from which the sample was derived. It essentially superposes kernel functions
placed at each sample value. The general form of the density is

P ∗(x, a) ≡ 1
Na

∑
xaεa

R(x− xa),

where a is a sample and R is a window function or kernel such that
∫

xεX
R(x)dx = 1,

where X is the domain of function R.
This function R is often called the smoothing or window function. In this way,

each observation contributes to the pdf estimate. Unlike parametric estimations,
Parzen estimation does not suppose any a priori distribution and only requires the
density to be smooth [156]. Intuitively, the Parzen density estimator can be seen
as a computation of a windowed average of the sample. The most common win-
dow functions are unimodal, symmetric about the origin, and fall off quickly to
zero. Among these functions, the Gaussian window is a popular kernel for Parzen-
window density estimation, being infinitely differentiable and thereby lending the
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same property to the Parzen-window pdf estimate. The quality of the approxima-
tion is dependent both on the functional form of R and its width. Different window
functions can lead to very different density estimates.

In terms of memory, the computation of the Parzen estimation is cheap, since
one needs only to memorize the sample. On the contrary, the evaluation of P ∗(x, a)
is more expensive, requiring a time proportional to the sample size. Moreover, in
the joint density function estimation, the computational cost increases with the
square of the sample size. Fortunately, the efficiency can be improved if a limited
window width is employed [98].

This estimation method has other advantages too, such as the computation of
the entropy and the mutual information directly from the image samples. It is also
computationally simple to compute the derivatives of these measures, which can
help the optimizer to find the best transformation in the registration process [156].

3.2.2.2 Binning estimation

Another way to compute the joint intensity histogram is by binning the intensity
pairs (A, T (B)) of the overlapping parts of the reference image A and the trans-
formed image T (B). Since generally the grid points of T (B) do not coincide with
the grid points of image A, the application of this method requires the selection of
an interpolator.

The most used interpolation schemes are as follows (see Section 2.3.1):

• trilinear (TL) interpolation: the intensity of a point is obtained from the
weighted combination of the intensities of its neighbours. These weights for
the 2D case are plotted in Figure 3.1.

• nearest neighbour (NN) interpolation: the intensity of a point is the same as
the nearest grid point.

• partial volume (PV) interpolation: the weights of the linear interpolation
(see Figure 3.1) are used to update the histogram bin of the corresponding
grid intensity values. In this way, any new intensity value pair is not intro-
duced in the joint histogram.

Although there are different interpolators, all of them introduce artifacts that
will deteriorate the accuracy and reliability of the registration. These artifacts are
from different natural sources depending on the interpolation scheme. For the TL
interpolation, these artifacts result from the low filter effect of the interpolator. For
the PV interpolation, these artifacts are due to the higher histogram dispersion at
non-grid positions [115]. The NN interpolation causes artifacts due to the discon-
tinuities that can appear for small transformation differences.

Some recent research has deal with the problem of reducing these artifacts.
Tsao [151] has shown that jittered sampling is extremely beneficial to the robust-
ness and accuracy of registration, reducing considerably the interpolation artifacts.
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Figure 3.1: Interpolation weights, the areas wi, for 2D linear interpolation. This
Figure is based on [116].

Since grid effects are caused by the regular grid sampling of the images, other
stochastic sampling strategies have also been proposed [154]. Also, Salvado and
Wilson [130] proposed a constant variance filter to the images to be registered in
order to compensate the blurring effect of the linear interpolation.

Binning techniques are more easily implemented and, probably for that reason,
more commonly used. Our research is focused on these techniques.

3.2.3 MI-based image registration with spatial information

Standard information theory-based measures ignore the spatial information con-
tained in the images. Recent research has been focused on overcoming this prob-
lem. Rueckert et al. [126] propose a second-order MI to incorporate spatial infor-
mation. The neighbourhood has been defined by the nearest neighbours of each
pixel. With this strategy mutual information is computed considering voxel pairs,
and not only single voxel values as the standard method. Therefore, this method
takes into account some spatial information. The results of this method demon-
strate that this increases the robustness of the registration process. Pluim et al. [114]
include spatial information by combining MI with a term based on the image gra-
dient of the images to be registered. The gradient term seeks to align locations
of high gradient magnitude and similar orientations of the gradients at these loca-
tions. In this approach spatial information is incorporated using the gradient val-
ues, which measure the difference of a voxel and its neighbours. A more general
framework was presented by Butz et al. [22], where the MI is computed not from
the individual pixel pairs but from the choice of various feature spaces. Sabuncu
and Ramadge [128] include spatial information in the MI-based approach by using
spatial feature vectors obtained from the images and use a minimum spanning tree
algorithm to estimate the conditional entropy in higher dimensions. Russakoff et
al. [127] propose an MI extension which takes neighbourhood regions of corre-
sponding pixels into account. They assume that the high-dimensional distribution
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is approximately normally distributed. Holden et al. [66] use the derivatives of
gaussian scale space to provide structural information in the form of a feature vec-
tor for each voxel. Gan and Chung [54] integrate a maximum distance-gradient-
magnitude feature with intensity into a two-element attribute vector and adopt mul-
tidimensional MI as a similarity measure on the vector space.

In all of these investigations the introduction of spatial information improves
the registration results notably and this encourages us to define a high dimensional
channel which incorporates this kind of information.

3.3 Uniformly Distributed Global Lines for Image Regis-
tration

In this section, a new method based on the use of uniformly distributed random
lines to compute the joint intensity histogram for 3D-image registration, which
is the most demanding step in the similarity measure computation is introduced.
The overlapping volume between two 3D-images is stochastically sampled using
a uniform distribution of lines in the sense of integral geometry, i.e., invariant to
translations and rotations [132]. Points chosen on each line provide us with the
intensities to calculate the probability distributions using a binning strategy. With
this sampling strategy each point has the same probability to be considered and,
hence, the resulting sample is a representative one. This global line density was
first used in computer graphics to compute the illumination in a scene. The lines
generated using this density were called global lines [133, 26].

Two alternatives to generate a global line density can be used. As a first al-
ternative, a global line can be generated taking two random points on a sphere
circumscribing the object or the scene [133]. This is only valid for a sphere, since
taking pairs of points on the surface of any convex body do not result in a uni-
form density. Observe also that the sphere density is equivalent to taking a single
point on the sphere and a uniform direction from this point, weighted according to
the cosinus of the angle θ between the radius at this point and the tangent plane,
i.e., between the tangent plane and the normal to the plane. Thus, taking only a
uniformly distributed direction does not result in a uniform density. As a second
alternative, a global line can also be generated from the walls of a convex bound-
ing box containing the object or the scene [26]. This can be done taking a random
point on the surface of the convex bounding box and a cosinus distributed random
direction. In Figure 3.2, the probability density function of the random line direc-
tion is plotted. The vertical line represents the wall where the random line is being
sorted and the horizontal arrow is the normal of this wall.

For our registration intentions, this second alternative, taking the reference im-
age as the bounding box (see Figure 7.2), since the histogram computation just take
into account the voxels that belong to both images is adopted. The intensity values
are captured from the lines at evenly spaced positions, taking an initial random off-
set different for each line. The random offset ranges from 0 to the step size. The
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Figure 3.2: Probability density function of the global line directions from a wall of
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Figure 3.3: Global lines are cast from the walls of the bounding box.
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Figure 3.4: PWI-DWI and CT-MR test image pairs.

regular grid sampling is thus substituted in our method by sampling with random
lines. Although we skip with regular steps, the use of a random offset ensures the
stochasticity of the process. The cost of the histogram computation depends on
both the number of lines cast and the number of points taken for each line, which
is inversely proportional to the step size.

Note the fact that using this strategy the images will be considered at non grid
positions, independently if they have coinciding grids. Therefore, the interpola-
tion effects, that are due to these coinciding grids, will be drastically reduced. In
other words, using this strategy the image is considered as a continuous function
which is stochastically sampled in order to compute the joint histogram, instead
of considering the image as a grid of points and computing the histogram just on
these points. Also note that this strategy is not directly related with any interpolator
and therefore the artifact suppression is not due to the interpolator scheme, but the
sampling strategy.

This strategy can also be used to obtain random 1-D strings from the image
data in order to study spatial correlation. The next sections will explore this feature
in more detail.

3.4 Histogram Estimation using Global Lines

To evaluate the behaviour of our global line method, different registration ex-
periments are carried out. The data sets used in our tests (see Figure 3.4) are a
diffusion-weighted imaging (DWI) and perfusion weighted imaging (PWI), from
the Josep Trueta Hospital, and a CT and an MR image, from the Vanderbilt database.
The DWI and PWI sets have a resolution of 256× 256× 20 and 128× 128× 12,
respectively. The voxel size is 0.977× 0.977× 7.0 mm3 for the DWI and 1.797×
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Figure 3.5: Probability density function estimation of the histogram image. Results
obtained with 1.000, 10.000, 100.000, 1.000.000 and 10.000.000 sampling points
using the nearest neighbour interpolator. Also the real density function is plotted.

1.797× 10.0 mm3 for the PWI. The CT image has a resolution of 512× 512× 28
and a voxel size of 0.654 × 0.654 × 4 mm3. The resolution of the MR image is
256× 256× 26 and the voxel size is 1.25× 1.25× 4 mm3.

In the first experiment, the convergence of the marginal histogram of an MR
image computed using global lines to the histogram computed using the standard
binning strategy is observed. In Figure 7.7, the pdf estimation convergence by
increasing the number of sampling points is shown. As expected, by increasing the
number of sampling points, the estimated distribution tends to the real one.

For our two next experiments, we have compared the NMI similarity mea-
sure [144] computed with global lines with the same measure computed with the
standard binning strategy. The standard NMI measure computation has been rep-
resented in all the plots as the bold bottom curve. These two experiments aim to
analyze the influence of the step size and the number of lines cast on our method,
respectively. The behaviour of the NMI has been analyzed moving the floating
image through the X axis from -10 mm to 10 mm around the origin. In these
experiments, the PWI-DWI images have been used as the testing set.

In the second experiment, we have fixed the number of sampled points to
150000, which corresponds to 11% of voxels of the original model. Figure 3.6(a)
shows the obtained results considering different step sizes of 1, 2, 4, 6 and 8 mm,
from top to bottom. It is important to note that the step size determines the num-
ber of cast lines since the number of points is fixed, i.e., a small step size implies
a small number of lines, and viceversa. Two facts need to be noted. First, the
curves corresponding to the step sizes of 1 and 2 mm give undesired results, as
the maxima of these curves do not correspond to the perfect registration. This is a
consequence of supersampling, since in general a lower step size can produce sev-
eral consecutive sampling points into the same voxel. For step sizes greater than
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Figure 3.6: (a) NMI using the global line method with 150000 sampling points vs.
the slice translation on the X-axis. The step size increases from top to bottom (1,
2 , 4, 6 and 8 mm.). The standard NMI curve in bold. (b) NMI using the global
line method with a step size of 5 mm. vs. the slice translation on the X-axis. The
number of sampled points increases from top to bottom (50000 , 75000, 100000,
125000 and 150000 points). The standard NMI curve in bold.

4 mm, the differences between the NMI curves are very low, and they are due to
the stochasticity of the method. Second, a reduced number of lines cast does not
ensure that the model has been probed in a sufficient number of directions. Thus,
taking into account that the computational cost of the method increases with the
step size, since more lines have to be generated, the optimal process is a trade-off
between the number of lines and the step size.

In the next experiment, the step size has been fixed to 5 mm and a different
number of lines has been considered. The obtained results are represented in Fig-
ure 3.6(b), where the plotted curves correspond, from top to bottom, to the NMI
measure computed using 50, 75, 100, 125 and 150 thousand points. Observe that
the NMI value decreases when the number of points taken increases, converging to
the NMI value measured using the standard strategy. This behavibour results from
the fact that the joint entropy increases with the number of points [154]. In Fig-
ure 3.7, the cost of the standard (dash-dotted line) and the global line (solid line)
methods are compared. Note that for our method the time increases linearly with
the number of points. Therefore, using global lines, the time can be outstandingly
reduced. For example, an acceptable estimation is obtained with 50000 points
and its correspondent processing time is almost five times lower (see Figure 3.6(b)
and 3.7).

In the last experiment, interpolation artifacts are studied. As these especially
occur when the voxel grids of the images have coinciding periodicities, the CT-
MR pair has been properly rescaled in order to maximize these periodicities. The
NMI values have been determined as a function of translation along the X-axis in
the range of ± 10 voxels. Figures 3.8(a) and 3.8(b) show the curves of the NMI
values obtained with the global line method using the nearest neighbour and the
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Figure 3.7: Computational cost of the global line method (continuous line) vs. the
value obtained with the standard NMI method (dash-dotted line). The horizontal
axis represents the number of sampled points and the vertical axis the time units.

linear interpolator schemes, respectively. We have considered a different number of
sampled points, from top to bottom: 75000, 100000, 150000 and 200000. In both
plots, the bottom curve corresponds to the NMI value computed with the standard
method. Note the interpolation artifacts, in a stairs-like mode for the NN scheme
and as a set of local minima at every integer-voxel step for the linear scheme [151].
Observe in Figure 3.8(a) that the curves obtained by using the NN scheme with
the global line method also present small artifacts. In this case the grid alignment
causes local maxima, but not the stair-like mode as in the standard NN approach.
Interestingly, the behavibour of the NN interpolator coincides with the one of the
partial volume method [116], since our estimation method converges to the PV
scheme when the number of points tends to ∞ and there is no rotation. Therefore,
these artifacts are because of the higher histogram dispersion at non-grid positions,
as in the PV scheme [115]. Figure 3.8(b) illustrates the results of the global line
method using the TL interpolation scheme. It can be seen that the interpolation
artifacts have completely disappeared. This is due to the fact that the grid effects
have been eliminated by the stochastic sampling and the linear interpolator has
a blurring effect that avoids the artifacts which appeared in the NN interpolation
scheme.

3.5 Generalization of Mutual Information-based Measures

In this section, the high-dimensional normalized mutual information and its com-
putation using uniformly distributed random lines is defined.

3.5.1 High-dimensional normalized mutual information

The registration of two medical images is commonly represented by an informa-
tion channel X → Y , where the random variables X and Y represent, respectively,
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Figure 3.8: NMI values using (a) the nearest neighbour and (b) the linear interpo-
lator schemes.

the images A and B. This approach does not take into account the spatial distribu-
tion of the samples. Here, a new approach based on taking L-blocks of samples
from the images instead of single values is proposed. Then, the new informa-
tion channel can be described as XL → Y L. Both marginal probability distribu-
tions of the L-blocks of each image, p(xL) = p(x1, x2, . . . , xL) and p(yL) =
p(y1, y2, . . . , yL), are computed by the normalization of the L-dimensional his-
tograms of the L-blocks. Similar to the standard method, the joint probability
distribution, p(xL, yL) = p(x1, x2, . . . , xL, y1, y2, . . . , yL), is obtained by the nor-
malization of the joint intensity histograms of the L-blocks in the overlapping area
of both images. The conditional probability can be calculated using the Bayes
theorem

p(yL|xL) =
p(xL, yL)

p(xL)
,

leading to the transition probability matrix P of the channel (conditional probabil-
ity matrix):

P =




p1,1,...,1|1,1,...,1 . . . pm,1,...,1|1,1,...,1 . . . pm,m,...,m|1,1,...,1
...

. . .
...

. . .
...

p1,1,...,1|n,1,...,1 . . . pm,1,...,1|n,1,...,1 . . . pm,m,...,m|n,1,...,1

p1,1,...,1|1,2,...,1 . . . pm,1,...,1|1,2,...,1 . . . pm,m,...,m|1,2,...,1
...

. . .
...

. . .
...

p1,1,...,1|n,n,...,n . . . pm,1,...,1|n,n,...,n . . . pm,m,...,m|n,n,...,n




, (3.3)

where n and m are, respectively, the number of bins of the intensity histograms of
images A and B. Note that the dimensionality of this matrix is nL ·mL. This huge
value, which will be discussed in the next section, has critical consequences in the
design of the implementation strategy.

From these probability distributions, the joint entropy H(XL, Y L), which mea-
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sures the dispersion of the joint histogram, is given by

H(XL, Y L) = −
∑

xL∈XL,yL∈YL

p(xL, yL) log p(xL, yL). (3.4)

Then, the mutual information I(XL, Y L), which quantifies how much infor-
mation both random variables share (the L-block intensities, in our case), is defined
as

I(XL, Y L) = H(XL) + H(Y L)−H(XL, Y L). (3.5)

Similar to the standard approach, the normalization of the mutual information
by the joint entropy is defined by

NMI(XL, Y L) =
I(XL, Y L)
H(XL, Y L)

=
H(XL) + H(Y L)−H(XL, Y L)

H(XL, Y L)
. (3.6)

To compute the marginal and joint probabilities, how is xL selected?, i.e., how
is the neighbourhood ambiguity solved? With respect to this problem, different
templates have been proposed for two dimensions [49], but the generalization from
1-block approach to L-block approaches is a difficult problem.

Another aspect to be considered is the size of an L-block. As L increases,
H(XL)

L decreases, converging to the entropy rate h of an image, which expresses
its maximum compressibility or, equivalently, its irreducible randomness. In fact,
the entropy of an image appears more random than it actually is, and the difference
is given by hL−h [49] (see Chapter 7). Therefore, the higher the L value, the better
the approximation of I(XL, Y L) to the true shared information. On the other hand,
note that the number of elements of the joint histogram is given by N2L, where N
is the number of bins of an image.

From these limitations, how is NMI(XL, Y L) computed for image registra-
tion? Rueckert et al. [126] propose a second-order MI using neighbour voxel pairs
and reducing the number of bins to 16. One drawback of this approach is that
not all directions are taken into account. In the next section, this problem using
uniformly distributed random lines is tackled.

3.5.2 Implementation using uniformly distributed random lines

In a 3D image volume, the definition of a neighbourhood is not a simple task. The
simplest approach is to take as a neighbourhood the six nearest voxels. But this
approach has several drawbacks. The main one is the high dimensionality of the
joint histogram, which has to consider 14 different symbols (the central voxel and
the six neighbours for both images). Another drawback is that only the directions
parallel to the coordinate system are considered. Another possible solution is to
take only pairs of voxels as proposed by Rueckert in [126], but in this case just a
little neighbour information is taken into account and as in the previous approach
only few directions are considered.
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Figure 3.9: Diagram of the high dimensional data generation from global lines.

In order to implement the NMI(XL, Y L) measure, taking L-blocks on the
global lines is proposed. The sequence of intensity values (L-block XL) needed
to estimate the joint probabilities is captured at evenly spaced positions over the
global line. Points chosen on each line provide us with the intensities to calculate
the L-block entropies. In this manner, the 3D-neighbourhood problem is reduced
to a 1D problem, where the ambiguity about how to sample the neighbourhood
disappears as the order in which we take the neighbours is well defined on a global
line. In Figure 3.9 a representation of the process is illustrated. With this strategy,
blocks from all directions are considered and not only the ones parallels to the
coordinate system. In spite of this, the dimensionality problem persists due to the
fact that the computation of the joint histogram of the channel XL → Y L has an
excessive cost if L ≥ 2 (see the probability transition matrix of Equation (3.3)).
Another problem is the sparsity of the resulting histograms since the number of
bins of the joint histogram is N2L. A possible solution to these problems is to
reduce the number of bins of the image, preserving a trade-off between levels of
binning and the accuracy of the entropy rate.

3.6 Results and Discussion

In this section, two sets of experiments are carried out. First, we analyze the be-
haviour of NMI(XL, Y L) when two neighbour intensity values are considered
on global lines and, second, we show some results taking 3-blocks. The clinical
images and the standard transformations used for the tests are provided as part of
the Retrospective Image Registration Evaluation project [104], which is one of the
main standards of validation of multimodal rigid registration results.

The first experiments use the ITK MI Validation application [1] with a mul-
tiresolution optimization approach using the quaternion rigid transformation gra-
dient descent. In our implementation, three multiresolution steps, with 1500 it-
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CT-MR T1 NMI NMI(X2, Y 2) CT-MR T1 NMI NMI(X2, Y 2)
pat 001 2.05 0.97 pat 102 5.57 1.54
pat 002 1.98 1.28 pat 103 2.28 2.44
pat 003 1.78 1.10 pat 104 2.91 1.22
pat 004 13.16 2.21 pat 105 11.49 2.45
pat 005 1.63 0.84 pat 106 5.81 1.74
pat 006 12.62 1.44 pat 107 4.18 0.94
pat 007 0.78 1.13 pat 108 9.21 1.69
pat 101 6.57 2.10 pat 109 1.27 1.15

Table 3.1: The mean of the error in mm. for NMI and NMI(X2, Y 2), measured
at different VOIs for each patient

Method Mean Median Maximum
NMI 5.02 3.00 19.74

NMI(X2, Y 2) 1.50 1.31 2.92

Table 3.2: The mean, median and maximum of the distances in mm. between VOIs
from all patient results

erations each one, are used. To reduce the computational cost, all the measures
are computed using global lines, with a total number of 100000 sampling points
and a step size of 2 mm. The NMI and NMI(X2, Y 2) have been computed,
respectively, over a range of 256 and 16 bins per dimension. The results of CT-
MR T1 image registrations for 16 patients are shown in Table 3.1. Each entry in
the table is the mean of the distances in mm between the evaluated registration
method and the gold standard measured at different volumes of interest (VOI) of
the patient. Note that in 14 out of 16 tested patients the proposed approach behaves
better than the NMI method, and, in all the cases, the error of our method is lower
than 2.5 mm, which reveals its good performance. This good behaviour is also
shown in Table 3.2, where the mean, the median and the maximum of the distances
between VOIs have been computed from all patient results. These results show
the necessity to incorporate spatial information in the similarity measures, and the
great improvement shown in the registration results.

The second experiment deals with the improvement considering different L val-
ues. Our method is now used to register the CT-MR T1 pair of patient 3 of the Van-
derbilt database, since this allows a good visualization of the registration results.
In Figure 3.10, a preliminary evaluation of the proposed algorithm with blocks of
three neighbours is presented. To overcome the high-dimensionality of the joint
histogram, the number of bins has been reduced to 16 bins and 8 bins for L = 2
and L = 3, respectively. In Figure 3.10, we show the original CT with a rectangu-
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lar marker and the transformed MR obtained with L = 1, L = 2, and L = 3 and
with the marker in the same geometrical position as in the CT image. In the sec-
ond row of Figure 3.10 a zoom of the first row images is shown. In this test, the
correctness of the registration for each case is determined by the degree of coinci-
dence between the white dot in the center of the marker of the CT image and the
black dot in the MR one. Observe that, for NMI(X2, Y 2) and NMI(X3, Y 3),
the registration achieves more accurate results than the standard method NMI. This
behaviour encourages us to explore the proposed measure with higher L values.

3.7 Conclusions

In this chapter, a new stochastic approach for 3D-image registration based on sam-
pling the images with uniformly distributed random lines has been proposed. The
advantages of this method can be summarized as follows. First, similarly to the
jittered sampling [151], the global line sampling reduces considerably the inter-
polation artifacts, almost suppressing the periodicities of the voxel grids. Second,
the registration accuracy is preserved with a high reduction of sampled points, ac-
celerating the computation. Third, the randomness of the sampling lines permits
us to generalize the mutual information-based measures, taking into account the
dependence between image regions. Experimental results show that this approach
achieves accurate and robust registration results using only two neighbour intensity
values in the normalized mutual information computation.
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(a) CT with marker

(b) NMI(X, Y )

(c) NMI(X2, Y 2)

(d) NMI(X3, Y 3)

Figure 3.10: CT-MR registration results for different L values.
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Chapter 4

Image Registration by
Compression

In this chapter, a new framework for image registration based on com-
pression is presented. The basic idea underlying our approach is the
conjecture that two images are correctly registered when we can max-
imally compress one image given the information in the other. The
contribution of this chapter is twofold. First, we show that the im-
age registration process can be formulated as a compression problem.
Second, we demonstrate the good performance of the similarity met-
ric, introduced by Li et al., in image registration. Two different ap-
proaches for the computation of this similarity metric are described:
the Kolmogorov version, computed using standard real-world com-
pressors, and the Shannon version, calculated from an estimation of
the entropy rate of the images.

4.1 Introduction

As we have seen, image registration consists in aligning two images using a sim-
ilarity measure which quantifies the quality of the alignment. The task of finding
out the correct registration between two images is frequently based on the maxi-
mization of a similarity measure or the minimization of a given distance. Some
information-theoretic measures, such as mutual information (MI) [91, 156] and
normalized mutual information (NMI) [144], have become a standard reference,
mainly in medical imaging, due to their accuracy and robustness.

In this chapter, the normalized information distance (NID), also called the
similarity metric, as a new similarity measure for image registration is proposed.
NID, introduced by Li et al. [84] for measuring similarity between sequences, is
based on the non-computable notion of Kolmogorov complexity and it is a normal-
ized version of the information metric [13]. In essence, the main idea is that two
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objects are similar if we can significantly compress one given the information in
the other. It has been successfully applied in areas such as genome phylogeny [83],
language phylogeny [84] and classification of music pieces [29].

However, the application of NID is limited by its non-computability. To tackle
this problem, we propose two different approaches. The first one is based on
the normalized compression distance (NCD) [30], which approximates the Kol-
mogorov complexity using real-world compressors. In this case, the capability of
the compressor to approximate the Kolmogorov complexity will determine the reg-
istration accuracy. The second approach is based on the normalized entropy rate
distance (NED) [73, 45], which substitutes the Kolmogorov complexity by the
entropy rate. This is a measure of the degree of compressibility of an image from a
Shannon perspective. In both cases, experimental results demonstrate that the sim-
ilarity metric performs well in image registration. We show that the Kolmogorov
version is less accurate and robust than the entropy rate approach probably due to
compressor imperfections.

This chapter is organized as follows. In Section 4.2, the concept of the similar-
ity metric introduced in [84] is described. In Section 4.3, our framework for image
registration is presented. In Sections 4.4 and 4.5 the two proposed approaches are
detailed. Experimental results are given in Section 4.6. Finally, the conclusions are
summarized in Section 4.7.

4.2 The Similarity Metric

The Kolmogorov complexity K(x) of a string x is the length of the shortest program
to compute x on an appropriate universal computer1. Essentially, the Kolmogorov
complexity of a string is the length of the ultimate compressed version of the string.
The conditional complexity K(x|y) of x relative to y is defined as the length of the
shortest program to compute x given y as an auxiliary input to the computation.
The joint complexity K(x, y) represents the length of the shortest program for the
pair (x, y) [84]. For a detailed review see [85].

In [13], the information distance is defined as the length of the shortest program
that computes x from y and y from x. It was shown there that, up to an additive
logarithmic term, the information distance is given by

E(x, y) = max {K(y|x),K(x|y)}. (4.1)

It was also shown that E(x, y) is a metric. It is interesting to note that long strings
1A universal computer, or Turing machine, is a theoretical computing machine, invented by Alan

Turing [152], to serve as an idealized model for mathematical calculation. A Turing machine consists
of a line of cells known as a “tape” that can be moved back and forth, an active element known as the
“head” that possesses a property known as “state” and that can change the property known as “color”
of the active cell underneath it, and a set of instructions for how the head should modify the active
cell and move the tape [160]. In our context, the shortest program to compute x on an appropriate
universal computer is equivalent to considering the length of the shortest binary program to compute
x in a universal programming language, such as Java [84].
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that differ by a tiny part are intuitively closer than short strings that differ by the
same amount. Hence, there arises the necessity to normalize the information dis-
tance. In [84], the normalized version of E(x, y), called the normalized informa-
tion distance (NID) or the similarity metric, is defined by

NID(x, y) =
max{K(x|y),K(y|x)}

max{K(x),K(y)}
=

K(x, y)−min{K(x),K(y)}
max{K(x), K(y)} . (4.2)

Li et al. show that NID(x, y) is a metric and it takes values in [0, 1]. This metric
is universal in the sense that if two strings are similar according to the particular
feature described by a particular normalized admissible distance (not necessarily
metric), then they are also similar in the sense of the normalized information met-
ric [30].

The Kolmogorov complexity K is a non-computable measure in the Turing
sense [85] and, therefore, for real-world applications, we will need an approxima-
tion of it. An upper bound of the non-computable complexity K is the length of
compressed string x (or y), C(x) (or C(y)), generated by a compression algorithm.
The better the compression algorithm, the better the approximation to K. Then, a
feasible version of the normalized information distance (4.2), called the normalized
compression distance (NCD), is defined [30] as

NCD(x, y) =
C(x, y)−min{C(x), C(y)}

max{C(x), C(y)} , (4.3)

where C(x) (or C(y)) represents the length of compressed string x (or y) and
C(x, y) the length of the compressed pair (x, y). Thus, NCD is computed from
the lengths of compressed data files and therefore, NCD approximates NID by
using standard real-world compressors.

4.3 Registration based on the Similarity Metric

In this section, a new approach for image registration based on the similarity met-
ric is presented. This approach is based on the conjecture that two images are
correctly registered when the NID between them is minimum. Due to the non-
computability of the Kolmogorov complexity, two feasible versions of NID are
implemented. First, the NCD is applied as an approximation of NID. Second, a
Shannon version of NID, obtained by substituting the Kolmogorov complexity in
(4.2) by the entropy rate, is proposed. These two registration approaches and their
respective implementations are outlined below.

• Kolmogorov version
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Figure 4.1: Image compressor method scheme.

Figure 4.2: Text compressor method scheme.

Given two images A and B, the correct registration will be achieved when
the normalized compression distance (4.3) is minimum. In this formula,
C(x) (or C(y)) represents the size of the compressed image A (or B) and
C(x, y) the length of the compressed fused pair (A,B). The fusion has been
done superimposing the images after applying a certain transformation. To
compress the images, we use both image and text compressors. In the first
case, jpeg, jpeg2000 and png compressors are applied (Figure 4.1). In the
second case, the bzip2 compressor is used (Figure 4.2).

The main drawback of this approach is the feasibility of the real-world com-
pressors to capture the real compressibility of the images. The behavibour
of NCD using several compressors will be analyzed in Section 4.4.

• Shannon version

In Section 2.2, we have seen that the entropy rate of a sequence of symbols
is a measure of its uncertainty, randomness or unpredictability. The entropy
rate is also a measure of the compressibility of a sequence: the higher the
uncertainty, the lower the compressibility. For instance, in a text, if there
are strong correlations between letters (or words), knowledge of all previous
letters (or words) will greatly decrease our uncertainty about the following
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Figure 4.3: Entropy rate method scheme.

letters [40].

The entropy rate is now used as a measure of the compressibility of an im-
age (see Figure 4.3). Thus, substituting the Kolmogorov complexity by the
entropy rate in (4.2), the normalized entropy rate distance (NED) is given
by

NED(x, y) =
h(x, y)−min{h(x), h(y)}

max{h(x), h(y)} , (4.4)

where h(x) (or h(x)) represents the entropy rate of image A (or B) and
h(x, y) the entropy rate of the pair (A,B). A similar approach has been pre-
viously proposed by Kaltchenko [73] and Dawy et al. [45] in the bioinfor-
matics field. In this paper, the minimization of NED is introduced as a
new registration criterion. The implementation of the entropy rate and the
behavibour of NED will be analyzed in Section 4.5.

4.4 Kolmogorov Approach

In this section, the use of NID as a similarity metric for image registration is
analyzed. Due to the non-computability of Kolmogorov complexity, NID is ap-
proximated by NCD. Basically, two methods are developed using, respectively,
both image and text compressors.

4.4.1 Image compressor-based registration

The first method consists in using the standard real-word image compressors to
compute NCD between two images. For each image, the C(x) and C(y) values
can be easily computed by compressing the original images and taking the size of
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Figure 4.4: Lena image and its R, G and B channels. The similarity metric is
evaluated within the dashed window.

the resulting file. The problem arises with the C(x, y) computation, since real-
word compressors are designed to deal with a single color image and not with two
monochrome images as in our case. To overcome this limitation we propose to
codify the images to be registered in a single image using the color channels.

A color image is represented as a finite number of color image planes where
each color is obtained by filtering the image spectrum and by measuring the result-
ing luminosity energy. Usually, digital color images use three filters, correspond-
ing to the red (R), green (G) and blue (B) channels. In Figure 4.4, we show a color
image (Lena) with its RGB channels. Fortunately, standard medical images are
monochrome and they have only one value at each pixel. Therefore, these images
can be codified using only one of the RGB color channels. In Figure 4.1, where
the image compressor based-registration process is illustrated, the original images
A and B are represented using one channel, and the (A,B) pair using two different
channels (R and G). Then, for each arrangement of images, the resulting image and
the original ones are compressed. The correct registration would be achieved for
the transformation that leads to the minimum NCD.

In our experiments, the most common image compression file formats are used:

• JPEG. This compressor subdivides the image in 8× 8 blocks, computing for
each of them the discrete cosinus transform (DCT). The terms of the DCT
with low values can be omitted without a significant loss of image quality.
However, several image artifacts appear in the compressed images due to the
discontinuity between different blocks. This algorithm is specially designed
for lossy compression, although a lossless version also exists.

• JPEG 2000. This compressor was created in order to improve JPEG file
format. It is based on wavelet technology and it avoids the subdivision of
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blocks and, therefore, its related artifacts. Nevertheless, some image details
and texture disappear due to the loss of information.

• PNG. This compressor was created to improve the GIF file format. Its com-
pression algorithm is based on the Lempel-Ziv-Welch (LZW) algorithm [164]
and it was specially designed for lossless image compression. Since this
compressor uses the intensity repetitions in order to compress, it is well-
suited for synthetic images (diagrams, plots, . . . ), while the compression
rates for natural images are not very high.

One limitation of the image-based registration method is due to the restriction
of image compressors that force the images to have a rectangular shape. Such a
restriction is not satisfied during the registration process since the overlap area, in
general, is not rectangular. Amongst the different solutions that can be considered
in our experiments, we take the maximal rectangular area contained in the overlap
region for all the considered transformations. As we consider only translations
along one axis, this region, represented as the dashed window of Figure 4.4, is
easily feasible. However, in a real registration framework when all transformations
are allowed, the selection of this region can be very complex. In this case a possible
solution is to consider the whole reference image as the region to compress and fill
the pixels of the moving image that the transformation has mapped outside the
region with a constant value (typically zero). A drawback of this latter approach is
that new information is added to the fused image.

4.4.2 Text compressor-based registration

The second method consists in converting the registration process into a text com-
pression problem. In order to codify the image in a text file, each intensity value is
represented as a byte. The files obtained with this process are not ASCII standard
files and therefore they are not readable with a text editor.

In this approach, the critical point is the order in which the intensity values of
the images have to be taken. Different scanning paths can be considered: space
filling curves [81, 42] (see Figure 4.5(a)), global line sampling [133] (see Fig-
ure 4.5(b)) or a zigzag path (see Figure 4.5(c)) amongst others. In our case, we
consider the zigzag mode for its simplicity.

Initially, input images A and B are scanned following the predefined path. From
the scan path, strings x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) are obtained
by taking in a consecutive order the intensity value of the pixels of both fixed and
moving images (scaled to 0..255 if necessary), respectively. These values are cod-
ified in a text file and, C(x) and C(y) values are obtained from the length of com-
pressed files. In a similar way, to compute C(x, y), the overlap area is scanned and
the string

(
x
y

)
=

((
x1

y1

)
,
(
x2

y2

)
, . . . ,

(
xn

yn

))
is obtained by taking alternately the inten-

sity value of the pixels of both superimposed images. Finally, this data codified in
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(a) (b) (c)

Figure 4.5: Different scan paths on the overlap area between images X and Y: (a)
space fitting curve, (b) global lines and (c) the proposed zigzag path.

a text file is compressed. In Figure 4.2 the different steps of this registration pro-
cess are illustrated. For each iteration in the registration process, the three resulting
string files are compressed. The notation used here has been inspired by [73].

In our experiments, we use the bzip2 compressor which is based on the Bur-
rows-Wheeler block-sorting text compression algorithm [20] and Huffman cod-
ing [70]. The registration position is achieved by minimizing NCD. In this case,
C(x, y), C(x), and C(y) are given by the length of files compressed by bzip2.
Note that the text compressor-based registration method has no restrictions on the
shape of the overlap area, since the scan path is able to fit any shape.

4.5 Shannon Approach

We propose now to use the normalized entropy rate distance (NED) as a new
similarity criterion. This measure has been constructed from (4.2) using the en-
tropy rate instead of the Kolmogorov complexity. To compute the entropy rate, we
assume that strings x, y and

(
x
y

)
are generated by finite-order stationary Markov

sources [73]. Thus, NED is given by

NED(x, y) =
h
(
x
y

)−min{h(x), h(y)}
max{h(x), h(y)} , (4.5)

where

h

(
x

y

)
= lim

L→∞
H

(
XL

Y L

)

L
= lim

L→∞
H

(
XL XL−1 . . . X1

YL YL−1 . . . Y1

)
(4.6)

represents the entropy rate of
(
x
y

)
, i.e., the maximum compressibility for the two

superimposed strings and H
(
XL

Y L

)
symbolizes the joint entropy of L symbols of(

x
y

)
. With this proposal, we make use of neighbour information by considering the

correspondence between blocks of pixels instead of the correspondence between
individual pixels as in the classical registration methods based on MI [116].
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For L = 1, the entropy rate approximation H
(
X1

Y 1

)
is the standard Shannon

joint entropy, and, then,

NED(x, y)L=1 =
H(X, Y )−min{H(X),H(Y )}

max{H(X),H(Y )} .

For higher L, the estimation of the entropy rate is better, due to the high spatial
correlation between samples in medical images. This approach is similar to the
one presented in Chapter 3, where blocks of intensity values are also considered,
although the similarity measure is not the same.

NED can be seen from the information channel perspective. The classical
registration methods based on MI consider the registration problem as an infor-
mation channel, X −→ Y , where the random variables X and Y are both images,
and where the mutual information of the channel must be maximized. Here, this
information channel is replaced by XL −→ Y L, where XL and Y L represent
the random variables built from blocks of L pixels. In this scenario, the entropy
is equivalent to the entropy rate of the two-image system, and it is a measure of
compressibility from the Shannon’s perspective.

To compute the probabilities of the blocks of pixels, the overlap area of the two
images to be registered is scanned similarly to the text compressor method (see
Figure 4.5). Each block is composed of L consecutive pixels. Note that the accu-
racy of the computation is influenced by the size of the blocks, since the sparsity
of the joint histogram and also the computational cost of the process increases with
it. To overcome these limitations, reductions of the original alphabet (0..255) to 8
or 16 symbols are appropriate.

4.6 Results and Discussion

In this section, the performance of the compression-based registration measures
is analyzed. The proposed registration methods have been tested using different
synthetic and real images.

4.6.1 Image compression-based method

In the first experiment, the image compression-based method, comparing three
different image compressors (jpeg, jpeg2000 and png) is analyzed.

For the jpeg and the jpeg2000 compressors we have considered the lossless
and the lossy compression modes. Cilibrasi and Vitányi [30] define the ideal
compressor as lossless and all the properties of NCD are proven for this case.
For this reason, the lossless compression mode is evaluated. On the other hand,
jpeg and jpeg2000 compressors are specifically designed for the lossy case. With
these compressors, when a low compression loss is considered, this loss is mainly
due to the reduction of image noise, while the image signal is kept. In our tests,
the minimum possible loss is considered. The png compression algorithm only
performs with lossless compression.
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Figure 4.6: Compression and distance results of the Lena image with the jpeg,
jpeg2000 and png compressors.

For the first test, the Lena image of Figure 4.4 is used. To simulate the registra-
tion process we need two images: the reference image and the floating image. We
consider as the reference image the one with both G and B channels of the origi-
nal color image and, as the floating one, the image corresponding to the R channel.
Therefore, the fused image is the original RGB one. The R channel image is moved
through the X axis from -10 pixels to 10 pixels around the origin. Since the image
compressor requires images to have a rectangular shape, we consider only the rect-
angular window represented as a dashed square in Figure 4.4. For each translation
the resulting images are compressed, obtaining C(x, y), C(x) and C(y) from the
length of the compressed RGB image, the length of the GB image and the length
of the R image, respectively.

In Figure 4.6 the obtained results for each compressor are depicted. For each
case, the C(x, y) and the NCD measures are plotted. As it can be seen, the jpeg
lossless approach does not lead to the desired results. This erratic behaviour is
caused by the minimum variation between the size of the resulting compressed
files and it can be attributed to the inherent “compression noise”. Note that in all
the other cases the conjecture is verified reaching the minimum of the measure at
the registration position. Observe also that C(x, y) and NCD measures behave
similarly.
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Figure 4.7: Synthetic MR T1 and T2 (top) and real MR-CT (below) pairs of test
images.

Figure 4.8: Fused test images at the registration position (left) and with a transla-
tion of 10 pixels (right).

For the next experiments, two different pairs of medical images (see Figure 4.7)
are used. The first pair consists of a synthetic image of a brain phantom, which
simulates the T1-weighted (left image) and the T2-weighted (right image) MR
scanning process [32]. The second pair of images consists of multimodal images
from the same patient. The left image is a magnetic resonance (MR) image, which
gives accurate information of the soft tissue, and the the right image is a computed
tomography (CT), which provides precise anatomical characteristics of the brain.
The registration of these modalities is of special interest for medical diagnosis.

For these tests, the reference image is assigned to the R channel and the moving
one to the G channel. Again, we consider the lossless and the lossy mode of the
jpeg and the jpeg2000 compressors, and the png compression. To simulate the
registration process, the moving images are translated through the X axis from -10
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Figure 4.9: Compression and distance results of the synthetic MR T1 and T2 im-
ages with the jpeg, jpeg2000 and png compressors.

pixels to 10 pixels around the registration position. A rectangular window in all the
test images in order to obtain a rectangular overlap area is defined. In Figure 4.8
some images obtained during the process are presented: the two first images show
the resulting images at the registration position and the two last ones when the
floating image is translated 10 pixels from the registration position.

In Figure 4.9 we plot the C(x, y) and the NCD obtained with the synthetic MR
images. In this case, the T1-weighted image has been taken as a fixed image and the
T2-weighted image as the moving one. Observe that the lossless jpeg compressor
does not obtain the desired results. For all other image compression approaches
the assumption that minimum compression is reached at the registration position is
true. The C(x, y) and the NCD plots obtained for the real MR-CT image pairs are
shown in Figure 4.10. In this case the MR image has been taken as the moving one.
Here, as in the previous experiments, the lossless jpeg compressor does not obtain
the desired results. In all the other image compression approaches, the assumption
that minimum compression is reached at the registration position is true.

Note that with these medical images the achieved results are very similar. Also
a similar behaviour is observed in the C(x, y) and NCD plots, although the NCD
ones are slightly smoother. Such performance is probably due to the similar amount
of information of all situations. Probably, this difference should be greater if the
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studied transformations lead to a position with less overlap area, since then the
effect of the normalization would be more remarkable.

4.6.2 Text compression-based method

The second experiment was designed to evaluate the text compression-based me-
thod. In this case the used compressor is the bzip2 and the tested images are the T1
and T2 synthetic pair and the real MR-CT.

As in the previous experiment, the T1-weighted image has been taken as a fixed
image and the T2-weighted image as the moving one. For the MR-CT, the MR im-
age has been considered as the moving one. The experiment translates the moving
images through the X axis from -10 pixels to 10 pixels around the registration po-
sition. In Figure 4.11, plots of the C(x, y) and NCD obtained for T1-T2 (first
row) and MR-CT (second row) are presented. Observe that, for all the cases, the
plots have similar behaviour. Therefore, as in the image compressor-based method,
the assumption that minimum compression is reached at the registration position is
verified. In our experiments with bzip2, we also observe that NCD > 1, which is
a consequence of bzip2 compressor imperfections (see [30]).

If we compare Figures 4.9, 4.10 and 4.11, even though they have similar be-
haviour, in the case of the bzip2 text compressor, plots have higher smoothness and
less local minima. Consequently, we can say that the text compressor approach
performs better than the image compressor-based one.

4.6.3 Entropy-based method

We now evaluate the performance of the entropy rate-based approach by reproduc-
ing the text compression-based experiment with the medical images. To evaluate
the NED measure we consider three different L values, 1, 2 and 3, represented in
Figure 4.12 by dash-dotted, solid and dashed lines, respectively. For comparison
purposes, we also plot the standard image registration measure NMI represented
in bold. Due to the high dimensionality of the joint histogram in the L=3 case,
the number of bins has been reduced to 8. To preserve the testing conditions, this
quantization has been kept in all cases. As we expected, entropy rate estimation
decreases with L, giving us a more approximated measure of the real entropy rate
and, equivalently, the string compressibility. Observe in both plots, the smoothness
of the NCD curves, without local minima, and the accuracy of the registration,
achieving their minimum at the correct position for both synthetic T1-T2 MR and
real MR-CT pairs. From our experiments, we can conclude that the image regis-
tration using the Shannon information-based approach achieves more accuracy and
robustness than real-world compressor-based approaches.
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Figure 4.10: Compression and distance results of MR and CT images with the jpeg,
jpeg2000 and png compressors.
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Figure 4.11: Compression (left column) and distance results (right column) of the
synthetic MR T1 and T2 (first row) and the ones of the MR and CT images (second
row) with the bzip2 compressor.
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Figure 4.12: Shannon-based measure results of the synthetic MR T1 and T2 (first
row) and MR and CT images (second row).

4.7 Conclusions

We have presented a new compression-based framework for image registration us-
ing the similarity metric. The behaviour of this measure has been analyzed using
two different perspectives: the Kolmogorov complexity and the Shannon infor-
mation theory. Experimental results reveal the good performance of both versions,
computed using standard real-world compressors and an estimation of entropy rate,
respectively. Due to the compressor imperfections, more accurate and robust re-
sults are obtained in the second case. In contrast to traditional MI-based registra-
tion algorithms, which only use individual pixel information to perform computa-
tions, our approaches take into account spatial or structural information contained
in the images.
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Chapter 5

Multiresolution Image
Registration Based on Tree Data
Structures

This chapter presents a new approach for image registration based
on the partitioning of the source images in binary-space (BSP) and
quadtree structures, obtained with a maximum mutual information
gain algorithm. Two different implementation approaches have been
studied: one uses simplified images and the other deals directly with
the tree data structures. With these approaches, multimodal regis-
tration experiments show an outstanding accuracy and robustness.
In particular, the use of BSP partitioned images drastically reduces
the grid effects compared with regular downsampled images. An-
other important advantage comes from the reduced size of the data
structures corresponding to the simplified images, which makes this
method appropriate to be applied in general multiresolution schemes
and telemedicine applications.

5.1 Introduction

Multiresolution is a well-known strategy used in fields such as computer graphics
and signal and image processing as a computational tool to enhance performance.
The idea behind multiresolution consists in processing data at lower resolution
reducing computational time and computational complexity to obtain a first ap-
proximation of the solution, and then, at higher resolution, use this approximation
to reduce the complexity of finding a more accurate one. Examples of multireso-
lution can be found in many different computer graphics applications such as sur-
face modeling, speed network transmission, volume rendering, CAD, geographic
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information systems, and virtual reality [125, 68, 67, 134, 28, 17]. In the im-
age processing area, multiresolution has been used to define top-down approaches
for feature detection and extraction, segmentation and image registration, amongst
others [96, 124, 120, 119, 94].

The application of a multiresolution framework requires two main issues to
be considered. The first one is the data structure used to maintain information
at different levels of detail. Some of the structures that have been proposed are:
tree based hierarchical structures, multiresolution spaces based on wavelet trans-
forms, pyramidal representations, etc. The second issue is the method used to
obtain the different level of detail representations, i.e. how to obtain simplified
representations of input data. In this case, strategies such as subsampling and data
compression can be used.

Focusing on image registration, where the transformation that aligns two input
images has to be found, multiresolution strategies have been used to reduce the
search space when looking for this transformation. Based on a coarse-to-fine hi-
erarchical representation of the images, the process starts with both the reference
and floating images on a coarser resolution and obtains a first approximation of the
alignment function. Then, while going up to finer resolutions, this transformation
is progressively more accurate [94, 116].

In this chapter, we propose a new multiresolution image registration process
based on the partition of the images with a mutual-information-based algorithm.
This algorithm is used to partition the reference and floating images to be registered
in a binary-space (BSP) or in a quadtree mode. Once the hierarchical representation
is created, we propose two different strategies to perform registration:

• The first one is a pixel-based approach that uses a simplified representation
of input images such that each region of the partitioned image is represented
as an homogeneous intensity area defined by the mean intensity value of the
initial region. Once these images are obtained, the registration process starts.

• The second approach, denoted as a node-based approach, uses the hierarchi-
cal structure obtained in the partitioning process to compute the similarity
metric required during the registration procedure. Instead of using the orig-
inal image pixels to compute this metric, we propose to use the information
stored in the nodes of the hierarchical data structure, exploiting, in this way,
the coherence between simplified regions.

We evaluate the benefits of the proposed pixel-based and node-based approaches
by comparing them with the classical multiresolution downsampling approach in
which equally spaced pixels are used to simplify the images. The obtained results
show an outstanding accuracy and robustness by using BSP partitioned images
with respect to both regular downsampled and quadtree images. With BSP, grid
effects are drastically reduced. We also observe that pixel-based and node-based
approaches achieve similar results. In terms of complexity, the computational cost
of the node-based approach depends linearly with the number of nodes while the
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cost of a pixel-based method remains constant with the number of regions. There-
fore, for a low number of regions, it is more efficient to use the first approach.

This chapter is organized as follows. In Section 5.2, we briefly introduce the
data structures and the MI-based partitioning techniques used for defining our mul-
tiresolution framework. In Section 5.3, the new image registration framework is
presented and a detailed description of both proposed methods is given in Section
5.4 and Section 5.5, respectively. In Section 5.6, the different experiments that
have been carried out to evaluate the methods are presented. Finally, conclusions
and future work are given in Section 5.7.

5.2 Previous Work

In this section, the two main issues that have been taken into account to define our
multiresolution framework are reviewed. First, we describe the Binary Space Parti-
tioning (BSP) and the quadtree hierarchical data structures, and then we present the
partitioning algorithm used to create the hierarchy of images with different levels
of detail [122].

5.2.1 Hierarchical data structures

The most popular hierarchical data structures for image processing and computer
vision applications are the quadtree and the BSP tree. The main advantage of these
structures is that they are relatively simple to implement and inherently produce an
efficient multiresolution representation of the data (see Figure 5.1).

The quadtree decomposition recursively divides the space, the image in our
case, into four equal regions depending on a criterion that determines when a sub-
division has to be done [131]. The root of the tree represents the original image at
a zero level resolution, and the four resulting parts represent its children at a one
level resolution. Each child is stored in a node of the quadtree and not decomposed
nodes are called leaves.

The BSP scheme recursively subdivides the space into a set of regions. The
algorithm [120] takes as input an unpartitioned region R, corresponding initially to
the entire image, and a line I that partitions R into two regions is selected according
to some criterion. The obtained regions are similarly partitioned in a recursive
manner until a termination criterion is met. At the end of this process, we obtain
a hierarchy of convex regions where the non-leaf nodes are associated with the
partitioning lines and the leaf nodes with the image regions.

The main advantage of BSP-trees with respect to quadtrees is that they are not
restricted to equal regions. In a quadtree, the partitioning lines are simply vertical
and horizontal lines at fixed intervals and no extra computation or bits are needed
to encode these lines. In our approach, the partitioning lines of the BSP-tree are
chosen parallel to the borders of the image.
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Figure 5.1: (a) A synthetic image of a polygon, (b) a quadtree and (c) a BSP
representation of (a).

5.2.2 MI-based partitioning algorithm

As we have seen in the previous section, to create the hierarchical data structure at
each node of the tree, a decision must be made to determine if the node has to be
partitioned or not. Such a decision depends on a certain criterion determined by the
user. In our case we will apply a criterion based on a maximum mutual information
gain algorithm. This method was proposed by Rigau et al. [122] and it is based on
the information bottleneck method [149]. The algorithm is constructed from the
following information channel.

The information channel B → R is defined between the random variables
B (input) and R (output), which represent respectively the set of bins (B) of the
histogram and the set of regions (R) of this image. Given an image I of N pixels,
where Nb is the frequency of bin b (N =

∑
b∈B Nb) and Nr is the number of

pixels of region r (N =
∑

r∈RNr), the three basic elements of this channel are
the following:

• The conditional probability matrix p(R|B), which represents the transition
probabilities from each bin of the histogram to the different regions of the
image, is defined by p(r|b) = Nb,r

Nb
, where Nb,r is the frequency of bin b into

the region r. Conditional probabilities fulfill ∀b ∈ B.
∑

r∈R p(r|b) = 1.

• The input distribution p(B), which represents the probability of selecting
each intensity bin b, is defined by p(b) = Nb

N .

• The output distribution p(R), which represents the normalized area of each
region r, is given by p(r) = Nr

N =
∑

b∈B p(b)p(r|b).
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The mutual information between B and R is defined by

I(B, R) =
∑

b∈B

∑

r∈R
p(b, r) log

p(b, r)
p(b)p(r)

(5.1)

and represents the shared information or correlation between B and R.
For a decomposition of an image in n regions, the ratio of mutual information

is defined by

Ms(n) =
I(B, R)
H(B)

, (5.2)

where H(B) is the maximum value achievable for I(B,R) (when each region
coincides with a pixel).

From the above reasonings, a partitioning algorithm which maximizes the gain
of I(B,R) is proposed. In this algorithm, the full image is taken as the unique
initial partition and is progressively subdivided according to the maximum mutual
information gain for each partitioning step. This algorithm is a greedy top-down
procedure which partitions an image in quasi-homogeneous regions. For more
details, see Chapter 6 and [122].

5.3 Multiresolution Image Registration

In this section, our multiresolution image registration approach is presented. First,
our method applies the MI-based partitioning algorithm to create the BSP or the
quatree-based multiresolution scheme. Once the hierarchical structure is obtained,
we propose two different strategies to perform the registration process. These two
methods and their respective implementations are outlined below.

• Pixel-based registration

The user enters a simplification ratio that determines the partitioning level
of the images, i.e. the nodes of the hierarchy required for its representa-
tion. From this simplification process, we create two new images such that
the region corresponding to each node is represented as a homogeneous in-
tensity area (see Figure 5.2). Then, the obtained images are registered. In
Section 5.4 we give a detailed description of the method and we evaluate it
for the BSP and quadtree data structures for different input parameters. In
Section 5.6, the proposed approach with the classical subsampling simplifi-
cation strategies are also compared.

• Node-based registration

An important component of the registration process is the metric that mea-
sures the correctness of the alignment between floating and reference images.
This metric is evaluated at each iteration of the registration process until an
optimum is reached. To compute the metric, input images are considered.
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Figure 5.2: Main steps to obtain the simplified images.

(a) MR (b) CT (c) MR (d) PET

Figure 5.3: Test images from the Vanderbilt database [104].

In this approach, we propose to compute the metric using the simplified in-
formation stored in the nodes of the hierarchical structure taking advantage
of the region coherence. The implementation of the node-based registra-
tion approach and its performance will be analyzed in Sections 5.5 and 5.6,
respectively.

5.4 Pixel-based Image Registration

The multiresolution pixel-based image registration approach is composed of two
main steps: (i) the creation of a simplified representation of input images and
(ii) the registration of the simplified images. These steps are detailed below.

1. Creation of simplified images from the hierarchical structure

Given two input images X and Y , to create the quadtree or the BSP hier-

archies, the user enters a MI ratio given by MIR(X, Ŷ ) = I(X,Ŷ )
H(X) . This

ratio is used as a stopping criterion and is considered as a measure of the
simplification quality. See Chapter 6 for more details.

Once the BSP or the quadtree partitioned image has been obtained we con-
struct the simplified images as follows. For each region of the partitioned
image we create a homogeneous intensity region in a simplified image. This
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(i.a) (i.b) (i.c) (i.d)

(ii.a) (ii.b) (ii.c) (ii.d)

Figure 5.4: (i) MR and (ii) CT images obtained from Figure 5.3(a-b). (a) Quadtree
partitions with MIR = 0.7, (b) quadtree simplified images, (c) BSP partitions
with MIR = 0.7, and (d) BSP simplified images.

MIR MR CT
BSP quadtree BSP quadtree

0.5 0.25 0.40 0.06 0.13
0.6 0.81 1.18 0.21 0.39
0.7 2.21 3.16 0.77 1.28
0.8 5.28 6.56 2.73 3.87
0.9 11.88 16.05 7.98 11.48

Table 5.1: Percentage of regions obtained with respect to the initial number of
pixels corresponding to MR and CT original images of Figure 5.3(a-b) and for a
given MIR.

intensity corresponds to the mean intensity values of the pixels of the cor-
responding region. The different steps that have to be applied to obtain the
simplified images are illustrated in Figure 5.2.

The result of partitioning the 2D MR-CT pair of images of Figure 5.3(a-b) is
shown in Figure 5.4. In the first and third column (Figures 5.4(a) and 5.4(c))
we present the quadtree and BSP partitioning of each original image. In this
example, MIR = 0.7 has been used. The corresponding simplified images
obtained by averaging for each region the intensity of its pixels are shown
in Figures 5.4(b) and 5.4(d). The degree of simplification of the new im-
ages for different MIR is reported in Table 5.1. In each column we collect
the percentage of regions obtained with the simplification with respect to the
initial number of pixels corresponding to the original MR and CT images.
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(i.a) (5.64, 16.33) (i.b) (2.38, 0.36)

(ii.a) (0.36, 0.71) (ii.b) (0.36, 0.17)

Figure 5.5: Registration for the MR-CT pair of Figure 5.3(a-b). (i) Quadtree and
(ii) BSP subdivision methods for (a) MIR = 0.6 and (b) MIR = 0.7. The
translational error (tx,ty) is shown for each registration.

Note that a big gain of MI is obtained with a relative low number of parti-
tions. For instance, in the CT case, a 70% of MI (MIR = 0.7) is obtained
with approximately 1% of the maximum number of partitions (number of
pixels of the source image). It can also be observed that for the same MIR
the number of partitions of the CT image is lower than the MR one. This is
due to the fact that the higher the image homogeneity, the higher the degree
of simplification. Thus, the CT image is more homogeneous than the MR
image.

2. Registration of simplified images

In the second step of the process, the partitioned images are registered using
the NMI metric. For the registration process, the NMI similarity measure
and the Powell’s method optimizer have been used. To illustrate the feasi-
bility of this second step, we apply the registration to the simplified images
of the MR-CT of Figure 5.3(a-b). We consider the quadtree and the BSP
simplifications using MIR = 0.6 and MIR = 0.7. The registration results
are shown in Figure 5.5, where (a) and (b) correspond to MIR = 0.6 and
MIR = 0.7, and (i) and (ii) to the quadtree and BSP partitioned images, re-
spectively. To evaluate the results we apply the transformation obtained from
the registration of the simplified images to the original ones. In addition, for
each of these images we compute the translational error (tx,ty) defined as
the deviation in x and y translation between the transformation correspond-
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(a) (b)

Figure 5.6: Overlapping area between the floating and the reference images. (a) In-
formation represented at pixel level (b) Information represented at node level.

ing to the registration of the original input images and the evaluated one.
In all the cases, the rotational error has been omitted due to its insignificant
value. Observe from the (tx,ty) values of each image that BSP images with
MIR = 0.6 (Figure 5.5(ii.a)) achieve a lower error than quadtree images
with MIR = 0.7 (Figure 5.5(i.b)). We can observe that better results are
obtained with the registration of the BSP partitioned images.

5.5 Node-based Registration

As we have seen in Section 2.3.1, the registration process is composed of four
main elements: the input images, the transform that represents the spatial mapping
of points from the reference image space to points in the floating image space, the
interpolator used to evaluate the moving image intensity at non-grid positions, and
the metric which provides a measure of how well the reference image is matched
by the transformed floating one. The metric is computed considering the pixels
of the overlapping area between the images (see Figure 5.6(a)). Considering a
tree simplification of these images, the overlapping area can be computed not for
each pixel but for each homogeneous region (see Figure 5.6(b)). Our purpose is to
exploit the coherence of homogeneous regions to compute the metric.

5.5.1 Metric computation

The algorithm proposed to compute the metric is described in Figure 5.7. The
input parameters of the algorithm are the simplified representations of the initial
reference and floating images (see Figure 5.8(a)). As in the pixel-based approach,
the user provides a MIR value. Then, the quadtree or the BSP hierarchies of the
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Input
Reference Data Structure: R
Floating Data Structure: F

Output
A similarity measure between R and F

Computation
For each region q in F do

Find bounding box of q

Find the list L of regions in R inside the bounding box

For each region p in L do

Evaluate area overlapping between q and p

Update Histograms

end

end
Evaluate measure
return measure

Figure 5.7: Algorithm of the similarity measure computation of two tree data struc-
tures.

reference and floating images are created and the corresponding reference (R) and
floating (F ) simplified representations are obtained (see Figure 5.2). Note that R
and F representations can be defined as a list of nodes where each node represents
a region of the simplified image.

To obtain the similarity measure between R and F , for each region of the list
of nodes representing F , we apply the following steps:

1. The bounding box containing the node is defined (see Figure 5.9(a)).

2. All the nodes of the list of nodes representing R that intersect the bounding
box are identified (see Figure 5.9(b)).

3. For each of these intersected nodes, the overlap area between them is com-
puted (see Figure 5.9(c)). This step is described in detail in the next section.

4. The corresponding histogram entries according to the computed overlap is
updated.

Finally, when all the nodes of F have been processed, the similarity measure is
computed.
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Figure 5.8: Reference and floating images are simplified using the MIR partition-
ing strategy.

5.5.2 Overlapping between nodes

The key to the metric computation algorithm is to calculate the overlapping area
between nodes. Since nodes can be at different levels of the hierarchy and different
transformations are applied to them, different intersection situations can be given.
To consider all the possible cases, we propose a method consisting of two different
steps:

• Obtaining the overlapping polygon

The polygon corresponding to the overlapping area is created by detecting
all the intersection vertices between the floating and the reference regions
(see Figure 5.10). These vertices are stored in the vertex polygon V P list.
To identify V P points, two different cases are considered:

– The first situation is when the vertex point corresponds to the intersec-
tion of two node edges (see points a and c of Figure 5.10) or when the
vertex of one node is inside the other node (see points b, d and e of
Figure 5.10).

– The second situation, called a degenerated vertex, is when the poly-
gon vertex does not correspond to the intersection of two node edges.
Degenerated cases are illustrated in Figure 5.11 and correspond to the
following patterns:

1. Vertex coincidence: when a vertex of the reference region and a
vertex of the floating region coincide in a point (see Figure 5.11(a)),
this point has to be added to V P list.
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Figure 5.9: (a) For each node of the floating image contained in the overlapping
area a bounding box is defined. (b) The nodes of the reference image intersected
by the bounding box are identified. (c) The intersection between the floating node
and the reference nodes previously identified is computed.

2. Vertex-edge coincidence: when a vertex of a region coincides on
a edge of the other region (see Figure 5.11(b) and 5.11(c)), this
point is also added to the V P list.

3. Edge-edge coincidence: if two edges coincide (see Figure 5.11(d)),
the extremes of the overlapping segment have to be added to the
V P list.

4. Edge intersection: if two edges intersect in a point, this point is
added to the V P list.

5. Vertex inside the other region: if a vertex of a region is inside the
other region, it has to be added to the V P list.

• Computing the area of the overlapping polygon

To obtain the area of the polygon defined by the V P points, we sum the areas
of the triangles that cover the polygon. To obtain these triangles we apply
the following steps are applied:

1. Fist of all, we sort pi ∈ V P with respect to the component X, i.e. if
pi = (xi, yi) we create the V P ′ list such that each pi ∈ V P ′ satisfies
that xi−1≤xi ≤ xi+1 (see Figure 5.12(a)).

2. Then, we compute the first triangle considering the first three points
p1, p2 and p3 (see Figure 5.12(b)).

3. Being pi−2, pi−1, pi the last generated triangle and pi+1 the next point
of V P ′, to compute the next triangle we take pi as a first vertex. Then,
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Figure 5.10: Region overlapping.

to determine the next vertex, we create the segment between pi−1 and
pi+1. If this segment does not intersect the segment between pi−2

and pi, pi−1 is considered as the last point of the new triangle (see
Figure 5.12(c)). Conversely, if the two segments intersect (see Fig-
ure 5.12(d)), the final point of the new triangle is pi−2 (see Figure 5.12(e)).
This process is repeated until all V P ′ points have been considered.

For each of the triangles, its area is computed and, at the end, all areas are
added (see Figure 5.12(f)). This algorithm requires polygons to be convex.
For our requirements, this restriction is always satisfied since the overlapping
polygon is always convex.

5.6 Results and Discussion

In this section, the performance of the proposed multiresolution image registra-
tion approach is evaluated. The pixel and the node-based registration of simplified
images are considered and compared with the classical subsampling based simpli-
fication strategy. In our experiments, the MR-CT (Figure 5.3(a-b)) and MR-PET
(Figure 5.3(c-d)) images, and different MIR values are taken. In all the experi-
ments, the pair of images to be registered are simplified by using the same degree of
simplification, i.e., an MR quadtree (or BSP) image with MIR = 0.7 is registered
with a CT quadtree (or BSP) with the same MIR.

5.6.1 MR-CT tests

Our goal is to evaluate the robustness and accuracy of the pixel and node-based
registration approaches. Two different tests are designed. In the first test, the
floating image is moved through the X axis from -100 to 100 pixel units around the
origin. At each step of the process a translation of one pixel is considered.
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(a) (b)

(c) (d)

Figure 5.11: Degenerate cases: (a) vertex coincidence, (b) reference region vertex
coincides with a segment, (c) floating region vertex coincides with a segment, and
(d) segment overlapping.

The results of this first test applied on the MR-CT image pair are presented
in Figure 5.13. The first row corresponds to the pixel-based approach and the
second one to the node-based. From left to right, the columns correspond to the
downsampling, quadtree and BSP multiresolution strategies. In all the plots, the
bottom bold curve corresponds to the NMI registration of the source images.

If we compare the results of the pixel-based and the node-based registration
approaches represented in the first (i) and second (ii) rows of Figure 5.13, respec-
tively, it can be observed that no interpolation artifacts appear since there is no
pixel interpolation. Note that all the plots are equal and hence both approaches
achieve the same results demonstrating the correctness of the node-based registra-
tion. At a subvoxel level, the results of the node-based registration are equivalent
to the partial volume ones [33].

To compare the results obtained with the three multiresolution strategies (sub-
sampling, quadtree and BSP), the columns (a), (b) and (c) of Figure 5.13 are ana-
lyzed. In column (a), we illustrate the NMI measure obtained with different down-
sampling factors of the original images. From bottom to top, the NMI curves cor-
respond to the downsampling of 2×2, 4×4, 8×8 and 16×16 pixels, respectively.
Note that, in Figure 5.13, high artifacts appear at every n pixels coinciding with
the downsampling factor. In the columns (b-c), we illustrate the NMI values for
the quadtree and BSP partitioned images, respectively. Each curve corresponds to
a different degree of simplification. From bottom to top, MIR ranges from 0.9 to
0.5. Observe in Figure 5.13(b) that the quadtree partition also produces correlation
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(a) (b) (c)

(d) (e) (f)

Figure 5.12: Steps of the polygon area computation.

artifacts due to the regularity of its partitions. However, these artifacts are slightly
reduced with respect to the downsampling case. This is due to the fact that, al-
though the registered images have the same degree of simplification, the number
and the position of the generated quadtree partitions are not the same. Finally, in
Figure 5.13(c) we analyze the BSP partition. In this case, the grid artifacts are
nearly completely eliminated since neither the position nor the number of parti-
tions of the images coincide. Registration is more robust since the probability of
finding a local maximum is lower as is shown by the smoothness of BSP plots. Tak-
ing into account that perfect registration is given by the maximum bottom curve,
observe the high accuracy, i.e., the coincidence of the curve maxima, of the reg-
istration reached with the BSP images. For instance, an accurate registration is
achieved with MIR = 0.7, which represents an approximate reduction of 99% of
the original number of pixels.

In the second test, the floating image is rotated from -180◦ to 180◦ considering
the center of the fixed image as the center of rotation. The obtained results are
represented in Figure 5.14. As in the previous test, the first row corresponds to
the pixel-based approach and the second one to the node-based. From left to right,
the columns correspond to the downsampling, quadtree and BSP multiresolution
strategies. In all the plots, the bottom bold curve corresponds to the NMI registra-
tion of the source images. Note that in this case the pixel-based and the node-based
approaches do not produce the same results. If we compare the different mul-
tiresolution strategies we can see that the BSP approach (see Figure 5.14(c)) also
achieves better results. Note that with the downsampling and quadtree schemes,
Figure 5.14(a) and Figure 5.14(b), the regions of both images coincide at the 90◦
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Figure 5.13: MR-CT (Figure 5.3(a-b)) registration results corresponding to (a)
downsampled, (b) quadtree, and (c) BSP images. The horizontal axis represents
the slice translation on the X-axis (in pixels) and the vertical axis the value of
NMI. For each plot, the NMI measure for different degrees of downsampling (a)
and simplification (b-c) of the images are shown.

position (and -90◦) and they cause a great artifact due to less dispersion on the joint
histogram. In the BSP case, this artifact disappears due to less dependence on the
partition positions. From these results we can see that the pixel-based approach
achieves better results than the node-based one since it is less sensible to these
artifacts.

5.6.2 MR-PET tests

The same experiments with the MR-PET pair of images are performed. In these
experiments, the images have been simplified with a MIR value ranging from
0.7 to 0.4. Greater values have not been considered since they generate to bigger
hierarchical data structures.

The results obtained with the first test, when the floating image is translated
through X-axis are shown in Figure 5.15. Comparing the pixel-based (first row)
and the node-based (second row) approaches, we can see that both approaches
achieve the same results. All the plots are similar. If we evaluate the different mul-
tiresolution strategies represented in the columns, we can see that downsampling
and quadtree strategies have a lot of artifacts. The BSP case behaves better since
artifacts are considerably reduced.

Although the rotational experiments shown in Figure 5.16 behave similarly
to the ones in Figure 5.14, the mentioned artifacts for the downsampling and the
quadtree approaches are much more emphasized. From these experiments we can
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Figure 5.14: MR-CT (Figure 5.3(a-b)) registration results corresponding to (a)
downsampled, (b) quadtree, and (c) BSP images. The horizontal axis represents
the rotation (in degrees) and the vertical axis the value of NMI. For each plot, the
NMI measure for different degrees of downsampling (a) and simplification (b-c) of
the images are shown.

Number of Regions 200 300 400 500
Node-based 28.6 42.3 55.8 69.2
Pixel-based 52.3

Table 5.2: Time required in milliseconds for the computation of the joint histogram
using the pixel-based approach and the node-based approach depending on the
number of regions.

conclude that the BSP simplification is more robust and accurate.
In Table 5.2, we show the mean time required to compute the joint histogram

for a different number of regions. It is clear that, with the node-based approach, the
time grows linearly with the number of regions, while in the pixel-based approach
it is independent, since it only depends on the number of pixels, which is constant.
From these results we can conclude that the node-based approach is more efficient
for less than 400 regions. Such a simplification is obtained with a MIR = 0.56
for the MR image and MIR = 0.32 for the PET image.

5.7 Conclusions

In this chapter, we have presented a new technique for image registration based on
the partitioning of the source images. The partitioning algorithm relies on the max-
imization of the mutual information gain for each refinement decision. The pre-
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Figure 5.15: MR-PET (Figure 5.3(c-d)) registration results corresponding to (a)
downsampled, (b) quadtree, and (c) BSP images. The horizontal axis represents
the slice translation on the X-axis (in pixels) and the vertical axis the value of
NMI. For each plot, the NMI measure for different degrees of downsampling (a)
and simplification (b-c) of the images are shown.

sented method is a first step towards a full multi-resolution registration approach.
Two alternatives (binary space partition and quadtree simplifications) have been
analyzed and compared with a usual regular downsampling technique. The quality
of the subdivision has been investigated in terms of the accuracy in registration.
Results have shown the superior quality of the BSP subdivision, which allows a
smoother registering function. The BSP approach also performs better than regu-
lar downsampling.
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Figure 5.16: MR-PET (Figure 5.3(c-d)) registration results corresponding to (a)
downsampled, (b) quadtree, and (c) BSP images. The horizontal axis represents
the rotation (in degrees) and the vertical axis the value of NMI. For each plot, the
NMI measure for different degrees of downsampling (a) and simplification (b-c) of
the images are shown.
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Chapter 6

Image Segmentation using
Information Bottleneck Method

In this chapter, new image segmentation algorithms based on a hard
version of the information bottleneck method are presented. The ob-
jective of this method is to extract a compact representation of a vari-
able, considered as the input, with minimal loss of mutual information
with respect to another variable, considered as the output. In the first
place, we introduce a split-and-merge algorithm based on the defini-
tion of an information channel between a set of regions (input) of the
image and the intensity histogram bins (output). From this channel,
the maximization of the mutual information gain is used to optimize the
image partitioning. Then, the merging process of the obtained regions
in the previous phase is carried out by minimizing the loss of mutual
information. From the inversion of the above channel, we also present
a new histogram clustering algorithm based on the minimization of the
mutual information loss, where now the input variable represents the
histogram bins and the output is given by the set of regions obtained
from the above split-and-merge algorithm. Finally, we introduce two
new clustering algorithms which show how the information bottleneck
method can be applied to the registration channel obtained when two
multimodal images are correctly aligned. From this channel, the his-
togram bins of each image are clustered by maximally preserving the
shared information. Different experiments on 2D and 3D images show
the behavibour of the proposed algorithms.

6.1 Introduction

The main objective of image segmentation is to divide an image into regions that
can be considered homogeneous with respect to a given criterion such as color or
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texture. Image segmentation is one of the most widely studied problems in image
analysis and computer vision and it is a significant step towards image understand-
ing. Many different methods, such as thresholding, region growing, region split-
ting and merging, active contours, and level sets, have been proposed. Each one of
these methods considers the segmentation problem from a different perspective and
is suitable for solving a limited number of situations. For a survey of segmentation
algorithms see [55].

The purpose of this chapter is to introduce new segmentation algorithms using
a hard version of the information bottleneck method [149]. The use of this method
requires the definition of an information channel where a random variable controls
the clustering of the other by preserving the maximum mutual information between
them. That is, the objective of this method is to extract a compact representation of
a random variable with minimal loss of mutual information with respect to another
variable.

In this chapter, the information bottleneck method will be applied to two dif-
ferent channels: (i) the channel defined between the set of regions of a given image
and its histogram bins, and (ii) the channel built between the histogram bins of two
multimodal registered images. From the first channel, both split-and-merge and
histogram clustering algorithms are introduced and, from the second channel, both
one-sided and two-sided histogram clustering algorithms are presented. While the
splitting process is guided by the maximization of the mutual information gain, all
the other processes (merging and clustering) are driven by the minimization of the
mutual information loss.

The following information-bottleneck-based algorithms represent the main con-
tributions of this chapter:

• Split-and-merge algorithm (Section 6.3). In the first phase, a top-down strat-
egy is applied to partition an image into quasi-homogeneous regions using a
binary space partition (BSP) or a quadtree partition. In the second phase, a
bottom-up strategy is used to merge the regions whose histograms are more
similar.

• Histogram clustering algorithm (Section 6.4). neighbour bins of the his-
togram are clustered from a previously partitioned image. After assuming
that the splitting-and-merge algorithm provides us with the structure of the
image, our clustering algorithm tries to preserve the correlation between the
clustered bins and the structure of the image.

• Histogram clustering algorithms for two registered multimodal images (Sec-
tion 6.5). Two different algorithms are presented. The first one segments just
one image at a time, while the second one segments both simultaneously.
The clustering process works by extracting from each image the structures
that are more relevant to the other one. In these algorithms, each image is
used to control the quality of the segmentation of the other.
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The proposed methods have several advantages. In spite of the fact that the
clustering algorithms presented in this chapter are based on the image histograms,
that do not retain spatial information, the spatial coherence is taken into account by
the information channels. In the split-and-merge algorithm, this channel makes the
correspondence between the structure of the image and the histogram bins. This
spatial information makes the method robust to texture analysis, without assuming
any a priori intensity or texture distribution. The proposed histogram clustering
algorithm considers the spatial distribution of the intensities to achieve a good rep-
resentation of the colors of the image. The obtained segmentation tries to preserve
with a given number of colors the maximum spatial information of the original
image. Finally, the registration-based segmentation is able to segment one image
from the information of another. For instance, this algorithm enables us to segment
images of low quality from the information contained in high quality images. This
technique could be used to segment intraoperative images using high quality pre-
operative ones. A global advantage of these methods is that they do not assume
any a priori information about the images (e.g. intensity probability distribution).

The results of our experiments show the feasibility of the information bottle-
neck method to deal with different 2D and 3D image segmentation techniques.

6.2 Information Bottleneck Method

The information bottleneck method, introduced by Tishby et al. [149], extracts a
compact representation of the variable X , denoted by X̂ , with minimal loss of
MI with respect to another variable Y (i.e., X̂ preserves as much information as
possible about the relevant variable Y ). Soft [149] and hard [140] partitions of X
can be adopted. In the first case, every cluster x ∈ X can be assigned to every
cluster x̂ ∈ X̂ with some conditional probability p(x̂|x) (soft clustering). In the
second case, every cluster x ∈ X is assigned to only one cluster x̂ ∈ X̂ (hard
clustering).

In this chapter, we focus our attention on the agglomerative information bottle-
neck method [140]. Given a cluster x̂ defined by x̂ = {x1, . . . , xl}, where xk ∈ X ,
and given probability distributions p(x̂) and p(y|x̂) defined by

p(x̂) =
l∑

k=1

p(xk), (6.1)

p(y|x̂) =
1

p(x̂)

l∑

k=1

p(xk, y) ∀y ∈ Y, (6.2)

the following properties are fulfilled:

• The decrease in the mutual information I(X, Y ) due to the merge of x1, . . . , xl

is given by
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Figure 6.1: The information channel between the regions of the images, R, and
the intensity bins, B, of the split-and-merge algorithm. The channel used in the
histogram clustering algorithm is the same but inverting the direction.

δIx̂ = p(x̂)JS(π1, . . . , πl; p1, . . . , pl) ≥ 0, (6.3)

where πk = p(xk)
p(x̂) and pk = p(Y |xk). An optimal clustering algorithm has

to minimize δIx̂.

• An optimal merge of l components can be obtained by l − 1 consecutive
optimal merges of pairs of components.

Dhillon et al. [46] presented a co-clustering algorithm applied to text-document
clustering that simultaneously clusters X and Y into disjoint or hard clusters. An
optimal co-clustering algorithm has to minimize the difference I(X, Y )− I(X̂, Ŷ ).

6.3 Split-and-Merge Algorithm

In this section we present an split-and-merge algorithm that is constructed from an
information channel R → B between the random variables R (input) and B (out-
put), which represent, respectively, the set of regions R of an image and the set of
intensity bins B (see Figure 6.1). This channel is defined by a conditional proba-
bility matrix p(B|R) which expresses how the pixels corresponding to each region
of the image are distributed into the histogram bins. Throughout this chapter, the
capital letters R and B as arguments of p() will be used to denote probability dis-
tributions. For instance, while p(R) will represent the input distribution of the
regions, p(r) will denote the probability of a single region r.

Given an image with N pixels, Nr regions, and Nb intensity bins, the three
basic elements of the channel R → B are:

• The conditional probability matrix p(B|R), which represents the transition
probabilities from each region of the image to the bins of the histogram, is
defined by p(b|r) = n(r,b)

n(r) , where n(r) is the number of pixels of region
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Figure 6.2: Test images: (a) Lena and (b) Hematoma. The two plots in (c) show
the mutual information ratio (MIRr) with respect to the number of regions for (a)
and (b).

r and n(r, b) is the number of pixels of region r corresponding to bin b.
Conditional probabilities fulfil

∑
b∈B p(b|r) = 1, ∀r ∈ R.

• The input distribution p(R), which represents the probability of selecting
each image region, is defined by p(r) = n(r)

N (i.e. the relative area of region
r).

• The output distribution p(B), which represents the normalized frequency of
each bin b, is given by p(b) =

∑
r∈R p(r)p(b|r) = n(b)

N , where n(b) is the
number of pixels corresponding to bin b.

From the data processing inequality (2.19) and the information bottleneck me-
thod (Section 6.2), we know that any clustering or quantization over R or B, re-
spectively represented by R̂ and B̂, will reduce I(R,B). Thus, I(R, B) ≥ I(R, B̂)
and I(R, B) ≥ I(R̂, B).
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6.3.1 Splitting

The splitting phase of the algorithm is a greedy top-down procedure which parti-
tions an image in quasi-homogeneous regions. Our partitioning strategy takes the
full image as the unique initial partition and progressively subdivides it (e.g. with
vertical or horizontal lines in 2D images (BSP)) chosen according to the maxi-
mum MI gain for each partitioning step. In our experiments, BSP and quad-tree
strategies will be used. Note that similar algorithms have been introduced in the
context of pattern recognition [135], learning [77], and DNA segmentation [14].
This splitting algorithm has been introduced by Rigau et al. in [121].

The partitioning process is represented over the channel R̃ → B, where R̃ de-
notes that R is the variable to be partitioned. Note that this channel varies at each
partition step because the number of regions is increased and, consequently, the
marginal probabilities of R̃ and the conditional probabilities of R̃ known B also
change. For a BSP strategy, the gain of MI due to the partition of a region r̃ in two
neighbour regions r1 and r2, such that

p(r̃) = p(r1) + p(r2) (6.4)

and

p(b|r̃) =
p(r1)p(b|r1) + p(r2)p(b|r2)

p(r̃)
, (6.5)

is given by

δIr̃ = I(R, B)− I(R̃, B)
= p(r̃)JS (π1, π2; p(B|r1), p(B|r2)) , (6.6)

where π1 = p(r1)
p(r̃) and π2 = p(r2)

p(r̃) . The JS-divergence JS (πi, πj ; p(B|r1), p(B|r2))
between two regions can be interpreted as a measure of dissimilarity between them.
That is, when a region is partitioned, the gain of MI is equal to the degree of dis-
similarity between the resulting regions times the size of the region. In our splitting
algorithm, the optimal partition is determined by the the maximum MI gain δIr̃.

The BSP partitioning algorithm can be represented by an evolving binary tree
where each leaf corresponds to a terminal region of the image [135]. At each
partitioning step, the tree gains information from the original image such that each
internal node k contains the information Ik gained with its corresponding splitting.
At a given moment, I(R, B) can be obtained adding up the information available
at the internal nodes of the tree weighted by p(k), where p(k) = n(k)

N is the relative
area of the region associated with node k and n(k) is the number of pixels of this
region. Thus, the MI of the channel is given by

I(R,B) =
T∑

k=1

p(k)Ik, (6.7)
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(a) MIRr=0.2 (b) MIRr=0.4

(c) MIRr=0.2 (d) MIRr=0.4

Figure 6.3: Partition of the Lena image (Figure 6.2(a)) with two different MIRr
for (a-b) quadtree and (c-d) BSP simplifications.

where T is the number of internal nodes. It is important to stress that the best
partition can be decided locally. That is, the information gained Ik in a given node
k is independent of the level of partitioning of the other regions of the image.

From the Equation (2.7), the partitioning procedure can also be visualized as
H(B) = I(R, B) + H(B|R), where H(B) is the histogram entropy and I(B, R)
and H(B|R) represent, respectively, the successive values of MI and conditional
entropy obtained after the successive partitions. The progressive acquisition of in-
formation increases I(R,B) and decreases H(B|R). This reduction of conditional
entropy is due to the progressive homogenization of the resulting regions. Observe
that the maximum MI that can be achieved is the histogram entropy H(B), that
remains constant along the process. The partitioning algorithm can be stopped us-
ing a ratio MIRr = I(R,B)

H(B) of mutual information gain or a predefined number of
regions Nr.

Figure 6.2(a) and 6.2(b) show two test images used in our experiments. The
first corresponds to the well-known Lena image and the second to a CT medical
brain image with a hematoma lesion. In this chapter, the segmentation of colored
images is obtained using the luminance channel. The two curves in Figure 6.2(c)
indicate the behavibour of MIRr with respect to the number of partitions, which
have been obtained using a BSP strategy, for both test images. These plots show
the concavity of the MIRr function. It can be clearly appreciated that a big gain
of MI is obtained with a low number of partitions. Thus, for instance, a 50% of
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(a) MIRr=0.2 (b) MIRr=0.4

(c) MIRr=0.2 (d) MIRr=0.4

Figure 6.4: Partition of the Hematoma image (Figure 6.2(b)) with two different
MIRr for (a-b) quadtree and (c-d) BSP simplifications.

MI is obtained with approximately 1% of the maximum number of partitions for
the Hematoma test image. Observe that in the Hematoma image less partitions
are needed to extract the same MIRr than in the Lena image. Note also that the
maximum MIRr is achieved with the 50% of the regions in the Hematoma image,
since the final splitting iterations do not gain any information because the final
regions are completely homogeneous.

Figure 6.3 and Figure 6.4 present the results of partitioning the Lena and
Hematoma test images. We show the partitioned images corresponding to two
different MIRr for quadtree and BSP simplifications. Observe that, for the same
degree of simplification, the BSP partition fits better to the image structure, due to
the freedom of the partition position of this simplification scheme. For instance,
observe how the first BSP partitions of the Hematoma image (Figure 6.4(c)) try to
separate the brain structure from the background. Despite these interesting results,
they can not be used by themselves as final segmentation and a merging process is
needed to achieve a correct image segmentation. This merging process is widely
explained in the next section.

6.3.2 Merging

From the agglomerative information bottleneck method [140] applied to the chan-
nel R → B, we know that any clustering over R will not increase I(R, B). Anal-
ogous to the MI gain (6.6) obtained in the splitting phase, the loss of MI due to the
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clustering r̂ of two neighbour regions r1 and r2 is given by

δIr̂ = I(R, B)− I(R̂, B)
= p(r̂)JS (π1, π2; p(B|r1), p(B|r2)) , (6.8)

where X̂ denotes that the variable X has been clustered, p(r̂) = p(r1) + p(r2),
p(b|r̂) = p(r1)p(b|r1)+p(r2)p(b|r2)

p(r̂) , π1 = p(r1)
p(r̂) , and π2 = p(r2)

p(r̂) .
As we have seen in the splitting phase, the JS-divergence between two regions

can be interpreted as a measure of dissimilarity between them. The similarity will
be maximum when the two regions have the same histogram: if p(B|r1) = p(B|r2),
then δIr̂ = 0. Thus, if two regions are very similar (i.e., the JS-divergence between
them is small) the channel could be simplified by substituting these two regions by
their merging, without a significant loss of information. This is the principle that
leads to the following merging algorithm.

From a given image partitioning, the algorithm merges successively the pairs
(r1, r2) of neighbour regions such that δIr̂ is minimum. Thus, the number of
regions decreases progressively together with the MI of the channel. Similarly
to the splitting algorithm, the stopping criterion can be determined by the ratio
MIRr = I(R,B)

H(B) or a predefined number of regions.

Note that the clustering R̂ of all regions would give I(B, R̂) = 0. From (2.7),
during the merging process H(B) = I(B, R̂) + H(B|R̂), where I(B, R̂) and
H(B|R̂) represent, respectively, the successive values of MI and conditional en-
tropy obtained after the successive mergings. Remember that H(B) remains con-
stant. Note also that H(B|R̂) is the average entropy of the regions, given by

H(B|R̂) = −
∑

r∈R
p(r)

∑

b∈B
p(b|r) log p(b|r)

= −
∑

r∈R
p(r)H(B|r), (6.9)

where H(B|r) is the entropy of the normalized histogram of region r. If two
regions are clustered:

δIr̂ = I(R, B)− I(R̂, B) = H(B|R̂)−H(B|R). (6.10)

Thus, H(B|R̂) never decreases at any iteration due to the mixing of the histogram
regions.

In Figure 6.5, we show the results of merging the regions of the images of
Figures 6.2(a) and 6.2(b) obtained from the splitting phase with a MIRr of 0.8
with the BSP simplification. For both images, the results of 6 and 10 different
regions are shown. Observe that in this case the main structures of the image
are separated, specially for the Hematoma image, where the lesion, the skull, and
internal brain structures, as the ventricles, are correctly identified. In the Lena
image the main structures of the images are identified, but the illumination problem
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(a) R=6 (b) R=10

(c) R=6 (d) R=10

Figure 6.5: Segmentation results of the split-and-merge algorithm for the Lena
image (Figure 6.2(a)) and Hematoma image (Figure 6.2(a)), where R represents
the final number of regions of each image.

over the same object is not solved at all by the method. For instance, observe the
uncorrect segmentation of the hat. This is due to the fact that the method only deals
with local intensities and not with other image features such as gradient or texture.

In Figure 6.6, we depict the results of applying the split-and-merge algorithm
to four images of the Berkeley database [97], where a given number of regions has
been predetermined for each image. Note the good behavibour of our split-and-
merge algorithm, which is able to detect the homogeneity of some textured regions
(such as the field in Figure 6.6(a) or the sand in Figure 6.6(d)). This is because this
kind of regions maintain a similar spatial distribution of the intensities along the
whole region.

6.4 Histogram Clustering Algorithm

In this section we present a greedy histogram clustering algorithm which takes as
input a partitioned image and obtains a histogram clustering based on the mini-
mization of the loss of MI. That is, we group the bins of the histogram so that the
MI is maximally preserved. From the perspective of the information bottleneck
method, the binning process is controlled by a given partition of the image. This
histogram clustering algorithm has been introduced by Rigau et al. in [121].

which is a result of inverting the channel of the previous section. This channel
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(a) R=2 (b) R=10

(c) R=12 (d) R=2

Figure 6.6: Segmentation results of the split-and-merge algorithm for different
images from the Berkeley database, where R represents the final number of regions
of each image.

is defined by a conditional probability matrix p(R|B) which expresses how the
pixels corresponding to each histogram bin are distributed into the regions of the
image. Bayes’ theorem, expressed by p(b)p(r|b) = p(r)p(b|r), establishes the
relationship between the conditional probabilities of both channels B → R and
R → B.

The basic idea underlying our histogram clustering algorithm is to capture the
maximum information of the image with the minimum number of histogram bins.
Analogous to the merging algorithm of the previous section, the loss of MI due to
the clustering b̂ of two neighbour bins b1 and b2 is given by

δI
b̂

= I(B,R)− I(B̂, R)

= p(̂b)JS (π1, π2; p(R|b1), p(R|b2)) , (6.11)

where p(̂b) = p(b1) + p(b2), p(r|̂b) = p(b1)p(r|b1)+p(b2)p(r|b2)

p(̂b)
, π1 = p(b1)

p(̂b)
, and

π2 = p(b2)

p(̂b)
. Thus, when two neighbour bins b1 and b2 are equally distributed in the

regions of the image (p(R|b1) = p(R|b2)), their clustering results in δI
b̂

= 0. In
general, if two bins are very similar, the channel can be simplified by substituting
these two bins by their clustering, without a significant loss of information. Our
algorithm proceeds by merging two neighbour bins so that the loss of MI is mini-

mum. The stopping criterion is given by the ratio MIRb = I(B̂,R)
I(B,R) or a predefined
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(a) C=4 (b) C=6

(c) C=4 (d) C=6

Figure 6.7: Segmentation results of the histogram clustering algorithm for the Lena
image (Figure6.2.a) and Hematoma image (Figure6.2.b), where C represents the
final number of intensity bins of each image.

number of bins Nb.
Note that, during the clustering process H(R) = H(R|B̂) + I(B̂, R), where

H(R) is the entropy of p(R), and H(R|B̂) and I(B̂, R) represent, respectively,
the successive values of conditional entropy and MI obtained after the successive
clusterings. Observe also that H(R|B̂) is the average entropy of the bins (i.e. a
measure of the degree of dispersion of the bins in the set of regions) and increases
(or remains constant) at each iteration.

In Figure 6.7 we show the segmented images obtained from the partitions
achieved with the split-and-merge algorithm with MIRr = 0.8 as stopping crite-
rion of the splitting process and 100 regions for the merging one. For each image,
the results obtained using 4 and 6 clusters are shown. For instance, observe how the
internal structures of the brain are approximately preserved using only 6 clusters.

6.5 Registration-based Segmentation

In this section, two histogram clustering algorithms based on the channel estab-
lished between two registered images A and B are introduced. The main idea
behind our algorithms is that the segmentation of image A is obtained by extract-
ing the structures that are most relevant for image B. These histogram clustering
algorithms have been introduced in [8].
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Input
Joint probability distribution: p(x, y)
Number of clusters: m ∈ {1..|X|}

Output
A partition of X into m clusters

Computation
X̂ ← X
∀i ∈ {1..|X| − 1}.δIx̂(i) ← (p(xi) + p(xi+1))JS(πi, πi+1; p(Y |xi), p(Y |xi+1))
while |X̂| > m do

k ← mini(δIx̂(i))
x̂ ← merge(xk, xk+1)
X̂ ← (X − {xk, xk+1})

⋃{x̂}
Update δIx̂ for the neighbours of x̂
X ← X̂

end while

Figure 6.8: One-sided clustering algorithm.

6.5.1 One-sided clustering algorithm

We present a greedy hierarchical clustering algorithm that clusters the histogram
bins of image A by minimizing the loss of MI between A and B. First of all, in a
preprocessing step, images A and B have to be registered, establishing an informa-
tion channel X → Y , where X and Y denote, respectively, the histograms of A
and B (see Figure 6.9). From the data processing inequality (2.19) and the infor-
mation bottleneck method (see Section 6.2), we know that any clustering over X
(for instance, merging neighbour histogram bins x1 and x2), denoted by X̂ , will
reduce I(X,Y ).

At the initial stage of our algorithm (see Figure 6.8), only one intensity value
is assigned to each histogram bin of X . Then, the algorithm proceeds greedily by
merging two neighbour clusters so that the loss of MI is minimum. This procedure
merges the two clusters which are more similar from the perspective of B. Note the
constraint that only neighbour bins can be merged. The cardinality |X̂| goes from
|X| to 1 in the extreme case.

The efficiency of this algorithm can be greatly improved if the reduction of MI
due to the merging of bins x1 and x2 is computed by

δIx̂ = p(x̂)JS(π1, π2; p(Y |x1), p(Y |x2)), (6.12)

where p(x̂) = p(x1) + p(x2), πi = p(x1)
p(x̂) , π2 = p(x2)

p(x̂) , and p(Y |x1) and p(Y |x2)
denote, respectively, the corresponding rows of the conditional probability matrix
of the information channel [140]. The evaluation of δIx̂ for each pair of clusters is
done in O(|Y |) operations and, at each iteration of the algorithm, it is only neces-
sary to compute the δIx̂ of the new cluster with its two corresponding neighbours.
All the other precomputed δIx̂ values remain unchanged [140].

Similar to the algorithms of Sections 6.3 and 6.4, clustering can be stopped
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Figure 6.9: The information channel between the intensity bins of image A, X , and
the intensity bins of image B, Y , of the registration-based segmentation algorithms.

using several criteria: a fixed number of clusters, a given ratio MIRb = I(X̂,Y )
I(X,Y ) , or

a variation δIx̂ greater than a given ε. The MIRb ratio is considered as a quality
measure of the clustering. In Section 6.5.3, we will show the results of the normal-
ized mutual information, NMI = I(X̂, Y )/H(X̂, Y ), which provides us with an
efficiency coefficient of the segmentation process [21], and −δIx̂/I(X,Y ), which
indicates the relative loss of information of a given clustering [149].

6.5.2 Co-clustering algorithm

Let us now consider a simultaneous clustering of images A and B. Unlike the algo-
rithm presented by Dhillon [46] for word-document clustering, which alternatively
clusters the variables X̂ and Ŷ , our algorithm (see Figure 6.10) chooses at each
step the best merging of one of the two images (i.e., the one that entails a minimum
reduction of MI). The similarity between the two images is being symmetrically
exploited. Thus, each clustering step benefits from the progressive simplification
of the images. One of the main advantages of this algorithm is the great reduction
of sparseness and noise of the joint probability matrix. As we will see with the
experimental results, the simultaneous merging over the images A and B obtain
better results than with the one-sided algorithm.

From the data processing inequality (2.19), I(X̂, Ŷ ) is a decreasing function
with respect to the reduction of the total number of clusters |X̂| + |Ŷ |. Thus,
I(X̂, Ŷ ) ≤ I(X, Y ). Like the one-sided algorithm, the stopping criterion can be
given by a predefined number of bins, a given ratio MIR = I(X̂, Ŷ )/I(X,Y ) or
a variation δIx̂ (or δIŷ) greater than a given ε. Similarly to the above one-sided
algorithm, the reduction of MI can be computed from the JS-divergence (6.12).
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Input
Joint probability distribution: p(x, y)
Number of clusters: m ∈ {1..|X|+ |Y |}

Output
A partition of (X, Y ) into m clusters

Computation
(X̂, Ŷ ) ← (X,Y )
∀i ∈ {1..|X| − 1}.δIx̂(i) ← (p(xi) + p(xi+1))JS(πi, πi+1; p(Y |xi), p(Y |xi+1))
∀j ∈ {1..|Y |−1}.δIŷ(j) ← (p(yj)+p(yj+1))JS(πj , πj+1; p(X|yj), p(X|yj+1))
while |X̂|+ |Ŷ | > m do

k ← mini,j(δIx̂(i), δIŷ(j))
if k indexes X̂ then associate (Z, V ) to (X̂, Ŷ ) else associate (Z, V ) to

(Ŷ , X̂)
ẑ ← merge(zk, zk+1)
Ẑ ← (Z − {zk, zk+1})

⋃{ẑ}
Update δIẑ for the neighbours of ẑ
Update all δIv

(X,Y ) ← (X̂, Ŷ )
end while

Figure 6.10: Co-clustering algorithm.

But in the co-clustering algorithm, for each clustering of X̂ (or Ŷ ), it is necessary
to recompute all the δIŷ (or δIx̂). Figure 6.10 shows the co-clustering algorithm
where the stopping criterion is given by the total number of clusters.

6.5.3 Results and discussion

To evaluate the performance of the two registration-based segmentation algorithms,
we have used both synthetic and real images. The first test images are a set of syn-
thetic magnetic resonance T1 (MR-T1) and T2 (MR-T2) image modalities from the
Brainweb database [32]. These images are obtained synthetically from a phantom
and they can be generated with different levels of image noise. These two image
modalities are acquired exactly in the same spatial position and therefore the pre-
processing registration step is not required. The second test images are real data
from a patient from the Vanderbilt database [104]. This dataset is composed of MR
and CT image modalities. The resolution of the MR and CT is 256 × 256 × 26
and 512× 512× 28, respectively. These MR and CT images have been registered
using the NMI measure [144].

Figure 7.8 shows the results of the proposed one-sided and co-clustering al-
gorithms for the MR-T1 and MR-T2 Brainweb 3D images with a 3% of noise.
These images are simulated from a synthetic atlas and they are perfectly registered
since the same process is applied to achieve both images. The original MR-T2 and
MR-T1 images are depicted in Figure 7.8(ii.a) and Figure 7.8(iii.a), respectively.
Columns (b-d) show the segmented images with 4, 5, and 6 clusters, respectively.
The results obtained with the one-sided algorithm applied on the MR-T1 and MR-
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T2 images are shown in Figure 7.8(i.b-d) and Figure 7.8(iv.b-d), respectively. The
results obtained with the co-clustering algorithm are shown for the MR-T2 image
in Figure 7.8(ii.b-d) and for the MR-T1 in Figure 7.8(iii.b-d).

Observe the good segmentation results achieved with both methods for the MR-
T2 image. For both methods, the images obtained with only 4 clusters distinguish
between background (black), white matter (dark gray), gray matter (light gray),
and ventricles and cerebral fluids (white), which are the main structures of brain
anatomy. The results are similar for the MR-T1 image and the one-sided algo-
rithm, but they are not so satisfactory for the co-clustering one. In this case, the
background is split into two clusters while gray and white matter are considered
in the same cluster. This may be because the background has higher probability in
comparison with any other region of the image. This undesired behavibour disap-
pears when 5 or 6 clusters are considered.

With the next experiment we want to simulate the case where one image of poor
quality is segmented considering a high quality image, similar than the preoperative
and intraoperative images. In order to study this situation, we have considered the
MR-T1 Brainweb image with 1% of noise to be a high quality image and a MR-T2
Brainweb image with 7% of noise to be a poor quality image. In this situation only
the one-sided algorithm is considered, taking as a control variable the high quality
image (MR-T1, Figure 6.12(a)) and segmenting the poor quality image (MR-T2,
Figure 6.12(b)). The results of the one-sided algorithm with 4,5 and 6 clusters are
plotted in Figures 6.12(c), 6.12(d), and 6.12(e), respectively.

As we can observe in these images, even the poor quality of the original one,
the segmentation results try to separate correctly the main parts of the brain image:
background, ventricles, white matter and gray matter. This is because the con-
trol variable of the segmentation method is very accurate and tries to achieve the
maximum relationship between the input image and the achieved segmentation.

In Figure 6.13, we show the results obtained with the one-sided and co-cluster-
ing algorithms applied on the CT (Figure 6.13(ii.a)) and MR (Figure 6.13(iii.a))
original image of the Vanderbilt dataset. The composition of Figure 6.13 is similar
to the one in Figure 7.8. Columns b-d show the segmented images with 2, 4, and
6 clusters, respectively. The results obtained with the one-sided algorithm applied
on the CT and MR images are shown in Figure 6.13(i.b-d) and Figure 6.13(iv.b-d),
respectively. The results obtained with the co-clustering algorithm are shown for
the CT image in Figure 6.13(ii.b-d) and for the MR in Figure 6.13(iii.b-d).

If we compare the original unsegmented images with the resulting segmented
images, we can see that the best results are obtained with the co-clustering algo-
rithm (Figure 6.13(ii-iii.b-d)). There is clear evidence that hidden structures of the
image are more precisely recovered. Compare, for instance, the images for an equal
number of clusters of Figure 6.13(i.c) and Figure 6.13(ii.c). This better behavibour
can be explained because in the co-clustering case we make use of all bidirectional
information obtained with the progressive simplification of both images. For both
algorithms, results appear much better when segmenting the CT images than the
MR ones. This is due to the fact that the segmentation of the CT images benefits a
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(i.b) (i.c) (i.d)

(ii.a) (ii.b) (ii.c) (ii.d)

(iii.a) (iii.b) (iii.c) (iii.d)

(iv.b) (iv.c) (iv.d)

Figure 6.11: (a) Original images from the Brainweb database with 3% of noise.
(b,c,d) Images segmented using 4, 5, and 6 bins, respectively. (i,iv) Images ob-
tained with the one-sided algorithm. (ii,iii) Images obtained with the co-clustering
algorithm.
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(a) (b)

(c) (d) (e)

Figure 6.12: (a) Original control image MR-T1 with 1% of noise. (b) Original
image MR-T2 with 7% of noise. (c,d,e) Results of segmenting (b) using 4, 5, and
6 bins, respectively.

lot from the precise information contained in the MR histogram.
Figure 6.14(a) and Figure 6.14(c), corresponding to the dataset of Figure 6.13,

plot the MIR vs the number of clusters for the one-sided and co-clustering al-
gorithms, respectively. We can clearly observe the high quality of the resulting
images with a low number of clusters. If the number of clusters decreases below
a critical value, MI falls dramatically. On the contrary, to the left of this critical
value, MI does not increase significantly with the number of clusters. This critical
point can be detected by the stopping criterion given by the variation of MI (see
Sec. 3).

In Figure 6.14(b) and Figure 6.14(d), the efficiency coefficient NMI against the
number of clusters for the one-sided and co-clustering algorithms is plotted, re-
spectively. Notice that the efficiency is maximum when the number of bins is low.
Comparing both plots, we can see that, while the one-sided algorithm always in-
creases monotonically, in the co-clustering there are fluctuations. This is due to the
different decreasing rate of MI and joint-entropy for the co-clustering algorithm.

6.6 Conclusions

We have presented a general framework for image segmentation based on a hard
version of the information bottleneck method. Three different segmentation al-
gorithms have been introduced: a split-and-merge, a histogram clustering and a
registration-based clustering. For the two first algorithms, an information chan-
nel between the regions of the image and the histogram bins has been defined.
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(i.b) (i.c) (i.d)

(ii.a) (ii.b) (ii.c) (ii.d)

(iii.a) (iii.b) (iii.c) (iii.d)

(iv.b) (iv.c) (iv.d)

Figure 6.13: (a) Original dataset images. (b,c,d) Images segmented using 2, 4, and
6 bins, respectively. (i,iv) Images obtained with the one-sided algorithm. (ii,iii)
Images obtained with the co-clustering algorithm.
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Figure 6.14: (a) MIR and (b) NMI vs the number of clusters obtained with the
one-sided algorithm applied on CT (solid line) and MR (dashed line) images of
Figure 6.13. (c) MIR and (d) NMI vs the number of clusters obtained with the
co-clustering algorithm applied on the same images.

Based on the preservation of mutual information, the spatial distribution and the
histogram bins are maximally correlated. For the third algorithm, a channel be-
tween two multimodal images is defined, allowing to segment one image preserv-
ing the maximum information given by the other one. The main advantages of
these methods are that do not assume any a priori information about the images
(e.g. intensity probability distribution) and that take into account the spatial distri-
bution of the samples. Different experiments on both natural and medical images
have shown the good behavior of the proposed algorithms.
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Chapter 7

Image Segmentation using Excess
Entropy

In this chapter, we present a novel information-theoretic approach for
thresholding-based segmentation that uses the excess entropy to mea-
sure the structural information of a 2D or 3D image and to locate the
optimal thresholds. This approach is based on the conjecture that the
optimal thresholding corresponds to the segmentation with maximum
structure, i.e., in our case, maximum excess entropy. The contributions
of this chapter are severalfold. First, we introduce the excess entropy
as a measure of the spatial structure of an image. Second, we present
an adaptive thresholding method based on the maximization of excess
entropy. Third, we propose the use of uniformly distributed random
lines to overcome the main drawbacks of the excess entropy compu-
tation. To show the good performance of the proposed segmentation
approach different experiments on synthetic and real brain models are
carried out.

7.1 Introduction

The main objective of image segmentation is to divide an image into regions that
can be considered homogeneous with respect to a given criterion such as color
or texture. Segmentation is an essential part of any image analysis system and
especially in medical environments, where segmented images provide valuable in-
formation for diagnosis. Image thresholding, which segments an image by dividing
its intensity histogram into a set of thresholds, is one of the most used segmenta-
tion techniques, because of its simplicity and efficiency [55, 137]. In the case of
bimodal images, two main approaches of this technique can be considered: (i) the
global thresholding that compares all the image pixels to a same value, which may
be constant or be chosen from the image histogram [55], and (ii) the local thresh-
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olding that computes an independent threshold for each pixel over a local window
whose center is the pixel being binarized. In this chapter we will focus on a global
thresholding not restricted to bimodal images.

The excess entropy, first introduced by Crutchfield and Packard [41], is a mea-
sure of global correlation or structure for spatial systems in any dimension. It is
commonly used and well understood in one dimension, but some difficulties are
found in its extension to higher dimensions. In this chapter, we propose a thresh-
olding technique that uses the excess entropy to find the optimal thresholds of a 2D
or 3D image automatically. Our approach is based on the assumption that a medi-
cal image is structured in regions, such as tissues or organs, and the conjecture that
the optimal thresholding corresponds to the segmentation with maximum structure,
i.e., maximum excess entropy. Hence, we present a thresholding method that uses
the maximization of excess entropy to determine the optimal thresholds. The com-
putation of the excess entropy for a 3D dataset requires, for each voxel, an adequate
selection of a sequence of neighbour voxels. Depending on how these neighbour
voxels are selected, different problems such as high-dimensionality, sparsity, and
non-invariance to rotation appear. To overcome these problems, excess entropy
is computed using uniformly distributed random lines [9]. Experimental results
analyze the behavibour of our approach for different image modalities.

This chapter is organized as follows. In Section 7.2 some background and
related work are reviewed. In Section 7.3 the excess entropy is introduced as a
measure of the spatial structure of an image. In Section 7.4, a new method is
presented for thresholding segmentation using the excess entropy. In Section 7.5,
different experiments on synthetic and real medical images are carried out. Finally,
conclusions are summarized in Section 7.6.

7.2 Background and Related Work

We review some basic information-theoretic measures [39, 49] and the image seg-
mentation based on thresholding.

7.2.1 Information-Theoretic Measures

We review now the definitions of entropy rate and excess entropy. The notation
used here is inspired by the work of Feldman and Crutchfield [49].

Given a chain . . . X−2X−1X0X1X2 . . . of random variables Xi taking values
in X , a block of L consecutive random variables is denoted by XL = X1 . . . XL.
The probability that the particular L-block xL occurs is denoted by the joint prob-
ability p(xL) = p(x1, x2, . . . , xL). The Shannon entropy of length-L sequences or
L-block entropy is defined by

H(XL) = −
∑

xL∈XL

p(xL) log p(xL), (7.1)
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where the sum runs over all possible L-blocks. The entropy rate is defined by

h = lim
L→∞

H(XL)
L

= lim
L→∞

h(L), (7.2)

where

h(L) = H(XL)−H(XL−1) (7.3)

is the entropy of a symbol conditioned on a block of L− 1 adjacent symbols. The
two terms of Equation (7.2) are shown to be equivalent in [40, 49]. The entropy
rate of a sequence quantifies the average amount of information per symbol x and
the optimal achievement for any possible compression algorithm [39]. The entropy
rate is always equal or lower than the Shannon entropy and is only equal when there
is no correlation between consecutive symbols.

A complementary measure to the entropy rate is the excess entropy, which is a
measure of the structure of a system. The excess entropy is defined by

E ≡
∞∑

L=1

(h(L)− h) (7.4)

and captures how h(L) converges to its asymptotic value h. Figure 7.1(a) is a
graphical representations of the excess entropy measure, which is represented by
the shaded area, corresponding to the sum of differences between h(L) and the
limit h.

If one inserts Equation (7.3) into Equation (7.4), the sum telescopes and one
arrives at an alternate expression for the excess entropy [49]:

E = lim
L→∞

[H(XL)− h · L]. (7.5)

Hence, excess entropy is the y-intercept of the straight line to which H(XL)
asymptotes as indicated in Figure 7.1(b).

It is important to note that, when we take into account only a few number
of symbols in the entropy computation, the system appears more random that it
actually is. This excess randomness tells us how much additional information must
be gained about the configurations in order to reveal the actual uncertainty h [50].

7.2.2 Image Segmentation based on Thresholding

Thresholding is a widely used technique for image segmentation due to its sim-
plicity and efficiency, especially in applications where speed is an important factor.
Its goal is to find one or more thresholds from the image histogram automatically.
These techniques are suitable in segmentation frameworks as a first step towards
a final segmentation. To locate the thresholds, parametric and nonparametric ap-
proaches can be used. In the first case, a gray level distribution of a region is
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(a) (b)

Figure 7.1: Two different graphical representations of the excess entropy mea-
sure, corresponding to the Equations (7.4) and (7.5), respectively. Images obtained
from [50].

(a) (b) (c)

Figure 7.2: (a) Global lines are cast from the walls of the bounding box, (b) in-
tensity values are captured at evenly spaced positions over the global lines from an
initial random offset and (c) neighbour intensity values are taken in L-blocks.

assumed, while, in the nonparametric approach, no assumptions are made. In this
case, the thresholds are obtained in an optimal manner according to some criteria.
Thresholding is best suited for bimodal distribution, such as solid objects resting
upon a contrast background [137].

Information theory has been applied to define some of these criteria. A first
method was proposed by Pun [118] and enhanced by Kapur et al. [74]. The his-
togram is separated into independent classes so that its entropy is maximized.
Brink [18] extended this method to two dimensions by introducing spatial infor-
mation. More recently, Rigau et al. [122] introduced an algorithm for medical im-
age segmentation based on the mutual information optimization of the information
channel between the histogram bins and the regions of the partitioned image.

7.3 Spatial structure of an image

In this section, the excess entropy is introduced as a measure of the spatial structure
of a 2D or 3D image. Structure here is taken to be a statement which expresses
the degree of correlation between the components of a system. Excess entropy,
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which provides us with a measure of the regularities present in an image, can also
be interpreted as the the degree of predictability of a pixel (or voxel) given its
neighbours. From the concepts introduced in Section 7.2.1, we analyze how the
excess entropy can be computed from Equation (7.5).

In the context of an image, X represents the set of clusters or bins of the image
histogram and xL is given by a set of L neighbour intensity values1. In order to
compute the excess entropy, two main considerations have to be taken into account:

• The first is the definition of the neighbourhood concept pixel or voxel. While
neighbourhood is unique and unambiguous in 1D, its extension to 2D or 3D
introduces ambiguity, since a sequence of L-block neighbour pixels or voxels
can be selected in different manners [49].

• The second is the computation of L-block entropies when L →∞. In prac-
tice, L-block entropies for high L are not computable, since the number
of elements of the joint histogram (required to compute joint probabilities
p(xL)) is given by NL, where N is the cardinality of the system. Note that
in our case, N is the number of clusters or bins of the segmented image his-
togram, i.e., the number of colors of the image. Thus, a tradeoff between
the accuracy of the measure, given by L, and the number of clusters |X | is
required.

To overcome the neighbourhood problem, uniformly distributed random lines,
also called global lines [133] are used. Global lines sample the 3D-volume stochas-
tically in the sense of integral geometry, i.e., invariant to translations and rota-
tions [132]. These lines are generated from the walls of a convex bounding box
containing the volume [26]. This can be done taking a random point on the sur-
face of the convex bounding box and a cosinus distributed random direction as
it is illustrated in Figure 7.2(a). The sequence of intensity values (L-block XL)
needed to estimate the joint probabilities is captured at evenly spaced positions
over the global lines from an initial random offset, that ranges from 0 to the step
size (see Figure 7.2(b)). Points chosen on each line provide us with the intensi-
ties to calculate the L-block entropies, required to compute the excess entropy (see
Figure 7.2(c)). In this manner, the 3D-neighbourhood problem is reduced to 1D,
where the concept of neighbourhood is well defined. In our implementation, N is
taken as an input parameter of the algorithm, while L is determined from N such
that the computation of the joint histogram is attainable.

To illustrate the behavibour of the excess entropy as a measure of the image
structure, we use the 2D images of Figure 7.3. The two first images (a) and (b) rep-
resent the same scene with the colors interchanged. In this case, the excess entropy
values are the same since the structure of the image is not dependent on the colors.
In the third image (c), some additional shapes are added to the original image (a),
keeping the same probability for each color. Because of the higher variability of

1We recall here two basic ideas already introduced in Chapter 3.
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(a) E = 0.885 (b) E = 0.885

(c) E = 0.782 (d) E = 0.001

Figure 7.3: Synthetic images and their excess entropy values.

the obtained image, the excess entropy measure decreases, reflecting a lower spa-
tial structure. The last image (d) has been generated by swapping 200000 points
of image (a). Each swapping has been done by choosing two random points of the
image and interchanging their intensity values. Observe that now the image has
not spatial structure (no shape can be detected) and, therefore, the excess entropy
is close to 0. It is important to remark that the values of the Shannon entropy of
all the images of Figure 7.3 are the same, since the probabilities of each color have
remained unaltered.

7.4 Thresholding based on Excess Entropy

In this section, a thresholding segmentation method that uses the excess entropy to
obtain the optimal thresholds is presented.

We propose a nonparametric approach to segment the image without a priori
assumptions about the underlying data. As it has been described in the previous
section, excess entropy can be used as a measure of the structure of a system. From
the assumption that an image is structured in regions, we conjecture that the op-
timal thresholding should provide us with the maximum structure. Consequently,
the selection of thresholds will be formulated as a histogram quantization problem
using the maximization of excess entropy. That is, the optimal histogram quanti-
zation should correspond to the maximum excess entropy of the resulting image.
Figure 7.4 shows an example to illustrate the behavibour of our method compared
to the k-means algorithm [47]. Figure 7.4(a) is a four-colored synthetic image
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(a) (b)

(c) (d)

Figure 7.4: Preliminary experiment: (a) 4-colored image, (b) test image, (c) seg-
mentation result of the k-means algorithm and (d) segmentation result of the pro-
posed method.

with two nested squares on a background with two different colors randomly dis-
tributed. Figure 7.4(b) has been obtained by adding 1% of Gaussian noise to the
original image. Figures 7.4(c) and 7.4(d) show the segmentation of the image
(b) in three different clusters obtained by the k-means algorithm, one of the most
popular clustering algorithms, and the excess entropy method applied to the noisy
image, respectively. Observe that the k-means method separates the background
in two colors and merges the two nested square shapes. This behavibour is due to
the fact that the number of background pixels is greater than the number of pix-
els of the squares and this causes that the intensity error classification is lower if
the background is split into two different clusters. Using our method, the spatial
information is taken into account and, hence, the square shapes have been mainly
preserved. Observe that the misclassified pixels are caused by the Gaussian noise
of the input image (Figure 7.4(b)).

The kernel of our method is the computation of excess entropy given by the
Equation (7.4), where N , the number of colors of the segmented image, and L,
the block length, are input parameters of the segmentation algorithm. If C is the
number of colors of the original image and N − 1 the number of thresholds, the
quantity of possible combinations of different threshold levels is C!

(C−(N−1))! . Note
that for standard medical images (with a minimum of 256 colors) this number
becomes intractable when N is greater than 4 or 5. Therefore, except for the case of
thresholding in two or three groups, it will be impossible to explore all the possible
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Figure 7.5: Excess entropy values of the image 7.4(b) with 3 colors for different
threshold levels.

Figure 7.6: Block diagram showing the excess entropy-based thresholding method.

solutions. For instance, in the segmentation process of Figure 7.4, all possible
threshold levels have been checked. In the cases that the number of threshold
levels is high, certain optimization criterion must be used.

In Figure 7.5, we plot the values of excess entropy values of the image 7.4(b)
segmented with two different threshold values, ranging from 0 to 255. As it can
be seen, the function has a smooth behavibour and therefore an optimization pro-
cess can easily converge to the optimal solution. In our implementation, in or-
der to properly locate the thresholds avoiding local minima, that can appear for
a higher number of optimization parameters, a global genetic-based strategy is
applied, since this is robust to these local minima. If high accuracy results are
required, a second optimization process based on a gradient descent approach is
applied.

Taking into account all these considerations we propose the iterative algorithm
represented in Figure 7.6 and described below:
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Figure 7.7: Histogram of the T1 image with 3% of noise.

1. Input parameters: the image, the number of colors (N ), the block length (L)
and the number of iterations (I).

2. Threshold initialization. This module computes the image histogram and
distributes uniformly N − 1 thresholds.

3. Segmented image generation. The input image is segmented using the last
computed thresholds.

4. Excess entropy computation. This module computes the excess entropy E of
the previous segmented image.

5. If E is maximum, the thresholds of the image are stored as the optimal
thresholds.

6. If the number of iterations is not reached, we recompute thresholds by adding
a noise term to the optimal thresholds. This noise is generated following a
gaussian distribution. Then we go to step 3.

7. Final segmentation. The input image is segmented using the optimal thresh-
olds.

At the end of the process, if high accurate threshold locations are needed, the
gradient descent algorithm is applied.

7.5 Results and Discussion

The proposed segmentation approach has been developed using ITK [1] and VTK [2]
libraries, and integrated in the medical image visualization and processing frame-
work developed in our laboratory. It has been evaluated on different synthetic and
real sequences of brain images.

An important limitation to be considered when segmenting brain images is the
overlapping intensity values between different tissues. To illustrate such a limita-
tion (see Figure 7.7), the histogram of a T1 image from Brainweb database [32]
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(T1, noise=0%) (T2, noise=0%)

(T1, noise=3%) (T2, noise=3%)

(T1, noise=7%) (T2, noise=7%)

Figure 7.8: T1 (first column) and T2 (third column) images of Brainweb database
with different degrees of noise. In the second and fourth columns, the correspond-
ing segmented images with N = 5.

is plotted. In this plot, each one of the ten tissues represented in the T1 image
is shown with a different color. Note how different intensity values overlap and
consequently thresholding methods are not capable to isolate one from the other.
For instance, both cerebro spinal fluid and skin intensity values range from 20 to
80 and, hence, they are not distinguishable. Due to this limitation, the main pur-
pose of segmentation techniques is not the separation of all real brain tissues but
only the most important ones which in general correspond to background, cerebro
spinal fluid, grey matter, white matter and skull. Therefore, in our experiments the
number of clusters to be considered has been 4, 5 or 6 (i.e. 4 ≤ N ≤ 6). The L
parameter has been set to 6 and the number of iterations to 200.

The first experiment has been designed to evaluate the performance of the pro-
posed approach for images with different levels of noise. With this purpose a set
of synthetic magnetic resonance (MR) images from the Brainweb database [32] is
used. The method with N = 5 is applied to T1 and T2 image modalities with three
different levels of noise 0%, 3% and 7%, respectively.

The obtained results are illustrated in Figure 7.8. In the first row, we show, from
left to right, the T1 image without noise and the obtained segmentation, and the T2
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(d) (e) (f)
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Figure 7.9: Comparison of the segmented images of Figure 7.8 with the true image.
T1 (first row) and T2 (second row) results with 0%, 3% and 7% of noise are plotted.
Columns of each plot represent: (1) air, (2) cerebro spinal fluid, (3) grey matter,(4)
white matter, (5) fatty tissue, (6) muscle and skin, (7) mostly skin, (8) skull, (9)
glial tissue and (10) other tissue.

image without noise and its corresponding segmentation. In a similar way, the sec-
ond and third rows represent the results obtained from the T1 and T2 images with
3% and 7% of noise, respectively. Observe that, in the case of T1 without noise,
background, skull and cerebro spinal fluid (CSF) are correctly separated, while the
classification gets worse when noise increases. Such a behavibour is typical of the
thresholding approach. Similar results are obtained with noisy T2 images. In the
case of T2 without noise, CSF and grey matter are grouped in the same cluster,
while background is split into two clusters. Observe also the rectangular shape that
surrounds the brain in the segmented image. This shape affects the excess entropy
measure leading to an uncorrect segmentation. This undesirable effect disappears
in the case of noisy images, achieving a correct segmentations. We want to remark
that these patterns do not appear in real images and hence such a bad behavibour is
not expected for real data.

In our second experiment, the segmented images of the first experiment are
compared with the true standard that corresponds to a brain image segmented in
ten tissues [32]. The goal of this comparison is to evaluate which tissues and how
the tissues of the true images have been grouped into the five clusters used for
the image segmentation. To illustrate the obtained results for each one of the test
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images we have generated a bar plot (see Figure 7.9). Each bar represents one of
the ten tissues of the true standard, from left to right, air, CSF, grey matter (GM),
white matter (WM), fatty tissue, muscle and skin, mostly skin, skull, glial tissue
and other tissue. To represent the five clusters used for segmentation five different
colors have been considered. The bars have been filled with one or more colors
according to the % of pixels of the corresponding tissue in the different clusters.
For instance, in plot 7.9(a) corresponding to T1 image without noise, we can see
from the first bar that air pixels have been grouped into two different clusters, 75%
into cluster 1 and 25% into cluster 2.

In the first row of Figure 7.9, the T1 images with 0%, 3% and 7% of noise are
plotted. Observe that in the case of T1 without noise (plot 7.9(a)) the four main
tissues (CSF, GM, WM and skull) and air are well classified, in the sense that there
is a good correspondence between the clusters of the segmented image and the
main tissues of the true image. In particular, 90% of CSF pixels are of cluster 3
and 10% of cluster 2; 65% of GM pixels are of cluster 4, 25% of cluster 5 and 10%
of cluster 3; 100% of WM pixels are of cluster 5; 95% of skull pixels are of cluster
2 and the rest of cluster 1; and 75% of air is of cluster 1 and 25% of cluster 2. As
it was expected the quality of the T1 segmentation decreases when the percentage
of noisy increases. In spite of this, it can be seen that the method still groups the
main tissues in the same clusters (see plots 7.9(b) and 7.9(c)).

In the second row of Figure 7.9, the T2 images with 0%, 3% and 7% of noise
are plotted. In the case of T2 without noise (plot 7.9(d)), air is separated in two
main clusters (corresponding to the two background regions represented in Fig-
ure 7.8 (T2, noise=0%), while CSF and grey matter are grouped in the same clus-
ter. In the case of noisy T2 images (see plots 7.9(e) and 7.9(f)), it can be seen that
the main tissues are well classified.

In the next experiment we evaluate the performance of the proposed approach
for different values of N . For the test we use the T1 image with 3% of noise
and N = 4..6. The results are listed in Table 7.1 where rows represent the ten
tissues of the true standard and the columns the clusters generated for each one
of the N values. The listed values represent the distribution of the tissue in each
cluster. If we analyze the distribution of tissues for the different cases, it can be
seen that white matter is perfectly segmented. Observe that the cluster containing
white matter also contains other brain tissues. This is an expected result due to the
overlapping intensity values (see Figure 7.7).
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Finally, a set of real computed tomography and magnetic resonance brain im-
ages obtained from the Hospital Josep Trueta of Girona has been segmented. The
method has been tested with N = 6 and L = 6. The obtained results are shown
in Figure 7.11. In the case of MR images, represented in the first column, the
main tissues have been correctly separated. When segmenting the CT image of the
second column, the method not only has isolated the main tissues but it also has en-
hanced a hidden pathological region. Finally, in the third column, a CT image of a
patient with an intracranial hemorrhage, where the image intensities have been ap-
propriately rescaled to a better visualization, is presented. In the segmented image,
the different image tissues, the lesion and the background are correctly separated,
giving a good representation of the anatomical structures.

Finally, the method is tested on real medical images of different modalities and
different parts of the body. First, we present some results on mammographic im-
ages in Figure 7.10 with N = 4 clusters plus the background. The segmentation of
the breast and the quantification of dense tissue is a key aspect for the tumor risk
diagnosis [105]. As it can be seen breast contour is detected and dense tissue is
mainly segmented. This images can be used for classification purposes [150] or as
a initial step for other more sophisticated segmentation algorithms. Other exam-
ples are shown in Figure 7.11. These images are a set of real computed tomography
and magnetic resonance brain images obtained from the Hospital Josep Trueta of
Girona. The method has been tested with N = 6 and L = 6. The obtained results
are shown in the second row of Figure 7.11. In the case of MR images, represented
in the first column, the main tissues have been correctly separated. When segment-
ing the CT image of the second column, the method not only has isolated the main
tissues but it also has enhanced a hidden pathological region. Finally, in the third
column, a CT image of a patient with an intracranial hemorrhage, where the image
intensities have been appropriately rescaled to a better visualization, is presented.
In the segmented image, the different image tissues, the lesion and the background
are correctly separated, giving a good representation of the anatomical structures.

7.6 Conclusions

An information-theoretic measure, called excess entropy, has been introduced to
quantify the image structure and to obtain a new adaptive thresholding method
for image segmentation. The main novelties of this chapter are the use of excess
entropy as a measure of structural information of an image, the search for optimal
thresholds by maximizing the excess entropy, and the use of uniformly distributed
random lines to compute this measure. Experimental results have shown the good
behavibour of the presented approach.
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Figure 7.10: Mammographic images (first row) with their segmentations (second
row).

(a) (b) (c)

Figure 7.11: Original MR and CT brain images (first row) with their corresponding
segmentations (second row).
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Chapter 8

Conclusions and Future Work

Medical imaging is an important focus of research. The development of new tech-
niques that assist and enhance visual image interpretation in a timely and accurate
manner is fundamental in real clinical environments. The aim of this thesis is to
contribute to the research of two of these techniques, registration and segmenta-
tion. In this chapter, the conclusions of this thesis and the directions for our future
research are presented.

8.1 Conclusions

In this thesis, several information theoretic tools have been presented in order to
improve the existing methods in the image processing area, in particular in the
image registration and segmentation fields.

Next, the main contributions of this thesis are described:

• In Chapter 3, a new sampling strategy based on global lines has been pre-
sented. The global line generation method, which is based on integral geom-
etry, ensures that all the voxels and all the scanning directions have the same
probability to be taken into account. This strategy reduces the artifacts due
to the grid regularities, achieving a more accurate and robust registration.
The computation time can also be reduced without losing reliability.

A generalization of the standard information channel between the two im-
ages to be registered has been also proposed. While standard registration
methods consider only individual voxels of both images, our method con-
siders blocks of voxels, incorporating in this way spatial information of the
intensity distribution. These blocks are obtained using global lines since in
this way all the directions are taken into account. Results demonstrate that
this approach is more robust and accurate than the one provided by the stan-
dard registration measures.

• In Chapter 4, a new conjecture is presented in order to solve the image reg-
istration problem. This conjecture consists in assuming that two images are
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correctly aligned when we can maximally compress one image given the
information of the other. From this conjecture, we present the similarity
metric, defined by Li et al., as a new image registration similarity measure.
Since this measure is non computable, some approximations have to be done.
Two different approaches of this measure are studied. The first uses the stan-
dard compressors to estimate the compressibility of the images. The second
uses the entropy rate to estimate this compressibility. The results show that
the second approach is more accurate, mainly due to the real compressor
imperfections. These approaches are absolutely innovative in the image reg-
istration field.

• In Chapter 5, a study on image simplification strategies for a multiresolu-
tion image registration is presented. Two strategies are analyzed: BSP and
Quadtree. The simplification criteria are based on the Information Bottle-
neck method. Two registration implementations of the approaches are stud-
ied. The first generates simplified images from the data structures, while the
second deals directly with the regions of the data structure. These approaches
are compared with the standard regular downsampling strategy. The results
demonstrate that these data structures, and in particular the BSP, drastically
reduce the artifacts, achieving a more robust registration.

• In Chapter 6, a new framework for image segmentation based on the Infor-
mation Bottleneck method is presented. This framework consists of different
applications of the method, by defining different information channels. The
first approach cames from the definition of the information channel between
the regions of the image and the histogram bins, and results as a split-and-
merge algorithm. In the second approach, a clustering algorithm is defined
from the reversion of the previous information channel, which considers the
histogram bins and the regions obtained with the split-and-merge algorithm.
Finally, in the third approach, a clustering algorithm for multimodal images
is presented by considering the information channel within these multimodal
images. The results show the good behaviour of these methods.

• In Chapter 7, a new measure to quantify the image structure is presented.
This measure is based on the concept of Excess entropy which computes the
mean predictability of a sample given all the previous samples. The imple-
mentation of this measure is based on the global lines method presented in
Chapter 3. This measure is also proposed as a new image clustering crite-
rion that takes into account the spatial distribution of the intensities along the
image. A set of experiments shows the suitability of this method.

8.2 Future Work

The ideas presented in this thesis can be expanded in different directions. Some of
these are:
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• The increasing capabilities of graphic hardware encourage us to explore the
implementation of the global line sampling strategy with the GPU. For this
implementation, we would make use of further coherence provided by bun-
dles of parallel lines, which would allow for a hardware implementation by
using a z-buffer algorithm. Moreover, we would analyze the behaviour of
the generalized normalized mutual information using three or four neigh-
bours combined with a previous non-uniform quantization of the images and
other strategies to deal with the high-dimensionality problem.

• The compression-based registration approach does not achieve as precise re-
sults as the classical approach, mainly due to the compression imperfections.
The specific implementation of a compression algorithm for image registra-
tion could improve these results. Moreover, different scan spacefilling curves
and the global lines method can be used in order to improve the capture of
structural information in the Shannon version of the similarity metric.

• Since the tests with the BSP simplification have provided very good results,
a next step in our research would consist in developing and evaluating a
full multiresolution framework using the BSP subdivision. In addition, a
more efficient implementation of the node-based approach would reduce the
computational time.

• A general framework for the information bottleneck method applied to image
segmentation have been presented. Further investigation on stopping crite-
ria is needed to determine the optimal number of both regions and clusters.
On the other hand, new segmentation channels could be tested within this
framework, taking into account other kinds of information, such as color or
gradient. We also plan to explore the application of these methods to image
fusion and level-of-detail applications.

• A new excess entropy-based measure to compute the image structure has
been presented. Further research would be done in the application of the
excess entropy to other image processing areas, such us image restoration
or image retrieval. Moreover, the feasibility of new information theoretic
measures, such as the erasure entropy, would be studied in the context of
image registration and segmentation.
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Appendix:
A Framework to Assist
Radiologists in Diagnosis

In the last years, medical imaging has assumed a major role in clinical
diagnosis. The development of software platforms and environments
that can support medical image processing and visualization has be-
come critical. In this context, development teams where engineers and
practitioners combine their knowledge are very important. Motivated
by a common interest, the medical imaging group of our university and
medical researchers from the Hospital Josep Trueta of Girona created
a working group. We aimed to develop a tool that integrates, in the
same environment, basic and advanced image analysis techniques to
assist radiologists in diagnosis. With this idea the Starviewer platform
was created. Starviewer is a user-friendly diagnosis application with
a modular design that supports the integration of new functionalities
designed to diagnose any kind of pathology.

In this appendix two of the specialized modules of the platform which
have been developed in the scope of this thesis are presented. The
first one is StarStroke, a module developed to assist and support treat-
ment and diagnosis of acute stroke patients and the second one is
StarHematoma, a module that integrates an automated method for
brain hematoma and edema segmentation, and volume measurement
using computed tomography imaging. Moreover, this platform has
been used for testing several methods presented in this thesis, but,
since these methods are still in a research stage, they have not been
integrated into a specific module for daily clinical practice.
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StarStroke: a tool to Assist Acute
Stroke Diagnosis

In this chapter, a framework developed to assist and support treat-
ment and diagnosis of acute stroke patients is presented. We propose
to substitute the current clinical study based on manual image editing
and manual segmentation of diffusion-weighted imaging (DWI) and
perfusion weighted imaging (PWI) by an integrated framework with
registration, segmentation, manipulation and visualization strategies
specifically designed for the DWI/PWI processing. We describe a ro-
bust and accurate technique to register DWI/PWI data which uses an
acceleration strategy based on uniformly distributed random lines that
reduces considerably the processing time. We also propose a segmen-
tation method based on PWI-DWI fused data to detect stroke and hy-
poperfusion areas that reduces the manual intervention of the radiolo-
gist. With our approach, the clinical study of an acute stroke patient is
reduced from 15-20 minutes to 5 minutes, including the manual edit-
ing.

A.1 Introduction

Cerebral ischemia constitutes the third cause of death in developed countries. It
is believed that early intervention is the key to a successful therapeutic outcome
in strokes. Therefore, the ability to rapidly diagnose the status of brain perfusion
and the extension of tissue that is at risk versus that which is already irreversibly
damaged is critical.

In recent years, two new magnetic resonance imaging (MRI) modalities have
been increasingly used to evaluate acute stroke patients. Diffusion-weighted imag-
ing (DWI), in which the images reflect microscopic random motion of water mole-
cules, and perfusion weighted imaging (PWI), in which hemodynamically weighted
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MR sequences are based on the passage of MR contrast through brain tissue. In
the study of acute strokes, DWI abnormalities are markers of critical ischemia
and typically evolve into infarction. In the first few hours after the onset of the
stroke, PWI abnormalities are often larger than the DWI lesions. This pattern
”PWI deficit > DWI lesion” is frequently associated with subsequent lesion growth
into the PWI/DWI mismatch region, indicating that the mismatch may represent
tissues at risk. The area with normal diffusion and altered perfusion (mismatch
area) is denoted penumbra. The penumbra is the target of acute stroke therapy
[4, 109, 43].

Currently, there are no computational tools to easily measure the penumbra.
For each clinical case, the analysis of DWI-PWI datasets is based on manual image
editing and segmentation techniques provided by available commercial medical
visualization workstations. A complete study takes from 15 to 20 minutes of user
interaction. The complete automatic processing of DWI-PWI is not possible due to
the diversity of data. However, our purpose is to automate and speed up the volume
measurement of both infarction and mismatch regions.

We have developed a tool specifically designed for the PWI-DWI data pro-
cessing that integrates registration, segmentation, manipulation, and visualization
techniques. With this framework, the study of a clinical case is split into three
different steps. First, the DWI and PWI data are integrated into a common coor-
dinate system by applying a registration technique. For this process, the similarity
metrics proposed in [6] are used. These metrics have been implemented using uni-
formly distributed random lines (see Chapter 3). Second, DWI data are processed
to identify and measure the infarct area. A semi-automate segmentation technique
based on region growing is applied. Third, by using the information of both pre-
vious steps, PWI data are processed to identify the lesion. Due to the difficulty
of processing PWI data, we have developed a two step segmentation process that
starts by solving PWI ambiguities and then, supervised by the radiologist, applies
a segmentation process, based on region growing and morphological operations, to
identify and measure the injured area. With our framework, the overall exploration
time for each clinical case is reduced from 15-20 minutes to 5 minutes, including
the manual editing.

This chapter is organized as follows. Section A.2.1 describes how registration
problems are solved within the proposed framework. Techniques that have been
developed for DWI and PWI segmentation are presented in Section A.2.2. Volume
assessment and visualization problems are described in Sections A.2.3 and A.3,
respectively. The evaluation of the method is presented in Section A.4. Finally,
some conclusions are given in the last section.

A.2 Method

In Figure A.1 a block diagram of the proposed approach is shown. It is clear that,
the method consists of four basic steps: PWI-DWI registration, DWI segmentation,
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Figure A.1: Block diagram of the proposed method for acute stroke assessment.

PWI black points estimation and PWI segmentation. The next sections detail each
of these steps.

A.2.1 PWI-DWI registration

DWI and PWI show different, complementary, and partially overlapping aspects
of the pathology. The integration of these image modalities in a common model
will facilitate the work of the radiologist in stroke diagnosis. Therefore, the first
process to be considered is the registration of the PWI-DWI data.

To perform this registration process, we proposed a new similarity measure
presented in [6], using a sampling strategy based on uniformly distributed ran-
dom lines (see Chapter 3). This measure is based on the normalization of Jensen’s
difference applied to Tsallis-Havrda-Charvrat entropy and has a tuning parame-
ter α which depending on the kind of images to be registered is set to one value
or another. The measure can be seen as an extension of the NMI measure since
they coincide when α = 1. Our previous experiments with various registration
modalities showed that the new measure was more robust than the NMI for some
modalities and a determined range of the entropy parameter. Also, a certain im-
provement on accuracy can be obtained for a different range of α. For more details
see [6]. It is important to remark that this was the first method implemented in our
framework, but, a posteriori, other registration methods developed in this thesis
have been incorporated in this framework.

To analyze the robustness and accuracy of our measures for the PWI-DWI
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Figure A.2: (a) Percentage of improvement of our measure with respect to the MI
over different α values. (b) NMI values using global line method. (c) Cost of the
global line method over the sampling points. Dashed and solid lines correspond to
Collignon’s and global line method, respectively.

registration, a prospective study of 16 patients from the Josep Trueta Hospital in
Girona was carried out. The DWI sets have a resolution of 256× 256 voxels in the
X-Y plane and the number of acquired slices along the Z axis is 20. The PWI sets
have a resolution of 128×128 voxels in the X-Y plane and the number of acquired
slices along the Z axis is 12. After some experiments detailed below, we have set
α to 1.5 as a tradeoff between accuracy and robustness.

The robustness of these measures has been evaluated in terms of the partial
image overlap. This has been done using the parameter AFA (Area of Function
Attraction) introduced by Capek et al. [24]. This parameter evaluates the range of
convergence of a registration measure to its global maximum, counting the number
of pixels, i.e. x-y translations in image space, from which the global maximum is
reached by applying a maximum gradient method. The AFA parameter represents
the robustness with respect to the different initial positions of the images to be
registered and with respect to the convergence to a local maximum of the similarity
measure that leads to an incorrect registration. Our measure is compared with
MI. The results of this study are summarized in Figure A.2(a) where we plot the
percentage of improvement in AFA terms of our measure with respect to the MI
over different α values.

To evaluate the accuracy of the measure, the registration results were evaluated
by an expert classifying them into five categories: perfect (if all the structures of
the brain are well registered), very good (if misregistration is minimal), good (if
there is a general misregistration, less than 3 mm), bad (if the misregistration is
greater than 3 mm) and very bad (if there is no overlap with the images). Using
our measure, the results obtained range from perfect and very good in 63% of the
cases, while MI only obtains these results in 17% of the cases.

As the sampling strategy, we propose to use the global lines method, presented
in Chapter 3. A comparison between this method and the standard one proposed
by Collignon [35] is illustrated in Figures A.2(b) and A.2(c). In Figure A.2(b),
the NMI value has been computed in the classical way, i.e., considering all the
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voxels, and with the global line method, moving the floating image through the X
axis from -10 mm to 10 mm. From top to bottom, the plots represent the values
of the similarity measure using 50, 75, 100, 125 and 150 thousand points, and
the bold plot represents the measure computed in the classical way. Observe that
the value of the measure decreases when the number of points increases and it
converges to the value measured in the classical way. This behavibour is due to
the histogram dispersion when the sampling points increase. For a high number of
points, the measure tends to the classical method value. In Figure A.2(c), the costs
of Collignon’s method and the global line method are compared. Note that for our
method the time increases linearly with the number of points. Therefore, using
global lines, the time can be outstandingly reduced. For example, an acceptable
estimation of the measure is obtained with 50000 points and a processing time
almost five times lower.

A.2.2 Segmentation

Image segmentation is one of most important medical image processing problems.
In the particular case of MRI, the objective is to differentiate tissue types for pur-
poses of volume measurement and visualization [31]. Although MRI segmentation
methods have been quite successful on normal tissues, the current methods of MRI
segmentation are still in the developmental stages for pathological tissues with
some success recorded for specific disease processes.

In this section we are going to present the methods implemented to differentiate
the pathological tissues in DWI and PWI images. It has to be taken into account
that currently, in most hospitals, PWI and DWI images are segmented using manual
editing methods. This is a laborious task and the results are operator dependent. On
the other hand, the fully automatic segmentation of DWI and PWI is not possible
due to the diversity of data. Therefore, our purpose is to segment the images with
minimum intervention of the operator which is quicker and more reproducible than
the currently applied techniques.

A.2.2.1 DWI segmentation

DWI images have their foundation in the mobility of water molecules in the tis-
sue. Such mobility generates different contrasts in the image. If water is freely
diffusible, then the MRI signal is attenuated, and if the movement of the water
molecules is impeded in some way, for example along nerve bundles, then the
MRI signal is larger. Acute cerebral ischaemia causes cell damage which results in
edema due to the accumulation of intracellular water. This causes a restriction in
the movement of water molecules showing up the infarct as a region of increased
signal intensity. The result is an image with three distinct regions: air, which has a
signal intensity close to zero; healthy brain, which has an intermediate grey scale
value; and infarcted tissue, which has the highest signal intensity and is typically
more heterogeneous than the other two regions (see Figure A.3).

149



Appendix A. StarStroke: a tool to Assist Acute Stroke Diagnosis

infarcted tissue

Figure A.3: The original DWI image before and after segmentation

We have implemented a thresholding region growing segmentation technique.
In most cases, the three different regions are perfectly distinguished. Thresh-

old values have been obtained experimentally. A display showing the threshold
contours superimposed on the DWI images, together with the intensity histogram
are presented to the operator (see Figure A.5). These thresholds could be modi-
fied manually by defining new threshold levels on the histogram. To distinguish
the background and CSF region, a thresholding technique is sufficient, but for the
infarcted tissue the problem is more difficult. In some cases, the presence of high
intensity regions in the corpus callosum (due to the presence of nerve tissue) and
in the base of the brain (due to the susceptibility of artifacts), which would be in-
correctly classified as infarct, forces us to implement a region growing algorithm
based on these thresholds, reducing these kinds of errors. For other possible in-
accuracies, some manual editing tools are also supplied to modify the segmented
region. However, even in the case that the thresholds have to be manually modi-
fied, the DWI segmentation is faster than the current slice by slice manual editing
methods.

A.2.2.2 PWI segmentation

PWI images are based on the passage of MR contrast through brain tissue. PWI
readily provides relative regional cerebral blood volumes and bolus peak arrival
times. The quality of PWI data is greatly influenced by the duration of the intra-
venous contrast bolus. Furthermore, as the dynamic contrast changes (imaged in
PWI) occur over only 30 to 60 seconds and must be sampled with high temporal
resolution, the number of slices that can be acquired is limited and generally lower
than the number of DWI images. This may be a significant limitation when the
location of the stroke is unknown. Since DWI and PWI show complementary as-
pects of the patient, to overcome all these limitations we propose a segmentation
strategy that exploits the information of the segmented DWI.

The proposed segmentation process is composed of two steps. First, it starts
with an automatic pre-processing phase that removes PWI ambiguities. These am-
biguities are caused by black regions which may correspond either to background,
cerebrospinal fluid, pathology, or noise (see Figure A.4). In order to label each

150



Appendix A. StarStroke: a tool to Assist Acute Stroke Diagnosis

pathology

noise

CFS of lateral ventricles

Figure A.4: The original PWI image before and after segmentation.

one of these regions properly, we use the information of the DWI-PWI fused data
and assign an intensity value to the PWI ambiguous region. This assignment is
performed as follows. Background and cerebrospinal fluid areas in DWI have low
intensity values, therefore, once they have been identified in the DWI, we locate
them in the PWI, assigning the minimum intensity value to their ambiguous re-
gions. Lesion areas of the DWI, with high intensity values, correspond to patho-
logical areas of PWI. Then, we assign the maximum intensity value to ambiguous
pixels of these areas. Finally, the PWI ambiguities that are not classified in the
DWI are considered noise. Their intensity values are obtained from interpolation
of neighbour intensities. At the end of this process we obtain an estimated PWI
image with no ambiguities.

In the second step, the new PWI image is segmented proceeding as in the DWI
segmentation. A segmentation based on the thresholding region growing is applied.
A first approximation of threshold values is estimated from the information of the
DWI image taking into account the DWI stroke zone. Since images are noisy,
morphological operators are applied to improve the final segmentation results.

The results of these processes are displayed showing the threshold contours su-
perimposed on the PWI images, together with the intensity histogram. The thresh-
olds could be modified manually by defining new threshold levels on the histogram.
In some cases manual editing is also required (see Figure A.5).

A.2.3 Volume assessment

The area with normal diffusion and altered perfusion is the mismatch area, also
denoted penumbra. The penumbra represents the tissue at risk surrounding the
irreversibly damaged ischemic core. Typically, the ischemic penumbra is partially
recruited into the ischemic core during the first hours after symptom onset. Since
this process might be prevented pharmacologically it has become the key point in
acute stroke treatment [4].

The mismatch volume assessment is obtained from the volume assessment of
DWI stroke and PWI hypoperfusion regions. In our framework the computation of
all these volumes is straightforward since the DWI and PWI segmentation strate-
gies have delimited them. Therefore, for each image modality we have to sum the
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Figure A.5: Captures of the DWI and PWI segmentation processes in the first and
second row, respectively.

pathological area of each slice and multiply it by the slice thickness plus interslice
gap. The penumbra is obtained by the difference between the DWI stroke region
and the PWI hypoperfused one. The results of the three computed volumes are
displayed to the user as it is shown in Figure A.6.

A.3 Visualization

PWI and DWI are slices taken progressively through the head. In our framework,
they are stored as volumes. Nevertheless, doctors are in general more confident
with 2D visualizations rather than 3D. Their main interest is the delimitation of
stroke and hypoperfusion areas as opposed to 3D visualizations. Therefore, the
results obtained in the different processes that are carried out are shown as series
of 2D images representing slices through the volume. The user can select the
orientation of the slice and also the interslice step which is limited by the resolution
of the model. This capability enables the user to cross the volume in any direction.

To reduce user interaction and automate the whole process as far as possible
there is a default visualization that has all the rendering parameters fixed. Obvi-
ously, the user can change the parameters by selecting the appropriate icons or by
interacting directly into the view.

The rendering of the fused DWI-PWI model is based on the superimposition of
PWI-DWI images. By default DWI is maintained opaque (the alpha value repre-
senting opacity is set to 1) and the PWI corresponding alpha is set to a value lower
than 1 (see Figure A.6).
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Figure A.6: Visualizations obtained from the DWI-PWI registered model. On the
right, the Volume Assessment window where the measures of stroke, hypoperfu-
sion, and mismatch volumes are shown.

A.4 Evaluation

To evaluate the proposed framework a prospective study of 16 patients (64 percent
male) was carried out over a six months period. All patients had a MRI study on
admission within the first 12 hours after the onset of the stroke. For the purpose of
this investigation, only patients with an acute MCA infarction were included. Clin-
ical exclusion criteria were coma on admission, pure lacunar syndromes, transient
ischemic attack, previous cerebral infarction impeding the clinical, and neuroradi-
ological evaluation. The ethics committee approved the study and written informed
consent was obtained from all the patients or relatives before imaging. The pro-
posed framework has been implemented using the National Library of Medicine
Insight Segmentation and Registration Toolkit (ITK) [1], which also guarantees
the code quality for the library methods.

All the patients underwent MRI on a 1.5 T (Tesla) system (Philips Intera) with
echoplanar capabilities of 25 mT/m gradients and 300 to 350 µs rise times. The
MRI protocol includes DWI, PWI, FLAIR, and MRA. The diffusion sequence was
obtained with a single-shot spin-echo-planar pulse with a diffusion gradient b value
of 0 and 1000 s/mm2 along 3 axes. The other parameters were: 20 slices, 7 mm
slice thickness, 0 gap, 134 ms (TE), 6000 ms (TR), 67 (epi factor) and 36 seconds
of duration. Abnormalities were analysed in the trace image to avoid anisotropy.
The PWI sequence was acquired after administration of 0.2 ml/kg of Gadolinium
DTPA (Gd-DTPA) with a bolus technique (5 ml/s). The parameters were 260,
30 [TR/TE], 12 slices of 10 mm slice thickness, 0 gap, 60 dynamic scans and 1
minute 4 seconds of duration. The volume of hypoperfused tissue was measured
in the MTT map using a threshold of 4 seconds.

The ground truth for the volumetric analyses was performed with a manual
segmentation method, also called planimetric method. First, the perimeter of the
area of abnormal signal intensity was traced on each DWI or PWI map and, sub-
sequently, the volumetric software estimated the total volume using the thickness
and the traced area on each slice. Each volume calculation was done three times,
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DWI PWI Mismatch

Automatic Volume(AM) 20.01 129.32 90.62
( 0.57,45.35) (92.51,191.23) (57.48,109.25)

Planimetric Method (PM) 13.23 132.21 86
(8.29,44.73) (67.44,182.83) (41.4,144.73)

Difference ( AM-PM) 1.09 -11.5 -10.72
(-9.64,10.17) (-41.55,29.97) (-41.69,44.52)

Relation (AM/PM) 1.04 0.9 0.82
(0.62,1.84) (0.72,1.12) (0.6,1.83)

Table A.1: All the variables are presented with the values of median, percentil 25
and percentil 75.

and the mean value was taken as definitive.
Table A.1 shows the comparison between the volume assessment of the DWI,

PWI, and mismatch area with the planimetric method (PM) and our proposed au-
tomatic method (AM). All the variables are presented with the values of median,
percentil 25, and percentil 75 in cm3.

The preliminary results show a good correlation between the measurement of
the new method with respect to the PM gold standard method with ratios of 1.04-
0.82. AM produces a mild overestimation of the volume of the ischemic lesion
in the DWI sequence and a mild underestimation of the volume of the perfusion
alteration in the PWI sequence.

A.5 Conclusions

A framework to assist and support treatment and diagnosis of acute stroke patients
has been presented. The framework integrates registration, segmentation, manipu-
lation and visualization strategies specifically designed for the DWI-PWI process-
ing. Empirical results demonstrate that the proposed strategy is a reliable technique
and a promising approach in the diagnosis and management of acute stroke. More-
over, the clinical study time of an acute stroke patient is reduced considerably.
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A New Method for Hematoma
and Edema Quantification using
CT

In this chapter, an automated method for brain hematoma and edema
segmentation, and volume measurement using computed tomography
imaging is presented. The method combines a region growing ap-
proach to segment the hematoma and a level set segmentation tech-
nique to segment the edema. The main novelty of this method is the
strategy applied to define the propagation function required by the
level set approach. To evaluate the method, 18 patients with brain
hematoma and edema of different size, shape, and location were se-
lected. The obtained results demonstrate that the proposed approach
provides objective and reproducible segmentations that are similar to
the results obtained manually. Moreover, the processing time is 4 min-
utes compared to the 10 minutes required for manual segmentation.

B.1 Introduction

In the last twenty years, medical imaging has assumed a major role in the diagnosis
of head-injury patients. To help diagnosis, different visualization and image pro-
cessing techniques have been developed. However, since the requirements of these
techniques vary according to the image modality and the pathology to diagnose,
the development of specialized methods is required.

In this chapter, we focus our interest on brain hematoma and edema diagnosis.
Hematoma is a localized collection of blood, usually clotted, in a tissue or organ.
It is caused by a break in the wall of a blood vessel and when it is in or near the
brain it is particularly dangerous. In particular, we deal with the hematomas caused
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by an intracerebral hemorrhage (ICH). Cerebral edema is an excess of water accu-
mulation in the intra- and/or extracellular spaces of the brain. Vasogenic edema is
the most common type of edema associated with ICH. A hematoma always has a
vasogenic edema surrounding it. The location and the volume of both hematoma
and edema are the key prognostic factors for the treatment and the course of the
patient’s recovery [59, 143].

In daily clinical practice, computed tomography (CT) images are acquired from
the patients to diagnose different pathologies. Although CT images accurately de-
scribe the size and the location of the hematoma, the edges of the edema are usually
not well defined and the range of intensities of the healthy tissue and the edema are
not easily distinguishable. This makes the segmentation process required for its
quantification a difficult task. For a correct diagnosis we propose a two step au-
tomated method to segment and quantify the hematoma and edema volumes. The
method combines the connected threshold region growing and the level set seg-
mentation techniques. In the first step the hematoma is segmented and then, using
the information from this segmentation, the level set method is applied to isolate
the edema.

To analyze the performance of the proposed approach, 3D CT images of 18 pa-
tients with brain hematomas of different size, shape and location have been used.
Our method has been compared with a manual segmentation of these images car-
ried out by trained personnel. The obtained results show that the automated method
has a higher reproducibility than the manual method, obtaining a similar accuracy.
In terms of speed, while the operator time of the manual segmentation is approxi-
mately 10 minutes, our technique needs an average of 4 minutes.

This chapter is organized as follows. In Section B.2, we briefly describe the
related work. In Section B.3, the proposed approach is introduced. In Section B.4,
the segmentation results obtained with our method and manual segmentation are
compared. Finally, conclusions are presented in Section B.5.

B.2 Related Work

Image segmentation consists in subdividing the image in its constituent parts, a
significant step towards image understanding. It is applied in many different areas,
such as medicine, robotics, visualization, etc., and many different segmentation
approaches have been proposed [55, 112, 53, 44].

Focusing on brain hematoma and edema segmentation, the majority of related
bibliography is referred to Magnetic Resonance Imaging (MRI), mainly for its su-
perior sensitivity for detecting brain tissue anomalies. In particular, Ho et al. [65]
proposed a level set technique to segment the edema region of a tumor brain prop-
erly. Recently, Corso et al. [37] introduced a new method based on bayesian clas-
sifiers to segment the brain edema using multimodal images. However, despite the
good performance of MRI, CT is the gold standard for ICH imaging because of
its sensitivity in detecting this pathology and its rapid scanning capability [36]. In
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Figure B.1: Block diagram of the segmentation process.

this context, MRI has three main limitations. First, the acute hemorrhage may be
isointense and difficult to see on the MR images. Second, the patients affected
by ICH require various support equipment, many of which cannot be taken into
the magnet room. Third, MRI requires more time, which is a critical factor in
patients with ICH. In CT brain image segmentation, the main contributions were
proposed by Loncaric et al. First, they proposed a non-fuzzy method to segment
the edema [38] and, then, they presented the fuzzy version of the previous ap-
proach [89]. They also introduced a system for 3-D quantitative analysis of human
spontaneous ICH [88] with the aim of performing quantitative 3-D measurements
of the parameters of the ICH region to correlate them to patient morbidity and
mortality.

B.3 Segmentation Framework

The framework proposed to segment both the hematoma and the edema from CT
images is divided into two stages: the hematoma segmentation step, based on a
region growing approach, and the edema segmentation step, based on a level set
strategy. The block diagram of the framework is shown in Figure B.1 and described
in detail below.

B.3.1 Hematoma segmentation

Despite the wide range of sizes, shapes and locations that a hematoma may have,
in a CT image it is readily visible since the contrast between health tissue and the
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(a) (b) (c)

Figure B.2: CT scans with a hematoma and the surrounding edema at different
brain locations.

hematoma region is very high (see Figure B.2). However, the fully automatic com-
puterized scheme for segmenting brain hematoma is difficult due to the overlapping
intensities of the damaged region with other anatomical structures such as the skull
or the dura mater. To overcome all these limitations, the method described below,
which requires minimal manual intervention, is proposed.

As illustrated in the block diagram of Figure B.1, to segment the hematoma we
use a region growing strategy. The basic approach of a region growing algorithm
is to start from a seed region, taken inside the object to be segmented, and then
to evaluate, using a homogeneity criterion, whether the voxels neighbouring this
region are part of the object. In our case we use the connected threshold criterion,
that includes, in the segmented region, all the voxels whose intensities are inside a
predefined interval. The proposed segmentation process has three main stages:

1. Initialization. To start the process, the seed and the threshold values have to
be given. The seed point is fixed by the user, picking a point on a 2D view of
the 3D volume generated from the CT images. The threshold interval values
have a default value obtained experimentally by considering the Hounsfield
values of the damaged regions of different patients. In Figure B.3(a) we can
see an example of a real case, and in Figure B.3(b) the result at the end of
this initialization step. The threshold values can be modified if necessary.

2. Connected Threshold Segmentation. Once all required values have been ini-
tialized, the connected threshold procedure starts and creates a mask con-
taining all the hematoma voxels. A display showing the generated mask
superimposed on the CT images is presented to the radiological expert (see
Figure B.3(c)). In the case that the obtained segmentation is not the expected
one, the user performs a tuning process.

3. Tuning. This step includes all the operations performed by the user to adjust
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(a) (b) (c)

Figure B.3: (a) Original image, (b) parameter setting, and (c) connected threshold
segmentation.

the final result. To carry out the tuning, two different sets of tools are pro-
vided by the user. The first is designed to modify the predefined threshold
values used in the first step of the process. The second is a set of morpho-
logical operations such as erosion and dilation designed to solve erroneous
segmentation results caused by the overlap between the intensity values of
the hematoma and the skull. This tool is used only when the hematoma is
located very close to the skull. This problem can also be solved using a
skull pre-segmentation process [89], however such a solution is a more time
consuming task and for this reason it has been discarded. All the opera-
tions required to tune the results have been implemented with ITK [1] and
VTK [2] functionalities.

At the end of this process, the boundary of the hematoma is correctly defined.
Then, the total volume is obtained by counting the number of voxels inside the
hematoma and multiplying it by the voxel volume. This is calculated by multiply-
ing the area of a slice pixel and the CT slice thickness plus the interslice gap.

B.3.2 Edema segmentation

The most challenging part of the proposed approach is the second phase, where the
edema segmentation is carried out (see Figure B.1). The edema appears as a region
surrounding the hematoma with subtle intensity variations between the edema and
the health brain tissue (see Figure B.2). The borders of the edema are not well
defined, being a limiting factor for the application of gradient-based segmentation
techniques. Moreover, the application of simple intensity thresholding techniques
is not possible due to the similarity of the intensity values of the damaged and
healthy regions, and the CT image noise. To overcome all these limitations we
propose a segmentation strategy based on the level set approach [136] which is
effective in dealing with both small-scale noise and smoother intensity fluctuations
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in volume data.
Level set segmentation relies on a surface-fitting strategy. The object to be

segmented is represented by an evolving closed 3D surface embedded as the zero
level of a 4-dimensional scalar function called the level set function, Ψ(X, t). This
function is evolved under the control of a partial differential equation governed
by image-based features, such as mean intensity, gradient and edges, or by user-
defined terms. The function is iteratively deformed and the position of the evolving
contour can be deduced at each iteration by the relation Ψ(X(t), t) = 0. The main
advantage of using level sets is that arbitrarily complex shapes can be modelled and
topological changes such as merging and splitting are handled implicitly. Many
different implementations and variants of this basic concept have been published
in the literature [136, 147, 95, 163, 71].

To design the edema segmentation method we take into account the prior knowl-
edge that the edema is always contiguous with the hematoma and it has low inten-
sity values with respect to the rest of the voxels. Moreover, since the intensity
values and the regional extension of the edema are variable, we also compute some
image statistics to reduce the parameter variability between different cases.

Our implementation is also based on ITK libraries and makes use of a generic
level set equation to compute the update to the solution Ψ of the partial differential
equation. Practically, it is computed as

d

dt
Ψ = −βP (x) | ∇Ψ | +γZ(x)κ | ∇Ψ |,

where P is a propagation term, and Z is a spatial modifier term for the mean
curvature κ. In other words, P represents the inflation and deflation of the evolving
curve, while Z represents the smoothness of the curve. The scalar constants β
and γ weight the relative influence of each of the terms on the movement of the
interface.

The definition of P (x) is the cornerstone of the process. Generally, P is defined
as a function depending on input gradient magnitudes, but in our case such an
approach is not suitable due to the low contrast between the healthy and pathologic
brain. Hence, we propose a P (x) intensity-based definition. At the beginning, we
classify the voxels of an input model (see Figure B.4(a)) in three different groups:

1. First, we consider background, cerebro spinal fluid (CSF) and skull voxels
which can be obtained by a thresholding strategy (see Figure B.4(b)).

2. Second, we take the hematoma voxels detected in the hematoma segmenta-
tion phase (see Figure B.4(c)).

3. Third, we consider the rest of the voxels, i.e. soft tissue with no hematoma
voxels, including the edema voxels.

P has to be defined for each one of the groups. For the first and second groups,
constant values −1 and 1 are assigned, respectively. In the last group, the intensity
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(a) (b)

(c) (d)

Figure B.4: (a) Input CT scan, (b) voxels of the first group obtained from back-
ground, CSF and skull segmentation, (c) voxels of the second group obtained from
the hematoma segmentation, (d) propagation function.

distribution of their voxels are analyzed. We assume that they follow a Gaussian
distribution and we characterize them in terms of mean and standard deviation
values (Figure B.5(a)). Since the edema has low intensity values, P has to assign
a fast propagation when these values are encountered. This behavibour can be
modeled by the erfc function, which is complementary to the error function erf.
The erf function is encountered in integrating the normalized gaussian function.
Then, we can define the erfc function as

erfc(x, µ, σ) ≡ 1− erf(
x− µ

σ
√

2
) =

2
σ
√

2π

∫ ∞

x
e
−(t−µ)2

2σ2 dt,

where µ is the mean and σ the variance of the integrated gaussian function. A plot
of the function is presented in Figure B.5(b). Using this function, we define the
propagation term for the voxels of the third group as

P (x, y, z) = erfc(I(x, y, z), µ− k · σ, σ)− 1,

where I(x, y, z) is the intensity at voxel (x, y, z) and k is a user-defined parameter
that sets the mean value (Figure B.5(c)). The darker the edema, the greater the
k parameter (empirically k takes values close to 0.3). This parameter modifies
the propagation term as a function of the image statistics and not directly from its
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Figure B.5: (a) Gaussian distribution, (b) erfc function and (c) the proposed prop-
agation term.

Figure B.6: Contours for different k values (0.1 (yellow), 0.2 (red), 0.3 (green), 0.4
(blue)).

intensity or gradient values. In this way, the definition of this parameter becomes
less dependent on the image features and remains more stable for different patients.
In Figure B.6, the obtained contours for different k values, ranging from 0.1 to 0.4,
are illustrated.

Taking into account all these considerations, the resulting P (x, y, z) is defined
as follows

P (x, y, z) =




−1 (x, y, z) ∈ group 1
1 (x, y, z) ∈ group 2
erfc(I(x, y, z), µ− k · σ, σ)− 1 (x, y, z) ∈ group 3

In Figure B.4(d), the propagation map obtained from the function introduced
to detect the edema of Figure B.4(a) is illustrated. Finally, the edema volume can
be computed using the same strategy as the one used with the hematoma volume.
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B.4 Results and Discussion

The proposed segmentation approach has been developed using ITK and VTK li-
braries, and has been integrated in the Starviewer platform, a medical image visu-
alization and processing framework developed in our laboratory. To evaluate the
method, 3D CT images were taken within 72 hours from 18 patients who had had a
brain hemorrhage. The CT scans were acquired on a Philips mx8000 IDT with 10
detectors using a 512×512 matrix, a 250-mm field of view and a slice thickness of
3mm with a 3mm interslice gap. A total of 45 sections per patient were acquired.
For each patient the damaged area has been measured using a conventional plani-
metric method and the proposed one. The experiments were performed by two
radiological experts (operators 1 and 2, respectively) to obtain a more objective
evaluation of the method accuracy and reproducibility.

The key aspect to determine patient treatment is the knowledge of the hematoma
and edema volumes [59, 143]. For this reason, we compared the volume measure-
ments performed by our experts using the manual tracing method and the proposed
automated method. For the manual method, the experts trace independently both
the hematoma and the edema outline on each of the CT slices. The obtained results
are illustrated in Figure B.7. In Figure B.7(a) the volumes obtained from the edema
manual segmentation of both operators are compared. Axis X and Y represent the
volume obtained by operator 1 and operator 2, respectively. In this plot, the ideal
line (y = x) is also represented and, as can be seen, the values remain close to
it. The Pearson linear correlation coefficient (0.994) and the P-value (0.000) have
been computed with the Minitab software [3]. Similarly, in Figure B.7(b) the re-
sults of the automated edema segmentation are plotted on axis Y and compared
with the manual segmentation volumes on axis X, plotting the results of operator
1 with a circle and the results of operator 2 with a cross. We have also computed
the Pearson linear correlation coefficient for operators 1 and 2 (0.980 and 0.970,
respectively) and the P-values (0.000 in both cases).

In order to measure the interoperator reliability of both methods, we define the
interoperator variance with manual tracing (IM ) and automated (IA) segmentation
algorithms as

IM = 1− AM1
⋂

AM2

AM1
⋃

AM2

and

IA = 1− AA1
⋂

AA2

AA1
⋃

AA2
,

where, AM1 and AM2 are the manually segmented regions obtained by operator
1 and operator 2, respectively, on the same image and, in the same way, AA1 and
AA2 are the regions obtained with the automated method. A value of 0 shows
perfect reliability, while a value of 1 shows no reliability. The obtained results are
reported in Table B.1. The inter-operator consistency with the automated approach
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Figure B.7: Hematoma plus edema volume comparison. (a) Manual interobserver
comparison and (b) automated-manual comparison.

IM IA

hematoma edema hematoma edema
Mean 0.31 0.36 Mean 0.17 0.42
Std. dev. 0.13 0.10 Std. dev. 0.13 0.15
Maximum 0.56 0.58 Maximum 0.52 0.67
Minimum 0.15 0.21 Minimum 0.02 0.16

Table B.1: Interoperator variance with manual tracing (IM ) and automated (IA)
segmentation algorithms.

is much better than the manual case for the hematoma. Note that for the hematoma
segmentation the mean inter-operator variation of I with the automated method is
0.17 while with the manual method the achieved value is 0.31. In the measurements
of edema, there is no significant difference in using the automated method with
respect to the manual segmentation. This is due to the badly defined edema borders
which are difficult to detect even for an expert operator.

The first study takes into account the volume of the segmented region, but not
the matching of the involved regions. In the next experiment, we want to analyze
how the segmented regions overlap. Due to the lack of a realistic phantom to be
used as the ground truth (GT), we defined this from the manual segmentations per-
formed by our experts on each volume data set. For that reason, we classify the
voxels in four different groups: true positives (TP), hematoma voxels found by both
automated and manual methods, false positives (FP), hematoma voxels isolated by
the automated method but not by the manual one, false negatives (FN), hematoma
voxels isolated by the manual segmentation but not by automated, and true nega-
tives (TN), no hematoma voxels found by both methods. The same classification
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hematoma edema hematoma edema
Op1 CR MR CR MR Op2 CR MR CR MR

Mean 0.69 0.76 0.56 0.65 Mean 0.74 0.80 0.62 0.72
Std. dev. 0.12 0.12 0.15 0.15 Std. dev. 0.10 0.08 0.11 0.14
Max. 0.87 0.96 0.74 0.81 Max. 0.86 0.90 0.77 0.96
Min. 0.41 0.56 0.21 0.29 Min. 0.48 0.54 0.42 0.50

Table B.2: Matching ratio and correspondence ratio comparing manual tracing and
automated segmentation of brain hematoma and edema for each operator.

has been used for the edema segmentation.
Two measures are used for the evaluation of the results, the matching ratio

(MR) and the correspondence ratio (CR), defined, respectively, by

MR =
nTP

nGT

and

CR =
nTP − 0.5nFP

nGT
,

where nTP , nFP , and nGT represent the number of voxels of the regions TP,
FP, GT, respectively.

MR is calculated as the direct ratio of the number of TP voxels to the number
of GT voxels. The ideal value of MR is 1.0 while a value 0.0 indicates that there is
a complete absence of any GT voxel. The CR allows us to discuss the way in which
the isolated region corresponds in size and location to the GT while weighting
the importance of FP and FN. When the value of CR is 1.0, the system achieves
a perfect matching without any false positives. Note that CR can take negative
values.

In Table B.2, the MR and CR obtained from the automated segmentation are
given by considering the manual tracing of each operator as the GT. From this
table, we can observe that the hematoma segmentation results achieve very good
results for both operators. In the edema case, the results are not so good, due to its
intrinsic difficulty in differentiating its intensity values. The achieved results are
comparable to those in the studies of Fletcher et al. [52] and Chong et al. [27].

Finally, the CR and MR values for each patient with the corresponding manual
segmentation are compared. The obtained results are plotted in Figure B.8, where
axis X represents the manual volume and axis Y the CR parameter in the Fig-
ure B.8(a) and the MR parameter in Figure B.8(b), respectively. In both figures,
the results of operator 1 are represented with a circle and the results of operator
2 with a cross. Note that the worst results are achieved for the smallest lesions.
Considering the relative nature of these measures, the obtained behavibour is the
desired one, since it leads to a low absolute error for the worst cases.
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Figure B.8: (a) CR ratio and (b) MR ratio versus the edema plus hematoma vol-
ume.

We have computed the time required to carry out a complete study using both
manual and automated methods. Manual segmentation requires an operator time
average of 10 minutes while the proposed approach requires approximately 4 min-
utes, from which 100 seconds are spent to the slice by slice verification process.

The obtained results demonstrate that the proposed approach provides objective
and reproducible segmentations that are close to the manual results. Moreover, the
processing time required to evaluate a patient is reduced considerably.

B.5 Conclusions

The measurement of hematoma and edema volume from brain CT scans is a key
prognostic factor in its treatment. In clinical practice this task is usually done man-
ually which is very time consuming and operator dependent. We have presented
an automated segmentation approach to measure the volume of these regions using
a CT image. We have proposed a new level set approach which considers some
image statistics in order to set the parameters. The method has been tested on a
sample set of 18 patients and compared with the manual segmentation process.
The obtained results are very promising, demonstrating its reliability and accuracy.
The suitability of the level set approach for the edema segmentation on the CT
brain scans has also been proved. The proposed approach reduces the operator
processing time for each study from 10 minutes to 4 minutes.
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