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First prompted by the fact of aviation, I 

have applied the laws of the resistance of air to 

insects, and I arrived, [with my assistant 

engineer], at the conclusion that their flight is 

impossible. 

Antoine Magnan, entomologist, 1934 

 

That was a time when we were just 

beginning to think we understood aerodynamic 

principles, as applied to fixed-wing aircraft, but 

scientists recognized their limitations in 

applying the principles to the birds and insects 

and other creatures in the natural world. I'm 

sure no one, including the bees, seriously 

doubted that insects can fly. Now we're 

beginning to understand why. 

Z. Jane Wang, physicist, 2000 
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The idea for an IRT model underlying responses to forced-choice 

questionnaires first came to me after accidentally coming across an article by Dr. 

Alberto Maydeu-Olivares (1999) on my summer holiday. The article showed how 

ranking data can be modeled using the Thurstone’s theory of latent utilities. The 

model was suggested mainly for marketing applications; however, it was striking how 

well it suited to little building blocks of huge monsters – forced-choice questionnaires. 

At the time I was intensively working with the most well-known forced-choice 

questionnaire around, OPQ32i. I had just finished a huge project involving OPQ32 – 

re-designing and re-writing its technical manual together with my colleagues in the 

research team of SHL Group. There was hardly anything I did not know about 

OPQ32; however, the internal workings of its forced-choice version remained a 

mystery for everybody. However robust it was to response biases, or however well it 

predicted important work outcomes, it had a very special problem. It yielded ipsative 

data. The psychometric problems of ipsative data, if somewhat remote from the 

practitioners’ considerations, were obvious – individual scores were constrained in 

such a way that earning more points on one trait meant losing them on others. 

Despite having high correlations with its normative counterpart, OPQ32n, the 

OPQ32i had always been criticized by test theorists.  

The article by Maydeu-Olivares got me thinking that it might be possible to 

apply a similar model to the problem at hand, and see if the OPQ32i data can be 

recoded and treated as the ranking tasks he described. I did not know anything 

about Dr. Maydeu-Olivares, but I was naïve and just wrote him an email in August 

2006. To my surprise, he replied almost immediately and said that applying 

Thurstonian models to forced-choice questionnaires would be of a great interest to 

him. Little I knew that this was a beginning of very successful research collaboration. 

Very early on I realized that the second-order Thurstonian factor model 

simply would not work for my data, because tests like OPQ32i consisted of hundreds 

of items and measured dozens of traits. The factor model could estimate a few traits 
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and items at best. Necessity is the mother of invention, and I started thinking how 

to get rid of variables in the model I could do without. Utilities seemed to serve no 

purpose for the person-centered applications in personality assessment, and I 

attempted to drop the utilities from the model, linking binary outcomes of pairwise 

comparisons to the latent traits directly. Alberto Maydeu-Olivares said that my 

model is too simplistic and it would not work.  

However, it seemed to make sense for my data, and intermediate results 

suggested that the estimated trait scores, despite all crude and simplifying 

assumptions made in those early models, actually show normative properties. The 

research was then based on CCSQ, a smaller monster than OPQ, with only (!) 16 

traits and 192 binary outcomes. The latent scores estimated from forced-choice 

responses were good – factor-analyzing them for the first time proved that the 

structure of the test was recovered well. At that point Alberto suggested that I do a 

PhD on this topic, and I gladly took the opportunity.  

The ultimate aim of all this modeling for me was OPQ32i. There was a big 

problem in store, however. The software we used, Mplus, had a limit on the number 

of observed variables (500), and simply could not handle the 624 binary outcomes of 

OPQ32i. Again, one has to be stubborn and determined enough and try different 

solutions to the problem at hand. My thoughts were: “if it is impossible to estimate 

the whole test with all its binary outcomes, how about taking a subset of items, let’s 

say first ¾ of the test and simply ignoring the rest?” To my surprise, this reduced 

subset of items provided an excellent basis for estimating the latent traits. The trait 

scores correlated highly with their normative counterparts and seemed to provide 

good measurement precision. Another idea was born. 

The OPQ32i has 104 ranking blocks, with 4 items in each. It is long, and it is 

complex. It takes between 50 and 60 minutes to complete, and people complain that 

it is cognitively demanding to rank-order 4 items. But if only about 75% of the items 

can provide the measurement precision needed with the IRT forced-choice model, 

why not shorten it and be clever about how to take items out? If one item is taken 

out of each block of 4, making it a block of 3, twice fewer pairwise comparisons need 
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to be made. The test becomes less cognitively demanding, and should take much less 

time. Most importantly, this new questionnaire can be scored using the IRT 

methodology I was working on. The scores produced by the forced-choice OPQ32 

would no longer be ipsative! This idea was wholeheartedly supported by Professor 

Dave Bartram, Research Director at SHL Group. I began shortening the OPQ32i in 

2008. 
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in the choice of identification constraints, and simplifying assumptions. Their 
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than the original Thurstonian factor model. In January of 2009, after thinking 

intensely of a more elegant way to model the factor loadings and the measurement 

errors to match the factor model more closely, I suddenly saw a solution. It was 

possible to keep the most important features of the Thurstonian factor model but 

retain the advantages of the IRT approach by introducing structured local 

dependencies and structured factor loadings. The shortening of OPQ32i was 

completed in 2009 using this approach. 

In the summer of 2009 Dr. Maydeu-Olivares and I presented a paper at the 

Psychometric Society conference that outlined the Thurstonian IRT model in its 

final shape (Brown & Maydeu-Olivares, 2009). Now the two models (Thurstonian 

factor model and its reparameterized IRT version) were identical in terms of fit and 

parameters, but the IRT version had an advantage of being able to handle huge 

models, score individuals, and provide means for estimating test reliability. The 

problem with ipsative data was solved. 

And this is the journey that was made possible by the extraordinary support 

that was given me by (now) Professor Alberto Maydeu-Olivares, who has been 

critical but constructive, available 24/7 to consider any crazy ideas, and incredibly 

selfless. Apart from passing an enormous amount of psychometric knowledge, he also 

taught me how to write proper journal papers. I could never repay this debt. 
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Overview 

This dissertation is a result of 4-year research into modeling of preference 

decisions as applied to forced-choice personality questionnaires. Personality is the 

main focus of this research; however, most of the theory outlined below will also 

apply to assessment of motivation, interests, attitudes etc. 

The dissertation is structured as follows.  

In the Introduction, the forced-choice format is introduced and its advantages 

in reduction of response biases are discussed. The conventional methodology of 

scoring forced-choice tests is described that results in ipsative data. The 

psychometric properties of ipsative data are summarized and their implications for 

psychological assessment are discussed.  

Second, new emerging approaches to constructing and scoring forced-choice 

items under the IRT framework are reviewed. It is shown that none of these 

approaches may be applied to the existing forced-choice questionnaires.  

In the Method section, a multidimensional IRT model based on Thurstone's 

theory of comparative judgments is proposed, which effectively overcomes the 

limitations of existing approaches and is suitable for most forced-choice 

questionnaires existing today. It is shown how the Thurstonian IRT model can be 

embedded in a structural equation modeling framework, and its identification 

constraints and estimation options are described. The item characteristic function 

and item information function are given. It is also shown how to compute the test 

information and estimate the test reliability.  

Next, the forced-choice response model is used to investigate necessary 

conditions for providing resistance to response biases. A class of response biases is 

identified for which forced-choice format is effective; other classes are briefly 

discussed and recommendations are given on how to construct the forced-choice 

questionnaires to maximize resistance against the response biases.   
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In the Simulation Studies section, simulations are performed to investigate the 

performance of the model across a variety of forced-choice designs. The simulation 

studies provide important information about the assessment of model fit, and 

estimation of the model parameters under different conditions. The designs used in 

the simulation studies are chosen to answer important questions about strengths and 

limitations of forced-choice questionnaires with dominance items, and their results 

have important implications on how forced-choice tests should be designed and used 

in the future.  

Two Empirical Applications are given to illustrate how the model may be 

applied in practice. A short Big Five instrument designed specifically for this 

research is assessed, comparing results derived from the traditional rating scale 

format and the forced-choice format using the Item Response Theory. Also, a forced-

choice personality test used for workplace assessments is scored using the classical 

methodology (producing ipsative scores) and using the IRT approach. The IRT-

derived scores are explored in detail, including their reliability, construct validity and 

interpretation of individual profiles. It is concluded that when the IRT method is 

used, the estimated scale scores have normative properties and are similar to the 

scores derived from the single-stimulus version of the questionnaire. 

Finally, the Discussion section summarizes the research findings and their 

implications, makes recommendations for effective forced-choice designs and outlines 

directions for future research. 
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Abstract 

Multidimensional forced-choice questionnaires can reduce the impact of 

numerous response biases typically associated with Likert scales. However, if scored 

with traditional methodology these instruments produce ipsative data, which has 

psychometric problems, such as constrained total test score and negative average 

scale inter-correlation. Ipsative scores distort scale relationships and reliability 

estimates, and make interpretation of scores problematic. This research demonstrates 

how Item Response Theory (IRT) modeling may be applied to overcome these 

problems. A multidimensional IRT model for forced-choice questionnaires is 

introduced, which is suitable for use with any forced-choice instrument composed of 

items fitting the dominance response model, with any number of measured traits, 

and any block sizes (i.e. pairs, triplets, quads etc.). The proposed model is based on 

Thurstone's framework for comparative data. Thurstonian IRT models are normal 

ogive models with structured factor loadings, structured uniquenesses, and structured 

local dependencies. These models can be straightforwardly estimated using structural 

equation modeling (SEM) software Mplus. Simulation studies show how the latent 

traits are recovered from the comparative binary data under different conditions. 

The Thurstonian IRT model is also tested with real participants in both research 

and occupational assessment settings.  It is concluded that when the recommended 

design guidelines are met, scores estimated from forced-choice questionnaires with 

the proposed methodology reproduce the latent traits well.  

 

Keywords: forced-choice format, forced-choice questionnaires, ipsative data, 

comparative judgment, multidimensional IRT. 
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Introduction 

Personality research relies heavily on self-reported measures (i.e. 

questionnaires). The typical questionnaire item consist of an item stem, which is the 

stimulus material requiring a response, and a system of recording the item response 

(McDonald, 1999, page 18). Item stems are very often statements describing 

behavior, state, interest or preference. Respondents have to evaluate the statements 

in terms of how well they describe them (their typical behavior, their current state, 

preference etc.).  

Single-stimulus response format 

The most popular response format used in personality assessment is the so-

called single-stimulus (SS) format, where respondents are asked to rate each item 

according to the extent it describes their personality. The distinct feature of the 

single-stimulus format is that each item is rated separately, therefore absolute 

judgments are made. 

Item responses can be given by selecting one of several categories ranging, for 

example, from “strongly disagree” to “strongly agree”, or from “never” to “always”, 

or from “very inaccurate” to “very accurate” etc.: 

 

strongly 

disagree disagree 

neither 

agree nor 

disagree agree 

strongly 

agree 

I am careful over detail    �  

 

This ordered-category response format is commonly referred to as the Likert 

scale. Continuous responses are also possible, and this is accomplished by providing a 

graphic rating scale or sliding scale, where the respondent can choose any value 

between given extremes. One or several anchors can be provided to help the 

respondent make this choice. 
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Responses to single-stimulus items are typically coded by assigning a number 

to each of the ordered response categories, or to the chosen position on the 

continuous scale. For instance, whole numbers from 1 to 5 are assigned to respective 

categories of 5-point response scales, such as the “strongly disagree”-“strongly agree” 

scale presented above.  

After responses to items serving as indicators for a particular personality trait 

have been coded, these codes can be combined in some meaningful way to form a test 

score. Under the Classical Test Theory (CTT) approach, most often item codes are 

simply added together, forming a sum-score. The Item Response Theory (IRT) 

provides a more complex way of deriving a test score through finding a trait level 

that maximizes the likelihood of the given responses to all items (response pattern). 

In relation to the single-stimulus personality items, the IRT approach 

introduced a potential advantage by treating the categorical Likert responses as 

merely ordinal, where the classical sum-score approach would use whole numbers 

representing the response categories as they were interval scores. In doing so, the 

CTT approach makes an assumption of equal distances between the response 

categories. In reality, however, it is highly unlikely that the difference between 

“disagree” and “neither agree nor disagree” is exactly the same as the difference 

between “agree” and “strongly agree” (Baron, 1996). The IRT approach allows for 

estimating boundaries between the response categories rather than assuming that 

they are equidistant (e.g. Samejima, 1997).  

Response biases affecting single-stimulus items 

Fundamentally, scoring of single-stimulus items relies on the assumption that 

respondents interpret the rating scale (category labels or anchors) in the same way. 

This assumption, however, is very rarely tested in applications, and research 

available on the issue suggests that interpretation and meaning of response categories 

vary from one respondent to another (Friedman & Amoo, 1999). Clearly, individual 

differences in interpretation of the rating scale can affect the validity of the test 

score, regardless whether the CTT or IRT approach is used. 
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In addition to the bias arising from the interpretation of the rating scale itself, 

there are several other biasing factors associated with the single-stimulus 

presentation of items. For instance, some respondents may avoid extreme response 

categories (central tendency bias), whereas others may prefer them. Respondents 

might tend to agree with statements as presented (commonly referred to as 

acquiescence bias or “yea-saying”). The opposite is also possible – the general 

tendency to disagree with statements. This idiosyncratic use of the rating scale often 

becomes apparent when both positively and negatively keyed items are used to 

measure a psychological attribute. The tendency to agree with both positively and 

negatively keyed items creates a problem with the trait measurement, and requires 

special modeling (Maydeu-Olivares & Coffman, 2006).  

Another problem with the single-stimulus format is getting respondents to 

differentiate between personal attributes. For example, when asked to rate another 

person’s workplace behaviors (as in the 360 degree feedback), it is quite common for 

respondents to give very similar ratings on all behaviors. This bias reflects an over-

generalized view of the rated person based on his/her performance on a single 

important dimension. Depending on whether the rater judges this individual to be 

generally a good or a poor performer, “halo” and “horn” effects are described 

(Murphy, Jako & Anhalt, 1993). 

Consciously or unconsciously, respondents tend to agree with seemingly 

desirable items and disagree with undesirable ones, engaging in socially desirable 

responding (for an overview see Zickar & Gibby, 2006). When the stakes are high, as 

in personality assessment in occupational settings, conscious distortions may occur 

bringing the responses to a level perceived to be more favored by a potential 

employer referred to as faking (e.g. Griffith & McDaniel, 2006). The single-stimulus 

format where items are rated separately from each other makes all these types of 

biases possible. It is hard to estimate the frequency of such distortions, but they will 

inevitably affect the questionnaire’s validity (Haaland & Christiansen, 1998). 
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Forced-choice format 

Forced-choice (FC) formats were designed to reduce response biases. Instead 

of evaluating each statement in relation to a rating scale, respondents have to choose 

between statements according to the extent these statements describe their 

personality.  Therefore, the forced-choice format involves comparative judgments. 

Forced-choice tests consist of blocks of two or more statements. When there 

are 2 statements in a block, respondents are simply asked to select one statement 

that better describes them. For blocks of 3, 4 or more statements, respondents may 

be asked to rank-order the statements, or to select one statement which is “most like 

me” and one which is “least like me”. For example: 

 Most like me Least like me 

I manage to relax easily  � 

I am careful over detail �  

I enjoy working with others   

I set high personal standards   

The example above involves items from different dimensions. It is also possible 

to have a mixture of statements from the same dimension and different dimensions 

compared in the same block, and this is considered a special case within a general 

multidimensional framework. 

Direct item comparison overcomes the problems with interpretation of the 

rating scale altogether. The fact that respondents cannot endorse all items eliminates 

acquiescence responding (Cheung & Chan, 2002). The forced choice makes it 

impossible to provide the same response on all items, which will typically result in a 

greater differentiation of scores within a profile thus reducing the “halo” effects. 

Bartram (2007) shows that if the forced-choice format is employed in ratings of 

competencies by line managers, where the “halo” effects are notoriously high, it can 

increase operational validity of predictor instruments by as much as 50% in 

comparison to single-stimulus performance ratings.  
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Forcing to choose between seemingly equally desirable items can reduce 

socially desirable responding. Recent evidence has shown that forced-choice item 

formats may be useful in applicant contexts because they are less susceptible to 

impression management distortion than single-stimulus items (Christiansen, Burns, 

& Montgomery, 2005; Jackson, Wroblewski, & Ashton, 2000; Martin, Bowen & 

Hunt, 2001; Vasilopoulos, Cucina, Dyomina, Morewitz &Reilly, 2006). At the group 

level of analysis, when instructed to “fake good” on single-stimulus measures, 

respondents can raise their scores by as much as one standard deviation, compared 

to one third of the standard deviation for forced-choice measures (e.g. Christiansen et 

al., 1998; Jackson et al., 2000). This is not to say that respondents cannot fake such 

measures, but that they find it harder, particularly when all traits measured in the 

questionnaire are perceived to be equally important for the job success. 

Unsurprisingly, there is evidence that cognitive ability is a positive predictor of 

successful response distortion of forced-choice instruments (e.g. Vasilopoulos et al., 

2006).  

For practitioners, the most important measure of questionnaire effectiveness is 

criterion-related validity. If a reduction in response biases results in more accurate 

prediction of external criteria, other considerations are less important. Previous 

research generally found the external validities of single-stimulus and forced-choice 

formats to be comparable in straight-taking, or honest, conditions (e.g. Bartram et 

al, 2006; Gordon, 1976; Jackson et al, 2000), and forced-choice formats to be superior 

in faking conditions, where biases are higher (e.g. Christiansen et al., 1998; Jackson 

et al, 2000). In sum, comparative judgments made in forced-choice questionnaires can 

have advantages over absolute judgments made in single-stimulus questionnaires.  

Problems of ipsative data 

Despite their possible advantages in reducing response biases, forced-choice 

questionnaires have been controversial because their traditional scoring methodology 

results in ipsative data, very special properties of which can pose threats to construct 

validity, and score interpretation as well as other substantial psychometric challenges 
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(e.g. Dunlap & Cornwell, 1994; Johnson, Wood, & Blinkhorn, 1988; Meade, 2004; 

Tenopyr, 1988).  

Data is ipsative when the sum of all scores obtained for any individual is a 

constant. Forced-choice questionnaires represent only one of various ways by which 

ipsative data is obtained. Because item responses from forced-choice questionnaires 

are ordinal, the data derived from them is known as ordinal ipsative data (Cheung & 

Chan, 2002). Variations in item keying and scoring produce fully ipsative or partially 

ipsative scores, with partially ipsative scores being half-way between the ipsative and 

the normative scores. To illustrate the controversy behind the use of ipsative scores, 

the below discussion will concentrate on the most extreme, and therefore the most 

problematic type, fully ipsative scores. 

It is easy to see how this type of data comes about if one considers how the 

forced-choice format is scored. The usual way of scoring forced-choice items is simply 

taking their inverted rank-orders (or values derived from them through a linear 

transformation), and adding them to the respective personality traits. For example, 

in a block of four statements the most preferred item (ranked first) is given 3 points 

to add to the trait it measures, and the least preferred (ranked fourth) is given 0 

points. Alternatively, if only “most like me”, “least like me” choices are made, the 

most preferred item adds 2 points to its respective trait, the least preferred item adds 

0 points, and the remaining items add 1 point each to their respective traits. 

Therefore, regardless of the choices made, item scores in the block always add up to 

the same number, and therefore the total test score (sum of all the blocks) is the 

same for each individual.  

Relative nature of scores 

Because the questionnaire allocates the same total number of points for 

everyone, it is impossible to achieve high (or low) scores on all scales in a multi-trait 

questionnaire. Achieving a high sum-score on one scale will inevitably mean receiving 

lower scores on other scales. Therefore all ipsative profiles have the same average 

score regardless if the true scores were overall above or below average. 
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In idealized conditions, any two individuals with the same ordering of true 

scores will produce exactly the same ipsative profiles, even when one individual’s true 

scores were on the high end of the distribution, and the other’s were at the low end. 

Therefore, many have argued (e.g. Closs, 1996), ipsative scores make sense for 

comparison of relative strength of traits within one individual, but they do not 

provide information on absolute (normative) trait standing, therefore comparisons 

between individuals are meaningless. 

Is this true for all ipsative scores? It is still not well understood by many 

researchers that the number of measured traits can substantially influence the 

impact of the constrained overall test score. Baron (1996) shows that with a large 

number (30 or more) of relatively independent scales, less than one in 100 million of 

respondents will have all their true trait scores on the same side of the profile, i.e. all 

high or all low. With a comprehensive range of relatively independent normally 

distributed traits, most people will have their average profile score around the mean 

anyway; and in this case, norming of ipsative scores is appropriate and intra-

individual comparisons can be performed meaningfully. In carefully designed forced-

choice questionnaires with 30 or more measured traits, the ordering of people on each 

trait largely corresponds to their normative ordering (Baron, 1996; Karpatschof & 

Elkjaer, 2000). 

With a small number of scales, however, it is more likely that people with the 

same relative ordering of trait scores can have very different true scores. Therefore, 

for a small number of scales, the constrained total test score will result in distorted 

ordering of people (see for example the results of a study with 8-scale forced-choice 

measure by Meade, 2004). For such tests, ipsativity can have serious implications for 

the interpretation of scores and selection decisions in applied settings, and remains 

the most serious limitation in practice. 

Distorted construct validity 

Constraining the total score to be a constant will lead to zero variance of the 

total test score. This means that all elements of traits’ covariance matrix will sum to 

zero (Clemans, 1966). It is easy to see that with the covariances summing to zero, 
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the average off-diagonal covariance is a negative value, and the same is true for 

correlations. The average off-diagonal correlation in an ipsative measure with d 

dimensions is: 

 
1

( 1) 1
d

r
d d d
� �

� �
� �

. (1) 

Again, the extent to which the negative average correlation causes a problem 

depends on the number of traits in the questionnaire, because the average correlation 

will approach zero as the number of traits increases. If a fully ipsative measure was 

designed measuring only 2 traits, they would correlate at -1. Therefore one trait’s 

score would completely determine the other trait. With 4 traits, the average off-

diagonal correlation is -0.33. In this case, the distortion to the relationships between 

constructs may be very substantial, particularly when the true trait scores are 

supposed to be positively correlated. With 30 traits, the average off-diagonal 

correlation is -0.03, allowing for a wide range of both negative and positive inter-

correlations (Bartram, 1996; Baron, 1996). Still, correlations between traits are 

typically depressed in ipsative instruments as compared with their normative 

counterparts (Bartram, Brown, Fleck, Inceoglu & Ward, 2006). 

Though more interpretable with a large number of measured traits, 

conventional factor analytic procedures are inappropriate for use with ipsative data. 

If attempted, the factor analysis extracts bipolar factors, which include contrasting 

scales from two different substantive factors (Dunlap & Cornwell, 1994; Baron, 

1996). In summary, ipsative data clearly compromises the construct validity of 

forced-choice questionnaires. 

Distorted reliability estimates 

It is generally agreed among researchers that the ipsative data distorts the 

internal consistency of instruments, but in which direction and to what degree 

appears to be highly dependent on specific conditions (see discussion in Baron, 1996). 

Saville & Willson (1991) found that under the perfect conditions of simulated forced-
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choice data, ipsative scores showed reliability of 0.96 for 32 uncorrelated constructs 

and gradually lower values as the number of scales decreased.  

Generally, Cronbach’s alpha is an inappropriate statistic for reliability 

estimation for the forced-choice format because ipsative data violates some important 

assumptions that the alpha statistic relies on. The first problem is that the most 

fundamental assumption, independence of error variance, is violated in ipsative data. 

Indeed, responses to items in the same block are not independent given the latent 

traits – instead, a response given to one item depends on responses given to all other 

items in the block (Meade, 2004). The second problem is that the assumption of 

consistent coding (i.e. high values must have the same meaning across items) is also 

violated in ipsative data, except in very specific designs. See Appendix A for an 

illustration of this argument. 

Some authors have argued that appropriateness of other types of reliability, 

such as test-retest, is also doubtful with the ipsative data. Classical Test Theory 

defines the reliability as the proportion of variance due to the true scores. Because 

ipsative scores violate the CTT assumptions, formulae used to derive various 

reliability estimates are simply not tenable (Hicks, 1970; Dunlap & Cornwell, 1994; 

Johnson, Wood, & Blinkhorn, 1988; Tenopyr, 1988; Meade, 2004). In summary, 

while relying on alpha and other CTT statistics clearly has its limitations when 

dealing with ipsative data, the question about the real levels of reliability in forced-

choice questionnaires remains unanswered.  

In spite of these statistical arguments, forced-choice tests have been popular 

with practitioners over years as with a sufficient number of measured dimensions 

normative and ipsative versions of the same instrument produced empirically 

comparable results (Baron, 1996; Karpatschof & Elkjaer, 2000). For theorists, 

however, the problems with ipsative data are serious enough to remain concerned by 

use of the forced-choice format.  
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Inadequacy of the classical methods of scoring forced-choice items 

It is important to understand, however, that the apparent psychometric 

problems of ipsative data are not inherent to the forced-choice format itself, but 

originate from the traditional way of scoring.  

Despite their obvious presentation differences, single-stimulus and forced-

choice items have been scored in pretty much the same way. For positively keyed 

items, in the single-stimulus format an item adds points to its respective trait score 

according to the degree it was agreed with; and in the forced-choice format an item 

adds points to the trait score according to the degree it was preferred to other items. 

The respondent will receive the highest number of points for the item he/she 

preferred (ranked first), and the lowest number of points for the item that was least 

preferred (ranked last). Nevertheless, it is quite clear that forced-choice items are 

different from single-stimulus items because the item’s rank in the block depends not 

just on the item itself (or more precisely on the trait the item is intended to 

measure), but also on all other items in the block. When giving the top rank to one 

item, the respondent does so not because he/she agrees with the statement, but 

because he/she agrees with that statement more than with the other statements in 

the block. The classical scoring methodology as it stands cannot adequately describe 

the decision process behind responding to the forced-choice questionnaires. For 

instance, the fact that forced-choice items are not assessed independently, therefore 

violating one of the basic assumptions of test theory, independence of error variance, 

is totally ignored in current ipsative scoring. This scoring assumes that preferring one 

item to another is the same as to agreeing with one and disagreeing with the other. 

Meade (2004) shows how responding to one forced-choice item is dependent on all 

traits represented in a block, and argues that the decision process that respondents 

use to select items “is unknown and inherently alters the psychometric properties at 

the item level”.  

The psychological process of responding to forced-choice items is certainly 

different from single-stimulus items, and understanding this process is the key to 

making sense of comparative data. With potentially advantageous features of the 
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forced-choice format and problematic properties of the data it is associated with, an 

alternative method of scoring is needed for forced-choice questionnaires. 

IRT approaches to scoring forced-choice items 

Two new approaches have been proposed recently to describe the process of 

making choices between questionnaire items, and apply this modeling to creating new 

forced-choice measures. Both approaches make use of a special type of items, so-

called ideal-point (or unfolding) items. These terms were coined by Coombs (1964) 

based on the original work of Thurstone, who described a process of responding to 

attitude items (Thurstone, 1929). Thurstone argued that because such items often 

represent moderate or mid-scale standing for a particular attitude, the probability of 

agreeing with them is the highest for individuals with this exact level of the attitude, 

and reduces for persons with extremely strong attitudes in both directions – either 

toward the top or the bottom of the scale. The likelihood of agreeing with an item in 

unfolding models peaks at a certain point on the latent trait continuum (the item 

location), and decreases as the person’s trait score departs further from that location. 

When plotting the likelihood of agreeing with such an item against the latent trait, 

the item have ideal-point (bell-shaped) response function, as opposed to dominance 

(s-shaped) response function typical for traditional personality items. 

Originally suggested for attitude items, the unfolding models have been tested 

with behavioral items typical for personality questionnaires. Stark, Chernyshenko, 

Drasgow and Williams (2006) found that a very small proportion of existing 

personality items they examined had a response function that complied with the 

dominance model for most of the latent trait continuum, but showed a small 

downward trend for very extreme positive scores. They have argued that these items 

would be better served by the ideal-point model. As far as existing personality items 

are concerned, the occurrence of the ideal-point response functions is very rare; 

however, it is possible to write items specifically to fit the ideal-point response model. 

Such items would be designed to represent a moderate standing on the latent trait, 

for instance: “My attention to detail is about average”. Clearly, the likelihood of 
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agreeing with this item would be high for respondents with an average score on 

Conscientiousness, and be lower for respondents with very high or very low scores. 

McCloy, Heggestad and Reeve (2005) rely on ideal-point items and relate the 

likelihood of preferring one item to another to the difference between distances from 

the item locations to the person’s true scores. In this model, a respondent is more 

likely to prefer the item located closer to one’s own true score on the respective trait 

to the item located further from one’s own true score. Based on this theory, McCloy 

and colleagues suggest a way of creating forced-choice tests by repeatedly presenting 

blocks of items from different dimensions with locations that vary across the trait 

continuum. The items’ IRT location parameters are established through single-

stimulus presentation. By combining items with different locations, it is theoretically 

possible to find the most likely trait level for an individual. This method is proposed 

as a way of creating new forced-choice tests but does not offer a solution for scoring 

most tests existing today because of its restrictions on item properties. It is essential 

for the method to work that all items have ideal-point response functions and varied 

locations, and grouped in a very specific way, which is not the case with the existing 

forced-choice questionnaires.  

Stark, Chernyshenko and Drasgow (2005) approximate the probability of 

preferring one item to another by the joint probability of accepting one statement 

and rejecting the other. These probabilities of acceptance and rejection are IRT-

based and established through single-stimulus trialing. Stark and colleagues show 

how to create forced-choice tests by assembling pairs of items from different 

dimensions (using a small proportion of one-dimensional pairings) based on their 

single-stimulus IRT parameters. They also use the generalized unfolding model as a 

basis for IRT calibration of single-stimulus items. However, the model is limited to 

pairs of items and does not deal with blocks of three or more statements, which are 

popular in existing forced-choice questionnaires. One-dimensional pairings required 

by the method to set a scale for each trait also limit its applicability to existing 

forced-choice tests. Furthermore, the methodology involves a numerical solution of 

systems of equations requiring substantial expertise in using specialist subroutines 

and setting starting values, which is likely to be a barrier for most researchers.  
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The need to model forced-choice dominance items  

Most existing personality items and questionnaires were created under the 

classical test theory assumptions where items by design correlate strongly with their 

respective scales. Any mid-level or double-barreled items that might be acceptable in 

the unfolding models are typically removed from the classical personality scales. 

“Good” personality items, in the classical sense, represent strong statements typical 

of someone with a very high (or very low for the negatively keyed items) true score 

on the trait. From the ideal-point process logic, such items would have such high/low 

locations that no respondents would exist beyond that location to disagree with 

them.  

Such items, whether used in the single-stimulus or the forced-choice format, 

represent a dominance response process. In the dominance model, just like in ability 

testing, the probability of agreeing with an item is monotonically increasing as the 

score on the underlying trait increases. The dominance model assumes that items are 

written in a way that they serve as either positive or negative indicators of the latent 

trait, having ever growing (or decreasing) utility for respondents with higher trait 

scores. Examples of positively and negatively keyed dominance items are: “I keep my 

paperwork in order” and “I struggle to organize my paperwork“, respectively. For 

any two respondents, the utility for the first item will be higher for the individual 

whose score on Conscientiousness is higher, and this will be reversed for the second 

item. 

Dominance items are by far more prevalent in existing personality 

questionnaires, either using the single-stimulus or the forced-choice formats. An 

examination of the popular 16PF questionnaire shows that the vast majority of items 

fit the dominance model (Stark, Chernyshenko, Drasgow & Williams, 2006). Popular 

forced-choice questionnaires, such as the Occupational Personality Questionnaire 

(OPQ; Bartram et al., 2006), the Customer Contact Styles Questionnaire (CCSQ; 

SHL, 1997), the Survey of Interpersonal Values (SIV; Gordon, 1976) consist of strong 

statements representing a very high level of the latent trait and strongly correlating 

with their respective scales. Given the absence of an adequate model for these 



 

17 

 

popular personality questionnaires, and any future questionnaires utilizing the most 

widespread type of items, this research is aimed at introducing a model suitable for 

the multidimensional forced-choice format with dominance items. 

Thurstone’s framework for comparative judgment 

Trying to address the problem of ipsative data, Chan and Bentler (1998) 

proposed a method for analyzing the covariance structure of ordinal ipsative data, 

which uses information from comparisons between the object ranked first and all 

other objects. Such modeling would apply to a single ranking block. Maydeu-Olivares 

(1999) proposed a method of analyzing mean and covariance structure of 

comparative data that uses all paired comparisons underlying the choices within the 

ranking block, therefore using more information from the observed ranking patterns. 

Crucially, he linked preference choices to the Thurstone’s theory of latent utilities.  

Thurstone (1927, 1931) proposed a theory that attributes the outcome of a 

comparative judgment to the relative utility value of the objects under comparison. 

As such, it is based on three assumptions. First, each choice alternative elicits a 

latent continuous utility judgment as a result of a discrimination process. Utility is a 

concept typically describing the value of an object for the respondent; for personality 

items the utility would describe the extent of how closely the statement resembles 

the respondent’s typical behavior or preference. Second, the respondent chooses the 

alternative with the largest utility value at the time of comparison. Third, utility 

values are distributed normally in the population of respondents. By assuming that a 

factor model underlies the utilities of the choice alternatives, this approach offers a 

suitable model for forced-choice dominance items.  

In Thurstonian factor models for rankings (Maydeu-Olivares, 1999; Maydeu-

Olivares and Böckenholt, 2005), pairwise comparisons between all items in a ranking 

task (that essentially amount to “preferred”-“not preferred” outcomes) are the 

observed binary variables; and the latent utilities are modeled as the first order 

factors that determine the binary outcomes. The second order factors are (in this 

case) the personality traits assumed to cause utilities of items. Therefore, a 
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Thurstonian factor model is essentially a second-order factor model for dichotomous 

data.  

Although Thurstonian models provide an attractive representation of 

responding to forced-choice items, they have not been extensively used since no 

efficient estimation methods were available. Maydeu-Olivares (1999) proposed an 

estimation approach that embeds Thurstonian models within a more familiar 

structural equation modeling (SEM) framework and allows complex models for 

comparative judgments to be estimated and tested efficiently (see also Maydeu-

Olivares & Böckenholt, 2005). A Thurstonian factor model works successfully with 

small forced-choice tasks to estimate parameters of the latent utilities at the sample 

level. However, the model estimates many latent variables and therefore there are 

limits on the amount of forced-choice items that can be estimated with today's 

hardware and software. In the author’s experience, at most five scales measured by 

15-20 blocks of statements of four items can currently be estimated using the second-

order Thurstonian factor model for ranking. Most forced-choice personality tests in 

use aim at measuring multiple personality traits and they often consist of hundreds 

of items. Such tests are simply too large to be estimated with current computing 

capabilities using this approach. Most importantly, however, the Thurstonian 

second-order factor model does not allow estimating the person scores on the latent 

traits due to zero error variance of the outcome comparison variables (this will 

become clear later when the details of this model are described in the Method 

section). 

The approach proposed in this dissertation differs from the second-order 

Thurstonian factor models in one key aspect. Unlike in marketing applications, where 

Thurstonian models are most often used, in personality assessment the latent utilities 

of items are not of interest. Consequently, the model bypasses the latent utilities, 

directly linking choices made by an individual to the latent traits measured by the 

test. The resulting model is therefore an IRT model. Crucially, this formulation 

changes the way the error of the binary outcomes of comparisons between items is 

modeled, and allows the latent trait estimation (person scores) that are the main 

focus of the personality assessment. In addition, the IRT formulation contains fewer 
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latent variables and is suitable for modeling the responses given to large multi-scale 

forced-choice questionnaires such as the OPQ32 measuring 32 personality traits 

(Bartram et al., 2006), the CCSQ measuring 16 traits (SHL, 1997), and others. 
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Method 

Binary coding of forced-choice response data 

This section describes how to code responses to forced-choice blocks using 

binary outcome variables, one for each pairwise comparison between the items within 

a block. This is the standard procedure to code comparative data (see Maydeu-

Olivares & Böckenholt, 2005), but here it is applied specifically to forced-choice 

questionnaire blocks.  

In a forced-choice block, a respondent is asked to assign ranks to n items 

according to the extent the items describe the respondent’s personality. For instance, 

for n = 4 items {A, B, C, D}, the respondent has to assign ranking positions � 

numbers from 1 (most preferred) to 4 (least preferred). 

 Ranking 

Item A _ 

Item B _ 

Item C _ 

Item D _ 

Alternatively, the respondent might be asked to indicate only two items: one 

item that most accurately describes their personality, and one item that describes it 

least accurately. This format type provides an incomplete ranking, because it only 

assigns the first and the last ranks.  

 Most like me Least like me 

Item A _ _ 

Item B _ _ 

Item C _ _ 

Item D _ _ 
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Any ranking of n items can be coded equivalently using ( 1) / 2n n n� ��  

binary outcome variables. In a block of 2 items {A, B}, there is only one comparison 

to be made between items A and B. In a block of 3 items {A, B, C}, there are 3 

pairwise comparisons: between items A and B, between A and C, and between B and 

C. In a block of 4 items {A, B, C, D}, there are 6 comparisons to be made between 

items: item A is compared with B, C and D; item B is compared with C and D; and 

item C is compared with D. 

In each pair, either the first item is preferred to the second, or otherwise. 

Thus, observed responses to the pairwise comparisons can be coded as binary 

outcomes:  

 
1 if   item  is preferred over item  

0 if   item  is preferred over item l

i k
y

k i

���� ����
. (2) 

where l indicates the pair {i, k}. For example, the ordering {A, D, B, C} can be 

coded as follows:  

Ranking Binary Outcomes 

A B C D {A,B} {A,C} {A,D} {B,C} {B,D} {C,D} 

1 3 4 2 1 1 1 1 0 0 

In the case of partial rankings, such as ones observed using the “most like me” 

– “least like me” format when n > 3, the information for some binary outcomes is 

missing by design. For instance, when items are presented in blocks of n = 4 items 

the outcome of the comparison between the two items that are not selected either as 

“most” or “least” is unknown. Following the previous example, the resulting partial 

ranking can be coded as follows: 

Partial ranking Binary Outcomes 

A B C D {A,B} {A,C} {A,D} {B,C} {B,D} {C,D} 

most  least  1 1 1 1 . 0 

One consequence of dealing with blocks of statements (each of which is a small 

ranking task) is that responses made within one block are always transitive. For 
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example, if the respondent rank-orders A above B, and B above C, it automatically 

follows that A is ranked before C and therefore the outcome of {A,C} pair can be 

deducted from pairs {A,B} and {A,C}. It then follows that only n! different binary 

patterns may be observed for a block of n items. 

Thurstonian factor models for forced-choice items 

Response model for ranking 

Thurstone (1927) proposed the following model describing comparative 

choices, such as ones made in forced-choice blocks. Although he focused initially on 

paired comparisons, Thurstone (1931) recognized later that many other types of 

choice data, including rankings, could be modeled in a similar way. He argued that in 

a comparative task, 1) each item elicits a utility as a result of a discriminal process; 

2) respondents choose the item with the largest utility value at the moment of 

comparison; and 3) the utility is an unobserved (continuous) variable and is normally 

distributed in the population of respondents.  

According to Thurstone’s model, each of the n items to be ranked elicits a 

utility. Let ti denote the latent utility associated with item i. Therefore, there are 

exactly n such latent variables when modeling n items. A respondent prefers item i 

over item k if his/her latent utility for item i is larger than for item k, and 

consequently ranks item i before item k. Otherwise, he/she ranks item k before item 

i. The former outcome is coded as “1” and the latter as “0”. That is, 

 
1     if   

0     if   
i k

l
i k

t t
y

t t

�� ��� �� 	��
, (3) 

where the equality sign is arbitrary as the latent utilities are assumed to be 

continuous and thus by definition two latent variables can never take on exactly the 

same value.  

The response process can be alternatively described by computing differences 

between the latent utilities. Let  
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 *
l i k

y t t� �   (4) 

be a continuous variable that represents the difference between utilities of items i 

and k. Because ti. and tk are not observed, *
l

y  is also unobserved. Then, the 

relationship between the observed comparative response yl and the latent 

comparative response *
l

y  is 

 
1       if   0

0       if   0
l

l
l

y
y

y







�� ���� �� 	���
 . (5) 

Importantly, the difference of utilities determines the preference response, i.e. there is 

no error term in Equation (4). This is because in ranking tasks responses are 

transitive (Maydeu-Olivares & Bockenholt, 2005).   

It is convenient to present the response model in a matrix form. Let t be the n 

� 1 vector of latent utilities and y* be the ñ � 1 vector of latent difference responses, 

where ( 1) / 2n n n� �� . Then the set of ñ equations (4) can be written as 

 * �y A t ,  (6) 

where A is a ñ � n design matrix. Each column of A corresponds to one of the n 

items, and each row of A corresponds to one of the ñ pair-wise comparisons. For 

example, when n = 2, � 
1 1� �A , whereas when n = 3, and n = 4 

 

1 1 0

1 0 1

0 1 1

� ��� �
� �� �� �
� ��� �� �

A ,    

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1

� ��� �
� ��� �
� ��� �� � ��� �
� ��� �
� �

�� �� �

A ,  

respectively. For instance, in the design matrix for n = 3 items, each column 

corresponds to one of the 3 items {A, B, C}. Rows represent 3 possible pair-wise 

comparisons. Row 1 corresponds to the comparison between A and B, and row 3 to 

the comparison between B and C. 
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Moving from one forced-choice block to multiple blocks, let p be the number 

of blocks, n the number of items per block, and the total number of items therefore is 

p � n = m. In this case, the design matrix will consist of m columns corresponding 

to all items in the questionnaire, and p� � ñ rows corresponding to the ñ pair-wise 

comparisons made in each of p blocks. The design matrix A is then partitioned in 

correspondence to the blocks. For instance, for a questionnaire with p = 3 blocks of n 

= 3 items in each (9 items in total), the design matrix A is: 

1 1 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0

0 0 0 1 0 1 0 0 0

0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 1 1

� �� �� �� �� ��� �� ��� �� � �� �� �� ��� ��� �� �� ��� � �� �� ��� � �� �� �� ��� ��� �� �� � �� �� �� �� ��� �

A . 

Thurstone’s model assumes that the latent utilities t are normally distributed 

in the population of respondents. Thus, we can write � 
~ ,
t t

N � �t , where �t and �t 

denote the mean vector and covariance matrix of the latent utilities t.  

Items as indicators of latent traits 

The next important step is to assume that the latent utilities t are indicators 

of a set of d common factors (latent traits): 

 
t

� �� �� � �t  (7) 

This is because questionnaire items are designed to measure some psychological 

constructs (personality traits, motivation factors, attitudes etc.). Here it will be 

assumed that every item measures one trait only. In factor analytic terms, this 

means that the relationship between the items and the common factors is an 

independent cluster solution.   
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In Equation (7), �t contains m means of the latent utilities t, � is an m � d 

matrix of factor loadings, � is an d-dimensional vector of common factors (latent 

traits in IRT terminology), and � is an m-dimensional vector of unique factors 

(residual variances of utilities). This model assumes that the traits are normally 

distributed, have mean zero, unit variance and are freely correlated (their covariance 

matrix is �). The uniqueness terms are normally distributed, have mean zero and 

are uncorrelated, so that their covariance matrix 2�  is diagonal. 

In this standard factor model, the utility of an item monotonically depends on 

the latent trait, that is, it increases when the latent trait increases (for positively 

keyed items – those with positive factor loadings), or decreases when the latent trait 

increases (for negatively keyed items – those with negative factor loadings). This 

model describes dominance response process – it assumes that items are written in a 

way that they serve as either positive or negative indicators of the latent trait, 

having ever growing (or decreasing) utility for respondents with higher trait scores.  

To illustrate how binary outcomes, their underlying utilities and traits are 

modeled, in Figure 1 a Thurstonian factor model is sketched for a very short forced-

choice questionnaire. An Mplus syntax for this model is given in Appendix B. The 

questionnaire measures d = 3 correlated traits; each trait is measured by 3 items. 

The nine questionnaire items (m = 9) are presented in triplets (blocks of n = 3 

items) so that there are no two items within a block measuring the same trait. There 

are p = 3 such blocks in this simple example. Trait 1 is measured by items 1, 4, and 

7; trait 2 is measured by items 2, 5, and 8; and trait 3 is measured by items 3, 6, and 

9. Respondents are asked to rank-order the items within each block. The resulting 

rankings are transformed into 3 binary outcomes per block (9 outcomes in total), 

which are modeled as differences of underlying utilities using Equation (6). Because 

each binary outcome is the result of comparing two items, it depends on two latent 

utilities. Utilities, in turn, are functions of the 3 personality traits. The 9 binary 

outcomes are measured without error (because responses to ranking blocks are 

transitive). However, the 9 utilities have disturbance terms accounting for the items’ 

unique variance not explained by the latent traits.  
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Figure 1. Thurstonian second-order factor model for a questionnaire with 3 traits and 

3 blocks of 3 items 
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Thurstonian Models for forced-choice items as IRT models 

In this section it is shown how the Thurstonian factor model, which is a 

second-order factor model for binary data with some special features, can be 

equivalently expressed as a first-order model, again, with some special features. The 

item characteristic and information functions for the model are provided, and item 

parameter estimation, latent trait estimation, and reliability estimation are 

discussed.  

Reparameterized model (first-order Thurstonian IRT factor model) 

There are several reasons for reparameterizing the Thurstonian factor model 

for forced-choice presented above as a first-order model. First, in psychometric 

testing applications the first order factors (the latent utilities) are not of interest. 

Rather, interest lies in estimating the second order factors (the latent traits). Second, 

and most importantly, since the residual error variances of the latent response 

variables y* are zero in the second-order factor model with latent utilities, latent trait 

estimates cannot be computed (see Maydeu-Olivares, 1999; Maydeu-Olivares & 

Brown, 2010). When the model is reparameterized as a first order model, the residual 

error variances of the latent response variables are no longer zero, enabling latent 

trait estimation. In addition, the reparameterization provides some valuable insights 

into the characteristics of the model, and enables formulation of such important 

descriptors of any IRT model as item characteristic functions and information 

functions. 

The reparameterization involves writing the second-order factor model 

obtained from Equations (6) and (7)  

 � 
*
t t

� �� � � �� �� � � � � �y A A A A , (8) 

as the first-order model 

 * 	 �� ��� � �y
� �

, (9) 
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in which the latent traits influence the outcomes of comparisons directly, according 

to their difference weighted by the factor loadings of the items involved. The 

reparameterized model (9) involves  

a) a (p���ñ) � d  structured matrix of factor loadings 

 � �� A
�

, (10) 

b) a (p���ñ) � (p ��ñ) structured covariance matrix of the unique pairwise 

errors � �� A�
 with � 
 2cov � ��

��
, where 

 2 2� � �� A A
�

, (11) 

c) an unrestricted (p ��ñ) � 1 vector of thresholds  

 
t

	 �� �A . (12) 

That is, restriction (12) is not imposed on 	.  This is because in IRT applications the 

means �t of the latent utilities are not of interest. Therefore an unrestricted vector of 

thresholds 	 will be estimated leading to a considerably less constrained model. 

To illustrate the structure imposed by the model on the matrices �
�

 and 2�
�

, 

consider the previous example of a very short forced-choice questionnaire measuring 

d = 3 latent traits with p = 3 blocks of n = 3 items.  For this example,  

 

1 2

1 3

2 3

4 5

4 6
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7 8

7 9

8 9

0

0

0

0

0

0

0

0

0

�

� ��� �� �� �� �� ��� �� �� �� �� �� ��� �� �� �� � �� �� ��� �� �� �� �� ��� �� �� �� �� �� ���� �

� ��
� ��

� ��
� ��
� ��

� ��
� ��
� ��

� ��

�
, (13) 

whereas 
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� �

� � �

�� � � �

� �

� � �

�� � � �

� �

� � �

�� � � �

�
. (14) 

It can be seen in (13)  that pairs involving the same item share a factor 

loading of the same magnitude on the respective trait. As for 2�
�

, it is a block-

diagonal matrix: unique errors of pairs related to the same item within a block are 

correlated. Also, the pattern of within-block covariances does not depend on the 

number of latent traits, but on the number of items in the block (Maydeu-Olivares & 

Brown, 2010).  

Figure 2 shows the reparameterized model for the example with 3 traits 

(corresponding Mplus syntax is given in Appendix C). There are no latent utilities, 

and the traits are linked directly to the latent response variables underlying the 

binary outcomes. Because, by construction, each binary outcome is the result of 

comparing two items from different dimensions and because each item is assumed to 

measure only one trait, the model implies that each binary outcome depends on two 

traits. This is true regardless of the number of items per block, the number of blocks, 

or the number of latent traits involved in any given forced-choice test. 

It can be seen that there are 9 binary outcomes in Figure 2, each depending 

on two traits; therefore 18 factor loadings are involved. However, 9 constraints are 

imposed on these factor loadings. For example, the loading involving binary outcome 

{i2, i3} on trait 2 is constrained to be equal to the loading of outcome {i1, i2} on 

trait 2, but with the signs reversed. These two loadings are of opposite signs because 

item 2 is the first element of the directional pair {i2, i3} whereas it is the second 

element of the directional pair {i1, i2}.  
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Figure 2: Thurstonian IRT model for a questionnaire with 3 traits and 3 blocks of 3 

items 
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Furthermore, the residual errors of the latent response variables y* are 

structured. The residual error variance associated with a binary outcome equals the 

sum of residual errors of utilities of the two items involved in the pair. The residual 

errors of latent response variables involving the same item are also correlated. For 

instance, there are correlated errors between latent response variables {i1, i2} and 

{i1, i3} because these are pairs obtained by comparing item 1 to other items in the 

block. Both of these outcomes will be influenced by the uniqueness of the utility of 

item 1, sharing common variance that is not accounted for by the latent trait. 

To summarize, for multidimensional forced-choice questionnaires measuring d 

traits using p blocks of n items each, the model presented here involves d first-order 

common factors (the latent traits) and p� � ñ binary outcomes, and each binary 

outcome depends on two traits. In contrast, when expressed as a second-order model, 

the Thurstonian factor model involves m = p� � n first-order factors (the utilities) 

and d second-order factors (the latent traits).  

Identification of Thurstonian IRT models for forced-choice questionnaires 

 The reparameterized model is algebraically equivalent to the original 

Thurstonian factor model, thus yielding the same number of parameters, and 

requiring exactly the same identification constraints. For a single ranking task, 

Maydeu-Olivares and Brown (2010) suggested the following constraints to identify 

the model: (a) fixing all factor loadings involving (arbitrarily) the last item to 0 (

0
ni
��  for all i = 1, …, d); and (b) fixing the unique variance of the last item to 1, 

2 1
n
�� . These identification constraints are needed to set the scale origin for factor 

loadings and for the uniquenesses because of the comparative nature of the data. To 

set the scale for the latent traits, the variances of the latent traits are simply set 

equal to one. 

In the case of a multidimensional model involving several blocks of items each 

measuring a single trait (i.e. forced-choice questionnaire model), the identification 

constraints are simpler than in the case of a single block. The model is identified 

simply by imposing a constraint among the uniquenesses within each block. 
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Arbitrarily, the uniqueness of the last item in each block can be fixed to 1. For 

example, to identify the Thurstonian IRT model depicted in Figure 2, the uniqueness 

of the last item in each block is set to 1: 2
3

1�� , 2
6

1�� , and 2
9

1�� . Also, the 

variances of the latent traits are set to 1. Mplus syntax for testing this model and 

computing individual trait scores is provided in Appendix C. 

This general identification rule is valid in all but two special cases: a) when n 

= 2 and d > 2 (i.e., items presented in pairs measuring more than 2 traits), and b) 

when d = n = 2 (only two traits are measured using pairs of items).  In Case a), no 

item uniqueness 2
i

�  can be identified. They can be set equal to 0.5, so that 
2 2 2 1
l i k
� � �� � �

�
. Case a) is discussed in more detail in Appendix D. Regarding 

Case b), all item uniquenesses need to be fixed as in the case above. In addition, each 

binary outcome will depend on both traits involved, the factor loading matrix 

contains no zero elements, and the model is essentially an exploratory factor model. 

To avoid the indeterminacy problem in this case (see McDonald, 1999, page 179), it 

is sufficient to fix the 2 factor loadings of the first pair. For a model with 3 or more 

traits, no such constraints are needed because there are sufficient numbers of zero 

elements in each column and row of the factor loading matrix. 

Item characteristic function 

It follows from (9) and the normality of the latent response variables y* that 

the probability of preferring item i over item k  is 

 � 
 �
2

Pr 1 l l
l

l

y

 �

�
� �� �� � �� �� � � �� �� ���� �

��

�

�

� , (15) 

where � 
� x  denotes the cumulative standard normal distribution function evaluated 

at x,  
l
�  is the threshold for binary outcome yl, l


 �
�

 is the 1 � d vector of factor 

loadings, and 2
l

�
�

 is the uniqueness for binary outcome yl. Because it is assumed that 

each item only measures one trait (an independent-cluster solution), each binary 

outcome only depends on two traits. As a result, the item characteristic function for 
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the binary outcome variable yl, which is the result of pairwise comparison between 

items i and k measuring traits �a and �b, is  

 � 
 �
2 2

Pr 1 , l i a k b
l a b

i k

y
� ��� � �� �� � � �� �� �� ��� �

�� � � � � �
� �

� �
. (16) 

Here, �i and �k are factor loadings for traits �a and �b����respectively; and 2 2
i k
�� �  is 

the variance of the error term for the latent response variable *
l

y . Equation (16) 

describes the item characteristic function using a threshold/loading parameterization. 

This is simply a standard two-dimensional normal ogive IRT model for binary data 

except that (a) factor loadings are structured so that every binary outcome yl 

involving the same item will share the same factor loading, (b) uniquenesses of 

binary outcomes are structured so that they equal the sum of uniqunesses of the 2 

items involved, and (c) the item characteristic functions are not independent (local 

independence conditional on the latent traits does not hold). Rather, there are 

patterned covariances among the residual variances of the latent response variables. 

Now, letting  

 
2 2

l
l

i k

�
�

��
�

� �
,     

2 2

i
i

i k

�
�

�
�

� �
  ,    

2 2

k
k

i k

�
�

�
�

� �
, (17) 

the item characteristic function (16) can be written in an intercept / slope form as 

 � 
 � 
�Pr 1
l a b l i a k b

y � � � �� 	� � � � � � . (18) 

Because the probability of binary outcome l depends on 2 latent traits, this 

equation describes the Item Characteristic Surface (ICS), an example of which is 

presented in Figure 3. When a respondent is forced to choose between 2 items, 

his/her standing on the two underlying traits will influence the difference of utilities 

of the choice alternatives, and therefore, the outcome of the comparison. With an 

increase in the true score on the first trait and decrease on the second trait, the 

probability of preferring the first item to the second item is non-decreasing and is 

influenced by: a) the respondent's scores on the two underlying traits �a and �b, b) 
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the discriminations (slopes) �i and �k of the two items on their underlying traits, and 

c) a threshold �l governing the combination of the latent traits when the statements' 

utilities are equal.  

The Thurstonian IRT model for forced-choice questionnaires also applies to 

the case where some (or all) binary outcomes arise from comparing items measuring 

the same trait. Indeed, a test developer might want to include items measuring the 

same trait in the same block. In this case equations (16) and (18) are rewritten to 

include only one latent trait �: 

 � 
 � 
�Pr 1 (
l l i k

y � � � � 
� � � � � . (19) 

The one-dimensional case will not be specifically referred to in the present research, 

however, it is important to point out that this specific case is easily accommodated 

in the more general model described above. Special features of the one-dimensional 

case are described in Maydeu-Olivares and Brown (2010). One most obvious 

observation arising from the equation (19) is that 2 items with similar discrimination 

parameters (slopes) will provide virtually no information for the estimation of the 

latent trait, when they are used in a forced-choice block. Therefore, if one wants to 

present items measuring the same trait in a forced-choice block, items with very 

different slopes should be used such as positively and negatively keyed items 

(Maydeu-Olivares & Brown, 2010). 

Estimation of Thurstonian IRT models for forced-choice questionnaires 

IRT models are most often estimated using full information maximum likelihood 

(FIML). For models describing forced-choice questionnaires such estimation is not 

feasible due to the very large number of dimensions involved. However, the 

Thurstonian IRT models can be straightforwardly estimated using limited 

information methods. First, the sample thresholds and tetrachoric correlations are 

estimated. Then, the model parameters are estimated from the first stage estimates 

by unweighted least squares (ULS) or diagonally weighted least squares (DWLS). 
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Figure 3: Item Characteristic Surface (ICS) for the binary outcome {i5, i6} for the 

simulation with 2 uncorrelated traits 

Note: Item parameters for the binary outcome {i5, i6} in the intercept/slope form:  � = 0.72; 

�1 = 0.90; �2 = 0.72 (see Table 1). 

 

In practice, differences between using ULS or DWLS in the second stage of 

the estimation procedure are negligible (Forero, Maydeu-Olivares & Gallardo-Pujol, 

2009). All models in the present research are tested in Mplus using either the DWLS 

estimator with mean corrected Satorra-Bentler goodness-of-fit tests (Muthén, 1993), 

or ULS estimator for larger models. Note that the DWLS estimation procedure is 

denoted as WLSM estimation in Mplus. 

When the number of items per block is larger than 2, a correction to degrees 

of freedom is needed when testing model fit. This is because for a ranking block there 

are r = n(n � 1)(n � 2)/6  redundancies among the thresholds and tetrachoric 

correlations estimated from the binary outcome variables (Maydeu-Olivares, 1999). 

For instance, there is r = 1 redundancy in every block of 3 items, and there are r = 

4 redundancies in every block of 4 items. With p ranking blocks in the questionnaire, 

the number of redundancies is p � r. Thus, when n > 2, one needs to subtract p � r 

from the degrees of freedom given by the modeling program to obtain the correct p-
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value for the test of exact fit. Goodness-of-fit indices involving degrees of freedom in 

their formula, such as the RMSEA, also need to be recomputed using the correct 

number of degrees of freedom. When n = 2, no degrees of freedom adjustment is 

needed, the p-value and RMSEA printed by the program are correct. 

Latent trait estimation 

Once the IRT model parameters have been estimated, scores on the latent 

traits for individuals can be estimated using their pattern of binary outcome 

responses. There are 3 popular procedures for latent trait estimation: maximum 

likelihood (ML), expected a posteriori (EAP), and maximum a posteriori (MAP) 

estimation (Embretson & Reise, 2000). The focus here will be on the MAP estimator, 

which maximizes the mode of the posterior distribution of the latent traits, as it is 

the method implemented in Mplus. The posterior distribution is obtained by 

multiplying the joint likelihood of the binary outcome responses by the density of the 

population distribution, which is standard multivariate normal in this model. The 

MAP estimator exists for all response patterns, is more efficient than the ML 

estimator when a small number of items is involved (and in personality 

questionnaires the number of items per trait is generally small), but is known to 

produce estimates biased towards the population mean (see Embretson & Reise, 

2000, page 174). 

To evaluate the joint likelihood of the binary outcomes pattern, it is assumed 

that the binary outcomes are independent given the latent traits. It has been shown, 

however, that in Thurstonian IRT models structured dependencies exist between the 

error terms within blocks of 3 or more items. Effects of ignoring these dependencies 

on the latent trait estimates have been shown to be negligible in applications with 

single ranking tasks (Maydeu-Olivares & Brown, 2010), and they are likely to be 

even smaller in forced-choice questionnaires where blocks are smaller and there are 

fewer local dependencies per item. Throughout this paper a simplifying assumption is 

made that the item characteristic functions for the binary outcomes are locally 

independent. This simplifying assumption is only employed for latent trait 

estimation, not for item parameter estimation. 
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Information functions and reliability estimation 

In Item Response Theory, unlike in classical scoring, the precision of 

measurement depends on the latent traits and therefore is not the same for all 

respondents. The precision of measurement is provided by the test information 

function � 
�� , which is computed from item information functions � 
l
�� . Recall 

that in the forced-choice questionnaires, observed variables (“items”) are binary 

outcomes of pairwise comparisons between the questionnaire items.  

The item information function is computed in a manner similar to its one-

dimensional IRT counterpart, except that since each binary outcome depends on two 

dimensions, the direction of the information must be also considered (Reckase, 2009; 

Ackerman, 2005). The definition of item information in the multidimensional case is 

generalized to accommodate the change in slope with direction taken from a point in 

the latent trait space: 

 � 

� 


� 
 � 


2

1l

l

l l

P

P P

��
� ��� �� ��

� ��� �� �
�

�
�

� �
, (20) 

where � is a vector of angles to all d axes that defines the direction from a point �. 

In this expression, �� is the gradient (directional derivative) in direction �, which is 

given by (Reckase, 2009): 

 � 
 � 
 � 
 � 

1 2

1 2

cos cos ... cosl l l

l d
d

P P P
P�

� � �
� �  �  � �  

� � �� � �

� � �
� . (21) 

Because each binary outcome depends on 2 latent traits, in the above 

expression directional derivatives for all but the 2 relevant dimensions will be 0. For 

each binary outcome, the contributions to the information about two underlying 

traits it is intended to measure, �a and �b, are of interest. Therefore for each binary 

outcome two main directions of information are considered: one coinciding with the 

axis �a, and another one coinciding with the axis �b. When computing the 

information in direction �a, the angle to �a is 0! (and therefore cos(�a) = 1), and the 
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angle to �b is determined by the correlation between �a and �b so that cos(�b) = 

corr(�a, �b) (see Bock, 1975). 

Using the intercept/slope parameterization from Equation (18), the directional 

derivatives by �a and �b are simply  

 
� 
 � 


,
l a b

i l i a k b
a

P�
� � �

�

� �
� 
 � � � � �

�
   and    

� 
 � 

,

l a b

k l i a k b
b

P�
� � � �

�

� �
� 
 � � � � �

�
, (22) 

where � 
z
  denotes a standard normal density function evaluated at z (McDonald, 

1999, p. 284). It follows from (20) - (22) that the information provided by one binary 

outcome about traits �a and �b are, respectively: 

 � 

� 
 � 

� 
 � 


2 2
corr

,
, 1 ,

i k a b l i a k ba
l a b

l a b l a b
P P

� � � �� � �� � � �� � � ��
� ��� �� �

� � � 	� 
 � � � � �
� �

� � � �
� , (23) 

 � 

� 
 � 

� 
 � 


2 2
+ corr

,
, 1 ,

k i a b l i a k bb
l a b

l a b l a b
P P

� � � �� � �� � � �� � � ��
� ��� �� �

� � � 	� 
 � � � � �
� �

� � � �
� . (24) 

Equations (23) and (24) describe the Item Information Surfaces (IIS), 

examples of which are presented in Figure 4. It can be seen from these equations 

that for binary outcomes involving uncorrelated traits, only the derivative in the 

direction of the trait itself contributes to the information. However, for binary 

outcomes involving correlated traits, derivatives in directions of both traits involved 

will contribute. For positively keyed items, binary outcomes involving positively 

correlated traits will provide less information than if the traits were orthogonal 

(holding the item parameters equal). And, for positively keyed items, binary 

outcomes involving negatively correlated traits will provide more information than if 

the traits were orthogonal. These properties, as will be seen later, have important 

implications for test design. 
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Figure 4: Item Information Surfaces (IIS) in directions of Trait 1 and Trait 2 for the 

binary outcome {i5, i6} for the simulation with 2 uncorrelated traits 

Note: Item parameters for the binary outcome {i5, i6} in the intercept/slope form:  � = 0.72; 

�1 = 0.90; �2 = 0.72 (see Table 1). 

 

For the one-dimensional case, i.e. when items measuring the same trait ��are 

compared in the same block, equations (23) and (24) reduce to 

 � 
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l l
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� � 
 � � � �
�

� �
� , (25) 

The total information about trait �a is a sum of all information functions from 

binary outcomes independently contributing to the measurement of this trait: 

 � 
 � 
a a
l

l

�"� �� � . (26) 

However, structured dependencies exist between the error terms within blocks 

of 3 or more items. It has been shown that the test information is overestimated only 

slightly when these dependencies are ignored (Maydeu-Olivares & Brown, 2010). In 

this research the simplifying assumption that the binary outcomes are locally 
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independent is used, and the extent to which the information estimates are 

sufficiently accurate in applications is investigated.  

All the above applies to IRT scores estimated by the maximum likelihood 

method (ML). When Bayes MAP estimation of the latent traits is used, the posterior 

test information � 
P
� � is given by the sum of the ML test information and 

information given by the prior distribution (see Du Toit, 2003), which is multivariate 

standard normal:  

 � 
 � 

� 
� 
 � 


2

2

ln
a a a a
P a

a

�
�

� � � �
�




�
� � �

�
� � � , (27) 

where a
a

� �is the diagonal element of the inverted trait covariance matrix ��#�related 

to the dimension of interest, �a�(see Appendix E for proof). The standard error of the 

MAP-estimated score a�
�

 is the reciprocal of the square root of the posterior test 

information (in direction of the trait �a), 

 � 

� 


1
a

a
P

SE ���
���

. (28) 

The precision of measurement in IRT, as can be seen, is indeed a function of 

the latent trait and therefore varies for each respondent. Nevertheless, providing a 

summary index of the precision of measurement can be useful, particularly for 

comparison with classical test statistics, and also for predicting expected levels of 

recovery of the true latent trait. After the trait scores have been estimated for a 

sample, these scores are used as empirical values at which the test information 

function is evaluated, and the standard errors are computed. The reliability index 

based on the estimated scores for a sample is referred to as empirical reliability (Du 

Toit, 2003), and is obtained by computing the observed score variance and the error 

variance for the sample. Importantly, estimates of empirical reliability depend on the 

method by which scores were computed.  
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When IRT scores are obtained by the MAP method, the posterior test 

information is evaluated at the point MAP estimates 1 2( ,  ,  , )d$� � �� � �  for each 

respondent j in a sample of size N, and the squared standard errors are computed as 

the reciprocal of the test information. To compute the sample error variance (related 

to the measurement of trait 	a), the squared standard errors (reciprocals of the 

posterior test information) are averaged across the sample 

 � 
 � 

2

1

1 1N

error aj
jP

N �

� "� �
��

�
�

. (29) 

Since the observed score variance is known for the sample (it is simply the 

variance of the MAP score), the true score can be computed as the observed score 

variance minus error variance. Therefore, the empirical reliability for the MAP 

estimated scores is computed as follows (Du Toit, 2003): 

 
2 2

2
P error

P

�
�
� �



�

, (30) 

where 2
P
�  is the observed MAP score variance, and 2

error
�  is the mean of the squared 

errors of the MAP estimates of the trait scores for individuals in the sample. Finally, 

the correlation between the true latent trait and the estimated latent trait is 

estimated as follows:  

 � 
corr aa
�� 	� 
� . (31) 

This sample-based approach overcomes the main difficulty with the 

multidimensional information, which is to summarize item information data for a 

multi-trait forced-choice questionnaire. Since items from the focus trait are compared 

with items from many other traits, the information in the direction of the target trait 

for every binary outcome is conditional on different traits. To summarize such 

contributions for all values of all traits involved in the questionnaire, it is necessary 

to consider a multidimensional grid, with the number of dimensions corresponding to 

the number of measured scales. In practice, however, multivariate grids for a large 

number of dimensions consist of millions of points and are computationally infeasible. 
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Random sampling of the points on the multidimensional grid can be used instead – 

and this is exactly what the sample-based approach described above achieves. First, 

information in two relevant directions is computed for each binary outcome at two 

given values �a and �b, providing two single values (scalars). Second, to obtain the 

total information for one dimension, single values from all pairs involving this 

dimension are summed.  

It is important to emphasize that because the classical concept of test 

reliability has no direct correspondence in IRT, any estimate of reliability obtained 

from the test information is only an approximation. Strictly speaking, the reliability 

will vary for different levels of the latent trait. Reliability estimates would be more 

accurate and more descriptive of the sample as a whole when the test information 

function is relatively uniform. 

Response biases and forced-choice format 

Forced-choice formats were introduced to reduce response biases. Having 

established the suitable model for describing the decision process behind responding 

to forced-choice items, it becomes possible to examine how various biases will 

influence the responses. The main problem facing such analysis, however, is the lack 

of clear modeling definition of biases. With the exception of acquiescence or “yea-

saying” bias (uniform response bias, defined in Cheung & Chan, 2002), no 

established response models exist for the majority of practically identified and 

described biases. The task of classification and modeling of response biases is beyond 

the scope of this research, however, the question about resistance of the forced-choice 

format to biases can be approached from another perspective. Rather than starting 

from formulating models for different biases and examining whether the FC format is 

resistant to them, one can start from the internal workings of the comparative 

judgments and work back to establish exactly what type of transformations it will be 

robust against. 

The main property of the FC format is its comparative nature. Outcomes of 

the pairwise comparative judgments are based on the difference of the items’ latent 

utilities, given by Equation (4), and the binary outcomes are determined by the sign 
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of this difference as described in (5). It is clear that because the binary outcome only 

depends on the sign of the difference between the utilities, it is invariant to any 

transformation of the utilities as long as their difference remains of the same sign: 

 � 
� 
* * 0B B B
l l i k i k

y y t t t t� � � �  (32) 

In the expressions above  B
l

y  denotes the “biased” latent difference, and B
i
t and B

k
t

denote “biased” utilities.  

It is easy to see why the acquiescence response bias is eliminated by the use of 

forced-choice items. This is because of the uniform additive nature of this bias, i.e. 

for a given individual j, “biased” item utilities can be written as B
j j j
� �t t 1�

 
where 

j
� is the additive bias uniform across all items within this individual, and 1 is a unit 

vector of dimensionality corresponding to the number of items (Chan, 2003). When 

the differences of utilities are considered, it can be seen that the additive term simply 

disappears: 

  � 
 � 
* *B B B
l i k i k i k l

y t t t t t t y� � � � � � � � �� �  (33) 

Similarly, any uniform multiplicative bias described as B
j j j

c�t t  (Chan, 2003) 

is also eliminated by the use of the forced-choice format when 0
j

c % because 

 * *( )B B B
l i k i k i k l

y t t ct ct c t t cy� � � � � � � , (34) 

and both biased and unbiased latent differences have the same sign. Extending this 

logic further, any combination of the uniform additive and multiplicative bias will be 

eliminated by the comparative nature of forced-choice items: 

 � 
 � 
* *( )B B B
l i k i k i k l

y t t ct ct c t t cy� � � � � � � � �� �  (35) 

However, in order for such an additive-multiplicative bias to be eliminated, it 

is not necessary that it is uniform across all items. It is sufficient that the additive-

multiplicative term remains constant within each block, but it can vary across 

blocks. In fact, any combination of additive and multiplicative transformations to the 
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original unbiased utilities will preserve the sign of the binary outcome as long as 

these transformations are uniform across all items in the block. 

Now, while it is easy to describe and model additive biases (e.g. with the 

random intercept model; Maydeu-Olivares & Coffman, 2006), multiplicative response 

biases would suggest a random slope – i.e. different item discriminations across 

respondents. Although conventional common factor models do not allow modeling 

random slopes, a situation where it might be necessary can be easily imagined. For 

instance, extreme responding distorts the responses in such a way that positive item 

utilities become more positive and negative ones more negative. Conversely, central 

tendency responding makes the responses less pronounced. This type of bias is 

multiplicative – there is a certain “magnifying” effect that either stretches the 

ratings (extreme responding) or shrinks them (central tendency). Such a response 

style is likely to apply to all items in a questionnaire, i.e. be uniform.  

Another common type of bias – socially-desirable responding – affects items in 

a non-uniform fashion. Items that are seen by the respondent as very desirable are 

likely to get more affected than those that are seen more neutral. Inevitably, the 

desirable items will change their discrimination on the trait they intend to measure, 

and this change will be non-uniform across items. Matching items in terms of their 

desirability inside each ranking block, thus making the multiplicative and additive 

terms more or less uniform might reduce the impact of socially-desirable responding.  
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Simulation studies 

In this section, random data from several Thurstonian IRT models is 

generated to assess the model fit, to investigate how the true model parameters are 

recovered under different conditions, and how well the true trait scores are recovered. 

Simulation studies are essential to provide benchmarks to which similar real-world 

applications can be compared. Since the true scores are never known in real 

applications, it is impossible to judge how well our model can recover them – and to 

what extent this recovery is affected by the questionnaire design, response bias, or by 

violation of the assumptions we make in the model.  

Another important objective of the simulation studies is to assess the impact 

of the simplifying assumption of local independence on the latent trait estimation 

and the test information estimation when blocks of 3 or more items are used.  

First, an extremely simplified questionnaire with 2 traits measured by item 

pairs is considered. This low-dimensionality example provides an opportunity to look 

at the graphical illustrations of ICS and test information functions. Most 

importantly, it provides a benchmark for the precision of the latent trait estimation 

when no local dependencies exist (and no simplifying assumptions for either latent 

trait estimation or the information estimation need to be made). 

Then, a more realistic questionnaire model is considered measuring 5 traits 

(probably the smallest number of traits one would be interested in measuring in 

practice). For this model, the block size is manipulated, i.e. blocks of 2, 3 and 4 

items are considered.  

These examples use the pure multidimensional forced-choice format, i.e. items 

measuring the same trait never appear in the same block. However, mixed designs 

involving items measuring the same trait as well as different traits can be easily 

incorporated in the model as shown in Maydeu-Olivares and Brown (2010).  
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Simulation study 1. A forced-choice questionnaire measuring 2 traits 

The purpose of this simulation study is to give an empirical illustration of the 

multidimensional Thurstonian IRT model with the smallest number of traits. Let us 

consider a hypothetical forced-choice questionnaire measuring 2 traits. For example, 

one can think of measuring global personality factors, such as ‘Dynamism’ and 

‘Social Propriety’ also referred to as ‘Getting Ahead’ and ‘Getting Along’ (Hogan, 

1983). Alternatively, any narrow traits can also be measured in this fashion.  

Despite being somewhat limited, this example is useful for illustrating the 

model properties before moving on to complex multidimensional models. Particularly, 

test characteristic and test information functions can be presented graphically, which 

will not be possible with higher dimensionality. An important feature of this simple 

example is that blocks of n = 2 items (item-pairs) are used, consequently no 

correlated errors exist and no simplifying assumptions are made. 

To set realistic factor loadings and uniqueness parameters for continuous 

utilities in this model, data from several personality scales were evaluated. It was 

decided that absolute values of factor loadings should be drawn from a uniform 

random distribution between the minimum value 0.65 and the maximum 0.95. 

Obviously, the sign of factor loadings might vary according to whether one chooses 

to use positively or negatively keyed items to measure the traits. According to the 

magnitude of the factor loadings, uniqueness terms were set to make the total 

variance for each utility equal 1 (unobserved utilities are assumed to be standard 

normal for simplicity); therefore they varied between 0.10 and 0.58. Item intercepts 

were set to vary between -0.8 and 0.8.  

The most common design in existing forced-choice questionnaires is to use 

positively keyed items only. However, these existing questionnaires typically measure 

a larger number of traits. Indeed, if 2 traits were measured by positive items only in 

a traditionally scored forced-choice questionnaire, the ipsative constraint would mean 

that the score on one trait would be completely determined by the score on the 

second trait (because the 2 scores should sum to a constant), and therefore 

correlation between them would be -1. Clearly, 2 traits cannot be meaningfully 
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measured with positively keyed items only when the traditional ipsative scoring is 

used. An alternative forced-choice design is sometimes used, whereby both positive 

and negative items are combined in the same block (as in Jackson, Wroblewski & 

Ashton, 2000; Heggestad, Morrison, Reeve, & McCloy, 2006). In this case the scoring 

for the negative item is reversed, giving a possibility for a different number of points 

to be assigned in some blocks and partially releasing the ipsative constraint. Here the 

objective is to evaluate how the Thurstonian IRT approach deals with both designs.  

First, only positively keyed items are used to create 2 questionnaires – one 

short with 12 items per trait, and one long with 24 items per trait. The item 

parameters were set as described above, with factor loadings being all positive. Next, 

both positively and negatively keyed items are used to create 2 questionnaires (with 

12 and 24 items per trait as above). Item parameters were kept exactly the same as 

in the questionnaire with positive items, except for factor loadings, which were 

reversed for some items.  

Apart from this difference in the sign of the factor loadings, the same basic 

design was considered in all simulations. The short questionnaire consists of p = 12 

item-pairs (thus using 12 items from each trait, m = 24 items in total), and the long 

questionnaire consists of p = 24 item pairs (using 24 items per trait, or m = 48 items 

in total). The short questionnaire forms the first half of the long questionnaire. Table 

1 gives the true item parameters for the short questionnaire with positively and 

negatively keyed items. Items in each pair belong to different traits, and the item 

order alternates to avoid carry-over effect when responding. Out of each pair, 

respondents have to select one item that describes them more accurately.  

 

 

 



 

48 

 

Table 1: True item parameters for the short questionnaire (12 item-pairs) using both 

positively and negatively keyed items; simulation with 2 traits 

Trait 1 Trait 2 Pairwise comparison* 

item � � �2 item � � �2 l = i,k �l� �i� �k�

1 -0.44 0.91 0.17 2 -0.1 0.81 0.35 1, 2 -0.47 1.26 1.12 

4 0.21 0.73 0.47 3 -0.77 0.75 0.44 3, 4 -1.03 0.79 0.77 

5 0.02 0.83 0.31 6 -0.65 0.67 0.55 5, 6 0.72 0.90 0.72 

8 0.71 0.66 0.57 7 0.64 0.94 0.12 7, 8 -0.08 1.13 0.79 

9 -0.2 0.8 0.36 10 0.69 -0.7 0.51 9, 10 -0.95 0.86 -0.75 

12 0.68 0.88 0.23 11 0.3 -0.72 0.49 11, 12 -0.45 -0.85 1.04 

13 0.03 0.91 0.17 14 -0.5 -0.79 0.37 13, 14 0.72 1.24 -1.08 

16 -0.57 0.7 0.51 15 -0.57 -0.84 0.29 15, 16 0.00 -0.94 0.78 

17 0.77 -0.87 0.24 18 0.36 0.79 0.37 17, 18 0.52 -1.11 1.01 

20 -0.25 -0.7 0.51 19 0.65 0.79 0.38 19, 20 0.95 0.84 -0.74 

21 -0.47 -0.68 0.54 22 -0.62 0.72 0.48 21, 22 0.15 -0.67 0.71 

24 0.28 -0.66 0.56 23 -0.21 0.7 0.51 23, 24 -0.47 0.68 -0.64 

Notes: The order of traits is alternated in pair-wise comparisons to avoid carry-over effect;  

in odd pairs the first item measures Trait 1 and the second measures Trait 2, and in even 

pairs this order is reversed. 

 

To investigate if trait relationship bears any influence on the model 

properties, the traits were set to be uncorrelated, positively correlated at 0.5, and 

negatively correlated at -0.5. For each of the 3 levels of the trait correlations (0, 0.5 

and -0.5), 1000 random samples of N=1000 cases were generated with 2 normally 

distributed traits (�2 = 1), and independent uniqueness terms for each questionnaire 

item with variances as specified above. From these generated variables, ñ = 1 

continuous difference of utilities were produced for each block-pair using 

� 
*

*
j j jy

� �� �� � �y A , where j = 1, …, N are individuals in the sample, and 

dichotomized *
j

y  using (5). Therefore expected binary outcomes for each individual 

were obtained according to Thurstone's theory of latent utilities.  
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Having obtained p���ñ = 12 or 24 binary responses for the short and the long 

test respectively, the corresponding Thurstonian IRT model was applied to estimate 

item parameters and trait correlations. As explained in the section on the model 

identification, models with 2 latent traits essentially amount to exploratory models, 

and additional constraints are needed in order to identify them. In this model, error 

variances of all binary outcomes were fixed to their expected values ( 2 2
i k
�� �  for the 

binary outcome yl), and also the factor loadings of the first binary outcome to their 

expected values �1 and �2. The model was specified and tested in Mplus. The degrees 

of freedom do not need to be adjusted in this case as there are no redundancies in 

blocks of 2 items. 

Design 1. Questionnaire with positively keyed items only 

The number of successful computations varied between 815 and 980 for 

different questionnaire lengths and trait correlations. Replications that did not yield 

successful estimations were empirically unidentified. Table 2 summarizes the 

goodness-of-fit for different conditions as measured by Mplus chi-square statistic 

(Muthén, 1998-2007). It can be seen that goodness-of-fit tests in this case are off - 

the model is retained more often than it should.  

Table 3 summarizes parameter estimates for different conditions. The trait 

correlations are estimated relatively accurately and more so for the long 

questionnaire. Item parameter estimates for the short questionnaire are positively 

biased (by between 4% and 18% for different conditions), but for the long 

questionnaire they are accurate. However, very large standard errors were present for 

several item parameters, indicative of unstable estimates.  
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SD
 

C
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.01 

.05 
.10 

.20 

+
 

12 
0 

868 
43 

36.88 
7.73 

.000 
.009 

.018 
.050 

+
 

12 
0.5 

853 
43 

38.26 
8.16 

.004 
.012 

.034 
.076 

+
 

12 
-0.5 

815 
43 

36.39 
7.91 

.000 
.005 

.016 
.043 

+
 

24 
0 

974 
229 

217.84 
20.36 

.001 
.012 

.033 
.093 

+
 

24 
0.5 

980 
229 

221.93 
20.55 

.006 
.021 

.049 
.115 

+
 

24 
-0.5 

893 
229 

215.18 
20.44 

.000 
.011 

.027 
.071 

+
/- 

12 
0 

1000 
43 

43.37 
9.51 

.016 
.049 

.105 
.206 

+
/- 

12 
0.5 

999 
43 

42.66 
9.32 

.010 
.041 

.093 
.185 

+
/- 

12 
-0.5 

1000 
43 

44.00 
10.19 

.018 
.079 

.146 
.260 

+
/- 

24 
0 

1000 
229 

232.09 
24.57 

.026 
.078 

.150 
.261 

+
/- 

24 
0.5 

1000 
229 

233.09 
25.25 

.032 
.074 

.137 
.261 

+
/- 

24 
-0.5 

1000 
229 

232.51 
23.01 

.027 
.071 

.134 
.240 
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12 
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-.104 (.250) 
.232 

.126 (.123) 
12.17 (5.33) 

.161 (.074) 
13.33 (6.52) 

+
 

12 
0.5 

.437 (.184) 
.151 

.039 (.035) 
6.75 (3.90) 

.078 (.040) 
7.67 (4.62) 

+
 

12 
-0.5 

-.560 (.252) 
.306 

.171 (.160) 
10.99 (4.46) 

.184 (.090) 
12.73 (5.89) 

+
 

24 
0 

-.097 (.218) 
.194 

-.005 (.044) 
.913 (2.038) 

.037 (.041) 
1.34 (2.48) 

+
 

24 
0.5 

.438 (.149) 
.115 

-.035 (.023) 
-.094 (.530) 

.009 (.037) 
.145 (.662) 

+
 

24 
-0.5 

-.580 (.226) 
.258 

.016 (.054) 
1.60 (1.55) 

.028 (.069) 
.916 (2.22) 

+
/- 

12 
0 

.039 (.191) 
.188 

.023 (.028) 
-.029 (.044) 

.010 (.007) 
-.002 (.024) 

+
/- 

12 
0.5 

.460 (.184) 
.166 

.028 (.015) 
-.020 (.030) 

.007 (.016) 
.007 (.029) 

+
/- 

12 
-0.5 

-.479 (.106) 
.106 

.011 (.012) 
.000 (.025) 

.007 (.008) 
.001 (.028) 

+
/- 

24 
0 

.031 (.171) 
.166 

.018 (.018) 
-.013 (.018) 

.013 (.023) 
-.008 (.023) 

+
/- 

24 
0.5 

.480 (.109) 
.103 

.017 (.011) 
-.022 (.023) 

.009 (.052) 
-.002 (.034) 

+
/- 

24 
-0.5 

-.477 (.099) 
.097 

.005 (.012) 
-.002 (.023) 

.000 (.056) 
.001 (.021) 
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Next let us turn to the first sample replication to evaluate the trait recovery. 

The trait scores computed by Mplus using MAP estimation yielded disappointingly 

low levels of true score recovery overall, which did not depend on the questionnaire 

length, but strongly depended on the correlations between the traits. For the short 

questionnaire, the correlations between the MAP estimated and the true scores were 

for trait 1 and trait 2 respectively: 0.344 / 0.349 in the model with positively 

correlated traits; 0.601 / 0.629 in the model with uncorrelated traits; and at 0.793 / 

0.766 in the model with negatively correlated traits. Similarly, for the long 

questionnaire these correlations were 0.344 / 0.306 in the model with positively 

correlated traits; 0.614 / 0.618 in the model with uncorrelated traits; and 0.793 / 

0.791 in the model with negatively correlated traits. 

Clearly, the recovery of the latent traits is totally unacceptable for the 

positively correlated traits, is poor for the uncorrelated traits, and only approaches 

satisfactory levels for the negatively correlated traits. When the correlations for the 

best model (with negatively correlated traits) are converted into estimates of 

reliability using Equation (31), they yield 
(f1) = 0.629 and 
(f2) = 0.625 for the long 

questionnaire, and 
(f1) = 0.629 and 
(f2) = 0.587 for the short questionnaire. 

Neither would be considered acceptable levels of reliability for a personality 

questionnaire. 

To understand these results, let us now turn to Figure 4, which depicts the 

ICS for a pair {i5, i6} from this example. It can be seen that the change in the 

surface’s slope depends on the direction in the trait space. The slope is high in the 

direction taken from an angle of about 45! towards the positive end of the first trait 

(�1) and the negative end of the second trait (-�2). It means that such an item-pair 

will contribute a sizeable amount of information to the trait difference score (�1-�2). 

Therefore pairs where one has to chose between two positively keyed items will 

highlight differences in the 2 latent traits. At the same time, the ICS appears 

essentially flat in the direction taken from an angle of about 45! towards the positive 

ends of both traits. The same item-pair would provide virtually no information on 

the sum score (�1+�2) of the two latent traits. Therefore, the information provided 
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by this pair is about the relative position of the 2 underlying trait scores, not their 

absolute locations. This is why the recovery of the true score is so poor.  

This problem is aggravated even further when the measured traits are 

positively related to each other. This is because the information provided by the 

binary outcome is lower in this situation, as can be seen from equations (23) and 

(24). On the other hand, for the negatively correlated traits, the information 

provided by the binary outcome is higher than for the uncorrelated traits. 

It has to be concluded that when measuring 2 traits, the forced-choice design 

with items keyed in the same direction is not recommended. When traits are 

negatively correlated, the recovery of scores is better but still falls short of acceptable 

levels.  

Design 2. Questionnaire with both positively and negatively keyed items 

Having learnt from the previous design that positively keyed items alone provide 

information on the difference score between the latent traits, but not on the sum 

score, let us turn to a design where positively and negatively keyed items from the 2 

traits are combined together in blocks. Item-pairs of positively keyed items should 

provide information on the difference between the latent traits, and item-pairs of 

items keyed in opposite directions should add information about the traits’ sum, thus 

locating both traits. In this design, forced-choice blocks are built by combining: 1) 

positive items from both traits; 2) positive item from trait 1 and negative from trait 

2; and 3) negative item from trait 1 and positive from trait 2. There are equal 

numbers of blocks of each type. Exactly the same item parameters are used here as 

in the previous design except that the sign of the factor loadings for some items is 

reversed. True item parameters for the short questionnaire (and the same items form 

the first half of the long questionnaire) are given in Table 1. 

The estimation in Mplus proceeded successfully for all 1000 replications in all 

conditions, apart from one condition where 999 replications were successful. 

Goodness-of-fit statistics are given in Table 2, and statistics on parameter estimates 

are given in Table 3. It can be seen that chi-square rejection rates in this case are 
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very close to the expected values. Trait correlations were estimated accurately, with 

no more than 5% bias. The item parameters were estimated very accurately with 

negligible bias. 

 

 

 

a. Short questionnaire with positively and negatively keyed items 

 

b. Long questionnaire with positively and negatively keyed items 

Figure 5: Scatterplot of MAP estimated trait scores vs. true latent trait scores for the 

simulation with 2 uncorrelated traits 
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Next let us consider the first sample replication with uncorrelated traits to 

evaluate how well the true scores were recovered. Figure 5 shows plots of the true 

trait scores versus the estimated MAP scores for the short and the long 

questionnaires. All in all score recovery is good: true scores and MAP scores correlate 

at 0.872 for trait 1 and 0.860 for trait 2 in the short questionnaire; and in the long 

questionnaire they correlate at 0.918 for trait 1 and 0.918 for trait 2. These 

correlations can be converted into estimates of reliability using Equation (31), 

yielding figures 
(f1) = 0.760 and 
(f2) = 0.740 for the short questionnaire, and 
(f1) 

= 0.842 and 
(f2) = 0.843 for the long questionnaire. Therefore 12 item-pairs provide 

reliability levels that are considered just acceptable for a personality questionnaire, 

and 24 item-pairs provide very good reliability indeed. Correlations with the true 

scores, and therefore the reliability estimates are similar for the models with 

positively and negatively correlated traits (all reliability estimates for this example 

are reported in Table 4). Clearly, combining positive and negative items in blocks 

resulted in much more accurate estimation of true scores across all conditions. 

Now let us consider the test information and standard errors. Figure 6 

provides the MAP test information functions computed in direction of trait 1 for the 

short and long questionnaires with uncorrelated traits. It can be seen that with twice 

as many items in the long questionnaire, approximately 2 times more information is 

obtained in the middle of the latent distribution.  

The MAP test information was evaluated at the estimated individual scores, 

computing the average error variance across the sample. The empirical reliabilities 

for the short questionnaire (see Table 4) are 
(f1) = 0.691 and 
(f2) = 0.674, and for 

the long questionnaire they are 
(f1) = 0.842 and 
(f2) = 0.840. Comparing these 

figures to the reliabilities obtained by correlating the estimated and the true scores, 

it can be seen that the information method underestimates the actual reliability for 

the short questionnaire by about 0.07 or 10%. This is most likely due to the variance 

of the observed score being low, which is typical when the MAP estimator is used 

with a small number of items (it is biased towards the population mean).  
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a. Short questionnaire    b. Long questionnaire  

Figure 6: MAP test information function for the simulation with 2 uncorrelated traits 

Note: Information is computed in direction of Trait 1. Darker shading on the graphs signifies 

the information values over 4, corresponding to the test reliability over 0.75. 

 

For the longer questionnaire, however, the information method proves very 

accurate. Turning to simulations with positively and negatively correlated traits, 

results were very similar to the uncorrelated case (see Table 4). The accuracy of 

MAP estimation for latent traits remained at approximately the same levels. Also, 

the information method yielded underestimated reliability levels for the short 

questionnaire; however, it was very precise when the number of binary outcomes per 

trait was larger. 

To conclude, in a forced-choice application with 2 traits latent trait estimation 

can be precise when both positively and negatively keyed items are combined in the 

same blocks. Relationships between the traits do not affect the effectiveness of the 

IRT score estimates in this case. It is effective to combine positive and negative 

items (making positive-positive item pairs, positive-negative item pairs, and negative-

positive item pairs) in order to locate the absolute trait scores in all applications 
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with 2 dimensions. Combining negative items with negative provides the same 

information as positive items. Finally, as few as 12 item-pairs can be used to obtain 

reliability levels of around 0.75. If higher precision of measurement is required, more 

item pairs should be used. Also, on the basis of this example, the sample-based 

empirical estimates of reliability seem to give fairly accurate results, more so for 

longer questionnaires. 

 

Table 4: Test reliabilities in the simulation with 2 traits; questionnaire with positively 

and negatively keyed items (first replication) 

Keyed 

direction of 

items 

Number of 

items per 

trait 

True trait 

correlation 

Actual test 

reliability 

Info-based 

reliability 

   Trait 1 Trait 2 Trait 1 Trait 2 

+ 12 0 .385 .386 - - 

+ 12 0.5 .171 .107 - - 

+ 12 -0.5 . 627 . 568 - - 

+ 24 0 .402 .438 - - 

+ 24 0.5 .256 .209 - - 

+ 24 -0.5 .637 . 621 - - 

+/- 12 0 .760 .740 .691 .674 

+/- 12 0.5 .780 .779 .739 .756 

+/- 12 -0.5 .747 .725 .665 .645 

+/- 24 0 .842 .843 .842 .840 

+/- 24 0.5 .851 .859 .871 .877 

+/- 24 -0.5 .819 .820 .822 .812 

Notes: Actual test reliability is computed as squared correlation between MAP estimated and 

true scores; information-based reliability is calculated using MAP test information evaluated 

at the MAP estimated sample scores. For the questionnaires with positive items, the 

information method is not recommended (see text). 
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Simulation study 2. A forced-choice questionnaire measuring 5 traits 

The purpose of this simulation is to investigate how well the latent trait scores can 

be recovered in a forced-choice questionnaire measuring 5 traits. The 5 traits 

measured here will mimic the Big Five personality factors (Neuroticism, 

Extraversion, Openness, Agreeableness, and Conscientiousness). Correlations between 

the traits were set to values reported for the NEO PI-R (Costa & McCrae, 1992), 

which are given in Table 5. Each trait is measured with 12 items. Parameters for the 

item utilities (factor loadings, intercepts and uniqueness) in this model follow the 

same rules as in the previous example with 2 traits. Again, it is attempted to create 

a questionnaire with positively keyed items first, and then with both positively and 

negatively keyed items. 

The number of traits in this example allows combining various numbers of 

items in each block, still keeping the pure multidimensional forced-choice design. Let 

us investigate 3 most popular forced-choice formats – blocks of 2 items (pairs), blocks 

of 3 items (triplets), and blocks of 4 items (quads). For each of these formats, a 

questionnaire was designed where no items from the same dimension were presented 

in the same block, using all 12 items per trait, 60 items in total. The questionnaire 

with pairs consisted of 60/2 = 30 blocks, the questionnaire designed with triplets 

consisted of 60/3 = 20 blocks, and the questionnaire designed with quads consisted of 

60/4 = 15 blocks. 

According to the model, 1000 random samples of N=1000 cases were 

generated with 5 traits (�2 = 1) correlated as per Table 5, and 60 independent 

uniqueness terms with variances 2 21
i i
� �� � . For every design, continuous 

differences of utilities were produced for each pairwise comparison in each block 

using � 
*

*
j j jy

� �� �� � �y A , where j = 1, …, N are individuals in the sample,  and 

dichotomized *
j

y  using (5). Having obtained binary responses according to 

Thurstone's theory of latent utilities, Mplus was used to test the corresponding 

Thurstonian IRT model using the DWLS estimation, and compute MAP estimates of 

the latent traits.  
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Table 5: True trait correlations in the simulation studies with 5 traits 

 N E O A C 

Neuroticism (N) 1* -0.21 0 -0.25 -0.53 

Extraversion (E)  1* 0.40 0 0.27 

Openness (O)   1* 0 0 

Agreeableness (A)    1* 0.24 

Conscientiousness (C)     1* 

Note: (*) Trait variances are set to 1 for identification. 

 

Design 1. Blocks of 2 items (pairs) 

In the first questionnaire design with blocks of n = 2 items, d = 5 traits are 

measured with m = 60 items (12 items per trait), and the number of blocks is p = 

30. Each block produces ñ = 1 binary outcome, therefore the total number of binary 

outcomes is p���ñ = 30, and each trait is measured by 12 binary outcomes. 

To identify this model, pairs’ uniquenesses have to be fixed as for the previous 

example with 2 traits. However, no constraints on factor loadings are required (see 

the section on identification of Thurstonian IRT models above). The degrees of 

freedom do not need to be adjusted as there are no redundancies in blocks of 2 items.  

The model estimation proceeded successfully for 954 replications when positive 

items only were used; and for all 1000 replications when both positive and negative 

items were combined in blocks. Both versions yielded correct empirical rejection rates 

for chi-squares (see Table 6 for goodness-of-fit statistics). Item parameters and trait 

correlations were estimated accurately (see Table 7 for parameter estimation 

statistics). The correlations between traits were slightly negatively biased for the 

model with all positive items, but for the model with both positive and negative 

items they were recovered to a very high degree of accuracy. In the questionnaire 

with all positive items the standard errors of correlations were negatively biased by 

about 30%, the SE of item loadings were negatively biased by about 20% and the SE 
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of item thresholds were negatively biased by about 10%. In the questionnaire with 

positive and negative items standard errors were accurate. 

Let us consider the first replication to evaluate how well the true scores were 

recovered in this example. The true scores and MAP scores correlated on average at 

0.822 for the questionnaire with all positive items, and at 0.889 for the questionnaire 

combining both positive and negative items. When these correlations are converted 

into estimates of reliability using Equation (31), they yield reliabilities just below 0.7 

for the positively keyed items design, and at around 0.79 for the positive/negative 

item design (all reliabilities are reported in Table 8). 

The test information functions and the average squared errors were also 

computed for this replication, and turned into the reliability estimates using (30). 

Comparing these information-based estimates presented in Table 8 to the actual 

reliabilities, it can be seen that for both designs the information method slightly 

underestimates the reliability, on average by about 5%. This is likely due to the 

relatively small number of binary outcomes per trait (12), leading to the substantial 

“compression” of the MAP score, and consequently small observed score variance.  

To conclude, in a forced-choice application with 5 traits, the design with 30 

positively keyed item-pairs falls slightly short of the measurement precision that is 

typically required. However, the questionnaire is sufficiently precise when both 

positive and negative items are combined in blocks. Also, note that in this design 

with pairs only 12 binary outcomes per trait are produced. Increasing the number of 

binary outcomes should lead to a higher measurement precision. This can be 

achieved in 2 ways: by increasing the number of items per trait, or simply changing 

the questionnaire format to blocks of 3 or 4 items, drawing them from the same item 

pool. Next the design using the same 60 items combined in blocks of 3 is considered. 
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oodness of fit in the sim
ulation studies w

ith 5 traits 

B
lock 

size 

K
eyed 

direction 

of item
s 

N
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successful 

com
putations 

D
egrees 

of 

freedom
 

C
hi-

square 

m
ean

 

C
hi-square 

SD
 

E
m

pirical rejection rates of chi-square 

test 

 
 

 
 

 
 

.01 
.05 

.10 
.20 

2 
+

 
954 

365 
360.38 

33.60 
.023 

.067 
.119 

.206 

 
+

/- 
1000 

365 
367.44 

34.23 
.047 

.110 
.156 

.248 

3 
+

 
1000 

1640* 
1669.01 

106.36 
.154 

.272 
.334 

.418 

 
+

/- 
1000 

1640* 
1677.73 

101.00 
.155 

.276 
.354 

.447 

4 
+

 
1000 

3830* 
3920.31 

192.62 
.266 

.362 
.432 

.518 

 
+

/- 
1000 

3830* 
3914.01 

196.52 
.268 

.388 
.458 

.534 

N
otes: N

um
ber of item

s per trait is 12 for all designs.  

(*) D
egrees of freedom

 are adjusted for the num
ber of redundancies in the m

odel. 
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ulation studies w

ith 5 traits 
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2 
+

 
.117 

-.306 
.011 

-.212 
.013 

.131 
fixed 

fixed 

 
+

/- 
.006 

-.012 
.020 

-.027 
.014 

-.015 
fixed 

fixed 

3 
+

 
.102 

-.153 
-.001 

-.103 
.007 

.000 
.018 

-.024 

 
+

/- 
.006 

-.018 
.015 

-.015 
.008 

-.004 
.020 

-.022 

4 
+

 
.095 

-.141 
-.004 

-.107 
.001 

-.010 
.006 

-.026 

 
+

/- 
.006 

-.015 
.011 

-.010 
.005 

-.007 
.010 

-.023 

N
otes: U

niquenesses are fixed for the design w
ith pairs in order to identify the m

odel.



 

63 

 

Table 8: Test reliabilities in the simulation studies with 5 traits (first replication) 

Block size Keyed 

direction 

of items 

Reliability N E O A C 

2 + actual .698 .664 .648 .689 .683 

  empirical .717 .603 .576 .707 .663 

 +/- actual .772 .811 .783 .798 .786 

  empirical .709 .771 .747 .754 .761 

3 + actual .767 .752 .710 .735 .762 

  empirical ** .904 .862 .852 .879 .875 

 +/- actual .849 .872 .859 .872 .863 

  empirical ** .885 .878 .873 .880 .878 

4 + actual .767 .744 .710 .764 .774 

  empirical ** .922 .892 .880 .917 .915 

 +/- actual .878 .889 .880 .894 .895 

  empirical ** .920 .918 .914 .917 .918 

Notes: Actual test reliability is computed as squared correlation between MAP estimated and 

true scores; empirical reliability is calculated using posterior test information evaluated at 

the MAP estimated sample scores. (**) For blocks of 3 or 4 items, the information method 

makes a simplifying assumption of local independence.  

 

Design 2. Blocks of 3 items (triplets) 

The next questionnaire consists of p = 20 triplets (n = 3), and the same m = 

60 items are used as in the previous example. The items are arranged into triplets so 

that all 10 permutations of 3 out of 5 traits are equally represented. This makes each 

subset of 3 traits appear exactly 2 times in the questionnaire. Each block produces ñ 

= 3 binary outcomes, therefore the total number of binary outcomes in this model is 

p���ñ = 60, and each trait is measured by 24 binary outcomes. 

To identify this model, one item’s uniqueness per block has to be fixed, but no 

constraints on factor loadings are required. The degrees of freedom in this case need 
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to be adjusted because there are 20 redundancies in 20 blocks of 3 items (1 

redundancy per block). 

The estimation proceeded successfully for both versions (with positively keyed 

items only and with positively and negatively keyed items) for all replications. 

Empirical rejection rates for the chi-square, however, are much higher than the 

nominal rates (see Table 6); therefore models of this kind are rejected more often 

than they should based on the test of exact fit. All item parameters were estimated 

very accurately, with negligible bias (see Table 7). The correlations between traits 

were also recovered accurately, particularly for the questionnaire with 

positive/negative items. In the questionnaire with all positive items the standard 

errors of correlations were negatively biased by about 15%, and the SE of item 

loadings were negatively biased by about 10%. 

Let us consider the first replication to evaluate how well the true scores were 

recovered for both versions of the questionnaire. It has been shown that MAP 

estimation using the simplifying assumption of local independence provides very 

accurate results even when this assumption is violated in blocks of 3 or more items 

(Maydeu-Olivares & Brown, 2010). The true scores and MAP scores correlated on 

average at 0.863 for the questionnaire with all positive items, and at 0.929 for the 

questionnaire combining positive and negative items. Converting these correlations 

into estimates of reliability using Equation (31), reliabilities of about 0.75 are 

obtained for the positive items design, and of about 0.86 for the positive/negative 

items design (see Table 8). The test information functions and the average squared 

errors were turned into the reliability estimates using (30), yielding figures of about 

0.87 for the positively keyed items design, and of about 0.88 for the positive/negative 

items design. We can see that the information method is very accurate in estimating 

the reliabilities for the questionnaire with positive and negative items, despite 

ignoring the correlated uniquenesses in this triplet forced-choice design, and making 

a simplifying assumption of local independence. The very minor over-estimation of 

about 2% is totally acceptable in practice.  
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However, the information method overestimates the reliability by about 17% 

for the design with positive items only. This is because positively keyed items on 

their own, as was explained above, are good at recovering the differences between the 

traits but not their sums, and therefore have limits in recovering the traits’ absolute 

locations. There is a clear improvement in the trait recovery compared to the 

example with 2 traits; however, this improvement is due to the increased number of 

traits (this point will be expanded in the discussion) and not to the increased 

number of items. Adding binary outcomes of comparisons between positively keyed 

items is unlikely to improve the trait recovery further, as will be seen in the design 

with quads. The information method, however, adds information provided by every 

binary outcome, thus providing unrealistically large estimates.  

To conclude, in a forced-choice application with 5 traits, the design with 20 

triplets provides sufficient measurement precision. Particularly, the questionnaire 

combining both positive and negative items within blocks provides very good levels 

of measurement accuracy.  

Design 3. Blocks of 4 items (quads) 

The next questionnaire consists of p = 15 blocks of n = 4 items (quads), 

utilizing the same 60 items as in the previous examples. The items are arranged into 

quads so that all 5 permutations of 4 out of 5 traits are equally represented. This 

makes each subset of 4 traits appear exactly 3 times in the questionnaire. Each block 

produces ñ = 6 binary outcomes, therefore the total number of binary outcomes in 

this model is p���ñ = 90, and each trait is measured by 36 binary outcomes. Note 

that here it is assumed that full rankings are performed in each block (not the 

“most”-“least” incomplete ranking), and therefore all binary outcomes are known. 

To identify this model, one item’s uniqueness per block has to be fixed, but no 

constraints on factor loadings are required. The degrees of freedom in this case need 

to be adjusted because there are 60 redundancies in 15 blocks of 4 items (4 

redundancies per block). The estimation proceeded successfully for both positive and 

positive/negative questionnaire versions for all 1000 replications. Similarly to the 

model with triplets, empirical rejection rates for the chi-square test are much higher 
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than they should be (see Table 6). The goodness-of-fit test will reject this type of 

model much more often than it should. All item parameters and the trait correlations 

were estimated very accurately (see Table 7). In the questionnaire with all positive 

items the standard errors of correlations were negatively biased by about 14%, and 

the SE of item loadings were negatively biased by about 10%. 

Again, consider the first replication to evaluate how well the true scores were 

recovered. While the trait recovery has not improved compared to the triplet design 

(the true scores and MAP scores correlated on average at 0.867) for the 

questionnaire with all positive items, it has improved even further to the impressive 

average of 0.942 for the questionnaire combining both positive and negative items. 

Converting these correlations into estimates of reliability using Equation (31), 

reliabilities of about 0.75 are obtained for the positively keyed items design, and of 

about 0.89 for the positive/negative item design (see Table 8). The information 

method yielded the reliability figures of about 0.91 for the positively keyed items 

design, and of about 0.92 for the positive/negative item design. Again, the method 

assumes that every item improves the prediction and thus yields accurate figures for 

the positive and positive/negative items designs. However, the design with positive 

items only has reached its limit in its ability to locate the trait scores (it has not 

improved the prediction from the triplet design despite increased numbers of binary 

outcomes). The design with positive and negative items, on the other hand, was able 

to improve the prediction even further. Therefore, the information method is still 

accurate in estimating the reliabilities for the questionnaire with positive and 

negative items, despite ignoring correlated errors in this forced-choice design with 

quads, and making a simplifying assumption of local independence. The information 

method makes a very minor over-estimation of around 3%, which would be 

considered acceptable in practice.  

To conclude, in a forced-choice application with 5 traits, the design with 15 

quads provides sufficient measurement precision, particularly for the questionnaire 

combining both positive and negative items within blocks. 
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Empirical applications 

In this chapter, real data applications are considered. In the first application, 

responses were collected to a short Big Five questionnaire created by the author 

solely for the purpose of this research. The second application is a popular workplace 

questionnaire CCSQ (Customer Contact Styles Questionnaire; SHL, 1997) measuring 

16 traits relevant to customer service and sales jobs. For both applications, the 

relationships are provided between the trait scores estimated from the forced-choice 

items using the Thurstonian IRT model and the trait scores estimated from the 

single-stimulus versions of the same items.  

Application 1. A Big Five questionnaire constructed from IPIP items 

Instrument 

One of the designs described in the simulation studies with 5 traits was used 

as a template to create a short forced-choice questionnaire. Items were drawn from 

the International Personality Item Pool (IPIP), more specifically from its subset of 

100 items measuring the Big Five factor markers (Goldberg, 1992). Note that 

constructs measured by this questionnaire are not the same as in NEO-PIR, and 

therefore correlations between the five traits are expected to be different from those 

reported in Table 5. Sixty items were selected so that 12 items would measure each 

of the 5 marker traits. The triplet design was chosen from the simulation study 

above, with 8 positively and 4 negatively keyed items per trait. The questionnaire 

items are listed in Appendix F. These items were also translated into Spanish, thus 

creating another language version of the questionnaire. 

Each block of 3 in the questionnaire is designed to be presented in 2 formats. 

First, participants have to rate the 3 items using a 5-point rating scale “very 

accurate”- “moderately accurate”-“sometimes accurate and sometimes inaccurate”-

“moderately inaccurate”-“very inaccurate”. This scale is a modification of the rating 

scale suggested by Goldberg (1992), where the original middle category “neither 

inaccurate nor accurate” was replaced with a category more explicitly referring to 



 

68 

 

the “in-between” possibility, rather than to “neither-nor” meaning often leading to 

“don’t know” interpretation. Research on the use of intermediate categories has 

shown that a clear reference to the in-between position has advantages to the scale’s 

properties (Hernandez, Espejo & González-Romá, 2006). 

This single-stimulus presentation was immediately followed by the forced-

choice presentation, where the participants were asked to select one item “most like 

me”, and one “least like me” out of the same block of 3 items. Two formats were 

used in order to compare trait scores as estimated from the single-stimulus and 

forced-choice items. 

Sample 1 – English version 

Four-hundred-and-thirty-eight volunteers from the UK completed the English 

version of the questionnaire online in return for a feedback report. Out of 433 

participants who provided demographic information, 48.4% were male and 51.6% 

were female. Age ranged from 16 to 59 years with a mean of 33.3 and a standard 

deviation of 10.37 years. The largest ethnic group was white (64%) followed by Asian 

(18%) and Black (6.6%). Most participants were employed (55%), 23% were students 

and 14% were unemployed. 

Sample 2 – Spanish version 

Four-hundred-and-thirty undergraduate Psychology students from the 

University of Barcelona completed the Spanish version of the questionnaire online in 

return for a feedback report. Eighty-three percent were female and 17% were male. 

Age ranged from 16 to 46 years with a median 19, mean 20.8 and a standard 

deviation of 4.17 years.  

IRT model estimation for forced-choice and single-stimulus responses 

First, the single-stimulus version of the questionnaire was analyzed. The 

multidimensional version of the normal ogive graded response model (Samejima, 

1969) was fitted to the item responses for all 5 traits simultaneously, using the ULS 

estimation in Mplus. The five latent traits were allowed to correlate freely. The exact 
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model fit was relatively poor. On 1700 degrees of freedom, the English version 

yielded chi-square 3621.59 (p < 0.001), RMSEA = 0.051, and the Spanish version 

chi-square 4375.49 (p < 0.001), RMSEA = 0.068. Fitting the model one scale at a 

time revealed that the scale Openness had its items loading on 2 dimensions (namely 

imagination, and preference for complex and abstract material). The scale 

Conscientiousness had 2 items with highly similar content (preference for order) that 

shared common variance not explained by the main factor. Other scales were broadly 

one-dimensional and showed good fit indices when tested on their own. However, the 

Big Five model without any modifications was tested to estimate the model 

parameters and compute the MAP scores for individuals. The estimated correlations 

between the five traits are given in Table 9 (above the diagonal). 

Next, the forced-choice questionnaire was analyzed. After coding the forced-

choice rankings as binary outcomes, the 5-dimensional IRT model with freely 

correlated latent traits was fitted to these data in Mplus, also using the ULS 

estimation. One item’s uniqueness per block was fixed for identification. The forced-

choice model yielded a better fit than the single-stimulus model: on 1640 degrees of 

freedom the English version yielded a chi-square of 2106.06, RMSEA = 0.025, and 

the Spanish version a chi-square of 2282.61, RMSEA = 0.035. Degrees of freedom 

and RMSEA are corrected for the number of redundancies in the model, 20.  

Correlation patterns 

The estimated correlations between the five dimensions in this model are 

given in Table 9. In the English version, the forced-choice correlations (given below 

the diagonal) are very similar to the trait correlations estimated from the single-

stimulus data (above the diagonal) for all but one correlation. The correlation 

between traits Agreeableness and Openness is higher for the single-stimulus version 

(0.41) than for the forced-choice version (0.15). In the Spanish version, trait scores 

based on the single-stimulus responses were more positively correlated with each 

other than the forced-choice trait scores. 
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Table 9: Estimated correlations between the Big Five markers based on the single-

stimulus and forced-choice questionnaires in the empirical example  

 N E O A C 

English version      

Neuroticism (N) 1 -.44 (.04) -.49 (.04) -.37 (.05) -.33 (.05) 

Extraversion (E) -.40 (.06) 1 .52 (.04) .49 (.04) .29 (.05) 

Openness (O) -.48 (.07) .48 (.06) 1 .41 (.05) .31 (.05) 

Agreeableness (A) -.40 (.08) .41 (.07) .15 (.08) 1 .30 (.05) 

Conscientiousness (C) -.30 (.07) .23 (.07) .35 (.07) .31 (.08) 1 

Spanish version      

Neuroticism (N) 1 -.20 (.05) -.30 (.05) -.11 (.05) -.22 (.05) 

Extraversion (E) -.15 (.07) 1 .28 (.05) .49 (.04) .14 (.05) 

Openness (O) -.27 (.07) . 05 (.08) 1 .27 (.05) .24 (.05) 

Agreeableness (A) -.24 (.08) .37 (.06) .11 (.08) 1 .21 (.05) 

Conscientiousness (C) -.09 (.07) -.01 (.07) .04 (.08) .11 (.07) 1 

Notes: The single-stimulus correlation estimates are above the diagonal, the forced-choice 

estimates are below the diagonal, the standard errors are in parentheses. 

  

Empirical reliability and ordering of respondents 

Scale empirical reliability estimates for the forced-choice data were computed 

based on the IRT information method described above. Reliability estimates for the 

single-stimulus data were also computed using equations (26) and (27). The 

reliability estimates for the English version ranged from 0.775 to 0.844 for the single-

stimulus data, and from 0.601 to 0.766 for the forced-choice data (see Table 10). For 

the Spanish version, the reliabilities ranged from 0.783 to 0.889 for the single-

stimulus data, and from 0.648 to 0.845 for the forced-choice data. It can be seen that 

the rank-order of scales in terms of their reliability is the same for both formats, 

however, the reliabilities are lower by about 0.1 for the forced-choice format. Clearly, 

responses to 60 items using the ordinal 5-point scale provided more information than 

60 binary outcomes of rankings.  



 

71 

 

The reliability estimates in this application are lower than those obtained in 

the simulation study with 5 traits and the same triplet design. This is due to 

generally lower item loadings found in this application than those used in the 

simulation. For most items, standardized factor loadings found in the single-stimulus 

version of the IPIP Big Five questionnaire were between 0.5 and 0.7, whereas they 

were between 0.65 and 0.95 in the simulated examples. The nature of the broad 

marker traits in this application meant that the factor loadings were lower than 

would be typically found in a questionnaire with more narrowly defined traits. 

The MAP estimated trait scores for individuals based on single-stimulus and 

forced-choice responses correlated strongly (see Table 10), with correlations ranging 

from 0.69 for Agreeableness to 0.82 for Extraversion for the English sample, and 

from 0.70 for Agreeableness to 0.87 for Neuroticism for the Spanish sample. 

Interestingly, while the Openness scale was the most problematic in terms of its 

dimensionality, the weakest correlation between the forced-choice and the single-

stimulus formats was observed for the scale Agreeableness.  

 

Table 10: Reliabilities and correlations between the single-stimulus and forced-choice 

Big Five marker traits in the empirical example 

 N E O A C 

English version      

SS reliability 0.825 0.844 0.824 0.775 0.802 

FC reliability 0.704 0.766 0.729 0.601 0.685 

corr(SS,FC) 0.804 0.817 0.772 0.692 0.764 

Spanish version      

SS reliability 0.858 0.889 0.783 0.829 0.828 

FC reliability 0.824 0.845 0.648 0.718 0.721 

corr(SS,FC) 0.869 0.840 0.743 0.702 0.800 

Notes: The reliability estimates are computed by the sample-evaluated information method. 

SS is single-stimulus questionnaire; FC is forced-choice questionnaire. 
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Application 2. Customer Contact Styles Questionnaire 

Instrument 

The Customer Contact Styles Questionnaire (CCSQ version 7.2) is published 

by SHL and used in assessment for customer service and sales roles. Its 16 work-

related dimensions cover a wide range of behavioral styles, with a strong emphasis on 

achievement motivation (SHL, 1997). Short descriptions of the scales can be found in 

Table 11. 

CCSQ items are presented with 32 blocks of 4 statements (128 statements in 

total) so that there are no two items within a block measuring the same trait. The 

number of items measuring each scale varies from 7 to 10. All statements are 

positively worded and keyed. For each block the respondents have to rate all four 

statements on a 5-point Likert scale (ranging from “Strongly Disagree” to “Strongly 

Agree”), and then select one item that is ‘most like me’ and one ‘least like me’. 

Thus, the test combines both single-stimulus and forced-choice formats in one. Here 

is a sample block: 

I am the sort of person who… 

A. generates imaginative solutions 

B. easily forgets unfair criticism 

C. needs to beat the opposition 

D. is eager to help others out 

Scale scores in the questionnaire are derived by adding together the classical 

normative and ipsative scale scores. In this test, the normative scores are assumed to 

provide the ‘absolute’ standing on the 16 traits, and ipsative scores to provide 

additional information on ‘relative’ order of traits. This approach works well in the 

questionnaire, and the composite scores are shown to have better operational 

validities than the normative scores alone (SHL, 1997). The ipsative scores provide 

incremental validity over and above the normative scores.  
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Table 11:  Short descriptions of the 16 traits measured by the Customer Contact 

Styles Questionnaire (CCSQ) 

1.       Persuasive - enjoys selling, negotiating and gaining commitment. 

2.       Self-control - restrained in showing irritation or annoyance; rarely criticizes 

others openly; remains patient. 

3.       Empathic - sensitive and understanding towards others; prepared to go out of 

their way to help. 

4.       Modest - reserved about personal achievements and disinclined to talk about 

self. 

5.       Participative - enjoys team work and wants to develop constructive 

relationships. 

6.       Sociable - sociable, talkative and confident with different types of people; livens 

up group activities. 

7.       Analytical - enjoys analyzing information; working with data; probing the facts 

and solving problems. 

8.       Innovative - comes up with a wide range of ideas and offers imaginative or 

novel solutions. 

9.       Flexible - open to new approaches and readily adapts to different 

circumstances. 

10.     Structured - plans ahead; considers preparation, priority setting and structure 

to be important. 

11.     Detail conscious - ensures accuracy by checking details carefully and by being 

neat and tidy. 

12.     Conscientious - willing to persevere, to keep firmly to deadlines and to make 

sure that tasks are completed. 

13.     Resilience - copes with external stresses and pressures by being calm, thick 

skinned and looking on the bright side. 

14.     Competitive - needs to win at all costs, hates to lose and likes to be the best. 

15.     Results orientated - sets ambitious personal targets; stimulated by challenging 

targets; keen to improve own performance. 

16.     Energetic - enjoys being active; keeps busy; sustains a high level of energy over 

a long time. 
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In what follows, the psychometric properties of classical normative and 

ipsative test scores are considered first. These scores are of interest because this is 

how the questionnaire is currently scored. Then scores estimated from forced-choice 

ratings using the IRT model are compared to the classical FC and SS scores, and to 

the IRT-estimated SS scores. 

Sample 

The CCSQ UK Standardization sample, consisting of N = 610 respondents, 

was collected in 2001 using paper and pencil supervised administration. The sample 

was drawn from nine different organizations in industry, commerce and the public 

sector. Approximately half were job applicants, and the rest completed the 

questionnaire to provide data in return for feedback. Sixty-one percent were males, 

thirty-nine percent females. Most respondents were currently working in sales (61%) 

and customer service roles (26%). The average age was 33 years. 

Properties of the classical ipsative and normative scores  

Ordering of respondents on each of the 16 scales based on the CTT single-

stimulus and IRT forced-choice scores was relatively similar (see Table 15). Cross-

format scale correlations ranged from 0.50 to 0.73 (median 0.68). The scale Resilient 

yielded the lowest correlation across formats (0.50). The scales’ classical reliabilities 

are given in Table 14. The alphas as computed from the single-stimulus ratings range 

from 0.78 to 0.91 with the median 0.84. The alphas as computed from the traditional 

forced-choice scores range from 0.57 to 0.80 with the median 0.72. It can be seen that 

alphas for the forced-choice rankings are substantially lower than for the single-

stimulus ratings for every scale. 

As we know, ipsative scores produce distorted scale correlations. In this 

application the average off-diagonal correlation was r = -0.07, as it would be the case 

for any ipsative questionnaire measuring 16 traits, as shown by Equation (1). To 

perform factor analysis on ipsative scales, it is necessary to remove one of the scales 

so that the correlation matrix may be inverted. For this reason principal component 

analysis was used for analyzing the ipsative data, and throughout the application for 
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consistency and comparability of results.  A scree plot suggested extracting only two 

components explaining 34% of the variance. The emerged components are “contrast” 

factors typical for ipsative data (see Table 12). The first component has strong 

positive loadings from several scales related to Conscientiousness, and negative from 

scales related to Sociability. Selecting items from one of these two domains meant 

rejecting items from the other; i.e. being more Structured, Detail Conscious and 

Analytical led to earning lower scores on Sociable and Participative. Similarly, the 

second component has strong positive loadings from scales related to Drive and 

negative from Agreeableness. Being more Persuasive, Competitive and Results 

Orientated meant being less Self-Controlled, Empathic and Modest. Though 

somewhat interpretable, these “contrast” factors present a problem for understanding 

the true relationships between personality dimensions.  

In contrast to the depressed ipsative correlations, the 16 normative scales 

correlate positively with each other overall (average off-diagonal scale correlation r = 

0.22). Principal component analysis was performed on the normative scale scores, 

and a scree plot suggested extracting four components explaining 58.3% of the total 

variance. The components can be labeled “Conscientiousness”, “Dominance”, 

“Agreeableness”, and “Adaptability and Dynamism”. The rotated loadings (oblique 

rotation) and component correlations are presented in Table 13.  

The average profile scores (average of standardized scores on the 16 

dimensions) were distributed almost normally for the scale scores derived from the 

single-stimulus ratings. They ranged from z = -1.56 to z = 1.44 with mean 0.00 and 

standard deviation 0.51. While most people’s average profile score was around zero 

(68% had their average profile score within z = 0.51 of the mean), some people in the 

sample had above/below average scores on a number of scales. However, 

standardized ipsative scores’ averages showed no variation (they ranged from z = -

0.13 to z = 0.12 with mean 0.00 and standard deviation 0.04). This extremely limited 

distribution can be seen in Figure 7 (two tall columns around zero). Clearly, ipsative 

scores do not allow for much variation in the profile locations, and despite well-

differentiated scale scores within each profile, each profile as a whole is centered on 

zero. 
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Table 12: Rotated pattern matrix and component correlations for classical ipsative 

scores in the CCSQ Application 

 Conscientiousness 

versus Sociability 

Dominance and 

Drive versus 

Agreeableness 

Persuasive -0.30 0.48 

Self-control -0.24 -0.67 

Empathic -0.22 -0.57 

Modest 0.02 -0.58 

Participative -0.33 -0.37 

Sociable -0.54 0.21 

Analytical 0.63 0.18 

Innovative -0.01 0.35 

Flexible -0.13 0.28 

Structured 0.73 -0.05 

Detail conscious 0.83 -0.05 

Conscientious 0.57 -0.01 

Resilience -0.43 -0.15 

Competitive -0.17 0.45 

Results orientated 0.14 0.61 

Energetic -0.41 0.36 

Component correlations 

Component 1 1 -0.03 

Component 2  1 

Note: Loadings above +/-0.4 are set in boldface. 

 

To summarize, the limitations of the ipsative scores obtained from the CCSQ 

with classical scoring procedures are obvious. Their construct validity is difficult to 

establish, they do not allow for variability of the profiles’ locations, and finally, 

reliability estimates cannot be trusted due to violation of several assumptions. 
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Table 13: Rotated pattern matrix and factor correlations for the classical normative 

scores in the CCSQ Application 

 

1 2 3 4 

Conscientious

ness 

Dominance Agreeableness  Adaptability and 

Dynamism 

Persuasive -.01 .55 .06 .34 

Self-control .10 -.52 .44 .38 

Empathic .18 -.22 .76 .00 

Modest .15 -.67 -.06 .25 

Participative -.03 .11 .69 -.05 

Sociable -.11 .38 .48 .28 

Analytical .68 .01 -.22 .21 

Innovative .22 .37 -.15 .46 

Flexible .24 .05 .17 .47 

Structured .83 .02 .01 -.05 

Detail conscious .89 -.13 -.02 -.08 

Conscientious .80 .02 .23 -.13 

Resilience -.09 -.23 -.01 .89 

Competitive .11 .66 -.02 .05 

Results orientated .47 .38 .20 .22 

Energetic .06 .26 .11 .56 

Component correlations  

Component 1 1 .02 .18 .34 

Component 2  1 .05 .16 

Component 3   1 .25 

Component 4    1 

Note: Loadings above +/-0.4 are set in boldface. 

 

IRT model estimation for forced-choice and single-stimulus responses 

To overcome these limitations, the Thurstonian IRT model was applied to the 

forced-choice responses. After transforming the rankings into binary outcomes, there 
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were 6 = 4×3/2 outcomes per block, making 192 = 6×32 binary outcomes in total. 

These were the observed variables to be modeled as a function of the freely 

correlated 16 latent traits. To identify the model, one uniqueness per block was fixed 

to 1. Importantly, because the incomplete ranking format with “most”-“least” 

choices is used here, one of each 6 binary outcomes per block was not known and was 

treated as missing data. 

Using the DWLS estimation in such a large model would lead to a very 

significant increase in time for establishing diagonal weights. Therefore ULS 

estimator with theta parameterization (Muthén, 2006) was used in this application. 

Despite the estimation proceeding very fast, it was necessary to switch off computing 

goodness-of-fit statistics end standard errors in order for the estimation to finish. 

When the estimated forced-choice item parameters were converted into the 

threshold/slope parameterization, almost all estimated item slopes were over 0.5 in 

magnitude. However, the scale Competitive had one item with a near-zero slope 

(“resents others winning”). Unlike in CTT scoring, in IRT scoring this item will 

make virtually no influence on the scale score. 

To estimate latent scores derived from the single-stimulus responses, the 

normal ogive Graded Response model (Samejima, 1997) was fitted in a multivariate 

fashion, to all dimensions simultaneously. Again, the ULS estimation was used, with 

freely estimated factor loadings and the factor variances fixed to 1. For any given 

item, the item factor loading obtained in the single-stimulus estimation was generally 

similar in magnitude to the corresponding factor loading from the forced-choice 

model. The same item “resents others winning” from the scale Competitive that 

showed a near-zero loading in the forced-choice model also had a near-zero loading in 

the single-stimulus model.  Another item, namely “dislikes working alone” from the 

scale Participative, had a near-zero loading in the SS model, but discriminated well 

in the FC model. This is the only item in its scale that is negatively worded 

(compare to similar in meaning but positively phrased “likes working in a team”), 

and perhaps idiosyncratic use of the rating scale would explain why agreeing with 
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this statement did not necessarily follow from agreeing with more positively phrased 

statements.  

After estimating IRT parameters for the SS and FC models, MAP scores on 

the 16 traits were computed for the standardization sample using Mplus. Next, 

properties of the IRT scores estimated from the forced-choice ratings are discussed, 

specifically focusing on their similarities and differences to ipsative scores obtained 

using classical scoring procedures, and to the IRT scores estimated from the single-

stimulus presentation. 

 Empirical reliability and standard error of measurement 

To obtain reliability estimates for the single-stimulus data, the empirical MAP 

information was computed (Muthén, 2006; Du Toit, 2002) independently for each 

trait. For the forced-choice data, reliability indices were computed using the 

empirical information method as described above. Item information functions were 

computed for non-missing responses for each individual based on their estimated 

trait scores, summed to produce the test information function, and finally the 

information given by the prior distribution was added, as described in Equation (27). 

In both formats, the average standard error for the sample was computed and 

Equation (30) was used to compute the empirical reliability estimates for each scale.  

Table 14 summarizes the reliability findings for the two response formats. 

Standard errors of measurement for the IRT scores for a set of thetas equal 0 for all 

16 scales are also given. These values are indicative of the magnitude of the standard 

errors for average trait scores, where the information function is likely to reach its 

peak, and the questionnaire reach its maximum precision. 

The IRT empirical reliabilities for the single-stimulus questionnaire ranged 

from 0.70 to 0.87 with median 0.79. These estimates are slightly lower (on average 

by about 6%) than reliabilities provided by alpha for the classical normative scores. 

The empirical IRT reliabilities for the forced-choice questionnaire ranged from 0.71 

to 0.87 with median 0.79.  These are higher than alphas for the classical ipsative 

scores. While it has been argued that alphas underestimate the reliability in forced-
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choice questionnaires with many measured traits (see Appendix A), it is likely that 

the IRT empirical information method slightly over-estimated the test reliability in 

this case. This is because: 1) ignoring the local dependencies in blocks of four items is 

likely to over-estimate the reliability; 2) in a questionnaire with positive items, there 

is a limit to how well the latent traits can be recovered, and the information 

functions become very peaked thus providing distorted estimates of empirical 

reliability (see the section on simulation studies with 5 factors).  

 

Table 14: Reliabilities of the classical scores, IRT-based empirical reliabilities and 

standard errors in the CCSQ Application 

 

Number 

of items 

Single-Stimulus  Forced-Choice 

CCSQ scale Alpha 

IRT 

empirical 

reliability 

SE at 

theta=0  Alpha 

IRT 

empirical 

reliability 

SE at 

theta=0 

Persuasive 7 0.80 0.70 0.53  0.68 0.76 0.32 

Self-Control 9 0.89 0.83 0.40  0.72 0.80 0.32 

Empathic 9 0.83 0.78 0.44  0.74 0.77 0.35 

Modest 9 0.88 0.82 0.37  0.75 0.77 0.36 

Participative 10 0.90 0.87 0.41  0.80 0.83 0.30 

Sociable 8 0.78 0.73 0.46  0.68 0.76 0.36 

Analytical 8 0.79 0.73 0.49  0.66 0.83 0.31 

Innovative 9 0.91 0.87 0.32  0.78 0.82 0.29 

Flexible 7 0.82 0.76 0.47  0.62 0.74 0.36 

Structured 8 0.86 0.81 0.42  0.73 0.83 0.32 

Detail Conscious 7 0.85 0.78 0.44  0.75 0.87 0.26 

Conscientious 7 0.87 0.81 0.38  0.72 0.81 0.31 

Resilient 9 0.83 0.76 0.43  0.64 0.71 0.43 

Competitive 7 0.82 0.79 0.40  0.71 0.84 0.26 

Results Orientated 7 0.82 0.77 0.43  0.57 0.78 0.38 

Energetic 7 0.87 0.81 0.41  0.75 0.75 0.38 

MEDIAN  0.84 0.79 0.42  0.72 0.79 0.32 
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Ordering of respondents 

Scores produced from the same response format yielded similar ordering of 

people (see Table 15). Correlations between IRT and classical scores based on the 

single-stimulus format were nearly perfect, ranging from 0.93 to 0.99 (median 0.96). 

Correlations between classical and IRT scores based on the forced-choice responses 

ranged from 0.82 to 0.90, with the median correlation 0.87. This is lower than near-

perfect correlations between SS scores derived from summing Likert scale responses 

and estimated with IRT. It is clear that despite being derived from the same 

responses, differences between IRT forced-choice and classical ipsative scores are not 

trivial. 

Ordering of respondents on each of the 16 scales based on the IRT single-

stimulus and IRT forced-choice scores was similar (see Table 15). Cross-format scale 

correlations for 15 scales were 0.61 or above (median 0.66). The scale Resilient 

correlated across formats at 0.45, consistently with its low correlation across formats 

when classical scores were considered. A possible reason for this is that item pairs 

related to the desirable scale Resilient showed higher average thresholds in the 

forced-choice format than items from other scales. This means that it was more 

“difficult” to prefer statements from this scale (FC format), than it was to agree 

with these generally desirable statements on their own (SS format). 

As can be seen from Table 15, the IRT scoring did not increase correlations 

between the SS and FC scores compared to the CTT scoring. The correlations across 

formats remained roughly the same. The most likely reasons for not achieving higher 

cross-format correlations are: 1) small number of items per scale in this application, 

2) many positively correlated scales in this application (positive average scale inter-

correlation). These points will be discussed in more detail in the Discussion. 

However, similar magnitude of cross-format correlations for CTT and IRT scale 

scores do not mean that the IRT methodology did not deliver any advantages, as we 

shall see. These advantages will become clear when the test’s covariance structure is 

considered, and whole personality profiles are considered rather than isolated scales. 
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Table 15: Correlations between classical scores and IRT-based scores in the CCSQ 

Application 

 

Cross-method 

(CTT vs. IRT) 

Cross-format 

(FC vs. SS) 

 SS FC CTT IRT 

Persuasive 0.93 0.83 0.69 0.65 

Self-Control 0.97 0.86 0.63 0.64 

Empathic 0.97 0.84 0.63 0.62 

Modest 0.99 0.89 0.58 0.63 

Participative 0.95 0.88 0.71 0.69 

Sociable 0.95 0.87 0.72 0.66 

Analytical 0.95 0.87 0.65 0.64 

Innovative 0.98 0.90 0.69 0.70 

Flexible 0.97 0.82 0.63 0.61 

Structured 0.96 0.89 0.67 0.71 

Detail Conscious 0.95 0.90 0.70 0.72 

Conscientious 0.96 0.87 0.69 0.72 

Resilient 0.98 0.85 0.50 0.45 

Competitive 0.96 0.90 0.73 0.77 

Results Orientated 0.95 0.86 0.69 0.66 

Energetic 0.98 0.85 0.67 0.67 

MEDIAN 0.96 0.87 0.68 0.66 
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T
able 16: E

stim
ated correlations betw

een the C
C

SQ
 scales based on the single-stim

ulus and forced-choice responses 

1 
2 

3 
4

5 
6

7
8

9
10 

11
12 

13 
14 

15 
16 

1 
P

ersuasive 
1* 

0.03 
0.16 

-0.20 
0.12 

0.44 
0.29 

0.41 
0.22 

0.15
0.06 

0.15
0.23 

0.46 
0.44 

0.36 

2 
Self-C

ontrol 
-0.26 

1* 
0.64 

0.33 
0.21 

0.19 
0.23 

0.05 
0.33 

0.25
0.32 

0.33
0.43 

-0.06
0.25 

0.17 

3 
E

m
pathic 

0.00
0.60 

1* 
0.18 

0.38 
0.40 

0.22 
0.11 

0.31 
0.27

0.32 
0.39

0.18 
-0.05

0.32 
0.20 

4 
M

odest 
-0.09 

0.38 
0.31 

1* 
0.03 

-0.23
0.09 

-0.08 
0.02 

0.15
0.24 

0.21
0.18 

-0.20
-0.03 

0.00 

5 
P

articipative 
-0.01 

0.27 
0.37 

0.16 
1* 

0.28 
0.08 

0.15 
0.24 

0.10
0.08 

0.18
0.17 

0.09 
0.28 

0.20 

6 
Sociable 

0.35
0.11 

0.25 
-0.09 

0.29 
1* 

0.08 
0.31 

0.35 
0.15

0.09 
0.25

0.35 
0.21 

0.41 
0.45 

7 
A

nalytical 
0.23

0.14 
0.19 

0.17 
0.10 

0.00 
1*

0.44 
0.40 

0.53
0.69 

0.48
0.29 

0.10 
0.52 

0.20 

8 
Innovative 

0.32
-0.02 

0.02 
0.02 

0.11 
0.13 

0.53 
1*

0.38 
0.27

0.22 
0.21

0.27 
0.29 

0.49 
0.37 

9 
F
lexible 

0.18
0.21 

0.27 
0.11 

0.23 
0.28 

0.49 
0.46 

1*
0.34

0.34 
0.43

0.42 
0.17 

0.60 
0.42 

10 Structured 
0.05

0.17 
0.23 

0.21 
0.05 

-0.01
0.57 

0.22 
0.34 

1* 
0.75 

0.69
0.21 

0.21 
0.49 

0.32 

11 D
etail C

onscious 
-0.03 

0.18 
0.21 

0.28 
0.07 

-0.06
0.72 

0.24 
0.30 

0.75
1*

0.71
0.19 

0.12 
0.43 

0.22 

12 C
onscientious 

0.07
0.21 

0.33 
0.22 

0.16 
0.14 

0.46 
0.18 

0.38 
0.66

0.66 
1* 

0.20 
0.19 

0.62 
0.27 

13 R
esilient 

0.01
0.38 

0.10 
0.28 

0.10 
0.29 

0.13 
0.19 

0.32 
0.05

0.09 
0.14

1* 
0.08 

0.29 
0.40 

14 C
om

petitive 
0.53

-0.26 
-0.19

-0.13 
-0.01

0.11 
0.00 

0.12 
0.04 

0.01
0.05 

0.11
0.02 

1* 
0.49 

0.30 

15 R
esults O

rientated
0.45

0.07 
0.18 

0.02 
0.26 

0.33 
0.52 

0.46 
0.55 

0.46
0.43 

0.60
0.15 

0.42 
1* 

0.52 

16 E
nergetic 

0.22
0.00 

0.05 
0.02 

0.10 
0.33 

0.17 
0.27 

0.32 
0.28

0.16 
0.27

0.29 
0.24 

0.43 
1* 

N
otes: T

he single-stim
ulus correlation estim

ates are above the diagonal, the forced-choice estim
ates are below

 the diagonal. 
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Correlation patterns and principal components 

Correlations between latent trait scores as estimated from both single-stimulus 

and forced-choice responses using IRT are given in Table 16. The average off-

diagonal correlation between the 16 scores was 0.26 for the single-stimulus test, and 

0.21 for the forced-choice test. The correlations between IRT scores for both formats 

are similar, and different from classical ipsative scores, which yielded a negative 

average scale correlation (-0.07) in accordance with Equation (1). 

To investigate the structure underlying the 16 traits, principal component 

analysis was performed on the MAP estimated single-stimulus scores. A scree plot 

suggested extracting four components (explaining 71% variance). Table 17 shows 

rotated loadings (oblique rotation), and correlations between the components. The 

components can be labeled as “Conscientiousness”, “Dominance”, “Agreeableness”, 

and “Adaptability and Dynamism”. This solution is almost identical to the one 

obtained from the classical normative scores shown in Table 13.  

Principal component analysis with the IRT estimated forced-choice scores also 

suggested extracting four components (explaining 63.4% variance). The components 

can be labeled as “Conscientiousness”, “Dominance and Drive”, “Agreeableness” and 

“Adaptability and Dynamism” (see rotated loadings and correlations between 

components in Table 18). This solution is strikingly similar to the one derived from 

the single-stimulus scores. The only difference is that the scale Results Orientated 

has a stronger loading on the second component, making it more motivation-related. 
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Table 17: Rotated pattern matrix for IRT scored single-stimulus ratings in the CCSQ 

Application 

 

1 2 3 4 

Conscientio

usness 

Dominance Agreeableness Adaptability 

and Dynamism 

Persuasive .08 .63 .09 .39 

Self-control .11 -.52 .50 .35 

Empathic .19 -.20 .83 -.03 

Modest .21 -.74 -.06 .24 

Participative -.01 .12 .74 -.05 

Sociable -.15 .38 .54 .38 

Analytical .79 .03 -.17 .20 

Innovative .23 .36 -.15 .51 

Flexible .27 .06 .20 .53 

Structured .91 .01 .02 -.06 

Detail conscious .97 -.13 .00 -.09 

Conscientious .87 .01 .24 -.11 

Resilience -.08 -.26 .02 .94 

Competitive .17 .69 -.02 .11 

Results orientated .54 .40 .20 .27 

Energetic .06 .25 .12 .61 

Component correlations  

Component 1 1 .04 .25 .39 

Component 2  1 .04 .19 

Component 3   1 .32 

Component 4    1 

Note: Loadings above +/-0.4 are set in boldface. 
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Table 18: Rotated pattern matrix for IRT scored forced-choice ratings in the CCSQ 

Application 

 

1 2 3 4 

Conscienti

ousness  

Dominance 

and Drive 

Agreeableness Adaptability 

and Dynamism 

Persuasive .00 .82 .07 .01 

Self-control .03 -.71 .39 .14 

Empathic .16 -.34 .72 -.19 

Modest .22 -.57 .08 -.03 

Participative .00 -.04 .71 -.02 

Sociable -.33 .29 .59 .32 

Analytical .79 .01 -.15 .22 

Innovative .26 .21 -.17 .55 

Flexible .32 -.01 .17 .60 

Structured .86 -.05 -.02 -.05 

Detail conscious .91 -.13 -.09 -.04 

Conscientious .76 .02 .26 -.01 

Resilience -.21 -.44 -.08 .81 

Competitive .05 .71 .02 -.03 

Results orientated .52 .48 .30 .30 

Energetic .09 .24 .15 .51 

Component correlations  

Component 1 1 .00 .11 .15 

Component 2  1 -.06 .16 

Component 3   1 .16 

Component 4    1 

Note: Loadings above +/-0.4 are set in boldface. 
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Individual profiles 

In this section, the relationship between IRT-scored FC and SS profiles are 

investigated, as well as the relationships between forced-choice profiles obtained 

using classical scoring methodology and IRT.  A known problem of forced-choice 

scores based on classical scoring procedures is that the average profile score (average 

of all standardized scale scores) is bound to be around zero, so that it is impossible 

to score high or low on all scales. Indeed, this is what was found in this application. 

However, IRT scoring overcomes this problem. The IRT-estimated forced-

choice average profile scores (the average of all IRT forced-choice scores) are 

distributed as shown in Figure 7. They range from -1.13 to 1.07 (mean is -0.01, and 

standard deviation 0.37). The IRT-estimated single-stimulus average profile scores 

range from -1.49 to 1.86 (mean 0.00, SD = 0.56). It can be seen that forced-choice 

IRT scores are indeed considerably more similar to the single-stimulus scores 

(regardless of whether they have been obtained using classical scoring procedures or 

IRT) than to the ipsative scores.  

 

 
Figure 7: Distributions of individual average profile scores based on IRT and CTT 

scoring of forced-choice responses in the CCSQ Application 
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The main difference between FC and SS scores is that there are considerably 

more positively located profiles in the single-stimulus completion than in the forced-

choice completion. Over-rating bias might be responsible for some positively shifted 

single-stimulus profiles. 

Next, the similarity of individual profiles based on SS and FC responses is 

assessed. The profiles’ shapes (indicating relative ordering of scales) were compared 

by correlating 16 IRT scale scores across formats (single-stimulus versus forced-

choice) for the same individual (see Table 19). Profile similarity coefficients ranged 

from 0.10 to 0.98 (median 0.84) and were distributed as shown in Figure 8a. Most 

people (79%) had profiles with similarity 0.7 or higher. Only a few people (3%) had 

profiles with similarity less than 0.4. Those who had dissimilar profiles, tended to 

have “flatter”, less differentiated SS profiles. It is easy to see why this is the case - 

those with similar true scores on all scales would find it difficult to make choices 

between statements of similar utility (e.g. McCloy et al., 2005). Many such choices 

will be random; therefore, the forced-choice profile will be also “flat”, and therefore 

largely uncorrelated with the normative profile. 

The locations of IRT-scored FC and SS profiles (indicating absolute positions 

of trait scores) were also compared. Similarity of location was measured by 

computing the Mahalanobis distance between the MAP estimated trait scores for 

both formats. The Mahalanobis distance measures the distance between 2 points in a 

multidimensional space, taking to account non-orthogonal nature of the axes 

(personality traits). This measure is particularly suitable in this Application, where 

the 16 traits are correlated with each other and the Euclidean distance would 

provide wrong estimates. For simplicity and consistency of results, the single-

stimulus CCSQ correlation matrix given in Table 16 was used as an indicator of the 

latent space structure in all computations. 

In this approach, each individual’s 16 trait scores derived from a particular 

test format (or a scoring method) are considered as a point in the 16-dimensional 

space. For the same individual, distances between points representing his/her IRT 

scores on the FC or SS measure were computed. The distances between the FC and 
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SS individual locations ranged from 1.10 to 5.51 (median 2.33) and were distributed 

as shown in Figure 8b.  

 

(a) distribution of correlation coefficients between individual profiles 

 

(b) distribution of Mahalanobis distances between individual profiles 

Figure 8: Distributions of profile similarity coefficients for IRT-scored single-stimulus 

and forced-choice responses in the CCSQ Application 
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Table 19: Average of individual profile correlations and distances for classical and 

IRT scores in the CCSQ Application 

 Cross-method (IRT vs. CTT) Cross-format (SS vs. FC) 

  
Single-stimulus Forced-choice CTT IRT 

Correlations between profiles      

Minimum 0.82 0.75 -0.17 0.10 

Maximum 0.99 1.00 0.97 0.98 

Mean 0.96 0.96 0.76 0.79 

SD 0.02 0.02 0.17 0.16 

Median 0.97 0.97 0.81 0.84 

Mahalanobis distances between profiles  

Minimum 0.36 0.65 1.55 1.10 

Maximum 3.23 3.35 6.49 5.51 

Mean 1.36 2.02 3.39 2.43 

SD 0.48 0.43 0.87 0.68 

Median 1.28 1.99 3.31 2.33 

 

To help evaluate the magnitude of the profile distances, they can be compared 

to cross-method results (distances between single-stimulus estimates based on CTT 

and IRT, and forced-choice estimates based on CTT and IRT), and also to the 

benchmark distances between CTT scores across the formats (i.e. between the 

normative and ipsative scores). All results are summarized in Table 19. First, it can 

be seen that although the cross-format distances between IRT estimated FC and SS 

scores are about 80% greater than the same-format distances between classically 

scored and IRT estimated single-stimulus scores, they are much smaller than the 

cross-format distances for the CTT estimated scores (ipsative versus normative, 

which are about 42% further from each other than the IRT scores are). It is clear 

that the classical ipsative scores are distorted – not only they are further apart from 

the single-stimulus scores; they are also far away from the IRT-estimated forced-

choice scores.  
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To conclude, while the IRT and classically scored profiles derived from the 

single-stimulus responses are very similar in both shape and location, the IRT and 

classically scored profiles derived from the forced-choice responses are very similar in 

shape but not so much in location. Classically scored forced-choice profiles, as was 

discussed before, are always centered on zero. 

What do these results mean in practice? Let us consider four real participants 

from the CCSQ standardization sample. Two participants are representative of the 

majority in this sample, with single-stimulus and forced-choice profiles being similar 

in shape and location, and two representing very rare, extreme situations.  

Typical profiles 

Respondent A completed the CCSQ as a part of a selection process (see 

Figure 9a). The single-stimulus profile for this individual is slightly elevated (average 

profile score 0.49 for IRT SS scores). The traditional ipsative scores provided a 

reasonable approximation to the SS scores (similarity with the classical normative 

profile r = 0.81 and M.dist. = 2.66), however, the Thurstonian IRT approach 

improved the profile similarity (r = 0.92) and location (M.dist. = 1.54).  

Respondent B is a job incumbent, who completed the CCSQ in return for 

feedback (see Figure 9b). Both SS and FC IRT-based profiles are dominated by 

lower than average scores, and the average profile location is below average (-1.19 for 

IRT SS theta scores). This respondent’s SS and FC IRT-based profiles are similar in 

shape (r = 0.81) and location (M.dist. = 2.09). The classical FC (ipsative) profile is 

given for comparison. Despite being very similar in shape, it is located well above the 

IRT recovered FC profile and centered on zero; its Mahalanobis distance to the 

classical normative profile is almost double the value of the IRT-based distance 

(M.dist. = 3.78).  
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(a) Highly similar SS and FC profiles (Respondent A, job applicant) 

 

(b) Low average location for SS and FC profiles (Respondent B, job incumbent) 

Figure 9: Sample CCSQ personality profiles based on IRT scores and classical 

ipsative scores (typical cases) 
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Extreme profiles 

Respondent C is a job incumbent who completed the CCSQ in return for 

feedback (see Figure 10a). The single-stimulus profile of this individual is quite 

striking – scores on all scales are rather extremely high or extremely low. Intentional 

distortion is unlikely here because very desirable traits such as Participative and 

Resilient show extremely low scores. The most likely reason for such a differentiated 

profile is extreme responding style, where the individual either strongly agrees or 

strongly disagrees with statements. While the forced-choice profile is quite similar in 

shape to the SS profile (r = 0.68), it is clearly less extreme. The distance between 

the IRT-based SS and FC profile is very large M.dist = 5.51. Interestingly, despite 

the ipsative profile appearing closer to the SS profile on Figure 10a, it is actually 

even further away than the IRT-based FC profile based on the Mahalanobis distance 

(M.dist = 5.88).  

Respondent D is a job applicant who completed the CCSQ as a part of a 

selection process. His single-stimulus IRT scores are largely average (average profile 

score -0.09; see Figure 10b). The forced-choice profile is also quite “flat” and located 

closely to the SS profile for all except three scales, Analytical, Innovative and Results 

Orientated. When presented with single-stimulus items, this individual tended to 

select the middle rating options. Being forced to differentiate between statements, he 

however judged statements related to analysis, originality and drive for results to 

describe self better than other statements. In this case, forced choice helped identify 

strength for analytical thinking, which was masked by the central tendency 

responding in the single-stimulus format. 
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(a) Extreme responding on SS profile (Respondent C, job incumbent) 

(b) “Flat” SS and FC profiles (Respondent D, job applicant) 

Figure 10: Sample CCSQ personality profiles based on IRT scores and classical 

ipsative scores (extreme cases)  
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Discussion 

In this dissertation, an Item Response model suitable for modeling responses 

to multidimensional forced-choice questionnaires with dominance items was 

introduced. The model proposed here is an IRT formulation of the Thurstonian 

second-order factor model for comparative data introduced in Maydeu-Olivares and 

Böckenholt (2005) applied to the problem at hand.  

Model and parameter estimation 

The Thurstonian IRT model is suitable for forced-choice instruments 

composed of many scales and items and is estimated fast, however, current 

computing capabilities prevent from computing goodness of fit indices and standard 

errors in large applications. Extant research performed on smaller tests suggests that 

the model fits well in applications. Also, it is equivalent and hence yields an 

equivalent fit to the second-order Thurstonian factor model (Maydeu-Olivares and 

Böckenholt, 2005) when the latter can be computed. Once the model parameters are 

known, MAP estimation of trait scores is performed very fast for models of any size. 

The simulation studies presented here show that the true model parameters 

(trait correlations, factor loadings, thresholds, and residual errors) are recovered very 

accurately from the binary outcomes in all reasonable designs. Some forced-choice 

designs are simply not recommended, such as questionnaires with 2 traits and 

positively keyed items only. Some empirically unidentified models and large standard 

errors encountered in this design should not cause any concerns for the Thurstonian 

IRT model’s use. The poor results obtained in these designs do not reflect the 

limitations of the model or estimation method employed, but rather, the limitations 

of the forced-choice format. On the other hand, all models that yielded sufficiently 

accurate recovery of the true score also showed good convergence, no problems with 

identification, and accurate parameter estimation. Perhaps the most impressive is 

accurate recovery of true correlations between traits, e.g. in the simulation study 

with 5 traits. Clearly, the IRT modeling overcomes the distortion of correlations 

between measured traits typical for ipsative data. 
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The simulation studies also provided important information about the 

assessment of model fit. The chi-square statistic provide reasonable empirical 

rejection rates in all models where item parameters are accurately estimated, 

provided the model is not too large. In models with over 1000 degrees of freedom the 

chi-square statistic grossly underestimates the degree of model fit even though item 

parameters and their standard errors are very accurately estimated. For instance, 

around 27% of models would be empirically rejected in the five factor designs with 

triplets, and around 37% of models with quads, where only 5% should be rejected. 

Recommendations for forced-choice questionnaire design 

Example models in this research were chosen to answer important questions 

about strengths and limitations of forced-choice questionnaires with dominance 

items. Despite many discussions in the literature, many of these questions remain 

controversial as the evidence is largely based on the inadequate classical modeling 

leading to ipsative scores, and research results are based on specific questionnaires 

with very different properties to enable meaningful generalization. Results of the 

simulation studies have important implications on how forced-choice tests are 

designed and used in the future. The most important points will be discussed here. 

Perhaps the most interesting and much debated question is whether scores 

based on relative forced-choice responses can resemble the absolute trait scores. This 

research shows that the true trait scores can be “recovered” to a high degree of 

accuracy under certain conditions. Certainly more items with higher discriminations 

will, generally speaking, improve the latent trait recovery, just as it is the case with 

single-stimulus questionnaires. However, there are additional important factors 

specific to the forced-choice format. These are: keyed direction of items, the number 

of traits assessed by the questionnaire, the trait correlations, and the block size. We 

will discuss each of these factors in order. 

Keyed direction of items 

 When the forced-choice design produces binary outcomes from comparing 

items from different traits keyed in the same direction, and approximately the same 
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number of binary outcomes from comparing items keyed in opposite directions, the 

trait recovery is good with any number of traits, and any trait correlations. This is 

because items keyed in the same direction contribute to the measurement of the 

difference between 2 trait scores; and items keyed in opposite directions measure the 

sum of the 2 traits involved. When sums and differences of all questionnaire traits 

are known, their absolute values can be immediately deduced. Conversely, when only 

differences between traits are known, which is the case in forced-choice designs with 

items keyed in the same direction, the recovery largely depends on the number of 

traits assessed – and this is the next factor in this discussion. 

A recent approach to creating forced-choice questionnaires involved 

unidimensional pairings (Stark et al., 2005). It has been argued that comparing items 

from the same scale is essential to set the scale origin (Chernyshenko et al., 2009). 

While it is clear from the results of the present research that this is not necessary, 

items keyed in opposite directions that measure the same trait can be used together 

in blocks to provide information on the latent trait directly, as the binary outcomes 

of such comparisons will depend on only one trait. The comparative nature of the 

forced-choice format means that the dominance items measuring the same trait will 

only provide sizeable amount of information when their factor loadings are very 

different (Maydeu-Olivares & Brown, 2010), as it is the case with items keyed in 

opposite directions.  

One last comment on using negatively keyed items in forced-choice 

questionnaires concerns the use of negation. In the author’s experience, responding to 

forced-choice blocks involving items with negation can be confusing for respondents; 

therefore straight negation should be avoided and replaced wherever possible with 

appropriate synonyms.  

Number of traits 

When the number of traits is large, and traits are not strongly positively 

correlated, any forced-choice designs will reliably locate trait scores provided that 

sufficient numbers of good quality items are used. That is, it is possible to locate 

absolute trait scores using only positively keyed items when the number of traits 
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assessed is large. Baron (1996) shows that even ipsative questionnaires with all 

positive items measuring many relatively independent traits (30 or more) correlate 

strongly with their single-stimulus counterparts. Why it is important that traits are 

relatively independent is the next point of the discussion. 

The simulation studies show that when assessing only 2 traits, positively 

keyed items on their own cannot recover the absolute latent trait scores. In the 

simulation studies with 5 traits, where traits on average correlated weakly, the true 

score recovery was good for designs with positive items only (except for the blocks of 

2, where the number of binary outcomes was not sufficient). How do binary 

outcomes measuring only differences between traits (and this is the case with items 

keyed in the same direction) provide information on absolute trait scores when the 

number of traits is large? 

When only 2 traits are measured, the information about the first trait depends 

only on the second trait (and vice versa). As can be seen from Figure 4, there is 

sizeable amount of information for scores that are similar (for example (-2,-2) or 

(2,2)), but virtually no information for scores that are different (for example (2, -2)). 

There are many combinations of two scores possible that are very different from each 

other. For instance, assuming normally distributed traits that are uncorrelated with 

unit variance, trait scores are different by more than 0.5 standard deviations for 

around 75% of cases. Therefore for most combinations of latent scores, the test 

information provided by such a questionnaire will be very low. 

There are much fewer ways in which 5 trait scores can be different from each 

other. Again, assuming uncorrelated normally distributed traits with unit variances, 

only 3% of the cases can be expected to have differences greater than 0.5 standard 

deviations between all five trait scores. Because the test information about one trait 

will be conditional on the other 4 traits in the five-dimensional case, and because it is 

more likely that at least one of those traits will be similar to the target trait, it is 

more likely that the information on the target trait will be higher overall.  

Extending this logic further, for 30 independent traits there is less than 0.03% 

chance that all trait scores will be different by 0.5 standard deviations or above. In 
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this case the information about one trait is conditional on 29 other traits, and 

because many of them will be similar to the target trait the information will be high 

for most combinations of scores.  

For instance, in the CCSQ questionnaire with its 16 traits, the correlations 

between the single-stimulus and forced-choice scores were quite modest. With more 

scales cross-format relationships become stronger and single-stimulus and forced-

choice profiles more similar. For example, the Occupational Personality 

Questionnaire (OPQ; SHL, 2006) measuring 32 personality traits, yields stronger 

cross-format relationships. Correlations between scores derived from single-stimulus 

and forced-choice test versions are higher than correlations for the CCSQ found here.  

Correlations between traits 

Given the item parameters, comparing items keyed in the same direction from 

positively correlated traits is less effective than if the traits are uncorrelated. The 

same comparison is even more effective if the traits are correlated negatively. This 

was apparent from the information functions provided by equations (23) and (24). 

For binary outcomes of comparisons between items measuring uncorrelated traits, 

only the focus trait contributes to the information. However, for pairs involving 

correlated traits, the other trait involved will also contribute to the information. It 

will increase the information if correlated negatively with the target trait, and reduce 

it if correlated positively. 

The inter-trait correlations have a major impact on the effectiveness of any 

forced-choice questionnaire with positively keyed items. Given the same number of 

traits, the lower the average correlation between them the better the true scores are 

recovered. For example, in the simulation study with 5 traits the average off-

diagonal trait correlation was 0. In the design with positive items only, reversing the 

first scale, which negatively correlated with the rest (imagine turning Neuroticism 

into Emotional Stability in the context of the Big Five), would turn the average 

correlation positive and significantly worsen the trait recovery.   
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Block size 

By using blocks of different sizes in the simulation studies with 5 traits it is 

shown that the same items can be made “work harder” by simply combining them in 

larger blocks.  This is because, given the same number of items, the number of 

binary outcomes will increase when the block size increases. For example, 60 items 

will produce only 30 binary outcomes when put in blocks of 2; 60 binary outcomes 

when put in blocks of 3; and 90 binary outcomes when put in blocks of 4. In other 

words, using larger blocks is attractive because it saves producing and trialing new 

items, which can be time consuming and expensive.  

Of course the block size cannot be increased indefinitely, because readability 

will worsen and cognitive load will increase dramatically as respondents perform 

( 1) / 2n n n� ��  mental comparisons for each n items. The item length can also be a 

problem, particularly when 4 or more items are compared in one block. In practice, 

blocks of 4 items are probably the upper limit for forced-choice tests.  

To summarize, adhering to the above recommendations (i.e. balancing the 

number of traits and their correlations, the direction of items, the number of items 

and the block size) is important for the quality and usefulness of a resulting 

questionnaire. Provided these factors have been taken into account, most personality 

items can be used in forced-choice questionnaires. Thousands of dominance 

personality items have been written and translated to different languages over years. 

This research has shown how these simple items can be effectively used in forced-

choice questionnaires.  

Information and test reliability 

A method of estimating the empirical test reliability is described, which is 

based on computing MAP information and the average error variance for a scored 

sample. Reliability figures produced by this information method were compared to 

reliabilities assessed through correlations between the estimated and the true scores. 

The extent to which the information estimates under the simplifying assumption of 

local independence are accurate in forced-choice questionnaires was also investigated. 



 

101 

 

The general rule is that the information method provides accurate estimates 

in designs where increasing the number of binary outcomes improves the latent trait 

estimation. This was the case in the simulation studies with 2 and 5 traits where 

positively and negatively items were combined together in blocks. In these studies, 

the information method provided sufficiently accurate estimates of test reliability 

even for triplets and quads, where the local independence does not hold and the 

simplifying assumption of local independence had to be made. Ignoring correlated 

errors led to a very minor overestimation of reliability – for blocks of 3 the reliability 

was overestimated by about 2%, and for blocks of 4 by about 3%. The researcher 

must also be aware that for very short questionnaires, the information method might 

underestimate the reliability due to a greater trait score “compression” by the MAP 

estimator. 

In questionnaires using only positively keyed items, as is shown earlier, the 

accuracy of the latent trait recovery depends heavily on the number of traits 

assessed. In such questionnaires, after a maximum possible level of latent trait 

recovery has been reached, increasing the number of binary outcomes will not 

improve it further. In this case the information method might overestimate the 

reliability for blocks of any size. This is not due to ignoring the correlated errors in 

blocks of 3 or more items, as overestimation of the same magnitude also occurs for 

longer questionnaires with blocks of 2 (item-pairs). For instance, if the number of 

item-pairs is doubled in the Big Five simulated study, the latent trait estimation 

hardly improves but the information grows. However, it does not grow uniformly 

across the latent trait distribution – instead, it becomes very peaked in areas where 

latent trait scores are very similar to each other, and is almost zero elsewhere. The 

information function still “works” in such designs, however, the empirical reliability 

fails to reflect very varied levels of test information at different trait scores. To 

conclude, the information method of computing reliability is recommended only when 

the information is known to be relatively uniform.  

Response biases and application results 



 

102 

 

In absence of true scores in real-world applications, responses to single-

stimulus items are often used as a proxy for the true score, as was done in the two 

applications of the present research. However, this approach assumes that no 

systematic biases affect the responses. On contrary, research often shows that 

different types of biases can be present when rating scales are used (Van Herk, 

Poortinga & Verhallen, 2004; Murphy, Jako & Anhalt, 1993). Using the single-

stimulus responses as indicators of the absolute trait standing is particularly 

dangerous when data is collected in a high stakes situation. The reason to create 

forced-choice measures was to reduce biases common in rating scales, therefore 

relying on the latter as appropriate indicators of true scale standing is inconsistent 

with available knowledge.  

For instance, in the CCSQ standardization sample, there are significant 

differences in mean scale scores between the applicant and research sub-samples, 

which are very similar in demographic composition. The biggest mean difference is 

observed for the scale Conscientious (standardized difference is d = 0.86), 

corresponding to a large effect size. Therefore, any real-world application findings 

have to be interpreted with this limitation in mind. Only simulation studies with 

known true scores can address the trait recovery question properly. Also, once the 

Thurstonian IRT model is well established in personality research, it is possible that 

forced-choice questionnaires will be used as less biased indicators of absolute trait 

standing, providing it has been shown in simulations that the scores are reliable. 

A better model fit obtained in the forced-choice version of the Big Five 

questionnaire than in the single-stimulus version might be an indicator of certain 

reduction in response biases. For instance, responding in socially desirable manner is 

often associated with such personality traits as Agreeableness and Extraversion. In 

the work settings, Conscientiousness is perceived as very desirable. In the educational 

settings, Openness is seen as important. It is possible that inflation of responses to 

items from these traits by some individuals is responsible for several higher 

correlations in the single-stimulus version than in the forced-choice version.  
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General similarity of item parameters in the single-stimulus and forced-choice 

IRT models would be expected, however, they are not guaranteed. For instance, in 

the CCSQ application item parameters obtained from the forced-choice responses 

were largely comparable to parameters from the single-stimulus responses. However, 

if the single-stimulus responses are affected by response biases associated with rating 

scales, their parameters will reflect such distortions. Extant research shows that 

while some simpler distortions can be modeled (e.g. random intercept, see Maydeu-

Olivares & Coffman, 2006); others such as heterogeneity of item discriminations are 

well beyond capabilities of current factor-analytic approaches (Ansari, Jedidi & 

Dube, 2002). The forced-choice responses might see some of the biases eliminated or 

reduced, therefore yielding different parameters.  

It has been long known by the developers of forced-choice measures that, 

when put in blocks, items can interact with each other in ways that cannot be fully 

envisaged from the single-stimulus presentation. Sometimes the forced-choice format 

can change the item discrimination through interaction with other items. One 

conclusion from this is that, strictly speaking, one cannot rely on single-stimulus item 

trials to predict the parameters for a forced-choice test fully. This is why it is very 

useful to have a way of estimating item parameters for the forced-choice test in 

actual forced-choice trials. Such a method is introduced here. 

In the CCSQ application it was shown that single-stimulus and forced-choice 

profiles are similar in most cases. An interesting question, however, is when the 

profiles depart from each other, which is the “correct” one?  Uniform response bias 

in single-stimulus responses is one possible reason for the profile shift. Another 

reason might be less reliable forced-choice scores for some questionnaire scales. In 

cases where there is a strong reason to suspect the uniform response bias (like in the 

case presented in Figure 10a), a forced-choice test might provide a more accurate 

profile. Central tendency responding can produce a “flat” profile – in this case, 

forcing the respondent to choose might increase the profile’s differentiation (like in 

the case presented in Figure 10b). On the other hand, it may prove difficult to get to 

true scores with the forced-choice format when the individual’s true scores on all 

measured scales are very close to each other. In this situation, responding to the 
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forced-choice questionnaire with items of similar difficulty can be very frustrating for 

this individual. Either the single-stimulus format or the forced-choice format with 

items of varying difficulties (for instance keyed in different directions) might be 

preferable. 

Future research directions 

The proposed model can be used to analyze existing forced-choice data and to 

aid development of new forced-choice questionnaires. One example is the shortening 

and rescoring of the ipsative OPQ32i (Brown, 2009; Brown & Bartram, 2009). It is 

also easy to see how the proposed model can be used in the future to establish 

methods and criteria for investigating measurement equivalence for forced-choice 

questionnaires, for example structural equivalence, differential item functioning 

(DIF) etc. More practical applications using this model can also be easily envisaged, 

such as investigations of pros and cons of different questionnaire designs, 

investigations of response distortion, and validity-related research.  
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Conclusions 

The Thurstonian IRT model introduced here describes the decision process of 

responding to forced-choice personality questionnaires measuring multiple traits. This 

model can be used with any forced-choice instrument composed of items fitting the 

dominance response model, with any number of measured traits, and any block sizes 

(i.e. pairs, triplets, quads etc.). This makes it widely applicable to many existing 

forced-choice questionnaires such as the Occupational Personality Questionnaire 

(OPQ; SHL, 2006), the Customer Contact Styles Questionnaire (CCSQ; SHL, 1997), 

the Survey of Interpersonal Values (SIV; Gordon, 1976), the Kolb Learning Style 

Inventory (Kolb & Kolb, 2005) and many others. The Thurstonian IRT model can 

be embedded within a familiar SEM framework to be estimated and scored by 

general-purpose software (Mplus was used throughout this dissertation). The model 

also provides means of estimating reliability for forced-choice questionnaires, which 

has been problematic under the classical scoring model (Tenopyr, 1988; Baron, 1996). 

Practitioners have long pointed out that even classically scored forced-choice 

tests, if constructed well, provide results that are valid and comparable with 

normative data (Karpatschof & Elkjaer, 2000).  The bumblebee should not fly, but 

somehow it did. Introducing the appropriate IRT modeling of the decision process 

behind responding to forced-choice items effectively overcomes the limitations of 

ipsative data. The Thurstonian IRT model allows using the forced-choice format, 

which reduces certain response biases, while getting the benefits of standard data 

analysis techniques that users of single-stimulus questionnaires have enjoyed.  

As is shown here, creating a forced-choice questionnaire is a much more 

complicated endeavor than creating a single-stimulus questionnaire, because it 

requires consideration of many more factors. Provided these factors are carefully 

taken to account, and sufficient work has been put into combining suitable 

statements together in forced-choice blocks, the format can deliver significant 

advantages. By removing the peculiar properties of ipsative data, the author hopes 

that the theoretical barriers against the use of the forced-choice format will start to 

fall.  
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Appendix A: Violation of Alpha’s consistent coding assumption 

in MFC questionnaires 

Reliabilities as measured by alpha would be depressed in a classically scored 

forced-choice questionnaire (i.e. ipsative) with a large number of dimensions. This is 

because classical scoring procedures rely on the assumption that higher item rankings 

correspond to higher true scores on the traits. To achieve high internal consistency, 

the respondent should prefer (or give top rank order to) an item from a scale on 

which he/she has the highest true score; this response pattern should be consistently 

observed across all blocks. If every block of statements involved comparisons between 

the same scales, such consistency in response would be possible. However, in a 

questionnaire with many dimensions, the number of all possible comparisons between 

scales becomes very large (for 30 scales it is 30 29/2 = 435). With such a large 

number of comparisons to perform, there cannot be more than one or two occasions 

when items from any given pair of scales “meet” in the same block. Therefore, items 

from a given dimension are compared to items from different dimensions in every 

new block of statements. 

Let us imagine that an individual’s true trait scores are ordered as follows: 

 …< trait A < trait B < trait C < trait D < trait E < trait F < trait G <… 

Then in a block of four statements, including items from the first four traits 

(trait A – trait D), the respondent would select an item from trait D as “most like 

me”, because his/her true score on this trait is the highest. However, in a block 

including the last four traits (trait D – trait G) the respondent would rate an item 

from trait D as “least like me”. The same trait will receive the highest rank 

(maximum points) in one block, and the lowest in another. This response, completely 

consistent with the true scores, will appear to be inconsistent from the rank-ordering 

perspective. This apparent “inconsistency” is in fact implicit to the current scoring 

methodology of multidimensional forced-choice items.  
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Appendix B: Mplus syntax for the Thurstonian second-order 

formulation of the example model 

TITLE:    Example forced-choice questionnaire with 3 triplets measuring 3 traits (This is the 

second-order Thurstonian factor model depicted in Figure 1) 

DATA:    FILE IS ExampleTest.dat; 

VARIABLE:  NAMES ARE i1i2 i1i3 i2i3 i4i5 i4i6 i5i6 i7i8 i7i9 i8i9; 

USEVARIABLES ARE ALL; 

CATEGORICAL ARE ALL; 

ANALYSIS: 

ESTIMATOR IS wlsm; 

  PARAMETERIZATION IS theta; 

MODEL:     

!these are the utilities (first-order factors) 

!block 1 

u1 BY i1i2@1  i1i3@1;   

u2 BY i1i2@-1  i2i3@1; 

u3 BY i1i3@-1  i2i3@-1; 

!block 2 

u4 BY i4i5@1  i4i6@1;   

u5 BY i4i5@-1  i5i6@1; 

u6 BY i4i6@-1  i5i6@-1; 

!block 3 

u7 BY i7i8@1  i7i9@1;  

u8 BY i7i8@-1  i8i9@1; 

u9 BY i7i9@-1  i8i9@-1; 

! binary outcomes are measured without error (this is ranking) 

i1i2-i8i9@0; 

 

! these are the latent traits (second-order factors) 

Trait1  BY u1* u4 u7;                                    

Trait2  BY u2* u5 u8; 

Trait3  BY u3* u6 u9;                  

! variances for all traits are set to 1 
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Trait1-Trait3@1; 

! traits are freely correlated 

Trait1 WITH Trait2* Trait3*;   

Trait2 WITH Trait3*; 

!fixing unique variances of one utility per block to identify the model 

u3@.5; 

u6@.5; 

u9@.5; 

! trait scores for individuals cannot be estimated due to zero error variances  
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Appendix C: Mplus syntax for the Thurstonian IRT 

formulation of the example model 

TITLE:    Example forced-choice questionnaire with 3 triplets measuring 3 traits (The model 

is depicted in Figure 2) 

DATA:    FILE IS ExampleTest.dat; 

VARIABLE:  NAMES ARE i1i2 i1i3 i2i3 i4i5 i4i6 i5i6 i7i8 i7i9 i8i9; 

USEVARIABLES ARE ALL; 

CATEGORICAL ARE ALL; 

ANALYSIS: 

ESTIMATOR IS wlsm; 

  PARAMETERIZATION IS theta; 

MODEL:   ! latent traits are indicated by binary outcomes directly 

Trait1  BY  i1i2*1  i1i3*1  (l1) 

                 i4i5*1  i4i6*1  (l4) 

                 i7i8*1  i7i9*1  (l7); 

Trait2  BY  i1i2*-1  (l2_m) 

                 i2i3*1  (l2)  

                 i4i5*-1  (l5_m) 

                 i5i6*1  (l5) 

                 i7i8*-1  (l8_m) 

                 i8i9*1 (l8); 

Trait3  BY  i1i3*-1  i2i3*-1  (l3_m) 

                 i4i6*-1  i5i6*-1  (l6_m) 

                 i7i9*-1  i8i9*-1  (l9_m); 

! variances for all traits are set to 1 

Trait1-Trait3@1; 

! traits are freely correlated 

Trait1 WITH Trait2* Trait3*;   

Trait2 WITH Trait3*; 

! pairwise errors are free; parameters are declared here to impose constraints later 

i1i2*1 (e1e2);  

i1i3*1 (e1e3); 

i2i3*1 (e2e3); 
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i4i5*1 (e4e5); 

i4i6*1 (e4e6); 

i5i6*1 (e5e6); 

i7i8*1 (e7e8); 

i7i9*1 (e7e9); 

i8i9*1 (e8e9); 

! errors related to the same utility are correlated, some are with minus sign 

i1i2 WITH i1i3*.5 (e1); 

i1i2 WITH i2i3*-.5 (e2_m); 

i1i3 WITH i2i3*.5 (e3); 

i4i5 WITH i4i6*.5 (e4); 

i4i5 WITH i5i6*-.5 (e5_m); 

i4i6 WITH i5i6*.5 (e6); 

i7i8 WITH i7i9*.5 (e7); 

i7i8 WITH i8i9*-.5 (e8_m); 

i7i9 WITH i8i9*.5 (e9); 

 

MODEL CONSTRAINT: 

!loadings relating to the same item are equal in absolute value 

l2=-l2_m; l5=-l5_m; l8=-l8_m; 

! errors of pairs are equal to sum of 2 utility errors 

e1e2=e1-e2_m; 

e1e3=e1+e3; 

e2e3= -e2_m+e3; 

e4e5=e4- e5_m; 

e4e6=e4+e6; 

e5e6= -e5_m+e6; 

e7e8=e7- e8_m; 

e7e9=e7+e9; 

e8e9= -e8_m+e9; 

!fixing unique variances of one utility per block to identify the model 

e3=.5; e6=.5; e9=.5; 

SAVEDATA:  ! trait scores for individuals are estimated and saved in a file 

FILE IS ExampleTestResults.dat; 

SAVE=FSCORES;  
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Appendix D: Designs involving blocks of 2 items (pairs) 

In designs involving blocks of n = 2 items (pairs), there is only one binary 

outcome per block, and both uniquenesses involved cannot be identified. Without 

loss of generality, they can be fixed to 0.5. This is equivalent to setting the error 

variance of the latent response variable to 1.  

To illustrate, consider a short test measuring d = 3 traits using pairs. Each 

trait is measured by 4 items. The contrast matrix A and a typical factor loadings 

matrix � are 

1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

� �� �� �� �� ��� �� �� �� �� �� �� �� ��� ���� �

A

�

� � �
�

, 
1 6 9 12

2 4 8 10

3 5 7 11

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

�

� ��� �� �� �� �� �� ��� �� ���� �

� � � �
� � � �

� � � �
.  

With .5� � I  (for identification), the parameter matrices of the Thurstonian 

IRT model are � � �� �A A I
�

 and 
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A

� �
� �

�� �
� �

� �
� �

�
. 

As this example illustrates, designs involving pairs are very special because a) 

item responses are locally independent under the Thurstonian IRT model (�
�

 is 

diagonal), b) the model contains much fewer parameters (�
�

 is a fixed matrix), and 

c) no constraints among the model parameters need to be enforced (each factor 

loading 
i
�  only appears once in the factor loading matrix �

�
). Modeling forced choice 

tests is much easier when items are presented in blocks of 2 (pairs), than in blocks of 

3 or more items (triplets, quads, etc.).  
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Appendix E: Posterior MAP information for a trait in MFC 

questionnaire 

The posterior MAP test information in direction a (direction in the factor 

space that coincides with the trait 	a) is the sum of the ML information and the 

additional component provided by the prior distribution (Du Toit, 2003): 

  � 
 � 

� 
� 
2

2

ln
a a
P

a

�
� �

�




�
� �

�
� � . (36) 

For the d-variate standard normal distribution with means 0 and the 

covariance matrix �, the density function 
(�) is: 

1
1/2/2

1 1
( ) exp

2(2 )d
�

�
�

� ��� � �� �� �� ��� �



�
� � � ,   and    � 
 1/2/2 11

ln ( ) ln (2 )
2

d � ��� �� ��� � ��� �� �

 �� � � . 

Now the first derivative by 	a of the expression above is computed. First 

notice that because the first part of the sum does not depend on 	a (it is constant), 

its derivative is 0. Thus 

 
� 
 � 
1 1

ln ( ) 1 1
2 2

a a a

� �� �
� �� � ��� � ��� � � � &� �� ��� � �� �




� � �

�
� � � � . (37) 

Let j
i

� �be an element of the inverted trait covariance matrix ��#� in ith row 

and jth column; and the matrix form can be expanded as follows: 
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1 1

1
1 1 1

1
1

1, 1

... ...

... 2 ... 2

d d d
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� � � � �

� �
 

Now, it follows from (37) and the expansion above that the second derivative 

by 	a of the logarithm of the density function is 
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� �

� ��

�
, (38) 

and the above expression substituted into Equation (36), arriving at Equation (27). 
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Appendix F: The Big Five questionnaire with IPIP items 

1 I am relaxed most of the time 

2 I start conversations 

3 I catch on to things quickly 

4 I show my gratitude 

5 I do things according to a plan 

6 I am not easily bothered by things 

7 I have difficulty understanding abstract ideas 

8 I am the life of the party 

9 I inquire about others' well-being 

10 I like order 

11 I am good at many things 

12 I get upset easily 

13 I sympathise with others’ feelings 

14 I worry about things 

15 I feel at ease with people 

16 I love to think up new ways of doing things 

17 I am quiet around strangers 

18 I often forget to put things back in their proper place 

19 I keep in the background 

20 I have frequent mood swings 

21 I feel others’ emotions 

22 I follow a schedule 

23 I am full of ideas 

24 I don’t talk a lot 

25 I love to read challenging material 

26 I get overwhelmed by emotions 

27 I am not interested in other people’s problems 

28 I waste my time 

29 I get irritated easily 
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30 I talk to a lot of different people at parties 

31 I feel comfortable around people 

32 I love to help others 

33 I get jobs done right away 

34 I seldom feel blue 

35 I know how to comfort others 

36 I avoid difficult reading material 

37 I find it difficult to approach others 

38 I panic easily 

39 I neglect my duties 

40 I make time for others 

41 I am always prepared 

42 I can handle a lot of information 

43 I make friends easily 

44 I have excellent ideas 

45 I get stressed out easily 

46 I make plans and stick to them 

47 I rarely get irritated 

48 I am indifferent to the feelings of others 

49 I leave a mess in my room 

50 I make people feel at ease 

51 I am quick to understand things 

52 I feel little concern for others 

53 I don’t mind being the centre of attention 

54 I lack imagination 

55 I have difficulty imagining things 

56 I like to tidy up 

57 I often feel blue 

58 I love order and regularity 

59 I am not really interested in others 

60 I am skilled in handling social situations 
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