

ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la
presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de
drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita
de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha
sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos
privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción
con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR.
No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing).
Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus
contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la
persona autora.

WARNING. On having consulted this thesis you’re accepting the following use conditions:
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the
titular of the intellectual property rights only for private uses placed in investigation and teaching
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the
TDX service is not authorized (framing). This rights affect to the presentation summary of the
thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate
the name of the author

MANAGING DYNAMIC NON-UNIFORM

CACHE ARCHITECTURES

Javier Lira Rueda

Department of Computer Architecture

Universitat Politècnica de Catalunya

Advisors:

Carlos Molina

Universitat Rovira i Virgili

Antonio González

Intel Barcelona Research Center

Intel Labs, Universitat Politècnica de Catalunya

A THESIS SUBMITTED IN FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor per la Universitat Politècnica de Catalunya

Alguien me dijo una vez:

“No hay nada más bonito que una familia unida”.

Esta tesis se la dedico a mis padres, mi hermana y Eva:

Mi familia.

i

ii

ACKNOWLEDGEMENTS

Mi madre siempre me dice que “es de bien nacido ser agradecido”. Pues a ello voy. En

primer lugar quisiera agradecer precisamente a mis padres y a mi hermana el apoyo

incondicional que me han ofrecido durante la realización de la tesis, y en general

durante toda mi vida. Sois los mejores!

También estoy especialmente agradecido por la supervisión y apoyo que he

recibido por parte de Carlos. Sinceramente, creo que no he podido caer en mejores

manos. Sin duda, él tiene gran parte de culpa de que hoy esté escribiendo estas líneas.

Mención especial también para Antonio, quien me dio la oportunidad de entrar en

el maravilloso mundo de la investigación y de la arquitectura de computadores. Un

mundo realmente fascinante! No me quiero olvidar de Alex, que fue la persona que

me habló por primera vez del doctorado e hizo que me picara el gusanillo de la

investigación.

No quiero olvidarme de la gente que ha hecho que en los días duros de trabajo,

como cuando me rechazan un artículo, petan las simulaciones o no acompaÃśan los

resultados, siempre tenga una sonrisa en la cara y ganas de pasarlo bien. Ellos son

mis compañeros de la sala D6-116, gente del departamento, y sobretodo, la plantilla

al completo de “The Blue Brothers”. Vosotros me hacéis realmente feliz y merecéis ser

nombrados: Demos, Aleksandar, Rakesh, Xavi, Martí, Manu, Ignasi, Gemma, Oscar,

Enric, Niko, Marc, René, Iñigo, Milan, Pedro, Josep Maria, Nehir, Mario, y otros

muchos que seguro que me dejo. Gracias!

La última persona que me queda por agradecer es Eva. Eres la persona más

especial que he conocido nunca. Tu ambición es mi ambición y la que me dio el último

empujoncito para comenzar la tesis, y que hoy esté escribiendo estas líneas. Tu apoyo

en todos los momentos de la tesis ha sido decisivo e incondicional. Gracias por todo y

por estar a mi lado.

iii

iv

ABSTRACT

Researchers from both academia and industry agree that future CMPs will

accommodate large shared on-chip last-level caches. However, the exponential

increase in multicore processor cache sizes accompanied by growing on-chip wire

delays make it difficult to implement traditional caches with a single, uniform access

latency. Non-Uniform Cache Access (NUCA) designs have been proposed to address

this situation. A NUCA cache divides the whole cache memory into smaller banks

that are distributed along the chip and can be accessed independently. Response time

in NUCA caches does not only depend on the latency of the actual bank, but also on

the time required to reach the bank that has the requested data and to send it to the

core. So, the NUCA cache allows those banks that are located next to the cores to have

lower access latencies than the banks that are further away, thus mitigating the effects

of the cache’s internal wires.

These cache architectures have been traditionally classified based on their

placement decisions as static (S-NUCA) or dynamic (D-NUCA). In this thesis, we have

focused on D-NUCA as it exploits the dynamic features that NUCA caches offer, like

data migration. The flexibility that D-NUCA provides, however, raises new challenges

that hardens the management of this kind of cache architectures in CMP systems. We

have identified these new challenges and tackled them from the point of view of the

four NUCA policies: replacement, access, placement and migration.

First, we focus on the challenges introduced by the replacement policy in D-NUCA.

Data migration makes most frequently accessed data blocks to be concentrated on the

banks that are closer to the processors. This creates big differences in the average usage

rate of the NUCA banks, being the banks that are close to the processors the most

accessed banks, while the banks that are further away are not accessed so often. Upon

a replacement in a particular bank of the NUCA cache, the probabilities of the evicted

data block to be reused by the program will differ if its last location in the NUCA

v

cache was a bank that are close to the processors, or not. The decentralized nature of

NUCA, however, prevents a NUCA bank from knowing that other bank is constantly

evicting data blocks that are later being reused. We propose three different techniques

to deal with the replacement policy, being The Auction the most successful one. This is a

framework that allows architects for implementing auction-like replacement policies

in future D-NUCA cache architectures. The Auction spreads replacement decisions

that have been taken in a single bank to the whole NUCA cache. Therefore, this enables

the replacement policy to select the most appropriate victim data block from the whole

NUCA cache.

Then, we deal with the challenges in the access policy. As data blocks can be

mapped in multiple banks within the NUCA cache. Finding the requesting data in

a D-NUCA cache is a difficult task. In addition, data can freely move between these

banks, thus the search scheme must look up all banks where the requesting data block

can be mapped to ascertain if it is in the NUCA cache, or not. We have proposed

HK-NUCA. This is a search scheme that uses home knowledge to effectively reduce the

average number of messages introduced to the on-chip network to satisfy a memory

request.

With regard to the placement policy, this thesis shows the implementation of a

hybrid NUCA cache. We have proposed a novel placement policy that accomodates

both memory technologies, SRAM and eDRAM, in a single NUCA cache. This takes

advantage of the fast SRAM caches to store there the most accessed data blocks, while

other data that have not been accessed, or has been evicted from SRAM banks are

stored in the eDRAM banks.

Finally, in order to deal with the migration policy in D-NUCA caches, we propose

The Migration Prefetcher. This is a technique that anticipates data migrations. This

mechanism recognizes access patterns based on the history, and promotes the potential

follower of the current memory access before the next memory access actually

happens. When The Migration Prefetcher hits on the prediction, the memory access

vi

finishes in few cycles, instead of more than one hundred, that is what it takes when

the data block is in the furthest bank.

Summarizing, in this thesis we propose different techniques to efficiently manage

future D-NUCA cache architectures on CMPs. We demonstrate the effectivity of our

techniques to deal with the challenges introduced by D-NUCA caches. Our techniques

outperform existing solutions in the literature, and are in most cases more energy

efficient.

vii

viii

TABLE OF CONTENTS

1 Introduction 1

1.1 Background and Motivation . 3

1.2 Non-Uniform Cache Architectures (NUCA) 5

1.2.1 NUCA Organizations . 5

1.2.2 S-NUCA vs D-NUCA . 6

1.2.3 NUCA Policies . 7

1.3 Challenges in Dynamic NUCA (D-NUCA) 8

1.3.1 Challenges in the Placement Policy 8

1.3.2 Challenges in the Access Policy . 9

1.3.3 Challenges in the Replacement Policy 10

1.3.4 Challenges in the Migration Policy 10

1.4 Main contributions . 11

1.4.1 Replacement policy . 11

1.4.2 Access policy . 12

1.4.3 Placement policy . 13

1.4.4 Migration policy . 13

1.5 Document Organization . 13

2 Experimental framework 15

2.1 Baseline NUCA cache architecture . 17

2.1.1 Placement policy . 18

2.1.2 Access Policy . 19

2.1.3 Replacement Policy . 19

2.1.4 Migration Policy . 20

2.2 Methodology and Experimental Framework 21

2.2.1 Simulation tools . 21

ix

2.2.2 Simulated scenarios . 23

2.2.3 Experimental methodology . 26

2.2.4 Energy Model . 27

3 Replacement policy 29

3.1 Introduction . 31

3.2 Last Bank . 33

3.2.1 Last Bank Optimizations . 35

3.2.2 Results and analysis . 37

3.2.3 Summary . 38

3.3 LRU-PEA . 38

3.3.1 Data Eviction Policy . 39

3.3.2 Data Target Policy . 41

3.3.3 Additional Hardware . 44

3.3.4 Results and analysis . 44

3.4 The Auction . 49

3.4.1 Roles and components . 49

3.4.2 How The Auction works . 51

3.4.3 Hardware Implementation and Overhead 52

3.4.4 Implementing an Auction Approach 53

3.4.5 Results and analysis . 56

3.5 Related Work . 62

3.6 Conclusions . 63

4 Access policy 65

4.1 Introduction . 67

4.2 Motivation . 67

4.2.1 Locating data within the NUCA cache 69

4.2.2 Exploiting spatial/temporal locality 71

x

4.3 HK-NUCA . 72

4.3.1 How HK-NUCAworks . 73

4.3.2 Managing Home Knowledge . 75

4.3.3 Implementing HK-NUCA . 77

4.4 Results and analysis . 77

4.4.1 Performance analysis . 78

4.4.2 Energy consumption analysis . 82

4.5 Related work . 84

4.6 Conclusions . 86

5 Placement policy 87

5.1 Introduction . 89

5.2 SRAM vs eDRAM . 90

5.3 Implementing a hybrid NUCA cache . 92

5.3.1 The two hybrid approaches . 92

5.3.2 Placement policy for heterogeneous bankcluster 94

5.3.3 Tag Directory Array (TDA) . 96

5.3.4 Performance and power analysis 98

5.4 Results and analysis . 99

5.4.1 Performance Analysis . 101

5.4.2 Power and Area Analysis . 103

5.4.3 Choosing the best hybrid configuration 104

5.5 Exploiting architectural benefits . 106

5.6 Related Work . 107

5.7 Conclusions . 109

6 Migration policy 111

6.1 Introduction . 113

6.2 Motivation . 114

xi

6.3 The Migration Prefetcher . 116

6.3.1 How the prefetcher works . 116

6.3.2 Prefetching strategies . 119

6.3.3 Accuracy . 121

6.3.4 Lookup in NUCA . 122

6.3.5 Tuning the prefetcher . 123

6.4 Results and analysis . 124

6.4.1 Performance Analysis . 125

6.4.2 Energy Consumption Analysis . 129

6.4.3 Summary . 131

6.5 Related work . 131

6.6 Conclusions . 133

7 Conclusions and future work 135

7.1 Conclusions . 137

7.2 Future work . 139

References 140

List of tables 150

List of figures 152

xii

Chapter 1

Introduction

This chapter motivates the introduction of Non-Uniform Cache Architectures (NUCAs) in

chip-multiprocessors. In addition, it describes the new challenges brought by this kind of caches,

and presents the contributions of this thesis.

Introduction 3

1.1 BACKGROUND ANDMOTIVATION

Constant advances in integrated circuit technology offer opportunities for

microarchitectural innovation and have boosted microprocessor performance growth

in recent decades [62]. In the 1990s, the main strategy for dealing with each increase

in integration density was to increase the clock rate and introduce microarchitectural

innovations to exploit Instruction-Level Parallelism (ILP) in applications. [2] However,

fundamental circuit limitations, limited amounts of Instruction-Level Parallelism and

the almost unaffordable power consumption of microprocessors [4] led to the search

for a more efficient use of silicon resources: chip multiprocessors (CMPs).

This architecture consists of multiple simpler processors integrated in a chip.

These processors work at a much lower clock rate than their predecessors, thus

alleviating the power-consumption constraint. Therefore, rather than squeezing

performance from a single core, CMPs improve overall performance of applications by

naturally exploiting Thread-Level Parallelism (TLP) existing in parallel applications

or executing multiple applications simultaneously [53]. Server high-end applications,

therefore, benefit the most from these platforms. Similarly, it is also expected that

future desktop applications for recognition, mining and analysis will require a high

number of cores [25]. At present, the main processor vendors have focused on this

architecture, meaning that several CMPs [58, 42, 43, 81], consisting of up to eight

processors, are commercially available. Existing roadmaps and research trends [79, 37],

however, show that the number of cores is going to increase in the future.

For any multiprocessor, the memory system is a pivotal component which can

boost or decrease performance dramatically. CMP architecture typically incorporates

large and complex cache hierarchies. For example, the most recent architecture from

Intel®, Nehalem, introduces up to 24MB shared-L3 cache on the chip, and assigns

almost 60% of the chip area to the cache memory. Cache sizes will continue to increase

as bandwidth demands on the package grow, and as smaller technologies permit more

4 Chapter 1.

bits per square milimeter [35]. Researchers from both academia [41] and industry [15]

agree that future CMPs will accommodate large shared on-chip last-level caches.

However, the exponential increase in multicore processor cache sizes accompanied

by growing on-chip wire delays [57] make it difficult to implement traditional caches

with a single and uniform access latency.

Data residing near the processor in a large cache is much more quickly accessible

than data residing far from the processor. Accessing the closest bank in a 16-MByte,

on-chip L2 cache built in a 50nm technology, for example, could take four cycles,

whereas accessing the farthest bank might take 47 cycles. The bulk of the access time

involves routing to and from the banks rather than the bank accesses themselves.

Therefore, in a traditional uniform cache access (UCA) design, the cache access latency

would deal with the pesimistic case resulting in 47 cycles even if the accessed data

were in the closest bank to the processor. Non-Uniform Cache Architecture (NUCA)

designs [41] have been proposed to address this situation. A NUCA cache divides the

whole cache memory into smaller banks that are distributed along the chip and can

be accessed independently. Response time in NUCA caches does not only depend on

the latency of the actual bank, but also on the time required to reach the bank that has

the requested data and to send it to the core. So, the NUCA cache allows those banks

that are located next to the cores to have lower access latencies than the banks that are

further away, thus mitigating the effects of the cache’s internal wires.

A popular alternative to NUCA, is NuRAPID [21, 22]. It decouples data and

tag placement. The tags are stored in a bank close to the processor, optimizing tag

searches. While NUCA searches tag and data in parallel, NuRAPID searches them

sequentially. This increases overall access time but provides greater power efficiency.

Another difference between NUCA and NuRAPID is that NuRAPID partitions the

cache in fewer, larger and slower banks. Other works in the literature propose using

private cache scheme as last-level cache in CMPs, but allow these cache memories to

cooperate in order to increase the effective cache capacity. Some of the most notable

Introduction 5

of these being cooperative caching [17, 18, 33, 34], victim replication [86], adaptive

selective replication [8] and private/shared cache partitioning scheme [26].

Since their first appearance [41], NUCA caches have been studied and evolved

dealing with the challenges introduced by the improvements in technology, like CMPs

[9, 36]. These works, however, could not exploit the dynamic behaviour of the NUCA

caches on CMPs, and thus, concluded that a simpler static implementation of NUCA

is preferred. Future CMPs will incorporate much larger last-level cache memories on

the chip, and static NUCA approaches that cannot adapt to the application behaviour

will not be convenient in this scenario. In this thesis we propose several techniques to

exploit the dynamic features of NUCA caches for future CMPs.

1.2 NON-UNIFORMCACHE ARCHITECTURES (NUCA)

This thesis proposes several techniques that exploit the non-uniformity provided by

the NUCA caches. This section describes the organization of this kind of cache in the

chip and presents the challenges found with this architecture.

1.2.1 NUCA Organizations

A NUCA cache consists of multple cache banks that work independently from each

other. These are distributed along the chip and interconnected through an on-chip

network. This statement includes lots of possible organizations asNUCA cache. Figure

1.1 shows the two most typical NUCA organizations for CMPs in the literature:

heavy-banked NUCA cache, and the tiled-CMP architecture. The former is usually

located in the center of the chip while the processor cores are in the edges of the shared

cache last-level NUCAcache.Moreover, theNUCA cache in this architecture is splitted

into more, and consequently smaller banks. Cache access latency is smaller with this

organization, however, the challenges in the NUCA cache are harder because there are

more banks to manage. On the other hand, the tiled-CMP architecture implements a

6 Chapter 1.

(a) Heavy-banked (b) Tiled

Figure 1.1: Examples of NUCA organizations on CMPs.

NUCA bank per tile. This organization scales better to larger processor counts than the

heavy-banked NUCA cache. The techniques proposed in this thesis are based on the

heavy-banked NUCA organization (Figure 1.1a), however, they can be easily adapted

to the tiled architecture.

1.2.2 S-NUCA vs D-NUCA

NUCA designs have been classified on the basis of their placement policy as static

(S-NUCA) or dynamic (D-NUCA) [9, 41]. In a S-NUCA organization, the mapping of

data into banks is predetermined based on the block index, and thus can reside in only

one bank of the cache. On the other hand, D-NUCA allows data blocks to be mapped

to multiple candidate banks within the NUCA cache. Moreover, D-NUCA leverages

locality in the NUCA cache by moving recently accessed data blocks to the banks that

are close to the processors that are requesting them.

An important issue to be addressed for CMP NUCAs is data placement, which can

be described as determining the most suitable location for data blocks in the NUCA

space. This is not an easy problem to solve as different data blocks can experience

entirely different degrees of sharing (i.e., the number of processors that share them)

and exhibit a wide range of access patterns. Moreover, the access pattern of a given

Introduction 7

data block can also change during the course of program execution. Therefore a static

placement strategy which fixes the location of each block for the entire application

will perform sub-optimally. D-NUCA, however, allows data to be mapped to multiple

banks within the NUCA cache, and then uses data migration to adapt its placement to

the program behavior as it executes.

D-NUCA promises big benefits by leveraging locality of data in the NUCA cache,

however, none of the previous works in the literature could deal with the challenges

that this configuration introduces. This thesis increases the state-of-art in D-NUCA

management. We deal with the big challenges on D-NUCA and propose techniques

to manage this kind of caches in an efficient way in terms of both performance and

energy consumption.

1.2.3 NUCA Policies

A NUCA cache can be fully characterized by defining the following four policies that

are involved in its behaviour:

• Placement policy: This policy determines where a particular data block can be

mapped in the NUCA cache, as well as its initial location when it arrives from

the off-chip memory.

• Access Policy: This policy determines the search algorithm to follow in order to

find the requested data block in the NUCA cache.

• Replacement Policy: Upon a replacement in a NUCA bank, this policy

determines which data block should be evicted from a particular bank and the

final destination of the evicted data block.

• Migration Policy: Once the data block is in the NUCA cache, the migration

scheme determines its optimal position.

8 Chapter 1.

1.3 CHALLENGES IN DYNAMIC NUCA (D-NUCA)

As previously described, D-NUCA enables data blocks to be mapped in multiple

banks within the NUCA cache, and then uses migration to move these data blocks

to their optimal location. However, the dynamic behaviour and the adaptivity of this

configuration introduce new challenges to the NUCA management. The following

sections present the challenges in D-NUCA classified by the related policy.

1.3.1 Challenges in the Placement Policy

Ideally, a data block would be mapped into any cache bank in order to maximize

placement flexibility. However, the overheads of locating a data block in this scenario

would be too large as each bank would have to be searched, either through a

centralized tag store or by broadcasting the tag to all banks. To address this situation,

NUCA caches implement a set-associative structure along the chip with the cache

banks. Therefore, a data block can only be mapped to a set of banks.

Moreover, advances in technology allows for integrating multiple technologies of

memory into the chip. The most recent processor from IBM®, POWER7, is the first

general-purpose processor that integrates an eDRAM module on the chip [81]. This

could be considered the starting point to integrate more sophisticated hybrid cache

structures on the chip in the near future. In such a case, the placement policy would

be responsible for accomodating multiple technologies in the NUCA cache.

The challenge in the placement policy is to maintain, or even increase, the flexibility

that D-NUCA provides for data to move around the NUCA cache, but keeping

the overheads derived from access and migration policies low. This thesis shows

the implementation of a hybrid NUCA cache. Apart from combining two different

technologies that have different characteristics, this configuration requires to increase

the bank-set associativity in the NUCA cache, and thus increase D-NUCA flexibility

that we mentioned above. We propose a novel placement scheme that accomodates

Introduction 9

both technologies on a single-level of cache and avoids incurring on unaffordable

access overheads that could hurt both performance and energy consumption of the

hybrid scheme.

1.3.2 Challenges in the Access Policy

D-NUCA allows data blocks to be mapped in multiple candidate banks within

the NUCA cache. Because of the migration movements, moreover, data blocks

are constantly changing their location to optimize future accesses. These features

introduce two main challenges on the access scheme: 1) In case of hit in D-NUCA, the

search algorithm may access many NUCA banks before finding the requested data.

If the data is not in the cache, 2) the slowest bank determines the time necessary to

ascertain that the request is a miss.

Prior work shows that implementing a centralized or distributed tag structure

to boost accesses to the NUCA cache in CMP appears to be impractical [9]. Apart

from requiring huge hardware overhead, this tag structure could not be quickly

accessed by all processors due to wire delays, and more importantly, a separate tag

structures would require a complex coherence scheme that updates address location

state with block migrations. Because of that, access schemes in D-NUCA proposed in

the literature follow an algorithmic approach, by accessing the potential locations of

the requested data in parallel, sequentially, or in a particular order.

The biggest challenge in the access policy is to find the requested data block by

introducing the minimum number of messages to the on-chip network. Actually,

several studies have shown the huge performance potential of D-NUCA when using

an oracle as access scheme [9, 36, 41]. In this thesis, we propose an access scheme for

D-NUCA that distributes hints along the NUCA cache. These hints allow our access

scheme to significantly reduce the number of messages introduced to the on-chip

network permemory access, and thus to outperform previously proposed approaches.

10 Chapter 1.

1.3.3 Challenges in the Replacement Policy

D-NUCA provides mechanisms to migrate accessed lines and take them closer to the

core that requested them. Consequently, the most frequently accessed lines are stored

in the banks that are closer to the cores. A replacement in a bank that is close to a

processor, therefore, evicts a line whose probabilities of being accessed farther in the

program aremuch higher than a line from another bank in the NUCAcache.Moreover,

as banks in the NUCA cache work independently of each other, none of the less used

banks can even know that a particular bank is constantly evicting data blocks that are

being reused.

The challenge in the replacement policy is to globalize replacements that happen in

a particular bank, in order to find the most approppriate data to evict from the whole

NUCA cache. Unfortunately, most previous works have ignored the replacement

issue or have adopted a replacement scheme that was originally designed for use

in uniprocessors/uniform-caches. In this thesis, we propose an adaptive replacement

framework that effectively globalizes replacement decisions taken in a particular bank

to the whole NUCA cache.

1.3.4 Challenges in the Migration Policy

Determining the best location for a particular data block is the big challenge in the

migration policy. Data blocks that are accessed by only one processor core tend to

move to the closest bank to the requesting core. However, determining the most

optimal location for a shared data block is not so obvious. Prior research on D-NUCA

has developed two main trends for dealing with data migration: 1) promotion

and 2) optimal position. With promotion [9, 23, 41] the requested data is moved

closer to the processor that initiated the memory request upon a hit in the NUCA

cache. This scheme is especially effective in uniprocessor systems. However, in a

CMP environment, multiple processors accessing shared data results in this data

Introduction 11

“ping-ponging” between NUCA banks. Other migration schemes in the literature

compute the optimal placement for a particular data block by taking into consideration

dynamic parameters such as the usage of data or the processors that are currently

sharing it [31, 39]. These schemes effectively reduce the ping-pong effect at the cost

of significantly increasing complexity. Moreover, these approaches do not provide

minimum access latency for shared data.

A perfect migration policy would move data blocks in such a way that given a hit

in the NUCA cache it will happen in the closest bank to the requesting core. So, the

challenge in the migration policy is to be as close as possible to this situation. In this

thesis, we propose anticipatingmigration movements based on history patterns. Using

our mechanism, D-NUCA takes optimal cache access latency to response memory

requests to data blocks that were far from the requesting core in other case.

1.4 MAIN CONTRIBUTIONS

This thesis proposes several techniques to deal with the challenges introduced by

D-NUCA caches on CMPs. First of all, we studied the behaviour of a D-NUCA

cache on a CMP in terms of performance and energy consumption. We analyzed

the state-of-art of D-NUCA management and identified the main challenges related

to each NUCA policy. Based on these results, we focused on improving D-NUCA

management from the point of view of the four NUCA policies.

The analysis of the NUCA policies has been firstly presented in the 2nd Workshop

on Managed Multi-Core Systems (MMCS’09) [47]. An extended version of this analysis

has also been published in the Proceedings of the XX Jornadas de Paralelismo [50].

1.4.1 Replacement policy

We propose three techniques to deal with the replacement issue in D-NUCA caches.

• We first propose the Last Bank. This introduces an extra bank in the D-NUCA

12 Chapter 1.

that acts as victim cache by catching evicted data blocks from the NUCA cache.

This work has been published in the Proceedings of the 15th International Euro-Par

Conference (Euro-Par’09) [48].

• Then, we propose modifying the traditional LRU replacement policy to deal with

D-NUCA features, like data migration. This results on LRU-PEA, a replacement

policy that prioritizes data blocks stored in the NUCA cache relying on the their

last migration action.

LRU-PEA has been published in the Proceedings of the 27th IEEE International

Conference on Computer Design (ICCD’09) [49].

• Finally, we propose The Auction. This is an adaptive framework to implement

replacement policies for D-NUCA caches. This globalizes replacement decisions

taken in a particular bank to the whole NUCA cache. Using this scheme,

therefore, the replacement policy picks the most approppriate data block to be

evicted, not only from the particular bank where the replacement is happenning,

but from the whole NUCA cache.

The Auction has been published in the Proceedings of the 24th International

Conference on Supercomputing (ICS’10) [51].

1.4.2 Access policy

In order to tackle the challenges with the access scheme in D-NUCA cache memories,

we propose HK-NUCA. This technique provides to the NUCA banks information

about the chunk of data blocks that would be statically mapped in them. By using

this information, HK-NUCA significantly reduces the number of messages required

to satisfy a memory request, and reduces the miss resolution time of the NUCA cache.

HK-NUCA has been published in the Proceedings of the 25th IEEE International

Parallel and Distributed Processing Symposium (IPDPS’11) [52].

Introduction 13

1.4.3 Placement policy

The implementation of a hybrid NUCA cache introduces several challenges to the

NUCA cache. We propose a novel placement scheme that accomodates two different

technologies, SRAM and eDRAM, in a D-NUCA cache. We show that efficiently

managing data placement, our hybrid NUCA cache succeeds in emphasizing the

strengths of each technology, and hiding their drawbacks.

This work has been published in the Proceedings of the 18th Annual International

Conference on High Performance Computing (HiPC’11) [46].

1.4.4 Migration policy

We propose The Migration Prefetcher. This technique recognizes access patterns, and

then, anticipates data migration. Using this mechanism, the D-NUCA cache can take

the optimal response time (i.e. when the data block is stored in the closest bank to the

requesting processor) for satisfying a request for a data which is the farthest bank.

The Migration Prefetcher has been published in the Proceedings of the 20th

International Conference on Parallel Architectures and Compilation Techniques (PACT’11)

[45].

1.5 DOCUMENT ORGANIZATION

The remainder of this dissertation is structured as follows:

• Chapter 2 describes the baseline architecture, as well as the experimental

methodology followed in this thesis.

• Chapter 3 presents the techniques proposed to deal with the issues related with

the replacement policy.

• Chapter 4 describes HK-NUCA, the technique proposed in this thesis to tackle

with the access issues in D-NUCA.

14 Chapter 1.

• Chapter 5 shows the implementation of a hybrid NUCA cache, and describes the

placement policy assumed.

• Chapter 6 presents The Migration Prefetcher.

• Chapter 7 concludes this thesis and outlines the future work.

Chapter 2

Experimental framework

This chapter describes the baseline configuration and the experimental framework used in this

thesis.

Experimental framework 17

This chapter describes the experimental framework and the methodology used

in this thesis. First, Section 2.1 describes the baseline configuration assumed in the

remainder of the thesis, and then, the experimental methodology is described in

Section 2.2.

2.1 BASELINE NUCA CACHE ARCHITECTURE

We assume an inclusive totally-shared L2 cache with a Non-Uniform Cache

Architecture (NUCA), derived from the Dynamic NUCA (D-NUCA) design by

Kim et al. [41]. As in the original proposal we partition the address space across cache

banks which are connected via a 2D mesh interconnection network. As illustrated in

Figure 2.1, the NUCA storage is partitioned into 128 banks. D-NUCA allowsmigration

of data towards the cores that use it the most. This distributes data blocks among the

NUCA banks so data close to the cores is accessed the most often, thus reducing the

access latency for future accesses to the same data.

Ideally, a data block would be mapped into any cache bank in order to maximize

placement flexibility. However, the overheads of locating a data block in this scenario

would be too large as each bank would have to be searched, either through a

centralized tag store or by broadcasting the tag to all banks. Tomitigate this, theNUCA

cache is treated as a set-associative structure, called banksets, with each bank holding

one “way” of the set. Thus, data blocks can be mapped to any bank within a single

bankset. The NUCA banks that make up a bankset are organized into bankclusters

within the cache (the dotted boxes in Figure 2.1). Each bankcluster consists of a

single bank from each bankset. As an example, the darker NUCA banks in Figure

2.1 compose a bankset. As shown in Figure 2.1, we assume a NUCA cache that is

16-way bankset associative, organized in 16 bankclusters. The eight bankclusters that

are located close to the cores compose the local banks, and the other eight in the

center of the NUCA cache are the central banks. Therefore, a data block has 16 possible

18 Chapter 2.

Figure 2.1: Baseline architecture layout.

placements in the NUCA cache (eight local banks and eight central banks). Note that

a particular bank in the NUCA cache is still set-associative.

The behaviour of a NUCA cache is determined by the following four policies:

placement, access, replacement and migration. In order to fully describe the baseline

architecture, we show how it behaves in front of each of the NUCA policies.

2.1.1 Placement policy

This policy determines where a particular data block can be mapped in the NUCA

cache, as well as its initial location when it arrives from the off-chip memory. As

previously mentioned, the NUCA cache implements a bankset organization to limit

the potential banks where a data block can be mapped. In this case, a data block can

be stored 16 possible banks in the NUCA cache (eight local banks and eight central

banks). An incoming data block from the off-chip memory is mapped to a specific

bank within the cache. This is statically predetermined based on the lower bits from

Experimental framework 19

(a) First step (b) Second step

Figure 2.2: Scheme of the access algorithm used in the baseline configuration.

the data block’s address.

2.1.2 Access Policy

Dynamic features provided byD-NUCA, like havingmultiple candidate banks to store

a single data block and migration movements, make access policy a key constraint in

NUCA caches. The baseline D-NUCA design uses a two-phase multicast algorithm

that is also known as partitioned multicast [9]. Figure 2.2 shows the two steps of this

algorithm for a request started from core 0. First, it broadcasts a request to the closest

local bank to the processor that launched the memory request, and to the eight central

banks (see Figure 2.2a). If all nine initial requests miss, the request is sent, also in

parallel, to the remaining seven banks from the requested data’s bankset (see Figure

2.2b). Finally, if the request misses all 16 banks, the request would be forwarded to the

off-chip memory.

2.1.3 Replacement Policy

Upon a replacement in a NUCA bank, this policy determines which data block

should be evicted from a particular bank (data eviction policy) and the position that the

incoming data block will occupy in the LRU-stack (data insertion policy). In addition,

20 Chapter 2.

Figure 2.3: Scheme of the migration algorithm used in the baseline configuration

(accesses from core 0).

this policy also determines the final destination of the evicted data block (data target

policy). Regarding the baseline configuration, the replacement policy assumed within

the NUCA banks is LRU, and the incoming data block is set as the MRU line in

the bank. Moreover, the evicted data block is directly sent to the off-chip memory

(zero-copy replacement policy [41]).

2.1.4 Migration Policy

Once the data block is in the NUCA cache, the migration scheme determines its

optimal position. As a migration policy, we assume gradual promotion that has been

widely used in the literature [9, 41]. This states that upon a hit in the cache the

requested data block shouldmove one-step closer to the core that initiated thememory

request. Figure 2.3 illustrates an example to better understand how this migration

policy works in the baseline configuration. In the example, core 0 accesses to a data

Experimental framework 21

block which is stored in the local bank of the core 6 (this is the most pessimistic

situation). Then, the requested data block moves one-step towards the requesting core,

and thus stays in a central bank near the core 6. After the core 0 accesses to the same

data block for the second time, it leaves core 6 influence area, and arrives to the central

bank of core 0. If the same data is accessed again by the core 0, it promotes towards

the core 0 arriving to the optimal location in terms of access latency for accesses from

the core 0.

2.2 METHODOLOGY AND EXPERIMENTAL FRAMEWORK

2.2.1 Simulation tools

This section presents the simulators that have been used in the studies performed in

this thesis.

Simics

Simics [55] was originally developed by the Sweedish Institute of Computer Science

(SICS), and the spun off to Virtutech for commercial development in 1998. This

company has been recently acquired by Intel Corporation. Simics is a full-system

simulator that simulates processors at the instruction-set level, including the full

supervisor state. It currently supports models for the following architectures:

UltraSPARC, Alpha, x86, x86-64 (Hammer), PowerPC, IPF (Itanium), MIPS, and ARM.

In addition to the ability of simulating target architectures, Simics easily allows

the inclusion of extensions or modules in order to extend its functionalities. Our

simulation environment includes Ruby, that is a Simics extension that provides a

highly-detailed timing simulator for memory systems. Ruby is part of the GEMS

toolset.

22 Chapter 2.

GEMS

General Execution-driven Multiprocessor Simulator (GEMS) [56] is a set of

modules for Simics that enables detailed simulation of multiprocessor systems.

It was developed by the Wisconsin Multifacet Project at the University of

Wisconsin-Madison. GEMS consists of three modules for Simics, but only one of

them (Ruby) participates in the simulation environment assumed in this thesis. The

other modules are Opal and Tourmaline, which provide support for out-of-order

computation and transactional memory, respectively.

Ruby is a timing simulator for multiprocessor memory system. It provides support

for modeling at high-level of detail any memory component, like cache memories,

cache controllers, network-on-chip, memory controllers, or banks of memory. The

flexibility of Ruby, moreover, allows for implementing more sophisticated cache

designs like D-NUCA architectures. Ruby also incorporates other simulators to extend

its functionalities like Garnet [1] andOrion [80]. Garnet provides amore realistic vision

of the on-chip network, whereas Orion is a power simulator.

CACTI

CACTI [83] is an integrated cache access time, cycle time, area, leakage, and dynamic

power model tool. By integrating all of these models in a single tool, users can be

confident that trade-offs between time, power and area are all based on the same

assumptions.

Since 1994, when CACTI was first released, six major versions have been released

introducing new features which deal with the current technology requirements. The

most recent release of CACTI, which is the version 6.0 [64, 65] and was released in

2007, provides support to deal with large cache architectures that are influenced by

wire delays, like NUCA caches. In Chapter 5, we also use CACTI 5.1 [76] to model

cache memories implemented with eDRAM technology.

Experimental framework 23

2.2.2 Simulated scenarios

In order to evaluate every technique proposed in this thesis, we have assumed two

different scenarios: 1) Multi-programmed and 2) Parallel applications. The former

executes a set of eight different SPEC CPU2006 [11] workloads with the reference input

in parallel. The latter simulates the whole set of applications from the PARSEC v2.0

benchmark suite [12] with the simlarge input data sets.

PARSEC Benchmark Suite

Princeton Application Repository for Shared-Memory Computers (PARSEC) is a

benchmark suite for studies of CMPs. This suite includes emerging applications from

many different areas such as image processing, financial analytics, video encoding,

computer vision and animation physics, among others. Table 2.1 outlines the main

characteristics of the PARSEC applications.

Program Application domain

blackscholes Financial analysis

bodytrack Computer vision

canneal Engineering

dedup Enterprise storage

facesim Animation

ferret Similarity search

fluidanimate Animation

freqmine Data mining

raytrace Computer vision

streamcluster Data mining

swaptions Financial analysis

vips Media processing

x264 Media processing

Table 2.1: Applications of PARSEC Benchmark siute.

24 Chapter 2.

SPEC CPU2006

The Standard Performance Evaluation Corporation (SPEC) is a non-profit corporation

formed to establish, maintain and endorse a standardized set of relevant benchmarks

that can be applied to the newest generation of high-performance computers. The

SPEC CPU2006 has been designed to provide performance measurements that can be

used to compare compute-intensive workloads on different computer systems. Based

on the characterization of these benchmarks [67], we select the eight applications

that have the largest working set and build a multi-programmed scenario where the

different applications, that are being executed simultaneously on a CMP, compete for

a shared resource: the NUCA cache. Table 2.2 outlines the workloads that make up

this scenario.

Program Language Application domain

400.perlbench C PERL programming language INT

403.gcc C C compiler INT

429.mcf C Combinatorial optimization INT

433.milc C Physics: Quantum chromodynamics FP

450.soplex C++ Linnear programming, optimization FP

470.lbm C Fluid dynamics FP

471.omnetpp C++ Discrete event simulation INT

473.astar C++ Path finding algorithm INT

Table 2.2: Multi-programmed scenario.

Benchmark characterization

The techniques proposed in this thesis aim to reducing the overall response time of the

NUCA cache by either reducing miss rate in the NUCA cache, or reducing the overall

NUCA cache latency. This section shows the sensibility of each benchmark to improve

their performance with techniques that better manage LLC. Figure 2.4 shows the hit

rate in the NUCA cache in all simulated benchmarks. In general, PARSEC applications

Experimental framework 25

Figure 2.4:Hit rate in the NUCA cache.

show low miss rate (less than 15%) with the exception of canneal whose miss rate is

38%. With regard to the multiprogrammed scenario, its miss rate in the NUCA cache

is about 30%. Figure 2.4 also shows that the amount of memory requests that are

forwarded to L1 caches to be satisfied is negligible in all the simulated benchmarks.

Based on the hit rate in the NUCA cache (Figure 2.4), we split the simulated

benchmarks into three groups. One consists of these benchmarks that have a highmiss

rate in the NUCA cache. We expect them to be more sensible than other benchmarks

to techniques that either reduce miss rate in the NUCA cache, or reduce the miss

resolution time compared to the baseline. This group includes: canneal, dedup, ferret,

freqmine, streamcluster, vips and the multiprogrammed bechmark (SPEC CPU2006). A

second group is composed by those benchmark that have very low miss rate in the

NUCA cache, e.g. lower than 3%. Although this benchmarks will probably not show

improvements when reducing miss rate in the NUCA cache, we expect them to benefit

the most of those techniques that reduce the overall latency of the NUCA cache. The

benchmarks in this group are as follows: blackscholes, bodytrack, facesim and raytrace.

26 Chapter 2.

Finally, the third group includes the other benchmarks (fluidanimate, swaptions and

x264). The hit rate in the NUCA cache of the benchmarks in this group stay in the

middle of the other groups. We expect these benchmarks to obtain some performance

improvements with either techniques that reduce miss rate or reduce the overall

NUCA latency.

2.2.3 Experimental methodology

We use the full-system execution-driven simulator, Simics [55], extended with the

GEMS toolset [56]. GEMS provides a detailed memory-system timing model that

enables us to model the NUCA cache architecture. Furthermore, it accurately models

the network contention introduced by the simulated mechanisms. The simulated

architecture is structured as a single CMP made up of eight in-order cores with CPI

equals to one for non-memory instructions. During the simulation, when a memory

instruction appear, Simics stalls, and GEMS takes control of the execution. It provides

the number of cycles the core must be stalled due to the memory request. The

processor cores emulate the UltraSPARC IIIi ISA. Each core is augmented with a split

first-level cache (data and instruction). The second level of the memory hierarchy is

the NUCA cache. This is inclusive and shared among all cores integrated into the

chip. In order to exploit cache capacity, replications are not allowed in the NUCA (L2)

cache. However, we used MESI coherence protocol, which is also used in the Intel®

Nehalem processor [61], to maintain coherency in all private L1 cache memories. Each

cache line in the NUCA cache keeps track of which L1 cache has a copy of the stored

data. This information moves, as with the whole data block, along the NUCA cache

with migration movements. In case of replacement of clean data in the L1 cache, silent

replacement is assumed. In other words, the NUCA cache will not be notified that a

private L1 cache has evicted a non-dirty data block. Consequently, L1 caches could

receive invalidation messages from the NUCA cache even not having the data. With

Experimental framework 27

regard to the memory consistency model, we assume sequential consistency.

Table 2.3 summarizes the configuration parameters used in our studies. The access

latencies of the memory components are based on the models made with the CACTI

6.0 [65] modeling tool, this being the first version of CACTI that enables NUCA caches

to be modeled.

Processors 8 - UltraSPARC IIIi

Frequency 1.5 GHz

Integration Technology 45 nm

Block size 64 bytes

L1 Cache (Instr./Data) 32 KBytes, 2-way

L2 Cache (NUCA) 8 MBytes, 128 Banks

NUCA Bank 64 KBytes, 8-way

L1 Latency 3 cycles

NUCA Bank Latency 4 cycles

Router Latency 1 cycle

Avg Offchip Latency 250 cycles

Table 2.3: Configuration parameters.

The methodology we used for simulation involved first skipping both the

initialization and thread creation phases, and then fast-forwarding while warming

all caches for 500 million cycles. Finally, we performed a detailed simulation for

500 million cycles. As a performance metric, we used the aggregate number of

user instructions committed per cycle, which is proportional to the overall system

throughput [82].

2.2.4 Energy Model

This thesis also evaluates the energy consumed by the NUCA cache and the off-chip

memory. To do so, we used a similar energymodel to that adopted by Bardine et al. [7].

This allowed us to also consider the total energy dissipated by the NUCA cache and

28 Chapter 2.

the additional energy required to access the off-chip memory. The energy consumed

by the memory system is computed as follows:

Etotal = Estatic + Edynamic

Estatic = ES_noc + ES_banks + ES_mechanism

Edynamic = ED_noc + ED_banks + ED_mechanism + Eoff−chip

We usedmodels provided by CACTI [76, 64] to evaluate static energy consumed by

the memory structures (ES_banks and ES_mechanism). CACTI has been used to evaluate

dynamic energy consumption as well, but GEMS [56] support is required in this case

to ascertain the dynamic behavior in the applications (ED_banks and ED_mechanism).

GEMS also contains an integrated power model based on Orion [80] that we used

to evaluate the static and dynamic power consumed by the on-chip network (ES_noc

and ED_noc). Note that the extra messages introduced by the mechanism that is being

evaluated into the on-chip network are accurately modeled by the simulator. The

energy dissipated by the off-chip memory (Eoff−chip) was determined using theMicron

System Power Calculator [60] assuming a modern DDR3 system (4GB, 8DQs, Vdd:1.5v,

333 MHz). Our evaluation of the off-chip memory focused on the energy dissipated

during active cycles and isolated this from the background energy. This study shows

that the average energy of each access is 550 pJ.

As an energy metric we used the energy consumed per memory access. This

is based on the energy per instruction (EPI) [29] metric which is commonly used

for analysing the energy consumed by the whole processor. This metric works

independently of the amount of time required to process an instruction and is ideal

for throughput performance.

Chapter 3

Replacement policy

The decentralized nature of NUCA prevents the replacement policies proposed in the literature

from being effective for this kind of caches. As banks operate independently from each other,

their replacement decisions are restricted to a single NUCA bank. This chapter presents three

approaches for effectively dealing with replacements in NUCA caches.

Replacement policy 31

3.1 INTRODUCTION

NUCA caches provide mechanisms to migrate accessed lines and take them closer

to the core that requested them. Consequently, the most frequently accessed lines are

stored in the banks that are closer to the cores, which we call hot banks. A replacement

in a hot bank, however, evicts a line whose probabilities of being accessed farther in

the program are much higher than a line from another bank in the NUCA cache.

Moreover, as banks in the NUCA cache work independently of each other, none of the

less used banks can even know that a hot bank is constantly evicting data blocks that are

being reused. Thus, a more sophisticated replacement policy that allows all banks in the

NUCA cache to take part in data-replacement decisions is desirable. Insofar evicted

lines from the hot banks can be relocated to other banks in the NUCA cache, instead

of being evicted from the NUCA cache permanently. Unfortunately, most previous

works have ignored the replacement issue or have adopted a replacement scheme that

was originally designed for use in uniprocessors/uniform-caches.

Kim et al. [41] proposed two replacement policies for NUCA caches in a

uniprocessor environment: zero-copy and one-copy policies. The evicted line in the

NUCA cache, assuming the zero-copy policy, is sent back to the upper level of the

memory hierarchy (the main memory in our studies). If the one-copy policy is adopted,

however, the evicted line is demoted to a more distant bank. This policy gives a second

chance to the evicted lines to stay within the NUCA cache. In order to evaluate these

schemes, we have adapted them for CMP. Our version of the one-copy policy for CMP

gives a second chance to the evicted lines by randomly relocating them to a bank from

the bankset where they can be mapped.

Figure 3.1 shows that, the one-copy replacement policy improves performance

compared to the baseline configuration1. One-copy, however, is considered as a blind

replacement policy, insofar as it does not take into account the current cache state

1The experimental methodology is described in Section 2.2.

32 Chapter 3.

1,04

1,05

se
d
)

1,03

,

o
rm

a
li
s

1,02

d
u
p
(n
o

1

1,01

e
S
p
e
e
d

0,99

rm
a
n
ce

0,98

P
e
rf
o
r

0,97

Zero Copy One Copy

Figure 3.1: Performance results assuming one-copy and zero-copy replacement

policies.

before relocating the evicted data to other NUCA bank. Thus, this approach may cause

unfair data replacements that hurt performance.

This chapter presents three approaches for dealing with replacements in NUCA

caches:

• First, we propose introducing an extra bank that acts as victim cache by catching

all evictions that happen in the regular NUCA banks. We call this approach Last

Bank.

• Then, we propose LRU-PEA. This is a replacement policy that takes into account

novel data block categories in order to take the final replacement decision. The

categories assumed in the LRU-PEA rely on the last migration action taken by a

particular data block (e.g. promoted, demoted or none).

• Finally, we propose The Auction. This is a replacement framework that provides

a protocol to spread replacement decisions that have been taken in a single bank

to all banks in the NUCA cache. Thus, the other banks can take part in deciding

Replacement policy 33

which is the most appropriate data to evict within the whole NUCA cache.

The remainder of this chapter is structured as follows. Section 3.2 presents the Last

Bank approach. Section 3.3 describes and analyses the LRU-PEA replacement policy. In

Section 3.4, we describe The Auction framework. Related work is discussed in Section

3.5, and concluding remarks are given in Section 3.6.

3.2 LAST BANK

Cache memories take advantage of the temporal and spatial data locality that

applications usually exhibit. However, the whole working set does not usually fit into

the cache memory, causing capacity and conflict misses. These misses mean that a line

that may be accessed later has to leave the cache prematurely. As a result, evicted lines

that are later reused return to the cache memory in a short period of time. This is more

pronounced in a NUCA cache memory because data movements within the cache

are allowed, so the most recently accessed data blocks are concentrated in few banks

rather than evenly spread over the entire cachememory. Therefore, we propose adding

an extra bank to deal with data blocks that have been evicted from the NUCA cache,

and acts as a victim cache [38]. This extra bank, called Last Bank, provides evicted data

blocks a second chance to come back to the NUCA cache without leaving the chip.

Last Bank, which is as large as a single bank in the NUCA cache, acts as the

last-level cache between the NUCA cache and the off-chip memory. It is physically

located in the center of the chip at about the same distance to all cores. When there

is a hit on Last Bank, the accessed data block leaves the Last Bank and returns to the

corresponding bank in the NUCA cache.

Figure 3.2 illustrates the performance results achieved when introducing the Last

Bank to the baseline architecture. We observe that such a small storage is not able to

hold evicted data blocks before they are accessed again, and thus, the performance

benefits of this proposals are negligible in most of the simulated applications.

34 Chapter 3.

Figure 3.2: Performance improvement achieved with Last Bank

Assuming a Last Bank of 64 MBytes, however, we achieve an overall performance

improvement of 11% and up to 75% with canneal. There are three main reasons

that prevent the small version of Last Bank from being so effective as the 64-MByte

configuration: cache pollution, potential bottleneck and size of the cache. Last Bank

indistinctively catches all evicted data blocks from the regular NUCA banks, but only

a small portion of them are going to be effectively reused further in the program. In

the best case, the data blocks that are no longer accessed by the program would be

directly sent to the upper-level memory, however, the reality is that Last Bank does not

know whether an evicted data block is going to be accessed further by the program.

This pollutes the Last Bank and provokes other data blocks that may be reused to be

evicted from the Last Bank before they are accessed. Moreover, our design assumes

a single Last Bank for the whole NUCA cache. Although this could be a potential

bottleneck when executing applications with large working sets that provoke lots

of replacements, this design provides similar response latency to all the cores. Our

Replacement policy 35

evaluation also shows that a Last Bank of 64 KBytes is not large enough to hold all

evictions from 128 NUCA banks, thus we conclude that the benefits of this approach

are limited by the size of the Last Bank.

3.2.1 Last Bank Optimizations

This section describes two optimizations for the Last Bank approach. They exploit

some of the drawbacks of these mechanism and allows it to achieve higher

performance benefits at low implementation cost.

Selective Last Bank

Last Bank is not large enough to deal with all the evicted data blocks from the entire

NUCA cache. So, Last Bank is polluted with useless data blocks that will not be

accessed again and that provoke the eviction of useful data blocks from Last Bank

before they are accessed. This fact leads us to propose a selection mechanism in Last

Bank called Selective Last Bank. This selection mechanism allows evicted data blocks

to be inserted into Last Bank by way of a filter. The aim is to prevent Last Bank from

becoming polluted with data blocks that are not going to be accessed further by the

program.

Migration movements in D-NUCA cache make most accessed data blocks to

concentrate in the NUCA banks that are close to the cores (local banks). Consequently,

the probabilities of a data block that have been evicted from a local bank to return to

theNUCA cache are much higher than if it were evicted from a central bank. Therefore,

we propose a filter that allows only the evicted data blocks that resided in a local bank

before eviction to be cached.

36 Chapter 3.

(a) (b) (c)

Figure 3.3: LRU prioritising Last Bank (LRU-LB) scheme. (a) A priority line is in the

LRU position. (b) The priority line resets its priority bit and updates its position to the

MRU; the other lines move one position forward to the LRU. (c) The line in the LRU

position is evicted since its priority is clear.

LRU prioritising Last Bank

Because of the high locality found in most applications, the vast majority of evicted

lines that return to the NUCA cache, do it at least twice. Thus, we propose modifying

the data eviction algorithm of the NUCA cache in order to prioritise the lines that enter

the NUCA cache from Last Bank. We call this LRU prioritising Last Bank (LRU-LB).

LRU-LB gives the lines that have been stored by the Last Bank and that return to the

NUCA cache an extra chance, so they remain in the on-chip cachememory longer. This

requires storing an extra bit, called the priority bit, attached to each line in the NUCA

cache.

The LRU-LB eviction policy works as follows. When an incoming line comes to the

NUCA cache memory from Last Bank, its priority bit is set. Figure 3.3a shows how

this policy works when a line with its priority bit set is in the LRU position. The line

that currently occupies the LRU position, then, clears its priority bit and updates its

position to the MRU, and thus, the other lines in the LRU stack move one position

towards the LRU (Figure 3.3b). Finally, as the line that is currently in the LRU position

has its priority bit clear, it is evicted from the NUCA cache (Figure 3.3c). If the line

that ends in the LRU position has its priority bit set, the algorithm described above is

applied again until the line in the LRU position has its priority bit clear.

Replacement policy 37

Figure 3.4: Speed-up achieved with Last Bank optimizations.

3.2.2 Results and analysis

This section analyses the performance results obtained with the two optimizations for

the Last Bank proposed in Section 3.2.1, Selective Last Bank and LRU prioritising Last

Bank (LRU-LB). With Selective Last Bank, the filter only allows blocks that have been

evicted from a local bank to be cached.

As mentioned in Section 3.2, the potential performance improvement of this

mechanism is strictly limited by the size of the Last Bank, however, we found that

both optimizations could exploit the Last Bank features to achieve some performance

improvement compared to the baseline configuration (by 2%). Figure 3.4 shows that

the Selective approach outperforms Last Bank in almost all simulated applications.

The reduction of pollution in the Last Bank allows data blocks to stay longer in the

Last Bank. Thus, hit rate in the Last Bank increases, and consequently it performs

better.

With regard to the LRU-LB optimization, giving an extra chance to reused

38 Chapter 3.

addresses before being evicted from the NUCA cache has two direct consequences:

1) if accessed, they are closer to cores, which means lower access latency, and 2) the

number of reused addresses stored in the NUCA cache is higher. This translates into

an overall performance improvement of 2%. Moreover, LRU-LB also outperforms the

regular Last Bank configuration with most of simulated applications.

3.2.3 Summary

In this section we have introduced Last Bank. This is a simple mechanism that acts

as victim cache for the regular NUCA banks. Moreover, we have also presented

two optimizations for the Last Bank that exploit the features of this mechanism,

and then, increases its performance benefits. However, our performance results show

that assuming a small Last Bank (64 KBytes), this mechanism achieves negligible

performance improvements, while a larger (but non-afforable) implementation of 64

MBytes outperforms the baseline configuration by 11%.

Although this mechanism work well with small caches [48], Last Bank requires

non-affordable hardware overheads to get significant benefits when a larger

configuration is assumed. These results discourage us from going on with the Last

Bank approach, so wemove on and propose other replacement techniques that require

similar hardware than the Last Bank, but obtain higher benefits in terms of both

performance and energy consumption.

3.3 LRU-PEA

When an incoming data block enters into the NUCA cache, the placement policy

determines in which NUCA bank it will be placed. Then, the replacement policy

determines (1) which data block must be evicted from the bank to leave space for the

new data (data eviction policy), and (2) which position within the replacement stack the

incoming data will occupy (e.g. MRU or LRU). This decision is known as data insertion

Replacement policy 39

policy. Replacement policies in traditional cache memories are composed by these two

sub-policies, however, D-NUCA incorporates one last decision to determine the final

destination of the evicted data block. We call it data target policy.

In this section we introduce the Least Recently Used with Priority Eviction Approach

(LRU-PEA) replacement policy. This policy focuses on optimizing the performance of

applications on a CMP-NUCA architecture by analyzing data behaviour within the

NUCA cache and trying to keep the most accessed data in cache as long as possible. In

order to describe how this policy works, we describe separately the two sub-policies

that the LRU-PEA modifies: data eviction policy and data target policy. With regard to

data insertion policy, the incoming data block will occupy the MRU position in the

replacement stack.

3.3.1 Data Eviction Policy

Being able to apply migration movements within the cache in one of the most

interesting features of NUCA cache memories. This enables recently accessed data

to be stored close to the requesting core in order to optimize access response times for

future accesses. We take advantage of this feature to classify data in the NUCA cache

relying on their last migration action: (1) promoted, (2) demoted, and (3) none. Figure 3.5

shows the percentage of resued and non-reused evicted addresses that belonged to

each of these three categories at the moment of their replacement. We observe that the

probabilities of a data block to return to the NUCA cache are higher if it belongs to the

promoted category than if it does to other category.

Based on this observation, LRU-PEA statically prioritises the previously defined

categories (promoted, demoted and none), and evicts from the NUCA cache the data

block that belongs to the lowest category. Having a static prioritization, however,

could cause the highest-category data to monopolize the NUCA cache, or even cause

a simple data block to stay in the cache forever. In order to avoid these situations, we

40 Chapter 3.

Figure 3.5: Distribution per categories of resued and non-reused evicted addresses at

the moment of their replacement.

restrict the category comparison to the two last positions in the LRU-stack. In this way,

even data with the lowest category will stay in the cache until it arrives at the LRU-1

position in the LRU-stack.

Figure 3.6 gives an example of how the LRU-PEA scheme works. First, we define

the prioritization of the data categories. Based on the results showed in Figure 3.5,

the final prioritization is as Table 3.1 outlines. When the LRU-PEA eviction policy is

applied, the last two positions of the LRU-stack compete to find out which one is

going to be evicted (see Figure 3.6b). Thus, we can compare their categories. If they

are different, the data with the lower category is evicted. But, if both have the same

category, the line that currently occupies the LRU position is evicted. Finally, the data

that has not been evicted updates its position within the LRU-stack (see Figure 3.6c).

Replacement policy 41

(a) (b) (c)

Figure 3.6: LRU-PEA scheme. (a) Initial state of the LRU-stack. (b) The last two

positions of the LRU-stack compete to avoid being evicted. (c) The lowest category

data has been evicted.

+ Promoted

Priority None

- Demoted

Table 3.1: Prioritization for LRU-PEA.

3.3.2 Data Target Policy

There are two key issues when a Dynamic-NUCA (D-NUCA) architecture [41] is

considered: 1) a single data can be mapped in multiple banks within the NUCA cache,

and 2) the migration process moves the most accessed data to the banks that are closer

to the requesting cores. Therefore, bank usage in a NUCA cache is heavily imbalanced,

and a capacity miss in a heavy-used NUCA bank could cause constantly accessed

data to be evicted from the NUCA cache, while other NUCA banks are storing less

frequently accessed data. The LRU-PEA addresses this problem by defining a data

target policy that allows the replacement decision that has been taken in a single bank

to be spread to all banks in the NUCA cache where evicted data can be mapped.

We propose Algorithm 1 as a data target policy for the LRU-PEA. The main idea of

this algorithm is to find a NUCA bank whose victim data belongs to a lower priority

category than that which is currently being evicted. In this way, while the target

NUCA bank is not found, all NUCA banks where the evicted data can be mapped

are sequentially accessed in an statically defined order. In our evaluation we use the

42 Chapter 3.

Input: initial_bank: Bank that started the replacement process

Input: ev_data: Evicted data

Output: Final data to be evicted from the cache

begin

final = false;

if Category(initial_bank, ev_data) == LOWEST_CATEG then

return ev_data;

end

next_bank = NextBank(initial_bank);

ev_bank = initial_bank;

while !final and next_bank 6= initial_bank do

may_evict_data = ApplyLRU-PEA(next_bank, ev_data);

if Category(ev_bank, ev_data) > Category(next_bank,may_evict_data) then

InsertIntoBank(next_bank, ev_data);

ev_data = may_evict_data;

ev_bank = next_bank;

if IsCascadeModeEnabled() == false then

final = true;

else if Category(ev_bank, ev_data) > LOWEST_CATEG then

next_bank = NextBank(next_bank);

else

final = true;

end

else

next_bank = NextBank(next_bank);

end

end

return ev_data;

end

Algorithm 1: LRU-PEA scheme

following order: Local_Bank_Corei → Central_Bank_Corei → Local_Bank_Corei+1 →

Central_Bank_Corei+1 → ...

The algorithm finishes when one of the following occurs: 1) the evicted data

belongs to the lowest priority category, 2) all NUCA banks where the evicted data

can be mapped have been already visited, and 3) the evicted data has been relocated

to another NUCA bank. Then, whether the evicted data could not be relocated to other

bank into the NUCA cache, it is written back to the upper-level memory.

By using sequential access, however, the accuracy of the LRU-PEA is restricted to

the NUCA banks that have been visited before finding a target bank. To address this

Replacement policy 43

Figure 3.7: Example of how LRU-PEA behaves.

problem, we introduce the on cascademode. When this mode is enabled, the algorithm

does not finish when the evicted data finds a target bank. Instead, it uses the data that

has been evicted from the target bank as evicted data. Thus, after visiting all NUCA

banks we can assure that the current evicted data belongs to the current lowest priority

category. In Section 3.3.4, we consider both configurations, with the on cascade mode

enabled and disabled.

Figure 3.7 shows an example of how the LRU-PEA’s data target policy works. In

this example, the algorithm starts in a central bank and the evicted data belongs to the

none category, so the priority of the evicted data is 2 (see Table 3.1). First, the algorithm

checks whether the evicted data can be relocated in the local bank of the next core

(step 1 in Figure 3.7). However, the priority of the victim data in the current bank is

higher than the evicted data, so the LRU-PEA tries to relocate the evicted data into the

44 Chapter 3.

next bank. In the second step, it visits another central bank. In this case, the category

of the victim data in the current bank is the same as the evicted data, and so next bank

needs to be checked. Finally, in the third step, the category of the evicted data has

higher priority than the one of the victim data of the current bank. Thus, the evicted

data is relocated to the current bank. If the on cascade mode is enabled, the algorithm

continues with the 4th step (see Figure 3.7), but uses the data that has been evicted

from the current bank as evicted data. Otherwise, this data is directly evicted from the

NUCA cache and sent back to the upper-level memory.

3.3.3 Additional Hardware

This mechanism requires the introduction of some additional hardware to the NUCA

cache. In order to determine the data’s category, we add two bits per line (there are

three categories). Then, assuming that 8 MByte NUCA cache described in Section 1.5

is used, LRU-PEAwill need to add 32 KBytes, which is less than 0.4% of the hardware

overhead. Furthermore, the proposed mechanism can be easily implemented without

significant complexity.

3.3.4 Results and analysis

This section analyses the impact of assuming the LRU-PEA as replacement policy. The

LRU-PEA takes advantage of on-chip network introduced by CMPs to provide a

sophisticated algorithm that allows the globalization of the replacement decisions that

have been taken in a single bank. Although this approach may increase contention

in the on-chip network, it is perfectly modeled in our simulator. Table 3.2 shows the

average number of extra messages introduced by the LRU-PEA to satisfy a single

replacement. When the on cascade mode is disabled, the communication overhead

introduced by LRU-PEA is very low. On average, close to 80% of replacements are

satisfied by introducing up to 3 extra messages into the on-chip network. By enabling

Replacement policy 45

No Cascade
Cascade Enabled

Direct Provoked

1 message 64 54 20

2 messages 12 7 7

3 messages 4 2 4

4 messages 3 2 4

5 messages 3 2 3

6 messages 2 1 4

7 messages 2 1 3

8 messages 2 1 4

9 messages 1 1 3

10 messages 1 1 4

11 messages 1 1 3

12 messages 1 1 6

13 messages 1 1 6

14 messages 1 1 30

15 messages 3 21 -

Values in percentage (%)

Table 3.2: Number of extra messages introduced by both configurations of LRU-PEA

to satisfy replacements.

the on cascade mode, however, a significant percentage of replacements introduce the

maximum number of messages into the network (the number of banks where the

evicted data can bemappedminus one). This difference between the twomodes can be

explained by the high-accuracy provided by the LRU-PEA when the on cascade mode

is enabled. In general, data in NUCA banks has higher priority, and it is much more

difficult to find a victim data with lower priority than the evicted data. In the following

sections we analyse how the LRU-PEA behaves in terms of performance and energy

consumption.

Performance Analysis

Figure 3.8 shows the performance improvement achieved when using the LRU-PEA

as replacement policy in the NUCA cache. On average, we find that the LRU-PEA

46 Chapter 3.

Figure 3.8: IPC improvement with LRU-PEA.

outperforms the baseline configuration by 8% if the on cascademode is enabled, and by

7% when it is disabled. In general, we find that the LRU-PEA significantly improves

performance with most PARSEC applications, obtaining about 20% improvement

in three of them (canneal, freqmine and streamcluster). On the other hand, 4 of

the 13 PARSEC applications do not show perfomance benefits when using the

LRU-PEA (blackscholes, facesim, raytrace and swaptions). We also observe that although

the LRU-PEA does not significantly improve performance in some of the PARSEC

applications, it is not harmful to performance either.

Figure 3.9 shows the NUCA misses per 1000 instructions (MPKI) with the three

evaluated configurations: baseline, LRU-PEA and LRU-PEA with on cascade mode

enabled. On average, we observed a significant reduction in MPKI when using

the LRU-PEA, and even more when the on cascade mode is enabled. In general,

we found that PARSEC applications that provide performance improvements, also

significantly reduce MPKI. Moreover, we saw that canneal, freqmine and streamcluster

Replacement policy 47

Figure 3.9: Misses per thousand instructions with LRU-PEA.

(the applications that provide the highest performance improvement with LRU-PEA)

also have the highest MPKI. In contrast, applications with an MPKI close to zero do

not usually improve performance when the LRU-PEA is used.

Regarding those applications where the LRU-PEA does not improve performance,

blackscholes and swaptions are financial applications with small working sets, so their

cache requirements are restricted. On the other hand, raytrace and facesim have very

big working sets, but they are computationally intensive and mainly exploit temporal

locality.

Energy Consumption Analysis

The energy consumption is analysed by using the Energy per Instruction (EPI) metric.

Figure 3.10 shows that, on average, the LRU-PEA reduces the energy consumed per

each instruction compared to the baseline architecture by 5% for both configurations

(with and without the on cascade mode enabled). In particular, the LRU-PEA

48 Chapter 3.

Figure 3.10:Normalized average energy consumed per each executed instruction.

significantly reduce energy consumption in PARSEC applications with large working

sets, such as canneal, freqmine and streamcluster. Moreover, we observed that, with the

exception of blackscholes and swaptions, EPI was always reduced by the LRU-PEA.

As we can see in Figure 3.10, EPI is heavily influenced by static energy. Figure

3.11 shows the normalized EPI without taking into consideration the static energy

consumed. We find that when on cascade mode is enabled, the dynamic energy

consumed is 10% higher than in the baseline configuration. However, the LRU-PEA

with on cascade mode disabled still reduces EPI by more than 15%. This difference

between the two LRU-PEA modes corresponds to the number of extra messages

introduced into the on-chip network by each of them (see Table 3.2).

Finally, we highlight that although LRU-PEA increases the on-chip network

contention, the average energy consumed per instruction is still reduced due to the

significant performance improvement that this mechanism provides.

Replacement policy 49

Figure 3.11:Normalized average dynamic energy consumed per each instruction.

3.4 THE AUCTION

The Auction is an adaptive mechanism designed for the replacement policy of NUCA

architectures in CMPs. It provides a framework for globalizing the replacement

decisions taken in a single bank, and thus enables the replacement policy to evict the

most appropriate data from the NUCA cache. Moreover, unlike the one-copy policy [41]

or LRU-PEA (described in Section 3.3), which blindly relocate evicted data to other

bank within the NUCA cache, The Auction enables evicted data from a NUCA bank

to be relocated to the most suitable destination bank at any particular moment, taking

into consideration the current load of each bank in the NUCA cache. This section

describes in detail how the auction mechanism works.

3.4.1 Roles and components

In order to explain how the auction works, we will first introduce the three roles that

operate in the mechanism:

50 Chapter 3.

1,50%

2,00%

2,50%

st
a
rt
e
d
a
u
ct
io
n
s

0,00%

0,50%

1,00%

1 2 3 4

P
e
rc
.
o
f
n
o
n
s

Number of Auction Slots per Bank

Figure 3.12: Percentage of non-started auctions when using up to four auction slots

per NUCA bank.

• Owner: It owns the item but wants to sell it, thus starting the auction. The bank

in the NUCA cache that evicts the line then acts as the owner and the evicted line

is the item to sell.

• Bidders: They can bid for the item that is being sold in the auction. In the NUCA

architecture, the bidders are the banks in the NUCA cache where the evicted line

can be mapped. They are the other NUCA banks from the owner’s bankset.

• Controller: It stores the item while the auction is running, receives the bids for

the item from the bidders and manages the auction in order to sell the item to

the highest bidder.

As auction controller, we introduce a set of auction slots that is distributed among

all banks in the NUCA cache. Each auction slot manages a single active auction by

storing the evicted line that is being sold, the current highest bidder and the remaining

time. When the auction finishes the corresponding auction slot is deallocated and

becomes available for forthcoming auctions. Therefore, the number of active auctions

Replacement policy 51

per NUCA bank is limited by the number of auction slots that it has. Figure 3.12

shows the percentage of auctions that cannot be started because there are no auction

slots available when using up to four auction slots per NUCA bank. We observe that

assuming one auction slot per bank, just 2.3% of evicted lines can not be relocated.

Moreover, we find that using more auction slots per NUCA bank, the percentage

of non-started auctions dramatically decreases. At this point, the challenge is to

determine the optimal number of auction slots that provides high accuracy without

introducing prohibitive hardware overhead. In the remainder of the chapter, we

assume having two auction slots per NUCA bank. This configuration provides a good

trade-off between auction accuracy and hardware requirements.

3.4.2 How The Auction works

Figure 3.13 shows the three steps of the auction. It starts when there is a replacement

in a bank in the NUCA cache and it has at least one auction slot available – otherwise

the auction can not be started and the evicted line is directly sent to the main memory

–. The bank that is replacing data (the owner) moves the evicted line (the item) to the

controller (the corresponding auction slot) and sets the auction deadline (Figure 3.13a).

At the same time, the owner invites the other banks from the bankset (the bidders) to join

the auction and bid for the item. Recall that an addressmaps to a bankset and can reside

within any bank of the bankset. Thus, in our baseline architecture the evicted line can

only be mapped to 16 banks within the whole NUCA cache. When a bidder finds out

that a data block has been evicted from the NUCA cache, it decides whether to bid

for it (Figure 3.13b). If the bidder is interested in getting the evicted data, it notifies the

controller who manages the auction. Otherwise, the bidder ignores the current auction.

Finally, when the auction time expires (Figure 3.13c), the controller determines the

final destination of the evicted data based on the received bids and the implemented

heuristic, and sends it to the winning bidder. Moreover, in order to avoid recursively

52 Chapter 3.

(a) Owner starts the auction (b) Bids for the item

(c) Item is sold!

Figure 3.13: The three steps of the auction mechanism.

starting auctions, even if relocating the evicted data provokes a replacement in the

winning bank, it will not start a new auction. In contrast, if none of the bidders bid

for the evicted data when the auction time expires, the controller sends it to the main

memory.

Note that The Auction describes how to proceed when a replacement occurs in

a bank in the NUCA cache. This is, therefore, a generic algorithm that must be

customized by defining the decisions that each role can take on during the auction.

3.4.3 Hardware Implementation and Overhead

As described in Section 3.4.1, the auction mechanism introduces two auction slots per

NUCA bank in order to manage the active auctions. Each auction slot requires 66 bytes

(64 bytes to store the evicted line, 1 byte to identify the current highest bidder and 1

Replacement policy 53

byte to determine the remaining time), the hardware overhead of this configuration is

33 KBytes (which is less than 0.4% of the total hardware used by the NUCA cache).

Apart from hardware overheads, the auction also introduces extra messages into the

on-chip network (i.e. messages to join the auction and bids). The impact of introducing

these messages into the network is thoroughly analysed in Section 3.4.5.

3.4.4 Implementing an Auction Approach

The Auction algorithm defines how the owner and the controller behave while an

auction is running, however, it does not define whether a bidder should bid for

the evicted data block or not. The generality of this scheme opens a wide area to

explore in the replacement policy for NUCA caches in which architects may use The

Auction framework to implement smart auction-like replacement policies. This section

describes two examples of auction approaches – bank usage imbalance (AUC-IMB) and

prioritising most accessed data (AUC-ACC) – that enable to determine the quality of data

during the auction, and thus enable bidders to compare the evicted data that is being

sold with their own data.

Providing a significant number of bids per auction to the controller is crucial to

have high auction accuracy (i.e. the goodness of its final decision). Thus, increasing

the number of bits per auction, an auction-like replacement policy will 1) provide

controller more options to determine the most appropriate destination bank for the

evicted data within the NUCA cache, and 2) reduce the number of auctions that finish

without receiving any bid.

Bank Usage Imbalance (AUC-IMB)

There are two key issues when a Dynamic-NUCA (D-NUCA) architecture [41] is

considered: 1) a single data can be mapped in multiple banks within the NUCA cache,

and 2) the migration process moves the most accessed data to the banks that are closer

54 Chapter 3.

to the requesting cores. Therefore, bank usage in a NUCA cache is heavily imbalanced,

and a capacity miss in a heavy-used NUCA bank could cause constantly accessed

data to be evicted from the NUCA cache, while other NUCA banks are storing less

frequently accessed data.

We propose an auction approach that measures the usage rate of each bank. Thus,

least accessed banks could bid for evicted data from banks that are being constantly

accessed. We use the number of capacity replacements in each cache-set of NUCA banks

as our bank usage metric.

This auction approach works as follows: when a replacement occurs in a NUCA

bank, the owner notifies the bidders that the auction has started, and sends them

the current replacement counter. Then, when a bidder receives the message from the

owner, it checks whether its current replacement counter is lower than the counter

attached to the message. If it is lower, the current bank bids for the evicted data by

sending to the controller the bank identifier and its replacement counter. At the same

time, the controller that manages the auction is storing the current winner and its

replacement counter. When a bid arrives to the controller, it checks if the replacement

counter from the bid is lower than the one from the current winner. If so, the incoming

bid becomes the current winner, otherwise the bid is discarded. Finally, when the

auction time expires, controller sends the evicted data to the bidder with the lowest

replacement counter.

Migration movements make most frequently accessed data to be stored in local

banks, thus if the controller receives bids from both types of banks, local and central,

it will always prefer to send the item to the central bank. Then, the controller works

as follows: If the first bid that arrives to the controller comes from a central bank,

the auction finishes and the item is directly sent to the bidder. If the first bidder is a

local bank, however, the controller sets the auction deadline to 20 cycles and waits for

other bids from central banks. We have experimentally observed that even with high

network contention most bids arrive to the controller in 20 cycles from the arrival of

Replacement policy 55

the first bid.

Unfortunately, this approach is not affordable without restricting the number of

bits used by each replacement counter. Therefore, in order to implement this approach,

in addition to restricting the bits dedicated to the replacement counter, we have to

implement a reset system that initializes the replacement counters of other NUCA

banks when one of them arrives at the maximum value. If this is not done, when a

replacement counter overflows, it could not be compared with other counters. Thus,

when a replacement counter arrives at its maximum value, the owner sends the

bidders the reset signal with the message that notifies that an auction has started.

We evaluate this approach by assuming there is an 8-bit replacement counter

per cache-set in all NUCA banks. We have chosen this size on the basis of the

following issues: additional hardware introduced (bits for the replacement counter

and comparators), accuracy obtained, and reset frequency.

Hardware implementation and overheads: This approach requires the

introduction of 8 bits in every cache set and auction slot. Thus, assuming the

baseline architecture described in Section 2.1, this means adding 16.5 KBytes to

the hardware overhead required by The Auction (33 KBytes). Then, this approach

requires introducing 49.5 Kbytes to the 8 MByte NUCA cache, which signifies less

than 0.6% of the hardware overhead. Moreover, it increases the size of both auction

messages, auction invitations and bids, because these messages need to include the

8-bit replacement counter. The auction invitation message sent by the owner also

requires one bit more for the reset signal. We take these overheads into account when

evaluating this approach.

Prioritising most accessed data (AUC-ACC)

This auction approach focuses on keeping the most accessed data in the NUCA cache.

When the bidder receives the auction start notification, it checks whether the evicted

data has been accessed more times than the data that is currently occupying the last

56 Chapter 3.

position in the LRU-stack. If this is the case, it bids for the evicted data by sending

to the controller the bank identifier and the access counter of the LRU data block. As

in AUC-IMB, when a bid arrives to the controller, it compares the access counter that

comes with the incoming bid to the access counter of the current winner. If it is lower,

then the incoming bid becomes the current winner. Finally, when the auction time

expires, controller sends the evicted data to the bidder whose LRU data block has the

lowest access counter. Note that as with AUC-IMB, the auction deadline is set when

the auction starts and then modified when the first bid arrives.

This approach assumes that each line in the NUCA cache has an access counter.

It only keeps information regarding accesses made to the NUCA cache, which is

updated just after a hit in this cache. However, as in the previous approach, having

an unbounded counter per line is not affordable, thus we assume a 3-bit saturated

counter per line. We choose this size for the counter because it is sufficiently accurate,

and the additional hardware introduced is still affordable.

Hardware implementation and overheads: This approach requires the

introduction of 3 bits per cache line and auction slot. Thus, assuming the baseline

architecture described in Section 2.1, it adds 49.5 KBytes to the basic auction scheme.

So, the overall hardware requirements of this auction approach in the 8 MBytes

NUCA cache is 82.5 KBytes, this being just 1% overhead. As in the previous proposal,

the auction messages are larger. In this case, the size of the messages is increased by 3

bits. These overheads are also considered when evaluating this approach.

3.4.5 Results and analysis

This section analyses the impact on performance and energy consumption of using

the two auction approaches (AUC-IMB and AUC-ACC) as replacement policy in the

baseline architecture. Unfortunately, none of the mechanisms previously proposed for

NUCA caches on CMPs properly addresses the data target policy, and thus they could

Replacement policy 57

Figure 3.14: Performance improvement.

complement the improvements achieved by The Auction framework. With regard to

this policy, as we mention in Section 3.1, Kim et al. [41] proposed two different

approaches, zero-copy and one-copy. However, these alternatives were proposed in a

single-processor environment. Therefore, in order to compare them with the auction

we have adapted them to the CMP baseline architecture. Moreover, we evaluate

the baseline architecture with an extra bank that acts as a victim cache [38]. This

mechanism does not show performance improvements on its own, however, it does

introduce the same additional hardware as the auction approach.

Performance analysis

Figure 3.14 shows the performance improvement achieved when using The Auction

for the replacement policy in the NUCA cache. On average, we find that both auction

approaches outperform the baseline configuration by 6-8%. In general, we observe the

auction performs significantly well with most of PARSEC applications, three of them

improving performance by more than 15% (canneal, streamcluster and vips). On the

58 Chapter 3.

other hand, assuming the multi-programmed environment (SPEC CPU2006 in Figure

3.14), the auction approaches increase performance by, on average, 4%.

One-copy replacement policy always relocates evicted data without taking into

consideration the current state of the NUCA cache. This enables one-copy to improve

performance in those PARSEC applications with large working sets, such as canneal,

streamcluster and vips. However, blindly relocating evicted data could be harmful in

terms of performance: for example, if x264 is used, one-copy has a 2% performance

loss. The Auction, on the other hand, checks the current state of all NUCA banks

from the bankset where the evicted data can be mapped, and thus do not relocate

evicted data if no a suitable destination bank has been found (i.e. if there are no

bidders). This makes the auction a harmless mechanism in terms of performance even

for applications with small working sets, such as blackscholes and x264. Moreover, we

have experimentally observed that the performance benefits achieved using one-copy

rely on the NUCA cache size, whereas the auction approaches do not correlate with

the size of the cache.

Figure 3.14 shows that, on average, both auction approaches outperform one-copy

by 2-4%. However, note that as replacement policy, the auction takes advantage of

workloads with large working sets because they lead to more data replacements. For

example, the auction increases performance benefits by 10% compared to one-copy

using streamcluster, with canneal it increases performance by 8%, and with vips by

5%. Unfortunately, most of PARSEC applications have small-to-medium working sets,

and thus the average performance benefits achieved with a replacement policy are

restricted.

Figure 3.15 shows the NUCA misses per 1000 instructions (MPKI) with both

implemented auction approaches (AUC-IMB andAUC-ACC).On average, we observe

that there is a significant reduction in MPKI by using the auction. In general, we find

that PARSEC applications that improve performance, also significantly reduce MPKI.

Moreover, we should emphasize the fact that canneal, streamcluster and vips are the

Replacement policy 59

Figure 3.15:Misses per 1000 instructions.

applications that both provide the highest performance improvement with the auction

and have the highest MPKI. In contrast, applications that have MPKI close to zero

do usually not significantly improve performance when using this mechanism. On

the other hand, in the multi-programmed environment, we find that the performance

improvement is also related to a MPKI reduction.

Figure 3.16 shows that almost every auction launched when using AUC-IMB

finishes with at least one bid. AssumingAUC-ACC, on the other hand, 20% of auctions

finish without bids. Moreover, we observe that AUC-IMB achieves much higher

auction accuracy than AUC-ACC. Actually, one in every two auctions get two or more

bids assuming AUC-IMB as replacement policy, whereas only 10% of auctions get at

least two bids with AUC-ACC. In an auction, the more bids the controller receives the

more confident its final decision will be. Increasing the number of bids per auction,

however, also increases the number of messages introduced to the on-chip network.

Figure 3.17 shows the auction message (auction invitation and bids) overhead

introduced by both auction approaches. We find that network contention is a key

60 Chapter 3.

Figure 3.16: Received bids per auction.

constraint that prevents both auction approaches achieving higher performance

results. On average, AUC-IMB and AUC-ACC outperform the baseline configuration

by 6% and 8%, respectively. AUC-ACC outperforms the other auction approach in

most of workloads including those with large working sets like canneal, streamcluster

and vips. On the other hand, AUC-IMB is heavily penalized by the high on-chip

network contention that this approach introduces. Therefore, this prevents AUC-IMB

obtaining higher performance results. Based on this observation, we conclude that the

big challenge to implement a high-performance auction-like replacement policy is to

balance auction accuracy and network contention.

Energy consumption analysis

In order to analyse the on-chip network contention introduced by the auction

approaches, Figure 3.17 shows the traffic on the on-chip network normalised to the

baseline configuration. On average, one-copy increases on-chip network traffic by 7%,

while the increase assumed by the auction is 8% when AUC-ACC is assumed, and

Replacement policy 61

Figure 3.17:Network traffic.

11% with AUC-IMB. Although both replacement mechanisms relocate evicted data,

they also reduce miss rate in the NUCA cache compared to baseline configuration, so

the increasing on the on-chip network traffic is not as high as previously expected. On

the other hand, the auction also introduces extra messages into the on-chip network

(auction invitations and bids). Figure 3.17 shows that the auction messages represents

less than 5% of total on-chip network traffic with both auction approaches.

With regard to the energy consumption, Figure 3.18 shows that, on average, the

auction reduces the energy consumed per each memory access by 3-4% compared to

the baseline architecture. In particular, they significantly reduce energy consumption

in PARSEC applications with large working sets, such as canneal, freqmine, streamcluster

and vips. Regarding the multi-programmed environment, we also find similar results

to multi-threaded applications in terms of energy consumption (up to 4% reduction).

62 Chapter 3.

Figure 3.18: Energy per memory access.

Summary

We conclude that as a replacement policy, this mechanism takes advantage of

workloads with the largest working sets because they lead to more data replacements

and launch more auctions. On the other hand, we find that blindly relocating data in

the NUCA cache without taking into consideration the current state of the banks, as is

the casewith one-copy, may cause unfair data replacements that can hurt performance.

3.5 RELATED WORK

Replacement policy brings together two decisions that can be seen as two more

policies: data insertion and data eviction. The former decides where to place data and

the latter decides which data is replaced. Traditionally, caches use the Most Recently

Used (MRU) algorithm to insert data and the Least Recently Used (LRU) algorithm to

evict data [10, 73].

Modifications to the traditional LRU scheme have been also proposed. Wong and

Replacement policy 63

Bauer [84] modified the standard LRU to maintain data that exhibited higher temporal

locality. Alghazo et al. [5] proposed a mechanism called SF-LRU (Second-Chance

Frequency LRU). This scheme combines both the recentness (LRU) and frequency

(LFU) of blocks to decide which blocks to replace. Dybdahl et al. [27] also proposed

another LRU approach based on frequency of access in shared multiprocessor caches.

Kharbutli and Solihin [40] proposed a counter-based L2 cache replacement. This

approach includes an event counter with each line that is incremented under certain

circumstances. The line can then be evicted when this counter achieves a certain

threshold.

Recently, several papers have revisited data insertion policy. Qureshi et al. [71]

propose Line Distillation, a mechanism that tries to keep frequently accessed data in

a cache line and to evict unused data. This technique is based on the observation that,

generally, data is unlikely to be used in the lowest priority part of the LRU stack.

They also proposed LIP (LRU Insertion Policy), which places data in the LRU position

instead of the MRU position [68].

Dynamic NUCA cache memories incorporate one extra policy, that is data target

policy. This determines the final destination of the evicted data block. Several works

have recently proposed in the literature to efficiently manage NUCA caches [9, 36,

39, 41, 63]. However, none of them properly addresses replacement policy in NUCA

caches for CMPs.

3.6 CONCLUSIONS

The decentralized nature of NUCA prevents replacement policies previously

proposed in the literature from being effective in this kind of caches. As banks operate

independently from each other, their replacement decisions are restricted to a single

NUCA bank. Unfortunately, replacement policy in NUCA-based CMP architectures

has not been properly addressed before. Most of previous works have ignored the

64 Chapter 3.

replacement issue or adopted a replacement scheme that was originally designed for

being used with uniprocessors/uniform-cache memories. This chapter describes three

different approaches for dealingwith replacements in D-NUCA achitectures on CMPs.

We first propose Last Bank. This introduces an extra bank into the NUCA

cache memory that catches evicted data blocks from the other banks. Although this

mechanism work well with small caches [48], Last Bank requires non-affordable

hardware overheads to get significant benefits when a larger configuration is assumed.

Then, we propose LRU-PEA. This is an alternative to the traditional LRU replacement

policy. It aims to make more intelligent replacement decisions by protecting these

cache lines that are more likely to be reused in the near future. We observe that, on

average, the baseline configuration increases its performance benefits by 8% when

using LRU-PEA as replacement policy. Finally, we propose The Auction. This is a

framework that allows architects for implementing auction-like replacement policies

in future D-NUCA cache architectures. The Auction spreads replacement decisions

that have been taken in a single bank to the whole NUCA cache. Therefore, this enables

the replacement policy to select the most appropriate victim data block from the whole

NUCA cache. The implemented auction approaches increase performance benefits by

6-8% and reduce energy consumed by 4% compared to the baseline configuration.

Chapter 4

Access policy

Dynamic features provided by D-NUCA, like placement of data and migration movements,

make access policy a key constraint in NUCA caches. This chapter presents HK-NUCA, which

is an efficient and cost-effective search mechanism to reduce miss latency in the NUCA cache

and the on-chip network contention.

Access policy 67

4.1 INTRODUCTION

Dynamic features provided by D-NUCA, like multiple placement of data and

migration movements, make data search scheme a key constraint in this kind of

architectures. Prior works proposed different techniques to efficiently search data

in the NUCA banks which include access parallelization, prioritisation of most

frequently accessed banks, or prediction of the next bank to access, among others

[3, 41, 72]. In case of miss in the NUCA cache, however, these techniques must access

all banks from the corresponding bankset to ensure that the requested data block is

not in the NUCA cache before forwarding the request to the upper-level memory.

To address this situation, in this thesis we propose HK-NUCA, which is short

for (Home Knows where to find data within the NUCA cache). It uses home knowledge

to ascertain which banks could potentially have the requested data, thus it resolves

memory requests by accessing only to the subset of banks indicated by home. This

makes HK-NUCA significantly reduce on-chip network contention as well as miss

resolution time compared to other techniques previously proposed in the literature.

This translates into a reduction of the dynamic energy consumed by the memory

system of 40%, and an overall performance improvement of 6%.

The remainder of this chapter is structured as follows. Section 4.2 lays out the

motivation for this work by analysing the importance of data search algorithm in

D-NUCA. In Section 4.3, the proposed data search mechanism is described in detail,

followed by the analysis of the results that is presented in Section 4.4. Related work is

discussed in Section 4.5, and concluding remarks are given in Section 4.6.

4.2 MOTIVATION

NUCA designs have been classified on the basis of their placement policy as static

(S-NUCA) or dynamic (D-NUCA) [9, 41]. In an S-NUCA organization, the mapping

of data into banks is predetermined based on the block index, and thus can reside in

68 Chapter 4.

only one bank of the cache. This facilitates the data search algorithm, since the cache

controller sends the request to a single bank. On the other hand, because of the static

placement within the NUCA cache, access latency to a specific data block is essentially

decided by its address. So, if frequently accessed data blocks are mapped to banks with

longer latencies, S-NUCA will not provide optimal performance.

With regard to D-NUCA, it allows data blocks to be mapped to multiple candidate

banks within the NUCA cache. With proper placement and migration policies,

D-NUCA attempts to improve performance by leveraging locality and moving

recently accessed data blocks to NUCA banks near the processors that are requesting

them, thus reducing cache access latency with frequently accessed data. However,

enabling multiple destinations for a single data block within the NUCA cache creates

two new challenges. First, many banks may need to be searched to find a data block on

a cache hit. Second, if the data block is not in the cache, the slowest bank determines

the time necessary to ascertain that the request is a miss. So, bank access policy is a key

constraint in this NUCA architecture. In fact, recent works have considered D-NUCA

a promising mechanism [9, 36, 41] but, they have also shown that D-NUCA cannot

obtain significant performance benefits unless an unaffordable access scheme is used

to locate data in the NUCA cache.

Figure 4.1 shows the performance results obtained with both NUCA architectures,

S-NUCA and D-NUCA. We found that D-NUCA and S-NUCA achieve similar

performance results in both multi-threaded and multi-programmed environments.

We also evaluated D-NUCA but using an oracle as access scheme. It outperformed

D-NUCA with a partitioned-multicast search algorithm by almost 15%. These results

prove that although D-NUCA can reduce cache access latencies by exploiting locality,

this organization is heavily penalized by the data search algorithm employed.

Access policy 69

Figure 4.1: Performance results of both NUCA organizations, S-NUCA and D-NUCA.

4.2.1 Locating data within the NUCA cache

Traditionally, there are two distinct access policies to search for a data block within the

NUCA cache: serial and parallel access [41]. Assuming serial access, the NUCA banks

that compose the corresponding bankset are sequentially accessed – starting from the

closest bank to the requesting core – until the requested data block is found or a

miss occurs in the last NUCA bank. This policy minimizes the number of messages

in the cache network and keeps energy consumption low, at the cost of reduced

performance. On the other hand, using parallel access, all theNUCAbanks in the bankset

are accessed in parallel, thereby offering higher performance at the cost of increased

energy consumption and network contention.

Hybrid access policies that try to have the best of both worlds – high performance

and low energy consumption – have also been explored [9, 41]. The best performing

hybrid access scheme is partitioned multicast [9], which is used in the baseline

architecture (Section 2.1). The differences in terms of performance and energy

70 Chapter 4.

(a) Performance speedup (b) Energy consumption

Figure 4.2: Impact of several access schemes in a D-NUCA architecture.

consumption of using one of the access schemes are shown in Figure 4.2a and

Figure 4.2b, respectively. As expected, the serial approach reduces the dynamic energy

consumed by the memory system; however, it also results in significant performance

degradation compared to the other two access policies. On the other hand, although

parallel access clearly outperforms the other two evaluated access approaches, we

have found that the high network contention caused by accessing all NUCA banks

in parallel, prevents parallel access achieving higher performance benefits.

Prior works also proposed introducing a partial tag structure to reduce the miss

resolution time [36, 41]. Before accessing the NUCA cache, the stored partial tag bits

are compared with the corresponding bits of the requested tag, and if no matches

occur, the miss processing is commenced early. Otherwise, the NUCA cache is

accessed following the implemented data search algorithm. Kim et al. [41] showed that

this mechanism effectively accelerated NUCA accesses to single-processor D-NUCA

caches. When a CMP architecture is considered, however, the implementation of this

mechanism appears impractical [9]. Nevertheless, Huh et al. [36] did it, and showed

that the benefits achieved were not worth its complexity and hardware requirements.

Recent works have proposed predicting data location within the NUCA cache to

obtain the high performance benefits of an oracle at a lower cost [3, 72]. Unfortunately,

Access policy 71

predicting data location within the NUCA cache has proved to be an extremely

difficult task, so much so that in most cases the benefits achieved are not worth the

significant cost and complexity in hardware that such mechanisms require.

Note that in case of miss in the NUCA cache, all techniques introduced in this

section must access all banks from the corresponding bankset to ensure that the

requested data block is not in the NUCA cache before forwarding the request to the

upper-level memory. In contrast, HK-NUCA uses home knowledge to ascertain which

banks could potentially have the requested data, thus it resolves memory requests by

accessing only to the subset of banks indicated by home.

4.2.2 Exploiting spatial/temporal locality

NUCA designs that allow data blocks to be mapped in multiple banks (e.g. D-NUCA)

take advantage of spatial/temporal locality in memory accesses to move most

frequently accessed data closer to the requesting core, thus optimizing cache access

latency for future accesses. Figure 4.3 clearly shows the effects of the migration

movements by illustrating how hits on the NUCA cache are distributed among the

NUCA banks. On one hand, S-NUCA provides a fair hit distribution among all

NUCA banks. Thanks to migration movements, on the other hand, when a D-NUCA

architecture is assumed most hits in the NUCA cache are served by the banks closer

to the processors. Furthermore, Figure 4.3 also indicates that migration movements

effectively help D-NUCA to exploit the spatial/temporal locality found in most

applications, meaning the data search algorithm is the primary drawback in these type

of architectures.

In this thesis, we propose a novel bank access policy for CMP-NUCA architectures

called HK-NUCA. It exploits migration features by providing fast and energy-efficient

access to data which is located close to the requesting core. Moreover, home knowledge

facilitates data searches by giving hints to the access algorithm to resolve memory

72 Chapter 4.

Core 0 Core 1 Core 2 Core 3

Core 4 Core 5 Core 6 Core 7

(a) Static NUCA (S-NUCA)

Core 0 Core 1 Core 2 Core 3

Core 4 Core 5 Core 6 Core 7

(b) Dynamic NUCA (D-NUCA)

MAX

MIN

Figure 4.3: Distribution of hits in the NUCA cache when the core 0 sends memory

requests.

accesses in a fast and efficient way.

4.3 HK-NUCA

This section describes the novel search mechanism for efficiently locating data in

CMP-NUCA architectures that we propose in this thesis. This mechanism is called

HK-NUCA, which is short for Home Knows where to find data within the NUCA cache.

Before describing the mechanism, the term home should first be introduced to better

understand the remainder of this section. A data block can reside in any of the banks

that compose a bankset, but only one of them is its home NUCA bank. Data-home

relationship is statically predetermined based on the lower bits of the data block’s

address. Consequently, all banks in the NUCA cache act as home, and each of them

manages the same number of data blocks.

The principal function of home is to know which other NUCA banks have at least

one of the data blocks that it manages. In order to keep this information, all NUCA

banks have a set of HK-NUCA pointers (HK-PTRs). HK-PTR assigns a single bit to each

bank from the bankset – 16 bits in our case –. If a bit in the HK-PTR is set (1), this

means that the corresponding NUCA bank is currently storing at least one of the data

blocks the current bank manages. In contrast, if it is not set (0), the corresponding

Access policy 73

Core 0 Core 1 Core 2 Core 3

0 1 2 3

Core 0 Core 1 Core 2 Core 3

8 9 10 11

12 13 14 15

4 5 6 74 5 6 7

Core 4 Core 5 Core 6 Core 7

(a) Fast access

Core 0 Core 1 Core 2 Core 3

0 1 2 3

Core 0 Core 1 Core 2 Core 3

8 9 10 11

12 13 14 15

HK PTR:

0 0 1 0 1 1 0 0 0 0 0 0 1 0 1 0

4 5 6 74 5 6 7

Core 4 Core 5 Core 6 Core 7

(b) Call home
Core 0 Core 1 Core 2 Core 3

0 1 2 3

Core 0 Core 1 Core 2 Core 3

8 9 10 11

12 13 14 15

4 5 6 74 5 6 7

Core 4 Core 5 Core 6 Core 7

(c) Parallel access

Figure 4.4: Scheme of HK-NUCA data search mechanism.

NUCA bank does not have any data blocks from the current home bank. There is a

HK-PTR for each cache-set in the NUCA bank. We find that pointing at the cache-set

level significantly increases the global accuracy of HK-NUCA by reducing the total

amount of 1’s per HK-PTR.

This mechanism, based on the knowledge of home banks, significantly reduces

on-chip network traffic as well as the miss resolution time, and consequently provides

faster and more efficient accesses to the NUCA cache. The following section describes

how HK-NUCA search mechanism works, Section 4.3.2 details HK-PTR management

tasks, and Section 4.3.3 introduces the implementation details.

4.3.1 How HK-NUCA works

After getting a miss in a private first-level cache from any core, the NUCA cache is

probed by means of the bank access policy that we propose in this thesis. HK-NUCA

consists of the following three stages: 1) Fast access, 2) Call home, and 3) Parallel access.

74 Chapter 4.

Fast access: This is the first stage of HK-NUCA (Figure 4.4a). As described in Section

4.2.2, migration moves most accessed data to banks that are closer to the requesting

cores. In order to take advantage of this feature, the cache controller of the requesting

core first accesses the closest NUCA bank where the requested data block can be

mapped within the NUCA cache. In case of a hit, the fast access stage will respond

to the memory request by taking minimum access latency and introducing just one

message into the on-chip network. If the requested data is not found, however, the

memory request is forwarded to the requested data’s home bank by starting the next

HK-NUCA stage.

Call home: This is the second stage of HK-NUCA. As Figure 4.4b shows, after the

fast access stage, the requested data’s home NUCA bank is accessed. If the requested

data is found, it is sent to the core that started the memory request, and the search

is completed. If a miss occurs, however, the home bank retrieves the corresponding

HK-PTR to find out which NUCA banks may have the requested data. Then the

memory request is sent, in parallel, to all candidate NUCA banks which have their

bit set in the HK-PTR (Figure 4.4c). However, note that thanks to the home knowledge,

the memory request will be sent in parallel to only a few banks, rather than to all of

the 14 non-visited banks.

Parallel access: This is the final stage of HK-NUCA. If the requested data is still

not found, the memory request is finally sent to the off-chip memory. Otherwise, the

NUCA bank in which the hit occurs sends the requested data to the core that started

the memory request.

Furthermore, there are some particular cases that HK-NUCA considers that could

accelerate the data search. For instance, when the bank accessed in the fast access stage

actually is the requested data block’s home bank, the two first HK-NUCA stages are

combined. Particular cases also include removing parallel access if none of the bits

Access policy 75

from HK-PTR are set in the call home stage. In this case, the memory request would

be directly sent to the main memory instead. Finally, in order to avoid redundant

accesses, during the parallel access stage HK-NUCA will not send memory requests

to the bank which has been previously accessed during the fast access stage, even if its

corresponding bit in HK-PTR is set. In Section 4.4, we also evaluate a variation of the

HK-NUCA algorithm that launches the fast access and call home stages in parallel. This

accelerates miss resolution time of the HK-NUCA, at the cost of increasing on-chip

network contention.

4.3.2 Managing Home Knowledge

Keeping updated HK-PTRs is crucial for ensuring the efficiency and accuracy of the

HK-NUCA data search mechanism. When a NUCA bank allocates a data block, a

notification message is sent to its home bank in order to set the corresponding bit

in the HK-PTR. On the other hand, if it is evicted, the current bank notifies the evicted

data block’s home bank to reset the specific bit in the HK-PTR. In order to reduce

on-chip network traffic due to coherence in HK-NUCA, before notifying the home

banks, the current bank checks whether it is already storing a data block from the

incoming/evicted data block’s home bank. If so, it is not necessary to notify the home

bank since its corresponding bit of HK-PTR is already updated. Otherwise, notification

is sent.

There are three actions that may provoke an update in HK-PTR: 1) a new data

enters to the cache, 2) an eviction from a NUCA bank, and 3) a migration movement.

As described in Section 2.1, when an incoming data enters to the NUCA cache from

the upper-level memory, it is mapped to its homeNUCA bank, thus updating HK-PTR

is not necessary. If there is an eviction in a NUCA bank and HK-PTRmust be updated,

a notification message is sent to the corresponding home bank. The corresponding

HK-PTR, however, would not be updated until the notification message arrives to

76 Chapter 4.

0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0

0

7

0

7

Cache_Set 0

Cache_Set 1

...
1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 0

NUCA Bank: 64 KBytes, 8 way

…

…

0

7

0

7

Cache_Set i

...

Cache_Set 127

64 Bytes

128

16 bits

HK PTR: 256 Bytes

Figure 4.5:HK-NUCA pointer list (HK-PTR).

the home bank. Then, if the non-updated HK-PTR is accessed to start the parallel access

stage at this point, HK-NUCAwould send an unnecessary memory request. Although

this misalignment may provoke slightly increasing on-chip network traffic, it does

not affect to the correctness of the HK-NUCA algorithm. Migration movements may

provoke up to two HK-PTR updates, one for each data block involved in the migration

process. Contrary to the eviction action, HK-PTR updates sent during the migration

process may indicate that a new bank has a data block that the home actually manages.

In this case, note that if the non-updated HK-PTR is used, before receiving the

notification message, to find the same data block that is being migrated, HK-NUCA

will not be able to find the requested data. In order to avoid this situation and ensure

correctness of the HK-NUCA algorithm, we synchronize migration movements with

HK-PTR updates.

Access policy 77

4.3.3 Implementing HK-NUCA

HK-NUCA requires introducing some additional hardware to implement HK-PTRs.

Figure 4.5 shows that HK-PTR needs 256 bytes per NUCA bank, so assuming that our

8 MByte-NUCA cache consists of 128 banks, the total hardware required by HK-PTRs

is 32 KBytes which is less than 0.4% of hardware overhead. Apart from hardware

overhead due to HK-PTRs, HK-NUCA also introduces some complexity in the NUCA

design (e.g. comparators), but their timing effects are hidden by the critical path.

These implementation overheads (hardware and design complexity), however, are

accurately modeled in our experimental evaluation, therefore the results shown in

Section 4.4 already take these issues into consideration.

Although HK-NUCA is proposed in a heavy-banked NUCA cache, this is not the

only organization it can work with. HK-NUCA, for instance, can be easily adapted

to a 4x4 tiled-CMP architecture – similar to that assumed in some recent works in

the literature [32, 59, 30]–. As with the heavy-banked architecture, the 4x4 tiled-CMP

allows a data block to be mapped in 16 positions within the NUCA cache. In this case,

HK-PTRs are as big as with our baseline, so the extra hardware required would be

the same. Moreover, we believe that the benefits in terms of performance and energy

consumption obtained using HK-NUCA on the tiled architecture would be similar to

that achieved with our baseline because both architectures are D-NUCA designs.

4.4 RESULTS AND ANALYSIS

The primary characteristics of HK-NUCAmake it a promising data search mechanism

that not only boosts performance, but also reduces energy consumption. On one hand,

by taking advantage of migration movements, the fast access stage of HK-NUCA

provides high performance at a minimum cost. Home knowledge, on the other hand,

allows memory requests to be satisfied by only accessing the NUCA banks that

can potentially have the requested data. With that, HK-NUCA significantly reduces

78 Chapter 4.

on-chip network traffic and diminishes router delays due to congestion. This section

analyses the impact on performance and energy consumption of using HK-NUCA as a

bank access policy in a dynamic CMP-NUCA architecture. We evaluate two versions of

the HK-NUCA algorithm. One follows the three-step data search algorithm described

in Section 4.3. The other launches the fast access and the call home stages in parallel,

turning HK-NUCA into a 2-step algorithm. In the remainder of the section, we call

them HK-NUCA (3-steps) and HK-NUCA (2-steps), respectively.

We compare HK-NUCA with another two bank access policies for D-NUCA

architectures: 1) partitioned multicast, and 2) perfect search. The former searches for

data in the NUCA cache in two steps. It first accesses in parallel a subset of NUCA

banks, which includes the closest bank to the requesting core. If the requested data is

not found the other NUCAbanks from the bankset are then accessed in parallel. Recent

works have considered partitioned multicast as the best performing access policy,

achieving significant performance benefits without incurring unaffordable energy

consumption [9, 41]. The other access policy we evaluated is perfect search, which

works as an oracle. It always knows whether the requested data block is in the NUCA

cache. If so, perfect search directly sends the memory request to the corresponding

NUCA bank. However, this is an unrealistic access scheme. Comparing HK-NUCA

with this mechanism will show how far it is from the optimal approach.

4.4.1 Performance analysis

Figure 4.6 shows the performance improvement achieved with the four configurations

that we evaluated: partitioned multicast, HK-NUCA (3-steps), HK-NUCA (2-steps)

and perfect search. On average, we found that both versions of HK-NUCA, 3-steps and

2-steps, outperform partitioned multicast access scheme by 4% and 6%, respectively.

In general, the HK-NUCA access mechanism performs significantly well with most

PARSEC applications, by achieving about 10% performance improvement in five of

Access policy 79

Figure 4.6: Performance results.

them (canneal, ferret, freqmine, raytrace and streamcluster). On the other hand, assuming

the multi-programmed environment (SPEC CPU2006 in Figure 4.6), HK-NUCA was

found to improve performance by an average of 10%.

Perfect search shows the optimal performance that can be achieved in a D-NUCA

organization by only modifying the bank access policy. As an oracle, it knows whether

the requested data block is in the NUCA cache. If so, the memory request is

directly sent to the corresponding NUCA bank. Otherwise, the memory request

is forwarded to the upper-level memory. Figure 4.6 shows that perfect search

outperforms partitioned multicast access scheme by 14%. In general, HK-NUCA

(2-steps) obtains about half performance benefits than perfect search does. Moreover,

HK-NUCA (2-steps) achieves similar performance results to perfect search assuming

workloads with small working sets, such as blackscholes and x264.

In HK-NUCA, memory requests are resolved during one of the three stages that

compose this mechanism: fast access, call home and parallel access. Note that while

satisfying the memory request during the two first stages signify getting a hit on the

80 Chapter 4.

Figure 4.7: Distribution in HK-NUCA stages.

NUCA cache, memory requests resolved during the parallel access stage may either be

hits on this stage, or misses. Figure 4.7 illustrates the percentage of memory requests

satisfied by each HK-NUCA stage. Moreover, the hit rate in the NUCA cache for each

benchmark is indicated by the height of the corresponding bar. Note that assuming

the 2-step version of the HK-NUCA algorithm, Figure 4.7 would be the same, but

combining the fast access and call home stages.

We define three different scenarios to analyse the performance results achieved

with HK-NUCA. Figure 4.6 and Figure 4.7 shows that HK-NUCA significantly

outperforms (up to 18%) partitioned multicast with those workloads that have high

miss rate in the NUCA cache, like canneal, streamcluster, vips or the multi-programmed

workload SPEC CPU2006. Because of home knowledge provided by the HK-NUCA

algorithm, it does not have to access all banks from the bankset before accessing to

the upper-level memory, thus the miss resolution time is reduced significantly. The

higher the miss rate in the NUCA cache, the bigger the impact this situation has

on performance. The second scenario we found includes those workloads with low

Access policy 81

miss rate in the NUCA cache, but high rate (50% or more) of hits resolved during

the first two stages (fast access and call home): e.g. dedup, raytrace, swaptions, or x264.

Both partitioned multicast and HK-NUCA take similar access latencies to satisfy

memory requests when they hit on the closest NUCA bank. While the former accesses

this bank during its first step, HK-NUCA accesses it during the fast access stage.

Thus, partitioned multicast introduces nine messages to the on-chip network, whereas

HK-NUCA needs just one (or two with the 2-steps version). Therefore, HK-NUCA

reduces on-chip network traffic and diminishes router delays due to congestion which

result to be key factors to outperform (by 5%) partitioned multicast in this scenario.

The third scenario is composed of bodytrack and facesim. In this case, HK-NUCA

achieves 4% performance loss compared to the partitioned multicast scheme. The

principal characteristics of this scenario are, on one hand, very high hit rate in the

NUCA cache (close to 99%) and, on the other hand, most of memory requests resolved

during the parallel access stage. As partitioned multicast sends the memory request to

nine banks in parallel during its first stage, it resolves memory requests faster than

HK-NUCA when the requested data is in the central banks. HK-NUCA, however,

would satisfy these request during the second or the third step of the algorithm,

depending on the version of HK-NUCA assumed. Besides, the whole working set

fits in the NUCA cache, so HK-NUCA can not benefit of the reduction on the miss

resolution time. Fortunately, the trend on the applications for future processors follows

the characteristics of the first scenario: applications with large working set or multiple

applications running simulatenously.

The effectiveness of HK-NUCA relies on the accuracy of the HK-PTRs, in other

words, the number of messages required to resolve a memory request during the

parallel access stage. Table 4.1 shows that, on average, 85% of memory request resolved

during the parallel access stage required up to 5 messages, which is far away from

the most pessimistic situation: 14 messages. We also highlight that the accuracy of

HK-NUCA remains constant with all simulated workloads, although their memory

82 Chapter 4.

S
P
E
C

C
P
U
2
0
0
6

b
la
ck

sc
h
o
le
s

b
o
d
y
tr
a
ck

ca
n
n
e
a
l

d
e
d
u
p

fa
ce
si
m

fe
rr
e
t

fl
u
id
a
n
im

a
te

fr
e
q
m
in
e

ra
y
tr
a
ce

st
re
a
m
cl
u
st
e
r

sw
a
p
ti
o
n
s

v
ip
s

x
2
6
4

A
-M

e
a
n

0 messages 0.94 0.38 0.22 0.12 0.73 0.22 1.10 0.81 0.32 0.48 0.21 0.52 0.36 0.45 0.41

1 message 4.84 33.01 23.66 2.79 3.58 8.75 6.77 1.85 4.98 28.17 10.00 38.04 4.01 4.55 12.80

2 messages 9.56 39.61 33.86 8.45 11.09 18.14 14.31 3.76 15.16 19.99 18.96 36.90 12.82 13.28 19.68

3 messages 14.49 12.13 25.04 16.34 21.33 21.19 17.92 14.35 19.97 19.69 20.68 16.78 20.63 22.96 19.29

4 messages 18.27 14.60 12.10 21.87 25.93 21.80 17.63 24.19 22.13 15.94 12.05 5.90 21.93 31.54 18.83

5 messages 18.69 0.25 4.04 21.00 20.53 16.18 14.77 22.96 17.38 7.00 10.13 1.26 18.64 18.02 13.06

6 messages 15.24 0.03 0.86 15.51 10.93 9.30 10.93 18.82 11.78 3.44 9.52 0.29 12.64 6.26 8.38

7 messages 9.92 0.00 0.15 8.67 4.31 3.51 7.93 9.92 5.32 2.40 8.20 0.20 6.32 2.15 4.51

8 messages 5.13 0.00 0.05 3.67 1.23 0.83 4.98 2.43 2.03 1.97 5.59 0.09 2.11 0.62 1.97

9 messages 2.09 0.00 0.02 1.21 0.28 0.07 2.50 0.69 0.67 0.87 2.98 0.02 0.47 0.14 0.76

10 messages 0.66 0.00 0.00 0.30 0.06 0.01 0.88 0.18 0.18 0.04 1.22 0.00 0.07 0.02 0.24

11 messages 0.15 0.00 0.00 0.06 0.01 0.00 0.23 0.03 0.05 0.00 0.37 0.00 0.00 0.00 0.06

12 messages 0.02 0.00 0.00 0.01 0.00 0.00 0.04 0.00 0.01 0.00 0.08 0.00 0.00 0.00 0.01

13 messages 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00

14 messages 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Values in percentage (%)

Table 4.1:Number of messages sent during the parallel access stage of HK-NUCA.

characteristics are very different.

4.4.2 Energy consumption analysis

HK-PTRs are the key structures that allow HK-NUCA for significantly reducing the

number of messages required to resolve memory requests. However, HK-NUCA also

introduces extra notification messages into the on-chip network to keep HK-PTRs

updated. Figure 4.8 quantifies the on-chip network contention found. We find that

HK-NUCA substantially reduces traffic on the on-chip network (on average, by 43%)

compared to the partitioned multicast approach. Moreover, Figure 4.8 also shows that

the messages introduced for updating HK-PTRs are less than 2.3% of the on-chip

network traffic.

In order to resolve a memory request, and thanks to HK-PTRs that indicate which

bank could potentially have the requested data, HK-NUCA does not have to access

all the NUCA banks in which the requested data block might be mapped within the

NUCA cache. Table 4.2 shows the average number of banks accessed per memory

Access policy 83

Figure 4.8: Quantification of the on-chip network traffic.

S
P
E
C
C
P
U
2
0
0
6

b
la
ck

sc
h
o
le
s

b
o
d
y
tr
a
ck

ca
n
n
e
a
l

d
e
d
u
p

fa
ce
si
m

fe
rr
e
t

fl
u
id
a
n
im

a
te

fr
e
q
m
in
e

ra
y
tr
a
ce

st
re
a
m
cl
u
st
e
r

sw
a
p
ti
o
n
s

v
ip
s

x
2
6
4

A
-M

e
a
n

Part. multicast 11.24 9.82 9.49 11.66 9.99 9.87 9.95 10.33 10.06 9.11 11.04 9.53 10.66 10.12 10.03

HK-NUCA (3-steps) 3.67 2.61 3.78 5.53 3.91 4.53 2.49 4.13 3.86 1.51 4.57 2.63 4.09 3.52 3.82

HK-NUCA (2-steps) 4.09 2.95 3.85 5.57 4.03 4.65 3.05 4.51 4.09 2.33 4.71 2.86 4.19 3.77 4.06

Perfect Search 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 4.2: Average number of banks accessed per memory request.

request. We found that partitioned multicast, on average, accesses 10 banks per each

memory request. Perfect search, which is the optimal search approach, requires to

access one bank. HK-NUCA, however, requires, on average, 3.82 accesses per memory

request assuming the 3-step version of the data search algorithm, and 4.06 accesses if

the better-performing 2-steps version of HK-NUCA is assumed.

Figure 4.9 shows the dynamic energy consumed by the memory system compared

to the partitioned multicast access scheme. HK-NUCA uses mechanisms to reduce

the number of messages required to find a data block within the NUCA cache (fast

access stage and HK-PTRs) which make it energy efficient. In particular, HK-NUCA

84 Chapter 4.

Figure 4.9: Dynamic energy per memory access.

reduces dynamic energy consumed per each memory access by more than 40%. On

the other hand, because HK-NUCA hardware requirements (less than 0.4% hardware

overhead, see Section 4.3.3), static energy is slightly increased, however, this is clearly

compensated by the considerable reduction achieved in dynamic energy.

4.5 RELATED WORK

Kim et al. [41] analysed two distinct searching policies: incremental search andmulticast

search. Incremental search searches for data in banks sequentially from the closest to

the furthest bank, whereas multicast search accesses all NUCA banks in parallel. They

also analysed two hybrid approaches that combined both incremental and multicast

algorithms. One of them was partitioned multicast which is the two-phase multicast

search that we used as baseline access scheme (see Section 2.1). The other hybrid

scheme that they proposed was limited multicast that searches data in parallel in a

subset of banks from the bankset, and then sequentially in the rest of them. However,

Access policy 85

hybrid approaches that try to keep the best of both worlds are still far from ideal.

One orthogonal way to improve any of the searching algorithms is to introduce tag

information replication along the NUCA cache [30, 36, 39, 72]. Unfortunately, these

approaches lead to increased access time, energy consumption and die area.

A novel bank access approach which predicts the bank in which data are most

likely to be located has been proposed by Akioka et al. [3]. They divided the NUCA

cache into rings to denote a set of banks that exhibit the same access latency and

introduced a Last Access Based (LAB) scheme. This approach first accesses the ring

that satisfied the previous request for the same data. They showed that, compared

with parallel and serial access, LAB reduces energy consumption while maintaining

similar performance. However, an accurate implementation is not addressed in terms

of die area and access time. Ricci et al. [72] also dealed with prediction by identifying

cache bank candidates with high accuracy through Bloom filters. The underlying idea

is to keep approximate information about the contents of banks. Preliminary results

show that compared to a simple D-NUCAapproach the number of messages inside the

cache network decreases while the hit ratio accuracy is maintained. Unfortunately, the

work focuses on demonstrating the potential and an implementation of the approach

is not presented, nor is an analysis of performance or energy consumption.

Recent works have proposed NUCA designs based on S-NUCA, but redefining

placement decisions to be able to locate data in multiple banks within the NUCA

cache [32, 19]. These designs intend to have the best of the two worlds, locality from a

D-NUCA design and the simplicity found in S-NUCA.However, they rely on complex

OS-assisted data placement schemes.

Muralimanohar et al. [63] focused on the network on-chip design to alleviate

the interconnect delay bottleneck. They proposed a NUCA approach that uses two

different physical wires to build NUCA architectures (one of these wires provided

lower latency and the other provided wider bandwidth). Then, they proposed two

different bank searching algorithms (early and aggressive lookup) that benefits from

86 Chapter 4.

this novel interconnection design.

A different approach was introduced by Bolotin et al. [14]. They focused on

implementing low cost mechanism on a Network-on-Chip (NoC) for supporting

efficient NUCA caches. The idea was to build a priority mechanism which

differentiates between short control messages and long data messages. Particularly,

they prioritize short messages that belongs to the access mechanism of a D-NUCA

cache to boost its performance.

4.6 CONCLUSIONS

Although exploiting flexible mapping D-NUCA promises significant benefits, those

benefits are restricted by the access algorithm used. Previous works agree that the

simplest design is probably the best: S-NUCA [9, 36, 41]. However, D-NUCA still

holds promise and it is worth waiting for an efficient access scheme that allows it to

make the promised benefits a reality. This is HK-NUCA. It does not only improve

performance, but also energy consumption. On one hand, by taking advantage of

migration movements, the fast access stage of HK-NUCA provides high-performance

at a minimum cost. Home knowledge, on the other hand, allows memory requests to be

satisfied by only accessing the NUCA banks that could potentially have the requested

data. This means that HK-NUCA significantly reduces on-chip network traffic and

diminishes router delays due to congestion. On average, HK-NUCA outperforms

previous access schemes for D-NUCA caches by 6%, and reduces the dynamic energy

consumed by the memory system by 40%.

Chapter 5

Placement policy

This chapter presents the implementation of a hybrid NUCA cache using two different memory

technologies: SRAM and eDRAM. We propose using a smart placement policy in the hybrid

NUCA cache that enables both technologies to cooperate in order to emphasize their strengths

and hide their drawbacks.

Placement policy 89

5.1 INTRODUCTION

SRAM memories are typically used to implement on-chip cache memories because

they are faster and easier to integrate than other memories, thus they leverage

performance. DRAM memories, however, leverage density. Therefore, this technology

has been traditionally used to implement off-chip memories. Advances in technology

allowed for integrating DRAM-like structures into the chip, called embedded DRAM

(eDRAM). This technology has already been successfully implemented in some GPUs

and other graphic-intensive SoC, like game consoles. The most recent processor from

IBM®, POWER7, is the first general-purpose processor that integrates an eDRAM

module on the chip [81]. POWER7 uses eDRAM technology to implement a shared

32MByte-L3 cache. By using eDRAM instead of SRAM, POWER7 increases access

latency in its third-level cache by few cycles, however, eDRAM provides a roughly

3x density improvement as well as about 3.5x lower energy consumption than an

equivalent SRAM implementation. Besides, this could be considered the starting point

to integrate more sophisticated hybrid cache structures on the chip in the near future.

In this thesis we propose a hybrid NUCA cache that is composed of SRAM banks

and eDRAM banks. We demonstrate, that due to the high locality found in emerging

applications, a high percentage of data that enters to the on-chip last-level cache are

not accessed again before they are replaced. Based on this observation, we propose

a placement scheme where re-accessed data blocks are stored in fast, but costly in

terms of area and power, SRAM banks, while eDRAMbanks store data blocks that just

arrive to the NUCA cache or were demoted from a SRAM bank. The effectiveness of

this architecture is demonstrated further in this chapter. We show that a well-balanced

SRAM / eDRAM NUCA cache can achieve similar performance results than using a

NUCA cache composed of only SRAM banks, but reducing area by 15% and power

consumed by 10%.

The remainder of this chapter is structured as follows. Section 5.2 describes the

90 Chapter 5.

(a) SRAM cell (b) DRAM cell

Figure 5.1: Implementation of a memory cell with the two memory technogies: SRAM

and DRAM.

main characteristics of both technologies, SRAM and eDRAM. Section 5.3 lays out

the hybrid NUCA cache we proposed in this thesis, followed by the analysis of the

hybrid SRAM / eDRAM architecture that is presented in Section 5.4. In Section 5.5,

we show different alternatives to obtain performance improvements by exploiting

area and power reductions. Related work is discussed in Section 5.6, and concluding

remarks are given in Section 5.7.

5.2 SRAM VS EDRAM

Figure 5.1a shows the implementation of the SRAM cell, which is the core

storage element used for most register files and cache designs on high-performance

microprocessors. This is typically implemented with a six-transistor CMOS cell

with cross-coupled inverters as storage elements and two pass gates as a

combination read/write port. This implementation allows for fast response times

and tightly-coupled integration with processing elements which are crucial in a

high-performance environment, like register files or low-level caches. On the other

hand, as static power dissipated in a circuit relies on the number of transistors of the

Placement policy 91

Access Time (ns) Leakage (mW) Area (mm2)

SRAM 0.6631 93.264 0.4513

eDRAM 1.4612 63.908 0.3162

Table 5.1: Physical parameters of SRAM and eDRAM memories. The technology

assumed is 45nm2 and their capacity is 64KBytes.

actual implementation, SRAM caches are significantly affected by leakage currents

when they become larger, which is actually the current trend for last-level caches in

recently released CMPs.

The memory cell used in DRAM is illustrated in Figure 5.1b. It consists of one

MOS transistor and a capacitor, where the actual bit is stored. By using such a small

memory cells, DRAMs density is about 3x higher than SRAMs. However, 1T1CDRAM

memory cell should not be considered for high-performance environment, because

a read operation in this memory cell is destructive. The capacitor on the memory

cell gets discharged when it is read, so data must be refreshed after each read.

This refreshing period stalls the DRAM and cannot be accessed until it is done, so

successive accesses to the same bank must queue up and serialize. This increases

DRAM memories response time, and thus make them much slower than SRAM. The

most straightforward solution is to simply increase the number of independent DRAM

banks in order to lower the probability of a conflict. Furthermore, a refresh operation is

needed periodically to restore the charge to the capacitor because the leakage current

of the storage cell reduces the amount of the stored charge. The refresh operation,

which is executed by the sense amplifiers, is vitally important for the correct operation

of DRAMs.

Table 5.1 outlines the values of access time, leakage power and area for both kind of

memories, SRAM and eDRAM2 assuming the same bank size as in the NUCA cache:

2SRAM and eDRAMhave beenmodeled with CACTI 5.3. The technology assumed is 45nm2 and the
size of the modeled caches is 64KBytes. More details of the methodology can be found in Section 1.5.

92 Chapter 5.

64KBytes. We expected SRAM to be a bit faster than DRAM caches, but surprisingly,

assuming such a small cache size, SRAM is 2.5x faster than DRAM. CACTI values

also confirm that DRAM cache consumes much less leakage power than SRAM does.

Finally, high-density eDRAM cache occupies half area than SRAM does for the same

cache size.

The hybrid architecture we propose in this thesis is organized as a NUCA cache

composed by small banks of both types, SRAM and eDRAM,which are interconnected

through an on-chip network. The NUCA organization is further described in Section

5.3. Based on the features of both technologies, we build a hybrid NUCA cache that

maximizes the number of hits in SRAM banks. These banks, moreover, should be

located close to the cores in order to reduce the overall NUCA latency by minimizing

routing delays. On the other hand, results on static power and area on eDRAMs lead

to enlarge these banks as much as possible. So, we can get significant benefits in terms

of power and area with the hybrid architecture.

5.3 IMPLEMENTINGA HYBRID NUCA CACHE

5.3.1 The two hybrid approaches

Figures 5.2 and 5.3 show the two different organizations that we propose for the hybrid

NUCA cache. Note that both architectures define half of the NUCA banks as SRAM

banks, and eDRAM the rest. Based on the main characteristics of SRAM and eDRAM

caches, we first propose an intuitive approach that organize all SRAM banks close to

the cores and all eDRAMbanks in the center of the NUCA cache.We call it homogeneous

bankcluster approach and it is illustrated in Figure 5.2. This approach does not modify

any of the previously described NUCA policies from the baseline D-NUCA cache.

Having all SRAM banks concentrated close to the cores, we intend to reduce cache

access latency for most accessed data blocks and optimize routing latencies to the

SRAM banks. The main drawback of this approach is that by having all eDRAMbanks

Placement policy 93

Core 0 Core 1 Core 2 Core 3

eDRAM SRAM Bankcluster

Core 4 Core 5 Core 6 Core 7

Figure 5.2: Scheme of the homogeneous bankcluster organization.

Core 0 Core 1 Core 2 Core 3

eDRAM SRAM Bankcluster

Core 4 Core 5 Core 6 Core 7

Figure 5.3: Scheme of the heterogeneous bankcluster organization.

94 Chapter 5.

in the center of the NUCA cache it neglects the effect of the migration movements to

the shared data. Note that when a data block is simultaneously accessed by two or

more cores, it is pulled to different locations by the migration scheme, so it tends to be

in the center banks [9].

Figure 5.3 shows the other organization that we propose. It combines SRAM and

eDRAM banks within a bankcluster, so we call it heterogeneous bankcluster approach.

Compared to the homogeneous bankcluster approach, this organization is not biased to

optimizing access latency to the most frequently accessed data and fairly distributes

the fast SRAM banks among the NUCA cache. However, this organization requires

SRAM and eDRAM banks to cooperate in order to emphasize the strengths of both

technologies and hide their drawbacks.

5.3.2 Placement policy for heterogeneous bankcluster

In general, when a line is requested by a core, it is stored in the cache memory in

order to exploit temporal and spatial locality found in most applications. However,

the higher the cache level, the less locality it finds. Figure 5.4 illustrates the percentage

of lines that are accessed during their lifetime in the NUCA cache. We observe

that a significant amount of data (more than 50%) that are stored in the on-chip

last-level cache memory are not accessed again during their lifetime in the NUCA

cache. It does not mean that they are not accessed at all, but the lower-level cache

satisfied these requests due to the high-locality found in the application. Based on

this observation, we define a smart placement policy for the heterogeneous bankcluster

NUCA organization that works as follows: When a data block enters into the NUCA

cache from the off-chip memory, it is located in one of the eDRAM banks (statically

predetermined based on the lower bits of its address). Then, if it is accessed again the

data block moves to the closest SRAM bank in the bankcluster.

This placement policy assures that SRAM banks store the hottest most frequently

Placement policy 95

Figure 5.4: Percentage of lines that are accessed during their lifetime in the NUCA

cache.

accessed data blocks in the NUCA cache, while eDRAM banks have data blocks that

were not accessed since they entered to the NUCA cache, and data blocks that were

evicted or demoted from SRAM banks. Furthermore, the placement policy in the

heterogeneous bankcluster approach introduces the following interesting features:

1) Accessed data blocks always migrate from a SRAM bank to another SRAM

bank. It means that once a data block abandons the eDRAM bank to go to a SRAM

bank, it will remain in one of the SRAM banks of the NUCA until other more recently

used data block takes its place.

2) Gradual promotion stays in the SRAM banks but does not apply for eDRAM

banks anymore. There is no communication between eDRAM banks, if there is a hit in

one those banks, the requested data block will move towards the closest SRAM bank

in the bankcluster.

3) A replacement in a SRAM bank does not provoke an eviction in the NUCA

cache. Data blocks that come from the off-chip memory are located in eDRAM banks,

96 Chapter 5.

so data evictions happen there. SRAM banks, on the other hand, are fed by promoted

data blocks from eDRAM banks. Consequently, this provokes data blocks that are

evicted from SRAMbanks to be demoted to the eDRAMbanks instead of being evicted

from the NUCA cache.

4) There is a tight relationship between a SRAM bank and an eDRAM bank.

Actually, a particular eDRAMbank could be seen as a kind of extra storage for a SRAM

bank.

5.3.3 Tag Directory Array (TDA)

The heterogeneous bankcluster NUCA organization also allows a data block to be

mapped to two banks within a bankcluster, one SRAM and one eDRAM. Then,

the NUCA cache is 32-way bankset associative in this approach, which is twice

the associativity considered with the homogeneous bankcluster approach. However,

increasing the placement flexibility may introduce significant overheads when

locating a data block within the NUCA cache that could hurt performance and

power of the overall system. Prior work shows that implementing a centralized or

distributed tag structure to boost accesses to the NUCA cache in CMP appears to be

impractical [9]. Apart from requiring huge hardware overhead, this tag structure could

not be quickly accessed by all processors due to wire delays, and more importantly,

a separate tag structures would require a complex coherence scheme that updates

address location state with block migrations. To address this situation, we propose

using the baseline access scheme to find the requested data in the SRAM banks, but

also introducing a tag directory array (TDA) joint with each SRAM bank in order to

avoid accessing to any eDRAM banks if they do not have the requested data. As

there is no migration between eDRAM banks and each TDA only manages the closest

eDRAM bank, this structure does not incur on the overheads previously described for

tag structures that manage the whole NUCA cache.

Placement policy 97

SRAM @
(TDA)

HIT?

Yes

To eDRAM

@A

Figure 5.5: Scheme of the Tag Directory Array.

TDA contains the tags of all data blocks that a particular eDRAM bank is storing.

In order to provide high-perfomance access, the TDA is implemented using SRAM

technology. As illustrated in Figure 5.5, each TDA is physically located jointly with a

SRAM bank. Thus, when a request arrives to the SRAM bank, the joint TDA receives it

as well. Then, both structures, the SRAM bank and the TDA, are accessed in parallel,

so we prioritise performance at the cost of increasing dynamic power. Finally, if the

request hits on the TDA, it is forwarded to the related eDRAM bank, otherwise the

request is discarded. By using TDAs, although a data block could be in any of the 32

possible locations within NUCA cache, the implemented lookup algorithm will only

need to access up to 17 banks (16 SRAM banks and one eDRAM). This mechanism,

however, presents some overheads that should be considered. The most obvious one

is the extra hardware required to implement TDAs. For example, assuming a hybrid

4-MByte-SRAM + 4-MByte-eDRAM heterogeneous bankcluster NUCA organization,

the total hardware required to implement all TDAs would be 512 KBytes, with each

TDA requiring 8 KBytes. The required area and the power dissipated by this structure

will be considered when we analyse this mechanism further in this chapter. In order to

98 Chapter 5.

Figure 5.6: Performance results of the three hybrid approaches.

keep each TDA updated, all allocate and deallocate operations in the related eDRAM

are synchonized by this structure. Therefore, we maintain correctness in TDAs data at

the cost of making these operations a bit slower.

5.3.4 Performance and power analysis

Figures 5.6 and 5.7 show how the hybrid approaches that we described in this section

behave in terms of performance and power consumption, respectively3. Performance

results emphasize the necessity of using TDAs with the heterogeneous bankcluster

approach. While both approaches, homogeneous and heterogeneous without TDAs,

achieve similar performance results, the introduction of TDAs improve performance

of the latter by almost 7%. Furthermore, Figure 5.7 illustrates that the power consumed

by the heterogeneous bankcluster NUCA organization does not increase when using

TDAs, it actually decreases. Because of the bankset-associativity increase, when TDAs

3For each approach, we assumed a hybrid 4-MByte-SRAM+ 4-MByte-eDRAMNUCA organization.
More details of the experimental methodology used are described in Section 1.5.

Placement policy 99

8

10

12

14

16

18

20

co
n
su
m
p
ti
o
n
(W

)

0

2

4

6

P
o
w
e
r

A: Hom. B: Het. and C: Het. + TDA

Dyn. Network Dyn. Cache Sta. Network Sta. SRAM Sta. eDRAM Sta. TDA

A B C

Figure 5.7: Power consumed by the three hybrid approaches.

are not considered, the heterogeneous bankcluster approach must access more banks

to find the requested data block, and thus, it consumes much more dynamic power

than the other considered approaches. Although homogeneous bankcluster is the

architecture that consumes less power, it does not perform so well. Having all

eDRAM banks in the center of the NUCA, this approach is heavily penalized by

shared data blocks because they concentrate to these slow banks. In general, we

consider the heterogeneous bankcluster approach with TDAs the best choice to be our

hybrid NUCA architecture. It performs significantly well assuming both simulated

environments, multi-programmed and emerging parallel applications, and it is not

constrained by power consumption. Therefore, in the remainder of this thesis, we

will not evaluate other approaches and will assume we are using the heterogeneous

bankcluster approach with TDAs as hybrid NUCA architecture.

5.4 RESULTS AND ANALYSIS

This section analyses how the hybrid SRAM / eDRAMNUCA architecture presented

in Section 5.3 behaves in terms of performance, power and area compared to other

100 Chapter 5.

SRAM eDRAM TDA

S
iz
e

L
a
te
n
cy

D
y
n
a
m
ic

L
e
a
k
a
g
e

A
re
a

L
a
te
n
cy

D
y
n
a
m
ic

L
e
a
k
a
g
e

A
re
a

S
iz
e

L
a
te
n
cy

D
y
n
a
m
ic

L
e
a
k
a
g
e

A
re
a

KB ns mW mW mm2 ns mW mW mm2 KB ns mW mW mm2

1 MByte 16 0.59 40.30 30.80 0.12 1.26 40.54 20.24 0.09 2 0.39 22.64 1.48 0.013

2 MBytes 32 0.61 45.35 51.44 0.23 1.31 44.13 35.03 0.17 4 0.42 23.83 2.50 0.021

3 MBytes 48 0.63 47.91 72.03 0.34 1.43 46.93 49.35 0.25 6 0.45 25.64 3.28 0.028

4 MBytes∗ 64 0.66 49.34 93.26 0.45 1.46 49.51 63.91 0.32 8 0.49 28.83 4.35 0.036

5 MBytes 80 0.68 52.75 114.04 0.56 1.54 53.78 76.83 0.41 10 0.53 33.51 5.39 0.042

6 MBytes 96 0.69 55.30 135.51 0.67 1.60 56.58 91.62 0.47 12 0.56 34.03 6.60 0.053

7 MBytes 112 0.71 58.34 156.40 0.78 1.69 59.73 105.13 0.55 14 0.57 34.55 7.61 0.068

Table 5.2: Parameters for each configuration got from CACTI models. For example,

the shaded parameters are used by the hybrid configuration 2S-6D.

∗All banks in both homogeneous configurations are like the 4-MByte configuration.

homogeneous schemes, such as the traditional SRAM NUCA cache, or the same

but composed of only eDRAM banks. For the sake of simplicity, all evaluated

configurations assume the same NUCA architecture (Figure 5.3), so the following

parameters do not change along the different configurations: the number of banks

in the NUCA cache, on-chip network organization and global NUCA cache size. The

configurations evaluated in this section are as follows: 1) all-SRAM NUCA cache, 2)

range of hybrid approaches, and 3) all-eDRAMNUCA cache. The former and the latter

assume an 8-MByte NUCA cache composed of 128 banks, and behave as described

in Section 2.1. The hybrid approach also assumes an 8-MByte NUCA cache, but

composed of 64 SRAMbanks and 64 eDRAMbanks.Moreover, in this casewe consider

seven different configurations by changing the size of the NUCA dedicated to SRAM

and eDRAM. This will allow us to find the configuration that better leverages the

trade-off between performance, power and area. Table 5.2 outlines the most relevant

parameters of the NUCA banks used in the different configurations. In the remainder

of the thesis we will refer to a X-MByte-SRAM + Y-MByte-eDRAM hybrid NUCA

architecture as XS-YD.

Placement policy 101

0.9

0.95

1

1.05

m
a
n
ce

sp
e
e
d
u
p

0.75

0.8

0.85

P
e
rf
o
rm

All SRAM 7S 1D 6S 2D 5S 3D 4S 4D 3S 5D 2S 6D 1S 7D All eDRAM

Figure 5.8: Performance results of different configurations using the NUCA

architecture described in Section 5.3.

5.4.1 Performance Analysis

Figure 5.8 shows how the hybrid NUCA architecture behaves in terms of performance

compared to an all-SRAM-bank NUCA cache. We find that, on average, our hybrid

approach can get similar performance results compared to the all-SRAM configuration

when considering the proper configuration. Actually, several hybrid configurations,

like 5S-3D or 4S-4D, achieve almost 97% of the performance achieved by all-SRAM.

Assuming an all-eDRAM NUCA cache, however, performance is reduced by 13%.

Figure 5.9 illustrates the main reason that make our hybrid approach performs so

well compared to both homogeneous configurations, all-SRAM and all-eDRAM: the

placement policy proposed for the hybrid architecture succeeds in concentrating most

of hits in NUCA in the fast SRAM banks, so even dedicating little size to the SRAM

banks, most of hits in the NUCA cache happen in the SRAM banks.

By taking into consideration the features of both technologies, SRAM and eDRAM,

one could expect that the more size the hybrid NUCA dedicates to SRAM, the better

it performs. However, Figure 5.8 shows that the best performing configurations are

102 Chapter 5.

Figure 5.9:Hit distribution among SRAM and eDRAM banks.

those that dedicate about the same size to SRAM and eDRAM banks. As described in

Section 5.3, when a data block enters into the NUCA cache it is located into an eDRAM

bank. If it is later accessed, then it moves forward to a SRAM bank. This placement

decision makes configurations with small eDRAM banks barely effective in terms of

performance because, in most cases, data blocks are evicted from the NUCA cache

before being accessed for second time, and thus could not move to the SRAM part.

Surprisingly, Figure 5.8 shows that some hybrid configurations outperform

all-SRAM (e.g. bodytrack, streamcluster and vips). This is because our hybrid architecture

increases the bank-set associativity assumed with the homogeneous configurations,

then there aremore data elegible to bemapped to the SRAMbanks. In order to describe

better this situation, we will use the following example. A data block that is located in

the second row of banks would be in its optimal location for a core in the all-SRAM

configuration, however, assuming our hybrid architecture, this data would be in an

eDRAM bank, so it could move forward to an SRAM bank in the first row, thus having

faster access latency for future accesses.

Placement policy 103

1

1.2

.)
0.8

o
n
(n
o
rm

0.6

o
n
su
m
p
ti
o

0 2

0.4

P
o
w
e
r
co

0

0.2

ABCDEFGHI

A: All SRAM, B: 7S 1D, C: 6S 2D, D: 5S 3D, E: 4S 4D, F: 3S 5D, G: 2S 6D, H: 1S 7D and I: All eDRAM

Dyn. Network Dyn. Cache Sta. Network Sta. SRAM Sta. eDRAM Sta. TDAs

Figure 5.10: Power consumption results of the configurations assumed in this section.

5.4.2 Power and Area Analysis

Figure 5.10 shows the power consumed by each configuration assumed in

this analysis. We normalized the power consumption results to the all-SRAM

configuration, which is the configuration that dissipates more leakage power, and

consequently, consumes more power in general. The major contributor (close to 70%)

of power consumption results is static power. On the other hand, due to the use of

the power-efficient eDRAM technology, the all-eDRAM is the least power-consuming

configuration, reducing the power consumed by the all-SRAM configuration by 22%.

With regard to the hybrid configurations, the less SRAM they use, the less power they

consume. In general, their power consumption results range from 3% (7S-1D) to 18%

(1S-7D) reduction compared to the all-SRAM configuration. Figure 5.10 also shows

that the overhead associated to TDAs in terms of power consumption is only 2%

assuming the most pessimistic hybrid configuration: 1S-7D. Using TDAs, however,

the hybrid architectures prevent accessing all eDRAM banks for each request to the

NUCA cache, and thus it prevents increasing dynamic power requirements in these

configurations.

104 Chapter 5.

Figure 5.11: Area required by the analysed configurations.

With regard to the requirements in terms of die area, Figure 5.11 illustrates the

area reduction obtained with the hybrid architecture compared to the all-SRAM

configuration. Similar to the trend observed on the power consumption results, the less

SRAM the configurations use, the less area they require. The all-eDRAM configuration

would occupy less than 70% of area compared to the all-SRAM. The area reduction of

the hybrid architecture ranges from 2% (7S-1D) to 21% (1S-7D). In this case, the area

overhead introduced by TDAs is not insignificant (up to 10%), however, as previously

shown in this section, this structure is necessary to get performance results similar to

the all-SRAM configuration and to reduce dynamic power consumption.

5.4.3 Choosing the best hybrid configuration

This section shows that the hybrid architecture described in this thesis succeeds in

combining both technologies, SRAM and eDRAM, in a NUCA cache. We observed

that the placement policy assumed benefits these configurations that dedicate about

Placement policy 105

1.05

0 95

1

All SRAM

0 9

0.95

w
e
r

All SRAM

7S 1D

6S 2D

0 85

0.9

P
o
w 5S 3D

4S 4D

3S 5D

0.8

0.85
2S 6D

1S 7D

All eDRAM

0.75

0.8 All eDRAM

0.85 0.9 0.95 1 1.05

Performance x Area

Figure 5.12: Trade-off between Power x Performance x Area.

the same size to SRAM and eDRAM banks, and other imbalanced configurations are

not so effective. In order to decide the best hybrid configuration, we could use popular

metrics like ED or ED2 to analyse the performance and power trade-off. However,

these metrics does not consider the area required by the configuration, which is

very important in our design. So, we have used a recently proposed metric Power

x (Performance x Area) [6] that takes into account the three terms of the trade-off to

analyse. Assuming the scheme shown in Figure 5.12, we choose 4S-4D as the best hybrid

configuration. This configuration is neither the best-performing one nor the one that

dissipates less power, however, it is the one that leverages better the trade-off between

performance, power and area. This is our choice, but in this section we evaluated a

wide range of hybrid configurations and showed the main characteristics of all of

them. Based on this analysis, architects can choose the hybrid configuration that better

fits to their needs, e.g. high performance, low power consumption, or small area.

106 Chapter 5.

5.5 EXPLOITING ARCHITECTURAL BENEFITS

Section 5.4 shows that a well-balanced configuration of the proposed hybrid NUCA

architecture achieves similar performance results to an architecture composed of

only SRAM banks, but occupies about 15% less area and dissipates 10% less power.

Architects could manage this significant area reduction to either implement smaller

and more power-efficient designs, or re-design architectural structures to improve

overall performance. For example, the most recent architecture from Intel®, Nehalem,

assigns more than 50% of the chip area to the last-level cache memory, thus the area

reduced of using the proposed hybrid architecture as last-level cache in this processor

would be enough to integrate an extra core.

In this section, we evaluate two different scenarios assuming that the remaining

transistors are used to increase the last-level cache memory size. Thus, assuming

the best hybrid configuration, we increase either the size designated to SRAM banks,

or to eDRAM banks. The 15% area reduction allows for integrating up to 1 MByte

extra to the SRAM banks, resulting a 5-MByte-SRAM + 4-MByte-eDRAM hybrid

configuration. On the other hand, assuming eDRAM’s higher density, architects could

manage to re-design the 4S-4D configuration by dedicating up to 6 MBytes to the

eDRAM banks. Both configurations, 5S-4D and 4S-6D, occupy almost the same area

as a NUCA architecture composed of only SRAM banks.

Figure 5.13 illustrates how the extended configurations, 5S-4D and 4S-6D, behave

in terms of performance compared to the all-SRAM. On average, both configurations

outperform the all-SRAM configuration by 4%, and 4S-4D by 10%. However, we

observe that the performance benefits are much higher with memory-intensive

parallel applications, like streamcluster and canneal, and with the multi-programmed

scenario (mix of SPEC CPU2006 applications). Figure 5.13 also shows that most of

workloads achieve higher performance results with the configuration that provide the

largest cache memory (4S-6D), instead of with the one that provides more capacity on

Placement policy 107

Figure 5.13: Performance benefits obtained by using the remaining transistors to

increase the cache size.

fast banks (5S-4D). In general, this shows that reducing the miss rate in the NUCA

cache is more effective in terms of performance than reducing the overall latency of

the NUCA cache. With regard to the power consumption, Figure 5.14 shows that both

configurations, 5S-4D and 4S-6D, not only occupy the same die area as the all-SRAM

configuration, but also dissipate about the same power.

5.6 RELATED WORK

Prior works have proposed hybrid architectures to take advantage of the different

features that memories structures offer in the on-chip memory hierarchy. Valero et al.

[77] combine both, SRAM and eDRAM, technologies at cell level. They implement a

n-way set-associative memory cache with macrocells that consist of one SRAM cell,

n-1 eDRAM cells, and a transistor that acts as a bridge to move data from the static

cell to the dynamic ones. This design turns out to be very efficient to implement

108 Chapter 5.

0 4

0.6

0.8

1

1.2

0

0.2

0.4

A: All SRAM, B: 4S 4D, C: 5S 4D and D: 4S 6D

Dyn. Network Dyn. Cache Sta. Network Sta. SRAM Sta. eDRAM Sta. TDA

A B C D

Figure 5.14: Power evaluation of our hybrid architecture by assuming the same area

as the all-SRAM configuration.

private first-level memory caches. However, it is not so convenient with large shared

memory caches where access patterns are not so predictible, and thus significant

number of accesses would be to slow eDRAM cells. Our hybrid architecture combines

both technologies at bank level, and demonstrate that more than 90% of hits in the

NUCA cache are served by SRAM banks. Wu et al. [85] propose integrating two

different technologies (SRAM and eDRAM, MRAM or PCM) at different levels of

cache (LHCA), and then, at the same level (RHCA). They split a traditional cache into

two regions made up different technologies, and propose a swap scheme to promote

data to the fastest region. However, their architecture and placement decisions are

based on a private cache scheme, and could hardly be implemented on aNUCA cache.

Another hybrid architecture was proposed by Madan et al. [54]. They propose a 3D

chip design consisting of three dies: one contains the processing cores and L1 caches,

the second die has the L2 cache which is composed of SRAM banks, and the third die

is composed of DRAM banks that act as extra storage to the L2 cache. However, the

placement assumed in this work requires OS support to distribute data blocks among

Placement policy 109

the caches, and consequently to find them in the L2 cache.

SRAM and MRAM are also combined to create a L2 hybrid cache in a CMP [74].

This combination tries to solve the problems, in terms of long write latency and high

write energy, which MRAM introduces in isolation. Another combination of memory

technologies has been recently proposed to be included in main memory [70, 69]. In

this hybrid approach, PCM and DRAM are combined in two levels (first level DRAM

and second level PCM) to solve the write endurance problems of the PCM memory

and taking profit of its 4x density compared to DRAM.

5.7 CONCLUSIONS

IBM® have already succeeded in integrating eDRAM technology in the on-chip

memory cache hierarchy of their latest processor, POWER7. This could be considered

the starting point to integrate more sophisticated hybrid cache structures in the near

future. Here, we propose a hybrid cache architecture that combines both technologies

in the same cache level, and make them work cooperatively. Our architecture,

organized as a NUCA cache, uses a smart placement policy that efficiently distributes

data blocks among SRAM and eDRAM banks by emphasizing their strengths and

hiding their drawbacks. We evaluate a wide range of configurations and observe

that a well-balanced hybrid configuration achieves similar performance results to an

architecture composed of only SRAM banks, but occupies about 15% less area and

dissipates 10% less power. Finally, we have analysed different alternatives to take

advantage of the area reduction we got by using the hybrid architecture that lead us

to get performance benefits up to 10%.

110 Chapter 5.

Chapter 6

Migration policy

Existing migration techniques are effective in concentrating the most frequently accessed data

in the NUCA banks with the smallest access latency. However, a significant percentage of hits

in the NUCA cache are still resolved in slower banks. To address this situation, in this chapter,

we propose the Migration Prefetcher. This is a migration technique that moves data to the

optimal banks in advance of being required.

Migration policy 113

6.1 INTRODUCTION

An important issue to be addressed for CMP NUCAs is data placement, which can

be described as determining the most suitable location for data blocks in the NUCA

space. This is not an easy problem to solve as different data blocks can experience

entirely different degrees of sharing (i.e., the number of processors that share them)

and exhibit a wide range of access patterns. Moreover, the access pattern of a given

data block can also change during the course of program execution. Therefore a static

placement strategy which fixes the location of each block for the entire application

will perform sub-optimally. To address this issue, dynamic NUCA (D-NUCA) [9, 41]

allows data to be mapped to multiple banks within the NUCA cache, and then uses

data migration to adapt its placement to the program behavior as it executes.

Prior research on D-NUCA has developed two main trends for dealing with data

migration: 1) promotion and 2) optimal position. With promotion [9, 23, 41] the

requested data is moved closer to the processor that initiated the memory request

upon a hit in the NUCA cache. This scheme is especially effective in uniprocessor

systems. However, in a CMP environment, multiple processors accessing shared data

results in this data “ping-ponging” between NUCA banks.

Other migration schemes in the literature compute the optimal placement for

a particular data block by taking into consideration dynamic parameters such as

the usage of data or the processors that are currently sharing it [30, 39]. These

schemes effectively reduce the ping-pong effect at the cost of significantly increasing

complexity. In general, current migration schemes leverage locality of data to reduce

the NUCA access latency for future accesses to the same data, but do not exploit

data access patterns or data correlation. In this chapter we apply these concepts to

a traditional migration technique in order to anticipate and speed up data migration.

Existing data migration policies are effective in concentrating the most frequently

accessed data in the NUCA banks with the smallest access latency. However, a

114 Chapter 6.

Core 0 Core 1 Core 2 Core 3

Core 4 Core 5 Core 6 Core 7

(c) Static placement

Core 0 Core 1 Core 2 Core 3

Core 4 Core 5 Core 6 Core 7

(d) D-NUCA with gradual migration

MAX

MIN

Figure 6.1: Distribution of hits in the NUCA cache when the core 0 sends memory

requests.

significant percentage of hits in the NUCA cache are still resolved in slower banks. We

propose complementing the migration scheme with a simple prefetching technique in

order to recognize access patterns to data blocks and anticipate data migration. We

show that using data prefetching to anticipate data migrations in the NUCA cache can

reduce the access latency by 15% on average and achieve performance improvements

of up to 17%.

The remainder of this chapter is structured as follows. We first motivate the need

for the migration prefetcher in Section 6.2. In Section 6.3 the proposed mechanism

is described in detail, followed by the analysis of the results that is presented in

Section 6.4. Relatedwork is discussed in Section 6.5, and concluding remarks are given

in Section 6.6.

6.2 MOTIVATION

To illustrate the need for our prefetching approach, consider Figure 6.1 which shows

the distribution of hits within the NUCA cache for accesses made by core 0. Figure 6.1c

shows a static placement of data which provides an even distribution of hits among all

banks. Figure 6.1d, on the other hand, shows the same accesses when using a simple

migration scheme, like gradual promotion. Here, as expected, the NUCA banks that are

Migration policy 115

Figure 6.2: Percentage of X→ Y access patterns.

closest to core 0 have the highest concentration of hits as data is migrated into them.

However, despite this migration, half the hits from core 0 still find their data in the

farther (i.e., non-optimal) banks.

This can partly be explained by data sharing. Some of the data required by core

0 is accessed by other cores too. Therefore, we would expect some of it to migrate

towards those other cores, especially if they access the data more frequently than core

0. However, accessing these non-optimal banks from core 0 is costly in terms of both

time and energy due to the search scheme employed to find the data. What we really

require is a system to automatically bring this data closer to the core that will next

need it, before it is actually required, instead of having to perform the search on the

critical path when the memory request is actually initiated.

The aim of our prefetching technique is to increase the number of hits in the closest

banks to each core by anticipating data migrations and bringing the data closer to the

requesting core in advance of it being required. To do this, we introduce a prefetcher

into the NUCA cache that predicts the next memory request based on the past. Figure

116 Chapter 6.

6.2 shows the potential for our prefetching strategy using our benchmark applications

described in Section 2.2. Here, for each pair of consecutive memory accesses by a single

core X, Y we show the fraction of accesses to the cache for X where the next access by

the same core is to address Y. In other words, the number of times an access to X is

immediately followed by an access to Y. Figure 6.2 shows that, on average, almost

50% of the accesses exhibit this pattern and that this behavior is present across all

applications, ranging from 30% to 70% of all accesses. We exploit this result in our

prefetcher to predict the next memory address that will be required based on the

current.

6.3 THEMIGRATION PREFETCHER

This section describes our migration prefetcher in detail. The implementation and the

basic concepts of the prefetcher are described in Section 6.3.1. Then, we show several

alternatives to deal with the prefetching strategies, accuracy and the data search

scheme, which are described in Section 6.3.2, 6.3.3 and 6.3.4, respectively. Finally, the

actual prefetcher is presented in Section 6.3.5.

6.3.1 How the prefetcher works

Figure 6.3 shows the NUCA cache including the prefetcher components. There are

eight prefetchers (one per core) that are located in the cache controller, which is the

entrance point to the NUCA from the L1 cache. A prefetcher consists of the prefetcher

slot (PS), which stores the prefetched data, a structure to manage the outstanding

prefetching request and the last request sent from the L1, and the Next Address Table

(NAT), which keeps track of the data access patterns. For each address requested, the

NAT stores the next address to be accessed. In this section, for the sake of simplicity,

we assume that the NAT is unlimited table which avoids address conflicts.

The prefetcher manages memory requests to the NUCA cache and keeps track of

Migration policy 117

Figure 6.3: Additional structures introduced to enable migration

prefetching.

data access patterns. When a known pattern starts, the prefetcher predicts the next

address and then prefetches it into the PS, and therefore closer to the requesting core.

If the prediction was correct then the latency of the second access would be reduced

since it would hit in this structure instead of a far-away bank.

Note that our prefetching technique is speculative. Therefore taking prefetching

decisions into consideration when migrating data could lead to it being removed from

its optimal position and cause unnecessary data movements. To address this situation,

the PS always keeps a copy of the prefetched data on behalf of a bank in the NUCA.

When there is a hit in the prefetcher (i.e., the PS holds the required data), it sends the

data block to the L1 cache and then notifies the owner bank that it should migrate

the data one step closer to the requesting core. In order to avoid interfering with the

cache coherence protocol, data is copied to the prefetcher only if it is being shared by

several L1 caches (all of them holding it in read-only mode), or the NUCA bank has the

requested data in exclusive mode. Note that the prefetcher can only respond to stores

118 Chapter 6.

(a) Request from L1 cache arrives. (b) Prefetcher receives data.

Figure 6.4: Flowcharts showing the prefetcher actions when receiving requests from

the L1 cache and data from the NUCA cache.

if it gets the data block in exclusive mode, otherwise only loads can be satisfied. When

the NUCA bank cannot send a copy of the requested data to the prefetcher, it notifies

the prefetcher which records this information. Then, once the actual memory access

is performed, although the prefetcher does not hold the requested data, it knows its

bank position in the NUCA, speeding up access to the block.

When a request from the L1 cache arrives to the prefetcher (Figure 6.4a), it can

be resolved in three ways: 1) If it hits in the PS, and the memory request is a load

instruction or the PS has the data block in exclusive mode, the prefetcher sends the

requested data to the L1 cache. This is the optimal situation because the memory

request was serviced in the minimum amount of time due to the previous prefetch.

2) If the PS does not have the requested data, it still can hit on an outstanding prefetch

request. Although the memory request will take longer than in the optimal case, there

can be a reduction in the access latency in this situation. 3) If the request misses in both

structures then it will be forwarded to the NUCA cache, just as if the prefetcher was

not there. This situation also occurs if the prefetcher does have the data block but does

Migration policy 119

not satisfy the coherence requirements for it, (e.g., the PS is storing the requested data

in read-only mode and the core wants it in exclusive).

At the same time as checking the PS, the NAT is updated by storing the current

address in the entry for the last request, then updating the last request field with

the current address. If a pattern starting with the address of the current memory

request exists in the NAT then the prefetcher submits a prefetch request and updates

the outstanding request field. Note that if the prefetcher already has an outstanding

prefetch request to the same memory location as the current address, it cannot submit

a new prefetch request. Instead, the prefetcher must wait until the data comes back

from the NUCA cache.

Submitting a prefetch request does not guarantee that the prefetcher gets any data.

For example, the required data may not be in the NUCA cache. In this case, the

prefetcher is notified, leading to case 3) above. Due to this we use only one slot to

keep track of outstanding prefetch requests and this can be overwritten with a new

prefetch request if the data is not found in the cache.

Figure 6.4b illustrates the behavior of the prefetcher when it receives the prefetched

data from the NUCA cache. If the prefetch request is still alive and there is a pending

request, the prefetcher sends the received data to the L1 cache and it notifies the owner

bank to migrate the prefetched data block one-step closer to the requesting core. Note

that if the coherence requirements are not satisfied then the pending memory request

must be forwarded to the NUCA cache. On the other hand, if there is no pending

request then the received data is stored in the PS.

6.3.2 Prefetching strategies

Updating the NAT with the correct addresses is crucial for the prefetch requests to

be useful in the future. In this section we propose including a saturating counter

with each line in the NAT that shows the confidence of the corresponding prediction.

120 Chapter 6.

Figure 6.5: Fraction of prefetch requests that were useful for varying

confidence counter sizes.

When updating the NAT, we first update and check the confidence counter. If the

former address is the same as the new one the confidence counter is increased by one,

otherwise it is decreased by one. If the modified confidence counter is greater than

zero then the NAT will not be updated with the new address, instead keeping the

old address. This strategy prevents the removal of a good prediction by a single miss.

This is important, for example, when executing loops where there is a regular pattern

to memory accesses. The loop will iterate many times but, on the final iteration, the

prediction based on the last memory access will be incorrect. However, this will only

occur once and we want to maintain the old prediction for the next time the loop

is executed. Through the use of the confidence system we can ensure that the old

prediction is not unnecessarily removed.

Figure 6.5 shows the fraction of prefetch requests that ended up being useful as the

size of the confidence counter increases. This shows that implementing a confidence

counter per NAT line effectively increases the rate of useful prefetch requests by 5%

Migration policy 121

on average and up to 10% in the best case. However, we also observe that using

more than one bit to implement the confidence system does not provide benefits,

and can even reduce the performance of the system. This happens because some data

blocks eventually change behavior and are followed by a different memory access.

The greater the saturated counter, the longer the prefetcher takes to catch up with its

current behavior.

Based on this analysis, we implemented a one-bit confidence system in the

prefetcher. The prefetcher includes one extra bit per NAT line to represent the

confidence counter and a comparator to determine whether the NAT line should be

updated. We take these overheads into consideration when computing the prefetcher

latency and energy consumption.

6.3.3 Accuracy

Up to this point we have considered an unlimited NAT. However, this is not feasible

to implement, requiring 258 lines of 58 bits for a 64-bit processor with data blocks of 64

bytes. Therefore, this section analyses the accuracy loss that the prefetcher experiences

if we assume an implementable NAT. Figure 6.6 shows the percentage of prefetch

requests that are submitted using another address’s information, caused by a conflict

in theNAT.We show six configurations that use between 6 and 16 bits from the address

to directly index into the NAT. This figure shows that conflicts on the NAT increase

exponentially as the NAT’s size decreases. For a very small NAT of 64 lines (6 bits),

almost every prefetch uses the wrong information and the prefetcher is practically

useless. However, using bigger tables (12-14 bits) means that only 25% of prefetch

requests use erroneous information. The hardware overhead of using 12 bits to map

addresses to the NAT is 232 KBytes, 29 KBytes per NAT. If we use 14 bits, the total

overhead is almost 1 MByte.

A smarter implementation to reduce the hardware required to implement the

122 Chapter 6.

Figure 6.6: Conflicts on the NAT table.

NAT could take advantage of the locality found in applications, using the fact that

the typical offset between two consecutive addresses is very small. Thus, we could

consider storing the offset in the NAT instead the whole address. We believe that 16

bits would be enough to have good accuracy. Unfortunately, reducing the width of

each NAT line is not as crucial as reducing its length. In this case, using 14 bits to map

addresses to the NAT would make the NAT implementable. However, the accuracy

loss caused by being unable to represent large offsets would prevent this scheme from

achieving finer accuracy than the implementation proposed.

6.3.4 Lookup in NUCA

The dynamic placement of data in the NUCA cache makes the data search scheme

the key challenge in D-NUCA architectures. As described in Section 2.1, the baseline

architecture assumes the partition multicast algorithm to find data in the cache. This

is a two-step access scheme that initially looks up the most accessed banks and, if

Migration policy 123

the requested data is still not found, it looks up the rest. Unfortunately, using an

access scheme like this to resolve prefetch requests could dramatically increase on-chip

network traffic and, consequently, reduce the potential benefits of using a prefetcher

in terms of performance and energy consumption.

In addition to predicting the next address, we also allow the prefetcher to predict

the position in the NUCA cache that this data will be. We experimentally observe

that related data move together among bankclusters, therefore a significant percentage

of consecutive memory requests are resolved by banks that belong to the same

bankcluster. Based on this observation, for each line in the NAT we also keep the

number of the bankcluster of the last responder that held the data belonging to the

corresponding address. Therefore the prefetch request is sent only to one bank instead

of to all 16 candidate banks. Figure 6.7 shows the accuracy of the search scheme

compared to an oracle that always knows where the prefetched data is. This shows

that using the last responder scheme means that, on average, half of the prefetch

requests are found. However, this percentage is even higher (up to 90%) in some of the

simulated applications, like ferret or raytrace. In order to enhance the accuracy of the

access schemewithout significantly increasing the network-on-chip traffic we consider

also sending the prefetch request to the local bank when it is not the last responder. In

this case, as Figure 6.7 shows, the search accuracy increases to 65% compared to the

oracle. We call this the last responder and local scheme.

6.3.5 Tuning the prefetcher

The prefetcher described in Section 6.3.1 introduces several challenges that must be

met in order to provide a realistic implementation, such as the size of the NAT or the

access scheme used when looking for data. We have analysed these challenges and

propose a prefetcher with a one-bit confidence system, an NAT table size of 29 KBytes (12

addressable bits), and the last responder and local as a search scheme. The total hardware

124 Chapter 6.

Figure 6.7: Accuracy of the data search scheme.

overhead of the actual prefetcher is 264 KBytes (33 KBytes per core), which represents

less than 4% extra hardware compared to the baseline architecture. This includes

all prefetcher structures, the confidence counter and the bankcluster identifier. We

have modeled all prefetcher structures using CACTI and computed its global latency,

indicating that it takes up to 2 cycles to perform the actions described in this section.

Other aspects of the prefetcher, such as its influence in terms of performance and

energy consumption, are described in Section 6.4.

6.4 RESULTS AND ANALYSIS

This section analyses the impact on performance and energy consumption of using

the migration prefetcher on a D-NUCA architecture. We evaluate two versions of our

prefetcher on a D-NUCA cache that uses gradual promotion as the migration policy and

compare them to the baseline configuration, which is described in Section 2.1. These

are a realistic implementation of the migration prefetcher and a perfect prefetcher.

Migration policy 125

Figure 6.8: Performance results.

The first implements the one-bit confidence system, its NAT table’s size is 29 KBytes (12

addressable bits), and it uses last responder and local as a search scheme. On the other

hand, the perfect prefetcher also implements the one-bit confidence system, but has an

unlimited NAT table and uses a perfect search scheme. This represents an oracle that

knows exactly where any data block resides within the NUCA cache at any time.

Although unrealistic and unimplementable in practice, the perfect approach shows

the potential benefits of prefetching for data migration.

6.4.1 Performance Analysis

Figure 6.8 shows the performance improvement obtained with the migration

prefetcher. On average, we observe that the realistic implementation outperforms the

baseline configuration by 4%, while the perfect prefetcher obtains a 7% performance

improvement. This figure shows that, in general, the prefetcher is often able

to find data access patterns in the simulated applications and exploit them for

126 Chapter 6.

Figure 6.9: Reduction of NUCA access latency.

performance gains. Furthermore, it achieves speed-ups in all benchmarks and the

multi-programmed mix (SPEC in Figure 6.8). In the parallel applications particularly,

the realistic migration prefetcher achieves performance improvements of over 5% in

four benchmarks (facesim, streamcluster, x264, and 17% in raytrace). On the other hand,

when considering themulti-programmed environment, both versions of themigration

prefetcher, perfect and realistic, outperform the baseline configuration by 5%. In many

cases the realistic prefetcher achieves a performance improvement that approaches the

perfect prefetcher (e.g., raytrace and dedup). In others, such as facesim, the improvement

is less impressive when using the realistic scheme.We analyse the reasons for this later

in this section.

The key reason for the performance improvements is a reduction in the access

latency to the NUCA cache on a hit in the prefetcher. Figure 6.9 shows that the perfect

prefetcher reduces the NUCA access latency by 30%, on average, while the reduction

with the realistic implemetation is 15%. These results show the ability of the prefetcher

to recognize data access patterns and anticipate data migrations in order to increase

Migration policy 127

Figure 6.10: Distribution of hits in the NUCA cache.

the number of memory requests satisfied with the optimal latency. Unfortunately, the

performance benefits of using this mechanism are restricted by the overall hit rate

in the NUCA cache, which is small in some PARSEC applications. For example, the

access latency for fluidanimate is reduced by over 40% by using the perfect prefetcher.

However, this only translates into a 2% performance increase for this application.

Figure 6.10 illustrates how hits in the NUCA cache are distributed among its

different sections. For the sake of clarity we split the NUCA banks into three types

which correspond to their distance from the requesting core. These are the local banks

which are the 8 banks closest to the core, the central banks which are the 8 clusters

(64 banks) in the center of the NUCA, and the far banks that are all other banks. Note

that the migration prefetcher can only allocate one data block per core. However, as

Figure 6.10 shows, it effectively services the vast majority of hits, evenwith the realistic

implementation. This clearly explains why this mechanism outperforms the baseline

configuration, overcoming the overheads of continuosly submitting prefetch requests.

In addition, Figure 6.10 shows that the realistic implementation deals with as

many data access patterns from local banks as the perfect prefetcher. This is because

128 Chapter 6.

Figure 6.11: Sources of prefetched data.

the access scheme used by the realistic prefetcher always sends the prefetch request

to these banks first. In order to deal with patterns in the other banks, the realistic

prefetcher sends the request to the last responder. This figure shows that it successfully

prefetches and migrates some of the patterns from the central or far banks to the

prefetcher. Compared to the perfect prefetcher, however, we find that there are a

significant number of patterns that the realistic implementation cannot deal with.

Figure 6.11 shows the sources of prefetch data. It is clear from this that the perfect

prefetcher obtains more data from the central and far-away banks than the realistic

implementation. This is because the realistic prefetcher only accesses the local bank

and last responder to find the required data. Based on this observation, we conclude

that far from the size of the NAT table being the limitation to this approach, the

main challenge that needs to be addressed to reduce the difference between the

perfect and realistic implementations is the data access scheme and its effectiveness

in finding data access patterns in non-local banks. An example of this can be found by

analysing how the two versions of the migration prefetcher behave in front of facesim

Migration policy 129

Figure 6.12: Quantification of the on-chip network traffic.

and raytrace. These are the two applications that achieve the highest performance

improvement when using the perfect prefetcher. In Figure 6.10, on one hand, we

observe that raytrace fulfills almost 90% of its hits in the local banks. Therefore both

prefetcher versions can get the data access patterns from there and, consequently,

the realistic prefetcher achieves almost the same performance improvement as the

oracle. Considering facesim, on the other hand, most of the hits in the NUCA cache

happen in the central banks. The realistic prefetcher in this case is not able to obtain

all data access patterns and ends up improving performance by 5% compared to the

baseline configuration, whereas the perfect prefetcher achieves 20% of performance

improvement.

6.4.2 Energy Consumption Analysis

Here, we analyse the impact of the overheads that the migration prefetcher introduces

to the baseline D-NUCA configuration. Figure 6.12 shows that, on average, neither of

the two versions of the migration prefetcher increase the on-chip network contention.

130 Chapter 6.

Figure 6.13: Energy consumed per memory access.

Although wewould expect the prefetcher to significantly increase the on-chip network

traffic due to the large numbers of prefetch requests that this mechanism sends, in

actual fact every hit in the prefetcher saves up to 16 memory requests to the NUCA

banks. To take advantage of this and therefore avoid increasing the on-chip network

traffic, the migration prefetcher must be effective. Figure 6.12 also illustrates that

the realistic implementation of the prefetcher introduces fewer extra messages to

the network. This is because the perfect prefetcher always finds the prefetched data,

and thus receives the corresponding data block. On the other hand, if the realistic

prefetcher could not find the required data it must forward the memory request to the

NUCA cache. Therefore the common on-chip network traffic increases compared to

the perfect implementation.

Considering the energy consumption, Figure 6.13 illustrates that the migration

prefetcher consumes about the same amount per memory access as the baseline

configuration. For the sake of simplicity we remove the perfect prefetcher from

this analysis because we cannot model an infinite NAT. Static energy is the major

Migration policy 131

contributor to the overall energy consumed by caches, and this case is not an

exception. In general, we find that although the migration prefetcher introduces

264 KBytes to implement the required structures, it achieves a significant enough

reduction in dynamic energy consumption in the on-chip network to counterbalance

these overheads. As happens with the on-chip traffic, the amount of energy consumed

by the prefetcher depends on its effectiveness. We can clearly see that the migration

prefetcher achieves the highest reduction in energy consumption per memory access

in applications where it also obtains the highest performance benefits, like facesim,

raytrace or x264.

6.4.3 Summary

This section has analysed the performance and energy consumption of our migration

prefetcher, showing that the realistic implementation achieves an overall speed-up of

4% across all benchmarks, up to 17% in the case of raytrace. Furthermore, an analysis

of the banks that are accessed in each scheme shows that it is able to service significant

numbers of hits from within the prefetcher itself, providing further evidence of the

benefits that this technique can bring.

6.5 RELATED WORK

Prefetching is a well known technique for boosting program performance by moving

data to a nearer cache level to the core before it is required by the execution units of the

processor [16, 78]. Themost relevant approaches to our work are Tagged Prefetching [73]

that tries to capture accesses to consecutive memory lines, Stride Prefetching [20]

that tries to capture accesses at the same distance from one to next and Correlation

Prefetching [66] that tries to identify groups of memory accesses that are related under

a common pattern against time.

Prefetching in a NUCA was first analysed by Beckmann and Wood [9]. They

132 Chapter 6.

evaluated stride-based prefetching between the L2 cache and memory and between

L1 and L2 caches. In this thesis, we apply prefetching in the NUCA cache to move

data that is likely to be accessed close to the requesting core, but at the NUCA level.

This mechanism, therefore, does not provoke replacements with prefetched data.

Migration techniques in D-NUCA have been widely analysed in the literature.

Kim et al. [41] introduced the D-NUCA concept on uniprocessors and proposed a

simple migration mechanism known as gradual promotion. This approach begins with a

hit in the NUCA cache, and moves the requested data one-step closer to the processor

that initiated the memory request. Beckmann and Wood [9] demonstrated that block

migration is less effective for CMPs because 40-60% of hits in commercial workloads

are satisfied in the central banks. In this thesis, we show how prefetching can help

migration to reduce the hit rate in the non-optimal banks.

Eisley et al. [28] proposed a scalable migration technique that tries to allocate

data in free/invalid cache slots instead of sending data off-chip. Kandemir et al. [39]

took a different point of view. They observed that 50% of data fetched from of-chip

memory to a shared L2 NUCA cache was used more heavily by a different core

from the one that originally requested the data. Based on this observation, they

focused on minimizing the number of migrations with a placement mechanism that

tries to place data in an optimal position. In the same vein, Hammoud et al. [30]

predicted the optimal location of data bymonitoring the behavior of programs. Finally,

Chaudhuri [19] proposed a coarse-grained data migration mechanism assisted by the

operating system that monitors access patterns to decide where and when an entire

page of data should be migrated.

A common characteristic of these migration techniques is that they move data to

the optimal position with the cache to reduce the access latency for future accesses to

the same data. In our work, however, we analyse related data to anticipate migrations,

and thus reduce access latency for future accesses not only to the same data, but also to

its followers. Moreover, although in this thesis we analysed this technique with gradual

Migration policy 133

migration, we could implement it in conjunction with any other migration technique

proposed in the literature.

6.6 CONCLUSIONS

Existing data migration policies for NUCA caches succeed in concentrating the

most frequently accessed data in the NUCA banks with the smallest access latency.

However, there is still a significant percentage of hits in the NUCA cache that are

resolved in slower banks.

In order to address this situation, we have proposed a migration prefetcher. This

recognizes data access patterns to the NUCA cache, and then anticipates data

migrations, prefetching a copy of data and holding it close to the core. Using the

migration prefetcher, therefore, the number of hits in the NUCA cache that take the

optimal access latency increases. We find that a perfect prefetcher reduces the NUCA

access latency, on average, by 30%, and improves performance by 7% compared to the

baseline configuration. Assuming a more realistic approach, the migration prefetcher

still achieves an overall latency reduction of 15%, and outperforms the baseline

configuration by 4%, or up to 17% in one application.

134 Chapter 6.

Chapter 7

Conclusions and future work

This chapter summarizes the main conclusions of this thesis and outlines areas for future work.

Conclusions and future work 137

7.1 CONCLUSIONS

The growing influence of wire delays in cache design has meant that access latency

to last-level cache banks are no longer constant. NUCA cache memories address

this situation by allowing banks close to the requesting processor to have smaller

latencies than other banks that are further away. These cache architectures have been

traditionally classified based on their placement decisions as static (S-NUCA) or

dynamic (D-NUCA). In this thesis, we have focused on D-NUCA as it exploits the

dynamic features that NUCA caches offer, like data migration. The flexibility that

D-NUCA provides, however, raises new challenges that hardens the management

of this kind of cache architectures in CMP systems. We have identified these new

challenges and tackled them from the point of view of the four NUCA policies:

replacement, access, placement and migration.

Chapter 3 presents three different techniques that deal with the challenges related

to the replacement policy in a D-NUCA cache: Last Bank, LRU-PEA and The Auction.

Data migration makes most frequently accessed data blocks to be concentrated on the

banks that are closer to the processors. This creates big differences in the average usage

rate of the NUCA banks, being the banks that are close to the processors the most

accessed banks, while the banks that are further away are not accessed so often. Upon

a replacement in a particular bank of the NUCA cache, the probabilities of the evicted

data block to be reused by the programwill differ if its last location in the NUCA cache

was a bank that are close to the processors, or not. The decentralized nature of NUCA,

however, prevents a NUCA bank from knowing that other bank is constantly evicting

data blocks that are later being reused. To address this situation, we first propose

Last Bank. This technique introduces an extra bank in the NUCA cache to deal with

the evicted data from the other banks. Although using this technique is particularly

effective with small NUCA caches, as cache size grows, it cannot reach the potential

benefits. Then, we propose LRU-PEA. This technique classifies data blocks relying on

138 Chapter 7.

their last migration action (promoted, demoted or none), and modifies the traditional

LRU replacement policy to prioritize promoted data over the other categories. We

find that using this technique as replacement policy, we increase performance benefits

by 8% over the baseline configuration. Finally, we propose The Auction. This is a

framework that allows architects for implementing auction-like replacement policies

in future D-NUCA cache architectures. The Auction spreads replacement decisions

that have been taken in a single bank to the whole NUCA cache. Therefore, this enables

the replacement policy to select the most appropriate victim data block from the whole

NUCA cache. The implemented auction approaches increase performance benefits by

6-8% and reduce energy consumed by 4% compared to the baseline configuration.

The challenges in the access policy has been tackled in the Chapter 4. As data blocks

can bemapped in multiple banks within the NUCA cache. Finding the requesting data

in a D-NUCA cache is a difficult task. In addition, data can freely move between these

banks, thus the search scheme must look up all banks where the requesting data block

can be mapped to ascertain if it is in the NUCA cache, or not. We have proposed

HK-NUCA. This is a search scheme that uses home knowledge to effectively reduce the

average number of messages introduced to the on-chip network to satisfy a memory

request. On average, HK-NUCA outperforms previous access schemes for D-NUCA

caches by 6%, and reduces the dynamic energy consumed by the memory system by

40%.

IBM® have already succeeded in integrating eDRAM technology in the on-chip

memory cache hierarchy of their latest processor, POWER7. This could be considered

the starting point to integrate more sophisticated hybrid cache structures in the near

future. Chapter 5 describes the implementation of a hybrid NUCA cache. We have

proposed a novel placement policy that accomodates both memory technologies,

SRAM and eDRAM, in a single NUCA cache. This takes advantage of the fast SRAM

caches to store there the most accessed data blocks, while other data that have not

been accessed, or has been evicted from SRAM banks are stored in the eDRAM

Conclusions and future work 139

banks. We have analysed this placement policy and shown that a well-balanced hybrid

NUCA cache achieves similar performance results as the baseline, but consumes 10%

less power and occupies about 15% less area in the chip. Finally, we have analysed

different alternatives to take advantage of the area reduction we got by using the

hybrid architecture that lead us to get performance benefits up to 10%.

Finally, Chapter 6 presents The Migration Prefetcher, a technique that anticipates

data migrations. This mechanism recognizes access patterns based on the history, and

promotes the potential follower of the current memory access before the next memory

access actually happens. When The Migration Prefetcher hits on the prediction, the

memory access finishes in few cycles, instead of more than one hundred, that is what

it takes when the data block is in the furthest bank. The migration prefetcher achieves

an overall latency reduction of 15%, and outperforms the baseline configuration by up

to 17%.

7.2 FUTURE WORK

Future CMPs will incorporate larger last-level cache memories into the chip. Current

research shows two different paths to deal with future larger cache memories: (1) by

integrating a traditional NUCA cache memory that occupies more die area, or (2)

by stacking multiple multiple dies, which is commonly known as NUCA 3D [13].

Memory can be stacked directly on top of a microprocessor through 3D integration

resulting in significant reduction in wire delay between the processor and the memory.

The stacked dies usually communicate with vertical buses called through-silicon via

(TSV). These buses define the entrance point to the NUCA cache. We believe that the

techniques proposed in this thesis could be easily applicable to this new architecture

with minimum adjustments.

Reducing network traffic on D-NUCA or not increasing it too much has been a

common constraint in all the proposed techniques of this thesis. We consider that

140 Chapter 7.

efficientlymanaging the on-chip network that interconnects all NUCAbanks is crucial.

Network-on-Chip (NoC) has emerged as an emerging topic in CMPs [75]. Introducing

support from the NoC to manage a NUCA architecture will be part of the future work.

For instance, router can assign different priorities for messages introduced by the

NUCApolicies. Then, high-priority messages would be quickly sent, and thus provide

high performance, while low-priority messages would be efficient in terms of energy

consumption.

Another interesting architecture to exploit with NUCA caches are Graphics

Processing Units (GPUs). These are specialized processors that typically integrate

hundreds of cores in a single chip [44]. One of the main challenges in GPUs is to

optimize data locality. In terms of energy consumption, fetching operands actually

costs more than the computing on them [24]. Thus, optimizing data movements to

leverage data locality on GPUs could be a very interesting future work.

Chapter 5 shows the implementation of a SRAM / eDRAM hybrid NUCA cache.

Recent works analysed incorporating other technologies into the chip, like MRAM

or PCM [54]. Integrating a hybrid NUCA cache with these technologies on a NUCA

cache would be a challenging task. As with eDRAM, PCM and MRAM have several

strong features to emphasize, but also have some drawbacks to hide. Therefore,

accomodating novel technologies into the chip could also be considered as part of

our future work.

Managing Dynamic Non-Uniform Cache Architectures 141

REFERENCES

[1] Niket Agarwal, Li-Shiuan Peh, and Niraj Jha. Garnet: A detailed interconnection

network model inside a full-system simulation framework. Technical Report

CE-P08-001, Princeton University, 2008.

[2] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger. Clock rate vs. ipc: The

end of the road for conventional microprocessors. In Procs. of the 27th International

Symposium on Computer Architecture, 2000.

[3] S. Akioka, F. Li, K. Malkowski, P. Raghavan, M. Kandemir, and M. J. Irwin. Ring

data location prediction scheme for non-uniform cache architectures. In Procs. of

the International Conference on Computer Design, 2008.

[4] David H. Albonesi. Editor in chief’s message: Truly "hot" chips–do we still care?

Micro, IEEE, 27(2):4 –5, march-april 2007.

[5] J. Alghazo, A. Akaaboune, and N. Botros. Sf-lru cache replacement algorithm.

In Records of the International Workshop on Memory Technology, Design and Testing,

2004.

[6] O. Azizi, A. Mahesri, B. C. Lee, S. J. Patel, andM. Horowitz. Energy-performance

tradeoffs in processor architecture and circuit design: A marginal cost analysis.

In Procs. of the 37th International Symposium on Computer Architecture, 2010.

[7] A. Bardine, P. Foglia, G. Gabrielli, and C. A. Prete. Analysis of static and dynamic

energy consumption in nuca caches: Initial results. In Procs. of the Workshop on

Memory Performance: Dealing with Applications, Systems and Architecture, 2007.

[8] B. M. Beckmann, M. R. Marty, and D. A. Wood. Asr: Adaptive selective

replication for cmp caches. In Procs. of the 39th Annual IEEE/ACM International

Symposium of Microarchitecture, 2006.

142 References

[9] B. M. Beckmann and D. A. Wood. Managing wire delay in large

chip-multiprocessor caches. In Procs. of the 37th International Symposium on

Microarchitecture, 2004.

[10] L. A. Belady. A study of replacement algorithms for virtual-storage computer.

IMB Systems Journal, 5(2), 1966.

[11] Benchmarks. Spec cpu2006. In http : //www.spec.org/cpu2006, 2006.

[12] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The parsec benchmark suite:

Characterization and architectural implications. In Procs. of the International

Conference on Parallel Architectures and Compilation Techniques, 2008.

[13] B. Black, M. Annavaram, N. Brekelbaum, J. DeVale, L. Jiang, G. H. Loh,

D. McCaule, P. Morrow, D. W. Nelson, D. Pantuso, P. Reed, J. Rupley, S. Shankar,

J. Shen, and C. Webb. Die stacking (3d) microarchitecture. In Procs. of the 39th

Annual IEEE/ACM International Symposium on Microarchitecture, 2006.

[14] E. Bolotin, Z. Guz, I. Cidon, R. Ginosar, and A. Kolodny. The power of priority:

Noc based distributed cache coherency. In Procs. of the 1st International Symposium

on Networks-on-Chip, 2007.

[15] S. Y. Borkar, P. Dubey, K. C. Kahn, D. J. Kuck, H. Mulder, S. S. Pawlowski, and

J. R. Rattner. Platform 2015: Intel processor and platform evolution for the next

decade. Technology@Intel Magazine, 2005.

[16] S. Byna, Y. Chen, and X. H. Sun. Taxonomy of data prefetching for multicore

processors. Journal of Computer Science and Technology, 24(3):Pages 405–417, May

2009.

[17] J. Chang and G. S. Sohi. Cooperative caching for chip multiprocessors. In Procs.

of the 33rd International Symposium on Computer Architecture, 2006.

Managing Dynamic Non-Uniform Cache Architectures 143

[18] J. Chang and G. S. Sohi. Cooperative cache partitioning for chip multiprocessors.

In Procs. of the 21st ACM International Conference on Supercomputing, 2007.

[19] M. Chaudhuri. Pagenuca: Selected policies for page-grain locality management

in large shared chip-multiprocessors. In Procs. of the 15th International Symposium

on High-Performance Computer Architecture, 2009.

[20] T. F. Chen and J. L. Baer. Effective hardware-based data prefetching for

high-performance processors. IEEE Transactions on Computers, 44(5), 1995.

[21] Z. Chishti, M. D. Powell, and T. N. Vijaykumar. Distance associativity for

high-performance energy-efficient non-uniform cache architectures. In Procs. of

the 36th International Symposium on Microarchitecture, 2003.

[22] Z. Chishti, M. D. Powell, and T. N. Vijaykumar. Optimizing replication,

communication, and capacity allocation in cmps. In Procs. of the 32nd International

Symposium on Computer Architecture, 2005.

[23] C. Corwell, C. A. Moritz, and W. Burleson. Improved modeling and data

migration for dynamic non-uniform cache accesses. In Procs. of the 2nd Workshop

on Duplicating, Deconstructing and Debunking, 2003.

[24] W Dally. Power, programmability, and granularity: The challenges of exascale

computing. In Procs. of the 25th IEEE International Parallel and Distributed

Processing Symposium (IPDPS), 2011.

[25] P. Dubey. A platform 2015 workload model: Recognition, mining and synthesis

moves computers to the era of tera. In Intel White Paper, Intel Corporation, 2005.

[26] H. Dybdahl and P. Stenström. An adaptive shared/private nuca cache

partitioning scheme for chip multiprocessors. In Procs. of the 13th International

Symposium on High-Performance Computer Architecture, 2007.

144 References

[27] H. Dybdahl, P. Stenström, and L. Natvig. An lru-based replacement algorithm

augmented with frequency of access in shared chip-multiprocessor caches.

Computer Architecture News, 35, 2007.

[28] N. Eisley, L. S. Peh, and L. Shang. Leveraging on-chip networks for cache

migration in chip multiprocessors. In Procs. of the 17th International Conference

on Parallel Architectures and Compilation Techniques, 2008.

[29] E. Grochowski, R. Ronen, J. Shen, and H. Wang. Best of both latency and

throughput. In Procs. of the 22nd Intl. Conference on Computer Design, 2004.

[30] M. Hammoud, S. Cho, and R. Melhem. Acm: An efficient approach for managing

shared caches in chip multiprocessors. In Procs. of the 4th Intl. Conference on High

Performance and Embedded Architectures, 2009.

[31] M. Hammoud, S. Cho, and R. Melhem. Dynamic cache clustering for chip

multiprocessors. In Procs. of the Intl. Conference on Supercomputing, 2009.

[32] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. Reactive nuca:

Near-optimal block placement and replication in distributed caches. In Procs.

of the 36th International Symposium on Computer Architecture, 2009.

[33] E. Herrero, J. Gonzalez, and R. Canal. Distributed cooperative caching. In

Procs. of the 17th International Conference on Parallel Architectures and Compilation

Techniques, 2008.

[34] E. Herrero, J. Gonzalez, and R. Canal. Elastic cooperative caching: An

autonomous dynamically adaptive memory hierarchy for chip multiprocessors.

In Procs. of the 37th International Symposium on Computer Architecture, 2010.

[35] J. Huh, D. Burger, and S. W. Keckler. Exploring the design space of future cmps.

In Procs. of the 10th Intl. Conf. on Parallel Architectures and Compilation Techniques

(PACT), 2001.

Managing Dynamic Non-Uniform Cache Architectures 145

[36] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W. Keckler. A nuca substrate

for flexible cmp cache sharing. In Procs. of the 19th ACM International Conference

on Supercomputing, 2005.

[37] Intel. The scc platform overview. In Technical Report, May 2010.

[38] N. P. Jouppi. Improving direct-mapped cache performance by the addition of

a small fully-associative cache and prefetch buffers. In Procs. of the 17th annual

international symposium on Computer Architecture, 1990.

[39] M. Kandemir, F. Li, M. J. Irwin, and S. W. Son. A novel migration-based

nuca design for chip multiprocessors. In Procs. of the International Conference on

Supercomputing, 2008.

[40] M. Kharbutli and Y. Solihin. Counter-based cache replacement algorithms. In

Procs. of the 23rd International Conference on Computer Design, 2005.

[41] C. Kim, D. Burger, and S. W. Keckler. An adaptive, non-uniform cache structure

for wire-delay dominated on-chip caches. In Procs. of the 10th Intl. Conf. on

Architectural Support for Programming Languages and Operating Systems, 2002.

[42] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: a 32-way multithreaded

sparc processor. In IEEE Micro, March 2005.

[43] H. Q. Le, W. J. Starke, J. S. Fields, F. P. O’Connell, D. Q. Nguyen, B. J. Ronchetti,

W. M. Sauer, E. M. Schwarz, and M. T. Vaden. Ibm power6 microarchitecture.

IBM Journal, November 2007.

[44] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. Nvidia tesla: A unified

graphics and computing architecture. Micro, IEEE, 28(2):39 –55, march-april 2008.

[45] J. Lira, T.M. Jones, C. Molina, and A. González. The migration prefetcher:

Anticipating data promotion in dynamic nuca caches. In Procs. of the International

Conference on Parallel Architectures and Compilation Techniques (PACT), 2011.

146 References

[46] J. Lira, C. Molina, D. Brooks, and A. González. Implementing a hybrid sram /

edram nuca architecture. In Procs. of the 18th Annual International Conference on

High Performance Computing (HiPC’11), 2011.

[47] J. Lira, C. Molina, and A. González. Analysis of non-uniform cache architecture

policies for chip-multiprocessors using the parsec benchmark suite. In Procs. of

the 2nd Workshop on Managed Many-Core Systems (MMCS), 2009.

[48] J. Lira, C. Molina, and A. González. Last bank: dealing with address reuse

in non-uniform cache architecture for cmps. In Procs. of the 15th International

Euro-Par Conference (Euro-Par), 2009.

[49] J. Lira, C. Molina, and A. González. Lru-pea: A smart replacement policy

for non-uniform cache architectures on chip multiprocessors. In Procs. of the

International Conference on Computer Design (ICCD), 2009.

[50] J. Lira, C. Molina, and A. González. Performance analysis of non-uniform cache

architecture policies for chip-multiprocessors using the parsec v2.0 benchmark

suite. In Procs. of the XX Jornadas de Paralelismo, 2009.

[51] J. Lira, C. Molina, and A. González. The auction: Optimizing banks usage in

non-uniform cache architectures. In Procs. of the 24th International Conference on

Supercomputing (ICS), 2010.

[52] J. Lira, C. Molina, and A. González. Hk-nuca: Boosting data searches in dynamic

non-uniform cache architectures for chip multiprocessors. In Procs. of the 25th

IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2011.

[53] R. Low. Microprocessor trends: multicore, memory, and power developments.

Embedded Computing Design, September 2005.

[54] N. Madan, L. Zhao, N. Muralimanohar, A. Udipi, R. Balasubramonian, R. Iyer,

S. Makineni, and D. Newell. Optimizing communication and capacity in a

Managing Dynamic Non-Uniform Cache Architectures 147

3d stacked reconfigurable cache hierarchy. In Procs. of the 15th International

Symposium on High-Performance Computer, 2009.

[55] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,

J. Högberg, F. Larsson, A.Moestedt, and B.Werner. Simics: A Full System Simulator

Platform, volume 35-2, pages 50–58. Computer, 2002.

[56] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.

Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood. Multifacet’s

general execution-driven multiprocessor simulator (gems) toolset. In Computer

Architecture News, 2005.

[57] D. Matzke. Will physical scalability sabotage performance gains? IEEE Computer,

September 1997.

[58] C. McNairy and R. Bhatia. Montecito: A dual-core, dual-thread itanium

processor. IEEE Micro, 25(2), March-April 2005.

[59] J. Merino, V. Puente, and J. A. Gregorio. Sp-nuca: A cost effective dynamic

non-uniform cache architecture. ACM SIGARCH Computer Architecture News,

36(2):64–71, May 2008.

[60] Micron. System power calculator. In http : //www.micron.com/, 2009.

[61] D. Molka, D. Hackenberg, R. Schone, and M. S. Muller. Memory performance

and cache coherency effects on an intel nehalemmultiprocessor system. In Procs.

of the International Conference on Parallel Architectures and Compilation Techniques.

[62] G. E. Moore. The future of integrated electronics. In Fairchild Semiconductor

internal publication, 1964.

[63] N. Muralimanohar and R. Balasubramonian. Interconnect design considerations

for large nuca caches. In Procs. of the 34th International Symposium on Computer

Architecture, 2007.

148 References

[64] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi. Cacti 6.0: A tool

to understand large caches. Technical report, University of Utah and Hewlett

Packard Laboratories, 2007.

[65] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi. Optimizing nuca

organizations and wiring alternatives for large caches with cacti 6.0. In Procs.

of the 40th International Symposium on Microarchitecture, 2007.

[66] K. J. Nesbit and J. E. Smith. Data cache prefetching using a global history buffer.

In Procs. of the 10th Intl. Symp. on High-Performance Computer Architecture, 2004.

[67] T. K. Prakash and L. Peng. Performance characterization of spec cpu2006

benchmarks on intel core 2 duo processor. ISAST Transactions on Computers and

Software Engineering, 2(1):36–41, 2008.

[68] M. K. Qureshi, A. Jaleel, and Y. N. Patt. Adaptive insertion policies for

high-performance caching. In Procs. of the 34th International Symposium on

Computer Architecture, 2007.

[69] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras, and B. Abali.

Enhancing lifetime and security of phase change memories via start-gap wear

leveling. In Procs. of the 42nd International Symposium on Microarchitecture, 2009.

[70] M. K. Qureshi, V. Srinivasan, and J. A. Rivers. Scalable high-performance main

memory system using phase-change memory technology. In Procs. of the 32th

International Symposium on Computer Architecture, 2009.

[71] M. K. Qureshi, M. A. Suleman, and Y. N. Patt. Line distillation: Increasing cache

capacity by filtering unused words in cache lines. In Procs. of the 13th International

Symposium of High-Performance Computer Architecture, 2007.

[72] R. Ricci, S. Barrus, and R. Balasubramonian. Leveraging bloom filters for smart

Managing Dynamic Non-Uniform Cache Architectures 149

search within nuca caches. In Procs. of the 7th Workshop on Complexity-Effective

Design, 2006.

[73] A. J. Smith. Cache memories. ACM Computing Surveys, 14(3), 1982.

[74] G. Sun, X. Dong, Y. Xie, J. Li, and Y. Chen. A novel 3d stacked mram

cache architecture for cmps. In Procs. of the 15th International Symposium on

High-Performance Computer, 2009.

[75] O. Tayan. Networks-on-chip: Challenges, trends and mechanisms for

enhancements. In Procs. of the International Conference on Information and

Communication Technologies, 2009.

[76] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi. Cacti 5.1. Technical

report, HP, 2008.

[77] A. Valero, J. Sahuquillo, S. Petit, V. Lorente, R. Canal, P. Lopez, and J. Duato. An

hybrid edram/sram macrocell to implement first-level data caches. In Procs. of

the 42nd International Symposium on Microarchitecture, 2009.

[78] S. VanderWiel and D. J. Lilja. A survey of data prefetching techniques. In Procs.

of the 23rd International Symposium on Computer Architecture, 1996.

[79] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finnan, P. Iyer,

A. Singh, T. Jacob, S. Jain, S. Venkataraman, Y. Hoskote, and N. Borkar. An

80-tile 1.28tflops network-on-chip in 65nm cmos. In Procs. of the IEEE International

Solid-State Circuits Conference, 2007.

[80] H. S. Wang, X. Zhu, L. S. Peh, and S. Malik. Orion: A power-performance

simulator for interconnection networks. In Procs. of the 35th International

Symposium on Microarchitecture, 2002.

[81] D. Wendel, R. Kalla, R. Cargoni, J. Clables, J. Friedrich, R. Frech, J. Kahle,

B. Sinharoy, W. Starke, S. Taylor, S. Weitzel, S. G. Chu, S. Islam, and V. Zyuban.

150 References

The implementation of power7: A highly parallel and scalable multi-core

high-end server processor. In Procs. of the IEEE International Solid-State Circuits

Conference (ISSCC), 2010.

[82] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki, B. Falsafi, and J. C.

Hoe. Simflex: Statistical sampling of computer system simulation. IEEE Micro,

26(4):18–31, 2006.

[83] S.Wilton andN. P. Jouppi. CACTI: An Enhanced Cache Access and Cycle TimeModel,

volume 31-5, pages 677–688. IEEE Journal of Solid-State Circuits, 1996.

[84] W. Wong and J. Baer. Modified lru policies for improving second-level cache

behavior. In Procs. of the 6th International Symposium on High-Performance Computer

Architecture, 2000.

[85] X. Wu, J. Li, L. Zhang, E. Speight, R. Rajamony, and Y. Xie. Hybrid cache

architecture with disparate memory technologies. In Procs. of the 32th International

Symposium on Computer Architecture, 2009.

[86] M. Zhang and K. Asanović. Victim replication: Maximizing capacity while

hiding wire delay in tiled chip multiprocessors. In Procs. of the 32nd International

Symposium on Computer Architecture, 2005.

Managing Dynamic Non-Uniform Cache Architectures 151

LIST OF TABLES

2.1 Applications of PARSEC Benchmark siute. 23
2.2 Multi-programmed scenario. 24
2.3 Configuration parameters. 27
3.1 Prioritization for LRU-PEA. 41
3.2 Number of extra messages introduced by both configurations of LRU-PEA

to satisfy replacements. 45
4.1 Number of messages sent during the parallel access stage of HK-NUCA. . 82
4.2 Average number of banks accessed per memory request. 83
5.1 Physical parameters of SRAM and eDRAM memories. The technology

assumed is 45nm2 and their capacity is 64KBytes. 91
5.2 Parameters for each configuration got from CACTI models. For example,

the shaded parameters are used by the hybrid configuration 2S-6D.
∗All banks in both homogeneous configurations are like the 4-MByte
configuration. 100

152 List of Tables

Managing Dynamic Non-Uniform Cache Architectures 153

LIST OF FIGURES

1.1 Examples of NUCA organizations on CMPs. 6
2.1 Baseline architecture layout. 18
2.2 Scheme of the access algorithm used in the baseline configuration. 19
2.3 Scheme of the migration algorithm used in the baseline configuration

(accesses from core 0). 20
2.4 Hit rate in the NUCA cache. 25
3.1 Performance results assuming one-copy and zero-copy replacement policies. 32
3.2 Performance improvement achieved with Last Bank 34
3.3 LRU prioritising Last Bank (LRU-LB) scheme. (a) A priority line is in the

LRU position. (b) The priority line resets its priority bit and updates its
position to the MRU; the other lines move one position forward to the
LRU. (c) The line in the LRU position is evicted since its priority is clear. 36

3.4 Speed-up achieved with Last Bank optimizations. 37
3.5 Distribution per categories of resued and non-reused evicted addresses at

the moment of their replacement. 40
3.6 LRU-PEA scheme. (a) Initial state of the LRU-stack. (b) The last two

positions of the LRU-stack compete to avoid being evicted. (c) The
lowest category data has been evicted. 41

3.7 Example of how LRU-PEA behaves. 43
3.8 IPC improvement with LRU-PEA. 46
3.9 Misses per thousand instructions with LRU-PEA. 47
3.10 Normalized average energy consumed per each executed instruction. . . . 48
3.11 Normalized average dynamic energy consumed per each instruction. . . . 49
3.12 Percentage of non-started auctions when using up to four auction slots per

NUCA bank. 50
3.13 The three steps of the auction mechanism. 52
3.14 Performance improvement. 57
3.15 Misses per 1000 instructions. 59
3.16 Received bids per auction. 60
3.17 Network traffic. 61
3.18 Energy per memory access. 62
4.1 Performance results of both NUCA organizations, S-NUCA and D-NUCA. 69
4.2 Impact of several access schemes in a D-NUCA architecture. 70
4.3 Distribution of hits in the NUCA cache when the core 0 sends memory

requests. 72
4.4 Scheme of HK-NUCA data search mechanism. 73
4.5 HK-NUCA pointer list (HK-PTR). 76
4.6 Performance results. 79
4.7 Distribution in HK-NUCA stages. 80
4.8 Quantification of the on-chip network traffic. 83
4.9 Dynamic energy per memory access. 84
5.1 Implementation of a memory cell with the twomemory technogies: SRAM

and DRAM. 90
5.2 Scheme of the homogeneous bankcluster organization. 93
5.3 Scheme of the heterogeneous bankcluster organization. 93

154 List of Figures

5.4 Percentage of lines that are accessed during their lifetime in the NUCA
cache. 95

5.5 Scheme of the Tag Directory Array. 97
5.6 Performance results of the three hybrid approaches. 98
5.7 Power consumed by the three hybrid approaches. 99
5.8 Performance results of different configurations using the NUCA

architecture described in Section 5.3. 101
5.9 Hit distribution among SRAM and eDRAM banks. 102
5.10 Power consumption results of the configurations assumed in this section. . 103
5.11 Area required by the analysed configurations. 104
5.12 Trade-off between Power x Performance x Area. 105
5.13 Performance benefits obtained by using the remaining transistors to

increase the cache size. 107
5.14 Power evaluation of our hybrid architecture by assuming the same area as

the all-SRAM configuration. 108
6.1 Distribution of hits in the NUCA cache when the core 0 sends memory

requests. 114
6.2 Percentage of X → Y access patterns. 115
6.3 Additional structures introduced to enable migration prefetching. 117
6.4 Flowcharts showing the prefetcher actions when receiving requests from

the L1 cache and data from the NUCA cache. 118
6.5 Fraction of prefetch requests that were useful for varying confidence

counter sizes. 120
6.6 Conflicts on the NAT table. 122
6.7 Accuracy of the data search scheme. 124
6.8 Performance results. 125
6.9 Reduction of NUCA access latency. 126
6.10 Distribution of hits in the NUCA cache. 127
6.11 Sources of prefetched data. 128
6.12 Quantification of the on-chip network traffic. 129
6.13 Energy consumed per memory access. 130

