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Abstract

This thesis is a collection of three essays on inflation expectations, forecasting uncer-

tainty, and the role of uncertainty in sequential auctions, all using experimental approach.

Chapter 1 studies how individuals forecast inflation in fictitious macroeconomic setup and

analyzes the effect of monetary policy rules on their decisions. Results display hetero-

geneity in inflation forecasting rules and demonstrate the importance of adaptive learning

forecasting if model switching is assumed. Chapter 2 extends the analysis from Chapter

1 by analyzing individual inflation forecasting uncertainty. Results show that confidence

intervals depend on inflation variance and business cycle phase, have a strong inertia, and

are often asymmetric. Finally, Chapter 3 analyzes the role of uncertainty about the num-

ber of bidders for the behavior of subjects in a sequential auction experiment. Uncertainty

does not aggravate price decline, but it changes individual bidding strategies and auction

efficiency.

Resumen

Esta tesis consta de tres ensayos sobre las expectativas de inflación, la incertidumbre de

la predicción, y la importancia de la incertidumbre en subastas secuenciales. Todos ellos

utilizan un método experimental. El capítulo 1 estudia cómo los individuos predicen la

inflación en la economía ficticia y analiza el efecto de las reglas de política monetaria en

sus decisiones. Los resultados revelan la heterogeneidad en las reglas de predicción de la

inflación y demuestran la importancia del mecanismo de aprendizaje adaptivo si el cam-

bio entre los modelos se supone. Capítulo 2 continúa el análisis del capítulo 1, analiza la

incertidumbre individual de las expectativas de inflación. Los resultados muestran que los

intervalos de confianza dependen de varianza de la inflación y la fase del ciclo económico,

tienen una fuerte inercia, y son frecuentemente asimétricos. Por último, el capítulo 3 anal-

iza la influencia de la incertidumbre sobre el número de oferentes en el comportamiento

de los individuos en un experimento de la subasta secuencial. La incertidumbre no agrava

la caída de los precios, pero cambia las estrategias de los oferentes y la eficiencia de la

subasta.
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Foreword

The aim of this thesis is to analyze the economic decisions of people in environments with

imperfect information. We design laboratory experiments to demonstrate how participants

differently assess a simulated economy environment and how their assessments influence

the evolution of the economy. In a different set of experiments, we engage people in a

simple auction trading to establish how market uncertainty affects individual participation

and resulting prices.

The thesis consists of three essays that address the uncertainty in economic behavior from

different perspectives. The first two have been written in collaboration with Damjan Pfa-

jfar. In Chapter 1, “Inflation Expectations and Monetary Policy Design”, we study how

subjects form inflation expectations in fictitious macroeconomic setup, and analyze how

monetary policy rules affect individual behavior. In Chapter 2, “Uncertainty and Dis-

agreement in Forecasting Inflation”, we extend the experimental setup of the first essay,

identify the determinants of individual uncertainty and demonstrate how it influences the

variability of inflation. Chapter 3, “Uncertainty about the Number of Bidders in Sequen-

tial Auctions with Unit Demand” analyzes the role of uncertain competition size on the

bidding behavior and the consequences for the resulting prices.

There are several reasons why expectations are important in economic policymaking. Pri-

vate agents make current decisions on the basis of beliefs about the future state of the

economy, while policy makers have to incorporate the expected behavior of private agents

into their policies. Private agents in turn, will also adjust their behavior on the basis of

implemented policy changes. The macroeconomic models should therefore be designed

with parameters that are independent of the policy change. This was one of the main

points of the 1976 Lucas’ critique which importantly contributed to the rise of the micro-

founded macroeconomic models. These models are constructed by aggregating models

of individual agent’s behavior, where expectations play an important role. Expectations

are most frequently modeled by using rational expectations paradigm. Rational expec-

tations assume agents’ knowledge about the underlying model, knowledge that is shared

among all participating agents. This enables agents to derive an optimal forecast rule
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which remains constants under given policy regime. Rather strong assumptions of the

rational expectations hypothesis have been subject of criticism that they are unrealistic

(see Sargent, 1993). Several behavioral models of expectations have since gained ground,

adaptive learning (see Evans and Honkapohja, 2001) being one of the most important

ones. These models assume that agents are boundedly rational when forecasting the state

of the economy. Allowing for heterogeneity and using expectations models other than

rational expectations may be inconvenient for analysis since properties like model con-

sistency, unbiased forecasts, and the fact that prices fully reflect the information available

to the market. Moreover, they may not converge to optimal (rational expectations) equi-

librium or they may converge to some other equilibria. An empirical investigation about

the ways how expectations are formed is an important factor in confirming the validity of

alternative behavioral models.

Survey data based analysis is the most common approach of empirically testing the prop-

erties of expectations distribution and its evolution. Examples of such works are Carroll

(003a) and Branch (2004, 2007). Experimental work about expectation formation has

gained increasing intention especially since Marimon and Sunder (1993) demonstrated

how adaptive learning can explain experimental subjects converging to low inflation equi-

libria, thus solving the equilibrium indeterminacy problem. Analysis based on laboratory

experiments, has some clear advantages over survey based analysis. Experimentalist has

control over the number of forecasters, number of forecasting periods and most impor-

tantly, over the information set available to subjects. Notable forecasting experiments

include Hommes et al. (2005b), Adam (2007) and Heemeijer et al. (2009).

Our work in Chapter 1 distinguishes from the existing literature by focusing the analysis

on the individual behavior and comparing how different monetary policy rules affect the

choice of forecasting rules by subjects. We use a simplified version of New Keynesian

framework as the underlying model of an experiment where subjects have to forecast

inflation on the basis of past values of inflation, output gap, and interest rate. Different

treatments are defined by alternative specifications of Taylor rule. These specifications

determine how strong the stabilizing effect of the monetary policy on the economy is. We

test the behavior of each individual against several simple models of forecasting, including

adaptive expectations, rational expectations, autoregressive model, trend extrapolation,

and adaptive learning. We show that subjects are indeed heterogeneous in ways how they

forecast inflation and that large proportion of subjects use backward looking models for

forecasting. The proportion of backward looking subjects increases when the variance of

inflation is higher. We also show that there is a significant proportion of subjects that use

some form of adaptive learning to make their forecasts.
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In Chapter 1 we also demonstrate that models that allow the use different simple models

interchangeably in the forecasting process perform better in describing subjects’ behavior.

Results represent an empirical support for the models that assume endogenous switching

between forecasting models. We also analyze the effect of different instrumental rules

across treatments. Rules that use actual rather than forecasted inflation produce lower

inflation variability and alleviate expectational cycles.

In Chapter 2 the same macroeconomic framework is used to analyze inflation expecta-

tions. However, in this chapter the focus of analysis is on the underlying uncertainty,

rather than on the point forecasts. Subjects are asked to provide their 95% confidence

interval along their point forecast of inflation. The concept of inflation uncertainty is es-

pecially important for central banks. It has been shown (for example Levi and Makin,

1980) that higher inflation uncertainty is accompanied with lower output. Inflation tar-

geting central banks can see inflation uncertainty as a measure of effectiveness of their

communication strategies. However, analyzing the aggregate distribution of expectations

alone does not represent the best way of assessing uncertainty since expectation variance

can be caused by both, individual uncertainty and disagreement between individual fore-

casts. Only comparison of the individual expectations can help to distinguish between the

two effects.

Empirical research on the inflation expectation is mostly based on the survey data. Zar-

nowitz and Lambros (1987) for example show that distinguishing individual uncertainty

and interpersonal disagreement is important since the two can vary quite differently. Later

research has offered mixed evidence regarding the role of disagreement in forecasting un-

certainty. Experimental research in forecasting uncertainty has been done mainly in psy-

chology literature where studies focus mainly on independent event forecasts while only

a few studies ask subjects for confidence intervals in experimental economic research.

We add to existing literature by providing a detailed time-series analysis on the determi-

nants that affect the individual uncertainty and those that affect disagreement. We show

that there are different factors affecting the two measures which helps to explain different

effect they have on explaining inflation variation. These effects are analyzed by using av-

erage confidence interval, average forecast error, standard deviation of point forecasts and

interquartile range of the aggregate distribution for comparison. We identify the overcon-

fidence effect in the analysis of forecasting accuracy. Individual expectation distribution

skewness is also analyzed. We design treatments where subjects have to provide sym-

metric confidence intervals and those, where subjects can provide lower and upper bound

along with their point forecast.

Chapter 3 diverges from the first two chapters, by analyzing the behavior of subjects in
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a sequential auction experiment. In particular we concentrate on the role of uncertainty

about the size of competition on the market and its influence on the auction price. It has

been long known that in an auction where identical goods are sold in a sequence, prices

for the later goods are usually lower than the prices for earlier goods. Weber (1983)

provides the conditions under which sequential sale of identical goods should result in the

same price on average for all the goods. Empirical research trying to explain the price

decline phenomenon has mostly concentrated on investigating conditions proposed by

Weber. The role of uncertainty about the number of competitors for the price formation

in sequential unit auctions has received less attention.

We provide a theoretical example that under given assumptions prices of two units of the

same good sold in a sequence remain constant even if the number of bidders is unknown,

as long as there is common knowledge of the probability distribution function over the

number of bidders. We add to the literature by designing an auction experiment which

investigates the effect of competition uncertainty on average prices for two units of the

same good sold in a sequence. Our experiment consists of three treatments: one with

3 bidders; second with 6 bidders and third with either 3 or 6 bidders that are uncertain

about the number of their competitors. We identify price decline phenomenon in all three

treatments and analyze mean auction prices, action efficiencies and seller’s revenues. We

also provide some analysis of individual bidding strategies and show that uncertainty

influences subjects’ strategies even when optimal strategy does not depend on the number

of competitors.
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Chapter 1

Inflation Expectations and Monetary

Policy Design

1.1 Introduction

This chapter discusses an experimental study on the expectations formation process within

a macroeconomic framework. Recently, with the development of explicit microfounded

models expectations have become pivotal in the modern macroeconomic theory. Central

banks increasingly attribute more importance to the developments of households’ inflation

expectations as they signal future inflationary risks. In line with this development, several

theoretical models concerning expectations formation process have been proposed. They

postulate informational frictions and heterogeneity of expectations as the main features of

the expectation formation process. However, so far these models and their main assump-

tions have not been subject to rigorous empirical tests. A thorough assessment must rely

on micro-level data and the associated distribution, while empirical contributions so far

mostly employ aggregate data.1 Moreover, to evaluate some new theories of expectation

formation, e.g. adaptive learning,2 we need to assure that agents’ current information sets

encompass all the information from the previous periods. Controlled laboratory environ-

ment avoids these methodological issues that are present in the survey data. In Chapter 1

we analyze individual data on inflation expectations gathered from an experimental econ-

omy and test them for different theoretical models. Insights into households’ expectation

formation provide useful guidance to central banks how to anchor inflation expectations.

1Recently, there have been some studies based on micro survey data, e.g. Branch (2004, 2007) and Pfaj-

far and Santoro (2010). These studies have confirmed that agents only infrequently update their information

sets and that they use different theoretical models to forecast inflation.
2Adaptive learning assumes that subject are acting as econometricians when forecasting, i.e. reestimat-

ing their model each time new data becomes available. See Evans and Honkapohja (2001).
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After establishing some stylized facts about that we focus on the relationship between

policy actions and the formation of inflation expectations. Better understanding of this re-

lationship has been stressed by the Chairman of the Federal Reserve Bernanke (2007) as

crucial for the conduct of monetary policy. Advantage of our experiment lies in the usage

of the New Keynesian framework and in possibility to compare the aggregate dynamics

of inflation and output gap and the effectiveness of monetary policy with the results from

the theoretical analysis. We study this question by employing several simple monetary

policy rules in different treatments and examine potential implications of the design of

monetary policy for forecasting inflation.

We provide substantial evidence in support of heterogeneity in the forecasting process.

When analyzing individual responses from students of the Universitat Pompeu Fabra and

Tilburg University, we find that agents form expectations in accordance with different

theoretical models. In our sample approximately 30− 45% of agents are rational and

around 30− 35% of agents predominately extrapolate trend. In addition, 15− 25% of

agents mostly behave in line with adaptive learning and sticky information type models

and about 5−10% of agents forecast in an adaptive manner, updating their forecast with

respect to the last observed error. Therefore, contrary to the findings of previous experi-

mental studies, we observe a significant proportion of rational subjects. However, as it is

not straightforward to define a rational subject, we explore different definitions in order

to establish some robustness of our conclusions. Adaptive learning results are also novel

as our work represents one of the first estimations of the gain parameter. The average

gain of agents that employ adaptive learning models is around 0.045. Furthermore, when

we allow agents to switch between different models, we find that adaptive learning mod-

els are the most popular models for forecasting inflation: 36.7% of all forecasts in our

experiment are made with this class of models.

Rather than sticking to one model, switching between alternative models seems to de-

scribe subjects’ behavior better. We observe that on average subjects switch every 4

periods. Therefore, Chapter 1 provides an empirical support for models that postulate

endogenous switching, and assume that it is not always optimal to form beliefs in a ra-

tional way (e.g. Brock and Hommes, 1997). It could be optimal for some agents in at

least some periods to commit to systematic errors as this might be less costly than using

a rational rule. Furthermore, we also show that agents use different models as on average

in each period 4.5 different models are used in groups of 9 subjects. This suggests that

observed heterogeneity is pervasive.

Only a few experimental studies investigate the expectation formation process. The first

experiments were performed in a no-feedback environment (e.g. Schmalensee, 1976) and
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lately some studies have also incorporated a feedback effect in their framework. However,

these tend to analyze the expectation processes in an asset pricing setup. Some tests of

the rational expectation hypothesis have been conducted within a simple macroeconomic

setup (e.g. Williams, 1987; Marimon et al., 1993; Evans et al., 2001; Adam, 2007).3

These studies mainly focus on aggregate expectations formation and tend to reject the

rational expectations assumption in favor of adaptive way of forming beliefs. On the con-

trary, we focus on the analysis on the behavior of individuals. Our framework allows us to

ask the same agents to provide their forecasts over the whole time span. Some analysis of

the micro expectations data is conducted by Marimon and Sunder (1995) and Bernasconi

and Kirchkamp (2000) in an overlapping generations framework. These authors estimate

several different regressions in order to study inflation expectation formation and find that

most subjects behave adaptively, although Bernasconi and Kirchkamp (2000) provide ev-

idence that adaptive expectations are not of first order degree as argued in Marimon and

Sunder (1995). Arifovic and Sargent (2003) also address the issue of inflation expecta-

tions formation and study the adaptive hypothesis on individual responses. They focus

on the time inconsistency problem, asserting that in many cases policy makers achieve

time-inconsistent optimal inflation rate, although in some treatments the economy moves

towards sub-optimal (Nash) time consistent outcomes. They find support of adaptiveness

and some evidence of heterogeneity of forecasts. Similarly, Fehr and Tyran (2008) sug-

gest that expectations of individuals are heterogeneous. They study the adjustments of

nominal prices after the anticipated monetary shock. "Learning to forecast" experiments

are also conducted within the asset pricing framework characterized, as in our case, by

positive feedback (see e.g. Hommes et al., 2005b and Haruvy et al., 2007).4 These studies

conclude that most subjects (90%) use simple rules to forecast prices looking at one, two

or, at most, three lags of prices.

The baseline experiment described below is repeated under different monetary policy

regimes to assess how alternative conducts of monetary policy influence the expectation

formation process and the degree of heterogeneity. Monetary policy is modeled using

different Taylor-type rules that are commonly used in the literature. Their effectiveness is

then compared in terms of variability of inflation and inflation forecasts. We explore how

different monetary policy settings anchor inflation expectations. We find that the vari-

ability of inflation is significantly affected by the degree of aggressiveness of monetary

policy. Our results also suggest that instrumental rules responding to contemporaneous

inflation perform better than rules responding to inflation expectations. Furthermore, the

3See Duffy (2008) for a survey on experimental macroeconomics. Most studies have been conducted

in OLG economies with seignorage. Thus our framework is most closely related to the framework of Adam

(2007) who studies the expectation formation process in a monetary sticky price environment.
4See also Hommes (2011) for a short survey.
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design of monetary policy significantly affects the degree of heterogeneity – especially

the proportion of trend extrapolation rules – and thus the stability of the main macroeco-

nomic variables. The proportion of trend extrapolation rules increases in an environment

characterized by excessive inflation variability and expectational cycles and then further

amplifies the cycles. Thus, it is imperative to design a monetary policy that is robust to

different expectation formation mechanisms.

Marimon and Sunder (1995) compare different monetary rules in the overlapping genera-

tions (OLG) framework to see their influence on the stability of the inflation expectations.

In particular, they focus on the comparison between Friedman’s k-percent money rule and

the deficit rule where the government is fixing the real deficit and finance it through the

seigniorage. They provide some evidence in support of Friedman’s rule which could help

to coordinate agents beliefs and help to stabilize the economy. Similar analysis is also per-

formed in Bernasconi and Kirchkamp (2000). The latter argues that Friedman’s money

growth rule produces less inflation volatility, but higher average inflation compared to

constant real deficit rule.5

Closer to our framework is the experiment by Adam (2007). He conducts experiments

in a sticky price environment where inflation and output depend on expected inflation

and analyzes the resulting cyclical patterns of inflation around its steady state. These

cycles exhibit significant persistence and he argues that they closely resemble an restricted

perception equilibrium6 where subjects make forecasts with simple underparameterized

rules. In our experiment we also detect cyclical behavior of inflation and output gap

in some treatments, however we show that these phenomena are not only associated with

underparameterization but also with heterogeneity of expectations, the design of monetary

policy and (its influence on) the degree of backward-looking behavior.

This chapter is organized as follows: Section 1.2 describes the model for experimental

analysis. Section 1.3 outlines the experimental design. In Section 1.4 we focus on the

analysis of individual responses while in Section 1.5 we analyze switching dynamics

between different models. Section 1.6 links the results to the monetary policy design

and Section 1.7 concludes.

5The effects of monetary policy design on expectations were also examined in Hazelett and Kernen

(2002) were they search for hyperinflationary paths in the laboratory.
6Restricted perception equilibrium is generally more volatile than rational expectation equilibrium (for

more details see Evans and Honkapohja, 2001).
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1.2 Model

In our experiment we use a forward-looking sticky price New Keynesian (NK) monetary

model with different monetary policy reaction functions. The advantage of the NK model

is that it is widely used in policy analysis and allows us to compare our experimental

results with those obtained theoretically. However, there are two implicit complications

for the participants. First, it requires them to forecast two periods ahead. It would defi-

nitely be easier for participants to produce a one period ahead forecast (sometimes called

"nowcasting") as they would observe the realizations immediately after their forecasts are

made. This would also enable us to simplify the analysis of individual responses, espe-

cially in the case of adaptive learning. The second complication is that forward-looking

NK models assume that agents have to forecast both inflation and the output gap. We

were afraid that this would represent an overly difficult task for the subjects. This was

a considerably more difficult decision to make as asking the participants to only forecast

inflation meant departing from the standard macro model. Nevertheless, we decided not

to compromise the experiment by complicating the task for the subjects. We leave the

fully forward-looking NK model for future work.

The baseline framework in the NK approach is a dynamic stochastic general equilibrium

model with money, nominal price rigidities, and rational expectations (RE). Lately, some

authors have augmented this model for adaptive learning and also for heterogeneous ex-

pectations (e.g. Branch and McGough, 2009). The model consists of a forward-looking

Phillips curve (PC), an IS curve, and a monetary policy reaction function.7

In Chapters 1 and 2 we decided to focus on the reduced form of the NK model, where we

can clearly elicit forecasts and study their relationship with monetary policy. Of course,

there is a trade-off between using the model from "first principles" and employing a re-

duced form. The former has the advantage of setting the objectives (payoff function)

exactly in line with the microfoundations. However forecasts are difficult to elicit in this

environment, where subjects act as producers and consumers and interact on both the

labor and final product markets and do not explicitly provide their forecasts (for this ap-

proach, see Noussair et al., 2011). Therefore, an appropriate framework for the question

that we address in Chapter 1, is the "learning to forecast" design where incentives are

set in order to induce forecasts as accurate as possible. In this framework, we do not

assign subjects a particular role in the economy; they rather act as "professional" fore-

casters. One way to think about the relationship between "professional forecasters" and

consumers/firms is that these economic subjects employ professional forecasters to pro-

7Detailed derivations can be found in, e.g., Woodford (1996), or textbooks such as Walsh (2003) or

Woodford (2003).
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vide them with forecasts of inflation.

The information set at the time of forecasting consists of macro variables at the time t−1,

although the forecasts are made in period t for period t+ 1. Mathematically, we denote

this as Etπt+1, although strictly speaking it should be denoted as Et (πt+1|It−1). In fact,

Et (a forecast made in period t with the information set t− 1) might not be restricted to

just rational expectations.

The IS curve is specified as follows:

yt =−ϕ (it−Etπt+1)+ yt−1+gt , (1.1)

where the interest rate is it , πt denotes inflation, yt is output gap, and gt is an exogenous

shock. The parameter ϕ is the intertemporal elasticity of substitution in demand. It will be

noted that we do not include expectations of the output gap in the specification. Instead,

we have a lagged output gap. In principle, one could argue that this specification of the

IS equation corresponds to the case when agents have naive expectations about the output

gap. The main reason for including a lagged output gap in our specification is that we

want another endogenous variable to influence the law of motion for inflation. Even in

the case when agents have rational expectations they have to use the observed information

on the output gap to forecast inflation as this enters into the perceived law of motion of

the rational expectations form. Compared to purely forward-looking specifications, our

model might display more persistence in the output gap. This is our most significant

departure from an otherwise standard macroeconomic model.

Aggregating across the price setting decisions of individual firms yields the linear rela-

tionship in the equation (1.2). Thus, the supply side of the economy is summarized in the

following PC:

πt = βEtπt+1+λyt+ut . (1.2)

On average, the longer prices are fixed, i.e. the smaller λ is, the less sensitive inflation is

to the current output gap. The parameter β is the subjective discount rate. The shocks gt

and ut are unobservable to subjects and follow the following process:[
gt

ut

]
= Ω

[
gt−1

ut−1

]
+

[
g̃t

ũt

]
;

Ω =

[
κ 0

0 ν

]
,

where 0< |κ|< 1 and 0< |ν |< 1. g̃t and ũt are independent white noises, g̃t v N
(
0,σ2

g

)
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and ũt v N
(
0,σ2

u

)
. In the NK literature it is standard to assume AR(1) shocks. gt could

be seen as a government spending shock or a taste shock and the standard interpretation of

ut is a technology shock. All these shocks are found to be quite persistent in the empirical

literature (see e.g. Cooley and Prescott, 1995 or Ireland, 2004). In the experimental con-

text it is important to have some exogenous unobservable component in the law of motion

for endogenous variables, so we avoid the extreme case where all agents coordinate on

the forecasts identical to the inflation target. Without AR(1) shock this would represent

the dominant strategy. This is especially relevant concern as we initialize the model in a

rational expectations equilibrium (REE).

1.2.1 Monetary policy reaction functions

To close the model, we have to specify the interest rate rule.8 We use two alternative

Taylor-type rules in different treatments. Most of our attention is devoted to forward-

looking reaction functions: inflation forecast targeting where the interest rate is set in

response to inflation expectations. We study three parametrizations of this rule and in-

vestigate how different degrees of central bank’s aggressiveness in stabilizing inflation

influence inflation expectations. Successively, we ask whether it is better for the central

bank to respond to current or expected inflation, and therefore we also analyze the pure

inflation targeting.

We start with the following interest rate rule (Inflation Forecast Targeting):

it = γ (Etπt+1−π)+π. (1.3)

In this version, the central bank responds to deviations in inflation from the target, π . It

is implicitly assumed that the central bank observes the average prediction of subjects.

We vary γ in different treatments and study the stability of the system under alternative

reaction coefficients attached to inflation.

The second alternative specification is Inflation Targeting, where the monetary authority

is assumed to respond to deviations in contemporaneous inflation from the inflation target:

it = γ (πt−π)+π. (1.4)

8Engle-Warnick and Turdaliev (2010) conduct experiments on monetary policy rules. Their subjects

are only told to act as policymakers and to stabilize inflation. Most of the subjects control inflation relatively

well and the authors argue that Taylor rules provide a good description of the subjects’ policy decisions.
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1.2.2 Calibration

We use the McCallum and Nelson (2004) calibration. This is a standard calibration for

NK models. In order to have positive inflation for most of the periods we set the inflation

target to π = 3. A summary of the calibration is reported in Table 1.1.

β = 0.99 π = 3 ν = 0.6

ϕ = 0.164 λ = 0.3 κ = 0.6

Table 1.1: McCallum-Nelson Calibration

The different treatments are fully comparable as they all have exactly the same shocks. In

particular, κ and ν are calibrated to 0.6, while their standard deviations are 0.08.

1.3 Experiment

1.3.1 Design

The experimental subjects participated in a simulated economy with 9 agents.9 Each ses-

sion of a treatment has 2 independent groups ("economies"), and therefore 18 subjects

participate in each session. All the participants were recruited through recruitment pro-

grams for undergraduate students at the Universitat Pompeu Fabra and the University of

Tilburg. Invitations to apply were sent to all of the approximately 1300 students in a

database at Pompeu Fabra and to about 1200 students at Tilburg, except to those that had

already participated in one of our sessions before. There are 70 periods in each treat-

ment. We scaled the length of each decision sequence and the number of repetitions in

such a way that each session lasted approximately 90 to 100 minutes, including the time

for reading the instructions and 5 trial periods at the beginning. On average, the partic-

ipants earned around €15, depending on the treatment and individual performance. The

program was written in Z-Tree experimental software (Fischbacher, 2007).

The subjects are presented with a simple fictitious economy setup. As shown above, the

economy is described with three macroeconomic variables: inflation, the output gap and

9Most of the learning to forecast experiments are conducted with 5-6 subjects, e.g. Hommes et al.

(2005b), Adam (2007), Fehr and Tyran (2008).
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the interest rate. The participants observe time series of these variables in a table up to

period t−1. 10 initial values (periods −9, . . . ,0) are generated by the computer under the

assumption of rational expectations. The subjects’ task is to provide inflation forecasts

for the period t+ 1. The underlying model of the economy is qualitatively described to

them. We explain the meaning of and the relationship between the main macroeconomic

variables and inform them that their decisions have an impact on the realized output,

inflation and interest rate at time t. Omitting details of the underlying model is a common

strategy in the learning to forecast experiments (see Duffy, 2008, and Hommes, 2011). In

learning to forecast experiments it is not possible to achieve REE (Rational Expectations

Equilibrium) simply by introspection. This holds even if we provide subjects with the data

generating process as there exists uncertainty how other participants forecast, so subjects

have to engage in a number of trial and error exercises or in other words adaptive learning.

It has been analytically proven in Marcet and Sargent (1989) and further formalized in a

series of papers by Evans and Honkapohja (see their book: Evans and Honkapohja, 2001)

that it is enough that agents observe all relevant variables in the economy (as in our case,

where they are specifically instructed that all of them might be relevant) and update their

forecasts according to the adaptive learning algorithm (their errors) they will end up in

the REE.10

In every period t, subjects have to decide about: i) a prediction of the t+1 period inflation;

and ii) the 95% confidence interval of their inflation prediction. The way how they report

the confidence interval depends on the treatment and is described in the section below.

After each period, the subjects receive information about the realized inflation in that

period, their prediction of it, and the payoff they have gained. The subjects’ payoffs

depend on the accuracy of their predictions. The accuracy benchmark is the actual infla-

tion rate computed from the underlying model on the basis of the predictions made by

all the agents in the economy. We replace Etπt+1 in equations (1.1), (1.2), and (1.3) by
1
K ∑

k
πk

t+1|t , where πk
t+1|t is subject k’s point forecast of inflation (K is the total number of

subjects in an economy). Mean, rather than median forecast of subjects is used as an input

to the model since it better complies with the assumptions of the underlying New Key-

nesian model. In the subsequent rounds the subjects are also informed about their past

forecasts. They do not observe the forecasts of other individuals or their performance.

10Kelley and Friedman (2008) provide a survey of experiments that support the theoretical result above.

Examples of learning to forecast experiments are e.g., Adam (2007) and Hommes et al. (2005b).
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The payoff function, W , is the sum of two convex components as described below:

W = W1+W2,

W1 = max

{
1000

1+ f
−200, 0

}
,

W2 = max

{
1000x

1+CI
−200, 0

}
,

x =

{
1 if CI ≥ f

0 if otherwise
,

f =
∣∣∣πt−π

k
t+1|t

∣∣∣ .
The first, W1, depends on the subjects’ forecast errors and is designed to encourage them

to give accurate predictions. It gives subjects a payoff if their forecast errors, f , are

smaller than 4. The second, W2, depends on the width of their confidence interval and

is intended to motivate subjects to think about the variance of actual inflation since it is

more rewarding when it is narrower. CI is either equal to their point estimate of con-

fidence interval or half of the difference between the upper and the lower bound. The

subjects receive a reward if their confidence intervals, CI, are no greater than ±4 per-

centage points, conditional on the fact that actual inflation falls within the given interval:

CI ≥
∣∣∣πt−πk

t+1|t

∣∣∣. With this setup we restrict payoffs to positive values. Compared to

more standard quadratic payoff functions, ours gives a greater reward for more accurate

predictions and provides an incentive to think also about small variations in inflation,

which may be important. As this experiment can potentially produce quite different vari-

ations in inflation between different sessions it is important to keep the incentive scheme

quite steep. The payoff function is non-linear. Therefore, we accompanied it with a gen-

erous explanation and a payoff matrix on a separate sheet of paper to make sure all the

participants understood the incentives. A similar approach is used in Adam (2007).

The participants received detailed instructions before the experiment started. They can be

found in appendices A and B. To ensure understanding of the task, we read instructions

out loud and presented the task descriptively along with examples. The subjects also filled

in a short questionnaire after they had read the instructions and answered the questions

about the procedures to make sure that they understood them.

1.3.2 Treatments

There are eight treatments in our experiment. Each treatment can be denoted as X p, where

p represents one of the four monetary policy regimes and X represents one of the two types
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of the confidence interval input. Subjects thus report their forecasting confidence in two

ways: in the first, call it A, subjects report the interval as the number of percentage points

within which their prediction is accurate. In the second, call it B, subjects are simply

asked for the lower and the upper bound of their inflation prediction interval. For each p,

there are 4 independent groups for A, and two independent groups for B.

Since only the point forecast of each subject is used for calculating Etπt+1 in our model,

confidence intervals are irrelevant for the outcome of the model. Our analysis in Chapter

1 will therefore treat the treatments with the same policy specification as equal. For

convenience reasons we will refer in Chapter 1 to treatments Ap and Bp as "treatment p".

The analysis of confidence intervals and comparison of treatments Ap to Bp is performed

in Chapter 2 where we concentrate specifically on forecaster’s uncertainty.

Each of the four monetary policy regimes is defined by a different monetary policy reac-

tion function. There are 6 independent groups for each policy.

Treatment Groups Taylor rule (equation) Parameters

Inflation forecast targeting (1) 1-6 Forward looking (1.3) γ = 1.5

Inflation forecast targeting (2) 7-12 Forward looking (1.3) γ = 1.35

Inflation forecast targeting (3) 13-18 Forward looking (1.3) γ = 4

Inflation targeting (4) 19-24 Contemporaneous (1.4) γ = 1.5

Table 1.2: Treatments

The first three treatments, which are shown in Table 1.2, deal with the parametrization

of the inflation forecast targeting given in equation (1.3). In this setup, the coefficient γ

determines central bank’s aggressiveness in response to deviations of inflation from its

target. It is also believed that the higher the γ is, the stronger the stabilizing effect of the

monetary policy rule is. It is of key interest to see how subjects react to more and less

aggressive interest rate policies. Moreover, in a controlled environment we test whether

different slope coefficients indeed have the expected stabilization effect.

The majority of empirical findings agree that the magnitude of the slope coefficient is

around 1.5. Generally, when γ > 1 the interest rate rule is E-stable and produces a deter-

minate outcome11 (Taylor principle), while when γ ≤ 1 it is E-unstable and indeterminate.

When the Taylor principle holds all our treatments yield determinate and E-stable REE.

11E-stability is asymptotic stability of an REE under least sqares learning. By determinacy we mean

the existence of a unique dynamically-stable REE. For more detailed definition see Evans and Honkapohja

(2001).
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Initially, we planned to perform a treatment with γ < 1 to check whether this leads to in-

stability, but findings from the pilot treatments convinced us this was not a suitable choice

as subjects quickly reached extremely high levels of inflation, which never returned to the

target level. In this case the effect of output gap on inflation never outweighs the expected

inflation effect. Such explosive behavior of the system suggest that the Taylor principle

holds.

For our first and benchmark treatment we decided to follow Taylor and chose γ = 1.5. The

average behavior of groups in this treatment showed no convergence to target inflation,

so we choose γ = 1.35 as a sufficiently different case for a comparison. Alternatively, we

chose γ = 4 as a parametrization with a high stabilizing effect where convergence to the

target inflation should be faster.

In treatment 4 we focused on what measure of inflation central banks should target: that

expected by the subjects or actual inflation. We performed a treatment using an inflation

targeting rule where the central bank reacts to current inflation, with γ = 1.5, as in our

benchmark case.

1.3.3 Summary of results

Below we present a brief summary of our experimental results. In 4 treatments of our

experiment and 24 independent groups we gathered 15,120 point forecasts of inflation

from 216 subjects. The mean inflation forecast for all treatments is around 3.06% and

the mean inflation is 3.02% when the inflation target is set at 3%. The standard devia-

tions of inflation and inflation expectations vary substantially across groups. For inflation

expectations the largest is 6.31 and the lowest 0.23 while for inflation the largest is 5.83

and the smallest is 0.24. Standard deviations of inflation forecasts are usually higher than

standard deviations of inflation for groups with higher volatility, while for groups with

lower volatility this might not necessarily be the case. Table 1.3 displays summary statis-

tics for each group, while Figure A.1 in Appendix A displays the distribution of inflation

forecasts in each treatment.

Inflation paths of all independent groups in each treatment are shown in Figure 1.1. One

can observe that there are substantial differences in variability between different groups

in each treatment and also that treatments 3 and 4 resulted in less volatile inflation on

average. These differences may be due to treatment effects, different learning models

used by subjects, group effects based on the learning models used, or some arbitrary

subject effects. In group 2 of treatment 1, for example, one subject mistakenly inserted

value 52 instead of 5.2, which resulted in sudden increase in inflation. In later sessions

12
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Figure 1.1: Group comparison of realized inflation by treatment. Treatment 1 has inflation fore-

cast targeting (IFT) with γ = 1.5. Treatment 2 has IFT with γ = 1.35. Treatment 3

has IFT with γ = 4. Treatment 4 has inflation targeting with γ = 1.5.

we prevented that kind of mistakes by implementing a warning window when a value

sufficiently differed from the previous input. Individual learning effects are presented in

Section 1.4 while treatment effects are discussed in Section 1.6.

In Figure 1.2 it is possible to distinguish signs of a rounding effect (or digit preference).12

This is especially evident for the responses below 0 and above 6, where we can observe a

clear pattern that resembles rounding: the frequency of responses are significantly higher

for round numbers than for the neighboring decimal numbers. A closer inspection reveals

that rounding is also present for the responses between 0 and 6, only that rounding here

does not take place only for responses such as 2, 3 and 4, but also for 2.5 and 3.5. This

is due to the fact that in treatments where variability is lower subjects round on the basis

of a smaller grid. Overall, we notice that 72% of all responses are reported to within one

decimal point accuracy, while 13% of them are to an accuracy of 2 decimal points. The

remaining 15% of forecasts are rounded as integers. The overall share of the latter is sig-

nificantly higher for the groups with higher volatility compared to the groups displaying

lower volatility.

12The full range of the responses reported is between −13.9 and 24. However we restrict this histogram

to responses between −3 and 10.
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Figure 1.2: Histogram of inflation forecasts for all treatments.

However, it should be noted that survey data usually display more rounding, particularly

the Michigan survey (see Curtin, 2005, Bryan and Palmqvist, 2005). Subjects in exper-

iments are paid according to their performance and thus the accuracy of their forecasts

always matters. On the contrary, in survey data we can observe the effect of inatten-

tiveness13 when inflation is low and stable. In this environment it can be said that the

forecast accuracy is relatively less important than in the periods when inflation is more

volatile and higher. The mean of forecast errors in our experiment is 0.04 and the stan-

dard deviation is 1.23. Thus, there is only a slight positive bias of errors. Furthermore,

our subjects overpredict in 51.2% of cases and underpredict in 48.8%. A detailed analysis

of the confidence intervals is presented in Chapter 2.

1.4 Analysis of individual inflation forecasts

The analysis of individual responses focuses in the first part on learning dynamics. Several

learning models are simulated in order to find the best fit of each individual series on

expectations. We also estimate other standard models of expectation formation including

common rationality tests. All these models are estimated for each individual using OLS.

Reported results are with robust standard errors that, where appropriate, take into account

the presence of clusters in groups (or treatments). Below we present each of these tests

and briefly comment estimation for all subjects while in the discussion we determine the

13Inattentiveness was first discussed by Mankiw and Reis (2002).
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best-performing model for each subject. In the next section we dig deeper and investigate

potential switching of subjects between different models.

1.4.1 Tests of rational expectations

Several econometric tests are designed to check the rationality of forecasts. In this sub-

section we apply some standard tests commonly employed in the survey data literature.14

We assess different degrees of forecast efficiency and check whether forecasts yield pre-

dictable errors. The simplest test of efficiency is a test of bias:

πt+1−π
k
t+1|t = α, (1.5)

where πt+1 is inflation at time t+ 1 and πk
t+1|t is kth subject’s inflation expectations for

time t+1 made at time t (with information set t−1). By regressing expectational errors

on a constant we check whether inflation expectations are centred around the right value.

Majority of agents produce unbiased estimates of inflation. Overall, only 7.9% of them

produce biased estimates at a 5% significance level and only 4.6% at a 1% threshold.

Most of them are from treatments 2 and 4.

The next regression represents a further test for rationality:

πt+1 = a+bπ
k
t+1|t . (1.6)

As in Mankiw et al. (2004) the last expression can be simply augmented to test whether

information in forecasts are fully exploited:

πt+1−π
k
t+1|t = a+(b−1)πk

t+1|t , (1.7)

where rationality implies jointly that a = 0 and b = 1. As in the test for bias, under the

null of rationality these regressions are meant to have no predictive power. The latter

model is a more strict test of rationality and is seldom fulfilled in the survey data liter-

ature. On the contrary, our results suggest that 28.7% of agents exploit all the available

information at a 5% significance level and 42.1% of them when we decrease the threshold

to 1%. Treatment 2 is associated with the highest proportion of rational agents (48% and

57%, accordingly). Compared to other experimental studies, these tests suggest that a

significant proportion of subjects behave rationally, although in asset pricing experiments

Heemeijer et al. (2009) find a significant proportion of fundamental traders. These can be

14See Pesaran (1987), Mankiw et al. (2004) and Bakhshi and Yates (1998) for a review of these methods.
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associated with rational expectations. Also Roos and Luhan (2008) show that about 23%

of subjects do not have biased price expectations.15

1.4.2 Sticky information type regression

In this section we estimate a simple weighted average regression similar in formulation

to sticky information model by Carroll (003a) with adaptive expectations. In our frame-

work we have forecasts derived under the assumption of rational expectations while Car-

roll (003a) implements professional forecaster predictions. We estimate the following

equation:

π
k
t+1|t = λ 1π

RE
t+1|t+(1−λ 1)π

k
t|t−1; (1.8)

π
k
t+1|t = λ 1η0+λ 1η1yt−1+(1−λ 1)π

k
t|t−1, (1.9)

where πRE
t+1|t is a rational expectations prediction of inflation for period t+ 1 at period t.

This type of model is important for forecasting, especially in our framework, where some

agents are backward-looking and rational agents have to incorporate also the backward-

looking behavior into their forecasts. Thus we estimate a model (1.9) that is stated in

terms of observable variables with the restrictions on all coefficients, where η0 and η1

are REE coefficients. Our formulation is inherently different than the one by Carroll

(003a, 003b) as epidemiological framework that he proposes is no longer valid in our

setup where subjects in principle observe all relevant information.16 About 97% of agents

display a significantly positive λ 1, while the average λ 1 is 0.20. Groups in treatment 3

had the highest average λ 1 (0.37), while subjects in treatment 2 had the lowest (0.11).

It is not straightforward to define rationality in our framework and thus the results can

be challenged on these grounds. The definition used in this subsection corresponds to

REE if all agents in the group form expectations rationally. Similar weighted average

regressions are estimated in Heemeijer et al. (2009), where they replace RE prediction

with the equilibrium price.

1.4.3 Trend extrapolation rule

We also evaluate simple trend extrapolation rules. These are pointed out as particularly

important rules for expectation formation process in Hommes et al. (2005b). We specify

15In field experiments by Berlemann and Nelson (2005) similar rationality tests were conducted sug-

gesting that most participants exploit all available information.
16He argues that news about inflation spreads slowly across agents and reaches only a fraction λ 1 of

population in each period.
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the following process:

π
k
t+1|t−πt−1 = τ0+ τ1 (πt−1−πt−2) , (1.10)

where we estimate τ0 and τ1. We find that constant is significant at 5% level in 28.7% of

cases while the τ1 is significant in 78.2% of cases at the same level. Most of the times τ1

is between 0 and 1, but there are a few cases when τ1 is significantly lower than 0 (6.9%)

and for 15.3% of subjects it is significantly higher than 1. We refer to the latter rules as

strong trend extrapolation. Hommes et al. (2005b) find that about 50% of subjects in their

experiment behave consistently with the trend extrapolation rule.

1.4.4 Estimating simple learning rules

In order to test for adaptive behavior, we apply different learning rules to experimental

data. For a discussion on learning rules and convergence to rational expectations see

Evans and Honkapohja (2001). We first test learning on a model with constant gain up-

dating (CGL), where subjects learn from their past observed errors. The model below is

equivalent to the adaptive expectations formula:

π
k
t+1|t = π

k
t−1|t−2+ϑ

(
πt−1−π

k
t−1|t−2

)
, (1.11)

where ϑ is the constant gain parameter. Under this learning rule agents revise their ex-

pectations according to the last observed error. In the experiment subjects are asked to

forecast inflation in the next period (hence they make their forecast for period t+1 at time

t), therefore the revision regards their previous period’s forecast (t−1), which is made at

time t− 2. Note that this rule corresponds to the second order adaptive scheme in Ma-

rimon et al. (1993). All participants have ϑ positive and significant at a 5 percent level.

13.4% of participants have a constant gain parameter significantly lower than 1, while

53.7% of them update their forecasts with an error correction term significantly greater

than 1. This means that the latter agents possibly overreact to their past errors. Their

prevalence might imply problems with dynamic stability in certain treatments.

Below we present a learning mechanism with decreasing gain parameter (DGL):

π
k
t+1|t = π

k
t−1|t−2+

ι

t

(
πt−1−π

k
t−1|t−2

)
. (1.12)

If the estimated parameter (ι in this version) is significantly different from 0, we conclude

that agents actually learn from their past mistakes with a decreasing gain over time. Our

tests do not support the hypotheses that the coefficient decreases over time as the R2 is
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always greater (for all subjects) for a constant gain model.

Several versions of these models are estimated in Arifovic and Sargent (2003), Hommes

et al. (2005b), Marimon and Sunder (1995) and Bernasconi and Kirchkamp (2000). Ho-

mmes et al. (2005b) argue that some subjects (about 5%) behave consistently with this

rule, while Marimon and Sunder (1995) and Bernasconi and Kirchkamp (2000) put for-

ward that most subjects in their OLG experiments use either first or second order adaptive

expectations.

Recursive representation of simple learning rules

The above specification mainly aims at testing whether data support the existence of adap-

tive behavior. In this subsection, as in the adaptive learning literature, we assume that

subjects behave like econometricians, using all the available information at the time of

the forecast. In the following specifications, we test whether agents update their coeffi-

cients with respect to the last observed error. We assume four different perceived laws of

motion (PLM):

π
k
t+1|t = φ 0,t−1+φ 1,t−1πt−1+ ε t . (1.13)

π
k
t+1|t = φ 0,t−1+φ 1,t−1yt−1+ ε t . (1.14)

π
k
t+1|t = φ 0,t−1+φ 1,t−1π

k
t|t−1+ ε t . (1.15)

π
k
t+1|t−πt−1 = φ 0,t−1+φ 1,t−1 (πt−1−πt−2)+ ε t . (1.16)

Note that equation (1.14) represents a PLM of the REE form and equation (1.16) a version

of the trend extrapolation rule. When agents estimate their PLMs they exploit all the avail-

able information up to period t−1. As new data become available they update their esti-

mates according to a stochastic gradient learning (see Evans et al., 2010) with a constant

gain. Let Xt and φ̂ t be the following vectors: Xt =
(

1 πt

)
and φ̂ t =

(
φ 0,t φ 1,t

)′
.

In this version of constant gain learning (CGL) agents update the coefficients according

to the following rule:

φ̂ t = φ̂ t−2+ϑX ′t−2

(
πt−Xt−2φ̂ t−2

)
. (1.17)

The empirical approach consists of searching for the parameter ϑ that minimizes the

sum of squared errors (SSE), i.e.
(

πs
t+1|t−πk

t+1|t

)2

(see Pfajfar and Santoro, 2010 for

details). The implicit problem in this approach is that we have to assume the initial values

for φ̂ t for 2 periods. Setting up the initial values is one of the main problems when

we recursively estimate learning. This issue is extensively discussed in Carceles-Poveda
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and Giannitsarou (2007). Strictly speaking, this problem should not occur in our case

since we simply try to replicate our time-series data as closely as possible. Thus, in the

following recursive learning estimations, we design an exercise in order to search for

the best combinations of the gain parameter and initial values to match each subjects’

expectations as closely as possible. This strategy can also be considered as a testing

procedure for the detection of the learning dynamics for each individual. If the gain is

positive under this method of initialization, then the series should exhibit learning for all

other initialization methods with higher (or equal) gain.

We find that 56.5% of participants learn according to the first setup with lagged inflation

as in model (1.13). The gain parameter ϑ is in the range between 0.0001 and 0.1000, with

a mean value of 0.02900 and the median is 0.01125. We also estimate adaptive learning

with the PLMs consistent of the REE form and AR(1) form, however these models rarely

outperform other models studied here. In the learning version of the trend extrapolation

model (1.16) 31.5% of subjects have positive gains. The optimal gains are on average

slightly higher than before as they range between 0.0003 and 0.7900 with a mean value

of 0.0654 (the median is 0.0310).

This version of the PLM (1.16) often performs better than previous versions of learning in

terms of SSE. Below we compare different models and find that this version of constant

gain learning indeed best represents the behavior of a significant proportion of our sub-

jects. For a comparison with other studies, we exclude from our sample all subjects for

which learning does not represent the best model.17 In this case, we find that the average

gain of these subjects is 0.0447 with a standard deviation of 0.0537 (median is 0.0260).

The standard deviation is quite high as there are a few very high values, but most of the

gains fall in the range between 0.01 and 0.07.

There are only a few estimates of the gain coefficient in the literature. Orphanides and

Williams (005a) suggest a gain between 0.01− 0.04 and Milani (2007) estimates it at

0.0183, while Pfajfar and Santoro (2010) find smaller gains (around 0.00021 for a similar

version of learning). Our results suggest slightly higher gains than most of the above

papers, but our data might be more volatile than the actual US inflation.

1.4.5 "General" models of expectation formation

Simple learning rules do not capture all macroeconomic factors that can affect inflation

forecasts. In this subsection we estimate some general models of expectation formation.

17We will consider Comparison 1 in the ?? and exclude model (1.14) as it is generally associated with

extremely high values of gain parameter.
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We specify the following regression:18

π
k
t+1|t = α+ γπt−1+βyt−1+µit−1+ζ π

k
t|t−1+ ε t . (1.18)

We find that 81.9% of agents take into account inflation when making their predictions.

About 56.0% of the subjects take interest rate into account, while 66.7% also regard

their own forecast from the previous period. Under some restrictions this equation could

represent the form of the RE solution of the model (ζ = 0).

For a comparison we also estimate a simple AR(1) model:

π
k
t+1|t = φ 0+φ 1π

k
t|t−1+ ε t . (1.19)

Similar model was already estimated with recursive learning. Model with constant coef-

ficients, in general, is not often used by subjects for forecasting inflation. The behavior of

forecast error is investigated in depth in the next chapter, in Subsection 2.3.1.

1.4.6 "Classical econometrician" and rational expectations

Before we discuss the best performing model for each individual we ask ourselves how

would a "classical" econometrician forecast inflation in this environment. We estimate

a regression for each period in time using only the available information that is on the

subjects’ screens. Of course, a more "sophisticated econometrician" could do a better job.

For example, exogenous shocks are not observable in our framework, but a better econo-

metrician could design an unobserved components model to extract information about the

autoregressive shocks and then use them in these regressions. In the RE paradigm shocks

play a significant part in the formation of expectations. In some treatments it is possible

to observe that at least some agents extract information about the shock in the PC and at

least partly use this information when forecasting. This is especially evident in treatment

4.

Therefore, we estimate rolling regressions and make one-step-ahead forecasts. A similar

approach is used by Branch (2004) in the survey data literature for proxying rational

expectations. Branch uses a trivariate VAR model and estimates it recursively. In our

case, because of degrees of freedom problems, we have to resort to a univariate model

(1.18). For a comparison, we also recursively estimate the adaptive expectations model

(1.11) and a version of the trend extrapolation rule without the restrictions on coefficients.

18The models in groups 19-24 do not have the interest rate as dependent variable as this would imply

multicolinearity due to the design of monetary policy in our framework.
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In practice, this rule is equivalent to the AR(2) model. We evaluate the general model

with and without the restriction: ζ = 0. Then we compare these forecasts with the actual

realizations and compute the SSE, which are presented in Table 1.4 for five competing

models. Before starting the analysis, it is worth pointing out that in treatments where the

variation in inflation is greater the mean SSE is also higher (the correlation coefficient is

0.91). In two thirds of our groups the trend extrapolation rule performs best. However, in

more stable treatments the general model can outperform the trend extrapolation rule.

Table 1.4 gives us a benchmark for evaluating the subjects’ prediction accuracies. It is

noteworthy that the best performing subjects often outperform our classical econome-

trician (best performing model). This occurs in practically all the groups except those

comprising treatment 3, where a high frequency of cycles is observed (see Figure 1.1).

There are two possible explanations for this: first, some subjects might be at least weakly

rational; and second, subjects might be switching between different expectation formation

mechanisms. We start by investigating the first possibility and then in Section 1.5 we dig

deeper regarding the second possible explanation.

There are two definitions of rationality: the statistical and the "economic" definition. The

former is defined and discussed in Subsection 1.4.1, while the latter interpretation ar-

gues that expectations should be consistent with the underlying economic model. Strictly

speaking, where all agents know the macroeconomic model and behave accordingly, we

know exactly the form of RE and the actual coefficient values.19 However, in our experi-

ment subjects are not familiar with the underlying macroeconomic model, and they might

reasonably believe that other subjects potentially do not use RE. They have to take this

into account when producing inflation forecasts. Even more, if rational agents understand

the informational content of the interest rate, especially in treatments 1-3, they could im-

plement this information into their decisions. Thus, in the environment of heterogeneous

forecasts the REE PLM may be of a different form than the REE PLM in the case of ho-

mogeneous forecasts. This issue is further discussed in Nunes (2009) and Molnár (2007)

where it is conjectured that some proportion of agents use adaptive learning to forecast,

while the remaining agents are rational. Nunes (2009) studies this problem in the context

of a forward-looking NK model and shows how to solve the model under the assumption

of heterogeneous expectations. Our case is slightly different as the information sets of in-

dividuals do not include other subjects’ forecasts. These could only be observed indirectly

through interest rate in treatments 1-3, however subjects do not know that the interest rate

setting depends on their forecasts. Nevertheless, if some agents use the PLM with last

observed inflation, and the rational agents are aware of that, then they have to include the

last observed inflation in their PLMs as well.

19As can be seen below, this REE PLM model (1.14) never outperforms the other models.
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As there is not possible to calculate RE as a benchmark in our heterogeneous environment

we have two different possibilities: (i) to use the statistical definition of rational expecta-

tions mentioned above, or (ii) to estimate the ALM (actual law of motion) for inflation in

each group and check whether the estimated coefficients of the corresponding PLM entail

statistically different coefficients to the ones of ALM. The problem here is that it is not

straightforward how to define the form of the ALM as discussed above. We assume that

the ALM is of the following form:

πt+1 = γ0+ γ1πt−1+ γ2πt−2+ γ3yt−1+ γ4it−1+ ε t , (1.20)

and the corresponding correctly parameterized PLM is:

π
k
t+1|t = β 0+β 1πt−1+β 2πt−2+β 3yt−1+β 4it−1+ ε t . (1.21)

In order to be able to claim that a subject has model consistent (or rational) expectations,

the estimated coefficients in both regressions should not be statistically different. To test

for this we estimate the following equation:

πt+1−π
k
t+1|t = µ0+µ1πt−1+µ2πt−2+µ3yt−1+µ4it−1+ ε t , (1.22)

where µ i = γ i−β i. For subject to forecast rationally none of the estimated coefficients

in equation (1.22) should be statistically significant. In the discussion below, we com-

pare these definitions of RE. Rationality is in this case "superimposed" as we classify all

agents that satisfy the requirements as rational, irrespective of their expectation formation

mechanism.

1.4.7 Discussion

In this section we determine which theoretical model best describes the behavior of each

individual on average. We compare the SSE20 of each individual for the 10 models of

expectation formation described above. A subject is regarded as using the model which

produces the lowest SSE between the model predictions and their actual predictions.

We compare 9 models of inflation expectation formation that best describe the behavior

of at least 1 participant. Model (1.12) is not used as it is always outperformed by other

models.

20Our results and conclusions are the same irrespectively of whether we use RMSE (root mean square

error), R2 or SSE as they are all monotonic transformations of each other.

24



Comparison

model (eq.) 1 2 3 4 5 6

Rational expectations: Stat (1.7) 28.7 42.1 - - - -

Rational expectations: Theory (1.22) - - 40.7 44.9 - -

AR(1) process (1.19) 0.5 0.5 0.5 0.5 0.5 0.5

Sticky information type (1.8) 6.5 5.6 4.2 3.2 10.2 6.5

Adaptive expectations (1.11) 7.4 5.1 4.2 4.2 11.6 9.3

Trend extrapolation (1.10) 30.1 25.5 28.2 26.9 36.6 26.9

Recursive - lagged inflation (1.13) 11.6 7.9 8.8 8.3 21.8 9.3

Recursive - REE (1.14) 2.8 2.3 2.8 1.9 4.2 1.4

Recursive - AR(1) process (1.15) 0.5 0.5 0.5 0.5 0.5

Recursive - trend extrapolation (1.16) 12.0 10.6 10.2 9.7 14.8 12.0

General model (1.18), ζ = 0 - - - - - 34.3

Table 1.5: Inflation expectation formation (percent of subjects)

In Table 1.5 we present 6 different comparisons using different definitions of the RE. In

comparisons 1 and 2 we define the RE based on statistical properties while in compar-

isons 3 and 4 based on theory as outlined above in Subsection 1.4.6 in equation (1.22): in

comparisons 1 and 3 at 5% significance level, while in comparisons 2 and 4 at 1% sig-

nificance level. In comparison 5 we exclude the general model from the set of alternative

models, while in comparison 6 we compare all the empirical models.

We can observe that the results are indeed quite similar across alternative definitions of

RE, although the theoretical definition (comparisons 3 and 4) suggests a slightly higher

proportion of rational subjects. One possible reason is that we estimate the model (1.22)

under the assumption of common AR(1) errors, as the experiment design embeds unob-

served AR(1) shocks. Without this assumption, comparisons 3 and 4 would imply 27.3%

and 31.0% of the subjects are rational. Generally, there is evidence that in all the treat-

ments about 30−45% of the subjects are rational and about 25−35% simply extrapolate

trend. Around 5−10% of the subjects employ adaptive expectations while the remaining

15−25% mostly behave in accordance with new theories of expectation formation, adap-

tive learning and sticky information type models. As mentioned before, most of other

papers in the experimental literature stress the importance of adaptive expectations.

We report results from the literature on heterogeneous expectations for illustration, al-

though these results might not be fully comparable to ours. Expectation formation of

prices is, for example, studied in the US beef market. Chavas (2000) estimates that 81.7%

of agents are boundedly rational using simple univariate models to forecasts prices and
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18.3% of agents are rational. Contrary to that Baak (1999) finds that the proportion of

rational agents is higher, i.e. about two thirds of agents are rational, while others are

boundedly rational. Branch (2004) presents the results for 3 competing models of expec-

tation formation (VAR, adaptive, and naive) estimated based on Michigan survey data. He

finds that about 48% of agents use a VAR predictor and 44% of agents behave adaptively,

while 7% are naive.

The availability of information is probably the main reason why our results suggest a

higher degree of rationality than some previous studies on the inflation expectation. We

must bear in mind that the subjects in our experiment always have available historical

series of all the relevant macroeconomic variables and their past predictions. In the real

world not all the variables might be readily observable or the information cost of collect-

ing them might play an important role. The other reason for the high degree of rationality

is that we initialize the model under RE. All these increase the possibility of not rejecting

the assumption of rationality.

We further study the degree of heterogeneity by analyzing each treatment separately. We

present comparison 1 across all the treatments in Table A.1 in Appendix A, where we can

observe that there is quite a lot of heterogeneity across treatments. We further discuss this

in the next section, where we analyze switching between different rules.

1.5 Switching between different models

The aim of this section is to further investigate how subjects form expectations. Do they

consistently use one model or do they switch between different models? We mentioned

before that switching might be one of the explanations for better performance of some

individuals compared to the "classical econometrician." There are some attempts in the

literature to link the performance of forecasting rules to the share of agents using that

rule. Models that explore this issue are generally labelled as rationally heterogeneous

expectations models. Some examples of these models are Brock and Hommes (1997),

Branch and McGough (2008) and Pfajfar (2008). Their main argument is that it is not

always optimal from an utility maximization point of view to forecast rationally as this

might entail some costs.

In this section we tackle the problem from a slightly different perspective, as we only

have 9 subjects in each group. Their information sets are different as the subjects do not

directly observe the past forecasts of other subjects. Thus, it is not possible to compare

these different models of dynamic predictor selection in our setup. We focus instead on

establishing some stylized facts about "unrestricted" switching on an individual basis. An
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alternative approach, where all agents have the same information set is investigated in

Anufriev and Hommes (2008). They provide support for switching based on a version

of the predictor dynamics analyzed in Hommes et al. (2005a) and show that in an asset

pricing environment the model with switching between simple heuristic rules can replicate

the main results of the Hommes et al. (2005b) experiment in terms of individual behavior

and aggregate dynamics. This approach is also followed in Assenza et al. (2011), where

the environment is more similar to ours. However, we proceed in this analysis somewhat

differently as our results above postulate that several of the rules employed are based on

personal information; i.e. subjects include their own past forecast (which is unobservable

to others) in their forecasting rule. In essence, we look at the roots of the switching

behavior, and we do not impose a particular switching mechanism.

1.5.1 Unrestricted switching

We start this analysis by determining the optimal model for each individual in each period

with a recursive estimation of the models specified above. Our approach consists of re-

cursively computing the SSE up to a period t and then comparing it with period t for each

individual. This comparison is performed for all periods except for the first 4 periods.

Therefore, we can determine which model best fits the actual forecasting series in each

point in time and whether there is any switching observed among these models. As many

models’ predictions are very similar at least in some episodes, we assume that there is no

switching if the model that performs best in the previous period is not outperformed in the

current period by 0.1 percentage points in terms of forecasts accuracy or 0.01 in terms of

SSE. The rationale behind this choice is that the majority of forecasts are reported to one

decimal point accuracy and the subjects are not able to differentiate between these com-

peting models. In Table 1.6 we report the relative shares of the usage of each forecasting

model considered, along with descriptive statistics for inflation.

We can observe that higher proportion of all forecasts are made using one of the stochastic

gradient learning algorithms. Depending on the treatment, in 23 to 45% of all cases agents

use these algorithms to forecast. If we average this across groups, 36.7% of the forecast

decisions are best explained with adaptive learning. This means that, on average, adaptive

learning is the most popular way of forming beliefs.

In around 17% of cases subjects use the general model, and in about 12% of all forecast

decisions they behave in accordance with the sticky information type model. The remain-

ing third of all forecasts are best explained with some sort of backward-looking model.
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Specifically, in around 14% of cases subjects use simple trend extrapolation rules while

in the remaining 20% of cases they behave in an adaptive manner. Compared to the re-

sults outlined above for "average" best model, we can immediately observe that there is

approximately the same proportion of backward-looking cases as there are subjects that

use backward-looking rules. However, when allowing for switching there are more fore-

cast decisions made in an adaptive way. Also model (1.15) is only a predominant model

for one subject, but when we allow for switching it is used on average in 15.6% of all

forecasts.

Generally, we can observe that when we allow subjects to switch between different mod-

els, they are in fact using alternative models to forecast. Under this assumption, agents use

between 1 and 7 different models (average number of models used for forecasting is 6.5)

and they on average switch every 4 periods. However, switching occurs less frequently in

treatments 3 and 4 compared to treatments 1 and 2 (significant at 5% level with different

tests of equality of medians).21 Only one subject did not switch between models. Overall,

these results support the idea of intrinsic heterogeneity that is theoretically modelled in

Branch and Evans (2006) and Pfajfar (2008).

To further analyze the degree of heterogeneity in the data, we compute the average num-

ber of models used in each period. We find that on average 4.5 different models (between

2 and 7) are used within a group in each period. This additionally supports the above

conjecture that heterogeneity is pervasive as there are not significant differences across

treatments. The average number of models employed for forecasting within a group

only varies (in each period) between 4.2 and 5.3. Furthermore, there is no "smooth-

ing" employed across different subjects in the same group. We have only employed some

"smoothing" within a subject as some models perform quite similarly and cannot be dif-

ferentiated at one decimal point accuracy.

We also investigate the pattern (timing) of switching with panel probit and logit models

(with random, and fixed effects, and population averages), where dependant variable, zk
t ,

is 1 when switching occurs and 0 otherwise. We estimate the following regression:

zk
t = α

k
1+α2πt−1+α3yt−1+α4it−1+α5

(
πt−1−π

k
t−1|t−2

)2

+ ε
k
t . (1.23)

We find that subjects decide to switch according to developments of inflation, the out-

put gap, and the interest rate. The different models exhibit similar effects of the ex-

planatory variables. The most pronounced effect expectably comes from the output gap,

which has a strong negative impact on the probability of switching. A positive change

21Using the Kruskal-Wallis test, we show that switching occurs on average every 6.1 periods in treatment

4, 3.7 period in treatment 3, 2.6 period in treatment 2, and 2.9 periods in treatment 1.
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Probit RE Probit PA Logit RE Logit PA Logit FE

Cons. -0.2502∗∗∗ -0.2210∗∗∗ -0.4139∗∗∗ -0.3552∗∗∗

(0.0836) (0.0749) (0.1449) (0.1188)

∆πt−1 0.0422 0.0402 0.0661 0.0639∗ 0.0545

(0.0293) (0.0247) (0.0482) (0.0388) (0.0354)

πt−1 -0.0568∗∗∗ -0.0533∗∗∗ -0.0919∗∗∗ -0.0857∗∗∗ -0.076∗∗

(0.0219) (0.0190) (0.0345) (0.0302) (0.0383)

yt−1 -0.1702∗∗∗ -0.1596∗∗∗ -0.2747∗∗∗ -0.2577∗∗∗ -0.2540∗∗∗

(0.0391) (0.0381) (0.0674) (0.0623) (0.0591)

it−1 0.0440∗∗ 0.0415∗∗ 0.0715∗∗ 0.0670∗∗∗ 0.0575∗∗

(0.0181) (0.0161) (0.0286) (0.0254) (0.0275)

er2 0.0061 0.006 0.011 0.0099 0.0089

(0.0171) (0.0143) (0.0248) (0.0260) (0.0359)

ln(σ2
u) -1.5874∗∗∗ -0.5814∗∗∗

(0.1996) (0.2064)

σu 0.4522∗∗∗ 0.7478∗∗∗

(0.0441) (0.0783)

ρ 0.1670∗∗∗ 0.1453∗∗∗

(0.0270) (0.0256)

N 14040 14040 14040 14040 13975

Groups 216 216 216 216 215

Obs. per Gr. 65 65 65 65 65

Wald χ2(9) 34.0 31.8 31.2 32.6 36.2

Table 1.7: Determinants of swithing behavior. Notes: RE stands for random effects, PA popu-

lation averages, while FE is for fixed effects model. Standard errors in parentheses.

*/**/*** denotes significance at 10/5/1 percent level. Standard errors are calculated

using bootstrap procedures (1000 replications) that take into account the potential pres-

ence of clusters in groups.

in the inflation trend increases the probability of switching, although, higher inflation

decreases it. This demonstrates that there exists a certain pattern in the structure of in-

dividual switching. There are also some differences across treatments. In particular in

treatment 4 the pattern of switching is different. However, treatment dummies are in-

significant if we insert them in the above regression. The results are reported in Table 1.7,

where ∆πt−1 = |πt−1−πt−2|, and er2 =
(

πt−1−πk
t−1|t−2

)2

.
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1.6 Monetary policy in the presence of heterogeneous ex-

pectations

Woodford (2003) showed that within a standard NK model monetary policy should min-

imize the variance of inflation and the output gap as this corresponds to maximizing the

utility of consumers. Therefore we start this section with an analysis of variance of in-

flation since a monetary authority only cares about inflation in instrument rules under

scrutiny. Testing for differences in the medians across treatments, where the null hy-

pothesis that the medians are the same in all treatments is rejected at 1% significance

with Kruskal-Wallis and van der Waerden tests (see Conover, 1999). Therefore, we can

argue that the design of monetary policy matters in our framework. The following table

shows the comparison of median standard deviations of inflation in treatments 2, 3, 4 with

treatment 1. We report p-values from the Kruskal-Wallis test in Table 1.8.22

Treatment Groups Comparison with Treatment 1 (p-value)

Inflation forc. targ. γ = 1.5 1−6 −
Inflation forc. targ. γ = 1.35 7−12 0.6310

Inflation forc. targ. γ = 4 13−18 0.0104

Inflation targeting γ = 1.5 19−24 0.0250

Table 1.8: Comparison of standard deviations using Kruskal-Wallis test

We also find that there is a significant difference between treatments 2 and 3 (p-value is

0.0250). Thus, we can argue that treatments 3 and 4 produce significantly lower inflation

variability than treatments 1 and 2. Now that we establish that there is a difference in

variance of inflation between treatments we further analyze the roots of these differences

between and within treatments.

For an illustration how important expectations are for the stability of the system we simu-

late our treatments with different forecasting rules under the assumption of homogeneous

expectations (see Figures A.4 and A.5 in Appendix A). We can immediately observe that

adaptive expectations (with a gain coefficient higher than 1) and trend extrapolation rules

can lead to pronounced cyclical variability in inflation. It is also possible to observe that

treatments 2 and 4 perform better than 1 and 3 in stabilizing those expectation formation

mechanisms. However, the evidence might be reversed with respect to "stable" expecta-

tion formation mechanisms.

22Other nonparametric tests perform very similarly.
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The proportion of backward-looking (especially trend extrapolation) agents plays a par-

ticularly important role for the stability of the system. We can observe that there is a

considerable degree of heterogeneity across treatments. Even more, differences in the

degree of backward-looking subjects can explain the differences in variability between

groups in the same treatment. The results are intuitive as we find that there is a strong

correlation between the stability of the system and the degree of trend extrapolation be-

havior. We further test these conjectures regarding the relationship between the variability

and proportion of different groups of subjects with cross-sectional and panel data regres-

sions. With former we find that especially increasing proportion of trend extrapolation

behavior is increasing the variance. Also increasing proportion of CGL adaptive expecta-

tions rules is increasing the variance as most of the estimated coefficients ϑ in equation

(1.11) are higher than 1 while the proportion of recursive learning (1.15) and also sticky

information rules (1.8) is reducing it. We estimate the following regressions:

sds = η0+η1 p js+ εs,

where sds is standard deviation of group s, and p js is proportion of agents using j-th

model for forecasting in group s. The set of alternative models is the same as in Table 1.6

above. Regression results are reported in Table 1.9, both with robust and clustered stan-

dard errors. Initially, we added treatment dummies to the above regression, however they

were insignificant in almost all cases. We have to point out that all estimated coefficients

(that are significantly different than 0) have the expected signs.

These results are confirmed also with the system GMM estimator of Blundell and Bond

(1998) for dynamic panels. To construct the panel we compute the sds,t , standard devia-

tion from the first period up to period t.Using the switching analysis we similarly compute

p js,t , the share of model j in group s up to the period t.We estimate the following model:

sds,t = η0+ηLsds,t−1+∑
j

η j p js,t+ εst .

Results are reported in Table Table 1.10. Different variants are tested, depending on

the inclusion of models for recursive learning, adaptive expectations and general model.

The only intriguing result is about the coefficient on the proportion of the general model

(1.18) which is insignificant in the cross sectional regression and significantly positive or

insignificant in dynamic panel data models. Therefore it is difficult to say from this analy-

sis what is the effect of the proportion of usage of general model (1.18) to the stability of

inflation. Although these agents use all relevant information to forecast inflation, simu-

lation exercise shows that at low values of γ this forecasting model (if used exclusively)
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will result in high variability of inflation (see Figure A.6 in Appendix A). Furthermore,

theoretical analysis shows that as soon as one uses past inflation to forecast the model

exhibits indeterminacy, i.e. there might be a multiple equilibria problem.

sds,t : (a) (b) (c) (d)

sds,t−1 1.0147∗∗∗ 1.0121∗∗∗ 1.0121∗∗∗ 1.0099∗∗∗

(0.0085) (0.0073) (0.0069) (0.0066)

Gen. mod. (1.18), ζ = 0 0.0018∗∗∗ 0.001 0.0031∗

(0.0007) (0.0013) (0.0017)

Sticky info. (1.8) -0.0029∗ -0.0039 -0.0018 -0.0043∗∗

(0.0016) (0.0025) (0.0019) (0.0020)

ADE DGL (1.12) -0.0023∗∗ -0.0030∗∗ -0.0008 -0.0027∗∗

(0.0009) (0.0013) (0.0015) (0.0014)

Trend Ext. (1.10) 0.0067∗∗∗ 0.0055∗∗∗ 0.0077∗∗∗ 0.0055∗∗∗

(0.0015) (0.0018) (0.0023) (0.0014)

ADE CGL (1.11) -0.0011 0.001
(0.0018) (0.0015)

Recursive V1 (1.13) -0.0021 -0.0025
(0.0025) (0.0018)

Recursive V4 (1.16) 0.0021
(0.0025)

cons -0.0759∗ 0.0219 -0.1895 0.0373
(0.0417) (0.1378) (0.1449) (0.0556)

N 1560 1560 1560 1560

χ2 67328.4 54449.2 65883.1 79094.9

Table 1.10: Decision model’s influence on standard deviation of inflation. Notes: Estimations

are conducted using system GMM estimator of Blundell and Bond (1998) for dy-

namic panels. Standard errors in parentheses. */**/*** denotes significance at 10/5/1

percent level. Standard errors are calculated using bootstrap procedures (1000 repli-

cations) that take into account potential presence of clusters in treatments.

The result regarding the influence of the proportion of trend extrapolation rules to the

standard deviation of inflation is very robust across these different techniques as the coef-

ficients are always very significant and positive. The proportion of these agents probably

plays the most important role for the stability of inflation. It also helps us to explain the

differences among groups within the same treatment. Generally, we note that the group

with lower proportion of trend extrapolation rules is more stable compared to other groups

in the same treatment.

Heemeijer et al. (2009) compare experimental results in positive and negative expectations

feedback models.23 In a positive expectations system, e.g. asset pricing model, they

23Also Fehr and Tyran (2008) compare the two environments, although in a different context.
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observe similar aggregate behavior to ours and note that when there is a stronger positive

feedback more agents resort to backward-looking, especially trend following rules. In

our case, by changing the monetary policy, we augment the degree of positive feedback

from inflation expectations to current inflation. Therefore, the design of monetary policy

is important for the prevailing expectation formation mechanism and vice versa, as can

be seen if we compare results within the same treatment. The graphical analysis of the

evolution of inflation across treatments is reported in Figure 1.1.24

However, this is only a part of the story in our experiment. We expected that the treat-

ment 2 where monetary authority does not react too strongly to inflation expectations

(γ = 1.35) performs better regarding the stability of inflation than the benchmark treat-

ment, although the theory under rational expectations suggests that higher γ leads to lower

variability of inflation. This is not confirmed in our analysis above as the median standard

deviation is not statistically different than in treatment 1. This might be due to expec-

tations of cycles by some individuals in groups 4 and 5 of this treatment and extensive

use of strong trend extrapolation rules at the beginning of the experiment. In order to

study the relationship between γ and the variance of inflation under different expectation

formation mechanisms we design simulation exercises that exactly replicate the design,

parametrization and shocks employed in the experiment. When all subjects have ratio-

nal expectations we confirm the theory that higher γ leads to lower variability of infla-

tion while many other expectation formation mechanisms produce non-monotonic, often

U-shaped behavior of the inflation variance. On one hand, rules that we labelled as sta-

ble in regressions above produce decreasing variability of inflation when increasing γ ,

although sometimes non-monotonic. On the other hand, especially trend extrapolation

rules will lead to U-shaped behavior and eventually higher variability when increasing γ

(see Figure A.6). The minimum variability of inflation with sticky information and trend

extrapolation rule is achieved at γ = 1.1. For naive expectations the minimum is around

γ = 3 (non-monotonic U-shaped). This can be also observed from Figures A.4 and A.5 in

Appendix A.

Therefore, the relationship between the variability of inflation and different rules is non-

trivial and the question whether treatment 2 should produce lower variability compared

to treatment 1 depends particularly on the proportions of alternative rules used. Based on

simulation results and observed behavior of individuals we can argue that in the presence

of heterogeneous expectations instrumental rules that are less aggressive have the poten-

tial to produce lower variability of inflation, however there is the risk that, e.g. after a

shock, the amplitude of inflation increases significantly as monetary policy is not aggres-

24Detailed figures with the evolution of inflation and inflation forecasts in each treatment are reported in

Appendix A (Figures A.2 and A.3).
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sive enough. Thus, one could argue that non-linear Taylor-type rules would perform best

in this environment, although the literature in monetary economics has not attached much

attention to this type of instrumental rules.

As we have seen so far, the expectational feedback is not the only source of instability in

our multivariate system where we also have lagged endogenous variables.25 Treatment

3 produces lower variability of inflation compared to treatment 2, but in the former case

the frequency of cycles is significantly higher as the monetary authority is (too) strongly

responding to deviations from inflation target. After some threshold of response to infla-

tion forecast (depends on the proportion of agents using each rule) the resulting amplitude

of the inflation variability decreases, while the frequency of cycles increases. The latter

makes it more difficult to forecast and more participants resort to simpler rules. Using

simulations explained above we can identify two effects of increasing γ on the variability

of inflation: (i) this always increases the frequency of cycles irrespective of the expecta-

tion formation mechanism and (ii) it is increases or decreases the amplitude of the cycle.

The latter result depends on the expectation formation mechanism and can produce non-

monotonic or even U-shaped responses of variability, except for rational expectations

where it decreases monotonically (see Figure A.6).

Also treatment 4 performs better than the benchmark treatment. Responding to contem-

poraneous inflation (as in treatment 4) turns out to be a better practise for central banks

compared to responding to inflation expectations.26 Moreover, this treatment resembles

quite closely the behavior of survey forecasts, as there are periods when subjects system-

atically overpredict inflation (low and stable inflation) and underpredict inflation (when

inflation is high). This is evident in Figure A.3 in Appendix A. In this treatment there is

the highest proportion of biased agents and also results from the general model suggest

similar behavior of these agents to the results obtained in the survey data literature. More-

over, if we compare the means of inflation forecasts in treatments 1 and 4 we find that the

mean of inflation forecasts of groups in treatment 4 is significantly higher than the mean

of inflation forecasts of groups in treatment 1 (at 10% significance with Kruskal-Wallis

test). Also average inflation in treatment 4 is higher (3.10 in treatment 4 compared to 3.00

in treatment 1), however the difference is statistically insignificant with nonparametric

tests. Comparison between treatments 1 and 4 implies that significantly lower standard

deviation of inflation (and inflation forecasts) for treatment 4 (see Table 1.8) comes at

a "cost" of higher inflation expectations (and possibly inflation). This result is similar

to Bernasconi and Kirchkamp (2000) as they suggest Friedman’s money growth rule pro-

25Generally, as γ is increasing the positive feedback is decreasing.
26Pfajfar and Santoro (2008) and Muto (2011) reach similar conclusion in different versions of the NK

model: Muto (2011) in case when agents learn from central banks’ forecasts, while Pfajfar and Santoro

(2008) when they introduce the cost channel and capital market imperfections.
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duces less inflation volatility, but higher average inflation compared to constant real deficit

rule.

We can also observe that generally the variability of inflation is lower than the variabil-

ity of inflation expectations. This provides an explanation to the fact that responding to

current inflation stabilizes the system in a more efficient way compared to reacting to ex-

pected inflation. Moreover, by reacting to current inflation we decrease the expectational

feedback compared to responding to the expected inflation. As a result, in treatment 4 we

reduce the size of the expectational cycles as in booms monetary policy overreacts less

than in the case when interest rate is set to respond to expected inflation (in presence of

backward-looking agents). At the root of this pattern is that backward-looking subjects

do not observe the informational content of output gap and do not predict the change in

the growth rate of inflation. They still expect that inflation will accelerate as in the last

few periods. Then, if the monetary authority is reacting with respect to the expected infla-

tion, they do not change the stance of monetary policy in time. The economy is pushed in

the recession where the backward-looking agents underpredict inflation and the recession

is more severe than if all agents were rational. The whole process repeats in the next

cycle. We have to point out that the causality goes in both directions as the proportion

of backward-looking agents (especially strong trend extrapolation agents) depends on the

design of monetary policy (degree of aggressiveness) and also the stability of the economy

is influenced by the degree of backward-looking agents.

Adam (2007) obtains similar dynamic pattern of inflation and inflation expectations, es-

pecially to our treatment 3. He argues that the cause for observed behavior is the subjects’

reliance to simpler underparameterized rules for forecasting inflation. Thus, he character-

izes the dynamics of inflation as a restricted perception equilibrium, as inflation exhibits

excessive volatility around its REE. Our results support his findings as some agents do not

take into account output gap when forecasting. However, we also show that the volatility

of inflation depends on the way monetary policy is designed and conducted. We argue

that the proportion of backward-looking subjects plays an important role, especially those

that use strong trend extrapolation rule.27

27Also several asset pricing experiments have observed the dynamics of aggregate price exhibiting bub-

bles (see eg. Smith et al., 1988 and Hommes et al., 2005b). Even more, Lei et al. (2001) show that this

can occur also in an environment where speculation is not possible. They conclude that this occurs due to

systematic errors in decisions.
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1.7 Conclusion

In Chapter 1 we preset a design of macroeconomic experiment where subjects are asked to

forecast inflation. The underlying model of the economy is a simple NK model which is

commonly used for the analysis of monetary policy. The focus of present chapter is on the

formation of inflation expectations and monetary policy design. In different treatments

we employ various modifications of the original Taylor rule and study the influence of

alternative monetary policy designs to inflation formation process and also vice versa.

Therefore, we also try to determine the design of monetary policy which would effectively

stabilize and anchor the process of inflation expectations. It is clear that monetary policy

influences the expectation formation process. We find that the variability of inflation is

significantly lower in treatments 3 and 4 compared to treatments 1 and 2. The cyclical

behavior of inflation is also studied in the experimental study by Adam (2007). When

we set interest rate with respect to current inflation, we observe the dynamics of inflation

expectations that most closely resembles the behavior of survey data. Generally, this setup

performs better in terms of inflation variability than responding to the expected inflation

as the variability of inflation is lower than the variability of inflation forecasts. Thus, we

reduce the amplitude of expectational cycles.

However, we can point out that the underlying process of inflation expectation formation

depends also on the way monetary policy is conducted. The proportion of backward-

looking agents, especially trend extrapolating subjects, plays an important role, as in

some environments it is more difficult to forecast inflation rationally. In these cases more

subjects resort to simpler backward-looking rules. We find that roughly 30−35% of sub-

jects predominately use trend extrapolation rules and additionally 5−10% of subjects use

adaptive expectations. Contrary to previous studies, our results suggest that there is a sig-

nificant and relatively large share of agents that predominately use rational expectations.

The share of these agents is about 35−45%. The remaining agents use some version of

adaptive learning or sticky information type models. Furthermore, we also find that most

agents tend to switch between different rules. When we take into account this possibility,

we get slightly different results. Most notably, adaptive learning models become more

important as this mechanism for forecasting is used in 36.7% of all forecasting decisions.

Chapter 1 is one of the first empirical contributions to postulate that these models rep-

resent one of the most popular ways of forecasting inflation. The average proportion of

trend extrapolative decisions is smaller when we allow for switching (14%), but in accor-

dance to our conjecture above it varies significantly across treatments (between 6.1 and

23.6%). In 16.9% of cases agents use the general model, 20.2% adaptive expectations,

and the remaining 12.1% of cases agents use sticky information type model.
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Chapter 2

Uncertainty and Disagreement in

Forecasting Inflation

2.1 Introduction

This chapter focuses on an individual forecasting uncertainty and complements the analy-

sis in Chapter 1. The importance of inflation uncertainty has been recognized at least

since Friedman’s Nobel Lecture (Friedman, 1977). Friedman argued that higher rates of

inflation are associated with higher inflation variability, which in turn causes a reduction

in the efficiency of the price system and leads to a reduction in output due to institutional

rigidities. Indeed, Levi and Makin (1980) and Mullineaux (1980) found empirical support

for the hypothesis that higher inflation uncertainty is associated with lower output. This

represents a clear rationale for central banks to care about inflation uncertainty. Moreover,

inflation-targeting central banks, in particular, trust that inflationary expectations can be

importantly shaped by their communication strategies. They have recently increased their

interest in the distribution of inflation expectations, in part because both individual un-

certainty and disagreement (interpersonal uncertainty) can be viewed as measures of the

effectiveness of their communication strategies. For some central banks these strategies

also include publishing their probabilistic forecasts of inflation in the form of fan charts.

More generally, the credibility of inflation targets can be assessed using both point fore-

casts and agents’ perceived uncertainty. As Giordani and Söderlind (2003) demonstrate,

this is particularly relevant when there is a regime switch.1 In his speech about Fed-

eral Reserve communications, Mishkin (2008) stressed that the cost of inflation should

be viewed both in terms of its level and of its uncertainty. This claim is in fact consis-

1See also Evans and Wachtel (1993).
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tent with the standard New Keynesian dynamic stochastic general equilibrium (DSGE)

model, which shows that in order to maximize consumer welfare the central bank should

minimize the variation of inflation (see e.g. Woodford, 2003).2

Subjects in the experiment are presented with fictitious economy described by series of

inflation, interest rates and the output gap. They are asked to forecast inflation and to pro-

vide 95% confidence intervals around their point forecasts. Compared to the experiment

above, we introduce here a new treatment in which subjects are allowed to report differ-

ent uncertainty below and above their point forecast. The background New Keynesian

model that produces realizations for inflation, the output gap and interest rates is the same

as in Chapter 1. Realized values are displayed to the subject and the process is iterated.

This allows us to study both individual uncertainty about forecasts and interpersonal vari-

ation - disagreement on the point forecasts. Our analysis is based on the same data set as

the analysis presented in Chapter 1. Here we focus on the measures of uncertainty and

disagreement, we compare them with survey data results, and evaluate their relation to

inflation variability.

We study the determinants of different measures of inflation uncertainty proposed in the

literatures and evaluate which measure should be used as a proxy of inflation variance.

We also focus on the relationship between monetary policy and inflation uncertainty and

examine whether some environments are better than others at stabilizing both inflation

and its uncertainty. We study two different monetary policy rules: inflation targeting

and inflation forecast targeting. For the latter we use three different specifications of the

coefficient that describes the reaction of interest rates to deviations of inflation forecasts

from the inflation target. We find that the design significantly affects both the width

and the accuracy of forecast intervals. In particular, we find that the instrumental rule

that reacts to current inflation reduces overall uncertainty and increases subjects’ forecast

accuracy compared to the rules that react to expected inflation. Most of these differences

can be attributed to the fact that the contemporaneous rule (inflation targeting) produces

a lower variability in actual inflation. However, there are some treatment effects that go

beyond the interest rate channel. Similar evidence is also observed for a treatment where

the central bank reacts more strongly to the deviations of inflation expectations from the

inflation target.

The results of an analysis of the behavior of individual confidence intervals suggest that

the width of the confidence interval is highly inertial and it increases when inflation is

below the target level. This contrasts with the results of the survey data literature, where

2Recognizing the importance of different aspects of expectations distribution, Lorenzoni (2010) shows

that monetary policy affects agents (with different pieces of information) differently, arguing that there is a

tradeoff between aggregate and cross-sectional efficiency.
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it is a high inflation that usually leads to an increase in uncertainty. However, our results

show little evidence of different degrees of uncertainty in different phases of the business

cycle.

Which representation of inflation expectations is most relevant for the monetary author-

ity? The forecasting ability of different measures has mostly been examined using the sur-

vey data of professional forecasters.3 Three measures have been predominantly used in

the survey data literature: the standard deviation of point forecasts, the average individual

forecast error variance, and the variance of the aggregate distribution. These measures are

complementary in terms of informative value. The first describes disagreement but says

little about uncertainty, and the second captures uncertainty but disregards disagreement.

Zarnowitz and Lambros (1987) show that there can be substantial differences between the

variation in disagreement and the variation in uncertainty. Variance of the aggregate distri-

bution of forecasts gives information about both uncertainty and disagreement; however,

it is difficult to separate the two effects. In our setup we can compare different measures

obtained from the individual responses and their aggregate distribution and study their

ability to forecast inflation variability. We find that average confidence intervals perform

best in the forecasting exercise, although simple correlation analysis shows that the in-

terquartile range of the aggregate distribution (IQR) is the measure that has the highest

correlations with the variability of inflation.

Several dynamic panel data regressions have been designed to identify the determinants

of the three measures discussed above. Disagreement among subjects measured with

the standard deviation of point forecasts increases when the average group forecast er-

ror increases and when inflation is below the target level. Similar explanatory variables

also affect individual uncertainty although disagreement is arguably less inertial. All the

factors that significantly affect the specification of uncertainty and disagreement are by

definition also important for the interquartile range. Indeed, inflation, the mean forecast

error and the lagged interquartile range exert significant effects.

When looking at individual responses we also find that forecasters usually tend to under-

estimate the underlying uncertainty when forecasting inflation, as only 60% of the results

fall within the specified 95% interval. Giordani and Söderlind (2003) reach similar con-

clusions when analyzing the survey data of professional forecasters. That subjects tend to

report narrower confidence intervals than that asked for is a well-known fact, labelled as

the "overconfidence effect." This issue has been extensively debated in the experimental

3See Zarnowitz and Lambros (1987) and Giordani and Söderlind (2003) for example. One disadvantage

of survey data is that panel members do not always provide their forecasts. Furthermore, the panel pool

changes continuously. See Engelberg et al. (2009) for some other methodological issues involved. A

laboratory environment presents a potential solution to this problem.
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psychology literature. A common approach in this literature is to frame the experiment in

the context of stock market forecasting exercises.4

D’Amico and Orphanides (2008), Giordani and Söderlind (2003) and Rich and Tracy

(2003) all argue that the observed confidence intervals of forecasters in the survey data

are usually symmetric. Studies in the psychology literature also usually assume symmet-

ric confidence intervals (see O’Connor et al., 2001 for a discussion). Symmetric intervals

are easier to handle in empirical analysis when the aim is to construct the aggregate distri-

bution of expectations, because it can simply be assumed that an individual’s distribution

is normally distributed. Furthermore, there are no theoretical reasons in our model why

confidence intervals should not be symmetric, as the underlying model and the distribution

of shocks do not exhibit any asymmetries. In the field data, this might not necessarily be

the case as there are several documented potential asymmetries, in particular asymmetric

monetary policy effects over the business cycle. We have decided to perform treatments

Ap with a restriction to symmetric confidence intervals while in treatments Bp we test this

assumption and allow subjects to have potentially asymmetric intervals.5 Only 12.5% of

confidence intervals are symmetric when we allow subjects to report asymmetric confi-

dence intervals. Du and Budescu (2007) and O’Connor et al. (2001) also point out that

confidence intervals tend to be asymmetric. Du and Budescu (2007) explain the use of

asymmetry with the hedging effect, where subjects tend to provide slightly more opti-

mistic point forecasts and hedge for this risk by inserting skewed confidence intervals.

They also find a negative relationship between asymmetric confidence intervals and the

volatility of the underlying series. Our results suggest that there is less asymmetry when

there is an upward path of the output gap (expansion) and when inflation is below the

target level.

Experimental economic research on forecasting uncertainty has been less abundant than

survey-based research. Fehr and Tyran (2008) ask subjects to provide descriptive mea-

sures of their confidence level (but do not perform any analysis of them), while we ask

subjects to provide numerical responses. Similarly, Bottazzi and Devetag (2005) ask sub-

jects to provide 95% confidence intervals in an asset pricing experiment, with the aim

(almost exclusively) of defining the average forecast but not of studying the behavior of

uncertainty or disagreement. They argue that asking for the confidence intervals instead

of point predictions in asset pricing framework has the effect of reducing price fluctua-

4For surveys, see Hoffrage (2004) or Lichtenstein et al. (1982) (see also e.g. Oskamp, 1965, Lawrence

and O’Connor, 1992, Muradoglu and Onkal, 1994, Gilovich et al., 2002). These studies do not usually

provide payment for the accuracy or the width of the confidence intervals, only for the accuracy of the point

forecasts.
5Engelberg et al. (2009) document another potential asymmetry in the forecasting process (on which

we do not focus), i.e. asymmetry between central tendencies of subjective distributions and point forecasts.
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tions and increasing subjects’ coordination on a common prediction strategy. Our focus

is also quite different to that of psychology experiments. The latter usually limit their

attention to independent event forecasts, while the present study concentrates on a series

of (dependent) forecasts. This allows us to perform a time-series analysis of confidence

bounds. We also provide subjects with other relevant information (besides the past history

of prices) that might influence confidence. In this way we are able to examine whether

confidence intervals are affected by stages of the business cycle.

This chapter is organized as follows: Section 2.2 describes the model and the experimental

design; in Section 2.3 we focus on the analysis of the individual responses while in Section

2.4 we analyze disagreement and the properties of aggregate distribution; Section 2.5

discusses and assesses the forecasting ability of different measures, while Section 2.6

concludes.

2.2 Experimental design

We first provide the summary of the model described in Section 1.2 and describe the

design of the treatments depending on the way how confidence intervals are reported.

Subjects participate in a fictitious economy and are asked to provide inflation forecasts

and a measure of uncertainty about their forecasts. The mean of the point forecasts is

then used by the data generating process to calculate inflation, the interest rate, and the

output gap. These variables are available to subjects before the next period forecast. We

use the reduced form of the forward-looking sticky price New Keynesian (NK) model

with different monetary policy reaction functions as an underlying model. The model is

discussed more in detail in Chapter 1.

As above in equations (1.1) and (1.2), the IS curve (output gap) and Phillips curve (infla-

tion) are specified as:

yt =−ϕ (it−Etπt+1)+ yt−1+gt , (2.1)

πt = λyt+βEtπt+1+ut . (2.2)

where it is the interest rate, πt denotes inflation, yt is the output gap, and gt is an exogenous

shock. McCallum-Nelson calibration that is used, is described in Table 1.1. while shocks

gt and ut are uncorrelated and unobservable to subjects and follow gt = κgt−1+ g̃t and

ut = νut−1+ ũt . 0 < |κ| < 1 and 0 < |ν | < 1. g̃t and ũt are independent white noise,

g̃t v N
(
0,σ2

g

)
and ũt v N

(
0,σ2

u

)
. Etπ+1 =

1
K ∑

k
πk

t+1|t , is the mean point forecast of

inflation in an economy with K forecasters. Monetary policy reaction functions define

four different types of treatments: three with (i) inflation forecast targeting and different
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levels of γ , and one with (ii) inflation targeting:

it = γ (Etπt+1−π)+π. (2.3)

it = γ (πt−π)+π. (2.4)

The slope coefficient γ determines the central bank’s aggressiveness in response to devia-

tions in inflation (or inflation expectations) from its target. A higher γ implies a stronger

stabilizing effect of the Taylor-type monetary policy rule. As discussed in Chapter 1, there

are eight treatments in our experiment, depending on a monetary policy regime and a type

of the confidence interval input. In treatment X p, p represents one of the four monetary

policy regimes and X represents one of the two types (A or B) of the confidence interval

input.

treatments Ap treatments Bp

policy regime p symmetric asymmetric

confidence interval confidence bounds

Taylor rule (equation) Parameters Groups Groups

1 – Forward looking (2.3) γ = 1.5 1-4 5-6

2 – Forward looking (2.3) γ = 1.35 7-10 11-12

3 – Forward looking (2.3) γ = 4 13-16 17-18

4 – Contemporaneous (2.4) γ = 1.5 19-22 23-24

Table 2.1: Treatments

In treatments Ap we restrict inputs to symmetric confidence intervals. Subjects report the

difference from their point forecast, which can be interpreted as 1.96 standard errors of

their expectation, assuming it is represented by a normal distribution. This condition is

relaxed in treatments Bp, where subjects have to report the upper and the lower bound

of their forecast together with their mean forecast, so that we do not require individuals

to report symmetric confidence intervals (in both treatments we ask them to report 95%

confidence intervals). Table 2.1 provides a summary.

In the analysis of this chapter our focus is the individual forecasting confidence and the

differences between treatments Ap and Bp. Unless otherwise noted, we disregard the

potential influence of the monetary policy regimes p= 1...4. We will refer to treatments

A1...A4 as Ap, and to treatments B1...B4 as Bp.
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2.2.1 Experimental procedures

The experimental subjects participate in a simulated economy of 9 agents. The experiment

consists of 12 sessions each containing 2 independent groups, thus making 24 groups in

total. The participants were enlisted through a recruitment program for undergraduate

students at the Universitat Pompeu Fabra and the University of Tilburg. The participants

remain in the same group throughout the experiment. They earn on average around €15,

depending on the treatment and individual performance. The participants receive detailed

instructions and a quiz questionnaire, and play 5 practice rounds before the start of the

experiment to make sure they fully understand their task. Instructions to subjects can

be found in Appendix A for treatments Ap and in Appendix B for treatments Bp. The

program is written in Z-Tree experimental software (Fischbacher, 2007).

The participants observe time series of inflation, the output gap and the interest rate and

their past forecasts, up to the period t − 1. They do not observe the forecasts of other

individuals or their performance. 10 initial values are generated by the computer under

the assumption of rational expectations. The underlying model of the economy is qualita-

tively described to them. The subjects’ task is to provide inflation forecasts for the period

t+1 with a 95% confidence interval. After each period subjects receive information about

the inflation in that period, their prediction of it, and the payoff they have gained. The

payoff function is in essence the same for treatments Ap and for treatments Bp. The only

difference between the two types is in the way how a confidence interval, CI, is calculated.

For treatments Ap, CI is subject’s direct input, it measures the distance of point forecast

from the upper and the lower confidence bound of 95% confidence interval. In treatments

Bp, subjects have to provide the lower (CBL) and the upper (CBU ) confidence bound of

their 95% interval. The CI is than calculated as CI = 1
2
(CBU −CBL).

W = W1+W2,

W1 = max

{
1000

1+ f
−200, 0

}
,

W2 = max

{
1000x

1+CI
−200, 0

}
,

x =

{
1 if CI ≥ f

0 if otherwise
,

f =
∣∣∣πt−π

k
t+1|t

∣∣∣ .
The first component, W1 is designed to encourage subjects to give accurate point fore-

casts, while the second component, W2, is intended to motivate subjects to think about the
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variation in actual inflation since it is more rewarding when subject’s interval is narrower.

There is thus a trade-off between the width of this interval and its accuracy. The W is

defined on the interval [0,4].

We performed several simulations regarding the incentive compatibility of the part of

the payoff function that addresses confidence bounds. Desirable payoff functions have

to exhibit a trade-off between the width of the interval and the accuracy of the interval,

which makes it difficult to specify and calibrate an incentive compatible payoff function.

Assuming all agents are rational (and they know that all others are rational) then the

function chosen gives a maximum payoff when 96.5% confidence intervals are taken into

account. When not all subjects are rational there are two effects on their confidence in-

tervals: (i) forecast accuracy decreases and the required 95% confidence interval widens;

(ii) the payoff function is maximized with narrower confidence intervals than 96.5%.6

Maximizing the objective function under nonrational agents requires several assumptions

regarding the perceived law of motion of both point forecasts and confidence intervals

since optimal confidence intervals are not necessarily constant as in the case of rational

agents. Therefore, the only natural benchmark is rational expectations and we decided to

formulate the question in terms of 95% confidence intervals.

2.3 Individual uncertainty

While the distribution of means across subjects captures only interpersonal variation, in-

dividual confidence bounds help us to approximate individual uncertainty of future infla-

tion. Zarnowitz and Lambros (1987) claim that interpersonal variation is an appropriate

measure of disagreement among forecasters while uncertainty can be described as intrap-

ersonal variation. Their study shows that there can be substantial differences between the

variation in disagreement and the variation in uncertainty. Therefore, both might not be

appropriate measures for forecasting the variability of inflation. Our experimental design

allows us to analyze both features of the distribution of responses. The current section

concentrates on individual uncertainty, while the next section investigates the aggregate

distribution of forecasts and disagreement.

Figure 2.1 displays the distribution of all confidence interval forecasts. The range of re-

sponses for confidence intervals is between 0 and 8.3, although it should be noted that

responses larger than 4 do not result in any payoff.7 The average symmetrical confidence

6This is also supported by previous evidence in the literature. We show in Chapter 1 that in our experi-

ment a nonrational forecast results in more variability of inflation. Du and Budescu (2007) demonstrate that

higher variability of the underlying series is associated with greater overconfidence (narrower intervals).
7The overall share of responses greater than 4 is 0.98%.
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interval is 0.61, with an average standard deviation of 0.28. Introducing asymmetrical

confidence bounds across all treatments gives us an average lower confidence interval

of 0.37 with an average standard deviation of 0.19, while the average upper confidence

interval equals 0.41 with an average standard deviation of 0.28. There are considerable

differences across treatments as the lowest symmetrical (asymmetrical lower, upper) aver-

age interval in treatments Ap (treatments Bp) is 0.41 (0.24, 0.27) and the highest is 0.91

(0.47, 0.53). Evidence of rounding is present in responses 0.5, 1, 1.5, 2, and 3 as they

have significantly higher frequencies than other responses. Overall, 13% of responses are

integers, while the majority are to one decimal point accuracy, 77%. The remaining re-

sponses are to 2 decimal point accuracy. Rounding of the inputs for confidence intervals

(probabilistic forecasts) has been previously documented by D’Amico and Orphanides

(2008) and Engelberg et al. (2009).

Average confidence interval All Treat. Ap Treat. Bp

(symmetric) (asymmetric)

1 – Forward looking (2.3), γ = 1.5 0.564 0.669 0.352

2 – Forward looking (2.3), γ = 1.35 0.776 0.914 0.500

3 – Forward looking (2.3), γ = 4 0.395 0.466 0.254

4 – Contemporaneous (2.4), γ = 1.5 0.430 0.410 0.471

Table 2.2: Width of confidence intervals across treatments. Note: The width of asymmetric con-

fidence intervals is calculated as (Upper b. - Lower b.)/2.

The average confidence intervals in each treatment are listed in Table 2.2, while a per-

group summary is presented in Table 2.3. In general, confidence intervals are narrower

in treatments Bp than in treatments Ap at 1% significance using nonparametric tests

(Wilcoxon/ Mann-Whitney). In Section 3.1 we show that treatments Ap and Bp also
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Figure 2.1: Histogram of confidence intervals for treatments Ap (left) and treatments Bp (right),

across all subjects and periods.
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differ in the forecast accuracy of subjects’ interval predictions. The factors that determine

the differences in confidence intervals are discussed in Section 3.2.

We also have the opportunity to compare the results with the underlying uncertainty that

we have embedded in our set-up. Under the assumption that all agents use rational ex-

pectations in all periods, a rational agent would set her confidence interval to 0.2046 for

treatments 1-3 and 0.2081 for treatment 4.8 Of course, as soon as one subject departs from

rationality, the confidence interval of a rational agent should immediately become larger

as she has to account for the uncertainty of other subjects’ expectations. Under rational

expectations in treatments 1-3 the uncertainty should not be affected by the γ, while in

treatment 4 it depends on γ: higher γ leads to lower uncertainty.

As outlined above, uncertainty should be slightly lower when the central bank is pur-

suing inflation forecast targeting compared to inflation targeting. On the contrary, we

find that the average confidence interval is narrower in treatment 4 compared to the other

treatments. This difference is statistically significant with standard parametric (t-test) and

nonparametric tests (Wilcoxon/Mann-Whitney). However, if we compare treatment 4 sep-

arately to all the other treatments, we observe that while it is significantly narrower than

treatments 1 and 2 it is wider than treatment 3. Theory also suggests that in treatments

1-3 all confidence intervals should have the same width; however this is strongly rejected

by our experimental data. We can conclude that monetary policy significantly affects

the width of the confidence interval. Inflation targeting results in a narrower confidence

interval than inflation forecast targeting. Furthermore, in the case of inflation forecast

targeting, the width of the confidence interval also depends on how strongly the monetary

policy is reacting to deviations of inflation from its target.9

Our results might not be directly comparable to those based on surveys. Probabilistic

forecasts in surveys are usually collected in terms of histograms where intervals are pre-

defined and fixed for all participants. Another difference between our experiment and

surveys concerns attitude to risk. With professional forecasters it can be claimed that

their probability and point forecasts are correlated because they interact and influence

each other.10 Zarnowitz and Lambros (1987) argue that risk-averse forecasters tend to

make their forecasts as close to the relevant value as possible, and this holds for point

forecasts and probabilistic forecasts. In our experiment, subjects could neither exchange

8The unconditional variances of the residuals following the AR(1) process are vrg = σ2
g/(1−κ2) and

vru = σ2
u/(1−ν2). The associated confidence interval for treatments 1-3 is therefore 1.96 ·

√
(vrg+λ

2
vru).

For treatment 4 the value is 1.96 ·
√
((λγϕ+1)−2

vrg+(λγϕ+1)−2
vru) = 0.2081.

9This relationship is further analyzed in Section 3.2.
10Scharfstein and Stein (1990), Banerjee (1992) and Zwiebel (1995) argue that forecasters are occasion-

ally afraid to deviate from the majority or the consensus opinion. Pons-Novell (2003) provides empirical

evidence of this.
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Inflation Confidence bound

Symmetric Lower Upper

Treat. Group mean stdev mean stdev mean stdev mean stdev

1-A 1 2.85 5.87 0.97 0.71 - - - -

1-A 2 2.88 2.91 0.65 0.40 - - - -

1-A 3 2.92 1.97 0.70 0.35 - - - -

1-A 4 3.00 0.76 0.34 0.16 - - - -

1-B 5 3.13 1.10 - - 0.36 0.19 0.41 0.24

1-B 6 3.12 0.90 - - 0.29 0.14 0.35 0.41

2-A 7 3.12 0.76 1.09 0.30 - - - -

2-A 8 3.09 1.82 1.15 0.63 - - - -

2-A 9 3.13 0.51 0.38 0.21 - - - -

2-A 10 3.02 5.53 1.02 0.56 - - - -

2-B 11 2.52 3.58 - - 0.61 0.45 0.72 0.43

2-B 12 3.03 0.88 - - 0.33 0.12 0.33 0.14

3-A 13 3.01 0.52 0.53 0.13 - - - -

3-A 14 3.02 0.94 0.65 0.32 - - - -

3-A 15 2.99 0.24 0.35 0.09 - - - -

3-A 16 3.00 0.26 0.33 0.10 - - - -

3-B 17 2.99 0.31 - - 0.28 0.09 0.28 0.10

3-B 18 3.01 0.24 - - 0.20 0.08 0.25 0.35

4-A 19 3.09 0.39 0.36 0.13 - - - -

4-A 20 3.23 0.81 0.56 0.20 - - - -

4-A 21 3.05 0.48 0.38 0.09 - - - -

4-A 22 3.05 0.38 0.34 0.10 - - - -

4-B 23 3.09 0.52 - - 0.31 0.12 0.31 0.15

4-B 24 3.11 1.29 - - 0.60 0.28 0.65 0.37

All-A 3.03 1.51 0.61 0.28 - - - -

All-B 3.00 1.10 - - 0.37 0.18 0.41 0.28

Table 2.3: Confidence bounds, summary statistics.

information about each other’s expectations, nor is the average aggregate prediction di-

rectly observable.

2.3.1 Forecasting accuracy

In this section we first establish some stylized facts about forecasting performance and

then we focus on establishing which factors affect the probability that actual inflation

falls within the specified bounds.

It is interesting to see how accurate experimental subjects are in determining the confi-

dence bounds. Thaler (2000) suggests that when people are asked "for their 90% confi-

dence limits ... the correct answers will lie within the limits less than 70% of the time"
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(p. 133). Giordani and Söderlind (2003) obtain a very similar result (72%).11 Our results

confirm the overconfidence effect in an even stronger manner than survey data results.

Only 60.5% of the times do subjects manage to set confidence bounds that include the

actual inflation in the next period.12 This proportion is higher in treatments Ap, where

64.3% correctly specify confidence intervals, while in treatments Bp the proportion is

only 52.8%. It is interesting to note that the actual inflation is lower than their confidence

intervals in 19% of cases while it is higher in 20.5%. If we compare this among treat-

ments we find that in treatments Ap (Bp) actual inflation is lower than their confidence

intervals in 17.1% (22.9%) of cases while it is higher in 18.5% (24.4%). As mentioned

in the introduction, this overconfidence effect has attracted a lot of attention in the psy-

chology literature. Some studies even document that the success rate of these forecasts is

less than 50% when people are asked for 90−99% confidence intervals (e.g. Lichtenstein

et al., 1982).13 The most striking example of this bias has been recently documented by

Ben-David et al. (2010) who assembled a panel of forecasts by top financial executives.

They show that the market returns realized are only 33% of the time within 80% confi-

dence bounds. They put forward two possible explanations for these results: (i) CEOs

overestimate their ability to predict the future, or (ii) they underestimate the volatility of

random events. Moreover, Biais et al. (2005) argue that traders who underestimate risk

are prone to the winner’s curse.14

The accuracy of confidence intervals also differs across different monetary policies. We

find that in treatments 3 and 4, subjects are more accurate (62.9% and 69.4% accuracy

respectively) than in the benchmark treatment 1 (51.7% accuracy). The differences are

significant at a 10% level with the Wilcoxon/ Mann-Whitney test.

As confidence intervals forecast the distribution of the expected forecast errors we can

actually dig deeper and analyze each individual separately. We find that only 11.1% of the

subjects on average overestimate risk in treatments Ap and 2.8% (1.4%) of the subjects

in treatments Bp for the lower (upper) bound. Closer inspection allows us to conclude

that on average only about 9.0% of the subjects in treatments Ap and 1.4% (8.4%) of the

subjects in treatments Bp for the lower (upper) bound on average report the confidence

bounds that are not significantly different from 95% confidence intervals based on actual

forecast errors. The rest of the subjects on average forecast confidence bounds that are

significantly lower than the actual forecast errors. Per-group statistics are reported in

11See also Giordani and Söderlind (2006).
12Moreover, our instructions required subjects to make their prediction with 95 confidence bounds.
13Onkal and Bolger (2004) and Du and Budescu (2007) document that the overconfidence effect weak-

ens when subjects are asked for 70 or 50% confidence intervals.
14Yaniv and Foster (1995) argue that overconfidence can be explained by the fact that the subjects are

worried that inserting too wide confidence intervals will reduce the informativeness of their inputs.
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Table B.1 in Appendix B.

We check how the volatility of inflation, the width of confidence bounds, and macroeco-

nomic variables affect the likelihood of inflation falling within the specified confidence

bound.15 We estimate the following regression:

xk
t = α

k+β sipk
t|t−1+ γD1yt−1+δD2yt−1+ εD3yt−1+ (2.5)

+ηDL |πt−1|+θDH |πt−1|+ζ it−1+δ sd
j

t−1+uem
t ,

where xk
t takes value 1 when inflation falls within the provided bounds and 0 otherwise,

sipk
t|t−1

is subject k’s interval prediction for period t (for treatments Bp it is (CBU −
CBL)/2), yt is the output gap, πt is actual inflation and it is the interest rate for group j.

D1, . . . ,D3 are dummy variables. D1 equals 1 when yt−1 > 0.1 and ∆yt−1 > 0 and is 0

otherwise; D2 equals 1 when yt−1 < 0.1 and ∆yt−1 < 0 and is 0 otherwise; D3 equals 1

when D1 = 0 and D2 = 0 jointly and is 0 otherwise. sd
j

t−1 is the standard deviation of

inflation up to period t−1 for group j. DL equals 1 when inflation is below the target and

0 otherwise, while DH equals 1 when inflation is above its target and 0 otherwise.

The results for fixed effects logit estimation are reported in Table 2.4 while those for Pois-

son fixed effects and random effects are reported in Tables B.3-B.5 in Appendix B. As one

would expect, when there is a higher volatility of inflation there are more results outside

the interval, especially in treatments Bp. This is well documented in the psychology liter-

ature as greater volatility leads to overconfidence (e.g. Lawrence and Makridakis, 1989,

Lawrence and O’Connor, 1992).16 However, some studies also find that there is no such

effect (Du and Budescu, 2007). In both treatments wider confidence intervals result in a

higher probability of correctly specifying the confidence interval. Interestingly, we can

observe that there exists some pattern across business cycles. There are more outcomes

outside the interval, when the output gap is positive and has a clear upward trend of infla-

tion, while in the opposite situation there is a lower probability of misperceiving inflation

uncertainty. Inflation also has a significant positive impact on the likelihood of the fore-

cast falling within the interval, especially when inflation is above the target value.17

15Frequencies of forecast errors depending on the inflation cycle can be found in the Table B.2.
16Psychologists argue that this overconfidence is due to hard-easy effects, i.e. miscalibration (reported

narrower confidence intervals) is higher in hard tasks and attenuated or even eliminated in easy tasks (e.g.

Keren, 1991).
17 In Table B.9 in Appendix B we also report the results of the relationship between individual k’s

forecast error rk
t+1 = πk

t+1|t −π t+1, and the confidence interval as a measure of uncertainty.
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xk
t : all treat.Ap treat.Bp

sipk
t|t−1

2.3985∗∗∗ 2.3578∗∗∗ 2.9678∗∗∗

(0.2340) (0.3620) (0.4567)

D1yt−1 -0.8720∗∗∗ -1.1590∗∗∗ -0.7103∗∗∗

(0.2117) (0.4328) (0.2137)

D2yt−1 1.3565∗∗∗ 1.9346∗∗∗ 1.4602∗∗∗

(0.2304) (0.5309) (0.2439)

D3yt−1 0.3092∗ 0.3000 0.2717
(0.1684) (0.3153) (0.2023)

DL|πt−1| 0.2179∗∗ 0.0933 0.3218∗

(0.0948) (0.5938) (0.1856)

DH |πt−1| 0.5955∗∗∗ 1.2236∗∗ 0.5659∗∗∗

(0.1344) (0.4821) (0.1497)

it−1 -0.1529∗∗ -0.3655 -0.0960
(0.0758) (0.3859) (0.0817)

sd
j

t−1 -1.4642∗∗∗ -0.8690∗ -1.8730∗∗∗

(0.2722) (0.4525) (0.4803)

N 14628 4968 9660

Wald χ2
(8) 168.4 230.0 122.9

Table 2.4: Forecasting accuracy and confidence intervals. Note: coefficients are based on fixed

effects logit estimations. Standard errors in parentheses are calculated using bootstrap

procedures (1000 replications) that take into account the potential presence of clusters

in groups. */**/*** denotes significance at 10/5/1 percent level.

2.3.2 Determinants of individual uncertainty

Below we analyze the determinants of confidence bounds using panel data. All the re-

gressions below are estimated using the system GMM estimator of Blundell and Bond

(1998) for dynamic panel data. They are replicated for the whole sample (all), treat-

ments Ap (treat.Ap), and separately for the part of the interval below the point forecast

(treat.Bp−L) and above the point forecast (treat.Bp−U) in treatments Bp. In order to

transform the asymmetric confidence intervals into a measure comparable to the symmet-

ric ones, we compute the average of the upper and lower interval.

We begin by detailing the relationship between the confidence interval and the standard

deviation of inflation. We estimate the following regression:

sipk
t+1|t = α+β sipk

t|t−1+ γsd
j

t−1+uem
t , (2.6)

where individual k’s current perceived uncertainty in period t is measured by her confi-

dence interval, sipk
t+1|t . The results are reported in Table 2.5.
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sipk
t+1|t : all treat.Ap treat.Bp−L treat.Bp−U

sipk
t|t−1

0.4390∗∗∗ 0.5445∗∗∗ 0.4407∗∗∗ 0.0925

(0.1114) (0.0921) (0.0485) (0.0982)

sd
j

t−1 0.1167∗∗∗ 0.0955∗∗ 0.1357∗∗∗ 0.2643∗∗∗

(0.0450) (0.0401) (0.0220) (0.0561)

α 0.2143∗∗∗ 0.2039∗∗∗ 0.1142∗∗∗ 0.1884∗∗∗

(0.0283) (0.0285) (0.0187) (0.0323)

N 14904 9936 4968 4968

Wald χ2
(3) 140.9 259.1 346.1 34.6

Table 2.5: Confidence intervals and standard deviation of inflation. Note: The coefficients are

based on the Blundell-Bond system GMM estimator. Standard errors in parentheses

are calculated using bootstrap procedures (1000 replications) that take into account

the potential presence of clusters in groups. */**/*** denotes significance at 10/5/1

percent level.

We find that confidence intervals are highly inertial. This has previously been documented

in Bruine de Bruin et al. (2011), and Giordani and Söderlind (2003). A higher standard

deviation of inflation leads to wider confidence intervals, although with a smaller effect

in treatments Ap. Du and Budescu (2007) find no relationship between these variables.

A positive correlation between the self-reported range of responses and the underlying

uncertainty is also found for survey data in Bruine de Bruin et al. (2011).

A second feature of the confidence intervals that we want to study is the subjects’ re-

sponses to inflation falling outside the confidence interval. To discriminate between

the effects of overshooting and undershooting we introduce two dummy variables. Dk
4

takes the value 1 if
(∣∣rk

t−1

∣∣> sipk
t−1

)
∧
(
rk
t−1 ≥ 0

)
, and 0 otherwise. Note that rk

t−1 =

πt−1−πk
t−1|t−2

is subject k’s last observed forecast error. Dk
5 equals 1 if

(∣∣rk
t−1

∣∣> sipk
t−1

)
∧
(
rk
t−1 ≤ 0

)
, and 0 otherwise, while Dk

6 is 1 when
∣∣rk

t−1

∣∣ < sipk
t−1, and 0 otherwise.

Therefore Dk
4 = 1 when subject k underestimates inflation; while Dk

5 = 1 when subject k

overestimates inflation. We run the following regression:

sipk
t+1|t = α+β sipk

t|t−1+ γDk
4rk

t−1+δDk
5rk

t−1+ εDk
6rk

t−1+uem
t . (2.7)

The results shown in Table 2.6 suggest that subjects increase their confidence intervals

after the last observed inflation is outside the interval.18 This holds for both "undershoot-

ing" and "overshooting." In the latter case rk
t−1 is negative, so a negative coefficient δ

implies that confidence intervals are widened after
∣∣rk

t−1

∣∣ > sipk
t−1. Positive or negative

18Table B.8 in Appendix B reports regression with dummies without interaction with actual forecast

errors.

53



sipk
t+1|t : all treat.Ap treat.Bp−L treat.Bp−U

sipk
t|t−1

0.4430∗∗∗ 0.5496∗∗∗ 0.4641∗∗∗ 0.1068

(0.1080) (0.0865) (0.0491) (0.1059)

D4rk
t−1 0.0363∗∗ 0.0292∗∗ 0.0023 0.0669∗

(0.0153) (0.0147) (0.0228) (0.0343)

D5rk
t−1 -0.0760∗∗∗ -0.0647∗∗∗ -0.0955∗∗∗ -0.0668∗∗

(0.0193) (0.0190) (0.0094) (0.0269)

D6rk
t−1 0.0015 0.0025 -0.0191∗ 0.0506

(0.0201) (0.0204) (0.0107) (0.0309)

α 0.2799∗∗∗ 0.2568∗∗∗ 0.1882∗∗∗ 0.3504∗∗∗

(0.0396) (0.0416) (0.0251) (0.0406)

N 14688 9792 4896 4896

Wald χ2
(5) 203.6 248.5 1048.1 19.7

Table 2.6: Confidence intervals and phases of the economic cycle. Note: treat.Bp−L (treat.Bp−
U) only includes part of the interval beneath (above) the point forecast. Coefficients

are based on the Blundell-Bond system GMM estimator. Standard errors in parentheses

are calculated using bootstrap procedures (1000 replications) that take into account the

potential presence of clusters in groups. */**/*** denotes significance at 10/5/1 percent

level.

errors do not result in any significant change in confidence intervals in the next period

when inflation falls within the interval. It is also interesting to note that the confidence

intervals in treatments Bp exhibit less inertia, especially at the upper bound, compared

to treatments Ap. Moreover, the interval above the point forecast widens with both over-

shooting and undershooting while the interval below is more stable and responds only to

undershooting. This also represents the first potential source of observed asymmetries.

Ben-David et al. (2010) also note that there is a difference regarding the formation of the

upper and the lower bound of confidence intervals. They argue that lower forecast bounds

are significantly affected by the past return while upper ones are not.

Several studies have established that there are significant variations in uncertainty over

the business cycle; in particular, uncertainty is found to be countercyclical. Bloom (2009)

and Bloom et al. (2010) build theoretical models where uncertainty shocks play a key

role in business cycle fluctuations. We estimate equation (2.8), where we control for the

path of the output gap. In addition, specification (2.8) also allows for the possibility that

subjects change their interval forecasts on the basis of their last point forecast errors:

sipk
t+1|t = α+β sipk

t|t−1+ γD1yt−1+δD2yt−1+ εD3yt−1 (2.8)

+ζ it−1+ηDL |πt−1|+θDH |πt−1|+φ

∣∣∣rk
t−1

∣∣∣+ϑT 2+ ιT 3+κT 4+uem
t ,
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where yt is the output gap, it is the interest rate, and D1, . . . ,D3 are dummy variables as

identified with equation (2.5). The estimation results are given in Table 2.7. T 2, T 3 and

T 4 are treatment dummies.19

sipk
t+1|t : all treat.Ap treat.Bp−L treat.Bp−U

sipk
t|t−1

0.3976∗∗∗ 0.5333∗∗∗ 0.4305∗∗∗ 0.0900

(0.1034) (0.0990) (0.0398) (0.0997)

D1yt−1 0.0067 0.0198 0.0202 -0.0560
(0.0219) (0.0258) (0.0252) (0.0465)

D2yt−1 -0.0188 -0.0118 -0.0144 -0.0650∗∗

(0.0225) (0.0217) (0.0304) (0.0262)

D3yt−1 0.0067 0.0183 0.0051 -0.1142∗∗∗

(0.0296) (0.0271) (0.0183) (0.0413)

it−1 0.0110 0.0070 -0.0066 0.0025
(0.0076) (0.0073) (0.0059) (0.0157)

DL|πt−1| 0.0294∗∗ 0.0241∗∗ 0.0247∗∗ 0.0782∗∗∗

(0.0115) (0.0105) (0.0108) (0.0234)

DH |πt−1| 0.0180 0.0173 0.0668∗∗∗ 0.0248
(0.0167) (0.0135) (0.0139) (0.0310)

|rk
t−1| 0.0552∗∗∗ 0.0473∗∗∗ 0.0474∗∗ 0.0749∗∗∗

(0.0154) (0.0159) (0.0203) (0.0250)

T 2 1.0505∗

(0.5519)

T 3 -0.6098
(0.5743)

T 4 -0.6351

(0.5913)

α 0.2790 0.2062∗∗∗ 0.1694∗∗∗ 0.2898∗∗∗

(0.2893) (0.0415) (0.0266) (0.0541)

N 14688 9792 4896 4896

Wald χ2
(12) 393.8 715.8 865.0 145.0

Table 2.7: Confidence intervals and macroeconomic variables. Note: treat.Bp−L (treat.Bp−U)

only includes the part of the interval beneath (above) the point forecast. Coefficients

are based on the Blundell-Bond system GMM estimator. Standard errors in parentheses

are calculated using bootstrap procedures (1000 replications) that take into account the

potential presence of clusters in groups. */**/*** denotes significance at 10/5/1 percent

level.

19Treatment dummies are included only in regression all as in the other specifications due to too few

observations within one treatment we would have to abolish the clustering of standard errors if we were to

include treatment dummies.
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Friedman (1968) points out that there is a positive link between inflation and inflation

uncertainty. While Liu and Lahiri (2006) and D’Amico and Orphanides (2008) find em-

pirical support for this conjecture, we cannot confirm it in our experiment. Regressing

equation (2.8) with inflation (πt−1) instead of DL |πt−1| and DH |πt−1| would result in

inflation having a negative impact on the width of the confidence interval. The empirical

studies that find a positive correlation between inflation and uncertainty are based on the

US economy where, especially in the 70s, there was mostly an upward risk for inflation.

In our experiment, inflation fluctuates around the inflation target, so decreases in inflation

below the inflation target also increase uncertainty. With specification (2.8) we concen-

trate on the absolute deviations of inflation from the inflation target, while controlling for

high and low inflation levels. We indeed observe that downside risk has an even more im-

portant impact on the uncertainty than the upside risk. Moreover, when inflation is above

the target inflation only the upper part of the confidence interval will be widened, whereas

when it is below the target inflation both sides of the confidence interval will be widened.

Interest rates are positively related to the individual confidence intervals in the regressions

above, although their effects are not significant. Zarnowitz and Lambros (1987) point out

that uncertainty about inflation and interest rates can be either positively or negatively

related in the field, although for their sample they find a negative relationship. Giordani

and Söderlind (2003) additionally argue that the forecast uncertainty is positively related

to the forecast errors. In Table 2.7 we also demonstrate that confidence intervals depend

on the last observed absolute forecast error.

The above regressions confirm the asymmetries between the upper and lower confidence

bound demonstrated in Table 2.2. We can argue that the upper bound is more sensitive

to the stage of the business cycle than the lower bound. In addition, different monetary

policy rules also have an effect on the width of the confidence interval. The confidence

intervals are wider for example in treatment 2 compared to the other treatments. One

reason behind this is that uncertainty is related to the variability of inflation, which in

turn depends on γ and more generally on the monetary policy.20 However, there also exist

other treatment effects as can be observed when controlling for a standard deviation of

inflation. Table B.7 in Appendix B demonstrates that if we include treatment dummies in

regression (2.6) we find that the dummy variable for treatment 2 is significant.

20Due to the presence of heterogeneous expectations this relationship is not monotonic. It is found that

the relationship between γ and the variability of inflation is U-shaped (see Chapter 1 for further details).
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2.3.3 When are confidence intervals (a)symmetric?

So far, we have found several asymmetries between the formation of the upper and the

lower confidence bounds. In this section we analyze the choice of asymmetric confidence

interval by using data from treatments Bp. Let us first analyze the proportion of subjects

that systematically choose either a wider interval above the point forecast as compared to

the one below point forecast or vice-versa. It is clear from Table 2.8 that when subjects

are given the option to choose an asymmetric confidence interval they often do so, espe-

cially in treatments B1 and B2. Moreover, among more than 40% of the subjects who

systematically choose asymmetric intervals, fewer than 6% perceive higher uncertainty

on the left-hand side of their point forecast. We can also observe that the proportion of

subjects choosing symmetric intervals is the highest in treatment 4. Table 2.8 shows that

the behavior of subjects in the inflation targeting treatment is more in line with theory

than in the treatments with inflation forecast targeting.

Lower vs. upper (% of subjects) CL <CU CL ≈CU CL >CU

1 – Forward looking (2.3), γ = 1.5 44.4 50.0 5.6

2 – Forward looking (2.3), γ = 1.35 50.0 44.4 5.6

3 – Forward looking (2.3), γ = 4 33.3 66.7 0.0

4 – Contemporaneous (2.4), γ = 1.5 16.7 72.2 11.1

All 36.1 58.3 5.6

Table 2.8: Proportions of subjects from treatments Bp, depending on the difference between their

upper (CU ) and lower (CL) confidence intervals. When CL <CU , the subject choose on

average a smaller lower interval than upper interval. Based on pairwise t-test with 5%

signifficance level.

Now we turn our attention to the factors that determine the probability of an asymmetric

interval. We first define D7 = 1 if the upper interval has exactly the same width as the

lower one and 0 otherwise. There are only about 12.5% of these cases. We observe,

however, that 84% of the subjects gave their responses with one or two decimal points

accuracy. It is therefore reasonable to define symmetry as |CL−CU | ≤ 0.1; in this case

we set D8 = 1.21 According to this definition 47.2% of our responses in treatments Bp

are approximately symmetric. We estimate the following regressions:

Dz = α+β sipk
t|t−1+ γD1yt−1+δD2yt−1+ εD3yt−1+ζ it−1 (2.9)

+ηDL |πt−1|+θDH |πt−1|+φsd
j

t−1+uem
t ; z ∈ {7,8}.

21Alternatively, we also tried D9 = 1 if 0.9 ≤
∣∣∣Con f IntHn−1

Con f IntLn−1

∣∣∣ ≤ 1.1. The results can be found in Tables

B.10 and B.11 in Appendix B.

57



The results for the logit fixed effects estimator are reported in the first two columns of

Table 2.9, while logit and Poisson random effects estimations can be found in Tables B.10

and B.11 in Appendix B. While the above regressions inform us about the likelihood that

subjects choose symmetric intervals, they are not suitable for measuring the magnitude of

the asymmetry of the individual forecast distributions or their direction. For that purpose

it is convenient to introduce a new variable, skewness, similar to that used in Du and

Budescu (2007). We define the skewness variable, skwk
t by subtracting the point forecast

from the midpoint of the confidence interval. If skwk
t is smaller (greater) than 0, then the

interval is left (right) skewed, and the confidence interval below the point forecast is wider

(narrower) than the one above. If skwk
t = 0 then the interval is symmetric. The factors

affecting skewness are analyzed on the right-hand side of Table 2.9 using the Blundell-

Bond system GMM estimator.

skwk
t = α+ηskwk

t−1+β sipk
t|t−1+ γD1yt−1+δD2yt−1+ εD3yt−1 (2.10)

+ζ it−1+ηDL |πt−1|+θDH |πt−1|+φsd
j

t−1+uem
t .

Regressions for D7 and D8 demonstrate that some indicators of the cycle are significant.

In particular, for D7 when the output gap is negative and downward sloping to observe

symmetric intervals it is less likely, while for D8 observeing symmetrical intervals in the

opposite stages of the business cycle is more likely. For both regressions, the interest rate

has a significantly positive impact and absolute inflation above the target a significantly

negative impact, i.e. there is less symmetry when inflation is low.

The skewness measure, on the other hand, also gives us an indication of the direction of

the asymmetry. We find that this measure is inertial and tends to decrease (left skewness)

when the previous confidence interval was larger. The measure also varies across the busi-

ness cycles: it is lower when D3 = 1. Du and Budescu (2007) find a negative relationship

between the standard deviation of inflation and the skewness of confidence distribution,

while we find this relationship only for the case of D7.

2.4 Disagreement and aggregate expectation distribution

Different measures can be used to proxy inflation variability. We first analyze the features

of the standard deviation of point forecasts. Second, we take account of individual uncer-

tainty as well. We define the probability density functions of individual distributions, add

them up and analyze the features of aggregate distribution.

The variance of point forecasts is a "natural" measure of disagreement. It is often used in
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Symmetry Skewness

D7 D8 skwk
t

skwk
t−1 - - 0.2861∗∗∗

(0.0576)

sipk
t|t−1

0.2498 -0.7167 -0.2375∗∗∗

(0.1643) (0.5136) (0.0852)

D1yt−1 0.3345 0.4867∗∗ -0.0496

(0.4229) (0.2048) (0.0415)

D2yt−1 -0.4418∗∗ 0.1259 -0.0447

(0.2093) (0.2308) (0.0337)

D3yt−1 -0.3388 0.1152∗∗∗ -0.0776∗∗∗

(0.2504) (0.0420) (0.0240)

it−1 0.2547∗ 0.2111∗∗∗ 0.0004

(0.1306) (0.0684) (0.0150)

DL|πt−1| 0.1828 0.1802 0.0273

(0.2757) (0.1174) (0.0275)

DH |πt−1| -0.4488∗ -0.2613∗∗ -0.0126

(0.2550) (0.1177) (0.0232)

sdk
t−1 -0.3237∗∗ -0.5066 -0.0050

(0.1510) (0.3272) (0.0498)

α - - 0.1037∗∗

(0.0519)

N 4968 4968 4968

Wald χ2
(8,9) 79.3 58.3 156.3

Table 2.9: Determinants of symmetric and skewed intervals. Note: coefficients for the symmetry

tests are based on fixed effects logit estimations, while coefficients for skewness are

based on the Blundell-Bond system GMM estimator. Standard errors in parentheses

are calculated using bootstrap procedures (1000 replications) that take into account

the potential presence of clusters in groups. */**/*** denotes significance at 10/5/1

percent level.

the empirical literature since the data on point forecasts are more frequently available than

the data on individual distributions. It is studied, for example, in Zarnowitz and Lambros

(1987) and Giordani and Söderlind (2003). We investigate the relation of the standard

deviation of point forecasts to the phases of the economic cycle, interest rate, inflation

and the mean forecast error:

sdv
j

t+1|t = α+β sdv
j

t|t−1
+ γD1yt−1+δD2yt−1+ εD3yt−1 (2.11)

+ζ it−1+ηDL |πt−1|+θDH |πt−1|+φmr
j

t−1+uem
t ,
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where sdv
j

t+1|t is a cross-sectional standard deviation of point forecasts in group j at

period t, while the mean absolute forecast error in group j at period t−1 is mr
j

t−1.

The regressions based on (2.11) are displayed on the left-hand side of Table 2.10. The

standard deviation of point forecasts exhibits sensitivity to inflation, mean absolute fore-

cast error and to some degree business cycles. However, it tends to be less sensitive to

these variables in the treatment with asymmetric confidence intervals, where only iner-

tia and sensitivity to the business cycle play an important role. Disagreement increases

when the output gap is below the steady state and falling. We observe higher disagree-

ment when absolute inflation is below the target. Rich and Tracy (2010) and D’Amico

and Orphanides (2008) find that there is a positive relationship between inflation and dis-

agreement. Our results conversely point out that low inflation can also generate higher

uncertainty.

There are some treatment differences regarding the determination of the standard devi-

ation of point forecasts (sdv). In particular, treatment 3 seems to produce lower sdv

compared to treatment 1. However, we are not able to introduce treatment dummies to

the regressions for the sdv and IQR as then we would not be able to compute clustered

standard errors across treatments. The results in this paragraph are from estimations of

eq. (2.11) with treatment dummies using robust standard errors.

2.4.1 Dispersion of aggregate distribution

Several central banks have started to put the data on the distribution of inflation expecta-

tions on the agenda for policy meetings. This is partly a product of advances in Bayesian

estimation methods for monetary models and also of the adoption of new communication

strategies by many central banks. Thus, it is often desirable to aggregate individual dis-

tributions and analyze them, rather than calculate averages from the individual moments.

Frequently, only aggregate distributions are available from survey data, assuming that dif-

ferent samples of forecasters have similar aggregate properties to the whole population.

We derive the distribution from the asymmetric confidence bounds by using a triangles

approach similar to Engelberg et al. (2009). The mode is set to be equal to the point

forecast, while 95% of the derived triangular distribution is set to be between the lower

and the upper confidence bound. In this way we generate probability density functions

for each forecast by an individual. The distributions are then aggregated cross-sectionally,

across the individuals in a group.

We choose the interquartile range (IQR)22 as an apropriate measure as it is less sensitive

22The interquartile range is a range between the 25th and 75th percentile.
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sdv
j

t+1|t IQR
j

t+1|t
all treat.Ap treat.Bp all treat.Ap treat.Bp

sdv
j

t|t−1
0.1463 0.1265 0.4970∗∗∗

(0.1409) (0.1046) (0.0247)

IQR
j

t|t−1
0.4982∗∗∗ 0.4738∗∗∗ 0.6280∗∗∗

(0.0896) (0.0787) (0.0670)

D1yt−1 -0.0171 0.0122 0.0157 -0.0298 -0.0282 0.0385

(0.0154) (0.0168) (0.0376) (0.0622) (0.0854) (0.0582)

D2yt−1 0.0026 0.0136 -0.1275∗∗∗ -0.0809 -0.0713 -0.1122∗∗

(0.0311) (0.0250) (0.0164) (0.0492) (0.0572) (0.0475)

D3yt−1 0.0392 0.0520 -0.0249 0.0848 0.1073 -0.0538

(0.0593) (0.0749) (0.0369) (0.0841) (0.1000) (0.0402)

it−1 0.0279 0.0249 -0.0002 0.0083 0.0076 0.0109

(0.0330) (0.0288) (0.0389) (0.0131) (0.0210) (0.0246)

DL|πt−1| 0.1430∗∗∗ 0.1533∗∗∗ 0.0773 0.0758∗∗ 0.0789∗∗∗ 0.0497

(0.0507) (0.0353) (0.0534) (0.0294) (0.0286) (0.0345)

DH |πt−1| 0.0787 0.0901 0.0794 0.0438 0.0492 0.0022

(0.0717) (0.0701) (0.0675) (0.0530) (0.0615) (0.0401)

mr
j

t−1 0.2211∗∗∗ 0.2447∗∗∗ 0.0704 0.2174∗∗∗ 0.2438∗∗∗ 0.0790

(0.0297) (0.0169) (0.0779) (0.0348) (0.0184) (0.0959)

α -0.0218 -0.0252 0.0332 0.0739∗∗ 0.0836 0.0668

(0.0911) (0.0726) (0.1211) (0.0308) (0.0610) (0.0750)

N 1632 1088 544 1632 1088 544

Wald χ2
(8) 3763.3 12747.1 5495.4 19215.1 15228.4 3032.3

Table 2.10: Analysis of Disagreement: Interquartile Range (left) and Standard Deviation of Point

Forecasts (right). Note: coefficients are based on the Blundell-Bond system GMM

estimator. Standard errors in parentheses are calculated using bootstrap procedures

(1000 replications) that take into account the potential presence of clusters in treat-

ments. */**/*** denotes significance at 10/5/1 percent level.

to small variations in the tails of the estimated density compared to the cross-sectional

standard deviation of the aggregate distribution.23 Nevertheless, it is useful to show that

the variance of aggregate distribution is related to the two measures that we study above.

Boero et al. (2008) show explicitly that the variance of the aggregate distribution can be

decomposed into the average individual uncertainty and disagreement of point forecasts.

23Giordani and Söderlind (2003) use a similar measure to ours. In the literature other measures have also

been proposed. Boero et al. (2008) use the standard deviation of the aggregate distribution, while Batchelor

and Dua (1996) suggest root mean subjective variance.
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To discover the properties of the aggregate distribution, we run the following regression:

IQR
j
t = α+ζ IQR

j

t−1+βD1yt−1+ γD2yt−1+δD3yt−1 (2.12)

+εit−1+ηDL |πt−1|+θDH |πt−1|+ηmr
j

t−1+uem
t ,

where IQR j = Q3−Q1 is the interquartile range, yt is the output gap, it is the interest

rate, and D1, . . . ,D3 are dummy variables as identified above.

Equation (2.12) considers the sources of divergences in expectations, such as the output

gap, the interest rate and the previous value of the interquartile range. As above, we in-

troduce a dummy variable for each of the phases of the cycle. Several studies observe

considerable inertia in the disagreement of expectations (see Giordani and Söderlind,

2003). We therefore also include the previous period interquartile range among the in-

dependent variables and find them highly significant. The results on the right-hand side

of Table 2.10 show that there is some influence of the cyclical phase and inflation on the

interquartile range. For a negative and decreasing output gap there is more disagreement.

This is similar to the results in survey data, where it is common to observe countercycli-

cal behavior of the variance of inflation expectations.24 We observe that the interquartile

range is positively correlated with the absolute level of inflation when inflation is below

the target level. In treatments Ap, the mean absolute forecast error also significantly af-

fects the IQR. It is worth noting that regressions for the treatments with symmetric and

asymmetric confidence intervals show very similar results. Regression results yield no

significant differences between the different monetary policy rules employed.

2.5 Discussion

The aim of this section is to compare different measures of individual uncertainty and

disagreement among forecasters and to assess their ability to forecast inflation variabil-

ity. Various studies argue that disagreement measured as the standard deviation of point

forecasts lacks a theoretical basis and is therefore not a suitable proxy for uncertainty and

consequently also for inflation variability, as is implicit in Zarnowitz and Lambros (1987).

However, as we pointed out above, Boero et al. (2008) question this statement and show

that disagreement is a component of the variance of aggregate distribution.

There are several advantages and disadvantages to each measure proposed. The choice of

the measure should therefore be oriented to the purpose for which it is intended. Several

24Pfajfar and Santoro (2010) also study kurtosis and skewness of the distribution of forecasts and find

that both exhibit procyclical behavior.
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survey data articles point out that the advantage of the measure of disagreement among

forecasters (sdv) is that it is available in any survey, whereas only a limited number of

surveys ask for measures of individual uncertainty. Our design thus allows us to also use

the average confidence interval (asip) for comparison. A proxy for the uncertainty may

be the average absolute forecast error across individuals (mr). A measure of the variation

in the aggregate distribution of forecasts gives information about both uncertainty and

disagreement. The interquartile range (IQR) is a proxy for that. Figures B.1 and B.2 in

Appendix B display a timewise comparison between the average confidence interval, the

standard deviation of point forecasts and the interquartile range for each group.

We compare pairwise correlation coefficients between different measures of uncertainty

and disagreement as in D’Amico and Orphanides (2008) to make a preliminary assess-

ment of their forecasting ability, which is further scrutinized below using dynamic panel

regression analysis.

mr
j
t asip

j
t sdv

j
t IQR

j
t πt+1 it+1 yt+1

mr
j
t 1

asip
j
t 0.577∗∗∗ 1

sdv
j
t 0.822∗∗∗ 0.532∗∗∗ 1

IQR
j
t 0.827∗∗∗ 0.689∗∗∗ 0.777∗∗∗ 1

πt+1 -0.080∗∗ -0.030 -0.063∗ -0.131∗∗∗ 1

it+1 0.169∗∗∗ 0.196∗∗∗ 0.226∗∗∗ 0.198∗∗∗ 0.845∗∗∗ 1

yt+1 -0.321∗∗∗ -0.246∗∗∗ -0.259∗∗∗ -0.267∗∗∗ -0.016 -0.177∗∗∗ 1

sd
j

t+1 0.818∗∗∗ 0.690∗∗∗ 0.722∗∗∗ 0.877∗∗∗ -0.143∗∗∗ 0.185∗∗∗ -0.280∗∗∗

Table 2.11: Pairwise correlation coefficients. Note: */**/*** denotes significance at 10/5/1 per-

cent level.

All three measures that we compare in this section are significantly positively correlated

between each other and with the standard deviation of inflation. However, some of the

correlation coefficients are not very high. As we can observe in Table 2.11, there is a

significant correlation coefficient (about 0.5) between the average width of the confidence

interval and the standard deviation of point forecasts.25 Rich and Tracy (2010) and Boero

et al. (2008) find little evidence that this relationship exists in the survey data, while

D’Amico and Orphanides (2008) find a correlation coefficient of 0.4. The present analysis

suggests that uncertainty and disagreement are modestly correlated.

A positive correlation between the interquartile range and individual uncertainty can be

observed. The correlation coefficient (around 0.7) is higher than that reported in the

25Table B.6 in Appendix B depicts the relationship between confidence bounds and the dispersion of

point forecasts in more detail. We find no evidence of this relationship for symmetric intervals, while for

asymmetric there is a positive relationship.
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previous paragraph. As shown in the statistical analysis by Boero et al. (2008), there

exists a "structural" relationship between these two variables so a positive relationship is

expected. For similar reasons there is also a correlation between the disagreement and the

interquartile range. The latter correlation is of similar magnitude to the former. Therefore,

one could argue that the interquartile range is in our experiment at least as much, if not

more, a measure of disagreement as average individual uncertainty. Bomberger (1996)

argues that the standard deviation of point forecasts is a useful proxy for uncertainty and

that disagreement tracks uncertainty better than the GARCH model; however, this view

is questioned by Rich and Butler (1998).26

Policymakers are interested in inflation uncertainty and in obtaining proxies for it. There-

fore, the question that needs to be addressed is which proxy or combination of proxies

best forecasts inflation uncertainty. As we can observe in Table 2.11, the highest correla-

tion is between the interquartile range (IQR) and the standard deviation of inflation (sd).

It reaches almost 0.9, while somehow surprisingly disagreement is a slightly better proxy

of inflation uncertainty than the average perceived uncertainty of subjects. In order to

further assess the forecasting performance of these measures we estimate the following

regression:

sd
j
t = α+β sd

j

t−1+ γasip
j

t−1+ εsdv
j

t−1+δ IQR
j

t−1 (2.13)

+ζ it−1+ηπt−1+φyt−1+uem
t ,

where asip
j

t−1 is the average confidence interval in period t− 1 for group j. Table 2.12

reports the results. We estimate three different specifications, which are a subset of the

above equation. In variant (a) we include all three measures, while in variant (b) we

include only measures of individual uncertainty and disagreement. Variant (c) embeds

only the IQR as it is a measure of both individual uncertainty and disagreement and, as

pointed out above, it is the measure that has the highest correlation with the standard

deviation of inflation.

The regressions confirm that the average individual uncertainty and the standard deviation

of point forecasts have a positive effect on inflation variance. It comes as a surprise

however that the interquartile range has a marginally significant negative effect. This

may be due to a degree of multicollinearity between the IQR and the standard deviation

of point forecasts and/or mean confidence intervals. In specification (c) the effect of

the IQR is insignificant, while in specifications (a) and (b) we observe that only the

26Lahiri and Sheng (2010) point out that disagreement is useful for forecasting in stable periods but not

in periods of high volatility.
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sd
j
t : (a) (b) (c)

sd
j

t−1 0.9913∗∗∗ 0.9843∗∗∗ 1.0036∗∗∗

(0.0124) (0.0116) (0.0137)

asip
j

t−1 0.0837∗∗∗ 0.0708∗∗ -

(0.0298) (0.0289)

sdv
j

t−1 0.0106 0.0073 -

(0.0179) (0.0152)

IQR
j

t−1 -0.0170∗ - -0.0018

(0.0100) (0.0114)

it−1 0.0108 0.0108 0.0129
(0.0084) (0.0082) (0.0096)

πt−1 -0.0135 -0.0136 -0.0148
(0.0118) (0.0115) (0.0137)

yt−1 -0.0094∗ -0.0092∗ -0.0125∗∗∗

(0.0052) (0.0049) (0.0037)

α -0.0109 -0.0071 0.0169
(0.0227) (0.0218) (0.0178)

N 1656 1656 1656

Wald χ2
(7,6,5) 54840.3 50525.4 22529.2

Table 2.12: Factors affecting the standard deviation of inflation. Note: coefficients are based

on the Blundell-Bond system GMM estimator. Standard errors in parentheses are

calculated using bootstrap procedures (1000 replications) that take into account the

potential presence of clusters in treatments. */**/*** denotes significance at 10/5/1

percent level.

average individual confidence interval has a positive and highly significant effect on sd.

Therefore, we can conclude that to forecast inflation it is most important to know the

average individual confidence interval, which is still rarely the case in surveys of inflation

opinions. These regressions confirm the results from the survey data literature, as we

reach similar conclusions to those of Zarnowitz and Lambros (1987), Boero et al. (2008),

and Giordani and Söderlind (2003), who argue that average individual uncertainty is the

proxy of inflation uncertainty that central banks should monitor.

Inflation affects the standard deviation of inflation negatively, which might also be sur-

prising. However, it is likely that if we separated the positive and negative developments

of inflation we would find similar effects as in the above regressions for IQR and sdv, i.e.

both terms would have significantly positive effects with negative development having a

more profound effect. The output gap exerts a negative effect on sdv.
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2.6 Conclusion

In Chapter 2 we have presented a macroeconomic experiment where subjects are asked to

forecast inflation and its uncertainty. The underlying model of the economy is a simple

NK model, which is commonly used for the analysis of monetary policy. The focus of the

analysis has been on the confidence bounds reported by subjects as a perceived measure

of the uncertainty in the economy. It has been shown that uncertainty has implications

for both inflation outcomes and for unemployment and is an increasingly important in-

dicator for monetary policy-making. Similarly to inflation expectations, the formation of

confidence bounds is also found to be heterogeneous. In different treatments we have

focused on various modifications of the original Taylor rule and studied the influence of

different monetary policy designs on the formation of confidence bounds. We have found

that inflation targeting produces lower uncertainty and higher accuracy of intervals than

inflation forecast targeting. The treatment that reacts strongly to deviations in inflation

expectations from the inflation target also produces similar effects as stated above, com-

pared to treatments that do not react as strongly to deviations in inflation forecasts. This

effect not only channels through the variability of inflation, but there is also evidence that

there are additional effects, for example the monetary policy rules that were discussed in

Chapter 1.

Subjects on average underestimate risk. This is a standard result in the psychology liter-

ature and is known as overconfidence bias. We have found that only in 60.5% of cases

do subjects correctly estimate risk. In particular, fewer than 10% of subjects on aver-

age report confidence bounds that approximately represent the 95% confidence intervals

consistent with the actual realizations; around 10% overestimate risk, while all others un-

derestimate risk. We have observed more cases of inflation falling outside the confidence

interval when the volatility of inflation is higher and when confidence intervals are nar-

rower. Outcomes outside the interval are also more frequent when the output gap is lower

and has a downward trend, while in the opposite situation there is a lower probability of

misperceiving inflation uncertainty.

We have also analyzed measures of individual uncertainty, disagreement among forecast-

ers and the properties of aggregate distribution. All these measures are related, as argued

in Boero et al. (2008), although they have very different features. The interquartile range

is a measure of both uncertainty and disagreement. We first analyzed the formation of

confidence intervals. We found that confidence intervals are positively related to inflation

variability, that they are highly inertial and that they widen after an "error." It is also in-

teresting to observe the relation between inflation and confidence intervals. In the survey

data literature it has been established that these two variables are positively related, i.e.
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higher inflation causes wider confidence intervals. Below target inflation also causes the

interval to increase and absolute deviations from the inflation target is an appropriate vari-

able to take into account. Furthermore, we have been able to establish some facts about

the differences between the formation of lower and upper bounds. In particular, we have

found that the upper bound is more sensitive to the stage of the business cycle while the

lower bound exhibits significantly more inertia.

More generally, we have also studied the determinants of the choice of asymmetric inter-

val. In our treatments Bp, subjects have the possibility of choosing an asymmetric confi-

dence interval, while in treatments Ap they are restricted to symmetric intervals. Wehave

found that in only about 12.5% of cases subjects choose symmetric intervals when they

have the possibility of choosing an asymmetric interval. Moreover, in treatments Bp more

than 35% of subjects report higher upper bounds than the lower ones, while only about

5% of subjects show the opposite pattern. Symmetric intervals are more likely to be ob-

served when the interest rate is high and less likely when inflation is below the target.

Symmetric intervals are also more common when the output gap is positive and rising

compared to the opposite stage of the business cycle.

What determines the evolution of the standard deviation of point forecasts and the in-

terquartile range of the aggregate distribution? We have documented that IQR is more

inertial than sdv, while they both increase when inflation is below the target level. We

have also compared forecasting performance of these measures and observed that the in-

terquartile range of the aggregate distribution is the one that has the highest correlation

with the actual uncertainty. Nevertheless, regression analysis suggests that the average

individual confidence interval is the only measure that consistently affects our forecasting

specifications signifficantly. Therefore, we confirm the previous results from the survey

data literature that more central banks should design their surveys in such a way that each

individual provides their whole distribution of forecasts or at least some measure of the

uncertainty of their forecasts. In this sense it might be enough if they were asked for their

confidence intervals as in our treatments Ap. Generally, this would greatly enhance the in-

formativeness of these surveys as central banks would also receive a proxy for forecasting

inflation uncertainty.
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Chapter 3

Uncertainty about the Number of

Bidders in Sequential Auctions with

Unit Demand

3.1 Introduction

Empirical data becomes of key importance to auction economists if it shows that it per-

sistently contradicts the theoretical models. With the growing availability of trading plat-

forms and increasing use of auction mechanisms as the method of exchange, divergence

from theoretical predictions poses a challenge to mechanism designers. Can they incor-

porate this behavior in their design and increase expected revenues? Price behavior in

sequential auctions is one of the cases where this divergence is particularly obvious. It

has been proved (Weber, 1983) that prices of identical goods sold sequentially in an auc-

tion should, under certain assumptions, remain constant on average for all the goods sold

in a sequence. Following that, numerous empirical studies have recorded that price in

fact declines for subsequent units sold. This has been particularly true in auctions for the

works of art (Beggs and Graddy, 1997), wine auctions (Ashenfelter, 1989 and McAfee

and Vincent, 1993) and jewelry (Chanel et al., 1996). Paper of Ashenfelter and Graddy

(2003) for example, gives a good review of art auctions and anomalies present there.

Given discrepancy between theory and empirical findings was also my main motivation

for research. Works so far have tried to explain price decline with the risk aversion of

participants, the fact that many goods have significant common value component, not

perfectly symmetric and identical units in a sequence, asymmetric bidders’ valuations,

presence of absentee bidders or even specific auction rules.
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Our analysis will rather concentrate on the role of uncertainty of the number of bidders

for the empirical evidence on price decreases. One of the key assumptions of the Weber’s

theorem is that the number of participants in an auction is exogenously fixed and known to

all participants. Releasing this assumption and comparing the outcome under uncertainty

with that under certainty should shed some light on reasons for price decreases. We

demonstrate that when rational risk-neutral bidders know the ex-ante probabilities of the

number of competitors, the equilibrium price should remain constant for all units sold in

a sequence.

The second advantage of the present approach is that it uses experiment to obtain the ev-

idence on price paths. Experiment allows us to control for many variables that were oth-

erwise disputed in other attempts to explain declining price trend and foremost it enables

us to have true symmetric and independent private values. In particular we will consider

sequential second-price independent private value auctions where values are fixed and

bidders have demand for only one unit of each good.

The structure of the chapter is as follows. The literature review discusses the background

and the related research. In the theoretical part equilibrium bids are calculated and pre-

dicted price path for the case where bidders know the size of the competition and for the

case where they only know its probability distribution. Assumptions on the experimen-

tal outcome are also given. In the second part of the chapter, the laboratory experiment

on bidding behavior in two-stage second-price independent private value auctions is pre-

sented. Experimental design is followed by the analysis of the results and the conclusion

with comments.

3.2 Related literature

Sequential auctions have in last decade received considerable attention from experimen-

tal economics, largely due to empirical evidence that frequently shows divergence from

equilibrium prices. Price behavior has been studied mostly in the setting of sequential

auctions with multiunit demand. In uniform auctions of that kind, there is an inherent

incentive that bidders reduce their demand for subsequent units. Kagel and Levin (2001)

study sensitivity of bidders in two different auction types and find demand reduction in

both of them. List and Lucking-Reiley (2000) make a field experiment and arrive to the

similar conclusion. Engelmann and Grimm (2006) compare different auction types in an

auction with 2 bidders and 2-unit demand. They test various types for allocative effi-

ciency, demand reduction and overbidding. Their results mostly confirm those of Kagel

and Levin, despite they also obtain some contradictions.
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Our analysis rather concentrates on the price behavior in the multiunit auctions with single

unit demand; in particular, to the origins of the “price decline anomaly”. Weber (1983)

published an influential paper where he studies sequential auctions with independent pri-

vate values. He shows that under risk neutrality, known number of bidders, fixed values

and unit demand, the price tendency should be a martingale, with other words, should

remain constant among auctions. The logic behind is as follows: Bidders in the earlier

auctions bid less than their valuations since they have a positive expected profit from par-

ticipation in the subsequent auctions. Therefore they decrease their bid for exactly that

amount. Bidders with high valuations have higher opportunity cost on non-participation

in the later rounds so they will discount their bids in the first round for more than bidders

with low valuations. These tendencies counterbalance and the prices in the sequence of

auctions remains the same in the two auctions.

This, rather strong conclusion has been studied extensively ever since Ashenfelter (1989)

reported an evidence from vine auctions, that prices are twice as likely to decrease than

increase for identical bottles of vine sold in the same lot sizes. Ashenfelter called it a

price decline anomaly and afterwards it has been identified in various auction types, and

auctions of different types of goods and most of the work confirms the results by observing

price declines.

Several proposals have been made in attempt to explain this price movement, majority by

releasing one or more assumptions of the original Weber’s model. For example Black and

de Meza (1992) claims that price decline only occurs in auctions where the winner of the

first auction has an option to buy all objects at the same price. However, later it has been

shown (Ashenfelter and Graddy, 2003) that price anomaly exists even in auctions which

do not allow for such option. Since Weber’s model assumes risk neutrality McAfee and

Vincent (1993) tries to explain declining prices by the presence of risk averse bidders,

who prefer buying earlier than later. They show that in the case of first and second price

auctions in the presence of risk averse bidders, prices can have a declining trend. The

logic behind the decline is that bidders are uncertain about the prices in the later auctions

and are therefore prepared to pay a premium in the earlier auctions. The drawback of their

solution is the assumption of non-decreasing absolute risk aversion required for existence

of pure strategy equilibrium bidding function. This is usually not considered to be a

very realistic assumption. Authors also present an example with decreasing absolute risk

aversion for which mixed strategy equilibria exist, but these are ex post inefficient.

Another potential explanation why prices tend to decline is offered by Ginsburgh (1998).

He analyzes several wine auctions at Christie’s London and observes significant decline

in prices for the identical wine lots sold in a sequence. He also notices that 60% of all
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the lots were sold to absentee and he attributed a decline in price to them. The absentee

bidders use simple strategies that significantly differed from theoretical predictions. The

drawback of Ginsburgh explanation is the fact that the strategy that dominated roughly

65% of the auctions was to bid prices for several lots and stop bidding after having won

given number of them. However, this is in fact an auction with multiunit demand and in

this case it is also theoretically optimal for some bidders to reduce demand for additional

items in order to pay less for their winnings.

Several other works try to access problem of declining prices releasing the assumption

about independence of bidders’ valuations. Engelbrecht-Wiggans (1994) shows that when

objects are stochastically equivalent (but not identical), Weber’s conjunction no longer

holds. The paper demonstrates that price trend depends on the distribution of objects’

values, however, when number of repetitions is large enough, prices on average decrease.

Bernhardt and Scoones (1994) take similar assumption. In their model, each bidder’s

valuations are identically distributed across the objects but are not perfectly correlated.

They show that even if bidders are risk neutral, mean prices fall. The intuition behind

their claim is the following: where in Weber’s model bidders with high valuations also

discount more than bidder’s with low valuations, here everybody discounts the same. In

the two stage auction game all bidders expect the same profit from bidding on the second

object so they also discount their bids in the first stage for the same amount. They claim

this is because the bidders with high valuations determine the price in the first auction, if

there are sufficiently many bidders.

Experimental work dealing with price decline has so far confirmed the phenomenon1.

Burns (1985) made experiments of simulated sequential wool auctions where he had treat-

ments both with students and professional wool traders as subjects. Prices declined in

both of the treatments; however it is interesting that they disappeared with repetition in

the treatment with students, while they persisted with experienced wool bidders. None of

the groups noticed the price decline, when asked in the questionnaire after the experiment.

Keser and Olson (1996) make laboratory experiment designed to address specifically the

price decline phenomena. They construct simple environment, in line with the Weber’s

setup. Their conjecture confirms previous findings. They still find declining prices. They

also find correlations between the number of price declines and position in sequence in

which the units are sold. Their experiment controls for several previously suggested rea-

sons such as uncertainty of supply, option to buy the whole lot, or the presence of buyer’s

agents on the bidding pool. However, they have not been able to identify the actual source

1In certain cases the contrary can be true. Neugebauer and Pezanis-Christou (2007) show that if demand

is uncertain, prices for additional units will rise. Milgrom and Weber (2000) demonstrate similar effect for

a model with affiliated values.
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of price declines. Wang (2006) in his sequential second price auction experiment identi-

fies price declines. He demonstrates that applying cognitive hierarchy model gives much

better explanation of the price path.

The role of uncertainty about the number of bidders has received much less attention in

the auction theory. McAfee and McMillan (1987) show that in a first-price sealed bid

auction with bidders having independent private values and constant or decreasing risk

aversion the expected revenue is strictly higher when the bidders do not know how many

competitors there are then when they do know it. Bidders will bid more aggressively

when number of bidders is high and less aggressively when the number of bidders is

low. They demonstrate that releasing information on the degree of competition increases

value variance ex ante which implies a price decrease on average. They call this a bid

dispersion effect. Even though the effect is only shown in the case of single unit auction,

it can be applied to sequential auctions where some information is released during the

auction process.

In more recent paper Pekec and Tsetlin (2008) compare the effect of uncertainty of num-

ber of bidders in uniform and discriminatory auctions. They show that releasing the as-

sumption about certainty of number of bidders in a general model can result in a situation

that symmetric increasing equilibrium might not exist. Furthermore, whereas in the case

of no uncertainty uniform auctions yield greater revenues than discriminatory auctions,

revenue ranking of uniform and discriminatory auctions can be reversed in the case of

uncertainty. It has to be noted that results of Pekec and Tsetlin are based on assumption

that a good has private and common value properties. In the case of pure private val-

ues, an increasing bidding function is a sufficient condition for an increasing symmetric

equilibrium.

Experiments regarding different number of bidders have so far only been done in single

unit auctions. For example, Cox et al. (1988) analyzed the effect of changing the number

of bidders on the individual’s bid functions in the independent private value auctions.

Assuming first price sealed bid auction and risk neutral bidders, the risk neutral Nash

equilibrium bidding function as developed by Vickrey clearly increases in slope if the

number of bidders is increased. Cox at al. showed that the extent of this influence depends

on individual’s risk aversion.

Dyer et al. (1989) tries to show the effect of number of bidders being concealed on the ex-

pected revenue. Their experimental design in independent private value first-price sealed

bid auction construct requires subjects to submit bids contingent on given number of bid-

ders in first treatment, whereas in the second treatment the subjects were at the same time

also asked to submit unconditional bid, with the same uncertainty of distribution of bid-
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ders as before. Results of the experiment confirm their predictions that the non-contingent

bid is on average greater than the bid contingent on 3 participants and lower than the bid

contingent on 6 participants. It has also confirmed the hypothesis of McAfee and McMil-

lan (1987) that the bidding with uncertainty of number of bidders generates on average

higher expected revenues than the bidding contingent on given number of bidders. How-

ever, regarding the individual bidding Dyer at al. rejected the Nash equilibrium bidding

hypothesis since less than half of all bids satisfy full inequality requirements, which in-

clude the condition of non-contingent bid being greater than the weighted average of the

two contingent bids. Experimental design of this chapter resembles the one of Dyer at al.

applied to sequential auction environment.

3.3 Theoretical considerations

For the experiment, we will consider a sale of two identical objects, which are sold se-

quentially in a second price sealed bid auctions. Each bidder i has a value xi, known only

to him. He also has wants to obtain only one of the two goods offered.

3.3.1 Assumptions

A1 Private values model. Bidders know their own valuation of the object with certainty,

but they do not know the values of all the other bidders. However, they know

the distribution of other bidders’ values and this knowledge is common to all the

bidders.

A2 Independently distributed values xi, . . . ,xn of the bidders.

A3 Symmetry of bidders. Value of each bidder is drawn from the same distribution and is

the only distinction among bidders.

A4 Sequence of two auctions with fixed values. Bidders keep the same value, xi in both

auctions.

A5 Unit demand. Bidders only have a demand for one unit of goods. Once a bidder has

one an item, her utility of the second unit is zero, and will leave the game.

A6 Risk neutrality of bidders.

Every bidder’s utility depends on both auctions. We assume Von Neumann utility function

u(xi−q), where, for the first auction, bidder receives utility from the difference between
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her valuation and the paid price conditional that she wins the auction; and 0 otherwise,

whereas in the second auction bidder receives the utility from the difference between her

valuation and the price paid conditional that she won the second auction and did not won

the first one. Otherwise she receives 0.

In our analysis, two distinct games are taken in consideration. The first one assumes

that bidders are fully aware of the number of bidders, whereas the second supposes that

there exists uncertainty regarding the number of bidders. We assume there exists pure

strategy symmetric equilibrium bidding function b(xi). A bidder i bids b = b(xi) in the

first auction and her value, xi in the second. Bidders in the second price auctions have

a dominant strategy to bid their true valuations if only a single unit is sold. The same

is the bidding strategy for the last unit in sequential action with given assumptions. In

the two-unit auction bidders have an incentive to decrease their bid in the first auction, in

order to keep an option of participating in the second auction.

3.3.2 Auction with given number of bidders

We define Xi as an independent variable, xi its realization, P(x) its a cumulative distrib-

ution function and p(x) its probability distribution function. Payoff function of a bidder

who bids r, has a valuation x, and Von Neumann utility function u(x− y) can be written

as follows:

V (r;x) =
∫ r

0
u(x−b1(y)) f1(y)dy+

∫ x

0
u(x− y) f2(y)dy (3.1)

The first part of the equation is the bidder’s payoff if she wins the first auction, whereas the

second part is her payoff from the second auction, conditional on losing the first auction

and winning the second. We assume that the bidders’ values X1, . . . ,Xn have the order

statistics defined as X(1) ≤ X(2) ≤ . . .≤ X(n). The expected revenues from the auction for

the first unit depend on the bid of the second highest bidder, assuming that the bidder with

value x won the auction.

f1(y) = f
(
y= X(n−1)

∣∣X(n−1) < x) · f (x= X(n))

It can be shown that the conditional distribution of X( j), given that X(i) = xi for j < i, is

the same as the distribution of the j-th order statistic in a sample of size i− 1. Using

this property, we can calculate f1(y) as PDF of the beta distribution with parameters

α = k = n−1 and β = (n−1)− k+1= 1.

f1(y) = (n−1)P(y)n−2 p(y) (3.2)
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By analogy we can calculate f2(y) with beta distribution parameters α = n−2 and β = 2.

f2(y) = (n
2−3n+2)P(y)n−3(1−P(y))p(y) (3.3)

Therefore the expected utility can be written as:

V (r;x) =
∫ r

0
u(x−b(y))(n−1)P(y)n−2 p(y)dy+

[1−P(r)]
∫ x

0
u(x− y)(n2−3n+2)P(y)n−3 p(y)dy (3.4)

Differentiating and setting the payoff function V ′(x,x) = 0, we get a bidding function

b∗(y) that satisfies

u(x−b∗(x)) =
∫ x

0
u(x− y)

(n−2)P(y)n−3 p(y)

P(x)n−2
dy (3.5)

McAfee and Vincent (1993) showed that symmetric increasing pure strategy equilibrium

bidding function b exists for every distribution P if and only if u displays non-decreasing

absolute risk aversion. Therefore, in an simplified case, when u(x− y) = x− y, we get

that optimal bid in first period equals

b∗(x) = x− (n−2)

Pn−2(x)

∫ x

0
(x− y)P(y)n−3 p(y)dy (3.6)

Proposition 1 Let assumptions A1–A6 hold and let the number of bidders be fixed and

known to all. Also let qn denote price paid for the nth item, X (1), . . . ,X (n) denote the order

statistics in decreasing order and In the sequence of the past prices {q1, . . . ,qn}. Then

for all m≤ n≤ k the unique symmetric Nash equilibrium for the second price sequential

auction satisfies: E [qn|Im−1] = E

[
v(t(k+1))|Im−1

]
= qm−1.

Example. For a general proof see Weber (1983). Here we demonstrate the result for

the case of the two stage Vickrey auction. Let’s assume Von Neumann utility function

to satisfy u(xi− y) = xi− y. We also assume values to be uniformly distributed on an

interval [0,xH ]. The density function is therefore a constant, p(x) = x−1
H and cumulative

distribution function is P(x) = x/xH . Inserting this into equation (3.6) gives us the optimal

bid function in the first stage

b∗(x) =
n−2

n−1
x (3.7)

The proportion for which agents decrease their valuation to form a bid is therefore exactly

inverse to the number of their opponents. The expected price paid by the winner of the first

stage equals to the second highest bid: E(q1) = E(b(n−1)). Since the bid function (3.7) is
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monotonic and increasing, the ranking of the bids will be the same as the ranking of the

corresponding values, E
[
b(k)(x)

]
= E

[
b(X(k))

]
. Moreover, the bid function is linear and

E
[
b(k)(x)

]
= b

[
E(X(k))

]
equality also holds. Therefore E(q1) = b

[
E(X(n−1))

]
. Given

that the expected value of k-th order statistics equals E(X(k)) = k/(n+1)xH , the expected

second highest value in the auction equals

E(X(n−1)) =
n−1

n+1
xH (3.8)
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Figure 3.1: RNNE bid functions on value interval [0, 20] for auctions with 3 bidders (1a) and

6 bidders (1b) for the two units. Vertical lines represent the expected value, E(X(k))
of the k-th order statistics. Horizontal line represents the expected auction price, the

same for both units E(q1) = E(q2).

By inserting equation (3.8) into equation (3.7), we get that the expected price for the first

unit sold equals to:

E(q1) =
n−2

n−1
E(X(n−1)) =

n−2

n+1
xH (3.9)

In the second stage auction the bidders have a dominant strategy to bid their own valu-

ation. A bidder with the highest value, X(n) won the first unit and does not bid for the

second. A bidder with second highest value wins the second unit and pays the price equal

to the third highest value:

E(q2) = E(X(n−2)) =
n−2

n+1
xH (3.10)

which clearly confirms the equivalence E(q1) = E(q2).
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We demonstrate the risk neutral Nash equilibrium (RNNE) bid functions from our exam-

ple, equation (3.7) for the first unit, and b∗(x) = x for the second unit in the Figures 3.1

(left) and 3.1 (right). In an auction with 6 bidders for the two units, the average valuation

of the second highest bidder, X(5) is 14.2857, while her average RNNE bid, E(b(5)) equals

11.4286. This is also the average price (equation 3.9) paid for the first unit E(q1). In bid-

ding for the second unit only 5 bidders remain and each bids her value. Unit is won by

the highest bidder k= 5, who pays an average price E(q2) equal to the third highest value

E(X(4)) = 4/7xH = 11.4286. Prices for both units are therefore equal E(q1) = E(q2).

Same logic applies to the auction with 3 bidders for the two units, where resulting prices

equal E(q1) = E(q2) = 5.

3.3.3 Uncertainty about the number of bidders

The optimal bidding strategy of a bidder changes when she doesn’t know the exact number

of bidders, and only knows the distribution function of the number of bidders. Matthews

(1987) and Harstad et al. (1990) show that unique symmetric Nash equilibrium payoff

function for risk-neutral bidders can also be written as a weighted average of her payoffs

conditional on the number of bidders:

V (r;x) =
N

∑
n=1

πnVn(r;x) (3.11)

where N <∞ is the maximum number of bidders possible and πn is the ex-ante probability

for having n bidders in the auction which equals

πn =
nβ n

∑
n=1

iβ i

(3.12)

and where β i is an exogenous probability of having i participants in the auction. Thus,

the unconditional payoff function becomes:

V (r;x;n) =
N

∑
n=1

πn(
∫ r

0
u(x−b1(y|n)) f1(y|n)dy+

∫ x

0
u(x− y) f2(y|n)dy) (3.13)

Similar as before we calculate the derivative of expected utility function and set it to 0 to

obtain that optimal bid satisfies:

78



u(x−b∗(x)) =

∫ x
0 u(x− y)∑N

n=1 πn(n−1)(n−2)P(y)n−3 p(y)dy

∑
N
n=1 πn(n−1)P(y)n−2

(3.14)

Using our simple utility function example u(x− y) = x− y, we obtain:

b∗(x) = x− 1

∑
N
n=1 πn(n−1)Pn−2(x)

×

∫ x

0
(x− y)

N

∑
n=1

πn(n−1)(n−2)P(y)n−3 p(y)dy (3.15)

Example. Let’s use the utility function given with equation (3.15), and assume only two

possible states, n1 = 3 and n2 = 6 with according probabilities β n1
= β n2

= 0.5. Values

are drawn independently from the uniform distribution with support [0,xH ]. Therefore

PDF and CDF are p(x) = x−1
H and P(x) = x/xH respectively and the ex-ante probabilities

are πn1
= 1/3 and πn2

= 2/3. Plugging these values in the equation (3.15) we obtain that

the risk neutral optimal unconditional bidding function equals

b∗(x) =
8x4+ x3

Hx

10x3+2x3
H

(3.16)

In the Figure 3.2 (right) risk neutral Nash equilibrium bidding functions under all 3 dif-

ferent procedures are displayed and compared to the optimal bidding in the second stage.

The calculation of expected price paid by the highest bidder is not straightforward here

since the bidding function is not linear. We can generally write it as:

E(q1) =
∫ xH

0
b∗(x)

N

∑
n=1

β n fX(n−1)
(x|n)dx (3.17)

The probability for each possible state, f1(x|n) follows PDF of the beta distribution with

(α,β ) parameters equal to (2,2) for n = 3 and (5,2) for n = 6. A probability weight is

therefore:

N

∑
n=1

β n fX(n−1)
(x|n) = β 3

1

B(2,2)
P(x)(1−P(x))p(x)+ (3.18)

β 6

1

B(5,2)
P(x)4(1−P(x))p(x)

Applying the results from Example 2, we get:
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E(q1) =
∫ xH

0

8x4+ x3
Hx

10x3+2x3
H

3(1+5(
x

xH

)3)(1− x

xH

)
x

xH

1

xH

dx

which integrates to:

E(q1) =
23

56
xH (3.19)

The solution of the given expression for the xH = 20 is E(q1) = 8.2143. In the second

auction bidders bid their valuation, regardless the number of bidders present. Therefore

the expected price under uncertainty is the linear combination of the two expectations

under certainty:

E(q2) =
N

∑
n=1

β n

n−2

n+1
xH (3.20)

Applied to Example 2, the equation simplifies to E(q2) =
23
56

xH which yields E(q2) =

8.2143 for xH = 20. Comparing equations (3.19) and (3.20) we clearly see that E(q1) =

E(q2) which speaks against the assumption that the uncertainty of the number of bidders

may be the reason for decreasing prices in the present auction design.
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Figure 3.2: Left graph shows RNNE bid functions on value interval [0, 20] for auctions of two

units with uncertainty between 3 and 6 bidders with equal probability. Vertical lines

represent the expected value, E(X(k)) of the k-th order statistics. Horizontal line rep-

resents the expected auction price, the same for both units E(q1) = E(q2). The graph

on the right compares RNNE bidding functions under certainty and uncertainty.

Optimal bidding function for our example is depicted in Figure 3.2 (left). The bidding

function b(x) for the first unit corresponds to equation (3.16). Note that due to convexity
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of the later, b(E[X(n−1)]) is slightly smaller than E[b(X(n−1))] =E(q2). Equilibrium prices

are therefore the same for the first and the second unit in all three examples.

3.4 Experimental design

An auction experiment is designed with an attempt to trace the price path of the selling

identical good sold in a sequence. In particular, we are interested in the influence of the

uncertainty over the number of bidders participating in the auction on the selling price.

The auction is sealed bid, second price, independent private value model, with two-unit

supply.

Despite there are a few experiments trying to capture price decline anomaly in sequential

auctions, see for example Keser and Olson (1996) or Burns (1985), these studies assume

the number of bidders as fixed and a prior knowledge of all participants in the auction.

There exist also experimental studies regarding the uncertainty of the number of bidders,

see for example Dyer et al. (1989), but the latter are made in a single-unit supply envi-

ronment, and rather focused in the optimal design and revenue maximizing strategies for

the seller. As opposed to that, multi-unit auction with demand uncertainty is investigated,

with focus on price development in the sequential offers of the same “good”.

In each experimental treatment we had either 18 or 12 participants, recruited among

undergraduate students of Universitat Pompeu Fabra in Barcelona. The students had

mostly (but not exclusively) economics and business background. Subjects were ran-

domly matched after each period into groups of 3 or 6 bidders. Each of these groups

constitutes a separate auction for the two identical fictitious goods sold sequentially. The

reason for choosing that quantity of participants is simple. 3 is the smallest number of

participants to make a two-unit auction nontrivial. 6 subjects on the other side represent

sufficient increase from 3 to make significant change in optimal bid/value ratio. Every

subject i is randomly assigned a value (reservation price) xi, drawn from uniform distrib-

ution defined on the interval [0,20]. As in standard private value construct, every subject

is informed about the distribution of values and upper and lower limit of the interval.

However, subject is not informed about individual values but her own.

There are two identical items offered for “sale”. The auction experiment therefore func-

tions in two stages. In the first stage first “item” is sold, and the second item is sold in

the second stage. We also assume that each bidder has only unit demand. The bidding

is therefore done only in prices, not quantities and the winner of the auction for the first

item is not allowed to participate in bidding for the second item. The values assigned

to participants are same in both periods, as well as the composition of the groups. The
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exception of course is the winning bidder from the first auction, so the second auction

only consists of either 2 or 5 bidders.

Treatments A and B

After receiving her private value, each subject has to make an offer. In treatment A she is

informed that she and 2 other randomly selected subjects are participating in the auction,

whereas in treatment B subject participates with 5 other randomly selected subjects. She

is equally informed as in treatment A, and all other conditions are the same. Subjects have

to place a bid, however bid can be 0, which is also the lowest input limit. All bids are also

sealed; the bidder does not see other participants’ bids. After all the bids are collected, the

highest and the second highest offer are recorded. The highest bid determines the winner,

the second highest determines the price paid.

The only information that participants receive after first of the two units is sold is whether

they won the auction or not, and consequentially, whether they are eligible to partici-

pate in the auction for the second good. Assuming that participants have common and

monotonically increasing bidding function, disclosure of winner’s bid would also dis-

close the highest bidder’s valuation (type), whereas disclosed selling price would inform

of the second highest bidder type. Since the later would also participate in the second

bidding, the solution of the auction would be trivial. It can be easily shown that, knowing

the highest type, the participants with lower valuations would have no incentive to place

their bids.

In the second auction the participants remain of the same type and the identical object is

offered. The only difference is, that they now place bids for auction with 2 or 5 bidders

depending on a treatment. After the bids are placed, again the highest bid determines the

winner and the second highest bid, the price paid. This time, all are informed whether

they won an auction or not, what was the price paid by the winner in each auction and

their own profits. The profit is determined as:

Πi =

{
xi− p,

0,

if i is a winner

if i is not a winner

The actual payoff in euros was calculated as 0.5Πi. Both, the interval boundaries and the

conversion rate were calculated with intention that the average payoff of each participants

in both treatments (30 stages) is 5 euros. Including the 3 euros participation fee this makes

each subjects average earnings of 8 euros. The two auction stages of treatments A and B

are repeated 30 times.
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Treatment C

Treatment C is in most aspects the same as treatments A and B. The distribution function

of values remains the same, the interval as well. Here however, are bidders unsure of

the real number of auction participants. Beside personal value, their only information is

that there are either 3 or 6 bidders participating in the auction, both with 50% probability.

12 participants are divided to 4 or 2 groups with random matching. After finishing the

first stage of each auction here as well, subjects are only informed about whether they

won or not, but not also the winning bid. For the second stage the same rule applies, just

that subjects are informed that there are either 2 or 5 participants in this stage. The payoff

function remains the same. This treatment is also repeated through 30 stages. Appendix C

contains an English version of the instructions used in the experiment. Figure C.1 depicts

the experimental interface.

3.5 Results

Given the theoretical framework discussed above, we test several predictions of the the-

ory. First, we expect the second unit bids on average to be higher than first unit bids.

Second, we expect that prices will remain constant on average for all treatments with

known number of bidders as well as in the treatment with uncertain number of bidders.

Third, the same strategic behavior should lead the subjects to have the same bid/value

ratio on average for the second unit in all implemented treatments.

3.5.1 First- versus second-unit bids

It is interesting to first have a look at the average bidding strategies for the first and the

second unit. Regardless the treatment it is optimal to bid one’s value for the second unit,

and less than one’s value for the first unit. We run t-statistics for every subject to verify

whether the first unit bid is truly lower than the second unit bid on average. See the

Table C.3 in Appendix C for details. There is a large proportion of people where we

cannot demonstrate this.

A brief statistics is presented in the Table 3.1. Only 61% of the subjects in a 3-bidder

treatment and 58% of them in a 6-bidder treatment increase their bids on average for

the second unit. Only the cases where subject hasn’t won the first unit are used for the

comparison. This demonstrates that subjects were not really sure what is the best strategy

to optimize their revenues.
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Treatment Obs. 2. bid −1. bid St.Dev. Increases

n= 3 360 2.504 5.300 61%

n= 6 400 1.444 4.077 58%

n= undisclosed 348 1.540 2.818 83%

Table 3.1: Average differences between first and second unit bids. "Increases" represents the pro-

portion of subjects where the second bid is on average significantly higher than the first

bid. Based on Table C.3.

Another surprise that one may find is much higher proportion, 83%, of the subjects that

increase their bids in the treatment with undisclosed number of bidders. In theory, the

optimal strategy is harder to determine here, yet subjects behave more consistently with

the "basic logic" represented by our hypothesis. We demonstrate below, that resulting

prices are actually not more optimal in the treatment with undisclosed number of bidders.

3.5.2 First- versus second-unit prices

Calculating for the mean auction prices we find our results in line with previous research.

Prices on average decline, and the decline is understandably fiercer when the number of

bidders is low. Table 3.2 displays a basic summary of all three treatments:

Observed prices RNNE prices

Treatment Obs. Unit 1 Unit 2 Unit 1 Unit 2

n= 3 180 mean 7.41 4.56 4.93 4.83
std. dev. (4.26) (3.86) (2.35) (3.98)

n= 6 80 mean 12.41 10.87 11.27 11.29
std. dev. (3.00) (3.37) (2.71) (3.54)

n= undisclosed 182 mean 8.76 5.81 7.83 7.12
std. dev. (2.54) (2.81) (2.82) (3.20)

Table 3.2: Summary statistics of observed and realized equilibrium prices for all treatments. In

the uncertainty case weighted according to realized β 3 and β 6.

The predictions made for prices in given experiment were 4.93 and 4.83 for the first and

the second unit respectively in the treatment with 3 bidders initially, 11.27 and 11.29 for

treatment with 6 bidders initially. For the treatment with uncertainty the prediction was

7.83 for the first unit and 7.12 for the second unit in the treatment with uncertainty. Exper-

imental results show, that prices decline in all performed treatments. In a treatment with 3

bidders for 2.85, in a treatment with 6 bidders for 1.54 and in a treatment with uncertainty

for 2.95. The higher decrease in a treatment with 3 bidders, compared to the one with 6 is

not unanticipated. Optimal bid in the first was 1
2

of the value, compared to 4
5

in the later.
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Figure 3.3: Difference between observed auction prices and expected RNNE prices expressed as

percentage of RNNE price.

Subjects are apparently resilient to decrease bids (with respect to their personal values),

and that manifests more when expected decrease is higher. In experiment this results in

higher prices and corresponding larger divergence from risk neutral Nash equilibrium for

the treatment with 3 bidders.

We observe that prices fall below equilibrium the most in a treatment with uncertainty,

however we cannot say that the uncertainty is a sole reason for price declines. There are

apparently several reasons why bidders’ strategies are suboptimal and uncertainty about

the number of bidders is most likely just one of them. To investigate the prices further,

we display the difference between the mean prices for all units in all treatments and the

corresponding risk neutral equilibrium predictions for these means in Figure 3.3.

As expected from the Table 3.2, Figure 3.3 shows that subjects "overbid" for the first unit,

and "underbid" for the second. We see that bidders overbid approximately to the same

amount in the treatment with 6 bidders as they do in the treatment with uncertainty. More

interesting is to see the second unit bids. While decreases from RNNE bids (one’s value)

are minimal for the certainty case, they are quite substantial for the case of uncertainty.

Figure 3.4 below clearly displays an increased proportion of sub-value bids for second unit

in treatment with uncertainty compared to treatments A and B. These results are further

confirmed by the Table C.6 in Appendix C, which counts the number of price decreases

and increases. We see that price decline in 82% of the cases in treatment A, whereas

only 60% of the cases in treatment B. Average decrease in the treatment with 3 bidders is

2.85 while only 1.54 in the treatment with 6 bidders initially. An interesting observation

regarding the treatment with uncertainty is that people will more likely behave as if less

bidders are present than equally distributing chances between 3 and 6. Table C.3 shows

that price declines 83% of the cases, practically as frequently as in the treatment with 3
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bidders. Average difference between the first and the second price also confirms that.

t-test 3 bidders 6 bidders Uncertainty

H0 : q1 = q2 9.70 5.43 12.24
(0.000) (0.000) (0.000)

H0 : q1 = q∗1 7.80 3.37 2.48
(0.000) (0.001) (0.014)

H0 : q2 = q∗2 -0.95 1.12 -6.51
(0.341) (0.267) (0.000)

Table 3.3: Hypothesis tests on auction prices. For each hypothesis there is t-statistics in the first

row and the corresponding two-side p-value in the second row.

Table 3.3 provides a verification of some of our hypotheses. We cannot confirm the null

hypotheses about the equality of the first and the second unit prices for none of the three

treatments. Equally we cannot confirm the null hypothesis that the average price for the

first unit should not differ from the risk neutral equilibrium prediction. When comparing

the second unit average prices and RNNE predictions the results are expectedly different.

Here the null hypothesis of equality is not rejected for the treatments with 3 and 6 bid-

ders, whereas for the case of uncertainty the hypothesis is rejected. This is just a formal

proof for what is displayed in Figure 3.3. Uncertainty about the number of competitors

apparently puzzles subjects and impedes their intuition about the optimal bidding strategy.

We also perform nonparametric tests of our hypotheses. Wilcoxon signed-rank test con-

firms the difference for treatment A with z = 12.723; treatment B with z = 10.735; and

treatment C (uncertainty) with z = 13.175. All probabilities are 0.0000. This confirms

the results obtained previously with t-statistics.

3.5.3 Individual bids

The above analysis tells us about general patterns in each treatment, it does not however,

reveal much about the reasons for the observed phenomenon. In this part we address the

issue of individual differences that might lead to differences in mean prices and subopti-

mal bidding.

The actual bidders’ behavior is displayed in Figure 3.4. There are some notable differ-

ences between the treatments. We observe that the price declines are very similar on

average in treatments with 3 bidders and in treatment with uncertainty. Above figures

show that bidding nevertheless differs and bidders likely have different strategies. Ta-

ble C.3 in Appendix C provides summary statistics for each subjects behavior including

the t-statistics for the equality of mean bid for the first and the second unit. Around 40%
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Figure 3.4: Individual bids for given personal values. Lines represent RNEE bid function.

of the subjects in the treatments with 3 and 6 bidders do not make significant different

bids for the first and the second unit. And given the fact that large majority of subjects

bid their value for the second unit, it is probably these 40% of the subjects who contribute

to the high means for the first unit. Appendix C also contains scatter plots of selected

subjects’ bids. We can see in Figures C.2 to C.4 that there is a great diversity of bidding

strategies.

One interesting fact that we observe is that some subjects tend to change their strategy,
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depending on their valuation being low or high. We define "low" values as those equal

to or below 10 and "high" those above 10, 10 being the expected value of valuation sup-

port. This behavior is not so unreasonable, given that valuation 10 has only 25% chance

of being the highest in the auction with 3 bidders, and 3.13% chance in the auction with

6 bidders competing.Mann–Whitney test on bid/equilibrium bid ratios of each subject

3 bidders 6 bidders Uncertainty
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Figure 3.5: Average bid/value ratios per bidder. 1st Bid/Value represents first unit’s bid ratios, 2nd

Bid/Value second unit’s bid ratios. High represents average ratios based on valuations

greater than 10, Low represents the rest. Subjects ordered by High 1st Bid/Value.

shows that these differences indeed are important. 22% of subjects had significantly dif-

ferent low and high valuation bids for the first unit in a treatment with 3 bidders, 33% in

the treatment with 6 bidders, and 100% in the treatment with uncertainty. In the last case,

when we normalize bids with valuation rather than with equilibrium bid, tests still appear

significant 75% of the times. We demonstrate these differences in Figure 3.5. Tests how

well does subjects’ bidding correspond to RNEE prediction are presented in Table C.4

and Table C.5 in Appendix C.

The most interesting are the ratios for the first unit in the uncertainty treatment. Here,

it seems, subjects (correctly) believe that when they have high value bidding should be

different than then when their value is low. Surprisingly however, subjects systematically

bid higher proportion of their value when the latter is low, than when it is high. Equi-

librium strategy suggests the opposite. A low highest value, say 5, is much more likely

to result from an auction of 3 bidders (98.5% chance) than from the one of 6. In theory
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the bidding strategy should then be very similar to the one in auction with 3 bidders and

bid/value ratio should be low. With higher values, chances of auction with 6 bidders in-

crease (up to 50%) and corresponding bid/value ratio should increase as well. Subjects

with low values apparently prefer to maximize the probability of winning the current unit,

than to maximize the expected profit.

We can also observe that majority of subjects resort to a very simple strategy: bidding

their valuation already in the first round. We also noted that almost 60% of the subjects

had the same bidding strategy for both units in treatments with 3 and 6 bidders, whereas

only 40% of subjects maintained their strategy in the treatment with uncertainty. There,

also substantially more subjects had some form of contingency bidding strategy compared

to the other two treatments.

One of the consequences of the heterogeneity of observed strategies is that auctions were

not very efficient. First unit bidding resulted in 73.3%, 75% and 65% efficiency in the

treatments with 3, 6 and uncertain number of bidders, respectively. On the contrary, sec-

ond unit auctions were relatively efficient, in all treatments more than 90%. This goes

along with the above results. Table C.1 in Appendix C describes the efficiency more in

detail. The other viewpoint of mechanism design is seller’s revenues. As depicted in

Table C.2 uncertainty of bidders does not result in higher revenues for a seller, contrary

to McAfee and McMillan (1987) conjecture. Revenues are significantly higher than ex-

pected by RNNE in the treatment with 3 bidders, whereas in the uncertainty treatment

revenues per unit are even a bit lower than those predicted by RNNE.

3.6 Conclusion

Understanding bidding behavior is an important issue in modern auction design. Spread of

modern auctions backed with all-electronic platforms has increased the number of people

who exchange goods or services through this mechanism. Popularity of auctions and ease

of participation has raised new issues for the auction science as well. For example, internet

auction houses are most frequently characterized with: large number of items offered

(and bided), various auction mechanisms, variable and unpredictable demand, minimal

involvement of the auction house in the intermediation, feedback reputation mechanisms,

etc. This all goes in contrast with traditional auctions with higher participation costs,

limited and known number of expert bidders and active involvement of the auction house.

We can claim that behavioral characteristics of auction participants are more important

nowadays than in the past and uncertainty about the number of competitive bidders is a

good example of that.
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The present chapter discusses price and bidding behavior in the multiunit auctions with

single unit demand. By running several laboratory experiments we test the theoretical

prediction that prices should stay constant in an auction for 2 units sold in a sequence with

a given number of bidders. We contrast this with a situation where bidders are uncertain

about the size of their competition and compare the differences in price variation. Also

in the latter case prices should remain constant on average. The intuition for martingale

prices is based on desire of bidders to participate in the bidding for the second unit as well.

There the competition will be less fierce, and price will be potentially lower. To increase

the chances to participate in the bidding for the later unit(s) bidders will decrease their

bids for the first unit, but only to extent where their joint expected profits are maximal. In

the case of uncertainty these strategies are harder to calculate and bidders may be inclined

to prefer the first unit to the later ones.

Our results show that neither with 3 or 6 bidders, nor with auctions with uncertain number

of bidders, prices remain the same for the two units sold in a sequence. Prices for the first

unit are significantly higher than for the second. In our experiment the differences are

2.85, 1.54 and 2.95 for 3 bidders, 6 bidders and uncertainty respectively. This goes in

line with empirical papers such as of Ginsburgh (1998), or experimental works like Keser

and Olson (1996) or Wang (2006). In our experiment prices fall regardless the treatment,

although the effect is stronger in the case of uncertainty. We also find that subjects on

average never bid according to the risk neutral Nash equilibrium, except for the second

unit if they are certain about the number of participants. Their bid for the first unit is

usually much higher than optimal. In the treatment with uncertainty many subjects tend

to bid lower than their value for the second unit, which comes as a surprise. We also

analyzed each subjects bidding strategies separately. Results show that high proportion of

subjects bidding their value for the first unit, 50%, 67% and 25% for treatments with 3, 6

and uncertain number of bidders respectively, is the main reason for average prices being

above the risk neutral Nash equilibrium. Interestingly, the uncertainty of the number of

bidders caused that less people were bidding their value for the first unit. In this treatment

also only 17% of the subjects bid the same for the two units, whereas around 40% of the

subjects were not changing their bid significantly in the other two treatments. Despite

the observed pattern in the treatment with uncertainty seems more consistent with the

equilibrium for the first unit sold, it also displays an unexpected proportion of bids below

one’s value in the bidding for a second unit. This contributed to higher price decline than

the other two treatments.
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experimental investigation. Working Paper, 24.

94



Engle-Warnick, J. and Turdaliev, N. (2010). An experimental test of taylor-type rules with

inexperienced central bankers. Experimental Economics, 13(2):146–166.

Evans, G. W. and Honkapohja, S. (2001). Learning and Expectations in Macroeconomics.

Princeton University Press.

Evans, G. W., Honkapohja, S., and Marimon, R. (2001). Convergence in monetary infla-

tion models with heterogeneous learning rules. Macroeconomic Dynamics, 5(1):1–31.

Evans, G. W., Honkapohja, S., and Williams, N. (2010). Generalized stochastic gradient

learning. International Economic Review, 51(1):237–262.

Evans, M. and Wachtel, P. (1993). Inflation regimes and the sources of inflation uncer-

tainty. Journal of Money, Credit and Banking, 25(3):475–511.

Fehr, E. and Tyran, J.-R. (2008). Limited rationality and strategic interaction: The impact

of the strategic environment on nominal inertia. Econometrica, 76(2):353–394.

Fischbacher, U. (2007). z-tree: Zurich toolbox for ready-made economic experiments.

Experimental Economics, 10(2):171–178.

Friedman, M. (1968). The role of monetary policy. American Economic Review, 58(1):1–

17.

Friedman, M. (1977). Nobel lecture: Inflation and unemployment. Journal of Political

Economy, 85(3):451–72.

Gilovich, T., Griffin, D., and Kahneman, D. (2002). Heuristics and Biases: The Psychol-

ogy of Intuitive Judgment. Cambridge University Press, Cambridge.

Ginsburgh, V. (1998). Absentee bidders and the declining price anomaly in wine auctions.

Journal of Political Economy, 106:6:1302–19.

Giordani, P. and Söderlind, P. (2003). Inflation forecast uncertainty. European Economic

Review, 47(6):1037–1059.

Giordani, P. and Söderlind, P. (2006). Is there evidence of pessimism and doubt in sub-

jective distributions? implications for the equity premium puzzle. Journal of Economic

Dynamics and Control, 30(6):1027–1043.

Harstad, R. M., Kagel, J. H., and Levin, D. (1990). Equilibrium bid functions for auctions

with an uncertain number of bidders. Economics Letters, 33:35–40.

95



Haruvy, E., Lahav, Y., and Noussair, C. N. (2007). Traders’ expectations in asset markets:

Experimental evidence. American Economic Review, 97(5):1901–1920.

Hazelett, D. and Kernen, A. (2002). Hyperinflation and seigniorage in an experimental

overlapping generations economy. Mimeo, Whitman College.

Heemeijer, P., Hommes, C., Sonnemans, J., and Tuinstra, J. (2009). Price stability and

volatility in markets with positive and negative expectations feedback: An experimental

investigation. Journal of Economic Dynamics and Control, 33(5):1052–1072.

Hoffrage, U. (2004). Overconfidence. In Pohl, R. F., editor, Cognitive illusions: A hand-

book on fallacies and biases in thinking, judgement and memory, pages 235–254. Psy-

chology Press.

Hommes, C. (2011). The heterogeneous expectations hypothesis: Some evidence from

the lab. Journal of Economic Dynamics and Control, 35(1):1–24.

Hommes, C., Huang, H., and Wang, D. (2005a). A robust rational route to randomness in

a simple asset pricing model. Journal of Economic Dynamics and Control, 29(6):1043–

1072.

Hommes, C., Sonnemans, J., Tuinstra, J., and van de Velden, H. (2005b). Coordination of

expectations in asset pricing experiments. Review of Financial Studies, 18(3):955–980.

Ireland, P. N. (2004). Technology shocks in the new keynesian model. The Review of

Economics and Statistics, 86(4):923–936.

Kagel, J. H. and Levin, D. (2001). Behavior in multi-unit demand auctions: Experiments

with uniform price and dynamic auctions. Econometrica, 69:2:413–454.

Kelley, H. and Friedman, D. (2008). Learning to forecast rationally. In Plott, C. R.

and Smith, V. L., editors, Handbook of Experimental Economics Results, volume 1,

chapter 35, pages 303–310. Elsevier.

Keren, G. (1991). Calibration and probability judgements: Conceptual and methodologi-

cal issues. Acta Psychologica, 77(3):217 – 273.

Keser, C. and Olson, M. (1996). Experimental Examination of the Declining price Anom-

aly. Elsevier, Amsterdam. in Economics of the Arts: Selected Essays eddited by Victor

Ginsburgh and Pierre-Michel Menger.

Lahiri, K. and Sheng, X. (2010). Measuring forecast uncertainty by disagreement: The

missing link. Journal of Applied Econometrics, 25(4):514–538.

96



Lawrence, M. and Makridakis, S. (1989). Factors affecting judgmental forecasts and con-

fidence intervals. Organizational Behavior and Human Decision Processes, 43(2):172–

187.

Lawrence, M. and O’Connor, M. (1992). Exploring judgemental forecasting. Interna-

tional Journal of Forecasting, 8(1):15–26.

Lei, V., Noussair, C. N., and Plott, C. R. (2001). Nonspeculative bubbles in experimen-

tal asset markets: Lack of common knowledge of rationality vs. actual irrationality.

Econometrica, 69(4):831–59.

Levi, M. D. and Makin, J. H. (1980). Inflation uncertainty and the phillips curve: Some

empirical evidence. American Economic Review, 70(5):1022–27.

Lichtenstein, S., Fischhoff, B., and Phillips, L. D. (1982). Calibration of probabilities: the

state of the art to 1980. In Kahneman, D., Slovic, P., and Tversky, A., editors, Judgment

under uncertainty: heuristics and biases, NBER Chapters, pages 306–334. Cambridge

University Press, Cambridge, UK.

List, J. A. and Lucking-Reiley, D. (2000). Demand reduction in multiunit auctions: Evi-

dence from a sportscard field experiment. American Economic Review, 90:4:961–972.

Liu, F. and Lahiri, K. (2006). Modelling multi-period inflation uncertainty using a panel

of density forecasts. Journal of Applied Econometrics, 21(8):1199–1219.

Lorenzoni, G. (2010). Optimal monetary policy with uncertain fundamentals and dis-

persed information. Review of Economic Studies, 77(1):305–338.

Mankiw, N. G. and Reis, R. (2002). Sticky information versus sticky prices: A proposal

to replace the new keynesian phillips curve. The Quarterly Journal of Economics,

117(4):1295–1328.

Mankiw, N. G., Reis, R., and Wolfers, J. (2004). Disagreement about inflation expecta-

tions. NBER Macroeconomics Annual 2003, 18:209–248.

Marcet, A. and Sargent, T. J. (1989). Convergence of least-squares learning in environ-

ments with hidden state variables and private information. Journal of Political Econ-

omy, 97(6):1306–22.

Marimon, R., Spear, S. E., and Sunder, S. (1993). Expectationally driven market volatility:

An experimental study. Journal of Economic Theory, 61(1):74–103.

97



Marimon, R. and Sunder, S. (1993). Indeterminacy of equilibria in a hyperinflationary

world: Experimental evidence. Econometrica, 61(5):1073–107.

Marimon, R. and Sunder, S. (1995). Deoes a constant money growth rule help stabilize

inflation: Experimental evidence. Carnegie - Rochester Conference Series on Public

Policy, 45:111–156.

Matthews, S. (1987). Comparing auctions for risk averse buyers: A buyerŠs point of view.

Econometrica, 55:633–646.

McAfee, R. P. and McMillan, J. (1987). Auctions with a stochastic number of bidders.

Journal of Economic Theory, 43:1–19.

McAfee, R. P. and Vincent, D. (1993). The declining price anomaly. Journal of Economic

Theory, 60:1:191–212.

McCallum, B. T. and Nelson, E. (2004). Timeless perspective vs. discretionary monetary

policy in forward-looking models. Federal Reserve Bank of St. Louis Review, 86(2):43–

56.

Milani, F. (2007). Expectations, learning and macroeconomic persistence. Journal of

Monetary Economics, 54(7):2065–2082.

Milgrom, P. R. and Weber, R. J. (2000). A theory of auctions and competitive bidding II.

Edward Elgar, Cheltenham, U.K. in The Economic Theory of Auctions eddited by P.

Klemperer.

Mishkin, F. S. (2008). Whither federal reserve communications. Speech at the Peterson

Institute for International Economics. Washington, D.C., July 28, 2008.

Molnár, K. (2007). Learning with expert advice. Journal of the European Economic

Association, 5(2-3):420–432.

Mullineaux, D. J. (1980). Unemployment, industrial production, and inflation uncertainty

in the united states. The Review of Economics and Statistics, 62(2):163–69.

Muradoglu, G. and Onkal, D. (1994). An exploratory analysis of portfolio managers’

probabilistic forecasts of stock prices. Journal of Forecasting, 13(7):565–578.

Muto, I. (2011). Monetary policy and learning from the central bank’s forecast. Journal

of Economic Dynamics and Control, 35(1):52–66.

98



Neugebauer, T. and Pezanis-Christou, P. (2007). Bidding behavior at sequential first-price

auctions with(out) supply uncertainty: A laboratory analysis. Journal of Economic

Behavior and Organization, 63(1):55–72.

Noussair, C. N., Pfajfar, D., and Zsiros, J. (2011). Frictions, persistence, and central bank

policy in an experimental dynamic stochastic general equilibrium economy. Discussion

Paper 2011-030, Tilburg University, Center for Economic Research.

Nunes, R. (2009). Learning the inflation target. Macroeconomic Dynamics, 13(02):167–

188.

O’Connor, M., Remus, W., and Griggs, K. (2001). The asymmetry of judgemental

confidence intervals in time series forecasting. International Journal of Forecasting,

17(4):623–633.

Onkal, D. and Bolger, F. (2004). Provider-user differences in perceived usefulness of

forecasting formats. Omega, 32(1):31–39.

Orphanides, A. and Williams, J. C. (2005a). The decline of activist stabilization policy:

Natural rate misperceptions, learning, and expectations. Journal of Economic Dynam-

ics and Control, 29(11):1927–1950.

Oskamp, S. (1965). Overconfidence in case-study judgements. The Journal of Consulting

Psychology, 29(3):261–265.

Pekec, A. and Tsetlin, I. (2008). Revenue ranking of discriminatory and uniform auctions

with an unknown number of bidders. Management Science, 54:9:1610–1623.

Pesaran, M. H. (1987). The Limits to Rational Expectations. Basil Blackwell, Oxford,

reprinted with corrections 1989 edition.

Pfajfar, D. (2008). Formation of rationally heterogeneous expectations. Mimeo, Univer-

sity of Tilburg.

Pfajfar, D. and Santoro, E. (2008). Credit market distortions, asset prices and monetary

policy. Cambridge Working Papers in Economics 0825, Faculty of Economics, Univer-

sity of Cambridge.

Pfajfar, D. and Santoro, E. (2010). Heterogeneity, learning and information stickiness in

inflation expectations. Journal of Economic Behavior & Organization, 75(3):426–444.

Pons-Novell, J. (2003). Strategic bias, herding behaviour and economic forecasts. Journal

of Forecasting, 22(1):67–77.

99



Rich, R. and Tracy, J. (2003). Modeling uncertainty: predictive accuracy as a proxy for

predictive confidence. Staff Reports 161, Federal Reserve Bank of New York.

Rich, R. and Tracy, J. (2010). The relationships among expected inflation, disagreement,

and uncertainty: Evidence from matched point and density forecasts. The Review of

Economics and Statistics, 92(1):200–207.

Rich, R. W. and Butler, J. S. (1998). Disagreement as a measure of uncertainty: A com-

ment on bomberg. Journal of Money, Credit and Banking, 30(3):pp. 411–419.

Roos, M. W. and Luhan, W. J. (2008). Are expectations formed by the anchoring-and-

adjustment heuristic? an experimental investigation. Ruhr Economic Papers 0054,

Rheinisch-Westfälisches Institut für Wirtschaftsforschung.

Sargent, T. J. (1993). Bounded Rationality in Macroeconomics. Oxford University Press.

Scharfstein, D. S. and Stein, J. C. (1990). Herd behavior and investment. American

Economic Review, 80(3):465–79.

Schmalensee, R. (1976). An experimental study of expectation formation. Econometrica,

44(1):17–41.

Smith, V. L., Suchanek, G. L., and Williams, A. W. (1988). Bubbles, crashes, and endoge-

nous expectations in experimental spot asset markets. Econometrica, 56(5):1119–51.

Thaler, R. H. (2000). From homo economicus to homo sapiens. Journal of Economic

Perspectives, 14(1):133–141.

Walsh, C. E. (2003). Monetary Theory and Policy. The MIT Press, second edition.

Wang, J. T.-y. (2006). The ebay market as sequential second price auctions-theory and

experiments. Working Paper.

Weber, R. (1983). Multiple object auctions. New York University Press, New York.

in Auctions, Bidding, and Contracting: Uses and Theory, eddited by R. Engelbrecht-

Wiggans, M. Shubik and R.M. Stark.

Williams, A. W. (1987). The formation of price forecasts in experimental markets. Jour-

nal of Money, Credit and Banking, 19(1):1–18.

Woodford, M. (1996). Loan commitments and optimal monetary policy. Journal of

Monetary Economics, 37(3):573–605.

100



Woodford, M. (2003). Interest and Prices: Foundations of a Theory of Monetary Policy.

Princeton University Press.

Yaniv, I. and Foster, D. P. (1995). Graininess of judgment under uncertainty: An accuracy-

informativeness trade-off. Journal of Experimental Psychology: General, 124(4):424

– 432.

Zarnowitz, V. and Lambros, L. A. (1987). Consensus and uncertainty in economic pre-

diction. Journal of Political Economy, 95(3):591–621.

Zwiebel, J. (1995). Corporate conservatism and relative compensation. Journal of Politi-

cal Economy, 103(1):1–25.

101





Appendix A

Additional information for Chapter 1

A.1 Tables and figures
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model (eq.) 1 2 3 4 All

Rational expectations (1.7) 35.2 48.1 5.6 25.9 28.7

AR(1) process (1.19) 0.0 0.0 0.0 1.9 0.5

Sticky information type (1.8) 3.7 1.9 16.7 3.7 6.5

Adaptive expectations (1.11) 9.3 3.7 7.4 9.3 7.4

Trend extrapolation (1.10) 35.2 25.9 25.9 33.3 30.1

Recursive - lagged inflation (1.13) 3.7 5.6 24.1 13.0 11.6

Recursive - REE (1.14) 0.0 1.9 9.3 0.0 2.8

Recursive - trend extrapolation (1.16) 0.0 0.0 0.0 1.9 0.5

Recursive - AR(1) process (1.15) 13.0 13.0 11.1 11.1 12.0

Table A.1: Inflation expectation formation (percent of subjects, Comparison 1)
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A.2 Instructions used in experiment

Thank you for participating in this experiment, a project in economic investigation. Your

earnings depend on your decisions and the decisions of the other participants. There is a

show-up fee of 4 Euros assured. From now on until the end of the experiment you are not

allowed to communicate with each other. If you have a question raise your hand and one

of the instructors will answer the question in private. Please do not ask aloud.1

The experiment

All participants receive exactly the same instructions. You and 8 other subjects all partic-

ipate as agents in the same fictitious economy. You will have to predict future values of

given economic variables. The experiment consists of 70 periods. The rules are the same

in all the periods. You will interact with the same 8 subjects during the whole experiment.

Imagine that you work in a firm where you have to predict inflation for the next period.

Your profit depends on the accuracy of your inflation expectation.

Information in each period

The economy will be described with 3 variables in this experiment: the inflation rate, the

output gap, and the interest rate.

• Inflation measures the general rise in prices in the economy. In each period it

depends on the inflation expectations of the agents in the economy (you and the

other 8 participants in this experiment), the output gap and small random shocks.

• The output gap measures by how much (in %) the actual Gross Domestic Product

differs from the potential one. If the output gap is greater than 0, it means that the

economy is producing more than the potential level; if negative, less than potential

level. In each period it depends on the inflation expectations of the agents in the

economy, the past output gap, the interest rate and small random shocks.which

have equal probability of having a positive or negative effect on inflation and are

normally distributed.

1Instructions to participants in experiment at Universitat Pompeu Fabra are originally in Spanish. In ex-

perimental sessions, they were accompanied with the screenshot of the experimental interface (Figure A.7)

and the profit table with earnings for various combinations of estimation error and confidence interval.
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• The interest rate is (in this experiment) the price of borrowing money (in %) for

one period. The interest rate is set by the monetary authority. Their decision mostly

depends on the inflation expectations of the agents in economy.

All the given variables might be relevant to your inflation forecast, but it is up to you to

work out their relation and the possible benefit of knowing them. The evolution of the

variables will partly depend on your and the other subjects’ inputs and also the various

random shocks influencing the economy.

• You enter the economy in period 1. In this period you will be given computer-

generated past values of inflation, the output gap and the interest rate for 10 periods

back (Called: -9, -8, . . . -1, 0)

• In period 2 you will be given all the past values as seen in period 1 plus the value

from period 1 (Periods: -9, -8, . . . 0, 1).

• In period 3 you will see all the past values as in period 2 (Periods: -9, -8, . . . 1, 2)

plus YOUR prediction about inflation in period 2 that you made in period 1.

• In period t you will see all the past values of actual inflation up to period t − 1

(Periods: -9, -8, . . . , t−2, t−1) and your predictions up to period t−1 (Periods:

2, 3, . . . , t−2, t−1).

What do you have to decide?

Your payoff will depend on the accuracy of your prediction of inflation in the future

period. In each period your prediction will consist of two parts:

1. Expected inflation, (in %) that you expect in the NEXT period (Exp.In f .)

2. The Confidence interval (Con f .Int.) around your prediction for which you think

there is 95% probability that the actual inflation will fall into. The interval is de-

termined as the number of percentage points for which the actual inflation can be

higher or lower.

Example 2 Let’s say you think that inflation in the next period will be 3.7%. And you

also think it is most likely (95% probability) that the actual inflation will not differ from

that value by more than 0.7 percentage points. Therefore, you expect that there is 95%

probability that actual inflation in the next period will be between 3.0% and 4.4% (3.7%±
0.7%). Your inputs in the experiment will be 3.7 under 1) and 0.7 under 2).
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Your goal is to maximize your payoff, given with the equation:

W =max

{
100

1+ |In f lation−Exp.In f .| −20,0

}
+max

{
100x

1+Con f .Int.
−20,0

}

where Exp.In f . is your expectation about the inflation in the NEXT period, Con f .Int. is

the confidence interval you have chosen, Inflation is the actual inflation in the next period,

and x is a variable with value 1 if

Exp.In f .−Con f .Int.≤ In f lation≤ Exp.In f .+Con f .Int.

and 0 otherwise.

This expression tells you, that x will be 1, if actual inflation falls between Exp.In f .−
Con f .Int. (3.0% in our example) and Exp.In f .+Con f .Int. (4.4% in our example).

The first part of the payoff function states that you will receive some payoff if the actual

value in the next period differs from your prediction in this period by less than 4 percent-

age points. The smaller this difference is, the higher the payoff you receive. With a zero

forecast error (|In f lation−Exp.In f .|= 0), you would receive 80 units. However, if your

forecast is 1 percentage point higher or lower than the actual inflation rate, you will get

only 30 units (100/2−20). If your forecast error is 4 percentage points or more, you will

receive 0 units (100/5−20).

The second part of the payoff function simply states that you will get some extra payoff

if the actual inflation is within your expected interval and if that interval is no larger than

±4 percentage points. The more certain of the actual value you are, the smaller interval

you give, and the higher your payoff will be if the actual inflation indeed is in the given

interval, but there will also be a greater chance that the actual value falls outside your

interval. In our example this interval is ±0.7 percentage points. If the actual inflation

falls in this interval you receive 38.8 units (100/(1+0.7)−20) in addition to the payoff

from the first part of the payoff function. If the actual value is outside your interval, your

receive 0.

On the attached sheet you can find a table which shows various combinations of forecast
error and confidence interval needed to earn a given number of points. See also the figure

on the next page.
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Information after each period

Your payoff depends on your predictions for the next period and the actual realization in

the next period. Because the actual inflation will only be known in the next period, you

will also be informed about you current period (t) prediction and earnings after the end of

the NEXT period ( t+1). Therefore:

• After period 1 you will not receive any earnings, since you did not make any pre-

diction for period 1.

• In any other period, you will receive the information about the actual inflation rate in

this period and your inflation and confidence interval prediction from the previous

period. You will also be informed if the actual inflation value is in your expected

interval and what your earnings for this period are.

The units in the experiment are fictitious. Your actual payoff will be the sum of profits

from all the periods converted to euros in 1/500 conversion.

If you have any questions please ask them now!

Figure A.7: Screenshot of the experimental interface
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Questionnaire2

1. If you believe that inflation in the next period will be _4.2%_, and you are quite

sure that it will be higher than _3.5%_ and lower than _4.9%_, you will type:

Under (1) _ _ _ _ _ _ _ _ for inflation, and

Under (2) _ _ _ _ _ _ _ _ for confidence interval.

2. You are now in period _ _ _ 10 _ _ _. You have information about past inflation, the

output gap and the interest rate up to period _ _ _ _ _ _ _ _ and you have to predict

the inflation for period _ _ _ _ _ _ _ _.

2Options (1) and (2) point to the different fields on the screenshot of the experimental interface.
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Appendix B

Additional information for Chapter 2

B.1 Tables and figures

In Table B.9 we estimate the following regression using the system GMM estimator of

Blundell and Bond (1998) for dynamic panel data:

rk
t+1 = α+β rk

t + γsipk
t+1|t+uem

t .

Tables B.10 and B.11 report results of the following regressions:

Dz = α+β sipk
t|t−1+ γD1yt−1+δD2yt−1+ εD3yt−1+ζ it−1

+ηDL |πt−1|+θDH |πt−1|+φsd
j

t−1+uem
t ; z ∈ {7,8,9},

where D7 = 1 if the upper interval (CU ) has exactly the same width as the lower in-

terval (C
L
) and 0 otherwise, D8 = 1 when |CL−CU | ≤ 0.1, and D9 = 1 when 0.9 6∣∣∣Con f IntHn−1

Con f IntLn−1

∣∣∣6 1.1. Table B.10 displays the results of logit estimations, while Table B.11

presents the results of Poisson estimations.
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Figure B.1: Average inflation forecasts and average confidence intervals (left axis) and disagree-

ment and uncertainty measures (right axis) per group. Interquartile range is calculated

from the aggregate expectation distribution as described in Subsection 2.4.1.
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Figure B.2: Average inflation forecasts and average confidence intervals (left axis) and disagree-

ment and uncertainty measures (right axis) per group. Interquartile range is calculated

from the aggregate expectation distribution as described in Subsection 2.4.1.
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Confidence bound

Symmetric Lower Upper

Treat Group < ≈ > < ≈ > < ≈ >
1-A 1 100 0 0 - - - - - -

1-A 2 78 11 11 - - - - - -

1-A 3 89 11 0 - - - - - -

1-A 4 78 22 0 - - - - - -

1-B 5 - - - 89 11 0 0 22 78

1-B 6 - - - 100 0 0 0 11 89

2-A 7 44 11 44 - - - - - -

2-A 8 78 11 11 - - - - - -

2-A 9 100 0 0 - - - - - -

2-A 10 100 0 0 - - - - - -

2-B 11 - - - 100 0 0 0 0 100

2-B 12 - - - 100 0 0 0 0 100

3-A 13 56 22 22 - - - - - -

3-A 14 89 11 0 - - - - - -

3-A 15 56 11 33 - - - - - -

3-A 16 100 0 0 - - - - - -

3-B 17 - - - 100 0 0 0 0 100

3-B 18 - - - 100 0 0 0 11 89

4-A 19 78 11 11 - - - - - -

4-A 20 89 11 0 - - - - - -

4-A 21 67 0 33 - - - - - -

4-A 22 78 11 11 - - - - - -

4-B 23 - - - 78 0 22 11 11 78

4-B 24 - - - 100 0 0 0 11 89

All 80 9 11 96 1 3 1 8 90

Table B.1: Percentage of subjects by group with underprediction/overprediction of confidence

interval. Note: the benchmark confidence level is 1.96 ∗ sdk
t−1. < (>) identifies fre-

quencies of subjects whose inputs are signifficantly lower (higher) than the benchmark

value. ≈ identifies subjects whose input is not siggnificantly different from the bench-

mark. Based on t-tests.

All treatments Ap treatments Bp

Inflation ↑ ↓ ∼ ↑ ↓ ∼ ↑ ↓ ∼
Underprediction 34.63 3.98 17.83 30.93 4.12 16.79 41.39 3.69 20.02

Inside interval 60.65 58.41 63.95 64.81 62.75 66.43 53.03 49.15 58.76

Overprediction 4.72 37.6 18.22 4.25 33.13 16.79 5.58 47.17 21.22

Table B.2: Interval correctness depending on the phase of the inflation cycle (% of decisions). ↑
denotes cases when inflation increases for at least the last 2 periods, and ↓ denotes

cases when it decreases for at least the last 2 periods. ∼ represents all other cases.

Subjects "underpredict" when the actual inflation is larger than their predicted upper

confidence bound; and "overpredict" when the actual inflation is lower than their pre-

dicted lower confidence bound.
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xk
t : all treat.Ap treat.Bp

sipk
t|t−1

0.2989∗∗∗ 0.2260 0.3717∗∗∗

(0.0723) (0.1839) (0.1011)

D1yt−1 -0.3103∗∗∗ -0.4341∗∗ -0.2719∗∗∗

(0.0759) (0.2061) (0.0870)

D2yt−1 0.6037∗∗∗ 0.8818∗∗∗ 0.5563∗∗∗

(0.0826) (0.2076) (0.0980)

D3yt−1 0.0557 0.0553 0.0551
(0.0494) (0.1065) (0.0560)

DL|πt−1| 0.1164∗∗∗ 0.0893 0.1184∗∗∗

(0.0256) (0.1862) (0.0369)

DH |πt−1| 0.2353∗∗∗ 0.4681∗∗ 0.2035∗∗∗

(0.0457) (0.1872) (0.0485)

it−1 -0.0411∗ -0.1070 -0.0308
(0.0236) (0.1307) (0.0232)

sd
j

t−1 -0.5094∗∗∗ -0.2835 -0.5434∗∗∗

(0.0778) (0.1782) (0.0980)

N 14904 4968 9936

Wald χ2
(8) 180.7 110.1 106.7

Table B.3: Forecasting accuracy and confidence intervals. Note: table is based on equation (2.5).

Coefficients are based on fixed effects Poisson estimations. Standard errors in paren-

theses are calculated using bootstrap procedures (1000 replications) that take into ac-

count the potential presence of clusters in groups. */**/*** denotes significance at

10/5/1 percent level.
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xk
t : all treat.Ap treat.Bp

sipk
t|t−1

2.9756∗∗∗ 3.0827∗∗ 2.9731∗∗∗

(0.6019) (1.2263) (0.7409)

D1yt−1 -0.8511∗∗∗ -1.0369∗∗ -0.7651∗∗∗

(0.1643) (0.4555) (0.1931)

D2yt−1 1.5409∗∗∗ 1.8617∗∗∗ 1.5010∗∗∗

(0.2244) (0.4738) (0.2397)

D3yt−1 0.2866∗ 0.3315 0.2762
(0.1612) (0.2886) (0.1932)

DL|πt−1| 0.2753∗∗ 0.1300 0.3216∗

(0.1113) (0.5544) (0.1784)

DH |πt−1| 0.6275∗∗∗ 1.0751∗∗ 0.5522∗∗∗

(0.1179) (0.4374) (0.1343)

it−1 -0.1421∗∗ -0.3303 -0.0927
(0.0699) (0.3517) (0.0718)

sdk
t−1 -1.8189∗∗∗ -1.3832∗∗ -1.9333∗∗∗

(0.3840) (0.6491) (0.5259)

α 0.6642∗∗∗ 0.6659 0.6702∗∗

(0.2467) (1.1317) (0.2871)

ln(σ2
u) -0.7610 -0.7702 -0.6338

(0.2130) (0.4134) (0.2611)

σu 0.6835 0.6804 0.7284
(0.0728) (0.1406) (0.0951)

ρ∗ 0.1244 0.1234 0.1389
(0.0232) (0.0447) (0.0312)

N 14904 4968 9936

Wald χ2
(8) 215.3 164.1 145.1

Table B.4: Forecasting accuracy and confidence intervals. Note: table is based on equation (2.5).

Coefficients are based on random effects logit estimations. Standard errors in paren-

theses are calculated using bootstrap procedures (1000 replications) that take into ac-

count the potential presence of clusters in groups. */**/*** denotes significance at

10/5/1 percent level.
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xk
t : all treat.Ap treat.Bp

sipk
t|t−1

0.2712∗∗∗ 0.2414 0.2646∗∗

(0.0649) (0.1704) (0.1103)

D1yt−1 -0.3258∗∗∗ -0.4259∗∗ -0.3091∗∗∗

(0.0738) (0.1903) (0.0879)

D2yt−1 0.6062∗∗∗ 0.8427∗∗∗ 0.5633∗∗∗

(0.0827) (0.2259) (0.0994)

D3yt−1 0.0486 0.0806 0.0372
(0.0477) (0.1113) (0.0545)

DL|πt−1| 0.1184∗∗∗ 0.1119 0.1090∗∗∗

(0.0247) (0.1842) (0.0332)

DH |πt−1| 0.2209∗∗∗ 0.4061∗∗ 0.1858∗∗∗

(0.0411) (0.1779) (0.0441)

it−1 -0.0361∗ -0.0935 -0.0266
(0.0210) (0.1279) (0.0196)

sd
j

t−1 -0.5481∗∗∗ -0.5110∗∗∗ -0.5363∗∗∗

(0.0749) (0.1286) (0.0976)

α -0.2598∗∗∗ -0.2505 -0.2301∗∗∗

(0.0587) (0.3685) (0.0631)

ln(α∗) -3.1464 -2.8773 -3.4026
(0.2286) (0.2960) (0.3133)

α∗ 0.0430 0.0563 0.0333
(0.0098) (0.0167) (0.0104)

N 14904 4968 9936

Wald χ2
(8) 201.5 67.4 107.7

Table B.5: Forecasting accuracy and confidence intervals. Note: table is based on equation (2.5).

Coefficients are based on random effects Poisson estimations. Standard errors in

parentheses are calculated using bootstrap procedures (1000 replications) that take into

account the potential presence of clusters in groups. */**/*** denotes significance at

10/5/1 percent level.
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sipk
t+1|t : all treat.Ap treat.Bp−L treat.Bp−U

sipk
t|t−1

0.4472∗∗∗ 0.5530∗∗∗ 0.4468∗∗∗ 0.0991

(0.1058) (0.0817) (0.0418) (0.1038)

sdv
j

t−1 0.1119∗∗ 0.0993∗∗∗ 0.1472∗∗∗ 0.2929∗∗∗

(0.0448) (0.0373) (0.0322) (0.0788)

α 0.2596∗∗∗ 0.2356∗∗∗ 0.1665∗∗∗ 0.2902∗∗∗

(0.0366) (0.0360) (0.0277) (0.0300)

N 14904 9936 4968 4968

Wald χ2
(2) 58.9 129.8 114.6 65.5

Table B.6: Confidence intervals and standard deviation of point forecasts. Note: table is based

on the equation: sipk
t+1|t = α +β sipk

t|t−1
+ γsdv

j

t−1+ uem
t . Coefficients are based on

the Blundell-Bond system GMM estimator. Standard errors in parentheses are calcu-

lated using bootstrap procedures (1000 replications) that take into account the potential

presence of clusters in groups. */**/*** denotes significance at 10/5/1 percent level.

sipk
t+1|t : all

sipk
t|t−1

0.4153∗∗∗

(0.0998)

sd
j

t−1 0.1034∗∗

(0.0510)

T 2 0.9459∗

(0.5606)

T 3 -0.6684
(0.6068)

T 4 -0.6889
(0.5834)

α 0.3402∗

(0.2976)

N 14904

Wald χ2
(6) 107.5

Table B.7: Confidence intervals and standard deviation of inflation Note: coefficients are based on

the Blundell-Bond system GMM estimator. Standard errors in parentheses are calcu-

lated using bootstrap procedures (1000 replications) that take into account the potential

presence of clusters in groups. */**/*** denotes significance at 10/5/1 percent level.
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sipk
t+1|t : all treat.Ap treat.Bp−L treat.Bp−U

sipk
t|t−1

0.4636∗∗∗ 0.5719∗∗∗ 0.4780∗∗∗ 0.1090

(0.1028) (0.0726) (0.0532) (0.1072)

Dk
4 0.0364∗ 0.0228 0.0054 0.0788∗∗

(0.0215) (0.0263) (0.0121) (0.0320)

Dk
5 0.0669∗∗∗ 0.0656∗∗ 0.0735∗∗∗ 0.0261

(0.0233) (0.0295) (0.0216) (0.0264)

α 0.2718∗∗∗ 0.2489∗∗∗ 0.1802∗∗∗ 0.3480∗∗∗

(0.0376) (0.0364) (0.0264) (0.0400)

N 14688 9792 4896 4896

Wald χ2
(3) 59.0 127.2 138.5 14.5

Table B.8: Confidence intervals and the effect of forecast errors. Note: table is based on the

equation: sipk
t+1|t = α +β sipk

t|t−1
+ γDk

4+ δDk
5+ uem

t . Coefficients are based on the

Blundell-Bond system GMM estimator. Standard errors in parentheses are calculated

using bootstrap procedures (1000 replications) that take into account the potential pres-

ence of clusters in groups. */**/*** denotes significance at 10/5/1 percent level.

rk
t+1|t : all treat.Ap treat.Bp−L treat.Bp−U

rk
t|t−1

0.6970∗∗∗ 0.6757∗∗∗ 0.8521∗∗∗ 0.8524∗∗∗

(0.1376) (0.1596) (0.0250) (0.0254)

sipk
t+1|t 0.0559 0.0812 0.6387∗∗∗ -0.1139∗

(0.0928) (0.1102) (0.1980) (0.0619)

α -0.0211 -0.0401 -0.2016∗∗∗ -0.0076
(0.0513) (0.0651) (0.0468) (0.0299)

N 14688 9792 4896 4896

Wald χ2
(3) 26.7 21.4 6625.1 4809.6

Table B.9: Forecast errors and confidence intervals. Note: coefficients are based on the Blundell-

Bond system GMM estimator. Standard errors in parentheses are calculated using

bootstrap procedures (1000 replications) that take into account the potential presence

of clusters in groups. */**/*** denotes significance at 10/5/1 percent level.
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logit D7 D8 D9 D9, fe

sipk
t|t−1

0.2178 -1.0233∗ -0.0194 0.0581

(0.1957) (0.6213) (0.2968) (0.2239)

D1yt−1 0.2836 0.4825∗∗ -0.0122 -0.0028
(0.4162) (0.2245) (0.2913) (0.2846)

D2yt−1 -0.3912∗ 0.1116 -0.0490 -0.0605
(0.2058) (0.2339) (0.1847) (0.1859)

D3yt−1 -0.3436 0.1057∗∗ -0.0277 -0.0288
(0.2645) (0.0441) (0.1667) (0.1508)

DL|πt−1| 0.2375∗ 0.2203∗∗∗ 0.1635 0.1629
(0.1354) (0.0720) (0.1163) (0.1143)

DH |πt−1| 0.1510 0.1858 0.1494 0.1588
(0.2850) (0.1214) (0.1929) (0.1842)

it−1 -0.4047 -0.2827∗∗ -0.2041 -0.1969
(0.2570) (0.1204) (0.1660) (0.1637)

sdk
t−1 -0.1318 -0.4759∗ -0.2817∗∗ -0.3295∗

(0.1381) (0.2477) (0.1330) (0.1905)

α -2.8695∗∗∗ -0.1098 -1.5233∗∗∗ -
(0.4649) (0.3313) (0.4104)

ln(σ2
u) -0.4665 -1.1088 -0.7481 -

(0.2516) (0.2653) (0.2443)

σu 0.7920 0.5744 0.6879 -
(0.0996) (0.0762) (0.0840)

ρ∗ 0.1601 0.0911 0.1258 -
(0.0338) (0.0220) (0.0269)

N 4968 4968 4968 4968

Wald χ2
(8) 48.3 72.3 29.2 34.0

Table B.10: Determinants of symmetric intervals. Note: coefficients are based on random effects

logit estimations, except for "D9, fe", which is based on fixed effects logit estimation.

Standard errors in parentheses are calculated using bootstrap procedures (1000 repli-

cations) that take into account the potential presence of clusters in groups. */**/***

denotes significance at 10/5/1 percent level.
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Poisson D7 D8 D9 D9, fe

sipk
t|t−1

0.1717 -0.7314∗∗ -0.0307 0.0443

(0.1412) (0.3667) (0.2476) (0.1641)

D1yt−1 0.2215 0.2141∗ -0.0092 0.0032
(0.3388) (0.1165) (0.2046) (0.1989)

D2yt−1 -0.2974∗ 0.0625 -0.0298 -0.0491
(0.1598) (0.1137) (0.1276) (0.1301)

D3yt−1 -0.2727 0.0704∗ -0.0106 -0.0147
(0.2216) (0.0392) (0.1234) (0.1050)

DL|πt−1| 0.1922∗ 0.1043∗∗ 0.1114 0.1106
(0.1092) (0.0408) (0.0820) (0.0801)

DH |πt−1| 0.1141 0.0917 0.1004 0.1146
(0.2330) (0.0759) (0.1411) (0.1353)

it−1 -0.3303 -0.1336∗∗ -0.1413 -0.1298
(0.2126) (0.0619) (0.1146) (0.1115)

sd
j

t−1 -0.0802 -0.2374∗∗∗ -0.1933∗∗ -0.2476∗∗

(0.1356) (0.0906) (0.0841) (0.1203)

α -2.6585∗∗∗ -0.6834∗∗∗ -1.6007∗∗∗ -
(0.3787) (0.1597) (0.2862)

ln(α∗) -0.8804∗∗∗ -2.8617∗∗∗ -1.5552∗∗∗ -
(0.2106) (0.9207) (0.2275)

α∗ 0.4146 0.0572 0.2111 -
(0.0873) (0.0526) (0.0480)

N 4968 4968 4968 4968

Wald χ2
(8) 40.3 71.3 21.9 27.4

Table B.11: Determinants of symmetric intervals. Note: coefficients are based on random ef-

fects Poisson estimations, except for "D9, fe", which is based on fixed effects logit

estimation. Standard errors in parentheses are calculated using bootstrap procedures

(1000 replications) that take into account the potential presence of clusters in groups.

*/**/*** denotes significance at 10/5/1 percent level.
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B.2 Instructions used in experiment

Thank you for participating in this experiment, a project in economic investigation. Your

earnings depend on your decisions and the decisions of the other participants. There is a

show-up fee of 5 Euros assured. From now on until the end of the experiment you are not

allowed to communicate with each other. If you have any questions raise your hand and

one of the instructors will answer the question in private. Please do not ask aloud.1

The experiment

All participants receive exactly the same instructions. You and 8 other subjects all partic-

ipate as agents in the same fictitious economy. You will have to predict future values of

given economic variables. The experiment consists of 70 periods. The rules are the same

in all the periods. You will interact with the same 8 subjects during the whole experiment.

Imagine that you work in a firm where you have to predict inflation for the next period.

Your earnings depend on the accuracy of your inflation expectation.

Information in each period

The economy will be described with 3 variables in this experiment: the inflation rate, the

output gap, and the interest rate.

• Inflation measures the general rise in prices in the economy. In each period it

depends on the inflation expectations of the agents in the economy (you and the

other 8 participants in this experiment), the output gap and random shocks which

have equal probability of having a positive or negative effect on inflation and are

normally distributed.

• The output gap measures by how much (in percentage) the actual Gross Domestic

Product differs from the potential one. If the output gap is greater than 0, it means

that the economy is producing more than the potential level; if negative, less than

the potential level. In each period it depends on the inflation expectations of the

agents in the economy, the past output gap, the interest rate and random shocks

which have equal probability of having a positive or negative effect on inflation and

are normally distributed.

1The instructions to participants in the experiment were accompanied with the screenshot of the experi-

mental interface (Figure B.3) and the profit table with earnings for various combinations of estimation error
and confidence interval.
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• The interest rate is (in this experiment) the price of borrowing money (in per-

centage) for one period. The interest rate is set by the monetary authority. Their

decision mostly depends on the inflation expectations of the agents in economy.

All the given variables might be relevant to your inflation forecast, but it is up to you to

work out their relation and the possible benefit of knowing them. The evolution of the

variables will partly depend on your and the other subjects’ inputs and also the various

random shocks influencing the economy.

• You enter the economy in period 1. In this period you will be given computer-

generated past values of inflation, the output gap and the interest rate for 10 periods

back (Called: -9, -8, . . . -1, 0)

• In period 2 you will be given all the past values as seen in period 1 plus the value

from period 1 (Periods: -9, -8, . . . 0, 1).

• In period 3 you will see all the past values as in period 2 (Periods: -9, -8, . . . 1, 2)

plus YOUR prediction about inflation in period 2 that you made in period 1.

• In period t you will see all the past values of actual inflation up to period t − 1

(Periods: -9, -8, . . . t−2, t−1) and your predictions up to period t−1 (Periods: 2,

3, . . . t−2, t−1).

What do you have to decide?

Your task is to predict the state of the economy as accurately as possible. Your payoff will

depend on the accuracy of your prediction of inflation in the future period. In each period

your prediction will consist of two parts:

a) Expected inflation, (in percentage) that you expect in the NEXT period (Exp.In f .)

b) Lower bound (in percentage) of your prediction. You must be almost sure that the

actual inflation will be higher than your lower bound.

c) Upper bound (in percentage) of your prediction. You must be almost sure that the

actual inflation will be lower than your upper bound.

Based on b) and c) we determine the confidence interval, Con f .Int. which is equal to

Con f .Int.=U pper bound − Lower bound
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Example 3 Let’s say you think that inflation in the next period will be 3.7%. And you

also think it is most likely (95% probability) that the actual inflation will not be lower

than 3.2% and not higher than 4.0%. Your inputs in the experiment will be 3.7 under a),

3.2 under b), and 4.0 under c).

Your goal is to maximize your payoff, given with the equation:

W =max

{
100

1+ |In f lation−Exp.In f .| −20,0

}
+max

{
100x

1+ 1
2
Con f .Int.

−20,0

}

where Exp.In f . is your expectation about the inflation in the NEXT period, Con f .Int. is

the confidence interval, Inflation is the actual inflation in the next period and x is a variable

with value 1 if

Lower bound ≤ In f lation≤U pper bound

and 0 otherwise.

The first part of the payoff function states that you will receive some payoff if the actual

value in the next period differs from your prediction in this period by less than 4 percent-

age points. The smaller this difference is, the higher the payoff you receive. With a zero

forecast error (|In f lation−Exp.In f .| = 0), you would receive 80 units (100/1− 20).

However, if your forecast is 1 percentage point higher or lower than the actual inflation

rate, you will get only 30 units (100/2−20). If your forecast error is 4 percentage points

or more, you will receive 0 units (100/5−20).

The second part of the payoff function simply states that you will get some extra payoff if

the actual inflation is within your expected interval and if that interval is no larger than 8

percentage points. The more certain of the actual value you are, the smaller interval you

give (Lower bound and U pper bound closer to Exp.In f .), and the higher your payoff

will be if the actual inflation is indeed in the given interval, but there will also be a greater

chance that the actual value falls outside your interval. In our example this interval was

0.8 percentage points. If the actual inflation falls in this interval you receive 51.4 units

(100/(1+ 1
2
0.8)−20) in addition to the payoff from the first part of the payoff function.

If the actual value is outside your interval, your receive 0.

On the attached sheet you will find a table showing various combinations of forecast error
and confidence interval needed to earn a given number of points.
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Figure B.3: Screenshot of the experimental interface for treatments Bp. Figure A.7 depicts a

screenshot for the treatment with symmetric confidence intervals.

Information after each period

Your payoff depends on your predictions for the next period and the actual realization in

the next period. Because the actual inflation will only be known in the next period, you

will also be informed about you current period (t) prediction and earnings after the end of

the NEXT period (t+1). Therefore:

• After period 1 you will not receive any earnings, since you did not make any pre-

diction for period 1.

• In any other period, you will receive information about the actual inflation rate in

this period and your inflation and confidence interval prediction from the previous

period. You will also be informed if the actual inflation value was in your expected

interval and what your earnings for this period are.

The units in the experiment are fictitious. Your actual payoff (in euros) will be the sum of

earnings from all periods divided by 500.

If you have any questions please ask them now!
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Questionnaire2

1. If you believe that inflation in the next period will be _4.2%_, and you are quite

sure that it will not go down by more than _0.4_ nor up by more than _0.7_, you

will type:

Under (1) _ _ _ _ _ _ _ _ for inflation,

Under (2) _ _ _ _ _ _ _ _ for the lower bound, and

Under (3) _ _ _ _ _ _ _ _ for the upper bound.

2. You are now in period _ _ _15_ _ _. You have information about past inflation, the

output gap and the interest rate up to period _ _ _ _ _ _ _ _ and you have to predict

the inflation for period _ _ _ _ _ _ _ _.

2Options (1), (2) and (3) point to the different fields on the screenshot of the experimental interface.
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Appendix C

Additional information for Chapter 3

C.1 Tables

Efficiency (%)

Treatment No. Units Unit 1 Unit 2

n = 3 180 73.3 99.4

n = 6 80 75.0 96.3

n = undisclosed 132 65.0 91.9

Table C.1: Efficiency of auctions (% of highest value bidders that won corresponding auctions)

Treatment No. No. Observed RNNE
Bidders Units revenue revenue

n = 3 540 360 per unit 5.9844 4.8833
per bidder 3.9896 3.2556

n = 6 480 160 per unit 11.6381 11.2833
per bidder 3.8794 3.7611

n = undisclosed 480 264 per unit 7.2850 7.4716
per bidder 3.7215 3.7056

Table C.2: Observed and expected average revenues of the seller for both units. In the unicertainty

case weighted according to realised β 3 and β 6.
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Subj. No. Mean Mean

Treatment ID Obs. 1st unit 2nd unit t-test p value

3 bidders 1 18 5.644 5.706 0.68 0.253

3 bidders 2∗ 20 5.260 7.995 2.62 0.008

3 bidders 3∗ 24 4.038 9.746 3.39 0.001

3 bidders 4 12 7.583 7.583 0.00 0.500

3 bidders 5∗ 23 6.052 6.835 6.24 0.000

3 bidders 6 23 6.643 7.026 1.57 0.066

3 bidders 7∗ 20 5.240 5.885 2.02 0.029

3 bidders 8∗ 27 2.193 11.456 6.36 0.000

3 bidders 9∗ 17 5.165 7.388 4.30 0.000

3 bidders 10∗ 19 4.179 5.721 4.35 0.000

3 bidders 11 20 5.960 6.735 0.95 0.176

3 bidders 12∗ 17 5.253 5.435 1.78 0.047

3 bidders 13 20 6.160 6.160 0.00 0.500

3 bidders 14∗ 20 3.755 9.655 3.99 0.000

3 bidders 15 17 6.088 6.224 1.53 0.072

3 bidders 16∗ 21 2.595 9.933 3.93 0.000

3 bidders 17 16 6.088 6.094 1.00 0.167

3 bidders 18∗ 26 6.035 8.296 2.12 0.022

6 bidders 19∗ 36 3.367 10.831 6.35 0.000

6 bidders 20 29 6.783 6.972 1.60 0.061

6 bidders 21 31 7.932 7.994 0.61 0.272

6 bidders 22 36 5.853 5.889 0.19 0.425

6 bidders 23 31 7.745 8.906 1.47 0.076

6 bidders 24 36 7.514 7.617 0.60 0.278

6 bidders 25∗ 31 7.887 8.735 2.01 0.027

6 bidders 26∗ 33 7.482 8.552 1.95 0.030

6 bidders 27∗ 33 8.245 8.336 2.32 0.014

6 bidders 28∗ 34 6.950 7.815 2.03 0.025

6 bidders 29∗ 34 6.721 8.341 2.25 0.016

6 bidders 30∗ 36 4.878 7.967 3.16 0.002

Uncertainty 31∗ 30 7.223 8.803 3.39 0.001

Uncertainty 32 21 7.119 6.795 -0.95 0.824

Uncertainty 33∗ 31 6.242 8.003 4.01 0.000

Uncertainty 34∗ 33 4.770 5.709 7.66 0.000

Uncertainty 35∗ 22 7.041 8.077 2.61 0.008

Uncertainty 36∗ 37 4.378 8.700 5.70 0.000

Uncertainty 37∗ 26 7.981 9.223 2.92 0.004

Uncertainty 38∗ 29 6.114 7.038 2.54 0.008

Uncertainty 39∗ 31 5.448 7.319 3.39 0.001

Uncertainty 40∗ 29 5.852 7.217 2.30 0.015

Uncertainty 41∗ 32 6.531 7.759 5.75 0.000

Uncertainty 42 27 5.052 5.519 1.08 0.145

Table C.3: Comparison of mean subject bids for the first and the second unit by subject. Null

hypothesis of the t-test assumes equality of means, p value is one-sided. * denotes

subjects where alternative hypothesis Mean 2nd unit >Mean 1st unit is signifficant at

0.05.
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Subj. No. Mean Subj. Mean RNNE

Treatment ID Obs. 1st unit 1st unit t-test p value

3 bidders 1∗ 30 9.203 4.835 9.07 0.000

3 bidders 2∗ 30 6.800 4.842 3.41 0.002

3 bidders 3 30 6.043 5.313 0.66 0.514

3 bidders 4∗ 30 11.527 5.763 10.87 0.000

3 bidders 5∗ 30 7.850 4.498 7.39 0.000

3 bidders 6∗ 30 8.027 4.760 9.20 0.000

3 bidders 7∗ 30 7.560 4.032 6.18 0.000

3 bidders 8∗ 30 3.167 5.785 -2.52 0.017

3 bidders 9∗ 30 7.960 5.273 5.40 0.000

3 bidders 10∗ 30 6.090 4.892 4.16 0.000

3 bidders 11∗ 30 8.447 5.137 4.99 0.000

3 bidders 12∗ 30 8.003 4.277 7.88 0.000

3 bidders 13∗ 30 8.620 4.355 7.16 0.000

3 bidders 14 30 7.803 5.895 1.68 0.103

3 bidders 15∗ 30 9.213 4.732 9.19 0.000

3 bidders 16 30 6.220 5.678 0.45 0.658

3 bidders 17∗ 30 9.157 4.612 8.17 0.000

3 bidders 18∗ 30 7.353 4.662 3.33 0.002

6 bidders 19∗ 40 4.685 9.260 -4.47 0.000

6 bidders 20∗ 40 9.135 7.888 7.96 0.000

6 bidders 21∗ 40 9.873 8.480 7.33 0.000

6 bidders 22∗ 40 6.973 5.770 5.70 0.000

6 bidders 23 40 9.620 8.530 1.90 0.065

6 bidders 24∗ 40 8.273 7.948 2.19 0.034

6 bidders 25∗ 40 9.453 8.288 3.87 0.000

6 bidders 26∗ 40 9.183 8.226 2.17 0.036

6 bidders 27∗ 40 9.618 7.842 10.47 0.000

6 bidders 28 40 8.170 7.618 1.53 0.135

6 bidders 29 40 8.215 7.702 0.87 0.389

6 bidders 30 40 6.070 7.176 -1.35 0.185

Uncertainty 31∗ 40 8.183 6.417 5.21 0.000

Uncertainty 32∗ 40 9.898 7.881 8.84 0.000

Uncertainty 33 40 7.103 6.869 0.53 0.597

Uncertainty 34∗ 40 5.695 7.260 -5.38 0.000

Uncertainty 35∗ 40 8.753 6.995 6.80 0.000

Uncertainty 36∗ 40 4.828 6.451 -3.22 0.003

Uncertainty 37∗ 40 9.298 8.121 3.01 0.005

Uncertainty 38∗ 40 7.793 5.750 7.82 0.000

Uncertainty 39∗ 40 7.020 6.081 2.70 0.010

Uncertainty 40∗ 40 7.788 6.188 3.12 0.003

Uncertainty 41 40 7.048 6.959 0.22 0.830

Uncertainty 42∗ 40 7.793 5.409 7.00 0.000

Table C.4: Comparison of subject bids for the first unit to corresponding RNNE prediction by

subject. Null hypothesis of t-test assumes equality of means, p value is one-sided. *

denotes subjects where alternative hypothesis Mean Subj. 1st unit > Mean RNNE 1st

unit is signifficant at 0.05.
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Subj. No. Mean Subj. Mean RNNE

Treatment ID Obs. 2nd unit 2nd unit t-test p value

3 bidders 1∗ 18 5.706 5.972 -3.14 0.003

3 bidders 2 20 7.995 7.995 0.00 1.000

3 bidders 3∗ 24 9.746 9.758 -1.81 0.041

3 bidders 4 12 7.583 7.583 0.00 1.000

3 bidders 5∗ 23 6.835 7.017 -3.34 0.001

3 bidders 6∗ 23 7.026 8.009 -3.37 0.001

3 bidders 7 20 5.885 5.995 -1.15 0.132

3 bidders 8 27 11.456 11.530 -1.00 0.163

3 bidders 9∗ 17 7.388 7.835 -2.06 0.028

3 bidders 10∗ 19 5.721 7.132 -2.89 0.005

3 bidders 11∗ 20 6.735 8.320 -2.89 0.005

3 bidders 12∗ 17 5.435 5.694 -2.63 0.009

3 bidders 13∗ 20 6.160 6.295 -2.30 0.016

3 bidders 14 20 9.655 9.655 0.00 1.000

3 bidders 15 17 6.224 6.312 -1.65 0.059

3 bidders 16 21 9.933 9.933 0.00 1.000

3 bidders 17 16 6.094 6.094 0.00 1.000

3 bidders 18 26 8.296 8.308 -1.00 0.163

6 bidders 19∗ 36 10.831 11.003 -2.66 0.006

6 bidders 20∗ 29 6.972 7.217 -1.78 0.043

6 bidders 21∗ 31 7.994 8.610 -2.80 0.004

6 bidders 22 36 5.889 6.064 -1.22 0.115

6 bidders 23 31 8.906 8.932 -1.28 0.106

6 bidders 24∗ 36 7.617 9.117 -7.55 0.000

6 bidders 25 31 8.735 8.735 0.00 1.000

6 bidders 26 33 8.552 8.770 -1.18 0.123

6 bidders 27 33 8.336 8.409 -1.51 0.071

6 bidders 28∗ 34 7.815 8.171 -2.46 0.010

6 bidders 29∗ 34 8.341 8.382 -2.60 0.007

6 bidders 30∗ 36 7.967 8.100 -1.69 0.050

Uncertainty 31 30 8.803 8.803 0.00 1.000

Uncertainty 32∗ 21 6.795 8.014 -3.23 0.002

Uncertainty 33∗ 31 8.003 9.094 -4.71 0.000

Uncertainty 34∗ 33 5.709 9.500 -8.97 0.000

Uncertainty 35 22 8.077 8.086 -1.45 0.081

Uncertainty 36∗ 37 8.700 9.319 -2.32 0.013

Uncertainty 37∗ 26 9.223 10.338 -2.74 0.006

Uncertainty 38 29 7.038 7.038 0.00 1.000

Uncertainty 39∗ 31 7.319 7.445 -2.08 0.023

Uncertainty 40 29 7.217 7.221 -1.00 0.163

Uncertainty 41∗ 32 7.759 9.816 -4.08 0.000

Uncertainty 42∗ 27 5.519 5.844 -2.10 0.023

Table C.5: Comparison of subject bids for the second unit to corresponding RNNE prediction by

subject. Null hypothesis of t-test assumes equality of means, p value is one-sided. *

denotes subjects where alternative hypothesis Mean Subj. 2nd unit > Mean RNNE

2nd unit is signifficant at 0.05.
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3 bidders 6 bidders Uncertainty

Increases 7% 16% 7%

Equalities 11% 24% 10%

Decreases 82% 60% 83%

Table C.6: Comparison of subject bids for the first unit to corresponding RNNE prediction by

subject. Null hypothesis of t-test assumes equality of means, p value is one-sided. *

denotes subjects where alternative hypothesis Mean Subj. 1st unit > Mean RNNE 1st

unit is signifficant at 0.05.
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C.2 Instructions used in experiment

You are about to participate in an experiment. After experiment starts, you are not al-

lowed to communicate with any other participant in the room. Any questions should be

addressed to the experimenter.

You will participate in a fictitious auction as a bidder. You will have to post offers to buy

certain artificial commodities. All participants receive exactly the same instructions.

Structure of the experiment

Experiment will consist of 30 periods. Each period will represent a different auction.

There will be TWO units of commodities offered in EACH auction. In a given period, the

value of the first unit is exactly the same as the value of the second unit offered. However,

the values of each pair of commodities will be different in each period.

The two units will be offered sequentially: after the first one is sold, the second will be

offered. You are interested to buy only ONE unit of a commodity in each period. If you

won the first item of a given period, you will not be allowed to bid for the second.

What is auctioned?

In each of the 30 periods, two artificial commodities will be offered. Each of the two will

be worth an amount X for you. You will be given your valuation at the beginning of each

period. The number X will be randomly drawn from the uniform distribution between 0

and 20. Each value between these two numbers is equally likely to be chosen. In a given

period every participant will receive a different personal value of the item.

How does the bidding procedure look like?

In each period (auction) you will receive your new personal value. Then you will be

asked to put a single bid for the offered commodity. You will have 30 seconds to make

this decision. You will NOT see the offers of the other bidders, nor will you be allowed

to post offers of less than 0 and greater to your personal value. If you do not post an offer

in 30 seconds, your bid will be recorded as 0.

First stage

After all participants in the auction have posted their offer for the first good, the highest

bidder will be determined. You will be informed if you have won the auction or not. If you

won the auction, you will not participate in bidding for the second commodity in given

period. If you lost the auction you will proceed to bidding for the second commodity.

However, you will not receive the information of the winning amount yet.

Second stage

In the second stage, commodity with the same value will be offered, and you will have
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another 30 seconds to make a bid. There will be the same participants in this stage, except

the winner of the first stage, so there will be one bidder less. After all bids are posted, the

winner will be determined in the same way as in the first stage. You will then be informed

of the results of both stages: whether you have won any of the two goods or not, the price

paid by the winner in the first auction, the price paid by the winner in the second auction,

the number of bidders in the auction, and your profits. After that the new auction period

will start.

Treatment A specific instructions:

How many people participate in the auction?

There will be 3 participants in each auction. In every period you will be randomly matched

with two other participants. All three will participate in the bidding for the first unit. The

person who obtained the first unit will not participate in the bidding for the second unit;

therefore only 2 bidders will participate in the second stage. End of treatment A specific

instructions.

Treatment B specific instructions:

How many people participate in the auction?

There will be 6 participants in each auction. In every period you will be randomly matched

with two other participants. All three will participate in the bidding for the first unit. The

person who obtained the first unit will not participate in the bidding for the second unit;

therefore only 5 bidders will participate in the second stage. End of treatment B specific

instructions.

Treatment C specific instructions:

How many people participate in the auction?

In each auction there will be an unknown number of bidders. However, you know that

there are only two possible states with equal (50%) probability to occur. Either the number

of participants is 3 or 6. Therefore in the bidding for the first unit, there will be either 3 or

6 participants. The person who obtained the first unit will not participate in the bidding

for the second unit; therefore only 2 or 5 bidders will participate in the second stage.

You will not receive the information of the correct number of bidders until both of the two

stages are finished. The group members and their number will be different in each period.

End of treatment C specific instructions.
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Who is the winner and what is his payoff?

The winner will be the bidder with the highest offer made. If there will be more than one

bidder with the highest offer, the single winner will be randomly chosen among them.

However, the winner will only pay the price equal to the SECOND HIGHEST offer. For

instance, if the bidders a, b, and c offered 10, 15 and 8, the highest bidder will be b, who

offered 15, but will pay only 10 for the commodity.

The payoff of the winner will be the value of the commodity minus the price he paid,

(Pro f it = X− p).

Your total payoff will be calculated as a sum of your gains in all 30 periods with the

conversion rate of €1= 20 monetary units in the experiment.

If you have any questions, you should ask them now.

Figure C.1: Screenshot of the experimental interface for treatment C, auction with bidders uncer-

tain between 3 or 6 participants.
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C.3 Individual bidding behavior
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Figure C.2: Auctions with 3 bidders - bids vs. private values and corresponding bid/value ratios

by subject. Selected examples.
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Figure C.3: Auctions with 6 bidders - bids vs. private values and corresponding bid/value ratios

by subject. Selected examples.
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and corresponding bid/value ratios by subject. Selected examples.
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