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Chapter 1  
Introduction 

 

 
 

Photosensitizers: From drug design to animal testing 
 
 

The therapeutic properties of light have been known for thousands of 

years, but it was only in the last century that photodynamic therapy 

(PDT) was developed. As an emerging therapy for the treatment of a 

variety of diseases, there has been extensive research into the design of 

new photosensitizers and drug delivery systems. A general introduction 

to the drug discovery of a new photosensitizer and the aim of this thesis 

is given in this chapter. 
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1.1. PHOTODYNAMIC THERAPY OF CANCER: general aspects 

Photodynamic therapy (PDT) involves the administration of a photoactive dye or 

photosensitizer (PS) that is able to produce reactive oxygen species (ROS) upon 

irradiation with light. When the PS absorbs a photon, an electron is promoted from the 

ground state to an electronically-excited state that can then undergo electron transfer 

(type I reaction) generating superoxide, hydrogen peroxide and hydroxyl radicals; or 

can transfer energy to molecular oxygen to produce highly cytotoxic singlet oxygen 

(type II reaction) (Fig. 1.1) [1]. Both mechanisms can produce the photo-oxidation of 

certain amino acids, pyrimidine and purine bases of DNA/RNA, and unsaturated lipids, 

leading to DNA damage and/or damage to the cytoplasmic membrane allowing 

leakage of cellular contents or inactivation of membrane transport systems [2].  

 

 

 

Figure 1.1. Jablosnki diagram depicting the possible photophysical properties and the mechanisms of 

ROS generation.   
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There are multiple applications of this therapy, including antimicrobial therapy, age-

related macular degeneration (AMD), acne and dermatological diseases, and cancer.  

Photodynamic therapy of cancer is particularly attractive because of its fundamental 

specificity and selectivity. As described above, PDT involves the combination of three 

individually non-toxic components (PS, visible light and molecular oxygen) to induce 

cellular and tissue effects. Thus, this treatment shows a dual selectivity that is 

produced by both a preferential uptake of the PS by the diseased tissue and the ability 

to confine activation of PS by restricting the illumination to that specific area.  

Although it was initially considered that PDT-induced damage was confined to the 

treated site, it is now accepted that this therapy is endowed with multifactorial effects, 

which include direct tumor cell killing, damage to the tumor vasculature and activation 

of the immune system [1]. It is generally accepted that all three mechanisms are 

necessary for the optimal tumor damage. The relative contribution of these pathways 

depends upon the PS used, the tissue being treated, and the treatment conditions. 

ROS generated by PDT can kill cells directly by apoptosis, necrosis and/or autophagy 

if the PS has been taken up by tumor cells. However, complete tumor eradication is not 

always fully realized by this mechanism mainly due to the non-homogeneous 

distribution of the PS and oxygen concentration within the tumor [1,3]. 

PDT also damages the tumor-associated vasculature. An initial blanching and 

vasoconstriction of the tumor vessels is followed by acute blood stasis, hemorrhage 

and the formation of platelet aggregates, that provokes the vascular shut-down.  As a 

result, tumor cells become deprived from oxygen and nutrient supply, leading to the 

elimination of the tumor  [4,5].  

PDT triggers several cell-signaling cascades and the release of cell fragments, 

cytokines and inflammatory mediators that stimulate a complex interplay between the 

innate and the adaptive arms of the immune system to recognize and destroy tumor 

cells even at isolated locations  [6-8]. 
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1.2. DRUG DISCOVERY 

In the fields of medicine, biotechnology and pharmacology, drug discovery is the 

process by which drugs are discovered or designed. The process of drug discovery for 

PDT involves the identification and synthesis of the PS, its photophysical 

characterization, the development of a formulation and assays for therapeutic PDT 

efficacy both in vitro and in vivo. Once a compound has shown its value in these tests, 

it will begin the process of drug development prior to clinical trials.  

 

1.2.1. Photosensitizers 

Photosensitizers (PSs) are exogenous or endogenous chemicals that cause 

sensitization to light. Exogenous PSs tend to be relatively large molecules and are 

usually administered parentally, while the endogenous PS protoporphyrin IX (PpIX) can 

be induced by topical delivery of 5-aminolevulinic acid (ALA)  [9]. 

An ideal PS agent should be single pure compound with easy and low cost synthesis, 

and should have chemical and physical stability. It should have a high absorption peak 

between 600 and 800 nm, the so-called therapeutic window, which allows the 

maximum light penetration through the tissue with the minimum light scattering. It 

should have high singlet oxygen quantum yield for high photodynamic efficiency but 

also be fluorescent and photostable to facilitate monitoring. It should be devoid of any 

toxicity without light, and also show selective uptake, rapid clearance from normal 

tissues to minimize skin photosensitivity and other side effects, and microlocalization to 

sensitive cellular/subcellular targets (e.g. mitochondria)  [10,11].  

Since the development of porfimer sodium (Photofrin®) in the last part of the 20th 

Century, there has been a concerted effort to develop new, more potent, tumor-specific 

agents with the overall aim of improving therapeutic outcomes for patients. Although 

Photofrin® is still the most widely used PS, the product has some disadvantages, 

including long-lasting skin photosensitivity and relatively low absorbance at 630 nm. 

After Photofrin® several hundred compounds, referred to as second-generation PSs, 

have been proposed as potentially useful for anticancer PDT. The main classes are 

synthetic porphyrin, porphycenes, chlorins, bacteriochlorins and phthalocyanines. Their 

core structures are depicted in Fig. 1.2. Table 1.1 displays the most promising PSs that 

have been used clinically for cancer PDT (whether approved or in trials). 
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Figure 1.2. Core structures of the main kinds of second-generation PSs. 

 

Table 1.1. Clinically applied photosensitizers. From  [11] 
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Our group has focused the interest in the porphycene family. Porphycenes are 

structural isomers of porphyrins that have many unique properties and features  [12]. 

The most relevant feature of the porphycene ring is its lower structural symmetry that 

results in 20-fold larger absorption coefficients in the red part of the spectrum 

compared to porphyrins. Since the synthesis of the first porphycene in 1986  [13], a 

variety of substituted derivatives have been prepared  [14].  The  excellent  porphycene’s  

photophysical properties, as well as its ability to photoinactivate several cell lines  [15-

18], promote the porphycenes as promising PSs for PDT treatments. 

 

1.2.2. Drug delivery systems 

Most PS molecules tend to be highly hydrophobic and therefore aggregate easily in 

aqueous environment  [19]. The presence of hydrophobic interactions lowers the 

efficiency of the PS, which must be in monomeric form to be photoactive. Moreover, 

selective accumulation of the PS in diseases tissues is required to minimize unwanted 

side-effects result from damage to healthy cells. Thus, considerable efforts have been 

directed at designing delivery systems that can incorporate PS in monomeric form 

without diminishing its activity, and without causing any harmful effects in vivo  [20]. 

Different strategies have been investigated. Fig. 1.3 shows a selected representation of 

the drug delivery systems most used for PDT.  

 

 

Figure 1.3. Drug delivery systems most used in PDT. 
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Polymeric nanoparticles (NPs) have recently emerged as a promising tool for the 

delivery of drugs in PDT, mainly because their flexibility toward surface modification 

and the possibility of being loaded with multiple components such as targeting ligands 

and contrast agents. A variety of polymeric NPs has been developed including 

synthetic polymers like polylactide-polyglycolide copolymers (PLGA), N-(2-

hydroxypropyel)methacrylamide (HPMA), and polyacrylamide (PAA). Natural polymers 

composed of polysaccharides, such as chitosan and alginate, and proteins such as 

albumin, and collagen, have also been used  [21-24].  

Otherwise, silica NPs have several advantages as carriers for PDT agents: their 

particle size, shape, porosity and mono-dispersibility can be easily controlled during 

their preparation. They are pH stable and are not subject to microbial attack. 

Furthermore, a variety of precursors and methods are available for their synthesis 

allowing numerous PDT drugs to be encapsulated. Although these NPs do not release 

the entrapped PS, the porosity of the silica wall permeates the produced singlet oxygen 

and the desired phototoxic effect is maintained even in the encapsulated form  [23,25]. 

Gold NPs have been used in two ways in PDT: firstly as drug-delivery platforms in a 

similar manner to other inorganic NPs  [26]; secondly as surface plasmon-enhanced 

agents taking account of the non-linear-optical fields associated with very close 

distances to metal NPs  [27,28]. 

Lipoproteins are naturally occurring NPs composed of a mixture of specific proteins, 

phospholipids and cholesterol with a hydrophobic core. The family consists of 

chylomicrons, very low density lipoproteins (VLDL), low density lipoproteins (LDL) and 

high density lipoproteins (HDL). Their small size (less than 30 nm) allows them to 

penetrate deeply into tumors. Furthermore, LDL has innate cancer targeting potential 

as LDL receptors are overexpressed on malignant cells  [29].   

Alternatively, micelles are suitable for the formulation of PSs. Their hydrophobic core 

can accommodate hydrophobic drugs, whereas their hydrophilic shell, which is usually 

composed of PEG, in combination with their small size (10-100 nm) results in long 

circulation times and selective accumulation at the tumor site. Several components 

have been studied for loading PS. Pluronic micelles, polymeric micelles using 

poly(ethylene glycol)-b-poly(caprolactone) (PEG-PCL) or poly(ethylene glycol)-b-

poly(DL-lactic acid) (PEG-PLA) diblock copolymers, lipid-based PEG-PE or Cremophor 

EL have been extensively used for loading PSs for PDT  [30,31]. 
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Liposomes have far been the most intensively studied carrier system for PS, 

therapeutic drugs and cosmetic delivery due to their unique properties [32-36]. 

Conventional liposomes are highly biocompatible and biodegradable nanocarriers 

composed of a unilamellar or multilamellar phospholipid bilayer surrounding an 

aqueous inner core. In fact, they can contain a wide variety of hydrophilic and 

hydrophobic diagnostic or therapeutic agents, providing a larger drug payload per 

particle and protecting encapsulated agents from metabolic processes  [37].  

Among all the options, our group has opted for liposomes for the delivery of 

photosensitizing agents  [38-40]. Once the PS has been incorporated in the liposomes, 

it can be delivered to cells in two interlocking ways, modulated by the nature of lipids 

and type of cell: cationic liposomes tend to fuse with cell membranes or endosomes 

and release its contents into the cytosol, whereas neutral or negatively-charged 

liposomes can be taken up by endocytosis and then disintegrated in endosomes or 

lysosomes, again releasing the active drug into the cell  [41,42].  

Due to the fast angiogenesis in malignant tissue, tumor vessel walls show an 

enhanced vascular permeability allowing liposomes to passively accumulate in tumor 

tissue at high concentrations  [33]. However,  such   “conventional”   liposomes  have   the  

drawback of a short plasma half-life in vivo, of the order of minutes. This is firstly due to 

rapid lipid exchange between the liposomes and lipoproteins and the easy 

opsonization by plasma proteins. To improve the pharmacokinetics and antitumor 

therapeutic efficacy, sterically stabilized liposomes were developed  [43]. The surface 

of the liposome is decorated with hydrophilic carbohydrates or polymers, such as 

monosialoganglioside or polyethylene glycol, in order to extend the in vivo liposome 

circulating time.  

Various strategies have been investigated to trigger the release of the encapsulated 

drug from liposomes at the optimal location and time, such as pH-triggered and redox-

triggered release  [44]. Some methods have been applied for he release of PS 

specifically at tumor tissue by stimuli such as light, heat or ultrasound  [45]. 

 

Targeted drug delivery systems 

Ideally, PDT holds the promise of dual selectivity due to a preferential tumor uptake of 

the PS and the restricted illuminated area for an improved selectivity. However, 

confined irradiation is not possible, leading to some phototoxicity to surrounding normal 

tissues. Moreover, several cases of prolonged skin photosensitivity have been reported  
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[46]. Targeted drug delivery systems are one of the strategies proposed to solve these 

problems underlying non-specific PS accumulation. Active targeting encompasses the 

strategy of coupling a specific entity to the surface of the NP, enhancing their selective 

interaction with target cells recognized by specific markers. While monoclonal 

antibodies have received the most attention  [47,48], biochemical, metabolic and 

physiological alterations of tumor cells offer numerous other potent targets to exploit 

during the delivery of PS. Folic acid (vitamin B9) is essential for the proliferation and 

maintenance of cells. The overexpression of folate receptor on a variety of epithelial 

cancer cells and the high affinity of folate for its receptor has attracted wide attention as 

a targeting agent for tumor selectivity  [49,50]. Small peptides that selectively recognize 

tumor cells represent another excellent approach for targeting therapies  [51], and 

hyaluronic acid recognizes CD44, known as the hyaluronic acid receptor, which is 

involved in cell adhesion and is also overexpressed on many cancer cells  [52,53].  

 

1.2.3. In vitro tests 

PDT efficiency is generally tested in vitro as a first approximation to the photodynamic 

action of a PS. Although PDT can induce many cellular and molecular signaling 

pathways events in cells, its main purpose is to induce cell death. The concentration, 

physicochemical properties and subcellular localization of the PS, the concentration of 

oxygen, the appropriate wavelength and intensity of light, as well as the cell type 

specific properties may all influence the mode and the extent of cell death  [54]. 

 

Modes of cell death 

Cells can undergo three different types of cell death after PDT. Necrosis, referred to as 

accidental cell death, is considered to be an unprogrammed process. It is a violent and 

quick form of degeneration characterized by in vitro cytoplasm swelling, devastation of 

organelles and disruption of the plasma membrane, leading to the release of 

intracellular contents and in vivo inflammation  [55]. 

A different type of cell death termed apoptosis represents regulated cell suicide. 

Apoptosis requires transcriptional activation of specific genes, including the activation 

of endonucleases, consequent DNA degradation, and activation of caspases. The 

organelles and plasma membrane tend to retain their structure for quite a long period. 

In vitro, apoptotic cells are usually fragmented into multiple membrane enclosed 
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spherical vesicles. In vivo, these apoptotic bodies are scavenged by phagocytes, 

inflammation is prevented, and cells die in an immunologically controlled way  [56,57]. 

In spite of this fact, researchers have recently discovered a new apoptotic cell death 

modality called –“immunogenic   apoptosis”,   which   is   provoked   by   the   endoplasmic  

reticulum (ER) stress accompanied by ROS and is able to trigger an effective dendritic 

cell-based antitumor immune response  [58]. 

Autophagy is a process whereby a portion of the cytosol, usually containing cellular 

organelles, is sequestered by a double membrane. The resulted vesicle then fuses with 

a lysosome, the contents are digested, and can be recycle during periods of starvation. 

There is also evidence that autophagy can be a cell-death mode under appropriate 

circumstances, accompanying apoptosis after ER photodamage  [59].  

 

3D cell cultures 

Tissues and organs are three-dimensional (3D). However, the ability to understand 

their formation, function and pathology has often depended on two-dimensional (2D) 

cell culture studies. Standard cell cultures can differ considerable in their morphology, 

cell-cell and cell-matrix interactions, and differentiation from those growing in more 

physiological 3D environments. In vitro 3D tissue models provide an approach that 

bridges the gap between traditional cell culture and animal models  [60]. 3D-cell 

scaffolds have been developed within the tissue engineering field for tissue 

regeneration and organ replacement  [61,62]. However, researchers in the 

photodynamic field have also followed this strategy in order to better mimic the cancer 

tissue environment and optimize the parameters for an efficient PDT outcome in vivo. 

Spheroids have so far been the most intensively studied 3D system for PDT and a 

wide variety of therapy studying the effects on fundamental mechanisms, including 

regulation of proliferation, cell death, differentiation and metabolism. Multicellular 

spheroids are formed by culturing cells in spinner flasks or agar-coated culture plates. 

Under these conditions, cells form spherical clusters that can survive for weeks and 

can reach sizes of up to several millimeters in diameter. Multicellular spheroids offer a 

simple and highly reproducible model that contains many of the features of natural 

tissue  [63]. It has been found that oxygen gradients characteristics of spheroids 

produce heterogeneous response to PDT  [64]. They are also well suited for 

investigating the utility of therapies on tumor cell invasion  [65]. The study of PDT-

induced vascular damage has been recently investigated using a sophisticated 

spheroid-chick chorioallantoic membrane (CAM) system  [66].  



Chapter 1: Introduction 

12 

A basement membrane cell culture approach has been used for the in vitro model of an 

ovarian metastatic cancer  [67]. This strategy uses a synthetic media that contains 

collagen and growth factors that mimic the extracellular matrix (ECM).  

In a similar approach, a novel hydrogel-based 3D culture model has been developed 

for better predict the PDT outcome (see chapter 7). The model uses a self-assembling 

RAD16-I scaffold that forms a network of interweaving nanofibers of 10-20 nm 

diameter and 50-200 nm pore size, surrounding cells in a similar manner to the natural 

extracellular matrix and, thereby, mimicking the in vivo cellular environment.  

Ex-vivo skin models have been used for addressing the photodynamic potential of 

some PS for skin cancer and other malignancies  [68,69].  

 

1.2.4. In vivo tests 

The final step of the PS efficacy evaluation before jump to clinical trials is the in vivo 

(animal) testing. The animals most used for PDT purposes are small rodents such as 

mice and rats, although rabbits, pigs, dogs and cats have also been used. The 

standard protocol involves the subcutaneous inoculation of cancer cells into the 

desired zone, a waiting time until the development of the tumor and the evaluation of 

tumor growth, survival and other effects (e.g. immune response activation) after PDT 

treatment. Even zebra fish have been used as model for studying synergistic effects 

between PDT and a novel ultrasound activated therapy  [70]. The chick chorioallantoic 

membrane (CAM) model is useful for the assessment of PDT-induced vascular 

damage  [71,72]. This in vivo model has the advantage of providing an easily 

accessible neovascular net in a transparent matrix, and therefore vascular effects and 

drug pharmacokinetics are easily measured. 
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1.3. OBJECTIVES 

The main goal of this thesis is to study the efficacy of new porphycene photosensitizers 

and the influence of drug delivery systems in photodynamic therapy. This is divided 

into the following specific objectives: 

 Characterization of the photophysical properties of new porphycene-based 

photosensitizers. 

 Development of liposomal formulations for the encapsulation of photosensitizing 

agents and investigation of the potential of targeting strategy. 

 Assessment of the antitumor potential of a new porphycene photosensitizer in 
vitro and in vivo. 

 Assessment of the potential of new models for predicting the photodynamic 

therapy outcome in vitro. 
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General techniques and methods 

 

 
 

Photobiology: the science of light and life 
 
 

Photobiology deals with the interaction of light with living organisms, 

from cellular to in vivo live specimens. This chapter describes the 

general techniques and methods involving both light and life: specific 

methods and techniques used for the determination of photophysical 

properties in the light-induced reaction processes; and the basics of 

liposome preparation and characterization, cell culture protocols and 

animal handling. Specific details will be described in the experimental 

section of each chapter.  
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2.1. STEADY-STATE OPTICAL TECHNIQUES 

2.1.1. Absorbance and transmittance 

Spectra were recorded in both a Varian Cary 4E spectrophotometer (Varian, Palo Alto, 

CA) and a Cary 6000i UV-Vis-NIR spectrophotometer (Agilent Technologies, Santa 

Clara, CA). For diffuse transmittance measurements of cell suspensions, the 

spectrophotometer was equipped with 110 mm-diameter integrating sphere and a high 

performance photomultiplier tube. Integrating spheres have the ability to collect most 

reflected or transmitted radiation from turbid, translucent or opaque samples, removing 

any directional preferences and presenting an integrated signal to the detector.  

 

2.1.2. Emission 

Fluorescence emission and excitation spectra were recorded in both a Spex 

Fluoromax-2 spectrofluorometer and a Fluoromax-4 spectrofluorometer (Horiba Jobin-

Ybon, Edison, NJ). The absorbance of the sample was ensured to be less than 0.05 in 

the overlap region between absorption and emission to avoid inner filter effects in the 

measurement of fluorescence.  

Method 

Fluorescence quantum yield (F) 

The fluorescence quantum yields were determined from the comparison of the area 

under the corrected emission curves of optically-matched solutions of the sample to 

that of a suitable reference (i.e. with a similar emission spectrum as the sample). The 

quantum yields (F) were determined by means of Eq. 2.1: 

 

𝛷ி(sample) =
ிೞೌ೘೛೗೐·௡ೞೌ೘೛೗೐

మ

ிೝ೐೑·௡ೝ೐೑మ · 𝛷ி(ref)  (2.1) 

 

where Fi is the fluorescence intensity integrated over the entire emission spectrum 

corrected by the absorption factor (1-10-A) and ni is the refractive index of the solvent 

used in each case.  
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2.2. TIME-RESOLVED OPTICAL TECHNIQUES 

The time-resolved techniques used in this work involve the observation, through 

absorption or emission, of excited states or other reaction intermediates generated 

upon pulsed-laser irradiation of a sample. The formation of a large concentration of 

transient species upon absorption of light produced a change in the intensity of an 

analyzing beam (in the case of absorption spectroscopy) or in the intensity that 

emerges from the sample (in the case of emission spectroscopy), which the system is 

able to monitor with time resolution. 

 

2.2.1. Time-correlated single photon counting (TCSPC) 

Time-correlated Single Photon Counting is the most commonly used technique for 

singlet state lifetime determination. It is based on the detection of single photons of a 

periodical light signal, the measurement of the detection times of the individual photons 

and the reconstruction of the waveform form the individual time measurements. 

TCSPC technique makes use of the fact for low-level, high-repetition-rate pulses, the 

produced light intensity is so low that the probability of detecting one photon in one 

signal period is much less than one. Therefore, it is not necessary to provide for the 

possibility of detecting several photons in one signal period. It is sufficient to record the 

photons, measure their time in the signal period, and build up a histogram of the 

photon times.  

The principle is shown in Fig. 2.1: 

 

Figure 2.1. Principle of classic time-correlated single photon counting. From [1] 
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In most cases, the lifetime of the sample to be measured is on the same time scale as 

the response function of the system. In these cases, the actual decay may be obtained 

by deconvolution of the measured signal using an instrumental response function (IRF) 

generated from a light scattering sample. 

TCSPC experiments were carried out using a PicoQuant Fluotime 200 (PicoQuant 

GmbH, Berlin, Germany) fluorescence lifetime system. Excitation was achieved by 

means of picosecond diode lasers or LEDs (PicoQuant, 10 MHz repetition rate) and the 

counting frequency was always below 1%. Desired wavelength was selected by a 

monochromator (model 9055, Science Tech Inc., London, Canada) and an UV/Vis 

photomultiplier (model H5783-P01, Hamamatsu Photonics, Japan), sensitive from 175 

to 900 nm, was used to detect the fluorescence. Singlet state lifetimes were 

determined using the PicoQuant FluoFit 4.0 data analysis software. 

Method 

Singlet lifetime (s) 

A solution of the sample in the proper solvent was prepared ensuring that the 

absorbance of the sample was less than 0.05 in the overlap region between absorption 

and emission to avoid inner filter effects. The deconvolution of the TCSPC 

fluorescence signal with the IRF signal – reference sample (Ludox® in water) that 

directs a small fraction of the excitation light into the detection path - yields the singlet 

lifetime. 

 

2.2.2. Time-resolved NIR phosphorescence detection (TRPD) 

This technique is commonly used for directly and specifically monitoring the formation 

and decay of single oxygen (1O2, O2(a1g)), the measurement of its lifetime (∆) and its 

quantum yield of formation (∆) [2] . It is based on the detection of the weak 1O2 

phosphorescence, centered at 1275 nm. 

The 1O2 phosphorescence was detected using a customized PicoQuant Fluotime 200 

system (Fig. 2.2). A diode-pumped pulsed Nd:YAG laser (FTSS355-Q, Crystal Laser, 

Berlin, Germany) working at 10 kHz repetition rate and emitting either at 355 nm (5 

mW, 0.5 J per pulse) or 532 nm (10 mW, 1 J per pulse) was used for excitation. A 
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1064 nm rugate notch filter (Edmund Optics, York, UK) was placed at the exit port of 

the laser to remove any residual component of its fundamental emission in the near-IR 

 

 
 
Figure 2.2. Experimental set-up for the photon counting time resolved singlet oxygen phosphorescence 

detection.  

 
 

region. The luminescence exiting from the cuvette or solid sample was passed through 

a cold mirror and a series of long-pass filters of increasing cut-off wavelengths (CVI 

Melles Griot, Alburquerque, NM) to remove any scattered laser irradiation, and filtered 

by suitable interference filters to isolate 1O2 emission. A TE-cooled Hamamatsu NIR 

photomultiplier (model H9170-45, Hamamatsu Photonics, Japan), sensitive from 950 to 

1400, was used to detect the conditioned NIR luminescence. The detector was 

operated in photon counting mode and its output sent to a PicoQuant Nanoharp 250 

multichannel scaler. The count histograms were built up until a sufficient signal-to-noise 

ratio was attained. Data was processed using the PicoQuant FluoFit 4.0 software. 

 

Methods 

Photosensitizer’s  triplet  lifetime  (T) and 1O2 lifetime (∆) 

Singlet oxygen lifetime was obtained by fitting Eq. 2.2 to the signal detected at 1275 

nm, 

𝑆(𝑡) = 𝑆(0) · ఛ౴
ఛ౴ିఛ౐

· (𝑒ି௧/ఛ౴ − 𝑒ି௧/ఛ౐)  (2.2) 
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where S(0) is the zero-time amplitude of the signal and T and ∆ are the actual 

lifetimes of the photosensitizer triplet state and singlet oxygen, respectively. 

Photosensitizer’s   lifetime  was   determined,   if   possible, by fitting Eq. 2.3 to the signal 

obtained at a wavelength where the triplet state of the photosensitizer emits, 

[ 𝑃𝑆  ଷ ]௧ = 𝐾ଵ · 𝑒ି௧/ఛ೅  (2.3) 
 

where K1 reflects the concentration of triplet excited states of the photosensitizer and T 

is the actual lifetime of the photosensitizer triplet state. 

 

Quantum yield of 1O2 formation (∆) 

The quantum yield of singlet oxygen photosensitization is defined as the number of 

photosensitized 1O2 molecules per absorbed photon. The pre-exponential factor S(0), 
which is proportional to ∆, was determined by fitting Eq. 2.2 to the time-resolved 

phosphorescence intensity at 1275 nm. The quantum yields of 1O2 production were 

determined from the comparison of S(0) to that produced by an optically matched 

reference in the same solvent and at the same excitation wavelength and intensity (Eq. 

2.4) [2] . 

Φ୼(sample) =
ௌ(଴)ೞೌ೘೛೗೐
ௌ(଴)ೝ೐೑

· Φ୼(ref)  (2.4) 

 

Quenching of 1O2 lifetime 

Stern-Volmer analysis was used to calculate reaction rate constants (kQ) form time-

resolved data, by means of Eq. 2.5: 

 
1 𝜏ൗ = 1 𝜏଴ൗ + 𝑘ொ[Q]  (2.5) 

 

where  and 0 are the lifetimes of the reacting species in the presence and absence of 

a quencher Q, respectively. 

 

2.2.3. UV-Vis nanosecond laser flash photolysis 

Transient absorption experiments in the UV-Vis region were carried out using a home-

built nanosecond laser flash photolysis system. In this instrument, the 2nd harmonic 
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(532 nm) or the 3rd harmonic (355 nm) of a Q-switched Nd:YAG laser (Surelite I-10, 

Continuum) was directed with right-angle geometry to irradiate the sample (10 Hz, 5 ns 

pulsewidth, 1-10 mJ per pulse). Changes in the sample absorbance were detected 

using a Hamamatsu R928 photomultiplier to monitor the intensity variation of an 

analyzing beam produced by a 75 W short-arc Xe lamp (PTI, Birmingham, NJ) and 

spectral discrimination was obtained using a dual-grating monochromator (mod. 101, 

PTI). The signal was fed to a Lecroy Wavesurfer 454 oscilloscope for digitizing and 

averaging (typically 10 shots) and finally transferred by a GPIB interface (National 

Instruments) to a PC computer for data storage and analysis. A Si photodiode (Laser-

Optotronic BPX 65) capturing a reflection of the laser beam was used to trigger the 

oscilloscope. The energy of the laser pulse was varied by neutral density filters and 

measured with a pyroelectric energymeter (RJP 735, Laser Precision Corp.). The 

system was controlled by software developed in our laboratory. 

A schematic representation of our set-up is depicted in Fig. 2.3: 

 

 
 

 

Figure 2.3. Experimental set-up for nanosecond UV-Vis laser flash photolysis. 
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2.3. LIPOSOME PREPARATION AND CHARACTERIZATION 

2.3.1. Liposome preparation 

Liposomes used in chapters 4-6 were prepared by microemulsification or extrusion 

following standard procedures [3,4] . 

Method of microemulsification 

Lipid mixtures containing the photosensitizer were evaporated to dryness from a 

chloroform solution and kept in a vacuum desiccator for 12 h over P2O5 in order to 

remove the last traces of the solvent. Multilamellar vesicles (MLVs) were prepared by 

hydration of the dried lipid films by vortexing for 30 min (alternating 30 s periods of 

heating and 30 s of vortexing) at a concentration of 20 mg lipid/mL of 50 mM imidazole-

HCl buffer (pH 7.4) or 10 mM PBS buffer (pH 7.4) at a temperature above the phase 

transition temperature (Tm). The MLVs dispersion was frozen and thawed (five times), 

sonicated (bath sonicator, 15 min, T>Tm) and microemulsified (EmulsiFlex B3 device, 

Avestin, Ottawa, Canada). Microemulsification was carried out by pumping the fluid 

fifteen times through the interaction chamber (T>Tm, 200 kPa). Control liposomes were 

prepared in the same way but without the photosensitizer. The liposomes were stored 

in the dark at 4 ºC. Subsequent liposome handling procedures were all performed in 

the dark. 

Long-circulating liposomes with a polymer coating and folate-targeted liposomes 

incorporate the conjugated lipid (PEG3000-DSPE and folate-PEG2000-DSPE respectively) 

with the initial mixture of lipids.  

 

Method of extrusion  

MLVs were prepared as describe above using imidazole-HCl buffer (pH 7.4) for 

hydration.  In order to reduce and control particle size, MLV suspension was repeatedly 

extruded through different pore-sized polycarbonate membranes (Osmonics Inc., 

Livermore, CA) using an extrusion device from Lipex Biomembranes Inc. (Vancouver, 

Canada) at temperatures above the transition temperature (Tm) of the lipids and high 

pressure. Liposomes were then incubated for 30 min at T>Tm for annealing.  
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2.3.2. Liposome lyophilization 

To enhance stability during storage, liposomes were lyophilized using 5% trehalose as 

cryoprotectant agent.  

Method 

2 mL of liposomal suspension were placed in 4 mL glass vials and frozen at -80 ºC 

(liquid nitrogen) during 3-5 hours. Vials were subsequently dried during 24 h at -55 ºC 

and 0.04 mbar (Freeze Dryer Alpha 1-2/LD, Martin Christ GmbH, Germany). 

Lyophilized liposomes were rehydrated immediately before the experiments by adding 

2 mL of sterile water. The resulted suspension was prewarmed at 60 ºC during 15 min 

and vortexed for 30 min (alternating 30 s periods of heating/vortexing).  

 

2.3.3. Liposome characterization 

Determination of encapsulated photosensitizer 

The photosensitizer content in the liposomes was evaluated following standard 

procedures.  

Method  

Liposomes were disrupted by the addition of THF or DMSO to an aliquot of the 

liposomal suspension, free of non-entrapped photosensitizer and the absorbance was 

measured at max of the Soret band. The photosensitizer concentration was determined 

by comparison with standard curves obtained in the same conditions.  

 

Determination of lipid content 

Lipid content was quantified by a colorimetric assay with ammonium ferrothiocyanate 

according to the method of Stewart [5] .  

Method 

This colorimetric method is based on the formation of a complex between phospholipid 

and ammonium ferrothiocyanate that is soluble in chloroform. An aliquot of 10 L of 

liposomes is disrupted with 2 mL of chloroform and mixed with 2 mL of 0.1 M 
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ammonium thiocyanate (NH4SCN). After shaking with vortex for 1 min, the sample is 

centrifuged for 5 min at 4000 rpm. The reddish lower layer (chloroform) is removed with 

a Pasteur pipette and the absorbance is read in Specord 205 (Analytik Jena AG, Jena, 

Germany) at 470 nm. The phospholipid concentration is determined by comparison to 

the appropriate calibration curve obtained with known amounts of phospholipid.  

 

Determination of size and polydispersity 

The average size and polydispersity of unilamellar vesicles and the zeta potential were 

determined by photon correlation spectroscopy (PCS). A Zetasizer Nano-ZS (Malvern 

Instruments, UK) and a 4 mW He-Ne laser (Spectra Physics), at an excitation 

wavelength of 633 nm, were used. Before measuring, samples were appropriately 

diluted to avoid multiple scattering.  

 

Stability of formulations 

To control the stability of the formulations, the photosensitizer and lipid content in 

liposomes as well as the average size and polydispersity of the vesicles were also 

determined after storage up to 7 days. The stability of liposomes was also tested in 

presence of 10% FBS following the procedure described in [6] . 

Method 

Liposomal suspensions containing photosensitizer were incubated in buffer with 10% 

FBS at 37ºC with continuous stirring for different periods of time up to 48 h. After each 

incubation period, 200 L of the mixtures were withdrawn and centrifuged at 4000 rpm 

to eliminate any non-encapsulated photosensitizer, appeared as a result of the 

disruption of the liposomes due to its interaction with serum components. Then, 1.5 mL 

of THF or DMSO were added to 50 L of each supernatant to disrupt the liposomes, 

liberating the photosensitizer still encapsulated in the liposomes and precipitating the 

serum components. These samples were centrifuged at 4000 rpm to obtain a clear 

supernatant and the absorption spectra were recorded.   
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2.4. CELL CULTURES 

2.4.1. Cell lines 

Cell lines used in chapters 3 and 5 were Human HeLa cervical adenocarcinoma cell 

line (ATCC CCL-2) and human lung adenocarcinoma A549 cells (ATCC CCL-185). 

DBA/2 mastocytoma cell line, P815 (ATCC, TIB-64) [7]  and the BALB/c colon 

adenocarcinoma cell line CT26.CL25 (ATCC, CRL-2639) that expressed a tumor 

antigen, -galactosidase [8]  were used in chapter 6. Primary normal human dermal 

fibroblasts (hNDF) used in chapter 7 were kindly provided by Hospital de Oviedo. 

 

Culture conditions 

All cell lines are adherent cells and grow up to form cellular monolayers toward 

confluence after seeding. These cells were cultured at 37 ºC in a humidified sterile 

atmosphere of 95% air and 5% CO2, using Dulbecco´s Modified Eagle´s Medium 

(DMEM) or Roswell Park Memorial Institute (RPMI) supplemented with fetal bovine 

serum (10% v/v), glucose (4.5 g/L), L-glutamine (292 mg/L), streptomycin sulfate (10 

mg/L) and potassium penicillin (10000 U/L). CT26.CL25 cells were cultured in constant 

presence of 500 g/mL G418 antibiotic in order to maintain constant expression of the 

-galactosidase. 

  

Cell lines were maintained frozen in DMEM with 10% DMSO. 1.8 mL CryoTubesTM 

(Nunc, Nalge Nunc International, IL) were filled with the cell suspension and placed in a 

cell Cryo 1 ºC Freezing Container (Nalgene, Nalge Nunc International, IL) to be slowly 

frozen up to -80 ºC at a cooling rate of -1 ºC/min for successful cell cryopreservation. 

Frozen cells were rapidly transferred to a liquid nitrogen container (-196 ºC) and stored. 
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2.4.2. Dark toxicity 

The  photosensitizers’  effect  on  cell  viability   in  the  absence  of   light  was  determined  by  

the MTT colorimetric assay [9] . This assay detects living but not dead cells and it is 

based on the reduction of a tetrazolium salt to form a formazan dye. The electrons 

required by this process are given by the mitochondria of viable cells.  

Method 

Cells were seeded in 24 or 96-well plates and cultured until 80-85% confluence. They 

were then incubated in the dark with the photosensitizer for 18 h. After washing with 

sterile  Dulbecco’s  phosphate-buffered saline (PBS), DMEM containing 0.05 mg/mL 3-

[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) was added and 

incubated for 3 h at 37 ºC. The medium was replaced by DMSO and the absorbance at 

550 nm was read on a Bio-Rad Benchmark Plus microplate reader (Bio-Rad, Hercules, 

CA). Experiments were performed in triplicate. 

 

2.4.3. Cell uptake 

The cellular uptake of the studied photosensitizers was determined by fluorescence 

spectroscopy.  

Method 

Cells were seeded in 6-well plates and grown toward 80-85% confluence. Cells were 

incubated in the dark with the appropriate photosensitizer concentration, for different 

times ranging from 30 min to 30 h. In free folate competition studies in chapter 5, 1 mM 

folic acid was added to the incubation medium. Afterwards, the medium was discarded 

and the cells were washed three times with PBS, scrapped and resuspended in 1 mL 

of 2% sodium dodecyl sulphate (SDS) in Milli-Q water. The resulting suspension was 

centrifuged at 10,000 rpm for 10 min (Sigma 2-16P centrifuge, angle rotor 24x1.5/2.2 

mL). The extent of PS uptake was assessed by comparison between the fluorescence 

of this supernatant to that of standard solutions under the same conditions. The 

fluorescence intensity values obtained for each sample were normalized to the number 

of cells determined by the bicinchoninic acid (BCA) protein assay [10] . MicroBCA 

protein assay kit was purchased from Pierce Protein Research Products (Rockford, IL) 

and used according to the product information sheet. Each experiment was repeated 

twice.  
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2.4.4. Subcellular localization  

Confocal microscopy was used to examine the intracellular localization of 

photosensitizers taken up after delivery by the different systems. 

Method 

Cells were grown on 22 mm square coverslips placed into 35 mm culture dishes. They 

were incubated at 37 ºC for 18 h with DMEM containing the appropriate concentration 

of the photosensitizer. To confirm the intracellular localization of the photosensitizers, 

the endocytic compartments of the cells were labeled with the fluoroprobe LysoTracker 

Green DND-26, MitoTracker Green FM or ER-tracker green (Molecular Probes 

Invitrogen, Eugene, OR) in the culture medium at 37ºC for 30 min. After labeling, the 

coverslips were washed with PBS and 5-10 min later an Olympus FV1000, multi-

photon confocal microscope was used to image the cells. Quantification of overlap 

between organelle probes and the photosensitizer were carried out using image 

processing and analysis (IPA) software from the public domain (ImageJ 1.42; 

http://rsbweb.nih.gov/ij/index.html)  [11] . 
 

 

2.4.5. Light sources  

For the irradiation of cell cultures, it has been used two different light sources. In 

chapters 3-5, irradiation was carried out with Sorisa Photocare LED (Barcelona, Spain) 

source with wavelength range of 530 ± 20 nm (59 mW) or 625 ± 20 nm (145 mW). In 

chapter 6, irradiation was carried out with Lumacare lamp (Newport Beach, CA) fitted 

with a light guide and a 610-680 nm band-pass filter. The irradiance spectra are 

illustrated in Fig. 2.4. 

 

Figure 2.4. Irradiance spectra of the different light sources. 
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2.4.6. Photodynamic treatments in vitro  

The photosensitizers’   effect   on   cell   viability   after   delivery  of   a   certain   light   dose  was  

determined by the MTT colorimetric assay described above. 

Method 

Cells were seeded in 96-well plates and cultured towards 80-85% confluence. They 

were then incubated in the dark at 37 ºC with DMEM containing the photosensitizer. 

After 18 or 24 h incubation, cells were washed three times with PBS and replenish with 

fresh media. Irradiation was carried out with a Sorisa Photocare LED or Lumacare light 

sources described above and the light intensity at the irradiation site was measured 

with a LaserStar Ophir power meter (Logan, UT). Cells were irradiated for different light 

doses and then incubated for 24 h before the MTT assay for cell viability. Experiments 

were performed in triplicate. 

 

 

2.4.7. Spectroscopic measurements of cell suspensions  

Spectroscopic measurements were recorded on the systems previously described. Cell 

suspension samples were prepared using the following method. 

Method 

Cells were incubated in the dark with the photosensitizer for 18 or 24 h. The medium 

was discarded and the cells were washed three times with PBS, scrapped or 

trypsinized and resuspended in 1.5 mL of PBS or D2O-based PBS (D-PBS). The 

samples contained about 8 millions of cells in 1.5 mL of PBS and were continuously 

stirred during the measurements. The measurements were then carried out within the 

following 45 min.  
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2.5.  ANIMAL MODELS 

2.5.1. Animal tumor models 

DBA/2 and BALB/c mice (6-8 weeks old) were purchased from Charles River 

Laboratories (Boston, MA). All experiments were carried out according to a protocol 

approved by the Subcommittee on Research Animal Care at (Institutional Animal Care 

and Use Committee) at Massachusetts General Hospital and were in accord with 

guidelines from the National Institutes of Health (NIH). Mice were inoculated with 

350,000 cells subcutaneously into the depilated left thigh. Two orthogonal dimensions 

(a and b) of the tumor were measured 3-4 times a week with a vernier caliper. Tumor 

volumes were calculated as 4/3 [(a+b)/4]3. PDT was performed when tumors reached 

a diameter of 5-7 mm (around 9 days after cell inoculation).  

 

2.5.2. PDT and tumor response 

The effects of photosensitizer formulation and targeting strategy on PDT effectiveness 

in vivo were evaluated as follows (Fig. 2.5).  

Method 

Tumor bearing mice were anaesthetized with an intraperitoneal injection of 87.5 mg/kg 

of ketamine and 12.5 mg/kg xylazine. Photosensitizer formulation (1 mg/kg) was 

administrated intravenously via the tail vein injection. 15 min or 24 h after injection of 

photosensitizer, 660-nm Lumacare light source was used to irradiate a homogeneous 

spot of 1.5-cm diameter that covered the tumor and a margin of normal tissue. A total 

fluence of 75 or 150 J/cm2 was delivered at a fluence rate of 100 mW/cm2. The mice 

were sacrificed when any of the tumor diameters exceeded 1.5 cm or when any signs 

of disseminated metastatic tumor appeared (e.g. >15% loss of body weight).    
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Figure 2.5. Schematic depiction of the steps involved in performing PDT on a tumor model in mice. 

 

2.5.3. In vivo fluorescence imaging 

Photosensitizer accumulation and photobleaching in tumors were followed by 

fluorescence imaging. 

Method 

Tumor bearing mice were anaesthetized and subsequently placed in the light-tight 

chamber of the CRI Maestro (Caliper Life Sciences, Hopkinton, MA) in vivo 

fluorescence imaging system [12] . The instrument was set up as follows: images were 

captured every 10 nm throughout the wavelength range 650-800 nm using a 488-nm 

excitation filter, an LP 515-nm emission filter, and an exposure time of 100 ms. The 

focus and the stage height were set manually. Mice were imaged at different time 

points after photosensitizer tail vein injection. After the fluorescence image acquisition, 

the image cubes were unmixed (deconvolved) using a spectral library containing the 

autofluorescence of the mice skin and a dilute sample of photosensitizer. 

 

2.5.4. Vascular perfusion 

The effects of PDT on tumor vascular perfusion were studied using Hoechst 33342. 

The fluorescence of Hoechst 33342 is visible only in the functional vessels [13,14] .  

Method 

Vascular perfusion was assessed 1 h after PDT treatment by Hoechst 33342 injection 

(40 mg/kg in physiologic saline, i.v.) 1 min before sacrificing the animals by cervical 
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dislocation under deep anesthesia. After excision, tumors were snap-frozen in liquid 

nitrogen and stored at -80 ºC until sectioning. Sections of 5 m thickness were cut from 

the center of the tumor and examined under a fluorescence microscope (Axiovert, Carl 

Zeiss Microscopy, Thorwood, NY) with a 340-380-nm bandpass excitation filter and a 

430-nm long-pass filter.  
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Chapter 3 
Towards the ideal photosensitizer 
 

 
 

Characterization of new porphycenes  

 

In this chapter, the photophysical properties of a group of new 

porphycene-based photosensitizers are determined. Among the 

photosensitizers tested, temocene, the porphycene analogue to 

temoporfin, shows the greatest potential for photodynamic therapy. 

Compared to temoporfin, temocene is endowed with 2.5-fold larger 

absorption coefficient in the red part of the spectrum while keeping its 

excellent photophysical and singlet oxygen photosensitization ability. 

While its photodynamic activity towards HeLa cells is lower than that of 

temoporfin, its higher photostability, lower dark toxicity and mitochondrial 

localisation make temocene a promising candidate for photodynamic 

therapy applications. 
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3.1. INTRODUCTION 

During the last two decades a substantial effort has been put into the development and 

scrutiny of the second-generation photosensitizers (PSs)  [1-4] since no single PS has 

yet been found to meet all the demands for successful application in oncology.  

Amongst these second generation PSs, a series of derivatives of m-tetrahydroxyphenyl 

porphyrin (m-THPP) have been particularly promising [5,6]. The hydroxyl functions 

modulate the hydrophobic character of the macrocyclic core and therefore its solubility, 

and provide hydrogen bonding capability for specific interactions with receptor sites. 

One of the most active photosensitizers is m-tetrahydroxyphenyl chlorin (m-THPC, 

temoporfin) [7-9]. Although temoporfin is currently approved for photodynamic therapy 

(PDT) treatment of head and neck cancer under the trade name Foscan® [10,11], this 

PS is not without its own shortcomings due to its high potency and prolonged skin 

sensitivity [12,13].  

Amongst the porphyrin-based photodynamic therapy agents, porphycenes show better 

absorption properties than their structural isomers [14,15] owing to the lower molecular 

symmetry. The absorption on the red part of the spectrum, where the tissues are more 

transparent to light [16], the demonstrated cell photoinactivation [17-20] and the little 

photosensitivity associated [21] placed the porphycenes in an excellent position as 

promising candidates for PDT treatments. Since the synthesis of the first porphycene in 

1986 [22], a variety of substituted derivatives have been prepared [23] but the long and 

complex syntheses involved were a limiting factor until very recently.  

This chapter shows our contribution to the development of new porphycenes in order to 

find the optimal PS for PDT applications. In the light of the challenge set by Bonnett 

[24], who suggested the investigation of the corresponding m-tetra(hydroxyphenyl) 

porphycene derivative, we report on the photophysics, subcellular localization, and 

photodynamic activity of the porphycene analogue of temoporfin, which we term 

temocene. The photophysical properties of its precursor (m-tetra(isopropoxyphenyl) 

porphycene) and its palladium complex are also reported. Moreover, we studied the 

effect of carboxylate groups in the solubility and properties of the PS.  
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Figure 3.1. Chemical structures of pophycenes characterized in this chapter. 1. 2,7,12,17-(3-
carboxylatophenyl) porphycene, m-TCPPo; 2. 2,7,12,17-(3-isopropoxyphenyl) porphycene, iPrOTPPo; 3. 
2,7,12,17-(3-hydroxyphenyl) porphycene; m-THPPo 4. Palladium(II)-2,7,12,17-(3-hydroxyphenyl) 

porphycene, PdTPPo. 
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3.2. EXPERIMENTAL SECTION 

Liquid chromatography conditions. Liquid Chromatography (HPLC) was performed 

with a HP 1090 series liquid chromatograph equipped with a diode array detector. m-

THPPo was analyzed on a 30 mm x 4 mm, 3 mm particle, Lichrocart Purospher STAR 

RP-18E column. Detection was achieved at 375 nm. All chromatography runs were 

performed at room temperature with a mobile phase flow rate of 1.0 mL min-1. Isocratic 

elution was performed with 77:23 ACN/H2O. 

 

Photobleaching studies. Optically-matched solutions of m-THPC or m-THPPo in 

acetone were irradiated with a Q-switched Nd-YAG laser (Surelite I-10, Continuum) 

tuned to 532 nm. At intervals the cuvette was removed and the spectrum in the range 

of 450-800 was recorded in order to follow the course of photobleaching. 

 

Light dose and concentration dependence phototoxicity. HeLa cells were seeded 

in 24-well plates and cultured towards 80-85% confluence. They were then incubated 

in the dark at 37 ºC with serum-free DMEM containing 1-10 M m-THPPo in DMSO. 

After 18 h incubation, cells were washed three times with PBS and replenish with fresh 

DMEM. Irradiation was carried out with Sorisa Photocare LED source with wavelength 

range of 620-645nm. The light intensity at the irradiation site was 24 mW/cm2, 

measured with a LaserStar Ophir power meter. Cells were irradiated for different light 

doses and then incubated for 24 h before the MTT assay for cell viability. Experiments 

were performed in quadruplicate.  

 

Effect of ROS quenchers in temocene-induced phototoxicity. HeLa cells were 

seeded in 24-well plates and cultured towards 80-85% confluence. They were then 

incubated in the dark at 37 ºC with serum-free DMEM containing 1 M m-THPPo in 

DMSO. After 18 h incubation, cells were washed three times with PBS and incubated 

for 10 min with fresh DMEM containing D-mannitol (0.4 or 40 mM) as hydroxyl radical 

quencher or sodium azide (0.5 or 5 mM) as singlet oxygen scavenger. 5 J/cm2 light 

dose was delivered and cells were then incubated for 24 h before the MTT assay for 

cell viability. Experiments were performed in quadruplicate. 

. 
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3.3. RESULTS AND DISCUSSION 

Physical and photophysical properties. The photophysical properties of the 

tetraphenylporphycenes studied are discussed in detail in the following sections. A 

summary is given in Table 3.1.  

 

Table 3.1. Summary of photophysical properties of the porphycenes studied 

 

 

max, maximum of the lowest-energy absorption band; e, absorption coefficient at max; F, 

maximum of the emission bands; F, fluorescence quantum yield; S, singlet state lifetime; T, 

triplet excited state lifetime; kq
O2, rate constant for triplet quenching by ground-sate oxygen; 

∆, singlet oxygen quantum yield.  

n.d. not determined 

n.a. not applied 

 

m-tetra(carboxylatophenyl) porphycene (m-TCPPo): a water-soluble porphycene 

One of the major drawbacks of the second-generation PSs is their poor solubility in 

aqueous environment. An attempt to solve this problem is to endow the hydrophobic 

core with carboxylate groups. As observed in Fig. 3.2, m-TCPPo shows the typical 

porphycene absorption spectrum in MeOH, with three bands in the red range of the 

spectrum.  The spectrum in water loses much of the structure, indicating not 

m-TCPPo iPrOTPPo� m-THPPo PdTPPo
(MeOH/H2O) (Benzene) (THF) (THF)

 max�/�nm 649/627 659 656 630

 �/�M-1�cm-1 n.d. 57�000 69�100 78�000

 F�/�nm 662,�717/�655,�720 670,�735 666,�729 n.a.

 F� 0.079/0.002 0.1 0.084 n.a.

 S�/�ns�(Air) n.d. 3.8 2.3 n.a.

 T�/ s�(Ar) n.d. n.d. 260 10

kq
O2�/�M-1�s-1 n.d. n.d. 2.1�·∙�109 n.d.

  � 0.07/- 0.19 0.1 0.62
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surprisingly that aggregation is occurring in aqueous media despite the four negative 

charges.  

 

Figure 3.2. (A,C) Absorption and (B,D) fluorescence spectrum of m-(tetracarboxylatophenyl) porphycene 

in (A,B) MeOH and (C,D) water. Insets: Excitation spectra of the fluorescence at 730 nm. 

 

However, both in water and in MeOH, the fluorescence spectra match the typical 

fluorescence spectrum of porphycenes, with a main band and a weaker shoulder at 

lower energies that mirror the S1  S0 absorption transition [15]. Interestingly, the 

excitation spectrum matches in all cases the absorption spectrum of the monomer, 

indicating that the aggregates are not emissive. The fluorescence quantum yield, F, 

was 0.079 ± 0.005 in MeOH, and 0.002 ± 0.005 was found in water.  

The singlet oxygen production quantum yield, ∆, was determined by means of its 

phosphorescence at 1275 nm. ∆ value of 0.07 ± 0.02 was determined in MeOH upon 

excitation of 532 nm. In aqueous media aggregation strongly prevents its 

photosensitizing ability. These results fully agree with the water-soluble tricationic 

porphycene recently studied in our group [25].  
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m-tetra(hydroxyphenyl) porphycene (m-THPPo) and m-tetra(isopropoxyphenyl) 
porphycene (m-iPrOPPo): the temocene and its precursor 

As observed in Fig. 3.3, m-THPPo showed the typical absorption spectrum of free-base 

porphycenes, with three intense bands in the red part of the spectrum showing a 

maximum absorption coefficient of ca. 70,000 M-1 cm-1 at 656 nm, 2.5-fold higher than 

that of temoporfin [6]. The fluorescence emission spectrum also matched the typical 

fluorescence spectrum of porphycenes, with a main band at 666 nm and a weaker 

shoulder at lower energies that mirror the S1S0 absorption transition [15]. m-

iPrOTPPo showed no significant differences in the absorption and emission properties 

(see Table 3.1). The fluorescence quantum yield was F = 0.084 ± 0.005 for m-THPPo 

and F = 0.1 ± 0.02 for m-iPrOTPPo, suggesting that both temocene and its precursor 

could be used also for fluorescence diagnostic purposes.  

 

 

 

Figure 3.3. Absorption (solid line) and emission (dotted line) spectra of m-THPPo in THF. 

 

 

 

The excited singlet state decayed with lifetime 2.3 ± 0.1 ns for m-THPPo (Fig. 3.4) and 

3.8 ± 0.1 ns for m-iPrOTPPo. The newborn triplet state lived 260 s in argon-saturated 

solutions, long enough to provide for rich photochemistry (Fig. 3.5).  
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Figure 3.4. Fluorescence decay of m-THPPo in THF( exc= 375 nm, em= 660 nm). 

 

 

 

Figure 3.5. Triplet-minus-singlet absorption spectrum of m-THPPo in argon-saturated acetone. Inset: 

Transient decay at 490nm. 

 

Indeed, temocene was able to photosensitize the production of singlet oxygen (1O2) in 

aerated solutions. The quantum yield, ∆ = 0.10 ± 0.01, was high enough to expect 

substantial phototoxicity to cells. The quantum yield for its precursor m-iPrOTPPo was 

∆ = 0.19 ± 0.02. 

As shown in Fig. 3.6 the rate constant for triplet decay (1/T) increased linearly with the 

concentration of oxygen, yielding a quenching rate constant of 2.1 x 109 M-1 s-1 for 

temocene. 
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Figure 3.6. Stern-Volmer plot of 1/T  at different oxygen concentrations in THF. 

 

The kinetics of temocene and temoporfin photobleaching under the same irradiation 

conditions were comparatively shown in Fig. 3.7. Temocene was substantially more 

photostable than temoporfin. 

   

Figure 3.7. Photobleaching of temoporfin and temocene solutions in aerated acetone upon irradiation with 

532-nm laser pulses. Absorbance values were recorded at 656 and 650 nm, respectively. 

 

 

Palladium(II)-2,7,12,17-(3-hydroxyphenyl) porphycene (PdTHPPo) 

The absorption spectrum of PdTPPo is shown in Fig. 3.8. Compared to m-THPPo the 

three Q-bands were reduced to two as a result of the increase of symmetry. The 

lowest-energy Q-band suffered a hypsochromic shift reflecting electron donation from 

the metal into the pophycene, thus raising their energy. The presence of metal also led 
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to an increase in the absorption coefficient of the lowest energy Q-band. These 

observations agree with the photophysical properties of metalloporphycenes in general  

[26].  

 

  

Figure 3.8. Absorption spectra of PdTHPPo (solid line) and m-THPPo (dotted line) in THF. 

 

PdTHPPo did not show fluorescence, an analogous situation to that found for PdTPPo 

[26]. This reflects an enhancement of the intersystem crossing probability owing to the 

heavy-atom effects.  

The triplet PdTHPPo decayed with monoexponential kinetics with a lifetime of 10 s in 

acetone (Fig. 3.9), much shorter to that of m-THPPo. In spite of this fact, it was still 

long enough to be deactivated by oxygen, yielding a ∆ = 0.62 ± 0.05. 

 

Figure 3.9. Transient absorption of triplet PdTHPPo in argon-saturated acetone (exc=355 nm, em=490 

nm).  

300 400 500 600 700 800

5.0×1004

1.0×1005

1.5×1005

2.0×1005

PdTHPPo
m-THPPo

Wavelength / nm

  /
 M

-1
 c

m
-1

0 20 40 60 80
0

100

200

300

400

500

Time /  s

 
A

bs
/A

.U
.



Chapter 3: Towards the ideal photosensitizer 

50 

In the light of the promising results obtained for m-THPPo, the synthetic availability and 

its analogy to temoporfin, one of the PS clinically approved, we decided to test its in 
vitro photodynamic activity. 

 

Photosensitization experiments. Studies on the dark- and phototoxicity of temocene 

and temoporfin are summarized in Fig. 3.10. HeLa cells were incubated in the dark with 

different concentrations of m-THPPo or m-THPC in DMSO for 18 h prior to 

photosensitization.  

 

 

Figure 3.10. Viability of HeLa cells measured by the MTT assay after 18 h incubation with different 

concentrations of m-THPPo or m-THPC in DMSO. (A) Dark toxicity. (B) Photodynamic induced cytotoxicity 

after 3.5 J·cm-2. Mean ± SD from at least four independent experiments are shown.    

 

A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay  [27] was 

performed 24 h after treatment to establish the m-THPPo and m-THPC dark toxicity. 

Our studies show that temocene is substantially less toxic in the dark than temoporfin, 

which is advantageous for its therapeutic applications. The photodynamic damage on 

HeLa cells was assessed after delivery of different light doses from a LED source at 

625 nm. Complete cell inactivation could be achieved at light doses of just 3.5 J·cm-2 

using m-THPPo concentrations higher than 5 M. At higher light doses the same result 

could be obtained at concomitantly lower temocene concentrations.  
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Effect of ROS quenchers on cell phototoxicity. To determine which ROS is 

predominantly involved in cell death, the phototoxicity of temocene to HeLa cells was 

evaluated in the presence of ROS inhibitors, namely D-mannitol (0.4 and 40 mM) as an 

HO•  quencher  and  sodium azide (0.5 and 5 mM) as a 1O2 scavenger. Fig. 3.11. shows 

dose-dependent inhibitory effects of D-mannitol and sodium azide. The phototoxicity of 

temocene was partially quenched by sodium azide but not by D-mannitol suggesting 

that singlet oxygen is the mainly responsible for cell cytotoxicity.  

 

 

Figure 3.11. Cell survival (%) of HeLa cells treated with 1 M temocene in the absence of ROS quenchers 

and in the presence of sodium azide (NaN3, 1O2 quencher) or D-mannitol (HO• radical scavenger) after 5 

J/cm2 light dose. Mean ± SD from at least four independent experiments are shown. *** p < 0.001 vs no 

ROS quenchers. 

 

Subcellular localization by fluorescence microscopy. Fluorescence micrographs of 

HeLa cells after 18 h incubation with temocene are shown in Fig. 3.12. Cells incubated 

with 0.5 M m-THPPo showed a fluorescence pattern similar to that of control cells. 

With 1 M and especially 10 M m-THPPo, a red fluorescence could be distinguished, 

which colocalized with the blue mitochondrial autofluorescence and with the green 

emission from MitoTracker®Green (Fig. 3.12A and merged image 3.12C), indicating 

that mitochondria are the main sites of temocene accumulation. This is fortunate as this 

organelle is one of the most attractive PDT targets for triggering apoptosis  [28-30]. In 

addition, a diffuse red fluorescence could be detected in the cytoplasm. No 

relocalization of the PS was observed when cells were exposed to prolonged 

irradiation. 
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Figure 3.12. Fluorescence microscopy images of living HeLa cells incubated with MitoTracker®Green for 

30 min, followed by 18 h 10 M DMSO-loaded m-THPPo. (A) Cells observed under blue excitation. (B) 

Cells observed under UV excitation. (C) Merged image. Scale bar: 20 m. 
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3.4. CONCLUSIONS 

In summary, we have reported the photophysical properties of a collection of new 

porphycene-base PSs. The introduction of carboxylate groups in the periphery of the 

PS core enhances its aqueous solubility although aggregation is not avoided in this 

environment. However, the monomeric porphycene is a far worse PS than the parent 

TPPo. The introduction of metals in the porphycene macrocycle induces a 

hyperchromic effect in the lowest energy Q-band and high singlet oxygen formation 

quantum yield. The results of these studies provide clues for improving the design of 

novel PS based on the porphycene macrocycle. 

We also have characterized temocene, a porphycene analogue to temoporfin. Its 

excellent photophysical properties, mitochondrial localization, and, above all, its 

photodynamic efficiency, make temocene a promising candidate for antitumoral 

photodynamic therapy. Compared to temoporfin, temocene shows lower activity but 

also lower dark toxicity and superior photostability. Taken together, temocene is 

endowed with potential value for photodynamic treatments and is worth of further 

studies. Development of a liposome-based formulation of temocene for its improved 

cell delivery and in vivo photodynamic activity is described in the following chapters.  
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3.6. ANNEX 

Synthesis. Temocene was synthesized using a procedure based in the four-step 

synthesis of porphycenes recently developed by our group  [31] (Fig. A1) and it was 

performed by Dr. Sánchez-García. Thus the isopropoxy ethers of porphycene were 

deprotected to the corresponding hydroxy derivative by addition of anhydrous 

aluminum trichloride to a dichloromethane solution of isopropoxy compound. In order to 

compare temocene and its chlorin analogue, temoporfin was synthesized using a 

published procedure  [32].  

 

 

Figure A1. Synthetic pathway used for the synthesis of porphyecenes. 

 

 

Purity of m-THPPo. Liquid chromatography was used to assess the purity of m-

THPPo. As shown in Fig. A2, a majority peak can be observed at 5.4 min, with a 

relative integral intensity higher than 97%. The minority peaks observed at 10.0 and 

14.3 min have a porphycene-like UV-Vis spectrum and they can be attributed to 

porphycene aggregates. 
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Figure A2. Liquid chromatography of m-THPPo detected at 375 nm. 

 

UV-Vis spectra were recorded every 1 s and found to be identical throughout the peak 

(Fig. A3). 

 

Figure A3. Absorption spectrum of m-THPPo peak at 4.3 min obtained by liquid chromatography and 
diode array detection. 

 

 

 

 

 

 

 



Chapter 4  
Liposomes as vehicles for delivery 

of photosensitizing agents 
 

 
 

Developing the ideal formulation 
 

 

The use of drug delivery systems for photosensitizing drugs has 

received strong interest within the field of photodynamic therapy (PDT). 

Liposomes, with their high loading capacity and their flexibility to 

accommodate different photosensitizers, came into focus as valuable 

carriers for PDT. This chapter describes the development of two 

liposomal formulations containing porphycene-based photosensitizers. 
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4.1. INTRODUCTION 

As we have seen in previous chapters, new photosensitizers (PSs) are continuously 

being developed to enhance their safety and therapeutic efficiency. Most of these PSs 

are hydrophobic and easily aggregate in aqueous solutions, but the monomeric state is 

required to maintain their photophysical and biological properties for efficient PDT 

outcome [1]. Therefore, various pharmaceutical carriers have been developed for the 

administration of photosensitizers, including oil-based emulsions, polymeric 

nanoparticles or liposomes.  

Liposomes are uni- or multilamellar phospholipid nano-vesicles that allow the 

incorporation of a great variety of drugs in their matrix because of their particular 

nature. The lipid bilayer can incorporate highly hydrophobic PSs and prevent their 

aggregation. On the other hand, the aqueous core is capable of encapsulating water-

soluble molecules. Liposomes not only protect PSs from the aqueous environment and 

metabolic processes, but also provide a large drug payload per particle and improve 

pharmacokinetics, thus enhancing safety and efficacy of PDT. Moreover, liposomes 

can prolong the action of drug by slow release of the PS and can modify the 

internalization and localization once the PS-loaded liposomes reach the targeted cells 

[2]. 

Their components (basically natural or synthetic phospholipids) are materials also 

existing in the body, and therefore provide high biocompatibility and biodegradability [3-

5].  The choice of phospholipids and preparation methods are crucial for defining the 

physical and chemical properties of liposomes, such as size, surface charge density 

and membrane packing constrains [6]. The lipids normally used are the egg or soybean 

natural extracts, phosphatidylcholine, phosphatidylethalonamine, phosphatidylserine, 

phosphatidic acid or phosphatidylglycerol with saturated or unsaturated chains. 

Cholesterol is often included to stabilize the bilayer [7]. 

Various preparation methods are available for formulate liposomes of different size and 

lamellarity. Ethanol injection is probably one of the easiest methods available. It 

involves the injection of a small volume of ethanolic solution of lipids into a large 

volume of water. The force of the injection ensures homogeneous mixing of lipids, as 

does the immediate dilution of the ethanol in the large excess of water. Resulting 

suspension is then dialyzed in order to remove any trace of remaining ethanol. This 

procedure generates mainly small unilamellar vesicles with diameters around 25-50 nm 

[8]. Membrane extrusion is a common method for the preparation of unilamellar 
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liposomes entrapping hydrophilic drugs. Lipid mixture containing the PS was 

evaporated to form a dry lipid film, which is hydrated with the desired buffer to form 

multilamellar vesicles. The suspension is prefiltered through filters with pores ~1 µm 

followed by several extrusions through filters with a pore size of 0.4 and 0.2 µm. The 

extrusion method yields the best vesicles with respect to the homogeneity of size 

distribution and to control the size of vesicles [6]. The method of emulsification also 

starts from the formation of a dry lipid film that contains the photosensitizer. Hydration 

is followed by size reduction passing through a high-pressure homogeneizer preheated 

above the transition temperature of the lipids for several cycles at high pressure (~200 

kPa). The advantages of this method are its simplicity for scaleup, large capacity and 

short preparation times [6]. Sonication method places the multilamellar vesicles 

suspension in a bath sonicator. Normally a 5-10 min sonication procedure (above the 

transition temperature of the lipids) is sufficient to prepare small vesicles with a 

diameter < 100 nm.  

Regardless of the preparation method, liposomes are generally classified in three main 

groups (Fig. 4.1). 

 

 

Figure 4.1. Schematic structures of the different types of liposomes. 

 

Conventional liposomes can be defined as liposomes that are typically composed of 

only phospholipids (neutral and/or negatively charged) and/or cholesterol. They can 

vary widely in their physicochemical properties such as size, lipid composition, surface 

charge and fluidity of the bilayer. Although manipulation of these properties can modify, 

to a certain extent, the in vivo behavior of conventional liposomes, conventional 
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liposomes are characterized by a relatively short blood circulation time [2]. Two 

different phenomena impair the circulation time of conventional liposomes: the lipid 

exchange between liposomes and lipoproteins that leads to an irreversible 

disintegration of the liposomes; and the easy opsonization by plasma proteins leading 

to the uptake by macrophages of the reticuloendothelial system (RES) [4]. In spite of 

this fact, conventional liposomes are widely used for in vitro conditions. The presence 

of glycolipids or protective polymers such as polyethylene glycol (PEG) grafted to the 

liposomal surface increase the circulation half-time to values of up to 12 h [9]. Long-

circulating liposomes are also referred as “sterically stabilized” or Stealth® liposomes. 

With prolonged circulation time, a greater concentration of liposomes can passively 

accumulate in the tumor by the enhanced permeability and retention (EPR) effect, 

which increases the amount of PSs available for internalization in tumor cells for 

improved PDT efficacy. But this passive targeting via the EPR effect may not be 

sufficient for increasing the amount of PSs internalized into targeted tumor cells. 

Therefore, active tumor targeting has been explored through liposome surface 

modification. Cancer cells can be differentiated from surrounding normal cells by 

various biomarkers, such as overexpressed receptors and enzymes on tumor cells 

specifically used for their rapid proliferation [10]. Targeting ligands, including 

antibodies, aptamers, peptides, or small molecules (e.g. folate), grafted to the liposome 

surface, have been demonstrated to actively target liposomes to diseased tissues 

[3,4,11]. An extended view of how folate-targeted liposomes could enhance PDT 

selectivity is described in chapter 5.  

We reported in this work the development and optimization of a liposomal formulation 

for two porphycene-based photosensitizers: Palladium(II)-tetraphenylporphycene 

(PdTPPo) and m-(tetrahydroxyphenyl)porphycene (m-THPPo). We have put every 

effort into obtain long-term stable formulations which incorporate the PS in a 

monomeric state.      

 

! !
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4.2. EXPERIMENTAL SECTION 

Materials. Palladium(II)-tetraphenylporphycene (PdTPPo) was synthesized as 

described previously [12,13]. The synthesis and photophysical characterization of m-

(tetrahydroxyphenyl) porphycene (temocene, m-THPPo) is described in detail in 

chapter 3. Dimyristoyl-, dipalmitoyl- and distearoylphosphatidylcholine (DMPC, DPPC, 

DSPC); 1-palmitoyl-2-oleoylphosphatidylcholine (POPC); dimyristoyl-, dipalmitoyl- and 

distearoylphosphatidylglycerol (sodium salts, DMPG, DPPG, DSPG); 1,2-

dioleoylphosphatidylserine (sodium salt, OOPS); 1,2-

distearoylphosphatidylethanolamine-N-[methoxy(polyethylene glycol)-3000] (m-

PEG3000-DSPE), egg extract phosphatidylcholine (egg-PC) and soy extract 

phosphatidylcholine (soy-PC) were purchased from Avanti Polar Lipids (Birmingham, 

AL). Thiobarbituric acid (≥ 98%), trichloroacetic acid (≥ 99%) and malondialdehyde 

tetrabutylammonium salt (≥ 96%) were purchased from Sigma-Aldrich Chemical Co. 

(St. Louis, MO). All other chemicals were commercially available reagents of at least 

analytical grade. Milli-Q water (Millipore Bedford, Massachusetts system, resistivity of 

18 MW cm) was used.   

 

Lipid peroxidation measured by TBARS. 500 µL liposome suspension (2 mg/mL) 

were mixed with 2 mL thiobarbituric reactive species (TBARS) kit (0.375% 

thiobarbituric acid, 15% trichloroacetic acid, 0.25 M HCl) and were boiled in water for 

15 min. The reaction was stopped with ice and centrifuge at 4000 rpm for 10 min. The 

extent of lipid peroxidation was assessed by comparison between the absorption of this 

supernatant at 532 nm to that of standard solutions of malondialdehyde (MDA) under 

the same conditions.  !  
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4.3. RESULTS AND DISCUSSION 

4.3.1. Palladium porphycene formulation: overcoming the problems 
 
Liposomes containing PdTPPo were prepared by microemulsification. Soy extract 

phosphatidylcholine (soy-PC) was chosen for these formulations. Its high unsaturation 

(up to 80% of the lipid components are unsaturated) makes easier the incorporation of 

molecules with high volume like PdTPPo. Different photosensitizer/lipid molar ratios 

have been tested ranging from 1:100 to 1:1000. Their characteristics are displayed in 

Fig. 4.2.  

 

!
Figure 4.2. Characteristics of PdTPPo/soy-PC formulations. A) Table of characteristics of the different 

formulations as measured by PS and lipid content. B) Aggregation state of PdTPPo as measured by the 

changes on absorption spectra of PdTPPo. Spectrum of PdTPPo in THF is given for comparison. 

 

 

The photosensitizer/lipid molar ratio had great influence on the loading capacity of the 

vesicles. With an increased number of molecules per liposome (lower molar ratio) the 

percentage of encapsulated PS decreased dramatically. In contrast, using a molar ratio 

of 1:600 or 1:1000 we were able to encapsulate ca. 100% of the molecules present at 

the initial stage of the liposomal formulation. Regarding the aggregation state, we could 

observe a decrease of the Q band in the absorption spectra of PdTPPo in all cases. 

However, the spectra did not lose much of the structure, indicating that aggregation 

occurred but in some extent. The molar ratio PdTPPo/soy-PC of 1:600 was chosen as 

a good compromise between loading capacity and PS content.   
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The peroxidation of the lipids in highly unsaturated formulations has been commonly 

reported [14]. Thus, the stability of formulations was followed by thiobarbituric acid 

reactive species (TBARS) assay to quantify the formation of end products of lipid 

peroxidation, specifically malondialdehyde (MDA) (Fig. 4.3).   

 

!
Figure 4.3. Lipid peroxidation of liposomal formulations as function of storage time measured by TBARS 

assay.  

 

As we can observe in the figure, both PdTPPo/soy-PC and control liposomal 

formulations were degraded by peroxidation, even when they were storage under 

nitrogen atmosphere. In order to enhance storage stability, we carried out two different 

strategies in parallel: change of lipid components and lyophilization of liposomes.   

 

 

Change of lipid components 

 

Several formulations were tested for the encapsulation of PdTPPo. A summary is given 

in Table 4.1. In general, the more fluidity of the bilayer, the better encapsulation of the 

PS in the bilayer. That resulted in better encapsulation yields, better stability after one 

week and more extent of PS in monomeric state (Fig. 4.4). This fact was also reflected 

in the size (zeta average) of the liposomes. The formulations with saturated lipids 

yielded bigger vesicles. These rigid bilayers have to enlarge their radius of curvature in 

order to accommodate the PdTPPo within. Among all the formulations tested, 

PdTPPo/POPC/OOPS in 1:450:150 molar ratio can be regarded as a good alternative 

liposomal composition as it yielded high PS encapsulation and preserved the 

monomeric state of PdTPPo.      
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Table 4.1. Physicochemical characteristics of the different formulations as measured by PS and lipid 

content, particle size and zeta potential 

 

!!
!

!

!

!

!
!Figure 4.4. Aggregation state of PdTPPo in selected formulations as measured by the changes on 

absorption spectra of PdTPPo. Spectrum of PdTPPo in THF is given for comparison.  Arrow indicates the 

fluidity of the bilayer in the formulations. 

 

 

  

Formulation Molar ratio L(%)a PS(%)b Zave/nmc ζpot/mVd

PdTPPo/DPPC (1:600) 80 ± 2 60 ± 5(1) 250 ± 20 1.2 ± 1
PdTPPo/DMPC/DMPG (1:540:60) 73 ± 2 60 ± 5(1) 180 ± 10 -50 ± 5
PdTPPo/POPC/OOPS (1:540:60) 76 ± 5 72 ± 5(1) 200 ± 10 -32 ± 8
PdTPPo/POPC/OOPS (1:480:120) 75 ± 5 80 ± 5 177 ± 10 -41 ± 5
PdTPPo/POPC/OOPS (1:450:150) 87 ± 2 75 ± 5 150 ± 10 -47 ± 5

PdTPPo/Egg-PC (1:600) 75 ± 2(2) 87 ± 5 150 ± 15 -26 ± 5
a L: Lipid content
b PS: Photosensitizer content
c Z average mean
d Zeta potential
(1)  PS=30% after one week
(2)  Lipid oxidation after one week
Data mean ± SD of at least three different measures
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Lyophilization 

 

Lyophilization of the liposomal suspensions is a traditional strategy to ensure the 

stability of the formulations [15]. There are several parameters affecting the protective 

effect during liposome lyophilization. In order to choose the optimal formulation and 

technological parameters for lyophilization process we followed an experimental design 

based on Taguchi’s method L9(34). We defined 4 factors and 3 levels: 

• Cryoprotectant: sucrose, trehalose and mannitol.  

• % cryoprotectant: 2.5%, 5% and 10% 

• Agitation time after hydration: 10, 20 and 30 min 

• Storage time: 2, 4 and 6 weeks  

 

Sample: soy-PC liposomes 

 

Following the standard procedure for lyophilization and hydration, we measured the 

following parameters: size, zeta potential, lipid content and lipid peroxidation (TBARS). 

Size of the vesicles was highly influenced by the cryoprotectant used as shown in Fig. 

4.5A. The other parameters did not show differences independently of the factor used. 

It is worth noting that the peroxidation was completely avoided with the lyophilization 

(Fig. 4.5B) 

 

 
Figure 4.5. A) Pareto analysis of the contribution of each factor to the size of liposomes. B) Lipid 

peroxidation of liposomal formulations after 2 weeks storage in the fridge or lyophilized. 

 

 

We considered the following condition as optimal for soy-PC liposome lyophilization: 

5% trehalose, 20 min agitation, storage stability > 6 weeks. 
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Having guaranteed the stability of the formulations, we assessed the dark cytotoxicity 

and photodynamic action of PdTPPo encapsulated in soy-PC liposomes (Fig. 4.6). 

Lyophilized formulations were rehydrated just before the experiments. HeLa cells were 

incubated for 18 h with different concentrations of PdTPPo encapsulated in soy-PC 

liposomes. Control liposomes without PS were also tested. Afterwards, cells were 

exposed to 3.5 J/cm2 red light using a LED source. Cell survival was assessed by MTT 

assay 24 h after treatment. 

 

 
Figure 4.6. Dark and photodynamic induced toxicity of soy-PC liposomes with or without PdTPPo. Mean ± 

SD from at least three different experiments are shown. 

 

 

The toxicity induced by the carrier itself was even higher than the PdTPPo containing 

liposomes. No effect was observed after delivering 3.5 J/cm2. The drug/lipid molar ratio 

of these formulations was increased up to 1:600 for an efficient encapsulation of 

PdTPPo, and therefore, the high concentration of lipids added to the incubation media 

caused an inherent cytotoxicity. After these results, the formulation was discarded. 
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4.3.2. Development of temocene liposomal formulation 
 
Temocene is the porphycene analogue to temoporfin (Foscan®). It has been 

developed a liposomal formulation for this potent PS (Foslip®) in order to avoid 

problems of drug precipitation after injection [16-18]. Based on these previous works 

and because temocene is a structural isomer of temoporfin, we first attempted the 

liposomal formulation using Biolitec’s formulation Foslip® (18 mg/mL DPPC, 2 mg/mL 

DPPG and 1.5 mg/mL m-THPC) as reference formulation [19]. Thus, we tested two 

preparations, m-THPPo/DSPC/DSPG (1:10:1.1) and m-THPPo/DPPC/DPPG 

(1:11:1.2), using extrusion or microemulsification methods. Results are summarized in 

Table 4.2. 

 
Table 4.2. Physicochemical characteristics of the different formulations as measured by PS and particle 

size. 

    

 
 

In this first iteration, extrusion was discarded for controlling the size of the vesicles after 

hydration. Temocene, because of its high hydrophobicity, was completely retained in 

the polycarbonate filters of the extruder. Furthermore, the formulation m-

THPPo/DSPC/DSPG was also discarded. Its high phase transition temperature (above 

45ºC [16]) made the suspension as a solid gel, not suitable for injectable formulations.    

 

 

In a second approach, lipid mixtures of different chain length were tested. Phospholipid 

chains of different length cause discontinuities in the lipid membrane where the 

photosensitizer can accommodate.  As we can see in Table 4.3, PS encapsulation 

yields have improved considerably but they were still too low. Moreover, the resulting 

liposomes were too large with high polydispersity. This indicated that the radius of 

curvature is very constrained and therefore the bilayer could not accommodate many 

PS molecules resulting in a low encapsulation yield and large vesicles.  
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Table 4.3. Physicochemical characteristics of the different formulations as measured by PS and particle 

size. 

 
 

 

Increasing the drug/lipid relation to 1:25 we obtained better encapsulation yields but 

the size of liposomes was still too large and too polydispersed (Table 4.4).  

 
 

 

Table 4.4. Physicochemical characteristics of the different formulations (PS/lipid molar ratio 1:25) as 

measured by PS and particle size. 

 
 

 

The best results were obtained with DPPC/DMPG formulation, although the temocene 

content is still low.  The drug/lipid molar ratio was then increased to 1:75 and 1:100 

using this formulation (Table 4.5). Both liposomal suspensions showed good 

encapsulation yields with a vesicle size close to 120 nm.  We chose m-

THPPo/DPPC/DMPG (1:67.5:7.5) as the optimal formulation for the encapsulation of 

temocene.  
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Table 4.5. Physicochemical characteristics of m-THPPo/DPPC/DMPG formulations as measured by PS 

and particle size. 

 
 

 

The local concentration of the solubilized porphycene in the liposome bilayer can be 

estimated by means of the total number of lipid molecules per liposome (Nlip). Nlip can 

be calculated using the following equation (Eq. 4.1) [20]:  

 

 

!!"# =
!! !!

!
!
!!! !!!!

!
!

!     (4.1) 

 

 

where DH is the hydrodynamic diameter, h is the thickness of the bilayer (3.7 nm for 

DPPC vesicles [21]) and a is the cross-sectional area of the polar head of lipids (0.71 

nm2 for phosphatidylcholine [22]). Considering our liposomes are composed only by 

DPPC lipids, the number of lipid molecules per liposome is Nlip = 119 817 molecules. 

Since the molar ratio PS/lipid is 1:75, the number of photosensitizer molecules in a 

liposome is NPS = 1597 molecules (2.6 x 10-21 mol). The volume of a liposome is 

calculated as follows (Eq. 4.2): 

 

! = 4/3!(!!! )! − 4/3!(
!!!!
! )!    (4.2) 

 

The volume of a liposome is therefore 1.6 x 10-19 L. Thus, the local concentration of 

temocene in a liposome of 120 nm diameter is 0.016 M. This high local concentration 

of temocene inside the liposome can influence the photophysical properties of the PS.  

 

As we observed in Fig. 4.7 temocene in liposomes presented a structured absorption 

spectra without presence of any additional bands typical of aggregates. This result 

evidenced that although the high local concentration, the PS is still in a monomeric 

state.  
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Figure 4.7. Absorption spectra of temocene in DPPC/DMPG liposomes and in THF. 

 

 

The absorption spectrum measured of liposomes included two contributions: 

absorption of encapsulated temocene and scattering of the vesicles, the latter more 

evident at lower wavelengths. The determination of fluorescence quantum yield (ΦF) 

was therefore influenced by this fact. It was calculated from the comparison of the area 

under the emission curve of optically-matched solutions of the sample to that of a 

reference, in this case, cresyl violet (CV) (Fig. 4.8). 

 

 
 

 
Figure 4.8. Absorption (A) and emission (B) spectra of cresyl violet in MeOH (violet) and temocene 

encapsulated in liposomes (blue). 

 

 

Considering that there would be less molecules of photosensitizer than that we were 

adjusting because of the scattering contribution, we expressed the fluorescence 

quantum yield as ΦF ≥ 0.02 ± 0.003.  
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The same holds true for the singlet oxygen quantum yield (Φ∆) (Fig. 4.9) and therefore 

it was expressed as Φ∆ ≥ 0.082 ± 0.02. 

 

 
Figure 4.9. Absorption (A) and singlet oxygen phosphorescence (B) spectra of TMPyP in water (red) and 

temocene encapsulated in liposomes (blue). 

 

 

The singlet lifetime of temocene encapsulated in liposomes decayed with a lifetime of 

τS = 1.6 ± 0.2 ns (Fig. 4.10), substantially lower than that of temocene in THF (τS = 2.3 

± 0.2 ns). 

 
Figure 4.10. Fluorescence decay of temocene encapsulated in liposomes (λexc = 375 nm, λem = 660 nm) 

 
 
Although the PS was apparently in a monomeric state regarding its absorption 

spectrum, the fluorescence and singlet oxygen quantum yields and the singlet lifetime 

of temocene inside the liposomes indicated that liposomes affected in some extent the 

photophysical characteristics of the photosensitizer. This effect could be due to the 

high local concentration of the temocene inside the liposomal bilayer (16 mM) and 

therefore the formation of dimers, trimmers and high order aggregates can occur. A 
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similar effect was observed for liposomal encapsulated chlorins [23]. The high local 

concentration of the PS induced remarkable changes in the photophysical properties. 

However, after being incorporated to human skin fibroblasts, the PSs existed as 

monomers inside the cells showing the same photophysical properties as in organic 

solution.  We can expect the same result for the temocene formulation.   

 

Lyophilization 

 

An ideal formulation should be endowed with long-term stability and easy manipulation. 

Many methods are available for liposome stabilization such as freezing or spray-drying, 

though lyophilization is the main approach used to extent the self-life of liposomes [15]. 

Using the conditions optimized for soy-PC liposomes (5% trehalose as cryoprotectant 

and 20 min agitation during hydration), we studied the effect of lyophilization process 

on the physicochemical properties of the temocene liposomal formulation (Table 4.6).  

   

 
Table 4.6. Effect of lyophilization on the physicochemical characteristics of temocene liposomal 

formulation. 

 
 

As expected, the size of liposomes was increased due to the fusion/aggregation of 

vesicles although it was maintained within the optimal size range for cellular 

internalization. Neither the PS content nor the aggregation state was influenced by 

lyophilization. This process ensured the stability of liposomal formulations during 

several months of storage.  
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4.4. CONCLUSIONS 

In this work, we have faced up to the development of different liposomal formulations 

for the delivery of two porphycene-based photosensitizers: PdTPPo and m-THPPo.  

The effect of palladium coordination was not only reflected in the photophysical 

properties of the porphycene, but also in its liposomal encapsulation. The insertion of 

the metal ion in the macrocycle cavity distorted the geometry of the macrocycle core 

and therefore its planarity [24]. This distortion hampered its packaging within the lipid 

bilayer, decreasing the number of PS molecules per liposome. We found 1:600 a 

drug/lipid molar ratio that allowed high PdTPPo encapsulation yields with minimal 

aggregation. We used highly unsaturated lipids with high fluidity (phosphatidylcholine 

soy extract) to facilitate the incorporation of the photosensitizer. However, these 

unsaturations led to the peroxidation of the lipids. To enhance the stability of the 

formulations we proposed two strategies: change the lipid components to lower 

unsaturated chains that avoid peroxidation (PdTPPo/POPC/OOPS, 1:450:150 molar 

ratio) or lyophilize the soy-PC liposomal formulation. We have optimized the 

parameters for an optimal lyophilization of the liposomal formulations. However, the 

reconstituted liposomal suspension was not suitable for cellular experiments since it 

was cytotoxic by itself.   

We also developed the liposomal formulation for temocene. We found that m-

THPPo/DPPC/DMPG (1:67.5:7.5 molar ratio) yielded a high encapsulation rate with 

liposome sizes of ca. 120 nm. The local concentration of temocene inside the 

liposomal bilayer was 16 mM. This high concentration could lead to the formation of 

aggregates affecting the photophysical properties of temocene in some extent. In spite 

of this fact, we assumed that DPPC/DMPG liposomes are a good drug delivery system 

for temocene photosensitizer that fulfills the requirements of an ideal carrier for PDT: 

avoid aggregation of the PS in aqueous environments providing a high drug payload. 

The influence of liposomes in internalization, subcellular localization and in vivo 

pharmacokinetics will be discussed in chapter 6. 
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